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Introduction.Modern industry witnesses a fast growth in volume and complex-
ity of heterogeneous manufacturing (big) data [1, 2] thanks to the technological
advances of Industry 4.0 [3, 1], including development in perception, communi-
cation, processing, and actuation. Data has become the new oil for industries8.
However, despite the effort and time invested in the data business, there still
exists a big room for improvement in exploiting the value of data. In particular,
data is still often scattered and stored in silos affecting its usage [4]; a lot of data
generated by sensors is not used in applications; companies possess precious data
but do not have a trustworthy scheme to share its value; etc. There are certainly
many ways to address these issues. In this paper we discuss the dimension of
meaning in data and how we address it at Bosch (Fig. 1) in a holistic semantifica-
tion fashion that bestows data with meanings which has always been important
for humans to perceive, comprehend, reason, and produce. We believe the em-
phasis, the clarification, and the promotion of the eminent and profound roles of
semantic technologies in the industry should lead to considerable opportunities
for advances in technology, growth of profitability, and paradigm change in the
industrial practice.

Holistic Semantification at Bosch.

– Data collection. Semantification begins with data collection [5]. During
which, vast amounts of heterogeneous data with mutli-faceted variety in lo-
cations, formats, physical equipment, customisation, etc. are annotated with
precise and uniform meta-data, which sets the first corner stone for many
activities that are based on the collected data.

– Data understanding. In big manufacturing companies like Bosch, data
science projects are typically multi-disciplinary teamwork where experts
with asymmetric knowledge backgrounds (e.g., engineers, equipment experts,

8 https://blog.s4rb.com/data-is-the-oil-of-the-21st-century
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Fig. 1. An overview of our holistic semantification approach

measurement experts, data managers, data scientists, managers) need to talk
to each other, to gain a mutual understanding of the process, data, solution,
infrastructure, strategic interests, etc [6]. These experts with distinct back-
grounds speak different technical or management languages, which tends to
lead to error-prone and time-consuming communication. Thanks to their
conciseness and unambiguity, semantic models play an essential role here,
serving as the “lingua franca” between the experts speaking different lan-
guages [7, 8].

– Data integration. We rely on ontologies and knowledge graphs (KG) to
annotate heterogeneous welding manufacturing data from Bosch and its part-
ners with unified vocabularies. Then, enhanced by the ontology reshaping
method developed in Bosch [9, 10], we transform them into uniform data
formats/databases that allow uniform access, interoperability, and unified
interpretation.

– Data market. Bosch participates in a digital open marketplace ecosys-
tem [11], which provides a sustainable approach to connect the data providers
and the data consumers to help to connect Bosch and its partners. The on-
tologies and KGs make the data easier to reach from and by Bosch’s pro-
duction units, suppliers, and customers.

– Data query & search. Data like XML files, KGs [12, 13] provide an efficient
foundation for querying information of interest via clearly defined formats.
SPARQL queries or keywords are used to query data [14–17] for inspec-
tion, information summary, and diagnostics. Data search outputs datasets,
databases, or snippets of datasets [18–21] and relies on the metadata-based
query, KG summarisation, natural language-based search [22], or even the
content-based search, which Bosch is researching on.

– AI and Data analysis. Here Bosch relies on semantics in diversified ways
like scaling usability of data analysis (typically machine learning (ML)-
based) pipelines [23] with user interface, which improves the adoption of
ML [24], (semi-)automate the generation of ML pipelines with ontologies,
templates, and reasoning [25] incorporating domain knowledge via annota-
tion and KG embeddings, etc.

– Data pipeline deployment (scalability). Bosch develops semantic ab-
straction of cloud resources for computing, storage, and networking that
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facilitate the deployment of distributed ML pipelines, thus scaling the data
analysis onto the big data level [26, 27]. Adaptive rule-based reasoners help
to automate the configuration of resource allocation.

– Semantic standardisation. Now Bosch participates in the endeavour [28]
working towards addressing the long call of the standardisation of seman-
tic artefacts [29], infrastructure, and best practice via e.g. aligning to ISO
standards, existing vocabularies, achieving common agreement.

Conclusion. This work gives a panorama view of semantic technologies in the
data business at Bosch that is in development. We aim at advancing the exploita-
tion of the values of data in the manufacturing industry. We envision semantic
technologies continuing to be one of the keys to unlocking the potential of the
values of data.
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