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Abstract

Background

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:The global epidemic of type 2 diabetes mellitus (T2DM) renders its prevention a major public

health priority. A key risk factor of diabetes is obesity and poor diets. Food environments

have been found to influence people’s diets and obesity, positing they may play a role in the

prevalence of diabetes. Yet, there is scant evidence on the role they may play in the context

of low- and middle-income countries (LMICs). We examined the associations of food envi-

ronments on T2DM among adults and its heterogeneity by income and sex.

Methods and findings

We linked individual health outcome data of 12,167 individuals from a network of health sur-

veillance sites (the South Asia Biobank) to the density and proximity of food outlets geolo-

cated around their homes from environment mapping survey data collected between 2018

and 2020 in Bangladesh and Sri Lanka. Density was defined as share of food outlets within

300 m from study participant’s home, and proximity was defined as having at least 1 outlet

within 100 m from home. The outcome variables include fasting blood glucose level, high

blood glucose, and self-reported diagnosed diabetes. Control variables included demo-

graphics, socioeconomic status (SAU : PleasenotethattheabbreviationSEShasbeenintroducedforsocioeconomicstatusintheabstractandtext:Pleasecheckandcorrectifnecessary:ES), health status, healthcare utilization, and physical

activities. Data were analyzed in ArcMap 10.3 and STATA 15.1. A higher share of fast-food

restaurants (FFR) was associated with a 9.21 mg/dl blood glucose increase (95% CI: 0.17,
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18.24; p < 0.05). Having at least 1 FFR in the proximity was associated with 2.14 mg/dl

blood glucose increase (CI: 0.55, 3.72; p < 0.01). A 1% increase in the share of FFR near an

individual’s home was associated with 8% increase in the probability of being clinically diag-

nosed as a diabetic (average marginal effects (AMEs): 0.08; CI: 0.02, 0.14; p < 0.05). Hav-

ing at least 1 FFR near home was associated with 16% (odds ratio [OR]: 1.16; CI: 1.01,

1.33; p < 0.05) and 19% (OR: 1.19; CI: 1.03, 1.38; p < 0.05) increases in the odds of higher

blood glucose levels and diagnosed diabetes, respectively. The positive association

between FFR density and blood glucose level was stronger among women than men, but

the association between FFR proximity and blood glucose level was stronger among men

as well as among those with higher incomes. One of the study’s key limitations is that we

measured exposure to food environments around residency geolocation; however, partici-

pants may source their meals elsewhere.

Conclusions

Our results suggest that the exposure to fast-food outlets may have a detrimental impact on

the risk of T2DM, especially among females and higher-income earners. Policies should tar-

get changes in the food environments to promote better diets and prevent T2DM.

Author summary

Why was this study done?

• With a global prevalence of 9% (463 million people) in 2019, the widespread epidemic

of diabetes mellitus renders the prevention of this condition a major priority for public

health.

• Creating health-enabling environments that promote healthy eating and physical activ-

ity is needed to reduce the number of people suffering from diabetes.

• Food environments influence risk factors for type 2 diabetes mellitus (T2DM), but this

evidence is understudied among low- and middle-income countries (LMICs).

What did the researchers do and find?

• We examined the associations between the exposure to the density and proximity of

healthy and unhealthy food outlets and diabetes (i.e., fasting blood glucose level, high

blood glucose, and diagnosed diabetes) using the South Asia Biobank and environment

mapping data for 12,167 adults collected between 2018 and 2020 for Bangladesh and Sri

Lanka.

• We found that a higher share of fast-food outlets was associated with a 9.21 mg/dl blood

glucose increase. Also, a 1% increase in the share of fast-food outlets was associated with

an 8% increase in the probability of being diagnosed with diabetes. Having at least 1

fast-food retailer in the proximity of one’s home was associated with 2.14 mg/dl blood

glucose increase.
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• While the association between the density of fast-food retailers and blood glucose level

was stronger among women than men, density of fast-food restaurants (FFRs) increased

the likelihood of being diagnosed with diabetes for both men and women. The associa-

tion between proximity to these outlets and blood glucose level was stronger among

men.

• Both density and proximity of fast-food outlets were associated with diabetes outcomes

among high-income earners. Density of FFRs was associated with increased probability

of being diagnosed with diabetes for low-income earners, although the effect size was

smaller than for high-income earners.

What do these findings mean?

• The exposure to fast-food outlets may have a detrimental impact on the risk of diabetes,

especially among females and those with higher income.

• Policies should target changes in the food environments to promote better diets and

prevent diabetes.

IntroductionAU : PleasecheckwhethertheeditstothesentenceTheexposuretofast � foodoutletsmay:::arecorrectandamendifnecessary:
With a global prevalence of 9% (463 million people) in 2019, the widespread epidemic of type

2 diabetes mellitus (T2DM) renders its prevention a major public health priority [1]. Although,

historically, T2DM was considered a disease confined to countries of affluence, recent esti-

mates suggest that 80% of the 463 million people with T2DM now live in low- and middle-

income countries (LMICs) [2]. South Asia is particularly affected by T2DM, where the highest

number of deaths were attributable to diabetes under the age of 60 years (working age) in

2019. The projected increase in T2DM prevalence for 2030 in the region is substantially higher

(74%) in comparison to that in Europe (15%) [1].

In 2020, the Lancet Diabetes Commission recommended creating health-enabling environ-

ments that promote healthy eating and physical activity to reduce the number of people suffer-

ing from T2DM [3]. This highlights the importance of the role the food environment plays in

driving diabetes prevalence. A cohort study of the United Kingdom Biobank using a sample of

502,625 participants found that the density of ready-to-eat food establishments (pubs and bars,

restaurants and cafeterias, and fast food or hot and cold takeaway outlets) within a 1-km street

catchment area was associated with higher odds of T2DM [4]. Another cohort study of more

than 4.5 million participants from Sweden found that the density of health-harming food out-

lets (fast-food outlets, convenience stores, bars, and pubs) within 1-km buffer from an individ-

ual’s home was associated with a greater likelihood of T2DM prevalence and incidence [5].

Moreover, den Braver and colleagues conducted a systematic review of 109 eligible studies and

found that living in an urban residence was associated with higher T2DM risk. However, it

found that evidence of an association between food environment with T2DM risk remains

inconsistent [6].

In this study, we assessed the role food environment plays on diabetes outcomes among

adults in 2 understudied LMICs, Bangladesh and Sri Lanka, where the prevalence of diabetes
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has been growing rapidly. In 2020, the prevalence of diabetes was 8.1% and 8.7% in Bangladesh

and Sri Lanka, which correspond to, respectively, an estimated 8.4 million and 1.2 million total

cases of diabetes among adults [7]. These trends may be driven by an increase in the prevalence

of risk factors for diabetes such as obesity and poor diets. The prevalence of obesity was 25.9%

in 2018 and 29.3% in 2014 among adults in Bangladesh and Sri Lanka, respectively [8]. More-

over, evidence from Sri Lanka indicates that in 2013 only 3.5% of adults consumed the recom-

mended 5 portions of fruits and vegetables (FV). In contrast, they consumed over 14 portions

of starch and 3.5 portions of added sugars daily [9]. Further, consumption patterns and food

sourcing have been found to vary across sex and the different income strata. For example,

higher-income individuals are more likely to source food from conveniently located stores that

might offer more product variety at higher prices, whereas lower-income groups are more

likely to travel longer distances to stationary and/or mobile markets where the food is relatively

cheap and readily available [10]. Food environments have been found to influence diets and

obesity and therefore may be instrumental for the prevention of diabetes in these countries

[3,11,12]. Yet, evidence on the association of the food environment and diabetes is limited,

and, to our knowledge, no study has assessed this association in South Asia.

Most existing evidence is for high-income countries (e.g., United States, United Kingdom,

Australia, Japan, and Sweden) and measure exposure to food environments using geographic

information systems (GISs) data of food environments (e.g., density or proximity of food out-

lets) [6]. There are some contributions in LMICs (e.g., Thailand, Malaysia, India, Sri Lanka,

Ghana, Nigeria, and Uganda), but exposure to food environments tends to be captured with

crude metrics such as residency in urban/rural areas, which are imperfect in capturing the dif-

ferent elements of the environment as well as individual exposure to those environments. Sec-

ond, previous studies focused on self-reported diagnosed T2DM status, which may have been

subject to recall bias and did not included the undiagnosed populations, as shown by the UK

Biobank study [4]. Thus, our study aims to fill the evidence gap by investigating the associa-

tions between the density and proximity of food environment and T2DM in Bangladesh and

Sri Lanka, using a rich characterization of exposure to healthy and unhealthy food environ-

ments in the neighborhood of peoples’ homes. Our research question is whether food environ-

ment is associated with T2DM. We hypothesize that healthy elements of the food

environments are negatively associated with T2DM, while unhealthy elements of the food

environment are positively associated with T2DM.

Methods

Study design and sample

We carried out a novel approach of examining the associations between exposure to food-built

environments and T2DM. We linked individual health outcome data of 12,167 individuals

from our network of health surveillance sites (the South Asia Biobank) to the density and prox-

imity of food outlets geolocated around their homes from our environment mapping surveys

collected between 2018 and 2020 in Bangladesh and Sri Lanka.

South asia biobank

The South Asia Biobank is a comprehensive biobank of South Asian individuals, established to

identify the risk factors and their complex interactions underlying the development of T2DM,

cardiovascular disease, and other chronic diseases in South Asians. It is a cross-sectional inves-

tigation in Bangladesh, India, Pakistan, and Sri Lanka with data collected between November

2018 and March 2020. Data include participants’ demographic, lifestyle, clinical, environmen-

tal, and phenotypic characteristics and biological samples. In each country, national
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administrative data were used to select rural and urban surveillance sites. One district was ran-

domly selected from each of the major administrative divisions or provinces, from which one

subdistrict was randomly chosen. One or more community clinics (or urban dispensary)

within each subdistrict were randomly selected and the ward where those community clinics

located were surveillance sites. All eligible residents in a surveillance site were invited to partic-

ipate. In the recruitment of participants, governmental census data and available household

listings were used, together with house-to-house visits by local research teams, to identify the

residents. Further detail on the sample and data can be found in Song and colleagues [13].

Outcome variables

There were 3 outcome variables in our analyses: diagnosed diabetes, fasting blood glucose

level, and high blood glucose. First, diagnosed diabetes was a binary variable with a value of 1

if one reported ever been told by health worker having a raised blood sugar (i.e., diabetes) or

currently takes medications (e.g., insulin) and 0 if otherwise. An interviewer-administered

health and lifestyle questionnaire was used to collect information on diagnosed diabetes, along

with other behavioral risk factors (smoking, alcohol use, physical activity, and consumption of

FV), medical history, medications, and socioeconomic status (SES). Although diagnosed dia-

betes was self-reported, individuals were asked whether they had been told by their doctor

they had diabetes or if they were on prescribed medication (e.g., insulin) rather than whether

they thought they had diabetes. This, together with the fact that data collection took place in a

healthcare setting, may mitigate some of the issues associated with self-reported data. How-

ever, to mitigate biases from self-reported data, we complement the analyses with 2 objectively

measured outcomes, namely fasting blood glucose level (mg/dl), which was a continuous vari-

able obtained from blood samples taken by trained data collectors in each surveillance site in

the South Asia Biobank study and high blood glucose, which was a binary variable with a value

of 1 if the fasting blood glucose was 126 mg/dl and above and 0 if otherwise. Fasting glucose

was measured by point of care tests. Equipment, protocols, and training were standardized

across surveillance sites [13].

Environmental mapping

In each surveillance site in Bangladesh and Sri Lanka, an environmental mapping was con-

ducted to characterize the built environment in terms of the number of food outlets. We cre-

ated a list of questions including geolocations, type of food outlets, and select items sold (e.g.,

FV, confectionary, and fast food). To ensure comprehensiveness, we adapted the questions

and data collection procedure from the International Network for Food and Obesity/NCDs

Research, Monitoring and Action Support (www.informas.org) and Johns Hopkins Univer-

sity’s Maryland Food Systems Map (https://mdfoodsystemmap.org). We then discussed with

local research teams to include local-specific food retailer types and food items sold. We

included all questions in an online questionnaire using KoBoToolbox application (www.

kobotoolbox.org) as the study instrument. Prior to data collection, local research teams in each

country were trained in administering the instrument on smartphones or tablets. During

October 2018 to August 2020, 6-person research teams conducted ground truth data collection

surveys, by systematically covering all streets within surveillance sites on foot, following a map

in which the site boundary was previously defined [13]. The team examined and recorded the

presence of any food retailer within each site. To ensure that all streets and neighborhoods in

surveillance sites were covered, we reviewed the map of food outlets on KoBoToolbox website

and Google Maps together with each country team. AAU : PleasecheckwhethertheeditstothesentenceAlso;wedeployedquality:::arecorrectandamendifnecessary:lso, we deployed quality control checks

by sending a second team to the sites to conduct spot checks in randomly selected areas within
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each site to ensure that all areas were appropriately covered and all relevant food outlets were

recorded [14]. Our mapping collected data on geolocations (latitude and longitude) of super-

markets, corner stores (including small grocery and convenient stores), mobile food carts, sta-

tionary food carts, and restaurants. Mobile food outlets (stalls, carts, vans, and bikes) are

important source of both healthy (e.g., fish and FV) and unhealthy food (e.g., snacks and sug-

ary drinks) especially in LMICs—sample images from our mapping are in S1 Fig. Therefore, it

was important to capture their availability. Because they are mobile, teams would visit the sites

both in the mornings and afternoons, and control checks were performed in days and times

that differed from the original data collection timings to ensure the presence of these outlets

would be captured in the data.

Food environment exposures

To our knowledge, there is no food outlet classification in South Asia, and, therefore, we fol-

lowed the international classification of healthy and unhealthy food outlets as described in the

Retail Food Environment Index [15] and the North American Industry Classification System

(www.census.gov/naics). We created 5 categories for food outlets: (1) fast-food restaurants,

including international as well as domestic fast-food restaurants where people can purchase

sweetened beverages and speedy, ready-to-eat food that is highly processed and high in calories

and thus considered unhealthy; (2) supermarkets, self-service shop selling fresh FV and other

healthy foods, therefore considered healthy; (3) corner stores, small shop selling foods; (4)

mobile carts, temporary structure that is readily moveable; and (5) stationary carts, moveable

structure but occupies a specific location [16,17]. Since we did not observe what is sold in each

outlet, in reporting the results, we followed the literature in classifying supermarkets as healthy

food outlets and fast-food restaurants as unhealthy food outlets [17]. Even though supermar-

kets sell a range of healthy and unhealthy products, in international classifications, these are

described as healthy due to the fact that they are more likely to provide healthier options com-

pared to fast-food restaurants (FFRs) or corner stores [15]. Therefore, for supermarkets and

FFRs, we adopt the terminology of healthy and unhealthy food outlets as in international clas-

sifications for the purpose of formulating our research hypotheses, but we remain agnostic to

the direction of the association of each food retailer on diabetes outcomes [15]. For stationary

carts and mobile carts, there is no consensus in the literature on their classification, and, there-

fore, we remain agnostic, in terms of research hypotheses, on whether they are healthy or

unhealthy.

We calculated the density of and proximity to fast-food outlets, supermarkets, corner stores,

mobile carts, and stationary carts, which together encompasses what we here refer to as the

food environment. Food environment geolocation data were merged with individual-level

data to characterize the density of different food outlet types within 300-m buffer around each

participant’s home. We counted the total number of each food outlet and defined density as

the share of each food outlet type relative to all food outlets within the 300-m buffer. Also, we

defined the proximity of food outlets as having at least 1 food outlet type within 100-m of a

participant’s home address—variable definitions are summarized in S1 Table. Similar dis-

tances have been used in the literature and enables capturing more variation in terms of indi-

vidual exposure to the food environments [18,19]. Geospatial analyses were conducted on

ArcMap 10.3.

Data analysis

For fasting blood glucose level (a continuous variable), we employed ordinary least squares

(OLS) multivariate regressions to assess its association with food environment. In reporting
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the estimates, we used the OLS coefficients for both density and proximity as the measure of

food environment exposure. For high blood glucose and diagnosed diabetes (binary variables),

we employed logistic regressions to test the associations with food environment. In reporting

the estimates, we report average marginal effects (AMEs) for density (a continuous variable)

and adjusted odds ratios (AOR) for proximity (a binary variable), as the measures of food envi-

ronment exposure. In addition to these models using the entire sample, we also stratify by sex

and income. The low- and high-income strata were defined based on whether each individual

had an income of above (henceforth high income) or below (henceforth low income) the

median income among the sample in each country.

We adjusted for individual-level covariates based on previous literature [20]. TAU : PleasecheckwhethertheeditstothesentenceTheyincludeddemographiccharacteristics:::arecorrectandamendifnecessary:hey included

demographic characteristics (i.e., sex, age, country, marital status, and religion), SES (i.e., paid

employment, school years, income, and household composition), health status measured (i.e.,

self-assessed health), healthcare utilization (i.e., receiving advice from health workers to reduce

the consumption of products high in fat and sugary beverages, to increase daily intake of FV,

to lose weight, or to increase physical activity), and physical activity habits (i.e., weekly minutes

of vigorous or moderate physical activity spent at work, home or recreational facilities, and

walking or cycling as a mode of transportation). We control for religion because, in the context

of South Asia, studies have reported that religious affiliations could significantly impact indi-

viduals’ dietary patterns, physical activity, and, ultimately, may impact the risk of diabetes and

other noncommunicable diseases (NAU : PleasenotethatNCDshasbeendefinedasnoncommunicablediseasesinthesentenceWecontrolforreligionbecause::::Pleasecheckandcorrectifnecessary:CDs). For example, evidence suggests that Muslim popu-

lations tend to have higher prevalence of NCDs and indicated that Muslims consume more

deep-fried and processed foods and spend less time in physical activity (especially Muslim

women) compared to non-Muslim, even when controlled for education and income status

[21].

Income was reported in USD after being adjusted for purchasing power parity (PPP) for

comparability between the 2 countries and was deflated using 2018 prices. Regressions also

included surveillance site as the fixed effects to control for site-specific time invariant cofound-

ers. The analyses were well powered using a sample of 12,167 participants and conducted in

STATA 15.1. More details of model specifications are provided in S1 Text, and estimates from

unadjusted regressions are provided in S2 Table. This study is reported as per the Strengthen-

ing the Reporting of Observational Studies in Epidemiology (STROBE) guideline—see pro-

vided in S3 Table.

The study did not have a published protocol, but it had a planned analysis in the research

proposal and research plans submitted to the funder (S2 Text). Also, the study had a (nonwrit-

ten) internal plan for the analyses, which were assessed by the Global Health Research Unit

(GHRU) Steering Committee. We have not deviated from the planned analyses during the exe-

cution of the analyses, nor during the review process.

Research approval was obtained from the Imperial College London Research Ethics Com-

mittee (reference: 18IC4698) and local institutional review boards in each of the participating

countries (Bangladesh [BRAC University] and Sri Lanka [University of Kelaniya and Univer-

sity of Colombo]).

Results

For the total sample of N = 12,167, which included participants from Bangladesh (N = 8,534)

and Sri Lanka (N = 3,633), the average age was 45.5 (14.4 SD) years, school years were 6.42

(4.84 SD), and monthly income was 700.73 USD (Table 1). From the total, 59.7% (49.1 SD)

were females, and 43.9% had a paid employment. Regarding the food environment (panels B

and C), the average share of FFR within 300 m of a resident’s home address was 7.78% (9.74%
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Table 1. Descriptive statistics of sample characteristics.

VARIABLES Total

N = 12,167

Male

N = 4,897

Female

N = 7,256

Lower income

N = 6,031

Higher income

N = 6,048

Sri Lanka

N = 3,633

Bangladesh

N = 8,534

(A) General characteristics

Female, n (%) 7,254 (59.71%) 0% 100% 61.75% 57.66% 69.12% 55.7%

Age years, mean (SD) 45.47 (14.42) 47.03 44.41 47.05 43.87 49.68 43.67

Married, n (%) 10,587 (87.01%) 90.06% 84.99% 86.69% 88.61% 81.15% 89.51%

Urban, n (%) 7,207 (59.23%) 56.30% 61.21% 56.61% 61.89% 81.53% 49.74%

Religion, n (%)

Buddhist 2,601 (21.38%) 16.15% 24.88% 19.43% 23.63% 71.59% 0%

Christian 368 (3.02%) 2.14% 3.62% 2.70% 3.39% 10.13% 0%

Hindu 927 (7.62%) 8.13% 7.28% 9.67% 5.69% 11.01% 6.18%

Muslim 8,165 (67.11%) 72.76% 63.31% 68.00% 67.20% 5.28% 93.43%

Other religion 106 (0.87%) 0.82% 0.91% 0.20% 0.10% 1.98% 0.40%

School years, mean (SD) 6.42 (4.84) 6.47 6.31 5.26 7.57 9.82 4.90

Income $PPP, mean (SD) 700.73 (1,860.13) 741.42 672.67 318.94 1,081.44 901.23 616.51

Employed, n (%) 5,307 (43.94%) 85.56% 15.81% 41.62% 46.25% 40.69% 45.30%

Number of adults in household, mean (SD) 3.09 (1.35) 3.17 3.04 2.81 3.37 3.21 3.04

Self-assessed health, n (%)

Poor 1,762 (14.59%) 11.89% 16.41% 17.01% 12.17% 7.22% 17.68%

Fair 4,130 (34.19%) 34.55% 33.93% 33.33% 35.05% 30.34% 35.81%

Good 5,587 (46.25%) 47.80% 45.22% 45.40% 47.11% 51.30% 44.13%

Very good 479 (3.97%) 4.69% 3.48% 3.28% 4.65% 8.87% 1.90%

Excellent 121 (1.00%) 1.07% 0.96% 0.98% 1.03% 2.27% 0.47%

Physical activity mins/w, mean (SD)

Vigorous 397.98 (1,050.53) 753.19 159.01 492.66 309.35 126.63 513.49

Moderate 793.76 (1,043.02) 580.30 938.07 855.411 743.84 455.08 937.95

Transport week 152.26 (253.58) 217.49 108.23 163.37 143.39 128.11 162.54

Received advice from health providers on, n (%)

Increasing FV 4,837 (40.04%) 36.55% 42.45% 37.42% 42.66% 32.52% 43.20%

Reducing fat content in diet 3,727 (30.86%) 28.18% 32.69% 27.89% 33.81% 36.69% 28.40%

Increasing PA 2,502 (20.71%) 17.67% 22.80% 17.68% 23.74% 31.07% 16.36%

Losing weight 2,582 (21.38%) 16.95% 24.38% 17.44% 25.30% 30.48% 17.55%

Reducing sugary beverages 2,213 (18.32%) 16.47% 19.56% 16.32% 20.32% 29.44% 13.65%

(B) Density food outlet (%)

FFR share 7.78 (9.75) 7.74 7.79 7.36 8.20 6.56 8.29

Supermarket share 0.88 (3.37) 0.79 0.93 0.70 1.06 1.99 0.40

Corner store share 50.79 (33.20) 50.47 50.99 48.20 53.48 53.55 49.61

Mobile cart share 1.57 (5.16) 1.52 1.60 1.51 1.63 1.75 1.49

Stationary cart share 11.76 (18.39) 11.99 11.59 11.85 11.71 9.96 12.52

(C) Proximity food outlet (%)

FFR 18.53 (38.86) 18.32 18.67 14.43 22.69 13.87 20.52

Supermarket 22.29 (41.62) 4.59 5.17 2.59 7.29 6.17 4.41

Corner store 50.70 (50.00) 50.50 50.80 46.05 55.47 47.51 52.06

Mobile cart 7.59 (26.49) 7.15 7.90 5.77 9.42 7.40 7.68

Stationary cart 4.93 (21.65) 21.58 22.75 19.88 24.69 21.88 22.46

(D) Outcome variables

Fasting blood glucose (mg/dl), mean (SD) 102.92 (33.86) 101.71 103.75 101.78 103.97 106.36 101.47

High blood glucose (1 = 126+ mg/dl), n (%) 1,343 (11.13%) 10.27% 11.71% 9.77% 12.38% 16.00% 9.08%

Diagnosed diabetes (1 = diagnosed), n (%) 1,438 (11.90%) 11.37% 12.26% 10.46% 13.34% 19.79% 8.59%

Note: Mean (SD) = mean (standard deviation) of total sample (Sri Lanka and Bangladesh). Low income and high income were defined as below or above the median

income in USD PPP. PA vigorous activity = minutes of vigorous physical activity per week at work, home, or recreational centers; PA moderate activity = moderate

physical activity per week at work, home, or recreational centers; PA transport week = minutes spent walking or bicycling as a mode of transportation per week. Health

utilization = receiving advice on increasing FV or reducing fat content in diet, or increasing physical activity, or losing weight, or reducing the consumption of sugary

beverages. Density or share of FFRs, corner store, stationary cart, mobile cart, and supermarket = the number of each food outlet per total number of food outlets within

300 m of a resident’s home address. Proximity of FFR, corner store, stationary cart, mobile cart, and supermarket = 1 if having at least 1 outlet within 100 m of a

resident’s home address and 0 if otherwise.

FAU : AbbreviationlistshavebeencompiledforthoseusedthroughoutTables1 � 3:Pleaseverifythatallentriesarecorrect:FR, fast-food restaurant; FV, fruits and vegetables; PA, physical activity; PPP, purchasing power parity.

https://doi.org/10.1371/journal.pmed.1003970.t001
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SD). Corner stores and supermarket shares were 50.79% (33.20% SD) and 0.88% (3.37% SD),

respectively. The share of FFR was higher in Bangladesh, while the share of corner stores and

supermarkets were higher in Sri Lanka. The share of supermarkets was zero in rural areas,

indicating that all supermarkets in our sample were in urban sites. For diabetes mellitus,

defined as high blood glucose (>126 mg/dl) and diagnosed diabetes, the mean fasting blood

glucose level was 102.92 (33.86 SD) mg/dl. The proportion of high blood glucose (>126 mg/

dl) was 11.13% (31.46% SD) and that of diagnosed diabetes was 11.90% (32.39% SD). Diabetes

mellitus levels were higher among females and higher-income participants (Table 1).

Regarding the associations between fasting blood glucose level and the density and proxim-

ity of food outlets, no statistically significant results were found for the share of supermarket,

corner stores, stationary carts, or mobile carts (Fig 1, Tables 2 and 3). However, a higher FFR

share was associated with a 9.21 mg/dl blood glucose increase (95% CI, 0.17, 18.24; p< 0.05).

Similarly, having at least 1 FFR in the proximity (i.e., within 100 m) of one’s home was associ-

ated with 2.14 mg/dl blood glucose increase (CI: 0.55, 3.72; p< 0.01). When stratifying by sex,

FFR densities/shares were associated with a greater blood glucose increase in females (β =

13.37; CI: 0.59, 26.16; p< 0.05), while FFR proximities were associated with a higher blood

glucose increase in males (β = 3.15; CI: 0.39, 5.91; p< 0.05) and in those with higher income

(β = 3.84; CI: 0.68, 7.00; p< 0.05).

Fig 2 shows the associations between the dAU : Pleasenotethatasperstyle; italicsshouldnotbeusedforemphasis:ensity of food outlets and diabetes mellitus

(Tables 2 and 3). Overall, no statistically significant results were found for the share of super-

market, corner stores, stationary carts, and mobile carts (Table 2, panels B and C). However,

results showed that the density/share of FFR in the neighborhood of individuals’ homes was

positively associated with the probability of being diagnosed with diabetes. A 1% increase in

the share of FFR near an individual’s home was associated with 8% increase in the probability

of being clinically diagnosed as a diabetic (AME: 0.08; CI: 0.02, 0.14; p< 0.05). When stratify-

ing by sex, while stronger among females (AME: 0.10; CI: 0.01, 0.18; p< 0.05) and higher-

income populations (AME: 0.09; CI: 0.01, 0.17; p< 0.05), these associations were also statisti-

cally significant in males (AME: 0.06; CI: 0.001, 0.12; p< 0.05) and lower-income populations

(AME: 0.07; CI: 0.001, 0.13; p< 0.05).

Regarding the associations between the proximity of food outlets and diabetes mellitus, no

statistically significant results were found for the share of supermarket, corner stores, station-

ary carts, and mobile carts (Table 3, panels B and C). However, results showed that the prox-

imity of FFR near home was positively associated with the probability of having high blood

glucose level and being diagnosed with diabetes. Having at least 1 FFR near home was associ-

ated 16% (odds ratio [OR]: 1.16; CI: 1.01, 1.33; p< 0.05) and 19% (OR: 1.19; CI: 1.03, 1.38;

p< 0.05) increases in the odds of having high blood glucose and being diagnosed diabetes,

respectively. The association between FFR proximity and having high blood glucose was statis-

tically significant for males (OR: 1.29; CI: 1.03, 1.63; p< 0.05) but not females, although the

effect sizes are of similar order of magnitude. Associations of the proximity to FFR and high

blood glucose were statistically significant only for high-income earners (OR: 1.37; CI: 1.13,

1.67; p< 0.01). The association between FFR proximity and having a diabetes mellitus diagno-

sis was statistically significant only in those with higher income (OR: 1.33; CI: 1.08, 1.64;

p< 0.01) (Fig 3, Tables 2 and 3).

Discussion

We examined the associations of density and proximity of healthy and unhealthy food outlets

with T2DM, as well as the heterogeneity of such associations by sex and income in Bangladesh

and Sri Lanka. We used a unique dataset that merged individual-level surveillance data (South
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Fig 1. Associations between fasting blood glucose level and density (a) and proximity (b) of food outlets. Note: The values show OLS regression

coefficients; 95% CIs in brackets. Density = the number of each food outlet per total number of food outlets within 300 m of a resident’s home address.

Proximity = 1 if having at least 1 outlet within 100 m of a resident’s home address and 0 if otherwise. FFR, fast-food restaurant; OLS, ordinary least

squares.

https://doi.org/10.1371/journal.pmed.1003970.g001
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Asia Biobank) with built environment data measuring individual exposure to healthy and

unhealthy food outlets.

We found that the share of FFR was higher in Bangladesh (among the country with the big-

gest number of people with T2DM in 2019) [1], while the shares of corner stores and

Table 2. Associations between food outlet density and fasting blood glucose (OLS coefficients), high blood glucose, and diagnosed DM (AMEs).

A. Blood glucose level Total Male Female Low income High income Sri Lanka Bangladesh

FFR share 9.21� 3.37 13.37� 9.87 7.54 0.32 10.40

(0.17 to 18.24) (−4.64 to 11.39) (0.59 to 26.16) (−2.17 to 21.90) (−0.98 to 16.06) (−10.15 to 10.79) (−0.77 to 21.57)

Supermarket share −9.71 14.53 −25.04 −13.85 −6.76 −2.91 −47.52��

(−28.11 to 8.68) (−27.20 to 56.27) (−53.56 to 3.49) (−34.81 to 7.11) (−24.76 to 11.24) (−18.70 to 12.89) (−52.28 to −42.75)

Corner store share −0.48 −3.22 1.35 1.84 −3.21 −3.28 0.28

(−4.52 to 3.57) (−7.37 to 0.92) (−3.07 to 5.76) (−1.45 to 5.14) (−9.00 to 2.59) (−11.05 to 4.48) (−4.10 to 4.66)

Mobile cart share −7.86 −0.96 −12.93 1.08 −17.54�� −37.81�� −1.75

(−24.18 to 8.47) (−11.27 to 9.34) (−34.86 to 8.99) (−21.08 to 23.23) (−28.87 to −6.20) (−50.24 to −25.38) (−16.16 to 12.65)

Stationary cart share −4.60 −5.50�� −3.59 −6.05�� −3.24 −0.38 −4.30

(−9.43 to 0.22) (−9.53 to −1.47) (−9.98 to 2.79) (−9.46 to −2.65) (−10.66 to 4.17) (−7.78 to 7.03) (−9.39 to 0.78)

Observations 12,016 4,839 7,177 5,996 6,020 3,536 8,480

B. High blood glucose (%) Total Male Female Low income High income Sri Lanka Bangladesh

FFR share 0.05 0.03 0.09� 0.07 0.03 −0.02 0.05

(−0.01 to 0.11) (−0.05 to 0.10) (0.01 to 0.16) (−0.02 to 0.16) (−0.04 to 0.10) (−0.08 to 0.04) (−0.02 to 0.12)

Supermarket share −0.08 0.14 −0.39�� −0.13 −0.04 −0.01 −0.42��

(−0.26 to 0.10) (−0.08 to 0.35) (−0.68 to −0.10) (−0.36 to 0.10) (−0.24 to 0.17) (−0.19 to 0.18) (−0.66 to −0.18)

Corner store share −0.01 −0.02 −0.00 0.01 −0.03 −0.03 −0.00

(−0.04 to 0.02) (−0.05 to 0.02) (−0.03 to 0.03) (−0.01 to 0.03) (−0.08 to 0.01) (−0.07 to 0.02) (−0.04 to 0.03)

Mobile cart share −0.13 −0.01 −0.24�� −0.06 −0.20�� −0.38�� −0.07

(−0.28 to 0.02) (−0.13 to 0.12) (−0.39 to −0.08) (−0.29 to 0.17) (−0.33 to −0.08) (−0.58 to −0.18) (−0.18 to 0.03)

Stationary cart share −0.06 −0.07� −0.05 −0.08� −0.05 0.01 −0.06

(−0.14 to 0.01) (−0.13 to −0.01) (−0.15 to 0.04) (−0.14 to −0.02) (−0.14 to 0.03) (−0.05 to 0.07) (−0.13 to 0.01)

Observations 12,003 4,827 7,169 5,992 6,003 3,523 8,480

C. Diagnosed DM (%) Total Male Female Low income High income Sri Lanka Bangladesh

FFR share 0.08� 0.06� 0.10� 0.07� 0.09� 0.02 0.02

(0.02 to 0.14) (0.00 to 0.12) (0.01 to 0.18) (0.00 to 0.13) (0.01 to 0.17) (−0.06 to 0.09) (−0.06 to 0.09)

Supermarket share 0.06 0.08 0.03 0.09 0.05 0.15�� 0.15��

(−0.06 to 0.17) (−0.09 to 0.24) (−0.19 to 0.25) (−0.06 to 0.23) (−0.12 to 0.23) (0.07 to 0.24) (0.07 to 0.24)

Corner store share 0.01 −0.00 0.01 0.01 −0.01 −0.01 −0.01

(−0.01 to 0.02) (−0.02 to 0.02) (−0.01 to 0.04) (−0.01 to 0.04) (−0.03 to 0.02) (−0.04 to 0.01) (−0.04 to 0.01)

Mobile cart share −0.06 0.03 −0.16 −0.03 −0.12 −0.19 −0.19

(−0.21 to 0.09) (−0.05 to 0.12) (−0.38 to 0.06) (−0.23 to 0.17) (−0.27 to 0.04) (−0.51 to 0.13) (−0.51 to 0.13)

Stationary cart share −0.02 0.00 −0.04 −0.04 −0.01 −0.02 −0.02

(−0.08 to 0.04) (−0.06 to 0.06) (−0.11 to 0.02) (−0.10 to 0.02) (−0.09 to 0.06) (−0.08 to 0.05) (−0.08 to 0.05)

Observations 12,079 4,854 7,217 6,027 6,038 3,573 3,573

Note: The values show OLS regression coefficients in panel A and AMEs from logistic regressions in panels B and C; 95% CIs in brackets. Density/share of outlets = the

number of each outlet out of the total number of outlets. For example, supermarket share is defined as the number of supermarkets within a 300-m buffer around

participant’s home address out of all food outlets within a 300-m buffer. Control variables included demographics, SES, health status, healthcare utilization, and physical

activities—see Table 1, panel A. All regressions include site fixed effects to control for site-specific time invariant confounders. Level of significance =

� p < 0.05

�� p < 0.01.

AME, average marginal effect; DM, diabetes mellitus; FFR, fast-food restaurant; OLS, ordinary least squares; SES, socioeconomic status.

https://doi.org/10.1371/journal.pmed.1003970.t002
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supermarkets were higher in Sri Lanka. All supermarkets were identified in urban sites. We

identified that T2DM levels were higher among females and higher-income participants.

When testing the association of the food environment and diabetes mellitus, no significant

findings were identified in relation to the share of supermarket, corner stores, stationary carts,

nor mobile carts. However, an observed key finding of our study was that FFR share, density,

Table 3. Associations between food outlet proximity and fasting blood glucose (OLS coefficients), high blood glucose, and diagnosed DM (AORs).

A. Blood glucose level Total Male Female Low income High income Sri Lanka Bangladesh

FFR proximity 2.14�� 3.15� 1.36 0.36 3.84� 2.45 1.64

(0.55 to 3.72) (0.39 to 5.91) (−0.38 to 3.11) (−2.32 to 3.03) (0.68 to 7.00) (−0.83 to 5.73) (−0.71 to 3.99)

Supermarket proximity −0.72 1.14 −1.20 0.46 −1.35 −0.45 −0.53

(−2.48 to 1.04) (−5.45 to 7.73) (−3.74 to 1.34) (−3.94 to 4.85) (−3.08 to 0.38) (−4.27 to 3.37) (−2.16 to 1.09)

Corner store proximity 1.32 0.19 2.08 1.83 0.82 −2.34 2.58

(−1.69 to 4.33) (−2.99 to 3.36) (−1.55 to 5.71) (−1.31 to 4.98) (−2.39 to 4.04) (−6.09 to 1.42) (−1.27 to 6.43)

Mobile cart proximity 1.51 0.19 2.25 2.92 0.60 −0.17 2.69

(−1.73 to 4.74) (−4.79 to 5.18) (−2.52 to 7.03) (−2.39 to 8.24) (−3.54 to 4.74) (−4.15 to 3.81) (−1.40 to 6.77)

Stationary cart proximity 0.58 0.25 0.65 1.51 −0.53 3.60 −0.32

(−2.43 to 3.60) (−3.04 to 3.54) (−2.60 to 3.91) (−2.17 to 5.19) (−4.26 to 3.20) (−0.38 to 7.57) (−4.45 to 3.82)

Observations 12,016 4,839 7,177 5,996 6,020 3,536 8,480

B. High blood glucose (%) Total Male Female Low income High income Sri Lanka Bangladesh

FFR proximity 1.16� 1.29� 1.08 0.98 1.37�� 0.92 1.23�

(1.01 to 1.33) (1.03 to 1.63) (0.88 to 1.33) (0.65 to 1.48) (1.13 to 1.67) (0.77 to 1.10) (1.03 to 1.47)

Supermarket proximity 1.00 1.18 0.95 0.95 0.99 0.98 1.18��

(0.86 to 1.17) (0.87 to 1.61) (0.66 to 1.36) (0.50 to 1.80) (0.72 to 1.37) (0.79 to 1.21) (1.09 to 1.27)

Corner store proximity 1.08 1.06 1.12 1.26 0.95 0.85 1.22

(0.87 to 1.35) (0.80 to 1.41) (0.87 to 1.42) (0.96 to 1.65) (0.71 to 1.26) (0.68 to 1.06) (0.93 to 1.60)

Mobile cart proximity 0.99 0.92 1.05 0.99 0.96 0.96 1.02

(0.75 to 1.31) (0.68 to 1.23) (0.74 to 1.48) (0.59 to 1.67) (0.75 to 1.24) (0.70 to 1.32) (0.71 to 1.48)

Stationary cart proximity 1.15 1.12 1.13 1.12 1.14 1.34� 1.06

(0.94 to 1.40) (0.78 to 1.61) (0.90 to 1.43) (0.84 to 1.49) (0.92 to 1.40) (1.07 to 1.68) (0.79 to 1.43)

Observations 12,003 4,827 7,169 5,992 6,003 3,523 8,480

C. Diagnosed DM (%) Total Male Female Low income High income Sri Lanka Bangladesh

FFR proximity 1.19� 1.22 1.16 1.09 1.33�� 1.08 1.27��

(1.03 to 1.38) (0.90 to 1.65) (0.96 to 1.40) (0.81 to 1.45) (1.08 to 1.64) (0.75 to 1.55) (1.09 to 1.49)

Supermarket proximity 1.09 1.36� 0.99 0.80 1.20 1.00 1.40��

(0.79 to 1.51) (1.07 to 1.73) (0.64 to 1.52) (0.45 to 1.41) (0.83 to 1.74) (0.61 to 1.63) (1.27 to 1.55)

Corner store proximity 1.12 1.10 1.16 1.29� 0.98 0.90 1.27

(0.92 to 1.37) (0.82 to 1.47) (0.88 to 1.52) (1.05 to 1.59) (0.73 to 1.33) (0.69 to 1.18) (0.98 to 1.66)

Mobile cart proximity 0.99 0.80 1.08 1.01 0.94 1.24� 0.89

(0.77 to 1.26) (0.58 to 1.10) (0.71 to 1.64) (0.67 to 1.53) (0.74 to 1.19) (1.00 to 1.54) (0.66 to 1.19)

Stationary cart proximity 1.25� 1.27 1.18 1.24 1.26 1.07 1.30

(1.00 to 1.56) (0.91 to 1.78) (0.86 to 1.62) (0.87 to 1.78) (0.93 to 1.71) (0.78 to 1.48) (0.99 to 1.70)

Observations 12,079 4,854 7,217 6,027 6,038 3,573 8,506

Note: The values show OLS regression coefficients in panel A and AORs from logistic regressions in panels B and C; 95% CIs in brackets. Proximity of outlets = 1 if at

least 1 FFR within 100 m and 0 if otherwise. Control variables included demographics, SES, health status, healthcare utilization, and physical activities—see Table 1,

panel A. All regressions include site fixed effects, where in all regressions we controlled for site-specific time invariant characteristics. Level of significance =

� p < 0.05

�� p < 0.01.

AOR, adjusted odds ratio; DM, diabetes mellitus; FFR, fast-food restaurant; OLS, ordinary least squares; SES, socioeconomic status.

https://doi.org/10.1371/journal.pmed.1003970.t003
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Fig 2. AMEs for the associations between diabetes mellitus and density food outlets. Note: The values show AME from logistic regressions in

panels B and C; 95% CIs in brackets; horizontal bars = 95% CIs. Density = the number of each food outlet per total number of food outlets within

300 m of a resident’s home address. Proximity = 1 if having at least 1 outlet within 100 m of a resident’s home address and 0 if otherwise. AME,

average marginal effect; FFR, fast-food restaurant.

https://doi.org/10.1371/journal.pmed.1003970.g002
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Fig 3. ORs for the associations between diabetes mellitus and proximity of food outlets. Note: The values show AORs from logistic regressions

in panels B and C; 95% CIs in brackets; horizontal bars = 95% CIs. Density = the number of each food outlet per total number of food outlets within

300 m of a resident’s home address. Proximity = 1 if having at least 1 outlet within 100 m of a resident’s home address and 0 if otherwise. AOR,

adjusted odds ratio; FFR, fast-food restaurant; OR, odds ratio.

https://doi.org/10.1371/journal.pmed.1003970.g003
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and proximity were all associated with a greater risk of T2DM. These findings are consistent

with previous evidence from high-income countries such as UK and Sweden where unhealthy

food outlets have been found to increase the odds of developing T2DM [4,5].

With regard to sex differences, a higher FFR density was associated with greater blood glu-

cose, higher likelihood of high blood glucose for female but not male, and higher chances of

being diagnosed with DM for both female and male. Proximity to FFR was associated with a

higher blood glucose level in males but does not seem to play a role in the likelihood of being

diagnosed with diabetes for both male and female. These sex differences could be due to differ-

ences in exposure metrics—density and proximity—capturing different dimensions of deci-

sion-making for food sourcing. Previous studies have shown differences in how men and

women engage differently to the food environment [4]. Therefore, our finding could be

explained by how sex affects perception of and interaction with the surrounding environment.

With lower labor market participation than men in these countries, women spend more time

with household chores including sourcing foods, and, therefore, it is plausible that they get

more exposed to a range of outlets around their homes [4], rendering density of outlets more

salient in their food choices. Labor market participation of women in Sri Lanka is particularly

low in urban environments [22] that tend to be characterized by wider availability of FFRs.

With higher labor market participation, men are more time constrained due to employment

and thus interact with the environment on more sporadic contexts where proximity and con-

venience become relevant factors for decision-making [4].

Another possible channel for these associations may be sex differences with regard to over-

all dietary preferences and habitual dietary intakes. For example, previous studies have shown

that women have a higher intake of sugar compared with men. To further unpack these associ-

ations, one would need time use survey combined with a mapping of how each individual

interacts with the environment (e.g., where they shop, how frequently, and what they buy).

While our data do not enable us to assess these mechanisms, the sex differences on the role

of the food environment on diabetes have important public health implications. Because South

Asians have a greater visceral adiposity and insulin resistance, impaired β-cell function, and a

genetic predisposition to diabetes, which culminates in a markedly increased risk that may

lead to the development of T2DM [23], they should be targeted for prevention. South Asian

women in particular are more likely to have diabetes than wAU : Pleasenotethatasperstyle; thetermCaucasianshouldnotbeused; preferrediswhiteandofEuropean=NorthernEuropeandescent:Hence;CaucasianhasbeenchangedtowhiteinthesentenceSouthAsianwomeninparticular::::hite women [24,25]. While the

diagnosis of diabetes doubles the cardiovascular risk in men, it more than triples the risk in

women. Women are also at greater risk of other diabetes-related complications such as blind-

ness, kidney disease, and depression [24]. Therefore, our results suggest that interventions in

the food environments may be particularly important for women in these countries. Examples

of interventions include the subsidization of healthy food and taxation of fast food, nutritional

labeling in menus in FFRs, and nutritional literacy interventions that discourage the consump-

tion of fast food.

Our findings also showed that T2DM risk variations by income, with exposure (through

density and proximity) to FFRs affecting more blood glucose and likelihood of being diag-

nosed diabetes for high-income earners. These findings are consistent with existing evidence

that shows diabetes being more prevalent among the wealthy groups [26]. With rapid shifts in

lifestyle characterized by a nutritional transition and urbanization [27], the increased availabil-

ity and accessibility of unhealthy food, combined with a raise in economic purchasing power,

generates greater opportunities to eat out of home, which, with the proliferation of fast-food

establishments, may contribute to the formation of unhealthy habitual dietary patterns [28]. In

LMICs, western shops selling processed foods and fast-food restaurants strategically locate in

higher-income neighborhoods [29] to target those that can afford these foods. These foods also

tend to be more expensive than fresh produce and FV. Therefore, these could explain why
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upper-income populations are more affected by being exposed to more obesogenic

environments.

In addition, evidence also suggests that the wealthier tend to shop at conveniently located

stores around their neighborhoods, while low-income individuals are more likely to travel

long distances to shop at cheaper markets or street stalls [30]. Therefore, it is plausible that

exposure to unhealthy environments plays a stronger role in explaining prevalence of diabetes

for the wealthier than for those with low income.

These findings highlight the need for public health interventions targeting high-income

earners. Given that affordability may not be a key factor for decision-making among high-

income earners, diabetes prevention strategies should include improving the saliency and con-

venience of accessing healthy foods, as well as improving nutritional literacy.

However, preventive strategies are also required to prevent lower-income populations to

develop risk factors that may lead T2DM. Indeed, although to a lesser extent than for high-

income earners, our results suggest that density of fast foods is positively associated with the

likelihood of being diagnosed with diabetes also for low-income earners. Recent evidence on

obesity trends, a risk factor of diabetes, shows that as the LMIC’s gross domestic product

(GDP) increases the rates of obesity among low SES group increases with the shift of obesity

occurring first in low SES women [31]. Due to financial, educational, mobility, and time con-

strains, low-income populations may have less opportunities to consume healthy foods [32].

Thus, food environments that are more prone to facilitate unhealthy food choices in combina-

tion with the absence of fiscal policies and regulations on access to healthy foods may affect

more disproportionally the lower-income groups in the future to come. Therefore, upstream

policies guided by a ‘health in all policies’ approach that explicitly target the key social, eco-

nomic, and structural determinants of health and behaviors may become essential to prevent

diabetes [33]. Such approaches may include unhealthy food and beverage taxation, subsidies

for healthy foods, food labeling on menus, banning unhealthy food advertising, as well as pro-

moting better urban planning and subsidized transport that facilitate access to healthy foods

and encourage physical activity [33].

To summarize, consistent with other research in South Asia [11], our results suggest inter-

ventions targeting the environment may be effective in preventing diabetes; however, the het-

erogeneity of the associations found in our analysis suggests that more specific interventions

may be needed. This is aligned with other evidence indicating that one-size-fits-all built envi-

ronment interventions have not led to improved outcomes [12], and future research is needed

to evaluate which food environment interventions could improve diabetes outcomes in this

geographical region and population.

There are at least 5 limitations of our study. First, since we used cross-sectional individual

level data, temporality in the associations cannot be established. Second, given the cross-sec-

tional nature of the data, our study is descriptive and does not enable identifying the causal

impacts of the environment on the outcomes assessed. While we control for a range of

cofounders, we cannot fully address all endogeneity and reverse causality concerns (e.g., unob-

served food preferences of those at risk of diabetes may be such that they locate in places with

a high density of unhealthy food outlets). Third, we captured only part of the environment

with the 300-m buffer. Even though this is commonly used in the literature to examine built

environment and health behavior/outcomes [18,19], this approach implies that we may imper-

fectly capture exposure to obesogenic food environments as we do not measure whether par-

ticipations shop beyond the assessed areas. To investigate those effects in a meaningful way

would require an understanding of where individuals gravitate beyond their residential neigh-

borhoods to infer their individual level exposure to different food environments. Despite this

limitation, focusing on a narrow definition of the built environments around homes has the
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advantage of considering outlets in areas where individuals are highly likely to gravitate to dur-

ing the day and are, therefore, likely to use. AU : PleaseconsiderrephrasingthesentenceImportantly; someofthedrawbacks:::forclarity:Importantly, some of the drawbacks of considering

small buffers in countries where food outlets are clustered in different parts of towns (e.g. large

supermarkets outside of the city center, while fast food outlets in commercial and business

areas), are mitigated in the geographies we assess, where there is an abundance of a variety of

food outlets in the immediacies of individual’s homes. Fourth, we measured food environ-

ments using residency geolocation; however, participants may consume part of their meals far

from home (e.g., if the workplace is distant). Also, we measured exposure based on residency

rather than relying on individual shopping data and consumption patterns. Such data are not

available, although it could be important to further identify the heterogeneity of the observed

associations. Fifth, we categorized the extent to which food environments are healthy and

unhealthy based on the international classification in the absence of a classification for South

Asian countries. Since we did not observe food sold in these food outlets and lacked consump-

tion data, the magnitude of the associations may reflect the mix of healthy and unhealthy

foods available in these outlets in particular supermarkets. Despite these caveats, our study

provides novel evidence on the association between food environment and T2DM as well as its

unequal associations by sex and income.

Conclusions

To our knowledge, this is the first study to assess the association of the food environment and

T2DM in LMICs by merging health outcome data and food outlet geolocations. The accessibil-

ity and availability of fast-food restaurants pose a greater risk for the development of T2DM in

South Asia. Considering the complex interplay between food outlets and their in-store food

environment, it is important to understand the mechanisms and confirm the causal implica-

tions of these findings. Policy actions are required to improve the quality of food environments

in South Asian countries and other LMICs for the prevention of NCDs such as T2DM.
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