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C-operators were introduced as involution operators in non-Hermitian theories that commute with the 
time-independent Hamiltonians and the parity/time-reversal operator. Here we propose a definition for 
time-dependent C(t)-operators and demonstrate that for a particular signature they may be expanded 
in terms of time-dependent biorthonormal left and right eigenvectors of Lewis-Riesenfeld invariants. The 
vanishing commutation relation between the C-operator and the Hamiltonian in the time-independent 
case is replaced by the Lewis-Riesenfeld equation in the time-dependent scenario. Thus, C(t)-operators 
are always Lewis-Riesenfeld invariants, whereas the inverse is only true in certain circumstances. We 
demonstrate the working of the generalities for a non-Hermitian two-level matrix Hamiltonian. We show 
that solutions for C(t) and the time-dependent metric operator may be found that hold in all three 
PT -regimes, i.e., the PT -regime, the spontaneously broken PT -regime and at the exceptional point.

© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

By definition, quasi-Hermitian Hamiltonian systems are characterised by the intertwining relation H†O = OH satisfied by their non-
Hermitian Hamiltonian H [1–3]. The operator O could be the indefinite parity operator P or the positive definite metric operator ρ . 
The C-operator is then defined [4] as the multiplicative factor that converts the indefinite operator into a definite one, PC = ρ . Time-
independent C-operators have been constructed and utilized in obtaining well-defined positive definite metric operators in many non-
Hermitian theories, such as for instance theories with complex cubic interaction terms [5], spin chain lattice models [6], quantum field 
theories [7–9], non-Hermitian versions of quantum electrodynamics [10], in semi-classical approximations [11] and in non-Hermitian 
theories modelling superconductivity with PT -symmetric Cooper pairing symmetry [12]. In principle, many more models for which the 
metric operator ρ has been constructed by directly solving the quasi-Hermiticity relation could be listed here as the parity operator P can 
usually be identified trivially so that one immediately obtains the C-operators from C =Pρ . For instance in [13–18] exact solutions for the 
metric in systems with underlying infinite dimensional Hilbert spaces have been found and the corresponding P-operators were identified. 
We stress here that the C-operator should not be confused with the charge conjugation operator that maps particles to anti-particles and 
vice versa in quantum field theoretical systems, even though some of their general properties are shared.

While the scheme of pseudo/quasi-Hermitian PT -symmetric systems [3,19–21] has been generalised to explicitly time-dependent 
Hamiltonian systems [22–43], time-dependent versions of C-operators have not been discussed so far. We introduce here a definition 
for time-dependent C-operators and study their properties. We find that the factorisation property C(t) = Pρ(t), its involutory nature, 
C2(t) = I, and the vanishing commutation relation with the PT -operator are preserved in the time-dependent setting. However, crucially 
we will argue here that time-dependent C(t)-operators no longer commute with the Hamiltonian. We will demonstrate that instead they 
have to satisfy the Lewis-Riesenfeld equation [44]. This means that time-dependent C(t)-operators are in fact Lewis-Riesenfeld invariants. 
The latter have been devised originally to facilitate the construction of solutions to the time-dependent Schrödinger equation, as they 
reduce the former to an eigenvalue problem. For time-dependent non-Hermitian systems they were also found to be extremely useful, 
since they can be utilised to reduce the time-dependent Dyson equation, that is a first order differential equation, to as a much simpler 
similarity relation [34,36,42,45–47].
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Our manuscript is organised as follows: In section 2 we first recall the key features of time-independent versions of C-operators, 
propose a definition for their time-dependent versions C(t) and study their general properties in particular we demonstrate how they 
are related to Lewis-Riesenfeld invariants. In section 3 we illustrate the working of the general formulae for a two level system, first 
in a time-independent setting, a scenario with time-independent Hamiltonian, but time-dependent metric and finally in a fully fledged 
time-dependent scenario. Our conclusions are stated in section 4.

2. C-operators and invariants

2.1. Time-independent C-operators

Before proposing a definition for time-dependent C-operators we recall their definition in the time-independent case and briefly discuss 
the role they play. When dealing with non-Hermitian Hamiltonians, H �= H†, with a discrete spectrum standard orthonormal basis have 
to be replaced with biorthonormal basis comprised of their left and right eigenvectors, |�〉 and |�〉, respectively. They are defined by the 
right and left eigenvalue equations

H|�n〉 = En|�n〉, H†|�n〉 = En|�n〉, n ∈ N, (2.1)

respectively. These eigenvectors are biorthonormal to each other and are complete [49,50]

〈�n|�m〉 = 〈�n|�m〉 = δnm,
∑

n

|�n〉〈�n| =
∑

n

|�n〉〈�n| = I. (2.2)

The biorthonormal basis can be employed to introduce a new so-called C-operator [4]

C :=
∑

n

sn|�n〉〈�n|, sn = ±1, (2.3)

with the set {s1, . . . , sn} being the signature. In turn, this operator equals the product of the indefinite parity operator P and the positive-
definite Hermitian metric ρ

C = Pρ, (2.4)

with properties

H†ρ = ρH, ρ† = ρ and H†P = PH, P2 = I. (2.5)

The Hermiticity of ρ(t) implies that C is pseudo-Hermitian with regard to the adjoint action of the parity operator P . This follows by 
conjugating (2.4)

C† = ρ†P = PPρP = PCP. (2.6)

As a consequence of the previous relations one obtains the three constraints

C2 = I, [PT ,C] = 0, [H,C] = 0. (2.7)

The first property simply follows from the defining relation (2.3) together with the orthonormality relation for the left and right eigen-
vectors (2.2). The second equation in (2.7) follows by multiplying (2.6) from the right and left by the time-reversal operator T . The 
anti-linear time-reversal operator with general property T 2 = I is here simply taken as the complex conjugation. Using the fact that 
C†T = T C , which follows right away from the defining relation (2.3), we deduce [PT ,C] = 0 when C is symmetric. In case C is not sym-
metric this relation must be read as PT C = CᵀPT , which is similar to how the commutation relation for PT -symmetric Hamiltonians is 
changed from [PT , H] to PT H = HᵀPT when H is not symmetric. The third relation follows by multiplying the first equation in (2.5)
from the right by P together with the last two relations in (2.5) and (2.4).

PH†ρ = PρH ⇒ PH†PC = PPCH ⇒ HC = CH . (2.8)

Instead of employing the left and right eigenvectors to obtain an explicit expression for the C-operator, it was suggested in [5] that one 
may also solve the equation (2.7) to construct it algebraically. Especially for systems with an infinite dimensional Hilbert space this is 
advantageous, as in the definition (2.3) one is even in the rare cases of exactly solvable models left with an infinite sum. See [5–12] for 
examples where this algebraic approach has been carried out in one form or another.

While ρ and P satisfy the same equations, the metric operator is positive definite, whereas the parity operator is in general not 
positive definite. Thus we may also read equation (2.4) as PC = ρ , so that the C-operator can be interpreted as the operator that by 
multiplication converts the indefinite operator P into a positive definite operator ρ , which in turn serves to define the ρ-inner product 
〈�| �̃〉ρ := 〈�|ρ�̃〉. Moreover, the metric can be decomposed as ρ = η†η where η is the Dyson map that adjointly maps the non-
Hermitian Hamiltonian H to a Hermitian one h = h† = ηHη−1, by relating the eigenstates η|�〉 = |φ〉 of the corresponding eigenvalue 
equation h|φ〉 = E|φ〉.
2
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2.2. Time-dependent C-operators versus Lewis-Riesenfeld invariants

Let us now see how the above is generalised and the C-operator is naturally introduced for the time-dependent setting. For explicitly 
time-dependent systems we propose the definition

C(t) :=
∑

n

sn|�n(t)〉〈�n(t)|, sn = ±1, (2.9)

and assume that the states |�n(t)〉 and |�n(t)〉 satisfy the time-dependent Schrödinger equations

ih̄∂t |�n(t)〉 = H(t)|�n(t)〉, and ih̄∂t |�n(t)〉 = H†(t)|�n(t)〉. (2.10)

It should be stressed that in the time-dependent case the Hamiltonian is distinct from the energy operator, see e.g. [27,31]. The set of 
states |�n(t)〉 and |�n(t)〉 comprise a biorthonormal basis whose existence is guaranteed by means of their close relation to the invariants 
as explained after equation (2.15).

We will now argue that the first two properties in (2.7) also hold in the time-dependent case, whereas the third constraint needs 
modification as is seen by differentiating (2.9) with respect to time

ih̄∂tC(t) = ih̄
∑

n

sn {∂t |�n(t)〉〈�n(t)| + |�n(t)〉∂t〈�n(t)|} = [H,C(t)], (2.11)

where we simply used the time-dependent Schrödinger equations (2.10).
We notice that (2.11) is identical to the non-Hermitian extension for the Lewis-Riesenfeld invariants I H (t) [34,36,45,46,48], i.e. the 

Lewis-Riesenfeld equation [44]

ih̄∂t I H (t) = [H, I H (t)], (2.12)

suggesting therefore a possible relation between the two. In general, the main advantage of employing these invariants is that they reduce 
the time-dependent Schrödinger equation to an eigenvalue problem in which time simply plays the role of a standard parameter. The 
invariants satisfy the eigenvalue equations

I H (t)
∣∣∣�I (t)

〉
= 	

∣∣∣�I (t)
〉
, |�(t)〉 = eiαI (t)

∣∣∣�I (t)
〉
, ∂t	 = 0, (2.13)

where the real phase αI (t) relating the solution of the time-dependent Schrodinger equation to eigenstates of the Lewis-Riesenfeld invari-
ants is determined from

α̇I =
〈
ψ I (t)

∣∣∣ i∂t − h(t)/h̄
∣∣∣ψ I (t)

〉
=

〈
�I (t)

∣∣∣ i∂t − H(t)/h̄
∣∣∣�I (t)

〉
ρ

. (2.14)

Here 
∣∣ψ I (t)

〉
denote the eigenstates of the Hermitian invariant Ih(t) and the inner product has to be changed for the calculation in the 

non-Hermitian framework with the new metric ρ as explained after equation (2.8). For more details on (2.14) see equation (3.3) in [36]
and also [34,45,46]. Since the Lewis-Riesenfeld phase for a Hermitian Hamiltonian is real and identical to the one of the non-Hermitian 
Hamiltonian, also the latter has to be real.

Since for the non-Hermitian Hamiltonian H the invariant I H (t) must also be non-Hermitian, it possesses in addition to the set of right 
eigenvectors in (2.13) a set of left eigenvectors 

∣∣�I (t)
〉

with

I†
H (t)

∣∣∣�I (t)
〉
= 	

∣∣∣�I (t)
〉
, |�(t)〉 = eiαI (t)

∣∣∣�I (t)
〉
. (2.15)

We have indicated here that the Lewis-Riesenfeld-phases for the left and right eigenequations are identical. As this is an important 
property to be used in what follows, we briefly establish this. Differentiating the second equation in (2.15) with respect to time and using 
the TDSE (2.10) we derive

α̇L
I

∣∣∣�I (t)
〉
=

(
i∂t − H†/h̄

) ∣∣∣�I (t)
〉
, (2.16)

which upon using 
∣∣�I (t)

〉 = ρ
∣∣�I (t)

〉
becomes

α̇L
I ρ

∣∣∣�I (t)
〉
=

(
iρ∂t + i∂tρ − H†ρ/h̄

) ∣∣∣�I (t)
〉
. (2.17)

Multiplying (2.17) now from the left by 〈�I (t)| and using time-dependent quasi-Hermiticity relation H†ρ −ρH = ih̄∂tρ(t), see [22–43], to 
eliminate H†, we precisely obtain (2.14) with α̇L

I = α̇I .
We assume now that the invariant I H (t) possesses a discrete spectrum with eigenvalues 	n and eigenfunctions 

∣∣�I
n(t)

〉
. This discretisa-

tion is then inherited by the solutions of the time-dependent Schrödinger equations in (2.10) via (2.13) and an immediate consequence of 
these relations is that we can also expand the time-dependent C-operator in terms of the left and right eigenstates of the Lewis-Riesenfeld 
invariant

C(t) :=
∑

sn|�I
n(t)〉〈�I

n(t)|, sn = ±1. (2.18)

n

3
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The phases αI (t) from (2.13) and (2.14) cancel out in (2.3) so that the solutions of the time-dependent Schrödinger equation are replaced 
by the eigenstates of the Lewis-Riesenfeld invariants. This means all time-dependent C-operators as defined in (2.18) are also Lewis-
Riesenfeld invariants. The inverse does not always hold and one may easily construct invariants that are not C-operators. However, noting 
that we may expand the invariants as

I H (t) :=
∑

n

	n|�I
n(t)〉〈�I

n(t)|, (2.19)

we can obviously achieve the equality C(t) = I H (t), if we can tune the eigenvalues for the invariant such that {	1, . . . , 	n} = {s1, . . . , sn}. 
This may be achieved by enforcing further constraints on the invariants so that they become C-operators. Let us now see how this is 
achieved. First we compute

I2
H (t) =

∑
n,m

	n	m|�I
n(t)〉〈�I

n(t)|�I
m(t)〉〈�I

m(t)| =
∑

n

	2
n|�I

n(t)〉〈�I
n(t)|, (2.20)

which equals I when 	2
n = 1, that is when the eigenvalues of the Lewis-Riesenfeld invariants become identical to the signatures of the 

C-operator.
We keep here T and P as time-independent also in the time-dependent case, being defined in the same manner as stated above. 

We may then establish how the time-dependent C-operator relates to the time-dependent metric and demonstrate that the relation (2.4)
directly generalises to the time-dependent scenario as

C(t) = Pρ(t). (2.21)

This follows by solving (2.21) for the metric and differentiating the resulting equation with respect to t . In this way we compute

ih̄∂tρ(t) = P ih̄∂tC(t) (2.22)

= PHC(t) −PC(t)H (2.23)

= H†PC(t) −PC(t)H (2.24)

= H†ρ(t) − ρ(t)H, (2.25)

which is precisely the time-dependent quasi-Hermiticity relation that generalises (2.5), see [22–43]. Thus (2.21) holds consistently for the 
definition (2.9) together with the properties of the parity operator as stated in (2.5). Using now (2.21) instead of (2.4) we can use the 
same argument as after equation (2.7) to establish that C commutes with the PT operator.

In summary, the three constraining relations (2.7) underlying the algebraic approach in the time-independent case and the factorisation 
of the C-operator into the parity operator and the metric (2.4) have to be replaced by

C2(t) = I, [PT ,C(t)] = 0, [H,C(t)] = ih̄∂tC(t), C(t) = Pρ(t) (2.26)

in the time-dependent scenario. Let us now demonstrate that one may indeed construct a time-dependent metric operator ρ(t) by starting 
with the construction of a Lewis-Riesenfeld invariant I H (t), which is then constraint to become a time-dependent C(t)-operator that 
contains ρ(t) as a factor.

3. A two level system

In order to illustrate the consistent working of the proposed formulae above we will present a simple worked out example i) in the 
time-independent case, ii) for time-independent Hamiltonian and time-dependent metric and iii) for the fully time-dependent scenario.

As many techniques have been devised to construct Lewis-Riesenfeld invariants [34,36,42,45–47], their construction will be our starting 
point in finding time-dependent C(t)-operators from which we subsequently compute the metric operators by means of (2.4). We briefly 
explain one general method by considering the most general two level matrix Hamiltonian and invariant expanded in terms of Pauli 
matrices σx,y,z as

H(t) = h0(t)I + h1(t)σx + h2(t)σy + h3(t)σz, I H (t) = ι0(t)I + ι1(t)σx + ι2(t)σy + ι3(t)σz, (3.1)

with time-dependent coefficient functions hi(t), ιi(t) ∈ C, i = 0, 1, 2, 3. When substituting these expressions into the Lewis-Riesenfeld 
equation (2.12), it reduces to

∂tι0 = 0, ∂t�ι = 2

h̄
M�ι, with Mij = −εi jkhk =

⎛
⎜⎝

0 −h3 h2

h3 0 −h1

−h2 h1 0

⎞
⎟⎠

i j

. (3.2)

The general solution of (3.2) is then

�ι(t) = T exp

⎡
⎣2

h̄

t∫
0

M(s)ds

⎤
⎦�ι(0) (3.3)

=
∞∑

n=0

(
2

h̄

)n

T

⎡
⎣ t∫

M(t1)dt1

t1∫
M(t2)dt2 . . .

tn−1∫
M(tn−1)dtn

⎤
⎦�ι(0), (3.4)
0 0 0

4
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with t > t1 > . . . tn > 0 and T denoting the time-ordering operator. In what follows we will consider some special cases of this solution 
for which the time-ordered exponential can be computed explicitly.

3.1. A time-independent system

For reference purposes we start with a well-known two level example for which all of the above quantities can be calculated easily

H = −1

2
(ωI + λσz + iκσx) = −1

2

(
ω + λ iκ

iκ ω − λ

)
, ω,λ,κ ∈R. (3.5)

The eigenenergies together with the left and right eigenvectors are obtained as

E± = −1

2
ω ± 1

2

√
λ2 − κ2, |�±〉 = 1√

N±

⎛
⎝ i

(
−λ ± √

λ2 − κ2
)

κ

⎞
⎠ , |�±〉 = ∓P|�±〉. (3.6)

The parity operator is identified from (2.5) as P = σz and the normalisation constant N± = 2(λ
√

λ2 − κ2 ± κ2 ∓ λ2) is determined by 
(2.2). For |λ| > |κ | these states are PT symmetric, PT |�±〉 = −|�±〉 when we identify PT := σzτ with τ being a complex conjugation. 
The Hamiltonian respects the same symmetry, i.e., [H,PT ] = 0.

With signature {+, −}, the C-operator is directly computed from the defining relation (2.3)

C = 1√
λ2 − κ2

(
λ iκ

iκ −λ

)
. (3.7)

Thus the metric is ρ = PC , from which one obtains the Dyson map η by solving ρ = η†η. We can also obtain η directly by defining it in 
term eigenvectors of H as column vectors η = {ψ+, ψ−}ᵀ , since the adjoint action of this operator will always diagonalise the Hamiltonian 
with h = diag{E+, E−}.

3.2. The metric picture

When introducing a time-dependence, an interesting new option emerges that does not exist in the time-independent case, which 
allows to include the time-dependence into the metric ρ(t), while keeping the Hamiltonian still time-independent. We now demonstrate 
that the C-operator resulting in this case is in fact identical to the Lewis-Riesenfeld invariant. For this purpose we present a simple 
solution to the Lewis-Riesenfeld equation (2.11) for the time-independent Hamiltonian (3.5) resulting from the general scheme (3.1)-(3.4). 
Setting in equation (3.1) the time-dependent coefficient functions to constants h0(t) = −1/2ω, h1(t) = −i/2κ , h2(t) = 0, h3(t) = −1/2λ, 
we obtain the time-independent Hamiltonian in (3.5). Next we construct from (3.3) invariants that are all of the form

I H (t) = 1

ξ

(
−δ γ+
γ− δ

)
, (3.8)

with det[I H (t)] = −1 by making different choices for the initial conditions. Choosing ι0(t) = 0 and �ι(0) = {i
√

2κ/ξ, i, 
√

2λ/ξ} the evalua-
tion of (3.3) leads to an invariant (3.8) in the PT -symmetric regime with

PT : ξ =
√

λ2 − κ2, δ = −√
2λ − κ sin(ξt), γ± = ±ξ cos(ξt) + i

[√
2κ + λ sin(ξt)

]
. (3.9)

Taking instead ι0(t) = 0 and �ι(0) = {i(
√

2λ − κ)/ξ, 0, (
√

2κ − λ)/ξ} we obtain a solution for the spontaneously broken PT -regime with

bPT : ξ =
√

κ2 − λ2, δ = λ − √
2κ cosh(ξt), γ± = ±√

2ξ sinh(ξt) + i
[√

2λ cosh(ξt) − κ
]
. (3.10)

Setting λ = κ with initial conditions ι0(t) = 0 and �ι(0) = {0, i, 
√

2} the solution (3.3) becomes valid at the exceptional point with

EP : ξ = 1, δ = −κ2t2

√
2

− κt − √
2, γ± = ±

(
1 + √

2κt
)

+ i

[
κ2t2

√
2

+ κt

]
. (3.11)

The most general solution involves four integration constants corresponding to the initial conditions, which have been chosen here con-
veniently to keep our expressions simple.

Since the invariant I H (t) is associated to a non-Hermitian Hamiltonian, it is by (2.12) itself also non-Hermitian, and therefore possesses 
a set of left and right eigenvectors that form a biorthonormal basis

|�±〉 = 1√
N±

(
δ ∓ ξ

−γ−

)
, |�±〉 = P|�±〉, I H (t)|�±〉 = ±|�±〉, I†

H (t)|�±〉 = ±|�±〉, (3.12)

satisfying the biorthonormality relations (2.2), with normalisation constants N± = 2(ξ2 ∓ δξ). Using the definition (2.3) of the time-
dependent C-operator, we obtain

C(t) = |�+〉〈�+| − |�−〉〈�−| = I H (t). (3.13)
5
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We verify that the pseudo-Hermitian relation (2.6) holds for this operator. For the signatures {±, ±} we simply obtain the trivial solutions 
C(t) = I H (t) = ±I and evidently for {−, +} equations (3.13) is just multiplied by −1. Thus, we have found C-operators identical to the 
Lewis-Riesenfeld invariant in all three PT -regimes.

From relation (2.21) we easily obtain a metric in each of the three regimes

ρbPT (t) = 1

ξ

⎛
⎝

√
2κ cosh(ξt) − λ

√
2ξ sinh(ξt) − i

[
κ + √

2λ cosh(ξt)
]

√
2ξ sinh(ξt) + i

[
κ + √

2λ cosh(ξt)
] √

2κ cosh(ξt) − λ

⎞
⎠ ,

ρPT (t) = 1

ξ

⎛
⎝

√
2λ + κ sin(ξt) ξ cos(ξt) + i

[√
2κ + λ sin(ξt)

]
ξ cos(ξt) − i

[√
2κ + λ sin(ξt)

] √
2λ + κ sin(ξt)

⎞
⎠ , (3.14)

ρEP(t) =
⎛
⎝ κ2t2√

2
+ κt + √

2 1 + √
2κt + 1

2 iκt
(√

2κt + 2
)

1 + √
2κt − 1

2 iκt
(√

2κt + 2
)

κ2t2√
2

+ κt + √
2

⎞
⎠ ,

which are Hermitian as long as ξ ∈ R, which is guaranteed for the appropriate choices of ξ in the different regimes. Moreover, ρ is 
positive definite in these regimes with detρ(t) = 1. Thus in any of the three PT -regimes one may also find a well-defined metric from 
a given Lewis-Riesenfeld invariant/C-operator and parity operator. However, we notice that we can not cross over smoothly from one 
PT -regime to the other, so that the three solutions in (3.14) correspond to different theories. As we will see in the next section this is 
not always the case and one can also construct solutions for one theory that is defined in all three regimes.

3.3. Fully time-dependent scenario

By slightly modifying (3.5), let us now consider the explicitly time-dependent Hamiltonian

H = −1

2
(ωI + λτ(t)σz + iκτ(t)σx) = −1

2

(
ω + λτ(t) iκτ(t)

iκτ(t) ω − λτ(t)

)
, ω,λ,κ, τ (t) ∈R. (3.15)

Setting in equation (3.1) the time-dependent coefficient functions to h0(t) = −1/2ω, h1(t) = −i/2κτ(t), h2(t) = 0, h3(t) = −1/2λτ(t), 
ι0(t) = 0 we obtain the time-dependent Hamiltonian in (3.15). Furthermore when choosing the initial condition in (3.3) to �ι(0) = {0, 0, 1}, 
we find a simple invariant I H (t) of the same general form as in (3.8) with re-defined entries

ξ = κ2 − λ2, δ = λ2 − κ2 cosh[μ(t)], γ± = ±κ
√

ξ sinh[μ(t)] + iκλ{cosh[μ(t)] − 1}, (3.16)

where μ(t) = √
ξ

∫ t
τ (s) ds. Unlike the invariants (3.9), (3.10) and (3.11), this invariant is meaningful in all three PT -regimes. Moreover, 

the expressions for the left and right eigenstates (3.12) still hold with (3.16). Hence we have also in this case the relation (3.13) and the 
C-operator is identical to the Lewis-Riesenfeld invariant.

A Hermitian positive definite metric operator valid in all three different PT -regimes is then obtained from (2.21) as

ρ(t) = 1

ξ

(
κ2 cosh[μ(t)] − λ2 κ

√
ξ sinh[μ(t))] + iκλ{cosh[μ(t)] − 1}

κ
√

ξ sinh[μ(t)] − iκλ{cosh[μ(t)] − 1} κ2 cosh[μ(t)] − λ2

)
. (3.17)

The left and right limit to the exceptional point, that is approaching either from the PT -symmetric or the spontaneously broken regime, 
can be carried out in a smooth manner

lim
λ↑κ

ρ(t) = lim
λ↓κ

ρ(t) =
⎛
⎝ 1 + κ2μ̃2

2 κμ̃ + i κ2μ̃2

2

κμ̃ − i κ2μ̃2

2 1 + κ2μ̃2

2

⎞
⎠ , (3.18)

where μ̃(t) = ∫ t
τ (s)ds.

Notice that these solutions also hold for τ (t) = 1, in which case we obtain a solution for ρ(t) in the metric picture with time-
independent Hamiltonian valid in all three PT -regimes.

The metric ρ is indeed positive definite as its two eigenvalues are positive for all times and all values of κ , λ in all PT -regimes. Fig. 1
displays the eigenvalues as functions of time for a specific choice of the time-dependent function τ (t) in the Hamiltonian. We observe 
some standard degeneracy when the metric reduces to the identity matrix at specific values of time t = π/2 + nπ in all regime, and in 
the PT -symmetric regimes also at t = arccos(2nπ/

√
λ2 − κ2) with n ∈Z.

4. Conclusions

We have shown that time-dependent C-operators can be defined in terms of solutions of the left and right Schrödinger equation 
(2.9). However, as these solutions are related to the left and right eigenstates of the non-Hermitian Lewis-Riesenfeld invariants simply 
by phase factors, they can also be expanded in terms of the latter as the phase factors of the left and right solutions cancel each other 
out. The three key properties of time-dependent C-operators (2.7) that serve as the set up for an algebraic approach to find C , have to 
be replaced by (2.26) for their time-dependent versions. Since the last equation in (2.26) is the Lewis-Riesenfeld equation it implies that 
time-dependent C-operators are always identical to Lewis-Riesenfeld invariants. The inverse only holds when the eigenvalues of the Lewis-
Riesenfeld invariants are identical to the signature of the C-operators. Thus, there are plenty of Lewis-Riesenfeld invariants I H (t) that are 
6
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Fig. 1. Positive-definiteness of the metric ρ(t): Eigenvalues of ρ(t) in (3.17) as function of time for different values of κ and λ for τ (t) = sin(t) in the PT -symmetric regime, 
panel (a), and spontaneously broken PT -regime, panel (b). Two eigenvalues corresponding to the same values of κ and λ are of the same colour drawn as dashed and solid 
lines. (For interpretation of the colours in the figure, the reader is referred to the web version of this article.)

not C(t)-operators and only when we also impose the first two equations in (2.26) does the equality I H (t) = C(t) hold. Subsequently 
the C(t)-operator can be utilised to construct time-dependent metric operators ρ(t). The well-known non-uniqueness of the metric is 
reflected here in the different choices of the signature in the defining relation of the C-operator (2.3). We have not rigorously proven that 
the latter is the only way to define this operator.

I H → I2
H = I, [PT , I H ] = 0 ⇒ C(t) ⇒ ρ(t) = PC(t). (4.1)

Thus our proposed scheme is yet another option to construct ρ(t). Previously, [34–43], it was shown how to solve directly the coupled sys-
tem of coupled equations arising from the time-dependent quasi-Hermiticity or time-dependent Dyson equation. As this is rather involved, 
alternative schemes where proposed. For instance, one may utilize Lewis-Riesenfeld invariants I H for the non-Hermitian Hamiltonian and 
subsequently simply solve I H = η(t)Ihη

−1 for η(t), similar to the time-independent case, see e.g. [45,46,38–43]. This approach can even be 
pursued if the eigenvalue equation for the invariant can not be solved exactly [41]. Here we propose yet another approach as summarized 
in (4.1).

Once more we have seen that in a time-dependent setting the spontaneously broken regime is mended [33], as one can find positive 
definite metric operators in all three PT -regimes. While some of the solutions only hold in a particular regime and break down at their 
boundaries (3.14), there exist also solutions (3.17) that can be continued smoothly across all three PT -regimes. In turn this allows for 
very interesting applications and new types of behaviour as for instance seen for the entropy in the three different regimes, see [37,39,47].
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