

City, University of London Institutional Repository

Citation: Gomez, A., Zimmer, V. A., Wheeler, G., Toussaint, N., Deng, S., Wright, R.,

Skelton, E., Matthew, J., Kainz, B., Hajnal, J. V. & et al (2022). PRETUS: A plug-in based
platform for real-time ultrasound imaging research. SoftwareX, 17, 100959. doi:
10.1016/j.softx.2021.100959

This is the published version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/28909/

Link to published version: https://doi.org/10.1016/j.softx.2021.100959

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

SoftwareX 17 (2022) 100959

h
2

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication

PRETUS: A plug-in based platform for real-time ultrasound imaging
research
Alberto Gomez a,∗, Veronika A. Zimmer a,b, Gavin Wheeler a, Nicolas Toussaint a,
Shujie Deng a, Robert Wright a, Emily Skelton a, Jackie Matthew a, Bernhard Kainz c,d,
Jo Hajnal a, Julia Schnabel a,b,e
a School of Biomedical Engineering & Imaging Sciences, King’s College London, UK
b Department of Informatics, Technical University Munich, Germany
c Department of Computing, Imperial College London, UK
d Friedrich-Alexander-University Erlangen-Nürnberg, Germany
e Helmholtz Zentrum München – German Research Center for Environmental Health, Germany

a r t i c l e i n f o

Article history:
Received 16 September 2021
Received in revised form 29November 2021
Accepted 15 December 2021

Keywords:
Real time
Ultrasound imaging
Plug-in based

a b s t r a c t

We present PRETUS — a Plugin-based Real Time UltraSound software platform for live ultrasound
image analysis and operator support. The software is lightweight; functionality is brought in via
independent plug-ins that can be arranged in sequence. The software allows to capture the real-time
stream of ultrasound images from virtually any ultrasound machine, applies computational methods
and visualizes the results on-the-fly.

Plug-ins can run concurrently without blocking each other. They can be implemented in C++ and
Python. A graphical user interface can be implemented for each plug-in, and presented to the user in
a compact way. The software is free and open source, and allows for rapid prototyping and testing of
real-time ultrasound imaging methods in a manufacturer-agnostic fashion. The software is provided
with input, output and processing plug-ins, as well as with tutorials to illustrate how to develop new
plug-ins for PRETUS.

© 2021 Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Code metadata

Current code version 1.1
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-21-00173
Legal Code License MIT License
Code versioning system used git
Software code languages, tools, and services used C++, Python
Compilation requirements, operating environments & dependencies Qt, ITK, VTK, Boost, OpenCV (specific plug-ins may have additional

dependencies)
If available Link to developer documentation/manual N/A (can be Doxygen generated)
Support email for questions pretus@googlegroups.com

Software metadata

Current software version 1.1
Permanent link to executables of this version https://github.com/gomezalberto/pretus/releases/tag/v1.1
Legal Software License MIT license
Computing platforms/Operating Systems Linux
Installation requirements & dependencies Qt ≥ 5.12, VTK ≥ 8.0, ITK ≥ 4.12, Boost. For Python plug-ins, in addition:

PyBind11, Pyhton ≥ 3.6, numpy. Different plug-ins might have added
dependencies, please check each plugin’s repository.

If available, link to user manual - if formally published include
a reference to the publication in the reference list
Support email for questions pretus@googlegroups.com

∗ Corresponding author.

E-mail address: alberto.gomez@kcl.ac.uk (Alberto Gomez).

ttps://doi.org/10.1016/j.softx.2021.100959
352-7110/© 2021 Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.softx.2021.100959
http://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2021.100959&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://github.com/ElsevierSoftwareX/SOFTX-D-21-00173
mailto:pretus@googlegroups.com
https://github.com/gomezalberto/pretus/releases/tag/v1.1
mailto:pretus@googlegroups.com
mailto:alberto.gomez@kcl.ac.uk
https://doi.org/10.1016/j.softx.2021.100959
http://creativecommons.org/licenses/by/4.0/

Alberto Gomez, Veronika A. Zimmer, Gavin Wheeler et al. SoftwareX 17 (2022) 100959

1

c
a
o
T
a
o
o
U
t
c
c
c
a
t
i

a
o
H
t
t
t
p

d
d
n
w
i
f
d
c
i
p
h
r
t
r
t
d
p
s
s
—
t
f

l
p
M
a
b
—
s
i
c
p
t
C
P
l
M
h
c

. Motivation and significance

Ultrasound (US) imaging is one of the most widely used medi-
al imaging modalities, because it is portable, affordable and safe,
nd can be used to gain insight about most body organs. More-
ver, US is, unlike other common modalities such as Computed
omography (CT), Magnetic Resonance Imaging (MRI) or X-ray,
real-time modality by design: to use an ultrasound system the
perator needs to interpret the real-time stream of images shown
n the display and use the interpreted information to guide the
S transducer to the desired view. As the examination progresses,
he operator typically stores a few tens of static images or short
lips for reporting or further investigation. Importantly, the main
linical use of US images is during the procedure. This is be-
ause in diagnostic imaging, diagnosis is done by the operator
s the images are being acquired and interpreted. In interven-
ional imaging, surgical tools are guided using images in real-time
mage.

US image analysis is a very active area of research [1–3],
nd most published work has focused in the ‘offline’ analysis
f images and clips stored by the operator as described above.
owever, real-time analysis of US image streams can potentially
ransform the way ultrasound is utilized since it can provide
he operator with extended information and guidance during
he examination, which as pointed out before offers the biggest
otential benefit.
We identified three main reasons why limited work has been

one on real-time US image analysis: firstly, collecting real-time
ata is not supported by most US systems and requires exter-
al equipment, such as a video framegrabber; the few systems
hich do support real-time streaming of DICOM (Digital Imag-

ng and Communications in Medicine, an international standard
or storage and transmission of medical images — https://www.
icomstandard.org) frames require a proprietary protocol to ac-
ess the image stream. Secondly, existing research tools used for
mplementing real-time image analysis methods are designed to
erform a single computational task on the stream of images,
owever real-time analysis often requires a number of tasks to
un in succession (or in parallel) without compromising the real-
ime performance. And thirdly, in order to carry out translational
esearch, the results of the real-time analysis must be shown to
he operator in a way that does not require switching between
isplays during the scan, as this would be unfeasible. In this
aper we describe PRETUS: Plugin-based Real Time UltraSound, a
oftware that addresses these three challenges while remaining a
imple, lightweight tool that can be easily extended via plug-ins
independent pieces of software that can be built separately to

he main software and can be added dynamically to extend its
unctionality.

A number of research softwares have been proposed over the
ast years supporting real-time ultrasound imaging for research
urposes. Of those, the most widely used are Slicer IGT [4] and
ITK IGT [5]. Slicer IGT was one of the first software tools to en-
ble easy implementation of image guided intervention software,
y integrating existing navigation tools (e.g. the PLUS toolkit
www.plustoolkit.org, and OpenIGTLink [6]) into Slicer (www.

licer.org), a general-purpose medical imaging software written
n C++. Slicer IGT is designed as a layer on top of PLUS (which
onnects and manages data from sensors and image sources)
roviding a wide, extensible collection of algorithms, and on
op of which an application specific GUI and logic can be built.
onveniently, Slicer’s functionality can be extended by custom
ython-scripted modules. MITK IGT was published later, and fol-
owed a similar paradigm: incorporate image guided tools into
ITK, a general purpose image processing software. MITK does
ave a Python module that allows to query data using Python

As opposed to Slicer IGT and MITK IGT, PRETUS is a minimal
software that has no functionality on its own, other than con-
necting plug-ins and ensuring that they can run concurrently and
communicate between them. All the functionality is brought in
by plug-ins, that are built as dynamic libraries loaded at run-
time. This facilitates a crucial paradigm shift with respect to
MITK IGT or Slicer IGT: instead of aiming at being compatible
with the greatest number of devices, PRETUS is conceived to be
as independent as possible from specific devices, by delegating
most functionality to plug-ins, so that if required a self-contained
device specific plug-in can be implemented. This design paradigm
also promotes that functionality is modular, and that each plug-
in does a simple task on a specific input and produces a specific
output. Additionally, this allows a very flexible interconnection of
plug-ins, for example enabling multiple inputs, outputs, and plug-
ins interconnected in arbitrary ways as defined by the user that
can be changed during the imaging session. Last, a major differ-
ence is that PRETUS plug-ins run synchronously at a user-defined
frame rate, and not when data is available. As shown later, this
has the advantage of enabling overall real time behavior even in
conditions where plug-ins have a slow execution by trading-off
frame rate. These differences is summarized in Table 1.

PRETUS was developed within the iFIND project
(www.ifindproject.com) to collect data and test methods in over
500 pregnant patients. The software has been used for 2D and
3D ultrasound applications. Methods that have used PRETUS in
3D imaging applications include 3D whole-fetus imaging by fast
registration of a sequence of 3D ultrasound volumes in real
time [7,8], full placenta imaging by fusion and segmentation of
the placenta from multiple 3D ultrasound views [9,10], and whole
fetal head imaging using atlas-registration and fusion [11,12].
PRETUS has also been used in real time 2D applications, such as
standard fetal plane detection [13], automatic biometric measure-
ments in standard fetal planes [14,15], and automatic detection
and localization of fetal organs from ultrasound images [16].
PRETUS is also being used in research towards implementing
AI-enabled ultrasound methods in low and middle income coun-
tries in the context of the VITAL project (http://vital.oucru.org/),
specifically for lung ultrasound in dengue patients [17].

The software is used via a command-line executable where the
user defines a real-time pipeline at run time. The specific exper-
imental setting will depend on the desired pipeline, however a
typical setting would be to define an input imaging source (e.g. a
file from disk or a framegrabber), a processing task (for example,
detecting standard planes) and an output task (e.g. display the
results on a screen). More examples and use cases are described
in more detail in Section 3.

In summary, PRETUS is a lightweight, extensible software that
addresses the three challenges outlined above as follows: firstly,
by enabling the collection of real-time US data from virtually
any machine using the video output. Secondly, by enabling real-
time pipelines of multiple image processing and visualization
steps concurrently. And thirdly, by showing both the live imaging
stream, information and outputs from the different processing
tasks in a live, compact and unified way. Moreover, PRETUS
can take pre-recorded videos or images and play them back at
acquisition frame-rate to simulate live sessions in the lab.

2. Software description

PRETUS is a command-line software, built using open-source
software and tested in Linux (all dependencies are cross-platform,
but limited testing has been carried out in Windows and Mac) to
facilitate research on real-time ultrasound imaging. The software
works by establishing a real-time processing pipeline with an
arbitrary number of elements (plug-ins). The plug-ins in the
ommands.

2

https://www.dicomstandard.org
https://www.dicomstandard.org
https://www.dicomstandard.org
http://www.plustoolkit.org
http://www.slicer.org
http://www.slicer.org
http://www.slicer.org
http://www.ifindproject.com
http://vital.oucru.org/

Alberto Gomez, Veronika A. Zimmer, Gavin Wheeler et al. SoftwareX 17 (2022) 100959

w
f
u

p
t
s
p
s
m

2

(
p
w

Table 1
Overview of differences between PRETUS and two other widely used software that enable real-time imaging. In summary, PRETUS
aims, by design, at being extremely lightweight and delegate all functionality to plug-ins that are loaded at run-time, and the
plug-ins run asynchronously to ensure real-time behavior.
Software Main app Extensible in python? Module

execution

Slicer IGT General purpose,
fully featured

Yes Python scripts
can be loaded/
executed from
main app

Asynchronous

MITK IGT General purpose,
fully featured

Yes programmable
python module

Asynchronous

PRETUS Minimal, modular,
all features come
from plug-ins

Yes Independent
plug-ins that
can run con-
currently

Synchronous
(user-defined
frame-rate)

Fig. 1. Overview of the plug-in pipeline concept. Each box represents a plug-in, inserted into the execution pipeline in order from left to right. The first plug-in (A)
ill normally be the imaging source (e.g. frame grabber or file reader) and the last plug-in will normally be for visualization (as illustrated here, integrating widgets

rom all plug-ins). Configuration is transmitted downstream (illustrated by the configuration line on top) and data is transmitted from each plug-in downstream
sing the Streams concept (Section 2.2.2).

ipeline carry out specific functions such as to generate a real-
ime stream of data (for example from an ultrasound video
ource), to apply real-time algorithms on the data stream (e.g. im-
lemented via deep neural networks), and to output the re-
ult (for example by visualizing the processed images, or the
etadata, or saving both to a file).

.1. Software architecture

The software is implemented as a lightweight QApplication
https://www.qt.io/), which interconnects and starts a number of
lug-ins in a pipeline. Fig. 1 shows an illustration of the pipeline
ith the plug-ins and the data transmission lines, or data Streams

described later in Section 2.2.2.
The software is organized into four modules:

• The PRETUS app, in the App folder. The application first
loads and instantiates the plug-ins (implemented as dy-
namic libraries) that are found in the plug-ins folder (or fold-
ers) at run-time, also passing any command-line arguments
to every plug-in. All plug-ins inherit from the Plugin class,

which implements asynchronous callbacks (using QT signals
and slots) to transmit configuration information and data
between plug-ins. These transmission lines (here referred to
as Streams and described in more detail in Section 2.2.2) are
established, and finally the plug-ins are activated, starting
the execution loop for the entire plug-in pipeline.

• The Commonmodule, which includes common classes, inher-
ited from the iFIND project, to manage data. The main class
in this module is the ifind::Image class which is used
in PRETUS to encapsulate both images and metadata, and
is transmitted through the signal/slots.

• The PluginLib library, which implements all classes that
plug-ins need to inherit (mainly Plugin, Worker and Qt-
PluginWidgetBase). This library is described in more de-
tail in Section 2.2.1.

• The Plugins folder, which includes some basic plug-ins
readily released with the software. The plug-ins included
with this release are further described through examples in
Section 3 and in Appendix A.
3

https://www.qt.io/

Alberto Gomez, Veronika A. Zimmer, Gavin Wheeler et al. SoftwareX 17 (2022) 100959

t
d

2

t
t
o
u
m
i
t
t
r
c
f
a
d
i

m

2

a
a
p

Since the main functionality is brought in via the plug-ins, in
he following we describe the architecture of the plug-ins in more
etail.

.2. Software functionalities

PRETUS defines, at run time, a pipeline of imaging plug-ins
hat in sequence process a stream of images. The sources of
he imaging data, the processes themselves and whether the
utcomes are displayed and/ or stored depends on the plug-ins
sed. In terms of performance, PRETUS is designed to satisfy two
ain requirements. First, plug-ins can be executed concurrently,

.e., the work of each plug-in runs in a separate non-blocking
hread. Second, plug-ins must run as close as possible to real-
ime. The work of each plug-in runs at a user-defined frame
ate, and the latest available frame is processed when a previous
omputations has been completed. To this end, PRETUS will drop
rames at the input of a plug-in until the plug-in is ready to accept
new one. This behavior can be overridden if a specific plug-in
oes not need real-time performance and processing of all frames
s sought.

The two above functionalities are implemented through two
echanisms: the plug-in system, and the Streams.

.2.1. Plug-in system
Plug-ins are independent programs, built as dynamic libraries,

nd are loaded into PRETUS at run time. All plug-ins take images
s input, yield images at the output, and normally delegate the
rocessing task to a Worker class. Plug-ins can also have two

complementary means of displaying information and outputs:
(i) by implementing a widget that will typically show graphs,
numbers and text, and allow for input through sliders and other
widgets; and (ii) by implementing an image widget that will
display images, overlays, masks, etc. Both the widget and the
image widget must inherit from the QtPluginWidgetBase class
in PluginLib. Two examples of how to build plug-ins for PRETUS
are outlined in Section 3 and detailed in the repository (https:
//github.com/gomezalberto/pretus).

The basic operation of a plug-in in the pipeline is as follows:

1. The plug-in receives an input image from previous plug-
ins in the pipeline. The image is also passed on to the next
plug-in.

2. If the image belongs to the Stream(s) that this plug-in
accepts, the image is sent to the plug-in’s timer.

3. If the Worker is not processing the previous image, the
timer sends the latest image to the worker in a separate
thread.

4. The main processing task of the plug-in is carried out in
the Worker. When finished, the output image is sent to the
plug-in and the timer is notified that the worker is ready
to take a new image.

5. The plug-in sends the output image through the plug-in’s
output Stream. Downstream plug-ins are now able to use
it.

6. If the plug-in has a Widget and/or an ImageWidget, the
output image is sent to them for display. The user can act
on any inputs available in the widget (e.g. sliders, check-
boxes, etc.) to make changes in the plug-in behavior during
the imaging session.

We recommend (as we do in all plug-ins included in this
repository) that any output image resulting from a plug-in’s task
is added as a layer to the input image. Because images are
transmitted as pointers, no data will be duplicated in memory,
so this mechanism is efficient. Additionally, this allows to always
track what image was used to produce what result, even if dif-
ferent Streams operate at different rates and while maintaining
real-time performance.

2.2.2. Streams
In this context, a Stream refers to every image sequence pro-

duced by a plug-in and accessible to all other downstream plug-
ins in the pipeline. Every stream is named after the plug-in that
generates it, with the exception of the plug-ins that generate data
at the source, also called input plug-ins.

Input plug-ins capture imaging data and transmit it down-
stream the pipeline. In the current release of PRETUS, three input
plug-ins are provided: the Video Manager plug-in, that can read
and transmit frames from a video file; the Frame Grabber plug-in,
that reads video output from an ultrasound system and transmits
it frame by frame; and the File Manager, that reads images from
a folder system and transmits them at a given framerate. These
type of plug-ins must return true via the IsInput() plug-in
method. The Stream transmitted by an input plug-in is called
‘Input’ regardless of the plug-in name. Multiple input plug-ins can
be used simultaneously, in which case only the first will have
an Stream called ‘Input’, and the rest (in order of appearance
in the pipeline) will be called ‘Input1’, ‘Input2’, etc. The rest of
the plug-ins in the pipeline will by default accept images from
‘Input’ but can be set to use other inputs with the command-line
option --<pluginname>_stream Input1 or using the menu in
the widget during the imaging session.

2.2.3. Building a plug-in
Plug-ins are dynamic libraries written in C++, that link against

the Plugin library provided with PRETUS. The processing task
carried out by the plug-in can be implemented in C++, or in
Python. To illustrate the two types of plug-ins, the repository
includes two sample plug-ins in the Plugins folder designed and
documented to serve as templates and tutorials for developers to
implement their C++plug-ins (Plugin_CppAlgorithm) and their
Python plug-ins (Plugin_PythonAlgorithm).

2.3. Hardware requirements and experimental configuration

RETUS has been built and tested in a basic laptop, which de-
fines the minimum recommended requirements and set a lower
bound for performance. Such performance is quantified on exem-
plar plug-ins in Section 3.3.

The laptop was a DELL XPS 15 9550 from 2015, with 16 GB
RAM, a Intel Core i7-6700HQ CPU @ 2.60 GHz × 8 CPU, and a
NVIDIA GeForce GTX 960M 2 GB GPU. The laptop was configured
with Ubuntu 20.04 LTS.

3. Illustrative examples

In this section we describe three usage examples: first, an
example of real-time blurring and thresholding of an ultrasound
video. These plug-ins are not designed with an intended appli-
cation in mind other than exemplifying the design and perfor-
mance of PRETUS. Second, an example showing the integration
of SonoNet [13], a deep neural network for the automatic identi-
fication of anatomical fetal standard view planes, into PRETUS.
And third, blurring, thresholding and SonoNet working in the
same pipeline, where we evaluate the real-time performance
with concurrent C++and Python plugins. In all cases the videos
were 15 min long and were encoded at 30 frames per second.
Videos showing the three examples in action is provided in the
supplementary material, and a screen shot of these videos is
shown in Fig. 2.
4

https://github.com/gomezalberto/pretus
https://github.com/gomezalberto/pretus
https://github.com/gomezalberto/pretus

Alberto Gomez, Veronika A. Zimmer, Gavin Wheeler et al. SoftwareX 17 (2022) 100959
Fig. 2. Screenshot of three PRETUS pipelines. (a) pipeline where the input image is shown in the top left, the blurred image on the top right, and the thresholded
version of the blurred image, overlaid onto the input, on the bottom left. (b) capture of the Standard Plane Detection plug-in integrating SonoNet in PRETUS where
a ‘Head’ standard view has been detected. (c) three plug-ins (blurring, thresholding and Sononet) working concurrently. All examples are described in Section 3, and
illustrated in the videos in the supplementary material.

3.1. Blurring and thresholding

The purpose of this example is to illustrate the connection of
the output of a plug-in to the input of another plug-in, and the
visualization of the results. To this end, we build a pipeline with
four plugins: the video manager plug-in (Appendix A.2) as the
input plug-in, which reads a video from file and transmits each
frame through the pipeline. Then, the Python Algorithm plug-in
(Appendix A.5) takes the video frames and applies a blurring op-
eration. The blurred frame is input to the Cpp Algorithm plug-in
(Appendix A.4), which performs a binary thresholding operation
on the blurred image. Finally, the GUI plug-in (Appendix A.8)
takes all widgets from the three previous plug-ins and displays
them on screen.

All plug-ins accept, by default, images from the Input stream.
This stream is generated by any of the input plug-ins (video
manager, frame grabber and file manager) which are first in the
pipeline. For the Cpp Algorithm plug-in to receive the output
of the Python Algorithm plug-in as input, we use the optional
argument --cppalgorithm_stream pythonalgorithm (or se-
lect the input from the Python Algorithm, and the last layer, in
the widget). In addition, the Python Algorithm adds the blurred
image as an additional layer to its input image, and the Cpp
Algorithm plug-in needs to be informed of what layer from the
pythonalgorithm stream to use, in this case the last one, with
the command line argument --cppalgorithm_layer -1. The
complete command line call for this example is:

$./bin/pretus −pipeline "videomanager>pythonalgorithm>cppalgorithm>gui" \
−−videomanager_input ~/data/video.MP4 \
−−cppalgorithm_stream pythonalgorithm \
−−cppalgorithm_layer −1

The program will launch, display information about the plug-ins
used as below, and open a window with the GUI (Fig. 2, left, and
Video SV1).

Loading plug−ins from <folder>
0 [Plugin] loading <folder>/libPlugin_filemanager.so... File manager(0) loaded
1 [Plugin] loading <folder>/libPlugin_imageFileWriter.so... Image file writer(1) loaded
2 [Plugin] loading <folder>/libPlugin_videomanager.so... Video manager(2) loaded
3 [Plugin] loading <folder>/libPlugin_CppAlgorithm.so... Cpp Algorithm(3) loaded
4 [Plugin] loading <folder>/libPlugin_framegrabber.so... Frame grabber(4) loaded
5 [Plugin] loading <folder>/libPlugin_PythonAlgorithm.so... Python Algorithm(5) loaded
6 [Plugin] loading <folder>/libPlugin_planeDetection.so... Standard plane detection(6) loaded
7 [Plugin] loading <folder>/libPlugin_GUI.so... GUI(7) loaded

Video manager −> Python Algorithm
Python Algorithm −> Cpp Algorithm
Cpp Algorithm −> GUI
VideoManager::Initialize() − loading video ~/data/video.MP4... loaded, FPS = 60, frames = 110842
Start acquisition
Manager::exitLoop() − Enter ’quit’ to exit:
>>

The program will exit by entering ‘quit’ in the command line.

3.2. SonoNet Integration

In this example we illustrate the integration of SonoNet [13],
a model to detect standard fetal planes for the 20 week fetal
screening ultrasound examination. The SonoNet model is incor-
porated into pretus via the Standard Plane Detection plug-in.

Since SonoNet is implemented in a frame by frame basis, in
our implementation we allow the user to use a temporal average
to leverage high acquisition frame rates to stabilize the plane
prediction. The number of frames to be averaged can be set by
command line argument and modified in real time via a slider in
the widget. With this, the resulting call is:

$./bin/pretus −pipeline "videomanager>standardplanedetection>gui" \
−−videomanager_input ~/data/video.MP4 −−standardplanedetection_taverage 20

The resulting display and interactions can be seen in Fig. 2,
middle, and Video SV2.

3.3. All plug-ins in the same pipeline

The purpose of this example is to demonstrate that multiple
C++and Python plug-ins can work concurrently, and to evaluate
to the effect of delay and execution time of each plug-in in the
performance of the entire pipeline and the overall delay with
respect to the input stream. We use the Video Manager plug-
in as input, and use the Python Algorithm, the Cpp Algorithm
and SonoNet in the pipeline, followed by the GUI plug-in. To
illustrate the behavior of frame-dropping at high delays, we in-
troduce an artificial variable wait time in the Python Algorithm
plug-in. All plug-ins are provided with the command-line option
<pluginname>_time 1, which measures the execution time of
the worker. We run the pipeline in five configurations: 1) with
all plug-ins using the Input stream; and 2) to 5), with plug-
ins connected in sequence, using as input the output stream of
the previous plug-in, and a plug-in frame rate (identical for all
three plug-ins) of 10 Hz (configuration 2), 20 Hz (configuration
3), 30 Hz (configuration 4), and 40 Hz (configuration 5). We also
measure execution times for all plug-in. The execution call for the
first configuration is:

$./bin/pretus −pipeline "ideomanager>pythonalgorithm>cppalgorithm>standardpanedetection>gui" \
−−videomanager_input ~/data/video.MP4 \
−−standardplanedetection_time 1 −−pythonalgorithm_time 1 −−cppalgorithm_time 1 \
−−pythonalgorithm_delay 0.1

For configurations 2) to 5) (replacing the frame rate value):
5

Alberto Gomez, Veronika A. Zimmer, Gavin Wheeler et al. SoftwareX 17 (2022) 100959

T
A
P
i

f
s
w
o
2
e
i
a
p
t
t
s
n

able 2
verage ± standard deviation of the execution time, in ms , of each plug-in:
ython Algorithm (PA), Cpp Algorithm (CA) and Standard plane detection (SPD),
n configuration 1).

Wait 0 ms 50 ms 100 ms 150 ms 200 ms

Time (ms)
PA 26.2 ± 5 76.7 ± 7 124.4 ± 3 173.6 ± 1 223.9 ± 1
CA 0.9 ± 1 0.9 ± 1 0.8 ± 1 0.8 ± 0 0.7 ± 1
SPD 17.6 ± 6 17.7 ± 9 15.0 ± 3 14.6 ± 1 14.8 ± 2

$./bin/pretus −pipeline "videomanager>pythonalgorithm>cppalgorithm>standardpanedetection>gui" \
−−videomanager_input ~/data/video.MP4 −−videomanager_verbose 1 \
−−standardplanedetection_time 1 −−pythonalgorithm_time 1 −−cppalgorithm_time 1 \
−−pythonalgorithm_framerate 10 −−pythonalgorithm_delay 0.1 \
−−cppalgorithm_framerate 10 −−standardplanedetection_framerate 10 \
−−cppalgorithm_stream pythonalgorithm −−cppalgorithm_layer −1 \
−−standardplanedetection_stream cppalgorithm −−standardplanedetection_layer −1

An example showing the visualization for configuration 2 can
be seen in Fig. 2, right, and in Video SV3. The Table 2 shows
the average ± standard deviation execution time per plug-in,
or different wait times introduced in the first plug-in in the
equence (the Python Algorithm plug-in — PA). The statistics
ere computed over all calls to the plug-ins over the 15 min
f the video. The video transmitted images at 30 Hz, yielding
7000 frames in total. Depending on the frame rate at which
ach plug-in was set, this results in between 3500 to 35000
ndependent time measurements for each plug-in. We conducted
n n-way ANOVA test for the execution times reported by each
lug-in and found that: for the Python Algorithm all execution
imes are significantly different (p < 0.01), as expected; for
he Cpp Algorithm, only the first experiment (wait = 0 ms) is
ignificantly different to the last two (150 and 200 ms), which are
ot different to each other (p < 0.01); and for the Standard plane

detection, the first three experiments (0, 50 and 100 ms) and the
last two (150 and 200 ms) are not significantly different within
the groups but they are different between the groups (p < 0.01).
In summary, and as the table shows, the wait times (from 0 to
200 ms) have very little effect in the execution time of other
plug-ins downstream because each is executed on a separate
thread. Interestingly, the effect is that with longer wait times
the execution is slightly faster, possibly because since the plug-in
waits but does not consume any CPU resource other plug-ins have
more resources to themselves.

When the plug-ins are set up in sequence (accepting the
input from the previous plug-in, configurations 2) to 5)), their
individual execution time are not affected. As shown in Table 2
the decrease in execution time observed in the Standard Plane
Detection plug-in as the wait time increases is due to more CPU
resource available which is used in the pre-processing steps and
other CPU based tasks. However each plug-in still needs to wait
to receive the image from the previous plug-in, which introduces
an added delay compared to processing images from the ‘Input’
stream. We measured the total delay between the output of a
plug-in and the ‘Input’ stream by tracking the frame number
from the input, and comparing the timestamp of that frame after
processing. This delay will vary depending on the requested plug-
in frame rate. Plug-ins check for the latest input frame at this
requested frame rate (20 Hz by default), and new frames are
dropped until the plug-in has finished the current processing task
to avoid temporal drift. When idle, the next image is processed
when the next periodic input check arrives. These two effects are
illustrated in Fig. 3.

Because of the frame-dropping, the effective frame rate, i.e. the
number of frames per second that each plug-in actually processes
depends on three factors: (1) the execution time of the plug-in
(which limits the maximum effective frame rate), (2) the exe-
cution time of the plug-ins that precede the current plug-in, if
connected in sequence (the current plug-in will have to wait), and

the effect of these factors, we report the measured frame rates
for each plug-in in Table 3. We also carried out a statistical
significance test (N-way ANOVA) on the reported results.

As expected, in parallel (Par.), where all plug-ins use data
from the Input stream, the CA and SPD plug-ins maintain the
requested frame rate (20 Hz) independently of the other plug-ins.
Obviously, the PA plug-in can only maintain the frame rate when
no wait time is introduced, and then the frame rate decreases
inversely to the wait time. This further demonstrates that two
plug-ins, where the task is implemented in Python, can run
independently in parallel. This is achieved by sharing the Python
interpreter across plug-ins. In sequential execution (Seq.), the
frame rate is limited by the wait time; as a result, the requested
frame rate can only be achieved in certain cases, highlighted in
light gray in the table (these cases are not statistically different
to the required frame rate with p < 0.01). When requesting
very high framerates, the pipeline might not be able to deliver at
that framerate and the framerate will be capped to the maximum
system framerate for that specific pipeline, which is around 26 Hz
in this case (highlighted in dark gray in Table 3).

4. Impact

PRETUS will promote and facilitate real-time ultrasound imag-
ing research for two main reasons: first, PRETUS is plug-in based,
and plug-ins are self-contained in the sense that they imple-
ment the data processing, argument handling, user interface,
image visualization, and any other display or input widgets;
however, default modules and basic building blocks to develop
plug-ins are provided in the Plugin library, and examples of
plug-ins using both C++and Python are provided, simplifying the
implementation of new plug-ins. Second, PRETUS implements
user-transparent, multi-threaded plug-in execution with periodic
calls to the tasks implemented by the plug-ins, to ensure that
plug-ins always use the latest generated input image and that
they run as close to real-time as possible. Crucially, a Python
interpreter is shared across Python plug-ins enabling concurrent
execution of independent, dynamically loaded Python plug-ins
too.

Indeed, hundreds of research papers on ultrasound image
analysis are published every year, most of which are trained and
tested offline using an image database. As a result a platform to
facilitate real-time data collection and implementing and eval-
uating computational methods in a realistic, real-time clinical
scenario connected to an ultrasound imaging system is highly
sought in US research. PRETUS allows the integration of C++and
Python methods in a simple and flexible way, with minimal
changes to an offline version that users and developers may
already have. To this end, we have included tutorials on how
to build plug-ins both in C++and Python. Conveniently, PRETUS
also allows playing-back captured videos or sequences of im-
ages retrospectively and at acquisition frame rates, to replicate
live sessions offline, in the lab. Being a lightweight and plug-in
based software, PRETUS can accelerate translational research in
ultrasound imaging for diagnostic and interventions.

Unlike other software, PRETUS implements real-time execu-
tion transparently to users and plug-in developers, by ensuring
that, regardless of the performance and speed of the compu-
tational method, the latest input image will always be fed to
the algorithm to avoid execution drift. PRETUS also ensures that
plug-ins run in parallel and that their outputs and inputs can
be interconnected at run time. Moreover, the way plug-ins are
interconnected can be changed by the user at run time, or pro-
grammatically for example based on the output of an algorithm,
making PRETUS extremely flexible. A unique feature of PRETUS is
that plug-ins can be implemented in Python and in C++and mul-
tiple Python plug-ins can run concurrently by sharing the Python
(3) other system parameters (e.g. memory, CPU, etc.). To illustrate

6

Alberto Gomez, Veronika A. Zimmer, Gavin Wheeler et al. SoftwareX 17 (2022) 100959

y
f
t

s
t
p
m
f
t
b

i
i
i
f
e
p
s
a
c

Fig. 3. Measured delay between the output of each plug-in and real-time input stream when plug-ins are connected in sequence: Input → Python Algorithm (PA, in
ellow) → Cpp Algorithm (CA, in orange) → SonoNet (SPD, in blue). The increasing wait time introduced in the PA plug-in is coded in the lighter to darker shade
or each plug-in. When a higher frame-rate is requested, the delay decreases until around 30 Hz where other system parameters (e.g. memory, CPU, etc.) become
he limiting factor. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 3
Average ± standard deviation of the measured effective frame rate, in Hz, of each plug-in: Python Algorithm (PA), Cpp
Algorithm (CA) and Standard plane detection (SPD), when the three plug-ins are executed in parallel (Par. row) or connected
in sequence (Seq. rows) at the indicated user-requested frame rates (the same for all three plug-ins). Cells highlighted in
light gray indicate that the measured and the requested frame rate match.
Conf. Wait 0 ms 50 ms 100 ms 150 ms 200 ms

(1)
Par.
20 Hz

PA 20.0 ± 2.5 9.8 ± 1.0 6.6 ± 0.5 4.9 ± 0.3 3.9 ± 0.2
CA 20.0 ± 2.1 20.3 ± 3.4 20.4 ± 3.5 20.3 ± 3.7 20.3 ± 2.9
SPD 20.2 ± 3.1 19.9 ± 4.0 20.0 ± 4.4 20.0 ± 4.2 20.0 ± 3.3

(2)
Seq.
10 Hz

PA 10.2 ± 1.5 9.6 ± 1.4 5.0 ± 0.1 5.0 ± 0.1 3.3 ± 0.6
CA 10.0 ± 0.7 9.7 ± 1.4 5.0 ± 0.1 5.0 ± 0.1 3.3 ± 0.5
SPD 10.3 ± 1.9 9.8 ± 1.8 5.1 ± 0.6 5.0 ± 0.4 3.3 ± 0.6

(3)
Seq.
20 Hz

PA 19.6 ± 2.6 9.9 ± 0.8 6.7 ± 0.3 5.0 ± 0.1 4.0 ± 0.1
CA 19.6 ± 2.5 9.9 ± 0.8 6.7 ± 0.3 5.0 ± 0.1 4.0 ± 0.0
SPD 19.8 ± 3.2 10.0 ± 1.4 6.7 ± 0.5 5.0 ± 0.2 4.0 ± 0.1

(4)
Seq.
30 Hz

PA 25.9 ± 5.0 10.6 ± 0.9 7.4 ± 0.5 5.2 ± 0.1 4.1 ± 0.6
CA 26.0 ± 5.1 10.5 ± 0.9 7.4 ± 0.5 5.2 ± 0.1 4.1 ± 0.6
SPD 27.1 ± 7.9 10.8 ± 2.2 7.5 ± 1.1 5.2 ± 0.3 4.1 ± 0.6

(5)
Seq.
40 Hz

PA 26.3 ± 4.0 11.4 ± 1.1 7.3 ± 0.4 5.4 ± 0.2 4.2 ± 0.1
CA 26.4 ± 4.3 11.4 ± 1.2 7.3 ± 0.4 5.4 ± 0.2 4.2 ± 0.1
SPD 27.6 ± 7.9 11.7 ± 2.1 7.5 ± 1.7 5.4 ± 0.4 4.2 ± 0.2

interpreter. Moreover, PRETUS is designed to connect to the video
output of virtually any ultrasound system, so as to remove the
impediment of manufacturer-specific formats and transmission
protocols. However, a developer can easily implement a machine
specific acquisition plug-in, using the provided input plug-ins as
examples, if machine specific protocols are made available.

PRETUS also includes a file saving plug-in which turns the
ystem into a powerful data collection software that can facilitate
he acquisition of large amounts research data. Because multi-
le Input Streams can be captured simultaneously, synchronized
ulti-source data can also be captured and stored. The label or

older under which the images are saved can be changed in real
ime, allowing to easily annotate frame sequences (for example,
y class) during the exam.
Overall, PRETUS has two main aims: first, facilitating research

n real-time computational imaging, and specifically ultrasound
maging, by proving a lightweight application that can be eas-
ly extended and is designed to run in real time. And second,
acilitating translation of computational methods by enabling
asy integration of algorithms into a real-time framework, and
roviding a platform to test them in a live procedure or retro-
pectively using pre-recorded video data. We believe this will
llow researcher to better show potential clinical impact of their

5. Conclusions

We have discussed PRETUS, a plug-in based, real-time soft-
ware for US imaging research. The software allows the collection
of live ultrasound data and the use of algorithms (implemented in
C++or Python). PRETUS loads plug-ins dynamically and a plug-in
pipeline can be defined by the user at run time.

We have evaluated PRETUS with three examples, demonstrat-
ing real-time, concurrent execution of multiple plug-ins. PRETUS
can be extended easily through more plug-ins and has the poten-
tial to enable researchers to evaluate their methods in real-time
with minimal implementation efforts.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

This research was funded in part by the Wellcome Trust IEH

omputational methods in more realistic clinical situations. Award, United Kingdom [WT 102431/Z/13/Z]. For the purpose of

7

Alberto Gomez, Veronika A. Zimmer, Gavin Wheeler et al. SoftwareX 17 (2022) 100959

o
l
t
c
[
s
G
L
a
D

A

A

h
f
f
c
-

f
b
o
t
0
f
f
c
i
i

i
t
r
t

A

a
v
o

c
-

b
-
i
p
k
r

A

t
s
(
i
p
i

pen access, the author has applied a CC BY public copyright
icence to any Author Accepted Manuscript version arising from
his submission. This work was also supported by the Well-
ome/EPSRC Centre for Medical Engineering, United Kingdom
WT203148/Z/16/Z] and by theNational Institute for Health Re-
earch (NIHR) Biomedical Research Centre, United Kingdom at
uy’s andSt Thomas’ NHS Foundation Trust and King’s College
ondon, United Kingdom. The views expressed are those of the
uthor(s) and not necessarily those of the NHS, the NIHR or the
epartment of Health.

ppendix A. Plug-ins included with this release

.1. File manager plug-in

This plug-in allows images to be read from a sub-directory
ierarchy and transmits them through the pipeline at a certain
rame-rate. Images can be 2D or 3D, and the mhd/raw format
rom the ITK library is preferred. Other formats supported by ITK
an be also used by changing the expected file extension with the
filemanager_extension command line argument.
By default, images are transmitted in alphabetical order, there-

ore the file name will dictate the transmission order. Also,
y default, images are transmitted at a constant frame rate
f 20 images per second. A custom frame rate can be set by
he user, in two ways: first, a constant frame rate between
and 200 can be set using the command line argument -
ilemanager_framerate. Second, if the mhd headers have the
ield AcquisitionFrameRate, then this value will be used, and
an be different for each image. Additional options allow the last
mage to loop around when it is read or to ignore the header
nformation.

This plug-in provides a widget that allows to scroll through the
mages rapidly and to play/pause the streaming. In pause mode,
he same image keeps being transmitted at the default frame-
ate, allowing the rest of the plug-ins to continue operating on
he paused frame.

.2. Video manager plug-in

This plug-in allows a video file to be read from the file system
nd transmits it through the pipeline. Opencv is used to read the
ideo files so supported format depends on local configuration of
pencv.
The video by default loops around when finished, but this

an be disabled by the user using the command line argument
videomanager_loop 0. The video starts from the beginning by

default, but an arbitrary start time can be set with
-videomanager_start_time <mm:ss>. The video can also
e played faster by setting a fast-forward factor with
videomanager_ff <factor>. This plug-in’s widget enables
nteractively moving around in the video with a slider and to
lay/pause the streaming. In pause mode, the same video frame
eeps being transmitted at the default frame-rate, allowing the
est of the plug-ins to continue operating on the paused frame.

.3. Frame grabber plug-in

This plug-in allows a stream of images to be received in real-
ime from a video source, such as the video output of an ultra-
ound system, by using the Epiphone DVI2USB3.0 frame grabber
https://www.epiphan.com/products/dvi2usb-3-0/). The plug-in
s currently implemented to convert the images to grayscale and
ass it on to the rest of the pipeline as a single channel, 8 bit

A.4. Cpp algorithm plug-in

This plug-in performs a simple binary thresholding on the
input image. The plug-in is conceived as a tutorial to illustrate
how to develop C++plug-ins for PRETUS.

The Cpp Algorithm plug-in performs the thresholding oper-
ation using the ITK library. The threshold value can be set via
command-line argument (cppalgorithm_th <th>) and edited
in real-time using the slider in the plug-in’s widget. An overlay
of the input image and the thresholded image are shown on the
plug-in’s image widget.

A.5. Python algorithm plug-in

This plug-in performs a Gaussian blur on the input image. The
plug-in is conceived as a tutorial to illustrate how to develop
Python plug-ins for PRETUS.

The Python Algorithm plug-in performs the Gaussian blur
operation using the SimpleITK Python library. The sigma value
for the Gaussian kernel can be set via command-line argument
(pythonalgorithm_sigma <sigma>) and edited in real time
using the slider in the plug-in’s widget. The blurred version of the
input image is shown on the plug-in’s image widget. The plug-
in’s worker waits a user-defined time (within the Python code)
to simulate a longer task execution.

A.6. Standard plane detection (SonoNet)

This plug-in implements the fetal scan plane detection method
described in [13]. The plug-in runs the method in every frame
received from the input stream (which can be selected by the
user).

The model makes a prediction about the scan plane corre-
sponding to the image, and classifies the image into one of 13
standard views: ‘3VV’ (cardiac three vessel view), ‘4CH’ (cardiac
four chamber), ‘RVOT’ (cardiac right ventricular outflow tract),
‘LVOT’ (cardiac left ventricular outflow tract), ‘Abdominal’, ‘Brain
(Cb.)’ (cerebellum), ‘Brain (Tv.)’ (trans-ventricular), ‘Femur’, ‘Kid-
neys’, ‘Lips’, ‘Profile’, ‘Spine (cor.)’ (coronal), ‘Spine (sag.)’ (sagit-
tal), or ‘Background’. Illustrative examples of these views and
their significance can be found in [18].

The algorithm yields a 13-element vector with a score indi-
cating the probability of the image belonging to each class above.
The plug-in packs this information into four fields in the output
image header:

• ‘‘Standardplanedetection_labels’’, a string array with
the original class labels in order.

• ‘‘Standardplanedetection_confidences’’, a float array
with the probability for each class.

• ‘‘Standardplanedetection_label’’, a string with the la-
bel of the highest scoring class

• ‘‘Standardplanedetection_confidence’’, a float with
the probability of the highest scoring class.

This output image is transmitted downstream the pipeline in
the Standardplanedetection stream. The visualization wid-
get displays these information as a bar plot with the classes and
probabilities.

A.7. Image file writer plug-in

This plug-in allows images to be written to file, in real-
time. The plug-in can write images from any stream, or multiple
Streams, or all. Each received frame is written as a single image
in mhd/raw format, which is well supported by imaging libraries
mages.

8

https://www.epiphan.com/products/dvi2usb-3-0/

Alberto Gomez, Veronika A. Zimmer, Gavin Wheeler et al. SoftwareX 17 (2022) 100959
Fig. A.4. Interface of the visualization plug-in. The central frame (A) displays the images from a given stream in real time. The side frames (B and C) can be used
to display widgets from individual plugins upstream the pipeline.

such as VTK and ITK and by imaging software such as Slicer and
MITK.

This plug-in handles the header field ‘‘DO_NOT_WRITE’’ by not
writing to file any image that has that key in the header, even if
the image belongs to a stream that is being written. This allows
other plug-ins to transmit images for visualization or for other
plug-ins but not write them to file. For example, this is useful
in the standard plane detection plug-in, where the user may not
want to write the ‘background’ images to file, but still wants to
visualize them in real time.

This plug-in implements a widget that shows the number of
images that have been saved and allows to stop/resume the image
saving via a checkbox.

A.8. GUI plug-in

The graphical user interface (GUI) plug-in is designed to dis-
play a stream of images and widgets around the images with
information of the other plug-ins in the pipeline. The organization
of the visualization window in shown in Fig. A.4.

All plug-ins can implement two types of widgets, declared
in the Plugin parent class: plug-in widgets, that can be placed
in panels B or C in the figure, and image widgets, that can be
placed in panel A. By default, the GUI plug-in creates a colored
frame around each widget that matches a colored frame around
the image widget of the same plug-in (if available), as shown
in Fig. 2. This can be disabled with the command line argument
--gui_usecolors 0.

The GUI plug-in itself implements a widget (by default located
in panel B) that allows to control the size of all image widgets.

Appendix B. Supplementary data

Supplementary material related to this article can be found
online at https://doi.org/10.1016/j.softx.2021.100959.

References

[1] Che Chengqian, Mathai Tejas Sudharshan, Galeotti John. Ultrasound
registration: A review. Methods 2017;115:128–43.

[2] Meiburger Kristen M, Acharya U Rajendra, Molinari Filippo. Automated
localization and segmentation techniques for B-mode ultrasound images:
A review. Comput Biol Med 2018;92:210–35.

[3] Liu Shengfeng, et al. Deep learning in medical ultrasound analysis: a
review. Engineering 2019;5(2):261–75.

[4] Ungi Tamas, Lasso Andras, Fichtinger Gabor. Open-source platforms for
navigated image-guided interventions. Med Image Anal 2016;33:181–6.

[5] Franz Alfred M, et al. Simplified development of image-guided therapy
software with MITK-IGT. In: SPIE medical imaging 2012: image-guided
procedures, robotic interventions, and modeling. 8316. International
Society for Optics and Photonics; 2012.

[6] Tokuda Junichi, et al. OpenIGTLink: an open network protocol for image-
guided therapy environment. Int J Med Robot Comput Assist Surgery
2009;5(4):423–34.

[7] Gomez Alberto, et al. Fast registration of 3D fetal ultrasound images
using learned corresponding salient points. In: Fetal, infant and ophthalmic
medical image analysis. Springer, Cham; 2017, p. 33–41.

[8] Gomez Alberto, et al. Image reconstruction in a manifold of image patches:
Application to whole-fetus ultrasound imaging. In: International workshop
on machine learning for medical image reconstruction. Springer, Cham;
2019.

[9] Zimmer Veronika A, et al. Towards whole placenta segmentation at late
gestation using multi-view ultrasound images. In: International conference
on medical image computing and computer-assisted intervention. Springer,
Cham; 2019.

[10] Zimmer Veronika A, et al. A multi-task approach using positional infor-
mation for ultrasound placenta segmentation. In: Medical ultrasound, and
preterm, perinatal and paediatric image analysis. Springer, Cham; 2020, p.
264–73.

[11] Wright Robert, et al. LSTM spatial co-transformer networks for registration
of 3D fetal US and MR brain images. In: Data driven treatment response
assessment and preterm, perinatal, and paediatric image analysis. Springer,
Cham; 2018, p. 149–59.

[12] Wright Robert, et al. Complete fetal head compounding from multi-view
3D ultrasound. In: International conference on medical image computing
and computer-assisted intervention. Springer, Cham; 2019.

[13] Baumgartner Christian F, et al. Sononet: real-time detection and localisa-
tion of fetal standard scan planes in freehand ultrasound. IEEE Trans Med
Imaging 2017;36(11):2204–15.

[14] Sinclair Matthew, et al. Human-level performance on automatic head
biometrics in fetal ultrasound using fully convolutional neural networks.
In: 2018 40th annual international conference of the IEEE engineering in
medicine and biology society (EMBC). IEEE; 2018.

[15] Budd Samuel, et al. Confident head circumference measurement from
ultrasound with real-time feedback for sonographers. In: International con-
ference on medical image computing and computer-assisted intervention.
Springer, Cham; 2019.

[16] Toussaint Nicolas, et al. Weakly supervised localisation for fetal ultrasound
images. In: Deep learning in medical image analysis and multimodal
learning for clinical decision support. Springer, Cham; 2018, p. 192–200.

[17] Kerdegari Hamideh, et al. Automatic detection of B-lines in lung ultrasound
videos from severe dengue patients. In: IEEE international symposium in
biomedical imaging. 2021.

[18] NHS Screening Programmes. Fetal anomaly screening: programme
handbook. NHS Screen. Program; 2015.
9

https://doi.org/10.1016/j.softx.2021.100959
http://refhub.elsevier.com/S2352-7110(21)00184-9/sb1
http://refhub.elsevier.com/S2352-7110(21)00184-9/sb1
http://refhub.elsevier.com/S2352-7110(21)00184-9/sb1
http://refhub.elsevier.com/S2352-7110(21)00184-9/sb2
http://refhub.elsevier.com/S2352-7110(21)00184-9/sb2
http://refhub.elsevier.com/S2352-7110(21)00184-9/sb2
http://refhub.elsevier.com/S2352-7110(21)00184-9/sb2
http://refhub.elsevier.com/S2352-7110(21)00184-9/sb2
http://refhub.elsevier.com/S2352-7110(21)00184-9/sb3
http://refhub.elsevier.com/S2352-7110(21)00184-9/sb3
http://refhub.elsevier.com/S2352-7110(21)00184-9/sb3
http://refhub.elsevier.com/S2352-7110(21)00184-9/sb4
http://refhub.elsevier.com/S2352-7110(21)00184-9/sb4
http://refhub.elsevier.com/S2352-7110(21)00184-9/sb4
http://refhub.elsevier.com/S2352-7110(21)00184-9/sb5
http://refhub.elsevier.com/S2352-7110(21)00184-9/sb5
http://refhub.elsevier.com/S2352-7110(21)00184-9/sb5
http://refhub.elsevier.com/S2352-7110(21)00184-9/sb5
http://refhub.elsevier.com/S2352-7110(21)00184-9/sb5
http://refhub.elsevier.com/S2352-7110(21)00184-9/sb5
http://refhub.elsevier.com/S2352-7110(21)00184-9/sb5
http://refhub.elsevier.com/S2352-7110(21)00184-9/sb6
http://refhub.elsevier.com/S2352-7110(21)00184-9/sb6
http://refhub.elsevier.com/S2352-7110(21)00184-9/sb6
http://refhub.elsevier.com/S2352-7110(21)00184-9/sb6
http://refhub.elsevier.com/S2352-7110(21)00184-9/sb6
http://refhub.elsevier.com/S2352-7110(21)00184-9/sb7
http://refhub.elsevier.com/S2352-7110(21)00184-9/sb7
http://refhub.elsevier.com/S2352-7110(21)00184-9/sb7
http://refhub.elsevier.com/S2352-7110(21)00184-9/sb7
http://refhub.elsevier.com/S2352-7110(21)00184-9/sb7
http://refhub.elsevier.com/S2352-7110(21)00184-9/sb8
http://refhub.elsevier.com/S2352-7110(21)00184-9/sb8
http://refhub.elsevier.com/S2352-7110(21)00184-9/sb8
http://refhub.elsevier.com/S2352-7110(21)00184-9/sb8
http://refhub.elsevier.com/S2352-7110(21)00184-9/sb8
http://refhub.elsevier.com/S2352-7110(21)00184-9/sb8
http://refhub.elsevier.com/S2352-7110(21)00184-9/sb8
http://refhub.elsevier.com/S2352-7110(21)00184-9/sb9
http://refhub.elsevier.com/S2352-7110(21)00184-9/sb9
http://refhub.elsevier.com/S2352-7110(21)00184-9/sb9
http://refhub.elsevier.com/S2352-7110(21)00184-9/sb9
http://refhub.elsevier.com/S2352-7110(21)00184-9/sb9
http://refhub.elsevier.com/S2352-7110(21)00184-9/sb9
http://refhub.elsevier.com/S2352-7110(21)00184-9/sb9
http://refhub.elsevier.com/S2352-7110(21)00184-9/sb10
http://refhub.elsevier.com/S2352-7110(21)00184-9/sb10
http://refhub.elsevier.com/S2352-7110(21)00184-9/sb10
http://refhub.elsevier.com/S2352-7110(21)00184-9/sb10
http://refhub.elsevier.com/S2352-7110(21)00184-9/sb10
http://refhub.elsevier.com/S2352-7110(21)00184-9/sb10
http://refhub.elsevier.com/S2352-7110(21)00184-9/sb10
http://refhub.elsevier.com/S2352-7110(21)00184-9/sb11
http://refhub.elsevier.com/S2352-7110(21)00184-9/sb11
http://refhub.elsevier.com/S2352-7110(21)00184-9/sb11
http://refhub.elsevier.com/S2352-7110(21)00184-9/sb11
http://refhub.elsevier.com/S2352-7110(21)00184-9/sb11
http://refhub.elsevier.com/S2352-7110(21)00184-9/sb11
http://refhub.elsevier.com/S2352-7110(21)00184-9/sb11
http://refhub.elsevier.com/S2352-7110(21)00184-9/sb12
http://refhub.elsevier.com/S2352-7110(21)00184-9/sb12
http://refhub.elsevier.com/S2352-7110(21)00184-9/sb12
http://refhub.elsevier.com/S2352-7110(21)00184-9/sb12
http://refhub.elsevier.com/S2352-7110(21)00184-9/sb12
http://refhub.elsevier.com/S2352-7110(21)00184-9/sb13
http://refhub.elsevier.com/S2352-7110(21)00184-9/sb13
http://refhub.elsevier.com/S2352-7110(21)00184-9/sb13
http://refhub.elsevier.com/S2352-7110(21)00184-9/sb13
http://refhub.elsevier.com/S2352-7110(21)00184-9/sb13
http://refhub.elsevier.com/S2352-7110(21)00184-9/sb14
http://refhub.elsevier.com/S2352-7110(21)00184-9/sb14
http://refhub.elsevier.com/S2352-7110(21)00184-9/sb14
http://refhub.elsevier.com/S2352-7110(21)00184-9/sb14
http://refhub.elsevier.com/S2352-7110(21)00184-9/sb14
http://refhub.elsevier.com/S2352-7110(21)00184-9/sb14
http://refhub.elsevier.com/S2352-7110(21)00184-9/sb14
http://refhub.elsevier.com/S2352-7110(21)00184-9/sb15
http://refhub.elsevier.com/S2352-7110(21)00184-9/sb15
http://refhub.elsevier.com/S2352-7110(21)00184-9/sb15
http://refhub.elsevier.com/S2352-7110(21)00184-9/sb15
http://refhub.elsevier.com/S2352-7110(21)00184-9/sb15
http://refhub.elsevier.com/S2352-7110(21)00184-9/sb15
http://refhub.elsevier.com/S2352-7110(21)00184-9/sb15
http://refhub.elsevier.com/S2352-7110(21)00184-9/sb16
http://refhub.elsevier.com/S2352-7110(21)00184-9/sb16
http://refhub.elsevier.com/S2352-7110(21)00184-9/sb16
http://refhub.elsevier.com/S2352-7110(21)00184-9/sb16
http://refhub.elsevier.com/S2352-7110(21)00184-9/sb16
http://refhub.elsevier.com/S2352-7110(21)00184-9/sb18
http://refhub.elsevier.com/S2352-7110(21)00184-9/sb18
http://refhub.elsevier.com/S2352-7110(21)00184-9/sb18

	PRETUS: A plug-in based platform for real-time ultrasound imaging research
	Motivation and significance
	Software description
	Software architecture
	Software functionalities
	Plug-in system
	Streams
	Building a plug-in

	Hardware requirements and experimental configuration

	Illustrative examples
	Blurring and thresholding
	SonoNet Integration
	All plug-ins in the same pipeline

	Impact
	Conclusions
	Declaration of competing interest
	Acknowledgments
	Appendix A. Plug-ins included with this release
	File manager plug-in
	Video manager plug-in
	Frame grabber plug-in
	Cpp algorithm plug-in
	Python algorithm plug-in
	Standard plane detection (SonoNet)
	Image file writer plug-in
	GUI plug-in

	Appendix B. Supplementary data
	References

