

City, University of London Institutional Repository

Citation: Fu, Z. (1991). Heuristics and multi-dimensional physical database design.

(Unpublished Doctoral thesis, City, University of London)

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/29139/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

City Research Online

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Heuristics and Multi-dimensional
Physical Database Design

By
Zhongsu Fu

A Thesis Submitted in Conformity with
the Requirements of the Degree

of Doctor of Philosophy

Department of Business Systems Analysis,
City University, London EC1 OHB

October 1991

To my patient husband and my parents, without their love
and encouragement this work would never have been
completed.

1
5
9
9
9
12
15
20
26
26
27
56
57
61
69
72
77

89
91
110
110
130

143
153
163
163
169
170
177
178
185
185
186

Table of Contents
Introduction
Expert system approach
The system model
3.0 Introduction
3.1. The framework of the system model
3.2. The definition of the system model

3.2.1. System-user interface
3 .2.2. Dynamic changes of the database profile

The knowledge base concerning the database
4.0 Framework of Knowledge System
4.1. The algorithm base
4.2. The various implementation algorithms and their features

4.2.1. The EXCELL algorithm
4.2.2. The z-hashing algorithm
4 .2.3. The quantile-hashing algorithm
4 .2.4. The PLOP-hashing algorithm
4.2.5. The BANG file and the hB-tree Algorithms

4.2.6. The R-tree and the R+-tree algorithms
4.3. The application abstract profiles (AAPs)
4.4. The rule base

4.4.0. Matching revisited
4 .4.1. Initial algorithm selection
4 .4.2. Selecting an algorithm by

similarity comparison
4.4.3. Algorithm selection by heuristics

4.5. Dynamic monitoring and tuning of a physical database .
4.5.1. Tuning by improving the individual algorithm .
4.5.2. Tuning by changing implementation

4.6. Adding new knowledge to the system
4.7. Reasoning process
4.8. A complete example
4.9. System tuning and verification consideration

4.9.1. Introduction
4.9.2. Literature survey

1

4.9.3. Expert system tuning 186
4.9.3.1. General consideration 187
4.9.3.2. Information about rules in general 187
4.9.3.3. Feature information 190
4.9.3.4. Information about applications................ 192
4.9.3.5. Extract information for similar

applications 192
4.9.3.6. The impact over changes of

search space size 193
4 .9 3 .7 . The impact over the domain s iz e 194

4.9.4. The result of tuning analysis 195
4.9.5. Examples 196
4.9.6. Conclusion 219

5. Conclusion 220

2

Appendix A
A1 The analysis of the inverted file partition and the grid file partition 221
A2 Application feature calibration 223
A3 Splitting order for z-hashing algorithm 230
A4 Bang file and z-hashing algorithm:

storage break-even point calculation 232
A5 Object identifier calculation 233
A6 Performance evaluation 235
A7 Data distribution data 245
A8 Overflow handling 254
A9 Selecting data organisation 256
A 10 Examples 258
6. References 280

3

Figures
Figure 1.1. Search space partition

(a) Primary key partition (inverted file) 2
(b) Grid partition 2

Figure 3.1. The system framework 10
Figure 3.2. An outline of the user-system interface 15
Figure 3.3. USI implementation consideration 16
Figure 3.4. A framework of initial algorithm selection 17
Figure 3.5. The dynamic changes to the profile 20
Figure 3.6. Calculate the data density for each slice 22
Figure 3.7. The framework of the profile 24
Figure 4.1. The knowledge base framework 26
Figure 4.2. Equal sized grid cell partition 29
Figure 4.3. Partially equal sized grid partition 32
Figure 4.4. Local density controlled grid partition

(a) without overflow handling 37
(b) with overflow handling 37

Figure 4.5. Query frequency controlled grid partition
(a) with overflow handling 40, 41
(b) without overflow handling 43, 44

Figure 4.6. Data distribution controlled partition 47
Figure 4.7. Special data distribution and its z-pattern 49
Figure 4.8. Bang file partition for a 2-d data space 50
Figure 4.9. Storing the access paths by an indexing file 52
Figure 4.10. Storing the access paths by a hashing function ... 53
Figure 4.11. Storing the access paths by hB-tree indexing 54
Figure 4.12. Storing the access paths by Bang file algorithm 55
Figure 4.13. The EXCELL algorithm 57
Figure 4.14. The z-hashing algorithms

(a) Binary code z-hashing algorithm 61
(b) Gray code z-hashing algorithm 62

Figure 4.15. Comparison between binary z-code and Gray z-code
(a) Binary z-code 64
(b) Gray z-code 65

Figure 4.16. Binary code and Gray code 65

4

Figure 4.17. The Quantile-hashing algorithm 70
Figure 4.18. The PLOP-hashing algorithm 74
Figure 4.19. The PLOP-hashing address calculation (binary trees)................ 75
Figure 4.20. Specific data distribution by parameter

guided partition 77
Figure 4.21. Bang file partition and presentation 79
Figure 4.22. Redistribution by Bang file partition 82
Figure 4.23. A spatial object database in a 2-d space 84
Figure 4.24. Multi-layered 2-d grid partition 85
Figure 4.25. Multi-layered grid cells: Adding new objects 87
Figure 4.26. R-tree algorithm 90
Figure 4.27. Similarity comparison 98
Figure 4.28. Data distribution pattern 104
Figure 4.29. Array representation for a 2-d search space 108
Figure 4.30. Heuristic matching inference structure 121
Figure 4.31. Fuzzy information logical representation 126
Figure 4.32. Constructing the order to visit the rule set 128
Figure 4.33. The logical structure of the knowledge base 151
Figure 4.34. Symmetric pattern 152
Figure 4.35. Relationship between applications

and relevant indices 176
Figure 4.36. Illustration of an example 184
Figure 4.37. Logical structure of tuning and validation 188
Figure 4.38. Similar applications 192
Figure 4.39. Bit map for similar applications 193
Figure 4.40. A 2-d search space 194
Figure 4.41. The framework for system tuning 196
Figure 4.42. 2-d search space for a sample data set (original) 200
Figure 4.43. 2-d search space after 18.75% deletions and

12.5% insertions 204
Figure 4.44. 2-d search space after 18.75% deletions and

18.75% insertions 206
Figure 4.45. 2-d search space after 25% deletions and

50% insertions 208
Figure 4.46. 2-d search space after 25% deletions and

62.5% insertions 209

5

Figure 4.47. BANG-file partition for case (4) 213
Figure 4.48. Applying BANG-file for original data set 215

Figures in Appendices
Figure 1. Indexing implementation

(a) the index file can be stored in main memory 224
(b) the index file cannot be stored in main memory 224

Figure 2. z-hashing splitting sequence 231
Figure 3. Object identifier calculation for multi-layered pattern 234
Figure 4. Tuning by different resolution 251
Figure 5. The given data set uses the BANG-file algorithm 260
Figure 6. The given data set applies the EXCELL algorithm

(a) with overflow handling 262
(b) without overflow handling 262

Figure 7. The given data set employs the z-hashing algorithm 264
Figure 8. The given data set uses the quantile-/PLOP-hashing

algorithm 265
Figure 9. The given data set deploys the BANG-file algorithm 270
Figure 10. The given data set applies the EXCELL algorithm

(a) with overflow handling 273
(b) without overflow handling 274

Figure 11. The given data set uses the z-hashing algorithm 276
Figure 12. The given data set applies the quantile-/PLOP-hashing

algorithm 277
Table 1. Matching the application properties to implementation............. 154

6

Acknowledgement

This work has been done under the support of the department of business systems
analysis, the City University.

Many thanks to Dr. Allen Long, who has spent a lot of time in supervising and
editing main sections of this thesis.

I am also very grateful to Mr. Ray Long and Mr. Lewis Robert from Cognisys Ltd.,
who have taken my draft to correct my English in their spare time. The City
University library has provided well services for materials contributed to the
research, staff are very helpful to assist me to get needed information.

7

Declaration

No portion of the work referred in this thesis has been submitted in support of an
application for another degree or qualification of this or any other university or
institution of learning.

Zhongsu Fu

8

Abstract

An expert system approach has recently been used in parameter selection for
VSAM (Virtual Storage Access Method) file organisation [AL87a]. This system
has been developed to aid in-house users to apply relevant facts and heuristics
to optimise VSAM file design. Multi-dimensional physical database design is
more sophisticated and complicated than VSAM file design. The expert system
approach can be applied to select and tune physical database design for various
applications.

A great deal of work has been done in developing diverse algorithms or access
methods to organise automated information on secondary storage devices
[FA86b] [FR86] [FR88] [GU84] [HU88a] [KS88a] [KS86] [L087] [NI84]
[OR88b] [OR86] [OT85] [R081], etc. However, little work has been done to
enable designers to select an access method which matches a projected
application profile (features and requirements) and perceived strengths and
weaknesses of candidate algorithms. This thesis considers a number of grid
based algorithms and makes expert assessments of each according to its
strengths and weaknesses. It analyses features of various access methods and
using expert knowledge matches features for a range of m-d (multi-
dimensional) algorithms with corresponding characteristics of an application.
The knowledge-based system presented in this thesis can be applied either
manually or computerised to give a systematic approach to m-d algorithm
selection. A system is proposed to (1) heuristically select an initial algorithm;
(2) describe how the selection process is evaluated against actual m-d algorithm
performance and (3) show how the results of the evaluation can be used to
refine expert knowledge embodied in the selection system. Heuristic
assessments are given for several m-d access algorithms. Examples are
presented to show how these heuristics are used to select a m-d access
algorithm for a specific application. It is reasonable to suppose that the initial
heuristic assessments are not entirely accurate. A tuning mechanism for the
system heuristics is given in section 4.9. The system selection process is
thereby, able to adjust to real world results. Finally, we present a simple
example to illustrate how the proposed system works.

Key Words:
M-d Physical Database Design
Expert Systems
Matching
Tuning

9

" There was a consensus that researchers should build automatic physical database
design tools that would choose a physical schema and then monitor the
performance of the schema making changes as necessary. This would include
adding and dropping indexes, load balancing arm activity across a substantial
number of disk arms, etc. Hence, tuning knobs should be removed from the
domain of the database administer and manipulated by a system demon. "
- Further direction in DBMS research, M. Stonebraker 1988 -

" It is desirable to have pairs of data item which are required consecutively on some
query access path to be physically stored near to each other. As the number of
queries increases the complexity of arranging for this becomes clear, and so usually
only the most prominent queries are privileged to be considered for optimisation
of their placements. Clearly automated design aids are called for to supplement the
human designer's skill and experience. "
- David A Bell, 1987 -

10

Chapter 1. Introduction

As the size of a computerised database increases, the time taken to access required
data item(s) becomes a bottleneck. This bottleneck results from intensive access to
secondary storage. A question arises - how, in principle, can data be organised
using secondary storage devices so as to allow speedy and efficient access? And
how can this organisation be physically implemented? This thesis considers these
questions for the case of databases including spatial data, i.e. a m-d (multi-
dimensional) data space.

A number of m-d search algorithms have been proposed [FA86b] [FR86] [FR88]
[GU84] [HU88a] [KS88a] [KS86] [L087] [NI84] [OR88] [OR86] [OT85]
[R081], etc. They mainly differ in data space partitioning and the implementation of
that partitioning. Partitions fall into two basic types: (1) partitioning a data space in
its primary key dimension, dividing a data space in its primary key sequence, 1-d
(one dimensional) approach; (2) partitioning a data space in a m-d (multi-
dimensional) attribute sequence - grid partitions, dividing a data space to preserve
its geometrical proximity, a m-d approach.

An example of the former is the inverted file approach. Data are organised in
primary key sequence and are stored near to each other in the primary key
dimension. One result is that if the difference between two primary key values (Ikl -
k2l) is small then the two data items are likely to be stored in linear proximity. This
proximity is preserved solely by the primary key. When other keys are involved in
the search of the storage location the proximity may no longer hold, (see Figure
1.1. (a) primary key partition (inverted file)). Here, 2-d (two dimensional) data are
stored by the inverted file approach. Points p i, p2, and p3 are data items. Note that
along the horizontal axis (primary key dimension) points p i, and p2 are closer than
p i and p3 so that p i and p2 are likely to be stored physically closer than points p i
and p3. The vertical axis is significant when secondary key searches are required.
From the diagram, pi and p3 are closer on the vertical axes (secondary key) than p i
and p2, but as shown in the diagram, pi and p2 are stored nearer each other than p i
and p3. The searching efficiency is different for a primary key and a secondary key
because of the relative distances along the different axes. This asymmetry is an
inherent source of a m-d searching inefficiency in the inverted file partition
technique.

1

An example of the latter is a grid rile partition. A data space is divided into grids
(see Figure 1.1. (b) grid partition). Points p i, p2, p3 are geometrically close and
they are in the same grid cell (RO) so that they are stored together.

(a) Primary key partition (b) Grid partition
secondary key y secondary key y

0 0
0 o

R2

O ©

O Q
R3

p2 RO

p3

P.1 o

R i G
©

© ®

primary key x

Figure 1.1 Search Space Partition

In the diagram each region Ri for i = 0, 1, 2, 3 corresponds to a data bucket.

An analysis for the inverted file partition and the grid file partition can be found in
the Appendix A l. This analysis shows that the complexity of storage and retrieval
relates to the query pattern. If in most cases only the primary key is dominant
during the life span of a data set, inverted file partitioning can be an advantage. But
when other attributes play an important role in the retrieval process, the grid file
partition may be more efficient. Grid file partitioning is a better choice for exploring
a potentially near-optimal physical database design because the tuning process
allows us to adjust the partition depending on various factors including the
dominant search attribute(s). Here "dominant attribute(s)" means those attribute(s)
that are frequently used for data retrieval. Thus inverted file partitioning can be seen
as a special case of the grid partition when the primary key is the dominant attribute
because of its high search rate. The grid partitioning approach thus offers more
flexibility than the 1-d partitioning approach.

2

This flexibility of the grid partition, in its various forms [BU83] [FR86] [FR88]
[KS88a] [KS88b] [KS86] [L087] [RU87], allows the possibility of matching the
degree of symmetric partitioning with the query pattern for a m-d data space. With
inverted file organisation, the data space is always partitioned in one dimension
only; whereas with grid file organisation, partitioning can take place in all
dimensions (symmetric partitioning). Thus grid partitioning aims at geometrical
proximity for a spatial search space (a m-d search space) rather than (as with
inverted file approach) for a linear search space (a 1-d search space). The grid
partition method has been chosen here for physical data organisation because of its
flexibility and efficiency in the searching of required data in a m-d search space.

There are various strategies for choosing and implementing grid partitioning, for
instance, a scale-based or an interpolation-based grid partitioning [KS88a] and an
indexed [FR88] [TA82] or a hashing function implementation [KS88b]. These
strategies are application-oriented. If the data distribution is such that the number of
data items in each non-empty grid cell is roughly equal then the EXCELL [TA82]
scheme, which divides a m-d space into equal sized grid cells, may be used
effectively. Note however, that an equal sized grid cell partitioning method can itself
be implemented by an indexing approach or by a hashing function. Consequently,
further tuning may be required based on the differences between these two
implementation techniques.

When a number of empty grid cells are created by a partition, these two methods
will differ in terms of storage utilisation and speed. In the case of the indexing
implementation, extra index entries may be created for these empty grid cells,
whereas for a hashing function a number of empty data holes may be generated for
these empty cells in the data file.

The decision as to which approach to use is an intuitive judgment depending on a
consideration of the index file storage and the amount of storage to be reserved for
empty grid cells in the partition. If the number of empty grid cells is very small then
the hashing approach will be a better choice because it offers faster speed and the
small number of empty data holes can offset the amount of storage required for the
index file itself. Note however that, following selection of a primary strategy,
further tuning processes are required to achieve near-optimal performance. This is

3

because the number of empty grid cells varies from application to application and
changes during the course of database operations.

Research done in this area [LA88] suggests that for physical database organisation a
specific implementation technique is usually suitable for a set of defined
applications. If an application requires fast access time then it can employ a hashing
algorithm to good effect. If, however, the response time is not critical and the
volatility of data is high, a simple sequential file will be satisfactory. No single
implementation will be the most-efficient for all applications because different
applications may have different features, demanding individual consideration for
their efficient use. It is proposed here that the expert system approach can be
effectively employed in selecting a particular strategy of grid partitioning for a
given application and further, that this approach can enhance the overall efficiency
of the implementation.

This thesis considers a number of grid file algorithms and makes expert assessment
of each according to its strengths and weaknesses based on an initial consideration
of the various applications. These initial considerations fall into three categories: the
data characteristics; the users’ requirements; hardware and software constraints.

4

Chapter 2. Expert System Approach

Physical DB design is an extremely difficult task. Finding a good solution is
difficult as the criteria for an optimal organisation cannot be exactly quantified.
Database optimisers have been developed to reduce the computation and
communication cost in a distributed environment. A variety of approaches have
been mentioned in [SH91]. For example, the horizontal partitioning has been used
in the context of distributed databases to increase the throughput and to save
response time, the algebraic manipulations of query expressions transform a given
query into an equivalent one that can be processed more efficiently; and the reorder
of query conditions reduces the size of satisfactory relations for less complexity,
etc.

An example of database optimiser is System R. System R performs optimisation of
various operations over a database. In the optimisation process, System R makes a
decision based on a cost estimation of different options. This estimation yields
different computation and disk access costs. System R considers physical
organisation of a relation which can affect the overall cost of a given query. The
physical organisation of a relation provides information for the optimiser to take
advantage of the indices. System R also allows relations to be stored according to
its usage, providing storage flexibility so that logically related tuples can be
accessed with low cost. System R* [MA86] is an extension of System R to the
distributed environment. In addition to the strategies used in System R which
optimises select, project, join and union, System R* has extra ability to handle
replicated copies of a given relation in order to reduce transmission cost over the
network. To perform the optimisation System R* [MA86] [M086] follows the
following steps:

(1) generating all evaluation sequence;
(2) computing the best evaluation strategy;
(3) evaluating the cost of each option and
(4) selecting a strategy with the least cost.

The cost function used in System R* includes CPU, I/Os, and cost of transmission.
In R* the transaction management uses two-phase locking protocol. Deadlock is
allowed to occur and is resolved by deadlock detection and victim transaction abort.

5

Another example is Starburst [LI87] [CH90]. Starburst is an extension to existing
database management systems such as INGRES, R, R* etc. The objective of
Starburst is to facilitate the implementation of data management for relational
databases. It provides alternative ways of storing relations (storage methods) and
access paths, integrity constraints or triggers (attachments) to relations. It also
provides support for diverse applications, i.e. supporting user-defined abstract data
types and functions for fields of database records.

From the brief description of the DBMS optimisers, it can be seen that the physical
organisation of a relation can greatly affect the cost of operations. The reason being
that the number of I/Os required for a database operation depends on how data is
stored to secondary storage device. A number of algorithms exist for implementing
the grid partitioning approach. Each algorithm has its own strengths and
weaknesses and for each algorithm one makes different expert opinions - heuristics
- in selecting an algorithm for a specific application. It is also very difficult to define
and classify an application with a clear pattern of its data and its query because the
knowledge about it is fuzzy (it cannot be clearly quantified), dynamic (size and
features change) and uncertain (changes cannot be predicted). The design of
physical databases involves the determination of the data partitions, physical storage
of data structures and access paths. These are based on a number of factors such as
the block size, the types of query and the data distributions. Thus in practice, the
selection of implementation algorithms is more likely done by heuristics whereby
one matches the problem-dependent features of an application to the strengths of
various grid implementation algorithms for a better solution. At the computer
department of Erlangen-Nuemberg University, West Germany, an expert system
has been built [AL87b] to support the configuration of VSAM (Virtual storage
access method) file design. The objective of this system is to optimise VSAM file
design by the implementation of a computer-aided file design system. In [AL87b],
the author has recognised that VSAM file design is an application-orientated task.
The expert system approach is used for the VSAM file organisation because the file
designer needs to know a multitude of technical details in order to choose the right
parameters, eg. bucket size, number of buffers, control area size, control interval
size, etc. Tuning VSAM file design requires tradeoffs between various parameters.
Further, how one chooses the values for these parameters depends upon the

6

features of an application.

A m-d physical DB design can be more complicated than a VS AM file design. As
with VS AM file design, a m-d physical database design is an application-oriented
task. To achieve optimal performance knowledge is required about the applications
such as data distribution, data volatility, data set size, dimensionality of a data
space, types of query and dominant query attributes. In addition, information is
required about the system constraints such as the bucket size, available memory
space and access modes. Moreover, heuristics are needed so that a valid choice can
be made between the various implementation algorithms and data space partitioning
strategies.

This thesis investigates factors relating to physical organisation of m-d data for the
improvement of database performance. It assumes that:
(1) The database considered in this thesis are not distributed databases. The factors

which influence the performance of distributed databases include relation
partitioning and tuple distribution to different nodes over the network in order to
reduce the cost of database operations. We assume that the transmission cost is
not relevant to the physical organisation of data but relevant to distributing
relations and scheduling the sequence of database operations.

(2) Performance is evaluated without the consideration of locking factors. We
assume that the major influential factor of locking is the number of users
accessing the same parts of a database concurrently. This mainly relates to the
locking strategies used, and functionally partitioning and distributing relations
in a database.

(3) Features of different data sets are derived from an equal-sized grid cell partition,
i.e. the equal-sized grid cell partition is used to measure the features of all data
sets for standardisation.

(4) Selecting one element from a group of tuples [BO90] which satisfy a query
condition can be done by functional manipulations. For example, the author
[FR86] has mentioned in his book (page 515) that basic sequence manipulating

functions can be introduced to tackle the issue. The function a* -> a returns

7

the first element of a sequence, we assume that the implication in the
implementation of databases is the need of a control rule. This rule states that
once there exists a tuple that matches the query conditions the result will be
returned and the query operation terminated.

In the following chapter, the framework of a system model which uses heuristics to
tune grid file design is discussed . We also show briefly how the system model
works.

8

Chapter 3. The System Model

An expert system approach has been used for VS AM (Virtual Storage Access
Method) file organisation [AL87b]. This section introduces the scenario of how an
expert system approach can be applied to select physical organisations for multi-
dimensional (m-d) data. A brief system framework is also described.

3.0. Introduction
The purpose of the system is to select an efficient implementation algorithm for a
particular application and to provide monitoring and tuning facilities for a m-d
physical database design. The requirements of the system are:
(1) to help users choose a near-optimal implementation of a physical database

design;
(2) to monitor the performance of a database in order to satisfy users'

requirements;
(3) to identify why a particular algorithm is chosen for a given application;
(4) to add new knowledge to the system, enabling the amendment and

extension of the knowledge base and inference rules.

3.1. The Framework of the System Model
The characteristics of database applications are important factors which will
influence the performance of databases. Researchers have developed various
techniques for physical database organisation, catering for different applications
[BU83] [EN88]. In practice, it is usually a mystery to the user why the
performance deteriorates, eg. why the system gives a slower response at a certain
stage. The reason is that the performance varies along with the changing
applications (the pattern of the data and the frequency of queries change during the
course of accessing and updating the database). The system model based on an
expert approach is, therefore, designed to apply heuristics to match the
characteristics of a given application to the strengths of an algorithm. It analyses the
reasons behind any performance deterioration and works out what measures may be
taken to improve the performance. In addition, it also takes the necessary actions to
meet the users' requirements if possible.

9

The system model is made up of a user-system interface, database profiles, a
knowledge base and a rule base. The knowledge base consists of an algorithm
base, an application abstract profile base, a performance evaluation unit and a
similarity comparison model. Its framework is illustrated in Figure 3.1.

Figure 3.1 The System Framework.

10

A brief description of the system components
1. The User-System Interface (USI) captures the information from users

about an initial knowledge of the database and system environment to
construct an initial model of an application.

2. The Database Profile (DBP) stores information which describes the
characteristics of an application.

3. The Algorithm Base (ALB) stores various alternative implementation
schemes, splitting strategies, and merging strategies in terms of partitions and
access paths.

4. The Similarity Comparison Model (SCM) carries out pattern matching in
terms of data requirements and queries, in order to measure how closely a
given application matches an existing application abstract profile.

5. The Application Abstract Profiles (AAP) store required information about data
space partitions, data distributions, chosen implementation algorithms and
query patterns. It assists in classifying applications. For instance, when the
performance of the database falls to an unsatisfactory level in its performance
the algorithm chosen for the AAP can be used to suggest a better
implementation, provided a similar degree is identified to be satisfactory
between the database profile and an application abstract profile (AAP).

6. The Performance Evaluation and System Validation (PESV) calculates speed
and storage utilisation for a particular AAP. The system validation updates the
rule base to achieve more accurate reasoning.

7. The Rule Base (RB) stores rules about algorithm selections and alterations to
rules.

11

3.2. The Definition of the System Model
The system model is defined as:
S = {USI,DBP, K, RB}.
Where:
S - the System.
USI - User-System Interface.
DBP - the DataBase Profile stores relevant information about the

physical database to be tuned. It consists of database features,
including a set of the estimated initial database features obtained from
the USI and a set of dynamic features acquired during the operations
of the database. It also contains a set of parameters for each data set
in the database:
DBP = {DBPi I for i = 1, 2 ,..., x }
where x is the number of data sets which make up the database
concerned.
The element DBPi (for i = 1 ,2 ,..., x) of DBP defines the
characteristics of a data set i. These are the relevant properties of the
database, including the initial and current database features - data
patterns, query frequencies, system constraints, the chosen
algorithm, and the corresponding performance.

K - the Knowledge required for the tuning process. This
consists of the following:
K = (ALB, AAP, PESV, SCMs).
ALB - Algorithm Base.
AAP - Application Abstract Profile.
PESV - Performance Evaluation and System Validation.
SCM - Similarity Comparison Model.

RB - a Rule Base guides the system in deriving solutions or
recommendations for operations. It is constructed on the basis of
expertise, experience, heuristics, judgments, and individual
decision criteria.

All the above information is stored as either factual or procedural knowledge: the
factual knowledge gives the system evidence as a basis to guide selection and

12

matching processes; the procedural knowledge offers the system inference paths as
an approach to deriving a solution.

Having defined the system, we now describe briefly how the system should work.
As shown in Figure 3.1., when a new database is to be created, its initial data
characteristics, such as the domain of the data space D, the data set size n, the
dimensionality of the data space m, the users' requirements, hardware and
software characteristics are obtained from the user-system interface via a dialogue
between the system and users. Answers from users are validated and stored as
initial characteristics of the application database system, producing an initial
database profile. The database profile is used as the basis for selecting an
implementation algorithm for the application concerned. The data characteristics are
stored for a comparison of similarity between an application and an AAP. The
users' requirements are employed as criteria by the system to trigger actions
concerned with the monitoring of the database, and the hardware configuration
indicates the constraints to the system. After an initial implementation algorithm has
been selected the database will be physically stored on a secondary storage device
according to this chosen algorithm. If the actual performance of a database does not
meet the users' requirements at a certain stage it will trigger the system to either
seek an alternative scheme to improve the situation, or indicate the relevant status of

the current system. When the constructed application profile matches an

application type in the AAP base with required similarity (defined in the rule base)
then using the similarity comparison model, the rule base will be searched to find a
system-suggested implementation algorithm. If, on the other hand, the application
profile cannot find an AAP that matches it with required similarity, then the
application will be analysed and a new type of application may be added to the AAP
base. Different stored implementation algorithms in the algorithm base will be
applied to this new application type to carry out the performance evaluation through
which the best algorithm for this new application type is chosen. In addition, the
system should be able to update rules by itself. This update applies experimental

* To compare similarity between the two, information about an application needs to
be constructed in accordance with the AAP

13

method and a “learn by expected result” approach. This is done by the Performance
Evaluation and System Validation (PESV - see section 4.9 for details). The chosen
implementation algorithm is then stored as knowledge in this new AAP as a system
suggested solution. It is found that the data concerning the database may change
during the life time of the database and so too may the characteristics of an
application. These changes will be collected from the database optimiser (located in
the DBMS), or the statistics of the database, or collected by the system itself. They
are used to update the application database profile. When an unsatisfactory level of
performance is detected, the system will extract the relevant information of the
application profile, based on the new database profile, to compare the profile with
the AAP. If an alternative solution is found in the system AAP then the system will
adjust the database accordingly and take any necessary actions; otherwise, the
system will display the hypotheses for the initial solution and the explanation of
how the current database deviates from these hypotheses. We assume that the
changing characteristics of the data as well as the query patterns are the source of
any performance deterioration. By studying the dynamic behaviour of a database
the causes of performance change may also be examined.

14

3.2.1. User-system Interface
The user-system interface is a means of capturing knowledge, relating to initial
information concerning an application, from users. When a new data set is to be
created the system will ask questions about the following aspects: the characteristics
of a data set; users' requirements regarding the performance of the data set;
hardware and software characteristics affecting the physical organisation of the data
set. Some of the knowledge may be obtained from the database definition, such as
data item length, access mode, cardinality, etc. In this case we can view the
database definition as a user in terms of capturing initial knowledge about an
application. An outline of the user-system interface is shown in Figure 3.2. As an
implementation consideration, windowing technology can be applied to assist users
to enter application features. A brief windowing USI is shown in Figure 3.3., and
an initial algorithm selection is illustrated in Figure 3.4. respectively.

Figure 3.2. An outline of the user-system interface.

15

Figure 3.3 USI Implementation Consideration.

16

Figure 3.4 A Framework of Initial Algorithm Selection.

A user-system interface (USI) is defined as

USI = {AC, DBP(S), REQ(S), H /W d s), S / w d s) }
Here:
AC - Application Classification gives categories of applications of the

AAP in the system, each application class including an application
domain and its functionalities (tasks), for users to choose. The
purpose of AC is to provide the system with the facility to process
incomplete information. When the class of the concerned application
matches the existing application class ACi the missing information
will be extracted from the ACi in the AAP base. If there is no
matched class in the system, a new one can be added by the users
with its definition. The AC has two levels: a menu level for a user to
select the corresponding application class; a definition level for
users’ reference. Each definition gives the meaning of an application
class.
AC = { ACi I for i = 1,2, ..., x }

DBP(S) - Static Database Profile consisting of characteristics gained from the

user-system interface.

DBPOO = { D B Pl(s), DBP2(S>,, DBPx(s) i

= { DBPi(s) for i = 1, 2, ..., x }

17

DBPi(s> - initial assumptions about a data set that form the static features of

the database profile.

r e q (s) -

H / w d s) -

s/wds) -

Users' Requirements.

Hardware Characteristics.

Software Characteristics: i.e. OS environment.

The detailed parameters for the above concepts are:

DBPi(s)= {id, tm, n, m, R, D, Ds, Ir, Dr, Ns, Rs}

id data space identification. In a relational database, a number of data
sets will be created depending on the number of tables required for a
database system. Each table represents a data space in the database
system and each data space needs to be identified by a system
number as an identifier in the USI.

tm expected data set life span (how tm is measured needs experience).
Taking a relational database as an example:
short - temporary and rarely used tables,
long - frequently used tables.

n number of data items in a data set.
m number of major attributes concerned with conducting searches

(dimensionality of a search space).
R
Ds

average length of data items in a data set.
the data set itself:
Ds = { d l, d2, ..., dn}
di = (a il, ai2, ..., aim) for i = 1, 2, ..., n.
di is data item i which consists of m attributes in terms of search

D
space.
the range of each attribute concerned (i.e. the domain of the data

space):
D = D1 X D 2 X ... X D m
Di = Dimax - Dimin for i = 1 , ..., m.
where Dimax is the maximum value in the dimension i and

Dimin is the minimum value in the dimension i.
In geometric interpretations D forms a finite or bounded super-
rectangle.

18

Ir - percentage of data items to be inserted (i.e. file growth rate)
_____ /n (%)

Dr - percentage of data items to be deleted (i.e. file shrink rate)
_____ /n (%)

Ns - percentage of data items to be searched (i.e. access rate)
_____ /run

Rs - percentage of range searches to be conducted (i.e. range search
rate)
_____ /n

REQ(S) - {Se, Nsec, Am}

Se
Nsec

Am

H /W d s) = {Td, b, M}

Td

b

M

b

expected storage utilisation (i.e. packing density),
expected number of secondary storage accesses/per
data item.
main access mode (from database definition):
random
sequential
random access dominant say, random access >
50% of total queries.

device speed:
seek time - st,
transfer rate - tr.
block size:
______ bytes or b data items
available memory for the data set (for a decision o n '
whether an index can be accommodated in the
memory or not)

S / w d s) = {b, Am}
block size
_____ bytes OR b data items

The USI also provides facilities for user to ask system questions about reasoning
regarding an application at different levels of details.

19

3.2.2. Dynamic changes to the database profile
The dynamic changes to the database profile are summarised in Figure 3.5.

DataBase Management
System (DBMS)

(«)
Database profile: DBPi = {id, tm, n, m , R, D, Ds, Ir, Dr, Ns, Rs }

(d) (u)
Data set dynamic features: Ds = {SPT, B, Nt, Ddis, qf} + Ds
SPT: partition type set Nt : actual number of slices produced by a partition
B : total number of grid cells in a partition Ddis: data distribution
S : number of slices produced by a partition qf : query features

_ , (u) (u) (u) (u) (u) (u) (u) (u)
Ds = { n , m , Dr , Ir , Rs , Ns , Nt , T }
(u) (u)

n : actual number of data items in a data set Rs : actual range search rate

: actual dimensionality of a search space
(u)

Dr : actual data shrink rate
(u)

Ir : actual data growth rate

(u)
Ns : actual number of total seaches

(u)
Nt : actual number of buckets used

(u)
: transaction properties

DataBase
Profile (DBP)

Figure 3.5. The dynamic changes to the database profile.

We present these changes as follows:

DBP(d) = { D B Pl(d), DBP2(d>..., DBPx(d) }

= { DBPi(d) for i = 1, 2 ,..., x }
where:

DBPi(d)= DBPi(s) + Ds(d)

for i = 1, ..., m

DBPi(s) = {id, tm, n, m, R, D, Ds, Ir, Dr, Ns, Rs}, they are defined in

section 3.2.1

20

D sW = { SPT, r, S, Nt, Ddis, qf } + D S(U)

SPT - selected partition type.

SPT e PT = {PTI, PT2, ... }

PTi - partition type i. Several partition types can be applied to a data set,
but only one is in use at any time frame.

r total number of grid cells in a partition.

S - number of slices produced by a partition for each dimension:
S = { s i, s2, ... , sm }.
A slice is the area enclosed by a partitioning boundary.

Nt - total number of buckets actually used.

Ddis - data distribution.
Ddis is measured by { C[i] 1 for i = 1, 2 ,..., r }
here C[i] is the number of data items in the grid cell i.

C[i] - number of data items of a grid cell i in a partition, i is a z-code (it
will be elaborated later) corresponding to the grid cell concerned.

Based on the value in C[i], the local data density can be calculated to guide a
splitting process. The calculation is shown in Figure 3.6.

21

M
#

0 1 2 3

10 • •
4

•
•

5 ♦

•
12 .* 13

•
•

01 •

• •

2 3 * • 10 11

00
• • • •

0
. ••

1 *
•

8 9

00

i=2
Z C[0,i]

i=0 _ 12

b x S y 15

i=2
Z C [l,i]
i-0_________ _ 12

b x S y 15

i=2
Z C[2, i]

i-0___________ 8_
b x Sy 15

C[3,i]
i-0_________ _______ 5_

b x S y 15

01 10 11

i=3
4 21 C[i, 0]

= _2 _ i-o_______

b x Sx

i=3
4 T. C[i, 1]

_ i-0_______

b x Sx

i=3
Z C[i, 2]

i-0_______

b x Sx

1
~

17

20

11

20

9
20

Figure 3.6. Calculate the local data density for each slice.

22

In this diagram there are four slices on the x dimension and three slices on the y
dimension respectively. Consequently, x varies from 0 to 3 (4 slices) and y ranges
from 0 to 2 (3 slices) in the calculations shown in Figure 3.6.

qf - query features.
qf = (Qt, W = (Wi I for i = 1,..., m))
for a 2-d data space m = 2.
Where:
Qt - Query type;
W - Properties of attribute set by weighting;

The weighting is derived from the frequencies of each attribute, i.e. if attribute A is
a dominant one for a set of queries then more splits may take place to increase the
proximity along dimension A. We will discuss the frequency controlled partitioning
in section 4.1.

Ds(u) = {n(u)5 m(u)> D(u)j Ir(u)> Dr(u)j R s (u) 5 N s (u) > Nt(u), X(u) j

where

n(u) - the number of data items in the data space considered up-to-date.

m(u) - the number of dimensions of the search space up-to-date.

Ir(u) - actual data growth rate.

Dr(u) - actual data shrink rate.

Rs(u) - actual range search rate.

Ns(u) - actual number of total searches.

Nt(u) - actual number of buckets used.

T (u) - transaction properties.

Ds(u) is a set of parameters which reflects the current status of the data set. Whether

the system should update when there is a change or store the changes separately is a
system decision.

3.2.3. The D atabase Profile
The profile information about a database gives a complete picture about an
application. This profile information, made up profiles of data, queries, constraints

23

and performance, comes from three channels - user-system interface, performance
evaluation, and database optimiser or statistics captured by the system itself. The
framework of the profile is shown in] 3.7. These parameters, which describe the
profile, are given below.

Figure 3.7. The framework of the profile.

In the diagram, we have:
DBP = { DBP1, DBP2, ..., DBPx }

DBPi = { DBPiW , e c H ap(c) } for i = 1, ..., x

DBPi(d) = Ds(s) + Ds(d)

DBPi(s) = {id’ tm’ n> m ’ D, Ds, Ir, Dr, Rs, Ns}

D s® = { SPT, B, S, Nt, Ddis, qf } + Ds(u)

Ds(u) = (n(u)5 m(u)s D (u)> Ir(u)> Dr(u)5 Rr(u)> Rs(u); Nt(u),T(u)}

ec{'s-* - environment constraints.

ec(s) = { Nd, Se, M, b }

ap(c) - application performance.

24

ap(c) = { ALT[x], Tp, Tr, Su }

ALT[x] the chosen algorithm.
tl time estimated for point search.
t2 time estimated for range search.
Su storage utilisation.
T(u) transaction properties.

Here (d) indicates the dynamic characteristics of the database profile, "(c)"
indicates the calculated features of the database profile, “(u)” indicates the update
features of the database profile, and “(s)” indicates the static features of the
database profile, which has been described in section 3.2.1. concerning the user-
system interface.

25

Chapter 4 The Knowledge Base

This section is the main part of this thesis. In this part the components of
knowledge base are described. Firstly, various m-d access algorithms are analysed.
Essential design features (speed, storage utilisation, flexibility of dealing with
dynamic situations, ability of handling varied data distributions) of each are
discussed. Desirable features for m-d hashing algorithms are matched with specific
application characteristics, providing a rule base to drive the knowledge system in
assisting database designers to choose a suitable algorithm for his/her application.
Secondly, heuristically matching application abstract profiles to new applications are
also discussed. Finally, performance issues are analysed.

4.0 Framework of Knowledge System
In order to tune physical database design the system is constructed to include
several categories of knowledge which we describe below. The framework of the
knowledge base is shown in Figure 4.1.

Figure 4.1. The knowledge base framework.

26

4.1. The Algorithm Base
The algorithm base is a collection of the implementation schemes used to evaluate
the performance for different AAPs. Hence, there are constructed in a way which
facilitates the performance evaluation.

There are a variety of implementation algorithms for grid partitions. These

algorithms are: k-d-Tree [R081], hB-Tree [L087], R-Tree [GU84], R+-Tree

[SE87], BANG file [FR86] [FR87] [FR88], EXCELL scheme [TA82], EXHASH
scheme [TA82], quantile-hashing [KS88b] [KS87], PLOP-hashing[KS88a], Gray
code z-ordering [FA86b], binary code z-hashing [HU88a], etc. Each algorithm
performs the same task: organising data onto secondary storage in such a way that
upon a given query the required data item(s) can be extracted from the stored data
set. These algorithms mainly differ in the way they carry out data space partitioning
(splitting and merging), where data structures are applied to represent (or to order)
the relationship between individual components of the partitioning, also they differ
in the way they store access paths. For example, the z-hashing and EXCELL
algorithms share the same kind of partitioning strategy. However, they use
different data structures for storing the access paths for the partitioning. The BANG
file and hB-Tree algorithms employ the same type of partitioning strategy. Both
techniques aim to increase the efficiency of dealing with non-uniform data
distributions, in the mean time, they use different approaches to represent the
partition and it’s access paths. Each of these algorithms differs in complexity as
well as performance behaviour according to different characteristics of applications.
The same partition with different access paths implementation, or the same paths
implementation applying to different partitions, makes for the different algorithms.
Essentially the partition is classified as a dimension-simultaneous (the Bang file and
the hB-tree) partition and a dimension-alternate (the EXCELL and z-hashing)
partition, each involving variants. The access paths implementation is mainly
divided into two categories: hashing and indexing. We will choose combinations of
five kinds of partitions and four types of access path strategies to be representatives
from the above mentioned algorithms to construct our algorithm base. In addition,
we will describe the heuristics used to select an algorithm for a particular
application.

For simplicity, we will concentrate on the 2-d search space for all implementation
algorithms so that they can be modelled by two axes, x and y. For higher

27

dimensions, the algorithms can be generalised for all aspects except the
performance evaluations. The performance feature can be changed dramatically
when the dimensionality increases, similar to a relation in a relational database using
a multi-attributes index, as the number of attributes increases heavy storage and
access overhead is likely to be the resu lt.

Three aspects are considered here in order to describe an implementation algorithm:
(1) the partition types, (2) the strategies for coping with insertions and deletions,
and (3) the storage of data access paths.

(1) Partition types
PT1 Partitioning a data space into equal-sized grid cells
In this partition each split will double the number of the grid cells. Each grid cell is

represented by a pair (i, j) where i is the i^1 slice on the x axis and j is the j^1 slice in
the y dimension. These slices are created by the equal-sized grid cell partition. The
partitioning process is shown in Figure 4.2.

28

L= 0: there is only one grid cell in L = 2: there v ill be 4 grid cells in
the partition the partition

Ncell = 2 L= 2 °= 1 Ncell = 2 *= 2 2= 4

L= 1: there are 2 grid cells in
the partition

Ncell = 2 L= 2 1= 2

L= 3: there are 8 grid cells in
the partition

Ncell = 2 L= 2 3= 8

y

S/3 R5 (0, 3) R7 (1, 3)

R4 (0, 2) R 6 (l , 2)

S y l R1 (0, 1) R 3 (l , 1)

SyO R0 (0, 0) R2 (l 0)

s *0 S jso S X1

Figure 4.2. Equal sized grid cell partition.

29

In the diagram, each grid cell forms a rectangle numbered by z-code (Rz) such as
RO = (0, 0), R1 = (0, 1), R2 = (1, 0) and so on. The z-code will become apparent
when it is used later.

Since every grid cell created by the partition has to be equal in size a split in the k^1

dimension (k e 1 ,2 ,..., m) will automatically produce another sk (numbered by

0, 1 ,..., sk -1) slices in the k^1 dimension. Thus the number of slices in the k^1

dimension is doubled. If we use Ncell(b), Ncell(a) to represent the number of grid

cells before and after a split and s j ^ and sj(a) (for j = 1, 2 ,..., m) to represent

the number of slices in the j tb dimension before and after a split respectively then,

after a split in the j^1 dimension we get:

j=m

Ncell(b) = 11
j= l

j=m
Ncell(a) = n

j= l

j=m

= 2 x n
j= l

= 2 x Ncell(b) = N cell^) + Ncell*»

Except that sk(a) = 2 x sk(b) other items remain unchanged after a split in the
dimension and therefore, the number of grid cells added after a split is the second
item in the above formula. A split doubles the number of grid cells.

PT2 Partially equal sized partitioning of a search space
In this partition at each split the number of grid cells increases at the rate of the
number of slices on the orthogonal dimension(s) of the split dimension. If a split

happens in the ktb dimension then the relation sk(a) = sk(b) + 1 holds. Thus we

sj (b)

sj (a)

sj (b) (every cell split into two cells)

30

get:
j=m

Ncell(a) = n sj(a)
j=l

j=m

= ^ s j ^ x (sk + 1)
j=l
j*k

j=m j=m

11 sj(b)+ n sjO»
j=l j=l

j*k

j=m
= Ncell(b)+ n sjCb)

j=l
j*k

The number of grid cells added after a split in the dimension is the second item in
the above formula. This item indicates the number of grid cells affected by a split
and the number of grid cells added has reduced comparing with PT1 especially
when m is large. The partition process is shown in Figure 4.3.

31

(0)

0

(2)

2 3

0 1

00 01

(4)

01

2 3 6 7

0 1 4 5

00

00 01 10 11

(1)

0 1

c3)

2 3 6

0 1 4

00 01 10

(5)

10 8 9 12 13

01 2 3 6 7

0 1 4 5

00

00 01 10 11

Figure 4.3. Partially equal sized grid cell partition.

32

PT3 Parameter guided partitioning of a data space
For each split in this partition, the local density or the frequency of the attributes is
used to decide the partition position or split frequencies in each dimension.

There are two different groups of control rules for the same type of partition. The
first group is applied without overflow handling. In this situation, when an
overflow occurs there will not be enough room to accommodate all data items
because the bucket size b is fixed. As a result, a split has to be triggered. The
second group is used with overflow handling. In this circumstance, when overflow
occurs those data items which cannot fit in the home grid cell may be stored in
chained data buckets or stored according to some other overflow handling
techniques. In such situations, an upper bound (threshold) is given to determine
when a split is going to be triggered.

PT 3.1. Local density guided partitioning
The local density is denoted by Ld(i,j), which indicates the packing density in the

j^1 slice and in the i^1 dimension. Two circumstances apply:

(a) without overflow handling
When overflow is not handled by the system then we are forced to split the grid
cell if the required storage (indicated by the number of data items falling in a grid
cell) exceeds the bucket size (i.e.block size b). The splitting process is fired by the
rule:
if the added data item is in the grid cell identified by [al, a 2 ,..., am] and
if max (Ld(i,k) for i = 1, 2 , ..., m, k = a l, a 2 , ..., am) = Ld(i,ax)

l<i<m
then divide on the (ax)^1 slice in the i^ dimension.
For instance, if m = 2 (say, with dimensions x, y) and the chosen dimension to be
split is x then jk = sy; if m = 3 (eg. with dimensions x, y, z) and the chosen
dimension is x then jk = sy or jk = sz. The geometrical meaning is shown in Figure
4.4. (a), where C [il, i2, i3 , ..., im] is the number of data items within the super-
rectangle identified by [il, i 2 , ..., im]. Using [il, i 2 , ..., im] a z-code is generated
as the subscript of each count. Hence the representation C [il, i2 , ..., im] is
equivalent to C[z] where z = z-code for [il, i2 , ..., im]. The condition as to which
slice to split next depends on the overflowed grid cell. In addition, it depends on the
values of local density measured for these slices that intersect with this overflowed
grid cell. Hence when the added data item causes an overflow in the grid cell

33

identified by [al, a 2 , a m] there will be m alternative slices to choose from.
Using the local density guided split strategy the one with the maximum value for its
local density will be chosen. For example, in a 2-d data space if the inserted data
item is within the range of grid cell [ax, ay] and, before splitting, there are sx and sy
slices on the x and y axes respectively, then, to calculate the density in the x
dimension, we need to choose y = 1, 2 ,..., sy to form the local density value for
the slice sx. In the x dimension:

y=sy-i
£ C[ax, y]

y=0
Ld(ax) = ------------------------------------ -------

b x sy

Similarly, in the y dimension:
x=sx-l

£ C[x, ay]
x=0

Ld(ay) = ... —.......—
b x sx

For this example, the choice of a slice to split depends on the maximum function,
max (Ld(ax), Ld(ay)). If Ld(ax) > Ld(ay) then the ax slice should be split in the

xl<i<m
x dimension otherwise the slice ay should be split in the y dimension.

C[x, y] refers to the C[z-code], where z-code is the result of interleaving the binary
form of x and y alternately. The partitioning process and its z-code numbering is
shown in Figure 4.4.(a).

(b) with overflow handling
When overflow handling is considered, a value can be set to the local density level
as a threshold to control the splitting or merging process. The splitting, therefore,
can be triggered by the following rule:

If max (Ld(i,j) for j = 1, 2 ,..., sj) = Ld(i,k), where k e (1, 2, ..., sk) and
l<i<m

34

j=sj

^ sj x b < Ld(i, k) x (b x si) (the left hand side - LHS)
j=l
i*j

then a split will take place on the k^1 slice in the i1̂1 dimension (the right hand side
- RHS). We can see from the above formula that there are

k=m
X sk

k=l

alternative slices to choose from for a split or a merge.

For 1th slice, data density can be calculated as:
j l= s j l - l j2=sj2-l...jm =sjm -l

Ld(i, k) x (b x si) = X C [jl, j 2 , j k , j m]
j 1=0 j2=0 ...jm=0

where jk is a constant, jk = i .

The item in the right hand of the equal sign is formed in a similar way to sum all

elements in a multi-dimensional matrix for k“1 column, where each element is

assigned to the number of data items in a grid cell which is numbered by [j 1, j2,
...,i, ..., jm].

Here the sjk (for k = 1,2,..., m; k * i) is the number of slices in the orthogonal

dimension(s) to the i^1 dimension to be divided. For instance, if m = 2, then x, y

are two dimensions and (sx, sy) are the number of slices in the x and y dimensions
respectively. Thus in the x dimension:

y -sy -i
2 C [l, y]

y=0
Ld(l,y) = -

b x sy

where x always equals 1.

35

y=sy-l
2 C[2,y]

y=0
Ld(2,y) = ------------------ ------ --------

b x sy

here x always equals 2.

y=sy-i
Z C[sx,y]

y=0
Ld(sx,y) = ---------------------------------

b x sy

where x is a constant sx.

and similarly, in the y dimension:

x=sx-l
2 C[x,l]

x=0
Ld(l,x) = --------------------------------------

b x sx

x=sx-l
I C[x,2]

x=0
Ld(2,x) = ----------------------------- --------

b x sx

x=sx-l
£ C[x,sy]

x=0
Ld(x,sy) = ---------------------------- —

b x sx

Figure 4.4. (b) shows the situation.

36

(a) without overflow handling

y
2-d see

s y3 5 7 13 15

V 4 6 ij 12 j: 13

Syl 1 3 9 11

SyQ 0 2 8 10

Sx0 Sxl Sx2 Sx3 13

4 6 |j 12 i: 13 jj 12

9

iiiijjiji - C[12] > b
8

(b) with overflow handling

y

s y3
5 7 13 15

Sy2
4 6 12 13

Syl 1 3 9 11

SyO 0 2 8 10

S x0 Sx l s x2 SX3

Sx2

Figure 4.4. Local density controlled grid partition.

The split control for case (a) is: max (Ld(sx2), Ld(sy2)). Where

i=si-1
I C[i]

i=0
Ld(sij) = ---------- -™
i = x or y b x si
3 = 2

37

The split control for case (2) is: max (Ld(sxj), Ld(syj) I for j = 0, 1, 2, 3). Where
j=sj -1

I C[i,j]
j=o

Ld(sxj) = -------- -------- ------------------
j=0, 1,2, 3 b x s j

i=si - 1
I C[i,j]

i=0
Ld(syi) = ------------------------------
i=0, 1, 2, 3 b x si

In Figure 4.4, for case (a) there are only two slices to be chosen from (sx2 and
sy2) because no overflow is allowed. Thus it will force the grid cell 12 to split as
C[12] > b, here b is the bucket size. For case (b) there are X sj = 4 + 4 = 8 slices
to be chosen from. j=x, y

PT3.2: query frequency / attribute weight fWD guided partitioning
(a) with overflow handling

If (max (Wi) = on j^1 dimension for i = 1, 2, ..., m)
l<i<m

k=m
Z sk

k=l
Wj k*j

and (sj < -------------- x ----------------------)
Wmin m - 1

dimension.

then divide on the j^1

where Wmin - min (W l, W2, ..., Wm).
Note though, when W l = W2 = ... = Wm the frequency control is no longer

effective because this condition indicates the indifference of Wi.

(b) without overflow handling
The frequency guided partition, which is similar to the local density partition, has m
alternative dimensions to choose from when a split occurs. If the added data item is
located in the grid cell identified by [al, a 2 ,..., am] then the following rule can be

applied to guide the splitting. If (max (Wi) = Wj in the j^1 dimension for i = 1,2,

l<i<m

38

m) and
k=m
X sk

k=l
Wj k*j

(sj < — x ...) then divide the (a i)^ slice in the
Wmin m - 1

jrï* dimension.

We have seen that for both cases there are two conditions which must be satisfied
when choosing a split strategy.

C l = (max(Wi) = j^1 dimension for i = a l, a 2 , ..., am)
l<i<m

k=m
X sk

k=l
Wj k*j

C2 = (sj < - ------------- x-)
Wmin m - 1

The first condition is used to determine the dimension based on query frequencies
and the second condition decides whether the number of splits (i.e. number of
slices) in the chosen dimension has reached its required frequency for the partition.
The partitioning processes are shown in Figure 4.5. (al, a2, b l, b2) respectively.

39

Query frequency controlled grid file partition illustrations
(a) with overflow handling
2-d data space

Wy = 3
y

vi

sy0

W x- 3 Wx = 2
SxO Sxl

grid cell vhich needs to split

Figure 4.5. (al) The dimension chosen by the frequency function has not
reached its split frequency.

In this diagram we have:
(a) max (Wx, Wy) = Wx

min (Wx, Wy) = Wy
sx = 2 (before a split)

Wx sy 3 2

Wy m - 1 2 1

<
Wx sy

Wy m - 1
The split is therefore, as follows: if Ld(sxO) > Ld(sxl) then split sxO else split sxl;

40

(b) max (Wx, Wy) = Wy
min (Wx, Wy) = Wx
sx = 2 (before a split)

Wy sx 3 2

Wx m - 1 2
A ,J ■ ■ - -

1

Wy sx

Wx
A

m - 1

The split is therefore, as follows: if Ld(syO) > Ld(syl) then split syO else split syl.

2-d search space
Wy = 3

- grid cell vhich needs to split

Figure 4.5. (a2) The dimension chosen by the frequency function has already
reached its split frequency.

In this diagram we have:
(a) max (Wx, Wy) = Wx

min (Wx, Wy) = Wy
sx = 4 (before a split)

41

Wx sy 3 2

Wy
A A

m - 1 2 1
thus

Wx sy
SX > -------------------X

Wy m - 1
Even if Wx > Wy the next split should take place in y dimension, i.e. the split
follows: if Ld(syO) > Ld(syl) then split syO else split syl.

(b) max (Wx, Wy) = Wy
min (Wx, Wy) =W x
sy = 4 (before a split)

Wy sx 3 2

Wx m - 1 2 1
thus

Wy sx
sy >x --------------------

Wx m - 1
Even if Wy > Wx the next split takes place in the x dimension, i.e.
if Ld(sxO) > Ld(sxl) then split sxO else split sxl.

(b) without overflow handling
In the following diagram we have:
(a) max (Wx, Wy) = Wx

min (Wx, Wy) = Wy
sx = 2 (before a split),

Wx sy 3 2

Wy
A

m - 1 2 1

Wx sy

Wy
“ A " " " ̂ _ J-

m - 1
The new split is in the x dimension.

(b) max (Wx, Wy) = Wy
min (Wx, Wy) = Wx
sy = 2 (before a split)

42

Wy sx 3 2

Wx m - 1 2
A

1
thus

Wy sx
sy < ------------ x

Wx m - 1

The new split is in the y dimension.

2-d search space
Wy = 3

- grid cell that needs to split

Figure 4.5. (bl) the dimension chosen by the frequency function has not
reached its split frequency.

In the diagram below we have:
(a) max (Wx, Wy) = Wx

min (Wx, Wy) = Wy
sx = 4 (before a split),

Wx sy 3 2

Wy m - 1 2 1
thus

43

Wx sy

Wy m - 1
Even if Wx > Wy the next split should take place in y dimension.

(b)

thus

max (Wx, Wy) = Wy,
min (Wx, Wy) = Wx,
sy = 4 (before a split),

Wy sx 3 2

Wx m - 1 2 1

Wy
sy > ------------ x

Wx

sx

m - 1

Even if Wy > Wx the next split takes place in the x dimension.

2-d search space Wy = 3

y

V3

V2

yi

SyO

- the nev split line

x W x - 2

“xl

- grid cell that needs to split

Figure 4.5. (b2) The dimension chosen by the frequency function has already
reached its split frequency.

44

PT3.3 Query and density mix guided partitioning
(a) with overflow handling

If (max (Wi) = Wd, in the d1*1 dimension for i = 1 ,2 ,... , m)
l<i<m

k=m
£ sk

k=l
Wd k*d

and (sd < x ------------------)
Wmin m - 1

and (max (Ld(d,j) for j = 1, 2 ,..., sj) = x)
l<i<m

then divide on slice x of the j^1 dimension if possible otherwise determine the split

on local density Ld.

(b) without overflow handling
If the inserted data item is in the grid cell of [a l, a2, a3,
rule is applied:

If (max (Wi) = Wd, in the d^1 dimension for d = 1 ,2 ,
l<i<m

k=m
£ sk

k=l
Wd k*d

(sd < ----------------x ---------------
Wmin m - 1

)

am] then the following

m)

then divide on the (ad)^1 slice of the j “1 dimension if possible, otherwise divide

based on the value of the local density:
max (Ld(i,j)) for i = 1, 2, ..., m; j = a l, a2, ... am.
l<i<m
It will be evident that for all types of partition categorised in PT3, the dividing
points in each dimension have to be stored because they may not be equal in range
and frequencies (i.e. the grid cells may have different sizes and the number of
divisions in each dimension may also differ). Thus, to obtain better partitioning the

45

storage o f extra information is needed. Consequently, to choose between equal
sized grid cell partition and local density or query frequency controlled grid partition
there is a storage tradeoff to be made. Two situations have been discussed for these
partitions - with and without overflow handling. Whether or not to use overflow
handling is determined by data distribution. An even and high growth rate data set
may be organised by applying no overflow handling, because the sparsely
populated grid cells generated by a new split can be quickly filled; whereas an
uneven and low growth rate data set may need to employ overflow handling.
Using an expert system to tune the physical database makes it possible for different
strategies to be used for the same data set at different times.

PT4 Independent data distribution controlled partition
To describe this partition we assume that the data distribution is independent for
each attribute. Let us consider a 2-d data space x, y. A data set can be represented
by Ds = {dl, d 2 , ..., dn}, di = (xi, yi) for i = 1,2 , ..., n. If f(xi) and f(yi) are the
distribution functions for these two attributes respectively then the assumption can
be stated as f(xi x yi) = f(xi) x f(yi) for i = 1, 2 ,..., n. To split either in the x

dimension or in the y dimension on i^1 slice the partition will divide the chosen slice

into two equal slices, here equality is measured by the approximate number of data
items in each slice. In essence, the method actually transforms a non-uniformly
distributed data space into a uniform one by splitting the slice on a carefully chosen
position. For instance, in a 2-d data space, if the slice sxi in the x dimension is to be
split and the total number of data items in sxi is N(xi), then a split will divide the

slice into two slices, say, sxi^^ and s x i^ \ and the split results in N(sxi(l)) =

N (sxi^)). The position which the chosen slice will be split is determined by the

following method.

Suppose we have chosen sxi in the x^1 dimension to split and there are sy slices in

the y^1 dimension. To choose where to split we need to know f(xi), the data

distribution within slice sxi in the x^1 dimension. To find the split position:

(i) calculate the total number of the data items in the i^1 slice IN(sxi)l and half its

value:

46

N(sxi)

2

(ii) calculate signatures for all grid cells in sxi: z(xi, y) for y = 1 ,2 ,..., sy;
(iii) order all grid cells on values of attribute x for all data items stored in sxi:

{dl, d 2 , ..., dk I x l < x2 < ... < xi};
(iv) identify the middle data item in the sorted data set:

d|_N(sxi)/2j as the position to split slice sxi.

The advantage of this method is that the split is based on a chosen position which
transforms a non-uniformly distributed data space into a uniformly distributed data
space. However, the transformation is very complex, especially when m > 2. For a
2-d space, as in the above example, sy data buckets need to be examined and there
are sy x b data items or so that need to be sorted before the decision can be made.
A brief explanation of the pattern is shown in Figure 4.6.

x

N(Sxo)=N(Sxl)
N (S yo)=N (syl)

Figure 4.6. Data distribution controlled partition.

47

PT5 Partitioning the data space bv region/brick TL0871 where the embedded regions
are allowed (the BANG file or hB-Tree partition')
All the partitions given previously carry out the split along each dimension
alternately by a (m-l)-dimensional super-plane. Each split creates new boundaries
for a chosen dimension, i.e. for a 2-d search space a split divides the search space
by a line; in a 3-d search space a split partitions the search space by a 2-d plane.
None of the above partitioning methods can form a m-d region in the search space
by a single split.

The partition type PT5 divides the data space into bricks, Viz the super-rectangle
regions. One split will create a m-d rectangle region in the data space. This method
can partition the search space for a specific data distribution pattern which the other
partition methods cannot deal with effectively. A typical example for this kind of
distribution is shown in Figure 4.7

48

(in binary)X = xlx2x3x4x5
Y = yly2y3y4y5
z - xlylx2y2x3y3x4y4x5y5

For the give figures in the diagram ve have the following z-code for those points
shovn ((7, 1 - 11), (1 - 13, 6))

z (7 ,l) = 00101011
z(7,2) = 00101110
z(7,3) = 00101111
z(7,4) = 00111010
z(7,6) - 00111011
z(7,6) - 00111110
z(7,7) = 00111111
z(7,8) = 01101010
z(7,9) = 01101011
z(7,A) = 01101110
z(7,B) - 01101111

z(l,6) = 00010110
z(2,6) = 00011100
z(3,6) = 00011110
z(4,6) = 00110100
z(5,6) = 00110110
z(6,6) = 00111100
z(7,6) = 00111110
z(8,6) = 10010100
z(9,6) = 10010110
z(A,6) = 10011100
z(B,6) - 10011110
z(C,6) = 10110100
z(D ,6)= 10110110

z(7 ,l)
z(7,2)
z(7,3)
z(7,4)
z(7,S)
z(7,6)
2(7,7)
2(7,8)
z(7,9)
2(7,A)
2(7,B)

00
00
00
00
00
00
00
01
01
01
01

010
Oil
Oil
110

1110
m i

L11
no
no
n i

L 1|0 11

n
10
n
10
n
10
n
10
l i
10
11

z (l ,6) ■
z(2,6) .
2(3,6) :
z(4,6) ■
z(S,6) ■
z(6,6) .
z(7,6) ■
z (8 ,6) .
2(9,6)
z(A,6)
z(B,6)
2(C,6)
z(D,6)

000
000
000
001
001
001
001
loop.
100
100
100
101

: 101

31
11
11
31
31

10
CO
10
CO
10

ltllCO
1110
10100

110

10

I C O
110
I C O
110

Figure 4.7 Special data distribution for a 2-d search space.

49

When these points are coded the problem of identifying the distribution become
pattern recognition. One can see from the coding that this kind of data distribution
has certain bits unchanged in their z-codes.

To recognise this data distribution pattern the data space is partitioned into a number
of equal sized grid cells and numbered by the z-code. The interpretation of the data
pattern can then be obtained by manipulating the values of the z-codes. Meaningful
information is extracted to identify this kind of distribution. Figure 4.7. shows the
values of the z-code for this data pattern with sixteen grid cells. It can be seen that
the pattern is reflected in the z-code values with certain bits unchanged. For such a
data pattern, we see that it is difficult to use a line to divide the data space into two
balanced regions which contain approximately the same number of data items (
points in the diagram). However, using Bang file partitioning we can create two
embedded rectangles to divide the data space into two balanced regions. A
partitioning process for a BANG file is shown in Figure 4.8.

y

• R1

R2

R e g io n id (r , 1)
R1 — (3 , 2) R 2 = (0 , O) - (3 , 2)

Figure 4.8 Bang File Partitioning for a 2-d Search Space.

50

(2) The strategies of coping with insertions and deletions
Insertions which cause splitting can be treated as a partitioning process
(described above) and deletions can be dealt with as an inverse process to
partitioning. When the local data density value becomes low, say, Ld(i,j) is less
than required packing density, a merge process is activated which combines two
slices into one.

(3) Storage of the access paths
To retrieve data items in each grid cell different methods can be used to store the
access paths. We represent these methods as a set: SA = { SA1, SA2, SA3,
SA4 }. Each of them is used to implement the access paths of a partition,
establishing a relationship between a data item and its address of secondary
storage. The meaning of each element in the set is explained by the following
diagrams.

51

SA1 stores a partition by using an index file (see Figure 4.9.).

Figure 4.9. Storing the access paths by an indexing file.

52

In the diagram each non-empty grid cell corresponds to a data block on secondary
storage and every grid cell (including empty ones) occupies an entry in the index.

SA2 stores a partition by a hashing algorithm (see Figure 4.10.).

no. of data items

no. of data item s

Data block for cell 1 Data block for cell 15

X1 no. of data items xl5

data item 1 data item 1
data item 2 data item 2

•
•
• • • •

•
••

data itemxl data item xl5
/ / / / / / / / / / / / / .
/ /F ree sp a ced ///
V / / / /7 / / / / / / / .

yvFree Space
' 7 / / / / / / / / / / / /

Figure 4.10. Storing the access paths by a hashing function.

In the diagram by applying a hashing function to each grid cell, including empty
cells, each cell maps a data block in secondary storage.

53

Y1

SA3 stores PT5 by hB-Tree indexing (see Figure 4.11.).

Figure 4.11. Storing the access paths by hB-tree indexing.

54

SA4 stores PT5 by the BANG file approach (see Figure 4.12.).

Level 2

01
1

01

1 3

00
0

00

0 2

00 00 01

Level 3

5 7

4 6

1 3

0 2

00 01

L evels

Data

R3 = (0,0) - (3 , 2)
R2 = (3,3) - (12 ,4)

Index

10 01, | 3.2|
I3.3U 12.4|

Figure 4.12. Storing the access paths by Bang file approach.

55

4.2. Various Implementation Algorithms and Their Features
Having extracted the feature information for m-d access algorithms - partitioning
and implementing strategies - we can use different combinations of these features to
describe an algorithm. For example, the "EXCELL" algorithm can be described by
the partition PT1 and access storage SA1 as a pair (PT1, SA1). The grid partition
PT1 divides the data space into equal sized grid cells. The storage of access paths
(SA1) then implements the partition PT1 by an index file. Each entry of the index
file corresponds to a grid cell in the partition and stores the address of the grid cell.
The relative position of the index entry is then derived from an array-like
calculation. Every grid cell can be uniquely identified by a pair of values (x, y).
The index can thus be viewed as a 2-d array. As each grid cell corresponds to an
entry in the index file empty grid cells will also have their index entries. Similarly
we can describe the z-hashing algorithm as (PT1, SA2). We see that the EXCELL
and the z-hashing algorithm use the same partitioning approach, but employ
different strategies for storing access paths. The SA2 establishes a relationship
between a grid cell and an address for that grid cell through a function, which
produces a uniform address for each cell. Different combinations of partitions and
storage of access paths can describe different algorithms and therefore, all
algorithms can be simplified as algorithm types: ALTi = {partition: PTi, storage of
access paths: SAj}, where i is within the range of available partitions and j is within
the range of available methods for storage of access paths. For each algorithm type,
we will identify which algorithms belong to it and analyse their strengths and
weaknesses. We will also find out for which categories of applications each
algorithm type is likely to provide better performance. All these judgments are
based on current experience, heuristics, performance evaluation, an understanding
of the available algorithms in literature and a set of chosen criteria. Further
arguments are welcome to improve the selecting algorithms for a tuning process.
The system will provide facilities to expand the system knowledge.

We have initially chosen the following algorithms for the model: the EXCELL
[TA82], the z-hashing (z-ordering by binary code [HU88a] and z-ordering by Gray
code [FA86b]), quantile-hashing [KS87] [KS88b], the PLOP-hashing [KS88a],
the hB-Tree [L087], the BANG file [FR87] and the R-tree [GU84], Each of these
represents a different type of algorithm in terms of partitioning and implementation
developed for m-d search spaces. The EX CELL algorithm employs equal sized grid
cell partitioning and stores its access paths by an index.The z-hashing also

56

partitions the data space into equal sized grid cells but implements the access paths
by a hash function. The quantile-hashing and the PLOP-hashing use distribution
controlled partitionings and implement these partitionings by a hash function. The
BANG file divides the data space into m-d super-rectangles and realises the access
paths by an indexing approach. The R-tree algorithm is designed for spatial object
database and it uses an object-oriented partition implemented by an index approach,

This section describes how an algorithm is chosen if given a set of characteristics,
and what the algorithm and heuristic judgments are. Our choice is based on the
criteria of a group of characteristics or conditions against the features of a set of
algorithm candidates. We study what kinds of application characteristics can match
the nature of an algorithm by a comparison of these available algorithms.

4.2.1. The EXCELL Algorithm: ALT[1] = {PT1, SA1}
(1) The characteristics which make the EXCELL algorithm favourable
The EXCELL method is briefly illustrated in Figure 4.13.

Data bucket

Figure 4.13. The EXCELL algorithm.

57

In the diagram there are four grid cells in the partition and one of them is an empty
one. Three data buckets are allocated for the partition and four index entries are in
the index file for the partition, including one for the empty grid cell.

To set up the characteristics we will use Cij to represent conditions or constraints
which make a boundary for these characteristics. Combined with each characteristic
they form the basis of left hand side (LHS) of a production system.

(a) The number of empty grid cells produced by the partition does not exceed a
“certain” limit: C l 1. The meaning of the word “certain” here relates to
environment constraints and tradeoff between the indexing and the hashing
algorithms. For instance, an index can be used to avoid data holes in the data
file, but it needs storage space and retrieval time. In terms of speed, storing
the index in main memory is preferable. If there is enough space in main
memory for an entire index file then retrieving a data item through an index is
comparable to doing so through a hashing approach, since otherwise an extra
secondary storage access will be required. If the storage utilisation is
considered and if the space used by an index is less than the space occupied
by the data holes of a partition then storage space will be gained by using an
index. To decide the limit C l 1 an estimation calculation can be found in
Appendix A2.

(b) The life span of the data set is short: C l2. In relational databases, these data
sets can be the temporary tables built up by join, projection, and other
operations. They can also be intermediate data sets which are only used for
a specific purpose. Once the purpose is fulfilled, the life of the data sets are
terminated.

(c) The size of data set is “small”. Here "small" depends on the environment. It
means that the available memory will have enough room to hold the entire
index file for the data set of its grid cells (refer to Appendix A2 for its
calculations): C l3.

(d) The rate of insertions and deletions is moderate: C14. If the index
implementation is compared with the hashing implementation and when Cl 1
and C l3 are satisfied, it copes with the dynamic situation better than
hashing due to the complexity involved in rearranging the data set on
secondary storage, i.e. when a split or a merge occurs the indexing method
shuffles index records whereas a hashing algorithm shuffles the data

58

buckets. Since the data set size is, in most cases, greater than the index file
size, changing the index file will be more efficient than changing the data
set. The way we make a decision on data volatility depends on the speed of
performing an insertion or deletion operation as well as the effect on
performance. The method for making decisions concerning C14 can be
referenced in the Appendix A2.

(e) The response time allows for two secondary storage accesses to retrieve
a data item: C15.

To make a choice based on these characteristics, it is preferable to employ
the simplest conditions in the reasoning sequence and therefore, we can
derive our rules for selecting the EXCELL algorithm as:
Rule set 1 (Rsetl)
(R l.l) If C12 and C15 then ALT[1]
(R1.2) If C13 then ALT[1].
(R1.3) If C15 then ALT[1],
(R1.4) If (C ll and C14) then ALT[1] else Rset2.

(2) The reasons for setting these characteristics to choose the EXCELL
algorithm are that the ALT[1] algorithm represents the simplest
implementation among chosen algorithms. Since its partition divides the data
space into equal sized grid cells the scale is fixed for every grid cell,
implying an easy transformation between a data identification and
corresponding slices. The access paths are implemented by a one-to-one
mapping between each grid cell and the relevant index entry, implying that
arbitrary addresses can be allocated to a data bucket as the address of the
data item is recorded in the index file. Hence it does not require contiguous
storage whereas the directoryless hashing algorithms do. We choose the
EXCELL algorithm because its implementation is straightforward. When the
above mentioned conditions are met, the index file can be stored in main
memory or the index size can balance the reserved storage for empty grid
cells, the method is compatible with a hashing algorithm in that it provides
fast access. In addition, EXCELL copes with a dynamic situation in a
simpler manner (index level rather than data level). By keeping an entry in
the index for every grid cell, the index can be addressed directly through an
equivalent z-code formed from a given data item. The z-code, which is used

59

as a hashing function to address the index file may also assist VLR (variable
length record) data items because the index records have fixed lengths that
facilitate applying a hash function.

(3) The strengths and weaknesses of the EXCELL algorithm
The purpose for the analysis of the strengths and weaknesses of each
algorithm is to provide the system with knowledge that helps to eliminate
unnecessary rule searching and rule matching. As the EXCELL algorithm
divides the data space into equal sized grid cells and uses an index to store
its access paths, every grid cell has an entry in the index file recording the
addresses of data items stored in that grid cell. When searching a data item,
the multi-keys are used to calculate the entry to the index file and then the
data item is located by the content of address field in this index entry. The
algorithm is pictured as in Figure 4.9. Conditions under which the
algorithm is particularly strong or weak are listed below.
(a) Equal sized grid cell partitioning makes implementation simple,

implying that with a data set which is small and has a short life span it
will always be a good choice. The reason is that a small data set will
automatically limit the size of the index.

(b) As the index file records the addresses of data, data items of various
lengths can be handled.

(c) Every grid cell has an entry in the index, indicating that an increasing
number of empty grid cells will increase the depth of the index and
influence the search speed. On the other hand, it also removes the
holes in the storage of the data set itself. Hence it can guarantee good
performance for applications with a small data set. Small sized data
sets naturally limit the height of the index even for a non-uniform data
distribution.

(d) Speed and storage utilisation depends on the data distribution.
Namely, the algorithm is dependent on the size of the data set and data
distributions.

(e) When the index file cannot be held in main memory the access speed
will be influenced, but only by one extra secondary disk access for
point data because the index record has a fixed record size and
therefore only one probe by a hashing function is required to locate the
index.

60

(f) When there are very few holes in the file the index file will not be
necessary, since empty holes will occupy less space than an index file.
This implies that for evenly-distributed data sets hashing will perform
better than EXCELL if in addition, the insertion and deletion rate are
not very high.

4.2.2. The z-hashing Algorithm: ALT[2] = (PT1, SA2}
The binary code z-hashing algorithm ALT[2.1]
The Gray code z-hashing algorithm ALT[2.2]

ALT[2] represents the z-hashing algorithms. Two types of z-hashing are
considered here. One is the binary code ordered z-hashing ALT[2.1] (see Figure
4.14.(a)), the other is the Gray code ordered z-hashing ALT[2.2] (see Figure 4.14.
(b)). When using the same partition strategy as the EX CELL, the hashing
algorithm, instead of mapping each grid cell to an entry address referring to an
index file, creates a data bucket number (a relative address on secondary storage)
which corresponds to each grid cell.

0 1

1

0

search space

2. •
••

© 3
©

1

0 1

z
I
h
a
s
h
i
n
g

data storage

bucket

bucket

bucket

bucket

Figure 4.14.(a) Binary code z-hashing algorithm.

61

data storage
z - o r d e r

2 ,3

iU r

0 1

1

0

s e a r c h s p a c e

2 •
••

© 3
©

0 I s 1

0 1

Figure 4.14.(b) Gray code z-hashing algorithm.

The binary code z-hashing algorithm ALT[2.1] divides the data space into equal
sized grid cells and numbers these grid cells in the z-order. In addition, it tries to
optimise performance by choosing the order in which grid cells will be split or
merged next when dealing with dynamic situations. The idea is that the grid cells
chosen will minimise the number of data buckets to be utilised. This is done by
selecting the grid cells that produce the lowest z-code values among the unused
bucket numbers. As the hashing function generates the bucket address number by
mapping a chosen grid cell to a z-code, a split will introduce a new bucket number

sequence (2^> 2^ + 1, ..., 2^ + 1), where L is the data set level before a split.

Hence the split rule will select those grid cells which introduce the bucket

numbers of 2^, 2 ^ + 1 as the first one to split. In a partition each dimension is

divided into a number of slices. Every slice in the i“1 dimension is numbered by

0, 1, ..., Sj. where Sj is the number of slices in the i^1 dimension. Each grid

cell can thus be identified by these slice numbers as •••» iml, where ij is the

(i+ l)th slice on the j^1 dimension for i = 0, 1 ,..., Sj _ j = 1, ..., m. The z-code

of a grid cell identified by slices [ij,i2 im] is generated by interleaving the

62

binary representation of each element in t1 •••> ^ alternately. The z-code
then serves as an address (a bucket number) for the corresponding grid cell. A
one-to-one relationship between a grid cell and a bucket number is established by
the z-hashing function. From the current identification of slices in every
dimension the grid cell that will produce the lowest new bucket number can be
calculated by an inverse function, i.e. a function which transfers the lowest new
bucket number into its corresponding grid cell slice identification \ i \ A 2 ..., im] .
By the splitting rule, the number of gaps among the buckets is minimised. An
explicit illustration of the split rule for the process is illustrated in Appendix A3.

The special feature of z-hashing is that the splitting and merging processes aim at
minimising the number of empty buckets so that the storage utilisation may be
improved and the number of grid cells requiring to be rehashed may also be
reduced. When the insertion pattern matches the order of the split rule the overall
performance will reach the expected results. However, if the insertion pattern does
not match the order set by the split rule then empty buckets cannot be avoided so the
method will not perform as well as expected. Figure 2. in Appendix A3 shows a
data space that originally had 16 grid cells and the corresponding changes of z-
codes brought about by using the minimal numbering split rule.

To be aware of the type kind of insertion pattern that can be categorised as suitable
for the z-hashing split rule, in terms of the expected performance, the order of
insertions plays an important role. An analysis of the insertion pattern for this
purpose can also be found in Appendix A3. The analysis will be especially useful
when insertions are processed in a cumulative manner, such as a batch process.
These data items can be sorted before they are added to the data set.

The Gray code z-hashing ALT[2.2] also utilises z-ordering to partition the data
space. The difference lies in that it uses the Gray code to number slices in each
dimension of the data space. The Gray code z-ordering is specially developed for
heavy range searching problems [LA78]. The binary z-order transforms a m-d data
space to a 1-d data space and preserves the geometric proximity locally in a Z shape
(see Figure 4.15. (b)). Gray code explores the essence between the binary code and
the geometric proximity, regarding the storage of the m-d data, by redefining the
sequence of the binary codes. It reorders the binary code in a way such that that
only one bit will be different from the next binary code followed. Ordering in this

63

manner, the Gray code minimises the Hamming distance (the number of bits
different in the sequence of codes) and increases the data similarity between the
consecutive buckets. Data items with the same attribute values will more likely be
stored together. For a partial range search, if each bit stands for an attribute value,
then query operations for example, with a search pattern such as ??1? will require
all data with the third position of value 1 to be stored as closely as possible. For a
binary sequence and a Gray code sequence a set of 4-bits codes is shown in Figure
4.16.
(a) Binary z-code

11

10

01

00

1 0 1 0 1 0 1 1 1 1 1 0 1 1 1 1
10 11 14 15

1 0 0 0 1 0 0 1 1 1 0 0 1 1 0 1
8 9 12 I S

0 0 1 0 0 0 1 1 0 1 1 0 0 1 1 1

2 3 6 7

0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 1
0 1 4 5

00 01 10 11

Figure 4.15. Comparison between binary z-code and Gray z-code.

64

(b) Gray z-code

10

11

01

00

1000 1001 1101 1100
8 9 13 12

1010 1011 1111 1110
IO 11 15 14

0 0 1 0 0011 O l i i 0 1 1 0
2 3 7 6

0 0 0 0 0 0 0 1 0101 0 1 0 0
0 1 5 4

00 01 11 10

Binary code
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
noi
1110
1111

Gray code
0000
0001
0011
0010
0110
0100
0101
0111
1111
Ilio
noi
1001
1000
1100
Ilio
1010

Figure 4.16. Binary code and Gray code.

65

In a binary code sequence there are four discrete sections, whilst in Gray code
sequences there are three discrete sections when the third position is 1. As a result,
the Gray code achieves more efficient ordering than the binary code for data
similarity. The effect of such reordering will improve the performance for range and
partial range searching. An example is shown above in Figure 4.15. According to
the Gray code z-ordering, the following grid cell only differs by one bit so that
there are three bits matched. For the same partition, the binary code z-order will
have two bits different in the following grid cell in the diagonal direction. The
comparison of these two kinds of z-ordering has been illustrated in Figure 4.15 (a)
(b) respectively. The Z shape of the binary z-ordering has become the l_ and _l
shape in the Gray code z-ordering.

Compared with the binary code z-ordering, the Gray code z-ordering changes the
sequence for numbering the grid cells. As a result, it improves the proximity for
range and partial range match accesses at the expense of transformation between a
binary code and its equivalent Gray code. The Gray code z-ordering is more
complex to implement, but it has all the strengths of the z-hashing and, in addition,
it performs more efficiently for range and partial range searches than that of the
binary one. Gray code provides an alternative to z-hashing algorithm where partial
and full range searches are major factors in design considerations.

(1) Cases where the z-hashing algorithm is favourable
(a) The data set is large, implying that there is not enough memory for a whole

index file : C21.
(refer to Appendix A2 to decide C21).

(b) The application requires a quick response for point search : C22.
(C22 = Tsec).

(c) The data distribution is relatively even. Here “even” means that the number of
data items in each grid cell will be roughly equal (refer to Appendix A2 for
calibration) : C23.

(d) The order of the insertions matches the order of splitting or the insert and
delete rate is low : C24.
By " the order of insertions matches the order of splitting " above we mean
that the data items to be inserted will fit in the range of corresponding
expanded grid cells which are chosen by the splitting rule. Note that in z-
ordering, each grid cell represents a fixed region of the data space (i.e. z-

66

hashing function is a function of arguments: size and position in a search
space) and therefore, if the chosen expanded grid cells are always those which
correspond to the values of the lowest z-code among the unused ones after a
split, there is a possibility of no data items being added which fall in the range
of those newly created grid cells. This will result in empty grid cells so that
the original objective of the z-hashing scheme of minimising the number of
buckets required cannot be achieved. This observation of the order match
indicates that the data distribution pattern favoured for using this method will
relate to the order of the expansion. Based on the split rule, a sequence of grid
cells can be calculated and compared with the order of the insertions. The
detailed illustration of the order match shall be given in the Appendix A3.

(e) The range and partial range search rate and the partial range query rate are
high
The meaning of "high" is given in Appendix A2.

:C25.

(f) The required data packing density is relatively low (eg. < 65%)
This condition is determined in combination with other conditions.

: C26.

(g) The required data packing density is relatively high (eg. > 80%)
This condition is determined in combination with other conditions.

C27.

Rule set 2 (Rset2)
(R2.1) If C25 then ALT[2.2].
(R2.2) If (C21 and C23) then ATL[2.1],
(R2.3) If C22 then ATL[2.1].
(R2.4) If (C23 and C26) then ATL[2.1],
(R2.5) If (C24 and C27) then ATL[2.1],
(R2.6) If C26 then ALT[2.1] else Rset3.

(2) The reasons why these characteristics match the z-hashing algorithm
One of the reasons for choosing the z-hashing approach is that it provides
good performance in terms of retrieval speed. Thus, in a situation where the
requirement of response time is difficult to guarantee with the EXCELL
(ALTf 1]) those rules of selecting the z-hashing algorithms can be examined.
The Gray code z-hashing algorithm preserves better spatial proximity. This
implies that the range and partial range search performance may outperform
ALT[2.1]. With z-hashing the storage utilisation may also be improved
compared with ALT[1] because the z-hashing considers the order for the next

67

grid cell to be split; in particular when the sequence of inserting data items
matches the splitting sequence, the z-hashing makes best use of the secondary
storage and gives a fast response.

(31 The strengths and weaknesses of the z-hashing algorithms
(a) Storage utilisation is dependent upon the data distribution and the sequence of

insertion. Some data distributions will perform well, some may result in a
large number of data holes.

(b) Using the z-code to number the grid cells preserves geometric proximity for
the data set.

(c) A hashing approach usually provides a fast search speed.
(d) The z-hashing algorithm maps a grid cell to a bucket number for data items

within the range of the grid cell, implying that a split may create empty grid
cells. The result is possible low storage utilisation and a large amount of data
reorganisation.

To compare the EXCELL scheme and z-hashing algorithm, the former uses a
hashing function to locate the index file whereas the latter uses a hashing function
to locate a data item in a data bucket. The different decisions made between
ALT[1] and ALT[2] lie in the required response time and the number of empty
grid cells produced by the chosen partition. Thus if PT1 is chosen then selection
between ALT[1] and ALT[2] will be based on two factors: (a) the main access
mode; (b) the storage utilisation. When the main access mode is real-time (random
access is the dominant access mode) ALT[2] may be preferable; otherwise when
the number of empty grid cells multiplied by the size of data bucket which
exceeds the size of the index file, ALT[1] will be favourable.

In sections 4.2.1. and 4.2.2. we have examined two implementation algorithms
with the same type of partitioning. There is a break-even point for choosing one
of these two implementations in terms of storage and speed. This has been
described by limits C l 1.

68

4.2.3. The Quantile-hashing Algorithm ALT[3] = {PT3, SA2}
{PT4, SA2}

The quantile-hashing algorithm [KS87] [KS88b] uses binary trees in each
dimension to aid the implementation of the hashing scheme. An illustration of
quantile-hashing is shown in Figure 4.17. These binary trees are used to keep track
of the boundaries of dividing slices (quantiles) for each dimension. All branches of
the binary trees are regarded as a digital tree to carry the values of Os on the left
hand side and Is on the right hand side branches. These Os and Is from the root of
the tree to the leaf of the tree form a binary string which uniquely represents the
relevant slice in that dimension. Slices in every dimension divide the data space into
super-rectangles. A super-rectangle is bounded by m slices. Each super-rectangle
can thus be identified by these binary codes (in binary strings) which correspond to
it. These binary codes then form the basis for a hashing function to calculate the
bucket addresses for corresponding grid cells. Other than that the quantiles
(splitting positions) can be decided by control functions (i.e. frequency / density /
data distribution), in essence, the hashing function is similar to the one used by z-
hashing algorithm ALT[2], it only differs in partitioning search space.

69

y

bucket 5

bucket 6

Figure 4.17. Quantile-hashing algorithm.

70

The idea of the quantile-hashing is to apply a number of very small indices to

support its hashing function, which allows control over the splitting process and
takes non-uniform data distribution into consideration. As the boundaries of slices
and local density values are kept in the binary trees the algorithm makes it possible
to vary the sizes of grid cells and allows various split frequencies for different
dimensions. However, every time an expansion occurs a split will cause a
reorganisation of the data file for these affected regions, especially when m > 2.
During a splitting process, the new addresses are calculated by a G-function
[OT84], which organises grid cells in lexicographical order unlike the z-ordering.
To achieve easy implementation and better geometric proximity the G-function can
be replaced by the z-ordering function.

(11 Cases where the quantile-hashing algorithm is favourable
(a) The required resolution is too high for a given bucket size so that it creates

many empty grid cells due to equal-sized grid cell partition: C 31.
The reason is that the data distribution is non-uniform and thus the partition
may create too many empty grid cells. As a result, the z-hashing method
cannot cope with non-uniform data distribution efficiently.

(b) Fast response time for point search: C22.
(c) Insertion and deletion rate is low: C32.
(d) The range or partial range search rate is high: C25.
(e) The data set is large: C 21.

To preserve geometric proximity, we will assume that the address calculated
in the quantile-hashing is produced by z-code transformation instead of the
G-function [OT84]. This assumption simplifies the DBMS for physical DB
organisation because the z-code and G-function would be required to be
implemented and replacing the G-function reduces the number of functions
supported by the system.

m
* small indices: a grid index needs Jt Sj entries in an index, whereas a quantile-

m i=l
hashing requires X sj entries in an index.

i= l

71

Rule set 3 (Rset31
(R3.1) If (C31 and C22) then ALT[3].
(R3.2) If (C31 and C32) then ALT[3].
(R3.3) If (C31 and C25) then ALT[3].
(R3.4) If (C21 and C32) then ALT[3],

{2} The reasons for setting these characteristics to choose the quantile-hashing
algorithm

ALT[3] offers flexibility for different splitting strategies. By recording the
boundaries of these slices and local densities in binary trees for each
dimension, it copes with non-uniform data distribution better than the
previous algorithms. It also preserves the geometric proximity of z-ordering
as the binary trees form the same numbering scheme as z-hashing.

(31 The strengths and weaknesses of the quantile-hashing algorithm
(a) Control can be introduced in the splitting process thus providing the

flexibility of partitioning the data space.
(b) The geometric proximity of the z-ordering is preserved.
(c) Reorganising the data space for a split process is required.
(d) Each search has to consult these binary trees first before locating the

required data items and the calculation of data address is more complicated
than equal sized grid cell partition. When the number of dimensions is
small, all binary trees can be easily stored in main memory. Otherwise,
consulting these trees may have extra overhead.

(e) Quantile-hashing is a hashing algorithm such that there are holes in the data
file for empty cells produced by the partition. Since the partition allows
varied size, compared with EXCELL it reduces the number of empty grid
cells.

4.2.4. PLOP-hashing Algorithm: ALT[3] = (PT3, SA2}
All the above mentioned implementation algorithms require a relatively large amount
of data reorganisation when a split takes place. The reason is that with the z-hashing
algorithm mapping both grid size and its position to a bucket number when a split
occurs the resolution will change, implying the size of these grid cells will also
change. This is undesirable for a highly dynamic data set. The PLOP-hashing tries

72

to overcome this problem by introducing a dynamic numbering scheme to these grid
cells.

The PLOP-hashing algorithm, like the quantile-hashing, uses binary trees for each
dimension to record local data densities and boundaries of slices; but, unlike the
quantile-hashing, the identification of each slice is not formed by defaulted Os and
Is on the paths of these binary trees. Each number for a slice identification is
dynamically produced and recorded in the leaves of these binary tree indices.
Hence it improves the ability to cope with a dynamic situation. Moreover, rehashing
is also localised to the affected areas for each split and merge. Non-uniform data
distribution can be considered as in the quantile-hashing so that it is not necessary
for a split to be a middle point in the data space for a split grid cell. However, to
gain these properties extra information about dynamically formed slice numbers
needs to be recorded in these binary trees. Comparing PLOP-hashing with the z-
hashing approach these extra binary trees are required whilst comparing PLOP-
hashing with quantile-hashing the tree size will be increased. A brief illustration is
shown in Figure 4.18.

73

xl x2

Syl
o O o ©

o o
© Q

©
R 2 R I I R 3 R 6
R 0 R IO R1 R 4

• • • O •
• • O •

y i
E L

n r
y i

bucket 5

bucket 6

bucket 7

bucket 8

bucket io

bucket 11

bucket 12

• • •

Q Q

O O

COO

• •

• •

© ©

o o

Figure 4.18. The PLOP-hashing algorithm.

74

The difference between the PLOP hashing and the z-hashing algorithm is that the
PLOP-hashing can apply different scales to divide the data space and different
dimensions can have a different number of slices. The unnecessary partition can be
avoided. In addition, unlike the z-hashing and the quantile-hashing, the sequence of
address calculation in the PLOP-hashing is dynamic in correspondence with the
sequence of data growth so that the identification numbers given to a grid cell are
not fixed. This can be shown by Figure 4.19. This feature implies that the indices
used for address calculation are adapted for dynamic situations, thus the data
reorganisation caused by a split is localised. Although it copes with dynamic
situations better than other algorithms because less grid cells need to be rehashed
during the growths or shrinks of the data set, the geometric proximity may not be
preserved as the indices are formed dynamically and do not necessarily follow the
expected z-order for neighbouring grid cells. As a result, it may give a slow
response time for range searches.

^ xO x l x2

© O o ©

© o ©
R2 R II R3 R6
RO

• •
•

RIO

•

•

R1
©

O

R4
•

•

0 v —

X

Address calculation

RO = z(0, 0)
R1 - z (l , 0)
R2 = z(0, 1)
R3 = z (l , 1)
R4 - z(2, 0)
R6 = z(2, 1)
RID = z(3,0)
R I I = z(3, 1)

Ra fo r a = 0, 1, 12
a is the address.

Figure 4.19. The PLOP-hashing address calculation.

75

£JQ Cases where the PLOP-hashing algorithm is preferable
(a) The data distribution is non-uniform : C41.
(b) The fast response time for point search is required : C22.
(c) The data set is large : C21.
(d) The insertion and deletion rates are high and unpredictable which requires

the changing of resolution accordingly : C42.
(e) Range and partial range search rates are low : C43.
(f) There are large differences among local data densities : C44.
(g) Searches for attributes are at different rates : C45.

Rule set 4 (Rset4)
(R4.1) If (C22 and C43) then ALT[4].
(R4.2) If C41 then ALT[4].
(R4.3) If C43 then ALT[4].
(R4.4) If C44 then ALT[4].
(R4.5) If (C41 and C45) then ALT[4].

(2) The reasons for setting these characteristics to choose the PLOP-hashing
algorithm
The ALT[4] is a fast search scheme implemented by a hashing algorithm
employing G-ordering. It provides fast access supported by the hashing
algorithm and small size binary trees. It adapts different dividing intervals
(resolution of the data space) so that it copes with dynamic situations
efficiently. It supports PT3 and PT4 types of partition strategies. Hence a non-
uniform data distribution may be transformed into an uniform distribution by
PT4 (non-equal sized grid cell partition). The PLOP-hashing is selected
mainly for its ability to deal with dynamic situations and its effective point
retrieval.

(3) The strengths and weaknesses of the PLOP-hashing algorithm
(a) The PLOP-hashing algorithm provides flexible splitting and merging by

recording indices in the binary trees.
(b) Fast response is achieved by a hashing function.
(c) Dynamic situations are dealt with effectively by an adapted numbering

scheme for slices.
(d) The PLOP-hashing algorithm may lose geometric proximity as z-order is

76

applied to insertion sequence rather than geometric data space.

4.2.5. BANG File and hB-tree Algorithm: ALT[5] = {PT4, SA1}
With reference to the partition type in Figure 4.7. we know that not all of the above
mentioned algorithms can cope with specific data distribution efficiently. As shown
in Figure 4.20., even applying the PLOP-hashing partition, which is developed to
deal with non-uniform distribution, many empty buckets may still be introduced for
this specific data pattern. Moreover, these algorithms cannot deal with overflow
effectively. This is because each grid cell corresponds to a data bucket and, if the
number of data items exceeds the size of the bucket, then it will either trigger a split
or introduce an overflow area. As a result, if a split is triggered a number of new
grid cells are created and the storage utilisation may become poor; if an overflow
area is introduced then to retrieve data items in the overflow area an extra secondary
storage access may be required. The Bang file partition divides the data space into
m-d regions, avoiding the problem caused by other partitioning strategies.

b = 3

e1 e2

•

•

•

e3 e4

•

•

•

Figure 4.20. Specific data distribution by parameter guided partition.

77

The figure shows that, among nine grid cells four empty grid cells have managed to
occur by PT3.

The BANG file is an interpolation-based grid partition which identifies grid cells of
different sizes by different data set levels. The technique used for implementation
has to record the data set level and thus the indexing approach has to be employed
for this partition. A grid cell is represented by a region identifier and a data set level
label pair (r, 1). The identifier is formed by concatenating the least significant bit of
the newly-formed coordinate in dimension i at level 1 + 1 to the most significant bit
of the corresponding region number at the level 1 [FR87a] [FR87b]. If a region
encloses the other region then the embedded region will be the lowest level in the
index. The region which has the higher level number will be searched after the
lower level regions. This property guarantees that the higher level region equals the
region identified by r minus those lower level regions embedded within it. This can
be shown in Figure 4.21.

78

2» yOxOjrlx Iy2x2y3x3

Level 1

11

10
1
01

00 01 10 11
Level 2 B a n g p a r t it io n

• •
•

* R'
••3

R4 •

lv>
• •

• • Rl* • • R2

• • • • •
•

•

10 11 14 IS

8 9 12 13

2 3 6 7

0 1 4 6

L e v e l 4

00 01

Level 3

01 2 3 6 7

00 0 1 4 5

00 01 10 11

Region id: (r,l)
R1 - (6,4) R3 = (3, 2)
R2 = (1, 2) -(6 ,4) R4 = (0, 1)

1. Each rectangle encloses at
least a region.

2. Embedded region is allowed.
As region R1 is embedded in
the o ther rectangle, The
boundaries of the region R2
are edges of two rectangles.

3. For the sam e data space
different regions can have
different region size.

Figure 4.21. The Bang file partition and representation.

79

The BANG file partition [FR87a] and hB-Tree partition [L087] are essentially the
same. An embedded region in the Bang file is equivalent to a holey brick (bricks
with holes in) in a hB-Tree. They both minimise the problems introduced by non-
uniform data distribution. The difference between them is the access paths
implementation. The hB-tree represents the partition by recording the boundaries of
the bricks (regions) at different levels of a k-d-tree alternately; whereas the Bang
file represents the partition by its region identifier and a data set level, which gives
the location and size of a data item in the data space. The salient feature of this
partition is that the dimension of a split equals the dimension of the data space so
that it can compact non-uniform data distribution effectively. This feature leads to
an implementation advantage: the growth rate of the index size will be at the growth
rate of data. It also copes with the dynamic situation at high packing density by
introducing no empty regions. Both the region identifier and the data set level are
required to identify a grid region. In addition, to gain a better packing density it
needs to keep extra information in each index record compared with the scale-based
grid indexing method. The extra information is necessary for recording the data set
level. This method may make range and partial range searches complicated and
slow. The reason is that a data range involving multi-regions may demand the
traversal of several branches in the Bang indexing tree. Comparing the the Bang file
with the z-hashing algorithm, the Bang file has to use an index file for its access
paths so that there will be a time when the break-even point is reached for storage
utilisation. The formula for the break even point calculation is presented in
Appendix A4.

The BANG file and the hB-Tree implementation were illustrated in Figure 4.11.
and Figure 4.12. respectively.

(1) Cases that in favour BANG file algorithm
(a) The range search rate is moderate : C51.
(b) The point search rate is high : C25.
(c) The distribution of data is non-uniform : C41.
(d) The database to be created is region-data-oriented or object-oriented, i.e.

is explicit m-d data : C52.
The condition (d) needs rethinking in some situations because for an object in the
middle of the data space the signature created by the z-code will fail to code the

80

object. However, an alteration can be introduced so that the partition can be
identified by several layers. The alteration is discussed in section (4) below.
(e) High insertion and deletion rates : C42.

Rule set 5 (Rset51
(R5.1) If C41 then ALT[5].
(R5.2) If (C51 and C25) then ALT[5].
(R5.3) If C52 then ALT[5].
(R5.4) If (C41 and C42) then ALT[5],

(21 The reasons for setting these characteristics to choose the BANG file
algorithm
The ALT[5] is designed to adapt to changes of data distribution. It achieves
this objective by avoiding empty grid cells through a partitioning strategy.
The adaptability implies that it can cope with dynamic and non-uniform data
distribution well. On the other hand, it represents a region by an identifier
which indicates the position and size so that it can represent some object data
easily. However, to represent all spatial objects the alteration described in
section(4) below needs to be introduced.

(31 The strengths and weaknesses of the BANG file algorithm
(a) The Bang file algorithm can cope with various data distributions.
(b) The Bang file algorithm can store certain ranges of spatial objects

conveniently.
(c) The Bang file algorithm can provide high storage utilisation by

redistributing the partition. An illustration is given in Figure 4.22.

81

b - 3
P a rtitio n for newly added po in ts:

P “ { p l ,p 2 ,p 3 , p 4 }The partitio n : P = { p l ,p 2 ,p 3)

P1 P2 .

• * p 3 .| •

*

Pi p2 • •

• •P3. •P4‘ l

•

R edistribu tion of th e space
to create a m ore packed
partition :

P - { p l , p 2 ,p 3 }

P1 p2 . •p3

• • • ••

•

From " The BANG File: a new k ind
of grid file "

By M ichael F reeston

Figure 4.22. Redistribution by the Bang file partition.

82

(d) The Bang file algorithm can provide fast access to exact search (point
search).

(e) The Bang file algorithm may not be very efficient for range and partial range
searches.

(f) The Bang file algorithm cannot efficiently store objects which overlap with
the partition boundaries without further considerations. (However, all of the
above-mentioned algorithms fail to do this).

(g) An index file has to be used to implement the Bang file.

(4) Alterations introduced to BANG file algorithm for spatial databases
(development of existing algorithm)

(i) Analysis
The major problem with a m-d spatial object database is that two objects may
be positioned in such a way that, for instance, in a 2-d data space, one cannot
use a horizontal or vertical line to separate them without dividing one object
into two parts. An example is shown in Figure 4.23. it can be seen that line x2
keeps object 3 intact but cuts object 4 into two parts. One layer grid partition,
therefore, will fail to identify such an object without cutting it into two or more
sub-objects. However, if we imagine that one of the two objects is on the
actual plane and the other one is on an imaginary plane, we can apply different
lines to these two planes instead of the original one without dividing either of
these objects. This method can be seen as a dimension extension approach
(another dimension is introduced for identifying different layers of planes,
allowing different objects to be mapped on different layers) - a multi-layered
approach. Using this approach, whenever there is an object which intersects
the boundaries of the grid partition over these existing planes, it will apply an
imaginary plane or another layer of plane to avoid dividing the object.
Meanwhile, the dividing position is still chosen according to the overall
partitioning situation as if there is only one layer plane. An illustration of this
method is given in Figure 4.24.

83

y

Figure 4.24. Multi-layered 2-d grid partition.

84

x l x2 x3

Object 1 in tersec ts w ith dividing lines
x l,y 3 .

Object 2 in tersec ts w ith dividing lines
x2 ,y2 .

Object 3 in tersec ts w ith dividing lines
x 3 ,y l.

Object 4 in tersects w ith dividing lines
x l .y l .

Object 5 in tersects w ith dividing lines
x3 ,y2 ,y3 .

L3 x2

Figure 4.23. A spatial object database in a 2-d space.

85

(ii) Alterations
Based on the above analysis, a multi-layered grid partition can be introduced.
To maintain the storage utilisation the multi-layer grid partition is constructed
so that dividing positions on every layer form a complete partition as if there is
only one layer.

Let be the set of dividing lines (planes or super-planes if m > 2) for
layer j for j = 1 ,2 ,..., x then the following relation is always true:

L® n L(i) = (J) for all i and j, where i * j.

An object identifier calculation is briefly illustrated in Appendix A5 (Figure
4.). Unlike the point data (zero-sized object) space, storing the object depends
on the chosen resolution. When a cube size (the minimal rectangle that
includes the object) is determined, the number of buckets required can be
derived. If the size of an object or the number of buckets used for storing the
object is recorded in the index then the total number of the grid cells in the
previous layers can be calculated. The result can then be used to adjust the
calculation of the object identifier for the current layer. This adjustment is
required because an object can occupy more than one data block. It is treated
as a VLR data item as objects of different shapes and volumes require
different descriptions or representations. The alternative way of dealing with
such cases is to multiply the number of buckets required for an object as a
weight function to the total number of grid cells. Adding a new object is
briefly shown in Figure 4.25.

8 6

Original data set has tvo layers Adding a nev object 5 and 6

The nev objects 5 and 6 vill intersect
vith line yl in the first layer, but it
vill not intersect v ith the boundary
in the thirs layer. It is thus added to
the third layer.

The original object 2 intersects vith
lines xl and yl in the first layer and
therefore it is stored in the second
layer.
LI: resolution = 4
L2: resolution = 1
L3: resolution = 2

Figure 4.25. Multi-layered grid cells: Adding new objects.

87

The split heuristics are important to the performance of the algorithm and
some rules have to be introduced to avoid ambiguity.

(iii) Multi-layered grid partition implementation considerations
To implement a multi-layered grid partition, a rule as to which layer an
object should belong to, needs to be determined. Suppose there are k layers
for an object data set and they are labelled from highest layer to the lowest
one in sequence as (0, 1,..., k - 1). If the boundary of the object to be
determined is { (ail, ai2) for i = 1 ,2 ,..., m } then the steps to follow are:
(a) choose the layer labelled by j starting from 0;
(b) if the object does not overlap with these partition boundaries of layer

j then choose j as the home for the object, search or store the object
at layer j and do (e); otherwise

(c) choose the layer labelled with (j + 1) and do (b) until all existing
layers have been exhausted, i.e. current layer is: j = k - 1;

(d) add a new layer k to the data set to store this object and increase the
number of layers;

(e) finish the process.
The same object can sometimes be fitted into different layers at the same
time, i.e. it will not overlap with the partition boundaries of other layers. To
enhance the overall performance, as many objects as possible should be
presented at the highest layer for a given search.

(5) A brief comparison between the BANG-file and the grid file
The major difference between the BANG-file and the grid-file algorithms lies
in the partitioning approach. The BANG-file applies m-d cube partitioning to
a search space and allows embedded regions in a partition, whilst the grid-
file employs (m-l)-d superplane partitioning for a search space. The
BANG-file algorithm also presents high storage utilisation for uneven data
distributions. The beauty of the BANG-file algorithm is that the index grows
with the rate of the data and in allowing the embedded regions in the BANG-
file algorithm, it supports localised reorganisation. This locality shows high
ability of dealing with dynamic situations. The grid-file displays a
predictable performance in terms of access speed. It guarantees a two-disk
access in the worst cases because of the one-to-one relationship between an
index entry and a grid cell. However, this relationship can be maintained at
the price of very large index file for an uneven distributed search space, i.e.

88

the index file grows at the rates of partitioning.

4.2.6. R-tree and R+-tree Algorithm: ALT[6] = (PT5, SA1}
R-tree is designed for representing spatial objects - non-zero sized objects.
The m-d data space is divided into a number of m-d rectangles. The salient
feature of the R-tree is that the boundaries of a cell (a region which includes
an object) do not need to be predetermined. This feature distinguished R-tree
scheme from the above mentioned grid partition methods. At the leaf level of
the index, the atomic object is represented by its minimal closure boundaries
and the location where the object is stored. At the higher level of the index,
each node will contain m rectangles to be covered by this level. Like the B-
tree, the higher level covers the range of the lower levels, i.e. the higher level
nodes cover a larger rectangle in the data space. Each node in the R-tree is
represented by a pair (I, p). Here I is an identifier, which indicates the range
covered by the rectangle and p is the pointer to either a bucket number which
stores the object at the leaf level or a pointer to the next level in the index at
the non-leaf level. As the data space is divided by m-d rectangles represented
by its boundaries the domain of a region in R-tree is flexible, in comparison
with the Bang file. R-tree does not limit itself to fixed size boundaries.
However, this flexibility is gained by storing more information about a
region in the implementation, i.e. extra storage space is required. The reason
is that the representation of a rectangle indicated in [GU84] uses RECT =
{xlow, xhigh; ylow, yhigh} for a 2-d region. For m > 2 representing a
rectangle requires even more information. Each dimension needs to specify
high and low boundaries, as a result, the R-tree method needs information
extracted from (2 x m) values to identify a rectangle.

The implementation may raise problems in that, at the higher level of an
index, two different nodes may include the same object at the lower level,
overlapping some regions. Consequently, one of them may be searched in a
false drop. This indicates that if there are n overlapping regions then the
possibility of a false drop during a search is (n - l)/n = 1 - 1/n, and
therefore, the performance deteriorates. R+-tree has tried to reduce the
overlapping by introducing more rectangles covering a smaller region, but it
ends up with a higher tree index than that of R-tree. Figure 4.26. briefly
describes R-tree algorithm.

89

Point to the data object

R 1 R4 R 1 2
R3

R8
R 1 1 R 1 3

R9 RS R M

RIO RI 5

R 1 6

R7

R20

R21

R22

Figure 4.26. The R-tree algorithm.

90

ALT[6] is suitable for representing a spatial object where the overlapping can be
avoided by the nature of the data distribution pattern.

(1) The characteristics which encourage choice of R+-Tree algorithm

(a) The database concerned is a spatial database : C61.
(b) It is difficult to represent these spatial objects by a standard grid cell

: C62.
(c) A large proportion of these spatial objects occupy more than one

pages/buckets : C63.

Rule set 6 IRsetól
(R6.1) if (C61 and C62) then ALT[6]
(R6.2) if C63 then ALT[6]

(2) The reasons for setting these characteristics to choose the R+-Tree algorithm
The ALT[6] provides a possible solution to various shapes of spatial object
representation among chosen algorithms.

(3) The strengths and weaknesses of the R-Tree
(a) The R-tree caters for the spatial objects with varied shapes and

positions.
(b) It provides an alternative to an object-oriented database.
(c) It adopts a B-tree as its access paths implementation so that it copes

with dynamic situations efficiently.
(d) It represents identification of an object by its boundaries explicitly so

that when m > 2 the object identification may occupy a large amount
of storage and consequently, increase the index size.

4.3. The Application Abstract Profiles (AAPs)
The AAPs are abstract types of applications described by their properties. These
properties are used to classify the types of applications in order to match them to a
suitable implementation algorithm. They are built up by the expert system based on
previous database applications. New knowledge of later applications can be added
to the system when required. The knowledge is stored and used to find solutions to
a new application based on the similarity comparison between features such as the

91

main access mode, the main attributes used in the queries, and the data
distributions. These features can have different emphasis for various applications.
Since the knowledge of applications is complicated and plays an important role in
choosing algorithms we will define these AAPs and describe how we can use them
to tune and monitor the performance of a database.

As explained in previous sections, the premises in the rule base are application-
oriented. We use the AAPs to represent knowledge about applications. To serve the
purpose of tuning physical database design these profiles are utilised to classify a
given application. These AAPs are thus designed for comparison with a real
application. They will also be used as input data to performance evaluation to refine
algorithm selection and adjust boundaries for various features which are employed
to classify applications. These profiles are described by a set of abstract properties
from the real data set. The collection will be expanded as new application profiles
are added to it. After performance evaluation the results will be stored as part of the
knowledge for these application profiles so that they can be reused after an
approximate correspondence (similarity) has been identified between an application
and an AAP.

The AAPs consist of a set of application classes AAP = {AC1, A C 2,..., ACx}.
Each class is described by a set of properties. These properties have four aspects:
application types (AT), data distributions (AD), query types (AQ) and performance
evaluation (PE). They vary for different types of applications, especially data
distributions and query types, and change during the life-time of a database. To
form these properties major factors reflecting data distribution and queries have to
be carefully chosen. An application type is defined as:
ACi = { ATi, ADi, AQi, PEi } for i = 1, 2 ,..., x, x is the number of data sets in an
application.

ACi Application class
This defines application class, which includes an application domain and tasks to be
performed.
ACi = { application area, definition }

Application area is identified by the nature of applications. 'Nature' means
applications with the same underlying structures of a search space and query

92

patterns. The dimensionality of a search space is determined by query frequencies
and this depends on the experience of functionality for an application system. A
search space also relates to the data pattern. An expert system can gather such
experience and the data patterns. An example would be transportation applications.
The transportation means can be different - by sea, by train, or by air. It does not
make much difference for applications concerning scheduling, booking and
cancelling seats and so forth. The definition gives data sets and functions involved
in an application. An application class can be a library application with data sets
about the book, the borrower and the supplier; with functions about lending,
returning, querying, adding, deleting, and searching for a book. An ACi can also be
a selling business application with data sets on stock, customer, staff, and supplier,
with functions of distributing, purchasing an item, and order processing. It can also
be an airline application with data sets for flight, traveller; with functions of
booking, cancelling of seats and scheduling flights, etc. Each application class
represents a set of ‘similar’ applications with either generic features or functions.
For instance, library A and B are the same application class with similar application
characteristics ignoring whether they are video libraries; music libraries or book
libraries or a mixture. Similarly, for the selling business and airline application the
system will assume that selling companies A and B or airlines A and B belong to the
same application classes, regardless of what goods the businesses sell or the
destinations an airline serves. Once an application which represents an application
class has been run on the system all necessary information in the form of an AAP
will be recorded for the system to use. We will see later that an AAP can be used to
derive data from incomplete information supplied, to guide the determination of
dimensionality of a search space, to be a data resource for analysing salient features
of applications, and to draw a similarity comparison.

AT Application Type
AT= {ATi fo r i = 1, 2, ..., x}

AD A set of data distribution for an AAP
AD = { ADi for i = 1, 2 ,..., y }
ADi = (m, r, b, Ddis)
where:
m - dimensionality (we may assume m = 2).
r - resolution measured by the number of grid cells in an equal-

93

sized grid cell partition.
b relative bucket size is the bucket size that will satisfy a chosen

resolution.
Ddis data distribution, relating to C = {C[i] for i = 1, 2 ,..., r }

from which a group of parameters can be derived and some
of them stored for system usage. These parameters will be
described after a discussion of algorithm AD.

AO A set of query tvpe for an AAP
AQ = { AQi for i = 1 ,2 ,..., z }
AQi = (Qi, F, Ps, Rs)
where:

Qi query type measured by query frequencies.
F properties of attribute set by a weight function f:

F = f(A l, A2, ..., Am) = {fi for i = 1, 2, ..., m}
Ps point search rate
Rs range search rate

The function F is evaluated by the percentage of a particular attribute occurrences
in queries and the total number of queries made.

Dvn = fir. Dr 1 Dynamic Features
where:

Ir - insertion rate
Dr - deletion rate

PEi = (T. Su. ATUxI ^Performance evaluation
where:

T - average time required for retrieving a data item.
Su - storage utilisation.
ATL[x] - an algorithm chosen for implementing the grid partition.

In the application abstract profiles m is relatively static whereas data set size n,
data distributions Ddis and query properties Q have dynamic features; the bucket
size b and partition resolution r are either set by a user or limited by the operating
system as software constraints. Among these parameters, n and b indicate the size
of the physical database. As will be mentioned below, the data pattern is size

94

independent. Thus n and b are transformed to a system derived scale to form a
standard scale for comparison. Different data distribution and query patterns are
developed from applications to classify a 'new' application. Here 'new' has a
double meaning: firstly, an application with the same class may be stored in the
system as an AAP so that the application appears to be new (although it is not new
in the sense of an application class); secondly that the application type is not in the
AAP so that relevant data have to be extracted to represent a new application class in
the system. In the first situation, only brief information of the new application
needs to be stored, such as data set size, the application name and dynamic features.
Information about data distribution and query are inherited from the previous
instance under the same class.

Data distribution Ddis reflects the pattern of data items in a given data space. A data
space (region) can be divided into a number of data subspaces (subregions). If one
data subspace contains more data items than the other then we say that the data is
more densely populated in the former subregion than in the latter. The density can
be measured by the number of data items in a standard partition of the data space.
Now we define the partition and how we approximately measure the data
distribution.

A partition which is used for distribution measurement is defined as an equal-sized
grid cell partition over the data space. To facilitate the measurement we map the
concerned space into a 1-d space by applying the z-code [OR86] to represent each
grid cell in the data space. Based on the given parameters of data concerned, the
resolution of the data space can be determined. With the given data set the
distribution is modelled.

As soon as the resolution r is determined a one-to-one mapping is established
between the z-code and the regions introduced by the equal-sized grid cell partition.
In order to know the properties of a given set, the data items are used as input data
to the profile, and as a result, the data distribution information will be the output.
The data distribution will be measured using the following parameters:
Nover - the number of grid cells which have more than b data items;
Nempty - the number of grid cells which have no data items;
Nmax - the maximum number of required data blocks;
Nmin - the minimal number of buckets estimated for storing a data set.

95

The algorithm of the data distribution profile AD
Research has been done to construct various data distribution profiles [RE84] to
study the behaviour of performance of a database. Most of them are at a theoretical
level with a chosen distribution profile containing assumptions such as uniform
distributions or the binomial or Poisson distributions, or randomly generated data,
etc. simulated for research purposes. In an actual database, however, data attributes
usually have functional relationship or correlations so that the above assumptions
may not represent the nature of the data set in use. The reason is very simple: a data
item is a collection of property information about an object in the real world,
categorised as something that an organisation is interested in. For instance, data
kept for an airline business may be concerned with storing information about
distances and prices. These two attributes follow certain distribution - as distance
increases the price will also increase. An undergraduate student file tends to have a
narrow age scope highly populated as most students are aged between 18 and 21.
The levels of employee's position (top managers, middle level managers, and
employees) may be strongly correlated to the size and the nature of an organisation.
This indicates that data distributions of many cases, in practice, do correlate to the
nature of an application, i.e. they are application-oriented. Similarly, the query
pattern, in real databases, may be a function of time. A manufacturer storing
customer information for order processing may relate the query pattern to seasons
and this pattern would be a time function. The query pattern of a database used for
financial applications may be influenced by the financial cycle. Data distribution and
query patterns vary for different types of application, but they may also be close
enough for similar business organisations where the differences can be ignored.
Data distribution is usually determined by the nature of information required to
carry out functions of an organisation; and query patterns often relate to the
activities of an organisation. To allow the system to recognise the data distribution
pattern different AAP profiles are stored as criteria for making comparisons. These
profiles are constructed by abstracting features of applications and by classifying
them thereafter. Comparisons are conducted by heuristics and judgement. The
equal-sized grid cell partition is used to analyse and describe the data distribution of
a m-d data space.

Information about AC
AC is defined as application classifications, which is a set of application classes

96

ACi for i = 1 , 2 , x. Information about ACi and other elements in the AAP has
to be collected from real applications and refined by the system. Limited by time,
this task is beyond the scope of this project. The task involved is to investigate real
applications of different kinds, carrying out an analysis which represents data and
query patterns, algorithms, and performance gearing towards the AAP definition.
ACi abstracts application classes and attaches a definition to each of them.

The algorithm for data distribution AD
In order to estimate the data distribution features of an application the data pattern
needs to be captured. By pattern we mean the shape of a data distribution. One of
the pattern recognition techniques involves having a set of standard shapes coded in
a way which allows us to draw comparisons. Data, in the view of geometrical
space, form a pattern. Different distributions can be seen as different patterns which
form different shapes. To categorise data distribution we need information which
allows us to recognise a shape at a specified resolution level. Here, the pattern is an
abstract concept. Its size is irrelevant but it is associated with the resolution. A
resolution is scaled in terms of the number of grid cells in a data space, and the
space size can differ. When the resolution changes, the pattern we perceive will also
change; whereas with the same resolution we perceive the same pattern with a
different size as the same shape in each grid cell (a system unit). This phenomenon
can be seen from Figure 4.27. For our purposes we use an absolute scale to
measure similar patterns with different sizes, i.e. we view the shape as an absolute
standard, producing a fixed number of grid cells, gearing it to different sizes of
applications and the constraints for classification. These standard data patterns are
created by generating the AAP from analysis of applications.

97

2 3

0 1

Ncell = 4

C[0] = 0
C[1] = 4
c[2] = 4
C[3] = 8

n = 28
Ncell = 4

C[0] = 0
C[1] = 7
c[2] = 7
C[3] = h

Ncell
Nempty = 1
Nover = 1

T - 1 1 (overflov depth)

Ncell
Nempty = 1
Nover = 1

C[3]
T -1 = 1 (overflov depth)

They belong to the same type of datadistribution. They are measured by
overflov depth, relative buckt size b and Nempty.
Overflov depth is the extra number of buckets an overflov data bucket
required.

overflov depth
Z (

r c[i] ~
-1)

ie over b
Nover

i e over refers to these cells vhich have more than b data itemd.

Figure 4.27. Similarity Comparison.

For a given application we should know the dimensionality m, and an estimated n
and b. The data set itself may need to be built up dynamically or it is an input at the
data entry stage. Firstly an estimate of resolution is produced by n/b so that r can be
chosen at the right level to start with. After choosing r we can then calculate the rest
of the parameters to determine the application type for its data distribution features.

Here we set standards here for distribution comparison based on the idea of shape
recognition. Each type of data distribution is added to the system from an analysis
of real data. The AAP acts as a shell which allows classification knowledge to be
added to it. The data distribution is measurable as follows.

(1) Resolution r
As defined above r reflects the number of grid cells for a 2-d data space. For an

equal sized grid cell partition r = sx * sy, where sx is the number of slices in the x

dimension and sy is the number of slices in the y dimension. Initially the system can
choose a set of ranges:
r = { 256, 512, 1024, 2048, 4096, 8192, 16384 }
i.e.
(sx, sy) = { (16,16), (16,32), (32,16), (32,32),

(64, 32), (32, 64), (64, 64), (128, 64),
(64, 128), (128, 128) };

The resolution r can be chosen with different values for the same data set to reflect
different levels of resolutions and only information about the highest level
resolution (at the highest resolution value) needs to be stored. For other levels of
resolutions required data can be easily derived from the highest level of r by
summation. In practice, the value of resolution is function of bucket size b. i.e.
similarity comparison has to be considered at the resolution level of bucket size b to
be meaningful.

(2) Bucket size
b = { 512, 1024, 2096) (bytes).

(3) Number of grid cells which have more than b data items against the total
number of grid cells, (overflows)

99

Nover

r

(4) Number of grid cells which have no data item against the total number of
grid cells, (data holes)

Nempty

r

(5) Storage utilisation estimation

Su = Nmin
Nmax

To compare an application we first estimate resolution level and choose the nearest
one set by the system.

Given n, b we can estimate

(e)
r = ------------

b

Compared with r we will choose the resolution satisfying the following condition:
r = { x where min {(x - re) for all x e r } }

then we represent the real data space in the partition of a chosen r. Given m = 2, D
= Dx X Dy, where Dx = Dxmax - Dxmin, Dy = Dymax - Dymin and r, a one-to-
one mapping can be established between identification of a grid cell in the partition
and the data space D. The mapping is carried out by the following calculations
based on a given data set Ds: suppose Ds = {dl, d 2 , ..., dn} where di = (dxi, dyi)
The length of the intervals in the x dimension will be:

Similarly, the length of the intervals in the y dimension will be

100

Given a data item (dxi,dyi) its corresponding grid cell (xi, yi) can be determined as:

xi =
dxi - dxmin

lx
= x0xlx2x3xdx5x6x7x8/

y i =
dyi - dymin

iy
= >Oyly2y3y4y5y6y7y6

Subsequently, its corresponding z-code can be derived as:
z(xi, yi) = x0y0xlylx2y2...x8y8 or
z(xi, yi) = y0x0ylxly2x2...y8x8.

Depending on the chosen resolution r the maximum length of the z-code (Izl) is

Llog2rJ \ye win need r and the value in counters C[i] for i = 1 ,2 ,..., r to capture

information about the data distribution. In order to transform the real data space we

use the same resolution. The absolute space is the one which interprets each grid

cell as a unit. Having decided the resolution the following algorithm can be used to

estimate the data distribution.

101

Algorithm
INPUT
Data set:
Bucket size:
Data space size:

Data space resolution:

Ds = {di Idi = (xi,yi) i = 1, 2 , n}
b
Dx, Dy
Dx = Dxmax - Dxmin
Dy = Dymax - Dymin
sx, sy (number of slices in x and y dimension for the

partition)

OUTPUT
BRIEF INFORMATION

Nover - number of overflow cells
Nempty - number of empty cells
Nd - overflow depth
Su - storage utilisation
d(even) - data distribution
Nmin - minimal storage
Nmax - maximum storage

Nmax
reflects the data distribution. I f ------------ is larger than r the data are less

b
evenly distributed. These parameters which are derived by approximate calculations

such as Ld(xi), Ld(yj) for i = 0, 1,..., L k ^ r J - 1, j = 0, 1, ..., L log2r J - 1,

Nempty, and Nover from C[i]. They are calculated in the following algorithm.

DETAILED INFORMATION

The number of data items in each grid cell: C [l] , ..., C[r],

ALGORITHM (Pseudo code)
Suppose the number of grid cells created by the partition is r, and C [l], C [2],...,
C[r] are counters used to calculate the number of data items in each grid cell.
AD = {

while (input data set is not empty)
{
read a data item from an input data set (x, y);

102

X =
x - xmin

lx

* calculating the slice number in the x dimension *

Y =
y - ymin

]y

* calculating the slice number in the y dimension *
i = interleaving X and Y for their binary representation;
C[i] = C[i] + 1;

}
* initialisation *
Nover = 0;
Nempty = 0;
Nd = 0;
d(even) = 0;
for (i = 1; i < r; i++)

{
if (C[i] > b)
{

Nover = Nover + 1;
d(even) = d(even) + C[i];
if (C[i] > Nd) then Nd = C[i];

1
if (C[i] == 0)
{

Nempty = Nempty +1;
}

}

Nmax = Sx x Sy + Ntot x min(Sx, Sy);
Nmin = n / b + 1;
d(even) = (2 x d(even)) / (Nover x b);

103

Nd = Nd/b;
Su = Nmin / Nmax;
store Nover, Nempty, Nd, Su, d(even) Nmin and Nmax to DBPi for
the data set;

}

For a given data set identified by its data set name, the detailed information of the
profile can be stored as a separate layer of knowledge about an application. It
reflects approximately how the data items are distributed in the data space. The
value in each counter will be retrieved if the detailed information of the application
profile is required. The set of values can also be used to draw the distribution
pattern diagram ordered by the z-code as the horizontal axis and the value of each
counter as the vertical axis. A sixteen grid cell diagram is shown in Figure 4.28.
The pattern can be used to help experts or database designers to recognise different
data distribution better so as to aid building new knowledge such as a new class of
application into the system.

7

6

5

4

3

2

1
0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

• • •

6 7 14 15
8

4

° «

5 flO °
• O

12 13°
o o

I

•
0

°

•
 r

O

° To
» •

• •

0
• 0

2
• o

8
• ° n •

° 0

Figure 4.28. data distribution pattern.

104

The algorithm of the query type AO
INPUT
The number of attributes or the dimensions of the data space: m.
Each occurrence of an attribute: Nj (j = 1, 2 , m).

OUTPUT
Frequencies of each attribute: Q[i] for i = 1 ,2 ,..., m.
Point and range search rates: Ps and Qs.

ALGORITHM
Assume that the DBMS can provide the number of times an attribute is requested
for each operation (an operation can be a group of queries).
A Q = {

if the database status is new then initialise the counter used for the
number of frequencies of each attribute: Q [l], Q [2],..., Q[m] and
number of point search Pc, number of range search Qc, number of all
search Ac;
calculate the query frequencies by accumulating the times of occurrences
for each corresponding attribute;
if the query of an operation includes a search for attribute i Nj times then
increase Q[i] by Nj;
calculate the point and range search rate by accumulting each type of
seach Pc, Rc and all searches Ac;
for every search

{
Ac = Ac + 1;
if a search is a point search then Pc = Pc + 1;
otherwise Rc = Rc + 1);
Rs = Rc /Ac;

}
}

The knowledge about the query frequencies provides data for query frequency
controlled splitting. The frequencies can be described by weighting values. The
weight can be calculated by the formula: fi = Wi / Wmin for i = 1 ,2 ,..., m. Where
Wi is the frequency for attribute i recorded by the system and Wmin = min { W l,
W 2 ,..., Wm } = min (Q[i] for i = 1 ,2 ,..., m). If the performance deterioration is

105

recognised by the system then the data about query frequencies can be referenced
and used to choose a split strategy when required.

The algorithm for frequency weighting calculation
Suppose Q [l], Q [2] , Q [m] are the number o f queries for attributes 1, 2 , m
involved in the search respectively, the algorithm for weighting estimation is
illustrated below

estimate-q-weight()

{
sort Q = { Q [l], Q [2] , Q [m] } to be
Q' = { Q '[l] \ Q '[2],... Q'[m] I Q'[i] < Q'[j] if i < j };
* In set Q, the element Q '[l] = Wmin and we assume it is not equal to 0
otherwise the attribute will be ruled out from the search space since it is
irrelevant to queries. *
f[i] = Q '[i] /Q '[l] fo r i = 1 ,2 , . . . , m;
* if max { f[1], f[2],..., f[m] } = f[x]} then the attribute x is the dominant
attribute, i.e. the distribution chosen to be split by a frequency controlled
function. *
store f[i] for i = 1, 2 ,..., m;

}

the algorithm of the performance evaluation for an application
INPUT

Data set: Ds = {dl, d 2 , ..., dn Idi = (xi, yi) i = 1, 2, ..., n}.
Implementation algorithm: ALT(id).
Here id identifies an implementation algorithm.

OUTPUT
Average search time: T
Storage utilisation: Su

ALGORITHM
PE = {

partition the data set based on chosen implementation algorithm;
calculate r = n / b;
calculate Su = r /B ;

106

* where B is the number of buckets actually used *
generate a data item within the data space to be retrieved:

(d = { a l, a 2 , a m });

record the point search time tl by benchmarking;
generate a range search query:

(r = {(kl 1, k l2), (km l, km2) e D }

calculate the accuracy ac of the range search;
ac = no. of data items requested / no. of data items searched which satisfy the
query;
* calculate the number of buckets need to be covered by the partition for the
range search *
store the total time used for the range search;
store the total number of data items requested;
* calculate the average range search time for a data item *
t2 = total time used / total items searched
* calculate the average search time *
T = (tl + 12) / 2;
* store the results in the database profile *
store point search time: tl;
store range search time: t2;
store average time: T;
store range search accuracy: ac;
* ac reflects the quality of partition for a range search *
store storage utilisation: Su;
* for different ALT[id] the calculation will be different *

}

The performance is evaluated for an application which has already been implemented
by a chosen algorithm. The result is compared with a chosen AAP and the outcome of
the comparison is used for adjusting rules. For different implementation algorithms the
performance evaluations are detailed in Appendix A6.

The similarity comparison
To capture the features of a data set, the process is analogous to a m-d matrix. The data
distribution can be reflected by the zero and non-zero elements if each element
indicates the number of data items and the position in the matrix indicates the position

107

in the given space. For an even distribution the condition is such that the value of each
element in the matrix approximates to the size of buckets b or the number of elements
which are over the value b and the number of zero elements are small. Based on this
idea the degree of an even data distribution can be measured by the accumulated
differences between the number of data items in a grid cell and the bucket size.
Similarly, to represent a sparse matrix and a full matrix in the computer different
methods have to be used in order to store a full matrix or a sparse matrix efficiently. To
store data with different data distributions different partition strategies are considered
to cater for different requirements. If we use the example shown in Figure 4.29. we
can store the graphic diagram for a data distribution in an array:

o
0 o

6
° O

7

o
° o

14

o
o o
15

O
4

O
0

o O
5 O

o o
12 13°

o o

1

o

o
o

o O

o °° 10 E

o
O

o

o

o O

o 2
° o

8
o °

9 0 o
o °° o

/ \

2 0 3 3

2 4 5 2

2 3 0 3

5 4 3 3

\)

Figure 4.29. Array representaion for a 2-d search space.

To represent data distribution in such a way, matrix transformations can be applied to
symmetric pattern recognition. The reason is that symmetric patterns can be regarded
as having the same data distribution features.

The degree of similarity is defined in the rule base. The function of the similarity

108

comparison is to derive the deviations between the data about the database and a
chosen AAP and then inspect the rule base to identify the degree of similarity.

ALGORITHM:
The similarity comparison algorithm is invoked by a system trigger when an
unsatisfactory performance is detected.

similarityO

{
search the database profile for the data set concerned;
construct a profile for the application in the form of the AAP;
search the AAP for an application type;
calculate the deviation of the chosen AAP from the application profile;
search the rule base to decide the degree of the similarity;
search the rule base for the recommended implementation algorithm if satisfied
similarity is found;

}

The algorithm is a narrative which will be detailed by the rule base.

109

4.4. The Rule Base
The rule base describes how the information stored about a database is used. It
gives criteria to classify application types and provides means to choose a particular
implementation algorithm or split strategy. Classification of an application is the
basis for selecting an algorithm. The algorithm selection is similar to a medical
diagnosis. The expert system needs to classify applications based on their features
according to the stored profiles, reflecting past circumstances, in order to choose an
algorithm of physical organisation. Similarly, a doctor needs to classify his patients
based on their actual symptoms according to his stored knowledge, which reflects
his experience and expertise developed in the previous cases, to give a prescription.
For each application the system stores a set of data which indicates its
characteristics. Those applications with similar features to a stored AAP are
recognised by the system as the same application type. A new application can thus
be identified by the system decision rules, classified as an existing application type,
and processed accordingly.

4.4.0. Matching revisited
One of the heuristic problem solving techniques is heuristic matching. This
matching process explores a solution by identifying similarities between features of
a known problem (experience, learned domain) and that of a new problem (to be
tackled). This approach is useful especially in situations where the features of the
new problem cannot be determined when a solution is needed; or by analysing pros
and cons of a particular solution against the features of the new problem, placing
emphasis on salient features of the problem and tackling it by knowledge of a
particular solution which is designed to cater for these features. There are a variety
of matching techniques devised for pattern recognition and image processing
problems [HE88] [H088] [PL84] [DE78] [SH78] [F088] [W078]. However,
there are only a few schemes [WA84] [MI90] employed for problem solving. In this
section, we review various matching techniques briefly and concentrate on how
heuristic matching can be deployed for problem solving.

Several commonly used approaches to knowledge representation are: the logic
representation [FR86] [JA89], production systems [VA89] [FR86], frames [VA89]
[FR86], object-oriented representation [BU89] and semantic networks [FR86],
Each representation approach is suitable for a range of problems. However, each
approach involves the concept of matching, especially frame and object-oriented

1 1 0

representations.

The concept of matching is based on the idea of discover similarities /distortions
among two or more structures /objects /subjects /relations/ patterns, etc. The
matching techniques are mainly used in image or pattern recognition and production
interpreters [HE88] [F082] [F088] [H088] [SH87a]. For pattern recognition the
problems to be solved are to find similarities between a set of shapes (known
pattern) stored in a knowledge database and an object to be recognised (new
pattern). These stored shapes are represented by their features and used as goal
status or samples; and these objects are compared with these samples/shapes for a
match. A match can be exact/clear and inexact/fuzzy. Here the word 'exact' depends
on a set of goals. For example, match can be done on size, knowledge structures,
topological structures, features, etc. Some patterns can be described accurately by
mathematical formula, such as a rectangle, a circle, a polynomial curve, a sine curve
and so forth. However, the difference between a mathematical representation and a
pattern match is that the former cannot cope with distortions and irregular shapes
efficiendy. This is because irregular shapes are difficult to represent accurately,
distortion to a regular shape cause irregularity. The latter does better.

Few matching techniques have been employed extensively to A.I. problem solving
[F082] [WA84] [MI90]. However, there are demands to develop such techniques
in the domain of certain range of problems, where an efficient solution can be
introduced by heuristic matching. For example, there are situations when an expert
system is used to find a match between a set of known environment profiles and a
unknown profile, where the match conditions are based on experience. In addition,
a unknown profile is dynamic. In such situations, heuristic matching techniques can
be effectively applied to implement the match process. The reason is that the
complexity and dynamic features can be handled by introducing matching rules,
which are based on heuristics. Heuristics avoid and eliminate extensive details and
explore optimal paths to a solution. A real-time fault diagnosis system can involve
combinations of various possible faults that are too complicated. In such a system,
heuristic matching can be introduced to implement this diagnostic control. This is
done by accumulating fault knowledge acquired previously and representing the
knowledge as a known profile or by analysing critical fault conditions and storing
this knowledge as a set of profiles in the knowledge-base. These profiles are
deployed to match with a real-time collected sample data to predict if a similar fault

111

is going to occur. Heuristic matching is carried out by analysing a profile (a profile
= features + relationships) of a problem domain and comparing this profile with a
set of known profiles (either from real world or from results of simulations) in the
knowledge-base to find one which satisfies a set of heuristic conditions for a match.
This analysis distinguishes the salient features from other less significant features
and treats them separately, either by attaching different weights to them or by
searching structure construction, differentiating major factors from minor ones.

In this section we mainly review match techniques and discuss how matching can
be applied to inference processes.

A brief literature survey
There are various matching strategies [F082] [G077] [M084] [DA88a] [DA88b]
[H088] [MI86] [PL84] developed in the last decade. A particular strategy is
suitable for a set of problem domains. Some problem-solving processes concentrate
on the induction process. Some focus on the reasoning process. To perform
problem-solving process as a variety of representations can be introduced
depending on more or less the strategy to tackle the problem of interest. These are
transformation - from initial state to a goal state; matching - mapping problem
features to a solution space, etc. For example, analogical reasoning aims at the
transformation from one status to another one in interest; approximate reasoning
emphasises (1) inversion, (2) aggregation, and (3) cascading; and heuristic
reasoning emphasises on experience, and educated guesses. In this section, we
place emphasis on matching strategies.

Matching is mainly classified into several categories: template matching [G084]
[H088] [M084] [DA88a] [DA88b], where the matching process is based on a
predetermined profile - the representative/template frames; partial and best matching
[WA84], where descriptions of two or more objects are compared; a feature
extraction matching [LE88], where an object to be matched is decomposed into
several sub-objects or primitives and extracted features of each sub-object are
deployed for this matching process; probability matching is where probability
function is introduced to implement the matching process, predicting the possibility
of a pattern likely to satisfy a match condition; RETE matching [F082], applying a
OPEN and a CLOSE set to match goal by removing an element from OPEN set to
CLOSE set through evaluation of working memory of a production system to

112

update conflict set; and TREAT matching, which is an improved variant of the
RETE matching, removing redundancy introduced by RETE matching via a
hierarchical layers based on operation types (addition and deletion). Heuristic
matching can be a new candidate to this classification, which utilises the rule of
thumb to implement the matching process, in contrast to the exact matching
algorithms, to tackle problems with dynamic, complex, unpredictable features and
allowable error rates (inexact/fuzzy match).

In recent research [BU89] on expert systems, matching mechanisms have been
discussed in two contexts: first in a variety of research on pattern recognition and
secondly in research on inference strategies. The author states that:
"Mechanism with pattern matching is a basic mechanism. In rule-based systems the
inference engine uses it to apply a rule. In an object centred representation,
matching is to be able to compute all the objects which are instances of a special
class called filter. In mixed systems, matching is used to find objects on which the
inference engine must apply a rule."

Pattern matching and image processing
Pattern matching techniques are mainly applied to pattern recognition. But the
analogical reasoning problem solving can also use these techniques. Visualising a
problem solving process, a solution can be based on: (1) an analysis of a known
problem features, namely, a new pattern; (2) the objective for seeking a solution,
i.e. allowable distortion; and (3) a satisfactory solution for a similar situation, that
is, an existing pattern, which forms the basis of recognising the new pattern.

Template matching
Template matching [G084], developed for image processing, compares a targeted
frame to a group of predetermined templates and calculates accumulated errors. A
threshold is given to measure the acceptability of accumulated errors. Template
matching is a calculation-intensive process. It can only be used in predictable
situations where the likely image/pattem to be identified is known beforehand. It
cannot handle unpredictable dynamic situations because the templates / windows,
which are used as criteria to identify an unknown image, have to be stored to do so.

113

Partial and best matches
Partial and best matches and their application fields have been described and
identified in [WA78] respectively. Partial and best matches are defined in [WA78]
(page557) as " a comparison of two or more descriptions that identifies their
similarities. Determining which of several descriptions is most similar to one
description of interest is called the best-match problem". Furthermore, the author
has stated that "Partial and best matches underlie several knowledge system
functions, including analogical reasoning, inductive inference, predicate discovery,
pattern-directed inference, semantic interpretation, and speech and image
understanding". However, the author also pointed out that partial-matching is both
combinatorial and ill-structured, admissible algorithms are elusive. Tree-matching
[CH84] can be classified into partial and best matching category. Tree-matching
represents the objects to be compared by tree structures. The matching is carried out
by transforming one tree to the other. The similarity is measured by distance. A
distance between two trees is defined as the minimum number of basic operations
necessary to transform one tree to the other.

Example
Given two object patterns A and B, a partial matching is an A into B matching. A
best partial matching is the matching which assigns the highest number of objects in
A in to B. i.e. a maximum number of objects has been matched from A into B.

RETE matching
RETE matching [F082] is developed for production system interpreters. It is
claimed that it is an efficient algorithm to find all objects which match each pattern.
In a production system, RETE matches the content of the working memory with the
rule set to change the conflict set. It represents the rule set as a tree structure and the
LHS is SELECTED and JOINED as resulting set to update the conflict set. An
example can be seen in [MI90] pages20-24.

TREAT matching
TREAT matching is a variant of RETE with performance improvement in terms of
memory and search speed. TREAT aims at reducing redundancy of memory.
Different levels of status in the working memory are categorised for old partition,
add partition, delete partition. Delete is dealt with by matching the deleted element

114

with the table in the conflict set. The table which contains the matched element is
then removed. The algorithm is described in [MI90] page 30 and examples showing
TREAT in action can be referenced from the same book on page 29-34.

From the above review we can see that matching, in essence, is to find EQUALITY
among the concerned objects. This equality can be either measured by similarities or
dissimilarity. Matching efficiency depends on a well-structured representation. For
example, tree representation is suitable for waveform image [CH84] because the
waveform has peaks corresponding to nodes of tree structure, but may not be
efficient for others. A multiple template matching, which employs a tree structure
[LI86] outperforms sequential matching in terms of speed. A transformation
concept is easy to implement for small-scaled matching because a small matrix
representing a structure could be easily stored in main memory for comparison, but
it may be not that easy for a large-scaled matching.

An example:
Problem
Matching two small objects to find out distortion.

Representation
Two dimensional matrix for A and B respectively:

I aij = 1 if A has j^1 value for attribute i
A = {aij I }

I aij = 0 otherwise

I bij = 1 if B has j^1 value for attribute i
B = {bij I }

I bij = 0 otherwise

for i = 1, 2 ,..., n; j = 1, 2 ,..., m. Where n is the number of attributes, m is the
maximum number of values the attribute i assigned.

To match A to B, i.e. to transform A to B, an algorithm can be applied:
(1) initialise i = 1, distance = 0 (distance is used to measure distortion);
(2) initialise j = 1;
(3) compare aij with bij

115

if (aij = bij) then

{
if [(i < m) and (j < n)] then

{
j = j + l
goto (3)

}
else
{

if [(i < m) and (j > n)] then

{
i = i + 1
goto (2)

}
}
if (aij * bij)
{

if [(i < m) and (j < n)] then
{

j = j + 1
distance = distance + 1
goto (3)

}
else

{
if [(i < m) and (j > n)] then

{
i = i + 1
distance = distance + 1
goto (2)

}
}
if [(i > m) and (j > n)] then

goto (4)
(4) The distortion factor is value of the distance.

116

Inference Matching
Inference matching applies heuristics to derive solutions by similarity identification
and comparisons. In contrast to pattern matching, which is mainly based on
topological structure, inference matching can be established on feature matching,
relation matching, object matching, topological matching and the combination of
these matching. All of these are further synthesised as heuristic matching, which
forms the centre of this section.

Heuristic matching
Heuristic matching is suitable for a specific group of feature matching problems.
The features of these problems are that it is impossible represent the problem to be
solved in a way so that every single case is taken into consideration, i.e. it is not
practical to represent all cases either because the feature space become too large to
implement or the complexity caused by the features' fuzziness increases. The
characteristics of these features are: (1) they are used to determine courses of actions
based on a similar previous example whose solution has been found; i.e. a
solution is found by matching the feature of new problem to that of a solved
problem rather than finding a solution from a scratch; (2) they cannot be represented
and measured in accurate terms. That is to say, these features are either determined
on the rules of thumb, or on the structures of problems, or according to the analysis
of a particular situation. (3) these features are dynamic and may change if the
requirements and environment changes. For example, a database query profile for
determining the best access path is dynamically changing, one cannot predict an
exact feature pattern for it. In addition, the number of features required can also be
dynamic. Depending on the requirement emphasis, say storage utilisation or access
speed, the courses of actions could differ. With these characteristics, one may ask,
what are the implications of heuristic matching? Heuristic matching is applied to
solve problems of the following characteristics:

(1) An expert system where using rules of thumb is efficient: for instance, an
inference can be effectively conducted by searching the previous knowledge or
successful examples to establish a solution for a new situation, i.e. a new
problem P can be guided for a solution by using P', a solved problem. In many
situations, feature values can be difficult to decide upon for a specific case. These
situations require feature knowledge about their history to be kept. Instrument
diagnosis, for example, belongs to this category. In such an environment specific

117

values of usage period, temperature, pressure, when a fault is likely to occur can
be very difficult to decide upon, especially when a number of combinations of
these factors can play their role together, significantly different from considering a
single factor. However, if a fault is diagnosed, feature information can be
collected and stored for the specific moment when the failure occurred and can be
used as a reference knowledge for latter diagnosis to prevent the occurrences of
similar faults. That is to say, a knowledge-based diagnosis can employ the feature
knowledge about the previous instance, matching a current instrument to be
monitored, with the stored knowledge of a past similar instance to predict a likely
fault.

(2) An expert system where features extraction for representing a possible solution is
efficient. An analysis can be extracted from large number of resources for
solving a complicated problem. This analysis can be features used for problem-
tackling. Analogical reasoning, for instance, can be classified into such a
situation, where a solution to a new problem is base on a solution applied to a
'similar' problem. The dominant factors of feature extraction for an expert system
relies heavily on features chosen and measurement adopted.

(3) Feature values of a problem to be tackled are dynamic (changing) and difficult to
be predetermined or they are dynamically dependent on current environment or
situations. In such situation rules cannot be determined by accessing specific
feature measures. A set of profiles can provide a changeable framework for
heuristic matching.

These profiles are provided in hierarchies: a meta-level which represents what a
profile consists o f . They are relatively static, and include features as complete as
possible. Measurement-level which support feature values.

An overview of heuristic matching
Using heuristic matching to solve a problem P can be described as follows.
(1) Describe P using its extracted features.
Example
An intelligent stock portfolio management system extracts credibility,
recommendation grade, industrial, major market, annual sales growth rate, debt
ratio, fixed ratio, current values, current ratios, past years' financial results,

118

export amount, stage of life cycle (electronics, say, increase. Shipbuilding, say,
decrease), etc. as feature information. A fault diagnosis system can collect
pressure, temperature, environment parameters, etc. as its representative features.

(2) Assign priority to these features based on feature values and domain-oriented
knowledge the problem possesses.

Example
A skill match system used for recruitment, for instance, can use the job
requirements to assign priorities to various skills of a person. The job
requirements may distinguish highly demanded skills, special skills from general
skills. Highly demanded skill receives the highest priority to guide the skill match
process. Assuming R = {rl, r2, ..., rx} is a set of requirement set, Sy = {Sy 1,
S y 2 ,..., Syz} is a set of skills for person y, here y = 1 ,2 ,... , n, and n is the
number of persons available for the skill match. Employing the knowledge of
requirements, the highly demanded skills are firstly matched with each
individuals' skill sets. The advantage is to achieve better match performance by
eliminating individuals who do not have the highly demanded skills. For different
tasks, the determinant factors would be varied.

(3) Find a "similar" problem in the knowledge base P' for P by feature matching,
i.e. deploying knowledge of P'.
Example
In a fault diagnosis system, feature values in the previous case can be applied as
sample data for monitoring similar situations. These similar situations are Ps and
the previous cases are P's. P's are analysed and presented after analysis in the
knowledge base and are used as reference features for new situations.

(4) Utilise the solution for P' to guide a solution for P.
Example
In the skill matching process, feedback from previous successful or
unsuccessful matching can be analysed by recruitment consultants. The results
of this analysis is represented in the knowledge base for reference. In this
particular case, the knowledge may include effects of missing skills for certain
jobs - both as successful or unsuccessful instances. A programmer’s job
requirements may add a significant factor to hardware orientation; whereas the

119

significance may be proved to be irrelevant by large amounts of previous
successful match which ignore the hardware orientation, but the computer
language skills. In addition, the length of experience in the required fields may
prove to be insignificant for a dynamically changing environment, but may be
significant for the initiative of facing new challenges with self-learning
capability. As a result, newly added features and deleted features (stored as
knowledge) improve the success rate of the matching process.

Heuristic matching is employed for problem-solving where it is possible to
construct a profile. The profile can be represented at meta-level, which is
relatively static, covering as wide as possible for a problem domain; and at the
specific measurement level which is determined by individual cases and the rule
of thumb and can change during inference process. For instance, in a computer
hardware selection process, definition of scale (parameters of main frame,
mini-computer, and macro-computer - CPU cycle, size of main memory, size of
secondary memory, block size, e tc .) changes as hardware advances. The meta-
level profile contains a set of specific parameters which are used to describe
features o f interest. The specific measurement is made up of a set of thresholds
describing feature classes of a problem.

The meta-level profile is deployed to find all possible relevant features of a new
problem - reflecting the nature of a problem structure. A database, which holds
a set of abstract profiles, acts as standards/criteria for a heuristic match with
new problems. A heuristic matching inference structure can be illustrated in
Figure 4.30.

1 2 0

r
Profile

p == {Fl, F2 r F n } - Meta level

FI - <S11, S12, ..., Sia} - Measurement Level
F2 = {S21, S22, ..., S2b}

Fn = {Snl, Sn2, ..., Snc}

Where P is a profile, made of a set of feature
descriptions. Fi is a group of feature signatures,
indicating the spectrum of a specific feature.

Matching rules

£ |Sij(AAP) - Si j (AP) | < Tij
i = l

The rule is determined by heuristics for feature
match. This match looks at the signature difference
between an application abstract profile (AAP) and the
abstract profile (profile j) in the KBS.

Abstract Profile

AP = {Tlx, T2y, . ., Tn z }
where x, y, z are variables depending on a specific
abstract profile. Usually there are a set of AAPs
stored in the KBS
of applications.

representing di fferent categories

Figure 4.30 Heuristic matching inference structure.

121

The components of a heuristic matching are: (1) an abstract profile base, which is
used to store the meta-level profile and specific measurement; (2) a rule base,
containing the similarity rules, incomplete information processing rules, and
adjustment rules. From the diagram, it is clear that a successful heuristic matching
mechanism must keep the abstract profile base minimal and make the similarity
comparison simple and effective. This can possibly be realised by (1) merging
common elements of KB to reduce redundancy (high-level abstraction); (2)
embedding elimination rules whenever applicable (carefully choosing rule visitation
order).

Abstract profile base - design considerations
The practicality of using heuristic matching to solve a problem, is dependent on the
complexity of the abstract profile (size and representation). Size determines
knowledge complexity; representation decides the inference structure by which
paths a solution can be searched, based on known knowledge. To reduce the size of
the reference objects - the abstract profile size is the motivation of applying
heuristics. The reason is: (1) heuristics allow us to avoid the capture of a complete
spectrum of the profile instances, (spectrum represents features). Only information
about features at turning point (which influences solution) is recorded. (2)
Heuristics facilitate varied solutions to be applied to different situations. Thus the
construction of an abstract profile base involves educated guesses of a partition
strategy and experience over the feature spectrum. The partition is determined by
experience associated with the goals and employed as reference profile instances
which the matching process is based on. For example, a feature of a concerned
problem can be presented by a limited set of values, measuring the
degree/significance of the impact on the problem solution when one of the values is
presented.

The heuristic rule consideration
The key to a successful inference system is based on two aspects: accurate data,
right knowledge to carry out the inference; and a well-constructed inference
strategy. They both depend on acquisition and representation. For a heuristic
matching the following criteria are introduced for constructing profiles:

(1) simplicity: simple for similarity identifications.
Simplicity aims at reducing size of features required for similarity identification,

1 2 2

decreasing the steps involved for similarity identification (unnecessary matching
paths eliminated), and efforts demanded for constructing a profile for a problem
to be solved.

(2) generality: general enough to cover a range of problems (this also reduces the
size of the known feature profile set).
Generality depends great deal on selected features, which depicts the profile, the
meta-level representation of knowledge. Meta-level knowledge can be domain
independent or dependent. The meta-level controls are usually domain
independent, whereas, the meta-level features are domain-oriented. Hence a
meticulous understanding is the determinant factor for choosing these features.
In addition the taxonomy of the domain knowledge ameliorates this process.

(3) simple structure for easy implementation.
This criterion considers how to efficiently implement domain-knowledge by
computer representation. In particular this includes inference structures. For
example, a tree structure for wave representation is effective because the peaks
of wave can match the nodes in the tree structure.

(4) explanatory: matching solution/problem structure for easy explanation.
A complete knowledge base needs to provide adequate explanation facility to
users, allowing to ask WHY questions to the system. This implies that the
inference steps involved for a specific situation need to be reserved in the
system for reference.

A description of the heuristic matching
We introduce the following symbols before we describe the heuristic matching.
These symbols are:
HM - the heuristic matching process, represented by extracted features

based on domain knowledge.
APB - an abstract profile base.
AP - a set of abstract profile.
F - a set of names representing concerned features of a profile (meta-

level).
P - a set of instances of the abstract profile, containing its feature

information presented by concrete boundary values distinguishing

123

between various solution categories (measurement level).
V - specific value sets within the spectrum of features, indicating a

specific profile instance, measuring a specific instance (feature
measurement level).

HR - set of heuristic rules.
Ax - an application /object /relationship /model/problem) identification
Cx - a set of category information of Ax, depending on measurement

level.
Ex - a set of data gained for a specific Ax of interest (measurement for a

specific profile instance).
? - a missing value in the spectrum of a feature/measurement. This

happens either as a specific value cannot be determined by the time it
is required or user does not have any knowledge about it.
S - thresholds to measure the similarity between an abstract profile and a

considered profile.
W - the weights given to features in consideration.

Having defined the above symbols we have APB(meta) = {F,AP, HR} at the meta-
level:
where F = {FI, F2, ..., Fq},

HR = {HR1, HR2, ..., HRm},
AP = {API, AP2, ..., APx};

we then have APB(data) = {P, V, W, S} at the data level:
where P = {PI, P2, ..., Pn},

V = {VI, V 2 ,..., Vn},
W = {W l, W2, ..., Wq},
S = {SI, S2, ..., Sq};

we also have Ax = {Cx, E x} at the specific problem level:
where Cx = {Cxi, Cx2, ..., Cxr}

Ex = {Exl, Ex2, ..., Exq}
in which Exj can have missing value ? for j = 1, 2 ,..., q.
The heuristic matching process can be described as:

n
HMi(Vi,Ei) => min (I lExi - Pil)

i= l

124

n
HMi(Vi,Ei) => min (X Wi lExi - Pil)

i= l

where Wi x lExi - Pil = Sxi(Exi, Pi, Wi). Pi is an expected value for selecting a
solution x in terms of attribute i, and Exi is an estimated value for problem to be
tackled; and Wi is the weight value for feature i. If there are m attributes to be
considered, i ranges from 1 to m.

Fuzzy information processing
The objective of employing the fuzzy set concept is to reduce the complexity of the
world we are going to represent by introducing a way of representing the vagueness
of information. This concept is used where a sharp line is difficult to draw or clarity
does not exist. For example, it is difficult to define a degree of clear sky or cloudy
sky; it is not helpful to answer the question Is it farther in distance from New
York City to London or from Washington D.C. to London? " by how many centre
meters between New York and London.

Vagueness in describing data distribution, for example, can be described as even,
uneven, and relatively even, fairly even, almost uneven and so on. These terms are
fuzzy because no clear boundaries can be drawn to distinguish between even and
fairly even data distributions. Employing the fuzzy set concept, these fuzzy terms
can be defined by a function, Deven, where 0 < Deven < 1. In addition, it is not
clear what range of data distribution will match the ability of an access algorithm
optimally. In description, we can confidently say that the quantile-hashing algorithm
deals with uneven data distribution better than z-hashing algorithm; PLOP-hashing
algorithm handles dynamic situations better than quantile-hashing algorithm.
However, it is very hard to say in what circumstance an optimal match between an
algorithm and an application is achieved because this knowledge has to be gained
and built into the expert system by implementing and analysing a number of
applications. Furthermore, features of a problem are dynamic, which implies that an
optimal initial match will not mean an optimal match during the life cycle of an
application. The dynamic features will be dealt with by performance tuning.
To deal with the fuzziness involved in the experimental system effectively, the fuzzy
set concept has been introduced to represent features in their spectrums. This
representation will be divided into two levels for introducing changes to knowledge

125

stored for performing heuristic matching, selecting and tuning tasks.
The first level defines the relationship between fuzzy terms and their
corresponding fuzzy sets, the second level defines measurement relates to a
specific solution. The logical representation can be illustrated in Figure 4.31.

Figure 4.31 Fuzzy Information Logical Representation.

In the diagram, different types of lines represent varied degrees of fuzzy terms. A
relationship is established between the spectrum of individual features and a
particular solution which prefers a specific range of a feature specified by its value
in the fuzzy set.

1 2 6

Since matching is designed to find similarity or dissimilarity among more than two
objects, sometimes, similarity can be measured quite accurately. For example, two
rectangles can be measured by their length and width against each other; two circles
can be measured by their radii against each other. Sometimes, the similarity is
difficult to be represented accurately. For instance, two complicated images will be
very tricky to be compared either due to the complexity of representing an accurate
resolution or due to distortion among one of the images. Furthermore, the
definition of similarity is very much objective-oriented: similarity could refer to the
minimal difference introduced from one object to the other (an analogical
similarity); similarity could allow symmetrical information to occur in different
orders or positions from one subject to the other (a reflective similarity); similarity
could also refer to structure equality without concerning the size (a topological
structure similarity). Heuristic matching is developed to overcome the difficulties of
incomplete and fuzzy situations and reduce complexity caused by constructing exact
profiles. Rules of thumb are utilised to establish the matching process according to
the goals of an application system.

4.1 Heuristic matching - the control strategy
To simulate heuristics, it is important to consider the control strategy. One of the
major differences between thinking or solving problems based on rules of the
thumb (experience) and based on an algorithmic approach is characterised by the
control strategy - heuristic judgement. Applying rules to tackle a problem, the
visitation order of rules makes differences in terms of efficiency to arrive at a
solution. Moreover, the steps involved in heuristic matching are changeable, i.e.
for different situation or requirements, some steps can be skipped (eliminated). An
example of this is that, at a certain point of tackling a problem, the salient features
of an instance considered, which meets a particular goal (solution), further
judgement can be skipped. In other words, the control strategy states the following
facts: if path i is satisfied then skip all the rest. Here path i is one of shorter paths to
the solution in the inference engine.

When facing a set of feature information belonging to a problem to be considered,
what is the best visitation order of an applicable rule set? In this section the answer
to this question will be discussed.

127

What respects should we consider to address the control strategy? The following
will be considered before constructing a visitation order.
(1) analysing feature significance based on the value of a signature;
(2) analysing inter-relationship between features;
(3) analysing possibility of excluding visitation for some rules at early stage

(eliminating rules).

Based on the analysis, a matching between the results of the analysis and the rule
structure are used to determine the visitation order of the rule set. This
consideration will allow the system to skip unnecessary parts of the rule set. The
process can be shown in Figure 4.32.

Parameter«:

Rule set to be visited;

Weighting factor;

Segmentation factor; etc.

I
RULE SET TO DECIDE THE ORDER OF TH E VISITATION ORDER

I
Sequential Classification Weighting

Rule 1 Rule 1 Rule 1

Rule 2 Rule 2 Rule 2

Rule x Rule x Rule x

For small set of rules

OR

For vary fast processors

For certain range of
problems

OR

For parallel processing

Application-dependent
order based on salient
features.

The first one la pre determined;

the second is decided based on process speed and H/W;

the third is an application-oriented decision:
- frequency of a specific rule visited;
- importance of a particular feature of an application;
- significance of a specified group of core rules.

Figure 4.32 Constructing the order to visit the rule set.

128

For any problems, rules concerning its scale and life span will be examined to
determine whether further consideration is required. Following this step the
possibility of elimination is further cared for. The salient feature of a problem is
considered; paths leading to solutions which fail to satisfy the requirements by
important features are eliminated. A high Wi (where Wi is the weight given to
attribute i) indicates that rules relating to attribute i will be visited firstly. If one of
the chosen abstract profiles matches the problems of interest the solution used for
this profile is selected. If none of the other attributes are matched with the these
profiles, the visitation of the attribute j with the next highest Wj is triggered.

Searching considerations
Search consideration concerns two issues: (1) the physical data structure for storing
knowledge needed to tackle a range of problems; (2) a set of search algorithms that
can be effectively applied to this structure to cope with changes, and to achieve
necessary accuracy. The first issue depends on characteristics of a problem in hand;
the second issue is analogical to physical database design.

Much literature in A.I. has been concerned with search strategies [RI88]. Heuristic
approaches are also considered. Similar to any techniques for problem solving, the
characteristics of problems are important factors to consider. A problem, which
requires a large body of knowledge to tackle it, is favourable in the heuristic search
approach (in order to achieve a near-optimal solution); the solution to a problem,
that needs great accuracy, may introduce intensive searches to achieve that goal
using the cluster technique, which gathers similar features together, and can reduce
the efforts of an intensive search.

Conclusion
Matching techniques are widely used in information systems. A production system
employs the matching concept to derive solutions from LHS and working memory;
an image processing deploys the matching concept to compare a predetermined
template with images to be recognised; a pattern recognition uses the matching
concept to find similarities and distortions of a criteria and a pattern, using
heuristics as part of the mechanism.

129

4.4.1. Initial algorithm selection
To compare an application with an AAP the performance stored in the DBP is
transformed into the same scale and categories of the AAP. In sections 3.2.1. and
3.2.3. an initial database profile from USI and a complete database profile DBP are
defined respectively regarding the data and query features, environment constraints
and application performance. An AAP concerns data distribution, query features
and performance. The rules, which perform selection of an algorithm by application
classifications, are introduced in several forms: initial algorithm selection rules,
similarity comparison rules and heuristic decision rules. They aim at facilitating the
selection of algorithms.

An initial database profile established by the system through the USI, provides
information by itself, to identify its category. In section 3.2.1. the USI has been
defined in terms of data requirements and environmental constraints. How do we
use the information to recognise the characteristics of an application? The rules
constructed here will guide the system to make use of the information gained from
USI. The framework is pictured as:

130

In the AAP base each application type is given a set of values for a number of
parameters. They are used as the basis for a similarity comparison. To
accommodate incomplete information supplied to the system, data about various
applications needs to be collected and analysed. The results of the analysis are
stored in the form of an AAP in the system. These AAP profiles are classified
according to their application areas (applications with similar features are
categorised as the same area, i.e. their features fall in the same range of
measurement) and are used as a source of incomplete information supply for an
initial selection of an algorithm. If a desired AAP, which is within the same
application class, cannot be found in the system then the system will make
assumptions to complete the missing data. These assumptions may be inaccurate so
that the dynamic tuning and monitoring process will take care of it later. As this
application develops it can gradually be formed as a new AAP profile being added
to the system. The system mainly deals with two levels of tuning:
(1) static level - initial selection of an implementation algorithm;
(2) dynamic level - monitoring salient performance changes to the database.

The information concerned here is dimensionality m, resolution level r, bucket size
b and information about data distribution. The values of m, r, and b are decided by
the application search space and data set size. Other information is derived from
partitioning the data space. As described before C[i] for i = 1 ,2 ,..., r are stored by
the system. The information in a useful form will then be derived from the obtained

data through the USI. It is described below.

r is used as an estimated resolution level for partitioning the data space.

data distribution: data distribution relates to C[i] for i = 1, 2 ,..., r from which a
set of parameters (d(even), Nover, Nempty, p, Ld(si) for i = 1, ..., m, j = 1, ..., sj
can be derived. They are defined in Appendix A7.

At this initial stage information is obtained from the USI. The application is not
compared with the AAP for simplicity. The AAP, if found, is used to derive
missing information. This is done by searching the AAP base for an ATx (see the

n x (1 + Ir)

b

131

example in section 4.8.). If no ATx is found the system will generate a sample data
space by a given n to derive required information under some assumptions, such as
resolution r and a given bucket size b. Other alternative ways of deriving missing
information can also be introduced. As required information is supplied the rules
will classify an application according to an applicable algorithm. Each rule will have
an explanation text associated with it. During the process the values of each
parameter used for reasoning are recorded in a system template to assist the
reasoning explanation. This will be discussed shortly.

Eliminating rules
A rule set should be constructed based on heuristic knowledge, which can make the
reasoning simple. Making decisions on heuristics, a search path for a solution can
be formed by using the most dominant factors (called salient factors) if they are
known. For instance, considering physical database design, if the access time is an
important factor to be considered and the size of a data set is large then the first rule
set Rsetl (rules for selecting the EX CELL algorithm) can be skipped. The search
for a solution thus uses the idea of elimination to skip unnecessary rule searches
that are not likely to support the application. We classify these rules as 'eliminating
rules'. Employing the same principle, matching working memory with the LHS can
be implemented by given a set of salient factors, resulting in a dynamic sequence of
rule match.

The eliminating mies:
ER1 = { lindexl < M - > ALT[1] }
ER2 = { (tm <LS) ~> ALT[1] }
ER3 = { ((Td > 2 x Tsec) and (d(even) < d 2)) —> ALT[1] }
ER4 = { ((d(even) < d l) and (Dyn < d y l)) ~> ALT[2] }
ER5 = { ((d(even) < d2) and (Rs < r l)) ~> ALT[3] }
ER6 = { (Dyn > dy2) ~> ALT[4])
ER7 = { ((Dyn > dy2) and (d(even) > d 3)) ~> ALT [5] }
ER8 = { ((Dyn > dy2) and (Ds = {obji for i = 1,..., n})
Initially we set:
M = 64K, LS = 1 week
d l = 25%, d2 = 30%, d3 = 40%
dyl = 10%, dy2 = 50%
r l = 50%

--> ALT[6] }

132

i.e. we translate these rules as:
ER1 = { lindexl < 64K ~>
ER2 = { (tm < 1 week) —>
ER3 = { ((Td > 2 x Tsec) and (d(even) < 30%)) ~>
ER4 = { ((d(even) < 25%) and (Dyn < 10%)) -->
ER5 = { ((d(even) < 30%) and (Rs < 50%)) ~>
ER6 = { (Dyn > 50%) -->
ER7 = { ((Dyn > 50%) and (d(even) > 40%)) ~>
ER8 = { ((Dyn > 50%) and (Ds = {obji for i = 1 , n}) -->
As new knowledge is added to the system the values can be altered.
The meaning of these rules can be interpreted as:
Rule ER1
IF: lindexl < M
THEN: ALT[1]
REASON: if the index file can be stored in main memory then choose ALT[1]

(the EXCELL algorithm)
Similarly for the other rules.
These eliminating rules are constructed based on the idea that the conditions
(premises) spell out the critical factors that an algorithm (conclusion) is likely to be
applied to its best advantage.

ALT[1] }
ALT[1] }
ALT[1] }
ALT[2] }
ALT[3] }
ALT[4] }
ALT[5] }
ALT[6] }

For each eliminating rule there is an attached explanation:
EER1: since the index file size calculated according to the partition PT1 is

small the EXCELL algorithm is chosen and no further judgment is
required.

EER2: since the life span is short (determined by the value of LS) we choose
EXCELL algorithm.

EER3: since more than one secondary device access is allowed, and the data
distribution is relatively even, the EX CELL can be chosen without
further consideration.

EER4: since the data distribution is even the z-hashing can be selected and all
other rules are skipped.

EER5: since quantile-hashing can deal with a dynamic situation reasonably
well and it preserves the geometric proximity as the z-hashing it is
selected without further consideration.

EER6: since the insertion and deletion rates are high the PLOP-hashing is

133

chosen without further consideration.
EER7: since the insertion and deletion rates are high and the data distribution

is non-uniform the BANG file algorithm is chosen and no
further rules need to be applied.

EER8: since R-tree can cope with an object database well, especially when
the size of the objects and the database may alter, it is chosen for a
dynamic object database without further consideration.

The eliminating rules do not necessarily provide the best solution in terms of
performance. They are used as the first set of rules for initial algorithm selection,
where the considered application has a specific feature that matches a particular
access algorithm, because an algorithm which provides the best performance may
not offset the effort.

Initial algorithm selection rules
ATR = {ATR1, ATR2, ..., ATR6}

= {EXCELL, z-hashing, quantile-hashing, PLOP-hashing, BANG file, R-
tree}

Rules for assigning weight for initial algorithm selection
There are four conditions to be examined; each one can be assigned a value from {
0, 1, 2, 3 ,4 , 5 } according to its significance. The corresponding significance can
be translated as {0 --> not concerned, 1 ~> not important, 2 — > little importance, 3
—> leave to the system to decide, 4 — > important, 5 —> very im portant}. The
following WRi for i = 1, 2, 3, 4 demonstrates the meanings of these assigned
values. More values can be introduced to represent refined degree of various
features.

W RI = {

WR2 = {

memory size is not concerned —> w3 = 0,

not important —> w3 = 1,
of little importance —> w3 = 2,

leave to the system to decide —> w3 = 3,

important --> w3 = 4,

very important —> w3 = 5

expected storage utilisation is not concerned —> w l = 0,

134

not important —> w l = 1,
of little importance —> w l = 2,

leave to the system to decide —> w l = 3,

important --> w l = 4,

very important —> w l = 5 }

ability to deal with dynamic situation not concerned

--> w2 = 0,

not important --> w2 = 1,
of little importance —> w2 = 2,

leave to the system to decide —> w2 = 3,

important --> w2 = 4,

very important -> w2 = 5 }

fast range retrieval not concerned - > w4 = 0,
not important --> w4 = 1,
of little importance --> w4 = 2,
leave to the system to decide - > w4 = 3,
important --> w4 = 4,
very important --> w4 = 5 }

Note that the weight rules are mainly stored for associating meanings with each
weight value.

ATR1 - application type which chooses EX CELL as the implementation
algorithm.

ATR2 - application type which chooses the z-hashing as the implementation
scheme and so forth.

ATRA1 = { if status = 'missing' then action-1 }.
The rule says that if information is missing then execute action-1, which
selects an AAP from the system and fills in the missing information for
an application.

ATRA2 = { if priority = 'y' then action-2 }.
The rule tells us that if the user's requirements are to be considered then
execute action-2 assigning weights to different conditions.

ATR1 = { (lindexl < M),

135

ATR2

ATR3

ATR4

ATR5

ATR6

(dl < d(even) < d2),
(dy2 < Dyn < dy3),
(r2 < Rs < r3) —>
(lindexl > M) & (Td = 2 x Tsec),
(dl < d(even) < d2),
(dy2 < Dyn < dy3),
(r2 < Rs < r3) — >

{ (lindexl > M),
(d(even) < d l),
(Dyn < dyl) (Rs > r5) —>

{ (lindexl > M),
(d2 < d(even) < d3),
(Dyn < dyl), (Rs > r5) —>

{ (lindexl > M),
(d2 < d(even) < d3),
(Dyn > dy5), (rl < Rs < r2) —>

{ (lindexl > M),
(d(even) > d4),
(dy3 < Dyn < dy4),
(Rs > r5) —>

{(Ds = { o b jl,..., objn}) and (Dyn > dy5)
Initially we set:
Deven = { d l, d2, d3, d4 }

= { 20%, 25%, 40%, 50% }
DY = { d y l, dy2, dy3, dy4, dy5 }

= { 10%, 20%, 30%, 40%, 50% }
RS = { r l , r2, r3, r4, r5 }

= { 10%, 20%, 30%, 40%, 50% }
i.e. initially the rules are translated as:

ATR1 = { (lindexl < M),
(20% < d(even) < 25%),
(20% < Dyn < 30%),
20% < Rs < 30%)
(lindexl > M) & (Td = 2 x Tsec),
(20% < d(even) < 25%),

ALT[1],

ALT[1] }

ALT[2]}

ALT[3]}

ALT [4] }

ALT[5] }
-> ALT[6] }

-> ALT[1];

136

~> ALT[1] }
(10% < Dyn < 30%),
(20% < Rs < 30%)

ATR2 = { (lindexl > M),
(d(even) < 20%),
(Dyn < 10%),
(Rs > 50%) ~> ALT[2] }

ATR3 = { (lindexl > M),
(25% < d(even) < 40%),
(Dyn < 10%),
(Rs > 50%) ~> ALT[3] }

ATR4 = { (lindexl > M),
(25% < d(even) < 40%),
(Dyn > 50%),
(10% < Rs < 20%) ~> ALT[4])

ATR5 = { (lindexl > M),
(d(even) > 50%),
(30% < Dyn < 40%),
(Rs > 50%) --> ALT[5] }

ATR6 = { (Ds = {obj 1, ..., objn}) and (Dyn > 50%) ~> ALT[6] }

Using d(even), DY and RS to represent the boundaries allows us to change then-
values without affecting rules.

The meaning of these rules can be interpreted as:
Rule ATR1:
IF: (lindexl < M) or

(20% < d(even) < 25%) or
(20% < Dyn < 30%) or
(20% < Rs < 30%)

THEN: select ALT[1] = EXCELL

REASON: if the index can be stored in main memory and the data distribution is
reasonably even or the data set is not volatile or the range search rate is not high
then the EXCELL algorithm is chosen. Similarly for the other rules.

Obviously, several conditions may be missing and different emphasis may be

137

added to different factors. To determine which algorithm should be chosen we
evaluate all six rules to see which is optimal. This is done by constructing a
function h(ATRi). An example will be given in section 4.8 to show how a choice
is made by the six rules.

For each given rule the explanation text is given and will be shown in response to a
user's request and the reasoning process is stored in a template. For this set of
rules, the values used to calculate h(ATRi) are kept. These values are used to extract
relevant explanations.

Explanation
explanation 1 for ATR1
EXCELL algorithm is selected
(a) the first rule is used as the conclusion,
(b) the second rule is used in the selection of the algorithm,
EX 1.1 (a) the index file can be stored in main memory so that the algorithm is

selected for its simplicity,
EX1.2 (b) the index file cannot be stored in main memory, but the access time

requirement allows two secondary storage accesses,
EX 1.3 the data distribution is moderately even so that the index entries for

empty grid cells may offset the holes in the data file,
EX 1.4 the insertion and deletion rate is moderate and therefore the

reorganisation is done mainly within the index file,
EX 1.5 the range search rate is moderate since the proximity is only guaranteed

for the index file and not for the data set itself.

explanation 2 for ATR2
The z-hashine algorithm is selected

EX 2.1 the index file estimated for the EX CELL algorithm will exceed the
capacity of main memory so that an extra access is required for a point
search if the EX CELL algorithm is chosen,

EX2.2 the data distribution is even. This implies that fewer data holes will be
introduced by the z-hashing,

EX2.3 the insertion and deletion rate is low so that the possibility of
deterioration and reorganisation is reduced,

EX2.4 the algorithm has good performance for the range search.

138

explanation 3 for ATR3
The auantile-hashine aleorithm i§ selected
EX3.1 = EX2.1,
EX3.2 the data distribution is relatively uneven and the algorithm allows

controlled partitioning of the data space,
EX3.3 = EX2.3,
EX3.4 = EX2.4.

explanation 4 for ATR4
The PLOP-hashing algorithm is selected
EX4.1 = EX2.1
EX4.2 = EX3.2
EX4.3 the data set is highly dynamic (the insertion and deletion rates are high)

and the algorithm caters particularly for such a situation
EX4.4 the range search rate is relatively low as the flexibility of coping with a

dynamic situation may cause the loss of data proximity in the storage of
data

explanation 5 for ATR5
The BANG file algorithm is selected
EX5.1 = EX2.1
EX5.2 the data distribution is uneven and the algorithm divides the data space

into m-d cubes which minimise the performance deterioration caused
by an uneven data distribution

EX5.3 by redistribution of data items the chosen algorithm deals with a
dynamic situation reasonably well

EX5.4 = EX3.4

explanation 6 for ATR6
The R-tree al eorithm is selected
EX6.1 = EX2.1
EX6.2 = EX1.3
EX6.3 = EX1.4
EX6.4 = EX3.4

139

Since each rule includes a multitude of conditions, and it is not realistic that all of
them can be satisfied at the same time, a function is introduced to evaluate the
"condition matching" degree of each algorithm. This can be done by assigning
weights to each condition according to performance requirements. The above rules
have four conditions. According to the requirements of an application different
weights can be assigned to each of them, reflecting the priority of conditions. The
weighted values are formed flexibly with regard to the nature of an application and
performed by action-2 through to rules for assigning the weights.

An example
Suppose the information gained from USI is ATR = { lindexl > M, d(even) > 50%,
Dyn > 50%, Rs > 50% }. The action-2 assigns the following weights to each
condition: W = { w l, w2, w3, w4 } = { 1, 1, 5, 1 }. To make a judgment of
applying these rules a heuristic function h(ATRi) for i = 1 ,2 , 3, 4, 5, 6 is
constructed.

i=4
h(ATRi) = X xi

i= l
0 if the condition is not satisfied

where xi = {
wi otherwise

the weight wi is assigned according to the requirements and using rules WRi.

If max(h(ATRi) for i = 1 ,2 , ..., 6) = h(ATRx) then ALTx is selected as the
implementation algorithm. For the data given above we get:

h(ATRl) = 0 + 0 + 0 + 0 = 0
h(ATR2) = l + 0 + 0 + l = 2
h(ATR3) = l + 0 + 0 + l = 2
h(ATR4) = l + 0 + 5 + l = 7
h(ATR5) = l + l + 0 + 0 = 2
h(ATR6) = l + 0 + 0 + l = 2

max(h(ATRi) for i = 1, 2 ,..., 6) = h(ATR4) and therefore ALT4 = PLOP-hashing
is selected for the application.

140

Explanation
All of the above explanations are given under the condition that h(ALRi) is not
equal to zero. In the example, when ALT[4] is selected we can represent h(ALRi)
as a matrix form and store the matrix for explanation.

1 2 3 4

i = 1 0 0 0 0 = 0
2 1 0 0 1 = 2
3 1 0 0 1 = 2
4 1 0 5 1 = 7 <— ALT[4] is the choice
5 1 1 0 0 = 2
6 1 0 0 1 = 2

The explanation numbered ij where xj is of non-zero value and ALT[i] is the chosen
algorithm to be shown, i.e. if an explanation for the PLOP-hashing is requested
then the following information will be illustrated:
the PLOP-hashing algorithm is the choice
x l = 1
EX2.1 the index file estimated for the EXCELL algorithm will exceed the capacity
of main memory so that an extra access is required for a point search if the
EXCELL algorithm is chosen.

Storage utilisation is of little importance.
x2 = 0
x3 = 5
EX4.3 the data set is highly dynamic (the insertion and deletion rates

are high) and the algorithm caters particularly for such a situation.
Dealing with a dynamic situation is very important for the
application (since x3 = 5)

x 4 = 1
EX4.4 the range search rate is relatively low as the flexibility of coping with

a dynamic situation may cause a loss of data proximity in storage

141

The ability to deal with the range search is of little importance.
If ATR = { lindexl > M,

d(even) > 50%,
Dyn > 50%,
30% < Ps < 40%,
Rs > 50% } then we have:

i=4
h(ATRi) = I xi

i= l

0 if the condition is not satisfied
where xi =

wi otherwise

the weight wi is assigned according to the requirements and using rule WRi.

If max(h(ATRi) for i = 1,2, ..., 6) = h(ATRx) then ALTx is selected as the
implementation algorithm(s). For a data set given we get:

h(ATRl) = 0 + l + 0 + 0 = l
h(ATR2) = l + 0 + 0 + l = 2
h(ATR3) = l + 0 + 0 + l = 2
h(ATR4) = l + 0 + l + 0 = 2
h(ATR5) = l + 0 + l + 0 = 2
h(ATR6) = l + 0 + 0 + l = 2

max(h(ATRi) for i = 1, 2 ,..., 6) = h(ATRj) for j = 2, 3, 4, 5, 6 and therefore,
further decisions have to be made. At this point the system can ask the users
whether they wish to choose an algorithm by themselves or not. The choices given
to the users will help to narrow the solution space. If no choice is given then the
system will select the one with the simplest implementation. For an initial algorithm
selection the choices will be given in the following manner:

Please choose an algorithm you think the best according to the features given,
which may cause a problem:

142

ALT[2]: Cannot deal with dynamic situation well,
cannot deal with unevenly distributed data well
implementation is more costly than ALT[1].

ALT[3]: Cannot deal with dynamic situation well
implementation is more costly than ALT[2].

ALT[4]: Cannot deal with a range search well
implementation is more costly than ALT[3].

ALT[5]: Implementation is more costly than ALT [4].

4.4.2. Selecting an algorithm by a similarity comparison
Similarity comparison assumes that database applications can be classified into
various categories by features affecting physical database organisation. Those
features are used to derive a solution based on analogical reasoning. The
reasoning process assumes that if a defined similarity can be identified between
a new application (AP) and an existing application abstract profile (AAP), the
access algorithm applied by the AAP can be selected for the AP.

As a database profile is established gradually at different stages of an
application, a complete set of data about a database profile may not be available
at the time of the similarity comparison. In addition, different applications
emphasise different features and therefore, the system should allow flexible
classification of an application based on the available information of a database
profile. Furthermore, some parameters such as data distribution and
performance are important factors in the selection of an algorithm. Hence they
can be used to simplify tuning of a physical database by a weighting function.

The AAPs provide information about different characteristics of various data
spaces as criteria for the system. The system classifies applications into different
groups so as to give a basis for recognising the category of a current data set. If
the similarity between an application and an AAP has been identified, all
knowledge stored about the AAP such as the chosen implementation algorithm
and the evaluated performance can be used to guide our decisions to a near-

143

optimal storage of a data set. To recognise the similarity between an application
and an AAP the relevant features need to be defined and quantified.

We have chosen several implementation algorithms in our system. To carry out
the task of selecting these algorithms the criteria for classifying applications will
be considered in terms of parameters which influence the performance.

The rationale for selecting an algorithm by the similarity comparison is to apply
an algorithm successfully used for a similar application before a new one.
Hence the process is to make a comparison between an application and an AAP
and use the algorithm from an AAP upon a satisfied similarity degree. The
process can be described briefly as:
S(x, ATx) ~> ALT(ATx)
S(x, ATx) -similarity degree for application x compared with ATx in the AAP.
ALT(ATx) -the algorithm used for ATx.

In this section a set of parameters and rules are given for a similarity
comparison. A similarity function s(x) is introduced to measure the result.

To conduct a similarity comparison we briefly review the AAP.

Application abstract profile
AAP = { ACi for i = 1, 2 ,..., x }

Application class
definition level
ACi = { application area, definition }

detailed level
ACi = { ATi, ADi, AQi, PEi }

Data distribution
ADi = { m, r, b, Ddis }

Query type
AQi = (Qi, F, Ir, Dr, Ps, Rs)

144

Performance evaluation
PEi = (T, Su, ALT[i])

As an AAP is used as an image a database profile has to be of the same form as
an AAP.

Transform a database profile to the form of AAP
An estimation on resolution of the data set:

n(u)

r(U) = -------
b

n
r = ----------

b

r log2rl r log2r(u)l

if 2 = 2 then these parameters calculated from C[i] for i = 1, 2,
r can still be used for the data set in the DBPi, otherwise we may decide to

introduce a new resolution level. As the database profile changes during
database operations, alterations are made accordingly. If a data set is given
previously then r is determined and C[i] are used for recording the data
distribution. When an insertion or a deletion is made we will store the detail in
the system log file or in some other way in order to update the data distribution
information kept for the database profile. Similarly searches or retrievals will be
recorded by the system to update query information stored for the database
profile. An insertion will increase one to one of the C[i] for i = 1,2, 3 ,..., r of
the data set; a deletion will decrease one by one of the C[i] for i = 1 ,2 ,..., r;
keeping the Ddis data up to date. When there is a need to compare the database
profile and an AAP the required information about data distribution can be
deduced -Nover, Nempty, N(d), p and so forth. They are compared with a
chosen AAP by the similarity comparison rules. Since with the same resolution
the relative bucket size could be different from one data set to another a scale
transformation is performed before the comparison. Alternatively, data is
collected only at a critical point where a significant performance change has
occurred.

145

After choosing an application type ATi from the AAP we will view the
application type as an image and the application as an object. The similarity
comparison is carried out between these two and we shall use " '" to represent
data from an AAP in the knowledge base.

Transform DBP to AAP scale before similarity comparison
b(AAP)

C(DBP)[i] = C(AAP)[i] x --------------------- for i = 1, 2 ,..., r
b(DBP)

where C(DBP)[i] is the value obtained from DBP
C(AAP)[i] is the equivalent DBP value in AAP scale

b(AAP)
------------- is an image factor.

b(DBP)

after this scale transformation we can use C[i] for i = 1,..., r to represent the
values gained from AAP for similarity comparison.

Deviation of data distribution
i=r
X I C(o)'[i] - C(o)[i] I

i= l
DD =-..........---------- --------------

r x b
where C'(o)[i] and C(o)[i] represent C'[i] and C[i] in an ordered sequence.

Deviation for even data degree
I d'(even) - d(even) I

ED = -..........

Deviation for the number of overflow grid cells

146

I N'over - Nover I
OV =

Deviation of dynamic factor
DF = IDyn - Dyn'l

Deviation of point search rate
DP = IPs - Ps'l

Deviation of range search rate
DR = IRs - Rs'l

Deviation for the number of empty grid cells
I N'empty - Nempty I

OE = ---

Deviation for local data densities
x=sx
I I Ld'(x) - Ld(x) I

x=l
LD = ..

sx x b

Deviation for query frequencies
F = { fx l, fx2, fxm }
F = { f x l , fx2 , fxm }

F, F' are ordered frequency functions for the application and an AAP
respectively.

i=xm
FD = I Ifi - fil

i=xl
For the similarity comparison the above parameters are assessed on a set of
given thresholds. Similarity is measured by the degree of deviations defined by

y=sy
I I Ld'(y) - Ld(y) I

y=i

x b

147

the following rules.

Similarity comparison rules
SRI = {DD > 50%, < 5%, < 10%, < 20%, < 25%,< 50%}
SR2 = {ED > 50%, < 5%, < 10%, < 20%, < 25%, < 50%}
SR3 = {OV > 50%, < 5%, < 10%, < 20%, < 25%, < 50%}
SR4 = {OE > 50%, < 5%, < 10%, < 20%, < 25%, < 50%}
SR5 = {LD > 50%, < 5%, < 10%, < 20%, < 25%, < 50%}
SR6 = {FD > 50%, < 5%, < 10%, < 20%, < 25%, < 50%}
SR7 = {DF > 50%, < 5%, < 10%, < 20%, < 25%, < 50%}
SR8 = {DR > 50%, < 5%, < 10%, < 20%, < 25%, < 50%}
SR9 = (DP > 50%, < 5%, < 10%, < 20%, < 25%, < 50%}

A similarity function is constructed according to the actual values gained from
the above deviation range and an AAP. For each range in the rule we assign
values corresponding to its meaning and measure the degree of similarity. This
is denoted by s(SRi) = { 0, 5, 4, 3, 2, 1 } i = 1, 2 ,..., 8. The similarity
function is defined as:

i=m i=m s(SRi)
Z si(x) y

i=l mii=l

m m

m -the number of rules (m = 9)
mi -number of boundaries defined with non-zero value in each rule
s(x) indicates the degree of similarity in terms of the average percentage to
which the application agrees with a chosen AAP. Its value is between 0 and 1.
Each rule gives boundaries to measure the difference between two parameters of
an ATx in the AAP and an application values represented by s(SRi) for the
result. The greater the value of s(SRi) the closer an application approaches the
chosen ATx.

To explain the similarity degree assigned by s(SRi) = { 0, 5, 4, 3, 2, 1 } we

148

use SRI as an example:
SRI = {DD > 50%, < 5%, < 10%, < 20%, < 25%,< 50%}
s(SRl) = { 0, 5, 4, 3, 2, 1 }

IF: DD > 50%
THEN: s(SRl) = 0 sl(x) = 0
REASON: if the deviation is greater than 50% then the similarity is identified as

0 (insignificant similarity).

IF: DD <5%
THEN: s(SRl) = 5 sl(x) = 1
REASON: if the deviation is less than 5% then the similarity is identified as 5

(significant similarity).

IF: DD < 10%
THEN: s(SRl) = 4 sl(x) = 0.8
REASON: if the deviation is less than 10% then the similarity is identified as 4.

IF: DD < 20%
THEN: s(SRl) = 3 s l(x)= 0 .6
REASON: if the deviation is less than 20% then the similarity is identified as 3.

IF: DD < 25%
THEN: s(SRl) = 2 s l(x)= 0 .4
REASON: if the deviation is less than 25% then the similarity is identified as 2.

IF: DD < 50%
THEN: s(SRl) = 1 sl(x) = 0.2.
REASON: if the deviation is greater than 50% then the similarity is identified as

1.
Since the comparison is done in the order listed in the SRi, DD >50% will be
exclusive.

Several AAPs may be employed for a similarity comparison. The
implementation algorithm that matches the one with the maximum value of s(x)

149

will be chosen as an image for a given application. Performance measured and
the s(x) will be kept as the system knowledge to guide better search paths for
the rule base. For instance, if s(x) > 0.5 and the performance measured for a
given set of applications according to the AAP is satisfied for more than 0.8 of
chances, then s(x) = 0.5 can be used as a threshold to eliminate further
comparison. As soon as a degree of s(x) > 0.5 is found the search for the AAP
can stop. The reasoning process for an algorithm chosen by a similarity
comparison is a pattern recognition process. The decision is made by identifying
the way a similar application was processed in the past and the process is used
to deal with the new situation.

If the user asks why an algorithm was chosen then the system will show the
similarity degree, the ACi chosen for the application and the application class
including application area and definition, application type. The system can also
give details about the properties of the ACi if required. This is done by
searching both the recorded similarity and the AAP base. The logical
construction of the knowledge base is shown in Figure 4.33. It illustrates the
relationship between a conclusion, its reasoning structure, the facts and the
heuristics used to perform the reasoning.

150

RULES
(a) Eliminating rules (b) Initial alg. seL rules (c) Similarity comparison rules (d) heuristic rules

real data set estimation
performance for

each algorithm

Figure 4.33. The logical structure of the knowledge base.

151

The symmetric patterns consideration
To organise data we consider that the symmetric patterns are the same in terms of
similarity measurement concerned and therefore, in the AAP we only store one type
of each pattern once. A transformation from the real data set into the form
represented in the AAP is performed before the similarity comparison. An AAP
stores a pattern according to its accumulated local data density values, from the
lowest slice number to the highest, in the descending order of the value of local data
density. An application with a different local density order will be transformed by
changing the sequence of the slice numbers from ascending to descending order. A
2-d data space with Sx = (s i, s2, ..., sx) and Sy = (si, s 2 , ..., sy) can be
transformed into S'x = (s 'l, s'2, ..., s'x) where s’l = sx, s'2 = s(x-l), ..., s'x =
s i and the z-code is formed by S'x and S'y to perform the similarity comparison.
An illustration for all possible transformations is shown in Figure 4.34.

Ld(xO) = 0
L d(xl) = 6
Ld(x2) - 0
Ld(x3) - 8

Ld(yO) - 4
L d(yl) - 3
Ld(y2) - 4
Ld(y3) - 3

0 1 2 3

(c) .
Ld(xO) - 0
L d(x l) - 6
Ld(x2) - 0
Ld(x3) = 8

Ld(yO) - 3
L d(y l) - 4
Ld(y2) - 3
Ld(y3) - 4

0 1 2 3

(b) Ld(xO) ■= 8
L d(x l) - 0
Ld(x2) - 6
Ld(x3) - 0

Ld(yO) - 4
L d(y l) - 3

3 • •

2 ♦ *•

1

0 • * • •
Ld(y2) - 4
Ld(y3) - 3

0(3) 1(2) 2(1) 3(0)

(d)
Ld(xO) - 8
L d(x l) - 0
Ld(x2) - 6
Ld(x3) - 0

3 (0) • * • •

2 (1)

1(2) •• • ♦ Ld(yO) - 3
L d(y l) - 4
Ld(y2) - 3

---- Ld(y3) - 4
0 (3) • • •

0 (3) 1 (2) 2 (1) 3 (0)

For simplicity, Ld is calculated v ithou t being divided by (b x sx) o r (b x sy).
(a) (b) (c) (d) are regarded as the same pattern for their symmetrical properties

Figure 4.34. Symmetric patterns.

152

Selecting algorithms by similarity comparison is based on the idea that application
features such as data distribution and queries are difficult to describe by a
mathematical equation or a mathematical model. In addition, a number of database
applications are similar in nature and structures that they should be able to be dealt
with in a similar way for optimum efficiency. Moreover, as the number of
applications through the system increases better heuristics and measurements can be
obtained.

4.4.3. Algorithm selection by heuristics
To select an implementation algorithm several factors are involved.
(1) The distribution of data.
The distribution of data influences the selection of partition strategy. A good
partition will achieve a better storage utilisation. The data distribution is of a
dynamic property. We use a parametrised method to measure data distribution. We
abstract Nempty, Nover, etc. to represent the data features. The partition strategies
have been described in section 4.2.

(2) The access mode
The access mode can be measured by the percentage of data accessed in a run or in a
query or by the users' specification of application types whether it is real-time or
not. It reflects the volatility of the data usage. The calculation on what kind of data
organisation is to be used is described in Appendix A9.

(3) The query pattern
The query pattern is measured by frequency function F, insertion rate, deletion rate
and search rate. Different partitions, which are geared towards different attribute
frequencies, can reduce the physical distance between relevant data so as to optimise
the performance as a whole. The algorithm has been given in section 4.3.
In section 4.4.1, we have discussed various rules used for different implementation
algorithms separately. To make use of these rules, the priority and the search paths
need to be decided. As shown in the decision grid (Table 1). different
algorithms vary in implementation complexity. The table is shown in an increasing
order of complexity. The algorithm appearing at the last entry of Table 1 tends to be
more difficult to realise. Bearing this in mind, we aim to choose the easiest one if
the requirements can be met. Therefore the search strategy is selected considering

153

this factor. The table represents heuristic ideas to match properties of an application
to an available algorithm. To implement the idea we construct a heuristic function
h(x), which is a function of selecting an algorithm based on the properties of an
application. The heuristic function is used when there is no existing chosen ATi in
the AAP that matches the application.

possib le
case ->

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 2 3 24 25 26 2 7 2 8 29 30 m

tm i 1 v k Y N N N N N N N N N N N N N N H N N N N N N N N N N N N N N

lm i ,5ijr Y Y Y Y Y N

n < 10K Y N N N N Y Y Y Y Y Y Y N N N N N N N N N N N N N N N N N

n < 5 0 K Y Y Y Y Y Y Y Y Y Y Y N N N N N N

d i s l 2 0 * Y N N N Y N N N N N N Y N Y N Y N N N N N N Y Y Y Y N N

d is i4 0 SB Y N Y N Y N N N Y N N N Y Y Y N N N N N

d y n i 2 0 * N N N N N N N

iy n i4 0 S 5 Y N N N N N Y N N Y N N Y N N N Y Y

d yn i70SB Y N N

R s i3 0 9 5 Y N N Y N Y N Y N Y N Y N

P s i5 0 5 K Y N

S u i 5 0 * Y Y

Choices

EXCELL XX XX X X

Z-hash X X X X X

Quantile X X X X X X X X X

PLOT X X X X X X

BANG X X X X

Table 1. Matching the application properties to implementation algorithms

For conditions, “Y” indicates a satisfied condition; “N” represents an unsatisfied
condition and “ “ states unconcerned condition.
For choices, “X” indicates a selected algorithm.

154

Construction of h(x) on heuristics
Available algorithm set
ALT = { ALT[i] for i = 1, 2, x}

Property set
PRT = { Pj for j = 1, 2, y }

= {d(even), Rs, Dyn, Ps, Ds}

Heuristic function
h(x) = j where max(hi(x) for i = 1, 2 , y) = hj(x)

if there are more than one hi(x) which have the same value and happen to be the
maximum then we can choose the simplest one among them.

Pj=x
hi(x) = X hPj (ALT[i])

P H

fo r i = 1, 2, y

0 if Pj is irrelevant to ALT[i]
hPj(i) =

w(j) if Pj has j degree significance to ALT[i]

Decision rules on hpj(ALT[i])
Deven = { d l, d2, d3, d4 }

= { 20%, 25%, 40%, 50%)
DY = { dy l, dy2, dy3, dy4, dy5 }

= { 10%, 20%, 30%, 40%, 50% }
Ps ={ p l,p 2 p 3 ,p 4 , p5}

= { 10%, 20%, 30%, 40%, 50%)
Rs = { r l , r2, r3, r4, r5 }

= { 10%, 20%, 30%, 40%, 50% }
(1) The degree of even distribution
Deven = { d l, d2, d3, d4 }

= { 20%, 25%, 40%, 50% } is equivalent to

155

d(even) = { < d l, < d2, < d3, < d4, > d4 }
= { < 20%, < 25%, < 40%, < 50%, > 50% }

hDeven (EXCELL)
^Deven(z-hashing)
^Deven(quan tile-hashing)
^Deven(PLOP-hashing)

hDeven(BANG)
^Deven(R-tree)

Interpretation

= { 4, 5, 3, 2, 1 }
= { 5, 4, 3, 2, 1 }
= { 3, 4, 5, 2, 1 }
= { 3, 4, 5, 2, 1 }
= ^Deven(quantile -hashing)
= { 1, 2, 3, 4, 5 }
= { 0 } irrelevant

d(even) = { < 20%, < 25%, < 40%, < 50%, > 50% }

hDeven(EXCELL) = { 4, 5, 3, 2, 1 }

IF: d(even) < 20%
THEN: h = 4
REASON: if the data are evenly distributed then the z-hashing is the best choice

that leaves the EX CELL as the second choice.

IF: d(even) <25%
THEN: h = 5
REASON: if the data set is more or less evenly distributed then the EX CELL

performs the best.

IF: d(even) < 40%
THEN: h = 3
REASON: if the data set is less evenly distributed then the Quantile- and PLOP-

hashing can deal with it better than the EXCELL.

IF: d(even) < 50%
THEN: h = 2
REASON: if the data set is not evenly distributed then the Quantile- and PLOP-

hashing and BANG file can deal with it better than the EXCELL.

156

IF: d(even) > 50%
THEN: h = 1
REASON: if the data set is non-uniformly distributed then the EXCELL can not

The value is assigned by a relative comparison with other algorithms, i.e. a set of
properties of a feature can be selected to reflect a spectrum, a particular algorithm
should have an optimal position along this spectrum, which is determined by
experience and performance evaluation. Similarly for other parameters.

The values in hpj(ALT[i]) are given based on the judgement of how an algorithm is

capable of dealing with a property and they are assigned corresponding to the order

in the property list. For property d(even) there is a set of upper and lower

boundaries given in the property list. If an algorithm, say the EX CELL, deals with

non-uniform distribution reaso n ab ly well then it means that the EXCELL handles

uneven data distribution better than some algorithms, but some other algorithms
cope with uneven data distribution better than EX CELL. By referencing the ability
of other algorithms we give the highest value to hpj(ALT[i]) for the case of d(even)

< 40%. If x, y represents other algorithms and x does not handle uneven data as

well as EXCELL whereas y can handle it better, then hd(even)(x) <
hd(even)^(EXCELL) < hd(even)(y). So the h(x) value is determined by evaluating
the most suitable range of a feature that an algorithm can perform. For instance, if
algorithm A handles unevenly distributed data better than that of algorithm B,

algorithm A gain a higher score for unevenly distributed data than that of algorithm

B. Here we assume that the higher the score, the more suitable is an algorithm.

(2) Range search rate Rs
Rs = { r l , r2, r3, r4, r5 }

= { 10%, 20%, 30%, 40%, 50% } is equivalent to
r(s) = { < r l , < r2 , < r3 , > r5 , > r4 }

deal with it well.

hRs(EXCELL)
hRs(z-hashing)

={ 3, 4, 5, 1 ,2 }
= { 1 ,2 , 3, 5, 4}

157

hRs(quantile-hashing)

hRs(PLOP-hashing)
hRs(BANG-file)
^Rs(R-tree)

= hRs(z-hashing)

= {3 , 5, 4, 1 ,2 }
= hRs(z-hashing)
= { 0 } irrelevant

(3) Insertion or deletion rate
Dyn = Ir + Dr
DY = { dy l, dy2, dy3, dy4, dy5 }

= { 10%, 20%, 30%, 40% 50% }
Dyn = { < dy l, < dy2, < dy3, < dy4, > dy5 }

hDyn (EXCELL)

hDyn(z' hashin&)
hDyn(quantile-hashing)
hoynCPLOP-hiishing)
hDyn(BANG file)

hDyn(R‘tree)

= { 4, 3, 5, 2, 1 }
= { 5, 4, 3, 2, 1 }
= hDyn(z-hashing)
= { L 2, 3, 4, 5 }
= { 1 ,2 , 3, 5,4}
= { 0 } irrelevant

(4) Point search rate
Ps = {pi, p2, p3, p4, p5}

= {10%, 20%, 30%, 40%, 50%} is equivalent to
p(s) = {< p i, < p2 , < p3, > p4, > p5}

= {<10% , < 20%, < 30%, > 40%, > 50%}

hPs(EXCELL)
hps(z-hashing)
hps(quantile-hashing)
hps(PLOP-hashing)
hPs(BANG-file)
hps(R-tree)

= { 5, 4, 3, 2, 1 }
= { 1 ,2 ,3 , 4 ,5 }
= { 1 ,2 , 3, 5,4}
= { 1 ,2 , 5 ,3 ,4 }
= { 4, 5, 2, 3, 1 }
= { 0 } irrelevttnt

(5) Dttra set size
IDsI = { 1, 2, 3, 4, 5 }
IDsI is defined by five degrees from small to large because the data set size is a
machine dependent factor (a data set which is considered to be large in a PC
environment may not be considered to be large in a mainframe environment) so that
we leave the decision until the system is being installed.

h IDsl(EXCELL) = { 5, 4, 3, 2, 1 }
h|Dsl(z-hashing) = { 1, 2, 4, 5, 3 }
h|Dsl(quantile-hashing) = { 1, 2, 3, 5, 4}

158

h|Dsl(PLOP-hashing)
hIDsl(BANG-file)
^IDsl(R-tree)

= hlDsl(quantile-hashing)
= { 1, 2, 3, 4, 5 }
= { 0 } irrelevant

(6) Differences among local data densities
To obtain a measure of the difference we evaluate the following:

y=sy
Ldxl = X C [l, y]

y=i

y=sy
Ldx2 = X C[2, y]

y=l

y=sy
Ldxsx = X C[sx, y]

y=i

Ldy2 = X C[x, 2]
x=l

x=sx
Ldysy = X C[x, sy]

x=l

Lx = { Ldxi for i = 1, 2 , sx }
Ly = { Ldyi for i = 1 ,2 ,... , sy }
Lx' = { Ldx'i for i = 1 ,2 , ..., sx }
Ly' = { Ldy'i for i = 1 ,2 , ..., sy }

Lx' and Ly' are two sets that are arranged in an ascending order. The degree of
local density differences can be calculated by Dxy as follows.

x=sx
Ldyl = X C[x, 1]

x=l

x=sx

159

Dxy =

i=sx-l i=sy-l
Z Ldx'i + Z Ldy'i

i= l i= l

(sx + sy) x b

Here sx and sy are the number of slices on the dimension x, y respectively.
Dxy = {dxl, dx2, dx3, dx4, dx5 }

= { 10%, 20%, 30%, 40%, 50% }
d(xy) = { < dx l, < dx2, < dx3, < dx4 < dx5, > dx5 }

hDxy(EXCELL)
^Dxy(z-hashing)
^Dxy(quantile-hashing)
^Dxy(PLOP-hashing)
hDxy(BANG-file)
^Dxy(R-tree)

= { 5, 6, 4, 3, 2, 1 }
= { 6, 5, 4, 3, 2, 1 }
= { 1 ,2 , 3, 4, 5, 6 }
= hDxy(quantile-hashing)
= hDxy(z-hashing)
= hDxy(quantile-hashing)

(6) If the database is a non-zero sized object one ALT[6] may be chosen. The R-tree
algorithm is especially suitable for dynamic object data because the size of a
region can be changed accordingly, without difficulty.

To make a decision the heuristic function h(x) used is based on these parameters
obtained from a given application. Different weights can be assigned to different
parameters according to requirements and the algorithm concerned. For each
parameter value a h(x) is calculated. For example, if an application has properties of
PI: 20% < d(even) < 25%, P2: 20% < Rs < 30%, P3: 30% < Dyn < 40%, Ps not
concerned,P4: IDsI = 3, P5: Dxy < 40 then we get:

EXCELL z-hashing quantile PLOP
-hashing -hashing

BANG

hPl(x) 5 4 4 4 2
hP2(x) 5 3 3 4 4
hP3(x) 2 2 2 4 5
hP4(x) 3 4 3 3 3
hP5(x) 3 3 4 4 3
hi(x) 18 16 16 19 17

thus h(x) = max(hi(x))

1 6 0

= PLOP-hashing for hpL 0 P-hashing(x)

= 19.

There may be cases where more than two algorithms bear the same value of the
heuristic function hi(x) so that either the algorithm with the least complexity will be
chosen or a choice is made by the users.

ALT[1]: Cannot deal with range search well,
cannot guarantee one secondary storage access for very large data set.

ALT[2]: Cannot deal with dynamic situation well,
cannot deal with unevenly distributed data well,
implementation is more costly than ALT[1].

ALT[3]: Cannot deal with dynamic situation well,
implementation is more costly than ALT[2].

ALT[4]: Cannot deal with range search well,
implementation is more costly than ALT[3].

ALT[5]: Implementation is more costly than ALT[4].

Explanation of the heuristics
For each property of an application we have given a range of values. They are used
to determine the category of an application for that property. We have also listed the
corresponding values (created by heuristics) given to to each of these ranges for
each algorithm. These values indicate the ability of an algorithm to deal with the
concerned property. They are assigned on the basis of heuristic judgement by
comparing different algorithms. The explanation is derived from the interpretation
of the property list and the capability of each algorithm. For each property list and
heuristic list a fuzzy set can be established to represent the corresponding meaning.
The values given in the list are by no means accurate and the resolution may not be
high enough. The high resolution means that the number of values in a list
increases. They are given to form a system framework. Further tuning can be
introduced by monitoring the system performance and observing the critical

161

changes. Tuning will be discussed in section 4.5.

An example
d(even) = { < 20%, < 25%, < 40%, < 50%, > 50% }
ex(even distribution) = { highly, more or less, average, less, un- }

To explain an application, say, d(even) = 20%, the system will generate:" highly
even distribution

Since we create heuristic values by assigning the highest to represent high
capability, the explanation corresponds to the position and the value assigned.

ex(hpj(x)) = { > 5 —> very well,

= 4 —> well,
= 3 —> not so well,
= 2 —> not well,
= 1 —> badly,
= 0 —> irrelevant }

The list hd(even) (EXCELL) = { 4, 5, 3, 2, 1 } will be explained by referencing
ex(even distribution) as:
The EXCELL algorithm deals reasonably with highly evenly distributed data; very
well with more or less even data distribution; not so well with average evenly
distributed data; not well with less evenly distributed data; and badly unevenly
distributed data.

We have to be aware that the heuristics are applied by a comparison of different
algorithms. The explanation " to deal with highly even distribution well, but not
very well" seems nonsense otherwise, for we know that evenly distributed data can
always be dealt with well. The reason that the explanation says "well" is that the z-
hashing can deal with evenly distributed data better than the EXCELL.

4.5. Dynamic monitoring and tuning of a physical database
As we stated in chapter 3 the system should be able to monitor the performance of a
database in order to satisfy users’ requirements. The users’ requirements are
obtained from USI and stored as part of DBP for an application. During the running
of a database a chosen algorithm may not satisfy the requirements. The reason is
twofold: (a) the incomplete information supplied by the system or user is inaccurate
so a wrong AAP algorithm has been chosen to process the data set; (b) the dynamic
changes to the data set have changed the properties of the application. To deal with
both situations, the application properties need to be reevaluated. Depending on the
system implementation, either the data about the previous estimation is printed, or
kept in the system to compare with the current database status. If a different AAP
can be found with required similarity then the data set is reorganised accordingly,
otherwise the system will display how an algorithm is chosen for the application.
The reasoning process will be discussed in the following section.

To monitor the performance the system will use the database profile and consult a
set of rules to decide on what to do. The data required for a decision are derived
from the information stored for the database profile about the concerned data set.
These data are transformed into the same format as AAP in order to carry out the
similarity comparison. These data include data space resolution r, even data degree
d(even), dynamic factor Dyn, range search rate Rs, number of empty grid cells
Nempty, number of overflow grid cells Nover, local data density Ld, and query
frequencies F. They are calculated from the current database profile and then used
for similarity comparison and selection of an implementation algorithm. If needed
the data can also be used to compare with the original database profile.

Dynamic tuning for the database
There are two aspects to be considered in the tuning process. One is to apply
different control functions and heuristics to partition the data space and to optimise
the advantages of a chosen algorithm, i.e. tuning by improving an individual
algorithm; the other is to reorganise the data set by a new implementation algorithm,
that is, tuning by changing the implementation.

4.5.1. Tuning by improving the individual algorithm
The purpose of tuning an individual algorithm is to increase storage utilisation, to
reduce processing time and to relax constraints imposed on the system. For

163

example, a hashing algorithm may require contiguous storage space.

With the EXCELL algorithm the problem is likely to arise that a split may make the
condition lidxl < M invalid and therefore, one more secondary storage access is
required for a retrieval. Consequently it may be desirable to change the
implementation if the access speed is critical.

With the z-hashing algorithm several tuning strategies may be introduced. These
strategies improve the performance as a whole to maintain the fast access speed and
maximise the storage utilisation.

Tuning an individual algorithm is done by a set of control functions and heuristics,
geared to different applications. To perform the task, the application is analysed and
rules are derived for the above mentioned goals.

Tuning the z-hashing algorithm bv overflow handling
Since uneven data distribution may introduce data holes tuning can be done by
making use of the space reserved for these holes. When there are a number of data
holes for a data set the corresponding data buckets can be used to hold overflow
data. Thus the storage utilisation can be improved. In addition, a choice can be
made as to whether overflow handling is necessary or not. When there are few
overflow grid cells, removing overflow by splitting will be more economic than
overflow handling; otherwise separate overflow handling may be applied to gain
better performance.

Using buckets for empty cells to hold an overflow record.
OVR1 = { Nempty/B > 10% —> overflow tuning}.

To implement such an idea the following data structure is designed.

164

z-code status

•

•

•

where a z-code gives an empty cell address and the status indicates whether it is
used or not. An insertion to the table is made when an empty grid cell occurs; a
deletion from the table is made when an empty cell becomes non-empty.

The rule for the z-hashing overflow processing
OVR2 = { Nover/B > 20% —> overflow handling }
OVR3 = { d(even) < 10% — > without overflow handling }

explanation
The rule OVR2 determines when the empty buckets are to be utilised for overflow.
When the premise condition is satisfied the overflow tuning will be invoked. The
tuning will create necessary data structures and extract required information to
improve the storage utilisation for the z-hashing.

The rule OVR3 determines when the overflow handling is necessary. For a fairly
evenly distributed application the number of overflow grid cells is small, so that the
splitting can be minimal, to remove these overflow grid cells.

Improving the z-hashing algorithm by data space segmentation
As analysed before the z-hashing algorithm cannot cope with uneven data
distribution well and has less flexibility to deal with a dynamic situation. However,
it does offer a good performance in terms of access time for both point and range

165

searches. To gain its advantage of fast access time the entire data space may be
divided into a number of smaller subspaces, each subspace may apply different
resolutions. Such an improvement will reduce the number of empty holes and make
the data rearrangement localised; but this improvement can only be made for certain
data distributions. The ideal situation is that each subspace has a different data
density so that it naturally fits the purpose of dividing the entire data space into
several subspaces. The implementation idea is illustrated in Appendix A7.

In this section we turn our attention to how these rules will be derived to support
this idea. To analyse the data distribution different levels of resolutions are used to
calculate C[i] for i = 1 ,2 ,..., ri. To measure the data distribution for this purpose
we introduce resolution difference RD.

RD =

i = ri
I

i= 1
C[i]

min (C[j] I C[j] > b)
j = l

An example
ri = 4: b = 10, C [l] = 40, C[2] - 40, C[3] = 80, C[4] = 320.
j=ri
min (C[j] I C[j] > b) = 40

j= l
RD = (40/40 + 40/40 + 80/40 + 320/40) = 12
where b is the expected bucket size for the data set, i.e. if b= 512 bytes and the
record length R = 50 then the expected b will be 10.

Rules for the z-hashing data space segmentation
ZR1 = { (ri = 4: RD > 4 + 2 = 6) —> strategyl }

1 6 6

Z R 2 = { (ri =
ZR3 = { (ri =
Z R 4 = { (ri =
ZR5 = { (ri =

8: RD >
16: RD >
32: RD >
64: RD >

8 + 4 = 12)
16 + 8 = 24)
32 + 16 = 48)
64 + 32 = 96)

—> strategy2 }
—> strategy3 }
--> strategy4 }
—> strategy5 }

Explanation
EZR1

When the resolution is 4 we calculate the resolution differences RD. The
lower bound is to use a four entry index file is RD > 4 + 2 = 6, the first item
4 catering for the balance of introducing an index and the second item 2 is an
average number of grid cells which are likely to have the same minimum data
items in them.

EZR2
When the resolution is 8 we calculate the resolution differences RD. The
lower bound is to use a eight entry index file is RD > 8 + 4 = 12, the first
item 8 catering for the balance of introducing an index and the second item 4
is an average number of grid cells which are likely to have the same
minimum data items in them.

Similarly we have the same explanation text for the other rules. To store these
explanations efficiently we can store the text once with the changed part supplied,
i.e. the following data are kept:
xi yi zi for i =
EZRI 4 2 6
EZR2 8 4 12
EZR3 16 8 24
EZR4 32 16 48
EZR5 64 32 96

EZRi when the resolution is ri we calculate the resolution differences RD. Further
reduction of storage can be introduced by merging common parts of each rule. The
lower bound to use a eight entry index file is RD > xi + yi = zi, the first item xi
catering for the balance of introducing an index and the second item yi is an average
number of grid cells which are likely to have the same minimum data items in them.

167

Improving the Quantile-hashing and the PLOP-hashing bv partitioning control
As illustrated before both quantile- and PLOP-hashing allow partitioning control. If
one of these two algorithms is chosen, the tuning process will mainly depend on
selecting the dividing position when a split is triggered. These controls can be
divided into several categories and used according to the properties of an
application.

Rules for partition control
sij=simax

PCR1 = { max (Ld(sij) = sa) ~> split on slice a in the i1*1 dimension) }
sij=l

ki=km f(kb)
PCR2 = {((max (f(ki) = kb) & (sbmax < -------------------------------- x scmax))

ki=kl ki=km
min (f(ki))=kc

ki=kl
> split in b^1 dimension}

PCR3 = { split sij into sij(l) and sij(2) <=> IN(sij(l))l ~ IN(sij(2))l }

Tuning the R-tree algorithm bv representation
A useful property of the R-tree is that its region boundaries are not determined in
advance. Thus dynamic changes can be easily made. However, the flexibility is
obtained by recording boundary ranges for each dimension of a region. A region
identifier is represented as I = {(li, ui) for i = 1,..., m, where li is the lower bound

in the i* dimension and ui is the upper one. The representation may become a

problem for the R-tree method because it may occupy too much space which means
increasing the index height and consequently increases the search time, especially
when m is large.

To tune the R-tree method several alternative representations are introduced.
Representing a region by a starting point and an offset
representation
obj = { (si, li) for i = 1,..., m }
where: si -- starting position

li — offset from the starting position

168

This representation is suitable where the boundary si needs more space than the
offset li. The maximum value of the boundary can be estimated according to the
range of space; and the maximum value of an offset can be estimated by the largest
object or region. When Isil > llil the representation can be applied. The gain can be

n
measured by X (Isil - llil), where n is the number of regions.

i = 1

Representing a region by relative position
representation
SP = {sp 1, sp2, ..., spm}
where SP is a set of starting positions of the data space.

LP = {lpl, lp2, ..., 1pm}
where LP is a set of offsets relative to the starting position.

A region is represented as:
obj = { (lpil, lpi2) for i = 1, 2, ..., m }

This presentation is similar to the coordinate transformation used in algebra by
moving a data space to the coordinate origin. The method is suitable if the starting
value is large and n is significant. The gain can be measured by

i=n j=m i=n
2 x X (Ispil - llpil) - X Ispjl = 2 x X (Ispil - llpil) - m x Ispll

i= l j= l i=l

where n is the number of grid cells and m is the dimensionality.

As the knowledge of each algorithm develops new tuning rules can be added to the
system for the best use of each algorithm.

4.5.2. Tuning by changing implementation
When little improvement can be gained by tuning the individual algorithm, a new
algorithm may be required to replace the current one. The database profile is
examined and the rules concerning selection of algorithms are inspected to arrive at
a new solution. This process is carried out by eliminating rules, similarity
comparison or the heuristic functions. After a new algorithm is selected the relevant
parts of the database profile are updated.

169

4.6. Adding new knowledge to the system
When a new class of an application is added to the system new knowledge needs to
be added. Adding new knowledge to the system is performed by the following
rules.

Recording the similarity
RSR1 = { 50% < s(x) < 60% < -> idk(ATj) for k = 1, 2, ..., y l

j = 1, 2, ..., x l }
RSR2 = { 60% < s(x) < 70% < -> idk(ATj) for k = 1, 2, ..., y2

j = 1, 2, ..., x2 }
RSR3 = { 70% < s(x) < 80% < -> idk(ATj) for k = 1, 2, ..., y3

j = 1, 2, ..., x3 }
RSR4 = { 80% < s(x) < 90% < -> idk(ATj) for k = 1, 2, ..., y4

j = 1, 2, ..., x4 }
RSR5 = { 90% < s(x)< 100% < -> idk(ATj) for k = 1, 2, ..., y5

j = 1, 2, ..., x5 }

The set of rules tells us the similarity degree of existing data set idk compared with
the application type ATj for the database, i.e. if a data set idk is within the range of
similarity used in the premises (LHS) then it is recorded as the conclusion part in
these rules or vice versa. It implies information (idk, ATx, s (x)). Similarly the
following rules will record the heuristics used and the performance evaluated for
these data sets.

Recording the heuristics
HBR = { h i, h2, h3, h4, h5 } - { 5, 10, 15, 20, 25 }
HBR records the heuristic function boundaries, since the boundary may change it is
beneficial to record them separately for easy maintainability.

for applications
HR1 = { h i < h(x) < h2 < -> idk(ALT[j]) for k = 1, 2, ..., y l

j = 1, 2, ..., xl}
HR2 = { h2 < h(x) < h3 < -> idk(ALT[j]) for k = 1, 2, ..., y2

j = 1, 2, ..., x2 }
HR3 = { h3 < h(x) < h4 < -> idk(ALT[j]) for k = 1, 2, ..., y3

170

j = 1, 2, x3 }
HR4 = { h4 < h(x) < h5 < -> idk(ALT[j]) for k = 1, 2, ..., y4

j = 1, 2, x4 }

for system
HR5 = { h i < h(x) < h2 < -> ATk(ALT[j]) for k = 1, 2, y l

j = 1, 2, x l }
HR6 = { h2 < h(x) < h3 < -> ATk(ALT[j]) for k = 1, 2, y2

j = 1, 2, x2 }
HR7 = { h3 < h(x) < h4 < -> ATk(ALT[j]) for k = 1, 2, y3

j = 1, 2, x3 }
HR8 = { h4 < h(x) < h5 < -> ATk(ALT[j]) for k = 1, 2, y4

j = 1, 2, x4 }

The set of rules stores a value for heuristic function h(x), for a data set idk or for
an ATx that employs algorithm ALT(j), i.e. {idk, ALT[k], h(x)} and {ATx, ALT[k],
h(x)}.

Recording the performance
(a) access speed
for applications
PR 1 = { T sec < - > idk(A L T [j]) fo r k = 1, 2, y l j = 1. 2 , ..., x l }

P R 2 = { 2 x Tsec < - > idk(A L T [j]) fo r k - 1, 2, y2 j = 1, 2, ..., x 2 }

P R 3 = { 3 x Tsec < - > idk(A L T [j]) fo r k = 1, 2, y3 j = 1 , 2 , . .., x3 }

P R 4 = { 4 x Tsec < --> idk(A L T [j]) fo r k = 1, 2 , y4 j = 1, 2, .- , x 4 }
P R 5 = {(T > 4 xTsec) < --> idk(A L T [j]) fo r k = 1, 2, y5 j = 1, 2, ..., x5 }

fo r the system

P R 6 = { T sec < - > A Tk(A LT[j]) fo r k = 1, 2, y l , j = 1, 2 , ..., x l }
P R 7 = { 2 x Tsec < - > A Tk(A LT[j]) fo r k = 1, 2 , . . . , y l j = 1, 2 , ..., x 2 }

P R 8 = { 3 x Tsec < - > A Tk(A LT[j]) fo r k = 1, 2, ..., y3 j = 1, 2 , ..., x3 }

P R 9 = { 4 x Tsec < - > A Tk(A LT[j]) fo r k = 1, 2, ..., y4 j = 1, 2, x 4 }

P R a = {(T > 4 xT sec) < - > A Tk(A LT[j]) fo r k = 1, 2, ... >y5 j = 1, 2 ,, x5 }

(b) storage utilisation
for the application

171

UR1 = { 50% < Su < 60% < -> idk(ALT[j]) for k = 1, 2, y3 j = 1, 2, .
UR2 = { 60% < Su < 70% < -> idk(ALT[j]) for k = 1, 2, y3 j = 1, 2, .
UR3 = { 70% < Su < 80% <--> idk(ALT[j]) for k = 1, 2 , y3 j = 1, 2 , .

UR4 = { 80% < Su < 90% < -> idk(ALT[j]) for k = 1, 2, y3 j = 1, 2,.
UR5 = { 90% < Su < 100% < -> idk(ALT[j]) for k = 1, 2, y3 j = 1, 2,

for the system
UR6 = { 50% < Su < 60% < -> ATk(ALT[j]) for k = 1, 2, y3

j = 1, 2, x3 }
UR7 = { 60% < Su < 70% < -> ATk(ALT[j]) for k = 1, 2, y3

j = 1. 2, x3 }
UR8 = { 70% < Su < 80% < -> ATk(ALT[j]) for k = 1, 2, y3

j = 1, 2, x3 }
UR9 = { 80% < Su < 90% < -> ATk(ALT[j]) for k = 1, 2, y3

j = 1, 2, x3 }
URa = { 90% < Su < 100% < -> ATk(ALT[j]) for k = 1, 2, y3

j = 1, 2, x3 }

Rule for relating the AT and the ALT
RLRi = { ALT[i] < -> ATI, AT2, ATxi }
for i = 1 ,2 ,..., z where z is the number of algorithms.

For this set of rules they record all application types that use ALT[i] as the
implementation algorithm.
These above rules record information which can be summarised as:
Similarity
(idk, ATx, s(x))

heuristics
{idk, ALT[k], h(x)}
{ATx, ALT[k], h(x)}

access speed
{idk, ALT[k], T}
{ATx, ALT[k], T)

., x3 }

., x3 }

., x3 }

., x3 }

.... x3}

172

Storage utilisation
{idk, ALT[k], Su}
{ATx, ALT[k], Su}

These rules establish relationship between an AAP(ATi) and a data set (ID) for an
application, between an AAP and an ALT, as well as between ID and ALT. It is
shown briefly as:

This relationship builds up a reasoning path. If an instance in one set is known then
the related instances in other sets can be derived. We now describe how to use the
information to refine the system.

173

Inspecting performance
IRi = { if Su(idi) within the range of URi premise then get all action / conclusions

(RHS) from URk for k = 6, 7, i }

This set of rules tell us that for the expected storage utilisation all satisfied data sets
are extracted from rule URik for k = 6 , a. If the data set idi is not in the
extracted set IRi then idi is of lower storage utilisation than that expected. The other
URk for k = i + 1 , a can be examined to see which URi idi belongs to in order
to work out the differences between the expected storage utilisation and the actual
one. Similarly for an ATi in the AAP.

lRj = { if Nsec within the range of PRj premise then get all conclusions from
PRk for k = 1 ,2 , ..., j }.

This set of rules tell us that for the expected number of secondary storage accesses
all satisfied data sets are from rule PRik for k = 1 ,2 ,..., 5. If the data set idi is not
in this extracted set IRi then idi is of slower access speed than that expected. The
other PRk for k = 6 ,..., a can be examined to see which PRi idi belongs to so to
work out the differences between the expected access speed and the actual one.
Similarly for ATi in the AAP.

Adding new information
Using heuristics and experience involves tuning. Heuristic judgement may not
necessarily be correct all the time and therefore, the system should provide facilities
to refine rules used for judgement to enable new knowledge to be added.

As the performance, range of heuristics, and similarities have been recorded in the
system for a specific application the probability of success can be derived from the
recorded information. For instance, if an application requires 70% storage
utilisation (Su = 70%) and one secondary storage access (T = Tsec) then after
selecting an algorithm for the data set idz the relevant PRi, URi and HRi rules are
checked. If an algorithm is selected by the similarity comparison and ATx is the
chosen image then PRi, URi and RSRi rules will be examined; if an algorithm is
selected by heuristics then PRi, URi and HRi rules will be inspected. For the
former situation the performance of ATx can be obtained for the application with the
same range of similarity.

174

The reasoning process is:
(a) s(x) --> idk(ATz) for k = 1, a; z = 1, b (RSRi rule)
(b) ATx ~> ALT[j] (RLRi rule)
(c) idk(ALT[j]) - > Su (URi rules)
(d) idk(ALT(j)) ~> T (PRi rules)

From the reasoning processes a set of data can be derived.
{s(x), ATx, Su, T} --> ppl
where s(idz(ATx)) is the value of the similarity degree for the current application
related to ATx; ATx is the application type chosen for deriving the solution for idz;
Su and T are the performance values; ppl is the percentage of all applications,
which achieve a performance at least as good as Su or T, or (Su and T) against the
total number of applications. They are based on the solution by similarity
comparison with ATx (ppl(T), ppl(Su), ppl(T, Su)). Furthermore, pp l gives the
degree of confidence for using ATx as an application type to derive a solution.
When the value of ppl is low the relevant parts of the rule base will be examined;
whereas when the ppl is high the value of the similarity degree can be used as an
upper threshold to speed up the rule search. Similarly for the algorithm chosen by
heuristics we can derive:
{idz, h(x), ALT[j], Su, T} —> pp2. An illustration of relationship between
applications and various indices (similarity, speed, storage utilisation) is shown in
Figure 4.35.

175

j All data sets v ith s(x)that require less than T time to access a data item (id2, id 3, id4)

| All data sets v ith s(x) that have storage utilisation higher than Su (id 1, id2, id3)

All data sets v ith s(x) that have storage utilisation higher than Su and speed < T
are (id 1, id3).

Figure 4.35. Relationship between applications and relevant indices.

In the diagram, we have:
s(x) - a particular similarity degree range
idi - all data sets with s(x) as their similarity degree range. There are five data set

in this example (i = 1, 2, 3, 4, 5)
Su - a particular storage utilisation threshold
T - a particular access time threshold

Refining rules
Having derived ppl and pp2 an analysis can be carried out when ppl or pp2 is low.
The low value indicates where refinement may be desired.

176

When selecting an algorithm by similarity comparison the upper bound needs
refining.

When selecting an algorithm by a heuristic function upper or lower bounds used in
the heuristic rules need refining. This refinement is done by evaluating performance
of the algorithm through sensitivity analysis of major parameters.

Furthermore, the AAP with different application types may have similar properties.
The system can classify them as the same application type if the similarity degree of
various application features is within the acceptable range among ATi for i = 1, ...,
x; even if they appear to be different application classes.

4.7. Reasoning process
After a decision has been made the user may want to know the reason as to why the
implementation algorithm was chosen. In response the system should be able to
display the reasoning procedure for an application. The reasoning process is
supported by storing relevant information during the similarity comparison about
properties of the chosen AAP. In the system this function is carried out by the
following rules.

The reasoning rules
RRj = { ALT[j] <—> id l, id2, ..., idyi }
for j = 1, 2 ,..., z where z is the number of algorithms

For this set of rules they record all data set in a database profile that use ALT[i] as
the implementation algorithm.
STR = { ((Su(idi) I Nsec(idi)) = unsatisfactory) —>

(3 idi(ATi) — > similarity range) I
(3 idi(ALT[j]) —> heuristic value) I
(3 idi ~> ALT[j] }

If performance status in terms of storage utilisation and access time for a data set idi
is unsatisfactory then rules numbered as RSRi, HRi and RRj are inspected.

177

4.8. A complete example
Here follows an example which explains how the problem of a given data set using
m-d algorithm is solved by the system. In this example, we first illustrate the steps
taken to arrive at the solution, then we illustrate by means of a diagram the decision
making sequence.

Initial algorithm selection
The USI acquires information to construct an initial profile for a data set. The
information contains the following aspects.

Initial algorithm selection
ACi
data set
search space
average length of the data items
the access mode
data set life span
bucket size
packing density
the domain of the data space
estimated average data item size
range search rate
available memory size

an application class
Ds = { d l, d2, ..., dn }
di = (ail, ai2) for i = 1 ,2 ,..., n
R
random access
tm
b
p > 75%
D = D l X D2
Re
Rs
M (estimated)

The derived parameters are
number of buckets required : Nreq
number of buckets to be used (estimation) : Ntot
data distribution : Nover, Nempty

If any information is missing from a user then the USI will assign the data set with
a status of "information missing". Within the system there are a set of application
classes and under each class there will be a number of application types. As defined
before the application class is: ACi = { application area, definition }. For instance,
a theatre booking or a film booking application, and an airline booking application
may be classified as class ACI = { ticket booking, (booking, cancelling, reserving,
scheduling) } and with different types ATI 1, AT12, AT13. A new application,

178

say, an airline booking system, will be classified as class AC1, containing AT3.
Classifying an application is done by selecting the definition and the functions
shown on the screen. The screen may first show the high level as:

Screen 1
Application areas
Selecting the correspond application class
AC1. ticket booking
AC2.' employee/student management
AC3. CAD: computer aided design
AC4. CAI: computer aided instruction
AC5. traffic control system

If AC1 is chosen then the next level is shown as:
Definitions
Selecting the relevant functions and data sets for your application
D l. customer FI. booking
D2. seat F2. cancelling
D3. flight/programme F3. reserving

F4. scheduling

Do you want to see the application types? Y/N
If the answer is Y then the following screen will be shown

Application types
Choose a correspond application type
AT 11. theatre booking system
AT 12. cinema booking system
AT 13. airline booking system

The AT13 will be selected and all missing information will be gained from the
stored AAP profile for ATI3. However, if the new application is a student
management application and the similar application class is AC2, then missing
information may be obtained from AT21 (where AT21 is the only application type

179

which belongs to AC2, and AT21 is an employee management system). If, on the
other hand, there is no application class matches to the new application, then the
system should be able to generate some information for the missing bits. The
system has to deal with three situations respectively:
(a) An application type is in the AAP.

As shown above when AT 13 is selected we transform the new application to
AAP scale and then work out the missing information;

(b) An application class is in the system but not the same type.
In such a situation the functions are ticked for the system to determine which
ATij can be chosen to derive the missing information;

(c) There is no such application class in the system.
If there is no reference available in the system for missing information then the
system will choose the implementation algorithm according to eliminating
rules. When no eliminating rules are suitable the system has to make a choice
on incomplete information. The differences from complete information will be
shown in arriving at a conclusion. Incomplete information reduces the
accuracy of a solution.

After gaining all the necessary information from the USI the following steps are
performed:
(a) Examination o f the eliminating rules.

There are six such rules in the system and they are examined one by one. If
one of them derives a solution to the application then the rule search

terminates and an algorithm is chosen. The rule number (ERi for i e {1,2,

..., 6}) is recorded as part of reasoning trace in a template. All information is
recorded as assumptions from which the solution is derived. If none of the
eliminating rules work then the initial selection rules are triggered.

(b) Inspection of the initial algorithm selection rules.
If a choice is made then the initial selection is completed. The rule number
and chosen algorithm are stored as a reasoning path for the user to reference
when needed. If no decision is made then lindexl, d(even), Dyn, Ps, Rs are
calculated. As explained before, these parameters may be missing. When
they are omitted the system will assign 0 to its corresponding heuristic
function, indicating ignorance of the parameter concerned.

In our example let us assume that the data set has a long life span, the access time is

1 8 0

less than 2 x Tsec and { lindexl > M, d(even) < 20%, Dyn = ?, Rs = ? } then
referring to ATRi rules we have:
h(ATRl) = 0 + 0 + 0 + 0 = 0
h(ATR2) = l + l + 0 + 0 = 2
h(ATR3) = l + 0 + 0 + 0 = l
h(ATR4) = l + 0 + 0 + 0 = l
h(ATR5) = l + 0 + 0 + 0 = l
h(ATR6) = l + 0 + 0 + 0 = l

The max(h(ATRi) for i = 1 ,2 ,..., 6) = h(ATR2) and therefore, the z-hashing
algorithm is initially chosen. If the user asks why the z-hashing is chosen, the
system will select the explanation from explanation text numbered as EX2.1 -
EX6.1 and EX2.2.

the z-hashing algorithm is selected
x l = 1
EX2.1 = EX3.1 = EX4.1 = EX5.1 = EX6.1

The index file estimated for the EXCELL algorithm will exceed the capacity
of main memory so that an extra access is required for point search if the
EXCELL algorithm is chosen.

x2 = 1
EX2.2

The data distribution is even. It implies that fewer data holes will be
introduced by the z-hashing.

x3 = x4 = 0
Not irrelevant.

In making this selection data about insertion and deletion as well as range searching
are ignored.

181

Dynamic tuning and monitoring of the performance.
During the running of the database a tuning process is triggered when a
performance deterioration is detected. As soon as this happens the database profile
is examined for the relevant data set. There are two types of tuning: one is to
improve the current chosen algorithm - an individual algorithm tuning; the other is
to re-examine the properties of the data set to see if a new algorithm needs to replace
the current one - thus changing the implementation.

(a) Tuning the current algorithm
Let us assume that the z-hashing algorithm is chosen for the data set. When
the performance becomes unsatisfactory the tuning process is initiated. For
the z-hashing algorithm implementation C[i] for i = 1 ,2 ,..., r are stored in
the system so that the number of data items for resolution level r = 8, r = 16
can be evaluated and the z-hashing data space segmentation rule ZRi for i =
1, 2 ,..., 5 (see page 165) can be applied to see if any improvement can be
made by introducing a small sized index file for segmentation. If so the
measures are taken and the system will treat each subspace as an independent
data set, which will apply different resolutions catering for the data
distribution. By segmentation the need for continuous space is relaxed, and
by applying a different resolution, the number of empty data holes will be
reduced. Hence the performance will be improved.

(b) Changing the implementation
When the characteristics of the data set including both data and the operations
over it have changed to gear towards an algorithm that is not in use, the
performance will be improved by applying a new implementation algorithm.
The database profile is re-examined and the similarity comparison or the
heuristic rules are used to select a new solution.

When the algorithm is not an initially chosen algorithm but determined by the
similarity rules then the degree of similarity and the ATi selected are recorded as the
rule performance. It reflects the possibility of correctness in terms of similarity
degree and the adopted algorithm. After storing rule performance data an AAP is
selected on its class and types. Scale transformation is performed and parameters of
DD, ED, OY, DF, DR, OE, LD and FD are calculated for similarity comparison.
Assume that using ATI in the AAP we get: DD = 10%, ED = 25%, OV = 10%, OE

1 8 2

= 5%, LD = 15%, FD = 15%, DF = 5%, DR = 50%. The degree of similarity is
derived as:
s(x) = (4 + 3 + 4 + 5 + 3 + 3 + 5 + 0) /(8 x 5) = 27/40 = 67.5%.

Assume using AT2 in the AAP we get: DD = 10%, ED = 10%, OV = 5%, OE =
5%, LD = 15%, FD = 15%, DF = 5%, DR = 5%. The degree of similarity is
derived as:
s(x) = (4 + 4 + 5 + 5 + 3 + 3 + 5 + 5) /(8 x 5)= 34/40 = 95%.

In such a situation we will choose AT2 as the image for the application and thus the
recorded algorithm for AT2 (ALT[AT2]) will be chosen for the application. There
are two possibilities. One is that the algorithm is the same as the initial one selected
for this application so that there is no improvement to be made by the tuning and the
results are displayed at the levels of details requested; the other is that the algorithm
is changed to a new one. The data is reorganised according to the new algorithm
and the degree of similarity, algorithm and the data set is recorded by the system in
SRi rules. If there is no ATi in the AAP that matches the application then heuristic
rules will be applied to choose an algorithm. To use these rules the properties of
d(even), Rs, Dyn, IDsI and Dxy are calculated. An example has been given in 4.4.
A logical picture for the example is illustrated in 4.36.

183

(END)

Figure 4.36. An illustration for an example.

184

From this example we realise that:
" The choice of a representation is not clear cut. It depends on the problem domain
and the task to be perform ed."

4.9 Expert system tuning and validation.
A flexible deductive inference is desirable in all knowledge base systems. The
reason for this is the nature of knowledge is evolutionary and no perfect solution
exists for problems that involve decision making. Particularly in dynamic situations,
human knowledge is under development throughout problem- solving process.
However, a knowledge system implies a strategy to improve the ability to solve
problems and to derive a solution as valid as possible and at the same time, to adapt
to a varying environment. For instance, in a fast-moving, competitive environment,
a high accuracy may have to be traded for speed; and high performance may be
traded for simple implementation for a short-lived data set. This is performed by
application of knowledge to a problem to be tackled and continuous adjustment
according to specific circumstances. Knowledge can thus be refined during system
evolution for more accurate inference to problem-solving. This is done by assessing
the deviation between the results achieved by system inference and those expected.
In this section, a brief literature survey is presented. The main focus is on tuning
and validating the expert system for m-d physical database design. However, tuning
and verification of an expert system is a project in its own right. As a result, we
only discuss specific aspects of tuning and verifying our expert system.

4.9.1 Introduction
Knowledge base systems are attracting more and more attention from the I.T.
industry in recent years. The viability, however, of an expert system depends very
much on its cost against the benefit, user-system interface and validity. Especially
for expert systems, the problem-solving process applies heuristics which feature
inexact inference, educated guesses, experience, instinct of an expert, and
approximate evaluations. This feature of expert systems demands a different
verification approach from that of non-expert systems. Very often, statistical
information is collected for evaluating and verifying an expert system. In this
section, we mainly examine the validity of an expert system. A lot of research work
has been done in the field of validation of non-expert systems [BE89a] [BE89b].
However, not much has addressed for the validation of expert systems [WE83].
The salient difference between a non-expert system and an expert system is

185

determined by the system nature. Generally speaking, the former has static and
definite features in respect to getting results - the knowledge to solve a problem is
embedded with procedures; whereas the latter possesses dynamic and uncertain
characteristics in terms of obtaining solutions - the knowledge for problem-solving
is treated as data which can be changed during processing and that can influence the
expected results (eg. the alteration of a quantity can lead to changes of problem
nature, alteration in environment and goals can affect the inference paths). In the
author's opinion, to validate a non-expert system the emphasis is based on an
application of all possible DD-paths (Decision-to-Decision paths) which are likely to
occur in various runs. In addition to specific application knowledge the inference
approach is a kernel element in validating an expert system, i.e. how a solution is
derived has to be examined. The inference approach needs to apply the new
knowledge obtained from a dynamic environment. Furthermore, an element which
resolves the inaccuracy of reasoning, i.e. the system tuning, has to be introduced in
an expert system to improve the accuracy during the live system cycle. This tuning
is based on known and machine-learned knowledge.

4.9.2 Literature survey
Validating and tuning/refining expert systems has been examined by several
authors. However [WE83], the two approaches are referred to as : (1) the anecdotal
approach and (2) the empirical approach. The former evaluates a program by its
cases. If a specific program performs poorly, attempts are made to correct the
program which can cause problems, since unused cases can be affected by this
change. The latter places emphasis on the empirical evaluation over many problem
cases. Using this approach, many cases have to be generated to test the system,
i.e.this provides enough representative coverage for validation. Considering
reliability of expert systems, the author [H089b] suggested various criteria in an
expert system evaluation. These criteria include: (1) correctness of final decision,
(2) accuracy of final decision, (3) correctness of reasoning techniques, (4)
sensitivity analysis, (5) robustness, (6) quality of USI and (7) cost effectiveness.

4.9.3 Expert system tuning
This section focuses on tuning and verification of m-d physical DB design expert
systems. Tuning in m-d physical DB design is divided into two levels:
(1) modifying existing knowledge;
(2) adapting inference rules to modified knowledge and adding constraints to

1 8 6

refine rules.

Tuning performance for a specific application is carried out based on specific
knowledge, which is collected dynamically. It concerns response time (speed) and
storage utilisation features for performance. To apply heuristics and reduce system
overhead, the feature values at the performance tuning points, i.e. dramatic changes
in performance, are stored.

System tuning considers the performance of the expert system. The major factors
considered here are reasoning validity and correctness of a final decision. The
former improves inferences behind various rules; the latter enhances the success rate
of the whole system.

4.9.3.1 General considerations
There are two major aspects in which an expert system can be validated and
verified: (1) behaviour of an expert system, (2) ontology of an expert system.
Behaviour covers granularity, capability, correctness, optimality and USI issues;
while ontology includes structure suitability, consistency, validity, completeness and
accuracy issues. As an experimental expert system, the focus is on ontological
issues.

The experimental KBS is constructed based on heuristics. Consequently, accurate
terms for correctness of the system cannot be defined, i.e. the tuning and validating
process itself has to apply heuristics. In this system, a heuristic approach is based
on historical data and the system evolution process. The data records summary
information about individual application cases and stores this information in the
knowledge base for rule performance analysis. The outcome of this analysis enables
the validation and verification of the system in order to achieve better results. The
system evolution process analyses various factors which may influence decisions,
and with additional historical data, the performance of the reasoning process can be
further improved. Similar patterns are extracted and cluster analysis is applied to
perform the task. In this section we limit ourselves to specific aspects of the tuning
and validation process, as this topic alone could be a project in itself.

4.9.3.2 Information about rules in general

187

To verify an inference process, the summary information about application cases in
which rules are applied successfully, is recorded. This information is kept by
relating the inference process to performance, recording the rates on the number of
successful instantiation and the total number of all instantiation. In addition, the
inference structures of failure cases are also stored. This information is employed to
analyse the validity of the rule base. The logical structure of tuning and verification
is illustrated in Figure 4.37.

Figure 4.37 Logical structure of tuning and validation.

The diagram illustrates that tuning and validation mainly takes inputs from abstract

188

profiles (data set profiles) and performance results from each individual profile.
Logically all these abstract profiles that lead to the same solution (or falling in the
same performance spectrum) are linked (data set uses the same access algorithms)
together, providing a basis for the comparison unit. The comparison unit is applied
for tuning and validation. Information kept for profiles is logically classified into
salient features, and application environment. The result of this comparison is used
to adjust heuristics and rules concerning dynamic features. The adjustment can be
done either by updating boundaries of various feature spectrums which form the
basis of a particular solution; or by modifying rules set to include new constraints.

Comparison unit
In our particular situation, the comparison unit takes profiles from those
applications which employ the same algorithm and ranks their performance. This
task is straightforward. The ranking, as a result from the comparison unit, then
relates to individual profiles which the adjustment unit can pursue further.
Alternatively, the comparison unit takes performance criteria and the performance of
applications as inputs, analyses features of applications which show satisfied
results, and passes the analysis to the adjustment unit.

Adjustment unit
The adjustment unit separates features for a group of profiles, examining the
difference between them, producing exceptions and making necessary adjustments
by using expert knowledge (heuristics). For instance, feature 1 and feature 2,
according to the system knowledge, are two correlated features with different
weights. Analysing their values in these k profiles can produce suggested
modifications on weights. For the profiles considered, we have:

weight-1 feature-1 weight-2 feature-2
profile-1 w ll f l l w l2 f 12 (best performance)

profile-2 w21 f21 w22 £22

profile-k wkl fkl wk2 fk2 (worst performance)

189

As the system knows the meaning of these ranks (weights) among these profiles, it
heuristically adjust the value of w21 to w kl, w22 to wk2 to that of w l 1, w l2 for
f l 1, fl2 . The system adjusts according to the following heuristics, in which the
w l 1 and f l 1 is used as criteria for other profiles:
(1) from w l 1 / w l2 = wzl / wz2 where z = 2, 3 ,..., k, we get adjusted values:

w l l x wz2
w zl(a) = ----------------------

w l2

w zl x w l2
w z 2 ^ a) = --- —

w l l

where wzl^a) or fzl^a) is the result from adjusting the weight or boundary.

Consequently, if in due course, a better performance is obtained from another group
of profiles, this adjustment process can be repeated. The same principle applies to the
results gained from analysis of those satisfied applications.

During the above described process, if however, a contradictory situation occurs,
exception rules are to be added to cope with this situation. Adding exceptions to the
rule base involves human intervention and analysis.

Modification unit
The modification unit performs an update operation over the knowledge and rules
based on the results from the adjustment unit. Weights and boundaries may change
and exception rules can be added. Modification and adjustment can also be performed
by tuning individual features (e.g. expanding boundary set, and applying high
resolution) when required.

4.9.3.3 Feature information
Based on stored historical data, modification can be done for a specific feature over its
spectrum. For example, a feature spectrum of a profile is initially set to be F = {fl, f2,
..., fm}, a solution set for a specific problem domain is S = {si, s 2 , ..., sn}. Here fi,

where i e 1 ,2 ,..., m, is a feature spectrum, representing a range from, say, a to b.

190

Each i feature fi e F is mapped to the solution set, say, fi -> sj. Since F is set by

applying heuristics, the mapping fi -> sj can have f i -> sj as an improved version to
the initial setting, i.e. tuning is aimed at achieving better solutions. The tuning process
can be described as follows:
the goal - modify fi -> sj to be f i -> sj;
where the latter has better performance;
method - obtain historical data within spectrum fi
f i= {fil, fi2, ..., fix};
fi is obtained by ordering values within the range from a to b, i.e. extract fil, f i2 ,...,
fix from APs in the knowledge base, calculate performance for each value of fi:
pi = {pil, pi2, ..., pix};
or alternatively, get performance from the knowledge base if they are already recorded

and work out the optimal one among pi optimal(pi) = pij, j e 1 ,2 , ..., x replace fi

with fij, i.e. set f i = fij.

Modification can also be done on a set of features. This is done by grouping high
correlated features together to work out the effects. The tuning process is as follows:
the goal - replace fi -> sj with f(I, J) x fi -> sj
I and J are other features used to present the profile respectively,
where the latter achieves better results
method - obtain historical data for I, J to get the spectrum value:
I = {II, 12, ..., Ix}
J = {Jl, J2, ..., Jy}
evaluate influence of I, J
(1) p(I, fi) = {pil, pi2, ..., pix}
(2) p(J, fi) = {pil, pi2, ..., piy}
work out the effect of I and J;
replace fi with f(I, J) x fi.
where f(I, J) is a correlation coefficient. It is calculated by referring to performance,
i.e. when a summation is used as the heuristic to score a preference, a lower score will
be given to I if J happens to have a tendency to deteriorate the performance and thus
the heuristic is used to reduce the total scores (f(I, J) = 0.8 -> f(I, J) = 0.5, for
instance). The negative accumulation effect is, therefore, considered.

191

4.9.3.4 Information about applications
As mentioned above, feature values at performance turning points are kept for an
application. Initial feature information is compared and analysed in order to work out
what are the influential factors for performance change. This analysis is then stored as
knowledge for later use. If incomplete information is supplied, instead of ceasing the
system function, the expert system guesses the missing bit by referring to the
knowledge stored in the system. Alternatively, it generates information for the missing
part using its best knowledge. This is done by accessing a similar application stored in
the knowledge base to provide a good guess.

4.9.3.5 Extract information for similar applications
Extracting information for similar applications is based on the solution, i.e. the access
algorithm employed. If applications use the same algorithm then they will be
categorised as the similar applications. We can show this in Figure 4.38. This
information will later become part of the knowledge base, which derives an abstract
application profile.

Figure 4.38 Similar application.

192

This diagram indicates that a bitmap can be effectively utilised to extract information
from similar applications. This data structure is illustrated in Figure 4.39.

algorithm 1 2 3 4 5 6 7 8

data set 1

2
1

3 1

4
1

5 1 1

6 1 1

7 1 1

8 1 1

Figure 4.39 Bitmap for similar applications.

In the bitmap, each bit of the row indicates an application processed by the system.
Each bit in the column corresponds to a selected access algorithm. The position of a
bit tells which algorithm is employed for a specific data set.

4.9.3.6 The impacts over change of search space size
Partitioning strategies are influenced by dimensionality. As mentioned before,
partitioning mainly affects storage utilisation. When dimension increases, the storage
utilisation can be decreased under a m-d partition. As a result, it is desirable to control
the increase of search space dimensionality. This can be handled by distinguishing the
granularity of various features. The granularity here means the size of the domain for

193

the feature concerned. The dimension with a small sized domain can be dropped from
the search space if dimensionality increases unexpectedly. A typical relational database
can have a large number of relations of 1-d and 2-d search space; medium number of
relations of 3-d and 4-d search space; and a small number of relations with higher m-d
(m > 4) search space.

4.9.3.7 The impact over the domain size
As mentioned above the size of domain can play a significant role in tuning the
physical database design. The size of domain of a particular feature can also affect
access paths, which can be formed dynamically. From experience, when a retrieval is
conducted on several attributes (that is what the m-d search space is designed for) with
different size of domains, it is obvious that tuning effort should be given to a large
domain. The size of a domain is the number of different values in it, i.e. if domain Di
= {Dil, D i2 ,..., Dix} then the size of the domain is IDil = x. This feature depends on
the individual data set. The reason is that the large domain is likely to have more splits
than that of the smaller ones. Therefore, it tends to become a dominant dimension. An
illustration is given in Figure 4.40.

Figure 4.40 A 2-d search space.

194

In this diagram, dimension x has a larger domain than that of dimension y. The x
dimension is the dominant feature in this 2-d search space.

4.9.4 The results of tuning analysis
The system tuning concerns mainly two aspects: (1) knowledge information; (2)
inference process. The first aspect determines the relevant category of profiles; the
second one constructs the reasoning process based on the knowledge information.

In the consideration of the physical database design, knowledge information is
allowed to be modified by a refining process. This refining process gathers feature
information from various applications and evaluates the performance of the current
knowledge to produce modifications to improve the success rate of the system. In
addition, the reasoning process is adaptable to the modified knowledge information.

Example
Modifying knowledge information.
Originally, a data distribution can be divided and measured by the following heuristics:
Measurement -D(even)
Ddis = { d l, d2, d3, d4, d5 }
= { even, fairly even, relatively even, not even, uneven }
= { < 15%, < 25%, < 40%, < 50%, > 75% }
When selecting an algorithm, considering storage utilisation, we should consider the
size of the data set because the size is correlated with the data distribution. As a result,
a large sized data set may trigger a modification over the knowledge information. This
modification adds a multiplicity factor to the Ddis measurement and refines the
meaning of varied categories of data distribution. For this particular circumstance, we
first assign the factor as 0.8. And therefore, we have:
Ddis = { < 12%, < 20%, < 32%, < 40%, > 60% }.
Similarly, if a smaller sized data set is the case, the factor can be assigned as 1.2,
which results:
Ddis = { < 18%, < 30%, < 48%, < 60%, > 90% }.

The reasoning process is adapted to suit this change by adding a decision rule, which
judges the size of a data set concerned, to refine data distribution measurement. This is
done by considering correlated factors of data distribution, i.e. data set size.

195

This example is over-simplified for illustration. To refine knowledge information,
decisions need to be made on historical information stored for various applications,
especially those with unsatisfactory results.

4.9.5 Examples
Information about performance (access speed and storage utilisation) and the
reasoning process require to be stored for tuning the system heuristics. The result of
this tuning is employed to adjust rules and knowledge information. The framework
is shown in Figure 4.41, which is based on Figure 4.37. Several examples are also
presented.

V APi

I A P I I I A P 2 I .. . I A P n I [a P'1 | [a P '2 | . .. [A P ’n |

Knowledge Base

A LT ll) \LT12] ... ALT (mi

Perforrnace E valu ation

^ 1 FE2 ... FEm P E I PE* 2 ... PEVn

1 f 1 r r r r
Tu n in g and Va lida tion U nit

V PEI V PE2 ... yPErn

A

Figure 4.41 The Framework for System Tuning.

196

Here
APi - initial application profile for application i, for i = 1 , 2 , n.
AP’i - application profile after changes made to the original ones.

VApi - differences between APi and AP’i.

ALT[i] - algorithm i, for i = 1, 2,..., m.
PEi - performance evaluated for application profile APi, for i = 1, 2 ,...,

m.
PE’i - performance evaluated for application profile AP’i.

VPEi - differences between PE’i and PEi (i.e. PEi - PE’i)

In this framework the profile about those applications which apply the same access
algorithm is recorded. The profile is then used to evaluate the performance. The
heuristic rule is tuned based on the differences in the performance.

Example 1 - tuning by heuristics gained from different types of applications:
Suppose application “A” has the following features:
Deven <20%
Rs < 30%
Dyn < 20%
Ps < 30%
IDsI = 3 (data set size rating)
and application “B” has the following features:
Deven < 30%
Rs < 30%
Dyn < 20%
Ps < 40%
IDsI = 5 (data set size rating)

According to the heuristic function in section 4.4.3 the result calculated for
application “A” is:

hEXCELL
^z-hashing
^quantile-hashing
hpLOP-hashing

— 4 + 5 + 3 + 3 + 3 = 18
= 5 + 3 + 4 + 3 + 4 = 19
= 3 + 3 + 4 + 3 + 3 = 16
= 3 + 4 + 2 + 5 + 3 =17

197

hBANG-file = 1 + 3 + 2 + 3 + 3 =12

For application “B” the calculated results are:

hEXCELL = 5 + 5 + 3 + 2 + 1 == 16

^z-hashing = 4 + 3 + 4 + 4 + 3 == 18

^quantile-hashing = 4 + 3 + 4 + 5 + 4 == 20

hpLOP-hashing = 4 + 4 + 2 + 3 + 4 == 17

hBANG-file = 2 + 3 + 2 + 1 + 5 == 13

As a result, access algorithm “z-hashing” is selected for application “A” and
“quantile-hashing” is chosen for application “B”. However, as data are added to, or
deleted from, application “B” the feature Deven is changed to be within the
spectrum of < 20%, thereby approaching feature of application “A”. At this point, if
the performance of application “A” is worse than that of application “B”, then an
adjustment can be introduced.
Assume after dynamic changes to application “B” the features are near to those of
“A”, and become:
Deven < 20%
Rs < 30%
Dyn < 20%
IDsI = 4 (data set size rating).
For those features the performance measured for application “B” is better than
application “A”.

Say, for those two applications we have the following results:
A: point search Tp = 2 x Tsec

storage utilisation Su = 65%
range search accuracy a = 65%

B: point search Tp = 1.5 x Tsec
storage utilisation Su = 70%
range search accuracy a = 50%

This indicates that quantile-hashing is a better choice under the initial condition of
application “A” than that of z-hashing. As a result, we can change the heuristic rule

198

by increasing its weights to Deven for the quantile-hashing algorithm, i.e.
Deven = {< 20%, < 25%, < 40%, <50%, > 50% }
hdCeven/Ou^tite-hashing) = (3, 4, 5, 2,1) can be refined to be:
^ ’d(even)(quantile-hashing) = (6, 8, 10, 4, 2)
Here

h ’d(even)(cluant^e'^ as^^n§) derived by the following calculation:

h ’d(even)(quantile-hashing) = Tp/ql x hd(-even^(quantile-hashing)

where p = 5 is the weight assigned to z-hashing for Deven < 20%,
q = 3 is the weight given to quantile-hashing before changing for Deven <
20%.

After refining the rule, the initial selection for application “A” becomes:

hEXCELL = 4 + 5 + 3 + 3 = 15

^z-hashing = 5 + 3 + 4 + 4 = 16

^quantile-hashing = (6)+ 3 + 4 + 3 = 16
where (6) is value given after refinement

hpLOP-hashing = 3 + 4 + 2+ 3 = 12

hBANG-file = 1+3 + 2 + 3 = 9

It means that quantile-hashing has become one of the candidates to be chosen. This
is an over-simplified example. Here the refinement is based on heuristic learning,
i.e. the system learns from the performance evaluation and updates the initial rule
for a better initial selection. In real situations, however, the system tuning needs
human intervention, especially at the beginning. The system gives comprehensive
data to users, to assist them in analysing the interrelation between various factors
which influence the decision. As a result, this relationship can be built into the
system learning mechanism so that less human intervention is required later on.

Example 2 - tuning by evaluating performance for an application
As shown in Figure 4.42 we assume the following features.

199

7 ©
o o

o
© o 1 3

© °© 2
© 0

© o
o o ©

©

0 1 2 3 4 5 6 7

Figure 4.42 2-d search space for a sample data set (original).

Data distribution
b = 4
Ds = { (1,1) (1,3), (1,4), (1,5), (2,2), (2,4), (3,3), (4,2),

(4,6), (5,1), (5,3), (5,7), (6,0), (6,1), (6,6), (7,3) }
the equivalent z-code for the data set is:
Ds(z-code) = {3, 7, 18, 19, 12, 24, 15, 36, 52, 35, 39, 55, 40, 41, 60, 47}
and z-order for the data set is:
Ds(z-order) = { 3, 7, 12, 15, 18, 19, 24, 35, 36, 39, 40, 41, 47, 52, 55, 60 }
The data distribution can be derived from the following steps:
(1) derive the number of data points in each grid cell

From z-code the equal grid cell partition generates a boundary set d, d = { 15,
31, 47, 63}. Here d divides the search space into four partitions and each

2 0 0

partition has its own data items:
G [0]= { 3 , 7, 12, 15}
G [l] = {18, 19, 24}
G[2] = {35, 36, 39 ,41 ,47}
G[3] = {52, 55, 60}
Hence the size of each grid is derived as:
I G[0] I = 4 I G[1] I = 3
I G[2] 1 = 6 I G[3] I = 3

(2) calculate resolution
r = IDsl/b = 1 6 /4 = 4

(3) calculate Deven
i=r
I I C[i] - b l

i=l
Deven = ---------- --------

b x r

Query
We use x and y to represent two different key attributes since the dimensionality of
this example is two (m = 2). The query frequency is then assumed to be:
query on the dimension x

Qx < 40%
query on the dimension y

Qy < 60%
point search by involving both dimensions

Ps < 30%
range search on the dimension x by changing y (fixed x value)

Rs(x) < 20%
range search on the dimension y by changing x (fixed y value)

Rs(y) < 20%
range search involving both dimensions:

Rs(x,y) < 30%

4
---------= 25%
4 x 4

201

Dynamic features
Let us assume that dynamic features follow a time sequence, i.e. they change during
the life of a data set.
Case Deletion rate Insertion rate

(1) 18.75% 12.5 %
(2) 18.75% 18.75%
(3) 25 % 50 %
(4) 25 % 62.5 %

First stage (initial feature
According to the given features, the following factors are considered:

Deven =25% (measured under the condition r = 4)
Dyn < 35% (estimated at initial stage)
Rs < 70% (estimated at initial stage)
Ps < 30% (estimated at initial stage)
IDsI = 3 (estimated at initial stage)

Employing heuristic function described in section 4.4.3 we have:

hEXCELL = 5 + 2 + 2 + 1 + 3 = 13

^z-hashing = 4 + 4 + 2 + 5 + 4 = 19

^quantile-hashing = 4 + 4 + 2 + 4 + 3 = 17

hpLOP-hashing = 4 + 2 + 4 + 4 + 3 = 17

hBANG-file = 1 + 4 + 5 + 1 + 3 = 14
Hence z-hashing algorithm is initially selected.

P erfo rm a n ce eva lu a tion

Point search average speed Tp
(1) With overflow handling (assuming only when n > 1.5 x r x b next split will be

triggered and the resolution r = 4)
i=r-l
I T(G[i])

i—0 4 + 3 + 8 + 3
Tp = =— = 1.125 x Tsec

r 16

Here T(G[i]) is the total number of secondary storage accesses required by

2 0 2

individually accessing each data item (a point) in grid cell [i]. For example, there
are six points in the grid cell 2. Assuming four points are stored in home bucket
and two points are stored in the overflow bucket. The total number of disk
accesses is calculated as 4 + 2 x 2 = 8, where the first item 4 is the number of
accesses for home points and the second item 2 x 2 = 4 is the number of
accesses for the overflow points.

(2) Without overflow handling the hashing algorithm always needs 1 access to
locate the required data at the cost of storage space. As a result the calculation
is insignificant.

Range search accuracy a
(a) select (x,y) where x < 5 and y > 5

number of points satisfy search condition 2
a = ------------------------------- = -------------= 25%

total number of buckets searched x b 8

(b) select (x,y) where 2 < x < 6 and y < 4
number of points satisfy search condition 6

a = —- -......................—........ -..................... - = = 37.5%
total number of buckets searched x b 16

(c) average of case (a) and (b)
a = (2 /4+ 6/16) /2 ~ 31.25%

Note: in a real situation a great number of cases will be utilised to calculate the
average range search accuracy.

Storage Utilisation
(1) With overflow handling (r = 4)

minimal requirement Nmin = |~n/b] = 1 6 / 4 = 4 blocks

i=r-l
actual requirement Nmax = £ i~G[i]/b 1 = 5 blocks

i=0

Su = Nmin/Nmax = 4/5 = 80%

(2) Without overflow handling (r =8)

203

minimal requirement = |~n/b] = 1 6 / 4 = 4 blocks

actual requirement = N - Nempty = 8 - 0 = 8 blocks
here N is the number of grid cells required for z-hashing without overflow
handling.
Su = 4/8 = 50%

Second stage (introduce changes)
C a se (1)

From the original data set delete (4, 6), (6, 6), (7, 3) and inset (2, 7), (3, 5) we
have the following diagram:

C a se (1)

m ©

© El
© o 1 3

o °© 2 ©

© o

© © o
o

0 1 2 3 4 5 6 7

Figure 4.43 The 2-d search space after 18.75% deletions and 12.5% insertions
(the squares are inserted data points and the circles are original data points).

204

Using the same method as in the initial case for C a se (1) the following Deven and
performance information are derived:
Deven = 33.3%

P erfo rm a n ce eva lu a tion

Point search average speed Tp
(1) With overflow handling (assuming only when n > 1 . 5 x r x b next split will be

triggered and the resolution r = 4)
Tp ~ 1.13 x Tsec.

Range search accuracy a
(a) Select (x,y) where x < 5 and y > 5

a = 25%

(b) Select (x,y) where 2 < x < 6 and y < 4
a = 37.5 %

(c) Average of case (a) and (b)
a =31.25 %

Storage Utilisation Su
(1) With overflow handling (r = 4)

Su « 66.7 %

(2) Without overflow handling (r =16)
Su = 4/8 = 50%

C a s e (2)

From the original data set delete (2, 2), (3,3), (4,6) and inset (3, 7) (5, 6), (7, 1)
we have the following diagram:

205

Case (2)

7 m ©
6 ©

5 ©

4 o © i 3

3 © 0 2 © ©
2 o
1

o © O 0

0 ©

0 1 2 3 4 5 6 7

Figure 4.44 The 2-d search space after 18.75% deletions and 18.75% insertions .

i=r-l
I 1 C[i] - bl

i=0 3 + 2 + 1
After the change Deven becomes: Deven = = --------------- = 37.5%

r x b 4 x 4

P erfo rm a n ce eva lu a tion

Point search average speed Tp
(1) With overflow handling (assuming only when n > 1 . 5 x r x b next split will be

triggered and the resolution r = 4).

2 0 6

i=r-l
X T(G[i])

i=0 4 + 2 + 3 + 10
Tp = ------------------- = —- = 1.1875 x Tsec

r 16

Range search accuracy a
(a) Select (x,y) where x < 5 and y > 5

a =37.5%

(b) Select (x,y) where 2 < x < 6 and y < 4
a =31.25 %

(c) Average of case (a) and (b)
a * 34.3 %

Storage Utilisation Su
(1) With overflow handling (r = 4)

Su = 4 / 5 = 80%

(2) Without overflow handling (r =8)
Su = 4/8 = 50%

C a se (3)

From the original data set delete (4, 6), (5, 1), (6, 6), (7, 3) and insert (0, 7), (2,
5), (3, 1), (5, 2), (5, 5), (6, 3), (6, 5), (7, 2). See Fig 4.45 for C a se (3).

207

Case (3)

7 □ o

6

5 © m El □

4 © © 1 3

3 ©
° © 2

© El

2
© © m

El

1

© m ©

0 ©

0 1 2 3 4 5 6 7

Figure 4.45 The 2-d search space after 25% deletions and 50% insertions.

Deven = 37.5%

P erfo rm a n ce eva lu a tion

Point search average speed Tp
(1) with overflow handling (assuming only when n > 1 . 5 x r x b next split will be

triggered and and the resolution r = 4)
Tp = 1.25 x Tsec

Range search accuracy a
(a) select (x,y) where x < 5 and y > 5

2 0 8

a - 16.7 %

(b) Select (x,y) where 2 < x < 6 and y < 4
a =40%

(c) Average of case (a) and (b)
a = 28.3 %

Storage Utilisation Su
(1) With overflow handling (r = 4)

Su =71 %

(2) Without overflow handling (r =16)
Su = 2 5 %

C a se (4)
From the original data set delete (1, 1), (5, 1), (5, 3), (5, 7) and insert (0, 4), (0,
5), (0, 6), (2, 6), (4, 7), (6, 2), (6, 3), (6, 7), (7, 2), (7, 5). See Fig 4.46 for
C a se (4).

C a se (4)

□ E3

Q □ o O

□ O E3

□
O o 1 3

O °c 2 EJ ©

o o □ □

©

o

O 1 2 3 4 5 6 7

Figure 4.46 The 2-d search space after 25% deletions and 62.5% insertions.

209

Deven = 50%

P erfo rm a n ce eva lu a tion

Point search average speed Tp
(1) with overflow handling (assuming only when n > 1.5 x r x b next split will be

triggered and and the resolution r = 4)
Tp ~ 1.32 x Tsec

Range search accuracy a
(a) Select (x,y) where x < 5 and y > 5

a - 33 %

(b) Select (x,y) where 2 < x < 6 and y < 4
a = 25 %

(c) Average of case (a) and (b)
a ~ 29.1 %

Storage Utilisation Su
(1) With overflow handling (r = 4)

Su - 86 %

(2) Without overflow handling (r =16)
Su - 37.5 %

A nalysis of perfo rm ance results
Case Deven Tp average accuracy Su(O) Su(W) Dyn
(0) 25 % 1.125 31.25% 80 % 50 %
(1) 33.3% 1.13 31.25% 66.7% 50 % 21.25 %
(2) 37.5% 1.1875 34.3 % 80 % 50 % 37.5 %
(3) 37.5% 1.25 28.3 % 71.3% 25 % 75 %
(4) 50 % 1.32 29.1 % 86 % 37.5% 87.5 %
Here Su(O) is the storage utilisation with overflow handling; and Su(W) is storage
utilisation without overflow handling.

2 1 0

(Is) Feature measurement refinement
The performance shows that the initial feature measurement for Dyn is not accurate.
A better measurement for dynamic situation Dyn should be Dyn = Hr - Drl.
Therefore the rule for calculating Dyn is modified from Dyn = Ir + Dr to Dyn = Hr -
Drl. The results are changed to be:
Case Deven Tp average accuracy Su(O) Su(W) Dyn (a fter ch an g e l)
(0) 25 % 1.125 31.25 % oo o sR 50 %

(1) 33.3% 1.13 31.25 % 66.7% 50 % 6.25 %

(2) 37.5% 1.1875 34.3 % 80 % 50 % 0 %

(3) 37.5% 1.25 28.3 % 71.3% 25 % 25 %

(4) 50 % 1.32 29.1 % 86 % 37.5 % 37.5 %

As Dyn relates to Deven, it is found that the Dyn value gained from each individual
grid cells is more valid than if gained from the entire search space. That is, Dyn can
be further refined as:

i=r-l
Dyn = X Hr[i] - Dr[i]l / (r x b), where Ir[i] and Dr[i] are insert rate and delete rate

i=0
for grid cell i. The results after this refinement for case (4) are:

Case Deven Tp average accuracy Su(O) Su(W) Dyn (afte r change2)
(0) 25 % 1.125 31.25 % 80 % 50 %
(1) 33.3% 1.13 31.25 % 66.7% 50 % 31.25 %
(2) 37.5% 1.1875 34.3 % 80 % 50 % 25 %
(3) 37.5% 1.25 28.3 % 71.3% 25 % 25 %
(4) 50 % 1.32 29.1 % 86 % 37.5% 50 %
The formula

i=r-l
Dyn = X llr[i] - Dr[i]l / (r x b), where Ir[i] and Dr[i] are insert rate and delete rate

i=0
will replace the previous definition of Dyn as the result of refinement.

(2) Algorithm selection analysis
The initial selection shows very good performance in point search Tp, and range
search accuracy for selected searching conditions. By examine the performance for

2 1 1

the above cases it can be learnt that Dyn is correlated to Deven and to the average
point search performance Tp. With a different Dyn value the correlation can be
derived as:
Dyn ADeven ATp
21.25 % 8.3 % - 0.005
37.5 % 12.5 % * 0.0625
75 % 12.5 % - 0.125
87.5 % 20 % » 0.195

From this example the results show that the initial selection is quite reasonable.
However, the performance of other algorithms can be evaluated for various
situations during the dynamic changes of the data set to see if z-hashing is the best
one for this application.

(3) Alternative algorithm for case (4)
Features for algorithm selection
Deven <45%
Rs < 70%
Dyn < 50%
Ps < 30%
IDsI = 3
Heuristic functions (refer to section 4.4.3)

hEXCELL = 2 + 2 + 3 + 3 + 3 == 12

^z-hashing = 2 + 4 + 2 + 3 + 4 == 15

^quantile-hashing = 2 + 4 + 2 + 3 + 3 == 14

hpLOP-hashing = 2 + 2 + 4 + 5 + 3 == 16

hBANG-file = 2 + 4 + 5 + 2 + 3 == 16
According to the heuristic function, either PLOP-hashing or BANG-file algorithm
can be applied. Here we notice that BANG-file was given a greater weighting for
the Dyn feature than that of quantile-hashing (which is the major changing factor for
performance deterioration). As a result, BANG-file algorithm is chosen.

P erfo rm a n ce eva lu a tio n f o r B A N G -file a lg o rith m

For C a s e (4) there are 22 points in the search space. We have assumed b = 4.

2 1 2

Therefore 6 partitions can be applied or 4 partitions with overflow handling. The
BANG-file partition is pictured in Figure 4.47.

0 1 2 3 4 5 6 7

Figure 4.47 BANG-file Partition for C a s e (4).

Region Level number range (z-code equivalent)
rO 2 0 0 ~ 15
r l 2 1 1 6 -3 1 - 1 6 -1 9
r2 4 4 1 6 -1 9
r3 2 2 32 - 63 - 44 - 47 - 52 - 63
r4 4 11 4 4 -4 7
r5 3 7 5 2 -6 3

Point search rate
Tp = lx Tp (index in memory)
Tp = 1.5 (index on secondary storage)

213

Range search accuracy a
(a) Select (x,y) where x < 5 and y > 5

a « 57% (rl and r5 are accessed).

(b) Select (x,y) where 2 < x < 6 and y < 4
a = 42.857 % (rO, r l , r3 and r4 are searched).

(c) Average of case (a) and (b)
a = 50%

Storage Utilisation Su

minimal requirement = [~n/bl = T 22 / 4 ~] = 6 blocks

actual requirement = number of partitions + lindexl = 6 + 1 = 7
Here we assume one bucket is required to store the index. In a real situation this is a
much clearer case.
Su = minimal requirement / actual requirement - 6 / 1 = 85.8%

(4) Applying BANG-file algorithm to the original data set
Performance evaluation for the original data set applying BANG-file algorithm is
shown below. The partition can be seen in Figure 4.48.

214

7 ©

©
©

© r l
r4

© ©

1

© © © ©

© D r2

© rO © © r3

©

O 1 2 3 4 5 6 7

Figure 4.48 Applying BANG-file algorithm to original data set.

Point searçh
Tp = 1 x Tsec (index in memory)
Tp = 1.5 x Tsec (index on secondary memory)

Range search accuracy a
(a) Select (x,y) where x < 5 and y > 5

a ~ 33% (rl and r4 are accessed)

(b) Select (x,y) where 2 < x < 6 and y < 4
a = 37.5 % (rO - r5 are searched)

215

(c) Average of case (a) and (b)
a = 35%

Storage Utilisation Su

minimal requirement =|~n/bl = 1 6 / 4 = 4 blocks

actual requirement = number of partitions + lindexl = 5 + 1 = 6
Here we assume one bucket is required to store the index. In a real situation this is
a much clearer case.
Su = minimal requirement / actual requirement = 4/6 = 66.7%

(5) comparison between initially selected algorithm and BANG-file algorithm
Algorithm Case Deven Dyn Tp accuracy Su
z-hashing (0) 20% 1.125 35.0% 80.0%
BANG-file 1 or 1.5 35.0% 66.7%
z-hashing (4) 45% 50% 1.32 30.3% 66.7%
BANG-file 1 or 1.5 50.0% 85.8%

The comparison shows that the heuristic functions are reasonably accurate. This is
indicated by better performance gained for case (0) of z-hashing algorithm, the
heuristically chosen algorithm; and better performance gained for case (4) of
BANG-file algorithm, which is again, selected by heuristic functions based on
features of case (4).

From above examples, we learnt that inaccuracy exists because the initial perception
of knowledge can be inaccurate. For instance, the calculation of Dyn was based on
the assumption that any changes either insertions or deletions influence the data set
and the effect is measured by summation of the changes, i.e. Dyn = Ir + Dr. This
measurement can be accurate when all insertions belonging to one region of search
space, say, Ri, and all deletions belonging to another region, say, Rj, where Ri * Rj

and Ri n Pj = 0 . However, as the system proceeds, it learnt that Dyn is related to

Deven. As a result, Dyn measurement needs to be refined. The learning process is
this. From original case (0) to case (4), we have:

2 1 6

case insertion deletion Deven original Dyn change 1 change 2
grid [0] [1] [2] [3] [0] |[1] 1[2] [3] 25.0%

0->l 0, 0, 2, 0 0, 1, 0, 2 33.3 % 21.25% 6.25% 31.25%
l->2 0, 1, 1, 1 2, 0, 0, 1 37.5 % 37.50% 0.00% 25.00%
2->3 1, 2, 3, 2 0, 0, 2, 2 37.5 % 75.00% 25.00% 25.00%
3->4 0, 4, 3, 3 1, 2, 0 , 1 50 % 87.50% 37.50% 50.00%

As a learning process the system has knowledge of expected correlation between
Dyn and Deven. This knowledge indicates that the dynamic factor Dyn directly

influences data distribution Deven. It is very accurate to say that heuristically ADyn

« ADeven, where indicates a proportional relationship.

The system also knows that Deven is calculated on the resolution level of a search
space and therefore, the accuracy will be at that level. When the system gets the
results from each case, it sees no expected relation between Dyn and Deven, for the
original Dyn given by the following calculation:
case Deven

25.0%
original Dyn

0->l 33.3 % 21.25%
l->2 37.5 % 37.50%
2->3 37.5 % 75.00%
3->4 50 % 87.50%

When comparing ADyn and ADeven the system can detect that from case (2) to (3),

ADeven = 0 whereas ADyn = 75%; which is double the value of the previous case.

The reason is that Deven is not changed as the final effect over the Deven is the
same compared to the previous case. Consequently, Dyn = Ir + Dr only partially
reflects the dynamic change of the application. The system therefore, uses Dyn = Hr
- Drl to calculate dynamic factor. The result becomes:
case Deven after change 1 Dyn
0->l 33.3 % 6.25%
l->2 37.5 % 0.00%
2->3 37.5 % 25.00%

217

3->4 50 % 37.50%

After the first change, the system can again detect that from case (2) to (3), ADeven

= 0 so that ADyn for case from (1) to (2) and from (2) to (3) should be the same.

As Dyn for case (1) to (2) are 0% whereas ADeven = 4.2%, the system learnt that

the inaccuracy is caused by calculating the dynamic factor over the entire search
space. As mentioned before, Deven is measured at resolution level. To maintain the

expected relationship between ADeven and ADyn, Dyn has to be calculated at the

resolution level. As a result another change has been introduced for calculating Dyn,
which is changed to:

i=r
Dyn = X I Ir[i] - Dr[i] I,

i=0
where Ir[i] and Dr[[i] are insertion and deletion rates for grid [i].

The result is:
case Deven

25.0%
0->l 33.3 %
l->2 37.5 %
2->3 37.5 %
3->4 45% %

after change 2 Dyn

31.25%
25.00%
25.00%
50.00%

Now the expected relation is established. The system will use the formula for Dyn
from change 2 to estimate the Dyn feature.

In this section several examples are given to show how the expert system refines its
ability to reason more accurately. This validation is based on both experimental
method and “learning by expected result” approach. The experimental method
allows the system to modify and adjust its original knowledge based on
applications, so that new knowledge can be incorporated with the knowledge
system. The “learning by expected result” approach, enables the system to reason
on its original knowledge by comparing the result, it gets from an application with

2 1 8

the expected result to refine knowledge.

4.9.6. Conclusion
No knowledge is perfect. "The world is not a fixed, solid array of objects, out
there, for it cannot be fully separated from our perception of it. It shifts under our
gaze, it interacts with us, and the knowledge that it yields has to be interpreted by
us. There is no way of exchanging information that does not demand an act of
judgement. " [BR73]. An expert system is not an exception in terms of perfection.
It simply simulates an expert using programs. The computer has the advantage of
speed, but it can misinterpret knowledge and therefore, a tuning and verification
element in the system is a must.

219

Chapter 5 Conclusion
The problem addressed by this research effort was to apply heuristics in selecting
and tuning m-d (multi-dimensional) algorithms for physical database design.
Efforts in computer applications have been directed at finding various algorithms
for efficient organisation and use in database design. However, most of these
algorithms are application-oriented and technical and therefore, difficult to use to
their best effectiveness. Choosing an algorithm for an application requires
consideration of the characteristics of applications. Identifying an implementation
algorithm which will be the near-optimal choice becomes a challenging problem to
tackle.

Given several algorithms and an application to derive a better solution, a physical
database designer may start by analysing the application characteristics, hardware
and software environment, and the requirements; analysing the features of available
algorithms before determining an optimal implementation algorithm. There are a
variety of applications using database technology and many of them have similar
characteristics which influence the choice of implementation algorithm. Hence the
same algorithm may be applied, to those which are categorised as the same
application type, successfully with high probability. On the other hand, given a
group of application types (different types have different characteristics) and a
number of algorithms, by analysing the strengths and weaknesses of each
algorithm, a heuristic judgement can be applied to determine which is more
appropriate for an application type. The choice of an implementation for a data set
in a computer is a fuzzy area; it depends on the application domain - the data
distribution and the way these data are used and updated. Thus the selection is
made based on analysis of both the algorithms and the applications.

2 2 0

Appendix A1

The analysis of the inverted file partition and the grid file partition
For simplicity, we assume that the size of a data item is equal to the size of a bucket.
(1) Inverted file
(a) The model of the inverted file partition:

Data set Ds = { d l, d 2 , d n }
Suppose kj 1 for j = 1 ,2 ,..., n is a primary key set:
dj = (kj 1, kj2, ..., kjm) for j = 1, 2, ..., n
The data set is stored in a sequence so that k il < k jl if i < j.
For kji where i * 1 (not a primary key) and j = 1, 2 ,..., n there are (m - 1)
key sets created for the search purpose:
Kj = { kij I (i = 1, 2 ,..., x) and (j = 2, 3 ,..., m) and (kij < klj if i < 1) }

(b) The complexity of the model for the inverted file partition:
Storage complexity
The main data set requires storage of IDsI = O(n).
The non-primary key sets.
Suppose the number of different values for non-primary keys are N2, N 3 ,...,
Nm so that the average storage requirement Savg for Kj where j = 2, 3 ,...,
m, can be derived as:

N2 + N3 + . . . + Nm
Savg = ------------------------------

(m - 1)

In the formula, the complexity of Ni for i = 1, 2 ,..., m is O(n).
The storage required for non-primary keys are:
(m - 1) x Savg = O(m) x O(n) = 0 (m x n) and
the total storage required for the data set is:
S = IDsI + (m - 1) x Savg = O(n) + 0(m x n) = 0 (m x n)
The complexity of the storage, therefore, is 0 (n x m).

221

The time complexity
The time complexity is related to the geometric proximity. If the data items are
stored closely together, in terms of a retrieval query requirements, then the time
complexity can be reduced. If we view a query as a classification function which
generates a result space, and the partition over the data set as a number of data
regions, then the complexity is evaluated by two factors: (i) The access paths, (ii)
How closely a result space matches the data region(s) by the partition over the data
set, i.e. if the minimum number of data regions required to include the result space
is small, then it is close a match. The time complexity, therefore, depends on both
the result space generated by a query and the data region generated by the partition.

(2) Grid file partition
(a) The model of the grid file partition.

Data set Ds = { d l, d 2 , ..., dn}
dj = (k jl, kj2, ..., kjm) for j = 1, 2, ..., n
The data set is stored in a sequence so that di before dj if z(Ii) < z(Ij).

(b) The complexity of the model for the grid file partition.
Storage complexity
The main data set requires storage of IDsI = O(n).
If the grid partition is implemented using an indexing approach then the
complexity of the index will be O(n).
Therefore the complexity of the storage is 0 (2 x n).

The time complexity
The time complexity is related to the geometric proximity which is the same as
in the inverted file partition. It depends on the characteristics of an application.

(3) Comparison
For storage complexity when m > 2 the grid file partition outperforms the
inverted partition. For time complexity, if most queries only involve the
primary key, then the inverted file partition will be a better choice, otherwise
the grid file partition will generate a smaller result space which involves fewer
storage accesses.

222

Appendix A2

Application features calibration
Deciding the limit of C ll, C13, C21 and C31

The choice between an indexing or a hashing function to implement PT1 in
terms of storage and speed is determined by the following estimation. For ease
of discussion, we shall assume that available main memory for the data set is

M, the number of total grid cells is 2^ (L is the level of the data se t), the
number of empty grid cells is Nempty, the index record length is Sidx, and the

bucket size is b. Our discussion is based on the consideration of speed and

storage utilisation.

(i) Speed
The speed is mainly influenced by the storage of access paths. There are
two cases for the indexing implementation shown in Figure 1. (a) and (b)
respectively. In case (a) the entire index can be stored in main memory so
that we can get the address of the required data item(s) from the index file.
Only one secondary storage access is required to get the data item. There is
no difference between an indexing method and a hashing method. In case
(b) there is not enough main memory for the entire index file and therefore,
to get the address of a data item we have to read the index file into main
memory first, then perform another read to get the required data item. An
extra secondary storage access is needed to compare the indexing algorithm
with a hashing algorithm. Thus for the indexing approach the speed
depends on where the index file is stored.

223

(a) the index file can be sto red in m ain m em ory

To re trieve a d a ta item :

(1) g e t th e a d d r e s s f ro m th e in d ex file in m a in m e m o ry

(2) a c c e s s th e d a ta item on th e se c o n d a r y s to r a g e

T = T m em o ry + T se c o n d a ry = T se c o n d a ry

(b) th e in d ex file c a n n o t be s to r e d in m a in m e m o ry

T m em o ry : tim e fo r m a in
m e m o ry a c c e s s

T se c o n d a ry : o n e a c c e s s
to se c o n d a r y
s to r a g e

To retrieve a d a ta item :

(1) g e t th e a d d r e s s fro m th e in d ex on th e se c o n d a r y
s to r a g e

(2) a c c e s s th e d a ta item fro m th e se c o n d a r y s to ra g e

T - T se c o n d a ry + T m em o ry + T se c o n d a ry » 2 x se c o n d a r y

Figure 1. Indexing implementation.

224

The storage requirement for an index file can be expressed as Sidx x 2^-

When Sidx x 2 ^ < M, the entire index could be stored in main memory.

In order to find a data item, an array-like calculation determines an entry to
the index file. Based on the content of the index entry the data item can be

located in secondary storage. When Sidx x 2^ > M the index has to be
stored on the secondary storage and as a result, an extra access will be
needed to get the required data item(s).

(ii) Storage utilisation
The storage utilisation is determined by the extra amount of space required
to store access paths of a data set for retrievals. An indexing implementation
needs extra space to store an index file. A hashing approach needs extra
space to maintain regularity, which is a one-to-one mapping between a grid
cell and a data bucket, to carry out a grid-cell-address (or a signature-
address) calculation. Hence the extra space required for an index file is

Sidx x 2^> and a hash mapping is N em pty x b. If ((Nem pty x b) >

Sidx x 2^) and (Sidx x 2 ^ < M) then the index method is preferable.
If speed is not an important factor then the condition can be relaxed to be

(Nem pty x b) > Sidx x 2^» otherwise the hashing method is
favourable.
C l 1 is decided on the basis of requirements. If speed is not important for an
application then C l 1 can be determined by the storage. If speed is important
then C l 1 can be decided by both the storage and speed. Hence the meaning
of storage utilisation is determined by the requirement of an application and
hardware/software limitations. Based on the above analysis we can derive
the following conditions.

(1) Storage is the main factor for the requirement:

C l l = (Nempty x b)> Sidx x 2^)
(2) Speed is the main factor for the requirement:

C l l = (Sid x 2^) < M) and (Nempty x b)> Sidx x 2^)

We can also derive conditions:

C13 = (Sidx x 2l 2) < M)

225

C21 = (Sidx x 2l) > M)
C31 = (Nempty / r > 50%)

Determine conditions of C14 and C25
The dynamic insertions can be described by the database state transformation.

Let Sb represent the current state of the database and Sa represent the state after an

insertion. We can define Sb as:

Sb = (Nempty(b), N fu ll^ , Ncell(b)}

A split results from adding a data item to the data space. It may change the system
state.
(1) A data item is added to one of the empty grid cells

Sb ~> Sa = { N e m p t y - 1, Nfull(b), Ncell(b) + 1 }

When a new data item is added to an empty grid cell, a new data bucket will
be allocated to the data set by an indexing implementation. An index entry
needs to be updated and its address will refer to a new bucket.

(2) A data item is added to one of the non-full grid cells

(a) Sb - > S a = S b OR

(b) Sb --> Sa = { Nempty(b), Nfull(b) + 1, Ncell(b)}

In the above two cases the insertion does not cause a split and the time
required to insert an item is equal to the sum of the block access time
and a block write time.

(3) A data item is added to one of the full grid cells, resulting in a split:

Sb --> Sa = { Nempty(b), Nfull(b) - 1, Ncell(b) + 1}, for an indexing

method OR

Sb —> Sa = { Nempty(b), Nfull(b) - 1 ,2 x Ncell(b) } for a hashing method

Here the number of grid cells added from the split is equal to N c e ll^ and the

level of the data set L has been increased by 1, i.e. L(a) = L(b) + 1 where

L(b) indicates the data set level before an insertion and L^a) is the data set
level after an insertion.

Using an index file the number of index entries will be doubled and the contents of

226

the index need to be rearranged in order to be located by L^aX This process includes

setting pointers and ordering the index records in the z-order. This reflects the
complexity of the insertion. The C ll condition will be re-examined as the index size
has been doubled; but in physical data space (physical data space refers to the space
in secondary storage which corresponds to the partitioned data space) only the grid
cell that causes the split needs to be reorganised. Adding one data item will cause
these data items, in one data bucket at most to be reorganised and one more new
bucket to be allocated in the physical data space.

Using a hashing function the number of data buckets requiring reorganisation will
be equal to the number of data cells before the split. It has the same complexity as
reorganising the index, but instead of an index, the reorganisation takes place within
the data file itself. There is a requirement to order the data buckets in z-order.

For the state, the probability of a data item being added to the full bucket is

Nfull(b)/Ncell(b). in cases (1) and (2) it does not cause a split, so the effort

involved is insignificant. When a split occurs, which is the case in (3), we need to

choose between available implementation algorithms.

(b) full
(a) N

C14 = ((N x Sidx) < M) and (Dyn x -------------------- < 3 0 %))
(b) cell

N

The condition C14 is determined by heuristics. Heuristics that make a decision on
the basis that the indexing method copes with a dynamic situations better than the z-
hashing and the PLOP-hashing is better than the indexing approach. The decision as
to which approach should be applied is difficult to make. In construction of
heuristic function we have assigned the value by a comparison with other
algorithms, that is by comparison with other algorithms to see where a particular
algorithm stands.

A range search in a m-d data space retrieves a group of data items which satisfy a
certain condition. These conditions quantify a geometric closure enclosing those
required data items. It can be described as " search all data items that fall within the
boundaries of [a^, ai2] for i = 1, 2 ,..., m ". A partial range search means that if T

227

= aja2...a m represents a tuple and the query is in the form of Q = ??ax a(x+l)??’

implying that if only the x^1 and (x+1)^1 attributes are concerned during a search

then Q is a partial range query. Alternatively, it can be described as " search all data
items within a set of boundaries of [ail5 ai2] for i = 1, 2 , k and k < m The
data items that satisfy the range or partial range search usually result in accesses to
several grid cells, that is, several data buckets need to be consulted in order to get
the required data items. To improve the efficiency of a search it is desirable to
arrange data items in secondary storage according to the geometric distance between
data items. The z-hashing provides a better geometric proximity for organising data
on secondary storage than the EX CELL algorithm. This is due to the fact that the
EXCELL algorithm keeps the addresses in the index file, where the index records
are ordered in z-order; but it does not necessarily guarantee that the data items are
also held in z-order. When a range search is required frequently in an application,
the z-hashing improves the performance as a whole by accessing the data set in
physically consecutive buckets. To quantify the level of frequency for the range and
partial range searches information about their frequencies needs to be recorded. In

the section " dynamic changes of database profile " we have introduced R s ^ as
the range search rate. This can be evaluated by counting the number of range and
partial range searches conducted over a data set. The initial value Rs can also be
estimated by users and supplied from the USI. Hence, the high range search rate
can be defined as:

C25 = Rs > 50%
To identify the different effects between various implementation algorithms we can
analyse their likely performance for range and partial range searches. For the
EXCELL algorithm, as analysed above the performance for range searches cannot
be guaranteed. For the PLOP-hashing algorithm, which copes with the dynamic
situation well, the geometrical proximity can be lost by numbering the slices
according to the growth order.

Deciding the condition of C24, C33 and C42
The expected insertion pattern depends on the current state of a data set. A split will
increase the data set level L by 1 and consequently it will change the resolution of

the data space and create a set of unused bucket sequence numbers [2^, 2 ^ + 1 ’

..., 2^ + *]. To match the order set by the split rule the order of insertions can be

worked out in terms of which sequence of the grid cells should be split, i.e. the

228

ranges given by these grid cells form a sequence of data items expecting to be

inserted. Suppose the sequence of the grid cells is (Gj, G2, Gx) € (0, 1,

2l ' !), the range of each grid cell is R[Gj] for i = 1, 2 , x, and data items to be
added are (dj, d2, dy) . Firstly we transform these data items into their
equivalent z-codes: d = (dl5 d2, dy) -> Z = (z(d1), z(d2), z(dy)) belonging

to (0, 1, 2L ' 1). Secondly we order Z = (z ^) , z(d2), z(dy)) -> Z' =

(zXdj), z'(d2), z'(d)) corresponding to(Gj, G2, Gx) where z'(di) e Gj

and z'(d(i+l)) belongs to Gk and i < k. Elements in Z' represents the insert
sequence. The insertion pattern can be expressed as:
C24 = ((the z-code for the elements in the insertion set matches the order of

Z ') or (Dyn < 10%))
C32 = (Dyn < 10%)
C42 = (Dyn > 50%)

Determine C23
Even data distribution (EDD) measurement.
Suppose that the number of data divided into m grid cells and the number of data
items in each cell is stored in C[i] for i = 1,2, 3 ,..., r.
The EDD meets the condition for packing density p,

m
C23 = X IC[i] - bl < (1 - p) x r x b

i=l

229

Appendix A3

An explicit illustration of the split rule

Suppose a split is a state transformation From data space level L to
(L + 1), the state can be described by bucket sequence numbers as:

S(b> = (0 , 1,2, ..., 2l - 1)

S<a)= (0 , 1, 2, ..., 2l -1 , 2l , 2l + 1, ..., 2(L+ !) - 1)

The first grid cell to be split will be the one which produces the number of 2^, 2^ +

1. Assuming that the grid cell k within the range of s (b) is the chosen grid cell then

the next grid cells to be split will be the one which produces the z-codes 2 b + 2 and

2b +3. This process can then be described as a recursive process, until a full split is
reached.

First split:

Choose x which produces numbers among the available bucket numbers 2b

to 2^ + 1 so that the produced numbers are the minimum number among the

available unused numbers.

Second split:

Choose y which produces bucket numbers 2b + 2, 2^ + 3.

Third split:
If x, y can be derived from a bucket number in use, i.e. the grid cell z,
which belongs to the used z-number, can produce x, y then we choose z to

split, otherwise we choose the one which produces bucket number 2^ + 4,

and 2^ + 5 and so forth. An example which illustrates the process is given

in Figure 2.

230

y (b)(a)
sy3 5 7 13 IS

sy7

sy6 7 13 15

sy2 4 6 12 14
sy5

sy4
16 17 6 12 14

v l 1 3 9 11
syG

sy2 1 3 9 11

syO 0 2 8 10
syl

X syO □ 2 8 10

sxO s x l sx 2 sx3

y (o)

sxO

y

s x l

(d)

sx 2 sx3

X

sy7

sy€ 7 13 I S
sy7

sy€ 20 21 7 13 15

sy5

sy4
16 17 18 19 12 14

sy5

sy4
16 17 18 19 12 14

sy3

*y®
l 3 9 11

syG

sy2 l 3 9 11

syl
syO 0 2 8 10

sy l
X syO 0 2 8 10

*y7

sy6

sy5

sy4

syG

sy2

sy i
syO

3 X 0 S X l 3 X 2 3X3

I f _________

sxO s x l sx 2 sx3

y (f)

20 21 7 13 15
sy7

sy6 20 21 22 23 13 15

16 17 18 19 12 14
sy5

sy4
16 17 18 19 12 14

4 5 3 9 11
syG

ry2 4 5 3 9 11

0 2 8 10
syl

X syO 0 2 8 10 X

sxO s x l 3x2 3x3 sxO s x l sx 2 sx 3

Figure 2. z-hashing splitting sequence.

231

Appendix A4

Bane file and z-hashing storage utilisation
For the z-hashing the storage utilisation depends on the data distribution and is
measured by the packing density for each grid cell. If the number of data items in
a grid cell is C(z) for z = 1 , 2 , Ncell and the bucket size is b then the average
storage utilisation Su for the data set will be:

i=Ncell
I C[i]

Su = ___ iz l __________
b x Ncell

The extra space, ladditional spacel, required for the data set, therefore, is

ladditional spacel = (1 - Su) x Ncell

If the index record length is Ridx then the storage required for the index file,
lindexl, by Bang partition will approximately be:

|indexl = Ridx x T n / b] x Su

where n is the number of data items in the data set.
Therefore, we can derive the formula for the break-even point calculation as:

ladditional spacel - lindexl < 0

If the condition holds the z-hashing is preferable otherwise the Bang file partition
is favourable.

232

Appendix A5

Calculation for a multi-Iavered m-d identifier
Let G = {Gl, G 2 , G k } be k-layers of a grid partition for an object data set. Let
obj = {objxl, o b j x 2 , o b j x k) be the entire object data set and objxi for i = 1, 2,

k refer to a subset of objects in layer i, i.e. objxi = {objil, o b j i 2 , o b j i x i } .
For each layer the element is represented by oblxi = {idij, Wij for i = 1, 2 , k; j
= 1 ,2 ,..., xi}, where idij is the object identifier formed by z-code and Wij is a
weight function which decides the number of buckets each object occupies. Initially
Wij = 0. A total number of buckets (Ni for i = 1 ,2 ,..., k) used for each layer is
kept for easier formation of the identifier. An identifier for an object in layer i can be
calculated by:

x=(i-l) y=(j-D
idij = X Nx + X Wiy

x=l y=l
Wiy = number of buckets required to store the object.

Having used this method to calculate the object identifier we noticed that when
variable length objects are allowed an insertion may cause changes to these
identifiers, implying high complexity of change (n/2 = O(n) in average). Hence it
cannot cope with dynamic situations efficiently. Alternatively, we can keep the
address of an object stored in the index without changing the object identification.
This means that objects stored in different layers can have the same identifier
distinguished by their layer and the address. An object is identified by its minimal
enclosure in a partition for a layer. This is shown in Figure 3.

233

LI object veight

¿Si*“)u
2 3

1

(^jbbj3

L3

layer

objl v l l - 2 1
obj2 v l 2 = 2 1
obj3 v l3 - 4 1
obj4 v21 - 3 2
obj5 v31 - 4 3

x-i-1 y-j-1
idij - 2 Nx + 2 v iy

x= 1 y-1
vhere idij is the object identifier for object j
in layer i. Nx is the number of buckets
occupied in layer x. v ij is ve igh t given for
a correspond object.

x=0 y -0
id l 1 - 2 Nx + 2 v l y - 0

x — 1 y-1

x -0 y-t
id 12 - 2 Nx + 2 v l y = 2

x — 1 y-1

x -0 y-2
id 13 = 2 Nx + 2 v l y

x— 1 y-1

= v l 1 + v l 2 -4
N1 = v l l + v l 2 + v l 3 = 8

x— 1 y -0
id21 - 2 Nx + 2 v 2 y

x-1 y-1

= v l l + v l 2 + v l3 - 8

N2 = N1 + v21 = 11

x=2 y - 0
id 31,- I Nx + 2 v 2 y - n

x=l y=l

Figure 3. Object identifier calculation for a multi-layered grid partition.

234

Appendix A 6

Performance evaluations for different applications
(1) The EXCELL algorithm
ACCESS TIME ESTIMATION
(a) Index file is stored in main memory

POINT DATA ACCESS
T = Tsec
T - time estimated for a point search.
Tsec - time required for an access to secondary storage.

RANGE SEARCH
avg (C[i]) x k avg(C[i])

a = ------------------------= ---------------
b x k b

a - an estimation of access accuracy of a range search.
avg(C[i]) - the average number of data items in a grid cell:
avg(C[i]) = n / B
where B is the number of buckets actually in use.

Let Dreq = ([Dxl, Dx2], [Dyl, Dy2]) be the range covered by the query, lx
be the interval length in the x dimension, Iy be the interval length in the y
direction. We can calculate the number of blocks require to be retrieved,
b - bucket size.
k - number of grid cells a range search covered.

Dx2 - Dxl
4-

Dy2 - Dyl

lx

T

iy

INSERT A DATA ITEM
T = one read + one write = 2 x Tsec when there is no split
T = one read + two writes = 3 x Tsec if there is a split

235

To insert a data item the maximum time required is when an insertion causes
a split; thus one data block needs to be read and split into two data blocks.
Subsequently, these two blocks need to be written to the secondary storage,
requiring two write operations. Moreover, the complexity of reorganising
the index file is O(r), r is the current file resolution.

DELETE A DATA ITEM
(i) no merge

T = one read + one write = 2 x Tsec
(ii) there is a merge

T -- two reads + one write = 3 x Tsec

(b) Index file cannot be stored in main memory
POINT DATA ACCESS

T = 2 x Tsec
one access to the index file and one for the data block.

RANGE SEARCH
avg(C[i]) x k avg(C[i])

a = = ------- --------------
1.5 x b x k 1.5 x b

k - number of grid cells a range search covered. The
factor 1.5 indicates the average index accessed is 0.5
of the total number of secondary storage access
required.

INSERT A DATA ITEM
T = two reads + one write = 3 x Tsec when there is a split
T = two reads + two reads when there is a split
A read to the index is added to the previous case in (a).

DELETE A DATA ITEM
(i) there is no merge

T = 2 x reads + one write = 3 x Tsec
(ii) there is a merge

T = three reads + one write = 4 x Tsec

236

(2) the z-hashing algorithm
ACCESS TIME ESTIMATION
(a) With overflow handling

POINT DATA ACCESS
With overflow handling to the z-hashing method an access to a data
item depends on two factors.
(i) Whether the data item to be accessed is in the home area or in the

overflow area.
(ii) The technique used to handle the overflow. In our system the

overflow is handled by a separator table. The details are in the
Appendix A8.

For overflow handled by the separator table we assume that the table can be
stored in main memory otherwise a split is triggered to resolve the table.
Under this assumption we get:

T = Tsec
A data item to be accessed by a query will relate to a specific grid cell
represented by its z-code. The separator (overflow) table in main memory
will be searched and there are two situations:
(i) The z-code is in the table. This implies that the required data item may

be in the overflow bucket so that the separator is compared with the
relevant attribute value in the query. It can be determined that either the
data item is stored in home or in the overflow areas and therefore, a
secondary storage access is required to read the block into main
memory for examination.

(ii) The z-code is not in the table. One secondary storage access is needed
to read the block which may contain the data item.

RANGE SEARCH
avg(C[i]) x k

a =—
b x k ’

237

where
k - the number of grid cells covered by the range query
k' - the number of data blocks needed to be accessed by the range

search. There are two cases:
(i) Every grid cell covered by the query is in a home grid so that k = k'.

(ii) Some of the grid cells covered by the query need overflow areas to
store data items falling in the range specified by the query. As data
items for a range search domain are beyond the storage capacity for a
grid cell, both home and the overflow blocks have to be accessed to
get these required data items, and therefore k' > k. The exact value of
k' depends on the number of grid cells which demand overflow areas
and the depth of an overflow area. It can be estimated by the
following formula.

k' =

ie DRs

C[i]

b

where DRs is the domain of the range search, i.e.
DRs = (Dxl, Dx2) X (Dyl, Dy2)

INSERT A DATA ITEM
There are several cases to be dealt with when inserting a data item.
(i) insert a data item into a non-full grid cell

T = one read + one write = 2 x Tsec
(ii) an insertion results in an overflow

T = one read + two writes = 3 x Tsec

(iii) A split is triggered by an insertion
When a split is triggered the resolution of the data set changes and
the file needs a reorganisation

T = r(b) reads + re w rite s = (r(b) + r(a)) x Tsec

= 3 x r(b) x Tsec = 3 x r x Tsec

238

where r is the simplified form of r(b).

r(b) . resolution before a split

r(a) - resolution after a split r(a) = 2 x r ^)

DELETE A DATA ITEM
(i) a deletion empties the overflow bucket

T = one read = Tsec
and a deletion is needed for the separator table,

(ii) a deletion empties a home bucket
there is an overflow area corresponding to the home block
T = two reads + one write = 3 x Tsec
where
one read to home bucket
one read to the overflow bucket
one write to the home bucket
otherwise
T = one read = Tsec
and an insertion to the empty grid cell table,

(iii) a deletion is one of the data items in the home or overflow bucket
T = one read + one write = 2 x Tsec,

(iv) a deletion causes a merge operation
In this situation a file reorganisation is triggered.

T = (r(b) + r(a)) x Tsec = 1.5 x r x Tsec

where r(a) = 1/2 x r^X

(b) Without overflow handling
POINT DATA ACCESS

T = Tsec

A given data item uniquely corresponds to a grid cell and a grid cell
uniquely corresponds to a data bucket, and thus only ONE disk access is
required for a point data access.

RANGE SEARCH

239

avg(C[i]) x k
a = -----------------

b x k

avg(C[i])

b

Dx2 - Dxl Dy2 - Dyl
k = +

lx iy

k - the number of data blocks covered by the range search, i.e. the
number of data blocks needed to be retrieved.

n(req) = avg(C[i]) x k
n(req) - an estimation of the number of data items required.

INSERT A DATA ITEM
T = one read + one write - 2 x Tsec if there is no split

T = 3 x r(b) x Tsec = 3 x r x Tsec if there is a split

where r(^) is the resolution before a split.
When there is a split the whole data file needs to be reorganised in order to
establish a one to one relationship between the grid cell in the new
resolution and the block number. We can see that a large amount of I/O
accesses are required and so the z-hashing cannot cope with dynamic
situations efficiently.

DELETE A DATA ITEM
T = one read + one write

T = r(b) reads + 0.5 r(b)

= 2 x Tsec if there is no merge

writes = 1.5 x r ^ x Tsec if there is a merge

240

(3) The quantile-hashing algorithm
POINT DATA ACCESS

T = Tsec
RANGE SEARCH

ni
a = ----------

b x k

k - number of grid cells a range search covered,
nj - number of data items searched.

INSERT A DATA ITEM
T = one read + one write

= 2 x Tsec when there is no split

T = r(b) reads + r(b) write

= (r(b) + (r(b) + sx(b))) x Tsec

= (2 x r + sx) x Tsec
(if there is a split in the y dimension)

T = r(b) reads + r(b) writes

= (r(b) + (r(b) + sy(b))) x Tsec

= (2 x r + sy) x Tsec
(if there is a split in the x dimension)

DELETE A DATA ITEM
(i) A deletion does not cause a merge operation

T = one read + one write = 2 x Tsec

(ii) A deletion causes a merge

T = r(b) reads + r(b) writes

= (r(b) + (r(b) - sx(b))) x Tsec

= (2 x r - sx) x Tsec
(if there is a merge in the y dimension)

241

T = r(b) reads + r(b) write

= (r(b) + (r(b) - sy(^))) x Tsec

= (2 x r - sy) x Tsec
(if there is a merge in the x dimension).

(4) The PLOP-hashing
POINT DATA ACCESS
T = Tsec

RANGE SEARCH
ni

a = —
b x k

nj = I avg(C[i])

Ri e RxXRy

0 if the region is not in RxXRy
R i= {

1 if the region is in RxXRy

k - number of regions covered by the range search.

INSERT A DATA ITEM
T = one read + one write = 2 x Tsec when there is no split
T = sx reads + 2 x sx writes = 3 x sx x Tsec if there is a split in the y

dimension
T = sy reads + 2 x sy writes = 3 x sy Tsec if there is a split in the x

dimension

DELETE A DATA ITEM
(i) a deletion does not cause a merge operation

T = one read + one write = 2 x Tsec,
(ii) a deletion causes a merge operation in the y dimension

T = sx reads + 1/2 sx writes = 1.5 x sx x Tsec
similarly in the x dimension, T = 1.5 x sy x Tsec.

(5) The BANG file

242

POINT DATA ACCESS
T = Tsec.

RANGE SEARCH
avg(C[i]) x k avg(C[i])

a =-— = -----------------------
b x k b

k - the number of regions covered by the range search.

INSERT A DATA ITEM
T = one read + one write = 2 x Tsec when there is no split
T = one read and two writes = 3 x Tsec if there is a split

DELETE A DATA ITEM
(i) a deletion does not cause a merge operation

T = one read + one write = 2 x Tsec
(ii) a deletion causes a merge operation in the y dimension

T = two reads + one write = 3 x Tsec
similarly in the x dimension, T = 1.5 x sy x Tsec

STORAGE ESTIMATION
(1) EXCELL algorithm

S = lindexl + r x b
where

lindexl = Sidx x r = laddressl x r

(2) Z-hashing
(a) With overflow handling

S = (r + Nover) x b

(b) Without overflow handling

S = 2

log N(d)

x r x b

N(d) is the depth of the overflow.

(3) Quantile-hashing

243

S = lindexl + sx x sy x b
where

lindexl = Sidx x Vr

= (Iseparatorl + laddressl) x Vr

(4) PLOP-hashing
S = lindexl + sx x sy x b
where

lindexl = Sidx x Vr

= (Iseparatorl + laddressl + lindexl) x V r)

(5) BANG file

S = lindexl + Vr x b

where

lindexl = Sidx x Vr

= (llevel nol + Iregion nol + laddressl) x V r)

244

Appendix A7

Information about distribution

the grid cell set which has more than b data items
C(over) = { C[zi] I (C[zi] > b) for i = 1, 2 ,..., x }
the number of grid cells with more than b data item
Nover = IC(over)l
the depth of the overflow

N(d) =
max (C[zi] I C[zi]eC(over))

b

the grid cell set which has no data items
C(empty) = { C[zi] I (C[zi] = 0) for i = 1 ,2 ,..., y }

the number of grid cells without any data items
Nempty = IC(empty)l

the storage utilisation estimation (or storage utilisation)
Nmin

P = ---------------
Nmax

the minimum number of buckets required for a data set.
Nmin = r

the maximum number of buckets required for a data set

|~ log N(d)

Nmax = 2 x r

245

the degree of even data distribution

i=r
Z IC[i] - bl

d(even) = — — ----------
r x b

alternatively we can express d(even) as:
o=x
Z 2 X (C[o] - b)

o=l
d(even) = <i>

r x b

when (n - Ln / bj) = 0, here C[o] e C(over) and
C(over) = { C[o] IC[o] > b and o = 1,2,..., x }.

Let us prove the above expression <i>.
i=r i=r

known (a) n = Z b, (b) Z C[i] = n, and
i= l i= l

proving
i=r o=x
I IC[i] - bl = I 2 x (C [o] -b) <ii>
i= l o=l

PROOF
i=r

from (a) and (b): Z (C[i] - b) = 0
i=l

dividing C[i] for i = 1,..., r into two groups C l[i] for i = x l , ..., xi and C2[j] for
j = y l , ..., yj where all Cl[i] > b, all C2[j] < b and I { x l , ..., xi, y l, ..., y j}I = r.
Let us look at:
i=r
Z IC[i] - bl <iii>

i= 1
representing Cl[i] and C2[j] in the following manner:

246

Cl[i] = cl[i] + b, C2[j] = b - c2[j]
according to the definition of C l [i] and C2[j] that c l [i] and c2[j] are greater than
zero.We need to prove:
i=r j=yj
I IC[i] - bl = Z 2 x (C2[i] - b) <iv>

i= l j=yi

The formula <iii> can be represented as:

i=r
Z IC[i] - bl

1=X1
= Z (Cl[i]

j=yj
- b) + Z (b - C2[j])

i=l i=xl j=yi
i=xi j=y.i

= Z (c 1 [i] + b - b) + £ (b - (b -
i=xl j=yi
i=xi j=yj

= Z Cl[i] + Z c2[j]
i=xl j=yi

the formula can also be represented as:
i=r i=xi j=yj

+ Z (b - C2[j])Z IC[i] - bl = Z (C l[i]-b)
i= l i=xl j=yi

i=xi j=yj
= Z (C l[i]-b) + Z (b - C2[j])

i=xl j=yi

j=yj j=yj
+ Z (C2[j] - b) - Z (C2[j] - b)

j=yi j=yi
i=xi j=yj

= [Z (Cl[i] - b) + Z (C2[j] - b)]
i=xl j=yi

j=yj j=yj
+ Z (b - C2[j]) - Z (C2[j] - b)

j=yi j=yi

j=yj j=yj
= Z ([0] + (b -C 2 [j]) -Z (C 2[j]-b)

j=y! j=yi

247

(b - C2[j] - C2[j] + b)= jFj
j=yi

j=yj
I 2 X (b - C2[j])

j=yi

j=yj
I 2 x (b - (b - c2[j])

j=yi

j=yj
= 2 x £ c2[j] <d>

j=yi

from <c> and <d> we know that:
i=xi j=yj
I cl[i] = I c2[j]
i=xl j=yl

that is, we can present formula <c> as:
i=r
£ IC[i] - bl =

i= l

1=X1 j=yj
£ (C l [i] - b) + I (b - C2[j])

i=xl j=yi
i=xi j=yj
£ (c 1 [i] + b - b) + £ (b - (b -

i=xl j=yi
i=xi j=yj
I cl[i] + I c2[j]

i=xl j=yi
i=xi
£ 2 x cl[i]

i=xl

i=xi
£ 2 x (Cl[i] - b)

i—xl
therefore <iv> is proven.

When d(even) < x% the upper bound for the number of the empty grid cells will
be x% x r. This is easily proved by the definition of d(even).

248

As far as the z-order is concerned four grid cells make up a combination to extract
the features from a data space. Hence when a resolution r is chosen, information

on a resolution with r / (21) where i = 1 ,2 ,... , log2r - 2, is easily derived. If the

resolution is r/2 then the grid cell will grow to twice the size as for resolution r.
When at resolution r, sx = 2 x sy is the case, we assume that every two slices in
the x direction will be merged to one, and similarly if sy = 2 x sx, we assume that
every two slices in the y direction will be merged to one. When sx = sy we can
choose any one of them to merge. Suppose the resolution set is R = {rO, r l , ...,
rx} where rO = r, r l = r/2, ..., rx = r / (log2r). The rule given for d(even) is
represented by a set of upper or lower bounds: d(even) = { < 20%, < 25%, <
50%, >50% } and the rule implies: (a) the comparison order is to be taken from
left to right upon the set of upper bounds given; (b) the reason behind the values
given is that the upper bound indicates the maximum number of empty grid cells
for the data set. If an application has close upper bounds, say <25% for all
d(even) values of different resolutions, then the accuracy of estimation of even
distribution to be bounded by 25% increases. The result is easily represented in
the knowledge base by a bit matrix of (x) x (y), where x is the number of
resolution levels and y is the number of upper bounds given in the rule. A rule as
given above, has 4 upper bounds, and when there are also four levels, of
resolution to be considered in an AAP, the following bit matrix is explained.

matrix explanation
levelrO 1 0 0 0 at rO d(even) < 20%
levelrl 0 1 0 0 at r l d(even) < 25%
levelr2 0 1 0 0 at r2 d(even) <25%
levelr3 0 0 1 0 at r3 d(even) < 50%

For an AAP the information on d(even) once derived can thus be stored as a bit
matrix for system to use. Information gained at different resolution levels, such as
C[i] for i = 0, 1, 2, 3 (the lowest resolution level), can also be used to tune the
physical organisation under the system’s control.

An illustration of using Cfil at resolution level of r = 4
By analysing information at different resolution levels a very small sized index file
may be introduced into the system to allow varied resolution levels for different
regions within the data space. An example is illustrated below.

249

Data space r = 4

R l
r=64

R3
r=8

RO
r=4

R2
r=64

It is possible that among these four regions {RO, R l, R2, R3} in the data space
that RO and R3 have sparsely populated data items, and R l and R2 have a
densely populated data distribution. To tune the physical organisation we may
wish to apply different resolutions to differently populated regions. A small sized
index thus can be used for this purpose. In each entry the resolution and the
starting address is recorded for calculating an address by a z-hashing function.
The tuning process is especially useful for a large data set with strong correlated
data. An illustration is shown in Figure 4. Each region is treated as if it is an
independent data set using the z-hashing implementation. We can see from Figure
4 that by introducing the index file, the reorganisation caused by a split may also
be localised.

250

C h an gin g reso lu tion m ay
in troduce index file
alteration .

r s t a r t a d d r e s s r s t a r t a d d re s s
0 8 0 0 8 0
1 1 8 1 1 8

2 1 9 2 2 18
3 8 10 3 8 10

3
10 11 12 13

14 15 16 17

To localise the c h a n g e s to d a ta b u ck ets
bucket 9 is re leased after a sp lit.

Figure 4. Tuning by different resolution.

251

The local data density Ldfsiil
The algorithm for calculating local data density
INPUT
C[i] for i = 0, 1, r - 1

OUTPUT

Ld(xi) for i = 0, 1 , (sx - 1) =Llog2rJ _ ^

Ld(yj) for j = 0, 1 , (sy -1) =Llog2rJ . x

ALGORITHM
L D ()

{
initialise Ld[xi] and Ld[yi] to be 0;
for (y = 0; y++; y < sy)

{
for (x = 0; x < sx; x++)

{
z = interleaving x and y;
Ld[y] = Ld[y] + C[z];
}

}
for (x = 0; x++; x < sx)

{
for (y = 0; y < sy; y++)

{
z = interleaving x and y;
Ld[x] = Ld[x]+C[z];
}

}
for (x = 0; x++; x < sx)

store Ld(x);
for (y = 0; y++; y < sy)

store Ld(y);

252

i=r-l
dynamic factor: Dyn = X Ir[i] - Dr[i]

i=0

access mode: random access or no special requirement

depth of overflow grid cells:

(C(o) - b)_
N(d) = max (

b
) forC(o) eC(over)

packing density:

N(d)

[Log2N(d|]

253

Appendix A8

Overflow Handling
Overflow usually needs an extra access to the secondary storage device. The main
purpose of applying a hash algorithm is to gain fast response. Naturally it is
desirable to handle overflow without an extra access to the secondary device. In our
system we handle the overflow by utilising an overflow table in the main memory
for a hashing algorithm. When inserting a data item the grid cell which causes an
overflow will be divided into two. The original z-code of the grid cell will be kept in
the overflow table along with the dividing dimension chosen. A retrieval will
always look up the overflow table to decide if the required data item is in the home
or in the overflow bucket. The key to the method is to calculate the z-value for a
data item, which is to be stored in as the first one in the overflow bucket, the
separator.

The overflow/separator table

z-code separator dimension layer address

z-code

separator

dimension

layer

address

corresponding to the grid cell at current level which has
caused an overflow.
recording the position where the home and overflow area
boundary value is in a specified dimension,
indicating the direction in which the boundary has been
recorded as a separator.
a grid cell can have more than 2 x b data items, so that within
an overflow, another overflow may be embedded,
the address of the overflow area. To improve z-hashing
storage utilisation the address can be a z-code for an empty
grid cell. Using empty grid cells to accommodate overflow
all z-codes for empty grid cells need to be recorded as free
storage for the system to use.

An example
Suppose the grid cell x is a home grid cell which causes an overflow. In the current

254

grid cell x there are k items I = {il, i 2 , i k } where (k > b) have the same z-code
x. An overflow process will split the set I into two sets: II = { i l , i m - 1 }, 12 =

{ i m , i k } in which case we store II in the home grid cell (x^1 data bucket) and 12
in an overflow bucket with address <addr 1>. Assume that grid cell x is the first to
be split by an overflow and it chooses dimension 1 to split, the separator table will
be:

z-code separator dimension layer address

X im 1 0 <addr1>

Now if 12 changes to be 12 = {im ,..., ih} where h > b, i.e. it needs to be divided
into two grid cells: 121 = { im ,..., ij-1} and 122 = { ij,..., ih}. In order to make a
comparison with the separator for the same grid cell z-code, we always split it in the
same dimension. If 122 is stored in <addr 2> then the table becomes:

z-code separator dimension layer address

X im 1 0 <addr1>

X ij 1 1 <addr 2>

where layer = 1 indicates that an overflow has occurred in the first overflow area.

Search a data item ix
Given data item ix the z-code is calculated as z(ix). According to the value of z(ix)
the separator table is inspected and the separator is compared with ix. There are
three possibilities:
(a) no z-code in the separator table matches z(ix) so ix is in the home grid cell;

(b) when layer = 0, if the j^1 attribute of ix (j is the dividing dimension) is less

than the j * attribute of the separator, then ix is stored in the home grid cell
otherwise ix is stored in <addr 1>;

(c) when layer = 1, if the j 1*1 attribute of ix (j is the dividing dimension) is less
than the jth attribute of the separator, then ix is stored in <addr 1>,
otherwise it is stored in <addr 2>.

255

Appendix A9

Selecting data organisation
(a) Sequential or indexed sequential

When the activity is high the data can be organised by a sequential access
method ordered on the dominant attribute identified (usually the primary key).
The level at which the system will go to the sequential organisation is a break-
even problem. To determine the break-even point the following algorithm is
used.
INPUT = { n, m, R, b, k, a }
where
k: the length of the key.
a: address referring to a data item.
R: the average length of the record length.

OUTPUT = { break point: percentage of the activity }

ALGORITHM:
Assume that the activity of a data set is x (%) then the unnecessary access of data
in a sequential organisation will be: (1 - x) x n x R (bytes). If we use an index to
store the file and the key length in the index is k then (x) x (k + lal) bytes will be
accessed for the index file. Here lal is the length of the address of the index. Each
access to the index results in an access to a data block and therefore, the total extra
accesses will be (x) x n x (k + lal) + (x) x n x (b - 1) x R. The interpretation for
the formula is that the first part is the number of bytes to be accessed for the index
and the second part is the number of bytes accessed to the required data block
minus the wanted one (R). To decide the break-even point for a sequential
organisation we have the inequality:
(1 - x) x n x R < (x) x n x (k + a) + (x) x n x (b - 1) x R
That is:
(1 - x) x R < (x) x (k + a) + (x) x (b - 1) x R
R - (x) x R < (x) x k + (x) x a + (x) x b x R - (x) x R
(x) x (k + a + b x R) > R
Solving the equation, we get:

256

Bp 1 = (x >
R R

k + a + b x R c + b x R

Here C is the index storage overhead.

The Bp 1 is a break-even point condition. If Bpl is true and the access mode is
not crucial then sequential organisation can be used. If Bp 1 is not true then index
organisation is to be used.

This is the function for making a decision on a sequential file if real-time mode is
not required by the user.

Thus the rule is:
if (bpl = true) and (access mode * real time) then sequential.

Ib) Indexed sequential or hashing
When access time is important either the hashing or indexed sequential algorithm
can be chosen. The decision relies mainly on the following factors: (1) available
min. memory M; (2) data vitality Dyn; (3) data distribution Ds. Rules governing
the decision can be described as:
if ((lindexl < M) and (Ds is even))then indexed sequential;
if ((lindexl > M) and (Ds is even) and (Dyn is low)) then hashing;
if ((lindexl > M) and (Dyn is uneven) then further factors have to be considered.
The factors can be the application requirements such as storage utilisation Su and
access speed.

257

Appendix 10
Examples
Example 1
Rules regarding the algorithm selection have been described in section 4.1. Here, we
illustrate how those rules will work by giving some examples. In the following two
simple examples, we shall demonstrate the usage of the system by applying elimination
rules for the selection of an access algorithm.

Assumption
memory size : M = 1,024 K,
short lived data set : tm < 4 weeks.

(1) Given features of an application
Data set
Life span

D = { d l, d2, ..., dn},
tm < 2 weeks.

Selection
According to elimination rule ER2, ALT[1] (EXCELL algorithm) is selected.

(2) Given features of an application :
Data set
Life span

D = { d l, d2, ..., dn}
tm > 4 weeks

The derived features
index file size llndexl < 1,024 K

llndexl = IKeyl x IGI
where
IKeyl is the length of the key
IGI is the number of grid partitions for the data set without
causing overflow.

258

Selection
According to elimination rule ER1, ALT[1] (EXCELL algorithm) is selected.

Explanation
Elimination rules are constructed to select an access algorithm matching data sets with
salient features. These features are dominant factors in the selection of a specific access
algorithm. The justification of the elimination rules is to avoid intensive rule searches
simply because a further examination is not cost-effective (for example, the data set is
small or the data set is short-lived), or the suggested algorithm does match those salient
features of the considered data set (for example, the z-hashing is suitable for data sets
with even data distribution and static features, the BANG file is extremely good for
dynamic data sets).

Choosing an algorithm by initial selection rules
Example 2
The following is a more complex example to explain how an initial algorithm selection is
made using the system.
(1) Given features of an application:

data set D = { (0, 1), (0, 2), (0 ,3), (1 ,6), (2, 2),
(2, 3), (2, 7), (3, 1), (3, 2), (3, 3),

data distribution
dynamic factor
range search rate

bucket size
index and memory size

(3, 6), (3, 7), (4, 3), (6, 3), (6, 5) }
b = 4
llndexl > M
Deven = (4 + 0 + 3 + 2) / 16 = 56.25 %
Dyn < 40%
Rs < 30%

259

© ©

© ©

R 2 ©

R 3

© ©e
Q 9

© R 0 ° 3

e R 1 ©

0 1 2 3 4 5 6 7

Figure 5. The given data set uses the BANG-file algorithm.

Using initial algorithm selection rules we will get:
h(ATRl) = 0 + 0 + 0 + l = l
h(ATR2) = 1+ 0 + 0 4 - 0 = 1
h(ATR3) = l + 0 + 0 + 0 = l
h(ATR4) = l + 0 + 0 + 0 = l
h(ATR5) = 1 + 1 + 1 + 0 = 3
h(ATR6) = l + 0 + 0 + 0 = l
thus the BANG-file is chosen.

Performance evaluation for the BANG-file access algorithm

260

Storage utilisation

minimal requirement = [n/bl = [~15 / 4] = 4

actual requirement = IRI = 4
where R = {RO, R l, R2, R3 }
Hence Su = minimal requirement / actual requirement = 100%

Sneed
Point search :
assume 50% of the times the required index is in main memory and other 50% in the
secondary storage (disk):

Tp = 1.5 x Tsec

Range search accuracy :
range search accuracy depends on the individual selection criteria. In this evaluation we
assume a few selections and calculate the average.

number of data item required
accuracy a = —

actual number of data buckets searched x bucket size b

(1) select (x, y)
al

(2) select (x, y)
a2

(3) select (x, y)
a3

average a

where x < 5 and y < 5
= 9 / (4 x 4) = 56.25 %

where x < 5 and y > 5
= 4/ (2 x 4) = 50%

where 2 < x < 3 and y < 3
= 3/ (2 x 4) = 37.5%
= (al + a2 + a3) / 3 = 47.92%

C om paring w ith o ther algorithm s
(1) P erform ance evaluation for EX CELL algorithm

261

(a) with overflow handling

(b) without overflow handling

In d e x F i le

< a tk ir e s s U >
1 ■Cacklress 1 >
2 c a c k lre s s 2 >
3 C ack lress 3 >
4 <NULL>
5 C a d d re s s 5 >
6 < a ck ire s s 6 >
7 < a ck lre s s 7 >
8 <NULL>
9 <NULL>
10 < a d d re s s 10 >
11 < a d d re s s 1 1 >
12 <NULL>
13 < a d d re s s 1 3 >
14 <NULL>
15 <NULL>

Figure 6. The given data set applies EXCELL algorithm.

262

Notes:
the EXCELL needs more space to store the index than the BANG-file.

Storage utilisarion
(a) with overflow handling

minimal requirement = T n/bl = [~15/4~| = 4

actual requirement = 5 (1 for overflows, 4 for the partition)
Hence Su = 4/5 = 80%

(b) without overflow handling
actual requirement = 9
Hence Su = 4/9 = 44%

Speed
Point search:
assume 50% of the times the required index is in main memory and other 50% on the
disk:

Tp = 1.5 x (4 + 1 + 2 + 4 + 4 x 2) / 15 = 1.9 x Tsec

Range search accuracy:
(1) select (x, y) where x < 5 and y < 5

al = 9 / (5 x 4) = 45 %
(2) select (x, y) where x < 5 and y > 5

a2 = 4/ (2 x 4) = 50%
(3) select (x, y) where 2 < x < 3 and y < 3

a3 = 3/ (2 x 4) = 37.5%
average a = (al + a2 + a3) / 3 « 44.17 %

(2) Performance evaluation for the z-hashing algorithm

263

y

7 o ©

0
6 10 11 © 14 15

5
8 9 12 13

. . Q
4

3 © © © © O

2 e 2
©

3
©

6 7

1 e 0 1 © 4 5

0

0 1 2 3 4 5 6 7

Figure 7. The given data set employs the z-hashing algorithm.

Notes: z-hashing needs no index.
Storage utilisation

minimal requirement = n/b] = |~ 1 5 /4 l = 4

actual requirement = 16
Hence Su =4/16 = 25%

Speed
Point search :

Tp = 1 x Tsec

Range search accuracy:
(1) select (x, y) where x < 5 and y < 5

264

al = 9 / (9 x 4) = 25%
(2) select (x, y) where x < 5 and y > 5

a2 = 4/ (3 x 4) - 33 %
(3) select (x, y) where 2 < x < 3 and y < 3

a3 = 3/ (2 x 4) = 37.5%
average a = (al + a2 + a3) / 3 = 31.83 %

(3) Performance evaluation for the quantile-/PLOP-hashing

Figure 8. The given data set uses the quantile-/PLOP-hashing algorithm.

Storage utilisation

minimal requirement = [n/bl = [*15/41 = 4

265

actual requirement = 7
Hence Su =4/7 = 57%

Speed
Point search:
(1) assume indices are stored in main memory the point search is fast, i.e.

Tp = 1 x Tsec
(2) if those indices cannot be stored in main memory, extra disk access is required, on

average:
Tp = 1.5 x Tsec

Range search accuracy:
(1) select (x, y) where x < 5 and y < 5

al = 9 / (5 x 4) = 45 %
(2) select (x, y) where x < 5 and y > 5

a2 = 4/ (2 x 4) = 50%
(3) select (x, y) where 2 < x < 3 and y < 3

a3 = 3/ (2 x 4) = 37.5%
average a = (al + a2 + a3) / 3 = 44.17 %

Notes: when PLOP-hashing destroys the z-order the range search accuracy may
deteriorate.

Comparison Su Tp a
BANG-file 100% 1.5 47.92%
Excell 67% 1.9 44.17%
Z-hashing 25% 1 31.83%
Qantile-/PLOP-hashing 66% 1/1.5 44.17%/< 44.17%

This example shows that range search is a desirable feature of the data set (as Rs < 30%)
and Su is an important factor (since Deven > 50%). Furthermore, the dynamic factor
Dyn is relatively high (Dyn < 40%). Consequently, BANG-file offers excellent

266

performance both in storage utilisation and range search accuracy. In addition, BANG-file
copes well with dynamic situations. The performance evaluation has shown a match
between the near-optimal performance among available algorithms and the one chosen by
the “initial selection rules”, i.e. by performance comparison. By comparison the BANG-
file is the near-optimal solution. This process heuristically validates these rules used in the
algorithm selection process. It can be noticed that z-hashing has excellent point search
ability but the cost of dealing with dynamic situations is high and the storage utilisation,
low.

Selecting an algorithm by a similarity comparison
Example 3
The following example exercises the similarity comparison element of the rule base.
Assumption
Abstract Application Profile (AAP) has the following features (see Figure 5.)
(1) Data set

D ’ = { (0 ,1), (0, 2), (0, 3), (1, 6), (2, 2), (2, 3), (2, 7), (3, 1), (3, 2), (3, 3),
(3, 6), (3, 7), (4, 3), (6, 3), (6, 5) }

(2) Data distribution by number of overflowed data items in each grid cell (r = 4)
C’(o)[0] = 4
C ’(o)[l] = 0
C’(o)[2] = 0
C’(o)[3] = 0

(3) Even data degree
d ’(even) = (4 + 0 + 3 + 2) /1 6 = 56.25%

(4) Number of overflow grid cells
N ’over = 1

(5) Dynamic factor
D ’yn < 40%

267

(6) Point search speed
P ’s < 70%

(7) Number of empty grid cells
N ’empty = 0

(8) Range search rate
R ’s < 30%

(9) Local data density
L’dx[l] = 12/2 = 6 L’dx[2] = 3/2 = 1.5
L’dy[l] = 10/2 = 5 L’dy[2] = 5/2 = 2.5

(10) Query frequency
F ’x = 55% F ’y = 45%

(11) The access algorithm used is BANG-file.

(12) The stored performance
Storage utilisation

Su = 100%

Speed
Point search :
(1) the index that can be stored in main memory:

Tp = 1 x Tsec
(2) the index that cannot be stored in main memory

Tp = 1.5 x Tsec

Range search accuracy:
average a = (al + a2 + a3) / 3 = 47.92%

268

The given application profile (AP)
(1) Data set

D = { (0 ,2), (0, 3), (1, 1), (1, 3), (1, 4), (2, 2), (2, 3), (2, 7), (3, 2), (3, 3),
(3 ,7), (4 ,1), (4, 3), (4 ,4), (6, 4), (6, 5) }.

(2) Data distribution
C(o)[0] = 4
C(o)[l] = 0
C(o)[2] = 0
C(o)[3] = 0

(3) Even data degree
d(even) = (4 + 2 + 1 + 1) / (4 x 4) = 50%

(4) Number of overflow grid cells
Nover = 1

(5) Dynamic factor
Dyn < 40%

(6) Point search speed
Ps < 70%

(7) Number of empty grid cells
Nempty = 0

(8) Range search rate
Rs < 30%

(9) Local data density
Ldx[l] = 11/2 = 5.5 Ldx[2] = 5/2 = 2.5

269

Ldy[l] = 10/2 = 5 Ldy[2] =6/2 = 3

(10) Query frequency
Fx = 55% Fy = 45%

0 1 2 3 4 5 6 7

Figure 9. The given data set deploys the BANG-file algorithm.

270

Similarity computation
Calculated deviations
(1) Data distribution

i=3
I I C’(o)[i] - C(o)[i])l
i=0

DD = --------------------------
r x b

(2) Even distribution degree

Id’(even) - d(even)l
ED =

r x b

(3) Number of overflow grid cells
OV = IN’over - Noverl / r = 0

(4) Dynamic factor
DF = ID’yn - Dynl = 0

(5) Point search rate
DP = IP’s - Psl = 0

(6) Range search rate
DR = IR’s - Rsl = 0

(7) Number of empty grid cells
OE = IN’empty - Nemptyl = 0

(8) Local data density

= 0

1.56 %

271

y=S
Z y ILd’(y) - Ld(y)l

y=i
............. - -— = 25%

syx b

(9) Query frequency
xm

FD = Z If’i - fil = 0
i=xl

X=sx

Z ILd’(x) - Ld(x)l
x=l

LD = +
sxx b

(10) Similarity degree
s(x) = 0.78

Assuming that s(x) = 0.78 is a satisfactory similarity degree, the BANG-file algorithm
will be employed for the application profile AP.

Performance evaluation using the BANG-file algorithm for an AP
Storage utilisation

minimal requirement = [n/bl = [1 6 / 4 1 = 4

actual requirement = 5
Hence Su = 4/5 = 80%

Speed
Point search :
(1) index which can be stored in main memory

Tp = 1 x Tsec
(2) index which cannot be stored in main memory

Tp = 1.5 x Tsec

Range search accuracy:

272

(1) select (x, y) where x < 5 and y < 5
al = 1 1 / (5 x 4) = 55%

(2) select (x, y) where x < 5 and y > 5
a2 = 3/ (2 x 4) = 37.5%

(3) select (x, y) where 2 < x < 3 and y < 3
a3 = 3 / (2 x 4) = 37.5%

average a = (al + a2 + a3) / 3 = 43.3%

Comparing with other algorithms
(1) Performance evaluation for EXCELL algorithm
(a) with overflow handling

y
©

9

©

2 3 © G

© O © O 0] ©

© ©

O © ©

0 1 2 3 4 5 6 7

273

(b) without overflow handling

0 ©

3
10 11 14 15

8 9 12 13 A 0

© 0

o © 0 o ©

2
O3 o 6 7

© °
1

© © 4 5

0 1 2 3 4 5 6 7

Index File

1) ' <address 0>
1 <address 1>
2 <address 2>
3 <address 3>
4 <address 4>
5 <NULL>
6 <address 6>
7 <NULL>
8 <NULL>
9 <NULL>
10 <address 10>
11 <address 11>
12 <address 12>
13 <address 13>
14 <NULL>
15 <NULL>

Figure 10. The given data set applies EXCELL algorithm.

Storage utilisation
(a) with overflow handling

minimal requirement = [n/bl = [~16 / 4 1 = 4

actual requirement = 5
Hence Su = 4/5 = 80%

(b) without overflow handling
actual requirement = 10
Hence Su = 4/10 = 40%

274

Speed
Point search:
(1) the index is in main memory

Tp = 1 x Tsec
(2) the index is not in main memory

Tp = 1.5 x Tsec

Range search accuracy:
(a) with overflow handling
(1) select (x, y) where x < 5 and y < 5

al = 9 /(5 x 4) = 45%
(2) select (x, y) where x < 5 and y > 5

a2 = 3 / (2 x 4) = 37.5%
(3) select (x, y) where 2 < x < 3 and y < 3

a3 = 3/ (2 x 4) = 37.5%
average a = (al + a2 + a3) / 3 * 40 %

(b) without overflow handling
(1) select (x, y) where x < 5 and y < 5

al = 9 /(7 x 4) ~ 39%
(2) select (x, y) where x < 5 and y > 5

a2 = 3 / (2 x 4) = 37.5%
(3) select (x, y) where 2 < x < 3 and y < 3

a3 = 3/ (2 x 4) = 37.5%
average a = (al + a2 + a3) / 3 = 38 %

(2) Performance evaluation for the z-hashing algorithm

275

© ©

a
10 11 14 15

8 9 12 13 ©

© ©

© © © o ©

2 3 ® © 6 7

© °
1

© © 4 5

0 1 2 3 4 5 6 7

Figure 11. The given data set uses the z-hashing algorithm.

Storage utilisation

minimal requirement = [n/b] = [”1 6 / 4 1 = 4

actual requirement = 16
Hence Su =4/16 = 25%

Speed
Point search :

Tp = 1 x Tsec

Range search accuracy:
(1) select (x, y) where x < 5 and y < 5

276

al = 1 1 / (9 x 4) -3 0 .6 %
(2) select (x, y) where x < 5 and y > 5

a2 = 3/ (3 x 4) = 25%
(3) select (x, y) where 2 < x < 3 and y < 3

a3 = 3/ (2 x 4) = 37.5%
average a = (al + a2 + a3) / 3 = 31 %

(3) Performance evaluation for the quantile-/PLOP-hashing algorithm

Figure 12. The given data set applies quantile-/PLOP-hashing algorithm.

Storage utilisation

minimal requirement = [n/bl = T16 / 4 1 = 4

actual requirement = 9

111

Hence Su = 4/9 - 44%

Speed
Point search :
(1) assuming indices are stored in main memory, the point search will be fast, i.e.

Tp = 1 x Tsec
(2) if those indices cannot be stored in main memory, extra disk access is required, on
average:

Tp = 1.5 x Tsec

Range search accuracy:
(1) select (x, y) where x < 5 and y < 5

al = 1 1 / (6 x 4) » 4 5 .8 %
(2) select (x, y) where x < 5 and y > 5

a2 = 3 /2 x 4) = 37.5 %
(3) select (x, y) where 2 < x < 3 and y < 3

a3 = 3/ (2 x 4) = 37.5%
average a = (al + a2 + a3) / 3 « 40.25 %

The performance comparison between AAP and AP:
Su Tp a
100% 1/1.5 47.92%

B A N G -file 80% 1 /1 .5 43 .3 %
EXCELL 40%/80% 1/1.5 38%/40%
z-hashing 25% 1 31%
quantile-/PLOP-h ashin g 33% 1/1.5 40.25

Here we illustrated a simple example which uses the similarity comparison to choose an
access algorithm. The principle is tha t, if the similarity is identified between a given
application profile and the abstract application profile, the algorithm used for the AAP will
be used for this application.

278

Several examples have been given to illustrate how an algorithm is chosen by applying
the rule base. Performance is evaluated for various access algorithms. The evaluation
results have shown that the selected algorithm is a near-optimal algorithm. Hence the
heuristics applied to the rule base are justified.

279

References

[AG88] R. Agrawal et al.
" Efficient Search in Very Large Databases ", Proc. of the 14th VLDB
conference, 1988, Pages 407- 418

[AL87a] M. Allerhand
"Knowledge-Based Speech Pattern Recognition ", 1987, Kogan Page

[AL87b] K. Allgeyer
" Expert Systems Based Configuration of VSAM Files ", Proceedings of
Third International Conference on Data Engineering, 1987, Pages 150 -
156

[AN88] K.M. Andress et al.
" Evidence Accumulation & Flow of Control in a Hierarchical Spatial
Reasoning System ", Al Magazine, Summer 1988, Pages 75-94

[AN85] A.D. Angelo, et al.
“ A Mechanism for Representing and Using Meta-Knowledge in Rule-
Based System , Approximate Reasoning in Expert System, edited by M.
M. Gupta, et al., North-Holland, 1985, Pages 731-742

[AP85] L. Appelbaum et al.
" ARIES: An Approximate Reasoning Inference Engine ", Approximate
Reasoning in Expert System, edited by M.M. Gupta et.al, North-
Holland, 1985, Pages 731-742

[AV85] E. Avnietal.
" Software Relational Data base in CAD/CAE and Expert Systems",
Approximate Reasoning in Expert System, edited by M.M. Gupta et.al,
North-Holland, 1985, Pages 573-592

[BA88] H.S. Baird
"Applications of Multidimensional Search to Structural Feature
Identification", NATO ASI Series, Vol. F45, Syntactic and Structural

280

[BE81]

Pattern Recognition, Springer-Verlag Berlin Heidelberg, 1988, Pages 137
- 143

J.C. Bezdok
Pattern Recognition with Fuzzy Objective Function Algorithms,
PLENUM Press, 1981, ch3,5,6

[BE89a] C. Beardon
Artificial Intelligence Terminology, 1989

[BE89b] E. Bertine
"Indexing Techniques for Queries on Nested Object", IEEE Transactions

[BE88]

on Knowledge and Data Engineering, Vol. 1, No.2, June 1989

D. A. Bell et al.
" Clustering Related Tuples in Databases ", The Computer Journal, Vol.
31, No. 3, 1988, Pages 233 - 258

[BE87] A.C. Beerel
" Expert Systems: Strategic Implications and Applications ", ELLIS
HORWOOD LIMITED, 1987

[BE81] J.C. Bezdek
" Pattern Recognition with Fuzzy Objective Function Algorithms",
Plenum Press, New York and London, 1981

[BE79] J.L. Bendy, J.H. Friedman
" Data Structures for Range Searching", Computing Surveys, Vol. 11,
No. 4, Dec. 1979, Pages 397 - 409

[B089] L. B. Booker
"Classifier Systems and Genetic Algorithms", Artificial Intelligence, Vol.
40, No. 1-3, Netherland, September 1989, Pages 235-282

[B085] L.Bourrelly et al.
" A Formal Approach to Analogical Reasoning ", Approximate Reasoning

281

in Expert System, edited by M.M. Gupta et.al, North-Holland, Pages 87-
104,1985

[B083]

[BR90]

[BR73]

[BU84]

[BU89]

[BU83]

[BU79]

[CA84]

A. Bolour
" Optimality Properties of Multiple-Key Hashing Functions ", Journal of
the Association for Computing Machinery, Vol. 26, No. 2, 1983,
Pages 196 - 210

Edited by P. B. Brazdil et al.
Machine Learning, Meta-reasoning and Logic, Kluwer Academic
Publisher, 1990

J. Bronowski
The Accent of Man, Chapter 11, 1973, Pages 353 - 374

B. G. Buchanan
Rule-based Expert System: The MYCIN Experiments of the Stanford
Heuristic Programming Project, Addison-Wesley Publishing Company,
1984, Pages 209 - 232

L. Buisson
"Reasoning on Space with Object-Centered Knowledge Representations",
Lecture Notes in Computer Science, Vol. 409, Springer-Verlag, 1989,
Pages 325-344

W.A. Burkhard
" Interpolation-Based Index Maintenance ", BIT 23, 1983, Pages 274-
294

W.A. Burkhard
" Partial-Match Hash Coding: Benefit of Redundancy ", ACM trans. on
TODS, vol. 4, no. 2, June 1979, Pages 228 - 239

V Cantoni
" Shape Recognition Using Hough Transform ", Cybernetic Systems:
Recognition, Learning, Self-Organisation, 1984, Pages 121 - 128

282

[CA86] M.J. Carey et al.
" Object and File Management in the EXODUS Extendible Database
Systems ", Proceedings of the 12th Int. Conf. on VLDBs, 1986, Pages
91 - 100

[CH89] B. Chandrasekaran et al.
" Explaining Control Strategies in Problem Solving ", IEEE Expert
Spring 1989, Pages 9 - 24

[CH88a] A. Chandra
" Theory of Database Queries", Proc of 7th ACM Symp. on principles of
Database Systems", 1988, Pages 1-9

[CH88b] H.I. Christensen et al.
On Token-matching in Real Time Motion Analysis, Lecture Notes in
Computer Science, Vol. 301, Conference: BPRA 4th International
Conference on Pattern Recognition, Cambridge (GB), March, 1988,
Pages 448-457

[CH86] J.M. Chassery
"Expert Systems, Image Processing and Image Interpretation", Eighth
International Conference on Pattern Recognition, 1986, Pages 175-183

[CH84] Y C. Cheng et al.
“Waveform Correlation Using Tree M atching”, 7th Conference
Proceeding on Pattern Recognition, 1984, Pages 350 - 354

[CL86] W.J. Clancey
“Heuristic Classification”, Knowledge Based Problem Solving, Edited by
Jannzy Knoalik, Prentice Hall, 1986, Pages 1 -6 7

[C087a] R. Cole
" Partitioning Point Sets in Arbitrary Dimension ", Theoretical Computer
Science, Vol. 49, No. 2, 3, 1987

283

[C087b] Douglas W. Cornell et al.
"A Vertical Partitioning Algorithm for Relational Databases", CH2407-
5/87/IEEE

[C078] D. Comer
"The difficulty of Optimum Index Selection", ACM trans. on DB
Systems, 1978, Pages 440-447

[G077] V. Gordon J. et al.
"Two Stage Template Matching", IEEE Trans. Computer, Vol.C-26,
1977, Pages 384-393

[CS88] J. Csirile et al.
"Longest k-distance substrings of two strings", 9th International
Conference on Pattern Recognition, Nov. 1988

[DA82] D. Daniel et al.
“ An Introduction to Distributed Query Compilation in R*” in Distributed
Databases, Edited by H. J. Schneider, North-Holland, 1982, Pages 291 -
310

[DA88a] M. Davison
" The Matching Law ", 1988, Ch2, 4, 5, 12, Lawrence Erlbaum

[DA88b] E.R. Davies
"Tradeoffs between Speed and Accuracy in Two-stage Template
Matching", Signal Processing, Vol. 15, Dec. 1988, Pages 351-363

[DA87] R.S. Davis et al.
"Multikey Access Methods Based on Superimposed Coding Techniques",
ACM Trans, on Database Systems, Vol. 12, No.4, Dec. 1987, Pages
655-696

[DA79a] R. Davis
"Interactive Transfer of Expertise: Acquisition of New Inference Rules",
Artificial Intelligence 12, 1979, Pages 121-157

284

[DA79b] L.S. Davis
"Shape Matching Using Relaxation Techniques", IEEE Transactions on

[DE78]

Pattern Analysis and Machine Intelligence, Vol. PAMI-1, No. 1, January,
1979, Pages 60-72

A.K. Dewdney
"Analysis of a Steepest-descent Image-matching Algorithm", Pattern
Recognition 10, Pages 31-39,1978

[DU85] H.C. Du
" On the File Design Problem for Partial Match Retrieval ", IEEE Trans.

[EA83]

on Software Eng. Vol. SE-11, No. 2, Feb. 1985, Pages 213 - 222

C. M. Eastman
" Current Practice in the Evaluation of Multikey Search Algorithms ",
ACM Proc. of 6th annual Int. SIGIR Coni, Vol. 17, No.4, 1983

[EG 89] M.J. Egenhofer
"A Topological Data Model for Spatial Databases", Lecture Notes in
Computer Science, Vol. 409, Springer-Verlag, Pages 271-286

[EN88] R J. Enbody
" Dynamic Hashing Schem es", ACM Computing Surveys, Vol. 20. No.
2. June 1988

[ET88] D.W. Etherington
Reasoning with Incomplete Information, Pitman, London, 1988

[FA86a] O. D. Faugeras et al.
" The Presentation, Recognition, and Partitioning of 3-D Shapes from
Range Data ", Techniques for 3-D machine perception, Edited by A.
Rosenfeld, 1986, Pages 13 - 51

[FA86b] C. Falousos
" Multiattribute Hashing Using Gray Codes ", 1986 ACM SIGMOD

285

Record, Pages 227-238

[FA79] R. Fagin
" Extendible Hashing - A Fast Access Method for Dynamic Files ", ACM
trans. on TODS, vol. 4, no. 3, Sep. 1979, Pages 315 - 344

[FE88] J. H. Fetzer
“ Program Verification “ , Communications of ACM, Vol. 31, No. 9,
1988, Pages 1048-1063

[FI73] M.A. Fischler et al.
"The Presentation and Matching of Pictorial Structures", IEEE Trans. C-
22, 1973, Pages 67-92

[F088] C.L. Forgy
"Rete: A Fast Algorithm for the Many Pattem/Many Object", Pattern
Match Problem, Readings in Artificial Intelligence and Databases, 1988,
Pages 547-557

[F082] C.L. Forgy
"Rete: A Fast Algorithm for the Many Pattem/Many Object Pattern Match
Problem”, Artificial Intelligence, Pages 17 - 37, 1982

[FR89] M.W. Freeston
"A Well-Behaved File Structure for the Storage of Spatial Objects, Lecture
Notes in Computer Science, Vol. 409, Springer-Verlag, 1989

[FR88] M. W. Freeston
" Grid Files for Efficient PROLOG Clause Accesses " , PROLOG and
Databases, Editor P. M. D. Gray, 1988, Pages 188 - 211

[FR87] M .W . Freeston
" The BANG File: A New Kind of Grid File ", 1987 Annual Conf.,
SIGMOD Record, Vol. 16, No.3, Dec. 1987, Pages 260 - 269

[FR86a] M. W. Freeston

286

“Data Structures for Knowledge Bases : Multi-dimensional File
Organisation”, Technical Report TR-KB-13, 22 August, 1986

[FR86b] R.A. Frost
“Introduction to Knowledge Base Systems”, Collins, 1986, Chapter 10

[GA79] J. Gaschnig et al.
"Preliminary Performance Analysis of the Prospector Consultant System
for Mineral Exploration", In proceedings of Sixth International Joint
Conference on Artificial Intelligence, 1979, Pages 308-310

[GA89] G. Gardarin, et al.
“ Managing Complex Objects in an Extensible Relational DBMS”, Proc.

of the 15^ International Conference on VLDB, 1989, Pages 45-53

[GH89] W. W. Chang
“ A Signature Method for the Starbust Database System “, Proc. of the

15^ International Conference on VLDB, 1989, Pages 145-153

[G088] G.H. Gonnet, Per-Ake Larson
" External Hashing with Limited Internal Storage ", Journal of the
Association for Computing Machinery, Vol. 35, N o.l, Jan. 1988, Pages
161-184

[G084a] A. Goshtasby et al.
“Image Matching by a Probabilistic Relaxation Labelling Process”, 7th
International Conference on Pattern Recognition, 1984, Pages 307-309

[G084b] Y. I Gold
“On the Order of Examining Data-point in SSD Template Matching”, 7th
International Conference on Pattern Recognition, 1984, Pages 1077-1080

[G077] Y I. Gold
“ On the Order of Examining Data-points in SSD Template Matching”, 7th
International Conference on Pattern Recognition, July, 1984, Pages 1077

287

- 1080

[GR90] P.M. Griffin et al.
"A Methodology for Pattern Matching of Complex Objects", Pattern
Recognition, Vol.23, No. 3/4 Pages 245-154, 1990

[GU89] O. Gunter
"The Design of the Cell Tree: An Object-Oriented Index Structure for
Geometric Databases", 1989 IEEE Conference on Data Engineering,
Pages 598-605

[GU84] A. Guttman
"R-Trees: A Dynamic Index Structure for Spatial Searching", Proceedings
of ACM SIGMOD Int. Conf. on Management of Data, 1984, Pages 47 -
56

[HA89] N.I. Hachem
"Key-structural Access Methods for Very Large Files Derived from Linear
Hashing", 1989 IEEE Conference on Data Engineering, Pages 305-312

[HA83] F. Hayes-Roth et al.
" Building Expert Systems", 1983

[HE89] A. Henrich
“ The LSD Tree: Spatial Access to Multidimensional Point and Non-point

Objects “ , Proc. of the 15^ International Conference on VLDB, Pages

45-53

[HE88] M. Henri et al.
“Elastic Matching Versus Rigid Matching by Use of Dynamic
Programming”, 1988

[HE80] C.F. Herot
" Spatial Management of Data", ACM trans. on TODS, vol. 5, no. 4,
Dec. 1980, Pages 493 - 514

288

[HO90] J.P.E. Hodgson
"Automatic Generation of Heuristics", Formal Techniques in Artificial
Intelligence, Edited by R.B. Banerji, ELASEVIER SCIENCE
PUBLISHERS, 1990, Pages 123-172

[H089a] A. Hopgood
"An Inference Mechanism for Selection and Its Application to Polymers",
Artificial Intelligence in Engineering, 1989, Pages 197

[H089b] E. Hollnagel
The reliability of Expert Systems, Ellis Horwood Ltd., 1989, Pages 168-
223, Pages 173-183

[H088] J. ManrayHolt
"A Fast Binary Template Matching Algorithm for Document Image Data
Compression", Lecture Notes in Computer Science, Vol. 301,
Conference: BPRA 4th International Conference on Pattern Recognition,
Cambridge (GB), 28-30 March 1988

[HU88a] A. Hutflesz et al.
"Globally Order Preserving Multidimensional Linear Hashing ", 14th
International Conference on Data Engineering, 1988, Pages 572 - 579

[HU88b] Andreas Hutflesz et al.
" Twin Grid Files: Space Optimisation Access Schemes ", ACM
SIGMOD. International Conference on Management of Data, Vol. 17.
No.3, Sep. 1988, Pages 183 - 190

[IE85] IEEE CS Press
Entity-Relationship Approach: The Use of ER Concept in Knowledge
Presentation, IEEE CS Press/North Holland, 1985, Pages 140 - 169

[JA89] P. Jakson
Logic-Based Knowledge Representation, MIT Press Series in Logic
Programming, 1989

289

[J084] Journal of Algorithms
Heuristic Matching for Graph Satisfying the Triangle Inequality, 1984

[J089] R. Johns
"Leave it in Expert Hands", Computing, Voi. , No. 26 Oct. 1989

[KA85] K. Kawagoe
" Modified Dynamic Hashing", 1985 ACM SIGMOD Record, Pages 201
-213

[KE89] L. Kerschberg
"The Role of Loose Coupling in Expert Database System Architectures",
1989 IEEE Conference on Data Engineering, Pages 255-256

[KH84] N.A. Khan
" Matching an Imprecise Object Description with Models in a Knowledge
Base ", Seventh International Conference Proc. on Pattern Recognition,
1984, Pages 1131-1134

[KI89] H.P. Kriegal et al.
"Performance Comparison of Point and Spatial Access Methods", Lecture
Notes in Computer Science, 409, SSD'89, Design and Implementation of
Large Spatial Database, 1989, Pages 89-114

[KI90] W. Kim
“Object-Oriented Concepts, Databases and Applications”, Edited by W.
Kim et ah, ACM Press, Addison-Wesley Publishing Company, Pages
341-369

[KJ84] P. Kjelltery et al.
" Cascade Hashing ", Proceedings of the 10th International Conference
on VLDBs, 1984, Pages 481 - 492

[K086] H.F. Korth et al.
Database System Concepts, McGRAW-HILL, International Editions,
Computer Series, 1986, chapter 6, 8, 9, 11

290

[KR89] H.P. Kriegal et al.
"Performance Comparison of Point and Spatial Access Methods", Pages
89-114, Lecture Notes in Computer Science, Vol. 409, Springer-Verlag

[KS88a] H .P Kriegel, B. Seeger
" PLOP-Hashing: A Grid File without Directory ", 14th International
Conference on Data Engineering, 1988, Pages 369 -376

[KS88b] H .P Kriegel, B. Seeger
" Multidimensional Quantile Hashing is Very Efficient for Nonuniform
Distribution ", Will Appear in Information Science, 1988

[KS87] H.P. Kriegel, B. Seeger
" Multidimensional Quantile Hashing is Very Efficient for Nonuniform
Distribution ", Proceedings of Third International Conference on Data
Engineering, 1987, Pages 10 - 17

[KS86] H.P Kriegel, B. Seeger
"Multidimensional Order Preserving Linear Hashing with Partial
Expansion ", Proceedings of International Conference on Database
Theory, 1986

[LA88] P. A. Larson, et.al
"Linear Hashing with Separators - a Dynamic Hashing Scheme
Achieving One-access Retrieval", ACM trans. on TODS, vol. 13, No. 3,
Sep. 1988, Pages 366 - 338

[LA86] C.P. Langlotz
" Using Decision Theory to Justify Heuristics ", Proceedings of fifth
national conference on A.I., 1986, Pages 215 -219

[LA85a] A. Lagomasino et al.
" Imprecise Knowledge Representation in Inferential Activities ",
Approximate Reasoning in Expert System, edited by M.M. Gupta et.al,
North-Holland, Pages 473-498, 1985

291

[LA85b] C.E. Langenhop et al.
"An Efficient Model for Representing and Analysing B-trees", 1985 ACM
Annual Conference Proceedings, Pages 35 - 40

[LA85c]

[LA 82]

[LA80]

[LA78]

[LE88a]

[LE88b]

[LE87]

[LE80]

P. A. Larson, et.al
" External Perfect Hashing ", Proceedings of ACM SIGMOD on
Management of Data, 1985, Pages 190 - 200

P. A. Larson, PA.
"A Single File Version of Linear Hashing with Partial Expansion",
Proceedings on VLDB, 1982, Pages 300 - 309

P. A. Larson,
" Linear Hashing with Partial Expansions ", Proceedings on VLDB,
1980, Pages 224 - 235

P. A. Larson, et.al
" Dynamic Hashing ", Bit 18, 2 (1978), Pages 184 - 201

D. L. Lee et al.
" An 0(n + k) Algorithm for Ordered Retrieval from an Associative
Memory ", IEEE Transactions on Computers, March 1988, Pages 368 -
372

Chin-Hwa Lee et al.
"Partial Matching of Two Dimensional Shapes", 9th International
Conference on Pattern Recognition, Nov. 1988

J. K. Lee et al.
"Intelligent Stock Portfolio Management System", Expert Systems: The
International Journal of Knowledge Engineering, Pages 74-89, 1987

D. T. Lee, C. K. Wong
" Quintary Trees: A File Structure for Multidimensional Database Systems
", ACM trans. on TODS, vol. 5, no. 3, Sep. 1980, Pages 339 - 353

292

[LI89] W. Litwin
" Multilevel Trie Hashing ", Technical Report, 23 pages, Le Chesnay,
France, 1989

[LI87] Lindsay et al.
“A Data Management Extension Architecture”, Proceedings of the ACM-
SIGMOD International Conference on Management of Data, 1987, Pages
220-226

[LI86] X. B. Li et al.
“ Image Matching with Multiple Templates ”, Proceedings of Computer
Society Conference on Computer Vision and Pattern Recognition, 1986

[L089] D.B. Lomet et al.
" A Robust Multi-attribute Search Structure ", Pages 296-304, 1989
IEEE Conference on Data Engineering

[L087] D. B. Lomet
" The hB-tree: A Robust Multi-attribute Indexing Method", July 1987,
Technical Report TR-87-05, Wang Institute of Graduate Studies

[MA88] M.V. Mannino, et al.
" Statistical Profile Estimation in Database System ", ACM Computing
Surveys, Vol. 20, No.3, September 1988

[MA86] L. F. Mackect et al.
“ R* Optimiser Validation and Performance Evaluation for Distributed
Queries”, in Proceedings of 12th International Conference on VLDB,
1986, Pages 149-159

[MI90] D. P. Miranker
TREAT: A New and Efficient Match Algorithm or AI Production
Systems, Pitman, London, Morgan Kanfman Publishers, Inc. San
Mateo, California 1990

293

[MI85] L.L. Miller
" Performance of Hash Files in A Microcomputer Based Parallel File
System ", 1985 ACM Annual Conference Proceedings, Pages 29 - 34

[M086] C. Mohan et al.
“Transaction Management in the R*, Distributed Database Management
Systems”, ACM Transactions on Database Systems, Vol. 11, No. 4,
1986, Pages 378-396

[M084] B.B. Moshe et al.
"Contextual Template Matching : A Distance Measure for Pattern with
Hierarchically Dependent Features", IEEE Trans. Pattern Analysis
Machine Intelligence, Vol.PAMI-6, Pages 201-211, 1984

[MU84] J.K. Mullin
" Unified Dynamic Hashing ", Proceedings of the 10th International
Conference on VLDBs, 1984, Pages 473 - 480

[NE89] E.J. Neubold
" Coupling Knowledge Based Systems with Large Data Stores ", Pages
257-258, 1989 IEEE Conference on Data Engineering

[NE88] D. Nebendahl, et al.
"Expert Systems", Project Experience with SIUX, Pages 185-209, John
Wiley & Sons Limited, 1988

[NG86] G. T. Nguyen
“ Object Prototypes and Database for Expert Database Systems “,
Proceedings of the First International Conference on Expert Database
Systems, 1986, Pages 3-14

[NG85] H.T. Nguyen et al.
" On Foundations of Approximate Reasoning ", Approximate Reasoning
in Expert System, edited by M.M. Gupta et.al, North-Holland, Pages 33-
45, 1985

294

[NI84] J. Nievergelt et al.
"The Grid File: An Adaptable Symmetric Multi-key File Structure", ACM
trans, on TODS Voi. 9, No. 1, 1984

[OH88] K. Ohmori, et al.
"A Unified View on Tree Metrics", NATO ASI Series, Vol. F45,
Syntactic and Structural Pattern Recognition, Springer-Verlag Berlin
Heidelberg 1988, Pages 85 -100

[OM88] E. Omiecinski
" Concurrent Storage Structure Conversion: From B+-tree to Linear Hash
File ", 14th International Conference on Data Engineering, 1988, Pages
589 -595

[0089] B.C. O o ie ta l.
"Extending a DBMS for Geographic Applications", Pages 590-597,
1989 IEEE Conference on Data Engineering

[OR89] J.A. Oriensten et al.
"Strategies for Optimising the Use of Redundancy in Spatial Database",
Pages 115-136, Lecture Notes in Computer Science, Voi. 409, Springer-
Verlag

[OR88a] R. Orlandic
" Compact O-Complete Trees ", Proceedings o f the 14th VLDB
Conference, Aug. 1988, Pages 372-381

[OR88b] J.A. Orenstein
" PROBE spatial data modelling and query processing in an image
database application ", Technical report, AITD reference No. 155, 38
pages

[OR86] J.A. Orenstein
"Spatial Query Processing in an Object-Oriented Database System",
ACM SIGMOD 1986

295

[OR84] J.A. Orenstein
" A Class of Data Structures for Associative Searching ", Proceeding of
3rd ACM SIGACT-SIGMOD Symposium on Principles of Database
Systems, 1984, Pages 181-190

[OS89] P.V. Oosterom, et al.
"An Object-Oreinted Approach to the Design of Geographic Information
Systems", Pages 255-270, Lecture Notes in Computer Science, Vol. 409,
Springer-Verlag

[OT85] E J . Otoo
" A Multidimensional Digital Hashing Scheme for Files with Composite
Keys ", 1985 ACM SIGMOD Record, Pages 214 - 229

[OT84] E.J. Otoo
" A Mapping Function for the Directory of a Multidimensional Extendible
Hashing ", Proceedings of the 10th International Conference on VLDBs,
1984, Pages 493- 506

[OT88] E J . Otoo
" Linearising the Directory Growth in Order Preserving Extendible
Hashing ", 14th International Conference on Data Engineering, 1988,
Pages 580 - 587

[OW88] O. Owolab et al.
Approximate String Matching: Investigating with a Hardware String
Comparator", pages 536-545, Lecture Notes in Computer Science, Vol.
301, Conference: BPRA 4th International Conference on Pattern
Recognition, Cambridge (GB), March, 1988

[OZ89] M.T. Ozsu
"From Data Management to Knowledge Management - Prospects for the
Next Decades", ACI Congress 89, "Prospective for the 90's", Pages 118-
124

[OZ85] E. A. Ozkarahan

296

"Dynamic and Order Preserving Data Partitioning for DB Machine",
Proceedings of the 12th Int. Conf. on VLDBs, 1985 Pages 358 - 368

[PA 86]

[PA90]

[PA74]

[PE89]

[PE84]

[PE83]

[PL84]

[P084]

[PA89] D.J. Parke
"Integrating AI and DBMS Through Stream Processing, Pages 259-261,
1989 IEEE Conference on Data Engineering

S. K. Pal
Fuzzy Mathematical Approach to Pattern Recognition, 1986, Wiley
Eastern Ltd.

D. W. Patterson
Introduction to Artificial Intelligence and Expert Systems, Chapter 10
(“Matching Techniques”), Prentice-Hall, 1990, Pages 188-210

T. Pavlidis
" Structural Pattern Recognition ", Ch3, 4, 5, 6, 1974

W. A. Perkins
Knowledge Base Verification, Pages 353 - 376, Topics in Expert System
Design: Methodologies and Tools, Edited by G. Guida et al., North-
Holland, 1989

J. Pearl
Heuristics: Intelligent Search Strategies for Computer Problem Solving,
1984, Addison-Wesley

M.G. Peter et al.
“Optimisation Algorithm for Distributed Queries”, IEEE Transaction on
Software Engineering, Vol. SE-9, No. 1, January 1983

D. A. Plaisted
"Heuristic Matching for Graphs, Satisfying the Triangle Inequality",
Journal of Algorithms, Vol. 5, Pages 163-179, 1884

P. Politakis et al.

297

"Using Empirical Analysis to Refine Expert System Knowledge Bases",
Artificial Intelligence in Press, 1984

[RA88]

[RE89]

[RE88]

[RE84]

[R081]

[RU87]

[SA89]

[PR86] M. Prietula
" Flexible Interfaces and the Support of Physical Database Design
Reasoning ", Proceedings of the first International Conference on Expert
Database Systems, April 1986, Pages 329 - 342

M.V. Ramakrishna
" An Exact Probability Model for Finite Hash Table ", 14th International
Conference on Data Engineering, 1988, Pages 362 - 368

M. Reeve et al.
Parallel Processing and Artificial Intelligence, 1989, Ch4, Pages 37-49,
T.L. Kunii, "Information-driven Pattern Recognition through
Communicating Processes - a case study on classification of wallpaper
groups"

M. Regnier
" Trie Hashing Analysis ", 14th International Conference on Data
Engineering, 1988, Pages 377 - 381

M. Regnier
" Analysis of Grid File Algorithms ", BIT., 1984

J. T. Robinson
" The k-d-B tree: A Search Structure for Large Multidimensional Dynamic
Indexes ", Proceedings of ACM SIGMOD Int. Conf. on Management of
Data, 1981, Pages 10 -18

W. D. Ruchte
" Linear Hashing with Priority Splitting ", Proceedings of Third
International Conference on Data Engineering, 1987, Pages 2 - 9

B. Samadi
TUNEX: A Knowledge-Based System for Performance Tuning of the

298

[SA88] H. Samet
"Hierarchical representations of collection of small rectangles", ACM
Computer Surveys, Vol. 20, No. 4, December 1988, Pages 271-309

[SA85] G. Salton
" Advanced Information Retrieval Methods ", Proc. of The First PAN
Pacific Computer Conference, 1985, Pages 119 - 133

[SC81] M. Scholl
" New File Organisations Based on Dynamic Hashing ", ACM Trans.
Database Syst. Vol. 6, No. 1 (Mar. 1981), Pages 194 - 211

[SE87] T. Sellis, et al.

"The R+-tree: A Dynamic Index for Multi-dimensional Object ",

Proceedings of the 13^ VLDB Conference, Briton 1987

[SH91] D. Shasha et al.
“Optimising Equijion Queries In Distributed Databases Where Relations
Are Hash Partitioned”, ACM Transaction on Database Systems, Vol. 16,
No. 2, June 1991, Pages 279-308

[SH88] S. Shekfar et al.
" A Formal Model of Trade-off Between Optimisation and Execution Cost
in Semantic Query Optimisation ", Proc. of the 14th VLDB Conf. 88,
Pages 457 - 467

[SH87a] L.G. Shapiro et al.
"Ordered Structural Shape Matching with Primitive Extraction by
Mathematical Morphology", Pattern Recognition, January, 1987

[SH87b] L.G. Shapiro
"Ordered Structural Shape Matching", Syntactic and Structural Pattern

UNIX Operating System, IEEE Transaction on Software Engineering,
V>1. 15, No. 17, July 1989, Pages 861-874

299

[SH84] M. Sholom et al.
A Practical Guide to Designing Expert Systems, Chapman and Hall Ltd.,
1984, Ch 6, 7, Pages 138-169

[SH81] L.G. Shapiro et al.
"Structural Description and Inexact Matching", IEEE Transactions on
Pattern Analysis and Machine Intelligence, Vol. PAMI-3, No. 5,
September 1989, Pages 504-519

[SH78] L.G. Shapiro
"Inexact Matching of Line Drawing in a Syntactic Pattern Recognition
System, Pattern Recognition 10, Pages 313-321, 1978

[SI88] H. W. Six et al.
" Spatial Searching in Geometric Databases ", Proceedings of Fourth
International Conference on Data Engineering, 1988, Pages 496 - 503

[SN87] J. C. Snader
" Look It Up Faster with Hashing ", January 1987, BYTE, Pages 129 -
144

[SP89] SPIE
International Constant-time Pattern Matching for Real-time Production
Systems, Proc. SPIE - International Society of Optical Engineering. Vol.
1095, part2, Pages 971-982, 1989

[SR89] J. Srivastava et al.
"TBSAM: An Access Method for Efficient Processing of Statistical
Queries", IEEE Transactions on Knowledge and Data Engineering, Dec.
1989, Vol. 1, No.4

[ST89] M. Stonebraker
"Future Trends in Database Systems", IEEE Transactions on Knowledge

Recognition, Edited by G. Ferrete st. al, Springer-Verlag Berlin,
Heidelberg, 1988

300

and Data Engineering, March 1989, Vol.l, No. 1, Pages 33 - 44

[ST87]

[ST86]

[SY88]

[SZ84]

[TA86]

[TA85]

[TA82]

[UI89]

[ST88] L. Sterling
"A Meta-level Architecture for Expert Systems", Meta-level Architectures
and Reflection", edited by P.Maes, D. Nardi, North-Holland

A. C. Strangard
Robotics and Artificial Intelligence: An Introduction to Applied Machine
Intelligence, Prentice Hall, 1987, Pages 80-112

M. Stonebraker et al.
“ An Analysis of Rule Indexing Implementations in Database Systems “,
Proceedings of the first International Conference on Expert Database
Systems, 1986, Pages 353-364

S. Abu-Hakima
"Rationale: Reasoning by Explaining", Proceedings of 4th Conf. on Data
Engineering, 1988, Pages 258-265

J. L. Szwarcfiter
" Optimal Multiway Search Trees for Variable Size Keys ", ACTA
Informatica 21, 1984, Pages 47 - 60

D. Tasker
" The Evolution of Data ", CIPS Congress’86, Pages 297 - 302

M. Tamminen
“ On Search by Address Computation “, BIT 25, 1985, Pages 135-147

M. Tamminen
" The Extendible Cell Method for Closest Point Problems", BIT 22,
1982, Pages 27 - 41

J.D. Ullman
"Principles of Database and Knowledge-base Systems", Vol. II: The New
Technology, Computer Science Press, 1989

301

[VA89] Edited by S. Vadera
Expert System Applications, Sigma Press, 1989, chi

[VA86] P. Valduriez, et al.
"Implementation Techniques of Complex Objects", Proceedings of the
12th Int. Conf. on VLDBs, 1986 Pages 101 - 110

[VA84] P. Valduriez, et al.
" A Multi-Hashing Scheme Using Predicate Trees ", Proc. of ACM
SIGMOD'84, Vol. 14, No. 2, Pages 107 - 114

[VE89] D. Vet, et al.
"A Practical Algorithm for Evaluating Database Enquiries", Software
Practice and Experience, Vol. 19, No. 5, May 1989, Pages 491 - 495

[WA78] D.A. Waterman et al.
Pattern-directed Inference Systems, 1978

[WE89] J.R. Weitzel
"Developing Knowledge-based Systems: Reorganising the System
Development Life Cycle", Communication of the ACM, April 1989, Vol.
2, No. 4, p482- 488

[WE83] S.M. Weiss et al.
A Practical Guide to Designing Expert Systems, Pages 138-155, 1983,
Chapman and Hall Ltd.

[WH85] T. Whalen et al.
" Goal-directed Approximate Reasoning in a Fuzzy Production System ",
Approximate Reasoning in Expert System, edited by M.M. Gupta et.al,
North-Holland, Pages 505-518, 1985

[WI89] B.P. Wise et al.
"Evaluation of Uncertainty Inference Models III: The Role of Tuning",
Machine Intelligence and Pattern Recognition: Uncertainty in Artificial

302

Intelligence, Edited by L. N. Karal et al., North-Holland, 1989

[WI87] P.W illet
" Effectiveness of Retrieval in Clustered Document Files ", Proceedings
of 11th Int. Online Information Meeting, Dec., 1987

[WI85] D .E . Willard
"New Data Structures for Orthogonal Range Queries ", SIAM J.
Comput., Voi. 14, No. 1, Feb. 1985

[WI84] D. N. Willard
“ New Trie Data Structures Which Support Very Fast Search Operations
“, Journal of Computer and System Science, Voi. 28, Pages 379-394,
1984

[WI84] P. H. Winston
" Artificial Intelligence ", Ch2, C h ll, Chl2, 1984, Addi son-Wesley

[W078] R.Y. Wong et al.
"Sequential Hierarchical Scene Matching, IEEE Trans. C-27, Pages 359-
366,1978

[WU89] X. Wu et al.
" A Knowledge-based Database Assistant", Pages 402-409, 1989 IEEE
Conference on Data Engineering

[XU90] L. Xu, et al.
"Improved Simulated Annealing, Boltzmann Machine, and Attributed
Graph Matching", Lecture Notes in Computer Science, Voi. 412, 1990,
Neural Networks, Pages 151-161, Solving the attributed graph
matching problem

[YA79] S. Yamamoto, et al.
" Design of a Balanced Multi-Valued File-Organisation Scheme with the
Least Redundancy ", ACM trans, on TODS, voi. 4, no. 4, Dec. 1979,
Pages 518 -530

303

[Y089] F. F. Yao et al.
“Partitioning Space for Range Queries”, SIAM Journal of Computers,
\b l. 18, No. 2, Pages 371-384, 1989

[Y089] H. Yokota et al.
"Term Indexing for Retrieval by Unification", Pages 313-320, 1989 IEEE
Conference on Data Engineering

[Y074] T.Y. Young
Classification, Estimation and Pattern Recognition, American ELSEVIER
Publishing Company, 1974, ch3

[ZA76] L.A. Zadeh
A Fuzzy Algorithmetic Approach to the Definition of Complex or Imprecise
Concepts", International Journal of Man-Machine Studies

[ZA71] L.A. Zadeh
A Fuzzy Algorithmetic Approach to the Definition of Complex or Imprecise
Concepts", International Journal of Man-Marchine Studies, Vol. 8, 1971

[ZH88] Q. Zhu
"Pattern Classification in Dynamic Environment", Pages 517-526, Lecture
Notes in Computer Science, Vol. 301, Conference: BPRA 4th International
Conference on Pattern Recognition, Cambridge (GB), March, 1988

304

