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ABSTRACT

l he thesis studies the traffic assignment problem in the context of:

(i) deterministic queue modelling where demand and link traffic 

flows are time-varying,

(ii) the steady-state network design problem, and

(iii) signal-controlled road network.

In studying the traffic assignment problem in the context of 

deterministic queue modelling, a model is proposed to determine time- 

varying link flows in congested road networks where drivers are assumed 

to be cooperative in minimising total transportation costs. The model is 

approximate for a network of general topology where there is more than a 

single commodity and many bottlenecks, but optimal when there is only one 

active bottleneck along the routes connecting each origin-destination pair.

In regards the second context, the thesis offers a method for solving 

the network design problem that is similar in outer form to the method 

given in harootte (1383). The difference here is being in the way the 

subprobiem, step 2 in Marcotte's method, is  attempted. Some computaional 

results are provided, after having implemented the method in a computer 

code, further, the method is compared against other familiar methods that 

are found in the literature.

As for studying the traffic assignment problem in the context of 

signal-controlled road networks, the thesis deals with time-variant and 

time-invariant control and traffic assignment. In both, this is done by 

alternating between assignment and control, so as to keep the traffic 

lights in tune with the link flows. Control here is expressed by means of



with a view tothree traffic control policies; comparing network

performance under each of these policies and at different levels of 

congestion. The three control policies in time-invariant control and 

assignment are: the standard "delay minimisation" policy; as stated in 

Allscp (1971), the standard equisaturation method proposed by Webster 

(1966); and the P0 policy; introduced in Smith (1979b). The control policies 

in the steady state are compared within a gently rising control model that

is desoribed in this thesis to simulate the long run effect of the signal 

control policies on traffic redistribution. Regarding time-variant control 

and assignment, CONTRAM (Leonard et al (1978)) was used as an assignment 

program, and modified to incorporate two redefined policies of the three 

control policies and account for vehicle occupancy.
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1. INTRODUCTION

11 GENERAL

A major problem in road traffic is how to design a road network so 

that the design parameters, such as street widths or the settings of 

traffic lights, are those which reduce congestion the most, result in least 

construction costs if measures such as the construction of new roads are 

to be taken, while acknowledging that link flows and the design parameters 

are interdependent. Link flows and the design parameters are being 

interdependent in that the changing of road conditions may affect the link 

flows or driver's behaviour, which in turn may affect the final design of 

the road network or links.

This problem is of particular interest, especially nowadays, where, due 

to the ever increasing number of private vehicles, road networks are 

consequently becoming exceedingly congested.

To express the interdependence between link flows and the design 

parameters, one of two principles that model drivers' behaviour, due to 

War-drop (1952), is assumed.

Wardrop's i wo Principles

War-drop's two principles are:

1) "The journey time on all routes actually used are equal, and less 

than those which would be experienced by a single vehicle on any 

unused route."



The average .journey time is minimum."

Mar-drop's first principle: This implies that each driver on the network 

is seeking to minimise his/her own travel costs, experiments with several 

routes and eventually chooses the least costly route. The travel cost could 

be considered as a generalised term that is used to indicate a composite 

of disutilities, such as travel time, level of service and, perhaps, 

discomfort. This principle actually gives rise to a user equilibrium pattern 

of flow, as all used routes have equal costs and any unused route is at 

least as costly as a used route.

wardrop's second principle: Underlying this principle is the statement 

that flows are distributed over the network as such the sum of the total 

travel time of all road users is minimal. So that flows could be distributed 

in such a manner, this principle assumes drivers as cooperative in 

travelling in the road network, so as to consider the costs which they 

inflict on others and follow the routes that minimise the total travel time. 

In cooperating, some drivers may have to take longer routes, but those 

which reduce total travel time. Because this principle assumes drivers as 

cooperative in minimising total travel time, it indicates the minimum costs 

the system may incur, or the system optimum pattern of flow, though, from a 

traffic modelling point of view it may not be possible to assume drivers to 

be cooperative. This is due to that drivers reduce their own travel time 

rather than the total system costs. Obviously, by saying that when drivers 

cooperate to result in minimum travel time, they result also in travel time 

that is  less than the travel time due to users following a user equilibrium 

strategy, or their own minimum travel time, as in Wardrop's first  principle.



The Design of a Road Network in the Steady btat-e

In a steady state context, where link flows and entry flow to the 

network are assumed to be time-invariant, the problem of designing a. road 

network, or the network design problem as commonly known, has received much 

attention and algorithms already exist to solve a class of this problem 

when the second principle of war-drop is assumed to express the 

interdependence between link flows and the design parameters. However, 

when it is needed to model drivers' behaviour in accordance with Wardrop's 

first principle, there is as yet no satisfactory algorithm to deal with 

large problems. As a result, heuristic methods, discussed in the next 

chapter amongst other methods, have been suggested by many authors. The 

problem with these heuristic methods is that they may result in a poor- 

network performance, as it is shown in Smith (1979a) when the design 

parameters are signal settings.

The Design of a Road Network in the Dynamic State

Apart from the first substantial attempt by D'Ans and Gazis (1976) 

(discussed in Chapter 2) to model traffic in a time-varying fashion, all the 

work done on the network design problem has considered traffic in a 

steady state. This implies that vehicles started earlier than ethers are 

assumed to have no effect on those travelling later. In D'Ans and Gazis 

(1976), traffic is assumed to be in a dynamic state or time-dependent in both 

entry to the network and flow on links, and delays are expressed by means 

of queues, as they develop and dissipate on each link of the network. In 

contrast with the steady state, regarding entry flow to the network and 

link flows as time dependent, while taking queueing into account, is a more 

realistic approach for modelling peak hours and congested traffic 

networks.
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Determining Uesxgn Parameters for hixed Hows

Because of the abscence of an algorithm to solve the network design 

problem efficiently, in some studies, link flows, or the flows of the routes 

connecting each entry and exit node in the road network, are considered as 

exogenously given and insensitive to the effect of road changing 

conditions or the resulting design parameters.

In the steady state, particularly when the design parameters of the 

network design problem are the settings of traffic lights, algorithms, such 

as TRANSYT (Vincent et al (1980)) and the method due to Allsap (1971), may 

be used.

In the dynamic state, also when the design parameters of the network 

design problem are the settings of traffic lights, some efforts have been 

made by D'Ans and Oasis (1974) to determine time-varying signal settings 

when the route flows are fixed. But, due to some problems that are pointed 

out in Chapter 5, no satisfactory algorithm is yet in common use.

Determining Link Flows for Fixed Design Parameters

If one is only concerned with resulting flows due to given read 

conditions, then the network design problem becomes the traffic assignment 

problem, for which efficient algorithms exist in the static state under some 

assumptions, but not in the dynamic state. These assumptions and the 

methods available to solve the traffic assignment problem in the steady 

state are given in the next section. Then, the following section is  specified 

for the work and recent developernents on the assignment problem in the 

dynamic state.



! he static traffic assignment problem

The static traffic assignment problem has been under intensive 

research and the literature on its developement is vast. Many methods of 

solution and the different formulations are described. From a simple, 

idealistic planning tool and easy-to-solve formulation, where costs are 

assumed to be congestion-free, the traffic assignment problem has been 

expanded to deal with more general and sophisticated cases, such as the 

dependence of link costs on link flow alone (Beckmann et al (1956)), and, on 

flow on other links as well, such as at junctions (Smith (1979b) and 

Dafermos (1980).) when the travelling costs on a link are flow-dependent on 

the link alone, Beckmann et al (1956) formulated the user equilibrium 

problem as an equivalent convex optimisation problem in the static state; 

an efficient solution method has been suggested in LeBlanc et al (1975).

However, as soon as more general cases are accounted for, for 

example, at junctions where link travelling costs are dependent on flow on 

other links in addition to the flow on the link itself, the equivalent 

optimisation problem ceases to exist, least under strong conditions which 

might not be met in practice (see Heydeoker (1983)). Furthermore, many 

solutions may exist. Smith (1979b) gives conditions on the link cost function 

in a steady state context which guarantee uniqueness and offers a 

condition which if satisfied, the resulting flow pattern is then in 

equilibrium. Also, he offers an objective function, together with a descent 

direction, that can be used to calculate a Wardropian equilibrium pattern 

of flow.



Ths dynamic traffic assignment problem

Some researchers in road traffic modelling have considered traffic 

flows in a dynamic and deterministic context to allow for the build up and 

dissipation of queues, together with time-varying but fixed demand. Others 

have also dealt with variable departure times, that is when drivers have 

the choice of travelling time, but restricted to only a single route and a 

single commodity problem, as in Smith (1984) and Hendrickson et al (1981), or 

for an idealised network as in Mahmassani et al (1985).

A number of the researchers who have studied the assignment problem 

with fixed demand or departure time, have formulated this problem as a. 

mathematical programming problem, whilst others used simulation. Amongst 

those who approached the assignment problem as a mathemmatical 

programming problem are D'Ans and Gazis, Merchant and Nemhauser (1978) 

(M-N), Carey (1987), Zawack and Thompson (1987), and Wie et al (1989). As for 

using simulation, the model due to Yagar (1970), the work of Leonard et al 

(1978) embodied in CONTRAM, and the work of Hall et al (1980) in SATURN, 

are most prominent. Recently, Smith and Ghali (1990) studied the dynamic 

assignment problem also.

Next, a brief comparative study and a discussion of these approaches 

are attempted.

Simulation models; CQNTRAM and SATURN: The model due to Leonard et 

al (1978) has been the most successful amongst the simulation models in the 

way it determines a Wardropian equilibrium. The model due to Leonard et al 

(1978), as opposed to the model in SATURN, which is designed to determine 

an equilibrium pattern of flow as well, is based on a valid queueing model 

that models queuing delays explicitly rather than using cost functions that



are constructed to model queues, such as Webster's funotion or the BPR 

function (see § 2.2.2 for a definition of the BPR function.) Whereas the 

assignment in SATURN is a steady state assignment, CQNTRAM has a unique 

feature in that the assignment treats packets of vehicle rather than flow 

profiles and the routing of packets is  done in accordance with a time- 

varying minimum path. As the packet is routed, the delays at .junctions are 

calculated as the differnece between the time when the packet joins the 

queue and the time when it exits from the queue.

Mathematical formulation; D'Ans and Gazis's model: In an effort to 

construct a mathematical programming model to deal with traffic signal 

control for over-saturated junctions, D'Ans and Gazis (1976) presents a 

store-and-forward network model which Zawaok and Thompson (1937) seem to 

reformulate again and define as a time-space network model. The D'Ans and 

Gazis model results in a system optimised pattern of flow and is unable to 

deal with more than a single commodity problem.

Mathematical formulation; Carey's and M-N model Likewise, the Carey 

(1987) model, which is in fact a modification of the Merchant and Nemhauser 

(1978) model to yield convexity in the constraint set, also results in a 

system optimum solution and deals only with a single commodity problem, as 

in D'Ans and Gazis (1976). In order to have a convex constraint set, Carey 

(1987) introduced flow control variables. These flow control variables are 

also introduced in the model due to D'Ans and Gazis (1976), as well as in 

Zawaok and Thompson (1987), but, only Carey: (1987) seems to have 

highlighted. (See Chapter 5 for an example on flow control variables.) It 

should be mentioned in passing that the model due to D'Ans and Gazis (1975) 

takes account of travelling costs as well as queuing costs, as opposed to 

the Merchant and Nemhauser (1978) model, where only queueing costs are

optimised, though flow-dependent cost relations are incorporated into the
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constraint set to restrain the exit flow from each arc.

Mathematical formulation; Wie's ei al model: By employing the theory of 

optimal control, wie et al (1989) studied the model given in Merchant and 

Nemhauser (1978), as well as Carey (1987), as a time-continuous model and 

which they describe as an instantenous system optimum, after having been 

solved. Using a similar argument, Wie et al (1989) also extend the 

instantenous system optimum formulation to an instantenous user 

equilibrium formulation, which they define as a user optimsed traffic 

assignment model. However, the instantenous user optimised traffic 

assignment model they suggest, does not reflect driving habits, as drivers 

usually anticipate travelling costs before they arrive at bottlenecks or 

junctions. In addition, solving for the instantenous minimum path, may result 

in looping in some circumstances, as the example given in Chali (1991) 

shows.

Recent developement; the dynamic equilibrium assignment problem: While 

much efforts have been expended to construct formulations that determine 

a system optimum solution, none has been in order to formulate a 

mathematical model to determine an equilibrium pattern of flow (uniqueness 

is  still an open question besides existance). The reason perhaps could be 

attributed to the difficulty of finding an objective function that could 

determine an equilibrium pattern of flow. This is in contrast with the 

steady state equilibrium problem, where determining a user equilibrium is 

easy for separable (Beckmann et al (1956)) and non-separable, but monotone 

functions, as in Smith (1981), as there is  an objective function that can be 

optimised to determine an equilibrium pattern of flow. Smith and Chali 

(1990) employ montonicity, which had been earlier applied by Smith (1979b) 

to the steady state equilibrium problem, to prove that the user link cost 

function is monotone and non-symmetrical, as later arrivals do not affect



earlier arrivals, but the opposite is not true. This directly rules out 

equivalent mathematical optimisation formulations, unless perhaps as in 

Smith (1984). In Smith and Ghali (1990) a mathematical argument is also given 

to show that montonicity at the route level is no longer attained at the 

link level., which is the opposite of what the case is  in the steady state 

equilibrium problem. This implies that the problem is more difficult. 

Nonetheless, a montonicity proof is given in Smith and Ghali (1990) for 

some single bottleneck case with many origin-destination pairs, which is 

rather an advance on the conventional single bottleneck case with a. single 

origin-destination pair found in the literature.

A related static assignment problem: A comment regarding the model 

offered by Zawack and Thompson (1987), as well as D'Ans and Gazis (1976), in 

the context of time-space, or store-and-f'orward, network is that this model 

has a common feature with the traffic assignment problem in the static 

state when the link flows are restricted by a scalar quantity or the 

capacity of the links and when the cost function is continuously increasing 

and convex, such as a. linear function. This latter problem has been 

investigated by Thompson and Payne (1975), where they offer an argument 

which differs from the one given in Potts and Oliver (1972). The argument 

given by Thompson and Payne can be put in the following form: as the flow 

constraints might be active at the solution, thus giving rise  to positive 

Lagrange multipliers, the addition of link costs along used routes, together 

with the multipliers where they apply, make all route costs equal. Thompson 

and Payne (1975) interpret these lagarnge multipliers as implicit queuing 

delays. But, since the Zawack and Thompson (1987) model account for queues 

explicitly, the Lagrange multipliers resulting on solving the time-space 

network, actually make up for the difference in arrival time.



1.2 CONTRIBUTION AND ORGANISATION OR THE THESIS

Throughout the thesis, demand is  assumed to be given and fixed.

As indeed traffic is a dynamic phenomenon, it would be an ideal 

objective for this thesis to be involved solely with dynamic state models 

that assist in road design when the interaction between the design 

parameters and link flows is incorporated into a single model. However, the 

thesis falls short of fulfilling this objective and deals with the following:

1- On the static state side, the thesis offers an algorithm for the network 

design problem when the relation between the design parameters and 

link flows is expressed in accordance with War-drop's first  principle.

2- Further in the static state and when the design variables are signal 

settings, a commonly steeply rising cost function, due to Webster and 

Cobbe (1966), is  employed. This function results in infeasible boundaries 

and any assignment- method that incorporates such function requires an 

initial feasible solution. A method is  suggested in this work for this 

problem and is applied to compare steady-state network performance 

under three different traffic control policies. The control policies are 

Pq, introduced by Smith (1973b), the delay minimisation policy of Allsop 

(1971) and Wester's policy (1966). A feature of the method suggested in 

this work is that it simulates how some control policies fail to 

accommodate all the demand as the network is  increasingly loaded.

3- On the dynamic state side, the thesis presents a dynamic traffic 

assignment model which results in an approximately system optimum in a 

multicommodity and many bottleneck newtork, and system optimum in the 

case where there is a single bottleneck along each route joining each
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origin-destination pair, as in Smith and Shall (1990) and Smith (1991). 

The pattern of flow obtained by this model can be compared with the 

dynamic equilibrium pattern of flow determined by CONTRAM (Leonard et 

si (1989)) and any congestion tolls deduced.

4- The thesis is  also involved in comparing the above-mentioned three 

traffic control policies, but in the dynamic state. For this, it was first- 

required finding a corresponding version for each of P0 and delay 

minimisation in a dynamic context, while Webster's policy was used as it 

is  implemented in CONTRAM.

The thesis is organised as follows. In Chapter 2, a literature review is 

included on the steady-state network design problem when the design 

parameters are the width of links and signal settings. Also, when the signal 

settings of traffic lights are the design parameters and drivers' behaviour 

is according to War-drop's second principle a review is provided for this 

problem when both flows and the signal settings are time-dependent. In 

Chapter 3, the method mentioned in 2- above is given, together with results 

on the performance of each of the traffic control policies. In Chapter 4 the 

algorithm for the static-state network design problem is presented. Test- 

networks, as well as a comparison of the algorithm suggested against some 

other -algorithms found in the literature, are given. Chapter 5 describes the 

dynamic traffic assignment model mentioned in 3-, above. In Chapter 6, the 

dynamic-state traffic control policies investigated and the results of 

applying these policies to a. number of test networks are presented.



THE NETWORK DESIGN PROBLEM; A SURVEY

21 INTRODUCTION

The equilibrium network design problem literature in the steady 

state is rich in the various methods undertaken to offer a solution method 

to this problem. The main reason basically for the various approaches 

attempted can be attributed to the user equilibrium constraint introduced 

to model drivers' behaviour in accordance with Wardrop's first principle. 

This constraint is rather a logical constraint and has been represented 

mathematically in different forms. Smith (1979b) devised a formulation in a 

variational inequility context; another approach has been due to Tan et al 

(1979). Although the user equilibrium constraint has been put in a 

mathematical form, it is non-convex, and this has made the problem difficult 

to solve and has left the problem of designing an efficient algorithm open. 

If this equilibrium constraint is  discarded, the problem loses much of its 

significance as a road traffic model and becomes the system optimised 

problem for which an efficient method exists, as will be seen later.

To avoid the difficulty of solving the static network design problem 

exactly, many heuristic methods have been suggested as an alternative. 

Nonetheless, certain heuristic methods, might in some networks result in a 

very poor solution, as Smith (1979a) shows in a simple example.

While the static network design problem has been under intensive 

research, the problem in the dynamic state has received little or no 

attention. The last section of this chapter includes a background to the
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dynamic problem and underlines the major problems that are yet to be 

resolved before it may be conceivable to formulate a model for the dynamic 

network design problem.

This chapter surveys the different formulations found in the static 

and dynamic state literature on the network design problem and discusses 

the efforts made in order to find a solution method corresponding to each 

of the formulations.

The survey is confined to the problem of determining signal settings 

and capacity of links as design parameters of the network design problem 

in the steady state, and only signal settings in the dynamic state.

2.2 THE STATIC NETWORK DESIGN PROBLEM

The survey groups the methods into heuristic and exact. As the 

network design problem is non-convex, the word "exact" in this sense means 

that the solution point obtained is locally optimal, if not globally optimal.

Heydecker (198b) provides a good review to many of the algorithms that 

have been found in the literature. Here, this review complements 

Heydecker's review and gives remarks that are not mentioned there, and 

which have developed since that survey.

2.2.1 Heuristic Methods

Foremost amongst the heuristic methods is the iterative procedure 

suggested by Steenbrink (1974), as far as the link capacity problem is 

concerned, and that due to Ailsop et al (1977) as far as traffic lights are 

concerned. Belonging to the same category as well is the method described



in Poorzahedy et ai (1982) for determining the capacity of links, i he method

of Poorzahedy et al (1982) becomes nearly exact for certain levels of 

demand and for some cost functions if a budget constraint is imposed.

Iterative Procedure

Notations: For eack link i, the following is defined.

cy = travelling cost on link i.

yi = flow on link i.

w, = capacity of link i.

a, = uncongested travel time.

b; = c o n g e s 11 o n c o e f f i c i e n t.

I he h h h  function: j his is of the form C;(v;,W;)=a;+b/v;/w;r.

The iterative procedure has been long researched as an alternative 

and heuristic to the network design problem. It was first  suggested by 

Steenbrick (1974) for the link capacity problem, and then by Allsop si si 

(1977) for the signal control problem, after Allsop (1974) had shown, by 

means of an example, that route choice can be beneficially influenced by 

changing the green setting of traffic lights in an example network.

The procedure consists essentially of solving an equilibrium 

assignment problem to determine link flows (Beckmann et al (1956); Daferrncs 

et al (1969); Smith (1979b)) and then selecting the design parameters. These 

two steps are iterated until a pair of flow and design parameters is 

obtained, at which neither a traffic management body needs to change the 

design parameters, nor the road users who minimise their own costs need 

to change their routes. Thus the system has fallen into a stable point.
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In the remanider of this section, the discussion is confined to the 

signal control problem.

In a stability study to investigate whether the iterative procedure 

does arrive at a stable flow, signal setting pair, Marcotte (1983), and later 

Smith (1985), introduced restrictions on the link cost function which 

guarantees a feasible and unique point for the iterative procedure (of the 

signal problem) by solving a. single optimisation problem. Marcotte suggests 

the use of the BPR function which results in a unique solution, if this cost 

function is considered in the formulation given in Poorzahedy et ai (1982) 

(see below), then the method of Poorzahedy et al becomes similar to the 

iterative procedure. Using the properties of monotonicity, Smith (1985) 

establishes that the policy suggested by Poorzahedy et al (1982) is one of 

a family of policies offered in Smith (1985). The link cost function 

suggested in Smith (1985) could be likened as the Webster's delay function.

An advantage of the iterative procedure, on the one hand, is that it 

solves the signal control problem if the conditions mentioned in 

Poorzahedy at al (1982) are met; that is if the cost function used is the 

BPR and the constant term, a.,, is zero. However, this method becomes 

inaccurate if it was applied to a problem where the cost function has both 

the constant and congestion terms and demand was moderate, and fairly 

accurate if demand was reasonably low or high, where for low demand the 

first term dominates, and for high demand the second term dominates. This 

can be seen clearly from the following. Since the total system costs, TC, 

are of the form

and if v.- is much less than W;, then the term v.-a,- dominates the term
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v;b;(v;/wi-)'*. Also, if V; is  much greater than w,-, then the term t^b/v/W;)4 

dominates the term v.-â  and the problem becomes similar to that of 

Poorzahedy et al (1982). The reason why if v,- is much greater than w., the 

term v^b^v/wp4 dominates the term v.3/, is due to the power 4.

Moreover, the iterative procedure is able to solve large traffic 

networks, as algorithms are readily available to determine an equilibrium 

pattern of flow for a given and fixed signal settings, in addition to 

algorithms to obtain signal settings for given link flows. A further 

advantage of the iterative procedure is that it may yield an upper bound 

on the value of the system costs for the equilibrium network design 

problem (see Heydeoker and Khoo (1990).)

On the other hand, Smith (1979a) was first  to show clearly that if the 

cost function used to model delays is Webster's cost function in the 

iterative procedure and the traffic control policy is the delay minimising 

or Webster's policy, then there may not be a solution point to the iterative 

procedure, or a stable point; Heydecker shows also that Webster's policy is 

non-monotone. Smith (1979a) backs up his argument by means of a simple 

example and offers a. policy, termed as P0, that takes account of drivers' 

behaviour by keeping the road users away from points at which the system 

incurs extremely high costs or jams. The next chapter offers results on 

this policy in addition to results on the "delay minimisation" policy and 

Webster's policy, so as to compare the effect of different policies on 

congestion.

System Optimised Approach

! o circumvent the difficulty introduced into the network design 

problem by the user equilibrium constraint, Dantzig et al (1979) suggested
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solving the network design problem without this constraint. This results in 

a system optimum. At the solution, War-drop's second principle is 

consequently satisfied, but, if the design parameters were implemented and 

drivers were allowed to choose their least costly routes, it is not known 

by how much the system costs corresponding to the new pattern of flow, 

deviate from the system costs at the solution of the network design 

problem.

This problem is easy to solve and efficient methods are available, 

such as in Dantzig et al (1979).

The major advantage of this approach is  the lower bound in costs it 

provides, while an upper bound may be obtained if the design parameters 

were implemented and an equilibrium flow found.

An Equilibrium Approach

This heuristic is due to Poorzahedy at al (1982) and could be 

described as integrating the user cost function with respect to the flow 

variable and then minimising the sum of the integrals for all links with 

respect to both the flow and design parameters.

As aforementioned, this heuristic is useful if the network is extremely 

congested or congestion free and the cost function used is  similar to the 

BPR function, as Poorzahedy et al point out. The method does not account 

for all possibilities of level of demand and all cost functions. For 

instance, if Webster's cost function is  used to determine signal settings, 

this does not have the properties of the BPR function.
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i-'enalty F unction Approach

As the network design problem involves two objective functions; the 

objective function of road users who minimise their own percieved costs, 

and the planner's objective function in endeavouring to keep the total 

costs minimal; Ben-Aged et al (1988) formulated the problem as a Bi-Level 

Programming problem, by solving a convex combination of the planner’s 

objective function and the road users' objective function. They suggested 

the use of Bard's algorithm as a solution method to their formulation of 

the equilibrium network design problem. However., Marcotte (1988) provided 

an example which shows the inability of Bard's algorithm to define an 

optimal point., and this has reduced the significance of their formulation.

In a different context, Heydeoker (1986) indicates the difficulty with 

the approach suggested by Ben-Ayed et al (1988), which Hey decker likens as 

a penalty function approach, and, instead, suggests the use of the objective 

of Smith (1984) which is developed in a study to generalise the traffic 

assignment problem to cover inseparable cost functions and which can be 

used as an indicator to find a descent direction towards an equilibrium. 

This objective function has an advantage in that it carries information 

that could be used to find a descent direction at any point either with 

respect to the design parameters or the link flow variables, or, with 

respect to both. This feature is not shared by the equivalent optimisation 

formulation of the equilbrium assignment, due to Beckmann et al (1956), for 

separable cost functions.

Perhaps, Heydecker's suggestion of using Smith's objective function 

could be implemented in a heuristic to find a direction which reduces the 

drivers' costs, or Smith's objective function, while causing the least



increase to the total system costs., if one started, say, from the system 

optimised solution (Dantzig et al (1979)).

One of the problems that might be faced, however, with such an 

approach is that although the direction offered in Smith (1984) is descent 

for the users' cost, and the gradient of the planner cost function could be 

determined while maintaining feasibility of flows, combining both somehow 

is not necessarily a gradient, unless perhaps they are steepest descent 

directions or that they are not obtained by solving a linear program or a 

minimum path search.

A Constraint Approximation Approach

Most recently, Heydecker and Khoo (1990) suggested a linearisation 

approximation of the equilibrium constraint by linearly regressing the flow 

values obtained upon solving an equilibrium assignment for each of five, or 

so, different step lengths chosen along a certain direction which relates 

the design parameters as a function of the step length made. More clearly, 

a relation is used to express the design parameters between two points in 

terms of a step length X. Then for a. number of step lengths, the design 

parameters can be calculated from this relation. The design parameters 

thus obtained are used to determine the corresponding equilibrium patterns 

of flow. Now the equilibrium patterns of flows are fitted by an approximate 

relation in terms of the step length. Thus, two relations are formed in 

terms of the step length. The first expresses the design parameters in 

terms of the step length, while the other expresses the equilibrium flows 

in terms of the step length. These two relations are used to determine the 

value of the step length which minimises the total system costs. Having 

obtained a value for the step length, hence a pair of flow and design 

parameters, another direction is then explored, similarly by fitting a new

19



linear regression relation as above, i his process is repeated until no 

further reduction in the total system costs is  possible.

Heydecker and Khoo (1390) apply this method to determine signal 

settings, and they propose spanning the feasible set of green lights at 

each traffic light independently along several directions that are 

equivalent in number to the number of stages at each traffic light. They 

provide formulae for these directions, but it is not clear why and how 

these directions are specified, nor upon which mathematical argument these 

are based.

Viewing the method in the context of determining optimal link capacity 

variables, it could be likened with the method of Abdulaal and LeElanc 

(1979) (see below.) In the method of Abdulaal and LeElanc, a move is  made as 

soon as a. new point in the design parameter set is found favourable, after 

having determined the resulting equilibrium pattern of flow and monitored 

the system objective function. In Heydeoker and Khoo (1990), a move is made 

only after having fitted an equilibrium flow relation with a number of 

different step lengths (they suggest five step lengths), and so on for all 

possible directions in the design parameter set. Therefore, this method 

does not appear to have made any significant improvement over the method 

of Abdulaal and LeBlanc (1978), nor it does seem to have out down the 

number of equilibrium assignment problems need to be solved to find the 

response of drivers for any possible movement attempted.

2.2.2 Exact Methods

Unlike the heuristic methods which can deal with reasonably large 

networks, exact methods on the other hand have been less efficient, if not 

efficient at all. They have been mainly applied to small networks in order



to check or offer an exact solution which could be useful only from a. 

theoretical point of view. This is due to dimensionality and computational 

time pnoblerns.

The methods which are described next are those due to Gershwin et si 

(1978), Marcotte (1983) and Abdulaal et si (1979).

Constrained Minimisation Problem

Notations: The following notations are needed, 

c*.,, = minimum cost path between the o-d pair., i.e. cfj=min cX,

V r

c'oj = travelling costs on path r from origin o to destination d.

ft,,' = flow on path r from origin o to destination d.

rn.j.,' = demand between the o-d pair.

0 = set of origin nodes,

3> = set of destination nodes.

= sat of paths connecting o-d.

$  = feasible set of path flows that can de defined as:

ft ! \

Vo € O), vd € 3D, 

j3.;.,'., Vo 8 O', Vd fc D.

1 if link (i,j) is on oath

J
I1.

0 otherwise.

of link flows, having as elements v-'s.

flow on link (ij) that is defined by v. ; = X V . T f .
o a r

effective green time of signal settings.



t = feasible set of the green settings,

p = objective function of the total system costs.

Tan et si (19795 investigated a direct approach into the problem of 

signal setting. They express route choice behaviour in a convenient set of 

mequility equations that are amenable to general optimisation algorithms 

in the path-flow formulation (see Potts and Oliver (1972) for path- and link- 

flow formulations). They observed that Wardrop's first principle can be 

cast into the following form:

= 0) Vr € y.jj, Vo € 0- V’d € 3) [2.21

Summing [2.21 over all paths r  in 5^, this results in

c L = ( f  j.g'Qgÿ)/m0(j, Vr € Vo V O’, Vd V ®

Relationship [2.11 and E2.21 imply that for any o-d pair any unused path r 

has:

^ ¿¿o L = (j> f :.ÿc:;.j)/m̂,ÿ, Vr € r,. r? a i

Having expressed drivers' behaviour in the form of exprression E2.41., 

then Tan et al (1979) suggest solving the nonlinear program:

Minimise P(v.A)



A £ f  [2.5ci]

The method suggested to solve problem [2.5a-d3 is an augmented 

Lagrangian approach, but found impractical for large scale networks. It is 

impractical because it requires the enumeration of all possible paths 

between each origin-destination pair to account for all possible route 

flows before implementing the augmented lagrangian. Besides, as it is 

formulated in the path-flow formulation, the constraints [2.5b] and E2.od3 are 

non-network constraints. This may require including these constraints in 

the augmented lagrangian objective function, thus more Lagrange 

multilpliers and longer computational time. If these constraints are not 

included in the augmented lagrangian, then they cause dimensionality 

problem.

cL>oL= ( ^  V’r  € Vo € O', Vd € ‘3) E2.5c3

Contraint Accumulation Approach

Notations: These are as follows, 

w = capacity variable of links.

V  = feasible set of capacity of links (see Chapter 4).

Vj j  = flow on link (i,j).

v = vector of link flows, having as elements vv/s.

T  = feasible set of v

c = vector of link costs.

P = objective function of the total system costs.

Using the variational inequality formulation of the equilibrium 

assignment problem as suggested in Smith (i979b), Marcotte (1983) presented 

an algorithm to calculate the design parameter of each link by applying a



partial dual approach (Luenberger (19S4)X His method requires first 

generating variational inequality constraints, or equilibrium constraints.

and then solving a subproblem of the form:

Minimise P(v,w) 

subject to 

v € r

c( v, w). (v- v ) £ 0, V v  t  V 

m € V.

This subproblem is solved optimally for a working set of equilibrium 

constraints. The equilibrium constraints are generated on the basis of a 

minimum path search.

Marcotte originally proposed this method for the link capacity problem, 

where all links are considered for construction. The introduction of 

Chapter 4 explains the difficulty of applying this method to a network 

where only some links are considered for construction or improvement. The 

same difficulty also arises when solving the signal control problem, This 

difficulty is termed later as "insufficient control"

Substitution Approach

i he last exact method illustrated in this review is the one described 

in Abdulaal at si (1979). This is mainly the Hooke and Jeeves (1961) method. It 

makes use of the uniqueness property of the equilibrium assignment 

problem, which follows from the strict convexity of the formulation for 

separable and strictly convex cost functions, for any set of specified 

design parameters. The method could be viewed as a constraint 

perturbation, a constraint satisfaction and then the monitoring of the
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system objective function, on the basis of which a move is made. If the 

equilbrium constraint of the network design problem is expressed in terms 

of the design parameters and flow variables, then the constraint 

perturbation is done by varying the design parameters along some feasible 

direction; the constraint satisfaction is achieved by solving just a single 

equilibrium assignment problem; and lastly the monitoring is  achieved by 

evaluating the system objective function.

An advantage of the method of Abdulaal ei al (1979) is that it can deal 

with large networks if the number of design parameters is  small. However, 

as soon as this number is slightly increased then the computational task 

becomes very expensive.

Formally, the formulation can be put in the following non- 

differentiable form:

Minimise p(v,w)

Subject to 

v = tT(w) 

v s r  

w 6 f

where the non-differentiabie relation v = y"(w) defines the equilibrium 

pattern of flow corresponding the design parameters w.

This method some similarity with the method of Marcotte (1983). Here, 

the design parameters are varied and the equilibrium flow pattern found. 

There, the flow variables are varied initially and then the design 

parameters computed are those which bring the varied pattern of flow to
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equilibrium. In Abdulaal's method, the flow pattern corresponding to any 

varied design parameters, exists, whereas there may not be a design 

parameter set which induces equilibrium to any flow pattern as in Marietta, 

i his is due to the "insufficient control" problem, mentioned above.

2.2.3 An Example

I o illustrate the difference between some of the various methods 

mentioned above, a simple example network is considered.

The network

I he network shown in Fig 2.1 has two origin nodes, i  and 3, and a. 

destination node, 2. Node 4 is assumed a traffic signalised junction with 

two stages.

The demand from 1-2 is taken as 10 units, from 3-2 as 3 units, and the 

link cost functions are:

t i4=i+V i4/7 iC, ti2=i+v12, t4S=5v43n 2 and t42=l+2v42.

where 1L is the proportion of green time facing link (1,4), 72 is that of link 

(3,4) and c is the cycle time which is taken as 30 secs. No lost time is 

supposed between the green time of stages.

bxact solution

The problem may be represented in the form:

minimise D— v<_4\l+Vj_4/ /¿c)+Vj_2si-fv42>-r



Figure 2.1





On solving, 71=U.02'65 and 7£=0.973b

Repeating stage i  and stage 2 until no change in the flow and the 

signal variables., gives the values:

V¿2=10, Vi4=u, v42=3, / ¿=u, ,‘2=1 3nd D=i 3i .3.

System Optimised Approaoh: If constraint E2.bc! is discarded, the flow 

and signal variables which result in the minimal value of the objective 

function, are:

vi 2=8.873, Vj.4=1 .12 1, v4£=412i, 7i=81S/30, 7£=21.84/30 and 2=127.488.

Fixing the values of 7^=8.16/30 and 7£=21.84/30, and solving an 

equilibrium assignment problem [3.9], gives:

Vi2=9, Vi4=1 , v4£=4 and 2=129.184.

Squilibrium Approach: This requires solving:

mm
v

r Vi4 f Vi2 f V43 f V42
1= | (i+u/7iC)du+ / (i+u)du+ j 5u/7£du+ | (i+2u)du 

J  0 J  0 J 0 J  Q

subject to 

7i+72=i,

VS4=3

1+Vi £=1 +v'i 4/307"i+l+2 v4£

Vi4+V1£=10

V34+Vi4=V4£

Oi MibO, 0< /24.30, Vi2>0, Vi4>U, v'4220, V342U



The solution to this problem is:

vi£=9.07, vi4=0.92, v4£=3.92, 7i=4.i38/30i 7£=26.SSi/30 and 0=129.03

A comparison of the overall delays of the above results obtained on 

solving, firstly, the iterative method, secondly using an exact approach, 

and, thirdly by discarding the drivers route choice, shows that delays due 

to the first  method are greater than the other two, and the second, the 

exact solution, is  greater than the system optimised pattern, the third 

approach used in the example.

2.3 THE DYNAMIC SIGNAL SETTING CONTROL PROBLEM

The earliest attempts perhaps to relate time-varying signal settings 

as design parameters with time-varying link flows, should be attributed to 

Gazis (1964) in a model specifically designed to deal, however, with very 

severly limited network cases.

The model described in Gazis is constructed to calculate optimal time- 

varying signal settings where route-choice is absent. It is mainly for a 

single or two, or more, consecutive traffic lights, with no turning 

movements and with the output flow profile of an upstream traffic light 

feeding that at the downstream. For such simple network cases, the input 

flow profile of the downstream traffic light could be readily and 

analytically expressed in a. closed form in terms of the output flow profile 

of the upstream traffic light.



Though the study cases explored in Gazis (1964) are limited to no 

route-choice and a. single or more traffic light problem, they offer 

theoretically valuable insights into the problem of delay minimisation. 

Notably, they introduce contraints on delays that are not accounted for in 

the steady state, in addition to the need of coupling of the traffic lights 

so as to express the interaction amongst which.

In the steady state, minimsing delays at traffic lights independently, 

that is each traffic light is optimised in isolation (Allsop (1971)) from the 

rest and according to what the current flow on the approaches is, while 

drivers are routed according to Wardrop's second principle, results in the 

system optimum of the signal control problem.

But, in the dynamic state, treating traffic lights as isolated and 

minimising delays at each of which independently, while drivers follow the 

routing strategy due to Wardrop's second principle, does not unfortunately 

result in the system optimum of the signal control problem. In Chapter 6, 

results are included that show that this is indeed the case. There, the 

traffic lights are considered as isolated and an iterative procedure in a 

dynamic setting that alternates between solving the system optimum 

assignment problem and optimising delays at traffic lights, is performed.

In order to generalise the two consecutive intersection cases, treated 

in Gazis (1964), to complex transportation networks so as to determine 

optimal control of a system of oversaturated intersections, D'Ans and Gazis 

(1976) introduce what is currently known as 'store-and-forward' congested 

networks.

The store-and-forward network introducd in D'Ans and Gazis may be 

described as one in which a storage capacity is assumed before the exit of



each arc and just in front of the node which connects this arc with the 

"after" arcs. The storage capacity on each arc could be used to store.: on- 

hold back; flow, due to the introduction of flow control variables in the 

D'Ans and Gazis model. As said in Chapter 1, the flow control ^enables are 

needed to have a convex set of flow constraints.

It will be seen in Chapter 5 that there is an implementation problem 

associated with the flow control variables for a multi-commodity newtork, 

where there are uncontrolled links in the network and the flow control 

variables are positive on these links.

For a multi-commodity network, D'Ans and Gazis state what could be 

described as that the optimal control of a. store-and-forward network 

requires, in general, three operations:

(a) The optimum allocation of a route to each unit of traffic 

from its origin to its destination.

(b) The optimum switching at the nodes, determine the allocation 

of discharge of queues.

(c) Servive of queues be "first-in  first-out" .

The "first-in, first-out" (FIFO) discipline may be defined as follows: 

gn/en two ¡.-'ehxcles.: the one entering a link first also exits the link first.

Despite the rigorous treatments provided in D'Ans and Gazis on the 

signal setting side, they conclude with the statement that there is no 

complete methodology for the solution of the general optimisation problem 

in (a), (b) and (c). Instead, they assume that the route assignment is given 

and FIFO is satisfied by making an assumption on the various commodities 

that they are roughly uniformly distributed within each queue. As a second



approach, they reformulate the problem as a multicommodity network with 

controlled turning movements and introduce a FIFO constraint, This 

constraint is non-convex. Hence., besides the problem associated with 

implementing the flow control variables., a non-convex problem needs to be 

solved.

Carey and ürinivasan (1987) also deal with a problem with variable 

control., but in a different application, in industrial processing and air- 

traffic control, where FIFO oontraints are not needed as it is possible to 

hold traffic back in various storage pockets.

In concluding, due to the difficulties already encountered with the 

system optimum of the dynamic signal control problem, it is hardly 

surprising therefore that work on the equilibrium dynamic signal control 

problem, or the equilibrium network design problem with dynamic demand, is 

nil.



3= A GENTLY RISING RUSH-HOUR CONTROL MODEL

3.1 INTRODUCTION

The chapter has two objectives. It is  firstly  concerned with offering a 

method for the problem of green light allocation of traffic lights, when the 

traffic lights are kept in tune with link flows and when the demand is 

gently and steadily increasing, for all origin-destination pairs of a road 

network. Though the method is  a steady state, it does give some indications 

of congestion buildup in a traffic contrcllled network.

The second objective is  to offer computational results obtained on 

applying the method suggested here to three road networks, while traffic 

lights are set in accondance to three different traffic control policies. As 

will be seen later, the method converges in the limit to the iterative 

assignment/control procedure which is discussed at some length in Chapter 

2, and, hence, the results presented later- serve, in addition, as a 

comparative study on the performance of diffenent control policies of 

traffic light setting.

The control policies tested were as follows:

(i) the standard 'delay minimisation' policy, stated in Allsop (1971),

(ii) the standand equisaturation method proposed by Webster, and 

ini) P0, discussed in Smith (1979b).
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3.2 GENTLY DYNAMIC ASSIGNMENT AND CONTROL

Essentially; the method suggested is a simulation tool, and is intended 

as a fast way of comparing in general the effect of different control 

policies on route choice in a gently dynamic context.

The gently dynamic assignment/control method presented in this work 

seems practical and avoids the difficulties inherent in a fully dynamic 

approach to the assignment/control problem. (See Smith and Ghali (1990).) In 

fact., some results are given on the dynamic assignment/control problem in 

Chapter 6., but the method given here could deal with large networks. This 

may not be the case in the dynamic state.

The method allows the use of Webster's delay formula. This formula 

estimates the average long-run delay to a Poisson traffic stream, and 

rises asymptotically to infinity as the flow approaches the finite capacity 

of the road link (which depends on the signal-settings). This steep 

behaviour needs to be taken into account both in the assignment procedure 

itself and in the initial choice of signal-settings and flows. Any delay 

formula having similar features to the Webster's delay formula, could also 

be used.

In addition to its practicality in a gently dynamic assignment/control 

problem, an important feature of this method is also that it could be used 

to avoid the problem of finding an initial feasible point when solving for 

the system optimum of the signal network design problem if the cost- 

function used is Webster's. This is explained further in Chapter 4.

Moreover, this method is  useful to find an initial feasible solution or 

pattern of flow in a purely assignment context, as in Daganzo (1977), where



the cost function is, again, steeply rising as the link capacity is 

approached, but the signal updating step is discarded in this context.

A Gently Dynamic Control/Assignment Procedure

Given a signal-controlled network and an origin-destination matrix, the 

procedure could be stated as follows:

1- Choose any initial signal settings that satisfy the green light- 

constraints.

2- Do an all-or-nothing assignment and assign an allowable maximum 

percentage of the trip matrix.

3- Keeping traffic light settings fixed, solve for an approximate 

equilibrium pattern of flow if the trip matrix is not fully loaded yet, 

or, an exact equilibrium pattern if the trip matrix is  fully loaded 

otherwise.

4- Update traffic lights to match new flow pattern due to 3.

5- If the trip matrix is completely loaded, proceed to 6. Otherwise, 

return to 2.

6- Check convergence criterion; if satisfied, then terminate., else 

return to 3.

Apart from step 2 in the above procedure and the loading of additional 

demand from all origins as the method progresses, it is just as in Allscp 

and Charles worth (1977), and has been expalined earlier in Chapter 2.

To explain step 2, the network in Fig 3.1, taken from Smith (1979a), is 

used. This network is composed of three one-way links A, B and C to 

connect, origin x with destination y through the signalised junction J. In Fig

3.2 line S is the supply of junction J and line D is the total demand at the
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Figure 3.1
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junction. The supply is determined by considering that flow v4 and vt, on 

arms A and B, respectively, should each be less than the capacity 

determined by the green settings; that is v4 < X4s 4 and vt < \ bs fc, where \4 

is the effective green time facing arm A, s 4 the saturation flow of arm A, 

Xt the effective green time facing arm B, and s fc the saturation f lo w  of arm 

B. But, since Xj+X^i, then the supply S is determined by

< i-

As for the demand D, it is  taken such that v4+vfc=i.

Now step 2, primarily determines the minimum path, which ircidently may 

be relatively less congested than any other path. This allows for an 

increase in the demand corresponding to capacity of links determined by 

the signal settings, due to the policy employed, by moving the plane D in 

Fig 3.2 parallel to itself and as shown by the dashed lines for the two-link 

example. The minimum path determined in step 2 may not always be the path 

which could accommodate the largest possible increase in the demand, as 

the constant travelling costs may dominate congestion delays. Although, as 

the network gets reasonably congested, it is  the spare capacity of links on 

the routes connecting each origin-desitnation pair which counts and 

determine the minimum path. Therefore, a load increment that is not greater 

than the available capacity of the most congested link lying on the minimum 

path could then be added to the flow on all links which are on the current 

minimum path.

Although an exact equilibrium could aways be solved for in step 3 

whenever a load increment is assigned to the minimum path, the reason for 

determining only an approximate equilibrium pattern of flow, but not when 

all the demand is loaded, can be justified as follows. Since the concern in



this is to study the long-run network performance and determine the 

capacity of the network so as to find the total demand that can be 

accommodated when different control strategies are applied, solving; for an 

exact equilibrium becomes less important if the total demand is not yet- 

loaded. However, while running the computer programs, in which the gently 

dynamic control/assignment procedure is  implemented, on the network tests 

described later, it was noticed that a few Frank-Wolfe iterations (see 

LeBlanc at al (1975)) were indeed needed to achieve reasonable accuracy 

and drive the flow away from highly congested links.

3.3 TEST NETWORKS

Three networks were used as an application of the procedure proposed 

in this chapter and to give computational results for three different- 

control policies. The first is shown in Figure 3.3, the second in Figure 3.4, 

and the third network Fig 3..5.

Net lork 1

The network of Fig. 3.3 has eight traffic lights, four denoted as A, with 

each approach having a saturation flow Sa, and four as B, with each 

approach having a saturation flow St, as well. Junctions denoted as F are 

assumed to be flyovers or have large capacities. In this network, no 

turning movements are allowed, hence only two origin-destination pairs are 

considered. The total demand from each origin was taken as twice the value 

of (S5+Sb) for five different cases, where SA was first  assumed to be 1 

Veh/Sec, and then incremented by 0.25, up to 2 veh/Seo, while Sb was kept- 

fixed at 1 Veh/Sec.

The link cost function of the network of Fig. 3.3 was assumed to be
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composed of a constant term (running costs) and a delay term; due to 

Webster, if the link in question has at its down stream end a traffic light. 

The constant term was taken as 280 seconds for the first links on the four- 

outer routes and zero elsewhere in the network. Obviously, the central 

route is faster than the outer routes if only running costs are taken as a 

measure of costs between each origin-destination pair. The cycle time of 

all traffic lights of this network was assumed fixed and equal to 120 

seconds. Two stages at each traffic light were needed. No lost time between 

stages was assumed and a minimum of 1 bee. green time was imposed on each 

stage.

Network 2

This network is composed of 9 origin-destination pairs, and all the 

links are two-way links.

Control in this network is introduced by means of two traffic lights, 

at junction 11 and 14. The stage structure of each traffic signalised 

junction was assumed as shown in Table 3.1.

As in Network 1, the lost time in this case between consecutive stages 

was also taken as zero and the stage minimum green time as 1 second, 

mainly to disallow situations where a stage green time would otherwise be 

zero when there is no flow on links within the stage. If the minimum green 

time of a stage was allowed to be set to zero value, then this might not 

change during the assignment/control procedure once it has been set as 

such. Simply, the link with zero green time and modelled using Webster 

delay function would then have no spare capacity and thus would not be 

assigned any flow during the assignment process in a subsequent stage.



Table 3-1



The cycle time of both traffic lights was taken as 120 seconds; and 

the total demand to the network from all origin points was 400 veh/Hr, that 

is to be loaded incremently as described in Steps 1-6 above.

Again., the link cost function was supposed as in Network 1, a 

combination of a constant travelling time, given in Table 3.2, and Webster's 

delay function if the link is signalised, or, the BPR congestion term if the 

link is uncontrolled. The congestion coefficient of the BPR function was 

chooser as 2 SecVVehf' for all links. * I

The network, shown in Fig 3.4, is composed of 9 origins, each acting as 

a destination point as well. All the links in the network are two-way links 

that are uncontrolled.

Apart from the origin nodes (1-3) and node 20, all the other nodes were 

regarded as signalised nodes, each with a. stage structure as shown in 

! able 3.3. The minimum green time of each stage was taken as 5 seconds and 

no lost time between consecutive stages was assumed.

I he demand between each origin-destination pair was as shown in Table 

3.4, and the constant travelling cost of each link as in Table 3.5.

F or this network, no BPR congestion term for uncontrolled links was 

assumed, only a constant travelling cost. For controlled links, Webster 

delay function in addition to the constant travelling cost was supposed.



Link Constant Travel Time
KoBOS)

Link Constant Travel Time 
(Secs)

i  - 10 50 1 - 11 20
Í  - 12 50 10 - 11 50
10 - 24 50 10 - 1 50
11 - 1 50 11 - 10 50
11 - 12 50 11 - 20 50
12 - 1 18 12 - 11 12
12 - 13 10 13 - 2 16
13 - 12 15 13 - 14 18
2 - 13 15 14 - 13 15
14 - 19 21 14 - 15 21
15 - 14 15 15 - 3 15
15 - 16 17 3 - 15 41
16 - 4 13 16 - 15 11
16 - 17 16 4 - 16 21
17 - 5 12 17 - 16 150
17 - 18 14 5 - 17 21
18 - 6 41 18 - 17 150
18 - 19 150 13 - 14 11
19 - 18 11 19 - 6 31
19 - 20 150 6 - 18 41
16 - 19 21 20 - 11 20
20 - 19 150 20 - 21 71
21 - 20 150 21 - 7 19
21 - 22 16 7 - 21 11
22 - 24 16 22 - 2i 150
22 - 23 11 23 - 24 40
¿id “ ¿Í ¿Í 150 ¿3  - S 40
8 - 23 43 24 - 9 12
24 - 10 11 24 - 22 13
24 - 23 41 3 - 24 31

i able 3.2: Assumed constant link travelling cost of Network 2.
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3.4 RESULTS AND COMMENTS

In what follows, the comments apply to the performance of one policy 

against another. Computational time and number of iterations needed to 

arrive at the solution are not regarded as important as the performance 

of each policy in this study, though these might differ largely within and 

between the three control policies.

Network 1

; he results of applying the above algorithm to Network i  are shown in 

Graphs 31-3.5, each graph corresponding to a different value of Sfc as 

specified in Section 3.3.

Graphs 3.1 and 3.2 show clearly how using different control policies 

with the algorithm suggested here affect the capacity of the network. In 

Graphs 31 and 3.2, policy P0 could accommodate a far larger amount of the 

total demand than either Webster or Delmin Policy. The capacity of the 

network has almost quadrupled with policy P0. I

I he reason for the small capacity of this network, for cases i  and 2 

and as shown in Graphs 31 and 3.2, when either Webster or Delmin policy is 

applied can be explained in general in the following manner. (The following 

argument has been given first  by Smith (1979a) that shows that in setting 

traffic lights responsively, Webster's policy might not achieve an 

equilibrium solution, and then Heydecker (1980) elaborated further on this 

problem who studied the Jacobian when Delmin policy is used in an 

assignment process.) Webster and Delmin policies tend to give a greater 

proportion of green light to the more congested stage so as to reduce 

delays. The implication of this in an assignment context is  that as the flow
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of a signal link increases, Webster and Delmin policies allocate more and 

more green light to this increasingly congested link. Though the link is 

getting more congested in the long run, these policies on adjusting the 

settings, reduce delays but encourage more use of the link. But since the 

capacity of the link is limited by the saturation flow if all the green 

proportion of the cycle was allocated to that link, then the costs rise 

steeply. I he same statement could also be applied to cases i  and 2, where 

the links on the inner routes get increasingly overloaded due to Webster 

or Delmin policy. In these cases, the central route has a capacity S5 when 

either Webster or Delmin policy is used and when the maximum green light 

is  given along this route. Hence, the network capacity becomes 

approximately equal to S5.

On the other hand, P0 tends to penalise the use of links with relatively 

small capacity, and this pushes drivers away from links with small capacity. 

But this may cause some concern, particularly where the demand is low and 

despite the possibility that the link might be able to cope with the flow. 

Thus, this may result in an unnecessary increase in costs, as in the first 

part of both Graphs 3.1 and 3.2. Alternatively, at low level of demand, P0 

does not allow a stage to have zero proportion of the total cycle if, for 

the sake of argument, the minimum green time of a. stage could be taken as 

zero. Or, Pn always allocates a green time that is greater than the minimum 

green if the latter is  small enough, even though there might not be traffic 

flow making use of the stage provided. This explains the extra, costs if P0 

is used at a low level of demand for the network of Fig. 3.3.

As for Graphs 3.3-3.5, again, at low level of demand, P0 produces higher- 

costs by giving the stages along the outer routes green time even though 

this is  not needed. This is also observed at high level of demand when 

Webster and the delay minimising policy give maximum green time allowed
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for the outer routes, which are used, and minimum green time to the unused 

inner route; P0 still gives green time that is greater than the minimum, as 

above. However, all policies in this case, with Sa, S t significantly different, 

provide more or less an equal network capacity.

Network 2

The results of this network are given in Graph 3.6. AH the policies in 

this example could accommodate the total demand from all origin to 

destination points. This is because the location of the traffic signals was 

delibretly choosen so that no restriction on the capacity of the network is 

caused.

As for the performance of the network under each of the policies, no 

substantial difference is observed for the levels of demand considered.

Network 3

The results of this network are given in Graph 3.7. Considering the 

long-run performance of the three control policies, and as Graph 3.7 shows, 

Pn markedly outperformed the other two policies by increasing the capacity 

of the network to almost 3.5 times the capacity obtained on running the 

signals under Webster or Delmin. Using P0, about 85 percent of the the 

total demand was loaded, whereas only about 25 percent were loaded when 

Webster and Delmin were used.
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needs enough control or design parameters in order to bring any pattern 

of flow, while solving the main subproblem, to equilibrium by varying the 

decision variables. This is not often possible, particularly when some links 

do not constitute part of a management scheme to build new roads in a road 

traffic network, or, when optimal signal settings are sought as design 

parameters, one would not expect a traffic signal at each junction as the 

formulation in Marootte (1983) implies, if the question of uniqueness was 

let alone.

Besides the above complications of the method given in Marcotte (1983), 

its implementation has been found by its originator to be difficult to 

attain, for it is needed to solve iteratively as many nonlinear equations as 

there is in the working set of a secondary subproblem of the main 

subproblem, using an iterative Newton method to calculate the Lagrange 

multipliers which dualise the equilibrium constraints, for each variation of 

the flow parameter. Simply, this is computationally intractable.

This chapter is organised such that it presents first  in Section 4.2 

the method suggested, as applied to the link capacity problem, together with 

a discussion on how the subproblem, step 2 below, is solved. Then with some 

changes to the notations, the chapter explains in Section 4.3 how the signal 

control problem could also be solved using the method (steps i-5 below) 

that is applied to the link capacity problem. Follows that, in Section 4.4 

results are given for three networks, after having implemented the method 

in a computer code. Finally, in Section 4.5 a comparison is made between the 

method suggested here and that due to Harcotte (1983), on the one hand, and 

that due to Abdulaal et al (1979), on the other hand. Both methods have been 

explained in Chapter 2.
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3- Let the solution of step 2 be (v,w) and LB=S(v,w).

4- Do a minimum path search for fixed w=w and denote the resulting pattern 

of flow v\

5- If y  i  f-> end. Else, increment q by i  and return to

As it can be seen, the method is similar to that given in Marcotte 

(1983), but differs in two senses. In the first sense, it differs 

substantially in the way the main subproblem, step 2 in the method given in 

Marcotte (1983), is solved here. An augmented lagrangian approach is 

adopted in the method given in this chapter, which is explained in the next 

section. In the second sense, the method differs in the way it is terminated. 

In Marcotte's method, an upper and lower bounds on costs are used to 

terminate the algorithm. In the method given here, a check on the last 

generated equilibrium constraint is used as a termination criterion. 

Clearly, if the constraint generated in step 4 is satisfied, then the pattern 

of flow obtained in step 2 is in equilibrium.

4.2.1 Solving the Subproblem at Step 2

Notations

L(v,w) = augmented lagrangian objective function

Pi,p2 = penalty weights

,0"''"'' = maximum value of penalty weight

= lagrange multiplier that dualises the equilibrium constraint e 

of the form:



i he Subproblem at Step 2

When q=0, and when the cost function used is the DPR function, the 

solution of the subrpohlem at step 2 is the system optimum of the network 

design problem, for which the method described in Dantziq si si (1979) can 

be used. But for q values different from zero, an augmented lagrangian, 

which is due to Pierre et si (1975), is used. With the equilibrium constraints 

[4.id)] only added to the objective function of the subproblam, the augmented 

lagrangian at iteration q takes the form:

 ̂ ijS.A 
f'tx



Although now the subproblem has been arranged so that the sets V' and 

W, which are linear, are' thus independent, which means that an extreme 

point (v,w) can be easily determined, the separability property that makes 

the method given in Dantziq et al (1979) efficient with the BF’R cost 

function, is nolonger attained, due to including the equilibrium constraints 

generated in step 4 into the objective function S(v,w).

Solving an augmented lagrangian is a process which alternates 

between two phases. Initially, a relatively small postitive value for the 

penalty weights and zero-values for the Lagrange multipiers, are assumed. 

Then, a minimisation phase is  followed, after which, in the second phase, 

the Lagrange multipliers are checked and updated, together with the penalty 

weights, if optimality is  not satisfied. And so on. The nules for- updating 

the multipliers and penalty weights, as in Pierre et al (1975), are given 

first, and then the minimisation method used to solve the augmented 

lagrangian is described.

4.2.2 Updating Phase

Updating the Lagrange Multipliers

The rules are:

If e € X,

0, if x r  + i  0
ij£-A

vow x “ " , .., e, ,,/-.f + ¿Pi > c^w^,w^).(v^-v^ ), otherwise
ij£A-
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\02'" y  C -̂(V;(/-,Wi-i;).(V;Jr-Viye), Otherwise

Updating the Penalty Weights

The penalty weight update rule is:

it

Ci = 1, —) \

4.2.3 Minimisation of L(v,w)

Basically, any nonlinear minimisation method for linearly costrained 

programs may be used, though the problem is non-convex. For example, the 

Frank-Wolfe (see LeBia.no et al (1975)) method, which is a first  order method, 

could be used. But as it is well known, second order methods are a 

necessity if augmented lagrangian or penalty approaches are used. Here, an 

augmented lagrangian formulation, due to Pierre et al (1975), is favoured on 

penalty functions which have ill-conditioning problems. As the above 

augmented lagrangian is constrained by the set 1TUW, this requires more 

than two extreme points in the above set so that a second order method 

could be useful, otherwise, if just two extreme points were used to minimise 

the augmented lagrangian, then one would be applying a method like the 

Frank-Wolfe, which, as said above, has convergence problems with augmented 

lagrangians.

On the basis of that, a restricted simplicial decomposition scheme with



r as the maximum number of extreme points, as in Hearn and Lawphongpanich

(1987), has been implemented to speed convergence and apply a second 

order method, such as the modified Newton method as adapted in Goldfarb 

(1969) for linearly constrained problems, so that the weights which relate 

the extreme points in ¥  and W and minimise the augmented lagrangian 

objective function can be determined.

Hear.n-Lawphongpanich Simiplicial Desompostion

Notations: These are as follows.

r = maximum number of extreme points of a simplex 

= convex hull of extreme point set w 

11 - the weight of extreme pattern i

The Simplioial Decomposition: This is as follows.

1- Let (vq,Wq) be an initial feasible point in WW. Set w0= C(v0,w0)) and t = 

0

2- Solve

VrL(vt,wt)-vt = minimise iY ^ (v t,wt>v : v S ¥'}

VivL(vt,wt.)'Wt = minimise iV^L(vt,wt)w : w € W)

If ViiL(vt,wt)'(vt -  vt) + Y*-L(vt.,wt.Mwt -  wt) > 0, stop and (vt,wt.) is a 

solution to subproblem at step 2 of § 4.2.

Otherwise,

(i) iul < r, wtTi = </" U {(vt,wt)}

(ii) m  = s, replace any two elements of cL" with (vt,wt) and (vt.,wt) 

to obtain w "'.

L(vt+i,wt+15 = minirnise{L(x,z) : (x,z) € ' ”")}.

Solve:





implemented. This is  discussed in the next section. Following that a point in 

relation to solving

VrL(vt..,wt)*vt = minimise C’v^L(vt,wt.)*v : v € r )

is mentioned.

Modified Newton Method

The method outlined in this section is due to Goldfarb (1969), and the 

reader could refer to that paper for a more detailed discussion. Here, only 

the main steps of the method are included.

Notations: These are as follows.

§ = constraint set of 7., le [4.4(a)] and [4.4(b)]

n. = the unit normal vector of constraint i in y, ie n ‘ n. = i
p

N = £n1( no, np is an rxp matrix, whose columns are the p unit

normals to the p linearly independent hyperplanes
£J

H) = approximated projected hessian of L(x(7).,z(7)) on the flat of p 

linearly independent hyperplanes in NF in iteration i
_p
r ; = set of those active constraints of y at point 7.

Goldfarb's Method: The steps are:

1- Let 70 be an initial feasible point in y, and Ho be chooser as positive 

definite matrix. If 70 lies in the intersection of p linearly independent 

hyperplanes of 2, then these constraints should be added to Hq to 

obtain Hq. Determine V---.Lo(x(7c,).,z(7r,)).

2- In iteration i, 7.-., V-i Lix(7;);z(7;)S and H'J are used to determine





Increment p by 1, i by 1, and return to step 2.

6- Otherwise, determine >7: = 7.+i -  7., u, = V-y. i_(x(7J+i5,z(7:+i))
A T  i

V-'f L(x(7.-5.,zi7,)), and update H’using

K +1 = K  + ^
“ r. rr r.

p o-.cr; H'.uuIH

(jju. ujhfu.

Set i = i +1, and go to step 2.

r.T
In step 2 and 3., (N: N1) A and (N‘ ~ N‘ ') i , do not have to be abtained

using matrix inversion, as Goldfarb provides recursion formulae to obtain 

these, in addition to determining N’ A and F" “ whenever a plane is  dropped, 

or, N' ' ‘ and P' '", whenever a plane is added.

Minimising V^L(vt.,wt>v

Minimisation of VKL(vt,wt)*v is an extererne pattern of flow in T, which 

is a similar problem to that of the pure equilibrium static assignment 

problem (see LeBlanc et ai (1975)), and for which a minimum path search, 

such as Dijkstra's (1959) minimum path algorithm, could be used. For the 

pure assignment problem, the cost function is  continuously increasing and 

the gradient in terms of the flow variable implies positive costs, which is 

a requirement for using the minimum path search of Dijkstra. But, this no 

longer holds in minimising v>L(vvwt>v, as the gradient VvKv^.w-) in terms of 

the flow variable might at some points be negative, which gives rise  to 

negative circuits or loops if the minimum path algorithm of Dijkstra (1959) 

is implemented. The implication of negative circuits is simply that- 

minimising Vi.D(vt.,wt>v becomes an unbounded problem if it is  retained in its





4.3 THE SIGNAL CONTROL PROBLEM

As mentioned earlier, the method suggested above for solving the link 

capacity problem is also suggested for solving the signal control problem. 

This requires only replacing the set W with -f and w with A in E4.il and all 

that follows after [4.11, down to this section, while leaving out the term 

whereever it is added, f and A are defined below., and the 

cost function used for this problem, follows that.

! o solve problem [41] when q=0, the iterative loading procedure 

discussed in Chapter 3 is needed to find an initial feasible point, for both 

signal settings and flow variables, if Webster's cost function is used. But­

in this case, in step 2 of the method given in Chapter 2, the path which has 

the least marginal costs is determined, instead of the path which has the 

least user costs.

a / uncongested travelling cost

congestion coefficient- of the BPR cost function

degree of saturation, i.e.,

J the set of signalised nodes in if

number of stages at traffic light j

the proportion of cycle that is effectively green for stage 1

gj’if = the minimum green time for stage 1 

L ; = total lost time per cycle

i  if stream CiJ) belongs to stage 1





4.4 NETWORKS AND RESLUTS

The method suggested in this chapter for dealing with the network 

design problem was put into practice by applying it to three test networks 

The application was confined only to the problem of determining the optimal 

capacity of links, in each of the three tests.

Network i

The first network is as in Figure 4.1. The network properties are given 

in Table 4.1. The demand for each of the origin-destination pairs 1-2, 1-4,

3-2 and 3-4, was 1.2., .54, 0.6 and 0.9 flow units, respectively. Only two links 

in this example were assumed to have variable capacity, link 1-2 and 3-4, 

with the values of ,8,/s as in Table 4.1. The results are given in Table 4.2 

and the total costs on solving for the system optimum of the NDP, the user- 

equilibrium for fixed link capacity determined from the system optimum, and 

the NDP solution were 425.8, 443.75 and 431.32 cost units, respectivley.

For this network two equilibrium constraints were generated, and the 

results obtained were checked for validity using a self-written program of 

the method described in Abdulaal et al (1979).

Network 2

This is  a 3-link example and as in Fig 4.2. The link properties are 

given in Table 4.3 and the demand for the origin-destination pair 1-2 was 

taken as i  flow unit. Only the capacity of link 2 was assumed to be 

required. The results are given in Table 4.4. The total costs on solving for 

the system optimum of the NDP, the user equilibrium for fixed link capacity 

determined from the system optimum, and the NDP solution were 11863.61,



Figure 4.1

1

Figure 4.2



Link -■¿.j 1,./ u i J

1-2 140 0 0.1 150
1-5 “ •cr o 1 1 -

3-4 30 0 0.1 - 150
•j sr 
o  -  • J 150 0 1 1 -

5-6 O • J 0 1 1 -

6-2 30 o 1 1 -

6-4 20 0 1 1 -

Table 41

Link Cost h Ioiai Capacity

1-2 1.20 1.07
1-5 25.3 0.54 1.00
•J-4 112. 0.15 0.12
• " nr w"-J 31.9 0.81 1.00
n-A nr- - 1.35 i  .ori
6-2 30.0 0.06 1.00
6-4 28.2 1.29 1.00

T^hlp ¿1

Link a..- b.- I, u; 6,

1 25 4000 0.2 0.2 -
2 5025 3000 0 - 12000
3 30 3500 0.3 0.3



1 69bu u:¿3
¿ 6w6u 0.41

6960 0.36

i d U iS  it.it

h • • 1 . .
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12540.4 and 12512.11 cost units, respectively. Two equilibrium constraints 

were generated for this problem. The solution using the method of Abdulaal 

st si (1679) confirmed that the results were correct. It is worth mentioning 

that the method due to Marcotte (1983) cannot be applied to this example, as 

it is not always possible with just one link considered for construction to 

bring any pattern of flow to equilibrium by varying, the capacity of the 

link.

ai-wur %

' I his is shown in Figure 3.4, and it is a fa irly large network. For this 

network, all links were considered for construction. The characteristics of 

each link are given in Table 4.5.

The demand between all origin-destination pairs was taken as 0.08 flow 

unit. The total costs on solving for the system optimum of the NDP, the 

user equilibrium for fixed link capacity determined from the system 

optimum, and the NDP solution were 15255.12, 15262.85 and 15263.87 cost 

units, respectively. The results are given in Table 4.6. Eight equilibrium 

constraints were generated to arrive at the solution. The method of 

Abdulaal st al (1979) could not be applied here due to excessively high 

computational cpu-time.

4.5 COMPARISON

Contrasting the method of the subproblem proposed here with that in 

Marcotte (1983), in the former there is no need to solve 2T times a 

subproblem, because augmented iagrangian methods have a self-adjustment 

mechanism to deal with inequalities which are not active at the solution, 

besides, the problem of sufficient control does not exist in this approach.



Link Co^t j- Io n  Capacity Link Cost Flow Capacity

i-iO 85.01 0.32 0.25 10-1 85.01 0.32 0.25
i - i i 82.86 0.23 0.18 11-1 82.86 0.23 0.18
1-12 116.7 0.40 0.25 12-1 116,7 0.40 0.25
2-13 446.5 0.64 0.25 6-18 75.18 0.18 0.16
13-2 446,5 0.64 0.25 20-11 152.0 0.45 0.25
3-15 446,5 0.64 0.25 18-6 75.18 0.18 0.16
4-16 446,5 0.64 0.25 6-19 164.7 0.46 0.25
5-17 446,5 0.64 0,25 19-6 164.7 0.46 0.25
7-21 446,5 0.64 0.25 10-11 112.7 0.39 0.25
Ù-Z'ó 446,5 0.64 0.25 11-10 112.7 0.39 0.25
9-24 446,5 0.64 0.25 10-24 651.0 0.71 0.25
16-4 446,5 0.64 0.25 24-10 651.0 0.71 0.25
15-3 446,5 0.64 0.25 11-12 89.08 0.34 0.25
17-5 446,5 0.64 0.25 12-11 89.08 0.34 0.25
21-7 446,5 0.64 0.25 11-20 152.0 0.45 0.25

Q 446,5 0.64 0.25 12-13 719.1 0.73 0.25
24-9 446.5 0.64 0.25 13-12 719.1 0.73 0.25
13-14 719.1 0.73 0.25 14-13 719.1 0.73 0.25
14-19 84.98 0.32 0.25 19-14 84.98 0.32 0.25
14-15 728.9 0.73 0.25 15-14 728.9 0.73 0.25
15-16 160.0 0.46 0.25 16-15 160.0 0.46 0.25
17-13 632.2 0.71 0.25 18-17 bJi./ 0.71 0.25
18-19 230.6 0.52 0.25 19-18 230.6 0.52 0.25
19-20 1371. 0.87 0.25 20-19 1371. 0.87 0.25
20-21 708.3 0.73 0.25 21-20 708.3 0.73 0.25
21-22 132.7 0.42 0.25 22-21 132.7 0.42 0.25
22-24 74.81 0.11 0.10 24-22 74.81 0.11 0.10
22-23 81.12 0.31 0.25 81.12 0.31 0.25
23-24 R7 7 P 0.33 0.25 24-23 on *70W i . ! 0.33 0.25
17-16 i l l . ! 0.39 0.25 16-17 111.1 0.39 0.25
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which implies that more general cases could be studied, her instance, with 

the formulation given here, test 3 above could be solved.

The difference also between this approach and that of Tan et al (1973) 

is that the formulation here is link-space, whereas in Tan's it is path- 

space. Naturally, one expects to solve larger networks in our formulation, 

though the problem of the number of equilibrium constraints might be a 

difficulty.

Also, this formulation can deal with a relatively larger number of link 

width variables than the method of Abdulaal et el (1979). This is obvious in 

test 3, above.



A DYNAMIC TRAFFIC AS g n men t  mo d el

51 INTRODUCTION

The dynamic traffic assignment problem to determine time-varying link 

flows in a congested road network where drivers are assumed to be 

cooperative in minimising total transportation costs is an essential tool in 

modelling peak periods for three reasons. It 1) indicates the best network 

performance when drivers are guided by a central controller., given that 

guidance is accepted, 2) it could be used as a planning tool in a traffic 

management study if 1) was achievable, and 3) it is  useful for road pricing.

Yet, as mentioned in Chapter 1, most of the work done up to date on 

this problem has been confined to a single commodity network. Amongst the 

authors who addressed the dynamic traffic assignment problem and whom we 

mentioned in Chapter i  are D'Ans and Gazis (1976) in the earliest- 

substantial efforts on this problem, Merchant and Nemhauser (1978), Carey 

(1987) and Zawack and Thompson (1987).

In contrast, in this Chapter we describe a model that can be applied to 

multi-commodity networks with a general topology. The idea is  simple and 

based on the local marginal cost for each link.

Our assumptions are as follows. We shall be considering that travelling 

costs amount to travelling time that can be regarded as composed of 

running time (a constant reflecting the free-flow speed) and queuing delays. 

We will also assume for simplicity that the model has a vertical queuing 

property, so that blocking back is left out of consideration. Further, our



approach of queue modelling is deterministic. It assumes that queues form 

on a link due to excess input flow into the link as compared to its service 

rate, which is determined by the capacity of a bottleneck located along the 

link or, perhaps, as it is common, situated at the exit of the link. Figure 

5.1, which shows the relation between the arrival rate and the service rate, 

is  an example of our queuing model. In this figure, the input flow rate, v, 

exceeds the service rate w of the bottleneck. The curve V(t) and Wit) 

represent the cummulative arrivals and cumrnulative departures, 

respectively, as a function of time, and q and d are the queue length and 

queuing delay at time t, repectively. V(t) is related to the arrival rate v(t) 

by

t

o

while Wit) is related to wit) by

t

o

The area confined between the two curves, V and W in Figure 5.1, 

represents the total queuing delays of all drivers entering the link.

The rest of the chapter is  organised as follows. In the next section, we 

mention the difficulties with the methods adopted by the above authors. In 

fact it is these difficulties which motivated our work and they distinguish 

the model proposed here, as compared to others. Then, in Section 5.3, 

firstly, the marginal cost for each link, for the queuing model of Figure 

5.1, xs defined, and, subsequently, the algorithm is sketched and followed by 

an explanation regarding its steps, in addition to further relevant points. 

Section 5.4 provides numerical results on two network tests, obtained by 

implementing the algorithm presented in Section 5.3. Section 5.5 indicates
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some limitations of the method presented here, which call for further 

research work.

5.2 DIFFICULTIES WITH CURRENT METHODS

All the authors whom we mentioned above dealt mainly with a single 

commodity network, due to the difficulty of modelling "first-in, first-out" 

queue discipline in a mutli-commodity case.

As mentioned in Chapter 2, D'Ans and Gazis (1976), in an attempt to 

resolve this difficulty and extend their model to a multi-commodity network, 

suggested constraining the flow of each commodity exiting from each link 

to be proportional to the mix of the commodities in the queue itself. 

Seemingly independently, these constraints re-appeared again in Carey 

(1987). The problem with these constraints is  that they are nonlinear, non- 

convex, and non-network constraints. Such properties make their use 

impractical and compuationally cumbersome.

In addition to the problem of "first-in, first-out", another difficulty 

confronting these authors is the problem of non-zero flow control 

variables in a multi-commodity network. Carey (1987) highlighted this 

further problem, in modifying the single commodity model given in Merchant 

and Nemhauser (1978), to have a convex set of flow constarints.

The problem of non-zero flow control variables in a multi-commodity 

network arise because it may be beneficial sometimes to hold traffic from 

a certain commodity back, while traffic from a different commodity could 

proceed. To illustrate, we consider the following example.
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An example of non-zero flow control variables in a multi-commodity network

Consider the network shown in Figure 5.2. In this network; three 

commodities can be observed, commodity 1 corresponding to the origin- 

destination pair Oi-Di, commodity 2 to 02-D2, and commodity 3 to 03-D3. For 

simplicity, travelling time on links is  taken as zero. Further, the network is 

assumed to have two bottlenecks, the first is located at the exit of link i-  

2, denoted as Bl, and the second at the exit of link 3-4, denoted as B2. Each 

bottleneck has a capacity of 10 veh/sec. The demand from 01 and 02 starts 

at time t = 0 seconds, at a rate of 10 veh/sec, for a period of SO seconds, 

while the demand from 03 starts later at t = SO seconds, at the same rate 

as 01 and 02, and for SO seconds as well.

Now, we consider two cases. In the first case, if traffic of commodity 2 

was held back at node 1, by means perhaps of a traffic controller which 

acts as a. flow control variable in this case, then traffic from commodity 1 

could proceed through the first and second bottleneck, without having to 

queue at either bottleneck. The total costs in this case are just queuing 

delays of value 36000 veh-sec, due to holding the traffic from commodity 2 

at node 1. Note that traffic from commodity 3 in this case passes through 

the second bottleneck without having to queue, as all the traffic from 

commodity 1 would have arrived at its destination by the time traffic from 

commodity 3 starts entering the bottleneck. On the other hand, in the 

second case, if traffic from commodity 2 was allowed to merge with traffic 

from commodity 1, then queuing delays develop, and precisely half the 

demand from commodity 1 emerging from the first bottleneck would merge in 

this case with flow from commodity 3, thus increasing the queuing costs 

from 36000 to 49500 veh-sec.

Indeed, non-zero flow control variables may arise also in a single
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commodity network, as it is shown in Carey (1987), where, as well as in 

Merchant and Nemhauser (1978), a flow-dependent exit function to 

"explicitly treat congestion", together with a general objective function, 

are employed. As a special case, the general objective function employed in 

Carey (1987) and Merchant and Nemhauser (1978) includes the objective 

function employed in this paper, in D'Ans and Gazis (1976) and in Zawack 

and Thompson (1987). In their study, Merchant and Nemhauser give 

assumptions on the objective function that guarantee the optimality of the 

solution of their model, which the objective function of this paper, of D'Ans 

and Gazis (1976), and Zawack and Thompson (1987), all satisfy. These 

assumptions, amongst others on the exit function, arose again in the work 

of Carey (1987), where it is shown that the optimality conditions set out by 

Merchant and Nemhauser for their model, correspond to zero flow control 

variables of the Carey (1987) model. Because it is felt that the special 

case indicated in Merchant and Nemhauser (1978) and Carey (1987) that 

happens to coincide with the queuing model of Figure 5.1 is  a reasonable 

approach to modelling traffic congestion, then it could be said that flow 

control variables should pose no difficulty for a single commodity network 

in this case.

5.3 DYNAMIC TRAFFIC ASSIGNMENT ALGORITHM

The model described is a combination of simulation and a vehicle 

routing algorithm. It requires a route storage for each vehicle or each 

packet of vehicles, if packets were used to reduce computational time and 

computer core, by considering that delays experienced by a certain packet 

as common to all the vehicles within the packet. A similar concept of packet 

flow is followed in CONTRAM (Leonard et si (1987)), and the model described 

here can be easily adapted in CONTRAM.



With the route of each packet specified, the model simulates the "first- 

in, first-out'' queue discipline by mixing the packets, instant-by-instant. The 

route calculation of each packet is performed with reference to the local 

marginal costs of each link, but the time of entry to and from each link, 

represent the times when the packets actually enter and leave each link.

The link marginal travel cost

The marginal costs to a driver travelling on a link can be viewed as: i) 

a flow independent or uncongested running cost incurred before arriving 

at the bottleneck (a constant reflecting the free-flow speed), and 2) a user- 

queuing cost term, quantified as d=q/w, and 3) a term corresponding to

T

which could be defined as the additional delays experienced by drivers 

arriving between time t and T due to the packet arriving at time t and 

which should consider this as social costs. T is  the time at which the 

cummulative departure and arrival curves intersect.

To explain how this expression is  arrived at, Figure 5.3 shows at time 

t the arrival of a driver or a unit flow, or, a packet flow, whose presence 

induce additional costs to the overall system by an amount that is 

equivalent to the solid area in Figure 51. Now, if the flow arriving at time 

t is  a unit flow, then the solid area will be equal to the horizontal 

distance m. Or, since the algorithm deals with assignment of packets, which 

are kept of constant size throughout the assignment process, and each 

packet is assigned to only a single route connecting the corresponding 

origin-destination pair, then, in calculating the minimum marginal cost path, 

the size of the packet becomes superfluous, as the thickness of the solid
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line in Figure 5.3, corresponding to the size of the packet, is common to all 

links when the minimum path is calculated. Accordingly, only the value of m 

is needed. Hence any packet .joining at time t the back of a queue, should 

consider the value of m, computed as the difference between I  and t, 

rather than d, in addition to the uncongested travel time. In fact, part of m 

is the user cost, d. Thus, ,U obtains.

The algorithm

Essential to the algorithm before the assignment procedure is started 

is that the demand, assumed initially fixed and given for each origin- 

destination pair, should be substituted by an appropriate number of flow 

packets that are ready to leave each origin point in the network at times 

corresponding to the middle of the time interval matching the size and 

position of each packet in the original demand profile. The packet size is 

subject to descretion or the resolution of the packet size required. 

Obviously, more accuracy could be gained if the packet size is fairly small, 

but this may require more computational time in central processing and 

more storage core to store the packets' routes.

Notations: The following notations are needed.

p = the number of packets

k = packet number

i = iteration counter

Pl= route of packet k in iteration i

G‘ = total costs in iteration i

c?,= total costs due to routing packet k in iteration i 

Cq= total initial costs before assignment of packets.



Steps: The steps of the algorithm are as follows.

1) i=0

2) Assign all packets to their minimum marginal journey cost routes while 

taking into account "first-in, first-out" discipline by mixing the packet 

inflows, instant-by-instant. Let the route of each packet k be ,oi

3) Calculate total link costs, C*, by adding travelling costs of ail packets 

together with queuing costs abtained from profiles similar to Figure i, 

for each link. Let cj-pCt

4) Let k=i. For each packet:

a) Subtract the flow of packet k from each link on the route fil and in 

the corresponding time slice so that "first-in, first-out" discipline 

is attained.

b) Determine new minimum marginal .journey cost route &‘kTi, on the 

basis of the values of m obtained from profiles similar to Figure i  

for each link.

c) Assign packet k to its new route while accounting for "first-in, 

first-out'''.

d) Calculate total costs ct, as in 2). If ct £ c ^ ,  then the new path of 

packet k is favourable and the old route fit is  replaced by 

Otherwise, Cf.-=c£_1 and Aj, is left unchanged.

e) If k=p, then go to step 5). Otherwise, increment k by i  and return to

4-a).

5) If Op < C* then increment i by i, let C‘ = cj> and of, = cL and return to 

step 3). Otherwise, the algorithm is terminated.

The algorithm is  basically, in outer structure, similar to CONThiAM, but



here drivers are routed with refernce to their local marginal costs rather 

than perceived costs. In other words, each packet of flow is penalised by 

an additional cost that is equivalent to the costs incurred by other- 

drivers, arriving later and using the same link, due to the presence of the 

packet that is being routed.

Because queues are formed when input flows exceed some capacity limit 

for a period of time, the model seeks essentially to keep queuing delays 

and the period during which queues occur to a minimum, as long as 

travelling costs on longer routes is still beneficial, as compared to the 

total local marginal costs of all links, or the sum of m's, along any other- 

route.

The convergence of the algorithm is trivial: it stops when no further- 

cost reduction is possible. The convergence here can be guaranteed, as 

there is an obvious objective function to minimise, unlike the related 

equilibrium assignment problem (see Smith and Ghali (1990) for which there 

is  no apparent objective function.

As compared to the methods mentioned in the introduction, holding back 

of traffic does not occur in the method described here, in addition to 

overcoming the problems associated with the first-in, first-out discipline. 

The reason no-holding back of traffic arise in our model, can be attributed 

to the way the packets are routed. While each packet is routed down, so as 

to determine its minimum marginal cost path, the packet exit time from a 

queue is considered as the time it joins the queue plus the time needed to 

dissipate the queue length in front of the packet, whereby the packet is 

then input into the next relevant downstream link, at that exit time. To say 

it differently, no packet is allowed to take more, or less, time than the time 

required to exit from a queue; this is equivalent to d in Figure 51. For
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instance, since holding back of traffic in this model is not possible, 

applying steps 1-5 above to the example of Sect, 5.2, should result in total 

costs of 49500 veh-sec.

5.4 TEST NETWORKS

To provide some numerical results, two networks were used. For each 

network, we compare the network performance due to the method suggested 

here against that of the user equilibrium pattern of flow due to CONTRAM, 

for different levels of congestion, so as to study the difference between 

each as congestion becomes more severe. By factoring the demand of each 

of the two networks by a value p, where p was initially taken as 0.1 , and 

then incremented by 0.1 , up to 1 .0, ten different levels of demand were 

considered, and a smooth curve was plotted between the corresponding 

network performance points.

Curve SO in the Graphs below denotes the network performance due the 

method given in this paper, while UE is due to the user equilibrium of 

CONTRAM.

Network 1

The first  network is shown in Figure 3.4 of Chapter 3. The link 

constant travelling time is  given in Table 3.2. The demand was taken as 400 

veh/'hr for a period of 1 hour. Apart from links 13-14, 19-14, 15-14, 1-11, 

12-1 1 , 10-11 and 20-1 1 , which each had a capacity of 1000 veh/hr, the 

capacity of every other link was taken as 2000 veh/hr.

The results given in Graph 5.1 show clearly that there are benefits of 

routing vehicles according to our method rather than the user equilibrium
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for the levels of congestion specified.

Network 2

This network is  shown in Figure 3.5 of Chapter 3. The capacity of

each link is given in Table 51, and the link constant travel time of each 

link in Table 3.5. The demand for each origin-destination pair is as in Table 

3.4.

Again, Graph 5.2 shows that the performance of the network due to our 

method is better than the performance due the user equilibrium of 

CONTRAM.

5.5 FURTHER RESEARCH

The ability of the method to deal with many origin-destination and many 

bottleneck networks in a dynamic context has been demonstrated in the 

network tests provided. The method, on the other hand, has the following 

limitations: 1

1- The model considers only the local marginal costs of each bottleneck 

while routing eack packet. In the steady state, routing vehicles along 

the routes which have least link marginal costs, determines a least or 

the least costly pattern of flow if the cost function is convex (see 

Dafermos (1969).) Regrettably, this feature does not carry over to the 

dynamic state. To show that, we consider the example of Section 2 again. 

But in this instance, to allow for route choice we connect 01 to Di by 

link 02-D2, as shown in Figure 5.4. Travelling time on link 02-D2 is 

assumed to be equal to A seconds. Now, the origin-destination pair 02-D2 

has two paths, 02-D2 and 01-1-2-D2.



Link Link Capacity

(Veh/Hr)

Link Link Capacity

(Veh/Hr)

1 - 10 1181 2 - 11 Q?fl
3 - 14 789 4 - 16 1444
5 - 17 1087 6 - 18 905
7 - 19 1087 p N/1? 740
9 - 10 920 10 - 1 3750
10 - 9 10000 10 - 11 187
10 - 22 125 11 - 2 10000
11 - 10 920 11 - 12 1627
12 - 11 1037 12 - 13 229
±z - zz nnni' O ; 13 - 12 1445
13 - 14 >¡775 13 - 21 1159
14 - 13 1627 14 - 15 1902
14 - 23 1168 15 - 14 2715
15 - 16 1627 15 - 17 1455
16 - 4 10000 16 - 15 1627
16 - 17 229 14 - 3 10000
17 - 5 10000 17 - 15 1169
17 - 16 172 17 - 18 229
17 - 23 1329 Id - fa 10000
18 - 17 229 18 - 19 125
19 - 7 10000 19 - 18 229
19 - 20 500 19 - 23 1168
20 - 21 252 20 - 23 ZZ?
21 - 13 1329 21 - 20 2550
21 - 22 125 ZZ - d 10000
22 - 10 187 22 - 12 1444
¿Z - Zi 23 - 14 bdd
23 - 17 1145 23 - 19 1181
23 - 20 1975 20 - 19 125

Fable 51: Assumed capacity of links of Network 2.
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For this example., the optimality of the solution obtained by steps i-5., 

will depend on the value of A. If A > 82.5 or A < 60, steps i-5 produce the 

optimal time-varying pattern of flow and this is of no interest here. 

But, if 60 < A < 82.5, steps i-5 produce a sub-optimal pattern of flow. To 

see that, allow the flow of commodity 2 to follow path 02-1-2-D2. In this 

case the total costs are, as before, 49500 veh-sec. But, if the flow of 

commodity 2 follows path 02-D2, the costs become 600A, which is  less 

than 49500, as we assumed A < 82.5. Though the latter is favourable, the 

total local costs due to travellers of commodity 2 following path 02-02 

instead of path 02-1 -2-02, have increased by SOOA, which is  greater than 

36000 veh-sec, as, again, we assumed A > 60. In other words, the failure 

of our algorithm to determine the optimal solution is due to allowing 

travellers of commodity 2 to follow path 02-1-2-03, where their marginal 

costs is least along this path, rather than path 02-02, where they could 

reduce the global costs. When travellers of commodity 2 follow path 02- 

i - 2-02, they delay travellers of commodity i  clearing bottleneck B2 

before any arrival of commodity 3, thus forming a queue at this 

bottleneck and increasing the total system costs.

In view of this example, the model hence does not in general determine a 

system optimum pattern of flow, though it is highly likely to determine 

an approximately system optimal pattern of flow that is least costly 

than a user equilibrium pattern of flow, as the network tests of Sect.

5.4 show.

Nonetheless, there is a single-bottleneck case where our algorithm can 

be guranteed to determine the system optimal pattern of flow, This 

single-bottleneck case is given in Smith and Ghali (19905 and Smith 

(1991), and corresponds to a network where the routes connecting each
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origin-destination pair in the network passes through no more than a 

single active bottleneck.

In addition to the single-bottleneck case, where the optimality of the 

solution can be guranteed, we conjecture that the algorithm is also 

optimal for a single commodity network., as in D'Ans and Gazis ii97S) and 

Carey (1987), amongst others. But, we have not been able to prove this.

Another limitation of the method suggested in this paper is the need to 

store the routes of all the packets. This may not indeed be possible for 

reasonably large networks. This limitation is difficulty to get by, for 

the routes of the packets are firstly  needed to maintain the "first-in, 

first-out" discipline. Secondly, if we consider two consecutive 

iterations of our alogorithm and defined the first  of these as the 

previous iteration and the second as the current iteration, then the 

route of each packet is needed to take into account the size of the 

packet that was assigned in the previous iteration, while routing the 

packet in the current iteration. Perhaps this latter difficulty may be 

resolved if we allow splitting of the packets, but, maintaining FIFO 

would become a problem.



S. DYNAMICALLY-CONTROLLED CONGESTED
NETWORKS

61 INTRODUCTION

In Chapter 3, results in the steady state for controlled and 

incremently congested road networks were presented within the context of 

the iterative assignment/control procedure. In this procedure each traffic 

light is considered in isolation and a solution is thought to have been 

obtained when there is no more change in the signal settings clue to 

updated flows that are produced by a traffic assignment step. The 

iterative assignment/control procedure in Chapter 3 is a modification of 

that in Allsop et al (1977), to allow for a gently rising demand in the 

steady state.

In that chapter we compared three different traffic control policies, 

namely: the standard "delay minimisation" policy of Allsop (1971), Webster's 

Policy (1966), and P0 policy, devised by Smith (1979). The cost function was 

Webster's. The resulting signal settings as well as the traffic flows were 

there assumed to be time-independent, and our first  aim was particularly to 

show that when the demand is  steadily and gently increasing for all origin- 

destination pairs of the network, some signal control policies may not 

accommodate the total demand, in which case total costs tend to infinity if 

a delay formula, such as Webster's, was used to set the signals. Or, if all 

the demand was accommodated, our second, but equally important, aim was 

also to show any differences in network performance arising from using 

one policy against another.



In this chapter, because it is rather unrealistic to model delays by a 

function such as Webster's, where costs rise  to infinity if the oapcity of 

some link is exceeded and the solution of the equilibrium assignment- 

problem becomes infeasible, a different approach is adopted. Namely, we 

assume that queues as well as link flows are a function of time and that 

the traffic light settings are time-dependent. Here, queues are modelled 

explicitly, and, more importantly, costs are functions of both queue length 

and travelling on links. The deterministic queuing model of Figure 51 was 

used.

To set the traffic lights in a time-dependent fashion, this required 

first  formulating a corresponding policy to each of "delay minimisation” 

and F'n policy in the dynamic state, while Webster's was considered as in 

CONTRAM. These corresponding policies then become the three traffic 

control policies of this paper.

For the queuing model of Figure 5.1, infeasibility due to costs rising 

to infinity do not occur. Accordingly, the first  aim of Chapter 3 is no 

longer the issue, but we retain the other, and compare network performance 

under these corresponding control policies by similarly alternating 

between assignment and control as in Chapter 3. The assignment here is a 

dynamic assignment, and the demand for each origin-destination pair is 

supposed to be fixed, given and generally time-varying.

The dynamic equilibrium assignment step in this frame of work 

corresponds to an equilibrium at which the costs experienced by drivers 

on arriving at their destination and travelling at reasonably close 

intervals of time, are more or less equal. In fact, this statement, 

concerning costs experienced by drivers, is an approximation of War-drop's 

first principle, as here the term "drivers travelling at reasonably close



interval of time", rather than at the same time, as in Wardrop (1952), is 

assumed instead. The reason for our approximation of War-drop's first 

principle is because the dynamic equilibrium assignment model applied here 

is  that of CQNTRAM (Leonard et si (1978)); this regards the demand as 

formed of packets that leave the origin points at times corresponding to 

the midlle of the packet departure time interval in the original demand 

profile, and all the vehicles within a packet are assigned to only a single 

path. Hence packet splitting is not allowed, and costs cannot be precisely 

equilibrated.

In addition to the purpose of comparing the three control policies in a 

dynamic context, a. further aim of this chapter is also to provide some 

results obtained by incorporating an approximate algorithm for the dynamic 

system optimum traffic assignment problem, which we describe in Chapter 5 

(See also Ghali and Smith (1991)), instead of the dynamic user equilibrium 

assignment. As already mentioned in Chapter 5, the algorithm has a 

property that it is optimal for the "single bottleneck per route” case 

mentioned in Smith and Ghali (1990) and Smith (1991), and could be used for 

route guidance and for levying congestion tolls by charging a vehicle 

according to the costs it inflicts on others. An immediate outcome of these 

results is that alternating between a. locally delay minimising policy and 

the approximate system optimal routeing strategy, does not generally solve 

the dynamic optimal control problem, as it does in the steady state.

With a view to comparing results obtained in the steady state with 

others in the dynamic state, as a further aim of this paper, we ran our 

static-assignment/control and dynamio-assignment/control programs for 

each of the networks which we describe later, and included the results of 

both the static and dynamic state.



The chapter is in the following format. The control policies 

incorporated in the dynamic traffic assignment models used, are given in 

Section 6.2. Then, in Section 6.3, the networks modelled are described and 

their results included. Section 6.4 gives some conclusions regarding the 

three control policies. In Section 6.5, we describe a method that monitors 

costs as it alternates between the approximate system optimum, given in 

Chapter 5, and locally delay minimising. This method is  believed to be 

optimal for certain cases of network topology.

6.2 THREE SIGNAL CONTROL POLICIES

The setting of traffic lights for each of the three policies follows 

the line of CONTRAM. CONTRAM is a time-varying equilibrium assignment 

program that descretises the planning horizon (or the modelling period) 

into a number of time slices; during each the flow rate arriving into each 

link is assumed to be fixed. Though the signal settings are allowed to vary 

with time here, they are allowed to do so only from one time slice to 

another. By adding the flow rate arriving at a signal approach within a 

certain time slice to the initial queue, if any, from the previous time slice, 

for each time slice different settings can be calculated. Obviously, 

shortening of the time slice, results in higher accuracy. It should be 

incidently borne in mind that the settings may not vary within the light 

cycle if the time slice was shorter than the cycle length.

Notations

1 he following notations are needed.

denotes the initial queue for a certain time-slice added to 

the flow arriving within the time slice of stream j that



the proportion of cycle that is  effectively green for stage

belongs to stage i.

w<v

n

maxtxj

the saturation flow of stream j belonging to stage i.

the number of stages.

means stream j is  in stage i.

the maximum value of Xj in stage i.

Next, we give the traffic control policies we have implemented in our 

computer models.

Equisaturation policy

This policy in the static state is known as Webster's policy, but here 

we refrain from using this phrase, as its extension to the dynamic state 

was not suggested by Webster.

As formulated in CQNTRAM, the equisaturation policy is  such that the 

proportion of cycle that is effectively green, for stage i, is:

maxCq; ./w.-,-]
X; = = p . . v -  (i = 1, ..., n)

¿ j  maxLq .̂/w, ;]

With the X/s determined by the above equation, the green time of each 

stage becomes X4c, where c is the light cycle. If any of the green stages 

does not satisfy minimum green contraints, then the settings are adjusted 

approriately.



the proportion of cycle that is effectively green for stage

belongs to stage i.

1.

n

the saturation flow of stream j belonging to stage i. 

the number of stages.

maxExd

means stream j is in stage i. 

the maximum value of x, in stage i.

Next, we give the traffic control policies we have implemented in our 

computer models.

Equisaturation policy

This policy in the static state is known as Webster's policy, but here 

we refrain from using this phrase., as its extension to the dynamic state 

was not suggested by Webster.

As formulated in CONTRAM, the equisaturation policy is such that the 

proportion of cycle that is effectively green, for stage i, is:

With the X.-'s determined by the above equation, the green time of each 

stage becomes X.-c, where c is the light cycle. If any of the green stages 

does not satisfy minimum green contraints, then the settings are adjusted 

approriately.

max[q^/w.-v,-]
i. ..... n)



A queuing version of policy P0

The version of P0 policy which has been used to allocate the green 

light for each stage is  of the form

for a .junction with just one stream in each stage.

For a junction where there is more than one stream in each stage, this 

version can be shown to be the solution of the program:

This problem is convex and can be solved using any feasible direction 

optimisation method for linearly constrained programs. Obviously, any 

solution with zero effective green time of a stage is  not a solution to this 

problem, as the objective function would become infeasible, unless all q. /s 

are zero in the zero-valued effective green time of the stage. Also, since 

the maximum possible value of the objective function is 0, corresponding to 

a stage having X,=i with no lost time assumed, then the problem is bounded

2 , i —L/c

g

from above. Hence the problem is well defined.





satisfies the conditions, q;j>0 and k.-=i.

3- Let X; = max[min[(q;.;.c)/(w<-.;.(c-L)), f ]].

4- If X; > 0, then let sum ^-sum ^f- X,.

5- Let fnfw=fold-  X.-, and k; = 0. If fBffc,= 0, then go to to step 6. Else, return 

to step 2.

fc- For 2 = 1, n, let gj = X,.(c-L)/sum.

6.3 TEST NETWORKS AND RESULTS

Two networks were used. For each network and policy, we studied 

network performance as congestion level is increased. Ten congestion 

levels were considered. Only network performance under each of the three 

signal policies are of concern in this study -  as in Chapter 3,

computational time and number of iterations needed to arrive at the 

solution were not regarded as significant as the performance, though these 

might differ largely within and between the three control policies.

For the steady state, as in Chapter 3 the link cost function is

supposed to be a combination of a constant travelling time and a delay 

term, due to Webster, if the link in question has at its down stream and a 

traffic light.

For the dynamic state, constant travelling time, in addition to queuing 

delays due to input flow exceeding the service rate of the link, as in 

Figure 51, are assumed for both networks.

In the results given below, UE denotes results are obtained according

to the user equilibrium routing strategy, and SO according to the

approximate optimal routing strategy Chapter 5.
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\ he description of the networks and their results are as follows.

Network i

This is the network shown in Figure 3.3 of Chapter 3, but here the 

traffic lights are all A's instead of A's and B's in Figure 3.3. Again, 

junctions denoted as F were assumed to be flyovers or have large 

capacities.

Two cases were considered. Case i  corresponds to a network where 

each signal-controlled link has a saturation flow of 1 veh/sec. This case is 

the same as Case 1 in Chapter 3 for the same network. Case 2 corresponds 

to a network where the saturation flow on each link at each traffic light 

along the central routes is six times greater than that of the saturation 

flow on the outer routes. For Case 2., the saturation flow of each link on 

outer route was taken as i  veh/sec, and on the central routes was hence S 

veh/sec. The time-varying demand for the first case is  given in Table 6.1, 

and in Table 6.2 for the second case. The steady state demand for the first- 

case was 4 veh/sec from each origin, and 9 veh/sec for the second. All 

other properties of the network are the same as in Network i  of Chapter 3.

Results of Network 1

The results are given in Graphs 61-6.3. Graph 6.1 and 6.3 are for the 

dynamic state results of Case 1 and 2, respectively. Graph 6.2 represents 

results of Case 2 for the dynamic state. Results of Case 2, dynamic state, 

are the same as in Graph 3.1 of Chapter 3, but included here for ease of 

reference.

Case 1, UE, steady state: This is Graph 3.1.



Case 1, UE, dynamic state: In Graph 5.1, the equisaturation policy and 

the queuing version of P0 (only P0 is  shown on Graph 5.2), had similar 

performance, while "delay minimisation" surprisingly did not behave well. On 

Looking at the outputs of the computer runs concerning the allocation of 

green lights by "delay minimisation" it appeared that the central routes 

were given most of the green light, and the outer routes had only minimum 

green light. Webster's and the queuing version of P0, on the other hand, 

kept the outer routes more open, which meant more throughput; hence, less 

costs.

Case 1, 50, dynamic state: Because "delay minimisation" did not behave 

well for Case 1, it was then incorporated into the approximate system 

optimum algorithm described in Chapter 5, for two levels of demand, 0.5 and 

0.6 proportions of the total demand. Though costs went down at these two 

levels of demand, they did not however result in lesser costs than the 

costs due to applying the equisaturation policy together with a user 

equilibrium pattern of flow on the one hand, or due to P0 together with a 

user equilibrium pattern of flow, on the other hand. For 0.5 and 0.6 

proportions of the demand given in Table 6.1, the costs with the 

approximate system optimum and "delay minimisation” were for each level, 

respectively, 217716 and 494740 veh-min, whereas the user equilibrium with 

the equisatuaration policy had 137044 veh-min and 160537 veh-min, for the 

same levels of demand.

Case 2, UE. steady state: As shown in Graph 6.2, the policies had 

similar performance. This is because F'0 in this instance responds to 

traffic flows in the same way as Webster's policy and the delay 

minimisation policy.
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U6.) dynamic state: Graph 6.4 shows "delay minimisation" as the 

favourable policy to adopt for this network, for the levels of demand 0.6- 

i.0. The Equisaturation policy may also be used for all levels of demand 

that are not greater than 0.6 instead of "delay minimisation". But, after the 

0.6 level of demand, the Equisaturation policy tends to become poor in 

comparison to either P0 or the "delay minimisation" policy.

HU, dynamic state: The results are given in Graph 6.5. The only 

significant remark that could be said about these results is that the delay 

minimisation policy when used in conjunction with the approximately system 

optimum, given in Chapter 5, as a routing strategy, it produced the best 

network performance, as compared to P0 or the Equisaturation policy. 

Further, this is also true when compared to either the delay minimisation, 

F'o or the Equisaturation policy, but in conjunction with the user- 

equilibrium routing strategy.

Comments: Again, as far as the performance of a policy in the steady 

state, compared to its corresponding in the dynamic state, the notably nice 

behaviour of P0 in the steady did not have the same impact in the dynamic 

state.

6.4 CUNCLUDING REMAk KS CGNCEKNING i HE THREE CONTROL POLICIES

Confining the argument to the dynamic state only, indeed, it is 

difficult to draw any conclusions as to when to favour the use of a signal 

control policy against another for a general network. The variability 

between the policies in the above networks is obvious -  in Network i. Case 

i, L'E, dynamic state, P0 behaved well in contrast with "delay minimisation", 

but not in Network 2, LE, dynamic state. On the other hand, in Network i
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delay minimisation was better than the Equisaturation policy in Case i, UE, 

dynamic stais; but not in Case 2., UE, dynamic state

If this variabilty was to suggest a general approach, it would suggest 

that one would have to study each network, which is being modelled, 

separately to determine the policy to adopt and implement the one which 

results in a better system performance, what is more is that the policy 

employed has to be revised routinely, as a different policy might become 

more favourable as the level of demand increases. This is clear in cur 

results of Network 2, where delay minimisation and the Equisaturation 

policy in the dynamic state had the same network performance up to O.S 

level of demand, but not after this level.

Though, P0 seems to be better for bypasses, as it penalises the 

excessive use of a town center and, consequently, diverts drivers to 

higher capacity roads.

Another suggestion may be to consider the option of solving for the 

dynamic optimal control problem under the assumption of a user equilibrium 

routing strategy. This, in principle, should result in the best system 

performance, unless there is more than one solution and the solution 

determined was not any better than a solution obtained by alternating 

between assignment and control, as in this paper. Even if there is only one 

solution, it may be hard anyway to determine the optimal settings for two 

difficulties, i) because, as mentioned in Chapter 2, no algorithm yet exists 

for the dynamic optimal control problem under that assumption, and 2) 

origin-destination demand profiles are neither easily obtained nor are they 

always available. Perhaps the second difficulty may now be defused with 

the introduction of automatic electronic monitoring devices, such as smart 

cards, that could be used to survey the origin-destination pone particular



of each vehicle. However, the first  difficulty remains unresolved. In fact, it 

is this difficulty which has triggered earlier studies on control and 

assignment in the steady state, and this first study in a dynamic context.

6.5 LOCAL DELAY MINIMISATION WHILE ACCOUNTING FOR FIFO

Algorithms which optimise green times at each traffic light in 

isolation may not only by and large yield non-optimal signal settings. Put 

may also destroy the first-in, first-out queuing discipline in a multi­

commodity network, which a. dynamic assignment process, such as the method 

described in Chapter 5 and CONTRAM, tends to satisfy.

In what follows we describe a. method which accounts for first-in, 

first-out and monitors the total costs, while varying the signal settings of 

each traffic light independently.

The method described here uses a hill climbing optimisation method 

with fixed routes obtained from either an equilibrium assignment step or 

from the approximate system optimal given in Chapter 5.

Dn each variation of the settings of some traffic light, an iterative 

procedure to satisfy FIFO is employed to reassign the flow along the fixed 

routes found optimal in the assignment step.

Having satisfied FIFO, the total costs are evaluated and, if decreasing, 

the signal settings of the traffic light whose settings are varied are 

implemented. Obviously, if the variation resulted in an increase in costs, a 

move in the opposite direction is attempted.

Formally, the method may be outlined as in the following steps:



1- Solve an assignment program and fix the time-varying routes for each 

origin-destination pair.

2- Using a hill climbing optimisation method, for each traffic light, vary 

its settings and implement an iterative procedure to reassign the flow 

along the fixed routes until the arrival time of each vehicle or packet 

of flow, has settled down. If the variation resulted in less costs, then 

implement. Otherwise, move the settings in the opposite direction.

3- If the total costs obtained in step i  and 2 do not vary greatly, then 

terminate. Otherwise, return to step i.

Although this procedure monitors costs and satisfies FIFO, it does not 

for a general network determine an optimal solution, unless perhaps each 

route joining each origin-destination pair passes through no more than a 

single bottleneck (a traffic light in this setting), as in Smith and Ghali 

(1990) and Smith (1991). The inability of the method to produce an optimal 

solution could be readily seen if the network of Figure 6.1, which is that 

of D'Ans and Gazis (1976), is considered in the context of the above method. 

For this network, there is no route choice, and the throughput when full 

green is given to link (1,7) and (7,8) at junction 7 and 8 respectively, is 

assumed to be greater than the total throughput when link (2,7) and (3,8) 

receive full green instead. Assuming initially that the signalised junction 7 

and 8 were set so that the throughput across in the horizontal direction 

was less than that in the vertical direction, by allocating more green to 

the arms in the vertical direction, then varying appropriately the settings 

of the signalised junction 7 does not increase the throughput in the 

horizontal direction since this is  still influenced by the settings at 

junction 8, unless both lights are varied simultaneously.

In view of the fact that locally delay minimising at each signal



Figure 6.1



separately while accounting for first-in, first-out does not on the whole 

give the optimum solution, even when the routes are supposed fixed, various 

heuristic schemes might be suggested. One such scheme may be to alter the 

settings of a traffic light and allow the others or the downstream 

junctions to respond to the new output of the varied traffic light, 

upstream. Another scheme would rely on the judgment of the traffic 

engineer to define the traffic signals which could be made responsive and 

those whose settings could be hill climbed. Beth suggestions might or might 

not reduce congestion, but the optimal settings are likely to remain 

undetected. Therefore, a more encompassing approach is needed.

In spite of that the method suggested in the above three steps is non- 

optimal, it was implemented in CONTRAM and applied to the network shown in 

Figure 61. The results shown in Graph 6.6 show that delay minimisation of 

Section 6.2, together with the approximately system optimum of Chapter 2, 

outperformed the method described in step i-3.
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