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A B S T R A C T

Accurate State of Charge (SOC) and State of Health (SOH) estimation is crucial to ensure safe and reliable
operation of battery systems. Considering the intrinsic couplings between SOC and SOH, a joint estimation
framework is preferred in real-life applications where batteries degrade over time. Yet, it faces a few
challenges such as limited measurements of key parameters such as strain and temperature distributions,
difficult extraction of suitable features for modeling, and uncertainties arising from both the measurements and
models. To address these challenges, this paper first uses Fiber Bragg Grating (FBG) sensors to obtain more
process related signals by attaching them to the cell surface to capture multi-point strain and temperature
variation signals due to battery charging/discharging operations. Then a hybrid machine learning framework
for joint estimation of SOC and capacity (a key indicator of SOH) is developed, which uses a convolutional
neural network combined with the Gaussian Process Regression method to produce both mean and variance
information of the state estimates, and the joint estimation accuracy is improved by automatic extraction
of useful features from the enriched measurements assisted with FBG sensors. The test results verify that
the accuracy and reliability of the SOC estimation can be significantly improved by updating the capacity
estimation and utilizing the FBG measurements, achieving up to 85.58% error reduction and 42.7% reduction
of the estimation standard deviation.
1. Introduction

To facilitate low-carbon transition of the economy is now a priority
in the development agenda of many countries and regions worldwide to
mitigate the climate change [1]. One of the key technologies to bridge
a carbon neutral future is the battery technology which enables the
integration of more renewable energy in the power grid and reduces the
greenhouse gas emissions from the transportation sector. The lithium-
ion batteries have the merits of long cycle life, high energy density, low
self-discharge rate, environmental resilience, and continual decrease of
manufacturing costs, which make them overwhelmingly attractive for
electric vehicle (EV) and grid energy storage applications [2]. Lithium-
ion batteries have to be operated within a proper range in terms of
temperature, charging and discharging currents, etc., and violations of
the operation conditions will lead to performance degradation, thermal
runaway and even explosion, hence strict requirements have been
imposed on the safety standards and regulations of battery storage

systems [3]. To ensure the operation safety and reliability, and en-
hance the durability of the battery, an effective and reliable battery
management system (BMS) is required for internal states estimation,
charge/discharge control, and planned maintenance, etc. [4,5].

The internal state estimation is still an challenging task in BMS,
and the two key states, namely state of charge (SOC) and state of
health (SOH), have been extensively researched over the years. SOC
reflects the real-time remaining capacity of the battery, and has fast
time-varying dynamics. SOH reflects the aging or degradation level of
the battery, and has slow time-varying dynamics. Further, battery aging
will degrade the SOC estimation accuracy, while the capacity is one of
the key and widely used indicators of the battery state of health (SOH)
to quantitatively assess the battery aging level. Therefore, it is vital for
the BMS to accurately estimate the SOC in real-time and calibrate the
capacity regularly [3]. Numerous SOC and capacity estimation methods
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have been proposed in the literature, which can be roughly categorized
nto model-based methods and machine learning (ML)-based methods. 
he performance of the model-based estimation methods is highly
ependent on the model accuracy, thus an effective battery model
hat can well describe the system dynamics is a prerequisite. However,
he complexity of batteries internal physicochemical reactions and the

uncertainty of external operation environment makes it difficult to
build accurate battery models. Therefore, ML techniques have been 
increasingly employed to estimate the battery SOC and capacity due
to their flexibility, reliability, strong adaptability and generalizability.

The main benefit of the ML-based methods is that a priori knowl-
edge of the battery dynamics is no longer required. Besides, var-
ious real-world operating conditions can be considered during the

odel training by adding additional inputs to the model, and this ap-
roach is therefore suitable for all types of batteries [6,7]. Techniques
uch as deep neural networks (DNNs) [8], recurrent neural networks
RNNs) [9], and Gaussian process regression (GPR) [10] can directly
ap the measured signals (e.g. current, terminal voltage, and surface 

emperature) to the SOC. In general, the direct measurements are often 
sed as the model inputs to calculate the SOC as the model output. For
xample, in [11], the battery SOC was estimated using DNNs and the 
xperimental results confirm that the DNN with four hidden layers has
he best generalization capability across several drive cycles. In [12], 
he SOC was estimated using a RNN with gated recurrent unit, which
an exploit information of the previous SOCs and measurements and
chieve better estimation results than traditional feed-forward neural
etworks. In [13], a GPR framework was used for SOC estimation under
hree different ambient temperatures. Compared with the aforemen-
ioned ML techniques which only provide the point estimation of SOC, 

the GPR can not only estimate the SOC using measured quantities, but
also quantify the uncertainty of the SOC estimations. The uncertainty
quantification can assess the reliability of the estimated results, thus
provides more useful information for the decision making in BMS.
Besides, methods such as support vector machine (SVM) [14], relevance 
vector machine (RVM) [15], long short-term memory (LSTM) [16], and 
convolutional neural network (CNN) [17], just to name a few, have 
been successfully applied in battery capacity estimation. CNNs have the 
characteristics of automatic feature extraction and low overfitting risk,
and have demonstrated a great potential in battery capacity estimation.
n [18], the battery capacity was estimated using a CNN model that 

combines the concepts of transfer learning and ensemble learning, and
the resultant CNN model can be applied to a relatively small dataset
while the estimation accuracy and robustness on unseen dataset are 
also improved. In [19], a CNN-based capacity estimation framework
was incorporated with the concepts of transfer learning and network
pruning, leading to improved estimation accuracy on small dataset 
while the size and computational complexity of the model are both 
greatly reduced.

Most of the existing researches including the aforementioned ones
estimate the battery internal states such as SOC and SOH using the tra-
ditional externally measured signals such as current, voltage, and sur-
face temperature of a particular location. These external measurements 
are limited and can hardly reflect the battery electro-chemical-thermal
behavior and inhomogeneity of key parameters such as battery thermal
distribution profile, hence limiting the state estimation accuracy and
leading to over-conservative usage of the battery [20] or potential bat-
tery failure [21]. Fiber optic sensors (FOSs) [22], which, in summary, 
are immune to electromagnetic interference (EMI), robust to corrosive
environments, have multiplexing capability with small dimensions, are
attractive solutions for distributed battery sensing applications [23].
The latest technology can make it possible to inscribe hundreds or thou-
sands of Fiber Bragg Grating (FBG) sensors into a single optic fiber [24],
allowing simultaneous multiple point measurements with much simpler
wiring diagram. Moreover, optical fibers are much smaller and lighter
than electrical wires and, together with this multiplexing capability,
a large number of FBG sensors can be installed for large structures
 c
(such as large battery energy storage systems) with much less cable
mass and volume. These distinctive features of fiber optic sensors
make it possible to develop a very low-cost sensing mechanism for
densely instrumenting very large structures, and both the cost and
wiring complexity of fiber optic sensing networks can be much lower
than fully distributed conventional sensors [25]. Further, the additional

easurements allow extraction of a richer set of features for more
ccurate battery internal state estimation, and are more reliable under
trong electromagnetic interference than electric signals. For example,
uring the charge and discharge processes, the cell electrode volume
hanges due to Li-ions intercalation/ deintercalation processes in the
lectrode materials, which manifests as the changes in the strain on
he cell surface. The stability and safety of the battery can be affected
y these induced strains, particularly in harsh operation conditions,
nd it may become one of the main reasons leading to potential ma-
erial failure and other forms of performance degradation if the strains
xceed certain level of thresholds [26]. Besides, the cell temperature
lso changes during the charge and discharge processes due to the
lectrochemical reactions, resistive heating, and enthalpy changes [21].
emperature is often monitored to provide early warning of potential
hermal hazards, which generally manifest as the thermal runaway and
ay cause irreversible damage to battery cells when it exceeds certain

hreshold. These parameters hence can help gain deeper insight into the
nternal dynamics of the battery, and are regarded as complementary
ignals to the tradition current and voltage measurements.

FBG sensors are sensitive to strain and temperature and thus their
pplications in BMS have attracted increased attentions in recent years.
o demonstrate the potentials of FBG sensors to aid state estimation in
MS, Sommer et al. [27] attached a pair of FBG sensors externally to

ithium-ion pouch cells to monitor intercalation state transition points
cross various charge/discharge rates. Sharp and repeatable features
orrelated with intercalation state transitions can be observed which
nable better state estimation. Nascimento et al. [28] presented a com-
arative study of surface temperature monitoring performance between
he thermocouples and fiber sensors, and demonstrated that the FBG
ensors were better choices for surface temperature monitoring under
ormal and abuse operating conditions and failure detection. After
xploring the relationship between the external FBG sensing signals
nd diffusion processes [20], Raghavan et al. [23] embedded the FBG
ensors inside pouch cells to directly monitor the internal temperature
nd electrode strain, the results have revealed that batteries with
mbedded FBG sensors are highly comparable to those without FBG
ensors in terms of seal integrity, capacity retention and projected
ycle life. Peng et al. [29,30] designed sensitivity-enhanced FBG sensors
nd mounted them onto the cell surface, the relationship between the
train and SOC/depth of discharge was investigated. Ganguli et al. [31]
stimated the SOC and SOH using dynamic time warping and Kalman
iltering algorithms based on the internal strain signals obtained from
hese FBG sensors at different temperature conditions. Similarly, Rente
t al. [32] achieved accurate SOC estimation results using dynamic time
arping algorithm by correlating the cell surface strain data obtained

rom FBG sensors with the SOC, the results indicated that installing FBG
ensors on the cell surface is a feasible, cost-effective and non-invasive
pproach for assisting SOC estimation.

Leveraging the latest developments in machine learning approaches
nd fiber optic sensing technologies in battery condition monitoring,
his paper proposes a hybrid machine learning framework for joint
stimation of the battery SOC and capacity, the two key internal
tates for battery management. The main contributions of this paper
nclude: (1) The joint estimation framework takes into account of the
ntrinsic coupling relationship between SOC and SOH, by using the
egularly updated capacity information for SOC estimation, the SOC
an be estimated more accurately than siloed estimation methods. (2)
he fiber optic sensors are adopted for strain and surface temperature
easurements for battery SOC estimation to further improve the ac-
uracy of SOC estimation. (3) GPR is used for battery SOC estimation,
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Fig. 1. The flowchart of the proposed battery capacity and SOC joint estimation framework.
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hich not only provides point estimate of the SOC, but also quantifies
he uncertainty of the estimation. This allows up to 85.58% RMSE
eduction in SOC estimation and 42.7% reduction in the estimation
tandard deviation. To the best of our knowledge, this is one of the
irst attempts to use the GPR method to extract information from
BG measurements for more accurate statistic estimation of the SOC,
nabling more trustful management of battery energy storage systems
or safer and more reliable battery operations.

The remainder of this paper is organized as follows. Section 2 details
he proposed joint estimation framework and introduces the GPR algo-
ithm used for SOC estimation. Section 3 introduces the experimental
etup and the new signals measured by FBG sensors. Section 4 presents

and discusses the experimental results. Finally, Section 5 concludes the
aper.

. Methodology

In this section, the detailed battery SOC and capacity joint esti-
ation framework is presented. Firstly, the proposed joint estimation

ramework is introduced. Secondly, a brief overview of the Gaussian
rocess Regression (GPR) theory is introduced and the implementation
rocedure of GPR-based battery SOC estimation method is detailed.
urther, the CNN-based battery capacity estimation method, which was

roposed in our earlier work [19], is briefly introduced. a
.1. The joint estimation framework

Fig. 1 shows the flowchart of the proposed battery capacity and
OC joint estimation framework. The main steps of this framework
re introduced as follows: at each time instant, battery current, volt-
ge, and FBG signals are first sampled in real-time, then the current,
oltage and the charge capacity are normalized and transformed to
three-dimensional (3-D) image with the size of 15 × 15 × 3 and

nputted to the PCNN-TL (pruned convolution neural network with
ransfer learning) model trained in [19] for online estimation of the
attery capacity. Subsequently, the estimated capacity is used in the
PR model to correct the imprecise capacity estimation value, and the
pdated capacity along with other normalized measurements are used
o estimate the SOC online. Finally, the charge capacity calculated by
ntegrating the current with respect to time is replaced by the charge
apacity calculated using the estimated SOC, and the new 3-D input
enerated with the updated charge capacity is fed into the PCNN-TL
odel to estimate the capacity.

The joint estimation framework is practically more attractive in
ndustrial applications and it can provide more accurate estimates than
he traditional state estimation methods since it utilizes the coupling
elationships between the capacity and SOC. By online updating the
apacity value in the SOC estimation, the impact of battery degradation
s taken into account. Therefore the performance of SOC estimation for

ged batteries can be further improved.
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2.2. SOC estimation

2.2.1. Gaussian process regression
Gaussian process regression (GPR), which is a probabilistic and

non-parametric machine learning method, is used for battery SOC
estimation in this paper. The GPR method is capable of quantifying the
uncertainty of the estimation rather than just provide a point estimate
of the SOC, and hence providing more informative outputs than the
Kalman Filter (KF) algorithm and its variants. In essence, based on
the GPR method, the estimation result of SOC is given in the form of
probability distribution, which consists of the mean of the estimation
value and confidence intervals.

Let  = {(𝐱𝑖, 𝐲𝑖)}𝑁𝑖=1 denote a labeled training dataset with 𝑁
amples, where 𝐱𝑖 ∈ ℜ𝐷 is a 𝐷-dimensional input vector, and 𝐲𝑖 ∈ ℜ
s the corresponding output. Suppose that there exists a latent function
(.), to map inputs 𝐱𝑖 to outputs 𝐲𝑖:

𝑖 = 𝑓 (𝐱𝑖) + 𝜀𝑖 (1)

here 𝜀𝑖 ∼  (0, 𝜎2) is an independent and identically distributed noise
ontribution.

In the GPR, the function 𝑓 (𝐱) is assumed to follow a multivariate
aussian distribution, and can be described as:

(𝐱) ∼ (𝑚(𝐱), 𝐾(𝐱, 𝐱)) (2)

here  denotes a Gaussian process. The mean function 𝑚(𝐱) and
ovariance function 𝐾(𝐱, 𝐱), which can fully describe the function 𝑓 (𝐱),
re denoted by:

(𝐱) = 𝐸(𝑓 (𝐱)) (3)

(𝐱, 𝐱) = 𝐸[(𝑓 (𝐱) − 𝑚(𝐱))(𝑓 (𝐱′) − 𝑚(𝐱′))]

=

⎡

⎢

⎢

⎢

⎢

⎣

𝜅(𝐱1, 𝐱1) 𝜅(𝐱1, 𝐱2) ... 𝜅(𝐱1, 𝐱𝑁 )
𝜅(𝐱2, 𝐱1) 𝜅(𝐱2, 𝐱2) ... 𝜅(𝐱2, 𝐱𝑁 )

... ... ... ...
𝜅(𝐱𝑁 , 𝐱1) 𝜅(𝐱𝑁 , 𝐱2) ... 𝜅(𝐱𝑁 , 𝐱𝑁 )

⎤

⎥

⎥

⎥

⎥

⎦

(4)

he mean function reflects the expected function value at input 𝐱,
and the prior mean function is often set to zero in order to avoid
expensive posterior computations and hence only the covariance func-
tion is inferred [33]. The covariance function 𝐾(𝐱, 𝐱), also called the
kernel of the Gaussian process, reflects the dependence between the
function values at different input points 𝐱𝑖 and 𝐱𝑗 . All the assumptions
on the properties of the function to be modeled, such as smoothness
and periodicity, are reflected in the covariance function. The squared
exponential (SE) kernel is common and it is defined as:

𝜅(𝐱𝑖, 𝐱𝑖) = 𝜎2𝑓 𝑒𝑥𝑝

(

−
‖

‖

𝐱𝑖 − 𝐱𝑖‖‖
2

2𝜆2

)

(5)

here 𝜎2𝑓 denotes the signal variance that quantifies the variation of
he latent function from its mean, and 𝜆 is the characteristic length
cale that determines the relative importance of the input variables in
stimating the target output.

Based on Eq. (1) and (2), the joint distribution of the training output
𝐲 can be expressed as:

𝐲 ∼  (0, 𝐾(𝐱, 𝐱) + 𝜎2𝐈) (6)

where 𝐈 is a 𝑁 ×𝑁 unit matrix. Generally, the unknown hyperparam-
eters 𝛩 = (𝜎2, 𝜎2𝑓 , 𝜆) of the covariance function need to be optimized
in the training process by maximizing the logarithm of the marginal
likelihood function of output 𝐲. The log marginal likelihood is given
by:

log𝑝(𝐲|𝐱, 𝛩) = −1
2
𝐲𝑇 [𝐾(𝐱, 𝐱)+𝜎2𝐈]−1𝐲−1

2
log ||

|

𝐾(𝐱, 𝐱) + 𝜎2𝐈||
|

−𝑁
2

log2𝜋 (7)

After obtaining the optimal hyperparameters using the gradient-based
method, and given a testing dataset  = {(𝐱 , 𝐲 )}𝑁∗ , the joint
∗ ∗𝑖 ∗𝑖 𝑖=1
Fig. 2. GPR-based battery SOC estimation.

multivariate Gaussian distribution of the training output 𝐲 and the
testing output 𝐲∗ can be written as:
[

𝐲
𝐲∗

]

∼ 
(

0,
[

𝐾(𝐱, 𝐱) + 𝜎2𝐈 𝐾(𝐱, 𝐱∗)
𝐾(𝐱∗, 𝐱) 𝐾(𝐱∗, 𝐱∗)

])

(8)

where 𝐾(𝐱, 𝐱∗) is the covariance matrix between the testing inputs
and the training inputs and 𝐾(𝐱, 𝐱∗)𝑇 = 𝐾(𝐱∗, 𝐱), and 𝐾(𝐱∗, 𝐱∗) is the
covariance matrix of testing inputs 𝐱∗. Then the predictive posterior
distribution is derived for the estimation on the new/testing inputs 𝐱∗,
which can be completely specified by the mean and covariance:

𝐲∗|𝐱∗, 𝐱, 𝐲 ∼  (�̄�∗, 𝐾∗) (9)

where the mean �̄�∗ of the predictive distribution, which gives the point
estimate of the testing output, is given by:

�̄�∗ = 𝐾(𝐱∗, 𝐱)
[

𝐾(𝐱, 𝐱) + 𝜎2𝐈
]−1 𝐲 (10)

and the covariance matrix 𝐾∗ provides a measure of uncertainty in the
estimate of the test output [34], and it is given by:

𝐾∗ = 𝐾(𝐱∗, 𝐱∗) −𝐾(𝐱∗, 𝐱)
[

𝐾(𝐱, 𝐱) + 𝜎2𝐈
]−1 𝐾(𝐱, 𝐱∗) (11)

2.2.2. GPR-based SOC estimation
In this paper, the GPR is used to estimate the battery SOC for given

measurement inputs. As shown in Fig. 2, the input variables to the GPR
odel are current 𝐼𝑗 (𝑘), voltage 𝑉𝑗 (𝑘) and wavelength data of the FBG

ensors 𝐹𝐵𝐺𝑗 (𝑘) at time 𝑘 in the 𝑗th cycle, and the capacity information
f the corresponding cycle is updated by the estimation output of the
CNN-TL model (as trained in [19]) to improve the SOC estimation
esults. Here the wavelength data is obtained from the fiber optic
ensors, and two important parameters (i.e. battery surface strain and
emperature) can be decoded and extracted from the wavelength for
he characterization of the lithiation/delithiation process. The model
utput is the estimated SOC at time 𝑘, denoted by 𝑆𝑂𝐶(𝑘).

The GPR-based SOC estimation method mainly consists of two parts,
ffline training of the model and online estimation of SOC using the
rained model. The steps for training a GPR model and then performing
OC estimation are illustrated in Fig. 3, where the blue part on the
eft represents the offline training process, and the orange part on the
ight refers to the testing process. The detailed steps can be described
s follows:

raining process:

tep 1 — Determine and normalize the training dataset,  = {(𝐱𝑖, 𝐲𝑖)}𝑁𝑖=1,
here 𝐱 contains current, voltage and wavelength measurements as
ell as the estimated capacity of the corresponding cycle, and 𝐲 is the

eference value of SOC.

tep 2 — Select a kernel function that can well represent the underlying
arget function.

tep 3 — Set the initial values for the hyperparameters in the specified
ernel function as well as the noise variance.

tep 4 — Optimize the hyperparameters with the training data by
aximizing Eq. (7), the log marginal likelihood function.

Testing process:

Step 5 — With the optimal hyperparameters, the GPR model is referred
to as the ‘trained’ model. Then in the testing process, the normalized
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Fig. 3. Flowchart of the GPR-based battery SOC estimation.
esting inputs are fed into the trained GPR model, and the target SOC
s outputted in the form of mean and covariance, which provides both
he SOC estimation results and the uncertainty measurements.

.3. CNN-based capacity estimation

The battery aging during its utilization will lead to capacity degra-
ation, which will impact the accuracy of SOC estimation. Considering
he importance of timely maintenance and replacement of aged batter-
es, and the requirement for improved SOC estimation performance, it
s meaningful to update the actual capacity in real-time.

In this section, the PCNN-TL model described in our previous
ork [19] is used for the battery capacity estimation. As shown in
ig. 4, a CNN model that consists of 2 sets of convolutional and
ax pooling layers, followed by two consecutive convolutional layers,

hen flattening, and finally two fully-connected layers, was constructed
irst. Generally, such a model needs to be trained with a large set
f labeled training data to optimize its parameters, and will show
oor performance if trained on insufficient dataset. Therefore, trans-
er learning technique was applied to CNN aiming at reducing the
equired size of datasets by leveraging the knowledge learned from
he source task with large dataset to a different but related task with
uch smaller dataset. As illustrated in Fig. 4, the CNN model was

irstly pre-trained on a large source dataset collected from lithium iron
hosphate (LFP) cells, each of which was tested for approximately 1000
harge/discharge cycles. Then the learned knowledge (model structure
nd trained parameters) was transferred to our relatively small target
ataset collected from cells that each tested for 30 reference cycles,
nd the last two convolutional layers and two fully-connected layers
ere fine-tuned on the target dataset to guarantee model performance.
ere the suitable number of fine-tuning layers was determined by trial
nd error. Finally, a fast recursive algorithm-based network pruning
echnique was used in the last two fully-connected layers to remove

edundant neurons, which can significantly reduce the model size and
computational complexity, thus makes it possible to implement the
resultant model in the on-board BMS. The resultant model is denoted
as PCNN-TL and can achieve fast and accurate capacity estimation on
small dataset. More details of this model construction can be found in
a previous publication [19].

The input variables of the PCNN-TL model consists of current, volt-
age and charge capacity of partial charging curves, which are converted
into 3 dimensional images with the size of 15 × 15 × 3. While the
model output is the maximum available capacity of the discharge cycle
which immediately follows the charge cycle that generates the input
sample. The capacity estimated by the PCNN-TL model is then used
as an input to the GPR model introduced in Section 2.2.2, along with
battery current, voltage and FBG wavelength data to update the SOC
estimation.

3. Experimental setup

In this work, 4 commercial cylindrical LFP cells with a nominal
voltage of 3.2 V and a nominal capacity of 1.6 Ah are used in the
experiment. They are tested in parallel using a BTS 4000 battery test
system made by NEWARE, and thermocouples with measurement error
less than 0.1 ◦C are attached to measure the cell surface temperature.
All cells are tested under a constant temperature of 25 ◦C, and the
battery current, voltage and surface temperature are recorded during
the charging and discharging process. High charging current rates are
used to accelerate the aging speed of these cells, and a reference cycle is
tested every 30 cycles with CC-CV charging and CC discharging process.
The CC charging and discharging current is 1 A, with the upper and
lower cutoff voltage of 3.6 V and 2.0 V, respectively. The cutoff current
of the 3.6 V CV charging process is 75 mA. The sampling frequency for
all the equipment used in this experiment was set as 1 Hz. Further,
fiber-optic sensors, a promising new sensing technology for battery cell
monitoring, are used in this experiment to acquire more process related

measurements to improve the SOC estimation accuracy. As shown



w
d

v
m
c
V
t

Fig. 4. PCNN-TL model construction.
Fig. 5. Cells with FBG sensor integrated.
in Fig. 5, three Fiber Bragg gratings (FBG)-based fiber-optic sensors
are directly attached to the surface of each cell without affecting its
packaging and integrity. This non-invasive installation approach does
not cause potential safety issues and the FBG sensors can be easily
mounted on the battery cells.

The FBG sensors are sensitive to strain and temperature variations.
These two significant parameters are directly related to the complex
processes inside the cells, and the temperature increase and mechanical
stress will cause capacity loss and potential risk of batteries. When the
battery surface temperature or strain changes, the reflected wavelength
changes from the base wavelength 𝜆 to 𝜆𝑠, thus the wavelength shift
𝛥𝜆 is related to both strain and temperature variations [23,26]. As
the three FBG sensors are co-located within a small footprint but
have a slightly different orientation, the radial strain signal can be
decoupled from the temperature measurement [32]. In this section, the

avelengths that contain both strain and temperature information are
irectly used for SOC estimation.

The average wavelength shift of the three FBG sensors and the
oltage of a cell subject to the CC-CV charging and CC discharging
ode is presented in Fig. 6. In Fig. 6, step (1) corresponds to the

harging phase with a constant current of 1 A, and step (2) is the 3.6
constant voltage charging phase, while the final step (3) corresponds

o the discharging phase with a constant current of 1 A.
Fig. 6. Wavelength shift of a CC-CV charging and CC discharging cycle.
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Fig. 7. SOC estimation results of cell 1: (a) SOC estimation results without updated capacity information. (b) SOC estimation results with updated capacity information. (c) SOC
estimation error. (d) SOC estimation results with/without updated capacity.
Fig. 8. The estimation results of battery capacity for reference cycle 10 of cell 1.

Since simple functions cannot describe the relationship between
OC and FBG sensor wavelength shift appropriately, therefore, the
aussian Process Regression algorithm is used to estimate the SOC
sing this new set of signals.

. Estimation results and discussions

The performance of the proposed SOC and capacity joint estimation
ramework is verified on the aforementioned dataset. The root mean-
quare error (RMSE) is used to evaluate the estimation accuracy and the
tandard deviation is used to characterize the estimation uncertainty.
Fig. 9. Capacity estimation results at different reference cycles of cell1.

The battery capacity is first calculated using the well-trained PCNN-
TL model, for which the model inputs are current, voltage, and charge
capacity calculated by integrating the current with respect to time.
Then the SOC of cell 1 over discharge profiles of reference cycle 10
are estimated and the results are shown in Fig. 7. It is evident that
the estimated SOC with updated capacity information (Fig. 7(b)) are
much closer to the reference SOC than without it (Fig. 7(a)). This is
summarized on Fig. 7(d), where the difference between the curves are
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Fig. 10. SOC estimation results of cell 1: (a) SOC estimation results using FBG signals. (b) Error of SOC estimation using FBG signals. (c) SOC estimation results without FBG
signals. (d) Error of SOC estimation without FBG signals.
Fig. 11. SOC estimation results of cell 2 using model trained on cell 1: (a) SOC estimation results with updated capacity information. (b) SOC estimation error.
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ighlighted. As illustrated in Fig. 7(c), though the errors shown in both
igures converge to zero, the error of SOC estimation with updated
apacity is within 2%, while the error of SOC estimation without
pdating the capacity is within 6%. Further, the RMSE of the SOC
stimation with and without the updated capacity value are 0.62% and
.59%, respectively. This has clearly demonstrated that accurate capac-
ty estimation is important for SOC estimation. In addition, as shown
n Figs. 7(a) and 7(b), the 95% confidence interval in both figures have
imilar width, and the mean standard deviation of the estimates with
nd without updated capacity are the same, both are 1.02%. Therefore,
t is shown that whether or not the capacity information is updated does
ot affect the estimation uncertainty.
While estimating the SOC, battery capacity is simultaneously es-
imated using the well-trained PCNN-TL model, and the estimation
esults are shown in Fig. 8. The blue and red solid lines represent
he reference and estimated capacity value of cycle 10, respectively.
s shown in Fig. 8, the estimated capacity is close to the reference

value, while its fluctuation is similar to that of the SOC estimation
error (red line in Fig. 7(c)), when the error of SOC estimation converges
to zero, the estimated capacity also converges to the reference value.
Finally, the last 225 consecutive points from the current, voltage and
SOC curves of each reference cycle are used to estimate the capacity,
and the estimated results for these cycles are illustrated in Fig. 9. The
blue line refers to the reference capacity, and the red line represents
the capacity estimated using the current, voltage, and charge capacity
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Fig. 12. Capacity estimation results of cell 2 (a)Capacity estimation results using online estimated SOC. (b) The relative error between estimated and reference capacity.
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Fig. 13. Bar chart of the SOC estimation RMSE for the discharge profiles of ten
reference cycles. The performance of the model trained on cell 1 is evaluated on the
data recorded from cell 2.

calculated by integrating the current with respect to time. The RMSE is
0.0126 Ah. While the yellow line refers to the capacity estimated using
current, voltage, and the charge capacity calculated from the estimated
SOC, and the RMSE is 0.0064 Ah. It is evident that using the estimated
SOC information can in turn improve the capacity estimation accuracy.

To investigate the effect of using FBG wavelength signals as model
input for the SOC estimation, the data collected from cell 1 was utilized
for testing. Two different GPR models were built for SOC estimation,
one took current, voltage and capacity as the model input, and the
other used current, voltage, FBG wavelength signal, and capacity as
the model input. The estimation results on cycle 10 of cell 1 are shown
in Fig. 10, and from the enlarged view of Figs. 10(a) and 10(c), it
s evident that the shaded blue area is wider when the FBG signal is
ot fully utilized, which means the estimation uncertainty is higher.
urther, Figs. 10(b) and 10(d) confirm that the SOC estimation is more
ccurate when the FBG signal is utilized as an input to the estimation
odel. Quantitatively, when using the updated capacity information,

he RMSE of the SOC estimation with and without using the FBG signals
s input are 0.62% and 1.48%, respectively, and the mean standard
eviation of the estimation with and without FBG signals are 1.02%
nd 1.78%, respectively.

The RMSE and standard deviation of SOC estimation under different
nput conditions are summarized in Table 1. Two observations can be
oncluded from Table 1. Firstly, the use of updated capacity can greatly
 e
mprove the SOC estimation accuracy (reduces the RMSE from 4.3%
o 1.48%, or from 3.59% to 0.62%, achieving 65.58% and 82.73%
eductions, respectively), but do not affect the estimation uncertainty.
econdly, using FBG signals as input to estimate the SOC can not only
educe the estimation RMSE (the RMSE decrease from 4.3% to 3.59%
nd from 1.48% to 0.62% achieved 16.51% and 58.11% reductions,
espectively), but also reduce the estimation uncertainty (achieving
2.7% reduction on the estimation standard deviation from 1.78% to
.02%). In summary, using the updated capacity and FBG measure-
ents can reduce the estimation RMSE by up to 85.58% (from 4.3%

o 0.62%) and reduce the estimation standard deviation by 42.7%.
To validate the generalization ability of the proposed method, the

odel trained on cell 1 is directly applied to estimate the SOC of cell
, and satisfactory SOC estimation results are also achieved. Taking
eference cycle 10 of cell 2 as an example, as shown in Fig. 11, the
stimation results can still well track the reference values, though the
ax error is around 5%, it converges to zero at the end of the cycle.
similar trend can be observed from the capacity estimation results

hown in Fig. 12, when the SOC estimation error is large, the capacity
stimation error is large, while the estimated SOC converged to the
eference SOC, the estimated capacity also converged to the reference
alue. Further, the RMSEs for the discharge profiles of the first ten
eference cycles of cell 2 are summarized in Fig. 13. As shown in
ig. 13, the RMSE of SOC estimation is always lower when the capacity
s estimated and updated in SOC estimation, which is less than 2% for
hese ten reference cycles, while the RMSE of the model prediction
ithout using the updated capacity is within 5%, the results again

onfirm that the proposed joint estimation framework can estimate the
OC more accurately by updating the capacity value.

Finally, the proposed method is also tested on a CC discharge cycle
f cell 1 with 1C discharging rate. As shown in Fig. 14, the estimated
OC can track the reference values with the RMSE of 3.48%, and
he maximum error around 6%. Table 2 summarizes the RMSE and
tandard deviation of SOC estimated under different input conditions,
he results again confirm that the use of updated capacity can improve
he SOC estimation accuracy (reduces the RMSE from 10.42% to 4.89%,
r from 7.74% to 3.48%, respectively), and the use of FBG signals not
nly improves the estimation accuracy (reduces the RMSE from 10.42%
o 7.74% and from 4.89% to 3.48%, respectively), but also reduces
he estimation uncertainty (achieving up to 45.96% reduction on the
stimation standard deviation from 4.33% to 2.34%). Moreover, the
apacity estimation results of 30 discharging cycles with 1C current
re illustrated in Fig. 15. It is clear that the yellow line is closer to the
eference capacity, which indicates that the capacity estimated using
he charge capacity calculated by SOC is more accurate than using the
harge capacity calculated by current integration, which once again
onfirms that the estimated SOC can in turn improve the capacity

stimation results.
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Table 1
SOC estimation results with/without updated capacity and with/without FBG measurements.

Assess Without FBG signals With FBG signals

Without updated Q With updated Q Without updated Q With updated Q

RMSE 4.3% 1.48% 3.59% 0.62%
Mean standard deviation 1.77% 1.78% 1.02% 1.02%
Table 2
SOC estimation results on a 1C discharge cycle with/without updated capacity and with/without FBG measurements.

Assess Without FBG signals With FBG signals

Without updated Q With updated Q Without updated Q With updated Q

RMSE 10.42% 4.89% 7.74% 3.48%
Mean standard deviation 4.33% 3.54% 2.34% 2.31%
Fig. 14. SOC estimation results on a discharge cycle with 1C current (a) SOC estimation results with updated capacity information. (b) SOC estimation error.
Fig. 15. Capacity estimation results of 30 discharging cycles with 1C current.

In summary, the proposed joint estimation framework has shown
o significantly improve the SOC estimation accuracy by updating the
mprecise battery capacity in time, and accurate SOC estimation can
n turn improve the accuracy of capacity estimation, while traditional
OC estimation methods without capacity calibration cannot eliminate
he influence of the erroneous capacity value. Furthermore, the FBG
easurements can provide more information on the battery dynamics,

herefore, using FBG measurements to assist SOC estimation, the esti-
ation uncertainty can be decreased and estimation accuracy can be

mproved.
5. Conclusions

This paper has proposed a hybrid machine learning framework to
achieve jointly estimation of the battery SOC and capacity, assisted
with the instrumentation of FBG sensors to acquire multi-point strain
and temperature variation signals due to battery charging/discharging
operations. The framework updates the capacity using a well-trained
CNN model, and simultaneously estimates the SOC and quantifies the
estimation uncertainty using a GPR model. Some conclusions can be
drawn below:

• Firstly, the effect of battery aging on SOC estimation is con-
sidered, by updating the capacity regularly, the SOC can be
estimated more accurately, achieving up to 82.73% reduction
on the RMSE. In turn the accurate SOC estimation can further
improve the accuracy of the capacity estimation.

• Secondly, a new sensing technology for battery condition mon-
itoring is utilized to enrich the measurements from traditional
sensing technologies for batteries. The new sensing technology
offers a number of distinctive features, such as multiplexing,
lower costs, less complex wiring, and immunity to EMI. The
experimental results confirm that the FBG sensing measurements
can further improve the SOC estimation accuracy and lower the
estimation uncertainty, with up to 58.11% reduction on the RMSE
and 42.7% reduction on the estimation standard deviation.

• Thirdly, the GPR algorithm offers a unified framework to incorpo-
rate different sensor measurements for simultaneous estimation of
the SOC and quantification of the estimation uncertainty, hence
the influence of the updated capacity and FBG measurements on
the SOC estimation can be assessed systematically.

The experimental results have undeniably verified the performance of
the proposed joint estimation framework and that the use of FBG signals

is beneficial to SOC estimation. These results confirm that the capacity
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estimation is vital for accurate SOC estimation, and the newly intro-
duced FBG signals can further improve the SOC estimation accuracy
and reduce the estimation uncertainty. With the mass roll-out of electric
ehicles for transport decarbonization and battery storage systems for
ccepting a large portion of renewable energy into the power grid,
ontinuous, accurate and reliable battery SOC and SOH estimation
re not only important in real-life applications for safe, reliable and

effective operation and control, it also offers valuable information for
whole life-cycle management of batteries, enabling future technological 
and business innovations to maximize the value chain of batteries. This
paper has demonstrated that a holistic approach to integrate novel
estimation framework with new sensing technologies such as the FBG
sensors can address a number of issues arising from existing siloed
approaches in real-life applications, bringing a number of potential
tangible benefits which otherwise cannot be achieved by conventional
approaches. Our future work will investigate more sophisticated dy-
namic charging and discharging scenarios under different operation
conditions, and explore other application and benefit potentials of 
the novel sensing technologies when they are combined with battery
management schemes and algorithms.

Finally, we would like to emphasize that Fiber Optic Sensors (FOSs) 
have been chosen as the most suitable means to allow additional prac-
tical measurements to be taken. They have been chosen (in addition to
conventional, typically electrically-based sensors) due to the inherent
advantages that they have for applications such as this battery state
monitoring and state estimation. The specific benefits of the use of such
FOSs have been discussed by some of the authors in detail in other 
publications [22] but in summary, FOSs are particularly well suited to
these situations, such as when electrical monitoring is unsafe as there
is a risk of sparking, or short circuits possible in all electrical systems
in harsh environment, thereby offering a significant safety advantage,
a key consideration in the design and operation of electric vehicles and
battery storage for power grids. Further, FOSs methods such as are used
here work well when electrical means of monitoring fail, for example
where there is a large amount of electromagnetic noise, and data being
read from conventional sensors can be corrupted. In addition, when 
there are a large number of sensors to be placed (and if it is necessary
to place a lot of sensors for a complete monitoring profile of battery
systems), FOSs are easy to install and lightweight: the use of an optical
network minimizes the weight of cables needed and thus simplifies the
set up. Finally, the use of FOS networks can offer a competitive costing
option, especially when safety is to the fore in the measurement.
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