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Sound generation by entropy perturbations
passing through a sudden flow expansion

Dong Yang1,†, Juan Guzmán-Iñigo1 and Aimee S. Morgans1

1Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, UK

(Received 17 July 2020; revised 12 September 2020; accepted 29 September 2020)

Entropy perturbations generate sound when accelerated/decelerated by a non-uniform
flow. Current analytical models provide a good prediction of this entropy noise when the
flow cross-sectional area changes are gradual, as is the case for nozzle flows. However,
they typically rely on quasi-1-D and isentropic assumptions, and their predictions differ
significantly from experimental measurements when sudden area increases are involved.
This work uses a theoretical approach to quantitatively identify the main mechanisms
responsible for the mismatch. A new form of the acoustic analogy is derived in which
the entropy-related source terms are systematically identified for the first time. The theory
includes three-dimensional and non-isentropic effects. The approach is applied to the
flow through a sudden area expansion, for which the large-scale flow separation creates
a recirculation zone. The derived acoustic analogy is simplified for low Mach numbers
and frequencies, and solved using a Green’s function method. The results provide the first
quantitative evidence that the presence and spatial extent of the recirculation zone, rather
than the flow non-isentropicity, is the dominant factor causing deviation from predictions
from quasi-1-D, isentropic theory.

Key words: aeroacoustics

1. Introduction

For a single-component perfect gas, entropy perturbations are responsible for the
so-called ‘excess density’ in Lighthill’s acoustic analogy theory (Lighthill 1952), denoting
the difference between the overall density fluctuation and that associated with the
acoustic perturbation. Entropy perturbations are thus the incompressible part of density
perturbations. Physically, they can be generated by unsteady heat release, unsteady heat
transfer or viscous effects. Entropy perturbations are silent when advected by uniform
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FIGURE 1. (a) A schematic view of an axisymmetric flow expansion with an incoming
mean flow M̄0 and entropy wave s̃0 imposed at the inlet, and generated acoustic waves p̃±.
(b) Magnitude of the normalised mean velocity field. The white lines denote streamlines.

flows but generate sound when accelerated/decelerated (Marble & Candel 1977). This
generated sound is termed entropy noise and is an important contributor to indirect
combustion noise (Ihme 2017; Tam et al. 2019), which is highly relevant to thermoacoustic
instabilities in gas turbines and rocket engines (Keller, Egli & Hellat 1985; Morgans &
Duran 2016) and noise from aeroengines (Ffowcs Williams 1977; Duran et al. 2014).

For a quasi-1-D isentropic nozzle flow, the seminal theory of Marble & Candel (1977)
predicts the sound generation using isentropic flow conservation equations across the
nozzle for the zero-frequency limit. This was extended to any frequency by Duran
& Moreau (2013). In a recent laboratory-scale experiment for studying this (Rolland,
De Domenico & Hochgreb 2017), the flow was accelerated and then decelerated
through a hole, comprising a sudden area contraction followed by a sudden expansion.
The flow through the contraction remains largely attached and isentropic, while the
sudden expansion causes a massive, non-isentropic flow separation. The aforementioned
quasi-1-D isentropic theory was found insufficient for predicting the sound generation. To
explain the difference, De Domenico, Rolland & Hochgreb (2019) proposed an empirical
model which pointed to the flow non-isentropicity as the main mechanism responsible
for it. However, the model was not designed to identify detailed sound sources and the
explanation remains a hypothesis.

Even though the earliest theory of identifying entropy-related sound sources using an
acoustic analogy was studied nearly 50 years ago (Morfey 1973; Ffowcs Williams & Howe
1975), theoretical studies of this kind remain challenging. This is because the effects of
mean flow non-uniformity on the acoustic propagation and entropy sound generation need
to be properly distinguished, which becomes especially difficult in the presence of flow
separation and vortex shedding. A more systematic derivation based on the stagnation
enthalpy by Howe (1975) was used to study entropy noise for a nozzle with flow separation
(Howe 2010). However, quantitative validation is missing, and the key step of separating
the stagnation enthalpy perturbation into acoustic and entropy components, in order to
identify the entropy-related sound sources, needs to be clarified.

The key contributions of this paper are twofold. Firstly, we build on Howe’s theory to
derive a new form of the acoustic analogy, in which the acoustic and entropy perturbations
are clearly distinguished. Secondly, we apply this new theory to the canonical case of a
sudden area expansion, shown in figure 1, where the mean flow separation at the expansion
edge generates a large recirculation zone. Sound is produced when an entropy wave applied
at the inlet is decelerated by the flow. We use the theory to show that the presence and
spatial extent of the recirculation zone is the main factor causing deviation from quasi-1-D,
isentropic theory.
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Sound generation by entropy passing through flow expansions

The theory is developed in § 2 and used to resolve the flow expansion problem in § 3 by
using a Green’s function method. Results are presented in § 4 and simplified models are
proposed in § 5 to shed light on the physical mechanisms.

2. The acoustic governing equations

Neglecting mass sources, body forces and any heat addition and thermal diffusion, the
conservation of mass, momentum and energy for a single-component thermally perfect
gas gives

∂ρ

∂t
+ ∇ · (ρu) = 0, (2.1)

∂u
∂t

+ ∇B = u × ω + T∇s + 1
ρ

∇ · τ , (2.2)

ρT
Ds
Dt

= τ : ∇u, (2.3)

where ρ, t, u, T and s denote density, time, velocity, temperature and entropy, respectively,
B = h + |u|2/2 is the stagnation enthalpy, h the enthalpy, ω = ∇ × u the vorticity, τ the
viscous stress tensor, D/Dt = ∂/∂t + u · ∇ the material derivative, and : the double dot
product, such that M : N = tr(MNT). Dividing (2.1) by ρ and taking ∂/∂t, multiplying
(2.2) by ρ and taking the divergence, and then combining gives

− ρ
D
Dt

(
1
ρ

∂ρ

∂t

)
+ ∇ · (ρ∇B) = ∇ · (ρu × ω + ρT∇s + ∇ · τ ). (2.4)

Taking u· (2.2), adding (1/ρ)∂p/∂t to both sides, then using the relation dB = dh +
d|u|2/2 and the generic thermodynamic relations dh = dp/ρ + Tds and dρ = dp/c2 −
ρds/cp (where c is the sound speed and cp the heat capacity at constant pressure) gives

1
ρ

∂ρ

∂t
= 1

c2

(
DB
Dt

− T
Ds
Dt

− u · (∇ · τ )

ρ

)
− 1

cp

∂s
∂t

. (2.5)

Substituting (2.5) into (2.4) finally gives[
ρ

D
Dt

(
1
c2

D
Dt

)
− ∇ · (ρ∇)

]
B = ρ

D
Dt

(
T
c2

Ds
Dt

+ u · (∇ · τ )

ρc2 + 1
cp

∂s
∂t

)
− ∇ · (ρu × ω + ρT∇s + ∇ · τ ). (2.6)

The derivation so far makes only the assumptions stated at the start of the section. We
now apply further simplifications to the right-hand side. Due to the high Reynolds numbers
typical for flows of practical interest, the viscous stress tensor is neglected for the body of
the flow. (Its effect can be retained at the sharp separation edge, where it leads to the
generation of an irrotational jet flow bounded by an axisymmetric shear layer, the latter
idealised as an infinitely thin vortex sheet or a ‘free streamline’ (Batchelor 1967; Howe
1979), as shown in figure 1(a). The analysis therefore assumes the vorticity fluctuations
are either confined to a thin sheet or are negligible). Strictly, viscosity also leads to an
entropy source in (2.3), but this effect has been shown to be negligible (Morgans, Goh
& Dahan 2013; Xia et al. 2018), such that Ds/Dt = 0. Further assuming the gas to be
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calorically perfect, i.e. cp to be constant, then allows the first and third terms in the first
bracket on the right-hand side of (2.6) to be neglected, simplifying the equation to

[
ρ

D
Dt

(
1
c2

D
Dt

)
− ∇ · (ρ∇)

]
B = −∇ · (ρu × ω + ρT∇s). (2.7)

Equation (2.7) agrees with Howe (2010, (2.6)). To obtain the governing equations for
the acoustics, it needs to be linearised. We perform this differently to Howe (2010). We
use �[ ] and [ ]′ to denote mean and perturbation values, respectively. The thermodynamic
relation B′ = p′/ρ̄ + T̄s′ + (|u|2/2)′ indicates that, away from the (very thin) region where
vorticity perturbations exist, B′ comprises only acoustic and entropic components. These
need to be clearly distinguished for identifying the entropy-related sound sources.

By neglecting viscous terms, the time-average of (2.1)–(2.3) and (2.5) gives

∇ · (ρ̄ū) = 0, ∇B̄ = ū × ω̄ + T̄∇s̄, ū · ∇s̄ = ū · ∇B̄ = 0, (2.8a–c)

and, defining D̄/D̄t = ∂/∂t + ū · ∇, the linear perturbation of (2.3) gives

D̄s′/D̄t + u′ · ∇s̄ = 0. (2.9)

Taking the gradient of B′ gives

∇B′ = ∇
(

p′

ρ̄

)
+ ∇T̄ · s′ + T̄∇s′ + ∇

( |u|2
2

)′
. (2.10)

By combining (2.8a–c) and (2.10), and B′ = p′/ρ̄ + T̄s′ + (|u|2/2)′, we obtain

ρ
D
Dt

(
1
c2

D
Dt

)
B = ρ̄

D̄
D̄t

{
1
c̄2

[
D̄
D̄t

(
p′

ρ̄
+
( |u|2

2

)′)
+ T̄

D̄s′

D̄t
+ ∇B̄ · u′ + ū · ∇T̄s′

]}
,

(2.11)

∇ · (ρ∇B) = ∇ ·
[
ρ̄∇B̄ + ρ̄∇

(
p′

ρ̄
+
( |u|2

2

)′)
+ ρ̄∇T̄s′ + ρ̄T̄∇s′ + ρ′∇B̄

]
, (2.12)

∇ · (ρu × ω + ρT∇s)

= ∇ · [ρ̄ū × ω̄ + ρ̄T̄∇s̄ + ρ′(ū × ω̄ + T̄∇s̄) + ρ̄(u × ω + T∇s)′]. (2.13)

Substituting (2.11)–(2.13) into (2.7), cancelling out mean values and incorporating
(2.8a–c), (2.9) as well as the thermodynamic relation cpdT = Tds + dp/ρ, the
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Sound generation by entropy passing through flow expansions

equation gives

L1︷ ︸︸ ︷
ρ̄

D̄
D̄t

[
1
c̄2

D̄
D̄t

(
p′

ρ̄
+
( |u|2

2

)′)]
− ∇ ·

[
ρ̄∇

(
p′

ρ̄
+
( |u|2

2

)′)]

+

L2︷ ︸︸ ︷
ρ̄

D̄
D̄t

[
(ū × ω̄) · u′

c̄2

]
+

L3︷ ︸︸ ︷
∇ ·

(∇s̄
cp

p′
)

=
I︷ ︸︸ ︷

∇ · [ρ̄(ω × u)′] +

II︷ ︸︸ ︷
∇ ·

(∇p̄
cp

s′
)

−

III︷ ︸︸ ︷
∇ ·

(
ρ̄ū

ū · ∇T̄
c̄2 s′

)
−

IV︷ ︸︸ ︷
ρ̄ū · ∇T̄

c̄2
∂s′

∂t
. (2.14)

This equation takes the form of an acoustic analogy, with the left-hand side comprising
terms which predominantly describe acoustic propagation and the right-hand side
comprising acoustic sources due to entropy and vorticity perturbations. It is one of the key
results of this paper. Its derivation from the flow conservation equations has assumed only
(i) a single-component perfect gas with no external mass, volume force or heat sources,
(ii) viscosity negligible in the main body of the fluid and (iii) linear perturbations.

In the absence of entropy and vorticity perturbations, terms II, III, IV and the ω′-related
part of term I disappear, and the equation collapses to one describing sound propagation.
When the mean density and sound speed are constant, L1 simplifies to the familiar
convected wave operator (D̄2

/D̄t2/c̄2 − ∇2). Terms L2, L3 and I capture the effects of
the mean entropy gradient and mean vorticity.

Terms II, III, IV represent sound sources due to entropy perturbations. With their
divergence operator, terms II and III correspond to dipole-type sources, with the ∇p̄/cp
factor in II consistent with the works of Morfey (1973, (10)), and Ffowcs Williams & Howe
(1975, (1.4)). Term IV is a monopole source, which is O(M) compared to II, consistent with
Ffowcs Williams & Howe (1975, p. 618). Some new insights are facilitated by this equation:
dimensional analysis reveals that term III is O(M2) smaller than term II, and there is
a He = ωRu/c̄ factor (where He is the Helmholtz number, ω is the angular frequency
and Ru the radius of the upstream duct) as well as a O(M) factor in IV compared to II.
Note that the entropy-related sources, including the leading-order term II, are different
to those in Howe (2010, (2.13)). There, the entropy-related source term disappears in the
zero-frequency limit, making it impossible to recover the quasi-1-D isentropic model of
Marble & Candel (1977). In contrast, as will be shown in § 5, the current model is able to
recover it, highlighting the importance of carefully distinguishing the acoustic perturbation
from the entropy perturbation.

The sound sources due to vorticity perturbations are term I as well as the vortical parts
of (|u|2/2)′ in term L1 and u′ in term L2. The vortical parts will be non-zero in the region
where ω′ /= 0. Howe (1975) showed that term I is dominant at low Mach numbers, the
other terms being O(M2) less efficient sound generators. This justifies our leaving them
on the left-hand side, rather than attempting to separate them out as acoustic sources.

In order to formally derive a form for (2.14) which is both simpler and has a stricter
separation of propagation and source terms, the source terms are simplified. This is done
by restricting our attention to only low-Mach-number flows at low frequencies (He ≤
O(10−1)). It is worth noting that (2.14) does not require a low-Mach-number assumption.
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The new insights discussed above then allow us to neglect the entropy source terms III
and IV. Representing u′ as the sum of acoustic, [ ]′a, and vortical components, [ ]′v , the
vortical parts of (|u|2/2)′ in term L1 and u′ in term L2 can also be neglected. Equation
(2.14) then simplifies to

L1︷ ︸︸ ︷
ρ̄

D̄
D̄t

[
1
c̄2

D̄
D̄t

(
p′

ρ̄
+
( |u|2

2

)′

a

)]
− ∇ ·

[
ρ̄∇

(
p′

ρ̄
+
( |u|2

2

)′

a

)]
+

L2︷ ︸︸ ︷
ρ̄

D̄
D̄t

[
(ū × ω̄) · u′

a

c̄2

]

+

L3︷ ︸︸ ︷
∇ ·

(∇s̄
cp

p′
)

−
L4︷ ︸︸ ︷

∇ · [ρ̄(ω̄ × u′
a)] =

I︷ ︸︸ ︷
∇ · [ρ̄(ω̄ × u′

v + ω′ × ū)] +

II︷ ︸︸ ︷
∇ ·

(∇p̄
cp

s′
)

.

(2.15)

The left-hand side is now purely an equation governing sound propagation, with the
right-hand side being the simplified sound sources. The left-hand side gives the full
equation governing how sound propagates after it is generated within the considered
domain or inserted at a boundary: L1 simplifies to (D̄2

/D̄t2/c̄2 − ∇2) when the effect of
spatial gradients of the mean density and mean sound speed on the sound propagation are
neglected, L2 and L4 capture the effect of the mean vorticity on the sound propagation,
and L3 captures the effect of the mean entropy gradient on the sound propagation. The
right-hand side gives the low-Mach-number sound source terms within the domain – I
and II are due to vorticity and entropy perturbations, respectively.

3. Sound generation at the sudden expansion

The theory developed in § 2 is now applied to the sudden area expansion problem of
figure 1. For this problem, the mean flow is predominantly in the x-direction, and the
frequencies of interest are low. This means that (2.15) can be further simplified.

At low frequencies, any mean flow non-uniformity has much smaller spatial
extent than the acoustic wavelength. The effect on the sound propagation is small,
such that for the propagation terms on the left-hand side, ρ̄, c̄ and the mean
flow velocity can be taken as uniform (ū = ūi where i is the unit vector in
the axial direction) in L1. While L2 and L4 exist where ω̄ /= 0, dimensional
analysis shows that they are O(M) compared to the first and second terms in L1,
respectively, and can be neglected. Term L3 is approximately O(M2) compared to
the second term in L1 and is also neglected. Defining the acoustic component of
the stagnation enthalpy fluctuation as B′

a = p′/ρ̄ + (|u|2/2)′a and using the ansatz
[ ]′ = [̃ ] eiωt where [̃ ] denotes the Fourier amplitude, (2.15) then reduces to[

1
c̄2

(
iω + ū

∂

∂x

)2

− ∇2

]
B̃a = ∇ · (ω̃ × ūc) + 1

ρ̄
∇ ·

(∇p̄
cp

s̃
)

. (3.1)

For the first term on the right-hand side, ūc is the convection velocity of the shed vorticity,
which is typically the average velocity in the resulting shear layer (Howe 1979; Dupere &
Dowling 2001), and ω̄ × ũv is neglected based on Howe (1979), Dupere & Dowling (2001),
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Sound generation by entropy passing through flow expansions

Yang & Morgans (2016). When the frequency tends to zero, the vorticity phase variation
along the vortex sheet near the expansion becomes negligible, and term I in (2.15) can also
be approximated by a quasi-steady approach as in Howe (2010, § 4.3).

This equation is now solved using the Green’s function method. The Green’s function,
G̃(x, y;ω), denotes the acoustic response at the location of an observer, x, due to a Dirac
delta function, δ, at the source location, y:[

1
c̄2

(
iω + ū

∂

∂x

)2

− ∇2

]
G̃ = δ(x − y). (3.2)

For a given space V , bounded by surfaces s (being positive in the outwards direction), the
solution for B̃a can be obtained by convolution of the Green’s function with the boundary
and volume acoustic source terms. Defining k = ω/c̄, this gives

B̃a =
∫

∂V

(
−2ikM̄G̃B̃ai + G̃∇B̃a − B̃a∇G̃

)
· ds −

∫
V

∇G̃ ·
(

ω̃ × ūc + ∇p̄
ρ̄cp

s̃
)

dv.

(3.3)
The solution follows the method of Yang & Morgans (2016, § 2), dividing the problem

into a region upstream of the expansion and a region downstream. For each, the Green’s
function is expressed as a Fourier–Bessel expansion for the cylindrical geometry and the
relevant boundary conditions applied, before substituting into (3.3).

For the acoustic source terms, upstream of the expansion, the entropy disturbance
advects within a uniform flow and neither vortical nor entropic acoustic sources exist.
Downstream, flow separation causes a thin cylindrical sheet of vorticity at the radius of the
upstream duct. When the entropy wave passes through the expansion, it decelerates, setting
up an acoustic field. This contains many radial modes in the vicinity of the expansion, even
though all other than the plane wave mode will be evanescent at low frequencies. This
acoustic field in turn leads to unsteady vorticity to be shed at the separation edge. Thus,
both entropic and vortical source terms exist.

The velocity oscillation at the interface is expanded as the sum of a series of Bessel
functions to capture the large number of radial modes – the strength of each ‘Bessel mode’
needs to be solved for. The strength of the unsteady vorticity follows from applying a
Kutta condition at the separation edge (e.g. Howe 1979), and again needs to be solved for.
The perturbation B̃a just upstream of the expansion interface is represented in terms of
the interface velocity oscillation (Yang & Morgans 2016, (15)). The perturbation B̃a just
downstream of the expansion is represented in terms of the interface velocity oscillation
and the unsteady vorticity (Yang & Morgans 2016, (32)). An important difference in the
present work is the additional presence of an entropic source term downstream of the
expansion, with this depending on the mean pressure gradient in both the axial and radial
directions:

B̃a(x = 0+, rx ≤ Rd)|s = −
∫

V

(
∂G̃
∂y

∂ p̄
∂y

+ ∂G̃
∂ry

∂ p̄
∂ry

)
s̃

ρ̄cp
dv. (3.4)

The mean pressure and entropy wave profiles are obtained from simulations, as described
in § 4. Finally, by applying continuity of B̃a across the expansion interface and the Kutta
condition at the separation edge, both the velocity oscillation and unsteady vorticity can
be resolved. Then B̃a and the reflected and transmitted acoustic waves can be obtained.
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FIGURE 2. (a,b) Real part of the entropy perturbation for: (a) St = ωRu/ū0 = 0.5 and
(b) 0.0125 – results are from the bespoke simulation. (c) Mean pressure from RANS simulation
and (d) real part of the perturbation pressure at St = 0.0125 obtained by full LNSE simulations.
The green line denotes the separation streamline.

4. Results

We now compare the predictions of the model with numerical results for a sudden
expansion with radius ratio λ = Rd/Ru = 1.7 (see figure 1). A uniform flow of normalised
speed M̄0 = 0.2 is imposed upstream of the expansion, giving a Re = ū0Ru/ν = 106,
where Re is the Reynolds number, ū0 the mean velocity at the inlet and ν the
kinematic viscosity. The mean flow is obtained as the solution of the compressible
Reynolds-averaged Navier–Stokes (RANS) equations, solved using the finite volume
solver OpenFoam with the shear stress transport SST − k − ω turbulence model. The flow
is modelled as a laminar uniform flow upstream of the expansion. Figure 1(b) shows that
after the area expansion, the flow separates, leading to a large turbulent recirculation zone.
An entropy wave, s̃0, is inserted at the inlet and a numerical solution of the full linearised
Navier–Stokes equations (LNSE) based on the mean flow is obtained using a finite element
solver (authors’ unpublished observations). Non-reflecting acoustic boundary conditions
are used at both ends, so only reflected and transmitted plane acoustic waves exist,
respectively, at the far up- and downstream ducts. The frequency is normalised by using the
Strouhal number St = ωRu/ū0. This solution will be used in the following to benchmark
the model.

We now turn our attention to the model presented in § 3. The source term of the model
requires both the mean pressure and the entropy perturbation within the domain as inputs.
The mean pressure is provided by the RANS simulation described above. For the entropy
perturbation profile, a bespoke simulation is performed. As the Reynolds number is high,
so viscous effects can be neglected. The mean entropy gradient is also small in the current
case due to the low Mach number, so the propagation of the inserted entropy perturbation
could be treated as nearly isentropic. We neglect the mean entropy gradient in (2.9) so
that the entropy perturbation decouples from the acoustics. A solution of this advective
equation, i.e. D̄s′/D̄t = 0, is obtained numerically using the finite element method.

Figure 2(a,b) shows the spatial entropy distribution for two different frequencies as
a solution of this advective equation. For both, the entropy presence expands after
the expansion, but does so gradually, meaning that there is an annular region in the
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FIGURE 3. Acoustic reflection amplitudes predicted by the present model, the compact Marble
& Candel (1977) model and the full LNSE simulations.

recirculation zone, delimited by the streamline passing through the separation point, where
the entropy does not penetrate. This has important implications for the acoustic generation,
since the entropy contribution to the source term in (3.1) is negligible in that region. To
compute this source term, the gradient of the mean pressure is also required. Figure 2(c)
shows that the mean pressure remains uniform upstream of the expansion and recovers
along the length of the recirculation zone with the gradient in the axial direction being
significantly larger than in the radial one. It remains almost constant immediately across
the area expansion. The entropy-related source is thus concentrated within the expanding
jet, with negligible presence in the recirculation ring.

This entropy-related source term is now combined with the Green’s functions as
described in § 3 to predict the reflected acoustic waves. Figure 3 shows predictions from the
present model compared to the LNSE and the compact quasi-1-D isentropic model from
Marble & Candel (1977, (31)). Note that the acoustic pressure perturbation is normalised
by γ p̄0 where γ denotes the heat capacity ratio and p̄0 the mean pressure at the inlet,
and the entropy perturbation is normalised by cp. The Marble & Candel model assumes
the expansion to be compact compared to both the acoustic and entropy wavelengths
and, thus, has no frequency dependence. The LNSE predicts a nearly constant acoustic
reflection amplitude when St ≤ 0.03, but its value (≈ 0.007) is much lower than that from
Marble & Candel (1977) (≈ 0.016). We want to emphasise that the LNSE numerical solver
did predict the same reflection coefficient as Marble & Candel’s model when a smooth
contraction, with no flow separation, was considered. When St > 0.03, non-compact
effects cause a drop-off in the reflection coefficient amplitude in the form of a low-pass
filter. Predictions from the present model closely match the low-frequency (compact) limit
of the LNSE predictions, and also capture the fall-off at higher frequencies.

5. Simplified models

The physical mechanism causing the low-frequency acoustic reflection coefficient to
differ substantially from that predicted by Marble & Candel (1977) remains unclear. Two
simplified models are proposed in this section to further analyse this difference.

The first model, which we denote SimpM1, simplifies the entropy-related source term
in (3.1). Figure 2 indicates that the source term is negligible inside the annular separation
bubble and the mean pressure gradient is mainly in the axial direction (the radial gradient
of p̄ in (3.4) is negligible). At low frequencies, the entropy perturbation remains quasi-1-D.
We thus assume a quasi-1-D mean flow profile within the given separation streamline
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FIGURE 4. Effect of the axial extent of the recirculation zone on the acoustic response.
(a) Green dashed line denotes a prescribed separation streamline for the central jet, ry = 1.35 +
0.35erf[( y − ymid)/(

√
2ε)] where erf is the error function, and p̃±, p̃±

mid are plane acoustic waves.
(b) Reflected acoustic wave amplitude at St = 0.01 against axial location of streamline expansion,
ymid: ‘noV’ denotes that the vortical sound source is neglected.

(i.e. a nozzle geometry that follows the separation streamline). Additionally, this mean
flow is assumed isentropic so that we can use the classical solutions for an isentropic
1-D nozzle. The entropy perturbation is then obtained from the 1-D advection equation
(iω + ū(x)d/dx)s̃ = 0. This greatly simplifies the entropy-related source term.

The second model, which we denote SimpM2, applies the simplifications of SimpM1,
and further simplifies the Green’s function in (3.4). An acoustic field is generated where
there is flow deceleration, hence where the cross-sectional area occupied by the central jet
varies. If the main jet expansion, and hence flow deceleration, occurs substantially beyond
the area-increase interface, the generated higher-order acoustic modes decay before they
reach the interface. We can then neglect all higher-order terms in the Green’s function
Bessel expansion and retain only the plane acoustic waves generated by the entropy-related
source. This assumption is supported by the simulated pressure field in figure 2(d).

One would expect SimpM1 to recover Marble & Candel’s compact quasi-1-D isentropic
model if the frequency is low. However, we now show this to be true only if the axial extent
of the recirculation zone is negligible. In order to artificially consider recirculation zones of
different axial extents, an error function is used to model different separation streamlines,
as shown in figure 4(a). A small standard deviation, ε = 0.0001, ensures a steep expansion
at ymid. Figure 4(b) shows that SimpM1 predictions tend to those from the Marble &
Candel (1977) model only when ymid � 10−2. Beyond this value, the reflected acoustic
wave amplitude falls off until it converges, at approximately ymid = 1, to the prediction
from SimpM2. Thus, if the expansion of the central jet occurs an (upstream) radius or more
beyond the expansion interface, the sound generated is very different to that predicted
by the compact quasi-1-D isentropic model, even in the low-frequency (compact) limit.
The sound is then accurately predicted by the simplest model, SimpM2.

For real flows across significant area expansions, the recirculation zone usually extends
far enough beyond the expansion plane that SimpM2 can be expected to provide good
sound prediction. This is confirmed for the sudden expansion, now using the separation
streamline from the RANS mean flow. Figure 5 shows that SimpM1 and SimpM2 predict
very similar low-frequency acoustic reflection amplitudes, these being much closer to the
LNSE results than those from the Marble & Candel model. They both also capture the
higher-frequency fall-off, although with less accurate slope prediction than from the full
model of figure 3. This suggests that, for the entropy-related source, 2-D effects become
important at higher frequencies, consistent with visualisations in figure 2(a).
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FIGURE 5. Reflected acoustic wave amplitude against Strouhal number using the RANS
separation streamline: ‘noV’ and ‘V’ denote neglecting and accounting for vortical sound source,
respectively.

Finally, both SimpM1 and SimpM2 can either neglect or account for the vorticity-related
source term in (3.1). Figure 5 shows that accounting for it improves the predictions
towards the LNSE results, but only slightly. This confirms that the entropy-related source is
dominating over vorticity-related source, and that the size of the recirculation zone rather
than flow non-isentropicity is the main factor causing different sound to that predicted by
the quasi-1-D isentropic models.

6. Conclusions

The work makes two important contributions. Firstly, a new form of acoustic analogy
is proposed that provides the first systematic derivation of the sound source terms due to
entropy perturbations. This was achieved by revisiting Howe’s acoustic analogy theory
and carefully distinguishing acoustic perturbations from the entropy perturbation. At low
Mach numbers and frequencies, the equation simplifies to an acoustic analogy in which
acoustic propagation and acoustic source terms can be completely distinguished. Secondly,
this governing equation was used to perform a quantitative study of the sound generated
when entropy perturbations pass through a sudden flow expansion. The analogy was solved
semi-analytically using a Green’s function method and the acoustic reflection predictions
were compared with those from both linearised Navier–Stokes equation simulations
and quasi-1-D isentropic models. The comparisons showed, for the first time, that flow
separation significantly changes entropy sound generation, leading both to a change in
low-frequency (compact) behaviour and to a low-pass filter effect. This was shown to be
mainly due to the spatial extent of the recirculation zone rather than non-isentropicity.
It was also confirmed that, for the generated upstream propagating acoustic waves in the
current case, the noise component associated with the vorticity shed at the separation point
is subdominant in the sound generation process. Although not presented in the present
paper, the downstream-travelling (transmitted) acoustic waves have also been calculated
and modelled, with similar findings. The numerical (LNSE) predictions again differ to
those from the Marble & Candel model, with the present simplified models able to capture
the numerical predictions well. The interplay of the Kutta condition, the vorticity source
term and the acoustic field is subtle in the present case, but could become more important
at higher Mach numbers. An extension of the model to compare with recent experimental
results (Rolland et al. 2017), where entropy perturbations pass through a circular hole, is
also under active studies by the authors.
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