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ABSTRACT

In most areas of research the variety of possible approaches to analysis and 
design problems is very large. This is particularly true in the case of digital signal 
transmission where various conflicting requirements exist (e.g. minimum 
bandwidth for maximum information capacity and reliability). The lack of 
universally adopted analysis and evaluation methods is not due to any 
uncertainties or deficiencies in theoretical fundamentals, rather it is a problem of 
diversity of criteria and therefore modes of specification that apply.

The work presented in the thesis is concerned with the creation and 
evaluation of a universal algorithm suitable for the assessment of digital codes 
together with a systematic approach to the comparative evaluation of essential 
structural and spectral features of coding schemes.

The thesis begins with an overview of the basic theoretical principles of line 
coding as an essential part of the process of channel coding for reliable and 
efficient digital signal transmission. A general spectral analysis procedure is 
derived from the finite-state sequential machine model of fixed-length block 
coders, and is implemented in the form of a computer program. A technique for 
the conversion of coder rules, given in descriptive form into table and matrix 
form, suitable for the universal specification format used in the general spectral 
analysis procedure, is developed.

A new method of general classification of codes into categories, according 
to their complexity levels, is proposed. A modification of the spectral analysis 
routine into a universal block-code generating scheme is then introduced. The 
virtually unlimited capabilities for the design and analysis of new code structures 
is demonstrated. Following from this, a new method for evaluation of the 
performance of block codes is suggested. It is based on the introduction of an 
integral parameter, the Information Capacity, which determines the degree of 
possible spectrum modification for a particular coder specification. Using this 
method, it is demonstrated how an optimal combination of a code structure, 
spectral features and information capacity can be achieved.

The thesis concludes with a practical example of the application of the 
generalised analysis procedure, demonstrating the possibility to combine code 
multiplexing with modification of the spectrum of the line signal. A novel 
technique, based on the principles of spread spectrum for multichannel 
transmission, is proposed. It involves a Binary-Multiplexed Coding (BMC) scheme 
which is implemented in a generalised circuit, the performance of which is 
investigated and evaluated.
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INTRODUCTION

In most areas of research the variety of possible approaches to analysis and 
design problems is very large. The choice of a suitable method for assessment of 
technical solutions is often hampered by the lack of a generally accepted basis and 
conceptual coherence. The conclusions from the development and the 
implementation of new ideas are sometimes very difficult to evaluate due to 
incompatible specifications and unnecessary diversity of the presentation of 
otherwise very similar results.

The problems outlined above are very common in the area of digital signal 
transmission. Consequences, such as inaccuracy and reinvention, are quite likely, 
especially in the design and analysis of codes for digital communications. 
Presentations related to various issues of line coding, for example, often resort to 
primitive descriptions of pulse waveforms to specify the code rules, while the 
frequency characteristics of coded signals are approximated and incomplete.

The lack of universally adopted analysis and evaluation methods is not due 
to uncertainties or deficiencies in the respective fundamental theoretical 
developments. Ever since C. Shannon published his remarkable “ The 
Mathematical Theory of Communications” , in 1949, followed by such profound 
works as those of E. R. Berlekamp, 1968, R. W. Hamming, 1980 and, indeed, 
many others [7, 10, 18], there has always been a sufficiently sound basis for 
uniform and exhaustive assessment of most results in the field of information 
transmission and coding. One of the main reasons why certain theoretical 
achievements are still not in general use, is the relatively small number of simple 
and efficient techniques for their practical implementation.

The purpose of the research work presented in the thesis has been the 
creation of a universal algorithm for assessment of digital codes together with a 
systematic approach in the comparative evaluation of the essential structural and 
spectral features of different coding schemes, which would allow the superficial 
diversity and inconsistency in their specification to be overcome. The main results 
in the accomplishment of those purposes are given in chapters 3, 4 and 5 of the 
thesis. Chapter 3 describes the implementation of a simple and powerful 
computational procedure, whose accuracy and precision are defined by an 
elaborate theoretical model of the digital coder [18]. The universal applicability 
and potential of the spectral analysis routine as a useful research tool is 
demonstrated in Chapter 4 through a detailed assessment of many existing and 
proposed new coding schemes.
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The specialised software algorithm has been further extended into a flexible 
design and simulation program with the capability to construct a theoretically 
unlimited number of fixed-length block codes. A fundamental result from the 
uniform analysis and design approach is the method for general classification of 
digital coding techniques, according to suitably defined complexity levels, which is 
developed in Chapter 5. By detailed investigation of several categories, 
representing different complexity levels, it is shown that all existing codes, which 
have been analysed, appear exactly in the expected groups and classes. The 
suggested classification structure, combined with the computational flexibility of 
the analysis algorithm, has created additional possibilities for comparative 
assessment of the overall characteristics of different coding schemes. The 
introduction of a parameter providing an integral evaluation of the structural and 
spectral features of codes, is described in Chapter 6. The possibility to specify a 
measure of the overall characteristics derives from the unique code definitions 
produced through the uniform analysis and design approach. It is based on 
graphical interpretation of the relations between the sets of symbols and coder 
states used to determine the finite-state sequential machine model of a coder.

An additional application of the spectral analysis routine is presented in 
Chapter 7. The digital transmission technique, described in this chapter, 
illustrates the possibility to use pseudo-random sequences for spectrum spreading 
in multichannel binary transmission. The results in Chapter 7 are mainly 
suggestive, indicating alternative sources of very efficient block codes, suitable for 
high speed applications, which eliminate the need for look-up tables or other 
memory requirements. Apart from the possibility to combine the processes of 
channel multiplexing and coding for spectral shaping, the results show the 
potential of the frequency analysis procedure, whose performance is not restricted1 
by the length of the code blocks or the complexity of the coder.

Finally, it should be noted that the presentation of the research results 
intends to provide a sufficient background material, included in the introductory 
chapters, to make the thesis largely self contained. Chapter 1 is an overview and a 
summary of the basic principles of coding. It has been considered essential to 
identify the role and the significance of line coding as an integral part of the 
process of improving the efficiency and the reliability of the communication 
channel. The author’s personal views on the importance of the different types of 
coding are expressed through an interpretation of the common theoretical basis 
and the interrelations between source coding, error-control coding and line coding.

1 Within the limitations of the computing environment.
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The purpose of the extended introduction of the fundamentals of coding for 
digital communications is to outline the essential concepts in the use of digital 
structures for information transmission. The brief presentation of the underlying 
theory for the three types of coding aims to suggest the grounds for a unified 
assessment, analysis and design of codes in general. These ideas axe further 
developed in Chapter 2 by the introduction of the main criteria for uniform 
assessment of coding structures and the possibility for their systematic 
classification.
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1. DIGITAL SYSTEMS FOR INFORMATION TRANSMISSION

Transmission of signals in digital form is expected to dominate in more 
than 90 percent of the communication systems by the end of this century [Miller, 
1988]. The rapid expansion of the variety and the volume of services provided via 
telecommunication networks demands continuous improvement of speed and 
efficiency of information processing. Satellite and fibre-optic communications are 
only two of many remarkable achievements in this direction.

1.1 Digital Communications, Main Objectives and Requirements

The principles of digital transmission had been known for many years 
before they were seriously considered for wide-spread and efficient practical 
implementation. Most of the factors which have contributed significantly towards 
the remarkable progress in the research and development of digital 
communication systems can be summarised in two groups1.

A) The increased demand for information services with greater capacity and 
reliability:

• telephone networks have become an essential part of social life, while the 
integration of video and data is about to expand the information systems 
from public and business facilities to the premises of individual users;

• accumulation of data (scientific, business, etc.) and greater interaction in 
almost any area of human activity have made the distribution and 
exchange of information an important condition for success;

• communicating electronic systems for automated and distance 
operation/control have become intrinsic to many technical constructions.

B) The possibilities provided by many new technologies:
• the achievements in microelectronics and the development of components 

with amazing scales of integration have made higher levels of complexity 
accessible and manageable;

• optoelectronics and the expansion of research into open space have allowed 
the rapid growth of fibre-optic an satellite communication networks;

• the ‘intelligent chip’ and the computers provided for satisfactory levels of 
control and reliability of the increasingly complex structures of 
communication systems.

1 A more elaborate list of reasons for introducing digital communications can be found 

in [Marshal, 1980].
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How successfully and efficiently the digitally encoded information is 
transmitted over the lines of a communication network is the problem addressed 
in this presentation. Although the evolution period of digital systems has not been 
very long, the amount of research in different types of signal processing has been 
so substantial that separate areas have formed. Each one of them deals with 
problems so specific that results in the different areas have in common little more 
than the underlying theory. Most of these areas can be identified with respect to 
the functional diagram of a general communication system. Such a system is 
confined within the boundaries set by the concept of information transmission 
illustrated in Fig. 1.1.

Fig. 1.1 The general communication channel

The diagram may not be very informative, but it suggests the important 
idea that not only the physical transmission lines or free space, but also any 
structure of systems and the respective signals connecting the source with the 
destination, may comprise the Information Channel. A more detailed 
representation of a digital communication system is given in the next section in 
order to determine the place and the role of line coding with respect to other areas 
of digital signal processing and transmission.

1.2 Functional Description of a Digital System for Information Transmission

In general the communication process can be described as follows. A 
message is ‘originated’ by the source, it ‘travels’ over the communication channel 
and ‘arrives’ at the destination. The word ‘travel’ has been used deliberately to 
indicate some important semantic notions about the terms used in describing the 
basic concepts of information transmission. The fact that a message ‘travels’ 
conveys one of the basic limitations in the process of communication -  time. It 
can be expressed in the following two statements: •

• The analysis of information transmission refers to finite time 
intervals greater than zero.

• The amount of information communicated per unit time is finite.
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The limiting factor of time has its most significant implication in determining the 
information capacity of signals and systems based on the fundamental principles 
of the Information Theory, which are discussed later. The second unusual word 
used in the above description is ‘arrives’ . It indicates that the analysis of the 
communication process does not depend on any effects caused by the message at 
the destination.

At this stage it is essential to note that the engineering problems in 
communication theory refer to the representation of messages by sets of symbols, 
the statistical properties of these symbols, and the physical signals used for 
purposes of processing and transmission of the symbols. It is impossible to 
describe the whole variety of sources and symbol sets. Most are generically 
analogue which means that the message is embedded in the continuous-time 
variation of some feature of a natural phenomenon, like sound level, light 
intensity, etc. Another category of sources are those whose sets of symbols are 
discrete2, i.e. the message is embedded in symbols which occur at discrete instants 
of time. These types of sources are usually artificial, like an alphabet or sampled 
evaluation of a continuous time process. In general the analogue information 
sources are studied through adequate models (e.g. a continuous-time function) of 
the essential characteristics of the phenomena corresponding to the possible 
messages. Discrete sources, on the other hand, are best described through 
evaluation of the statistics of the respective symbol sets which some times may 
require very involved application of the Probability Theory.

The models used in the theory of communication systems are based on the 
fact that messages are transformed into variations of some parameters of electrical 
signals. This is why the research and design in the area of information 
transmission from an engineering point of view is predominantly concerned with 
the development of electronic systems and the studying and implementation of 
electrical signals for communication purposes. The general functional diagram of a 
digital communication system is shown in Fig. 1.2. It is assumed that the source is 
represented by the output of a device which generates an electrical signal. 
Analogously the destination is considered to be the output of the system where an 
electrical signal is produced so that it can be directly transformed into some 
recognisable effect, intended by the source. The rest of the diagram indicates most 
of the common processes between the source and the destination.

2 It should be noted that so far symbols have been referred to as something intrinsic to 

the entity which generates the message. Further in this presentation the same term is redefined 

according to the theoretical model of a different part of the communication system.
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SOURCE CODING

SOU RCE ■* discretisation ■> digitisation---------►

Fig. 1 .2  Components of the general communication system

Fig. 1.2 illustrates a conventional decomposition of the information channel 
into three functionally independent parts -  transmitter, propagation medium and 
receiver. The amount of theoretical investigation and the practical results 
concerned with the specific processes in each of the three parts have been so 
extensive that separate areas of research and development have formed. The 
effects of various transmission media on the signals carrying information have 
been thoroughly studied and the diversity of the problems involved is suggested 
by mentioning only the main types of signal propagation environment: metal 
cables, free space, optical fibres. The signal waveforms propagating through a 
particular physical environment should have parameters allowing for minimum 
loss and efficient transmission of information. Topics which involve the analysis of 
signals suitable for various propagation media, like optical or electromagnetic 
waveforms are not discussed in the thesis. The research results concern specific 
problems of the adaptation of digital signals to the spectral characteristics of the 
transmission environment.

Further considerations, narrowing down the subject of the presented work 
and revealing its place relative to the other parts of the communication system
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are given below. Some assumptions, which allow the presentation to concentrate 
on specific topics in the theoretical investigation of line coding techniques, are 
worth noting.

1) The problems to be analysed in the following chapters can be confined to 
the transmitting side without diminishing their general applicability. This 
assumption is based on the fact that most solutions developed for various 
functions of the transmitting side are suggestive with respect of the 
corresponding functions of the receiving side. Indeed the principal 
operation of the receiver is to reverse the adequately synchronised signal 
transformations back to the point where they can be directly interpreted as 
the intended message.

2) For most purposes in the design of the transmitting part it is sufficient to 
specify the characteristics of the signals at the transmitter output. 
Therefore the analysis of digital line codes and the suggested coding 
techniques are not confined to particular implementations.

It is a popular view that line coding theory lacks the intellectuality and the 
elegance of source and error control coding which require a very involved use of 
the Theory of Information and Probabilities. However, it is the author’s opinion 
that most fundamental principles of both areas also apply to the design and 
analysis of line codes. In fact one of the purposes of this work is to suggest the 
possibility of developing a common approach to the problems of coding in general. 
As a first step in this direction a more detailed introduction to the different types 
of coding is given in the following subsections, in order to outline the differences 
and the similarities between the respective areas. The main objective of this 
extended overview is to determine the essentials of source and error control 
coding. At the same time the underlying concepts of coding for information 
transmission are revealed with the intention to suggest the basis for a unified 
representation, design and analysis which can be applied to most coding 
techniques.

1.2.1 Source Encoding

Some of the ideas describing the process of digitisation are briefly presented 
below mainly for the purpose of completeness. These ideas may not bear a direct 
relation to the problems of digital line coding but they constitute the theoretical 
basis for the most essential difference between analogue and digital signals -  the
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possibility of time multiplexing. In other words, the sampling principles provide 
the conditions for recovery of a signal from samples of it taken at discrete instants 
of time. Whatever the subsequent presentation and processing of the samples the 
fundamental achievement is the possibility to group and interleave in time 
discrete values of signals from one or more sources. Finally, the problems of Time- 
Division Multiplexing (TDM) can be interrelated to line coding as will be shown 
in Chapter 7.

As mentioned above, any signal can be correctly represented by a time 
series of discrete samples of signal values. The major question is how to define the 
conditions which would allow for recovery of the original signal. The answer is 
given by a theorem which for the case of sampling a baseband3 signal in the time 
domain can be stated as follows:

If a(t) is a signal with frequency components f a <  | F a | , it can be 
uniquely determined by taking at least one sample of the signal every
time interval T < 2 F n

The above is known as the sampling theorem and F s =  1/Tg is referred to as the 
sampling rate. In the case of bandpass signals whose frequency range is given by 
F j <  /a  <  F j +  F a the conditions for determining F s are more complex. No 
further detail is provided here regarding sampling theory as the problems are 
thoroughly discussed in the literature [Peebles, 1987] and they are not directly 
related to the subsequent presentation.

A direct implementation of sampling theory are communication systems 
which employ various pulse modulation formats. In these systems the amplitude, 
the width or the position of a pulse waveform take values corresponding to the 
samples of signal. The problems addressed in the analysis and the design in this 
type of signal transmission involve mainly the choice of suitable pulse shape, 
optimal ratio between the duration of the pulses and their repetition period and 
what part of of the sampled waveform is to be represented by each pulse. In these 
systems digitisation is not performed explicitly unless all possible values of the 
modulated pulse stream are considered symbols of some suitably defined number 
system.

Quantisation is the second stage of the source encoding function of the 
transmitter, where the samples of the original signal are substituted with 
quantities from a finite subset of the range of possible signal values. The main 
consequence of this process is that the original signal can no longer be exactly

3 The frequency range of a baseband or lowpass signal contains the zero frequency.
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recovered from its quantised version. The values of the latter are different from 
the initial samples and no practical method can be applied to keep a record of 
every individual error. This in fact is the main concern in designing methods for 
efficient quantisation with minimum overall error. Signal waveforms representing 
natural information sources usually exhibit very little uniformity. This may result 
in big variations of the quantisation error if the quantising values are not suitably 
chosen. To overcome these problems the statistical features of the signals have to 
be identified and the optimum pattern of error variations determined. One 
possible approach is to use nonuniform distribution of the quantising values which 
are spaced closer in the range of signal values with higher probabilities. An even 
better solution are the adaptive techniques where the range and the distribution of 
quantisation values may vary with the changes of the original signal.

There is a great number of factors which influence the process described 
above. The main problem, however, is to determine the optimum balance between 
precision and symbol transmission rate. The engineering area of research 
investigating this problem is commonly referred to as signal processing. It has 
been developed extensively in recent years and amazing results have been 
achieved by using powerful computational methods and fast computers. Most of 
the efforts are directed towards analysis of the information content of signals 
representing the ‘natural’ sources of information and the possibilities to reduce 
eventual redundancies. Another problem studied in this respect is how to 
redistribute the information of a source in order to use the capacity of the 
information channel more efficiently. This problem can be successfully dealt with 
by the use of source coding.

While the purpose of source coding is different from that of line coding, 
significant similarities can be found in the underlying principles of the two types 
of signal processing. Both are basically concerned with devising suitable 
transformations of sets of symbols into different set of symbols, in order to meet 
certain requirements of the communication system. Furthermore, by specification 
of most important problems in developing appropriate coding techniques, it can be 
shown that source coding and line coding have common objectives and 
requirements.

The most essential relations used in the description and the analysis of 
symbol sets are introduced below through a brief reference to the basics of number 
systems. These relations reveal some fundamental problems of coding in general 
and establish a common basis for the analysis and design of different codes.

A precise definition of a number system is not considered essential for the 
purposes of this introduction as most of the ideas will be presented in a
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descriptive manner. A more rigorous mathematical approach to the problems of 
coding theory is given in [Lin, 1983; Berlekamp, 1968]. It is sufficient to say that 
quantities are represented by numbers and, in order to determine some relations 
between different quantities, a suitable set of operations over all possible numbers 
is defined. Numbers are specified through a finite set of digits (symbols) which 
define the base of a particular number system. Thus a useful presentation of the 
number N  from a FT-digit system with symbols Qq,a2, . . .,0 -̂ is given by

N = anan - l - “ l = £ “ , < *  
¿=1

i — l\

where â  6 (aq, a2,. • -iaK}  an<̂  n number of symbols used for the notation
of N. In the process of source coding the initial digital signal is substituted with 
some other digital signal whose values are more suitable for the subsequent 
processing. If Ns and Nc are the numbers of all possible values of the original and 
the coded signals respectively, and K c is the number of symbols (signal levels) 
used to represent the coded signal, then the following requirement has to be 
fulfilled

N c =  i à  > N S = l à (1.1)

where lc is the number of coded symbols replacing ls source symbols. In most 
practical systems the number of source levels is K s = Ns and each level is viewed 
as a distinct symbol. Usually one source symbol (/s =  1) is replaced with lc > 1 
code symbols. This process is illustrated in Fig. 1.3.
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F ig . 1 .3  Symbol transformation in source coding
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Many real systems are based on binary coding (K c =  2). In general, binary 
digital systems translate the source symbols into sequences of digits usually 
represented as 0 and 1 or —1 and +1. If the number of source symbols is K s > 2 
and every one of them (ls =  1; N s = K s) is coded by a block of binary digits (a
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code word), then from (1.1) it follows that the minimum length of the binary code 
words is limited by lc >  log2(iVs), (assuming that lc is not variable).

At this stage the most crucial question arises: How to choose the code. The 
answer is given by the Information Theory. The fundamentals for precise 
quantitative evaluation of information capacity have been laid by C. Shannon in 
his mathematical theory of communication [Shannon, 1949]. The main aspects of 
this theory require more involved discussion and are briefly presented in a 
following section. Without going into detail, it suffices to mention that a great 
amount of scientific thought and engineering effort has been devoted to the 
analysis and development of many different coding formats.

The most simple example is natural binary coding, where the source 
symbols are represented as decimal numbers (K s =  10) and each one is replaced 
with the respective binary representation of that number. Obviously if the number 
of source symbols is not an exact power of two, the possible binary words are
more than the source symbols as required by (1.1). Therefore some codewords are
not used, which means that the amount of information conveyed by the code is 
less than the amount which could be represented by the complete set of binary 
words. This illustrates the first problem to be addressed by coding theory, i. e.:

1) How to devise an efficient code (one whose redundancy is as small
as possible)?

An example is Gray coding, which assigns binary words in such a way that 
for transitions of the source signal between adjacent levels, the corresponding 
binary blocks differ by one digit only. This requirement indicates another problem 
which is to be solved by the source code:

2) What is the best correspondence between the source symbols and
the code words?

There are various types of Gray codes as well as many other codes which provide 
for particular patterns of assigning the binary blocks to the source levels so that 
some structure of the input signal is preserved or changed in a specific way. A 
general rule in answering question 2 cannot be offered easily because there could 
be as many different requirements as possible types of source signals. One simple 
example of such a generalisation is based on the assumption that it is essential to 
have as many transitions in the coded signal as possible. In this case the binary 
words with short strings of identical symbols substitute the source values which 
occur more frequently.
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The above considerations indicate that the statistical characteristics of the 
source are of great significance in digital coding. This point becomes more 
apparent when noting that for most practical cases it is impossible to study all 
combinations of source symbols, therefore a powerful method of analysis is the 
evaluation of signal probabilities. The results achievable by this approach suggest 
the answer of the most important question of digital communication:

3) What is the optimum source coding?

The last problem is considered fundamental to efficient digital signalling because 
no subsequent processing can improve on this efficiency (in terms of information 
content). In fact the tasks of all following stages in the digital communication 
system can only be achieved by adding more information and thus decreasing the 
efficiency with respect to the source information.

Before proceeding with the overview of the next block in the general 
communication system from Fig. 1.2, a few more considerations are given with 
respect to source coding. Having introduced the notion of unequal-source symbol 
probabilities, a further step in improving the efficiency of coding is made by the 
use of variable-length codes. It is obvious that the smaller the blocks of code 
symbols for representing a given amount of information the more efficient that 
code is. With fixed-length codes the limitations in this respect have been indicated 
above. For codes with variable-length words the corresponding measure is the 
average number of symbols per code-block. The advantages of variable-length 
codes can be suggested by considering the possibility to use short words for the 
most likely source symbols and longer ones for the less probable symbols. The 
immediate and most significant implication is the problem of ‘undoing’ the 
coding. This is why the first steps towards investigating this type of code is to 
establish the conditions for recognising the code-words and correct recovery of the 
source signal.

These ideas open the vast area of the coding theory and it is beyond the 
scope of this work to give a detailed presentation of all aspects of coding for 
information transmission. There are many literature sources where the 
fundamentals of the Information Theory and Coding are extensively revealed, a 
classic example being [Hamming, 1986]. In order to complete the description of 
the source coding function it is sufficient to mention a few more essential points. 
The problems outlined above are approached through

a) establishing the quantitative limitations of the characteristics of the codes
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b) devising the coding rules and techniques for their practical implementation.

A simple example of a) but a very essential result is the Kraft inequality which 
concerns the existence of instantaneous codes. Two preliminary definitions have to 
be made before this result can be given:

Dl. A code is uniquely decodable when any sequence of code blocks represents 
only one sequence of source symbols.

D2. A code is instantaneous if every code word is recognisable as soon as its last 
digit appears.

An immediate consequence of D2 is that no part of a code word, which 
starts from its beginning, is identical to another code word. It is clear that if a set 
of source symbols is coded with a variable-length code the main problem of
decoding the message is resolved if the code words are instantaneously
identifiable4. A binary code example (ftl =  0,/?2 = 1) for six source symbols

a2’ ' ' ' , erg is shown below

a l =  0 a4 — 10 10
a2 =  1 1 «5 = 10 110
q3 =  10 0 a 6 = 10 111

In general there is more than one set of code words with different lengths 
which are uniquely decodable for a given number of source symbols. The Kraft 
inequality gives a condition whether an instantaneous code for N s symbols can be 
found. Such a code exists if the lengths of the code blocks lx < l2 <  ... < lN , 
satisfy the following

N.____o  ->

£  - T 2 1 ' ¡=1 k ['
where K c is the number of code symbols.

The important issue stated as b) above is remarkably illustrated by 
another classic example -  the Huffman codes. The Kraft inequality can tell if an 
instantaneous code exists for a particular combination of code-word lengths, but it

4 In principle uniquely decodable codes, which are not instantaneous can be used for 

variable-length coding but many problems arise when they are implemented (delays, memory 

requirements, etc). In addition it can be proven that for any set of source symbols an 

instantaneous code with the highest possible efficiency exists. Therefore nothing is gained (in 

terms of efficiency) by using codes other than instantaneous.
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does not help in finding the actual code words. Such a code can be constructed by 
the use of Huffman coding. The rules are simple and the result is an efficient code.

There are many other types of source coding and a great variety of codes 
have been devised. Although in most practical systems multi-level signals are 
coded in binary form, it is also possible to use codes with more than two symbols. 
In general in the process of source coding blocks of source symbols are converted 
into blocks of code symbols. The coding considerations presented so far refer to 
source signals with independent symbols. More complex structures emerge if the 
source symbols are correlated. Codes which account for such cases are based on 
the theory of Markov processes. This type of source coding is referenced in the 
next section, where greater attention is given to the fundamentals of information 
theory.

1.2.2 Channel Coding

The second main function of the communication system from Fig. 1.2 is to 
condition the digital signal for transmission over the information channel. The 
complexity of the theory underlying channel coding compares with that of source 
coding and the remarkable achievements in recent years have produced large 
subareas of research. The need for conditioning implies that one way of sending a 
signal is better than another. Obviously the best way of transmitting is to secure 
that what is received at the destination is identical to what has been sent. 
Unfortunately this is impossible for real information channels due to the presence 
of noise. The effect of noise in digital transmission is errors5. Thereof the most 
important objective of channel coding is to counter the effects of noise by keeping 
error-probability within controllable limits. The only way of doing this is to add 
information which allows detection and possibly correction of the errors.

The general problem is again how to devise an efficient code. As the goal is 
to detect and eventually correct errors at the expense of adding more information, 
it is obvious that efficient code is one which for a given number of detected and 
corrected errors requires minimum increase in information. The solution of the 
problem is approached again through the following two stages:

A) establishing the limitations in what could possibly be achieved through
coding and

B) devising methods for the construction of codes.

5 The word suggests the discrete nature of the phenomenon which is generally referred 

to as distortion and describes the same effect for continuous-time processes.
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A fascinating result in the direction of A) are the mathematical fundamentals of 
communication theory first published by C.E. Shannon in 1948. The concepts of 
this theory have been further developed and implemented to produce a number of 
application areas so large that even a general overview will take a considerable 
effort and space. This is why the principles of error detecting and control codes 
are only briefly outlined here and a few examples illustrating these principles are 
presented. An indepth treatment of the subject is made in many books a good 
example of exhaustive work being [Lyn and Costello, 1983].

The general theory of codes for error detecting and control has been 
developed for multi-level as well as binary coding, however only the latter are 
considered in this presentation. There are two main groups of codes in use at 
present: block codes and convolutional codes. Common for both types is that 
every l symbols of the coded output signal represent n symbols of the input 
sequence. For binary coding l > n and the code efficiency is defined as j ,  while 
1 — (j)  is the code redundancy. The main difference between conventional block 
codes and convolutional codes is that the latter require memory. In other words, 
when no memory is used, every coded block depends on the input block of 
symbols only, while in systems with memory the output words of l digits depend 
on previous parts of the input signal as well as on the present n digits. The 
analysis of the capabilities of various codes spans from the simple parity checking 
to the complexity of trellis diagrams and Viterbi techniques [29]. The only 
division in this brief presentation of codes for error detection and control is into 
memoryless codes and coding techniques which require memory. The main results 
revealing important theoretical limitations and examples illustrating typical 
coding structures interleave throughout the following two sections.

1.2.2.1 Memoryless Coding

Probably the simplest ways of detecting errors are symbol repetition and 
single-digit parity checks. In the first case each source symbol or group of symbols 
is repeated several times. At the receiving side the original signal is reconstructed 
by assuming that the majority of the repetitions have arrived correctly. This 
method requires much redundancy and is far from efficient. Single parity checks 
are used more often in practical systems, mainly because of their simplicity of 
implementation. Usually the output blocks contain an additional digit ( 0 or 1 ) so 
that the total sum of 1-s becomes even or odd. The code efficiency is better but no 
even number of errors can be detected and it is only possible to find out the 
occurrence of an odd number of errors without knowing whether it was one or 
more. The single-digit parity check coding is mostly used in systems with
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relatively low probability of error along the channel and where erroneous messages 
can be ignored or requested for repetition. In fact the probability of error is a very 
essential issue which often determines the suitability of codes for certain 
applications and makes the same codes unsuitable in other cases. In general, codes 
are designed for independent errors with uniform distribution, although special 
types have been developed for particular kinds of noise environment where errors 
may appear in burst patterns or have some correlation.

With many applications it is essential to detect the presence of more than 
one error and also to correct them. How many errors can be detected and 
eventually corrected depends on the amount of information added to the original 
signal. This amount is limited by the number of digits added to the blocks of 
input symbols but how close to this limit one can get depends on the pattern of 
coded words. In the case of binary-to-binary coding6 the number of additional 
symbols, required for correction of any combination of k errors (or less), cannot be 
smaller than a quantity given by the following relation

l - n >  log2 (r)>
r — 0

where ( j . )  = rl(l — r)!

is the respective binomial coefficient. There is little doubt that with a sufficiently 
large number of additional symbols it will be possible to construct a code capable 
of correcting k errors. The interesting question is what is the code which does this 
with the minimum number l — n given by the equality in the above relation. A 
remarkable answer to this question and a good example of solving the problems of 
stage B) defined above, are the Hamming codes which belong to a broader class 
called perfect codes.

The cyclic codes are another class which exhibit very useful features and 
have received considerable attention since they were first studied in 1957. The 
first of their important characteristics is evident from the definition which 
specifies that every code word of a cyclic code can be derived from another code 
word by shifting all symbols of the latter one position to the right and moving the 
last symbol to the first position. This indicates the possibility to implement cyclic 
codes in shift-register circuits which can easily produce a great variety of codes 
with not very large numbers of registers and many combinations of feedback 
connections. Another important feature of the cyclic codes is their inherent 
algebraic structure. This feature can easily be analysed and used by representing 
the symbols of the code blocks as coefficients of polynomials. Although the algebra

6 Binary coding is assumed everywhere in the thesis without a special notice except if

otherwise is mentioned explicitly.
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of the code polynomials can be developed into very complex results, one essential 
outcome is the possibility of using generator polynomials in construction of codes. 
A disadvantage of the cyclic codes is that not all generator polynomials represent 
useful codes and it is not very easy to identify the ones which do. In spite of that 
cyclic codes still receive considerable attention due to the relatively simple use of 
shift registers for most operations. Finally, various designs of cyclic codes have 
proven successful in countering both random and burst types of errors.

An interesting class of cyclic codes are the BCH codes (named after Bose, 
Chaudhuri and Hocquenghem) known since 1960. Many coding theorist have 
studied and generalised the properties of the BCH codes and some of the 
significant contributions have been made by Peterson, 1960 and Berlekamp, 1968.

1.2.2.2 Codes with Memory

While the pair of integers (/,n) specifies a block code where any output 
word of length / depends only on the input word of length n at the same instant of 
time, the convolutional codes are specified with a set of three integers (/, n, m), 
where m denotes the memory order of the code. The numbers l and n specify the 
lengths of the output and the input words respectively, but the output blocks 
depend on m previous input blocks as well.

The convolutional coder can be viewed as a sequential machine. An 
important point regarding the approach adopted in the thesis is that most 
practical analyses of digital coding refer to finite element discrete devices. Systems 
based on such devices can only have a finite size of memory, therefore a finite 
number of possible states. As it will be shown in greater detail later, the Finite 
State Sequential Machine (FSSM) proves to be a very successful model of a digital 
coder with memory. There are three sets of symbols with a finite number of 
elements which are used in the digital coder model. These are: •

• the set of all possible input blocks of symbols,
• the set of the allowed output blocks and
• the set of the coder states.

The complete description of the model requires also the rules which determine:

• the output words corresponding to the combinations of an input word and 
a coder state;

• the state into which the coder goes following a combination of an input 
word and a coder state.
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These rules are usually given as suitably defined functions. The state 
transition diagram is another way of describing the coder rules. A convolutional 
coding scheme specified by (/, n, m) produces an output word of length / for every 
input word of length n according to the combination of m previous input words. 
All distinct combinations of m previous input words correspond to different 
contents of the coder memory, i.e. different coder states. When a convolutional 
code is represented as a set of parallel shift registers (one for every input-word 
symbol) with lengths 0 < M ■ <  m, i — 1 ,...,n the total number of distinct coder 
states Sjtf is given by the product of all possible states of each shift register

n
(The number M  — ^  M i is usually called the coder memory.) 

i = 1

It is possible to have different coder configurations with the same memory M. All 
of these coders can be represented by an oriented graph with SM nodes. Every 
node is a coder state and the transitions between any two states is indicated as a 
pointed connection labelled with the input/output word pair.

The coder state diagrams are very a useful tool for analysis of convolutional 
codes by investigating various paths (unbroken sequences of branches) describing 
the coder’s behaviour. The sequential and the Viterbi algorithms are typical 
examples of such tools, [11]. They are based on an extension of the state diagram 
in the time domain and the resulting graph structures are called tree and trellis 
diagrams. The graphs for both diagrams start with a node representing some 
initial coder state. There are 2n branches leaving the initial state -  one for every 
possible input word. The branches arrive at nodes representing all coder states 
into which the coder can go after the initial state. The same applies to every next 
state. The branches are labelled with the output words corresponding to the input 
word producing the branch and the state it comes out from. The nodes of the 
graph arrived at after every branching correspond to the time instants where the 
input word changes. After m consecutive time intervals the resulting nodes will be 
all possible states of the coder. This follows from the fact that each node 
represents a path of branches corresponding to a distinct combination of m +  1 
consecutive input words. Obviously all new branches will lead to an existing coder 
state. From this point onwards the tree and the trellis diagrams differ. In the 
sequential algorithm all new branches of the tree result in separate nodes whose 
number is 2M ^ *n after (m +  k +  n) input words. In the trellis diagram all new 
branches leading to the same coder state are connected to one node of the graph.
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For any convolutional coder a particular input sequence results in a path 
comprising consecutive branches in the respective tree or trellis graph. The 
performance of the code depends essentially on the existence of efficient decoding 
algorithms. At the receiving side the coded sequence arrives with some symbols 
being in error. The received sequence has to be decoded so that the source digits 
axe recovered as accurately as possible. Most methods are based on the principle 
of maximum likelihood decoding where a coded sequence is sought, which differs 
in the least number of symbols from the received sequence. To achieve this goal 
the coder graphs are presented in various ways which attribute probability 
measures to different paths. Then most likely paths are computed on receiving the 
coded sequence and the path (i.e. the suggested code sequence) which is closest to 
the received one, is accepted. Typical examples of decoding methods are the Fano 
and Viterbi algorithms, for sequential (tree) and trellis codes respectively [10]. 
The theory behind the estimation of various techniques and the construction of 
efficient convolutional coders is rather complicated and the major limitations in 
practical systems are the size of the coder memory and the number of 
computations.

1.2.2.3 Line Coding

The main strategy of digital transmission has been outlined in the previous 
sections. In summary it consists of adding more digits and/or correlating blocks of 
digits in order to detect and correct errors caused by noise in the transmission 
channel. For binary systems this is achieved at the expense of a higher signalling 
rate. Error control coding provides possibilities only for correcting a number of 
errors when they occur. Some codes are specially designed to counter particular 
types of errors but in general channel coding does not reduce the susceptibility of 
the signal to errors. This is why further processing of the digital signals before 
transmission is often employed. Although in general it does not require the 
precision of algebraic coding, the effects of line coding can contribute to the 
efficiency and reliability of communication. The sophistication of most methods 
for error control and the associated theory have made channel coding an area of 
communications theory in its own right. Only matters closely related to the 
theory of information are usually regarded as typical problems of this area. 
However, it is possible to define the communication channel with respect to 
various parts of a digital system for information transmission. The information at 
the input to the ‘ channel coding’ block of Fig. 1.2 may be regarded as represented 
by a sequence of digits and everything before that point as a digital source. The 
physical propagation medium may be defined as the digital transmission channel. 
Therefore the purposes of channel coding may be viewed in a broader aspect:
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Firstly to enhance and modify the digital information sequence so that 
occurrence of up to a certain amount of errors does not affect the 
original information contents.

Secondly to restructure the digital sequence so that it is less susceptible to 
degradation due to the limitations of real transmission media.

The second purpose is not directly related to error control techniques but it 
can be associated with channel coding and the motivation behind this view is 
briefly given below. Error control implies that digital information sequences are 
processed to counter unwanted effects produced by the transmission medium. 
These effects are defined as errors and their pattern of occurrence is what 
represents the communication channel in terms of error control coding. In other 
words, for a given transmission environment a certain level of deterioration is 
specified, which is evaluated by the amount of possible errors and their 
distribution in time. The error control coding provide information which is added 
to the signal in such a manner that when the deterioration during transmission is 
below the specified level the unaffected amount of information is sufficient to 
recover the original source sequence. The coded signals are not always suitable for 
direct transmission in a sense that the amount of deterioration caused by the 
propagation medium would be higher than the code can cope with. It is possible 
to apply additional coding to transform the digital sequence so that, when it is 
represented by a particular signal waveform which is transmitted over the 
physical channel, the deterioration would result in a manageable amount of errors. 
This type of processing is referred to as line coding.

An essential parameter of a digital signal is its frequency spectrum. The 
same parameter, attributed to the transmission channel, reflects how much 
distortion would be caused to signals with different frequency spectra. The essence 
of line coding is to add information to the digital sequence so that the frequency 
parameters of the resulting signal match those of the transmission medium. 
However, in some practical cases there are additional considerations for 
implementing a line code which may not be directly related to the frequency 
parameters of the signal. In summary:

Error-control coding provides protection from loss of source information under
certain level of distortion caused by nonideal characteristics 
of the transmission channel.
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Line coding adapts the parameters of the digital signals to those of the
transmission channel so that overall distortion does not 
exceed the specified levels.

In this respect both types of coding can be regarded as part of the channel coding 
function in the general model of communication system. As line coding is the 
main topic of this work, a more detailed presentation follows in subsequent 
chapters.

It should be noted that channel coding does not provide the complete 
conditioning of the digital signal for the purposes of transmission. The problem of 
adapting the signals to the transmission medium is also solved by selecting 
suitable waveforms to represent the different code symbols. Various types of pulse 
waveforms exist to match different propagation conditions. The system which 
produces the appropriate signal waveform representing the coded sequence is 
briefly discussed in the next section.

1.2.3 Digital Modulation

There are two major types of transmission: baseband and carrier- 
modulated. The results presented in the thesis are not directly related to any 
particular method of signalling, although baseband transmission is implied by the 
use of a pulse amplitude modulator in the line coder model, described in 
Chapter 3. This choice has been made for completeness of the analysis and it is a 
reasonable approximation to assume that many real systems employ this kind of 
modulation. For example, most fibre-optic communications are based on direct 
intensity modulation of the light source.

The problems of digital line coding and digital modulation can be discussed 
quite independently. Line coding alters the structure of the digital sequence to 
produce a desired redistribution of the frequency components or particular shape 
of the frequency spectrum of this sequence. Digital modulation results in 
generating a series of signal waveforms representing the symbols of the coded 
sequence. The waveforms are completely specified for the time interval of each 
symbol and have particular spectral characteristics. The latter modify the 
frequency characteristics of the coded sequence often to improve the adaptation of 
the signal to the transmission channel.

The problems of coding are analysed by models where information is 
represented by the statistical parameters of sequences of symbols. What matters 
to the analysis are the probability functions and the time intervals related to 
symbols and groups of symbols, while their meaning is generally irrelevant. After
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the final sequence of digits is produced for transmission the parameters of the real 
processes which represent the different symbols become important to the 
efficiency of communication.

The simplest modulation technique is to transmit a binary sequence as two 
different signal levels (voltage, power, etc.), whose values are constant for the 
time interval Tc of one symbol. These levels can take any two of the values +L, 
—L or 0. In many real systems the duration of the symbol interval is much greater 
than the time for transition between the different signal levels which allows the 
latter to be ignored in a general model of the waveforms used in binary 
transmission. If 0 and -\-L are the signal levels chosen to represent the two 
symbols 0 and 1 respectively, the signal waveform can be analysed as a 
rectangular pulse which is shown in Fig. 1.4. This model is often used as a 
common basis for analysing the spectral characteristics of the coded sequences as 
it is a close approximation for many practical systems.
The technique of signalling by a pulse waveform 
with a particular shape is referred to as Pulse- 
Amplitude Modulation (PAM), because it can be 
viewed as a sequence of pulses whose amplitude 
assumes different values for the different symbols of 
the sequence. If the encoded sequence of symbols at -0.5T 0 +0.5T

the input of the modulator is xr G {0,1}, then the Fig. 1.4a Line pulse waveform 

modulated signal y(t) can be expressed as

A g (t )

+oo
y(t )=  Y ,  xrg [ t - r T ) (1.3a)

r=-oo

where g(t — rT) is the time function of the basic pulse shape. When this function 
represents an ideal rectangular waveform it can be defined as

( 1, for 11 — rT | < y
g ( t - r T )  =  \ , r  =  0, ± 1 , ± 2 , . . .  (1.3b)

l 0, for 11 — rT | > y

The essential parameters of the basic pulse waveform are its duration, which is 
assumed to be the code-symbol period T and its frequency spectrum G(f). For the 
purposes of normalised assessment of the spectral characteristics of coded 
sequences in later chapters the spectral density function of the ideal rectangular 
pulse have been used. G(f)  can be expressed as the Fourier transform as follows

+y

G ( f ) =  f g ( t - r T ) e ~ j 2nf tdt =

T

1 [l
\e ~ J * f T _ e J 7r f T ]

40



Tsinc(7r/T) (1.3c)
ej n f T  _  - j * f T sm(irfT) _

(tt/T )  -

The frequency function is shown in Fig. 1.4b. How exactly the spectrum of the 
basic pulse interacts with that of the coded sequences will be shown in greater 
detail in the presentation of the line coder model (Chapter 3).

In real systems the pulse waveforms undergo considerable changes during 
transmission over the communication channel. Due to the greater attenuation and 
time delays of various frequency components the original pulse shape is changed 
and is no longer confined to its time interval. The occurrence of intersymbol 
interference is very often causes errors and measures have to be taken to avoid it. 
Usually this is achieved through using pulse waveforms with particular shapes of 
their time function. The relevant theory has been extensively developed and a 
great variety of waveforms have been suggested for transmission channels with 
different frequency characteristics. The major limitations are determined by the 
Nyquist theorem and quantitative assessment is based mainly on the Fourier 
relation between the time/frequency functions.

The symmetry of the Fourier transform illustrates the
requirements which the pulse waveforms and their spectral characteristics should 
satisfy. If the channel is band-limited, then a waveform with an ideal ‘rectangular’ 
spectrum is the best possible choice. The inverse Fourier transform shows that the 
time function of such a pulse has the shape of the spectrum of a rectangular pulse 
waveform (see Fig. 1.5). Obviously the modulated sequence in this case will have 
components of every pulse outside its time interval. In practice various methods 
are used to produce pulses with particular shapes. Some of them involve 
combining the sine-function waveform with its delayed versions, others use special 
types of filtering. In general the main results pursued by pulse shaping are to 
reduce intersymbol interference and to have a waveform with suitable frequency 
distribution.
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1.3 Information Theory -  Limitations to Coding

The Theory of Information does not provide means for direct assessment of 
the results achieved by line coding, which is the main subject of the forthcoming 
presentation. However, there are essential considerations about information 
capacity and bandwidth limitations which are applicable in every aspect of digital 
coding. This is why certain fundamental relations are outlined in this section, in 
order to provide the basis for some definitions and assumptions given later. An 
important aspect of digital communications is the probabilistic nature of most 
measures concerning the characteristics of discrete signals and sequences of 
symbols. A relevant basis for the analysis of digital systems for information 
transmission has proven to be the theory of markovian processes.

1.3.1 Quantity of Information

In digital communication it is very important to have a measure of the 
amount of information being processed at any stage. For a discrete system this 
measure is provided through a description of the sets of symbols the system can 
recognise and/or generate. The definition of information content of messages 
constructed as sequences of symbols is a crucial step in achieving quantitative 
assessment of information transmission. Many authors introduce this definition by 
giving various examples of situations with a number of possible outcomes. Most 
descriptions imply that people perceive likely outcomes as conveying little 
information, while the occurrence of events which are not very probable is 
considered very informative. In spite of their great variety, most examples used in 
the literature to introduce the definition of information, can be summarised, [9] as 
follows:

Information, from a communications point of view, represents the 
amount of uncertainty or the freedom of choice associated with a 
number of events and not the meaning or the significance of these 
events to an individual.

The following assertions can be made in order to construct a meaningful definition 
of Information Quantity: (1) The amount of information is attributed to a 
particular situation with respect to the possible changes of this situation. (2) The 
changes are referred to as events and can be represented by sets of symbols. 
(3) The process of occurrence of events is represented as sequences of symbols and 
corresponds to variations in the amount of information. (4) The quantity of 
information conveyed can be a measure of the changes that have occurred.
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However, there is a semantic problem in the definition of information as it 
is impossible to identify the entity to which the quantity of information is 
attributed. This entity could be referred to as an event or represented by a 
symbol but it cannot be defined, because the definition itself is an event and is 
represented by symbols which should have been defined. Clearly no definitive 
beginning can be used other than the intuitive assumption of what is an 
information source and the set of symbols representing that source.

At this point it is possible to introduce the probabilities p1,p 2v ? i ,n 
associated with a set of symbols denoted as (a ^ c^ ,.. .,an}. The probabilities are 
numbers which correspond to the symbols in the following manner:

if at- represents an event which is more likely to occur than the event 
represented by a,j, then pt- > p̂ -;

if a■ represents an event which is certain to occur (i.e. all other symbols a ,̂ 
j  ^  i represent events which will not occur), then p?= 1 and pj=0, j  ^  i;

if a-j represents the joint occurrence of two events a■ and aj, which are 
independent then the probability of a -  is Pij—p̂ Pj-

Under the above assumptions the following assertions can be made regarding 
information quantity:

1) The amount of information (the possibility of change) associated with a• 
is greater than the amount of information I j  associated with a j  if p- < pj 
(i.e. the event of ai is less likely than the event of a-).

2) Similarly ■ if Pi=Pj-

3) The amount of information /¿= 0 if p-=1, i.e. ai is certain to occur (no 
freedom of choice or possibility of change).

4) The amount of information associated with a combination of the two
l J

symbols ai and dj is given by I -  =  / 8- -f I ■ when the corresponding events 
are independent7.

7 The combinations of two symbols are more than the single symbols, therefore the

freedom of choice, hence the information is greater.
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The assertions above suggest that the amount of information can be represented 
as a function of the symbol probabilities. From 1) and 3) it follows that 
information is inversely related to these probabilities. The most adequate 
functional relation between information quantity I  and symbol probability p is 
determined as

I(p ) =  log -p- =  —log p, for 0 <  p < 1.

Base 2 is usually adopted for the logarithm above because it has been widely 
accepted as convenient for most applications. It also gives the common unit for a 
quantity of information -  bit. This can be illustrated by assuming two possible 
events n=2 with equal probabilities of occurrence px= p2=  Then the amount of 
information associated with any of the two events cq and a2 is

/ l  =  12 =  log2 2 = 1 bit

The entropy is an important quantity which associates an integral measure of 
information with a set of symbols {G q ^ , . .., an) and is given by

H(a) =  §2 bits/symbol
i=  1 '  '

H(a) gives an estimate of the average amount of information per symbol over the 
whole set of symbols. A careful observation of the last expression shows that for a 
given number of symbols n the entropy H(a) varies with the probabilities of the 
symbols. It can be shown that its maximum value is attained only when all 
symbols have equal probabilities p= -^ - for i =  1 ,...,n.

The great importance of the entropy function is the quantitative limitation 
it gives to source coding. In fact H(a) determines the smallest average number of 
binary digits per symbol which can be achieved. Thus the entropy can be used to 
measure the efficiency of a code.

1.3.2 Channel Capacity

Information theory describes communications in two main aspects. The 
first aspect concerns the functional relation between information content and the 
probabilities of symbols representing messages. The quantity of information 
associated with different sets of symbols and probabilities can be evaluated. This 
allows for accurate estimation of what is achievable through coding. The second 
aspect is the actual transmission of information. It regards communication as a
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process which takes place in time and in conditions where loss of information is 
greater than zero.

In digital communications information is transmitted as sequences of 
symbols. Transmission cannot take place instantaneously as every symbol is 
represented as a signal waveform with a finite duration grater than zero. Therefore 
only a finite amount of information can be transmitted per unit of time. This 
limitation can be expressed as a number of symbols per unit time interval, which 
is uniquely related to the frequency of occurrences of the different symbols. The 
various frequencies related to a particular sequence of symbols comprise the 
spectrum of that sequence and determine its frequency bandwidth.

The second significant limitation is the inevitable loss of information in 
real transmission systems. This factor is usually represented as the signal-to-noise 
ratio (SNR) and its effect on digital signals can be evaluated through the 
probability of a number of symbols to be in error.

The rigorous mathematical model of information transmission over a 
channel with noise is beyond the scope of this presentation. Only a few of the 
main considerations will be given below in order to illustrate the fundamental 
limitation imposed by finite bandwidth and signal-to-noise ratio.

It is essential to note that the communication channel can be characterised 
completely by the set of conditional probabilities associated with the symbols as 
they have been changed by the noise of the channel with respect to the symbols 
prior to transmission. The information 7 which is transmitted over the channel 
can be defined as the information of the original set of symbols, given by their 
entropy H, less the entropy He of the same set of symbols, estimated from the 
symbols after transmission, i.e. I = H — He. (He is known as the equivocation.) 
Clearly 7 represents the average transmitted information per symbol. In general 
the transmission rate R is defined as the amount of information 7 per unit time 
interval T which can be denoted as This follows from the finite signalling
rate which is defined as -yr symbols per second. The maximum information rate 
achievable for a communication channel is defined as the channel capacity and 
can be expressed as

C =  max(TÎ)
max(7) 

T ’
bits ,c symbols 

symbol second max(7), bit
sec • (1.4)

The channel capacity, C can be expressed through the bandwidth, B of a 
signal where the symbols are transmitted as pulses. As it has been shown in 
section 1.2.1 the maximum pulse transmission rate is determined as -k- — 2B. It
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is possible to apply some non-strict, reasoning in order to describe the 
fundamental relationship of channel capacity to bandwidth and signal-to-noise 
ratio, The complete proof of the well known Shannon’s formula is rather
complicated and requires substantial mathematical involvement. For the purpose 
of illustrating the major results of information theory for the case of transmission 
over noisy channels it is sufficient to make several assumptions which would allow 
expression (1.4) to be transformed so that it includes

The quantity of information max(7) can formally be represented as 
max(7) =  log(n). The number n can be viewed as a number of équiprobable 
symbols which can be represented as signal levels. These levels have to be 
separated at least by the amount of noise so that they are resolvable. If S+N  
represents the total power corresponding to the amount of information after 
transmission and N  represents the noise power, then n will correspond to the 
number of resolvable signal levels through the following relation, [Marshall, 1980]

n —J s W

W

This leads to the fundamental Shannon’s formula relating the information 
capacity of a noisy channel to its bandwidth and signal-to-noise ratio:

C  =  2 B loi^ ï ) = B l o , ( l + - f - )

The interpretation of this result can be summarised as follows:

(1.5)

For any information transmission channel with capacity C it is 
possible to devise a code which allows for a source signal with an 
information rate of R bits/s to be transmitted over the channel at an 
arbitrarily low error probability, provided R < C is fulfilled.
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2. LINE CODING BASICS

The main principles of line coding are discussed in this chapter. The most 
essential objective in the development of line coding techniques is to achieve 
appropriate frequency distribution so that the characteristics of the line signal 
match as closely as possible those of the transmission channel. There are other 
important issues related to this type of coding, e. g. complexity of the coder 
circuit, methods of decoding and synchronisation, etc. Although some ideas 
concerning these topics are mentioned briefly throughout the presentation, it 
should be noted that most of the research work and the respective results revealed 
in subsequent sections concentrate on the construction and spectral analysis of 
various types of line codes.

This chapter serves as an introduction to the subject of line coding and is 
divided into two main parts. The first part is a general overview of many known 
types of line codes. Specific features and applications of various codes are given in 
the second part. In many publications outlining this area it is common to develop 
classifications of line codes. Some of these are mentioned below, although it is the 
author’s opinion that a useful and sufficiently general classification is possible only 
after a set of appropriate criteria for assessment of line codes has been developed.

Before going into further details about the problems of line coding it is 
appropriate to summarise the description of the functional parts of the digital 
transmission system given in the previous chapter. This summary will help to 
define the general purpose and the specific role of line coding with respect to the 
other types of coding used in digital communications. The three major coding 
functions of the transmission side are given in Fig.2.1.

F ig .2 .1  Coding for information transmission

There are two main design objectives which are common to all three types of 
coding: efficiency and reliability.
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The first type, source coding, is required for efficient representation of 
information sources. The process of digitisation results in representing the source 
by a range of numbers. The source generates a sequence of symbols which 
correspond to these numbers. Usually the original sequence has to be transformed 
(coded) into a sequence of different symbols, suitable for transmission. Often the 
information measure associated with the coded symbols is higher than that of the 
source symbols. This redundancy is hard to avoid, but it is possible to be reduced. 
Source coding is applied to achieve this reduction, i.e. to increase efficiency of 
coding.

The second type is error-control coding. It is used to increase the reliability 
of transmission over a noisy channel. In digital communications the degrading 
effects of noise appear as errors. In this respect reliable transmission means having 
the capability to detect and correct errors. Coding for error control does not 
require specification of the parameters of the transmission media. It is concerned 
with the type of possible errors, their distribution and overall statistics. In 
summary: error-control coding ensures that a certain level of deterioration does 
not affect the original information content.

The third type, line coding, can improve on both -  efficiency and 
reliability. While the first two types refer to the information content of signals, 
line coding is concerned with their frequency characteristics. Digital transmission 
is more efficient and reliable when the signal spectrum matches that of the 
channel. Line coding allows a suitable redistribution of frequency components to 
be achieved in order to minimise the degrading effects of the transmission media.

From the summaries given above it is clear that a common basis for the 
first two types is the Information Theory. However, it is quite appropriate to 
consider error-control and line coding as parts of a larger area which investigates 
the methods of countering the effects of channel deficiencies. This area is referred 
to as channel coding. Having identified the specifics and the interrelations 
between the types of coding, a definition of line coding is given below, which takes 
into consideration the objectives of coding in general [Cattermole, 1983].

Coding is the adaptation o f digital signals to a transmission channel for  the 

purpose o f efficient and reliable communication

In order to specify this definition distinctively regarding line coding, the following 
statement is suggested: Line codes convert digital sequences into coded line signals 
whose spectral characteristics provide for minimum distortion of the original signal 
by the restrictions of the transmission channel.
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2.1 Preliminary Notes

Historically there are many examples of actions in the direction of adapting 
the information source to the specifics of the transmission path [Ingram, 1981]. In 
a broad sense the very choice of appropriate signalling over some physical line can 
be considered line coding. However, this presentation is concerned with more 
contemporary communication systems which are based on pulse coded modulation 
type of digital signal transmission. In this respect it is useful to give an account of 
what are the practical objectives of line coding.

1) Frequency bandwidth:

Real transmission channels have a finite bandwidth. The effect of this 
limitation in general is that high frequencies are attenuated more than low 
frequencies. By means of line coding it is possible to redistribute the signal energy 
so that the significant part of it is contained in the lower range of frequencies with 
respect to the channel bandwidth.

2) Low frequency content:

Most often practical systems do not favour processing signals with large 
low-frequency components. Some of the reasons are the presence of a.c. coupling 
and significant capacitive and inductive components. Line codes are available to 
produce digital signals whose spectra have very small low (and/or high) frequency 
components without affecting the information content of the original signal.

3) Interference:

There are different kinds of interference.
a) Intersymbol interference can be dealt with by suitable pulse-waveform 

selection combined with special techniques of assigning the waveform to the 
original digital sequence. An example of this method is the partial response 
signalling.

b) Cross-channel interference is another type of transmission impairment. 
Signals with different spectra often share the same transmission channel. It is 
essential that frequency components of one signal do not appear in the bandwidth 
of another. Problems of this kind can be relaxed by the use of line codes which 
concentrate the frequency components in narrow spectra prior to distributing the 
signals over the channel bandwidth.

c) Electromagnetic interference is a general problem, which results in 
having unwanted frequency components within a particular range of the signal 
bandwidth. This problem can be solved by line coding which distributes the signal 
frequencies to parts of the bandwidth which are less affected by interference.
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4) Bandwidth «-> SNR exchange:

A straightforward consideration shows that for a channel with a narrow 
bandwidth and high SNR a suitable multilevel line code could be applied to 
reduce the bandwidth of the original signal while utilising the low probability of 
errors caused by noise. Obviously the opposite transformation can be a valid line 
code which will make use of higher channel bandwidth to transmit a signal with 
fewer levels and thus reducing the degrading effects of a low SNR.

5) Timing content:

A very important point is the availability of information about the time 
interval of the code-symbols and/or the period of coded blocks of symbols. The 
knowledge of the duration of the pulse waveforms representing the code symbols is 
crucial for the correct recognition of the transmitted sequence. The process of 
acquiring this knowledge at the receiving side is called clock-synchronisation and 
on its precision depends the choice of best decision instants. These are the time 
instants where the received signal values are expected to be as close as possible to 
the values representing the original code symbols. Of similar importance is the 
recovery of the period of code words. Block synchronisation is essential for correct 
decoding of the received line signal.

The problems of the timing content of line-coded signals require special 
attention and have been well documented in the literature, [2,3,7]. It is sufficient 
to mention that the ability to extract the symbol repetition rate from the coded 
signal depends on the minimum number of transitions per unit time interval as 
well as the level of sophistication of the receiving equipment. Some aspects of 
spectral analysis related to the problems of synchronisation are addressed in an 
overview of typical line coding formats given in the next section.

To complete this preliminary part, the main requirements of the process of 
line coding are summarised below. Thus a properly designed line code should:

l) minimise vulnerability to interference and noise; 
n) enable extraction of timing information; 

ill) introduce as little redundancy as possible.

It is possible to think that requirement n) is a quite sufficient condition on the 
distribution of symbols in the line signal. Indeed, in order to have enough 
transitions as mentioned above, the code should provide for symbol variations in 
the coded sequence. However, the amount of transitions may be sufficient but the 
pattern of identical consecutive symbols to be inappropriate. The consequences of
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such a situation could be analysed through the low frequency content of the signal 
spectrum. One way to avoid problems of this kind is to add another requirement

i v ) uniform distribution of the line coded symbols.

The last point to be mentioned here concerns requirements which bear no 
direct relation to the spectral shaping task of line coding. Sometimes the line 
signal is designed to provide additional information to support supplementary 
functions of the communication link and performance monitoring. These 
requirements are a consequence of two factors:

a) The line coder is part of a complex terminal equipment whose performance 
depends on ancillary channels for service and monitoring.

b) In many real systems specific frequency distribution is achieved with line 
codes which introduce high information redundancy, which can be utilised.

The factors outlined above allow for the possibility to require additional features 
of a line code, such as provision of supervisory and error monitoring channels.

2.2 Types of Digital Line Codes

Classification of line codes depends on the assessment criteria employed. 
One possibility is to distinguish various groups according to similarities in the 
coding rules. For example codes where a source symbol is represented by 
alternating code symbols in order to avoid long spells of constant-level line signal. 
Another classification divides line codes according to areas of application. Possible 
categories could be codes for metallic cables, radio links, satellite communications, 
fibre-optic lines. The classification which seems most appropriate for analytical 
purposes is based on the structure of the coded sequences. Finally it should be 
mentioned that for many categories of line coding schemes it is possible to 
introduce subclasses. For example the line codes of a particular class could be 
subdivided into binary and multilevel types.

In general it is a very difficult task to compile an exhaustive classification 
of the existing line codes. A major obstacle is the lack of a systematic approach in 
the practical design of line coding techniques. Most achievements in this area are 
predominantly application driven and the reported results are difficult to 
categorise. The spectral analysis technique based on the coder model developed by 
Cariolaro and Tronca, [19] and the design approach suggested in the thesis are an 
attempt to promote a unified method for construction and assessment of digital
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line codes. In this section various classes of codes will be described only to outline 
typical features and their relation to the spectral characteristics of the respective 
line signals.

2.2.1 Codes with Constraint on Disparity

It is known that for many applications (especially for metallic cable lines) 
transmission of unbalanced sequences of symbols1 causes serious problems, like 
high levels of intersymbol interference. Unbalanced sequences are likely to contain 
long portions of consecutive identical symbols which also results in difficulties 
with the extraction of timing information. To overcome this problem methods for 
control of the digital sum of the coded sequences can be applied. The digital sum 
for binary sequences is defined as the difference between the number of ones and 
the number of zeros [Cattermole, 1983]. For a sequence of k symbols (where the 
zeros are represented as —1) this sum is given by

£ * = ! > ;  (2-1)

for a■ — +1 or —1 and k is an arbitrary integer. The notion of digital sum can also 
be applied to blocks of symbols (words) and is usually called disparity.

It is possible to derive a general expression of the disparity for non-binary 
set of symbols. The interesting problem is to determine the number of words of 
equal disparity for a given word length. This can be done in various ways and an 
example of the results (taken from [17]) for binary words of length 5 to 12 is 
shown in Table 2.1.

Number 
of digits 

n

Number 
of words 

2n

Number of words with disparity

0 ± 1 ± 2

5 32 10
6 64 20 15
7 128 35
8 256 70 56
9 512 126

10 1024 252 210
11 2048 462
12 4096 924 792

Table 2.1  Numbers of binary words with a given disparity

1 Unbalanced binary sequences exhibit portions where the number of ones and the

number of zeros differ considerably.
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By appropriate selection of a constraint on the variations of the digital sum 
or the disparity various codes can be constructed to solve the problems mentioned 
at the beginning of this section. A class of codes which have been widely 
implemented in digital communication system are those with zero mean disparity. 
Most of them are known as alternate codes a classical example being the AMI 
code2. A common strategy in implementing disparity constraints is to use a pair of 
code blocks with opposite disparities to substitute alternatively an input block. 
Typical representatives of this group are:

the binary nB (n+l)B  codes, for n odd, e.g. 1B2B (CMI), 5B6B, 7B8B; 
the ternary nBmT codes, e.g. AMI, 4B3T.

In general the effects of using coding schemes with low disparity or small 
digital sum variations result in modification of the signal spectrum which are 
favourable for most transmission channels. When the digital sum is bounded its 
long term average tends to zero and the DC component is eliminated. The same 
constraint limits the maximum number of consecutive identical digits which 
reduces the level of low frequency components and ensures the occurrence of 
transitions, i.e. the availability of timing information.

An important consequence of using disparity constraints, which is most 
relevant to the spectral analysis techniques presented in the thesis, is the 
possibility to use a finite state machine model of the line coder. By adopting 
limitations of the digital sum or the word disparity it is possible to view the coder 
as a system which operates according to a set of states, corresponding to 
particular values of disparity. At this stage it is possible to give a brief 
preliminary introduction to the line coder model adopted in the subsequent 
analysis. The idea of constructing codes, which restrict the variation of disparity 
related to symbol blocks of finite length, leads to the need of a device with a finite 
number of states. In other words the coder registers predefined values of the 
digital sum and moves into uniquely corresponding states. A coder is said to have 
more than one state if there is at least one input word which is transformed into 
two or more distinct output words. The essential features of a finite state machine 
model of such a coder can be specified as follows:

• the system has a finite number of possible states and operates 
over a finite number of input (and output) blocks;

2 Alternate Mark Inversion. Detailed description of this code as well as most other line 
codes mentioned as typical representatives of different categories will be given in subsequent 
sections.
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• the next state of the coder is determined from a combination of 
the present state and input.

• the output is determined from the current state and input of 
the coder;

The implementation of this model for spectral analysis of digital line codes 
requires more detailed consideration of some results from the probability theory 
and statistics of Markov chains. A complete description of the model is given in a 
separate section of Chapter 3.

2.2.1.1 Codes with Alphabetic Structure

The zero mean disparity codes are a subclass of a larger category known as 
alphabetic codes. These codes are based on the availability of output blocks whose 
number is larger than the number of input blocks. Two or more subsets of output 
words, called alphabets, correspond uniquely to different coder states. Each code 
alphabet is a unique mapping of all possible input words for a given state. In 
general an output word may belong to different alphabets. For example, a code 
block with zero disparity can correspond to the same input word for all coder 
states. At the same time code blocks with opposite disparities may belong to 
different alphabets and correspond to another input word. These are only some of 
the considerations in designing a particular line code. There are many examples of 
coding schemes with more than two alphabets which are typical for the ternary 
block codes. The latter employ three values for the output symbols, often ±  1 and
0. Typical examples of this group are MS43 and FOMOT, [25].

The considerations applied in constructing the code alphabets could be 
quite complicated and may include probabilistic constraints of the digital sum 
variations. In a few words, this means that the digital sum is allowed to attain 
larger values but the code ensures that the probability of this to happen is very 
low. Techniques involving probabilistic constraints are suitable for coding 
sequences with different probabilities of symbols and blocks of symbols. The 6B4T 
is an example of such code and some more considerations on the problems of 
probabilistic constraints are given in reference [17]. The same reference provides 
also an overview of two main categories based on areas of application, i.e. line 
codes for cable communications and radio links. The first category includes two 
distinct subgroups codes for metallic lines and codes for optical fibres.
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2.2.1.2 Application Considerations

It has already been mentioned that a classification, based on structural 
features of the line codes is considered most appropriate for the purposes of this 
presentation. However, the typical arguments in forming categories application- 
wise are briefly presented below for the sake of completeness.

Metallic lines for digital transmission are divided in three types with 
respect to line code suitability: short, medium and long. The specific requirements 
on the parameters of the digital signals depend on the type of communication 
system. Short distance lines are typical for local networks carrying voice and data 
and reliability and simplicity have been often considered before efficiency. Coding 
schemes like AMI are very popular especially the improved alternating codes from 
the High Density Bipolar class (HDBn)3, which remove long sequences of identical 
symbols. The HDB3 code, for example, causes predefined violations of the 
alternation rule to indicate four consecutive zeros. For long communication lines 
codes with higher level of efficiency are used. Such lines also require special 
attention to the utilisation of the channel bandwidth. High-capacity long-distance 
communication system usually employ binary or ternary coding schemes, like 
3B4B, 6B4T and 10B7T. Codes with a number of symbol values higher than three 
are rarely considered suitable for cable lines mainly because of problems in 
intermediate regeneration of the signals.

It is more difficult to define special codes used in medium distance 
communications, but it will not be misleading to state that the considerations 
combine requirements from the other distance-types. HDB3 and 4B3T codes are 
not uncommon in medium range cable communications. Finally it should be 
mentioned that suitability of line codes depends on the type of metallic cable, i.e. 
copper pairs or coaxial cables. While only the latter are used in long-distance 
systems, both types are possible for short and medium lines.

The codes for optical fibre lines are mainly binary. This is due to the fact 
that light-intensity modulated signals are unipolar. There have been various 
approaches in designing line codes for optical fibres, [25]. In the early optical 
communication systems compatibility with existing digital communications has 
been very important. This has resulted in coding schemes converting ternary into 
two-level codes. Typical representatives of this group are the CMI and the two- 
level AMI. These codes exhibit many good properties but their efficiency is not 
always satisfactory. They have been used mainly in systems with excess of optical- 
fibre bandwidth and high reliability requirements. With the development of large

n  is the maximum number of consecutive zeros which are left unchanged.
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capacity optical communication systems and the availability of fast components 
binary codes of much higher efficiency have been designed. They are generally 
known as nB(n +  1)B codes. Usually two alphabets are constructed from the set of 
output words and the codes vary mainly in the constraint on the digital sum. 
Some codes with very good properties have found a wide spread application, 
typical examples being 5B6B and 7B8B. With respect to their spectral 
characteristics the nB(n +  l)B  codes have representatives which offer quite 
favourable line signal spectra. For example the two alphabet alternating types 
with small disparity values exhibit symmetrical frequency distribution with 
reduced low frequency content.

Most considerations mentioned above are mainly applicable to baseband 
digital transmission. Coding for carrier modulated communications is based on 
fairly different requirements, although, in principle it is possible to achieve 
acceptable results by direct transfer of a baseband signal upon a carrier through 
amplitude, frequency or phase modulation. However, there are problems and 
restrictions specific to carrier transmission and the related theory requires more 
involved discussion which is outside the scope of this work.

2.2.2 Other Types of Classification

It is possible to identify a group of line codes with features corresponding 
to particular system requirements. An example of such a group are the codes 
providing for error monitoring and ancillary channels. Codes with these features 
are very attractive for optical-fibre systems where additional service lines are not 
efficient. Although most manufacturers of optical cables offer metallic wires 
running alongside the optical fibres, it is much more efficient to provide a service 
channel integrated in the main digital signal.

In principle all coding schemes with some amount of redundancy have 
inherent error monitoring potential4. The simplest example is the the AMI code 
which provides for detection of errors violating the rule of mark alternation. 
However, the poor timing content of that code has made it less attractive for 
modern communication systems. More sophisticated error monitoring pattern is 
available from the HDB3 line code which has been designed to overcome the 
timing disadvantages of the AMI. This code has proven to be so successful in the 
early digital transmission systems that it has been included in the 
Recommendations of the CCITT (G.703).

E.g., the number of valid code words is smaller than the total number of code blocks

for a given set of code symbol values.
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A further step in utilising the inherent redundancy of some line codes is the 
deliberate ‘violation’ of the coding rules at the transmitting side for the purpose of 
sending additional information (service channels). The pattern of occurrence of 
such violations is anticipatory to the receiving side and can be distinguished from 
channel errors. In order to illustrate some techniques for error monitoring and 
service channel insertion a few examples are described briefly below.

The 2-level AMI code, [30] has resulted from the adaptation of the original 
bipolar version to a binary signalling system. The coding for 3-level AMI and its 
transformation into a 2-level format are shown in Table 2.2. It should be noted 
that the transformation results in a coded sequence of binary digits at twice the 
original transmission rate.

Binary input 3-level bipolar AMI Binary AMI

0 0 (preceded by 0) 10

0 (preceded by 1) 01

1 +  1 (if the last non-zero digit was —1) 11

— 1 (if the last non-zero digit was + 1 ) 00

Table 2 .2  The binary AMI code definition

It is not difficult to see that certain combinations of code symbols are invalid, e. 
g. 0000 and 1111. These two blocks could represent deliberate modifications of 
0100 and 1011 respectively. If such changes are inserted at a predefined rate 
(lower than the information transmission rate and higher than the expected error 
rate), an additional channel could be established. Obviously the larger the 
redundancy of a line code the more freedom of choice in organising the ancillary 
channel. In the case of low-redundancy codes greater care should be exerted about 
possible changes in the spectral characteristics of the modified line signal.

The second example refers to codes with simple error detection capabilities. 
The 7B8B line code is a very popular scheme in this respect, although other 
binary block codes are also suitable for the purpose. One possibility to achieve a 
simple error monitoring structure is to control the code sequence parity. This can 
be done by assigning two code words with opposite disparity to a specially 
selected input word. In the process of transmission the digital sum is constantly 
evaluated. Every time the special input word appears the coder replaces that word 
with one of the two code blocks so that the digital sum always becomes even (or 
odd). Descriptions of in-service error monitoring schemes are given in [21,22].
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The preceding sections are far from an exhaustive survey of the possible 
classifications of digital line codes. Only a few examples of the many possible 
codes have been given, mainly to illustrate the considerations in estimating the 
significant features of different coding schemes with respect to their particular 
category. As it was mentioned earlier, a complete classification of the existing line 
codes is not the prime goal of this chapter. It provides only the basis for 
developing the unified spectral analysis approach suggested in Chapter 4. To 
achieve this a number of known line codes are specified in the next section 
without introducing any particular order.

2.3 Specific Features of Typical Line Codes

The main reason for having this section is to provide a broad basis for 
comparing the conventional techniques of code definition to the generalised 
method presented in Chapter 4. The theoretical basis for this method was first 
suggested by Cariolaro and Tronca, [19] and part of this thesis is an attempt to 
extend the supporting arguments over a larger number of practical cases. Most of 
the line codes given below are defined in a way, commonly used in the specialised 
literature, i.e. by compiling a descriptive list of coder rules. There are certain 
advantages in such definitions, one of them being the ability to suggest a possible 
coder design, as well as any special features of the coded sequence. However, an 
obvious disadvantage is the lack of uniformity in stating the code rules, which has 
two main consequences:

a) Similarities between definitions are sometimes difficult to estimate 
(this may result in ‘invention’ of existing codes).

b) Systematic classification cannot be developed due to great diversity 
of coder specifications.

It should be noted that the presentation is restricted to the problems of 
baseband transmission, the practical examples, which are given below and further 
analysed in subsequent chapters, involve binary and ternary coding only. These 
are the coding schemes in predominant use for non-carrier systems and the 
examples chosen to illustrate the results of this work convey sufficiently well the 
ideas of the unified approach in spectral analysis of digital line codes. In order to 
preserve some consistency in the following description of line coding schemes 
common terminology and, where possible, notation is adopted. This is based on 
the following major assumption which does not restrict the general validity and 
applicability of the results.
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Coding always refers to substitution of symbols or blocks of symbols
at the input of the coder with output symbols or blocks of symbols.

With respect to the remark made above, binary symbols are represented as 0 and 
1 or —1 and +1, while ternary symbols are taken from the set —1, 0, +1.

Another common convention, which is often used in the description of line 
codes, is to refer to the transformation of input signal levels into a combination of 
output signal levels. Thus the binary set consists of a low level (corresponds 
symbols to 0 or —1) and a high level (1 or +1) respectively. The only order to be 
followed in the descriptions below is from most basic and simple codes towards 
schemes of higher complexity.

2.3.1 ‘No Coding’ or Basic Symbol Transformations

It is quite legitimate to include this case before any other code description 
as, clearly, a line signal is produced by the transmitting side of any digital 
communication system, regardless of whether a specific coding procedure is 
involved. Many authors prefer to present line coding as an integral part of the 
modulation process [Peebles, 1987; Killen, 1988]. This is due to the gradual 
evolution of line coding from the problems of digital signal modulation and 
eventually explains why in the literature line coding is often described as 
waveform formatting of digital signals.

Such an approach is based on the assumption that the line signal is formed 
by selection of particular pulse waveforms and then generating these waveforms to 
represent the symbols of a digital sequence. Sometimes combinations of waveforms 
(and periods of ‘no-waveforms’) are used to achieve specific properties of the line 
signal (mainly spectral characteristics suitable to the transmission media). The 
complete frequency distribution of the transmitted signal is considered predefined 
by the spectrum of the individual pulse waveform which is additionally modified 
by possible combinations of waveforms. This method of line signal analysis is 
applicable only in cases with relatively simple rules of substitution of a sequence 
of digits with a combination of waveforms. It is far less practical when blocks of 
two or more input symbols are to be represented with a combination of pulse 
waveforms and certainly inefficient in evaluating the statistical properties of line 
codes which are essential in achieving special features of the signal spectra prior 
the process of modulation.

In most cases, when ‘signal-encoding formats’ are described, it is assumed 
that the output signal is formed by a sequence of rectangular pulses. This
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assumption allows for relatively simple illustration of the resulting line signal as a 
time function and a degree of uniformity in deriving the expressions for the 
spectral density distribution. In summary, when line coding is presented as a part 
of the digital modulation process the various code structures are described as the 
transformation of a sequence of digits into a sequence of pulses (usually 
rectangular time-waveforms). This implies the use of a common terminology of 
signal levels and transitions between levels.

At this point it is possible to indicate the first significant concept of the 
unified approach in spectral analysis of digital line codes developed in the thesis. 
It is appropriate to represent the line coder as a separate system, transforming a 
sequence of input symbols into a sequence of output symbols5, in order to analyse 
and design particular modifications of the line signal spectrum, which are 
accomplished through the specific patterns and combinations of waveforms, 
regardless of their shape. This representation, as it will be shown later, allows for 
complete evaluation of the statistics of the coded sequence, and therefore its 
spectral density distribution. It should be noted, however, that second order 
statistics are sufficient only in the case of subsequent symbol-by-symbol 
modulation with the line signal waveform. With more complex modulation 
formats higher order statistics are required [Cariolaro, 1983].

A signalling technique, known as partial response provides a specific 
example with respect to the above considerations. It has been mentioned already 
that the problems of intersymbol interference are reduced with particular pulse 
waveforms (e.g. a raised-cosine pulse). By using combinations of such pulses 
corresponding to symbols from a digital sequence and delayed versions of that 
sequence it is possible to achieve particular shaping of the line signal spectrum. 
This type of processing is referred to as partial response, because the resulting 
pulses occupy two adjacent symbol intervals. The frequency distribution, achieved 
through such a process, is attributed to the modulating technique following the 
usual way of computing the spectrum from the time function of the signal 
waveform. However it is possible to show that the special features of the signal 
spectrum are acquired through the type of combination of the symbols in the 
digital sequence regardless of the modulating pulse waveform which modifies that 
spectrum additionally and could be designed to accomplish other purposes like 
intersymbol interference. The analysis results for the Duobinary types of coding, 
given in Chapter 4, provide further evidence in support of this statement.

5 Although in general the meaning of the symbols is immaterial to the coding process, 

they are usually represented as digits, which, together with a set of operations, are considered to 

belong to some number field, in order to facilitate the strict mathematical analysis.
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Finally it can be seen why certain types of line signalling are regarded as 
codes without actually being a result of any encoding procedure. Clearly the 
reason for this is the presentation of the line coding process as an integral part of 
the modulation function, which is commonly referred to as waveform formatting. 
At this point it is possible to start the list of conventional definitions with the 
basic types ‘encoding formats’ . Some of the brief descriptions given below indicate 
alternative ways of code rules definition to facilitate the presentation of the 
encoder separated from the digital modulator.

NRZ (unipolar)

The nonreturn-to-zero line signal formatting is the straight forward 
transformation of a sequence of binary symbols into a pulse waveform which is 
ideally represented by a constant non-zero level for the time interval of a symbol 
one and zero level line signal for the period of in input symbol of zero. If this is 
viewed as the process of modulation only, then it can be described as modulating 
the 1-s from a coded 0/1 sequence with a rectangular pulse waveform which does 
not return to zero level for the whole time interval of a code symbol 1. Obviously 
the coded sequence in this case is the original digital sequence itself, therefore the 
line coder (which transfers symbols into symbols) can be presented as a fictitious 
system ‘converting’ 0 to 0 and 1 to 1. In the pattern of the forthcoming definitions 
the NRZ line code can formally be described as follows.

Coding rules: The input zero (space) is coded as output zero and the input 
symbol of one (mark) is coded as output one.

Main features: As this code or rather line signal format d o e s  n o t  c h a n g e  th e  

o r ig in a l in fo rm a t io n  se q u e n ce ,  it can be considered the basis for 
comparison of of all other coding schemes. The a b s e n c e  o f  a n y  

in fo rm a t io n  re d u n d a n c y  means that th e  s p e c t r u m  o f  th e  N R Z  s ig n a l  

ca n  b e  ta ken  a s  a b a sis  in the estimation of minimum channel 
capacity as well as channel bandwidth and transmission rate. The 
advantage of the NRZ signalling is the ultimate s im p lic ity  a n d  

efficiency. However, the p re se n c e  o f  d .c. a n d  a h ig h  leve l o f  lo w  

f re q u e n c y  c o m p o n e n t s  p lu s  th e  s m a l l  a m o u n t  o f  t im in g  in fo rm a t io n  

with long sequences of identical symbols, comprise the 
disadvantages which sometimes are quite unacceptable.
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When the output symbols are +1 and —1, corresponding to positive and 
negative signal levels respectively, the NRZ is called a polar waveform. This type 
of signalling has the same features as the unipolar NRZ except for slightly higher 
noise resistance (under certain conditions).

Some modifications of the basic NRZ format exhibit a slightly higher level 
of coding complexity6. Although these types of line signalling do not contribute 
substantially to the variety of coding formats, the main reason for their inclusion 
as separate definitions is to illustrate the suggested new approach in presenting 
the transformation of a sequence of symbols into a coded sequence.

NRZ-M/NRZ-S

The NRZ-Mark and the NRZ-Space, known also as ‘differential’ formats, 
convert the original digital sequence into a sequence with a different structure 
without changing the information content of the signal. This operation is best 
illustrated by showing that it is equivalent in principle to symbol-by-symbol 
inversion of the digits in a suitably defined binary sequence. To avoid unnecessary 
wording the symbols of the original sequence are taken in pairs and each pair is 
substituted with a different one according to the respective rules.

Coding: NRZ-M NRZ-S
00 and 10 become 00 or 11 00 and 10 become 01 or 10
01 and 11 become 01 or 10 01 and 11 become 00 or 11

Main features: If long spells of identical digits are expected to appear regularly in 
the original sequence, these codes p ro v id e  fo r  in c re a se  in th e  

a m o u n t  o f  transit ions, i.e. im p r o v e m e n t  o f  th e  t im in g  c o n t e n t  can be 
achieved.

It is important to note that, when the input symbols are of equal probability, 
nothing is gained from the use of NRZ-M and NRZ-S.

It is now possible to see that if the combinations 00/10 and 01/11 (for 
NRZ-M) are viewed as some composite symbols, then the combinations 00/11 and 
01/10 can be considered to represent the inverse of the former. Obviously the 
effect is the same as the normal inversion of the original binary sequence. (Similar 
reasoning applies for NRZ-S). However, the difference is that the two codes 
change long sequences of consecutive 1-s or 0-s, respectively into sequences with 
transitions. This difference is a potential advantage. The reason for the remark,

6 This term is discussed in detail in Chapter 4.
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following the feature specification of the above line codes, becomes apparent by 
pointing out that for equiprobable input symbols the average density of transitions 
is the same as the density of consecutive identical symbols. The advantage of 
applying the two types of NRZ signalling becomes significant when the input 
symbol probabilities are different.

The software routine (presented in Chapter 3), which has been developed 
to provide parametrical computation of the spectral density function, offers 
significant power and precision in evaluating the resulting frequency distribution 
for various symbol probabilities. More detailed comment on these matters is given 
in Chapter 4.

Before closing this section one more ‘no-coding’ scheme is described mainly 
for completeness and also to affirm the argument in favour of replacing the 
conventional ‘waveform formatting’ approach with ‘encoding of digital sequences’ 
followed by modulation for the purpose of developing a unified evaluation 
technique in spectral analysis of digital line codes.

R Z

The return-to-zero signalling format is an example of a modulation 
procedure ensuring the presence of transitions in all symbol intervals 
corresponding to input one.

Coding rules: The input zero is transformed into a symbol period of zero level 
(no pulse). The input one is represented by a pulse waveform 
(high signal level) for half of the symbol period and zero level for 
the other half of the period7.

Main features: G o o d  t im in g  in fo rm a t io n  provided for high density of symbol 1 in 
the original sequence. Requires tw ice  th e  tra n sm is s io n  b a n d w id th  o f  

th e  N R Z  fo rm at.

It is obvious that the RZ wave formatting can also be represented as a 
modulator which generates a pulse waveform (of duration half the input symbol 
period) for a code symbol 1 and no-pulse for a code symbol 0 plus a coder which 
transforms an input 0 into 00 and an input 1 into 10. The inefficiency of this type 
of signalling in terms of line coding will certainly become evident through the 
subsequent analysis of other coding techniques, based on the same input/output

7 Different proportions are also possible.
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symbol sets. The presentation of conventional code definitions continuous in the 
next section with more complex code structures. No explicit notification will be 
made where alternative code rule descriptions are given to suggest a coding 
scheme independent from the modulation format.

2.3.2 Coding -  Advanced Symbol Transformations

The basic coding formats from the previous section have a very restricted 
effect on reshaping the signal spectra without considerable increase of the 
bandwidth. Most of them achieve very specific purposes, often under certain 
probabilistic conditions only. More significant results in adapting the signals to 
the transmission channel can be accomplished through line coding schemes with 
higher level of sophistication. Binary and ternary block codes are used 
predominantly in digital systems for baseband transmission. Some of the most 
popular versions employed in modern communication systems are described 
below.

A M I

The Alternate Mark Inversion is a frequently used line coding scheme. It is 
also known as ‘bipolar format’ or ‘pseudoternary’ code.

Coding rules: The input symbol of zero is coded always as output zero. The 
input symbol of one is coded alternatively as +1 and —1.

Main features: N o  d .c. c o m p o n e n t .  E rro rs  ca n  b e  d e te c te d  from violations of the 
alternation rule. N o  t im in g  in fo rm a t io n  in long sequences of 
consecutive zeros. L o w  tra n sm is s io n  e ffic ie n cy  ( «  0.6)

C M !

The Coded Mark Inversion (also known as biphase-space) results in a two 
level format. It has been designed to improve on the timing contents and to avoid 
the necessity of three signalling levels.

Coding rules: The input zero is always coded as output low and high level, each 
of duration half the period of the input symbols. This can also be 
denoted as 0 —̂ 01. The input one is coded as a low level (00), if 
the previous one was coded as a high level (11) and vice versa.
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Main features: T h e  a m o u n t  o f  tra n s it io n s  is h ig h  (at least one per input symbol 
interval). The two levels are su ita b le  fo r b o th  p o la r  a n d  u n ip o la r  

tra n sm iss io n . Requires tw ice  th e  b a n d w id th  o f  th e  in p u t  se q u e n ce .

M a n c h e s t e r

This code is also called biphase-level. Together with CMI and several other 
modifications, the Manchester code is a very popular representative of a group 
known as biphase coding formats.

Coding rules: The input zero is always represented as output low and high 
levels for the first and the second half of the input symbol period 
respectively, i.e. 0 —» 01. The input one is represented by the 
same combination in reverse order, i.e. 1 —> 10.

Main features: S u f f ic ie n t  t im in g  in fo rm a t io n  is available due to the presence of 
transitions for every input symbol interval. The d o u b le d  b a n d w id th  

is a disadvantage, common to the whole group of biphase coding 
formats.

A common characteristic of the biphase coding schemes is the substitution 
of input zero or input one or both with two different output symbols. The names 
of the different versions are suggestive of the type of transformation. Thus the 
biphase-space (CMI) converts every space (0) into 01, while the marks (1) retain a 
constant value during the input symbol period (i.e. 00 or 11 alternatively). The 
biphase-mark is the inverse of the CMI code and will not be described separately. 
The meaning of biphase-level for the Manchester code can be explained by noting 
that both input levels (0 and 1) are replaced with a pair of different symbols, 01 
and 10 respectively.

D iffe re n tia l M a n c h e s t e r

Unlike the Manchester code, which creates two transitions for every input 
symbol in long uniform sequences while removing the transitions in the original 
sequence, the Differential Manchester introduces two transitions for one of the 
input symbols and one transition for the other input symbol.

Coding rules: The input zero is coded with two different symbols, the first of 
which is always different from the previous symbol. The input one 
is also coded with two different symbols, but the first of them is
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always the same as the preceding one. The rule can be given 
alternatively as follows

JOl if the last code digit is 1 101 if the last code digit is 0
~ 1’ 110 if the last code digit is 0 ’ * 110 if the last code digit is 1

Main features: The advantage of this code is the same as for the whole
Manchester (biphase) group, i.e. a b u n d a n c e  o f  t im in g  in fo rm a t io n ,  

due to the availability of at least one transition in every input 
symbol interval. The disadvantage is again the requirement for 
h ig h e r  t ra n sm is s io n  b a n d w id th .

The Differential Manchester code derives from the biphase family in 
exactly the same manner as the differential techniques (NRZ-M/NRZ-S) derive 
from the basic signalling format, NRZ.

M ille r

The Miller code is also called delay modulation, the reason for which 
becomes apparent when the symbol transformation is described in the following 
manner: The input sequence is converted into transitions between two levels. A 
transition for input one comes half a period after the start of the symbol interval. 
A transition for input zero comes after a full symbol period, provided the next 
input digit is also a zero.

Coding rules: Input one is always coded as two different output symbols of 
duration half the input-symbol time interval, while an input zero 
is coded as output one or zero of length equal to the input symbol 
period, so that it is the same as the last code digit, if it represents 
an input one and opposite to the last code digit, if it represents an 
input zero. The alternative definition can be given as follows

{00 if the last two code digits are 10 or 11 
11 if the last two code digits are 00 or 01 ’

{01 if the last two code digits are 00 or 10 
10 if the last two code digits are 01 or 11 ’

Main features: The Miller code produces a sequence with very  s m a l l  lo w -f re q u e n c y  

c o n t e n t  and a p o ssib ility  o f  s ig n a ll in g  w ith in  th e  b a n d w id th  o f  th e  

o r ig in a l d ig ita l se q u e n ce .

0 — 

1 -*
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All coding schemes presented so far have more or less straight forward 
definitions in the sense that no algebraic operations are required to describe the 
coder rules. It should be pointed out, however, that virtually every coding 
operation can be presented formally as an expression which determines the 
algebraic relation between the input sequence and the coded sequence of symbols. 
Some good examples of such presentations in the terms of waveform formatting 
can be found in [Peebles, Jr., 1987]. In the simplest case of NRZ-mark 
(differential) encoding format the output sequence can be produced from the 
input sequence â  through modulo 2 addition as shown below

bk =  bk - l ® a k  (fc =  0> ± 2 , . . . )  (2.2)

where is the preceding output symbol. With some line codes the algebraic
presentation provides better understanding of the transformation procedure and 
often a scope for further development and improvement of the underlying coding 
structure. The two coding schemes described below are often given as a good 
illustration of simple algebraic definitions.

D u o b in a r y

This type of line waveform formatting is another example of a ternary 
code. The input binary symbols are converted into a three-level signal similar to 
the AMI format with one very essential difference -  the positive and the negative 
symbols correspond to the input ones and zeros respectively, while the middle 
level (output zero) represents both. A more accurate specification is given below.

Coding rules: A binary zero at the input is changed into a zero or a middle level 
if the preceding input symbol was a one and into a low level if the 
preceding input symbol was a zero. The inverse applies for a 
binary one, i.e. it is coded as a zero or a middle level if the 
preceding input symbol was a zero and into a high level if the 
preceding input symbol was a one. Alternatively

{0 to code the second digit of consecutive 10 at the input 
— 1 to code the second digit of consecutive 00 at the input

{0 to code the second digit of consecutive 01 at the input 
+1 to code the second digit of consecutive 11 at the input

Main features: The output symbols are of the same duration as the input 
symbols. The resulting line signal requires only h a lf  th e  b a n d w id th  

o f  th e  o r ig in a l b in a ry  se q u e n ce . The e ff ic ie n cy  in t e r m s  o f

0 -» 

1 —
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in fo rm a t io n  tra n sm is s io n  ra te  is n o t  o p tim a l. L o w  f re q u e n c y  

c o m p o n e n t s  a re  n o t  r e d u c e d  and a sequence of alternating input 
symbols causes a constant zero (middle) level at the output with 
n o  t im in g  in fo rm a t io n . Typical disadvantage of this type of coding 
is the p ro p a g a t io n  o f  e rro rs  and the need of precoding to avoid it.

M o d if ie d  D u o b in a r y

This code is an improved version of the formatting technique described 
above. It employs the same principle as the Duobinary code, except that each 
code digit depends on the input symbol preceding the last one. More strictly this 
can be stated as follows.

Coding rules: The output symbol is a zero or a middle level when the input 
digit is the same as the input digit before the previous one. The 
output symbol is a low level (—1 ) or a high level (+1) when the 
input is a binary 0 or 1, respectively and is different from the 
input digit before the previous one. Alternatively

0 0 to code the third digit of consecutive 000 or 010 at the input 
—1 to code the third digit of consecutive 100 or 110 at the input

{0 to code the third digit of consecutive 101 or 111 at the input 
+  1 to code the third digit of consecutive 001 or Oil at the input

Main features: The Modified Duobinary code exhibits n o  d .c. a n d  s m a l l  lo w  

f re q u e n c y  c o m p o n e n t s ,  while preserving the n a rro w  b a n d w id th  

requirement of the Duobinary. P ro p a g a t io n  o f  t ra n sm is s io n  e rro rs

can be countered with special precoding.

The rules of the last two coding schemes can be specified more concisely 
through algebraic expressions relating the sequence of input symbols aj, to the 
output sequence of symbols b̂ .

=  °k + ak -  1 — 1 (f°r Duobinary) (2.3a)

bk =  a k ~  a k -  2 (f°r Modified Duobinary). (2.3b)

It is important to note the gradual increase in complexity in the line code 
definitions given so far. Obviously the coder rules become more tedious to specify
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and difficult to understand when their implementation requires memory. In spite 
of the relative simplicity of the algebraic relations producing the code symbols, 
the dependence of the coder output on preceding input and output symbols 
involves evaluation of many combinations, whose number increases exponentially 
with the size of memory required. It should also be noted that in the cases of 
alternative definitions of the coder rules it is much clearer to state the 
transformations of symbols into symbols than to describe the resulting line 
waveform in terms of signal levels. A few more examples are given below to 
complete this section with code definitions which are closest to the form suggested 
for the unified approach of the general spectral analysis model. These are 
examples of alphabetic codes, mentioned earlier as a particular type, also known 
as block codes.

All coding schemes with a block structure are defined as transformation of 
blocks (or words) of n input symbols into blocks of / output symbols. The set of 
input symbols and that of the output symbols may be the same or different and in 
the case of both being the binary digits 0 and 1 , the block codes are generally 
denoted as nB/B. Another more or less conventional notation refers to coding 
binary words into blocks of ternary digits (—1 ,0,+ 1 ), which is usually denoted as 
nB/T. There two important points to be made about codes with a block structure 
in order to specify the boundaries of applicability of the forthcoming arguments.

1) The numbers n and l can be either variable or fixed. The theory of variable 
length block coding is rather complicated and requires special treatment. 
The spectral analysis model adopted in this presentation and the results 
are related to fixed-length block codes.

2) The line coding schemes described so far are predominantly of symbol-by- 
symbol type. However it is clear that the latter can be represented as 1B/B 
or 1B/T block coding which may be viewed as the first step towards the 
unified method of line-coder definition.

In general the methods of line coding are not restricted to two or three 
level signalling. In case of multi-level line signal formatting the corresponding 
coding scheme is often referred to as m-ary, where m is the number of signal 
levels. It is possible to show that for a fixed rate of information transmission 
binary and multi-level transmission are equivalent if the channel is noiseless and 
not band-limited. However, for real transmission conditions binary signalling is 
more suitable to noisy environment with unrestricted bandwidth while m-ary line
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formats are preferable for low symbol transmission rates in channels with low 
levels of noise.

Two typical examples of block codes are considered below illustrating the 
binary and the ternary types respectively.

3 B 4 B

This code transforms blocks of three binary digits into blocks of four binary 
digits. The output words are selected from the complete set of 16 possible 
combinations of four binary digits in such a way that the digital sum is limited 
and the average numbers of zeros and ones are equal.

Coding rules: The four words -  0000, 0011, 1100 and 1111 -  are not used and 
provide for an error monitoring condition. Four of the remaining 
12 words -  0101, 0110,1001 and 1010 -  have equal number of zeros 
and ones. They are used to represent uniquely four input words. 
The other 8 output words are divided into two sets as shown in 
the table below

i nput  words o u t p u t  words

0 0 0 0 1 0  1
0 0 1 0 1 1 0
0 1 0 0 0 0 1 1 0  1 1
0 1 1 0 0 1 0 0 1 1 1
1 0 0 0 1 0  0 1 1 1 0
1 0 1 1 0  0 0 1 1 0  1
1 1 0 1 0  0 1
1 1 1 1 0  1 0

Table 2.3 The 3B4B code definition

The coder selects an output word from the two sets alternatively 
to transform the respective input words.

Main features: The 3B4B line code is b a la n c e d , i.e. the digital sum is limited and 
the average disparity is zero. T h e  lo w -f re q u e n c y  c o m p o n e n t s  o f  th e  

s ig n a l s p e c t r u m  are  sm a ll. The code e ffic ie n cy  is m o d e r a t e  (0.75).

The next description is one of the many versions of the 4B3T line code. It 
transforms the input binary words into a set of ternary words.
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M S 4 3

The use of three levels in this code allows for reduction in the signalling 
rate by transmission of 3 code symbols for every 4 input symbols. There are three 
code-word sets designed to ensure a good balance as well as disparity constraints.

Coding rules: Every four-digit input binary word is substituted with a three- 
digit ternary word from the table given below, according to the 
accumulated disparity.

input words output words used with disparity 
- 2  - 1  or 0 +1

0 0 0 0 + 1 + 1 + 1 - 1 + 1 - 1 - 1 + 1 - 1
0 0 0 1 + 1 + 1 0 0 0 - 1 0 0 - 1
0 0 1 0 + 1 0 + 1 0 - 1 0 0 - 1 0
0 0 1 1 0 - 1 + 1 0 - 1 + 1 0 - 1 + 1
0 1 0 0 0 + 1 + 1 - 1 0 0 - 1 0 0
0 1 0 1 - 1 0 + 1 - 1 0 + 1 - 1 0 + 1
0 1 1 0 - 1 + 1 0 - 1 + 1 0 - 1 + 1 0
0 1 1 1 - 1 + 1 + 1 - 1 + 1 + 1 - 1 - 1 + 1
1 0 0 0 + 1 - 1 + 1 + 1 - 1 + 1 - 1 - 1 - 1
1 0 0 1 0 0 + 1 0 0 + 1 - 1 - 1 0
1 0 1 0 0 + 1 0 0 + 1 0 - 1 0 - 1
1 0 1 1 0 + 1 - 1 0 + 1 - 1 0 + 1 - 1
1 1 0 0 + 1 0 0 + 1 0 0 0 - 1 - 1
1 1 0 1 + 1 0 - 1 + 1 0 - 1 + 1 0 - 1
1 1 1 0 + 1 - 1 0 + 1 - 1 0 + 1 - 1 0
1 1 1 1 + 1 + 1 - 1 + 1 - 1 - 1 + 1 - 1 - 1

Table 2.4 The MS43 code definition

Main features: The MS43 line code is w ell b a la n c e d  and the restricted digital sum 
provides for a s m a ll  lo w -f re q u e n c y  c o n te n t . The need for a lo o k -u p  

tab le  requires h ig h e r  c o d e r  co m p le x ity .

Most practical line coding schemes require l > n for a binary block 
structure nB/B and usually l < n for ternary block codes. This may suggest that 
the prime reason for implementing an nB/T code is to reduce transmission rate 
and possibly to achieve a particular frequency distribution. While this is so in 
many cases, the fact that a large number of 1B1T codes exists (some have been 
described above) indicates that initially three-level signalling has been introduced 
mainly to achieve a particular spectral distribution and timing content.

Most of the known codes, as well as many newly developed ones, are 
specified by the usual descriptive definition of the coder rules. Unfortunately this
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approach has been adopted even by some influential standardising organisations. 
Typical examples are the code definitions of HDB3 and CMI given in 
Recommendation G.703 of CCITT. The descriptive specifications of line codes 
given in this section indicate some weaknesses of this type of presentation. The 
definition of code rules becomes too complicated with the increase of the number 
of possible coder states. Sometimes similarities as well as differences are disguised 
by particular wordings which could prevent the derivation of more general 
methods and schemes. It has also been indicated that, if the modulating process is 
separated from the line coding, the latter can be defined in a more uniform 
manner as transformations of symbols instead of waveform formatting. Thus it 
becomes possible to perform spectral analysis based on the structure of the coded 
sequence regardless of the characteristics of the pulse waveform used for 
transmission. Such an approach provides much greater flexibility in achieving 
special features of line signal spectra and considerable freedom in developing new 
coding schemes.

Various examples of coding techniques have been given in this section to 
illustrate the conventional descriptive definition of coder rules. Some possibilities 
for alternative concise and uniform definitions have been suggested. The line coder 
presentation as a system transforming input symbols into a coded sequence of 
output symbols is further developed in the next chapter. A complete statistical 
model of the coding process is introduced after a brief overview of the spectral 
analysis concepts. Based on this model an unified approach to code definition is 
fully developed in Chapter 4 and some of the coding formats described above are 
redefined through their table and matrix presentation.
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3. THE LINE CODER MODEL -  TH EORY AND IM PLEM ENTATION

The general spectral analysis model is defined in this chapter. It has been 
developed by G. L. Cariolaro et. al. and published in the Int. J. Electronics, 1983. 
The model is based on the concept of representing a digital line coder as separate 
systems. This allows the evaluation of the complete statistics of the coded signal 
independently of the line waveform modulator. Most line codes can be specified as 
transformations of a sequence of symbols into a coded sequence of symbols. The 
adaptation of the line signal to the transmission channel is achieved mainly 
through appropriate shaping of the spectrum of the coded digital sequence which 
requires adequate frequency analysis of the latter. In order to evaluate the spectral 
density of the symbol sequence at the output of the coder, it is necessary to 
determine the statistics of this sequence. The adopted line coder model provides a 
general solution to this problem for all codes which transform blocks of digits into 
blocks of code-symbols1. It allows the statistics of the output digital sequence to 
be evaluated from the statistics of the input sequence (which is assumed to be 
stationary and memoryless) by defining the process of transformation through the 
transitional probabilities of a finite-state system.

By assuming some conventional linear digital modulator (e.g. one which 
produces a rectangular pulse waveform for every nonzero code symbol) the line 
coder model can be used to specify uniquely any fixed-length block code. This 
allows accurate comparative assessment of various coding schemes together with 
complete and detailed spectral characterisation of the coded line signal. The 
analysis results can provide any required degree of numerical precision2 as well as 
highly informative graphic output. The latter can be appreciated through the 
analysis examples presented in Chapter 4. Finally, the possibility of a systematic 
assessment of the characteristics of line coding schemes and the generality of the 
method, have created the basis for some constructive feedback, which has allowed 
a new classification to be suggested and an unrestricted variety of new codes to be 
generated.

This chapter begins with a brief introduction to the problems of spectral 
analysis in digital line coding. This is followed by a detailed definition of the 
general line coder model which leads to the analytical expressions for the 
frequency distribution used in the computational procedure. The latter has been 
implemented in a software routine whose structure is outlined in Section 3.3.

1 Symbol-by-symbol coding can be viewed as transformation of blocks of length one.

2 The only real limitations are the number of variables and the sizes of mathematical 
structures the package can handle.
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3.1 Spectral Analysis -  General Considerations

How important is it to analyse the spectra of digital line signals and what 
degree of precision should be pursued, are questions whose answers determine the 
degree of involvement and the capabilities of various methods. The types of 
signals transmitted over digital communication lines can be divided in two main 
categories: signals which require error-free transmission and signals which are 
considered acceptable above a certain level of deterioration. In the first case error- 
correcting techniques are applied and usually transmission systems operate with 
considerable margins with respect to channel capacity to ensure that errors do not 
exceed the number which a code is capable to correct. The second category of 
signals allow for a certain amount of errors to be considered a tolerable 
impairment of the received information (voice, video, etc.). Most practical digital 
systems, however, operate at very low error rates (far below one in a million) and 
very close to the capacity limit of the transmission channel. (The requirement for 
efficiency is often imperative.) The second condition implies that signal spectra 
should match almost perfectly the frequency characteristics of the transmission 
media. This means that even small deviation from the required spectral density 
distribution can result in an unacceptable increase in the amount of errors.

Therefore, to be able to perform detailed and accurate spectral analysis of 
digital line codes is considered of crucial importance to modern communications, 
where the degree of efficiency and precision are constantly pushed closer and 
closer to their limits. It is also important to create powerful design techniques 
that can combine a sufficient productivity in the development of new solutions 
with the ability to make an uniform assessment of the analysis results. The results 
presented in subsequent sections demonstrate a possible approach in response to 
the above requirements.

The spectral density function of deterministic signals can easily be found 
through the Fourier series theory. The frequency analysis of truly random signals, 
by evaluating the autocorrelation function is also more or less straightforward. 
The problems become complicated in the spectral analysis of signals which are not 
deterministic, but not completely random either. When a system transforms a 
random sequence of digits, so that the output sequence depends on various states 
of that system, the result is a signal which has some added structure, i.e. the 
symbols of the output sequence are no longer independent. In order to evaluate 
the spectrum of the transformed sequence it is possible to use the autocorrelation 
function which can be derived from the statistics of that sequence. However, the 
problem is to determine how the statistics of the input sequence have been 
modified in the process of transformation. Clearly the changes are functionally
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related to the sequence of transitions between the states of the system. Such 
sequences can be described most adequately by the theory of Markov chains 
through their transitional probabilities [Winsten, 1981; O’Reilly, 1984] and in 
many practical cases of interest this is sufficient to evaluate the complete 
statistics of the coded sequence.

The spectral analysis in digital transmission is based on the second order 
statistics of the respective signals. This can be illustrated with a general 
introductory definition of the fundamental relationship between the time and the 
frequency functions representing a random signal. The autocorrelation of some 
sequence a(f) is given by

Ra(r) =  E(a(t) a(t +  r))

where a(t +  r) is a delayed version of that sequence. The spectral density of a(t) is 
defined as the Fourier transform of its autocorrelation as follows

+oo
Saif) =  J exp(-j2nfr) dr

— OO

Various techniques exist for evaluation of the frequency distribution of coded 
digital signals. Most elaborate theoretical treatment of the related problems can 
be found in [Cattermole and O’Reilly, 1984] and [Tröndle and Söder, 1987].

The complete definition of the model is presented in the next section by 
adopting the conventional discrete signal notation x(kT). Some of the algebraic 
transformations, which are not given in the original work, have been made 
independently to trace the key steps in deriving the final expressions used in the 
software computational routine.

3.2. Description of the Line Coder Model

The spectral analysis model, described in the following subsections, is 
presented in three main stages. First the components comprising the model are 
appropriately defined. The second stage involves specification of a finite-state 
system which describes the core of a coder, transforming input symbols into code 
symbols according to a set of possible states. A suitable definition of the 
input/output variables and functional relations of the finite-state system allows to 
evaluate the complete statistics of the coded signal from the input symbol 
probabilities. Finally the analytical expressions for the spectral density
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distribution are derived from the second order statistics of the coded sequence 
which are evaluated through appropriately defined autocorrelation function. The 
theoretical basis for spectral analysis in linear and non-linear systems is briefly 
introduced in order to determine the frequency characteristics of the line signal by 
using the input/output relations for some systems of the model.

An arbitrary line coder can be described through the systems and the 
signals shown in Fig.3.1, which can be viewed as components of the model.

F ig .3 .1  Components of the line coder model

The two types of components are defined in their general form as follows.

Signals There are two categories of signals —  deterministic and random. A 
mapping of the time-domain into a set of values is considered a 
deterministic signal. A collection of such mappings is assumed to 
represent a random signal where every mapping is a realisation of the 
random signal.

The present analysis is concerned mainly with signals described as random 
sequences of symbols. Two types of signals represent synchronous transmission — 
continuous-time signals and discrete-time signals. In the first case both the time- 
domain and the signal values are some continuous subset of the real numbers and 
this is usually denoted as y(t). In the second case the time-domain consists of a 
discrete set of values which are mapped into the set of discrete signal values. For 
equally spaced time-domain values {0, ±  T, ±  2T, ... } the signal can be denoted 
as d(kT), where k — 0, ±  1, ± 2 , . . . .  Here T is the period of time between two 
consecutive signal values and F =  ^  is the signal rate.

Systems These are components of the model which can be represented by their 
input/output relation and possibly a set of states. Two types of 
systems are used in the representation of the coder — linear and 
nonlinear.
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The spectral analysis theory for liner systems allows the frequency 
characteristics of the output signal to be determined directly from those of the 
input signal through the relation between the respective correlation functions. For 
nonlinear systems the evaluation of the spectral density of the output signals 
requires the second order statistics to be estimated. The block coder is a nonlinear 
system and so is in general the digital modulator. For the purposes of the present 
analysis it has been assumed that the line signal is produced by a linear function, 
such as Pulse Amplitude Modulation (PAM), which is implemented in many real 
systems.

3.2.1. Definition of the Components in the Line-Coder Model

In the discrete time-domain signals are often referred to as sequences of 
symbols or sequences of words (blocks of symbols). The signals in the line coder 
model can now be defined as follows:

■ ¡(V d ) is the input-symbol sequence where k  ̂— 0, ±  1, ± 2 , . . . .  The period 
of the input symbols is T^ and they are selected from the set of 
possible values (alphabet) denoted as d — ••• , da}.

D(kT) = [d^kT^d^kT), ... ,d^kT)]
is the input-word sequence where k =  0, ±  1, ±  2, . . . .  The input word 
is a row vector with elements dn(kT), n — 1, . ,.,,/V and period 
T =  NTj. D(kT) is selected from the set of possible blocks of symbols 
(dictionary) denoted as D = {D^D^, .. . ,T)M}. The size of the input 
dictionary is M — a.^.

X(kT) = [ Xl(kT),x2(kT) , ... , i # r ) ]
is the output-word sequence where k — 0, ±  1, ±  2,.... The output 
word is a row vector with elements x^kT), l =  1, . . . ,L which are the 
output symbols of the coder as defined below. The period of the 
output word T is assumed equal to the input-word period. X(kT ) is 
selected from the set of possible blocks of symbols (dictionary) denoted 
as X  =  { A ^ ,^ , . . . ,Xj} .  The size of the output dictionary is J < /?^, 
where f3 is the number of output symbols.

x(kxTx) is the output-symbol sequence where kx =  0, ± 1 , ± 2,.... The period
rp

of the output symbols is Tx = j- and they are selected from the set of 
possible values (alphabet) denoted as x =  |x1,x2, ... ,Xp}.
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y{t) is the line signal which is sent through the transmission media. It is
produced by modulating the output-symbol sequence with a particular 
signal waveform. (In the case of PAM y(t) is a continuous-time pulse 
waveform.)

The model of the line coder consists of four distinct systems. The framing 
and the deframing systems are linear while the block coder and the digital 
modulator are non-linear in general. In the case of PAM the digital modulator is a 
linear system. The functions characterising the relations between the input and 
the output of each system are introduced below. Linear systems are described in 
brief as their mathematical representation is straightforward. Also, a linear 
function can be used to describe certain types of modulating systems which allows 
the digital modulator to be assumed a linear system without substantial reduction 
in the generality of the present analysis. The main definition of the block coder is 
given briefly as more detailed presentation follows in a separate subsection. This is 
necessary as the description of the block-coder model is of greatest importance to 
the development of adequate statistical and spectral analysis of the coded signal.

The input-output relation which represents the linear systems of the model 
can be derived in general form. It is known that for an iV-input, X-output system 
this relation is given by

Kt) =  /  ct(T)5(i -  T) (3.1a)

where
a(r) input signal -  a row vector with N  components;

r e f - { 0 ,  ± T a, ± 2 T a,...}
b(t) output signal -  a row vector with X components;

¿<E* =  {0, ± T h, ± 2 T b,...}
g(6) composite characterising function of the system -  an iV by f  

matrix;
e G r =  {0 =  t -  r: t 6 r e f } .

The relations between the time-domains $, and T determine the type of the 
system —  a filter, an interpolating filter or a decimating filter. When t  = kT the 
integral becomes a summation:

+oo
&(<)= Ta(kT)g(t-kT)  (3.1b)

k = —oo

The linear systems of the line coder model can now be defined as follows:
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FRAMING

This system relates the input-word sequence D(kT) to the input-symbol 
sequence d(kdTd) through the expression

dn{kT) =  d[(kN +  n - l ) T d)
where n =  1, .. . ,N  for every k =  0, ± 1 , ± 2 ,. . . .  This is a decimating filter 
with one input and N  outputs where $  D ^  and T =  3>, because

*  =  {o, ± T d, ± 2 Td,...} and =  {0, ± T ,  ±2T,. . . ) .

The characterising function of this system is given by a row vector of delta- 
functions defined as

id((WV -  *d)Td)  =

=  [s[(kN -  kd)Td),6((kN - k d+ l)Td)......6 ( (k N -k d +  N -  lJT j)] (3.2a)

where 6 ( ( k N - k d)Td) = ?

?

for

for

kN — kd =  0

k N - k d ^  0
k, kd =  0, ± 1, ± 2,...

DEFRAMING

This system relates the output-word sequence X(kT ) to the output-symbol 
sequence x(kxTx) through the expression

x((kL +  l - l ) T x) =  xl(kT)
where l — 1 ,...,L for every k =  0, ± 1 , ± 2 ,. . . .  This is an interpolating filter 
with L inputs and one output where $ C ^  and T =  ’]/, because

*  =  {0, ± T ,  ± 2  T ,...}  and =  {0, ±  T x, ± 2 T X,...}.

This system has a characterising function given by a column vector of delta- 
functions defined as

gx((kx - k L ) T x) = ^~

6((kx -k L ) T x)
S((kx - k L - l ) T x)

S((kx - k L - L  + l)Tx)

(3.2b)

where 6((kx — kL)Tx) -4r- , for 
1 x
0 , for

kx — kL =  0 

kx — kL ^  0
k, kx =  0, i l ,  i  2,. . .
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The system to be described next transforms the symbol sequence into a 
continuous waveform which is transmitted over the communication channel. As it 
has been already mentioned, one of the main objectives of line coding is to achieve 
spectral shaping which is best suited to the particular transmission media. It has 
been noted earlier that additional modification of line-signal spectrum can be 
accomplished through special modulating techniques. The choice of a special 
modulator function has received considerable attention in the literature [Peebles, 
1987]. Consequently, it is not discussed in this presentation and the most simple 
case of a linear system, i.e. a PAM modulator, has been adopted for completeness 
of the analysis. Although some types of waveforms may appear to be more 
appropriate for certain coded sequences, in general a comparative assessment and 
analysis of the various line codes should be performed on the spectral density 
distribution achieved through the very process of coding itself.

Digital Modulator
This system represents the functional relationship between the line signal 
y(t) and the output-symbol sequence x{kxTx) by

+oo
V(t) =  '!(t ~ kxTx,x(kxT x))

k = —ocX

In general 7 (*,:rj) denotes the continuous-time waveform sent to the transmission 
line for the output symbol xb £ x. The process of digital modulation for a PAM 
system can be expressed through its input/output relation which is given by

-foo
J/(*) =  ] £  x (kxT x h ( t  -  kxTx)

kx=~ 00

where q(*) is a particular pulse waveform. A pulse-amplitude modulator can be 
viewed as an interpolating filter with one input and one output where $ C 'k and 
T =  because $ =  {0, ±  Tx, ±  2Tx, . . .} and '& is the domain of the real numbers. 
In this case the modulator transfer function is easily determined through the 
characterising pulse waveform as follows:

gy(t -  kxTx) =  4 r - 7 (t -  kxTx) (3.3)
1 X

The last to be defined, but the most important of all four systems is the 
block coder. This system is represented by a nonlinear model which can be 
avoided only for a very limited number of cases. The number of possible states the 
block coder can be in is the major difference between this system and the other 
three defined above. It is necessary to evaluate the statistics of the block coder in
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order to determine the statistics of the coded sequence. This can be achieved if 
the probabilities of transition between the coder states are found. The output 
function and the state-transition functions are defined below to specify the 
sequence of coder sates and output blocks of symbols .

BLOCK CODER

This system relates its next state and the output-word sequence to the 
input-word sequence and the present state through the expressions:

s((k +  l)T) =  A[s(kT),D(kT)\ (3.4a)
X(kT) =  B{s(kT), D(kT)] (3.4b)

where s(kT) denotes the sequence of coder-states taken from the set

s =  (s1,s2,- • Vs/}-

The function Af*,*J determines the next coder state s((k +  l)T) from the state 
s(kT) and the input word D(kT) at the previous instant of time. The function 
S i* ,* ] maps the combination of an input word and a coder state into the set of 
output words. Thus, the output X[kT ) is the response to an input D(kT) and the 
state s[kT) at the same instant of time.

As the block coder is in general a non-linear system it requires special 
attention in modelling its input-output relations. This is necessary because higher 
order statistics have to be evaluated for the subsequent spectral analysis. It has 
been established that the Finite State Sequential Machine (FSSM) is a very 
adequate model and a powerful tool for the complete statistical analysis of a fixed- 
length line coder, [Cariolaro, 1983].

3.2.1.1. Presentation of the Block Coder as tin FSSM

The general model of a finite state system represents the two functions A 
and B  relating the three sets D, X  and s whose elements are defined as follows:

Dm £ {D±,D2 , . . . ,Dm} is the m-th input word from the set D\
X j  e  { X i , X 2 , . . . ,X j }  is the j-th output word from the set X ;
s ■ E (sx,s2, . . .,S/) is the ¿-th coder state from the set s.

The state transition function, A[+, *] represents the mapping s x D ^ s  of the two 
sets s and D into s and defines the next state of the FSSM as
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s({k +  1 )T) = A[s(kT), D(kT)\.

The output function, B\*, *] represents the mapping s x D—>X of the two sets s 
and D into X  and defines the output of the FSSM as

X{kT) =  B[s(kT),D{kT)].

The general structure of this type of FSSM is shown in Fig.3.2. The two 
blocks labelled A[*, *] and 2?[*, *] are memoryless. They assign the next state 
s((k + l)T) and the output word X{kT) respectively in terms of the present state 
s{kT) and the input word D(kT). The third block represents the memory of the 
coder which holds the output of block for the duration T of a block of
symbols.

The FSSM representing a line coder is specified by the nature of the three 
sets D, s and X.  The input and the output words are usually represented as row 
vectors of the respective symbols. The three sets related by the characterising 
functions A and B determine the Operational Space3 of the FSSM. Within this 
space every output word is assigned to at least one pair of an input word and a 
state, which is denoted as => X mi, where X mie { X 1, X 2, . . . ,X J}. In
most practical systems the condition for unique decodability is usually applied. In 
general this condition can be stated as follows: every output word corresponds to 
only one input word and one or more output words correspond to every input 
word. The requirement for unique decodability ensures the possibility to recover 
the original sequence of words without knowledge of the coder state sequence.

3 The ideas about the Coder Operational Space are discussed in greater detail in 

Chapter 6.
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State-dependent decoding is also employed in some real systems. The main 
problems in such systems are to restrict error propagation as well as to maintain 
circuit complexity within reasonable limits. The efforts, however, could be well 
rewarded with higher code efficiency and greater flexibility in spectrum shaping.

Three methods are mainly used to specify the functional relations between 
the three sets of the FSSM :

m -i • i
diagramsThese are oriented graphs with I  vertices which represent the states 

sx,s2,...,s j. An oriented branch of the graph corresponds to every 
possible transition from state s ■ to state smi indicated by the function 

AbiiDml =» smv where smi =  {sl>52> • • •,*/}•

The condition for the FSSM to be strongly connected, can be verified by 
checking whether the graph is strongly connected. This means there is a sequence 
of input words D ^ D ^ . . .^Dm  ̂ for every ordered pair of states (s^sm ¿y which 
changes the state of the block coder from s(- into sm

Table
presentation A table is constructed to reflect the characterising functions A and B. 

The rows of this table correspond to all input words and the columns 
correspond to all possible states. The intersection of row Dm with 
column si corresponds to the output word X mi and the next state smi.

The general form of table presentation is shown in Fig. 3.3.

Dm/Si s2 ... SI

£> i -*11 ’  s n X 12 > s 12 ... , ... X 11 5 S1I

d 2 -* 2 1  ’ S21 -* 2 2  1 s22 ... , ... X 21 5 s21
j l 5 I ' } I \ 1 * I ? I

Dm X M1 j  s M l X M2 5 SM2 ... , ... X MI i sMI

Fig. 3 .3  Table presentation of the block coder as a FSSM

The statistical analysis of the line coder model is most conveniently carried 
out by means of matrix algebra. Therefore two types of matrices are defined to 
represent the characterising functions of the respective FSSM as follows:
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possible to analyse a particular coder on the basis of any relevant FSSM model, 
but the level of computational complexity may differ widely. Therefore it is 
important to select the model which is easiest to perform the analysis with. This 
can be achieved through recognising equivalent FSSM-s and identifying the 
minimal FSSM within the class of equivalence that machine belongs to. For this 
purpose the following definitions should be applied:

• Two equivalent FSSM-s have the same input and output sets and for every 
state of one at least one state of the other exists, such that the output 
sequences of the two machines, resulting from the same input sequences, 
are identical when the corresponding states are the initial ones.

• FSSM-s can be grouped into classes of equivalence and there is a unique 
minimal FSSM in every equivalence class. The minimal machine has a 
minimal number of states and can be obtained from any other of the same 
class through a transformation procedure.

The two characterising functions (A, B) and the three sets (D,s, X)  used to 
describe the line coder model comprise the so called ‘Mealy machine’ . It has been 
established, [18] that evaluation of the statistics of the coder states is easier to 
perform for a slightly simpler model called the ‘Moore machine’ . The latter is 
equivalent to the Mealy machine and is derived through assuming new 
characterising functions, A  and <5B and a set of states, a as shown below. (The —-> 
symbols indicate transformations.)

D((fc +  1)T) --* %kT) a({k +  l )T )=  A{a{kT),%kT)]
=  {Als(kT),D(kT)]M(k + l)T)}

{s(kT),D(kT))- a{kT) X(kT ) =  %a(kT)] = B[s(kT),D(kT)]

The simplification is due to the new output function which makes the 
output words dependent only on a set of states and also to the new output 
matrices which are equal, Z>m =  25 for m =  1 ,...,M . The simpler presentation of 
the Moore model refers to the relations between the elements of the model and is 
achieved at the expense of their size. This can be shown by relating the new state- 
transition and output matrices to those of the Mealy model. If the new states are 
ordered by cr̂ m _ \ }i + { =  {siiDm} and the relation between the output words and
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the new states is X ;  =  ], =  then the number of newlm lm
states is I  x M  and the new state-transition and output matrices are given by:

" S i 0 .

ro 1
o 0 . . . S i " V

s 2 0 . . 0
, , $ M ~

0 0 . . .  s 2
; *  =

z 2

S M 0 . . 0 0 0 . ••S M Z M

where the size of Z> is (7 x M) by L and the size of !fm, m =  1, . . M  is (7 x M)  by 
( J x M ) .

The equivalence of the Moore and Mealy models will be used in following 
sections where the statistical and the spectral analyses are developed. This 
equivalence allows the statistics of the coded sequence and the spectral density of 
the signals in the Mealy model to be derived from the results obtained for the 
Moore model.

3.2.2 Statistical Analysis of the Sequences in the Line-Coder Model

The evaluation of the statistics of the sequences of symbols and words in 
the coder model is based on the assumption that the input symbols are 
independent and identically distributed (i.e. they are defined as a Stationary 
Memoryless Source (SMS)). The input-symbol probabilities are given by

?(dj/) =  p ^ d { k ¿) =  dj/|, du £ d

When the input-symbol sequence is a SMS so is the input-word sequence whose 
probabilities are

Qm = p{D{kT) =  Dm} =  J ] q(dmn) (3.6)
n= 1

where dmn is the n-th symbol in the input word Dm and Dm £ D. Having defined 
the probabilities of the input-word sequence D(kT) as an SMS it becomes possible 
to determine the statistics of the state sequence s{kT) which is related to the 
input-word sequence through s{(k + 1)T) = A[s(kT), D(kT)j. It can be proven [17] 
that the state sequence of a FSSM driven by a SMS is a homogeneous Markov 
chain with Transition Probability Matrix (TPM) given by

M
S =  £  QmSm (3.7)

m —1
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This result is fundamental because it allows the evaluation of second order 
statistics of the output-word sequence, which is used to derive the expressions for 
the spectral density.

3.2.2 .I. Evaluation of State Sequence Probabilities

The statistics of the coder-state sequence, which is stationary, are 
completely specified by the TPM because it is a stochastic matrix (its elements 
are non-negative and their sum in every row is one) and s(kT) is ergodic and 
regular. The features of ergodicity (every state can be reached from every other) 
and regularity (s(kT) has an aperiodic structure) follow from the assumption of an 
FSSM model which is strongly connected and input-word probabilities which are 
strictly positive. Three important results are based on the assumptions made 
above:

• The first order state probabilities are the elements of a row vector 
P =  [P(1),P(2),..., P(/)], where P(i) =  p^s(kT) =  Sjj. This vector is 
uniquely determined as the solution of the system of matrix equations

P = PS (3-8a)

E P (*) =  1 (3.8b)
2 =  1

• The probability of the states after r transitions are the elements of the r- 
step TPM Ŝ r\ which are given by

=  p {K( k +  r)T ) =  sj  I s(kT) =  5i}-

The r-step TPM for r > 0 can be found from
5 (r) =  Sr (3.9)

• Higher order probabilities can be evaluated from the following expression 

pjs(fcT) =  siQ,s((k +  rx)T) =  s^,. . ., s((fc +  rx +  r2 + . . .  +  r( )T ) =  J  =

=  p{s(kT) =  % }  X p{K(k +  ri)p ) =  \  I s(kT) =  % }  X ... X 

X pjs((fc +  rx +  r2 +  ... +  r( ) T ) =  ^  | <{(k + ri +  r2 +  • • • +  r{ _ X)T ) =   ̂| =

=  P(io)S(ri)(i0, h)S{r*\h, ¿a) x ... x 5 (r«)(ii _ x, ¿̂ ) (3.10)

where (  > 0 and r1?r2,...,r^ > 0 are integers.
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The evaluation of the statistics of the output-word sequence, X(kT ) is 
based on expression (3.10) and on a ‘careful’ transition from the statistics of the 
Moore model to those of the Mealy FSSM. The final result as well as the results of 
some intermediate steps are outlined below. Most of these results can be stated as 
theorems and proven strictly. For the purposes of this presentation it is sufficient 
to specify the essential conditions which determine the main steps in the 
transition between the two models. The intention is to present the general idea of 
applying the functional relations of the FSSM model in deriving the final 
expressions for the statistics of the coded sequence.

The statistical analysis is based on the input-word probabilities Qm 
determined through (3.6) and the specification of the state transition matrices Sm 
given by (3.5b). These values allow to determine the probability matrix S and the 
vector P  containing the first order probabilities of the sequence of coder states, 
expressions (3.7) and (3.8) respectively. The generalisation of this result has led to 
(3.10), which gives the state probabilities of arbitrary high order. At this stage 
appropriate conditions are specified so that a relatively straightforward transition 
can be made from the statistics of the state sequence to the output word 
probabilities in a Moore FSSM model. The relation between the two models, 
described in section 3.2.1.2, allows for the same conditions to be applied to the 
characterising functions in a Mealy model, given by (3.4). The important 
consequence is the possibility to determine the statistics of the sequence X(kT) 
from the probabilities of the state sequence a(kT). The TPM, if and the state- 
probability vector <D5 corresponding to <r(kT) can be evaluated through the 
definition of the matrices ifm, therefore through S and P  respectively. This leads 
to the main result -  the expressions relating the probabilities of the output word 
sequence to the statistics of the input sequences, Qm and the respective state- 
transition matrices Sm.

The most essential stages of the transition described briefly in the last 
paragraph are defined below together with the corresponding analytical 
expressions. However, no strict proofs have been given as the main purpose of the 
theoretical part of this presentation is to provide the minimal complete and 
consistent set of formulae relating the initial specification parameters of a coder to 
the final expression for the spectral density function. The four main stages are as 
follows.

3.2.2.2. Probabilities of the Output Sequences
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1) The statistics of the output-word sequence in the Moore model can be 
determined through the special definition of the output-word function 
X{kT ) =  iB[cr(A:T)] which provides for the output words to be state dependent 
only. The Moore FSSM can be considered specified independent of a Mealy 
model and it is possible to prove the following important result:

The output-word sequence of a Moore machine driven by a SMS is a memoryless 
time-invariant function of a homogeneous Markov chain.

As an output word X:  is assigned to a particular state s- through the functional
V V

relation X: — B [a• ] which indicates the identity of the events 
V v

|X(kT) =  X-  | =  |s(kT) =  s ■ j, the statistics of the output-word sequence are 
given by

p [x (k T )  =  X io, X ((k  +  r j)T )  =  X i{.......X ((k +  r, +  r2 + . . .  +  r{ ) r )  =  X ^  =

=  P(i0)5(r>,(i„, X  ■ • ■ X  £ ' ( i {  _ „ i t )r(r2) (^ )r (3.11)

2) The considerations which allow the statistics of the output-word sequence to 
be found, still hold when the Moore model is derived from a Mealy FSSM. In 
particular the following two statements can be proven:

a) In a Mealy machine driven by the sequence ^(kT) =  D((k +  1)T), which is 
stationary and memoryless, the combined sequence of states and input words 
cr(kT) =  {s(kT), D(kT)}, given recursively by

a{{k +  1 )T )=  JL[a(kT),%kT)] =  A\s(kT\D(kT),D({k +  1)T)], 

is a homogeneous Markov chain4.

b) The sequence of the output words X(kT) =  =  B{s(kT), D(kT)\ is a
memoryless time-invariant function of a homogeneous Markov chain.

The above statements specify essentially the same as in 1) but also reveal 
the relations which allow the output-words probabilities in a Mealy model to be 
derived from the statistics of the sequence cr(kT). The TPM of a(kT) is given by

4 Als(kT), D(kT)J is in fact s((A:-fl)T), therefore cr((k +  1)T) can be 

considered independent of an input from previous instants.
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where is a partitioning of i  defined as follows: the element of $rnh with
indices (i , j ) is the element of !f with indices ((m — 1)7 +  *, (h — 1) +  j). The state 
probabilities of cr(kT) are the elements of the row vector

9' = l 3>* l = l « » p l (3.12b)

The r-step TPM is given by

3r = »&l = II Q hs mi
: r -  1 , for r >  1 (3.12c)

3) It is useful to summarise the significant results which allow for the final 
expression of the output-word probabilities to be produced.

l) The input-symbol sequence d(kT) and the input-word sequences D{kT) are 
SMS-s and their probabilities have been defined.

n) The sequence of states s[kT) of an FSSM driven by the input-word sequence
defined as a SMS is a homogeneous Markov chain whose statistics are
specified by the TPM S. The first order probabilities P(i) of the coder states 
and the r-th order TPM are given by (3.8) and (3.9).

ill) The general expression for higher order probabilities of the coder state 
sequence s(kT) is given by (3.10).

i v )  In an FSSM specified directly as a Moore machine and driven by a SMS the
output-word sequence X(kT ) is a memoryless time-invariant function of a
homogeneous Markov chain and is state dependent only. This allows to 
determine the expression for the output-word probabilities, (3.11).

v) The statistics of the state sequence a(kT) and the output-word sequence 
X(kT ) are defined for a Moore FSSM derived from a Mealy model. The 
expressions (3.12) relate the TPM and the state-probability vector 5P to S 
and P  respectively.

vi) The final transition to the output-word probabilities in a Mealy FSSM is 
based on the functional relation X m• = 2?|[$ •, Z)m] and the identity of the 
events



{X(kT)  =  X mi}  = {s(kT) =  Si,D(kT) =  D m}  e e  {r(kT)  =  <7(m _ 1)f + ¡}

Therefore the first, the second and the £-th order statistics of the code-word 
sequence are given respectively by:

p{X(kT)  =  X mi}  =  3>m(>) =  QmP(i) (3.13a)

p{X(kT) = X milX((k +  r)T) X hj}  =

=  (3.i3b)
€—1

p {X (kT) =  X moiQ, X((k + rJT) =  X ^ ,  . .nX((k +  r1 +  -  +  r ¿ T )  = X m^  =

— ■Pm0(*o)^mJm1(i'o) *i) x " '  x _ im^(^ _ i, ) =

— QmQP(i o ) ^  Qm-^ 1 \el,h ) x e,l ) ^  2 \e2>*2)x " '
c2=l

•” x £  Qm.Sm { i i - i , ^ ) ^  (3.13c)

£i=1

ei=1

4) Finally, it is possible to obtain the probabilities of the output-symbol 
sequence by referring to the relation x{{kL + 1 — l)Tx) =  x^kT) which 
indicates the identity of the events

M (M  + / -  I )r t ) = =  { x ( k T )  =

Therefore the output-symbol probabilities are given by

p{x((kL +  / -  1)7’* )  =  X m)) =  p{X(kT)  =  X mi}

where k =  0, ± 1 , ± 2 , —; l =  1,..., L and m =  1,..., M. It is a matter of some 
conventional matrix algebra to find the expression for the higher order 
statistics of the output-symbol sequence.
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The frequency analysis theory, presented briefly in this section, applies to 
discrete-time signals in general and will be used to determine the spectral density 
functions of the sequences defined in the line-coder model. The same results can 
be transformed straight-forwardly into a more general form so that their validity 
extends to continuous-time signals as well. The signals under consideration in the 
present analysis are random sequences. To evaluate a random process in the 
frequency domain the mean value and the correlation are used. The validity of the 
results depends on the stationarity of the signals. In general the signals involved in 
the process of fixed-length line coding are cyclo-stationary. It is possible to show 
that under certain conditions the frequency analysis of stationary processes applies 
to cyclo-stationary signals as well.

The spectral analysis of the line-coded signal requires very involved 
theoretical assessment. As already mentioned, the spectral density of the output 
signals cannot be obtained through linear system analysis from the frequency 
functions of the input signals. The FSSM model of a coder has been used to derive 
the statistics of the output word sequence from the probabilities of the input 
signal and the coder state sequence. This allows for the frequency analysis of the 
output word sequence, X(kT ) to be performed. The Deframing part and the 
Modulator have been defined as linear systems and the spectral density function 
of the coded line signal can be obtained accordingly.

Some of the main results from the theory of spectral analysis are discussed 
very briefly in the following subsections. The most essential general expressions 
are given in order to trace the stages of their transformation into the final 
formulae for the spectral density functions of the coded signal. This 
transformation can be summarised in the following three steps:

• Firstly the expression for the spectral density function is derived in a 
general form.

• The next step involves using the results from section 3.2.3.2 to define the 
correlation function through the first and second order probabilities of 
the output-word sequence and determine the continuous and the discrete 
parts of its spectral distribution. •

• Finally, as the output-symbol sequence and the line signal result from 
linear transformations, their spectral densities are expressed through the 
frequency functions of the respective input signals.

3.2.3. Spectral Analysis of the Line-Coder Signals

92



3.2.3.1. Spectral Density Function

The mean value vector Va and the correlation matrix Ra of a 
stationary random process, which is defined as a row vector 
a(kT) =  [a^kT), a2(kT),..., a^(A;T)], k =  0, ±  1, ±  2,..., are given by

F a =  E(a(kT))

K (P T) = E(a'(kT)a{(k +  p ) T ) ), p  =  0, ±  1, ±  2 ,...

Both Va, a vector with N  components and i2a(/>T), which is an N  by N 
matrix, are independent of the reference time kT. In the case of discrete 
signals the usual definition of the spectral density as the Fourier transform of 
the correlation is given by

+oo
w a( f ) =  £  TRa(pT

p =—oo

The spectral density function matrix, W a( f ) has a variety of properties which 
allow for the frequency analysis to be presented in a more convenient form. 
One of them is the possibility, under certain conditions to decompose W a(f)  
into a discrete component W^?\f) and a continuous component W ^\f) .  
Such conditions are assumed to exist for most cases of interest in digital 
signal transmission.

A rigorous mathematical analysis is required for the decomposition of 
the spectral density function. A thorough treatment of the underlying theory 
has not been included in this presentation, as analytical results only are given 
to indicate how each expression follows from the previous ones.

The correlation of the random process a(kT) can be expressed as the 
sum of its covariance, Ja(pT) and the squared mean value5, i.e.

R „ ( p T )  =  J a(P T )  +  V 'aV a .

It is possible to view the term V'aVa as the discrete part of the correlation, 
which derives from the last expression6 for p-too:

5 The mathematical operations should be interpreted with respect to the definition 

of a(kT) as a vector.

6 Assuming the random process exhibits asymptotic uncorrelation.
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fl„(oo) =  UmJU pT) = V'aVa

Consequently Ja(pT) is assumed to represent the continuous part of the 
correlation. This allows for the spectral density decomposition to be defined 
as the Fourier transform of the discrete and continuous parts of Ra(pT).

Rid\pT) =  V'aV a
+ o o

=>

W{ad\ f)  =  v'av a K f - p F )
p = —oo

R ^\pT) =  Ra{p T )-V 'aVa w (ac\ f ) =  t j a(pT ) z ~ p
P —  — 00

(C l)

where F  =  ^  and z =  exp(j2irfT). It is possible to represent the last 
expression as a one-sided series by making use of the equality 
Ja(—pT) =  J'a(pT). In the case of discrete-time random processes the 
continuous part of the spectral density can be presented as the two-sided z- 
transform of the covariance. The continuous part of the spectral density then 
takes the form

W ^ X f ) =  r [w (z )  +  W\z~1)] (D2)

+oo
where W(z)  =  0.5Ja(0) +  y^TJa(pT)z~p

P- 1

The main results from the spectral analysis theory presented so far 
refer to stationary random signals. When the random sequence a(kT) is cyclo- 
stationary, the mean value and the correlation are not time-invariant, i.e. 
they depend not only on the time displacement pT, but are also periodic 
functions of kT. This can be denoted as:

Va(kT) =  E{a{kT)) and Ra(kT,pT) =  E(a'(kT)a((k +  p)T))

The period of cyclostationarity can be any multiple of T , say r/T and the 
information about the mean value and the correlation with respect to their 
dependence of kT is given by their averages over that period, namely

F a =  ê r ^ T V ^ k T )
1 k=0

Ra(pT) =  4 ,  £  TRa(kT, pT), p =  0, ±  1, ±  2 ,...
1 jfe=0
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The average spectral density for the discrete-time processes is defined 
accordingly as

+ 00
W a( f ) =  •£ TRa(pT

p——oo

At this point it is important to note that the properties of the average 
parameters of a cyclostationaxy signal are the same as those of the 
corresponding parameters of a stationary signal. Proofs of this can be found in 
the appropriate literature [Gardner, 1975] and similar results can also be 
achieved through a variety of ways, including phase randomisation and 
spectral analysis involving two argument correlation. In developing the 
frequency analysis of line coding it is quite sufficient for most cases of interest 
to use the average parameters as defined above. For convenience the ‘average’ 
sign will be omitted in the subsequent presentation.

3.2.3.2. Frequency Analysis of the Line-Coder Output-Word Sequence

It has been mentioned earlier that the output-word spectral density 
cannot be obtained through a linear relationship with the corresponding 
parameters of the input-word sequence, because the block coder is a non-
linear system. Therefore the spectral analysis can only be developed by using 
the second order probabilities of the sequence of output words. The general 
expressions for the probabilities of any order have been introduced in section
3.2.2.2 for both the Moore and the Mealy FSSM models. These expressions 
are used to evaluate the mean and the correlation through their statistical 
dependence on the input-word probabilities, the state probabilities and the 
output matrices. For a Mealy model the mean can be determined as follows

V *  =  E(X(kT)) =

M  I

m = l z = l
mi

M  I
p{X(kT)  =  X mi} =  •£ Y .X j Q j y j j  (3.14a)

m = l i = l

By using second order probabilities and the equality

p { X ( k T )  =  X mi,X ( ( k  + 0 = =

the correlation of the output word sequence in a Mealy model is presented as 
two parts, corresponding to r =  0 and r >  1, respectively.
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R x {rT) =  E (X ' (kT )X ( {k  +  r)T))  =

M  I

=  E  . £  X L X p{X(kT) = X mi, X ( +  r)T) =

M  I
E  E  x ' mix m Q mp (i )

m=l i=1
M  I
E  . T , x ' mix hi

m,h=l i,j=l

for r =  0

(3.14b)
for r >  1

The two pairs of framed expressions, shown in (3.14a) and (3.14b) indicate 
the substitutions which follow from (3.13a) and (3.13b) respectively. Some 
conventional matrix-algebra transformations of the above expressions allow 
for much better presentable notation to be used for Vx  and Rx (rT). In this 
respect the following rearrangements have been used:

E X 'miX mfimP(i) =  Qm £  X'miP(!)x mi =  QmZ'mvZm 
¿=1 1 = 1

E  jQmP(i) E  i)5(« j )  =
I,j=l e=l

— Q m Q h
«. j= l

c o r - 1 JmlD

QmQkz'mvSms ’- - 1z k

where Zm and Z^ belong to the set of output matrices; v =  diag[P] is a 
diagonal matrix whose non-zero elements are the components of the state- 
probabilities vector P. When the above expressions are substituted in (3.14a) 
and (3.14b) the mean and the correlation become

M
Y  QmPZrn

m=1
(3.15a)

Rx (rT) =

M
J 2  QmZ'mVZm

m = l

M

m,h=1

for r =  0

for r > 1

(3.15b)
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The evaluation of the spectral density can now be presented in a very 
convenient and elegant matrix form. To do this it is necessary to examine the 
behaviour of the higher order TPM, Sr for the limiting case r—>00. This 
would allow to determine the discrete and the continuous part in the 
decomposition of W x (f )  by deriving expressions for the ‘ infinity’ correlation 
i2jf(oo) and the covariance Jx(rT).

It has been assumed that the sequence of coder states s(kT) is an 
ergodic and regular Markov chain. The theory describing this type of random 
sequences has been extensively developed, [7] and some of the important 
results, relevant to the present analysis are shown below. If S^  denotes the 
limiting TPM of S^  when r is infinitely large and u =  [1,1,..., l j  is a column 
vector of ones then the following can be proven

Soo =  r1iigb5'r =  uP (3-16)

This allows the limiting value of the correlation to be determined as

Rx ( ° ° ) =  £ 2&>Rx ( rT ) =

M  M
=  £  QmQhZ'mvSmS00Zh =  J  QmQhZ'm VuPZh =

m ,h = 1 " o '  ” m , h = l  p 1
,->oo

M
=  £  QmQhZ'mP'PZh =

m,h=1

In the algebraic transformations of the last expression the following three 
relations have been used: vu — P1 and (3.15a). At this stage the
discrete part of the output-word spectral density can be determined by 
combining (3.15a) and definition (HI) given in section 3.2.3.1, i.e.

W $ X f ) =  V'XVX £  S(f -rF)
r = —oo

, where F — ^ (3.17)

It is worth noting an essential feature of the output-word spectral density, 
namely that its discrete part represents spectral lines at multiples of the word 
rate F which are related to the asymptotic behaviour of the correlation. In 
order to apply the definition for the continuous part of the spectral density it
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is n ece ssa ry  to  d e te rm in e  th e  c o v a ria n ce  w ith  resp ect to  ( 3 .1 5 b ) ,  i. e.

Jx (rT) =  Rx (rT) -  Rx (oo) =

/ M  \
E Q mZ'mvZm ) - V ' x Vx  
n=l /

for r =  0
m̂ 

M

E  0m<3ftZm*’5,ra(5’' “ 1-5oo)Z A for r > 1
. m,h= 1

By substitution in (J52) the complete expression for W ^ \ f )  takes the form

W $ ( f )  = (  E  QmZmvZm) -  V'XVx  +
\m=l /

+ (3.18a)

The special properties of the terms comprising the summation over r 
in the last expression are well studied in the theory of the ergodic and regular 
Markov chains [27]. The two important results given below are based on the 
ergodicity and the regularity of the TPM, S and the limiting TPM, Sqq.

> Sr - S 00 = ( S -  SccY, for all r > 0

> (5  — SoqY is absolutely summable

They allow for W(z), as defined in (D2), to be transformed into a finite sum, 
using the following equality

1 00
z - 1 £ ( S  -  ^oo)r^“ r = ( z U - S  +  S ^ r 1 (3.18b)

r=0

With some conventional matrix-algebra the term representing summation 
over r in (3.18a) is transformed as shown below:

E ( 5 r - 1 -  Soc>-r = (U - Sx )z-1Y.(S -  SoJz~r
r= l r=0
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After applying equality (3.18b) to the last result and adopting the following 
notation

H(z) = ( U -  S ^ lzU  -  S +  Soc)“ 1 (3.19a)

M  M  M
H0 = Qm^mV^mi =  Qm '̂mV^mi (3.19b)

m = 1 m = 1 / i= l

the final expression for the continuous part of the spectral density is given by

(3.20a)

where W(z) =  ± ( # 0 -  V'XV x ) +  H lH{z)H2 (3.20b)

The frequency analysis of the block coder, modelled as a non-linear 
system results in two expressions giving the discrete and the continuous parts 
of the spectral density distribution of the output-word sequence. The final 
expressions for W $ ( f )  and W ^\f) ,  given by (3.17) and (3.20a), are of great 
importance to the spectral analysis of the line coder model for two main 
reasons. The first is the broad validity of the results which is based on the 
general statistical presentation of the model as a FSSM. The second reason is 
the possibility to determine the spectral functions for the output-symbol 
sequence and the line signal from the frequency distribution of the input 
signals to the respective systems when the latter are linear.

3.2.3.3 Linear-System Spectral Analysis

To present a linear system in the frequency domain the Fourier 
transform of the characterising function g(*) given in (3.1) is used. This 
results in the following expression for the frequency response of a linear 
system

(D3)G(f) = f  g(d)exp(-j2Trf6) dd 
9eT

W ty i f )  = T*\W(z) +  W'iz-1)]

In the general case of an A^-input/ L-output linear system the second 
order statistics of the input and the output signals are related through
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E(b'{t)b(t +  il>)) =

= J  J  g'(t -  t ) E(a'(r)a(r +  <f>)) g(t +  ip -  r  -  f>) d(r +  <f>) dr 
t 6 $ 0 £ $

where t , ip The last expression relates the correlation functions of the 
input and the output signals given by

Ra{<t>iT) =  E{a!{r)a{T +  <̂ )) and Rb{tp, t) =  E(b'(t)b(t +

At this stage the generality of the analysis is reduced to two types of linear 
systems which can be adopted in the line coder model for most cases of 
interest. In particular these are the filter and the interpolating filter which 
are defined through the relations between the domains of the input signal, the 
output signal and the characterising function in the following manner

filter : $ = \fr = T 
interpolating filter. =  T D $

The relation of the input and the output correlation has been 
examined in [Cariolaro, 1983]. Although in the general case the output is not 
stationary in spite of the stationarity of the input, the results show that for a 
filter and an interpolating filter the correlation of the input signal and that of 
the output signal are related through

and

RbW  =

RbW  =

g\t -  r)Ra((f))g(t +  if -  r -  f) dr j  d(t -  r) 

g\t -  r)Ra(<t))g{t + ip -  r -  (j>) d(t -  t )\ dr

respectively. Finally, by applying the Fourier transform to both sides of the 
last two expressions, the relation between the spectral density function of the 
output to that of the input in a linear system is given by

W b{f )  =  GT( f )W a(f )G(f)  (3.21)

where G(f)  is the Fourier transform of the characterising function of the
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system determined from (D3) and GT(f)  is its conjugate transpose.

The process of deframing in the line coder model has been defined as a 
linear system. In particular -  the conversion of the output blocks of symbols 
of period T into a sequence of symbols of period Tx is performed by an L- 
input/1-output interpolating filter. The time domains of the input and the 
output signals of the deframing system are $  =  (0, ±  T, ±  2T, .. .}  and 
^  =  {0, ±  Tx, ±  2Tx, ...}  respectively. In the frequency domain the functional 
relation of this system is represented by the Fourier transform of the 
characterising function (3.2b) given by

G *(/) = -h
exp (-j2n fT x) 
exp(—j27r2 Tx)

exp(-j27r(L-l)Tx)

(3.22)

This allows for a very convenient transition from the results obtained for the 
spectral density of the output-word sequence to that of the output-symbol 
sequence. By using (3.22) for the frequency response of the deframing system 
and (3.20a) in the left-hand side of (3.21), the continuous spectral density of 
the output-symbol sequence is determined as

4 c)( / )  =  (3.23a)

In a similar way the discrete spectral density of the same sequence is found to 
be

-foo
4 d)( / )  =  G l( f)\ v W (f)G ,( f)  =  £  Gl(rF)V'x  -  r =

2

r = —oo

+oo

= £r~ —oo exp( -  i 27r(; -  ! ) x ) S ( f - r F )  (3.23b)

where W % \f)  and Gx( f ) are determined from (3.17) and (3.22) respectively.

The availability of the last two formulae is a significant achievement 
in the general spectral analysis of a broad class coders. The current 
presentation regards the case of discrete signals in particular but its 
generality can be extended straightforwardly to most types of random signals.
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There is one last step before the determination of the complete expression for 
the Power Spectral Density (PSD) of the line signal. The spectral analysis so 
far provides means of evaluating the frequency distribution of a symbol 
sequence which is produced by fixed-length block coding of a random 
sequence of digits. The latter is assumed to be stationary and memoryless.

Finally it is possible to derive the expressions characterising the PSD 
of the line signal by relating the output of the digital modulator to its input 
which is presented in the frequency domain by (3.23a) and (3.23b). For this 
purpose it is essential to identify the type of system used for modulation. In 
many real line coders the digital modulator is adequately modelled as a linear 
system. This is so for a PAM which includes, for example, coders like those 
used in optical-fibre transmission systems based on direct light-intensity 
modulation.

By identifying the time domains of x(rT) and y{t) as 
$  =  {0, ±  Tx, ± 2 Tx,...}  and Ik =  {the real numbers} respectively, the digital 
modulator can be described as an interpolating filter with a characterising 
function gy{*) defined as in (3.3). The frequency response of that function is 
given by

Gy(f )  =  4 -  Gy(f )  (3.24)
± X

where Gy(f) is the Fourier transform of 7 (i — kxTx). This leads to the final 
form of the expressions evaluating the continuous and the discrete parts of 
the PSD of the line signal as:

Y (dXf)  =  Gy(rF) ¿ ¿ V x f f l  e x p ( - j2*(i -  l ) f )

24 c)( / ) (3.25a)

1

CM

(3.25b)

3.2.4 A  Summary of the Main Stages in Constructing the Analysis Model

The last two expressions, (3.25a) and (3.25b), comprise the complete 
functional representation of the coded-signal spectral density. The two 
variables and V%{l) can be substituted with the expressions (3.23a) and 
(3.15a), derived in the preceding stages of the model definition, but it is 
unnecessary to write the complete mathematical formulae in explicit form. 
The structure of the analysis model allows, by starting from the initial coder 
definition (the sets of symbols and coder states), the derivation of the final
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results to be traced through several stages where the intermediate expressions 
can be evaluated independently. Thus it is possible to identify the following 
main steps of the analysis:

1) Specification of the initial conditions through -

a) the set of output matrices Zm (3.5a);
b) the set of state transition matrices Sm (3.5b);
c) the input word probabilities Qm (3.6).

2) Computation of the main probability variables as follows -

a) the transitional probability matrix S from (3.7);
b) the first order state-probabilities vector P, (3.8);
c) the limiting TPM S^, (3.16).

3) Evaluation of the main variables for the first and second order 
statistics of the output word sequence -

a) the mean value V (3.15a);
b) the components of the covariance W x(z), given by the 

expressions (3.19).

The expression for the continuous part of the spectral density W $  of the 
coded word sequence accumulates the results from all essential stages as 
outlined above. This leads to the final two steps:

4) Evaluation of the spectral density (3.23a) of the output symbol 
sequence through the frequency response Gx(f)  of the deframing 
transfer function, (3.22).

5) Finally, the PSD of the coded line signal is computed by combining 
the results of step 4) with an appropriate specification of the frequency 
response Gy(f)  of the modulator transfer function, through the 
expressions (3.25).

The five steps identified above have been successfully implemented in 
a computational procedure which is described in the next section.
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3.3 Software Implementation of the Spectral Analysis Model

The general model described in the previous section is a very powerful 
tool for performing spectral analysis on digital signals involved in the process 
of line coding. The main advantage of this model is its validity for any coder 
as long as the FSSM, modelling the transformation of the input words into 
output words, is adequately specified. This asserts the possibility to apply the 
present frequency analysis method to all existing schemes for fixed-length 
block-coding because their realisation implies that they are finite systems. 
Full utilisation of the generality and the precision of the mathematical model 
presented in section 3.2 can be accomplished through a suitable computer 
implementation. The software routine, described in the following subsection, 
has been devised to achieve this goal. Some preliminary considerations are 
given below as an introduction to the main parts of the program.

An important feature of the adopted theoretical model is the 
compactness and the relative simplicity of the matrix expressions evaluating 
the statistics of the output-word sequences (3.15) and the two parts of the 
spectral distribution (3.17) and (3.20). The elegancy of the mathematical 
representation is due to the convenient definition of the state transition and 
output-word matrices which contain the whole information about the 
input/state conditions generating a particular output.

The explicit definition of the components of the line coder model 
allows for a convenient software implementation of the analysis stages 
outlined in the summary at the end of the previous section. Thus the 
specification of the sets of input symbols d =  {d1: d2,...,da} and input blocks 
of symbols D =  provides for the evaluation of the statistics
of the input sequences Qm. The most essential part of the definition of the 
initial conditions for the computational procedure is the construction of the 
state transition matrices Sm and the output word matrices Zm (3.5) which 
are derived from the set of coder states s =  {s1,s2, . .. ,57} and the output word 
set X  =  {X ^ ,X 2 on the basis of the table presentation of the coder 
rules7. Finally the evaluation of the statistics of the output sequences is 
performed and the spectral density distribution is computed by appropriate 
specification of the frequency response of the deframing and the modulating 
transfer functions, Gx(f )  and Gy(f).

7 The state transition diagram could be used, although the table form of coder

specification has been preferred for ease of presentation.
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The sets of variables and the functions mentioned in the previous 
paragraph require independent specification in the computing procedure. The 
main body of the software routine involves the evaluation of the overall 
statistics of the signals (stages 2 and 3 from the summary given in subsection 
3.2.4) and computing the continuous and the discrete PSD functions in 
graphical form8. An additional feature of the procedure allows for parametric 
evaluation of the line signal spectra if a range of values for the input symbol 
probabilities qu (u =  l , . . . ,a ) , is also specified.

The application of the line coder model for practical computation of 
the PSD of coded signals in digital transmission requires adequate 
programming to perform conventional matrix operations. An efficient 
software routine has been created within the Matlab environment (see 
Appendix). This is a high-performance interactive package for scientific and 
engineering numeric computation [386-Matlab, User’s Guide, 1989]. The main 
advantage of working in its environment is the capability of the package to 
perform a great variety of mathematical operations over a comprehensive set 
of elements expressed in a straight forward matrix form. At the same time a 
sufficient level of freedom is provided to develop software modules based on 
most common programming principles.

3.3.1 Description of the PSD Computational Routine

The procedure of computing PSD is an application oriented tool. It 
can be used for calculation and analysis of the spectral distribution of signals 
produced by a digital line coder. The results are presented in graphical form 
and can be displayed as two- and three-dimensional plots revealing 
interesting features and tendencies in parametric simulations. The software 
routine can be accessed through either a C/Fortran program or as a specific 
Matlab file. The coder definition values can be assigned interactively or by 
direct modification of the respective file. The second method gives greater 
freedom to experiment with unconventional coder specifications.

The overall structure of the computing algorithm comprises three 
conventional parts — input of the initial values; main computational body; 
graphics and numeric output. The description, given in this section refers to 
direct modification of the initial values in the computing file for two main 
reasons:

1) This allows for more detailed presentation of the developed software.

8 The respective numerical data may be saved, if required.
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2) The parts of the algorithm, which would require greater cautiousness when 
being altered, are pointed out.

The first part of the software is where the parameters of the line-coder model 
are specified. The only parameters required for specifying the input signals 
are:

• the length of the input words N ;
• the number of input words M  and
• the probabilities of the input symbols qu.

Based on these three values the software generates all possible binary words 
of N  symbols assuming the input-symbol set is d =  {0, 1 }. If a number of 
symbols a  ^  2 is required, their values have to be specified explicitly.

The main initial values are determined next. From the mathematical 
model of the coder it can be seen that the statistics of the output sequences 
depend on the probabilities of the input words Qm. To compute these 
probabilities the complete set of input words should be specified and the 
following expression has to be evaluated:

Qm =  q f ml q f m2- • -<£ma

where qx =  p{dx}, q2 = p{d2}, ... , qa =  p {da} are the probabilities of the input 
symbols; . . . ,  N ma are the respective numbers of symbols
dx,d2, ... , da in the m-th input word such that

N ma =  N  and N ma =  0, 1, ... , N
a—1

Although the software is easily adaptable for any number of input 
symbols (no changes are necessary to the main body), in its present form it 
computes the PSD for binary input only. This is done for three reasons:

• the line coding theory based on the transformation of binary digit 
streams into signals suitable for particular transmission media is 
adequate to most practical cases; •

• the conventional and the new coding formats, dealt with in the present 
analysis, are applied to binary sequences;
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• the computing algorithm is developed to support the investigation of 
the general binary presentation of digital line codes discussed in a later 
chapter.

The above considerations confine the structure of the simulation routine to two 
versions. The simpler one assumes équiprobable binary symbols, i.e. q0 = qx =  0.5 
are the probabilities of the input symbols 0 and 1 respectively. In this case the 
input-word probabilities are equal and their value is given by

^  N m, N - N m,
Q m  =  <h ml %

for all possible binary words of length N. The second version evaluates the 
frequency response for different probabilities of the input symbols. This requires 
the whole cycle of computations to be executed as many times as the number of 
initial values of the probabilities for input 0 and 1. If the set of values for <7g and 

is not specified explicitly as an argument of the outer-most loop in the 
program, the working version assumes q0 =  0.1 through 0.9 as the range with an 
increment of 0.1, while qx =  1 — q0. As a result of using parametric input 
probabilities 3-D plots of families of spectral distribution curves are produced. 
Their importance to the analysis is discussed in section 4.1.2.

The next stage in the specification of the initial values requires 
understanding of the relation between the table and the matrix presentation of the 
line coder model. Indeed it is quite sufficient to provide the necessary numeric 
data in matrix form only but it is much easier to translate the coder rules into the 
respective table presentation which uniquely specifies the line coder and contains 
all the necessary information about the functional relations between the input 
words, the output words and the set of states. These relations are worth a more 
detailed description as they will be used extensively in the forthcoming chapters, 
especially for the enhanced algorithm which is applied in generation of the PSD 
graphs for classes of line codes.

The table representing the general FSSM model is shown in Fig. 3.1. It 
consists of M  rows and I  columns, where M  is the number of possible input words 
and I  is the number of states of the system. Every row corresponds uniquely to an 
input word and every column represents uniquely a coder state. In the crossing of 
a row with a column the two symbols X mi and smj are placed. They represent the 
output word and the next state of the coder which result from the current state 
being 5,- and the current input word being Dm for i , j  — 1 , . . . , /  and m =  1 ,...,M . 
To illustrate the functional relations between the input/output symbols and the
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coder states the table presentation of a differential coding scheme is given as an 
example in Table 3.1 below. This code has been introduced as NRZ-M in Chapter
2. The sets of symbols and coder states9 for the present example of NRZ-M code 
are defined as follows:

d = {0, 1} 
x =  { —1,4-1} 
D = { 0, 1}

X  =  { - ! , + ! }  

a =

the input symbol set; the number of input symbols is a =  2; 
the output symbol set; the number of output symbols f3 =  2; 
the input word set for N  =  1; the number of input words is 
M  = aN =  2;
the output word set for L =  1; the number of output words

J = fiL =  2;
the set of coder states; the number of states is /  =  2;

The last three sets are combined to produce the table form definition of the code 
which is shown below.

m Dm S1 s2

1 0 - 1» sl +  1 ) s2

2 1 + 1 , s2 - 1 , s1

T a b l e  3 .1  T h e  N R Z -M  code sp ec ifica tio n

The functional relations between the sets involved in the Table 3.1 apply for this 
example in the following manner:

1) When the input word is 0 and the coder is in state the output 
word —1 is produced and the coder moves (remains) into state Sj.

2) . . .  3) . . .

4) When the input word is 1 and the coder is in state s2 the output 
word —1 is produced the coder moves into state sv

The process of constructing the table for the NRZ-M code is not described at this 
point to avoid distraction from the presentation of the software routine. The 
table-form definitions of this and other codes are given in greater detail in the 
next chapter.

It is straight forward to derive the state-transition matrices Sm and the 
output-word matrices Zm directly from the coder-table. The pair (5 m, Zm) 
corresponds to the m-th word Dm and represents the information from the m-th

9 The problem of how to determine the set of states is given a more detailed 

consideration in the next chapter.
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row of the coder table. The matrix Sm is of size I  x I  and its rows correspond to 
the columns of the table representing the states s,. Then 1 is assigned to that 
element Sm(i,j ) of every row of Sm whose column index j  indicates the state 
which the system moves into, i.e. {s,-—»s •} =>■ {S m(i, j)  =  1}. All other elements 
of the same row of Sm are 0. The matrix Zm is a collection of the output words 
from the m-th row of the transition table so that every row of the matrix is one 
word. The rows are indexed i =  1, , / ,  where i is the second index of the
output words X mj-. The columns of the output matrices are indexed 1 , ... , T, for 
output words of length L.

The same example of the differential coding scheme NRZ-M is used again 
to illustrate the formation of the state-transition and the output matrices. There 
are two matrices of each type, i.e. 5 2 and Z^  Z 2 and their numerical values 
are determined as follows:

1

1o 1
o

1
t-H - 1 +1

Sl -

1
o 1

, s 2 =
1

1
o . Zi =

+1
, z 2 -

- 1

The matrix corresponds to the first row of Table 3.1. The first row of 5^ 
corresponds to state Sj and the first element of that row indicates that Sj moves 
(remains) into sx. . . .  The second row of S2 corresponds to state s2 and the first 
element of that row indicates that s2 moves into sx. The matrix Z  ̂ represents 
input word Dm =  0 in Table 3.1 and its two rows correspond to the output words 
—1 and +1 produced for this input when the coder is in states sx and s2 
respectively. Similarly for the matrix Z 2.

Finally, it should be noted that, if the values of the two sets of matrices 
described above are made available they can be set in the respective file by 
directly modifying several lines of the program. The matrices are assigned to 
variables which are labelled SI, ... , SM and Zl, . . . ,  ZM. For more routine 
applications of the developed computing algorithm an interactive mode may be 
used where the values of the elements are requested separately for every row of a 
matrix. In this case the number of states I  is required additionally.

The main part of the software comprises four sections in which the computation of 
the matrix terms of the expressions evaluating the PSD as a function of the 
normalised frequency is performed. In the first section the TPM S is determined 
from the input-word probabilities Qm. This allows for the vector P containing the 
first order probabilities of the state sequence to be evaluated next.
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There are at least two possible ways of evaluating P by using the linear 
system of equations (3.8) from Section 3.2.2.1. The choice depends entirely on the 
computing environment and on the level of precision required. A relatively fast 
method is to calculate the product = P¡¡.S iteratively, starting from
conveniently chosen initial vector P^, so that the sum of its components is one. 
(E.g. P{i) =  j ,  for i =  1, ... , I.) The process is likely to converge in most practical 
cases of interest by virtue of definition of the TPM and the state-probabilities 
vector. Simple conditions can be specified to prevent from entering an endless 
loop. The speed10 of getting a satisfactory result for P depends on the specified 
error tolerance e which ends the iterations when e > |P¿. — P¡._i ||.

The above technique is applicable mostly when conventional and well 
studied codes are evaluated where the specification of proper TPM-s eliminates 
the risk of having a divergent series P/.S. The more reliable method of computing 
the vector P  is to solve the system of equations directly. This can be achieved 
easily depending on the mathematical tools available in the computing 
environment. For the software algorithm presented here this operation is 
simplified by the use of predefined matrix division. The latter allows for 
computing the matrix X  =  B /A  as a solution to the equation A"*A =  B.

In this case the system of equations P — PS, augmented by the condition 
52 P(i) — 1 is solved by applying the following matrix transformations:

PS -  PU +  PS =  u'

P = u'(S + & -U )~ l

where U is the identity matrix, u =  [ 1,1,..., l]' is a column vector of size I  by 1
and 8 is a square matrix with all its elements equal to one. The size of 8 is I  by I.
The last expression gives a meaningful result, in terms of computing the state-
probability^ vector, if (S +  8 -  P) is non-singular. It should be noted that the
condition 52 -P(t) =  1 is implemented by using the equality P8 =  u'. Also, in order 

1
to achieve matrix conformity in distributive multiplication, the identity PU =  P 
has been used.

The next step in the main body of the computing algorithm evaluates the 
matrix components V x ,H q,H^ and comprising the final expressions for the 
continuous and the discrete parts of the PSD. These expressions are given by 
(3.19) and they do not depend on the frequency argument f. It should be pointed

10 The main reason for this method to be relatively fast is that it does not require 

matrix division which involves the computation of adjoint matrices.
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out that when the input symbol probabilities are not equal the evaluation of these 
matrices is achieved through accumulative summation over m =  1, . . . ,M  when the 
number of input words M  is big.

Two separate loops comprise the last section in the main part of the 
algorithm. The continuous and the discrete components of the spectral 
distribution are evaluated over the argument f  representing the normalised 
frequency. The option to interact with the computational routine exists at this 
point as well. It is possible to specify two parameters nf and nFx which determine 
the resolution and the frequency range of numerical results respectively. The first 
value determines the total number of equally spaced frequency samples for which 
the PSD is computed. The higher this number, the greater the accuracy of the 
frequency response. At the same time nf is proportional to the duration of the 
overall computing and its practical limit can be determined with respect to the 
resolution of the graphics output. The other value nFx determines the total length 
of the working frequency range as the number of output-symbol bit rate units. For 
example, if nFx = 3  and the normalised output-symbol rate is Fx=  1 , then the 
spectral distribution is computed over the range of f  — 1 to 3. The values of the 
discrete part of the PSD are determined in a similar way by calculating the 
magnitude of the spectral lines at multiples of the word rate F.

As has been mentioned already, the analysis presented here is mainly 
concerned with the frequency response produced by various line coding 
techniques. Practical systems may require implementation of suitable pulse 
shaping and filtering to achieve better results in reducing intersymbol interference 
and other performance degrading effects encountered in a particular application. 
The simplest pulse shaping modulator function has been used in the computing 
procedure, in order to achieve a unified approach in the assessment and the 
comparison of different line coding schemes. The frequency response of the basic 
rectangular pulse waveform, as derived in Section 1.2.3, is given by

c 7( / )  =  Ttsm̂ j )  =  Tt  sine(rfT .)

For the case of a pulse-amplitude digital modulator the frequency response of the 
transfer function given by (3.24) becomes

Gy(f)  =  - r -  H f )  =
1  X

The software routine described here can be amended with very little effort to 
accommodate various expressions for the modulator spectral response.
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Finally, the last part of the algorithm produces the graphical output of the 
computation as plots of the spectral density distribution for the output-symbol 
sequence and the coded line signal. An essential point regarding the type of the 
output is that 3-D graphs are produced only with parametrical analysis when 
different values of the input-symbol probabilities have been used. This will be 
discussed in greater detail in a subsequent chapter.

In summary, the software routine described in this section has been 
designed to accommodate the full power and the generality of the theoretical 
model of the line coder. High degree of flexibility and universality have been 
achieved through a modular structure which allows the spectral analysis technique 
to be applied to virtually all digital coding schemes with a fixed-length block 
structure. This provides a common basis for estimation and comparison of codes 
and their frequency characteristics. Another advantage of the software algorithm 
is the possibility to modify the initial specifications easily and to adapt the 
procedure to the requirements of any coding scheme as long as the initial 
conditions are correctly specified. The practical results from applying the 
computational procedure, which illustrate the power and the generality of the 
spectral analysis method are presented in the next chapter.
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4. THE UNIFORM ANALYSIS AND DESIGN OF DIGITAL LINE CODES

The discussion of coding in digital transmission and especially of the 
problems related to line coding has revealed the importance of practical and 
accurate spectral analysis methods. It has been indicated (Chapter 2) that a 
general and systematic approach has raxely been applied to the design and 
analysis of line codes. Results in this field are often presented in an application- 
specific form. The absence of common structure in the definition of various codes 
still poses difficulties in applying general assessment and comparison techniques.

The main goal of line coding is to shape appropriately the spectrum of the 
transmitted signal. In most practical applications, this involves a number of 
specific requirements, the most essential of which are as follows:

• small low frequency components (eventually no d.c.);
• sufficient amount of timing information (high density of transitions);
• narrow signal bandwidth (small increase in transmission rate).

A number of secondary requirements, like multi-level signalling, ancillary channels 
etc., are also common. Many similar problems and solutions in the area of line 
coding have been regarded as completely different, simply because the particular 
designs and results have been presented with respect to a specific requirement, 
rather than from a general assessment point of view.

The lack of a systematic approach to the problems of line coding was 
recognised a long time ago, [18]. Most publications in this field1 show that some 
authors still resort predominantly to the descriptive form of code definition. 
Clearly this contributes very little towards the ability to categorise the proposed 
coding structures and even less to the assessment and estimation of the results in 
comparison with existing schemes.

With only a few exceptions, like [Poo, 1981; Cattermole et al., 1984], the 
majority of publications in the area of line coding have failed to promote general 
analysis methods and possibilities of unified classification of line coding 
techniques. The spectral analysis model presented in Chapter 3 is an excellent 
basis for a considerable improvement in this respect.

The computational procedure described in the previous chapter has been 
developed to provide suitable and powerful implementation of the line coder 
model. The results from practical application of the software routine, as well as its

1 References [4,31-33] are just a fraction of all which could be given as an example.
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potential to facilitate further theoretical investigations are presented in this 
chapter.

The main task in constructing the programming algorithm has been to 
incorporate the generality and the level of precision provided by the mathematical 
model. The accomplishment of this task is demonstrated through a considerable 
variety of examples. Some of them are the conventional line coding schemes, given 
in Chapter 2. The detailed analysis of these codes is presented for several 
purposes:

1) To prove that the results of evaluating PSD, produced by the developed 
computational procedure are correct and successfully compare with the 
best published to date.

2) To demonstrate the capability of the software routine to provide detailed 
and highly informative numerical and graphical analysis results.

3) To show the advantages of the unified coder presentation method over the 
conventional descriptive definition of coding rules.

4) To provide the basis for the suggested new classification structure and for 
generalised comparative assessment of line coding schemes.

In Chapter 5 the power of the analysis method is fully revealed through the 
further development of the software routine into a simple and convenient designer 
tool for generating completely new coding structures. A classification of line 
coding schemes, based on this enhancement of the spectral analysis routine is also 
suggested. Finally, a new method for evaluation of the ‘ coding capacity’ of a 
coder, based on a special definition of its ‘operational space’2, is briefly outlined in 
Chapter 6.

4.1 Comparative Analysis of Line-Coding Techniques

The results from the spectral analysis of coded digital signals are usually 
presented in the form of graphics. It is common to assess the frequency 
characteristics of different coding schemes on the basis of the shape of the signal 
spectra, as well as on relative changes of the magnitude of particular frequency 
components. Evaluation of real numeric parameters is required in the practical

2 The idea of the Coder Operational Space has been introduced in section 3.2.1 
regarding the FSSM presentation of the block coder.
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design of a coding system, especially when the spectral characteristics of the 
channel are specified precisely, and also for small changes of the spectra, which 
are difficult to estimate through direct examination of the corresponding graphics.

Various coding techniques are analysed in this chapter. The spectral 
densities of the resulting digital signals axe given mainly in graphics form. 
However, it should be noted that the accuracy of the mathematical model and the 
powerful computational environment, [15] provide for the availability of highest 
precision numerical data corresponding to every graphical result and accessible at 
any stage of the evaluation process. A few explanatory notes are made below to 
facilitate the proper reading of the graphics format.

The working frequency range for the spectral density function has been 
determined over the normalised argument f n = where /  e [ / q, f max]3 and 
F x — y ~ is the code symbol repetition rate. The time interval of a code symbol, T x 

has been defined in the description of the coder model. It relates to the 
input/output word period, T and the duration of the input symbols, Td as follows: 
Tx = j -  =  — The integers N  and L are the numbers of symbols in the input and 
the output words respectively. Their values are determined by the program from 
the specified sets of input and output symbols. Two parameters, labelled nf and 
nFx, are used in the analysis procedure to determine the range and the resolution 
of the computation in the following way:

nf determines the number of numeric values of the frequency argument for 
which the continuous part of the PSD, Y^c\ f)  is calculated.

nFx determines the upper limit of the normalised frequency range with respect 
to the code symbol transmission rate, from the relation 
nFx = L™* -  ( /  ) .f  w  maxx

Thus the resolution, which also defines the size of the increment for the 
normalised frequency, is given by / n + 1- / n =  where n =  1 ,...,nf. The default 
values for the two parameters are nf =  100 and nFx — 1 . By assuming / 0 =  0 the 
analysis range becomes /  6  [0, F x], The values of the normalised frequency, 
/ „  =  0, . . . ,nFx are used for the numeric notation along the frequency axis, mainly 
for the purposes of convenience in producing the graphics. The program allows for 
unlimited freedom of choice in selecting a frequency range and resolution of 
interest4.

3 / o and / max are real numbers specifying the frequency analysis domain.

4 It is possible to do this interactively, if preferred.
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The meaning of the numerical values for the plots of the spectral density 
functions, W x (f)  and F ( /) ,  can be illustrated through the opening examples of 
the analysis. Before applying the unified structure of code definition, the basic 
waveform format, NRZ (unipolar and polar) is used to specify the reference PSD 
for the subsequent analysis.

As it has been already mentioned, the NRZ pulse waveform can be viewed 
as transformation of the symbols 0 and 1 into output symbols 0 and 1 or —1 and 
+1 for unipolar or polar formats respectively. Subsequently the digital modulator 
uses positive or negative pulses for +1 or —1 respectively and zero-level (no pulse) 
for 0. Without going into too many details and by tracing the main computational 
stages in the coder model, some of the numerical values of the spectral density 
functions for the NRZ line format are shown in Table 4.1 below. Common for both 
types (unipolar and polar) is the possibility to view the coder as a single state 
system, which results in having equivalent values for the following variables (as 
defined in Chapter 3): 5  =  1; P =  1; 5 r =  l; Sqq =  1. The use of the basic 
modulator function with a frequency response Gy( f ) =  sinc(7rf T x) for all analysis 
examples has been discussed in the previous chapter. In the case of NRZ 
Tz =  T =  Td.

NRZ .Zj, Z 2 Ho H z ) ,Hv H2 w${f) GXU ) w (:\f) Y(c\f)

unipolar 0, 1 .5 .5 0 .25 T 1 .25 T ^Tsinc(7r/T)

polar - 1 ,  +1 0 1 0 T 1 T Tsinc(7r/T)

Table 4.1 Computational results for the normalised PSD of the NRZ

The examples given above indicate that it is convenient to use normalised 
numerical values for the spectral density functions. Having assumed a code word 
repetition rate of unity, the PSD plots are given for unity period of word 
repetition. In the case of NRZ, for example, this leads to W x (f)  =  W x(f)  =  0.25 
or 1 and Y x(f)  =  0.25sinc(7r/) or sinc(7r /) for unipolar or polar signal respectively. 
In general, it should be noted that the 2D graphics shown in this chapter 
represent the spectral density functions W x(f)  and Y x(f)  of the output symbol 
sequence and the coded line signal respectively. The results from their numerical 
evaluation are normalised by the factor F x =  FL , where F  =  ^  is the code word 
rate5. In other words the actual plots are of the functions

5 The normalising factor derives from the multipliers T  and - j -  in the expressions for 
W $(f)  and Gx(f) given in the definition of the coder model.
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Finally, the 3D plots, which are given for most of the spectral analysis 
examples in this chapter, represent evaluation of the function Y ^ \ f)  along the 
vertical, z axis over the range of frequencies, /  and the various sets of input 
symbol probabilities, q(0) and <?(1) along the horizontal, x and y axes respectively.

4.1.1 The Unified Description of ‘Coder-Rules’

The common approach in the definition of fixed-length block coding 
schemes has already been mentioned in previous chapters. It derives from the 
spectral analysis model presented in Chapter 3. The suggested coder definition 
method is summarised in this section in its complete form. It is described in a 
suitable format to facilitate the practical application of the developed frequency 
analysis technique. The specification of a code is divided in two parts which are 
presented below in their general form.

1 )  S p e c if ica t io n  o f  th e  s y m b o l  s e t s

The presentation of a coding scheme usually starts with specification of the
input and the output sets of symbols. Following the discussion in Chapter 2, about
the variety of ways to describe the rules of existing line codes, it has been
assumed that all ‘encoding formats’ , ‘line-wave formatting techniques’ , etc. can be
represented as two separate functions: transformation of symbols and digital
modulation. Therefore, the cases where line codes have been given as a
substitution of a digital sequence with signal levels (high, low, positive, negative,
etc.) are suitably redefined according to the components of the line coder model
(Fig. 3.1). This is achieved through converting the most commonly used signal
levels into digits, representing output symbols, according to Table 4.2.

A careful examination of the mathematical
expressions in the line coder model shows that the
shape of signal spectra does not depend on the
numerical values of the output symbols. It can be
proven that changes of the symbol values result
only in scaling and offsetting the graphics without .

1 able 4 .2  Symbol presentation
altering the functional relation with respect to the

of signal levels
frequency argument.
However, for the sake of uniformity of the analysis results, the binary set of 
symbols is assumed as [0,1] or [—1,+1] and the set of ternary symbols as 
[ - 1 ,0,+ !] .

level symbol

high, positive 1

middle, zero 0

low

l-H1MOo

negative - 1
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By using the notation adopted in the definition of the components in the 
coder model, the table shown in Fig.4.1 is introduced for the specification of the 
input and the output sets of symbols.

Symbols
INPUT

d  [d Xi (¿2i • • ••> d(x\ Qm x  =  [ x x, x 2, . . . , i

d u  d 12 . . .  d 1N Qi *11 X 12 ■ ■ • X 1L ’ * 1"

D =
d^\ d 22 . . .  d 2;v

= D2 Q2 X  =
X21 X22 • • • X2L

=
* 2

^ m 4 m 2 ■ ■ -d M N d m Qm XJ1 XJ2 XJL

OUTPUT

d mn G d \ m  — l :M ,n  =  1: JV Xji G x\j =  1: J,l =  1:L

Fig. 4.1 The symbol specification table

The table from Fig. 4.1 will be generally referred to as the ‘Symbols’ 
specification. It corresponds to the representation of the symbol sets for the 
computational procedure described in Chapter 3. The software routine provides 
several possibilities for the specification of the input and output symbol sets. 
Some of them, which are most likely to be used are summarised below:

l) It is sufficient to specify only the length of the input and the output 
words (iV and L), if both the input and the output sets are binary.
When the input symbol probabilities are not given explicitly the 
program assumes they are equal and automatically produces the 
three sets6 D , X  and Q.

It should be noted that the set of output words, X  at this stage contains all K  
possible binary blocks of length L. The J valid output words are selected in the 
next stage when the coder table is compiled.

n) If the symbol sets are not binary (which is more likely for the 
output symbols), their values have to be specified explicitly in d  

and/or x .  The program again computes the matrices D , X  and the

6 These sets in fact are specified as matrices exactly as shown in the table of Fig. 4.1.
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code word probabilities Q assuming that the complete sets are 
required. When this is not the case the input and the output word 
matrices have to be constructed manually.

m) The last of the likely specification possibilities occurs when it is not 
necessary to compute all symbol combinations for given block 
lengths N  and L. In this case the matrices D and X  have to be 
specified explicitly and particular values to be assigned to the input 
word probabilities Q, if required7.

Further particulars about the initial set-up of the computational procedure 
can be found through a direct examination of the program and use of the software.

2) Specification of the code table

The table presentation of the coder has been defined in the presentation of 
the spectral analysis model (Chapter 3). A detailed description of the relation 
between the code table and the matrix presentation has been given in Section 3.3 
where the main parts of the software routine have been introduced. The table 
presentation is shown in this section only for the purpose of completeness of the 
general coder specification and for developing a smooth transition to its practical 
implementation.

Clearly it is more or less straightforward to determine the sets of input and 
output words (D , X ) for many codes of practical interest, including the examples 
given in Chapter 2. However, it is not always so with the set of coder states, s. 
The FSSM model implies an infinite number of equivalent system realisations of a 
particular code. The one which is of practical interest is the minimal FSSM and 
the System Theory provides methods to prove that it is unique within a given 
class of equivalences, as well as procedures allowing for the minimal machine to be 
determined from any equivalent FSSM. The theoretical model of the line coder 
does not provide a general method for deriving the set of states, although a useful 
technique is suggested in reference [18], which allows the states to be determined 
on the basis of an implementation scheme.

The problem of identification of the coder states is approached in several 
ways in the presented spectral analysis. For most of the examples with relatively 
simple coding rules the coder states are determined from purely practical 
considerations based on particular conditions and/or features of the digital

7 When the values for the input word probabilities are not specified they are computed 
as usual, on the assumption of equiprobable input symbols.
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sequences. The NRZ-M code can be used as an illustration. It is not difficult to 
show that, if the coder states are assumed to correspond to the sign of the last 
output symbol, i.e. s1 =  ‘ - ’ and s2 =  ‘ + \ then the coder rules represented by 
Table 3.1 apply. It is now possible to appreciate that the dependence of a coded 
symbol on the previous output symbol for this differential coding scheme makes 
its definition, given in Chapter 2, easier to state as transformation of pairs of 
symbols, than as a description of level transitions.

In the cases of other examples of conventional or new codes examined and 
analysed in forthcoming sections the sets of coder states are given without detailed 
comment on the method of their definition. This is done to avoid too lengthy 
descriptions or too detailed specifications of line codes which are well known.

An alternative possibility is suggested in Section 4.2, which involves a new 
technique for deriving the set of coder states together with the specification of the 
coder rules in a table-ready form. At this stage it is assumed that the sets of 
states are available for any of the codes whose spectral analysis is presented in the 
following sections. Special comments are made in the cases where the definition of 
the states requires explanation. By suitable reference to the coder-rules 
descriptions it is possible to combine the three sets D, X  and s so that for every 
pair of an input word and a state the respective output word and next state are 
found. This naturally leads to the table presentation of the code, which is given in 
Fig. 4.2 combined with the corresponding matrix presentation. The construction of 
the output and the state-transition matrices has been discussed in detail in the 
previous chapter.

Code

^ m i  [ Q m l s i SI Sm z m

Dx, [Qx] - * i i  5 n -*11 S11
S M  =

~s ' ~
Z M  =

% )  [Qm \ X M1 sMl X MI SMI J>M _

F ig . 4 .2  Specification of the code in table/matrix form

The ‘Symbols’ and ‘Code’ tables defined in their general form above 
completely specify a fixed length block-coding scheme. The usual table 
presentation of the FSSM model of a coder is augmented with the input word 
probabilities8 [Qm] and its matrix presentation. Formally a code is uniquely

8 The values Qm are given in square brackets to indicate that specification is optional 
and the input words are assumed equiprobable if these values are not given explicitly.
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specified by the three sets D, X  and s and their interrelation, given through the 
table originally presented in Fig. 3.3. Indeed, the ability to specify the FSSM 
model of any coder in table form presumes the knowledge of all the information 
contained in the table from Fig. 4.1. Also, the output and the state-transition 
matrices derive entirely from the table presentation of the coder, therefore they 
convey the information from the coder table, only in a different form.

The use of the two types of tables has been introduced mainly for the 
purposes of completeness in the suggested uniform specification of codes and 
convenience in the assessment and the practical analysis of their spectral 
characteristics. Finally, it should be noted that the matrices SM and ZM, 
collecting the output and the transitional matrices are implemented directly in 
the software routine as an efficient way of computing the cumulative summation 
over the index of the input words, m.

Before the systematic presentation of the frequency analysis results in the 
next section an example is shown below to illustrate the general coder 
specification and the graphics output produced by the computational procedure.

3 B 2 T - R B S  S y m b o ls

I N P U T O U T P U T

d =  [ 0 , 1 ]

(w o r d  p ro b a b ilit ie s  sp e cifie d  d ir e c tly ) Qm X  = [0 , 1 ]

D x =  0  0  0 .0938 X 4 =  0 0 0 1 X 9 = 1 0 0 1

i l 2 =  0 0 1 .1406 X 2 =  0 0 1 0 X 10 =  1 0 1 0

£>3 =  0 1 0 .0938 x 3 =  0011 X n  =  1 0 1 1

£>4 =  0 1 1 .1406 X 4 =  0 1 0 0 X 12 =  1 1 0 0

£>5 =  1 0 0 .1406 X 5 =  0 1 0 1 X 13 =  1 1 0 1

£>6 =  1 0 1 .0938 X 6 =  0 1 1 0 x 14 =  1110
£>7 = 1 1 0 .1406 X 7 =  0111 X 45 =  0 0 0 0 (n o t  u se d )

£>8 =  1 1 1 .0938 X 8 =  1 0 0 0 =  l l l l ( n o t  u se d )

N  =  3, M  — 8 £  =  4 ,  J  = 1 4 ,  K  =  1 6

Table 4.3a

This code is based on a description given in [26], where it is presented as a 
method of Relative Bipulse Signalling (RBS) which transforms a 3B2T ternary 
line code into a two-level format (3B2T-RBS). Table 4.3a proves to be a most 
adequate specification of the code in a binary form and the spectral analysis is 
performed straightforwardly by using the 3B2T-RBS definition from Table 4.3b.
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3B2T-RBS Code
S 1 *2 s 3 S 4 5 m 2 m

r o o io i 0100 r i o o f 1110
000 1001, S3 1001, S4 0110, s x 0 1 1 0 ,  s 2 5 i = 0001

1000 ! S 2= 0010
0100 Z i =

1001
0110 ! ^ 2  =

0001
I l i o

0100 0010 0110 0001
001 1110, s 2 0001, «3 1110, s 2 0001 , s3

010 1 0 1 1 ,  s 4 1000, s x 0111, s 4 0100, s x Ç
0 0 0 1 '
1000 c

1000
0100 7

i o n "
1000 7,

O lio
O lioo 3 _ 0001 1-5 4 - 0010 ¿ 3- 0111 5 ^ 4 - 1001

O il 0110, s x 0 1 1 0 ,  s 2 1001, s 3 1001, s 4 1000 0001 0100 1001

100 1100, s 1 0011, S 4 1100, S4 0011, s 4 r lo o o i "1100I r u o l i
Ç 0001

! ^ 6
— Q 7 0011 7 0010

101 1101, S4 0010, s x 1 1 0 1 ,  s 4 0010, Sx 1000
0001

—  s 3 ■ ^ 5 - 1100
0011

1101 
0 0 10

110 0 1 1 1 ,  s4 0100, s x 1011, S 4 1000, s x
0111 0101

111 0101, S 3 0101, s 4 1010, Sx 1010, S 2

IIt- = S 3 1 8̂ =  S 1 z 7= 0100
1011 ) Z g =

0101
1010

1000 1010

Table 4.3b

The computational matrices SM and ZM are given below only to avoid 
drawing an excessively large table.

S i Z i

S 2 Z 2

S3 Z3

S4 ZM = Za
S  5 z h

s &

S  7 27
L^sJ

More detailed discussion of the 3B2T-RBS code is given later in this 
chapter. At this point the illustration of the spectral analysis procedure is 
completed with the graphical presentation of the results, which are typical for 
most cases of PSD computation. The plots in Fig. 4.3a represent the discrete and 
the continuous parts of the spectral density for the specified version of the 3B2T- 
RBS code. The PSD of the coded sequence of symbols and the line signal9 are 
given as w^  and ŷ c\ respectively. The discrete frequency components (spectral 
lines) are shown as vertical bars, y^  for better readability. For the example of the 
3B2T-RBS code, in particular, y^  indicates the presence of a d.c. component. As 
has been explained earlier in this chapter, the graphical results represent the PSD 
computed over the range of normalised frequencies, where f n — 1 corresponds to 
the code-symbol repetition rate, /  =  F x .

9 PAM with a rectangular basic pulse shape is assumed, as defined in Chapter 3.
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Fig. 4 .3  Conventional (a) and parametrical (b) PSD plots of the 3B2T-RSB code

The 3D plot of Fig. 4.3b represents a family of spectral density curves of 
the line signal for ten sets of values of the input symbol probabilities, 
q = [%■> 1 - <7o]5 where q0 = 0.3, 0.35, ... , 0.75. It shows the expected shift of the 
signal power from the low frequency range for high probability of zeros in the 
input sequence towards the range of higher frequencies for high probability of 
input ones. The example clearly illustrates the possibility to evaluate the changes 
in the signal spectrum produced by variations of the input symbol probabilities. 
The parametrical PSD plots can be used to predict the deterioration of the 
communication channel performance for signals with large statistical variations, 
like real time transmission of speech or other burst type of information. More 
comments are given for the examples to follow in the sections below.
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4.1.2 Practical Implementation of the General Spectral Analysis Model

The results from complete frequency analysis of digital line codes are 
presented in this section. The examples are mainly of existing coding techniques 
including most of the popular ‘formats’ , already discussed in Chapter 2. Some 
codes, which are not amongst the popular ones axe also analysed to demonstrate 
specific features which have not been exhibited by better known examples.

An important goal in producing the analysis results shown below has been 
to compile a comprehensive basis for general assessment of coding techniques. An 
initial step in this direction is the precise computation of the spectral density plots 
through the general coder model for many known codes. Only a few of them are 
usually given in the literature sources. Often PSD plots of the same code may 
differ considerably due to the various methods for their computation. In addition, 
the power and the flexibility of the computational algorithm have provided more 
information to be made available through a variety of parametric simulations. The 
latter have been presented as 3D spectral density plots, which are convenient for 
comparative assessment.

4.1.2.1 One-State Coding Schemes

The NRZ transmission format has been used twice so far: first to introduce 
the examples of conventional code description methods in Chapter 2 and second to 
specify the numerical reference basis in the presentation of the spectral analysis 
results (at the beginning of Section 4.1). The appropriate table form specification 
of the Unipolar and Polar NRZ formats, formally presented as ‘coding’ techniques, 
and the respective PSD graphics are given next in order to initiate the discussion 
of the results from the unified frequency analysis of various digital codes.

N R Z  - S y m b o ls

INPUT OUTPUT

d  =  [0, 1]

?  =  [?o> 1 -  % } 

q0 -  0.1 - 0 . 9

Qm

step =  0.1

polar

X  — [—1, +1]

unipolar 

X  =  [0, 1]

D 1 = 0 0 .1 -0 .9 * 1  = - 1

oIIrH*

£»2 =  1 0 .9 - 0.1 X 2 =  + l * 2  =  1
N  =  1 ,M  = 2

*->HII IIII

Table 4.4a
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NRZ - Code

Dm
polar unipolar

c51

0
1

-1  sx
+ 1 Sx SM = 1

1 ZM = -1
+1

0 sx
1 sx SM = 1

1 ZM = 0
1

Table 4.4b
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Fig. 4 .4  Conventional (a) and parametrical (b) PSD plots of the NRZ code

The specification of the code denoted as NRZ in Tables 4.4a and 4.4b 
includes the parametric values for the input probabilities. It is not necessary to 
present and discuss separately the trivial case of the spectral density of a binary 
sequence of rectangular (non-return to zero) pulses with q =  [0.5, 0.5]. The PSD 
graphs corresponding to this case are given in Fig. 4.4a only to illustrate the 
numerical results from Table 4.1. As expected ( i / c (̂0) / Tx ĵ equals 1 for polar 
NRZ and 0.25 for unipolar. Another obvious result is =  constant which is 
exactly the spectral density of a random sequence of delta functions representing
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the output symbols10 before modulation with the rectangular pulse waveform. 
This results in the well-known ‘sine’ function for the PSD of the NRZ ‘ coded’ line 
signal, y(c\

The input probabilities are given in the specification tables of the above 
examples mainly for completeness and also to indicate that their values may be 
essential to the shape of the signal spectra. However, all spectral analysis results 
presented below are based on the two cases, equiprobable input symbols or 
parametric evaluation11 of the PSD over the range of probabilities 0.05, 0.15, ... , 
0.95 (except when explicitly specified otherwise), corresponding to the 2D and 3D 
plots respectively. For this reason q and Qm will be omitted in the coder tables of 
the following examples, while remembering their significance for every case where 
the input probabilities have special values. Fig. 4.4b is an example of a 3D plot, 
representing the family of NRZ curves for variable input symbol probabilities.

The spectral analysis of other line codes is presented below in a certain 
order which provides a preliminary idea about the general classification structure 
defined completely in Chapter 5. When the first examples of line coding 
techniques were initially described, an order, according to code complexity, was 
suggested. This feature on its own is clearly insufficient for a stricter classification 
as it depends on several components of the code specification. Without going into 
further details at this stage, it is assumed that within the suggested ordering, 
complexity, due to higher number of code words, comes before the complexity 
resulting from higher number of coder states.

By keeping the number of states 
equal to one, as in the opening example, it is 
possible find a variety of codes with a 
different number of input and output words. 
The simplest case being the code equivalent 
to the RZ signalling format whose 
specification is shown in Tables 4.5a,b. The 
results from the spectral analysis of this code 
are identical to those of the NRZ with the 
essential remark that (FX)RZ = 2(-F x ) n r z -

The Manchester code is another 
popular technique which does not require 
memory (the coder has one state only).

10 The output sequence is identical to the input random sequence of symbols.

11 For these cases q0 denotes the probability of a binary input 0. The probability of 1 is 
gq =  1 — q0 as indicated in the ‘NRZ-Symbols’ table.

RZ - Symbols
input output

r
H

cTii X  =  [0,1]

O
 

r
H

Il 
II

r-t 
CN

X x =  0 0 

X 2 =  1 0

N  =  l ,A f  =  2 L =  2 ,J  =  2

a)
RZ - Code

0 0 0 1 0 0

1 1 0 Sl 1 1 0

Table 4.5 b)
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Its specification tables are the same as those for the RZ signalling format with the 
exception of the first code word which is =  01. Obviously, just like RZ, the 
Manchester code requires twice the transmission bandwidth of the original symbol 
sequence. Unlike RZ, the Manchester code introduces at least one transition for 
every input symbol interval.

Also, it is easy to see that the longest interval without a transition is equal 
to the period of the input symbols. The twofold increase of the information 
content and the signal bandwidth allows for elimination of the low frequency 
components. This result is shown in Fig. 4.5 below.

Fig. 4 .5  Conventional (a) and parametrical (b) PSD plots of the Manchester code

One-state codes of higher complexity are sometimes used to achieve 
features, which are not directly related to shaping the signal spectrum. Codes 
from this group are usually a simple one-to-one transformation of a set of input 
words into a set of output words. The complexity of such codes is directly
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proportional to the number of input words, M. A typical example is the mBIC 
group of codes, [42] which insert an (m +  l)th bit, complementary to one of the 
bits in a block of m input symbols. This technique is used to provide a minimum 
number of transitions in the coded signal and a very basic error monitoring 
capability. Its only advantage is the simplicity of the coding rules. No special 
provision is made to achieve a certain shape of the PSD function, which in some 
cases may be affected considerably, as is shown in Fig. 4.6 for m — 3 and m =  5.

Fig. 4 .6  The spectra of the 3B1C and 5B1C codes for equiprobable input symbols

Most of the coding schemes which can be modelled as a one state system 
are fairly easy to analyse. Very few of them can be implemented as an efficient 
solution to the problems of line coding. These types of codes are mainly used for 
the purposes of conversion between signals with a different number of levels. 
Certain spectrum shaping with a one-state coder can be achieved through the 
introduction of redundancy by using a subset of the possible output words, whose 
total number is larger than that of the input words. In most cases this leads to 
low efficiency. An alternative approach in producing a specific spectral density 
function is to implement systems with memory (i.e. the coder has more than one 
state).

4.1.2.2 Two-State Binary Coding Schemes

The presentation of the analysis results continues with examples from the 
next level of complexity. The codes from this group are modelled as a two-state 
FSSM and the number of possible output words is two. The Differential line
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formats provide basic examples of such coding techniques. Some of them have 
been introduced in Chapter 2 as NRZ-S and NRZ-M codes. The specification of 
the latter is given Tables 4.6(a,b) below followed by the plots of the respective 
PSD functions12 in Fig. 4.7.

D iffe re n tia l - S y m b o ls

input output

d  =  [ 0,1] X =  [0,1]

D x =  0 

D 2 =  l

jrx =  o 

*2  =  1
N  =  1, Af =  2

(MIIrHII

Table 4.6a

D iffe re n t ia l - C o d e

Dm »1 ¿2 S m

0

1

0

1 3 2

1 s 2 

0 s x

1 0 
0 1

0 1 
1 0

0
1

1
0

Table 4.6b

Fig. 4 .7  Conventional (a) and parametrical (b) PSD plots of the Differential code

12 The numerical data and the graphics correspond to NRZ-M and are identical to those 
of NRZ-S when a few trivial inversions are appropriately applied.
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The two plots illustrate the frequency characteristics of the NRZ-M 
signalling format in a much more comprehensive way than is usually done in the 
literature. The spectral density graph y  ̂ in Fig. 4.7a confirms that for 
equiprobable input symbols the Differential code is equivalent to the basic NRZ 
format. The other two plots, ŷ  and 3/3 correspond to input probabilities of 
Qq — 0.9 and <?q =  0.1 respectively. The significant features of the code for unequal 
input probabilities are easy to observe from the parametrical 3D plot (Fig. 4.7b). 
The NRZ-M scheme introduces transitions for sequences of consecutive 1-s. This is 
why, when input 0-s are more likely to occur than input 1-s (indicated with the 
respective probabilities in Fig. 4.7b), the signal energy is distributed over the 
range of lower frequencies. For probabilities of input ones greater than the 
probabilities of input zeros (indicated with the respective probabilities in Fig. 
4.7b), the magnitude of the lower frequencies is reduced and the spectrum is 
shifted towards the higher frequencies.

Obviously these results agree entirely with the description given in 
Chapter 2. However, it can be seen that the parametrical plot itself is sufficiently 
informative and provides for convenient and direct comparison with the spectral 
characteristics of other codes, especially when they are analysed through the same 
theoretical model.

The number of codes with two states and two possible output words is 
relatively small. Those which can be used for practical modification of the signal 
spectrum require state-dependent decoding. These problems are discussed in 
greater detail in the next chapter, where the general category of this type of 
coding is summarised. The presentation of the spectral analysis continues with 
codes which still have a two-state model but various numbers of possible output 
words.

4.1.2.3 Two-State Ternary Codes

Next to be shown is the spectral density of a classic example, the AMI line
code. The specification of this code is given in Tables 4.7(a and b):

A M I - S y m b o ls

input output

d  =  [ 0,1] x  =  [—1)0, +1]

b M II O * l  =  " l

D 2 =  l
x 2 = 0

X 3 = + l

C
MII1-HII L  —  \ , K  —  Ì

Table 4.7a

A M I  - C o d e

130



The spectral density plots of the output signal, for equiprobable input symbols are 
shown as yl in Fig. 4.8a. This is a well known spectrum and does not require any 
special comment. In addition the two PSD graphs, for input probabilities 
[<70 = 0.8, = 0.2] and [q0 = 0.2,^ = 0.8] are given in Fig. 4.8a as y2 and j/3,
respectively, to indicate the sensitivity of the AMI spectrum to changes in the 
balance of the input symbol distribution.

F ig. 4 .8  Conventional (a) and parametrical (b) PSD plots of the AMI code

This is another case where the variations of the PSD function with the 
statistics of the input symbols are not difficult to predict. However, the 3D plot in 
Fig. 4.8b provides a good illustration of the balance features of the code. For 
probabilities of input 1 , greater than the probabilities of input 0, the signal energy 
moves to the range of higher frequencies, while the spectrum becomes narrower
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(around the frequency /  =  0.5F x) as the number of transitions is higher due to 
the alternating output symbols. In the inverse probabilities case, the signal energy 
is reduced as there are more zeros in the output sequence. The lower-frequency 
components increase as the transitions are less probable, while the spectral density 
function still decreases towards t/ c (̂0) =  0 as the frequency approaches zero. This 
shows that the code always retains its overall balance.

The Duobinary code is another typical example based on the same symbol 
set. There is a very important difference between this scheme and the AMI code. 
While the latter is uniquely decodable, the Duobinaxy is not, as the output zero 
may represent both input symbols, 0 and 1. This is evident from its specification 
in Tables 4.8(a and b), which give the complete definition of the Duobinary code.

D u o b in a r y  - S y m b o ls

input output

^  =  [1,0] x  =  [ - l , 0 , + l ]

D 1 = 0
X 1 =  - l  

X 2 =  0
d 2 =  1

* 3  =  + l
N  =  1 , M  =  2

C
OIIrHII

Table 4.8a

D u o b in a r y  - C o d e

Dm *1 5 2

0 0 s2 —1 s2 "o r 0 '
0 1 - 1

1 +  1 -Sj 0 1 0 + 1
1 0 0

Table 4.8b

At this point it is possible to further appreciate the advantages of the 
uniform code definition. Unlike the conventional descriptions of the coding rules, 
the ‘common language’ of the table presentation shows exactly what are the most 
essential similarities and differences between the last two techniques. The loss of a 
unique-decodability feature with the Duobinary scheme (which can be viewed as 
moving towards a higher level of complexity) has allowed a substantial 
achievement -  twofold reduction of the transmission bandwidth, (Fig. 4.9). At the 
same time this reasoning can be further applied to suggest that the increase in 
complexity has not been sufficient to provide for the same achievement and still 
preserve the low frequency features of the AMI code. A tendency starts to become 
noticeable. It is related to several factors which are easy to point out due to the 
method of unified code specification. The first is the ratio between the number of 
output and input words, ^  and the second is the number of coder states I. These 
two factors determine significantly the ability to modify the signal spectrum.

132



F ig .4 .9  The spectrum of the Duobinary code for equiprobable input symbols

This ability is proportional to the number of valid and different spectral density 
functions for a given set of integers { M , I , K }, which correspond to the numbers of 
input words, states and output words respectively. The variety of possible 
modifications of the PSD will receive further attention in the following chapter 
with respect to the general classification structures.

The CMI code, which is specified next, is a frequently used technique. It 
has been described in Chapter 2 as a version of the biphase signalling format. The 
descriptive definition of this technique is another example of a standardisation 
effort without adopting sufficiently generalised basis (Fascicle III.3 -
Recommendation G.703 of CCITT). This code is an interesting combination of 
features from both Manchester and AMI codes. The relation with the former 
comes through the common complete set of output words, [X4 =  00, X2 =  01, 
X3 =  10, X4 =  11], Manchester code uses X2 and X 3, while CMI uses X l5 X2 and 
X 4. On the other hand CMI is related to AMI through the rule of ‘code word 
alternation’ . According to the preliminary classification arguments, mentioned 
with respect to the code complexity, the CMI is regarded in the category of the 
two-state codes. The brief assessment given in this paragraph can be completed by 
a straightforward comparison of the table specifications of the codes and the 
respective spectral analysis results. Those of CMI are shown in Tables 4.9(a,b) 
and Fig. 4.10.
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CMI - Symbols

input output

^ =  [0,1]

t-HgThH

D 1 =  0

OoIIrH
*

* 2  =  0 1
D 0 -  12 * 3  =  1 1

N  =  1, M  =  2 L = 2 , K  = 4, .7 = 3

CM I - Code

Dm «1 S2

0 0 1 s1 0 1 s2 T  O' "0  f
0 1 0 1

1 0 0 s2 1 1 Si 0 1 0 0
1 0 1 1

Table 4.9a Table 4.9b

The expected consequences from combining features of the Manchester and the 
AMI codes into the CMI are based on the following correspondence between 
structural and spectral features:

F E A T U R E S

s t r u c tu r a l sp e c t r a l

a lte r n a t io n  ru le «-» s m a l l  low  fre q u e n c y  c o m p o n e n t

tw o  t r a n s it io n s  p e r  
in p u t  sy m b o l in te r v a l |  <-» d o u b le  th e  o r ig in a l b a n d w id th

u se  o f  00 a n d  11 f sh ift  o f  s p e c t r a l  d e n s ity  
\  to w a r d s  th e  lo w er fre q u e n c ie s

The modifications of the frequency characteristics of a CMI coded signal, as 
summarised above, are clearly illustrated with the spectral analysis results shown 
in Fig. 4.10a,b.

F ig. 4 .1 0 a  Conventional PSD plot of the CMI code
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Fig. 4 .1 0 b  Parametrical PSD plot of the CMI code

Obviously a lot more information about the shaping of the spectrum can be 
obtained from the plots of the CMI spectral density functions. For example, the 
existence of a discrete component, y[d̂  at the input symbol rate Fd =  0.5 F x and 
the shift of the signal energy (plots yx and y3) with the probability of the input 
symbols, can be very important if the efficiency of transmission is to be 
determined. The validity of the arguments for the unified analysis approach 
becomes even more apparent through the next example

A conventional 3B4B code is taken to represent the binary alphabetic 
structures with a constraint on the digital sum. It is given as a typical case of the 
extension of the two-state group of codes, where M  =  aN input words are mapped 
into a subset of K  =  /?L output words13. This code has been chosen to demonstrate 
the possibility for direct comparative assessment provided by the spectral analysis 
method.

There is a big variety of possible ways to assign a subset of all 4-digit 
binary words to the set of all binary words of length 3. The problem is to find out 
when such a mapping results in a practical code with a suitably shaped spectrum. 
A good example of a 3B4B code is specified in Tables 4.10(a,b). The set of output 
words consists of all binary blocks of four symbols except 0000, 0011, 1100 and 
1111. These combinations have been left out for the obvious reason to avoid long 
sequences of identical digits. A careful examination of Table 4.10b shows that the 
code words are arranged to achieve well balanced output sequence. This results in 
suppression of the low frequency components. The PSD of the 3B4B code is shown 
in Fig. 4.11a.

13 a and f3 are the numbers of the input and the output symbols. N and L are the 
lengths of the input and the output words, respectively, so that aN <  f3L .
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3B4B - Symbols
I N P U T O U T P U T

d =  [ 0 , 1 ]

q =  [ 0 . 5 , 0 . 5 ] Qm x = [ 0 , 1 ]

Dx =  0  0  0 . 1 2 5 * x =  0 0 0 1 * 9  = 1 0 1 0

£>2 =  0  0  1 . 1 2 5 * 2  =  0 0 1 0 * 1 0  =  1 0 1 1

Dr, =  0 1 0 . 1 2 5 * 3  =  0 1 0 0 X n  =  1 1 0 1

f-H

O11 . 1 2 5

i-Hor—HOil

* x 12 =  1110

£ ) 5 = 1 0 0 . 1 2 5 X 5 =  0 1 1 0 * 1 3  =  0 0 0 0 ( n o t  u s e d )

£ > 6  =  1 0 1 . 1 2 5 * 6  =  0 1 1 1 * 1^  =  0 0 1 1  (n o t  u s e d )

£ > 7  =  1  1 0 . 1 2 5 X 7 =  1 0 0 0 * 1 5  =  1 1 0 0 ( n o t  u s e d )

£ > 8 = 1 1 1 . 1 2 5

i-HoorHII00
*

* 1 6  =  l l l l ( n o t  u s e d )

ooII

nII IIII 1 2 ,  *  =  1 6

Table 4.10a

3B4B - Code

D m S1 5 2 5 m Zm

0 0 0 0 1 0  1 S1 0 1 0  1 S 2
1 0 
0 1 0 10 1 

0 10 1
0 0 1 1 0  0 1 S1 1 0  0 1 s 2

1 0 
0 1 10 0 1 

10 0 1
0 1 0 1 1 1 0 S 2 0 1 0  0 S1 0 1 

1 0 1110  
0 10 0

0 1 1 1 1 0  1 s9 1 0  0 0 S1 0 1 110 1
SM = 1 0 ZM = 10 0 0

1 0 0 0 1 1 1 s 2 0 0 1 0 S1 0 1 
1 0 Ol i i  

0 0 10
1 0 1 1 0  1 1 s 2 0 0 0 1 S1 0 1 

1 0 10 11 
0 0 0 1

1 1 0 0 1 1 0 S i 0 1 1 0 So 1 0 Ol i o
0 1 Ol i o

1 1 1 1 0  1 0 S1 1 0  1 0 s 2
1 0 
0 1 10 10 

10 10

Table 4.10b

F ig . 4.11 The spectrum of the 3B4B code for equiprobable input symbols
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Before continuing with the examples from the next subsection it is worth 
pointing out a general similarity in describing the coder categories. The basic 
coding schemes in the two groups outlined above have been specified as having 
one and two states respectively and a minimal number of input/output blocks of 
symbols (the NRZ and the Differential codes). The next level of complexity 
within each of the groups, from this and the previous subsections, has been 
suggested indirectly, but its discussion is postponed until Chapter 5. The codes 
from this level are defined as having equal number of possible input and output 
words, M  =  J. In the one-state category these types of codes offer very little in 
terms of spectrum shaping. For two-state coders with M  — J the possibility to 
modify the signal spectrum is still very restricted, except under certain conditions, 
e.g. unequal input symbol probabilities.

The next complexity level, for a given number of states, has been assumed 
to be codes with a number of output words greater than the number of input 
words, M < J. In this case the freedom of designing a coding scheme, closely 
matching particular requirements, is substantial, which can be seen easily from 
the examples of 3B4B and 5B6B codes, given later in this chapter. In general the 
binary block techniques of the type nB(n -f 1)B are very popular for long distance, 
high capacity communication lines. Many of them have received considerable 
attention and their spectral characteristics have been studied thoroughly [7,21]. 
Amongst the fixed length block codes with n > 5 the 7B8B scheme has become 
widely used, because of its good efficiency and the possibilities for modifications 
providing for error monitoring and ancillary channels [Brooks, 1981].

Finally it should be noted that when the number of states, I and the sizes 
of the input/output word sets (M  and J) are fixed, it is possible to devise a 
variety of codes corresponding to different subsets of J valid output blocks of 
symbols. This is illustrated by the examples of the RZ and the Manchester 
techniques. The set of output words, X  for these codes is smaller than the set of 
all K  — f3L possible output words, where /? is the number of output symbols and L 
is the length of the output words. Obviously the larger the numbers J and K  the 
greater the variety of possible coding structures. In the case of two-state coders 
this also means a relative increase in complexity of the code rules.

A different level of complexity is reached through codes with more than 
two states. Very interesting effects in terms of spectrum shaping can be achieved 
with such techniques, even if the size of the output dictionary is relatively small, 
say J < 4. Some existing coding schemes from this category are presented in the 
next subsection.
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4.1.2.3 Coding Structures W ith More Than Two States

The use of more than one coder state has been associated with memory, i.e. 
the coded output depends on previous events. This has been discussed in 
Chapter 3 and formally indicated in Fig. 3.2 as the delay component. Although a 
general solution to the problem of how to determine the set of states is described 
later in this chapter, it has been indicated on several occasions in previous sections 
that in most cases it is possible to identify the sign and/or the value of preceding 
output symbols as the coder states. Obviously the larger the number of time 
intervals on which the present output depends, the greater the number of 
combinations of past events which may lead to different states.

The descriptive definitions of the codes from Chapter 2 show that in most 
cases the conditions for the output to take some value are specified as 
combinations of previous output or input values. The dependence of the output 
word on one preceding input symbol for the Duobinary format and on two 
preceding symbols for the Modified Duobinary (see Section 2.3.2) is very 
important for the process of ‘translating’ the conditions from the description of 
the coder rules into the appropriate set of states. Consequently the Modified 
Duobinary scheme is modelled as a four-state code, unlike the Duobinary which 
requires two states as shown in the previous subsection. A new practical procedure 
for determining the states of a coder in general is suggested in a forthcoming 
section.

The unified specification and the spectral analysis results shown below are 
based on the assumption that coder states represent sequences of signal values as 
defined in the respective code descriptions (Section 2.3.2). Thus the set of states 
for the Modified Duobinary technique can be determined as the following 
combinations of the two preceding input symbols: s4 =  00; s2 =  01; s3 =  10; 
s4 =  11. This allows the complete specification of the code to be given in the table 
form shown below.

M o d if ie d  D u o b in a r y  - C o d e

¿1 S2 S3 S4 Sm z m

1 0 0 0 0
0 0 s4 0 s3 - 1  sl —1 S3 0 0 1 0 0

1 0 0 0 -1
0 0 1 0 -1

0 1 0 0 +1
1 +1 s2 +1 s4 0 s2 0 s4 0 0 0 1 +1

0 1 0 0 0
0 0 0 1 0

T a b le  4 .1 1
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The specification of the symbol sets is identical to that of the Duobinary 
given in Table 4.8a. The Modified Duobinary code has been developed to preserve 
the bandwidth reduction achieved by the Duobinary format as well as to achieve 
the advantage of a spectrum with suppressed low frequency components similar to 
that of the AMI code, for example. The resulting spectral density distribution is 
shown in Fig. 4.12.

F ig . 4 .1 2  The PSD of the Modified Duobinary code for equiprobable input symbols

The comments made about the PSD of the Duobinary code, shown in Fig. 4 .9 , can 
be extended naturally to its modified version. Apart from the obvious increase in 
complexity by having four states instead of two, it is also possible to identify 
clearly, from Table 4 .1 1 , the specific design considerations.

The general structure of a random input binary sequence can be informally 
divided in two probabilistic types: one with frequent occurrence of both input 
symbols and another with long strings of identical digits. For an input sequence of 
the first type the coder will ‘switch’ frequently between the two rows of the 
‘Modified Duobinary-Code’ table, i.e. it will be attaining either 0 or - 1  and + 1  

with equal probability14. For the second type of input sequence structure, long 
strings of either symbol will always make the output sequence converge to 0 

(states ^  and s4). In both cases the average output is zero which leads to the 
elimination of the d.c. component. If the input sequence structure is described in a 
greater detail, the spectral features of the output sequence become more obvious 
by applying the above reasoning.

14 The 2D plot in Fig. 4.12 is computed for equiprobable input symbols.
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Assessment of a coder by ‘operating’ it through its state-transition table is 
obviously equivalent to the conventional descriptive definition of codes. However, 
the significant advantage in using the table presentation is its uniformity and its 
universally applicable structure. This allows most techniques to be compared 
directly, as well as important features of different codes to be easily identified. In 
addition, it is possible to derive the analytical form of the coder definition (the 
state-transition and the output matrices) directly from ‘Code’ tables. The most 
significant advantage provided by the unified code definition is the direct 
implementation of the general spectral analysis model through the computational 
procedure, which requires the sets of input and output words, the state-transition 
matrix SM and the output matrix ZM as the only initial numeric data to perform 
precise evaluation of the spectral density function.

Before presenting the analysis results of other codes with more than two 
states a possible approach in deducing essential features of codes from their 
unified specification is summarised in brief. The comparative overview involves 
the NRZ, Manchester, Differential, AMI, Duobinary and Modified Duobinary 
schemes. By following this order in the presentation of the essential characteristics 
of these codes, the process can be viewed as increasing the complexity of the 
particular techniques in order to accomplish specific features of the spectral 
density function.

The ‘Manchester-Code’ definition, Table 
4.12, indicates that to reduce the amount of low 
frequency components with a one state coder, in 
a simple way, information redundancy is 
introduced.

This allows transitions to be provided for every input symbol, therefore 
long sequences of uniform digits are eliminated. The goal is achieved (see 
Fig. 4.5a) at the expense of low efficiency (0.5, as only two out of four possible 
output words are used) and doubling the transmission rate. Further increase in 
the first level of complexity, the ratio is not expected to bring any significant 
improvements in shaping the spectrum. At the same time the efficiency becomes 
very low (for the purposes of line coding) when -jj- > 2. It is , however, possible to 
accomplish some interesting results with a one state coder by keeping 
relatively small and using more than two input words, i.e. N > 1 in the binary 
case. Such codes have not been used in this assessment as they are not widely 
implemented in practice. They are considered in greater detail in Chapter 5.

The next complexity level, as defined earlier is the introduction of two 
states. The simplest representative of this class is the Differential code, which

M a n c h e s t e r  - C o d e

Dmm 5i Sm
0 0 1 «1 1 0 1

l 1 0 «1 1 1 0

Table 4.12

140



provides for no redundancy and no increase in the transmission rate. It has been 
shown in Chapter 2 that by suitable redefinition of the output symbols it is 
possible to represent the code as a one-state technique. The result of applying 
Differential coding can be summarised as follows: with no change in the 
transmission rate, code efficiency of 1 and use of a second state, the effect in 
modifying the spectrum is only ‘partial’ , i.e. the spectral density for equiprobable 
input symbols is identical to that of the NRZ format and changes in the frequency 
distribution occur only for unequal input probabilities (Fig. 4.7a). Although it is 
difficult to generalise at this stage, an assumption can be made that the increase 
in the level of complexity has been insufficient to provide for flexibility in 
modification of the spectrum.

The comparative analysis proceeds on the basis of two-state coding. To 
achieve the effect of reducing the low frequency components (as with the 
Manchester format) the AMI code can be used, Fig. 4.8a. Examination of the 
‘AMI-Code’ , Table 4.7b, shows that the efficiency (0.63) is less than 100%, 
although it is still higher than that of Manchester. There is no increase in the 
transmission rate and a special feature, the unique decodability15 has been 
preserved. In a few words, it has taken an increase of the number of states and an 
introduction of redundancy to accomplish suppression of the low frequency 
components of the coded signal without changing the transmission rate.

Another significant achievement with respect to the modification of spectra 
is the possibility to reduce the transmission bandwidth. This effect is produced by 
the Duobinary code and illustrated with the PSD plot in Fig. 4.9. The direct 
comparison between the ‘AMI-Code’ and the ‘Duobinary-Code’ , Table 4.7b and 
Table 4.8b, shows a single difference: the loss of unique decodability with the 
latter scheme. The comments regarding the transition between the AMI and the 
Duobinary, which have been made earlier, are summarised in Table 4.13.

By the introduction of state-dependent decoding, while preserving the 
other structural features and the code efficiency unchanged (compared to AMI), 
the Duobinary technique provides for a twofold reduction of the transmission 
bandwidth, but ‘fails to keep’ the low frequency components suppressed. 
Additional increase in complexity is required in order to produce a coded sequence 
which features both: suppressed low frequencies and reduced transmission 
bandwidth. This can be done through further structural changes. The Modified 
Duobinary code achieves it by the use of four states instead of two, while the 
structural feature a) (Table 4.13), therefore the efficiency, remains the same.

15 No output word corresponds to more than one input word.
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CODE
FEATURES

structural spectral

A M I

a) N  =  l , A f  =  2 
L — \,J — 2

b) two states

suppressed
low-frequency
components

Duobinary

a) N  = l , M  =  2 
Z =  1,J  =  3

b) two states

c) state-dependent
decoding

reduced
transmission
bandwidth

Modified

Duobinary

a) N  = 1, A f =  2 
L = l ,  J  = 2

b) four  states

c) state-dependent
decoding

a) suppressed 
low-frequency
components

b) reduced 
transmission
bandwidth

Table 4.13 Relations between structural and spectral features

The next example of a four-state code, described in Chapter 2 as ‘Miller’ , 
illustrates another interesting approach in the development of a technique, which 
provides for the following frequency characteristics

a) small amount of low frequency components;
b) narrow transmission bandwidth.

Characteristic a) is achieved through the use of two output symbols for every 
input symbol, which leads to increase of the number of transitions in the coded 
sequence. The specification of appropriate symbol sets is given in Table 4.14a.

The definition of the symbol sets suggests 
two important features of the code. The 
output sequence is binary and the output 
dictionary consists of all possible words. 
By its specification the Miller code is 
closest to the group including the RZ, 
CMI and Manchester formats, all of which 
require twofold increase of the 
transmission bandwidth.

In this case, however, the characteristic b) is achieved through assigning the 
output words to the sequence of input symbols in a way which ensures that a 
transition in the output sequence is always followed by at least two identical 
symbols. This condition provides that no more than one transition in the coded

M ille r  - S y m b o ls

input output

d  =  [ 0,1] x  =  [0,1]

D , -  0 x 1 =  o 0
1 X 2 =  U 1

D 2 -  i X 3 =  1 0
A 4  = 1 1

N = 1 , M  =  2 L =  2 , J  =  K  =  4

Table 4.14a
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signal appears within an interval of duration T^ (the period of the input symbols). 
The table presentation of the Miller code is based on four states which can be 
identified as all possible combinations of the last two consecutive output symbols 
corresponding to the descriptive definition of this technique given in Chapter 2, 
i.e.: sx =  10; s2 =  00; s3 =  01; s4 =  11. The complete specification of the code is 
then given in Table 4.14b.

M ille r  - C o d e

Dmm si s2 s3 s4 s m

0 1 0 0 00
0 0 0 i2 1 1 s4 1 1 s4 0 0 i 2 0 0 0 1 11

0 0 0 1 11
0 1 0 0 00

0 0 1 0 01
l 0 1 s3 0 1 s3 1 0 s4 1 0 s4 0 0 1 0 01

1 0 0 0 10
1 0 0 0 10

Table 4.14b

It is not difficult to see directly from the ‘Miller-Code’ table that every output 
symbol is adjacent to at least one identical digit. Indeed, an input 0 is always 
coded as 00 or 11 , while for an input 1 the second symbol of the respective output 
pair is always the same as the first symbol of the output pair following next. This 
ensures the minimum interval between two transitions in the coded signal to be 
equal to the input symbol period, T^. The conventional way to demonstrate this 
feature of the Miller code is by showing pulse waveforms of sample sequences. 
The resulting spectral density distribution is shown in Fig. 4.13.

F i g .  4 . 1 3 a  C o n v en tio n a l P S D  p lo t o f  th e  M iller code
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Clearly the PSD of the Miller-coded signal possesses features a) and b) 
specified above. The reduction of the low frequencies in the output sequence, 
typical of a 1B2B structure, is well illustrated by the plot in Fig. 4.13a. The 
situation is similar for the higher frequency range. Another important result is 
that most of the signal power is concentrated below 0.5FX, i.e. within the 
bandwidth of the input sequence.

9i=o.i
90= °-9

Fig. 4.13b Parametrical PSD plot of the Miller code

The code analysed next is a four-state scheme which shows both the 
spectrum shaping potential of codes from this complexity level as well as possible 
confusions which arise from applying approximate and incomplete methods of 
analysis. The 3B2T-RBS coding technique, used as an introductory example in 
Section 4.1.1, offers a good illustration of the drawbacks of descriptive PSD 
evaluation. The assessment of the frequency characteristics in reference [26] is 
performed by calculating the probabilities of certain symbol combinations. The 
balance features of the code are determined through a similar approximation. 
Based on deduced results, the paper suggests that the 3B2T-RBS features superior 
balance, transmission bandwidth and overall performance to similar codes and the 
5B6B in particular.

The validity of the above arguments can be assessed by considering the
basic relation between the code-symbol transmission rates of 5B6B and 3B2T-RBS
(the latter being a version of the 3B4B block codes). The expression relating the
two transmission rates, (Fx) and (F x) , is derived by assuming that

5B 6B  , 3 B 2 T -R B S
both codes are applied to the same input sequence with a symbol period of 
Td — -k-, where F j  is the input symbol repetition rate:

d

(F x) =  1-2F d — 0.9(F x)
5B 6B 3 B 2T -R B S
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This result corresponds to the potentially higher coding efficiency of nBIB block
codes with higher values of - j- . It should be noted, however, that the last
statement applies for equivalent initial conditions. The first condition has been
specified as the use of the same input symbol rate with all codes to be compared.
Another important requirement is to match the complexity level of the respective
coding schemes. (Complexity is discussed in grater detail in Chapter 5.) For the
example involving the 5B6B and 3B2T-RBS schemes the second requirement can
be interpreted as follows. Although it might be possible to find a four-state block
code, n1B/1B, which performs better than a two-state block code, ra2B/2B, where
—r -  < —n~, the larger number of coder states itself does not guarantee higher 
*i _ *2

efficiency. At the same time, for an equal number of coder states, an n,B/,B can
always be designed to be more bandwidth-efficient than an rijBljB code, while 
ni .  nj
i.

The PSD computational procedure allows to achieve more accurate analysis 
and comparison of the two schemes discussed above. The spectra of the 3B2T- 
RBS and 5B6B16 are shown in Fig. 4.14a, together with the conventional 3B4B 
code17.

Fig. 4.14a S p e c tr a  o f  the 5 B 6 B , 3 B 4 B  an d  the 3 B 2 T - R B S  codes

Although the actual signal bandwidth depends on the practical implementation, it 
can be seen that, for the same input sequence, 3B2T-RBS does not show any 
bandwidth superiority over 5B6B. No particular improvement is evident even in 
comparison with the conventional 3B4B code. At the same time an obvious

16 T h e  sp e c tru m  o f  the 5 B 6 B  code sequence h a s  been e v a lu a te d  on  th e  b a s is  o f  a  
sp ec ifica tio n  given  in  [26].

17 R eferred  to  a s  “ fibre  o p t ic s ”  code in [18].
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disadvantage of the 3B2T-RBS spectrum is the poorer suppression of the low- 
frequency components and its nonzero value for /  =  0. In fact it is possible to 
show that the 3B4B code exhibits better balanced features by applying the 
parametrical spectral analysis. The results are given in Fig. 4.13(b,c) and reveal 
the higher stability of the 3B4B spectrum, (b) compared to that of 3B2T-RBS, 
(c), which shows the familiar shift towards low or higher frequencies for different 
input-symbol probabilities.

Fig. 4.14 P S D - s  o f  th e 3 B 4 B  an d  th e  3 B 2 T - R B S  cod es fo r v a r ia b le  in p u t p ro b a b ilit ie s

An additional complication in producing a conclusive spectral analysis 
evaluation of the 3B2T-RBS technique arises from the lack of well defined initial 
conditions. According to its specification, [26] the code is a “3B-2T-4B” 
transformation, where the input statistics should be determined by the 
probabilities of the binary symbols comprising the input words. In this case the 
intermediate transitions, 3B—>2T and 2T—>4B, are only used for convenience in 
deriving the coding rules and the result is a version of the 3B4B block codes, 
which has been given as an introductory example (Tables 4.3 and Fig. 4.3).
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At the same time the frequency analysis considerations, given in the 
publication quoted above, are based on the probabilities associated with the 
ternary symbols 0, 1 and 2. It has been shown in Chapter 3 that the evaluation of 
the statistics of the coded sequence depends on the degree of stationarity and 
ergodicity of the input. If the ternary sequence in the 2T4B transformation derives 
from a 3B2T conversion, it is not only the symbol probabilities which change, but 
its structure and overall statistics axe altered, too.

The difference between the spectral features of the 3B-2T-4B scheme, 
specified in [26] as the 3B2T-RBS code and the corresponding ternary-to-binary 
conversion schemes, where only the variation of the input probabilities is taken 
into account, can be illustrated by the following example. A 1T2B code is 
specified according to the 3B2T-RBS rules in Tables 4.15(a,b).

1 T 2 B - S y m b o ls

in p u t o u tp u t

o? =  [0 ,1 ,2 ] Qm

( 0  (n )
*  =  [0 ,1 ]

D 1 = 0 0 .333 0 .250 oi-HIInooII*

£>2 =  1 0 .333 0 .375

£>3 =  2 0 .333 0 .375
x 2 =  0 1 X 4 =  1 1

N =  1, M =  3 L -  2, J =  K -  4

Table 4.15a
l T 2 B - C o d e

The results from the spectral analysis of the 1T2B coded sequence are 
shown in Fig. 4.15 for two cases:
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î) équiprobable input symbols, p(0) =  p (l) =  p(2) =

11) probabilities corresponding to to the 3B2T transformation rules, where 
the ternary block 00 is not used, i.e. p(0) =  0.25, p (l) =  p(2) =  0.375.

Fig. 4.15 S p e c tr a  o f  th e  3 B 2 T - R B S  code v ersion s

The four curves in Fig. 4.15 represent the spectral densities of binary 
sequences resulting from the same coding rules applied to differently specified 
input sequences. Curves (1) and (2) correspond to cases l) and n) above. These 
two spectra can only be achieved if the ternary input sequence is independent and 
random. The other two curves, correspond to the 3B-2T-4B transformation. PSD 
(3) is produced by a 3B2T-RBS equivalent code, assuming equiprobable input 
symbols. In this case the intermediate ternary transformation is disregarded or 
(which is effectively the same thing) the probabilities of the input blocks of two 
ternary symbols are assumed equal. Such a definition utilises the balanced 
features of the code rules, which shows in the zero value of the PSD for /  =  0. The 
original 3B2T-RBS, however, assumes unequal probabilities of the blocks of 
ternary symbols, due to not using the 00 combination. This leads to the 
specification of a 3B4B structure, equivalent to the 3B2T-RBS with unequal 
probabilities of the input blocks of three binary symbols. The resulting spectral 
density is shown as plot (4) in Fig. 4.15. This graph exhibits the least favourable 
spectral density and is the only one which does not decrease to zero for / —>0. It 
can be seen that the first and the second pair of curves represent different codes, 
although they derive from the same coding rules, given in descriptive form in [26]. 
This difference is adequately reflected in their definitions (Tables 4.3 and 4.15),
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specified through the uniform code assessment method.

The unified analysis technique can be applied to a much larger number of 
existing codes than it is practical to include in this presentation. More coding 
techniques from various publications18 have been assessed only to confirm the 
regularity and the validity of conclusions which have been reached empirically. A 
major consequence from the suggested scheme for general assessment of codes is 
the possibility to deduce common structural and spectral features, allowing 
particular spectrum shaping features to be produced. The enhancement of the 
spectral analysis algorithm into a block-code generating procedure19 allows a large 
number of new schemes, with virtually any size of the symbol and coder states 
sets, to be designed. The presentation and the discussion of new structures, 
proposed in this section, has been limited to a few examples only. These are 
considered sufficient to demonstrate the practical implementation of the relations 
between the complexity of codes and the ability to modify the PSD. The examples 
do not aim to suggest perfect solutions to line coding problems. Most of the 
spectral density functions are different from those of conventional codes and may 
be suitable for particular applications, but their main purpose is to illustrate the 
use of some important design considerations, deriving from the application of the 
uniform analysis approach.

4.1.3 New Codes Designed Through the Unified Spectral Analysis Approach

The structures discussed next are based on the four state scheme of the 
Miller code and use the 1B2B symbol transformation. The choice follows the 
summary of the spectral and structural relations, given in Table 4.13, which 
indicate the flexibility of the four-state schemes, like Modified Duobinary and 
Miller, added to the 50% redundancy provided by the 1B2B structures, like 
Manchester and CMI. The higher complexity levels of the codes, selected to 
illustrate the construction of new schemes, allows the latter to be presented not 
only as an interesting achievement, but also to show the most essential 
considerations in the design process, deriving from the systematic assessment and 
analysis routine.

The codes specified in Table 4.16 are 1B2B structures, which have been 
upgraded to the four-state complexity level.

18 T h e  fo llow in g  is  a  sm a ll  sa m p le  lis t  o f  th e  references, d e sc rib in g  co d in g  sch em es 
w hich h av e  been  a n a ly se d , [31 ,32 ,41 ,42 ,43 ].

19 D iscu ssed  se p a ra te ly  in C h a p te r  5.
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A R Z ( a )  a n d  M R Z ( b )  - C o d e

These schemes are similar to the Miller code but their construction can be 
discussed from a different point of view. The structure to be analysed first uses 
option a) from the sA column of Table 4.16 for coding input zeros and is called 
Arbitrary Return-to-Zero (ARZ). If all code blocks for input 1 were either 11 or 10 
only, the scheme will produce either NRZ or RZ sequences, respectively. The use 
of four states allows the output symbols to be coded as NRZ or RZ in an arbitrary 
succession. It can be seen that, having adopted the general table presentation, the 
design of the ARZ code has been based entirely on the relations between state 
transitions and output words, i.e., the two blocks of symbols, 11 and 10 have been 
chosen to combine the NRZ and the RZ patterns, while the switching between the 
different output words has been provided through a four-state coder. The state 
transition pattern has been taken from the Miller code, anticipating the symmetry 
of its state-transition scheme to preserve the balance of the input symbols. The 
result from the construction of the ARZ scheme is expected to combine the 
spectral features of the two conventional techniques, i.e. the bandwidth should be 
narrower than that of the RZ and the low frequencies should be reduced due to 
the introduction of transitions in a predetermined pattern. Indeed, the spectral 
density of the ARZ coded signal, given as plot (1) in Fig. 4.16 shows the 
effectiveness of the design approach.

The bandwidth is reduced to half that of the code symbol rate, i.e. half the 
RZ spectrum and the low frequency components have been suppressed almost by 
half. It should be noticed that, if ŷ c\f)  — 0.25 is taken as the normalised NRZ 
value for /  =  0, signal power has been shifted from the low towards the middle 
frequencies, around /  «  0.25FX =  0.5F^ of the reduced bandwidth, which is an 
additional spectrum modification effect.
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F i g .  4 .1 6  S p e c tra  o f  the A R Z  a n d  th e  M R Z  co d in g  sch em es

The ARZ is not a code of an exceptional practical value, but it is a good 
illustration of the transition from the systematic analysis towards generalised 
implementation of the essential relations between structural and spectral features 
of codes, for the purpose of spectrum shaping. It has been demonstrated that the 
uniform interpretation of the code table definitions and the analysis results has 
allowed specific code characteristics to be combined in order to produce 
predictable spectrum modification results. The same simulation mechanism can be 
used to reiterate the applicability of the design considerations allowing the 
spectral density function to be modified predictably, through the selection of 
specific structural features.

By using the same state transition scheme, as with the ARZ code, it is 
possible to experiment with a ‘fine-tuning’ alteration, which is expected to 
produce a distinctive change in the PSD. Another new code can be determined 
from Table 4.16 by using version b) in column s4, which replaces the output word 
X f4 =  00 with 01. The scheme is referred to as Modified Return-to-Zero (MRZ). 
The larger number of transitions in the output sequence, resulting from the 
change, leads to an increased level of high frequency components at the expense of 
reduced low frequency components. The latter is due to the 01 output block, used 
for input 0 and state s4, which limits the maximum number of consecutive zeros 
in the coded sequence. The spectrum modification effect of the MRZ, compared to 
ARZ, is exactly what has been anticipated as shown by graph (2) in Fig. 4.16.

It is not necessary to go into too much detail, in order to present the 
results from one further step in the investigation of new coding schemes. Without 
showing the respective ‘Code’ table explicitly, it is possible to specify a structure
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which uses only the 01 and 10 blocks to code input 1 , while preserving the 
transformation of input 0 into 01 at least for one coder state. Applying similar 
reasoning as for the ARZ and MRZ structures, the prediction for further 
suppression of the low frequency components and some increase of the high 
frequencies can be made. This is due mainly to the elimination of the 11 output 
block. It turns out that the predictions are correct and the result seems to be a 
very attractive20 spectrum, shown as plot (3) in Fig. 4.16. Unfortunately, the price 
paid for such a considerable spectrum shaping effect is the introduction of 
complicated state-dependent decoding, which significantly reduces the practical 
value of such a scheme.

The investigation into the possibilities to construct new codes can be 
extended by considering a different type of alterations in Table 4.16. Instead of 
increasing the number of transitions, as has been done for the MRZ code, the all-
zeros transformation of input 0 provided by the ARZ code is preserved and in 
addition, one of its output blocks, used to code input 1 , is replaced with a 00 

output word. The resulting structure is given in Table 4.17.

An immediate effect of this change is expected to be the reduction in the 
high-frequency contents of the spectrum due to the fewer transitions introduced 
by the scheme. The spectral density function, corresponding to the code, which 
uses the output words of version a) from Table 4.17, is given as plot (1) in Fig. 
4.17. It exhibits the predicted decrease of signal power in the high frequency 
range, compared to the PSD-s of ARZ and MRZ, shown in Fig. 4.16. A similar 
change is achieved with a coding structure which differs from version (a) of Table 
4.17 only in the value of the output word — 11, which is replaced with 10. 
This change is given as version (b) and its effect can be explained by considering 
the timing relations between transitions in the coded signal. The transitions,

20 N arrow  b a n d w id th  an d  sm a ll h igh  frequ en cy  co m p o n en ts.
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which are possible to appear when block 11 is used, are at least one input-symbol 
interval, Td apart. The code blocks 01 and 10 introduce transitions which can be 
as close as one output-symbol interval, Tx =  0.5Td to each other. The most likely 
result is having larger high frequency components and it shows up very 
distinctively in the PSD, which is given as plot (2) in Fig. 4.17.

F i g .  4 .1 7  P S D  fu n ctio n s w ith  p rese lected  fe a tu re s

Although the proposed new codes do not represent optimal combinations of 
four states and the four output words 00, 01, 10 and 11 , the resulting spectral 
densities exhibit certain features of practical interest. The bandwidth of the coded 
signals, produced by all four schemes, is within the range 0-Fd, where F d is the 
input-symbol rate, although the code-symbol rate is F x =  2F d. The coding 
techniques show the direct applicability of the relations between structural and 
spectral features, which have been revealed through applying the proposed 
systematic analysis approach to existing code structures. The uniformity of the 
code definitions, as well as the analysis results, allow useful features of popular 
schemes to be combined, achieving predictable spectrum shaping effects.

The ARZ, MRZ and the two codes from Table 4.17 have been used mainly 
to illustrate the potential for creating new structures by selecting an appropriate 
state-transition scheme and experimenting with various subsets of output-symbol 
blocks. The initial objectives of the research work presented in the thesis have 
been to use the theoretical coder model from Chapter 3 in the development of a 
general analysis procedure, which would allow uniform and accurate assessment of 
virtually any block-coding scheme to be performed. This has been expected to
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facilitate the comparison of different coding techniques and the ability to 
determine the most appropriate choice of a code for a particular application. 
Additionally the suggested uniform analysis approach has been intended to 
provide a suitable basis for the design of new structures.

The achievement of these objectives has been demonstrated through the 
results from the systematic analysis applied to most of the popular codes, used for 
spectrum shaping in digital signal transmission, presented in this chapter. It has 
also been shown how coding schemes can be created by synthesising the required 
characteristics through combinations of essential structural and spectral features, 
identified through the uniform analysis of existing codes. A large variety of new 
structures can be derived similarly to the four codes proposed above. The 
simplicity and the flexibility of the software routine, created to implement the 
coder model, allow the analysis of various combinations of coder states and 
symbol sets to be performed almost instantaneously.

In the process of research the computational procedure has been developed 
into a simulation algorithm, which is capable of generating an unlimited number 
of codes. Consequently, the random search for interesting code structures has been 
transformed into a systematic and exhaustive investigation of block-coding 
schemes, produced and arranged in classes and categories according to predefined 
levels of complexity. This is why the discussion of new codes is further presented 
in Chapter 5, where the advantages and the viability of the proposed method for 
general classification of fixed-length block codes are fully revealed.

The comparative assessment of coding techniques, through the suggested 
analysis algorithm, requires transformation of the descriptive definitions of coder 
rules into ‘Code’ specification tables. A new method, which has been created to 
achieve this transformation is presented in the next section.

4.2 A  General Method for Constructing the ‘Code’ Specification Table

In essence this method is a further generalisation of the ideas, summarised 
at the beginning of Section 4.1.2.3 above, about the definition of states for the 
Modified Duobinary code. To simplify its introduction it is best to start with an 
example which shows the link between the values assigned to the states of that 
code and its specification in Table 4.11. These values have been assumed to 
represent the last two symbols, D((k — 2)T) and D((k — 1)T) from the input 
sequence, (k =  0, ±  1, ± 2 ,. . .) .  As the Modified Duobinary is a symbol-by-symbol 
coding scheme, the problem to be solved is to determine the state, s((k +  1)T) into 
which the coder goes after being in state s(kT), for every possible value of the 
latter. Knowing that these values are two-digit binary numbers (the input
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dictionary is D =  [0, 1]), four states can be identified in this particular case by 
applying the following relation:

*(*T ) = {£>((*- 2 ) T ) , I 3 ( ( * - 1 ) T ) }  =* s((k + l)T) = {D((k-l)T),D(kT)} (4.1)

where the ‘imply’ sign, =>■ represents transition.

Having assumed a random binary sequence as an input, all possible states 
involved in transitions (4.1) can be represented by the combinations of three 
consecutive input symbols, {D((k — 2)T),D((k — l)T),D(kT)}. For the Modified 
Duobinary this representation is specified in Table 4.18 below:

s(kT) D(kT) X{kT)

S1 0 0 0 0 si
S1 0 0 1 +1 *2
s2 0 1 0 0 S 3

s2 0 1 1 +1 *4

S 3 1 0 0 - 1 •«I
*3 1 0 1 0 52

¿4 1 1 0 - 1 «3
S 4 1 1 1 0 •S4

present D((k-2)T) s((k + l)T) output next

Table 4.18 S ta te  d e fin ition  sch em e for th e  M o d ified  D u o b in a ry  code

The fifth column in Table 4.18 shows the output symbols produced by a 
Modified Duobinary coder. It derives directly from the alternative description 
given in Section 2.3.2. The values of the output sequence can also be viewed as 
calculated from the algebraic relation between the input and the output symbols 
given by (2.4b) applied to the rows from the second, third and fourth columns of 
Table 4.18. The main advantage in constructing this table, however, is the 
straightforward way of deriving the transitions between the states. As each coder 
output corresponds to three consecutive input symbols, all possible combinations 
of three binary digits are formed. The next step is to assign a coder state s • to 
every two-digit binary number from the s(kT) columns (for example, Sj =  {0,0}, 
*2 =  {0, 1 }, etc.). The different binary numbers represent all possible states the 
coder could have been in and an appropriate labelling is shown in the first 
column, s,(present). In a similar way the combinations of the present input, 
D(kT) with the previous, D((k — 1 )T) show all possible states the coder can move 
into. These two-digit binary numbers are given in columns s((k +  1)T). By
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substituting each one with the respective state, as they were defined for the first 
three columns of Table 4.18, the next state is determined as shown in the last 
column, ¿¿(next). The final result is contained in the relations specified by the 
first and the last three columns. They allow for the output, X(kT) and the 
following state, ¿¿(next) to be determined for every input, D(kT) and state, 
¿¿(present). This in effect gives the table presentation of the coder. In the above 
example it is easy to see that the result corresponds exactly to Table 4.11, which 
was used for the definition and the spectral analysis of the Modified Duobinary 
technique.

4.2.1 The State-Definition Procedure

In general the suggested method allows the ‘Code’ specification table to be 
derived from either an explicit description or an algebraic definition of the coder 
rules. This is achieved through presenting the correspondence between all different 
combinations of input blocks of symbols which are used to produce the respective 
output symbols and by applying the technique demonstrated above. Indeed, there 
are no limitations to the general applicability of the reasoning used in the above 
example. This follows from the fact that no restrictive reference has been made at 
all to values of the parameters specifying the particular coding scheme. The 
number, r of past values of the input sequence, which is 2 in this case, can be any 
integer. The same is valid for the values of the input symbols and the length of 
the input word, N (d =  [0,1] and N =  1 for the above example). And finally, the 
state transitions are determined irrespective of the values and the parameters 
specifying the output sets, (x =  X  — [—1,0,+1] and L — 1 in this case) as long as 
the code generates a valid output for every possible input.

The combinations from previous input values in the last example, which 
determine the output of the coder, can be viewed as the range of a parameter or a 
variable representing the coder states. In general it is possible to specify a number 
of parameters affecting the output of the coder, hence representing different coder 
states. Some examples are given below:

l) previous values of input and/or output symbols;
n) the sign of the last polar input or output symbol; 
ill) the accumulative (limited) sum of a finite or infinite number 

of previous input or output symbols; 
i v )  results from algebraic transformations applied to input 

and/or output symbols.
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The number of variables, which form the combinations representing coder states, 
is not restricted and their ranges are determined by the specification of particular 
coding rules.

The suggested method for deriving the set of coder states and their 
relations in ‘Code’ tables is presented in general form as a procedure consisting of 
several steps. To simplify the analytical notation only three of the most common 
conditions, used in practical coding schemes, are specified as variables in 
determining the coder states. These are:

A the combination of preceding blocks of symbols, which are 
used to determine the coder output21,

T the value of appropriately specified digital sum,

A the sign of a suitably chosen input or output symbol.

The steps of the procedure can now be defined as follows:

Step 1 : Specification of the range of values for the different parameters. The 
possible values and the number, r of preceding blocks D((k — r)T), 
D((k — r +  1 )T), ..., D((k — 1 )T), k =  0, ± 1 , ±  2 ,..., on which the present 
output of the coder depends, are used to determine the range of A. The 
range of T is some set of integers while that of A contains two elements, 
‘ +  ’ and ‘ -

The variables specified in Step 1 depend on the input and/or the output of the 
coder, so they can be represented as functions, i.e.
A(D^X^).  The notation adopted for the arguments of these functions does not 
specify a particular range of values. It is used to indicate the sets, which comprise 
the range of the variables and also that the latter are determined for every kT, 
while their actual value may depend on a number of previous input and/or output 
symbols.

Step 2: All valid combinations of the parameters, specified in Step 1 and the 
present input, D{kT) of the coder are formed, using the following 
structure22

21 For some codes combinations of output symbols are used.

22 The structures are simply collections of variables, placed in certain order and the 
adopted notation does not involve multiplication.

I'(Dk, X h) <md
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r W b - , , ^ - ! )  M Dk - V X k-l)  & ( m - ' ) T ) -  m - W ) )  D>kT> =

^ - 1 * 1 - 1 ^ - ! ^ )  (4.2)
'-------------v-------------'

(a)

The combinations given by part (a) of (4.2) correspond to all possible past events 
in the coding process, which affect the output, X(kT). In this respect (4.2) 
represents the output function of the coder, which has been defined by (3.4) in 
Chapter 3, i.e.

•X'(M’) = ?i[ri. _ 1 (4.3)

Expression (4.3) suggests that part (a) in (4.2) corresponds to all possible states of 
the coder, which leads to the next step.

Step 3: All distinct combinations, A ^ _ j are labelled as different
coder states, (i = 1, . . . , / )  as follows

(■^present =  {^jfc -  1 ^ k - l  ^ k  -  l }  (4-4)

The number of possible states, I  is given by I  =  7AM r, where 7  and A 
are the numbers of possible values T and A, while M  is the number of 
possible blocks of input symbols and r is specified in Step 1. (If any of 7 

or A is zero, I  is assumed 1.)

Up to this stage a code is specified with respect to all possible outcomes regarding 
combinations of input or output values and certain parameters associated with 
them. It is necessary to use the coder rules (usually given as some description of 
symbol transformations, algebraic expression, etc.) in order to identify the 
appropriate transitions between states, which are required for the completion of 
the ‘Code’ tables.

Step 4: The coder rules are applied appropriately for each combination specified 
by (4.2) in Step 1, to determine all possible values of the output, X(kT) 
as well as the new values for the parameters A, T and A. The resulting 
parameter structure is presented below as a development of (4.2).

r t - 1  Ak- 1  -’■>T) I V ) r t A* =

r t _ i A t _ 1 D((‘ - ’-V ) A i r t Alt (4.5)
'----- v----- "

(b)
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The result from Step 4 suggests the possibility to interpret part (b) in (4.5) as the 
states the coder goes into for every input, D{kT) after being in the respective 
states determined from part (a) in (4.2). This leads to the last step, which is 
specified below.

Step 5: All distinct combinations, T  ̂ A^ axe labelled as different coder states

(3i)next =  { r jfc Ajfc Ajfc} (4.6)

according to the correspondence s, *-* (ATA) established in Step 3.

Finally, it is important to note the special use of the term D(kT) in structures 
(4.3) and (4.5). In the former it is used to form all valid combinations of 
parameters determining the state of the coder, (s,)present and the value of the 
present input, D{kT) so that it becomes possible to compute the output X(kT ) 
and the new values of the parameters according to Step 4. At the same time 
D(kT) is used in (4.5) to determine the parameter A w h i c h  is used to specify the 
states (s )̂next according to Step 5. The double role of D(kT) means that it will 
always appear in structures (4.2) and (4.5) regardless of the existence of the 
parameter A. The latter, however, will determine whether D(kT) should be 
included in part (b) of (4.5), hence in (4.6), or not.

The interpretation of parts (a) and (b) of structures (4.2) and (4.6) also 
requires special attention. While the values of parameter A  are most likely to be 
numbers, the values of T and A can be arbitrary symbols, e. g. ‘ +  ’ , ‘ — ’ , ‘L’ (for 
low level), ‘H’ (for high level), etc. This is why the combinations determined as 
states according to (4.6) should be carefully identified with the respective 
combinations specified by (4.4), regardless of the order of the variables A, T and 
A. This is of particular importance if the state definition method is presented in 
the form of a table, which may not be very easy to rearrange when proceeding 
from Step 3 to Step 4, but otherwise very convenient and useful.

In certain occasions it may be suitable to represent the combinations of 
variables as complete numbers. Such an arrangement allows to implement the 
five-step procedure in a software algorithm, capable of processing more complex 
coding schemes. For these cases structures (4.2) and (4.5) have to be developed 
separately in order to maintain the correct order and values of the digits, 
comprising the combinations of variables represented as numbers.
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4.2.2 Practical Implementation of the State-Definition Procedure

The method of specification of coder states can be implemented in a 
generalised table form, similar to Table 4.18, used for the Modified Duobinary 
example, at the beginning of this section, by adopting the notation from the 
previous section. Such a table, however, requires the introduction of a large 
number of additional variables to represent the possible elements of parameter 
sets like A, T and A. Its explicit construction is too complex for the purposes of 
this presentation. It seems more appropriate and useful to complete the section 
with practical examples.

First, it should be noted that the definition of the coder states for the 
Modified Duobinary code, presented in Table 4.18, complies entirely with the 
specifications of the procedure developed in the previous subsection. The 
arrangement of structure (4.5) in table form has been achieved relatively easily as 
the only parameter which determines the coder states, is A. The range of values of 
A  consists of all binary numbers represented by the last two input symbols, 
D((k — 2)T) D((k-l )T).  Another specific feature of Table 4.18 is the double use of 
the present input value, DikT)\ firstly, it is combined with the present states 
(^«Opresent =  D{(k -  l)T )j =  |A^ _  j j ,  to determine the coder output
X(kT) =  ‘3B[Ajfc_ j,£XfcT)] and secondly, it is used to determine the next state 
through (s,.)next =  {D{(k-  1 )T) DikT)} =  {A * }.

A different implementation of the state-definition procedure is illustrated 
with the example of the AMI code given below:

Step 1 in this case results in A =  $, T =  $  (where $ is the empty set) and 
A =  [ -f , — ] is a set with elements the sign of the last non-zero output 
symbol.

Step 2 leads to the formation of structure (4.2) as A  ̂_  ̂ D(kT). This allows the 
output X(kT) and Aj. to be determined for every value of the combination

At _ i  D(kT).

Step 3 produces the states of the coder, (s,)present =  {A jj._jJ, which correspond to 
the conventional AMI definition. According this definition the coder states 
depend only on the sign of the last coded 1 .

Step 4 develops the structure (4.5), which in this case is A^_ 1 D(kT)Ak, leading 
to the final stage.
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Step 5 determines the states into which the AMI coder goes for every combination 
of a present state, as defined in Step 3, and an input symbol, D(kT) as

(5*)next —

By substitution of the variables specified above with the respective values 
for the AMI code, it is possible to construct the table which is used to determine 
the state transitions for the FSSM model of this scheme.

5,- A jfc_ i D(kT) X ( k T ) A * s,-

S i — 0 0 — S l

S2 + 0 0 + s 2

S i — 1 + 1 + s 2

s 2 + 1 - 1 — S l

p re se n t s(kT) in p u t o u tp u t s ( ( *  +  l )T ) n e x t

Table 4.19 State definition scheme for the AMI code

No doubt the AMI-‘Code’ specification derives directly from Table 4.19.

Another example of the implementation of the suggested coder- 
specification method is the 1T2B code derived from 3B2T-RBS coder rules, [26]. 
These rules are given in the usual descriptive form as follows:

Input 0 is coded as 01, if the last coded symbol is 1 and as 10, if the last coded 
symbol is 0.

Input 1 is coded as 00 and 11 alternatively.

Input 2 is coded as 01, if the last coded symbol is 0 and as 10, if the last coded
symbol is 1 .

In this case there are two state-definition parameters. Their specifications, 
however, are different from the ones used so far as shown in the procedure below.

Step 1 gives the following two variables:

T =  [0, 1] the values of the last coded output symbol,

A =  [00,11] represents the last output block of symbols used to code an 
input 1.
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It should also be noted that the output does not depend on previous input
symbols, therefore r = 0 and A is an empty set.

Step 2 produces the structure Tj. _ j  ̂ D(kT), corresponding to (4.2), where 
the value of the input symbol, D{kT) is taken from the set £> =  [0,1,2]. 
The output, X(kT ) of the coder, where X{kT) € [00,01,10,11], is 
determined according to the description of the coder rules, for every 
combination of values of the above structure. This allows the values T a n d  
Ajj. to be determined. The results of this step axe collected in columns 6 and 
7 of Table 4.20.

Step 3 leads to the specification of the coder states according to the expression 

(^present =  \^k -  1 -  l } ’ §iven the first column of Table 4.20.

Step 4 results in the formation of the extended structure Tjc_  1 A^_ ^D(kT) T  ̂ A ,̂ 
which corresponds to the values from columns 2-7 in Table 4.20.

Step 5 gives the final result (s )̂next =  |r^ A^|, which is shown in column 8 of 
Table 4.20.

s.' r * - ! Ak - 1 D{kT) X(kT) r* 5,-
Si 0 00 0 10 0 00 S i

S1 0 00 1 11 1 11 S 4

S1 0 00 0 01 1 00 S 3

S 2 0 11 0 10 0 11 S 2

¿>2 0 11 1 00 0 00 S i

52 0 11 0 01 1 11 s 4

^ 3 1 00 0 01 1 00 s3
S 3 1 00 1 11 1 11 S 4

S 3 1 00 0 10 0 00 si

S 4 1 11 0 01 1 11 S 4

S 4 1 11 1 01 0 00 S l

S 4 1 11 0 10 0 11 s2
p re se n t s(kT) in p u t o u tp u t s((k + l)T) n e x t

Table 4.20 State definition for the 3B2T-RSB code (version 1T2B)

The suggested method for definition of the coder states and the respective 
state transition scheme can be used in the specification of the FSSM model for
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virtually all fixed-length, finite-memory block-codes of practical interest. It has 
been successfully applied to most existing coding techniques of moderate and high 
levels of complexity, included in the spectral analysis results. The 5-step 
implementation procedure described in this section is a useful tool for constructing 
the table presentation of the coder functions required in the spectral analysis 
model from Chapter 3. As the main analytical expressions (3.25) are based on the 
matrix presentation of the FSSM model of a coder and the matrix form of the 
coder functions derives directly from the ‘Code’ definition table, the significance of 
the method presented here can be appreciated by noting that it provides the link 
between the descriptive code specifications and the systematic approach in their 
comparative assessment and analysis.
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5. THE FIXED-LENGTH BLOCK CODE GENERATOR

A major result from the unified approach in specification and analysis of 
coding techniques is the development of a new method for design of digital line 
codes. It is based on a further enhancement of the computational algorithm, used 
to analyse the frequency characteristics of coded sequences. The method allows for 
systematic generation and assessment of a large variety of code structures. This is 
accomplished through a generalised specification of their initial parameters (the 
sets of input/output symbols and coder states) and spectral analysis of all coding 
schemes which are determined as valid according to predefined conditions.

The first section of this chapter gives the underlying arguments for 
arranging different types of code structures into categories and classes. A 
particular type is assumed to be represented by a set of specification parameters. 
Most types discussed below include one or more of the practical examples 
analysed in the previous chapter. The modified computational algorithm is 
outlined in brief and the results from the spectral analysis of several groups of 
codes are presented. These results are summarised as the basis for the method of 
creating new coding schemes.

5.1 Categories of Digital Code Structures

The concept of combining different codes into categories according to their 
specification is based on the existence of a number of different ‘Code’ tables for 
every given set of symbols and states. This can be illustrated by assuming a 
matrix SG collecting all output words, from the table in Fig.4.2, as follows

* 1 1 * 1 2 * 1 /

* 2 1 * 22 * 2 /

* A f l X M2 X  M l

(5.1)

All entries of this matrix are taken from the code dictionary, X  as defined in the 
table of Fig.4.1, i.e. X mi £ X  =  [Xj,  A 2,. . . ,  X K\, where m =  l ,. . . ,M , i =  
and K  is the total number of output words. It is possible to construct another 
matrix 9G so that at least one of its elements is different from the element with the 
same indices in 9£, i.e. X mi ^  X mi where X mi £ X , too. If the elements of 96 are 
used in the same table instead those of 96, the resulting code definition will be 
different from the one corresponding to the original table.
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It is not difficult to see that the variety of coding schemes, corresponding 
to a particular set of symbols and states, increases rapidly with the sizes of D, s 
and X. In order to perform a systematic assessment of the codes resulting from 
possible combinations of initial parameters, the latter are suitably redefined to 
accommodate the specification of coding structures in a more general form. Such 
structures are presented and analysed in groups which are further referred to as 

categories.

5.1.1 A  General Description of Code Structures

The fundamental quantities adopted to describe different categories of 
codes are the integers M, I  and K  which correspond to the size of the input 
dictionary D, the set of coder states s and the size of the output dictionary X  as 
defined in the general coder model (Chapter 3). Thus all coding schemes 
employing /  states, which transform M  blocks of input symbols into a subset of 
the K  blocks of output symbols are denoted as DMSlXK. In some cases the 
generality may lead to specification of more or less abstract code structures of 
very little practical value in terms of line coding. This has been taken into 
account and where necessary in the following discussion, such cases are 
discounted. For the purposes of this presentation the range of values M =  {2,4}, 
I — {1,2,3,4} and K  =  {2,3,4,8} has been chosen so that the resulting categories 
cover most coding techniques of practical importance. As an example, the AMI 
code, which is specified in the previous section, has a structure of two input 
words, three output words and two states (M  =  2, 1 =  2,K  =  3). Therefore it is 
considered in the category of D2S2X3 codes.

Obviously the variety of combinations is very large, even with the 
relatively small range of values for the sizes of the three sets D , s and X. 
However, as will be shown later, a considerable proportion of them do not 
correspond to code specifications of practical interest. Those which are considered 
relevant to the presented analysis are discussed separately below. It should be 
noted that, although the basic point of view in this discussion is spectral analysis 
of coded signals, the general specification technique may be applied to describe 
various systems in the area of digital signal processing, as long as they can be 
modelled as a FSSM transforming one set of symbols into another.

The way of denoting the code categories as DMSlXK  has also been chosen 
out of convenience. Although it describes adequately all examples of existing 
schemes, some ambiguity may arise about the type of codes included in a given 
category, when the numbers M  and K  are exact powers of integers, i.e. in the 
cases of M  — c F  and/or K  — (3L. The numbers a, N, ¡3 and L are associated with
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the symbol alphabets and the lengths of the input/output words as they were 
defined for the coder model in Chapter 3. In the case of a one-state category, for 
example, denoted as D2S1XA it is not possible to specify the group of coding 
schemes unless the exact number of symbols in the output alphabet is known. 
Two types of codes can be referred to by this notation. The first one is the case of 
binary codes where a; =  [x1,x2] and the set of output words, X  consists of all 
possible combinations of two-symbols. The second type involves all codes with 
output blocks of length L — 1, which corresponds to an output alphabet 
x =  [aq, x2, x3, x4].

The possible ambiguity described above can be resolved by using an 
extended notation for the categories of code structures. One solution to this 
problem is DaNSlXflL which conveys information about the symbol sets 
as well as the sets of words (N,L ). However, it has been considered unnecessary to 
adopt the extended form of notation here, because most structures included in the 
analysis can be specified uniquely in the initially suggested way. In the very few 
cases where this is not achieved additional specification is provided explicitly. At 
this stage it is sufficient to note that all codes of practical interest1 considered in 
the thesis are based on the binary set of input symbols, d — [0,1] which allows the 
possible input dictionaries to be uniquely specified by the length of the input word 
or equivalently by the number of input blocks of symbols. As for the set output 
words only two cases are included in the generalised assessment, namely binary 
and ternary signalling. In the first case the number of output words is taken over 
the range of {2 ,4 ,8 ,...}, while in the second case only K  — 3 has been considered. 
The conditions specified above provide for the use of DMSlXK  in a general 
description of the coding structures without ambiguity.

Following the conventions introduced in this section it is necessary to give 
a more detailed description of several terms which have been used previously 
without formal definition. First it should be noted that the expression 1 complexity 
of a code’ has been applied with respect to the numbers M ,I  and K  in the 
following sense: the bigger these numbers the higher the complexity. As the sizes 
of the three sets specifying a code may vary independently2, it is also necessary to 
introduce some priorities in the way complexity is related to M ,I  and K. The 
number of states, I  has already been suggested to determine the highest level of 
complexity, (Section 4.1.2.2). This can be interpreted by considering Dm SI^XK 
codes to be of higher complexity than Dm SI2X K , if I± > J2. In a similar sense for

1 The 1T2B scheme is the only exception.

2 Except for certain practical restrictions to the minimum number of output words for a 
given number of input blocks of symbols.
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Jl =  12 the second and the first complexity levels are determined through M  and 
K  respectively. Three of the codes discussed earlier, can be given as an example of 
complexity relations. The Duobinary, which is a representative of the D2S2X3 
group, is considered of higher complexity than the Manchester scheme (D2S1XA) 
and of lower complexity compared to the CMI code (D2S2XA). Later it is shown 
that, in fact, CMI is not the best representative of its category, although it has 
been widely implemented in practice.

The other two terms which have been used in the comparative assessment 
of codes in the previous section are structural and spectral features of coding 
schemes and the respective PSD functions (Section 4.1.2.3). Structural features 
refer to the overall specification of the input/output symbol and word sets and the 
number of states in particular. These features also relate to a special characteristic 
which derives from the code definition and reflects the existence of output words 
which correspond to more than one input word for a particular ‘Code’ table. With 
respect to the technical implications from the implementation of codes with such 
a feature, it is denoted as state-dependent decoding. As for the spectral features, 
no precise analytical definition has been considered necessary for the purposes of 
the presented comparative assessment of digital coding techniques. Some of the 
characteristics of the spectral density function, which are commonly used in 
discussions of frequency analysis results, are adopted in their most general form as 
follows3:

• bandwidth of the coded signal;

• shift of a spectrum towards lower or higher frequencies;

• suppression of low- or high-frequency components in the spectra;

• presence of a d.c. and/or other discrete components (spectral lines).

5.1.2 Compiling Categories of Coding Schemes

The basic idea of combining code structures in groups has been 
implemented in a modified version of the main computational algorithm, 
described in Chapter 3. The main enhancement of the software (see Appendix-A) 
is the part which generates the complete set of initial parameters required for the 
specification of all codes within a given category and their subsequent 
combination in particular structures according to certain predefined conditions. 
The easiest way to describe how the different code specifications are compiled is 
by following the stages of the computational procedure as presented below.

3 All spectral features are relative, i.e. assessed in terms of comparison of two or more 
PSD functions.
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1) The two sets of input and output symbols are declared in the same form as 
for the original program. The same conditions also apply with respect to whether 
the values of the symbols axe given explicitly or the sets of binary words are 
compiled automatically through the numbers N  and £, which determine the sizes 
of the input and output words respectively. The most significant result from this 
stage is the availability of the complete sets D and X  of M  input and K  output 
blocks of symbols for a particular category Dm Si XK.

2) This stage has the important function of generating the matrices Sm and 
Zm deriving from all possible combinations of M  input words, I  states and any 
subset of the K  output words which can result in a ‘Code’ table. There are two 
possible approaches to constructing the state-transition and the output matrices. 
The first one requires all possible matrices Sm and Zm for given I  and K  to be 
specified explicitly at the beginning of the program. It can be used for relatively 
small numbers of combinations by applying the following reasoning:

a) A state-transition matrix, Sm has /  rows

Sm(0 =  [Sm(i,l),Sm(i,2),...,Sm(ifI)\ (5.2a)

where ¿ =  1 ,.. ., /. Every row has exactly one nonzero element of 1. The 
number of different rows is I  and the number of all possible matrices Sm 
constructed from any combination of rows Sm(i) is I 1.

Example: For I  =  3 there are three rows (5.2a) given by

«m l =  [0 0 1]. Sm2 =  [0 10] and Sm3 =  [10 0]

The number of matrices of size 3 x 3 , which can be constructed from these rows is 
33 =  27.

b) An output matrix Zm also has I  rows and every row is an output block of 
L symbols, i.e.

* m ( 0  =  [ X J i ,  1). *m (»\ 2 ), • • x j i ,  L ) }  (5 .2b)

where i =  1 ,. . . , /  and X m(i) £ X. As there are K  different output words in 
X , the total number of possible matrices Zm collecting any combination of 
I  output words is .
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Example: For a category of binary codes denoted as D2S2XA all possible rows for 
the matrices Zm are

X l =  [0 0],X2 =  [o l],x3 =  [1 0] and X 4 =  [1 1]

The number of possible output matrices in this case is 4̂  =  16.

Obviously it is very tedious to specify all possible matrices for I  and K  
bigger than 3. This is why the second approach involves generation of the state- 
transition and the output matrices automatically and requires only one additional 
set i2, collecting all possible rows (5.2a). In the software routine R is specified as a 
I  X I  matrix, just like the sets D and X  and can also be generated automatically 
for any given number of states.

3) The third stage of the computational procedure involves the evaluation of 
the PSD function through the original software routine, described in Chapter 3. 
This part of the program is executed within several nested ‘for’ loops. Their 
number is 2M  and is determined by the size of the set of input blocks of symbols, 
D. The outer loops select a combination of M  state-transition matrices, Sm. At 
this point the TPM matrix S is computed and its validity is verified as described 
in Section 3.3.1. The selection of a combination of M  output matrices, Zm 
through the inner loops proceeds only for a valid TPM. The final result of this 
stage is the construction of the two matrices SM and ZM, which specify a unique 
code as defined in the general ‘Code’ table from Section 4.1.1. The plot of the 
respective spectral density function is displayed and the computation continues 
with the construction of another coding structure.

4) The last stage of the algorithm organises the collection of the analysis data 
and its appropriate storage. Two main problems have to be solved at this stage. 
The first is to avoid accumulation of repetitive identical results without losing 
information about their origin. The second problem is to ensure efficient data 
storage which is important for two reasons:

• the amount of computational results increases very quickly with 
{ M , I , K } >  3;

• the assessment of the final data requires manageable access to the spectral 
density data and easy identification of the various coding structures.

This problem is purely technical and it can be tackled according to the available 
hardware and software environment.
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The first three stages of the computational routine indicate the most 
essential elements of the process of compiling the different coding structures which 
correspond to a particular category Dm Si XK. The total number of these 
structures was shown to depend on the number of all possible state-transition and 
output matrices, Sm and Zm. The estimation of the size of the complete set of 
codes comprising a given category also involves the number of input words, M. As 
described in 3) above, a combination of M  state-transition matrices and M  output 
matrices is required for every generated coding scheme. Therefore the number 
different sets of M  matrices Sm is . Analogously, for Zm this number is
(K^Y*. In the most general case (regardless of whether the combinations represent 
valid codes) all possible sets of Zm matrices can be combined with every possible 
set of Sm matrices. Then the total number of different structures is given by the 
following expression:

number of Dm Si XK code combinations = {i^Y^ x iK ^ W  (5.3)

The first impression given by the above formula is that assessment of the 
analysis results for categories of higher complexity codes soon becomes impractical 
due to the large number of combinations. Fortunately this is not the case at least 
up to values of M ,I  and K  which specify categories including most of the fixed- 
length block codes which are presently implemented in digital communication 
systems. More details are revealed in the next subsection. At this point it is 
sufficient to mention that a considerable proportion of structures generated for the 
combinations of state-transition and output matrices, as described above, do not 
represent valid or meaningful codes. One of the reasons for this is the existence of 
sets of matrices Sm which do not correspond to a valid TPM (according to 
conditions which have already been discussed). Another reason for compiling 
impractical coding schemes is the possibility to select a set of matrices Zm which 
do not represent a realistic coded sequence in terms of information transmission. 
A simple example is the case when every row of all output matrices (for any code) 
is the same output block of symbols. In general an invalid line coding scheme 
results from all combinations where the number, J of selected output words is 
smaller than the number of input words, M. Finally, a third reason to expect a 
significant reduction in the amount of analysis data is the high proportion of 
repeating spectral density functions which in most cases correspond to equivalent 
code structures.

Obviously, by the use of simple verifications the software routine can be 
adjusted to select specific types of code structures. This is achieved by checking
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for various conditions imposed on the validity of combinations of Sm and Zm 
matrices. In general, it can be expected that even with categories of relatively 
high order (that is, the sizes of D, s and X  are greater than 3) a reasonable 
number of criteria can be devised so that the generated family of codes is not 
prohibitively large for analysis. An additional possibility to keep the assessment of 
various groups of codes within manageable limits is to apply certain restrictions 
derived from practical considerations. It can be noticed that in many cases of 
existing coding techniques the Sm and the Zm matrices feature various kinds of 
symmetry. A typical example are the two state-transition matrices of the CMI 
code given below.

1 0 0 1
Sx = s 2 = 00 1 1

Most schemes with two states and some alternating feature, like AMI, 
Differential, 3B4B, etc. exhibit this or a similar type of symmetry. Other codes, 
like the Modified Duobinary, can be taken as examples of symmetry in the output 
matrices:

■ [
0 0 - 1 - 1 Zo = + 1 + 1 0  0

-if

The analytical relation between certain features of the spectral density and 
different patterns of matrix elements requires a substantial amount of research 
and can be determined by some repetitive analysis methods. However, for 
practical design purposes it is considered appropriate to restrict the number of 
generated structures by specifying a particular combination of Sm or Zm matrices 
which is expected to produce a particular type of results. For any given category 
DMSlXK  the final number of structures selected for assessment can be easily 
evaluated through expression (5.3). Thus, if only r0 of all state-transition matrices 
are required to appear in any of the codes to be analysed, this number is given by

r0! ( M - r 0)!X( j / ~ r°)M ~ r° x(A ' f ) "  to* ro < M  (5-4)

The variety of possible ways to determine the group of structures related to 
certain design requirements, as well as the particular category of interest is 
substantial. In this respect it should be noted that the levels of complexity, which 
have been adopted as an overall description of the upgrading features of different 
codes, do not impose any particular order to the formation or the analysis of the
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code categories. The decision to consider the number of states to be the highest 
level of complexity has been taken on empirical basis. It reflects the following two 
tendencies in the practical designs of coding techniques:

• implementation of relatively large input and output sets of words, 
(M ,K  > 4) and a small number of coder states (7 < 4), typical examples 
being 5B6B, 4B3T, etc.;

• use of coders with more than three states and input/output sets of words 
whose sizes rarely exceed four4, where Modified Duobinary and Miller codes 
are typical representatives.

In summary, the following order of complexity levels , associated with the 
various categories of coding structures, is adopted to facilitate the discussion in 
subsequent sections:

The first (highest) level of complexity is assumed to be the number of coder states, 
7. A coding structure of the type DM1Sl1X K 1 is considered of higher complexity 
than DM2Sl2X K 2, if Iy > 72, regardless of the values of M  and K.

The second level of complexity is represented by the number of input words, M. 
All codes of the type DM1Sl1X K 1 are considered of higher complexity than those 
of type DM2Sl2X K 2, only if M j > A72 and Iy >  72 (regardless of the value of K ).

The third level is represented by the number of output blocks of symbols, K. 
Analogously a coding scheme from the category DM1Sl1X K 1 is of higher 
complexity order than the ones from DM2Sl2X K 2 provided that Ky > T^, only if 
My >  M 2 and 7̂  >  72.

The presentation of the practical results from the analysis of several 
complete categories of coding structures is given in the next section by following 
an increasing complexity order, according to the assumptions made above.

5.2 Generation and Analysis of Codes From Basic Categories

This section reveals the full scale of generalisation achieved through the 
adopted theoretical model of a coder and the suggested unified approach in 
specification and assessment of digital coding techniques. The presentation of the 
spectral analysis results and the discussion are based on the general definition of

4 The numbers used here are only typical and do not represent any strict limitations.
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code categories developed in the previous section. The major consequence from 
the implementation of a common structural description of codes is the availability 
of a mechanism for generating the complete set of schemes corresponding to a 
predefined group. The core of this mechanism is the specification of all possible 
state-transition and output matrices for a given set of initial parameters which 
correspond to a particular category of fixed-length block codes.

The basic set-up of the generating conditions can be illustrated by taking 
the simple example of the D2S2X2 category. The total number of possible 
structures is evaluated straightforwardly by using (5.3) to (22̂  x =  256. After 
applying the definitions given in stage 2) of the enhanced computational 
procedure, described in the previous section, the complete sets of Sm and Zm 
matrices are determined as follows:

(Sm)!
'0 1' 
.0 1. (Smh

'0 1' 
1 0 (Smh

T O' 
0 1

(Zm) 1 =
'O'
0

The above matrices have been constructed over the range of initial parameters 
specified to the program as the input and output sets of symbols or words, (or at 
least their sizes). Subsequently the computing algorithm forms all 256 
combinations of matrices

SM =
(S l ) a ,

ZM =
(Z 2>C2

where (crm,Cm) € {1 ,2,3,4} for m =  l,2. Each of these combinations formally 
corresponds to a ‘Code’ table and specifies a particular coding structure. Clearly 
not all combinations correspond to meaningful schemes, e.g. a code with output 
matrices Z [̂0 Of and Z 2 =  [0 Of produces a sequence of zeros regardless of the 
input signal. As it has been explained in the previous section various conditions 
can be applied to select only the structures of interest. One of the obvious 
restrictions, which can be imposed to avoid computation of coding schemes of 
little practical value, is the requirement to perform the analysis only for sets of 
matrices ZM collecting output words whose number is at least equal to the 
number of input words, i.e. J > M. The main reason for presenting the 
computational routine in its most general form is to suggest possibilities for 
implementation of the assessment technique to systems transforming digital
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sequences used for purposes other than line coding.

In summary, the enhanced computational procedure, based on the spectral 
analysis model given in Chapter 3, allows the design of fixed-length block codes of 
any type by specifying the sets of input and output blocks of symbols and the 
number of coder states. These initial parameters identify a category of coding 
structures, all of which can be generated and analysed. In the general case the 
design process involves inspection of the analysis results and selection of the 
combinations matching particular requirements. Two techniques for control of the 
type of anticipated results and their overall quantity can be applied:

I) Imposing restrictions on
-  the validity of structures, produced from combining initial parameters,
-  the number and the size of different subsets of initial parameters.

II) Specifying the design limitations of interest over the range of analysis data,
e.g. a certain range of frequencies.

The completing stage of the basic design procedure consists of 
identification of the results which are most suitable to the particular application 
and constructing the respective coding schemes through their ‘Code’ table 
specification. (The latter corresponds uniquely to the combination of SM and ZM 
matrices which has produced the spectral analysis results of interest.) Further 
details and examples of practical implementation of the method for systematic 
design and assessment of coding structures are given in the following subsection 
through the presentation of results for a number of code categories.

5.2.1 D M S l X K  Codes -  Analysis Results

The number of block-coding schemes of the type DMSlXK, as defined in 
section 5.1.1, is infinitely large, therefore an exhaustive survey is practically 
impossible. The complete investigation becomes a formidable task even for 
relatively small values of the numbers M, I  and K. However, the analysis results 
produced for a range of categories with manageable levels of complexity are shown 
to provide an amount of data sufficient for most design objectives in practical 
communication systems. A further proof of this claim is the fact that virtually all 
existing line coding techniques are covered by the categories included in this 
presentation. These categories are given below in an order of increasing 
complexity, described in the previous section, and arranged in subsections with 
respect of the number of states, I.
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The formal specification of coding types requires a few words about 
categories such as DlSlXK. In terms of information transmission it obviously has 
no practical meaning. Formally, however, it is possible to use such a description in 
case of a systems which represents the simple function of transforming a sequence 
of identical symbols into some other sequence of identical symbols. There are 
other possible specifications which do not correspond to realistic coding structures 
(at least in terms of line coding). To avoid going into unrelated topics further 
comments on such structures are omitted from the discussion.

For similar reasons another type of coding schemes, with one state, 7 =  1 
and word sets identical to the symbol sets (£> =  d,X  =  x), are not included in the 
presentation. In their basic form such schemes can be viewed as ‘ identity codes’ , if 
D =  X  and every input symbol is mapped into itself, or simple transformation 
systems which convert the input symbols into different output symbols. These 
ideas are illustrated in brief with the comments about the case of D2S1X2 which 
is mentioned in the following section for the sake of completeness with respect to 
the comments from Section 2.3.1.

5.2.1.1 Coding Structures W ith a Single State -  Dm SIXK

Having excluded the lowest level of complexity and the range of schemes 
other than binary as not closely related to the main topic of the presentation, 
three sample categories have been selected to outline the most typical features of 
this group of codes. All structures from these categories have the same symbol 
sets, d =  [0,1] and a; =  [0,1]. The essential difference between them are the 
respective sets of words which are produced as combinations of the lengths of the 
input and output blocks given by N  =  1,2 and L — 2,3.

£>251X4

This category includes the basic coding schemes, usually denoted as 1B2B 
formats, i.e. N  =  1 and L — 2. Their common specification is given in Table 1.1:

The respective ‘Code’ table 
can only be defined in a 
general form as it formally 
corresponds to 16 different 
schemes. (Not all of them, 
though, represent practical 
code structures as indicated in 
the previous subsection.)

£>251X4 - Symbols
input output

d  =  [ 0,1] *  =  [0,1]

D 1 =  0 X x =  0 0 X 2 =  0 1

d 2 =  1 X w II t—‘ o II H-»

IV =  1, M  =  2 IIc-fII

s =  [sx]
Table 5.1
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This is why an explicit specification of the coding rules in table form cannot be 
more informative than the general definition from Fig. 4.2. The only difference for 
this and the other categories of codes presented below is the substitution of I  and 
M  with the corresponding numeric values.

The result from the spectral analysis of all structures included in this group 
are shown in Fig. 5.1. As expected they look familiar and indeed the three spectral 
density plots (2, 3 and 4) correspond to the basic coding schemes defined earlier as 
RZ, NRZ and Manchester, respectively.

The numbers used to indicate the separate plots are taken from the table 
of equivalence, which is generated during the simulation of the various coding 
structures from a particular category. This table shows which codes within the 
same specification group have identical PSD functions. The results for the 
•0251X4 type are given in Table 5.2.

Type of 
PSD plot

Simulation number of 
code structure

(1) 1, 6,11,16,

(2) 2, 3, 5, 8, 9, 12, 14, 15,

(3 ) 4, 13,

(4 ) 7, 10,

Table 5 .2  The PSD simulation order
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The numbers from the first column are assigned sequentially to every PSD 
in the process of generating and analysing the codes. Every one of these numbers 
corresponds to a distinct spectral density function. The simulation number of a 
code structure (the second column) indicates the sequential order of simulation for 
the various combinations of state-transition and output matrices and is used to 
identify the structures which have produced a particular PSD plot5. For example, 
the 2nd, 3rd, 5th, etc. schemes produce spectrum (2), which corresponds to the 
RZ code. This is not difficult to explain as all of them use the same type of output 
dictionary, X ^  =  [.X̂ 2\ where X ^  consists of two identical symbols and
X i>2) consists of two different symbols. The ‘equivalence’ feature which is 
attributed to codes with identical spectra can be illustrated by taking the second 
and the third combinations of output matrices, (Zx = [0 ,0 ] , Z2 = [ 0 ,1]) and 
(Zx = [0,0], Z2 = [1,0]) respectively. The latter is clearly the RZ structure used in 
the spectral analysis from Section 4.1.2, while the former is just another version of 
this code which uses a different code word, X^ — [0,1].

In practice very little effort is needed to identify any coding scheme 
through the number of the selected PSD and the information provided in the form 
of Table 5.2, because the necessary data is automatically generated for every 
simulated category. The group of codes corresponding to the spectral density 
function (4) represents the Manchester scheme, whose output dictionary consists 
of the two possible blocks X ^  =  [0,1] and X ^  =  [1,0]. (The second combination 
is from the same blocks in inverse order.) Similarly, the ‘PSD’ denoted as (1) 
corresponds to all structures for which =  X^\  Obviously these are invalid 
codes as they result in mapping both input words into the same output block of 
symbols. This is why their spectrum is a straight line coinciding with the 
horizontal axis.

Finally and not surprisingly, the PSD plot given as (3) represents the ‘no 
coding’ formats specified as NRZ in the preceding chapters. It is not difficult to 
see that for an output dictionary where both words consist of two identical 
symbols (but different for each word)6, the respective scheme can be viewed as 
transformation of each input symbol into one output symbol. In such a case, 
however, the output dictionary becomes one of two possible words only and 
indicates that this type of code in fact does not belong to the category under 
consideration. Indeed, the lowest complexity group which can accommodate the

5 T h e  corresp on den ce  in  th is  c ase  d erives fro m  th e  se q u e n tia l ord er o f  g e n e ra tin g  the 
c o m b in a tio n s  o f  o u tp u t  m a tr ic e s , Z x a n d  Z2- T h u s , the fo llow in g  se ts  h av e  been  u sed  fo r the 
f ir s t  th ree s tru c tu re s  s im u la te d  fo r th is  p a r t ic u la r  e x am p le : Zx =  [0 ,0 ] , Z2 =  [0 ,0 ] ; Zx — [0 ,0 ],
Z2 = l0,1]; Zx = [0,0], Z2 = [1,0].

6 00 a n d  11 in  th is  case .
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NRZ scheme is D2S1X2 and it contains only two practical transformations, 
identity and inversion. The former can be viewed as mapping of the input 
sequence into itself, while the latter inverts every input symbol. The other two 
possible combinations of output matrices for D2S1X2 result in Z  ̂ =  Z 2, which is 
not a real code. This situation does not affect the results from the analysis. It only 
highlights a computational peculiarity which can be easily controlled through 
specifying appropriate conditions in the software algorithm. The sets of code 
words [0,1], [00,11], [000,111], ... are typical examples, which indicate that 
identical coding structures will appear in the respective categories, D2S1X2, 
D2S1X4, D2S1X8, .... To preserve the generality in the presentation of the code 
design procedure and the possibility of independent assessment of various 
categories, some simple structures have been repeatedly generated in the analysis 
of higher level categories.

Apart from variations in the structure of individual blocks of output 
symbols, which leads to equivalent codes with identical spectral density functions, 
there is another feature common to all schemes from the same category. This 
feature indicates a relation between M  different structures which can be 
interpreted as ‘ inversion’ . It appears in its most basic form for M  =  2. The 
simplest version has been mentioned above with respect to the NRZ scheme. 
Other examples of inversion are the two Manchester types, simulation numbers 7, 
(Z1 = [0,1], Z2 = [1,0]) and 10, = [1,0], Z2 = [0,1]), the two RZ types, 3 and 9,
etc.

In general the two features, ‘equivalence’ and ‘inversion’ , specified for 
coding schemes from one and the same category may take various and more 
sophisticated forms of relation between the structures of a feature group. In any 
case, the significant result is the identity of the spectral densities of all codes 
within such a group. The essential difference between sets of structures exhibiting 
the two features is that inversion results from various ways of mapping the input 
words onto the same set of output words, while equivalence refers to structures 
with the same PSD using output sets which differ at least in one word. Although 
all codes from the D251X4 category have been discussed in previous sections, 
they have been used again to simplify the introduction of the code generating 
algorithm and demonstrate the advantages of the systematic assessment and 
analysis based on the definition of code categories. The benefits of this approach 
are further revealed through the results obtained for structures of higher 
complexity levels, which are presented in the following sections.
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D2S1X8

This category is one 
level of complexity higher than 
the previous (considering 
binary input and output 
symbol sets only). All codes 
from this group map one input 
symbol into a block of three 
output symbols, i.e. N  =  1 and 
L =  3.

The general ‘Symbols’ specification is given in Table 5.3. The ‘Code’ definition 
table is not shown for the same reasons as those given for the previous category. 
This time it corresponds to 64 structures. Again a certain number of them are of 
no practical value, but in this case such codes are omitted from the discussion 
altogether. The comments about the common table presentation and the invalid 
structures, as they have been made for the previous category, will remain 
unchanged for all categories and therefore will not be repeated further in the 
presentation.

The code generating algorithm applied for the D2S1X8 category produced 
nine different spectral density plots. None of them corresponds to a popular line 
coding structure, basically because the efficiency of a 1B3B scheme is low and in 
most cases a threefold increase in the signalling rate would be required. The 
analysis results, given in Fig. 5.2, are interesting mainly from a research point of 
view, but some of them can have practical value, too.

The table of equivalence can be constructed in the same way as for the 
previous category. It is not shown, because the relations between the codes within 
the group are very similar to those already discussed for the D2SIX4 schemes. 
Other types of relations can be revealed in this case by comparing coding 
structures from the two categories. The PSD plot number (5) needs no comment 
as it turns out to be the basic NRZ format using X^ and Xg. An obvious 
candidate for investigation is PSD number (7) as it provides the best frequency 
distribution for the most common requirements of line coding (small low- 
frequency components and a shift away from the high frequencies. One of the 
combinations producing this spectrum employs output words 001 and 100. These 
two blocks of symbols can be viewed as corresponding to some type of a 
Manchester format as they introduce a transition between the start and the end of 
an input symbol time interval, Tj. The difference, however is that the transitions

D2S1X8 - Symbols
in p u t o u tp u t

d =  [ 0 ,1 ] a; =  [0 ,1 ]

OIItH
Cl

* x =  0 0 0 X 5 =  1 0 0  

* 2  =  0 0 1  * 6  =  1 0 1

£>2 =  i
* 3  =  0 1 0  * 7 =  1 1 0 

* 4  =  0 1 1 * 8 =  1 1 1

N =  1, M  =  2 ¿  =  2, *  =  8

s =  [Si]

Table 5.3
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do not appear in the middle of the time interval. In some respect the code 
producing PSD (7) can be considered a better alternative to the Manchester code 
as it requires 1.5 times the bandwidth of the input sequence, while Manchester 
doubles that bandwidth. This result illustrates how the combination of the 
analysis algorithm with the suggested classification allows useful coding schemes 
to be found where otherwise they do not seem likely to appear.

Another interesting plot is number (6) and one of the codes producing this 
PSD uses output words 001 and 010. The significant feature common to all 
structures with this spectrum is the introduction of two transitions within the 
input symbol interval by one of the output words, which explains the increase in 
the amount of high frequencies (compared to plot (7) for example). Similar 

reasoning suggests that combinations of output words, which introduce two 
transitions within the time interval T ̂  for both input symbols, should correspond 
to the spectrum with the highest level of high-frequency components. Indeed, this 
is exactly the case and an example of such a combination is the code with output 
words 010 and 101, which produces the spectral distribution of plot (9).

The assessment of codes generated for the D2S1X8 category is only 
suggestive and cannot serve as an exhaustive investigation of this group of 
structures. There are many more possibilities to select and group different coding 
schemes with respect to a much greater variety of features. More detailed 
interpretation of the analysis results will be entirely dependent on the design 
purposes or a particular application. The same considerations apply to the
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discussion of the other categories presented in this chapter. Only their most 
essential features are outlined with just a few sample structures selected to 
support a particular argument or to illustrate certain characteristics.

msixi
The brief presentation of this category serves mainly to illustrate the 

change in the complexity level due to the third parameter -  the number of input 
blocks of symbols, M. First it should be noted that in spite of the grater number 
of possible combinations, 256 compared for the previous two categories, the actual 
set of valid codes is relatively small. The reason for this is easily recognised to be 
the equal sizes of the input and output words, M = K  as shown in the ‘Symbols’ 
specification table below.

DiSlXA - Symbols
in p u t o u tp u t

d  =  [ 0 , l ] x =  [0 ,1 ]

£ > x =  0  0  D 3  =  1 0  

D 2 =  0  1 £ > 4  =  1 1

=  0  0  X 3 =  1 0  

X 2 =  0  1 X 4 =  1 1

N  =  2, M  =  4 II >
! II

S  =  [Sj]

Table 5.4

Clearly, the only variation in the process of transformation of input 
symbols into output blocks of symbols, without reducing the original information 
content, comes from the use of different permutations of the four output words. 
Hence, the number of practical codes this category yields is K\ =  24. It is not 
difficult to see that with respect to the frequency distribution these combinations 
at most produce only a change in the places of the input symbols within a block of 
four without affecting the statistics of the input sequence. Therefore all of them 
exhibit the same spectral density, marked number (10) in Fig. 5.3.

This plot corresponds exactly to the PSD of an NRZ signal which is 
produced when X ■ = D for i =  1,..., 4. If the latter is assumed to represent the 
identity transformation, it is possible to think of the rest from the group of 24 
valid schemes as some kind of inversions. At least some of them, like the one 
which produces the transformations { D 1 =  00} — =  11}; 01—»-10; 10—>01; 
11 >00, can be recognised as fitting such a description straightaway.
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The rest of the combinations generated for the £1451X4 category may not 
produce valid line codes, but still indicate possibilities which can become of 
interest in other applications. For example, a requirement may be imposed to 
eliminate certain combinations of two consecutive binary digits in a signal which 
has sufficient redundancy or can tolerate some ambiguity. Simulating and 
analysing all structures from this category also shows that there might be a great 
number of plots (10 in Fig. 5.3) which appear to be useful, but only a fraction of 
them correspond to valid schemes. This situation emphasises the need for careful 
specification of the simulation conditions which would ensure a selection of 
practical codes matching the design objectives.

The three basic categories presented in this subsection illustrate the most 
essential features of the enhanced analysis procedure based on the general coder 
model:

• Groups of codes can be generated and spectrally analysed according 
to a common set of specifications and selection parameters.

• A systematic comparative assessment can be performed over a range 
of coding structures arranged in categories with respect to 
appropriately specified hierarchy of complexity levels.

The simulation of all possible schemes deriving from the ‘Symbol’ specification 
tables of the three categories allows a number of intermediate conclusions to be 
reached:
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• The conventional signalling formats, NRZ, RZ and Manchester, whose 
definition as codes is based on the suggested unified approach, have been 
encountered in the expected categories -  D2S1X2, for NRZ and D2S1X4, 
for the others.

• The appearance of some structures in different categories is not a problem 
when an independent and exhaustive analysis is carried out within a single 
group. However, repetitive structures should receive special attention in 
order to eliminate ambiguities when different categories are investigated.

• Suitable conditions have to be specified to avoid (time consuming) analysis 
of combinations which do not represent meaningful spectral densities.

• It is possible to encounter PSD plots with shapes which seem close to 
realistic requirements, but do not correspond to valid structures (at least in 
the sense of line coding).

• A considerable number of coding schemes produce identical spectral 
density functions regardless of the difference in their state and symbol 
sets7.

• Computation of identical PSD functions can be reduced significantly by 
recognising that all permutations of the output matrices, Zm, within a 
given set ZM, with respect to their indices, represent effectively the same 
coding scheme when the probabilities of the input words are equal.

Consequently, the total number of combinations (with repetitions) of output 
matrices can be reduced from to

+ { k 1 + M -  l )
\ M  ) M i K 1 -l)\

Finally, it should be noted that the interrelations between the categories 
described above indicate the adequacy of the classification based on the suggested 
complexity levels. The lowest level is illustrated by the three categories with 
minimal number of input words and states (M = 2,1 =  1), mentioned in this

7 T h is  con clu sion  is  b a se d  on  c o m p a riso n  o f  the co n tin u o u s p a r t  o f  th e  P S D  to  av o id  
go in g  in to  to o  m u ch  d e ta il. R ev iew in g  th e re su lts  w ith  the d iscre te  P S D  in clu d ed  p o se s no 
d ifficu ltie s  in  p rin c ip le .
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subsection. Within this level the complexity increases, following the number of 
output words, from D2S1X2, with only four combinations, to D2S1X8 with 64 
schemes and larger variety of spectral density plots. The complexity level 
discussed next, having assumed that K  > 8 is of little practical interest, 
corresponds to an increased number of input words, M =  4. As codes with K  <  4 
are not likely to be very useful, the basic structure representing this level has been 
assumed -0451X4. The larger number of coding schemes (256) indicates that the 
classification hierarchy is still applicable.

5.2.1 .2 Coding Structures with Two States -  D M S 2 X K

This section includes the categories which cover many of the remaining 
popular codes, as most of those which are in wide-spread use at present are ‘two- 
state’ schemes. AMI, CMI, Duobinary, 3B4B, etc. are only a few of the block 
codes which are commonly implemented in practical communication systems. The 
results from the analysis of these codes, given in Chapter 4, will be referred to in 
the following discussion, using the adopted abbreviations and terminology. New 
structures will be revealed by relating the known spectral densities to the most 
interesting of the plots, many of which correspond to unknown codes. Three 
categories, D2S2X2, D2S2X3 and D2S2XA have been selected to represent the 
two-states group. The results, given in the following subsections, use only a small 
part of the large amount of data generated by the simulation procedure. Every 
effort has been made to select PSD plots which are typical for groups of codes and 
exhibit features of practical value for the purposes of line coding. The main 
restriction to the number of simulations has been imposed by implementing 
additional verification on the combinations of the output matrices. This leads to a 
reduction of the number of codes, given by (5.5) for every combination of state 
matrices by the number of combinations of M  output matrices which contain less 
than M  different output words. For the chosen three DMS2XK categories the 
number of input words is M  =  2 and expression (5.5), developed to accommodate 
the additional restriction, becomes

{ K ‘ 2+  1)  ■-' K  =  :2)

In practice the analysis results for each category are stored in separate files 
for every valid pair of state matrices due to limitations in the available computer 
memory. Therefore the PSD selection strategy is discussed separately for the 
groups of plots presented below.
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D2S2X2

This category, specified in Table 5.5, can be considered the smallest 
collection of meaningful two-state structures, where two input symbols are 
transformed into two output symbols.

D2S2X2 - Symbols
in p u t o u tp u t

d = [ 0,1] X = [0,1]
D x = 0 X x =  0

£>2 = 1 *2 = 1
N = 1, M  = 2 L — l, K  = 2

s =  [s1,s2]
Table 5.5

There are 256 combinations of state 
and output matrices, but the number of 
those which correspond to valid codes is 
much smaller. A further reduction in the 
number of simulation results comes from 
the fact that most structures produce 
identical spectra. There are only 6 
different spectral density plots, which are 
shown in Fig. 5.4.

The only PSD graph, recognisable as corresponding to an existing code, is number 
(3), which represents the familiar Differential scheme. This code is associated with 
plot (3), because it is a two-state technique, although it has been shown in 
Chapter 2 that the Differential is a version of NRZ, which provides for specific 
frequency characteristics only when the input symbol probabilities are not equal. 
As all simulations in this chapter are produced for equiprobable input symbols, 
PSD plot (3) is the same as that of unipolar NRZ.

Most of the interesting results are revealed by studying the table of 
equivalence. It is not practical to show this table in full, but sample groups of
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codes, corresponding to the graphs in Fig. 5.4, axe discussed bellow to illustrate 
some useful interrelations. A selection of coding schemes from the D2S2X2 
category, producing plot (3), are specified in Tables 5.6(a-c).

Dm Sl *2 Sm

0 0, s2 0, s2 0 r 'o '
01 0

1 1, s2 1, sl 01 1
10 1

Table 5.6a A sample D2S2X2 code

Dm Sl s2

0 0, s2 0, s2 0 r 'o '
0 1 0

1 1, sl 1, Sj 1 0 1
1 0 1

Table 5.6b A sample D2S2X2 code

Dm Sl s2 Sm Zmm

0 0, s2 1) S2 0 1' "0"
0 1 1

1 1, s2 0, s1 0 1 1
1 0 0

Table 5.6c A sample D 2 S2 X 2  code

Dm C
o S2

0 0, s2 1, s2 "0 1' 
0 1

'o'
1

1 1, s1 0, s1

0
 o

' 
- 1

.0.

Table 5.6d A sample D2S2X2 code

Dm Sl s2 z mm

0 0, s2 1, s2 0 1" 'o'
0 1 1

1 0, s1 1, s1 1 0 0
1 0 1

Table 5.6e A sample D2S2X2 code

Dm Sl S2 Sm z mm

0 1, s2 0, s2 0 r  
0 1

V
0

1 1, s1 0, s1 1 0 
.1  0.

1
.0.

Table 5.6f A sample D 2 S2 X 2  code

The common features, relating these codes to the Differential (Table 4.6b), 
can be identified by considering typical transformations of certain input symbol 
patterns. These transformations are described below for all of the Tables 5.6(a-f), 
but it should be emphasised that they are not required for the unique definition of 
the codes. The latter are completely specified by D252A’2-Symbols (Table 5.5) 
and the respective ‘Code’ (Table 5.6a-f). The transformations for the first two 
structures, (a) and (b) are straightforward:

input 0-s are coded as output 0-s,

input 1-s are coded as output 1-s.

Obviously the effect from these two schemes is identical to that of the 
conventional NRZ. The only difference is the existence of an absorbing8 coder

8 The terms absorbing and cyclic states are borrowed from the theory describing 
probability matrices and Markov chains. No special definitions is considered necessary here.
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state, s2 for input 0-s and cyclic states, and s2 for input 1-s in the case of (a), 
while in (b) there are two absorbing states sx and s2 for input 0-s and input 1-s, 
respectively. The relations between the structures from Tables 5.6(c-f) can be 
illustrated by specifying the transformation of several typical patterns of input 
symbols, as shown in Table 5.7.

input-symbol
pattern

coded-symbol pattern
consecutive 0-s consecutive 1-s alternating 0 and 1

consecutive 0-s 

consecutive 1-s 

alternating 0 and 1 X X

X X X X

X X X X

X X *

code table (5 .6 ) —> c d e f c d e f c d e f

T ab le  5 .7  Symbol transformation patterns
( * inverted)

The comparative assessment of code structures performed in Table 5.7 is 
not complete as it relates the transformations of only three symbol patterns. The 
example, however demonstrates the possibility to deduce important code features 
in a uniform manner. In this case Table 5.7 indicates that the four codes are 
versions of the Differential scheme as the respective transformations appear to be 
closely related to the general description given in Section 2.3.1.

The remaining spectral density 
graphs also lead to various interesting 
conclusions. Plot (4), for example, 
illustrates what can be achieved by 
using state-dependent decoding. One of 
the codes, corresponding to this 
spectrum, is specified in Table 5.8.
It shows that 0 in some combinations of input symbols is coded as 1, when the 
preceding input symbol has been a 1 and the present coder state -  s1. Clearly 
knowledge of the state sequence is needed for correct decoding. This imposes 
stringent synchronisation requirements and increases the susceptibility to errors. 
Such a price, however may be worth paying in a case where bandwidth efficiency 
is of highest priority.

Other basic code features can be determined from the schemes of this 
category in order to demonstrate their direct relation to the shape of the 
respective spectra. The two structures, given in Tables 5.9a,b, correspond to plots 
(1) and (2) in Fig. 5.4, respectively.

Dm ¿1 *2

0 1, «2 0, s2 0 r V
01 0

1 1, S 2 1, s1 01 1
10 1

T a b le  5 .8  A sample D 2S 2X 2 code

188



D m 5i s 2 s m
0 0, s2 0, s2 0 r '0"

01 0

1 0, s2 1, sl 01 0
10 1

s\ s2 Sm

0 0, s2 0, s2 0 1' 'O'
0 1 0

1 1) s2 0, sx 0 1 1
1 0 0

Table 5.9a A sample D 2 S2 X 2  code Table 5.9b A sample D 2 S2 X 2  code

The codes can be compared using the technique applied through Table 5.7. Both 
schemes perform equivalently for consecutive input symbols, introducing 
transitions in the output signal for consecutive 1-s. This shows as a shift of the 
signal power from the low frequency range towards the higher frequencies. The 
difference between the two schemes becomes apparent for transformations of 
alternating 0-s and 1-s: the code from Table 5.9a preserves the transitions in the 
input signal, while that from Table 5.9b does not. The effect of this difference is 
reflected in the levels of high frequency components of the respective spectra.

Finally, by similar investigations of the code tables, corresponding to plots 
(5) and (6) it is possible to identify their specific advantages and disadvantages. 
The sample structures, producing PSD (5), have been found to introduce 
considerable ambiguity and the comments, made in the preceding section about 
invalid line codes from the D iS IX i  category, apply in this case, too. PSD (6), on 
the other hand, is produced by schemes which transform alternating input 
symbols into consecutive 0-s or 1-s, while preserving consecutive identical input 
symbols unchanged. Effectively, this results in a reduced number of transitions, 
which leads to an expected shift of the spectrum towards the lower frequencies, 
compared to plots (1) and (2). The latter are produced by codes, which generally 
introduce transitions. The comparison with PSD (4) is interesting, too. It shows 
that the narrowed bandwidth of PSD (6) is achieved at the expense of a slightly 
increased level of the higher frequencies.

The assessment of the coding schemes from the D2S2X2 category, all 
having the complexity of the conventional Differential scheme, allows for some 
generalisations to be made. •

• The simulation and the analysis of all codes from one complexity group is 
possible, just as has been done for the D2S2X2 category.

• The spectral analysis results, together with the respective specification 
tables, show the adequacy and the straightforward applicability of the 
suggested classification method.
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• The capability of the developed computational procedure to generate all 
possible structures for a particular category allows new codes to be created, 
some of which feature spectral density functions of practical value.

• The degree of modification of the of the signal spectrum is proportional to 
the amount of information redundancy which can be introduced within the 
limits of a particular complexity level.

The interpretation of the last conclusion with respect to the D2S2X2 category 
means that only simple modifications, like narrowing the bandwidth and partial 
suppression of the low frequency components, can be achieved. The conclusion is 
an important link with the preliminary considerations about the relation between 
structural and and spectral features, given in Section 4.1.2.3 of the previous 
chapter. This is yet another proof of the viability of the suggested general 
classification, based on the complexity level of codes. This idea is further 
developed in the next subsection of this chapter.

D2S2X3
The three sets D , s and X  of this 

category are given in Table 5.10. The number 
of code structures, deriving from these sets is 
too large to allow a complete assessment of all 
1296 combinations. All possible codes, 
however, have been generated and analysed.
The results are given in Fig. 5.5a and 
indicate, as with previous categories that 
there is a large number of equivalent 
structures.
This significantly reduces the number of different plots, but it is still a formidable 
task to investigate every spectrum from Fig. 5.5a and the respective sets of codes. 
The purpose of this presentation is not to identify or select particular types of 
codes or categories. It is intended to provide a broad basis for research and design 
of coding techniques by demonstrating the uniform assessment approach and the 
advantages of combining the powerful analysis procedure with the general method 
of classification of code structures.

D2S2X3- Sym bols
input output

d = [ 0,1] x — [~i,o,+i]
X , -  -1oIIcT 1
X 2= 0

£>2 = 1
*3 = +l

N = 1, M = 2 L = 1, K = 3
s = [sv s2]

Table5.10
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F ig. 5 .5 a  The PSD plots for the D 2S 2X Z  category

Some typical features of the codes from this category are discussed below 
with reference to a selection of spectral density plots shown in Fig. 5.5b.

The coding schemes corresponding to these plots are of the same complexity as 
the conventional AMI and Duobinary codes (specified in Tables 4.7 and 4.8, 
respectively), which also belong to this category. The spectral density functions of 
the two popular techniques can be recognised as graphs (1) and (3), which 
represent the most essential spectral features achievable in this category:
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l) suppression of the low frequency components,

11) reduction of the bandwidth by half.

These results can be viewed as directly related to the possibility to introduce 
higher amount of redundancy than in the previous category, as the D2S2X3 codes 
use three output symbols to transform the two input symbols.

A brief overview of the PSD plots in Fig. 5.5b shows a variety of shapes 
representing different degree of spectrum modification. The basic type of PSD, 
number (8) predictably represents the NRZ equivalent transformations. A sample 
of the latter, which converts input zero into —1 and input one into +1, is specified 
in Table 5.11.
This code is another example of overlap 
between categories. As only two of the 
three output symbols are used, the 
structure from Table 5.11 can be 
considered belonging to the D2S2X2 
category.

It has been mentioned in previous sections that special restrictions can be 
imposed through the process of construction of the computational matrices SM 
and ZM in order to avoid codes from lower categories recurring at higher 
complexity levels. In this case, however, the presence of the NRZ plot is used to 
illustrate the stages of modification leading from the basic spectrum, (8) to those 
of AMI and Duobinary. The modifications of the spectral density graphs for this 
category are considered only with respect to the essential features l) and n) 
specified above. Thus plots (2) and (6) can be viewed as intermediate stages 
towards achieving reduced low frequency components and bandwidth, 
respectively. Examination of two code tables, corresponding to these plots, reveals 
that the PSD modifications have been achieved through structures from a lower 
category (D2S2X2 again) at the expense of introducing certain ambiguity in the 
coded sequence.

The considerations given above show the importance of careful selection of 
the codes producing the required modification of the spectral density function. 
Good examples of valid codes with some degree of PSD modification capability 
are given in Tables 5.12a,b.

«1 *2 S m

0 - 1 ,  s2 “ R S2 o r  
0 1

' - T
- l

1 +  1, s 2 +  1, 0 1 
.1 o_

+1
.+ 1 .

T ab le  5 .11  A  sample D 2 S 2 X 2 / 3  code
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£n

0

1

-1, 2̂

0, s2

-1, s2

+ 1,

0 1 
0 1
0 1 
1 0

- r
- i

0
L+i.

Table 5.12a A sample D 2 S 2 X 3  code

Dm «1 *2 Sm

0 -1, s2 -1, s2 0 1" "-I"
0 1 -1

1 +1» S2 0, s1 0 1 + 1
1 0 0

Table 5.12b A  sample D2S2X3 code

Plots (5) and (7) in Fig. 5.5b correspond to these two codes, showing a certain 
degree of low frequency suppression and bandwidth reduction respectively. At this 
point it can be suggested that valid codes from this category can probably achieve 
the expected reshaping of the basic spectrum (8), but only at the expense of some 
relative reduction of the overall power within the bandwidth of practical interest.

The PSD graphs (1) and (3) in Fig. 5.5b indicate the validity of the above 
consideration. They represent the maximum degree of spectrum modification for 
this category with an overall power reduction of approximately a half, compared 
to the basic NRZ type of spectrum. As already mentioned, the two plots are the 
spectral densities of the AMI and the Duobinary codes, but it should be noted 
that some invalid code schemes also produce the same PSD. This underlines the 
importance of careful specification of the restrictions in selecting combinations of 
state and output matrices in the process of simulation.

The investigation of the possibilities of spectrum shaping, provided by the 
codes from the D2S2X3 category, can be completed by considering graphs (4) and 
(9) in Fig. 5.5b. They seem to fulfil the requirements for narrowing the bandwidth 
and suppressing the low frequencies, without significant power reduction. It turns 
out, however, that the code structures corresponding to these plots are not valid 
combinations of state and output matrices.

The overall assessment of the simulation and the analysis results for this 
category confirm the limitations of the spectrum shaping capabilities, discussed in 
Section 4.1.2.3. In summary:

• Codes from category D2S2X3 introduce sufficient redundancy to achieve 
spectral features l) and n), specified at the beginning of this subsection. •

• The amount of redundancy, without introducing state-dependent decoding, 
is minimal, which results in only a few valid codes producing significant 
low frequency suppression or bandwidth reduction.
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• As expected, the redundancy introduced by the £>252X3 structures is 
insufficient to achieve spectrum modification which combines features 1) 
and n) in one PSD.

The additional redundancy, needed to produce a coded signal spectrum 
with both, small low frequency components and halved bandwidth, is provided 
through coding schemes of higher complexity.

£>252X4

This is the highest complexity category, using two states and two input 
words, which contains a popular code. In spite of the apparent variety of 
combinations, illustrated by the family of PSD plots in Fig. 5.6a, CMI is the only 
scheme from this category which is widely used in practical communication 
systems.

0.6 r

Fig. 5.6a A pattern-illustrating selection of PSD-s for the £>252X4 category

The group of plots in Fig. 5.6a represents approximately a tenth of the complete 
selection of structures which have been simulated for the £>252X4 category. 
Detailed assessment of individual structures from this group of codes is considered 
unnecessary and the plots shown in Fig. 5.6b have been selected only to illustrate 
some typical spectral features, achievable by using a two-state coder and two 
output symbols for every input symbol.
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Fig. 5 .6b  A selection of typical PSD plots for the D2S2XA category

First, it should be noted that only PSD graphs (1), (3-6) and (8) in Fig. 
5.6b represent codes, which allow for unique decodability. Two of these spectra, 
(4) and (6) feature significant reduction of the bandwidth relative to the 
normalised NRZ spectrum. In this case a reduction of the output signal bandwidth 
by half only makes it the same as that of the input sequence, as the code symbol 
repetition rate, Fx is twice that of the input symbols, i.e. F X = 2 F At the same 
time, it appears that the additional redundancy of the D2S2XA structures is still 
insufficient to achieve both suppressed low frequencies and halved bandwidth 
without losing the feature of unique decodability. PSD plots (2) and (7) in Fig. 
5.6b show the possibilities to produce the required spectrum modification, if state- 
dependent decoding is allowed for.

The new spectral feature, which is suggested by some codes from this 
category, is shown in graph (1). Although this spectrum contains large low 
frequency components, its main advantage is the possibility to reduce the 
bandwidth to a third of the output symbol rate. This is indicated by the 
normalised frequency of the first minimum of the spectral density function, which 
is approximately 0.33. Considering that, with respect to the input symbol rate 
the width of the resulting spectrum is still about 0.66F^, the saving is not too big, 
but certainly worth noting, as it is made with a uniquely decodable scheme. The 
result corresponds to the expected effect from having introduced more complexity, 
therefore redundancy, with the D2S2XA category.

Finally, the two plots given in Fig. 5.6c indicate the limitations of the 
spectrum shaping capabilities of the codes from this complexity level. The PSD
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graph (1) is the familiar CMI spectrum, which is a classic example of a 
compromise in spectrum shaping. The two-level coded signal is considered one 
with well suppressed low frequency contents and reduced bandwidth, although the 
amount of high frequency components, above half the code symbol repetition rate, 
is not negligible.

It is not unreasonable to 
expect the possibility of a code 
from this category to offer a 
modified spectrum which 
completely satisfies both 
requirements 1) and n), and 
has the generally preferred 
‘bell’ shape within the 0 -  

1 0.5Fx range. Indeed, the code

Fig. 5.6c The limiting spectrum modification (D 2 S 2 X 4 ) specified in Table 5.13
produces exactly such a PSD, 

shown as (2) in Fig. 5.6c. This code seems to be a more successful version of CMI, 
but it has one disadvantage.
Without introducing state-dependent 
decoding, the improved shape of the 
spectrum (compared to that of CMI) is 
achieved by increasing the susceptibility 
to errors due to the use of all four

^ Table 5 .13  The CMI related sample code

Dm S1 *2 Zm

0 01, sx 10, s2 '1 O' " o r
0 1 10

1 11, s2 00, 0 1 i i
1 0 00

This is unlike CMI, where combination 10 is not used as a code word and allows 
for some level of error control. Despite of its high sensitivity to loss of block 
synchronisation, the code from Table 5.13 may be a suitable choice for certain 
bandwidth efficient applications.

5.2.1.3 Categories of Higher ( /  >  3) Complexity Levels

The two categories D2SAX3 and D2SiX4 have also been investigated, as 
they contain the Modified Duobinary and the Miller codes, which have been 
discussed in Chapter 4. The simulation data has shown the availability of a great 
variety of structures with considerable spectrum shaping potential. The 
presentation of coding schemes and the respective analysis results for these two 
categories requires more involved discussion of sophisticated ‘Code’ tables without 
contributing significantly towards the general description of the code generating 
algorithm and the uniform assessment procedure. It is sufficient to mention the
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availability of many coding schemes, which provide for significant reduction of the 
coded signal bandwidth, in some cases making it narrower than the bandwidth of 
the input sequence. Although the number of generated code structures, which 
preserve the unique decodability feature, is only a small fraction of all valid 
combinations, there is still a large variety of spectra with shapes of practical 
interest.

The investigation of coding structures, generated with the simulation 
routine can be extended almost indefinitely just by increasing the number of coder 
states. For categories with 7 > 3  and M , K >  2, the total number of possible 
structures increases very rapidly. Well devised restrictions and conditions of 
selection have to be implemented to avoid time consuming analysis of impractical 
and unwanted structures. Although a total of several thousand codes have been 
simulated and all essential data has been stored for further research, it is 
considered unnecessary to include more examples in this presentation. The results 
shown in the previous sections are sufficient to illustrate the fundamental concepts 
of the suggested uniform assessment and analysis approach. Most of the important 
stages in the generation and classification of new code structures have been 
demonstrated through the systematic investigation of some low-complexity level 
categories. Many of the popular coding techniques have been shown to appear 
precisely in the predicted categories, exhibiting the expected structural and 
spectral features typical of the respective group of schemes. These results prove 
the general applicability of the suggested classification method.

The investigation of complete categories is another significant achievement. 
All codes from 7)251X4, 7)251X8, 7)451X4 and 7)252X2 have been generated 
and analysed. This in effect precludes the possibility to ‘invent’ a new coding 
scheme with parameters specified within these categories. Some higher complexity 
level categories have also been exhaustively simulated and assessed, but their 
complete investigation will be presented in a future extension of this work.
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6. THE INFORM ATION C APAC ITY OF CODES

The capability of different codes to shape the spectrum of a sequence of 
symbols can be assessed with respect to the amount of redundancy they introduce 
to achieve particular spectral features. A new method for evaluation of the 
efficiency of coding structures is proposed in this chapter. The method derives 
directly from the uniform approach in the assessment and analysis of codes and 
suggests the possibility to introduce an overall measure of the spectrum-shaping 
potential of a code for a particular symbol transformation efficiency. This 
parameter will be further referred to as the Code Information Capacity (CIC). 
The method is based on the system of general classification of codes, developed in 
Chapter 5 and makes use of the relations between coding schemes from different 
categories.

Conversely, if complexity represents the structural features of codes, it is 
possible to introduce another overall parameter, which reflects their efficiency 
with respect to the optimal use of a particular combination of the three sets1 D , s 
and X  for certain modification of the coded signal spectrum. Such a parameter 
can be viewed as specifying the information ‘ carrying’ (or information ‘transfer’) 
capacity of a code. By evaluating the CIC within the same category it is possible 
to determine the optimum relation between the code structure, the spectral 
characteristics it can produce and its efficiency. It has been demonstrated that a 
fixed length block code can be uniquely represented by the specification of its 
three sets (D , s, X ) and their interrelation through a particular ‘Code’ table. Any 
coding scheme, complying with the conditions discussed in Chapter 3, can be 
modelled as an FSSM and the spectral characteristics of the output symbol 
sequence evaluated accordingly.

6.1 The Code Assessment Parameters

The general considerations given above identify the three main factors, 
which can be used to determine the practical value of a coding structure in 
comparison to other codes. These factors can be specified as follows:

• the operational space of a coder,

• the spectral characteristics of the coded sequence,

• the information capacity of a code.

A detailed discussion of these factors is presented in the following subsections.

1 As defined in Chapter 5.
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6.1.1 The Operational Space of Coders

This term is introduced to indicate the limitations imposed to the variety 
of possible code schemes by the finite sizes of the sets of symbols and states. The 
Coder Operational Space (COS) is defined as a 3-dimensional2 volume, whose 
vertices are determined by the integers M , /  and K , previously defined as the 
sizes of the three sets D, s and X,  respectively. To simplify the illustration, it is 
convenient to view the indices m =  l,. . . ,M , ¿ =  1 ,. . . , /  and k = l , . . . ,K  of 
Dm 6 D, si £ s and Xj. 6 X  as the three coordinates (m,i,k) of points from the 3D 
space, determined by the system of three orthogonal axes, as shown in Fig. 6.1.

The intersection point of the 
axes /x, x and k  has coordinates 
(1,1,1) and is assumed to be 
the origin of the system. The 
values of m, i and k are 
integers taken along the axes 
/x, l and k , respectively. 
Following the above
assumptions it is possible to 
specify the COS as a 3D 
rectangular figure, determined

F ig . 6 .1 3D representation of the coder sets

by the coordinates of its 
vertices as shown in Fig. 6.2.
The specification of the 
coordinates of the COS as 
combinations of the sizes of the 
three coder states determines 
the operational space for a 
group of codes, which belong to 
the same category, Dm Si XK.
This suggests the possibility to 
represent geometrically any Fig. 6 .2  The Coder Operational Space

coding scheme with respect to
the COS of its category. Indeed, the correspondence between a geometrical shape 
and a code can be established as every ‘Code’-table specification is completely 
determined by the unique combination of elements Dm, s- and X^ with respect to 
their indices.

2 The abbreviation 3D will be used elsewhere in the presentation.
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The second factor affecting the evaluation of a particular coding scheme is 
the spectral density distribution associated with the output symbol sequence. It 
has already been mentioned in Chapter 5 that no precise analytical definition of 
the suitability of a PSD function for particular applications is currently available. 
This is why quantitative estimation of spectral characteristic is not used in the 
subsequent discussion. This deficiency of the existing frequency analysis 
techniques, however, does not affect the applicability of the suggested evaluation 
method. The quantitative measure of the CIC can be used for comparative 
assessment of codes by assuming a set of descriptive criteria for an overall 
estimation of the spectral features of the coded sequences.

At this point it should be mentioned that in principle there are no 
obstacles in the development of a scheme for quantitative evaluation of the 
frequency characteristics of symbol sequences except, perhaps, the lack of a widely 
adopted uniform approach. This is why the results presented in this thesis can be 
regarded as an attempt to create a universal method for the design and analysis of 
most types of block codes. The possibility to describe analytically useful features 
of a PSD function has been discussed in the preceding chapters. Without going 
into any further detail the concept adopted for evaluation of frequency 
characteristics can be summarised as follows:

1) The bandwidth is determined as f max -  / min, where f max and f min specify 
the frequency range containing a certain percentage of the signal power.

n) The shift of the spectrum can be evaluated by the change of the position of 
the frequency range, [ / max j /m,-n], used to determine the bandwidth of the 
output sequence as in 1), relative to that of the input sequence.

Assuming, for the simplicity of the illustration, that there is no change in the 
width of the frequency range, the shift of the spectrum can be defined as the 
difference between the centre frequencies, ^max ^m,n of the frequency ranges of 
the input and the output sequences.

in) Similarly the suppression of high- and low-frequency components can be 
determined by specifying the required transmission bandwidth and 
evaluating the difference between the percentages of the signal power 
contained within the respective frequency range before and after coding.

6.1.2 Spectral Characteristics of the Coded Signal
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Alternatively, it is possible to evaluate the difference between the bandwidths of 
the original and the coded sequences, containing a given percentage of the signal
power combined with the difference between the mid-points, 
respective frequency ranges.

^  of the

i v )  Finally, the quantitative evaluation of the spectral characteristics of the 
coded sequences can be completed with analogous measures involving the 
discrete frequency components of the spectrum.

The main purpose of this chapter is to give an overall description of the 
suggested evaluation method. The provision for precise analytical criteria for 
estimation of the spectral features of coded sequences is a vast research topic in 
itself. Therefore, to avoid unnecessary complexity, it is considered sufficiently 
accurate to present the method for evaluation of the CIC on a comparative basis, 
using typical examples of coding schemes and the respective description of the 
suitability of their frequency characteristics for practical applications.

6.1.3 Information Capacity of Codes

The third factor affecting the overall evaluation of a coding structure is 
associated with the ability of the codes to modify the spectrum or any other 
characteristic of the original sequence by introducing minimum redundancy. At 
present a quantitative measure of such an ability is given by the efficiency of 
codes. This measure, however takes into account only the relative change in the 
number of symbols per unit information. The insufficiency of the information 
conveyed by a number which shows solely the code’s efficiency, can be illustrated 
by comparing the 3B4B and the 3B2T-RBS codes, analysed in Chapter 4. Both 
schemes have the same efficiency, 0.75, but the PSD of the latter has been shown 
to have certain disadvantages with respect to its use for the purposes of line 
coding.

The suggested method for evaluation of the CIC allows an integral 
parameter to be derived representing the combined effect of several essential 
characteristics of a coding structure: •

• the classification category;
• the efficiency with respect to the sizes of the input and the output sets;
• the specific relation between the input/output sets and the set of coder 

states determined by the particular ‘Code’-table.
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Being a measure of capacity, the parameter described above is most adequately 
represented by a volume. Indeed, it is possible to associate the volume of a unique 
geometrical figure with any code within its operational space. In the general case 
this figure is determined by its vertices, which are all points with coordinates 
(m,i,k), corresponding to all combinations

(6-1)

from the ‘Code’ specification table as defined in Fig. 4.2, Chapter 4. Here si is the 
next coder state given by smi, which the coder goes into and is the output 
word given by X mk for the respective combination of the input word, Dm and the 
present state, si (m =  l ,. .. ,M ; ¿ =  1 ,.. ., / ;  k =  1,..., K). The position of a point 
with coordinates corresponding to the combination -A2), the COS of
category D3S2X3 is shown as an illustration in Fig. 6.3.

Fig. 6 .3  Coordinates of a point determined from the coder set

All geometrical points and figures in the subsequent discussion correspond to 
particular coder specifications, therefore coordinates, given as (m, i, k), will always 
represent a (Dm, ŝ , X^) combination, without explicitly stating this relation. The 
correspondence between the geometrical interpretation of the CIC and the 
respective ‘Code’ table, for every example given below, is determined from the set 
of coordinates, (m, i, k) of the figure and their values.

6.2 Code Structures, Compared Through Their CIC

The presentation of the suggested method for evaluation of the CIC is 
based mainly on empirical results to avoid excessive involvement of complex 
analytical expressions. This is why some preliminary comment is required 
regarding certain extreme cases. The COS of categories from the lowest
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complexity level (e.g. Dm S IX k ) is two-dimensional3. All points with coordinates 
(m, l,k) belong to the (/x, k ) plane, Fig. 6.1. A straightforward interpretation of 
the planar figures, corresponding to practical codes has not been suggested, due to 
the lack of an adequate theoretical basis. Additionally, some difficulties may be 
encountered in deciding which connections of points, representing higher 
complexity codes, have to be used to form the appropriate 3D volume. Although a 
definite rule is not yet available, some preliminary research results indicate that 
the geometrical shape, corresponding to the CIC measure, is the one with the 
largest possible volume for a given set of points. It may seem a formidable task to 
determine this volume when codes from very high order categories are considered, 
but the problem is purely geometrical and certainly manageable with the aid of 
modern computing resources.

The main purpose of this chapter is to demonstrate the possibilities to 
achieve consistent and informative results by applying the CIC evaluation method 
to a number of codes whose performance and characteristics are of practical 
interest. It is important to note that volume V of any figure, which represents a 
code from a particular category DMSlXK , has a finite value within the range 
0 <  V  <  Vmax, where

^max =  (M  -  1) X  (7 -  1) X  (K  -  1) (6.2)

is the volume of the respective COS. This limitation is one of the arguments 
suggesting the possibility to find an optimum volume. Further considerations in 
this respect are given in the following subsections through a number of examples, 
used to illustrate the geometrical interpretation of the CIC.

6.2.1 The CIC of D 2 S 2 X 2  Structures

The D2S2X2 category 
contains the lowest complexity 
level codes whose operational 
space has the minimum non-zero 
volume, Vmax =  1, according to 
(6.2). Without introducing any 

>■ particular order, the structures 
specified by Tables 5.6a,b are the 
first to be represented 
geometrically in Fig. 6.4.

3 The notation 2D will be used for short further in the presentation.
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The coordinates derived from the two tables are [(1,2,1), (1,2,1), (2,2,2), (2,1,2)] 
and [(1,2,1), (1,2,1), (2,1,2), (2,1,2)], respectively. The connection of points A, B 
and C determines the figure for Table 5.6a, while points A and B represent Table 
5.6b. Both tables specify codes which are equivalent to the conventional NRZ 
format. This can be related to the geometrical results by assuming that the zero 
volumes correspond to the ‘no-coding’ performance of the two structures, i.e. the 
codes do not produce symbol transformations and do not cause any modification 
of the spectrum. The comparison of the structures from Tables 5.6(c-f) is based on 
their geometrical representation, shown in Fig. 6.5a,b.

The coordinates of points A, B, 
C and D in Fig. 6.5a 
correspond to Table 5.6c and 
produce a tetrahedron with 
volume | (having assumed the 
sides of the COS to be of unity 
length). The other three 
structures, Tables 5.6(d-f) are 
represented by the same 
rectangle, ABCD in Fig. 6.5b. 
The only difference is the order 
of the points regarding the 
place of the combinations 
determined from (6.1) in the 
respective tables. The shape of 
the conventional Differential 
scheme, defined in Chapter 4 is 
also given in Fig. 6.5b. It is 
determined by points B, F, D 
and E, forming a rectangle 
identical to ABCD.

Fig. 6.5 Geometrical shapes of D 2 S 2 X 2  codes

The last five structures have a common PSD, which is the familiar NRZ 
spectrum. The geometrical results from Fig. 6.5 can be interpreted as follows: •

• The codes from Tables 5.6(d-f) and the Differential introduce redundancy 
through state-dependent decoding. This is assumed to correspond to the 
larger area of the figures compared to those from Fig. 6.4. The redundancy, 
however, is insufficient to achieve spectrum modification other than that of 
the Differential, shown in Fig. 4.7b, for unequal input symbol probabilities.
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• The structure, which gives the 3D volume in Fig. 6.5a, differs from the 
other four in the amount of redundancy introduced, hence the non-zero 
volume. By careful investigation of the code’s performance, however, it can 
be shown that the increased redundancy has contributed only towards 
achieving some more complex transformations, at the expense of certain 
ambiguity being possible for particular input sequences.

Obviously the coding ability, measured as CIC volume of which is associated 
with the higher redundancy, is still insufficient to produce any spectrum 
modification for equiprobable input symbols.

Similar reasoning can be applied to those codes from the D2S2X2 category 
which can affect the spectrum, as discussed in Section 5.2.1.2 and shown in Fig. 
5.4. It turns out that all of the examined structures, whose spectrum is different 
from the conventional NRZ, produce geometrical figures with zero volume. The 
results can be explained by assuming that such structures do not introduce 
additional redundancy and the spectrum modification effect is achieved entirely at 
the expense of increasing the ambiguity in the process of symbol transformation. 
The various areas of the 2D figures corresponding to these codes can be 
interpreted as being proportional to the degree of ambiguity introduced for 
particular changes in the respective PSD.

It is difficult to show the shapes representing all investigated structures, 
but the coding schemes discussed next, provide sufficient basis to answer the 
question: ‘What is the optimum CIC volume and which are the codes with such 
an information capacity?’ . The number of points, which determine the shape of a 
coder, from the D2S2X2 category is four. (In the general case, this number is 
equal to M  x I.) A figure with a non-zero volume exists only when the four points 
do not belong to the same plane.

For this category the 3D 
shape with non-zero 
volume, representing a 
code, is a pyramid, whose 
vertices are four of the of 
the 8 points, which 
determine the COS. It can 
be proven that the 
maximum volume
pyramid is a tetrahedron 
with all sides being
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F ig . 6 .6b  Maximum volume for a D 2 S 2 X 2  scheme

diagonals of the squares 
limiting the COS. In this 
case there are two possible 
configurations, which are 
shown in Fig. 6.6a,b. The 
two sets of coordinates, 
which correspond to the 
vertices of the two 
tetrahedrons, can be 
identified as codes, whose 
definitions are given in 
Tables 6.1a,b.

*1 S2 s m

0 0, s1 b s2 '1 O' 'o '
0 1 1

1 0, s2 1, s1 0 1 0
1 0 1

(a)

Dm s i s 2 s m

0 0, s2 1, s1 o
1

° 
^1 "0"

1

l 0, s1 1, s2 1 0 
o 1.

0
.1 .

(b)

Table 6.1 Maximum-volume D2S2X2 structures

The codes from these two tables are easily found to produce the PSD of the 
conventional NRZ, i.e. the same as that of the Differential. Simple calculations 
show the volumes of the tetrahedrons in Fig. 6.6 are Assuming this to be the 
optimum CIC measure for the D2S2X2 category, the results confirm the 
conclusions reached in Chapters 4 and 5 about codes from this complexity level. 
In other words, the maximum redundancy, which can be introduced through 
structures from this category, is not sufficient to modify the spectrum of the input 
sequence, with equiprobable symbols, without also introducing ambiguity in the 
coded signal. The use of state-dependent decoding, however, allows some 
modifications of the PSD to be achieved for unequal input symbol probabilities.

There are more than two codes, whose 3D shapes are those from Fig. 6.6. 
This can be seen by considering that the two pairs of combinations JA2),
Dm,s2,X 1)} and A^), Dm,s2,X 2)}, corresponding to the vertices of the
tetrahedrons in Fig. 6.6a,b, can be positioned in several different ways in columns 
$i and s2 in the respective ‘Code’ tables. Not all versions give valid coding 
schemes and the four which do have been found equivalent to those from Tables 
6.1a,b.
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In summary, the evaluation of the CIC for the D2S2X2 category shows 
that the 3D volume is an adequate integral measure of the coding capabilities of 
different structures. The use of this measure in the comparative assessment of 
codes from this complexity group allows the relation between the information 
redundancy introduced by a code and its ability to modify the spectrum to be 
revealed. Finally, it has been demonstrated how the evaluation of the CIC makes 
it possible to determine optimal coding schemes. For this complexity level, four 
codes have been identified as optimal according to the volume of their 3D shapes, 
given in Fig. 6.6. As their performance is equivalent to that of the Differential, it 
can be expected that the larger CIC of the schemes specified in Tables 6.1a,b 
indicates a certain degree of superiority, which could be utilised in the form of a 
simpler state-dependent decoding, for example.

6.2.2 Evaluation of the CIC of Codes From the D2S2X3 Category

The number of coding schemes at this complexity level is much larger than 
that of the previous category. This is why it is impossible even to summarise a 
complete investigation of all structures within the limits of this presentation. The 
selection of codes from the D2S2X3 category, described in Chapter 5, is used in 
this section to illustrate the CIC measure applied to codes from a COS of size 

^ m a x  =  1 X  1 X  2 =  2.

The usual code to be considered first is AMI. Its 3D shape, with 
coordinates derived from the (Dm,sm-, X mi) combinations in Table 4.7, is shown 
in Fig. 6.7. Most predictably, this popular scheme, which achieves the low- 
frequency suppression, while preserving the unique decodability feature, is 
represented by a 3D figure with a non-zero volume. The CIC measure of AMI, 
associated with this figure, is  ̂ (assuming the size of the COS is 2).
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The assessment of other codes from this category, whose spectral density 
plots are shown in Fig. 6.8, reveals various relations between the respective 
geometrical figures and their spectrum shaping capabilities.

Fig. 6 .8  A selection of PSD plots from the D2S1XZ category

The shape ABCD in Fig. 6.9a, for example, corresponds to a code producing the 
NRZ plot, (8) from Fig. 6.8. Its zero volume represents the absence of spectrum 
modification. All investigated coding structures, which give the NRZ plot, 
correspond to rectangular or triangular 2D figures. The ones, which introduce 
some degree of ambiguity, are represented by planar shapes with areas smaller 
than that of the ABCD rectangle in Fig. 6.9a. One intermediate conclusion from 
the above results is to omit the lower complexity level structures when applying 
the CIC evaluation method to a particular category.

A 1

Fig. 6 .9 a  Codes with zero volumes and low spectrum shaping potential

The two triangles, ABC and ADE, shown in Fig. 6.9b, correspond to the codes 
specified in Tables 5.12a,b, respectively. The zero volume of the two shapes is in
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accordance with the fact that the redundancy introduced by the two schemes is 
insufficient to produce any significant modification of the PSD. The noticeable 
changes of the two spectra (5) and (7) in Fig. 6.8, however, indicates some coding 
capability of the schemes from Tables 5.12a,b, which can be associated with the 
area of the two shapes in Fig. 6.9b.

k '

Fig. 6 .9b  Codes with zero volumes and low spectrum shaping potential

The last two structures from this 
category to be assessed are Duobinary and 
the one specified in Table 6.2. The 
geometrical shape of the latter is shown in 
Fig. 6.10, while that of Duobinary is 

determined by points B, E, D and F in Table 6.2 A sample D2S2X3 code 
Fig. 6.9a.

D m *1 *2 Z mm

0 - 1 ,  s2 0, s2 0 1 
0 1 0

l - 1 »  S2 +  1, ^ 0 1 
.1 o.

- 1

.+ 1 .

The two figures can be associated with the respective CIC through the 
following considerations. The redundancy introduced by the Duobinary scheme 
provides for the familiar reduction of the coded signal bandwidth, plot (3) in Fig.
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6.8. The spectrum shaping, however is achieved by the use of state-dependent 
decoding plus the introduction of some ambiguity. This explains the zero volume 
of the code’s geometrical figure and indicates the possibility to find another 
structure from the same group, which achieves the same bandwidth effect, 
without the introduction of ambiguity, i.e. by having bigger CIC. The other code 
represents the maximum possible PSD modification for this category: suppressed 
low-frequency components and reduced bandwidth combined in plot (9), Fig. 6.8. 
This is reflected in the volume of its 3D shape, Fig. 6.10, which is jL The smaller 
information capacity measure of this code, compaxed to that of AMI, confirms the 
superiority of the latter. AMI achieves the familiar spectrum modification, shown 
as plot (1) in Fig. 6.8, without the ambiguity of the code from Table 6.2.

Despite their relatively small number, the examples selected to illustrate 
the method for evaluation of the CIC for this group, have demonstrated the most 
typical relations between the spectrum modification capabilities and the 
geometrical shapes of various D2S2X2 structures. With the increase of complexity 
the 3D interpretation of the CIC for higher level categories becomes difficult to 
show as drawings. This does not affect the validity of the evaluation method, but 
a powerful computational environment is required for the accurate specification of 
the geometrical figures. To avoid complexity in the presentation of the results, 
only a few codes from other categories are described in the next subsection.

6.2.3 The CIC of Structures from Higher Complexity Levels

The results from the simulation of D2S2XA codes, discussed in Chapter 5, 
have indicated that, in spite of the large variety of PSD shapes, only a relatively 
small number appear to be of practical interest. Plots (4) and (6) in Fig. 5.6b 
have been mentioned as showing a significant degree of spectrum shaping, 
achieved with codes, whose specification is given in Tables 6.3a,b, respectively.

Dm 3i s2

0 00, s2 01, s2 0 f '00'
0 1 01

1 11, s2 11, 0 1 11
1 0 11

Si s 2

0 01, s2 00, s2 0 1" " o r
0 1 00

1 11, s2 11, 0 1 n
1 0 l i

a b

T a b le  6 .3  Sample code structures with identical 3D volumes

The 3D volume, ABCD , shown in Fig. 6.11, represents the information capacity 
of these two codes. This example demonstrates the possibility of different codes to
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have identical volumes, although the spectra they produce are different.

Such a result confirms that the CIC is an adequate measure of the coding 
capability, which can be viewed as producing certain ‘amount of change’ of the 
signal spectrum, irrespective of the actual shape of individual spectral density 
functions. In other words, for a given amount of redundancy, therefore CIC, it is 
possible to find codes which modify different spectral features of the coded signal. 
Thus, at a particular complexity level, the coding capacity of a group of structures 
may allow some of them to reduce the bandwidth only, while others to change the 
proportion of certain frequency components, without affecting the width of the 
spectrum. In addition, it is possible to observe the relation between different 
values of CIC and different degrees of modification of the same spectral feature 
(e.g. different levels of suppression of the low-frequency components). In fact 
many of the effects, mentioned above, have been discussed in Chapter 5 with 
respect to the collections of the PSD plots produced by schemes from the D2S2XA 
and higher complexity categories.

The coding scheme, specified in 
Table 6.4a, requires only a brief reference.
This structure can be easily recognised as 
being equivalent to the Manchester code 
and its familiar PSD is given as plot (8) in 
Fig. 5.6b.

This scheme is represented by the triangle ACE in Fig. 6.12. The zero 
volume indicates that the code from Table 6.4a does not belong to D2S2X4: 
category as it requires only one state. Indeed the same output words are assigned 
to each input symbol regardless of the coder state. This example suggests the 
possibility to interpret geometrically the inappropriate appearance of a lower

Dm «1 ¿2 Sm

0 01, s2 01, S2 0 1" ' o r
0 1 01

1 10, s2 10, s l 0 1 10
1 0 10

Table 6.4a A Manchester type scheme
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category code4 at a higher complexity level.

It can be shown, however, that plot 
(8) from Fig. 5.6b represents two-state 
Manchester type schemes, too. One of 
them is specified in Table 6.4b. The code 
exhibits properties of a differential scheme.
It transforms long sequences of input 0-s 
into sequences of 01 code words, while long 
sequences of input 1-s are coded, as alternating pairs of output symbols, 10 and 
01. Although the structure from Table 6.4b has the same PSD as that of the 
Manchester code, it has some additional properties which come into effect for 
unequal input symbol probabilities. Such a result can be interpreted as some low 
degree of spectrum modification capability, which at this complexity level is 
reflected by the CIC represented as the pyramid ABCD in Fig. 6.12. The volume 
of the 3D figure, which measures of the COS, is relatively small and suggests 
the possibility to find more efficient schemes in the D2S2XA category or codes of 
lower complexity, which perform equivalently to schemes from higher categories 
with non-zero, but very small volumes, relative to the size of the operational space 
within which the latter are specified.

Two more codes from the D2S2XA category are considered with respect to 
their information capacity measures. One of them is the CMI scheme, which has 
been specified in Chapter 4 and the other has been given as Table 5.13 in Chapter 
5. The plots produced by the two schemes have been shown in Fig. 5.6c. The two 
PSD-s have been described as very close to the optimum spectrum modification 
level achievable within this category5. The 3D shapes, representing the CIC of the 4

4 The Table 6.4a structure can be transformed into an equivalent D 2 S 1 X 4  scheme.

Dm 51 s2 s m Zmm

0 01, s2 10, s2 o r ' o r
0 1 10

1 10, s2 01, s1 0 1 10
1 0 01

Table 6.4b A Manchester type scheme
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CMI and the code from Table 5.13 are shown in Fig. 6.13(a and b), respectively.

The similarity between the spectral shaping effects achieved by the two 
structures reflects in their geometrical representation. The volumes of the shapes 
are | for the CMI and  ̂ for the other code. This result complements the 
conclusions about the PSD shapes from Fig. 5.6c, given at the end of Subsection
5.2.1.2. It confirms the suggestion that the coding scheme from Table 5.13 
achieves a better shape5 6 of the spectrum, but the effect is produced by 
redistribution of the code’s redundancy, rather than having larger coding 
capability.

The interpretation of the information capacity of the two codes, discussed 
above, can be summarised as follows. The CMI and the Table 5.13 codes 
introduce a certain amount of redundancy, which is associated with their coding 
capability through the 3D shapes from Fig. 6.13. The CMI volume of  ̂ represents 
CIC, which allows for some degree of spectrum modification plus error detection7

5 The conclusions have been reached empirically, by examining all appropriate spectra.

6 in terms of low frequency suppression and bandwidth reduction
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possibilities. The information capacity of the other code is represented by its 
volume of which appear to be sufficient for spectrum modification, but cannot 
provide for error detection capabilities. The above considerations can be extended 
one step further by suggesting some approximate evaluation of certain spectral 
and structural features of a code. Comparing the two graphs from Fig. 5.6c it is 
possible to assume that plot (1) corresponds to a smaller ‘amount’ of spectrum 
modification than plot (2). At the same time, if the spectral features of PSD (2) 
are the only ‘achievement’ of the code from Table 5.13, then the coding 
capability, determined by a volume of can be considered the exact CIC required 
to produce the ‘half-bandwidth bell-shape’ spectrum. In this respect, the CIC of 
CMI can be represented as Vsp =  Vsp +  Ver. The first part of the volume, Vsp, 
where 0 < VSp < can be viewed as the amount of information capacity required 
to produce the shape of the CMI spectrum. The remaining part, Ver =  | — Î sp can 
be associated with the error-detection capabilities of CMI.

The evaluation of the CIC for the purposes of comparative assessment of 
codes can be generalised by assuming the COS volume of any category is 
Vmax =  1- As this, in effect, is normalisation of the results, the coding capacity 
measures of the last two codes become  ̂ and | for the CMI and the Table 5.13 
structure, respectively. The normalised volumes allow codes from different 
categories to be compared with respect to their spectrum modification capability. 
In this case it is interesting to consider the Modified Duobinary scheme, specified 
in Table 4.11, Chapter 4. Its PSD graph, shown in Fig. 4.12, is almost identical to 
that of the code from Table 5.13, regarding the spectrum shaping effects. The 
important difference, however, is revealed by the CIC of the Modified Duobinary. 
The corresponding 3D shape is given in Fig. 6.14 and its volume is 2.

>

A
(2.4.2)

F

(2 .2 .2K

B(1.3.1)

E(2,2,3)

C(l,3.2)

G (l.l ,l )  B(1.1.2)

F ig. 6 .1 4  The 3D volume of the Modified Duobinary code 7

7 The invalid code word 10 may be used for frame alignment and phase synchronisation.
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The full COS capacity for the category £>254X3, which contains the 
Modified Duobinary structure is (2 — l ) x (4  — l )x (3  —1) =  6. This allows the 
normalised information capacity measure of the code to be determined as |. The 
result shows that it is the larger coding capability of the Modified Duobinary, 
compared to CMI and the Table 5.13 codes, which allows the spectral features of 
the latter to be achieved without degrading other performance parameters, like 
the susceptibility to errors, for example. Similar reasoning applies to the sample 
structures considered next.

In the discussion of various coding schemes from the £>252X2 and the 
£>252X3 categories (Chapter 5) a few structures have been mentioned to illustrate 
the spectrum shaping limitations for a particular complexity level. Graphs (4) and 
(9), from Fig. 5.5b, for example, which feature significant PSD modification 
effects, have been found to represent invalid code specifications. Based on direct 
examination of a large number of £>252X3 schemes, it has been concluded that 
the shape of the two spectra8 is modified to a degree greater than what is possible 
at that complexity level, for valid code structures (e.g. plots (1), (3), (5) and (7) 
from Fig. 5.5b). In other words, the spectral features of PSD-s (4) and (9) have 
been produced at the expense of essential structural features of the respective 
schemes, degrading the validity of the latter below the level of practical interest. 
The applicability of the CIC evaluation method is demonstrated by showing that 
the conclusions, mentioned above, can be based on accurate estimation of the 
coding capabilities of different structures. The two schemes discussed below are 
from the D254X4 category and their spectra are plots (1) and (2) in Fig. 6.15.

Fig. 6.15 Sample PSD plots of structures from the £>254X4 category

8 with respect to low frequency suppression and bandwidth reduction
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The first one has been specified as version (b) in Table 4.17, Chapter 4 and the 
second is given by Table 6.5.

«1 s2 s 3 54

0 1 0 0 00
0 0 0 s2 0 0 s4 0 0 ¿4 0 0 s2 0 0 0 1 00

0 0 0 1 00
0 1 0 0 00
0 0 1 0 00

1 cr
cooo 1 0 s3 0 0 0 1 0 0 1 0 10

1 0 0 0 00
1 0 0 0 01

Table 6.5 A  sample D2S4X4 structure

The coding capacity of the structures producing the two PSD-s are represented by 
the 3D shapes shown in Fig. 6.16 a and b, respectively.

A  ii
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Although the calculation of the volumes of the two figures is more involved than 
for the previous examples, it is still achievable without the use of computing 
facilities. The result in normalised form is ^  for both shapes in Fig. 6.16. The 
code, which gives plot (2) is regarded as producing a higher degree of spectrum 
modification9 than the code with plot (1), for the same information capacity 
measure. The comparison suggests that the spectrum shaping effect of the former 
is achieved at the expense of its structural characteristics. Indeed, a closer 
examination of Table 6.5 reveals that it is an invalid structure10.

The discussion of the last two codes indicates the limitations in presenting 
the simulation results, imposed by the lack of theoretical basis allowing suitable 
evaluation of the spectral and structural features of codes. The difficulties in 
estimating the CIC measures and their relation with the spectrum shaping 
capabilities of codes increase rapidly for categories of higher complexity levels. 
This is demonstrated by the 3D shapes representing the new codes proposed in 
Chapter 4 and shown in Fig. 6.16. The complexity of the shapes, representing the 
information capacity of coding schemes and the respective PSD plots, requires 
strict and accurate analytical definition, relating the coding capability volume to 
the spectral and structural features of codes. Although, in some cases, it may still 
be difficult to illustrate the CIC of a particular structure with a suitable drawing, 
in principle there is no restriction to the possibility to evaluate the respective 
volume, if adequate computational resources are available. The development of 
the complete theoretical frame, which would allow more precise comparative 
assessment of the analysis results, is a matter of considerable additional research 
effort. The purpose of this chapter is to outline the concept of the suggested CIC 
evaluation method. The main intention is to illustrate the possible development of 
the uniform assessment and analysis techniques, discussed in the thesis, into a 
complete systematic approach towards the research and design of digital codes.

9 Suppression of the low frequency components for a bandwidth of half the code-symbol
rate.

10 States Sj and S3 transform consecutive input 1-s into an all-zero sequence, which is 
indistinguishable from one representing consecutive input 0-s.
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7. BIN ARY M ULTIPLEXED CODING FOR MULTICHANNEL

TRANSMISSION

The capabilities of the general spectral analysis procedure can be 
demonstrated through its implementation for the assessment of a new coding 
scheme suggested and described in this chapter. The most essential features of this 
scheme are:

• use of Pseudo-Random Binary Sequences (PRBS);
• possibility to combine multiplexing and line coding.

The coding method presented below is based on the principles of Spread 
Spectrum (SS) and is related to Code-Division Multiplexing (CDM). However 
there are some major differences in both, the use of SS sequences and the 
implementation of codes for multiplexing. The main ideas are further revealed 
after a brief introduction to the principles of spectrum spreading.

7.1 Basics of SS for Coding

SS techniques are employed to achieve advantageous reception of signals in 
the presence of interference, by the means of selective processing. Prior to 
transmission the energy of the information signal is distributed over a frequency 
range, much wider than its original bandwidth, Fig.7.1 below.
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Fig.7.1 Spectral density functions of the information and the spreading signals

The signal at the receiving side undergoes processing which is uniquely related to 
the spectrum spreading procedure used by the transmitter. As a result the 
information signal is transformed back to its original frequency range. The same 
process spreads any noise and interference components of the received signal over
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a spectrum, much wider than the bandwidth of the information signal. 
Consequently the amount of unwanted signals within the frequency range of 
interest is significantly reduced.

Spectrum spreading is accomplished by the use of binary sequences, known 
as codes. Some of the most popular SS techniques are Direct Sequence (DS) 
modulation, frequency hopping and time hopping. These and other methods of SS 
communications have received considerable attention in recent years and the 
relevant theory has been well documented, [12,13,14,35]. Although the question 
about the ‘extraordinary’ capabilities of SS systems is still under debate, [36,37] 
one thing has become clear: spectrum spreading can be used to reduce 
significantly the effects of interference, [34]. A general view, which appears to be 
widely accepted, is that a SS system, which is not designed for any specific 
purpose, offers no better performance than conventional modulating systems. In 
some cases, however, it is possible to achieve certain conveniences by
implementing SS rather than other modulation techniques.

Suppression of deliberate narrowband interference is a typical area of SS 
applications. Although the signals in a SS system occupy a very large transmission 
bandwidth, this is compensated for by the increased ability to reject unwanted 
signals. As a result it becomes possible to have many signals simultaneously using 
the same frequency range.

This presentation does not aim to cover all problems related to SS
communications. The purpose of the brief overview is to serve as an introduction 
to some fundamental aspects of spectrum spreading which would facilitate the 
forthcoming discussion of the suggested code multiplexing technique.

7.1.1 Frequency Distribution by Using DS Modulation

DS modulation is one of the most common methods for spectrum
spreading. Its principle can be described in a simple form as follows: The data
signal, d(t), which is a binary pulse sequence, is multiplied1 with a PRBS, c(t) 
(also known as the coding sequence), whose pulse repetition rate, F c is many 
times higher than that of the data signal, F The spectrum of the resulting 
signal, s(t) has at least the width of the code-sequence spectrum. The main effect 
of using SS is achieved at the receiver, where the incoming signal, r(f) is 
multiplied with a replica of the code. This recovers the information signal back 
into its original bandwidth. All unwanted signals, which can be viewed as noise, 
n(t) added to s(t), are spread over the spectrum of the code sequence. As a result

1 In practice the process of multiplication with the code sequence is some suitable 
operation (usually modulo-2 addition).
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only a fraction of the interference will affect the information signal, which is the
actual advantage in using SS and is usually evaluated as the processing gain, Gv

B ^
of a SS system. This parameter is proportional to the ratio -g -2-, where Bc and 
axe the bandwidths of the code sequence and the data sequence respectively. The 
processes involved in a DS SS system are illustrated in Fig.7.2. The simple 
analytical expressions, given below, represent the main signal transformations, 
describing the principle of spectrum spreading.

s(t) =  d(t) c(t) (7.1a)

r(f) =  s(t) +  n(t) =  d(t) c(t) +  n(t) (7-lb)

r(t) c(t) =  d(t) c2(t) +  n(t) c(t) =  d(t) +  n(t) c(t) (7-lc)
( c 2(i) =  1 assumes maximum autocorrelation}

transmission
channel

Î
n(t)

(interference)
local
PRBS

generator

Fig.7.2 A general diagram of a DS SS communication system

The power advantage of the signal over the unwanted interference after 
decoding at the receiver can be shown through the following simple considerations.
The data pulse interval and the code pulse interval can be expressed as T ¿= y- 
and T c= 4-, respectively and are related through the number of code pulses, N
used for every data bit, i.e. T^ =  NTC. Assuming the bandwidths, Bj  and Bc are 
directly proportional to the respective pulse repetition rates, F^ and F c, the 
former can be determined from the corresponding spectral density functions for 
rectangular pulse waveforms.

SJJ) =  T ^
sin^fTd)^2

*fTd J
and Se(f) =  Tc

sin{nfTc)Ÿ
* f T c ) (7.2)

The improvement of the system performance due to spectrum spreading can be 
evaluated by comparing the signal-to-noise ratio at the input, S/N-m to that at
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the output, S/Nont. In these expressions S corresponds to the power of d(t), while 
N jn corresponds to the total noise power of the signal n(t), which is distributed 
over Bc as a result of the process of despreading, given by (7.1c). The fraction of 
the noise power, iVout which remains within the bandwidth of the information 
signal at the output of the filter in Fig.7.2, can be related to the total noise power 
through 7Vout =  -rr-N-m. Finally the power advantage of the data signal over the

C

unwanted interference, achieved by spectrum spreading, is given by the processing 
gain of the system as:

„  (S /JV out) B c
”  ~  (S/N-J ~ Noat -  Bd

The relation given by (7.3) shows that the performance improvement in a SS
system, for a fixed amount of interference, is proportional to the ratio of the

F
transmission rates, jr-. This indicates the need to use sufficiently long code 
sequences to make the implementation of SS techniques of practical interest. The 
codes which are in common use at present are of great variety and posses a 
number of special features. A brief summary of the most typical of the spreading 
sequences is given in the next subsection.

7.1.2 Spreading Sequences

The best results from spectrum spreading are achievable by using purely 
random sequences. In practice, however, only pseudo-random codes can be 
employed. This is due to the requirement of having an exact replica of the 
spreading sequence available at the receiving side. The code signals in real SS 
systems are usually generated by shift registers whose most valuable property is 
the possibility to produce long sequences with relatively simple circuits2. 
Regardless of their origin, the spreading sequences should posses certain 
characteristics, the most important being:

• features of randomness;
• simplicity of generation.

The requirement for randomness ensures appropriate correlation properties, which 
provide for the most significant feature of the codes for multiuser SS systems — 
orthogonality.

2 Other methods for generating PRBS-s also exist.
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Spreading sequences are usually produced by linear Shift-Register 
Generators (SRG-s). The length and the cycle of an SRG sequence depends on the 
number of stages and the feedback connections. Particular shift-register circuits 
generate PRBS-s whose cycle of repetition is N  =  2”  — 1, where n is the number of 
stages of the SRG. Such sequences are known as maximal-length codes3 and they 
exhibit properties very suitable for spectrum spreading. Unfortunately, the 
number of different m-sequences for a given n is relatively small, which restricts 
their use in multichannel communication systems.

Various alternative solutions to this problem have been found with 
different degrees of compromise with some of the properties of the codes. One of 
the well known results is the set of Gold sequences, [12,38] which can be 
generated by simple modulo-2 addition of the outputs of two m-sequence SRG-s. 
Gold codes have reasonably good correlation and overall randomness properties. 
The number of different Gold sequences for a given cycle length, N  is greater than 
the corresponding number of m-codes. A simple example, which illustrates the 
two types of sequences is given below. The circuit diagrams in Fig.7.3 show two 
possible configurations of a 4-stage maximal-length SRG.

Fig. 7.3 4-stage SRG circuits

The sequences produced by the two circuits are of length N  =  24 — 1 =  15 
and the second one is equivalent to the first in reverse order, i.e.:

a) 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0
b) 0 0 0 1 0 0 1 1 0 1 0 1 1 1  1.

There are analytical expressions which gives the exact number of all possible m- 
sequences for a given size of the SRG, [12]. For n — 4,5,6 the respective numbers 
of m-sequences are N  =  4,6,4, while at the same time the corresponding number of 
Gold codes for n =  4 is 272. Three m-sequences are shown as pulse waveforms in 
Fig. 7.4 for N =  7,15 and 31. (The code-symbol interval is assumed the same for 
the three samples.)

3 m-sequences or m-codes
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b) n=4. N=15
1 1 1 1 0 1 0 1 1 0 0 1 0 0 0

a) n=3, N=7 
1 1 1 0  1 0  0

c) n=5. N=31
1 1 1 1 1 0 1 1 0 0 1 1 1 0 0 0 0 1 1 0 1 0 1 0 0 1 0 0 0 1 0

F ig .7 .4  Complete cycles of 3 m-sequences of different length

The set of Gold codes produced by modulo-2 addition of sequence a) and all 
shifted versions of sequence b) above is:

1 1 1 0 0 1 1 0 1 1 0 0 1 1 1
1 1 0 1 0 0 1 1 0 0 1 0 1 1 0
1 0 1 1 1 0 0 0 1 1 1 0 1 0 0
0 1 1 0 1 1 1 1 0 1 1 0 0 0 0
1 1 0 0 0 0 0 0 0 1 1 1 0 0 1
1 0 0 1 1 1 1 0 0 1 0 1 0 1 0
0 0 1 0 0 0 1 0 0 0 0 1 1 0 0
0 1 0 1 1 0 1 0 1 0 0 0 0 0 1
1 0 1 0 1 0 1 1 1 0 1 1 0 1 1
0 1 0 0 1 0 0 1 1 1 0 1 1 1 0
1 0 0 0 1 1 0 1 0 0 0 0 1 0 1
0 0 0 0 0 1 0 0 1 0 1 0 0 1 0
0 0 0 1 0 1 1 1 1 1 1 1 1 0 1
0 0 1 1 0 0 0 1 0 1 0 0 0 1 1
0 1 1 1 1 1 0 0 0 0 1 1 1 1 1

A full overview of the huge variety of different spreading sequences is not 
intended in this work. The main purpose of this section is to present briefly the 
main concepts of spectrum spreading, especially with respect to their 
implementation for multichannel communications.

7.2 SS for Simultaneous Signal Transmission

The improved interference suppression, achievable through spectrum 
spreading, has shown a great potential for applications where many users 
communicate simultaneously, over the same transmission media, occupying the 
same frequency bandwidth. The main consideration, regarding such multiuser
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systems, is to provide a set of spreading codes which would allow for reliable 
detection of the required signal, while ensuring a successful rejection of the 
combined interference effects from the unwanted signals of the other users. The 
most significant features associated with spreading sequences, suitable for such 
applications, are the high autocorrelation and low crosscorrelation values.

The SS methods used for multichannel communications are known as 
Code-Division Multiple Access, (CDMA). There is a great variety of techniques 
for simultaneous access of the transmission medium. For the purposes of this 
presentation, however, the basic principles can be introduced through a brief 
description of DS CDMA.

The main idea is to provide all users with unique codes which are 
approximately orthogonal. A simple illustration of the communication process in 
the case of DS CDMA is given in Fig.7.5.

di(t)ci(t) dk_](t)ck_1(t)

dk(t)ck(t) t
transmission 

_____^ medium
n(t) a i

r(t)
X r g(t)

W J ------- w

*

dk+i(t)ck+i(t) dN(t)cN(t) Ck(t)

Fig.7.5  Multichannel SS transmission for DS CDM A

The data signals, d-(t), (i =  1 of N  users, communicating simultaneously on
the same transmission channel, are individually multiplied with the respective 
code sequences, c-(t). The resulting signals combine to produce the signal r[t) 
which is received by the communicating stations, i.e.:

rW =  J2 di(t -  °i) ct(* -  ei) +  » (0  (7-4)
i=l

where n(t) is the additive noise in the transmission channel. The random phase 
parameter, 6̂  in (7.4) indicates that in the general case the users of a CDMA 
system communicate asynchronously. The process of recovery of the data signal,
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d^t) at the receiving side takes place when the incoming signal is synchronised 
with the locally generated replica of the code, ck(t), i.e. 6  ̂=  0. The result after 
integration is given by the following expression:

T

g{t) = dk(t) + ̂ J2 di(t- ei)ci(t- ei)ck(t) + T\n̂ ck(*) dt (7-5) 
I p l  0

The second and the third terms in (7.5) are the interference which is spread over 
the frequency bandwidth of c^t). Most of the interference components from other 
users and the background noise are filtered out with respect to spectrum of d^t).

The implementation of SS techniques for multiuser access of the same 
transmission medium simultaneously or by occupying a common frequency band, 
or both is usually referred to as CDM. A considerable number of problems have to 
be addressed in the design of a SS CDMA system. Some of the most significant 
are:

• number of codes of a particular length with good
autocorrelation, 
orthogonality and 
randomness;

• synchronisation;
• near-far effect;
• multipath transmission.

A major condition for solving these problems is the availability of wide 
transmission bandwidth4. Fibre optic systems provide a very suitable environment 
for multiuser transmission based on CDM. Interesting examples are given in 
[38,39]. The type and the number of codes available are extremely important and 
these matters have been well studied and thoroughly investigated in the literature 
[12-14]. In practical systems the most difficult problems to overcome are related to 
the near-far effects and synchronisation. The possibility of correct decoding 
depends heavily on the power contribution of the different sources to the signal in 
the communication channel. This brings the requirement to ensure careful balance 
in combining the coded signals on the transmission line. Additional complications 
arise from asynchronous multiplexing of the SS signals. Various solutions to these 
problems have been suggested and some original results are given in [39,40].

4 Required for the use of sufficiently long coding sequences with reasonably high 
information transmission rates.
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7.3 SS Multiplexing for Multichannel Transmission

PRBS-s for spectrum spreading have been used very successfully in some 
cases of interference suppression and in certain multiple access communication 
systems. The problems associated with SS applications are much easier to solve 
for balanced5 and synchronous6 transmission. Although the possibilities for useful 
implementation of SS techniques in point-to-point communications may not seem 
to be significant, the results from spectrum spreading applications in other areas 
have often been so surprising and promising, that CDM in this type of 
communications is still worth some research effort.

A new channel multiplexing method, based on the principles of spectrum 
spreading is proposed in this section. The method is further enhanced to 
incorporate some objectives of line coding, which is also discussed below. The 
main concept is a combination of the processes involved in conventional Time- 
Division Multiplexing (TDM) and DS CDMA.

In the time domain the method can be described as a simultaneous 
transmission of binary signals, d(kT) from N  different information channels, so 
that N  bits, one from each channel, are transmitted for the duration of one bit 
interval, T. This is achieved by assigning unique code sequences, each one 
representing a single bit (according to rules discussed later in this section). For 
simplicity of the presentation it is assumed that all signals have the same 
transmission rate, i.e. equal bit intervals. The actual combination of N  codes for 
every bit period can be done in many different ways and the ones, which are of 
practical interest have to be determined through a careful balance between the 
complexity of the system and its efficiency.

In a conventional DS SS system the simultaneous transmission of the coded 
signals from all channels results in a multilevel signal being received by the 
communicating users. As mentioned earlier, in the case of a FO system, where the 
only interference comes from the signals of the unwanted channels, the 
configuration of the communication lines is of crucial importance as a proportional 
contribution of the signal power by the different sources has to be ensured, [38].

The use of a multilevel signal for the sole purpose of multiplexing a 
number of binary channels is of no great practical value, especially in a FO 
communication system. It appears possible, however, to preserve some of the 
benefits from implementing SS techniques, without compromising the advantage 
of binary signalling. A Binary-Multiplexed Code (BMC) technique, is suggested in

5 Equal (or proportional) contributions from all sources to the signal on the 
communication line.

6 Coincidence of the symbol intervals in the code sequences of all users.

227



this chapter to achieve this goal.

Some straightforward ideas about a BMC using PRBS-s are described in 
[40], (Appendix-B). The technique presented in this reference is based on simple 
transformations of a multilevel signal, produced by direct addition of the 
spreading codes into a binary sequence, according to the following rules: If the 
number of multiplexed data channels is N, then the multilevel pulses, of duration 
one code symbol period, can assume any integer value from the range 0 -  N. The 
corresponding two level signal consists of pulses with a period of repetition and 
duration where x e {0 ,.. .,N}  is the value of the respective multilevel pulse. 
Obviously, such a simple transformation results in a significant increase of the 
required transmission bandwidth. Further processing of the multiplexed signal has 
been suggested in the same reference to overcome this disadvantage.

The efficiency of the two-level SS multiplexing technique, outlined above, 
can be improved considerably by adopting a different approach. It is based on the 
fact that the received signal in a DS CDMA system is usually discriminated 
against a suitably determined threshold level. Therefore the process of recovery of 
the original information signal is performed by applying the unspreading code 
sequence in effect to a two level signal. These considerations suggest that in a 
communication system, where the signals from all data channels are available at 
the transmitting side, it is possible to implement a SS BMC which includes the 
process of threshold discrimination of the multilevel signal, produced by additive 
combination of the respective code sequences. The resulting line signal is in a 
binary form which is preferred for most modern communication systems, 
especially those on optical fibres. The main idea of the suggested method for 
binary SS multiplexing derives from the fact that in multichannel point-to-point 
transmission the major interference factor is the signal contributions from the co-
channels. Theoretically, for error free communication the principles of spectrum 
spreading apply to the described method regardless of the transmission process.

7.3.1 The BMC Technique for Two-Level Multichannel Transmission

In the case of multiplexing N  binary information channels it is necessary to 
construct a set of at least N  spreading sequences. This number of codes is 
sufficient if the simplest form of binary data coding is adopted, i.e. a code 
sequence is sent for a symbol 1 and no sequence for a symbol 0. In most real SS 
systems, however, another code sequence is used to represent a binary 0. Often 
the second sequence is the inverse or the reverse of the first one. Thus, for the 
multiplexing of N  channels, N  different codes are required to represent the binary 
1-s of each channel and, eventually, N  complementary sequences for the 0-s. The
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diagram in Fig. 7.6a illustrates the basic processes involved in binary-multiplexed 
coding of data signals ¿¡(kT), i =  1, ..., N. The PRBS-s c^kT) are used for data 1 
and their inverse, c^kT), for data 0.

Fig. 7.6a Binary code multiplexer

Fig.7.6b A forward and reverse sequence generator

The signal a(kT) at the output of the summation block E is multilevel and is 
transformed into the binary signal b(kT) by the threshold discriminator J - . In 
this particular case the use of the inverted sequences is chosen only for the 
simplicity of illustration. No technical difficulties exist in constructing a 
multiplexer, which generates the reverse of the respective code sequences. This 
can be done by using the data signals to switch between two set of feedback 
connections for each SRG. The concept is illustrated in Fig.7.6b for a single data 
channel implementing a 4-stage SRG.

As already mentioned, the performance results of SS systems are of 
practical value if the code sequences are of sufficient length. Although some of the 
examples given later are based on relatively short PRBS-s, they are used only to 
illustrate the principle of the suggested method and do not restrict its generality. 
The implementation of long spreading sequences does not require directly 
proportional increase of the code multiplexer complexity. The latter depends on
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the number of SRG stages which is logarithmically related to the length of the 
codes.

As the number of m-sequences of length N  is smaller than N, Gold 
sequences are often used for a BMC. The set of Gold codes produced from a pair 
of maximal PRBS-s of length N  is N+2  (including the generating pair itself). 
Their autocorrelation and orthogonality properties axe satisfactory, [38] and the 
simplicity of their generation makes them attractive for vaxious applications. 
Assuming that the circuit in Fig.7.6a uses codes of length N, one possibility for its 
practical implementation is to add modulo-2 the m-sequence, produced by one 
SRG, to the phase-shifts of another m-sequence, produced by a second SRG and 
N  — 1 delay elements in series.

The BMC schemes, based on SRG-s and combinational logic circuits, 
provide a considerable potential for optimisation. It is beyond the scope of this 
work to discuss different code multiplexer designs. A large variety of practical 
circuits is possible and their performance depends on the specific set of spreading 
sequences used with a particular BMC.

7.3.2 Analytical Presentation of the Binary-Multiplexed Coding

The multiplexing procedure based on a set of coding sequences can be 
described analytically in a general form. It is helpful to start with a description of 
the sets of variables involved in the algebraic relations, as the main requirement is 
conformity with the arithmetic operations.

The information channels7, d-(kT¿), (i =  1,..., N  and k =  0 ±  1, ±  2 ,...) are 
binary signals. It is possible to represent the states of all data inputs, for the 
duration of one bit interval, Tj  as a row vector d =  [dj,...,d^], where di =  0 or 1 
for i =  1 ,...,N. Every data bit is combined with a sequence, ct- of N  code symbols, 
which is represented as a row vector C- =  [c,lv . .,c,-^]. The actual process 
combining di and C • can be expressed either as a conventional multiplication or as 
modulo-2 addition. In the first case the spreading of d^kT) results in Ci being 
transmitted for data 1 and 0 for data 0. In the second case data 1 is transformed 
into Cj, while data 0 becomes the inverse of the code sequence, C ■. Although 
multiplication has been adopted in the subsequent presentation (solely for the 
purpose of notational convenience) the generality of the resulting expressions is 
not affected. This allows the coding for channel i to be denoted as

diC i =  [dicib -- - idiciN~\ ( 7 -6 )

7 These will be also referred to as data inputs.
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The next step is the use of (7.6) in the analytical expression which 
represents the multiplexing of the set of code sequences C =  [C ■,.. .,Cjy]1 for a 
combination of data symbols d. Noting that C is an N  by N  matrix, the process is 
given by the following expression:

d x C  = di c?2 • *« djy
C2

CN

— \d]C y\-d2 C 2 +d NC n \ (7.7a)

The result from (7.7a) corresponds to the DS BMC illustrated in Fig.7.6a, as well 
as to the basic function of any CDM system in which the coded signals are 
combined additively. The expression in (7.7a) can be further developed by 
expanding the code matrix, C to determine the components of the signal a at the 
output of the multiplexer for a given combination of input symbols, d.

C11 c 12 • . .  c l N

a — d x C  =  ^ ¿ 1  ¿2  • . .  d N ^ x C21 c 22 • . .  c2N

c N l CN2 ■. .  c N N

r N
=  [ 1 t dici

1 i -  1

N

£  dici2 
1 =  1

N

H  d ic iN  
1 =  1

N

(7.7b)

The result for a is a 1 by iV vector whose elements, a - =  djC; - ( j  =  1,...,N ) are
J ¿ = 1 J

integers from the range of 0 to N  and represent the values of the multilevel signal 
produced through the BMC. A graphical illustration of such a signal is given in 
Fig.7.7 for the following example values:

JV =  7, ¿  =  [0 1 1 1 0 1 1 ]

C =

1 1 0 0 0 1 1 
1 0  1 1 0  1 0  
0 1 0  1 0  0 0 
1 0  0 1 1 0  1 
0 0 0 0 1 1 0 
0 0 1 0 0 0 1 
0 1 1 1 1 1 1

=  [ 2 2 3 4 2 2 3]

7 --

6 -- 

5 

4 

3 

2

1 --
N

0 1 2 3 4 5 6 7

Fig.7 .7  Multilevel signal values
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The last stage of the proposed BMC technique involves the transformation 
of the multilevel signal into the binary transmission signal b(kT). This is achieved 
by a thresholding operation which produces a two level output sequence 
b — [61?. . &j\r], for every input sequence a, according to the following condition:

fo r  a - < 4 -
’  2  fo r  j  =  V

fo r  a j >  f

The choice of an appropriate threshold value is of great significance and depends 
on the practical purposes and the set of spreading sequences.

The representation and the analysis of the binary SS multiplexing can be 
described in a general form by applying the unified assessment approach 
developed in Chapter 4. First it should be noted that for a given N  the number, 
M  of possible combinations of data bits at the inputs of the multiplexer, is finite, 
i.e. M  — 2N. These combinations can be represented as vectors D- (i =  1 M) ,  
which form the input symbol matrix D, defined as

' » I d n d 12 • . .  d lN

d 2
— d2l d22 •. .  d2N

d m dM l dM2 •• •  dMN_

(7.8)

Each vector Di is a different collection of simultaneous states of the input 
channels defined earlier as a row vector d. The matrix in (7.8) will also be referred 
to as the input word matrix and in the general case it contains all iV-digit binary 
numbers.

Now the process of code multiplexing can be represented analytically by an 
expression determining a matrix A, which collects all possible multilevel sequences 
corresponding to the complete set of words, which represent the data inputs:

A = D x C =

N  N
C  dljcil C  d\jci2

j, * = 1 i, * = 1 
N  N
1C d2jCil C  d2jCi2j,t = l j,t = 1

N
C  dijciNj,t = l 
N
C  d2jCiN

i, « = 1 (7.9)

N  N
C  dMjcn C  dMjCi2

ji « = i j, • -  i

N
C  dMjCiN

j< * = i

232



The mathematical operations in (7.9) comply with the conventions adopted at the 
beginning of this section. The multiplication, in particular, is determined 
according to the chosen set of codes and the method of their generation.

The last step in compiling the analytical description of the BMC is the 
presentation of the thresholding function. In effect this function transforms 
integers from the range of 0 to N  into the binary numbers 0 and 1 with respect to 
a suitably chosen parameter. The latter can be assumed equal to the maximal 
value of the multilevel signal, N in order to simplify the description of the 
thresholding function without restricting the generality of the method. In this case 
the code-multiplexed signal at the output of the system can be represented as a 
matrix B, which contains all possible binary sequences corresponding to the coded 
set of input blocks of symbols, and is given by

B = I n t { ^  +  0.5 J (7.10a)

The function Int{*} is defined as the integer part of the argument and is applied 
on an element-by-element basis as follows:

where
a mn ^  -'4 

bmn£B

=  +  0.5}

for m =  1, . . . ,M  and n =  l , . . . ,N.

(7.10b)

The expressions given by (7.9) and (7.10) define completely the binary 
sequence resulting from the suggested technique of multiplexing N  information 
channels by combining the code sequences, which represent uniquely the binary 
symbols of each channel. By presenting the process in analytical form the 
multiplexed sequence can be determined for any combination of source signal 
values. It is possible to show that, if the code matrix C is a set of Gold sequences, 
the resulting set of BMC sequences Bm (m =  l ,. . . ,M ) consists of all iV-digit 
binary numbers. The performance of the proposed code-multiplexing operation has 
been verified numerically for several values of the code length, N. A number of 
SRG-s with n =  3,4,5,6 stages have been simulated analytically and most of the 
possible sets of Gold sequences have been generated in the form of matrices CG. 
The N  rows of each matrix are Gold codes produced by a pair of m-sequences of 
length N =  2n — 1. The simulation assumes representing data symbols 1 by the 
sequences from CG and data 0 by those from the inverted elements matrix CG . 
The BMC function in this case is given analytically by the following expression:
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B  =  / „ ( {  D x C a  +  D x C a +  Q 5 J (7.11)

where the elements of D are the inverted elements of the matrix D, which collects 
all possible iV-digit binary numbers. The calculations, made for N — 7,15,31 show 
that the matrix B of the multiplexed sequences also consists of all iV-digit binary 
numbers. This result confirms that the suggested transformation multiplexes 
unambiguously N  information channels, with a symbol repetition period T j , into 
a binary sequence with a symbol period Tc =  The general proof requires 
involved mathematical transformations, which are not considered essential for the 
purpose of this discussion. The complexity of the BMC, compared to time-division 
multiplexing, is compensated for by achieving the flexibility to modify the 
frequency characteristics of the multiplexed signal. The possibilities to combine 
code multiplexing and spectrum shaping for the purposes of multichannel binary 
transmission have been investigated and some of the practical results are 
presented below. In this respect the objectives of the discussion are:

• to suggest the potential for increasing the efficiency in digital signal 
transmission by achieving the required spectrum modification by 
processing of large blocks of symbols, produced from the implementation of 
the proposed BMC technique;

• to demonstrate the ability of the uniform analysis procedure to perform 
accurate evaluation of the PSD function of block-coded sequences 
irrespective of the size of the symbol sets and the complexity of the code 
transformations.

7.3.3 Practical Implementation of the B M C Technique

The use of Gold sequences for a BMC combined with signal processing for 
spectrum modification has been simulated analytically. A large variety of 
schemes, implementing different codes, have been investigated. The spectrum-
shaping effects, produced by certain ‘Code’ specifications, suggest the possibility 
to achieve virtually any PSD modification, mentioned in the previous chapters as 
being of practical interest. An example of a circuit, which implements the 
suggested BMC, is shown in Fig. 7.8. The coding scheme represented by the 
circuit uses Gold sequences of length N . The actual number of digital signals, 
which are multiplexed, is N  — 1. This limitation is imposed by the need to provide 
for frame alignment with respect to the code sequence cycle as the output blocks
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of symbols can take all possible values of iV-digit binary numbers. Additionally, 
the coder from Fig. 7.8 performs a block transformation of the type NB(N  +  1)B, 
which provides for the possibility to balance the numbers of different code 
symbols in the output sequence.

The time relations in the coded signal are based on the data symbol period, 
T < which is used as a reference. The clock cycle is taken to be the code symbol

a  rp

period, Tc — ^  The Gold codes for the data channels d: - dN_x are produced 
by modulo-2 adding different phase-shifts of the sequence generated by SRG1, 
provided through the delay elements D, to the output of SRG2. A symbol 1 from 
each data channel is coded as an N-bit Gold sequence and a symbol 0 from the 
same data signal, as the inverse of that sequence. This is achieved by modulo-2 
adding the inverted data signal to the respective Gold sequences.

The Nth. Gold sequence, produced by direct adding the outputs of SRG1 
and SRG2, is used for frame synchronisation. Its initial and inverted forms are 
combined with the other sequences according to the code definition given in Table
7.1.

BMC -  Code

*1 s 2 % «4

42~1> 

4 2 >  s 2

4 2 - i ,  s3 

4 °J, s 4

4 2 - i ,  sx

4 2 -  *2

4 2 - i ,  

4 2 >  s4

$2(1-1

5 2/j

^2 ¿i—l

_ Z 2„ J

Table 7.1

where

1 0  0 0 
0 0 1 0  
1 0  0 0 
0 0 1 0

0 1 0  0 
0 0 0 1 
0 0 0 1 
0 1 0  0

d ! 1)
" 2 p - l b S
b ( ° )  
n  2(1-1 7  — B (°J
r ? ( ! )
n  2n~l

» -

n  2(1-1 1

ta

1__
__

_

and n =  1 ,...,2 ^ ~ The repetitive structure of the suggested code allows its 
specification to be presented in general form. The full notation for N = 7, for 
example, requires a table with 64 rows for the different input words, representing 
combinations of symbols from the different data channels. Every pair of rows of 
such a table, however, specifies the same coder rules and does not convey more 
information about the code than Table 7.1.
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The coding scheme is implemented in the circuit from Fig. 7.8 by assuming 
that each of the possible input words, D = [D^D 2 ,...,D^f\, where M  — 2iV_1, 
corresponds to the bits from the information channels being considered in the 
order d1,d2,...,dN_1. The symbols from channel dN_x represent the parity of the 
input words, i.e. which of the two rows of Table 7.1 the current combination of 
bits at the data inputs corresponds to. The sole purpose of this assumption is to 
simplify the description. The performance of the proposed BMC technique is 
indiscriminate towards the order of the data symbols and the input words in the 
analytical presentation of the coding scheme. The result from applying the BMC 
is the same irrespective of which input blocks the synchronising Gold sequences, 
Cq h  and CGN are combined with, as long as their sequential order of use is 
determined by the code specification. In other words, any of the N  data channels, 
dj-, {i =  1,..., N  — 1) can be chosen to represent the parity of the input symbol 
blocks, half of which correspond to the row the BMC-‘Code’ table, for
d,- =  0 and the other half, to the JC^ row of that table, for di =  1. Formally, the 
output sequence for a particular input block is determined by the current coder 
state according to Table 7.1. In practice the two possible output words and 
B}}\ for every input block D)V are generated automatically as the combination of 
symbols from the different channels uniquely determines the respective set of 
Gold sequences to be binary-multiplexed.

The synchronising sequence, CGĵ  
or C'gjV) combined with a particular set of 
Gold codes, is determined by the ‘State- 
Sequence Generator’ block of the circuit, 
which implements the FSSM function of 
the coder. The selection of the output 
word B^\  where x =  0 or 1, is achieved 
with the binary sequence x 
(k — 0 ±  1, ±  2,...) through the output 
function of the coder x  ̂=  S[d^,s^.], which 
is modulo-2 added to the Nth. Gold code, 
so that it switches between CGN and CGN 
according to the state-transition scheme 
defined by Table 7.1.

The logic circuit, generating the sequence x  ̂ is derived from the general coder 
model which is represented by the diagram in Fig. 7.9. As it has been shown 
earlier, channel dN_1 is the only significant input for this particular code 
specification, therefore, the sequence d =  dN-1 completely determines the input

Fig. 7 .9  The FSSM model of the BMC
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D^kTrf)  o f  th e  cod er (T^ is th e  in p u t -s y m b o l p e rio d ).

The state-transition function

sk+i = A dk̂ sk\ can be 
synthesised from its specification
given in table form as follows. The 
states st-, (¿ =  1,2,3,4) can be 
represented as the two-digit binary 
number (siasib) € s =  [11, 01, 10, 
11]. This allows the relations 
between d̂ ., Xf. and ŝ  to be 
determined from the
correspondence between Tables 
7.2a and b.

Dm 5.- 5,-

-^ 2 /j - I B ÿ -1 ¿1
52 Bty-i s 3

B ÿ -1 Si
Dïfi-l 4̂ b {°J- i s 3

«1 B ÿ s?

D2, *2 b [°J s4
s 3 b I°j S2
S4 B ÿ s4

input present output next

Table 7.2a State-transition scheme

dk sk xk sk + 1
0 0 0 1 0 0
0 0 1 0 1 0
0 1 0 1 0 0
0 1 1 0 1 0
1 0 0 1 0 1
1 0 1 0 1 1
1 1 0 0 0 1
1 1 1 1 1 1

input îa Sib output îa Sib

Table 7.2b Logical representation of the states

The basic functions, implementing the BMC relations according to the FSSM 
model from Fig. 7.9, are defined from the following expressions:

xk = dk(sia)k(sib)k + dk(sib)k + (sia)k(sib)k (7.13a)

(sib)k+l ~ dk> (siJk+1 = (sib)k (7.13b)

where the multiplication and the summation are the logical AND and OR 
operations, respectively. Expressions (7.12) allow the coder functions to be 
implemented as the circuit given in Fig 7.10. This circuit is incorporated in the 
complete coder diagram from Fig. 7.8 as the ‘State-Sequence Generator’ block, 
where the input d  ̂ is taken from channel dN_x.
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Fig. 7 .10  The circuit implementing the BMC coder functions

The block structure of the N  multiplexed Gold codes is enhanced with an 
additional (iV +  l)th bit, bN+1 which is generated by the counter CNT1 and the 
digital comparator CMP, according to the following conditions:

t>N+1 —

N N + 11, if ^ 2 K <  2
v— 1

0, if
V—\

(7.14)

The frame structure is completed by appending bN+1 at the end of each coded 
sequence ¿q - bN through the multiplexer MPX.

The timing control of the suggested coder circuit is provided by the 
‘Synchronisation and Control Block’ . The input clock sequence fc is converted into 
the signal Fe, as shown in Fig. 7.11, through the simple logic circuit transforming 
the binary output of the counter CNT2.
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fc -clock signal:

Fe -frame synchronisation signal:

Td = (N+l)Tc

Fig. 7.11 The Fe frame-control signal

The connections of fc to the SRG-s 
and the other components, whose 
operation requires a clock signal, 
are not shown in the diagram of 
Fig. 7.8 as its main purpose is to 
illustrate the principle of the 
proposed BMC technique. For the 
same reason only the functional use 
of the frame-control signal Fe is 
indicated, without considering the 
technical specifications of any 
particular components.

Thus, the high level of the Fe waveform enables:

• the shifting function of the SRG circuits;
• the counting of the 1-s in the first N  bits of the code frame by CNT1;
• the input il of the MPX which outputs symbols br bN of the BMC 

sequence.

The low level of Fe is used for the duration of the last code symbol in each frame:

• to suspend the shifting in SRG1 and SRG2;
• to hold the result at the output of CNT1 and comparator CMP;
• to enable the second input, i2 of the multiplexer which outputs the symbol 

bN+1 of the BMC frame.

The timing control in the complete practical circuit is implemented in a more 
precise form, by considering the specific enable and hold functions of particular 
components, as well as the possibility to use edge triggering.

The coder circuit in Fig. 7.8 is a simple implementation of the proposed 
BMC structures, which combine the multiplexing of digital sequences into a 
binary transmission signal with coding for shaping the spectrum of that signal. 
The adopted four-state structure utilises only a fraction of the flexibility provided 
by the potentially large size of the code-word set. The spectral analysis of the 
resulting BMC signal is based on the repetitive pattern of the state-transition 
matrices, which can be determined from Table 7.1 for every // =  1 , . . . , The 
respective output matrices are defined through the same table and the expressions 
(7.9) and (7.10). The analytical form of these matrices is amended in the
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The BMC scheme discussed above is of high a complexity level. It belongs 
to the D(2n~1)SAX (2n ) category (Z)6454X128, for N — 7). This suggests the 
possibility to create a variety of BMC structures with PSD functions modified to 
meet most of the requirements in practical communication systems. The 
computational algorithm, used to generate the analysis results in the thesis, has 
been further developed into a powerful simulation tool, which allows a systematic 
and exhaustive search for suitable coding rules to be performed. Various 
combinations of state-transition schemes and output-word structures have been 
experimented with. A detailed discussion of the experiments is not considered to 
be relevant to this report, as particular results are only for specific applications. 
For the purposes of this presentation it is sufficient to outline the most significant 
possibilities provided through the unified implementation of the spectral analysis 
procedure and the proposed method for binary multiplexed coding.

A remarkable feature of the coder from Fig. 7.8 is the intrinsic generality 
of its structure. There is no limitation in principle for the diagram to represent 
the same coding scheme with any number of information channels, N.  Larger 
values of N  do not require increase in the coder complexity. The main restrictions 
are imposed by the delay between the beginning of the first and the last phase- 
shifts of one of the m-sequences, accumulated through a large number of the delay 
components, D(TC). This, however, is a purely technical problem which can be 
solved by a suitable arrangement of more than two SRG-s.

The state-sequence generating block is designed independently of the 
remaining circuit and its complexity is determined only by the adopted number of 
states and the specification of the coding rules. Many of the codes discussed in the 
thesis suggest that the number of states does not have to be very large8, in order 
to achieve sufficient spectrum-shaping flexibility.

A significant advantage of the BMC schemes over the conventional block-
coding structures is the generation of the code words through shift-register 
sequences combined with the input symbols. This eliminates the use of large look-
up tables with the respective data storage/access requirements and allows the new 
code to be implemented at very high transmission rates.

In summary

1) The proposed BMC combines the use of SS techniques for the multiplexing 
of digital sequences into a binary transmission signal with coding for 
spectrum modification.

8 Four states give satisfactory results for most practical purposes.
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n) The analytical presentation of the BMC rules (expressions (7.9) - (7.14)) 
provides for the possibility to evaluate the set of code blocks regardless of 
its size.

m) The ‘Code’ table is specified in general form and the respective matrix 
presentation of the BMC can be determined for any length, N  of the code 
words.

i v )  The result from n) and 111) allow the unified spectral analysis approach and 
the developed computational algorithm to be implemented with no 
restriction on the size of the sets of input words, output words and states.

The main concepts of the SS communications have been briefly discussed 
in this chapter, in order to introduce the suggested new technique of code-
multiplexing for binary multichannel transmission. The integration of the 
multiplexing and the line coding processes has been demonstrated through the 
design, the simulation and the analysis of the BMC and the circuit for its 
implementation. The analytical presentation of the technique in general form 
suggests the potential for further development and investigation of the method for 
spectrum modification of binary code-multiplexed signals.
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8. SUM M ARY AND CONCLUSIONS

The main objectives of this work the creation of a universal algorithm for 
the analysis and comparative assessment of digital line codes has been achieved in 
three stages. The first phase was concerned with an extensive survey of the 
techniques and the related problems in the design and analysis of codes for digital 
signal transmission. A large number of publications have been studied in order to 
identify the common issues, as well as the specific achievements in satisfying the 
stringent requirements for efficient and reliable digital communications. In order 
to restrict the literature search it was decided to specify certain goals as follows:

• Determine the main areas of and reasons for the implementation of coding 
in the overall structure of modern digital communication systems.

• Define the importance of line coding with respect to source and error- 
control coding.

• Compile a comprehensive overview of line coding fundamentals, allowing 
the basis for subsequent investigations to be established

The outcome of this work is given in the first chapter. It contains an overall 
presentation of the concepts of digital transformations used to improve the 
efficiency of communication and to reduce the degrading effects of the 
transmission channel. The interpretation of the major factors affecting the choice 
of coding schemes and the description of basic source and error-control codes has 
revealed the common aspects and the fundamental limitations of coding imposed 
by the Theory of Information. Finally, the comparative investigation of the 
problems addressed through the different types of coding has allowed the following 
conclusion to be reached.

The main objectives of coding, through the adaptation of digital signals to 
match the transmission media, is to improve the efficiency and reliability of 
communication. In this respect the transformation of digital sequences into a 
signal with particular spectral characteristics can be considered an integral part of 
the channel coding process. Furthermore, line coding is entirely based on the same 
fundamental principle as coding in general, which requires the introduction of 
information redundancy, to minimise the distortion of the original signal caused 
by the restrictions of the transmission channel.
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The investigation of the specific effects of line coding on the characteristics 
of digital signals is presented in Chapter 2. The restrictions on line coding, 
imposed by line signal considerations, are also investigated. The significant 
parameters of different types of codes have been outlined from a detailed survey of 
a considerable number of popular coding techniques. In addition some existing 
code classification schemes have been studied in order to identify the essential 
considerations for the suggested general assessment and analysis approach.

The second part of Chapter 2 presents a more detailed investigation of the 
specific features of typical line codes. The major achievement from this initial 
analysis of various code structures has been the introduction of common 
assessment and evaluation criteria, as well as an extensive basis for the subsequent 
development of the uniform spectral analysis approach. Many popular coding 
techniques have been investigated and their conventional specifications 
represented in terms of symbol transformations. Typical spectral characteristics, 
produced by various codes, have been systematically identified and related to 
particular code features. The most significant result from the preliminary 
implementation of uniform assessment criteria is the possibility to specify the 
general purpose of line coding as follows:

Modification of the spectral features of the coded signal by 
changing the statistics of the original signal through structural 
transformation of input blocks of symbols into output blocks of 
symbols.

The second stage in the research work comprised the development of the 
theoretical basis for the unified spectral analysis. The adopted analytical model, 
described in Chapter 3, is based on the presentation of the line coder through the 
functional relations of a finite-state sequential machine. The fundamental concepts 
of the adopted theory involve the computation of the spectral density of the coded 
signal by applying the standard Fourier transformation. The latter, however, 
requires the use of second order probabilities in order to express the statistics of 
the output signal through the statistics of the input sequence, which are related 
by the non-linear function of the coder. The presentation of the theoretical model 
of the coder is given in its complete form, redeveloped for the specific case of a 
discrete sequence of symbols, while preserving the full accuracy and elegancy of 
the original version, [18].

The major accomplishment from the use of this model is the possibility to 
specify completely any block coding scheme by the sets of input words, output 
words and coder states, which are uniquely related through the table and matrix 
presentation of the coder rules. This allows the continuous and the discrete
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spectral densities of the coded signal to be computed by specifying the state- 
transition matrices, the output matrices and the input-symbol probabilities.

Another important achievement is the direct implementation of the 
spectral analysis formulae into a computational routine, which is described in the 
second part of Chapter 3. The algorithm for evaluation of the power spectral 
density has been created within the environment of a high-performance interactive 
software package, which allows the accuracy and the flexibility of the analysis 
model to be fully utilised. The computational procedure has been optimised and 
developed to accommodate various analysis and simulation requirements. A high 
degree of flexibility and universality has been achieved through the use of a 
modular structure which allows the spectral analysis technique to be applied to 
virtually all digital coding schemes with a fixed-length block structure. The results 
are presented in graphical form and provide a common basis for estimation and 
comparison of codes and their frequency characteristics.

In Chapter 4 the uniform spectral analysis approach, based on the 
theoretical model of the coder, is applied to the coding schemes assessed in 
Chapter 2. The results demonstrate the viability of using a general and systematic 
approach to the problems of the design and the analysis of line codes. It permits a 
direct comparative evaluation of various coding schemes, not possible with the 
frequently used application specific form of definition. It also offers the potential 
for further theoretical investigation.

Additionally, several new codes are analysed, which show how the structure 
of the code may be deliberately selected or manipulated to provide desirable 
features in the line signal spectrum.

A standard method is proposed to define any fixed-length, finite-memory 
block code in the form of a code specification table, necessary for the uniform 
spectral analysis routine.

Chapter 5 takes the computational algorithm, derived in the previous 
chapter, and extends it to a completely general routine for the design of digital 
line codes. It is based on a further enhancement of the computational algorithm, 
used to analyse the frequency characteristics of coded sequences. This is 
accomplished through a generalised specification of the initial parameters (the sets 
of input/output symbols and coder states) and provides spectral analysis of all the 
coding schemes which are determined as valid according to predefined conditions. 
The method allows for the systematic generation and assessment of a large variety 
of code structures, based on the general definition of code categories. The modified 
computational algorithm is described and the results from the spectral analysis of

247



several groups of codes are presented. These results are summarised as the basis 
for a method of creating new coding schemes.

The results shown in Chapter 5 illustrate the fundamental concepts of the 
suggested uniform assessment and analysis approach. Most of the important stages 
in the generation and classification of new code structures have been demonstrated 
through the systematic investigation of some low-complexity level categories. 
Many of the popular coding techniques have been shown to appear precisely in the 
predicted categories, exhibiting the expected structural and spectral features 
typical of the respective group of schemes. These results prove the general 
applicability of the suggested classification method.

The investigation of complete categories is another significant achievement. 
All codes from D2S1X4, D2S1X8, D iS lX i  and D2S2X2 have been generated 
and analysed. This in effect precludes the possibility to ‘ invent’ a new coding 
scheme with parameters specified within these categories. Some higher complexity 
level categories have also been exhaustively simulated and assessed, but their 
complete investigation will be presented in a future extension of this work.

The ability of different codes to achieve particular spectral features has 
been determined. Of equal importance is the efficiency of a coding structure in 
terms of its information capacity. A new method for the evaluation of coding 
efficiency is suggested, which derives directly from the uniform analysis approach. 
It is based on the system of general classification of codes, developed in Chapter 5, 
through a 3D volume representation of the coding capacity. Using this method, it 
is demonstrated how an optimal combination of a code structure, spectral features 
and information capacity may be achieved.

The thesis concludes with a practical example of the application of the 
generalised analysis procedure. The example chosen was a particularly demanding 
one, involving a spread spectrum communication channel. The use of a Binary- 
Multiplexed Code (BMC) is investigated and evaluated. The analysis suggests 
some significant advantages may be derived from the BMC approach and a simple 
circuit is proposed for its implementation.

In conclusion one of the most useful results, accomplished with the 
development of the spectral analysis procedure, is the possibility to apply the 
coder model and the software routine to any finite state symbol transformation 
scheme of theoretically unlimited complexity, as long as it is appropriately 
specified1. Despite the relatively sophisticated probability and FSSM theories 
involved in deriving the final expressions for the PSD functions, their practical

1 According to the requirements of the FSSM model of the coder, presented in 
Chapter 3.
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implementation is simple and straightforward2. This is demonstrated in the thesis 
by a comparison of the computational algorithm with some of the conventional 
techniques for spectral analysis of coded signals. A typical example is given in [2], 
where the spectral density function of the AMI code is evaluated through a 
lengthy and tedious procedure, involving manual calculation of probabilities for 
numerous combinations of coded symbols. This method has an acceptable degree 
of accuracy but it becomes impractical for more complex codes. In many 
publications concerning frequency analysis of coded signals very little, if anything, 
is mentioned about the techniques which had been used to evaluate the spectral 
density. Often the graphical results are only approximations and some of the 
spectral characteristics are deduced empirically and by analogies.

The frequency analysis algorithm and the uniform assessment method 
suggested in this work provide a powerful tool for investigation and design of 
virtually any fixed-length block-coding scheme of practical interest. The 
computational procedure can produce an exhaustive set of results corresponding to 
a variety of initial conditions, as well as any amount of detail related to specific 
frequency characteristics of coded signals. There is considerable scope for further 
work. The implementation of well defined analytical selection criteria is required 
as a basis for further work on the general classification method and the use of the 
suggested information capacity evaluation technique. The generality and the 
comparison capabilities of the technique offer enormous potential for the 
development of a whole range of new coding schemes with the possibility of 
matching them efficiently not only to the spectral characteristics of a particular 
communication channel, but also to its information capacity.

2 Depending on the available computing resources and software environment.
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APPENDIX - A

This appendix contains the code of the computational algorithm, which is 
written in the application-specific language of the Matlab package, [15]. This is a 
command based interactive programming environment with a comprehensive set 
of instructions performing powerful mathematical operations on matrices and 
allowing for suitable graphical presentation of the results. The software routine is 
developed in a modular form, which makes it compact, flexible and easily 
adaptable to various analysis and simulation requirements.

All modules can be divided into several types on the basis of functional 
similarity. The first type represents the main blocks for the different codes or 
groups of codes. These modules are used to specify the code symbol sets, the 
matrix presentation of the coding rules, the ranges of the computational 
parameters and the subroutines, required for the main analysis procedure. The 
structure of the main blocks is similar for all codes and will be described in detail 
only for one of the schemes with some additional comments given for the others 
where more substantial differences are encountered. The computational blocks are 
the second type of modules. They implement the analytical expressions developed 
in Chapter 3 and are common for all coding schemes. The modules processing the 
analysis results and representing them in the required output format comprise the 
third type of program blocks.

The complete set of programming modules is presented in two parts. The 
first part contains all the main blocks of code and the subroutines used in the 
evaluation of the spectral density functions of the conventional coding techniques, 
discussed in Chapter 4. The second part consists of the enhanced computational 
structures which have been used to simulate and analyse the full range of coding 
schemes, according to the classification categories, suggested in Chapter 5.

The adopted notation is based on the Matlab programming conventions. It 
is given below in a different font to make it distinguishable from the comments. 
Explanatory notes are given before or after the command lines of the program 
modules, except where a reference to a specific line is necessary. The comments, 
which appear within the body of a software block, are delimited by a ‘% ’ symbol 
and the beginning of a new line. All the modules of the software routine are used 
as Matlab *.M files. The numerical and the graphical results are stored as *.MAT 
files and *.MET data files, respectively. Finally, it should be noted that the 
program blocks are stripped from the lines providing for the interactive mode of 
operation, to avoid confusion of the parts comprising the main computational 
procedure with unessential interface and presentation lines of software code.
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The main software blocks of the conventional coding schemes are given in 
this section. The first group of lines1 specify the symbol and the word sets as 
matrices, from which the sizes of these sets are determined. The state-transition 
and the output matrices, as well as their sizes are determined by the second group 
of lines. The two lines of the third group are used to specify the ranges of the 
computational parameters (as described in Chapters 3 and 4). The fourth group 
determines the range of the input probabilities (if variable) and performs the 
complete analysis for each value of the probability parameter. The main 
mathematical computations are executed in this part of the module, which calls a 
number of subroutines. The graphical display of the intermediate and the final 
analysis results is also produced by this part, except for the 3D parametrical plot 
which appears after the full parametrical cycle is completed.

Main modules of the spectral analysis procedure:

% Computes the PSD of the NRZ scheme for unipolar input symbols

d = [ 0 , l] ;  D = [ d ( l ) ; d ( 2 ) ] ;  [ M ,N ] — s iz e ( D ) ;  % the input symbol and word sets

x = [ 0 , l] ;  X = [ x ( l ) ;  x (2 )J ;  [ J , L ] = s iz e (X ) ;  %  the output symbol and word sets

S l = [ l ] ;  S 2 = [ l ] ;  %  the state-transition matrices (this is a one-state scheme)

Z 1 = [ X ( 1 , : ) J ;  Z 2 = [ X ( 2 ,  :)1; %  the output matrices

[ l , l ] = s iz e ( S l ) ;  S M = [ S 1 ; S 2 ] ;  Z M = [ Z 1 ; Z 2 ] ;

Part I - Modules and Subroutines for the Analysis of the Conventional Codes

j = s q r t ( - l ) ;  F x = l ;  n F x — 1; n f = 5 0 ;  n p r = l ;  %  the computational parameters

T x = l / F x ;  T = L * T x ;  T d = ( L / N ) * T x ;  F = F x / L ;  F d = ( N / L ) * F x ;

fo r p  — 1 : n p r  %  starts the variable probabilities cycle

q O = p / ( n p r + l ) ;  q l = l - q O ;  %  the input symbol probabilities

G P S D 0 1 ;  G P S D 0 2 ;  a x is ([ -.0 1 ,l,0 ,.3 ] );  P S  D P  L O T ;  %  the subroutines

e n d

if  n p r > l

m e s h ( y c )  %  displays the parametrical PSD plot

else  

e n d

A  number of lines separated from the rest of the code by a blank line.
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% Computes the PSD of the NRZ scheme for polar input symbols

d — [0,1]; D = [ d ( l ) ; d ( 2 ) J ;  [ M , N ] = s iz e ( D ) ;

x = [ - l , l ] ;  X = [ x ( l ) ;  x (2 )] ;  [ J , L ] - s i z e ( X ) ;

S H I ] ;  S 2 = [ l ];
Z 1 — [X (1 ,:)] ;  Z 2 = [ X (2 , : )1 ;

[ l , l ] = s iz e ( S l ) ;  S M = [ S 1 ; S 2 ] ;  Z M = [ Z 1 ; Z 2 ] ;

j = s q r t ( - l ) ;  F x = l ;  n F x = l ;  n f— 5 0 ; n p r = 9 ;

T x = l / F x ;  T = L * T x ;  T d = ( L / N ) * T x ;  F = F x / L ;  F d = ( N / L ) * F x ;

fo r p  =  1 : n p r

qO=p/(npr+i); qi=i-qO;
G P S D 0 1 ;  G P S D 0 2 ;  a x is ( [ - .0 1 , l ,0 , l . l ] ) ;  P S D P L O T ;  

t i t l e ( ' P O L A R ’) ;  t e x t (.4 ,.7 , 'y c ') ;  te x t ( .4 ,1 .0 3 ,’Y x c ) ;  

tex t (.0 5 ,.1 5 ', 'Y x d = 0 ' ) ;  t e x t ( . l , . l ,  y d = 0 ’) ;  

e n d

i f  n p r > 1  

m e s h ( y c )  

e lse  

e n d
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% Computes the PSD of the Manchester code

d = [ 0 , l] ;  D = [ d ( l ) ; d ( 2 ) ] ;  [ M , N ] = s i z e ( D ) ;

x = [ 0 , 1]; X = [ x ( 1 ), x ( 2 );  x ( 2 ), x ( 1)]; [J, L ] = s iz e ( X ) ;

S 1 = [ 1 J ;  S 2 — [ l] ;

Z 1 = [ X ( 1 , ) 1 ;  Z 2 — [X (2 ,:)] ;

[ l , l ] = s iz e ( S l ) ;  S M — [ S 1 ;S 2 ] ;  Z M = [ Z 1 ; Z 2 ] ;

j = s q r t ( - l ) ;  F x = l ;  n F x = l ;  n f = 3 0 ;  n p r = l ;

T x = l / F x ;  T — L * T x ;  T d = ( L / N ) * T x ;  F = F x / L ;  F d = ( N / L ) * F x ;

fo r p  —  1 : n p r

q O = p / ( n p r + l ) ;  q l = l - q O ;

G P S D 0 1 ;  G P S D 0 2 ;  P S D P L O T ;  t i t l e ( ' M A N C H E S T E R ' ) ;  

text(. 5,1, 'y c '); text(. 7,1.4, 'Y x c '); 

tex t(.0 1 ,1 , 'Y x d = 0 ' ) ;  tex t(.0 1 ,.5 , 'y d = 0 ' ) ;  

e n d

i f  n p r > l

m  e s h (y c ) ;  t it le ( 'M A  N C H E S  T E R '); 

else  

e n d
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% Computes the PSD of the Differential code

d = [ 0 , l j ;  D = [ d ( l ) ; d ( 2 ) J ;  [ M , N ] = s iz e ( D ) ;

x = [ - l , + l ] ;  X = [ x ( l ) ;  x (2 )] ;  [ J , L ] = s iz e (X ) ;

S l= [ l  0 %  th e  s ta te -tra n sitio n  m a tric e s  (th is  is a  tw o -s ta te  sch em e)

0  1]; S 2 = [ 0  1

1 0]; Z 1 = [ X ( 1 , : )

X ( 2 . : ) l ;  Z 2 = [ X ( 2 , : )

X ( l , : ) ] ;

[l,l]— s i z e ( S l ) ;  S M = [ S 1 ; S 2 ] ;  Z M = [ Z 1 ; Z 2 ] ;

j = s q r t ( - l ) ;  F x = l ;  n F x = l ;  n f— 5 0; n p r = l ;

T x = l / F x ;  T = L * T x ;  T d = ( L / N ) * T x ;  F = F x / L ;  F d = ( N / L ) * F x ;

fo r p  =  1 : n p r

q O = p / ( n p r + l ) ;  q l = l - q O ;

G P S D 0 1 ;  G P S D 0 2 ;  a x is ( [ - .0 1 , l ,0 , l . l] ) ;

P S  D P  L O T ;  t i t l e ( 'D IF F E R E N T IA  L ( N R Z - m a r k / s p a c e ) ' ) ;  

tex t(.4 ,.7 , y c ’) ;  t e x t ( .4 , l . l ,  'Y x c ') ;  

tex t(.05 ,. 15, 'Y x d = 0 ' ) ;  t e x t ( . l , . l ,  y d = 0 ' ) ;  

e n d

if  n p r > l  

m e s h ( y c )  

else  

e n d
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% Computes the PSD of the AMI code

d = [ 0 , l] ;  D = [ d ( l ) ; d ( 2 ) ] ;  [ M , N ] = s iz e ( D ) ;

x = [ - 1 ,0,1]; X = [ x ( l ) ;  x (2 ) ;  x (3 ) ]; [ J , L ] = s iz e (X ) ;

S l = [ l  0

0  1]; S 2 — [0 1

1 0 ] ;  Z 1 — [ X (2 , : )

X (2 ,  :)]; Z 2 = [ X ( 1 ,  : )

X (3 , : )] ;

[ l , l ] = s iz e ( S l ) ;  S M = [ S 1 ; S 2 ] ;  Z M = [ Z 1 ; Z 2 ] ;

j = s q r t ( - l ) ;  F x = l ;  n F x = l ;  n f = 5 0 ;  n p r = 9 ;

T x = l / F x ;  T = L * T x ;  T d = ( L / N ) * T x ;  F = F x / L ;  F d = ( N / L ) * F x ;

fo r  p  =  1 : n p r

q O = p / ( n p r + l ) ;  q l = l - q O ;

G P S D 0 1 ;  G P S D 0 2 ;  P S  D P  L O T ;  

e n d

if  n p r > l

m e s h ( y c ) ;  t i t le ( ’A M T ) ;  

e lse  

e n d
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% Computes the PSD of the Duobinary code

d = [ 0 , l] ;  D = [ d ( l ) ;  d (2 )J ; [ M , N ] = s iz e ( D ) ;

x = [ - l , 0 , + l j ;  X = [ x ( l ) ;  x (2 ) ;  x (3 ) ]; [ J , L ] = s iz e (X ) ;

S 1 = [ 0  1

0  1]; S 2 = [ l  0

1 0]; Z 1 = [ X ( 2 , : )

X (1 , : )J ;  Z 2 = [ X ( 3 ,  : )

X(2,:)];
[ l , l ] = s iz e ( S l ) ;  S M = [ S 1 ; S 2 ] ;  Z M = [ Z 1 ; Z 2 ] ;

j = s q r t ( - l ) ;  F x — 1; n F x = l ;  n f = 5 0 ;  n p r— 1;

T x = l / F x ;  T — L * T x ;  T d = ( L / N ) * T x ;  F = F x / L ;  F d = ( N / L ) * F x ;

fo r p  =  1 : n p r

q O = p / ( n p r + l ) ;  q l = l - q O ;

G P S D 0 1 ;  G P S D 0 2 ;  P S D P L O T ;  

t i t l e ( ' D U O B IN A R Y ' ) ;  

te x t (. l, .7 ,  'y c ') ;  text(.3 ,.4 , 'Y x c ') ;

text(.05 ,.5 , 'Y x d — 0 ') ;  text(.0 5 ,.3 , ’y d = 0 ’) ;  

e n d

i f  n p r > l

m e s h ( y c ) ;  t i t l e ( ' D U O B IN A R Y ’) ;  

e lse  

e n d
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% Computes the PSD of the CMI code

d = [ 0 , l] ;  D = [ d ( l ) ; d ( 2 ) J ;  [ M , N ] = s i z e ( D ) ;

x = [ - l ,  + 1 ] ;  X = [ x ( .1 ), x ( 2 );  x ( 2 ), x ( 2 );  x ( 1 ), x ( 1)]; [J, L ] = s iz e ( X ) ;

S l = [ l  0

0  1]; S 2 = [ 0  1

1 0]; Z 1 = [ X ( 1 , : )

X ( l . : ) l ;  Z 2 = [ X ( 2 , : )

X (3 , : ) l ;

[ l , l ] = s iz e ( S l ) ;  S M = [ S 1 ; S 2 ] ;  Z M = [ Z 1 ; Z 2 ] ;

j = s q r t ( - l ) ;  F x = l ;  n F x = l ;  n f = 5 0 ;  n p r = l ;

T x = l / F x ;  T = L * T x ;  T d = ( L / N ) * T x ;  F = F x / L ;  F d = ( N / L ) * F x ;

fo r  p  =  1 : n p r

q O = p / ( n p r + l ) ;  q l = l - q O ;

G P S D 0 1 ;  G P S D 0 2 ;  P S D P L O T ;  t i t l e ( ' C M I ’) ;

x y = . 4 ;  x Y = x y ;  %  th is a n d  the n ex t fou r lin es p lace tex t a t a  c o m p u te d  p o sition  in  th e p lot  

f i y = r o u n d ( ( x y * n f ) / ( n F x * F x ) ) ;  y y = y c ( p , f i y + l ) + . 0 5 ;  

f iY — r o u n d ( ( x Y * n f ) / ( n F x * F x ) ) ; y  Y =  Y x c ( p , f i y + l ) + . 0 5 ;  

text(xy ,yy , 'y c '); te x t (x Y ,y Y , 'Y x c '); 

te x t(.5 3 ,.2 5 , 'Y x d ') ;  te x t(.5 3 ,.0 5 , 'y d ');  

e n d

i f  n p r > l  

m e s h ( y c ) ;  

else  

e n d
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% Computes the PSD of the conventional 3B4B code 
% A new Matlab, function a llb in (n )  has been created to compute 
% all possible n-digit binary numbers, from which the input and the output 
% word sets are formed.

d — [0,1]; D = a l l b i n ( 3 ) ;  [ M , N ] = s iz e ( D ) ;  

x = [ 0 , l] ;  X = a l l b i n ( N + l ) ;  [ J , L ] = s iz e (X ) ;

S l = [ l  0

0  1]; S 2 = [ 0  1

1 0 1 ;

Z1=[X(6,:) % the output matrices are specified according to a look-up table, [18]
X (6 ,  :)]; Z 2 = [ X ( 1 0 ,  :)

X (1 0 , : ) ] ;  Z 3 — [ X (1 5 , : )
X (5 ,  : )  ]; Z 4 = [ X ( 1 4 ,  :)

m o  b
Z 5 = [ X ( 8 ,0

X (3 , : )J ;  Z 6 ~ [ X ( 1 2 , : )

x(2,0 ]: Z7=[X(7, o
X(7,:)J; Z8=[X(11,0

X(ll,01;
[ l , l ] = s iz e ( S l ) ;  S M = [ S 1 ; 5 1 ; 5 2 ; S 2 ; S 2 ; S 2 ; S 1 ; S 1 ] ;

Z M = [ Z 1 ; Z 2 ; Z 3 ; Z 4 ; Z 5 ;Z 6 ;Z 7 ;Z 8 ] ;

j = s q r t ( - l ) ;  F x = l ;  n F x = l ;  n f = 3 0 ;  n p r = 9 ;

T x = l / F x ;  T = L * T x ;  T d = ( L / N ) * T x ;  F = F x / L ;  F d = ( N / L ) * F x ;

fo r p  =  1 : n p r

q O = p / ( n p r + l ) ;  q l = l - q O ;

G P S D 0 1 ;  G P S D 0 2 ;  P S D P L O T ;  t i t l e ( '3 B 4 B ’) ;

x y = . 5 ;  x Y = . 7 ;

fiy— r o u n d ( ( x y * n f ) / ( n F x * F x ) ) ;  y y — y c (p , f iy - f - l ) + .0 1 ;  

f iY = r o u n d ( ( x Y * n f ) / ( n F x * F x ) ) ;  y Y = Y x c ( p , f i y + l ) + . 0 1 ;  

te x t (x y ,y y ,'y c ') ;  te x t (x Y ,y Y , 'Y x c ') ;  te x t (.0 5 ,.2 , 'Y x d ') ;  t e x t (.0 6 ,.2 5 ,'y d ') ;  

e n d

i f  n p r > 1

m e s h ( y c ) ;  t i t le ( '3 B 4 B ') ;  

else  

e n d
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% Computes the PSD of the Modified Duobinary code

d = [ 0 , l] ;  D = [ d ( l ) ; d ( 2 ) J ;  [ M , N ] = s iz e ( D ) ;

x = [ - l ,0 .1 ] ;  X = [ x ( l ) ;  x (2 ) ;  x (3 )] ;  [ J , L ] = s iz e (X ) ;

S l = [  1 0 0 0  
0 0 1 0  

10  00
0  0  1 0]; S 2 = [  0 1 0 0

% the state-transition matrices (this is a four-state scheme)

0 0 0 1  
0 1 0 0  
0 0 0  1]; Z l = [  X ( 2 , : )  

X ( 2 , )

[ U ] = s i z e ( S l ) ;  S M = [ S 1 ; S 2 J ;  Z M = [ Z 1 ; Z 2 ] ;

j = s q r t ( - l ) ;  F x — 1; n F x = l ;  n f— 5 0; n p r = l ;

T x = l / F x ;  T = L * T x ;  T d = ( L / N ) * T x ;  F = F x / L ;  F d = ( N / L ) * F x ;

fo r p  =  1 : n p r

q O = p / ( n p r + l ) ;  q l = l - q O ;

G P S D 0 1 ;  G P S D 0 2 ;  P S D P L O T ;  t i t l e ( ' M O D IF IE D  D U O B I N A R Y ’) ;  

tex t(.3 ,.3 , 'y c '); te x t (.4 , .5 , ’Y x c ');

te x t (.05,.8, ’Y x d = 0 '); te x t (.05,.6, 'yd— 0 ');

e n d

if  n p r > l

m e s h ( y c ) ;  t i t l e f ' M O D IF IE D  D U O B I N A R Y ' ) ;

e lse

e n d
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% Computes the PSD of the Miller code

d = [ 0 , l j ;  D = [ d ( l ) ; d ( 2 ) ] ;  [ M , N ] = s iz e ( D ) ;

x = [ 0 , l] ;  X = [ x (  1 ) ,  x (  1 ) ;  x ( l ) ,  x (2 ) ;

x ( 2 ), x ( 1 ) ;  x ( 2 ), x ( 2 )]; [J, L ] = s iz e ( X ) ;

S l = [  0 1 0 0  

0 0 0 1  

0 0  01
0  1 0  0]; S 2 = [  0 0 1 0  

0 0 1 0  
1 0 0 0
1 0  0  0]; Z l = [ X(l,:)momo

m o i ;  Z2=[

[l,l]— s i z e ( S l ) ;  S M — [ S 1 ;S 2 ] ;  Z M = [ Z 1 ; Z 2 ] ;

momo
X(3,0
m .o i ;

j = s q r t ( - l ) ;  F x = l ;  n F x = l ;  n f = 3 0 ;  n p r = 9 ;

T x = l / F x ;  T = L * T x ;  T d = ( L / N ) * T x ;  F = F x / L ;  F d = ( N / L ) * F x ;  

fo r  p  —  1 : n p r

qO— p / ( n p r + 1  ) ;  q l  = l - q O ;

G P S D 0 1 ;  G P S D 0 2 ;  P S D P L O T ;  t it le ( ’M IL L E R ' ) ;  

te x t ( .3 , l ,  'y c ');  text(. 7,3, 'Y x c ') ;  

te x t (.05,3, 'Y x d = 0 '); t e x t (.05,2, 'yd— 0 '); 

e n d

i f  n p r > l

m e s h ( y c ) ;  t i t le ( ’M I L L E R ' ) ;  

else  

e n d
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% Computes the PSD of the 3B2T-RBS scheme
% for different specification of the input symbol probabilities (see Chapter 4)
% FOR BINARY PROBABILITIES MAKE c h o ic e = 2  

% FOR TERNARY PROBABILITIES c h o i c e = 3

c h o ic e = 3 ;

d = [ 0 , l ]; D = a l l b i n ( 3 ) ;  [ M , N ] = s iz e ( D ) ;  

x = [ 0 , l] ;  X = a l l b i n ( N + l ) ;  [ J , L ] = s iz e (X ) ;

R l = [ l  0  0  0]; R 2 = [ 0  1 0  0]; R 3 = [ 0  0  1 0]; R 4 = [ 0  0  0  1];

j = s q r t ( - l ) ;  F x = l ;  n F x = l ;  n f = 5 0 ;  n p r = l ;

T x = l / F x ;  T — L * T x ;  T d = ( L / N ) * T x ;  F = F x / L ;  F d = ( N / L ) * F x ;

fo r p  =  1 : n p r

q O = p / ( n p r + l ) ;  q l = l - q O ;  

i f  c h o i c e = = 2

G P S D 0 1 ;  %  the subroutine which computes the PSD, using the binary symbol probabilities 

e lse if  c h o i c e = — 3

P S D 0 1 R B S ;  %  subroutine, computing the PSD with the ternary symbol probabilities

e n d

G P S D 0 2 ;  P S  D P  L O T ;  

e n d

i f  n p r > l  

m e s h ( y y c c ) ;  

else  

e n d

% R 1 -R 4  specify the possible rows of the state-transition matrices for a four-state scheme

% this allows the matrices to be presented in a more concise form

[ l , l ] = s iz e ( S l ) ;  S M = [ S 1 ; S 2 ; S 3 ; S 4 ; S 5 ; S 6 ; S 7 ; S 8 J ;

Z M = [ Z 1 ; Z 2 ; Z 3 ; Z 4 ; Z 5 ;Z 6 ;Z 7 ;Z 8 ] ;
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% Computes the PSD of the 1T2B code, based on the 3B2T-RBS scheme 
% for different specification of the input symbol probabilities (see Chapter 4) 
% FOR EQUAL PROBABILITIES - choice=2.1 
% FOR UNEQUAL PROBABILITIES - choice=2.2

c h o ic e = 2 .1 ;

d = [0 .1 .2 J ; D = d ' ;  [ M , N ] = s i z e ( D ) ;  

x = [ 0 , l] ;  X = a l l b i n ( N + l ) ;  [ J , L ] = s iz e (X ) ;

S l = [  1 0  0 0  

0 1 0 0  
0 0 1 0
0 0 0 1 ] ;  S 2 = [

Z 1 = [ X ( 3 , : )

X ( 3 , )
X ( 2 , : )

X ( 2 . : ) l ;  Z 2 = [

0 0 0 1  
1 0 0 0  
0 0 0 1  
1 0 0 0]; 5 3 = [

mo
X  1 ,0mox(i,0b Z3 ~

0 0 1 0  
0 0 01 
1 0 0  0 
0 1 0 0];

X(2,0momo
X(3,01;

[l,l]— s i z e ( S l ) ;  S M = [ S 1 ; S 2 ; S 3 ] ;  Z M = [ Z 1 ; Z 2 ; Z 3 ] ;

j = s q r t ( - l ) ;  F x = l ;  n F x = l ;  n f = 5 0 ;  n p r — 1;

T x = l / F x ;  T = L * T x ;  T d = ( L / N ) * T x ;  F = F x / L ;  F d = ( N / L ) * F x ;

fo r p  =  1 : n p r

P S D 0 1 R B S ;  G P S D 0 2 ;  P S  D P  L O T ;  

e n d

i f  n p r > l  

m e s h ( y c ) ;  

else  

e n d
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% Simulates the mBlC code for m=3 and 5
% The C bit is added to different columns of D  to investigate the effect

d = [ 0 ,1]; D — a llb in (5 ) ;  [ M , N ] = s iz e ( D ) ;  

x = [ 0 , l] ;  X — [ D  ’; ( ~ D ( : , 5 ) ) [ J , L ] = s i z e ( X ) ;

%  The set of output words is formed by adding a complementary bit to the input words

S l = [ l ] ;  [ l , l ] = s iz e ( S l ) ;  

fo r s m — l : M

S M ( s m , : ) — S l ;  %  Compiles the matrix SM which collects the state-transition matrices 

e n d  %  for all input words

Z M = X ;

j = s q r t ( - l ) ;  F x = l ;  n F x — 1; n f = 5 0 ;  n p r = l ;

T x = l / F x ;  T = L * T x ;  T d = ( L / N ) * T x ;  F = F x / L ;  F d = ( N / L ) * F x ;

fo r p  =  1 : n p r

q O = p / ( n p r + l ) ;  q l = l - q O ;

G P S D 0 1 ;  G P S D 0 2 ;  P S D P L O T ;  

x y — .5; x Y = .  7;

f iy = r o u n d ( ( x y * n f ) / ( n F x * F x ) ) ;  y y = y c ( p , f i y + l ) + . 0 1 ;  

f iY = r o u n d ( ( x Y * n f ) / ( n F x * F x ) ) ;  y Y = Y x c ( p , f i y + l ) + . 0 1 ;  

text(xy ,yy , 'y c '); te x t (x Y ,y Y , 'Y x c '); 

text(. 05,. 2, ’ Y x d '); te x t (.06,.25, ’y d '); 

e n d

i f  n p r > l  

m e s h ( y c ) ;  

else  

e n d
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The following four modules are the subroutines called by the main blocks 
of the spectral analysis algorithm. Their structures are different for each module 
and special comments are given separately for the essential groups of lines.

The subroutines for the spectral analysis procedure

% The subroutine G P S D 0 1  computes the TPM, S and the components 
% Vx, HO, HI, H2 of the expression, (3.10b) for the code word PSD.
% The subroutine is constructed assuming binary input symbols

fo r m  =  1 : M  % The input-word probabilities are computed in this loop

N m  =  s u m ( D ( m , : ) ) ;  Q ( m )  =  ( q O " ( N - N m ) ) * ( q l " N m ) ;  

e n d  1

S = z e r o s ( l , l ) ;

fo r m  =  1 : M  %  The TPM  S computed in this loop

m i = [ ( m - l  ) * l + l : m * l ] ;  S = S + Q ( m ) * S M ( m i , : ) ;

e n d

U = e y e ( S ) ;  E = o n e s ( S ) ;  U = d ia g (U ); %  Computes the additional parameters, required

P = u ’/ ( S + E - U ) ;  S in f — u * P ;  %  in the expression for the PSD function

v - d i a g ( P ) ;  U S in f = U - S i n f ;  S S i n f = S - S i n f ;  %  as defined in section 3.2.3.2

V x = z e r o s ( l , L ) :  H 0 = z e r o s ( L , L ) ;

H 1 — z e r o s ( L , l ) ;  H 2 = z e r o s ( I , L ) ;

fo r m  =  1 : M  %  The components Vx, HO, HI, H2, defined by expressions (3.9),

m i = [ ( m - l ) * l - h l : m * l ] ;  %  are computed in this loop

V x —  V x + Q ( m ) * P * Z M ( m i , :); H 0 = H 0 + Q ( m ) * Z M ( m i , :). ' * v * Z M ( m i , :);

H 1 = H 1 + Q ( m ) * Z M ( m i , :). ' * v * S M ( m i , :); H 2 = H 2 + Q ( m ) * Z M ( m i , :); 

e n d

H 0 V x = . 5 * ( H 0 - V x .  ’* V x ) ;  % additional variable introduced for concise notation
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% The subroutine P S D P L O T  - plots the continuous parts, yc(p,:); Yc(p,:) 
% and the discrete parts, yd(p,:);Yd(p,:)
% of the line signal and the code-symbol sequence PSD functions 

p lo t(x f, Y x c (p , :),x f,y c (p , :) ) ,  h o ld  o n

%  The plot of the discrete parts of the PSD functions are preceded 

% by modification of the respective row vectors to achieve plotting 

%  of the discrete components (the spectral lines) as vertical bars 

% for improved readability of the graphs.

p IY k F = [ k F ( 1 ), k F ( l ) ,  k F ( l ) + x f ( 2 ) / 2 ,  k F ( l ) + x f ( 2 ) / 2 ] ;  

P l y k F = [ k F ( l ) , k F ( l ) , k F ( l ) + x f ( 2 ) , k F ( l ) + x f ( 2 ) J ;

P IY d = [ 0 ,  Y x d (p , l ) ,  Y x d (p , l) ,0 ] ;  

p \y d = [ 0 ,y d (p , l ) , y d (p ,  1 ), 0]; 

fo r  ¡— 2 : n F

p IY k F = [ p lY k F ,  k F ( i) - .0 0 5 ,  k F ( i) - .0 0 5 ,  k F ( i ) + . 0 0 5 ,  k F ( i ) + .0 0 5 ] ;  

P ly k F = [ p ly k F ,k F ( i ) - . 0 1 ,k F ( i ) - . 0 1 , k F ( i ) + .0 1 , k F ( i ) + .0 1 ] ;  

p IY d = [ p lY d ,  0, Y x d (p , i), Y x d (p , i), 0]; 

p ly d -[ p ly d ,  0 ,y d (p , i),y d (p ,  i), 0]; 

e n d

p lo t (p lY k F ,p lY d ,p ly k F ,p ly d ) ,  h o ld  o f f
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% The subroutine - P S D 0 1 R B S .  A modified version of the subroutine G P S D 0 1 .

% The module is constructed for ternary probabilities as required 
% by the main block for the analysis of the 3B2T-RBS code and its 1T2B version, 
% selected by specifying the value of the parameter c h o ic e

i f  c h o i c e = = 2 . 1

Q = [ 0 .3 3 3  0 .3 3 3  0.333]; % equal probabilities for the ternary symbols 0,1,2

e lse if  c h o i c e = = 2 . 2

Q = [ 0 .2 5  0 .3 7 5  0.375]; %  unequal probabilities for the ternary symbols 0,1,2

e lse if  c h o i c e = = 3  %  selects unequal ternary probabilities for the 2T4B transformation

a= 0 .0 9 3 8 ;  b = 0 .1 4 0 6 ;  %  the probabilities for the blocks of two ternary symbols

Q = [ a  b  a b  b a b  a]; % Q collects the probabilities for all valid

e n d  %  blocks of ternary symbols, used in the 3B2T-RBS code

S = z e r o s ( l , l ) ;  

fo r  m  =  1 : M

m i = [ ( m - l  ) * l + l : m * l ] ;  S = S + Q ( m ) * S M ( m i , : ) ;

e n d

U = e y e ( S ) ;  E = o n e s ( S ) ;  u = d i a g ( U ) ;

P = u  ' / ( S - h E - U ) ;  S i n f = u * P ;  

v = d i a g ( P ) ;  U S in f = U - S i n f ;  S S i n f = S - S i n f ;

V x = z e r o s ] 1 ,L ) ;  H 0 = z e r o s ( L , L ) ;

H l = z e r o s ( L , l ) ;  H 2 = z e r o s ( I ,  L ) ;  

fo r  m  =  1 : M

m i = [ ( m - l  ) * l + l : m * l ] ;

V x = V x + Q ( m ) * P * Z M ( m i , : ) ;  H 0 = H 0 + Q ( m ) * Z M ( m i , : ) .  ’* v * Z M ( m i , : ) ;

H 1 = H 1 + Q ( m ) * Z M ( m i , :). ' * v * S M ( m i , :); H 2 = H 2 + Q ( m ) * Z M ( m i , :);

e n d

H 0 V x = . 5 * ( H 0 - V x .  ’* V x ) ;
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Part II - Modules and Subroutines for the Simulation and the Analysis of Coding 

Structures from the Different Classification Categories

The main software blocks, specifying the codes from the different 
categories, are given in this section. Their structure is similar to the main spectral 
analysis modules from Part I, except that the block for each category specifies all 
possible state-transition and output matrices for a given number of states and a 
set of output words. Each block calls a main subroutine which is designed for a 
given size of the input-word set. The main subroutines generate all combinations 
of state-transition and output matrices which correspond to valid codes. For each 
of these combinations the computational subroutines are called, which perform the 
evaluation of the respective PSD functions, display the results in graphical form 
and store the data to disks.

Main modules of the code generating algorithm:

% This module computes the PSD of all possible codes from the D2S1X4 category

d = [0 .1 J ; D = [ d ( l ) ; d ( 2 ) J ;  [ M , N J = s i z e ( D ) ;  %  the input symbol and word sets

x = [ 0 , l j ;  X = [ x ( l ) ,  x ( l ) ;  x ( l ) ,  x (2 ) ;

x (2 ) ,  x ( l ) ;  x (2 ) ,  x (2 )J ;  %  the output symbol and word sets

[ K ,L ] = s iz e ( X ) ;

si=[i]; %  one possible state-transition matrix (this is a one-state category)

Z 1 = [ X ( 1 , : ) ] ;  Z 2 — [ X (2 , : ) ] ;  Z 3 = [ X ( 3 , : ) ] ;  Z 4 = [ X ( 4 , : ) ] ;  %  all possible output

%  matrices

S M m = [ S l ] ;  [ S M I, l] — s i z e ( S M m ) ;  n u m S M — S M I / l ;

Z M m  = [ Z 1 ;Z 2 ;Z 3 ;Z 4 ] ;  [ Z M I , L ] = s i z e ( Z M m ) ;  n u m Z M = Z M I / l ;

%  SMm and ZMm are matrices collecting all possible state-transition and output matrices

%  The SM and ZM matrices are derived from SMm and ZMm

j = s q r t ( - l ) ;  F x = l ;  n F x = l ;  n f = 3 0 ;  % the computational parameters

T x — l / F x ;  T = L * T x ;  T d — ( L / N ) * T x ;  F = F x / L ;  F d = ( N / L ) * F x ;

D 2 5 IX K ;  % the main computational subroutine
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% This module computes the PSD of all possible codes from the D2S1X8 category

d = [ 0 , l] ;  D = [ d ( l ) ; d ( 2 ) J ;  [ M , N ] = s iz e ( D ) ;  

x = [ 0 , l] ;  X = a l l b in ( 3 ) ;  [ K ,L ] = s iz e ( X ) ;

si=[i];
Z 1 = [ X ( 1 ,  :)1; Z 2 = [ X ( 2 , : ) ] ;  Z 3 = [ X ( 3 , : ) J ;  Z 4 = [ X (4 , : ) ] ;

Z 5 = [ X ( 5 , : ) ] ;  Z 6 = [ X ( 6 ,  :)]; Z 7 = [ X ( 7 , : ) J ;  Z 8 = [ X (8 , : ) ] ;

S M m = [ S l j ;  [ S M I , l ] = s i z e ( S M m ) ;  n u m S M — S M I / l ;

Z M m  = [ Z 1 ;Z 2 ;Z 3 ;Z 4 ;Z 5 ;Z 6 ;Z 7 ;Z 8 ] ;  [ Z M I , L ] = s i z e ( Z M m ) ;  n u m Z M = Z M I / l ;

j = s q r t ( - l ) ;  F x — 1; n F x = l ;  n f = 3 0 ;

T x = l / F x ;  T = L * T x ;  T d = ( L / N ) * T x ;  F = F x / L ;  F d = ( N / L ) * F x ;

D 2 S I X K ;

% This module computes the PSD of all possible codes from the D4S1X4 category

d = [ 0 ,1]; D = a l l b i n ( 2 ) ;  [ M , N ] = s iz e ( D ) ;

x = [ 0 , l] ;  X — a llb in (2 ) ;  [ K ,L ] = s iz e ( X ) ;

S M i];
Z 1 = [ X ( 1 ,  :)]; Z 2 = [ X ( 2 , : ) ] ;  Z 3 = [ X ( 3 , : ) ] ;  Z 4 = [ X (4 , : ) ] ;

S M m = [ S l ]; [ S M I , l ] = s i z e ( S M m ) ;  n u m S M = S M I / l ;

Z M m ~ [ Z 1  ;Z 2 ;Z 3 ;Z 4 ;] ;  [ Z M I , L ] = s i z e ( Z M m ) ;  n u m Z M = Z M I / l ;

j = s q r t ( - l ) ;  F x = l ;  n F x = l ;  n f = 3 0 ;

T x = l / F x ;  T = L * T x ;  T d = ( L / N ) * T x ;  F = F x / L ;  F d = ( N / L ) * F x ;

D 4 S I X K ;
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% This module computes the PSD of all possible codes from the D2S2X2 category

d = [ 0 , l] ;  D = [ d ( l ) ; d ( 2 ) ] ;  [ M , N ] = s iz e ( D ) ;  

x = [ 0 , l] ;  X = [ x ( l ) ;  x (2 )J ;  [ K ,L ] = s iz e ( X ) ;

S l = [  0  1

01];S2=[ 01
1 0]; S 3 = [  1 0

0  1]; S 4 = [  1 0

1 01;
Z 1 = [ X ( 1 , )

X ( 1 , : ) ] ; Z 2 = [  X ( l , : )

X ( 2 , : ) ] ; Z 3 = [  X ( 2 , : )

X ( 1 , : ) ] ; Z 4 = [  X ( 2 , )

X (2 , : )] ;

S M m = [ S l ; S 2 ; S 3 ; S 4 ]; [ S M I, l] — s i z e ( S M m ) ;  n u m S M — S M I / l ;  

Z M m  = [ Z 1  ;Z 2 ;Z 3 ;Z 4 ] ;  [ Z M I , L h s i z e ( Z M m ) ;  n u m Z M = Z M I / l ;

j = s q r t ( - l ) ;  F x — 1; n F x = l ;  n f— 3 0;

T x = l / F x ;  T = L * T x ;  T d = ( L / N ) * T x ;  F = F x / L ;  F d = ( N / L ) * F x ;

D 2 S I X K ;
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% This module computes the PSD of all possible codes from the D2S2X3 category

d = [ 0 .1 ] ;  D = [ d ( l ) ; d ( 2 ) ] ;  [ M , N ] = s iz e ( D ) ;

x - [ - 1 ,0,1]; X = [ x ( l ) ;  x (2 ) ;  x (3 )] ;  [ K ,L ] = s iz e ( X ) ;

S l = [  0  1
01];S2=[ 01

1 0]; S 3 — [  1 0

0  1]; S 4 = [  1 0

Z 1 = [ X ( 1 , : )

X ( 1 . : ) I ;  Z 2 = [  X ( l , : )

Z 4 = [ X ( 2 , : )

X ( l , : ) \ ;  Z 5 = [  X ( 2 , : )

Z 7 = [ X ( 3 , : )

X ( 1 , : ) ] ; Z 8 = [  X ( 3 , : )

1 0];

X (2 , : )] ;  Z 3 = [  X ( l , : )

X (3 . : ) l :

X ( 2 , : ) ] ; Z 6 = [  X ( 2 , : )

X (3 ,: )J ;

X (2 ,  :)]; Z 9 = [  X ( 3 , : )

X (3 ,: )] ;

S M m = [ S l ; S 2 ; S 3 ; S 4 ] ;

Z M m — [ Z l  ;Z 2 ;Z 3 ;Z 4 ;Z 5 ;Z  6 ;Z  7;Z 8 ;Z 9 ] ;

[ S M I, l] — s i z e ( S M m ) ;  n u m S M — S M I / l ;  

[ Z M I , L ] = s i z e ( Z M m ) ;  n u m Z M = Z M I / l ;

j = s q r t ( - l ) ;  F x = l ;  n F x = l ;  n f = 3 0 ;

T x = l / F x ;  T = L * T x ;  T d = ( L / N ) * T x ;  F = F x / L ;  F d = ( N / L ) * F x ;

D 2 S I X K ;

273



% This module computes the PSD of all possible codes from the D2S2X4 category

d = [0 .1 J ; D = [ d ( l ) ; d ( 2 ) J ;  [ M , N ] = s i z e ( D ) ;

x = [ 0 , 1]; X = [ x ( 1 ), x ( 1 );  x ( 1 ), x ( 2 );

x (2 ) ,  x ( l ) ;  x (2 ) ,  x (2 )J ;  [ K ,L ] = s iz e ( X ) ;

S l = [  0  1

01];S2=[ 01
1 0  /; S 3 = [  1 0

0  1]; S 4 = [  1 0

10 ];
Z 1 = [ X ( 1 , : ) ;  X ( l , : ) ] ;  1 9  = [ X ( 3 , : ) ;  X ( l , : ) ] ;

Z 2 = [ X ( 1 , : ) ;  X (2 , : )] ;  Z 1 0 = [ X ( 3 , : ) ;  X (2 , : )J ;

Z 3 — [ X (1 , :); X (3 , : )] ;  Z 1 1 = [ X ( 3 ,  :) ;  X (3 ,: )] ;

Z 4 = [ X ( 1 , : ) ;  X (4 , : )] ;  Z 1 2 = ( X ( 3 , : ) ;  X (4 ,: )] ;

Z 5 = [ X ( 2 , : ) ;  X ( l , : ) ] ;  Z 1 3 = [ X ( 4 , : ) ;  X ( l ,  :)};

Z 6 = [ X ( 2 , :); X (2 , : )J ;  Z 1 4 = [ X ( 4 , : ) ;  X (2 ,: )] ;

Z 7 = [ X ( 2 , : ) ;  X (3 , : ) j ;  Z 1 5 = [ X ( 4 , : ) ;  X (3 ,: )] ;

Z 8 = [ X ( 2 , : ) ;  X (4 ,  :)]; Z 1 6 = [ X ( 4 , : ) ;  X (4 ,: )] ;

S M m = [ S l ; S 2 ; S 3 ; S 4 ] ;  [ S M I , l ] = s i z e ( S M m ) ;  n u m S M — S M I / l ;

Z M m  = [ Z 1  ;Z 2 ;Z 3 ;Z 4 ;Z 5 ;Z 6 ;Z 7 ;Z 8 ;Z 9 ;Z 1 0 ; Z 1 1 ;Z 1 2 ;Z 1 3 ;Z 1 4 ;Z 1 5 ;Z 1 6};

[ Z M I , L ] = s i z e ( Z M m ) ;  n u m Z M — Z M I / l ;

j = s q r t ( - l ) ;  F x = l ;  n F x = l ;  n f = 3 0 ;

T x = l / F x ;  T — L * T x ;  T d — ( L / N ) * T x ;  F = F x / L ;  F d = ( N / L ) * F x ;  

D 2 S I X K ;
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% This module computes the PSD of all possible codes from the D2S3X2 category

d — [0 ,l] ; D = [ d ( l ) ; d ( 2 ) J ;  [ M , N ] = s iz e ( D ) ;  

x = [ 0 , l] ;  X = [ x ( l ) ;  x (2 )J ;  [ K ,L ] = s iz e ( X ) ;

S R 1 = [ 0  0  1]; S R 2 = [ 0  1 0]; S R 3 = [ 1  0  0];

%  S R 1 - S R 4  specify the possible rows of the state-transition matrices for a three-state scheme
% this allows the matrices to be presented in a more concise form

5 1  = [ S R 1 ;  S R I ;  S R I ] ;

5 2  = [ S R 1 ;  S R I ;  S R 2 j ;

5 3  = [ S R 1 ;  S R I ;  S R 3 j ;

5 4  = [ S R 1 ;  S R 2 ;  S R I ] ;

5 5  = [ S R 1 ;  S R 2 ;  S R 2 J ;

5 6  = [ S R 1 ;  S R 2 ;  S R 3 J ;

5 7  = [ S R 1 ;  S R 3 ;  S R I ] ;

5 8  = [ S R 1 ;  S R 3 ;  S R 2 ] ;
5 9  = [ S R 1 ;  S R 3 ;  S R 3 J ;  

S 1 0 — [ S R 2 ;  S R I ;  S R I ] ,  

S U = [ S R 2 ;  S R I ;  SR 2 ] ,  

S 1 2 = [ S R 2 ;  S R I ;  SR 3 ] ,  

S 1 3 = [ S R 2 ;  S R 2 ;  S R I ] ,

5 1 4 —  [ S R 2 ;  S R 2 ;  SR 2 ] ,

5 1 5 —  [ S R 2 ;  S R 2 ;  SR 3 ] ,

S 1 6 = [ S R 2 ;  S R 3 ;  S R I ] ,  

S i  7— [ S R 2 ;  S R 3 ;  SR 2 ] ,  

S 1 8 = [ S R 2 ;  S R 3 ;  SR 3 ] ,  

S 1 9 = [ S R 3 ;  S R I ;  S R I ] ,  

S 2 0 = [ S R 3 ;  S R I ;  SR 2 ] ,  

S 2 1 - [ S R 3 ;  S R I ;  SR 3 ] ,  

S 2 2 = [ S R 3 ;  S R 2 ;  S R I ] ,  

S 2 3 = [ S R 3 ;  S R 2 ;  SR 2 ] ,  

S 2 4 = [ S R 3 ;  S R 2 ;  S R 3 ]  

S 2 5 = [ S R 3 ;  S R 3 ;  S R I ]  

S 2 6 = [ S R 3 ;  S R 3 ;  S R 2 ]  

S 2 7 = [ S R 3 ;  S R 3 ;  S R 3 ]

Z 1 = [ X ( 1 , : ) ;  X ( l , : ) ;  X ( l , : ) ] ;  Z 5 = [ X ( 2 , : ) ;  X ( l , : ) ;  X ( l , : ) ]  

Z 2 — [ X (1 , : ) ;  X ( l , : ) ;  X (2 , : )J ;  Z 6 = [ X ( 2 , : ) ;  X ( l , : ) ;  X (2 , : ) ]  

Z 3 = [ X ( 1 , : ) ;  X (2 , : ) ;  X ( l , : ) ] ;  Z 7 = [ X ( 2 , : ) ;  X (2 , : ) ;  X ( l , : ) ]  

Z 4 — [ X (1 , : ) ;  X (2 , : ) ;  X (2 ,  :)]; Z 8 = [ X ( 2 ,  :); X (2 ,  :); X (2 , : ) ]

S M m — [ S l ; S 2 ; S 3 ; S 4 ; S 5 ; S 6 ; S 7 ; S 8 ; S 9 ; S 1 0 ; S l l ; S 1 2 ; S 1 3 ; S l 4 ; S l 5  

S I  6 ; S 1 7 ; S 1 8 ; S 1 9 ; S 2 0 ; S 2 1 ;S 2 2 ;S 2 3 ;S 2 4 ;S 2 5 ;S 2 6 ;S 2 7 ] ;

[ S M I, l] — s i z e ( S M m ) ;  n u m S M = S M I / l ;

Z M m  — [ Z l ; Z 2 ; Z 3 ; Z 4 ; Z 5 ; Z 6 ; Z 7;Z 8]; [ Z M I , L ] = s i z e ( Z M m ) ;  n u m Z M = Z M I / l ;

j = s q r t ( - l ) ;  F x = l ;  n F x = l ;  n f = 5 0 ;

T x = l / F x ;  T = L * T x ;  T d = ( L / N ) * T x ;  F = F x / L ;  F d = ( N / L ) * F x ;

D 2 S I X K ;
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% This module computes the PSD of all possible codes from the D2S4X2 category

d = [ 0 , l] ;  D = [ d ( l ) ; d ( 2 ) ] ;  [ M , N ] = s i z e ( D ) ;  

x = [ 0 , l] ;  X = [ x ( l ) ;  x (2 )J ;  [ K ,L ] = s iz e ( X ) ;

S r — [0 0  0  1; 0  0  1 0; 0  1 0  0; 1 0  0  o]; %  a supplementary matrix containing all possible

%  rows for a four-state state-transition matrix 

fo r r  1 — 1 :4  %  this cycle compiles the matrix SMm collecting all possible

fo r r 2 = l : 4  %  four-state state-transition matrices

fo r  r 3 = l : 4  

fo r  r4 — l : 4

R = ( r l - 1  ) * 4  ~ 3 + ( r 2 - l  ) * 4  ~ 2 + ( r 3 - l  ) * 4 + r 4 ;

S M m  ( R * 4 - 3 : R * 4 , :) — [ S r ( r l , : ) ; S r ( r 2 , :) ; S r ( r 3 , :) ; S r ( r 4 , :)]; 

e n d  

e n d  

e n d  

e n d

for r1 = 1 : 2  % this cycle compiles the matrix ZMm collecting all possible

fo r  r 2 = l : 2  %  one-symbol output-word matrices

fo r  r 3 = l  :2  

fo r  r 4 = l  :2

R = ( r l - 1  ) * 2  ~ 3 + ( r 2 - l  ) * 2  /' 2 + ( r 3 - l  ) * 2 + r 4 ;

Z M m  ( R * 4 - 3 : R * 4 ,  : ) = [ X ( r l ,  : ) ;X (r 2 ,  : ) ;X (r3 ,  : ) ;X ( r 4 , :)}; 

e n d  

e n d  

e n d  

e n d

[ S M I , l ] = s i z e ( S M m ) ;  n u m S M = S M I / l ;

[ Z M I, L ] — s i z e ( Z M m ) ;  n u m Z M = Z M I / l ;

j = s q r t ( - l ) ;  F x - 1 ;  n F x — 1; n f = 3 0 ;

T x = l / F x ;  T — L * T x ;  T d = ( L / N ) * T x ;  F = F x / L ;  F d = ( N / L ) * F x ;

D 2 S I X K ;
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The subroutines for the code generating algorithm

% The module D2SIXK computes the PSD for all categories 
% specified with a set of two source words D = [0,1]

fo r s i  =  1 : n u m S M  % this cycle generates all combinations of indices which specify

s l i  =  [ ( s l - l ) * l - h l  :  s l * l ] ;  %  a set of two (M =2) state-transition matrices

fo r  s 2  —  1 : n u m S M  % which are selected from the matrix SMm to form

s 2 i  =  [ ( s 2 - l ) * l + l  : s2 * l] ;  %  the computational matrix SM for a generated code

S M = [ S M m ( s l i , :) ; S M m ( s 2 i , :)];

n p r = l ;  p  =  1; q O = p / ( n p r - f - l ) ;  q l = l - q 0 ;  %  determines the input probabilities 

G P S D 0 1 A ;  %  calls the subroutine computing the TPM  S

U = e y e ( S ) ;  E — o n e s ( S ) ;  U— d ia g (U ) ;  %  Computes some of the additional parameters 

%  required in the expression for the PSD function as defined in section 3.2.3.2 

S e ig  =  1; % o ( s u m ( a b s ( e i g ( S ) ) + e p s > = l ) = = l ) ;  % The validity of the TPM  is

S r o w  — ( a l l ( s u m ( S . ’) ) = = l ) ;  %  verified by this group of lines

S E U d e t  -  ( d e t ( S + E - U ) ~ = 0 ) ;  %  to eliminate invalid code structures

S c h e c k  =  ( S e i g  &  S r o w  &  S E U d e t ) ;  

i f  S c h e c k  = =  1

P — u ' / ( S + E - U ) ;  P c h e c k  =  ~ ( a n y ( P < = 0 ) ) ;  

e n d

i f  ( S c h e c k  &l  P c h e c k )  = =  1 %  Computes the rest of the additional parameters

S i n f = u * P ;  v = d i a g ( P ) ;  U S in f = U - S i n f ;  S S i n f = S - S i n f ;  % for a valid TPM

fo r z l  =  1 : n u m Z M  %  this cycle generates all combinations of indices which specify 

z l i  =  [ ( z l - l ) * l + l  : z l * l ] ;  %  a set of two (M =2) output matrices

fo r z 2  =  z l  : n u m Z M  %  which are selected from the matrix ZMm to form

z 2 i  —  [ ( z 2 - l ) * l - h l  : z 2 * l] ; %  the matrix ZM for a generated code

Z M — [ Z M m ( z l i , :) ; Z M m ( z 2 i , :)]; n X = l ;

fo r z r l = l : M * l  % this loop skips matrices which produce ambiguous codes

fo r  z r 2 = ( z r l + l ) : M * I

n e X = a  n y ( Z M ( z r l , : )  ~ = Z  M  ( z r2 ,:) ) ;  

n X = n X + n e X ;  

e n d  

e n d

i f  n X > = M
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e S l = i n t 2 s t r ( s l ) ;  e S 2 = in t 2 s t r ( s 2 ) ;  % prepares the character string for

Z e t l — in t 2 s t r (z l ) ;  Z e t 2 = in t 2 s t r ( z 2 ) ;  % the name of the data-store file

G P S D 0 1 B ;  G P S D 0 2 ;  P S D P L O T ;  % the PSD evaluation subroutines 

t i t l e d ' S ' , e S l ,  S ' , e S 2 ,  ' Z ’. Z e t l ,  ’Z ',Z e t 2 ] ) ;

D 2 0 R D R %  the subroutine producing the data storage order (Section 5.2.1.1) 

e lse  

e n d  

e n d  

e n d  

else  

e n d

D 2 S A V E ;  % the subroutine saving the spectral analysis data

e n d

e n d
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% The module D4SIXK computes the PSD for all categories 
% specified with a set of four source words D=[00,01,10,ll]
% The same as module D2SIXK except that the loops generating 
% the state-transition and the output matrices are modified for M=2

fo r  s i  =  1 : n u m S M

s l i  =  [ ( s l - 1  ) * l + l  : s l * l ] ;  

fo r  s 2  =  1 : n u m S M

s2 i =  [ (s 2 - l ) * l + l  : s2 * l] ;

S M = [ S M m ( s l i , :) ; S M m  ( s2 i,:)]; 

fo r  s 3  =  1 : n u m S M

s3 i =  [ ( s 3 - l ) * l + l  : s3 * l] ;  

fo r s4  =  1 : n u m S M

s4 i —  [ ( s 4 - l ) * l + l  : s4 * l] ;

S M = [ S M m  ( s i  i,:) ; S M m  ( s2i,:) ; S M m  ( s3i,:) ; S M m  ( s4i,:)];

n p r — 1; p  -  1 ; q O = p / ( n p r + l ) ;  q l = l - q O ;

G P S D 0 1 A ;

U = e y e ( S ) ;  E = o n e s ( S ) ;  u - d i a g ( U ) ;

S e ig  =  ( s u m ( a b s ( e i g ( S ) ) + e p s > = l ) = = l ) ;

S r o w  =  ( a l l ( s u m ( S .  ’) ) — — l ) ;

S E U d e t  =  ( d e t ( S + E - U ) ~ = 0 ) ;

S c h e c k  =  ( S e i g  S i  S r o w  S i S E U d e t ) ;  

i f  S c h e c k  = =  1

P = u ' / ( S + E - U ) ;  P c h e c k  =  ~ ( a n y ( P < = 0 ) ) ;  

e n d

i f  ( S c h e c k  S i  P c h e c k )  = =  1 

S i n f = u * P ;  v = d i a g ( P ) ;  U S in f = U - S i n f ;  S S i n f = S - S i n f ;

fo r z l  =  1 : n u m Z M

z l i  —  [ ( z l - l ) * l + l  : z l * l ] ;  

fo r z 2  =  z l  : n u m Z M

z 2 i =  [ ( z 2 - l ) * l + l  : z2*\]; 

fo r z 3  =  z 2  : n u m Z M  

z 3 i -  [ ( z 3 - l ) * l + l  : z 3 * l] ;  

fo r z 4  =  z 3  : n u m Z M

z 4 i =  [ ( z 4 - l ) * l + l  : z4 * l] ;

Z M = [ Z M m ( z l i , : ) ; Z M m ( z 2 i , :) ; Z M m ( z 3 i , :) ; Z M m ( z 4 i , :)];
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e S l = i n t 2 s t r ( s l ) ;  e S 2 = in t 2 s t r ( s 2 ) ;  

e S 3 = i n  t2 s t r (s3 ) ;  e S 4 = i n  t2 s tr (s4 ) ;

Z e t l — in t 2 s t r (z l ) ;  Z e t 2 = in  t2 s t r (z 2 ) ;

Z e t 3 = i n  t2 s t r (z 3 ) ;  Z e t 4 = in  t2 str (z4 ) ;  

G P S D 0 1 B ;  G P S D 0 2 ;  P S  D P  L O T ;  

t it le ([ ’S e S l , e S 2 , e S 3 , e S 4 ,  'Z Z e t l , Z e t 2 , Z e t 3 , Z e t 4 ] );  

D 4 0 R D R ;

e n d

e n d

e n d

e n d

D 4 S A V E ;

e lse

e n d

e n d

e n d

e n d

e n d
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The subroutines for the spectral analysis procedure

% The subroutine GPSD01A computes the TPM, S (similar to GPSD01)  

% It is constructed assuming binary input symbols

for m =  1 : M
Nm =  sum(D(m,:));
Q(m) =  (qO~(N-Nm))*(ql "Nm); 

end
S=zeros(l,l); 
for m =  1 : M

mi—[(m-l )*l+l:m*IJ;
S=S+Q(m)*SM(mi,:);

% The subroutine G P S D 0 1 B  (similar to the second part of G P S D 0 1 )

% computes the components Vx, HO, HI, H2 
% of the expression, (3.10b) for the code word PSD.

V x = z e r o s (1 ,L ) ;  H 0 — z e r o s ( L , L ) :

H 1 = z e r o s ( L , l ) ;  H 2 = z e r o s ( I ,  L ) ;  

fo r  m  =  1 : M

m i = [ ( m - l  ) * l + l : m * I J ;

V x = V x + Q ( m ) * P * Z M ( m i , : ) ;  H 0 = H 0 + Q ( m ) * Z M ( m i , : ) .  ’* v * Z M ( m i , : ) ;  

H l = H l + Q ( m ) * Z M ( m i , : ) .  ’* v * S M ( m i , : ) ;  H 2 = H 2 + Q ( m ) * Z M ( m i , : ) ;  

e n d  % 3

H 0 V x = . 5 * ( H 0 -  Vx. ’* V x ) ;

% The subroutines G P S D 0 2  and P S  D P  L O T  are the same as those given in Part I
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% The subroutine D20RDR constructs matrices containing the values 
% of yxd and yxc for different PSD plots only and 
% compiling the matrix ORDz, used to derive the table of equivalence 
% which associates codes with the respective PSD functions

s i— ( s l - l ) * n u m S M + s 2 ;  % generate the sequential numbers of the state-transition

z i = ( z l - l  ) * n u m Z M + z 2 ;  %  and the output matrices

i f  ~ (e x is t ( ’y c c ’) )

y d d = y d ;  Y x d d =  Y xd ; y c c — y c ;  Y x c c —  Y x c ; % initiates the PSD collecting matrices

z i— 1; 0 R D z (z i ,  : ) = [ s i , z i , s i ,s 2 ,z l , z 2 ,1 ]; z i = z i + l ;  

e lse

fo r  l = l : i n d x  %  this loop checks for equivalent PSD functions (the continuous parts are used) 

R y c = ( a b s ( y c - y c c ( ! , : ) ) < e p s ) ;  %  R y d - ( y d - y d d ( l , : ) < e p s ) ;  %  the discrete

i f  ( a l l ( R y c ) ) = = l  %  &  a l l ( R y d ) ) = = l  %  parts can be added, too

0 R D z ( z i , :) = [ s i , z i , s i ,s 2 ,z l ,z 2 , !]; z i = z i + 1 ;  

b re a k

e lse if  l— = in d x

y d d = [ y d d ;y d j ;  Y x d d = [ Y x d d ;  Yxd]; 

y c c = [ y c c ;y c ] ;  Y x c c = [ Y x c c ;  Yxc];

0  R D z (z i ,  :)= [ s i,z i,  s i , s2, z l ,z2, in d x + 1  ']; z i = z i + 1;

e n d

e n d

e n d

[indx,nff]  =  s iz e (y c c ) ;

282



% The subroutine D40RDR is functionally the same as D20RDR 
% except that the indices, specifying the state-transition and 
% the output matrices are computed for M=4

s i = ( s l - l  ) * n u m Z M ~ 3 + ( s 2 - l  ) * n u m Z M  ~ 2 + ( s 3 - l  ) * n u m Z M + s 4 ;  

z i— ( z l - l  ) * n u m Z M ~ 3 + ( z 2 - l  ) * n u m Z M ~ 2 + ( z 3 - l  ) * n u m Z M + z 4 ;  

i f  ~ (e x is t ( 'y c c ’) )

y d d = y d ;  Y x d d — Y x d ; y c c = y c ;  Y x c c = Y x c ;

O R D z ( z i , :)= [ z i ,z l,z 2 ,z 3 ,z 4 ,1 ]; 

e lse

for l = l : i n d x

R y c = ( a b s ( y c - y c c ( l ,  : ) ) < e p s );  %  R y d = ( y d - y d d ( l , : ) < e p s ) ;  

i f  ( a l l ( R y c ) ) = = l  %  &  a l l ( R y d ) ) = = l

O R D z ( z i , :)= [ z i ,z l,z 2 ,z 3 ,z 4 , !]; 

b re a k

e lse if  l = = i n d x

y d d = [ y d d ;y d ] ;  Y x d d = [ Y x d d ;  Yxd]; 

y c c = [ y c c ;y c ] ;  Y x c c = [ Y x c c ;  Yxc];

O R D z ( z i , :)= [ z i,z l,z 2 ,z 3 ,z 4 ,  in d x + 1  ];

e n d

e n d

e n d

[indx,nff]  =  s iz e (y c c ) ;

283



% The subroutine D2SAVE saves the PSD data for the D2SIXK codes

i f  ( ( S c h e c k  &  P c h e c k )  —— 1 ) j ( z l = = n u m Z M )  %  checks if a valid code exists

e M = i n t 2 s t r ( M ) ;  a l— in t 2 s t r ( l) ;  K e i= in t 2 s t r ( K ) ;  %  produces characters to label 

z e t i— in t2 s t r (z i) ;  e s i= in  t2 str (s i) ;  % the files according to the codes category

D R = [ ’d ’, e M , ' s ’,a l,'x ',K e i] ; %  the store directory name

F L — [ ’d ’,e M , 's',esi, ’z ’.zeti]; %  the store file name

S A V E a  =  [ s a v e  a : \ ' ,D R ,  ’\ ’,F L ] ;

Y y d c f F = [ '  y d d ’, ' Y x d d ’, ' y c c ' , ’ Y x c c , ' x f ,  ’ k F ’]; 

e v a l([ '!m d  a : \ ' , D R ] )  

e v a l([ S A  V Ea , Y y d c f F , ' O R D z ' ] )  

c le a r  y d d  Y x d d  y c c  Y x c c  O R D z  z l

sa v e  c d t e m p ;  d e a r ;  lo a d  c d t e m p  %  cleans the working space

e va l([ 'd ir  a: \ ’, D R ] )  

e lse  

e n d

% The subroutine D4SAVE is the same as D2SAVE but is used for M=4

i f  ( S c h e c k  &  P c h e c k )  = =  1 

e M = i n t 2 s t r ( M ) ;  a l= in t 2 s t r ( l ) ;  K e i= in t 2 s t r ( K ) ;  

z e t i= in  t2 s t r (z i) ;  e s i= in  t2 s t r (s i) ;

D R = [ ’d ',e M ,  's',al, ’x ’,K e i];

F L = [ ’d ',e M ,  's',esi, ’z ',zeti];

S A V E a  =  [ ’sa v e  a : \ ' , D R , ' \ \ F L ];

Y y d c fF = [ ’ y d d ’, ’ Y x d d ’, ’ y c c ’, ’ Y x c c ’, ’ x f , ' kF '] ;  

e v a l([ ’!m d  a : \ ’, D R ] )  

e v a l([ S A  V E a , Y y d c f F , ' O R D z ’] )  

c le a r  y d d  Y x d d  y c c  Y x c c  O R D z  

sa v e  c d t e m p ;  clear; lo a d  c d t e m p  

e v a l([ ’d ir  a:\ ',D R ,  '* .m a t '] )  

else  

e n d
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A SPREAD SPECTRUM TECHNIQUE FOR TW O-LEVEL OPTICAL LINE SIGNALLING

Georgi P. Petkov, City University, London

Abstract : This paper describes a method for implementing spread spectrum techniques in binary signal 

transmission over optical fibres. The presentation of the proposed method is preceded by an overview of 

the essential arguments in support of spectrum spreading applications in fibre-optic systems.

I. INTRODUCTION

There have been many publications 

showing the potential offered by the Spread 

Spectrum (SS) techniques for multi-user 

communication systems. The rapid increase in 

the development of Fibre-Optic Communication 

Systems (FOCS) during recent years created new 

areas for investigating the benefits of spectrum 

spreading. Multiple access communication networks 

on optical fibres appear to be quite promising.

Section II summarises most of the essential 

arguments for developing SS Systems on optical 

fibres and contains an overview of some of 

che published achievements in this area. Some 

results reported in [8 , 9] are introduced in section 

III. The basic idea of combining coded data signals 

into a multi-level line signal is presented. It is 

suggested in section IV that code multiplexing and 

multiple a c c e s s  operation could be efficiently 

achieved through two-level line signalling.

A technique for transmission of SS information in 

a binary coding format is proposed, which is more 

appropriate for optical-fibre systems than a multi-

level format. The purpose of the extended 

preliminary discussion is to provide the background 

to the development of the suggested method.

II. SS IN OPTICAL COMMUNICATIONS

SS techniques have been extensively 

developed for multiple-access mobile 

communications and other radio transmission 

systems. The development of many successful 

applications for SS Systems in general and those for 

Code Division Multiple Access (CDMA) implies 

even better opportunities for using spectrum 

spreading in FOCS. The advantages of the optical- 

fibre transmission medium are its constant and 

predictable parameters the inherent noise 

immunity. The significant interfering signals are 

only those from different stations of the same 

communication system.

Combining the advantages of SS Systems 

and FOCS seems very attractive. It is suggested 

even by a general outline of the main features of 

both types of systems. For transmission over 

optical fibres these are :

— high information capacity due to the extremely 

broad bandwidth of the optical fibres;

— high energy efficiency (power per unit 

information) due to extremely low transmission 

losses.

The basic advantage of SS Systems is :

— the processing gain achieved by the controlled
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redistribution and the subsequent recovery of 

the signal throughout some very wide frequency 

band. Thus the SS techniques are efficient at high 

bit rates and the optical fibres are one of the best 

media to provide this. More arguments for 

the application of SS techniques in FOCS can be 

developed by going into the detailed theory of both 

areas [1 , 2 ].

Some reported results show the main 

directions of developing highly efficient optical 

communication networks with SS implementations. 

An example of a straightforward solution is given 

in [3]. The ground terminals of a satellite 

communication system can cope with an increased 

number of user-distribution stations by using 

optical fibre cables for direct retransmission of high 

frequency SS signals. Other publications [4,5] give 

just a general view of possible implementations.

The idea that is common to most reports is 

achieving a substantial increase in either 

performance or in the number of users when 

suitable spreading sequences are used in multiple 

access networks. A basically different approach is 

discussed in [6,7]. It concerns applying spectrum 

spreading methods directly in the optical frequency 

domain.

III. THE MULTI-LEVEL LINE SIGNALLING

The most explored area of SS applications 

in FOCS is the design of high capacity information 

networks based on CDMA. Good examples of 

practical results are given in [8 , 9]. Each station is 

asigned a suitable code sequence. The spectrum 

spreading is achieved by sending that code sequence

for data bit T ’ and its inverse for data bit ’O’. All 

stations can transmit simultaneously through 

optical coupling. The result is a multi-level optical 

line-signal. Maximal-length pseudo-random 

sequences are considered unsuitable for 

the proposed code multiplexing because the lower 

bound of the maximal crosscorrelation is restricted,

m&x |Ra,b(m)| >  ~ l + 2 (n+1)/2,

for any two maximal sequeh* *s a and b of length 

N=2n — 1 ( n is the number of stages of a shift 

register generator). An additional disadvantage is 

the relatively small number of maximal sequences 

of a given periodic length. Much better results have 

been achieved by using Gold sequences. Although 

their out-of-phase autocorrelation contains small 

non-zero peaks, their crosscorrelation function takes 

only three values. The number of Gold sequences of 

given period N is N+2 which is sufficient for 

the purposes of code multiplexing. It has also been 

shown in [8 ] that the number of stations which 

allow for error free performance depends on 

the period of the code sequences. With sufficiently 

long codes there are conditions under which N+l 

stations can transmit simultaneously with no error.

The ideas from [8 ] have been applied in 

a Local Area Network experiment with ’optical 

processing’ which is reported in [9]. It is suggested 

that an optical correlator is used at the receiving 

side. Such a correlator would consist of optical 

delay lines whose combined outputs yield pulses 

corresponding to the autocorrelation peak of 

a certain coding sequence. This can greatly reduce 

the operational speed of the optical receiver.
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The main problem with the optical processing is 

the number of the delay lines which should be 

equal to the number of ones in a particular random 

sequence.

The results of both reports described above 

show quite a good potential for practical 

achievements. However there are conditions which 

may restrict to some extent the area of 

applications. One of them is the necessity of 

securing a very careful balance in the optical 

’mixing’ of the signals on the line.

The disproportionate contribution of the separate 

stations could result in uncontrollable interference 

levels. Another problem is that multi-level optical 

signals are quite susceptible to the noise from 

optical components.

IV. THE SS BINARY LINE SIGNALLING

The main objective of this section is to 

suggest some possibilities for transforming the SS 

techniques to the time domain in order to avoid 

the need for a multi-level optical signal. The ’Time 

Spreading’ approach is equivalent in principle to 

the normal spectrum spreading. By this method 

a binary, as oposed to a multi-level, signal is 

generated for transmission over the optical fibre.

A very general model is adopted to 

describe the transition from the conventional SS 

Systems to the proposed method for code 

multiplexing. It is assumed that the binary signals 

of N information channels are to be transmitted 

simultaneously. Each signal is spread by a unique 

coding sequence of length N and a bit rate 

Fc=NFd, where Fd is the information bit rate.

The total channel capacity for baseband digital 

transmission is given by

C = E C , =  N[Fc(l+Sxi)],
1

S *
where -¡) is the signal/noise ratio for the i-th

channel. When all channels come from separate

sources and share the same media a multi-level

signal is formed. For the purposes of

the presentation the values of this signal are

considered to range over all integers from 0 to N.

Thus within a code-bit period the value k=0 ... N

of the multi-level signal equals the number of

channeles whose code bits for that period are ’one’ .

This is equivalent to approximately an N times 
s *

lower ¡ 7  which at the same time, is compensated 

for by a processing gain approximately equal to 

(Fc/F <i) =  N. In terms of information capacity this 

is also equivalent to N channels over separate 

transmission lines.The multi-level type of line 

signal can be visualized by simulating a 7 channel 

system with Gold codes of length 7. This is not 

a practical case but it can illustrate the general 

features of multi-level signalling. (The simulation 

for 31 bit Gold sequences looks the same but is 

difficult to illustrate in one figure.) A 3-D 

perspective-image of the line signal values for all 

possible 7-tuples of binary channel data is shown in 

fig. la. When the conventional decoding is preceded 

by optoelectronic conversion and hard-limiting of 

the line signal, determination of the threshold level 

is quite critical. An illustration of the of the hard- 

limited line-signal values from fig.la for the 7 

channel model is given in fig.lb. The ’high’ and 

’low’ values of the two-level signal correspond to
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the signal values above and below the threshold 

respectively. Finally the picture in fig.lc shows 

the decoded original data after processing the line 

signal from fig. lb with all code sequences.

It is claimed by the results of [8 ] 

the suggested code multiplexing can be better than 

the conventional time-domain multiplexing .

a )  t h e  s p a c e  o f  a l l  s i g n a l  v a l u e s

— possibility to multiplex information bits 

asynchronously as long as the code bits are in 

synchronization;

— the receiver does not have to demultiplex all 

channels as it can decode only those of interest.

To achieve the same effect in code 

multiplexing by using two-level signalling it is

b )  t h e  h a r d - l i m i t e d  s i g n a l

F ig .  1 c )  t h e  s p a c e

This can be considered an improvement for 

a hypothetical communication system where 

the transmitting side multiplexes the information 

channels by producing a multi-level signal identical 

to the one resulting from separate sources using 

the same line. It is obvious that such a code 

multiplexing technique could be preferred provided 

a suitable optical source exists. The important 

advantages would be:

o f  t h e  d e c o d e d  v a l u e s

obvious from the expression for C that a bit rate of 

the order of NFC is required. Sending the coding 

sequences of all channels sequentially is a direct 

binary equivalent of transmission over N separate 

lines. (If this is done within one information bit 

period the bit rate becomes N2 Fd, which is far from 

efficient signalling.) However, as this is the extreme 

in bandwidth, the power spectral density of such 

a coding format has been calculated to define
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the upper boundary of the increase in the necessary 

frequency band. The graph is shown in fig. 2 as 

BWer. Some small improvement could be achieved 

if the code bits with equal numbers from 

the different spreading sequences are transmited 

sequentially. This introduces a uniform distribution 

of pulses in the line signal regardless of the number

the binary signal is achievable through processing 

stages similar to those illustrated above.

The coding can be technically simple in spite of 

the big set of possible substitutions. The solution is 

to find the optimal ratio between the states and 

the code words in a finite state sequential machine 

model of the line coder.This technique has been 

modelled to compute the power spectral density of 

the resulting code-multiplexed line signal.

The graph is presented in fig. 2 as BWt> and shows 

a noticeable reduction in the occupied bandwidth.

Further development of the proposed 

coding is to invert the coding pulses for k smaller 

and bigger than some predetermined values.

It can be set for example to 

k<0.25(N +  l) and k>0.75(N +  l).

of channels multiplexed which is essential to 

the amount and the distribution of the timing 

content. This is still not very practical especially 

with longer spreading sequences.

A substantial improvement can be achieved 

by transmitting the SS information embedded in 

the multi-level signal in binary form. A straight 

forward example is for each code-bit period to send 

a pulse of duration

tc= ^ T e= ^ 5 T d , where

k = l  ... N is the corresponding value from 

the multi-level signal. Te =  l /F (; and Td =  l /F d are 

the code and information bit periods respectively. 

The coding rules for the time-spreading technique 

are directly related to the multi-level model 

simulation. This implies that the decoding of

A particular threshold value for pulse inversion 

may be determined from the statistical distribution 

of the average number of values in the multi-level 

signal. An example of such a distribution is shown 

in fig.3. It can be seen that a binary signal 

produced by the time-spreading method contains 

the whole SS information of the multi-level optical 

signal and its bandwidth is much smaller than the 

one of direct time-domain multiplexed code
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sequences. However, the increase in

the transmission bit rate makes the proposed

technique practical mainly for FOCS.

V. SUMMARY AND CONCLUSIONS

The main advantages in using SS 

techniques in optical-fibre communications have 

been discussed. Some reported results have been 

presented in brief to illustrate code multiplexing for 

multi-level optical-fibre transmission.

A method has been proposed for data- 

channel multiplexing through producing a binary 

equivalent of the multi-level SS signal. It has been 

shown that an increase in the transmission bit-rate 

can be maintained within reasonable limits.

The time-spreading technique requires higher 

bandwidth but this is easily compensated for by 

the use of two-level line signalling, which is more 

appropriate for fibre-optic communications than 

a multi-level format.

There are still many unexploited 

possibilities for improvement of the proposed 

technique. The necessary bandwidth can be further 

reduced by constructing codes which would have 

the pulse contents of a data period T d optimised 

without altering the amount of SS information.
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A LOW COST OPTICAL LINK FOR INTEGRATED VOICE AND DATA TRANSMISSION 

OVER DISTRIBUTED COMPUTER NETWORKS 

N. Nicolaou, G. Petkov, R. Comley

Centre for Information Engineering, City University, Northampton Square,

London EC1V OHB, England

A b s t r a c t : The possibility/or integrated voice and data transmission through a mesh type of local 

area network has been investigated. A model of 20Mbps fibre-optic link has been designed to connect 

two nodes. Because the distances to be covered are relatively short and the number of tranceivers is 

large, a low-cost solution has been adopted. This was achieved by a very simple circuit design and off- 

the-shelf components. A three level line code carrying the full timing information was used to increase 

the reliability of transmission. The design considerations concerning the transmitter and receiver 

circuits and results of measuring the transmission performance of the fibre-optic link are presented in 

the following paper.

INTRODUCTION

The rapid proliferation of personal computers and the desire for the distribution of computing power 

and resources has made Local Area Networks (LANs) an important feature in areas such as industry, 

business, university campuses, military installations, etc. LANs have been developed to provide a wide 

range of services many of which have widely differing demands. Some applications require only data or 

voice communication, some require both and more recently video transmissions have begun to appear. 

This diversity of applications has led to the establishment of many different standards and techniques.

For some applications the LAN is not a critical component while for others a LAN failure could be 

potentially catastrophic. A LAN for these latter applications has been suggested in [1]. It has a regular 

mesh (lattice) topology with its nodes situated on the cross-over points and connected to their 

immediately adjacent neighbours via bi-directional links. The LAN was designed to offer high levels of 

reliability (achieved through its multipath structure) and voice-data integration. It can support up to 

128 nodes and uses 20 Mbps point-to-point fibre-optic links.

Conventional fibre-optic transmitters and receivers are generally expensive making the cost of the mesh 

topology prohibitively high. This paper describes a simple transmiffer/receiver unit suitable for use in 

the above network but with potential for many other general purpose applications.
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LINE CODING OOBJECTIVES

la the case of point-to-point links the transmitter and the receiver must be synchronised either by using 

a separate line carrying the clock signal or by timing information contained within the transmitted 

data. This latter solution is the one preferred in almost all cases except where the distances involved 

are very small. There are many different line codes in use today [2,3].

The most important characteristiesraffccting the selection of a line code are its spectral distribution, 

codec complexity, bit timing content, error detection capability and transmission efficiency [3]. In the 

case of LANs, achieving optimum or maximum line code efficiency is generally of less importance than 

reducing hardware complexity. Also, for short lines where the Bit Error Rate (BER) may be reduced to 

very low levels ( < 1 0 ~ 9  typ.), a line code with an inherent error detection capability is not considered 

necessary. The bit rate of the line signal implies that the fibre-optic (F-0) link is not dispersion limited 

and the spectral distribution of the line code will not raise the problems of variable frequency response 

and propagation delay, typical for metallic lines. From the above, it would therefore be reasonable to 

suggest that line codes, suitable for LANs based on optical fibres, should contain adequate timing 

information and have simple coder and decoder circuits.

Most of the line codes used with optical fibres are two-level codes. This was necessary because of the 

non-linearity of early optical sources and the fact that two-level codes would allow longer distances 

between repeaters. However, optical sources are now being made with much more linear characteristics, 

and since long distances are not generally a feature of LANs, multi-level codes can be seriously 

considered. The simplest multi-level code is a three-level code, an example of which is shown in Fig.l.

This code is similar to the Polar RZ code 

[ 3] the only difference being that the signal is not 

a voltage but light and the levels are not +V, 0 

and —V but Pq , 0.5 Pm3 x and Pmax (P 13 

the light intensity). In this code l ’s are 

represented by a pulse from 0.5 Pmax to Pmax 

andO’s by a pulse from 0.5 Pmax to Po- Both 

pulses are half a bit-cell wide and are located in 

the middle of the bit-cell.
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Since there are two transitions in every bit-cell it means that the line code contains the full clock 

information. Of course, using three levels to transmit binary data is not the most efficient way but this 

is outweighted by the savings in other areas. For example, there is no need for any additional 

synchronisation bits and it offers the possibility for continuous line monitoring with simple circuitry 

and immediate line fault detection. Also, the decoder circuit for the three level line code is very simple 

compared with other codes offering similar timing information. The circuit diagram of a coder and 

decoder for such a code is shown in Fig.2.

Fig.2 The optical transmitter and receiver circuits 

(Ax - amplifier; LED - light emitting diode; PIN - photodetector; B - buffer; comp - comparator)

DESIGN CONSIDERATIONS

The purpose of the F -0  link is to provide simple and reliable connection between adjacent nodes of the 

proposed network. Although the distances between connected nodes are relatively small, a F-0 link is 

still a better choice than a conventional metallic line, because it can easily provide the necessary 

20Mbps bit rate and take advantage of the cheap plastic coated silica type of fibres. Also the immunity 

of F-0 links to external electrical interference can be very significant for certain LAN installations.

Simple calculations on the optical power budget for our link show that the maximum distance covered 

is around I.5Km, assuming a photodiode sensitivity of — 25dBm, typical connector loss of 2dB and a 

3dB span margin. The above distance is more than adequate for the needs of the proposed network.

The parameters of the fibre optic components presented in Table I show that the optical power of the 

LED and the photodiode sensitivity can be easily matched with'appropriate fibre characteristics. As a 

result, most of our attention has been directed towards achieving high reliability through good timing 

characteristics of the transmitted signal.
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Tabic 1

General characteristics 

of the F-0 link

20 Mbps clock rate; NRZ/TTL level data input and output: 

Three-level optical pulse format; 850nm transmission wavelength

Transmitter LED optical power source mounted in an SMA bulk type connector 

(160W into 200m PCS); Gns typical rise and fall limes

Receiver SMA conncctorised PIN Photodiode; 

Transimpedance preamplifier stage (Arx)

A LED driving circuit (Atx) was designed to provide the necessary response time for the conversion of 

the high speed TTL output into fast high-current driving pulses at the required bit rate. Using a single 

IC (4x2 NAND gates) and two high-frequency transistors, a very simple circuit for converting the two- 

level NRZ data into a three-level optical signal was achieved. As each network node incorporates four 

Transmitter-Receiver units, the simplicity of the circuitry is of great importance. The advantages of 

transmitting full timing information allow a very simple decoding circuit to be used at the receiver site. 

There is no need for a local clock generator or synchronising circuit.

CIRCUIT DESCRIPTION

The very simple TTL logic circuit of the transmitter (Fig.2) combines the clock and the NRZ pulses to 

produce separate streams of pulses for the l ’s and 0’s respectively. These signals switch the two driving 

transistors to conduct the maximum or zero value of LED current for 50% of each clock period.

The receiver utilises the broad-band frequency response of a transimpedance preamplifier followed by a 

high speed 5539 opamp to produce the necessary levels for the discriminating circuit. Both 1 and 0 

pulse streams are detected by comparators and a simple circuit is used to recover the clock and the 

NRZ data signals. The relative time shifting between these two sequences is proportional to the 

variation of the DC component around the zero (mid-level) value when long sequences of consecutive 

l ’s and 0’s are transmitted. This does not present a serious problem for our network because:

— the construction of the data packages is such that long sequences of l ’s or 0 ’s will never exceed the 

measured limit

— the line signal is formed so that when clock pulses or both clock and data pulses are absent, a 

constant half- maximum level optical signal is fed into the line.
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The constant middle level optical power transmission ensures that the transmittcr/rcceivcr circuits arc 

permanently biased which speeds up response times and allows a constant line integrity check to be 

performed.

TEST RESULTS

Two basic parameters of the F-0 link were measured by the Digital Transmission Analyser ME520B. 

The 20Mbps transmission rate., was achieved by applying an external clock signal to the ME520B 

transmitter unit (ME520A-Tx). The BER and timing jitter were measured with the ME520B receiver 

unit (ME520A-Rx).

For any of the TTL level test signal, i.c. (210 — 1), (215 — 1) and (223 —1) pseudorandom sequences or 

different conditions of manually set 16 bit words, the F-0 link showed error-free performance over 

measuring intervals from 10 to 180 minutes duration.

The values of the measured timing jitter were well below the CCITT recommendation limits which is 

taken to be quite acceptable for the designed network. This level of performance is achieved through 

the excellent synchronisation characteristics of the receiver circuit, which locks onto the input signal 

immediately after it crosses either detection level.

The only conditions which degraded the F-0 link performance occurred when long sequences of zeros
0 *3

were added to the data bit stream. The results show that 64 consecutive zeros in every 2 —1 bit

pseudorandom sequence bring the BER up to 10~3. Occasionally repetitive loss of synchronisation 

occurred although the values of the measured timing jitter did not exceed 0.2UI. This phenomenon can 

be explained by the relatively high level of base-line drift (Fig.3) which may be easily eliminated 

through the use of appropriate data formats.

t

Fig. 3 Optical pulse-waveform
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CONCLUSIONS

This paper shows that fibre optic links for moderate transmission rates can be easily built using cheap 

“ off-the-shelf” components. A 20Mbps optical link suitable for transmission over distances of up to 

L.5Km has been successfully demonstrated.

Although not used extensively wttIFopUcal fibres, three-level codes with full timing information and 

simple transmitter-receiver circuits are shown to offer a very cost-effective and reliable solution for 

LANs which employ point-to-point links of relatively short length.

Availability of suitable optical components (e.g. the tri-stable laser diode [4]) should allow significant 

improvements in performance to be achieved with three-level optical codes. Further plans include the 

investigation of optical transmission formats and line codes suitable for integrated voice, data and 

video communications.
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