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Abstract

Although neural networks have shown very good performance in many appli-
cation domains, one of their main drawbacks lies in the incapacity to provide an
explanation for the underlying reasoning mechanisms.

The “explanation capability” of neural networks can be achieved by the extrac-
tion of symbolic knowledge. In this paper, we present a new method of extraction
that captures nonmonotonic rules encoded in the network, and prove that such a
method is sound.

We start by discussing some of the main problems of knowledge extraction
methods. We then discuss how these problems may be ameliorated. To this end,
a partial ordering on the set of input vectors of a network is defined, as well as a
number of pruning and simplification rules. The pruning rules are then used to
reduce the search space of the extraction algorithm during a pedagogical extraction,
whereas the simplification rules are used to reduce the size of the extracted set of
rules. We show that, in the case of regular networks, the extraction algorithm is
sound and complete.

We proceed to extend the extraction algorithm to the class of non-regular net-
works, the general case. We show that non-regular networks always contain reg-
ularities in their subnetworks. As a result, the underlying extraction method for
regular networks can be applied, but now in a decompositional fashion. In order
to combine the sets of rules extracted from each subnetwork into the final set of
rules, we use a method whereby we are able to keep the soundness of the extraction
algorithm.

Finally, we present the results of an empirical analysis of the extraction system,
using traditional examples and real-world application problems. The results have
shown that a very high fidelity between the extracted set of rules and the network
can be achieved.

1 Introduction

Human cognition successfully integrates the connectionist and symbolic paradigms of
Artificial Intelligence (AI). Yet, the modelling of cognition develops these separately in
neural computation and symbolic logic/Al areas. There is now a movement towards
a fruitful midway in between these extremes, in which the study of logic is combined
with recent insights from connectionism. It is essential that these be integrated [22].



The aim of neural-symbolic integration is to explore the advantages that each para-
digm presents. Within the features of artificial neural networks are massive parallelism,
inductive learning and generalization capabilities [7, 13]. On the other hand, symbolic
systems can explain their inference process, e.g., through automatic theorem proving,
and use powerful declarative languages for knowledge representation [17, 19].

The Connectionist Inductive Learning and Logic Programming (C'T LQP) system
[5] is a proposal towards tightly coupled neural-symbolic integration, which is best
instantiated in [12] (see [14] for a classification of systems of neural-symbolic integra-
tion). CIL2P is a massively parallel computational model based on a feedforward
artificial neural network that integrates inductive learning from examples and back-
ground knowledge [18] with deductive learning from Logic Programming [19]. Starting
with the background knowledge represented by a (propositional) general or extended
logic program, a translation algorithm (see Figure 1, (1)) is applied generating a neural
network that can be trained with examples (2). Moreover, the neural network com-
putes the stable model (answer set) of the general (extended) program inserted in it or
learned by examples, as a parallel system for Logic Programming (3). The final stage
of the system (4) consists of the symbolic knowledge extraction from the trained neural
network, which provides the explanation for the network’s answers. The knowledge
extracted then could feed the system again (5), closing the learning cyclel.
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Figure 1: Neural-Symbolic Integration

In this paper, we concentrate on the problem of extraction of symbolic knowledge
from trained neural networks, that is, the problem of finding “logical representations”
for such networks. The extraction allows for the explanation of the decision making
process, thus contributing to solve the “knowledge acquisition bottleneck problem”.
The domain theory extracted, obtained from inductive learning with examples, can
be added to an existing knowledge-base or used in the solution of analogous domains
problems.

Briefly, the problem of extraction lies on the complexity of the extraction algorithm.
Holldobler and Kalinke [15] have shown that each logic program is equivalent to a
single hidden layer neural network. In one direction of that equivalence relation, a
translation algorithm (see Figure 1(1)) derives a neat neural network structure when a
logic program is given. The problem arises in the converse direction, i.e., given a trained

! For example, in a fault diagnosis system, a neural network can detect a fault quickly, triggering
safety procedures, while the knowledge extracted from it can justify the fault later on. If mistaken,
this information can be used to fine tune the learning system.



neural network, how could we find out the equivalent logic program? Unfortunately, it
is very unlikely that a neat network will result from the learning process. Furthermore,
a typical real-world application network may contain hundreds of input neurons and
thousands of connections.

The knowledge acquired by a neural network during its training phase is encoded as:
(i) the network’s architecture itself; (ii) the activation function associated to it; and (iii)
the value of its weights. As pointed out in [2], the task of extracting explanations from
trained neural networks is the one of interpreting in a comprehensible form the collective
effect of (i), (ii), and (iii). Also in [2], a classification scheme for extraction algorithms is
given, based on: (a) the expressive power of the extracted rules; (b) the “translucency”
of the network; (c) the quality of the extracted rules; and (d) the algorithmic complexity.
The first classification item refers to the symbolic knowledge presented to the user
from the extraction process. In general, this knowledge is represented by rules of
the form “if then else”. The second classification item contains two basic categories:
decompositional and pedagogical. In the decompositional, the extraction occurs at the
level of individual, hidden and output, units within the trained neural network. In
the pedagogical, the neural network is viewed as a “black box”, and the extraction is
done by mapping inputs directly into outputs. The next classification item intends to
measure how well the task of extracting the rules has been performed, considering the
accuracy, consistency and comprehensibility of the set of rules. The last item refers to
the requirement for the algorithm to be as effective as possible. In this sense, a crucial
issue in developing an extraction algorithm is how to constrain its search space.

In [33], Thrun defines the following desirable properties of an extraction algorithm:
(i) No architectural requirements: a general extraction mechanism should be able to
operate with all types of neural networks; (ii) No training requirements: the algorithm
should not make assumptions about the way the network has been built and how its
weights and biases have been learned; (iii) Correctness: the extracted rules should
describe the underlying network as correctly as possible; (iv) High expressive power:
more powerful languages and more compact rule sets are highly desirable.

Intuitively, the extraction task is to find the relations between input and output
concepts in a trained network, in the sense that certain inputs cause a particular
output. We argue that neural networks are nonmonotonic systems, i.e., they jump to
conclusions that might be withdrawn when new information is available [21]. Thus,
the set of rules extracted may contain default negation (~). Each neuron can represent
a concept or its “classical” negation (—). Consequently, we expect to extract a set of
rules of the form: Lq,...,Ln,~ Lpy1,.c.y~~ L — Ly, where each L; is a literal (a
propositional variable or its “classical” negation), L; (1 < j < m) represents a neuron
in the network’s input layer, L., 1 represents a neuron in the network’s output layer,
~ stands for default negation, and — means causal implication® (see [5] for neural
network’s nonmonotonic semantics).

In this paper, we present a new approach for knowledge extraction from trained
networks that complies with the above perspective. We start by discussing some of the
main problems found in the literature. We then discuss how these problems may be
ameliorated. To this end, we identify a partial ordering on the set of input vectors of a
network, and define a number of pruning rules and simplification rules that interact with
such an ordering. These rules are used to reduce the search space of the extraction
algorithm, as well as the number of rules extracted. We show that, in the case of

2Notice that this is the language of Extended Logic Programming [11].



regular networks, the extraction algorithm is sound and complete®. We then extend
the extraction algorithm to the general case. By showing that every non regular network
contains regularities in its subnetworks, we can still apply the underlying extraction
algorithm to the general case network, but now in a decompositional fashion. The only
problem we have to tackle, however, is how to combine the sets of rules obtained from
each subnetwork into the set of rules of the network. We use a method for assembling
the set of rules whereby we are able to preserve soundness of the extraction algorithm,
although we have to forego completeness.

In Section 2, we discuss the main problems of the task of extracting knowledge
from trained networks. In Section 3, we recall some useful preliminary concepts and
define the extraction problem precisely. In Section 4, we present our solution to the
extraction problem, culminating with the outline of the extraction algorithm for the
class of regular networks, and the proofs of soundness and completeness of the method.
In Section 5, we extend the extraction algorithm to the class of non regular networks
- the general case - and show that the method of extraction is sound in this case. In
Section 6, we present the experimental results of applying the extraction system to
the Monk’s Problems [32], DNA sequence analysis and Power Systems fault diagnosis.
Finally, in Section 7, we conclude and discuss directions for future work.

2 Related Work

Among the existing extraction methods, the one presented in [15], the “Ruleneg” [26],
the “VIAnalysis” algorithm [33], and the “Rule-Extraction-as-Learning” method [8] use
“pedagogical” approaches, while the “Subset” [10], the “MofN” [35], the “Rulex” [3] and
Setiono’s proposal [29, 30] are “decompositional” methods (see [2] for a comprehensive
survey ).

In the C'IL?P system, after learning takes place, the network /N encodes a knowl-
edge P’ that contains the background knowledge P complemented or even revised by
the knowledge learned with training examples. We want to derive P’ from N. At the
moment, only pedagogical approaches can guarantee that the knowledge extracted is
equivalent to the network, i.e., that the extraction process is sound and complete. In
[15], for instance, all possible combinations of the input vector i of N are taken into
account in the process of rule generation. In this way, the method must consider 2™
different input vectors, where n is the number of neurons in the input layer of N. Some
pedagogical approaches tackle this problem by extracting rules for the learning set only,
excluding the network’s generalization.

Obviously, pedagogical approaches are not effective when the size of the neural
network increases, as in real-world applications. In order to overcome this limitation,
decompositional methods, in general, apply heuristically guided searches to the process
of extraction. The “Subset” method [10], for instance, attempts to search for subsets
of weights of each neuron in the hidden and output layers of IV, such that the neurons’
input potential exceeds its threshold. Each subset that satisfies the above condition is
written as a rule. One of the most interesting decompositional methods is the “MofN”
technique [35]. Based on the Subset method, it uses weights’ clustering and pruning in
order to facilitate the extraction of rules. It also generates a smaller number of rules, by
taking advantage of the M of N representation, in which m(Ay,..., 4,) — A indicates

3Following [10], we say that an extraction algorithm is sound and complete if the set of rules is
provably equivalent to the network. If, however, the set of rules is correct, but represents only a subset
of the set of answers of the network, then the extraction is sound but incomplete.



that if m of (Ai,..., An) are true then A is true, where m < n. The work by Setiono
[29, 30] is another proposal of decompositional extraction. Setiono proposes a penalty
function for pruning a feedforward neural network, and then generates rules from the
pruned network by considering a small number of activation values at the hidden units.

Decompositional methods, such as [35] and [30], in general use weights pruning
mechanisms prior to extraction. However, there is no guarantee that a pruned network
will be equivalent to the original one. That is the reason why these methods usually
require retraining the network. During retraining, some restrictions must be imposed
on the learning process - for instance, allowing only the thresholds, but not the weights,
to change - in order to the network to keep its “well-behaved” pruned structure. At this
point, there is no guarantee that retraining will be successful under such restrictions.
Other extraction methods use penalty functions during training to try and keep the
initial “well-behaved” structure of the network and, thus, facilitate extraction. Such
methods are bound to restrict the network’s learning capability, as they would not be
applicable to a network trained with an “off the shelf” learning algorithm. Even if we
avoid the use of penalty functions and weights’ clustering and pruning, the simple task
of decomposing the network into smaller subnetworks, from which rules are extracted
and then assembled, has to be carried out carefully. That is because, in general, the
collective effect of the network is different from the effect of the superposition of its
parts [2]. As a result, most decompositional methods are unsound. The following
example illustrates this fact.

Example 1 (unsoundness and incompleteness of decompositional extraction algorithms)
Consider the network N of Figure 2. Let us assume that the weights are such that a = 1
and b = 1 neither activate nq nor no, but that the composition of the activation values
of n1 and no activates x. As a result, we would expect to extract ab — x from N. For
example, suppose that a =1 and b = 1 gives ny = 0.3 and ny = 0.4, and that these
activation values result in x = 0.99.* A decompositional method would most proba-
bly derive a unique rule from such a network, namely, ni,ny — =, not being able to
establish the correct relation between a and b, and x, that is, ab — x.

Figure 2: A fully-connected network with two input neurons (a, b), two hidden neurons
(n1,n9) and a single output neuron (z).

Now, assume that inputs a = 1 and b = 1 activate ny and no, but ny and ne
together do not activate x (say, x < 0.5). For example, assume Wq1 = 0.2, Wiy = 0.2,

‘For example, if f (x) = H% is the activation function of the neurons in /N, and the thresholds
of n1, no and z are all zero, then W, = —0.5, Wy = —0.35, Wyo = —0.2, Wy = —0.2, W,,;, =3 and
Wh, =9.25 is a set of weights that makes N behave as intended for inputs ¢ =1 and b = 1.



Way = 04, Wiy = 045, Wy, = 9 and W, = —8.1, and take f(z) = H% as the
activation function of the neurons of N. Also, assume that the thresholds of neurons
ni, ng and x are all zero. In this case, a =1 and b =1 makes nq1 ~ 0.6 and ny ~ 0.7,
which, in turn, outputs x ~ 0.4. As a result, now we do not want to extract the rule
ab — x from N. However, if ni and no are approximated as threshold units then
n1 = 1 and no = 1 produces x ~ 0.7. In other words, although a =1 and b = 1 does
not activate x, approximating the sigmoidal activation function of n1 and ne by a step
function results in x being activated. Hence, decompositional methods that do so, such
as [35], would conclude that ab — x when, in fact, ab —» x.

The first of the above cases is an example of incompleteness. The second one shows
how decompositional methods may turn out to be unsound. FEven Fu’s extraction [10],
which is sound w.r.t each hidden and output neuron, may become unsound w.r.t the
whole network due to the assumption that the activation function of the hidden neurons
can be approzimated by a step function.

Clearly, the classification of rule extraction methods as pedagogical or decompo-
sitional reflects a trade-off between the complexity of the extraction method and the
quality of the knowledge extracted. In general, highly accurate, pedagogical methods of
extraction present exponential complexity, while, more efficient, decompositional meth-
ods of extraction are unsound, and thus, have unpredictable accuracy, which can only
be evaluated empirically in a particular application domain. In our view, an alternative
is to prune the set of input vectors, rather than the set of weights, of the network from
which we want to extract rules. Our goal is to reduce complexity in the average case
by applying the extraction algorithm on a smaller search space, yet maintaining the
highest possible quality, in particular to maintain soundness.

Differently from the above approaches, we also want to capture nonmonotonic rules
encoded in the network. In order to do so, we add negation by default (~) to the
language. We argue that one cannot derive a sensible set of rules from a network
without having ~ in the language, as the following example illustrates.

Example 2 (nonmonotonicity of neural networks) Consider the neural network N of
Figure 3. Let Wy, = 5, Wy = —5 and Wy, = 1. Assume that the activation
function of a and b is the identity function f(x) = x, the activation function of ny and
x is the standard sigmoidal function h(x) = H%, and let O, = 0y = 0.5, where Op,
and 0, are the thresholds of neurons ny and x, respectively. As a result, inputs a = 1
and b= 0 activate x (x > 0.5). If one concludes, from that, that a — x, one should be
able to conclude as well that ab — x, since the later rule is subsumed by the former.
However, inputs a = 1 and b =1 do not activate x (x < 0.5 in N ). In this case, one
would conclude that ab -+ x, a contradiction!

Therefore, the correct rule to be extracted in the first place, when a =1 and b= 0
activate x, is a ~ b — x. The meaning of such a rule should be: x fires in the presence
of a, provided that b is not present. In fact, if b turns out to be true then the conclusion
of = is overruled, because ab - x. Such a nonmonotonic behavior should be captured
by the extraction of rules with default negation (~), as opposed to classical negation
(=), which is logically stronger than ~ in the sense that a literal should be proved,
instead of assumed by default. Classical negation should be explicitly represented in
the network by a neuron labelled —x (see [4]), as we will exemplify later in Section 6
with the experiments on knowledge extraction from a network that detects faults in a
power plant. Thus, for the network N of Figure 3, we should have a ~ b — x because



Figure 3: A fully-connected network with two input neurons (a,b), a single hidden
neuron (n;) and a single output neuron (x).

x will be derived by N if a is added into N and b is assumed false by default. If b is
also added into N then x will not be derived by N any longer.®

An immediate result of the above observation is that, in order to conclude that a
network N” with two input neurons, say a and b, encodes the rule a — =z, firstly we
need to make sure that the following rules: ab — x and a ~ b — x, are both encoded
in N". In other words, a — x should be secen as a simplification of the rules ab — x
and a ~ b — x of N”, which indicate that b is a ‘don’t care’. In this scenario, the use
of zeros as input values could be misleading, as for example, when a = 1 and b = 0
led us to conclude that a — x could be a rule of N. For this reason, we find the use of
{—1,1} inputs more appropriate (see also [5] for more on this subject).

Summarizing, the novelties on this paper are: we present an eclectic approach
whereby we can reduce the complexity of the extraction algorithm in some interesting
cases, yet executing a sound extraction, which we believe should be the minimum
requirement of any method of rule extraction, and we capture nonmonotonicity in the
set of rules extracted from the network, by adding default negation to the language.

3 Preliminaries

3.1 General

We need to assert some basic assumptions that will be used throughout this paper. ¥
and Jt will denote the sets of natural and real numbers, respectively.

Definition 3 A partial order is a reflexive, transitive and antisymmetric relation on
a set.

Definition 4 A partial order < on a set X is total iff for every xz,y € X, either x <y
ory = x. Sometimes, = is also called a linear order, or simply a chain.

As usual, z < y abbreviates x < y and z # y.

®When a network N’ encodes a—b — x then z is derived by N’ only when a and —b are added into
it. In this case, if b is added as well then there is a contradiction in N', with b and —b, and, in Classical
Logic, & would still be derived. From this, one sees that ~ is required in the extraction of rules.



Definition 5 In a partially ordered set | X, <], = is the immediate predecessor of y if
x < 1y and there is no element z in X such that x < z < y. The inverse relation is
called the immediate successor.

Definition 6 Let X be a set and = an ordering on X. Let x € X.

e x is minimal if there is no element y € X such that y < x.

e = is ¢ minimum if for all elements y € X,z X y. If = is also antisymmelric and
such an x exists, then = is unique and will be denoted by inf(X).

e x is maximal if there is no element y € X such that x < y.

e 1 is a maximum ¢f for all elements y € X,y 2 z. If < is also antisymmelric and
such an x exists, then = is unique and will be denoted by sup(X).

A maximum (minimum) element is also maximal (minimal) but is, in addition,
comparable to every other element. This property and antisymmetry leads directly to
the demonstration of the uniqueness of inf(X) and sup(X).

3.2 Neural Networks

Hornik, Stinchcombe and White [16] have proved that standard feedforward neural net-
works with a single hidden layer are capable of approximating any (Borel) measurable
function from one finite dimensional space to another to any desired degree of accuracy,
provided sufficiently many hidden units are available. Thus, we concentrate on single
hidden layer networks, without loss of generality.

Given a single hidden layer feedforward network, the following systems of equations
describe it.

ny = h(Wiis+ Wiyig+-- + Wllpip — Ony) (1)
ng = h(WQllll + W212i2 +--+ W21pip - 0”2)
ne = h(Whis+Whis+--+ Wi, —0,,)
or = h(Whni+Whna+ -+ Win, —0,,) (2)
09 = h(Wini+Wing+ -+ Wan, —0,,)
04 = h(Wq21n1 + Wq22n2 4+ 4 Wq%,nr —05,)

where i = (71,12, ..., %) is the network’s input vector (i< j<p) € [~1,1]), 0 = (01,02, ...,04)
is the network’s output vector (oji1<j<q) € [~1,1]), m = (n1,n2,...,n,) is the hid-
den layer vector (nj<j<r)y € [—1,1]), 0y (1<j<r) is the j-th hidden neuron threshold
(On; €R), 0,,(1<j<q) is the j-th output neuron threshold (0,; € R), —0On; (resp. —0,,)
is called the bias of the j-th hidden neuron (resp. output neuron), T/Vl.lj(1 <i<r1<j<p) is
the weight of the connection from the j-th neuron in the input layer to the i-th neuron
in the hidden layer (Wllj e RN, Wz?j(lgigq,lgjgr) is the weight of the connection from the

8



j-th neuron in the hidden layer to the i-th neuron in the output layer (VV% € ), and

finally h(z) — 1 is the standard bipolar (semi-linear) activation function.®

_ 2
T 14ePe

We define the extraction problem as follows:

Given a particular set of weights W;; and biases 0;, resulting from a training
process on a neural network, find for each input vector i, all the outputs o;
in the corresponding output vector o such that the activation of o; is greater
than Amin, where Apgn € (0,1) is a predefined value (in this case, we say
that output neuron o; is “active” for input vector i).

We assume that for each input ¢; in the input vector i, either i; = 1 or 7; = —1.
That is done because we associate each input (and output) neuron with a concept, say
a, and 7; = 1 means that a is ¢true while ¢; = —1 means that a is false. For example,
consider a network with input neurons a and b. If i = (1, —1) activates output neuron
¢ then we derive the rule a ~ b — c¢. As a result, if the input vector i has length p,
there are 2P possible input vectors to be checked.

4 The Extraction Algorithm for Regular Networks

Having identified the problems of knowledge extraction from trained networks, let us
now start working towards the outline of their solutions. Given the above extraction
problem definition, firstly we realize that each output neuron o; has a constraint Co;
associated. We want to find the activation value of 0;, Act(o;) = h(zzzl(WjQini) —0,,),
such that Act(o;) > Amimn. Considering the monotonically crescent characteristic of
the activation function h(z) and given that 0 < A, < 1 and 5 > 0, we can rewrite
h(z) > Amin as © > h™1(Apmin). Hence, each output o; is determined by the System
of Equations 1 above and Equation 3 below, which is given in terms of the hidden
neurons’ activation values.”

o0; 1s active for i iff W]-anl + Wj22n2 4 Wj%,nr > hil(Amm) + 0, (3)

4.1 Positive Networks

We start by considering a very simple network where all weights are positive real
numbers. As a result, given two input vectors i, and i, if for all 7, 1 < ¢ < 7,
n;(im) > n;i(in) then for all j, 1 < j < gq, 0;(im) > 0;(in), where n;(i) and o;(i) denote,
respectively, the activation values of hidden neuron n; and output neuron o;, given
input vector i. Moreover, if i, = (1,1,...,1), the activation value of each neuron n;
is maximum and, therefore, the activation value of each neuron o; is maximum as
well. Similarly, if i, = (-1, —1, ..., —1) then the activation of each n; is minimum and,
thus, so is the activation of each o;. That results also from the monotonically crescent
characteristic of the activation function h(z), as we will see in detail later. Let us firstly
present a simple example to help clarify the above ideas.

SWhenever it is not necessary to differentiate between hidden and output layer, we refer to the
weights in the network as Wj; only. Similarly, we refer to the network’s thresholds in general as 6;

"Given h(z) = ﬁ iz

activation function for convenience; any monotonically crescent activation function could have been

only.
— 1, we obtain h™'(x) = —%ln (1;””> We use the bipolar semi-linear

used here.



Example 7 Consider the network N of Figure 4(1) and its associated constraint of
Figured(2). We know that ny = h(Wy.a + Wb — 6p,). Since Wo, Wy > 0, it is easy

X
O X iff Wy - 1t > h-1(Amin) +6x
Wy
m Oy n
Vo V4 W
N
) )

Figure 4: A single hidden neuron network (1) and its associated constraint (2) w.r.t.
output x. Wy, Wy, W, € R,

to verify that the ordering of Figure 5 on the set of input vectors 1 holds w.r.t the
output (x) of N. The ordering says, for instance, that the activation of nq is mazimum

{11

/N

{-1, 1} {1,-1}

\/

{'11 'l}

Figure 5: Ordering on the set of input vectors (I) of N.

ifi = (1,1), that ni1(1,1) > ni(1,—1), and that ny is minimum if i = (—1,-1).
Since Wy, > 0, the activation of x is also maximum if i = (1,1), and minimum if
i=(—1,—1). In other words, the activation value of = is governed by the ordering of
Figure 5.

Given such an ordering, we can draw some conclusions. If the minimum element
(—1,—1) is given as the network’s input (representing ~ a N ~ b), and it activates
x, satisfying the constraint Wy, -nqg > b~ Y(Apmin) + 0z, then any other element in the
ordering will also activate x. In this case, since all possible input vectors are in the
ordering, we can conclude that x is a fact (— x). If, on the other hand, the maximum
element (1,1) (representing a A'b) does not activate x then no other element in the
ordering does. As a result, no rule with conclusion x should be obtained from the
network. Similarly, if it is the case that both (1,1) (representing a A'b) and (1,—1)
(representing a A ~ b) activate xz, that is, a Nb — = and a N ~ b — x, then we can
conclude that a — x, regardless of the activation value of b. In this case, the rule a — x
has been derived as a simplification of the rules a ANb— x and a N ~v b — x, which, in

10



turn, have been obtained from (querying) the network.®

We have identified, therefore, that if for all ¢, j € X, W;; € R then it is easy to find
an ordering on the set of input vectors (I) w.r.t the set of output vectors (O). Such
information can be very useful to guide a pedagogical extraction procedure of symbolic
knowledge from the network. The ordering can help reduce the search space, so that
we can safely avoid checking irrelevant input vectors, in the sense that those vectors
that are not checked would not generate new rules. Moreover, each rule obtained is
sound because the extraction is done by querying the actual network.

Notice that in the worst case we still have to check 2™ input vectors, and in the
best case we only need to check one input vector (either the minimum or the maximum
element in the ordering). Note also that there is, actually, a linear order on the set of
input vectors, which, however, may be impossible to find without querying each input
vector for a particular set of weights.

Let us now try and see if we can find an ordering easily in the case where there
are three inputs {a,b,c}, but still with W;; € ®*t. It seems reasonable to consider
the ordering of Figure 6 since we do not have any extra information regarding the
network’s weights. The ordering is built starting from element (—1, —1, —1) and then
flipping each input at a time from -1 to 1 until (1, 1,1) is obtained.

{1,1,1}

{1,1,-1} {1,-1,1} {-1,1,1}

[

{1,-1,-1} {-1,1,-1} {-1,-1,1}

W

{-1,-1,-1}

Figure 6: Partial ordering w.r.t set inclusion on the powerset of {a,b,c}.

It seems that, for an arbitrary number of input and hidden neurons, if W;; € R*,
then there exists a unique minimal element (—1,—1,...,—1) and a unique maximum
element (1,1, ..., 1) in the ordering on the set of input vectors w.r.t the activation values
of the output neurons. It seems that W;; € R" is a sufficient condition for the existence
of an easily found ordering on the set of input vectors. Let us see if we can confirm
this.

We assume the following conventions. Let P be a finite set of literals.” Recall that
an interpretation is a function from P to {true, false}. Given a neural network N, we
associate each input and output neuron with a unique literal in P. Let 7 be the set of
input neurons and O the set of output neurons of N. Then, each input vector i can be
seen as an interpretation, as follows: Suppose Z = {p, q,r}. We fix a linear ordering on
the symbols of 7 and represent it as a list, say [p, g,r]. We represent i as a string of 1’s
and -1’s, where the value 1 in a particular position in the string means that the literal

®Throughout, we use the term “to query the network” as a short for “to present an input vector to
a network and obtain its output vector”.
%A literal is a propositional variable or the negation of a propositional variable.
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at the corresponding position in the list of symbols is assigned ¢rue, and the value -1
means that it is assigned false. For example, if i = (1,—1,1) then i(p) = i(r) = true
and i(¢) = false.

Each input vector i can be seen as an abstract representation of a subset of the
set of input neurons, with 1’s denoting the presence and -1’s denoting the absence of
a neuron in the set. For example, given the set of input neurons 7 as the list [p, g, ],
if i = (1,—1,1) it represents the set {p,r}, if i = (—1,—1,—1) it represents {0}, if
i=(1,1,1) it represents {p,q,7}, and so on. Thus, the set of input vectors I is an
abstract representation of the power set of the set of input neurons 7. We write it as
I=p(7).

We are now in a position to formalize the above concepts. We start by defining
a distance function between input vectors. The distance between two input vectors is
the number of neurons assigned different inputs by each vector. In terms of the above
analogy between input vectors and interpretations, the same distance function can be
defined as the number of propositional variables with different truth-values.

Definition 8 Let iy, andiy, be two input vectors in 1. The distance dist(im,in) between
im and iy, is the number of inputs i; for which iy (i;) # i,(i;), where i(i;) denotes the
input value i; of vectori. (dist : I xTI — N)

For example, the distance between i; = (—1, —1,1) and iy = (1,1, —1) is dist(i1, i2) =
3. The distance between i3 = (—1,1,—1) and iy = (1, —1, —1) is dist(i3,i4) = 2.

Another concept that will prove to be important is the sum of the input elements
in a input vector. We define it as follows.

Definition 9 Let iy, be a p-ary input vector in 1. The sum (iy,) of iy, is the sum of
all input elements ij in im, that is (im) = 3251 im(iz). (() 11— Z)

For example, the sum of iy = (—1,—1,1) is (i1) = —1. The sum of iy = (1,1, —1) is
(iz) = 1.

Now we define the ordering <y on I = p(7) w.r.t set inclusion. Recall that i,, € I is
an abstract representation of a subset of 7. We say that i,, C i, if the set represented
by i, is a subset of the set represented by 1,,.

Definition 10 Let i, and i, be input vectors in 1. i, <1 i, iff L, C iy.

Clearly, for a finite set Z, I is a finite partially ordered set w.r.t <y having 7 as
its maximum element and the empty set () as its minimum element. In other words,
sup(I) ={1,1,...,1} and inf(I) ={-1,-1,...,—1}.

The following Proposition 11 shows that <j is actually an ordering of interest w.r.t
the network’s output.

Proposition 11 If W;; € RT then iy, <1 i, implies 0;(ipm) < 0,(iy), for all1 < j <gq.
Proof. Let iy <t ip, and dist(ipm,in) = 1, then ip,(i;) = —1 and i,(i;) = 1 for some
input ;. Let v be the number of hidden neurons in the network. Firstly, we have to
show that:

p p p

QY (Wiim(is) = 0ny)) + 0 (Waskm (i) = Ong)) + -+ AY (Wi (i) — On,)) <

=1 =1 =1
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P P P
POV hin(39) = 00) 4 A (Wi ) — ) -+ A (Whini2) — 0n,).

i=1 =1 i=1

By the definition of <1 and since W;; € R" we derive immediately that for all
J <G <) Y8 (Whim(is) —0n;) < 328 (Whin(is) — 0n;), and by the monotonically
crescent characteristic of h(z) we obtain Vj(1 < j < r) h(3 0 (Wiim(is) — On;)) <
h( €:1(Wj1iin(ii) — On;)). This proves that if iy, <1 in and dist(im,in) = 1 then
ni(im) < n;(in) for all1 < j <. Inthe same way, we obtain that h(Y 7y (W2ngy,(n;)—
0,,)) < h(zzzl(Wﬁ-nn(ni) —0,,;)), and, therefore, that:

if dist(im, 1) = 1 then 0j(iy) < 0i(in) for1 <j <gq (4)

Now, let iy, <t i, and dist(im,in) =k (1 <k < p). There are k—1 vectors ig, ..., i¢
such that im <1 i¢ <1 ... <t i¢ <qin. From 4 above and since < is transitive, it follows
that if iy, <1 i, then 0j(im) < 0;(in) for all1 < j <gq.

4.2 Regular Networks

Let us see now if we can relax the condition W;; € ®* and still find easily an ordering
on the set of input vectors of a network. We start by giving an example.

Example 12 Consider the network N of Figure 2. Assume Wy and Wy < 0. Al-
though some weights are negative, we can find a “regularity” in the network. For
example, input neuron b contributes negatively to the activation of both nq and ne, and
there are no negative connections from the hidden to the output layer of N. Following
[10], we can transform the network of Figure 2 into the network of Figure 7, where all
weights are positive and input neuron b is negated.

Figure 7: The positive form of a (regular) network.

Given the network of Figure 7, we can find an ordering on the set of input vectors in
the same way as before. The only difference is that now T = {a,~ b}. We will see later
that, if we account for the fact that T may now have negated literals (defaull negation),
then the networks of Figures 2 and 7 are equivalent.

Let us analyze what we have done in the above example. We continue to assume
that the weights from the hidden layer to any one neuron in the output layer of a
network are either all positive or all negative. Then, for each input neuron ¥, we do
the following:

13



1. If y is linked to the hidden layer through connections with positive weights only:
(a) do nothing.

2. if y is linked to the hidden layer through connections with negative weights W,
only:

(a) change each W}, to —W;, and rename y by ~ y.
3. If y is linked to the hidden layer through positive and negative connections:

(a) add a neuron named ~ y to the input layer, and
(b) for each negative connection with weight W, from y to n;:

i. add a new connection with weight —W;, from ~ y to n;, and

ii. delete the connection with weight W}, from y to n;.
We call the above procedure the Transformation Algorithm.

Example 13 Consider again the network of Figure 2, but now assume that only Wyo
< 0. Applying the Transformation Algorithm, we obtain the network of Figure 8.

Figure 8: The positive form of a (non regular) network.

Although the network of Figure 8 has positive weights only, it is clearly not equivalent
to the original network of Figure 2. In this case, the combination of n1 and no is not
straightforward. Note that, 1 = (1,1) in the original network provides the mazimum
activation of ny, but not the maximum activation of ne; that is given by i = (—1,1).
We can not affirm anymore that (1,1) is bigger than (—1,1) w.r.t the output x, without
having to check them by querying the network.

Examples 12 and 13 indicate that if the Transformation Algorithm generates a
network where complementary literals (say, a and ~ a) appear in the input layer (see
the network of Figure 8) then the ordering <g on I is not applicable. However, if
complementary literals do not appear in the input layer of the network obtained from
the above transformation (see Figure 7), it seems that <j is still valid for such networks,
which have “well-behaved” negative weights. This motivates the following definition.
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Definition 14 A single hidden layer neural network is said to be regular if its connec-
tions from the hidden layer to each output neuron have either all positive or all negative
weights, and if the above Transformation Algorithm generates on it a network without
complementary literals in the input layer.

Returning to Example 12, we have seen that the positive form N, of a regular
network N may have negated literals in the set of input neurons (e.g. Z = {a,~ b}).
In this case, if we represent 7, as a list, say [a,~ b|, and refer to an input vector
i=(—1,1) wr.t Z4, then we consider i as the abstract representation of the set {~ b}.
In the same way, i = (1, —1) represents {a}, and so on. In this sense, the set of input
vectors of Ny can be ordered w.r.t set inclusion exactly as before, using Definition 10,
as the following example illustrates.

Example 15 Consider the network Ny of Figure 7. Given Ty = [a,~ b], we obtain
the ordering of Figure 9(1) w.r.t set inclusion. The ordering of Figure 9(2) on the set
of input vectors of the original network N is obtained by mapping each element of (1)
into (2) using ~ b =1 implies b = —1, and ~ b = —1 implies b = 1. As a result,
querying Ny with i = (1,1) is equivalent to querying N with i= (1,—1), querying Ny
with 1= (—1,1) is equivalent to querying N withi= (—1,—1), and so on.

R

(1,1} (1,1}
{-11) /{1‘,-1} {-1’< (1,1}
{-1-1} {-11)
7, =[a ~b] 7 =[a,b]

@ 2

Figure 9: The ordering w.r.t set inclusion on the positive form of a network (1) and
the ordering on the original network (2).

More precisely, we define the function ¢ mapping input vectors of the positive form
into input vectors of the original network, as follows. Let I be the set of input vectors
of s tuples. Given the set of input neurons 7; and an abstract representation I, of
©(Z4), each element z; € 7, 1 < i < s, is mapped to the set {—1,1} such that
Olan,me) (115 ooy 1s) = (3], .., 75), where 4 = i; if x; is a positive literal and 7; = —i; if z;
is a negative literal. For example o4 4 .q(1,1,—1,—1) = (1,—-1,—=1,1).

Note that the correspondence between input vectors and interpretations is still valid.
We only need to define i(~ p) = false iff i(p) = true and ~rv p = p. For example, for

Iy =la,~b],ifi=(—1,—1) then i(a) = false and i(b) = true.

Proposition 16 Let T, be the set of input neurons of the positive form N, of a
reqular network N. Let I, = o(Ty) be ordered under the set inclusion relation <y,
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and im, in € Iy. Thus, im <1, in implies 0j(o7 1(im)) < 0j(or1(in)), foralll <j <q
in N.

Proof. Straightforward by Proposition 11 and by the above definition of the mapping
function o.

Proposition 16 establishes the correlation between regular networks and their posi-
tive counterpart. As a result, the extraction procedure can either use the set inclusion
ordering on 7 (as, e.g., in Figure 9(1)), and query directly the positive form of the
network, or use the mapping function ¢ to obtain the ordering on the regular, original
network (Figure 9(2)), and query the original network. We will adopt the first policy.
Note that if the network is already positive then ¢ is the identity function.

We have seen briefly that if we can find an ordering on the set of input vectors of
a network, there are some properties that can help reducing the search space of input
vectors during a pedagogical extraction of rules. Let us now define precisely these
properties.

Proposition 17 (Search Space Pruning Rule 1) Let iy, and i, be input vectors of a
regular neural network N such that dist(im,in) = 1 and (im) < (in). If i, does not
satisfy the constraint Co; on the j-th output neuron of N, then iy, does not satisfy Co;
etther.

Proof. Directly by Definitions 8, 9 and 10, if dist(im,in) =1 and (im) < (in) then ip,
<t in. By Proposition 11, 0;(im) < 0;(in). That completes the proof.

Proposition 18 (Search Space Pruning Rule 2) Let i and in be input vectors of a
regular neural network N, such that dist(im,in) =1 and (im) < (in) . Ifim satisfies the
constraint Co; on the j-th output neuron of N, then i, also satisfies Co;.

Proof. This is the conlrapositive of Proposition 17.

Proposition 17 says that for any i € I, starting from sup(I), if i does not activate the
j-th output neuron o;, then the immediate predecessors of i do not activate o; either.
Similarly, Proposition 18 says that for any i € I, starting from inf(I), if i does activate
the j-th output neuron o;, then the immediate successors of i also do.

In Example 7, we have seen briefly that the extracted rules ab — z and a ~ b — z
could be simplified to obtain a single rule, namely, a — z. Let us now define a group of
simplification rules that will help in the extraction of a smaller and clearer set of rules.
They will also help reducing the number of premises per rule, an important aspect of
readability.

Definition 19 (Subsumption) A rule r1 subsumes a rule ro iff r1 and ro have the
same conclusion and the set of premises of r1 is a subset of the set of premises of 9.

For example, a — x subsumes ab — r and a ~ b — z.

Definition 20 (Complementary Literals) Let ry = Ly, ..., L;, ..., L; — Lj1 and ry =
Ly, .o Ly, ..y Lj — Ljyy be extracted rules, where j < |I|. Then, r3 = Ly, ..., L;_1,
Liy1y ., Ly — Ljy1 1s also an extracted rule. Note that r3 subsumes r1 and ro.

For example, if 7 = {a, b, c} and we write a ~ b — x, then it simplifies a ~ bec — =
and @ ~ b ~ ¢ — x. Note that, considering the ordering on I, the above property
requires that two adjacent input vectors, i, = (1,—1,1) and i, = (1,—1, —1), activate
x.
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Definition 21 (Fact) If a literal L; 1 holds in the presence of any combination of the
truth values of literals Ly, ..., L; in T then we derive a rule of the form — Ljiy (Ljqy
is a fact).

Definition 21 is an important special case of Definition 20. Considering the ordering
on I, an output neuron x is a fact iff inf(I) activates x. Note that, by Proposition 18,
if inf(I) activates = then any other input vector in I also does.

Another interesting special case occurs when sup(I) does not activate z. In this
case, by Proposition 17, no other input vector in I activates x, and, thus, there are no
rules with conclusion x to be derived from the network.

Definition 22 (M of N) Let myn € N\, 7" C Z,|7| = n,m < n. Then, if any com-
bination of m elements chosen from I’ implies Lj 1 we derive a rule of the form
TTL(I/) — Lj+1,

The above Definition 22 may be very useful in helping to reduce the number of
rules extracted. It states that, for example, 2(abc) — x represents ab — z, ac — x, and
bc — x. In this way, if for example we write 3(abedef) — x then this rule is a short
representation of at least Cg = 20 rules '°.

There is a rather intricate relation between each rule of the form M of N and the
ordering on the set of input vectors I, in the sense that each valid M of N rule represents
a subset of I. Here is a flavor of that relation in an example where it is easy to identify
it. Suppose 7 = {a,b,c} and assume that 7' = 7. Let us say that the output neuron
in question is x and that constraint C,, is satisfied by at least one input vector in I.
If only sup(I) satisfies C,,,, we derive the rule abc — z. Clearly, this rule is equivalent
to 3(abc) — . If all immediate predecessor of sup(I) also satisty C,_, it is not difficult
to verify that the four rules obtained (ry : abc — x, r9 1 ab ~ ¢ — x, 13 1 @ ~v bc — x,
r4 i~ abc — x) can be represented by 2(abc) — z. This is because, by Definition 20,
each rule rq, r3 and r4 can be simplified together with 71, deriving abc — x, ab — =,
ac — x and bc — x. Since, by Definition 19, abc — x is subsumed by any of the other
three rules, we obtain 2(abc) — x. Moreover, 2(abc) — z subsumes 3(abc) — x. This
motivates the definition of yet another simplification rule, as follows.

Definition 23 (M of N Subsumption) Let m,p € X,7" CZ. m(Z') — Lj1 subsumes
p(Z') — L1 iff m < p.

Returning to the illustration about the relation between M of N rules and subsets
of I, let us see what happens if the elements at distance 2 from sup(I) all satisfy C,,.
We expect that the set of rules obtained from I could be represented by 1(abc) — =z,
and in fact it is. From the elements at distance 2 from sup(I), we obtain the following
rules: 11 :ar~vbroc—x, 79~ abroc— x,and r3 : ~ a ~ bc — x. By Proposition 18,
we know that the elements at distance 1 from sup(I) also satisfy C,_, and we derive the
rules: r4:abr~c— x, 15 : a~ bc — x, and rg : ~ abc — x. Again by Proposition 18,
sup(I) itself also satisfies C,_, and we derive 77 : abc — z. Now, applying Definition
20 over r1 and r4, we obtain the simplified rule rg : a ~ ¢ — x, taking rs and r7, we
obtain 79 : ac — z, and from rg and rg9, we derive r, : @ — z. Similarly, from r9, 74,7
and 77, we derive 7, : b — x, and from r3,75,7¢ and r7, we derive 7. : ¢ — x. Finally,

Note that if 7 = {a,b,c} and we write 1(ab) — z, then such an M of N rule is a simplification of
C? = 2rules: @ — x and b — z. However, by Definition 20, ¢ — z and b — z are already simplifications
of abc - x,ab~c —x,a~bc—x,a~b~c—zx,~abc—x,and ~ab~c— x.
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since 74, T, and r. together subsume any rule previously obtained, by Definition 22 we
may derive the single M of N rule 1(abc) — x.

We have identified a pattern in the ordering on I w.r.t a group of M of N rules, the
ones where 77 = 7. More generally, given |Z| = k, if all the elements in I that are at
distance d from sup(I) satisfy a constraint C,,, then derive the rule (k — d)(Z) — =x.
Note that there are C,’;f 4 clements at distance d from sup(I), and that, as a result of
Proposition 18, if all the elements in I at distance d from sup(I) satisfy C,, then any
other element at distance d' from sup(I) such that 0 < d’' < d also satisfies C,,.

Remark 1 We have defined regular networks (see Definition 14) either with all the
weights from the hidden layer to each output neuron positive or with all of them negative.
We have, although, considered in the above examples and definitions only the ones where
all the weights are positive. However, it is not difficult to verify that the constraint C,,
on the j-th output of a reqular network with negative weights from hidden to output layer
18 W]-anl + Wj22n2 4+ 4 Wj%,nr < h Y Amin) + 0o, As a resull, the only difference
now is on the sign (<) of the constraint. In other words, in this case we only need to
invert the signs at Propositions 17 and 18. All remaining definitions and propositions
are still valid.

We have so far referred to soundness and completeness of the extraction algorithm
in a somewhat vague manner. Let us define these concepts precisely.

Definition 24 (Extraction Algorithm Soundness) A rules’ extraction algorithm from
a neural network N is sound iff for each rule r; extracted, whenever the premise of r; is
presented to N as input vector, in the presence of any combination of the input values
of literals not referenced by rule r;, the conclusion of r; presents activation greater than
Apin in the output vector of N.

Definition 25 (Extraction Algorithm Completeness) A rules’ extraction algorithm
from a neural network N is complete iff each rule extracted by exhaustively verifying
all the combinations of the input vector of N either belongs to, or is subsumed by, a
rule in the set of rules generated by the extraction algorithm.

We are finally in a position to present the extraction algorithm for regular networks,
which will be refined in Section 5 for the general case extraction.

e Knowledge Extraction Algorithm for Regular Networks'!

1. Apply the Transformation Algorithm over N, obtaining its positive form N ;
2. Find inf(I) and sup(I) w.r.t N using o;
3. For each neuron o; in the output layer of Ny do:

(a) Query N, with input vector inf(I). If 0; > Amin, apply the Simplification
Rule Fact and stop.

(b) Query N} with input vector sup(I). If 0; < Apin, stop.
/% Search the input vectors’ space 1.

(0) iL = inf(T); iy == sup(D);

' The algorithm is kept simple for clarity, and is not necessarily the most efficient.
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(d) While dist(i,inf(I)) < nD1v2 or dist(ir, sup(I)) < nDIV2 4+ nMOD2, where
n is the number of input neurons of N, and still generating new i, or i,
do:

/% Generate the successors of 1| and query the network

i. set new i, := old i, flipped according to the ordering on I;'?
ii. Query N, with input vector i ;
iii. If Search Space Pruning Rule 2 is applicable, stop generating new i ;

iv. Apply the Simplification Rule Complementary Literals, and Add the
rules derived accordingly to the rule set.

% enerate € Preaecessors of 1+ ana query € nNetwor
Generate the pred i, and the network

v. set new i := old i; flipped according to the ordering on I;'3
vi. Query N, with input vector i;;
vii. If Search Space Pruning Rule 1 is applicable, stop generating new ir;

viii. Apply the Simplification Rule M of N, and Add the rules derived ac-
cordingly to the rule set.

(e) Apply the Simplification Rules Subsumption and M of N Subsumption on
the rule set regarding o;.

Note that if the weights from the hidden to the output layer of N are negative, we
simply substitute inf(I) by sup(I) and vice-versa. In a given application, the above
extraction algorithm can be halted if a desired degree of accuracy is achieved in the set
of rules. The algorithm is such that the exact symbolic representation of the network
is being approximated at each cycle.

Example 26 Suppose T = {a,b,c} and let 1 = p(T) be ordered w.r.t set inclusion. We
start by checking inf(I) w.r.t an output neuron x. If inf(I) activates x, i.e., inf(I)
satisfies constraint C,_, then by Proposition 18 any other input vector activates x and
by Definition 21 we can extract — x and stop. If, on the other hand, inf(I) does not
activate x, then we may need to query the network with the immediate successors of
inf(I). Let us call these input vectors I*, where dist(inf(I),I*) = 1.

We proceed to check the element sup(l). If sup(I) does not satisfy C,,, by Propo-
sition 17 we can stop, extracting no rules with conclusion x. If sup(I) activates x, we
conclude that abc — x, but we still have to check the input vectors I'* at distance 1
from sup(I). We may also later apply some simplification on abc — x, if at least one of
the input vectors in I'* aclivates x. Hence, we keep abc — x in stand by and proceed.

Let us say that we choose to start by checking iy = (—1,—1,1) in I*. Ifi; does not
satisfy C,,, we have to check the remaining inputs in I*. However, if i1 aclivales x
then, again by Proposition 18, we know that (—1,1,1) and (1, —1,1) also do. This tells
us that not all the inputs in I'* need to be checked. Moreover, if all the elements in I*
activate x then we can use Definition 22 to derive 1(abc) — = and stop the search.

Analogously, when checking I*™ we can obtain information about I*. If, for instance,
ip = (1,1, —1) does not activate x then (—1,1,—1) and (1,—1,—1) in I* do not either,
now by Proposition 17. If, on the contrary, is activates x, we can derive ab — x, using
Proposition 18 and Definition 20. If not only iy but also the other inputs in I'* activate

2 From inf(I), we generate new i, by flipping the elements at old i, from right to left.
13From sup(I), we generate new i; by flipping the elements at old i; from left to right.
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x then we obtain 2(abc) — x, which subsumes abc — x by Definitions 22 and 19. In
this case, we still need to query the network with inputs i at distance 1 from iy such
that (i) < (ip), but those inputs are already the ones in I** and therefore we can stop.
Note that the stopping criteria are the following: either all elements in the ordering are
visited or, if not, for each element not visited, Propositions 17 and 18 guarantee that
it 1s safe not to consider it, in the sense that it is either already represented in the set
of rules, or irrelevant and can not give rise to any new rule.

Theorem 27 (Soundness) The extraction algorithm for reqular networks is sound (sat-
isfies Definition 24).

Proof. We have to show that, whether a rule r is extracted by querying the network
(Case 1) or by a simplification of rules (Case 2), any rule v’ that is subsumed by r,
including r itself, can be obtained by querying the network. We prove this by contra-
diction. Consider a set I of p-ary input vectors. Assume that there exist rules v and r’
such that v’ is subsumed by r, and v’ is not obtainable by querying the network. Assume
also that r contains the largest number of premises of such a rule. Let X; denote L; or

Case 1: If r is itself obtained by querying the network, then the only possible sub-
sumed rule is r, and obviously this yields a contradiction.

Case 2: r is either a simplification by Complementary Literals, or a Fact, or a M
of N rule. It is shown that each assumption yields a contradiction.

Let v = Ly,...,L; — L; (1 < g < p) be a simplification by Complementary
Literals. Then, r is derived from two rules vy = Li,...,Ls,....Ly — L; and vy =
Ly, .cyrv Lg, oo, Ly — Lj, (1 < s < q). Fach of these has more premises than r. So, by
assumption, all rules subsumed by | and v}, are obtainable by querying the network.
By Proposition 18, r is also obtained by querying the network. Since, by Definition 19,
any other rule subsumed by r is also subsumed by either v} or by rl, this leads to a
contradiction.

Let r = — Lj; be a simplification by Fact. Then, r must have been obtained by
querying the network with inf(I). By Proposition 18, any rule of the form Xq,..., X, —
Lj; is also obtainable by querying the network, contradicting the assumption about r’.

Finally, if a further simplification is made, to obtain r = m(Li,...,Ln) — L;j
(1 <m < n<p)by Mof N simplification, then r is obtained from a set of rules of the
form L, ..., Lm — Lj, where L, ..., Ly are m elements chosen from {Lx,...,Ln}. By
the previous cases, all subsumed rules are obtainable by querying the network.

Theorem 28 (Completeness) The extraction algorithm for regular networks is com-
plete (satisfies Definition 25).
Proof. We have to show that the extraction algorithm terminates either when all
possible combinations of the input vector have been queried in the network (Case 1) or
the set of rules extracted subsumes any rule that would be derived from an element not
queried (Case 2). Case 1 is trivial. In Case 2, we have to show that any element not
queried either would not generate a rule (Case 2(i)) or would generate a rule that is
subsumed by some rule extracted (Case 2(ii)).

Consider a set 1 of p-ary input vectors.

Case 2(1): Let i, i, €1, dist(im,in) = ¢ (1 < g < p) and (i) < {in). Assume that
iy, is queried in the nelwork and that i, does not generate a rule. By Proposition 17 q
times, i, would not generate a rule either.

Case 2(ii): Let ig,i, € I, dist(ig,i,) = ¢t (1 <t < p) and (ix) < (i
that iy is queried in the network and that iy derives a rule ri. Let S =

Assume

o)
{L1,... L}
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be the set of positive literals in the body of ry, where s € [1,p|. By Definition 20, the
rule r = Ly,...,Ls — L; can be obtained from ry. Clearly, v subsumes ry. Now, by
Proposition 18 t times, i, would also derive a rule r,. Let U = {L,..., Ly} be the set
of positive literals in the body of r,, where u € [1,p|. Since (ix) < (i,) then S C U and,
by Definition 19, v also subsumes 7.

That completes the proof since all the stopping criteria of the extraction algorithm
have been covered.

5 The Extraction Algorithm for Non-Regular Networks

So far, we have seen that for the case of regular networks it is possible to apply an
ordering on the set of input vectors, and use a sound and complete pedagogical extrac-
tion algorithm that searches for relevant input vectors in this ordering. Furthermore,
the neural network and its set of rules can be shown equivalent (that results directly
from the proofs of soundness and completeness of the extraction algorithm).

Despite the above results being highly desirable, it is much more likely that a non-
regular network will result from an unbiased training process. In order to overcome
this limitation, in the sequel we present the extension of our extraction algorithm to
the general case, the case of non-regular networks. The idea is to investigate fragments
of the non-regular network in order to find regularities over which the above described
extraction algorithm could be applied. We would then split a non-regular network
into regular subnetworks, extract the symbolic knowledge from each subnetwork, and
finally assemble the rule set of the original non-regular network. That, however, is a
decompositional approach, and we need to bear in mind that the collective behavior
of a network is not equivalent to the behavior of its parts grouped together. We will
need, therefore, to be specially careful when assembling the network’s final set of rules.

The problem with non-regular networks is that it is difficult to find the ordering
on the set of input vectors without having to actually check each input. In this case,
the gain obtained in terms of complexity could be lost. By considering its regular
subnetworks, the main problem we have to tackle is how to combine the information
obtained into the network’s rule set. That problem is due mainly to the non-discrete
nature of the network’s hidden neurons. As we have seen in Example 1, that is the
reason why a decompositional approach may be unsound (see Section 2). In order to
solve this problem, we will assume that hidden neurons present four possible activation
values (—1, Apmaz, Amin,1). Performing a kind of worst case analysis, we will be able
to show that the general case extraction is sound, although we will have to trade
completeness for efficiency.

5.1 Regular Subnetworks

We start by defining precisely the above intuitive concept of a subnetwork.

Definition 29 (subnetworks) Let N be a neural network with p input newrons {i1, ...,ip},
r hidden neurons {n1,...,n,} and q output neurons {oy, ..., 04}. Let N’ be a neural net-

work with p' input neurons {i,...,iy}, v hidden neurons {ny,...,n.} and ¢ output

neurons {0y, ..., }. N' is a subnetwork of N iff 0 <p' <p, 0<+"' <1, 0<q¢ <gq,

and for all il, n%, oy in N', Wn% = Wi Wokn} = Woun;» Onr = On; and 0, = 0o,

/,
j J

Our first task is to find the regular subnetworks of a non-regular network. It is not
difficult to verify that any network containing a single hidden neuron is regular. As
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a result, we could be tempted to split a non-regular network with r hidden neurons
into r subnetworks, each containing the same input and output neurons as the original
network plus only one of its hidden neurons.

However, let us briefly analyze what could happen if we were to extract rules from
each of the above subnetworks. Suppose that, for a given output neuron x, from the
subnetwork containing hidden neuron nj, the extraction algorithm obtains the rules
a,b —y, x and ¢, d —, x, while from the subnetwork containing hidden neuron ns, it
obtains the rule ¢,d —,, x. The problem is that the information that [a,b] = (1,1)
activates = through n; is not very useful. It may be the case that the same input
la,b] = (1,1) has no effect on the activation of z through ng, or that it actually blocks
the activation of x through no. It may also be the case that, for example, a,d — x as
a result of the combination of the activation values of nq and ng, but not through each
one of them individually. If, therefore, we take the intersection of the rules derived
from each subnetwork, we would be extracting only the rules that are encoded in every
hidden neuron individually, but not the rules derived from each hidden neuron or from
the collective effect of the hidden neurons. If, on the other hand, we take the union of
the rules derived from each subnetwork, then the extraction could clearly be unsound.

It seems that we need to analyze a non-regular network first from the input layer
to each of the hidden neurons, and then from the hidden layer to each of the output
neurons. That motivates the following definition of “Basic Neural Structures”.

Definition 30 (Basic Neural Structures) Let N be a neural network with p input neu-
rons {i1,...,ip}, T hidden neurons {ni,...,n.} and q output neurons {o1,...,04}. A
subnetwork N’ of N is a Basic Neural Structure (BNS) iff either N’ contains exactly
p input neurons, 1 hidden neuron and 0 output neurons of N, or N’ contains evactly
0 input neurons, r hidden neurons and 1 output neuron of N.

Note that a BNS is a neural network with no hidden neurons and a single neuron
in its output layer. Note also that a network N with r hidden neurons and g output
neurons contains 7 + g BNSs. We call a BNS containing no output neurons of NV,
an Input to Hidden BNS; and a BNS containing no input neurons of N, a Hidden to
Output BNS.

Proposition 31 Any BNS is (vacuously) regular.

Proof. Directly by Definition 30, by applying the Transformation Algorithm on a BNS,
a network without complementary literals in the input layer is obtained. By Definition
14, since a BNS does not contain hidden neurons, it is (vacuously) regular.

Proposition 31 shows that the Transformation Algorithm applied over a BNS will
derive a positive network, the BNS’s positive form, which will not contain pairs of
neurons labelled as complementary literals in its input layer. The above result indicates
that BNSs, which can be easily obtained from a network /N, are suitable subnetworks
for applying the extraction algorithm when N is a non-regular network.

5.2 Knowledge Extraction from BNSs

We have seen that, if we split a non-regular network into BNSs, there is always an
ordering easily found in each subnetwork. The problem, now, is that Hidden to Output
BNSs do not present discrete activation values {—1,1} in their input layer. Instead,
each input neuron may present activation in the ranges (—1, Amaz) or (Amin, 1), where

22



Amaz € (—1,0) is a predefined value, and we will need to consider this during the
extraction from Hidden to Output BNSs. For the time being, let us simply assume that
each neuron in the input layer of a Hidden to Output BNS is labeled n;, and if n; is
connected to the neuron in the output layer of the BNS through a negative weight, then
we rename it ~ n; when applying the Transformation Algorithm, as done for regular
networks. Moreover, let us assume that neurons in the input layer of the positive form
of Hidden to OQutput BNSs present activation values —1 or Ay, only. This results from
the above mentioned worst case analysis, as we will see later in this section.

We need to rewrite Search Space Pruning Rules 1 and 2 for BNSs. Now, given a
BNS with s input neurons {i1, ..., s} and the output neuron o;, the constraint C,,; on
the activation of o; for an input vector i is simply given by:

ojis active for iff Wo i1 + Woiio 4 oo + Wi is > hil(Amm) + 0, (5)
Proposition 32 Let 7, be the set of input neurons of the positive form By of a BNS
B with output o;. Let 1, = p(Z) be ordered under the set inclusion relation <y, and
im,in €Ly If im <1, iy then oj(opr,(im)) < 050, (in)) in B.

Proof. If B is an Input to Hidden BNS then the proof is trivial, by Proposition
31 and Proposition 11. If B is a Hidden to Output BNS, assume ip,(ix) = —1 and
in(ix) = Amin. Since all the weights in By are positive real numbers and Ap;n > 0,
we obtain (Wo, (—1) — 05;) < (Wo,i,(Amin) — 0o;). Since iy, <1, in, we also have

7

(i (Woyiim (1) —00,)) < (351 (Woys,in(is)—0s,)), and by the monotonically crescent

J J
characteristic of h(z), M(3F | (Wo,s,im(is) — 00,)) < R(OY 1 (Woy5,in(is) — 0.,)), i.c.,

0i(im) < 0;(in) in By. Finally, from the definition of o, mapping input vectors of By
into input vectors of B, it follows directly that oj(oz (im)) < 0j(or,(in)) in B.

Corollary 33 (BNS Pruning Rule 1) Let iy, <1 in. Ifi, does not satisfy the constraint
Co; on a BNS’s output neuron, then i, does not satisfy Co; either.
Proof. Directly from Proposition 32.

Corollary 34 (BNS Pruning Rule 2) Let iy <t in. If im satisfies the constraint Coj;
on a BNS’s output neuron, then i, also satisfies Co;.
Proof. Directly from Proposition 32.

The particular characteristic of BNSs, specifically because they have no hidden
neurons, allows us to define a new ordering that can be very useful in helping to reduce
the search space of the extraction algorithm. If now, in addition, we take into account
the values of the weights of the BNS, we may be able to assess, given two input vectors
im and i, such that (i) = (in), whether 0;(im) < 0;(in) or vice-versa.'* Assume, for
instance, that i,, and i, differ only on inputs ¢; and 75, where 2; = 1 in i, and 7 = 1
in i,,. Thus, if ’WO],Z-Z,’ < ’WOjik’, it is not difficult to see that 0;(in) < 0;(im). Let us
formalize this idea.

Proposition 35 (BNS Pruning Rule 3) Let ip, i, and i, be three different input vec-
tors in I such that dist(im,1,) = 1, dist(in,1,) = 1 and (im), (in) < (i), that is, both
i, and i, are immediate predecessors of i,. Let iy, be obtained from i, by flipping the
i-th input from 1 (resp. Amin for Hidden to Output BNSs) to -1, while iy, is obtained
from i, by flipping the k-th input from 1 (resp. Amin for Hidden to Output BNSs) to
-1 If ’WOZk’ < ’Woﬂ-i’ then 0;(im) < 0j(in). In this case, we write i, <y in.

7

4 Recall that, previously, two input vectors i, and i, such that {im) = (in) were incomparable.
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Proof. We know that both iy, and iy, are obtained from i, by flipping, respectively, in-
puts i,(i) and i (k) from 1 (resp. Apmin) to-1. We also know that 0;(i,) = (W, 4,i,(7)+
Wosirio(k) + A+ 0,,), and that Apn > 0. For Input to Hidden BNSs, o;(iy) =
(=W, + Wosi, + A +0,,) and 05(in) = h(Wo,i; — Woi, + A +0,,). For Hidden to
Output BNSs, 0;(im) = (=W, + AminWoip, + A+ 0,,) and 0;(in) = "(AminWo,i; —
Wosip + A+ 00j), Since ’WOJ,Z-J < ’Woﬂ-i’ , and from the monotonically crescent char-

acteristic of h(x), we obtain 0;(im) < 0;(in) in both cases.

As before, a direct result of Proposition 35 is that: if i, satisfies the constraint C,,
on the output neuron of the BNS, then i, also satisfies C,,. By contraposition, if i,
does not satisfy Coj then i, does not satisfy Coj either.

Proposition 36 (BNS Pruning Rule ) Let ipm,i, and i, be three different input vec-
tors in I such that dist(im,i,) = 1, dist(in,1,) = 1 and (i,) < {im), (in), that is, both
im and 1, are immediate successors of i,. Let ip, be obtained from i, by flipping the i-th
input from -1 to 1 (resp. Amin for Hidden to Output BNSs), while iy, is obtained from
i, by flipping the k-th input from -1 to 1 (resp. Amin for Hidden to Output BNSs). If
’WOjik’ < ’WO],Z-Z,’, then 0;(in) < 0j(im). In this case, we write iy, <(y in.

Proof. This is the contrapositive of Proposition 35.

Example 37 Consider the network N of Figure 10(1) and its positive form Ny at
Figure 10(2), obtained by applying the Transformation Algorithm over each BNS of
N. N; contains three BNSs - two Input to Hidden BNSs, one with inputs |a, b, c|
and output ny, and the other with inputs [a,b,~ c| and output ny, and one Hidden to
Output BNS, having inputs [n1,~ n9| and output x.

)

Figure 10: A non-regular network (1) and its positive form (2) obtained by applying
the Transformation Algorithm on its BNSs.

Considering the ordering on set inclusion, we verify that [a,b,c] = (1,1,1) is the
mazimum element of the BNS with output ny, |a,b,~ c| = (1,1,1) is the marimum
element of the BNS with output ng, and [n1 ~ ng| = (Amin, Amin) is the mazimum
element of the BNS with output x.

If now we add information about the weights, we can apply Pruning Rules 8 and
4 as well. Take, for example, the BNS with output ny, where |Wyp| < [Whyel <
|[Wh,al- Using Pruning Rules 3 and 4, we can obtain a new ordering on input vectors
im and ip such that (im) = (in).'° We obtain (—1,1,1) <, (1,1,-1) <4 (1,-1,1)

15Recall that such input vectors are incomparable under the set inclusion ordering.
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and (—=1,1,-1) <y (=1,-1,1) <y (1, =1, =1). Similarly, given |Wan,| < [Wan,|, we
obtain {~ ny,~ na} <y {n1,na} for the Hidden to Output BNS'S. Figure 11 contains
two diagrams in which this new ordering is superimposed on the previous set inclusion
ordering for the BNSs with outputs nq and x.

/ 1Tll\ o~
e A

mp <—— -~

(1-1-1) <— (-1-11) <— (-1,1-2) \ /

(-1-1-1) i
) @)

Figure 11: Adding information about the weights of the BNSs with output ny (1) and
x (2).

The above example illustrates the ordering < on the set of input vectors I of BNSs.
The ordering results from the superimposition of the ordering </, obtained from Prun-
ing Rules 3 and 4, on the set inclusion ordering <j, obtained from Pruning Rules 1 and
2. Let us define = more precisely.

Definition 38 Let < be a partial ordering on the set of input vectors 1 of a BNS. For
all imyip €1, im 2 in iff im <1 in o7 im <y in.

Returning to Example 37, it is not difficult to see that the ordering < on the BNS
with output ny is given by the diagram of Figure 12 below (see also Figure 11(1)).
Incomparable elements in <, as iy = (1,—1,—1) and i = (—1,1,1) at Figure 12,
indicate that it is not easy to establish whether i1 < iy without actually querying the
BNS with both inputs. Note also that < is a chain for the BNS with output z, i.e.,
{~n1,ne} 2 {~ng, o net 2 {n1,net 2 {n1,~ na}.

Figure 13 displays < on I = p(7) for 7 = {a,b,c,d}, given (1,1,1,1) = [a,b, ¢, d|
and |Wy| < |W.| < |W,] < |[W,|. Note that < follows the ordering on |Wg| + |W3| 4+
Wl + Wi,

= provides a systematic way of searching the set of input vectors I. Let us illustrate
this with the following example, which also gives a glance about the implementation
of the extraction algorithm in the general case.

Example 39 Consider the Input to Hidden BNS of Figure 14(1), and its positive form
14(2). The ordering’s mazximum element is input vector it = (1,1,1,1) = (a,b,~ ¢,
~ d). Taking the BNS of Figure 14(2), if it does not activate n; then we proceed to
generate the elements iy such that dist(ipy,iT) = 1. However, Pruning Rule 3 says
that there is an ordering among elements im. For example, it says that (1,1,1,—1) =
(a,b,~ ¢,d) provides a smaller activation value to n; than (1,1,—1,1) = (a,b,¢,~ d).
Therefore, given Wy, oo < Wy < Wh,iqa < Wy, we start from it by flipping
from 1 to -1 the input ~ c with the smallest weight Wy, .., and obtain the input vector

16 Here, we have deliberately used {ni,~ n;}, instead of {1, —1}, to stress the fact that hidden neurons
do not present discrete activation values.
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(1,11

(1,-1,2)
T

» 11&

(1,-1,-1) (-1,1,1)
(-1-1,2)
T
(-1,1,-1)
T

(-1,-1,-1)

Figure 12: The ordering = on the input vectors set of the BNS with output 7.

iy = (1,1,—1,1). By Pruning Rule 3, the activation of n; given iy is greater than the
activation of n; given any other element iy, such that (ipm) = (i1). Thus, if n;(i1) <
Amin then ni(im) < Amin. In this case we could stop the search. Otherwise, we would
have to derive the rule a,b,c,~ d — n;, and carry on generaling and querying the
remaining elements im such that (iym) = (i1). Again, due to Pruning Rule 3, we could
do so by flipping, from it, the input a with the next smallest weight, W4, and repeat
the above process until either we can stop or we flip the input b with the largest weight,
Wb

Similarly, starting from the ordering’s minimum element i, = (—1,—1,—1,—1) =
(~v a,ro byc,d), if i) does not activate n; then we flip from —1 to 1 the input ~ ¢ with
the smallest weight Wy, to obtain input vector is = (—1,—1,1,—1). By Pruning
Rule 4, if ni(i2) > Amin then n;(in) > Amin for all iy, such that (i,) = (i2). In this
case, we could derive the rule 1(a,b,~ c,~ d) — n;, using simplification M of N, and
stop the search. Otherwise, we would need to generate another element from i, this
time by flipping the input a with the next smallest weight, and repeat the above process
until either we can stop or we flip the input b with the largest weight, Wy 3.

A systematic way of searching the set of input vectors I is obtained as follows.
Given the maximum element, we order it from left to right w.r.t the weights associated
with each input, such that inputs with greater weights are on the left of inputs with
smaller weights. In Example 39, we rearrange (a,b,~ ¢,~ d) and obtain (1,1,1,1) =
[b,~ d,a,~ ¢|. The search proceeds by flipping the right most input, then the second
right most input and so on. At distance 2 from sup(I) and beyond, we only flip the
inputs on the left of the left most input —1. In this way, we avoid repeating input
vectors. Figure 15 illustrates this process for the BNS of Example 39.

Similarly, starting from the minimum element, we rearrange (~ a,~ b,c,d) and
obtain (—1,—1,—1,—1) = [~ b,d, ~ a, c|. Figure 16 illustrates the process for the BNS
of Example 39. Now, at distance 2 from inf(I) and beyond, we only flip the inputs on
the left of the left most input 1.

Note the symmetry between Figures 15 and 16, reflecting, respectively, the use of
Pruning Rules 3 and 4. Starting from sup(I), flipping the input with the smallest
weight results in the next greatest input, while from inf(I), flipping the input with
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{a%c,d}
{ab.c}

T
{abd}
/\
{ab} {acd}

{ac} {b.c.d}
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{c}
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{9}

Figure 13: < on p(Z), given 7 = {a,b, ¢,d} and (1,1,1,1) = [a, b, ¢, d].

A

D )

Figure 14: An Input to Hidden BNS (1), and its positive form (2).

the smallest weight results in the next smallest input. Note also that the sequence in
which the input vectors are generated, according to Figures 15 and 16, complies with
the ordering =< on the set of input vectors, shown in Figure 13.

Let us now focus on the problem of knowledge extraction from Hidden to Out-
put BNSs. The problem lies on the fact that hidden neurons do not present discrete
activation. As a result, we need to provide a special treatment for the procedure of
knowledge extraction from Hidden to Output BNSs. We have seen already that, if
we simply assume that hidden neurons are either fully active or non-active, then the
extraction algorithm looses soundness.

We say that a hidden neuron is active if its activation value lies in the interval
(Amin, 1), or non-active if its activation value lies in the interval (—1, Apqq).t7 Trying
to find an ordering on such intervals of activation is not easy. For example, taking the
Hidden to Output BNS of the network of Figure 10(1), one can not say that having
ny < Apmar and ng < Apqe results in a smaller activation value for x than having

""Recall that Amin € (0,1) and Apae € (—1,0).
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(11,12)
(b~d.a~c)

) e

(L11-1) > (L1, 11) (1-111) > (11,10
(b ~dac) (b~d, a,~c (bda ¢) (~b~da-~c)

(1111)>(1111)<>(1111/\ (-1-1,1,2)
(b~d aC) (bdac)  (~b~dac) (~b,d,a~0)

(L-1-11) > (-11-11)
(b,d,~a,~C (~b,~d,~a,~C

Figure 15: Systematically deriving input vectors from i, without repetitions.

(1-1,1-1)> (-1,1,1-1)
(bdac) (~b~dac)

(11-1-1) (L11D) (L111) 2 (1-111)
(bi~d,~a,0) (bd~a-c) (-bd~a~0 (-bda-0)

(1111)<)>(1111)<)>(1 11,1) > (-1-1,-1,1)
(bd~ac) (-b~d~ac) (-bdac) (-bd~a~C)

W

(-1-1-1-1)
(~b.d,~ac)

Figure 16: Systematically deriving input vectors from 1| without repetitions.

n1 < Amar and ng > Amsn. This is so because, if Apee = —Amin = —0.2 then
n1 = —0.3 and ny = —0.3 may provide a greater activation in x than n; = —0.95 and
ng = 0.25.

At this stage, we need to compromise in order to keep soundness. Roughly, we have
to analyze the activation values of the hidden neurons in the “worst cases”. Those
activation values are given by —1 and A, in the case of a hidden neuron connected
through a positive weight to the output, and by Amer and 1 in the case of a hidden
neuron connected through a negative weight to the output.

Example 40 Consider the Hidden to Output BNS of Figure 17. The intuition behind
its corresponding ordering is as follows: either both ny and ng present activation greater
than Apn, or one of them presents activation greater than A, while the other presents
activation smaller than Apaz, or both of them present activation smaller than Amaz.

Considering the activation values in the worst cases, since the weights from ny and
ng to x are both positive, if the activation of n; is smaller than Amas then we assume
that it is —1. On the other hand, if the activation of n; is greater than Amm, then we
consider that it is equal to Amsn. In this way, we can derive the ordering of Figure
17 safely, as we show in the sequel. In addition, given that Wy, < Wyp,, we obtain
(=1, Apin) = (Amin, —1). As before, in this case = is a chain.
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(Amin, Amin
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7 5 (Amin, -1) (-1, Amin

2 6  Ta

Figure 17: A Hidden to Output BNS and the corresponding set inclusion ordering on
the activation values of the hidden neurons in the worst cases.

The recipe for performing a sound extraction from non-regular networks, concerning
Hidden to Output BNSs, is: If the weight from n; to o; is positive then assume n; =
Amin and ~ n; = —1. If the weight from n; to o; is negative then assume n; =1 and
r~ n; = Amas. These are the worst cases analyses, which means that we consider the
minimum contribution of each hidden neuron to the activation of an output neuron.

Remark 2 Note that when we consider that the activation values of hidden neurons
are either positive in the interval (Amin, 1) or negative in the interval (—1, Amaa), we
assume, without loss of generality, that the network’s learning algorithm is such that no
hidden neuron presents activation in the range [Amaz, Amin] (see [5]). Alternatively,
one may assume that Apmas == 0 and Amin == 0.

In the sequel, we exemplify how to obtain the ordering on a Hidden to Output BNS
with two input neurons n; and ne, connected to an output neuron x with positive and
negative weights.

We start by applying the Transformation Algorithm. We obtain the BNS’s positive
form and check the labels of its input neurons (the network’s hidden neurons). If they
are labeled ny and ne (sup(I) = (n1,n9)) then the weights from both of them to x

are positive. Thus, we assume that ~ n; = —1 and n; = Ay, for i = {1,2}. As a
result, we derive the ordering of Figure 18(Case 1). If, however, the Transformation
Algorithm tells us that sup(I) = (n1,~ ng) then we consider ~ ny = —1 and ny = Anmin

for the activation values of nq, and ~ ng = Aer and ng = 1 for the activation values
of ng. Figure 18(Case 2) shows the ordering obtained if sup(I) = (nq,~ ng). Finally,
if sup(I) = (~ ny,~ ng), we assume that ~ n;, = Anee and n; = 1 for i = {1,2}, as

shown in Figure 18(Case 3). If, in addition, we have ’WOan < ’Woj n, ’ , we also obtain
(Amin, —1) <y (=1, Amin) in Figure 18(Case 1), (Amin,1) <y (1, Amae) in Figure
18(Case 2), and (Amaz, 1) <py (1, Apge) in Figure 18(Case 3). Thus, the resulting
orders = are chains, as expected. Note that the orders of Figure 18 are valid for the
original BNSs, and not for their positive forms.

Let us now see if we can define a mapping for Hidden to Output BNSs, analogous
to the mapping ¢ for Regular Networks and Imput to Hidden BNSs. In fact, if we
assume, without loss of generality, that Amee = —Amin then the same function o
mapping input vectors of the positive form into input vectors of the BNS can be
used here. Let #; € {—1, Amin}, i, € {1, —Amin, Amin, 1}, 2 € T, 1 < i < p.
Recall that o, . 4,(i1, - 3p) = (77, ..., ), Where i; = i; if 2; is a positive literal, and
iy = —i; otherwise. Thus, o1y .y, ¢ <a)(Amin, Amin, =1, —1) = (Amin, —Amin, —1,1). The
following example illustrates the use of ¢ for Hidden to Output BNSs.
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Figure 18: Orderings on Hidden to Output BNSs with two input neurons nq and ng,
using worst case analyses on (—1, Amaz) and (Amin, 1).

Example 41 Consider a Hidden to Output BNS (B) with three input neurons (ny,ne,ns)
and output o. Let Wy, > 0, W, < 0 and W,y > 0. Thus, the positive form (BT)
of B contains nqi,~ no and ns as input neurons. Using the mapping o above, we
obtain oy, < ny gl (Amins Amins Amin) = (Amins —Amin, Amin). In other words, query-
ing the original BNS (B) with [n1,n2,n3] = (Amin, —Amin, Amin) 1S equivalent to
querying its positive form (BY) with [ni,~ n2,n3] = (Amin, Amin, Amin). Similarly,
U[nl,wng,n3]<_17 —17 —1) = (—17 17 —1), U[nl,wng,n3]<_17 —17 Amzn) = (—17 17 Amzn)7 and
so on. As a result, since we have taken the activation values in the worst cases, the
extraction process can be carried out by querying the positive form of the BNS with val-
ues in {—1, Apmin} only. In this way, the only difference between Bt and the positive
form of an Input to Hidden BNS is that input values 1 should be replaced by Apmipn. For
example, in Figures 15 and 16, it is sufficient to replace any input 1 by Apm, when
considering a Hidden to Output BNS.

We are finally in a position to present the extraction algorithm extended for non
regular networks.

o Knowledge Extraction Algorithm - General Case

1. Split the neural network N into BNSs;

2. For each BNS B; (1 <i<r+q)do:

(a) Apply the Transformation Algorithm and find its positive form B;“ ;
(b) Order Z; according to the weights associated with each input of B;“ ;
(c) If B is an Input to Hidden BNS, take i; € {—1,1};

(d) If B} is a Hidden to Output BNS, take i; € {—1, Amin };

(e) Find Inf(I) and Sup(I) w.r.t B, using o;

(f)

f) Call the Knowledge Brtraction Algorithm for Regular Networks, step 3,

where Ny := B ;

/% Recall that, now, we have to replace Search Space Pruning Rules 1 and
2, respectively, by BNS Pruning Rules 1 and 2.

/% We also need to add the following lines to the extraction algorithm for
regular networks (step 3d):
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e If BNS Pruning Rule 4 is applicable, stop generating the successors of
ir;

e If BNS Pruning Rule 3 is applicable, stop generating the predecessors
of ir;

3. Assemble the final Rule Set of .

In what follows, we describe in detail step 3 of the above algorithm, and discuss the
problems resulting from the worst case analysis of Hidden to Output BNSs.

5.3 Assembling the Final Rule Set

Steps 1 and 2 of the general case extraction algorithm generate local information about
each hidden and output neuron. In step 3, such information needs to be carefully
combined, in order to derive the final set of rules of N. We use n; and ~ n; to indicate,
respectively, that the activation of hidden neuron n; is greater than Ay, or smaller
than A,,.:. Bear in mind, however, that hidden neurons n; do not have concepts
directly associated to them. Thus, the task of assembling the final set of rules is that
of relating the concepts in the network’s input layer directly to the ones in its output
layer, by removing literals n;. The following Lemma 42 will serve as basis for this task.

Lemma 42 The extraction of rules from Input to Hidden BNSs is sound and complete.
Proof. From Proposition 31 and Theorem 27, we obtain soundness of the rule set.
From Proposition 31 and Theorem 28, we obtain completeness of the rule set.

Lemma 42 allows us to use the completion of the rules extracted from Input to
Hidden BNSs to assemble the set of rules of the network, i.e., it allows an extracted
rule of the form Xy,..., X, — L; to be substituted by the stronger Xi,..., X, < Lj;.
For example, assume that the extraction algorithm derives a — nq from a BNS By
and b ~ ¢ — ny from a BNS By. By Lemma 42, we have a <> nq and b ~ ¢ < no.
By contraposition, we have ~ a <>~ nq from By, and ~ bV ¢ <>~ ny from By. Now
that we have the necessary information regarding the activation values of nq and no,
assume that we have derived the rule ny ~ ny — x from a Hidden to Output BNS Bs.
We know that ¢ — ny and ~ bV ¢ —r ng. As a result, we may assemble the final set
of rules regarding output x: {a ~ b — x, ac — x}.

The following example illustrates how to assemble the final set of rules of a network
in a sound mode. It also illustrates the incompleteness of the general case extraction,
which we prove in the sequel.

Example 43 Consider a neural network N with two input neurons a and b, two hidden
neurons ny and ny and one output neuron xr. Assume that the set of weights is such
that the activation values in the table below are obtained for each input vector.

lafb] m [ m [ = |
-1 -1 < Apar | < Az | < Amar
11| > Amin | > Amin | < Amas
1]-1] <Amar | < Amaz | < Amaz
11 1] > Amin | < Amaz | > Amin
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An exhaustive pedagogical extraction algorithm, although inefficiently, would derive
the unique rule ab — x from N. That is because |a,b] = (1,1) is the only input vector
that activates x. A decompositional approach, on the other hand, would split the network
into its BNSs. Since |a,b] = (—1,1) and [a,b] = (1, 1) activate ny, the rules ~ ab — ny
and ab — nq would be derived, and hence b — nq. Similarly, the rule ~ ab — ny would
be derived, since |a,b] = (—1,1) also activates ny.

Taking Amin = 0.5, suppose that, given [a,b] = (—1,1), the activation values of
ny and nog are, respectively, 0.6 and 0.95. As we have seen in Fxample 1, if we had
assumed that the activation values of nq and no were both 1, we could have wrongly
derived the rule ning — x (unsoundness). To solve this problem, we have taken the

activation values of the hidden neurons in the worst case, namely, N1 = Amn and
ng = Amin.

Now, given [a,b] = (1,1), suppose that the activation values of ny and ne are,
respectively, 0.9 and -0.6. If we take the activation values in the worst case, that is,
ny = Apmin and ng = —1, we might not be able to derive the rule ny ~ ny — x, as

expected (incompleteness).

Finally, once we have managed to derive the rule nqy ~ no — x from the Hidden to
Output BNS of N, possibly by fine-tuning the value of Apsn in the extraction algorithm,
the final set of rules of N can be assembled as follows: by Lemma 42, we derive b < nyq
and ~ a ANb < no. From ~ a ANb < ng, we obtain aVv ~ b <rv ng. From b < ny,
aV rr b «srong and ny ~ ng — x, we have b A (aV ~ b) — x, which is equivalent to
ab — x, in accordance with the result of the exhaustive pedagogical extraction. A neural
network that presents the activation values used in this example is given below.

e
()

41 105

Lemma 44 The extraction of rules from Hidden to Output BNSs is sound.
Proof. From Proposition 31 and Theorem 27, if we are able to derive a rule v taking

n; € {—1, Apmin} then, from the monotonically crescent characteristic of h(x), r will
still be valid if n; € {(—=1, —Amin), (Amin, 1)}, where Apmin > 0.

Theorem 45 The extraction algorithm for non-reqular networks is sound.
Proof. Directly from Lemmas 42 and 44.

Theorem 46 The extraction algorithm for non-regular networks is incomplete.
Proof. We give a counter-example. Let B be a Hidden to Output BNS with input ng
and output x. Let B =1, Wyp, =1, 0, = 0.1. Assume Apsn, = 0.4. Given Act(ng) =1,
we obtain Act(r) = 0.42, i.e., ny — x. Taking Act(ny) = Amin, we obtain Act(x) = 0.15
and, thus, we have lost n — .
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As far as efficiency is concerned, one can apply the extraction algorithm until a
predefined number of input vectors is queried, and then test the accuracy of the set
of rules derived against the accuracy of the network. If, for instance, in a particular
application, the set of rules obtained classifies correctly, say, 95% of the training and
testing examples of the network, then one could stop the extraction process. Theorem
45 will ensure that it is sound.

6 Experimental Results

In this section, we successfully apply the above method of rule extraction from trained
networks in well known traditional examples and real-world application problems. The
implementation of the system has been kept as simple as possible, and does not benefit
from all the features of the theory presented above.

Our purpose in this section is to show that the implementation of a sound method of
extraction can be efficient, and to confirm the importance of extracting nonmonotonic
theories from trained networks. Our intention is not to provide an exhaustive compara-
tive analysis with other extraction methods. Such a comparison could be easily biased,
depending on the application at hand, training parameters and testing methodology
used. Nevertheless, in what follows, we also present the results reported in [10, 30, 34],
when available.

We have used three application domains in order to test the extraction algorithm:
the MONK's problems [32], DN A sequences analysis [5, 10, 30, 34], and Power Systems
FAuLT DI1AGNOSIS [4, 31]. Briefly, the results obtained indicate that a very high fidelity
between the network and the extracted set of rules can be achieved. They also indicate
that a reduced readability is the price one has to pay for soundness. We will discuss
this problem in detail in Section 6.4.

The extraction system consists of three modules: its main module takes a trained
neural network (its set of weights and activation functions), searches the set of input
vectors and generates a set of rules accordingly, another module simplifies the set of
rules, and yet another checks its accuracy against that of the network, given a test
set, and the fidelity of the set of rules to the network. The system was implemented in
ANSI C (5K lines of code) and is available upon request. Implementation details will be
discussed in another paper. We start by presenting two very simple examples, which
will help the reader to recall the sequence of operations contained in the extraction
process.

Example 47 (The XOR Problem) A network with p input neurons, q hidden neurons
and r output neurons contains ¢ Input-to-Hidden BNSs, each with p inputs and a single
output, and r Hidden-to-Output BNSs, each with q inputs and a single output. To each
BNS we apply a transformation whereby we rename input neurons xy linked through
negative weights to the output, by ~ xy and replace each weight Wi, € R by its modulus.
We call the result the positive form of the BNS. For example, in Figure 19, N1 and
Ny are the positive forms of the Input-to-Hidden BNSs of N, while N3 is the positive
form of the Hidden-to-Output BNS of N. We then define the function o mapping
input vectors of the positive form into input vectors of the BNS. For example, for Ny
Tlan(1:1) = (1,-1).

Given a 2 — ary input vector, = is a linear ordering. For Ny, (—1,—1) < (1,—1) =
(=1,1) = (1,1) and for Ny (—1,—1) < (=1,1) = (1,-1) = (1,1), where (1,1) = [a, ~ D]
in both. Querying N1, hy is active for (1,1) only. Thus, by applying o we derive
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Figure 19: The network NN, having tanh as activation function, computes XOR. We
will extract rules for hg, A1 and o by querying Ny, Ny and N3, respectively, and then
assemble the set of rules of V.

a ~ b — hy. Querying Na, by is not active for (—1,—1) only. Similarly, we derive
ab— hy, ~ar~b— I and a ~b— hy. The last two rules can be simplified to obtain
~ b — hy, since ~ b implies hy given either a or ~ a. Similarly, from ab — hy and
a~b— h we obtain a — hy.

Considering now Hidden to Output BNSs, it is usually assumed that the network’s
hidden neurons present discrete activation values such as {—1,1}. We know however
that this is not the case, and therefore problems may arise from such assumption. At this
point we need to compromise. FKither we assume that the activation values of the hidden
neurons are in {—1, Apin}, and then are able to show that the extraction is sound,
but incomplete, or we assume that they are in {—Apin, 1}, obtaining an unsound, but
complete, extraction. We have chosen the first approach'®. For N3 we have (-1,-1)
<_17 Amm) = (Amzrm _1) = (AmmyAmm)y where (Amzrm Amm) = [Nh07h1] and Apmin
0.5. Only (Amin, Amin) activates o, and we derive the rule ~hohy — o.

Finally, to assemble the rule set of N, we take the completion of each rule extracted
from Input to Hidden BNSs. We have a ~ b — hy, a — hy, ~b— h and ~hohy — o.
And from a ~ b < hg and aV ~ b <> by we obtain (~ aV b) A (aV ~ b) — o; the XOR
function.

I IA

Example 48 (EXACTLY 1 OoUT OF 5) We train a network with five input neurons
{a,b,c,d, e}, two hidden neurons {hg,h1} and one output neuron {o}, on all the 32
possible input vectors. The network’s output neuron fires iff exactly one of its inputs
fires. Although this is a very simple network, it is not straightforward to verify, by in-
specting its weights, that it computes the following rule: “Exactly 1 out of {a,b, ¢, d, e}
implies 0”.

Assume the following order on the weights linking the input layer to each hidden
neuron ho and hy: [Whoal < [Whge| < [Whoe| < [Whgal < [Whep| and [Wh,a| < [Whye| <
Whial < |Whiel < |Whys|. We split the network into its BNSs and apply the extraction
algorithm. Taking T = [a,b,c,d, | for the BNS with output hy, we find out that input
(—1,-1,-1,1,—1) activates ho, by querying the BNS. Since |Wh.q4| is the smallest
weight, from the ordering = on I and by applying Definitions 20 and 22, we derive the

!5Here, we perform the worst case analysis. By choosing activations in {1, Amin}, misclassifica-
tions occur because of the absence of a rule (incompleteness). Analogously, by choosing {—Amin, 1},
misclassifications are due to the inappropriate presence of rules in the rule set (unsoundness). In this
context, the choice of {—1,1} yields unsound and incomplete rule sets.
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rule 1(abcde) — ho. Note that, by Definition 23, this rule subsumes m(abcde) — ho,
for m > 1. Taking again T = [a,b,c,d, e] but now for the BNS with output hq, we find
out that input (—1,—1,—1,1,1) activates hy. Similarly, from the ordering < on I and
by applying Definitions 20 and 22, we derive the rule 2(abcde) — hy. Finally, for the
Hidden to Output BNS, 7 = [hg,~ hy]. Taking Amm = 0.5, o is only activated by
(Amin, Amin) and we derive the rule hg ~ hy — o.

In order to obtain the rule mapping inputs {a,b, c,d, e} directly into the output {o},
we take the completion of the rules extracted from Input to Hidden BNSs: 1(abcde) <
hi and 2(abede) < he. Therefore, “Exactly 1 out of {a,b,c,d, e} implies 0” is obtained
by computing 1(abede) N\ ~ 2(abede) — o, i.e., “At least 1 out of {a,b,c,d, e} AND At
most 1 out of {a,b,c,d, e} implies 0o”. Note that a network with a single hidden neuron
would not be able to learn such a rule.

In what follows, we briefly describe each of the above mentioned applications, and
present the results of the extraction algorithm. For each problem, we investigate three
parameters: the accuracy of the set of rules against that of the network w.r.t a test
set, the fidelity of the set of rules to the network, i.e., its ability to mimic the network’s
behavior, and the readability of the set of rules in terms of its size.

6.1 The MONK’s Problems

As a point of departure for testing, we applied the extraction algorithm to the Monk’s
problems [32]: three examples which have been used as benchmark for performance
comparison between a range of symbolic and connectionist machine learning systems.
Briefly, in the Monk’s problems, robots in an artificial domain are described by six
attributes with the following possible values: (1) head shape{round, square, octagon},
(2) body _shape{round, square, octagon}, (3) is_smiling{yes, no}, (4) holding{sword,
balloon, flag}, (5) jacket color{red, yellow, green, blue}, and (6) has_tie{yes, no}.

Problem 1 trains a network with 124 examples, selected from 432, where (head_shape
body_shape) V (jacket_color = red). Problem 2 trains a network with 169 examples,
selected from 432, where exactly two of the six attributes have their first value. Prob-
lem 3 trains a network with 122 examples with 5% noise, selected from 432, where
(jacket_color = green A holding = sword) V (jacket_color # blue A body-shape #
octagon). The remaining examples are used in the respective test sets.

We use the same architectures as Thrun [32], i.e., single hidden layer networks
with three, two and four hidden neurons, for Problems 1, 2 and 3, respectively; 17
input neurons, one for each attribute value, and a single output neuron, for the binary
classification task. We use the standard backpropagation learning algorithm [27]. All
networks have been trained for 5,000 epochs, with an epoch being defined as one pass
through the whole training set. Differently from Thrun, we use bipolar activation
function, inputs in the set {—1,1}, and A, = 0 (See [5] for the motivation behind
this).

For Problems 1, 2 and 3, the performance of the networks w.r.t their test sets was
100%, 100% and 93.2%, respectively. The accuracy of the extracted sets of rules, in
the same test sets, was 100%, 99.2% and 93.5%. The fidelity of the sets of rules to the
networks was 100%, 99.2% and 91%. Figure 20 displays the accuracy of the network,
the accuracy of the set of rules, and the fidelity of the set of rules to the network,
grouped for each problem.

The accuracy of the sets of rules is very similar to that of the networks. In Problem
1, the rule set matches exactly the behavior of the network. In Problem 2, the rule
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Figure 20: The accuracy of the network, the accuracy of the extracted rule set and the
fidelity of the rule set to the network w.r.t the test sets of the Monk’s Problems 1, 2
and 3, respectively.

set fails to classify correctly two examples, and in Problem 3 the rule set classifies
correctly one example wrongly classified by the network. Such differences are due to
the incompleteness of the extraction algorithm.

The tables below present, for Problems 1, 2, and 3, the number of input vectors
queried during extraction and the number of rules obtained before and after simplifica-
tions Complementary Literals and Subsumption are applied. For example, for hidden
neuron hg in Monk’s Problem 1, 18,724 input vectors are queried generating 9,455 rules
that after simplification are reduced to 2,633 rules. In general, less than 30% of the set
of input vectors is queried and, among these, less than 50% generate rules.

MONKS 1 | Input Vectors | Queried | Extracted | Simplified
hg 131072 18724 9455 2633
hy 131072 18598 9385 536
hy 131072 42776 21526 1793
0 8 8 2 1

remaining after simplification.

Table 1: (MONKS 1) The number of input vectors queried, rules extracted, and rules

MONKS 2 | Input Vectors | Queried | Extracted | Simplified
hg 131072 131070 58317 18521
hy 131072 43246 21769 5171
0 4 4 1 1

remaining after simplification.

Table 2: (MONKS 2) The number of input vectors queried, rules extracted, and rules

MONKS 3 | Input Vectors | Queried | Extracted | Simplified
hg 131072 18780 9240 3311
hy 131072 18618 9498 794
hy 131072 43278 21282 3989
hs 131072 18466 9544 1026
0 16 14 8 2

Table 3: (MONKS 3) The number of input vectors queried, rules extracted, and rules
remaining after simplification.

In general, Complementary Literal and Subsumption reduce the rule set by 80%. M
of N and M of N Subsumption further enhance the rule set readability. In particular,
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the rule set for Problem 1 is presented in Table 4 below. For short, we name each
attribute value with a letter from a to ¢ in the sequence presented above, such that
a = (head_shape = round),b = (head_shape = square), and so on. We also use the
Integrity Constraints of the Monk’s Problems in order to present a clearer set of rules.
For example, we do not present derived rules where has_tie = yes and has_tie = no
simultaneously, although the network has generalized to include some of these rules.

Rules for o

~hy ~hg — 0

Rules for h;

~ abed ~ e — hy

bdNeNl—>h1

broirslmn — hy

bed(m IV ~ ef) — I

brsef(mnVmo) — hy

roabdf (0 1V mVn) — hy
mno(~1VbroeVdreVbeVedV ~abVbf) —hy
1(mno) A (bc ~v e s IV ed ~s e~ 1NV~ abed V bedf ) —hy
1(mno) A(bd ~v eV bd s INVbroef oIV rvabrsens 1) —hy
Rules for hy

anr~berodek ~v 1 — hy

ac ~ dem ~ q¢ — ho
ar~rbrodef o1 — hy
ae ~ gjm(nV o) — hg

rvbe ro g e ln(aV ~ d) — ho
arsbrodersl(cV o h) — hy
robroders grol(mVo) — ha
arsbroders l(7VPVi)— hy
arsberslesg(rrdVm)— hy

arsbersgesl(rodVmVo)— hy

aem(r~r gn ~ pV v go ~o pV o hknV ~ hko) —hg

1(mno) A (Va rs bc ro d ~s IV o be ~o de ~s 1) —hg

1(mno) A (ac ~~def Varsbrodf oIV o beodef ~ 1) —hy
1(mno) A (a ~bef oIV arsbrsdrsgeslVarsbers hrol) —hy
1(mno) A (a ~der~hVardersgVacrdersIVanrbr de) —hy
I(mno)AN(ar~rbrodrshes IV robroders h e IV arobee ~o 1) —hy

Table 4: Set of rules extracted for the Monk’s Problem 1.

By looking at the set of rules extracted and the much simpler description of Monk’s
Problem 1, it is clear that neural networks do not learn rules in a simple and structured
way. Instead, they use a complex and redundant way of encoding rules. Not surpris-
ingly, such a redundant representation is responsible for the network’s robustness.

It is interesting that because the rule obtained for the Hidden-to-Output BNS of
Monk’s Problem 1 was ~h; ~hg — o, and since the set of rules presents 100% of
accuracy, hidden neuron hg is not necessary at all, i.e., the problem could have been
solved by a network with two hidden neurons only, obtaining the same results. Another
interesting exercise is to try and see what the network has generalized, given the set of
rules and the classification task learned.
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6.2 DNA Sequence Analysis

Molecular Biology is an area of increasing interest for the analysis and application of
computational learning systems. Specifically, DNA sequence analysis problems have
recently become a benchmark for the comparison of the performance of different learn-
ing methods. We apply the extraction algorithm on Fukaryotes Promoter Recognition
and Prokaryotes Splice Junction Determination, which are very large real world prob-
lems. Differently from the Monk’s Problems, now an exhaustive pedagogical extraction
(sound and complete) turns out to be impossible due to the large number of input neu-
rons: the networks trained in both problems contain more than 200 input neurons.

In what follows we briefly introduce the problems in question from a computa-
tional application perspective (see [37] for a proper treatment of the subject). A DNA
molecule contains two strands that are linear sequences of nucleotides. The DNA is
composed from four different nucleotides - adenine, guanine, thymine, and cytosine -
which are abbreviated by a,g,t,c, respectively. Some sequences of the DNA strand,
called genes, serve as a blueprint for the synthesis of proteins. Interspersed among the
genes are segments, called non-coding regions, that do not encode proteins.

Following [36], we use a special notation to identify the location of nucleotides in
a DNA sequence. Each nucleotide is numbered with respect to a fixed, biologically
meaningful, reference point. For example, “@8% atcg” states the location relative to
the reference point in the DNA, followed by the sequence of symbols that must occur,
i.e., an ¢ must appear three nucleotides to the right of the reference point, followed
by a t four nucleotides to the right of the reference point and so on. By convention,
location zero is not used, and ‘x’ indicates that any nucleotide will suffice in a particular
location. Each location is encoded in the network by four input neurons, representing
nucleotides a, g, t and ¢, in this order. Figure 21 shows part of the network for Promoter
Recognition. For example, suppose that input vectors with @ —1 g =1, @1 ¢=1 and
@5 t = 1 activate the output Promoter. We want to extract a rule of the form @ — 1
gc x xx t — Promoter.

Promoter

OOOO GOOO — GOOO

@-1 @1 @5

Figure 21: Part of the network for Promoter Recognition.

The first application is prokaryotic'® promoter recognition. Promoters are short
DNA sequences that precede the beginning of genes. The aim of “promoter recog-
nition” is to identify the starting location of genes in long sequences of DNA. The
input layer of the network for this task contains 228 neurons (57 consecutive DNA
nucleotides), its single hidden layer contains 16 neurons, and its output neuron is re-

19Prokaryotes are single-celled organisms that do not have a nucleus, e.g. E. Coli.
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sponsible for classifying the DNA sequence as promoter or nonpromoter. The set of
training examples consists of 48 promoter and 48 nonpromoter DNA sequences, while
the test set contains only 10 examples.

The second application is eukaryotic?? splice-junction determination. Splice junc-
tions are points on a DNA sequence at which the non-coding regions are removed
during the process of protein synthesis. The aim of “splice junction determination” is
to recognize the boundaries between the part of the DNA retained after splice - called
exons - and the part that is spliced out - the introns. The task consists, therefore,
of recognizing exon/intron (E/I) boundaries and intron/exon (I/E) boundaries. Each
example is a DNA sequence with 60 nucleotides (240 input neurons), where the center
is the reference point. The network contains 26 neurons in its single hidden layer,
while two output neurons are responsible for classifying the DNA sequences into F/T or
I/E. The third category (neither E/I nor I/E) is considered true when neither output
neurons are active. The training set for this task contains 1000 examples, in which
approximately 25% are of I/E boundaries, 25% are of E/I boundaries and the remain-
ing 50% are neither. We use a test set with 100 examples. Note that for the splice
junction problem, we should not evaluate each output neuron individually. Instead,
the combined activation of output neurons F /I and I/FE should be considered.

In both applications, due to the intractability of the set of input vectors (2228 and
2240 elements each), we limit the maximum number of rules generated to 50,000 per
hidden neuron. We also speed up the search process by doing the following: we jump,
in a kind of binary search, from the ordering’s minimum element to a new minimal
element in the frontier at which input vectors start to generate rules?.

Figure 22 displays the accuracy of the network, the accuracy of set of rules, and the
fidelity of the set of rules to the network, for both the promoter recognition and splice
junction determination problems. The results reported were obtained using A;,;, = 0.5.
In the promoter recognition task, the network classified 9 of the 10 test set examples
correctly. The rule set extracted for this task classified the same 9 examples correctly,
and thus the fidelity of the rule set to the network was 100%. In the splice-junction
problem, the network classified correctly 92 out of 100 examples. The rule set for
this task classified 88 out of 100 examples correctly, and 7 of the 8 examples wrongly
classified by the network were wrongly classified by the rule set. As a result, the fidelity
of the rule set to the network was 95%.

The results obtained for the Promoter problem do not have statistical significance
due to the reduced number of examples available for testing. However, the accuracy
of the set of rules w.r.t the network’s training set was 90.6%, therefore similar to
that obtained for the test set. Unfortunately, it is not easy to compare the results
here obtained with the ones in [10], [30], and [34]; differences in training and testing
methodology are sufficient to preclude comparisons. For example, in [30] Setiono trains
a network with three output neurons for the splice junction determination problem,
while in [34] Towell uses cross-validation to test the network and the accuracy of the
set of rules. To further complicate matters, the figures reported by Towell, concerning
the results obtained by the MofN and Subset methods, refer to the training sets of the
networks. Towell points out, though, that the figures w.r.t the test sets of the networks

20Unlike prokaryotic cells, eukaryotic cells contain a nucleus, and so are higher up the evolutionary
scale.

2 Instead of searching from the ordering’s maximum and minimum elements, we pick an input vector
at distance 1/2 from them, where n is the number of input neurons, and query it. If it activates the
output then it becomes a new maximal element; otherwise, it becomes a new minimal element. We
carry on with this process until maximal and minimal elements are at distance 1 from each other.
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Figure 22: The accuracy of the network, the accuracy of the rule set and the fidelity
of the rule set to the network for the promoter recognition and splice junction deter-
mination problems.

are similar. Finally, both Towell [34] and Fu [10] extract rules from networks in which
a background knowledge had been inserted, while Setiono uses networks trained with
no prior knowledge.

Nevertheless, in Figure 23, we present the accuracy obtained by our extraction
method, in comparison with MofN, Subset and Setiono’s method, in both the Promoter
and Splice Junction domains. The fidelity achieved by these extraction algorithms,
again in the Promoter and Splice Junction domains, is shown in Figure 24. In [30],
100% of fidelity (which we report here) seems to be assumed from the observation that
the accuracy of the set of rules is identical to that of the network. However, this may
not be the case when less than 100% of accuracy is achieved. In spite of the above
mentioned differences in evaluation methodology, one can observe from Figures 23 and
24 that, apart from the poor fidelity of the subset method, our extraction method is
within a margin of error of less than 5.5% from the results obtained by the remaining

methods in both applications.
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o

N/A
70 .
Promoter Splice Junction

Figure 23: Comparison with the accuracy obtained by other extraction methods in the
Promoter recognition and Splice Junction determination problems.

Finally, a comparison between the sizes of the sets of rules extracted by each of the

above methods indicates that a drawback of our extraction algorithm lies in the much
larger size of the set of rules, at least before the simplification of rules is carried out.
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Figure 24. Comparison with the fidelity achieved by other extraction methods in the
Promoter recognition and Splice Junction determination problems.

On the other hand, the above experiments also show that an advantage of our method
is the fact that a provably sound extraction is feasible even for very large networks.??
We will address the problem of readability, and present some alternatives to counteract
it, in the discussion at the end of this section.

6.3 Power Systems Fault Diagnosis

Finally, we apply the extraction algorithm to power systems’ fault diagnosis. Power
systems’ applications are an example of safety-critical domains, so that the soundness
of the explanations provided by the set of rules extracted is of great importance. In
this application, we can also illustrate the extraction of rules with classical negation
(=), together with default negation (~), because some neurons are labelled —z in the
network’s input and output layers (see [11] for the motivation behind adding classi-
cal negation to logic programs?®; see [4] about encoding background knowledge with
classical negation into neural networks).

Figure 25 shows a simplified version of a real power plant. The system has two
generators, two transformers with their respective circuit breakers, two buses (main
and auxiliary) and two transmission lines also with their respective circuit breakers.
Each transmission line has six associated alarms: breaker status (indicates whether
it is open or not), phase over-current (shows that there was an over-current in the
phase line), ground over-current (shows that there was an over-current in the ground
line), timer (shows that there was a distant fault from the power plant generator),
instantaneous (shows that there was a close-up fault from the power plant generator),
and auxiliary (indicates that the transmission line is connected to the auxiliary bus).
In addition, each transformer has three associated alarms: breaker status (indicates
whether it is open or not), overloading (shows that there was a transformer overload)
and auxiliary (indicates that the transformer is connected to the auxiliary bus). Finally,
there are five alarms associated with the by-pass circuit breaker: breaker status, phase
over-current, ground over-current, timer and instantaneous.

22We believe that the proof of soundness of the extraction algorithm is a prerequisite for the achieve-
ment of reasonable accuracy and fidelity in any application domain.

23In this case, each concept of the network presents three possible values: true, false and unknown.
In our application, either there is a fault (x), or there is not a fault (—x), or yet there is no evidence
of a fault (~ x).
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Figure 25: Configuration of a simplified power system generation plant.

Certain combinations of the set of alarms indicate faults at Transmission Line 01
(11 possible kinds of faults), Transmission Line 02 (11 possible kinds of faults), or
both (1 possible fault). In addition, each transformer may present three different kinds
of faults. Finally, some alarms indicate the inexistence of a fault in the main bus or
in each of the transformers (see [31] for details). We train a network with 23 input
neurons, which represent the set of alarms of the power plant, 32 output neurons, which
represent the set of faults of the power plant, and 35 hidden neurons in a single hidden
layer. We do so using standard backpropagation. Fach training example associates a
set of alarms with possible faults. Some examples contain a unique fault associated
with each set of alarms. Other examples associate many possible faults with each set
of alarms. The set of 278 training examples contains approximately 10% of noise?*.
We use two test sets: one with 92 examples, in which only single faults are associated
with each set of alarms, and another with 70 examples, in which multiple faults are
associated with each set of alarms.

Figures 26, 27 and 28 display the accuracy of the network, the accuracy of the rule
set and the fidelity of the rule set to the network w.r.t the test set with single faults, for
each output neuron. For example, for output neuron Fault 1 (Figure 26), the network’s
accuracy was 95.7% (4 misclassifications in 92 examples), the accuracy of the set of
rules extracted was also 95.7%, and the fidelity of the set of rules to the network was
100%, i.e., the network and the set of rules misclassified the same 4 examples. Figures
29, 30 and 31 show the same parameters for the test set with multiple faults. A typical
rule extracted from the network for this problem is of the form:

—Fault (Main_Bus, Trans_Line_01) <« Alarm (Auziliary_Bus, Trans_Line_01),
rv Alarm (Main_Bus, Trans_Line_01).

The results show the percentage of successful diagnosis achieved for each failure
independently. Apart from Faults 24 and 30 in the multiple faults case, the accuracy of

24The absence of one or more of the alarms.
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Figure 26: Network, Rule Set and Fidelity percent w.r.t the single faults test set
(outputs 1-10).
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Figure 27: Network, Rule Set and Fidelity percent w.r.t the single faults test set
(outputs 11-21).

the rule set is very good. Similarly, the fidelity of the rule set to the network is excellent
in most cases, and in general better than the accuracy of the rule set. Not surprisingly,
this indicates that the extraction algorithm prioritizes fidelity over accuracy, i.e., it
tries to mimic the network’s behavior, which is a result of soundness.

However, the performance of systems of fault diagnosis is typically evaluated not
only by determining the percentage of successful diagnosis, but also the average size of
the ambiguity set (when the system isolates failures from several possible fault modes,
but fails to correctly identify the set of faults)?°. For the network, the average size of
the ambiguity set was 0.5% and 0% of the size of the set of activated faults, respectively,
for the single and multiple faults test sets. For the rule set extracted, the size of the
ambiguity set was 2.2% and the same 0% of the size of the set of activated faults, again
for the single and multiple faults test sets.

6.4 Discussion

The above experimental results corroborate two important properties of the extraction
system: it captures nonmonotonicity and it is sound. Nonmonotonicity is captured by
the extraction of rules with default negation, as in the experiments on power systems
fault diagnosis. Soundness is reflected in the very high fidelity achieved in the appli-

PFor each example, size of ambiguity set = (number of wrongly activated outputs / number of
activated outputs) x 100.
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Figure 28: Network, Rule Set and Fidelity percent w.r.t the single faults test set
(outputs 22-32).
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Figure 29: Network, Rule Set and Fidelity percent w.r.t the multiple faults test set
(outputs 1-10).

cations, by assuring that any rule extracted is actually encoded in the network, even
if such a rule does not comply with the network’s test set. The extraction system is,
therefore, bound to produce a set of rules that tries to mimic the network, regardless
of the network’s performance in the training and test sets.

The above experiments also indicate that the drawback of the extraction system
lies in the size of the set of rules. In comparison with [30] and [35], in the DNA
sequence analysis domain, the number of rules extracted before any simplification is
done is considerably bigger than, for example, the number of rules extracted by the
MofN algorithm (despite the differences in syntax). It seems that less readability is the
price one has to pay for soundness. The problem, however, is that we regard the proof
of soundness as the minimum requirement of any method of rule extraction. We are,
therefore, left with two possible courses of action: (1) we can try to enhance readability
by manipulating, e.g., simplifying, the extracted set of rules, or (2) we can ignore the
lack of readability of the set of rules as a whole, and concentrate on providing an
explanation for each particular answer of the network.

As far as course of action (1) is concerned, there are many possible improvements
to be made in our extraction system.

e Firstly, M of N simplifications (not yet implemented) can be very powerful, as in
[35], in helping reduce the size of the rule set. Even better, simplifications could
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Figure 30: Network, Rule Set and Fidelity percent w.r.t the single faults test set
(outputs 11-21).

100
% 95 ] N ] N ] ] N ] O Network
E o N =i sl 158 05l A= — B Rule Set
(=]

= O Fiddli

o Fidelity
S

Figure 31: Network, Rule Set and Fidelity percent w.r.t the single faults test set
(outputs 22-32).

be made on the fly, at the same time that rules are generated.?®

In Section 4.2, we have seen an example of the relation between the ordering
on the set of input vectors (I) of a network and M of N rules. In fact, each
valid M of N rule is associated with a valid subset of I. For example, let i; =
(—1,—1), i2 = (—1,1), i3 = (1,—1) and i4 = (1,1) Let T = {i17i2,i3,i4} and
sup(I) = (1,1). There are 5 valid subsets of I, apart from ), namely, {is},
{ia,13}, {i4,12}, {i4,13,15}, and I itself. If (1,1) = [a, b] then each of these subsets
correspond, respectively, to the following M of N rules: 2(a,b), 1(a), 1(b), 1(a,b),
and 0(a,b). Any other M of N rule is not valid due to the ordering < on I. For
example, 1(a,~ b) would require the set {i4,1,,1;} to be also a valid subset of
I, but this is impossible according to <. M of N rule 1(a,~ b) would require
sup(I) = (1,1) = [a, ~ b, in which case rule 1(a,b) would not be a valid M of N

rule, for the same reason as described above.?7

The relation between M of N rules and subsets of I could facilitate the extraction
of more compact sets of rules, thus improving readability. By manipulating M of
N rules, as in [23], a neater set of rules could also be derived. The characterization

26The idea here is to implement a buffer of rules extracted and, whenever a new rule is generated,
try to simplify it together with the rules in the buffer. Potentially good rules for simplification, the
ones with many ‘don’t cares’, would remain in the buffer for longer periods.

27In fact, this is the reason why M of N rules ought to be seen as simplifications.
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of an algebra for manipulating M of N rules is work in progress.

e Improvements could also be made in the optimization of the system’s search
process, exploring the ordering on the set of input vectors, and adding some new
heuristics to the extraction algorithm. An example is what we have done in
the DNA sequence analysis case, when we jump to new minimal elements in the
ordering.

The efficiency of the search process could also be enhanced by the implementation
of a time-slice for each output neuron. This would help the extraction not to get
stuck in the generation of thousands of rules about an output, while no rule about
the remaining outputs is created. As far as efficiency is concerned, a parallel
implementation of the extraction system would be the ultimate goal.

e Finally, a possible extension of the extraction algorithm concerns the extraction of
metalevel priorities [24, 25] directly from the network’s Hidden to Output BNSs.
Negative weights from hidden to output neurons implement a preference relation
(see [6]). We could use this information to extract directly from the network,
together with object level rules, a set of metalevel priorities between rules. Al-
ternatively, this could be done after the extraction, when the rules are assembled
to derive the final rule set. The result would be the enhancement of readability,
by means of the use of a more compact representation.

Consider, for example, a non-regular network N from which the following set of
rules is extracted R = {ab — hy,c — ho,hy — —x,~ hihy — z}. When hidden
neurons hy and hg are eliminated, we obtain R' = {ab — —x,~ ac — z,~ bc —
x}. However, by associating hy with 71 : ab — —x and he with r9 : ¢ — x, we
find out that R’ is equivalent to R = {r| : ab — -,y : ¢ — x} together with
the preference relation 7y > r9, which should read “rule ry has priority over rule
r9”. Clearly, R” is more readable than R'.

The idea behind course of action (2) is to provide an explanation for individual
answers of the network, instead of trying to understand what is computed by it as a
whole. When we extract rules from a trained network, we obtain a database, which can
be used instead of the network. By querying the database with a particular answer of
the network, using, for instance, an automatic theorem prover, we may use the steps
of the proof of a literal to provide a symbolic explanation for such an answer of the
network. Note that this explanation will only be reliable if the extraction of rules is
sound. Of course, when one takes course of action (2), some interesting features of the
network might never be found. On the other hand, in this case, even very large sets of
rules are not a major concern.

7 Conclusion

We have seen that most decompositional methods of extraction are unsound. On
the other hand, sound and complete pedagogical extraction methods have exponential
complexity. We call this problem the complerity x quality trade-off. In order to
ameliorate it, we started by analyzing the cases where regularities can be found in the
set of weights of a neural network. If such regularities are present, a number of pruning
rules can be used to safely reduce the search space of the extraction algorithm. These
pruning rules reduce the extraction algorithm’s complexity in some interesting cases.
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Notwithstanding, we have shown that the extraction method is sound and complete
w.r.t an exhaustive pedagogical extraction. A number of simplification rules, that fit
very well into the extraction method due to a counterpart graphical representation on
the network’s input vectors’ ordering, also help reducing the length of the extracted
set, of rules.

We then extended the extraction algorithm to the cases where regularities are not
present in the network as a whole. That is the general case, since we do not fix any
constraints on the network’s learning algorithm. However, we have identified subnet-
works of non-regular networks that always contain regularities, by showing that the
network’s building block, here called Basic Neural Structure (BNS), is regular. As a
result, using the same underlying ideas, we were able to derive rules from each BNS.
In this case, however, we were applying a decompositional approach, and our problem
was how to assemble the final rule set of the network. We needed to provide a special
treatment for Hidden to Output BNSs, since the activation values of hidden neurons
are not discrete, but real numbers in the interval (-1,1). In order to deal with that,
we assumed, without loss of generality, two possible intervals of activation (—1, Aymax)
and (Apin, 1), and performed a worst case analysis. Finally, we used the completeness
of the extraction from Input to Hidden BNSs to assemble the final set of rules of the
network, and show that the general case extraction method is still sound.

In this paper, we have investigated the problem of extracting the symbolic knowl-
edge encoded in trained neural networks. Although neural networks have shown very
good performance in many application domains, one of their main drawbacks lies on
the incapacity to explain the reasoning mechanisms that justify a given answer. This
motivated the first attempts towards extracting a symbolic knowledge from trained
networks, dating back to the end of the 1980’s. The problem of knowledge extraction
turned out to be one of the most interesting open problems in the field. So far, some
extraction algorithms were proposed [1, 3, 9, 10, 26, 30, 35] and had their effective-
ness empirically confirmed using certain applications as benchmark. Some theoretical
results have also been obtained [5, 10, 15, 33]. However, we are not aware of any extrac-
tion method that fulfils the following list of desirable properties suggested by Thrun in
[33]: 1) no architectural requirements; 2) no training requirements; 3) correctness; and
4) high expressive power. The extraction algorithm presented here satisfies the above
requirements 2 and 3. It does impose, however, some restriction on the network’s ar-
chitecture. For instance, it assumes that the network contains a single hidden layer.
This, according to the results of Hornik et al. [16], is not a drawback though. In what
concerns the expressive power of the extracted set of rules, our extraction algorithm
enriches the language commonly used by adding default negation. This is done because
neural networks encode nonmonotonicity. In spite of that, we believe that item 4 is the
subject, among the above, that needs most attention and further development.

As future work, we would like to tackle the problem of rule extraction from networks
with continuous inputs. Clearly, when the Translation Algorithm of C-IL?P is used
(Figure 1, step (1)), one can convert numerical attributes into discrete ones, using any
desired degree of accuracy, as done in [30], for example. In this case, the extraction
algorithm of C-IL? P can be applied directly, without any modifications. The interesting
case for future investigation arises when a network trained with continuous inputs is
simply given, and we want to extract rules from it, i.e., instead of the whole system, we
can only use the extraction module of C-IL?P. In this case, it seems that the process
used for the extraction of rules from hidden to output subnetworks should be applied
also for input to hidden subnetworks. As before, the ordering on the input vectors of
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regular (sub)networks is valid for any activation values chosen. The problem, though,
lies in the choice of “good” activation values. It is similar to the problem of defining
a fuzzification scheme and its membership functions, as shown in [20]. The proof
of soundness in this case, however, seems to be a big challenge, and, in our point of
view, soundness should be regarded as the minimum requirement of any rule extraction
method.

In addition, the extension of the extraction system to perform a stochastic search,
as opposed to a deterministic search, in the lattice of input vectors seems promising.
Stochastic searches have outperformed deterministic ones in a variety of logic and Al
tasks, starting with the work of Selman, Levesque and Mitchell on satisfiability [28].
Consequently, we believe that a stochastic search of the frontier of activations in the
lattice of input vectors could improve the experimental results obtained with the current
(deterministic) implementation of the extraction algorithm.
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