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ABSTRACT

Unlike linear systems, where knowledge of the eigenvalues and eigenvectors allows 
one to write a closed-form solution, few nonlinear systems posses closed-form 
analytical solutions, and therefore numerical simulations play a crucial role in the 
process of finding and analysing nonlinear phenomena. For the theoretical study of 
the complex spatial, temporal and spatiotemporal behaviour of nonlinear optical 
systems, mathematical modelling of the problem under consideration by efficient 
stepping algorithms is necessary. For the past decade the Finite Element Method has 
proved to be a very efficient and versatile method in linear and nonlinear modal 
analysis with the use of variable meshes and infinite elements as some of its greatest 
strengths, but little work has been done on its application to evolutional analysis in 
nonlinear optics.

This thesis describes a finite-element-based computer modelling of a wide 
range of nonlinear optical systems, with a view to developing an understanding of 
some of the complex but exciting spatial, temporal and spatiotemporal propagation 
dynamics in such systems. The computer simulation of a wide range of nonlinear 
optical waveguides and systems in those major areas of nonlinear optics which 
include nonlinear integrated-optics, nonlinear fiber-optics and nonlinear dynamic 
systems has been performed. This is carried out through numerical solutions of 
appropriate wave equations such as the paraxial wave equation, the Maxwell-Debye 
equations, the infinite-dimensional map of a ring resonator derived from the 
Maxwell-Bloch equations and coupled nonlinear Schroedinger equations that may 
include gain terms.

Two well defined problems are addressed in detail. First, the determinations of 
the modes or characteristic solutions by solving the stationary wave equations 
through modal analysis of different types of nonlinear optical waveguides. Second, 
the determination of the paraxial propagation solutions along a nonlinear medium by 
solving the wave equation as step-by-step initial-boundary value problems through 
beam propagation analysis.

For this task, current and novel 2D- and 3D- schemes based on the finite element 
method are presented and described. Particularly, a novel robust time-dependent 
code which is a combination of the finite-element propagation algorithm coupled to 
unconditionally stable difference schemes for marching the solutions along the 
characteristics of the (z,t)-domain is developed as well as accurate propagation 
schemes for solving generalized coupled nonlinear Schroedinger equations.

Additionally, several novel specific applications involving nonlinear media are 
thoroughly described. These include the study of nonlinear supermodes of 
integrated-optics directional couplers, the nonlinear dispersion characteristics of 
multiple-quantum well waveguides and graded-index fibers with saturable nonlinear 
cores, controlled spatiotemporal soliton emission, switching and demultiplexing in 
nonlinear tapered waveguides, temporal optical soliton dynamics in active three-core 
nonlinear fiber directional couplers and two-dimensional solitary-wave optical 
memory in fibers and bistable ring cavities. The generation of ultrafast soliton-like 
pulsetrains from a c.w. dual-frequency input signal with sinusoidal modulation using 
a proposed novel dual-channel erbium-doped fiber coupler laser is also demonstrated.
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Chapter 1: INTRODUCTION

1.1 A short Introduction to Nonlinear Optics

Nonlinear optics is the study of phenomena that occur as a consequence of the 

modification of the optical properties of a material system by the presence of light, 

essentially involving the interaction of intense laser light with matter. Nonlinear 

optical systems are “nonlinear” in the sense that they occur when the response of a 

material system to an applied optical field depends, in a nonlinear manner, upon the 

strength of the optical field.

When a light wave passes through a substance, the electric field associated 

with this wave causes a redistribution of the weakly bound electrons surrounding the 

nuclei of the atom. The displacement of the negative charge relative to the positively 

charged nuclei results in the creation of an induced dipole moment, and the material 

is said to have become polarized. The induced dipole moment per unit volume is 

called the polarization, P, of the medium and is, to a good approximation, linearly 

proportional to the applied field, E, for small values of this field. In the case of linear 

optics, this induced polarization can be described by the relationship,

P = £0X(])E,  1.1

where e 0 is the permittivity of free space and x (l) is the linear susceptibility. As a 

result of the oscillating nature of the electromagnetic wave, the induced dipole 

moments will also oscillate, and will thus act as a source of secondary radiation 

which can interfere with the original wave and so provide the diversity of optical 

effects seen. Indeed, the origin of the linear refractive index, «, which is the ratio of 

the velocity of the light field in air to that in a material, can be related to this 

phenomenon and as such is related to x ''' by

nr = l + x (n 1.2

]



Thus far the refractive index of a material has been shown to result from the 

polarization of that material by the electric field of the transmitted radiation. This 

polarization is complete, so that for a field increase of a factor of 2, the polarization 

is expected to increase by the same factor. However, it is known from other areas of 

physics that the linear dependence of one physical quantity on another is almost 

always an approximation, having validity over a certain limited range only. The most 

familiar example of this is Hooke’s law and its breakdown for large enough stresses 

represents that limitation. Thus one expects that the polarization, also, will be linear 

only for limited values of the field strength. When the electric field of the light wave 

is no longer small, eqn. (1.1) needs to be modified. In nonlinear optics, if the 

material is not significantly altered by the field, a power expansion can be used to 

describe the polarization, as

P = s 0(X(,)£  + x (2)£ 2+ x (3)£ 3+...)
1.3

_ p( 1) + p(2) + p(3)

The quantities x (2) and X(3> are known as the second- and third-order nonlinear 

optical susceptibilities respectively while P(2) = s 0%(2) E2) and/,(3) = s 0x<3)£ 3) are 

the second- and third-order nonlinear polarization respectively. The physical 

processes that occur as a result of the second-order polarization are distinct from 

those that occur as a result of the third-order polarization.

Second-order nonlinear optical interactions can only occur in non- 

centrosymmetric crystals, that is, crystals that lack inversion symmetry at the 

molecular level. Since liquids, gases, amorphous solids such as glass, and even many 

crystals do display inversion symmetry, x (2> vanishes identically for such media, 

and consequently they cannot produce second-order nonlinear optical interactions. 

Nonetheless, the electric-quadrupole and magnetic-dipole moments can generate 

weak second-order nonlinear effects in optical fibers. The dopants inside fiber cores 

can also contribute to second harmonic generation under certain conditions, for 

example, when intense 1.06 pm pump pulses from a mode-locked, Q-switched,
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Nd:YAG laser are propagated through optical fibers (Agrawal,G.P.,1989), the 

quadratic polarization gives rise to effects which are basically all mixing phenomena, 

involving the generation of sum and difference frequencies, but they take a variety of 

forms. One of the most interesting phenomena arising from the quadratic polarization 

is ‘parametric amplification’. This effect occurs when a small optical signal, at 

frequency to t, propagates through the medium in the presence of a powerful optical 

field, called the pump, at a higher frequency, co p.

The third-order polarization gives rise to third-harmonic generation and 

related mixing phenomena. In this work we will be concerned solely with third-order 

nonlinear processes which result in the intensity-dependent refractive index. In this 

case, an optical field passing through the nonlinear medium induces a cubic 

polarization which is proportional to the third power of the field. In its effect on the 

wave, this term is equivalent to changing the effective value of x0) to5C0> +X<3>-£3> 

where, in other words, the refractive index is changed by an amount proportional to 

the third power of the optical field. This effect is involved in a wide variety of laser 

beam, self-phase and frequency modulation, ‘soliton’ pulse propagation and ‘phase 

conjugated’ reflection(Shen, 1984) effects.

1.2 Brief Review of Nonlinear Optics

Since ancient times, light has been used as a carrier of information. In 

technical applications, however, it played no significant role until the recent 

invention of the laser and the introduction of the optical fiber. In the last decade, a 

wide range of experimental and theoretical work in the area of all-optical signal 

processing devices has been done. Immediate areas of application, such as optical 

communications systems and ultrahigh speed optical computers have focused the 

interest of many research teams. By using the plane-wave concept, optical bistable 

switches were developed by Gibbs and Miller in 1979. Further optical logic gates 

concepts were developed by Seaton(1983) and experimentally verified by 

Jewel(1984), using semiconductors such as GaAs and InSb. To be effective all these 

devices must fulfil the aim of handling a minimal power in a given volume.



Compared with electronic components, optical devices are much faster and 

have much higher capacity for integration. For optical signal processing based on all- 

optical switching, bistability and logic, the operation is strictly nonlinear and 

therefore it is natural to make use of nonlinear optical effects in materials. Nonlinear 

optics is not new, but its applications to all-optical signal processing devices only 

became possible when very powerful lasers came into being since the nonlinear 

coefficients of most materials are relatively small. Nonlinear optical systems are 

attracting growing attention beacuse they represent useful candidates for studying 

nonequilibrium systems with a rich spectrum of temporal and spatial behaviour and 

also because they provide a promising basis for future signal processing schemes. To 

date there has been a great deal of interest in the temporal behaviour of a ring cavity 

containing a Kerr medium with a finite response time, and a variety of chaotic 

phenomena, such as Ikeda instabilities (Ikeda et al., 1980), have been predicted to be 

dependent on the ratio between the response time of the medium and the round-trip 

time of propagating light. Nonlinear fiber-optic structures and counter-propagating 

nonlinear mixing have also been exploited to strictly optical instabilities (Winful, 

1980). More recently, much attention has been paid to nonlinear phenomena in 

optical fibers, such as soliton formation and subsequent propagation, self- or cross-

phase modulation, stimulated Raman or Brouillin scattering, modulation instabilities, 

and polarization instabilities (Blow, Doran and Wood, 1987). On the other hand, 

spatial instabilities for the transverse direction in optical systems are as interesting as 

the temporal ones because they often exhibit curious spatial patterns along the 

transverse cross section of the propagating beam without using the feedback 

mechanisms that are employed in the temporal and plane-wave case (Moloney, 

1984).

The study of nonlinear optical effects has not only provided a wealth of 

information about the interaction of intense radiation with matter but also new 

technologies that can be used to accomplish tasks that are more difficult or 

impossible with linear optics. Examples of such developing technologies can be 

found in areas such as optical frequency conversion in which coherent radiation that 

is generated by lasers in one part of the electromagnetic spectrum is converted to

4



coherent radiation in an entirely different spectral region. In this way coherent 

radiation becomes available in spectral ranges that may otherwise be inacessible by 

primary lasers. Moreover nonlinear optics is expected to play a key role in such 

future systems as all-optical communications and computing. These systems will be 

based on those nonlinear optical devices in which laser light is controlled by another 

laser beam, a typical example being optically gated switches and optical bistable 

devices (Gibbs, 1985). Thus as well as the generation of new frequencies, nonlinear 

optics provides the ability to control light with light and so to transfer information 

directly from one beam to another without the need to resort to electronics.

The efficiency of most nonlinear optical interactions is dependent on the 

power densities of the interacting light waves and the length over which the 

interaction is sustained. When the interaction is induced in a bulk sample of a 

material, a high power density is usually achieved by bringing the incident laser beam 

or beams to a focus within the sample. Focusing to smallest spot sizes produces the 

highest power densities, but the more strongly focused the beam, the more rapidly it 

diverges from the focus. Natural diffraction spreading limits the length over which a 

given power density can be maintained and thereby limits the achievable nonlinear 

efficiency. This limitation may be overcome by carrying out the interaction inside an 

optical waveguide. By confining the interacting light waves in a waveguide of small 

cross-sectional dimensions, typically of the order of the wavelength, very high power 

densities can be achieved from sources of relatively moderate power and can be 

maintained over long propagation distances.

The most widely familiar optical waveguide is, perhaps, the optical fiber 

which is now put to extensive practical use, notably in long-distance trunk 

telecommunications networks. In standard optical fibers, light is constrained within 

and guided by a circular core region of refractive index higher than that of its 

concentric circular cladding. Many other optical waveguides types are possible. A 

simple thin film of a transparent dielectric material supported on a substrate of lower 

refractive index, for example, provides one-dimensional optical confinement between 

the upper and lower film boundaries. Confinement in a second dimension may be
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achieved by masking a narrow stripe region and selectively removing all of the film 

except for the stripe. Techniques and devices based on thin film and stripe optical 

waveguides have been referred to collectively by the term ‘Integrated Optics’ since 

the late 1960s since when they have been extensively researched for many 

applications. Third-order nonlinear integrated optics is a more recent extension of the 

field which seeks to access the potentially subpicosecond response times of the 

reactive nonlinearity for very fast signal processing devices (Stegeman et al., 1988). 

The earliest proposals for devices were based on configurations familiar from linear 

optics, directional coupler and Mach-Zehnder Inteferometer wherein all-optical 

functionality was derived from the intensity-dependent refractive index of the 

waveguide material.

1.3 Numerical approaches for nonlinear optical analysis

The theoretical and scientific study of any situation centers around a 

mathematical model, that is, something that mimics relevant features of the actual 

situation being studied, using the language of mathematics. When a model is used, it 

may lead to incorrect predictions. The model is therefore often modified, frequently 

discarded, and sometimes used anyway because it is the best that is available. It may 

also be the only well established model in use because alternative approaches have 

not been investigated.

Owing to its theoretical simplicity, the plane-wave approximation, by which 

the transverse Laplacian term of the wave equation is dropped thus facilitating the 

treatment of the wave equation, is frequently employed when one is interested solely 

in the evolutional variation along the propagation axis, z. With this treatment, the 

problem is reduced to a set of ordinary differential equations, the analytical solutions 

of which are available in many cases. In addition several useful approaches, such as 

the phase-space trajectories and Poincaré space representation, are available for 

analyzing nonlinear dynamic systems. However, the validity of this approximation is 

violated when one considers an optical beam of a cross-sectional dimension (spot 

size) comparable with the wavelength of the characteristic size of the system. Indeed,
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the introduction of transverse effects, which are unavoidable because of the finite 

cross section of real optical beams, substantially complicates the problem but also 

gives rise to some fundamentally new aspects related to spatial structures and chaos, 

in contrast to the mainly temporal aspects considered to date. In this situation, one 

must solve partial differential equations that incorporate diffraction and drift effects, 

and consequently, in many practical cases numerical methods are needed not only in 

order to know the transverse effects of propagating beams but also permit a 

determination of whether, under given conditions, one could possibly include 

perturbations or unavoidable fluctuations which have been added to the system.

For waveguide geometries, analytical solutions have been obtained for the 

stationary modes of such structures, for both transverse electric(TE) and transverse 

magnetic(TM) polarized waves, revealing a complete set of symmetric and 

antisymmetric modes (Seaton et al. ,1985). Nonlinear dispersion relations have been 

obtained and new sets of solutions have been found showing a rich set of bifurcations 

(Akhmediev et al., 1984). The propagation characterics of these stationary modes 

have been studied, leading to predictions as to their stability, as well as the nonlinear 

coupling between different TE modes and between TM modes. The stability of 

continuous wave(CW) beams has also been studied via a mathematical technique, 

which gives a more accurate account of the stability of such waves.

Recently an equivalent particle theory was developed by Acceves et al. 

(1989), which treats the CW beam profile as a wave packet describing a particle, 

moving in some effective potential. Propagation effects such as trapping, beam 

break-up, and stability were predicted from the theory, the problem being reduced to 

a simple Newtonian dynamics exercise where the construction of the effective 

potential is required. The extension of the single interface study to pulsed excitation 

for instantaneous and finite time responding media has been carried out by 

Adachihara and Moloney (1990). This body of work has led to the proposal of the 

development of all-optical devices, including threshold devices, optical limiters, 

optical switches and spatial scanners.
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Numerical methods for wave propagation can be categorized into spectral and 

finite approximations (finite difference and finite element). The sampling of the field 

is less in the spectral methods because it requires only two samples per wavelength in 

space and in time. Finite approximation methods generally sample space much more 

finely. However, spectral methods can be much faster, not only because of coarser 

sampling, but also because of the use of the fast Fourier Transform(FFT). However, 

for complicated structures and advanced research, the finite approximation methods 

provide more flexibility and potentially greater accuracy.

A spectral method such as the beam propagation method (Feit and Fleck, 

1978; Thylen, 1983; Yevick and Hermansson, 1983) segments along the propagation 

or z direction. At each segment, the computation is split into two steps. In the first 

step, diffraction, which is handled by an FFT, is used to propagate the signal across 

the segment. The inhomogeneity caused by the variation of the refractive index 

across the guide is considered in the second step. This lateral inhomogeneity is 

handled by lumping it at the end of each segment. The fast Fourier Transform 

Method beam propagation method (FFT-BPM) can be modified to deal with the 

nonlinearities as follows. A third step is added for each segment computation and this 

involves updating the refractive index for a segment from the field intensity in the 

second step. The second step of incorporating the lateral inhomogeneity is then 

repeated. Steps two and three are iterated until no change is observed. The 

computation is lengthy as this loop is not able to take advantage of the FFT and the 

segments are short to permit lumping of the lateral inhomogeneities. Moreover, for 

three-dimensional problems, at each step one has to calculate the two-dimensional 

forward and inverse Fourier transform of the field. As a result, the FFT-BPM loses 

some of its advantages in speed over the more accurate finite element methods 

(FEMs).

Finite elements can give better results than other finite approximation 

methods because sums of polynomial functions approximate the fields rather than 

discrete samples, and may yield superior results to spectral methods because of the 

finer sampling and the fact that small enough elements model the physical
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phenomena in the limit. Although FEMs have been succesfully applied to the 

analysis of linear waveguide structures for many years, generalization to nonlinear 

problems is by no means trivial as nonlinear optical waveguides behave quite 

differently from their linear counterparts. The finite element method(FEM) will be 

discribed in detail in Chapter 2.

While the search for new nonlinear optical materials is accelerating, it is 

premature to say whether any particular material will be the ultimate for nonlinear 

integrated optics. At the present stage it is felt that correct simulations, reliable and 

efficient computations and the investigation of fundamental phenomena of nonlinear 

guided waves are more important than sophisticated designs of specific devices so 

that the challenge of forthcoming materials and device requirements can be met. 

Also, a robust solution procedure for a variety of structures and systems is of great 

value. It is therefore evident that there is still a huge amount of research to be carried 

out to establish the nonlinear optics technology as part of the daily routine of 

technologies available. That is the motivation of this thesis which aims to address 

some of the aspects outlined above by describing efficient techniques for solving the 

wave equations that emerge from Maxwell’s equations, as well as to identify novel 

theoretical applications obtained by using the techniques here.

1.4 Derivation of the generalized Nonlinear Wave Equation

The simulations undertaken in this work are based on the numerical 

solutions of the electromanetic wave equations which are derived from 

Maxwell’s equations. In a material with no electric and magnetic sources, 

Maxwell's equation are given by :

V - D  =  0 1.4

V- . f i  =  0 1.5

v  w  S BV  x E  = --------
d t

1.6

dt
1.7
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If the dielectric material is loss-less and isotropic, electric, E and magnetic, H 

vectors as well as D and B are related by the constitutive relations

D = e0E + P 1.8

B = \x0H 1.9

where D and B are electric and magnetic induction in the material, while 

e 0 and p 0 represent the vacuum dielectric permittivity and the vacuum magnetic 

permeability respectively. One can eliminate B and D in favour of E and P by 

taking the curl of eqn. (1.4) and use eqns. (1.5), (1.8) and (1.9) to yield:

V2£ + V I ™
e ) -e^o

d2E
dt2 = ^0

d2P 
dt2

1.10

The second term in eqn. (1.10) is zero for piecewise homogenous media. In 

inhomogenous media with a weakly guiding refractive index, these terms can 

also be eliminated. In this thesis, we concentrate on optical structures in which 

the weak guiding condition holds, that is, the permeability of the media varies 

slowly in such a way that this term can be neglected.

The most common procedure for describing nonlinear optical phenomena is 

based on expressing the polarization in terms of the applied electric field strength 

E. The reason is that a time-varying poarization can act as a source of new 

components of the electromagnetic field. Therefore a relation between P and E 

is needed to complete the derivation of the wave equation. As already discussed 

in Section (1.1), the materials we consider here in nonlinear optics can be thought 

of as a collection of charged particles of electrons and ion cores. When an 

electric field is applied the charges move. The positive charges tend to move in 

the direction of the field, whilst those that are negative tend to move the opposite 

way. In the dielectric materials, the charged particles are bound together, 

although the bonds do have a certain 'elasticity'. Therefore, the motion of the
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charges is transitory. When the field is first applied, they are displaced slightly 

from their usual position.

A light wave consists of electric and magnetic fields which vary 

sinusoidaly at optical frequencies. The motion of the charged particles in a 

dielectric medium in response to an applied electric field is therefore oscillatory 

forming oscillating dipoles. The effect of the optical magnetic field on the 

particles is much weaker and thus can be neglected. The positively-charged 

particles, the ion cores, have much greater mass than electrons and so, for high 

optical frequencies, it is the motion of the electrons that is significant.

The dipole moment density may be described by the polarization P, which 

results from the material polarizability that is induced by the electric field. The 

main causes that give rise to dipole moments in dielectric materials need be 

added together. On the one hand, the dipole moments result from the 

displacement of the electron with respect to the positively charged and relatively 

static nucleus. The electronic susceptibility is defined as the proportionality 

factor between the polarization that results from the scattering of the electron 

holes and the polarization-induced electric field. On the other hand, the transport 

of a group of charged atoms inside the crystal structure acts as a major source of 

dipoles in polar crystals. This light-induced polarization is represented as the 

product of the photonic susceptibility with the excited field. The total 

susceptibility is the sum of both electronic and photonic susceptibilities, 

X £ and x P respectively, of the same order and can be written as

l W = l E n) + l p(n) 1-H

Supposing that no second-order nonlinearity appears, so that the lowest-order 

nonlinearity is third order and also that the medium is only weakly anisotropic, 

then the nonlinear response can be considered isotropic, and the linear and 

nonlinear polarizability tensors,P L(r,t) and P NL(r,t) respectively, can be

written in the forms:



P L(r, t) = L x (1)( ^ i - i . K

P NL(r, t) = j dt\ ]dt2 \ dt3x m (r,t -  t , , t -  t2,t -  t3)[E(z, t{) -E(z, t2) ] E ( z , t 3)

1.12

where £(z,r), x°V>0> are the electric field, the linear and third-order

susceptibility respectively, and t and r are time and the spatial cordinates (x,y,z) 

respectively. Substitution of eqn. (1.12) into eqn. (1.10) then leads to the general 

scalar TE equation:

V2E - e p 0- | ^  = p 0- | j ( j l  x W( r , t - t , ) d t x +

I dt, ]dt2 jdt3x ° \ r , t - t ], t - t 2, t - t 3)[E(z,t])-E(z,t2)]-E(z,t3)}
1.13

Considerable simplification occurs if the nonlinear response is assumed to be 

instantaneous and nonlinear dispersion is neglected so that the time dependence 

of x <3) can be approximated by a three delta function of the form:

Xw = X xm (r)6(r -  r, )5 (t - t 2)b ( t - t 3) 1.14

where % xm is the fourth-order tensor representing the third-order susceptibility. 

One then obtains

P NL(r,t) = e0x Oy:E(r,t)E(r,t)E(r,t) 1.15

Substituting (1.14) into (1.13) and then applying the Fourier transform defined 

as Zf (r, co) = J E(r, t)exp(j(o)dt, where to is the frequency of light, and

neglecting higher-harmonic terms, we arrive at the Helmholtz equation:
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1.16d 2E d 2E 8 2E
--- T "I-----T~ -̂----7~
dz~ dx dy

+ n2k20E = 0

where k0 = (o / c = 2n / X , c is the velocity of light in vacuo, and n is the 

refractive index and is defined by

n2 = n] +a\E\2 1.17

a  is the nonlinear contribution to the dielectric constant and is defined by

a  = 3y (3) / 4. 1.18&  x x x x

The Helmholtz equation (1.16) describes the monochromatic or continuos wave 

(CW) propagation where only diffraction and spatial nonlinear refraction effects 

are taken into account.

1.5 The nonlinear paraxial wave Equations

The problem described above is the most general formulation and would 

require a great deal of effort and computational resources to solve it adequately 

for structures of interest, especially in the optical case where the devices are 

normally very long in terms of the wavelength of light considered. To derive the 

equations governing the paraxial wave equation in the spatial frame (diffraction), 

we start with the wave equation for the electric field, Equation 1.16, which was 

obtained by applying the standard techniques of calculus to Maxwell’s equations:

d 2E d 2E d 2E
— -----r  ■*-----tôz2 dx2 dy2

+ n2k2E = 0 1.19

If we assume now, first, that the structure under study has a definite marked 

longitudinal direction (z) and the propagation occurs mainly along that direction 

and second, that the complete field inside the structure can be represented by a
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relatively narrow angular spectrum, the paraxial or slowly-varying amplitude 

approximations can be made. Thus by writing E(x, y, z) = exp(jk0$z)u(x, y, z ) , 

where [3 is a reference propagation constant and u(x,y,z) is an envelope function 

that varies slowly compared to the wavenumber, k0, and substituting in the 

Helmholz equation, this results in the reduced wave equation:

2 A , p f i  + | ^  + [V ;-* o ! ( |V - » 1)]“ = 0 1.20dz dz~

where V,2 is the transverse Laplacian operator and P is the propagation constant. 

Invoking the paraxial approximation d 2 I dz2 «  2jkd / dz. results in the 

nonlinear paraxial wave equation:

2A P  ^ + [V2 -  k2(P:2 -  n2 )]u = 0 1.21
dz

In the time-varying case a narrow-band approximation can also be made with 

respect to time (frequency) variations, simplifying the treatment of fields or 

signals with a narrow frequency spectrum and eliminating in this case the 

second-order time derivatives.

Finally, in the spatial-temporal frame, the equation that describes the 

propagation of waves undertaking dispersion, diffraction and nonlinear 

refraction, where finite response of the materials play an important role, takes the 

form of the following paraxial wave equation:

2y'/c0P{-^ + [«0 / (Pv)]dw/3r} + (V2 -&2(P2 - n 2 -8 )]m = 0 1.22
dz

coupled to the following Debye relaxation equation:

x 08S / = —8 +a|«j" 1.23
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where n0 andoc are defined as in eqns. (1.17) and (1.18), v and x D are the group 

velocity of the fields and the Debye relaxation time of the media, respectively 

and 5 is the total nonlinear refractive index (Mitchel and Moloney, 1990).

1.6 Aims and Objectives of the thesis

The information given so far has provided the framework of the motivation 

which has enabled the definition of the objectives for the research undertaken in 

this thesis. The following represents the primary aims of the work presented 

herein:

1. To undertake a rigorous modal analysis of a range of optical devices based 

on nonlinear phenomena in waveguides. This was done by carrying out a study of 

nonlinear modal analysis of optical waveguides and making a comparison of the 

results obtained using the finite element method and available analytical results.

2. To develop robust and efficient beam propagation algorithms which combine 

finite element discretization of the transverse domain and stable z-stepping 

schemes to study the stability of the evolution of nonlinear modes along the 

waveguides.

3. To develop novel time-domain propagation schemes to study picosecond 

pulse propagation in nonlinear integrated optical devices and the effect of 

material nonlinear response times on their propagation stabilities.

4. To develop novel accurate numerical algorithms to solve the generalized 

coupled nonlinear Schrodinger equation (NLSE).

5. To identify novel theoretical applications of nonlinear optics obtained by 

using the numerical techniques developed.
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The main aim of this work is the provision of the appropriate design and analysis 

tools to be used in the application of nonlinear optical techniques in novel 

nonlinear systems. The availability of such finite-element-based versatile tools 

developed in this work will enable better system design and understanding of 

underlying physics and novel device design verification and optimization for 

tomorrow’s nonlinear optical systems.

1.7 Structure of the Thesis

This thesis is comprised of work carried out by the author in the use of the finite 

element modal analysis method and the development and use of finite-element- 

based beam propagation models in the analysis of certain types of interesting 

nonlinear optical guiding devices and nonlinear dynamic systems. The 

subsequent discussion gives an outline of the carefully structured thesis 

beginning with an Introduction to the subject in a brief review of nonlinear optics 

and the derivation of the basic nonlinear wave equation, as presented in this first 

Chapter.

In Chapter 2, the formulation and the general background theory of the 

finite element method for the solution of a general boundary-value problem are 

presented. A detailed study of the finite element method along with the use of 

triangular coordinates and shape functions is undertaken with the aim of 

developing the algorithm for the modal analysis of nonlinear waveguides.

Chapter 3 is devoted to the description of the background theory of beam 

prpagation algorithms based on finite element descretization of the transverse 

cross-section and finite difference descretization in the propagation or z-domain. 

Split-step and step-by-step finite element schemes are derived for spatial or 

temporal transverse cross-sections. Next, novel space-time marching schemes for 

the solution of the Maxwell-Debye equations for pulse propagation are described.
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Chapters 4, 5, 6, 7 and 8 will deal with the results of the application of 

these methods to various types of important and relevant nonlinear optical 

waveguide and nonlinear dynamics problems. The value of the work and the 

results will be tested by comparing the results with other alternative results 

available from the literature. In Chapter 4, accurate propagation constants and 

field profiles have been obtained for the modes of nonlinear multiple quantum 

well semiconductor lasers. Nonlinear dispersion characteristics for waveguides 

obtained by the finite element method are shown. Also results are presented on a 

study of the numerical stability of the modal solutions by the finite element 

method. Results of a beam propagation simulation of CW waves in uniform 

planar waveguides with Kerr nonlinear cladding are also presented in this 

Chapter. The effect of material response times and the type of nonlinearity on the 

propagation of ultrashort spatiotemporal pulses and demultiplexing pulse trains 

in nonlinear tapered waveguides are given in this Chapter and a device based on 

the phenomenon is proposed.

We have devoted Chapter 5 to the analysis of coupled optical waveguides 

and presented results on a study of the propagation characteristics of metal-clad 

evanescent wave fiber-optic sensors. Accurate propagation constants and field 

profiles have been obtained for the linear modes of the isolated metal guides and 

supermodes of the coupled system. The application of the finite element method 

to obtain nonlinear supermodes and thus to obtain useful parameters of nonlinear 

planar integrated optic directional couplers are investigated for the first time. In 

this Chapter also, transmission characterics and the effect of saturation of the 

nonlinearity on the switching characteristics of a two-waveguide directional 

coupler have been investigated and described. Pulsed excitation and the effect of 

material response time on the operation of two-waveguide couplers are also 

demonstrated.

In Chapter 6, we start with the modal analysis of axially non-symmetric 

optical fibers. Variations of normalized propagation constants, power factors in 

different regions and spot sizes in side-pit and bow-tie polarization-maintaining
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fibers are presented. Modal solutions are presented for step-index and graded- 

index nonlinear optical fibers with the accurate vector H formulation and finite 

elements. Nonlinear transverse effects in an optical fiber with a nonlinear 

saturable cladding has been studied, applying the beam propagation algorithm 

based on the finite element method. We propose a means to control the formation 

of filaments in the nonlinear optical fibers to enable their application for optical 

memory.

The generalized coupled nonlinear Schrôdinger equations are derived in 

Chapter 7 for soliton propagation in coupled fibers and biréfringent fibers. We 

describe the finite element scheme for the solution of the systems in the presence 

of linear coupling. Solutions for a dual-core nonlinear directional couplers are 

also presented. We propose novel conditions to improve the switching properties 

of a three-core nonlinear fiber coupler and present a novel dual-channel mode- 

locked fiber laser for soliton train generation.

Chapter 8 is devoted to the study of laser beam dynamics in bistable ring 

cavity feedback systems. It begins with a brief description of the derivation of the 

infinite-dimensional map that models the laser beam propagation in the ring 

resonator from the Maxwell-Bloch equations. The propagation algorithm for its 

solution is described and results for both one-and two-transverse dimensional 

laser beam simulations are presented. We discuss the possibility of using the 

spontaneous two-dimensional patterns formed for the realization of optical 

memory.

Finially, in Chapter 9, we present the general conclusions of this thesis and 

suggestions for further work to be carried out in the future. The work ends with a 

comprehensive list of references to relevant published work, cited throughout the 

thesis.
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2. THE FINITE ELEMENT METHOD

2.1 Introduction

The Finite Element Method (FEM), as a numerical technique for solving 

boundary-value problems of mathematics, has a history of over 40 years. First 

proposed in the 1940s, it was used in the design of aircraft in the 1950s (Zienkiewicz, 

1977). The method has been developed and applied very extensively thereafter to 

problems of structural analysis and recently was applied to problems in other fields 

including electromagnetic problems. Today, the finite element method (FEM) has 

become recognized as a general method of wide applicability to engineering and 

mathematical problems (Babuska, 1989). Its use for the initial boundary-value 

problems in Electromagnetics has just recently begun following the pioneering work 

of Koch et al. in 1989. In this Chapter, we first describe the method for solving 

boundary-value problems in general.

The FEM is a computer-aided mathematical technique for obtaining 

approximate numerical solutions to the abstract equations of calculus that predict the 

response of physical systems subjected to external influences. The principle of the 

method is to replace an entire continous domain by a number of subdomains in which 

the unknown function is represented by simple interpolation functions with unknown 

coefficients. Thus, the original boundary-value problem with an infinite number of 

degress of freedom is converted into a problem with a finite number of degrees of 

freedom. Then a set of algebraic equations or a system of equations is obtained by 

applying the Ritz variation or Galerkin procedure (Zienkiewicz, 1977; Norrie and de 

Vries, 1978; Oden and Reddy, 1976), and finally, the solution of the boundary-value 

problem is achieved by solving the system of equations.

2.2 Boundary-value problems

Boundary-value problems arise in the mathematical modelling of physical 

systems and their solution has long been a major topic in mathematical physics. A
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typical boundary-value problem can be defined by a governing differential equation 

in a domain, Q, as:

U = f  2.1

together with the boundary conditions on the boundary T that encloses the domain. In

eqn. (2.1), t  is a differential operator,/is the excitation or forcing function, and <j> is 

the unknown quantity. The boundary conditions range from simple Dirichlet and 

Neumann conditions, and to even more complicated higher-order conditions. 

Whenever possible, it is desirable to solve boundary-value problems analytically. 

However, this is generally the exception since an analytical solution can be obtained 

in only few cases. Many problems of practical importance in the engineering fields 

do not have an analytical solutions. To overcome this difficulty, approximate 

methods such as the Ritz and Galerkin methods ( Strang and Fix, 1973; Zienkiewicz, 

1977 ) can be used.

2.3 The Ritz variational method

The Ritz or Rayleigh-Ritz method (Oden and Reddy, 1983), is a variational 

method in which the boundary-value problem is formulated in terms of a variational 

expression, referred to as functional, whose minimum corresponds to the governing 

differential equation under the given boundary conditions. The approximate solution 

is then obtained by minimizing the functional with respect to its variables. The 

procedure can be illustrated by first defining the inner product, denoted by angular 

brackets, as

(<t>,y)= J f F  dQ 2.2
Q

where asterisk denotes the complex conjugate. With this definition it can be shown 

that if the operator Z in 2.1 is self-adjoint, that is,

( i f ¥ )  = (<j), I v )  2.3

20



and positive definite, that is,

<J>*0 
<t> = 0

2.4

then the solution to eqn. (2.1) can be obtained by minimizing the functional 

(Mikhlin,1964)

m ) = - < , 4)> - |< / ,< j> > 2.5

with respect to <}> , where (J) denotes the trial function. Once the functional is

found, the solution can be obtained by the procedure described below. Let us suppose

that (f) in eqn. (2.5) can be approximated by the expansion

$-= ={c}r {v}={v}r {c} 2.6
7=1

where vy are the chosen expansion functions defined over the entire domain and Cj

are constant coefficients to be determined. Also {•} denotes a column vector and the 

superscript T denotes the transpose of the vector. Substituting eqn. (2.6) into (2.5), 

one obtains

F  = \  { c } r J  {V } i { v } T dale } -{cYj {v  } fd n  2.7
fi n

To minimize F((j>) we let its partial derivatives with respect to c, vanish. This results 

in a set of linear algebraic equations

= vA v} ^ { ci + T W 1 {v}iv,.rfQ-  j vJdQaci 1 n 2 n n

= \ i cj i  (VA J  + v ,iv , )/Q -  J v,/<7Q
2 j=\ n 7 n
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T h is  can be w ritten in  m atrix  fo rm  as

b M = W 2.9

with the elements of [5] given by

S„ = \ \ ( v il \ J + v j l v i)dQ. 
/  £2

2.10

and the elements in {b } given by

b = lv  JdSlL o L 2.11

It is evident that the matrix [5] is a symmetric matrix. By invoking the self-adjoint

By solving the matrix equation 2.9 an approximate solution for eqn. (2.1) can be 

obtained.

2.4 The Galerkin Method

Galerkin’s method belongs to the family of weighted residual methods, which 

seek the solution by weighting the residual of the differential equation 

(Zienkiwicz,1977). Assuming that (j> is an approximate solution to eqn. (2.1), 

substitution of (|) for (j) in eqn. (2.1) would then result in a nonzero residual

property of the operator o t , S  can be written asU

Sij = 2.12

r = f *  o 2.13
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The best approximation for 4> will then be the one that reduces the residual r to the 

least value, at all points of Q. The weighted residual methods enforce the conditon

R, = \ wjrdQ = 0 2.14
n

where denotes the weighted residual integral and vv(- is a chosen weighting 

function.

In the Galerkin method, the weighting function is selected to be the same as 

that used for the expansion of the approximate solution. This usually leads to the 

most accurate solution. As an illustration of the method, let us assume that the 

solution is represented as in eqn. (2.6). The weighting functions are then selected as

w, =v, / = 1,2,3,..., N

so that eqn. (2.14) becomes

R, {c}-v ,/)* fi
n

/ = 1,2,3,..., A

2.15

2.16

This also leads to the matrix system given in eqn. (2.9). The matrix is however not
A

necessarily symmetric unless the operator L is self-adjoint. In that case, Galerkin’s 

method results in the same system of equations as in the Ritz method.

Besides choosing the expansion functions for weighting, one can also choose other 

functions. This results in different formulations, as described briefly in the following.

A. Point Collocation Method. This method is also known as the point matching 

method. The Dirac delta function is selected as the weighting functions ( w,- = 0 at 

point i and non-zero everywhere else ), and as a result eqn. (2.14) becomes
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R ,= [i{v}r { c } - /] 2.17= 0
at point i

This is equivalent to satisfying eqn. (2.1) at specific points. The number of the 

matching points is usually chosen to equal the number of unknowns.

B. Subdomain Collocation Method. In this method, the weighting functions are set 

equal to unity over a specific subdomain and zero elsewhere, and this leads to

R, = j ( l { v } T{ c } - f ) d a  = 0 2.18
ni

where O, denotes the ith subdomain. Again, the number of subdomains is usually 

chosen to equal the number of unknowns.

C. Least Squares Method. The least squares method minimizes a new error term 

defined by

I = - \ r 2dn 2.19
2h

and the minimization is with respect to the unknown coefficients in the approximate 

solution. This is equivalent to having

^ r = j i v , ( l { v } T{ c } - f ) d n  = 0 2.20

and the weighting function is i! V;.

2.5 Basic Steps in the finite element Method

The finite element solution of a boundary-value problem usually follows the 

following basic steps :
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- Descretization of the domain

- Selection of a proper interpolation model or function

- Formulation of the appropriate system of equations and the

- Solution of the system of equations.

These steps can be applied to electromagnetic field problems of waveguides of any 

shape, arbitrary refractive index profile and to those with any anisotropic materials. 

The steps are discussed in detail below.

2.5.1 Domain Discretization or Mesh Generation

The first and perhaps the most important step in any finite element analysis is 

the descretization of the domain, Q, because the manner in which the domain is 

descretized affects the computer requirements, the computation time, and the 

accuracy of the numerical results obtained. In this step, the entire domain Q is 

subdivided into a number of small domains, denoted as Q e ( e= 1, 2, 3 ) ,  with M 

denoting the total number of subdomains. These subdomains are usually referred to 

as elements. A uniform subdivision of the domain, using elements of similar size is 

perharps the simplest form of division but clearly this will not be the most efficient if 

the solution is a function of nonuniform variation in the domain. The required degree 

of discretization to achieve a certain local accuracy of approximation varies across 

the problem domain. It is here where the finite element method presents one of its 

clearest advantages when compared with other methods using domain discretization 

in its ability to use widely nonuniform meshes, providing the required degree of 

discretization in regions where it is needed and at the same time avoiding 

unnecessarily fine discretization where it is not required.

An optimum use of resources, in this case, a minimum number of elements is 

achieved with a nonuniform mesh, one that has small elements in the regions of large 

variations of the solutions and larger elements elsewhere. The optimum meshing 

criterion should then be related to the local error of the approximation for a given 

total number of elements. The aim should then be to achieve equipartition of the total 

error. Obviously, if the distribution of error (or even the distribution of regions of 

rapid variation) was known in advance one can prepare the mesh accordingly. In
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most cases this is not possible and even if it were, such a large user interaction is 

undesirable. Instead, automatic or adaptive procedures can provide the desired 

accuracy with maximum efficiency. Two procedures are usually employed for this 

purpose: adaptive mesh refinement and adaptive remeshing. All adaptive procedures 

are necessarily iterative in the sense that they must first obtain an approximation - 

even if it is poor - to control the mesh generation. For a one-dimensional domain 

which is actually a straight or curved line, the elements are often short line segments 

interconnected to form the original elements [ Fig 2.5.1 (a) ]. For a two-dimensional 

solution domain, the elements are usually small triangles and rectangles (Fig 2.5.1 

(b)). In a three-dimensional solution, the domain may be subdivided into tetrahedra, 

triangular prisms.

Fig 2.5.1 Basic finite elements a) One-dimensional

b) Two-dimensional

In most finite element solutions, the problem to be solved is formulated in 

terms of the unknown function, <j>, at nodes associated with the elements. For 

example, a linear (first order) line element has two nodes at each endpoint whereas a 

linear triangular element has three nodes, located at its three vertices. Whereas 

specifying the coordinate values is a rather straightforward job, numbering of the 

nodes and elements requires the use of some strategy to achieve optimum results. 

The finite element formulation usually results in a banded matrix whose bandwidth is 

determined by the maximum difference between the global numbers of two nodes in 

an element. Thus, if a banded matrix solution method is employed to solve the final

26



matrix equation, the computer storage and the processing cost can be reduced 

significantly by properly numbering the nodes to minimize the bandwidth. A 

complete description of a node contains its coordinate values, local and global 

numbers. The local number of the node indicates its position in the element, whereas 

the global number specifies its position in the entire system.

2.5.2 Selection of Interpolation Functions

The second step of a finite element analysis is to select an appropriate 

interpolation function that provides an approximation of the unknown solution within 

an element. For each element a suitable approximation to the function which 

describes the problem has to be chosen. The interpolation is usually selected to be a 

polynomial of first (linear), second (quadratic) or higher order. There are certain 

definite continuity conditions which have to be satisfied by the approximating 

functions across the inter-element boundaries. These continuity requirements are 

frequently obvious from purely physical consideration but they are also necessary 

mathematically because the set of approximating functions has to form an admissable 

class for the Ritz and Galerkin methods. If §(x,y) represents the field in a continous 

medium in the z-direction, it must be continuous across the common boundary of two 

elements in order to guarantee the continuity of the material. Whatever the 

requirement on the approximation, the form of the polynomial functions has to 

remain unchanged under a linear transformation from one Cartesian coordinate 

system to another, and after such a transformation the approximating function must 

still be suitable for the problem in the second coordinate system. This may require 

higher-order polynomials, and although more accurate, usually result in a more 

complicated formulation. Hence, the simple and most basic linear interpolation is 

still widely used.

Once the order of the polynomial is selected, we can derive an expression for 

the unknown solution in say element e, in the following form :
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2.21v  = i w / * / = K } r {4>'}= { ♦ '} '{ " '}
7=1

where n is the number of the nodes in the element, 0^ the value of 0 at node j  of the 

element, and Ne are the interpolation functions, which is also known as the 

expansion basis function. The highest order of N' is referred to as the order of the 

element; for example if N* is a linear function, the element is a linear element. For 

any nodal variable 0*, the basis function N‘ must posses the interpolation 

characteristic that, at a node , with the coordinates (jc.,y■) its value is equal to 

unity, while at all other node points of the element its value is equal to zero :

This implies that the function N' has the feature that the terms within it are nonzero

only within element e, and outside this element they vanish. The essential boundary 

conditions can easily be applied by choosing suitable nodal variables.

2.5.3 Formulation of the System of equations

The formulation of the system of the equations which involves the derivation 

of the element matrices is the third and the major step in the finite element analysis. 

Both the Ritz variational and Galerkin methods can be used for this purpose.

A. Formulation via the Rayleigh-Ritz method. Let us consider the problem defined 

in eqn. (2.1). The function F given in eqn. (2.5) can be expressed as

for i = j  
for j  * i

2.22

M

F(0) = X F f(0f) 2.23
e=\

where M is the number of the elements comprising the entire domain and

28



2.24F c(<n = -  jJ f 'A f 'd n -  \ M edo.
2 oe ne

Substituting eqn. (2.21) into eqn. (2.24) we obtain

2.25

which can be written in matrix form as

= ?  f t ' } " [ * '$ ' } - f t '} r f t ' 2.26

where [.K*] is an nxn matrix and { be } an nxl column vector with their elements 

given by

and

K j  = } N ' l N / d Q  
ne

2.27

iJN'dn
ne

2.28

The elemental matrix [ tC] is symmetric since /  is self-adjoint. Substituting eqn. 

(2.26) into eqn. (2.23) we obtain

^ i Q f t ' i m - f t - m )  z 2 9

and by performing the summation and adopting the global node numbers, this can be 

written as
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2.30F  = i{< t» }r [ r ] { * } - { ♦ } ' { * }

where [ K ] is an NxN symmetric matrix with N being the total number of unknowns, 

{<J)} is an Nxl unknown vector whose elements are the unknown expansion 

coefficients, and {b } is an Nxl known vector. The system of equations is then 

obtained by impossing the stationarity requirement 5F = 0, or equivalently, by setting 

the partial derivative of F with respect to ()>, to zero

dF
3<t>,

1 M / = 0

/ = 1,2,3,..., W
2.31

Since [A'] is symmetric Ktj = Kjt, and therefore eqn. (2.31) becomes

dF N- ~ = l K $ J- b , = 0
d(|) (. j=\ 'i

i = 1,2,3,..., N
2.32

or in matrix form

= {b ) 2.33

B. Formulation via Galerkin’s Method. The system of equations above can also be 

formulated via Galerkin’s method. For eqn. (2.1), the weighted residual for the <?th 

element is

R ‘ = J
ae V

i — 1,2,3

Substituting eqn. (2.21) into eqn. (2.34) then yields

2.34
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w h ich  can again be w ritten in m artix  fo rm  as

{Re} = * {be} 2.36

Here {Re}-[R^,R'_,...,Ren]T , and the matrix elements K* and b- are of the

same form as (2.27) and (2.28) respectively. Since the operator L is not required to be 

self-adjoint here, the elemental matrix [A*] is not necessarily symmetric. Since the 

expansion and therefore the weighting function associated with a node spans all 

elements directly connected to the node, the weighted residual 7?, associated with 

node i is a summation over the elements in eqn. (2.36) using the local and global 

relations and then it may be summed over each element to show that

where {R } = [7?, ,R2,...,Rn]T. The system of equations can then be obtained by 

setting eqn. (2.36) to zero, resulting in

2.37

2.38

which can also be written in the form

[ * » } = { * } 2.39



Before the system of equations (2.33) or (2.38) is ready to be solved for a 

specific solution, we need to apply the required boundary conditions. There are two 

kinds of boundary conditions that are often encountered :

1 ) the Dirichlet boundary condition which prescribes at the boundary and

2) the Neumann boundary condition, which requires the normal derivative of (j> to

vanish at the boundary.

The natural boundary condition of a given variational formulation is automatically 

satisfied if left free. However, if the natural boundary condition is not admissible for 

a given problem, then actual boundary conditions need to be impossed.

It is seen that in this step we actually have three substeps. First, we formulate 

the elemental equation 2.26 or 2.37 using either of the two methods. Then we sum 

the elemental equations over all elements to form the system of equations and this 

process is called assembly. Finally, we impose boundary conditions to obtain the 

final form of the system of equations. In computer implementation, the three substeps 

are usually not seperated, instead, they are interwined. The generation of the 

elemental matrix and the imposition of the boundary conditions usually take place 

during the process of the assembly.

2.3.4 Solution of the System of Equations

The final step in a finite element analysis involves solving the system of 

equations. The resultant system has one of the following two forms :

M<î>}= M  240

or

[A]{«t)}= X[Z?]{4>} 2.41

In electromagnetics, the eigenvalue system of eqn. (2.41) is associated with 

wave propagation in waveguides and resonances in cavities. For linear problems, the
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{<j>} can be solved easily. However, for nonlinear problems, the solution has to be 

obtained in a sequence of steps, where each step involves the modification of [/f] and 

[B].

2.6 Two-dimensional finite element modal analysis

In the preceeding sections we discussed the two classic methods both 

containing the roots of the finite element method, and the basic steps without 

reference to any specific problem. In this section we follow the basic steps of the 

method to consider the modal analysis of an optical waveguide with a two- 

dimensional cross-section. We first formulate here the finite element solution for a 

general two-dimensional boundary-value problem using simple linear triangular 

elements. Then we illustrate its application to computation of electromagnetic fields 

in optical waveguides in Chapters 4, 5 and 6.

2.6.1 The Problem

The boundary-value problem under consideration is defined by the general 

governing second-order differential equation with the form

d ( 3<})(;c,;y)̂
dx K dx j

d<l>
j

+ P<K*,)0 = /

(x ,y)eQ

2.42

where <\>(x,y) is the unknown function, ax, ay and (3 are known parameters associated 

with the physical properties of the domain, and/is the source or excitation function. 

The domain is typically a finite, closed region in the x,y-plane, and can also contain 

interior holes as in a side-tunnel polarization maintaining fiber.

The two usual types of boundary conditions are given by

§ = p on T 2.43
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that is, the function  <])(j) may be specified  along part or a ll o f  the boundary, and

f

V

06 A 0()) *
a ^ x + a ’ ^ y

■n+y§ = q on r 2 2.44

where T(= T, + T2) denotes the contour or boundary enclosing the area Q, n is the 

outward unit vector normal to the boundary, and y  p and q are known parameters 

associated with the physical properties of the boundary. In particular p and q can be 

considered as the boundary source or boundary excitation. Obviously, the Neumann 

boundary condition is a special case of eqn. (2.44) with y = 0.

If the properties of the domain characterized by ctx and cXy have discontinuities 

or abrupt changes and furthermore, if there is no surface source of any kind at the 

discontinuity interface, <J) then satifies the continuity conditions

())+ =<j)“ on 2.45

and

+ 0(j) + A + 0<)> 
a ,  -r— y

dx y dy

\  A (

■ n =
y

0<b A _ 0<i>
CL, -z— x+CL,, - r —y

V dx dy y 2.46
on r,

where Td denotes the discontinuity interface, the superscript “+” (or indicates
A

that its associated quantities are on “+” (or side of Td and n denotes the unit 

vector normal to Td ( Fig. 2.6.1 )

A

Fig. 2.6.1 A typical Domain with discontinuity interface Td ■
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The number of boundary conditions that must be specified depends on the 

order of the differential equation. If a differential equation is of order 2m, then m 

boundary conditions must be specified at each boundary point. Since eqn. (2.42) is 

of second-order (m=l), then the boundary condition ( an essential or natural 

condition ) must be specified at every point along the boundary.

2.6.2 The variational Formulation

The variational problem equivalent to the boundary-value problem above is 

given by

iSF«l)) = 0 

\<P = P
on r, 2.47

where

F (f) = ^JJ/  Q
a , ' * y

I d *  J
+ a v

y >
+ p(j)2 dQ+ \ [ - § 2 -q<\>)dT- |]7<j)dQ

nv 2

2.48

If there exist discontinuity interfaces, eqn. (2.47) must be supplemented with the 

continuity condition eqn. (2.45.). However, since this continuity is always satisfied a 

priori in the usual finite element expansion of (J), no measure is needed to enforce 

eqn. (2.45) and therefore its statement in eqn. (2.47) is often omitted.

2.6,3 Problem Discretization

As already pointed out in the previous section, the first step of a finite 

element analysis is to divide the area domain Q. into a number of two-dimensional 

elements, for example triangular elements. A basic requirement of the discretization 

is that there should be neither overlaps nor gaps between elements. Further, the
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elements should be connected via their vertices, or in other words, a vertex of an 

element can only be at the vertices of its neighbouring elements, it cannot be at the 

side of another element. In addition to these basic requirements, a good discretization 

should also address the following points. First, it should avoid the generation of 

narrow elements, or an element having a small inner angle. Although these elements 

are admissible, they can nevertheless increase the solution error, since the error of the 

finite element solution is inversely proportional to the sine of the smallest inner 

angle. Therefore, all elements should be made close to equilateral. Second, one 

should note that the smaller the elements, the better the numerical solution. Since 

smaller elements will result in more unknowns, thus increasing the memory demands 

and computing time, it is necessary to keep the number of elements to the minimum 

consistent with achieving the desired accuracy. A good practice is to use small 

elements where the solution is anticipated to have drastic variation, whereas in the 

regions where the variation is low the elements can be made larger. To identify each 

element, the elements are labelled with a set of integers and similarly, to identify the 

nodes that are the vertices of the elements, they are labelled with another set of 

integers. Since each element is related to several nodes, for example three nodes for 

triangular elements, a node has its own position in the associated element in addition 

to its position in the entire system. This position can also be labelled with an integer 

number, referred to as the local number, in contrast to the global number, which 

indicates its position in the entire system. To relate these three numbers, the global 

node number, the local node number, and the element number, we introduce a 3xA/ 

integer array, denoted by n(i,e), where / = 1,2,3 and e = 1 , 2 , 3 with M denoting 

the total number of elements. In n(i,2), which is also called the connectivity array, i is 

the local number of a node, e is the element , and the value n{i,e) is the global 

number of the node. This integer array includes all the information concerning the 

numbering of the elements and nodes.

2.6.4 Elemental Interpolation

Once we have discretized the domain, we need to approximate the unknown 

function within each element. Here we use the linear triangular elements. The
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triangle is probably the most widely used finite element. One reason for this is that 

arbitrary regions in two dimensions can be approximated by polygons, which can 

always be divided up into finite number of triangles. In addition, the complete mth- 

order polynomial can be used to interpolate a function at 1 / 2(m + l)(m+ 2 ) 

symmetrically-placed nodes in a triangle. If linear triangular elements are used, the 

unknown function <\>(x,y) within each element may be approximated as

§ e(x,y) = ae + bex + cey 2.49

where ae, be and c are constant coefficients to be determined and e is the element 

number. For a linear triangular element, there are 3 nodes located at the vertices of 

the triangle ( Fig 2.6.2 ).

Fig. 2.6.2 A typical linear triangular element

Assuming that the nodes are numbered counterclockwise by numerals 1, 2, and 3 

with the corresponding values of 0 denoted by <jf/ , (jf2 , and 05 respectively, 

enforcing eqn. (2.49) at the three nodes, we obtain

<\>2e -  ai e + b2ex2e + c2ey2e 2.50

0 3e = a3e + b3ex2e + c2ey3e

Solving for the constant coefficients a, be and c in terms of (¡f/;t,y), and 

substituting them back into eqn. (2.49) yields
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side opposite to the y'th node. Therefore the value of <t>f at an element side is not 

related to the value of <|> at the opposite node, but rather it is determined by the values 

at the two endpoints of its associated side. This important feature guarantees the 

continuity of the solution across the element sides. Fig.2.6.3 show the interpolation 

function rfj for a triangular element with the planar surfaces of the functions shaded.

2.6.5 Formulation via the Ritz method

With the expansion of <j)(x,y) given in eqn. (2.51) the system of equations 

using the Ritz method may be formulated. Considering the homogeneous Neumann 

boundary conditions with y = q = 0, for which the line integral in the functional given 

by eqn. ( 2.48) vanishes, the functional thus can be written as

M
F(<j» = X F f« n  2.55

where M denotes the total number of elements and F  is the subfunctional given by

^ nf

\
a d ( ( )

V dx  J
+ a 3 < j )

v J
+ P « n 2d i l - W F ' d ^

ne
2.56
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with Q.e denoting the domain of the eth element. Introducing the expression (2.54) for 

())e and differenting Fe with respect to <|)e; yields

BFe 3
£  (b /  if

d N e b n ;  dN e b n ;  n e e
— r -  + a , ^ — ■ZJ- + $ N ' N J dQ.

dx dx ' By By

-WfN'dQ.
ae

or

i = 1,2,3

2.57

BFe
b v =[*' M - M 2.58

where

~BFe BFe dFe '

l ^ fJ 3(f),e 3(|)2e 3(J)3<’

{<t>f }=[<{>

The elements of the matrix [Â ] are given by

k ;  = u a
b n ;  bn ;  3n ; bn ;  e (

- / ■ '■ a -  + P*,- nox ox oy ay

i, j  = 1,2,3

dxdy

2.60

and those of the vector {be} by

b' = \\ fN-dxdy i = l,2,3
ne

2.61
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It is evident that [tC] is a symmetric matrix. Assuming now that the 

coefficients ax, Oy, [3 and the source f  are constant within each element and equal to 

aex, a%, (3e, a n d /, respectively, eqn. (2.60) and eqn. (2.61) can then be evaluated 

analytically. A basic formula to be used in this process (Koshiba, 1992),

J J « y (7 V 2P)m( ^ r ^ y
n'

l\m\n\
(l + m + n + 2)!

2Ae

resulting in

2.62

2.63

On the other hand, if ax, a v, (3 and /a re  not constant within each element, we 

can still use the results above, with aex, ay, pe, and /  being the average value of the 

corresponding parameter within the element. Alternatively, we can evaluate A/y and 

bej numerically.

With the elemental equations 2.58, all M elements can be assembled and then the 

stationarity requirement is imposed on F to find the system of equations

2.64

The system of equation can be written compactly as

2.65

where [K\ is assembled from [A*], and similarly, {b} is assembled from {be} :

m = X [ K ' l
M

w = X {* * }
e=\

2.66
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Equation (2.65) is of the deterministic type, resulting from either inhomogenous 

differential equations or inhomogenous boundary conditions or both. In 

electromagnetics, deterministic systems are usually associated with scattering, 

radiation or other deterministic problems where there exists a source or excitation. In 

addition to the deterministic problems, there is another class of boundary-value 

problems which are known as eigenvalue problems. In contrast to deterministic 

problems, in eigenvalue problems, both the governing differential equations and 

boundary conditions are homogenous. From the physical point of view, this means 

there is no source or excitation of any form in an eigenvalue problem. Modal analysis 

of optical waveguides fall within this class of problem and the resultant system of 

equations has the form of the generalized eigenvalue equation

[A]{(|)}-A[fl]{(t>} = {0} 2.67

where [A] and [B] are known matrices and A and {(()} are unknowns. Rather than 

solving for {(j)} for a nonzero right-hand side as is done for a deterministic problem, 

here one solves for the eigenvalue A, which makes the system singular, or in other 

words, which makes the determinant [A-A5] vanish. As a result, there will be a 

corresponding nontrivial solution for {<})} which is called the eigenvector. For an 

eigenvalue problem of order N, there are TV eigenvalues, and accordingly, there are N 

eigenvectors.

In electromagnetics, eigenvalue problems which are often encountered include 

those of cavity resonance and wave propagation in both closed and open structures, 

such as metallic waveguides, open and shielded microstrip transmission lines, optical 

waveguides or fibers. In these problems, one is interested in determining the resonant 

frequencies or propagation constants corresponding to eigenvectors.
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2.6.6 Summary

This Chapter has considered in detail the general formulation of the finite element 

method for general boundary-value or eigenvalue problems. Various aspects of the 

method have been considered including the natural boundary conditions, the 

discretization of the problem, the shape functions and formulation of the appropriate 

system of equations through the two classical methods of Galerkin and Rayleigh 

Ritz. This lays the basis for the work described in subsequent Chapters or the use of 

the method to solve the problems defined in later Chapters.
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3. THE FINITE ELEMENT PROPAGATION ALGORITHMS

3.1 Introduction

In nonlinear optics, there are numerous cases where it is valuable to study the 

propagation of electromagnetic waves in a non-uniform structure. This is the case, for 

example, in optical tapers, bends and Y-junctions and to understand a large variety of 

nonlinear media. In linear, axially uniform structures, a modal analysis is usually 

sufficient to characterize the device behavior completely but this will not be the case 

if the structure is clearly non-uniform or nonlinear. In all these cases, the problem 

consists of finding the electromagnetic fields inside a device or medium when a 

certain input field distribution is known. The problem may then be characterized by 

the wave equation, subjected to initial and boundary conditions. In this Chapter, we 

treat the mixed initial-value/boundary-value problem, also referred to as the initial- 

boundary-value problem. An additional term, involving a derivative with respect to z,

. is added to the boundary-value problem treated in Chapter 2, making the unknown (j) 

a function of both transverse (jt,y) and propagation (z,t) coordinates. We therefore look 

for a solution which changes in z or t, called a z-position or along the z,t 

characteristics and proceeds indefinitely into z —

We begin with a mathematical description of the problem, followed by a 

derivation of the element equations and the treatment of z-varying part of the problem. 

In Chapter 1, we derived the partial differential equations which describe the beam 

propagation in a nonlinear medium. In this Chapter, the primary concern will be with 

the numerical solution of the paraxial wave equations, as derived in Chapter 1.

The method discussed is based on a Galerkin discretization in a transverse 

cross-section followed by a difference approximation of the derivatives in the 

resulting semi-descrete system of z- or (z,t) dependent ordinary differential equations. 

The Ritz method, introduced in Chapter 2, is less appropriate for z-dependent 

problems. Semi-discrete methods are techniques for by-passing variational 

formulations for evolutionary problems. Discretization is carried out first in the
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transverse variables only, where we apply the Galerkin method, leading to a system of 

ordinary differential equations in z, Thus the finite element discretization will 

transform the governing partial differential equation into a system of ordinary 

differential equations and enables us to solve the latter, with the methods we describe 

below. The problem is considered as a parabolic partial differential equation of the 

general form

|i(x) dU(x,z) d
dz dx VaO )

dU(x,z)
dx

+ P(*)£/0,z) = f (x ,z ) , 3.1

where |i(x), oc(x), (3(x) are known coefficients, in the domain

xa < x < xb 

Z >Z0

Fig.3.1 A computational Domain : initial and boundary conditions

A solution of eqn. (3.1) is required, subject to the initial condition at z0(xa < x < xh)

U(x,z0) = U0(x) 3.2a

and the boundary conditions at xa (z > z 0)

U(xa,z) = Ua(z) 3.2b
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and at x b(z > z0)

U (xb,z)=Uh(z) 3.2c

as in Fig. 3.1.
It is clear from eqn. (3.1) that all the same terms were present in the boundary- 

value problem in Chapter 2, but now there is an additional z-derivative term,
0  J J

|i(x)----. The unknown U becomes a function of both x and z, and the previous
dz

ordinary derivatives become partial derivatives. The boundary conditions are the same 

as for the boundary-value problem, except that they may be functions of z.

3.2 The Weak Formulation

The weak form of the problem is that for z e [z0,z, ]

Using Sobolev space notation(Wait and Mitchell, 1985), it can be shown that 

K =KW x C 1 [z0,z,], where ^ (l) is the Sobolev space. If a more general boundary

condition is specified, then it may be necessary to modify the weak form by use of the 

additional boundary integrals.

The semi-discrete approximation, U, is then defined in terms of the weak form 

of the equation, that is, for z e [z0,z, ]

3.3

subject to the initial condition

(u,v)z=z = ( m0,v ) (forallv(x) g  K) 3.4

3.5
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subject to the in it ia l cond ition

(U,V)=(u0,V) (for V(x) g  Kn) 3.6

For the model problem it follows that KN a  H(l) (R) . If the function p , (i = 

forms a basis for the subspace KN, the equivalent formulation of the semi-discrete 

approximation is that for z e (z0 )

3.7a 

3.7b

where U e KN x C' [z0 ,z, ], the Galerkin approximation is of the form

du
dz -<Pi + a(U ,<p,) = ( / ,<p,) (i = 1,2.....N)

(t/,(P/)z=Zo =(«o<P,) (i = 1.....N)

£/(*,z)=X£/1-(z)q>1-(jt)
i=i

3.8

If the boundary conditions are the inhomogeneous Dirichlet condition, then it 

is possible to define a Galerkin approximation of the form

U(x,z)=W(x,z)+'LUl(zy?i (x) 3.9
;=1

where cp( e KN and W(x,z) satisfies the boundary conditions. It follows that it is only

necessary for V to be in the energy space and no such requirement is placed on the 

approximation U.

The Galerkin approximation is defined by a system of ordinary differential 

equations in terms of the functions U¡(z) (i = 1,...TV) . It follows, from eqn. (3.7a) 

that, for the model problem, these equations can be written as
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3.10a
M  [ OZ

(9  . ,(p . ) + {/;.a((p r cp, ) |  = ( /  ,9 , ) = 1 ’ -  • ’ N )

and the initial condition eqn (3.7b) become

Uj (z0) = Cj (j = 1,...,N) 3.10b

where

£(<PJ.cp! )=(t/<t,.<Pi) (i= l.-.N ) 3.10c

The coefficients Cj(j=l,...,N) satisfy

U0(x)~'LCJv J(x)
j~] 0.R

minimum

In terms of the matrix 5  = {(9 ^,9 ,)! and the matrix G -  {«((7, ,<2, )},the 

system (3.27a) can be written as

BÙ + GU = b 3.11

where

* = [/,.- . / » ] '

with

f , = { f , Q i )  0 = !,•••,N)

and the dot represents differentiation with respect to z.

3.3 Finite Element Discretization

Since the unknown U is a function of two variables x and z, it would seem 

quite natural to write the element trial solution in the standard form, used in Chapter 

2 , but with shape functions now a function of both x and z, that is,
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3.12U(e\x,z-,a)= 'Laj<\>j(e)(x,z)
7=1

The approach would require the use of 2-D elements and the construction of a 

mesh of such elements over the 2-D domain. However, the infinite size of the domain, 

and the concommitant lack of “boundary” (or “final”) conditions at z=°° causes a 

problem. One way to resolve this problem would be first to calculate the boundary- 

value solution at z=°°. This would generate the missing “boundary” conditions at 

2=oo. Then the infinite domain could be approximated by a finite domain, i.e., we 

apply the steady-state condition to a finite z-position, z/, where z/ is chosen so that the 

solution is insignificantly affected if z/is made any larger.

Another resolution is to use 2-D infinite elements, which are rectangular strips 

of width Ax and infinitely long in the z-direction. This method also requires a priori 

calculation of the boundary-value solutions.

Certainly, the two methods suffer from the added burden of having to first 

calculate the boundary-value solution, in which we may not be interested. Methods 

based on eqn. (3.12) are therefore not popular. Instead of putting all the independent 

variables in the shape functions, as in eqn. (3.12), we will include only the transverse 

variables, namely, those that correspond to the boundary-value part of the problem. 

The parameters Qj will then be made functions of z:

U(e\x,z-,a)= Jjaj (z)̂ >{‘)(x) 3.13
j =i

This is the classical separation of variables technique which is sometimes referred to 

as the method of Kantorovich(Wait and Mitchell, 1985). For any given value of z, 

eqn. 3.13 has the same form as the standard finite element approximation used in 

Chapter 2. The only difference here is that the numerical values of a, may vary from 

one position to the next. The variation of a, in eqn. (3.13) does not disturb, in any way, 

the procedures involved in the theoretical analysis since <\>j are now functions only of
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x. The principal effect of the parameters a} being functions of z is that the element 

equations and therefore the assembled system of equations will be ordinary 

differential equations in z, rather than algebraic equations. The usual finite element 

procedure thus transforms the initial-boundary-value problem into a pure initial-value 

problem and the latter will then be solved by finite difference z-stepping techniques.

3.3.1 Derivation of 1-D Element Equations

Because the shape functions in eqn. (3.13) are functions of x only, we are 

essentially performing a finite element analysis with respect to the transverse x, just as 

was done in Chapter 2. Thus the first step is to divide the solution domain into small 

sub-domains, which in this case will be short line segments. The second step is the 

selection of the interpolation function. In Appendices A and B, the development of a 

linear and quadratic functions are described in detail (eqns. A8, A9 and eqns. B6 and 

B7).

Writing the residual equations for a typical element as

j ie)[ p ( x ) ^ — (x,z-a)-^~dU(e)
dz dx

/( •x .z jl .^ M d x  = 0

, ,dU (e) , 'a{x)—-— (x,z\a) 
dx

+ fi(x)U(e)(x,z\a)-  

i = 1,2 ,...,n

3.14

where n is the number of degrees of freedom and the second derivative term with 

respect to x  is integrated by parts once to yield:

dz
-a(x)-

dx ' dx
S k)<!)-<')(x)P{x)U(e\x ,z ' ,a)dx=\(e)f(x,z)fy(* \x )dx-

( dU^  ^
-a (x )—— (x,z;a) (f)|e)(x) 

dx

dx +

3.15

i = 1,2,...,«
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The boundary term  is

-a (x )—— {x,z;a) 
ox

=[x (e)(jc,z;<a>l)f (jc)]"" 3.16

The general form of the element trial solution is substituted into the interior integrals 

in the residual equations. Because of the separation of variables in the element trial

solution the partial derivatives of U{e) with respect to x and z in eqn. (3.15) revert to 

ordinary derivatives. Thus from eqn. (3.13),

dU(e)
dx

d u (e>
dz

(x,z;a)= f Jaj (z)d^î (x )

n d o , ; ( z )  ,

(■X,z;a)= i — H> !* (*) 
j=i dz

3.17

Substituting eqns. (3.13), (3.16) and (3.17) into eqn. (3.15) yields

i  [ I "  + i
j=iL J dz j=i dx dx

±[J = J (0/(x,z)(|) )̂(x)iic-[x(')(j:,z;a)^|e)(x)]^
i = 1,2,...,n

3.18a

Equations (3.18a) are the element equations for a typical element. They may 

also be written in the usual matrix form :

[C]W{ ^ }  + [i:]W{a(Z)}= {FM}W 3.18b

where
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Cÿ = p ty îe)(*M*HSe)(*>fr

=j w ^ ^ (x )a (x )^ ^ (x ) iZ x + j  (e)<t>-e)(*)P(*)^e)(* )^  
dx dx

F^(z)=Ff^(z)+Fx(e)(z)

3.18c

3.3.2 Derivation of the 2-D element equations

The two-dimensional initial-boundary-value problem is governed by the general 

form of the following partial differential equation, which is second-order in the 

transverse coordinates and first-order in z:

|-t(JC,_y) dU(x,y,z) d
dz dx

a x(x,y) dU(x,y,z)
dx

d_
dy

a v( x , y )
dU(x,y,z)

d y

= f(x ,y ,z )

+ P(x,y)f/(.x,y,z)

3.19

The domain is a region in jc, y, z-space, that is usually (but not always) bounded in 

the jc,y-plane and unbounded (semi-infinite) in the z-direction. Boundary conditions 

are of the same type as for the boundary-value problem, namely specifying either 

U(T,z) or T„(r,z) at every point on the boundary T. Here though the boundary

values are functions of z.

The initial condition U(x,y,z0) specifies the value of U over the 2D-transverse 

domain at the initial z-position, z0 . The situation is analogous to the 1-D problem 

discussed above except that the transverse dimension has increased from 1 to 2 .

Since the FE discretization of the transverse domain is similar to that discussed 

under the boundary-value problem, we will only summarize the results here. Thus 

employing the separation of variables technique, in Section 3.4.1, yields the following 

expression for the element equation:
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where

[ C y ^ ^  + [KY{a(z)} = {F(z)}e

3.20

q  = J j V  M-(t>'/ ¿¿x̂ /y

3.20b

The element equations are no longer algebraic equations but rather ordinary 

differential equations. Assembly of the element equations results in the global system 

of equations

In the next sections, we address the problem of how to solve eqn. (3.21).

3.4 Z-stepping Algorithms for solving the initial-value problem

3.4.1 The Initial-value Problem

In the previous section, the z-dependent problem was discretized in the 

transverse cross-section using the Galerkin finite element method, resulting in a 

system of ordinary differential equations in z. In the z-stepping methods, the z-axis is 

divided into a succession of z steps Az,(/=1,2,... ) beginning atz0

3.21
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Fig. 3.4.1 Division of z-axis into steps Azi, Az*...

Some methods permit the steps to be of different lengths, while others require 

uniform steps. Then instead of seeking a solution for {a(z)} over the continous 

domain of z, we look for an approximate solution consisting of discrete values at the 

end of each step, that is, {a}/ at z-position zi, {ah at z-position z2 etc, starting from 

the known initial value {ah at position z<f>, as indicated in Fig 3.4.1. For the ith 

component of {a(z)}, the discrete values {a}„, n - 1,2,... are computed from a 

recurrence relation, which is an algebraic equation that relates the values {a}„ at two 

or more successive z positions. The recurrence relation is an approximation to the 

differential equation.

We consider the ‘pure’ initial-value problem in which the unknown, Ua , is a function 

of only z as in equation 3.20

3.22

with initial condition

U(z„)=U0 3.23

Equation 3.22 is a first-order ordinary differential equation because the highest 

derivative of U is 1 with a domain which is an infinite or semi-infinite domain. The



problem begins at z-position, z* and “marches forward” indefinitely in the z direction. 

To get the problem started, we must specify a value for U at z<j>, called the initial 

condition. We examine the free response of the system, that is, for/(z) = 0 :

+ku(z)=0 , z>z0 3.24
dz

U(z0) = U0

The solution has the form

U{z) = Ae~k 3.25

Substituting eqn. (3.25) into eqn. 3.24) yields

A(-cX+k)e^  =0 3.26

or

k-Xc=0 3.27

which is the characteristic equation. The solution to equation 3.27 is the characteristic 

value or eigenvalue,

X=k/ C 3.28

where X > 0 since the physical properties k and c are generally positive-valued. 

Substituting eqn. (3.28) into eqn. (3.25) yields

U(z)=Ae~(k/c)z 3.29

The constant A is determined by applying the initial condition to eqn. (3.29), resulting 

in the following expression for the free response :

f/(z)=iV ~(̂ Xz"V , z>z0 3.30
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3.4.2 The step-by-step (Full-Operator) schemes

In principle, there is an unlimited variety of possible recurrence relations for 

any given differential equation, and any particular recurrence relation can usually be 

derived by several different methods. A one-step method relates the discrete values at 

both ends of a single step and includes three classic finite difference formulae namely, 

the backward difference method, also known as the backward Euler rule; the mid-

difference method or the Crank Nicolson method or the trapezium rule and the 

forward difference method known as Euler’s rule.

These three are special cases of a more general formula, referred to as the 0- 

method. Each of these recurrence relations will be derived for the nth z step, Az„, 

which carries the solution from zn-i to z„ ■ As illustrated in Fig 3.4.2, for a typical 

degree of freedom, a,(z), the solution has already been stepped forward through the 

first (n-l)z steps. We therefore know the solution at zn-i but not at z„.
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Backward difference method: In this method, each term in the differential eqn. 

(3.21) is evaluated at the forward end of the z step zn by simply writing eqn. (3.21) 

with a subscript n in each of the terms;

[C ]{ |}  + [* ]{ <  ={F}„ 3.31

The [C] and [K] matrices do not require a subscript when dealing with linear 

problems. The z derivative is then approximated by a backward difference over the z 

step:

M ,
Az

i=\,2,...,N 3.32

where Az„=z„-z„_,

Substituting eqn. (3.32) into eqn. (3.31) and placing all known terms on the right hand 

side yields

Az,
[C]+[K]

Az„
3.33

Putting [/>]= [ / 'a zJ[C ]+ [^ ] , Q = \ y ^ J [ c ] . P=1 and q = 0, eqn. (3.33) 

becomes a system of algebraic equations in the standard form

where

K ] w . = { ^ } 3.34a

K H '’!
[ f / ] = { f } .+ [ e i  w . . ,

3.34b
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Eqn. (3.34a) can be solved by any Gaussian elimination method. Since [Keff] is a 

nondiagonal matrix, the system of matrix equations (3.34a) are a coupled system of 

equations, necessitating the invertion of the left hand side [Kefj\. As a result of this 

coupling, the backward difference method is said to be implicit, meaning that the 

unknown {a}n , is defined implicitly by eqn. (3.33).

It can be shown that the accuracy of the backward difference method is of 

order O(Az), meaning that the error at a given position, in the limit as Az—> 0 is 

proportional to Az. This is equivalent to saying that the asymptotic rate of convergence 

is Az.

Forward - difference method: In this method, eqn. (3.21) is evaluated at the 

backward end of the z step , zn-i :

[c]{ f }  l + w < ' }- , = { F } - 1 3 3 5

The derivative is then approximated by a forward difference over the z step,

\da\ {a} „-{a}
1 dz j Azn

3.36

Substituting eqn. (3.36) into eqn. (3.35) and placing all the known terms on the RHS 

yields,

Az,
-[C l a } = { F } n_]+ -~ [C ) - [K ]  {«}„

Az„
3.37

which in standard form is

h f K - f o } 3.38a
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and

3.38b

[f „  ]= { f }..,+

Unlike the previous two methods, the matrix [K\ no longer appears on the LHS, so

The Crank-Nickolson method: In this method, eqn. (3.29) is evaluated at the center 

of the z step ( say zn-m ):

The z derivative is then approximated by a mid-difference over the z-step:

\da\
\ d z ) n-y2 Az„

The function value {a}n-\/2 is approximated by an average over the step :

Both eqn. (3.41) and (3.40) make the approximation that (a(z)} varies linearly 

between zn- \ and zn ; that is,

\Keff jnow consists of only [C],

3.39

H z)}  = ( i-e  ){«}„., + 0 M
3.42
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Substituting eqns. (3.40) and (3.41) into eqn. (3.42) and placing all known terms on 

■ the RHS yields

Az„ 2 Az„ 2 W „-, 3-43

This is again a system of algebraic equations in the form

where

1 3.44a

K ]  = ^ [ c ] + i m

K } = { F U  + Az.
[C]~[K]

3.44b

Since [a T^] is nondiagonal, this is an implicit method. The mid-difference method 

has an accuracy of 0(Az2) .

0- method: This method is the natural generalization of the three previous methods 

which is given by

Az,
[C]+Q[K] M  = (i-0 ){F}„_,+e{F}„ +

Az.
[ C ] - ( 1 - 0 ) [ F ] M*-i

3.45

Equation (3.45) includes the 3 previous methods as special cases for 0 = 0(forward 

difference), 0 = 1/2 (mid - difference), and 0 = 1( backward difference). Step-by-step 

solution of these equations yield the evolutional values of a(z).
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3.4.3 The split-step finite element method

Another type of solution method for propagation problems is the so-called split- 

step method. Such methods operate by assimilating the form of the equation to a 

simple differential equation, separating (or lumping) the effect of the transverse 

operator into parts and performing diiect integration. The most well known form of 

this method in optics is the BPM (beam propagation method) or Fourier-BPM, but 

forms of the algorithm using finite differences and finite elements are not only 

possible but usually present advantages over the traditional Fourier BPM. In this 

section we describe the split-step method based on the finite element method for 

nonlinear beam propagation analysis.

To understand the philosophy behind the split-step method, it is useful to write the 

paraxial or parabolic equation in the compact form

where L is the differential operator that accounts for diffraction or dispersion in a 

linear medium and N is the nonlinear operator that governs the effect of nonlinearities.

In general, L and N act together along the length of the medium. The split-step 

method obtains an approximate solution by assuming that in propagating the optical 

field over a small distance Az, the L and N effects can be connsidered to act 

independently. More specifically, with formal integration of this equation we can 

write:

The effect of each part of the operator L+N can now be considered separately, and 

writing eqn. (3.47) in the form:

dz
3.46

(p(x,y,z + Az.) = (p(x,y,z)e (L+N) AZ 3.47

cp ( x, y, z + Az ) = cp ( x, y , z )eLAZ gN&z -t-O(Az)2 3.48
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which, ignoring the second order effects (due to the noncommutativity nature of 

operators L and N), it can be interpreted as a sequence of two equations in the interval

z<x’<z+dz:

v(x,y,z + Az) = eNAzy(x,y,z) 3.49a
and

cp(x,y,z + Az) = e^v(x,y,z + Az) 3.49b

Equations 3.49 can be taken as the solutions of

and

—  = with v(x,y,z) = <p(x,y,z) 3.50a
az'

T—7 = Lv with <p(x,y,z) = v(x,y,z + Az) 3.50b
az

That is, we consider the diffractive effect of the operator, L, lumped at one point in z 

and the propagation distance, together with the refractive effect of the inhomogenous 

refractive index as a phase correction term.

Equation (3.50a) gives simply the phase correction term in eqn. (3.49a), 

obtained by direct integration of the equation. Equation (3.50b) is not so simple to 

solve since it contains the differential operator, L. Using a finite element mesh on the 

transverse plane the functions v and (p can be discretized in the transverse plane. As 

before, the propagation direction, z, is discretized using finite differences.

Application of the method of Galerkin to equations (3.19) with basis functions 

bt(x,y) leads to:

< 5(p , . ,rr~,bi >=< L(p,Z? >
dz

fo r a ll i 3.51
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We consider the auxilliary function v(x,y,z) at the next step, k, in the propagation 

direction as the vector nodal values : v* = [v*1 v1"]7. The function cp (x,y,z) at the 

step k is represented through an expansion in terms of the finite element shape 

functions b; (x, y ) :

y k(x,y,z) = ^ J<pl‘(z)b(x,y) 3.52

A stepping process is now established in z using the Crank-Nickolson method 

applied to equation (3.51):

m*+l-<p* cp *+1 + cp *< - ------ ,b̂  > = < L—— —J~ ,b ,  >
Az Az

3.53

and substituting expansion 3.52 yields:

Lcpk+1
j

J

/ Az _, b , H----Lb: A 3.53b

Az ")
au + ~ lu 2

3.53c

Combining now this equation with eqn. (3.50a) gives the following iterative process 

which solves equation (3.46)

where

vf+l =(pf exp(AAz)

. Az 1 t+, [ Az 1 w
L 2 y  L 2 J

cpA = [cp cp*n]r

3.54
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3.4.3.1 Accuracy and improvement of the split-step finite element method

To estimate the accuracy of the split-step algorithm, we note that a formal exact 

solution of eqn. (3.46) is given by

(p(x,y,z + Az) -  exp((L + A)Az)cp(x,y,z) 3.55

if N is assumed to be z independent . At this point , it is useful to recall the Baker- 

Hansdorf formula (Cooley and Tukey, 1965) for two noncommutating operators

a and b
- 1 „ - 1 „ - „ -

exp(a)exp(b) = exp(a + b + — [a,b] + — [a -  b,[a,b]]+...] 3.56

A  A  A  A  A  A

where [a,b] = a b - a b .  A comparison of eqns (3.47) and (3.46) shows that the split- 

step method ignores the noncommutating nature of the operators L and N. By using
A  A

3.46 with a = zL and b = zN , the dominant error term is found to result from the

1 7single commutator — Az"[L, N] Thus this split-step scheme is accurate in the second 

order with the step size, Az ■

The accuracy of the split-step scheme can be improved by adopting a different 

procedure to propagate the optical beam over one segment from z to z + Az. In this 

procedure, eqn. (3.47) is replaced by

cp(x,y,z +Az) = expf —  L jexpl J N(z')dz' exp| ~ L  |cp(x,y,z) 3.57

The main difference is that the effect of the nonlinearity is included in the middle of 

the segment rather than at the segment boundary. Because of the symmetric form of 

the exponential operators in eqn. (3.47), this scheme is known as the symmetrized 

split-step scheme. The integral in the middle exponential is useful to include the z 

dependence of the nonlinear operator N. If the step-size Az is small enough, it can be
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approximated by exp( AzN~), similar to eqn. (3.47). The symmetrized scheme is third 

order accurate.

The accuracy can be further improved by evaluating the integral in eqn. (3.57) 

more accurately than approximating it by AzN(z). A simple way is to employ the 

trapezoidal rule and approximate the integral by

However, the implementation of eqn. (3.58) is not simple, since V(z+dz) is unknown 

at the midsegment located at z+Az 12. It is necessary to follow an iterative procedure 

that is initiated by replacing N(z+Az) by N(z). Equation 3.57 is then used to estimate 

(p(z+Az) which in turn is used to calculate the new value N(z+Az) Although the 

iteration procedure is time consuming, it can still reduce the overall computing time if 

the step size Az can be increased because of the improved accuracy of the numerical 

algorithm. Two iterations are generally enough in practice.

3.5 New Time-domain finite element Propagation Algorithms

Most of the beam propagation methods reported so far simulate electromagnetic 

wave propagation in the frequency domain ( Van Roey, 1981; Thylen, 1983; Koch 

et al., 1989; Hayata et al., 1990; Gribble and Arnold, 1988; Feit and Fleck, 1988). 

Therefore, only sinusoidal steady-state behaviours of the optical guide-wave devices 

can be modeled directly. One method used to simulate the pulse propagation in time 

domain is the finite-difference time domain(FDTD) technique, which has been 

introduced and adapted to guided-wave optics(Huang et al., 1991). The technique, 

though rigorous, requires enormous computer resources for the simulation of practical 

optical waveguides, whose longitudinal dimensions are usually much larger than 

typical optical wavelengths. Typical FDTD runs require the discretization to be on the 

order of 7^ /12  where A, is the guide wavelength. For optical structures at a

wavelength of X0=l|im a typical coupling length may be 3mm. Therefore the

3.58
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computation across the coupler in an index of 2.0 requires 6,000 waves, requiring the 

use of about 72,000 cells just to deal with the longitudinal direction. Including the 

contribution from the transverse dimension, the memory requirement can exceed a 

Gbyte which calls for the use of a supercomputer whereas FDTD couples the E and H 

fields, and one may question whether the extra overhead of H is always necessary.

Although a number of alternative beam propagation algorithms, based on the 

finite element method( Koch et al., 1989; Hayata et al, 1990), have been proposed 

recently for nonlinear waveguide analysis, all of them treat the spatial and temporal 

effects separately. However, spatiotemporal nonlinear effectts which do not permit 

space-time factorization can be observed in media with cubic a nonlinearity. In this 

section , space-time marching propagation algorithms are derived as extensions to the 

finite element/finite difference algorithms described in the previous sections, to 

include the time variable.

3.5.1 The full time-dependent paraxial wave equation

The full time-dependent pulse problem involving, the paraxial wave equation 

that includes both spatial(z) and time(i) propagation operators, coupled to a Debye 

material model, may be solved by these novel algorithms. For CW beam interactions 

in third-order nonlinear integrated optic waveguides, the finite material response is 

most readily apparent. In this case, a macroscopic description using the Maxwell’s 

equations alone, assuming that the medium responds instantaneously to the light 

excitation, is sufficient. In the case where the finite material response time is relevant, 

particularly for ultrashort pulses where the pulse duration may be of the same order as 

that of the material response time under pulsed excitation, a complete macroscopic- 

microscopic treatment is necessary. The Maxwell-Bloch equations represent, 

however, a reasonable approximate model for the treatment of envelope pulse 

propagation in a nonlinear integrated optic waveguides (Moloney and Newell, 1994). 

Assuming that third-harmonic generation is negligible, the time-dependent equation 

for T E  pulse propagation in a nonlinear planar waveguide is given as
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3.59

where k0 is the wavenumber of the field in the vacuum, p the effective index, and v, 

is the group velocity of the field in medium i. Dp is the group velocity dispersion and

5 is the total nonlinear contribution to the refractive index. Ignoring group velocity 

dispersion for the propagation distances under consideration and applying the slowly 

varying envelope approximation to eqn. (3.59) leads to the time-dependent paraxial 

wave equation for picosecond pulses:

The group velocity dispersion as well as other higher-order nonlinear effects have 

been ignored in Equation (3.60), as the propagation distances usually encountered in 

integrated-optic components are small. However the effects of these terms will 

become significant for femtosecond pulses for which effects, like pulse broadening 

and compression, can be observed. The finite time response of the waveguide 

materials is approximated by the usual phenomenological Debye equation (Mitchell 

and Moloney, 1990)

withxD representing the Debye relaxation time of the medium, and a , the nonlinear

coefficient of the z'th medium. Non-Kerr effects such as saturation can be included by 

replacing eqn. (3.61) with the appropriate model, for example, for the saturation 

effect, this is

3.60

3.61

5,„, = a , |£ |J /<1 + Z|£|’ ), 3.62

X being the saturation coefficient.
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3.5.2 A new time-dependent step-by-step finite element method

To derive the step-by-step algorithm, we first write equation 3.60 as

d E  n d E  

d z  d t
=  ~ J

2£p0 3.63

Equations 3.60 and 3.61 have four independent variables x, y, z and t, which require a 

numerical array of three dimensions and integration in time. When one considers that 

the pulse to be propagated may contain small-scale features, there is the need to fill a 

large volume with a computational grid small enough to resolve microstructures. We 

consider that the pulse, not the medium is of interest, therefore the ‘pulse-following 

description’, in which the evolution of the pulse determines temporal and spatial 

sampling requirements, rather than the passage of the pulse over a point fixed in the 

medium, is adopted. High spatial resolution is still required, but the computational 

grid moves with the pulse, and it is not wasted on quiescent regions. This strategy 

reduces greatly the temporal sampling requirements as the irrelevant time scale of the 

waves propagating through a fixed grid at a large speed is removed. This scheme 

traces the wave in the z-direction instead of t and therefore requires less storage space. 

The total derivative which appears on the left-hand side of equations 3.63 can be 

expressed in terms of a directional derivative in z,t plane, the direction being that of 

the characteristic with direction cosines(Fleck, 1972)

/ ± l

3.64

P o '

f  n. '

P o '
+ 1

Vi
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Equation 3.63 can then be written in terms of these directional derivatives in eqn. 

(3.64) along the characteristic, s, as

where

and

dED = - j HE 
ds

3.65

3.66

The group velocity dispersion as well as other higher-order nonlinear effects can be 

ignored, as the propagation distances encountered in integrated optics components are 

small. However, these effects will become significant for femtosecond pulses fo' 

which effects like pulse broadening and compression can be observed. Equation 

then becomes

so that equation 3.65 is identical to the conventional nonlinear paraxial wave 

equation. Assuming that p°^  At -  Az and applying the finite element method and

Crank-Nickolson scheme to integrate the resulting matrix equation between (z, t) and 

{z+Az,t+At) to equation 3.65 one obtains the step-by-step algorithm:

[C] + -Az[K] E(z + Az,t + At) = [ C ] - —Az[K] E(z,t) 3.69

where [C] and [AH are as defined in Section 3.3.
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3.5.3 A novel time-dependent split-step finite element method

In the spirit of the split-operator technique discussed in section 3.4.3, the linear 

portion of equation 3.65 is first discretized using finite elements for the transverse 

domain only and the nonlinear portion of equations (3.60) and (3.61) may be solved 

by semi-analytical integration. Equation (3.60) is first expressed symbolically in the 

form

D—  + (L + N)E = 0 3.70
a\

where L  and N  are the second-order differential operators and D is expressed by eqn 

(3.66) and  ̂= s. From the characteristic relations, t̂/nii$vi = dz , it can be assumed that 

dt = (ni / pv,.)9z which enables the integration of the linear part of eqn. (3.70) along 

the characteristics from (z,t) to (z+dzj+dt). A finite difference scheme leads to

p E(z + Az,f + At)—E(^,t) _ _j_|-0£ ^  + Az,t + At)E(z + Az,t + At) + (0 -1  )L(z,t)E{z,f)] 
Az 2

3.71

where 0 < 0 < 1 and can be rearranged to yield:

[ D - Q ^ L ( z  + Az,t + At)]E(z + Az,t + At) = [D+ ^  ^  AzL(z,t)]E(z,t)

3.72

If we assume that the medium is uniform then for a split step approach 

L(z + Az, t + At) -  L(z, t) so that we can write

[D -  0 ̂  L]E{z + Az, t + At) = [D + AzL]E(z, t) 3.73

for the linear part of the problem.

The solution of the Debye equation at time level t+dt where dt is the time step, to the 

solution at time t , can be related through analytical integration to
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3.74
l+ A l

5 (t + At ,z) = 8(t ,z )e (-*'T> + \ e - (- s)ITdsf(\E(z,s)\2)
t

where T = x D. In equation 3.74, the integral consists of two terms, the exponential 

and the forcing terms.

If the function /(l£ '(z,i)l2 )is approximated by the value of f(\E(z,s )\2 ) at the 

beginning of the interval (t,t+dt), the following algorithm results

8(7 + At,z) = 5(t,z)exp 3.75

On the other hand, in the limit when the time response is slow, the solution of eqn. 

(3.74)is

8(t + A t, z)=  j
t -̂(r-j)/j

-oo XD

\ E ( z , t f - T D

\E(x,z,s)l2 ds

d\E(zdf )
dt

3.76

Any of these schemes can be combined with the analytical solution of the nonlinear 

part of eqn. ( 3.70) implemented by

E(z + Az,t + t) = E(z, t)exp[j(Az / 2 )A(z)], 3.77

A finite difference approximation of the integral equation (3.71), assuming that 

f( \E(z,s)\2 ) varies linearly in the time interval t and t+dt and the nonlinear part of 

eqn. (3.68 ) leads on the other hand to the following third-order accurate algorithm

E "  -  e ; = J y ( A T , + n ; e ; ) 

K !  = c &i i + a i e ’J + b i e ;;i'i2
3.78
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where
A/ A;

A = X- £ ( \ - e ~ ° ) - e ~ x"
Al

_ **
C = e T°

and n and i are the time and propagation distance indices, respectively. Given Az, At is 

calculated from Ar = (2cn / v )Az and the system of difference equations is solved for

and 5 by a simple Newton iteration scheme, which involves the inversion of a

2x2 matrix at each step. Following the same strategy as Adachihara et al.(1990), an 

initial pulse may be defined in the vacuum and stored in a stack, say £(1),..., E(n). For 

example, E(l) contains a complete transverse profile of the pulse front and E(n) a 

complete transverse profile of the trailing edge with a corresponding 8 stack. As the 

whole pulse propagates over Az in the medium, the field stack looks like E(0),..., E(n-

1). The stack indices are rearranged such that this new solution is stored back in £(1), 

..., E(n). The process is repeated. The total dimension of storage remains (nz+l)nx, 

where nz is the number of longitudinal steps and nx is that of its transverse points. 

This enables the propagation of a pulse for a long distance without any additional 

memory.

3.6 Summary

Beam propagation algorithms based on the finite element discretization 

of the transverse direction (both one- and two-dimensional) have been described in 

detail in this Chapter. Both the step-by-step and split-step schemes for transverse 

spatial and temporal analysis are described in Section 3.4, after a general description 

of the finite element discretization in the preceeding sections.

The novel perspective of this Chapter is the development of novel step-by-step 

and split-step time-domain schemes which will be applied in Chapters 4 and 5 to 

study spatio-temporal pulse dynamics in nonlinear waveguides.
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4. APPLICATIONS TO NONLINEAR INTEGRATED-OPTICS
WAVEGUIDES

4.1 Introduction

The propagation of light through nonlinear integrated-optical waveguides has 

recently stimulated considerable research interest. These devices are capable of 

exhibiting a wide range of complex but very useful phenomena such as soliton 

emission (Haus, 1993) and photonic switching (Stegeman et al., 1988). Nonlinear 

waveguides can be analyzed by studying either the mode characteristics as an 

eigenvalue problem (modal analysis) or propagation or evolution of waves as an 

initial value problem (beam propagation analysis). Both these approaches are 

complementary with their individual advantages and disadvantages.

For waveguides with weak nonlinearity, the approach of obtaining a modal 

solution provides a fundamental step in understanding the behaviour of wave 

propagation in these media. Over the last decade there have been many approaches to 

obtain the modal solution of such nonlinear optical waveguides. Among them are the 

semianalytical techniques (Seaton et al., 1985), the numerical (Akhmediev et al.,

1990), the matrix method ( Ramdas et al., 1989), the variational and the finite 

element methods (Rahman et al., 1994). The analytical approach takes into account 

the satisfaction of the field continuity conditions at the dielectric interfaces and 

solving of the power-dependent transcedental equations. This procedure and its 

variations have been used to obtain both TE and TM modes in waveguides with 

various carefully chosen laws of nonlinearity, and its application has only been 

restricted to planar structures. Akhmediev et al.( 1989) presented a numerical 

solution for a nonlinear optical waveguide with two-dimensional confinement and 

Ramdas et al. (1989) have used the matrix method to obtain modal solutions of 

certain nonlinear optical waveguides.

In the last two decades, the finite element method has been established as one 

of the most powerful and versatile numerical methods to characterize a wide range 

of optical waveguides using the vector H-formulation (Rahman and Davies, 1984;
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Hayata et al., 1988). In this chapter, we undertake a demonstration of the power of 

the finite element method for modal analysis by simulating a wide range of nonlinear 

optical waveguide structures.

4.2 Modal Analysis

4.2.1 Implementation of the Finite Element method

In this section the implementation of the finite element method for the 

analysis of nonlinear optical waveguides is briefly discussed, as the full details have 

already been outlined in Chapter 2 (see also Rahman and Davies, 1989). As has 

already been pointed out in Chapter 2, in the finite element method, the guide cross- 

section is first divided into a patchwork of triangular subregions, called elements. 

Each element can have different permitivity, £, or permeability, fi, and different 

nonlinear coefficient if appropriate. The finite element variational formulation is 

made via simple scalar (Mabaya et al., 1981) or via the following full vector 

variational form (Rahman and Davies, 1984):

, f (curl//)* •||£(;t,y)||"1 (curl//)ds
to = - ----------- f.------------------------  4.1

J H' ■ \lHds

Over each triangular element, the field components Hx, H , H, are each

approximated as first-degree polynomials in the transverse coordinates x and y. By 

expressing these polynomial coefficients in terms of the component nodal values, at 

the triangle vertices, the resulting vector H is a continuous piecewise linear function 

of x and y across the waveguide. Using this as a trial function for H, in the above 

variational form, the application of the standard Rayleigh-Ritz procedure yields a 

conventional matrix eigenvalue equation,

Ah = arBh  4.2

The square matrices A and B are of order 3 times the number of nodes (element 

vertices) with h denoting the column vector of nodal values of Hx, Hv and H ,. The
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sparse finite element matrices are solved by an efficient subspace iteration matrix 

solver. The H vector-field formulation is fundamentally more accurate than a scalar 

form as it considers all three components of a field of a true hybrid mode for the two- 

dimensional problem, and this formulation is particularly suitable for the dielectric 

waveguides as the field components of H are continuous across the dielectric 

interfaces. For one-dimensional slab problems, a scalar formulation is adequate as the 

modes are truly TE or TM, and this formulation can be simplified from the vector 

formulation by considering only one variable per nodal point. In this work, slab 

waveguide results that are presented were computed using the two-dimensional scalar 

package for this slab problem using 1 xnp mesh divisions with first-order shape 

functions, where np is the number of points considered.

Guided-wave modes can be supported by various film configurations in 

which at least one of the film, substrate or cladding media is nonlinear. The field- 

dependent refractive index is written as n = n0 +a\E\2, where a  is the nonlinear 

coefficient and E is the applied field. The nonlinear coefficient, a, is related to the 

usual nonlinear index term n2i, in the relation n = n0 + n2iI, by a  = n\n2i / (fl0c). 

As the refractive index distribution of the guide depends on the field-intensity profile, 

so to seek a consistent solution we use an iterative approach, consisting of the 

successive modal solutions of the linear eigenvalue problems, to generate a series of 

solutions. We start the iteration scheme with the refractive-index profile at lower 

power, calculate the field profile, then using the correct nonlinear contribution of the 

refractive indices we solve the problem again. This iteration will converge to a limit, 

which could be an exact solution of the nonlinear equation or it will fail to settle 

down. If a stable nonlinear solution exists, and if the series of solutions starts with a 

“guess” close to that solution, then convergence of the series into that particular 

solution is assured. If the “guess” is inadequate, the limit can be some other stable 

solution. If the series does not converge onto any physically unstable solutions, 

instead, regular oscillations or chaotic behaviour can occur.

A continuation approach ensures that a suitable “guess” is provided for the 

iterative solution method outlined above. One selects a trajectory on the solution
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surface, by fixing (0 and looking for the modal solution with gradually changing 

power. As the power is stepped, the final solution of the iterations for the previous 

power is used as the “guess” for starting the new iteration. At certain special powers, 

gradual continuation is not possible, such as where the stable mode bifurcates, 

disappears, or suddenly changes its character. Then the new guess is no longer a good 

first approximation and one must expect the series to take a larger number of 

iterations to settle down.

In the possible case of coexisting bistable nonlinear modes in a certain power 

range, the guess obtained by the continuation approach influences which of the two 

possible limits the iterations settle onto for a given power, causing hysteresis 

(Rahman and Davies, 1989) with respect to power. The finite element mesh could 

remain the same during the entire calculation, but this would be grossly inefficient. 

Whenever the modal field profile has changed noticeably, an adaptive remeshing may 

be carried out. In order not to disturb the continuation approach, the guess for the 

new mesh is provided from the old mesh by interpolation, thus helping achieve a fast 

solution in the matrix solver.

Perharps the most serious difficulty in using some vector formulations is the 

appearance of extraneous nonphysical or spurious solutions (Rahman and Davies, 

1984; Hayata et al., 1986). In the conventional vector finite element formulations 

such as eqn. (4.1), the associated Euler equation is consistent with two Maxwell curl 

equations but does not imply V-5=0. This causes the system to be under-determined 

or excessively flexible, which in turn is believed to be responsible for the spurious 

modes.

Computing a set of eigenmodes, it is difficult and quite cumbersome to 

distinguish between spurious and physical modes. Spurious modes can sometimes be 

identified by observing their dispersion curves. Another simplistic way to identify 

them is to inspect their eigenvectors, since the nonphysical field distributions usually 

vary in an unreasonable, sometimes random fashion, over the guide cross section. For 

the full-vector formulation here, where the divergence-free condition is neither
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implied nor enforced, it has been found that spurious modes occur and that they are 

distinctive in giving particularly high values of V-5.

To eliminate these spurious solutions, the penalty function has been utilized, 

a method which has been succesfully applied by Rahman and Davies (1984) in 

eliminating these solutions previously resulting in problems associated with 

microwaves and optical waveguides. The first stage is the identification of solutions 

or spurious solutions. This is achieved using the principle that for a real solution its 

eigenvector should satisfy div//=0. Thus, in essence, divH is calculated over the 

guide cross section. The nature of divH variations for different eigenvectors are then 

examined and only those solutions are considered which have low value of divH. 

Now since only the eigenvectors with low divergence are checked, a real solution can 

readily be identified among the spurious.

To implement this logic as the penalty function method, an integral is added 

to the functional (eqn.(4.1).) which satisfies div//=0. Thus the divergence-free 

constraint is imposed by using the penalty technique, and it can be written in the new 

expression for the functional

CD 2 = -

f ( V x / / ) * e ( V x H)dQ. + \ —  i f  ( V • h Y ( V ■ H]dQJA v c MA vV e o

J H* p HdQ.
4.3

This method is comparable to the classical addition of an integral which changes the 

natural boundary conditions. The penalty function method thus reduces the spurious 

solutions and it has been shown to improve the quality of the field eigenvectors. The 

spurious solutions can be suppressed into the region «eff < 1 / V s , where neff is the 

effective index and S is the penalty factor. This indicates that, the larger S is the 

narrower the region for the spurious solutions. For example, to suppress the spurious 

solutions from the region n  ̂ > nmin, we only have to choose S>  1 / nmin2 . In this
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connection, for S =1, the spurious solutions can be completely eliminated from the 

slow-wave region (Koshiba, 1992).

The waveguide cross-section region extends to infinity for many practical 

optical waveguides. The crudest approach to represent the problem is the simple 

truncation at a certain distance which sets artificial boundary walls enclosing the 

guide (McDoogall and Webb, 1989). However, this approach either introduces a 

significant error when the boundary is too close, or requires the consideration of 

consider an excessive large domain. Open-boundary optical problem can be easily 

tackled by considering infinite elements (Rahman and Davies, 1984; Bettes, 1980) 

which extends the region of interest to infinity. Infinite elements have an 

exponentially decaying shape function, which is consistent with the field variation 

outside the core and the resultant functional is also integrable over the infinite area of 

the element. These infinite elements extend the explicit field representation to 

infinity without increasing the matrix order, so the computational time is virtually 

unchanged. These decay parameters can systematically be optimized if required, but a 

reasonable assumption of decay parameter will always provide a much improved 

result (Rahman and Davies, 1984).

4.2.2 Dispersion characteristics of MQW semiconductor waveguides

Semiconductor quantum well and super-lattice structures are ultrafine layered 

media whose thicknesses are in the range of a few atomic layers. The presence of 

these ultrafine layers may affect the motion of electrons and this leads to a quantum 

size effect when the physical dimensions of the layers are comparable with the de 

Broglie wavelength. The major benefit brought about by using MQW region in 

semiconductor lasers is the greatly reduced threshold current, improved temperature 

stability, narrower linewidths and wavelength tuning (Yariv, 1989). The enhanced 

nonlinearies of such quantum well regions are also very promising for use for future 

all-optical switching and signal processing devices (Erhlich et al. , 1993).
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Table 4.2.1 shows the effective indices (p / k0) for planar multiple quantum 

well (MQW) structues. For this problem, the MQW region consists of 70 InGaAs 

quantum wells(nw =3.4636) sandwiched between InP barrier layers (nh =3.17174). 

The calculations were carried out for MQW planar structures with barrier thickness 

of 10.0 nm and for different well thickness(ifw). The whole MQW region was 

sandwiched between InP capping and substrate layers to form an optical waveguide. 

The free space operating wavelength considered is 1.52 (im. The effective index 

((3 / jfe0) is shown in the table for the TE0 and TM0 modes. It takes less than 1 second

on a SUN SPARCstation 2 to analyze this structure, with 1000 mesh divisions.

Hw TE modes TM modes

1 nm 3.17922 3.17818

2 nm 3.19438 3.18965

3 nm 3.21053 3.20317

4 nm 3.22621 3.21692

5 nm 3.24085 3.23017

6 nm 3.25427 3.24262

7 nm 3.26650 3.25419

8 nm 3.27761 3.26486

9 nm 3.28770 3.27469

10 nm 3.29688 3.28373

Table 4.2.1 The effective indices for the TE and TM modes for MQW guides.

As a second example we study a semiconductor laser structure with a 

multiple quantum well (MQW) active region. The InP rib capping and isolation layer 

refractive index is again taken to be 3.17174 at a wavelength of 1.52p.m. To facilitate 

the calculation, the MQW layer is replaced by a single homogenous layer with a 

weighted average dielectric constant (Alman et al., 1992). For this example, the 

equivalent refractive index for the 71 quatum well layers and the 70 barrier layers is
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considered to be 3.2578 for the TE modes. The rib width and heigth are 3 pm and 

2.1pm respectively and the total heigth of the MQW active region is about 1.0 pm.
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Figure 4.2.2.1: Variation of the effective indices (NIJV2JV3), spotsizes (51,52) and 
power fractions (Pl,P2) with the wavelength for the quasi-TE modes.

Figure 4.2.2.1 illustrates the variation of the effective index spot size (S), and

the power confinement factor (P), with wavelengths, for / / ' '  (dominant quasi- TE] )

and H-2] (second quasi- TE2) modes. For this laser structure most of the power is

concentrated in the active region (more than 80%) and it reduces very slowly with the 

wavelength. The power fraction in the active region is almost the same for the 

H{\ and H2] modes. The spot sizes increase slowly with the wavelength as the 

confinement factors and effective indices reduce. This structure can support at least 

four quasi-TE modes at the wavelength of 1.52 pm.
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Figure 4.2.2.2: Variation of the effective indices (Nl,N2), spot sizes (51,52) and 
power fractions in the active region (P1,P2) with the total optical power for the first 
two quasi-EE modes.
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Figure 4.2.2A: Power contours for the a) H;] and b) H\ , modes at a wavelength of 
1.52 |xm and total normalized optical power of 0.01.

Figure 4.2.2.2 illustrates the variation of the optical parameters with the normalized 

power when considering the self-defocusing nonlinear MQW region. For this 

example we have considered the weighted nonlinear coefficient n2 as

1.0x10~um2 I W (Alman et al., 1992; Skinner et al., 1989) in the active region and 

for this value of n2 the unit of normalized power is 170mW. The effective indices 

reduce with the total power and the power fractions inside the active region also 

reduce, although slowly. The spot sizes for the first two TE modes increase with the 

total optical power. Figure 4.2.2.3 illustrates the variation of the effective indices, 

power fractions and spot sizes for the fundamental quasi-TE and fundamental quasi- 

TM modes with the total optical power. The equivalent refractive index used for the 

active region for the TM modes was different, and equal to 3.24752. The fundamental 

quasi-TF mode has the higher propagation constant, higher power confinement and 

smaller spot size than the fundamental quasi-TM mode. The power density contours 

for the two TE modes at a total optical power of 1.7mW is illustrated by Fig. 

(4.2.2.4). Due to the one-fold symmetry of the laser structure, it is only necessary to 

consider half of the cross-section in the computation.

4.2.3 Dispersion characteristics of a planar nonlinear slab waveguide

In this section a a typical nonsymmetrical planar waveguide structure 

consisting of a linear glass film of a refracive index 1.57 is considered. The cladding
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is considered to be a Kerr-type nonlinear liquid crstal MBBA, with refractive index 

n = \55 + n2I where n2 is 10“9 m2 / W , I is local energy density in W / m2 and the 

substrate is linear with refractive index 1.55. The wavelength considered here is 

0.515 |im and we have solely concentrated on TE mode but the method can be 

equally applied to TM modes. Figure 4.2.3.1 illustrates the variation of the effective 

index ne = (P / k) for the stable modes with the normalized total power for different 

guide thicknesses. The power density per unit distance along the horizontal 

transverse direction (x) has been used. An increase in the input power creates a 

higher refractive index contribution, and this causes an increase in the effective width 

of the guide, and thus an increase in the effective index. It can be observed that for 

film thicknesses, h, of 1.0 and 1.1 microns, there are sudden jumps in the effective 

indices in the high power region. It can also be noticed that the effective index at the 

start of this transition is equal to the film index, which is 1.57. For a larger film 

thickness, the variation of the effective index with power is initially slow but above a 

certain threshold power the propagating mode moves abruptly from the linear core 

region, to the nonlinear cladding region, showing a jump in the effective index 

relationship in Fig. 4.2.3.1.

Effective Index

Figure 4.2.3.1: Variation of effective indices of the stable modes with total power for 
different guide thicknesses, h.
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Below the threshold power the nonlinear contribution is quite small, and the film 

guided mode is nearly symmetrical in nature. As the power increases, the refractive 

index in the nonlinear slab starts increasing and the mode profile shifts towards that 

direction. Beyond the threshold power, the film guided mode quickly becomes a 

solitary wave. The threshold powers for the slab thicknessses 0.9, 1.0 and 1.1 

microns are 34.6, 37.6 and 42.1 mW/mm respectively. This result also agree well 

with those of Seaton et al. (1985), except the unstable regions, which again fits well 

inside the hysteresis loop.

Once the film guided mode becomes the solitary wave, the total power is 

reduced, but the earlier dispersion curve is not retraced. As the power is reduced 

monotonically, below a certain threshold power, the surface mode suddenly 

transforms back to the film guided mode. For higher slab thickness, this threshold 

power level is higher, and also the transition starts with a jump to reach the surface 

mode dispersion curve, and then follows it. It has been observed that at this threshold 

power, due to the optically induced increase of the refractive index, the cladding 

refractive index equals to that of the film index at the cladding/film interfaces. Once 

a film guided mode becomes a surface mode, then the film thickness has very little 

effect on its dispersion curve, as most of the power is confined around any one of the 

two cladding/fim interfaces.

4.2.4 Stability Analyses of the finite element modal solutions

As has already been pointed out in Section 4.2.1 and demonstrated in Section

4.2.3, the refractive index distribution in the nonlinear optical waveguide depends on 

the field intensity profile and this in turn also depends on the refractive index profile. 

It this idea that is used in the finite element iteration approach, to a seek self- 

consistent modal solution. Solving initially the waveguide problem, without 

considering the nonlinear contribution, the resulting field profile is scaled to the 

given total power level, and used to calculate the associated refractive index change 

by applying any nonlinear law. The new refractive index profile is then used to
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recalculate the nonlinear refractive index contribution for the next iteration. This 

iteration scheme is continued until a consistent and stable solution is obtained. In this 

section the stability of this iteration procedure is tested. For this task we have 

considered the same example, used in Section 4.2.3 (see Fig.4.2.3.1).

In general, stable stationary waves are considered as those waves whose field 

distributions do not change with propagation distance (Moloney et al., 1986) and 

Akhmediev et al. (1984) found that the solutions are stable if 0P/d|3 is positive, 

where P is the total guided-wave power. In our finite element approach we look for 

consistent solutions only where the field profile and the index profile are consistent 

and do not change with the iteration.

0 5 10 15 20 25 30 35
Iteration

Figure 4.2.4.1: Variation of the effective indices with iteration when the stable modal 
solution is disturbed at iteration 15 for h = 1.0 and total power = 0 .8.

Figure 4.2.4.1 shows that the iteration process reaches stable states only after 

8 iterations for a normalized total power of 0.8 with /z=1.0 pm. After the modal 

solution reaches such a stable state, at iteration step 15, the stability is deliberately 

disturbed by either increasing or decreasing the total power, only for one iteration 

step. After this disturbance, the total power is again maintained at 0.80 (normalized
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units) for the rest of the iteration and Figure 4.2.4.1 also illustrates that in all cases, 

the iteration resettles to the earlier stable value. Figure 4.2.4.2 also shows the stability 

of the modal solutions for total power values of 0.4, 0.6 and 0.8 units respectively 

for h= 1.1 [im and in all cases they were increased by 150% for only one iteration. 

When the disturbance is continued for a second iteration, Figure 4.2.4.3 shows more 

transient variations but again they reach stable modal solutions when the disturbance 

is withdrawn for the remaining iterations.

0 5 10 15 20 25 30
Iteration

Figure 4.2.4.2:Variation of the effective indices with iteration when the stable mode 
is disturbed by 150% increase in the total power.

Effective Index

Figure 4.2.4.3: Variation of the effective indices with iteration when the stable mode 
is disturbed at iterations 15 and 16 for a total power of 0.8 units.
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Further, the effect of changing the total power permanently, after it reaches an earlier 

stable solution, is studied. In Figure 4.2.4A, the total power is increased by 25%, 

40%, 45% and 50% respectively. When the power is increased by 25% only, the new 

total value of the power is still below the threshold and the stable mode remains 

confined in the central guide region with only a slight increase in the effective index. 

On the other hand, when the total power is increased by more than 40%, the new total 

power is now beyond the threshold level, and the mode moves quickly into the top 

cladding region with a sharp increase in the effective index. All these new stable 

effective index values for the new total power values agree exactly with their 

corresponding values in Fig. 4.2.3.1. Figure 4.2.4.5 shows the example when the total 

power is reduced by 10%, 20%, 30%, 74% and 77% respectively, after initially 

settling to the stable solution for a total power of 1.1 units, with the stable mode in 

the top cladding region. When the total power is reduced by 30% to 0.77 units, the 

new total power value is far below the threshold power for this core height, but the 

stable mode remains in the top cladding region - clearly the existence of showing the 

hysteresis loop in Fig. 4.2.3.1. When the new total power is reduced sufficiently, then 

the mode returns to the central core region.

Effective Index

Figure 4.2.4.4: Variation of the effective indices with iteration when the stable 
solution at a total power of 0.8 is permanently changed to higher powers.
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Figure 4.2.4.5: Variation of the effective indices with iterations when the stable 
solution at a total power of 1.1 units is permanently reduced to lower power levels.

These stability tests presented here show that the consistent modal solutions 

obtained by using the finite element method are extremely stable. In the following 

sections, another test of the method will be undertaken through a beam propagation 

analysis of the modes in different regions of the dispersion curves of Fig. 4.2.3.1.

4.3 Evolutionary Analysis

As a result of the complicated nature of many of the emerging integrated- 

optical devices, the development of algorithms capable of taking into consideration 

the structural nonuniformities is necessary. As shown above, the modal analysis has 

been succesfully applied to solve z-independent nonlinear optical waveguide 

problems. However, the results must be interpreted with care, as the absence of 

linearity or superposition means that expansion in terms of modes is no longer 

appropriate. Since the principle of superposition is no longer valid for the nonlinear 

case, one cannot rely on the modal decomposition procedure, which is useful and 

mathematically elegant for the linear case. The solutions discussed to this point are 

stationary. This does not guarantee that they are stable against the small perturbations
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which may arise from imperfect excitation or inherent fluctuations in the waveguide 

parameters, which are always present in real systems. Although in certain cases 

stationary analysis may provide useful information about the nonlinear properties of 

the wave, more involved nonstationary analysis is needed in practical solutions, by 

which one can predict the evolutional variation of a guided beam along the guide in a 

quatitative fashion. In nonstationary analysis, it is therefore necessary to use a 

numerical simulation technique. It is the aim of the following sub-sections to 

describe such a study, through beam propagation simulations by the methods 

developed in Chapter 3, of the propagation stability of the stationary waves along the 

guide.

4.3.1 CW Beam Propagation stability in uniform planar nonlinear waveguides.

In this Section, the results of beam propagation simulations using the finite- 

element-based split-operator method developed in Chapter 3 are presented. Different 

stationary waves chosen from the dispersion characteristics of Fig. 4.2.3.1, presented 

in Section (4.2.3) for h= 1.1 (im and threshold power P=42.1 W / m2, are chosen as 

the initial conditions. These simulations will enable us to confirm the CW stability 

characteristics of the dispersion curves of Fig. 4.2.3.1. For this task stable stationary 

waves are defined as those whose field profiles do not change along the propagation 

direction z, where otherwise the stationary solution is unstable. Three representative 

modes with propagation characteristics corresponding to: a lower-power mode below 

the threshold power (F)l =20 W /m 2), a medium power mode that corrrespond to 

points just below ( P2 =42 W /m 2) the threshold power and a high-power mode 

( P3= 50 W /m 2) above the threshold, are chosen. We will refer to these as mode 1, 2 

and 3 respectively in the following analysis.

Figures 4.3.1.1 and 4.3.1.2 show the evolutionary variation of the nonlinear 

TE wave along the guide, where the corresponding linear TE0 mode is input at the

start of the guide (z=0) for different values of the input power. Fig. 4.3.1.1(a) shows 

that mode 1, which corresponds to a value of P below P c (the threshold value), is
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stable and remains guided within the film. After propagating for some distance, mode 

2 , which is just below the critical power, loses its stability and the field maximum 

starts to drift into the nonlinear medium. However it remains at the film-cladding 

interface(Fig. 4.3.1.1.(a)).

Figure 4.3.1.1: Evolutional variation along a planar waveguide of a nonlinear TE0 
wave with power a) P = 20 W / m2 b) P= 42 W / m2.

Mode 3, which corresponds to a value of (3 above the threshold also propagates some 

distance along the waveguide, before losing stability, as shown in Fig. 4.3.1.2. The 

loss of stability is characterized by the ejection or emission of a soliton-like profile
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which propagates from the guide, leaving a low amplitude profile which remains 

guided. These results agree well with predictions from the dispersion curves and 

previously reported results (Leine et al., 1988; Moloney et al., 1986).

X(um)

Figure 4.3.1.2: Evolutional variation of a nonlinear TE0 wave with power 
P = 50 W / m2 along the guide.

4.3.2 Pulsed excitation of uniform nonlinear planar optical waveguides.

In most beam propagation analysis of nonlinear waveguides, the spatial and 

temporal effects are treated separately but spatiotemporal effects that do not permit 

space-time factorization can be observed in media with cubic nonlinearity. Most of 

the proposed all-optical devices will be required to operate with picosecond or 

subpicosecound serial pulse trains at speeds limited only by the relaxation time of the 

nonlinearity. These devices are essentially ‘pipe-line processors’ in the sense that a 

number of pulses separated in space can simultaneuosly be present inside the device. 

For an instantaneously responsponding nonlinearity, the nonlinear index change 

follows the optical signal precisely and the maximum processing speed is limited by 

the pulsewidth. For nonlinearities with a specific turn-off time, the nonlinearity must 

relax sufficiently between pulses to avoid crosstalk between adjacent pulses. A study 

of the effect of nonlinear response time of the proposed devices based on nonlinear 

waveguide phenomena is therefore necessary.
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In this section, such a study is made of the propagation of a spatio-temporal 

pulse in the asymmetric 3-layered nonlinear waveguide treated in Section 4.2.3. The 

method employed is the novel time-dependent split-step finite element method 

which has already been described in Chapter 3. In each of the computations here, the 

initial pulse shape is generated in such a way that the peak intensity profile is that 

of the mode corresponding to the high power mode (Mode 3) of power P=50 W / m2. 

This profile is then modulated, in time, by a super-Gaussian as,

2m
E(x,t) = £(;c,p)<r((" T°,/T') 4.4

where E(x, p j is the transverse profile corresponding to a symmetric mode with 

effective indexP ,T0 defines the pulse maximum in time,!, is the pulse length and 

the parameter m controls the degree of edge sharpness of the pulse.

Figure (4.3.2.1) shows a typical initial pulse shape used in these computations 

where the field profile was selected from the dispersion curve of Fig. 4.2.3.1 obtained 

by the use of finite element modal analyses. The nonlinear response of the media is 

modeled by the phenomenological Debye model of eqn. (1.2.1).

Figures 4.3.2.2 a, b, c, d show the snapshots and contour plots of propagation 

of a pulse with a peak power P=42 W / m2. As the nonlinear response is considered 

here to be instantaneous, each slice of the pulse is affected by the self-induced 

nonlinearity and effectively behaves as the CW mode of power P=42 W / m: of the 

waveguide. The leading and trailing sections, however, have peak powers 

corresponding to modes below the threshold power level. This gives rise to the 

stripping of the central part of the pulse, where the high-power slice can be seen to be 

unstable and propagate away from the guide, leaving the low-power slices to 

propagate unchanged.
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Figure 4.3.2.1: A “snapshot” of a typical initial super-Gaussian pulse(m = 10) of a) 
the pulse profile b) a contour plot.
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Figure 4.3.2.2: Pulse profiles after propagation of z = 100 p.m (a,b) and z = 200 pm 
(c,d) along the guide for x D = 0 .0 .

Fig. 4.3.2.2a indicates that the stripped pulses experience self-focusing in the 

nonlinear medium as it propagates away from the guide and thus they become thinner 

in the transverse direction, with larger amplitude. Fig. 4.3.2.2(c) shows the formation 

of secondary peaks which follows the stripped pulse due to the fact that they 

correspond to lower-power unstable modes, which propagate further before losing
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stability. Secondary peaks also emerge from the stripped pulse once it has entered the 

nonlinear medium. This can be explained by considering the this pulse as initially 

containg two modes propagating with different effective indices. Each mode has a 

separate stability characteristic and therefore obtains a slightly different transverse 

velocity, once stability is lost. This eventually results in the complete separation of 

the modes as they propagate away from the guiding layer. As the nonlinearity is 

instantaneous, the final pulse shapes are symmetric in the direction of propagation.

The stability characteristics for pulses propagating in a planar nonlinear 

waveguide, where any nonlinear medium has an instantaneous response, have already 

been indicated by Mitchel and Moloney (1990) to be analogous to the CW case, as 

each slice of a pulse is affected by only the local nonlinearity and these have been 

confirmed by the results here.

4.3.2.1 Effect of finite time response of the nonlinear medium

Next the effect on the stability characteristics of pulse propagation in media 

exhibiting a finite time response is investigated. Obviously, for a finite response time, 

a delay in the appearance of any strong nonlinear effect is expected. Thus, the leading 

edge of a pulse is epected to experience little or no nonlinearity, while the trailing 

edge will experience a delayed effect from the pulse peak. We undertake the same 

simulations with the same pulse and waveguide as in Section 4.3.2 but vary the value 

of the finite response times asx D = ^x p, ^x p and %x p where x p is the full pulse 

width.

Figs. 4.3.2.3 - 4.3.2.5 show the pulse profiles and contour plots. Comparing 

the results, obtained from the simulation, it is evident that the leading edge of each 

pulse remains intact. As x D is increased this section of the leading edge is increased 

in length, due to the delay in the appearance of the nonlinear response of the 

nonlinear medium.
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Transverse X
(d)

Figure 4.3.2.3: Pulse profiles and contour plots after propagation at a) and b) z -  150 
pm , c) and d) z = 200 pm, for x D = %,x p
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Figure 4.3.2.4:Final pulse profile (a) and contour plots (b)at z = 200pm for x D =
Yi ^ p -

Figs. 4.3.2.3 a, b, c, and d show a significant breakup of the pulse which starts to 

eject a packet into the nonlinear medium as the pulse becomes unstable. This packet 

experiences a delay in the nonlinear effect and becomes distorted. The ejected packet 

does not propagate away from the guide and remains close to the initial pulse, 

causing further distortion of the tail section. This distortion of the trailing edge is also 

evident in Fig. 4.3.2.4: however, the leading portion of the initial pulse suffers less 

distortion, due to the increased response time of the nonlinearity. Fig. 4.3.2.5 shows 

that as x D is further increased, this distortion of the initial pulse is suppressed to a 

point where no ejection takes place, the pulse reamins guided and thus can be 

considered essentially stable.

97



(a)

Transverse X

(b)

Figure 4.3.2.5: A snapshot of the final pulse profile (a) and contour plot (b) at z = 
200 pm for x D = %T P.

4.4 CW beam and Pulse propagation in nonlinear tapered waveguides.

In the preceeding Section, it was shown that unstable nonlinear guided waves 

can decay by emitting spatial solitons into the nonlinear bounding medium. It is a 

well established idea that waveguides with a linear film and substrate but a nonlinear 

cladding exhibit multi-soliton emission in which optical spatial solitons could be 

emitted for sufficient input powers. For an axially-nonuniform nonlinear waveguide, 

such as the linearly tapered dielectric waveguide, the propagation behaviour of an 

unstable guided wave has been shown to be dependent on the tapered angle (Hayata 

et al., 1989). That is, the soliton emission is more enhanced by adiabatically 

narrowing the film width along the propagation axis. A promising application of 

tapered waveguides in integrated optics has recently encouraged the search for
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possible devices based on their nonlinear counterparts. However, the study of 

nonlinear phenomena in nonlinear tapered waveguides has received little attention 

beyond some work reported which has found them to be quite promising for the 

production of phase-matched solitons and as angular- and power-controlled scanners 

(Hayata et a/.,1989; Shi and Chi, 1991). Most of these analyses and proposed devices 

have been based on CW-operation, but as already pointed out in this work, all-optical 

devices will be required to operate on information suitably encoded as train of pulses 

of equal or unequal amplitude, and therefore their actual mode of operation needs to 

be studied.

Here, optical spatiotemporal pulse propagation in nonlinear tapered slab 

waveguides with Kerr or saturable nonlinear cladding, that may exhibit relaxed 

nonlinear response by the new time-dependent step-by-step finite-element method, 

has been analyzed. Novel spatially distributed power-controlled demultiplexing of 

optical pulse trains has been demonstrated. TE propagation has been considered in 

this work but the method can easily be applied to TM beam propagation in contrast to 

the fast Fourrier BPM which can not handle TM waves.

Figure 4.4.1: Square temporal profiles of initial condition a) single pulse 
b) pulses in a train c) contour plot of b.
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The simulations were performed with the fundamental mode solution obtained with 

the finite element method as the input, while their subsequent propagation along the 

guide was computed using the novel time-dependent step-by-step finite element 

method. The nonlinear structure consists of a tightened taper film(/z/ = 1.5571)

asymmetrically bounded on one side by a Kerr or saturable nonlinear self-focusing 

cladding (nc = 1.57) and on the other side by a linear substrate (ns = 1.569),

where^. =0.633, the taper angle, 0=0.1 degrees, the film thickness, df =\0\lm and 

a c = 1010 w2 / W2 with the subscipts,/ c referring to film, substrate and cladding

respectively. The computations were performed initially with an initial pulse shape 

chosen as the linear zeroth-order TE mode of this waveguide, modulated in time by a 

square profile.

Fig. ( 4.4.2) shows multisoliton emission into the nonlinear cladding as the 

beam propagates down the tapered guide as in a uniform structure. However the 

relative phase difference between the solitons, resulting from the tilted angle of film-

cladding interface, leads to a mutual attraction between them. As expected, the CW 

simulations of the taper with saturable nonlinear cladding showed the suppression of 

soliton emission for higher saturation values. Fig. (4.4.3) shows spatio-temporal 

pulse propagation in an instantaneuos Kerr nonlinear taper. Each slice of the pulse 

behaved as a cw beam with soliton emission and soliton collisions taking place. For a 

finite response time, the delay in the appearance of the nonlinear effect led to a 

severe distortion of the pulse’s trailing edge while the leading edge of the pulse 

remained relatively less distorted. Fig 4.4.4a shows that as the relaxation is increased, 

the distortion of the initial pulse is suppressed. As has already been shown in Section 

(4.3.2.1), the distortion is reduced to a point where there could be no soliton 

emissions taking place and the pulse could be regarded as essentially stable.
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Figure 4.4.2: CW evolution of TE0 beam in a nonlinear tapered waveguide
(P = 2.92 mW/pm, z = 2000X).

Figure 4.4.3 : Output pulse profiles for pulses propagating in a taper with cladding 
material with a) instantaneous response b) response time of x D -  '/ST p, x p is pulse 
length.

The combined effect of saturation and material response leads to more suppression of 

soliton emission as is evident in Fig.4.4.4b (% =0.2, x D =%T P), where % is the 

saturation coefficient defined in eqn. (3.62). However a relatively larger value of 

saturation is required here to fully suppress the soliton emission than in the case of a
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uniform guide. For the pulses with equal amplitudes, each individual pulse behave 

independently, but similarly to the other pulses in the train except for a 

noninstantaneous material response where each pulse experiences the effect of its 

local nonlinearity.

Figure 4.4.4: Output pulse profiles for pulse propagating in a taper with a) Kerr- and 
b) saturable nonlinear cladding with response time x D = P.

Fig. 4.4.5 shows the result of the simulation of a train of four pulses which differ in 

peak amplitude by a few percent. It is evident from this simulation that each pulse 

started to emit soliton at a different position along the taper, showing the power 

dependence of the soliton emission. This idea could be useful for the realization of a 

time-dependent, spatial optical power limiter.
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Figure 4.4.5 :a) Finial pulse profile and b) Contour plots of 4 pulses of unequal 
amplitudes in a train.

4.5 A novel soliton-based all-optical pulse demultiplexing device.

A novel soliton-based device for pulsed routing of a light beam for photonic 

switching is proposed in this section. The mechanism is similar to the CW spatial 

scanner proposed earlier by Shi and Chi (1991). Fig. 4.5 shows the the schematic 

diagram of the proposed device which consists of a tapered waveguide, which is the 

same as that discussed in Section 4.4. However, the tapered waveguide terminates 

into a nonlinear medium, where the nonlinear medium at the end is chosen in the 

same way as the nonlinear cladding of the taper. CW wave propagation of an 

incident field that is composed of a strong TE0 wave and a weak TE] wave was 

analyzed by Shi and Chi in 1991 and this indicated that power- and phase-controlled 

routing of the strong TE0 pump wave by varying the power or phase of the weak 

TEX is possible. A pulse with the spatial profile consisting of a dominant TE0 and 

small amount of TE] was used as an initial pulse for a two-mode pulse simulation. A 

spatiotemporal soliton pulse excited in the narrower output end can follow different 

routes depending on the power and relative phase of a weak spatially asymmetric 

signal, added via a probe to the main input pulse. Addition of a train of probe pulses 

with different amplitudes or relative phases to a main pulse train of equal or unequal 

amplitudes results in the spatial demultiplexing of the main pulse train. Fig. 4.5.2 

shows the output pulses for an incident pulse train consisting of a combination of
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four pump pulses of equal amplitudes and an equal number of probe signal of 

unequal amplitudes. The sensitivity of the relative power of the probe pulses to the 

location of the output pump pulses is depicted in Fig. 4.5.3.

Figure 4.5 1: Schematic diagram of proposed pulsed spatial demultiplexer.

-50 -25 0 25 50

Transverse Xfum)

(b)

Figure 4.5.2 : Demultiplexing of 4 pulses in a train a) “Snapshot” of final pulse shape 
b) Contour plot at z = 2500 A.
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Figure 4.5.3 : Demultiplexing of four pulses in a train a) snapshot of final shapes and 
b) Contour plots at z = 2500 X. Power of 4th pulse 2.5% less than that in Figure 4.5.2.

4.6 Summary

Important optical parameters such as effective indices, spot sizes and power 

confinement factors for both planar and two-transverse dimensional semiconductor 

laser structure with linear or nonlinear MQW active regions were obtained. The 

dispersion characteristics of a uniform planar nonlinear waveguide were obtained and 

the nonlinear modal solutions obtained by using the finite element method were 

vigorously investigated, demonstrating that the consistent solutions are extremely 

stable. Beam propagation simulations of the modal solutions confirmed the 

predictions of the solutions on the dispersion curves. Spatiotemporal pulse 

propagation in both uniform and tapered planar slab waveguides with self-focusing 

nonlinear cladding material that may exhibit relaxed nonlinear response were also 

investigated and the results agreed well with similar analysis by Mitchel and 

Moloney in 1990. A novel application based on a nonlinear tapered waveguide was 

proposed for pulse demultiplexing.

In the next chapter, both the finite element modal analysis method and the 

propagation methods will be applied to investigate optical waveguides that comprise 

more than one guide.
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5.0 ANALYSIS OF NONLINEAR OPTICAL COUPLED WAVEGUIDES

5.1 Introduction

Recently, there has been a great deal of interest in choosing all-optical 

devices with Kerr-like nonlinear media for ultra-highspeed optical signal processing. 

One of such device, a nonlinear directional coupler, first proposed in 1980 by Jensen, 

utilizes the linear interaction of the fields of two optical waveguides in close 

proximity and a nonlinear interaction due to the change of the refractive index of part 

of the coupler structure as a result of high propagating power. The overlap of the 

evanescent fields causes the power to swap between the two guides, this swap is 

modified by the nonlinearity of waveguide materials at high intensity, resulting in 

strong nonlinear transmission characteristics. Using coupled mode theory and 

assuming an ideal Kerr-like media for analyzing a nonlinear directional coupler, 

Jensen (1980) showed that there is a critical input power which leads to a 50:50 

splitting ratio into two channels at the output. At higher input power, the transfer into 

the cross state is inhibited and eventually all of the output powers appears in the 

incidence channel. These operating characteristics would be useful for constructing 

optical AND gates. On the other hand, the optical output in the cross state exhibits 

the characteristics of an XOR gate. Moreover, when the nonlinear coupler is biased 

by a control beam that yields a balanced output, a probe beam input to the coupler 

could be amplified at the output resulting in an all-optical transistor.

Li Kam Wa et al. (1985) first demonstrated experimentally the process of 

switching with a change in power using such a nonlinear directional coupler made 

entirely of a GaAs/AlGaAs multiple quantum well (MQW). To obtain a high degree 

of switching at low power levels, a high nonlinearity is desired. This nonlinearity 

can be increased in MQW structures over that of bulk material due to enhanced 

excitonic absorption. Also, the nonlinearity can be increased by operating at light 

wavelengths close to the band edge, where however, absorption losses also increase. 

In the device demonstrated by Li Kam Wa et al. (1985), absorption takes place in all 

regions. Cada et al. (1986) proposed a nonlinear coupler which used a nonlinear
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medium, only in the active coupling region, to reduce the loss. This device could 

therefore be operated closer to the band edge with subsequent higher nonlinearity, but 

maintainaing a reasonable level of loss.

For the analysis of problems of optical couppled waveguides, three strategies are 

frequently adopted, namely, coupled-mode theories (Jensen, 1980; Meng and 

Okamoto, 1991; Wabnitz et al, 1986) the combination of supermodes approach 

(Cada and Begin, 1990), and propagation methods (Thylen et al., 1986). For 

quantitative characterization of a linear coupler, the supermode combination 

technique requires that both the propagation constants and modal fields of the 

composite waveguides are known a priori, whereas in coupled mode theories it is 

assumed that the propagation constants and modal fields of each individual 

waveguide in isolation are known. In characterizing a coupler with the use of 

propagation methods, the field distribution input to one of the coupled waveguides is 

normally taken to be the fundamental modal field of that waveguide in isolation. 

Furthermore, for useful directional couplers, each waveguide in isolation should 

support only one or two guided modes. Therefore all these techniques require the use 

of modal analysis. However, optical waveguides whose modal fields can be solved 

analytically are rare. Intense research and examination conducted in recent years has, 

however, led to important progress on the validity of the coupled-mode theory. It has 

also been shown that, by including proper terms, coupled-mode theory can also fully 

describe a nonlinear coupler system (Meng and Okamoto, 1991).

There have been several publications discussing the analysis of nonlinear optical 

couplers by the use of the coupled-mode theory. In Jensen’s analysis, the so-called 

conventional coupled-mode theory was adopted whereby the nonlinearity effect is 

accounted for by the inclusion of the self-phase modulation terms. The variation of 

the coupling coefficient due to the nonlinearity and nonlinear coupling at high input 

intensity are neglected in his work. It is quite reasonable to use the standard coupled-

mode theory in analyzing the switching characteristics of a nonlinear coupler and 

leave out the effect of nonlinear coupling and the change of the coupling coefficient 

with power, since the contribution from nonlinear coupling and the modification of
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the coupling coefficients by the nonlinearity are proportional to an integral involving 

evanescent fields and are small compared to the self-phase modulation and linear 

contributions. In fact, the cross-phase modulation terms, comparable to those of the 

nonlinear coupling terms can also be ignored in Jensen’s work for the global analysis 

of a nonlinear coupler. However, to evaluate the problems more accurately, the 

nonlinear coupling effect and the nonorthogonality of fields in two guides on a 

nonlinear coupler should be taken into consideration as their characteristics are very 

sensitive to a small perturbation of the coupler parameters and power. The 

nonorthogonality effect, combined into nonlinear coupler equations, mainly leads to 

contributions when two guides are not far separated. To take these effects into 

account, several coupled-mode formulations (Meng and Okamoto,1991 Cada and 

Begin, 1990) have been published and numerical experiments with the BPM show 

that the accuracy has been improved. Recently, Cada et. al. (1986) have analyzed the 

power transfer behaviour of the NLDC, based on the nonlinear combination of the 

symmetric-like and antisymmetric-like modes, showing that the coupling length is a 

function of the power. Weng and Okamoto (1991) proposed an improved coupled 

mode equation for a nonlinear directional coupler based on the generalized 

reciprocity relations. The field distribution depends on the power in the nonlinear 

waveguides, and hence, all the coefficients in the new formulation, including the 

coupling coefficients, become power dependent.

Coupled mode theories using only individual guided modes as trial functions are 

not accurate when applied to coupled waveguides with strong coupling and/or strong 

nonlinear effects. A novel perspective for this problem however can be obtained by 

using the nonlinear supermodes of the coupled waveguide in the analysis. In this 

Chapter, the behaviour of a light beam in both the linear and nonlinear coupled 

waveguides has been investigated, based on the study of the supermodes of the 

composite structure. To demonstrate the strength of the finite element modal analysis 

technique for analyzing multiguide systems, first the propagation characteristics of 

optical guided modes in a multilayered metal-clad planar optical waveguide have 

been investigated, as shown in Section 5.2. Results for symmetric and asymmetric 3- 

layer and 6-layer structures in the nanometer range, of resonance, field profiles and
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linear supermodes, as well as the dependence of the modal field characteristics on the 

metal thickness, have been presented. In Section 5.3 the behaviour of light in a planar 

slab nonlinear directional coupler using the power-dependent supermodes was 

investigated. A similar study has been reported recently by Dios et al.( 1992). In their 

work, the authors employed a transfer matrix method for seeking solutions to the 

wave equations. Here the accurate finite element method is employed to seek such 

solutions to the supermodes of the composite waveguides. Further the FEM-based 

BPM algorithm has been applied to investigate the transmission characteristics and 

the effects of nonlinearity and saturation for a two-waveguide nonlinear directional 

coupler (NLDC). The switching behaviour of a two-waveguide directional coupler 

for both CW and pulsed excitation, as well as the effect of finite response time of the 

material nonlinearity, is presented in Section 5.4.

5.2. Surface plasmons in evanescent wave fiber-optic sensors

Surface plasmon modes, which are attenuated electromagnetic modes 

supported by either a single metal dielectric interface or more composite structures 

like a thin film surrounded by semi-infinite dielectrics and vice versa, are inherently 

TM-polarized. At the wavelength of operation, the real part of the metal-dielectric 

permittivity must be negative. Some of the surface-active media (media having 

complex dielctric constants with negative real parts ) that have been used so far are 

gold, silver, aluminum, indium, iron, nickel, and tungsten (Zervas, 1990). We 

analyze here the coupling between fiber modes and metal modes. The structure 

considered is a multilayered coupled metal-cladded guide and an optical fiber with an 

oil buffer layer between the metal and the fiber. This structure has a range of 

application and has been studied both experimentally and numerically (Zervas, 1990; 

Johnston et al., 1990). However due to the very small size of the oil buffer layer, the 

determination of the resonance condition by the variation of the oil thickness is 

complicated. Results, for this type of problem using the method described, are 

presented below.
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Figure 5.2.1: Variation of the effective index with metal thickness for a 3-layer 
asymmetrical planar waveguide.

In this example, a symmetrical structure, where a thin aluminum layer with thickness, 

h microns, is bound on both sides by glass with refractive index 1.5, is analyzed. The 

refractive index of the central metal layer is considered to have a value 

j6.841 (imaginary) for infrared light of 0.850 microns in wavelength. For such a 

structure, the eigenfield of the first mode is antisymmetric (odd) and that of the 

second mode is symmetric (even) and the field decays exponentially in the two 

cladding layers as well as inside the central metal layer, where its relative dielectric 

constant is negative (e m=-46.8). The effective indices ( |3 //:0) of both the guided

modes are higher than the refractive indices of the two identical cladding layers 

(nc - n s =1.50). For a single metal/dielectric interface, it is possible for an optical

wave to propagate as surface mode with the field decaying exponentially in both the 

metal and dielectric regions. The antisymmetrical and symmetrical modes in three 

layer structures can be considered as the first (odd) and second (even) coupled 

supermodes of the two individual modes, at the two isolated metal/dielectric 

interfaces. Fig. 5.2.1 shows the variation of the effective indices of the two 

coupled supermodes with the thickness of the central metal layer, h. When this 

thickness of the central layer increases, the separation of the two interfaces also 

increases and the eigenvalues of both supermodes converge to that of the single 

metal/dielectric surface mode. Figure 5.2.2 shows the eigenvectors of the first (odd) 

and second (even) supermodes for metal thickness of 0.025, 0.5 and O.lmicrons. As 

the metal thickness increases, the first supermode (odd-mode) decays slowly in the
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adjacent cladding layers, whereas for the second supermode (even-mode), the field 

decays faster in the cladding layers.

Next a non-symmetrical three-layer structure has been analyzed. For this 

nonsymmetric structure, the central metal layer is bounded by two different 

dielectrics, when the refractive indices of the top cladding and lower substrate 

regions are 1.51 and 1.50 respectively. When the central metal thickness is large, 

two surface modes uncouple to two distinct modes of the two isolated metal/cladding 

(n=1.51) and metal/substrate («=1.50) respectively. Figure 5.2.3 shows the variation 

of the eigenvalues of the two supermodes for a non-symmetric structure in 

comparison to that of the earlier symmetrical structure. Figure 5.2.4 shows the field 

variation for the two supermodes for metal thickness 0.025, 0.05, and O.lmicrons 

respectively. For smaller values of metal thickness, the odd- and even-like modes of 

the nonsymmetrical structure are very similar to the odd and even modes of the 

symmetrical structure. Slight asymmetry in the field variation can be observed, but 

for higher metal thickness this asymmetry is much more pronounced for the same 

dielectric ratio(here 1.50/1.51). This is due to the coupling of two nonsynchronous 

surface modes, where only a small amount of power transfer is possible between 

these isolated modes, when they are not phase matched.

For the symmetrical structure, equal power is carried by the top and lower 

claddings for both the symmetrical and anti symmetrical modes. However, the power 

fraction for the even supermode increases with the metal thickness as, besides an 

increase in the metal thickness, the field in the two outer claddings also decreases 

faster. Figure 5.2.5 shows the variation of the power fractions Pc, P and Pm, the

power carried by the top cladding, the lower substrate and the central metal region 

respectively with the metal thickness for the nonsymmetric structures. For the odd-

like first supermode, the field maximum is at the top cladding/metal interface and the 

cladding power fraction, Pc, increases with metal thicknesses. Similarly, Ps

decreases but Pm increases slowly with /z, which will in turn increase the total loss of 

this mode. For the even-like second supermode, the field maximum is at the 

metal/substrate interface and Ps increases monotonically with metal thickness, h. Pc



decreases and Pm increases initially and settles to a constant value with metal 

thickness variation. It can be observed for the even-like second mode that although 

the field maximum is at the metal/substrate interface (see Fig 5.2.4d) for a smaller 

metal thickness, more power is carried by the cladding region as there the field 

decays more slowly.
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Figure 5.2.2: Variation of the field along the transverse axis.
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Figure 5.2.3: Variation of the effective index with the metal layer thickness for 
symmetrical and asymmetrical waveguides.
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thicknesses for the first supermode( a, b, c) and the second supermode (d, e, f).
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A multi-layer structure representing an optical fiber of variable diameter coupled 

to the earlier described non-symmetrical metal structure has been simulated. This 

type of structure has been widely considered for polished fiber-based polarization 

sensitive devices (Zervas, 1990; Johnston, 1990). We have considered coupling to 

the non-symmetrical metal modes by varying the metal thickness to achieve optimum 

mode coupling to the fiber mode.. This was simulated as an equivalent six-layer 

planar formation. The odd-like or even-like modal effective index can be varied by 

changing the metal thickness or by changing the refractive index of the matching oil 

layer.
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Figure 5.2.5 : Variation of the power confinement ratio in three layers for the even-
like and odd-like modes for an asymmetrical structure.

Figure 5.2.6 shows the change of the effective indices as a function of the 

odd-like metal mode with metal thickness. The effective index of the fiber mode is 

unchanged with the metal thickness and however, when this value is 0.03235 micron, 

these two modes intersect each other. For a metal thickness below 0.03235 micron, 

the fiber mode is the second supermode (here the term supermode means coupled 

mode between the fiber mode and the odd-like surface plasmon mode, which is itself 

a coupled surface mode, of the metal structure). For a metal thickness above 0.0324 

micron the fiber mode is the first supermode. When the metal thickness is about 

0.03235 micron, two modes (the fiber mode and the metal mode) are phase matched
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and only in this condition is the power transfer between the two modes possible. It is 

important to notice that if the metal thickness is changed only by 0.001 microns there 

will not be any appreciable power transfer between the two modes. The tolerance can 

be reduced by decreasing the thickness of the polished cladding layer and the phase 

matching region can be changed by altering the index of the matching oil. Figure

5.2.7 and 5.2.8 show the composite coupled modes at the phase-matching condition, 

when the fiber and the odd-like metal modes are coupled and when the even-like 

metal mode is coupled to the fiber mode, respectively.

E f f e c t i v e  I n d e x

Figure 5.2.6 : Variation of the effective index with the metal layer thickness showing 
phase matching at h -  0.0325 pm.

2 .0

I .5 .

l .0

0 .5

0.0

- 0 . 5 : ,

- 1 . 0 ;3
- I  .5

0 i 2 5 G 7 i  -3 10 l 1 ' 2 1  3 l 4
X in microns

Figure 5.2.7: Variation of the field along the transverse axis showing coupling 
between fiber mode and odd-like plasmon mode.

115



The effective index of the fiber mode was found to lie between the value of the guide 

and the core refractive indices. The effective indices of the plasmon modes lie above 

the refractive index of the bounding layers and for the first asymmetric mode it 

decreases sharply with the metal thickness whereas for the second symmetric mode it 

increases slowly with the metal thickness.

X(fim)
Figure 5.2.8: Field profile showing the coupling between fiber mode and even-like 
mode.

5.3 Planar nonlinear directional couplers

The most useful directional couplers normally consist of two single-mode 

waveguides placed in close enough proximity to achieve appreciable coupling 

effects. To illustrate the principle of the nonlinear directional coupler, the operation 

of a linear directional coupler is first considered. Assuming that the coupler is 

lossless and z-independent and that it supports only the two lowest order TE 

supermodes, with the first (lowest) supermode called an even or symmetric mode and 

the second, odd or antisymmetric mode, the electric fields of these modes can be 

denoted by

E*y(x,z)=\f + {x)e~fi*z 5.1

and

116



5.2E ; { x , z ) = y f ( x ) e - * ~ t

for the even and odd modes respectively, while (3+, and |3 are the propagation 

constants normalized with respect to k0. The amplitudes of the modal fields, are 

normalized such that

where a+,a~ are arbitrary constants but are assumed to be real, without loss of 

generality. For a practical coupler, there exists a point on the z-axis where the even 

and odd modes are reinforcing in guide 1 and are in opposition in guide 2 . 

Furthermore, if a+ = a~, almost all of the optical power appears in guide 1. After 

propagating a distance of

these two modes are reinforcing in guide 2 and are in opposition in guide 1. Then 

almost all of the optical power appears in guide 2. After propagating a further 

distance Lc, the optical power reappears in guide 1. The principle of operation of a

directional coupler is based on the phenomenom of beating or interference between
I

the two (or more for multiple waveguide coupling) supermodes. The distance L is

called the normalized coupling length or half beat length, as it equals the distance 

over which the guided power transfers from one of the individual guides into the 

other. The beat length is the most important parameter to characterize a directional 

coupler. When an optical beam is incident on, for example, guide 1, it will excite 

both the even and odd supermodes as well as the leaky radiating modes. By using the 

modal expansion method, together with mode orthogonality, the power coupled to 

each supermode can be uniquely determined (Marcuse, 1974). The leaky radiating 

modes will die away after a certain distance of propagation as we have assumed that 

the composite waveguide supports only the two lowest-order guided supermodes.

5.3

The total electric field in the coupler is given by

Ey(x,z) = a+Ey(x,z) + a Ey (x,z) = a+\\i+vi/ +(z)g - * +z + a \|/ (x)e jP z
5.4

117



The power will switch to guide 2 after an odd number of beat lengths of propagation 

(cross state) and back to guide 1 after an even number of beat lengths of propagation 

(bar state). Complete power transfer from one individual guide to the other is not 

strictly possible. This is because the even and odd supermodes cannot completely 

cancel each other in an individual guide because of the difference between their field 

distributions within a single guide. As a rule of thumb, the stronger the coupling, the 

shorter the beat length and the greater the difference between the modal field 

distributions of the two supermodes within a single guide, and thus the poor the 

degree of switching available.

Unlike its linear counterpart, the operation of the nonlinear directional coupler is 

more complicated. This is particularly so, when the beat length and field distribution 

of the composite structure are power dependent. Thus it is possible to use one beam 

to control another for all-optical signal processing.The nonlinear directional coupler 

utilizes the linear interaction of the fields of two optical waveguides in close 

proximity and a nonlinear interaction due to the change of the refractive index of part 

of the coupler structure, as a result of a high propagating power (Jensen, 1985). The 

overlap of the evanescent fields causes a power swap between the two guides; this 

power swap is modified by the nonlinearity of waveguide materials at high intensity, 

resulting in strong nonlinear transmission characteristics. For example, if the input 

power is launched into one guide of a suitable length, the output power can emerge 

from either of the two guides as a result of the controlling of the input power level. 

Such a scheme employs no electrical control signals and therefore it is an all-optical 

device, where changes in the coupling characteristics are controlled by optical 

powers in the modes. The mechanism which causes this interaction between the 

modes is the weak dependence of the refractive index profile on the light intensity, 

which is altered by the presence of the other mode. It is therefore necessary to 

investigate the two modes that exist mutually in a nonlinear coupler, as opposed to 

the linear case where the modes can be treated separately. Therefore, a nonlinear 

combination of the modes through the use of the FEM solution is introduced in 

Section 5.3.1. The mathematical steps involved in the evaluation of the propagation 

constants of the supermodes are similar to those described in detail in Chapter 5.



5.3.1 Nonlinear Supermode Combination Analysis

The supermode combination technique is perhaps the most accurate and also the 

simplest method available to characterize linear coupled parallel waveguides. For 

linear coupled waveguides of two parallel guiding regions, the computaion of the two 

lowest order modes of the composite structure is simple and similar to the method 

shown in Chapter 4. In particular, when a coupler is formed by two identical 

waveguides, use can be made of the symmetry property by solving half the structure, 

where the symmetry plane becomes a boundary. The boundary condition at the 

symmetry plane behaves like a magnetic wall for the even mode and as an electric 

wall for the odd mode. The even mode (or the electric field E in isotropic media) in 

the .E-formulation or the tangential components of the magnetic field H in the H- 

formulation need to be set to zero at the symmetry plane, when using the intermediate 

form of the weak formulation, and the other boundary conditions may be treated as 

natural boundary conditions. Similarly, for the odd mode, only the normal component 

of the magnetic flux density B (or the magnetic field H in isotropic media) in the H 

formulation or the tangential components of the electric field in the E formulation 

need to be set to zero. With the weak-guidance approximation using the scalar E- 

formulation, the symmetry plane is treated as a natural boundary condition for the 

odd mode when using the intermediate form of the weak formulation.

It is known that nonlinear modes are not subject to superposition. Thus, the 

prescribed supermode superposition technique, though the most accurate technique 

for analyzing linear coupler, cannot be applied directly to the analysis of nonlinear 

couplers. For the nonlinear coupler, the two modes may not be superimposed as in 

the linear case. Instead, each mode is perturbed slightly from its independent form by 

the presence of the other nonlinear directional coupler. The mechanism which causes 

this interaction between the modes is known to be the weak dependence of the 

refractive profile on the light intensity, which is altered by the presence of the other 

mode. It is therefore necessary to investigate the two modes that exist mutually in the 

coupler, as opposed to the linear case where the modes can be treated separately.
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Therefore a nonlinear combination of modes may be introduced here using the finite 

element method to determine the modes and combining them. We investigate the 

applicability of the finite element modal analysis method for the analysis of nonlinear 

directional couplers.

5.3.2 A GaAs-based MQW nonlinear directional coupler

The structure analyzed here is depicted in Fig (5.3.2.1) and consists of two planar 

slabs coupled vertically through a lossless Kerr-like medium. It was originally 

proposed and approximately analyzed by Cada et al.( 1986), and experimentally 

verified in (Cada et al., 1988), using a MQW material for the coupling layer. A layer 

of width w is sandwiched between two guides a and b, has the Kerr-like nonlinear 

refractive index n3 = «3 + nnlI where «3 and nnl denote the linear and nonlinear

refractive indexes and 1 is the local optical intensity. The media of the cladding and 

substrate are linear and have the same indices n ,. It is also assumed that two guides 

with linear medium have the same refractive index, n2, and width d, and all the 

media are lossless. Moreover, TE-wave propagation has been considered here. The 

numerical values used were «i=3.21, «2=3.513, «3 = 3.502-(2xl0'9 m2fV)I, d = 1.8 

(im, and w = 0.9 |lm, corresponding approximately to typical values of a GaAs-based 

MQW coupler. The operating wavelength was taken to be 0.850 pm (ie. near the 

exciton peak).

The approximate analysis treated the MQW as a lossles and later as a lossy 

Kerr-like medium since operation near the exciton peak was assumed throughout 

(Cada et al., 1986). It showed distinctive behaviour in the vicinity of the so-called 

critical power where optically controlled modulation-switching was possible. Optical 

power levels of about a milliwatt and element lengths on the order of a few hundred 

micrometers were found to be attractive for practical applications.
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Fig. 5.3.2.1: A MQW self-defocusing nonlinear directional coupler

In this Section, a novel nonlinear guided wave approach based on the FEM is 

used to study numerically the coupling properties of this planar nonlinear directional 

coupling element. Guided-wave solutions to the nonlinear wave equations described 

earlier in detail are obtained using the //-vector FEM. Appropriate boundary 

conditions are applied to find the propagation constants of the supermodes. Once 

separate solutions, in the form of the symmetric and antisymmetric nonlinear 

supermodes are found, the nonlinear combination is performed to determine the 

coupling lengths of the coupler, as a function of optical intensity.

Figure 5.3.2.2: Propagation constants of symmetric and antisymmetric modes verses 
normalized power.
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Figure 5.3.2.3: Coupling length versus normalized power for a self-defocusing MQW 
nonlinear directional coupler.

The plots in Fig. 5.3.2.2 show the evolution of the propagation constants of the 

nonlinear supermodes with the normalized total power. The nonlinear supermodes 

were obtained through the finite element nonlinear modal analysis technique, 

described in Chapter 4. The coupling length, defined by Lc = 71 / (|3e -  (3„), which is

sensitive to variations in the propagation constants, where (3 e and (3 0 are the

propagation constants of the even and odd supermodes respectively, was plotted as a 

function of the normalized total power as shown in Fig. 5.3.2.3. The coupling length 

increases slowly at first but rises more sharply as the critical power is reached, with 

the low field value being 335 (im and becoming 800 |im at the critical power. The 

coupling length is inversely proportional to the differece between the propagation 

constant of the perturbed symmetric mode and of the perturbed antisymmetric mode, 

so that the number of significant digits obtained for the coupling length depends on 

how many places after the decimal place the propagation constants first differ. Since 

the difference usually occurs at the third decimal place, accuracies of only five places 

after the decimal for each propagation constant are required to calculate the coupling 

length to three significant digits, which is sufficient to demonstrate the variation in 

coupling length with normalized power.
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Transverse X(^m)

Figure 5.3.2.4: Field profiles of even supermodes for normalized powers P = 0.0, 5.0 
and 18.0 respectively.

Transverse X(^m)

(a) (b)

Figure 5.3.2.5: Refractive index change and even supermode intensity distribution for 
coupler at normalized low powers a.) P = 5.0 b) P = 20.0

The field profile of an independent symmetric mode (P=0.0) and perturbed 

symmetric modes of normalized powers of P=5.0 and P=18.0 are shown in Figure 

5.3.2.4. Figures 5.3.2.5 and 5.3.2.6 show the field profiles of the even supermode and 

the refractive index change due to the self-defocusing nonlinearity with normalized 

input powers of P = 18, 20, 25 and 100. Also shown in Figure 53.2.1 is the 

refractive index change and the odd supermodes field distribution for low power of 

P=5 and high normalized power of 100. It is clear from the figure that, at high power, 

the odd supermode has a shape that looks like an even supermode but with the other
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side inverted. This is evident that at this power the odd supermode cannot exist but is 

converted into an even supermode. The value of the refractive index change at the 

center of the directional coupler is zero for the odd supermode since the field is 

virtually zero at that point. This is also the reason why the propagation constant of 

the odd supermode does not change significantly with power as shown in Figure

53.2.2.

T0J

Transverse X(um )

(a)
Figure 5.3.2.6 : Refractive index change 
high powers a) P = 25.0 b) P = 100.

even supermode field distribution for

Slight modification of the coupling behaviour is possible for the case of the coupling 

region only being nonlinear, as the coupling region refractive index changes the 

mode confinement. However, the major contribution of the nonlinear effect, for the 

case of linear guides with coupling medium, is a decrease in the refractive index of 

the coupling region MQW and therefore a reduction of the evanescent tail into the 

coupling medium and into the adjacent guide at higher powers. This acts to modulate 

the coupling length. At high power, a complete “straight-through” condition is 

realized. This is due to the lowering of the refractive index in the coupling region 

MQW, and consequently a quenching of the evanescent wave coupling to the other 

guide. Thus the effective coupling length increases to infinity.
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(a) (b)
Figure 5.3.2.7: Refractive index change and odd supermode field distribution for a) 
low normalized power, P = 5 and b) high normalized power P = 100.0

5.4 Propagation Analysis

Unlike supermode superposition approaches and the standard coupled-mode 

theories, which are applicable to z-independent waveguides as already discussed, 

applications of propagation methods to coupled waveguides are virtually the same as 

to individual waveguides.

Regardless of the strong coupling or strong nonlinearities, coupled waveguides 

can be actually characterized by propagation methods, whereby both the beat length 

and optical power distribution along the coupler can be found by examining the 

evolution of the field distributions. Unlike coupled mode-theories where the trial 

fields have to be the guided modes of the isolated waveguides, there is no restriction 

on the initial field distribution launched into one core of the coupled waveguide, 

when using the propagation methods. However, in order to characterize a coupler, it 

is preferred that the initial field distribution closely matches the guided mode of the 

isolated waveguide into which the field is to be launched. For strong nonlinearities, 

otherwise, the field evolution can be rather chaotic, making it difficult to find the 

beat length.

In this section, the propagation algorithm described in Chapter 3, is applied to 

simulate beam propagation in a two-waveguide directional coupler. In the
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simulations, a field distribution will be assumed to be launched in channel or guide 1. 

Then the propagation is performed by first setting the permittivity of guide 2 to that 

of the cladding and computing the guided mode of guide 1 by using the method 

described in Chapter 4. Here the approximate guided power should be incorporated 

into the computation to take the nonlinearity into consideration. The permittivity of 

guide 2 is then restored and the propagation analysis is then performed using the 

modal field distribution computed earlier as the initial field and the associated 

propagation constant as the reference propagation constant. By tracking the evolution 

of the field distribution the beat length and the power distribution between the two 

coupled waveguides along the propagtion direction are evaluated. The use of the 

propagation constant of the initial modal field as the reference propagation constant 

is vital for efficiency the of computaion. For example, the propagation step can be 

chosen to be as large as thousands of wavelengths for weakly coupled waveguides 

with weak nonlinear effects as long as the beat length is much larger than this value. 

On the other hand, if the initial field is far from a guided mode and/or the reference 

propagation constant is far from that of the initial modal field, the complex field 

amplitude will change rapidly during propagation, and the propagation step must be 

kept small. Also when the initial field is far from a guided mode, considerable energy 

will be radiated away and therefore open boundary or transparent (Hadley, 1991) 

boundary conditions must be imposed.

5.4.1 CW Beam proapagation in a planar NLDC

In the following, the response of a planar nonlinear directional coupler with self- 

focusing nonlinear material in the coupling layer is analyzed. The data used are 

n] = 1.55, n2 = 1.57 n3 = 1.55, and the nonlinearity coefficient of the coupling

medium is nnl = \0~9 / Vk; d= 2 pm, w=2.4 pm and the wavelength À=1.064 pm.

Fig. 5.4.1.1 shows the field evolution along the composite waveguide for 1000 steps 

with a step size of Az= 1À. The periodic power switching is clearly shown for this 

linear case. The coupling length is found to be 1000pm, subject to the discretization 

error of the meshing of the structure. The different nonlinear cases with normalized 

guided powers of 40 and 100 corresponding to powers less than and above the critical
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power are shown in Figs. 5.4.1.2-3. The evolution of the high power is characterized 

by the incomplete transfer to guide 2, as shown in Fig. 5.4.1.3, due to the phase 

mismatch established between the two guides, by the nonlinear change in index and 

the associated oscillation of the peak of the field. It was pointed out by Meng and 

Okamoto that the switching power of the coupler should always be less than a 

minimum value to avoid soliton emission into the nonlinear medium (Meng and 

Okamoto, 1991).

The coupling length, Lc is plotted as a function of the input power in Fig. 5.4.1.4. It

is found that as the input power gradually increases from zero, the coupling length, 

Lc decreases slowly. After reaching the minimum, the coupling length abruptly

increases to 1.6 pm. As the input power exceeds the critical power, Pc , of about 50

W/pm, a full coupling between the two guides is found to be impossible (Fig. 

5.4.1.4).

1000X

500A

Z

ii

-10 -5 0 5 10

Transverse X(/u,m)

Figure 5.4.1.1: a) CW beam propagation down a planar linear {P = 0.0) directional 
coupler
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Figure 5.4.1.2 : Evolution of the nonlinear mode when P = 40.0 units along a two- 
waveguide directional coupler.

Transverse X u m

Z

Figure 5.4.1.3: Evolution of the nonlinear mode with power P above the critical 
power. Evidence of emission of solitons into center.
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Figure 5.4.1.4: Coupling length verses normalized input power.

5.4.2 Transmission Characteristics and effect of nonlinearity and saturation

The structure analyzed here consists of two identical slabs of guide width d = 4.0pm, 

with refractive indices nn =1.52414, embedded in a background material with 

«=1.52. The separation has been chosen to maximize the linear power transfer 

between the two lateral waveguides and corresponds to w = 5.18pm. The operating 

wavelength was chosen as X= 1.55 pm.

First the transmission characteristics, represented by a plot of the transmitted power 

in the bar and cross channels of the NLDC were observed for different values of the 

nonlinearity of the NLDC. Fig. 5.4.2.1(a) shows the power output in channel 1 for a 

half-beat-length coupler as a function of the normalized input power for different 

values of the nonlinear coefficient, a. As can be seen in Fig. 5.4.2.1a, the net effect 

of increasing the nonlinearity from 0.00311 to 0.00828 is simply to shift the 

switching powers towards lower input powers. The switching power is here defined 

as the power at which the signal output of channel 1 is maximum. The results are 

physically consistent since the switching power would be lower for a large 

nonlinearity. Generally, switching powers can, of course, be reduced by utilizing 

material with large nonlinearities. Unfortunately, there is a limit in the amount of
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nonlinearity that should be used. In this case under investigation, for a  > 0.00828, 

chaotic behaviour was observed.

For a more general case of a nonlinear coupler of arbitrary length greater than 

a coupling length, Lc, the output characteristics are more complicated. The beat 

length of the coupler, Lh, is the distance over which the power initially launched into 

one guide completes one oscillation. For a length of L=Lb, all the input power

emerges in the guide in which it was launched. In this case, the input power remains 

in channel 1 (the input channel) except for a narrow range of powers just exceeding 

the critical power, Pc , where switching occurs. Fig. 5.4.2.2 shows the nonlinear

directional coupler transmission versus input power when all the input power is 

launched into channel 1. As can be seen in the figure, at low input powers, light 

couples back and forth between the two coupler guides. As the input power is 

increased, the coupler output alternates between the two output channels until the 

critical power is reached. At the critical power Pc, the coupler output switches from 

channel 1 to channel 2(Fig. 5.4.2.2). The physisical mechanism for this power- 

induced switching is that the effective coupling between the two modes increase with 

increasing power. Moreover, as the input power becomes just greater than Pc, a sharp

switching back to channel 1 occurs. Figure 5.4.2.2a shows the power output in 

waveguide 1 for a coupler of length L=2LC as a function of the input power for

different values of the nonlinearity a. The results in this figure indicates clearly how 

the effect of progressively increasing the nonlinearity shifts the switching powers to 

lower powers.

It has already been shown that the addition of a power dependent refractive 

index to a directional coupler makes its operating characteristics power-dependent, 

critical power for a nonlinear directional coupler varies inversely proportionally to 

the coupling length, in principle one expects that switching in the presence of 

saturation can be achieved by simply increasing the input power. However other 

effects such as two photon absortion (TPA) and three-photon absorption (3PA) 

(Aitchison) can be triggered and moreover, since there is a maximum change in the
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refractive index which can be induced, simply increasing the input power beyond this 

point will lead to no further useful effect due to the nonlinearity. In this Section, the 

effect of saturation on the operation of a nonlinear directional coupler is also studied 

using the step-by-step finite element method.

(a)

Figure 5.4.2.1: Transmission characteristics: a) output power in waveguide 1 b) 
Output power in waveguide 2.
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Input power (W/m)
Figure 5A.2.2: Transmission characteristics of a full beat length NLDC for different 
values of nonlinearities.

However, in any material there is a saturation value of the nonlinear index 

change which can be produced optically. Moreover, the characteristics of NLDC can 

be altered dramatically by saturation effects. For nonlinearities based on absorption 

processes in semiconductors, absorption is significant, which limits the length of 

such devices and hence also raises questions about saturation effects. Since the 

critical power for a nonlinear directional coupler varies inversely proportionally to 

the coupling length, in principle one expects that switching in the presence of 

saturation can be achieved by simply increasing the input power. However other 

effects such as two photon absorption (TPA) and three-photon absorption (3PA) can 

be triggered and moreover, since there is a maximum change in the refractive index 

which can be induced, simply increasing the input power beyond this point will lead 

to no further useful effect due to the nonlinearity. In this Section, the effect of 

saturation on the operation of a nonlinear directional coupler is also studied using 

the step-by-step finite element method.
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Figure 5.4.2.3 : The transmitted output versus normalized input power for different 
values of saturation index, Ansat, a) a  = 0.00414 b) a = 0.00621.

Fig. 5.4.2.3. shows the computed transmission characteristics of a half-beat- 

length coupler for nonlinear coefficients of a  = 0.00414 and a  = 0.00621. As shown 

in Fig. 5.4.2.3a., above a saturation value of Ansat = 0.5, the transmission peaks at
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substantially less than unity normalized transmission and the maximum is broad and 

featureless. For Ansal > 1, the switching fraction becomes too small to be useful( see

Fig. 5.4.2.3b). In Fig. 5.4.2.5b, for Ansat = 0.5, the maximum transmission 

approaches unity and for the first time the structure appears in the switching fraction, 

that is, a shoulder develops which, for smaller saturation becomes the first dominant 

maximum associated with the desired switching point. As can be seen in Fig. 

5.4.2.3b. as Ansal decreases below Ansat= 1.0 (Anja, < 1.0), the broad peak envelops

the rippled structure associated with the nonlinear directional coupler in the absence 

of a saturation. This indeed shows that higher saturation values limit the response of 

a nonlinear directional coupler. Moreover, decreasing the saturation value leads to a 

decrease in the power required for switching the output totally into the incidence 

guide. Further, the number of oscillations in the output power with increasing the 

input power is progressively higher. This study confirms an earlier study which 

indicated that higher saturation values alter dramatically the characteristics of a 

NLDC (Chen and Snyder, 1990).

Fig. 5.4.2.4. shows nonlinear “straight-through” transmission versus power 

for a one beat-length long NLDC when all the power is launched into guide 1 for 

different values of the saturation parameter Ansat. In the nearly absence of saturation

(Ansal =0.001), a sharp switching occur at a single fixed power. This is because the

spatial frequency of the power exchange between the guides doubles as the input 

power is just raised across the critical power Pc. Further, as can be seen in Figure

5.4.2.4., saturation of the nonlinearity forces a one-beat-length coupler to switch at 

more than one discrete power.
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Figure 5.4.2.4: The transmission characteristics of a beat-length long directional 
coupler for different values of saturation index.

Finally, it is clear that saturation of the nonlinearity severly degrades the 

performance characteristics of a nonlinear directional coupler.

5.4.3 Pulse excitation of planar nonlinear directional coupler

In this Section, the response of a nonlinear directional coupler to pulse 

propagation, for media with an instantaneous and integrating nonlinearity is 

examined. For these simulations, square and Gaussian pulses with transverse profiles 

corresponding to a low and high power mode of one channel of the coupler are used.

Initially a square pulse with peak power P=40 corresponding to a power less than 

the critical power of the coupler was lauched into channel 1. Fig. 5.4.3.1 shows that 

after one coupling length, the pulse energy is completely transferred between guide 1 

and guide 2. As in the case of a single waveguide, each slice of the pulse behaved 

like a CW beam.
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Figure 5.4.3.1 : Contour plots of square pulse propagation in a half-beat-length long 
nonlinear directional coupler at a) z = 0.0 b) z = Lc/3 c) z = Lc/2 d) z = Lc (xD=0.0)

Next, a Gaussian pulse with normalized peak power ,P=100 which is greater than 

the critical power was propagated in the coupler. Fig.5.4.3.2 show snapshots of the 

contour plots of the propagation in a half-beat length coupler showing significant 

pulse stripping due to the different response of the central part of the pulse and the 

pulse front and tail. The central section of the pulse corresponding to the higher 

power mode remains in guide 1, whereas the pulse front and tail sections which 

correspond to lower power modes couple to guide 2 .
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Transverse X ^m ) (d)

Figure 5.4.3.2 : Contour plots of Gaussian pulse propagation in a half-beat-length 
long nonlinear directional coupler at a) z -  0.0 b) z = Lc/3 c) z = Lq/2 d) z = Lc 
(Xd=0.0)

Next, we investigate pulse propagation in a nonlinear directional coupler with a 

finite medium response time. The propagation of pulses with normalized peak power

1 3P=100 in media with respose times of x D = - x  p and x D = —x were investigated.
8 4

Fig 5.4.3.3 (a-d) and 5.4.3.4 (a-d) show the results for a Gaussian pulse propagation 

where the coupling medium has nonlinearity with a finite response time. Here, 

contrary to that of instantaneous nonlinearity where the complete pulse was inhibited 

from coupling to guide 2, the finite delay allows coupling to take place. As the
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response time of the medium is increased from x D= - x p to = —T p, an increase

in the coupling to guide 2 takes place. This is due to the fact that the front section of 

each pulse couples to guide 2, whereas the tail is inhibited from coupling and remains 

in guide 1. The proportion of each pulse which is allowed to couple is determined by 

the response time of the media.

3

C l

0

-10 -5 0 5 10
Transverse X ^m ) (a)

Figure 5.4.3.3 : Contour plots of Gaussian pulse propagation in a half-beat-length 
long nonlinear directional coupler at a) z = 0.0 b) z = Lc/2 c) z = 3Lc/4 d) z = Lc 
(T d = T p / 8 ) .
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Figure 5.4.3.4 : Contour plots of Gaussian pulse propagation in a half-beat-length 
long nonlinear directional coupler at a) z = 0.0 b) z = Lc/2 c) z = 3Lc/4 d) z = Lc 
(t d=3xp/4)

These results agree well with those obtained by using the Fast-Fourier BPM 

(Mitchell and Moloney, 1990). Thus, the finite medium response leads to a delay in 

the appearance of the nonlinearity, in this case detrimentally changing the switching 

characteristics of the coupler. It also confirms that to be used effectively, nonlinear 

directional couplers must be excited by fast rise time or square pulses, of a duration 

considerably longer than the response time of the medium.
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6. NONLINEAR TRANSVERSE EFFECTS IN OPTICAL FIBERS

6.1 Introduction

In the past few years, telecommunications companies have increasingly turned 

to optical fibers to build long-distance networks which are now used to span the 

world. Undersea fiber-optic cables already cross the Atlantic and Pacific oceans, and 

many more are planned for the future. During the next decade or two, the tiny glass 

thread may bring the world into our living room. Video telephones, better quality 

cable television and access to central video libraries are real possibilities. Others 

include interactive services that retrieve information from remote computers, 

shopping and banking from home and domestic utility meters read remotely. All are 

made possible because fibers can carry much more information than any type of 

conventional cable.

Optical fibers‘were once thought of strictly as a transmission medium. It was 

expected that any processing of the optical signal would take place outside of the fiber 

either by use of conventional electronics or by devices based on planar integrated 

optics. Over the years, this situation has changed as many optical components have 

been made directly with single-mode fiber. Such conponents include polarizers, 

directional couplers, filters, and optical amplifiers. Most of these components require 

control over the state of polarization and are made with polarization-preserving fibers.

During the past decade a wide range of interesting nonlinear effects in fibers 

have been studied extensively. Some of these have found useful application in a 

variety of devices such as in optical frequency converters, tunable laser sources, pulse 

compressors, sources of ultrashort pulses and high repetition rate pulse trains, optical 

amplifiers and spectral filters, switching devices and optical logic elements. From the 

early days in the development of optical fiber technology, it was recognized that 

nonlinear optical processes could present ultimate practical limitations on the range 

and data transmission capacity of communications systems(Smith, 1972,Stolen,1980). 

It was noted that effects such as stimulated Raman scattering and stimulated Brouillin
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scattering could limit the optical power that can be transmitted, whilst self-phase 

modulation, resulting from the intensity-dependent refractive index, could result in a 

broadening of the transmitted pulses, thus limiting the maximum data rate. However, 

within the last few years, the nonlinear properties of optical fibers have been shown to 

play an important role in determining the operating limits for several advanced 

experimental systems. On the orther hand, it has now been realized that many of the 

nonlinear properties of optical fiber might also be utilized to beneficial effect in 

communications systems.

In a medium that exhibits nonlinear refraction, any spatial and temporal 

variations of the optical intensity will cause the refractive index to be space and time 

dependent also. In monomode optical fibers, however, the nonlinearity can be

considered to be sufficiently weak (n2\E\ « n0) that transverse effects may be 

neglected, and instead effects that occur as a result of the time variations of the 

intensity, which bring about phase changes in the optical carrier wave (temporal 

effects), are usually considered. Therefore, although much reseach has been done in 

the past decade on nonlinear effects, such as soliton propagation, in optical fibers 

most of the studies have ignored nonlinear transverse effects. However, evidence of 

analytical temporal solitons solutions that deviate from the linear transverse field 

profile means that transverse effects are important in the study of nonlinear optical 

fibers.

In general, optical fibers are fabricated from fused silica and other glasses have 

nonlinear optical coefficients that are very small in comparison with more 

conventional nonlinear materials. Despite this, nonlinear effects can have a profound 

influence on the light propagation in a fiber. One reason is the tight confinement of 

the optical field within the core, which means that high intensities can be achieved at 

modest input power. Second, the very low transmission loss of present-day fibers in 

certain infrared wavelength ranges allows nonlinear effects to become significant, 

during propagation over long path lengths.
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6.2 Some Important Fiber Characteristics

Optical fibers are made of very transparent glass or plastic, and are typically 

between 125 and 500 micrometer in diameter. The fibers contain at least two layers, 

an inner core which guides the light, and an outer cladding, which confines the light in 

the core. An optical fiber guides light by trapping it using total internal reflection. 

Although this process can occur at a glass-air surface, unclad glasss fibers are not 

practical because light can leak out wherever the core touches another medium

Typical glass fibers have a core with reflactive index about 1 percent larger 

than the cladding. The critical angle at that boundary is 82°, meaning that light must 

strike the surface at a glancing angle in order to be guided along the fiber. However, 

light can be guided around comers because the bends are large compared with the 

diameter of the fiber. Because total internal reflection directs all light back into the 

core, the only lossess in a fiber which has a cladding comes from absorption and 

scattering in the fiber core itself.

As mentioned above, the most widespread use of fiber optics is in 

communications. A single fiber is used to carry an optical signal from a transmitter to 

a receiver. Pairs of fibers provide two-way communications. They can carry signals 

farther and faster without amplification than copper wires, for telephones, television 

and computer communications.

Most optical fibers are made from special glass, extermely pure silicon dioxide 

(Si02), with small amounts of other materials, such as germanium or boron, added to 

change slightly the refractive index. Signal losses are only very small and depend on 

the wavelenght of the light. At a wavelength of 1300 nanometers, a typical loss is 

about half a decibel per kilometer, meaning that about 90 per cent of the input signal 

remains after one kilometer, with only 10 percent lost. Light rays that are conducted 

down the center of the fiber core do not have to travel as far as those which bounce 

back and forth from the core/cladding interface. The difference is large enough to
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become important at high data rates using short pulses. To avoid such dispersion 

effects, the core of the fiber must be made so small that it can carry light in only a 

single-mode.

6.2.1 Basic Theory

Fiber design represents a compromise between various properties. The choice 

may differ somewhat depending on the specific application. The most fundamental 

parameters involved are the core diameter, d, and the core-cladding index 

difference, An. A characteristic number V=Tidj2nAn/X scales these parameters to 

different operating wavelengths. A value of V = 2.4 (the “cut off’) separates the single 

and multi-mode operating regimes. Maxwell’s equations can be used to obtain the 

wave equation that describes light propagation in optical fibers, since like all other 

electromagnetic phenomena, the propagation of optical fields in fibers is governed by 

Maxwell’s equation. Therefore electromagnetic wave propagation in a nonlinear 

optical fiber is governed by the same wave equation (eqn. 1.10), derived in Chapter 1:

V x V x £ = - 1 d 2E
c2 dt2 “ M-o

d 2P
dt2

6.1

where (i0e 0 = — , and c is the velocity of light in vacuum. Simplifying the wave 
c~

equation in Fourier domain, one obtains

6.2

This equation is solved to obtain the optical modes of step-index fibers. At every 

frequency, co, optical fibers can support a finite number of guided modes whose 

spatial distribution È(r,to) is a solution of the wave equation that satisfies the 

appropriate boundary condition. In addition, the fiber can support a continuum of 

unguided radiation modes. Since we are mainly interested in single-mode fibers, we
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limit our discussion to the cut-off condition that allows the fiber to support only one 

mode. A single-mode fiber supports only the HEU mode, also referred to as the 

fundamental mode. As other modes are beyond the “cut-off’ if the parameter V< Vc, 

where Vc is the smallest solution of J0(VC) = 0 or 1^=2.405.

In the following subsections, eqn. (6.2) will be solved by the finite element 

method described in Chapter 2 to obtain the fundamental modes for specific 

situations.

6.2.2 Modal Birefringence

support two degenerate modes, that are dominantly polarized in two orthogonal 

directions. Under ideal conditions of perfect cylindrical geometry and isotropic 

material, a mode excited with its polarization in the jc-direction would not couple to 

the other mode with an orthogonal y-polarization state. However, in practice, small 

fluctuations in the material anisotropy result in a mixing of the two polarization states 

by breaking the mode degeneracy. Mathematically, the mode-propagation constant, (3, 

becomes slightly different from the modes polarized in the x and y directions. This 

property is referred to as modal birefringence. The degree of modal birefringence, B, 

is defined as

where nx andr?v are the effective mode indices in the two orthogonal polarization

states in the x and y directions respectively. It can be shown that for a given value of 

B, the power between the modes is exchanged periodically as the they propagate 

inside the fiber with the period, LB, defined by

Even a “so-called” single-mode fiber is not truly single mode since it can

6.3

L 2k  X
6.4
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Lb is generally referred to as the beat length. The axis along which the effective 

mode index is smaller is called the fast axis, as the group velocity is larger for light 

propagating in that direction. For the same reason, the axis with the larger mode index 

is called the slow axis.

Single-mode polarization-maintaing fibers that can maintain a state of 

polarization over a long length play an important role in coherent optical 

communications and optical fiber sensing systems (Ulrich and Johnson, 1979). These 

fibers are realized by using the axially nonsymmetrical refractive-index distribution 

(Ramaswamy et al., 1978) or the nonsymmetrical stress distribution (Stohlen et al., 

1978) to reduce mode coupling between two orthogonally polarized modes. 

Eigenmodes of these special fibers can not be found analytically, and they must be 

determined by approximate numerical methods. So far, some numerical techniques 

have been tried to analyze such fibers, among which are the point-matching method 

(Miyamoto, 1991), mode-matching method (Okamoto et al., 1982) and the finite 

element method (Oyamada and Okoshi, 1982). In this work, polarization-maintaining 

fibers are investigated rigorously using the vector //-field FEM described in Chapter 

2. This method is particularly suitable for the analysis of arbitrary shaped waveguides, 

as it is a very flexible analysis tool for use with fibers with axially nonsymmetrical 

cross-section or refractive-index distribution.

Figure 6.2.2.1 illustrates the variation of the normalized propagation constant, 

b, and power carried by the core, bow areas, and cladding for the “so-called” bow-tie 

fiber with normalized frequency. Refractive indices are, for core «, = 1.54, for cladding

n2 =1.5246, and for bow-areas «, = 1.52307. The fiber core radius is a = 5 pm, and the

inner and outer radii of the bow are 15 pm and 25 pm respectively. Half of the bow 

angle (each side) is 0 = 45 degrees. Figure 6.2.2.1 also shows the variation of the spot 

size with normalized frequency. The normalized birefringence B was 6 x l 0 “6 at 

^=6.0 pm. Figure 6.2.2.2 shows the Hx field contours for the dominant Hxu mode at

wavelength 0.8 pm and 3.0 pm.
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Figure 6.2.2.1: Variation of normalized propagation constant, power fractions and 
spot size with nomalized frequency for H mode in a bow-tie optical fiber.

Figure 6 .2.2.2 :HX field contours for the dominant Hu* mode for a bow-tie fiber at a) 
X = 0.8 pm b) X = 3.0 pm respectively. Only one quarter of the fiber is shown due to 
the two-fold symmetry.

Figure 6 .2.2.3 illustrates the variation of normalized propagation constant and the 

power carried by the different regions of a side-pit fiber. Refractive indices are, for 

core «, = 1.458, and for the cladding n2 =1.45, and for the side-pit n =1.436. The fiber

radius is a=4 pm and the core width is W= 4 pm. Figure 6.2.2.3 also shows the
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variation of the spot size with the normalized frequency. The normalized 

birefringence B is 4xl0"5 at X = 1.4 pm.

b, Power Fractions Spot Size ( area in micron sq.)
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Figure 6 .2.2.3 : Variation of normalized propagation constant (b), power fractions in 
different regions and spot size with normalized frequency (v) for mode in a side- 
pit optical fiber.

Figure 6.2.2.4 : Power density (P) contours for mode at a) 0.4 pm b) 1.4 pm and 
c) 2.0 pm for a side-pit optical fiber.
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6.2.3 Nonlinear Chromatic Dispersion Characteristics

Nonlinear optical effects in fibers, such as are indicated by optical solitons, are 

based on the optical Kerr effect in fibers (Agrawal, 1989). Chromatic dispersion, 

which determines the chirping properties of an optical pulse, is one of the most 

important parameters for those nonlinear optical phenomena (Okamoto and Marcartili, 

1989). In the conventional analysis of self-phase modulation, the chromatic dispersion 

in the linear state has been used to investigate the fiber chirping characteristics, under 

high optical intensity illumination. However, the chromatic dispersion characteristics 

are expected to be different from linear values (Bordman et al., 1986) since they are 

closely related to the index profile which is different from that of the linear state. 

Here, steady-state propagation constants, spot sizes and field profiles for an optical 

fiber are calculated with different total powers. A simple example from the literature 

(Okamoto and Marcatih, 1989) has been selected so that results can be compared and 

the efficiency of the technique assessed. For this example, the constant part of the 

nonlinear core refractive index, nm , was 1.0248; the linear cladding refractive index,

n0 was 1.00 and the radius of the core, a, was 4.0 pm. Figure 6.2.3.1 illustrates the

variation of the normalized propagation constant ( b= Vk-n0 ) with the normalized

frequency (V = ka-yjnl -n~ ) for both low and high power. If it is assumed that 

n2 -  1.1 x 1CT13 ESU then the high power used is equivalent to 200&W. The agreement 

between these results and those of Okamoto and Marcatili (1989) by a variational 

method is excellent. If the optical fiber is rare-earth doped or of other materials with a 

large nonlinear coefficient, then the total optical power will be correspondingly lower.
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Figure 6.2.3.1: Dispersion characteristics of the step-index fiber with Kerr-type core 
nonlinearity.
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Figure 6 .2.3.2 : Variation of the effective index and the quarter of the spot in pm2 
with normalized total power.

Figure 6 .2.3.2. illustrates the variation of the effective indices (TV,) and the spot sizes 

(where due to the two-fold symmetry used, one quarter of the spot size is shown) with 

the total power for wavelengths of 1.2pm and 0.6pm. Figure 6 .2.3.3 illustrates the 

field profiles for near zero power and normalized power =0.06.
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Figure 6.2.3.3: Hx field variation for the Hxn modes at wavelength 1.2p.m at 
normalized powers of 0.0 and 0.06.

Figure 6 .2.3.4 shows the dispersion curves for a graded index nonlinear core 

optical fiber. In this example, the maximum refractive index at the center of the fiber, 

nm = 1.0248, the refractive index of the cladding, n0 = 1.0, and the core radius is 2.0 

(im. Our finite element results agree well with those of reference (Okamoto and 

Marcatili, 1989) for zero power and for Kerr-type nonlinearity. A 200kW total power 

(for Kerr-type material) produces a refractive index change, An=0.3 at X = 0.6|im for 

our specific choice of parameters. Such a large change of refractive index is only 

possible if saturation is ignored. For any realistic fiber material, saturation will limit 

this to a much lower value. Figure 6 .2.3.4 also illustrates a dispersion curve for the 

same high power, P=200kW, but taking into consideration that maximum refractive 

index change is limited to Anmt =0.005 due to saturation. This result shows clearly

that at a low value of normalized propagation frequency, V, the saturation effect is not 

appreciable but at higher value of V the effect of saturation is profound. Although the 

propagation constant changes are small at lower power levels, the long fiber lengths 

used makes their effect significant.
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Normalized Frequency v

Figure 6 .2.3.4: Dispersion characteristics of the graded-index fiber with Kerr- and 
saturation-type core nonlinearities.

6.3 Transverse propagation effects and Solitary-wave emission

It has previously been shown that in a fiber with a linear circular core and 

saturable nonlinear cladding, a field that is guided at low powers can emit cylindrical 

waves that expand away into the cladding at high powers and that these rings can 

break their cylindrical symmetry through a transverse instability which yields 

filaments that remain in the vicinity of the core for long propagation distances. In 

addition to possible latent instabilities resulting from imperfections in the cylindrical 

symmetry of both the fiber and the input beam, the Cartesian numerical grid is known 

to act as a source of the symmetry-breaking perturbation. This implies that the results 

may depend on the representation of the field in the transverse grid. With significant 

success in the modal analysis of the finite element method discussed above as the 

basis of our motivation, we have applied the finite-element-based propagation method 

discribed in Chapter 3 to study the evolution of a Gaussian beam in a nonlinear optical 

fiber with saturable cladding.
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The usual wave equation of a monochromatic linearly polarized field E(x,y,z) 

of frequency, co, propagating along the z axis of a nonlinear optical fiber has been 

derived in Chapter 1, (eqn.1.20), as:

2y(3 ^ -  + V2 E -  [J32 -  n2 (r,\E\2 )]E — 0, 6.5
dz

where V 2 is the two-dimensional Laplacian and all the spatial dimensions are in units 

of c / to . The fiber refractive index distribution is taken here to be

n(r,|£|2) = Aicore +0(r —r0) n clad “ «core + \+\E\2

2 \
6.6

where A>isat is the saturated value of the nonlinear index, r0 is the fiber core radius, 

and 0 is the Heaveside function.

In this thesis, the propagation of a Gaussian beam profile, of the form 

E(x, y,0) = exp[-(x2 + y2) / w0 ] where 70 and w0 are the peak intensity and spot 

size respectively, through fibers of linear circular cores (ncore =1.551) and a saturable 

nonlinear cladding (nclad =1.550) is investigated. Heatley et ai,  (1991) have shown 

that the requirement for localized wave emission from the core to the nonlinear 

cladding is guaranteed by choosing Arzsat > 0.0018. Figure 6.3.1 shows the

propagation of the intensity profile l£(;c,z)l2 up to a distance of 2000 .̂, where X is 

the wavelength and A«sal = 0.0018 of an injected Gaussian beam with 70 = 100 and 

w0 = 45 which approximates the single linearly guided mode LP0]. The field remains 

cylindrically symmetric and forms a ring whose radius increases with propagation 

distance as the peak intensity of the ring drops. Figure 6.3.3 and 6.3.4 correspond to 

the propagation of the Gaussian beam of Fig. 6.3.2 with an input power of 70 = 100

but A/isal = 0.004. After propagating for z = 10007̂ , one ring is seen seen to be emitted 

(Fig. 6.3.3). Two rings are emitted into the nonlinear cladding and as shown in Fig.

6.3.3, the rings are fully free from the core and propagate away while developing
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azimuthal modulation. In all the cases examined, the rings have nearly perfect 

symmetry as they are emmitted from the core. The azimuthal modulation develops as 

the ring expands away from the core (Fig. 4.3.2. (c)) and the peak intensity drops near 

the saturation intensity as a result of the transverse instabilty (Heatley et al., 1991). 

This transverse instability has been attributed to the growth of a perturbation that 

depends on the aximuthal angle, 0 , in the three-dimensional cylindrical coordinate, 

resulting in periodic beam break up.

Figure 6.3.1: The beam intensity profile showing the ring emission into the cladding 
through a propagation distance of 2000 X.

o

Figure 6.3.2: A snapshot of the initial Gaussian beam with 70 = 100.
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(a) (b)

Figure 6.3.3:A snapshot after propagation distance 1000 A, showing the a) intensity 
and b) contour plot of the field as a function of the transverse coordinates.

Figure 6.3.4: A snapshot after propagation distance of z -  1500A showing the a) 
intensity and b) contour plot of the field as a function of the transverse coordinates.
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6.4 Controlled filament formation in optical fibers

In general, several spatial rings may be emitted into the nonlinear cladding and 

subsequently they become unstable. However, no ring can propagate away from the 

core indefinitely and remain stable against transverse instabilities. The azimuthal 

modulation of the rings had a fourfold symmetry, which would seem to implicate the 

Cartesian numerical grid as the source of the symmetry perturbation. Indeed, when 

small perturbations of other than fourfold symmetry were introduced artificially, it 

was possible to induce a variety of broken symmetries. Each filament is self-trapped 

owing to the higher refractive index at its center, relative to its periphery. An example 

is shown in Fig. 6.4.1 where a Gaussian beam with 70 = 20 was injected into a fiber 

with Ansat = 0.008. A sequence of 3 rings was emitted, with each ring undergoing a 

transverse instability, in turn, the result being that each ring breaks down into 

filaments. Fig. 6.4.1 shows a snapshot of the intensity profile after a propagation 

distance of z = 1500 X. As the system evolves through propagation, the filaments in 

close proximity to one another interact violently. Each filament is self-trapped owing 

to the higher refractive index at its center relative to its periphery and is also attracted 

to other nearby filaments owing to the higher index in its center relative to the 

background. This attractive force between the filaments in Fig. 6.4.1 causes them to 

remain in the vicinity of the fiber, over long propagation distances ( Heatley et ai,

1991).

In this Section, the potential of these effects for the realization of optical memory by 

controlling the formation of filaments is discussed in that how, and if, the fiber system 

may lend itself to optical storage of binary information. The exploration is geared 

torwards effecting a parallel two-dimensional binary array in an optical fiber. 

Generally, to effect memory, one may need to spatially modulate the medium, or the 

input light, or both (McDonalds and Firth, 1990). Here pixellation through spatial 

modulation of the linear refractive index of the cross-section of the fiber cladding is
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examined. This was realized by raising the linear refractive index of a strip of an area 

along an aximuthai line in the cladding by a very small amount, of about 0 .000001.

Figure 6.4.1: A snapshot after propagation distance of z = 2000A. showing the 
filament formation for a circular fiber with symmetrical cladding refractive index.

Figure 6.4.2: A snapshot after propagation distance of z = 1500A, for a circular fiber 
with non-symmetrical cladding refractive index distribution showing controlled 
filament formation.
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Figure 6.4.2 shows the results for a fiber with this artificiallly introduced non- 

symmetrical clad refractive index. All other values are the same as those used to 

generate Fig.6.4.1 . The spots of higher indices are seen to start to break the symmetry 

of the rings earlier than the other spots and more and more power is concentrated in 

the resulting filaments. Figs. 6.4.3 a,b, and c demonstrate the orderly nature by which 

the filaments have formed upon further propagation and also demonstrate their 

robustness apart from the slight attractions between two filaments which are in close 

proximity one to the other. However, these attractions did not lead to coalescence.

Figure 6.4.3: Field profiles at a propagation distance of a) z = 1000/V b) z = 1500 X and 
c) contour plot at z = 1500 X for unsymmetrical refractive index distribution 
(/„ = 20, Ansal =0.008).
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This analysis demonstrates that it is possible to control the position of the 

formation of these filaments to enable the encoding of random or orderly patterns on 

the cross-section of an optical fiber, with a saturable cladding.

6. Summary

This Chapter dealt first with the modal analysis of important fibers with a 

nonsymmetrical cross-section that includes ‘bow-tie’ and ‘side-pit’ polarization- 

maintaing fibers. Useful parameters related to their dispersion characteristics were 

computed. Novel application of the finite element method for fibers with both Kerr- 

like and saturable nonlinear cores were studied showing excellent agreement with the 

results reported by Okamoto and Marcatili.

Secondly, a beam propagation analysis of a fiber with saturable cladding and a 

linear core was undertaken to test the three-dimensional code developed in Chapter 3. 

Excellent agreement was obtained and considerable computer resource saving was 

achieved by taking advantage of two-fold symmetry. The study here also pointed out a 

useful potential of a nonlinear fiber for optical signal processing because the system 

shows pontential for signal encoding at the cross-section.

The next Chapter deals with temporal effects in optical fibers with particular 

reference to optical soliton effects in fibers which have more than one core.
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7.0. SOLITON DYNAMICS IN COUPLED NONLINEAR FIBER SYSTEMS

7.1 Background to optical soliton theory

It has been generally recognized that temporal optical solitons present a unique 

opportunity for performing a wide range of all-optical processing functions in 

nonlinear-optical fibers. Doran and Wood (1988) first suggested that solitons are 

natural bits for ultrafast all-optical signal processing. This observation was based on 

the fact that even nonlinear fiber systems that have no exact solitons, an injected 

solitonlike pulse displays a remarkable degree of phase coherence over the whole 

pulse, which means that it should be possible to process individual soliton bits. 

Recently Blow et al. (1989) and Islam et al. (1989) demonstrated experimentally, all- 

optical switching of solitons in a nonlinear Sagnac interferometer and in a nonlinear 

loop mirror, respectively, and Islam proposed and demonstrated a number of all- 

optical soliton trapping gates with birefringent fibers (Islam, 1992).

The concept of solitary waves was first introduced as long ago as 1834 by Russel 

(1844) after he had observed that a water wave preserved its original shape over a 

long distance in a Scottish canal. About two decades ago, Hasegawa and Tappert 

(1973) showed that, theoretically, optical solitons can be formed in a dielectric fiber 

because the wave envelope satisfies the nonlinear Schrodinger equation. However, at 

that time, neither low loss fibers nor good measuring equipment was available, so 

their theory could not be demonstrated experimentally. In 1980, Mollenhauer (1980) 

was the first to demonstrate successfully the propagation of solitons in an optical 

fiber.

Optical solitons have enormous potential in long haul communication systems 

(Tang and Ye, 1991) because they can be stable over a very long propagation distance 

and will permit wavelength multiplexing. Solitons in optical fibers can be defined as 

nonlinear pulses that propagate, nearly distortion-free for long distances, and that 

undergo elastic collisions. In optical fibers, solitons are generally referred to as 

envelope solitons. The propagation of envelope solitons in a lossless fiber can be
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described by the well known nonlinear Schrôdinger equation. The fiber loss and 

chromatic dispersion are the main obstacles that affect the propagation of stable 

soliton pulses. Solitons are stable and robust, owing to a restoring force that comes 

from the nonlinearity balancing another mechanism, such as diffraction or dispersion. 

Although the medium is nonlinear, solitons that undergo elastic collisions pass 

through each other without exchanging or scattering energy. Solitons result from 

many different physical phenomena examples of which include water wave solitons, 

ion-plasma-wave solitons, magnetohydrodynamic solitons, bimolecular polaron 

solitons, high-intensity shock solitons, nerve-conduction solitons and nonlinear 

optical solitons (Krumhansl, 1991). Optical solitons are formed when intense pulses 

propagate in the anomalous (or negative) group-velocity dispersion regime of fibers. 

Dispersion means that different wavelengths of light travel at different speeds, and 

anomalous dispersion means that longer wavelengths travel at a slower speed. 

Fortunately, the soliton regime coincides with the minimum loss in fibers around 1.5 

pm, which is one important reason that solitons are being considered for long-

distance telecommunications.

Over the last few years, it has been established that the nonlinear coherent 

interaction between two coupled copropagating guided modes has potential for 

applications in future optical computing or communication systems, involving for 

example, power or phase-controlled routing, switching, and amplification of an 

optical signal. Several different implementations based on the above principle have 

been proposed and analyzed. In the various versions, the coupling occurs between 

two counter-rotating circular polarization modes in a biréfringent fiber (Daino et ai, 

1986), two individual modes of parallel waveguides in a nonlinear directional 

coupler (NLDC) ( Jensen, 1982), or two linearly polarized orthogonal modes in a 

periodically twisted biréfringent fiber ( Mecozzi et ai, 1987). Power-dependent self-

switching of a pulse in a nonlinear directional coupler was recently experimentally 

observed. Strong reshaping of intense, Q-switched, and mode-locked pulses was 

obtained in a two-core fiber and in low-birefringence optical fiber at peak powers on 

the order of lkW ( Friberg et ai, 1987; Trillo et ai, 1989). In the biréfringent fiber, a 

circularly polarized beam was coupled at the fiber input, and at the output, complete
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switching into the counterpolarization mode was observed for the portion of the pulse 

whose power was slightly larger than a certain critical value. In the two-core fiber, an 

individual core was excited, and similar nonlinear power transfer into the other core 

was reported ( Friberg et al., 1987; Trillo et ai, 1989).

In this Chapter, a novel numerical technique, based on the finite element method, 

is proposed to analyze the propagation behavior of solitons in coupled fiber systems 

where linear coupling as well as damping effects are taken into account. First, the 

coupled nonlinear Schrodinger equations are derived in Section 7.3 while the finite 

element technique is described in detail in Section 7.4. In Sections 7.5 and 7.6 two 

particular applications of the method are introduced, which involve the simulation of 

soliton dynamics as regards all-optical soliton switching in dual- and tri-core fiber 

couplers and a novel soliton generation technique is described in Section 7.7. Finally, 

a summary of the results of this Chapter is given in Section 7.8.

7.2 The single nonlinear Schrodinger equation

Since different frequencies propagate at different speeds, dispersion alone 

tends to broaden any pulse in a fiber. However, a high-intensity light pulse increases 

the index-of-refraction and creates a local time varying index, which corresponds to 

self-phase modulation. The nonlinear index is given by n=n0+ n j  where n0 is the

linear refractive index , the Kerr coefficient, n2, has a value of n2 = 3.2xl0 ' 16 cm2/W 

in fused silica and 1 is the intensity. Self-phase modulation has an associated phase 
2tc

change A$=— Ln2I where L is the length of the fiber, that leads to a frequency 
A

sweep, 5(0, or chirp across the pulse given by 5(0= - ^ ^ - = - — Ln, — , The balance
dr X dr

between self-phase modulation and group velocity dispersion can be quantitatively 

described by the nonlinear Schrodinger equation (NLSE):

X~D d u 27m., . |2
---------i -̂----- ~ w
47tc d r  AAeff 7.1
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where the first term on the right-hand side corresponds to group velocity dispersion 

and the second term corresponds to nonlinearity. The dispersion parameter D is the 

change in pulse delay Xj with change in wavelength X per unit fiber length and has 

standard units of ps/(nm km) and c is the velocity of light.

Normalizing the envelope function so that I «I2 represents the power in the 

fiber, in the retarded time coordinates and normalizing the distances, time and 

powers to zc, tc and Pc, where

t] = X2P 
zc 27t c

7.2

and

P,z=-
XAeff
271«,

7.3

where the length zc is the distance at which a low power pulse confined to tc pulse 

width begins to spread by dispersion, which is related to the so-called soliton period

z ° by z ° 4 ^  wh,ie A ‘* is " * f,ber effective cross-sect,onai area- The power p ‘

(which equals the TV = 1 soliton power P}) gives one radian of nonlinear phase shift at 

a distance zc and is the peak power at which the nonlinearity and dispersion balance. 

The resulting normalized NLSE in retarded time coordinates is

. d u  1 d 2u  . l2 
—J  —  = — -rrr + lMI u. 7.4

dz 2 dt2

The NLSE of relation (7.4) is integrable because it can be solved by the 

inverse scattering technique, and, therefore, has an infinite number of conserved 

quantities (Zhakarov and Shabat, 1971). The three lowest conserved quantities are 

given by (Hasegawa, 1989)

C, = \\u(z,t)[ dt 7.5

C . = j j
, d u  d u

* \
u -----u ----

d t  d t
dt 7.6

and
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\
4 dt. 1.1

The physical interpretation of these conserved quantities depends on the 

consideration of the particle or wave picture of solitons. In the wave picture, the 

relation (7.5) corresponds to conservation of energy and (7.6) corresponds to 

conversation of the mean frequency as weighted by the intensity. On the other hand, 

in the particle picture of the soliton, CI corresponds to conservation of mass, C2 

corresponds to conservation of momentum and C3 corresponds to the Hamiltonain or 

conservation of energy. The fundamental soliton can be written in a general form as

The amplitude of the soliton is A ,  the energy is 2 A ,  the mean frequency is £2, the 

phase is <j) and the mean time is q/A. A positive value of Q corresponds to a positive 

frequency displacement.

In addition to the fundamental soliton ( N  = 1), there is also a continuum of 

multiple-soliton solutions that obey the NLSE (Haus and Islam, 1985). Unlike the 

fundamental soliton that behaves as a unit and represents a balance between 

dispersion and nonlinearity, the higher-intensity and order solitons change shape as 

they propagate along the fiber since the two counteracting forces overshoot and 

undershoot. For example, a higher- or multiple-order soliton tends to compress at 

first because the self-phase modulation outweighs the group-velocity dispersion. 

However, as the pulse narrows, the bandwidth of the pulse increases and the 

dispersive effects become stronger. The general A-soliton solution is characterized by 

4 N  parameters: A j ,  Qy, q p  and <j)y (j = 1 , . . . N )  (Gordon, 1983). Of particular interest are 

bound soliton solutions where all the solitons share a common frequency Q7 = Q and, 

consequently, a common velocity. The bound multi-solitons evolve periodically and 

the patterns corresponds to constructive and destructive interference between the 

pulses. It is because of the interference between the bound fundamental solitons that 

the phase across the pulse now depends explicitly on the temporal position of the

7.8
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pulse. Therefore, higher-order solitons turn out not to be of interest for switching 

applications.

7.3 The coupled nonlinear Schrôdinger equations

In the previous section, it was assumed that the fiber contains only a single 

mode, which is governed by the single nonlinear Schrodinger equation (NLSE). 

However, in general, even single-mode fibers are bimodal because of birefringence, 

that is, the two principal axes in the fiber have indices nt and n2, and the 

birefringence corresponds to the difference An = nr n2. Birefringence is unavoidable 

and can be stress-induced or result from geometric effects, as was pointed out in 

Chapter 6 . In this section we briefly describe the time-dependent coupled-mode 

equation under a general form, capable of representing different versions of a guided 

wave nonlinear directional coupler. With a redefinition of symbols, they may apply to 

different implementations such as a dual-core fiber or biréfringent fiber.

Writing the transverse electric field as a superposition of the linearly polarized 

eigenmodes of the biréfringent (ideally perturbed) fiber as

E(r,z,T) = [xEx (Z , X ) f x (r) + yEy (z,T )/>. (r)] exp(-/co 0T ) 7.9

where and£\(z,t) represent the orthogonal polarization components of the

slowly varying phase envelope, f x( r ) ~ f y{r)~f(r)  are the transverse field 

distributions of the nearly degenerate modes, and (0 0 is the mean optical frequency

of the pulse and using the coupled-mode theory (Marcuse, 1974; Crosignani et 

al., 1981; Crosignani et al., 1982), one finds that the nonlinear propagation of a light 

pulse along the fiber obeys the system of coupled nonlinear partial differential 

equations given by

LrE* = P r( « o ) ^  +2*cos(P0z + <|>)Ev + ^(|EX|2 7.10
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LyEy = p y (to o )Ey + 2k cos((30z + <\>)EX + R 7.11

where Pxv(co0) are the unperturbed propagation constants of the modes, and the 

differential operators are ( Trillo et al., 1987)

(
Li = ~j

v

d 1 — + —
dz v,„

_a_
5t

1 a2
+ —a , —r2 3x2

(i = x,y) 7.12

f 1 i /
with V41. = r y ^ J  (gr0UP velocities) and a f = (  V̂ 0 (GVD). The

nonlinearity coefficients R(W ' • m ) — where rc2 gives an intensity-

dependent contribution to the refractive index(n = n0 +n2I), k0 is the vacuum wave 

number, and Aefj is the effective area of the modes. By introducing the new 

variables A -  Exy exp{-y / 2[(P r + Pv ± P0 )z ± <t>]} one obtains, after neglecting all 

the fast oscillating terms,

dAr 1 dAr
dz vgx 3t , + 2 Cl~ch*L ~ + kAy + + PK I )A 7.13

dAy | 1 dAyA

, d z  v *y d T  J

1 a2Av
+ —a ——7-

2 dx~
= -|3A).+fc4,+fi(|At |2 +p|A,|2)A> 7.14

where the detuning 2[3(co0) = (P t -  P v)(co0) -  P0 have been introduced. It is

convenient to rescale eqns. (7.13 and 7.14 ) in terms of the usual soliton units and to 

rewrite them in a reference where time is retarded according to the mean group 

velocity vg = (v + v ) / 2. The dimensionless variables

t = ( x - z / v g) / t s; £,= z / z c = |a|z / t] 

u = (Rtf / |a|)1/2 Ax\ v = (Rt2 / |a|)'/2 Ay
7 .1 5
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are introduced, where ts is the width of the fundamental soliton solution of a single

nonlinear Schrôdinger equation (NLSE) that can be written in the form 

u(z, t) = sec h(x / t, ) expO'z / 2zc ). Here zc is the soliton characteristic length, and

the period of the multisoliton solutions is z0 = n z c / 2 .  One then obtains the 

coherently coupled NLS equations(CNLSE)

-J

-J

du ~ du
^ + 0 — + 1 d~u

2~dë
= Aw + k v  + (|w|2 + p| v|2 'ju

7.16

dv ~ dv '  i a 2H------ - -  -Av + Ku + (|v|2 + p|w|" )v
2 d t 2 V ’

where 8 = (nx - n v)/v|a|c is the normalized group velocity mismatch, K = kts / a  is 

the normalized coupling constant, A = (3rt2 / |oc| is the normalized detuning from the

resonance condition, and finally P = ^3 • The +(-) sign in front of the time derivative

holds in the normal(anomalous) dispersion regime. Equations 7.16 apply to different 

physical implementations. For example, in a dual core fiber, u and v represent the 

normalized amplitudes of pulses travelling in the mode of each core; moreover 

p = 0, while A and k  are the normalized phase velocity mismatch and coupling 

coefficients, respectively. In a biréfringent fiber, u and v are the normalized 

components of the pulse in the two counter circular polarization modes, in this case, 

p = 2 (for silica), K is the coupling originating from the natural linear birefringence, 

while A is nonzero in the presence of a uniform twist or optical activity.

7.4 Solution of the Coupled Nonlinear Schrodinger Equations

7.4.1 Brief Review of Analytical methods

The coupled nonlinear Schrodinger equations(CNLSE) 7.16 are formally systems of 

second order nonlinear partial differential equations. A particular system of CNLSE, 

known from the theory of self-focusing, has been shown to be completely integrable 

by means of the inverse scattering method (Ablowitz et ai, 1974). The complete 

integrability is closely connected with the Painlevé property (Sahadevan et al., 1986),
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a creterion concerning the general solutions of PDEs. A class of CNLS equations 

with constant coefficients, similar to the models considered here, fails the test of 

having the Painlevé property, except for particular choices of parameters (Sahadevan 

et al., 1986). These chioces of parameters are often, unfortunately, noninteresting 

from the applications point of view. These equations can be treated as a problem of 

the evolution of a dynamical system with an infinite number of degrees of freedom. 

They are usually Hamiltonian, that is, they can be derived from Hamiltonian 

functionals (Dowling, 1990). This means that their analysis can be based on the 

theory of infinite dimensional Hamiltonian systems with the energy of the solutions 

usually being conserved.

Particular solutions of the systems can be found by making a substitution of a 

required form of solution, usually with some variables separated, and then finding 

several relations concerning the parameters. Some of the exact pulsed and periodic 

solutions have been obtained this way (Menyuk, 1987; Belanger and Paré, 1990; 

Tratnik and Sipe, 1988). In generalizing the substitution method, one tries to reduce 

the given CNLS systems of PDEs to coupled ordinary differencial equations and to 

proceed more systematically with the resulting systems. A search for stationary states 

by applying a version of the Hirota method resulted in finding bound solitary waves 

in birefringent fibers (Tratnik and Sipe, 1988; David and Trantnik, 1991). Periodic 

solutions were found by using the spectral theory of the NLS equation with Lamé 

potentials or an ansatz with one-dimensional theta functions (Kostov and Uzunov,

1992). The use of two-dimensional theta functions resulted in more general quasi- 

periodic solutions. Classes of coupled solitonic states were investigated by using the 

Hamiltonian approaches. Similarity solutions of the CNLSE with variable 

coefficients were also determined by the use of the reduction method (Mangnaro 

and Parker, 1993). In doing the reductions to ODEs, forms of exact solutions of 

nearly integrable systems might be helpful. For example, a system of coupled 

nonlinear PDEs similar to the CNLS system, but of the first order, was analyzed via a 

completely integrable Thiring model of field theory.
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Zakharov and Shabat showed the nonlinear Schrodinger equation of eqn. 

(7.16) to be integrable by using an inverse scattering transform. Strictly speaking, 

however, the equations that describe a birefringent optical fiber are not integrable. 

This nonintegrability occurs because in linearly birefrigent fibers the cross-coupling 

between modes is only two-thirds as strong as is self-coupling (Menyuk, 1988). As 

illustrated by soliton dragging and trapping, one consequence of the nonintegrability 

is that inelastic collisions are possible between orthogonally polarized pulses. 

Furthermore, in switching schemes where pulses pass through one another, the CNLS 

are usually studied numerically both because of the nonintegrability and because the 

equations are much more complicated than the single-axis NLSE.

7.4.2 Finite Element Treatment

In this section, we describe in detail the method we adopt to solve the two- 

coupled NLSE:

du „ du
—  +  5 —

^  *

1 d2u± — -̂—r  = Au + Kv + (|«|2 +p|v|2^/ 7.17

- J
r d v _ ò dv) . i a 2

a^ dt
+ - — = - A v + k m + (|v |2 +p|«|2)v 7.18

This will be modified in Sections 7.7 and 7.8 for the solution of the 3-coupled 

generalized NLSE.

Coupled systems of equations can be solved numerically by monolithic schemes, 

where the differential equations for the different variables are all solved together or 

by staggered schemes where the different variables are solved separately and there 

may or may not be the presence of iteration between them. The monolithic methods 

seem very direct and simple to implement but have several disadvantages (Wood, 

1990) For many practical problems the monolithic systems, whose matrix is to be 

inverted at each z-step, can be impossibly large. Also two, or more parts of the 

problem may involve nonlinearities which need to be handled in different ways.
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Partitioning or staggered methods for the solution of coupled problems, as the 

name suggests, divide the problem into smaller units. The equations for two sets of 

physical function components such as the fields in each fiber core are z-stepped in 

turn and the results used to determine the coupling effects. With the problem divided 

in this way there is the possibility of using programs which already exist for the 

solution of the uncoupled equations with modification to include the coupling effects.

The time domain of eqns. (7.16) and (7.17) is divided using line elements as 

described in Chapter 3 with three nodal points per element and the amplitudes u(z ,t ) 

and v(z,x) are expanded in terms of w,.(z) and v, (z) (i = 1,2,3). The result, after time 

discretization by the finite element method based on the Galerkin method, is the 

following two-coupled matrix first-order equations:

(j[M]d/ dz + [K„]+ [*„ ]){«(z)}+ {/} = {0} 7,18

{AM ]d/ dz + [Ktl} + [ K , ^ z ) } + { g } = { 0} 7.19

where the matrices are given by

1=X  / [ / » M R  Y + (y2p ,  } R  } >

e

[*«]=XJ’j-.'MwHA'T p y p .P .Y Y
e

e

[ « ] = X J > } w r*

169



{ f } = J , j { N } { N } r {Kv}ds
e

f e } = X J w w r M *
e

p = W { H 2 + pH2}
4 = M 1 vI2 + pM2}

and ^  stands for summation over all elements, and + denote the
e

anomalous and normal dispersions respectively. For the sake of simplicity we assume 

5=0, so that [Kkx] = [Kk2]~ L. We apply the trapezium rule Crank-Nickolson z- 

stepping algorithm for the solution of the coupled matrix eqns. (7.18) and (7.19) in 

the form:

M + -A z L un+, = M — — AzL
2 2

M+-AzL vn+1 = M -  — AzL
2 2

- y [ W ( « n+, K +, +W(tOMn] + y K[v„+, +v„] 

- ^ [ W (vn+. K +1 +^(V n) v J + ^ K[Mn+1 +un]

7.20

7.21

where A7(-) = |-j“ are the nonlinear terms. Equations (7.20) and (7.21) are then 

written in the forms:

= Bun - y [ £ „ +| +En] + ̂ [ F n+i + F J  7.22

Avn+x=Bvn - y [ G „ +I + G J + y [ / / (1+1 + /7 J  7.23

where the nonlinear terms are collected in £(m,z) and G(v,z) while the linear coupling 

terms are represented by F(v) and H(v) and the matrices A and B are constant 

matrices given by :

A = [M+ —  L]
2

B = [ M -  —  L\ 7.24
2

170



The basic idea of the method is demonstrated by the staggered iteration below. One 

of the unknowns is extrapolated at the start, then the equations are solved in turn each 

providing the next value to insert into the coupling term of the other until 

convergence is attained. The order of iteration in the z-step from z to z+Az is as 

follows:

1) compute

Au'n+] = Bun+] -  AZEn + AzFn 7.25

to give w'+] by setting En and Fn as the starting values for En+] and Fn+I.

2) then u'n+i is used to give

En+l = — [N(u'n+l)u'n+i+N( un)uH]

HU i = y  + " J

3) compute

Av'n+] =Bvn- G n+[H'n+

7.26

7.27

to give v'+1 by setting G„ as the starting value for Hn+].

The last step gives v'+I to substitute into the coupling term Fn+1, and the cycle is 

repeated.

7.5 All-optical soliton switching in dual-core fiber couplers

To acess the algorithm, a simulation of the case where k=8=0 and u = v which 

corresponds to a single NLSE was first undertaken. Figure 7.5.1 a, b, c show the 

propagation of 4 solitons of unequal amplitudes in a train along a single fiber. These 

simulations confirm a recent study which showed that for an arbitrary arrangement of 

solitons in trains of unequal, equidistant solitons, with a small initial separation, 

formation of a stationary regime, that is free from N-soliton interaction, is
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impossible. Such a stationary, regime, was found however for the trains with 

consecutively arranged large and small solitons, which is confirmed by Fig. 7.5.1 

(Uzunov, Stoev and Tzoleva, 1992).

~  26 -  ! 8

t (seconds) t (seconds)
Figure 7.5.1: Solitons in a train : a)consecutive and b) arbitary arrangement

By specializing Equations (7.16) and (7.17) now to the cores of a dual-core fiber 

coupler one obtains that the coupler field envelopes, say u and v of the modes of the 

single cores obey the system of NLS equations (Trillo and Wabnitz, 1988):

. du 1 d2u I |2= +Kv + w u 7.28

. dv + 1 d2v 
% ~ 2 d t 2

-K.U + I |2|v| V 7.29

where the upper (lower) sign holds in the anomalous (normal) dispersion regimes 

respectively. Equations (7.28) and (7.29) adequately describe situations where the 

coupling owing to the overlap between the evanescent tails of the fields in the two 

cores is a relatively weak perturbation with respect to the uncoupled propagation that 

is governed by a single NLS equation. Furthermore, the coupling coefficient k  should 

be reasonably constant over the frequency spectrum of the pulses.
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In the simulations, the input soliton is fed to only one of the two input ports:

u(E, = 0 ,T) = u0 sec h(T / T 0) 

v(£ = 0,x) = 0.
7.30

It has already been shown that whenever u0 is smaller than a certain switching 

amplitude, the input pulse periodically couples back and forth between the coupled 

channels, with a relatively small distortion of the pulse profile( Trillo et al., 1988). 

For input powers that are higher than the switching value, the soliton transfer 

between the channels is inhibited.

Figure 7.5.2: Energy transmission versus input peak power of soliton switching in the 
normal and anormalous dispersion regimes.

In Fig 7.5.2 the fraction of the energy transmitted in the input channel as a 

fraction of the input power (in units of the critical power) are shown. Here we have 

chosen the same values as those used by Romagnoli et al., (1992):k =tc/2 and
i/

T0 = l / (2t x)/2 which makes the cw critical power to be equal to the fundamental 

soliton peak power. Figure 7.6.2 indicates that in the normal dispersion rigime (i.e. 

P>0), the nonlinearity and the coupling leads to spoiling of the cw switching 

characteristics. Conversley, in the anomalous dispersion regime (i.e.(3<0), the 

switching characteristics is similar to the stationary one, apart from an increase of the 

switching power.
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Figure 7.5.3 : Soliton switching in active nonlinear dual-core fiber coupler with 
different values of gain, gain coefficients, T = 0.05,0.10, 0.15 and 0.20 ( curves from 
right to left indicate increasing order of gain).

Next, we undertake the numerical simulation of the coupled system of NLSE in the 

presence of gain. Figure 7.5.3 shows the soliton switching characteristics of an active 

coupler for differtent gain coefficients indicating that a reduction in the switching 

power as the gain is increased up to about T=0.15, and even at r= 0.2 the curve 

resembles a step function. Effectively, Wilson et al. ( 1992) have attributed this to be 

due to the fact that the gain maps a given range of input powers to a larger range of 

nonlinear phase shifts than in the passive case with the effect of compressing the 

curve along the P0 axis and causing the slope of the switching curve to increase. For 

the case of T=0.15, the curve is almost vertical at the switching point, which is the 

type of response desired from an all-optical switch. In addition to lowering the 

switching power, the gain enhances the response of the device as a whole. The results 

obtained here showed excellent agreement with those obtained by Wilson et al 

(1992). The stability of the code was verified by monitoring the conserved quantities 

J|w|' dt and J|v|' dt which were found to be constant in all cases where T=0 .
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7.6 Improved switching characteristics of solitons in active three-core

nonlinear fiber couplers

The two-core nonlinear fiber coupler has been investigated extensively and many 

interesting cw and pulsed operational regimes have been proposed ( Romagnoli et al., 

1992). Limitations on its operation, arising from linear loss, can be eliminated by 

introducing gain in the cores while the use of solitons as input pulses prevents pulse 

stripping. The three-core nonlinear fiber coupler has also attracted considerable 

attention recently because it possesses some significant advantages, particularly 

sharper switching characteristics, over the two-core nonlinear fiber coupler ( Soto- 

Crespo and Wright, 1991). A major drawback for the practical realization of ultrafast 

all-optical directional couplers, however, is that switching occurs over a relatively 

broad range of powers, in contrast to ideal switching which is characterized by a step 

function. The relatively ideal transmission characteristics of the three-core coupler 

are achieved, unfortunately, at the expense of higher switching powers ( Soto-Crespo 

and Wright, 1991; Langridge and Firth, 1992).

In this work, to investigate the effect of gain on the switching of solitons in a 

three-core nonlinear fiber coupler, a modification of the finite element method is 

applied to the three-coupled nonlinear Schródinger equations (CNSE). Our numerical 

results show that a considerable lowering of the switching power and further 

improvement of the transmission characteristics of the three-core coupler are possible 

by introducing linear gain in the cores of the fiber. Transmission curves for higher 

input power ranges exhibiting high periodic oscillations, have also been illustrated.

Picosecond soliton pulse propagation in a three-core nonlinear fiber coupler 

array, with nearest-neighbour-coupling that includes gain with infinite bandwith, can 

be predicted by solving the 3-coupled system of nonlinear Schródinger equations 

(Langridge and Firth, 1992; Wilson et al., 1992):
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. 5«i 1 5 2W, , | 2  -r-L+KM2 + |«|, W, -7r,M,
2 dX

. d«? 1 d 2m2
i l k 7

+ K(w, + u 3) + m22m2 - ; ' r 2M2 7.31

. d«3 1 d 2M, | |2 „
-------— + kw , + |m3 | u 2 -  j l  3u 2
2 dx

where u( (1=1, 2, 3) are the normalized components of the slowly varying pulse 

envelopes in the input core (7=1), center core (/=2) and the outer core (7=3), £ and x 

are the axial coordinate and the time in a reference frame moving with the common 

group velocity, K is the linear coupling coefficient and T, is the linear gain 

coefficient of the 7th core. If all effects of pulse dispersion and gain are neglected 

and only continous wave interactions are considered, the system of equations can be 

solved analytically. Their solutions have indicated that over longer distances the 

transition to chaotic behaviors take place as the power is varied (De Long et al., 

1991; Finlayson et al., 1993: Finlayson and Stegeman, 1990). It is, however, 

extremely difficult to solve the full system of equations (7.31) analytically, even 

though coupled soliton solutions ( Akhmediev and Buryak, 1994) have been obtained 

for the equilateral-triangle core arrangement without gain. We have therefore 

integrated Equations (7.33) using the staggered form of the step-by-step finite 

element method described above (Wood, 1990). For the computations reported here, 

in each case the initial conditions, which correspond to an edge-excitation of the 

coupler were considered, ie:

M,(̂  = 0,x) = V ^sec/z(x) ?32
m2(^ =0,x ) = m3(£ = 0 ,x) = 0.

where Pmm is the input peak power. The calculations were performed on a half-beat- 

length coupler of length Lc = k  and k =1.
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To ensure the validity of the technique, computations of the transmission 

characteristics of a passive three-core fiber coupler( T, = T2 = T3 =0) for soliton 

inputs were conducted (as shown in Fig. 7.6.1) which show excellent agreement with 

results of Soto-Crespo and Wright (1991). In Figs.7.6.2 (a), (b) and (c) the 

transmittances are shown as a function of the peak input power, Pmax, for different 

values of the gain coefficients^, = T2 = T3=G) in cores 1, 2 and 3 respectively. As 

in the case of an active two-core coupler ( Wilson et al., 1992), the presence of gain 

has the effect of lowering the switching power considerably and also enables an 

improved or sharper transmission curves to be achieved. The active three-core 

coupler with a gain coefficient of 0 .2 , achievable by application of, for example, 

erbium-doped fiber, can switch at about a peak input power of Pmax =3 compared to 

Pmm= 4 for a passive three-core fiber coupler(Fig.7.6.2a and Fig.7.6 .1). Also in the 

presence of gain, it is possible to achieve 80% power transfer in the center core (less 

than 60% for the passive coupler) as shown in Fig. 7.6.2b.

Figure 7.6.1: Transmission characteristics for power-controlled soliton switching in a 
passive nonlinear three-core fiber coupler one coupling length long.

At higher powers violent power swapping between the center (/'=2) and the outer 

(/=3) cores within a transient region takes place, as is evident in Figs.7.6.3(a) and
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3(b) for G=0.0 and G-0.2 respectively. In this situation, the nonlinearity and the 

linear coupling tend to have a similar influence on the system leading possibly to a 

chaotic state. The frequency of oscillation of the transient instabilities in the 

transmission curve increases as the gain coefficient is also increased, as shown in 

Fig. 7.6.3(b). The gain also appears to lower the threshold at which this instability is 

triggered. Although analytical results using tools like the Kolmogorov-Amold-Moser 

(Bernstein, 1992; De Long, 1991) theory have been used to characterize the onset of 

true chaos in the discrete self-trapping nonlinear Schrodinger equation, obviously the 

presence of gain complicates further the analytical treatment of the chaoticity of this 

system.

(a)

(b)

Figure 7.6.2 : Normalized transmission characteristics of active nonlinear three-core 
half-beat-length couplers with varying gain coefficients T, = T2 = T3 = G = 0.0, 0.05,
0.10, 0.15 and 0.02 as indicated in the inset for a) input core (core 1) b) center core 
(core 2) respectively.
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Figure 7.6.2 c: Normalized transmission characteristics of active nonlinear three-core 
half-beat-length couplers with varying gain coefficients T, = T2 = T3 = G = 0.0, 0.05, 
0.10, 0.15 and 0.02 as indicated in the inset for the outer core (core 3).

Figure 7.6.3: Core normalized transmission characteristics for high power ranges: a) 
passive coupler (G = 0.0 ) and b) active coupler ( G = 0.2 ).
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7.7 Soliton train generation in a dual-channel mode-locking fiber laser

In a communication system, it is desirable to transmit information at a very 

high rate. One approach to this requires a source of ultrafast soliton pulses at high 

repetition rates. To date, solitons have been mainly generated by using high-power 

laser sources such as color center and Nd:YAG lasers, but in a practical 

communications system, soliton generation from a laser diode is more desirable. 

However, the generation of transform-limited pulses from a gain-switched laser 

diode is very difficult unless some optical filtering techniques are applied. Different 

fiber-based soliton laser sources have been proposed, among them being the use of a 

fiber with slowly-varying dispersion (Mamyshev, 1992).

In this work, the generation of a high-quality train of soliton-like pulses at a high 

repetition rate (GHz-THz) is demonstrated numerically. The method is based on the 

roundtrip propagation of a dual-frequency cw signal with sinusoidal modulation 

through a passively mode-locked fiber laser ( Winful and Walton, 1992; Walton and 

Winful, 1993) with two output channels. The dual channel active nonlinear coupler 

(DNANCL) is implemented in a half-beat-length long three-core erbium-doped 

nonlinear directional coupler switch in nearest-neighbour-coupling array 

configuration, the two outer arms of which have gain as well as feedback mirrors 

while the center arm is passive and has no mirror (Winful and Walton, 1992). The 

mathematical description of its operation is the three-coupled system of nonlinear 

Schrodinger equations (Winful and Walton, 1992; Walton and Winful, 1993), given 

by

7 a% 2 ax2
+ K (u + w) + |v|~ v = 0 7.33

. aw i a 2w I 12 . 1 T i
+  k v  + | h ’ | w = j  — gLD w  + t ;

. i 7 a 2 w
7 aç 2 ax2 2 6 D 2 ax2
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where u and w are the field amplitudes in the outer active cores, and v is that in the 

center passive core. K, LD and x 2 are the linear coupling strength, the dispersion

length and the gain bandwidth respectively and g = g0 e\p{-Ep / Ewl) where g0 

stands for the unsaturated gain coefficient, Ep is the pulse energy and Emt a 

saturation parameter, takes into account gain saturation .

(a)

\ u \2 , \ w \2

Time

Figure 7.7.1: Evolution of an initial sech-like pulse of peak intensity 2.0 through 3 
roundtrips a) intensities in the active cores, \u\2 ,\w\2 and b) intensity in the passive 
arm I vl2.
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In the first set of simulations, sech pulses («(£ = 0,x) = w(£ = 0,x) = u0 sec/i(x)) 

were launched into the active cores. As is clearly shown in Fig.7.7.1a and b, these 

evolve into steady-state pulses after two roundtrips. The joint action of the nonlinear, 

dispersion and repeated amplification effects on the high intensity discriminated 

portions of a dual-frequency seed signal of sinusoidal modulation 

(«(£, = 0,x) = w(£ = 0,t ) = Uq sin(ttx / T) ) results in the generation of new spectral 

components and their reshaping into a train of pedestral-free pulses (Fig.7.7.2 and 3).

140 

120 

100 

80

|u|2,|w|2
60 

40 

20

0  i i i l l l
- 4 . - 2  0 2 4 6

Time

Figure 7.7.2: Temporal evolution of a soliton train formation in the laser
( period T = 2. , u0 = 2.).

3000- |

Figure 7.7.3 : Pulse spectrum after 3 roundtrips.
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7.8 Summary

In this Chapter, a useful novel numerical code to solve coupled systems of 

NLS that may include linear coupling terms as well as dissipative terms like gain or 

loss is described. The method was assessed by comparing the results of the 

simulations carried out with results available in the literature. Soliton switching in 

nonlinear fiber couplers were studied and the results showed excellent agreement 

with already published results.

The usefulness of the novel algorithm was demonstrated through its novel application 

to the study of the effect of gain in improving the switching behaviour of three-core 

fiber nonlinear couplers with optical solitons. Numerical calculations have been 

presented of the transmission charcteristics of a three-core nonlinear fiber coupler for 

soliton pulses to show that sharper switching behaviour compared with the passive 

three-core coupler is possible when the cores are constructed of gain media. It is 

shown that switching at resonably lower power levels is possible, thus offering the 

prospect for realizing ultra-low power, all-optical switching. The presence of linear 

gain may lead to the onset of chaos at short range in a three-core nonlinear fiber 

coupler.

A proposal for the generation of soliton-like pulse train was made based on a 

dual-channel fiber laser. The reshaping of dual-frequency sine beating signal pulses 

into a comb of “well-isolated-from-each-other” fundamental soliton-like pulses in a 

dual-channel passively mode-locked fiber laser has been demonstrated numerically. 

The extra degree of freedom resulting from the use of a three-core (two input and two 

output chnnels) E r + -doped fiber coupler laser will be valuable for future highly 

parellel systems.

The next Chapter deals with the analysis of nonlinear dynamic feedback systems 

in which the solitons involved depend on both the spatial transverse coordinates and 

the transit time of the propagation in the cavity.
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8. ANALYSIS OF BISTABLE RING CAVITY FEEDBACK SYSTEMS

8.1. Introduction

Transverse effects in nonlinear optical systems are attracting growing attention 

not only because they provide interesting and privileged phenomena for the study of 

nonequilibrium systems but because they constitute the basis of numerous promising 

phenomena suitable for application to all-optical signal-processing schemes (Abraham 

and Firth, 1990). This area of research studies the phenomenon of spontaneous pattern 

formation which occurs in the structure of the electromagnetic field in the planes 

orthogonal to the direction of propagation, during the interaction with a nonlinear 

medium. In particular, the study of transverse effects in passive nonlinear optical 

cavities has revealed an extremely rich spectrum of temporal and spatial behaviors 

and has proved the possible application of these devices to all-optical processing 

systems such as optical switches, memories and logic gates (Gibbs, 1985). The study 

of finite-width beam optical bistability in nonlinear Fabry-Perot or ring cavities is a 

typical example. Transverse effects have been shown strongly to affect the steady- 

state response of these devices as well as their dynamics. In particular, the 

spontaneous occurrence of spatial solitary waves in such resonators pumped by 

Gaussian beams has been described and interpreted by Lugiato and co-workers in 

terms of spatial dissipative structures (Lugiato and Levfevre, 1987). Also, more 

recently, the feasibility of using multiple solitary waves as a basis for all-optical 

memory has been numerically demonstrated. Wide-aperture interferometers, filled 

with a nonlinear medium and excited by coherent external radiation, for example, are 

of great interest due to a number of reasons. One factor is the appearance of a great 

variety of new types of patterns (field structures ) resulting from diffraction instead of, 

or, in addition to, diffusion in related problems of self-organization (Akhmanov et al., 

1992), in nonlinear interferometers, an example being the quantum-mechanical 

particle-like field structure - Autosolitons (Rosanov and Khodova, 1990). Nonlinear 

interferometers are promising for parallel optical processing due to the possibility of 

operating simultaneously with large information arrays.
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As any first-order phase transition, optical bistability is characterized by the 

fact that for a certain parameter range the system can be in one of two possible states. 

Historically, such a discontinous phase transition was first studied by Van der Waals 

(Van der Waals and Kohnstamm, 1908). The phenomena arise in a Fabry-Perot or ring 

interferometer filled by a medium with a nonlinear absorption coefficient or index of 

refraction, when excited by a laser radiation. The ring resonator is simpler than a 

Fabry-Perot interferometer, because of the presence of standing waves which 

necessarily occur in the latter. The simplest description in terms of plane wave leads 

to the possibility of an S-shaped dependence of the intensity, I, inside the 

interferometer ( or intensity of transmitted radiation) on the intensity of the radiation.

The plane-wave approximation does not, however, describe quite completely 

the physical picture of the bistability phenomena for the following reasons: First, the 

propagation of an intense plane wave in an unbounded nonlinear medium is unstable 

with respect to a rise in perturbations with sufficiently low transverse spatial 

frequencies. As a result, the initially smooth beam profile is distorted and becomes 

substantially fragmented. Secondly, a substantial difference in the description using a 

plane wave and a confined beam necessitates the inclusion of boundary conditions in 

the latter case, i.e., a drop of the field away from the axis of the interferometer.

In all-optical bistable elements in which the necessary feedback is provided by a 

resonator, the superposition of multiple reflected beams suppresses strong 

longitudinal amplitude variations. Transverse spatial inhomogeneities may develop, in 

which the system forms patterns of high and low intensity. These transverse effects 

are pronounced, especially if the incoming beam is not a plane wave. In the optical 

bistable regime, the coexistence of regions with high and low intensities expresses a 

spatial phase separation. If these regions are large and separated by sharp transition 

regions, the system locally realizes the two phases found in a plane-wave analysis. 

This limit is reduced for r/dr » 1 ,  where r is the cross-sectional dimension. 

Additionally to these effects, the influence of diffraction can also cause spatial 

structures, which may be superimposed on the phase separation pattern. This may lead 

to a modification of the simple structure, especially, if a situation is reached in which
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r/dr ~\, when analysis in terms of plane-wave bistability is no longer appropriate. 

The structure of the transverse patterns depends on the various types of nonlinearities. 

An additional feature of optical bistability is the appearance, under suitable 

conditions, of a chaotic variation of the output intensity, even though the input 

intensity is held constant.

Two ways of patterns generation in spatially homogeneous systems are known. 

The first corresponds to “soft” excitation of structures because of the growth of 

initially small perturbations of spatially homogeneous states of the system. For 

nonlinear interferometers, such an instability of the field transverse structure and the 

resulting filamentation were first demonstrated by Rosanav (1983) and subsequently 

in a number of papers by Moloney and co-workers ( Moloney, 1985; Adachihara et 

al., 1989). These separate filaments were treated as “solitary waves” and are the 

subject of this Chapter. The second method becomes apparent even if transversely 

uniform field states preserve their stability with respect to small perturbations. Only 

“hard” generation of patterns is possible in this case, and initial small perturbations 

dissolve with time. Examples of such structures in nonlinear interferometers are 

switching waves and diffractive autosolitons, the structures determining essentially 

the spatial hysterisis kinetics.

One difficulty with exploring possible pattern evolution is the extreme 

computing resources needed per individual run. Neglecting diffraction permits much 

analytic progress to be made on this problem, while its inclusion results in a relatively 

intractable system for which full numerical simulations are nescessary. Modeling 

Gaussian-beam devices means taking advantage of their cylindrical symmetry, for 

which the fast Fourier-transform (Moloney et al., 1982) is not so well adapted. There 

is a related fast-Hankel-transform method (Sheng and Siegman, 1980) which roughly 

doubles the computing time. The added computation time combined with that needed 

to deal with counter-propagation permits other numerical techniques to compete. 

However the more competing finite-difference method becomes more difficult to 

program and also time consuming when non-uniform meshes are used. There is 

therefore the need for the development of efficient and versatile methods to compete
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with existing numerical codes. In the following sections, we demonstrate the 

efficiency of the finite-element method for the solution of the one-transverse 

dimentional infinite-dimentional map. This will be extended to the two-dimensional 

case, taking full advantage of the enforced four-fold symmetry and the highly sparse 

nature of the matrix to improve the efficiency of the algorithm.

8.2. Definition of the map

. Here we present a brief description of the derivation of the infinite-

dimensional map from the relationship of the Maxwell-Bloch equations. The model 

(Fig. 8. 2.1) is an externally pumped passive nonlinear optical ring resonator in which 

a wide range of spontaneously occuring spatial pattern have been studied. An external 

cw pump laser beam enters the resonator through a partially transmitting mirror of 

intensity reflectivity, R, (T=\-R, is the intensity transmission coefficient). The beam is 

of finite extent in the transverse dimension and, for convenience, we will assume it to 

have a Gaussian spatial profile, although this latter assumption is not necessary and 

any form of beam profile could be assumed. Within the resonator, the beam 

propagates through a nonlinear medium and part of it is transmitted through the 

output mirror which we assume has the same intensity transmission coefficient as the 

input mirror. The remainder of the beam is recirculated back around the resonator and 

adds to the input beam. We are interested in the long-time state of the continuous 

laser signal which is recirculated through the nonlinear medium. As is well known, 

when the output is monitored against the input intensity the system may show bistable 

behaviour (optical hysterisis) ( Ikeda, Daido, and Akimoto, 1980).

Consider the propagation of a monochromatic continuous input signal in an 

active medium described by Maxwell-Bloch equations (Moloney and Newell, 1990).

-----I- -dF 1 dF ’---- 1-------
dz c dt

8.1

8.2
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^  + y u ( N - N 0) = ± j - ( F ' A - F A ' ) ,  
dt h

8.3

where N measures the excess number of atoms in the lower energy state, hwl2 is the 

energy level difference, while yn and y i2 are the on- and off-diagonal components of 

the absorption. Solving eqns (8.2) and (8.3) for A, N one can write by analogy with 

( l / t 0)p = x E ,  A = e0[x'(co,|fl2)+;x"(iO,|F|2)]F with %' and x "  being the real and

imaginary components of the complex susceptibility, X-

x

Fig. 8.2.1 The nonlinear ring cavity

Assuming that y ,, and y 12 are sufficiently large compared to the time scales on which 

the field varies and adiabatically eliminating A and N from eqns. (8.2) and (8.3), we 

obtain a single PDE for F.

I ”+ c f ' ~ 2 k V i ,F  = ) ] f  ■ 8.4

Since N0 > 0, x" > 0 the medium absorbs energy, albeit at a decreasing rate with 

the nonlinearility. The boundary value problem is now greatly simplified if the input 

field A(x,y) is independent of the retarded time coordinate T-z/c over each of the 

intervals («-l)(L+l)/c < t-z/c < n(L+\)/c, 0 < z < L, and F becomes

Fn (x, y,0) = (1 -  RY2 A(x, y) + Re xp(jkL)Fn (L,x, y). 8.5
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The function Fn_x(x,y,L) is determined as a functional of ^ (x .y .O ) by 

solving the differential equation

Therefore, eqn. (8.5) is an infinite-dimensional map which takes a function 

Fn_x(x,y,0) to another function Fn(x,y,0) by first solving eqn. (8.6) for

F„_, (x, y, L) and then using eqn. (8.5). The gain is supplied by the input field A(x,y); 

the losses are due to the nonlinear absorption and the mirror losses. The case where 

the effect of x 'fm J'F2) dominates that of x"(co,IFI2) is called the dispersive 

bistability case; the opposite case in which absorption dominates is called absorption 

bistability. Ignoring the absorptive losses, the evolution Equation (8.1) becomes 

conservative and in particular \FF"dx is independent of z. It has the form of a

saturable nonlinear Schrodinger equation, which in the limit of small amplitude 

becomes the NLS equation, with cubic nonlinearility.

Suppose now that the input field is a pure plane wave and that A(x,y) and 

F(x,y,z)are independent of the transverse coordinates x and y. Then Fn_,(z) can be 

solved from eqn. (8 .6) as

where Fn(0) = Fn, and <f) = &(/ + L ). This is the Ikeda map (Ikeda et al., 1980) , a 

nonanalytic map which takes a complex number F„_,, changes its argument by an

8.6

Fn_, (L) = F„_, (O)exp(^—x'Cco^F^, (0)|2 L 8.7

whence the map (8.5) becomes

Fn = ( l - F ) ^ A  + FF^1exp[y((t) + “ X,(0),|F„_1|2L)], « = 1,2,... 8.8
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amplitude-dependent amount (¡) + (w/2c)x'((0,IFn_1l2 )L, reduces its magnitude by R 

and gives it a translation (1 -R ) '12 A. The output is a multivalued function of input 

with three possible outputs, two stable and one unstable, a property which can be used 

as a switch.

If we assume that the nonlinear medium response times are much faster than 

the resonator roundtrip time, then in the good cavity limit, the atomic medium (two- 

level atom) variables may be adiabatically eliminated from the Equations (8.6) and 

(8.7) and then after several manipulation and using the same notations as in the work 

of Moloney (1985), leads to the following nonlinear evolution equation for 

propagation of the electromagnetic field in the medium:

2 j to,

*

and the ring resonator boundary equations become

8.9

Gn(x,y,0) = a(x,y) + RejkLGn_l(x,y,p)-, G0 = 0 n> 0 8.10

These equations together constitute the infinite dimensional map in the discrete time 

variable, n, where n counts the number of circuits of the field around the resonator. 

Gn is the normalized intracavity field amplitude; a(x,y) is the input field while (jc,y) 

and £, refer to the normalized values for the transverse and propagation direction 

respectively. In the case of a Kerr-type nonlinear medium (corresponding to G „ « l) ;

the above becomes a two-dimensional NLS equation where is the two- 

dimensional transverse Laplacian in scaled coordinates.

8.3 Numerical Solution by the finite-element-based BPM

Equations (8.9) and (8.10) may be solved as follows. The initial input beam 

profile a(x,y) which is assumed to be Gaussian acts as the initial data for the nonlinear
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evolution equation eqn. (8.9). This equation is solved by the method described below 

and the result substituted into eqn. (8.10) determines the new initial data for eqn. 

(8.9). This procedure is repeated until the system reaches an asymptotic state, which 

may be stable or unstable.

In this section, we first treat the one-transverse dimensional case by solving for the 

field Gn(x,z), during its transit through the medium, as the solution of the infinite-

dimensional map:

2J ^ L+ 7 ^ T L-iV (G ,G ;)C, = °  8.11
3^ /  ox

where Gn (x,0) represents the internal complex cavity field at the start of the nonlinear 

medium on the nth cavity pass, a{x) = ap exp(-x2) is the external pump field profile,

1 3
R is the mirror reflectivity, and N(GnG‘) = -(1 + 2IGJ2)"’. -------represents the

/

diffractive part, £, represents the propagation direction, while x is the transverse 

coordinate and p is the effective length of the nonlinear medium.

The initial-boundary-value problem of equation (8.11) is solved by the standard 

Galerkin finite element method using line elements for the transverse direction only 

and the resulting system of equations is solved in the propagation domain using 

Crank-Nickolson finite-difference method. The transverse grid points of the nonlinear 

medium are defined to be x, = iAx, where Ax is the mesh division, for i = 1,2 ,..., np,

where np is the number of points. As has already been pointed out, the mesh divisions 

can have different lengths, so that one can focus on special regions of interest along 

the x direction, for example, where the maximum change of field values is expected. 

The basis functions,!)/¡(x), vanish for I x - x ^ A x ,  increase from 0 to 1 over

x(_, < x < x ,, and decrease from 1 to 0 over x, < x < xM . The basis functions are 

used to approximate the function by a piecewise linear function with exact agreement 

at the grid points. Using the finite element method, expanding the field Gn(x£)  as
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G„(jc,S) = , where Gnm(S) is the coefficient to be determined and

<j>m(;c) is a set of linear shape functions, the transverse section is discretized into

subsections with width, Ax. Equation (8.11) is then multiplied by the shape function 

\j/.(i = 1,2,... AO and integrated by parts, considering the Neumann boundary

conditions. This results in a set of nonlinear ordinary differential equations which are 

solved in the £, domain (propagation direction) by applying the Crank-Nickolson 

method to yield the following algorithm:

[A + 05A&p„'  (*,£ + A£) = [ A -  OAASLfo (*,£) 8.12

Here A and L are square matrices with the respective elements Ae and Le as

A, = ~i<M*)<f> (x)dx
m

8.13

Je\ dx dx
+ N(GnG'n)-ty$ 8.14

Step-by-step solution of the matrix equation (8.12) using a Gauss method and a series 

of steps yields the evolutional variation of the transverse laser beam in the nonlinear 

medium. A considerable computational efficiency was achieved by using the split- 

operator technique to yield:

Gn(x£ + AS) = G„'(* ,S + AS)exp[-0.5yA^(GnG 'n)] 8.15

where Le now becomes

L. =
1 rf d $ j d $ m ' 

2j '<\ dx dx j 8.16

There is now no need explicitly to reinvert the left hand side of eqn. (8.12) to obtain 

the fields at the next steps. Also for this one-transverse dimensional case, the equation 

(8.12) can be solved extremely easily using any Gaussian elimination method as the 

matrices A and L are tridiagonal matrices.
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For the two-transverse dimensional problem, finite triangles are defined over the 

transverse cross-section of the nonlinear medium rather than line elements. Thus 

dividing the transverse cross-section (*,>0 of the nonlinear medium into a number of 

linear triangular finite elements and expanding the fields as

Gn (x, y £ )  = X l ,  Gnm (SW m (*• y) 8.17

leads after application of the finite element procedure, described in Chapter 3, to 

equation (8.11) to the same algorithm as in eqn. (8.12):

[A + 05A^Lpn\ x ,  y £  + A£) = [ A -  0.5A£L]Gn (jc, y £ )  8.18

where A and L are highly sparse matrices with elements Ae and Le given by

A e =  i U. yX> «  (*. y)dxdy 8.19

and

_ 1  t t f d$i(x,y) dfym(x,y) | d<\>,(x,y) d<$>m(x,y) 
2 dx dx dy dy

tym(x,y))dxdy

\
dxdy

j 8.20

and the Neumann boundary conditions have been imposed on the edges of the 

computational window. Equally, step-by-step calculations of the matrix eqn. (8.18) 

and a series of steps yield the evolutional variation of transvere laser beam in the 

nonlinear medium. The split-step scheme is applied here also to achieve high 

computational efficiency.
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8.4 The one-transverse dimensional problem

Fig. 8.4.1 shows for the one transverse dimension problem, three stages in the 

dynamical evolution, as predicted by Moloney (1985), comprising the initial 

transverse profile on the first resonator pass, the switch-on beam showing the central 

“on” spot and the “off’ spot states on the low intensity wings and the final seven 

asymptotic solitary wavetrains after 200 resonator passes. Fig. 8.4.1 (a) shows the 

effect of the 20th resonator pass and Fig. 8.4.1 (b) indicates that asharp gradient has 

developed and that after the initial resonator transient buildup period of about 30 

resonator passes, the solitary wavetrain is initiated at both edges. Diffractive coupling 

is very weak across the initially smooth Gaussian beam, but becomes locally 

important at the sharp gradients and coupled with the self-focusing nonlinearity 

initiates the solitary wavetrain. The situation depicted in Fig.8.4.1 corresponds to a 

choice of the input pump amplitude (a=0.0375) and the following parameters are used 

for the computations from the work of Moloney ( 1985): p=2, F=200, kl=0.4rad, 

R=0.9.

Generally the number of solitary waves is dependent on the extent to which the 

external pump peak amplitude exceeds the critical value for switching to the high 

transmission state. Because of weak diffraction initially, that part of the Gaussian 

beam which will switch on is determined accurately from plane-wave predictions and 

corresponds to all intensities across the part that exceeds the plane wave switch-on 

intensity (Moloney, 1985). After the initial transient, the total area within the beam 

remains constant and the output intensity remains constant after the initial transient of 

30 resonator passes, even though the transient profile is undergoing profound spatial 

changes.
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Figure 8.4.1: The beam output profiles after the 1st and the 20th passes in the 
resonator.

X

Figure 8.4.2: The initialization of the filaments after the initial transient period.

X

Figure 8.4.3: The final asymptotic state showing 7 stable filaments.
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8.5 Two-dimensional transverse solitary waves

We now present the results of a numerical study of Equations (8.9) and (8.10) for a 

two-dimensional transverse Gaussian input profile a(x,y). Equation 8.9) is solved in a 

60 x 60 transverse grid with the medium divided along the z-direction into 20 slices 

over 200 cavity passes for different values of beam intensity. Figure 8.5.1-8.5.4 show 

the dynamical

Figure 8.5.1: A snapshot of a single quadrant of the output profile of the two- 
transverse diemensional beam after the a) 1st and b) 20th passes in the two- 
dimensional resonator.
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evolution of one quadrant of the two-dimensional beam profile \Gn(x,y,p)\ after a 

different number of round-trips of the light beam through the ring resonator (i.e., n= 1, 

20, 40, 100, 150 and 200). The parameters which were chosen to generate these 

figures are the same as those used to generate Fig. 8.5.1. The switch-on and the 

initiation of the solitary waves is identical to the one transverse dimensional case, 

shown in Fig. 8.5.1. On the 20th pass, the sharp gradient is evident at the outer edge of 

the cylindrical ‘on’ spot. By the 40th circuit, the transverse solitary waves are already 

well developed as outer concentric rings and are slowly evolving torwards the center 

of the beam. After a transient lasting about 40 passes, the outer two rings appear to 

have stabilized. The center of the beam continues to oscillate, and there appears to be 

a slow recurrent oscillation with a period of about 100 passes. In fact, at the parameter 

values specified in this figure, the asymptotic state appears to be a slow recurrent 

periodic oscillation with no evidence of filamentation. These two-dimensional results 

agree well with those of Moloney (1985). If the input peak amplitude barely exceeds 

the plane wave switch-up value, then only a very narrow central filament will switch 

on, leaving a broad shelf in the “off’ state. The upper branch spanning the bistable 

region therefore consists of a single solitary wave sitting on a broad but low amplitude 

shelf. Figure 8.5.6 show the full two-dimensional beam profile for a = 0.2 showing the 

formation of one solitary wave which remains stable after 1000 passes through the 

cavity. However by increasing the the finess, F, from 200 to 400 the rings became 

modulationally unstable and finally developed into filaments after 200 passes as 

shown in Fig. 8.5.7.

It took 20 minutes on a SUN Sparcstation for this computational run. It is worth 

mentioning much of the computer time was used up by the matrix inversion process. 

After this proces, the computations per step require just 1 second CPU time.

197



Figure 8.5.2: The initiation of the two-dimensional ring structures after the initial 
transient state.

Figure 8.5.3: A snapshot of the output profile after 100 roundtrips in the resonator.
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(b)

Figure 8.5.4 :The well developed outer rings and the oscillation of the center beam 
through a) 150 and b) 200 passes in the cavity.
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Figure 8.5.5: A snapshot of the full two transverse dimensional a) beam profile and b) 
contour plot after 1000 resonator passes of a beam with amplitude a = 0 .02 .
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(a) (b)

Figure 8.5.6: Dynamical switching and subsequent breakdown into filament when F 
is increased from 200 to 400 after a) n = 20, b) n = 100, c) n = 150 , d) n = 200.
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8.6 Two-dimensional transverse solitary wave optical memory

In earlier work (McDonald and Firth, 1990), it was shown that the incorporation of a 

small spatial amplitude modulation in the pump field of the nonlinear ring resonator 

could permit the storage of arbitrary binary strings. If one considers the soliton arrays 

which appears spontaneuosly across the beam center as binary numbers and the 

nonlinear cavity as a rather primitive memory device, strings such as “....0001000....”, 

“...0011100...” and “...1111...” may be stored in this device.

The spatial amplitude modulation scheme allowed the independent address, and 

subsequent ‘shepherding1, of soliton pixels. Each T ’ could be located at one of the 

transverse locations defined by the maximum of the input modulation. The leap in the 

number of possible strings is associated with a corresponding increase in the amount 

of information that can be stored. A study of the nonlinear dynamics of the soliton 

switching process (MacDonald and Firth, 1993), allowed an understanding and hence 

an optimization of the switching time of such pixels. It was found that the address 

time could be less than the cavity transit time and that pixels could be quickly and 

cleanly annihilated using phased-address beams.

An extension of the solitary switching into the second transverse dimension may 

prove interesting. Other two-dimensional calculations have shown a weakly turbulent 

state exhibiting highly complex spatial patterns. Control of the details of such patterns 

or, alternatively, association of meaning with qualitative features presents a 

challenging problem but would further greatly the persuance of different information 

storage strategies torwards pattern recognition and possibly neural network models. 

To find applications for these structures it is necessary to generate, store and erase 

them. Here we examine the possibility of storing two-dimensional binary optical 

patterns in the nonlinear ring cavity for the first time using amplitude modulated 

pump beams. A sinusoidally modulated two-dimensional super-Gaussian hold beam, 

which may be easily produced experimentally by interference techniques (McDonald 

and Firth, 1990) and given by
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a(x,y) = a0( l+ MD sin(kmx)sin(kmy))exp(-(x2m + y 2m)) 8.22

is employed where the modulation dept is given by MD while the density of the 

transverse array scales with the spatial pixellation frequency km and m controls the 

degree of edge sharpness of the beam. Figure 8.6.1 shows the sinusoidally modulated 

super-Gaussian hold beam while Figure 8.6.2 shows the snapshot of the profile and 

contour of the address Gaussian. Figure 8.6.3 shows the final field profile and the 

contour plot of a full pattern of a 3x3 arrays of pixels encoded after 30 transit and 

after subsequent 1000 roundtrips. An encoding of a quasi-random pattern of a 3x3 

array with 5 pixels so as to store and display the letter L is shown in Figure 8.6.4, 

demonstrating the potential of the system for optical signal processing. As in the work 

of McDonald and Firth (1990), in the simulations, the hold beam is ramped into 

position during the first 20 roundtrips and then held at the operational point for a 

further 10 trips before the Gaussian address is implemented.

Figure 8.6.1: The initial sinusoidally modulated two-transverse dimensional 
supergaussian pump beam( MD-  0.08).
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Figure 8.6.2: A 3x3 array of Gaussian adress pixels a) pixels profile b) contour plot.

(a) (b)

Figure 8.6.3 : A snapshot of the output a) profile and b) contour plot, 1000 transits 
after encoding of a 3x3 array of pixels with 9 spots.
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Figure 8.6.4: A 3x3 array of pixels with 5 spots induced so as to store and display the 
letter L ( (a) profile ; (b) contour plot ).

8.7 Summary

An alternative propagation simulator based on the finite element 

discretization of the transverse cross-section and finite differencing of the propagation 

domain has been developed for optical feedback systems and the results assessed by 

comparing results with Moloney(1985). Both one- and two-dimensional problems 

have been addressed and the use of two-fold symmetry properties of the system have 

been utilized to achieve considrable computational efficiency and to obtain results 

which are otherwise obtained by using supercomputers.

Results have been presented for the first time of the study of two- 

dimensional spatial solitary-wave optical memory, which also enabled the encoding of 

a letter L on a sinusoidally modulated laser pump beam cross-section showing the 

potential of the system for all-optical signal processing.
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9. DISCUSSION AND SUGGESTIONS FOR FUTURE WORK

9.1 General Discussion

The objectives set out at the beginning of the study were essentially achieved during 

the course of the work. The prime objective of this work was to develop beam 

propagation algorithms based on the finite element method to model nonlinear 

optical structures in connection with wave equations derived from Maxwell’s, 

Bloch’s or Schrodinger equations to enable the:

- nonlinear modal analysis of integrated optical waveguides and fiber devices

- evolutionary analysis of CW and pulse dynamics in optical waveguides

- solution of the nonlinear Schrodinger equations for both optical fibers and 

bistable feedback systems. Extensive development of powerful and robust finite 

element codes has been carried out and diverse original applications have been 

demonstrated using these codes. The results obtained were, in general satisfactory in 

showing agreement where possible with the results of other numerical experimental 

work and the use of other methods and they provide encouragement for further 

applications of the techniques in a range of practical nonlinear optical waveguides 

and systems.

The modelling has been carried out under the following three particular 

physical frames: spatial, temporal and spatio-temporal. The spatial problems were 

either 2D or 3D while the temporal problems were only 2D. The spatio-temporal 

problems are 3D or 4D although only 3D results were presented. The use of non- 

uniform mesh as well as taking advantage of two-fold symmetry where applicable 

enabled the use of modest mesh points of 40x40 for ploblems which, otherwise are 

generally solved on super-computers with 225x225 mesh points by using the FFT- 

BPM.

In Chapter 2, the mathematical background for an existing finite element 

modal analysis code was described in detail. This code has proved to be a very
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powerful tool for the discretization of the wave equation transverse differential 

operators. This forms the basis of the algorithms developed in this work, since what 

distinguishes them from other beam propagation methods is the fact that use is made 

of the advantages of the finite element method instead of the more familiar finite 

difference method or Fourier transform for the discretization of the transverse 

domain.

In Chapter 3, two beam propagation methods based on the full and split- 

operator techniques have been developed to analyze 3D optical structures in the 

spatial frame. Similar algorithms have been reported in the literature but only 2D 

results have been reported so far (Koch et al., 1989; Hayata et al., 1990; Hemandez- 

Figuera, 1993). An extension of these techniques was undertaken through the 

development of novel and efficient step-by-step and split-step time-dependent finite 

element methods, to solve spatio-temporal problems.

As an application, in Chapter 4, we have studied important waveguide 

devices including semiconductor laser structures and a uniform nonlinear planar slab 

waveguide. A detailed stability analysis for the finite element nonlinear modal 

analysis solutions was carried out. It was shown that the modal solutions obtained by 

using the finite element method are stable from perturbations. Results of nonlinear 

dispersion characteristics obtained agreed well with those obtained by Seaton et al. 

(1985).

In the same Chapter, we also focused our attention on the study of a nonlinear 

tapered waveguide. Most of the analysis of this sort of device has been done, based 

on CW waves. However, our analysis, performed with the aid of our novel time- 

domain codes, deals with the full time-dependent paraxial wave equation and takes 

the material nonlinear response into consideration. As a result of our simulations, a 

novel technique to demultiplex a train of pulses has been numerically demonstrated. 

The principle of this technique is based on the addition of a series of weak 

antisymmetric signal pulses as a probe, the control parameters being the amplitude 

and phase of the probe pulses. The control technique allowed us to propose a novel
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soliton-based nonlinear device: the nonlinear taper demultiplexer. This device can be 

used for pulsed routing of a light beam for photonic switching. The mechanism of 

operation is similar to the CW spatial scanner proposed by Shi and Chi (1991).

Chapter 5 focused on the study of coupled waveguides. Most of the analysis of 

these structures has been done using the coupled-mode theory, which considers the 

modes of the waveguides in isolation. First, an extensive study was undertaken on a 

metal-clad fiber coupler which is useful for sensor design. Next, nonlinear 

supermode solutions for a self-defocusing GaAs-based MQW nonlinear directional 

coupler were obtained in an attempt to develop a novel approach to NLDC analysis 

based on the finite element method where the guides are not treated separately. 

Results obtained agreed reasonably well with Cada et al.{ 1986). Useful results on 

the effects of nonlinearity and its saturation on the switching characteristics of a two- 

waveguide NLDC were obtained as well as its response to picosecond pulse 

propagation.

In Chapter 6, we have focused our attention on the study of transverse effects 

resulting from structural inhomogeinities and third-order nonlinear effects in optical 

fibers. Nonlinear dispersion characteristics for both Kerr- and saturable 

nonlinearities were obtained which showed good agreement with Okamoto and 

Marcatili (1990). Particular attention has been given to transverse effects due to 

Gaussian beam propagation in an optical fiber with a linear core and saturable 

nonlinear cladding. An earlier study has showed the emission of solitary waves and 

possible breakdown into filaments (Heatley et al, 1990). Our simulations confirmed 

their results and also showed that it is possible to control the formation of the 

filaments, thus offering the prospect of encoding and storing optical information in 

the fiber cross section. In particular, we have found that by properly introducing a 

raster of spots of refractive index gradients on the fiber cladding cross-section, it is 

possible to assign meaning to these robust filament structures.

We have also developed original numerical codes to solve coupled systems of 

generalized nonlinear Schrodinger equations in Chapter 7. The split-step FFT BPM is
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by far the most popular propagation algorithm to solve these systems(Trillo et al., 

1989; Wilson et al., 1992; Langdridge and Firth, 1992). However, schemes based 

on the split-step techniques are not very stable, especially when effects such as loss 

or gain are considered, thus requiring extensive iterations to achieve convergence. 

Our code is straightforward and can handle any effect due to loss or gain without any 

additional effort. Particular attention has been given to the analysis of soliton 

switching in active three-core nonlinear fiber directional couplers. Our simultaions 

show that by introducing a suitable amount of gain in the cores, sharper switching 

characteristics can be achieved at relatively lower switching powers than the passive 

case. As a consequence, this novel coupler can be used to realize ultralow power 

switching. Also, a considerable increase in the amount of the fraction of the input 

power that can be switched between the input core and the center core is increased 

significantly compared to the case of a passive three-core coupler.

In the same chapter, a particular novel application of the code is carried out to 

study passive mode-locking of pulses in a three-core fiber coupler feedback laser 

system. The generation of solitons using this device is numerically demonstrated. The 

use of the active three-core fiber coupler laser which has two inputs and two outputs 

will be valuable for future highly parallel systems.

Finally in Chapter 8, a nonlinear feedback system is studied. Both 2D and 3D 

ring resonators were analyzed and the results showed good agreement with the work 

of Moloney (1985). We have also analyzed numerically, for the first time to the 

author’s knowledge, spatial solitary wave optical memory in a two-dimensional 

bistable ring resonator. Our simulations demonstrated that it is possible to encode 

and store information on the cross-section of a sinusoidally modulated two-transverse 

dimensional Gaussian laser beam by allowing it to propagate through a ring resonator 

and periodically superimposing an address beam in the same way as was 

demonstrated for a one-transverse dimesional beam by McDonald and Firth (1992). 

The analysis enabled the encoding of the letter L on the laser pump beam cross- 

section which shows that the ring resonator has potential for all-optical signal 

processing.
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9.2 Suggestions for Future Work

It has been shown that the beam propagation methods based on the finite 

element method are equally as suitable as that based on the popular fast Fourier 

transform for nonlinear computational analysis. A further application of this work 

would involve the consideration of nonlinear waveguides with different index 

profiles, as well as anisotropic guides. Some important integrated optical devices are 

made of anisotropic materials whose permitivities are characterized by dielectric 

tensor, e . Generally, e is complex when there exist loss or gain in the waveguide 

system. It has been shown in this work and elsewhere (Rahman and Davies, 1984) 

that the finite elemenet method can be applied to any guided mode (TE,TM or 

hybrid). The modal solution and the propagation constants of nonlinear waveguides 

using anisotropic materials can be obtained by using the finite element method. A 

future orientation of the work in this field could lie in the further development of the 

nonlinear supermode analysis technique for nonlinear directional couplers with two- 

dimensional confinement.

The ring-cavity model described by the infinite-dimensional map treated in 

Chapter 8 assumes the material response is instantaneous. A full three-dimensional 

treatment in the presence of finite material time response will be useful to further the 

understanding of dynamic optical pattern formation and their use for optical neural 

networks. As an immediate future work we are considering a self-adaptive finite 

element beam propagation scheme for optical pattern analysis in two-dimesional 

nonlinear interferometers.

Another important task is the development of spatial and spatio-temporal 

vectorial nonparaxial beam propagation methods. The future use of femtosecond 

pulses in signal processing and communication systems may lead to ultrahigh 

transmission rates and thus a full exploitation of the emormous bandwidth of light. 

For ultrafast pulses having widths less than lOOfs it becomes necessary to include 

contributions of the second z and t derivatives and multiple effects. Development of
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self-consistent description for waveguides which require many-body treatment, for 

example multiple quantum well semiconductor waveguides, is underway.
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Appendix A : Linear elements

Within each element U(x,z) may be approximated by

U(x,z',a) = a x+ a 2x A1

where a , and a  2 are the constants to be determined

Fig A01 FE trial solution-an interpolation polynomial

For linear elements, there are two nodes associated with each element: one located at 

xa and the other at Xb as illustrated in Fig A01. The parameters ai and <22 are defined so 

as to satisfy the principle defined above :

U(xa,z;a)= a,
A.2

U(xh,z\a)= a2

Thus a/ is the value of U at node xa and <22 is its value at node x*. Specifying 
eqn. B 1 at these nodes yields

a , + a 2xo = a, 
a , + a 2xh = <2,

Then solving for a , and a 2 in terms of a/ and a2 yields

_ xhat - x aa2U !

A.3

A.4
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Substitu ting eqn. A 4  in to  eqn. A 1  y ie ld s

U(x,z',a)
xhai ~ xaa2

Xh ~ Xa

Combining coefficients of ai and 0 2 , eqn. A.5 becomes

U(x,z;a) = a $ ](x) + a2ty2(x)

where the trial functions <\>i(x) and (f̂ Cx) have the form,

. . xh - x
<M*) = --------

xh-x,

0 2(x) = ^ ^
X b - X a

A.5

A.6

A.7

<j)/(x) and <t>2(jc) satisfy the following important properties at the boundary points of the 
element:

<t>1( ^ ) = 0

<t>2(Jca) = °
(J)2(x/))=  1

with the trial function as shown in Fig A.02.

A.8

A.9

Fig A02 Trial functions in A7
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Appendix B: Quadratic Elements

In Appendix A, we described a linear element, containing one node at each 

end of the element, in which the element trial solution, l f e\x,z,a), is expanded as a 

linear sum of two shape functions. Each shape function was a linear interpolation 

polynomial (or Lagrange polynomial) equal to unity at one node and zero at the other 

(the 5,7 property). In this section we employ a quadratic element, which is developed in 

a completely analogous fashion. Since a quadratic polynomial has three terms 

(a+bx+cx2), it requires three nodes uniquely to define such a polynomial. One node 

must still be located at each end of the element, ie, on the element boundary, in order 

to simplify the assembly and to ensure that the resulting assembled trial functions are 

local. The third node may be located anywhere in the interior. Fig. B.01 shows such an 

element, using the local number 1, 2 and 3. The middle node plays no role in 

establishing interelement continuity, its only purpose is to help define a quadratic 

polynomial.

-------.----------- ---------------x»
1 2 3
X] x2 x3

Fig. B.01 Node placement (Quadratic element). 

The element trial solution is a sum of three shape functions

U{e)(x,z;a)= 'Laj (z)tyi')(x) B.l
1=1

where each shape function is a quadratic polynomial that satisfies the interpolation 

property;

B.2

Evaluating eqn. B.l at*,, using eqn. B.2 yields
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Ü{e\x,z\a) = a,., i = 1,2,3- B.3

Either eqn. B.2 or B.3 may be used to derive the expressions for the shape functions, 

as was demonstrated for the linear element.

Using B.3 and considering the first shape function, which we write as a 

quadratic polynomial as

4>[f)(x) = a , + a 2jc + a 3jc2 B.4

Applying eqn. B.3 to eqn B.4 at each point of the 3 node points

a, + a 2x, + a 3x,2 = 1

a, + a 2x2 + a 3x2 = 0 B.5

a, + a 2jc3 + a 3jc3 = 0

Solving eqn. B.5 for each of the a , in terms of the X, and then substituting the a , 

back into eqn. B.4 yields the following expression for :

( •*  -  - U  ) ( X  ~  X 3 )

(*, - * 2x*, - * 3)

Repeating the same procedure for (|>2W(X) and <\>3le>( x )  gives

♦ ?\ x) =
Xe),^_ (X~Xl)(X- X3)

03°W  =

(x2- x.)(jc2- x3)

(* -* ,X *-*2)
( ^ 3  X \ X"^3 X 2 )

B.6

B.7

Fig B.02 shows the three shape functions. These shape functions are second-degree or 

quadratic Lagrange interpolation polynomials.
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Fig B.02 1-D C° - quadratic element
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Appendix C

List of Publications by the author relevant to the thesis

1. Rahman, Buah, P.A.and Grattan, K.T.V.,(1995), Finite element solution
of nonlinear optical waveguides, Book: Guided-Wave Optoelectronics: Device 
Characterization, Analysis and Design, Tamir, T., Griffel, G. and Bertoni, H.L. eds., 
pp. 455-461, Plenum, New York.

2. Wongcharoen, T., Rahman, B.M.A., Grattan, K.T.V. and Buah, P.A. (1995). 
Characterization of an Optical Filter using a nonsynchronous Directional Coupler. 

In: IEEE Singapore International Conference on Networks/International Conference 
on Information Engineering. Singapore 1995. Proceedings, pp. 41-45.

3. Buah, P.A., Rahman, B.M.A. and Grattan, K.T.V. (1994). Study of transverse 
effects in nonlinear bistable ring resonators using the finite element method. In: 
Journal of Modem Optics 41 (6) : 1135-1139.

4.Buah, P.A., Rahman, B.M.A and Grattan, K.T.V., Soliton switching in an active 
three-core nonlinear fiber coupler (1994). In: OSA Tchn. Digest, IQEC, OWC29. 
Anaheim, California.

5. Buah, P.A., Catuneau, M., Rahman,B.M.A and Grattan, K.T.V., (1994) Numerical 
simulation of transverse effcets in nonlinear optical fibers using finite elements,
OSA Technical Digest, Conference on Lasers and Electro-optics, vol. 8, p. 85,CLEO 
94, Anaheim, California.

6 . Buah, P.A., Rahman, B.M.A and Grattan, K.T.V.,(1993) , Study of transverse 
effects in bistable ring resonators using the finite element method, Tecnical Digest. 
11th UK National Quantum Electronics Conference. Belfast, p i2.

7. Buah, P.A., Rahman, B.M.A and Grattan, K.T.V., (1994), Numerical simulation of 
pulse pulse propagation in nonlinear tapered waveguides, Proceedings Europto 
Series, Linear and Nonlinear Integrated Optics. Righini, G.C. and Yevick, D. eds., 
SPIE vol. 2212, pp. 66-72, Lindau, Germany.

8. Buah, P.A., (1994), Finite Elements for computational Nonlinear Optics, Rank 
Prize Fund Symposium on Coherent Image Amplification. Grasmere, UK.
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9. Buah, P.A., Rahman, B.M.A and Grattan, K.T.V.,(1994), Finite element 
characterisation of time-dependent waves in z-varying nonlinear waveguides, 
European Science Foundation Summer SchoohNonlinear Optics and Guided Waves, 
Edinburgh.

10. Rahman, B.M.A., Buah, P.A.and Grattan, K.T.V.,(1994), Finite element 
characterisation of nonlinear optical waveguides, International Symposium on 
Guided-wave Optoelectronics, p. XII.5, Weber Research Institute, New York.

11. Buah, P.A., Rahman, B.M.A and Grattan, K.T.V.,(1993), A split-step finite 
element scheme for spatio-temporal pulse simulation in nonlinear waveguides. OSA 
Technical Digest, Nonlinear-Guided Wave Phenomena, vol. 15, pp. 208-211, 
Cambridge.

12. Buah, P.A., Rahman, B.M.A and Grattan, K.T.V (1993), Analysis of surface 
plasmons in evanescent wave fiber-optic sensors using the finite element method, 
Book: Sensors VI Technology, Systems and Application. Grattan, K.T.V. and 
Augousti, A. eds., IPP, Bristol pp. 305-310.

13. Buah, P.A., Rahman, B.M.A and Grattan, K.T.V.,(1992). Accurate finite element 
analysis of polarization maintaining fibers, IEEE/OSA Integrated Photonic Research, 
vol. 10, p. 176-177, New Orleans, Louisiana.

14. Rahman, B.M.A., Liu, Y., Buah, P.A., Grattan, K.T.V., Fernandez, F.A., Ettinger, 
R.D. and Davies, J.B., (1992)Accurate finite element analysis of nonlinear optical 
fibers, OSA Technical Digest. Nonlinear Optics: Materials. Fundamentals & 
Applications, vol. 18,p. 370, Hawaii.
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