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Abstract
There is increasing interest in modelling longitudinal dietary data and classifying individuals into subgroups (latent classes) who follow similar
trajectories over time. These trajectories could identify population groups and time points amenable to dietary interventions. This paper aimed to
provide a comparison and overview of two latent class methods: group-based trajectory modelling (GBTM) and growth mixture modelling
(GMM).Data from 2963mother–child dyads from the longitudinal SouthamptonWomen’s Surveywere analysed. Continuous diet quality indices
(DQI) were derived using principal component analysis from interviewer-administered FFQ collected in mothers pre-pregnancy, at 11- and 34-
week gestation, and in offspring at 6 and 12 months and 3, 6–7 and 8–9 years. A forward modelling approach from 1 to 6 classes was used to
identify the optimal number of DQI latent classes. Models were assessed using the Akaike and Bayesian information criteria, probability of class
assignment, ratio of the odds of correct classification, group membership and entropy. Both methods suggested that five classes were optimal,
with a strong correlation (Spearman’s= 0·98) between class assignment for the two methods. The dietary trajectories were categorised as stable
with horizontal lines andwere defined as poor (GMM= 4 % andGBTM= 5 %), poor-medium (23 %, 23 %), medium (39 %, 39 %), medium-better
(27 %, 28 %) and best (7 %, 6 %). Both GBTM and GMM are suitable for identifying dietary trajectories. GBTM is recommended as it is computa-
tionally less intensive, but results could be confirmed using GMM. The stability of the diet quality trajectories from pre-pregnancy underlines the
importance of promotion of dietary improvements from preconception onwards.

Keywords: Trajectory modelling: Growth mixture models: Group-based trajectory modelling: Lifecourse epidemiology: Diet
quality

Poor diet quality is arguably oneof the leadingdeterminants of non-
communicable diseases, including obesity, CVD and some can-
cers(1). A recent Global Burden of Disease study showed that poor
diet quality is associated with more than 20% of deaths. Half of
these were attributed to unfavourable levels of intake of whole-
grains, fruits and Na(2). In the UK, the latest findings from the
National Diet and Nutrition Survey suggested that adults consume

too much salt, saturated fats and free sugars, and only 33%
consume the recommended five daily portions of fruit and
vegetables(3). For children, although consumption of free sugars
has decreased in recent years, fibre, saturated fats and fruit and veg-
etable intakes are not optimal. During the early years, nutritional
intake is influenced by maternal preconception(4) and antenatal
diet(5), as well as environmental, lifestyle and genetic factors(6).
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Abbreviations: BIC, Bayesian information criterion; DQI, diet quality indices; GBTM, group-based trajectory modelling; GMM, growth mixture modelling; PCA,
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To improve population health, it is imperative that we identify pat-
terns in diet quality and time points within the lifecoursemost likely
to benefit from nutritional interventions.

In nutritional sciences, a common approach for exploring
relationships between diet quality, health and disease focuses
on nutrient intakes assessed at one time point, and their sub-
sequent associations with health outcomes(7,8). However, diet
is a complex exposure variable as it can be difficult to measure
accurately. More recently, principal component analysis (PCA)
has been applied as an alternative approach to reveal dietary pat-
terns and explore their associations with long-term health out-
comes(9,10). PCA reduces dietary data into fewer variables and
conceptually illustrates a broader picture of an individual’s
habitual diet, and so it may provide a stronger explanation of
the relationship between diet and disease risk than individual
nutrients or foods(11). Furthermore, due to the increasing avail-
ability of repeated observations from population cohorts, longi-
tudinal analyses of dietary data are becoming more
common(12,13). These studies have explored relationships
between an average trajectory over time of a specific nutrient
or eating behaviour and outcomes of interest. These analyses
were limited to two or three waves of data, and a population
average is unable to identify subgroups within a given dataset.
An alternative method for modelling longitudinal data, which
has frequently been applied to growth data(14,15) and more
recently to eating behaviour(16) and lifestyle patterns in child-
hood(17), is classifying individuals into subgroups using latent
class methodologies. The objective of these approaches is to
model information about inter-individual differences in intra-
individual change over time(18). These methods can be applied
to model dietary pattern trajectories and may be able to identify
time points across the lifecourse or population groups at risk of
poor diet quality.

The aim of this study was to evaluate methods for trajectory
modelling of diet quality indices (DQI). The first two objectives
were to provide a practical overview of (1) group-based trajec-
tory modelling (GBTM), a form of latent class growth analysis,
and (2) growth mixture modelling (GMM), applied to a DQI
obtained from women and their offspring from the UK
Southampton Women’s Survey (SWS). The SWS collected data
from young non-pregnant women and followed up those who
became pregnant and their offspring up to 8–9 years of age and
beyond. It is the only population cohort in Europe with data
including dietary behaviours collected prospectively from
before the women became pregnant. We have provided a sum-
mary of the two latent class modelling strategies, including
evaluation and interpretation of model adequacy assessment
as well as strengths and weaknesses. Furthermore, to assess
the similarity between methods, we have used cross-tabula-
tions and correlation coefficients. For the third objective, we
compared these methods with an approachwe have previously
used to describe dietary trajectories in the SWS cohort that con-
verted the continuous DQI into thirds at each assessment
point(19). This paper focuses on the application of these meth-
ods. We have discussed the relationship between early-life
dietary trajectories and childhood health outcomes
elsewhere(20).

Methods

Southampton Women’s Survey

Population. The SWS is a cohort of women and their children
born in the city of Southampton, UK. Full details of the study
have been published(21). In brief, from April 1998 to
December 2002, 12 583 initially non-pregnant women aged
between 20 and 34 years were recruited and pre-pregnant char-
acteristics obtained (education, social class, lifestyle, diet and
anthropometry). Subsequently, 3158 became pregnant and
delivered a live-born singleton infant; these womenwere invited
to attend face-to-face follow-up appointments during their preg-
nancy (11-, 19- and 34-week gestation). The offspring were stud-
ied at birth, and follow-ups performed across infancy (6 and 12
months) and childhood (2, 3, 4, 6–7 and 8–9 years). All inter-
views with participants were performed by trained research
nurses.

Ethics. The SWS was conducted according to the guidelines laid
down in the Declaration of Helsinki and was approved by the
Southampton and South West Hampshire Local Research
Ethics Committee (08/H0502/95). Written informed consent
was obtained from all participating women and by a parent or
guardian with parental responsibility on behalf of their children.

Diet quality index

FFQ. In the mother–child dyads, diet was assessed at eight time
points. Maternal dietary data were recorded at the preconcep-
tion, and 11- and 34-week gestation visits(22). Mothers’ food
intake over the previous 3months was assessed using a 100-item
validated FFQ(22). For the offspring, questionnaires were admin-
istered by trained research nurses to the child’s parent or guard-
ian. Dietary intake was assessed using age-specific FFQ when
they were aged 6 and 12 months and 3, 6–7 and 8–9 years of
age(23–25). At the age of 6 months, food intake was assessed over
the previous 7 d using a thirty-four-item FFQ(23). At 12 months,
food intake was assessed over the previous 4 weeks using a sev-
enty-eight-item FFQ(24). At ages 3, 6–7 and 8–9 years, food intake
was evaluated over the preceding 3 months. At the 3 and 6–7
year visits, diet was assessed using an eighty-item FFQ(25). At
the 8–9 years’ visit, a thirty-three-question FFQ derived from
the eighty-item FFQ was administered due to participant time
restrictions; the questions selected were based on evidence of
an association between specific food groups and adiposity(26)

and foods found to be discriminatory on a dietary quality
score(27).

Principal component analysis. At each time point, the foods
listed in the corresponding FFQ were categorised into groups
based on similar nutritional composition (e.g. carrots, parsnips,
swedes and turnips were included in the ‘root vegetables’ group;
bacon, ham, corned beef, meat pies and sausages were included
in the ‘processed meats’ group), and PCA was performed on the
reportedweekly frequencies of consumption of the food groups.
For each time point, the first principal component was found to
describe a ‘diet quality index’ (DQI); a high score was associated
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with frequent consumption of healthy foods recommended in
government guidelines and less frequent consumption of less
healthy foods that contribute to diet-related disease. In previous
SWS publications, the DQI has been referred to as an infant
guidelines score(28) at 6 and 12 months of age, as well as a pru-
dent diet score(29) in the mother and in the children at ages 3 and
6–7 years. Participants with a high score for these types of dietary
patterns conformed with dietary recommendations, while those
with a low score did not follow them. At each assessment, the
DQI were transformed (Fisher–Yates) to a mean of 1 and a SD

of 1(10). Full details of these analyses, including validation of
the FFQ, have been published(19,23–25,30).

Latent class trajectory strategy. For the latent class trajectory
modelling, we used the repeatedly measured DQI (continuous
variable) collected at eight time points from preconception to
8–9 years of age. GBTM and GMM were selected over other
latent class modelling strategies because they are able to handle
missing data (under the missing at random assumption) and
unevenly spaced assessments over time (e.g. 6 months, 12
months and 3 years of age)(31,32). We applied the following steps
to GBTM and GMM to identify the appropriate number of latent
classes for the DQI trajectories. All analyses were performed in
Stata 15.0.

Step 1: Modelling longitudinal data

Part 1a. Before starting latent class modelling, it is beneficial to
model the individual diet quality trajectories for all participants
using a spaghetti plot. This may identify patterns or subgroups
within a given dataset and help estimate the appropriate number
of latent classes.

Part 1b. The second part is to fit a growth curve model (single
trajectory). These are also described in the literature as latent tra-
jectorymodels or latent growth curvemodels(33). Rather than cat-
egorising individuals into subgroups, this approach delineates
the strength, direction and average pattern for the entire sam-
ple(34). This model is fitted in Stata using the xtmixed command.
The DQI is the dependent variable and time as the independent
variable (fixed part of the model). Participant ID is included in
the random part of the model. The results for this output have
random intercepts and coefficients for each time point and esti-
mate the mean change in diet quality over time.

Step 2: Model specification

To identify the optimal number of latent classes for the DQI, we
used a forward modelling approach from one to six classes as
advised by the GRoLTS checklist Guidelines for Reporting on
Latent Trajectory Studies(33). After fitting the one-class model,
we incrementally added extra classes and investigated themodel
adequacy assessments discussed below. Once the model
adequacy stopped improving, we fitted an additional model with
one extra class to ensure the full array of possible models had
been tested.

Step 3: Model estimation

Eachmodel was assessed using the following criteria: the Akaike
information criterion (AIC); the Bayesian information criterion
(BIC); average posterior probability of assignments; the ratio
of the odds of a correct classification; groupmembership and rel-
ative entropy.

Likelihood-based statistics. AIC and BIC are likelihood-based
statistics; BIC favoursmore parsimoniousmodels comparedwith
the AIC(35). For both statistics, a value closer to 0 implies better
model fit(36).

Classification statistics. For eachparticipant in amodel, the aver-
age posterior probability of assignment was calculated. This value
represents the average posterior probability of belonging to a class
over all the individuals assigned to a class. A class average of the
average posterior probability of assignment should be above
70%, which indicates that the individuals assigned to a trajectory
follow a similar pattern over time(37). The odds of a correct classi-
fication is the ratio of the odds of a correct classification into each
group on the basis of the maximum probability classification rule
and the estimated class membership. Each class should hold a
group membership of at least 5%. However, this is dependent
on sample size. Theminimum sample size recommended for latent
class modelling is between 300 and 500(35), but if there is a much
larger sample size then group membership can be less than 5%.
Relative entropy estimates the accuracy (convergence) of classifica-
tion of individuals into the different latent classes. Entropy values
close to 1 indicate lower classification uncertainty.

Step 4: Model selection and interpretation

To determine the optimum number of latent classes there are
several factors to consider, including the research question, par-
simony, the assessment criteria and interpretability. The BIC
value is commonly used to assess the appropriate number of
latent classes. However, BIC values may decrease as more
classes are added reflecting model overfit(36) and, therefore, this
value might not always provide the optimum selection criteria.
For our analysis, the number of classes chosen was based on
the lowest BIC and satisfactory values for the remaining criteria.
We also compared the findings between GBTM and GMM to
confirm the correct number of latent classes.

Latent class methods

Group-based trajectory modelling (Stata traj command)(38).
GBTM is a semi-parametric technique used to identify distinct tra-
jectories(31). Although each individual in the SWS data has a distinct
diet quality pattern and distinct changes in their pattern over time,
GBTM allows for the distribution of individual differences within
the data to be clustered. Given that the strength and direction of
change can vary for each trajectory, an intercept and slope are gen-
erated for each trajectory. GBTM fixes the slope and the intercept
equally across individuals within a trajectory (class). Additionally,
GBTM can handle trajectories in the same model that follow a dif-
ferent pattern/shape (e.g. intercept, linear, quadratic and cubic)(29).
At least threewavesof data areneeded to accommodate aquadratic
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shape. If there are four ormore data points, this can accommodate a
cubic shape. With reference to the SWS data, we cannot assume
that all participants in a given sample would experience the same
longitudinal changes in diet quality, especially during pregnancy or
in the early years when diet quality may be affected by food aver-
sion or neophobia(39). Therefore, the application of the same shape
for all trajectories could hide these group differences. When apply-
ing GBTM, the intercept, linear, quadratic and cubic functions of
each trajectory were tested. To ensure model parsimony, non-sig-
nificant cubic and quadratic terms were removed from trajectories.
However, linear parameters were retained irrespective of signifi-
cance as long as the BIC was lower than if an intercept parameter
was used(40). This processwas repeateduntil therewasnoevidence
of an improvement in model fit assessed by BIC.

Growthmixturemodel (Stata gllamm command)(41). GMM is
a parametric technique. Unlike GBTM, it is a form of latent class
growth analyses that allows for random effects(42,43). GMM esti-
mate a mean growth curve for each class or trajectory and use
random effects to summarise individual differences within a
class. This heterogeneity within classes is captured by the inter-
cept and slope for each class(44). Therefore, these random effects
are used to represent the gap between individuals’ latent growth
parameters and the population’s mean growth parameter.
Unlike the ‘traj’ command for GBTM, which requires the data
to be in wide format, GMMwith the ‘gllamm’ command requires
the data to be in long format.

Cumulative effect of diet quality

In a previous SWS analysis, we derived diet quality trajectories
across childhood by converting the continuous DQI into thirds
at each assessment point(19). To compare this approach with
the GBTM and GMM, at each time point participants were
assigned a value of 0 (lowest), 1 (middle) or 2 (highest) accord-
ing to where their diet quality score lay in the distribution. These
values were summed to obtain a DQI across early life, ranging
from 0 (lowest diet quality) to 16 (highest diet quality). If a par-
ticipant wasmissing an assessment point, the average value from
their assessments was substituted for the missing value. The DQI
across early life was used as a categorical variable (grouped as 0,
1–4, 5–9 and 10–15, 16).

Statistical analysis for demographic characteristics

For demographic statistics, binary and categorical variables are
presented using counts and percentages. The distributions of
continuous variables were assessed using coefficients of skew-
ness and then summarised by mean and standard deviation
for normally distributed variables, or median and interquartile
range for non-normally distributed variables.

Results

Southampton Women’s Survey

Of the 3158 mothers who gave birth to live-born infants in the
SWS, we excluded mother–child dyads if the mother (n 1) or
the child (n 221) were missing all of their dietary assessment

points (Fig. 1). Therefore, 2936 SWS women and their children
were included in the final analysis. Table 1 details demographic
characteristics for the cohort. For themothers, themedian BMI at
the preconception visit was 24·1 kg/m2 (interquartile range 21·8–
27·3), and 3 % had no formal educational qualifications. Ninety-
nine per cent were White, 15 % smoked in pregnancy and 48 %
were multiparous at study recruitment. Mean maternal age at
birth was 30·7 years. Eighteen per cent of mothers did not breast-
feed, 41 % breastfed for< 3 months, 32 % breastfed for 4–11
months and 9 % continued breast-feeding for> 12 months.

Figure 2 is a spaghetti plot that illustrates the individual diet
quality trajectories. Pearson’s correlations coefficients between
DQI at different time points ranged between 0·34 and 0·81 with
higher correlations for ages/gestations closer in time.
Supplementary Fig. 1 is a subsample of the SWS data (a random
ten participants from each trajectory), and the figure illustrates
the individual trajectories for these participants over time, cate-
gorised by class. Supplementary Table 1 details the number of
participants with data at each time point; at least 80 % of partic-
ipants had five or more data points. The overall pattern of miss-
ingness was defined as intermittent, as missing values are
followed by observed data; we therefore assumed that any miss-
ing data were missing at random(45). Figure 3(a) illustrates the
latent class growth curve model (as described in step 1, part b).

3158 live births 

2936 of mother-child pairs included in the 
trajectory modelling analysis  

12583 initial interviews in non-pregnant 

221 mother-child pairs 
removed with no offspring 

dietary data 

1 mother-child pair 
removed with no maternal 

dietary data 

Available data at each timepoint:
Preconception n=3156
Early pregnancy n=2222
Late pregnancy n=2643
6-months n=1869
12-months n=2206
3 years n=2625
6-7 years n=2032
8-9 years n=1213

Fig. 1. Flow diagram.
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Group-based trajectory modelling

We compared GBTM from one to six classes and assessed each
model using the model fit criteria (Table 2). Using the BIC, the
preferred shape of the trajectories was found to be the intercept
specification (a flat line). The one to four class models are shown
in Supplementary Fig. 2. The five-class model was the best fit for
the data (Table 2, Fig. 3(b)); although the six-class model had a
lower BIC -21098 v. -21094), this model was rejected as only 1 %
of the population were assigned to the highest class (Table 2).
Further, the six-class model did not agree with the findings from
the GMM. The individual trajectories for the five-class model by
class are shown in Supplementary Fig. 3.

Growth mixture modelling

We compared GMM from one to six classes and assessed each
model using the same criteria as the GBTM (Table 3). The one to
four class models are shown in Supplementary Fig. 4. As the
number of classes increased from three to five, we observed a
deviation in the trajectories at the 6-month time point. As a sen-
sitivity analysis, we restricted the five-class analysis to

participants who had complete dietary data at the 6-month visit
(n 1869) and observed that the deviation at the 6-month time
point was still present (online Supplementary Fig. 5). We there-
fore hypothesise that the deviation at 6monthsmay be due to the
lower dietary diversity as at this age an infant may still be on a
solely breast/formula milk diet or on a limited diversity weaning
diet. Similarly to GBTM, the five-class model was the best fit for
the data (Fig. 3(c)). The individual trajectories by class are shown
in Supplementary Fig. 6. Unlike GBTM, the growth mixture
model for the six classes would not converge.

We characterised these trajectories as stable with horizontal
lines and defined them as poor (GMM= 4 % and
GBTM= 5 %), poor-medium (23 %, 23 %), medium (39 %,
39 %), medium-better (27 %, 28 %) and best (7 %, 6 %) diet qual-
ity. Since the five patterns for each method can be considered
ordered, for each model, we compared the correlation between
the two methods (Table 3). There was a strong correlation
between the five-class models for the GMM and the GBTM
(Spearman’s correlation= 0·98). Finally, we compared the
five-class models for GMM and GBTM to the method which
has been used previously in the SWS cohort to describe

Table 1. Demographic characteristics of 2936 mother–child pairs from the Southampton Women’s Survey

n Mean (SD)/n (%)/Median (IQR) a

Maternal n %

BMI (kg/m2)
Median 2910 24·1
IQR 21·8–27·3

Highest qualification level None 85 3
CSE 264 9
O levels 838 29
A levels 897 31
HND 190 6
Degree 654 22

Ethnicity (White) 2936 2812 96
Ever smoked in pregnancy 2802 432 15
Parity (multiparous) 2934 1418 48
Age at birth (years)
Mean 2936 30·7
SD 3·8

Family
Dominant social class Professional 295 10

Management/technical 1227 42
Skilled (non-manual) 860 30
Skilled (manual) 287 10
Partly skilled 199 7
Unskilled 23 1

Child
Breast-feeding Never tried 503 18
(months) < 1 570 20

1–3 598 21
4–6 478 17
7–11 417 15
12 or more 240 9

Gestational age at delivery (weeks)
Mean 2936 39·8
SD 1·8

Birth weight (g)
Mean 2909 3442
SD 548·0

Sex (female) 2936 1405 48

IQR, interquartile range; n, number; CSE, Certificate of Secondary Education; HND, Higher National Diploma.
aBinary and categorical variables are presented using counts and percentages. The distribution of continuous variables was assessed using coefficients of skewness and then sum-
marised by mean and standard deviation or median and IQR where appropriate.
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longitudinal patterns of dietary intake (Fig. 3(d)). The cross-tab-
ulation for the three methods is in Supplementary Table 2. There
was a strong correlation between this method and both of the
latent class methods (Spearman’s correlation= 0·90).

Discussion

In this study, we compared two latent class modelling strategies
for identifying dietary trajectories across early life. We have
described approaches and themodel assessment criteria in detail
and found that both of these methods are suitable for identifying
dietary trajectories. We have also demonstrated how to interpret
these parameters when performing latent class modelling in
Stata. There was strong agreement (model assessment and
Spearman’s correlation) for both methods that the five-class
model was most appropriate to describe diet quality across early
life using data from 2963 participants of the SWS. These trajec-
tories were stable from preconception to age 8–9 years andwere
defined as poor (about 5 %), poor-medium (about 23 %),
medium (about 39 %), medium-better (about 28 %) and best
(about 6 %). A deviationwas observed at the 6-month time point,
which we believe to be a result of the low diversity of an infant’s
diet at this age.

To our knowledge, no previous study has applied latent class
methodology to dietary pattern data collected preconceptionally
to the age of 8–9 years.Wehave shown that bothGBTMandGMM
are suitable to model dietary trajectories. Although both methods
have different approaches for modelling longitudinal trajectories,
we observed a strong agreement for the optimal number of
classes. However, both methods have their limitations. The proc-
ess of fitting group-based trajectorymodels in Stata involves fitting
several models for each class with varying specification (e.g. inter-
cept/linear/quadratic). The outputs of thesemodels are then com-
pared to ascertain the correct specification. Although the
command is quick to run in Stata, this approach is time-consuming
and it is influenced by the available data and the specific research
question being addressed. For example, for a five-groupmodel in
the SWS cohort, there were 1024 different possible trajectory
shapes. In our study, rather than comparing 1024differentmodels,
we used the BIC and the model output to determine the correct
shapes for the trajectories. This approach still involved fitting sev-
eral variations of the five-classmodel.WhenusingGBTM, the final
decision about the most appropriate model for the data is ulti-
mately a somewhat subjective judgement by the researcher.
Furthermore, GBTM assumes no inter-individual differences in
change within class, so the covariance structure is zero, which
implies that all individuals within a class are homogeneous(31).

Fig. 2. Individual trajectories of the diet quality index from preconception to 8–9 years of age.
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In contrast, using the gllammcommand to fit growthmixturemod-
els in Stata was computationally more intensive, although it does
provide greater flexibility as it allows for varying covariance struc-
ture within a class(18). This variation is achieved by allowing indi-
viduals within the same latent class to have a varying diet quality
trajectory, providing more modelling flexibility(46). Therefore, we
suggest that GMM and GBTM could be used to complement each
other when defining latent class dietary trajectories. In the first
instance, researchers could use GBTM to model dietary trajecto-
ries, and the preferred model could be confirmed using GMM.

We also compared the outputs of our GBTM and GMMmod-
els with a previous analytical technique used to describe patterns
in dietary intake in the SWS cohort(19). The reason for providing a
comparison to this previous SWS technique was to allow
researchers to have alternative modelling options.
Interestingly, for the five-class model, the results were similar
(Spearman’s correlation 0·90). Although the previous technique
would be unable to determine varying shapes in trajectories, this
method may be a suitable starting point for longitudinal dietary
analyses, and it may be particularly appropriate to use if there are
only two or three waves of data as it is relatively easy to under-
take in any statistical software.
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Fig. 3. Latent class modelling representing (a) a growth curve model, (b) group-based trajectory model for five classes, (c) growth mixture model for five classes and (d)
mean diet quality scores at each time point according to the group of the DQI across early life.

Table 2. Group-based trajectory modelling fit criteria for two to six classes

BIC AIC Group membership APPA Entropy OCC

1 -24719 -24713 (1) 100% – – –
2 -22116 -22104 (1) 51% (1) 0·94 0·8 18·8

(2) 49% (2) 0·94 18·4
3 -21356 -21338 (1) 24% (1) 0·90 0·78 34·7

(2) 47% (2) 0·89 10·1
(3) 29% (3) 0·91 30

4 -21187 -21163 (1) 20% (1) 0·88 0·76 34·5
(2) 41% (2) 0·86 10·2
(3) 31% (3) 0·84 12·6
(4) 8% (4) 0·84 71·7

5 -21098 -21068 (1) 5% (1) 0·82 0·74 85·2
(2) 23% (2) 0·81 16·4
(3) 39% (3) 0·82 8·7
(4) 28% (4) 0·83 14·6
(5) 5% (5) 0·84 85·2

6 -21094 -21058 (1) 1% (1) 0·81 0·72 324·7
(2) 9% (2) 0·74 27·9
(3) 20% (3) 0·72 10·8
(4) 37% (4) 0·79 7·74
(5) 27% (5) 0·83 15·1
(6) 5% (6) 0·83 83·1

BIC, Bayesian information criteria; AIC, Akaike information criterion; APPA, average
posterior probability of assignment; OCC, odds of correct classification.
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Implications for future research

In this paper, we have demonstrated how to model dietary tra-
jectories across early life. These methods could be applied to
longitudinal data across any lifecourse stages, and in doing
so they provide researchers and public health professionals
with the tools to explore relationships between diet quality tra-
jectories and boarder social determinants of health, such as
social, environmental and economic determinants of dietary
intake as well as longer term health outcomes. We have illus-
trated the tracking of diet across early life; the potential cumu-
lative effect of diet quality during this critical stage of the
lifecourse builds on the evidence from previous studies that
have reported tracking of dietary habits across child-
hood(17,47,48) and reported associations between poor diet qual-
ity with adverse health outcomes(49–51) including higher BMI,
adiposity and cardiovascular outcomes. Our findings empha-
sise the importance of preconception diet quality, as we have
shown that diet quality tracks from before the mother is preg-
nant, across pregnancy and into childhood. Given the implica-
tions of poor diet quality for long-term health, our findings
suggest that the preconception period may be an important
time to improve population health. This finding has the poten-
tial to provide a focus of public health strategies aiming to
improve diet quality across early life. Our observation supports
the recommendations outlined in the UK Preconception
Partnership strategy(52), which highlights the crucial role that
maternal pre-pregnancy health, including unhealthy dietary
habits, can have on future child health. The Partnership recom-
mends improving population level health, irrespective of preg-
nancy planning, and at an individual level for those planning to
become pregnant(53,54). Although the preconception period is
an important time to intervene, there are other opportunities
to improve diet quality across early life. There is growing
awareness of the relationship between the food environment
and psychological factors on dietary choices(55), including evi-
dence that eating behaviours moderate the associations
between risk factors in the first 1000 d and adiposity outcomes
at the age of 6 years(56).

Strengths and limitations

This study has several strengths. Notably, the SWS is a large longi-
tudinal mother–child cohort and the only population-based cohort
in Europe to have collected data from the mother preconception-
ally. Assessments of participants have been made at multiple time
points across early life. Also, the dietary patterns, obtained by PCA,
are able to provide a broader picture of an individual’s diet com-
pared with single-nutrient analyses. We have also shown that there
is a strong correlation between the GBTM, GMM and a more tradi-
tional method for trajectory modelling and highlighted how these
threemethods could be used to complement each other. However,
there are some limitations. We completed all analyses in Stata; the
Lo–Mendell–Rubin-adjusted likelihood ratio test and the paramet-
ric-bootstrapped likelihood ratio test can both be used to assess
model fit (P< 0·05 indicates better fit) but are both unavailable
in Stata(44). They are however available in the software package
Mplus. Along with Mplus, R and Latent Gold are also able to per-
formGMMandGBTM, all three ofwhich are able to computemore
fit statistics and they provide greater modelling flexibility compared
with Stata. Although dietary patterns derived using PCA are a vali-
datedmethod for describing dietary intake(57), these involve several
arbitrary decisions including consolidation of food items into
groups. FFQ are also known to be associated with recall bias from
the child’s main caregiver(58), but validation studies of those used
against food diaries have shown that FFQ can be used to rank
the nutrient intakes of individuals(19–22,24). In the SWS, we used a
variety of different FFQ for themother and her offspring depending
on their age. Therefore, we had to perform the latent class analysis
using natural scores. However, if a future analysis used the same
FFQ over time and the study population did not change, then
applied scores could be used as these would have a constant scale
to compare between time points, which would have some
advantages.

Conclusion

Due to the increasing availability of longitudinal data and the
development of latent class methodology, nutritional scientists

Table 3. Growth mixture model fit criteria for two to six classes

BIC AIC Group membership APPA Entropy OCC Correlation with GBTM

1 49 441 49 426 (1) 100·0% – – – –
2 44 228 44 142 (1) 50% (1) 0·95 0·81 29·6 0·9805

(2) 50% (2) 0·94 29·8
3 42 728 42 572 (1) 23% (1) 0·92 0·8 53·5 0·98

(2) 49% (2) 0·90 16·1
(3) 28% (3) 0·92 43·8

4 42 581 42 356 (1) 24% (1) 0·90 0·71 47·5 0·9026
(2) 29% (2) 0·76 11·7
(3) 19% (3) 0·73 15·1
(4) 28% (4) 0·91 40·5

5 42 294 41 999 (1) 4% (1) 0·84 0·76 150·5 0·98
(2) 23% (2) 0·84 25
(3) 39% (3) 0·85 13·8
(4) 27% (4) 0·85 21·8
(5) 7% (5) 0·86 107·6

6 – – – – – – –

BIC, Bayesian information criteria; AIC, Akaike information criterion; APPA, average posterior probability of assignment; OCC, odds of correct classification.
The six-class model would not converge.
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and public health professionals have more opportunities to
explore the relationship between diet quality and long-term
health outcomes. In this paper, we have shown how to apply
two of these methods and how they compare with a more tradi-
tional statistical approach. Each approach has strengths and
weaknesses; therefore, they could be used to complement each
other when describing the relationships between diet quality
exposure over a period and outcomes of interest to examine
the influence of the broader factors influencing diet.
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