

City, University of London Institutional Repository

Citation: Che, F. N. (1996). Object-oriented analysis and design of computational

intelligence systems. (Unpublished Doctoral thesis, City, University of London)

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/29367/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

City Research Online

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

OBJECT-ORIENTED ANALYSIS AND
DESIGN OF COMPUTATIONAL

INTELLIGENCE SYSTEMS

by

Fidelis Ndeh Che

This thesis is submitted for the degree of

Doctor of Philosophy

at

Department of Electrical, Electronics and Information Engineering

City University

August, 1996

City University London

Abstract

Machine learning from data, neuro-fuzzy information processing, approximate reasoning

and genetic and evolutionary computation are all aspects of computational intelligence

(also called soft computing methods). Soft computing methods differ from conventional

computing in that they are tolerant of imprecision, uncertainty and partial truths. These

characteristics can be exploited to achieve tractability, robustness and low solution costs

when the solution to a complex (in machine terms) problem is required. The principal

constituents of soft computing include: Neural Networks, Fuzzy Logic and Probabilistic

Reasoning Systems. Genetic Algorithms (GAs), Evolutionary Algorithms, Chaos Theory',

Complexity Theory and parts of Learning Theory all come under Probabilistic Reasoning

Systems. Hybrid systems can be designed incorporating 2 or more aspects of soft

computing that are more powerful than any of the components used in a stand alone

fashion. A unified framework is needed to implement and manipulate such systems. Such a

framework will allow for easy visualisation of the underlying concepts and easy

modification of the resulting computer models. In this thesis, an investigation of the major

aspects of computational intelligence has been carried out. The main emphasis has been

placed on developing an object-oriented framework for architecting computational

intelligence systems. Object models for Neural Networks, Fuzzy Logic Systems and

Evolutionary Computation systems have been developed. Software has been written in

C++ to realise sample implementations of the various systems. Finally, practical

applications and the results of using the Neural Networks, Fuzzy Logic systems and

Genetic Algorithms developed in solving real world problems are presented. A consistent

notation based on the Object Modelling Technique (OMT) is used throughout the thesis

to describe the software architectures from which the computer implementation models

have been derived.

l

TABLE OF CONTENTS

TABLE OF CONTENTS... ii

LIST OF FIGURES..viii

LIST OF TABLES..xiv

ACKNOWLEDGMENTS...xv

Declaration..xvi

Chapter I: INTRODUCTION...1

1.1 Summary of Main Contributions...5

LIST OF PUBLICATIONS.. 6

Chapter II: NEURAL NETWORKS..9

2.1 Introduction.. 9

2.2 A Taxonomy of Neural Network Architectures.. 9

2.2.1 Classifying Neural Networks..10

2.2.2 Categorisation based on the Arrangement of Neurons...................................... 10

2.2.2.1 Feedforward Multilayer Neural Networks... 11

2.2.2.2 Feedback Neural Networks..12

2.2.2.3 Cellular Neural Networks..12

2.2.3 New Scheme for Classifying Neural Networks.. 13

2.2.3.1 Memoryless Neural Models..14

2.2.3.2 Memory Neural Models..14

2.3 Structure of Neural Networks..16

2.4 Discussion and Conclusions...23

Chapter III: LEARNING IN NEURAL NETWORKS.. 24

3.1 Introduction..24

3.2 Data Representations in Neural Networks... 24

3.3 What Neural Networks Learn..26

3.4 Learning algorithms in Neural Networks.. 28

3.4.1 Associative Learning Networks...................... 29

3.4.1.1 The Linear and Non-Linear Associative Memories.................................. 30

3.4.1.2 The Bi-directional Associative Memory (BAM)... 31

ii

3.4.1.3 The Hopfield Memory Network..32

3.4.2 Unsupervised Learning Networks.. 33

3.4.2.1 Competitive Learning... 34

3.4.2.2 Clustering Networks... 34

3.4.2.3 Vector Quantisation.. 35

3.4.2.4 SOM Learning... 36

3.4.3 Stochastic Learning... 38

3.4.4 Supervised Learning.. 40

3.4.4.1 Decision-based supervised learning..40

3.4.4.2 Approximation-based supervised learning..42

3.4.4.3 The backpropagation learning algorithm for multilayer

perceptron networks.. 44

3.4.4.4 Supervised Learning Parameters...45

3.4.4.5 Speeding up Supervised Learning... 48

3.5 Discussion and Conclusions.. 48

Chapter IV:ANALYSIS AND DESIGN OF NEURAL NETWORKS..............................48

4.1 Introduction..48

4.2 Software Architecture... 49

4.3 System Development..50

4.3.1 Software Life-Cycle Models... 51

4.3.1.1 The Waterfall Life-Cycle Model.. 51

4.3.1.2 Evolutionary Life-Cycle Model... 52

4.3.1.3 Spiral Life-Cycle Model.. 52

4.3.1.4 Prototyping..53

4.3.2 Phases of Software Development.. 54

4.3.2.1 Requirements Definition.. 54

4.3.2.2 Analysis..54

4.3.2.3 Design..55

4.3.2.4 Implementation..56

4.3.2.5 Testing..56

4.4 Object-Oriented Systems Development... 56

iii

m

4.4.1 Object-Oriented Analysis...57

4.4.1.1 Finding Objects...57

4.4.1.2 Organising Objects..58

4.4.1.3 Describing Object Interaction... 58

4.4.1.4 Defining Operations on Objects..58

4.4.2 Object-Oriented Design...59

4.4.3 Implementation... 59

4.4.4 Object-Oriented Testing..59

4.5 Object-Oriented Analysis and Design of Associative Neural Networks................. 60

4.5.1 Domain of Associative Neural Networks.. 60

4.5.2 Problem Statement...60

4.5.3 Identifying Objects...60

4.5.4 Organising the Objects...63

4.5.5 Describing Object Interactions...64

4.5.6 Defining Operations on Objects..66

4.5.7 Neural Network Systems Design..68

4.5.8 Implementation and Testing...69

4.6 Discussion and Conclusions..74

Chapter V: APPLICATIONS OF NEURAL NETWORKS...75

.1 Introduction... 75

5.2 Application of Neural Networks to Fault Diagnosis in HVDC systems................. 75

5.2.1 Introduction... 76

5.2.2 The HVDC System... 76

5.2.3 Data Pre-processing.. 82

5.2.4 Fault Diagnostic Neural Network..83

5.2.5 Results... 84

5.2.6 Discussion.. 85

5.2.7 Future directions... 86

5.3 Application of Neural Networks to Systems Identification..86

5.3.1 Introduction... 86

5.3.2 Problem Scope.. 87

IV

5.3.3 Neural Network for Systems Identification.. 88

5.3.4 Simulation Results... 92

5.4 Discussion and Conclusions..96

Chapter VI: FUZZY LOGIC...97

6.1 Introduction..97

6.2 Fuzzy Logic Theory...98

6.2.1 Fuzzy Subsets... 98

6.2.2 Linguistic Variables..100

6.2.3 Fuzzy Numbers.. 101

6.2.4 Fuzzy Inference..102

6.2.5 Constructing the Rulebase... 105

6.3 Object-Oriented Analysis and Design Fuzzy Inference Systems.............................. 107

6.3.1 Introduction..107

6.3.2 Problem statement: The domain of Fuzzy Inference Systems........................107

6.3.3 Identifying Objects..108

6.3.4 Organising the objects in the Fuzzy Inference System.......................................109

6.3.5 Determining operations on Objects...110

6.3.6 Design of Fuzzy Inference System... 113

6.3.7 Implementation of the Fuzzy Inference Systems.. 114

6.4 A Fuzzy Inference System for predicting harmonics in AC/DC networks............. 116

6.4.1 Introduction..116

6.4.2 Constructing the Rulebase... 119

6.4.3 Results..130

6.5 Discussion and Conclusions...133

Chapter VII: EVOLUTIONARY COMPUTATION.. 134

7.1 Introduction..134

7.2 Genetic Algorithms...135

7.2.1 Introduction.. 135

7.2.1.1 Path based models..135

7.2.1.2 Point based models..136

7.2.1.3 Population based models...136

v

7.2.2 Features of Genetic Algorithms... 136

7.2.3 Object-Oriented Analysis of Genetic Algorithms..140

7.2.3.1 Identifying objects in the GA domain..140

7.2.3.2 Discovering Object Operations...142

7.2.4 Object-Oriented Genetic Algorithm Design.. 143

7.2.4.1 Object Design.. 144

7.2.4.2 Implementation... 146

7.2.5 Object-Oriented Testing.. 148

7.3 Genetic Learning Classifier Systems..166

7.3.1 Introduction... 166

7.3.2 Classifier Systems.. 167

7.3.3 Learning in Classifier Systems..168

7.4 Object-Oriented Analysis and Design of Classifier Systems...................................... 169

7.4.1 Object-Oriented Analysis of Learning Classifier Systems...............................169

7.4.1.1 Learning Classifier System: Problem Description.................................... 170

7.4.1.2 Identifying Classifier domain objects... 170

7.4.1.3 Identifying the relationships between domain objects...........................171

7.4.2 Object-Oriented Design of Learning Classifier Systems.................................. 175

7.4.2.1 Classifier Systems Design..175

7.4.2.2 Object Design...1“

7.4.2.3 Describing Object Interactions..178

7.4.2.4 Learning Classifier Systems Implementation.. 181

7.4.2.5 Object-Oriented Testing...183

7.4.3 Learning Classifier System applied to autonomous vehicle control

in an obstacled environment..184

7.4.3.1 The Environment...184

7.4.3.2 Credit Assignment..186

7.4.4 Preliminary Results...187

7.5 Discussion and Conclusions...189

Chapter VIII:ACHIEVEMENTS AND FUTURE DEVELOPMENTS.........................190

8.1 Achievements... 190

vi

8.2 Suggestions for Improvement... 192

8.3 Conclusions...194

8.4 References...196

Appendix A : Key Elements of the Object Modelling Technique (OMT)......................... 208

Analysis Models... 209

The Object Model.. 209

The Dynamic Model.. 212

Functional Model.. 214

Design Models... 216

System Design... 216

Object Design... 217

Implementation Model... 217

Appendix B : Speed of Convergence of Algorithms...218

Order of Convergence... 218

Linear Convergence... 218

Average Rates.. 219

Convergence of Vectors.. 219

The Method of Steepest (Gradient) Descent.. 219

Global Convergence... 220

Appendix C : Derivation of the Backpropagation Algorithm... 221

Appendix D : Object-Oriented Design Methodologies.. 224

Object-Oriented Software Engineering (OOSE)..224

Booch Object-Oriented Design... 226

The Booch Notation.. 227

Other Object-Oriented Development Methodologies...229

Appendix E : Class Declarations for Associative Neural Network Classes.........................231

vii

LIST OF FIGURES

Number Page

Figure 2.2-1: Classification of neural networks by neuron arrangement 11

Figure 2.2-2: Block diagram of MLP feedforward neural network 11

Figure 2.2-3: Block diagram of a recurrent feedback neural network 12

Figure 2.2-4: Block diagram of a cellular neural network 13

Figure 2.2-5: Class hierarchy of neural network architectures 15

Figure 2.2-6: Class hierarchy for associative neural networks 16

Figure 2.3-1: Schematic diagram of a simple neuron 17

Figure 2.3-2: Logistic activation function 18

Figure 2.3-3: Hyperbolic tangent activation function 19

Figure 2.3-4: Guassian activation function 19

Figure 2.3-5: Neural network class diagram 20

Figure 2.3-6: Dynamic view of neural network architecture 21

Figure 2.3-7: Context diagram of typical neural network system 22

Figure 2.3-8: Data flow diagram of a typical neural network system 22

Figure 3.2-1: Hierarchy of input coding schemes 26

Figure 3.4-1: A simple clustering neural network 35

Figure 3.4-2: Hybrid Network: vector quantisation and feedforward network 36

Figure 3.4-3: Schematic diagram of a SOM network 37

Figure 3.4-4: Mexican-hat function used as neighbourhood function in SOM learning 38

Figure 3.4-5: Energy surface of a hypothetical optimisation problem 40

Figure 3.4-6: A 2-layer fully connected multilayer perceptron network. 45

Figure 4.3-1: Phases in software systems development 50

Figure 4.3-2: The waterfall life-cycle model of software development 51

Figure 4.3-3: Incremental software delivery' using evolutionary life-cycle model 52

Figure 4.3-4: Spiral life-cycle model for software development 53

Figure 4.3-5: Overview of system analysis 55

Figure 4.5-1: System object model for an associative neural network 64

Figure 4.5-2: Event trace diagram for a training scenario

vili

65

Figure 4.5-3: Event trace diagram for a retrieve scenario 65

Figure 4.5-4: Dynamic model of associative neural network 66

Figure 4.5-5: System context for an associative neural network 67

Figure 4.5-6: Level 1 data flow diagram that describes the operation an associative

neural network 67

Figure 4.5-7: Information flow among the different subsystems in a neural network 69

Figure 4.5-8: System Block diagram of neural network 69

Figure 4.5-9: Unit test results for the associative memory network 71

Figure 4.5-10: Unit test results for the BAM network 73

Figure 5.2-1: Configuration of a six-pulse HVDC Converter 76

Figure 5.2-2: Voltage and current waveforms for the different fault conditions 81

Figure 5.2-3: Block diagram of fault diagnostic neural network system 83

Figure 5.2-4: Neural network learns mapping between training patterns and fault

types 83

Figure 5.2-5: RMS training error, 11 hidden neurons, learning rate = 0.0175,

momentum = 0.02 84

Figure 5.2-6: RMS training error, 21 hidden neurons, learning rate = 0.015,

momentum = 0.03 84

Figure 5.3-1: Representations of system dynamics: (a) z-transfer function

representation; (b) state-variable representation;

(c) state-vector representation. 88

Figure 5.3-2: Architecture of supervised neural network for identification 92

Figure 5.3-3: Plot of state values of the dynamical system 93

Figure 5.3-4: Plot of state vectors for dynamical system 94

Figure 5.3-5: Extract from training data 94

Figure 5.3-6: Training curve using linear activation functions (learning rate = 0.15) 95

Figure 5.3-7: Training curve using sigmoid activation functions (learning rate = 0.15) 95

Figure 6.2-1: Fuzzy subsets with triangular, trapezoidal and gaussian

membership functions respectively 99

Figure 6.2-2: Membership functions associated with TALL 101

Figure 6.2-3: Triangular fuzzy number 3 101

IX

Figure 6.2-4: Gaussian fuzzy number 3 101

Figure 6.2-5: An L-R fuzzy number M with value m 102

Figure 6.2-6: Structure of a fuzzy inference system 103

Figure 6.2-7: Fuzzy reasoning: product inference with SUM composition 105

Figure 6.2-8: Fuzzy reasoning: min inference with MAX composition 105

Figure 6.3-1: Domain object model for fuzzy system 110

Figure 6.3-2: Context diagram for fuzzy inference system 110

Figure 6.3-3: Level 1 dataflow diagram for fuzzy inference system 111

Figure 6.3-4: State transition diagram for the fuzzy inference system 112

Figure 6.3-5: Information flow amongst the different subsystems 114

Figure 6.3-6: Declaration of a simple Rule class 115

Figure 6.3-7: Declaration of membership functions and fuzzy Rulebase 115

Figure 6.3-8: Triangular memberships for prototype system 116

Figure 6.3-9: Sampled output membership showing SUM Composition 116

Figure 6.4-1: Switched-capacitor filter 118

Figure 6.4-2: Thyristor controlled converter with switched-capacitor filter. 120

Figure 6.4-3: Plot of total harmonic distortion (THD) for all capacitance values 121

Figure 6.4-4: Variation of harmonic distortion with capacitance for different

switching times 122

Figure 6.4-5: Variation of harmonic distortion with resistance 123

Figure 6.4-6: Variation of harmonic distortion with switching time 124

Figure 6.4-7: Fuzzy subsets for the different system parameters 126

Figure 6.4-8: Normalised harmonics Vs pattern number 130

Figure 6.4-9: Predicted harmonics distortion using normalised inputs 131

Figure 6.4-10: Predicted harmonic distortion for normalised inputs for all patterns 131

Figure 6.4-11: Finer partitioning of universe of discourse for capacitance 132

Figure 6.4-12: Even finer partitioning of universe of discourse for capacitance 132

Figure 7.2-1: Pie charts comparing the different selection mechanisms 137

Figure 7.2-2: Schematic diagram depicting the reproduction process 138

Figure 7.2-3: One point crossover 139

Figure 7.2-4: Two point crossover 139

x

Figure 7.2-5: Uniform Ccossover 139

Figure 7.2-6: Genetic algorithm domain object model 141

Figure 7.2-7: Genetic algorithm state transition diagram 142

Figure 7.2-8: System object model of genetic algorithm 144

Figure 7.2-9: Object interaction diagram for CREATE scenario 145

Figure 7.2-10: Object interaction diagram for RUN scenario 145

Figure 7.2-11: Fully specified object structures for some GA objects 146

Figure 7.2-12: Sample C++ implementation of Alphabet 147

Figure 7.2-13: Sample C++ implementation for generalisation/specialisation

relationships 148

Figure 7.2-14: Results of testing the GA Alphabet class 149

Figure 7.2-15: Test results for individual object 150

Figure 7.2-16: Results of testing on Chromosome class 151

Figure 7.2-17: Genetic algorithm input screen showing the different options 152

Figure 7.2-18: Plot of gaussian objective function 153

Figure 7.2-19: Maximum fitness vs. generation for random population search

(crossover =0, mutation =1, roulette wheel selection,

generational replacement) 154

Figure 7.2-20: Maximum fitness vs. generation for random search

(crossover =0, mutation =1, tournament selection,

generational replacement) 154

Figure 7.2-21: Variation of fitness vs. generation for random search

(crossover = 0, mutation = 1, random selection,

generational replacement) 155

Figure 7.2-22: Variation of maximum and average fitnesses with generation

(crossover = 0.9, mutation = 0.1, roulette selection,

one point crossover, generational replacement) 155

Figure 7.2-23: Variation of maximum and average fitnesses with generation

(crossover = 0.9, mutation = 0.01, roulette selection,

two point crossover, generational replacement) 156

Figure 7.2-24: Variation of maximum and average fitnesses with generation

xi

(crossover = 0.7, mutation = 0.1, tournament selection,

two point crossover, generational replacement) 156

Figure 7.2-25: Variation of maximum and average fitnesses with generation

(crossover = 0.7, mutation = 0.1, roulette selection,

two point crossover, partial replacement) 157

Figure 7.2-26: Variation of maximum and average fitnesses with generation

(crossover = 0.9, mutation = 0.1, tournament selection,

two point crossover, elitist replacement) 157

Figure 7.2-27: Variation of maximum and average fitnesses with generation

(crossover = 0.9, mutation = 0.1, tournament selection,

uniform crossover, generational replacement) 158

Figure 7.2-28: Objective function plot for ul = 3, u2 = 2, and s = 0.15 159

Figure 7.2-29: Behaviour of the objective function in the neighbourhood of the

function maximum. 160

Figure 7.2-30: Random search with generational replacement 161

Figure 7.2-31: Random search with elitism 161

Figure 7.2-32: Variation of maximum and average fitness values with generation

(crossover = 0.8, mutation = 0.1, roulette selection,

two point crossover, generational replacement) 163

Figure 7.2-33: Variation of maximum and average fitness values with

generation (crossover = 0.8, mutation = 0.1, tournament

selection, twopoint crossover, generational replacement) 163

Figure 7.2-34: Variation of maximum and average fitness values with

generation (crossover = 0.8, mutation = 0.1, tournament selection,

one point crossover, generational replacement) 165

Figure 7.2-35: Variation of decoded parameters with generation. 165

Figure 7.3-1: Schematic diagram of a learning classifier system 167

Figure 7.4-1: Domain object model of learning classifier system 172

Figure 7.4-2: Learning classifier system: state-transition diagram 173

Figure 7.4-3: Learning classifier system: context diagram 174

Figure 7.4-4: Learning classifier system: level 1 dataflow diagram 175

xii

Figure 7.4-5: Concept map showing the interaction between subsystems in the

learning classifier system 176

Figure 7.4-6: Design object model of learning classifier system 177

Figure 7.4-7: Object interaction diagram for Create LCS use case 179

Figure 7.4-8: Object interaction diagram for the Create Classifier use case 179

Figure 7.4-9: Object interaction diagram for Match/Execute cycle use case 180

Figure 7.4-10: Object interaction diagram for Regenerate Classifier use case 181

Figure 7.4-11: C++ declaration for chromosome class 182

Figure 7.4-12: C++ declaration for the classifier condition class 182

Figure 7.4-13: C++ declaration for classifier class 183

Figure 7.4-14: Object modelling diagram describing the environment 185

Figure 7.4-15: Encoding of the sensor information 185

Figure 7.4-16: Direction encoding of effector messages 186

Figure 7.4-17: Calculating the payoff 187

Figure 7.4-18: A sample environment 188

Figure 7.4-19: Autonomous vehicle movement 189

Figure 8.2-1: Classification meta model for computational intelligence systems 193

Figure A-l: OMT process pverview 208

Figure A-l: Multilayer perceptron neural network trained by backpropagation 221

Figure A-l: A use case model in OOSE 224

Figure A-2: OOSE process overview 225

Figure A-3: Object types in OOSE 225

Figure A-4: An example object interaction diagram in objectory 226

Figure A-5: Booch process overview 226

Figure A-6: An example of a Booch class diagram showing the different relationships 227

Figure A-7: A Booch state diagram 228

Figure A-8: CRC Process overview 229

Figure A-9: Fusion process of object-oriented development methods 230

xiu

LIST OF TABLES

Table 4.5-1: Associative neural network domain objects 61

Table 5.2-1: Representation of each fault type in the training/test sets 82

Table 5.2-2: Training results 85

Table 6.3-1: Objects as nouns in the problem description 108

Table 6.4-1: Format of Rule file 128

Table 6.4-2: The Rulebase for inferring harmonics distortion 129

Table 7.2-1: Comparison between roulette wheel and tournament selection

mechanisms 137

Table 7.2-2: Best of generation fitness and (x, y) values vs. generation

number for genetic algorithm search. 162

Table 7.4-1: Objects in the learning classifier system 170

xiv

ACKNOWLEDGMENTS

The author wishes to thank his wonderful supervisor Dr L. L. Lai for his help and

guidance throughout the course of this work.

A whole bunch of thanks to my benefactor Mr Owen Farrelly, for rescuing me financially

on more than one occasion and in more ways than I could possible thank him for.

Thanx.

Special thanks to Dr Barbara Hienzen for all the prep talk and daose vitamins.

Special thanks also to Mr Mark Littman QC, Miss Margaret Misodi and Dr Peter Rajroop

for their support.

Final word of thanks to Mr Flarald Braun for help on those tricky 3-D plots.

THIS THESIS IS DEDICATED TO MY
LATE FATHER, PAPA VINCENT CHE
WHOSE TRAGIC AND UNTIMELY
DEATH HALFWAY THROUGH THE
WRITEUP ONLY SERVED TO INCREASE
MY DETERMINATION TO SEE IT
THROUGH TO THE END.
HE WOULD HAVE LIKED THAT...

XV

Declaration

The author hereby grant powers of discretion to the City University Librarian to allow this
thesis to be copied in whole or in part without further reference to the author. This
permission covers only single copies made for study purposes, subject to normal
conditions of acknowledgement.

xvi

C h a p t e r I

INTRODUCTION

This thesis is the result of research that grew out of the practical need for ways in which

intelligent systems could be applied to the solution of real problems in the field of Power

Systems Engineering and Control in the Energy Systems Group at City University. The

intelligent systems methodologies that were being considered included Neural Networks,

Fuzzy Logic, Genetic Algorithms, Evolutionary Programming and Chaos Theory.

At the time when this research was first started, there were a number of significant papers,

textbooks and PhD dissertation theses that were considered to be an embodiment of the

knowledge in the area of neural networks. The most notable of these are given in

references [1-15]. There were also a few conferences and even fewer international journals

dedicated solely to the promotion of neural network technology. Neural networks were

commonly seen as black box systems and were treated as such. Numerous theories were

proposed about what exactly it was that neural networks learnt and how they could be

better designed to perform these. Neural network research was very closely associated with

research areas in neurobiology such as neuroscience, neuropsychology and the theories of

learning and complexity. Neural networks were seen as an attempt to mimic the way the

brain works and it was widely believed that a better understanding of artificial neural

networks would lead to great discoveries about the working of their biological counterpart,

namely the human Brain. There were greatly exaggerated reports in the mainstream

scientific journals and magazines about the capabilities of neural network technology and it

was some times difficult to separate fact from fantasy. Nevertheless, the fact remains that,

neural networks offer solutions to some problems that were hitherto considered to be

intractable. This has led to resurgence in research in neural technolog)7 and its applications.

The pace of research has been breathtaking. There is now a clear distinction between

biological neural models and artificial or connectionist neural models. Biological neural

models are concerned with networks that mimic biological neural systems such as early

vision and audio functions in the brain. Their main objective is to develop synthetic

elements for verifying hypothesis concerning biological systems. Artificial or connectionist

1

models on the other hand are more application driven. For these models the architectures

are largely dictated by the needs of a particular problem or application. This thesis is solely

concerned with the later, i.e., connectionist or computational neural models. The current

popularity of neural networks has mostiy been fuelled by developments in connectionist

models. Currently, there are neural network applications in fields as diverse as medicine,

power systems, finance, industrial process control, signal processing and network

management to name but a few. Since 1992, there has been a number of international

journals dedicated to the publication of ongoing research and applications in the field of

neural networks. The two most common ones include IEEE Transactions on Neural

Networks and Journal of Neural Computation. Further more, there has been a constant

recurrence of special issues and invited papers on neural networks in mainstream scientific

journals such as IEEE ASSP magazine, IEEE Computer, Scientific American, IEEE

Transactions on Systems, Man and Cybernetics, IEEE Control magazine, IEEE

Transactions on Signal Processing, etc. Finally, there has been a number widely publicised

international conferences on neural networks and its applications in recent years. These

have all contributed to an even wider interest in the application of neural network

technology by industry. Still, there are major hurdles that have to be overcome before

neural technology can be adopted, whole sale, by industry-. Major problems include the

proliferation of neural network paradigms and the black box stigma that is still attached to

neural networks. Each neural network paradigm almost inevitably results in a different

neural network architecture with different learning modes and range of applications to

which it can be successfully applied. With so many different paradigms to choose from,

selecting the correct paradigm so that the resulting neural network architecture is suitable

for a particular problem requires a tremendous amount of creative insight and luck.

Otherwise repeated experiments are needed to arrive at an architecture and a correct set of

learning parameters to solve a given problem. This process can be significantly improved if

an appropriate set of discriminating features can be found to provide a robust

classification of neural network paradigms and architectures. Secondary' to this is the use of

a standard, yet easy notation for the classification and for communicating design decisions

so that “good” designs can be easily communicated and successfully reused. The black box

stigma that is attached to neural networks also constitutes a major obstacle. The main

reason for this is the fact that the majority of neural network systems exist only as lines of

program code in neural network software. Such descriptions of neural network systems are

2

not practical as a bases for communicating design decisions to users of the neural network.

Without a proper basis for making informed decisions about the choice of learning

parameters, network size, activation function, etc. users end up resorting to

experimentation and blind application of neural networks. The consequences on the long

term development and application of neural network technology can be extremely

damaging. Here again, a robust software architecture for neural networks supported by a

standard set of notational symbols will go a long way to enable end users to make

informed decisions about the choice of parameters when neural networks are applied to

solve difficult real world problems.

Chapter II of this thesis deals with the problem of classifying neural networks. An

appropriate set of discriminating features has been identified on which a sensible

classification of neural networks can be made. A standard notation based on the Object

Modelling Technique has been proposed as the solution both for depicting the

classification and for communicating design decisions about the structure of neural

networks.

In Chapter III, learning algorithms in neural networks has been presented. Chapter III is a

review chapter that surveys current research in the field of neural networks, major issues

associated with neural network learning, and proposed solutions to resolve them. The

chapter includes a discussion of the factors which affect the operation of neural networks

and the methods which are accepted as standard for resolving them. The chapter also

presents an insight into a fundamental problem associated with neural networks; what

neural networks learn, and its implications to solving real problems.

In chapter IV, an object-oriented approach to analysis and design of neural networks is

described. This departs from the conventional approach where neural network systems are

treated merely as algorithms without neither structure nor architecture. Neural network

designs are described using flow charts or pseudo-code or just equations and arc usually

incomprehensible especially where very complex algorithms are involved. The

construction of an object-oriented software architecture for neural network systems will

have a major impact in the cornmunication of neural network architecture and designs to

other designers and users alike. The significance of this development on the long term

adoption and application of neural networks in industry remains to be seen.

3

Chapter V presents two distinct approaches to applying neural networks in solving real

world problems. The first case study approaches the neural network as a black box which

is configured to learn a mapping between fault data and a set of fault conditions in an

HVDC system. The identification of faults in FTVDC systems in real time is a difficult

learning problem to which neural networks have been successfully applied. The application

doesn’t make use of any a priori information about the problem even where this is

available. In the second case study, an application specific neural network is developed to

identify unknown parameters in linear and non-linear dynamical systems. This approach

uses a priori information about the problem to aid the design of the neural network. This

leads to the concept of application specific neural networks and can result in a higher rate

of success than the blind application approach.

In chapter VI, an introduction to fuzzy logic concepts is presented. Despite their current

popularity and their robust nature, neural network solutions become impractical when the

data available to solve a problem are incomplete or imprecise or both. A large proportion

of real world problems fall under this category and with the preclusion of a neural network

solution, an alternative is required. Fuzzy Logic has been proposed as a means of dealing

with the uncertainty that besets real world problems. Fuzzy logic is a generalisation of

conventional logic that has been extended to deal with the concept of imprecision and

vagueness. In chapter VI, an object-oriented software architecture for constructing fuzzy

inference systems is presented. Along with a sample implementation in the C++

programming language. Finally, the procedure and results of applying fuzzy inference to

the prediction of harmonics in AC systems is presented.

Chapter VII deals with the evolutionary computation aspects of computational

intelligence. Neural network learning can be regarded as negative hill climbing or gradient

descent procedure where the network weights converge to a local minima of the

error/performance function surface. For extremely difficult learning problems, tire

performance function surface is usually neither continuos nor convex/concave. This

makes it impossible for hill climbing procedures to converge. Even where the

performance function is continuos, there are usually more than one optima so that the

convergence of the neural network becomes over dependent on the starting position in

weight space. The net result is that convergence to a global optima is highly unlikely and

the performance of the neural network fluctuates markedly with starting conditions or

4

becomes trapped in local optima. Evolutionary Computation (EC) strategies are robust

search mechanisms modelled on Darwinian theory of evolution and natural selection that

can be used to search for global optima in very complicated search spaces. EC strategies

include: Genetic Algorithms (GA), Genetic Programming (GP), Evolutionary Strategies

(ES), Evolutionary Programming (EP), Classifier Systems (CFS) and several other problem

solving strategies based on natural selection and natural evolution. Chapter VII presents an

object-oriented architecture for constructing Genetic Algorithms and Genetic Learning

Classifier systems. The emphasis in this chapter as with the precious chapters is on

effective design communication and design reuse. The chapter demonstrates the reuse of

an existing Genetic Algorithm design in the construction of the Genetic Learning

Classifier Systems. Successful application of the GA to searching and optimisation

problems have been presented along with preliminary results of the application of Genetic

Learning Classifier Systems to control an autonomous robot vehicle in an obstacled

environment.

As with any research work, there a few things, that, with the benefit of hindsight could

have been done much better and there are others which, given more time and enough

resources can eventually be achieved. Chapter VIII presents ways in which this research

work can been improved and provides suggestions about future research that can be

undertaken to realise the full potential of this research.

1.1 Summary of Main Contributions

The word “Architecture” has become a mainstay in the construction of robust software

systems that transcends organisational and national boundaries. If intelligent software

systems are to survive beyond public domain and one off (bespoke) applications to make

the leap into industrial systems design, a shift in the construction methods and the way in

which design ideas are communicated is desperately required. This thesis has proposed a

solution to the communication problems using a new set of discriminating features for

categorising neural networks. The categorisation uses a descriptive diagrammatic notation

based on a standard and yet easy to understand set of notational symbols for describing

neural network classification hierarchies. A further major contribution is the development

of robust object-oriented architectures for constructing intelligent systems. The

conventional approach based on the implementation of very complicated algorithms from

flowcharts or algorithm descriptions is replaced by a more durable approach based on

5

object-oriented analysis and design. These architectures serve as an ideal vehicle for

communicating computation intelligence systems’ designs relating to both designers and

users. Furthermore, neural network, fuzzy logic and genetic algorithm software systems

have been developed in C++ which has formed the basis of a number of undergraduate

and postgraduate projects at the Energy Systems Group at the City University and also

practical applications to the solution of difficult real world problems in the field of power

systems engineering and control. Work on this research has led in part or whole to the

publications in the next section.

LIST OF PUBLICATIONS

1. F Ndeh-Che, L L Lai and K H Chu, 'The design of neural networks with object-

oriented techniques', IEE Colloquium on Recent Progress in Object Technology,

Dec 1993.

2. F Ndeh-Che, 'Application of neural networks to financial decision making', Report to

Marks and Spencers Financial Services, 1994.

3. K Ramar, A Koppurajulu, C Venkataseshaiah, L L Lai, F Ndeh-Che and K L Lo,

'Power system simulators', IEE Colloquium on Simulation of Power Systems, Digest

No 1992/221, London, Dec. 1992.

4. L L Lai, F Ndeh-Che, K S Swarup and H S Chandrasekharraiah, 'Fault diagnosis

for HVDC systems with neural networks'. Preprints of Papers, Vol 9, 12th

International Federation of Automatic Control (IFAC) World Congress, July 1993,

Australia, 179-182.

5. K S Swarup, FI S Chandrasekharraiah, L L Lai and F Ndeh-Che, 'Application of

neural networks to fault diagnosis for ITVDC systems', Neural Networks and

Genetic Algorithms, Springer-Verlag, Wien, New York. 1993,227-234.

6. L L Lai, F Ndeh-Che, Tejedo Chari, P J Rajroop and H S Chandrasekharraiah,

'ITVDC systems fault diagnosis with neural networks' Proceedings of the 5th

European Conference on Power Electronics and Applications, The European

Power Electronics Association, Vol. 8, Sept 1993, 145-150.

7. L L Lai and F Ndeh-Che, 'A new approach to protecting transmission systems with

fault generated noise', Proceedings of the Second International Conference on

6

Advances in Power System Control, Operation and Management, IEE, Pub No 388,

Dec 1993, 170-175.

8. L L Lai, F Ndeh-Che and Tejedo Chari, 'Fault identification in HVDC systems with

neural networks', Proceedings of the Second International Conference on Advances

in Power System Control, Operation and Management, IEE, Pub No 388, Dec 1993,

231-236.

9. L L Lai, F Ndeh-Che, K H Chu and W Butt, 'Application of ferrite material to

protection', Proceedings of the Power and Energy 94, IEE Japan, July 1994.

10. L L Lai, F Ndeh-Che and K H Chu, 'Modelling, design and simulation of generator

excitation control system by using object-oriented techniques and a genetic

algorithm', The First International Conference on Power Electronic and Motion

Control, IEEE, China, June 1994.

11. L L Lai, F Ndeh-Che and K IT Chu, 'Reactive power control by selecting parameters

of excitation control systems using a genetic algorithm', Proceedings of the

10th CEPSI, Vol 3, The Association of the Electricity Supply Industry of East Asia

and the Western Pacific, New Zealand, Sept 1994, pp264-274.

12. L L Lai, F Ndeh-Che, K H Chu, P J Rajroop and X F Wang, 'Design neural

networks with genetic algorithms for fault section estimation', Proceedings of the 29th

Universities Power Engineering Conference, Ireland, Vol 2, Sept 1994, 569-599.

13. L L Lai, F Ndeh-Che and K H Chu, 'Application of ferrites and high frequency

signals to protection power systems', Proceedings of the 10th CEPSI, Vol 3, The

Association of the Electricity Supply Industry of East Asia and the Western Pacific,

New Zealand, Sept 1994, pp210-220.

14. L L Lai, F Ndeh-Che and K H Chu, 'Improving power system stability by selecting

parameters of excitation control systems using a genetic algorithm', International

Conference on Power System Technology, IEEE, China, Oct 1994.

15. E Georges, L L Lai and F Ndeh-Che, 'Implementation of neural networks with

VLSI', Fourth International Conference on Neural Networks, IEE, June 1995.

7

16. L L Lai, F Ndeh-Che, H Braun, R Hui and A B Serrano, 'Application of neural

networks to predicting harmonics', Sixth European Conference on Power Electronics

and Applications, Sept 1995, pp533-538.

17. L L Lai, F Ndeh-Che, K H Chu, R Yokoyama and M Zhao, 'Application of Ferrite

and High-Frequency Signals to Protecting Power Systems', accepted for the European

Transactions on Electrical Power Engineering, VDE VERLAG, Germany.

18. L L Lai and F Ndeh-Che, 'An application of neural networks to improving power

system stability', IEE Colloquium on Advances in neural networks for control and

system. April 1993.

19. F Ndeh-Che, 'Neural networks and fuzzy logic', PhD Transfer Report, July 1995.

20. F Ndeh-Che, 'Computational Intelligence', Internal Report, Energy Systems Group,

1994.

C h a p t e r I I

NEURAL NETWORKS

2.1 Introduction

The power of neural networks lies in their ability to find a general solution to a given

problem. Neural networks are massively parallel networks of simple processing elements

designed to emulate the functions and structure of the brain. They combine properties

such as fault tolerance and robustness to solve very complex problems in polynomial time.

Artificial neural networks (ANNs) have their roots in the theory of function

approximation and pattern classification. Neural network models are characterised by a

variety of factors. This determines the type of network and the range of applications in

which they can be successfully used. A unique contribution of this chapter is the use of the

Object Modelling Technique (OMT) [16] to provide a clear and unambiguous classification

of the neural network architectures and in the description of the static structure and

operation of neural networks.

2.2 A Taxonomy of Neural Network Architectures

Intelligent classification is a fundamental part of all science and the same holds for a study

of neural networks. An ever present problem in science is to construct meaningful

classification of observations in order to facilitate human understanding [17]. Because of

the proliferation in the development of neural network models, the need for an intelligent

classification of neural networks has become unavoidable. There are too many difficulties

inherent in any attempt to classify neural networks. The most prominent of these is the

fact that the boundaries that distinguish one neural network paradigm from another are

often quite fuzzy. It is very difficult to tell where one paradigm stops and the next begins,

furthermore, there is no such thing as a “perfect” classification although some

classifications are definitely better than others. Finally, intelligent classification requires a

tremendous amount of creative insight and knowledge about neural networks. There are

potentially as many ways to classify neural networks as there are people willing to

undertake the task. A further problem to do with classification concerns the use of

notations. A “Victorian novel” style textual description of all the different neural network

architectures and paradigms will take up whole volumes and is just as ineffective to an

9

Engineer whose main interest lies in applying neural networks to a real world problem.

Diagramming techniques have been used since the early days of computing to express

requirements for computer software systems and also in their analysis and design [18,19]

and a graphical notation is more appropriate. On the other hand, purely graphical

notations will lead to a proliferation of diagrams and symbols which places a great burden

on the reader in that they have to remember the meanings of the large number of symbols

that make up the diagrams. Having a well-defined and expressive notation makes it easier

to communicate design decisions and also facilitates consistency and correctness checking

of these decisions using automated tools. The robustness of the notation can depend on

its relative independence from specific methods and technology as these are more

changeable and evolve more rapidly and unexpectedly [20]. The Object Modelling

Technique (OMT) provides a comprehensive notation that make it easier to visualise both

the structure and the functions of complex neural network software systems. The key

elements of OMT are presented in appendix A.

2.2.1 Classifying Neural Networks

There are a large number of different criteria that can be used for classifying neural

networks. In [21, 22], an overview of different neural network paradigms is presented

along with data structures and algorithms necessary for software implementation. In this

thesis, only two different criteria for classifying neural networks will be considered. The

first is based on the arrangement of the neurons and the connection weights linking them.

This is a generally accepted standard for classifying neural networks. The second criterion

is much broader. It is based on the presence or absence of memory1 in the neural network

and it gives a much better insight into the different types of neural networks.

2.2.2 Categorisation based on the Arrangement o f Neurons

A categorisation ot neural network architectures can be made based on the arrangement of

the neurons and the connection of the weights linking them. This kind of categorisation

distinguishes between three different categories of neural networks:

1. Feedforward Neural Networks

2. Feedback Neural Networks and

3. Cellular Neural Networks

Figure 2.2-2 shows a classification hierarchy for different neural network paradigms

classified according to the arrangement of their neurons.

1 Memory in the neural network is considered with respect to how data patterns are treated with time.

10

Figure 2.2-1: Classification of Neural Networks by neuron arrangement

2.2.2.1 Feedforward Multilayer Neural Networks

In feedforward networks, the neurons are arranged in a feed forward manner, usually in

the form of layers. Each neuron may receive inputs from the external environment or

from other neurons in preceding layers. Neurons are not allowed to have feedback

connections or connections from neurons within the same layer. Feedforward neural

networks compute an output pattern in response to a given input pattern. Examples of

feedforward neural networks include multilayer perception networks (MLP), temporal

dynamic neural networks (TDNN) and Flamming networks.

Figure 2.2-2: Block diagram of MLP feedforward neural network

2.2.2.2 Feedback Neural Networks

Feedback neural networks, as die name suggests, allow feedback connections between

neurons in the same or succeeding layers. Feedback or recurrent neural networks consist

of neurons with dynamic building blocks. Their dynamic properties are described by a

system of non-linear ordinary differential or difference equations along with an associated

11

computation (Lyapunov) energy function which is minimised during computation. The

evaluation with time of the system of dynamic equations results in a minimisation of the

Energy function. Some examples of feedback neural networks include recurrent neural

networks, bi-directional associative memory (BAM) and the Hopfield networks.

Figure 2.2-3: Block diagram of a recurrent feedback neural network

2.2.23 Cellular Neural Networks

Cellular neural are similar to cellular automata. They consist of regularly spaced artificial

neurons called cells. The cells communicate only with neurons in their immediate

neighbourhood. Adjacent cells interact with each other through mutual lateral

interconnections. Cells which are further apart can still affect each other during the

propagation of transient signals. The cells are usually organised in a two-dimensional array

of rectangular or other regular grid. Even' cell in the grid is affected bv its own signals and

by signals flowing from adjacent cells due to the local connectivity. Mutual interactions

causes the processed signals to propagate in time within the whole array of the cellular

neural network.

12

2.2.3 New Scheme fo r Classifying Neural Networks

The classification of neural networks by the arrangement of neurons is severely limiting.

For instance, recurrent neural networks are classified as being very similar to BAM and

Hopfield networks and much different from temporal dynamic neural networks (TDNN).

In practice, recurrent neural networks are structurally and conceptually very similar to

TDNN. Furthermore, necessary information that can be used to make informed decisions

about the choice of neural network for a particular application is lost in such a

classification. In this new scheme for categorising neural networks, the main discriminating

criterion is the presence or absence of memory capability in the neural network. At the

top level, neural networks are classified into two main categories: memory and memoryless

neural networks. The categorisation is successively refined in a tree-like manner to include

most of the neural network paradigms that are currently known. Figure 2.2-5 shows a class

hierarchy of neural network architectures based on the new classification scheme. A great

advantage of this method is the fact that almost any neural network architecture can be

classified as a leaf node at the bottom of the hierarchy. Also new nodes can be added as

necessary or as new neural network architectures are developed. Furthermore, whole

sections can be collapsed or expanded as shown in Figure 2.2-6 to facilitate browsing of

particular sections of the class hierarchy. This scheme lends itself to automation support

making it easier for neural network designers to navigate the class hierarchy to select a

network architecture which is suitable for a particular application.

2.2.3.1 Memory less Neural Models

Memoryless neural models view an input pattern as a random point in n-dimensional

feature space. Models ot this type are static with respect to time and thus represent the

class of static neural networks. Memoryless neural networks can be further divided into

supervised or unsupervised learning networks. Supervised learning networks require die

presence of a teaching signal at the output in order to adapt or compute the network

weights. Using the classification, multilayer perceptrons, radial basis function networks and

all the associative memory networks fall under this category. Unsupervised learning

networks on the other hand do not require a teaching signal in order to adapt the network

weights. Learning in such networks is achieved through a process of competition and self­

organisation. Examples of unsupervised neural networks include vector quantiser, the ART

(Adaptive Resonant Theory) networks and the Kohonen Self-Organising Feature Map

(SOM) network. Still under Memoryless neural networks, a number of hybrid networks

13

can be classified. These include CMAC (Cerebral Model Articulated Controller) neural

networks and the Counter Propagation Network (CPN).

2.23.2 Memory Neural Models

Memory neural models incorporate some form of memory unit which is used for

processing time dependent (transient or temporal) signals. In this classification, temporal

neural models fall under memory neural networks. Temporal neural models are further

classified into deterministic or stochastic networks based on the nature of the memory

mechanism. In deterministic temporal neural models, the memory mechanism is in the

form of time delay units. Neural models of this type are called temporal dynamic models

(TDMs). Examples of deterministic temporal neural networks include the Temporal

Dynamic Neural Network (DNN) and Recurrent Neural Network (RNN). In stochastic

temporal neural networks such as Hidden Markov Models (HMMs), the memory

mechanism is in the form of a state transition matrix which is trained to model the

temporal behaviour [12, 23, 24].

14

Figure 2.2-5: Class hierarchy of neural network architectures

15

Figure 2.2-6: Class hierarchy for associative neural networks

2.3 Structure of Neural Networks

Every neural network is characterised by a set of coupled differential equations that

describe the dynamics of the neural network [25]. These are, the generalised neural

network state equation,

d\
— = F(x,W ,U) (2.3-1)
at

and the general purpose learning equation,

dW
— = G(x,W ,U)at

where x = [x1(i),A'2(i),...,x„ (i)]T is the activation state space vector,

W = [w,j (i)]„ xn 's the weight matrix and

(2.3-2)

U - [t i 1,« 2, . . . , « n]1 is the time independent external inputs.

This system of dynamical equations is guaranteed to converge by a Lyapunov or Energy

function E = E(x,Wl,U) defined on the state space which is monotonically decreasing

and bounded from below.

Physically, a neural network consists of layers of artificial neurons connected by synaptic

weights. The basic artificial neuron is modelled as a multi-input non-linear processing

element with weighted interconnections w -. The neuron processes its input to produce

an output according to die following equation

16

(2.3-3)
 ̂ n

y . = ^ Y j W j i X i + Q j
Vi=1

\

)

Where T* is the activation function,

0! is the bias or offset,

x; are the inputs (/ = 1,2 ,... ,77) , n is the number of inputs,

Wy are the synaptic weights and

y j are the outputs.

The above equation is often written in a more precise manner by treating the bias as a

weight connected to an input which is permanently set 1.

f n

y ¡ = VÍ/
V¡=o

(2.3-4)

where vvi0 = 6L and x0 = 1

A schematic diagram of an artificial neuron is shown in Figure 2.3-1.

Figure 2.3-1: Schematic diagram of a simple neuron

The neuron activation function determines the kind of information that one neuron can

signal to another. Activation functions may be linear or non-linear. Linear activation

functions can be used to provide an approximation of the operations of non-linear

models. Non-linear activation functions are used to generate variable and complex

performance in neural networks. Sigmoidal functions are normally used as neuron

activation functions, but, any function that is continuos, differentiable, monotone

increasing, step-like can be used. Two examples of sigmoidal neuron activation functions

are shown below:

logistic function: y = / (x) =------ ^ 7 (2.3-5)
1 + e

17

Figure 2.3-2: Logistic activation function

hyperbolic tangent:

y = f (x) =
kx -k x

~fcT~~~ifcT = tanh(fa)<? +e (2.3-6)

Tanh activation function

Figure 2.3-3: Flyperbolic tangent activation function

Neurons with sigmoidal activation functions produce real valued outputs which gives the

neural network its ability to construct complicated decision boundaries in n-dimensional

feature space. This is important because the smoothness of the generalisation function

produced by the neurons and hence its classification ability is directly dependent on the

nature of the decision boundaries. Another popular class of neurons use Gaussian

activation functions [26]. Figure 2.3-4 shows a sample Gaussian activation function with

zero mean and a unity standard deviation. The local properties of Gaussian activation

functions make them more desirable than sigmoidal activation functions in pattern

recognition problems. This is due to the fact that Gaussian neurons are able to produce

sharper decision boundaries than their sigmoidal counterparts.

18

Gaussian activation function

Figure 2.3-4 : Guassian activation function

The input vectors, x e 9 t " , presented to the neural network can be binary data or

scaled/normalised real data ranging between -1.0 and +1.0 or 0.0 and +1.0 depending on

the nature of the neuron activation function. Most neural learning algorithms have no self-

normalising qualities hence scaling or normalisation is necessary to prevent saturation of

the neuron activation function. In some cases such as unsupervised learning, the

algorithms actually require that the input data and the initial network weights are

normalised before learning can take place. Ordinarily, the neuron weights are initialised to

small random numbers when the neural network is first created.

The structure and operation of a general neural network can be described in graphical

terms using models in the Object Modelling Technique. Three separate models are

provided so that different aspects of the system can be visualised. The models include: the

object model, the dynamic model and the functional model. The object model is expressed

in a class or object diagram as shown in Figure 2.3-5. This model shows the static structure

of a neural network and serves to describe the constituent parts without the details of its

operation. The class diagram shows that a neural network consists of one or more neuron

layers. Each layer is modelled as a weight matrix containing a pair of activation vectors that

represent the input and output activations. The activation vectors are acted on by

activation functions which can be linear or non-linear in nature. The neural network uses

patterns both during training and testing or validation. Patterns can thus be either training

patterns or test patterns. Each pattern is just an aggregation of Vector pairs which in turn

consists of between 0 and 2 vectors.

19

Matfix

Vector Pair

T
0 - 2

Vectoi

Neural Network £ > - — consists o f -

test
train

traine/tesled
with

-O Patterns

Pattern ID
size

Activation Function

training pattern

is a

Weight

Layer

Activation Function

has

Activation
- N

is a

test pattern Linear Non-linear Output Activation

Vector

ilunction o il Input Activation

Figure 2.3-5: Neural Network Class Diagram

The second view shown in Figure 2.3-6 represents the dynamic model of the neural

network system. This view shows the different states that the system can be in, the events

that the system responds to whilst it is in that state and the possible transitions between

the states. The state of the system at any one time is the sum total of the values held by all

its attributes and associations at that time. For a large system, the number of possible

states can be very large. For modelling purposes, all the major states in the main objects

are represented. While in a state, the neural network can perform certain activities until an

event is received that causes a state transition. For example, in state Training, the neural

network can do: train, do: test or do:print error.

20

Neural Network
Start

1
initialise
weights

Figure 2.3-6: Dynamic view of Neural Network architecture

The final view in the neural network system description represents the functional model

of a neural network system. This model describes the functionality of a neural network in

terms of the data it accepts and the transformations that it performs on the data.

Functional models are expressed using dataflow diagrams. A dataflow diagram is a directed

graph where the nodes represent functions that carry' out operations and the edges

represent the flow of data or resources between the functions. Dataflow diagrams exist at

different levels. The highest level dataflow diagram is the system context diagram. This

shows what inputs are required by a system, the sources of the inputs, the main outputs

produced, and finally, the main users or sinks of the output. The system context can be

successively refined into lower level dataflow diagrams that describe the system in greater

detail. At the lowest level, the node transformations in the dataflow diagram degenerate

into functions or algorithms that can be utilised in the finished design. The neural network

context diagram is shown in Figure 2.3-7. while Figure 2.3-8 shows the level 1 data flow

diagram.

21

Traimng/TesL Data
file Training

Figure 2.3-7: Context Diagram of Typical Neural Network System

User
Training/Tesl

Data file
N

D2 Pattem
data store
I

data patterns

, \
2 |_______

Random
Number

Generato^

Read
Pattem

File
„ data
patterns

■ Network
weights

V User 1
V y Network

Parameters
-*m~

CE
Initialise
Network

^-----^ D

Create
network

Neural Network

Network weights

31
Weights

Store

D1 Weights Store

Network weights
J ___n

Compute
Weights

data patterns

3 I
Pre- data

s-]
processor "patterns"* Test

/■ Network
\ ___ ___ A

data patterns

■ Neural
Network -

Train
Network

Learning
Parameters

Final
activations -

Training
Error

results

process
results

User

Figure 2.3-8: Data flow diagram of a Typical Neural Network System

22

2.4 Discussion and Conclusions

Classifying neural network models is difficult because of the wide range of neural network

architectures currently available and the diverse and contrasting features or criteria that can

be used to describe these models. Furthermore, any kind of classification is very subjective

and very dependent on the problem area. Also, where there is no standard set of features

or standard notation available to perform the classification as is currently the case,

ambiguities are bound to arise. This chapter has attempted to rectify the situation by

proposing a new scheme for classifying neural networks using conventional diagramming

techniques. The method is based on a standard notation with a few easily recognised

symbols as described by the Object Modelling Technique (OMT). Using such a notation,

more expressive relationships between different neural network paradigms can be easily

described in a diagrammatic form. A set of appropriate discriminating features between the

different neural models has be used to create a hierarchy of Neural Network models with

significant improvement on the standard method of classifying Neural Networks. It

provides a finer level of detail on which informed decisions can be made on the choice of

Neural Network architecture for a particular application. It also ensures that similar Neural

Networks architectures or models are classified close to each other, which is the ultimate

goal of any classification scheme.

Finally, the general structure of a neural network has been described. In describing a

complex system, multiple views are required to portray different aspects of the system. In

this description, three different views have been presented to completely describe the

structure, operation and functionality of a typical neural network. The static view shows

the structure of the neural network, the dynamic view show the different states a neural

network can be in and the events it responds to. The functional view shows the data that a

neural network accepts and the different transformations performed on the data.

23

C h a p t e r I I I

LEARNING IN NEURAL NETWORKS

3.1 Introduction

Given a network of neurons connected by weighted unidirectional links, some of the

neurons are regarded as input neurons, others as hidden neurons and the rest are output

neurons. The object of learning is to train the neural network to respond to an input

vector X pwith a specified output vector Yp . This can be accomplished by adapting the

neural network weights w = } to learn the required mapping between the input and

the output vectors. A qualitative mechanism that describes the way in which synaptic

weights are modified to reflect the process of learning was first proposed by D.O.Hebb

[14]. Questions about what artificial neural networks really learn have been asked since the

early days of neural computing [8]. In this review chapter, the question of data

representation and learning in neural networks is examined. This chapter discusses data

representations and learning in neural networks and presents the different coding

mechanisms that enables neural networks to learn meaningful representations. The final

part of this chapter presents a discussion of the different neural network learning

paradigms and the associated network models and algorithms that make use of these

learning paradigms.

3.2 Data Representations in Neural Networks

Much of the brain’s power comes not so much from powerful general mapping algorithms

but from powerful representation. In general, neural network mappings are easier to

establish if similar inputs give rise to similar outputs. Many application areas where neural

networks have been used have involved some sort of binary' representation of data. This

simplifies the analysis and possibly the learning process but can result in similar inputs

having quite different representations [27]. Biological neural systems make use of a

proportional form of coarse coding by way of locally-tuned but overlapping receptive

fields [28]. In coarse coding systems, each neuron responds to a range of input values, in

between, but overlapping with those of its neighbours and the representation is said to be

distributed [29]. A given input will thus be represented by the relative activity of a number

of neighbouring neuron cells. Coarse coding neurons output a 1 value if the stimulus is

24

within their receptive field, and a 0 otherwise. Such a coding can be self-organised by the

neural network. A self-organised coding has no obvious meaning to a human observer,

without the use of exhaustive analysis or some form of translation device. On the other

hand, coding imposed on the neural network by an implementer can be and usually is

meaningless to the neural network. However, if the neural network has some means of

interacting with the environment that it is a part of, then, the internal representations may

begin to have some meaning. Data representation internally in neural networks can either

be local or distributed or both. In a localised representation, inputs are mapped

consistendy onto a single category. In such a representation, localised constituents of the

representation can be associated with specific operations appropriate for the category. In a

distributed representation, a single input causes many hidden neurons to become activated.

The network can thus encode unknown feature representations with each hidden neuron

responding to one or more aspects of features in the input representation. The choice of

input representation is thus important in determining the internal representations. Input

representations can also be distributed, local or both. A localised representation usually

produces a larger feature set but could facilitate training. A distributed representation

produces more compact feature vectors but could be difficult to train, especially where

similar inputs in state space tend to be represented differently. The input representation

depends to a large extent on the coding strategy used. Coding strategies could either be

discrete or continuous.

Discrete coding schemes assume that units can only be on or off. As such, they are

relatively immune to noise. On the other hand, they are severely limited in resolution and

range. Some examples of discrete coding schemes include: value unit encoding and discrete

thermometer encoding.

Continuous coding schemes encode the input as a triangular or Gaussian fuzzy number.

Triangular fuzzy numbers are specified by their widths which determines the fraction of

the number encoded by neighbouring neurons. Gaussian fuzzy numbers are specified with

a given standard deviation that determines the spread of the number to the neighbouring

neurons. A description of coding schemes is given in [27].

25

Figure 3.2-1: Hierarchy of Input Coding Schemes

3.3 What Neural Networks Learn

Neural networks learn representations [30]. For a particular problem, the space of possible

representations is very' large. Researchers into neural network learning are interested in the

conditions under which a useful representation for a problem would be learned. Neural

network learning is based on a broad class of parametric search techniques that may be

recursive, non-linear, biased and even inefficient. Still, this surpasses statistical learning

which exists, in principle, only when representative samples and detailed knowledge about

the environment are available [31]. Features of a neural network, including the type of

neurons, the architecture and the learning rules, are all independent of the problem to be

solved. This has meant that when a neural network is being designed to solve a given

problem, the features ot the network are chosen in an ad hoc manner. A better

understanding of what a neural network actually learns will provide a basis for selecting

neural networks for solving specific problems. An integrated theory of learning and

representation in neural networks is thus needed.

Underlying human cognition is a set of condition-action rules called production rules.

Rule-based approaches provide an impressive array of tools for knowledge representation.

Unfortunately, they have not been very successfully applied to the study of learning. Rule-

based approaches are adequate for problems involving a small number of rules that need

to be tine-tuned. In more realistic tasks, they face the characteristic problems that tend to

arise in AI research. The recurrent difficulties are related to the size, nature and

interdependencies of the rules whenever either the task or the rules change. Learning

26

systems should be able to acquire and update their rules automatically on the basis of

existing rules, while learning to solve new problems. New rules have to be introduced into

the learning system. The interactions of the rules have to be tested. In rule-based systems,

the introduction of new rules usually creates a bottleneck.

In neural networks, the way knowledge is represented is integrated with the way

knowledge can be modified. A characteristic learning task for a neural network is that of

categorisation. Given a set of stimuli defined in an arbitrary feature space, a neural network

can be used to sort the stimuli into pre-defined categories. Each stimulus is encoded as a

unique pattern of pre-defined features. The activation of an input neuron in turn produces

patterns of activity throughout the neural network. Learning consists of changes in certain

properties of the hidden and output neurons. In the neural network, knowledge is stored

as a pattern of connections or connection strengths amongst the neurons. The

information learned directly determines how the neurons interact. Neurons have very little

information stored internally. Typically, only a scalar activation-level is stored. The

activation level is used as a sort of short term memory. The long term storage of

information is accomplished by altering the pattern of interconnections or modifying the

weights associated with each neuron. There are three kinds of constraints on neural

network learning:

1. The training data set is usually incomplete and erroneous. This means that the neural

network must constantly update parameter estimates with data which may represent

only a small sample from a possible population.

2. The conditional distribution of categories with respect to the input stimuli and features

are a priori unknown and have to be determined from sample that is unrepresentative.

3. Local information maybe varying or misleading. This would lead to a poor trade off

between using data available at the time or waiting for more information to become

available.

Single layer perceptron networks have an inherent capability to learn any function that can

be represented but they are extremely limited in terms of what they can represent [8].

Multilayer neural networks use hidden neurons to increase their representation capability

and hence their computational power. The presence of hidden neurons allows the network

to perform more complicated input-to-output mappings, by constructing more

complicated decision boundaries in state space. It is thus possible for a neural network in

principle to be able to perform any classical computation [32].

27

3.4 Learning algorithms in Neural Networks

Neural Networks are capable of constructing models of arbitrary systems, represented by

time-varying stochastic processes over some vector space. This is done by learning a

mapping between the input vector space and the output vector space. There are five

common learning paradigms in neural networks [1, 33].

1. Auto Associator: Under this paradigm, patterns are stored by repeatedly presenting

them to the neural network during learning. The network learns to represent them

internally. During recall, an arbitrary pattern is presented to the neural network and the

network is supposed to recover the stored pattern which is closest to the one

presented. The input and output patterns span the same vector space.

2. Pattern Associator: Under this paradigm, pairs of patterns are presented and stored in

the network during learning. One of the patterns in a pair represents the key and the

other represents an associated pattern. During recall, presentation of a complete or

partially complete(corrupted) key should enable the network, in principle to reproduce

the associated pattern.

3. Pattern Classifier: In this case, patterns are presented to the network which is

supposed to categorise them according to some pre-defined set of classes. Usually, die

learning process is supervised by a teacher signal. During training several patterns are

presented along with their correct classification. During recall, the network should, in

theory-, be able to correctly classify patterns that are different than, but similar enough

to the exemplars in each category used in the training phase. Algorithms that

implement this kind or learning are referred to as supervised learning algorithms.

4. Regularity Detector: Given an arbitrary’ probability’ distribution of patterns, each

pattern is presented to the neural network with the probabilities in which they occur in

that distribution. The neural network is supposed to discover salient features in the

distribution, and thus classify each pattern according to these features. In this case,

there is no teacher signal provided. The different categories and what they represent

has to be learned. Algorithms that implement this kind of learning are referred to as

self-learning or unsupervised learning algorithms.

5. Reinforcement Learning: Under this paradigm, the network accepts input signals

which are processed and transformed into output signals. The only clue to the

correctness of this transformation is an extra reinforcement signal. The reinforcement

signal acts to reward or penalise the neural network or learning system, depending on

28

the success or failure of its current computation. The network adapts to try and

minimise the penalties, and/or maximise the rewards. Eventually, only the correct

transformations are produced.

3.4.1 Associative Learning Networks

Associative neural networks are also called associative memory or content addressable

memory [34]. They are used for storing and retrieving associations. An association is an

ordered pair of patterns (X.Y)where X = [xt , . . .xm]T is the key pattern and

Y = [y 1 , .. .y „]r is the associated pattern. Associations are stored in the connection

weights of the neurons. The representation of each association will be distributed over

many connections, and every connection will be involved in storing each association. This

distributed representation provides the network with its robustness and graceful

degradation properties as well as allowing it to discover certain regularities in the training

set. Recall takes place after all associations have been learned or stored. Different key

patterns are presented to the network which in turn produces the corresponding

associated pattern. If the key pattern is corrupted by noise, the net work produces the

stored associated pattern which best matches the presented key. There are three major

types of associative memory networks:

• The linear/non-linear associator,

• The bi-directional associative memory and

• The Hopfield memory

3.4.1.1 The Linear and Non-Linear Associative Memories

Linear associative memory networks are suitable for storing lists of associations. In a

network having n neurons with m inputs, every neuron receives the same input vector, x,

and computes its output y- according to

where wi; is the connection weight from input j to neuron i. A simple form of the

Hebbian learning rule is employed. The weights are computed as follows:

m
(3.4-1)

(3.4-2)

29

Linear associative memories will exhibit perfect recall if the input vectors are orthonormal

[35]. Given L pairs of vectors {(x1,y1),(x2,y2),...,(xt ,y L)}, with x, e 9 T , and

y ; € 9 im, [21] distinguish three types of associative memory:

1 . Hetero-associative memory: This type of associative memory implements a

mapping, <I>, of x to y such that d^x,) = y; . If an arbitrary x is closest (in terms of

hamming distance) to xi then <I>(x) = y (. .

2. Interpolative associative memory: This type of associative memory also implements

a mapping, d>, of x to y. If the input vector differs from one of the stored exemplars

by the vector d, such that x = x; +d, then the output of the memory also differs

from one of the exemplars by some vector e such that d>(x) = d>(x; + d) = y; + e .

3. Auto-associative memory: Autoassociative memories assume that x; = y; and

implements a mapping d>, of x to x, such that 0(x,-) = x; . If some arbitrary x is close

to x,-, then O(x) = x; .

Non-linear associative memories are also used for storing lists of associations. They

employ a non-linear processing element which helps to eliminate unwanted perturbation

[23]. Assuming L pairs of vectors {(Xj ,yj),(x2 ,y2),... , (xL ,y ¿)] , with x; e 91" , and

y ; € 91"', have been stored in the network, if a test pattern t e 9G is presented to the

network, a matching score vector s e ^ Lis computed as an inner-product product of t

and all die xr

s = [< xt,t> ,< x2,t xz_,t>]

where
i

< xr ,t> = x/t S (3.4-3)
1 = 1

The non-linear processing element acts on the score vector to produce a binary decision

vector v.

v = N(s) (3.4-4)

The pattern to be retrieved is the vector

y = Av (3.4-5)

where A is a matrix formed from the column vectors y; . The non-linear element selects a

winning node and simultaneously suppresses all others. This suppresses any noise on the

test signal and thus leads to holographic retrieval.

30

The bi-directional associative memory (BAM) consists of two layers of processing

elements that are fully interconnected between the layers. The neurons may, or may not,

have feedback connections to themselves. The connection weights between the neurons

can be determined in advance if all the training exemplars are available. Given L pairs of

vectors {(x1,y1),(x2,y2),...,(xi ,y i)}, with \t e 9tn, and y; e 9 tm, that is to learned,

the weight matrix, W, is given by

W ^ x f + y 2x[+...+yLx[(3.4-6)

where w t - is the weight on the connection from the j* neuron on the x layer to the i*

neuron on the y layer. Once the weight matrix has been constructed, the BAM can be

used for recall. A partial or noisy key vector presented as input to the net will yield both

the correct input and the associated pattern vector, assuming that the network has not

been overloaded with exemplars. The network is overloaded when the exemplars are too

close together in terms of the hamming distance between them. Interactions between the

patterns in an overloaded network will result in the creation of spurious stable states or

local minima as the network tries to converge to a solution. This phenomenon is known as

crosstalk and could cause the network to stabilise on meaningless vectors. An unknown

pattern presented to the network during recall may require several passes before the

network stabilises on a final solution. In such a situation, the x and y vectors change with

time and so form a dynamical system. The energy1 * in the system is given by the BAM

energy function as:

E(x,y) = - y ; Wx
m n

= ' (3-4' 7)
>'=i ;=i

The BAM energy theorem [34] ensures the convergence of the BAM energy function by

assuring the existence of stable solutions for the BAM processing equations. The BAM

energy theorem can be stated as:

1. Any change in x or y during BAM processing results in a decrease in E.

2 . E is bounded below by Eniin = — . I I .

3. When E changes, it must change by a finite amount.

3.4.1.2 The Bi-directional Associative Memory (BAM)

1 The states in the system are associated with an energy surface that can be calculated from the weight values. Stable
states are seen to be on some sort of minimum in the energy surface.

31

3.4.1.3 The Hopfield Memory Network

The Hopfield memory is an associative neural network having a fully connected set of

neurons [36]. The inputs to each neuron are fed by the outputs of all the other neurons in

the network. The arrangement creates a recurrent dynamical system capable of storing and

recalling abstract association lists. In the Hopfield memory network, a set of equations and

an update policy defines the dynamics of the system. The net input to a neuron is given by
n

net, = X w,j Xj + /, (3.4-8)
7=1

The output value of each neuron depends on both the net input value and the current

output value as well as a threshold value assigned for each neuron. The new output value is

given by:

' +1

x. (t + 1)i

net. > T.l i
net. = T.l i
net. < T.l i

(3.4-9)

where 7] is the threshold value.

The behaviour of the Hopfield network can be characterised by means of an energy

function analysis where the energy function
n n n

E(x) = X w -j X‘Xj + 2X T‘x‘ (3.4-10)
1=1 7=1 ¡=1

decreases whenever the state of any processing element changes. It has been shown that

when the weights are symmetrical, i.e., wJt = vvi;- the network always converges [10]. The

shape of the convergence region provides useful information which has been used in

methods for suppressing spurious2 states in the Hopfield networks [37].

3.4.2 Unsupenised Teaming Networks

Unsupervised or competitive learning takes place in a context of sets of hierarchically

layered neurons. Unsupervised learning algorithms have the property that a competition

process, involving some or all of the processing elements, always takes place before each

episode of learning. For problems where correct examples of input and output do not

exist or are not readily available or where it is necessary to provide insights into the nature

of the data in order to determine the kind of classifier to design, an unsupervised learning

2Spurious states are local minima on the error surface. The network is caught between stable states and never reaches a
global minimum. Tliis usually happens when the network is overloaded, with patterns or when the hamming distance
between pairs is not insufficient.

32

system may be used to provide the categorisation. Also, if the characteristics of the

patterns can change slowly with time, an unsupervised learning system that can track these

changes will provide better performance [31]. The available information is in the form of a

set of input patterns xp e X , a p-dimensional input vector where X = {xt ,x 2 , . . . ,x n } is a

data set of n items. The operations that could be performed on X include:

• Clustering: Clustering in X means the identification of an integer c, 2 < c < n , and a

partitioning of X by c mutually exclusive, collectively exhaustive subsets of X called

clusters [38]. The learning system has to find inherent clusters in the input data. The

output of the system is the cluster label for an available input pattern.

• Classification: If S denotes the data space from which X was drawn, i.e., X c S ,

classification in S is a process whereby S is partitioned into a number of decision

regions. The unsupervised learning system delineates the decision regions in S in an

attempt to discover structure in S.

• Vector Quantisation: In this sort of categorisation, continuous space has to be

discretised. The input of the system is the p-dimensional vector, x. The unsupervised

learning system has to find an optimal discretisation of the input space.

• Dimensional Reduction: The input vectors have to be grouped into a subspace that

has lower dimensionality than that of the data. The unsupervised learning system learns

an optimal mapping that preserves the variance of the input data in the output space.

• Feature Extraction: The unsupervised learning system is used to extract features

from the input data. This usually leads to a dimensional reduction of the input space.

3.4.2.1 Competitive learning

The basic competitive learning scheme is described in [1]. In this scheme, binary vector

patterns are presented to the neural network and a competition is held amongst the

neurons. The neuron with the maximum output wins the competition and its weights are

adapted in the direction of tire input using a simple form of the Hebbian learning rule.

Weight adaptation is limited to neurons that win the competition. All weights are

normalised such that = 1. Learning occurs by shifting a proportion of the total

weights associated with the winning neuron onto its active lines.

33

3.4.2.2 Clustering Networks

Figure 3.4-1 shows a simple clustering network. The network is fully connected, with

weights wi;- connecting neuron i in the output layer to neuron j in the input layer. Both

the input and weight vectors are normalised to unit length initially.

i

j

Figure 3.4-1: A simple clustering neural network

The activation of neuron i in the output layer is given by

«.• Xj = yrjx. (2 . 1)
j

The competition process selects the neuron with the maximum activation as the winner

and its activation is given a maximum value of 1. All other neurons have their activation

reset to 0. The learning process adapts the weight vector of the winning neuron so that it

is closer to the input vector each time an input vector is presented. Consequently, the

weight vectors move towards an area which has a higher density of input vectors, thus

forming a cluster. The simple clustering network has inherent stability problems as the

cluster centres continue to move around indefinitely. Furthermore, a malicious input

vector can completely change the centres of a the clusters causing misclassification of

previous training vectors. The ART networks [39] are an advanced implementation of the

clustering network with built-in vigilance and gain to control prevent cluster centres from

getting infinitesimally close and to provide better support for incremental learning [2 1],

3.4.2.3 Vector Quantisation

Vector quantisation algorithms are used to find natural groupings in a data set. Every

feature vector is associated with a point in n-dimensional feature space. Vectors x

belonging to the same class are assumed to form a cluster in feature space. Vector

quantisation discretises the input space so that the clusters can be separated. A vector

quantisation neural network approximates a mapping of an n-dimensional input space to

an m-dimensional output space. The vector quantisation algorithm presupposes that

34

vectors belonging to the same class are distributed normally with mean /2, . Feature vectors

are classified on the basis of their Euclidean distance, ||x-p||, from a pre-selected set of

mean vectors. A feature vector x is assigned to the class of the nearest mean. Whenever a

feature vector has been wrongly classified, the mean vectors are updated by moving the

correct mean towards the feature vector and the wrong mean away from it. The learning

rule used to update the mean vectors is given by

w.. (t + 1) = w.. (i) + 7? (o . - w.. (0) (3.4-11)ij ij ' i ij

where T| is the learning rate or step size, taken in the direction of the input vector and

Oj is the output of the network.

Vector quantisation has been combined with feedforward networks to form the counter

propagation networks [5].

Vector feedforward

Figure 3.4-2: Hybrid Network: Vector
Quantisation and Feedforward Network

3.4.2.4 SOM Learning

Self-Organising feature maps or Self-Organising Memories are a unique class of neural

networks because they can construct topology-preserving maps of the input data set,

where the location of the neuron carries semantic information [3]. A SOM network is

made up of two layers of neurons as shown in Figure 3.4-3. The input layer is a one

dimensional vector, while the output layer is a two dimensional array or grid of neurons.

They can be used to cluster data, obtaining a 2-dimensional display of the input space that

is easy to visualise.

35

Figure 3.4-3: Schematic diagram of a SOM network

In a SOM network, learning is accomplished by the application of input data alone; no

expected output data is used as a teacher to signal the network that it has made an error. A

competitive algorithm is used to produce a topology preserving map of die input data

using the competing neurons. In a topology preserving map, neurons located physically

next to each other will respond to classes of input vector that are close to each other.

Larger dimensional input vectors are projected down on the two dimensional map in a

way that maintains the natural order of the input vectors. This dimensional reduction

allows easy visualisation of the relationships amongst the data. The SOM learning

algorithm produces a spatial ordering of the output neurons that are close to each other in

output grid. Both the weights and the input data have to be normalised before the

network can be trained. During learning, an input vector is presented in parallel to all units

in tire output layer. The activation of each output neuron is given by
n

a, (t) = Y<X‘ (t)w,i (t)=x-Wj (3.4-12)
i=l

The neuron with the largest activation function is chosen as the winner. The topological

ordering is achieved by using a spatial neighbourhood relation (A c) between the

competitive units during learning. Adaptation takes place on the weights of both the

winning neuron and the surrounding neurons during the training process. The most

commonly used neighbourhood function is the Mexican-hat function shown in Figure 3.4-

4. This function has a peak at the centre and tapers off towards the edges. This allows

maximum learning for the winning neuron while enabling the closest neighbours to

participate in the learning process.

36

excitation

lateral distance

Figure 3.4-4: Mexican-hat function used as
Neighbourhood function in SOM learning

All neurons within the neighbourhood of the winning neuron participate in the weight

encompasses only a single neuron. For a winning neuron c, with neighbourhood Nc , the

weight update equations are given by

Weight vectors participating in the update process rotate towards the input vector x.

After training, the weight vectors converge to a value which is representative of points

close to the physical location of the winning neurons. Thus, an advantage of the SOM is

illuminates underlying structure within the data [40]. As a result of SOM learning, the point

according to their mutual similarity.

3.4.3 Stochastic Learning

Statistical mechanics is the central discipline of condensed matter physics, a body of

methods for analysing aggregate properties of the large numbers of atoms found in liquid

behaviour of the system in thermal equilibrium at a given temperature is observed in

experiments [41]. This can be characterised by the average and small fluctuations about the

average behaviour of tine system over a given ensemble of identical systems. In this

ensemble, each configuration of the system is defined by a set of atomic positions {r,}

weighted by its Boltzmann probability factor, given by

update process. The size of the neighbourhood is diminished as learning progresses until it

that large numbers of unlabelled data can be organised quickly into a configuration that

density function of the weight vectors tend to approximate the probability density

function p(x) of the input vectors, x, and the weight vectors end up being ordered

or solid matter. Because the number of atoms is extremely large, only the most probable

37

(3.4-14)exp! -E{[r ,)) .
k j

where E({rt}) is the energy of the configuration,

kb is the Boltzmann constant and

Tis the temperature of the configuration.

At high temperatures, there are very few ground states (states of low energy) in the system.

As T is lowered, the Boltzmann distribution collapses into its lowest energy state or states.

Stochastic learning networks make use of statistical mechanics techniques such as

stochastic simulated annealing (SSA) and mean field annealing (MFA) to solve

combinatorial optimisation problems [22]. A combinatorial optimisation problem for a

discrete system involves searching for a state that minimises a predetermined energy

criterion. Each state of the network is associated with a computed energy level that

depends on the temperature parameter T. The network has a non-zero probability to go

from one state to another. The probability function depends on the temperature and the

energy difference between two states. Learning takes place by state update according to

the Boltzmann state-transition rule. For a stochastic network, if P(a) denotes the state-

distribution function and Pr ob (a a ') denotes die state-transition function from one

state a to another state a , the Boltzmann state-transition rule is given by

r r 0t (a ^ . -) = 1 + exp;A £ / r) S / (- A £ / r) (3.4 . 15)

The Boltzmann state-transition rule ensures that, in thermal equilibrium, the relative

probability of two global states is determined solely by their energy difference and

temperature, and the probability of being in a state follows a Boltzmann distribution. As

can be seen in Figure 3.4-5, the global minimum has lower energy than any local minima

and so is able to attract higher-energy local optima.

Energy

Figure 3.4-5: Energy surface of a hypothetical optimisation problem

38

Supervised learning networks adapt their connection weights to learn the relationship

between a set of example patterns. They are able to apply the relationship learnt when

presented with novel input patterns. This is because they focus on features of arbitrary

input patterns that resemble those of the examples used during training. The output of the

network is a function of its inputs and the connection weights between its neurons, i.e.

y = <i>(x,w) (3.4-16)

where 0 is termed the discriminant function. During training, example patterns are

presented as pairs of input/teacher vectors, [X,T] = {[Xj , t j] , [x 2, t 2] , . . . [x M , t M]} , M is

the number of training pairs. The network learns a mapping between the input vectors x

and the teacher vectors t. There are two approaches to supervised learning which differ

only in the nature of the teaching signal. The first approach is based on the correctness of

the solution and is termed decision based learning. The second approach is based on the

optimisation of a training or cost function and is said to be approximation based.

3.4.4.1 Decision-based supervised learning

In this form of supervised learning, the teaching signal only serves to determine whether

each training pattern is correctly classified or not hence binary decision vectors are used as

teaching signals. The objective of training is to find a set of weights that yield a correct

classification of the input patterns. For a sample classification problem, the pattern space

is divided into decision regions separated by decision boundaries. The discriminant

function acts as a hyperplane or hypersurface separating the decision regions. If the

pattern classes are linearly separable, then, a linear discriminant function can be used. Two

classes of patterns are said to be linearly separable if the can be separated by a linear

hyperplane decision boundary. The decision boundary is characterised by a linear

discriminant function

p

0 (x , w) = X w,x, + 0 = 0 (3.4-17)
i

The classification is decided based on the values of the discriminant functions at the

network’s output. A binary decision is made as to the correctness of the classification.

r1 >>0
d = lo « « (3'4- ' 8)

The network weights are updated according to the perceptron learning rule [9].

3.4.4 Supervised Learning

39

(3.4-19)w(m+1) =w(m) +7?(i(m) - d (mV m)

where T[is the learning rate. Because both t and a are binary, the network weights

will only be updated when a pattern is misclassified in a particular epoch. If a pattern

belongs to a class but is misclassified by the network, then the network weights will be

reinforced by adding a fraction of the input pattern to the weights. On the other hand if

the pattern does not belong to the class but is misclassified as belonging to the class, then

the weights will be anti-reinforced by subtracting a fraction of the pattern from the

weights. Training stops when all patterns are correcdy classified and no more weight

updates take place. The learning process is said to converge. It has been proven [8] that if

the classes of patterns are linearly separable, then the learning process is guaranteed to

converged to a correct solution in a finite number of steps. This is known as the

Perception Convergence Theorem [8, 9] and only holds when the discriminant functions

are linear. Perception networks composed of only linear discriminant functions are

severely limited because they require that the input patterns should be linearly separable if

the learning algorithm is to converge. The perceptron learning rule has been generalised in

[22] into the decision-based learning rule which as applicable to both linear and non-linear

perceptions. Weight update is still by reinforced and anti-reinforced learning. The decision

boundaries are adjusted by adapting the network weights in the direction of the positive

gradient of the discriminant function during reinforced learning or in the opposite

direction during anti-reinforced learning.

Aw = ±7]VO(x , w) (3.4-20)

where T) is the learning rate,

<9<£>(x,w)
Vi>(x,w) = — is the gradient vector of function O with respect to w.

The teaching signal is still a binary decision vector that determines the class of a particular

input pattern. When a pattern is correctly classified, no weight update takes place. When

the pattern is misclassified, the network weights are updated according to the following

equations:

reinforced learning: w(i +1) = w(t) + Aw
(3 4-21)anti - reinforced learning: w(r +1) = w(t) - Aw

When the network discriminant functions are linear, the perceptron learning rule is

obtained.

40

3.4.4.2 Approximation-based supervised learning

In approximation-based supervised learning the training patterns are also given in

input/teaching signal pairs. The teaching signals are the desired or target values at the

output nodes which correspond to a given input pattern. The objective of the learning

process is to find an optimal set of weights to minimise the error between the teaching

signal and the actual response of the network. The learning problem can usually be

reposed as a function minimisation problem. For a multilayer perceptron network with

inputs vectors xp e and target vectors tp e 9tK the error due to the p* pattern vector

is given by

Er = ' L k(. t pk- opk) 2 (3.4-22)

where 0pk = f (n e t vvjia i + 6b) is the actual output of the k 01 neuron,
i

t pk is the neuron’s desired or target value,

f(netj) is the neuron activation function,

net ■ is the net input to the y* neuron,

is the activation of neuron and

dj is a learnable bias weight.

E can be expressed in vector notation as

(3.4-23)
Ep — (t — o)T (t — o)

= (t - o) TI (t -o)

where I is the identity matrix. Ep is a quadratic error function and solutions of

minimise Ep = E(vv) provide an optimal set of weights for a given problem [42]. Gradient

descent methods or methods of steepest descent can be used to solve the learning

problem. These methods transform the minimisation problem into an associated system

of first-order ordinary differential or difference equations.

dWj _ y u dEP
dt h Ujk d\V :

(3.4-24)

with initial conditions wq (0) = . Equation 2.2 can be written in compact vector form

as follows

dw „
— = -u (w ,i)V w£ p(w) (3.4-25)

41

where u (w ,i) is a symmetric positive definite matrix called the learning matrix. In the

steepest descent method, u (w ,i) is assumed to be a unitary matrix multiplied by a

positive constant 7] which is the learning rate. The above system of differential equations

can be shown to be stable by considering the change of the error (Energy or Lypunov)

function E with time:

dEp _ j , d E p dwj

dt j d w j dr

Substituting (2. 4) in (2. 5) and enforcing the condition that u(w,r) is symmetric and

positive definite, the following condition holds

= ~[Vw£ p (w)]r u (w , t)VwEp (w) < 0 (3.4-26)

The above condition guarantees that the error function decreases in time and eventually

converges to a stable local minima. The speed of convergence to the minimum depends

on the choice of values for the learning matrix u (w , t) . Appendix B discusses

convergence theory of algorithms and proof that for a quadratic error measure, the

steepest descent method is guaranteed to converge.

The discrete-time version of the gradient descent method is

w <*+D = w (*> _ n (*) V w Ep (w W) (3.4-27)

where TJ(k) is the learning step size which should be bounded in a small range to ensure

the stability of the algorithm. In most implementations of the steepest descent learning

algorithm 77(i> is determined at each time step by one-dimensional line search as the value

of 77 > 0 that minimises

¥(t) = Ep (w (t) ~riVwEp (w (k))) (3.4-28)

3.4.4.3 The backpropagation learning algorithm fo r multilayer perception networks

Multilayer perceptron networks consists of layers of neurons connected by synaptic

weights. An example of a fully connected network is shown in Figure 3.4-6. The sum-of-

squares error is normally used as the error or energy function at the output of the network

and is given by
P P A '

E = £ E P = X X (V- - V)2 (3-4-29)
p= I p= 1 1 = 1

where P is the number of patterns in the training set.

42

The dynamic gradient descent algorithm described above can be used to minimise the

sum-of-squares error criterion. This method requires the computation of the gradient

Vw£(vv) for all the weights in the network during each learning iteration. This is very

inefficient and computationally very expensive. It is also impractical for large networks.

The backpropagation algorithm first proposed in [7] and later popularised by [43, 44]

offers an effective approach to the computation of gradients and hence a relatively

efficient speedup to the training of multilayer neural networks. The backpropagation

algorithm makes use of a recursive formulation to compute the error at the output of

lower layer neurons when the error at the output neurons is known. Hence the

computation of gradients of the energy function with respect to the lower layer weights is

thus avoided. The network weights are then updated according to the Generalised Delta

Learning Rule [43]. Appendix C shows the derivation of the backpropagation algorithm

for training multilayer neural networks.

Figure 3.4-6: A 2-layer fully connected multilayer
perceptron network. There are 3 neuron layers and 2
weight layers. The number of layers in the network usually
refers to the number of weight layers

3.4.4.4 Supemsed Learning Parameters

Certain formulations have to be adopted when supervised learning networks are applied to

solve real problems. The selection of the learning parameters have a significant effect on

the network performance. I’he learning parameters are varied and very problem

dependent. Some of the factors that influence learning in supervised networks include:

• Learning rate T): I his specifies the step size that is taken in the downhill slope or

gradient in weight space, when weights are updated. The learning procedure requires

that the weight change be proportional to VwE(w). True gradient descent requires

43

that infinitesimal steps are taken. The learning rate acts as the constant of

proportionality. In practical applications, the largest learning rate that does not lead to

oscillations during training should be chosen. Alternatively, a one-dimensional line

search, learning rate adaptation [45], relaxation methods [22] or optimal learning

methods [46] can be used to determine the optimal learning rate at each time step.

• Momentum term: To prevent oscillations in the learning process, the weight update

equations are usually modified to include a momentum term. The momentum term

specifies the fraction of the previous weight change that is added to the weights during

update. The momentum term helps keep the weight changes going in the same

direction and prevents oscillations when reasonably high learning rates are used. This

enables the network to converge to a final solution much faster.

• Range of initial weights: Gradient descent methods require the provision of initial

conditions to solve the system of dynamic equations that represent the neural network.

The conditions are provided by initialising the network weights to small random values.

This represents the starting point of the iterative descent algorithm. Large values for

the initial weights is not recommended because the neural network could be initialised

to a state that is either unstable or far removed from the final solution state. This will

lead to very long training times and possible difficulties in learning the required

mapping. Techniques have been proposed to statistically control weight initialisation

based on the training patterns [47].

• Frequency of weight update: An Iteration involves a single training pattern presented

to the system. An epoch or sweep covers the presentation of an entire block of training

data to the system. The network weights can be updated after each training pattern is

presented i.e., after each iteration. This is known as data-adaptive updating and provides

very fast learning and better response for on-line or real-time learning applications. On

the other hand, it is numerically unstable for large problems and extremely sensitive to

network learning parameters and noise effect on individual patterns. Block-adaptive

methods, on the other hand, only update the network weights after one epoch i.e., the

presentation of a block of patterns or all the training patterns to the network. The

network tends to be slower learning but learning is more predictable and robust as the

training step is averaged over all the patterns.

• Scaling and normalisation of input patterns: Normalisation or scaling is necessary

for gradient descent algorithms that have no self-normalising qualities [48].

44

Normalisation or scaling of the input patterns can significantly speed-up numerical

convergence of the gradient descent algorithm [42], The simplest form of normalisation

is to convert all input vectors to unit length. This tends to destroy the variance of the

different features that make up the input vector. The input vectors can also be scaled so

that the variance between the features in each input vector are preserved [49].

• Network architecture: The generalisation capability of a multilayer network depends

on architectural parameters. This includes the number of weight layers, the number of

hidden neurons, the type of the discriminant functions and the nature of the activation

functions. The ability of the network to generalise on the training set is very sensitive to

number of hidden neurons. A rule of thumb for obtaining good generalisation in

backpropagation networks is to use the smallest network that will fit the data. If the

number of hidden neurons is too large, the network will take too long to train and will

memorise instead of generalise on the training data. The test performance on noisy

input or patterns not seen before will thus be very poor. On the other hand, if the

number of hidden neurons is too small, the network will not be able to learn or will be

very sensitive to the network initial conditions. Small networks are also more likely to

become trapped in a local minimum. A number of techniques have been proposed for

determining an optimal number of hidden units to learn a particular task. These include

algebraic projection analysis [50], network growing [51, 52] and pruning [53] and

network Evolution [54]. The nature of the discriminant functions coupled with the kind

of activation function mostly affects quality of the classification performed by the

neural network. Conventional multilayer networks use linear discriminant or linear basis

functions with linear or non-linear activation functions. As mentioned above, such

networks produce hyperplane decision boundaries to separate classes of input patterns.

More recently, multilayer perceptron networks using radial, elliptic, spline or wavelet

basis functions with Gaussian activations have been proposed [26, 55, 56, 57, 58, 59,

60]. Radial basis function networks have a great advantage in that they are much faster

to train than multilayer perceptrons using back-propagation and are thought to be more

suitable for approximating and learning smooth continuos functions from sparse data.

The main reason is. due to the fact that while multilayer perceptrons construct

hyperplane decision boundaries in order to separate class categories, the corresponding

decision boundaries are hyperspherical or hyperellipsoidal when radial basis networks

are used. The resulting classification is much more accurate and can be constructed

much faster because of typical clusters found in data.

45

3.4.4.5 Speeding up Supervised Learning

The greatest single obstacle to the application of multilayer networks trained by

backpropagation in real-world problems is the slow speed at which current algorithms

learn. Even on relatively simple problems, standard backpropagation often requires a

lengthy training process in which the complete set of training exemplars is presented a

large number of times. One solution is to run the network on even faster computers, but

the sequential nature of conventional digital computers is a limiting factor to the speed at

which the networks can be run. Hardware implementation using VLSI and optics [61, 62]

with programmable interconnections would significantly increase the computations speed.

Faster learning variations of the backpropagation algorithm such as quickprop [63], rprop

and backpercolation [64] have been proposed to overcome some of the speed limitations.

Second order methods such as conjugate gradients [63, 46] and generalised projections [65]

can search the for the minimum faster than conventional gradient descent used by back-

propagation. Unfortunately, the rate of convergence for conjugate gradients is only linear

in n, where n is the number of variables and so the algorithm has to be constantly

restarted [66] for fast learning to occur. For static pattern recognition problems, faster

learning with improved accuracy can be obtained using basis function networks [56].

3.5 Discussion and Conclusions

Our understanding of learning in neural networks is far from complete. Different theories

about what neural networks really learn have been proposed but these remain theories.

Hard evidence that corroborates these theories are very difficult to obtain. Most of the

questions posed about learning and convergence in neural networks in [8] remain

unanswered despite over 20 years of research and development. This chapter has surveyed

the large body of literature that is concerned with learning in artificial neural networks. The

general conclusion is that neural networks learn representations. The representations can

either be external or internal, explicit or implicit, local or distributed. External

representations created by designers and imposed on a neural network have very little

chance of being learnt except where there is a high correlation between the external

representation and one of a possible choice of internal representations that the neural

network would have arrived at for the initial learning problem. Another possible

conclusion from this survey is that the neural network is more likely to create distributed

rather than local representations for a given learning problem. This implies that neural

network designers should be wary about creating local representations for problems where

a neural network solution is required. It is obvious that local representations are not

46

consistent with the graceful degradation with which neural information processing has

come to be associated. The third conclusion concerns neural network parameters. There is

a high correlation between parameters of the neural network such as size, activation

function, topology, etc. and the range of representations that it can learn. Highly complex

networks with larger degrees of freedom and a bigger range of free parameters can

obviously learn highly complex representations. The final conclusion drawn from the

survey is that for any given problem, if a suitable representation can be found, then it is

possible to configure a neural network to learn the representation and hence solve the

problem. This implies that a neural network solution is possible for any problem where a

suitable representation can be found. The implications to neural network designers are

potentially very severe as difficult learning problems can be construed as poor solution

design rather than any inability on the part of the neural network to solve the problem.

The theoretical and fundamental aspects of learning, which falls in the realm of psychology

and complexity theory, have not been explored in this chapter. Instead, emphasis has been

placed on learning and learning algorithms in artificial neural networks. A survey of

learning algoridims has been carried out. The stability and learning issues have been

explored and the large body of literature that covers learning in neural networks

thoroughly examined with some potentially far reaching conclusions of practical

significance to neural network designers.

47

C h a p t e r I V

ANALYSIS AND DESIGN OF NEURAL NETWORKS

4.1 Introduction

Neural Networks are often regarded as black box systems. The current generation of

neural network systems exist mostly as legacy1 software or code libraries that have been

programmed to solve specific sets of problems [67, 68]. Despite the prevalence of

general purpose neural network software both in the public domain and commercially,

there has been little or no attempt to create a robust software architecture for neural

network systems which can be integrated into general commercial and industrial systems

development. Some notable efforts include [68] where dataflow diagrams were presented

for neural network operations. In [69] class diagrams based on the Booch notation [17]

have been used to describe the design of a general neural network, while in [67] an

object-oriented framework for neural network systems is presented. This chapter

describes how a robust object-oriented architecture for neural networks can be

constructed. Such an architecture will allow neural networks and other intelligent

systems to be widely used as components in general purpose commercial and industrial

systems development efforts, whether they are in power systems monitoring and

protection, power systems control, industrial plant control systems, financial software

systems or data mining and visualisation systems in distributed databases including the

World Wide Web. With a clearly defined and open architecture, it will be possible tor

system designers to directly incorporate neural network components in their designs or

call on the services of neural networks and other intelligent systems as part of a

distributed object system using an object middleware2 mechanism such as Microsoft’s

Object Linking and Embedding (OLE) or an object request broker that subscribes to

1 Legacy systems are software systems currently in use but in need of replacing or extensive maintenance. Because
there is no well defined architecture, maintaining or extending such systems are extremely costly because there is a
very steep learning curve involved, primarily in understanding die operadon of die system by examining die
source code before any changes can be made.

2 Where Object-oriented programs or databases running on diltereut platforms such as DOS or UN1X1M have to
communicate widi each odicr, a third party program, an object middleware can be installed to translate requests
from one object system to anodier. The Object Management Group (OMG) defines a standard to which object
systems have to adhere if dieir requests are to be easily translated from one object system to anodier. The
Common Object Request Broker Architecture (CORBA) is an object middleware mechanism diat encapsulates
the standard proposed by the OMG. OLE is a.rival standard proposed by Microsoft mosdv on PC platforms.

48

the Object Management Group’s Common Object Request Broker Architecture

(CORBA) [70]. The implications of such an architecture on the future use of neural

networks are phenomenal. Self-learning or trained neural networks that aid intelligent

decision making will become a standard part of many new software packages as

commercial software designers seek to incorporate intelligence into their products.

Neural networks will become an indispensable utility as more people seek software with

a minimum level of intelligence that can adapt to their everyday needs. More innovative

and practical uses will be developed for neural networks as a lot more people get to

understand the advantages and limitations of the technolog)'.

4.2 Software Architecture

All software systems should have an architecture so that they can be easily integrated

with existing systems or easily modified or customised when the requirements of an an

organisation or application changes. In [71], architecture is described as the structuring

paradigms, styles and patterns that describe or make up a software system. A software

architecture proclaims and enforces system-wide rules regarding the organisation and

access of data and the overall control of the software system [72]. The software

architecture serves a number of extremely useful purposes. Some of the more common

ones are as follows:-

• It acts as a basis for communication between different designers and between

designers and users of a software system.

• It serves as a high level documentation ot the system and as a starting point from

which the effectiveness of tire system can be measured or changed.

• It serves to provide users of the system with a certain degree of confidence about the

robustness of the system and ensures that their investment in the software is

protected.

• It acts as a boundary that delimits both the expectations and the implementation of

the software system.

• It serves as a starting point from which modifications or maintenance changes to the

system are made.

In this chapter, a new approach to constructing artificial neural network systems based

on object-oriented techniques is presented. Detailed descriptions of the analysis and

design process are presented. The approach makes use of the Object Modelling

49

Technique as a basis for the development of software neural network architectures. An

object-oriented architecture typically derives it properties from the classes and class

hierarchies found within class clusters in the problem domain.

4.3 System Development

Software systems development is a very complicated task. The complexity of software is

due to the fact that, usually, the developers of a software system are different from

eventual users of the system and also from the people who have to maintain the system.

The system has to be developed from a problem statement where the true requirements

are often intermixed with design decisions [73]. Most of the time, the problem

statements are ambiguous, inconsistent or even wrong because the users are unsure of

what the final system will do. Some requirements although precisely stated, will have

unpleasant consequences on the system behaviour or will impose unreasonable

implementation costs. The complexity is further increased by the very flexible nature of

software itself, which can be constructed in an almost unlimited number of ways. This

leads to high maintenance costs as any changes to the system will require a thorough

understanding of the structure of the system if unpleasant side effects are to be avoided.

The complexity has to be reduced or handled in an organised way if reliable, robust and

maintainable software systems are to be constructed [74]. This is done by a process of

decomposition where both the software system and the development process is divided

into smaller, more manageable parts. The software development process can be divided

into a number of phases as shown in Figure 4.3-1. The product oi each development

phase is a model or view of the system in miniature represented by a document or set of

documents that become the input to the next development phase [19] .

50

Users
Problem Statement

Figure 4.3-1: Phases in Software Systems Development

4.3.1 Software Life-Cycle Models

The term software life-cycle can be defined as a model used to help explain and

understand the software development and maintenance process [75]. A software life-

cycle model describes how the software development process progresses through the

different phases. The aim of life-cycle models is to reduce the inherent complexity in the

software development process in an attempt to deliver correct, reliable and robust

software systems on schedule and according to budget. Different life-cycle models have

been proposed with different characteristics. The most common of these life-cycle

models are described below.

4.3.1.1 The Wate fa l l Life-Cycle Model

A schematic diagram of the waterfall model is shown in Figure 4.3-2. In the waterfall

model, each phase has to be completed before the next phase can begin. Sometimes, the

phases are allowed to overlap but the ordering of phases is strictly maintained. Very

often, the different development phases are carried out by different groups of people.

The strict waterfall model is not practical for large software projects firstly because the

boundary between the phases are often fuzzy and it is extremely difficult to determine

where one phase ends and the other begins. Secondly, large software projects require a

long time to complete and this inevitably leads to changing requirements as the

economic and business conditions change. Changes in requirements earlier on in the

development cycle are cheaper and easier to incorporate but when changes are required

later on, the effect on the budget, design, delivery schedule and documentation of the

software system are usually disastrous.

51

Requirements

Analysis

Design

Implementation

Time
Testing

Figure 4.3-2: The Waterfall Life-Cycle Model of Software Development

4.3.1.2 Evolutionary Ufe-Cycle Model

The development of a large software system is a slow process that can take a long time

to finish. Where the requirements are completely known at the start of the project, the

waterfall model can be easily applied to develop the system. In most cases, the

requirements cannot be completely determined at the start of the development process.

Such systems are better developed in a step by step manner beginning with a few of its

core functions. As understanding of the system functions evolve, new functions can be

added. In this way, the system is incrementally enlarged until the desired level of

functionality is attained. Such an incremental strategy also provides faster feedback

during the development process. In practice, the system can be divided into parts

according to requested services. The completion of each part extends the system

functionality up to die finished product which comprises the whole of the system

functionality.

Figure 4.3-3: Incremental Software Delivery using
Evolutionary Life-Cycle Model

52

4.3.1.3 Spiral Life-Cycle Model

The spiral model for software development describes how a software system can be

developed to derive new versions and also how new versions of the software system can

be developed from prototypes. The underlying concept of the spiral model is to

minimise the risks associated with developing a software system either by use of

prototypes or other necessary means [75]. The basis of the spiral model is a multistage

stage representation through which the development process spirals [76]. At each stage,

objectives, constraints and alternatives are identified, the alternatives are evaluated to

identify and resolve risks, then the next version of the software system is developed and

finally the next phases are planned. A very simplified schematic of the spiral model due

to [74] is shown in Figure 4.3-4.

Figure 4.3-4: Spiral Life-Cycle Model for
Software development

4.3.1.4 Prototyping

Where it is difficult to determine how a system is suppose to work either due to

technical or functional reasons it is helpful to develop a prototype of the intended

system. This is especially true when user interfaces and highly interactive systems are to

be developed. The prototype focuses on the properties of the system that require

53

further insight. It allows the system developers to experiment with a number of design

options and thus serves as a complement to incremental system development [74].

Prototyping is a useful technique for understanding an application and can act as a

means of communication between the developer and the eventual users of a software

system. Prototyping differs from incremental development in that the aim is not to

create a fully working product, but to emphasise and demonstrate certain aspects of the

intended system.

43.2 Phases o f Software Development

The different phases in the software systems development process are briefly described

below.

4.3.2.1 Requirements Definition

Requirements definition or requirements specification is usually required at the start of

any software development process. A requirements document can be developed from

information about the environment in which the software system will be used. A need

for a new system or modification of an existing system is identified by users of the

system. This leads to the creation of a problem statement which becomes the starting

point for the software development process.

43.2.2 Analysis

Analysis is the studv of a problem prior to designing a solution for it. The aim is to build

a problem model, i.e., to create a description of what is required and what will eventually

be built without attempting to say how it will be built. The product of the analysis

process is a document or sets of documents that describe the problem in a clear,

unambiguous and easily understood manner. The analysis document represents the

analysis model. These analysis documents are completely in the problem domain and the

vocabulary used in the description is consistent with those found in the problem

statement. This allows the eventual users to easily understand and comment on the

analysis model so that the correct system can be designed and subsequently

implemented. Figure 4.3-5 shows an overview of the process of analysis. The inputs and

sources of information into this phase include the following:

• The problem statement.

• Interviews with prospective users of the system.

54

• Knowledge about the problem domain, from similar systems that already exist.

• Real-world experience of the developers.

• Random data

Analysis Model

43.2.3 Design

The input to the design phase is the analysis model. The aim of the design is to

construct a solution model by deriving a high-level strategy for solving the problem and

building the solution. The process of design will refine the analysis model to take

advantage of a particular implementation environment, which consists of the available

hardware, operating system, network resources, programming languages and database

management systems [16, 77]. The design phase is entirely in the solution domain and

serves to structure and organise the software system to give it an overall architecture.

55

Two main stages of design can be identified; a systems design stage and a detailed design

stage [16]. In the systems design stage, high level strategic decisions are taken about the

overall architecture of the system, the implementation environment and the mixture of

hardware and software required to realise the system. The different subsystems that

make up the complete system are also identified and organised. In the detailed design

stage, lower level decisions that directly affect the implementation of the systems such as

choice of data structures and efficiency of algorithms and algorithm designs are carried

out.

4.3.2.4 Implementation

The goal of the implementation phase is to realise the system according to the

blueprints set out in the design phase. This can be done using a programming language

or database management system.

4.3.2.5 Testing

The input to the testing phase is the finished program code or packages from the

implementation phase. In the testing phase, the system is checked to make sure that the

performance of the system meets the specifications laid out in the requirements

document.

4.4 Object-Oriented Systems Development

Object models are abstractions built to understand a problem before devising a solution.

Object modelling differs from traditional systems analysis and design techniques in that

traditional systems development methods separate functions from data. Functions are

active and have a specific behaviour while data is passive and holds information on

which the functions act. Traditional design decomposes the system according to

functions and the data is passed between these functions. If-Then or Case statements

are required to reconcile differences between data formats. These statements do not add

any functionality to the system. On the other hand, they make the finished program

harder to read or understand and even harder to modify because of the possibility of

side effects. The resulting systems are very unstable as changes in the data structure will

require modifications in all functions which access the data structure. In object-oriented

design, the emphasis is placed on building systems around objects rather than around

functionality [21, 78, 79, 80, 81]. Objects encapsulate both data and the necessary

functions required to access the data. Object-oriented systems are thus more resilient to

56

change because the objects correspond more closely to real world objects in the

problem domain. For a particular problem domain, the set of objects are pretty much

constant over time and modifications to an object’s structure tend to be localised thus

requiring only small modifications in the software system. Furthermore, information

about objects can easily be conveyed from users to developers where as conveying

information about functionality is very prone to errors and ambiguity. Finally, well

designed objects can be easily reused between applications in the same problem domain

which can lead to major reductions in the cost of developing new software systems. An

object-oriented systems development process goes through similar stages of analysis,

design, implementation and testing, as do conventional systems development. The major

difference is that, in traditional systems analysis and design, different tools with different

notations are used in the different phases. The result is a large semantic gap between the

phases which leads to ambiguities and errors in the transition from one development

phase to another. In object-oriented systems development, there is a direct translation

between analysis, design and implementation models. This means that once analysis is

completed the process of design and implementation can be significantly speeded up or

automated. This alone provides much needed consistency and traceability to the systems

development effort. Another major difference is that while traditional development

projects usually follow a waterfall life-cycle model, the object-oriented paradigm follows

an incremental and iterative life-cycle model. The end result is that working versions of

the system are delivered orders of magnitude quicker than in traditional development

projects.

Different methodologies have been proposed for carrying out object-oriented systems

development. The methods differ in terms of the notation, diagramming types and the

underlying process support for developing object-oriented software. A survey of the

major object-oriented development methodologies is presented in Appendix D. The

different steps in an object-oriented development process are described below.

4.4.1 Object-Oriented Analysis

Object-oriented software is organised as a collection of distinct objects that co-operate

through message passing to solve a given problem. Each object is an abstraction that

encapsulates both data and the operations that act on the data. The analysis process

consists of the following activities:

57

4.4.1.1 Finding Objects

Objects can be found as naturally occurring entities or items in the problem domain. An

object is typically a noun which exists in the problem statement or problem domain. A

domain and/or behaviour analysis can be carried out to help uncover relevant objects in

a particular application domain. Domain analysis is an attempt to identify objects,

operations and relationships that domain experts perceive to be important about a

particular problem or application domain [21]. It involves a survey of existing systems

and domain experts to identify the key abstractions and mechanisms that have been

previously employed and to evaluate which were successful. Behaviour analysis on the

other hand seeks to identify objects by first understanding system behaviours, then

assigning or attributing the behaviours to different parts of the system and finally

recognising the parts which play a significant role in terms of their behaviours as objects.

A further method for identifying objects is by Use Case analysis [70]. A Use Case is a

particular pattern of usage of the system. It is a scenario that begins with some user

initiating an action or sequence of events in the system. Objects in the system are

identified by walking through each of the scenarios to find participating objects, their

responsibilities and how they collaborate with other objects in the scenario.

4.4.1.2 Organising Objects

After the objects in the system have been identified, the objects need to organised into

meaningful collections by discarding unnecessary objects and mapping out relationships

between the remaining objects. Objects can be grouped together into classes based on a

number of criteria that stem from classification theory. Using classical categorisation, the

objects that have a given property or collection of properties are grouped together into a

common category or class. Clustering techniques can be used to formulated conceptual

descriptions of the classes and then classifying the objects according to how closely they

fit a particular description. Finally using prototype theory, a class of objects is

represented by a single prototypical object and the other objects classified based on their

similarities to the prototype.

4.4.1.3 Describing Object Interaction

In order to determine how the different objects fit into an object-oriented software

system, different scenarios can be described showing the involvement of the object of

interest and its interaction with other objects.

58

4.4.1 A Defining Operations on Objects

An object’s operations can be naturally determined when the behaviour of the object

and the interface to it are considered. The behaviour of the an object represents the

complete set of messages that can operate on an object or that the object can respond

to. A number of techniques including Use Cases and Class-Responsibility-Collaborators

(CRC) [79] cards have been successfully used during analysis not only for the discovery

of objects but also to determine object operations and the interactions between objects.

4.4.2 Object-Oriented Design

The aim of Object-Oriented Design (OOD) is to make high level decisions about how

the problem just analysed will be solved. The input to the design phase is the analysis

models. Object-Oriented Design defines the architecture of the system and addresses

implementation issues concerning object interaction, relationships between objects and

choice of implementation environment and implementation language. The design

process also organises the objects in the system into subsystems and assigns these to

physical processors based on the system’s architecture.

4.4.3 Implementation

The implementation phase converts the design into code. An object-oriented

programming language like C++, Smalltalk or Common Lisp Object System (CLOS) is

preferred because they include constructs to directly realise the design into code. The

objects in the analysis and design model can be directly represented in C++ or Smalltalk

classes. Constructs also exist to directly represent complicated aggregation and

generalisation/specialisation relationships between objects in the problem domain.

4.4.4 Object-Oriented Testing

Testing is a defined, repeatable and measurable process that is performed on the

software to qualitatively demonstrate that the software functions or fails to function as

specified in the requirements. Classes and objects in object-oriented programs must be

tested to a greater degree that traditional programs because they are subject to reuse in

projects and environments which are very different from those for which they were

designed. Unit testing is carried out on individual classes to ensure that the satisfy their

required behaviour. The test data can be obtain from test cases developed during the

requirements determination phase or from random data. Finally, integration testing is

carried out on the finished system consisting of all the different objects to demonstrate

that the software meets the initial specifications.

59

4.5 Object-Oriented Analysis and Design of Associative Neural Networks

This section presents the application of object-oriented techniques to the analysis and

design of Associative Neural Networks. The Object Modelling Technique (OMT) is

applied to the creation of both the analysis and design models. The finished design is

implemented using the C++ programming language on a SUN SPARC 10. Unit testing

is carried out on the individual classes to ensure correct behaviour of the ensuing

objects. Finally, integration testing is carried out on the finished neural network using

both random data and standard test data.

4.5.1 Domain o f Associative Neural Networks

Associative neural networks are a class of fixed weight neural networks. These networks

have a common property that the weights and/or thresholds (bias) are usually pre­

calculated and pre-stored. Associative networks could be feedforward or feedback neural

networks. A class hierarchy for associative neural networks was presented in chapter 1.

The inputs to the networks can be binary values (0/1), bipolar (-1/1) or real numbers.

The weights are derived from the input patterns usually by taking a correlation of the

input vectors pairs. Processing of the input vectors to compute the weight is similar, for

both bipolar and real values. A slight modification is required for binary values. The

computed weights are pre-stored in a weight matrix for use during associative retrieval.

4.5.2 Problem Statement

An associative neural network can be used to store and retrieve associations. An

association is a vector or a pair of vectors that are presented at the input to the network.

Associations can be binary, bipolar or real valued. The network operates in two phases: a

storing phase and a retrieving phase. During the storing phase, the network is presented

with a training file containing a set of associations to be stored. These are the patterns or

exemplars that the network is required to learn. During the retrieving phase, one part of

an association (the key) is presented and the network has to retrieve the second part ot

the association. The key could simply be a corrupted version of one of the stored

vectors in which case a holographic retrieval can take place.

4.5.3 Identijyi?ig Objects

The main objects in an associative neural network can be easily identified by careful

analysis of the problem statement and from domain knowledge. They include all the

different classes of associative neural networks shown in the class hierarchy and some

60

key nouns found in the problem statement. An enumeration of the domain objects is as

follows [82]:

Table 4.5-1: Associative neural network domain objects

Associative Neural Network

Linear Associative Memory

Hopfield Network

Weight

Vector

Threshold

Feedforward Neural Networks

Non-Linear Associative Memory

Bi-directional Associative Memory

Feedback Neural Networks

Patterns

Training File

Hamming Network

Associations

Key

Exemplars

Careful analysis of the domain objects shows that some of the listed objects are aliases

for previously listed objects e.g. Associations and Exemplars. There could also be more

than one named object performing the same function in the context of associative

neural networks and so only one of them needs to be listed. It is necessary to prepare a

data dictionary in order to decide and eliminate unnecessary domain objects. A

dictionary entry clarifies the role an object plays in the system and so reduces

misinterpretations, ambiguities and name clashes. A dictionary entry for an object

consists of the objects name, a short description, associations with other objects and any

constraints that are imposed on the object. The objects attributes and operations can

also be included.

The Data Dictionary

Feedforward Associative Neural Networks -—• An associative memory network where

neurons have no connections to themselves nor to neurons in die same layer or preceding layers.

Feedforward networks may or may not have direshold elements.

Feedback Associative Neural Networks — An Associative neural network where the

neurons can have connections to themselves and to neurons in die same or preceding layers.
Feedback networks have diresholds, states, and an energy which is minimised in die retrieval
process.

Linear Associative Memory — A basic feedforward Associative neural network. Takes

pairs of vectors as input in die storing phase. The weights are computed by correlation of die
input vectors.

61

Non-Linear Associative Memory — A Feedforward Associative memory containing non­

linear neurons. The network does not require weights to be computed. The training patterns are
simply stored in the network and retrieved as required. During recall, the key is multiplied by
each X vector in tire training pattern to produce a score which undergoes non-linear processing

resulting in a binary decision vector used to select a stored output.

Hamming Network —— A Feedforward associative memory network containing a hamming

distance calculator. In the storing phase, only X vectors are presented and stored in the network.

Ffence no weight computation is required. In the retrieving phase, a key is presented and the

output vector is determined as the stored vector which is closest to the key in terms of hamming
distance.

Bi-directional Associative Memory — A Feedback Associative neural network with two

weight layers and capable of bi-directional recall.

ITopfield Network — A single layer Feedback associative neural network. Neurons are not

allowed to have connections to themselves even though the have connections to other neurons
in the same layer.

Associations — An association is a single vector or a pair of vectors to be stored in a

network.

Exemplars — Another name for an association, used in the context of multilayer perceptron

networks.

Patterns — A set of associations stored in a data file. Could be either training patterns or test

patterns.

Weight— The value of a connection between two neurons. A weight matrix connects layers of
neurons.

Threshold — A vector of values used for non-linear decision making in Associative Neural

Networks.

Training File — A plain text or binary data file containing Patterns.

Vector— A data type or object created to represent a one dimension array of values.

Key — A named vector.

62

Objects do not exist in isolation. The next step in the analysis process is to organise the

domain objects and map out the associations between them. The domain objects and

their relationships can be represented by a domain object model. A domain object

model describes the static structure of objects and the relationships between objects

found in the domain of the problem. Further objects can be added which do not

directly relate to the problem to be solved but are required to provide operations and

services to the domain objects. These are called system objects and the combination of

system and domain objects forms the system object model. Figure 4.5-1 shows a system

object model for the class of associative neural networks. The associative neural network

is described as consisting of one or more weight layers. In the dictionary description, a

weight is considered to be a single value. Domain knowledge shows that the weights

between layers of neurons can be represented by a matrix. Even though matrices are not

domain objects, they are still valid objects in the system object model as they help to

efficiently describe and express the structure of the system. A similar explanation can be

used to justify a generalisation relationship between vector and threshold. For each

neuron, there can be only one threshold value. For a layer of neurons, all the threshold

values can be collected to form a vector. The vector representation is more efficient in

terms of expression when communicating design decisions. In the design, an associative

neural network object has been created which forms the basis for all other types of

associative memory networks. This object defines the interface and representation of

associative neural networks. All other feedforward and feedback associative networks are

designed as special cases of the base associative neural network. The interface and

representations are inherited and then refined by adding the extra operations and data

required to exhibit a specific behaviour. There is thus a generalisation/specialisation

relationship between the base Associative memory object and each of the derived neural

network objects. This relationship can be read as follows: A Feedforward Associative

Memory is a “kind o f’ Associative Memory. The same relationship holds for Feedback

Associative Memories. Linear, Non-linear and Hamming neural networks are all a “kind

o f ’ Feedback Associative Memory network which automatically makes all three a “kind

o f ’ Associative Memory.

4.5.4 Organising the Objects

Vector 2 -----O Vector Pair Patterns
1t ~ Pattern ID

size

i saA

MatrixKey ------------- o Training File

Threshold Associative Memory NN
threshold
Woicfrts

o-
Inititialise Weic^its
Print
Recall

I

consists of Weight

Feedfc rward AM Feedback AM

X

Bidirectional AM Hopfield Neural Network

Non-linear AM Linear AM Hamming Network

X

Sequential Parallel

Figure 4.5-1: System Object Model for an Associative Neural Network

4.5.5 Describing Object biteractions

Object-oriented systems are made up of collections of autonomous or semi-

autonomous objects that interact or co-operate to solve a specific problem. Object

interactions include the set of messages that an object should respond to and the set of

behaviours that an object can exhibit. Object interactions can be discovered using

scenarios or Use Cases. A scenario is a sequence ot events that occur during one

particular execution of a system. Scenarios use event trace diagrams to describe

sequences of events and the objects exchanging those events during a particular

execution of the system. Two main scenarios can be envisaged for the Associative neural

network classes. A train scenario shows the sequence of events that take place when the

network is used to store a set of patterns. Figure 4.5-2 shows the an event trace diagram

for the train scenario. In a retrieve scenario the sequence of events that lead to a recall is

shown in Figure 4.5-3.

64

User User Interface NN Weight Threshold Patterns ^Fuè"8
Request training |

Get filename

filename

Finished Training

Train network

LirlibiGet number of patterns and size of vectoi

number <p patterns and siz^ of vectors

I Get Patterns

ailii:Training Patterns obtained

pompute Weights I

Compute ThL sholds

Read Patterns

Patterns Read

Figure 4.5-2: Event Trace Diagram for a Training Scenario

User User Interface NN Weight Threshold Key
Training

File
| Request retrieval 1 1 1 1 1 1

Get filename
4

*1 I 1 1
i i

1
1

1
1

filename ~ I
1 Recall 1 1 l 1

1

1

^ ---------------------H
1 I____

Get nurliber and size of I<Lys
_________ 1_____________ |______

1
1

i
J1 1

Numbeij and size of Keys 1
r

i

*t

1

1 1
1 1____

1 1
Get Keys

1
j

i

Read Keys 1

i : 1 !
Ke>| Vectors Obtainecj

1

1,

*\
Keys Read

1
1
i r . i l. Retrieve Association

1

1

1

1
! | | Make decision j

1 1 | Decision reached!
' Association retrieved
i l r 1

1

1

1

1

1

1
1 Finished retrieval
»◄--------------------------

.Kecaii complete r*

_ . 4-------------------- 1 1 1 1 1

Figure 4.5-3: Event trace diagram for a retrieve scenario

65

Event trace and object interaction diagrams aid in refining the relationships between

different objects. Most of the operations required of an object can also be obtained

from an examination of the flow of events to and from the object. This however does

not represent the complete picture. Where an object has very complicated dynamic

behaviour, all its operations cannot be captured simply by using event trace diagrams. In

such cases, a state-transition diagram can be used to represent a dynamic model of the

system. A state diagram for an object is a graph whose nodes represent the different

states in which the object can be in, and whose directed edges are transitions between

the states. State transitions are caused by labelled events entering a state. For the

Associative Neural Network, a dynamic model has been developed for the base Neural

Network object as shown in Figure 4.5-4.

Associative Memory NN
--- Uninitialised Network

4.5.6 Defining Operations on Objects

request parameters/initilise network

Figure 4.5-4: Dynamic Model of Associative Neural Network

The dynamic model shows the need for an initialise member function which uses

requested network parameters to initialise the network. Extra functionality and further

objects are also required to obtain and process network parameters from the user and

also for pre-processing of data patterns and post-processing of test results if necessary.

Finally, a functional model can be used to describe what happens in the Neural

Network. The functional model shows what the different inputs to an Associative

Neural Network are and the computation required to transform these inputs into output

66

values. The functional model consists of t'he Q;'^cm Context shown in Figure 4.5-5 and

the level 1 dataflow diagram in Figure 4.5-6.

Training/Test
file info

Parameters

Figure 4.5-5: System Context for an Associative Neural Network

D2 Pattern data store

data patterns

Figure 4.5-6: Level 1 data flow diagram that describes the operation an Associative

Neural Network

67

4.5.7 Neural Network Systems Design

In the design process, an architecture for the Associative Neural Network is produced

based on information contained in the different models constructed during analysis. The

design process consists of partitioning the Neural Network System into subsystems that

perform specific functions in the context of the Neural Network. In this design, the

following subsystems have been identified:

• The Input subsystem,

• The Data Pre-processing subsystem,

• The Training/Testing subsystem

• The Analysis subsystem.

The Input subsystem consists of object(s) that handle interactions with the user to

obtain network parameters and information relating to the data patterns. The Data Pre­

processing subsystem consists of objects that handle the reading of desired training/test

patterns from a disk file or other media such as sensors and its subsequent pre­

processing. The Training/Testing subsystem includes objects that make up the neural

network, weight initialisation, reading and writing of network weights and final activation

values. The Analysis subsystem includes objects that handle post-processing of

activation values and test results to produce statistical information about the

performance of the neural network. The flow of information amongst the different

subsystems in the Neural Network is shown in Figure 4.5-7. This architectural

description is applicable to the design of most of classes of Neural Networks including

Multilayer Perceptron Networks trained by backpropagation and Kohonen Self-

Organising Maps. The different subsystems are layered on top of the operating system

to create the complete Neural Network system as shown in Figure 4.5-8. Such layering

of partitions constitute a horizontal decomposition of the neural network system. It is

also possible to vertically decompose the neural network system into weakly coupled

subsystems. The choice of partitioning depends on the implementation environment

which includes the operating system, hardware, software and network resources.

68

Figure 4.5-7:Information flow among the different subsystems in a Neural Network

Neural Network

Input subsystem

Data Pre-processing subsystem

Training/Testing Subsystem

Analysis Subsystem

System Libraries

Operating System

Figure 4.5-8: System Block diagram of Neural Network

4.5.8 Implementation and Testing

The finished design has been realised using the C++ programming language on a Sun

SPARC™ 10 running at 50 MHz. The different objects that make up the system have

been implemented using the class mechanism provided in C++. Class declarations for

die objects that make up the Neural Network System are shown in Appendix E.

Because the neural network has been developed as an object-oriented program, testing

takes a different approach from that used in conventional systems design. Each object

exposes a certain behaviour which is expressed in the C++ class. The classes are

69

instantiated into objects which can then be independently tested for the required

behaviour. Tested objects are then pooled together into the different subsystems for

testing. Finally, the subsystems are pooled together into the complete Neural Network

System for an integration test. This form of testing relies on the fact that the objects

that make up the system are independent entities which can exist outside the system.

Thus their creation and testing is completely decoupled from the system development

process leading to more robust architectures and eliminating the need for exhaustive

testing on a grand scale to prove correctness. Figure 4.5-9 and Figure 4.5-10 show unit

test results for the base Associative Memory network and the BAM network

respectively. In each case, the neural network is supplied with a pattern file containing 2

training exemplars. The network weights are computed by correlation or outer product

of the input patterns and then stored in a weights file. A separate file can be supplied

with die test vectors and the neural network performs associative recall if the test

vectors are sufficiendy close to the original input vectors.

The default processing assumes that the input vectors are binary. If real input vectors

are to be used, a separate instance of the neural network is required. The default binary

processing will have to be overridden with the appropriate arguments when the

associative neural network constructor is called. In this way, the neural network object

does not have to carry out any pre-processing or sanity checks on the input patterns.

This is a design decision to prevent excessive and unnecessary computation in the neural

network object which needs to be kept small and compact so that it an be easily

understood and modified and can be reused without excessive overheads. Furthermore,

the pre-processing and error checking can be handled by a separate subsystem.

70

Script started on Wed Sep 25 10:22:13 1996eeisunlO% m exO.run
eeisunlO% tassoc
This is the test version of the Associative Neural Network
The program requires both training and test input pattern files.
Pattern files are of the form:

number of patterns: #
number of inputs: #
number of outputs: #

input vector
output vector pattern_ID

jEnter Pattern filename: twt.pp
Training Patterns
h 1 1 1 o 1 1 1 1
ii i i i o i i i i i
ii o i o 1 0 1 0 1

ji 0 10 10 10 1 2
Weights stored
b 9 1
1 2 0 2 0 0 0 2 0 2
1 0 2 0 2 -2 2 0 2 0
1 2 0 2 0 0 0 2 0 2
1 0 2 0 2 -2 2 0 2 0
i 0 -2 0 -2 2 -2 0 -2 0
10 2 0 2 -2 2 0 2 0
: 2 0 2 0 0 0 2 0 2
10 2 0 2 -2 2 0 2 0
: 2 0 2 0 0 0 2 0 2
; 4 -3 -4 -3 3 -3 -4 -3 -4
Testing network
Enter test pattern filename: tswt.pp
Enter number of test patterns: 2
: 1 0 1 1 0 0 1 0 1
i 0 1 0 1 0 1 1 1 1
\ 1 0 1 0 1 0 1 0 1
: 1 1 1 1 0 1 1 1 1
|eeisunl0% AD° °
iscript done on Wed Sep 25 10:22:53 1996

Figure 4.5-9: Unit test results for the Associative Memory network

71

Script started on Wed Sep 25 10:25:34 1996eeisunl0% m bam.pp
Number of Patterns: 2
Number of Inputs: 10
Number of Outputs: 6

1 0 0 1 0 1 1 0 0 1
1 0 0 0 0 1 1
1 1 1 0 0 0 1 1 0 0
1 1 1 1 0 0 2
eeisunl0% tbam
This is the test version of the BAM Neural Network

j Enter Pattern filename: bam.pp
hTraining Patterns
4 0 0 10 1 10 01
4 0 0 0 0 1 1
|l 1 1 0 0 0 1 100
4 1 1 1 0 0 2
40 6 1
; 2 0 0 0 -2 0
| 0 2 2 2 0 -2
! 0 2 2 2 0 -2
! 0 -2 -2 -2 0 2
1-2 0 0 0 2 0
i 0 -2 -2 -2 0 2
12 0 0 0 -2 0

0 2 2 2 0 -2
1-2 0 0 0 2 0
j 0 -2 -2 -2 0 2

!-0 -2 -2 2 -0 2 -0 -2 -0 2
12 0 0 0 -2 0 2 0 -2 0
I 0 2 2 -2 0 -2 0 2 0 -2
10 2 2 -2 0 -2 0 2 0 -2
10 2 2 -2 0 -2 0 2 0 -2
;-2 0 0 0 2 0 -2 0 2 0
j 0 -2 -2 2 0 2 0 -2 0 2

72

-0 -0 -0 -0 -0 -0

Emin -64
initial vector 0 0 0 1 0 1 1001

Out zero 2 -6 -6 -6 -2 6

Out zero 1 0 0 0 0 1
1 0 0 1 0 1 1 0 0 1
Energy -64
Out zero 4 -6 -6 -6 -4 6

Out zero 1 0 0 0 0 1
1 0 0 1 0 1 1 0 0 1
Energy -64
Out zero 4 -6 -6 -6 -4 6

Out zero 1 0 0 0 0 1
1 00 1 0 1 1 00 1
Energy -64
Out zero 4 -6 -6 -6 -4 6

Out zero 1 0 0 0 0 1
1 0 0 1 01 1 0 0 1
Energy -64
Out zero 4 -6 -6 -6 -4 6

Out zero 1 0 0 0 0 1
1 0 0 1 0 1 1 0 0 1
Energy -64 1 0 0 1 0 1 1 0 0 1
eeisunl0% AD°
script done on Wed Sep 25 10:26:17 1996

Figure 4.5-10: Unit test results for the BAM network

73

4.6 Discussion and Conclusions

The pace of Neural Network development remains unabated. This has been fuelled by

an increasing requirement by industry for supra intelligent applications in order to gain a

competitive edge. Early adopters of Neural Network technology have hitherto been

content with hiring PhDs to develop bespoke applications. Others have turned to off-

the-shelf packages such as Neural Works Professional™, NeuronLine™ and Neural

Network toolboxes on standard mathematical packages as a base from which Neural

Network solutions to specific problems can be developed. Finally, vast amounts of

public domain Neural Network software have been made available at various Internet

sites around the world. There is a major difference between those and the approach

adopted in this thesis. Off-the-shelf Neural Network software and toolboxes can be

regarded as specific instances of a Neural Network development effort with hard coded

design decisions. The net effect is that they are extremely inflexible and very difficult to

customise or integrate into other systems development efforts. In this thesis, Neural

network software development has been approached from a systems development

perspective. The analysis methods used above can be applied to the development of

most neural network architectures. The system design process produced a software

architecture for associative neural networks. The same software architecture can be

reused in the design of ART networks or Kohonen neural networks as well as multilayer

perceptron (MLP) networks trained by backpropagation. The software architecture

makes the completed system easier to understand and extend. It also provides a

framework in which modifications in the design or implementation can be incorporated

so that the system does not disintegrate when necessary maintenance or upgrade is

carried out. Finally and most importantly, the software architecture makes it easier to

incorporate neural network technology into other industrial systems development

efforts by reducing die effort required from non-technical and non expert application

designers wishing to incorporate neural technolog)' into their designs.

74

C h a p t e r V

APPLICATIONS OF NEURAL NETWORKS

5.1 Introduction

This chapter presents two case studies where supervised learning Neural Networks have

been successfully applied to solving real world problems. During the course of this thesis,

a number of different projects have been carried out involving the application of the

neural networks developed to different problem areas [62, 83-89]. This section presents

the application of Multilayer Perception (MLP) networks trained by backpropagation to

solve problems in the field of power systems engineering. The first case study describes

procedures and results of applying neural networks to fault diagnosis in HVDC systems. In

the second case study, an application specific neural network is developed to identify

unknown parameters in linear and non-linear dynamic systems such as generators in power

systems. Training data is obtained by simulation using both EMTP (the Electromagnetic

Transients Program) and the C++ programming language. Supervised learning networks

trained by backpropagation are very widely used in application areas because they are

comparatively easier to model, implement, set up and train than competing network

paradigms.

5.2 Application of Neural Networks to Fault Diagnosis in HVDC systems

In this section, the results of applying artificial neural networks to fault diagnosis in HVDC

systems is presented. Fault diagnosis is carried out by mapping input data patterns, which

represents the behaviour of the system to one or more fault conditions. Each fault

condition (including no fault) is represented by a 4 bit binary number which acts as the

fault identifier. The behaviour of the HVDC system is described in terms of time varying

patterns of conducting thyristors and AC & DC fault characteristics. A three-layer MIT

network trained by backpropagation is used for the classification. The network is

configured with 20 input nodes, 12 hidden nodes and 4 output nodes. The use of a 4 bit

binary- number implies that a total of 16 different fault conditions can be represented.

75

5.2.1 Introduction

Neural network applications in power systems have increased dramatically in the past five

years. Applications have spread into such diverse areas as load forecasting [90, 91] and

turbogenerator regulators [92] to power system stabilisers [87] and on-line fault section

estimation [93]. Fault detection and diagnosis in real time has traditionally been done using

fault diagnostic expert systems. The exhaustive search process carried out by expert

systems is too time consuming to be done in real-time. A neural network approach

provides a fast alternative when real-time processing is required. In [94], a neural network

solution was proposed for detecting high impedance faults in power distribution feeders.

In this section, a fault diagnostic neural network is designed to classify faults in an HVDC

system based on the AC and DC voltages and also the conduction patterns of the

thyristors.

5.2.2 The HVDC System

The HVDC system consists of three subsystems; the converter subsystem, the

transmission subsystem and the inverter subsystem. The converter is the basic component

involved in the conversion of power from AC to DC. The behaviour of the converter

under normal and fault conditions provides data that is used for fault diagnosis in the

HVDC system. Figure 5.2-1 shows the configuration of a 6-pulse converter.

Figure 5.2-1: Configuration of a six-pulse FTVDC Converter

76

Faults external to the converter are treated as system faults. Both the switching sequence

and the conduction pattern of the thyristors that make up the converter are periodic under

normal conditions, but the conduction pattern tends to be unpredictable when a fault

occurs. Data for both normal and the desired fault conditions is used to train the network.

It is hoped that the variation between pre-fault data and fault data provides sufficient

discrimination on which the neural network learning can be based. The data is obtained

from a computer simulation of the system using the Electromagnetic Transients Program

(EMTP) [95]. The relevant data is extracted from the simulation data and pre-processed

for use as input to the neural network. Under normal operations, training data is extracted

at random at any point in time from simulation data. On the other hand, only the

immediate pre-fault and post fault data is extracted for a fault condition. Below is list of

possible faults that can occur in an HVDC system.

• no fault

• External fault

• AC fault, single-phase to ground

• AC fault, double-phase to ground

• AC fault, three-phase to ground

• DC fault

• Converter fault

• single commutation failure

• single repetitive commutation failure

• double repetitive commutation failure

• double successive commutation failure

• double not successive commutation failure

• double not successive repetitive commutation failure

• arc quenching

• arc thro ugh

• arcback

• misfire

Figure 5.2-2 shows some current and voltage waveforms for no fault and a variety of fault

conditions.

77

Voltage Waveforms Current Waveforms

No Fault No Fault

2.E+05 y

>
2.&05

1.E+05

5.&04-
0.&00-

U J■m-
I I I I I I -I ■■ I ■ ■ I

*rtCM V (C O D t - C M V C D C O§ D O O O o -t- t- ^ - ^
d o d o o o o o

2000

1500
> 1000
>

500
0 H—i—I—b H—I—d+

rjCM r t CO CO t -^ c O . o q p do o o o
CM M- CD 00

d o d o

t(ms) t(ms)

Thyristor Voltage Conduction
Pattern

Thyristor Current Conduction
Pattern

l(ms) t(ms)

Single Cortrnutation Failure Sinc^e Qxrrriiation Fa illie

>
'>

2B06
2&05
1.&05
5.E+04
0.E-+00
-&Et04

J i i M M h
f f p p i f i W P W M

— i— i— i—
CD CM x t CD
r o o o

CO t - CM CD CO
Q r - ; T - t - t - t -

o o o o o o o o
t(ms)

78

Double Not Succesive
Commutation Failure

Double Not Succesive
Commutation Failure

g

2.E+05 t

1.E+05 -

0.E+00

-1.E+05

t(ms)

>

2000 t

1000

jn F F F r

—1—1—1— i—+— J
O <M t î - CD CO

-500 1 S ° o oJ. o
(M - f 10 CO

o o o o ~ d d d d
t(ms)

Double Sucœsive
Commutation Failure

Double Succesive
Commutation Failure

2 . E +05

2 . E +05 -

1.E + 0 5 -

> 5 . E +04 •

n .

. i m i J u l i J u i n

___ i____ i____ i__

j J t f l j J i i i i l d i t i i j L u i i J u i n

- 5 . E +04 - 1
0.

02

-

0.
04

-

0.
06

- 1-------1-------1-------1-------1--------

X) T - CvJ CD CO
. o <r". T"I x_ . T

O o o o o

t(ms)

O C \ J - c t C O (X > T - C v J - c t C D C O
-500 I o o o o Q ' - r - T - T - i -

o o o o o o o o
t(ms)

Single Repetive Commutation
Failure

Single Repetive Commutation
failure

79

Double Succesive Repetitive
Commutation Failure

Double Succesive Repetitive
Commutation Failure

>

O O O O O O
t(ms)

Double Not Succesive
repetitive Commutation Failure

DotiDle Not Success
rép é titif Commutation Fai lire

2 .& 0 5 t

2.E +05

_ 1.E +05-H
>

> 5.E +04

o.&oo
LU

I ■ I I

y

'Ç+Osj ^ t C O C O r - C N j T t C O O O/—\ •
-S.&o FJ-0© O o O ° O O O O

t(ms)

DC Fault DC Fault

2.E+05

2.E+05

1.E+05

5.E+04 --

0.E+00

-5.E+04

H--1--H■̂r tj-
o o
CO COo o
d d

H---1-- !-- (—^
o o o o
CM xT CO CO

O O
t(ms)

o o o o o o o o o o
t(ms)

80

Single Phase to Ground Fault Single Phase to Ground Fault

g

2.E+05
2.E+05
2.E+05
1.E+05
1.E+05
1. E+05
8.E+04
6.E+04
4.E+04
2. E+04
O.E+OO H—I—I—h

-2.E+04 S S SO OJ Tfo o o
d d d

o oTj- co
:> o
t(ms

o o o o
t(ms)

Tw d Phase to Ground Fault Two Phase to Ground Fautt

2Et06T

2Et06

0.E-+O0

■lMIliuiMllJJjlllMhlll
' W I t o

^C M CO CO 1
i c P o o ° (

1 ! 1 1

- CM CO CO

o o o o o o o o
t(ms)

Three Phase to Ground Fault Three Phase to Ground Fault

g>”

2 . E +05 -r

2 . E+05

1 .E +05

5 .E + 04

O.E+OO
o

-5 .E + 0 4 2>

H--1---H H--1—+-
O O
CO COT f CO CO o oo o q T- T-

d d d d d o d o
t(ms) t(ms)

Figure 5.2-2: Voltage and Current Waveforms for the Different Fault Conditions

81

5.23 Data Pre-processing

The raw fault data obtained from EMTP simulation of the FTVDC system consists of 500

samples for each fault type over a 0.2ms time interval. For a no fault condition, the whole

0.2ms interval is randomly sampled to select patterns for the training and test sets. For the

other fault conditions, only samples in the immediate vicinity of the fault are of interest.

This means that, for some fault cases, it is difficult to obtain enough samples to completely

represent that case. To prevent a high occurrence of false alarms, data from the no fault or

pre-fault data situation is given the highest representation in the training set sampled over

the complete range of the simulation. The number of training patterns for the different

fault types is severely limited by the sampling window during which fault data can be

collected and by the resolution of the sampling interval. Table 5.2-1 shows the

representation of each fault type in the training and test sets.

Table 5.2-1: Representation of each fault type in the training/test sets

Fault type Total Training Set Test Set

No fault 500 80 22

Single commutation failure 20 9 8

Double successive commutation failure 46 13 11

Double not successive commutation failure 37 13 11

Single repetitive commutation failure 237 58 21

Double successive repetitive commutation failure 37 13 11

Double not successive repetiüve failure 237 57 21

DC Fault 183 40 19

Single phase to ground fault 183 40 19

Double phase to ground fault 183 40 19

Three phase to ground fault 183 40 19

Total 1846 403 181

Using the random sampling approach mentioned above, it was then possible to generate a

number of different but overlapping training and test sets which can provide a true picture

of the generalisation capability of the network. Pre-processing takes the form of column­

wise scaling of the data. For each column, the maximum and the minimum values are

obtained. The data in the columns is then scaled according to the following formula:

x - min
--------— (5.2-1)max - mm 7

82

so that individual features in each training vector is in the range 0 - • T or — 1-•• 1.

5.2.4 Fault Diagnostic Neural Network

The block diagram in Figure 5.2-3 shows the Neural Network incorporated into the

HVDC system.

Figure 5.2-3: Block Diagram of Fault Diagnostic Neural Network System

The layout of the fault diagnostic Neural Network system to learn the mapping between

the training patterns and the fault type is as shown in Figure 5.2-4.

Figure 5.2-4: Neural Network learns mapping
between training patterns and Fault Types

For training purposes, a single hidden layer neural network having 12 hidden neurons is

used. There neural network has 20 input nodes and 4 output nodes. The input patterns

consist of the following

• The voltage across and the current through each thyristor (9 nodes),

• The output dc voltage and current (2 nodes),

• The three phase voltages and currents through the transformer (6 nodes)

• The conduction pattern of the thyristors over one period (3 nodes).

83

The output of the network is a four bit binary number that represents the fault condition.

The number of training iterations was set at 5000. The network was then trained for

different learning rates and momentum factors.

5.2.5 Results

Training curves for two different sets of learning parameters are shown in Figure 5.2-5 and

Figure 5.2-6 respectively. In the first run, 11 hidden neurons are used with a learning rate

of 0.0175 and a momentum factor of 0.02. These values are changed to 21, 0.015 and 0.03

respectively in the second simulation run. As can be seen, the RMS error declines rapidly

during both training sessions but the curve is much smoother when more neurons are

used.

RMS Error vs Iterations

Iterations

Figure 5.2-5: RMS training error, 11 hidden neurons, learning rate
= 0.0175, momentum = 0.02

RMS Error vs Iteration

Iterations

Figure 5.2-6: RMS training error, 21 hidden neurons, learning rate
= 0.015, momentum = 0.03

84

The performance of the network is measured in terms of the percentage of misclassified

patterns after a specified number of iterations. This performance index was almost always

mirrored when independent testing was carried out using novel data in the test set. For

test purposes, the output space was partitioned into 5 decision regions representing the

percentage accuracy of the trained network for a single pattern. Properly classified patterns

are those trained to within 10% of the desired value. Partially classified patterns are within

40% of their desired value. Boundary patterns are between 40 and 60% of their desired

values. Partially and totally misclassified patterns are more than 60% and 90% respectively

from their desired values. This partitioning was necessary to identify difficult learning

patterns. By examining the partially classified patterns and those in the boundary, the

patterns that needed further training could be identified. This helps concentrate training

time on the non-learning or difficult learning patterns either by increasing their

representation in tire training set or by specialised training in a separate sub net. Table 5.2-

2 shows the training results for the two simulation runs presented above. A sample

training set consisting of 86 patterns as been used and training is done for 5000 iterations

with the same learning rates.

Table 5.2-2: Training results

Decision boundary Simulation run 1 Simulation run 2

Properly classified 23 25

Partially classified 56 57

Boundary 7 4

Partially misclassified 0 0

Totally misclassified 0 0

The results show that, in both cases, approximately 25% of the patterns are properly

classified. The use of binary values in the outputs makes it difficult to attain output values

which are close to the desired. This is due to the squashing nature of the sigmoidal

activation function used. If a threshold element of 0.5 is used, then 100% classification is

achieved in both cases.

5.2.6 Discussion

For this simulated system, the neural network could easily identify the system faults. The

classification accuracy on system faults and the no fault case was always greater than 99%.

85

However, the converter faults could not be uniquely identified. The average classification

accuracy on converter faults was less than 50%. The neural network could not learn the

difference between the repetitive and non repetitive cases for the converter faults over one

period. Three separate solutions were considered to overcome this problem. In the first

instance, one of either the repetitive or non-repetitive cases was taken out of the training

set. The network was then trained to maximum accuracy with rest of the training data. In

this case, the network was able to correctly a identify a commutation failure. A separate

classifier was then used to determine if it was a repetitive or non-repetitive fault. In the

second instance, the sampling window from which the training data was extracted was

increased to cover an extra period. The network was thus able to correctly classify both

the repetitive and non-repetitive failure cases. The last case was to train the network on a

slowly moving window of the time-stepped simulation data after pre-processing. While this

method was also able to correctly identify the repetitive and non-repetitive commutation

failures, the percentage error on the system fault and no fault cases was unacceptable. The

method was thus discarded.

5.2.7 Future directions

Neural networks are fast enough for real time fault identification once they have been

properly trained. The training set contains enough examples of normal operation to

reduce the number of false alarms (i.e. no faults classified as faults) to a minimum. On the

other hand the number of simulated fault conditions cannot necessarily cater for every

fault that can be encountered in the field. The costs of on-line monitoring equipment and

the associated difficulties mean that good fault data is difficult to come by. An inverse

mapped or deductive neural network at the output of the fault classifying network can

greatly reduce the chances of misclassifiçation[93].

5.3 Application of Neural Networks to Systeins Identification

5.3.1 Introduction

The previous case study described the application of neural networks to fault diagnosis in

HVDC systems. In this application, the supervised neural network is treated as a black box

system where training patterns are presented at the inputs, corresponding teaching signals

are at the output and the network learns a mapping between them. In such an approach, a

generic supervised learning architecture is configured with certain parameters for the

number of input, hidden and output neurons, thé activation function, and learning

86

parameters. The network weights are then initialised to small random values which is then

adapted during learning to solve the problem. This is the approach used by most

applications of neural networks where the problem to be solved is a specific case of

generic static pattern recognition or simple optimisation. No a priori information about the

problem or the process generating the data patterns can be used even where this is

available to aid the neural network in arriving at the solution. For difficult learning

problems, additional information can be incorporated in the design of the neural network

to improve the chances of converging to an optimal solution. This leads to the concept of

an application specific neural network, where the neural network is designed to solve a

specific problem. Information about the problem domain is incorporated into the network

learning algorithm to improve the chances of convergence to an optimal solution. This

section presents an application specific supervised learning network for identifying the

parameters of linear/non-linear dynamical systems. The dynamical system is described as a

system of difference equations expressed in state variable format. The system is assumed

to be time-invariant so that the state matrices are constant. For an arbitrary system where

the input, current state and next state are known, the problem of identifying the system

parameters is formulated as a neural network learning problem whose solution enables the

system parameters to be identified. The network error and weight update equations are

derived from empirical knowledge about the system configuration. The learning process is

guaranteed to converge to a local minima of the error surface by die gradient descent

algorithm. The rate of convergence is determined by the choice of learning parameters.

5.3.2 Problem Scope

In many engineering and scientific applications, a system or plant having an unknown

structure has measurable or observable input and output signals. One way to obtain

information about the plant dynamics is to simulate it by a possibly flexibly-structured

model which will imitate the unknown dynamic system [25). Matching a measurable plant

and a specific model occurs by adaptively updating the model parameters so as to

minimise a specified error/performance function. System identification is the process of

selecting a model for an unknown dynamic system and estimating the model parameters

from experimental data, i.e. from measurement of input and output data. The model is

represented either as a transfer function block, a state variable representation or a state-

vector representation [97].

87

E(z) G(z)

(a)

*M(z)

(b)
(c)

Figure 5.3-1: Representations of system dynamics: (a) z-transfer function
representation; (b) state-variable representation; (c) state-vector representation.

5.3.3 Neural Network fo r Systems Identificatmi

In the design of control systems where measurement of the full state vector is not

practical, the states of the system have to be estimated using practical measurements.

System identification techniques are thus widely used in control systems design. A number

of papers have been published diat discuss the use of neural networks in systems

identification. In [97] a binary neural network is used to identify the discrete inverse

dynamics of an unknown plant. The neural network is configured to operate in two

separate modes: The first is an adaptation/learning mode where the weights of the

network are configured to learn a mapping between the input to the plant and its

measured response. The second is the controller mode where the neural network acts as

an inverse controller of the plant. The desired response of the plant is ted as input to the

neural network and the output is a signal used to drive the output of the plant to its

desired value. The simulation results showed that neural networks arc capable of learning

an optimal mapping even when the dynamical systems are non-linear. In [98) a dynamic

neural network is employed in the identification and control of static and dynamical

systems. Both state-vector and difference equation representations of the system have

been used. The identification problem is formulated as a suitably parameterised model

whose parameters are adjusted to minimise an error function between the plant to be

identified and the model outputs. In [99] a backpropagation neural network is trained to

produce the unknown parameters of the system to be identified at its output. In a similar

manner to [98], a parameterised model of the plant is used. The neural network is then

88

configured to estimate the unknown parameters of the parameterised model from which

the real parameters are derived. In the field of power systems, [100] presents an approach

to estimate parameters of synchronous machines using online small disturbance response

data. Their estimation is also based on the minimisation of a cost function of the

estimation error but a Maximum Likelihood rather than a gradient descent algorithm was

adopted for the optimisation.

The approach discussed in this thesis for identifying the parameters of dynamical systems

follows from the work described in [101]. In general, the equations that describe the state

of a dynamical system at any time k+1 is given by the single valued functional relationship

[97]

x(Jfc + l)= f[x (*) ,u (lfc)] (5.3-1)

The output response of the system is given by

y(*) = g[x(*),u(fc)] (5.3-2)

where u is the set of values that in input vector may assume as a function of time,

y is the output vector and

x is the state vector.

If the system is linear, the equations can be written as

x(k) = A x(k) + B u(k) (5.3-3)

y(*) = Cjt(ifc) + DM(Jfc) (5.3-4)

where x(A-)e T T , u (k) e 3 i and y (/;)eSRm.

A e SR™

B e SR"

CeSR™

D € SRr

The next state description of the system in Equation (5.3-3) can be expressed in matrix

form as

X \ (k)

„()

a 2l a 22 ' ' ' a 2n

_a n l a n2 ' ' ' a nn

x,(A’) X
x2(k)

+
b2

A .

u{k) (5.3-5)

89

The aim of the neural network learning is to determine the values of a and b- of the

•

unknown system with given value of state vector x (k) , next state vector x(k) and input

u (k) . The approach, suggested in [101] is used to derive the network performance (error)

function and the weight update equations. The error function is formulated in such a way

that it is quadratic in terms of the parameters to be estimated. The neural network

dynamical equations are as follows:

X e l (k)
a eU a e \2 ‘ ‘ a e\n * e l W

1

■
1________

=
a e2 \ a e22 ' a e2 n xe2(k)

+
b e2

'•

x j k) _ _a enl a en2 O'enn

--------------1
k:

_
'u

1

(5.3-6)

where a eij and bej are tine estimated values of the unknown parameters. The error in the

estimation is given by

e(k) = x(k) - x e (k) (5.3-7)

The derivative of the error is given by

e\ (k) X \ (k) X e\ (k)

e 2(k) = x2(k)
-

X e l { k)

j n (k) _ X n { k) _
•

X en (k)

(5.3-8)

By substituting for xe (k) from (5.3-6) into (5.3-8), the error can be written as

ei (k) X\ (k)

e 2(k) = X2(k)

en(k) X n (k')

a e\2 xx(k) X '
x2(k)

—
be2

,xn{k)_ K -

u(k) (5.3-9)

The ;Ul component of the derivative of the error is

e ‘ (k) = x , (k) - (cieiXx, (k) + a ci2x2 (k) + -- • + a emxn + ba u(k)) (5.3-10)

This error component can be expressed in more compact notation as

90

(5.3-11)
• JL

e-, = Xi -^ a^ X j i k) + beiu(k)
h i

The above equation can equally be expressed as

e t - x - v / ^ z (5.3-12)

where w,r = [aen , a ei2, -■ - , a ein, b j and

Z T = [X p X 2 ,

This equation is analogous to die general supervised neural network processing equation

where x, is the Ith target value, w ;r is the weight of the Ith neuron, with z as its input. The

objective or energy function can be formulated as the sum-of-squares error criterion

(5.3-13)

where Ep is the error per pattern presented. The total error of the network after all

patterns have been presented is simply the sum of the individual pattern errors:

E = iX (5.3-14)
p= i

substituting for e\ in the equation (5.3-13) above, we have

w^z (5.3-15)

which is simply a quadratic error measure that can be minimised by gradient descent. The

minimisation of Ep with respect to time enables the unknown parameters of

w,r = [a eii’a ei2 ’" ' ’a em’bei] to determined as the final weights of the trained neural

network. Figure 5.3-2 shows the architecture of the neural network and how the

parameters are determined after training.

91

X\

X2

Xn

Figure 5.3-2: Architecture of Supervised Neural Network for Identification

The quadratic error measure in Equation (5.3-15) can be optimised by first differentiating

and then setting the gradient equal to zero. The gradient of the error function w.r.t the

weight, w ; is

<?E„
(3.3-16)V E = ■

' d W :

Under this condition, the values obtained for the unknown parameters will be optimal.

Adopting first-order gradient descent, the weight change in each iteration is given by

A w ; = -7]V w E = -Tp
d\\',

(5.3-17)

where 7] is the learning rate or size of step to be taken in the direction of the negative

gradient. The weight update equation for each learning iteration is given by

w,-(i + 1) = w ;(f) + Aw,. (5.3-18)

5.3.4 Simulation Results

This section presents the results of applying the parameter estimation neural network to

determining the parameters of an unknown second order linear dynamical system. To be

able to do this, values for the state vector x(k) , the derivative of the state vector x(k)

92

and the input, u(k) , must be known. The neural network was tested using a number of

different second-order systems. The following is an example of a second-order dynamical

system used as an example:

1 ()

_x2(k)

To simplify the processing, a step input signal is used. The state vector and derivative of

state vector are obtained by simulation. The system is expressed in the form of a

difference equation and a C++ program written to recursively compute the values of the

state vectors for a specified number of iterations. Figure 5.3-3 shows the state vector plots

of the dynamical system obtained by the C++ simulation.

-0.9420 12.566 (k) 1.0
-12.566 -0.942 x2(k)

+
2.0

u(k) (5.3-19)

Figure 5.3-3: Plot of state values of the dynamical system

Equation 5.3-19 was modified to a similar second order dynamical system by

changing the values for the parameters as follows:

Figure 5.3-4 shows a plot of the state vectors for the modified system.

0.0 1.0
-0 .72 1.7

(k)
x2(k)

+ u(k) (5.3-20)

93

x1(t)

x2(t)

Figure 5.3-4: Plot of state vectors for dynamical system

Supervised training data is obtained by considering state vectors at time step k as the input

vectors and state vectors at time step k+1 as the corresponding target vectors. A total of

1000 training patterns was used for the training process. Figure 5.3-5 shows an extract

from the training file. A single layer neural network with 2 inputs, 2 outputs and a

learnable bias was constructed to train the samples.

Number of patterns: 1000

Number of inputs: 2

Number of outputs: 2

0 0

0.00101344 0.00199187

0.00204947 0.00396984

0.00310928 0.0059328

0.00419266 0.00788049

0.0991016 -0.0434478

0.0994671 -0.0426549

0.0998421 -0.0418673

0.00101344 0.00199187 1

0.00204947 0.00396984 2

0.00310928 0.0059328 3

0.00419266 0.00788049 4

0.00529938 0.00981259 5

0.0994671 -0.0426549 998

0.0998421 -0.0418673 999

0.100227-0.0410852 1000

Figure 5.3-5: Extract from training data

94

rm
s

er
ro

r

The network was configured with Linear units and training carried out, then the activation

function was changed to Sigmoid functions. Figure 5.3-6 and Figure 5.3-7 show the

training curves for linear and Sigmoid activation functions respectively.

MSE for parameter estimation Neural Network
Learning

Figure 5.3-6: Training curve using linear activation functions (learning rate — 0.15)

MSE for parameter estimation Neural Network

Figure 5.3-7: Training curve using Sigmoid activation functions (learning
rate = 0.15)

Preliminar)' training results shows that the learning is much faster with Linear activation

functions proposed in the learning equations. Learning still takes place when non-linear

95

units with Sigmoid activation Emotions are used but learning process is slow and erratic

and some of the weights often fail to converge to the optimal parameters values.

5.4 Discussion and Conclusions

The chapter has demonstrated the successful application of artificial neural networks to

two practical problems in the field of power systems. In the first case study, the neural

network was able to learn the required mapping between input fault data and a binary fault

identifier. The use of neural networks in fault identification has comparative advantages

over fault diagnostic expert systems in terms of the speed at which they can operate. A

pre-trained neural network requires just a single forward pass through the network during

production in order to identify a fault. Fault diagnostic expert systems, on the other hand,

perform the identification based on the firing of pre-stored rules in a rulebase. For a

particular input, the number of rules that fire and the order in which the rules fire cannot

be predetermined. This makes artificial neural networks more suitable for real-time

problems such as fault diagnosis in power systems.

In the second case study, an application specific neural network has been developed for

identifying unknown parameters in linear and non-linear dynamical systems. The network

uses a priori information about the problem to derive the neural processing and weight

update equations. In this particular case, the a priori information is in the form of the next

state equations that describe a state space representation of the system whose parameters

are to be identified. Preliminary results have shown that the neural network is capable of

converging to die correct parameters tor a stable second order system.

9 6

C h a p t e r VI

FUZZY LOGIC

6.1 Introduction

The previous chapters have describe the design, implementation and application of

Artificial Neural Networks. Neural networks are often construed as black boxes which

can store and retrieve associations or learn a mapping between an input vector space and

an output space. Where data required to train the network is imprecise, incomplete or

uncertain, the implicit rules that describe the relationship between the input space and

the output space become very complicated and the neural network is usually unable to

learn the correct mapping or correct set of rules to represent this relationship. In recent

years, the focus of much research has moved to the design of systems which can not only

cope with uncertainty but that can explicitly model the uncertainty and imprecision that is

inherent in real world problems. Such systems include fuzzy systems, probabilistic

reasoning systems, possibility theory, belief networks, etc.

Fuzzy systems like their neural network counterparts are still encapsulations of low level

algorithms. Despite their widespread use in consumer and industrial systems, the majority

of software-based fuzzy systems exists only as program code in class libraries [102]. Fuzzy

class libraries are useful as a means of promoting code reuse and aiso facilitates large scale

adoption ot fuzzy logic technology. On the other hand, code in class libraries constrains

new applications to a particular design architecture and implementation language. There

are also significant overheads associated with learning class libraries as well as run-time

and performance penalties incurred due to their generality. This chapter describes how

analysis and design can be carried out using OMT to construct a robust architecture for a

fuzzy inference system. A number of sample implementations have been done using the

C++ programming language. Finally, an inference system is developed to predict

harmonics in switched-capacitor AC-DC converter systems where the mapping is very

non-linear and the rules are initially unknown. A method for obtaining the required Rules

in application areas where an expert or real world experimental data is not readily

available is described.

97

6.2 Fuzzy Logic Theory

Lotfi Zadeh [103] defines fuzzy logic to be

“...a Logical system which is aimed at providing a model for

modes of reasoning which are approximate rather than exact..

“...Fuzzy Logic = Fuzzy Set Theory, the theory of classes with

fuzzy rather than sharp boundaries...”.

Fuzzy logic is a superset of conventional logic that has been extended to handle the

concept of partial truths, i.e., truth values between “completely true” and “completely

false”. Fuzzy logic is used to provide robustness and ease of use in large complex systems

where high precision is not a prerequisite.

6.2.1 Fu%y Subsets

Associated with fuzzy logic is the concept of a fuzzy subset. Fuzzy subsets are functions

that map a number or value that might be a member of a set to a number between 0 and

1 which indicates its actual degree of membership in the set. A membership value of zero

indicates that the number is not in the set while a membership value of one means that

the value is completely representative of the set. The Fuzzy Logic FAQ (frequently asked

questions) @ ftp.cs.cmu.edu gives the following formal definition for a fuzzy subset.

F o r m a l d e f i n i t i o n

A fu cyy subset F, o f a set S is defined as the set o f ordered pairs, each with the first element from S and

the second element from the interval [0,1], with exactly one ordered pair present fo r each element o f S.

This defines a mapping between elements o f the set S and values in the interval [0,1]. A %ero value is

used to represent complete non-membership while a one value represents complete membership. Values

between 0 and 1 are used to represent intermediate degrees o f membership. The set S is referred to as the

universe o f discourse o f the fuypy subset F. The mapping is described as a function which is the

membership function o f F. The degree to which the statement

x is in F

is true is determined by finding the ordered pair whose first element is x . The degree o f truth o f the

statement is the second element o f the ordered pair.

Fuzzy membership functions could be triangular, trapezoidal or Gaussian in shape as

shown in Figure 6.2-1.

9 8

ftp://ftp.cs.cmu.edu

Triangular Membership functions

Trapezoidal Membership functions

Gaussian Membership functions
normal

Figure 6.2-1: Fuzzy subsets with triangular, trapezoidal and
Gaussian membership functions respectively

99

Triangular and Trapezoidal membership functions are more widely because they are

mathematically easier to process. Gaussian membership functions, on the other hand, are

much preferred due to their local properties and smoother transitions which in theory

should provide better performance in a similar manner to Gaussian units Radial Basis

function neural networks. The membership functions in Figure 6.2-1 could be used to

represent a number of real world input variables such as salaries, temperature, and pulse

rate, etc. It is necessary to determine universe of discourse in of a fuzzy set in order for

the fuzzy variables to be meaningful. For instance given a fuzzy variable, salary, and a

given value of salary, the value cannot described as Small, Medium, Colossal etc. unless a

range of values which salary can take are know a priori. The set of all values that the fuzzy

variable, salary can take determines its universe of discourse.

6.2.2 Unguis tic Variables

Fuzzy logic provides support for the concept of a linguistic variable. Linguistic variables

provide a way in which natural language expressions are can be handled mathematically

using fuzzy logic. Examples of Linguistic variables include: TALL, HIGH, COOL,

SMALT,. Fuzzy linguistic variables are associated with a corresponding membership

function. For example, the linguistic variable TALL which describes the universe of

T AT.T. people has an associated membership function which has been derived based on a

person’s height. To each person in the universe of discourse, a degree of membership in

the fuzzy subset TALL can be assigned based on the person’s height.

0, ifheight(x) < 5ft.
i height(x) - 5ft.

TALL(x) = |— ----- , if 5ft.< hcight(x) and < 7ft. (6.2-1)

1, ifheight(x) > 7ft.

Figure 6.2-2 shows a graph of the membership function associated with the linguistic

variable of TALL. An expression such as “Person X is TALL” can be interpreted as a

degree of truth which depends on the person’s height. The shape of the membership

function associated with a linguistic variable can be modified using linguistic hedges such

as VERY, ALMOST, QUITE, EXTREMELY, etc. The effect of a hedge is tune the

membership function respond properly to a given range of inputs. For instance, the rule

“IF X is TALL then...” is less restrictive than “IF X is VERY TALL then...” or “IF X is

EXTREMELY TALL...” but more restrictive than “IF X is QUITE TALL” and will

respond slightly differently for similar values of height.

100

Figure 6.2-2: Membership functions associated with TALL

6.2.3 Fu^y Numbers

Fuzzy Numbers are fuzzy subsets of the real line. They have a peak or plateau where the

grade of membership equals 1. The membership function falls away on both sides of the

peak. The common types of fuzzy numbers are triangular, Gaussian and L-R fuzzy

numbers. Both triangular and Gaussian fuzzy numbers are symmetrical around a mean

value as shown in Figure 6.2-3. They are more specialised and therefor computationally

easier to process.

Figure 6.2-3: Triangular fuzzy number 3
ti

Figure 6.2-4: Gaussian Fuzzy number 3

101

L-R fuzzy numbers are more general. They consist of a mean value as well as left and

right spread functions. Figure 6.2-5 gives an illustration of an L-R fuzzy number. An L-R

fuzzy number M, written (ngCgP)^, is given by

Vm (*) = ‘
x<m, a>0

x>m, p>0
(6 .2- 2)

where m is the mean value,

a and [3 are the left and right spreads respectively and

If .) and R(.) are left and right shaped functions.

Figure 6.2-5: An L-R fuzzy number M with value m

When the left and right spreads, OC and P, are zero, the L-R fuzzy number is reduced to

an ordinary number, m, which is the mean value.

6.2.4 Inference

There are two generally recognised methods of fuzzy reasoning[104]:

• reasoning based on compositional rules of inference.

• reasoning based on fuzzy logic.

A fuzzy inference system uses a collection of fuzzy if...then rules (fuzzy rulebase) to

reason about data. For the sake of computational simplicity, most fuzzy inference

systems use the first form of reasoning, i.e. based on computational rules of inference.

The structure of a simple fuzzy inference system is shown in Figure 6.2-6.

102

Figure 6.2-6: Structure of a Fuzzy Inference System

The fuzzy rules are of the form:

I f Premise (Antecedent) then Conclusion (Consequent).

For example, in the following rule:

I f x is A AND y is B then z is C,

the Premise is “x is A AND y is B” and the Conclusion is “z is C”; x and y are the input

variables, z is the output variable and A, B and C are fuzzy subsets or membership

functions defined on x, y and z respectively. The rule’s premise describes to what degree

the rule applies while the conclusion assigns a membership function to each of one or

more output variables. The set of rules in the inference system forms the Rulebase. The

fuzzy inference process generally consists of the following four steps: Fuzzification,

Inference, Composition and Deffuzification[105].

During Fuzzification, the membership functions defined on the input variables are

applied on their actual values to determine the degree of truth for each premise.

In the inference process, the truth value for the premise of each rule (the weight) is

computed and applied to the conclusion part of each rule. Either MIN or PRODUCT

inference is used. When MIN inference is used, the output membership functions are

clipped at a height which corresponds to the weight of die rule’s premise. When

PRODUCT inference is used, the weight of the rule’s premise is used to scale down the

output membership functions.

During composition, all the fuzzy subsets assigned to each output variable are combined

together to form a single fuzzy subset for the output variable. As with the inference stage,

there are two possible methods of composition; MAX composition and SUM

composition. MAX composition constructs the output fuzzy subset by taking the point-

103

wise maximum over all the fuzzy subsets assigned to a variable by the inference rule.

SUM composition, on the other hand, uses the point-wise sum of all the fuzzy subsets

assigned to a given variable to construct the output fuzzy subset.

The final defuzzification stage converts the output fuzzy subset into a crisp (non-fuzzy)

value or number. Several different methods of defuzzification exist in the literature. The

two most common include: Centre Of Gravity (COG) and Mean of Maxima (MOM).

COG defuzzification computes the crisp value of a fuzzy subset by finding the centre of

gravity of the membership function. In MOM defuzzification, the crisp value is obtained

by calculating the mean value at all points where the membership function has it’s highest

value. Other defuzzification methods include Semi-Linear Defuzzification (SLIDE) and

Basic Defuzzification Distribution (BADD) transformations [106].

Figure 6.2-7 and Figure 6.2-8 illustrates the process of fuzzy reasoning based on

compositional rules of inference. For a system with 2 fuzzy if...then rules [104, 107], the

rules are of the form:

i f x, is An and x2 is A12 then y is Bt;

i f Xj is A21 and X2 is A22 then y is B2.

Where Xj and x2 are the inputs,

y is the output and

An, Aj2, A21, A22, Bt, B2 are the fuzzy membership functions.

In Figure 6.2-7 the reasoning process uses a combination of Product inference with Sum

composition while in Figure 6.2-8 Min inference coupled with Max composition is

illustrated.

104

Figure 6.2-7: Fuzzy reasoning: Product Inference with Sum
Composition

Figure 6.2-8: Fuzzy reasoning: Min Inference with Max Composition

6.2.5 Constmcting the liitlebase

The most important activity involved in die design of a fuzzy inference system is the

selection of rules that make up the Rulebase. There are the following four general

methods available for deriving the rules [104, 108].:

1. Experts knowledge and advice: The format of fuzzy rules make them suitable as a

descriptive language to express an experts domain knowledge and thinking. The fuzzy

if. ..then rules can be formulated by two heuristic approaches. The first involves the

105

explicit verbalisation of human experience by a domain expert. The second approach

involves a careful interrogation of a pool of domain experts and then subsequently

processing their responses to obtain the relevant rules for a particular application.

2. Modelling an operator’s action: In most complex natural and man-made systems the

exact input-output relationships are not known and so it is extremely difficult to create

mathematical or quantitative models to describe their operation. Skilled human

operators have learned to control such systems using heuristics and experience. Their

actions and operations can be modelled by fuzzy if...then rules which form the

Rulebase for reasoning about and subsequently controlling these systems.

3. Modelling a process: A linguistic description of the dynamic characteristics of a

controlled process may be viewed as a fuzzy model of the process. The characteristics

of process and the necessary variables required for it’s control can be modelled by

simulation. Based on the model, a set of fuzzy if...then rules can be generated for

reasoning about or controlling the process.

4. Learning and adaptation: These involve the automatic generation or learning of fuzzy

if. ..then from data sets. Neural networks can be used to learn a process from examples

of sample inputs and outputs and then generate the required fuzzy rules [109, 110] or a

fuzzy controller can be designed by heuristics and then tuned using reinforcement

learning neural networks [111].

106

6.3.1 Introduction

In this section, an architecture for fuzzy inference systems based on OMT is presented.

Object-oriented analysis is performed in order to discover pertinent objects and the

relationships between objects found in the domain of Fuzzy Inference Systems. An

object-oriented designed is described to produce a robust architecture for software

implementations of fuzzy inference systems. An object-oriented architecture ensures that

even when the fuzzy processing algorithms evolve, the modifications required for any

prior implementation will be minimal. This is because the basic structure of a fuzzy

inference system and hence its representation in object diagrams is relatively very stable

over time compared to the algorithms used in the processing.

6.3.2 Problem statement: The domain ofFuppy Inference Systems

In Logic, a Statement or Proposition is a verbal or mathematical Sentence that is either

true or false [112]. Examples of a statement include:

x = 6;

The weather is hot

A compound statement is a combination of simple statements using various rules of

combination. The statements are combined using connectives, AND, OR,

EITHER...OR, etc. An implication (conditional) refers to the statement "if p then q".

Both p and q must be propositions; p is called the premise or antecedent and q is the

conclusion or consequent. An inference rule is defined to be an implication or if...then

rule. It has a premise part and a conclusion. The premise part is either a single statement

or a compound statement combined using logical connectives such as AND and OR..

The conclusion is usually a single statement but can also be compound. A statement is of

the form "A. is High" where yd is a fuzzy input variable and High is a fuzzy Linguistic

variable realised as a Membership Function over a given universe of discourse. The

premise and conclusion parts are thus components of a Rule. The structure of the

membership functions can be altered using modifiers or qualifiers such as Very, Almost,

Quite, Extremely...; called fuzzy hedges. Each Rule has a weight which is the calculated

truth value of its premise when the rule is activated. A llulebase is an aggregation of Rules

that describe the operation of a plant or system. Rules in the Rulebase are recognised by

their rule number which acts as an index for inserting and retrieving Rules into the

6.3 O b je ct-O rie n ted A n a lys is and D esign F u zzy In feren ce System s

107

Rulebase. A fuzzy inference system uses the Rulebase to infer or reason about data at its

input resulting in an output which can be a fuzzy number or a crisp number.

6.3.3 Identifying Objects

As suggested before, the first step in identifying and discovering objects in the problem

domain is by careful analysis of the problem statement and from domain knowledge. The

simplest analysis process utilises nouns found in the description of the problem as a

source of domain objects. These are further analysed to eliminate pseudo objects, aliases

and spurious objects (objects in the problem description which have no bearing in the

application or which are really attributes of other objects).

Table 6.3-1: Objects as Nouns ih the problem description

Logical Connective Proposition Sentence Statement

Simple Statement Antecedent Implication Logic

Membership Function Implication Premise Conclusion

Fuzzy Inference System Consequent Rule Qualifier

Compound Statement Rulebase Data Fuzzy Hedge

Linguistic Variable

Analysis shows that some of the identified objects are aliases for previously identified

objects in the context of the Fuzzy Inference System, e.g. Proposition and Statement,

Implication and Rule, Premise and Antecedent, Conclusion and Consequent. Other

objects including Sentence, Logic and Logical Connective are either not relevant to tine

application domain or are not really objects. A data dictionary can be constructed so that

the role each object plays in the system is clearly defined.

The Data Dictionary

Rule — A fuzzy implication or conditional of the form “i fp then o f .

Proposition — A verbal or mathematical sentence that can be either True or False.

Statement — Another name (alias) for a Proposition, also a simple statement.

Compound Statement — Two or more statements combined using logical connectives.

Premise-—The first half of a Rule, also known as antecedent.

108

Conclusion — The second half of a Rule, also known as consequent.

Linguistic Variable — A fuzzy predicates whose values are words or sentences in a

natural or synthetic language.

Membership Function — A membership function realises a fuzzy linguistic variable in

some universe of discourse.

Qualifier — A fuzzy qualifier or Modifier alters the shape of a membership function to

fine tune its response to a particular set of inputs.

Rulebase — A collection of rules for use in an inference system.

Fuzzy Inference System — A software/hardware system that makes use of pre-stored

or generated Rules to reason about data presented at its input.

Data — Patterns presented at the input of a Fuzzy Inference System

6.3.4 Organising the objects in the Funyry Inference System

A domain object model for the fuzzy inference system is in Figure 6.3-1. As mentioned

before, domain objects are objects which are generally accepted by experts in the domain

as pertinent to any application in the domain. The figure shows the different

relationships that exist between objects in the fuzzy inference system. For instance, a

“uses” relationship exists between the inference system and both Data and Rulebase. An

aggregation relationship exists between Rulebase and Rules while the relationship

between Linguistic Variables and Membership functions is one of generalisation or

specialisation. Each Rule in turn is composed of a Premise part and a Conclusion part.

Both Premise and Conclusion are related by virtue of the fact that they are all part of a

Rule and also because Conclusions are usually with respect to preceding Premises. Both

Premise and Conclusion have a Statement as an integral component, i.e. Statements make

up both the Premise and the Conclusion. A Statement in turn consists of a Membership

function and one or more Qualifiers (Modifiers). Finally, Membership functions are

realisations of Linguistic Variables while Fuzzy hedges are a special kind of Qualifier.

1 0 9

Figure 6.3-1: Domain Object Model for Fuzzy System

6.3.5 Determining operations on Objects

The different objects in the Fuzzy Inference System co-operate at a low level to perform

a high level function. This function is not evident when the individual objects or the

object diagram is examined. A functional model of the system shows what inputs are

required and the transformations that the system performs on these inputs. Functional

models are expressed in terms of dataflow diagrams. Figure 6.3-2 and Figure 6.3-3 show

the context and level one dataflow diagrams respectively for the Fuzzy Inference System.

Input Data

Rules

Figure 6.3-2: Context Diagram for Fuzzy Inference System

110

Figure 6.3-3: Level 1 dataflow diagram for Fuzzy Inference System

The system context shows that Input Data and Rules have to be entered into the system.

These are transformed into inference results which are fed back to the User. The level 1

dataflow diagram shows the sequence of transformations that take place to convert the

inputs to the final output seen by the User. Some of the processes can be further

decomposed to give even lower level processes that describe the transformations in

greater detail.

A dynamic model can be constructed for some of the system objects in order to portray

the different states in which the objects can be in at different times. The behaviour of an

object and hence the operations required of the object states is completely defined by

knowledge of the states, the activities performed within those states and the events that

cause transitions to other states.

I l l

Inference System

Start
?

Rules Presented/Initialise Rulebase

defuzzify output memberships

*
Fuzzy Reasoning Completed

Figure 6.3-4: State transition diagram for the Fuzzy Inference System

Dynamic models are expressed in the form of state transition diagrams. Even for small

systems, with few objects, an enumeration ot all the possible states of all objects is

extremely tedious because the number of possible states can be quite large. In theory, for

a system with n objects each having m attributes, the number of possible states can

approach n* m\ as each change in an object’s attribute is a possible cause of change in

the state of the object and hence the system. The net effect is that, state transition

diagrams are only constructed for those objects that are deemed to have important

dynamic characteristics. Even then, only the major states and the most pertinent

transitions are represented in the state diagram. Figure 6.3-4 shows the major states in the

Fuzzy Inference System and the events that cause transitions between the states.

112

The purpose of an object-oriented design is to produce an architecture for a software

system. As was the case with the Neural Network system, the design process seeks to

produce a robust architecture for fuzzy systems based on information contained in the

different analysis models. In the design process, the domain objects are moderated into a

form suitable for implementation in a target language. Other supporting objects, not

found in the description of the problem but necessary for efficient implementation of the

system are also incorporated. The system is then partitioned into subsystems that can be

easily implemented and that will remain robust and intact during it’s lifetime as

modifications and maintenance take place. The following subsystems were identified:

• Input Subsystem

• Rule Processing Subsystem

• Rule Activation Subsystem

• Sampling Subsystem

• Analysis Subsystem

As with the Neural Network design, the Input Subsystem handles interactions with the

User. It incorporates objects to handle user inputs and hold parameters required for

initialising other system objects. The Rule Processing Subsystem handles the insertion,

modification and removal of rules from the Rulebase. It also deals with pre- and post­

processing of the rules. The pre-processing translates the rule numbers into the mask

which depends on the membership functions in the rule premise. The post processing

converts the rules into English language if. ..then form which is understandable to the

user. Pre- and Post- processing of the rules is necessary because the Rules are stored as a

pattern of numbers which are offsets pointing into a table of membership functions. This

avoids the need for dedicated lexical analyser and parser to understand and translate

Rules written in English into a suitable format for use in the Inference System. The Rule

activation Subsystem is really the inference engine. It handles the fuzzification, inference,

composition, defuzzification required for fuzzy reasoning. It makes use of the Sampling

Subsystem used to discretise output membership functions during the composition and

defuzzification. The Analysis Subsystem simply processes and displays the results from

the reasoning process. It doesn’t have to be integrated in the system design and for the

moment consists of an off-the-shelf spreadsheet to process and plot the results. Figure

6.3.6 Design o f Fu%y Inference System

113

6.3-5 shows how information flows amongst the different subsystems that make up the

Fuzzy Inference System.

Rulebase

6.3.7 Implementation o f the Fusyy Inference Systems

To test the design, a prototype system with the four rules described in [105] was

implemented using C++ on a SUN SPARC. The rules represent the benchmark XOR

problem with two input variables and one output variable. The rules are as follows:

• If X is Low and Y is Low then Z is High

• If X is Low and Y is High then Z is Low

• If X is High and Y is Low then Z is Low

• If X is High and y is High then Z is High

X and Y are the input variables, Z is the output variable, and High and Low are the

Membership functions. The universe of discourse for both X, Y and Z is given

0 < (XiriZ) < 10. Both High and Low are Triangular membership functions given by

the following equations:

Low(x) = \ - jô
High(x) = jô

(6.3-1)

114

For this simple system, each Rule object is implemented as a simple C++ class whose

attributes are offsets in a membership function table. The Rule class declaration is show

in Figure 6.3-6 below

class Rule {
public:

int x;
int y;
Rulefint a=0, int b=0) { // default constructor

x = a;
y = b;y

~Rule(){}
};

// destructor

Figure 6.3-6: Declaration of a simple Rule class

The input fuzzy subset is partitioned into two; Low and Fligh membership functions for

each fuzzy variable. The rulebase has the four rules presented above. Figure 6.3-7 shows

C++ declarations for the membership functions, the table of membership functions and

the input and output membership functions tables that make up the rulebase.

Typedef float T; // T is an alias for float

T lowt(T val) { return 1.0 - val/10.0 ; } // implementation of low membership function

T hi_t(T val) { return val/10.0 ; } // implementation of high membership function

T (*mf{])(T) = { lowt, hi_t }; // mf is an array of membership functionss
// mf[0] = lowtQ, mRl] = hi_t()

static int rulebase[] = {1,0, 0, 1 }; // The nilebase, initialised with four rules
// membership functions, e.g. rulebasefO] = lowtO

!
static Rule r0 = {Rule(0,0), Rule(0,l), Rule(l,0), Rule(l,l)}; //initialised array of 4 rules

Figure 6.3-7: Declaration of membership functions and fuzzy Rulebase

In the figure, loivt and hi_t are the LOW' and HIGH membership functions respectively,

m f is the table of membership functions, nilebase[j is an array that represents the four

output membership functions required for the conclusion part of the Rule and finally r f

is an array that represents four pairs of membership functions for each rule’s premise.

Figure 6.3-8 shows the membership functions plotted over the given universe of

discourse. The system was tested using both Min Inference with Max Composition and

Product Inference with Sum composition. A plot of the sampled output membership

function for X = 0.0 and Y' = 3.2, after Sum composition is given by Figure 6.3-9. A

115

thousand samples were used to represent the universe of discourse. Centre of Gravity

defuzzification was used to obtained the final crisp output. To calculated the centre of

gravity for the sampled system, each sample is multiplied by the sampling step and all the

products added together to give the area under the output membership function. This is

then divided by the sum of all the samples.

M em bership Functions fo r

u(x)

1

Figure 6.3-8: Triangular Memberships for Prototype system

1.6 j
1.4 -
1.2 -

1 -

0.8 -

0.6 -

0.4 -
0.2 -

o 4-4
1 101201301401 501601 701801901

Figure 6.3-9: Sampled output membership showing Sum Composition

6.4 A Fuzzy Inference System for predicting harmonics in AC power networks

6.4.1 Introduction

Switching elements present AC-DC systems are a primary source of harmonics that are

fed into the power networks. Detrimental effects of these harmonics include overheating,

resonant overvoltages, communication interference and false tripping of relays. FIVDC

converters produce harmonics in the conversion process from AC to DC current. The

harmonics can propagate into both the AC and DC transmission lines and can cause

electromagnetic interference in their vicinity. In Flexible AC Transmission Systems

(FACTS), the use of use of modern reactive power compensators such as thyristor-

controlled reactors and thyristor-switched capacitors further injects harmonics at the

prototype system

116

point of common coupling. This can cause harmonic instability by creating resonant

overvoltages at lower order harmonic frequencies. To minimise interruptions and

improve the reliable operation of the power system, the harmonics must be eliminated or

suppressed. When the harmonic frequencies are known, the required harmonic

component may be easily extracted from the polluted electrical waveform. The usual

practice is to install a range of filters tuned to the frequencies of tire harmonic

components. Passive filters are used to supply a low impedance path at certain harmonic

frequencies so that the harmonic currents can be short-circuited within the HVDC

station. Unfortunately, the cost of installation and maintenance of these filters is

prohibitively high.

Research and development into active filters have been boosted by major advances in key

technologies including pulse width modulation (PWM) and digital signal processing

(DSP). Active filters have been proposed as a means of overcoming some of the

limitations of conventional filters in power supply systems [113]. The operation of a

general active filter can be described as follows: The harmonic current is measured by a

transducer. The measured signal is transmitted through optical fibres to DSP units. The

power part of the active filter usually incorporates a high frequency transformer and a

PWM power amplifier that functions as the harmonic voltage source. The voltage source

sends harmonic currents on to the power line through bypass switches and any existing

passive filters. A control unit ensures that the harmonic currents generated active filter

have the opposite phases to the harmonics generated in the power network. In this way,

the line harmonic currents are compensated. Figure 6.4-1 shows an example active filter

using switched-capacitor circuits to generate the harmonic currents. The switched-

capacitor filter consists of two capacitors in parallel with bi-directional switches in series

with each capacitor. A third branch containing a small resistor is switched into the circuit

to facilitate the smooth transfer of current between the capacitor branches. The filter is

connected to the main power network via a small transient limiting inductor. The three

switches are controlled to generate antiphase harmonic currents into the power network.

117

r n

Figure 6.4-1: Switched-Capacitor Filter

In designing harmonic suppression filters, individual harmonic distortion or the total

harmonic distortion expressed with reference to the fundamental frequency is an

important index [114]. In theory, the nature of the harmonics and the frequencies

present can be determined, given that the input current type is known. For instance, if

the input current is a square waveform, then odd harmonics will be generated with

amplitudes in inverse proportions to their orders. In practical implementations, the

calculations become extremely complicated as thyristor firing angles and commutation

times cannot be exactly controlled. Also, it is standard practice to have filters attached to

the line to suppress all or some of the harmonics. Where passive filters are used, single

tuned filters are used to eliminated low individual low frequency harmonics and a low

pass filter to cut off higher order harmonics. The presence of the filters adds to the

complexity of the resultant harmonics and make it even more difficult to predict. Many

transformation techniques including FFTs [115] are available for computing the Fourier

components of the harmonics. In the field of power systems, state estimation approaches

that make use of Kalman filters have usually been employed as a means of identifying the

harmonic contents [116]. Recently, computation intelligence techniques especially neural

networks have proposed as a means of estimating the harmonics present in power

networks [89, 117, 118]. It has been shown that trained neural networks can be used to

estimated harmonic components in real time. In [89], the neural network training data is

obtained by simulation over the operating range of the power network with different

load, supply voltage and filter parameters. The level and content of the harmonics is

measured for each case. The neural network learns a mapping between the system

configuration and the harmonic contents. This approach is extremely tedious even for

small systems with very few parameters because the of number simulations runs required.

Furthermore, when the structure of the network changes, the training data will have to be

118

regenerated and a new neural network trained to predict the harmonics. The cost of

obtaining data and retraining the networks is a major limitation to the neural network

approach.

The approach proposed here to determine the implicit rules that govern the nature and

content of harmonics in a network. These rules are expressed explicitly in the form of

fuzzy if...then rules which can be processed and stored in a fuzzy rulebase. A fuzzy

inference engine is then constructed using the rules to predict the harmonics in the

network. The use of a rule-based fuzzy inference engine as opposed to an expert system

offers considerable speedup in the processing of rules. This is because expert systems

perform symbolic processing which is considerably slower than the equivalent fuzzy

arithmetic operations performed in a fuzzy inference engine. The rules can be obtained

through empirical studies of harmonics in power networks or through expert knowledge

which comes from real world experiences of harmonics in power systems. In the absence

of both, a third alternative is to simulate harmonic production in a small network while

varying the system configuration. This gives an idea of harmonics content with different

system configurations. As with the neural network approach, this is a vary tedious

process but with the exception that the rules need to be determined just once from the

simulation data. This approach presupposes that the same rules govern tire production of

harmonics irrespective of the structure of the system. Hence, a change in the structure of

the system will not necessarily require a completely new set of rules.

6.4.2 C.onstmctino the R¡debaseO

This section presents the process by which the explicit rules that govern the nature and

content of harmonics in a single phase-controlled converter can be obtained. Figure 6.4-2

shows a schematic diagram of the phase-controlled converter with the active filter

attached.

119

Figure 6.4-2: Thyristor controlled converter with switched-capacitor filter.

The presence of the filter can significantly alter the harmonic content and so the effects

must be considered. The system is simulated using the EMTP. The simulation is set to

80ms. The input current, I, is in theory a pure sinusoid but the presence of the switching

elements causes harmonics to be generated. For simulation purposes, only a single

capacitance is used. The value is doubled and it is switched twice in each cycle to simulate

the presence of a parallel capacitance branch. For this simple system, there are very few

parameters to be varied. These include: switching time, capacitance, load resistance and

the filter resistance as the most important system parameters. The input signal on the

generator side is obtained from EMTP each simulation run. Fourier analysis is then

carried out to obtain the harmonic contents. Only the first 25 harmonics components are

of interest. These are used to compute a harmonic index which in this case is the total

harmonic distortion (THD). It was realised that the harmonic content was pretty much

independent of the load which meant that the load could be kept constant. A total of 394

different values for harmonic distortion were obtained by varying the resistor value,

capacitance and switching times. The capacitor values range from 50uF to 800uF. The

resistor values range from 10f2 to 100f2 in lOfi increments. Finally, the switching time

for Si and S2 are made to vary between 0.2ms and 1.0ms. Figure 6.4-3 shows the general

120

trend of the harmonic distortion for all switching times and all resistance values when

plotted against capacitance.

Trend graph for THD with Capacitance

Figure 6.4-3: Plot of Total Harmonic Distortion
(THD) for all Capacitance values

The required rules are obtained by observation and careful analysis of the way the

harmonic index changes with the different parameters. The observations are in the form

of trend graphs for THD as the different parameters vary. The first set of graphs in

Figure 6.4-4 show how the harmonic distortion varies with capacitance for different

resistance values and different switching times.

121

Figure 6.4-4: Variation of harmonic distortion with
capacitance for different switching times

If can be seen from the graphs that the harmonics values tend to be high when the

capacitance is low. As the capacitance increases, the harmonic distortion tends to

decrease until a trough of around 500uF. This can be considered as medium values of

capacitance. For higher values of capacitance, i.e. >500, the harmonics distortion

increases again but much more slowly. A similar trend can be established for the way the

harmonics change with the resistance values. From the graphs , it can be seen that when

the resistance is low, the harmonics values tend to be higher and the harmonic values fall

slightly as the resistance increases.

122

Change in THD with Rf
t=0.125

50 -,

40 • C=100uf

? 30 - ---------------------- ------------- C=200uF

Q C=400uF
jE 20 ... ■ ------------- C=600uF

10 - - - C=800uF

0 —I—I—I—I—I—I—I—I—I
o
co

oin o ocn
Rf

Change in THD with Rf
t=0.5

-----C=100uf

- - C=200uF

- - - C=400uF

■ - - C=600uF

-■ C=800uF

Rf

Figure 6.4-5: Variation of Harmonie Distortion with Resistance

The graphs in Figure 6.4-5 demonstrate how the harmonic distortion decreases as the

resistance increases. The change in the three graphs for different values of switching time

further demonstrates that the harmonics change only gradually with the time.

123

Change of THD with switching time
C=50uF

t(m s)

--------------Rf=10

--------------Rf=50

................R f=100

Change of THD with switching time
C=300uF

CMd

• Rf=10

■ Rf=50

R f=100

t(ms)

Change o fT H D w it h switching time
C=700uF

t(m s)

------------Rf=1 0

------------Rf=50

............. Rf=100

Figure 6.4-6: Variation of Harmonic Distortion with
switching time

124

The last set of graphs confirm the slow variation of the harmonic distortion with

switching time.

The next step in the construction of the fuzzy Rulebase involves setting up the fuzzy

subsets. A fuzzy subset is constructed for each of the variables in the system. Input fuzzy

subsets are constructed for the capacitance, resistance and switching time while an output

fuzzy subset is constructed for the harmonic distortion. Each fuzzy subset consist of 3

fuzzy or linguistic variables; namely Low, Medium and High. Triangular/trapezoidal

membership functions have been used to construct the both the input and the output

fuzzy subsets because they are mathematically easier to process. For each variable, the

universe of discourse is partitioned into 3 equal portions. Each linguistic variable is

expressed as a membership function over a single fuzzy partition. The combination of

the 3 membership functions a linguistic variable over its universe of discourse represents

the fuzzy subset for that variable.

Membership functions for Capacitance

125

Membership functions for Resistance

Membership functions for the switching time

Membership functions for Harmonic Distortion

Figure 6.4-7: Fuzzy subsets for the different system
parameters

126

The membership functions for the Capacitance are as follows:

LOW(C) ={ 1, ifC < 212.5uF,

— C+ 2, ifC > 212.5uF and C < 425uF,
212.5

0 , ifC > 425uF }

MEDIUM (C) = {0, if C < 212.5uF,
1

C - 1, lfC > 212.5uF and C < 425uF,
212.5

1
C + 3, if C > 425uF and C < 637.5uF,

212.5
o , if C > 637.5uF }

HIGH(C) ■■= {o , if C < 425uF,

------ C -2 , if C > 425uF and C < 637.5, (6.4-3)
212.5 V '

1, if C> 637.5 }

Similar equations were written to describe the membership functions for Resistance,

switching time and Harmonics distortion. By combining the trend graphs in Figure 6.4-4,

Figure 6.4-5 and Figure 6.4-6 with the input and output fuzzy subsets in

Figure 6.4-7, the fuzzy if. ..then that govern the nature and content of the harmonics can

be written.

Some examples of the rules that were deduced are as follows:

ifC is High and R is Medium and t is Low then Harmonics is Low

i f C is Medium and R is Low and t is High then Harmonics is Medium

ifC is Low and R is Medium and t is Low then Harmonics is High

i f C is Medium and II is Mediuin and t is Medium then Harmonics is Medium

For a system with 3 input variables, each represented by a fuzzy set with membership

functions, a maximum 27 rules can be written from all combinations of input variables

and membership functions. The output membership function (i.e. for harmonic

distortion) that correspond to each rule was deduced directly from the actual data as

represented by the trend graphs in Figure 6.4-3, Figure 6.4-4, Figure 6.4-5 and Figure 6.4-

6. The set of rules in the Rulebase is shown in 'fable 6.4-2. Once the rules have been

deduced, tables of membership functions are created for Capacitance, Resistance

1 2 7

Switching time and Flarmonic Distortion. This is necessary because, even though the

input and output fuzzy subsets have similar shapes and the same number of input

variables, the universes of discourse are different, hence different membership functions

are required. For example, the universe of discourse for Capacitance is

50uF < C < 800uF while that for Resistance is 10f2 < R < 100Q . The rules are stored in

a file as patterns of numbers in the range 0-2:

where 0 represents low,

1 represents medium and

2 represents high.

An extract from the Rules file for the four example rules above is shown in Table 6.4-1

Table 6.4-1: Format of Rule file

Rule Number Capacitance Resistance Switching time Harmonics

22 2 1 0 0

12 1 0 2 1

4 0 1 0 2

13 1 1 1 1

A Rule Processing Subsystem reads the patterns and converts them to the appropriate

membership functions using a lookup table of functions. As mentioned before, this

avoids the need for a dedicated lexical analyser and parser in order to translate and

understand if. ..then rules written in the English Language. The Rulebase can then be

constructed when the inference system is initialised by reading in the rules from file.

128

No

"l....

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Table 6.4-2: The Rulebase fo r inferring Harmonics Distortion

Capacitance Resistance Time Harmonic Distortion

low low low high

low low medium high

low low high high

low medium low high

low medium medium high

low medium high medium

low high low medium

low high medium medium

low high high high

medium low low medium

medium low medium medium

medium low high medium

medium medium low low

medium medium medium medium

medium medium high medium

medium high low low

medium high medium medium

medium high high medium

high low low low

high low medium low

high low high low

high medium low low

high medium medium low

high medium high low

high high low medium

high high medium low

high high high low

120

6.4.3 Results

The first 90 patterns input patterns from the EMTP simulation are used as inputs to the

fuzzy inference system to test its operations. This represents the complete range of

capacitance and resistance values for one value of switching time. The normalised

predicted harmonics plotted against pattern number as shown in Figure 6.4-8. When

compared with the first cycle of the harmonics Vs time from the simulation (Figure 6.4-

3), the graph shows that the fuzzy system is capable of inferring the general trend of the

harmonics even though the exact values are not correct.

Normalised Harmonics Vs Pattern Number

-Actual

Predict

T H D

Figure 6.4-8: Normalised Harmonics Vs Pattern Number

Over the complete range and especially for normalised input values, the predicted

harmonic values are very poor as can be seen in Figure 6.4-9 and Figure 6.4-10. There are

a number ot possible reasons tor the poor performance. It is possible that the Rules that

describe how the harmonic distortion changes with time are not correct. The number of

simulations that could be carried out by changing the switching time is severely limited by

the tedious nature of the data collection process. An exhaustive simulation over a wider

switching time, Capacitance and Resistance range could well have yielded more accurate

trends in the way the harmonic distortion varies with the different parameters and hence

better rules tor the inference process.

130

Normalised Predicted Harmonic Distortion

Figure 6.4-9: Predicted Harmonics Distortion
using Normalised inputs

Normalised Harmonic Distortion Vs Pattern Number

Actual

Predicted

Figure 6.4-10: Predicted Harmonic Distortion for
Normalised Inputs for all Patterns

It is also possible that the partitioning of the input and output fuzzy subsets was

insufficient to correctly represent the required mapping. The use of three linguistic

131

variables Low, Medium and High results in a very coarse partitioning of the input and

output fuzzy subsets. A finer partitioning over the same universe of discourse, with say

five or seven linguistic variables and/or smooth membership functions would result in

smoother transitions between rule firings. Unfortunately, considerable effort is required

to derive the very large number of rules that would result makes from finer partitioning.

Example fuzzy sets with five and seven linguistic variables to represent Capacitance is

shown in Figure 6.4-11: Finer partitioning of Universe of Discourse for Capacitance and

Figure 6.4-12 respectively. 50

Membership Functions for Capacitance

Figure 6.4-11: Finer partitioning of Universe of
Discourse for Capacitance

Membership Functions for Capacitance

50 175 300 425 550 675 800
C (uF)

Figure 6.4-12: Even finer partitioning of Universe of Discourse for capacitance

132

6.5 D isc u ss io n and C o n c lu sio n s

Conventional inference systems that rely on symbolic processing of pre-stored rules have

been criticised for being too slow because of the huge computational burden required by

symbolic computation and the sequential firing of rules necessary to infer a single

decision. They are also very tedious to design and implement because of the

disproportionate amount of work required to collect, collate and formulate the necessary

rules even for average sized inference systems. Fuzzy inference systems provides a faster

alternative. Fuzzy rules are much more simpler to formulate because of the built-in

vagueness and imprecision. Furthermore, fuzzy rules are processed numerically rather

than symbolically which makes fuzzy rule processing not only less demanding of storage

space but also orders of magnitude faster than their symbolic counterparts. Finally rules

in a fuzzy rulebase usually fire in parallel whereas symbolic rules are more often

sequential. The combination of numeric processing, small storage requirements and

intrinsic parallelism, makes it possible to implement fuzzy inference systems on dedicated

VLSI hardware where even higher speeds have been attained.

This chapter has demonstrated how fuzzy systems can be analysed, designed and

implemented using object-oriented techniques. Two sample implementations have been

realised using the C++ programming language. The first is a simple test system with four

rules that demonstrates that such analysis and design procedure can be used to realise

working fuzzy inference systems. The second represents the development of an inference

system tor a practical problem where the rules have to be derived. Even though the initial

results are not very good, they still show the potential high benefits of fuzzy inference in

solving practical problems.

133

C h a p t e r V I I

EVOLUTIONARY COMPUTATION

7.1 Introduction

Natural evolution produces increasingly fit organisms in complex environments which are

highly uncertain for individual organisms [119]. The individual organisms have to learn to

adapt to changing environmental conditions if they are to survive. Global optimisation

algorithms imitating certain principles of nature have proved their usefulness in various

applications domains [120]. Evolutionary Computation (EC) is useful for optimizing

problem solutions when other techniques like gradient descent or direct analytical

discovery are not possible [121]. Evolutionary Computation may currently be characterised

by the following: Genetic Algorithms (GA), Evolutionary Programming (EP), Evolution

Strategies (ES), Classifier Systems (CFS), Genetic Programming (GP), and several other

problem solving strategies, based upon biological observations that date back to Charles

Darwin’s discoveries in the 19th century: the means of natural selection and the survival of

the fittest, i.e. the “theory of evolution.” The resulting algorithms are thus termed

Evolutionary Algorithms (EA).

Evolutionär}7 Algorithms use computational models of evolutionary processes as key

elements in the design and implementation of computer-based problem solving systems. A

variety of evolutionary computational models have been proposed. They share a common

conceptual base of simulating the evolution of individual structures via processes of

selection, mutation and reproduction. The processes depend on the perceived

performance of the individual structures as defined by a given problem environment.

Genetic Algorithms are the most popular and widely used ot all the evolutionary

algorithms. They have been widely applied to solve complex nonlinear optimisation

problems in a number of engineering disciplines [122]. Like other computational intelligent

systems such as Neural Networks and Fuzzy Systems, Genetic Algorithms currently exist

as lines of computer code written to solve particular problems. The previous chapters have

attempted to redress the situation by providing a software engineering base from which

Neural and Fuzzy systems can be constructed. In this chapter, a similar analysis and design

philosophy, using object-oriented approach is presented for the construction of Genetic

13-1

Algorithms and Learning Classifier Systems. The use of object-oriented techniques means

that a GA component can be created and incorporated into other designs where an

evolutionary solution is required. The high level of reuse exemplified by such an approach

is demonstrated in the construction of a Genetic Learning Classifier System incorporating

the GA design.

7.2 Genetic Algorithms

7.2.1 Introduction

Genetic Algorithms (GA) are robust search mechanisms based on the principle of

population genetics, natural selection and evolution [123]. Genetic Algorithms perform

global search on the solution space of a given problem domain [124]. Genetic search is

capable of satisfying strong hidden constraints with reasonable efficiency. The

characteristics of genetic search mechanisms that enable them to be able search globally

and still converge to a solution include :

Learning while searching: As GA search progresses, the scope of the search is narrowed

as information about the function space accumulates.

Sustained exploration: The GA incorporates mechanisms that prevent the search space

from being irrevocably narrowed so far as to let the optimal solution states to slip

permanently through the GA search net.

Genetic search is characterised by three components:

Ongoing state(£2): The ongoing state represents knowledge that contains information

previously acquired during the search and also a means of feeding information from past

searches to aid the current or future search.

Search Function (S): Uses the ongoing state at time (generation) k to generate the next

point to search. [S(£2) = x_{k] }.

Learning Function (L): Uses the ongoing state and the location and value of the most

recently searched point to update the ongoing state.

Search strategies can broadly be divided into three categories [125]:

7.2.1.1 Path based models

In path based models, the search space is recursively defined by a starting state and a set of

state to state transition operators. The search strategy then has to find a solution state and

135

a path to it from the starting state. Examples of path based search include tree searching

techniques such as depth first search.

7.2.1.2 Point based models

Point-based models maintain the location and value of one point in the search space

defined to be the current point. A neighbourhood is defined around this point to be the

promising region. The current point is used as the standard for comparison. New points

are generated at each step of the search. Better points get credit by becoming the current

point while bad points are discarded.

7.2.1.3 Population based models

Population-based models maintain a set of locations and values in the function space. The

average value of the population can be used as the standard of comparison and a discovered

good point can be added to the population according to some rule or rules.

7.2.2 Features o f Genetic Algorithms

Genetic algorithms belong to the class of population-based search strategies. They operate

on population of strings (chromosomes) that encode the parameter set of the problem to

be solved over some finite alphabet. Each encoding represents an individual in the GA

population. The population is initialised to random individuals (random chromosomes) at

the start of the GA run. The GA searches the space of possible chromosomes (hamming

space) for better individuals. The search is guided by “fitness” values returned by the

environment. This gives a measure of how well adapted each individual is in terms of

solving the problem and hence determine its probability of appearing in future

generations. A binary encoding of the parameters of the problem is normally used. It has

been mathematically proven [123] that the cardinality of the binary alphabet maximises the

number of similarity templates (schemata) on which the GA operates and hence improves

the search mechanism.

Two types of rules are used by Genetic Algorithms in their search for highly fit individuals;

selection rules and combination rules. The selection rule is used to determine the

individuals that will have a representation in the next generation of the GA. The

combination rules operate on selected individuals to produce new individuals that appear

in the next generation. The selection mechanism is based on a fitness measure or objective

function value, defined on each individual (chromosome) in the population. Two major

selection mechanisms are commonly adopted in GA search. Roulette wheel selection and

136

tournament selection. In roulette wheel selection, the probability of being selected is

proportional to an individual’s fitness value. Therefore, highly fit individuals have a higher

probability of being selected and hence of being represented in the next generation. In

tournament selection, a fraction of the individuals in the population are randomly selected

into a sub population and competition carried out to select the fittest individuals in each

sub population. Table 7.2-1 and Figure 7.2-1 show a comparison between roulette wheel

and tournament selection for a population of 10 individuals with randomly initialised

fitness values between 0 and 100. The population is sampled 1000 times in each generation

and the number of wins per individual is averaged over 10 generations and tabulated. For

tournament selection, the sub population size is set to half of the population size.

Table 7.2-1: Comparison between Roulette Wheel and
Tournament selection mechanisms.

Fitness Roulette Wheel Tournament
9 15 0

74 147 133
32 83 0
93 199 487
40 70 0
61 119 18
75 139 304
41 63 0
48 69 2
62 96 56

Total 535 1000 1000

12% 7%

Figure 7.2-1: Pie Charts comparing the different selection mechanisms

The results show that roulette wheel selection gives even the least fit members of the

population a chance of getting represented in the next generation. Tournament selection,

137

on the other hand, is strongly biased in favour of the fittest individuals with a subset of the

least fittest individuals guaranteed to disappear from the population in each generation.

Combination rules are used to introduced new individuals into the current population or

to create a new population based on the current population. The genetic algorithm uses

certain operators (genetic/search operators) [123, 125] in the combination process. The

most commonly used genetic operators are crossover and mutation. Other less

commonly used ones include inversion and deletion. The combination rules act on

individuals that have been previously selected by the selection mechanism. A reproduction

process takes place between the selected individuals in the current generation to produce

offspring that become individuals in the next generation (Figure 7.2-2).

Indivduall
'Ir ' *

.......................... 1
Indivdual2

noiol i ! ° l i l i 10

~oOo

r Reproduction ^
Crossover ,̂ 1.0)

Offspring 1 *
1001oil i li—- . —8—•

Figure 7.2-2: Schematic diagram depicting the
reproduction process

Crossover is a combination rule that produce offspring in the hamming interpolation of

the parents. The crossover operator produces a non-uniform sampling probability

distribution over the subspace. When standard or one point crossover is applied on a pair

of chromosomes, a real value generated at random is compared with the crossover

threshold, if the value is less than the threshold, then a random site is picked for crossover

of genetic material between the two chromosomes. A number of alternative crossover

strategies have also been suggested 1126]. These include: two point crossover, multi-point

crossover and uniform crossover. In two point crossover, two sites are selected at random

and the participating chromosomes swap genetic material between the sites. Multi-point

crossover is similar to two point crossover. Here, the number of crossover points is

selected at random and alternative sections of genetic material swapped between

participating chromosomes. Finally, with uniform crossover, a crossover mask is generated

initially for all chromosomes. For each mask position, a real value is generated at random

and compared to the crossover threshold. If the value is less than the threshold, then the

138

mask at the position is set otherwise the mask is cleared. For a pair of participating

chromosomes, exchange of genetic material takes place only at positions where the mask is

set. Figure 7.2-3, Figure 7.2-4 and Figure 7.2-5 show how the different crossover strategies

are applied to a pair of participating chromosomes and the resulting offspring.

I Indivduall Indivdual2 j

1’ 1 1 jo 0 1 0 1 1l 1lj
Reproduction

OnepointCrossover(5,1.0)

Offspring 1 fi mpalili! 11 0 0 1
Offspring2mss

Figure 7.2-3: One point Crossover

Indivduall Indivdual2 i
iiîfnwHgfiiBflÿiü [i|o|o|i]o|i|i|i]i

f yi..
Reproduction Ì

TwopointCrossover(2,5,1.0)
V__ __2

[Offspring 1 j* — ► Offspring2
1 liO fjffBf 1 M i U

Figure 7.2-4: Two point Crossover

Indivduall Indivdual2

C r
--------------*------^
Reproduction

UniformCrossover(l .0)

_oj||olo||[o) j

|oo|111o|

OffsDring 1

nnii1 t ill1D
1------>

O ffsD r in e 2 j

1? 0
MlU!® 1 n ili

Figure 7.2-5: Uniform Crossover

139

Mutation is the random occasional alteration of the information contained in the

chromosome. The mutation probability determines how often mutation occurs. By itself,

mutation is a random walk through the hamming space but when mutation is combined

with crossover, it acts to improve the performance of the Genetic Algorithm by

preventing premature loss of genetic information from the GA population.

7.2.3 Object-Oriented Analysis o f Genetic Algorithms

An object-oriented analysis of Genetic Algorithms is performed to:

• understand the problem,

• identify objects which will remain important in the life of the application,

• identify the relationships between the different objects and the ways in which the

objects interact,

so that a correctly working, robust and easy to maintain GA system can be designed and

subsequently constructed.

7.2.3.1 Identifying objects in the GA domain

The process of analysis begins by identifying the objects found in the GA problem

domain. As mentioned before, the objects in the domain can be obtained by a careful

analysis of the problem description combined with expert knowledge of the particular

problem domain. In the absence of the later, domain analysis can be carried out to identify

the objects which experts in the domain perceive to be important to applications in the

domain. This is done by studying previous applications, by talking to the experts and by

reading the literature. In the GA domain, five main objects have been identified: Genes,

Chromosomes, Individuals, Population and Genetic Algorithm (GA). A dictionary has

been created for the objects so that their use in the description of the Genetic Algorithms

is unambiguous.

The Data Dictionary

Genetic Algorithm — Robust search mechanism based on population genetics and natural

selection. A Genetic Algorithm object is an algorithmic object that evolves highly fit individuals

that represent a parameter encoding of a problem to be solved.

Population — Tire collection of individuals on which the GA acts.

Individual — A structure representing a parameter coding of die problem to be solved.

140

Chromosome — In biology, a Chromosome is a locus of alleles that determine the phenotype of

an individual organism. In a GA, a Chromosome is a collection of Genes that holds structural

information about individuals found in the GA Population.

Gene — A Gene or Allele is the information contained in a single position or locus of a

Chromosome. It represents the lowest level coding of the parameters of the problem to be solved

by the Genetic Algorithm.

It should be stressed that analysis is done in the problem domain, and analysis domain

objects are problem domain objects. The aim is to uncover important objects and

relationships so that a correct GA system can be designed. A domain object model is used

to describe the static structure of the system and the relationships between the domain

objects. A class diagram representing the domain object model is shown in Figure 7.2-6.

Figure 7.2-6: Genetic Algorithm Domain Object Model

lhe domain object model shows that a GA system makes use of a Population of

Individuals. Each Individual is composed of Chromosomes and have a fitness value.

Chromosomes in turn are a certain Length and are made up of Genes. Each Gene has a

character which represents the information that the gene encodes.

141

7.23.2 Discovering Object Operations

A dynamic model of the Genetic Algorithm can be created to show the different states

that a GA can be in and the events that it responds to. The behaviour of the GA is

dependent on the operations that can be performed on it and the events that it can

respond to. The dynamic model, enumerates the important states which need to be

captured in any GA implementation and hence the operations that are required in the GA

interface. Dynamic models are expressed in terms of state-transition diagrams. Figure 7.2-7

shows a state-transition diagram for the Genetic Algorithm.

Genetic Algorithm_____
Start

I

Figure 7.2-7: Genetic Algorithm State Transition Diagram

The different events, create, initialise, and run, will cause a state transition in the GA when

they are received. The action parts of the event (where present) will be carried out as a

result of the state transition. For example, when a create event is received, the GA

population is created and the state of the GA changes to On-initialised. On receipt of an

initialise event, die population is initialised and causes a state transition to Initialised. The

Running state is entered when the run event is received. While in the Running state, the

142

regenerate activity takes place to continually regenerate the GA population. When the

activity finishes, the state automatically changes to terminated. The transition to state

terminated occurs when the event generations exhausted is received. The states, Converged and

Diverged are substates or specialisations of Terminated.

7.2.4 Object-Oriented Genetic Algorithm Design

The models developed in the analysis phase are used as inputs to the design phase. The

aim of the design phase is to create a computer implementable blue print for the GA

system. During object-oriented design, the attributes of the domain objects are determined

and the objects themselves are reorganised into class and inheritance hierarchies for easy

and efficient implementation. New objects are also added to the analysis domain object

model which allow the GA to be constructed efficientiy and robustly. The new objects,

sometimes described as system objects, are not found in the vocabulary of the problem

but enable a modular and reusable system to be built. The design process will also seek to

determine efficient data structures and the correct level of granularity for realising the

domain objects and the relationships between them. Finally, the system is partitioned into

subsystems which can be separately constructed and tested so that the overall complexity

of the system is further reduced. The static structure of the system is given by the system

object model shown in Figure 7.2-8. The design diagram shows a more detailed object

model with the associated relationships. In the design, an Alphabet object is used to

represent Genes in the classifier system domain. Alphabets can be a T , ‘0’ or '#’ where '#’

represents a 'don’t care’. An Array data structure is used to efficiently implement

collections. Chromosomes and Vectors are special collections of Alphabets and numbers

respectively and so inherit their behaviour from Arrays. Each Individual is made up of a

Chromosome and a fitness value. The GA Population consists of zero or more

Individuals. The Genetic Algorithm has a uses relationship with both the Population and

the Parameter object used for collecting GA and problem parameters such as Population

size, chromosome string size, number ot generations, crossover and mutation

probabilities, etc. from the users.

143

Figure 7.2-8: System object model of Genetic Algorithm

7.2.4.1 Object Design

For the Genetic Algorithm, the system design phase which will require the partitioning of

the GA into subsystems is not necessary. It is not easy to visualise a partitioning of the GA

into meaningful subsystems that simplify the implementation and can stand on their own.

The input subsystem consists of a single Parameter object that requests GA and problem

parameters from the User. The remaining portion constitutes what is traditionally regarded

as a Genetic Algorithm and so further partitioning is not necessary. Object design is

carried out to fully specify the classes and relationships that have been identified so that a

solution can be implemented. The objects can be fully specified by creating actual

scenarios in which the objects will be used so as to determine the nature of the messages

received by the different objects. Two .scenarios, CREATE, when the GA is created and

RUN when the GA is running are presented to show how the different objects interact.

The scenarios are expressed in terms of object interaction diagrams. In the CREATE

scenario shown in Figure 7.2-9, a Parameter is initialised with a request for the User to

enter the system and problem parameters. A create() call to the GA object results in a

create() call to the Population object. The Population in turn issues create() calls for each

Individual in the population. The creation of an Individual object leads to a further createO

call to the Chromosome object. Finally, the Chromosome calls createO for Array and

Alphabet objects to complete the sequence of createO calls. This sequence results in the

creation of the GA object at the highest level. In creating the interaction diagrams for a

particular scenario, only the very important messages have been enumerated. Furthermore

144

the messages are at a high level of abstraction so that the design diagrams can be kept

simple and focused. Each high level message can be subsequently refined into a number of

lower level messages which can be depicted as separate scenarios or Use Cases. At the

lowest level, the messages are simply member functions in the objects public interface.

System
Boundary Parameter GA Population Individual Chromosome Array Alphabet

Figure 7.2-9: Object Interaction Diagram for CREATE scenario

System

Figure 7.2-10: Object Interaction Diagram for RUN scenario

The running of the GA can be described by a RUN scenario expressed in Figure 7.2-10.

When the GA is first run, a regenerateQ message is sent to the Population object to create

145

a new population from the current population. Population issues selectQ messages to itself

to obtain Individuals for reproduction and sends a reproduce() message to Individual.

Individual in turn sends crossoverQ and mutate() messages to Chromosome. To honour

any mutation requests, Chromosome has to send a mutate() request to Alphabet which

causes a random change in the Alphabet. When the population has been regenerated, a

status() message is sent from GA to Population to perform the house keeping. Population

then sends an ObjfunctionQ message to Individual to update the fitness values of the new

individuals in the population. Individual issues a decode() message to Vector so that the

values of their Chromosomes can be decoded as binary vectors. Finally, the results of each

generation are displayed from a sequence of displayQ messages sent between the objects.

The interaction diagrams show how the Genetic Algorithm objects co-operate at a lower

level to realise the required high level behaviour. The diagrams also show the important

messages that each object has to respond to and hence the nature of the member

functions required in the objects’ public interface. Other member functions are also added

to the objects interface to support construction, destruction and general house keeping

activities like copying, storage and retrieval for each object. Fully specified structures for

Alphabet, Individual and Genetic Algorithm objects are shown in Figure 7.2-11.

Alphabet Individual Genetic Algorithm
character fimess generations

construct construct mutation rate

destruct destruct crossover rate

multiply initialise size

initialise copy construct
copy reproduce destruct
isA objectivefunction initialise
store setfiuiessfunction regenerate
retrieve store store
display retrieve retrieve
mutate display status

Figure.7.2-11: Fully specified object structures for some GA objects

7.2.4.2 Implementation

The finished design as represented in the design object model (Figure 7.2-8) was

implemented using the C++ programming language on a SUN SPARC 10. There is a one

146

for one translation between the objects in the design object model and classes in the C++

programming language. As an example, the C++ class that represents an Alphabet is given

in Figure 7.2-12.

static char Alfa[] = { 'O', T, '#'};
class Alphabet {
protected:

int offset;
public:

void init(Bool msg =False) { offset = md(nisg); }
void init(int of) {

assert(of >= 0 && of <= 2);
offset = of;

}
Alphabet(Bool msg =False) { offset = md(msg); }
virtual ~ Alphabet!) {}
Alphabet (const Alphabet &Alf) { offset = Alf.offset; }
Alphabet& operator=(const Alphabet &Alf) {

offset = Alf.offset;
return *this;

// offset in the Alfa array

// initialise

// constructor
// destructor
// copy constructor
//Alphabet assignment

Bool operator==(const Alphabet &Alf) { return (offset == Alf.offset) ? True : False; }
virtual void print(ostream& o = cout) const { o « Alfafoffset]; }
virtual void scan(istream& s = cin) {

s » offset;
offset = (offset == 0 II offset == 1) ? offset: 2;

}
operator int() const { return offset; } // conversion operator
void mutate(float p, Bool Msg =False) { offset = (flip(p) ? md(Msg): offset); }
operator char() const { return Alfa[offset]; } // conversion operator
Bool isA() const { return (offset >= 0 && offset <= 2) ? True : False; }
friend Alphabet operator*(const Alphabct&, const Alphabet*); //Alphabet multiplication

Figure 7.2-12: Sample C++ implementation of Alphabet

Other GA objects have been similarly realised. The C++ language also provides direct

support and language constructs for implementing the relationships between the objects.

Composition/Aggregation relationships such as that between Population and Individual

are realised using pointers and references while inheritance hierarchies are used to

implement Generalisation/Specialisation relationships. For example, the object diagram

showed that an Array is a general data structure used to implement collections while

Chromosomes and Vectors are special cases of Arrays. The relationship between Arrays

on the one hand and Vectors and Chromosomes on the other is said to be a

Generalisation/Specialisation relationship. Figure 7.2-13 shows a sample implementation

of the relationship between Arrays, Vectors and Chromosomes. As a result of the

inheritance relationship, data and functions declared in Array are reused in Vectors and

147

Chromosomes without the need for redefinition. Functionality such as crossover!} which

is specific to Chromosomes and decodeQ which is specific to Vectors are then added to

Chromosomes and Vectors respectively. Functions that have been defined in the Array

class can be refined in the Vector and Chromosome classes to be more specific or more

efficient or both. The Array class is called the Base or superclass while the Chromosome

and Vector classes are known as Derived or sub classes.

template <class TV
class Array {
public:

virtual void init(const T*, int);
ArrayO;
virtual -ArrayO;
void printO const;
virtual Array Join(const Array&, const Array&);

protected:
int length;
T *array;

} ; /* * End of Array class declaration **/

template <class T>
class Chromosome : public Array<T> {
public:

Chromosome(int, int =1);
-ChromosomeO {}
void mutate(float);

friend void crossoverfconst Chromosome&, const Chromosome&, Chromosome&, Chromosome&);
}; /** End of Chromosome class declaration **/

template <class T>

flass Vector : public Array<T> {
ublic:

Vector(int);;
[~Vector();

int decode(int base);
}; /** End of Vector class declaration **/
Figure 7.2-13: Sample C++ implementation tor generalisation/specialisation relationships

7.2.5 Object-Oriented Testing

Unit testing is carried out on each GA object to ensure satisfactory behavior. The set of

messages that the object needs to respond to, can be simulated and sent to an object

independent of the other objects in the Genetic Algorithm. Closely coupled objects and

objects in inheritance relationships such as Arrays, Chromosomes and Vectors in the GA

are tested together. The test process is thus simplified and predictable. Test results for

148

Alphabet, Individual and Chromosome objects are shown in Figure 7.2-14, Figure 7.2-16

and Figure 7.2-16 Respectively.

eeisunlO% talfa
Initial display of both Alphabets
000# 1 ##111
1 0 # 1 0 1 # # # #
Alphabets after initialisation
Original 1 : 1 1 0 0 0 0 1 0 1 0
Original II: 1 # 1 0 0 1 # # # 0
Mutation test
Mutation Prob Original I

1 1 0 0 0 0 10 10
Original II

1 # 1 0 0 1 ###0
0.001 1 1 0 0 0 0 1 0 10 1 #1 0 0 1 ###0
0.005 1 1 0 0 0 0 10 10 1 #1 0 0 1 ###0
0.009 1 1 0 0 0 0 10 1 0 1 #1 0 0 1 ###0
0.01 1 1 0 0 0 0 10 10 1 #1 0 0 1 ###0
0.05 1 1 000 1 1 01 0 1#1 00 1###0
0.09 1 1 0 0 0 1 1 0 1 0 1 ##00 1 ###0
0.1 1 1 000 1 1 01 0 1 ##00 1 ###0
0.5 1 ###01 1 0 1 # 1 0#0 1 1 ###0
0.9 0 # 1 ###0### 0 1 1 # 1 1 1 # 0 #
1 1 0 0 # 0 1 0 # 1 0 ## 1 1 1 #0 0 0 1

Multiplication test!
10 0 #0 10#10
##111#000 1
Result: 1 1 0 1 0 1 1 1 0 0
testing file input /output
aArray, bArray, cArray have been written to file alfa.dat
Reading test from file
The alfabets read are
10 0 #0 10#1 0
1 1 1 #000 1
1 101011100
eeisunl0%

Figure 7.2-14: Results of testing the GA Alphabet class

Figure 7.2-14 shows the behaviour of the Alphabet object when the different messages in

its interface are issued. Two strings of alphabet are created initially at random. Then the

strings are initialised with a user supplied string of characters stored in the test file.

Mutation, Multiplication, Storage and Retrieval tests are then carried out. The results

confirm that the Alphabet object behaves according to the required specification. As can

also be seen, low rates of mutation cause little or no change in the original strings. As the

rate of mutation increases, the discrepancies between the original strings and mutated

strings also increases confirming that the mutation operation performs satisfactorily.

149

eeisunlO% tindividual
Chromosome 5 4 11 1 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 1 1
Individual 5 4 1 1 1 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 1 1 10.5

Individual before
5 5 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 1 0 0 1 0 0.005

Individual After fitness calculation
5 5 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 1 0 0 1 0 0.5

Mutation Individual
0.001 5 5 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 1 0 0 1 0 0.5
0.01 5 5 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 1 0 0 1 0 0.5
0.05 5 5 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 1 0 0 1 0 0.5
0.095 5 5 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 1 0 0 0 0 0.5
0.105 5 5 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 1 0 0 1 0 0.5
0.125 5 5 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 1 0 0.5
0.45 5 5 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 1 0 0.5
0.7 5 5 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 0 0 0 0.5
0.95 5 5 1 1 1 1 0 0 0 1 0 0 1 1 0 1 1 1 0 0 0 1 0 1 0 1 0 0.5
1 5 5 1 1 0 1 1 1 1 1 0 0 0 0 1 0 1 1 0 1 0 0 0 0 1 1 1 0.5
Stored Individuals in Population

5 5 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 1 0 0 1 0 0.5
5 5 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 1 0 0 1 0 0.5
5 5 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 1 0 0 1 0 0.5
5 5 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 1 0 0 0 0 0.5
5 5 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 1 0 0 1 0 0.5
5 5 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 1 0 0.5
5 5 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 1 0 0.5
5 5 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 0 0 0 0.5
5 5 1 1 1 1 0 0 0 1 0 0 1 1 0 1 1 1 0 0 0 1 0 1 0 1 0 0.5
5 5 1 1 0 1 1 1 1 1 0 0 0 0 1 0 1 1 0 1 0 0 0 0 1 1 1 0.5

Stored Offspring Individuals in new Population
5 5 0 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 1 0 1 0.5
5 5 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 0 0.5
5 5 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 1 1 1 1 0 1 0 0 0 0 0.5
5 5 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 1 1 0 0.5
5 5 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 1 0 1 0 0 0 1 0 0.5
5 5 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 1 0 0 1 0 0.5
5 5 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1 1 0 1 0 0 0 0 0 0.5
5 5 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 1 0 1 1 0 0.5
5 5 1 1 1 1 0 0 1 0 0 0 1 1 0 1 0 1 0 0 0 1 0 1 0 0 0 0.5
5 5 1 1 0 1 1 1 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 0 0 1 0 0.5

eeisunl0%

Figure 7.2-15: Test results for Individual Object

150

eeisunlO% tchrom
Static initialised alfabet: # O 1 O # 1 # 1 0 #
0 1 1 0 0 0 1 1 0 1

/* testing the constructors */
Chromosome aChrom 5 4
Chromosome bChrom(10) 10 1
Chromosome cChrom(5, 4) 5 4
aChrom = cChrom 5 4
Chromosome dChrom(aChrom)
Chromosome eChrom = bChrom
Chromosome fChrom

0 0 0 0 1 1 0 0 1 1 0 1 1 1 0 1 1 0 1 0
0 1 0 0 0 1 1 0 0 1
0 0 0 0 1 1 0 0 1 1 0 1 1 1 0 1 1 0 1 0
0 0 0 0 1 1 0 0 1 1 0 1 1 1 0 1 1 0 1 0

5 4 0 0 0 0 1 1 0 0 1 1 0 1 1 1 0 1 1 0 1 0
10 1 0 1 0 0 0 1 1 0 0 1
10 1 0 1 1 0 0 0 1 1 0 1

/* mutatation of chromosomes */

10

Ti

aChrom.mutate(O.OOl) 5
bChrom. mutate(0.002) 10
cChrom.mutate(0.003) 5
dChrom.mutate(0.004) 5
eChrom.mutate(0.005) 10
fChrom.mutate(0.006) 10
aChrom = xover(aChrom, cChrom, 7, 0.005)
dChrom = xover(bChrom, fChrom, 4, 0.001)
parents:

5 4 0 0 0 0 1 1 0 0 1 1 0 1 1 1 0 1 1 0 1 0
5 4 0 0 0 0 1 1 0 0 1 1 0 1 1 1 0 1 1 0 1 0

Production offspring
5 4 0 0 0 0 1 1 0 0 1 1 0 1 1 1 0 1 1 0 1 0
5 4 0 0 0 0 1 1 0 0 1 1 0 1 1 1 0 1 1 0 1 0
esting mutation

Enter starting value for mutation: 0.5
0 1 1 0 1 1 0 1 1 1 1 0 1 1 1 1 0 0 0 1 450289
0 0 1 0 0 1 0 1 0 1 1 1 1 1 1 1 0 0 0 1 153585
0 0 1 0 0 1 0 1 0 1 1 0 1 1 1 1 0 1 1 1 153335
0 1 1 1 0 0 1 1 1 1 1 0 1 0 0 1 0 1 0 0 474772
1 1 1 1 0 0 1 0 1 1 1 0 1 0 0 1 0 0 1 0 994962
11 1 0 0 0 0 1 1 1 1 1 0 0 1 0 0 0 1 0 925474
1 1 1 0 0 1 0 1 0 1 0 1 0 1 0 0 0 0 1 0 939330
1 1 1 0 0 1 1 1 0 1 0 1 0 1 0 0 1 0 1 0 947530
1 1 0 0 0 1 1 1 0 1 0 0 1 1 0 1 1 1 1 0 816350
0 0 0 0 0 1 1 1 0 1 1 0 0 1 0 1 1 1 0 1 30301
0 1 0 0 0 1 1 1 0 0 0 0 0 0 0 1 1 1 0 1 290845
0 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 1 323589
0 1 0 0 1 1 1 1 0 0 0 1 0 1 0 0 0 1 0 1 323909
0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 0 65286
0 0 0 0 1 0 1 0 1 1 1 1 0 0 0 0 0 1 1 0 44806
0 0 0 0 1 0 1 0 1 1 1 1 0 0 0 1 1 1 1 0 44830
0 0 0 0 1 0 1 0 0 1 1 1 0 0 0 1 1 1 10 42782
1 0 0 0 1 0 1 0 0 1 1 1 0 0 0 1 1 1 1 0 567070
1 0 0 0 1 0 1 1 0 1 1 1 0 0 0 1 1 0 1 0 571162
1 0 0 1 1 0 1 0 0 1 1 1 0 0 0 0 1 0 1 0 632586
1 0 0 1 1 0 1 1 0 1 1 1 0 0 0 1 1 0 1 0 636698
1 0 0 1 1 0 0 1 0 1 1 1 0 0 0 1 1 1 1 1 628511
1 0 0 1 1 0 0 1 0 1 1 0 0 0 0 1 1 1 1 1 628255
1 0 0 1 1 0 0 1 0 1 1 0 0 1 0 1 1 1 1 1 628319

eeisun 10%

4 0 0 0 0 1 1 0 0 1 1 0 1 1 1 0 1 1 0 1 0
1 0 1 0 0 0 1 1 0 0 1
4 0 0 0 0 1 1 0 0 1 1 0 1 1 1 0 1 1 0 1 0
4 0 0 0 0 1 1 0 0 1 1 0 1 1 1 0 1 1 0 1 0
1 0 1 0 0 0 1 1 0 0 1
1 0 1 1 0 0 0 1 1 0 1

5 4 0 0 0 0 1 1 0 0 1 1 0 1 1 1 0 1 1 0 1 0
1 0 1 0 0 0 0 1 1 0 1

5 4
5 4
5 4
5 4
5 4
5 4
5 4
5 4
5 4
5 4
5 4
5 4
5 4
5 4
5 4
5 4
5 4
5 4
5 4
5 4
5 4
5 4
5 4
5 4

Figure 7.2-16: Results of testing on Chromosome class

151

After unit testing, integration testing is carried out. All the finished classes are put together

as an application to check its operation on real problems and to remove subtle mistakes.

Because of the flexible architecture, the GA implementation can be configured to solve a

wide variety of searching problems. Options have been included to set the number of

objective function parameters, the crossover strategy, the population replacement strategy

and even the nature of the selection function for selecting fit individuals from the GA

population. Furthermore, the size of the encoding for the parameters in an optimisation

problem can be varied to improve the resolution of the search. A sample input screen for

the GA is shown in Figure 7.2-17.

GENETIC ALGORITHMS: INPUT SCREEN j
GA Population Size: j

Number of function parameters:
Encoding Size for each parameter:
GA crossover Probability:
GA mutation Probability:
Number of generations:
Selection Strategy: (R)oulette, (T)oumament, Ra(N)dom :
Crossover Strategy: (O)nepoint, (T)wopoint, (U)niform:
Replace Strategy: (G)eneration, (P)artial, (O)verlap, (E)litist:
Results Filename :

Figure 7.2-17: Genetic Algorithm input screen showing the different options

The Genetic Algorithm has been tested on both simple and complex function

optimisation. In the simplest example, the Gaussian function shown Equation 7.2-, is used

as the objective function. The function has a mean value o f 2 and a standard deviation o f

1.

/ (*) = je-(*-2)2 (7.2-1)

The function is unimodal and has a singular maximum value o f 1 at x = 2 as shown in

Figure 7.2-18.

152

Gaussian

Figure 7.2-18: Plot of Gaussian Objective Function

The GA was configured to search for this maximum in the range -10 to 10. The

parameter, x, is encoded as 16 bit string. The fitness values are obtained by evaluation of

the decoded strings. The decoded values are scaled according to Equation 7.2-2 so that

they are between -10 and 10 before being passed to the Gaussian function for evaluation.

f d eco d ed va lu e ̂
fitn ess = f -10 +------ —:------ *20

v 1
{1 .2- 2)

The population is initialised with 10 individuals at random. The GA is then run a number

of times with the simulation parameters varied in each run. The results are compared with

random population search where the individuals in each generation are selected at random

from the population and only the mutation operator is used throughout the run of the GA

to evolve new individuals. This is achieved by setting the crossover and mutation rates to 0

and 1 respectively and choosing either Random selection, Roulette wheel selection or

Tournament selection strategy. Figure 7.2-20 and Figure 7.2-21 show how the maximum

and average fitnesses vary from one generation to another for random

search with Roulette wheel and tournament selection respectively. The equivalent graph

with completely Random selection is shown in Figure 7.2-21. The total fitness which

represents the sum ot all titness values in the population is also shown. The graph

demonstrates that lor random search, the total fitness of the population can be completely

dominated by the titness ot the best individual and so the search process will never

converge and has to be stopped arbitrarily. Furthermore, the individual with the maximum

titness in die final generation represents a solution for the search problem and for random

search, this can be far trom optimal as generational replacement means that the best

solution in each generation is not retained.

For GA search, experiments have been carried out using different values for crossover,

mutation, population selection strategy, chromosome crossover strategy and population

replacement strategy. Figure 7.2-22 - Figure 7.2-27 are example plots that show how the

average and maximum fitness values in each generation varies with different parameter

selections.

Fitness vs Generations

Maximum

Average

Figure 7.2-19: Maximum Fitness vs. Generation for random population search
(crossover =0, mutation =1, Roulette wheel selection, Generational replacement)

Fitness vs Generations

Figure 7.2-20: Maximum Fitness vs. Generation for Random search (crossover -0 ,
mutation =1, Tournament selection, Generational replacement)

154

Figure 7.2-21: Variation of Fitness vs. Generation for Random Search
(crossover = 0, mutation = 1, Random selection, Generational replacement)

Fitness vs Generation

1.2 T

0.8 - -

cn atg 0.6 --
il

0.4 --

Maximum

A ve ra g e

0.2 -

0 -I------------------ 1------------------ 1------------------1------------------ 1------------------ 1------------------1------------------ 1------------------ 1------------------ 1

1 2 3 4 5 6 7 8 9 10

Generation

Figure 7.2-22: Variation of Maximum and Average Fitnesses with Generation
(crossover = 0.9, mutation = 0.1, Roulette selection, one point crossover,
Generational replacement)

155

Fitness vs Generation

Maximum

Average

Figure 7.2-23: Variation of Maximum and Average Fitnesses with Generation
(crossover = 0.9, mutation = 0.01, Roulette selection, two point crossover,
Generational replacement)

Fitness vs Generation

1 t

0.9 --

0.8 - -

0.7 -

0.6 - - u>V)
g 0.5 --

£ 0.4 -• ■

0.3 - '

0.2 -

0.1 -

0 ---
1 2 3 4 5 6 7 8 9 10

Generation

Maximum

A ve ra g e

Figure 7.2-24: Variation of Maximum and Average Fitnesses with Generation
(crossover = 0.7, mutation = 0.1, Tournament selection, two point crossover,
Generational replacement)

156

Fitness vs Generation

Maximum

Average

Figure 7.2-25: Variation of Maximum and Average Fitnesses with Generation
(crossover = 0.7, mutation = 0.1, Roulette selection, two point crossover, Partial
replacement)

Fitness v Generation

Maximum

Average

Figure 7.2-26: Variation of Maximum and Average Fitnesses with Generation
(crossover = 0.9, mutation = 0.1, Tournament selection, two point crossover,
Elitist replacement)

157

Fitness vs Generation

Maximum

Average

Generation

Figure 7.2-27: Variation of Maximum and Average Fitnesses with Generation
(crossover = 0.9, mutation = 0.1, Tournament selection, uniform crossover,
Generational replacement)

The graphs confirm that, for this simple function, the GA can successfully converge to an

optimal solution which is very close to the required solution in only 10 generations. The

convergence characteristics are very similar, irrespective of the method of selection and

the crossover and mutation rates despite the fact that the search space is very large. As

expected, the average fitness of the population is very low initially since the population is

initialised at random. The GA evolves increasingly fitter individuals in subsequent

generations and the average fitness of the population thus increases. In some cases,

mutation and crossover actually produce less fit individuals in the next generation and this

results in a fall in the population average fitness. With random search, it is possible to find

optimal or near optimal solutions in a very short time, but as is clearly evident in Figure

7.2-20 the average fitness of the population remains very low. Furthermore, there is a

distinct possibility that the optimal solution will not be found.

In the next example, the GA is used to search for an optimal value in a space where the

objective function is more complicated. The objective function consists of a Gaussian

mixture contaminated by noise. The noise function is also a Guassian mixture with similar

means as the original mixture but with one tenth the amplitude and five times the standard

deviation of the mixture components. The objective function is expressed as shown in

Equation 7.2-3.

158

f (x ,y) = 0.9

o .r

1 f 1 f (y-v2)2)
71777exp\ A J ■̂271(722 Pl °2 2 J+

l

cs=£iX 1
i-------------------e x p

^ l n { 5 < J x) 2 l (5C T,)2 J ^ ¡ 2 k {5 o 2) 2 { (5 c t 2) 2 J
(7.2-3)

where and Ol are the mean and variance, of the first mixture component

/12 and <J2 are the mean and variance of the second mixture component.

A plot of the objective function is shown in Figure 7.2-28. The GA is configured to search

the two dimensional space represented by the objective function for the maximum value.

The aim of the search is to find two real values x and y in the range 0.. .5 representing the

co-ordinates of the maximum point of the objective function. Figure 7.2-29 shows how

the objective function behaves in the vicinity of the maximum. A numerical solution using

Mathematica shows that the function has a single maximum at 6.39449, when x = 2 and y

= 3. The objective function then falls off very rapidly to zero all around the maximum.

Gaussian Mixture Objective function

X

Figure 7.2-28: Objective function plot for ul - 3, u2 - 2, and s - 0.15

7.00E+00

6.00E+00

4.00E+00

0.00E+00

3.00E+00

2.00E+00

1

159

Figure 7.2-29: Behaviour of the objective function in the
neighbourhood of the function maximum.

Close up view of Objective function Maxima

In the GA, both x and y are encoded as 20 bit strings which are then concatenated to

form a 40 bit chromosome for each individual. To calculate the individual’s fitness value,

each chromosome is split into its two constituent parts which are then decoded and scaled

according to Equation 7.2-4 into the x and y values. The values obtained are evaluated by

die Gaussian mixture function to obtain the htness of the individual.

f decod ed v a lu e ^
x = y

V 220 - 7 (7.2-4)

The GA is initialised at random with a population of 30 individuals. The number of

generations is set to 30 and the GA is then run a number of times with different values for

the GA parameter, i.e., mutation rate, crossover rate and population replacement strategy.

As with the previous objective function, the results are compared with a random

population search of the function space where the crossover rate is set to 0, the mutation

is set to 1 and a Random selection strategy is used. The population replacement strategy

can either be Generational or Elitist. Figure 7.2-30 shows how the maximum and average

fitnesses vary when random population search is used in conjunction with Generational

replacement. As mentioned before, Generational replacement completely replaces the GA

population in each generation and because no information is passed from one generation

160

to another, the search will never converge. In Figure 7.2-31 random population search is

carried out in conjunction with Elitist population replacement, i.e., the best individual in

each generation is retained in the next generation. The figure shows the random

population search can still arrive at an optimal or near optimal solution if the best

individual in each generation is retained, but the variation of total and average fitnesses on

a per generation basis is still very erratic.

Fitness Vs Generation

-1 - 1-

G ene ra tio n

------------- Maximum

— -— -A v e ra g e

.............. Total

Figure 7.2-30: Random search with Generational replacement

Fitness vs Generation

--------------Maxim um

— — — A v e ra g e

..............Total

Figure 7.2-31: Random search with Elitism

161

Figure 7.2-32 - Figure 7.2-34 show the equivalent graphs for Genetic Algorithm search.

The convergence of the fitness and x and y values with generation are also tabulated in

Table 7.2-2. In the graphs, the total fitness has been left out so that the Maximum and

Average fitnesses are visible.

Table 7.2-2: Best of Generation Fitness and (x, y) values vs. Generation
number for Genetic Algorithm search.

Gen Figure 7.2-32 Figure 7.2-33 Figure 7.2-34 Figure 7.2-34
(X)

Figure 7.2-34I
(y)______I

1! 0.728291 0.025201! 0.506987 2.4353* 1.89206!
21 4.17134 0.027658' 1.08185 3.3728' 1 ,89084|
3! 4.04754 2.20231- 1.68198 2.79052; 1.89077!
4 5.97665 2.54161 3.18862 3.13842 1.89046!
5 5.87153 4.6623 4.83984 3.13842 1.89298!
6 6.36692 5.51842 5.0433 3.1042 2.0482!
7 6.37606 5.66355 5.56414 3.09444 2.04091!
8 6.26938 6.19981 5.78558 3.09444 2.0471!
9 6.3662 6.34124 5.83347 3.02551 1.9711|

10 6.36927 6.34922 6.00828 3.02551 1.96775|
11 6.37617 6.35054 6.33573 3.02427 1.96716!
12 6.39095 6.38343 6.28355 3.02512 1.96653!
13 6.38138 6.38343 6.29152 3.02591 1.96896!
14 6.38314 6.39276 5.89751 3.02608 1.96896!
15 6.38754 6.39407 6.04052 2.98702 1.96896!
16 6.38754 6.39407 6.04052 3.0228 1.98669!
17 6.38478 6.39445 5.8 2.98642 1.98669!
18 6.39216 6.39419 5.8 2.98642 1.98648:
19 6.39137 6.39436 6.05812 2.98642 1.98648!
20 6.39371 6.39438 5.98166 2.98642 1.98667!
21 6.39244 6.39438 6.00832 2.98642 1.98632!
22 6.3937 6.39438 5.88713 3.01687 1.98667!
23 6.39369 6.39447 6.09555 3.0261 1.98423!
24 6.39373 6.39447 5.91747 3.01503 2.00948!
25 6.39253 6.39448 6.15635 3.01621 2.01714!
26 6.39337 6.39447 5.98371 3.01621 2.01714;
27 6.39323 6.39446 6.12896 3.01507 2.00204!
28 6.3938 6.39386 5.99622 3.01684 1.99147!
29 6.39382 6.39447 6.17239 3.02549 2.00296!
30 6.39386 6.39447 6.20304 2.98658 2.00376!

162

Fitness vs Generation

Figure 7.2-32: Variation of Maximum and Average Fitness values with
Generation (Crossover = 0.8, mutation = 0.1, Roulette selection, Two point
crossover, Generational replacement)

Figure 7.2-33: Variation of Maximum and Average Fitness values with
Generation (Crossover = 0.8, mutation = 0.1, Tournament selection,
twopoint crossover, Generational replacement)

163

Fitness vs Generation

Maximum

Average

Figure 7.2-34: Variation of Maximum and Average Fitness values with
Generation (Crossover = 0.8, mutation = 0.1, Tournament selection, one
point crossover, Generational replacement)

The results show that random search with Generational replacement has a very small

probability of arriving at an optimal solution at the end of 30 generations. This is because,

no information is stored between generations and the search results in the 30th generation

are just as likely as those in the first generation. On the other hand, when Elitism is added

to the Random search, the best individual in each generation is retained and there is thus a

significant performance improvement in the search process. However, the chances of

arriving at an optimal solution within 30 generations is still very small. For a search

resolution accurate to two decimal places, the search space contains 230000 points. If the

resolution is increased to 3 decimal places, the cardinality of the search space increases to

25 million points. Also, if either the search range or the search resolution is increased, the

number of points can easily become unbounded. It becomes almost impossible for a brute

force search method such as random search to locate a single point in such large search

spaces. GA search on the other hand converges to an optimal or near optimal solution in

a very short time. Figure 7.2-32 - Figure 7.2-34 show the equivalent graphs for Genetic

Algorithm search. The convergence of the fitness and x and y values with generation are

also tabulated in Table 7.2-2. In the graphs, the total fitness has been left out so that the

Maximum and Average fitnesses are visible.

Table 7.2-2 show how the genetic search converges to an optimal solution in 30

generations for 3 different runs of the GA. The table also shows how the decoded values

for the x and y co-ordinates of the maximum vary with generation for the third run of the

GA. In Figure 7.2-32 the GA converges to a final value of 6.39386. This value is identical

164

to three decimal places to the analytically derived optimum value and is just 0.00063 or

0.000985% different than the maximum. In the second run shown in Figure 7.2-33 the

search results are even more impressive. The combination of Tournament selection, two

point crossover and Generational replacement causes the GA to converge to within

0.00002 of the required optimum value. In the third run in Figure 7.2-34, tournament

selection combined with one point crossover and Generational replacement causes a

convergence to a sub-optimal value. Even here, the converged GA is within 2.1% of the

required value and can be considered as near optimal for most purposes. The optimality of

the solution can be appreciated when the variation of the best of generation parameters

are examined. The optimal values for x and y are 2 and 3 respectively. As shown in Figure

7.2-35, the error in the decoded values for x and y are relatively large at the start of the GA

run. As the GA converges, the values tend to stabilise with very little fluctuation around

the optimal values.

The above examples demonstrate that the GA implementation is capable of successfully

searching higher dimensional spaces in the solution of complex optimisation problems and

that the results are significantly better than random or brute force search. The test results

of applying the Genetic Algorithm to determine the optimal parameters of an excitation

control system and neural network parameter selection have been presented in [127, 128,

129]. The next section describes how the Genetic Algorithm design is reused in developing

a Learning Classifier System.

Best of Generation paramerters vs Generation

Figure 7.2-35: Variation of decoded parameters with Generation.

165

7.3 Genetic Learning Classifier Systems

This section presents a new way of constructing Genetic Learning Classifier Systems using

object-oriented techniques. Object-oriented analysis and design techniques are applied to

the construction of a robust software architecture for Classifier Systems. The design

demonstrates how a high level of reuse can be achieved in object-oriented software

construction by reusing the GA design and incorporating features necessary for Learning

classifier systems. Also, the basic classifier system is extended using Object-Oriented

techniques to allow for inexact matching [130] by extending the classifier grammar to

include a multiplication operator. This simplifies the classifier matching and bidding

processes. The matching process is reduced to a simple inner product calculation between

the classifier string vectors and message string vectors. This procedure is very similar to

the inner product multiplication performed between weights and activations in

connectionist models and also the fuzzy t-norms and t-conorms that take place during the

inference process in fuzzy models. This brings classifier systems closer in terms of their

construction and operation to other intelligent systems.

7.3.1 Introduction

Knowledge representation is an important problem domain in which the parallelism of

classifier systems can be applied. Artificial intelligent techniques have traditionally been

applied to static off-line problems where the statistics of the problem domain remain

constant or vary only slowly throughout the problem solving process. Current technology

for building knowledge-based systems lend themselves only partially to continuos real-time

operation in a dynamic environment. Reliable real-time operation is difficult to achieve

because the performance of knowledge-based systems can vary dramatically with problem

configurations [131]. Classifier systems can, in theory, be used in the solution of problems

requiring real-time interactions with ongoing processes. This section presents the analysis,

design and implementation of a learning classifier system of the kind discussed in [123]. In

the implementation, the basic classifier architecture is modified to allow for inexact

matching and population wide bidding. Also, the basic classifier grammar has been

extended using object-oriented techniques to concretise the abstract classifier alphabet into

an object incorporating a multiplication method to perform simple alphabet matching.

Closure is achieved by ensuring that multiplication produces results which are in the scope

of the classifier grammar.

166

7.3.2 Classifier Systems

A classifier system is a machine learning system that learns syntactically simple string rules

(called classifiers) to guide its performance in an arbitrary environment.

The classifier system is made up of 2 main components as shown in Figure 7.3-1

• Rule and message subsystem,

• Learning subsystem

Figure 7.3-1: Schematic Diagram of a Learning Classifier System

The rule and message system is a specialised production system. A production system is

defined by a set of rules (productions) that form the production memory and a database

of current assertions called the working memory [132], The production rules are of the

form :

i f <condition> then <action>

The condition part of each rule contains pattern elements which are matched against the

working memory while the action part contains directives for updating the working

memory. An update of the working memory consists of adding and removing facts about

the current state of the system and also includes a directive for effecting external side

effects. Classifier systems use large but finite global message lists but at any one time, only

a small proportion of these are active [133]. The Learning subsystem is made up of an

apportionment of credit subsystem and a Genetic algorithm subsystem. The

167

apportionment of credit subsystem comprises the bucket brigade algorithm which

apportions credit amongst competing classifiers in order to distribute external reward to

the rules that contribute to successful behaviour. The bucket brigade algorithm assigns a

strength to each individual classifier, modifying the strength on the basis of the classifier’s

overall usefulness as the system evolves. The genetic algorithm subsystem is in charge of

creating new classifiers. The genetic algorithm is used to search the space of existing

classifier rules to produce new rules which are innovative combinations of the existing

rules.

Classifier systems are able to achieve massive parallelism through a parallel rule matching

process while implicit parallelism occurs when many classifiers share the same message.

7.3.3 "Learning in Classifier Systems

Learning algorithms control the action of classifier systems by controlling write access to

the Message list and/or by controlling which classifiers are in the database of rules [134].

Access to the Message list is controlled by placing an upper bound on the number of

messages that can be active at any one time. The classifiers that are potentially active then

bid for the right to post their messages on the Message list. A competition is held after

which die winners are allowed to post their messages. Various factors associated with each

classifier determine which classifiers get to post messages. These factors include; die

strength of the classifier, the support due to previously matched classifiers and the

specificity of the classifier’s condition(s). Specificity is scale factor that represents the

number of '#’ (‘don’t cares’) in a classifier’s condition string. The bucket brigade algorithm

adjusts the strengdi of the classifiers over time, rewarding those classifiers that have

contributed to good solutions and penalising those that have not proved useful. The

Genetic algorithm controls the choice of classifiers that are in the database or classifier

store. The GA is used periodically throughout the operation of the classifier system to

evolve the classitier base by introducing new rules into the system. The GA evaluation

function uses the strength of each classifier as the “fitness” measure to eliminate weak

classihers from the database. New classitiers are generated from the remaining ‘strong’

classifiers by application of genetic recombination operators such as crossover and

mutation.

168

7.4 Object-Oriented Analysis and Design of Classifier Systems

A great motivation behind the widespread use of object-oriented techniques in modern

software construction is the high level of reuse which can be achieved. Most attempts at

reuse in object-oriented software construction has tended to concentrate on reuse of

individual objects or components. In [135] it has been proposed that a higher level of

reuse can be achieved by reusing whole designs or patterns found in existing designs. This

section demonstrates how a robust software architecture for the Learning Classifier

System can be constructed by combining reuse of component objects at a lower level of

abstraction and design reuse at a much higher level. Component reuse is achieved by

reusing common or similar objects found in the design of the Genetic Algorithm while

design reuse is achieved by the whole sale reuse of the GA design as part of the learning

system in the construction of the Learning Classifier System.

7.4.1 Object-Oriented Analysis o f Learning Classifier Systems

As mentioned before, the analysis process seeks to understand the system before a

solution can be designed. A proper understanding of the system will not only ensure that

the correct system is designed and subsequently implemented but will also make the

system less likely to require changes soon after it has been built. The analysis process

consists of identifying the important objects and relationships in the classifier systems

domain. Different methods have been proposed for identifying objects in a problem

domain [17,79]. The most common approach is to analyse a textual description of the

particular problem statement. Nouns in the description are usually objects in the Classifier

domain whereas the verbs tend to be operations on objects. After the objects have been

identified, a data dictionary is created to describe the roles that the objects play in the

system. The results of the analysis process are captured in models which will be further

enhanced in the system design process. Different methodologies have different modelling

diagrams and notations for capturing the results of the analysis process. In OMT, three

analysis models are used. They include an object model, a dynamic model and a functional

model. The object model describes the static structure of the system, i.e., the relationships

between the objects found in the system. The dynamic model shows the states that the

system can be in and different events that the system needs to respond to. Finally, the

functional model shows the different inputs and outputs of the system and the sequence

of transformations or processes that result in the outputs being produced from the

system’s inputs.

169

7.4.1.1 Learning Classifier System: Problem Description

A learning classifier system consists of string rules called classifiers in a classifier store that

co-operate to solve problems in a given environment. The main portion of the learning

classifier system is a rule and message system which processes messages from the

environment. Environment messages are received through detectors and posted onto

finite length message lists where they are used to activate the string rules or classifiers.

Each classifier consists of a condition part, an action part and equivalent strength

representing the usefulness of the string rule encoded by the classifier. Learning is

achieved by employing a Bucket Brigade Algorithm (BBA) and a Genetic Algorithm (GA).

The BBA is used to modify rule strengths depending on past usefulness of the rule while

the GA is used to evolve new rules (classifiers) from existing rules. Activated classifiers

send messages or actions to the environment through effectors and depending on the

usefulness of the message, a reward or penalty is sent back to the system via detectors and

is distributed amongst active rules. Both the condition part and the action part of the

classifiers are finite length strings over a given alphabet. In the case of die simple classifier

system, the alphabet is very simple and consists of 3 characters; ‘O’, T and '#’ (don’t care).

Despite this, the classifier grammar is capable of representing very complex rules

(classifiers) by simply concatenating elements of the alphabet. Closure is achieved in the

classifier grammar by ensuring that all operations on the alphabet produces results in the

scope of the alphabet.

7.4.1.2 Identifying Classifier domain objects

Table 7.4-1 show the classifier domain objects that were identified by textual analyses

based on the above problem description and also from descriptions of classifier

architecture in the literature [119, 123, 136].

fable 7.4-1: Objects in the Learning Classifier System

Classifier Alphabet Classifier Condition Classifier Bucket Brigade Algorithm

Classifier Store Classifier Action Message Genetic Algorithm

Message List Effectors Detectors Learning Classifier System

Environment 1

170

The Data Dictionary

Classifier Alphabet — A ‘O’, ‘1’ or '#’ (don’t care) that represent the lowest level encoding of

information in the classifier system.

Message — A finite length string over some finite Alphabet. <Message> ::= {0,l}k

Condition — A simple pattern recognition device. <Condition> ::= {0, 1, #}k .

Action — Another name for a Message used in the context of a classifier.

Classifier — A production or string rule <Classifier> ::= <Condition>:<Action>

Classifier Store — A collection of Classifiers that make up Learning Classifier System’s

Rulebase. <Classifier Store> := {Classifier)k.

Message List—Temporary memory used by the classifier system to control rule actions.

Environment— Metaphor to describe the problem to be solved by the classifier system.

Detectors— Input interface for obtaining Environment messages into the classifier system.

Effectors— Output interface for sending classifier actions to the Environment.

Bucket Brigade Algorithm— A system for apportioning credit amongst classifiers by

modifying their rule strengths based on pass or perceived usefulness.

Genetic Algorithm — A search mechanism to evolve new rules or classifiers into the classifier

store based on classifier strengths.

7.4.1.3 Identifying the relationships between domain objects

The static relationships between the domain objects in the learning classifier system are

captured by the domain object model shown in Ligure 7.4-1. The model shows the very

complicated architecture of a Learning Classifier system. Some of the domain objects such

as Genetic Algorithm or Bucket Brigade Algorithm are object hierarchies in their own

right with constituent objects still being related to other domain objects. The object model

is used to describe the static structure of the system without any consideration for how the

system behaves in time or the functions that the system is to perform.

171

Figure 7.4-1: Domain object model of Learning Classifier System

The time behaviour of the system is captured by the dynamic model. The dynamic model

enumerates the important states that the system can be in and the events that the system

can respond to. When in a particular state, the system can perform certain activities or wait

for an event to occur. The occurrence of an event causes a state-transition to a new state

but can also cause an action to be performed. If the new state is a final state, the system

terminates and processing is complete. Dynamic models are expressed as state-transition

diagrams. Figure 7.4-2 shows a state-transition diagram for the Learning Classifier System.

172

Learning Classifier System

Start
•i

Parameters received/
initialise system

Figure 7.4-2: Learning Classifier System: State-transition diagram

The dynamic model shows the three main states that the system can be in; Ready, Executing

and Involving. At the start, the user supplies system and problem parameters to initialise the

system. The state of the system changes to Ready. When an environment message is

received by posting onto the message list, a state transition to Executing occurs. In this

state, one of two events can occur; The first event, GAPERIOD reached, will cause the

action run GA to be performed and results in a state-transition to HI T)IJ TNG NEW

RUNES. In this state, the activity, regenerate classifier store is performed where new classifiers

are introduced into the system using genetic selection and recombination operators. When

the Genetic Algorithm is complete, the event, GA complete is received causing a state-

transition back to EXECUTING. The second event, ycle complete, marks the end of the

execution cycle and causes a state transition back to ECS Ready after an action has been

sent to the environment. There are potentially many more states in this system than cab

be shown in the state-transition diagram. For example, states due to error conditions or

interruptions from users have not been shown.

The functionality of the system is described with the aid of a functional model. Functional

models show the various inputs to the classifier system and the sequence of

transformations that result in the outputs being produced. Functional models are

expressed in the form of dataflow diagrams. For such a complicated system, a single data

flow diagram that describes all the inputs and transformations in detail would be

173

incomprehensible. Hence, the dataflow diagrams are levelled to facilitate both their

creation, understanding and subsequent modification. The highest level dataflow diagram

(system context diagram) for the learning classifier system is shown in Figure 7.4-3. The

diagram shows that inputs to the classifier system come from both users and the

environment. Environmental input is in the form of an environmental message and a

payoff. User inputs include problem parameters, system parameters and learning

parameters. The only output from the system is the classifier action which is used to effect

some action in the environment.

Figure 7.4-3: Learning Classifier System: Context Diagram

Figure 7.4-4: Learning Classifier System: Level 1 Dataflow diagram

174

Figure 7.4-4 shows a level 1 dataflow diagram for the learning classifier system. Here, the

functionality of the system is described in a greater level of detail. The sequence of

transformations that occur to convert User and Environmental inputs into the final

classifier action which is sent to the environment is clearly oudined. For example, the

diagram shows how environmental messages are decoded and sent to the message list. The

function, Perform Rule Matching matches classifiers from the classifier store to messages in

the message list. Its outputs are bids and winning classifiers. The bids are sent to Calculate

Hjfective Bids where the effective bids are calculated. The function, Update Classifier Strengths

uses the bids and environment payoff to update the strengths of the active classifiers

which are then written to the classifier store. The dataflow diagram can be levelled even

further to show high levels of detail for each of the function transformations in Figure 7.4-

4. At the lowest level, the transformations will be equivalent to functions or subroutines in

conventional programs and class member functions or methods in Object-Oriented

programs.

7.4.2 Object-Oriented Design o f Learning Classifier Systems

The aim of the design process is to create a software architecture for the Learning

Classifier System. The design process makes use of the analysis models to produce design

model. The design model forms the blue print which will be implemented in a computer

programming language to realise the system. The first stage of the design process is to

construct a software architecture for the system. The system architecture is the overall

organisation of the system into subsystems or partitions that can be easily constructed and

independently tested. The second stage of the design adds extra detail to the analysis

domain models as well as further objects to allow for a flexible, reusable and efficient

implementation of the Learning Classifier System. Also, in this design stage, decisions are

made about the interface and the representation of all the objects in the application and

how they interact to realise the system operation. In the design of the Learning Classifier

System, a very high level of reuse has been achieved by reusing both the GA design and

the component GA objects.

7.4.20 Classifier Systems Design

As mentioned above, the systems design process seeks to establish an overall software

architecture for the Classifier System. By partitioning the Classifier System into subsystems

that can be easily and independently analysed, designed and tested, the complexity and

hence the possibilities for errors are greatly reduced. Where the partitioning results in

175

meaningful subsystems, this will facilitate the reuse of whole designs at the subsystem level

as opposed to component reuse at the object level. Even though the unit of production in

object-oriented analysis and design is based around individual objects, a partitioning along

object boundaries is not feasible for even moderate sized systems where the number of

objects can be quite large. For the Learning Classifier System, natural partitions into

subsystems already exist and these are evident when the literature is examined. The

following major subsystems have been identified:

• The Rule and Message subsystem and

• The Genetic Algorithm subsystem

• The Input subsystem

• The Classifier Interface subsystem

• The Environment subsystem

The concept mapping technique [78] provides a diagrammatic way in which the interaction

between the main system and the different subsystems can be expressed. In a concept

map, the key concept will usually correspond to the main system while the less general

concepts will correspond to subsystems. Each less general concept can in turn be analysed

as a key concept. The concept map in Figure 7.4-5 shows the activities performed in the

different subsystems and the flow of data between the subsystems.

Figure 7.4-5: Concept map showing the interaction between subsystems in the
Learning Classifier System

176

7.4.2.2 Object Design

The object design phase expands the analysis object model by adding extra objects so that

the Classifier system can be efficiently implemented. These objects are not found in the

Classifier System vocabulary or problem description but are necessary if design or

component reuse is to be achieved during implementation. Extraneous objects usually

include collection objects such as Arrays and Vectors and Adaptor objects that make it

possible to reuse existing objects by either modifying their interface or their

representation. Other objects result from a reorganisation of the analysis model objects

into inheritance or object composition hierarchies. Some analysis domain objects can thus

become component parts of the design domain objects through object composition or

special cases of design domain objects through inheritance. The expanded model is known

as the system or design object model. Figure 7.4-6 shows the design object model for the

Learning Classifier System.

Figure 7.4-6: Design object model of learning classifier system

177

The figure shows how objects in the GA design, including Alphabets, Arrays and

Chromosomes are reused in the design of classifier system components. Both Classifier

Condition and Classifier Action inherit a large part of their interface and their functionality

from the previously designed Chromosome. The design diagram also shows how

individuals in the GA population inherit the operations and implementation of Classifiers.

The Individual acts as an Adaptor object to convert Classifiers into Individuals in a

standard GA Population. The strength of the Classifier becomes the fitness of the

Individual, while the Condition and Action part of the Classifier are used as the

Individual’s information encoders. The Population and Genetic Algorithm in the previous

design are thus reused with very little modification in the Classifier Systems design. It will

be necessary in the implementation to modify the interface to the Individual object so that

the underlying Classifier can be properly initialised when an Individual object is created.

7A.2.3 Describing Object Interactions

Before the design can be implemented, tine objects in the system object model have to be

fully specified. A fully specified object has all its attributes, associations and member

functions defined. The set of all attributes and associations make up the implementation or

representation of the object while the object’s interface is given by the set of operations

that can act upon or be acted on by an object. The operations that make up the objects

interface can be obtained by examining the events or messages that the object sends and

receives from other objects when the application is run. Unfortunately, for a large system

with many objects, an enumeration of all the events is not feasible. On the other hand,

without any such examination, key operations required of an object for the proper

functioning of the system or application can be easily omitted. The effects on the overall

quality and usefulness of the software system are potentially disastrous. The solution is to

create Use Cases for all the important requirements that the system or application has to

satisfy. As mentioned before, a Use Case is a particular mode of interaction or use of the

system. Use Case design is expressed using Object Interaction Diagrams (OID). For the

Genetic Learning Classifier System described in this design, the three main Use Cases are:

1. Create LCS: whereby the different objects that make up the Learning Classifier System

are constructed.

2. BBArun: This is the Match/Execute cycle where the Bucket Brigade Algorithm is used

to modify classifier strengths.

3. Regenerate Classifier Store: where the Genetic Algorithm is used to evolve new

Classifiers which are inserted into the Classifier database.

178

Figure 7.4-7 shows the OID used to depict the create LCS Use Case. A dashed line has

been used to represent the system boundary. The diagram shows the sequence of

messages that are sent between the different objects in order for the Classifier System to

be created. The first message, initialise, to Parameters will result in the creation and

initialisation of the Parameters object with user supplied system and problem parameters.

A create message to LCS will result in a series of create messages to the constituent

components of the Learning Classifier System. Because there are potentially too many

object interactions than can be shown on a single object interaction diagram, a Probe has

been created for the create message to Classifier which is then expanded in a separate

object interaction diagram in Figure 7.4-8. Each create message can take a list of zero or

more arguments.

create LCS

Description
Classifier Message

Parameters LCS Store List
Bucket
Brigade Detector Effector

Obtain parameters
create LCS
create Classifier stor^

Foreach Classifier
create Classifier

End Iteration
create Message list

create Bucket Brigade

create Detector
create Effector

initialise-^
create

. create.

_create.

create
—0

Classifier

create - "1
■ create -

-create

Parameters LCS Classifier
Store

1
Message Bucket Detector Effector

List Brigade

Figure 7.4-7: O bject Interaction Diagram for Create LCS Use Case

create Classifier

Description Condition Action Chromosome Array Alphabet
create Condition

create Chromosome
create Array

foreach Alphabet
create Alphabet

End Iteration
create Action

create Chromosome
create Array

foreach Alphabet
create Alphabet

End Iteration

ere ate -
create -

;-create-
i; -create -

—create—>4

—create—
T

Action Chromosome Array AlphabetCondition

Figure 7.4-8: Object Interaction Diagram for the create Classifier Use Case

179

In the second Use Case, depicted in the OID in Figure 7.4-9, a ran message is sent to

Bucket Brigade Algorithm to initiate the match/execute cycle. The BBA first sends a get

Message request to Detector to obtain the Environment message which is then posted by

an insert request from Detector to Message list.

BBArun

Description

start BBA
get Environment Message

Add Message to List

start match cycle

foreach Iteration
get Classifier

get Condition part
get Message

set Classifier status

get classifier bids

End Iteration

start execute cycle

get Classifier

get Action

Add to Message list
paste final Action

Distribute payoff
Payoff active Classifiers

Bucket Classifier Message
Brigade store Detector List Classifier Effector

Figure 7.4-9: Object Interaction Diagram for Match/Execute cycle Use Case

The BBA then co-ordinates the message passing between the relevant objects to complete

the match/execute cycle.

The final Use Case documents the process of regenerating the Classifier Store. The

Learning Classifier System periodically invokes the Genetic Algorithm component so that

new rules or Classifiers can be generated to replace consistently weak Classifiers. The GA

uses the strength of Classifiers as a fitness measure and new Classifiers are generated as

novel combinations of existing fit Classifiers using the genetic operators. Only Partial or

Overlapping replacement is used in conjunction with Tournament selection strategy so

that previously useful Classifiers are preserved in the Classifier Store after the GA has been

invoked.

180

r e g e n e r a t e c l a s s i f i e r s to re

[D e s c r i p t i o n

N e w I t e r a t i o n

g e t C l a s s i f i e r

c r e a t e In d iv id u a l

E n d I t e r a t i o n

c r e a t e P o p u l a t i o n

i n i t i a l i s e P o p u l a t i o n

c r e a t e G A

in i t i a l i s e G A

r u n G A

Figure 7.4-10: Object Interaction Diagram for regenerate Classifier Use Case

7.4.2.4 Learning Classifier Systems Implementation

The Genetic Learning Classifier System was implemented using the C++ programming

language on a SUN SPARC 10. In the implementation, there is a direct translation

between objects in the design object model and classes in the C++ programming language.

The C++ language also provides direct support for implementing the different

Relationships between classes [137, 138, 139]. For example, Pointers and References in

C++ are used to implement Aggregation or composition relationships while class

Inheritance is used to implement Generalisation/Specialisation relationships [81]. The

listing in Figure 7.4-11 shows how C++ class inheritance is used to implement the

generalisation relationship between a Chromosome and an Array object in the design

object model. The Array class is described as the super or base class while Chromosome is

the sub or derived class. Inheritance is used in a similar manner to implement the

relationship between Chromosome objects and Condition Objects as shown in the listing

in Figure 7.4-12. Finally, Figure 7.4-13 shows how C++ pointers are used to implement

the Aggregation or composition relationship between a Classifier object and its constituent

Condition and Action parts.

C l a s s i f i e r G e n e t i c
S t o r e I n d i v i d u a l P o p u l a t i o n A l g o r i t h m

181

#include “Array.h”
class Chromosome : public Array {
public:

/* similar to array declarations */
Chromosome():Array(), nparams(O), szparams(O) { }
Chromosome(int sz): Array(0, sz), nparams(l), szparams(sz) {}
Chromosome(const Chromosome &c) { init(c.a, c.szparams, c.nparams); }
Chromosome& operator=(const Chromosome&); // Chromosome assignment:
~Chromosome() {} // destructor

public:
void init(const T*, int, int, Bool =False);
Chromosome(int szp, int np, Bool Msg) { init(0, szp, np, Msg); }
Chromosome(const T *ar, int szp, int np =1) { init(ar, szp, np); }
Chromosome& mutate(float, Bool);
virtual int Nparams(ChromParams which =n Variables) const {// return parameters

return (which == nVariables) ? nparams : szparams;
}
static void initmask(int, float);
static void setxover(Xover);
static Chromosome& getmask() { return *crossmask; }
float SpecificityO const { return 0.0; }
static Crossover xover;

protected:
int nparams;
int szparams;
static Chromosome *crossmask;

// no don't cares in ordinary Chromosomes

// number of parameters
// string size of each parameter
// mask for uniform crossover

Figure 7.4-11: C++ declaration for Chromosome class

#include “Chromosome.h”
class Condition : public Chromosome {
public:

Condition():Chromosome() { }
Condition(int sz):Chromosome(0, sz, defnparams) {}
Condition(const Condition &c) { Chromosome::init(c.a, c.szparams, c.nparams, Msg); }
Condition& operator=(const Condition&);
~Condition() {}

public:
void init(const T*, int, int);
Condition(int szp, intnp) { Chromosome::init(0, szp, np, Msg); }
Condition(const T *ar, int szp, int np =1) { Chromosome::init(ar, szp, np, Msg); }
Condition& mutate(float p) {

Chromosome::mutate(p, Msg);
return *this;

}
int SpecificityO const; // number of don’t cares

protected:
static Bool Msg;

};

Figure 7.4-12: C++ declaration for the Classifier Condition class

182

#inciude "Condition.h
#include "Action.h"

class Classifier {
friend void xover(const Classified, const Classifier&, Classifier&, Classified, float, float);
public:

static double bidTotal;
static double bidnsd; // bidding noise standard deviation

public:
virtual void init(int, int, int, double);
virtual void init(const Conditioned,const Action&,Bool,double,int =0);
virtual void init(const Classifier &C) {

init(*C.condition, *C.action, C.status, C.fitness, C.active);
}
Classified) : condition(O), action(O), status(False), fitness(O.O), active(O) {)
Classifier(const Classifier &C) { init(C);)
Classified operator=(const Classified);
operator Condition() const { return Condition; }
operator Action() const { return *action; }
int SpecificityO { return condition->Specificity(); }
Action& paste();
int state() const { return active;)
double bid() { return (double) bidConst*fitness*Specificity(); }
virtual -Classified) { delete condition; delete action; }
operator double() { return fitness; }
Chromosome& operator[](int idx) const {

return idx == 0 ? (Chromosome) *condition : (Chromosome) âction;
}
virtual void scan(ifstream&);
virtual void retrieve(ifstream&);
virtual void print(ostream& = cout) const;
void update(double f);
void resetQ { status = False; active = 0; }

protected:
Condition ĉondition;
Action *action;

1 double fitness;
Bool status;
int active;

// condition part of classifier
// action part of classifier
// classifier's strength
// determine status of classifier
// number of times classifier is active in each cycle

Figure 7.4-13: C++ declaration for Classifier class

7A.2.5 Object-Oriented Testing

As with the Genetic Algorithm, unit testing is carried out on individual objects in the

Classifier System to check for satisfactory behaviour. Extensive testing is not required on

component objects reused from the GA design except where modifications have been

made. In such cases, only the new functionality has to be tested. The preliminary results of

applying the Learning Classifier System to control the movement of an autonomous

vehicle in a simulated obstacled environment is presented in the next section.

183

7.4.3 Learning Classifier System applied to autonomous vehicle control in an obstacled environment

The computational requirements of autonomous vehicle navigation in a real time

environment[140, 141] provide an interesting problem on which the massive parallelism

implicit in learning classifier systems can be applied. In [142], a genetic algorithm solution

has been proposed as an alternative to dead reckoning techniques for estimating the

position of an autonomous robot vehicle. There, the problem formulation is to estimate

the vehicle orientation and location from measured sensor values and a given geometric

model of a simulated environment. The learning problem is facilitated by constraining the

robot motion to prescribed paths. In this thesis, a Learning Classifier System is applied to

control the movement of the autonomous vehicle in a simulated obstacled environment.

The environment is represented by a rectangular grid of cells in which the vehicle is placed

at random. The goal of the Classifier System is to navigate the vehicle through the

obstacles to a pre-specified finish point. The state of the cells determines the presence or

absence of an obstacle. The goal is expressed as the relative distance at any time from the

finish point. Sensors attached to the vehicle obtain information about its immediate

surroundings and also payoff related information. The payoff information depends both

on the distance of the vehicle from the final position and the state of current position in

terms of the number of obstacles in the vicinity of the autonomous vehicle.

7.4.3.1 The Environment

The learning classifier system is applied to the control of a mobile vehicle in a 2-

dimensional environment. The environment is made up of a 100x100 grid of cells in which

obstacles have been placed at random. Each cell is implemented as a location in Cartesian

space and a Boolean value which determines the presence or absence of an obstacle.

Figure 7.4-14 shows the static structure of the simulated environment. The Environment

is an Aggregation of Cells which in turn contain a Location object that determines their

position in Cartesian space. Action strings are received from the Effector and messages

and payoff sent to the Detector. The Environment also keeps track of the position of the

vehicle and the co-ordinate of finish point.

184

Figure 7.4-14: Object modelling diagram describing the Environment

The goal of the classifier system is to trace a path to a desired end point from a random

start position in the shortest possible time while avoiding the obstacles. The input

interface to the Classifier System, the Detector, utilises a 20 bit environmental message.

The message is decoded as one string of 8 bits that represent the sensor information and a

second string of 12 bits that encodes the distance of the vehicle from the desired end

point. The sensor information is a direct encoding of the state of the 8 adjacent cells to

the vehicle at time t. The remaining 12 bits are used for encoding the distance of the

vehicle from the finish point. Figure 7.4-15 shows how the sensor information from the

environments is coded as part of the Environment message string.

0 1 0

1
0 0

1 0 0

Figure 7.4-16: Encoding of the sensor
information

185

The first 8 bits of the input message for an environment represented by Figure 7.4-17 will

thus be 01010100. The Classifier System processes the input message for a fixed number

of cycles and issues commands to the output interface or Effector. An Effector message is

3 bits long and encodes the direction along which the vehicle will travel until it encounters

an obstacle. Figure 7.4-18 shows the direction that the different messages encode.

0 0 0

Figure 7.4-18: Direction encoding of Effector messages

At this point, the payoff for the current action is calculated and a new environment

message is generated for input to the Classifier System and statistical information about

Classifiers performance collected. A record of the best and worst classifiers (in fitness

terms) and also the average fitness of the classifier population is kept at each step of the

match/execute cycle. The Genetic Algorithm is invoked when the average fitness of the

population drops below a pre-defmed threshold.

7A. 3.2 Credit Assignment

When an action string is sent to the environment, the autonomous vehicle’s position can

either improve, remain constant or degrade with respect to the finish position. Also, the

state of adjacent cells might become more or less favourable with respect to the presence

of obstacles. An ideal credit assignment scheme will recognise action strings that lead to

more favourable conditions for the vehicle and penalise strings that either move away

from the target or move the vehicle to an area with a large concentration of obstacles.

However, a move away from the target can sometimes be beneficial to the overall goal of

reaching the finish position if this takes the vehicle away from areas of high obstacle

186

density. Unfortunately, it is difficult to reward such actions except where information

about the entire environment is available at the instance when payoff is calculated. In this

thesis, a fixed value equivalent to one fifth of the initial strength of the Classifiers is used as

the maximum reward with the negative of the value as the maximum penalty. After the

move associated with a posted action string has been carried out, the payoff is calculated,

based on the resultant distance moved, as a fraction of the maximum reward or penalty

with extra penalties for any obstacles in the vicinity. As shown in Figure 7.4-19, movement

towards the finish point results in a reward while a move away incurs a penalty.

Figure 7.4-19: Calculating the payoff

For example the message a message that results in move dj if Figure 7.4-19 gets the

following reward minus any penalties for obstacles in the vicinity

payoff = reward M aximumPayoff (7.4-1)

while a message resulting in move d2 receives a penalty in addition to penalties for

obstacles in its vicinity

d.
payoff = penalty = M aximumPayoff (7.4-2)

When the calculated value for payoff exceeds the maximum permitted, the payoff will be

clipped at the pre-set maximum.

7.4.4 Preliminary Results

In testing the learning classifier system, we wish to establish that the areas of high obstacle

density are avoided because of the steep penalties associated. On the other hand, the

simple movement scheme means that the classifier only stops when an obstacle is

187

encountered or the environment boundary is reached. Also, because both the

environment and the target are different from one run to another, there is no set route

that the classifier can memorise. Figure 7.4-20 shows a sample environment with randomly

placed obstacles. The environment consists of 20*20 = 400 cells. There is a 0.05

probability of a cell containing an obstacle so that approximately 5% of cells have

obstacles. The classifier store is initialised with 20 classifiers and each classifier has an initial

fitness of 200. The message list is limited to a maximum of 5 messages. The GA is called

into action every time the average fitness of the population is goes below 75% of its

possible maximum. The GA uses an overlapping replacement strategy to replace less fit

classifiers from the classifier store. It was observed that the autonomous vehicle’s motion

tended to avoid areas of high obstacle density. Figure 7.4-21 shows a sample motion of the

vehicle over the first 20 cycles. The results show that the initial motion of the vehicle is

more akin to random walk with obstacle avoidance.

188

Figure 7.4-21: Autonomous vehicle movement

7.5 Discussion and Conclusions

Robust search mechanisms are a major development in the field of intelligent computing.

The breadth of problems to which genetic algorithms have been applied is an indication of

their versatility. The ability to search for the global optima of an objective function makes

it possible to use genetic algorithms where analytical solutions are not possible. This

chapter has demonstrated how an open software architecture for genetic algorithms can

be designed and constructed using object-oriented techniques. Reusable components and

designs have been constructed for the GA that can become parts of new designs for other

evolutionary computation design efforts. The effectiveness of a GA solution has been

clearly demonstrated in two sample applications where the GA is used to search for

function maxima. The concept of design reuse, popularised in [73, 135] has been

demonstrated in the design of the Genetic Learning Classifier System. Genetic Learning

Classifier Systems are very complex, both in their structure and operation. Object-oriented

analysis has been used to improve an understanding of the classifier domain before design

was carried out. Object-oriented design follows directly from object-oriented analysis.

There is no semantic gap or unnecessary translations from analysis domain to the design

domain which can result in errors or ambiguities. There is also a direct translation from

design domain to implementation in the C++ programming language.

189

C h a p t e r V i l i

ACHIEVEMENTS AND FUTURE DEVELOPMENTS

8.1 Achievements

The field of computational intelligence is very large, so much so that no single thesis can

possibly touch ever aspect of it. While other research efforts burrow deep into individual

or a small combination of some of the technologies that constitute the field of

computational intelligence, this thesis is unique in that it proposes methods that are

applicable to the broad range of computational intelligence technology. Issues which apply

to the construction of robust software architectures for neural networks apply with equal

fervour when probabilistic, fuzzy or genetic learning systems need to be constructed. The

major achievements of this thesis include :

• A proposed new scheme for classifying neural networks based on a new set of

discriminating features and a novel application of notations found in the Object

Modelling Technique. The scheme boasts a more intuitive and more descriptive

classification using a standard set of easily recognised diagrammatic symbols. The

notation lends itself to automation support where features and capabilities of different

neural network paradigms can be easily and conveniently displayed. The scheme also

ensures that similar neural network paradigms are classified ‘close’ to each other and

can be extended by introducing new discriminating features or refining existing ones to

classify other new or unclassified neural network paradigms.

• A new approach to constructing intelligent systems based on object-oriented

techniques. The proposed approach is based on the OMT and relies on object-

oriented analysis to identify robust and stable objects which are found in different

computational intelligence domains.

• The algorithms which these computational intelligence systems implement

evolve in time as new research comes to fruition but the problem vocabulary

and hence the domain objects are usually very stable. Robust architectures for

these systems can thus be designed based on the domain objects so that the

need for modifications is diminished. Also the effects of modifications, when

they are required do not destroy the structure of the system or impose

overwhelming costs in terms of constraints to the users of the systems. OMT

1 9 0

provides a simple method which can be used to develop object-oriented

systems. Complex methods as reported in Booch[17], SSADM [143], and

Fusion[144] which rely on a large number of diagram types and heavy

textual content are unacceptable to mainstream designers who rely on a

more pragmatic and simplified approach to software systems development.

• The thesis has also shown how design and component reuse can be achieved in

the construction of intelligent systems. By constructing generic reusable

components in the design of GAs, a basis for both design and component

reuse was laid out. The GA components can be reused in the construction of

other evolutionary computation systems because of the overlap in the domains.

This was demonstrated in the design of the genetic learning classifier systems.

Design reuse can drastically reduce development time while component reuse

further reduces the time required for both implementation and testing.

• The development of software to realise sample systems. Software has been

developed in C++ on both SUN SPARCs and PCs to realise different neural network

paradigms, a fuzzy inference engine, a genetic algorithm and a genetic learning classifier

system. The following software has also been developed and has been used to

introduce both undergraduate and post graduate project students to computational

intelligence systems:

• a sample supervised learning network based on backpropagation with just four

nodes that clearly outlines the processing steps performed by the neural

network.

• a sample inference system with four rules that outlines the processing steps

performed by a fuzzy inference system.

• The novel applications of computational intelligence to real world problems.

This thesis has presented the results of applying different aspects of computational

intelligence to different problems in the field of power and control systems. Neural

networks have been applied to fault identification in HVDC systems and to identifying

unknown parameters in linear and non-linear dynamical systems. A fuzzy system has

been design for harmonic prediction in AC systems. A genetic algorithm has been

constructed for function optimisation and two examples of successful application in the

search for function optima have been demonstrated. Finally a learning classifier system

191

has been constructed for controlling the motion of an autonomous vehicle in an

obstacle laden environment.

8.2 Suggestions for Improvement

In the first chapter of this thesis, intelligent classification has been suggested for

distinguishing between different neural network paradigms. This is necessary if

implementers are to make informed decisions about the suitability of neural network

architectures for specific applications. More often, what is required is a decision on

whether or not an intelligent solution can be used and which aspect of computational

intelligence is best suited for a given problem domain. While heated debates continue

about the best methods for solving particular problems, the choice of solution is often

very problem dependent. The people best suited to make such decisions are those who

know the minute details of the problem to be solved. An extension of the classification

scheme to provide information about computational intelligence paradigms as a whole will

provide implementers with a starting tool on which such decisions can be made. The

neural network classification scheme thus become a sub collapsible branch of the overall

computational intelligence classification scheme as shown Figure 8.2-1. The diagram shows

neural networks, fuzzy systems and evolutionary computation systems to be all special

cases of computational intelligence systems. It is debatable whether the relationship should

be a “kind-of’ or “part-oP’ but the notation can just as easily be changed to handle either

case. Hybrid systems that incorporating more than one aspects of the technology are also

easily classified in such a scheme. An automated browsable database built on such a

scheme can become an indispensable resource to industry.

1 9 2

Figure 8.2-1: Classification meta model for computational intelligence systems

In Chapters IV, VI and VII, the construction of robust architectures for individual neural

networks, fuzzy logic systems, genetic algorithms and genetic learning classifier systems has

been presented. It has become evident that better performance and improved solution

times can be obtained by combining the learning capabilities of neural networks with the

robustness of fuzzy systems and the global search possible in evolutionary computation

systems. The work begun in this thesis can be developed further to produce an integrated

object-oriented software architecture for computational intelligence systems. Such an

architecture will make it possible to utilise the individual technologies or any viable

combination of technologies to achieve robustness and low solution cost in real world

problems.

In chapter V, a neural network solution was presented for fault detection in HVDC

systems. This approach to fault detection assumes that the statistics of the signals that

make up the training patterns are stationary1 with time. This assumption is valid in off-line

applications where data patterns have been previously collected and pre-processed to

extract features and reduce the inherent variations. The HVDC systems dynamic

1 Signals are stationary if their properties do not change during the course of the signals.
The concept of stationarity is well defined in the theory of stochastic processes. A
stochastic process is called strict-sense stationär)' if its statistical properties are invariant to
a shift of the origin of the time axis. A stochastic process is called wide-sense (weak)
stationary if its second order statistics depend only on the time difference.

193

characteristics can change due to harmonic pollution and other transient phenomena

which will render the assumptions invalid for on-line and real-time applications. The

wavelet transform is of particular interest in the analysis of non-stationary and fast

transient signals. It is local in both time and frequency domain and thus makes it possible

to describe short duration and non-stationary signals with fewer wavelet transform

coefficients [115]. It is possible that neural networks with wavelet bases functions will

provide an improved scope for real-time fault detection in HVDC and other systems with

non-stationary or fast transient signals.

In chapter VI, the derivation of necessary fuzzy rules for predicting the harmonics was

carried out without any prior knowledge as to how harmonics behave in real AC power

networks. The blind application of trend graphs and heuristics to data generated by

simulation will lead to the wrong rules being derived if the data happened to be erroneous,

incomplete or out of range. Even automated rule generation from data will still result in

rules that are not completely representative of the system to be modelled. Where a domain

expert is not readily available, it will be necessary to find ways in which the rules can be

independently validated before they are stored in the fuzzy rulebase. On-line learning of

rules using neural networks or adaptive evolution of rules using GA are possible solutions

which need to be explored.

8.3 Conclusions

The future of computational intelligence systems lies in applications that combine the

learning capabilities and graceful degradation found in neural networks with the robustness

and support for imprecision found in fuzzy systems and the global non gradient-based

searching in evolutionary computation systems to solve difficult learning problems in real

time. With the ongoing and very active research in this area, it is just a matter of time

before such systems become available. Unfortunately, the results are all too predictable.

One-off or bespoke implementation of an algorithm or a series of complicated algorithms

in different programming languages, with flow charts or pseudo-code to describe their

operation and finally the usually un-interpretable and non-reproducible results of applying

the algorithm to mundane application problems, which is then published in a mainstream

journal or conference. While this thesis has presented intelligent software architecture

issues from a viewpoint where development and maintenance efficiency have been

stressed, there are very strong arguments for traceability and easy communication of ideas

and design decisions to the readers of any such publications. A shift in emphasis to

1 9 4

architectural issues will go a long way towards improving the acceptance, understanding

and applicability of computational intelligence technology.

195

8.4 References

[1] D Rumelhart & J McClelland, (eds), “Parallel distributed processing”, Cambridge, MA,

MIT Press, Vol. 1 &2, 1986.

[2] J Anderson & E Rosenfeld, (eds) “Neurocomputing: foundations of research”,

Cambridge, MA, MIT Press, 1988.

[3] T Kohonen, “Self-organisation and associative memory”, 3rd Edition, Springer-Verlag,

1989.

[4] K Fukushima, S Miyake, T Ito, “Neocognitron: a neural network model for a

mechanism of visual pattern recognition”, IEEE Transactions on Systems, Man and

Cybernetics, 1983, No 13, pp826-834.

[5] R Hetcht-Nelson, “Neurocomputing”, Addison-Wesley, 1990.

[6] B Widrow & M Hoff, “Adaptive switching circuits”, in Proceedings of WESCON

Convention Record, New York, Vol. 4, 1960, pp 96-104.

[7] P Werbos, “Beyond regression: new tools for prediction and analysis in behavioral

sciences”, Ph.D. Thesis, Harvard University, Boston, 1974.

[8] M Minsky and S Papert, “Perceptrons”, Expanded Edition, MIT Press, 1988.

[9] F Rosenblatt, “Principles of neurodynamics”, Spartan Books, 1959.

[10] J Hopheld, “Neural networks and physical systems with emergent collective

computational abilities”, Proc. of the National Academy of Sciences, USA, 79, 1982, pp

2554-2558.

[11] J Hopheld, “Neurons with graded response have collective computational properties

like those of two state neurons”, Proc. of the National Academy of Sciences, USA, 82,

1984, p p 3088-3092.

[12] R Lippman, "Introduction to computing wida Neural Networks”, IEEE ASSP

Magazine, 1987, pp4-20.

[13] G Carpenter and S Grossberg, “The ART of adaptive pattern recognition by self-

organising neural network”, Computer, March 1988, pp77-88.

[14] D Hebb, “Organisation of behaviour”, Wiley 1949, Reprinted in J Anderson & E

Rosenfeld, (eds) “Neurocomputing: foundations of research”, Cambridge, MA, MIT

Press, 1988.

196

[15] W S McCullogh and W Pitts, “ A logical calculus of the ideas imminent in logica

calculus”, Bulletin of Mathematical Biophysics, 1943, Vol. 5, ppl 15-133.

[16] J Rumbaugh, M Blaha, W Premedani & W Lorensen, “Object-oriented modelling and

design”, Prentice-PIall Int. Edition, 1991.

[17] G Booch, “Object-Oriented analysis and design with applications”, Second Edition,

Benjamin/Cummings publishing Company, 1994

[18] T DeMarco, “Structured Analysis and system specification”, Engelwood Cliffs, N.J:

Prentice-Hall, 1979.

[19] E Yourdon, “Modern structured analysis”, Prentice-Hall International Editions, 1989.

[20] L Constantine & N Henderson-Sellers, “Notation matters part 1: framing the issues”,

Report on Object Analysis and Design, Vol. 2, No. 3, Sept-Oct 1995, pp25-29.

[21] J Freeman and D Skapura, “Neural networks: algorithms, applications, and

programming techniques”, Addison-Wesley Publishing Company, 1991.

[22] S Kung, “Digital Neural Networks”, PTR Prentice Hall Inc., 1993.

[23] L Rabiner & J Biing-Huang, “An introduction to hidden markov models”, IEEE

ASSP Magazine, January 1989, pp4-16.

[24] J Biing-Huang & L Rabiner,’’Mixture autoregressive hidden markov models for speech

signals”, IEEE Transactions on Acoustics, Speech and Signal Processing, Vol. 33, No 6,

Dec. 1985, ppl404-1413.

[25] A Cichocki & R Ubenhauen, “Neural networks for optimisation and signal

processing”, John Wiley and Sons, 1993.

[26] J Moody & C Darken, “Faster learning in neural networks of locally-tuned processing

units”, Neural Computation 1, 1989, pp281-294.

[27] J Hancock, “Data representation in neural networks: an empirical study”, in D

Touretzky et. Al. (eds), Proceedings of the 1988 connectionist models summer school,

Morgan Kaufman, 1988, pp 3-11.

[28] J Moody & C Darken, “Learning with localised receptive fields”, in D Touretzky et. al.

(eds), Proceedings of the 1988 connectionist models summer school, 1988, pp!33-143.

197

[29] R Rosenfeld & D Touretzky, “A survey of coarse coded symbol memories”, in D

Touretzky et al (eds), Proceedings of the 1988 connectionist models summer school,

1988, pp256-264.

[30] J Hanson and D Burr, “What connectionist models learn: learning and representation

in connectionist neural networks”, Brain and behavioural sciences,13(3), pp471-511.

[31] R Duda & P Hart, “Pattern classification and scene analysis”, Wiley, New York, 1973.

[32] K Hornik, M Sticchcombe, H White, “Multilayer feedforward networks are universal

approximators”, Neural Networks, Vol. 2, No 5, 1989, pp259-366.

[33] A Carmago, “Learning algorithms in neural networks”, Draft Internal Report, DCC

Computer Science Laboratory.

[34] B Kosko, “Bi-directional associative memories”, IEEE Transactions on Systems,

Man and Cybernetics, SMC-L8, Jan/Feb 1988, pp49-60.

[35] T Kohonen, “Correlation matrix memories”, IEEE Transactions on Computers, Vol.

c-21, No 4, Apr 1972, pp353-358.

[36] D Tank & J Hopfield, “Collective computation in neuron like circuits”, Scientific

American, pp62-69.

[37] S Abe, “Global convergence and suppression of spurious states of the Hopfield neural

networks”, IEEE Transactions on Circuits and Systems, Vol. 40, No 4, April 1993.

[38] J Bezdek, “Pattern recognition with fuzzy objective function algorithms”, Plenum

Press, 1981.

[39] G Carpenter & S Grosberg, “ART2 Self-Organisation of Stable category recognition

codes for analog input patterns”, in M. Caudill and C. Butler, (eds), Proceedings of the

IEEE first international conference on Neural Networks, San Diego, 1987, ppII-735-

11-745.

[40] D Hush & B Horne, "Progress in unsupervised learning", IEEE Signal processing

magazine. Vol. 10, No 1, Jan 1993, pp 8-39.

[41] S Kirkpatrick, C Gelatt & M Vecchi, “Optimisation by simulated annealing”, in J.

Anderson and E. Rosenfeld (eds), “Neurocomputing: Foundations of research”, MIT

Press, 1988, pp554-567.

[42] D G Luenberger, “Linear and nonlinear programming”, Addison Wesley, second

edition, 1984.

198

[43] D Rumelhart, G Hinton & R Williams, “Learning internal representations by error

backpropagation”, in Rumelhart D. And McClelland J. (Eds), Parallel distributed

processing, MIT press, Vol. 1, chap 5, 1986, ppl52-193.

[44] P J Werbos, “The roots of backpropagation: from ordered derivatives to neural nets

and political forecasting”, John Wiley & Sons, 1994.

[45] D Woods, “Back and counter propagation aberrations”, Proceedings of the IEEE

First International Conference on Neural Networks, San Diego, June 1988, pp 473-479.

[46] S Kung et al, “Generalised perceptron networks with nonlinear discriminant

functions”, in Mammone J. (eds), Neural Networks, Theory and Applications,

Academic, press, 1994, pp245-279.

[47] G Drago & S Ridella, “Statistically controlled weight initialization (SCAWI)”, IEEE

Transactions on Neural Networks. Vol. 3, No 4, July 1992, pp983-986.

[48] L Maurice, “Cluster analysis for social scientists: techniques for analysing and

simplifying complex blocks of data”, Jossey-Bass publishers, 1983.

[49] L Lai, F Ndeh-Che et al, “HVDC systems fault diagnosis with neural networks”,

Proceedings of the European Power Electronics and Applications Conference, Vol 8,

IEE Pub No 377, UK, 1993, ppl45-150.

[50] S Kung and J Hwang, “An algebraic projection analysis for optimal hidden units, size

and learning rates in backpropagation learning”, IEEE International Conference on

Neural Networks, ICNN ‘88, San Diego, Vol.l, 1988, pp363-370.

[51] S Fahlman & C Lebiere, “The cascade correlation learning architecture”, Technical

report, CSU CM-CS-91-100, Canergie Mellon University.

[52] A Sankar & R Mammone, “Neural tree networks” in Mammone J. (eds), Neural

Networks, Theory' and Applications, Academic, press, 1994.

[53] R Reed, “Pruning algorithms, a survey”, IEEE Transactions on Neural Networks,

Vol. 4, No 5, Sep 1993, pp740-747.

[54] C Jacob & J Rehder, "Evolution of neural net architectures by a hierarchical grammar-

based genetic system", in Albrecht R. F. et al (eds) "Artificial Neural Networks and

Genetic Algorithms", Proceedings of the 1993 international conference in Innsbruck,

Austria, Springer-Verlag, pp72-79.

199

[55] C Bishop, “Improving the generalisation properties of radial basis function networks”,

Neural Computation 3, MIT, 1991, pp579-588.

[56] M Servin & F Cuevas, “A new kind of neural networks based on Radial Basis

functions”, Investigación, Revista Mexicana de Fisca 39, No. 2, 1993, pp235-249.

[57] P Jokinen, “On the relation between radial basis functions and fuzzy systems”, IEEE

International Joint Conference on Neural Networks, Vol. 1, 1992, pp220-225.

[58] J Park & I Sandberg, “Approximation and radial basis functions”, Neural

Computation 5, MIT, 1993, pp305-316.

[59] M Mak, G Allen & G Sexton, “Comparing multi-layer perceptrons and radial basis

function networks in speaker recognition”, Journal of Microcomputer Applications,

Vol. 16, 1993, ppl47-159

[60] S Watkins & P Chau, “Different approaches to implementing a radial basis function

neurocomputer”, IEEE Symposium on Neuroinformatics and Neurocomputers, Vol.

2, 1992, ppll49-l 155.

[61] H Graf et. al., “VLSI implementation of a neural network model”, Computer, March

1988, pp41-48.

[62] E Georges, L. Lai, F Ndeh-Che, H Braun, “Implementation of neural networks with

VLSI', Fourth International Conference on Neural Networks, IEE, June 1995, pp489-

494.

[63] S Fahlman, “Faster learning variations on backpropagation: an empirical study”, in D

Touretzky et. al. (eds), Proceedings of the 1988 connectionist model summer school,

Morgan Kaufman,1988, pp3-ll.

[64] Z Andreas et. al. “SNNS neural network simulator, user manual”, version 3.2, 1993

[65] S Yeh and II Stark, “A fast learning algorithm for multilayer neural networks based on

projection methods”, in J Mammone (eds), Neural Networks, Theory and Applications,

Academic, press, 1994, pp323-342.

[66] M Powell, “Restart procedures for the conjugate gradient method”, Mathematical

programming, Vol. 12, April 1977, pp241-54.

[67] A Blum, “Neural networks in C+ + : an object-oriented framework for building

connectionist systems”, John Wiley and Sons, Inc., 1992.

200

[68] R C Ebehart & R W Dobbins, (eds), “Neural networks PC tools: a practical guide”,

Academic Press, San Diego, 1990.

[69] M Watson, “C++ power paradigms”, McGraw-Hill Book Company, 1994.

[70] R Bindu, “Object-Oriented databases: technology, applications and products”,

McGraw-Hill, Inc. 1994, pp207-224.

[71] S Gossain, “The emergence of the system architect”, Object Expert, SIGS

Publications, Vol. 1, No. 1, Nov-Dec 1995, pp58-60.

[72] A Kennedy & C Carter, “Object-Oriented Analysis and Recursive Development: A

Formalism for Understanding Software Architectures”, Paper and Presentation, IEE

Colloquium on “Recent Progress on Object Technology”, 1992.

[73] L Peters, “Advance structured analysis and design”, Prentice-FIall International

Editions, 1988.

[74] I Jacobson, M Christerson, P Johnson & G Overgard, “Object-oriented software

engineering: a use case driven approach”, Addison-Wesley, 1992.

[75] S Schach, “Classical and object-oriented software engineering”, IRWIN, 1996.

[76] A Takang & P Grubb, “Software maintenance: concepts and practice”, International

Thompson Computer Press, 1996.

[77] J Coplien, “Advanced C++ programming styles and idioms”, Addison-Wesley

Publishing Company, 1992.

[78] D Duffy, “From chaos to classes: object-oriented software development in C++”,

McGraw-Hill Book Company, 1995.

[79] N Wilkinson, “Using CRC cards: an informal approach to object-oriented software

development”, SIGS Books, 1995.

[80J K Derr, “Applying OMT: a practical step-by-step guide to using the object modelling

technique”, SIGS Books, 1995.

[81] D Papurt, “Inside the object model: the sensible use of C++”, SIGS Books, 1995.

[82] F Ndeh-Che, L L Lai and K Chu, “The design of neural networks with object-

oriented techniques”, IEE Colloquium on Recent Progress in Object Technology, Dec

1993.

201

[83] K S Swarup, H S Chandrasekharraiah, L L Lai, F Ndeh-Che, “Application of neural

networks to fault diagnosis in HVDC systems”, Neural Networks and Genetic

Algorithms, Springer Verlag, Wien, New York. 1993, pp227-234.

[84] L L Lai, F Ndeh-Che, K S Swarup and H S Chandrasekharraiah, “Fault diagnosis for

HVDC systems with neural networks”, Pre-prints of papers, Vol. 9, 12th International

Federation of Automatic Control (IFAC) world congress, July 1993, Australia, ppl79-

182.

[85] L L Lai, F Ndeh-Che, Tejedo Chari, P Rajroop, and H S Chandrasekharraiah,

“HVDC systems fault diagnosis with neural networks”, Proceedings of the 5th

European Conference on Power Electronics and Applications, The European Power

Electronics Association, Vol. 8, Sept 1993, ppl45-l50.

[86] L L Lai and F Ndeh-Che, Tejedo Chari, “Fault identification in ITVDC systems with

Neural Networks”, Proceedings of the Second International Conference on Advances

in Power Systems Control, Operations and Management, IEEE, Pub No 388, Dec

1993, pp231-236.

[87] L L Lai and F Ndeh-Che, “An application of neural networks to improving power

system stability”, IEE Colloquium on Advances in Neural Networks for Control

System. April 1993.

[88] F Ndeh-Che, “Application of neural networks to financial decision making”,

preliminary report to Marks & Spencers Financial Sendees, 1994.

[89] L L Lai, F Ndeh-Che, H Braun, R Hui and A B Serrano, “Application of neural

networks to predicting harmonics”, Sixth European Conference on Power Electronics

and Applications, Sept 1995, pp533-5'38.

[90] Y Hsu and C Yang, “Design of artificial neural networks for short term load

forcasting. part 1: Self-organising feature maps for day type identification”, IEE

Proceedings-C, Vol. 138, No. 5, September 1991, pp407-413.

[91] Y Hsu and C Yang, “Design of artificial neural networks for short term load

forecasting, part 2: Multilayer feedforward networks for peak load and valley load

forecasting”, IEE, Proceedings-C, Vol. 138, No. 5, September 1991, pp407-413.

[92] Q Wu, B Hogg and G Irwin, “A neural network for turbogenerators”, IEEE

Transactions on Neural Networks, Vol. 3, No. 1, Jan 1992, pp95-101.

202

[93] H Yang, W Chang & C Huang, “A neural network approach to on-line fault section

estimation using information of protective relays and circuit breakers”, IEEE

Transactions on Power Delivery, Vol. 9, No 1, 1994, pp220-229.

[94] S Ebron, D Lubkeman, M White, “ A neural network approach to the detection of

incipient faults in power distribution feeders”, IEEE Transactions on Power Delivery,

Vol. 5, No 2, April 1990, pp905-914.

[95] EMTP Rule book, BPA, USA, 1987.

[96] C Philips & H Nagle Jr., “Digital control systems analysis and design”, Prentice-Hall,

Ch 8, 1984.

[97] E Levin, R Gerwitzman & G Inbar, “Neural network architecture for adaptive system

modelling and control”, Neural Networks, Vol. 4, pp 185-191.

[98] Iv Narendra & K Parthasarathy, “Identification and control of dynamical systems

using neural networks”, IEEE Transactions on Neural Networks, Vol. 1, No 1, March

1990, pp4-27.

[99] S Kim & J Lee, “Unknown parameter identification of parameterised system using

multi-layered neural networks”, IEEE International Conference on Neural Networks,

Vol. 1-3, 1993, pp438-443.

[100] H Tsai et. ah, “On-line synchronous machine parameter estimation from small

disturbance operating data”, IEEE Transactions on Energy Conversion, Vol. 10, No. 1,

March 1995, pp25-36.

[101] S Bhama & H Singh, “Single layer neural network tor linear system identification

using gradient descent techniques”, IEEE Transactions on Neural Networks, Vol. 4,

No. 5, Sept 1993, pp884-888.

[102] E Cox, “The Fuzzy systems handbook: a practitioner’s guide to building, using and

maintaining fuzzy systems”, Academic Press, 1994.

[103] L Zadeh, “Fuzzy sets”, Information and Control, Academic Press, Vol. 8, New York,

1965, pp338-353.

[104] M Sugeno, “An introductory survey of fuzzy control”, Information Sciences 36,

1985, pp59-83.

203

[105] “Fuzzy Logic: Frequently Asked Questions”, A list of Frequently Asked Questions

(FAQ)", USENET : comp.ai.fuzzy. Anonymous FTP from rtfm.mit.edu:

/ pub/usenet/news.answers/ai-faq/fuzzy/.

[106] R Yager and D Filev, “SLIDE: A simple adaptive defuzzification method”, IEEE

Transactions on Fuzzy Systems, Vol. 1, No 1, Feb. 1993, pp65-78.

[107] T Yamakawa, “A fuzzy inference engine in non-linear analog mode and its

application to a fuzzy logic controller”, IEEE Transactions on Neural Networks, Vol.

4, No 3, May 1993.

[108] C Lee, “Fuzzy logic in control systems: fuzzy logic controller-Part I”, IEEE

Transactions on Systems, Man and Cybernetics, Vol. 20, No 2, 1990, pp404-418.

[109] S Halgamuge, W Poechmueller & M Glesner, “An alternative approach for

generation of membership functions and fuzzy rules based on radial and cubic basis

function networks”, Technical Report of the Institute of Microelectronic Systems,

Darmstadt University of Technology, Germany, 1994.

[110] C Lin & C Lee, “Reinforcement structure/parameter learning for Neural Network

based fuzzy logic control systems”, IEEE Transactions on Fuzzy Systems, Vol. 2, No 1,

Feb. 1994, pp46-63.

[111] FI Berenji & P Khedkar, “Learning and tuning fuzzy logic controllers through

reinforcements”, IEEE Transactions on Neural Networks, Vol. 3, No 5, Sept. 1992,

pp724-739.

[112] R Backhouse, “Program construction and verification”, Prentice-Hall International

Editions, 1986.

[113] M Darwish, “Switched capacitor filters power application”, PhD thesis, 1987, Brunei

University, UK.

[114] K Narendra & H Chandrasekharaiah, “Simple method of selective harmonic tracking

(SHT) of signals in an integrated AC-DC power system”, IEE Proceedings-C, Vol. 140,

No 5, Sept 1993, pp399-403.

[115] A Poularikas, “The transforms and application handbook”, CRC Press & IEEE

Press, 1993.

2 0 4

[116] H Beides and G Heydt, “Dynamic state estimation of power system harmonics using

Kalman filtering methodology”, IEEE Tansactions on Power Delivery, Vol. 6, No 4,

Oct 1991, ppl663-1670.

[117] R Hartana & G Richards, “Harmonic source monitoring and identification using

neural networks”, IEEE Transactions on Power Systems, Vol. 5, No 4, Nov 1990,

ppl098-1104.

[118] S. Osowski, “Neural network for estimation of harmonic components in a power

system”, IEE Proceedings, Part C, Vol. 139, No 2, March 1992, ppl29-135.

[119] J Plolland, “Adaptation in natural and artificial systems”, First MIT press Edition,

1992.

[120] J Heitkoetter and D Beasley, eds. (1994) "The hitch-hiker's guide to evolutionary

computation: A list of Frequently Asked Questions (FAQ)", USENET :

comp.ai.genetic. Anonymous FTP from rtfm.mit.edu: /pub/usenet/news.answers/ai-

faq/genetic/.

[121] V Miranda, D Srinivasan and L M Proenca, “Evolutionary computation in power

systems”, Proceedings of the 12th Power Systems Computation Conference, Germany,

Aug 1996, pp25-35.

[122] C Reeves & H Karatza, “Dynamic sequencing of a multiprocessing system: A

Genetic Algorithm Approach”, in Albrecht R. F. et al (eds) "Artificial Neural Networks

and Genetic Algorithms", Proceedings of the 1993 international conference in

Innsbruck, Austria, Springer-Verlag, pp491-495.

[123] D Goldberg, “Genetic algorithms in search, optimisation and machine learning”,

Addison-Wesley publishing company, 1989.

[124] L Davis, “A handbook of genetic algorithms”, Van Nostrand Reinhold, New York,

1991.

[125] A Ackley, “A connectionist machine for genetic hill climbing”, Kluwer Academic

Publishers, 1987.

[126] PI Adeli & S Hung, “Machine learning: neural networks, genetic algoridims and fuzzy

systems”, John Wiley and Sons, Inc. 1995.

[127] L L Lai, F Ndeh-Che and K H Chu, “Improving power system stability by

selecting the parameters of excitation control systems using a genetic algorithm”,

205

International Conference on Power System Technology, IEEE/CSEE, China, Oct

1994, pp286-290.

[128] L L Lai, F. Ndeh-Che, K Chu, P Rajroop, and X F Wang, “Design of neural

networks with genetic algorithms for fault section estimation”, Proceedings of the 29th

UPEC, Ireland, 1994, Vol 2, PP596-599.

[129] F Ndeh-Che, “Computational intelligence report”, Internal Report, Energy Systems

Group, Department of Electrical, Electronic & Information Engineering, City

University, 1994.

[130] M Valenzuela-Rendon, The fuzzy classifier system: motivations and first results”, in .

Schwefel & R. Manner (Eds), Proceedings of the 1st Workshop on Parallel Problem

Solver from Nature, PPSN1, Dortmund, October 1990.

[131] S Forrest, “Parallelism and programming in classifier systems”, Pitman Publishing,

1991.

[132] D Miranker, “TREAT: A new and efficient match algorithm for AI production

systems”, Pittman London, 1990.

[133] H Zhou, “A prototype of long-lived, rule-based learning systems”, in A. Martelli and

G. Valle (eds), Computational Intelligence, I, North-Holland, 1989, pp83-92.

[134] J Holland, “Escaping brittleness: the possibilities of general-purpose learning

algorithms applied to parallel rule-based systems”, in R. Michalski et. al (eds), Machine

Learning Vol. II, M. Kauffman Publishers, 1986, pp593-623.

[135] E Gamma, R Helm, et. al, “Design patterns”, Addison Wesley publishing Company,

1994.

[136] R Zitar & M Hassoun, “Neurocontrollers trained with rules extracted by genetic

assisted reinforcement learning system”, IEEE Transactions on Neural Networks, Vol.

6, no 4, July 1995, pp859-879.

[137] B Stroustrup, "The C++ programming language", Addison,-Wesley, Second

Edition, 1991.

[138] FI Schildt, “C++: The complete reference”, Osborne McGraw-Hill, 1991.

[139] S Lippman,”C++ primer”, Addison-Wesley Publishing Company, 1991.

[140] C Malcom et. al., “An emerging paradigm in robot architecture”, in Kande T. et. al

(eds) Intelligent Autonomous Systems, Vol. 2, 1990, pp545-564.

206

[141] A Moizer & B Pagurek, “An onboard navigation system for autonomous underwater

vehicles”, in Hertzberger L and Goren F. (eds), Intelligent Autonomous Systems,

North-Holland, 1987, pp449-458.

[142] J Alexander, “On robot navigation using a genetic algorithm”, in Albrecht R. F. et al

(eds) "Artificial Neural Networks and Genetic Algorithms", Proceedings of the 1993

international conference in Innsbruck, Austria, Springer-Verlag, pp471-478.

[143] C Bentley, “Introducing SSADM4+”, National Communications Centre, Blackwell,

1996.

[144] D Coleman, P Arnold, S Bodoff, C Dollin, H Gilchrist, F Hayes and P Jeremes,

“Object-oriented development: the fusion method”, Prentice-Hall International

Editions, 1994.

207

Appendix A : Key Elements of the Object Modelling Technique (OMT)

The Object Modelling Technique (OMT) is an object-oriented software development

methodology/process that models the software system to be built from three related but

different viewpoints, each capturing important aspects of the system, but all required for a

complete description. The three viewpoints are expressed as three separate modelling

types, namely: the object model, the dynamic model and the functional model. OMT also

divides the software development cycle into 3 phases: the analysis phase produces an

analysis model, the design produces the design model and the implementation phase

produces the implementation model or program code. The analysis phase is concerned

with modelling the real world. The design phase is concerned with decisions about the

subsystems and the overall architecture of the software system while the implementation

phase encodes the design in a programming language. Figure A-l presents an overview of

the OMT process.

Object
Model

Analysis

Dynamic
Model

Functional
Model

System
Design

Design

Object
Design

* Implementation

Figure A-l: OMT Process Overview

The word model in OMT is used to describe both a view of the software system and a

stage in the systems life cycle.

208

Analysis Models

The Object Model

The object model describes the structure of objects in the system—their identity, their

relationships to other objects, their attributes and their operations. The goal in

constructing an object model is to capture those concepts from the real world which are

important to an application. The object model is represented graphically with object

diagrams containing object classes.

Object Model Notation

2 0 9

Multiplicity of Associations:

Exactly one

Many (zero or more)

Optional (zero or 1)

One or more

Numerically specified

^Generalisation (Inheritance):

Superclass

A
Subclass-l

i_
Subclass-1

...

Aggregation:

2 1 0

ÖLink Attribute:

Object Model Definitions

Object—a tangible entity that exhibits a well defined behaviour and that has meaning for a

particular problem domain. An object is characterised by an identity, an interface

(behaviour) and a implementation (representation).

Class—a description of a group of objects with similar properties, common behaviour,

common relationships and common semantics.

Attribute-—a named property of a class describing a data value held by each object of the

class.

Operation—a function or transformation that may be applied to objects in a class.

Link—a physical or conceptual connection between two objects; an instance of an

association.

Association—a relationship among instances of two or more classes describing a group of

links with com m on structure and com m on semantics.

Aggregation—a special association between a composite object and its constituent parts.

Generalisation/Specialisation—a relationship or special association between a class and

one or more specialised versions of it. The more general class is called the superclass or

base class while a specialised version is called the subclass or derived class.

Inheritance—an object-oriented construct that permits classes to share attributes and

operations based on generalisation/specialisation relationship between them.

Role—one end of an association.

Role Name—a name that uniquely identifies one end of an association.

Qualifier—an attribute of an object that distinguishes amongst a set of objects in the many

end of an association.

2 1 1

Qualified Association—an association that relates two classes and a qualifier. A binary

association in which one part is a composite comprising a class and a qualifier and the

second part is a class.

Data Dictionary—a textual description of each class, its associations, attributes and

operations.

The Dynamic Model

The dynamic model describes the aspects of a system to do with time and the sequencing

of operations. The dynamic model is concerned with the thread of control in the system

based on the organisation of events and states. Events and sequences of events cause

changes to the state of the system (state transitions) while the states provide context for

the events. The dynamic model is represented graphically with state diagrams. Each state

diagram shows the state and the event sequences permitted in the system for one class of

objects.

Dynamic Model Notation

Event causes Transition between States:

Event with Attribute:

Action on a Transition:

r
State-1

s event/action r
State-2

y__) \ __)

2 1 2

Guarded Transition:

Initial and Final States:

result

Output Event on a Transition:

r
State-1

S eventl/event2 r s
State-2

_J J

Action and Activity while in a State:

State Name

entry/entry-action
do: activity-A
event-1/action-1

exit/exit-action

Dynamic Model Definitions

Event—an instantaneous occurrence.

Action—an instantaneous operation usually associated with an event.

Activity—an operation that takes time to complete, usually associated with a state and

represents real world accomplishments.

Event Attribute—data values conveyed by an event from one object to another.

Event Trace— a diagram that shows the senders and receivers of different events and the

sequence in which events are sent.

213

Transition—a change of state caused by an event.

Control—the aspect of a system that describes the sequences of operations that occur in

response to a stimuli.

Guard Condition—a Boolean condition that must be satisfied before a transition can

occur.

Guard Transition-—a transition that fires only if a guard condition is true.

State—the values held by the attributes and the links of an object at a particular time.

State Diagram—a directed graph in which nodes represent system states and arcs

represent the transitions between states.

Functional Model

The functional model is concerned with those aspects of a system concern with

transformations of values. These include functions, function mappings, constrains and

functional dependencies. The functional model captures what a system does without

regard for how or when it is done. Functional models is represented with data flow

diagrams. A data flow diagram is a modelling tool that allows us to picture a system as a

network of functional processes connected to one another by pipelines and holding tanks

of data. Data flow diagrams show the dependencies between values, and how output

values are computed from input values and functions, without regard for when or if the

functions are executed. Components of a data flow diagram include: processes, flows, data

stores and terminators.

Functional Model Notation

\ Process:

m
Process

214

Data Store:

D1 Data store

Data flow between Processes:

1
Flow Name

1

Process-1

__ Z
Process-2

_______Z

iAccess of Data Store:

Update of Data Store:

Process

Access and Update of Data Store:

D1 Data store
i k.

D a ta

' r
:
1

I:
:::

1 s
1
\

Process

/

Terminators as sources and sinks of Data Store:

: _________________ / .——

I..........._ J

Functional Model Definitions

Process—transformations that represent the individual functions carried out by a system.

Data flow—the connection between the output of one process/data store/external entity

and the input to another.

Data Store—a passive entity that stores data that the system must remember over a period

of time.

External Entity/Actor—an active entity that dives a data flow diagram by producing or

consuming information.

Design Models

System Design

System design is the first design stage in which the basic approach to solving the problem

is selected. Decisions are made at a high level about the overall organisation of the system

into subsystems that determines the system’s architecture. Each subsystem is a package of

classes, associations, operations and constraints that are interrelated and that have a well

defined interface with other subsystems. Subsystems are identified by the service they

provide. A service is a group of related functions that share a common purpose. The

interface to a subsystem specifies the form of all interactions and the information flow

across subsystem boundaries but does not specify how subsystems are to be implemented

216

internally. The decomposition of a system into subsystems can be organised as a sequence

of vertical partitions or horizontal layers. A layer is an ordered set of virtual worlds, each

built in terms of the one below it and providing the basis for the implementation of ones

above it. Partitions, on the other hand, divide a system into several weakly coupled system,

each providing one kind of service.

Object Design

The object design phase determines the full definitions of the classes and associations used

in the implementation as well as the interfaces and algorithms of the methods used to

implement the operations. Object design evolves the analysis object model into a system

object model by adding detail and making implementation decisions. Redundant objects

may be added to the model for efficiency reasons. Also, during object design, decisions

have to be made about how to best implement the operations in the functional model

need and the choice of algorithms to use for their implementation. Complex operations

need to be successively decomposed into simpler operations until they can be

implemented as methods in the classes.

Implementation Model

The implementation model is the finish program in an object-oriented programming

language such as C++ or Smalltalk. During implementation, fully specified objects in the

design model are converted into classes in the programming language. Object-oriented

programming languages include direct support for object modelling concepts. For

example, C++ classes for object model objects, pointers/references for aggregation

relationships, constructors and destructors for object creation and termination models,

const for object immutability in the object model, inheritance for

generalisation/specialisation relationships in the object model etc.

217

The study of speed of converge is an important but very complex subject. There is

however, a rich and yet elementary theory of convergence rates that makes it possible to

predict the relative convergence rate of a wide class of algorithms with confidence. There

are a number of concepts that form the basis of measurements for speed of convergence.

Order o f Convergence

Given a sequence of real numbers jr^ j converging to the limit r* , several notions
Jc — 0

relating to the speed of convergence of such a sequence can be defined.

Definition. Let the sequence {rk j converge to r\ The order of convergence is defined

as the supremum of the nonnegative numbers p satisfying

—— \rk+l - r*
0 < l im j -------L7 < 00 (AB-l)

\rk - r*

The above equation is stated in terms of limit superior rather than just limit to ensure that

die definition is applicable to any sequence. It should be noted that the order of

convergence is as with all other notions related to speed of convergence that are

introduced, is determined solely by the properties of the sequence that hold as

referred to as the tail of the sequence. The order of convergence is thus a measure of how

good the worst part of the tail is. Larger values of the order p imply faster convergence

since the distance from the limit r* is reduced, at least in the tail, by the />* power in a

single step. If the sequence has order p and the limit

o 1 • | T + i ~ r IP = lim T -------T7 (B-2)
\rk - r |

exists, then asymptotically we have [q.+1 - r*| = j8|rt - r *|7 .

Linear Convergence

If die sequence {/y } converges to r ' in such a way that

A p p e n d ix B : S p eed o f C o n verg en ce o f A lg orith m s

218

the sequence is said to converge linearly to r* with convergence ratio [). Linear convergence is

the most important type of convergence behaviour. A linearly convergent sequence, with

convergence ratio /? can be said to have a tail that converges as fast as the geometric

sequence c f k for some constant c.

Average Kates

Definition: Given a sequence {iyjthat converges to r* , the average order of convergence is

the infinum of the numbers p> 1 such that
_____ _i_

liml̂ t - r*|̂ = 1 (B-4)
k—

This order is infinity if the equality holds for no p > 1.

The most important case is that of unity order of convergence, and in this case the average
_____ j_

convergence ratio is defined as l im h ~ r ' V

Convergence o f Vectors

Given a sequence {xt } of vectors in £"that converges to a vector X*, the

convergence properties are defined w.r.t a some particular function that converts the

sequence of vectors into a sequence of numbers. Thus, iff is a continuos function in E" ,

the convergence properties of {x^j can be defined w.r.t to f by analysing the

convergence of/jx1̂ to/jx*). The function f used in this way to measure convergence is

called the error function. In optimisation theory, it is common to choose the error

function by which to measure convergence as the same function that defines the objective

function of the original optimisation problem. Convergence is then regarded as a measure

of how fast the optimisation function converges to a its minimum. Generally, the order of

convergence of a sequence is insensitive to the particular error function used; but for step­

wise linear convergence, the average convergence ratio is not.

The Method o f Steepest (Gradient) Descent

Let /have continuos first partial derivatives in E " . For convenience, the following

simplifying notation has been assumed for the gradient vector V/ (x) off V/ (x) is defined

as n «-dimensional row vector; g(x) = V/(x)r is defined as »-dimensional column vector.

When there is no ambiguity, g (x k) = V/(xt) T is written as g k.

The method of steepest descent is written as the iterative algorithm

x*+i = x* ~ «*g* (B-5)

where CCk is a nonnegative scalar minimising f (x k —c c g k). The steepest descent

algorithm can be described as a search from the point xk along the direction of the

negative gradient g* for the minimum point on this line which is taken to be x t+1.

In formal terms, the overall algorithm A :E —> T'"which gives x l+1e A (x t) can be

decomposed in the form A = SG. Here, G:En —> £ 2" is defined by G(x) = (x ,-g(x))

giving the initial point and the direction of a line search. This is followed by line search

S :£ 2" - » £ 2.

Global Convergence

If V/(x) 0 then S is closed and since it is clear that Gis continuos, the steepest

algorithm A is closed. The solution is defined to be the points X where V/ (x) = 0. Any

continuos real valued function Z(x) = /(x) is a descent function for A , since for

V / (x)*0

m in / (x - « g (x))< / (x) (B-6)
0 <a<~

Thus, by the Global Convergence Theorem, if the sequence {xt.) is bounded, it will have

limit points and each of these is a solution.

2 2 0

A p p e n d ix C : D eriva tio n o f the B ack p ro p ag atio n a lg orith m

Figure A-l: Multilayer Perception neural network trained by backpropagation

Consider the multilayer perception network in Figure A-l, with N input neurons, H

hidden neurons and K output neurons. The input vectors are \p e 9 iw , the weight matrix

W = (wp w 2......w fl) where e 9 ^ and target vectors t p e 91A, the error due to

the training pattern is given by

Ep (C-l)

An input vector Xp = (xpl, Xp2,...xpN)', is applied at the input of the network. The input

neurons distribute the values to the hidden layer neurons. The net input to the j* hidden

neuron is given by
AM

netpj = X whpXpi + 0* (C-2)
i=0

where Wp is the weight on the connection from die /th input neuron and

O’1- is the optional bias term.

The output of the hidden neurons is non-linear function of the input

° p j = f j h (n e t p j) (C - 3)

where/is any activation function which is monotone, non-decreasing and differentiable in

the required range. The hidden neurons in turn distribute their activation values to the

output neurons. The processing equations for the output neurons are given by

2 2 1

//-I

net °Pk = !> * > w +0* (C-4)
7-0

¿V = /* (n e t°pk) (C-5)

The error at a single output neuron is the difference between its actual output and the

desired value and is given by 8pk = tpk - o pk .

The performance function is taken to be the sum of squared errors for all output neurons

E E, = ¿ 1 =i l(drt-opty
^ p=1 ^ P=1 k p =1 k

(C-6)

The weight values are updated in a direction that reduces the total error at the output. This

is done by calculating the negative gradient of the total error, VE ,̂, with respect to the

weights, wtj. This gradient is calculated for all the connection weights in the network. The

magnitude of the weight change is taken to be proportional to the negative gradient.

d E n
A W h = -7 7

d w kj
(C-7)

where n is a scale factor. The partial derivatives can be evaluated as a function of net°pk

using the chain rule as follows

d E p d E p dnet°pk

d w kj dnet°pk d w kj
(C-8)

but

r)net° 7) f 11 ~l ^a n e i°k a v 0 . Qt
L w^ Pj +6k

\j=odw°kj dw°kj
= o PJ (C-9)

d E ,
and writing a delta term d k= we have Aw,, = r\dko nj . The chain rule is used

d n e tpk'

again to evaluate d k as follows

d E ,
d k = dnet pk

d E p d o pk

d o pk dnet°pk
(C-10)

where
d o .

= ~ (tpk - O p t) and f t \
d ^ T = / K *) -' pk w ' i o l pk

Thus, for any node in the output layer, the following can be written

d k = (tpk - o pk) f ' (n e t° pk) and Awkj = r\dk

2 2 2

For nodes in the output layer,
dE„

do
—(tpk ~ o pk) can be direcdy calculated. For hidden

pk

layer nodes, this is not possible and so the error at the output must be expressed in terms

of known quantities. The delta term for the hidden layer nodes may be expressed as

d d E p _ d E P d ° p J

1 dnetpj dopj dnetpj

The above equations can be decomposed as follows

d E p d E p dopk dnet°pk

P, d o ^ dnet°pk dopj ;

(c - i i)

do kw kj (C-12)

while

w
dnetpj

P1 = f ' (n e t hj)

therefore,

d j= f \ n e t hpj) Y Jdkwk]

(C-13)

(C-14)

p j
Thus the required change in weight in the hidden layer is Aw-. = djX

In general, the weights on the connections in the output layer are updated according to

w °kj (I +1) = wkj (t) + rj8°iqipj + aApw°kj (t - 1) (C-l 5)

where T| is the learning rate factor

a is the momentum factor and

8 is the error at the output of the neuron and is given by

5°Pk = (d pk ~ o pk) f k (net°pk)

This error is recursively fed back through to the lower layers of the network and used to

determine the appropriate weight changes for each layer.

223

Appendix D : Object-Oriented Design Methodologies

The number of object-oriented development methodologies have increased markedly in

recent years as a result of the current high interest in object technology. Each

development method is usually supported by a process and has its own set of notations.

The underlying process describes how object-oriented software can be developed using

the method. The notation acts as a user interface to the method. The main object-oriented

development methodologies include:

• The Object Modelling Technique (OMT)

• Object-Oriented Software Engineering (OOSE)

• Object-Oriented Design (Booch)

• Responsibility Driven Design (CRC Cards)

• Object-Oriented Development: The Fusion Method (HP)

• Object-Oriented Systems Analysis (Schlaer/Mellor)

• Object-Oriented Analysis (Coad/Yourdon)

• Hierarchical Object-Oriented Design (HOOD)

The key elements of the Object Modelling Technique have already been presented in

Error! Bookmark not defined.. This section describes the other two most common

object-oriented development methodologies, namely Object-Oriented Software

Engineering and Booch Object-Oriented Design.

Object-Oriented Software Engineering (OOSE)

OOSE as a method is based on the notion of a Use Case. A Use Case is a sequence of

transactions between the system and an Actor, which is carried out to achieve some goal.

Actors can be users or other systems interacting with the system.

The underlying process for object-oriented software development is known as Objectory.

Objectory partitions the software development process into 3 phases: requirements,

224

analysis and construction represented by the requirements, analysis and construction

models respectively. A overview of the Objectory process is shown in Figure A-2.

Figure A-2: OOSE process overview

The requirements model captures the functional requirements from the users. It consists

of a Use Case model, interface descriptions and a domain object model. The analysis

model aims to structure the system from its requirements independently of how it will be

implemented. It uses 3 object types to describe the system: an entity object, an interface

object and a control object. Figure A-3 shows the different object types in Objector)'.

o
Control Object

OO SE object types:

O O - 1
Entity Object Interface Object

Figure A-3: Object types in OOSE

The construction phase consists of the design, implementation, and test models. During

design, a block model is constructed that mirrors analysis domain objects. The block

model is then refined into design objects. Object interaction diagrams are created for each

Use Case in the requirements model. An object interaction diagram documents all objects

that participate in a particular Use Case. It is formalised to describe all stimuli (events) sent

between objects and specifies the effect of each operation on the different objects.

225

Process

Description

Process

send S1

send S2

send S3

complex operation

send S4

send S5

send S6

Blockl Block2 Block3 Block4

Blockl

S5

Block2

Figure A-4: An example Object Interaction Diagram in Objectory

Booch Object-Oriented Design

The Booch method approaches object-oriented software construction as an iterative

process repeated over the analysis and design stages until die correct system has been

designed. Figure A-5 shows an overview of the Booch object-oriented development

process.

Figure A-5: Booch Process Overview

In the first stage of development, the objects and classes that form part of the application

are identified. Different ways are proposed for identifying objects, namely: domain

analysis, expert knowledge, textual analysis. The second development stage constructs the

class interface. The third development stage deals with identifying the relationships

between objects by organising the objects into class or object hierarchies. The discovery of

226

relationships usually cause new interfaces to be added and so the second and third

development stages are iterated until a satisfactory state is achieved. The implementation

stage decides on the representation of the class attributes and methods. This in turn may

result in the whole process being repeated for an individual class.

The Booch Notation

The Booch method is very descriptive in nature and provides six different modelling

diagrams for describing the different aspects of a system’s architecture. These include:

object diagrams, class diagrams timing diagrams, state diagrams, module diagrams and

process diagrams.

Class Diagrams

Class diagrams show classes and their relationships. A class diagram is a notational

variation of an entity-relationship diagram to include inheritance, instantiation and using

relationships. The notation allows class categories that group classes into namespaces so

that large complex systems can be modelled. Classes are depicted by an amorphous blob

icon. Four different relationship types can be defined between objects. These include:

association, inheritance, has and using relationships. Figure A-6 shows an example class

diagram with die different types of relationships.

/ Class-1
(\

/ Ciass-2
-association-

\

j
\

/
(\

Class-3 /
O

\
1

uses
/

/\
Class-4 /

l

Figure A-6: An example of a Booch class Diagram showing the different relationships

Object Diagrams

An object diagram shows objects and their relationships. The difference between class and

object diagrams is manifested in the nature of their relationships. While class relationships

227

are static, object relationships are dynamic and vary widely during the life of a system as

the objects are created and destroyed. Object diagrams depict the behaviour of typical

objects by showing the different objects and the relationships between them. There are

annotations to show visibility between objects, object sharing semantics and synchronising

information necessary in real time systems. Recently, the method has evolved to include

notations for depicting systems with distributed architectures including client/server

systems. The method emphasises the discovery of key mechanisms in the design. A key

mechanism is described as any structure whereby objects work together to provide some

behaviour which satisfies a requirement of the problem.

Timing Diagrams

While object diagrams show possible communication between objects, the flow of control

and timing of operations can be depicted on a timing diagram. A timing diagram has time

on the abscissa and different objects on the ordinates. Lines in the diagram represent the

flow of control between objects.

Stale Diagrams

State transition diagrams show how instances of objects move one state to another when

events are received and the actions that occur as a result of the state changes. An example

of a Booch state diagram is shown in Figure A-7. To prevent a proliferation of states for

large complex systems, a similar notation to OMT has been suggested for representing

state transition diagrams.

228

Module and Process Diagrams

The Booch method distinguishes between logical and physical views of a system. The

logical view. Class, object, timing and state diagrams describe the logical view of a system.

The logical view is concerned with the different objects that exist and how the collaborate

to solve a given problem. The physical view describes the physical hardware and software

components of the system. Design decisions about where classes should be declared and

the allocation of physical resources such as processors to processes come under the

physical view of the system. Module and process diagrams are simple graphs produced

during the implementation phase to describe a physical view of the system. A module

diagram shows the allocation of classes to modules and the compile-time dependency

relationships between modules. A process diagram shows the communication connections

between processors and other physical devices.

Other Object-Oriented Development methodologies

Responsibility driven design is an exploratory method based on CRC (Class Responsibility

Collaborator) cards in which project teams enact typical scenarios that exist in the system

in order to identify classes and their interactions. The classes, their sub and super classes as

well as their operations and interactions are recorded on index cards which form the bases

of the techniques.

Figure A-8: CRC Process overview

The fusion method for object-oriented [144] software development is a full coverage

method that incorporates some aspects of the different object oriented development

methods in addition to using formal methods. Fusion divides the object-oriented software

development process into 3 phases: analysis design and implementation. Analysis is done

with the aid of 3 modelling types: an object model, an operation model and a life cycle

2 2 9

model. In the design phase, three other modelling types are used. These include object

interaction graphs, visibility graphs and class descriptions and inheritance graphs.

Figure A-9: Fusion process of object-oriented development methods

230

Appendix E : Class Declarations for Associative Neural Network classes

The header files present class descriptions for the class of fixed weight neural networks.

These are the associative memory networks. The following networks can be categorised as

associative memory networks:-

• Feedforward Associative Memory Networks

• Linear Associative Memory (LAM)

• Non Linear Associative Memory (NLAM)

• Hamming Networks

• Feedback associative Memory Networks

• Sequential Hopfield Model

• Parallel Hopfield Model

• Bi-directional Associative Memory (BAM)

231

/* ASSOCIATIVE neural networks are a class of fixed wt neural networks. That #
include Bidirectional Associative Memories, (BAM), both Linear and non-linear
Associative Memories, Hamming networks, sequential and parallel Hopfield
models, sizex and sizey in these networks is equivalent to the number of
inputs and outputs respectively. Author: F. Che */

#ifndef ASSOC_H_
#define ASSOC_H_

#include "vecpair.h"
#include "matrix.h"
#include "param.h"

#ifndef BOOLEAN
#define BOOLEAN
enum Bool {False=0, True };
#endif

class Assoc {
protected:

Matrix *weights;
Vector ^threshold;
int sizex;
int sizey;
Bool Binary;

public:

// matrix of stored weights
// vector f threshold elements.
// number of rows in weights matrix
// number of columns in weight matrix
// true Binary inputs

Assoc() : weights(O), threshold(O) {}
void init(const Param&) {}
Assoc(int sz, Bool bin = True): // first constructor
sizex(sz),sizey(sz),
weights(new Matrix(sz,sz)),
threshold (new Vector(sz)),
Binary(bin) {}
Assoc(int sz, int sy, Bool bin = True):
sizex(sz),sizey(sy),
weights(new Matrix(sz,sy)),
threshold (new Vector(sz)),
Bmary(bin) {}
Assoc(const Patterns &p, Bool bin =True):Binary(bin)
(

sizex = (p[0].VectorXQ).SizeO;
sizey = (p[0].VectorYQ).SizeQ;
weights = new Matrix(sizex,sizey);
threshold = new Vector(sizex);

// query first elt ot Patterns for the
// get sizes of X and Y vectors
// initialise the weights matrix
//initialise threshold vector

virtual void initwts(const Patterns&) = 0; // matrix of input patterns
virtual -Assoc/)
rl

delete weights;
delete threshold;

232

virtual void print(ostream& s= cout) const
{ s << sizex << " " << sizey <<" " << (Binary ? 1 : 0) << endl;

weights->print(s);
threshold->print(s);

}.
virtual void scan(istream &s)
{

int bin;
s >> sizex >> sizey >>bin;
Binary = bin ? True : False;
weigh ts->scan(s);
threshold->scan(s);

}

virtual Vector recall(const Vector&) const = 0;
virtual Matrix recall(const Matrix &m) const =0;

inline ostream& operator<<(ostream &s, const Assoc &net)
{

net.print(s);
return s;

}
/* Assoc constructors: The patterns object is used to supply the dimensions of the
weights and threshold objects. This is more secure than passing the sizes separately but
means more work has to be done to retrieve the information required. */
#endif

/* Linear associative memory (LAM) class. This is part of a class of #
fixed wt networks, derived from tire associative memory class.
Author: F. Che */

#ifndef LAM_H_
#define LAM_H_

#include "assoc.h"
class LAM : public Assoc (

public:
LAM(int sz, Bool bin = False):
Assoc(sz, bin) {}
LAM (int sz, int sy, Bool bin =False):
Assoc(sz, sy, bin) {}
LAM(const Patterns& p, Bool bin =False):
Assoc(p, bin) { initwts(p); }
-LAM0 {.}
void initwts(const Patterns&);
Vector recall(const Vector&) const;
Matrix recall(const Matrix &m) const;

};

#endif

/* Bidirectional associative memories perform pattern association (hetero)
BAM's include the parallel hopfield as a special case.
Author: F. Che */
#ifndef BAM_H_
#define BAM H

#include "assoc.h"

class BAM : public Assoc {
protected:

Matrix *tweights;
Vector *tthreshold;
float energy;

public:
BAMQ: AssocQ,
energy (0),
tweights(O),
tthreshold(O) {}
BAM(int sx, int sy, Bool bin = False):
Assoc(sx, sy, bin),
tweights(new Matrix(sy,sx)),
tthreshold(new Vector(sy))
U
BAM(const Patterns &p, Bool bin =True) :
Assoc(p, bin),
tweights(new Matrix(sizey, sizex)),
tthreshold(new Vector(sizey))
{

// second layer weights
// second layer direshold
// minimum energy of the network

// transpose of weights
//

initwts(p);

-B A M 0 {
delete tweights;
delete tthreshold;

void initwts(const Patterns&);
void print(ostream &s = cout) const;
void scan(istream &s = cin);
Vector recall(const Vector&) const;
Matrix recall(const Matrix&) const;

};
#endif

234

4t
 4

t

/* Non-linear associative memory NLAM class. This is part of a class of #
fixed wt networks. It is derived from the associative memory class.
It employs a non-linear processing unit which helps reduce unwanted
perturbations. During retrieval, the test pattern vector is used to
compute a (matching) score vector S which passes thru the non-linear
processing units to produce a binary decision vector, v. Two non-linear
operators, threshold circuit and maxnet are defined. This type of
network is capable of holographic retrieval on real valued inputs
#Author F Che */

#ifndef NLAM_H_
#define NLAM_H_

#include "assoc.h"

class NLAM : public Assoc {
protected:

Matrix *newwts; // Matrix of input values
int unit_type; // type of non-linear processing

public:
void initwts(const Patterns&);
NLAM(int sz, int sy, int type =0, Bool pol =True):
Assoc(sz, sy, pol),
newwts(new Matrix(sz, sy)),
unit_type(type)
{}

NLAM(const Patterns&, int =0, Bool =True);
-NLAMO {

delete newwts;
}_
Vector recall(const Vector&) const; // override recall in Assoc class
Matrix recall(const Matrix&) const; // override recall in Assoc class
void print(ostream &s =cout) const;
void scan(istream &s =cin);

};

/* these are the non-linear processing functions */
extern Vector Maxnet(const Vector&);
extern Vector Threshold(const Vector&);

Vector (*non-linear[])(const Vector&) = { Maxnet, Threshold };
#endif

235

/* The hamming net selects the winner from the stored patterns which has the #
least hamming distance from the input vector. In this implementation, no
weight computation is actually done. The stored weights are actually the input
patterns. The init functions have to be overridden to for the hamming network */
#ifndef _HAM_H
#define _HAM_H
#include "assoc.h"
class Hamming : public Assoc {
protected:

public:
Hamming(int sz, Bool bin =False) : //
Assoc(sz, bin) {} //
Hamming(int sz, int sy, Bool bin =False) :
Assoc(sz, sy, bin) {}
Hamming(const Patterns &p, Bool bin =False) ;
-HammingO {}
void initwts(const Patterns&); //
Vector recall(const Vector&) const;
Matrix recall(const Matrix&) const;

};

#endif

/* Hopfield networks belong to a class of feedback associative networks. They #
require many iterations before the stored patterns can be retrieved. Three
basic types of Hopfield networks can be described, the sequential Hopfield net
the parallel Hopfield network and finally the discrete-time continuos state
Hopfield model. The main difference between the sequential and parallel
implementations is in the fact that the diagonal weight elements are zeroed
out in the sequential case. Author F. Che */
#ifndef _HOPF_H
#define _HOPF_H
#include "vector.h"
#include "matrix.h"
#include "assoc.h"

class Hopfield: public Assoc {
protected:
public:

Hopfield(int sz):
Assoc(sz) {}
Hopfield(const Patterns &p):
Assoc(p) { initwts(p); }
void initwts(const Patterns&);
-HopfieldQ { delete weights;

delete threshold;
}

// constructor

// matrix of input patterns
// destructor

hamming net constructor
calls Assoc constructor

override initwts in Base

#endif

236

