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Abstract

!

An increasing number of industries are concerned about variability in the quality 
of chemicals. This thesis is devoted to these concerns, particularly to three underly-
ing, but overlapping, strands: (i) Unfolding a Bulk Sampling Scheme; (ii) Sampling 
of Heterogeneous and Dynamic Material Systems; (iii) Designing of Experiments 
with Divisible Materials.
In Unfolding a Bulk Sampling Scheme we detail a sampling protocol to deter-
mine the sample size, the minimum amount of material, and an acceptance criteria 
centered on the characteristic variability of the particulate material to be assayed. 
Segregation, heterogeneity, particle size, randomization of solid-solid mixtures and 
all properties regarding every sort of lot — zero, one, two or three-dimensional — 
have a thorough examination not in conceptual terms but, indeed, within a mathe-
matical model that allows for materialization of errors with predictable risks.
In Sampling of Heterogeneous and Dynamic Material Systems we con-
sider the problem of serial measurements within the scope of Matheron’s Region-
alized Variables. The dependency of two neighboring samples from the same one-
dimensional lot whether moving or stationary is studied to refine precision state-
ments, minimize quality fluctuations and reduce heterogeneity of consignments. 
Moments of continuous selection errors and their computation using nonparametric 
methods are presented through Gy’s bulk sampling approach. Simplified methods 
to assess variability of continuous materials are also considered.
In Design of Experiments with Divisible Materials we deal with the problem 
of isolating variance components associated with sampling — primary, secondary 
and tertiary increments — and measurement systems. The method of conducting 
multifactor experiments, particularly Nested Experimental Design, to identify where 
in the process the quality improvement effort needs to be focused mostly is studied 
in a practical viewpoint according to the required needs. Balanced, staggered and 
Nested-factorial Design are analyzed accordingly. The insight allows optimization 
of sample size, amount of replication and reduction of variability and cost.
In the last chapter Designing a Bulk Sampling Test Station some suggestions 
based on the ideas of Unit Operations are presented. Fundamental rules for a sound 
design and choice of equipment for guarding against estimation bias are also con-
sidered together with a full layout for a Sampling Test Station.
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Chapter 1

Introduction

This thesis represents the current state of development of the Sampling of Bulk 
Materials and is designed for use in industry, particularly in the chemical industry, 
by engineers who feel that standard methods (Tables and Graphics) are inadequate 
since they only applied to indivisible materials. It is also directed towards training 
because sampling of particulate materials is so neglected in most courses in Chem-
istry, Chemical Engineering and Mining Engineering where students are led to think 
that sampling is a plant wisdom rather than a science.

A complete sampling plan for particulate material requires the study of two 
complementary models: a discrete model taking into consideration the discrete na-
ture of the population of fragments submitted to the sampling operation, described 
by the fundamental notion of heterogeneity, and a continuous model taking into 
consideration the continuous nature of the space and time variability of its quality 
characteristics.

A good sampling is expected to provide estimation of quality and control of all 
sources of errors met in chemical plants: sampling errors, analytical errors, reduction 
errors, delimitation errors, extraction errors etc.

Possibly the first and most important step towards the development of d satis-
factory sampling plan is to obtain a complete control of all variance components. 
They are caused by real changes in quality of the bulk, the random errors of the 
increments, and the combined errors cited before.

Two broad types of physical problems arise in industries dealing with chemicals 
in bulk:

1. materials are stockpiled in a zero-dimensional form, in packages, bales or bags
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that may be subdivided into unique sampling units for a routine sampling 
operations, and

2. materials are stored in a one-dimensional form like piles in a bulk form, in 
which no unique subdivisions may be specified as sampling units for a routine 
sampling operations.

In performing a suitable sampling plan the quality engineer encounters a hard 
obstacle: while sampling plans for indivisible products have been cataloged in a 
number of tables for both attributes and variables, it has not yet been possible for 
divisible products (see Juran [67]). Therefore a sampling model must be created 
for each type of bulk material. The model should define a proper universe or lot 
of sampling, describe how the samples should be selected, determine the number of 
samples to be taken, describe how the samples should be treated in the laboratory 
and the meaning of chemical results in terms of lot.

What makes this plans even more difficult is the peculiarity of divisible material 
in comparison to indivisible material. The latter is formed only of primary units 
for sampling and testing, while the former is composed of primary units divided 
into a set of secondary units which once again may be divided into tertiary or 
even higher order units according to the model intended. Sometimes, to perform 
economical plans increments are gathered into a composite samples in any of these 
stages as long as the precision remains steady. The Figure 1.1 shows some practicable 
arrangements of increments.

Figure 1.1: Arrangements of increments and replications within the boundaries of 
specified precision.

Economical reasons also drive manufacturers to define lots in distinct config-
urations according to type and charges of conveyance available. Chemicals from 
continuous processes are delivered in batches, batches are used as one-dimensional 
lots and vice-versa.

On rare occasions where the primary unit itself is the test portion, general sam-
pling theory and standard sampling plans — Dodge & Romig Tables, MIL-STD-
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105A, B, C, Phillips Standard Sampling System etc, may be of some help. That is 
a rule for mechanical sampling where the universe consists of pieces, parts etc., and, 
therefore, primary samples.

All the essential ideas about bulk material whatever the configuration — zero, 
one, two, and three-dimensional lots — are presented in Chapter 2. Relationships 
among both discrete and continuous functions, decomposition of overall sampling 
errors, notions of heterogeneity, segregation and group factors are considered to 
build up a sampling scheme and define the fundamental and segregation variances. 
Minimum weight of material and amount of sampling are considered together with 
the most common sampling models for systematic, stratified and isolated lots.

In Chapter 3 the sampling of dynamic material systems is considered through 
Content and Throughput Functions and Variographic Experiments. Auxiliary Func-
tions are deduced to compute random, correlated and periodic parameters of vari- 
ogram as well as the moments of quality fluctuation errors.

A better understanding of continuous models and fluctuations in the process is 
also aimed using the approach of both Matheron and Gy. The model applies to the 
different types of materials in industrial chemistry: materials moving or stopped 
in conveyor belts, pipes, ducts, streams and materials stationary in elongate piles. 
It presupposes the collection of a number of increments according to the type of 
consignment, intrinsic properties of material and equipment available. Increments 
collected during small fractions of time or space are analyzed and the data values 
are used to calculate an experimental variogram. From the data, analytical and 
graphical estimations are made and suggestions are presented to reduce fluctuations 
of the quality characteristics.

In Design of Experiments, D O E , the variance components are separated for 
analyses of the effects and interactions of the many sources of variations of the 
system. In this method the components of the variance of the continuous selection 
errors are added to analysis of quality fluctuations.

5C£ = 5C E 1 + S C E 2  + 5C E  3 (1.1)

Gy’s model is based on time series analysis and can often be used to refine 
precision statements. In such cases the E-statistics between classical variance and 
the time series variance calculated from the squared differences between consecutive 
primary increments may be statistically significant. The following formula for cal-
culation of geostatistical variance will based on the discrete variogram ['/x(h)] of the
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quality function [xj\, flow of mass,

( 1.2 )

where

r, is the number of unit-intervals in h

h, is the lag of variogram, and

n, is the number of data values.

Multi-stage experiments with particulate materials are described in Chapter 4.

In classical statistics we use experimental data for a better understanding of 
population. We also can compare the sample means of two populations by the two 
samples t-test. DOE  enlarges this view to situations in which we want to compare
two or more population variances or materialize the net effect of the combined 
action of analyst, equipment, temperature, pression, reagent, standards etc. Any of 
these factors may produce excessive variability in the process. We have to isolate 
variances and measure their relative effect. The theoretical approach is to choose a 
simple linear mathematical model that expresses individual and interaction effects. 
An example is the multivariate response function that includes lot, batch, sampling, 
measurement effects and assumes interaction effects.

where / represents the number of measurements performed in the experiment, k 
represents the number of samples, j  may represent the number of batches, i may 
represent the number of consignments.

fi is the overall mean of the response variable ; 
cq is the effect of treatment i; 
bj is the effect of treatment j ;
Cij is the i x j  interaction effect;
dijk is the effect of sampling errors within interactions; 
tijki is the effect of analytical errors.

Due to the importance of nested design for the chemical engineering the model 
has been used with few changes. Instead of Equation 1.3 we use the equation:

Vijki — /r +  cq +  bj +  Cij +  dijk +  eijki (1.3)

Vijki  — n  +  cii +  b j( i )  +  c k (ij)  +  Qpj fc) (1.4)
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where one effect is nested within others. The conventional fully replicated nested 
design is easy to administer and analyze but it doubles the number of tests as we go 
down the bottom and distorts estimates of variance. This disadvantage is overcome 
by other designs that keep similarity among the degrees of freedom. Two types are 
also considered: Staggered Nested Design and Nested-factorial Design.

An economical plan is suggested for which the number of tertiary and secondary 
units per primary unit are optimized by analysis of variance through DOE  without 
any damage to the precision of the experiment.

When sampling bulk materials the increments must often depend on human 
judgment because the material, even packaged, is not divisible into identifiable units. 
Experience has demonstrated that such dependence is hazardous and severe biases 
regularly take place. Statistics may be of little or no help if our sampling has been 
done poorly.

It is paradoxal how much progress chemical analysis has been made in the recent 
years and yet how little sampling work has been changing. Presently is quite common 
for chemical laboratories to perform chromatographical analyses and make use of 
sophisticated infrared equipment that produce accurate results in seconds and at 
the same time display in sampling laboratories the same equipment bias of the early 
1900’s. Some plants keep withdrawing increments by shovel, by scoop and reducing 
samples by coning and quartering. In many cases the lot is not available at one 
time or place, in others, all the lot is available for sampling but some parts are not 
accessible, in clear disregard of the principles of reliability and representativeness.

In Chapter 5 the production of reliable data, less dependent on human judgment, 
is considered and a Sampling Test Station is suggested. It follows the fundamental 
rules of correctness and representativeness of fragments in the light of Unit Opera-
tions, Design of Equipment and Mineral Processing for a sound design and/or the 
choice of equipment for guarding against estimation bias.

As we arrive at the consolidation oí a broad sampling procedure for chemicals 
three fundamental areas of knowledgement are necessary: Statistical Theory, Chemi-
cal Engineering and Chemistry. The diagram in Figure 1.2 provides the relationships 
among these three not mutually exclusive areas within the scope of Quality Control 
of Chemicals.

The strategies proposed here in this work do not include the area of Chemistry 
and measurement errors involved in Analytical Chemistry for obvious reasons - 
80% of worldwide standards are about analitycal tests and errors of analysis are
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Figure 1.2: Relationship among areas studied in this work.

relatively low when compared to the sampling errors.

From the Statistics we use Classical Statistics, Design of Experiments and Spa-
tial Statistics. From the Chemical Engineering we use Unit Operations, Design of 
Equipment and Mineral Processing.

The application of the methods and indeed the design of the Sampling Test 
Station will depend on the application and require adjustment to local conditions. 
This thesis attempts to develop best practice to the point of industrial usefulness.
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Chapter 2

Unfolding a Bulk Sampling 
Scheme

Sampling plans for discrete indivisible product have been catalogued in a number 
of tables. They are used to accept or reject the immediate lot of the product at 
hand or to determine if the process which produces the product is within acceptable 
limits.

The most serious limitation of these plans is that they consider increments from 
bulk materials as a discrete pieces. In fact, it is not suitable for particulate materials 
to have such plans even when they come in clearly uniform remarked segments not 
to mention those unpackaged consignments in which the sample increments must be 
created from a pile, a truck, a railroad car or a conveyor belt.

A detailed sampling protocol must be written for each type of bulk material and 
it should include details of when, where and how the samples increments are to be 
taken.

To determine the sample size, the minimum amount of material, the acceptance 
criteria for specific applications and to control a manufacturing process centered on 
the variability of the product some knowledge of segregation, heterogeneity, particle 
size and randomization of solid-solid mixtures are essential. Not merely in concep-
tual terms but, through a mathematical model that allows for materializing of errors 
and decisions over materials and processes with predictable risks.
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2.1 Establishment of a Sampling Model

In designing a sampling plan for bulk materials, one must firstly consider:

• How many samples should be taken from the lot?

• How large should each increment be?

• From where in the bulk material (population) should they be taken?

• Should individual samples be analyzed or a composite be prepared?

These questions cannot be answered accurately without some knowledge of the 
relative heterogeneity of the system. Gross samples should be unbiased with respect 
to the different sizes and types of particles present in the bulk material. The size and 
the amount of gross sample is often a compromise based on the heterogeneity of the 
particulate material one the one hand, and the cost of one the sampling operation 
on another.

The sample value will generally differ from the true, unknown value of the ma-
terial consignment. This difference, called Total Error (TE),  has a frequency distri-
bution with a mean value and a variance. It is defined as follows:

TE = as — aL 
aL

(2 .1)

where

as Critical content of the sample 5, perfectly defined but unknown; 

ai  Critical content of the lot L, perfectly defined but unknown;

It is necessary to estimate each sort of error before the quality evaluation can be 
reported with any degree of assurance or precision. The sampling errors [5'if], for 
example, are brought about depending on the nature of the material, size, shape, 
density, number of fragments, on the manner of sampling — random, systematic, 
stratified, multi-stage — and on the physical presentation of consignments — sta-
tionary, moving etc.

All these factors add bias and variability components. When the selection is 
probabilistic in the strictly sense, TE,  is a random variable with three defined mo-
ments:
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m(SE)  Expected value or bias of SE] 

s2( SE ) Variance of the distribution of SE; 

r2( SE ) Mean square of the distribution of S E ;

The first moment m(SE ) measures the selection accuracy. The second moment, 
s2(SE ), measures the selection reproducibility or precision. The last moment mea-
sures the sample representativeness and it is defined as follows:

S(SE)  =  m[(S£)2] + i  Z (S E f, =  m\SE) + o\E
1 — 1

The unusual characteristic of bulk materials rests on the huge flexibility of con-
figurations. They are liable to be arranged according to the number of dimensions 
of their representative models: three dimensions when extending in the three di-
mensions of space, two dimensions when having a nearly constant thickness, one 
dimension when having a nearly constant sections and zero dimension or discrete 
model. This continuous perspective shown in Figure 2.1 can only be related to the 
discrete reality of Figure 2.2 through a mathematical model that takes into consider-
ation the scale of observation, despite the fundamental discontinuity of the matter. 
To do so we define:

dX : The elementary volume centered at point X; 

dM  : The weight of active components present in d X ; 

dA : The weight of critical components present in dX.

P  : An index for the model.

Defining the functions indexed:

fj,P(x ,y , z ) lim
dX-rO

dM

aP( x , y , z ) =  lim
dX-^O

dX

dA
dX

The first function, //, refers to the weight of active components per unit of volume 
at point X , or quality function and the second one, o , to the weight of critical 
components per unit of volume at point 2T, or weighting function. These functions 
are related to one another through ap( x , y , z ), the critical content at point X :

ap(x,y ,z) limdX̂ O
dA
dM

Upjx,y,z)
yp(x ,y , z )
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mX (x, y , z)

Fi
Interstitial

Fluid

Figure 2.2: Schematization of the discrete model of lot L for particulate materials. 
The dotted lines represent the boundaries of the domain (Dl ).

Figure 2.3: Slice of an elongate Pile considered three-dimensional but represented 
by a one-dimensional model over the x axis.

Hp (x ): The accumulation of active components at point x ; 

ap(x) :  The accumulation of critical components at point x ' ; 

ap(x): The critical content at point x ;

where

ap(x) otp{x)
/ip(x)

Hp (x ) =  /  np(x,y,z)dy.dz 
J JZ(x)

a p ( x ) =  aP( x , y , z ) yP(x,y,z)dy.dz
J J Z (x )
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(2.5)

Therefore, when spaced sampling is used,

f(D'L) otp{x)np(x)dx

ai^X f(D'L) M x )dx

By analogy, we can think of one-dimensional temporal models. These models to-
gether with certain basic concepts of elementary physics such as velocity of the belt, 
Vg, velocity of cutter, Vc, time t passing by a point x in a range of time between 
to and tg in the beginning and end of the flow of L (belonging to the domain of the 
lot L) define the critical content ap|4 for dynamic lots:

f(T'L) ap(t)np(t)dt

aLt f(T'L) dp(t)dt

This model is to be dealt with in Chapter 3 and will yield relevant practical results 
in understanding the fluctuation of content in continuous lots.

2.2 Relationships among Functions

The mathematical model presented so far uses point functions characterized by 
their subscript x, f, Dp. These functions describe the characteristics of the material 
included in the elementary fraction dx.

Two difficulties arise when converting this theoretical approach into a real model:

• extension from the fraction dx to a nonelementary volume representing the 
real volume taking into consideration in a simple operation of the sampling 
device;

• substitution of this fictitious model by an actual group of particles.

To fill the gap between the theory and the discrete reality two kinds of func-
tions were created besides the point version: Extended Functions and Fragmental 
Functions. See Gy [37].

The extended functions illustrated in Figure 2.4 are characterized by the sub-
script [e] since it represents a extension volume.

To understand these functions let us define some variables:

De : a given domain with either three, two or one dimensions represents the lot L. 
It is usually small when compared to the total extent DL of the lot T;
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X  Domain

Figure 2.4: Extended Increment. Domain with isotropical properties in a bi- 
dimensional perspective.

D e(X)  : the domain De centered at point X\

fie(X)  : the average weight of active components per basic volume at the scale of 
De. By definition its value is:

M V )  =  2 -  /  pr(x ')d x '±Jq JDe(X)

o:e(.Y) : the average weight of critical components per basic volume at the scale of
De :

M X )
1

d I
ap(X')dX'

e (X)  : the average critical content around the point X  at the scale of De:

ae(X)  -  ae(X)/fie(X)

The fragmental functions are characterized by the subscript / .  They describe the 
properties of the groups Ge(X)  of fragments whose center of gravity and center of 
mass fall within the boundaries of the extension domain De(X).  This definition is 
not arbitrary but also dependent on the ’’ rebounding rules” to be explained after-
wards. In Figure 2.5 is illustrated the fractional function. It is possible to declare
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R;al XDomain

Figure 2.5: Fragmental Increment. Domain with isotropical properties in a bi- 
dimensional perspective.

that m { X )  is a discrete estimator of fie(X)  which is itself an extended estimator of 
the point function fip(X) .  The same remains true for ctf(X)  and aj(X).

Therefore,

_ fiDl)ap(X)MX)<lX „  f(DL) ae(X)/ie(X)dX _ /(£)l) «/(XWPQd*
“ L ¡ w l xP( X) dX  ~  StDL)N( X ) i X  ~  ! {DL)n , (X) dX  

S-------------------------------" S ' s-------------- ^ '
P  oint Extended Fragmental

The first equality is rigorous, but the others are only approximations. They are 
satisfactory under the following conditions:

• The size of the fragments is small when compared to the extension domain
De;

limai(/) =  aL(e) =  aL(p)

• The size of the extension domain De is small when compared to the isotropic 
domain of D l  of the lot L.

The smaller the ratio De/Di and t he smaller the fragment size the better is the 
approximation. It could be useful to create a theory for optimizing the particle size 
in addition to logical steps that respect: (i) the selection of certain number of point 
increments / p; (ii) the delimitation of the same number of extended increments / e; 
(iii) the extraction of the same number of fragmented increments If and the reunion 
of the fragmented increments making up the discrete sample.
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For the continuous model, where it is crucial to keep variability down to zero, 
the increment sampling process covers:

1. The selection of the point increments when applied to the model of point 
functions;

2. The sequence point selection — increment delimitation when applied to the 
extended functions;

3. The sequence point selection — increment delimitation — increment extrac-
tion when applied to the fragmental functions;

This increment property justifies the definition of the extended and fragmental func-
tions that provide the necessary link between the continuous model and the discrete 
reality.

2.3 Decomposition of Overall Estimation Errors

The estimation of qualitative or quantitative properties of a batch of particulate 
material involves a certain numbers of error-generating operations. Some of these 
errors can be completely eliminated, others only partially eliminated; some can be 
minimized while others remain invariant. Therefore, their generation and properties 
must be controlled, and distinguished one from the other.

The Figure 2.6 shows a general decomposition of the Overall Estimation Error 
(OE).

The Total Error, T E , consists of two component errors: Preparation Error, P E , 
characterized by non-selective operations and Sampling Error, SE.

n

TE = J 2 TE  =  PE  +  SE
i

The Sampling Error, SE, consists of two components: the Integration Error, 
IE  and Materialization Error, M E. Both continuous and discrete models are inter-
related through IE.

SE  =  M E  +  IE  =  DE +  EE P I E

The continuous model describes the large-scale properties of IE  while ignoring 
the small-scale particulate structure. The discrete model describes the small-scale
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GE

Figure 2.6: Decomposition of Global Estimation Error. The short-range fluctuation 
long-range and periodic errors are also represented by dashed boxes.

particulate properties of M E. Under certain conditions of sampling correctness, 
M E  is nil and consequently, also Delimitation Error, DE  and Extraction Error, 
EE.

In fact, IE  represents quality and weight errors. The first corresponds to the 
intrinsic constitution of material and the latter is due to fluctuations in the flowrate 
of the material been sampled past the device used to take the increments. If the 
flowrate is constant, it is negligible and IE  is due only to the fluctuations in the 
quality of material. Its decomposition includes a short-range quality error, IEi,  a 
long-range nonperiodic quality error, IE2 and a periodic quality error, IE 3. There-
fore,

IE — I Ei +  /  E2 +  I E3 — F  E +  GS E +  IE 2 +  IE 3
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or in terms of continuous selection errors [CE\:

IE  =  CE =  CEX +  CE2 +  CE3

When EE  is nil, and only in that case, it is possible to carried out an experiment 
for both discrete and continuous lots and estimate all actually existing components 
of integration errors. These errors include the variance between individual test- 
units and interclass correlation coefficient between test-units in the same increment. 
Therefore, streams of material sampled in time or space are much more complete 
because it is possible to estimate not only the scalar variance of quality errors but 
also the variability of process as a whole.

The estimation of the variance of the IE  is nothing other than the determination 
of the sampling precision and takes the one-dimensional time correlation into account 
when sampling one-dimensional moving streams. This approach may be used to 
analyze several sampling strategies. For example, random sampling is shown to 
be significantly inferior compared to systematic sampling and stratified random 
sampling.

The discrete model and the continuous model are connected through the deeper 
analysis of the short-range quality error. This requires a quantitative concept of 
particle heterogeneity and leads to the quantitative definitions of Constitution Het-
erogeneity of the lot, CH l  (an intrinsic characteristic of the material and greatly 
affected by comminution), and Distribution Heterogeneity of the lot, DH l  (truly 
affected by segregation). Both CH l  and DH l  can be determined nearly exactly 
if each particle is individually measured. Even though they are rather difficult to 
determine in practice, the necessary information can be approximated quite well by 
a size-density analysis.

IE\ consists of two components: the Fundamental Error, F E  and the Grouping 
Segregation Error, GSE. The mean of F E  is nonzero which entails that even when 
increment sampling is theoretically correct, a bias exists. However, except for low 
grade materials, this bias is negligible (see Merks [76] for details). The variance 
of F E , [a2(FE)]  is proportional to the constitution heterogeneity of the lot and 
inversely proportional to the number of sample fragments NF.

a2(FE)  cx CH l /Nf

Even without actually measuring cr2(FE),  the theoretical analysis is useful since it 
shows when a2(FE)  theoretically completely cancels and how it can be in practice 
minimized. Moreover a2(FE)  is zero only when either the sample is equal to the
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lot or when CH l  is zero — never attainable in practice and a2( F E ) can be mini-
mized by increasing the sample weight or by comminution. As it brings about cost, 
the economical optimum is reached by compromise. On the other hand, GSE  is 

minimized by:

• minimizing F E ;

• extracting increments as small as possible;

• minimizing segregation by homogenizing;

The Materialization Error, ME,  consists of two components: a Delimitation 
Error, D E , and an Extraction Error, EE.  These errors are caused by incorrectly 
constructed sampling devices and/or incorrectly operated devices.

All components of the GE  are assumed independent in probability with the 
consequence that can be directly transposed to the means and variances of the 
errors:

GE =  f  TEn + A E =  [ (SEn +  P E n) +  AE
J n J n

which entails the following relationships:

m(GE)  =  f  m{TEn) +  m(AE) =  f  [m(SEn) +  m(PEn)\ +  m(AE)
J n Jn

s2( G E ) =  f  s2(TEn) +  s2(AE) =  [  [s2(SEn) +  s2(PEn)} +  s2(AE)
Jn Jn

Although the model applies equally well in one, two, three and zero dimensional, 
in practice, only one-dimensional streams can be sampled in such a way that the 
moments of Si? can be determined. Sampling of two and three dimensional piles 
of stationary material is always subject to unavoidable and uncontrollable biases. 
These biases arise from the interaction of the sampling device with the particulate 
structure of the material. For sampling problems to be solvable, the material must 
either be in the form of moving stream or must be sampled by a splitting process. 
This process favors developing countries, since it is always possible to stop a stream 
on belts and collect increments by using a conventional sampler or dividers to split 
the lot.

2.4 Notion of Heterogeneity

Although optimization of the sampling protocols to minimize FE,  GSE , I F 2, IE3, 
and to eliminate DE, E E  and P E  is crucial for mastering the sampling techniques,
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the concept of heterogeneity is perhaps the most important part of the sampling 
strategy in determining the quality of both zero-dimensional lot and one-dimensional 
lots.

The problems of one-dimensional batch are a bit more complex since they in-
volve variograms and long-range heterogeneity and periodic components they are 
postponed to a later stage. Here we deal with the general heterogeneity problem 
symbolized by h. The suffix m denotes the number of discrete units of a batch or 
lot L and is assumed to be assigned at random — m — 1,2, ...Nu where Nu is the 
total number of these discrete units. The following symbols are indexed by m.

Um One of Nu typical units of the lot.

Mm Mass of all active components in unit Um and Mm =  M l ; 

A m Mass of critical component A in unit Um and Am =  A l ; 

am Critical content of unit Um and am =  Am/Mm.

The heterogeneity hm, carried by Um is proportional to the deviation (am — a£) 
or, in other words, the difference between this state and the complete homogeneity. 
Experiments by Gy [37] show that is much easier to deal with relative, dimensionless 
quantities. For this we define =  ML/Nu. Then within the lot:

hm
(om c il )M1i

aiM*.
-  aL)Mm 
aiML (2.6)

When speaking of unspecified units Um, it should be recalled that these units 
are formed of fragments of particulate material. Therefore, the unit Um becomes 
the fragment F{ with ¿ =  1,2,..., NF that can be similarly related to the descriptors 
M l , A l  and a/,. Hence, any quality characteristic can be computed in terms of
fragments.

aL Hi Aj
Hi Mi

A l /Ml

For groups of fragments Gn of a lot and number of fragments within groups 
j  =  1,2, ...,N n, the following relation is convenient:

an
H n  H j  A nj

H n  H i  M ,nj
A l /Ml

In practical terms it will be better to consider the average number of fragments, 
7, of the average fragment, Fj, and the average number of groups, n, of the average
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group, Gn and define the following relations:

A l /Ml  = aL =  A t/Mt =  ar =  An/MF =  aF

We are interested in the heterogeneity between and not within fragments. The 
notion of heterogeneity hi carried by a fragment is directly related to two descriptors: 
a qualitative parameter— critical component, Ai, a quantitative parameter— weight 
component, Mi, whose proportions characterize the critical content at.

As shown before, it is commonly accepted that the use of a relative and dimen-
sionless rather than absolute characteristics is far more convenient. Considering this 
some remarks can be made:

• The sampling variance is a. simple function of the variance of ht;

• The calculation of hi involves only parameters that are intrinsic properties of 
the material making up the lot and is independent of the size of lot considered;

• The descriptor hi is dimensionless but requires the use of the same units;

• A set of fragments may be defined only by one descriptor when equal weight 
of bulk material is taken from the lot.

Thus, the average carried by the fragments of a lot is:

m(ht) =  Y  hi/Nf  =  0
i

and the sampling variance s\. of the heterogeneity random variables is:

s\. is equal to the relative variance of the content ai of the fragments.

2.5 Constitution and Distribution Heterogene-
ity

There are two types of heterogeneities within dimensional lots:

• The heterogeneity consisting of a difference between the composition of the 
different units of a lot, such as between fragments of particulate material. This 
is defined as Constitution Heterogeneity, CHj_, a micro property of a sampling 
unit;
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• The heterogeneity consisting of a difference between the spatial distribution 
of the different units within the lot caused by differences in shapes, densi-
ties, sizes, weights of fragments. It is called Distribution Heterogeneity, DH l , 
and it is a measure of both trends and the segregation phenomena — macro 
properties of the sampling units.

The Constitution Heterogeneity of a lot is defined as the relative and dimension-
less variance of the heterogeneities hi carried out by the Np fragments Fi making 
up the lot.

CH l  =  s2ht

This variability is at its maximum in the case of one particle primary increment 
collected from a truly binomial sampling unit. However, the variability decreases 
rapidly as the number of particles in an increment increase. The composition vari-
ance is caused by differences in composition between particle and therefore a micro 
property of a sampling unit. When dealing with composite lots, it is easily demon-
strated that CH l  is equal to the weighted averages of sublots:

£ j j  _  Wf i Chil i + NF2CHL2
Npi +  Np2

Therefore CH l  is a characteristic of the material making up the lot, irrespective 
of the size of the lot.

The difficulty in calculate CH l  resides in estimating Np, which is generally very 
large. To overcome this difficulty we multiply CH l  by the term M l /Nf  which is 
the average weight of a fragment Mj and define the constant factor of constitution 
heterogeneity, IH l '-

I H l  =  C H L M L I N p  =  C H l M j  =  £  x  M L ( 2 .7 )
i a L M L

Thus, IH l  has the dimension of a weight and the property of a constant which 
characterizes the lot. Both CH l  and III l  are two intrinsic parameters of the mate-
rial under investigation. The former is always defined , but can only be calculated 
when the number of fragments is small enough to be counted like movable lots. 
The latter can always be calculated as a practical evaluation of the variance of 
fundamental error.
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The hypothesis that the average weights M j  are almost equal implies that a 
comparison between various constant factors of constitution heterogeneity can only 
be made for materials having a similar particle size distribution.

At the cost of some approximation, IHp can always be calculated, regardless 
of the large number of particles. Its great usefulness is in practical application, 
particularly to estimate the variance of fundamental error. For more information 
about F E  see short-range heterogeneity later in this chapter.

The notion of distribution heterogeneity considering a lot made of N p  parti-
cles concerns not the microstructure of the particles but the isotropic module of 
observation. Two heterogeneity exist:

1. hnj , carried by a fragment within a finite group of particles Gn wbh j  — 
1,2 , . . . N n fragments F nj .  Following the same reasoning of Equation 2.6 in 
Section 2.4 the heterogeneity hnj carried out by a fragment belonging to the 
lot is:

j   ( f l nj nj  ) M nj
^nj ~  jT7

a n j  M n j

where M nj and anj are the weight and critical content of the fragment F nj; a n-3 

is the critical content of the average fragment (a nJ = an) and M n-3 — M n / N n .

2. hn, carried by a group of fragments within a lot:

 ̂   (®n ^l )Mh   .̂ (®n &L,)Mn
n =  =  G ^ j r L

If there is no segregation and the size of particles are smaller than the libera-
tion diameter, it is possible to accept that the heterogeneity carried by a group of 
fragments is equal to the heterogeneity carried by an average fragment in a group 
is hn — hjij.

DH l  =  s2(h.n)
1

E l> 2n =  K o E
n n

X
M l
M l

(2 .8 )

2.5.1 Relationship between C H i  and D H l

Note first that Gn, group of particles, is a subset of the set of fragments Lp of the 
lot. Since Mn-j and Mj are identical by definition,
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Z ^  =  E E K ,
i n j

Assuming sampling correctness, the heterogeneity carried by fragments, hi, is 
equal to the heterogeneity carried by a single fragment in a group,hnj. Thus the 
following identity can be written:

h i  h nj  h nj  h n h n

Squaring both side,

h 2 — K i j  =  ( h nj  — h n ) 2 +  2  ( h nj  — h n ) h n +  h \

Summing up all over the lot with Np fragments and Nn the number of fragments,

E  hi = E  E  hlj  = E E ( ^ -  -  K ?  + 2E  E ( ^ -  -  K ) K  + Nn K  (2.9)
i n j n j n j 71

Now by a simple algebra, using the Equation 2.9 and dividing each term by NF

c h l

1
~Ng E E f e - y 2

« j
d h l ch k

( 2 . 1 0 )

where CHn is the residual average constitution heterogeneity regarding different 
groups of fragments Gn in the lot.

From this underlying equation,

CH l  =  DH l  +  CHn ( 2 . 1 1 )

and several conclusions may be retained:

• All terms of Equation 2.10 are squares, therefore are positive and obey the 
inequalities:

CH l  >  DH l  >  0 •

• The constitution heterogeneity of any lot of particulate material is always 
greater or equal to the distribution heterogeneity;
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• When the material is completely homogenized, that is cq =  c il -, CH l  =  0. This 
implies that both DH l  and CHF are also nil, therefore in this case there is no 
heterogeneity at all.

• Under natural conditions distribution heterogeneity is never nil and always 
positive despite the identity: DH l  =  CH l  — CHn. Thus, DH l  being the 
variance of all hn , can be nil only when the values of hn are all equal to their 
average which is itself nil. Then, DH l  >  0 and due to the particulate nature 
of the material, can be only reduced to a minimum level (DH l )™.™ through 
CH l  and the mixing processes.

If we divide each term of Equation 2.9 by s2, the variance of heterogeneity of prior- 
lots, and assume standard normality, the analysis of variance terms are:

E E hl3/s2 =  n f c h l /s 2
n j

which follows a X n f - i distribution;

E E ( h n j- h n)2/s2 ^ N FCHw/s2 
n j

which follows a X n f - n g  distribution;

E N nh 2n/ s 2 =  N g D H l / s 2

which follows a Xatg - i distribution. We call Nn the number of fragments in a 
group and define Nq  — NF/Nn.

We can compute three independent unbiased estimators of variance:

1. The total variance:
s2 =  CH l Nf /{Nf  -  1)

2. The variance between groups:

s b — { D H L ) m i n N F l ( N G — 1)

3. The residual variance that corresponds to the variance within groups:

^  =  CHwNf /(Nf  -  No)
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As N f  is generally very large, s1 ~  CH l  and the minimum distribution hetero-
geneity may be written as follows:

Nr -  1
(■DHL)min =

Therefore, (DHL)min =  f (N G,N F :CHL) have a range:

DH l  =
min x C Hl

max C H i

( 2 . 1 2 )

2.6 Segregation and Grouping Factors

Many of the difficulties of operating problems with particulate materials are caused 
by segregation. Segregation can be of two kinds: size segregation, in which particles 
of the same size, in a mass of bulk material containing a range of sizes, collect 
together and density segregation, in which particles of the same density or specific 
gravity in a mass of particles of varying density, gather together. However, all 
the available evidence shows that differences in particle size are by far the most 
troublesome. Because many industrial problems arise from it our attention should 
be focused on this characteristic.

The mechanism of segregation when handling mixtures is the shifting of fines 
through the voids of coarser particles. The Figure 2.7 shows a schematic of a typical 
cumulative percentages of fines and total corn as a function of radial distance from 
the charge point. In the study undertaken by Foster [100] an increase in fines content 
to 20% was found under the central charge point and practically no fines at the edges.

The best way to materialize these concepts of grouping and segregation factors 
related to distribution heterogeneity is by rewriting the Equation 2.12:

Nr — 1 1
(■DHL)min =  —-------C H l  =  — —  CH l  (2.13)

i\f  — 1 i +  C
where grouping factor, ( ,  is defined as the ratio of total number of fragments NF to 
the total number of groups NG,

(  =  (Nf -  Ng )/(Ng  -  1)

or
N o -  1

1+ C  Nf  — 1 (2-14)
From the formula, we can see that (  is a positive and decreasing function of Gn and 
an increasing function of the size of the groups. Also it reaches a minimum, equal
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Figure 2.7: Effect on Segregation by Particle Size

to zero, when the number of groups is equal to the number of fragments (NG =  Np) 
and very large when NG —■> 1. When NG =  1 then (  — +oo (DHL)min =  0 and,
therefore, as general rule 1 <C NG <C Np.

In practice, however, is common to use Np/NG =  (  or Nw the average num-
ber of fragments in a group. Under the hypothesis of natural distribution hetero-
geneity (DHi,)nat, remains always smaller than CH£ but superior to the minimum
( - ^ F / m i n  •

Using the Equation 2.13 it is possible to create the following useful inequality:

In order to obtain (DHL)nat through C IiL, Gy [37] defines a factor ( (  and calls 
£ the segregation factor.

Then, using the Equation 2.15 and dividing both side by CHL/( l + ()

(i +  0  >  (i  +  C0 >  i >  o

With additional algebra operations we obtain:

1 > £ > o

From this and Equation 2.15 we can conclude that:

(2.15)

1 + C£ Nr — 1
(DHL)nat =  - ~ f C H L =  (1 +  t f ) L 2 - ± C H L (2.16)
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Nn =  1 Nf  > Nn >  1 h

Nf > n g > i
0 < C < +oo

c h l > DHres > 0

Table 2.1: Effective domain of the variables related to Grouping and Segregation 
Factor. Effect of observation scale on Nq , (  and DH l ■

1. When the segregation factor approaches 0, the lot approaches the state of 
minimum distribution heterogeneity {D H i)min\

2. When the segregation factor approaches 1 the lot approaches the state of 
maximum distribution heterogeneity (D li i )max. Finally from Equation 2.14 
and Equation 2.16:

(DHL)nat (1 +  C0(NG -
Nf  (ai -  aL)2 M f

N p -  1 Y  <  M l
(2.17)

The effective domain of these variables is collected in Table 2.1. To deduce the 
variance of grouping and segregation errors we have to analyze the influence of the 
size of increments on the variance of the first term a2(CE\). Then,

°asB =  C ^ 2(FE )

2.7 The Minimum Weight of Material

The object of this section is to discuss the relationships between the size and amount 
of increments and accuracy of estimation, taking into consideration the character-
istics presented so far and the nature of the material. The sampling protocol is 
carried out by extracting a suitable primary quantity from a representative lot, mix-
ing, dividing into secondary increments or subsamples and analyzing. Sometimes 
subsamples are combined in order to increase precision.

The common assumption that a defined level of precision can only be attained 
by relating sample size to lot size is wrong, since truly random samples of the same 
size provide equally reliable estimates of bulk characteristics whatever the size of
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the lot. However, when large lots are being considered is always advisable to the 
increase sample size instead of the weight of material.

The amount of individual increments however, is taken so as not to exceed a pre-
determined level of sampling uncertainty. The material must be sufficiently homo-
geneous that variability between increment portions does not mask small variations 
due to the intrinsic properties of material.

There are three approach for the minimum weight of bulk material and each 
one is based on a sampling constant, ks : Ingamells’ , Gy’s and Visman’s. The first 
approach is useful in describing the subsampling characteristics of the laboratory 
samples and submitted samples. The second is useful in controlling the reduction of 
field samples to a laboratory size. Visman’s approach is for design of a field sampling 
procedure. From all these approach, the last two should claim for priority not only 
due to basic sampling principles involved but also due to the field of applicability.

Visman’s sampling theory as described in his Central Sampling Theory [105] 
applies to the analysis of unknown materials which are both heterogeneous and 
segregated. It requires the collection of two series of samples, one series of small 
samples and one series of large samples. The members of each series are reduced 
and then analyzed. Care must be taken that the variance in the results does not 
originate from sampling errors. His sampling constants are defined as follows:

A =
wi x w2(s\ — si)

w2 — Wi

and

w2
where A is a constant of heterogeneity, B is a constant of segregation, sj is the small 
sample variance, s2 is the large sample variance, Wi is the small sample weight, and 
w2 is the large sample weight.

The constants A and B  being determined, the expected variance in the combined 
results of n samples of weight w is given by

AA_ B 
W  + n

w
ns* B (2.18)

where W  =  nw is the total weight of samples of weight w. 

From his theory we can draw two underlying conclusions:

1. As the segregation increases the number of samples required become more 
critical to keep the variance down;
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2. In case there is no segregation at all, B is zero and the number of samples has 
no effect.

With segregate materials there is an optimum field sampling weight w* which 
will yield a most precise estimate of the attribute considered for any given total 
weight of field samples. By differentiating Equation 2.18 with respect to w and 
equating to zero, this optimum weight is found to be

w* =  A/B =  W/n (2.19)

Visman’s sampling theory was developed semi-empirically and in the light of statisti-
cal theory its approximations when segregation, defined as £ =  yjB/nA, is extreme, 
may not be tolerable in real circumstances.

For materials of unknown composition, the test requires collection of more than 
25 small and large samples with an average weight of at least 100g and 5000(7 
respectively. For the first series of small samples (w\) are chosen to ensure that 
the first term (A/w) contributes more to the total variance than the second term. 
The total variance is computed using the following equations that provide maximum 
estimates, by first-order approximation, of the constants A and B.

To any preassigned accuracy the weight of the gross sample and the number of 
increments can be found.

More realistic however, is Gy’s sampling constant. It takes into consideration the 
complex features of isolated particle, group of particles and size distribution. The 
theory assumes that the material is thoroughly mixed, there are no materialization 
errors inherent in the sampling tools or crushing machines and preparation errors are 
kept to a irreducible minimum. In this case of sampling correctness the short-range 
quality fluctuation errors IEy reduce to F E  since GSE  can be eliminated. From a 
practical view the fundamental error is the only error that never cancels.

The basic equation is defined as follows (for more details see in Section 2.4 and 
Section 2.5).

° FE ( Ms M l  )!H l

Deverly in his Doctor thesis (1984) of size-density of minerals shows that

MLx 
~M~

i h l  = Mr

s2

37



where

MLxy Mass of the class M[jXy of Lxy;
Vx Volume of average fragment of the size-density class; 
axy Critical content of Fxy;
8y Specific gravity of Fxy.

He determines the precise relationship of both functions associated to practical fac-
tors:

S  ̂ =  f J 2 dl - r r  =  fgd3
I ML

and ¿>2 being a function of several variables reaches the maximum and minimum 
when

j- q  j _ J * 0 CLXy — Cl£
{ [Silmax —> & otherwise

1 1
aFF =  ( t t ----- —-)w lfq d 3FE yMs Ml ’

in which:

w  =  mineralogical composition factor; 

f  — a particle shape factor; 

d =  top size of bulk solid; 

g =  granulometric (size range) factor;

C =  sampling constant; 

l =  liberation factor.

Liberation Factor / It is defined as the maximum particle diameter that en-
sures the complete liberation of the critical component or the parameter to be 
estimated. The formula below defines its basic terms:

if d < di then l =  1
if d >  d¡ then / =
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Liberation
Factor— / 1 0.8 0.4 0.2 0.1 0.05 0.02

d/dt 1 1— 4 4— 10 40— 100 100- 400 400
Concentrate h h -> (1 - h ) (1 - h)

Residues h h (1 - h)

Table 2.2: Liberation Factor l as a function of particle size d, and di is the particle 
size at which complete liberation occurs, h stands for heterogeneity and (1 — h) for 
homogeneity.

From its definition, / can vary between 0 and 1 but for all practical purposes 
we shall never use values smaller than 0.03. The liberation diameter, á¡, is the 
maximum particle diameter that ensures the complete liberation of material. 
When the maximum value of / is 1.0, occurring when the critical mineral is 
completely liberated. More crushing is too costly. Its value can be estimated 
visually. The Table 2.7 presents these ranges.

Particle Shape Factor— /  The microscopical analysis of particles in general as-
sumes as a standard of dimension, d, cubic particles in which is the sieve 
aperture retaining 5% oversize. This is taken as the size of the largest parti-
cles. In practice, particles are irregular in shape and may tend towards spheres 
rather than cubes. This factor can vary from between /  =  0.5, when the shape 
is spheroidal, and f =  0.2, when particles are like plates or needles.

Mineralogical Composition Factor— w It is defined whenever there is a con-
stant proportional factor between chemical content and the corresponding 
physical content expressed in terms of mineralogical component

____(1 -  q l ) r/1 x c , Cl 1 — aLw — ------------1(1 — 0>l )6m  +  Ol Og J = ------------- -—
o l  o

where ax, is the content of the chemical product;
6m  is the specific gravity of the material;
6g  is the specific gravity of the remaining constituent of the lot;
6 is the average density.

defined as
c _  _______6m 6g_______

[(1 — u l )6m  + o,l 6g \
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Granulometric Factor— g It is the range of the sieve aperture (d) which retains 
5 per cent oversize material, to the aperture which passes 5 per cent undersize 
material (d0). Their values are standardized in Table 2.7.

Size Range d/d0 9
Large >  4 0.25

Medium 4— 2 0.50
Small < 2 0.75

Uniform = 1 1.00

Table 2.3: Typical values of the granulometric size range factor, (g), the ratio of the 
sieve aperture d which remains 5% oversize material, to the aperture which passes 
5% undersize material (da).

W O R K E D  EXAM PLE:

The following is a reworking of an example of Royle [87] using the methods of 
previous section. Galena, PbS , is a mineral ore has a lead content [a/] around 5 
percent in a calcite gangue. It is delivered at a size of 1 cm. The density of both 
gangue and galena is 2.7 and 7.5, respectively.

The sampling campaign was optimized by the analytical laboratory and was 
based on the equation below and on the nomograph of logarithm scale showing crEE 
as a function of sample weight and particle size. When the weight M l  is very large 
compared to Ms, the quickest way to determine the fundamental error is by

aFL =  Cd3/Ms

In order to give more robustness to our nomograph it is useful to transform the 
variables into a logarithmic coordinates. Therefore,

log <j 2fe  =  log C3 x log d — log Ms

For a given particle size, which, by definition, is a constant carrying a given 
sampling constant, the value of a\E is directly to -  log Ms and the derivative func-
tion has a - 1  slope on the nomograph presented. Every successive sampling and 
comminution stage is represented by a broken line. To reduce the aEE we have to 
optimize the nomograph depending on the costs allowed and the equipment avail-
able.

40



In the example presented, 10% was collected from the galena ore delivered at a 
size of 1cm. Comminution took it to 3mm. Then it was split to 500g, crushed to 
1mm, reduced to 50<7, grinding to 0.2mm and finally splitting to 2g for laboratory 
analysis.

Determination of IH l  in the equation

a2 _  
F E  ~ )IH l

• Percentage of pure Pb in the Galena:

207 4- 32
Percentpb =  0.05P6 =  0.05[—  “ ] =  0.058P6S'

• Mineralogical Factor w :

w  — -----------“ [(1 — +  o-l ĝ ]
a L

(1 -  0.058).,
™ =  — An- g [(1 -  0.058) x 7.5 +  0.058 x 2.7]

w =  117.30

• Determination of IH l :

I H l  =  &  x f  x g  x \ l^  x d3
a

10 . 01
I H L \(xcm) =  117.30 X 0,5 x 0.25 x W ^  x l 3 =  1.47

14.66 '

IH l |(3mm) =  14.66 x x 0.30s =  0.072

IH l |(imm) =  14.66 x \ j x 0.10s =  146 x 10-7
0 . 1 0

IH l  I (,2mm) =  14.66 x x 0.02s =  829 x 10

• Determination of Variance of Fundamental Error:

2 1 1
<J(FE)diam ~  ( ~T.r i r )IH (L )d  iamMs M l

but M l  10Ms. Then,

^ (F E )lcm   ̂M  ^ ( 2QQQQ ) ^  1-47 — 1.4 I X  10
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(
1 1 x 0.072 =  1.44 x 10-4

(F E ).3cm ^5 0 0  1 0 0 0 0

°(FE).lcm =  ( g ö  ~  5 0 0  ̂ X 14610  7 =  0-3  X 10

(̂FE).o2„  = (J  -  ¿ )  x 82910-7 = 0.4 x IO’ 4

The total variance is then:

2 _ 2 I 2 , 2  . 2
a F E  — a (FE)lcm  +  a (FE).3cm  +  ^ (F ^ .l c m  a (FE).02cm

a 2FE = 3.61 x 10-4

From this the 0.95 confidence limits for the mean of the lot will be given by

a L ~  a S i  ¿0.025'J o 'T E  =

aL = 0.05 ±  1.96 x \Z3.6l'x 10“ 4 = 0.05 ±  1.96 x 0.019

0.05 ±  0.037

Many other questions can be solved by using these formulae. For example:

1) the weight that must be taken for a given particle size for a certain sampling 
error;

2) the size which the sample must be crushed if a particular weight is taken and 
a given sampling error for the mean of lot is deemed barely tolerable.

Basic computer programs for performing similar calculations are found in Wills 
[109],

2.8 Amount of Sampling: Models

Determining the minimum number of increments to be taken from the whole con-
signment depends on the knowledge of properties of the particulate material to be 
sampled (see Subsection 2.7) and categorizing of the identifiable portions of the lot.

The configuration of consignment divides the sampling into three classes: con-
tainer sampling, stopped and moving belt sampling and wagon or ship’s hold sam-
pling. In the first case the material is packaged in unequivocally partitions or pri-
mary units which are not unequivocally identifiable as secondary units. There is a 
lot size N  from which N q  increments are selected. In the second case the lot is not 
divisible into unequivocally identifiable portions.
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W h e n  th e  m a te r ia l is c o n d u c te d  p ast th e  se lection  p o in t, th e  w h ole  lo t L  o f  s ize , 

M l , m a y  b e  th o u g h t o f  as a  series o f  u n ifo rm ly  d istr ib u te d  p rim a ry  sa m p lin g  u n its  

c o n s titu tin g  th e  c o n sig n m e n t in  an p se u d o -E u c lid e a n  space w ith  Q  in cre m e n ts  /  

ta k e n  fr o m  it . T h e s e  in c re m e n ts  range fro m  x q  to  Xq  w ith  a ll x  w ith in  th e  d o m a in  

o f th e  lo t ( L ) . It can  b e  rep resen ted : ( x q ) =  {x|0  <  x  <  x q } .

In a  c o lle c tio n  p o in t , g en era lly  in  a  S am p ling  T est  S tation  th ere  w ill a ra n d o m  

se le c tio n  w ith  a u n ifo rm  p ro b a b ility  o f th e  in crem en t b e in g  ch osen . L et us ca ll th is  

p r o b a b ility  d e n sity  I I ( x ) ,  u n ifo rm  th ro u g h o u t th e  d o m a in  (eq u als  to  n 0) an d  zero  

o u ts id e  it.

F rom  a d iscre te  v ie w p o in t each  in cre m e n t c o m p o sin g  th e  co n sig n m e n t has th e  

sa m e  p r o b a b ility  o f  b e in g  ch osen ,

r { x Q} =  g n ( x , ) ^ g n ( x I) =  i 
0 0

In a  c o n tin u o u s p e rsp e c tiv e , th e  p ro b a b ility  o f se lectin g  one an d  o n ly  on e  in cre -

m e n t x i  is

[XQ rxQ
/ n {x0)dxo = u 0 dx -  H0x0 = i =>• n„ =  i / x 0

Jo Jo

W h e n  sa m p lin g  th e  in cre m e n t at ra n d o m  fro m  each  s tra tu m  w e can  m a k e  in fer-

en ces a b o u t th e  lo t a n d /o r  th e  p rocess th ro u g h  th e  key e q u a lity :

aL =  0'S i  ¿0.025y j^ T E  = f l s i  ¿0.025\J^‘s E  T  CpE  T  (2 .2 0 )

w h ere  ¿0.025 is th e  valu e  for a  t — d istrib u tio n  w ith  n  — 1 degrees o f  fre e d o m  in v olved  

in  th e  p ilo t e s t im a te  o f  th e  average varian ce o f  N q  n u m b e r  o f  in cre m e n ts  / .  T h e  

o th e r  v ariab les  are: a EE  th e  overa ll p recision  or to ta l error o f th e  p rocess , ct 2s e , th e  

s a m p lin g  error, a PE  th e  p rep a ra tio n  or su b sa m p lin g  error an d  a 2M E  th e  m e a su re m e n t  

error. T h e  c o m b in a tio n  o f th ese  varian ce c o m p o n e n ts  for tw o and m o re  levels o f  

s a m p lin g  can  b e  d ea lt w ith  in  a general w ay to  illu strate  th e  effect o f  vary in g  th e  

n u m b e r  o f  sa m p le s  or su b sa m p le s  at each  level and  th e  effect o f  c o m p o site  sa m p le s  

p rior to  a n a ly sis .

W i t h  a  su b sta n tia l n u m b e r  o f  d egree o f  freed o m  ( D F )  it is p o ssib le  to  e sta b lish  

th e  v a r ia b ility  [o t e \ for different lo ts  o f ch em ica ls  for con ta in ers w ith in  lo ts , cp, for  

sa m p le s  fr o m  co n ta in e rs , a w , a n d  for a  n u m b e r  o f rep lication s on  th e  sa m e  sa m p le s , 

u p E ,  an d  ct a/ l ;.
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In order to reduce the risks, great improvements can be achieved by composing 
samples. For example, if we are controlling isolate lots and analysis made with half 
the portion, <j m e  is reduced by a half. If two samples are taken at random, one from 
any bag in one lot and the other from any bag in any other lot, the variance of the 
average quality is reduced by as many as half. Therefore, with little extra trouble 
other arrangements can be made so as to get more confidence in the decision. This 
is a good method of improving precision of the experiment.

Now let us see the influence of weight of increment. According to Merk [76], 
and Visman [105] the ideal sampling technique is to minimize the weight of gross 
sampling by using a large number of very small increments from a representative 
portion of the stream. A bit different view is presented by Bertholf [7]. He does 
not believe it is a totally acceptable procedure. Gy [37] however bases his theory on 
both authors.

He presents a general equation for a series of increments of weight M,-,

aTE ~  t̂rend + W +  &PE T &ME

where

2
aTE — the observed variance;

T̂rend =  the trend variance;
=  variance of the increment of unit weight

W =  the increment weight;

aPE = the preparation variance
2

aME =  the measurement variance

If a series of samples 
of weight w, then

If R replications are 
variance observed is

is taken with each sample being composed of Nq increments

aTE —
& trend +  r f  / W

I I+ aPE +  er „Nq  ■ •'re, ■ JME

prepared and measured out of the gross sample, the total

„2 ®trend "f" ^ I ,
aTE =  --------77----------- b

<TPE
N,Q

+  v
~R

ME

Solving for the required number of of increments

^ _ atrend +  ^j/w
iVQ -  “1---------2---------2---

aTE ~  aPE ~  aME
(2 .2 1 )

44



and for the replications,

No =
a l e n d  +  ° \ ! W

aTE ~  aPE aME/R
( 2.22)

Substituting the denominator:

2 2 2 2 
aSE =  aTE ~ aPE +  aME (2.23)

or

.2 aPE +  &ME
—  crT E  —

R
(2.24)

Substituting Equations 2.21 and 2.22 in Equation 2.23 and 2.24 and rearranging

Nq  = ®trend

Increments

+

Increments/w
Multiplying the Equation 2.25 by w we will have

(2.25)

2 2

Nq w  =  Ms =  (2.26)
aSE aSE

The plot for proportional variance components would present a function which is 
hyperbolic with the minimum number of increments per sample being a function of 
increment weight. It is possible to represent the minimum gross sample weight as a 
function of increment weight on a straight line. The approach of the Subsection 2.7 
is based in this minimum weight of gross sample that allows for the properties of 
material.

2.8.1 Container Sampling

In sampling lots in identifiable portions we shall firstly make some assumptions 
about the consignment:

• The lot consists of N  bags or cans or drums etc.

• It is randomly chosen n out of N  containers;

• The material is completely mixed for guarding against segregation;
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• The rules of delimitation and extraction for an unbiased sampling are all re-
spected;

• Grinding follows the steps for minimum fundamental variance;

• The analytical errors are randomly distributed with zero mean and constant 
variance;

The mean of these samples as an estimate of population is

n21 ni 1 | n3
- E * * (2.27)

nl i=l » 2 “
where x represents the error associated with stage i of measurement of certain char-
acteristic such as mean of lot, deviation of the mean of the composite sample from 
the mean of the lot, deviation of the mean of the laboratory sampling from the 
mean of the composite sample, deviation of the ¿th test-unit from the mean of the 
laboratory sample, analytical error associated to the measurement etc..

The total sample variance of the lot, a/,, supposing two measurements and two 
preparation stages is

aT E
N ~ n s \  a2w 2

N +
(TP E + <7M E

( 1)
(2 )

(2.28)

(3)

where s2 is the variance between bags and equal to

N  

3=  1

[(qg)j -  as] 
N -  1

cG is the variance of increments obtainable from a container and assumed 
equal to all of them;

a s s E  is the variance of subsampling, obtainable from the composite sample 
by the selected method of blending and reduction;

The terms of Equation 2.28 correspond to

(1) sampling variance;
(2) => reduction variance;
(3) measurement variance;

and tell us the number of samples [n] required to achieve a given a^E.

n = S? + err
tt e  +  S ' l/ N  — {(t 2ss e  + (c P E + °ME) / 2)

(2.29)
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If there is no previous data from which to estimate the sampling variance directly 
from measurements on the lot itself, the pilot study is a good substitute for a reliable 
estimation of the mean quality of the current process.

A pilot study for obtaining tentative values by extensive research is also nec-
essary. It will probably be very expensive as a initial cost but, in a long run, the 
average cost may be considerably less than the uncertainty of getting separately 
values for each lot.

2.8.2 Systematic Sampling

Increment are selected at regular intervals which have been determined beforehand 
and are part of a sampling plan subordinated to the sampling devices and machines 
available. It is called the random start when the first increment is taken at random. 
See Figure 2.8.

Fixed Intervals

Figure 2.8: Systematic sampling intervals Isys dividing the lot or consignment by a 
sub-domain (Iq \) with Nq  increments

The increment I\ is selected at random, within the domain of the first series of 
increments IQ1 from a number of increments chosen out of the lot. The number of 
increments is adopted according to the degree of representativeness. It is defined as:

(7Q1) =  {/|0 < /  <  Isys}

In this sampling collection pattern, a series of increments Iq  follow I\ in a con-
secutive order. If the number Q of increments Iq  belongs to an elongate pile or 
stopped conveyor belt then, within consignment, the following inequalities apply:

I q  =  h  +  ( Q  — 1 ) I Sys <  I I  <  h  +  Q l s y s
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In this model the minimum number of increments to be taken is to be

N q  =  {
C-W ^2 

&SE
( CVxaL \2 
V 100 >

a 2
w

<JPE
2

a ME
(2.30)

In a carefully designed sampling plan, consideration should be given to periodic 
phenomena that could prejudice the information on the sample measured.

2.8.3 Stratified Sampling

Stratified Sampling is an important extension of Container Sampling. It involves 
division of the consignment into groups or strata. The sub-groups are usually sam-
pled in proportion to their weight. It is very useful method when the consignment 
consists of different materials which are not easily mix or there are a number of 
widely differing grade.

As shown in Figure 2.9, consecutive increments are broken up into ( I q ) adjacent 
strata of, as far as possible, equal number of increments in the domain I q .

Random choice 
for stratum

Fixed Strata

f-e -
o

Figure 2.9: Stratified sampling intervals Istr dividing the lot or consignment by a 
sub-domain ( I q i ) with N q  increments chosen randomly.

(IQ) =  {I\(NQ -  l) <  I  <  Istra}

It is advantageous to stratify the consignment so that the inside of the stratum 
becomes uniform as far as possible and the difference between the strata becomes 
large. In order to do so we call N  the number of elements in the population, N q  

the number of extracted increments and k the number of strata.
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The subscripts i and j  correspond to the serial number of strata and number of 
elements in the i—th stratum, respectively.

The mean a,- is first calculated from tii elements of the i—th stratum: âi =  
1/rii aij• Since each stratum is considered a population on its own, the condi-
tional expectation for each stratum is

E ( a ij | i ) —

Correspondingly there is also a conditional variance for the i—th.

In practical terms an approximate value of the variance within strata is known 
from prior experiments or a pilot plant.

The conditional variance of the sample mean of the i—th stratum iis

® (®î |i )
Nj -  Tij crfj I 
Ni -  1 m

The mean of a, weighted by its respective stratum size N, is

as =  ai
N

k1 A  _  l 1
i—1 N ¿=1 n

3=  1
(2.31)

where a{ the unbiased estimator of the parameter considered:

■ N,
£ (“ ) =  =  £ <£ (a« l .) )  =  E («u ) =N  —: - m ■ -,—1 1 3 -1

a-L
i= 1

The variance of the sample mean as is given by

1 A ,  Ni
ahs) = a2{ ^ E ( - 1 E«d)}N  n,  • .I — 1 1 J = 1

I k

=i

Considering the variance for strata and assuming the means a, independent of 
one another,

a(as) ~
K  Ni 2Ni -  m a2(aij\i)

i N  N {  — 1 rii
(2.32)
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In industry, however, it is common to reduce cost by taking proportional alloca-
tion of stratified lots. The simplest way to do so it is to select, from each stratum, 
a constant fraction of sampling size such as ni/Ni =  n/N. If it is assumed that 
the individual strata are large (Ni 1), the following equation for proportional 
subdivision may be used:

k N-
< # «  =

Tli . iVi 2 1

Simplifying, rearranging the equation and considering cr2(a,ij\i) =  af

N
)E(a/

But we know that

a2(ci) =  Ey[a2(x\y)\ +  a2y[E(x\y)\

then we can compare the variance a2 as for proportional allocation with the 
variance without stratification.

cr2(a tJ) =  a 2 =  E ( a 2(a l j \i) +  a 2( E ( a i3\i))

and therefore
a 2 =  E ( a 2) +  a 2(a,s \i) 

ail °l2
Finally, the variance of an stratified sample of size n is always large than the vari-
ance of an stratified sample of proportional subdivision having the same number of 
elements:

r f M  =  ^2(«s) -  -  ^ )cr2(aL\i)

From the proportional subdivision of the lot we can conclude that the more 
the means (expectation a i |t-) within the various strata differ from one another, the 
greater the effect of subdivision.

After choosing the approximate number of increments, further investigations are 
required to minimize the overall cost C through z -th  stratum costs

k
C =  (2.33)

1=1
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The necessary condition for a minimum of cr2(as) with the constrains of cost C is 
found by the total differential of Equation 2.32. Assuming that rq <C Ni

da2(as )
8a2(as )

6rii
diii T 6<j2(as)

6n2 dn2 +  • • ■dak(as)
8nk

dnk (2.34)

Partial differentiation results in

,N l .2 1 2 i 2 1 a\dn2 +ni (— )2 1 jV j —za\dnk
K

The total differential of Equation 2.33 results in

dc — cidni T c2dn2 +  • • • +  ckdnk

If this equation is multiplied with A2 and added to the Equation 2.34

k m . i kJ,! \2 L
i=1

a2i dni =  ^  °idni
i=1 W ni

Comparing the coefficients leads to

— 1 Nj a,
1 ~  \ n  j r . where A =

N. /— jV (7i \ / ci
~C

It can be seen that the cost-optimized subdivision is achieved if the number rq 
of increments are proportional to the stratum proportions N{/N and proportional 
to the standard deviations cq within the strata. The extent to which a stratum has 
to be taken into account increases with its size Ni and the heterogeneity within the 
stratum, expressed by cq.

In industrial processes, the cost of investigation of the sampling attribute are al-
most the same for any i—th stratum, say c*, therefore, the real number of increments 
are

c ./Vj-cq
11; — ------ 7----------

c* £•=! Nm

2.8.4 Nonstratified Segments and Series of Lots

For an isolate lot the sampling procedure is to select k increments out of n segments, 
comminute, split gradually each unit in steps and estimate the series of values. If n 
test results, a si, ciS2 , • • ■ o-Sn, an estimate of crEE is given by

2 _  1 £ i ( a s | t  -  as)2
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Degree of Freedom A
2 2.76
3 2.16
4 1.61
6 1.26
9 1.00
14 0.79
19 0.68
29 0.54
49 0.42
74 0.33
99 0.29

Table 2.4: Table for Determining Sample Size.

For a given confidence interval, say to.025 X 6 the amount of sampling may be 
determined if we take one increment from each segment. In this case s2 =  —
« s )2/ ( n 1 — 1)- Dividing, s2 by (¿/1.96)2, we find the amount of sampling, where 26 
is the desired width of a 0.95 confidence interval. If its value is less than 30, then 
the trial-and-error method proposed by Duncan [30, 31] may be used:

6
¿ 0 .0 2 5 (n - l )

To obtain an acceptance sampling plan with the prescribed risks, a preliminary 
sample n\ can be taken as shown before. The final sample size n, is obtained with 
A =  A /s i  from the Table 2.4. The meaning of A resides on the difference L — A, 
the mean of a lot that is deemed barely tolerable, where L is the lower specification 
limit.

If this lot is one of a series, there will be always a need to check the quality in a 
long run and/or the continuity of the pilot study. On the assumption that n and k 
are relatively small compared with the number of segments and test units, the total 
variance of the isolate lot is

+  *l/k
n + o-PE +  <7

2
ME

We know that composite samples can be used requiring only a few measurements 
and consequently low costs. Then we may construct a. sampling plan with n segments
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Sample Size d2 d 2
2 1.128 3.686
3 1.693 4.358
4 2.059 4.698
5 2.326 4.918
6 2.534 5.078
7 2.704 5.203
8 2.847 5.307
9 2.970 5.394
10 3.078 5.469

Table 2.5: Factors for Computing Control Charts Lines, from Juran.

selected at random, from the lot and draw an increment of k test unit from each 
segment. Let h subgroups of n/h increments each be selected at random from 
the n increments and composite sample be reduced to a laboratory sample. The 
measurement of the h composite samples may be used to test the validity of the 
prior estimates of variance within a i f—Chart whose central and upper limits are:

CL =  do
„2sb + st/ k

\ n/h
+ ^PE 5ME

and

UCL =  D2, J k
\ njh

+  s2PE +  SME

where s2, s2PE, s2ME have been estimated from a pilot study and d2 and D2 from 
the Table 2.5.

If the range h falls below UCL the vality of prior estimates of variance is accepted. 
If not, further sampling must be undertaken in order to force them within the limits. 
In case of acceptance of validity, the mean of the h composite measurements cis(h) 
is considered the lot mean and the sampling variance is

2 =  s j  +  s l / k , SPE +  SME
a S(h) n  +  h

Finally the confidence limits are:

aS(h) ±  to.o25s|s(h)

and ¿0.025 corresponds to a point of a ¿—distribution with
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n =
»2 l2

/ft'
L ( i \2 i _ L ( i k )2 I _!_(•£££. ̂ 2 I
fh v n ' ' f , „ ' k n '  ' fpE '  h '¡PE ¡ML

' sME ^2

where /¿, f w, fpE and Jm e  are the degree of freedom which of the respective prior 
estimates were determined with.

2.8.5 Other Sampling Procedures

There are other important procedures for sampling:

• Random Mixture Sampling Scheme
It is often assumed in sampling that mixture is in the state of random distri-
bution. The existence of mixture in this condition, usually called stochastic 
homogeneity, has to be proved. Tests of randomness provide procedures for 
checking non-stochastic homogeneous mixtures.

The theoretical expected variance for random mixture is given by o 2[nx) =  
np( 1 — p) where n is the sample size, N  is the total number of elements and 
p the numerical concentration in the lot. If the concentration of a sample, 
x — nx/n is introduced into the theoretical equation the expected variance is:

a2(x) N  — n p(l — p) 
N — 1 n (2.35)

and it must be compared with the sample variances of r replications of n 
elements each:

52(x ) =  - ¿ ( x t- - p ) 2 
r ,i—l

and the confidence interval, assuming normality, will be given by chi-square 
distribution:

ai

In chemistry the proceeding is similar to this general method except for the 
number of elements. We use concentration by mass. Having individual grain 
masses gx and gy the sample concentration by mass [/c] is:

nxgx _ nxgx
^x9x T  Hy9y {gx Qy) T  Tl9y
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The second equality is due to n =  nx + ny. Then using property of variance 
and Taylor expansion, the variance of concentrations [cr2(/i)] is:

<t 2(k ) =  (
d,K{E(nx)).

dn7
V i^x)

ngx9y
(E (nx)gx +  E(ny)gy)2 

But the expectation of the sample mass is

)V (n x)

(2.36)

(2.37)

E{nx)gx +  E(ny)gy =  E(g) =  n (pgx +  (1 -  p)gy)
\_______ ^_______ ✓

9Xy

where [gxy] is the average single-grain mass.

Finally from Equation 2.37 and Equation 2.35:

^ («0  =  -%zt~np{1 ~P)
n2Txy

• Multi-stage Sampling Scheme
In this scheme each of the units of the first stage chosen for the sample is 
divided , in each case, into units of the second stage, of which, several other 
elements are selected into a third stage and so on. This is a typical case of 
nested designs to be studied in Chapter 4.

2.8.6 Constitution of Increment and Overall Precision

The specifications for the overall precision of a product determine the sampling 
plan for the constitution of increment — the formation of primary sampling units, 
sub-sampling, composite sampling, gross sampling, consequently, the amount of 
sampling. It depends on the consignment from which the samples are taken from, 
the cost it is allowed for, and the use intended for the product.

There will be always a compromise involving these decisions, however, one of the 
following models will be devised:

1. Increments, Nq , are taken from whole consignment, weighing M i, for isolated 
lot;

2. Increments, N q , are taken from consignment divided into several lots with N P 

primary sampling constituting the consignment;
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3. Increments, N q , are taken in two-stage sampling where some primary units, 
Np , are taken from consignment and also some secondary sampling units nw 
are taken from primary;

4. Increments, N q , are taken in stratified two-stage sampling, that is consignment 
is divided into some lots and some primary sampling units, Np, are taken from 
each lot, and also some secondary increments, nw, are taken from primary 
sampling unit.

From the Figure 2.10 using 0 t e  for overall precision, the following relationship 
may be computed:

Consignment

(---------------------------------------------------------------------------------------------------------------------3

V_______________________ ) \______________________ > \_______________________)
I 1 I

Subsample Subsample Subsample

1 \ 1
{ Test(s) ] ( Test(s) ) ( Test(s) )

Figure 2.10: Case of consignment divided into several lots for computing of precision.

a) Where the test sample has been analized one time, the overall precision, being 
k the number of sub-samples is

_|_ ° p e  + & m e  

v 2 ' n k

b) where the test sample has been analised / times

n  2 2 2
( P \ 2  _  a w , a P E  , a M E  

[ 2> ~ n + k + ~ k f

If the increments collected from each lot to produce sub-samples were further 
collected, enough for one consignment, to produce the gross sample the overall 
precision for one test sample from the gross sample is
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orw w
n

2 2 
+  a P E  +  a M E

where the test sample has been analyzed l times, the overall precision is

( - ) 2 =
2 2

a w , 2 ,------h OpE H--- —
n l

When some primary sampling units are taking from the lot [M] and then, some 
secondary sampling units are produced from primary sampling units, a two-stage 
sampling occurs with three distinct cases: See Figure 2.11.

Consignment

(

_̂_______________________ ) \________________________)  \________________________)
\ 1 1

Subsample Subsample Subsample
V_____________________________________________________________________________________ )

1
Gross Sampler
( Test(s) )

Figure 2.11: Two-stage sampling with primary and secondary sampling units.

1) when one test sample is produced from each increment and analyzed one time 
the overall precision is

/T 2 =  M - m  x o f o 2w +  o 2pe  +  o 2me  
2 M  — 1 to mnw

2) when the increments for each primary sampling unit produce one sub-sample 
and one test sample, the overall precision is

3 2 =  M - m  _&l_ <t 2pe  +  o 2me

2 M  — 1 to mnw k
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3) when the sub-samples are collected together to produce a gross sample, the 
overall precision is

M m
M  -  1 m

a*
mn„

2 2 + aPE +  crME

In each sample test there is measurement error If the test sample has been
analyzed r times, then the number of replications must be considered accordingly.

2.9 A Test of Randomness for Particulate Mix-
tures

The physical relationship of particles in a mixture is said to be stochastic when 
there is at the same a random element and a non-random element involved in its 
structure.

Previously it was pointed out that reduction of the random variability of fun-
damental errors, s2FE, is only possible through comminution or other size reduction 
mechanism.

The other error also associated with both discrete and continuous model, Sq SE, 
can only be eliminated by mixing. When there is no thoroughly mixed system cluster 
points take place and concentration gradients increase the variability of a material. 
Such deviations in composition should not exceed a specified value in terms of batch 
homogeneity.

Naturally blending is not that easy. For example, natural segregating tendencies 
will be observed with extreme differences in specific gravity, size, or shape. The 
heavier, smaller, or smoother and rounded particles tend to sink through the lighter, 
larger, or jagged ones, respectively. In some cases, preparation of materials to avoid 
extreme differences in such ingredient properties can avoid the need for any type of 
segregation.

There are also other factors that can cause segregation. Eletrostatic charges 
may cause particles to repel each other, particularly in continued blending. Loss of 
material as dust must be considered as a possible means of segregation. If there are 
smear particles, frictional anchorage may be necessary in order to achieve a good 
mixing.

A well designed and preserved Sampling Test Station has remarkable effects in 
overcoming grouping and segregation problems. Thus, the manual or mechanical
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solids-mixing operation must be checked from the point of view of delivering a well- 
mixed batch to a certain point.

There are two sensitive criteria for testing randomness of particulate materials 
Pearson’s x 2—Test and Shortest Distance Test.

Both require some prerequisites for measuring the primary data and calculating 
the sample statistic:

1. The range in particle sizes is not excessively large;

2. The percentage of particle to be estimated must be kept low — less than 10 
per cent or the complementary;

3. The particle must be distinguishable or made so by some optical method;

4. The distribution is assumed to be binomial, and is approximated by a Poisson 
sufficiently accurate for small percentages.

In the Table 2.6 both comparative test are presented with the significant differences 
in terms of x L i  and x L -v

Real St. Ideal St. Criteria for random
Pearson Test (/,• -  f a v e ) 2/ fa v e Xa,n—1 K P > x
Shortest Test Ks =  27Tfj, £  r\ Y 2 n Aa,2n K s > X

Table 2.6: Typical Tests for detecting Randomness of particulate material

2.9.1 Creating Surfaces and Measuring Primary Data

Sample surfaces suitable for the proposed tests may be obtained in different ways. 
Of course the best configuration has a three dimensional character but observation 
is experimentally hard.

The easier method is to take some slice by using a transparent bottom sampler 
with a flat surface immediate ready for investigation.

Though the measurements may be made directly on the same surface enlarged 
by a microscope, Weidenbaum [107] suggests take micrographical photos.
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The other kind of measurement is by using a freezing process — let a molded wax 
or any thin-flowing monomer seep into a large random sample and cool it. Then, 
using a bistoury or a microtome to slice flat surfaces for investigation.

2.9.2 Pearson’s x 2 —Test

The Pearson’s x 2~~Test is performed on the surface by using a grid and counting 
the number of particles in each cell of the grid. It is suggested to choose a grid that 
the average number of points in cell exceeds five. From the following relationship it 
is possible to calculate the Pearson’s constant Kp:

r,  E
h p  = --------- --------------

J aver

in which k is the number of cells in the grid, f aver is the average number of points 
in the cell and f j  is the actual number of points in the j-th  cell.

If this quantity is larger than the central value [xi_a,fc-i] the null hypothesis of 
random mixing must be rejected and no other test is required. But, on the other 
hand, if the null hypothesis is accepted, it is usual to perform the shortest distance 
test.

2.9.3 Shortest Distance Test

This test is based on Weidenbaum [107] and Neyman and Pearson [79]. It computes 
the expected value and variance of r2, a circle of radius r having, as a center, a 
selected random point. According to a Poisson law the probability of this circle just 
reaching the first random point is equal to e~r2lTM where /i is the average number of 
random points in unit area.

The cumulative distribution of r2 exponential:

F( r2) =  1 -  e~r2̂

with probability density with respect to r2

/O ’2) =  irne—r27r/x

Its mean expected value, E(r2), is evaluated as
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r oo
E(r2) =  /  r2 f ( r 2)d(r2) 

Jo

[‘CO |
E ( r 2 ) =  —  /  ?'2 tTfte~r * >id ( r 2Trfi) — —

TTf-l Jo TT/l

The variance of this distribution, V (r2) is

V(r2) =  i°°[r2 -  E{r2)}2 f { r 2)d{r2)
Jo

(2.38)

1 r°°  9
h ( r 2) =  — —  /  ( r 2 tc p ) 2 e ~ r ^ d ( r 2 7r/ /)  -  

TTZ Jo 7T2fI2 7T2/ i 2
(2.39)

But the distribution of the squared distance may be transformed into a x 2- 
distribution with two degrees of freedom in which \2 =  2r27r^. The density of the 
transformed variable p(x2) is

p ( 0  =  =  (2.40)

But the distribution of the n independent squared shortest distances may be 
transformed into a ^distribution with 2n degrees of freedom by

n
Xln =  E  rl

i= 1

This additive property is the basis of Shinnar and Naor [93] shortest distance 
test. It says: when a series of independent observations of squared shortest distances 
is taken, added up and multiplied by 27rp, the result is distributed as x 2 with 2n 
degrees, if the null hypothesis of random distribution is true. If not, clusters exist 
and 27Tp ]T"=1 rf will be much smaller than the ordinary x 2-

Test criterion suggested: if 2%p £ " = x r2 falls short of the x l ,2n critical value, 
it is possible to conclude that the distribution of the points in the plane under 
investigation is not random. If 2irp £"=, r2 exceeds xl , 2n the null hypothesis of 
random distribution cannot be rejected.
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Chapter 3

Sampling of Heterogeneous and 
Dynamic Material Systems

The principles summarized in this chapter, are part of a new science called Geostatis-
tics and it is concerned with the problem of determining the accuracy of estimates 
of quality characteristics. They are based on Matheron’s Regionalized Variables 
[74, 75]. The essence of the Theory of Regionalized Variables is the use of informa-
tion about autocorrelate data — spatial relationships. In this sense, the methods 
used in this chapter, are closely related to time-series analysis.

There is always a dependency of two neighboring samples of particulate materi-
als from the same one-dimensional lot, whether moving or stationary. The theory of 
serial measurements, in this view, can be used to refine precision statements, mini-
mize fluctuations of quality, reduce heterogeneity of lots, and study the moments of 
the continuous selection error.

We present the theoretical approach behind the variogram, the key tool for qual-
ity control in continuous processes, establish a sound comparison between classical 
and serial variance, derive the auxiliary functions to materialize the short, long and 
periodic parameters and model a variographic experiment including protocols. We 
suggest a simplified variographical method using only results for a linear variogram. 
We finish with an analysis of short and long-range fluctuations in an experiment on 
Charcoal.
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3.1 Introduction

The theory for sampling bulk solids presented so far disregards space and time series 
data analysis. However lots of particulate material flowing past a sampling point 
are widespread in modern chemical industry plants particularly those dealing with 
fertilizers, mining, explosives pharmaceutic pi’oducts etc.

For most manual sampling regimes and for many mechanical sampling systems, 
sampling frequency are too low to show a significant correlation between consecu-
tive increments. Primary increments collected from moving belt at intervals of 15 
minutes or less are generally correlated ( Merks [76]). In such cases the F —ratio 
between the classical variance and the serial variance calculated from squared differ-
ences between consecutive primary increments is statistically significant. Traditional 
methods failed to express in any way this important character of chemicals, namely 
their continuous intrinsical variability.

Shewhart Control Charts and other methods of process capability in use for the 
sequential checking of variability are useful for zero-dimensional lots, or a lot made of 
random units but they are not suitable for materializing non-random characteristics 
of one-dimensional lots with autocorrelation.

We shall retain X  as the average value of the quantity of interest, say a quantity 
of moisture, a metal content, a particular size fraction, and X(t)  the respective value 
at an instant t when passing a sampling point.

In this case where ’’ time” expresses mass units or time units, the usual sample 
variance is

^  =  (v ( ( , - ) - x „)2
n 1 ¿=i

where,

(3.1)
n ¿=1

being X(t j ) ,  X ( t 2), ■ ■ ■ and X ( t n) the collected data at times ,U, t2) • • • and t3.

The true mean X  for the whole lot is given by

X  =  ^ £ x ( u ) d u  (3.2)

Unfortunately, this formula neglects the effect of the smoothness of X(t )  and 
overvalues the sampling error. Therefore to assess the accuracy of X n estimation we
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need a function that may be able to measure such smoothness. That is provided by 
Variogram.

The variogram at lag u measures the average stability of the process and it is 
defined as

7(»> =  \ m m  -  M t  - « ) ? }

7 (n) generally is small when u is small and increases in value as the lag get larger. 
It should be stressed that the function 7 (u) =  |E[(X( t ) — X( t  — n))2] is stationary 
as long as is is not time dependent but only lag dependent. When the factor 1/2 is 
used, it is called the semi-variogram.

To determine the accuracy of a certain set of data and define the confidence 
limits we need the estimation error variance [.s^] defined as

s2TE =  E ( X ( n ) - X )2 (3.3)

From these equations and using Matheron’s [75] identity,

2 ( X ( u ) - X ( t i) ) ( X ( v ) - X { t j )) =

~ ( X ( u )  -  W ( t > ))2 +  -

+ ( X ( t i)-  X(v)Y-  -  X ( t , ) f

then we may be able to evaluate sEE

s t e  =  E i ( ^  f  X ( u ) d u  - - ¿ ^ ( i * ) ) 2]1 Jo n 1t=i
J (J1 ij1 Yij 77,

=  E ^~X j ^ ] q J0 J 2 J 2 ( X (U) -  X ( t j ) ) d u d v ]
i —1 J =  1

1 n n

= E [ - — Y . T . m u ) ~ x ( t i ) f
J=1 j = 1

-  2T* Jo /  ( x ( u)  -  X ( v ) ) 2dudv

+  ¿ f m » )  - x ^ Y d u ]
i= 1
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Finally, changing the terms position we have the exact value for the estimation 
error variance:

ST E  —

3.2 Content and Throughput Functions

In the last chapter we presented three interdependent functions of any particulate 
material: amount of active components [g(x)], amount of critical components [o(a:)] 
and percent of critical content [a(x)j. Substituting the concept of mass by flow and 
x by t we are within the one-dimensional environment.

For studying these functions and expressing the moments of the sampling con-
tinuous selection errors, we must break up a general case [f ( t )] that characterizes 
the time variations of the flowing material, both in quantity and in quality, into a 
sum of four terms:

2 rT
nT

[  y  ̂V(u — ti)di 
Jo ¿=1

1
n E E w o - y

*=i j=i

l rT rT
2*2 /  /  V(u — v)dudv

Jo Jo

f(t)  — fo + fl(t) + f2(t) + f^(t)

where

/o : is the nugget effect describing the average property of the material in the same 
point, or time t =  0;

f\{t) : is a short-range term representing non-periodic fluctuations of the general 
function;

/ 2(t) : is a long-range term representing non-periodic fluctuations of the general 
function;

f f ft )  : is a periodic term representing cyclical variations of some lots.

From this general function Matheron [74, 75] deduces the variographical function
7/ ( 6*), where 6 represents a regular interval of time (or space), assuming that both
quality and quantity variations are:
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• stationary of the first order: the first moment is time-stabilized and invariant 
towards the time axis. In this respect, their moving mean remains constant 
within a defined domain;

• stationary of the second order: the mean, standard deviation and mean square 
are time-stable. Under routine conditions, these fluctuations are likely to have 
time-stable properties, perhaps with a periodic term.

For computing quality and quantity variations of 0—D lots, Gy [38, 37] defines 
content and throughput functions whose details are analyzed to follow.

First, let us consider true random functions A(t) and W(t)  defined at all points 
with a very large but finite number of discontinuities represented by a X{t)  func-
tion. By smoothing these discontinuities one defines graphically another function 
represented by £(t).

Let Xj be the estimate of X(t j ) ,  where Xj is a discrete function defined at a finite 
number of points, usually in a series of instants tj at regular interval 6 apart.

Because A(t)  and W(t)  are discontinuous and random functions, the analysis of 
autocorrelation of both functions may be carried out by examining the graph of the 
representative function Xj .  If for the period considered the scatterplot is distributed 
about a parallel to the ¿-axis there is non-autocorrelation. On the contrary, if the 
graph presents points distributed about a trend curve there is an autocorrelation.

As declared before, the variogram of these functions, expresses the mean square 
of the differences between X( t  +  h) and X(t)  as a function of the distance h, for any 
t value in the interval from 0 to T.

Let 7x(h)  and 7¿(h) be the variograms of X(t)  and £(i), respectively. Then,

7x ( h )  =  / QT~ V ( ^  +  h ) -  X ( t ) ] 2dt (3.4)

7sW  =  T T l  j f  ~*K(r  +  A) -  i « ] 2* (3.5)

Considering Gy’s definitions[46, 47]:

6, the basic unit-interval between two consecutive measurements; 

r, the number of unit-intervals in h and defined as h/0; 

n , the number of unit-intervals in t and defined as T/9.
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Define th e  discrete variogram  [7r (/i)] of x 3 as

7x(h) =  X j(zj+r -  X j f  (3.6)
n  -  r  3 = 1

For a better understanding of the symbology used to determine the variographical 
functions, a flowing stream is presented in the Figure 3.1 illustrating the schematic 
computation of a variogam.

Variograms with 
jh3

(n-3) pairs 
jh2

(n-2) pairs
jhl

(n-l)pairs

Figure 3.1: Schematization of Terms to Compute a Variogram, where hi = 0, 
h2 =  26 and so on, r =  h/6 and n — T/9.

From the definitions,

V,
1
6

1 f tj+6/2
6  =  7 / .  a/ Z(t)dt

V Jtj -6 /2

It is possible to estimate both variograms:

l x {h)
n — r

Y . ( X * r - X i f
3=1

=  ~ 7 E ( 6 + r - 6')2
' i = l

The variogram of one function is known through the other function. Also 7x (h) 
and 7x(h) are known through X(t)  and Xj respectively.

When h =  0, X(t)  presents a series of discontinuities, so some of differences of 
Equation 3.4 tends towards 0, then 7x{h)  tends towards a positive value. Meanwhile, 
7t(h) tends towards zero since £(t) is a continuous function by definition. The
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random nature of the X{ means that it hardly ever takes this value towards zero. 
Consequently, 7x(h) has a positive limit as h —> 0. On the other hand as h —> 00, 
all three variograms have a limited value.

The relationship of the three variograms may be expressed in terms of fluctuation 
of the estimate Xj about the trend curve xi(t ), equal to [cq], fluctuation of X j  about 
the trend curve xi( t ), equal to [f3j] and the measurements errors expressed by A.

Assuming no determination bias the average of each function is nil and variance 
estimates are cr\(a), <r̂ (/3) and A), where a2(a) =  <r2(/?) +  a 2(A).

Finally, combining Equations 3.4 and 3.5 together with the above assumptions 
we have:

7 x ( h )  = 7  d h ) +  2 a 2h ( a )

7x{h) =  7( (h) +  2a2h(/3)

7x (h )  =  7  x( h )  +  2 a 2h(\ )

Three conclusions are reached:

• Variogram of a random function: In this case, X( t  =  h) and X(t )  are statis-
tically independent, £(t) is a constant X 0 and 7¿(h) — 0. Therefore, 7x(h) — 
2crl(a) and is represented graphically by a line parallel to the h axis.

• Variogram of a autocorrelated function: In this case, X(t)  is autocorrelated 
and £(t) is not a parallel line but a continuous function. Its variogram is also 
a continuous function with 7¿(h) =  0 for h <  h0. This first part of variogram 
7x{h) =  2al(a).  Therefore, the real estimate of 7¿(/i) must be deducted of the 
average value of the variance of xt about the trend curve [2crj*(a)].

• Variogram of a periodic function: I11 this case, £(t) is defined by a cyclic 
function and so is its variogram. There is a maximum and a minimum alter-
nate values. Both amplitude and period can be determined by graphical and 
analytical methods.

3.3 Splitting the Variogram

A general function f ( t ) and its stationary properties can be characterized by vari- 
ographics functions that can be simplified considering its relative increase between 
t — 6/2 and t +  6/2:
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« / (M )
f ( t  +  0/ 2) -  f ( t  -  0/ 2)

h

where Jl  is the mean of f ( t )  throughout the domain of the lot L.

These conventions merely create a dimensionless variogram, useful for any mea-
surement unit and allow us to write:

i rTi-e/ 2
=  2 +

The variogram of f ( t )  is a sum of three terms:

7/(0) =  7/i (0) +  7/2(0) +  7/3(0)

being 7/1 (0), 7/ 2(0) and 7/ 3(0) the variogram of the functions fi(t),  / 2(f) and 
/ 3(f), respectively.

Properties of 7 / 1  (0): The variogram of 7/1 (0) can be written:

7 /i (0) =  [! -  />/i(0)b/i

where 7/ ! ,  the relative mean square of fi throughout the domain of (T/J is a 
dimensionless quantity:

v ' = f k L m t ) i t

The component f\{t) represents all discontinuities from the intrinsic particu-
late structure of material being analyzed. For values of 0 larger than 0/i, called 
range of variograrn the autocorrelation function is surely nil. The Figure 3.2 
shows a typical short-range variogram.

Hence, 0 >  0/i => pfi(O) =  0 and 7/1 (0) =  7/1 =  constant 

The variogram 7/1 (0) is said to flat in the useful domain of 6.

Properties of 7/ 2(0): Similarly the variogram of 7/ 2(0) can be written:

7/2(0) =  [1 -  />/2(0)b/2
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Short-range Points

g

¥«*- O

P 'iW) • • •O •' i
#C /  1ci / ;
> / I

0 j hi (lag)

Figure 3.2: Flat Variogram j/i(0) for fi(t)  with random distribution.

where 7/ 2, the relative mean square of f 2 throughout the domain of (Tl ) is a 
dimensionless quantity:

V 2 = f ~ r i L f ^ )dt

The function f 2(t) shown in the Figure 3.3 represents the continuous trends of 
f { t ) ,  all discontinuities being considered by f\ (t). Therefore, when 0 =  0 —> 
pf2(0) =  1 and 7/ 2(0) =  0.

According to Gy [37], for values of 6 larger than the range of variogram, the 
autocorrelation function is nil; 6 > 9j 2 —;► pf2(0) =  0 and 7/ 2($) =  7/ 2- 
Between 6 — 0 and 6 — 0j2 the variogram 7/ 2(0) is an increasing function of 
0.

Figure 3.3: Long-range continuous Variogram 7f2(0) for f 2(t) with autocorrelation.

Properties of 7/ 3(fl): The periodic function is the summation of all terms of gen-
eral form:

f 3i(t) =  f 31sin2nt/Tp-i +  f 31sin27rt/Tp-i

Î32(t) =  f 32sin2irt/Tp2 +  f 32sin2irt/Tp2 ■ ■ ■
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with f'31, f 32i /31 and f 32 constant and Tpi, TP2 the component periods. These 
formulae are simplified by simple translation of time axis. For that reason we 
will use / 31(h) =  f 3isin2Trt/Tpi instead. The Figure 3.4 shows details of a 
periodic variogram [7/ 3(0)] together with [7/ 12] and [7/ 2(0)]-

Figure 3.4: Periodic Variogram 7/ 3(0) for the simplest f 3(t) considered. 

Using the expression of f 3\(t) it is possible to compute 7/ 31(0):

7/3i(0) =  (1 -  cos2n9/ TP l ) -ff31

where

7/31 = A
v i

The variogram of a simple periodic function is also a periodic function with 
the same period.

The following properties remains:

K  being an integer => 0 =  2KTPl/2 —>■ 7/31 (0) =  0
0 =  (2A +  l)Tpx/2 —» 7/ 3i (0) =  7/ 3i

The variogram oscillates about 7/3 with amplitude equals to 27/ 3.

Periodic terms occurring in bulk materials have detrimental and unexpected 
consequences for industrial processes. Although expensive bed blending is 
always a suitable alternative to reduce the fluctuations of lots with periodic 
terms.

Properties of 7/(0): Considering a variogram with all terms 7/ i ( 0), 7 /2(0), 7/ 3(0) 
and calling 7/0 the largest value considered negligible in comparison with 7^  
(within confidence limits), the starting point of 7/ ( 0), in the interval 0j q is

7/2(0/o) +  7/3(0/o) =  7/o <C 7/1
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Therefore, for values of 0 as follows: O < 0 / i < 0 < 0 / o

7/ ( 0) =  7/i

and for all values of 9 such as 9 < 9¡ 2 '.

7/i {9) =  7/1

7/ 2(0) =  7/2

7 / 3(0) =  (1 -  cos2ir9/TP)~ff3

and

7 / ( 0) =  7/i +  7/2 +  (1 -  cos‘27r9/TP)~ff3

3.4 The Variographic Parameters

So far we have shown the continuous variogram 7/ ( 0) broken into parts, separated by 
discontinuous functions. In order to implement a practical approach it is necessary 
to define a corrected variogram [w*Ajh)] that represent an unbiased estimate of a 
discrete variogram [wf(jh)] estimator of 7/(0). As it is a discrete function, 0 must be 
replaced by j h , where h is a variable time (or space) interval. That will be possible 
by defining an experimental variogram [wAjh)\ that removes the error retained by 
[wf(jh)]. We may be able to overcome most of difficulties, as long as there is a 
general idea of the model of variogram fitting the data, by defining and estimating 
the parameters.

Data obtained from a variographic experiment can, most of the time, fit a simple 
model as showing in the following, [0R] being the range of the variogram.

For 9 < 9p:

7/ ( 0) =  7/i +  7 /20 +  7/ 20fc + 7/3 U -  cos2tt9/Tp )
Range

For 0 > 6r :

7/(0) =  7 /i +  1r 9 + 7/3(1 -  cos2tt9/TP)

In the presence of a complex periodic phenomena, these formulae may not be 
valid and the only possible interpretation of the variogram is given by the point-by-
point calculation of the auxiliary functions to be shown in Section 3.5
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When the variogram fits a flat model, 7¡(9) =  7/1 but because of the random 
nature of this component, 7/ !  represents the discontinuity of 7/(d) with mean equal 
to zero and variance s^.  Every difference between units selected and extracted at 
very short intervals should have average converging to 0 and of variance 2.sT. For 
particles in suspension, the variability in this case approaches 0.

A linear model, shown in Figure 3.5 in the useful domain, is defined as follows:

7/(0) =  7 /i +l'f2e

which means that 7/ ( 0) =  7/1 and 7/ 2(0) =  7/ 20-

Figure 3.5: Linear and Generalized Linear Model for 7/(0) =  7/1 +  7 'f20k.

It is usually accepted as an approximation for values of 9ju larger than 30 mn, 
where 0/„ is the useful domain of 0. The upper limit of the uniform interval between 
increments or the uniform strata length is specified by selection scheme. As a general 
rule, Gy [47] it is always smaller than the range 0/ 2 and beyond which 7/ ( 0) remains 
constant.

A parabolic jnodel can be represented by

7 / ( 0) = 7 / i  +  7 /20 +  7 / 2612

with 7/ 1(0) =  7/  and 7/ 2(0) =  +  7)'202

It is generally concave downwards which entails flj2 negative acceptable within 
the useful domain. The expression for a non-periodic model

7/(0) = 7 / i  +  7/2^ +  7 /202

with 7/ x, 7j 2 and j^2 the variographic parameters to be determined.

Other models are of some interest such as logarithmic one, depicted in Figure 3.5 
and represented for k integer as
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7/(0) =  7/i +7/20 +  7 /2^

and the spherical model which is a transitive model, consisting of two separate 
functions with discontinuity.

The typical equations are

7/(0) =  7/i +  7 /20 -  7/203

This is perhaps the underlying geostatistics model for theoretical and practi-
cal purposes. It shows the variogram form with the relationship between classical 
variance [cr2], the spatial covariance [(7(0)] and 7/ ( 0).

3.5 Auxiliary Functions

The Auxiliary Functions are used to determine the variogram [7/(0)] consequently 
f ( t )  — //(/), a(t) or a(t) and their moments.

It is only possible to estimate a real discrete variogram and variographic param-
eters of the function / ( / )  if it is assumed truly known in a series of Q increments 
sampled at instants t defined as follows:

tg =  ( q -  1/ 2)0

with q =  1,2, . . .Q ,  and h uniform intervals between consecutive punctual incre-
ments Iq. The number Q is defined by the following inequalities:

( Q - l / 2 ) h < T L < (Q +  l/2)h

where Qth and the last increment must fall within the limits of the domain (Tfi) in 
order to belong to the lot. Therefore, h. is a submultiple of TL and TL =  Qh. The 
estimates of f i  depend on the quality characteristic to be calculated:

• with f ( t )  =  p(t) or a(t)

h  =  q  X ) /^ ? )

• with / ( / )  =  a{t)

h  =  —
VL
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• with any other function the proceedings are the same.

From these specifications we define the discrete semi-variogram [wf(jh)], esti-
mator of the continuous variogram 7 (jh):

Wf(jh) =  2{ Q - j ) f l  -  f i U ) ?

for q =  1,2 , . . . , (Q - j )  and j  =  1,2, . . . , j .

There is a statistical minimum for (Q — j ) .  The number of squared differences 
must be larger than 25. As h tends towards 0, the product jh  remains constant and 
equal to ho. So wj(jh)  tends towards 'yf(ho).

3.5.1 Towards the Corrected Variogram

The experimental estimates of the increments Iq are error-generating operations 
involving sampling, dividing, reduction, assaying etc. Therefore we should use f  (tq) 
instead of f ( t q) and compute the experimental variogram K C jh)],

*> ',W  = -  f ' M ?

If we call t fq the relative estimation error of f ( t q) and define a dimensionless function:

r f ( tq)  -  f(tq)
£/t = --------h --------

By relative estimation error or standard deviation we call the relationship be-
tween the absolute standard deviation of sample reduction and/or assaying and the 
content of the lot.

The use of e/ 9 will depend on the characteristic considered:

• ^ / ( 0  represents then t jq is consequence of sampling and weighing errors;

• if / ( f )  represents a(t) then t jq is consequence of sampling, reduction and 
assaying errors; •

• if / ( f )  represents a(t) then ejq is consequence of the errors of both a(t) and 
M(f), therefore, sampling, reduction, weighing and assaying errors.
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The variogram being a summation of mean squared differences of two values of 
f ( t )  is biased as w'j(jh) includes s2, an experimental estimate of the true value of 
the variance of ejq distribution. Hence,

w'f (jh) =  Wf(jh) + s)

and the corrected variogram

w)(jh) =  w) { jh) -  s)

The discrete variogram Wf(jh) estimated by wj(jh)  is in fact an unbiased esti-
mate of the continuous variogram 7j ( jh)  following the removal of the biased term.

The determination of s2 is based on assaying or weighing of the characteristics. 
It is nil for mass deviation [s2̂ =  0] as long as we respect materialization procedures.

3.5.2 Analysis of Periodic Variogram

Firstly we must check the existence of periodic terms. This is confirmed by analyzing 
the corrected variogram w^(jh) and its differential Aw*:

Aw* =  w*j(jh) — w*j(j +  1 )h

and plotting the results Aw*/h against 6 =  (2j  +  l)h/2. Naturally the choice of 
the interval plays an underlying role. It must be smaller than the period TP the 
optimum value requiring, sometimes, a trial and error procedure.

1) Admitting positive and negative terms alternately, the variogram conveys 
a periodic component. The computation is carried on by considering the model 
variogram 7'f(O):

7/(0) =  7)i(0) +  7) 2(0) +  7)3(0)

and

As we know the discrete value of estimation of 7/+(0) is straightforward:

w*f l (jh) =  w*f (h) =  7) x

w*f+ (jh) =  w*f2(jh ) +  w*f3(jh) =  w*f (jh) -  w){h)
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which is always positive for values of jh  larger than the domain of the flat 

variogram.

The mathematical function has two trigonometric terms to be determined: 7 / 3  

and Tp. Assuming a cosine function

7 / 3(0) =  (1 -  cos2TrO/Tp)'jf3

there will be a maximum for values 0 — (2k +  l)Tp/2 when 7/ 3(0) =  27/ 3:

7/ ( 0) =  7/i + 7/ 2(0) +  27/3

and for 0 =  2kTp/2,

7/(0) =  7/i +7/2(0)

We must be cautious in order to save our experiment:

• use values of jh  closer to extreme points of periodic variogram (precision);

• choose small values of h with high degrees of freedom (lim/^o w}(jh)  =  7 ¡(jh)).

The differential test using the graphical method is probably the most accurate 
way to find the required parameters. The Figure 3.6 shows the use of test. It is 
based on drawing two curves that joins the extreme points of corrected variogram.

Figure 3.6: Graphical Representation of Periodic Variogram and Method for deter-
mination of both Period (Tp) and Amplitude ( 7 / 3 ) .
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The top curve represents values 7^  +  7 /2(0) ~f 27/3 and the bottom curve values 
of 7 +  7/ 2(^)- Therefore the abscissas of the first contacts with the bottom curve 
estimate the period Tp and the ordinate differences between both curves measure 

27/3.

2) Admitting no periodic terms, 7/ 3(0) =  0 and 7/(0) =  7/i($ ) +  7/ 2(0). Then,

w /2M  =  w /O T  -

Plotting the positive values of w%{jh) against j h , we may be able to fit the data 
through any interpolation techniques. According to Pitard [83] a straight line is 
suitable most of the time. If the curve is parabolic it is fitted by plotting w*j2(jh )/jh  
against jh  and estimating the the ordinate and gradient accordingly. In this case 
the long-range variogram is represented by the following equation:

7) 2(0) =  7 /20 +  7/ 202

and the complete variogram:

7/(0) =  7/ i  +  7/20 +  7/ 202 +  (1 -  cos2n6/Tp)lf3  (3.7)

3.6 Moments of Quality Fluctuation Errors

Assuming that all the variographic parameters have been estimated: 7^ , 7) 2, 7y2, 
7/3 and Tp. The moments depends on the sampling model used — systematic (sys) 
or stratified (strat). There will be moments for each characteristic: as , As and Ms, 
the critical content as being defined as:

«5 =  As/Tis (3.8)

The continuous selection error CE  is the sum of four independent errors:

CE =  QE\ +  QE2 +  QE3 +  W E  (3.9)

The first moment is:

m(CE)  - miQEi)  +  m(QE2) +  m(QE3) +  m(WE)  (3.10)

and the variance:

s2(CE)  =  s 2(QE1) +  s 2(QE2) +  s 2(QE3) +  s 2( WE)  (3.11)

In order to relate the equations presented so far we need to define some other 
variables:
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e: relative deviation of mass of critical component [As] from its mean; 

77: relative deviation of mass of active component [Ms] from its mean; 

q : difference between £ and 7 7 .

From these definitions we have:

A s =  (1 +  e)m{As)

Ms =  (1 +  rj)m(Ms)

and the critical content:

A s  (1 + e ) m ( A s ) l + e
a S =  =  VTV--------TTTW = ~ ---«L (3.12)

Ms  ( l +  rj)m(Ms) 1 +  77

By definition, CE  is the continuous selection error of the variables as and ül  within 
the lot. Then.

CE = a S ~  a L £ -  7/
a-L 1 +  rj 1 +  7/

All these quantities are random variables since \rj\ < 1, then 1 /(1 + 7 /)  is a convergent 

series equal to 1.

The moment of the quantities 777(7/), m(e) and m[g) are nil by definition. As 
a2(e) =  u2(As), a2[r,) =  u2(Ms ) and p(e,ri) =  p(As , M s), then

cr !(^) = a 2(e) + (j2(?/) -  2/?(£, r])a(e)a(i]) (3.13)

The relationships between the moments of as and CE  are evident: m(as ) =  {1 + 
m{ CE ) } aL and cr2(a5) =  a2La2{CE) or u2(as ) =  a2(CE)

Assuming a general parabolic variogram:

l ' M  =  X x  +  +  7 > 2

for the whole domain of the lot,

a) The mean of the continuous selection error CE  is

m(CE)  =  u 2(Ms ) -  p{as ,Ms)u(As)u{Ms )

coefficient of bias

b(CE) =  \m(CE)\/s(CE)

b) variance of CE

s c e  =  ul s =  u 2(As) +  u 2(Ms ) - 2 p(As ,Ms)u(As)u(Ms )

79



+

and for stratified sampling:

u 2st r a t ( M s) = T jr i lM lT s tr a t + ~ ^ T ^ trat)

Relative variance of the weight of critical components [As] for systematic sampling 
is

< „ ( A s )  =  j r h 'AlTm  +  ^ fT % ,)

and for stratified sampling:

u l t r a t i A s ) =  T jr i lA lT s tr a t  +

Breaking up the total variance sJCE ̂ — sjQE  ̂ +  ŝ WEy.

• for systematic sampling:

s2.,.(QE) = + i f  O

where th e  relative variance of the  sam ple weight [Ms]  for system atic sam pling is

sys (QE1
T,sys

Tr - l a l

sys [QE2  ̂ Ma2\rr2
t l { sys

• for stratified sampling:

? strat (Q E) ' rp . 7a2
rp I 7 a l  strat I 
J L

_rp 2
g  ^ strat

n
I 7a2 rp3 
' Q  ̂strat

7strat (QEi)
T-L strat '

S s t r a t iQ  E i )  —
1

n
( rp2
[ 3 'strat

j 1fa2 \rp3

6 ’ istrat
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Each of these moments has an important meaning:

1) The mean of continuous quality errors [m(CE)\ and coefficient of bias must 
be negligible or at least small, say less than 1% for guarding against estimation bias.

2) The variance of weighting error [s2(WE)\ relatively high means fluctuations 
of the increment weight due to fluctuations of the rate of flow. Care must be taken 
with lack of correctness of sampling devices: cutter speed, uniformity of moving belt 
etc.

3) The variance of short-range quality errors [s2((5-Ei)] even with bed blending 
hardly can be reduced. Reducing size of particle may reduce fundamental error and 
mixing reduce but at an economical cost. The effective way to minimize cr(QE\) is 
by taking as much increment as possible.

4) The variance of long-range quality errors [s2(QE2)] can be reduced by mixing 
and mainly bed blending techniques.

5) The variance of periodic quality errors [^ (Q i^ )], depending on the complexity 
of function, it is better performed by modeling the variogram interpreting the total 
continuous selection errors. Even for the sinusoidal model neither the amplitude nor 
the period are strictly constant.

The relative importance of parameter 7̂ 3 resides in the relationship / 3//L , de-
fined as

h  =  fLyf f i j~3

3.7 Modeling a Simplified Variogram

As stated before, the spatial statistics is based on assumption of dependence of sam-
ple values, regarding the position in the lot. The essential step for the understanding 
the behavior of the material under analysis is through Variogram and Variograph 
Experiments.

Fitting data may lead us to one of the models presented before. A typical spher-
ical semivariogram is presented in Figure 3.7. The correlation is hardly perfect and 
the random component is presented in the distribution values. The mathematical

Finally  th e  variance of the  sam pling error is calculated by the  difference:
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models will assume always the presence of the two sources of variability referred to 
as bias. In some cases a third term occurs: the periodic one.

Figure 3.7: A typical Variogram showing relationship among Variance, Covariance 
and Variogram.

The bias is a function of the random component of the variogram and could be 
expressed in terms of random variance or nugget effect as termed by geostatisticians:

RandomV ariance 
S patialVariance

where regular changes in the body of material are represented by the spatial vari-
ance while errors of analysis or measurements are represented by random variance. 
Instead of assume that the values are realizations of a random variable, like classical 
statistics, it assumes they are realizations of a random function of the distance or 
time between samples. This function displays spatial continuity between Xi and x 2 
for each distance and direction.

The scatterplot shows how continuous the data are, according to the symmetrical 
cloud of all possible pairs of data values whose location are separated by certain 
distance in a particular direction. As the location of any point can be described by 
a vector, it is convenient to label the x-axis x(u) and y-axis x(u +  h).

The relationships between each one of an h-scatterplot and h is traditionally 
called the correlation function, the covariance function and the semivariogram. The 
three statistics are proposed for summarizing the fatness, but the most robust is the 
last one. It is presented below and rearranged to reflect the computational form in
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(3.14)

which the sample values are usually computed:

7 (h)
1

2 N{h) E (vi - vj)
(*.j)| hij=h

The values of 7 (h) are unaffected if all the i and j  subscripts in the equation are 
switched. Instead of summing over all ( i , j )  pairs that are separated by h, it could 
be summed over all (j , i)  pairs that are separated by h and so there will be this 
result:

l {h)  =  l { ~ h )  (3.15)

This result entails that 7 for any particular direction will be identical to the one in 
opposition direction.

It is possible to extend the idea of h-scatterplot to that of a cross-h-scatterplot 
by using different variables at different locations. The equation used to define the 
variogram, 7 (h), can be extended to cross-variogram equation and it will become:

£

lu,v(h) =  <>N (h\ E (“ *• -  ui ) ( vi -  vi) (3-16)
' ' {hi)\hi]=h

In practice, however it is not possible to two samples at the same place. If a sample 
is evaluated twice, different values are obtained because of the valuation errors. 
On the other hand, if two samples are taken next to each other, different values are 
obtained again, not because of the sampling errors but because of intrinsic variations 
(micro-structures) of the body of material to be estimated. As a consequence, a 
discontinuity is usually observed near the origin which is called the Nugget effect.

The mathematical models of semivariogram can be classified according to whether 
or not they correspond to situations where the second order stationarity conditions 
are satisfied. If the second order stationarity exists, then a priori variance a2 of x(u) 
also exists and is finite (sill). For large distances h such that x(u) and x(u +  h) 
are not correlated (distance of influence), the semivariogram 7 (h) will reach a value 
equal to cr2.

If only intrinsic hypothesis is satisfied, the sample variance is an increasing func-
tion of the size of the area or volume in which the samples are located, and the 
semivariogram 7 (h) will be a continuously increasing function of h.

Unfortunately, most of the particulate materials does not seem to satisfied all 
stationarity conditions. The moments of the variogram in these situations are only 
found out after the long computation of point-by-point fitting suggested by Gy [37].

When sampling materials from conveyor belt or bed blending systems and Math- 
eron’s conditions are all satisfy a simplified method has been suggested by Saunders
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[91]. It is based on the following three points:

1. the estimation error variance [o#] is, to a close approximation, determined by 
the variogram at short lags;

2. the formulae for <je  take very simple forms for linear variograms;

3. the variogram can be considered linear over short lags, in most practical situ-
ations.

The method consists of fitting a linear variogram model V(h)  =  A +  Bh to 
the observed data. The fitting should concentrate on the short lag variogram. As 
in systematic sampling, no two sampling times or spaces are less than one lag, it 
is necessary to extrapolate back to the interval zero to one lag. When systematic 
sampling is used, we should calculate the sample variogram:

7 (h) =  q  £ ( * ( * . ')  ~  X (ti+k))2

for n samples and k — 1,2, —  Then we should fit a straight line A +  Bkh to the 
first few calculated values of the variogram.

When the sampling scheme is stratified the it values are not equally spaced. 
We should take into account the separation between each individual pair of sample 
times. The best way to compute the variogram is to take all pairs (ti,t j) such that 
| ti — tj | is less than a specified cutoff, and for each pair calculate:

— 1ti tj |

va =  -  X(t j ) )2

Then we may fit a straight line A +  B(\t{ — tj\) using linear regression.

If the sample times are fairly evenly spaced we can use the same systematic 
technique used before.

Having calculated the parameters of the straight line we are able to compute 
[o’e ] for systematic sampling:

aE =  ~ (A  +  g-E(|ti ~ t j\))

for stratified sampling and

Ge  =  ~{A  +  q B(\U -  tj\))

for systematic sampling.

Worked examples of this simplified methods are given by Saunders [91] for worked 
examples and then relate to point-by-point techniques of Chapter 3.
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3.8 Accuracy of Systematic Sampling

It has been stated that the only way of reducing the detrimental quality fluctuations 
is through bed-blending also known as one-dimensional homogenizing process. It is 
implemented on particulate materials worldwide. Statistical theories of bed-blending 
have been proposed. It includes stacking and reclaiming. It is costumary to sample 
such systems taking samples, cross-sectionnally, at fixed space or time intervals. 
Again, the increments are supposed to be evenly spaced along the stacking or the 
conveyor belt —  stationary or moving. The increments taken at closer intervals than 
normal are analyzed individually or by interpenetrating samples, combined before 
analysis. Prediction of the standard error of the mean may be treated either by time 
series theory or analysis of variance. Jowett [66] refers to the the first treatment as 
worthwhile because it gives equally ready solution not only when the two interval 
sizes correspond but also when they do not. However when we want to asses nothing 
but accuracy, A N O V A  techniques are useful.

His time series techniques for coal is quite interesting because there is no restric-
tion to the form of variogram and it is implemented in quite realistic situations. 
The data are collected from increments taken at about one-minute intervals from 
conveyor belt sections loaded into four trucks. It is supposed continuity between 
these sublots, a supposition rather artificial. He chose ash contents as a quality 
characteristic is but it could be any other. The data are collected in a serial way, 
one pair having a member in common with another pair.

After computing the semi variogram, a curve is plotted symmetrically about the 
origin, being each pair at a distance h apart like in Figure 3.8.

Figure 3.8: The Symmetrical Semivariogram with One-dimensional Variations.

The points are fitted by any numerical procedure or by eye. This curve is useful 
because it gives us basic information about the material itself and the variations
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of the material on one-dimensional basis. These variational properties is related to 
autocorrelation function and it indicates how closely any term of the series resembles 
its successors (positive values) or its predecessors (negative values).

The second curve in Figure 3.9 is then computed by multiplying the points of 
semivariogram for each h by a factor 1 — \h\/T, where T is the length of the section 
in time units. For instance, he divided the truck in four zones and within each zone 
four increments were extracted at each minute, taking T =  16mm as a whole.

Figure 3.9: The Modified Semivariogram for Computation of Standard Error.

The sampling error of the mean is estimated as follows: the horizontal axis 
of Figure 3.9 is divided into intervals of width d, the length of each zone. Next 
the average ordinate is calculated in the central and in the adjacent intervals by 
subtracting the mid-ordinate from the average ordinate. The total is divided by 
2n, where 2 is due to semivariogram and n is the number of zones. The main 
contribution will come from the central interval, particularly when there is no sill.

1 n
° i  =  ^  ^2[Aver -  Mid}

It is very interesting to notice the close agreement between the statistic pro-
cedure and the reasoning for those variations in both approaches by Gy [37] and 
Jowett [66]. The short-range variance is due to segregation, local disorder and in-
trinsic properties of material while the long-range variance is due to non-periodic 
trends of material. Both are based on systematic sampling variance due to Cochran 
[23]. The minimum sampling interval is a problem of some interest. One approach, 
using successive samples taken very closely together, is to compare the observed 
to expected distribution ot ranges of pairs of measurements. The procedure is re-
peated several times eliminating some measurements until a significance test shows 
no differences between observed and expected distributions. The minimum spacing 
at which this kind of association is not present so that the minimum practical size 
of test or sampling interval may be determined.
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It should be worthwhile express the same computation through classical statis-
tics, firstly using all individual increments for computing the A N O V A  table between 
and within zones. After that we should compute the individual results by combin-
ing them according to the model of interpenetrating samples. A different AN OV A 
table is also computed for between and within trucks.

Although these standard deviation may be smaller than those of time series it is 
not a correct approach because of supposition of continuity is somewhat artificial.

3.9 Worked Example

From a practical viewpoint, the main interest in conducting a variographic exper-
iment is to predict in advance the order of magnitude of the continuous selection 
errors that is, the quality fluctuations. When performed with accuracy and precision 
it is possible to use this graphics as a model for comparisons with lots of the same 
product or supplier.

The following example will illustrate the use of this technique and the compu-
tation of variance estimate through Variographic Experiments. It was conducted in 
two stages. Firstly it was investigated the random term — F(0) — and then, the 
continuous term — V () ) — for Charcoal. It was chosen particle size as a quality 
characteristic (coarses greater than 900//).

The short-range and long-range data were collected in the Research Center of 
Geotechnical Engineering at The City University and analyzed at Pascali Engineer-
ing Ltd., London.

The first series of 30 increments were sampled in spaces of 20cm and analyzed us-
ing the sieve shaker method. From the data we obtained 15 points of the variogram. 
They are presented in the Table 3.1. The variogram is depicted in Figure 3.10 and 
appears flat with a sill. The second minimum point corresponds to the variance of 
short-range fluctuatutions.

Under these conditions we can consider the best estimate of V(0) is given by the 
first minimum of the circle. Therefore, V(0) =  1.45EE  — 03.

A second series of long-range data were sampled with lag equal to 2m for testing 
of C E 2. They were also analyzed at Pascall Engineering Ltd., and the data values 
are presented in the Table 3.2.
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Increment Values Increment Values V(j )  x IO“ 3
01 0.71 16 0.74 1.65
02 0.73 17 0.73 2.60
03 0.69 18 0.67 2.75
04 0.67 19 0.69 2.98
05 0.73 20 0.70 3.20
06 0.73 21 0.63 2.62
07 0.74 22 0.64 1.45
08 0.70 23 0.68 2.15
09 0.71 24 0.71 3.00
10 0.69 25 0.69 2.40
11 0.65 26 0.74 2.43
12 0.74 27 0.65 3.65
13 0.74 28 0.63 4.19
14 0.69 29 0.59 3.82
15 0.70 30 0.62 4.50

Table 3.1: Experimental Data for Short-term Charcoal Fluctuations and computa-
tion of Variographic parameters V((j).

The variogram is depicted in Figure 3.11.

We can see from the figure, after the 10th. point the variogram remains flat 
following the second rule of stationatity, with a variance estimate equal to A.7EE — 
03. Finally assuming no periodical terms:

v\ =  4.70EE  -  03 +  \AbEE -  03 =  6.15EE  -  03

We have assumed that Charcoal has no periodic fluctuations, however it has to 
be confirmed with a complementary experiment of at least 80 data values.

The Fortran program used for calculations of variographic parameters is pre-
sented in Appendix 2.



Figure 3.10: Graphical Representation of the Experimental Variogram V(j) of Short-
term Charcoal Fluctuations. Quality Characteristic: Particle Size.

Figure 3.11: Graphical Representation of the Experimental Variogram Y(j) of Long-
term Charcoal Fluctuations. Quality Characteristic: Particle Size.



Increment Values Increment Values V( j )  x 10~3
01 0.66 16 0.74 0.20
02 0.63 17 0.74 0.40
03 0.64 18 0.74 0.65
04 0.65 19 0.73 1.02
05 0.67 20 0.73 1.40
06 0.69 21 0.71 1.80
07 0.69 22 0.71 2.32
08 0.69 23 0.70 2.85
09 0.70 24 0.69 3.45
10 0.70 25 0.69 4.03
11 0.71 26 0.68 4.40
12 0.73 27 0.67 4.69
13 0.73 28 0.65 4.78
14 0.74 29 0.63 4.74
15 0.74 30 0.66 4.60

Table 3.2: Calculation of Experimental Variogram V(j) of Long-term Charcoal Fluc-
tuations.

90



Chapter 4

Multi-stage Experiments with 
Bulk Materials

Bulk Materials such as coal, charcoal, sulphur, ore and the like are evaluated by their 
quality characteristics: purity, ash content, carbon proportion, moisture percentage 
etc. From the receiving of the raw material to the acceptance there is a long series of 
error-generating functions: selection, division, preparation, further division, analysis 
etc.

This chapter deals with the problem of isolating variance components associated 
with each stage sampling (primary, secondary and tertiary units) and measurement 
systems. The method of conducting multifactor experiment, particularly Nested 
Experimental Design is commonly used for variation studies because they identify 
where in the process of bulk materials the quality improvement effort needs to be 
focused. Three types of design are studied: balanced, staggered and nested-factorial 
according to the importance of each from a practical viewpoint and the required 
needs. They are presented with analytical solutions to detect, analyze and reduce 
such factors and therefore assign causes to process capability. The insight allows 
optimization of sample size, minimization of the amount of replication and reduction 
of both variability and cost. A case study is presented of the application of the 
methods to determination of error and their impact on cost.
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4.1 Introduction

Companies dealing with bulk materials either in batch or continuous process, gener-
ally are faced with fluctuation of quality characteristics that can damage the quality 
of finished goods and produce failure to meet specifications. Even robust designs 
are at stake if the main sources of variations — Sampling Error (PE ), Subsampling 
Evror(S E) and Analytical Error(Ai?) — are not kept below some percentage of 
Total Error(T-E) demanding by customers.

The overall variance of test results is generally the sum of these individual vari-
ances and their transition may be consolidated in the following equation:

2
a (T E )

_  2 , 2  
— a (P E )  “t  a (SE) + c (A E ) (4.1)

The process of obtaining data (samples) from particulate materials is well known. 
Firstly we extract a representative primary samples from the lot or batch then 
reduce each primary sampling without altering the quality characteristics to a several 
subsamples and finally analyze them. The first step is selective and it is generally 
done in a Sampling Test Station. The second is mostly preservative and involve a 
sequence of non-selective operations such as transfer, crushing, grinding, pulverizing, 
drying, mixing,dividing and so on. The third is analytical and it is performed in 
laboratory by using a minute part of the subsampled portion. Since these systems 
add variability to the output from a process, they also affect directly the process 
capability.

The engineer must first discover which link is the weakest and since all data 
originate at the analytical system, it should be examine first. A primary analytical 
requirement is the capability to analyze homogeneous samples for the element X  
with the required accuracy, precision, speed and confidence. When successive sub-
samples shows an unacceptable variance, it is necessary to discover how much of this 
variance is due to analytical error, and how much to the sampling and subsampling 
errors.

The first objective of the quality improvement processes is to have processes that 
are in statistical control and are capable of meeting customer specifications. Process 
capabilities are calculated by comparing the distance between one specification limit 
and the lower specification limit (if they both exist.)

In chemical industries, the variability inherent in the analyzing systems, subsam-
pling procedures and sampling techniques are the major limits on increasing process
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capability and bias and fluctuations. That is because the relationship between the 
process width and the specification limits is defined in terms of a process capability 
index, either Cp or Cpk■ A Cp index measures potential process performance since 
only the process spread is related to the specification limits.

Upper Lower
Specification — Specification 
Limit Limit(j — _______________________________

±<7TE(process definition)

However, Cpk is related to the Cp index, but takes into account differences be-
tween the design nominal and the actual process average (or mean) and can be 
considered a measure of process performance. Thus

CPk =  Cp( l - k ) (4.2)

and

where p is the process mean.

(nominal — p)
(USL -  LSL)

(4,3)

The difference between the final component value and the process mean is the 
Total Error, TE, which has three or more sources of error (variability) shown in 
Equation 4.1.

The inverse of the Cp index, considering a stable process with 6c t t e  is the fraction 
of the specification width that our process operates within. We can apply that same 
principle to our calculated variance components and since they are additive, we can 
combine related components of product, property and/or characteristics. The com-
putation would include variability of components, percentage of total variability, by 
sources and degree of freedom, capabilities and specification width, and percentage 
out of specification according to the requirements of the process: in terms of n x a te

There are two basic approaches to isolate such errors and establish the rela-
tionship among these sub-systems: X —R Control Charts and Analysis of Variance, 
particularly Nested Experimental Design (N ED). This chapter is mostly about the 
second though both have the same target: isolating variances and measuring the 
relative effect of factors upon the response.

N E D  is preferred to Charts for several reasons: (i) it requires only one exper-
iment not one for each isolated variance; (ii) it allows experimenters to compute
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significant effects within and between factors and get more hints about changes 
and/or adjustments; (iii) it is much more powerful because it permits a number of 
configurations such as balanced, staggered fractional and factorial designs; (iv) it 
allows analysis of the data as they are accumulated, preparing successive ANOVA 
tables as the experiment progresses (and, therefore, relating these measures of vari-
ation to specification).

4.2 Assumptions underlying Nested Design

Most industrial experiments to quantify sources of variability in chemical process 
are done through Nested Designs.

It is usually the case when the differences between the mean effect of the levels 
of one factor are due in part to differences between the unique effects associated 
with other factors they are confined to. For convenience reasons such proceeding is 
useful when some factors are very hard to vary and others are much easier.

The fundamental difference between a nested set of data and a fully randomized 
set lies in their error structures. In a fully randomized design there is only one 
homogeneous random error system with equal chance of perturbing each observation. 
In the nested structure, on the other hand, we have two independent sources of 
random disturbances: within factor levels that affects each nested group and the 
other set of random observation affects each observation separately as the nested 
factor levels are changed.

For better understanding of the error structure let us examine the simplest nested 
situation where two independent sources of random variation occurs:

V i ( j )  =  V  +  e i +  ei(j)

If the sampling of factors and subfactors is random, then the errors are assumed 
to have zero expectation and are uncorrelated. The variance, however, has two 
independent terms: Var(e,-y)) =  £(ef(j)) and Var(e,-) =  E (e}). The first estimate 
we get from all observations by pooling the sum of squares within batches. The 
second one by using the grand mean against mean of batches.

The pooled mean sum of squares within batches is

I a ^
b(a -  1) ?  ~  y ^ 2 =
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The among batches mean sum of squares is

What characterizes these multifactor experiments is that the levels of one factor 
are similar but not identical to different levels of another factor. Analyzing is nested 
under the levels of subsampling and this factor under the levels of sampling. This 
idea may be extended to the case where some factors have a factorial relationship 
and others are nested within the factorial combinations or in levels of other factors. 
The Figure 4.1 illustrates a model embodying both nested and factorial design.

It is better understanding, let us synthesize the computational steps leading to 
an analysis of variances through the general nested model given in the Equation 4.4 
below.

Uijki ft  T -4i T T Cfc(ij) T e ( i jk ) i  (4.4)

where i =  1,2,...n; j =  l,2,...n*; k =  1,2,...my, 1 = 1,2,...nijk and E i E j E k n ijk = N ,

XT n ijk =  AT. and XT nijk =  A ft is the overall mean; A  , B  and C  are random 
and independent variables with zero means and variances of, of, of and of and 
having a nested relationship within each other. The last term in the model can be 
considered the residual or error.

From the model it follows that the variance of grand mean (y ) is:

var(y ) =  var(y  + N  1 E  A TA  + TV 1 E  Y  N l3B j(i))
i i j

+ jV_1 E E E  n i jk C k ( i j )  + Ar_1 E  E E  E  e Kijk )  (4.5)
i j  k i j  k l

=  +  +  (4.6)
* J j  i j  k

Similarly, the variance for the factor A  is:

var0fiJ  =  <7a2 +  N l{al  E  Y .  +  W2 E  E  nlk +  Ni.a2d)
j  i j

For the factor B  mean (ytJ ):

v a r ( V i j . . )  =  ° 2a +  * ! N £ ( o >  E  n l k  +  N y . a j )
k

And for the factor C  mean (y ijk ):
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Crossed Factors

C within AB

D within C

[A x B ] t j

* x j

Cl C2

D2 D1 D2

Figure 4.1: Balanced Nested Factorial Design.

v a r (Vijk.) =  +  n i3W d

Finally, the variance of yljki is

var(yijki) =  cr2a +  a2 +  a2 +  a2

The sums of squares SSt  are:

i

SSA i

i j  k
'------------------V------------------ '

S S c

* j
"----------------- N,------------------'

SSg
n ni n ij n ijk

+ è  è  £  è  (ifaw -  yq-fc. )2
i j  k l

s------------------v------------------ '
SSe

(4.7)

The statistical development presented, assumes all the variables are normally 
distributed and the functions FSU, 5’S’s, 5 5c and SS,, are mutually independent.

4.3 Balanced Nested Design: The General Model

This a classical model in which the several levels of a factor are distributed among 
those of another in a balanced way when it is not possible to cross them or practical 
considerations make it advantageous.
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Factor A

B within A 

C within B

Factor A 

B in A 

C in B 

D in C

Figure 4.2: Three and Four-Stage Balanced Nested Designs.

Figure 4.2 shows two classical n-stage nested designs assuming duplicate tests 
on each of k — 1 nested factors except for the top factor. A more general designation 
would be Factors A, B , C, D and so on. In addition, sample 1 may be called the 
first A-unit and sample a, the a-th A-unit, being A the determinant of the total 
degree of freedom. Note that these designs are completely replicated.

These nested configurations are similar to the one presented in Figure 4.1 except 
for the interaction term whose square sum has now been combined to the other 
factors.

A classical design is represented by Equation 4.4 with branches into 2k following 
the first stage , is widely used in industrial experimentation. The factor A represents 
process and sampling errors. It could be a product in liquid or bulk form: barrels, 
casks, bags, portions continuous or discrete. The second nested factor, B , repre-
sents subsamples taken from the primary samples. The factor, C, is analyzed from 
secondary samples. It is the effect of analyzing within subsampling. The error term, 
e, represents total errors of replications due to internal and external experimental 
conditions. The assumptions required for the model are: A; , Ck(l3)-, £(ijk)i are
random samples from a normal population, with mean zero and variances ct2p e , cr2SE, 
aAE and respectively, and all of the random variables are mutually independent.
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In addition, given the normality, confidence limits based on of, the direct es-
timate for a2, can be calculated exactly using the well-known fact that z/d2/<7/  is 
distributed as chi-square with v degree of freedom. Further, a negative estimate of 
of is impossible.

The procedure for synthesizing the experimental results is to select randomly a 
first stage value, A\, from a population (0, cr\). Then, two second-stage values (Bn  
and B \ 2 ), selected randomly from (A ;, erf). Following this, two third-stage values 
(C1U, Cjis, Ci2 1 , Ci2 2 ) are selected from each of (B 11 , ) and (Bi2, erf).

Then, two four-stage values are selected from (C m , of), (C n 2 , of), (C m , of), 
(C 122 , &D-

At this point, eight four-stage values are obtained for inclusion in the design. 
Repeating this procedure for the remaining [a] levels of the first stage yields the 
additional [8a] fourth-stage values needed to complete the design.

Application of the usual analysis of variance provides estimates of the four vari-
ances as follows:

• o\ ~  (1/8) (mean square for Factor A

• Og =  (1/4) (mean square for Factor B

• <Tq  =  (1/2) (mean square for Factor C

9 ab ~  (mean square for the last factor)

Hence, the mean squares for each factor are:

' l :  ( l /a ) ( l /a - l ) x L a - i (^ )
< 2 : ( l /a ) ( l /a )x 2=a (VB)

3 : (l/2 a )(l/2 a )X2=2a(Va )

. 4 : (I / 4* )x l=4a(VD)

The sum of squares are similar to a factorial design with due combining-

- mean square for Factor B);

- mean square for Factor C);

- mean square for Factor D);

SSA

SSB

y  id- _ y2-
i ben aben

y* y  Vij.. _  Vi... 
t j cn ben
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and so on.

As all the factors are random, the analysis of variance table and the expectations 
of the mean squares for this experiment is given in Table 4.1.

Sources SS DF MS EMS
Process&Sampling SSA a-1 MSa g 1 +  n g 1 2ae  +  cncrl^ +  ben g 2pe

Subsampling SSB a(b-l) MSb + n ° 2A E  + c n ° S E

analyzing SSc ab(c-l) M SC G 2e + U G 2a e

Error (E) SSE abc(n-l) M SE
Total (T) SST abcn-1

Table 4.1: General Analysis of Variance for a Three-stage Design

Hence, the two basic moments are:

Y  _ V _ S i  Xj/ Vijkl
N abed

2 _  2 . a (PE) a\sE) , a (AE) , <7e2
°(TE) —  + + ^  + M

Four hypotheses require our attention:

(4.8)

(4.9)

1 )H0C : a A E (P E ,S E )  =  0

2) H0B  : asE(PE) =  0

3) H0A : <7pE =  0

4) H0E : a2e = 0

1) For the first hypothesis H0C : g a e (p e ,s e ) — 0 is tested by computing an 
F—statistic:

F° =  M Sc /MSe

The null hypothesis is rejected if

F° > F ( 1 — cv), ab(c — 1), abc(n — 1)

2) For the second hypothesis H0B : a2SE(PE) =  0 we are guided by the result of 
test of factor C. If H0C is rejected we compute
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F °  =  M S b /M S c (4.10)

and we reject H0B  if

F° > F( 1 — a),a(b — 1 ),a6(c — 1)

If H0C is not rejected we compute a pooled mean square error, M Sa -

M S e  =
SSE +  SSC

abc(n — 1) +  ab[c — 1)

and we calculate

F° =  M Sb /MSe

HqB  is rejected if F° > F(1 — a), a(b — 1), ab(c — 1)

3) For the third hypothesis H0A : a'pE =  0w e are guided by the results of tests 
of factors B and C.

If H0B  is rejected we compute

F° =  M S a / M S b

and we reject H0A if

F° > F( 1 — a), (a — l),a (6  — 1)

If H0B is not rejected we compute a, pooled mean square error, M S e '-

M S e
SSe  +  SSC +  SSB

abc(n — 1) +  ab(c — 1) +  a(b — 1)

and we calculate

(4.11)

F° =  MSa/ M S e

H0A is rejected if F° > F ( 1 -  a), (a -  l),abc(n  -  1) +  ab(c -  1) +  a(b -  1)

4) The fourth hypothesis o f =  0 has several meanings. This term measures 
the random error. In this particular case, it measures the variation produced by 
disturbing factors, both known and unknown. Only a small part of it is directly 
attributable to the measurement system.
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These values may mislead the experimenter to believe in effects that in fact do 
not exist. In some other cases it brings about an anomalous situation: it can lead to 
a negative difference for some factor. As a negative variance term has no meaning 
and there is no chance of interactions the only interpretation is that it is so large as 
to mask the variability between and within samples and/or subsampling. In this case 
it is made up of two terms: variability associated to sampling and/or subsampling 
errors or to unidentified causes. This source of variation must be investigated further 
through additional experiments.

If sound principles of DOE  are used, a reasonable good gauge is to found the 
coefficient of variation (C V) for the total error. It does give the precision of the 
measurements when comparing to other similar past experiments.

CV = crjy

Regarding analytical error it appears in the final phases and is much easier to 
detect through N ED  by considering each analysis separately and focusing on the 
accuracy and precision of the system. It works like Control Charts: the X  Chart 
monitors accuracy and R Chart precision. Both methods detect causes to be ad-
dressed: training, methods of analyses or laboratory equipments. The disadvantage 
of this method is that even with this minimum amount of replication, the amount of 
data in each A-unit quickly becomes very large as the number of factors increases.

The variance components become more difficult to estimate precisely as we move 
upward in such designs. As it was showed in Figure 4.2 those stages which have 
the fewest degrees of freedom, doubling for each factor beginning with C. The last 
factor contains essentially half of the degrees of freedom in the entire experiment. 
For example, see Table 4.2 a four-stage nested design with a levels of factor A and 
two levels for each other factors would have 8a — 1 experiments:

Factors Type of Factors DF
A Batches a-1

B Within A Sampling a
C within B Subsampling 2a
D within C Analyzing 4a

Total 8a-1

Table 4.2: General Analysis of Variance for a Three-stage Experimental Design
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As we increase the number of factors the size of the experiment is doubled and 
the cost increased. To keep the number of experiments the experimenter has three 
competing choices:

1. omit factors indispensable to the whole system;

2. reduce the number of levels and the precision of estimations;

3. distribute the degrees of freedom among the factors.

Some cares must be taken when using a few units at the top levels. The simplest 
algorithm is to use balanced Nested Design. In this case N ED  tends to provide little 
information on the upper levels. According to Bainbridge[5] more than 25 degrees of 
freedom at the top level of the design is imperative. He states that collecting more 
data than theoretically needed is possible as the cost of testing is usually minimal. In 
chemical industries cost of sampling and measurements are generally expensive and 
it is desirable to minimize the time, effort and cost of the experiments. Therefore the 
option for staggered and/or inverted design makes more sense. On the other hand 
there is a concern about the degrees of freedom at each level of the design. Balanced 
Design usually provides more than enough information at the bottom levels while as 
one moves upward variance components become much difficult to estimate precisely. 
Therefore unbalanced nested design should be used as an advantage to the classical 
nested design: the cost of experimentation is reduced and the variance estimation, 
particularly of sampling and analysis, is more reliable.

4.4 Staggered Nested Design

The staggered fully replicated nested design is not easy to administer and to analyze 
but it has a great disadvantage: there is no doubling the number of tests as we go 
down the bottom and so no distorting of estimates of variances in higher degree 
happens. In the Figure 4.3 these types of design for three and four factors are 
presented and may be compared to the ones of Figure 4.2 according to the format 
of A-units.

The purpose of using staggered designs is to balance the degree of freedom across 
it and reduce cost with number of tests. Getting more information on variances 
associated with the first stage without increasing the size of the experiment has a 
great impact on cost.

102



A Batches

B in A Sampling

C in B Subsampling

D in C Analyzing

a b e d  a b e d

Figure 4.3: Staggered Nested Design.

In the Table 4.3 a comparative degrees of freedom breakdown for this design as 
compared to the classical is presented for forty observations.

Table 4.3: Comparative Degrees of Freedom for Design
Staggered Balanced

Source DF Source DF
A 9 A 4
B 10 B 5
C 10 C 10
D 10 D 20

Total 39 Total 39

This problem and others are discussed in Davies [29] where comparative analysis 
of variance is presented with precise variance estimations for alternative designs.

As a first consequence there is no reason for pooling the variance components 
even when negative components ocurr. It can be thought of as a partially replicated 
nested design with about the same degree of freedom for each factor. If we consider 
an experiment with factors A , B , C and D, the layout is like this: each portion, 
batch, time or space (A) of bulk material is sampled (B) on two occasions with two 
subsampling (C) each time with two tests (D) one time and one (D ) the other. Each 
day three samples will be run. Two analyses of sample 1 and one of the others.
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The Table 4.4 and Table 4.5 that follows are based upon the work of Ganguli, 
see Anderson [1]. Their illustrate the expectations of mean squares, and methods of 
obtaining the sums of squares for three and four factor experiments.

As opposed to balanced designs the mean squares cannot be compared directly 
by F — tests since the coefficients for a given variance component are not the same 
in both equations. Because of incomplete replications, the expected mean squares 
have noninteger coefficients. As we are interested in estimating variance components, 
there is no objection in using them.

Table 4.4: Expectation of Mean Squares and Sum of Squares by Factor
Sources AS DF Expectations of MS

Sampling (5)-CF a-1 a2 +  12/3(t 2 +  3 al
Subsampling (3)+(4)-(5) a. al +  l i /3<r2

Analysing (l)+ (2)-(3 ) a -c2
Total (T) (l)+ (2 )+ (4 )-C F 3a-1

Portions (7)-CF a-1 +  11/20-= +  + ia l
Sampling (5)+(6)-(7) a ad +  H/O^c +  1 1/2 <j\

Subsampling (3)+(4)-(5) a aj +  11/3 a 2
Analyzing (l)+ (2)-(3 ) a
Total (T) (l)+ (2 )+ (4 )+ (6 )-C F 4a-1

________Table 4.5: Totals needed to Sums of Squares

(1) =  YJ 0 2 (5) =  £ ( a+6+c)2 (Qj _  'F,(a+b+c+d+e)2

(2) =  £ 6 2 (6) =  £  d2 (1 0) = £ / 2

(3) £G+fr)2
2

_ £ (a + 6 + c -H )2 ( f l )    £ ( a  +  fr+c+ d+ e+ /)2

(4) =  £ c 2 (8) =  £  e2 /T p    (GrandTotal)2
N o.T  ests

The algorithm for getting coefficients of variance components it is quite similar 
to the EMS rules for fixed, random and mixed models by Hicks [52], They depend
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on the number of factors. We will present the calculation for a five factors, a, 6, c, 
d and e staggered nested experiment, similar to the one of Figure 4.3, with a levels 
for the factor A.

1) Set up a design and the table below:

Factors
Chosen

Total
Units

Analyses 
per Unit

Tree
Tests

Total 1 n 5a(l)
A a rii 5(a)
B 2a nij 4(a) 1(a)
C 3a ijk 3(a) 1(a) !(a)
D 4a Tlijkl 2(a) 1(a) 1(a) 1(a)
E 5a l 1(a) 1(a) 1(a) 1(a) 1(a)

2) Fit the design according to the Table, assuming a total of n split into 4a units. 
Therefore, for the factor A with a — 1 degrees of freedom and all the others with a 
degrees, the coefficients of variance components for is 1.

Sources DF -e2 *1 w2 °b - 2
A a-1 1 E i E j E t E ; nfjkifi E.- E j E* nljkfi Ez E j nfjfi E,■«?/,•

B in A a 1 E  i E j Efc E  i nfjklfij E  i E j E  k nijkfij Ez E j ntjfij
C in B a 1 E  i E  j Ei; E 1 îjkl fijk Ez E j Efc H’ijkfijk
D in C a 1 E ! E j Efc Ez nljki fijki
E in D a 1

3) Calculate each coefficient for the factor B :

°i = { Ei Ey 4  X /i Ei £

Finally the coefficient for the last factor A , *fi-

The constant values remaining unknown are f's .

fi =  (1/n<~yn) related to the factor A, 
fij =  a related to the factor B  in A, 
fijk — related to the factor C in B.
fijki =  related to the factor D in C.
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4.5 Staggered Nested-factorial Design

There are some constrains in industry that regular designs cannot meet. This turns 
out to be the case when some factors are crossed, some factors are nested but, 
different from the model of Hicks [52], the repeated nesting has not necessarily 
equal number in the subclasses.

An example, related to our theme is the case when A  is sampling system using 
manual sampler and B  represents sampling using automatical sampler. Both are 
crossed and having two factors related: subsampling nested in both A  and B , and 
analyzing nested to subsampling.

A Balanced Nested Factorial Design is presented in Figure 4.4, and the equation 
is:

Vijkl =  H +  A i  +  B j  +  A ij +  C k(ij ) +  Di(ijk) +  tm(ijkl)

The best way to work out this and any other model of the kind, is by using 
Bainbridge expressions [5] considering firstly the interaction [A] instead of A  and B. 
This transforms the nested factorial into a nested design. To the expectations of the 
Table 4 .4  we call the sample data r 8j ,  .sq, tij and Uij. See Figure 4 .4 .

From the model it is possible to construct the Table 4.6:

s DF Sum of Square

A ab-1 1 /4E* + Sij + + Uij)2-l/4ab[J2i Ej(^«j + s ij + bj + «»¿]2]

C ab 1/3Xk Yfj(r ij + + tij)2+fZi E j u^j-1/4 £),- E j (a , +  + tij + Uij)2

D ab 1/2 E i Ej(r i j  + S i j f + Z i  E j i? -l /3 E ,- E  j ( rij +  s^

E ab E  i E j r?-+E,- E j 4 -1 /2  E i E j (d j  + Sij)2

fable 4.6: General Analysis of Variance for Staggered Nested Experimental Design

where E M S ’s are computed below:
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Crossed Treatment

Figure 4.4: Balanced Nested Factorial Design.
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A <t ^+3/2<7^+5/2ct?+4o a 
C <r2+  7/6«r2 +  3/2<72 
D a'l+ A/3a2d 
E a£2

Finally we have to substitute the values of a\ by the Expected Mean Squares 
for Two-factor Factorial Designs.

EM Sa =  <j £2 +  3/2 cr2d +  5/2<rc2 +4 a\ 
s—-----------^ '

<72 , ,residual

Considering A and B  random and n — 4 replications the last terms will be:

E M S a  =  (^residual +  ^ a AB  +  ^ a A 

E M S b  =  cr residual +  +  4a<7̂

E M  S a b  =  ^residual +  4cr^B

4.6 Worked Example 1

The following example will illustrate the ATfD procedure for a balanced design of 
Section 4.3.

The experiment was conducted in Fabrica da Estrela, a branch of IMBEL, that 
produces Charcoal out of wood and consisted of sampling randomically four portions 
from the process (furnaces also chosen at random) and sending them, to the Sampling 
Test Station. Two subsamples were then taken randomly out of eight from each 
portion and sent to the laboratory ready to be analyzed. The analysts, equipment, 
days and time were always assigned at random.

The moisture content was measured by using Karl Fisher’s method during a 
one-week experiment, and the results are recorded in the Table 4.7.

The process is defined at x ±  5cr as a control limit and the representative pa-
rameter chosen is moisture content.

The following relative capability indices for centered mean is required: Cp =  1.66 
and defect rate .57PPM. Considering an expected change in process mean over a 
several manufacturing cycles equals to ±1.5<r, the process CPk would be 1.66 and 
the defect rate would be 233PPM. This is to show the continuous concern with 
sampling and measurement systems in the company.
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Charcoal Moisture Content

Sampling Portionl Portion2 PortionS Portion4
SSam.pling 1 2 3 4 5 6 7 8
Analysis 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

44 40 40 63 35 30 47 37 39 37 56 46 36 40 34 35
48 38 53 50 38 31 49 36 41 44 53 46 42 39 34 32

Table 4.7: Charcoal: Data, collected from Furnace 1.

There are a number of packages available for analyzing nested designs. Three are 
particularly important for balanced designs: SAS, Statgraphics and SPSS. The 
analysis of this experiment was carried out using SPSS — PC. The details of macro 
are given in Appendix I.

The output of the Analysis of Variance is summarized below:

Sources DF SS MS F° 5̂%̂ .l%,dgl,dg2
Process & Sampling 3 659 219.7 5.10 2.95--4 .57

Subsampling 4 575 143.8 2.99 3.84--7.01
— SEj^i'j 1 162 162 10.8 4.49--8 .53
-  SEj(i2) 1 153 153 10.2 4.49--8.53
— S Ej(i3j 1 199 199 13.3 4.49--8.53
~ SEm 1 61 61 4.1 4.49--8.53

Analyzing 8 390 48.8 3.2 2.59--3.89
Error (E) 16 240 15.0
Total (T) 31 1865

From this test we can see that although portions of material within lot were 
supposed to have no significant effect on the moisture content of Charcoal, in fact 
there is a big one both at 5% and 1% levels.

There is no interaction present as process—sampling and subsampling are nested, 
not crossed, but if we go down to subsampling rows, different effects take place. Sub-
sampling errors are relatively low at the level of 5% and 1% and there are significant 
differences between subsamples within samples. It can be noted that what we took as 
subsampling effect (Id /) and interaction effect (3d/) is really subsampling— within— 
sampling effect (4d/).

Considering our coding (xlOO) we have the following system of variance equa-
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tions:

2.20 = +  ^aAE +  4(71E

1.44 = o\ +  2 o\E +  4 ctIe

0.49 = <%2 +  M a e

0.15 =

+  8<t 2
P E

From our example the estimated variances were:

s2 =  0.15

SA E =  0.17
s2
SSE = 0.23
,2
SP E = 0.10

The total variance is that associated with individual moisture content measure-
ments of Charcoal

s \t e ) —  0 -6 5

We can observe from these values that the process— sampling error for Charcoal 
account for only 15% of the total variation, while sub-samples and analyses account 
for 36% and 26% respectively. That means 50% of deviation is due to sampling 
problems. On the other hand analytical error equals 26%.

These results might suggest some procedures:

• thorough adjustment and calibration of the measurement system;

• review of sampling techniques and equipment;

• correct subsampling preparation in the Sampling Test Station.

The next step consisted of performing a second nested design taking into considera-
tion the correct sampling and sub-sampling procedures and using calibrated equip-
ment.

We proved the effective decline in these systems by comparing past data and 
past performances in control charts regarding assignable causes.
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We now discuss uncertainty and cost of three systems. They follow the equation:

V a ,b ,c  —
a A E

ben

2 2
a SE a P E

cn n

The renewed experiment yielded the following estimates: a\E — 0.25, crfE =  0.12 
and a2SE =  0.11. Therefore the variance of estimate of batch mean is

V a ,b ,c
0.25 0.12 0.11
—— + —  +  —— 0.12

Considering these limits as the minimum at current circumstances alternative 
sampling, sub-sampling and testing schemes may be reached in order to minimize 
both variance and cost. Assuming that it costs £2.00 for taking a sample, £4.00 
to prepare the subsampling and £8.00 to make an analytical test. The Table 4.8 
produces these results.

Samples Subsampling Replications Variance of Cost(£ ) of
n c for cn b for ben batch mean procedure

1 1 2 .36 28.
1 2 4 .20 52.
1 4 8 .15 84.
2 1 2 .18 56.
2 2 4 .10 128.
2 4 8 .07 104.
4 1 2 .09 96.
4 2 4 .06 122.
4 4 8 .04 144.

Table 4.8: Minimization of Variance and Cost.

In our case, due to the existing variability of the analytical error in relation to 
sampling and subsampling error, the variance of the estimate of batch mean for the 
process tend to reduce considerably as we increase the number of samples at a little 
extra expense and very little is gained by replicate testing.

4.7 Worked Example 2

The following example will illustrate the NED procedure for a Staggered Nested 
Design of Section 4.4. The data was taken from page 17 of Bainbridge [5]. We chose
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the  first week of his six week experim ent. The results agree with the  variance com

ponent estim ates given by Bainbridge. The ou tpu t listing is presented in Table 4.9

^ (E n tries )2 Values
a 503.80
b 459.90

j- t) 1916.70
C 375.30
a+b+c 3884.30
d 600.54
a+b+c-fd 7492.70

Table 4.9: Comparative results of Summations.
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T he variance estim ates are in Table 4.10.

Factors Degrees MS Variance
Days 6 8.18 0.51
Machines 7 3.16 0.00
Long Term 7 5.54 3.58
Short Term 7 0.77 0.76

Table 4.10: Estimates of Variance Components.

A Fortran program for variance component estimates is included in Appendix 2.
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Chapter 5

Designing a Bulk Sampling Test 
Station

The sampling theory presented so far accounts for continuous selection errors [Ci?] 
particularly in zero and one-dimensions. All the data are supposed to be free from 
Materialization [ME] and Preparation Errors [PE], In fact, the most essential pre-
requisite for effective quality control in chemical engineering resides on a sampling 
system where correctness and representativeness exist. See Chapter 2, Section 2.1 
and 2.3.

To a large extend the design of sampling systems for particulate materials has 
been undertaken in a somewhat empirical manner although some advances in the 
technology of equipment have been available for some time. Even with rules of design 
for constructing or buying sampling equipment, bias may occur and ruin any effort 
to minimize CE's. The fate of poorly designed systems is often its complete removal 
and a return to the imprecise manual sampling regimes of a zero-dimensional single 
increment.

In this chapter, basic considerations are presented in the light of so-called Unit 
Operations required for a sound design and choice of equipment for guarding against 
estimation bias. The system is designed for mechanical sampling because the manual 
sampling is always unaccurated and lacks reproducibility. A program for checking 
bias can be easily implemented in semi-automated sampling plants. To keep down 
the costs of running and maintaining the system it is designed to be located in a 
same place and called Sampling Test Station.
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5.1 Introduction

Determination of quality characteristics in consignments of chemicals involves a se-
quence of typical operations such as sampling, subsampling, sample preparation 
and analysis. All these operation are error-generating as has been shown in previ-
ous chapters with errors caused by the intrinsic properties of materials and their 
influences on bias and variability. For simplicity we have assumed that data were 
collected in accordance to the theory of materialization presented in Chapter 2, Sec-
tion 2.1 and respecting the extended and fragmental definitions of the increment 
presented in Chapter 2, Section 2.2.

Delimitation is a boundary that limits the extended increment. As we tend to 
match extended with fragmental functions the correctness of a given sampling system 
is a primary structural property. A chemical industry that makes the pretence of 
effective Quality Control must have some basic types of sampling equipments.

Materialization errors include preparation errors, which is a nonselective process, 
and delimitation errors, which is a selective process. There are interdependent 
operations of reducing, sampling, screening, comminuting, drying, mixing etc, that 
yield sample data.

The type of material to be processed, the amount of transportation and the 
level of quality required define the system. If the system is supposed to yield only 
random samples only a few items of equipment are required. Unfortunately, it 
is hardly ever true within modern chemical plants that require continuous quality 
control, particularly when preparing primary increments.

In a well-balanced sampling regime the variance of preparation should be of the 
same order of magnitude of the variance of sampling. In this case obtainning data 
free from estimation bias a minimum number of mechanical equipment is mandatory: 
a comminuter, a mixer, and a belt Conveyor with cutter, at least.

Manual sampling definitely fails to generate a sound set of data. By comparison 
to mechanical sampling it is costly, hazardous, tedious and statistically unreliable, 
particularly in plants that are continuously buying and selling large quantities of 
bulk materials.

An other great advantage of mechanical system is its flexibility in collecting 
samples in any regime: stratified systematic sampling on a constant time basis, 
systematic sampling on a constant mass basis or on a random regime.
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5.2 Sampling System Design

A proposed sampling system that prepares primary, secondary and gross samples 
according to the procedures laid down in Chapters 2, 3 and 4 is shown in Figure 5.1.

LEGEND:
[I] = Increments 
[D\ — Discards 
[S'] =  Subsamples 
[G] =  Gross Samples
[01] =  Mechanical Feeder
[02] =  Hammer Crusher
[03] =  Bar-type Grizzlies

[04] =  Vee Mixer
[05] =  Screw Feeder
[06] =  Moving Belt
[07] = Roll Mill
[08] =  Vibrating Screen
[09] =  Cube Mixer
[10] =  Jones Riffle
[11] =  Rotary Cascade

Figure 5.1: Flow sheet of the Model for Bulk Sampling Test Station.

Five underlying Unit Operations subsystems are proposed:

1. Sampling Subsystem;

2. Mixing Subsystem;

3. Comminuting Subsystem;

4. Screening Subsystem;

5. Sampling Accessories.

The choice of subsystem and/or equipment depends on the stage and the objec-
tives. Inderdependent operations mean that every piece of equipment contributes
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to the reduction of variability of parameters not related to the intrinsic properties 
of material. The relationship among sources of error, equipment and results to be 
achieved are presented in Table 5.1. Back references to previous chapters are given 
in the text.

Sources of Errors Notation Equipment/Legend
Constitution Het. CH l Comminuting System
Particle Size d [02] [07]
Shape Factor f [02] [07] [08]
Liberation l [02] [07]
Mineral Factor w —

Granul. Factor 9 [02] [07] [08]
Sampling Constant C [02] [07] [08]
Distribution Het. d h l Mixing Subsystem
Grouping Factor C [02] [07] [04] [09]
Segreg. Factor £ [04] [09]
Delimit. Error DE [02] [05] [06] [07]
Extration Error EE [06] Accès.Tool
Preparation Error PE —
Sampling Size Nq Sampling Subsystem
Increment Weight w [06] [10] [11]
Mass Concentr. ftx [02] [07] [08]
Continuous Het. CE Sampling Subsystem
Critical Mass V [06] [10] [11]
Weight Function £ [01] [06]

Table 5.1: Relationship among Sources of Error, Equipment and Results.

5.2.1 Sampling Subsystem Design

The selection of sampling machines is described below. Within the scope of the ap-
plication pilot experiments — three underlying pieces of equipment are proposed:

1. Belt Conveyor;

2. Jones Rifler;

3. Rotary Cascade.
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• Belt Conveyor:
The selection of the conveyor belt is the most important design item of the 
station not only because it constitutes a large portion of the initial cost but 
also because it is responsible for delivering primary increments to the other 
sampling equipment. Its malfunctioning represents a summation of the long- 
range variability not due to the material itself but due to the errors. See 
Chapter 2, Section 2.2, 2.3, 2.7 and 2.8, Chapter 3, Section 3.1 and 3.6 and 
Chapter 4, Section 4.1.

Selection and/or design requires careful definition of the belt itself — belt 
width, belt speed — and of other mechanical parameters such as, pulleys, 
shafts, type of sampler (on-the-belt or falling stream), sampler speed, sampler 
width etc.

Our proposed Conveyor Belt is for a falling stream sampler similar to the one 
in Figure 5.2 where a represents the belt width and b x  c the sampler aperture.

Figure 5.2: Conveyor Belt with Falling-stream Sampler: through-stream, cutter- 
bucket Type.

Some theoretical consideration should first be addressed. For a correct delimi-
tation theory, the sampler should satisfy two conditions regarding the extended 
increment:

1. the slice of material should be extracted in constant thickness;

2. the slice should be representative of the entire stream;
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This operation must be performed on the whole stream part of the time. 
Taking increments on part of the stream at any time generate incorrect de-
limitation, therefore it is incapable of performing probabilistic sampling. The 
Figure 5.3 shows some good and bad increments. B , C, A4 and A5 generate 
visible sampling mistakes while A 1, A2 and A3 perform correct delimitation. 
All three design have parallel cuts across the stream.

Figure 5.3: Taking increments: Correct Delimitation only with parallel cuts across 
the stream.

The extraction error introduces the largest biases encountered in this sort of 
equipment. In the Chapter 2, Section 2.2, we have seen that the fragments 
having their center of gravity inside the extended increment belonging to the 
model fragmental increment. The actual fragmental increment matches the 
correct fragmental increment only in two situations:

1) particles are punctual representatives; or

2) rebounding rule is respected.

The first hypothesis is cost-prohibited. The second requires further theoretical 
study.

For its better understanding let us define the following notations:

U(c) horizontal sampler speed;

V(x) horizontal velocity vector;

U(y) vertical velocity vector; 

r radio of the edges of the sampler;
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Figure 5.4 illustrates the position of a spherical fragment from the top size 
range moving towards the sampler opening at the moment of impact.

<p vertical angle of the  fragm ent when colliding;

Figure 5.4: Collision of Particle with cutter edge.

If the fragment from the top size range collides with the cutter edges traveling 
against its direction, it bounces from one edge and may fall outside or into the 
sampler slot. Such probability depends on shape of the sampler cutter edges, 
the sampler speed [uc] and the time interval [At] the fragment travel above the 
cutter edges.

The probability of falling inside the slot is also function of the distance between 
the leading edge and trailing edge. The chance of the fragment belonging to 
the sample is represented by a stochastic variable. It is function of several 
parameters: momentum of the fragment, collision angle, sharpness of the edge 
and number of fragments colliding at the same time. Some parameters sup-
press other ones in such way that when the fragment bounces backwards, the 
sampler width [u;] becomes reduced to w — vcAt. On the contrary, when the 
fragment bounces forwards: w + vcAt. Therefore the chances of a fragment to 
be part of a sample follows this relationship:

w +  vcA t 2vcA t
\7 =   ̂ -̂-----------a 7 (5.1)w — vcA t w — vcA  t v '

This situation is depicted in Figure 5.5.
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Figure 5.5: Collision of Fragments with Opposite Edges of the Cutter.

From the Equation 5.1, Merks [76] presents some interesting conclusions based 
on top size range definition of fragment:

1. It increases as [vcAt —*• to]. If the probability of fragment bounce upwards 
is 5% and since no more than 5% of all fragments are part of top size 
range (definition) the real probability would be 0.25%. Therefore, there 
seems to be very low chance for bias to occur as the shape of the cutter 
edges are designed sharply. Some bad and good designs are shown in 
Figure 5.6. If edges are thick for mechanical reasons, they should be 
perfectly symmetrical. The last design in this figure, shows an angle 
between 45° and 90°. This design is likely to introduce unacceptable 
extraction errors.

2. The vertical angle [ip\ of the fragment when colliding with sampler and the 
speed that the material leaves the belt play an important role in defining 
characteristics of sampler. However bias may occur if the probability of 
the Equation 5.1 exceeds two-to-one. This is the case when the fragment 
bounces forwards from the trailing edge and falls into the inner walls of 
the cutter.

3. The vertical velocity vector of bouncing particles is greatly reduced due 
to collisions with other particles in free falling. Therefore, the chances of 
particles, bouncing from opposite edges, fall inside or outside the slot are 
greatly reduced.
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ang.

Good Design Bad Design

Figure 5.6: Correct and incorrect Designs for Cutter Edges.

The critical parameters for conveyor belt samplers are clearly defined in Gy’s 
experiment [43]. The experiment establishes a sound scientific basis between 
the diameter of the coarsest particle [d] in the bulk material, the critical cutter 
width [w] and the critical cutter speed [vc ]. The schematic layout of the 
experiment is depicted in Figure 5.7.

Timer!

tf 0 3 l

Figure 5.7: Schematic Layout of the Experiment for Critical Design Parameters.

The sampling unit consisted of narrow particle size fractions of hard bauxite. 
One series included fragments ranging from 40 mm to 50 mm, in the other 80 
mm to 100 mm. Three cameras were required: 01 for recording the belt, 02 
for recording the hand of a 1/100 chronometer and 03 for recording the cutter.

For each test the following variables were measured:

=  number of calibrated fragments in the test;
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vrC) =  cutter sampler velocity assumed to be uniform;

V(B) — belt speed assumed to be uniform;

D =  belt loading rate assumed to be uniform — number of fragments per unit 
of length of belt — [D =  Np/B],

w =  width of the conveyor belt in t o ;

T =  Time, in seconds, during which any element of the stream is cut , T =  

w/vc-

R =  rate of flow of the stream, in fragments per second.

B  — length of th e  belt w ith N(Fy

VB_ _  VB  X Nf  
D ~  B

Nm =  number of fragments theoretically expected if the probability for iden-
tical fragments that bounces from opposite edges of sampler were equal 
to

Nm  =  RT =
v b N l w

vc B

Under ideal conditions the actual number of fragments [Na \ that is collected 
with the sampling device must be equal to the theoretical number of particles 
[Nm ]- Their ratio should be close to the unity for the parameters considered.

The Table 5.2 produces the sampler efficiency when the size [d] of the largest 
fragments is one-third or less the minimum cutter width [w]. The values of 
particle diameters were IOOt o t o  for this test.

The following rules must be borne in mind when designing any sampling device 
traveling against the stream:

1. The minimum width of the primary sampler must follow the specifications 
shown in Table 5.3. That is known as rule of extraction correctness.

2. The ratio between the sampler slot and a particle from the top size range 
must exceed, at least three times, the top by a considerable margin. In 
this case the speed of the sampler can be increased by a factor that is 
calculated with the following formula:

vs ~  [1 +  (w/to*)]0.3

in which Vg is the critical speed of sampler in mps, w is the actual width 
of sampler in to and w* is the critical width of sampler.
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Width-w w/d Speed-mps Nm Na Na /Nm

200 2.0 0.24 32.6 29.0 0.89

250 2.5 0.24 40.9 37.5 0.92
300 3.0 0.37 29.6 30.0 1.01
350 3.5 0.37 34.4 34.5 1.00
300 3.0 0.47 23.7 23.5 0.99
300 3.0 0.60 18.4 18.7 1.02
300 3.0 0.78 14.8 13.5 0.91
300 3.0 1.09 10.5 9.0 0.85

Table 5.2: Sampling Experiment showing the relationship among Particle Size, Sam-
pler Width and Sampler Speed.

Coarse Diameter Cutter Width
For d > 3mm w >  3d
For d < 3mm w >  10mm

Table 5.3: Rules for Extraction Correctness.

3. The optimum solution for sampler speed is vc =  0.60mps. The Table 5.2 
confirm such optimization.

4. The minimum amount of material [8m] to be sampled in each primary
increment will depend on the characteristics of both sampler and moving
belt. An approximate mass may be computed when having the handling
capacity [M/h] in mtph, width [iu] in m and speed of sampler [us] in mps:

c M/h x w
dm =  -------------

3.6 x vs

Characteristics of the Conveyor Belt Belt Width,

The belts in use are generally made of synthetic fibers which gives them ex-
traordinary resistant to corrosion and abrasion, particularly when handling 
active chemicals. Their dimension are standardized ranging from 18 to 96 
inches with intervals of 6in in between. For pilot experiments with material 
in bulk, 24m width fits quite well if any combination of prevailing lumps and 
fines does not load the lumps too close to the edges of the conveyor belt.

The width of belt is governed by size of lumps to be handled. They determine 
all specifications. There is an empirical relationship between lump size and 
minimum narrow of belt.
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Belt W idth, inches

Figure 5.8: Belt width required for a given lump size.

The Figure 5.8 shows the required width for specific lumps in inches according 
to BRT Belting LTD [7]. Fines no greater than 1/10 maximum lump size. In 
case a, for a 20° surcharge with 10% lumps and 90% fines, the recommended 
maximum lump size is 1/3 the belt width [6/3]. The cases b, c and d represent 
respectively: all lumps for a 20° surcharge; 10% lumps, 90% fines with 30° 
surcharge; all lumps, 30° surcharge.

Belt Speeds

Determination of moving belt speeds are based on type of material to be 
conveyed. Powdery materials as largely used in chemical industries should be 
conveyed slowly through feeders to avoid segregation and dusting. Care must 
be taken both in loading and discharge points. Dusting particularly with dry 
and fines, causes losses of powder and endangers the environment. Fragile 
material and heavy, sharp-edged materials limit belt speeds. The first because 
of degradation, the latter because the sharp edges are likely to wear the belt 
itself. As far as wearing of belt is concerned the loading should be preferably 
done in the same direction of the belt travel. The Table 5.4 presents some 
recommendations for maximum speeds for conveyor belts based on C E M A
[19]-

As the choice for pilot plant should embrace many types of material, we pro-
pose the one for coal and soft ores with variable speeds.

Conveyor Belt Loading

Intermittent or regular feeding of material to the belt will result in alternate
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Type of Material Belt Speed Belt Width
being Conveyed km/h cm

Grain and other free- 9.2 45
flowing non-abrasives 12.8 60— 76
Coal, soft ores 7.3 45
chrushed stones 10.4 60— 91
Non-abrasive Materials 3.6 any width
discharging by plows — any width
Feeder, flat troughed 1.0 any width
non-abr. from hoppers 2.0 any width

Table 5.4: Maximum speeds of Conveyor Belts and Belt Width.

empty and overload portions. Such condition usually causes a loss of capac-
ity and very likely spillage of material over the edges of the belt along the 
overload portions. The situation ruins any study on variability of continuous 
flow. Steady feeding must be provided and loading bias checked now and then, 
particularly when loading from hoppers, bags or bins. Feeders in this respect 
are very useful. For fine materials, smaller than 10mm, a Screw Feeder placed 
above the conveyor belt and below the loading bin to regulate the flow con-
tinuity is mandatory. See Figure 5.1. It is syncronized through sampler and 
belt speed . The latter should always be regulable from 0.3 to 0.6 m/s.

In the condition of the design, the conveyor belt should be horizontally in-
stalled with low tangential velocity. To obtain this optimum condition the 
fundamental force-velocity relationship should be recalled:

Fc _  mv% _  W v| 
r gr

where Fc is the centrifugal force, v1 2B the belt or tangential velocity, g the 
gravitational force, m, mass, IF, gravity weight force, r, radial distance.

When the belt conveyor is horizontal to the discharge pulley, two conditions 
should be addressed (see Figure 5.9):

1. If the centrifugal force is equal to or greater than gravity weight force of
the material, that means that the tangential speed is sufficiently high, the 
material leaves the belt in a vector tangent to the pulley. See Figure 5.9. 
In this case v2B > gr.
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Figure 5.9: Trajectory of Material when leaving the Conveyor Belt with high and 
low tangential speed, respectively.

Particle Size 
(mm)

Chute Width 
(mm)

13— 20 50
10— 13 30
5— 10 20*
2.4— 5 10

0.0— 2.4 6

Table 5.5: Minimum Chute Dimensions for Jones Riffle Divider

2. If the centrifugal force is less than the gravity weight force of the material, 
that means that the tangential speed is not high enough for the material 
to leave the belt, vB < gr, then the material follow the pulley in such 
way that v\ < gr x cos6 where 9 is the angle between the vertical line to 
the center of pulley and the line that passes by the center of pulley and 
the point where the material begins its descendent trajectory.

• Jones Riffle:
This typical sample divider is projected for particles beneath 5 mm. It is a 
non-mechanical sampler which splits the stream into a number of longitudinal 
elements, alternately either being passed into the sample or being rejected. It is 
the most simple and accurate non-automatic equipment. A great disadvantage 
is the reduction ratio: 1/2. Therefore many stages are required to get an 
unbiased sample. If the design is not precise any bias is multiplied. The 
chute dimensions depends on particle size. Smith [95] suggests chute widths 
according to the Table 5.5.

Because this is not an automatic equipment its design requires some more 
care in manufacturing due to the interdependency in continuous flow. See also
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Chapter 2, Section 2.3, 2.7 and 2.8. A more complete specification for both 
designs suggested is explained in Figure 5.10.

Figure 5.10: Top, Side and Front View for Jones Riffle Design.

Our proposed design is either number #20 or #10. The Table 5.6 produces 
their dimensions, in mm, according to JIS  [62].

• Rotary Cascade:
This is a laboratory unit designed for the speedy preparation of small rep-
resentative samples of free flowing powders for laboratory measurements. It 
should have six datachable bins securely clipped with stationary hopper onto 
a cone mounted on a rotating turnable. Details of its design are presented in 
Figure 5.11. See also Chapter 2, Section 2.5 and 2.8.

Some requisites, in agreement with BS 5309, are vital: the particle size must be 
fully screened; the inner cone [a] must fit the feed cone; the orifice size controller 
[b] must have 5 times the diameter of the largest particle; the distributing cone [c] 
should be manufactured in stainless steel because of excessive wearing; the sample 
container must provide lip for pulling out samples. It must be suitable for hand and 
mechanical feeding. In the last case a sequence of equipment are required: crusher, 
chute and hopper.

What has got a great advantage over Jones Riffle Divider: the reduction rate is 
1/6 and not 1/2. Usually there is no need for further subdividing before analysis 
takes place.
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Sampler Code 20 10
N° of Rifles 16 16

A 20±1 10±.5
B 346 171
C 105 55
D 210 110

Body(l) E 135 75
F 30 20
G 210 110
H 85 45
J 360 184
K 140 65
L 140 65
M 210 110

Receiver (2) N 105 55
P 35 20

Q 210 110
R 346 171

Container(3) S 200 120
T 135 70
U 105 50

Table 5.6: Dimensions for Jones Riffle Divider proposed.

5.2.2 Mixing Subsystem Design

In order to homogenize powder materials industry resorts to manual and/or me-
chanical mixers. There are several basic mechanisms that range from small-scale 
random motion to large-scale random motion. They are governed by diffusion and 
convection principles respectively. That brings about several types of solids-mixing 
machines. Again the selection is a function of cost and data reliability.

We has shown in Chapter 2, Section 2.4 that mixing cannot affect directly con-
stitution heterogeneity [CHl \, the intrinsic properties of the particles. However, it 
affects the distribution heterogeneity [D H i ] to a certain limits depending on the 
granulometric particle size. See also Chapter 2, Section 2.5 and 2.6. Theorically 
this random limit corresponds to the elimination of correlation between the phys-
ical properties —  particle size, shape, surface characteristics, flowability, friability,
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Figure 5.11: Rotary Sampler Divider with Hopper, Cone and Stand.

density, segregation — and its relative position within the bulk. Because of grav-
itational forces, this limit is never completely attainable. The aim of our STS is 
towards minimization of DH¿, therefore, we must include equipment whose major 
function is to give a thorough mixture to the particles.

Within the scope of our application - pilot experiments — two equipment are 
proposed:

1. Vee Mixer;

2. Cube Mixer.

• Vee Mixer
It is an industrial solids-mixing machine that operates in batches. It is also 
called Twin Shell. The Figure 5.13 shows the sketch of a typical one where 
the dotted line represents agglomerate breaking device.

Recent modification of this blender in which the two legs are of unequal length 
follows the Principle of Unequal Displacement. In the upright position, each 
blender leg holds an equal amount of material. As the blender rotates, the 
uneven legs force the material to shift continuously from one leg to the other. 
This axial-flow pattern and the radial mixing action produce a rapid, uniform 
blend. If the random tumbling takes place there will be a random mixture 
along the lines that disagree with both schemes of Figure 5.12 where distin-
guishable particles can be easily counted.
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Figure 5.12: Principle of Unequal Displacement.

Where individual particles cannot be easily distinguishable and counts are not 
practical various type of analyses can be made on spot sample to determine 
mixing uniformity. In the Chapter 2, Section 2.9 some analitic methods for 
testing of randomness of particulate mixture are presented, apart from the 
modern instrumental analysis such as X-ray fluorescence, polarography, spec-
troscopy etc.

Evaluation of mixing power of the equipments may be made through a sam-
pling procedure by using one of the sampling accessories in Subsection 5.2.5. 
The choice of the tool is important so as to remove samples without exces-
sive disturbance of the batch. Usually the evaluation of performances depends 
on the preparation of material to avoid extreme differences in the properties 
referee! before. Comminuters can strongly reduce these differences and avoid 
segregation.
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• Cube Mixer
It is a simple metal cube that rotates around an axis through opposite corners 
diagonally. It should have room for about 10kg. That means 30cm side from 
corner to corner. It may be propelled manual or mechanically though manual 
types are more liable to bias in a long run.

The design of a mixing system cannot be improvised, because there an op-
timum R P M  for each machine and material. Too fast rotation introduces a 
centrifugal effect. Too slow mixing is incomplete. About 25RPM is suitable 
for tumbling. The time of residence also plays an important role. More than 
15min it is not advisable. When using the same equipment for several different 
materials care must be taken in cleaning.

5.2.3 Screening Subsystem Design

To ensure that all particles have been crushed and/or pulverized to less than a 
certain size, to separate dissimilar materials, to classify particles when accepting 
consignment screening are mandatory.

Within the scope of our application — pilot experiments — two pieces of equip-
ment are proposed:

1. Vibrating Sieve Shaker;

2. Vibrating Grizzly.

• Vibrating Sieve Shaker:
It is quite difficult to indicate a Vibrating Sieve Shaker that fits a general pur-
pose. For sampling use however, the best way is to define firstly the quantity 
of material (flow) to be placed in a sieve. Then concentrate on the design of 
sieve diameter, aperture and expected proportion of oversize.

The larger the amount of material to pass through a screen the higher the cost 
of the equipment as a whole. It could be well reduced by loading a sieve lightly 
several times rather than treat the whole sample. That is true particularly 
when the sampling process is intermittent. The design in this respect can 
be improved by designing mesh and space cloth with bigger open area. The 
percentage of open area in square-mesh wire cloth [P] can be determined by 
the formula (Perry [82]):

132





and for oversize material F f  =  Cc +  Uu. 

From these equalities we have:

C _ f - u  
F c — u

and u =  c - f
F  c — u

The Equation 5.2, the overall efficiency [E\, was obtained by multiplying the 
recovery of oversize material in the screen overflow [i?o] and undersize material 
in the screen underflow [Ru] • These recoveries are respectively:

Cc_ c ( f  -  u)
°  F f  f ( c  - « )

and
U ( l - u )  (1 - u ) ( c - f )

U F ( l - f )  (1 -  f ) ( c  -  u)

Suppliers generally recommend and manufacture square aperture for screens 
and circular form for sieves. Vibrating screen, 10° inclined, with high speed, 
low amplitude and static sieves is the ideal choice.

We should bear in mind some characteristics not directly depending on the 
material to be handled; the sieve charge [W], for instance. The JIS M8105 
suggests:

W  < 5ApD°s "

where: Ds is the nominal sieve aperture, d is the coarsest particle, p is the bulk 
density of material and A is the sieve area. In order not to damage the wire 
cloth it is strongly recommended that the largest particle less than 10D°-r.

• Vibrating Grizzly:

In order to eliminate oversized materials and protect comminuting system 
against large lumps (scalping) a Vibrating Grizzly with heavy parallel bars 
connected to a frame must be provided. The bars should be 30° inclined for un-
desirable particles roll off. The bars themselves should be made of manganese 
steel to reduce wear and have a triangular cross-section to reduce jamming of 
powder within the spaces. A middle-sized one fits very well pilot experiments. 
Figure 5.1 locates it right after the Hammer Crusher and nearly at the outset 
of the sampling process. Such a position is standard.
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5.2.4 Comminuting Subsystem Design

Comminution is generally the first stage in the quest for a representative sample. 
One of the major objects of this phase is the liberation, or release of the content we 
are interested in. If such aim is attained through coarse less expensive will be the 
reducing procedure. However high-grade precision for bulk materials requires good 
liberation and high amount of fines accordingly. See Chapter 2, Section 2.7 and 2.8.

In practice complete liberation is seldom achieved even when ground down to 
the desired grain size. In the Figure 5.15 it can be seen that each lump contains a 
proportion of good material and a portion of gangue. Complete liberation is only 
attained through further comminution.

Gangue

Figure 5.15: Fragment of bulk material with product and gangue.

The process of particle size reduction begins with crushing and ends up inevitably 
with pulverization. It passes very often through grinding operations in a sequence 
similar to the one in Figure 5.16.

In statistical terms, each phase is usually necessary to reduce the variability 
within classes because the process of comminution increases the composition het-
erogeneity which is synonymous with the statement that the material becomes more 
liberated. We are inclined to think that it would result in a higher sampling variance 
because of the increasing number of particles and the following formula:

s
s

2
_2
21

- 3

where

Si =  standard deviation before comminution; 
s\ =  standard deviation after comminution; 
di =  top size (5%) before comminution; 
d2 =  top size (5%) after comminution.
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Figure 5.16: Flow sheet for Particle Size Reducing

One should bear in mind that reducing increases the liberation factor [see Chap-
ter 2, Section 2.7] and that large lumps could seriously misrepresenting the lot if the 
sample unit is not relatively large. Charcoal, for instance, retained in certain screen 
size has low carbon content.

A rough guide to the mill sizing is the grindability coefficient — rate of grinding 
of material in the mill. Factors of hardness and elasticity are important to determine 
grindability. ” Mohn scale” measures resistance to crushing and arranges hardness 
in increasing order:

Table Hardness Type of Materials
1 a 3 soft gypsum, salts, charcoal, chalk, barites, etc.
4 a 7 median phosphate, magnesite, bauxite, limestone etc.

others hard quartz, granite, topaz, sapphire, emery etc.

Table 5.7: Grindability of Bulk Material. Reference: Perry.

This table is related to the work required for size reduction. They are theoretical 
relations named after their authors. The Kick’s Law can be written

E =  c x  log —
A  2

where X x/X2 is the size-reduction ratio, E is the work done and C is a constant. 
The Rittinger’s Law states that the work consumed for reduction of paiticle size is
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directly proportional to the surface produced. In both cases the differential equation 
is

dE =
GdX
X n

According to Perry [82] the solution of these equations for n — 1 and n =  2 result 
the equations above. For n > 1 the solution is

It has been considered that Kick’s Law is related to crushing while Rittinger’s Law 
most closely fit fine grinding. If we consider E the work required to reduce the unit 
weight of feed with 80% passing the diameter Xp  micron to a product with 80% 
passing Xp  micron then,

E =  Ei
y / X p  — y / X p

y/X^

where E{, the work index to reduce a unit weight from a theoretical infinite size to 
80% passing 100/i, may be found experimentally from laboratory comminution tests 
or from tables according to the material used.

Within the scope of our application — pilot experiments — two equipment are 
proposed:

1. Hammer Mill;

2. Roll Crusher.

• Hammer Mill

This is equipment for fine or coarse dry grinding, mounted on a horizontal shaft 
and crushing taking place by impact between the hammers and breaker plates. 
The cylindrical grating may be positioned beneath the rotor. The number of 
hammer crushers should be symmetrically designed so that the direction of 
rotation can be reversed to distribute wear evenly on the hammers and breaker 
plates. Speeds must vary from 500 to 1000 rpm.

The Figure 5.17 shows the distribution of both hammers and bars. The four 
hammers should be pivoted so that they can move out of the path of oversize 
material or tramp hard metal, entering the crushing chamber. The exit from 
the mill is perforate according to the required particle size. Material over this 
size is therefore retained and swept up again and again for further impacting 
as the feed takes place. The choice of parameter b in the figure is subordinate
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a

Figure 5.17: Typical Hammer Mill for Pilot Experiments. Courtesy, Pascali Engi-
neering.

to the particle size required for the next stages of sampling. For avoiding loss 
of dust and moisture, it should be designed with tight filling container. That 
is because the proposed Hammer Mill envisages integration in the mechanical 
sampling system, not totally continuous but operating in batches.

• Roll Crusher

This is equipment for non-abrasive materials that should be used in com-
minuting materials which are too fine for a hammer mill and too large for 
laboratory pulverizers. It is part of any industrial sampling plant. It is also 
used intermittently.

Its design is shown in Figure 5.18. In accordance with Perry [82] it should be 
accomplished with the following specifications:

d =  0.048Tb (5.3)

or

where Dr 
d 
a

d =  0.02 Dr +  a 

the roll diameter;
the diameter of the largest feed particle; 
the distance between roll faces.

(5.4)
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Figure 5.18: Schematic Representation of Double Roll Crusher with Spring-loaded 
Roller.

5.2.5 Sampling Accessories

There is a wide range of tools for a self-contained Sampling Test Station. The choice 
has been limited to those tools where the design has some importance to the result 
of sampling, when the STS cannot be operated in the same building and/or where 
handling of the consignment as a whole should be avoided. They are:

1. Screw Feeder;

2. Open-sided Sampling Spear;

3. Tubular Sampling Spear;

4. Shuttered Sampling Spear;

5. Shuttered Sampling Auger;

6. Sampling Frame for Checking Bias.

• Screw Feeder
An accessory equipment necessary whenever it is desired to deliver a uniform 
and continuous stream. A typical one is shown in Figure 5.19. In the layout of 
STS in Figure 5.1 it is placed just before the moving belt. Some of required 
conditions to be fulfilled are presented in Chapter 3, Section 3.1 and 3.6.

It should be used only when particle size is relatively uniform, otherwise there 
can be risk for the equipment itself. Segregation of coarse and hue materials 
brings about packing of bulk in chambers. This is worsened by dimensions of 
screw lodging regarding b and c.
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• Spears and Augers

Spears or Thieves consist of a piece of tubular steel or aluminum alloy, fitted 
with a T-handle, which retains a core sample when inserted into the bulk 
material.

The physical texture of the material being examined governs the type of tool 
and the precise mode of use. It always involves withdrawal of a sample and 
transferring to a container. We suggest both open and closed-end sampling 
spears long enough to reach the bottom of package or consignment to be 
sampled. The Figure 5.20 shows two types of spears for dry and free running 
powders.

The top tool is open-sided and it is particularly important for sampling bags 
in storehouse. It is thrusted horizontally into the material with the tube wall 
uppermost then it is rotate 180° and withdrawn. Depending on the type of 
material typical cross sections are used. We recommend the third one with 
sharp edges for the same reasons considered for cutter in conveyor belt.

Other standard tool is the Tubular Sampling Spear in Figure 5.21.

It consists of a close metal tube with large holes at regular intervals along its 
length. It is useful for studying partitions of materials by layers when segre-
gation is supposed to take place. When the spear is withdrawn the separate 
portions are tapped out into a different sampling containers.
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Figure 5.20: Accessories: Open-sided Sampling Spear and Divided Spear for Dry, 
Free-running Powders.

Figure 5.21: Accessories: Tubular Sampling Spear.

The Figure 5.22 shows a Shuttered Sampling Spear for pulverized and ex-
tremely free flowing materials.

Figure 5.22: Accessories: Shuttered Sampling Spear for Dry, Free running Solids.

The Shuttered Sampling Spear is a closable tool provided with a tubular sheath 
outside a spear. Both are inserted into the material. When reaching the 
bottom of container, the tubular sheath is rotated 180° to allow particle to 
run into the aperture of the spear. It is designed for high precision sampling 
with dimensions such as its tip reaches the bottom of material, the relationship 
between c and d is closed to 1 and it can collect the minimum amount of sample 
computed for the increment. It is shown in Figure 5.22.
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For sampling of bulk materials in considerably depth consignments the spear 
of Figure 5.23 is proposed.

Figure 5.23: Head of a Typical Grain Spear.

The advantage of this tool is the opening as it is withdrawn.

Finally a few words about the Shuttered Sampling Auger proposed in the 
Figure 5.24

Figure 5.24: Accessories: Shuttered Sampling Auger.

It is useful tool when dealing with compacted or hardened packaged materials. 
It is a tube with an auger drill inside. Care must be taken when withdrawing 
the auger without rotating and delivering its contents into a sample container 
by reversing the direction of rotation of the center rod.

• Sampling Frame for Checking Bias

Sampling Frame is an important portable tool for checking bias between incre-
ments particularly on a conveyor belt. The Figure 5.25 depicts the equipment 
consisting of two parallel plates with the same shape of the material to be 
checked.

In the case of conveyor belt the plates must fit its curvature. The belt is 
stopped and the frame is placed in contact with the belt across its full width. 
Then the increment is swept out carefully as a whole. In case of large pieces 
obstructing the insertion of the frame, standardization of pushing to the right
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Figure 5.25: Accessories: Sampling Frame for Comparing increments.

or to the left must be kept. The height of the frame should exceed the top 
of material when in full capacity. The bias check program assesses how the 
component of interest is distributed in different increments and how big these 
systematic errors are when comparing the series of reference increments and 
the corresponding series of system increments. These systematic errors may 
produce positive or negative bias which must be less than the maximum per-
missible bias agreed between buyer and seller.
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Chapter 6

Conclusion

The purpose of this thesis has been to give a comprehensive coverage of the tech-
niques of Bulk Sampling with emphasis on the principles upon which the chemical 
engineers must base quality and productivity issues in industry. These are:

• collecting reliable data;

• isolating variability (variances);

• characterizing of fluctuation in material (space and time);

• understanding the intrinsic properties of materials.

Although there are several rules for sampling there are only two defined sets of 
statistical procedures which are applicable to sampling. We may use the classical 
one that makes use of the statistical process control tools — R and X  Charts, 
Shewhart graphics, sequential plans — or the experimental design techniques for a 
more powerful insight into variability.

We have chosen the second approach and focused our attention on hierarchical 
designs because the tree structure is suitable for chemical processes, particularly 
those design where the degree of freedom are equal as we go down to the bottom of 
the tree structure. For these designs, where samples are not equally split, care must 
be taken about dividing samples in order to guard against biases.

To make this approach suitable for the continuous selection errors we include 
spatial statistics and regionalized variables since the Control Charts are unable to 
predict the real fluctuations of process. Random, long-range and periodic fluctua-
tions are analyzed accordingly.
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There are some obstacles to face when dealing with material having all three 
variographic terms. Firstly the there is the range of equations and parameters 
required to implement the method. There are two equations for each component a, 
A and M . One equation for long-range increments and one to access periodic terms. 
Five auxiliary parameters are needed for each component. Secondly the complete 
experiment requires three sets of data with an average number of increments:

• Short-range values: first series of at least 30 increments diverted at intervals 
of 2 seconds. Such series provides enough data to estimate both variance with
29 degrees of freedom and the variogram Wj^hl)  with 28 degrees of freedom.

• Long-range terms: a second series of data is required at intervals of 1 minute 
interval and it must cover the useful domain of the variogram. For one with
30 degree we have to extract 60 increments.

• Periodic terms: third series of increments extracted at 30 minute intervals. 
Practice suggests about 60 though 80 would be better.

Finally there is the equipment. All the methods are based on sampling correctness 
without delimitation and extraction errors. A Sampling Test Station being the best 
alternative, although sampling in locus may be an alternative.

Some efficiency may be reached by eliminating some extra calculations. The first 
step has been given by Pitard [83]. His suggestion is about working through the 
main equation a =  A/W  while associating the f ( t ) function to the heterogeneity [/?,] 
in the same way

k m  h-m l + ^m2 T h m 3 

and taking the advantage of the equation:

hm
aL

aL x ^  = Nu  x ^ — —
M* aL

x
M l

that involves at the same time: a^, am, Mm and M l -

As the variogram of hm follows the same shape of arn and the variogram of Mm 
does not affect the variogram of hm, or only to the second order, we can think of 
eliminating a great deal of the extra work.

Regarding collection of data we have suggested a mechanical sampling plant 
in spite of some recommendations of international standard organizations —  BSI, 
AFNOR, ANSI, DIN, JIS— which suggest the use of scoop, shovel and the tech-
niques of coning and quartering. We do not share this view for two reasons:
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1. manual sampling is responsible for the major sources of error in any chemical 

industry

2. mechanical sampling is the only possible way of reducing the fundamental and 
segregation errors represented by the constitution and distribution heterogene-
ity.

The protocol required for the F E  is represented in the equation:

4 e  =  Cd3/Ms

By using logarithm function is possible to set up a series of stages — comminuting 
and dividing — to get the amount of sample with the minimum cost. For the 
GSE  represented by the equation aEE =  C(crEE the use of mixers is mandatory for 
eliminating both segregation and grouping factors.

The design of a Bulk Sampling Test Station should be drawn on the best available 
statistical methodology and theory of bulk sampling to help identify a possible 
sources of variability and bias. Each individual piece of equipment has a role to 
play in the removal of variability which is not inherent to the material itself. The 
sophistication of the design will entirely depend on cost and allowed risks, but there 
will be fundamental components, common to all test station.

In addition to theoretical consideration, pilot experiments on individual compo-
nent are recommended to identify real level of variation for different material and 
layouts.

The skeleton version of the design recommended here is implemented in Fabrica 
da Estrela, a branch of I MBEL.  It is hoped that this project will grow to a 
full implementation and provide the ideal model for a cost-efficient semi-automatic 
station suitable for industries in developing countries.

As declared before the thesis itself has been done in a more fragmentary rather 
than systematic way, and there are good reasons for this: Firstly because there is 
not much literature about bulk sampling directed towards quality of chemicals since 
the first publication of The General Sampling Theory of J. Visman [105] in 1962. 
According to Bicking [8], the last paper on sampling of particulate material was 
written by Duncan [30] and it is found in Technometrics. All these approach has been 
presented in the text. However Gy’s Theory [37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47] 
is applied in most of the chapter 3 because it is the only one that is suitable for 
one-dimensional lots and the only one that allows us to determine the moments 
of sampling errors (SE ). Secondly because no sampling plan for chemicals can be
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comprehensive enough to cover all cases in a few plans as is done with indivisible 
materials.

Finally I should emphasize that this thesis is not an end in itself. Further re-
search is required for a complete command of the field. For those interested in 
pursuing the theoretical aspects of continuous selection errors, long-range or peri-
odic variabilitity, there are Spatial Statistics and Time Series Analysis. For those 
interested in pursuing the practical aspects of continuous selection errors, Variog- 
raphy and Regionalized Variables are powerful tools to materialize correlations. In 
any of these case there are plenty of references throughout, and at the end of this 
work a list of papers for further study.
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APPENDIX I. SPSS/PC Program

There are nowadays a great number of packages available for analysis of variance. 
Three are particularly important: SAS, Statgraphics and SPSS. While they are 
easy to use for general purposes and factorial design, they demand some fancy 
operators to perform the analysis of nested balanced design.

I have been using SPSS/PC— The Statistical Package for the Social Sciences 
for balanced ones. The computations are much easier by using a new function 
called MANOVA—DESIGN. The Table below shows the imput used together with 
illustrations of these procedures in asterisk.

* PRO GRAM FOR ESTIMATION OF VARIANCE COMPONENTS FROM A
* BALANCED NESTED DESIGN OF N FACTORS.

DATA LIST FREE /  CHARCOAL ANAL SUBS SAMP.
VALUE LABELS ANAL 1 ’A l ’ 2 ’A2’.
VALUE LABELS SUBS 1 ’SSI’ 2 ’SS2’ .
VALUE LABELS SAMP 1 ’SI’ 2 ’S2’ .
BEGIN DATA.
44 1 1 1 39 1 1 3
48 1 1 1 41 1 1 3
40 2 1 1 37 2 1 3
38 2 1 1 44 2 1 3
40 1 2 1 56 1 2 3
53 1 2 1 53 1 2 3
63 2 2 1 46 2 2 3
50 2 2 1 46 2 2 3
35 1 1 2 36 1 1 4
38 1 1 2 42 1 1 4
30 2 1 2 40 2 1 4
31 2 1 2 39 2 1 4
47 1 2 2 34 1 2 4
49 1 2 2 34 1 2 4
37 2 2 2 35 2 2 4
36 2 2 2 32 2 2 4
END DATA.
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* STATISTICS OF INTEREST FOR THE MANOVA AND LEVELS

MANOVA CHARCOAL BY ANAL(1,2) SUBS(1,2) SAMP(1,4) /DESIGN ANAL 
WITHIN SUBS
/DESIGN SUBS WITHIN SAMP
/DESIGN ANAL WITHIN SUBS WITHIN SAMP

* SIGNIFICANT DIFFERENCES BETWEEN SUBSAMPLING WITHIN SAM-
PLING (4 df)

/PARTITION SUBS (1,1,1,1).

* OTHER USEFUL STATISTICS LIKE RESIDUALS AND PLOTS 
/RESIDUALS=CASEWISE PLOT 
/ANALYSIS=CHARCOAL
/DESIGN.
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APPENDIX II. FTT Computer Programs

The programs in this appendix have been written in standard FORTRAN, and so 
should be compatible with most microcomputer system with the version Fortran 
F77. Each program was used by a typical example, in the text, following the listing. 
The first program is intended for Variographic Experiment. The second one is for 
Variance Estimates of Staggered Design. The determination of sample size by Gy’s 
formula in Chapter 2 was computed without any program although there are some 
books with such programs. For example there is a Basic program for this purpose 
in Wills [109].

• Variographic Experiment:
c

c FORTRAN PROGRAM FOR VARIOGRAPHIC EXPERIMENTS
c

real*8 a(50),sum(25) c 
c TO BE READ c 
open(ll,file= ,ben.dat’) 
c open(ll,file= ’b l ’) 
c

c TO BE WRITTEN
c
open(12,file=’benur.out’ ) 
open( 13,file=’ben.out’)
c
c I N P U T D A T A
c
print *,’reading’ 
c
read(ll,*)n,m
c n=number of samples, m =  space/time
do 02 i= l,n
read(ll,*)a(i)
02 continue 
c
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c C A L C U L A T I O N S
c
do 04 j= l,m  
sum(j) =  0.D0 
do 06 i =  l,n-j
sum(j) =  (a(i+j)-a(i))**2 +  sum(j)
06 continue 
sum(j) =  sum(j)/(n-j)
04 continue 
c
c O U T P U T D A T A
c
print *,’writing results ’ 
c
write (12,800)
800 format (10x,’Variograma’ ,/) 
write (12,650)n,m
650 format (/,2x ,’Number of Samples:’ ,i2,3x,’Space/Time:’ ,i2) 
write (12,750)
750 format ( // ,2 x ,’i’ ,3x,’Samples’ ,/) 
do 08 i= l,n  
write (12,900)i,a(i)
08 continue 
write (12,850)
850 format ( // ,2 x ,’j ’ ,3x,’Space/Time’ ,/) 
do 10 i= l,m  
write (12,900)i,sum(i) 
write (13,900)i,sum(i)
10 continue
900 format (lx,i2,3x,fll.6) 
c
stop
end
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• Variance Estimates of Staggered Design:

c FORTRAN PROGRAM FOR VARIANCE ESTIMATES 
c FROM STAGGERED NESTED DESIGN (FACTORS 6)
c
c NEGATIVE VARIANCE ESTIMATES SET TO ZERO

character A$(6) 
integer A,F,H,J,Ql,K 
real TO,CO
real C(11),Z(6),E(6),V(6),M(6) 
real T(7,4),X(7,4) 
c
c In the next lines assign the values: 
c A =  Number of levels of factor A (100) 
c A =  Number of nested factors (6) 
c 
c
c SET OF OBSERVATIONS FOR EACH LEVEL 
c OF FACTOR A. DIMENSION OF X INCLUDED 
c IN DECLARATION STATEMENT.
c

data A, F/7, 4 /

data X/6.1, 8.5, 8.6, 9.3, 8.1, 8.5, 9.8, 
+  6.6, 9.6, 9.7, 7.2, 7.1, 9.0, 9.8,
6.6, 8.2, 8.0, 6.5, 2.3, 4.0, 11.7,
8.8, 8.1, 7.4, 8.0, 9.5, 9.2, 12.8/ 
data A / ’F\ ’E\ ’D\ ’C\ ’B\ ’A ’/

open ( unit=7, file=’result’ , status=’unknown’) 
rewind (7)
c
write (7,*) ’X = ’ 
do 100 i= l,A
write (7, *) (X (i,j),j= l,F )
100 continue
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c
T 0 = 0

do 310 H=1,A 
do 305 J=1,F 
TO =TO +X(H ,J)
c
305 continue 
310 continue
c
write(7,*) ’T O = ’ , TO 
c

c EVALUATES CALCULATION TERMS (1) TO (2*F-1) AS WELL AS 
c CORRECTION FACTOR, TOTAL AND MEAN.
c
do 380 H=1,F 
do 375 J=1,A 
if (H.eq.l) then

Q l= l
else
Ql=2*H-2 
end if

C(Q1)=C(Q 1)+ X(J,H)*X(J,H)
375 continue
380 continue
C o=TO *TO /(A *F)
do 420 K=2,F
do 415 H=1,A
do 410 J=1,K
T(H ,K)=T(H ,K)+X(H ,J)
410 continue
415 continue
420 continue
do 445 J=2,F
do 440 H=1,A
Z(J)= Z(J)+T(H,J)*T(H,J)
440 continue 
445 continue
Q = l
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do 470 H = l, F-l 
Q=Q+1
C (Q +H )=Z(H +1)/(H +1)
470 continue 
c
c INTERMEDIATE RESULTS
c
write(7,*) ’Calc. Term Value’
write(7,*) ’--------------------- ’
do 510 H =l, 2*F-1 
write(7,*) H.C(H)
510 continue
write(7,*) ’Coo. Factor’ , CO 
write(7,*)
write(7,*) Number of obs.= ’ ,A*F 
write(7,*) ’ Total of obs.= ’ , TO 
write(7,*) ’ Grand Mean= ’ , TO /(A*F) 
c

c CALCULATION OF MEAN SQUARES
c

Q =-l
do 585 K = l, F-l

Q =Q +l
E (K )=C (Q )+C (Q +l)-C (Q +2)
585 continue 
E(F)=C(Q+2)-CO 
do 605 H = l, F-l 
E (H )=E(H )/A  
605 continue 
E (F )=E (F )/(A -l) 
c
c COMPUTATION OF VARIANCE ESTIMATES
c
V(1)=E(1) 
if (F.gt.2) then
V(2)=max(0.0,3*(E(2)-V(l))/4.0)
if (f.gt.3) then

V(3)=m ax(0.0,2*(E(3)-7*V(2)/6-V(l))/3)
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if (F.gt.4) then
V(4)=m ax(0.0,5*(E(4)-13*V(3)/10-ll*V(2)/10-V(l))/8)
else
V(4)=m ax(0.0,(E(4)-5*V(3)/2-3*V(2)/2-V(l))/4 
end if
if (f.gt.5) then
V(5)=E(5)-7*V(4)/5-6*V(3)/5 
V(5)=max(0.0, 3*(V(5)-16*V(2)/15-V(l))/5) 
V(6)=E(6)-13*V(5) /  3-3*V(4)-2*V(3)
V(6)=max(0.0, (V (6)-4*V (2)/3-V (l))/6
else

V(5)=E(5)-17*V(4)/5-ll*V(3)/5-7*V(2)/5 
V(5)=max(0.0, (V (5)-V (l))/5 ) 
end if 
else

V(3)=m ax(0.0,(E(3)-5*V(2)/3-V(l))/3)
end if 
else

V(2)=m ax(0.0,(E(2)-V(l))/2.0) 
end if

c ASSIGNING DEGREES OF FREEDOM

do 880 H =l, F=1 
M (H )=A
880 continue
M(F)=A-1
c

c PRINTING FINAL RESULTS

write(7,*) ’Source of Mean Square Var. Est.’
write(7,*) ’-------------------------
do 930 H=F,1,-1
write(7,*) A(H+6-F), M(H), V(H)
930 continue
close(7)
stop
end
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