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ABSTRACT

This Thesis is concerned with the application of Distributed Artificial 
Intelligence techniques for the design of instruments.

In this thesis it is argued that, the early stages of the design process can be 
automated by the use of Distributed Artificial Intelligence systems that are 
contractual in their communication and control.

A Distributed Problem Solver is proposed, and implemented, for the purpose 
of conceptual design of instruments. The system consists of a community of 
knowledge-based agents, with expertise on design of instrument sub-
systems. The agents, use a task-sharing form of cooperation for dynamic 
problem decomposition and sub-problem distribution phases of the design 
problem solving. New design concepts are generated by suitable 
combination of partial solutions.

To incorporate learning capabilities into our Distributed Problem Solver, we 
have proposed the use of Classifier System Modules as inductive 
knowledge-based agents. The application of Classifier Systems and Genetic 
Algorithms in the context of a number of concrete instrument design problems 
is investigated.

A normalized formulation is applied to the multi-modal design optimization of 
a Linear Variable Differential Transformer. A number of important proposals 
for the application of classifier systems to the design automation of 
instruments are detailed. In particular, an implemented classifier system is 
used for the purpose of design heuristic extraction for corrugated 
diaphragms, using a set of dimensionless curves. In this application, the 
classifier system has produced a set of useful design heuristics by direct 
interactions with the specified mathematical model.
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INTRODUCTION
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1.1 Introduction

Design is the creative process by which one moves from a perceived need to 
a realized solution. It is a process which moves from the abstract to the 
concrete. Developments in conventional computer aided design systems 
have mostly provided environments for drafting and numerical analysis. 
Computer aids for generating ideas from which a design may evolve are not 
generally available (Finkelstein & Finkelstein, 1983; Mirza et. al., 1990b). In 
recent years, development of computer aids based on artificial intelligence 
techniques, for conceptual design of engineering systems, has become an 
active area of research (Gero, 1990; Adeli, 1988; Topping, 1989; Sriram, 
1987).

The conventional use of computers for engineering design problems has 
been mostly directed at the later stages of the design process. They include 
tasks which can be described in terms of procedures and calculations. These 
computer based techniques are mostly used for analysis of candidate 
designs after they have been generated by designers. They include finite 
difference method, finite element method, and boundary element method.

However, the early stages of the design process can not be supported by 
conventional computing approaches. The early stages of the design process 
requires creativity and innovation and involves conceptualization and 
synthesis. Therefore, the early stages of the design process are dominated 
by inductive type of reasoning, and A.I. techniques combined with research in 
design methodology provide powerful means for the study and automation of 
this process.

This thesis is primarily concerned with investigations into the application of 
Artificial Intelligence techniques for engineering design problems in general, 
and for the design automation of instrument transducers in particular.

During the course of this thesis, it will be argued - by means of surveys, a 
number of proposals and implementations - that, complex engineering design 
problems, which have essentially inductive characteristics, can be automated
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by the use of Distributed Artificial Intelligence (DAI) systems which are 
contractual in their communication and control.

Distributed Artificial Intelligence (DAI), is concerned with the collaborative 
solution of global problems by a distributed group of entities. The entities 
may range from simple processing elements to complex entities exhibiting 
rational behaviour. The problem solving is collaborative in the sense that 
mutual sharing of information is necessary to allow the group as a whole to 
produce a solution, or to successfully accomplish a global task. The group of 
entities is distributed in that both control and data are logically, and often 
geographically, distributed.

1.2 Thesis Organization

The thesis is organized in the following sequence:

In Chapter 2, we will investigate the application of Artificial Intelligence 
techniques for the engineering design problems. It is argued that complex 
engineering design problems are best tackled by using Distributed Artificial 
Intelligence (DAI) techniques. An overview of DAI, advantages and related 
research issues are presented. A critical review of current DAI systems 
applied to engineering design problems is, also, given.

Chapter 3 is concerned with the development of an adaptive intelligent 
system for the conceptual design of instruments using Distributed Artificial 
Intelligence (DAI) techniques. The implemented Distributed Problem Solver 
(DPS) system, for the conceptual design of instruments, consists of a 
community of Agents - an agent provides expertise on a particular aspect of 
the problem or solution of a sub-problem. An agent may be a complete 
expert system in its own right. Co-operation between agents is based, 
primarily, on Contract Net (CNET) approach.

Our objective, in chapter 4, is to investigate A.I. techniques which are 
promising for the design and implementation of adaptive DAI systems which 
are capable of improving their performance. At a coarse-grained level (i.e. at 
the level of inter-agent interactions), this is achieved by using task-sharing 
and result-sharing forms of cooperation. Task-sharing is implemented using 
the Contract-Net approach. At a fine-grained level (i.e. at a single agent
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setting), the overall performance of the DPS system hinges on the 
capabilities of each single agent (i.e. the knowledge-based expert system). 
This issue is further investigated by presenting a critical review of machine 
learning methods developed for single agents. These investigations led us to 
propose a theoretical DPS framework, in which an agent is considered as a 
Classifier System module.

In chapter 5, we will study the genetic algorithms which have been proposed 
to support inductive mechanisms for rule discovery in classifier systems. In 
this chapter, we first concentrate on the foundations of genetic algorithms, 
their applications, advantages and research issues. We, then, take up a 
comparative study of a number of reproductive strategies, in the context of 
two instrument design optimization problems:/corrugated diaphragm^and 

/LV D T y  Finally, we investigate a number of techniques for the purpose of 
multimodal function optimization using genetic algorithms. These studies are 
carried out for the purpose of finding alternative optimal designs, satisfying 
the same user specified design criteria.

In chapter 6, we first present classifier system advantages, applications and 
research issues. Our main goal, in this chapter, is to investigate the 
applications of classifier systems to the design of instruments. To this end, 
we detail a number of proposals. In particular, we will investigate the 
feasibility of simulating parametric sensitivity analysis and dimensionless 
analysis, for the purpose of design heuristic extraction, as done by designers 
during the initial stages of the design process. For this purpose, a functional 
lumped parameter mathematical model is interfaced to an implemented 
classifier rule-based system. Simulation results and future work will be 
elaborated.

Chapter 7 is concerned with the conclusions and achievements of this study. 
Suggestions are made for fruitful future work.
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CHAPTER 2

Artificial Intelligence in Engineering- 
Design



2.1 Introduction

In this chapter, we will investigate the application of Artificial Intelligence 
Techniques for the engineering design problems. The use of A.I. techniques 
combined with research in design methodology provides an opportunity to 
exploit the results of both to produce an understanding of design problem 
solving. This issue is investigated in section 2.2.

It is argued that complex engineering design problems are best tackled by 
using Distributed Artificial Intelligence techniques. In sections 2.3, 2.3.1 and 
2.3.2, an overview of DAI, advantages and related research issues are 
investigated. A critical review of current DAI systems applied to engineering 
design problems is given in section 2.3.3.

Conclusions and directions for future research are stated in section 2.4.

2.2 Artificial Intelligence in Engineering Design

In recent years, there has been a growing interest in exploiting A.I. 
techniques to solve a wide range of engineering problems (Gero, 1988; Gero, 
1990; Sriram, 1986a; Sriram, 1986b). The conventional use of computers for 
engineering design problems has been mostly directed at the later stages of 
the design process. They include tasks which can be described in terms of 
procedures and calculations. These computer based techniques are mostly 
used for analysis of candidate designs after they have been generated by 
designers. They include finite difference methods, finite element methods, 
and boundary element method. The analysis techniques for engineering 
systems are well established (Mirza, 1992). However, the early stages of the 
design process can not be supported by conventional computing 
approaches.

The early stages of the design process requires creativity and innovation and 
involves conceptualization and synthesis. It is characterized by 
incompleteness, uncertainty, qualitative arguments, application of expertise 
and knowledge and the accumulation of experience.
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A.I. techniques provide powerful means for the study and automation of the 
early stages of the design process.

In order to apply A.I. techniques effectively and efficiently to engineering 
design problems, there is a basic need for a systematic model of the design 
process. To this end, an extensive survey (Finkelstein & Finkelstein, 1983; 
Pahl & Beitz, 1984; Burton, 1990) has been made of the design literature, 
leading to the formulation of a general model of the design process. This 
model is based upon the broad agreement that exist in the literature on the 
elements of such a process. In this model, the design process consists of a 
sequence of stages, starting from the perception of a need and terminating in 
a final definition of a particular design configuration to satisfy that need. The 
process begins with information gathering and organization, delineating the 
design problem and collecting in an organized manner the basic information 
required for its solution.

The principal input to this stage is the requirement specification from the 
previous stage (or the initial primitive need statement).

The information gathering and organization is followed by the formulation of 
the value criteria which arise from the requirement and by which candidate 
designs may be evaluated.

The formulation of the value criteria is followed by the generation of a set of 
proposed or candidate solutions. This is the central activity of design, and 
currently the least supported by current A.I. systems.

The candidate designs are then analysed to determine those attributes 
relevant to the specification of requirements. This is achieved by calculation, 
simulation, building of models, etc.

Using the results of these analysis methods, the candidate designs are then 
evaluated in accordance with the value criteria adopted.

The process terminates with a decision step. A particular candidate may be 
judged satisfactory or optimal and may be accepted as the basis for the next 
design stage (i.e., for realization or implementation). Alternatively, it may be 
that none of the candidate designs are acceptable and further candidates 
need to be generated. Ultimately, if the design criteria cannot be satisfied,
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the criteria may need to be changed. This may involve changing decisions at 
the previous stage.

Models of the design process, and the methods by which these methods 
should be implemented in A.I. systems, has also been investigated by other 
design and A.I. researchers. In what follows, we give a brief account of these 
investigations:

Simon (1969) presents design as a problem solving process, and even more 
specifically, as a search process. The implication of search as a model for 
the design process is that design knowledge can be expressed as goals and 
operators.

As a general approach to modelling design, search provides a formalism for 
expressing design knowledge, However, it does not directly address some of 
the complexities of design problems. This is due to the fact that, design 
problem solving has additional characteristics that can be exploited by more 
explicit models.

In the pioneering work, carried out by Freeman & Newell (1971), a basic 
model of the design process has been proposed. This model is based on 
search processes of a simple design space containing primitive structures 
and their functionalities. The design requirement is given in terms of a 
sequence of top-level functional requirements for the overall artefact to be 
designed. Primitive structures provide primitive functionalities and they have 
to be connected to other primitive structures to provide more complex 
structures. This means that each primitive structure requires sets of 
functionalities to provide its own function. The matched required 
functionalities are consumed inside the composed structure, and the overall 
composed structure provides sets of functionalities provided by its 
component structures which are not consumed within the connections. Two 
heuristic search methods were indicated for structural recomposition: bottom- 
up (using a forward chaining search mechanism) and top-down (using a 
backward chaining search mechanism).

It is interesting to consider the three phases of design as a search process
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within a design space:

Design specification involves identifying the goal(s) of the design problem. 
Candidate design generation involves the search for one or more design 
solutions through the selection and application of appropriate operators. 
Design evaluation involves assessing whether the goal(s) have been 
identified.

This type of method is of particular importance in knowledge-based systems 
(Newell, 1979). Air-Cyl (Brown & Chandrasekaran, 1983) is an example of a 
design system that explore search spaces. This system can be understood 
as a searching in a space of parameters for the components of an air cylinder 
by using design plans that propose and modify parameter values.

The design process according to Maher (1990) is comprised of three phases:

1- Formulation
2- Design synthesis (Equivalent to candidate design generation)
3- Design evaluation and analysis

The models for design synthesis, according to Maher, includes:

1- Decomposition: This model is based on the idea dividing large complex 
problems into smaller, less complex sub-problems. The decomposition model 
provides a clear position about the type of design knowledge needed for a 
knowledge-based approach. This design synthesis method assumes that 
solutions to sub-problems will combine to form a good design solution and 
that design knowledge in the application domain has been specified as 
decomposition and recomposition knowledge.

2- Case-based reasoning: This is a model of design synthesis that directly 
uses design experience. The model uses analogical reasoning to select and 
transform specific solutions to previous design problems which are 
appropriate as solutions for a new design problem (Carbonell, 1986).

In this design synthesis method, there must be means for the identification of 
the necessary information about a previous design episode to reason about 
its suitability in the current design context. There also must be ways to modify 
the previous design to solve the current design problem. Although designers
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are good at using this type of design synthesis method, it has proved difficult 
to automate using conventional rule-based systems.

A general model of the design process, according to Gero (1990), involves 
the following activities: formulation, synthesis, analysis, evaluation, 
reformulation, and production of design description.

He proposes the use of conceptual schemas, in the form of design prototypes 
to represent design knowledge. The design prototype represents the design 
experience in such a way that allows representation at the concept level in 
the form of a class from which instances may be instantiated to meet the 
unique situation of a specific design problem.

The use of design prototype schemas is based on the fact that designers 
form their individual design experiences into generalized concepts or group 
of concepts at many different levels of abstraction. Therefore, they use 
schemas to represent their knowledge. Such schemas consist of knowledge 
generalized from aset of similar design cases and form a class from which 
individual cases can be accessed.

He argues that producing a design can be modelled by a process of 
prototype refinement. The prototype refinement requires a design space 
consisting of multiple prototypes. These prototypes serve as a basis for 
reasoning about the design specification, description, and requirements.

The selection of a prototype to be refined can occur at any level of 
abstraction. For example, during the early stages of design, a more abstract 
prototype is selected while during detailed design, a lower level prototype is 
selected.

Chandrasekaran (1990) argues that the most common top-level family of 
design methods are characterized as propose-critique-modify (PCM) 
methods. These methods have the subtasks of proposing partial or complete 
design solutions, verifying proposed solutions, critiquing the proposals by 
identifying cases of failure if any, and modifying proposals to satisfy design 
goals. He emphasises the sub-task of design proposal (i.e., generation of 
candidate solutions) as being the major part of the design activity, because 
most of the design knowledge is used in this sub-task.
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Chandrasekaran identifies three groups of methods for design proposal:

(1) Problem decomposition-solution composition
(2) Retrieval of cases from memory
(3) Constraint satisfaction

Chandrasekaran proposes a task structure for automation of the design 
process, consisting of an organized hierarchy of tasks, methods and sub-
tasks.

In his task structure analysis of the design process, the top-level task is the 
design itself which uses propose, critique and modify sub-tasks to achieve its 
goal. Each sub-task uses different methods to achieve its goals. For 
example, the sub-task of proposing alternative designs could use a 
decomposition method which in turn might generate sub-tasks for 
specification generation of sub-problems.

Different types of methods can be used for different sub-tasks. For example, 
a design system can use a knowledge-based problem solving method for the 
sub-task of creating a design but a quantitative method, such as a finite- 
element method, for the sub-task of evaluating the design. Therefore, the 
application of a method for a particular sub-task will generally provide further 
sub-tasks for which appropriate methods are necessary.

Chandrasekaran argues that there is no one ideal method for design, and 
good design problem solving is a result of recursively selecting methods 
based on a number of criteria including context and knowledge availability. 
Therefore, the structure of a design task is characterized by the way tasks, 
methods and sub-tasks and domain knowledge are related.

There is a general agreement that, the decomposition methods are the core 
precesses for design synthesis. Other design synthesis methods are used 
successfully only when initial design problem decompositions have been 
generated and design plans instantiated. Another important consideration in 
practical engineering design problems is the existence of several conceptual 
hierarchies. Each hierarchy represents a different aspect of the design 
problem.
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Based on the above observations, Chandrasekaran & Brown (1989) has 
classified the design problem solving into three major categories:

1- Routine design: This is a form of design problem solving in which the way 
to decompose a design problem is already known, and compiled "design 
plans" are available for each major stage in design.

2- Innovative design: This class of design problem solving is characterized 
by the existence of powerful problem decompositions. However, new design 
plans might be needed for component problems or previous plans might need 
substantial modification. For example, design of a new automobile, does not 
involve new discoveries about decomposition, because the structure of the 
automobile has been fixed for quite a long time. On the other hand, several of 
the components might undergo technological changes, and routine design 
methods for some of these components are not suitable.

3- Creative design: This is open-ended "creative design". In this type of 
design effort, goals are ill-structured and effective decompositions are not 
known, and there is no design plans for sub-problems.

From the above review it becomes evident that there is general agreement 
among researchers as to what constitutes the overall stages of the design 
process. Design and A.I. researchers have proposed a number of different 
methods for each stage of the design process. These methods require 
different types of problem solving and knowledge. The design of engineering 
systems, almost always, consists of different stages comprising of task 
definition, solution generation, analysis, evaluation and decision. In a 
particular design problem, there are a multitude of inter-dependent design 
methods for different stages of the design problem solving and there are no 
predefined sequence of method invocations. I.e., a number of design stages 
can be carried out in parallel. Therefore, complex design problem solving can 
not be efficiently represented by a single knowledge source, and they are 
better described as a collection of cooperating knowledge sources, 
coordinating their knowledge, skill and plans to solve the overall design 
problem.

A number of complex issues arise using a distributed approach to design 
problem solving. These issues are best tackled by using Distributed Artificial 
Intelligence Techniques (DAI).
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In the following sections, an overview of DAI as a subfield of A.I., its 
advantages and research issues is given. Next a critical review of current DAI 
systems applied to engineering design problems is presented.

2.3 Distributed Artificial Intelligence

Distributed Artificial Intelligence (DAI), is concerned with the collaborative 
solution of global problems by a distributed group of entities. The entities 
may range from simple processing elements to complex entities exhibiting 
rational behaviour. The problem solving is collaborative in the sense that 
mutual sharing of information is necessary to allow the group as a whole to 
produce a solution, or to successfully accomplish a global task. The group of 
entities is distributed in that both control and data are logically, and often 
geographically, distributed.

From a methodological perspective, virtually all research in DAI has focused 
on how a collection of agents can interact to solve a single common "global" 
problem, such as designing a very large scale integrated circuit (VLSI) chip, 
deriving a globally consistent interpretation of geographically distributed 
sensor data, or constructing a globally coherent plan for several agents.

In Distributed Artificial Intelligence (DAI), problems are solved by applying 
both artificial intelligence techniques and multiple problem solvers.

Two common approaches used for distributing control and data in DAI 
systems are:

1- Fine grained (Connectionist & Classifier Systems): This research is 
concerned with explaining higher mental functions and higher reasoning 
processes by reference to highly parallel collections of processes made up of 
very simple computing elements (McClelland & Rumelhart, 1987; Holland, 
1986; Shaw & Whinston, 1989).

2- Coarse grained (Distributed Problem Solving): Research in Distributed 
Problem Solving (DPS), considers how the work of solving a particular 
problem can be divided among a team of coarse grained cooperating agents 
(Representing a distributed community of expert systems), that cooperate at
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the level of dividing and sharing knowledge about the problem and about the 
developing solution (Lesser & Corkill, 1987; Smith & Davis, 1981).

2.3.1 Advantages of Distributed Artificial Intelligence:

There are many reasons for distributing intelligence. These include:

1- Cost: A distributed system may contain a large number of simple 
processing modules (or computer units). This makes a DAI system 
substantially more cost-effective as compared to a centralized intelligent 
system.

2- Reliability: Distributed problem solvers, constructed from many general 
purpose machines, have the ability to adapt to failures at one or many nodes. 
In this way distributed problem solving provides ways to handle events like 
sensor failures and other causes of uncertain and incomplete information.

3- Efficiency: Concurrency almost always increases the speed of 
computation.

4- Resource sharing: Large problems can not be processed by simple 
computing modules due to limited knowledge and resources. This fact 
necessitates solving such problems by using a distributed community of co-
operative programming modules.

5- Extendibility: Each agent entity within a DAI system encapsulates 
knowledge and procedures for solving a particular context dependent sub-
problem allocated to it. This highly modular approach offers conceptual 
clarity and simplicity of design. This feature is particularly useful from 
software development point of view, because it facilitates software 
enhancements, modifications and extensions.

6- Naturalness: Almost all complex design problems are better described as 
collections of seperate processing modules. Complex design problems 
contain a huge amount of information and they have to be broken down into 
cooperating systems to be feasible. Multiple intelligent cooperating systems 
provide an opportunity to study how one system can reason about itself or 
other systems cooperating with it.
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7- Contributions to Artificial Intelligence: DAI is highly important from a 
cognitive science viewpoint. Some researchers believe that all real intelligent 
systems are distributed (Hayes-Roth, 1980). Therefore DAI research is 
crucial to our understanding of real intelligence.

2.3.2 Basic Research Issues in Distributed Artificial Intelligence:

The basic research issues that are addressed in DAI are as follows:

1- Formulation, decomposition and allocation of problems:

The distribution of an overall design task among agents requires that the 
overall design problem be formulated and described in a way that it can be 
decomposed into sub-tasks and distributed. In practice formulation of 
problems requires some representation for the problem, as well as decisions 
on the boundries of the problem and on what is known and unknown (Gasser, 
1988). In conventional DPS systems many of these activities are carried out 
by designers. The languages and concepts used for task description and 
formulation will affect how taks can be decomposed into parts, and the 
interdependencies among them. A design problem described from different 
perspectives may require different decompositions and different skills. 
Difficult problems of decomposition results, because of dependencies among 
sub-problems, decisions and actions of separate agents.

In real settings, for a particular problem, there are a multitude of problem 
descriptions and/or decompositions which will require different 
representations for the problem as well as decisions on the boundaries and 
what is known and unknown.

Problem decomposition necessitates sub-tasks to be allocated to particular 
agents, in other words techniques are needed for matching problem solvers 
to tasks (smith, 1980).

There has been little research in above areas and this has influenced the 
current approaches to the design using DAI techniques.
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2- Methods for achieving distributed control:

The efficiency of distributing control in DAI systems is directly related to the 
overall coherence of the system. It is not clear how global coordination can 
be guaranteed from aggregation of actions based on local views with 
incomplete information. Coherence can be evaluated by considering several 
characterisations of a system's behaviour:

1- Solution Quality: This represents the system's ability to reach satisfactory 
solutions, and quality of solutions.

2- Efficiency: This represents the system's overall efficiency in achieving 
solutions.

3- Clarity: This is the conceptual clarity of the system's behaviour, and the 
usefulness of its behaviour. The system must be well-structured and 
describable so that the outside observer can understand it.

Most DAI researchers have analysed the coherence of a system by 
measuring its efficiency. From this perspective, incoherence can result from 
conflict over resources, from one agent undoing the results of another, and 
from duplicate actions carried out redundantly.

The amount of cooperation between agents in a DAI system can range from 
fully cooperative to antagonistic. In this discussion cooperation is considered 
as a special case of coordination among non-antagonist agents 
(Rosenschein & Genesereth, 1985).

Agents within fully cooperative systems will have to communicate extensively 
in order to change their goals and needs to suit the needs of other Agents or 
for the overall goal of the distributed problem solver system. In the middle of 
this range (i.e. half cooperative Agents) lie traditional systems which have no 
specific set of goals to achieve. Antagonistic systems often have no 
communication costs and may not communicate at all (Genesereth & 
Ginsberg, 1986).

The primary difficulty in establishing coherence and coordination is the 
uncertainty in agent invocation due to unavailability of centralized control or 
viewpoints (Corkill & Lesser, 1983).
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A group of problem-solving agents achieve global coherence, if the actions of 
the agents makes sense with respect to the common goals of the entire 
group. Almost always DAI systems develop some type of organisation to 
guide the communication of tasks (goals) and results (data). The organisation 
that is developed says something about how the group achieves coherency.

An organisation provides a set of constraints and expectations about the 
behaviour of agents (e.g. a set of "roles") that defines the decision making 
and actions of particular agents (Gasser & Braganza, 1987).

The organisation implemented within different problem solving systems form 
a spectrum from totally free groups of Agents to master/slave relationships.

Totally free groups of Agents do not exhibit a control hierarchy and are 
naturally data driven. A problem in this case is solved when any Agent within 
the system comes up with an answer. Many production rule systems fall into 
this category.

Further along the organizational spectrum there is a gradual increased 
emphasis on the hierarchical relationships between problem solving Agents; 
where some Agents are given the task of an immediate solution of a Sub- 
Problem or play the role of a manager Agent giving a global direction to the 
Agents below them in the hierarchy. In these systems nodes with more global 
information guide nodes with less global information as decision-making data 
flow "upward" in progressively more abstract forms, and control information 
flows "downward".

The simplest hierarchy is two levels, in which one agent at the top level has 
complete information and all authority to control problem-solving agents at 
the second level. In such a "centralized" organisation, coherence is achieved 
by limiting decision making and by centralizing all decisions in one agent. 
This approach might degrade the overall solution quality in a dynamic 
environment (Chandrasekaran, 1981).

In Contract-Nets (as suggested by Smith & Davis (1981)) when an Agent play 
the role of a manager Agent to the Agents below it in the control hierarchy, its 
requests are not considered as orders, but they are executed by Contractor 
Agents through Negotiation. Thus, a lower-level Agent does not have to act 
upon receipt of a request from a manager Agent, but can wait for further
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developements and can refuse upon receiving an order if it has already 
received a higher priority task to do.

In the hierarchical organisations, the lowest level Agents are data driven as 
they will immediately achieve the low level Sub-Tasks allocated to them. The 
high level Agents are goal driven and decompose the Top-Level problems 
into Sub-Problems and distribute the Sub-Problems they can not handle 
within the Net, also they must be able to merge the solved Sub-Problems to 
obtain an overall solution for the Top-Level allocated problem.

The intermediate Agents within the hierarchy may range between the above 
two extremes.

o
In traditional systems no Negatiation takes place. In these systems each 
Agent will have to act upon receipt of a request from its superior Agents. 
These systems are totally goal driven. For an example of this strict 
organisation, we can consider a procedure call in a traditional programming 
language.

There is general agreement among DAI researchers that, no organisation 
structure is appropriate in all situations. Fox (1981) developed a taxonomy of 
how different types of organisations evolve as an organisation grows, 
becomes more complex, and encompasses more diverse activities. His view 
is based on the principle of bounded rationality. This principle, as expressed 
by Simon (1957) for human systems, states that the human mind's capacity 
for problem solving is limited. There is a limit to the amount of detailed data 
and control that one person can effectively manage. This implies the need for 
complex organisations to solve complex problems. Fox gives a detailed 
account of why human organisation metaphor is valid and how the principles 
of human organisational design (e.g. the functional or product division of a 
company), complexity reduction (Contracting and subcontracting, for 
example), and uncertainty reduction (such as contingency theory) can be 
applied to DAI systems.

3- The communication process:

In order to support coordination and coherence in DAI systems, agents need 
to communicate meaningfully. There is a need to design a common language
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to affect interaction, communication and organisation among cooperating 
agents.

This means that we need to know how to represent knowledge for 
communicating, and how to represent it in an interaction language. For 
example agents may need to communicate their mutual knowledge of each 
other, their current goals, etc. As in distributed problem solving, agents will 
have essentially different knowledge, the designed interaction language must 
have to allow for differences in knowledge, in order for communication and 
cooperation to be succesful.

The environment in which communication takes place in DAI systems is 
either shared global memory, message passing or some combination of both.

The most common environment used in DAI systems is the blackboard model 
(Hayes-Roth, 1985). In this type of environment, the black board represents 
the shared global memory on which messages are written by teams of 
agents, partial results are posted and necessary information is found. If only 
one Blackboard is used, the resulting system becomes unpractical for real 
DAI systems, because they produce bottlenecks due to limited bandwidth 
available (Hammon, 1984). Otherwise, if several blackboards are used 
(Lesser & Erman, 1980), the DAI system implemented is highly equivalent to 
a message passing system.

Message passing environments offer a more abstract means of 
communication than simple shared memory, and their semantics are well 
understood. These environments are mostly supported by using object 
oriented languages (Booch, 1991). In such languages, the high level 
encapsulation units for communication are abstract data-types called objects. 
Objects incorporate local domain knowledge, plans, variables and 
procedures, and interact by "sending messages" to one another. Message 
passing offers a more abstract means of communication than simple shared 
memory. Message passing is easier to program, modify and expand, because 
it is more abstract, and more efficient if we exploit the locality of data.

Communication costs must be minimal. This is mostly achieved by using 
appropriate protocols. There are many possible policies and protocols for 
communication in distributed problem solvers. The traditional distributed 
processing literature is a rich source of information about protocol details. In
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DAI systems, we are concerned with high level protocols, used for problem 
solving applications. Cammarata (1983) describes policies in selection of 
recipient Agents and error handling. Selection falls into two categories:

1- Selective communication: happens when messages are targeted to a 
specific receiver Agent (either sent directly or indirectly throgh a black-
board). On-demand communication Happens when messages are sent at the 
request of one Agent to another.

2- Broadcast-communication: Happens when messages are sent and they 
can be read by any one Agent within the system. Communication errors are 
handled by acknowledgements, but this is costly in terms of the available 
bandwidth.

One of the most studied protocols for distributed problem solving 
communication, is the Contract-Net-Protocol (Smith, 1980) (considered in the 
next chapter to be appropriate for conceptual design problem solving of 
instruments), which is based on the Cooperating Experts Metaphor. The 
individual message types used in the Contract Net combined with their 
expected responses yield a general two way interaction among agents. A 
contract is an agreement relating to any task to be allocated, so this protocol 
has quite a general applicability. The interaction supported by this protocol 
elegantly provides a two-way transfer of information, potential for complex 
information transferd in both directions, context dependent local evaluation 
by individual agents, and symmetric mutual selection.

4- Organized activity via modelling other agents:

Meaningful interaction between two agents requires that they have at least 
implicit knowledge of each other, such as the knowledge encoded in a 
communication protocol or language. Therefore, an agent has to have some 
model of other agents inside itself. This yields several complex problems. 
One of the problems is how an agent predicts the next actions of other 
agents based on the information it has aquired. Another problem is how an 
agent plans its actions by taking the actions of others into account.

Communication is minimized when each Agent within the problem solving 
system has a model of other Agents in terms of their addresses, states, skills
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and beliefs, and therefore it only needs to communicate when its model of the 
environment is incomplete or incorrectly reflects its environment.

As was discussed before, in DAI systems, an agent must coordinate with 
other agents. Coordination is essential for avoiding harmful interactions and 
because local decisions have global effects. In early DAI research, Wesson 
& Hayes-Roth (1981) reported that one of the most important principles he 
devised involved the use of models to simulte and predict other nodes. He 
used this approach by means of Process Assembly Network (PAN) in which 
models evolved in a manner specified by the proposing Agent.

The advantage of this approach is that once all Agents have been informed 
of a model (Hypothesis), no further routine communication needs to take 
place, only when Agent models are incomplete or something unexpected 
happens, Agents need to communicate to others in order to update their 
models.

Genesereth & Ginsberg (1986) also write that systems can cooperate without 
communicating if they have good models of one another. This works best 
when the goals of the Agents are not conflicting.

When communication takes place between different Agents, different models 
of rational behaviour lead to different plans. More importantly, building up 
models about rationality of other Agents can lead to cooperation between 
Agents that do not communicate and might have antagonistic goals.

Dufree et. al. (1985), also, hypothesise that "...nodes can reduce the amount 
of meta-level communication by making intelligent predictions about the 
activities of other nodes based on information they already have, instead of 
exchanging more information....". His experiments have shown that the 
exchange of information consisting of plans of other Agents, is especially 
useful in cases where the domains of the nodes overlap considerably 
because it helps them to avoid redundant work .

Work done by Gasser et. al. (1987), on the developement of the MACE 
system, suggests a modelling approach for coordination.

In this developed system, which is a instrumented testbed for building a wide 
range of experimental DAI systems, every Agent has its own model of the
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outside world . This model includes knowledge of the names, addresses, 
roles, skills and plans of other Agents. In this system the key idea is that 
each Agent observes its outside world and models other Agents.

Sueyoshi & Tokoro (1990), following the same line of thought, add the 
following functions to an Agent (in a distributed cooperating problem solving 
system) in order to make the problem solving process by autonomous Agents 
more adaptive:

1- Observing actions of other Agents
2- Dynamic modelling of tasks (action rules) of other Agents
3- Predicting actions of other Agents by using the model

The key idea behind the above improvements is that, it enables each Agent 
to model other Agents within the system in its constructed My-World attribute. 
My-World constructed by each Agent is different from others, since each has 
different relations to other Agents which it needs in order to solve its problem. 
An Agent can then plan its action by simulating its tasks within its constructed 
My-World attribute and predict the actions of other Agents. In this way, its 
actual task changes reflectively by observing the action of others.

2.3.3 Applications of DAI in Engineering Design:

There has been a great deal of research on DAI in recent years. Much of the 
research, on Distributed Problem Solving, has been done by Artificial 
Intelligence researchers for solving particular problems. Testbeds for this 
research has been air traffic control studies (McArthur et. al., 1982), vehicle 
monitoring (Dufree et. al., 1987; Corkill & Lesser, 1983) and medical 
diagnosis (Gomez & Chandrasekaran, 1981). For the most part, this research 
is being done in domains where information comes from spatially distributed 
sensors and problems are solved by cooperative exchange of information 
among the Agents.

DAI techniques have been used to solve a range of engineering design 
problems. Yang et.al. (1985) has implemented an architecture for a DAI 
system, focusing on control and communication aspects. He has tested his 
architecture for the design of digital logic design. Problem solving in this



system occurs by an iterative refinement of several mechanisms, including 
problem decomposition, kernel subproblem solving and result synthesis.

Problem decomposition in this architecture occurs according to the 
mechanism stored in the metaknowledge data-base of the message receiving 
node as suggested by the application developer.

Lander & Lesser (1991) describe a cooperating experts framework (CEF) 
developed to support cooperative problem solving among sets of knowledge- 
based systems with limited knowledge about each other's local states. The 
framework has been used for the design of steam condensers. CEF is 
implemented in a blackboard environment. Its global blackboards are used to 
facilitate communications among agents. Any information placed on these 
blackboards must be represented in a common language shared by all 
agents. Problem decomposition in this system is hard-wired by the 
programmer for a specific application. The developer uses application 
knowledge contained in the domain specific objects and black board spaces: 
In the steam condenser design the object Agents include pump, heat 
exchanger and motor objects. In this framework cooperation is achieved by 
collection of non-local constraints and goals by each agent and conflict 
resolution strategies during the problem solving process.

The emphasis in the CEF has been on the methods by which the Agents 
solve sub-problems relevant to their specific expertise and integrate their 
efforts using conflict resolution strategies that are appropriate to the problem 
solving context.

R.J. Verilli et. al. (1988) have constructed a computational model called 
"Iterative Respecification Management" for solving mechanical design 
problems. This system consists of a static cooperative hierarchy that 
communicates via functionally accurate messages (specifications, comments 
and request for specification, and designs) and a protocol that only allows 
agents to communicate with their managers and subordinates and not with 
each other. In this model, managers have exclusive control over subordinate 
designer Agents and no direct communication is allowed among 
subdesigners except via hierarchy.

In their test-bed design problems are decomposed by manager nodes into 
separate sub-design problems and allocated to sub-designers. Problem
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decomposition in this system is predefined by the developer in the manager 
nodes. Conflict resolution is done via hierarchy and manager nodes have 
global views for the parts of design problems allocated to them.

In this framework, cooperation is achieved using a predefined problem 
decomposition and task allocation strategy, guided by the static hierarchical 
architecture of the framework.

Chandrasekaran & Brown (1989) have contrasted the "classical" view of 
expert systems with an alternative view in which a number of knowledge 
sources, each specializing in a generic type of knowledge-based reasoning, 
cooperate to produce a solution.

These knowledge sources are identified as:

1- Decomposition KS.
2- Design plan instantiation KS.
3- Design expansion KS.
4- Design modification KS.
5- Constraint satisfaction KS.
6- Goal/Constraint generator for subproblems KS.
7- Design verification KS.
8- Design criticism KS.

Based on this view, they have designed a framework for routine type of 
design problem solving.

This framework has been tested for design of Air-Cylinders. Again problem 
description and decomposition have been defined statically using a 
conceptual design hierarchy for the Air-Cylinder. This conceptual design 
hierarchy remains fixed during the problem solving process.

ü

From the above review Jjt becomes evident that in the design domain almost 
always the general form of the artifact being designed is known by the DPS 
system. In these systems, the focus of research has been on conflict 
resolution strategies and the evaluation of variable parameters of the artifact, 
but problem description and decomposition has been provided by the 
developers prior to initiation of the problem solving process. In these 
frameworks, the DAI system is developed by assuming the existance of a
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static conceptual hierarchy of a design problem and the way to decompose a 
design problem is already known. The Contract Net (Smith, 1980) and its 
successors all have addressed flexible opportunistic allocation of tasks but 
decomposition of tasks were provided by the developer. Similarly, Actor 
systems (Kornfeld et. al., 1981) have considered dynamic task allocation 
decisions, but have not treated description or decomposition problems.

2.4 Conclusions

In this chapter, we have been concerned with the application of A.I. 
techniques for engineering design problems.

There is general agreement among researchers as to what constitutes the 
overall phases of the design process.

Conventional CAD tools are primarily aimed at providing assistance towards 
the later stages in design, and are well established. The early stages of the 
design process is characterized by synthesis processes, and A.I. techniques 
provide viable means for its automation.

Methods suggested by design and A.I. researchers, for the design synthesis, 
include: decomposition-recomposition, cased-based reasoning and constraint 
satisfaction. However, the decomposition methods are the core processes for 
design synthesis. Other design synthesis methods assume a pre-existing 
problem decomposition. Based on this observation, three types of design 
problems emerge:

1- Routine design
2- Innovative design
3- Creative design

Design problems, by nature, are parallel, distributed processes and are best 
implemented using DAI techniques. DAI systems have a multitude of 
advantages as compared to conventional rule-based systems. These include: 
naturalness, reliability, efficiency, resource sharing, extensibility and cost- 
effectiveness. However, complex research issues must be resolved when a 
distributed approach is used.
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These issues are classified into four categories:

1- Formulation, decomposition and allocation of problems
2- The methods for achieving distributed control
3- Communication processes for coordination
4- Modelling other agents

Specifically, there has been relatively little research in problem formulation, 
decomposition and task allocation issues. This has influenced current 
approaches to the design of DAI systems.

In these systems, almost always, there exists a predefined static conceptual 
hierarchy of a design problem and the way to decompose a design problem 
is provided by the developer. These systems support a routine type of 
problem solving.

Non-routine type of design requires the generation of an extensive number of 
possible decompositions into subfunctions providing alternative synthesis 
plans for the overall design process.

In the next chapter, we will investigate the above issues further. The purpose 
of these investigations is to implement a Distributed Problem Solver that 
supports a non-routine type of design problem solving for measurement 
instruments.
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CHAPTER 3

A Distributed Problem Solver for 
Conceptual Design of Instruments
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3.1 Introduction

In recent years, development of computer aids based on artificial intelligence 
techniques, for conceptual design of engineering systems, has become an 
active area of research (Adeli, 1988; Topping, 1989; Gero, 1990).

In the initial stages of the design process (Non-routine type of design 
problem solving), the general forms of the artefact, its functions and their 
corresponding decomposition into sub-functions are not known apriori. There 
might be an extensive number of possible decompositions providing 
alternative synthesis plans for the overall design process.

The analysis of requirements leads to the establishment of the overall 
functions to be performed by an instrument system. At conceptual stage of 
design, alternative solutions are generated. The concepts are expressed in 
the form of general description of components defined by common principles 
of operations. The design details, such as dimensions and material 
properties of the component, are not considered at this stage of the design 
process.

The objectives of the work reported in this chapter has been to develop a 
flexible intelligent system for the conceptual design of instruments using 
Distributed Artificial Intelligence (DAI) techniques. DAI is concerned with 
solving a problem by applying both artificial intelligence techniques and 
multiple problem solvers. Multiple intelligent problem solvers (Agents) co-
ordinate their knowledge, skills and plans to act or solve problems. They 
work towards a single goal or separate individual goals that interact. The key 
obstacle at conceptual design stage is the decomposition of the functional 
requirements for the design into sub-functions. Having achieved suitable 
decompositions, solutions for sub-functions are determined. Problem 
decomposition is not a well understood process. It is easy to recognise when 
it is done well or badly, but there are relatively few principles that can be 
used prospectively to produce good decompositions.

There has been relatively little research on automatic problem 
decompositions using Al techniques. In almost all the Al based systems
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problem decomposition is provided by the developers prior to the initiation of 
the problem solving process. In Distributed Design Problem Solving 
systems almost always the sub-problem solvers are hardwired in the system 
by the developers. This was confirmed during the literature survey of the 
previous chapter.

The implemented DPS system, for the conceptual design of instruments, 
consists of a community of Agents - an agent provides expertise on a 
particular aspect of the problem or solution of a sub-problem. An agent may 
be a complete expert system in its own right. The DPS system, for conceptual 
design of interments, consists of two types of Agents:

(a) Functional agents
(b) Instrument subsystem agents

The subsystem agents deal with the solution of sub-problems, while 
functional agents are mainly concerned with the task of management and co-
ordination. A solution for a problem is achieved through co-operative 
negotiations among the agents. Co-operation between agents is based on 
the Contract Net (CNET) approach [3]. CNET models task sharing or 
opportunistic allocation of tasks among the agents in a system. The design 
problem is communicated to the entire community of the agents in the 
system. If a subsystem agent can assist in the solution (partially or 
completely), it becomes part of a dynamic organization which gradually builds 
an overall solution of the design problem. An agent that can only partly 
contribute towards the solution will approach other agents in the system to 
complete its task, which in turn may require further assistance. The process 
continues until the problem is decomposed, distributed, and solutions for 
sub-problems achieved. Finally, partial solutions are combined together to 
generate new design concepts.

Excessive negotiations, between agents, are controlled through
implementation of concepts introduced by MACE (Gasser et. al., 1987), 
whereby a functional agent has knowledge of capabilities of suitable agents 
(acquaintances) in the system. During inter-agent negotiations,
acquaintances are approached first, if the acquaintances are not able to 
contribute towards the solution of the problem, then other agents in the 
system are interrogated. The details of an agent able to assist in the solution 
of the problem are added in the acquaintance-list if it does not already exist.
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This system proves the suitability of a task-sharing type of co-operation in 
conjunction with a result-sharing type of co-operation (Smith & Davis, 1981) 
for design concept generation of instruments. The implemented system 
exploits the complementary nature of these two forms of co-operation.

3.2 Conceptual Design of Instruments

The conceptual design of a device involves development of ideas to solve 
the design problem. Abstraction, at this stage, is essential so that many 
alternative solutions may be generated. Feasibility of these solutions is 
considered at the next stage of the design where unsuitable solutions may be 
ruled out.

A systematic methodology for generating design concepts involves (Mirza 
et. al., 1990b):

1- Decomposition of the overall functions into sub-functions.
2- Mapping of sub-functions to physically realizable sub-systems.
3- Suitable combinations of sub-systems to generate new concepts.

The kernel of the design task is then the generation of sub-systems and/or 
concepts for functions that cannot be further decomposed. Different 
approaches to concept generation for sub-functions may be grouped into:

(a) Convergent methods.
(b) Divergent methods. (Finkelstein & Finkelstein, 1983)

The initial steps of systematic concept generation methodology are those of 
problem decomposition and abstraction. The system to be designed is 
decomposed into components, each of which is considered in terms of its 
function. Abstraction is essential in the process of identification of the 
component sub-functions into which the overall functional behaviour can be 
resolved. At the core of the process is the need to generate concepts for the 
elementary component functions. Alternative methods suggested for the 
purposes are: exploration of existing design concepts, the use of analogies, 
the transformation of existing concepts, and the convergent generation from 
systematic listing and examination of physical laws (Finkelstein & Finkelstein, 
1983). Variant concepts for the total system are obtained from the
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combination of sub-function concepts (Mirza et. al., 1990a). Evaluation of the 
generated candidate solutions leads to a design configuration that will be the 
object of more detailed design.

The work reported in this chapter is based on overall knowledge of 
functionality of instrument subsystems as explained in the following sections. 
Alternative techniques for the solution of subproblems are discused 
elsewhere (Mirza & Finkelstein, 1992). The overall framework of the 
Distributed Problem Solver is general and has been developed with a view to 
future expansion.

For the instrument design our approach has been to classify subfunctions 
according to the basic operating principles of the component. Associated with 
these are functional knowledge concerning the inputs and outputs 
characteristics of the corresponding sub-system component. They can be 
either measurands, signal carrying variables, or parameters which may be 
used in the transduction chain when component combination is performed.

Using above methodology, a DPS (Distributed Problem Solving) system was 
implemented that uses dynamic problem formulation and decomposition for 
the purpose of conceptual design of instruments which will be explained in 
the following sections.

3.3 Problem formulation and decomposition in DAI

The main difficulty in the conceptual design process is the decomposition of 
the overall function into subfunctions. It is not possible to decompose a 
problem without prior knowledge of sub-function solutions, at the same time a 
sub-problem can not be solved unless it has been defined first. This 
exemplifies the recursive nature of the problem that imposes difficulties in the 
development of CAD tools to for the initial stages in engineering design.

Decomposition choices are critically dependent on how a problem is 
described. This is due to the fact that, the description of a problem prescribes 
a view point to tackle it.
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Problem description is the source from which the collection of problem solver 
agents and their attributes are identified, providing a framework for 
expressing inter-agent dependencies.

Examination of the distributed Al literature (Bond & Gasser, 1988; Gasser & 
Huhns, 1989; Huhns, 1987) reveals that, a significant proportion of existing 
co-operative systems are built to solve particular problems. These systems 
use techniques which are only appropriate for their application domains (e.g., 
air traffic, vehicle monitoring & speech recognition).

The Contract Net (Davis & Smith, 1983) and its successors all have 
addressed flexible opportunistic allocation of tasks; decomposition was 
provided by the developer.

Similarly in the DVMT (Distributed Vehicle Monitoring system) (Durfee et. al., 
1988), the descriptions, partitioned knowledge for data interpretation and 
regional responsibilities have been generated by designers, the system itself 
makes semiautonomous, opportunistic allocation decisions about which 
nodes perform which particular aggregation of tasks.

Actor systems, also, have considered the dynamic task allocation decisions, 
but have not treated description or decomposition problems (see Kornfeld & 
Hewitt, 1981).

In general, there must be a choice among alternative task decompositions, 
depending on the ability of the Agents performing the tasks. Key research 
questions include how we construct or select a set of operators for the task 
set to be produced, and how we construct and decompose problems so as to 
minimize the costs of computing, management and development of 
knowledge distribution and resource allocation.

Difficulties in decomposition arise because of dependencies among sub-
problems and among the decisions and actions of separate Agents. In real 
settings, for a particular problem, there are a multitude of problem 
descriptions/formulations which will require different representations for the 
problem as well as decision on the boundaries of the problem and what is 
known and unknown. A problem representation must be selected that is well 
defined and covers all aspects of distribution and allocation across the 
multi-agent system.
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In summary, intelligent approaches to task decomposition must consider:

1- An effective representation of sub-problems/tasks to be allocated to the 
resources and capabilities of different Agents. This means that the developer 
has to make decisions about the alternative types of problem decomposition. 
A problem decomposition must be selected that takes into account an 
efficient knowledge distribution among resources and a control strategy that 
produces effective solutions.

2- The decomposition method must take into account the dependencies 
among tasks/sub-problems and among the decisions and actions of separate 
Agents.

There has been little research in above areas and this has influenced the 
current approaches to the design using DAI techniques.

3.4 The DPS system for Conceptual Design of Instruments

At the conceptual design stage, problem decompositions and sub-problem 
descriptions are not known in advance. Therefore, in order to support 
automated problem description and decomposition, dynamic control is 
needed to support dynamic organisational structuring. In the conceptual level 
of design problem solving little can be said, a priori, about any individual 
problem, and agents need to negotiate over appropriate responsibilities for 
the description, decomposition and allocation decisions. In this way, the 
expert agents can configure conceptual design organisations supporting 
conceptual hierarchies of alternative artefacts for the same specification of 
requirements. This process will support the initial stages of design problem 
solving, including dynamic problem description and conceptual problem 
decomposition (not supported in current design frameworks).

Smith, working with Davis introduced concept called "Contract Net Protocol". 
The activity being modelled by Contract Nets is task-sharing (Davis & Smith, 
1983). Task-sharing is a form of co-operation in which individual nodes assist 
each other by sharing the computational load for the execution of subtasks of 
the overall problem. Control in systems that use task-sharing is typically goal- 
directed; that is, the processing done by individual nodes is towards the 
achievement of sub-goal problems whose solutions can be integrated to
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solve the overall problem. Contract Nets give us the best opportunity for 
dynamically decomposing problems because they were designed to support 
task allocation. In other work, Smith and Davis has discussed in a general 
sense about co-operative frameworks (task-sharing and result-sharing) in 
DPS systems (Smith & Davis, 1981), with no attempt to relate them to the 
area of design problem solving.

In this section, an implemented DPS system is described which can be 
considered as an extension of Smith and Davis's work. This system proves 
the suitability of a task-sharing framework in conjunction with a result-sharing 
framework for the design concept generation of instruments.

On the basis of the methodology introduced in section 3.2, a DPS system 
was developed which simulates dynamic design problem formulations and 
decompositions, supporting the design of instruments at the conceptual level 
of abstraction. In order to develop the software, first a classification of 
instrument sub-systems was developed. The classification of instrument sub-
systems was the source from which a co-operative community of 
organisations of problem solver agents was identified and constructed. On 
the basis of the developed architecture, a DPS framework was implemented 
which supports both forms of co-operation (task-sharing and result-sharing).

The stages of the design and implementation of the DPS system are 
explained in the following sub-sections.

3.4.1 Classification of Instrument Sub-Systems

The present work has been concerned, in the first instance, with the design 
of sensor elements and sub-systems, and discussion here is concerned with 
classification applicable to them. Classification of sensor elements and sub-
systems is generally based on their physical principles of operation, (e.g. 
resistive, inductive, elastic elements). Alternatively, sensing elements are 
classified according to the type of measurand. Both classification systems 
have been used in instrumentation literature for the description of instrument 
systems (Neubert, 1975; Doeblin, 1983). A more fundamental classification 
system, based on power-flow models of instrument sub-systems, has been 
developed by Finkelstein and Watts (1978). This classification is based on 
mathematical similarities between instrument sub-systems of different energy
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domains, and leads to a consistent method for developing mathematical 
models of complex instrument systems.

In the DPS developed, instrument subsystems are grouped together 
according to their energy domains. This classification is based on 
Finkelstein's (Finkelstein & Watts, 1978) classification system but, 
mathematical similarities are not considered at this level of abstraction. The 
resulting classification is shown schematically in Figure 3.1 below:

Figure 3.1 The Classification of Instrument Sub-systems

In this classification, instrument sub-systems are grouped according to their 
common functional characteristics.
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Instrument sub-systems that belong to the same energy domain are grouped 
into:

1- Unilateral: These sub-system instruments convert input functional variables 
into their output functional variables only in one direction, i.e., from input to 
output.

2- Bilateral: These sub-system instruments convert input functional variables 
into their output functional variables from either of their ports. They include 
Transformer and Gyrator elements.

The instrument sub-systems, contained in an energy domain organization, 
deal with input-output functional variables belonging to the same domain.

Instrument sub-systems that belong to different energy domains are similarly 
grouped into Bilateral and Unilateral elements. These instrument sub-
systems deal with input-output functional variables belonging to different 
energy domains.

3.4.2 The DPS system Architecture

In order to support automated problem formulation and dynamic problem 
decomposition for conceptual design of instruments, the derived 
classification of instrument sub-systems was used to produce a co-operative 
community of organisations of Agents. This was achieved by:

1- Identifying each energy domain as a functional-agent which has 
appropriate design heuristics and knowledge for coordination of sub-system 
elements that belong to its local model of the overall design environment.

2- ldentifying each sub-system element (i.e., a primitive non decomposable 
instrument sub-system), as a member of an organisation of sub-system 
elements that belong to a particular energy domain. Each sub-system agent 
represents a knowledge-based expert system with problem solving methods 
for detailed self-design that can include anything from numerical optimization 
to inferencing capabilities using appropriate sets of design heuristics. The 
sub-system elements are sub-ordinate to their functional-agents.
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The overall architecture of the DPS system is shown in Figure 3.2 below:

Figure 3.2 The Control Structure of the DPS system

In order to support co-ordination among problem solver Agents, the ideas 
introduced by the MACE (for Multi-Agent Computing Environment) system, 
concerning the organisations of Agents, acquaintances models and self-
model qualifiers and their role in the problem solving process, have been 
implemented in the software framework.

MACE is a language, programming environment and a test-bed for DAI 
systems(Gasser et. al., 1987). In the MACE system, every Agent has its own 
model of the outside world (env_model). This model includes knowledge of 
the names, skills, goals and plans of other Agents.

According to the ideas introduced within the MACE framework, Each energy 
domain functional_agent was designed to contain the following attributes:

1- Self-Model: The Self-model attribute, for each agent, represents domain 
knowledge and capabilities.

2- Env-Model: The env-model attribute is a dynamic data-structure that is 
created and completed gradually as a functional-agent receives information-
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providing messages from its own sub-system Agents or other energy domain 
organisations.

The env-model attribute is a list of information units (representing models of 
suitable candidate subsystem Agents) to be completed and updated 
whenever an information providing message is received by a functional- 
agent.

Each information unit, contained within the env-model of a functional-agent, 
at this stage, consists of:

1- The identity of the candidate sub-system agent (being modelled) that 
belongs to a functional-agent organisation.

2- The relevant skills of the sub-system agent (i.e., its input-output 
characteristics).

3- A list of the sub-system agent's compatible sub-system agents that can be 
connected to its input to form parts of overall design concepts. These 
compatible sub-system agents will either belong to different energy domain 
organisations or the same energy domain.

4- A list of the sub-system agent's compatible sub-system agents that can be 
connected to its output to form parts of overall design concepts. These 
compatible sub-system agents will either belong to different energy domain 
organisations or the same energy domain.

The env-model is created and expanded according to the number of sub-
system elements participating in the design activity within an organization. 
Each functional-agent, when receiving an information requiring message(i.e. 
the <s_need> Message type, see section 3.4.4) from other organisations, will 
first interogate its env-model to see if complete models of suitable sub-
system agents already exist within its model of its organisation. If it finds 
compatible sub-system agents within its model, it will send information 
providing messages back to the message sending organisation. Otherwise, it 
will invoke negotiations down the organizational hierarchy to find suitable 
sub-system agents. This feature increases the efficiency of the net as each 
functional Agent, while completing its model of its organisational members,
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will learn about their capabilities and will not have to negotiate again when 
similar requirements are needed.

The organisational feature,also, helps to have a more efficient distribution of 
design goals among sub-system element agents that belong to a particular 
energy domain. This feature also simplifies the program expansion. The 
framework is simply expanded by adding more subsystem agents to their 
appropriate energy domain organisations.

3.4.3 Functioning of the Implemented System

It is useful to construct a model for the phases of a distributed problem 
solver. The problem solving process occurs in four phases (Smith & Davis, 
1981):

1- Problem decomposition
2- Sub-problem distribution
3- sub-problem solution
4- Answer synthesis

The DPS system is developed based on a CNET (Davis & Smith, 1983) type 
of negotiation, during which the overall top-level design goal is co-operatively 
decomposed and allocated among a network of problem solver agents, which 
represent different knowledge based expert systems (i.e, a community of 
heterogeneous agents).

This phase of the problem-solving process is analogous to task-sharing in a 
conventional CNET framework, with the difference that the problem 
description and decomposition is implicitly and co-operatively achieved, 
because sub-problems are highly dependent on each other (as opposed to a 
conventional CNET framework in which task decomposition is the 
responsibility of a manager node and it is assumed that sub-problems are 
relatively independent).

During the sub-problem design solution phase, the agents with allocated sub-
problems will have to share their partial results to come up with a complete 
design solution. A result-sharing approach (Smith & Davis, 1981) is used 
which, also, include answer-synthesis as a natural continuation of the
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sub-problem solution phase. During answer-synthesis, the partial results 
(local solutions contained within each problem-solver agent) are synthesized 
to achieve a solution or sets of alternative solutions to the overall design 
problem.

The informal strategy, as derived in previous section, is used to construct an 
specification of the DPS system. The class diagram of the DPS system is 
shown below:

Figure 3.3 Class Diagram of the DPS system
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C++ programming language has been used in the development of the 
software system. The class diagram of the DPS system has been developed, 
using Booch's (Booch, 1991) Object Oriented Design Methodology 
(figure 3.3).

The class components of the system, representing the key abstractions of the 
problem domain, are described below.

1- The Manager-Agent is the interfacing agent to the main utility. It 
encapsulates appropriate methods for distribution of the user specified 
design goals across the network of energy domain functional agents. It is 
invoked by the main utility.

2- An energy domain functional agent class represents an energy domain 
organisation. It can encapsulate appropriate heuristic knowledge and 
inferencing capabilities related to the overall design problems and sub-
system elements that belong to its dynamic local model of the overall design 
goals.
Each functional-agent object instance has appropriate methods for 
communication processing. These methods support inter-organisational and 
intra-organisational communications and are overloaded by sub-system 
agents. The communication processing methods are overloaded by sub-
system agents to support polymorphism.

During the task-sharing processes, each functional agent will accept or 
refuse the allocated design problems. If committed, it will enter into 
negotiations with its sub-system organisation members and other energy 
domain organisations. Functional agents will update their env-model attribute 
instances according to the environmental messages received.

3- A sub-system agent class represents a primitive non-decomposable 
instrument. All instantiated sub-system agents must include expert 
knowledge for self-design problem solving that can include anything from 
numerical optimization to inferencing capabilities using relevant sets of 
design heuristics.

An instantiated sub-system agent belongs to a particular energy domain 
organisation as represented by a functional agent.
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As shown in Figure 3.3, there is an inheritance relationship among the 
manager agent, functional-agents and sub-system agents. This is a much 
more efficient implementation as compared to a flat structure of agents. 
Useful attributes and methods, if needed, are inherited down the inheritance 
hierarchy. This feature prevents the need for the creation of repetitive code. It 
also promotes modularity and ease of future expansions of the problem 
solving network.

4- The Acquaintances-Model class is instantiated for each energy domain 
functional-agent, and is a private attribute. It supports the overall structure 
and methods of the env_model qualifier for each functional-agent instance 
and is inherited to sub-system agents. The env-model attribute allows agents 
to incorporate detailed models of the behaviour and capabilities of their 
acquaintances and reason about their actions.

5- The Message-Queue class represents incoming and outgoing message 
queues of agents. The incoming message queue contains messages 
addressed to an agent. Messages are generally queued in the order in which 
they arrive.

Before receiving at least one message, an agent is dormant. When a 
message arrives for an agent, the agent is activated by the scheduler utility. 
It is up to the agent to interpret and respond to the received messages using 
its own particular message processing methods. The out-going queue 
contains messages to be transmitted to other agents within the problem 
solving network.

6- The Agent-List is the container class of energy domain functional-agents. It 
has appropriate access methods used by the scheduler utility. It represents 
the overall problem solving network of energy domain organizations.

7- Both communication and parallelism are simulated in the system by means 
of the scheduler utility. It controls message exchange by accessing the 
Agent-List container object instance. It allocates processing time for agents 
to process their incoming queue of messages and transmission of their 
outgoing messages.

8- The Main Utility represents the interface of the problem solving net. It asks 
the user for the required design problems and transmits the design problems
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via messages to the manager-agent. It, also, initiates the scheduler utility. If 
further details and limitations for a particular design concept, suggested by 
the system, is requested by the user, it will invoke the appropriate agent for 
requested information.

The overall functioning of the implemented DPS system can be described by 

the following algorithm:

1- Set up all of the Agent organisations within the framework.

2- Ask the user for the required functional description (input-output 
characteristics) of the design concepts to be generated.

3- Invoke the manager agent to distribute the allocated top-level design goal 
among suitable energy domain functional-agent candidates.

4- Invoke the energy domain functional-agents to start negotiations with their 
sub-system agents. The purposes of these negotiations are:

-To find suitable sub-system elements that can completely or partially 
satisfy the overall design goal.

-To build up initial acquaintances-models of suitable candidate 
subsystem elements, in terms of their characteristics.

-To build output-queue information-requiring messages to be sent to 
other organisations.

5- While there are functional-agents with output-queue messages to be 
processed, do:

-Schedule a functional-agent with output-queue message(s) to be 
processed.

-Send the output-queue message(s) to its destination functional- 
agent(s).

-Invoke the destination functional-agent(s) to process the received 
message(s). This process involves either of the following:

a) The destination functional-agent has received an information requiring 
message. If complete acquaintance models exist, the destination functional- 
agent uses its model of its organisation to send back information providing 
messages. Otherwise, it will invoke negotiations down the hierarchy to
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complete its model of suitable candidate sub-systems before sending back a 
message.

b) The destination functional-agent has received an information-providing 
message. It uses the received message to update its env-model qualifier.

6) At the end of step 5, all energy domain functional-agents will have 
complete local models in their env-model qualifier, in terms of their own 
suitable sub-system agents, their characteristics and their immediate 
compatible sub-system elements. Invoke a recursive answer synthesis 
mechanism, within the network of functional-agents, to arrive at the overall 
conceptual designs. This is done using the partial solutions contained within 
each functional-agent's env-mod qualifier. During this process, functional- 
agents will share their partial solutions to arrive at complete conceptual 
designs.

7) Ask the user, if extra detail, concerning the characteristics and feasibility 
for a chosen concept, is needed.

-If the user needs such information, invoke the appropriate agents to 
display details of the chosen conceptual design.

8) Ask the user if he/she wishes to start a new design problem.
-If the answer is positive loop back to step 2.
-Otherwise exit the program

Above functional algorithm is serially processed. This means that, although 
several functional_agents within the net might have several output_queue 
messages to be processed, each time, the scheduler function will invoke only 
one Agent for processing its output_queue messages. A parallel processing 
hardware capability will, substantially, increase the processing time of the 
DPS system. However, if a concurrent system is to be used, more 
sophisticated message passing mechanisms must be employed to preserve 
the semantics of the objects within the framework in the presence of multiple 
threads of control.
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The task-sharing framework (Smith & Davis, 1981) is used based on 
negotiations supporting the problem formulation, dynamic co-operative 
problem decomposition and sub-problem distribution phases of the problem 
solving process as described below:

The overall Top-Level design goal, in the form of input and output 
requirements, is communicated via messages to the Manager Agent. The 
Manager Agent (see Figure 3.2) is responsible for allocating Top-Level 
design goals to the overall problem-solving net. In order to do so, it will 
invoke negotiations with the energy domain functional-agents by sending 
messages containing abstract descriptions of the overall design goal. These 
descriptions are in terms of the input-output power, effort and flow 
relationships.

Functional agents have abstract knowledge about the capabilities of sub-
system agents. This information is encoded in the self_model qualifier of the 
functional agents. On the basis of this knowledge, the design goal is either 
accepted or refused by the functional agents.

If the design goal is accepted, the functional agent negotiates with its sub-
system agents to determine which elements can partially or completely 
satisfy the design requirements. If a sub-system agent can contribute towards 
the solution of the problem, its identity and capabilities are stored in the 
env_model of the functional agent.

In cases where a sub-system agent can only partially satisfy the design goal, 
it sends messages to other functional agents requesting assistance to 
complete the design goal along with the addresses of preferred functional 
agents. The sub-system agents can inherit these addresses from the 
env_model qualifier of their energy domain functional agents or build their 
own environment models independently. The functional agent will invoke 
negotiations with the selected functional agents in the system. If the identities 
of compatible functional agents are not known, then the entire community of 
functional agents is approached. A functional agent, upon receiving request 
for assistance from other agents, will start to negotiate with its own 
organizatinal member sub-system agents.
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The process is repeated until negotiations are exhausted terminating the 
task-sharing phase. Task-sharing leads to the establishment of a number of 
models within each functional agent's env_model qualifier; consisting of the 
description of instrument sub-systems, their input/output characteristics, and 
addresses of compatible sub-systems from other energy domains. This 
aspect supports a dynamic problem decomposition, whereby Agents within 
the net cooperate to find all possible combinations of primitive sub-system 
elements which when synthesized will satisfy the overall design goal.

Sub-system organisation members, that belong to a particular energy 
domain, represent a particular primitive, non-decomposable instrument 
transducer. For example, sub-system elements that belong to the 
organisation represented by the Mech-Mech functional-agent (see figure 3.2) 
consist of springs, gears, levers, diaphragms, columns, beams, etc.

The above idea is based on the insight that an instrument system is 
composed of a number of sub-system instrument transducers. Each sub-
system primitive instrument is only connected to a few neighbouring sub-
system elements and does not have to know about the overall functionality of 
the instrument system (within which it is connected) to perform its own 
function.

As sub-problems allocated to each sub-system agent will be highly 
dependent, during the sub-problem solution phase, the functional-agents will 
have to share their organizations' partial solutions to synthesize complete 
conceptual designs. In this phase of the problem-solving, a result-sharing 
(Smith & Davis, 1981) approach is used which must also include answer 
synthesis. In the implemented DPS system, in order to find different design 
concepts, information from the env_model of the functional agents, involved 
in the negotiations, needs to be extracted and synthesized. A search is 
initiated, starting with the functional agents which satisfy the input 
requirements. Extraction of the first instrument subsystem leads to the 
identification of the next functional agent to be searched. The process is 
recursively invoked until all the combinations of instrument subsystems that 
satisfy the design requirements are found. Evaluation of the generated 
candidate solutions leads to design configurations which will be the object of 
more detailed design.
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3.4.4 The Communication protocol

A common language is required to allow processing agents to communicate 
their intentions and share information with each other for effective 
coordination. A protocol is also required for correct communications. The 
protocol is a set of rules that specifies how to synthesize meaningful and 
correct messages.

Elements of the common language serve as words do in a natural language 
such as English. The protocol has the same function as grammar in a natural 
language.

The message types designed are very simple and their purpose is to 
distribute the design requirements of the manager Agent across the problem 
solving net as explained below: A backus-Naur (BNF) specification of this 
protocol is given below:

<Message>
<Addressee>
<Originator>

<Text>

<Addressee> <Originator> <Text> 
{Address}
{Address}
<Have?>l<Have>l<l-have>l<S-have>l
<S-need>

As shown above, the <text> non-terminal of a message is decomposed into 
several message categories. Each message category corresponds to a 
particular message-type that is generated during the negotiation process. 
These message categories (contained within the text of a message non-
terminal) are further decomposed into:

<Have?> =» HAVE?
{Message_Body}

<Have> => HAVE
{Message_Body}

<l_have> => LHAVE
{Message_Body}

<S_have>=> S_HAVE
{Message_Body}

<S_need> => S_NEED
{Message_Body}
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Non-terminal symbols are enclosed by "< >" (a non terminal symbol can 
always be substituted by either a set of non-terminals, terminals or a 
combination of both, depending on the rewrite rules specified), terminal 
symbols are written without delimiters. Slots that are to be filled with 
information encoded in the Common Internode Language are enclosed in 
"{ }". The terminals, shown above, are part of the common internode 
language filling the Message_Type attribute for each message.

The language needed in which to represent the information in the slots of a 
message is specified in a single relatively high level language in which all 
such information is expressed. This high level language is called the 
Common Internode Language (Davis & Smith, 1982). This language forms a 
common basis for communication among all the nodes and supports the task-
sharing phase of the DPS system.

In the implemented software, the Message_Type and Message_Body non-
terminals, as described in previous section, are to be filled with such a high 
level language understood by all the Agents within the system.

In the developed framework, message categories are divided into two 
groups:

1-Information Requiring Messages:

These messages are sent when:

1-1) The manager node (The interfacing Agent) distributes the overall top- 
level design goal among its sub-ordinate energy domain functional-agents, 
by sending the following message type:

<Have?>

This occurs during the first cycle of the problem solving process. This 
message type has the format shown in Figure 3.4.
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From_Name

To_Name

Message_Type

Message_Body

The name o f  the Manager Agent

Destination Functional Agent name

HAVE?

Input
The overall input functional variable 
o f  the required design

Output
X

The overall output Junctional variable 
o f  the required design

Figure 3.4

During the negotiations within an energy domain organisation, functional- 
agents will send similar message types to their sub-ordinate sub-system 
agents to enquire about their suitability to co-operate towards a particular 
allocated top-level design goal. This message type is analogous to a Task- 
Announcement message in a contract net framework.

1-2) Information is required by a subsystem agent which can only partially 
satisfy the design goal allocated to it. When this happens, the sub-system 
Agent, in order to find its compatible sub-system elements existing within 
other energy domain organisations, will send the following message type to 
its organisational functional-agent:

<s_need>

The receiving functional-agent, when scheduled by the scheduler utility, will 
inform the destination energy domain organisation about the requirement of 
its organization member. The format of this message category is shown in 
Figure 3.5.
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From Name

To_Name

Message_Type

Message_Body

Sub_Org_Ad dress : The name o f  the requesting sub_system 
^  Agent

Org_Ad dress : Preferred destination Functional Agent name 

S_NEED

Skill : The sub_systern element skills 

Input : Required input variables 

Output : Required output variables

Org_Ad dress : The name o f  the sender Functional Agent

Figure 3.5

This message type illustrates the possibility of horizontal communications 
across the hierarchy (i.e., communications among two contractor sub-system 
agents that belong to different energy domain organizations) .

2-Information Providing Messages:

These messages are sent when:

2-1) A particular sub-system element can fully satisfy the design requirement 
allocated to it. In this case, it will inform its functional-agent by sending the 
following message type:

<Have>

The functional-agent, when receiving the above Message_Type, will update 
its env-model qualifier according to the message content of this message. 
This message type is analogous to a Bid message in a contract net 
framework. The format of this message category is shown in figure 3.6.
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From_Name

To_Name

Message_Type

Message_Body

Figure 3.6

2-2) A particular sub-system Agent can only partially satisfy the design goal 
allocated to it. In this case, it will inform its functional-agent about this by 
sending the following Message_Type:

<l_Have>

This message category has the format shown in figure 3.7.

: The name o f  the sub_system element 
: The functional Agent o f  the sub_system element

: HAVE

Input

\
Output

The input characteristic o f  the sending 
subsystem Agent

The output characteristic o f  the sending 
subsystem Agent

FromJMama

To_Name

Message_Type

Message_Body

: The name o f  the sub_system element 
: The functional Agent o f  the sub _sys tern element 

: /  HAVE

The input characteristic o f  the sending 
sub_system Agent

Output : The output characteristic o f  the sending 
sub_systern Agent

Figure 3.7

It also will inform its functional-agent about its preferred energy domain 
organisations within which compatible sub-system elements belonging to 
other energy domain organisations can be found. This it does by sending an 
<s_need> message category (as illustrated in Figure-5) to its functional- 
agent as described previously.

2-3) A particular functional-agent might receive an <s_need> message type 
from another energy domain organization. In this case, it will invoke
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negotiations with its sub-ordinate sub-system agents to find suitable 
candidate elements (these negotiations only occur if a functional-agent's env- 
model of its organization is incomplete). A sub-ordinate sub-system agent, 
satisfying the partial requirement (needed by the organisation that initiated 
the <s-need> Message-Type), will inform its functional-agent of its suitability 
by sending the following Message-Type:

<s-have>

The format of this Message-Type is shown in Figure 3.8.

From Name

s'

Org_Address : The name o f  the sender Functional Agent

Sub Org Address • The name o f  the sub _system Agent satisfying 
^  ~  -  the requirement

To Name

s '

Org_Ad dress : The name o f  the receiver Functional Agent

Sub Org Address • The name o f  the destination sub _system
~  “  element that initiated the <S_NEED> message

Message_Type S H A V E

Message_Body

^  Skill 

Input

Output
x

The input characteristic o f  the destination 
sub_system element

The input characteristic o f  the sender sub_system element 

The output characteristic o f  the sender sub_system element

Figure 3.8

It must be noted that, different design organisations are configured, for 
particular user specified design requirements, during similar negotiations.

For the software documentation of the implemented DPS system please refer 
to APPENDIX-1.

3.4.5 An Example

For the purpose of illustration, we consider a simple problem. The DPS 
system is required to generate design concepts for the measurement of 
pressure with voltage as the output. Using a DPS system, consisting of four
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energy domain functional-agent organisations (i.e., Mech-Mech, Mech-Elect, 
Elect-mech and Elect-Elect), 25 possible design organisations were 
dynamically configured. Some of these organisations are shown in figure 3.9 
below:

fa'l The configured Design Orqanization-1 for the required conceptual design of a measurement instrument

fb'l The configured Design Oraanization-2

fc i The configured Design Oraanization-3

Figure 3.9 Some of the configured design organizations

Above configured design organisations support the following conceptual 
plans:

1- Pressure --> Diaphragm --> Displacement 
Displacement --> Lvdt --> Voltage

2- Pressure --> Diaphragm --> Displacement 
Displacement --> Capacitor --> Capacitance 
Capacitance --> Bridge --> Voltage
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3-Pressure --> Diaphragm --> Displacement 
Displacement --> Strain_Gauge_Bonded --> Resistance 
Resistance --> Bridge --> Voltage

As illustrated in figure 3.9, These design organisations are dynamic 
organisations which span through sub-sets of organisation members 
belonging to different energy domain organisations. This aspect illustrates 
the possibility of horizontal communications across the hierarchy (i.e., 
communications among two contractor sub-system agents belonging to 
different energy domain organizations), as well as via more traditional 
(vertical) communications between manager functional-agents and their 
organization member sub-system agents. Sub-system agents, that belong to 
a particular configured design organization, can identify their best compatible 
elements by using their env-model attribute.

For each of these design-organisations, abstract models were produced 
within each functional-agent's env_model qualifier. These are models 
representing their own suitable sub-system element agents and their 
compatible neighbouring sub-system elements. For example, an abstract 
model for the bridge sub-system element (existing within the env-model 
qualifier of the Elect-Elect functional agent) co-operating with other sub-
system agents, as shown in the configured org-2 (Figure 3.9), is shown in 
figure 3.10 below:

Name

Characteristics

: Bridge

Input : Capacitance

Output : Voltage 

Inconnects : Capacitor 

Outconnects : Output

Figure 3.10 An information unit within the Env-Model 
of the Elect-Elect Functional Agent

Above model is a partial-view of the overall design concept generated by the 
configured org-2 that exists in the Elect_Elect functional-agent's envjmodel
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qualifier. This model represents the bridge element as a candidate that can 
be connected to the capacitor element from its input and produces voltage as 
its output.

The capacitor element, itself belongs to the organisation of the Mech_Elect 
functional-agent which from its input (in the model existing within its 
functional-agent) is connected to the diaphragm. Diaphragm in turn belongs 
to the Mech_Mech organisation which (again in the existing env_model 
qualifier of its functional-agent) from its output is connected to the capacitor.

It is important to note that, the Elect_Elect functional-agent does not know 
about the capacitor's in_connect attribute within its model (i.e., it does not 
know about the capacitor's compatible input sub-system elements). 
Therefore, the Elect_Elect functional-agent has only a local view (model) 
consisting of the ways its bridge sub-system element can be connected to 
other sub-systems to produce at least a part of a complete overall design 
concept.

This means that each functional-agent will only have a local model of the 
overall design process and will have to share its local partial models with 
other functional-agents to improve its partial view. These answer synthesis 
processes are invoked after organisations are configured.

3.5- Discussion and Conclusions

Most Al systems are based on predefined knowledge of decomposition of a 
problem into sub-problems. At conceptual stage of engineering design, 
decomposition of the functional requirements of a design problem can not be 
assumed prior to the initiation of the solution procedures. Therefore, it is not 
possible to develop an Al based system with hard-wired interdependencies 
between sub-problem solvers. This chapter presented an account of a 
Distributed Problem Solving system developed for conceptual design of 
instruments in which the functional requirements are dynamically 
decomposed and allocated to suitable sub-problem solvers. Discovery of 
alternative decompositions is based on a task-sharing type of co-operation 
among the contracting agents.
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The system has been able to determine sets of alternative conceptual design 
solutions from the specification of the input/output requirements of a 
measurement instrument. The solution principles consist of feasible 
combination of physical sub-systems or elements commonly used in 
instrument design.

At present, the DPS system does not have a comprehensive list of physical 
sub-systems. However, the framework is easily expandable. Sub-system 
agents and new energy domain functional-agent organisations can be simply 
added to the problem solving net. These new agents and organisations will 
simply listen to the Common Internode Language, and if they find design 
problems for which they are suitable, they will join in to form dynamic design 
organisations in which they can co-operate to form design concepts.

The problem decomposition and sub-problem distribution phases of the DPS 
system are analogous to a task-sharing type of co-operation. In most 
implemented task-sharing frameworks (see Davis & Smith, 1983) task 
decomposition is the responsibility of a manager node and it is assumed that 
sub-problems are relatively independent. In the implemented DPS system the 
problem decomposition is implicitly and co-operatively achieved (during inter-
agent negotiations), because sub-problems are highly dependent on each 
other.

Although in the framework no explicit problem decomposition is done by 
contracting agents, it is believed that the assumption that sub-tasks might be 
highly dependent does not imply non-compatibility for a task-sharing 
approach (but we need a modified negotiation mechanism).

The argument is that in instrument design problems alternative 
decompositions will map into sub-problems which are highly dependent on 
each other. As during the conceptual design stage of the problem solving no 
apriori design plan is assumed, the sub-problem interdependencies can not 
be hard-wired into contracting Agents for the purposes of decompositions 
and sub-problem allocations. In fact, the sub-problem interdependencies are 
a key to the process of creativity in the initial stages of the conceptual design 
process and must be discovered during inter-agent negotiations. The 
outcomes of these negotiations are the emergence of interdependencies 
among design agents. These interdependencies are embodied within
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configured design-organisations, each supporting an alternative design 
synthesis plan.

In the instrument design domain, the number of alternative conceptual 
decompositions is high and there are no easy , formalizable heuristics to 
choose among them. As described before, a functional-agent must be able to 
select the best candidate sub-system Agents, using its expert knowledge and 
local model of the design environment (i.e., award tasks to the most suitable 
contractor sub-system agents within its organization). This choice depends 
on conflicting aspects of the design environment such as cost, weight, 
functionality, robustness, appearance, topology, ergonomic characteristics, 
performance and so on.

The DPS system supports a non-routine type of design problem solving, 
during which it is effective in proposing alternative conceptual designs and 
the user in evaluating them and making a selection. It is highly important to 
develop appropriate design inferencing capabilities for energy-domain 
functional-agents, enabling them to choose set(s) of the most appropriate 
candidate sub-system agents. These choices depend on a particular 
instrument specification. Also vitally related to this future development is the 
implementation of suitable conflict resolution strategies (Lander et. al., 1991). 
The conflict resolution strategies are needed, because the sub-system 
solutions for detailed self-designs are highly dependent.

Each sub-system agent represents a complete knowledge-based expert 
system with problem solving methods for detailed self-design that can include 
anything from numerical optimization to sophisticated inferencing abilities. 
Extensive research effort in this direction has been carried out (Mirza & 
Finkelstein, 1992).

The DPS system exploits the complementary nature of both forms of co-
operation (i.e. task-sharing and result-sharing) as opposed to a conventional 
CNET framework (Smith, 1980) which only supports task-sharing or a 
Hearsay-ll (Lesser et. al., 1980) type of framework in which only result-
sharing is supported.
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CHAPTER 4

Towards an Intelligent and Adaptive 
Distributed Problem Solver for Design of 
Instruments
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4.1 Introduction

The importance of integrating multiple sources of knowledge in the design 
process has resulted in a major research effort towards the implementation of 
optimized DAI systems (sriram, 1987). A multi-agent system can only achieve 
on-line optimized performance by exploiting the complementary role of group 
learning during its problem solving activity. In this chapter our efforts are 
directed towards the investigation of suitable machine-learning techniques 
and their possible extensions into our multi-agent system.

The learning processes in a DAI system are more complex than those in a 
single agent. To apply learning, the agents in the DAI system need to adjust, 
adapt and learn from working with other agents in problem solving. More 
importantly, in a DAI system, the overall system is capable of achieving more 
tasks than the sum of tasks which can be individually achieved by agents. 
This phenomenon is referred to as "emerging intelligence" (Forrest, 1990). It 
is this emerging intelligence of DAI systems, that the group of agents 
collectively can offer something not available in the individuals, that makes 
DAI a powerful problem solving tool. The learning processes that go on 
among the agents are the key factor resulting in emergent intelligence.

As stated in chapter 3, most problem solving processes, handled in DAI 
systems, consist of four phases:

1- The decomposition of the problem into sub-problem tasks.
2- The allocation of the sub-problem tasks among the agents.
3- The solving of the sub-problem tasks by the assigned agents.
4- The integration of the solutions, obtained in phase 3, to obtain the global 
solution.

On the basis of this "task-sharing" form of cooperation, in chapter 3, we took 
up the implementation of a coarse-grained Distributed Problem Solver (DPS). 
The implemented DPS system uses a contract-Net type of negotiation for 
dynamic problem decomposition and sub-problem distribution phases of the 
problem solving. The bidding mechanisms, as supported by Contract-Net
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negotiations, have been shown to be an effective coordination mechanism for 
adaptive multi-agent problem solving (Davis & Smith, 1993).

The foundation of this approach rests upon the idea of contracts and sub-
contracts in a market-like organization. The bidding processes, such as the 
ones used in Contract-Net protocols, introduces an element of competition 
and for recording an agent's performance. On the basis of this framework, 
each agent in the loosely coupled system bids for announced tasks and the 
best bidder is selected to be the contractor for task sharing.

A contract is an agreement relating to any task to be allocated, so this 
protocol has quite a general applicability. The interactions, supported by this 
protocol, elegantly provides a two way transfer of information, potential for 
complex information transferred in both directions, context dependent local 
evaluation by individual agents, and symmetric mutual selection.

We recall, from the survey of chapter 2, section 2.3.2 that, Fox (1981) has 
studied the relationship between organization theory and distributed systems. 
By viewing distributed systems as analogous to human organizations, Fox 
shows that concepts and theories germane to the management science field 
of organization theory can be directly applied to the design of DAI systems. 
Task complexity, uncertainty, coupled with resource constraints are shown to 
be important factors in deciding how a system is to be distributed.

Fox (1981) states that price-like systems evolve naturally as the problem 
solving organization grows, and becomes more complex. The price system 
eliminates all forms of control between units. All communication is contained 
in a contract to purchase some product or service.

Contracting assumes that a set of independent processes exists. Once 
processes enter into contracts, an organization is instantiated. Hence, 
contracting can be viewed as the dynamic creation of a system architecture. 
The next step in successive reduction of control and information flow is the 
introduction of competition. Competing approaches to goal achievement are 
allowed (in the marketplace) with many organizations available to achieve 
any goal. Hence, each organization persues its own goals which correspond 
to another organization's needs. This is the general market situation. 
Services are contracted for in the market place for short or long periods of 
time.
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The market-type problem solving organizations are highly adaptive systems, 
capable of adaptive self-organization in the face of highly complex, uncertain, 
dynamic and ill-structured problem environments.

We recall that our implemented DPS framework (please refer to chapter 3) 
consists of a community of agents. An agent provides expertise on a 
particular aspect of the overall design or solution of a sub-problem. In this 
setting each agent might be a complete expert system in its own right. For 
example, an LVDT sub-system agent must have appropriate design 
heuristics, deep knowledge and analytical procedures for detailed design of 
an LVDT sub-component.

Our objective in this chapter is to investigate A.I. techniques which are 
promising for the design and implementation of adaptive DAI systems which 
are capable of improving their performance. At a coarse-grained level (i.e. at 
the level of inter-agent interactions), this is achieved by using task-sharing 
and result-sharing forms of cooperation. Task-sharing is implemented using 
the Contract-Net approach (please refer to chapter 3). At a fine-grained level 
(i.e. at a single agent setting), the overall performance of the DPS system 
hinges on the capabilities of each single knowledge-based agent. At this 
level, we are concerned with developing techniques enabling each agent to 
be adaptive. This means that, we must develop ways enabling each agent to 
improve its knowledge and skills, so that not only can the individual agents 
be better at their tasks, but the whole DPS system can also keep improving 
its performance as a result. This means that, we must extend machine 
learning techniques used for single agent systems, such as explanation- 
based learning, case-based reasoning, or inductive learning, to our multi-
agent system, where one agent can learn by observing its problem solving 
environmnt. Our main goal in this direction is to simulate group learning 
processes often used in human decision-making situations, such as group 
induction and brain storming. This issue directly implies the investigation of 
learning capabilities within a single agent setting and its possible extension 
to the overall DPS system.

A critical review of machine learning methods developed for single 
knowledge-based agents is given in the next section.
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4.2 Machine learning for Knowledae-Based Expert Systems

Learning is a many-faceted phenomenon. Learning processes include the 
acquisition of new knowledge, the development of motor and cognitive skills 
through instruction and practice, the organization of new knowledge into 
general, effective representations, and the discovery of new facts and 
theories through observation and experimentation.

In all learning processes, inductive inference is the central element. In 
contrast to deduction, the starting premise of induction are specific facts, 
rather than axioms. The goal of inductive inference is to formulate plausible 
general assertions that explain the given facts and are able to predict new 
facts. In other words, inductive inference attempts to derive a complete and 
correct description of a given phenomenon from specific observations of that 
phenomenon or part of it.

Virtually, all inductive inferences may be regarded in one sense as either 
generalizations or specializations. For example, category formation is a 
relatively complex form of generalization. It typically involves both the 
generation of novel rules and the clustering and strength revision of existing 
ones. Analogy, as it arises in the most sophisticated types of human 
reasoning, is perhaps the most complex type of knowledge modification 
procedure. At this level, it usually involves a substantial amount of 
generalization and specialization and depends, also, on the application or 
formulation of several categories.

A syntactic approach to inductive inference has been proposed by Nillson 
(1986). Nillson has suggested that constructing an inductive assertion from 
observational statements can be conceptually characterized as a heuristic 
state-space search, where:

- States are symbolic descriptions; the initial state is the set of observational 
statements.

- Operators are inference rules, specifically, generalization, specialization 
and reformulation rules.
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- The goal state is an inductive assertion that implies the observational 
statements, satisfies the problem background knowledge and maximizes the 
given preference criteria.

In this work, specialization and reformulation rules are the conventional truth-
preserving inference rules used in deductive logic. In contrast to them, the 
generalization rules are not truth-preserving but falsity preserving. This 
means that if an event falsifies some description, then it also falsifies a more 
general description. This is immediately seen by observing that is
equivalent to ~F=> ~ H  (the law of contraposition).

Therefore, if H  => F is valid, and H  is true, then by the law of modus ponens 
F must be true. Deriving F from H  (deductive inference), is therefore, truth 
preserving. In contrast, deriving H  from F (inductive inference) is not truth 
preserving, but falsity preserving. In other words, if some facts falsify F, then 
they also must falsify H.

Based on this theory, Michalski (1983) has developed an annotated 
predicate calculus (APC). The APC adds to predicate calculus additional 
forms and new concepts that increase its expressive power and facilitate 
inductive inferences used for classification of single and multiple objects. The 
APC has been implemented in the INDUCE program and applied to a 
problem from the area of conceptual data analysis.

This problem is concerned with inducing discriminant descriptions and 
characteristic descriptions of "cancerous" and "normal" cells. The program is 
given examples of "cancerous" and "normal" cells for this purpose.

The solution to the problem posed is obtained by a successive repetition of
the "focus attention —> hypothesize —> test" cycle.

The "focus attention" phase is concerned with defining the scope of the 
problem under consideration. This includes selecting descriptions appearing 
to be relevant, specifying underlying assumptions, formulating the relevant 
problem knowledge and the type of description sought and the hypothesis 
preference criterion. This phase is supplied to the system by the user. It 
involves his/her technical knowledge and informal intuitions. The "Test" 

phase, examines the hypothesis and tests them on new data. This phase 
requires collecting new samples, performing laboratory experiments, and/or
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critically analysing the hypothesis. This phase, again, involves knowledge 
and abilities required from the user.

It is the second, the "hypothesize" phase, in which the INDUCE program may 
play a useful role: The role of an assistant for conducting a search for the 
most plausible and/or most interesting hypothesis. The search process is 
basically a heuristic search through a space of symbolic descriptions, 
generated by the application of inference rules to the initial observational 
statements (i.e. teacher generated examples of some concepts).

The major drawback of this approach is the substantial background 
knowledge that has to be provided to the machine before plausible 
inferences can be made. Background knowledge is neccessary to provide the 
constraints and a preference criterion for reducing the infinite choice to one 
hypothesis or a few most preferable ones constituting the goal description. 
The scope of the INDUCE program is limited and considers, only, the 
identification of discriminant and characteristic descriptions of single or 
multiple objects.

More important topics of inductive learning, such as learning from incomplete 
or uncertain information, learning from descriptions containing errors and 
discovering new concepts has not been addressed.

One of the most impressive research efforts on induction, performed by Lenat 
(Davis & Lenat, 1981), has yielded programs for generating concepts and 
heuristics for mathematics and other domains. His work is concerned with 
establishing new concepts or theories characterizing given facts. This type of 
inductive learning includes such topics as automated theory formation and 
discovery of relationships in data.

Lenat constructed a program, called AM, for this purpose. AM is a program 
which models one aspect of elementary mathematics research, developing 
new concepts under the guidance of a large body of heuristic rules.

The local heuristics communicate via an agenda mechanism, which is a 
global list of tasks for the system to perform and reasons why each task is 
plausible. A single task can direct AM to define a new concept, to explore 
some facet (property, slot, attribute) of an existing concept, to examine some 
empirical data for regularities, and so on.
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Repeatedly, the program selects from the agenda the task having the best 
supporting reasons, and then executes it. Each concept is represented 
internally as a data structure with a couple dozen slots or facets, such as 
"Definition", "Examples" and "Worth".

Initially, most facets of most concepts are blank. There are 115 of these 
structured modules provided initially, each one corresponding to an 
elementary set-theoretic concept (for example, union). This provide an 
immense "space" which AM begins to explore, guided by a corpus of 250 
heuristic rules. AM extends its knowledge-base, ultimately rediscovering 
hundreds of common concepts (such as, numbers) and theorems (such as, 
unique factorization). Some heuristics are used to select which specific facets 
of which specific concept to explore next, while others are used to actually 
find some appropriate information about the chosen facet. Other heuristic 
rules prompt AM to notice simple relationships between known concepts, to 
define promising new concepts to investigate, and to estimate how interesting 
each concept is.

The foundation of Lenat's work is based on the assumption of reducing the 
definition of the processes of creativity and discovery into the application of 
"known heuristics" away from known concepts. In other words, the discoverer 
is moving upwards in the search tree. He/She is not rationalizing how a given 
discovery might have been made; rather, he/she is moving outward into the 
unknown for some new concept which seems to be useful or interesting by 
applying "known heuristics" to "known concepts".

In the same way, to cope with the large size of the potential "search space" 
involved, AM uses its heuristics as judgmental criteria to guide development 
in the most promising direction (The process of inventing worthwhile, new (to 
AM) concepts is guided using a collection of few hundred relevant known 
heuristics).

Based on these assumptions, Lenat has proposed the investigations into a 
"theory of known heuristics" by averaging all the world's heuristics in a 
generalization/specialization hierarchy, catalogued according to some 
conjectural power curves for heuristics in terms of their utilities. The power 
curves of a heuristic represents the utility of that heuristic as a function of 
tasks being worked on.
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Lenat consequently has represented a metaphorical view of the process of 
evolution in nature based on his assumptions (Lenat, 1983). He hypothesises 
that the processes of evolution in nature are also guided by heuristics 
encoded in the DNA structure.

From past efforts in the development of knowledge-based expert systems it is 
evident that some heuristics greatly reduce search effort but do not 
guarantee finding minimal cost paths. In these problems, we want to minimize 
some combination of the cost of the search path and the cost of the search 
required to obtain that path. Minimizing the resulting combined cost should 
be averaged over all the problems likely to be encountered.

However, in practice, for real world problems, the average combination cost 
is not used, because it is highly difficult to decide on ways to combine path 
cost and search effort cost. Also, it is impractical to define a probability 
distribution over the set of problems likely to be encountered. Therefore, 
almost always heuristic power is left to informed intuition gained from actual 
experience with the methods by human experts. This is an important flaw in 
Lenat's position. Even his intuitive metaphorical statements likening his AM 
program to evolutionary biological processes is based on "freedom from 
targets and/or goals" as he puts it.

This viewpoint causes his programs encounter the problem of "mud", which is 
Lenat's informal designation for uninteresting definitions and tasks. Mud 
sooner or later accumulates to the point that a system becomes totally 
involved in a round of tasks that contribute nothing to the expansion of 
concepts and heuristics. This is because, expansion in Lenat's system is 
driven only by internal criteria of how "interesting" the structures are to the 
system, not by any external and/or environmental constraints having to do 
with their pragmatic effectiveness in solving problems.

As mentioned previously, analogy is perhaps one of the most complex 
inductive processes. Because of the close relationship between everyday 
notions of analogy and similarity, several models of analogical reasoning in 
A.I. have been developed which use partial pattern matching. Algorithms like 
those developed by Winston (1980) were based on the assumption that a 
best partial match could be found by accumulating evidence for each of a 
number of possible object-to-object mappings between representations of two 
situations and then choosing the one that scored highest. In these systems,
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evidence for a match consisted essentially of the number of relational 
connections preserved between corresponding objects for a given alignment 
of objects. The object alignment that placed the largest number of relations 
and attributes in correspondence was considered the best match and thus 
the "correct" analogical interpretation.

Winston (1984) consequently has implemented a program called ANALOGY 
for learning physical descriptions from functional definitions, examples and 
precedents. ANALOGY works on the basis of functional descriptions to 
identify objects, and learn their physical descriptions.

His identification and learning system is based on the following synthesis 
steps (Implemented in the ANALOGY program):

1- Description of the object to be recognized in functional terms.

2- Show a physical example. This is done using a semantic net 
representation.

3- Show that the functional requirements are met by the physical description 
using precedents. Several precedents are usually necessary to show that all 
of the functional requirements are met. During this process, the matcher 
determines part correspondence using the links that populate the precedent 
and the problem. The matcher pays particular attention to links that are 
enmeshed in the causal relations of the precedent. The analogizer transfers 
causal constraints from the precedent to the problem. The problem is solved 
if links in the problem match the links carried along with the transfered causal 
relation.

4- Create a physical model of the functionally defined concepts. 
Generalization is achieved by learning from examples and near misses.

The ANALOGY program has been used in simple object recognition tasks.

This approach has several major drawbacks as a model for analogical 
learning. First, it presupposes that well-defined, bounded representational 
models of the situations in both the "base" (i.e., familiar) domain and the 
"target" domain are available as inputs. In a learning situation, however, the 
required prior representations of objects and relations in the target domain
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may be wrong or inconsistent with the analogy. If the domain is totally 
unfamiliar, there may not even be any fragments of a useful representation 
available.

The second problem, with theories based principally on the matching of 
descriptions, is that conceptual representations for real situations may 
contain many causal relations that don't take part in analogy. Winston's 
ANALOGY program suggests that attention to important relations such as 
those involving causal links, can reduce the number of links and the 
computational complexity of the matching process; but it does not mention 
which causal relations are important for a particular analogy and why they 
are important.

Gentner (1983) has outlined a syntactic cognitive model of learning from 
scientific or "explanatory" analogies involving some of the problems 
discussed above. The analogies considered by Gentner included such 
statements as:

- The hydrogen atom is like the solar system
- Electricity flows through a wire like water through a pipe

The model Gentner proposed for learning from such analogies, unlike those 
founded on pattern matching, did not require a full description of the target 
domain beforehand.

In her model, Gentner distinguishes between "attributes", which are one- 
place predicates, "first-order relations", which are multi-place predicates with 
objects as arguments, and "higher-order relations", which are multi-place 
predicates with propositions as arguments.

The syntactic claim is that in using an analogy, people are most likely to map 
higher-order relations, next most likely to map first-order relations, and least 
likely to map attributes. For example, in the analogy between atomic structure 
and a solar system, the target and the source share the higher-order 
relations indicated by causal relations between ATTRACTS and REVOLVES- 
AROUND predicates. However, attributes of the mapped objects, such as 
their absolute size, do not transfer.
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The above mapping process, characterized as a preference for higher-order 
causal relations, is called by Gentner as the "systematicity condition". This 
principle states that a highly interconnected predicate structure - one in 
which higher-order relations enforce connections among lower-order 
predicates - is most likely to be mapped.

The systematicity-based matching, together with simpler partial matching 
processes, has been consequently used by Navinchandra (1988) for the 
purpose of case retrieval from the long term memory, in an implemented 
design problem solver (called CYCLOPS). In Navinchandra's system, 
analogical reasoning is controlled through a process of asking relevant 
causal questions in a given design problem and searching the KBS for cases 
that have related causal relations as a direct solution for the encountered 
problem. If no analoguos cases are matched, the causal questions are 
redefined by finding and addressing their causes and effects (This process is 
an attempt to simulate self-interrogation, as studied by researchers interested 
in the psychology of creativity (Osborn, 1953). The process is continued 
recursively until an analogous case is found (using partial matching or 
Gentner's systematicity based matching), in which case the causal structure 
of the source case is transferred to the target design problem (This process 
is similar to that used in Winston's (Winston, 1984) ANALOGY program). The 
transfered causal structure contains a relevant design action which must 
solve the target problem. The target design problem is deemed solved if all 
disjunctive causal design questions are matched (via partial matching and/or 
systematicity based matching). Navinchandra has applied CYCLOPS to a 
simple landscape design problem.

Although, systems such as the CYCLOPS design problem solver are highly 
useful for practical engineering applications, there remains some 
fundamental problems related to systematicity based matching which has to 
be resolved. For example, the failure of transfer of predicates such as 
HOTTER-THAN in the atomic structure analogy. Predicates such as 
HOTTER-THAN, YELLOWER-THAN, and so on are themselves causally 
related to an indefinitely large number of other propositions. These 
interconnected propositions, obviously, have little or nothing to do with our 
understanding of the analogy with the atomic structure, but the systematicity 
principle does not show why they are irrelevant.
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Furthermore, Gentner's analysis seems to imply that the mappable 
propositions can be determined by a syntactic analysis of the source analog 
alone (since, the higher order causal relations are defined independently of 
their participation in an analogy). This results in the same information being 
mapped in all analogies involving a given source. This is a major problem, 
because the basis of an analogy is intimately related not only to the source 
but also to the target and the context in which the analogy is used.

An alternative view of learning by analogy has been proposed by Carbonell 
(1983). His approach is a direct extension of "Means-Ends Analysis" (MEA) 
problem solving method. His central hypothesis (influenced by Schank's 
(Schank, 1980) theory of human memory organization) is that, when 
encountering a new problem situation, a person is reminded of past 
situations that bear strong similarity to the present problem (at different levels 
of abstraction). This type of reminding experience serves to retrieve 
behaviours that were appropriate in earlier problem solving episodes, based 
on which past behaviour is adapted to meet the demands of the current 
situation.

The traditional means-ends analysis (MEA) problem space consists of 
(Newell & Simon, 1972):

- A set of possible problem states
- One state designated as the "initial state"
- A set of operators with known preconditions that transform one state into 
another state in
the space.
- A "difference function" that computes differences between two states 
(typically applied to compute the difference between the current state and the 
goal state).
- A method for indexing operators as a function of the difference(s) they 
reduce (such as the table of differences in General Problem Solver (Newell, 
1963).
- A set of global path constraints that must be satisfied in order for a solution 
to be acceptable. Problem-solving in this space consists of standard MEA:

1) Compare the current state to the goal state and identify differences
2) Select an operator relevant to reducing the difference
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3) Apply the operator if possible. If it can not be applied, establish a subgoal 
of transforming the current state into one in which the operator "can" be 
applied (Means-ends analysis is then invoked recursively to achieve the 
subgoal).
4) Iterate the procedure until all differences have been eliminated (that is, the 
goal state has been reached) or until some failure criterion is exceeded.

Carbonell argues that, during a reminding process an "augmented difference 
function" be used. The "augmented difference function" defines a similarity 
metric to retrieve the solution of a previously-solved problem closely 
resembling the present problem. The "augmented difference function" is 
similar to the "difference function" of a conventional MEA which apart from 
comparison of initial and final states of source and target, it also takes into 
account the operator-sequence differences and path-constraint differences 
during the analogical mapping process.

In this framework, reminding is only the first phase in analogical problem-
solving, during which a previous similar solution path is identified (using the 
"augmented difference function") and becomes a state in the "analogy 
transform problem space". The differences that the problem solver attempts 
to reduce in the "analogy transform problem space" are precisely those 
computed by the similarity metric in the reminding process.

Carbonell introduces a number of operators such as General Insertion, 
General Deletion, Operator Reordering, and Solution Sequence Truncation 
to be used in the "analogy transform problem space" for reducing the 
difference between the reminded problem and the new problem.

The differences that the problem-solver attempts to reduce are indicated by 
the similarity metric (as computed by the "augmented difference function") 
and the overall process is an standard MEA problem-solving in the "analogy 
transform problem space".

Some serious problems with Knowledge-Based Expert Systems, developed 
based on MEA problem-solving method is the fact that such systems demand 
very specific information about the problem at hand before they can make 
any attempt to solve it. Carbonell's arguments imply that the source and 
target problems must be well defined: initial states, goal states, and allowable 
operators (associated with the differences to which they are relevant) must

71



be fully specified. Without a clear description of the goal state, for example, it 
is impossible to compute the difference between it and the current state. 
Also, these problem solving methods function by the assumption that the 
domain of problem-solving is decomposable to the degree that each subgoal 
can be solved without knowledge of the other subgoals in the system.

Unfortunately, non-routine and creative design problem-solving are 
characterized as fuzzy and ill-defined sorts of problems that fall short of the 
well-defined ideal. In fact, in these problems any of the basic components 
(i.e. the initial state, the goal state, the allowable operators, and the 
applicable constraints) may be only partially known when a solution is 
attempted.

In contrast to syntactic approaches in the study of induction, a number of 
fine-grained distributed inductive learning systems have been proposed 
which are studied in the next section.

4.2.1 Fine grained DAI systems for the simulation of induction

From chapter 2, section 2.3, we remember that, fine-grained DAI approaches 
are concerned with describing higher mental functions and higher reasoning 
processes by reference to highly parallel collection of processes made up of 
very simple computing elements.

Up to now, two classes of fine-grained, inductive and distributed learning 
systems have been proposed:

The first approach is the well known connectionist paradigm. In a 
connectionist system, symbolic objects and concepts correspond to a sub-
network of nodes with weighted links.

Connectionist systems are implemented in a network of neuron-like units and 
are known to exhibit emergent behoviours. Most workers in the field of neural 
networks regard the subject as an attempt to uderstand cognition as a 
property emerging from the interaction of connected units in a network. 
Artificial neural networks (ANNs), also called parallel distributed processes 
(PDPs) or connectionist models, are an attempt to simulate, at least partially, 
the structure and functions of brains and nervous systems of living creatures.
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Generally speaking, an artificial neural network is an information processing 
system composed of a large number of simple processing elements, called 
artificial neurons or simply nodes, which are interconnected by direct links 
called connections and which cooperate to perform parallel distributed 
processing (PDP) in order to solve a desired computational task.

One of the attractive features of ANNs is their capability to adapt themselves 
to special environmental conditions by changing their connection strengths or 
weights. Learning or building the knowledge structure in PDP systems 
involves modifying the weights for a given structure of interconnectivity. 
Currently, the most popular learning algorithm, used in neural networks, is 
the back-propogation algorithm (McClelland et. al., 1987). The back- 
propggation network has been shown to be capable of implementing 
approximations to a variety of mappings from Rn to Rm. The approximation 
achieved has been shown to be optimal in a certain least mean squared error 
sense. The back-propagation is important for multilayered networks with one 
or more hidden layers. The back-propagation algorithm is effectively 
minimizing the error, gradient descending in the weight space.

Unfortunately, research in neural networks has not identified an appropriate 
technique for the determination of the optimal network architecture for a 
given task and there are no comprehensive analytic solutions available.

The space being searched, that is, the error surface on which a minimum is 
to be found, depends on network configuration and the application. A 
particular network configuration assumes an specific connectivity pattern. For 
a fixed application, some network configurations do not guarantee a 
satisfactory solution, while others might lead to slower or faster convergence. 
The training process also depends on the initial weights; as with all gradient 
procedures, the process suffers from local minima problem.

Apart from the above disadvantages, the crucial weakness of connectionist 
systems is the near impossibility of simulating one-shot learning as 
characterized in simple skill acquisition processes. For example, if we need 
to add a new relation such as "owner of" to associate the entities say "John" 
and "Fido" in a semantic network or a rule-based representation of 
knowledge, nothing could be easier. We add an "owner_of" labelled arc 
between the nodes labelled "John" and "Fido" in the semantic network, or we 
add a fact (OWNER_OF FIDO JOHN) to our knowledge base. Unfortunately,
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we can not do this using a connectionist system, because there is no direct 
way of introducing this new relation and relate the pattern of activity for 
"John" with the pattern of activity representing "Fido". A trivial problem for the 
conventional syntactic knowledge representation approaches looks to be 
close to impossible (almost meaningless) for the connectionist approach.

Holland's (Holland, 1986a) Classifier Systems, apart from fruitful suggestions 
for solution of the above mentioned problems related to a connectionist 
approach, span both syntactic and connectionist approaches. Holland, 
Holyoak, Nisbett and Thagard (Holland et. al., 1986b) have introduced a 
general theoretical framework for the study of induction. They argue that, the 
central problem of induction is to specify processing constraints that will 
ensure that the inferences drawn by a cognitive system will tend to be 
plausible and relevant to the system's goals. Plausible inductions can only be 
determined with reference to the current knowledge of the system and the 
problem context.

In their view, the study of induction, is the study of how knowledge is 
modified through its use. Because of their theoretical emphasis on the role of 
the system's goals and the context in which induction takes place, they 
characterize their proposed theory as "pragmatic". In contrast most studies of 
induction reviewed above treat induction from a purely syntactic viewpoint, 
considering only the formal structure of the knowledge to be expanded.

These studies mostly leave out the pragmatic aspects. I.e., those concerned 
with goals and problem solving contexts. In the next section, we will review 
the most important aspects of this theoretical development.

4.3 A Pragmatic Theory of Induction

Holland, Holyoak, Nisbett and Thagard's (Holland et. al., 1986b) theoretical 
framework can be considered as a synthesis of previous research concerned 
with syntactic and pragmatic aspects of induction.

A summary of their theoretical framework concerned with fundamental 
characteristics of inductive systems is given below:
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In their framework, general knowledge is represented by condition-action 
rules. These rules can vary enormously in the complexity of their conditions 
and actions, representing features that can range from elementary perceptual 
ones to highly abstract categories. The immediate actions of rules consist of 
the posting of "messages" internal to the system.

Rules can represent both "diachronic relations" (for example between current 
and expected future states) and "synchronic relations" (associations and 
recategorizations of categories). These two types of rules constitute the 
empirical rules of the cognitive system and they act together to generate 
inferences and solutions to problems. Problem-solving, in this framework, 
involves both diachronic search and synchronic categorizations of elements.

Rules can also represent inferences. Whereas, the function of empirical rules 
is to model the world, the primary function of inferential rules is to produce 
better empirical rules.

A controversial claim made by this framework involves the nature of 
inferential rules. This is a response to the body of evidence indicating that 
people are not able to make effective use of deductive rules characterized by 
the logic of the conditional, when reasoning about abstract symbols (Evans, 
1982). However, peaple do not normally violate the logic of the conditional 
when reasoning about concrete events. This means that, deductive real world 
problems are, in fact, solved by means of highly general but not purely 
syntactic rule systems.

This position can be further clarified by considering that, in real world 
problems, goal expressions contain a significant amount of control 
information. For example, the clausal expression: (A v B v C ) is logically 
equivalent to any of the implications (~Aa ~5)=>C, (~Aa ~c )=>5 ,  
( ~ D a ~ c ) => A, ~A => ( B v C ) .  But, each of these implications carries its own, 
rather different, extra-logical control information, not carried at all by the 
clausal form. Real world problems are mostly solved by using these extra- 
logical control information as opposed to techniques used in conventional 
Theorem Proving Knowledge-Based Expert Systems which have to convert 
the goal expressions into clausal forms before any progress can be made.

75



In this framework, higher-order knowledge structures, such as categories, 
correspond to clusters of rules with similar conditions. Larger structures are, 
therefore, composed of more elementary building blocks.

Superordinate relations among categories and rules results in an emergent 
default hierarchy. Exceptional information about specific examples will tend 
to override default rules, with the consequence that imperfect general rules 
will be protected from mistakes by rules concerned with exceptions.

A set of synchronic and diachronic rules, organized in a default hierarchy, 
gives rise to an emergent mental model. The mental model guides behaviour 
and is used to generate predictions that serve as the basis for inductive 
change.

The process of model construction is viewed as the progressive refinements 
of a quasi-morphism as contrasted to isomorphisms in which each unique 
state of the world maps onto a unique state in the model. An isomorphic 
mental model is unreasonable due to the limitations of realistic cognitive 
systems and the complexity of realistic environments.

In general, the cognitive system will attempt to construct various simplified 
quasi-morphic mental models for achieving certain goals. In a quasi-
morphism, a higher layer in the model, with its broader categories, provides 
default expectations (such as, fast moving objects slow down) that will be 
used to make predictions unless some exceptional category is signaled. An 
exception invokes a lower level of the model, at which a different model 
transition function is specified to capture the exception (such as, small, 
striped, fast-moving, airborne objects -e.g., a "wasp"- remain fast-moving).

The concept of a quasi-morphism captures several basic aspects of a 
pragmatic account of the performance of cognitive systems. First, its 
hierarchical structure allows the system to make approximate predictions on 
the basis of incomplete knowledge of the environment. Second, as the model 
is refined, rules that represent useful probabilistic regularities can be retained 
as defaults. Holland (1986b) has proved that a hierarchy of default rules with 
exceptions can represent knowledge more compactly (i.e. with much fewer 
total rules) than a system restricted to "exceptionless" rules.
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In this theoretical framework, rules act in accord with a principle of multiple 
sources of knowledge. Those rules with their conditions satisfied by current 
messages compete to represent the current state of affairs and to guide 
thinking and action. But in addition to competing with each other, multiple 
rules will often act simultaneously to complement and support each other. 
Through summation of converging evidence, the system can use multiple 
sources of weak support to arrive at a confident conclusion.

Furthemore, induction is claimed to have two basic classes of mechanisms at 
its disposal:

1- Mechanisms for revising parameters such as the strength of existing rules.
2- Mechanisms for generating plausibly useful new rules.

A realistic inductive system must have these mechanisms for constructing 
higher order knowledge structures (representing mental models of the 
environment). In other words, the system must obey the principle of inductive 
adequecy. This means that, the system should contain no structures that 
could not have been produced by the inductive mechanisms of the system.

Mechanisms for generating new rules are constrained by triggering 
conditions that ensures new rules are likely to be useful to the system. Most 
particularly, inductions are guided by background knowledge about the 
variability of classes of objects and events and are triggered in response to 
the consequences of the use of current knowledge, such as failed or 
successful predictions.

Analogy, in this framework, involves "second-order" modelling. A mental 
model of the target problem is constructed by "modelling the model" used in a 
source problem. Analogy is therefore a devicefor performing categorizations 
in the absense of immediately applicable rules. In terms of the theoretical 
framework, analogy occurs when there are no diachronic rules immediately 
available to construct a path from the initial problem state to a goal satisfying 
state.

Among the rules executed early in the problem-solving attempt will be 
synchronic rules (both associative and categorical) that send activation to 
concepts that share components of the representation of the target problem. 
Therefore, multiple related knowledge sources become active during this
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process. A single shared property might result only in a small increment in 
activation for an associated concept; but several shared properties, will raise 
the activation level of an associated concept enough to allow it to direct 
further processing. This process ensures that source analogs that share 
multiple properties with the target will be activated.

However, the process is further constrained by retrieval of properties that are 
goal-related. In other words, a potential analogy is found when synchronic 
rules connect the initial target state to an initial state in a source domain, 
diachronic rules in the source domain connect its initial state to a subsequent 
state, and the latter state in the source domain is in turn connected by 
synchronic rules to the target goal.

The analogically derived model will be immediately subject to the inductive 
mechanisms such as strength revision and specialization.

It is important to note that this is a pragmatic approach to analogy. The 
usefulness of an analogy, like the usefulness of any mental model, is 
determined by pragmatic factors and the analogy is an attempt to construct a 
set of diachronic rules for the target problem that embodies a transition 
function adequate to achieve the goal.

Based on the above pragmatic characterization of inductive systems, Holland 
(1986b) has proposed a computational implementation of inductive systems 
embodied in classifier systems.

Classifier systems are general-purpose programming systems that use 
condition-action rules (classifiers) for the representation of their procedural 
knowledge. They are characterized as fine-grained DAI systems (Holland, 
1986b; Shaw & Whinston, 1989).

A classifier system consists of (1) a finite population of fixed length condition- 
action rules called classifiers, (2) a message list, (3) an input interface, 
receiving messages from the environment, and (4) an output interface for 
affecting the environment.

A large number of rules in the classifier system can be active simultaneously. 
All rules are described in the form of Condition(s) -> Action. The LHS is 
generally a conjunction of a number of conditions, each of which specifies the
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set of messages satisfying it. The action, is the message sent when the 
condition part is satisfied. Each condition is a string of length l on the 
alphabet {1, 0, # }. The LHS is satisfied, if and only if every condition 
matches some messages currently on the message list. An individual 
condition matches a message, if and only if for every 1 or 0 in the condition 
the same value occurs at the corresponding position in the message; "#" 
functions as a "don't care" symbol in a condition and matches 
unconditionally.

In classifier systems, two algorithms have been constructed to support 
inductive mechanisms:

The first is the Bucket-Brigade algorithm (Holland, 1986b) which enforces 
rule competition in classifier systems. This competition is in terms of a 
bidding process, that determines which of the rules with matched conditions 
will be activated on a given processing cycle. The larger the bid made by a 
rule, the greater its chances of becoming active. Specific parameters jointly 
determine the size of a rule's bid: past usefulness is represented by a 
numerical parameter called "strength". Relevance is a function of the 
"specificity" of the condition of the matched rule: the more detailed the rule's 
condition, the greater its specificity. By forming more specific rules, the 
bidding process dynamically constructs a default hierarchy in which specific 
exception rules tend to override more general default rules.

In effect the algorithm treats each rule as a middleman in a complex 
economy, its survival being dependent upon "making a profit" in its local 
interactions. In the long run, a rule makes a profit only if the rule is tied into 
chains of interactions leading to successful actions. In this way, the algorithm 
supports the accumulation of experience.

The process of generating plausibly useful new rules is supported by genetic 
algorithms which use genetic operators such as crossover and mutation to 
recombine past useful rules for construction of possibly better rules. Thus 
genetic algorithms exploit the accumulated experience of the system for the 
generation of new and better rules.

It is important to note that classifier systems by using the competitive bidding 
mechanisms (supported by the Bucket Brigade Algorithm) exploit a "task-
sharing" strategy for distributed problem solving which is characterized by a
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competitive market system. This "task-sharing" form of cooperation takes 
place at a fine-grained level (i.e. at the level of rule interactions). Therefore, 
analysis techniques appropriate for further development of our DPS system 
can also be exploited for the analysis of classifier systems, more generally, 
mathematical techniques appropriate for the study of classifier systems 
holds many elements in common with the analytical techniques appropriate 
for the study of an adaptive DPS system supporting a market-like form of 
cooperation.

Specifically analytical techniques used in mathematical economy become 
directly relevant for both (Holland, 1986b). Price systems, in common with a 
cognitive system, exhibit (1) hierarchical organization, (2) retained earnings 
(strength) as a measure of past performance, (3) competition based on 
retained earnings, (4) distribution of earnings on the basis of local 
interactions of consumers and suppliers (the bucket brigade), (5) taxation as 
a control on efficiency, and (6) division of effort between production and 
research (exploitation versus exploration).

Mathematical economics deals with many of these processes and with 
suitable modifications, much of this mathematics is relevant to the study of 
classifier systems.

4.4 Conclusions

In this chapter, our main aim has been to investigate A.I. techniques for the 
simulation of adaptation and inductive processes at the single agent setting 
and incorporate them into our general DPS framework.

Researchers active in Resource Management and DAI (Davis & Smith, 1983, 
Fox, 1981) has pointed out that, market systems, representing a "task-
sharing" type of cooperation, are especially suitable for task or resource 
allocation, because of the combination of their efficient use of communication 
activities and being able to atain good global performance by distributed 
control.

Fox demonstrates that, the price systems are evolved in response to 
increases in task complexity encountered by DAI systems.
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During the survey of section 4.2, it was shown that most research concerned 
with induction consider only the formal syntactic aspects of the knowledge 
structures and ignore the pragmatic aspects concerned with goals and 
problem-solving contexts.

In contrast, Holland et. al. (1986b) have introduced a general theoretical 
framework for the study of induction, encompasing almost all aspects of 
inductive processes. This theoretical development is pragmatic in the sense 
that, not only it considers the syntactic aspects of induction, but also it 
emphasises the role of the system's goals and the context in which induction 
takes place.

Based on this pragmatic characterization of inductive systems, Holland 
(1986a) has proposed the classifier-systems as a computational framework 
for the study of induction.

Holland's classifier-systems (a fine-grained DAI system), spans both 
syntactic and connectionist approaches. This computational framework, 
(representing a cognitive system) incorporates the pragmatic aspects of 
induction by being environment-oriented in its problem-solving.

More specifically, the classifier system can be thought of as receiving 
information (through its input interface) about the current state of its 
environment, which is representing problems in terms of goals to be attained. 
In this context, the system "closes the loop" through the environment by 
receiving information from the environment and acting upon the environment 
to bring about goal related transitions.

The major inductive mechanism in classifier systems for accumulation of 
experience is the Bucket Brigade algorithm. This algorithm has the following 
characteristics:

(1) It treats the inductive system as a market, where each classifier rule is 
analogous to a middle-man.

(2) The classifier rules use a strength parameter as the hypothetical capital 
for granting contracts or charging services.
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(3) It uses a bidding mechanism to determine task assignments and at the 
same time, updates the strength of the classifier rules involved.

(4) The bidding mechanism introduces an element of competition, since the 
strength would affect a rule's ability to bid.

Furthermore, classifier systems use genetic operators to recombine the 
genetic characteristics of well performing rules to produce plausible better 
rules.

Classifier systems, by using the competitive bidding mechanism (supported 
by the Bucket Brigade Algorithm) exploit a "task-sharing" strategy for 
distributed problem solving which is characterized as a competitive market 
system. This process takes place at a fine-grained level (i.e. at the level of 
rule interactions).

Therefore, by considering each agent in our DPS framework as a classifier- 
system module (i.e. a classifier system module represents an inductive 
knowledge-based expert system), a number of significant advantages ensue:

Firstly, we would take advantage of a computational inductive system which 
apart from its comprehensive coverage of most aspects of induction, is 
supported by a substantial amount of research into the nature of cognition 
and its pragmatics (Holland et. al., 1986b).

Secondly, by considering the agents in our DPS framework as classifier 
systems, instead of using a predetermined, procedural approach for the 
implementation of Self-Model and Env-Model qualifiers as suggested in the 
MACE programming testbed (Gasser et. al., 1987), we would use the 
message-list of the classifier systems to represent both. In this way, all 
external communication and internal processing is carried out by sending 
messages to the message-list. Therefore, for the distributed version of 
classifier systems, to be incorporated in our DPS framework, in addition to 
the messages from the environment and/or from the actions of executed 
rules, there is another source of incoming messages: the messages sent by 
other agents (i.e., other classifier system modules) through the network.

Thirdly, in this proposal we can, also, investigate the application of genetic 
operators, such as crossover and mutation, at the coarse-grained level of
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processing. It is relatively easier to apply genetic operators to a community of 
classifier system modules as compared to a community of syntactic or 
connectionist knowledge-based agents because, classifier systems use a 
chromosome-like syntax for the representation of their knowledge.

Lastly, the proposed organization for our DPS system is much more coherent 
in its problem solving than a community of conventional heterogeneous 
knowledge-based expert systems. This is due to the fact that in this proposal, 
the system, both at the coarse-grained level and at the fine-grained level of 
processing, uses a "task-sharing" strategy for cooperation, characterized by 
a competitive market system. Hence, as elaborated in section 4.3, there are 
possibilities for technology transfer from one level to the other or vice versa.

This coherence in concept significantly reduces the effort in the 
implementation and further expansions of this framework on parallel 
hardware.

We emphasize that, the proposed adaptive organization, to be incorporated 
into our DPS system, at this stage has only a theoretical value. In order to 
investigate the capabilities of this framework, we must first concentrate on the 
practical capabilities of Classifier Systems and Genetic Algorithms as applied 
to the design of instruments at the sub-component level.

In the next two chapters, we will examine these capabilities with some 
concrete instrument design problems.
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CHAPTER 5

Genetic Algorithms for Pesian 
Optimization of Instruments
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5.1 Introduction

In chapter 4, section 4.2.1, it was stated that genetic algorithms have been 
proposed to support inductive mechanisms for rule discovery in classifier 
systems.

Research on genetic algorithms has paralleled work in mainstream A.I. in the 
sense that simpler studies of search and optimization have preceded the 
more complex investigations of machine learning. This is due to the fact that 
search and optimization applications, with their rather well-defined problems, 
objective functions, constraints and decision variables provide a more 
tractable environment where alternative techniques may be compared easily. 
By contrast, machine learning problems, with their ill-defined goal 
statements, subjective evaluation criteria and a great number of decision 
options, constitute a highly complex environment not easily open to 
comparison or analysis. This motivates us to first study the genetic 
algorithms in the context of a number of concrete instrument design 
optimization problems.

In this chapter, we first concentrate on the foundations of genetic algorithms 
(section 5.2), their applications, advantages (section 5.3) and research 
issues (section 5.4). We, then, take up a comparative study of a number of 
reproductive strategies, in the context of two instrument design optimization 
problems: corrugated diaphragms (sections 5.5 and 5.6) and LVDTs (section 
5.7).

Finally, we investigate a number of techniques for the purpose of multimodal 
function optimization using genetic algorithms (section 5.8). These studies 
are carried out for the purpose of finding alternative optimal designs, 
satisfying the same user specified design criteria.

5.2 Genetic Algorithms

Genetic Algorithms are search algorithms based on the natural evolution 
metaphor. Genetic algorithms have been develped by John Holland (1975).
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These algorithms maintain a set of heuristics based based on chromosomal 
string structures (Problem Solving Heuristics) and evaluate the structures for 
selection. They use a structured yet randomized information exchange to 
create a new set of artificial structures, using bits and pieces of the fittest of 
the old (cross-over) and an occasional new part is tried for good measure 
(mutation). Genetic algorithms exploit the accumulated information within the 
generated population members to speculate on new search points with 
expected improved performance.

By working from a population, genetic algorithms maintain a rich data-base of 
well-adapted structures (Chromosome strings) from which new members may 
be created. By maintaining this diversity, These algorithms can reach 
different regions of a search space in parallel. Overall this algorithm is much 
more globally oriented than any conventional optimization method that 
searches from a single point (e.g. gradient-based optimization methods).

Genetic algorithms are reproduction plans composed of two types of 
transition rules:

1- Reproductive processes
2- Genetic operators

Reproductive processes determine the number of copies (Offspring) of an 
string to produce during a reproductive cycle (iteration). Genetic operators 
determine the modifications and combinations of these strings which will form 
the strings of the next generation.

Briefly, a reproductive plan operates as follows: Each population member in 
the search space is represented uniquely by a string generated from some 
alphabet. There is evidence that the alphabet {0,1}, i.e., a binary 
representation is optimal (Holland, 1975). The strings symbolise the "genetic 
material" with specific positions on the string (genes) taking on a variety of 
values (alleles). Each string has a performance index defining the concept of 
fitness for the members of the search space.

As a matter of notation, we consider a sequence of populations A(t), where A  

represents a vector of strings and the index t refers to the time step. At any 
particular iteration cycle, a genetic algorithm maintains a population A ( t )  of 
strings which represent the current set of search points being evaluated for
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fitness. A new generation A ( t+ 1 )  of strings is generated by simulating the 
dynamics of natural evolution, as shown in Figure 5.1 below:

Figure 5.1 The Reproductive Plan

The process begins by randomly generating the initial population A (0 ) .  Each 
individual in the current population is evaluated, saving its associated fitness 
value. A selection probability distribution is then defined over the current
population A(t). This probability distribution is denoted by P ( A i t), i = 1 ,2 ,......N.

Finally the next generation A ( t+ 1 )  is produced by selecting individuals via the 
selection probabilities to undergo "reproduction" via genetic operators. The 
selection probabilities are defined such that the expected number of offspring 
produced by a search-point is proportional to its associated fitness value. 
This can be viewed as the process of selecting individuals for reproduction 
as N samples from A(t )  using the selection probabilities.
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The expected number of offspring for individual A it is given by :

E ( A il) = N x P ( A il)

N x F ( A it)

F ( A it) _  F ( A it) 

(l/ N ) x F ( A ( t ) )  F ( A ( t ) )
(5.2.1)

Where:

N Number of strings in the population (population size)
F ( A i t) : Fitness of the ith. member at iteration t 
F(A(t ) )  : Sum of individual fitnesses 
F(A(i)) : Average population fitness

Equation (5.2.1) indicates that individuals will produce offspring according to 
their fitness relative to the average fitness of the overall population. With no 
other mechanisms for adaptation, reproduction proportional to performance 
results in a sequence of generations A(t), in which the best individual will 
eventually take over a larger and larger proportion of the population. 
However, in nature, offsprings are almost never exact copies of a parent. The 
genetic operators are introduced to exploit the selection process by 
producing new individuals which have high performance expectations. The 
choice of operators is motivated by the mechanisms of nature: Crossover, 
Mutation, inversion and so on (Frantz, 1973; DeJong, 1975).

We only use cross-over and mutation, used in conjunction with three operator 
genetic algorithms, which are shown to give good practical results.

Simple crossover consists of two steps. First, members of the newly 
produced generation are mated at random. Next, each pair of strings 
undergoes cross-over as follows: an integer position k  along the string is 
selected uniformly at random on the interval 1 < k  < l - 1. Where l is the 
length of the string. Two new strings are formed by exchanging all alleles 
between positions 1 and k  inclusively.
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For example, considering two strings A an B of length 7 being mated at 
random:

A — CLxCL2G-2Cl4Cl̂ Cl̂ Cl7 

B = b]b2b3bAb5b6b1

The uniform random variable k can take any integer value between 1 < k <6. 

Suppose it takes the value of 4 (This process is analogous to the rolling of a 
die). The resulting crossover produces two new strings:

A' = bxb2b2b4 a5a6a7 
B' = axa2a3a4b5b6b7

Therefore, cross-over is a randomized, but structured information exchange. 
A more intuitive argument can express what the crossover operator is 
actually achieving. A string can be considered as a complete idea or 
prescription of how to do a particular task. Substrings contain notions of what 
is important or relevant to the task. Therefore, the population can be 
considered as a Knowledge-Based System containing a multitude of different 
ideas and notions and rankings of these notions for a particular task. The 
cross-over process, combined with reproduction combines various notions of 
high performance strings to form new ideas. This is similar to the process of 
innovation. Most often innovation is a combination of things that have worked 
well in the past. Reproduction and cross-over are effective tools in search 
and recombination of useful genetic material, but during these processes 
potentially useful alleles might be lost. Mutation operator protects against 
these irreversible losses by using a random alteration of a string position. In 
a binary code, this simply means changing a "1" to a "0" and vice versa. 
Therefore the mutation operator is used to ensure against premature loss of 
important notions.

The above intuitive arguments are supported by more rigorous analysis of 
the working of the three operator genetic algorithms. The analysis is based 
on the similarity templates or schemata contained within each population 
member (Holland, 1975). A schema is a similarity template describing a 
subset of strings with similarities (i.e., similar notions) over certain string 
positions.
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A similarity template is represented by appending the symbol # or wild card to 
the normal alphabet of the string. As an example, considering the strings of 
length 5, the schema #0000 describes the subset of strings: { 10000,00000 
}. The schema #111# describes a subset with 4 members: { 01110 , 01111 , 
11110 , 11111 }. In this way, schemata provide a straight forward means of 
describing all the similarity subsets possible within the strings of a given 
length. We note that in previous example, with a string length of 5 there are 
35 = 243 different similarity templates, because each of the 5 positions may 
be a 0, 1 or #. In general for alphabets of cardinality k, there are (k + 1) l 

schemata ( l being the string length ). As a result a population of size N  

contains somewhre between 2' and Nx2' schemata depending on the 
diversity of the population. According to Bethke's (Bethke, 1981) work three 
properties of a schema are important to consider. These are:

1- Schema order: This property defines the number of ones and zeros 
present in the schema ( denoted by O(h),  h representing the schema). 
Therefore the higher the schema order the more specific it becomes.

2- The Schema's defining length: The defining length of a schema h, 

denoted by L(h), is the distance between the first and last specific string 
positions and represents the schema's span.

3- The set of Defining Positions: This is the set of indices of ones and 
zeros in h, denoted by A(h). As an example, consider the following schema:

ha = #10###1

The order of ha (i.e., O(ha) ) is calculated by noting that the first defining 
position is at location 2. The last defining position is at location 7. The 
defining length is the difference, 7-2 = 5. The set of defining positions for ha 

(i.e., A ( h ) ) is { 2, 3 ,7 } .

Two distinct schemata, h and h', are said to be competing schemata, if they 
have the same set of defining positions. For example, let h = ##1#, h'  = #0#1 
and h "  = ##0#. Then A(h) =A(h") = { 3 } and A(h') = { 2 , 4 } .  Schemata h  and 
h "  have the same set of defining positions, and so they are competing 
schemata. The three schemata, which compete with h', are #0#0, #1#0 and #1 
#1. Each complete set of competing schemata forms a partition of the search 
space.
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From equation (5.2.1), under the genetic algorithm without genetic operators, 
the expected number of copies of a string S  in the population at time t + 1 is 
directly proportional to the number of copies at time t and to its fitness value. 
Therefore, letting N(S,  t) represent the number of copies of string S  at time t, 

then we have:

E [ N ( S , t  + 1)] = x N ( S , t )  (5.2.2)

Letting F ( h , t )  represent the average fitness of all instances of h  in the 
population at time t and let N(h, t ) be the number of instances of h in the 
population at time t. We can deduce that the same relation, as represented 
by equation (5.2.2), holds for all the schemata with instances in the 
population at time t :

(

V
- J — x Y F ( S ) N ( S , , )  
N ( h , t )  Seh

\

X  —

J F { A ( t ))
■N(h, t )

F { h , t )

F ( A ( t ))
N { h , t ) (5.2.3)

Where:
F ( A ( t ) )  : average fitness of the overall population 
F { h , t )  : observed average fitness of h at time t

Therefore, from above equation, we deduce that under the action of 
reproduction alone, the number of schemata will grow or decline depending 
upon the ratio :

F { h , t )

F(A(t))

This growth ratio is directly related to whether a schema is above or below 
the current sampling average.

But, as we are using a three operator genetic algorithm, we must take into 
account the effects of cross-over and mutation in the above analysis. As
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mentioned before, simple crossover is executed by the random selection of a 
crossover site and the exchange of material across the site with the chosen 
mate. The probability of disruption of a schema due to cross-over is given by:

(5.2.4)

where:
p c : probability of executing cross-over 
1(h) : Defining length of the schema
/ : Length of the string

In other words a schema is destroyed if the cross-over site falls within its 
defining length. From equation (5.2.4) we observe that the higher definition 
schemata have a higher probability of getting corrupted.

Using equation (5.2.4) the survival probability of a schema due to cross-over 
becomes :

Note that this estimate defines a lower bound on the actual probability of 
survival due to cross-over because it does not include the probability of 
swapping identical defining positions between two strings.

Therefore using the cross-over operator is likely to badly disrupt the 
allocation of trials among the long definition schemata, but it is unlikely to 
distroy the short-definition schemata. However cross-over generates new 
instances of the schemata present in the current population as well as 
generating instances of schemata not already existing in the population. This 
is exactly the purpose of using cross-over. i.e., it combines high performance 
low order schemata to produce new schemata with expected above average 
performance.

The last operator to consider is the mutation operator. The mutation operator 
generates a new string by changing one or more bits of a string. The 
probability of mutating a given bit, denoted by p m, is a parameter of the 
genetic algorithm which is mostly kept fixed during the course of GA runs.

(5.2.5)
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The probability of survival due to mutation is related to the number of defining 
positions in a schemata (i.e., its order, 0 ( h ) ). It is given by :

Pms ~ l^  Pm) (5-2-6)

For small values of p m (pm «  1), the schema survival probability is 
approximated by the expression 1 -  0 ( h )  ■ p m .

Equation (5.2.6) represents that the mutation operator is more likely to 
significantly distrupt the allocation of trials to high order schemata. Therefore, 
the cross-over and mutation operators will not distrupt appreciably the nearly 
optimal allocation of trials to the short definition schemata.

We can now deduce the combined effect of all three operators, reproduction, 
cross-over and mutation. The expected number of schemata h to survive into 
the next generation is the product of the expected number from reproduction 
alone and the survival probability of cross-over and mutation. This is given 
by:

F ( h , t )E[N(hJ + l ) ] > N ( h , t ) X j j ^ L x (5.2.7)

Equation (5.2.7) represents the fundamental theorem of genetic algorithms 
which defines a lower bound on the expected number of trials given to the 
existing schemata in a population. Therefore, short, low-order, and above 
average schemata receive exponentially increasing number of trials in future 
generations.

Holland and DeJong (Holland, 1975; DeJong, 1975), using the fundamental 
theorem of genetic algorithms and the k-armed bandit analogy, has shown 
that genetic algorithm is a near optimal procedure for searching among 
alternative solutions.

Holland (1986) also has observed that approximately N 3 schemata where N  

is the population size are usefully sampled in parallel during each generation 
of the genetic algorithm. This computation represents a large amount of data 
processing for populations of even moderate size (50-100). This process
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continues in parallel with the action of genetic operators applied to strings 
only. No explicit computation is necessary to correlate or trace the schemata 
development. This property of genetic algorithms has been called implicit 
parallelism, by Holland, because large number of schemata are handled 
simultaneously without explicit manipulation and centralized book keeping.

Holland (1987) has stated that genetic algorithms are the only known 
example of systems that exhibit implicit parallelism.

By processing similarities in this manner, a genetic algorithm reduces the 
complexity of arbitrary problems. Therefore highly fit, short, low-order 
schemata become the partial solutions to a problem, representing partial 
notions or building blocks for the solution of the task. The genetic algorithm 
discovers new solutions by speculating on many combinations of the best 
partial solutions contained within the current population.

5.3 Applications and advantages of Genetic Algorithms

The application of genetic algorithms in search and optimization has both 
tested and improved genetic algorithms, and has encouraged their 
successful application to search problems that have not given way to more 
traditional procedures.

The first application of a genetic algorithm, came in Bagley's (Bagley, 1967) 
pioneering dissertation. At that time there was much interest in game playing 
computer programs. Bagley devised a contrallable testbed of game tasks 
modelled after the game hexapawn. Bagley's genetic algorithm operated 
successfully on "diploid chromosomes" (paired strings) which were decoded 
to construct parameter sets for a game board evaluation function. The 
genetic algorithm contained the three basic operators - reproduction, cross-
over, and mutation- along with dominance and inversion. At about the same 
time, Rosenberg (1967) was studying the simulated growth and genetic 
interactions of a population of single-celled organisms. His organisms were 
characterized by a simple biochemistry, a permeable membrane, and a 
classical, one-gene/one-enzyme structure. He introduced an interesting 
adaptive cross-over scheme that associated linkage factors with each gene, 
thereby permitting different linkages between adjacent genes. Rosenberg's 
work is sometimes overlooked by genetic algorithm researchers because of
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its emphasis on biological simulation, but its nearness to root finding and 
function optimization make it an important contribution to the research 
domain.

In 1971 Cavicchio (1970) investigated the application of genetic algorithms to 
a subroutine selection task and pattern recognition task. He used a genetic 
algorithm to search for good sets of detectors (subsets of pixels). His genetic 
algorithm found good sets of detectors more quickly than a competing "hill-
climbing" algorithm. Cavicchio was one of the first to implement a scheme for 
maintaining population diversity.

Hollstien's (1971) work was the first to apply genetic algorithms to well-posed 
problems in mathematical optimization. The work is interesting in its use of 
allele dominance and schemes of mating preference adopted from traditional 
breeding practices. Hollstien's genetic algorithm located optima for his 
functions much more rapidly than traditional algorithms, but it was difficult to 
draw general conclusions because he used very small populations (pop- 
size = 16).

Frantz (1973) studied the effect of positional nonlinearities (epistasis) in 
genetic algorithm optimization. He constructed combined linear-nonlinear 
functions over binary haploid chromosomes and studied the positional effect 
(linkage) of several functions where the chromosome ordering was changed 
to affect the length of particular building blocks. He tested the hypothesis that 
an inversion (string permutation) operator might improve the efficiency of a 
genetic algorithm for such functions. Because the standard genetic algorithm 
found near-optimal results quickly in all cases, the inversion operator had 
little effect. However, for substantially more difficult problems, such as the 
travelling salesman problem, job shop scheduling and bin packing, Frantz's 
hypothesis remains a fruitful avenue of research (Davis, 1985; Grefenstette, 
1985a).

Bethke (1981) added rigor to the study of functions that are hard for genetic 
algorithms. Using walsh functions and a clever transformation of schemata, 
he has devised an efficient, analytical method for determining schema 
average fitness values using walsh coefficients. This in turn might permit us 
to identify whether, given a particular function ard coding, building blocks 
combine to form optima or near optima.
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DeJong's (1975) dissertation was particularly important to the subsequent 
applications of genetic algorithms. He recognized the importance of carefully 
controlled experimentation. Varying population si2 :e, mutation and cross-over 
probabilities, and other operator parameters, he examined genetic algorithm 
performance in a problem domain consisting of five test functions ranging 
from a smooth, unimodal function of two variables to functions characterized 
by high dimensionality (30 variables), great multimodality, discontinuity and 
noise. To quantify genetic algorithm performance he defined online and 
offline performance measures, emphasizing interim performance and 
convergence, respectively. He also defined a measure of robustness of 
performance over a range of environments and demonstrated by experiment 
the robustness of genetic algorithms over the test set.

Having been established as a valid approach to problems requiring efficient 
and effective search, genetic algorithms are now finding more wide spread 
applications in business, scientific and engineering circles (Grefenstette, 
1985b; Holland, 1987; Schaffer, 1989; Belew & Booker 1991).

For example Goldberg (Goldberg, 1983; Goldberg, 1986), has used genetic 
algorithms successfully in the optimization of pipeline systems, rule-learning 
in dynamic control applications and structural design.

The reasons behind the growing number of applications of genetic algorithms 
as compared to conventional search methods are:

- Genetic algorithm techniques use only pay-ofl information to direct the 
search, making them independent of a particular application domain. 
Conventional search techniques use vastly dilferent forms of auxiliary 
information and application dependent metrics.

- Genetic algorithms use randomized operators such as reproduction, cross-
over and mutation as a tool to guide a search towards regions of the search 
space with likely improvements. As Holland (1986) suggests, most often 
intuitive ideas are a juxtaposition of things that have worked well in the past. 
In much the same way, reproduction, cross-over and mutation help to arrive 
at potentially innovative new ideas.

Recently Goldberg (1992) has drawn a connection between the 
discriminative and recombinative processes of conceptual design and genetic
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algorithms. Goldberg states that inductive designers, during conceptual 
design, most often recombine bits and pieces of previous designs to form 
new, possibly better proposals. Similarly, Genetic algorithms recombine bits 
and pieces of artificial chromosomes to search for globally optimal solutions. 
He further asserts that, these similarities make genetic algorithms a powerful 
tool for the analysis of innovation in conceptual design. This observation is 
supported by recalling the inductive nature of genetic algorithms. In a sense, 
genetic algorithms support a more human-like search during which they are 
able to generalize from specific instances. As a result, genetic algorithms 
represent a vital component in the process of conceptual design. This 
viewpoint is further supported by qualitative arguments viewing design as 
evolution (Thompson, 1961; French, 1988).

Apart from above theoretical utility, intelligent systems based on genetic 
algorithms benefit from the following advantages :

1- Genetic algorithms are highly adaptive: search spaces with discontinuities, 
vastly multimodal and noisy can be searched effectively without auxiliary 
information requirement. Experience accumulated in a particular search 
space can be used to encounter new and novel search spaces.

2- No predefined sets of heuristics are given. Intelligent systems based on 
genetic algorithms start from a randomly generated population of possible 
heuristic structures. Genetic algorithm creates new and better heuristics 
using its innovative search mechanism.

3- Genetic algorithms support parallel competition and collaboration among 
heuristic structures.

4- Genetic algorithms have learning capability : heuristics are created and 
improved without user intervention.

5.4 Research issues

Genetic algorithms are stochastic processes which sometimes exhibit 
"premature convergence". The so called "premature convergence" is 
characterized by convergent behaviour without guarantee of perfect
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optimality. The major causes of this occasional behaviour are discussed in 
the following sections :

5.4.1 Genetic drift

Premature convergence to suboptimal results has been observed in empirical 
studies by both Cavicchio (1970) and DeJong (1975). DeJong linked the 
primary cause of this behaviour with a natural genetic phenomenon called 
"genetic drift". In small populations, the difference between the expected 
number of offspring and the actual realization can cause the population to 
drift away from the desired path. From section 5.2 we recall that during 
reproduction the number of copies allocated to a candidate chromosome is 
proportional to its fitness ratio F / F .  This rate of sampling has been identified
as a near-optimal, realizable strategy. Unfortunately, in practice we must deal 
with the fractional nature of the quotient, F / F ,  and allocate an integer 
number of offspring.

In genetic algorithm research a number of selection strategies has been 
proposed to reduce the difference between the theoretical near optimal 
sampling rate and that of the actual realization.

A large class of proposed selection strategies are classified under 
proportionate reproduction strategies. In proportionate reproduction 
strategies, individual chromosomes are chosen according to their objective 
function values /. In these schemes, the probability of selection p  of an 
individual from the ith class of identical chromosomes, in the rth generation is 
calculated as :

Pi,t = -----  (5.4.1.1)
X  rnj  t f J
j= i

Where m is the number of identical individuals in a particular class, k classes 
exist and the total number of individuals sums to the population size. Various 
methods have been suggested for sampling this probability distribution, 
including Monte Carlo or roulette wheel selection (DeJong, 1975), stochastic 
remainder with replacement and stochastic remainder without replacement 
(Booker, 1982). There are theoretical differences among stochastic 
properties of these strategies. Booker's (1982) investigations in a machine
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learning application has demonstrated the relative superiority of stochastic 
remainder selection without replacement over DeJong's Monte Carlo 
selection, However, his approach might still suffer from stochastic errors 
causing premature convergence. This is primary due to the, relatively, high 
variance process involved when the fractional parts of fitness ratio (F / F ) are
rounded up with a process which is similar to tossing a biased coin, using the 
fractional parts as the bias.

An alternative selection strategy has been proposed by Baker (1985), called 
the Ranking Selection. His idea is to sort the population from best to worst 
and assign the number of copies that each individual should receive 
according to a non-increasing assignment function. Baker used ranking in an 
effort to stop premature convergence.

Baker seems largely concerned with slowing down searches that progress
too fast because of "super individuals". This is in fact the case with normal

f
selection rule ( p i t = * ), the extraordinary individuals would take over a

2 ^  f

significant proportion of the finite population in a single generation, and this 
is undesirable. Also, at the later stages of a run, there may still be significant 
diversity within the population; however, the population average fitness may 
be close to the population best fitness. If this situation is left alone, average 
members and best members get nearly the same number of copies in future 
generations, and the proportionate selection strategy becomes a random 
walk with no hope of further improvement.

Proponents of proportionate selection have devised a number of fitness 
scaling procedures to avoid these problems (Goldberg, 1986a; Forrest, 1985; 
Gillies, 1985). However, these procedures are ad-hoc, problem specific, and 
complicate the genetic algorithm simulations by adding extra parameters for 
controlling selective pressure.

Baker's ranking selection, completely solves the scaling problem and 
provides a consistent means of controlling offspring allocation. In general, 
ranking methods provide an even, controllable pressure to push for the 
selection of better individuals.

Whitely (1989) has experimented with ranked-based selection strategies in 
the context of DeJong's standard test suite and a set of neural net
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optimization problems. Whitely, based on four standard performance metrics 
(i.e., De Jong's (1975) on-line, off-line, average and best) , shows the relative 
superiority of ranked-based reproduction strategies as compared to 
proportionate reproduction selections.

However, better theories of trial allocation are needed before a final judgment 
could be made.

5.4.2 Genetic algorithm hard problems

While stochastic errors due to reproduction are a primary ingredient in 
premature convergence, there is another important reason that might cause 
premature convergence : The problem might be "genetic algorithm hard". 
Bethke's (1980) dissertation addressed this issue by applying walsh functions 
to the study of schema processing in genetic algorithms.

In particular, Bethke developed the walsh-schema transform, in which 
discrete versions of walsh functions are used to calculate schema average 
fitnesses efficiently. He then used this transform to characterize functions as 
easy or hard for the genetic algorithm to optimize. In what follows, we give a 
brief account of his work.

Walsh functions are a complete orthogonal set of basis functions that induce 
transforms similar to fourier transforms. However, walsh functions differ from 
other bases (e.g., trigonometric functions or complex exponentials) in that 
they have only two values, +1 and -1.

The discrete walsh functions map bit strings jc into Each walsh

function is associated with a particular partitioning of the search space. A 
partitioning of the search space is defined by a partition number j  for those 
schemata that share the same fixed positions:

;( ff)  = S a W - 2 H (5.4.2.1)

Where i is an index over the string positions and the function a  assumes a 
value of 0 when \ =# and a value of 1 otherwise. In this way the partition 
number function j  assigns a unique number to each of the 2 '  partitions of the 
string space defined by the set of 2 l fixed positions. For example, the schema
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### is assigned the partition number = 0. The schemata ##0 and ##1 
share the partition number j  = 1, and the schema 0#1 is assigned a partition 
number y(0#1) = 5. From section 5.2, we recall that schemata with similar 
partition numbers will have the same set of defining positions, and they 
become competing schemata.

The walsh function corresponding to the jth partiotion is defined as follows 
(Bethke, 1980):

if x a  j  has even parity 

otherwise

Here, a  stands for bitwise AND. It is important to note that \|/y (x) has the

property that the only bits in x  that contribute to its value are those that 
correspond to 1's in j ( H)  (i.e., j (H)  represented by its equivalent binary
representation ). Since the walsh functions form a basis set, any function 
/(x)defined on {o,l} can be written as a linear combination of walsh 

functions:

21 -1
/W = X < » ,-v jM

i =0
(5.4.2.2)

The above expression is called the the walsh polynomial representing f i x ) ;  

Where x  is a bit string, l is its length, and each co, is a real-valued coefficient 
called a walsh coefficient. Knowing that v|/;. basis is orthogonal, in general we

may calculate the walsh coefficients as follows:

1 2'~1
= T7 X  / W v ;  W  (5.4.2.3)

Z  x  = 0

The above expression is called the walsh transform (Goldberg, 1989b). Once 
the co;'s have been determined by equation (5.4.2.3), f i x )  can be calculated

by equation (5.4.2.2).
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There is a close connection between the walsh transform and schemas. The 
walsh-schema transform formalizes this connection. Formal derivations of the 
walsh-schema transform are given by Bethke (1980) and Goldberg (1989b). 
The walsh schema transform provides the relationship between a schema's 
average fitness, / ( / / ) ,  and the function's walsh coefficients, co/ . It is given

by:

/ ( « ) =  I  » j 'P jt« )
j  : j  subsumes H

Where a partition j  is said to subsume a schema H  if it contains some 
schema H '  such that H ' ^ H .  For example, the three-bit schema 10# is
subsumed by four partitions : dd#, d##, #d#, and ###, which correspond to 
the j ( H ) values 110, 100, 010, and 000 respectively (please see equation
5.4.2.1). In other words,) subsumes H  if and only if each defined bit in j  (i.e., 
each 1) corresponds to a defined bit in H  (i.e., a 0 or a 1, not a #).

More simply a schema's average fitness may be calculated as a partial, 
signed sum of walsh coefficients, where the only coefficients included in the 
sum are those associated with partitions that contain the schema. The sign of 
a particular coefficient is positive or negative if ( //)  is positive or negative
respectively. The sign of vF/ (tf)  is given by (Here, dont care tokens (#) are 

considered as 0):

if H a  j  has even parity 
if H a  j  has odd parity

For example, in a single variable optimization problem, with the independent 
variable represented by a 3 bit string, the average fitness of the schema 101 
is given by :

/  ( l O l )  © 000  ©001  ~^*®010 ©Oil ® 100  +  ©101 © 110+ ®111

Therefore, by using walsh-schema transform, the average fitness of a 
particular schema can be calculated from the average fitness of its underlying 
constituents, i.e., in above case, the average fitness of the schema 101, is 
calculated by using the average fitness of the schemata : ###, ##1, #0#, #01, 
1##, 1#1, 10#, and 101.
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It is instructive to note that as a schema becomes more specific, new walsh 
coefficients are added to its walsh transform representation. For example an 
order-1 approximation to the average fitness of the schema 101 would be :

f  (lOl) O)000 tt>ooi+œ01o co100

But an order-2 approximation to its average fitness is given by :

f  (1 0 1 ) — (0000—(O001+(O010—Û)01j—CO]00+(Ù101—COno

Therefore, we may view the fitness of a higher order schema as estimated by 
the summation of its lower order constituent schemata. More rigorously, 
/ (o)( / /)  may be defined as the oth-order approximation to the fitness of the 
schema H\ the magnitude of the difference between a schema average and
its next lowest order approximation is simply the highest order walsh 
coefficient in the sum. In the above example this difference is given by com.

This view of assembling functions from lower order schemata shows nicely 
the way genetic algorithms actually work : A population of strings in a genetic 
algorithm can be thought of as a number of samples of various schemas, and 
the genetic algorithm works by using the fitness of the strings in the 
population to estimate the fitness of schemas. It exploits fit schemas via 
reproduction by allocating more samples to them, and it explores new 
schemas via crossover by combining fit low-order schemas to sample higher- 
order schemas that will hopefully also be fit. In general there are many more 
instances of low-order schemas in a given population than high-order 
schemas (i.e., in a randomly generated population, about half the strings will 
be instances of 1 ### • • • #, but very few, if any will be instances of 1111 • • • 1. 
Therefore, accurate fitness estimates will be obtained much earlier for low- 
order schemas than for high-order schemas. The genetic algorithm, initially 
bases its estimate on information about low-order schemas containing a 
given H ,  and gradually refines this estimate from information about higher 
and higher-order schemata containing H .  In the same way, the terms in the
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sum of the above example represent increasing refinements to the estimate 
of how good the schema 101 is. The term co000 gives the population average

(corresponding to the average fitness of the schema ###) and the increasing 
higher-order coy's in the sum represent higher-order refinements of the

estimate of 101 's fitness, where the refinements are obtained by summing 
co/s corresponding to higher and higher-order partitions j  containing 101.

To summarize, one way of describing the genetic algorithm's operation on a 
fitness function /  is that it makes progressively more accurate estimates of
the f s  walsh coefficients, and biases the search towards partitions j  with 
high-magnitude oo/s, and to the partition elements (schemas) for which these

correction terms are positive.

Bethke (1980) used walsh analysis to partially characterize functions that will 
be easy for the genetic algorithm to optimize. Bethke suggested that if the 
walsh coefficients of a function decrease rapidly with increasing order and 
defining length of the f s  (i.e., the most important coefficients are associated 
with short, low-order partitions) then the function will be easy for the genetic 
algorithm to optimize. In such cases, the location of the global optimum can 
be determined from the estimated average fitness of low-order, low-defining- 
length schemata. Therefore, a function whose walsh decomposition involves 
high-order f s  with significant coefficients should be harder for the genetic 
algorithm to optimize than a function with only lower order f s ,  since it will be 
harder for the genetic algorithm to construct good estimates of the higher- 
order schemata belonging to the higher-order partitions j .

Bethke's analysis was not intended as a practical tool for use in deciding 
whether a given problem will be hard or easy for the genetic algorithm. 
Unfortunately, the fitness functions used in many genetic algorithm 
applications are not of a form that can be easily expressed as a walsh 
polynomial. Moreover, even if a function /  can be so expressed, a walsh 
transform of /requires evaluating/at every point in its argument space, and 
is therefore an infeasible operation for most applications of interest ( this is 
also true for the "Fast Walsh Transform", Goldberg, (1989b)). However, 
walsh analysis can be used as a theoretical tool for understanding the types 
of properties that can make a problem hard for the genetic algorithm. For 
example, Bethke used the walsh-schema transform to construct functions that 
mislead the genetic algorithm, by directly assigning the values of walsh 
coefficients in such a way that the average values of low-order schemata give
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misleading information about the average values of their higher-order 
schemata sub-sets. Such functions were later called "deceptive" by Goldberg 
(1987a), who carried out a number of theoretical studies of such functions. 
Goldberg used a dynamic approach which in addition to the deceptive 
properties of a particular fitness function takes into account the combined 
consideration of genetic algorithm's operators and coding. This approach can 
only be used in small problems and was used for the dynamic analysis of the 
minimal, deceptive problem (MDP). He concluded that although his fitness 
function was deceptive, it was not genetic algorithm hard and the genetic 
algorithm consistently found the global optimum in his experiments.

Deception has since been a central focus of theoretical work on genetic 
algorithms (Tanese, 1989). Walsh analysis can be used to construct 
problems with different degrees and types of deception, and the genetic 
algorithm's performance on these problems can be studied empirically. The 
goal of such research is to to learn how deception affects genetic algorithm 
performance and why the genetic algorithm might fail in certain cases and to 
learn how to improve the genetic algorithm or the problem's representation in 
order to improve performance.

Having gone through the above research considerations, it is important to 
emphasize that in practice it is much more efficient to run the genetic 
algorithm on a given function and measure its performance directly than to 
decompose the function into walsh coefficients and then determine from 
these coefficients the chance of success. Practically speaking, deceptive 
functions are mostly characterized by having the best optimal points being 
surrounded by the worst which might happen only in exceptional real world 
problems. Moreover, finding a needle in a haystack is going to be difficult 
regardless of the search technique used.
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5.5 Genetic algorithms for the design of corrugated - 
diaphragms

In this section we apply the three operator genetic algorithm to the problem of 
design and optimization of corrugated diaphragms using analytical models.

A diaphragm is characterized at the power-flow level of abstraction as an 
instrument which transforms input pressure or force into its output pressure, 
displacement or force.

A particular diaphragm design achieves any of the above functionalities by 
obeying specific geometric constraints.

Diaphragms can have linear or non-linear pressure or force characteristics 
depending on their geometry. Diaphragms of the simplest shape are the flat 
diaphragms whose characteristics are strongly progressive for large 
deflections. Corrugation of the diaphragms increases their deflections. The 
diaphragm characteristics can thus be varied by changing the shape and 
dimentions of the corrugations. Corrugated diaphragms are accordingly used 
more than flat diaphragms. The geometrical shape of the corrugated 
diaphragms is such that its rigidities in radial and peripheral directions are 
different : The resistance of an elemental strip cut from the corrugated 
diaphragm to bending and stretching will be much smaller in the radial 
direction than in the peripheral direction. Thus, the corrugated diaphragm is 
anisotropic, due to its particular geometry. Consequently, the idea of flat 
anisotropic diaphragms as being equivalent to corrugated diaphragms, has 
been used to simplify the derivation of mathematical models for the 
corrugated diaphragms (Andreeva, 1966). These mathematical models are 
described in the next section.

5.5.1 Analytical models

Two models for corrugated diaphragms are derived (Andreeva, 1966) :

1- Pressure-loading case
2- Force-loading case
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The characteristic equation for the pressure-loading case is :

P R 4
Eh4

® 0  7 (5.5.1.1)

The coefficients ap and bp in this formula are :

2(3+a)(l+<x)
aP = '

3 -L 1
a 2

(5.5.1.2)

32 -fc, 
a 2 - 9

3 -  M-
6 (a  -  p )(a  -  3)

(5.5.1.3)

Where:

co0 : The deflection of the diaphragm center (mm) 
p  : The pressure being sensed (kg/m2)
E : The modulus of elasticity (kg/m2)
|i : Poisson's ratio
h : The diaphragm thickness (mm)
R  : The active radious (mm)

For the force-loading case the characteristic equation is :

Q R 2
n - E- h2 ' h Q h3

(5.5.1.4)

Where Q is the pointed force (kg). The coefficients aQ and bQ are :

(1 + a ) 2
f ( „  2 X\

1-

V 1« JJ

kx 1 1 -  |l
( a 2- l ) _ 2  ( a - p ) ( a + l )

107



According to Andreeva (1966), the parameter a in these equations is given 
by:

a = ■ k 2 (5.5.1.5)

The coefficients k 1 and k 2 depend on the shape of the diaphragm's profile and 
in the general case of periodical corrugations these coefficients for saw-tooth 
type of profiles are:

K  =
l

cos0o <h

1
cos0o

+ cos0o

Where:
0O : Profile-angle (Radians)

H /h  : Relative corrugation depth

The diagram of a prototypical saw tooth corrugated diaphragm is shown 
below:

Direction of Centre Displacement

Figure 5.7a Schematic of a sawtooth corrugated diaphragm

5.5.2 An initial study using diaphragms with known characteristics

In this section, we formulate the diaphragm design problem in a simple single 
parameter optimization problem to investigate the functioning of the three 
operator genetic algorithm. The problem is formulated as follows :

Given a user specified pressure-displacement or force-displacement 
characteristics, the three operator genetic algorithm is required to find the 
appropriate diaphragm profile parameters (i.e., the relative corrugation depth 
of diaphragm, its thickness and height) such that the required characteristic 
is satisfied with minimum error.
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From equation (5.5.1.1), if the general pressure-loading characteristics is 
shown as:

p  = A  ■ co0 + B  ■ (Oq (5.5.2.1)

Where:

Elimination of thickness h from above two equations gives :

a p A
( E 1

b 3p ~  B 3
(5.5.2.2)

Similarly using equation (5.5.1.4), if the general force loading characteristics 
is shown as :

Q  = A ' - ( o 0 + B'(C>l (5.5.2.3)

Where:

7i - E - h 3 

R 4
■aQ B '  =

n  - E  h

R 2
- b r

Elimination of the thickness h gives :

a Q

bl

A i n  E

B 3{ R 2

\2

>
(5.5.2.4)

For a particular H/h, the cost (i.e., error which defines a diversion measure 
from the user specified characteristic) is defined as:

C O ST p =
A '  E  Y

B 3 , ^ y
(5.5.2.5)

C O ST q
«2 A f n - E  Y
b 3Q B 3 l  R 2 J

(5.5 .2 .6)
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Equation 5.5.2.5 defines cost for a pressure loading case. Equation (5.5.2.6) 
defines cost for a force-loading case.

5.5.3 Some initial simulations

As discussed in section 5.2 genetic algorithms have a number of parameters 
which must be selected : population size N,  cross-over probability p c and 
mutation probability pm.

The effect of these parameters upon genetic algorithm performance has been 
investigated by DeJong (1975). He has performed parameter studies of the 
three operator genetic algorithm over a set of five problems in function 
optimization. He included functions with the following characteristics:

Continous / Discontinous 
Convex / Nonconvex 
Unimadal / Multimodal 
Quadratic / Nonquadratic 
Low-dimensional / High-dimensional 
Determnistic / Stochastic

To quantify the effectiveness of different genetic algorithmic parameters, De 
Jong devised two measures, one to gauge performance and the other to 
gauge the on-going performance. He called these measures off-line 
(convergence) and on-line (on-going) performance respectively.

In his study, DeJong defined the on-line performance X e ( s ) of strategy s on 
environment e as follows :

* e ( s ) = | X  f e ( t )  (5.5.3.1)

Where f e ( t ) is the objective function value for environment e on trial t. In 
words the on-line performance is an average of all function evaluations up to 
and including the current trial.

He also defined the performance measure X*e(s), the off-line performance of
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strategy 5  on environment e as follows:

Z ( s )  = f j ( t )  (5.5.3.2)

Where /;*(£) = best [ f e (1), f e (2 ),........ , /; (T*)} In words, the off-line

performance is a running average of the best performance values to a 
particular time. With a test-bed of five trial functions, and two criteria of 
goodness, DeJong was able to offer the following conclusions in regard to 
the selection of appropriate genetic algorithm parameters:

" Increasing the population size was shown to reduce the stochastic effects of 
random sampling on a finite population and improve long-term performance 
at the expense of slower initial response. Increasing mutation rate was seen 
to improve off-line performance at the expense of on-line performance. 
Reducing the cross-over rate resulted in an overall improvement in 
performance, suggesting that producing a generation of completely new 
individuals was too high a sampling rate (DeJong, 1975). From these 
experiments there emerged a set of values for these parameters that was 
found to yield generally good behaviour for this suite of problems for both on-
line and off-line performance. They are :

Population size = 50-100 
Cross-over rate = 0.65 
Mutation-rate = 0.001

DeJong also investigated the use of generalized (i.e., multi-point) crossover. 
After showing that theoretically these operators exhibit very different schema 
disruption behaviour, he concluded that no significant empirical difference 
could be seen on the suite of test-bed problems.

Following these considerations, at this stage we choose the same values for 
these parameters. But first, we must consider an appropriate cost-to-fitness 
transformation for the effective performance of the genetic algorithm. We 
recall that our objective is to find the optimal diaphragm profile parameters 
such that the required characteristics is satisfied with minimum error. 
Therefore, our objective function is more naturally stated as the minimization 
of the cost (i.e., error) function. But genetic algorithms function by processing
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non-negative fitness values. In general, the fitness function consists of the 
composition of two functions :

u ( x ) -  g ( f ( x ) ) (5.5.3.3)

Where / is  the objective function and g transforms the value of the objective 
function to a non-negative fitness value. The mapping performed by g is 
always necessary when the objective function is to be minimized (since lower 
objective function values must map to higher fitness values) or when the 
objective function can take on negative values (since genetic algorithms can 
only process positive fitness values).

There are a number of alternatives for this mapping. One way to do this is 
with the following simple mapping relationship :

u ( x )  =
- f i x ) / ( * )  <  C max

f i x )  < Cmax

Where:
Cmax : Nominal maximum cost
u(x) : fitness function

f ( x )  : cost function

There are a variety of ways to choose the coefficient Cmax. Cmax may be taken 
as an input coefficient, as the largest f ( x )  (i.e. cost) value observed so far in 
the current population or the largest of the last k  generations.

Another alternative for this mapping function is the following rational function:

u { x )  = ---- (5.5.3.4)
c2 + f ( x )

Clearly as cost goes to infinity, fitness goes to zero. c 1 and c2 may be 
selected to scale u(x) appropriately. This fitness mapping is particularly 
useful in our application because our objective function takes a wide range of 
values.

As discussed in section (5.3.1), during the selection phase, by using a 
proportionate selection strategy, the genetic algorithm determines an 
individual's expected number of offspring by saving its associated fitness
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value as compared to the average fitness of the population. This process 
defines a frequency distribution over the current population.

The next generation is produced by taking N  samples from the current 
population using this frequency distribution. In the following simulations, we 
will use the stochastic remainder without replacement selection. In this 
selection algorithm samples are awarded deterministically based on the 
integer portions of the expected values. Next the fractional parts of the 
expected number values are treated as weighted success probabilities. For 
example, a string with an expected number of copies equal to 1-5 would 
receive a single copy deterministically and another with probability 0-5. This 
process continues until the next generation's population is full. This sampling 
algorithm provides minimum bias, and the greatest lower bound on the 
standard related to the number of offspring for a particular search point. The 
standard-deviation characterizes the possible spread of actual number of 
offspring an individual receives in a given generation.

For the simulations to be considered in this section, the three operator 
genetic algorithm was implemented such that each population member 
represents a particular relative corrugation depth (H/h), according to the 
constraint:

1 mm<  — < \ l m m  (5.5.3.5)
h

30 bit per population member was chosen to give a resolution per bit 
increment o f :

K =
17-1
230 -1

(5.5.3.6)

In these studies unsigned integer fixed-point coding have been used. This 
means that a binary number with 30 bits is first translated into its equivalent 
decimal representation and next mapped into a particular (H/h) value 
according to:

H_

h
(k  x {decoded string in unsigned integer))-!-1 (5.5.3.7)
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Therefore, the binary parameter represents 230 = 107x109 number of 
alternative strings and the genetic algorithm is processing 330 = 2-06x1014 
number of different schemata per generation.

As we have formulated the problem as a minimization, we transform the 
objective function to a fitness function with two alternative transformations 
using equation (5.5.3.4) :

M,
1

/( * )
(5.5.3.8)

u2{ x )
1

1 + / U )
(5.5.3.9)

In equation (5.5.3.8), and recalling equation (5.5.3.4), we have ^=1, c 2=  0 
and, in equation (5.5.3.9), we have c 1 =1 and c2 =1. It must be mentioned that 
fitness mapping as represented by equation (5.5.3.9) is superior as 
compared to equation (5.5.3.8). This is due to the fact that the fitness 
transformation, as represented by equation (5.5.3.8), is unbounded and for a 
zero cost value, we will obtain a fitness of +°°.

The fitness transformation represented by equation (5.5.3.9) which is a 
normalized fitness function will always lie between 0-0 and 1-0 in our case, 
because the cost value is bounded by [0, + °°]. This normalized fitness
mapping is also advantagous for optimization using penalty methods. In 
these problems, we need to estimate the nominal cost of the objective 
function.

However, at this stage, we use both transformations to investigate the 
genetic algorithm robustness properties under different fitness mappings.

We are now in a position to run some simulations and investigate the 
performance of the genetic algorithm. Two design examples from Andreeva 
(1966) are used. These are:

1- Given the following user specified pressure-displacement characteristics
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(i.e., pressure- loading case):

/? = 0-106-co0 +0- 1055-(Oq (5.5.3.10)
p  : pressure (kg/cm2) 
co0 : displacement (mm)

and the following diaphragm parameters :

E  (young's modulus) = 1-35x10® (kg/cm2)
R  (effective radious) = 24 mm

The genetic algorithm is required to find :

1- The optimal profile's relative corrugation depth
2- The diaphragm thickness
3- The diaphragm height

These profile parameters must satisfy the user required characteristics with 
minimal error.

2- Given the following user specified force-displacement characteristics (i.e., 
force-loading case) :

<2= 1-012-co,, +0-437-C0g (5.5.3.11)
Q  - pointed force (kg)

and the following diaphragm parameters :

E  (young's modulus) = 13500 (kg/cm2)
R  (active radious) = 24.75 mm

We are to find the optimal similar profile parameters satisfying the user 
required force-displacement characteristics. The mathematical model, 
objective functions and genetic algorithm parameters have been programmed 
as described. Different independent trials, using different seeds for the 
pseudo-random number generator, were run. For each trial, the genetic 
algorithm is run to generation 100.
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Figure 5.2 represents a typical run for our first example design problem. 
Figure 5.3 represents a typical run for our second example design problem. 
In both of these simulations, equation (5.5.3.8) has been used for fitness 
mapping. Each figure shows the fitness of the best string of each generation 
and the average fitness of the population as the solution proceeds.

In both simulations, near optimal results are obtained by generation 40 (i.e. 
40 x100 = 4000 function evaluations). This may seem like a large number of 
function evaluations. But if we consider the size of the space being searched, 
we recall that the binary strings are of the length l = 30. This represents a 
total of 230 = 1-07x109 possible different alternatives in the search space. 
Therefore 4000 function evaluations is a very small fraction (0.00000037%) 
of the possible unique alternatives. The near optimal solutions are given 
below:

Design Problem-1
(Pressure-loading case)

Design Problem-2
(Force-loading case)

H/h = 4098511 H/h = 2-964136
Thickness = 0-100934 mm Thickness = 0-135124 mm
Corrugation depth = 0-4136 mm Corrugation depth = 0-4005mm

Table 5.1 Optimal designs for design problems 1 & 2

These results were checked against Andreeva's (1966) results. They were 
found to be accurate to 4 decimal places. Using the alternative fitness 
mapping, given by equation (5.5.3.9), similar results were obtained 
demonstrating the robustness of genetic algorithm and its relative 
insensitivity to the particular fitness transformation used. These results are 
more than acceptable for practical purposes.

Considering the population average performance, as shown in figure 5.2 and 
figure 5.3, at first, most of the population have very low fitness values. During 
the early and middle stages of the simulation, the creative schema exchange 
brings fast rapid improvement. After a while, the population enters a 
stagnation period. An examination of the individual strings at this point shows 
substantial convergence at most positions.
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This is represented, in these figures, by the closeness of the population 
average and maximum value during later generations. Recalling our fitness 
mapping (i.e., equation (5.5.3.8) ) used in these simulations, there is still 
immense scope in increasing the fitness (i.e. in case of equation (5.5.3.8), 
the ideal zero error corresponds to +°° fitness). Obviously, we expect that 
with higher iterations the accuracy of the results must converege to the 
precision provided per bit increment of each population string member (as 
specified by equation (5.5.3.6) ). The major reason for this behaviour is 
genetic drift (elaborated in section 5.3.1). Therefore, we must consider 
possible improvement to the reproduction operator.

However, a more robust approach for determination of optimum parameter 
settings has been suggested by Grefenstette (1986). He used a meta-GA to 
locate parameter sets which themselves were used for genetic algorithm 
searches on the DeJong's set of trial functions. This approach is 
advantagous as genetic algorithm's powerful implicit parallelism is used to 
explore the space of parameter combinations. Unfortunately, this method 
suggests good parameter sets without providing much insight as to how 
sensitive performance is to variations. Using this method, Grefenstette was 
able to locate an interesting parameter set that provided significantly better 
on-line performance than De Jong's settings, but was unable to improve upon 
the conventional DeJong's off-line performance settings. His recommended 
values were :

population size = 30 
crossover rate = 0-95 
mutation rate = 0 01

Note that, he is recommending a smaller population size and much higher 
rates of applying the genetic algorithm operators than DeJong does. Using 
these parameter values, another set of simulations were carried out. In these 
simulations, the normalized fitness mapping as represented by equation 
(5.5.3.9) was used for the same example design problems. In figure 5.4, plot- 
2 and figure 5.5, plot-1, typical best string produced after each generation is 
represented forthelst. and 2nd example problems.

As expected, the on-line performance has improved significantly but the off-
line performance has degraded. Specifically, in figure 5.4, plot-2, the best-of- 
run result has converged to a highly sub-optimal solution at generation 41.
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Looking at figure 5.6, plot-1, we observe that the average performance is 
oscillating about the highly sub-optimal solution, with no hope of further 
improvement.

This degradation of performance is caused by using a very low initial 
population size, resulting in an increase in stochastic effects due to 
insufficient processing of too few schemata and fast convergence to a sub- 
optimal solution. These stochastic errors will result in a significant loss of 
useful schemata contained within the population resulting in the best 
members of population to fail to produce offspring according to their actual 
expected values.

In order to remedy this problem higher population sizes can be used which 
results in a degradation of on-line performance. An alternative strategy is to 
fix this potential source of loss by copying the best member of each 
generation into the succeeding generation. This strategy has been called the 
Elitist method; although it might increase the speed of domination of a 
population by a super-individual, but on balance has been shown to improve 
the performance of genetic algorithms on unimodal functions (DeJong, 1975).

In order to confirm these observations, an improved genetic algorithm was 
implemented such that the best string is always preserved in subsequent 
generations. As seen in plot-1 of figure 5.4 and plot-2 of figure 5.5, the 
genetic algorithm using a significantly lower population size has obtained 
near optimal solutions with a significant improvement in both on-line and off-
line performance. This is also confirmed by looking at figure 5.6, plot-2, in 
which the average performance has improved dramatically. Looking at 
figure 5.4 and figure 5.5, the optimal solutions are reached after 
approximately 40 generations for both design example problems. This means 
(40x30) = 1200 function evaluations, which is a significant reduction in the 
number of function evaluations as compared to the previous simulations.

5.5.4 Design of corrugated diaphragms with optimal characteristics

In this section, we will reformulate the diaphragm design problem as a non-
linear programming problem (NLP). This reformulation is for the purpose of 
optimization of the characteristic performance of corrugated diaphragms such
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that a minimum % nonlinearity error is obtained for a user specified maximum 
allowable pressure and displacement.

From equation (5.5.2.1), section 5.5.2, the general pressure loading 
characteristic is shown as:

Where :
p  = A  • co0 + B  ■ cOq

A  =

The program is required to derive optimal diaphragm designs, according to 
the following user specified requirement:

1- p max: Maximum applied pressure (kg/cm2)
2- o)mi : Maximum displacement (mm)

3- Acceptable non-linearity error

The ideal sensitivity of the required diaphragm is given by p max/ c The

non-linearity is defined as the ratio of deviation from best fit line or terminal 
line to the difference of maximum and minimum output pressure in 
percentage, as shown in figure 5.7 below:

% nonlinearity = A p x 100 (5.5.4.1)
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As indicated by equation (5.5.2.1), the maximum deviation from the best fit 
line ocuurs at ( M2) -pmax This indicates the first deviation measure from the 
ideal linear characteristics (We denote this deviation by E R 1 ) .  A given 
diaphragm design might not satisfy the maximal end pressure for the 
specified maximal centre displacement. This indicates the second deviation 
from the ideal linear characteristics (We denote this deviation by E R 2 ) .  The 
following non-linear programming problem results :

Minimize :

F (Q ,n ,h ,H/ h ) = E R l(Q ,n ,h ,H/ h ) + E R 2 (q , n ,h ,H /h ) (5.5.4.1)

Where :

E R \(Q ,n ,h ,H/ h ) x 100
E

E R 2 ( e ,n ,h ,H/ h ) = A {comax) + B { u mJ  -  Pnmax

Subject to :

1<«<10

5  mm < R  <  6 0 mm

1 5 °  < 9 < 3 0

0  • 0 5 1 3  mm < h <  0  ■ 4 1  mm

Where :

R

e
H/h

h

n number of corrugations 
the active radious (mm) 
profile angle
relative corrugation depth 
the diaphragm thickness (mm)
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Acceptable ranges for user specifdied maximum applied pressure are 
between 1/30 bar -> 300 bar.

Corrugated diaphragms can have very large deflections exceeding the 
diaphragm thickness by a factor of 10 or more. Based on these observations, 
the acceptable user specified pmax and comax ranges are :

0  • 0 0 0 3 4  W  2  <  pmax <  3  • 0 5 9 1 W  2  
/  mm m a x  /  mm

0 - 5 m r a < c o m a x <  8 - 2 mm
(5.5.4.2)

This particular constrained non-linear programming problem is not easy to 
solve using conventional optimization methods (such as gradient based 
optimization techniques) as the first and second order partial derivatives of 
our objective function are themselves highly non-linear. In practice, to study 
NLP problems and their solution in depth, it is first necessary to identify and 
classify problems into different types so that each type may be studied 
separately. However, using genetic algorithms, we can treat the design 
optimization problem as a black box. Genetic algorithms require only a 
fitness measure (i.e., some non-negative figure of merit) and a finite problem 
coding.

As we have formulated the problem as a minimization, we transform the 
objective function to a fitness function using the following fitness mapping (as 
explained in section 5.5.3) :

1 0

1-0 + F ( d ,n ,h ,H/ h )
(5.5.4.3)

For the specified search space, the design variables were discretized by 
mapping each variable in its specified range onto a 10 bit, binary unsigned 
integer. To form a complete representation of the problem, the parameter 
codings were concatenated to form a 4x10 = 40 bit string representing a 
particular diaphragm design.

In the following simulations, the Grefenstette's proposed cross-over and 
mutation rates, as described in section 5.5.3, are used. These settings are 
proved to give the best on-line performance. However, as in these 
simulations, we are also concerned with off-line performance and the ultimate
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global best design, we will use a higher population size. The population size 
affects both the ultimate performance and the efficiency of genetic 
algorithms. Genetic algorithms generally do poorly with very small 
populations because the population provides an insufficient sample size for 
most schemata. A large population is more likely to contain representatives 
from a large number of schemata. Hence, the genetic algorithm performance 
is improved by doing a more imformed search. As a result, a large population 
size discourages premature convergence to sub-optimal solutions. On the 
other hand, a large population requires more evaluations per generation, 
possibly resulting in an unacceptably slow rate of convergence. Based on 
these observations the population size is set to 100.

The following two design problems are tackled in this section :

Design-Problem-1 :

Required p max = 2 0 kg/cm2 
Required comax = 1 0  mm
Find a diaphragm with optimal characteristics and - 
minimal non-linearity error

Design-Problem-2 :

Required p max = 150-5 kg/cm2 
Required comax = 2-0 mm
Find a diaphragm with optimal characteristics and - 
minimal non-linearity error

These user specified requirements were chosen because one represents 
typical moderate settings for p max and oomax and the other represents a typical 
high value of Pmax and comax.

In all the optimization that follow, the Elitist strategy has been used. We 
recall that, the elitist strategy ensures the best performing structure to survive 
intact from one generation to the next. In the absence of this strategy, it is 
possible that the best structure disappears due to cross-over and mutation.
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Initially, the three operator genetic algorithm was run using the stochastic 
remainder without replacement. For brevity, we call this algorithm as St-EI 
genetic algorithm.

For each specified problem, five different random seeds were used. The best 
performance curves for each set of trials are shown in figure 5.8 and 
figure 5.9. The optimal solutions in each case are tabulated in table 5.2 
below :

Independent Design Parametei

n  0 ( r a d . )  H / h

rs  :

i ( m m )

Dependent Design Parameters :

R ( m m )  T E R  % N L T  f i t n e s s

Problem-1 4 0 - 5 7 1 1 2 - 8 5 0 - 1 4 2 3 - 6 0 - 0 0 7 4 0 - 1 4 3 1 0 - 9 9 3

Problem-2 1 0 - 5 4 1 1 2 - 3 8 0 - 3 7 7 1 9 - 7 0 - 3 1 1 1 0 - 1 8 0 - 7 6 2

Table 5.2 Best trial solutions using St-EI Genetic Algorithm

As seen from table 5.2, the design solutions given by St-EI are nearly optimal 
for practical purposes. However, there is scope for improvement here 
specifically for design problem-2. By refering to design requirements for our 
design problem-2, we note that a maximum pressure of 150-5 kg/cm2 has 
forced the genetic algorithm to decrease the number of corrugations to a 
minimum value within the specified search space. In fact, the suggested 
number of corrugations, for this problem, has reached the constraint 
boundary. Therefore, the only way that the genetic algorithm can hope to 
reach better optimal designs is to manipulate the other three of the specified 
independent variables; keeping the number of corrugations at its constraint 
boundary. Our specified design problem-2 is a limiting case with respect to 
the restricted search space and proves to be much more difficult to solve 
relative to design problem-1. In fact, in this case, we are confronted with 
premature convergence. Looking at the gene pool after iteration 200, it was 
noted that most strings had almost similar fitness values. The main reason for 
this behaviour lies with the selection method we are using. We recall that, in 
schotastic remainder without replacement, each chromosome produces a 
number of offspring proportional to its fitness; with the restriction that the total 
number of chromosomes per generation remains constant. Thus, if the fitness 
of one chromosome is twice that of another, the superior chromosome
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would produce twice as many offspring. However, as we recall from section 
5.2.1, there are two major problems with this method :

1- If all chromosomes have a similar fitness, each member in the population 
will produce one offspring. This results in little pressure to improve the fitness 
of the population.

2- If one chromosome has a fitness much larger than any other, that 
chromosome will create most, if not all, of the new offspring. The 
chromosome will dominate the population, resulting in a loss of genetic 
diversity.

These problems are the major causes of premature convergence. In order to 
remedy the first problem, we define a new parameter w7n and rate each 
structure against this standard (Grefenstette, 1986). In our experiments, u'min 

was set to the minimum u(x) in the first generation. For each succeeding 
generation, those structures whose evaluation are less than u'min were 
ignored in the selection procedure. In this method, we also define a scaling 
window parameter W which determines the updating period of the u'min 
parameter with respect to the generation number. If 1(W(7, then we set u'min 

to the least value of u{x) which occured in the last W generations. For 
example, suppose after several generations, the current population include 
only structures x for which 1 0 5 (  w;(x) < 1 1 0 .  At this point, no structure in the
population has a performance which deviates much from the average. This 
reduces the selection pressure towards the better structures, and the search 
stagnates. Using our scaling window, if = 110 and r/(xJ) = 10 5, then if

w7n=100, we can rate each structure against umm. In this case 
u'(xJ = r/(xJ-M7n=10, and r/(x7) = M(xJ)-M^in=5; the performance of x t now 

appears to be twice as good as the performance of xy

As before, for each of our specified design problems, five different runs using 
five different random seeds were performed. These results were obtained 
with the scaling window set to 1, i.e., was updated after each iteration.

The best performance curves, for each set of trials, are shown in figure 5.10 
and figure 5.11. The optimal solutions in each case are tabulated in table 5.3.
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Independent Design Parameter

n  0 ( r a d . )  H / h

s :

i ( m m )

Dependent Design Parameters :

R ( m m )  T E R  % N L T  f i t n e s s

Problem-1 3 0 - 4 9 9 1 1 - 6 3 0 - 3 9 4 9 - 2 0 - 0 0 1 2 0 - 0 0 3 6 0 - 9 9 8

Problem-2 1 0  5 1 1 5 - 5 3 0 - 3 0 1 7 - 9 0 - 2 1 9 0 0 - 2 1 9 0 - 8 1 9

Table 5.3 Best trial solutions using St-EI-Wn Genetic Algorithm

For brevity, the windowing technique used in conjunction with the St-EI 
algorithm is called St-EI-Wn. As seen from table 5.3, best trial solutions, 
using St-EI-Wn genetic algorithm, are superior as compared to results 
obtained from St-EI. In effect stochastic errors due to our proportionate 
selection algorithm have been reduced.

Although St-EI-Wn can reduce the stochastic errors due to similarity of 
fitnesses near convergence, it is not effective in maintaining diversity across 
the gene pool, i.e., a chromosome with substantially higher fitness, will tend 
to dominate the population, causing premature convergence.

In order to investigate a different selection strategy, a ranking selection 
method (Baker, 1985) has been implemented. In this method, the whole 
population is first sorted by fitness. The number of offspring each 
chromosome generates is determined by how it ranks in the population. With 
the ranking method implemented, the top 5 %  of the population is allocated 
two offspring deterministically. The bottom 5% receives no offspring and the 
rest is allocated one offspring each. In this way, no one chromosome can 
overpower the population in a single generation, and no matter how close the 
actual fitness values are, there is always pressure to improve. The primary 
disadvantage of ranking is speed; because better chromosomes can not 
easily guide the population, forcing good answers to develope more slowly.

As before, the best performance curves, for each set of trials, are shown in 
figure 5.12 and figure 5.13 up to and including generation 600. The optimal 
results, in each case, are tabulated in table 5.4.
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Independent Design Parameters :

n  9 ( r a d . )  H / h  h ( m m )

Dependent Design Parameters :

R ( m m )  T E R  % N L T  f i t n e s s

Problem-1 3 0 - 5 2 1 5  9 6 0 - 4 5 5 - 5 3 - 3 x l 0 " 4 2 - 8 x l 0 " 4 0 - 9 9 9 6

Problem-2 1 0 - 5 0 1 4 - 4 0 - 4 2 1 - 8 0 1 6 2 7 - 7 x l 0 ' 3 0 - 8 7

Table 5.4 Best trial solutions using Rank-El Genetic Algorithm

The results obtained from Rank-El are substantially better as compared to 
previous results and the characteristics of the near optimal designs are ideal 
in terms of percentage nonlinearity.

The ranking method used has been an effort to stop premature convergence. 
As discussed before, one cause of premature convergence may be a super 
genotype that has an unusually high fitness ratio and thus dominates the 
search process. The ranking method is effective in controlling the number of 
offspring allocated to each structure. Also, ranking method completely solves 
the scaling problem.

Figure 5.14 gives a comparison of best performance curves, for the three 
selection strategies used, up to and including generation 800.

In order to analyse the result obtained so far, we look back at equation 
(5.5.2.1). we notice that A  and B can take on a wide range of possible values. 
This explains why the non-linear programming problem introduces a vast 
search space to our genetic algorithms. The overall performance of our 
genetic algorithms can be substantially improved if we introduce some 
restrictions on the possible variation of the starting population members. This 
is possible by reformulating the non-linear programming problem, as 
specified by equations (5.5.4.1) :

Knowing that (equation 5.5.2.1) :

p =  A  • c o 0  +  B • C 0 g

Where :

=  -^—-hi -a ,  B =  ~ h - b
R a p  Ra
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(5.5.4.4)A

B h bp
A K
h 2 -ap

Using equation (5.5.4.4) the ideal design solution occurs at (when there are 
no constraints on the independent design variables) :

¿•®n,ax +

A -

(  . , A 

\ h K a f j
■®ma , = Pn

->
G)„

B -»0

(5.5.4.5)

We recall from section 5.5.1 tha t:

2(3+a)(l+a)
a r = '

3 -k, i _ i L
V a  J

b J 2 -k '
p a 2 - 9

3 - | i
6 (a - | i) (a -3 )

Where :

a = ■ k 2

Analysis of ap and bp functions reveals that a p is an strictly decreasing 
function of H /h . Also as the profile angle is increased, the non-linearity error 
decreases. Similarly, increases in H /h  decreases the overall non-linearity 
error. These facts are only valid within the restricted ranges of our 
independent design variables. In fact, our fitness or utility function is 
characterized as having only one optimal global solution.

Equation (5.5.4.5) indicates that the optimal linear term of the diaphragm 
characteristics must be as close as possible to pmax/comax ratio.

The reformulation, as specified by equation (5.5.4.5), enables us to introduce 
the linear term of the diaphragm characteristics as an independent design 
variable. In this way, we have control over the ranges of the A  parameter and 
can restrict the search space. This enables us to reduce the population size.
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For design problem-2, the linear term of the characteristics is restricted to the 
following range :

l-0< A<2x co,max /

For design problem-2 we had :

pmax : 150-5 (kg/cm2)
comax : 2-0 mm

1-0 < A < 150.0

By restricting the linear term of the characteristics in this manner, the initial 
randomly generated population would be more likely to contain diaphragm 
designs with linear terms close to the ideal characteristics.

The population size, in the following simulations, has been decreased to 30. 
figure 5.15 shows the improved performance of the St-EI-Wn as compared to 
figure 5.11. Figure 5.16 shows the relative superiority of the Rank-El as 
compared to St-EI-Wn. Rank-El has been able to find the ideal global 
solution to this problem, within our restricted search space, after only 150 
generations. The optimal results in each case are tabulated in table-4 below:

Independent Design Parameters :

n  6 ( r a d . )  H / h  h ( m m )

Dependent Design Parameters :

R ( m m )  T E R  % N L T  f i t n e s s

St-EI-Wn l 0 - 5 7 1 1 6  9 0 - 4 2 3 - 9 0 - 0 7 8 7 - 7 X 1 0 - 3 0 - 9 2

Rank-El l 0 - 5 7 6 1 7 - 0 0 - 4 2 4 - 2 0 - 0 6 l - 6 x l 0 ' 4 0 - 9 3

Table 5.5 Optimal solutions using restriction on A

5.6 Optimization under constraints

In previous section, we transformed our constrained NLP problem into a 
maximization problem by directly mapping each inequality constraint on a 
particular independent design variable (in its specified range) onto a 10 bit, 
binary unsigned integer. This process eliminates the inequality constraints.

128



7
2

6
3

3
 

0
.7

7
6

3
3

 
0

.8
2

6
3

3
 

0
.8

7
6

3
3

 
0

.9
2

6
9

2 No constrain on Radius

O O 20 -40 60 80 1 OO
Gene ration

Figure 5.15 Best of Run, using the St-EI-Wn selection with restriction on- 
the Linear Term of the Characteristics



1
6

9
3

9
 

0
.3

6
9

3
9

 
0

.5
6

9
3

9
 

0
.7

6
9

3
9

o: N o  C o n s t  r a i n t s  o n  R a d i u s
V)

o O 200

Gene r a + Ïon

Figure 5.16 Best of Run, using the Ranking selection with restriction on- 
the Linear Term of the Characteristics



However, in practice there might be some constraints imposed on a set of 
independent design variables and this direct method of elimination will not be 
suitable. For example, in previous section, optimal diaphragm characteristics 
with minimal non-linearity error were obtained at certain optimal R values. 
These optimal unconstrained R values might not correspond to the user 
specified R value or ranges of acceptable R values.

Genetic algorithms are ideally suitable for unconstrained optimization 
problems. For constrained optimization problems, it is necessary to transform 
the optimal constrained problem into an unconstrained problem so that 
genetic algorithms can solve it.

Transformation techniques as suggested by Fiacco and McCormick (1968), 
using penalty functions, achieve this. Such transformations are ideally 
suitable for sequential search, where auxiliary derivative information and 
application dependent metrics is available. Genetic algorithms perform the 
search in parallel using pay-off information to direct the search. Hence, 
modifications in penalty techniques are necessary to make them practical for 
use in conjunction with genetic algorithms.

Considering the following problem with the single constraint h{X)  = 0.

Minimize f ( X )  

subject to h( X ) -  0

Suppose that this problem is replaced by the following unconstrained 
problem, where ¡ i)0  (i.e., the penalty constant) is a large number.

Minimize f { X) +\ x . - h2{X)

Subject to X e Rn

We can intuitively see that, an optimal solution to the above problem must 
have h2{X)  close to zero because otherwise a large penalty pi •h2( X ) will be 
incurred. Now consider the following problem with the single inequality 
constraint g(X)<0.

Minimize f i X j  

subject g(X )<0
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It is clear that the form f ( X ) +  p • g 2{X)  is not suitable, since a penalty will be 
incurred whether g ( X ) { 0 or g ( X ) ) 0 .  In this case, a penalty is desired only if 
the point X is not feasible, that is, g ( X) )  0. A suitable unconstrained problem 
is, therefore, given by :

Minimize f  (X ) + p • max(o , g( X ))
Subject to X e Rn

If g(X)<0, then max(o,g(X)) = 0, and no penalty is incurred. On the other 
hand, if g(X))0, then max(o, g(X))  >0, and the penalty term p-g(X) is 

applied.

5.6.1 Constrained optimization using genetic algorithms

In general, a suitable penalty function must incur a positive penalty for 
unfeasible points and no penalty for feasible points. If the constraints are of 
the form g;(X )<0  for i = 1, 2, •••, m  , and hi( X )  = 0  for i = 1, 2, •••, l , then a
suitable penalty function a is defined by:

m l

a(X) = X i , b ( x )] + Z ' t '(''.(x )) (5.6.1.1)
1—1 1=1

Where O and 'F are continuous functions satisfying the following :

3>(y) = 0 if y <0 and <I>(y))0 if y ) 0 

vF(y) = 0 if y = 0 and vF(y)>0 if y ^ 0

Typically, O and T  are of the forms :

®(y) = [max{0,y}]/

^ 1  = 1 y\P
(5.6.1.2)

Where p  is a positive integer. Thus the penalty function a is usually of the 
form:

P l

a U ) = X [ ma4 ° ’& M }] + X M * ) |
1=1 i=l

(5.6.1.3)
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Fiacco and McCormick (1968) have proved that the optimal solution of the 
penalty function can be made arbitrarily close to the optimal objective value 
of the original primal problem by choosing the penalty coefficient p arbitrarily
large. In other words, the optimal solution of the penalty function formulation 
will approach to that of the primal problem as p becomes relatively large, 
and at +°°, the optimal solution of the penalty function is, in fact, equivalent to 
that of the primal problem. Penalty function methods, as used in conventional 
optimization, do not impose any restrictions on/, g and h other than that of 
continuity. Therefore, theoretically, they can be used for non convex 
programming problems where lagrangian methods fail to provide an optimum 
solution ( because of the presence of a duality gap (Bazaraa, 1979).

We racall that, Genetic algorithm search techniques use only pay-off 
information to direct the the search, making them independent of a particular 
application domain. Penalty methods, as described by equation (5.6.1.1), 
have been used in conjunction with conventional search techniques, where 
auxiliary derivative or other local information is available.

Direct use of exterior penalty methods, as suggested by equation (5.6.1.1), is 
unsuitable in GA search. This is due to the fact that, conventional penalty 
methods impose harsh restrictions on a GA search so that a GA will avoid 
forbidden non feasible spaces. In genetic algorithms, search is based on 
using and combining partial information from all search points. Therefore, the 
infeasible solutions should provide information and not just be thrown away.

The penalty techniques used in conjunction with GAs is constructed by using 
a linear combination of a cost function and a penalty function. The cost 
function is typically well defined from the problem formulation, but writing the 
penalty function and combining it with the cost function is a difficult research 
issue.

Theoretical investigations (Richardson, 1989), suggest that on sparsely 
feasible problems, with relatively few constraints, penalties formed only 
based on the number of violated constraints will not produce satisficing 
solutions. However, if given information about how far from feasible the 
points are, the genetic algorithm then has some idea of how to order the 
search points in a way leading to feasibility. Therefore, penalty functions 
which are functions of the distance from feasibility perform better than those 
which impose harsh restrictions on violations of constraints.

131



 



.0
4

4
4

6
 

0
.2

4
4

4
6

 
0

.4
4

4
4

6
 

0
.6

4
4

4
6

0
.7

6
3

8
4 <  1 5  mmR a d  T u s

o  o  2 0 40 60 80 1 OO
G é n é r â t  ï o n

Best Ave rage

Figure 5.17 Best of Run, using the St-EI-Wn selection with constraint on- 
the active radius of the Diaphragm



.0
5

4
1

3
 

0
.2

5
4

1
3

 
0

.4
5

4
1

3
 

0
.6

5
4

1
3

 
0

.7
6

8
0

0 Radius <  1 5 m m

o o 200

Gene rat I on

Bes t Average

Figure 5.18 Best of Run, using the Ranking selection with constraint on- 
the active radius of the Diaphragm



From table 5.6 above, we note that, user specified restrictions on R  value, 
lower than unconstrained optimal R  value, will produce solutions with a 
higher overall % non-linearity error. Also, in the case of Rank-El, the lower % 
non-linearity is obtained in the expense of a 0-13 mm constraint violation 
resulting in an increase in the overall fitness value.

There is a trade-off between the severity of the penalty imposed upon the 
constraint on R  and the % non-linearity obtained. If we subtract 50% of our 
nominal fitness value for a 10% violation of the constraint (i.e., reduce our 
to 0-125), we would expect to obtain a lower % non-linearity error in the 
expense of a higher R  value. Table 5.7 below, using Rank-El, confirms this 
expectation.

Problem-2 M- n R ( m m ) 6 ( R a d ) H / h h ( m m ) T E R % N L T F i t n e s s

R an k -E l 0 - 1 2 5 1 1 5 - 4 0 - 5 7 7 1 6 - 9 9 0 - 2 0 - 2 6 0 - 1 5 0 - 7 9

Table 5.7 |i=0 125

Therefore, the reduced penalty coefficient means a more relaxed penalty 
imposed upon the constraint violation. These trade-offs must be considered 
when there are conflicting design objectives.

From our results, obtained so far in the context of design optimization of 
corrugated diaphragms, we conclude that our ranking selection strategy 
exhibits substantially better performance as compared to our proportionate 
selection schemes. This observation will be exploited in the next section 
where we will consider the design optimization of linear variable differential 
transformers.
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5.7 Genetic Algorithms for the design optimization of LVDTs

In this section, we apply our three operator genetic algorithms to the problem 
of design and optimization of LVDTs using an analytical model.

The LVDT is an inductive displacement sensor. It operates on the 
transformer principle with varying mutual inductance couplings between a 
primary and two secondary coils. This coupling is induced by the movement 
of a plunger (magnetic iron material) along the axis of the coils. In a standard 
design of LVDT, the three coils are placed symmetrically side by side on the 
same axis, the primary being in the middle. The plunger (armature) is 
attached with a non-magnetic shaft or rod to any assembly from which 
displacement is required to be measured.

In the following sections, an analytical model for the analysis and design of 
LVDTs is presented together with objective functions and constraints. The 
objective function and constraints are incorporated into a penalty function 
procedure for optimization of LVDTs. The penalty function is of the form 
explained in section 5.6.1. It is used for fitness mapping; making it 
appropriate for genetic algorithmic manipulations.

5.7.1 An analytical model for the design of LVDTs

Atkinson and Hynes (Neubert, 1975) developed an analytical mathematical 
model by assuming a distribution for the magnetic flux generated by the 
primary coils. As shown in figure 5.19, next page, this assumes that the flux 
is zero outside the armature region, linearly varying through the primary 
region, and constant in the other two regions.

The coils are surrounded by a stator. The centre coil (primary) is energised 
with alternating current, and the outer coils (secondaries), which are 
identically wound and symmetrically spaced with respect to the primary, are 
connected in series opposition. The induced differential voltage in the 
secondaries varies according to the position of the armature, thus providing a 
means of measuring the displacement of the armature from some null 
position.
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The armature is an iron cylinder of length La and radious rr The coils have 
external radious rn and internal radious rr The primary has width b and the 
secondaries have width m\ the secondaries are separated from the primary 
by a distance d  (Figure 5.19).

Considering a magnetic path such as (i) in figure 5.19, if A represents the 
ampere-turns of the primary, l the path length and H  the field strength, then:

¡ H d l = A = N p Ip (5.7.1.1)

Where Ip is the primary current and N  its number of turns. The contour 
integral of the closed path can be expressed by:

¡ H  d l=  |  H  dlaiI + (5.7.1.2)
air path iron path

135



The difference in reluctance R between the air gap and the iron is large 
(Rair ) ) R iron). The integral of the field intensity over the iron path is thus

negligible as compared to the corresponding integral over the air gap. From 
equation (5.7.1.1) and (5.7.1.2), it follows that:

¡ H - d l = N p Ip (5.7.1.3)
air path

Further, the flux from the end faces of the slug has been neglected; Fringing 
can be decreased by making the two end faces hemispherical. This is in fact 
the case with the movable core of this transducer.

If y is the radious of an elementary ring width §y (figure 5.19) in the cross 

section of a secondary coil, then the flux density in the ring is B L - r̂ / ,  where

Bl  is the leakage flux density at the surface of the armature ( y = rt ). If B,  
and -  B Li denote these leakage flux densities at the armature surface over L1

and L 2 respectively, we have:

(5.7.1.4)
■path F o  1 y

Assuming that the magnetic material is linear within the saturation limit, (i.e., 
B = | i0 • H),  where |i0 is the permeability of free space.

Substituting equation (5.7.1.4) into equation (5.7.1.3) and integrating, we 
have:

F0- N . - I .

r -1
(5.7.1.5)

Similarly we can consider a path such as (ii) in figure 5.18. Consider a cross- 
section at a distance Lp from one end of the primary. The ampere-turns in

the volume thus cut off is N p - I p Ly ^ . If ^deno tes  the leakage flux
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densities at the surface of the armature at this cross-section we have, by the 
same argument as before:

when 

and when

b-r: - In 

L
v/ n

Lp = b , B

o , b l _ = b l

B,

(5.7.1.6)

To obtain a further relation between BL and BLi, the flux on the surface of the

armature is considered. From Gauss' theorem, the flux over the armature 
surface with no sources is given by:

Bl  ■ sx + B^ - s2+ \ b l  (s)-ds= 0 (5.7.1.7)

Where s,st and s2 are the areas over which the corresponding flux densities 
are measured, so in this case:

B \  • 2n rt • L, + 2n rt \QBLp ■ dLp+ 2k  rt ■ Bh ■ L2 = 0 (5.7.1.8)

Substituting from equation (5.7.1.6) for BLp into equation (5.7.1.8) and 

integrating we get:

B¿2
( 2 L 2 +b)  

(2 h + b )
(5.7.1.9)

Substituting for BL from above into equation (5.7.1.5), we get:

(2¿, + i )  Ho N P - I P

r - In
V r' J

(5.7.1.10)

Using equations (5.7.1.9) and (5.7.1.5) for BL we get:

-(2 L .+ b )  \x0 - N p - N s
Br -

2 L r - In
V  ri J

(5.7.1.11)

To find the induced voltages in the secondaries, let <&x, be the flux linking an 
elementary coil, width 8x', distance x '  from the inner side of one of the
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secondaries, say coil 1. Let the armature penetrate a distance x y as shown in 
figure 5.20 below:

Figure 5.20

Then, if N s is the total number of turns on the secondary, the number of turns
8 x '  /in the elementary coil is N s ■ /  and the flux linking it is = B L • 2 k  rt • x'.

Hence, the total flux turns linked in the secondary are:

X,,= O x,-— -dx'
1 * m

(5.7.1.12)

which is equal to:

2tl  r  - B ,  ■ N  (V K r  - Br - N -  x=    <_ -----i f  x ' . d x '  = ----i-----------s— -̂
m  0 m

n-r,-N,(2 L 1 + b)

m 2 L
____L  . r 2/„  ^  xi

r In
V/ ri J

(5.7.1.13)

If the primary is excited with alternating current of frequency/, i.e., if we let:

A = A sin 2 7t /  ■ t

Then the induced r.m.s voltage, in coil-1, is given by:

A  3 f - I p-Np -N,  (2 Lt+b)
dt 107 In

v/

m- L
(5.7.1.14)
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Where I p is the r.m.s value of the primary excitation current and N p the 

number of turns of the primary coil.

Similarly, the induced r.m.s voltage e2, in coil-2, is given by:

A  4 ^  / • / , .• A’, • V. ( 2 L , + b )  2
d t  107 J r / i  m - La ' *2 (5.7.1.15)

The differential voltage e = ex - e 2 is then given by:

f / r PA P ' Ns ■{{^L2 + b ) x l - { l L i + b ) x 22} (5.7.1.16)
471

10' In( r . A ■m- L
V ri )

a

Letting
4t u3 f - I p - N p - N s

107 In
V ri J

E X P R  and knowing that (figure 5.19):
m  ■ L

Lj = x x + d  

L2 - x 2 + d

We can rewrite equation (5.7.1.16) as :

ex — e2 = 2 • E X P R - ( x x - x 2) \2 x xx 2 + (b + 2 d ){ x x +x2)}

or:

ex -  e2 = 4 • E X P R  ■
l  2 )

\ (b  + 2 d ) (
x x + x 2 ^

V 2 ,
+ x xx 2 \ (5.7.1.17)

We note that f ^ - x 2 ^

Denoting

V 2 y 
^ x. + x , ^

is the armature displacement which we denote as jc.

V1 1 2
V 2 y 

equation (5.7.1.17) as :

by x 0, with some simple manipulation we can rewrite

e = ex -  e2 = 4 • E X P R  ■ x  ■ 1-
(b + 2 d  ) ■ x 0 + x l

or :

e = ex -  e2 = k x ■ x  ■
(  x ^

i - rV y
(5.7.1.18)
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5.7.2 The electrical parameters of the LVDT

The electrical resistance of each one of the coils is made up of N turns, each 
turn having a resistance r  given by:

„ avg
r  = p— -  

a

Where:

p : resistivity of wire (Q m) 
lav : Mean length of turn (m) 
a  : Cross sectional area of wire (m2)

The total resistance of each coil is then:

R = p- N  ■ —  
a

Where:

L  = 2 n ^ - ^  = n ( r i + r g) ,

and rt and r0 are the inside and outside radii of the coil respectively. Thus:

R =  p - T f y ^ . + r J  (5.7.2.1)

If, for each coil of a candidate LVDT design, the following parameters are 
given:

rt : Inner radius of coil 
ro : Outer radius of coil 
l : Length of coil

N v : Number of turns per unit volume

141



We can calculate the cross sectional area of wire as follows (neglecting air 
spacing between wires at this stage):

r„ —  r :
2

a
I x iV

(5.7.2.2)

a  : Cross sectional area of wire

Taking into account the air spacing between the wires (assuming a compact 
winding), the actual cross sectional area would be :

Using equations (5.7.2.1), (5.7.2.2) and (5.7.2.3), the D.C. resistance of each 
coil is obtained.

For calculation of self-inductance of the coils, we consider the ideal solenoid 
through the centre of which a core of infinite length is inserted. The self-
inductance of such a coil per unit length is then given by :

R  : mean radius of solenoid

R c : radius of wire 
p 0. permeability of air
\i  r : relative permeability of the core material 
N  : number of turns per unit length

In our case, the length of the armature core is negligible relative to the air 
gap. Therefore, the electrical self inductance of each coil, to a first 
approximation, is equivalent to the inductance of short solenoids. The flux 
density B, along the axis of symmetry of such a coil, is given by :

a ' =  0- 92 x  a (5.7.2.3)

(5.7.2.4)

Where :

\ i - N i
(5.7.2.5)
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In equation (5.7.2.5), we have:

R  : mean radius of solenoid 
l : length
(i : magnetic permeability

N i : Ampere-turns through solenoid

The total flux linkage X through the coil is given by :

X = N B A

Where :
A : cross sectional area of magnetic path

From the definition of self-inductance, we have

X
L  =

|x W 2-A

1( a  R 2 }
L +1

(5.7.2.6)

(5.7.2.7)

Equations (5.7.2.1) and (5.7.2.7) give expressions for the nominal D.C. 
resistance and inductance of the coils, neglecting the eddy currents.

The presence of eddy currents results in energy loss and is manifested as a 
change in the D.C. resistance and inductance of the transformer coils. The 
consideration of eddy currents aims to establish the amount by which the 
magnetic field strength in the ferrite core changes and what these currents 
depend on. It has been established that eddy currents depend on the 
geometry of the material, on its resistivity and the frequency of the alternating 
flux. Bozorth (1964) has stated these relationships; and they must be 
considered at high frequencies.

5.7.3 Design objectives

Given a nominal operating input voltage excitation, the objectives of the 
optimization process are to select design parameters, which, under the 
particular configuration of the LVDT, would minimize non-linearity error and 
would maximize the sensitivity. We know from equation (5.7.1.18) that the
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differential output voltage, in terms of the incremental displacement, is given 
by:

e =  ki - x  1  —  —

V ^ 2  J

The optimized LVDT must have a minimum non-linearity error at the user 
specified maximum displacement.

The non-linearity error of the transformer is defined as the difference 
between the expected and actual value at the output for a given user 
required maximum displacement, as defined below :

where x m is the maximum displacement. The above expression must satisfy a 
user specified minimal non-linearity error. Also, the sensitivity of the device 
must be as close as possible to a user specified sensitivity. This is given by :

5.7.4 Design constraints

The LVDT design parameters are restricted to certain user specified 
maximum values and geometrical constraints. The design parameters are 
given below :

d  :  spacing between coils 
b : length of primary coil 
m : length of secondary coil 
La : armature length 
rt : inner radius of coils 
ra : outer radius of coils 
/  : excitation frequency 

N v : number of turns per unit volume

(5.7.3.1)

(  2 A
Xm eER2 =  sensitivity =  k, 1 -  - — =  —

V k2 J Xm

(5.7.3.2)
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The geometrical constraints are given below:

1- The length of the LVDT must not exceed a user specified maximum size. 
I.e. :

Cj : b + 2 m  + 2 d  - ( m a x l e n g t h )  < 0 (5.7.4.1)

2- The length of the armature must not be less than the length of the primary 
coil. I.e. :

C2 : La > b = ^ b - L a < 0  (5.7.4.2)

3- The armature must not emerge from the secondary coils of the LVDT. I.e. :

C3 : L a + 2- x m -  {b  + 2 (m  + d )} < 0 (5.7.4.3)

Where x m is the maximum displacement.

4- The distance between inner and outer radii of the coils must not be less 
than a minimal feasible length. I.e. :

C4 : -  R 0 + [m in im a l fe a s ib le  le n g th ) < 0 (5.7.4.4)

In our case, we choose a minimal feasible distance of 1 mm.

5.7.5 The search space

As discussed before, genetic algorithms require the natural parameter set of 
the optimization problem to be coded as a finite length string. The design 
parameters were given in section 5.7.4. As an example, we consider the 
following parameter ranges for our search space :

1- 0x10  3m< & < 3 - O x l O  1 2m

1 • Ox 10~3m < m < 3- Ox 10-2m 
1 • Ox 10“3m < La < 2 • 7x 10~2m
T 0x l0 “3m< < 6 -0x 10“3ot
2- Ox 10“3m<ro <l-0x 10“2m 

\QHz < /  < 400Hz
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These ranges have been selected to contain existing industrial LVDT 
parameters for measurement of a maximum input displacement of 1-27mm. 
Different parameter ranges and maximal displacements can be simply 
specified by using the implemented software. The number of turns per unit 
volume ( N v) and the spacing between coils were kept fixed to reduce the
dimensionality of the search space. This will not affect the optimal design 
results considerably. The actual number of turns of the primary and 
secondary coils are a function of the overall dimensions of the LVDT and the 
spacing between coils is considered negligible as compared to the primary 
and secondary coil lengths. The fixed design parameters of the LVDT are 
given below :

supply voltage = 2-7 volts
max displacement = 1 -27 mm
resistivity of wire = 1 • 8 x 10-8 Qm
number of turns/unit vol. = 162-929xl07 turns/m3

As before, for the specified search space, the independent design variables 
are discretized by mapping each variable in its specified range into a 10 bit 
binary unsigned integer. To form a complete representation of the problem, 
the 6 parameter coding were concatenated to form a 6 x 10 = 60 bit string 
representing a particular LVDT design.

5.7.6 Formulation of the utility function

The objective of our design optimization is to find a set of optimal design 
parameters satisfying a user required minimal non-linearity error and 
maximal sensitivity. The design objectives and constraints were given in 
sections 5.7.3 and 5.7.4.

In order to transform the design objectives to a maximization problem, the 
following fitness mapping is used:

U ( X )  = F l ( X )  + F2( X )  (5.7.6.1)

Where:
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h

and:

X  : the design parameter vector 
w l , w2 : the weighting factors

R n : desired minimum % non linearity 
Fn( X )  : actual % non linearity for a design candidate 

R s : Desired sensitivity
FS( X ) : actual sensitivity for a design candidate

The utility function, as represented by equation (5.7.6.1), is based on 
normalized performance criteria. The maximum of each normalized 
component occurs when the performance of an actual design candidate 
approaches to the user specified performance criteria. When a particular 
normalized component is greater than 1, its reciprocal is substituted in the 
utility function. This ensures that the normalized components are symmetrical 
functions about the desired parameter values.

The weighting coefficients have been included for scaling purposes. The 
magnitude of each weighting factor depends on the degree of emphasis 
required for each performance criterion and can be determined empirically. In 
our case, both performance criteria, i.e., the required minimum %non-linearity 
error and maximum sensitivity, have equal importance. Therefore, a value of 
0-5 is chosen for each weighting factor, i.e.:

r.
+1 w hen  Fn( X ) < R l 

-1 w hen  Fn( X ) ) R ,

and

r.
+1 w hen  FS( X ) < R S 

-1 w hen  FS( X ) ) R S

w , = Wi =0-5 (5.7.6.2)
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A constraint violation is squared and subtracted from the actual utility 
function after multiplication by an appropriate penalty coefficient.

Therefore, our constraint formulation becomes:

C /'(X )= t /(X ) -X |i i -o(Ci(X)) (5.7.6.3)

Where :
|i, : penalty coefficients 

C, (Z) : the design constraints

and

* ( c . t f ) ) =  ^  c ‘( x ) > 0
[o

Penalty coefficients are sized for constraints C15C3, and C4 so that a 
maximum violation of the order of 1mm yields a penalty that is equal to 20% 
of our nominal fitness value. This gives a |i value of 100,000 for each 
constraint, i.e. :

H ¿=i,3,4 =1 00,000 (5.7.6.4)

These coefficients were selected to be as relaxed as possible but sufficient to 
avoid non-feasible regions. In practice, penalties are occasionally critisized 
because of the steep ridges they impose on otherwise smooth problems. 
These ridges can cause difficulty among search techniques which depend 
upon a particular shape of local search surface. As the performance of 
genetic algorithm does not depend on the continuity or derivative existence, 
their performance is much less affected by the shape of the local search 
surface.

For constraint C2 we had :

C2'.La >b=>b La < 0

This constraint must be satisfied always, i.e., the length of the armature must 
be greater than the length of the primary coil. If this constraint is not satisfied,
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there will be no possibility for variation of mutual inductance couplings by the 
movement of the armature. A candidate design not satisfying this constraint 
can not have a meaningful fitness value. We, therefore, assign zero fitness to 
such solutions.

Looking at our search space, an initial randomly generated population has a 
high probability of generating LVDT designs not satisfying the above 
constraint. This is due to the fact that the implemented pseudo-random 
number generator (based on subtractive method, Knuth (1981)) produces 
uniform deviates lying within 0 and 1 with equal probability and the 
probability of generating a 1 or a 0 bit for each position of a chromosome has 
been set to 0-5 for all simulations. In fact the expected number of zero 
fitness candidate designs, in an initial randomly generated population, is 
approximately 0-5*pop-size. Also, constraint C4 specifies a minimal feasible 
length for the distance between the inner and outer radii of the coils. The 
penalty coefficient for this constraint has been specified but there is an 
exceptional case that must be accounted for. This is when a candidate 
design is produced either randomly during the initial generation or as a result 
of mutation and/or cross-over operations for which we might get:

K < R ,

This type of solution is physically non-realizable and consequently the fitness 
of such designs are set to zero during our simulations.
From above discussion, we note that the search space is highly 
contaminated with zero fitness individuals and in an initial random population 
more than half of the candidate designs might have a zero fitness value. One 
way to rectify this situation is to implement special purpose routines to avoid 
non-realizable designs. For example, some heuristics can be used, in 
conjunction with the crossover and mutation operations, to avoid the 
production of non-feasible designs. Also, the randomly generated initial 
population can be searched and non-realisable solutions replaced by 
randomly generated realizable designs. These remedies are highly problem 
specific and artificial. Our main premise for using genetic algorithms have 
been to avoid problem dependent techniques and exploit the robustness of 
genetic algorithms. Also, these suggestions are highly expensive in terms of 
computer time. The simplest approach is to increase the population size. A 
larger population is more likely to contain representative schemata from a
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larger realizable designs. Therefore, the population size in the following 
simulations has been doubled and set to 200.

5.7.7 Optimization results

As stated in section 5.7.6, our search space is highly contaminated with zero 
fitness individuals. It is important to note that, non realisable solutions might 
contain problem related schemata which when combined might lead to 
realizable and even optimal designs. Therefore, zero-fitness designs must 
also have a chance for reproduction. We recall that, by using our ranking 
selection method in conjunction with the elitist approach, only the bottom 5 %  

of the population receives no offspring and chromosomes with equal 
fitnesses are ranked according to the processing sequence. Therefore, even 
in a search space which is highly contaminated with zero fitness individuals, 
a ranking selection policy will perform a more informed search.

In the following simulations, we use our Ranking selection strategy in 
conjunction with the elitist approach. As before, we use Grefenstette's 
proposed cross-over and mutation rates. I.e.:

P c = 10
p m= 0 01 (5.7.7.1)

Initially, a user required sensitivity of 400 v/m and a minimal nonlinearity of 0- 
8% is specified for the optimization process.

The performance curve, up to and including generation 100, is shown in 
Figure- 5.21. The optimal design parameters, obtained, are tabulated in table 
5.8 below:

Independent design Parameters

B(mm) M (mm) (mm) R^ (mm) R q  (mm) F(Hz)

Dependent Variables
J  (A) N  N g IM P(Q ) %NLT sensitivity Fitness

1 0 14- 9 27 1 -9 8 7- 83 63 0- 2 2 9 4 4 3 6 9 8 9 2 0 -8 8 % 3 9 9 -9 7  v n f1 0 -9 9 9 9

Table 5.8 Optimal results for %NLT = 0 8. sensitivity = 400 vm1
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As seen from table 5.8, the candidate design, given by our Rank-El, is 
optimal and has satisfied both performance criteria; although the %non- 
linearity error of this design is 0 08% higher than specified. In order to gain 
an understanding of the reason behind the higher %non-linearity arrived at, 
we perform two simulations in which we increase the desired sensitivity to 
700 vm'1' In the first simulation, the desired %non-linearity is set to 1% and 
in the second it is set to 0-8%. The performance curves, up to and including 
generation 100, are shown in Figure 5.22 and Figure 5.23. The optimal 
results, for each case, are tabulated in table 5.9 below:

Independent design Parameters

B(mm) M(mm) (mm) (mm) Rq (mm) F(Hz)

Dependent Variables
I  (A) N N IM P(Q ) %NLT sensitivity FitnessP P S ]

Case-1 11-7 17-5 26-7 2-2 9 9 3 9 9 0- 0 0 4 5 6 1 4 8 4 0 6 7 2 7 1% 7 0 0 vrn1 0 -9 9 9 9

Case-2 1 2 0 27 2 0 9-6 1 16 0 1 4 4 5 3 9 2 2 2 19-22 0 -8 8 % lOOvrrf1 0 -9 5 1 3

Table 5.9 Optimal results for two design cases

From table 5.9, the design, given for 1% required minimal non-linearity error, 
is a perfectly optimal solution but for the case of 0-8% minimal specified non 
linearity, there is still a 0 08% discrepancy. Further examination of the 
candidate design for this case reveals that, the optimal values of primary 
length and armature length have been suggested to be at their minimum and 
maximum constraint boundaries. This is not the case for more relaxed 
minimal non-linearity of 1%. Looking back at equation (5.7.1.18), we note 
that % non- linearity will be minimal for maximum k 2 values. From equations 
(5.7.1.18) we have :

k 2= 0 -5 (b + 2 d \L a- b - 2 d ) + 0-25(L a- b -  2 d )  (5.7.7.2)

A reduction in values of b and d, in the above equation, will increase k 2 and 
an increase in the armature length will increase the second term by the 
square. This implies that the primary coil for this LVDT arrangement, at least, 
must be as short as possible. In other words, the distance separating the two 
secondary coils must be minimal. Furthermore, it can be noted, from 
equations (5.7.1.18), that increases in the armature length has an increasing 
effect on the overall sensitivity of the LVDT. It is observed that, the armature 
length is the most sensitive parameter. This observation has been already 
confirmed by Rahman (1979), using sensitivity analysis.
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In fact, the only way that we can hope to achieve lower %non-linearity would 
be to allow a higher permissible length for the armature and/or lower 
permissible values for the length of the primary coil. Hence the design 
solutions, suggested by our Rank-El genetic algorithm, are optimal across 
the specified search space.

In order to identify a lower bound on the maximum possible sensitivity 
attainable across our search space, we will tackle the following design 
problems :

1- Required sensitivity = 1000 vrrr1
2- Required sensitivity = 2000 vrrr1
3- Required sensitivity = 2800 vrrr1
4- Required sensitivity = 3500 vrrr1

The required minimal %nonlinearity for all of the above problems is set to the 
lowest attainable.

Figure 5.24, shows the performance curve, up to and including generation 
200, for design problem-2. Table 5.10 below gives the optimal results 
obtained for design problem-1 and design problem-2.

Independent design Parameters

B(mm) M (mm) L^  (mm) R  ̂ (mm) R q (mm) F(Hz)

Dependent Variables
I  p  (A) N p N s IMP(£2) %NLT sensitivity Fitness

Problem-1 1 21 27 3-9 6-3 140 0 - 5 126 2 7 2 5 4-22 0 -8 8 % lOOOura 1 0- 951

Problem-2 3 2 0 27 3 0 9-5 377 0 - 0 4 12 3 4 8 2 3 8 7 5 - 0 0 -8 8 % 2 0 0 0 t™ “1 0- 991

Table 5.10 Optimal results for Design Problems 1 and 2

As observed from the above table, both design candidates are optimal with 
respect to the design performance criteria.

For design problem-3, we run two independent simulations, using two 
different random seeds, to investigate the possibility of alternative optimal 
designs. Table 5.11, below, shows the results of these two independent runs 
up to and including generation 200.
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Independent design Parameters

B(mm) M (mm) (mm) R- (mm) Rq (mm) F(Hz)

Dependent Variables
/  (A) Np Ng IMP(£2) %NLT sensitivity Fitness

Case-1 1 0 15 27 3 6 6 0 395 0 - 7 121 1 8 1 8 3 6 0 -8 8 % 2 8 0 0 p m 1 0- 951

Case-2 1- 0 25 27 3- 1 4 - 9 3 9 2 1- 6 75 18 6 3 1 -7 0 -8 8 % 2 8 0 0 p m -1 0- 991

Table 5.11 Two alternative designs for Design Problem-3

Both design solutions, suggested by our Rank-El selection strategy, are 
optimal with respect to our performance criteria. We note that, apart from the 
B  and L a values, these designs do not agree at other design parameters. We 
conclude that our NLP optimization problem, at least for more relaxed design 
criteria, is characterized as having alternative optimal designs. This issue 
will be further investigated in the next section.

Finally, we look at our last design problem. Figure 5.25, shows the 
performance curve up to and including generation 150, and table 5.12 below 
gives the result of this simulation.

Independent design Parameters

B(m m ) M (mm) (mm) R- (mm) Rq (mm) F(Hz)

Dependent Variables
Ip (A) Np Ng IM P(i2) %NLT sensitivity Fitness

1 0 18 6 27 5 - 9 6 - 9 4 0 0 0 - 7 6 6 123 5 3-5 0 -8 8 % 2 9 0 4 p m “1 0- 86

Table 5.12 Optimal result for Design Problem-4

A sensitivity requirement of 3500 vit v1 has proved to be unattainable. The 
optimal result satisfies a maximum sensitivity of 2904 vrrr1- We must note 
that, the suggested excitation currents in tables 5.11 and 5.12 are very large 
and might exceed practical current rating limits of the primary coil wires. This 
problem can be simply resolved by incorporating an additional constraint 
concerning the current rating limits of coil wires. However, at this stage, our 
concern has been to confirm the efficiency of the ranking selection strategy 
and extract some useful design heuristics (concerning the influence of design 
parameters on the overall performance of LVDTs) using our rather less 
complicated formulation. These high primary excitation currents indicate that, 
to achieve the highest possible sensitivities, the primary coil impedance must 
be minimal. Therefore, within our restricted search space, by incorporating 
more severe constraints on the current rating of the coil wires, we do not
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expect to find optimal designs for these high sensitivity requirements. By 
looking at our results so far, the following design heuristics emerges:

The primary coil, for this LVDT arrangement, must be as short as possible 
resulting in the distance separating the secondary coils to be minimal. The 
excitation frequency is suggested to be at its maximum constraint boundary. 
This is expected as, according to our mathematical model, sensitivity is 
linearly increased with respect to the excitation frequency.

The optimal inner radius is maximized. This means that the armature 
diameter must be maximized for high sensitivity requirements. The distance 
between the inner and outer radii of the coils is minimized within the specified 
constraints. This results in a substantial decrease of the primary coil 
impedance of the LVDT and increase in its excitation current. Again 
increases in primary excitation current will linearly increase the sensitivity of 
the LVDT.

Furthermore, the secondary coil length has been increased to accommodate 
the required increase of the armature length for higher sensitivities and lower 
non-linearities.

From above discussion it follows that, to attain higher sensitivities and lower 
%non-linearities, we must allow higher excitation frequencies and higher 
armature length within our search space.

It is important to consider that, in our mathematical model, the leakage from 
the ends of the armature and also any modifications of the flux distribution 
due to the proximity of the shielding case has been neglected. Furthermore, 
the assumption of linear dependence of sensitivity to the input excitation 
frequency is only valid up to 500 Hz. At higher frequencies, the relation is not 
linear mainly due to the effect of eddy currents which have been neglected in 
our mathematical model.

These facts make it necessary to use more sophisticated mathematical 
models. In the past, highly sophisticated distributed parameter mathematical 
models, based on the direct solution of flux distribution within the LVDT, has 
been suggested and used for the analysis and design of specific LVDT 
configurations (Rahman, 1979). These models are based on the solution of 
partial differential equations derived from maxwell's equations and are
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expected to be more accurate, because they take into account all the 
geometric features. The differential equations are mostly solved by using 
finite difference and/or finite element methods.

The use of a more sophisticated mathematical model by no means implies 
the need for modifications in our genetic algorithm utility function or any of its 
parameters. It only means that we are using a more accurate environment 
interfaced to our genetic algorithm. That is to say, our genetic algorithm will 
have a more realistic image of its design environment.
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5.8 Multimodal function optimization using genetic algorithms

In sections 5.5, 5.6 and 5.7, using three operator genetic algorithms, we 
investigated the design optimization of corrugated diaphragms and LVDTs. 
Although the three operator genetic algorithms were shown to be suitable for 
these problems, in practice, we might like to investigate the existence of 
alternative designs having similar performance criteria and/or investigate the 
multimodality of the optimization problem. In section 5.7.7, using two different 
random seeds (please refer to table 5.11), we concluded that the LVDT 
optimization problem, at least for more relaxed user specified design criteria, 
has a number of alternative design solutions. In this section, we further 
elaborate these issues by exploring a number of suggested techniques for 
the purpose of multimodal function optimization.

In optimization of multimodal functions, a three operator genetic algorithm 
might not be able to maintain controlled competition among the competing 
schemata corresponding to different peaks, and the stochastic error 
associated with the genetic operators causes the population to converge to 
one alternative or another. As we recall from section 5.2.1, this problem with 
finite populations is known as genetic drift (DeJong, 1975). Moreover, in 
dealing with multimodal functions with peaks of unequal value, a simple three 
operator genetic algorithm converges to the best peak; whereas, in addition 
to wanting to know the best solution, one may be interested in knowing the 
location of other local optima. To overcome these limitations, some 
modifications in our genetic algorithm are necessary.

In nature, a species is a collection of organisms with similar features. The 
subdivision of environment on the basis of an organism's role reduces inter-
species competition for environmental resources, and this reduction in 
competition helps stable subpopulations to form around different niches in 
the environment. A number of methods are suggested to introduce this 
concept in genetic algorithms.

In DeJong's (1975) crowding, separate niches are created by replacing 
existing strings according to their similarity with other strings in an overlaping 
population.
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Two parameters, generation gap (G) and crowding factor (OF), are defined 
for this purpose. Generation gap G dictates the use of an overlaping 
population model in which only a proportion G of the population is permitted 
to reproduce in each generation. To induce niche in the population, the 
following approach is used. When selecting an individual to die, CF 
individuals are picked at random from the population, and the one which is 
most similar to the new individual is chosen to be replaced, where similarity is 
defined in terms of the number of matching alleles. The new individual 
(chosen by usual selection methods) then replaces this chosen individual in 
the population. DeJong used this scheme successfully with crowding factor 
CF=2 and 3 and with generation gap G=0-1 on a number of multimodal 
optimization applications.

Goldberg and Richardson (1987) used Holland's (1975) sharing concept by 
dividing the population in different subpopulations according to the similarity
of the individuals in two possible solution spaces : The decoded parameter 
space and the gene space. They defined a sharing parameter a  share to

control the extent of sharing, and they defined a power-law sharing function 
sh(d) as a function of the distance-metric (d) between two individuals as 
follows:

0
v ® share j

i f  d < °  share

otherwise

(5.8.1)

To implement the idea of sharing, an individual's payoff is degraded due to 
the presence of other individuals in its neighbourhood. When the proximity of 
the individual is defined in the decoded parameter space, it is called 
phenotypic sharing.

The distance metric (c?0 ), considered in phenotypic sharing, is the distance

between strings in the decoded parameter space. For a single parameter 
function, this may be calculated as the absolute difference of the decoded
parameter values of the strings. In general, for a p-parameter function, the 
distance metric d tj may be calculated using any suitable distance-norm in

the p-dimensional space. For simplicity, the euclidian distance in p- 
dimensional space can be used. Therefore, for the individuals
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Xt = [ x hi,x2i , . . .xpi ] and Xj  = [ x l j ,x2j , . . .xp j ] \he metric d u may be calculated

as:

(5.8.2)

Where the X y ,  x 2 i , . . . x pJ are the decoded parameters. To estimate the 
parameter a  share , imagine that each niche is enclosed in a p-dimensional 
hypersphere of radius a share such that each sphere encloses 1/q of the

volume of the space, where q  is the number of niches in the solution space. 
The radius of a hypersphere containing the entire space is calculated as:

r - x k, m in ) (5.8.3)

The volume of the hypersphere is calculated as V = C r p with C a constant.
Dividing this volume in q  parts and recognizing that the hypervolume has the 
same form regardless of size, o  share may be calculated as follows :

zL

' s h a re "
‘$7

(5.8.4)

Unfortunately, DeJong's on-line and off-line performance measures are not 
directly suitable forjudging the distribution pattern of the trials over the peaks 
in the case of multimodal function optimization. Moreover, a high on-line or 
off-line performance measure is not meaningful when the function has 
unequal peaks. Therefore, simple on-line and off-line performance metrics is 
inadequate for judging the performance of genetic algorithms in the case of 
multimiodal functions. To characterize the distribution of trials over the peaks, 
Deb & Goldberg (1989b) has suggested a chi-square-like criterion, where the 
actual distribution is compared to an ideal distribution. This ideal distribution
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is calculated based on Holland's (1975) sharing concept. Deb & Goldberg 
(1989b), using this performance metric on a number of test functions, has 
shown that a sharing scheme is higly effective in distributing trials at all the 
peaks. However, at this point, we are only interested in the best of run results 
at each design peak. Therefore, in the following experiments, after each 
iteration, the best candidate design in each design partiotion is registered 
and kept until a better candidate is generated during future generations.

In order to investigate the sharing approach, we will look back at the first 
design example (section 5.5.3) which has been given by Andreeva. In that 
example, we found the optimal profile parameters for the following user 
specified required characteristics and active radius:

In fact, the required characteristics has a 29% non-linearity error and in this 
respect is a sub-optimal characteristics.

If we introduce the active radius as an independent design variable, we will 
expect an infinite number of solutions satisfying the above characteristics . 
Looking back at equation (5.5.2.1), we have:

Hence for \ < H / h < \ l ,  we would expect to find R  values that satisfy the 
required characteristic within the following range:

p =  0  1 0 6 ( O 0  + 0 -  1 0 5 5 - c O q  

E  =  1 - 3 5 x 1 0 6  ( k g / c m 2 )

R  =  2 4  m m

But:

R =  8

6 • 71mm < R  < 5 1 m m
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Suppose that we would like to find 17 alternative profile geometries, each 
coresponding to a unit increment of H /h  within its possible range. I.e., we 
would like to obtain 17 alternative designs. Using equation 5.8.3, a share is

calculated as follows:

r  = ! # 7 - & 7 l ) ! + (l7 -l)2

r  52-78 „
0* " _ ^ _ a < ^ 7 “ 640

In order to incorporate the sharing concept, as suggested by equation 
(5.8.1), few computer routines were implemented in conjunction with the 
three operator genetic algorithm.

A triangular sharing function was used in this case. I.e., the a  value in 
equation (5.8.1) was set to 1-0. We will use a phenotypic sharing. I.e., the 
distance metric is defined over the decoded parameters. Also, we choose the 
euclidian distance in p-dimensional space as our distance metric.

Once we have selected a metric and a sharing function, it is a simple matter 
to determine the shared fitness of a string. The shared fitness of a string ( 
f ' )  is its potential fitness divided by its niche count m '\

The niche count m ' , for a particular string i, is taken as the sum of all shared 

function values taken over the entire population:

Note that the above sum includes the string itself. Thus, if a string is all by 
itself in its own niche ( rr{ = 1) it will receive its undegraded full fitness value. 
Otherwise, the sharing function degrades fitness according to the degree of 
closeness of neighboring points.

(5.8.5)
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We now evaluate the use of sharing functions through a computational 
experiment. Genetic algorithm parameters used are given below:

Pm ~ 
p c = 0-85

Pop-size = 170 
Max number of generations =100

The stochastic remainder selection has been used in this experiment. 
Mutation rate has been set to a low value to test the maintenance of diversity 
by using our sharing function without introducing arbitrary diversity through 
mutation. The result of simulation at generation 100 is shown in table 3.13 
below. For computer generated results refer to APPENDIX-lll.

Independent V ar.s D ependent D esign  V ar.s

Partition H /h R(m m ) H (m m ) A B T ER f /

1.0 1.06 56.16 0.49 0.1059 0.1055 0.000005 0.999995 0.09779

2.0 2.24 37.45 0.51 0.1041 0.1055 0.001871 0.998133 0.09117

3.0 3.08 30.08 0.48 0.1093 0.1055 0.003338 0.996673 0 .10182

4 .0 3.74 23.86 0.32 0.0563 0.1055 0.049700 0.952653 0.08800

5.0 5.45 18.97 0.35 0.1077 0.1055 0.001773 0 .998230 0.09193

6.0 6.35 16.66 0.32 0.1107 0.1055 0.004692 0 .995330 0.07867

7 .0 7.11 14.99 0.29 0.1062 0.1055 0.000254 0 .999746 0.11051

8.0 7.81 13.43 0.25 0.0866 0.1055 0.019372 0.980996 0.08677

9 .0 9.09 11.99 0.24 0.1062 0.1055 0.000170 0.999830 0.11144

10.0 9.56 11.53 0.24 0.1120 0.1055 0.006016 0.994020 0.11333

11.0 10.98 9.80 0.19 0.0854 0.1055 0.020570 0.979845 0.06686

12.0 11.99 7.97 0.11 0.0315 0.1055 0.074470 0.930691 0.07738

13.0 13.35 8.41 0.18 0.1091 0.1055 0.003134 0.996876 0.08159

14.0 13.99 7.92 0.16 0.0959 0.1055 0.010058 0.990042 0.08591

15.0 15.47 7.28 0.16 0.1057 0.1055 0.000243 0.999757 0.10521

16.0 15.59 7.28 0.16 0.1124 0.1055 0.006455 0.993587 0.09718

17.0 16.91 7.13 0.19 0.1767 0.1055 0.070745 0.933929 0.12613

Table 5.13 Results for the multimodal design optimization of a Diaphragm
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The theoretical expected number of near optimal points, for each H /h  value in 
this experiment, is calculated as:

U: = J — v N = ' - - / m = V i  
I  f ,  17

The theoretical degraded fitness, according to equation (5.8.5), is calculated 
as:

10
0-1

The variance of the expected number of individuals in each partition is:

a , 2= N - p ,  ( l - f t ) = 1 7 0 x ^ x ^  = 9

Where :
= M  ̂= J_

Pi~ N ~  17

Looking at the simulation results, we observe that the degraded fitnesses for 
each H /h  value is close to the theoretical value and the genetic algorithm has 
found 17 alternative optimal results, for each specified design partition.

From section 5.7.7, we recall that, the LVDT design optimization problem, at 
least for more relaxed design criteria, was found to contain alternative 
optimal designs. In order to investigate this issue further, we consider the 
design optimization of an LVDT with the user required sensitivity of 400 vn r1 
and a minimal non-linearity of 10%. We use the same design search space 
as specified in section 5.7.5, i.e.:

10x10 3/n<Z?<3-0xl0 2m  

1 • Ox 10~3m < m <  3-Ox 10-2m 
10x l0 “3m< La < 2-7x 10”2m
T 0xl0 “3m< rt < 6 0xl0“3m 
2-Ox 10-3m<ro <l-0x 10~2m 
\ 0 H z < f  < 4 0 0 Hz
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It is important to note that, in the above search space, there is a significant 
difference between the absolute values of permissible ranges of /  
(representing the frequency) and other independent design variables. 
Therefore, a direct use of the distance norm, as specified by equation (5.8.2), 
would result in/dominating this expression and in effect the sharing function 
would be strongly dominated by this variable. In order to remedy this 
situation, we use a normalized formulation, in which the distance norm is 
specified in terms of the underlying decoded unsigned fixed-point integer 
coding rather than the actual mapped values. Therefore, for each of our 
independent design variables, its normalized decoded value, to be used in 
conjunction with the sharing function (equation 5.8.1), is given by :

X  = -------- (5.8.7)
¿ 2 i_1
1 = 1

In the above formulation, X  represents the normalized decoded value for 
each of our independent variables, l represents the length of each X  sub-
string, where X  -  x ,  x , _ l - - x 2 x 1 and each bit, x i e  jo,l}, is subscripted by its

position.

In this way, the normalized phenotypic values bocome independent of a 
particular design search space. Our new normalized sharing function takes 
into account the similarity of all independent design variables evenly and in a 
straight-forward linear function of the degree of similarity among them.

We are now in a position to run our next simulation. In this experiment, we 
would like to find 20 alternative LVDT designs satisfying our specified design 
criteria in the range :

o-o <¿„.<76

Where, 6 is the number of design variables and the distance-norm is our
formulated normalized distance. Using the normalized distance norm 
formulation, <jshare is calculated as follows :

r = i - ^ 6 x ( l  0-0-0)2 -  1-2247
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G share - =  * 0-7434

Genetic algorithm parameters used in this experiment are given below :

pm = 0003
pc = 0-95

Pop-size = 400
Max number of generations = 140

The fitness function for this experiment is as defined by equation 5.7.6.1. The 
mutation rate is chosen in line with DeJong's (1975) suggestion, (i.e., p m ~  

11 Pop-size). Following the considerations of section 5.7.6 (i.e., the expected 
number of candidate designs having near zero fitness value is more than 50 
% ), we have increased the population-size to 400. Table 3.14 shows the 
result of the simulation, for 11 consecutive normalized partitions, at 
generation 140. For computer generated results, refer to APPENDIX-IV.

Partition

Independent design Parameters

B(mm) M(mm) (mm) R- (mm) R q  (mm) F(Hz)

Dependent Variables

%NLT sensitivity Normalized Distance Fitness Shared Fitness

0 .7 9 6 1 1.6 10 .6 19.3 1.3 3 .8 83 1 .48% 3 8 9 .2 t™ _1 0 .8 3 2 7 0 .7 7 6 3 0 .0 4 1 8

0 .9 1 8 5 1.5 13 .2 2 3 .6 1.1 2.3 63 1 .1 6 % 3 8 0 .5 1™_1 0 .9 7 7 8 0 .9 2 4 7 0 .0 6 4 4

1 .0 4 1 0 2 .4 13.5 2 5 .3 1.5 4 .5 64 1 .00% 3 9 8 .5 t™ "1 1 .0949 0 .9 9 5 6 0 .0 4 8 1

1 .1 6 3 5 7 .2 13 .9 2 6 .5 1.1 2 .0 62 0 .9 9 5 % 3 9 8 .4 t™ -1 1 .1 0 6 4 0 .9 9 6 5 0 .0 5 5 0

1 .2 8 5 9 6 .4 13.7 2 6 .2 2 .4 6 .0 64 0 .9 9 8 % 3 9 8 .6 t™ “1 1 .2 2 9 4 0 .9 9 8 1 0 .0 4 2 0

1 .4 0 8 4 8 .0 2 7 .4 2 6 .7 1.0 2 .4 64 0 .9 9 6 % 3 9 9 .7  ttm"1 1 .3 7 2 6 0 .9 9 8 9 0 .0 6 2 1

1 .5 3 0 9 1.5 14 .4 2 5 .5 3 .5 9 .2 63 0 .9 9 7 % 4 0 0 .1 t™ “1 1 .4785 0 .9 9 7 9 0 .0 5 7 8

1 .6 5 3 4 1.6 14 .4 2 5 .5 5 .7 8.5 59 0 .9 9 6 % 3 9 9 .9 t™ “1 1 .6278 0 .9 9 9 0 0 .0 5 6 1

1 .7 7 5 9 4 .0 13 .3 2 5 .8 5 .6 10.0 61 0 .9 9 5 % 4 0 1 .3t™ "1 1 .7273 0 .9 9 6 2 0 .0 6 4 8

1 .8 9 8 3 8 .4 2 9 .1 2 6 .9 5 .5 9 .9 64 0 .9 9 1 % 4 0 1 .4 t™ "1 1 .9523 0 .9 9 7 7 0 .0 5 0 8

2 .0 2 0 8 6 .6 2 8 .9 2 6 .5 5 .8 10.0 62 0 .9 8 1 % 3 9 9 .1 t 1 .9 6 1 5 0 .9 9 1 4 0 .0 7 3 8

Table 3.14 Results for the multi-modal design optimization of an LVDT
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Looking at these results, we observe that the program has found 10 
alternative designs in the range:

0-918 < d i0 < 2-021

Where d i0 represents the normalized distance of a candidate design's

independent design variables from the origin of the hyperspace (i.e., 
individuals 8, 9, • • •, 17). At other partitions, relative local optima has been
found which are sub-optimal with respect to the desired performance criteria. 
This is of no surprise as, at low and high limits of d i0 , we don't expect to find

optimal designs. For example, individual number 20 (please refer to 
APPENDIX-IV) is expected to have a d i0 ~  2-4, which means that the

normalized distance of its independent design variables must not be, 
approximately, below 5% of the maximum normalized value. At these high 
values of independent design variables we don't expect to find optimal 
designs.

It is reassuring that near optimal alternative designs have been found by this 
simple procedure, confirming our expectation that, at least for more relaxed 
design criteria, we must have different alternative optimal LVDT designs. I.e., 
our sharing function has been able to maintain stable sub-populations around 
each normalized distance partition representing an optima. This shows how 
the sharing function maintains appropriate diversity (i.e, the necessary, 
sometimes competing schemata) required to exploit all of the design sub-
spaces.

A number of suggestions, for improving the performance of the sharing 
scheme, has been proposed in the past (Booker, 1982; Deb, 1989a; 
Goldberg, 1987b). These improvements are proposed to avoid cross-over 
between strings on different peaks which may result in offspring that do not 
represent any peak. The presence of these lethal strings in the population 
degrade the on-line performance of the process. In nature, this problem is 
avoided by creating separate species (or subpopulations) corresponding to 
each niche (or peak) in the solution space and restricting the mating between 
species. Therefore, in future work, using an appropriate performance metric, 
we must implement and experiment with different mating restriction strategies 
together with the sharing scheme.
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5.9 Conclusions

Genetic algorithms are highly adaptive processes which can efficiently 
search environments characterized as discontinous, vastly multimodal and 
noisy, without auxiliary information requirement.

However, genetic algorithms occasionally suffer from "premature 
convergence". The primary cause of this behaviour is identified as "genetic 
drift" that characterizes the stochastic errors caused by reproductive 
strategies (section 5.4.1). A secondary cause of this behaviour might be 
caused by genetic algorithm hard problems (section 5.4.2).

In order to investigate these issues further, the design optimization of two 
instrument sub-systems (i.e., corrugated diaphragms and LVDTs), using a 
three operator genetic algorithm, has been undertaken.

Proponents of proportionate selection strategies have devised a number of 
fitness scaling procedures to avoid stochastic errors due to genetic drift. 
However, these procedures are somehow ad-hoc and complicate the genetic 
algorithm simulations by adding extra parameters for controlling selective 
pressure.

In the context of our optimization problems, an stochastic remainder without 
replacement selection, in conjunction with elitisism and an scaling process 
(i.e ST-EI-Wn), gave relatively superior, near optimal results as compared to 
stochastic remainder selection strategy alone.

Although St-EI-Wn can reduce the stochastic errors due to similarity of 
fitnesses near convergence, it is not effective in maintaining diversity across 
the gene pool, i.e., a chromosome with substantially higher fitness, will tend 
to dominate the population, causing premature convergence.

In order to investigate a different selection strategy, a ranking selection has 
been implemented. In this method, the whole population is first sorted by 
fitness. The number of offspring each chromosome generates is determined 
by how it ranks in the population. The result obtained from our ranking 
selection strategy, in conjunction with elitisism, are substantially better as
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compared to previous selecton methods used. This comparison is based on a 
best of run performance metric. The ranking selection, completely solves the 
scaling problem and provides a consistent means of controlling offspring 
allocation. In general, ranking methods provide an even, controlled pressure 
for the selection of better individuals.

In the context of our design optimization problems, we have also considered 
a number of niching schemes. Theoretically, (i.e., according to the 
fundamental theorem of genetic algorithms) genetic algorithms must maintain 
useful diversity and ideally they must converge to all the peaks in a 
multimodal optimization problem. However, again, due to genetic drift, 
genetic algorithms which are only based on proportionate selection 
strategies, will only exploit the best peak and in a multimodal function with 
peaks having equal fitness they will only converge to one of the alternatives.

The sharing scheme, together with a proportionate selection strategy, is an 
effort to maintain a pressure to balance the sub-population sizes around 
each peak; by making sure that strings are reproduced in accordance with 
shared fitness values.

By using our sharing schemes, together with the stochastic remainder without 
replacement selection, alternative optimal designs have been found for both 
of our design optimization problems. This confirms that, for more relaxed user 
specified design criteria, there will be alternative optimal designs in both 
cases.

As mentioned above, a secondary cause of premature convergence is due to 
genetic algorithm hard problems. In the problems considered in this chapter, 
there is no significant evidence of genetic algorithm hardness. As elaborated 
in section 5.4.2, this problem occurs only in exceptional search spaces in 
which the best optimal points are surrounded by the worst.
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CHAPTER 6

Classifier Systems for the Automation of 
Inductive Reasoning in the Design Process
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6.1 Introduction

Classifier systems have been proposed as a direct result of recent theoretical 
investigations into the nature of inductive reasoning (chapter 4). Because 
classifier systems are formally defined and computer-oriented, with an 
emphasis on combination and competition, they offer a useful test-bed for 
both mathematical and simulation studies of induction.

In this chapter, we first present classifier system advantages, applications 
and research issues (section 6.2). Our goal, in this chapter, is to investigate 
the applications of classifier systems to the design of instruments. To this 
end, we detail a number of proposals (section 6.3). In particular, we will 
investigate the feasibility of simulating parametric sensitivity analysis and 
dimensionless analysis, as done by designers, to establish design heuristics 
(section 6.4). For this purpose, a functional lumped parameter mathematical 
model is interfaced to an implemented classifier rule-based system.

The task of the classifier system is to discover important design heuristics 
related to the profile geometry of the corrugated diaphragms, the size and 
range of each appropriate design parameter, and the nature of its influence 
on the overall performance of the diaphragm.

For example, a design rule such as: "Rule-1: For any Relative Corrugation 
Depth (i.e., H /h), the influence of the Centre Boss on the overall input-output 
characteristics of a Corrugated Diaphragm can not be neglected" provides us 
with a general rule which can be applied to all design categories, and gives 
us default expectations. Flowever, the application of Rule-1 might, 
unnecessarily, complicate the design of a particular diaphragm. A more 
specific rule such as: "Rule-2: For deep Corrugation Depths, the influence of 
the Relative Radius of the Centre Boss, up to 0.5, can be neglected" 
provides us with a more specific rule. In other words, Rule-2 can be applied, 
only, to more specific categories of diaphragms, and will simplify the design 
process of such diaphragms. A cluster of rules, such as Rule-1 and Rule-2, 
when applied to similar class of design problems, provide us with a default 
hierarchy of rules (chapter 4) in which more general rules cover the general 
conditions and more specific, possibly overlapping rules cover the 
exceptions. Our main goal, in this chapter, is to investigate the application of
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classifier systems for the purpose of inducing such useful design heuristics, 
in the form of default hierarchies.

6.2 Classifier System Applications

The first application of a classifier system was presented by Holland and 
Rietman (1978). The 1978 implementation of Holland and Rietman, called 
CS-1 (Cognitive System Level One), was trained to learn two maze-running 
tasks. CS-1 demonstrated simple transfer of learning from problem to 
problem and showed that the genetic algorithm yielded learning, in that 
context, an order of magnitude faster than weight-changing techniques alone. 
The results were encouraging enough to initiate a variety of subsequent 
tests.

Smith (1980) completed a classifier system that competed against 
Waterman's poker player (Waterman & Hayes-Roth (1978); which was also a 
learning program) with overwhelming success.

Wilson (1982) used a classifier system with a genetic algorithm in a series of 
experiments involving TV-camera-mechanical-arm co-ordination, resulting in 
a successful demonstration of the segregation of classifiers, under learning, 
into sets corresponding to control subroutines.

The next major application of classifier systems was Booker's (1982) study. 
Booker concentrated on the formal connections between cognitive science 
and classifier systems. His computer simulations investigated the adaptive 
behaviour of an artificial creature, moving about in a two-dimensional 
environment containing "food" and "poison", controlled by a classifier system 
"brain". Booker's classifier system contained a number of innovations 
including the use of sharing to promote "niche" exploitation, and the use of 
mating restrictions to reduce the production of ineffective offspring (lethals).

Goldberg (1983) applied a classifier system to the control of two engineering 
systems: a pole-balancing problem and a natural gas pipeline-compressor 
system. Goldberg demonstrated the emergence of a default hierarchy (in his 
study of the use of classifier systems under the genetic algorithm) as 
adaptive controls for gas pipeline transmission.
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More recent work on classifier systems have considered the application of 
classifier systems to specific engineering problems, such as maze running 
tasks for autonomous robots, signal processing, scheduling for operation 
research applications and simple medical diagnosis (Davis, 1987; Schaffer, 
1989; Belew, 1991). However, there is very little research concerned with the 
application of classifier systems to engineering design automation.

6.2.1 Classifier Systems advantages and research problems

The use of genetic algorithms as the primary rule discovery component in 
classifier systems is highly advantageous. The genetic algorithm, operating 
on classifiers, discovers potentially useful building blocks, tests them, and 
recombines them to form plausible new classifiers. This is done at the large 
"speed up" implied by implicit parallelism (Holland, 1975), during which large

numbers of building blocks are searched while relatively few classifiers are 
manipulated.

Competition based on rule strength, in conjunction with the parallelism of 
classifier systems provides several additional advantages. New rules can be 
added without imposing the severe computational burden of checking their 
consistency with all the existing rules. In fact, the system can retain large 
numbers of mutually contradictory, partially confirmed rules; an important 
advantage because these rules serve as alternative hypotheses to be 
invoked when currently more plausible rules prove to be inadequate. 
Moreover, this approach in conjunction with the genetic algorithm provides 
the overall system with robust incremental means of handling noisy data. 
The system does not need a large data-base of all past examples; its 
memory is composed of the sets of competing alternative rules.

The above highly favourable characteristics make classifier systems general- 
purpose learning systems. They can be programmed initially to implement 
whatever expert knowledge is available to the designer; learning then allows 
the system to expand, correct errors, and transfer information from one 
domain to another. However, at this stage of classifier systems development, 
it is important to provide ways of instructing such systems so that they can 
generate rules - tentative hypotheses - on the basis of advice. Little work has 
been done in this direction (Holland, 1986a).
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The most serious problem encountered, in the classifier system applications, 
concerns the stability of emergent default hierarchies. The hierarchies do 
emerge (Goldberg (1983) provides one of the few known examples), but in 
long runs there may be a catastrophic collapse in which whole subsets of 
good rules are lost. The rules, or rules similar in function, are then recreated, 
but this instability is highly undesirable.

Forrest (1985) has demonstrated that semantic nets can be implemented 
directly with coupled classifier rules, but the question of how such structures 
can emerge in response to interactions with the environment has not been 
tackled. However, this remains a research objective and not a fault to the 
overall approach.

There are also no appropriate guidelines as to the functioning of the bucket 
brigade when the rule sequences are relatively long and intertwined. Again, 
there are no uncovered faults; there is simply very little knowledge.

6.3 Application of Classifier Systems to the design of - 
Instruments

In the past, mathematical models have been used extensively to automate 
the design process of instrument transducers.

The building of mathematical models involves listing all possible physical 
laws and processes that may affect the response of the proposed transducer 
concept. The modeller must then use his engineering judgement, based on 
past experience to ascertain whether any of the listed phenomena may be 
neglected. Furthermore, it may be appropriate to make some simple 
approximations regarding the sub-assemblies or constituents of the 
transducer. These simplifications lead to a set of design parameters that are, 
by simplification and abstractions, mapped into "functional elements" 
(generalized resistances, capacitances, inductances, transformers, etc.) and 
their interconnections. This newly obtained mathematical description is called 
a "functional model". For example, in the case of electromechanical 
transducers, this means making some simple approximation to a generated 
magnetic flux distribution. However, it may be necessary to develop more 
accurate models that are called "physical models". Generally, these models 
would be distributed parameter models based on the solution of the
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appropriate equations (i.e. differential, etc.). These equations emerge as a 
direct application of the basic physical laws to the design concept. 
Consequently, the produced models enable us to evaluate the performance 
of a transducer in terms of its geometric dimensions and material properties. 
Results from the validated mathematical models for a specific designed 
prototype are then used to generate a general design methodology (Mirza, 
1992). A variety of techniques are used for this purpose:

1- The methods of sensitivity analysis (Tomovic, 1970) can be used to 
determine the important variables for a particular fully specified design 
configuration. Engineering common sense guided by geometric constraints 
can be used to estimate the values for the other parameters.

2- The basic mathematical models can be used in larger computer aided 
design system to produce optimal designs with constraints. In this type of 
computer aided design system the basic models are used within a larger 
program that uses optimization techniques to find the optimal set of 
independent design variables to meet a particular set of design criteria. In 
chapter 5, sections 5.5, 5.6, and 5.7, using genetic algorithms, it was shown 
that useful design heuristics can be obtained by extracting data from several 
optimization simulations for a particular transducer. In order to automate the 
process of heuristic extraction, we can interface the training data (extracted 
from simulations for a transducer) to a distributed inductive learning system 
(e.g., classifier systems or neural networks). For example, in the case of 
LVDTs the training set consists of a set of representative LVDT 
configurations. A representative LVDT configuration includes design 
parameters such as the overall parametric dimensions of the transducer, 
physical layout and its corresponding performance function values. The 
inductive learning system uses the performance function values, constituting 
the performance metrics of the LVDT, to establish design heuristics that 
relate the influence of design parameters to the overall performance of the 
instrument. The performance metric, for a particular LVDT configuration, 
includes performance indicators such as the input/output sensitivity, % non-
linearity and dimensional constraints such as size and weight of the 
transducer.
3- The methods of dimensional analysis (Massey, 1971) can be invoked to 
form non-dimensional performance curves that characterize a particular 
design prototype. The concept of non-dimensional curves is based on 
similarity. The curves are obtained for a specific case but are applicable to
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any design candidate having the same parameter ratios. The performance 
curves contain all the essential information regarding the class of instrument. 
The results can be re-arranged in different ways to facilitate the 
establishment of a simple design methodology (Mirza, 1983).

During sensitivity analysis and dimensional analysis, the designer, using his 
set of data obtained for a device or system, is trying to find the relationship 
underlying empirically observed values of the design variables to generate a 
set of generalized empirical relationships for design purposes. In practice, 
the observed data may be noisy and there may be no known way to express 
the relationships involved in a precise way. These methods (for design 
heuristic extraction) are recognized as learning synchronic and diachronic 
rules from noisy and uncertain data and their automation is possible by using 
classifier systems.

In the next section, we will study this issue, further, by applying a classifier 
system to the task of design heuristic extraction for corrugated diaphragms.

6.4 The application of a classifier system, for design heuristic- 
discovery and learning, to corrugated diaphragms

In this section, we investigate the feasibility of applying classifier rule-based 
systems to the design rule discovery and learning for corrugated diaphragms. 
The design parameters for a corrugated diaphragm are:

0O : Profile-angle (Radians)
H  : Profile depth (mm) 
h : Diaphragm's thickness (mm)
E  : Young's modulus (kg/m2)
R o ■ Diaphragm effective radius (mm)
Rb : Diaphragm center-boss radius (mm)

The aim of these investigations is to implement a system that discovers the 
most important of these parameters and generates design heuristics relating 
the size and range of each parameter and the nature of its influence on the 
overall performance of the diaphragm. This process is similar to parametric 
sensitivity analysis and dimensionless analysis used by designers for the 
extraction of design heuristics (Mirza, 1983).
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In order to investigate the feasibility of this idea, a classifier system is 
implemented in which the system must discover design rules relating the 
centre-boss size, the diaphragm radius and relative corrugation depth to the 
overall characteristics of a corrugated diaphragm type.

Corrugated diaphragms have a metallic disk welded or soldered to their 
middle part that is called a rigid centre (the centre boss). If the dimensions of 
the rigid centre are small, its influence on the diaphragm deflections is 
negligible. However, if the centre boss is large, its influence must be taken 
into account. The derivation of the characteristic equation for a diaphragm 
with a rigid centre is based on the same differential equations (generated for 
a flat anisotropic diaphragm with large deflections) just as they are for a 
diaphragm without a rigid centre. The only difference in the derivation is in 
the boundary conditions (Andreeva, 1966).

The following characteristic equation for corrugated diaphragms with a rigid 
centre is obtained as a result:

PR4 
E h 4 = T1, • V *  b A

, SP P /j3h
(6.4.1)

The coefficients ap and bp in the above formula are determined as before 
(please refer to chapter 5) and the correction coefficients and i ,p depend
on both the corrugation geometry and the relative radius of the rigid
centre:

■Hj
(3 -a  ) ( l - a  )

( a t a 2)(i-d„4)+ 4a

l - < e  y
[2d0a+1( l+ $ 02 )-(l-P ô02a )( l+ £ 04 )]

(6.4.2)

(i  ü 02) d +4  (a _ ^ (a+3)

t X '
1 -A 6 3-p. . ( l - ^ Q“+3)2 i (^ 0“ - ^ 03)2 1

6 l - f l j2“ ~ (a - |j .) (3 + a )  (a  + |a.)(3-a)

Where £ = —  is the relative radius of the rigid centre.
0 R
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Using the dimensionless formulation, represented by equation (6.4.1), 
Andreeva (1966) has derived dimension-less curves, representing families of 
characteristics, for diaphragms of two types: with shallow {H/h = 2 0) and 
deep (H /h  = 10 0) corrugations and various dimensions of the centre-boss. 
Andreeva, by using these curves, has developed the following design 
heuristics:

"A rigid centre with a relative radius not exceeding 0-3 has only a small 
influence on the characteristics of shallow-corrugation diaphragms. In the 
case of deeply corrugated diaphragms, a rigid centre with a relative radius up 
to 0-5 can be neglected. Further increase of 0 0 in both cases leads to a 
sharp increase of the diaphragm spring rate. The deeper the corrugations, 
the smaller the influence of the rigid centre on the diaphragm characteristics. 
This is due to the fact that, in general, the centre beads are much less 
deformed than the edge beads, so that the substitution of a rigid centre for 
the centre beads will not have an important influence on the characteristics if 
the beads are sufficiently deep."

In order to simulate Andreeva's empirical rule discovery approach, we will 
interface the design environment, as represented by equation (6.4.1), to an 
implemented classifier rule-based system.

In the following sections, we, first, introduce the design environment of the 
classifier system from which design heuristics are to be established. We then 
study the structure of the learning classifier system by detailing each of its 
components: The rule and message system, the apportionment of credit 
system and the genetic algorithm system.

6.4.1 The design environment

As explained in section 6.4, Andreeva, using the following analytical model, 
has developed design heuristics that relate the centre-boss size, the effective 
radius and relative corrugation depth to the overall characteristics of 
corrugated diaphragms that have different profile geometries:

PR4 

E h 4
co0 ,

:W y  + SpA
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Using Andreeva's analytical model, the design environment is represented to 
the classifier system in terms of random message strings containing 
information regarding the radious ratio [-&J of the centre-boss and the 
relative corrugation depth {H/h), for a particular diaphragm design task, as 
follows:

Sub-string-1 Sub-string-2

Figure 6.2

The number of bits for each sub-string parameter provides the degree of 
accuracy required. Our design parameters obey the following constraints:

0<£„<1

!< % < !?
(6.4.4.1)

Each design parameter is represented by a 3-bit sub-string. This gives the 
following accuracy, per bit increment, for each parameter:

n (« J
1-0

~23-l
=0143

17-1
~23-l

=2-286
(6.4.4.2)

The environment has been designed for the simulation of design heuristic 
extractions, used by designers during the initial stages of the design process. 
It is based on the dimensionless analytical model formulation, represented by 
equation 6.4.1.

Andreeva (1966) used two H /h  values, i.e. H /h  = 2 .0  and H /h  = 10.0, to 
represent two classes of corrugated diaphragms with shallow and deep 
corrugations. Furthermore, she used only 5 discrete values for the -0o
parameter. Therefore, her induced design heuristics are based on only 10 
design classes. However, because of the well-defined, monotonous 
behaviour of the input-output characteristics of corrugated diaphragms, in- 
between the discrete values, Andreeva's inductive approach is valid and 
covers all design cases to a good approximation. Our environmental 
formulation is much more accurate than Andreeva, because it represents 64 
design classes as the basis for inductive learning. In more complex inductive
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learning applications, i.e., non-monotonic and/or erratic environments, we 
can simply increase the resolution of the design parameters.

The design environment has the following reward criterion to allocate reward 
to the successful classifier rules:

r

Criterion(H/ h ,û a) = Boolean
y

\output_2(H / h,-d0) -  output_ l(H /h ,'ù0 

output _ 2( H/h ,û o)
)|

\
< E

Reward
1 if 
0 if

classifier _ output — Criterion( H /h,û 0) 
classifie r_ output ̂  Criterion(H/h,û o )

(6.4.4.3)

Where:

E  : acceptable range of error = Maximum 10.0% deviation

output_l =
PR4 C00 , (Do
— T =  a„ — -+ b „  — f  

Eh 4  p h p h3

PR4 a>„ e , ®o
omput_2 =  1 i S = n ' a ' ~ h +

co„— = 6-0 -» Dimensionless nominal value of diaphragm centre displacement
h

In the above formulation, output_l represents the analytical model of the 
diaphragm in which the effect of the relative radius ratio of the rigid 
centre(i30) and its relation to the overall profile geometry of the diaphragm 
has been neglected, but the output_2 represents a more accurate 
mathematical model in which these influences on the overall output 
characteristics have been considered.

It must be emphasized that, the environment allocates reward, entirely, 
based on our analytical model formulation. In this particular rule discovery 
task, environmental messages relate to different diaphragm design problems. 
Therefore, different environmental messages, lead the classifier system to 
form different categories of design problems, for which different design 
actions are necessary.
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6.4.2 The Rule and Message system

The rule and message system are central to the operation of the classifier 
system; it provides the computational framework for classifier system thought 
and action and is the foundation for competitive service economy and genetic 
algorithmic learning.

Figure 6.1 shows a schematic of the rule and message system.

Environmental 1 
Information I

Action

Figure 6,1 Schematic Rule and Message System

In Figure 6.1, we see that, the rule and message system receive 
environmental information through its sensors, called "detectors", which are 
decoded to some standard message format. This environmental message is 
placed on a "message-list" along with a finite number of other internal

messages generated from the previous cycle. Messages on the message list 
may activate "classifiers" (rules) in the "classifier store". If activated, a 
classifier may then be chosen to send a message to the message list for the 
next cycle. In addition, certain messages may cause external action through 
a number of action triggers called "effectors". In this way, the rule and 
message system combine both external and internal data to guide behaviour 
and the "state of mind" in the next state cycle.

In summary, the basic execution cycle of a classifier system consists of the
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following steps:

Step-1: Add all messages from the input interface (i.e., detectors) to the 
message list.

Step-2: Compare all messages on the message list to all conditions of all 
classifiers and record all matches (i.e., satisfied conditions).

Step-3: For each set of matches satisfying the condition part of some 
classifier, post the message specified by its action part to a list of new 
messages.

Step-4: Replace all messages on the message list by the list of new 
messages.

Step-5: Translate messages on the message list to requirements on the 
output interface (i.e., effectors), thereby producing the system current output.

Step-6: Return to step 1.

Individual classifier rules must have a simple, compact definition; a complex, 
interpreted definition makes it difficult for the genetic learning algorithm to 
find and exploit building blocks from which to construct new rules.

In classifier systems a message is simply a string of fixed length /, over some 
finite alphabet A. In this discussion, A is limited to the binary alphabet {0, 1} 
without loss of generality. More formally a message is defined as follows :

(message) —> {0,l}

Messages may contain a variety of information, coded in any imaginable 
manner. At a minimum, messages carry environmental input information, 
internal tags, internal data and effector codings.

Messages are processed by classifier rules. Recall that classifiers are a form 
of rule in the tradition of rule-based expert systems. For this study, we limit 
classifier rules to the following form:

(classifier) —> [condition_\)[condition_7)[message)
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As in rule-based expert systems, the message action of a classifier rule is 
fired upon satisfaction of both conditions; the overall condition is constructed 
by using the logical AND primitive in this case. Other logical primitives from 
which more complex expressions could be constructed are OR and NOT.

A condition is a recognition device that depends upon the presence of certain 
messages on the message list. It is important to construct conditions such 
that they can recognise not just a single message, but rather a class of 
messages with well-defined similarity. This is achieved by extending our 
message alphabet A by one character to the alphabet A+ = {0, 1, #}. 
Therefore, a condition is defined as an l position string over A+:

(condition) —» {0,1,#}

Under the alphabet A+, at a given position, a 0 is matched by a 0, a 1 is 
matched by a 1, and a # is matched by either. For example, the string 1 ##...# 
designates the set of all messages that start with a 1, while the string 00...0# 
specifies the set {00...01, 00...00} consisting of exactly two messages and 
so on. In this way, the # is a wild card symbol permitting explicit recognition 
of any of the subset of messages with one or more similarities. This definition 
has immense advantage in a learning system that must generalize and create 
new rules from the ratings of the current rule store.

In practical classifier systems, the number of potential messages exceeds the 
size of the message list. In the next section, we study the way the 
apportionment of credit system (the bucket brigade algorithm) handles these 
and other conflicts which might arise.

6.4.3 Analysis of the Bucket Brigade Algorithm

The Bucket Brigade Algorithm is designed to solve the apportionment of 
credit problem for massively parallel, message-passing, rule-based systems.

In classifier systems, in which rules are represented by the standard 
Condition/Action paradigm, the overall usefulness of a rule to the system is 
indicated by a parameter called its strength. Each time a rule is active, the 
bucket brigade algorithm modifies the strength so that it provides a better 
estimate of the rule's usefulness in the contexts in which it is activated.
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The bucket brigade algorithm functions by introducing an element of 
competition into the process of deciding which rules are activated. Normally, 
for a parallel message-passing system, all rules having condition parts 
satisfied by some of the messages posted at a given time are automatically 
activated at that time. But under the bucket brigade algorithm only some of 
the satisfied rules are activated. Each satisfied rule makes a bid, based in 
part on its strength, and only the highest bidders become active, posting their 
messages specified by their action parts. The size of the bid depends upon 
both the rule's strength and the specificity of the rule's conditions.

Specificity, for a classifier system rule, is defined as the difference between 
the total number of defining positions in its condition and the number of "don't 
cares" (i.e., "#" tokens) in the condition, and defines a measure of relevance 
of the rule to the particular environmental situation.

In a specific version of the algorithm, used extensively by current classifier 
systems, we have :

S[(i+D =fl[(i)-C w<i-1Si(i)-C tflX̂ (i)+ i2 (i)  (6.4.2.1)

Where:

S ^ t )  ¡strength of the active classifier i at time t 

^0+1) : strength of the active classifier i at time t+1 
Cbid : bidding coefficient 
C,ax : bidding tax coefficient 
B i t )  : environmental reward

We can rewrite equation (6.4.2.1) as:

S;(i+ l)= (l-^)-S (i)+ i2 (i) (6.4.2.2)

Where :

The above difference equation represents a linear discrete system. An n 
order difference equation can be represented as:

y (k )  =  b0 uik) +  bi uik -  1 )  H--------------- b  b uik -  rri) +

-  a x y{k -  1) -  a 2 y{k -  2 ) --------a n y{k -  n)
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Difference equations of the type represented by equation (6.4.2.3), with m, n
fixed and a p bj i=  1, 2, n 7 =0 ,1 ,2.....m constants, describe linear discrete
time causal and stationary systems. In non-stationary systems a t, b- are

function of k.

The bucket brigade algorithm, as represented by equation (6.4.2.2), can be 
written as :

a  = ( l - k )
P u ( t )=Ff t )

, |0  f o r  t = - 1 , - 2 , - 3 , —

U U  f o r  t = 0,1,2,3,•••

u ( t) represents a unit step discrete input to the system. When k=0 
¿>¿(0)= p r/(0)+aS;(-l). The initial condition ^ (-l) is zero, therefore we get:

^ ( i ) - a r » ^ (i-l)= p  u(t)

Where:

^ (o )=  p

S,(l)= P u (l)+ a  s [(0)=(l+ap ) 

S t( 2 ) = ( l + a + a 2)p

Si( i ) = ( l + a + a 2+---+ a i )p ,

But we have:

( l - a  i+1) = ( l - a ) ( l+ a  + a 2+ - + a f)

••• 3 ( i ) = - ^ ( l - a i+1) 
l - a

(6.4.2.4)

Hence, for stability of the response, we have:

u n sta b le

183



' response boundedii) if |cx |< 1=>
( l - a w )->l S (t)_ > JL

=> 1-a

Therefore, when |a| < 1 for large t the system's unit step response itself looks

like a step signal of amplitude — . If reward = p i i t ) = R ss (constant), and
1 -a

knowing that a = 1 -  k , we get:

t—
(6.4.2.5)

Knowing that k = Cbid + Ctax, we can rewrite equation (6.4.2.5) as:

S "  =■
R...

C + C'-'bid T '-'tax

(6.4.2.6)

In order to take into account the specificity of a classifier rule, we have:

q ( t ) = C t l J f ( s r )S,(t(6.4.2.7)

Where:

B ^ t ) :  the bid of a classifier rule
/■(sp ) : an increasing function of specificity for a rule

Therefore, taking into account the specificity of a rule, the steady state 
strength for a rule becomes:

S„
C i t d - f { s p)+ C t ,

(6.4.2.8)

6.4.4 Genetic Algorithms for Rule Discovery

The rule discovery process for classifier systems uses a genetic algorithm. 
Basically, a genetic algorithm is used to select high strength classifiers as 
"parents", forming "offspring" by recombining components from the parent 
classifiers. The three operator genetic algorithm (chapter 5) creates new 
rules by the reproduction, cross-over and mutation processes.
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In this section, we concentrate on the differences between the genetic 
algorithm used in our classifier system and the three operator genetic 
algorithms used in chapter 5 for design optimization purposes. Specifically 
these differences include overlapping generations, crowding, Monte Carlo 
selection and ternary mutation as described below:

We recall from chapter 5, section 5.8, that DeJong (1975) introduced a 
generation gap (G) parameter (in a multimodal function optimization 
application), to permit overlapping populations. This parameter was defined 
between 0 and 1 as follows :

G = 1 non overlapping populations 
0 < G < 1 overlapping populations

In the overlapping populations (N  * G) individuals are selected for further 
genetic action (where N  is the population size). In the implemented genetic 
algorithms of the previous chapter, the populations were non-overlapping 
and we completely generated a new population at each iteration. The studies 
carried out by DeJong (1975) suggested that the non overlapping population 
model was best in most optimization studies, where off-line performance is of 
primary importance. However, DeJong's studies did show that on-line 
performance is not severely degraded by using smaller generation gap 
values. This fact is useful in machine learning where learning while 
performing well is important; in machine learning applications, we are mostly 
concerned with maintaining a high level of on-line performance as the system 
learns to perform better. In the same spirit, Goldberg (1983) used an 
overlapping population, successfully, in a rule learning application.

In the implemented classifier system, we use the generation gap (G) 
parameter and generate (No. of classifiers * G) new classifiers at each call to 
the genetic algorithm. Also, we use DeJong's (1975) crowding procedure 
(described in chapter 5, section 5.8) to encourage replacement of similar 
population members.

In chapter 5, we studied a number of selection strategies. Although, the 
ranking selection strategy has certain advantages, on the basis of the best of 
run performance metric as compared to the proportionate selection 
techniques studied, it becomes difficult and time consuming to implement 
with overlapping populations. Consequently, we use the Monte Carlo
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selection strategy (DeJong, 1975), in conjunction with the overlapping 
populations, which is one of the simplest of the proportionate selection 
strategies. This method simulates the spin of a weighted roulette wheel; 
where the wheel weights are given by:

where S j  represents the strength of a particular classifier. We select (No. of 

classifiers * G) new offspring classifiers at each genetic algorithmic 
invocation. In this way, the parent selection is biased towards high strength 
classifier rules and schemata in the population.

Mutation is also modified because classifier systems use a ternary alphabet. 
In order to achieve this, the probability of mutation p m is defined as before, 
however, when a mutation is invoked, we change the mutated character to 
one of the other two with equal probability, i.e.: (0 {1, #}, 1 {0, #}, # -»
{0, 1}.

The overall software architecture of the implemented system is presented in 
APPENDIX-V.

6.4.5 An initial study of the classifier system under the- 
apportionment of credit algorithm

The implemented classifier system is initially provided with a random 
population of 100 rules in the following form:

The probability of generating a don't care token (i.e., #) is set to 0-7. Our 
concern, at this stage, is only to identify the above average rules in our 
randomly generated rule population. Consequently, no genetic rule 
improvement and discovery are invoked. Also, we do not use specificity 
dependent bidding to test the basic performance of the apportionment of 
credit algorithm. The governing apportionment of credit algorithm, for this

(H/h Range) (H/h Range) —» (Decision Action)

C ond ition -1 C on d ition -2 D esign  A c tio n
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simulation, is given below:

sst+i^ssthc^-s+tyc^^ssthm )  (6.4 .5 .1)

Where:

S ^ t )  strength of the active classifier i at time t 

¿»¿(M-l) : strength of the active classifier i at time t+1 
Cbid : bidding coefficient 

C bld_tax : bidding tax coefficient

B i t )  : environmental reward

The learning parameter values for the apportionment of credit algorithm, 
used in this simulation, are given in the following table:

C b id 0 - 1

c
^ b i d - t  a x 0 0 1

m 1 0

Table 6.1 Learning parameters for the initial simulation

Therefore, under this scheme, each above average rule is expected to reach 
its asymptotic strength value of 9 09 as calculated by equation (6.4.2.6).

The classifier system, under the application of the apportionment of credit 
algorithm, successfully assigned high strength values to high performance 
rules (i.e., near to their expected asymptotic steady state strength values) 
and near zero strength to irrelevant or low performance rules among the 
initial randomly generated population. This was achieved only after 1500 
iterations. Some of the high performance rules discovered by the classifier 
system, in this simulation, are shown below:

Strength Rule Interpretation
909 1## 1##-> 1 large(H/h) AND large(do) -» strong influence

909 #1#0#0^0 (5-6 < H/h < 7-8) AND (14-7 < H/h < 17) AND small(i3o) - >  small influence

Table 6.2 Some of the high performance rules in an initial simulation
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For example, the design rule (1## 1 ## —> 1 ), in the above table, covers 16 
design classes, with its first condition covering H /h  values in the range 
10.14 < H /h  < 17.0 and its second condition covering $ o values in the range 
0.57 < -0„ < 1.0. Therefore, this rule covers high values of the design

parameters.

Obviously, the above rules are less than perfect and it is necessary to 
improve them by invoking the genetic rule-improvement module. However, at 
this stage, our concern has been to test the classifier system performance 
only under the application of the apportionment of credit algorithm. We note 
that the rules, shown in table 6.2, have been correct in each invocation, and 
have reached theirs expected steady state strength values.

Using the set of high performance rules, generated by the classifier system, 
they were modified to construct a set of perfect rules. The set of perfect rules 
partitions the design environment into six non-overlapping design regions 
(i.e., each region represents a particular category of design problem for 
which an appropriate design action is necessary) as shown in table 6.3 
below:

small-influence design rules : strong-influence design rules:
1) ### 00# -> 0 5) ### 1## 1
2) 01# 010 0 6) 00# 010 1
3) 1## 01# 0 7) 0## 011 —» 1

small-influence default rule : strong-influence default rule:
4) ### ### 1 8) ### ### 0

Table 6.3 Two sets of hand-crafted perfect design rules

In order to test the performance of the classifier system, two cases are 
investigated:

1) Perfect-rule se t:
To test the performance of our perfect rule set, under the apportionment of 
credit algorithm, the learning parameter values of table 6.1 were used.
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All rules (i.e., rules (1), (2), (3), (5), (6) and (7) in table 6.3) reached theirs 
expected steady-state strength value of 9 09, as suggested by equation 
(6.4.2.6). I.e., each rule was rewarded when it matched the message-list.

2) Default Rules:
Default hierarchies encourage more efficient learning in classifier systems. 
There are alternative methods to encourage the formation of default 
hierarchies. We recall from chapter 4, section 4.2.1, that, Holland (1986) has 
suggested to make the "bid" of each classifier rule proportional to the product 
of its strength and relevance. Relevance is a function of the "specificity" of

the condition of a matched rule, and the more specific the condition of a rule, 
the more relevant it becomes. The simplest formulation for relevance is to 
define it as some linear function of "specificity". I.e.:

5 ,= < V / ( s , k  (6A5.2)

Where:

B i  : bid of a candidate classifier rule 
S i : strength of the bidding classifier 
Sp : specificity of a classifier rule

and we have:
f ( s r ) = M ] +  M 1* s t

f(sp) is chosen to normalize the specificity value of a classifier rule between 
some initial value M v  for sp = 0, and final value ( M x +  M 2* s p) for maximum

discrete sp value.

Under ideal conditions (i.e., when a classifier rule is rewarded any time it 
matches the environment and wins the competition) the steady state strength 
and bid values are calculated as follows (as derived in section 6.4.2):

C b l d f ( s p )+C,

Cbid- f

Ci u - f ( s p )

189



The strength values of perfect and specific rules, contained in the two 
alternative default hierarchies (as shown in table 6.4 below), reached their 
theoretical steady state values after approximately 1000 iterations according 
to above equations. But, the general default rules were found to vary 
between two strength values as shown in table 6.4.

Default hierarchy (1 ) : Default hierarchy (2 ) :

Rule Strength Rule Strength
1) ### 00# -> 0 16-67 5) ### 1## -» 1 21-05

2) 01# 010 -> 0 10-25 6) 00# 010 ^  1 10-25

3) 1## 01# -> 0 13-79 7) 0## 011 —> 1 11-76

small-influence default rule : strong-influence default rule:

Rule Min-Strength Max-Strength Rule Min-Strength Max-Strength

4) ### ### -> 1 21-79 25-6 8) ### ### -> 0 16-7 23-34

Bad Rule : Bad Rule :
Rule Strength Rule Strength

01# 010 -> 1 0-0 00# 010 -» 0 0-0

Table 6.4 Results of the default hierarchy experiment

As explained in section (6.4.2), in the standard version of the bucket brigade 
algorithm, used extensively by current classifier systems, we have:

^ ( i+ ])= £ |( i)-c ii<l̂ ( i ) - c fBjê (i)+ /a(i)

We can rewrite the above equation as:

^ ( i+ lM l- ^ O -S ^ + ifa )  (6.4.5.3)

Where:

Equation (6.4.5.3) represents a linear discrete system. The bucket brigade 
algorithm, as represented by equation (6.4.5.3), can be written as:

$(f)= P  n(i)+a S[(i-l) (6.4.5.4)

190



Where, in equation 6.4.5.4, we have:

a  = l - k

(3 •u ( t ) = R { t)

Taking Z-transform from both sides of equation (6.4.5.4), and dropping the 
index i, we get:

Z[S(i)] = (3 ■ Z \i i t ) \+  a -Z[S(i-l)]

T(Z) = '  (3-Z > 
< Z - a,

(6.4.5.5)

Where:
Z[S(f)] = Y(Z) and Z[n(i)]= t/(Z)

Equation (6.4.5.5) enables us to determine the expected steady state 
strength response value of a classifier rule that remains activated resulting in 
a constant a . We have already mentioned that, our hand-crafted default 
rules are found to vary between two strength values (table 6.4). This 
behaviour, in general, is caused by two factors:

1- A default rule might be rewarded only a percentage of the time; the default 
rule number 4 (table 6.4), is only rewarded approximately 59% of the time 
and the general default rule number 8 (table 6.4), is only rewarded 41% of 
the time.
2- Even if a particular default rule is correct (or any less than perfect 
competing classifier rule) it might lose the competition (losing reward).

In above cases, the expected input reward signal can be approximated as a 
periodic intermittent signal. The general form of such a signal is:

U ( Z ) =
(  Z N ^  

vz ^ I yFX(Z ) (6.4.5.6)

Where, the first periodic sequence, represented by U{Z), is characterized by:

Fx{ Z ) = f , f { k ) - Z - k ,
k=0

and, for the periodic reward signal, we have: f { k ) = f ( k + N )

191



N  represents the period of the input reward sequence/(&). In our case, the 
expected periodic reward sequence can be represented by a periodic 
sequence of kronecker delta functions with period N.  We have:

f|(Z) = £  5(Z)-Z-‘ =1

The overall strength response of each classifier rule, under intermittent input 
reward, using equation (6.4.5.6), becomes:

The output response, as represented by equation (6.4.5.7), can be 
represented in its pole-zero form as follows:

Using partial fraction expansion, the general form of the time domain output 
response, as t approaches infinity, becomes:

Knowing that, the time domain solution (as represented by equation (6.4.5.8)) 
occurs in complex conjugate pairs, by using Euler's identities or otherwise, 
we note that the overall output response is periodic with a minimum and a 
maximum steady state strength values. However, the response remains 
stable, even with switching non-linearity resulting from interactions with noisy 
environments, as long as the changing a meets the stability criterion. In such 
cases, the apportionment of credit algorithm maintains the asymptotic 
strength value as the long term mean value of environmental reward 
amplified by (1/oc-1) coefficient.

(6.4.5.7)

B •Z N+1

(6.4.5.8)

k = 0, 1,2.....N -1
t = 0, 1,2.....
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6.4.6 Learning from the design environment

In this section, we examine the performance of the classifier system starting 
from a randomly generated population of rules. Initially, we perform two 
simulations. One without the genetic algorithm enabled and one with the 
genetic algorithm enabled. In this way, we are able to separate the learning 
due to apportionment of credit among the original rules and that due to the 
injection of new rules by the genetic algorithm.

In these initial tests, we start the classifier system from 40 rules with 
randomly generated conditions. Half of the actions of the rule population are 
set to support the strong influence design cases and half are set to support 
the small influence design cases.

The probability of generating a don't care token (i.e., wild card (#)) is set to 0- 
67. In this way a don't care symbol # is selected with probability 0-67 while a 
0 or 1 is selected with probability (1-0-67)/2. Knowing the form of target set of 
rules for this learning task, these values provide an average density of "#" 
tokens (in the initial randomly generated population), which corresponds to 
an average number of "#"s in the target rule sets.

In the first run, the initial randomly generated population of rules is subjected 
to the apportionment of credit algorithm without the genetic algorithm 
activated. The implemented apportionment of credit algorithm for our first 
simulation is governed by the following difference equation:

As before, Cbid is the bid paid by a classifier rule. In order to promote default 
hierarchy formation, the bid of a classifier is formulated as a linear function of 
the classifier's strength and its specificity. I.e.:

S i ( t + l ) = S j ( t ) - C b i d S L( t ) - C l'b id - t a x ■Si { t)+ B ì {t) (6.4.6.1)

(6.4.6.2)

Where:

(6.4.6.3)
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sp is the specificity of a classifier rule as defined before (i.e., equation 
6.4.5.1). Using equation (6.4.6.3) different bidding structures may be 
investigated. In the following simulations, the parameters, for our 
apportionment of credit algorithm, are given in the following table:

Qid 0-1
r

bid-tax 001

R(t) 10

M, 0-25

Mr, 0-125

Table 6.5 Learning parameters for the Apportionment of Credit-
Algorithm

The Af, and M 2 parameters have been set so that, the bid of a completely 
general rule (i.e., sp = 0) will be only : (0-25 X Chid X Strength), but the bid of a 
completely specific rule (i.e., sp = 6) will be (C bid X Strength).

The run (simulation-1), without genetic algorithm activation, up to and 
including generation 40,000, is shown in figure 6.3. Here we note how the 
apportionment of credit algorithm adjusts the strength values of the rules 
achieving a steady time averaged performance of 82% correct. The irregular 
and jagged curve shows the average score of the system in terms of 
percentage of correct answers over the last 50 running trials. Although, the 
50 step average score moves above and below the steady overall time 
averaged performance, in the long run the classifier system is able to sustain 
its relative high performance. In this way, rules containing relevant schemata 
to the learning task have reached theirs expected asymptotic strength values, 
as governed by the apportionment of credit algorithm, and irrelevant rules 
have lost their strength in the competition.

We would not expect to achieve better performance, in the long run, under 
the application of the apportionment of credit algorithm alone. This is due to 
the fact that, in a population of 40 randomly generated rules, there is a low 
probability of producing a large number of relevant schemata.

For example, we can calculate the probability of randomly generating the
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following two relevant rules:

C1 : 01# 010 -> 0 
C2: 00# 010 -> 1

The probability of a randomly generated population containing two relevant 
rules, in general, is derived as:

n= 1 ̂ \ n j

n  ^ s -n
P s  P f x

(  s - n  f g - y A  ^
rk  „ / s -n - k

P s  P f
\k=A k j

s -i I y

+2-n=l vny
/n „/s-n vPs -P/ x

/̂ s-ny

v*=iv ^ y
p s* - p r " (6.4.6.4)

Where:

5  : population size
: probability of C1 occurring in a single trial 

py : probability of C1 not occurring in a single trial 
p ' : probability of C2 occurring in a single trial 
p 'f : probability of C2 not occurring in a single trial

Noting that, in our case p f =p' f , and using binomial theorem, we simplify the 

above equation to the following expression:

pci,c2 (s) = 2Qx[(l-p* + p f  ) - ( p s + p 2f )  j

Considering our population size of 40, and noting that we have set the 
probability of generating wild card (#) tokens to 0-67, the probability of 
randomly generating our two relevant rules, in our case, becomes:

p f (40) = 2 X 2-59 X 10 6 = 5-18 X 10"6r  Cj,c2

Therefore, the probability of randomly generating even two relevant rules, for 
our design learning task, is almost negligible. By further expansion of 
equation of (6 .4.6.4), we note that the probability of randomly generating a 
default hierarchy (such as the ones shown in table 6 .2 ) is nearly zero for any 
practical purpose. These calculations confirm our expectation that, by using 
the apportionment of credit algorithm alone (as given by equation (6.4.6.1)),
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we can not expect to achieve better performance and we need an inductive 
rule discovery mechanism (such as a genetic algorithm) to boost 
performance.

The apportionment of credit algorithm, as specified by equation (6.4.6.1), is 
based on a deterministic selection of the highest bidders. This means that, at 
each matching cycle, the highest bidder is deterministically selected for 
activation. However, the degree of determinism in the decision process is 
important and relates to the "exploration" versus "exploitation" trade-off faced 
by all inductive systems.

If for two matching classifiers A and B, the strength of A is somewhat greater 
than that of B, then a relatively deterministic decision (for A) should be made 
only if the system is quite sure that the strengths estimate accurately the 
resulting reward. This corresponds to exploitation of current information. On 
the other hand, if the system is unsure that the estimates are accurate, then 
the decision should be made less deterministically, resulting in more 
exploration of alternatives.

The main reason for this non-determinism occurs when we inject new rules 
by the genetic algorithm at the average strength of their parents. As a result, 
if these rules are ever to have a possibility of trial, their bid values must be 
occasionally lifted above the better rules.

In order to achieve this exploration versus exploitation trade-off in the 
decision process, most classifier systems have made decisions by a 
stochastic process in which the probability of selection was proportional to 
the bid of a matching classifier. In the bidding competition, the probability of 
selecting a particular classifier for activation is equal to its bid divided by the 
sum of bids of all matching classifiers. This process is similar to the Monte 
Carlo selection strategy (DeJong, 1975). The second technique has been 
suggested by Goldberg (1983). This technique is based on a "noisy auction" 
in which to each bid of a matching classifier a gaussian noise having a 
certain variance is added, and the classifier with the largest of the resulting 
bids (called its effective bid) is selected for activation.
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An advantage of the noisy auction is that, by adjusting the noise variance, the 
degree of determinism in the decision can range from completely 
deterministic (i.e., based directly on the highest bids) to totally random.

In the following simulations, the second approach has been used. I.e., the 
effective bid of each classifier is calculated as the sum of its deterministic bid 
and a noise generator:

EBi =Bi+ N i(cbid) (6 .4 .6 .5 )

Where:

E B  : effective bid
B  : actual bid
TV, : gaussian noise generator
a hid : standard deviation of the noise generator

For this study, the noise generator is implemented using the Box-Muller 
method for generating random deviates with a normal (gaussian) distribution 
(Press, 1988). The amount of gaussian noise imposed on an actual bid has 
been set to 0 075. Goldberg (1983) has observed that the introduction of 
even the smallest amount of randomness, in the decision process, results in 
a significant improvement in exploration of new alternatives. Consequently 
the chosen setting for Cbid achieves a more deterministically biased decision 
process. This procedure is used in conjunction with genetic algorithm 
activated simulations.

During the next simulations, we will be using the genetic algorithm regularly 
to inject new rules into the population at possibly relative high levels of 
strength (average fitness of parents), therefore, we must ensure that inactive 
rules are degraded sufficiently before they can reproduce and insert new 
rules themselves. If this is not done, relatively inactive rules can obtain high 
levels of strength and reach reproduction. This causes degradation of 
performance, because the genetic algorithm might replace relevant and 
useful rules with irrelevant and weak rules.

In order to avoid this problem, we modify our apportionment of credit-
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algorithm as follows:

Si ( i+ l)= S i( i) -C 6id-^ ( i) -C fcid_io;c.)Si ( i) -C /i/e_ia;c-Si( i ) + ^ ( i )  (6.4.6.6)

c nfe-tax ¡n the above equation, represents the head-tax (Holland, 1987; Riolo, 

1987), which is a linear decay term. The decay term ensures that a useful

and above average classifier rule will reach its expected asymptotic strength 
value after a number of time steps which is in the order of hundreds. It also 
reduces the below average rules to theirs estimated zero steady state 
strengths.

A genetic algorithmic activation of 500 has been used in the initial test runs. 
Cufe-uLx is calculated for this genetic activation period by considering the

apportionment of credit algorithm as represented by equation (6.4.6.6).
Since, the apportionment of credit algorithm simply reduces the strength of 
an inactive rule by the Clife_tax rate, after n iterations of inactivity, we have the

following value of strength :

S«+n)=(l-C „i ,_,„,)“ S(t) (6.4.6.7)

Therefore, the half-life of an inactive rule is given by :

n= 1 o g(>0/1 o g(l~Clife_tax) (6.4.6.8)

We want to make the strength of an inactive rule to be near its half-life free
fall value after 500 time steps (i.e., before the genetic algorithm is activated). 
A value of 0 001 has been chosen for Clife_tax. This gives a free half-life value

of about 692 for below average rules. Other apportionment of credit learning 
parameters are as defined in table 6.5. As described in section 6.4.3, at each 
genetic activation, we only select a proportion of our population for selection 
and reproduction. This procedure is based on DeJong's crowding technique, 
in which we want to create separate rule niches by replacing below average 
rules with similar and possibly better rules.

DeJong (1975) has used this scheme successfully with a crowding factor 
CF=2 and 3 and with a generation gap G=0-1 on a multimodal function 
optimization task. On the basis of his observation, we will select only 5 %  of 
the classifier rule population at each genetic activation. Therefore, in our
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case, at each genetic algorithm invocation we will inject only two new trials. 
Also, we have chosen a crowding factor of 3, and the cross-over and 
mutation probabilities have been set to 10 and 0 01 respectively. In this way, 
we maintain a high level of on-line performance while exploring possibly 
better alternative design rules.

We summarize our learning parameter values in the following table:

AOC Parameter Value GA Parameter Value

Qid 0-1 GA Period 500
ĉbid-tax 001 Pr 1-0
r̂
life-tax 0001 P,„ 001

Cbid 0075 G 50%

0-25 CF 3

M0 0-125

Table 6.6 Classifier system learning parameters

Using the above settings, three independent runs were performed, up to and 
including generation 40,000. The best of run (simulation-2) performance 
curve is shown in figure 6.4. We note that, our simulation, with genetic 
algorithm invoked, significantly outperforms our previous runs without genetic 
activation. In effect, the classifier system has learned rules sufficient to 
perform correctly 95-96 percentage of the time.

Contrasting this simulation with the previous one, we see that by exploring 
new rules, using the genetic algorithm, we can obtain a much better 
performance. This is achieved by our two inductive algorithms. The 
apportionment of credit algorithm rates extant rules and decides among 
competitors, while the genetic algorithm contributes new and possibly better 
rules into the rule population.

Figure 6.5 gives a comparison between our two simulations based on the 
time averaged performance.
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To get a better understanding of the type of rule learning performed by the 
classifier system, we examine the above average rules selected and created 
at the generation 40,000. These are shown in table 6.7.

small-influence design rules : strong-influence design rules :
Rule Strength Rule Strength

CR1 : ### 00# -» 0 15-49 Cbi ### 10# -> 1 15-42

CR2 : 1## 01# -> 0 12-86 Cb2 ### 11# —> 1 15-87

Cb3_ ### 01# ^  1 7-72

Population Average 1-97

Table 6.7 Above average rules created during simulation-2

It is remarkable that the classifier system has created a nearly perfect default 
hierarchy. The created default hierarchy set of co-operating rules is more 
intuitive than our "natural" solutions that partitioned the design space into six 
non-overlapping regions. The suggested default is more compact and is 
based on the internal dynamics of the classifier system. As shown in table 
6.7, the population average is 1-97, indicating that the remaining 35 below 
average rules, have been rigorously reduced to their approximate half-life 
free fall values.

Rules CS1, CS2, CB1 and CB2 have nearly reached theirs expected asymptotic 
steady state strength values, as indicated by equation (6.4.2.8). The lower 
values of their strengths, as compared to the theoretical values indicated by 
equation (6.4.2.8) is due to the addition of the decay term.

The default rule CB3 has a much lower strength as could be predicted by a 
direct use of equation (6.4.2.8). Considering the following two of our created 
co-operative rules:

CB3: ### 01# -> 1 
CS2 : 1## 01# -> 0

Rule CS2 is a more specific rule, covering some of the mistakes made by the 
more general default rule CB3. CS2 is always correct, and its strength is near 
its expected asymptotic theoretical value. CB3 would have had an expected 
fixed point strength value, equivalent to those of CB1, CB2, and CS1 if it was
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always correct. But, its asymptotic strength value is much lower than 
expected, because, it is wrong in 10 design cases for which it bids but 
receives no reward. This is in fact what we expect; under the apportionment 
of credit algorithm and by using specificity dependent bidding (equation 
6.4.6.2), we have achieved a stable default hierarchy in which 8 mistakes of 
our more general rule CB3 are covered by CS2. Under these conditions, the 
asymptotic strength values ensure that if during a matching cycle both CB3 
and CS2 are active, our more specific rule CS2 will always win due to its higher 
bid value. Therefore, the created default hierarchy is stable; enabling the 
classifier system to perform 96-8% of the time correctly.

Unfortunately, our default hierarchy of rules is not perfect. I.e., 2 further 
mistakes made by CB3 are not covered by any rule in the rule population. To 
achieve a perfect rule set, the system must create a highly specific rule such 
as (01# 010 —> 0) to cover these mistakes.

One of the reasons for this problem is that, in the initial randomly generated 
population of 40, only few relevant schemata for construction of this rule 
exist. We remember that, we have chosen a probability of 0-67 for generating 
# tokens. This decision was taken to promote the formation of more general 
and relevant rules, because our hypothetical default hierarchies, such as the 
ones shown in table 6.3, are dominated by highly general rules. Under this 
scheme, the probability of generating a relevant specific rule, such as the 
one we require, in a single trial is only 4 09 X 10 5 .

One way to rectify this situation is to use a higher population size. Using a 
higher population size ensures a higher probability of generating larger 
number of relevant schemata for our design learning task. Also, a higher rate 
of mutation per genetic algorithm activation ensures the insertion of a higher 
number of new schemata not already contained in the population.

The classifier system might still encounter problems, even if it generates a 
relevant, useful and specific design rule. More specific rules are rewarded 
less often than more general rules, and might reach theirs expected 
asymptotic strength values more slowly. Considering our non-deterministic 
decision process and severe competition among active rules, some of which
having unrealistically high levels of strength due to genetic activation, we 
must be very careful about the size of the Clife_tax parameter. A high value of

head-tax can result in unjustifiably low half-life values. Specifically, we
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consider the expected asymptotic strength value, under the current scheme, 
for a rule such as : (01# 010 —» 0).

Assuming a head-tax value of zero, this rule will reach its expected 
asymptotic value of 10-25 according to equation (6.4.2.8). On average, this 
rule is expected to be active twice per 64 cycles, or once per 32 cycles. This 
observation is based on the stochastic nature of our design environment, 
where the probability of each design situation being faced by the classifier 
system is 1/64.

We restate the apportionment of credit algorithm, expressed by the following 
difference equation:

<S;(i+D=<Sj(t)-Cbid -Si(t)-Cbid_tax Si(t)-Clife_tax S i (i)

In the case of a nominal periodic input with period T, the expected asymptotic 
strength value of a classifier is obtained by imposing :

Si.t+T)=9it)
(6.4 .6 .9)

The starting point t is irrelevant in this computation. We assume that t is the 
time-step right after activation and reception of the reward. Therefore, since 
the expected period between two activations of the classifier is T, we have an 
expected strength decay for T-1 time steps during which head-tax is paid and 
then one active time-step, when the classifier rule receives reward and pays 
bid-tax and head-tax.

App., j  the condition of periodicity and solving for s(t), using our 
apportionment of credit difference equation, we ge t:

R
S (t) = S ( t+ T )=— ---------------------------

C u f e- t a x ~ C b i d - t a x ) \ l ~ C l i f e_ t a x ) + Q,d ( l- Q i f e _ t  a x  )

T- 1

(6 .4 .6 .9)

Equation (6.4.6.9) gives the maximum expected asymptotic strength value 
attainable by a classifier rule. Under our scheme (i-e- CUfe_tax =0-001), by
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using the above equation, the expected asymptotic strength value for our 
specific required rule is (we have sp  = 5 for this rule) approximately 7-9 units.

From above calculation we note that, the expected maximum fixed point 
value of strength, under our scheme, has decreased by 2-35 units. Therefore, 
to promote the formation of more specific rules, we are justified to decrease 
the head-tax value by half. This gives an expected maximum fixed point 
strength value of approximately 9 0 units for our specific desirable rule. 
Considering our new head-tax setting, we double the period of genetic 
algorithm activations according to equation (6.4.6.8).

Following the above discussion and analysis, we change our population size, 
mutation rate, head-tax, and genetic algorithm period as shown in table 6.8 
below:

New Learning Parameters :
Population Size 60
Mutation Rate 0-02
c

life -tax 0-0005

GA period 1000

Table 6.8 New learning parameters for simulation-3

Keeping the percentage of population replaced by the genetic algorithm fixed 
and, knowing that we have increased the population size, we will be inserting 
3 rules per genetic activation.

We are now in a position to test our hypothesis. Three independent runs 
were performed, initiated with three different random seeds, using our new 
settings. The best of run (simulation-3) performance curve, up to and 
including generation 23000, is shown in figure 6.6. Here we note that, a 
steady time averaged performance of 0-973% has been achieved at iteration 
23000 and this performance is still increasing. The 50 step time averaged 
score has reached a perfect 100 0% correct level at generation 2-1X104 and 
has retained its value up to and including generation 2-3X104. Therefore, the 
classifier system has performed correctly for 2000 cycles.
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By inspecting the rule population at generation 23,000, we observe that, the 
classifier system has created a set of above average co-operating rules 
achieving a perfect performance. These rules are shown in table 6.9.

small-influence design rules : strong-influence design rules :
Rule : Strength : Rule : Strength :

CR1 : 1## 00# -> 0 1112 CR1 : ### 10# 1 16-0
Cq? : 1## 01# 0 13-26 CR9 : ### 11# —> 1 16-0
CR3: #00 00# 0 10-54 CR3 : ### 01# ^  1 9-6
CS4 : 01# 00# 0 9-71
CRR: 01# 00# 0 10-14
CRfi : 01# 010 0 8-73

Population Average 2-47

table 6.9 Above average rules created during simulation-3

As seen from this table, the specific rule that we have been hoping to find, 
has been discovered by the classifier system. Rules CS2 and CS6 co-
operatively cover all mistakes of the default rule CB3. Therefore, the classifier 
system has created and learned effective design heuristics for perfect 
performance. These results confirm our expectation that, classifier systems 
are highly capable inductive systems for our purposes.

6.5 Conclusions and future work

In this chapter, we have investigated the application of classifiers to the 
design of instrument transducers. In our application, the implemented 
classifier system has been able to discover design heuristics successfully by 
direct interactions with the specified mathematical model representing its 
environment. In our particular empirical rule discovery and learning task, 
environmental messages relate to different diaphragm design problems. 
Therefore, different environmental messages, lead the classifier system to 
form different categories of design problems, for which different design 
actions are necessary.

In a number of simulations, the classifier system, starting from no appropriate 
knowledge of the specified design environment, has gradually created a set
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of useful design heuristics, postulated as if/then statements. The discovered 
design heuristics are in the form of default hierarchies. In the created default 
hierarchies, fairly general rules cover the most frequent design cases and 
more specific rules (that typically contradict the default rules) cover 
exceptions. However, as seen from table 6.9, rules Cs1, Cs3, Cs4, and Cs5 
together perform the same function as that of Cs1 in table 6.7. That is, in this 
case the small influence design rules have a more specific nature. The 
collapse of the more general rule into a set of more specific rules is not 
desirable and has been observed in previous studies.

Holland (1986) has stated that default hierarchies should form in classifier 
systems if the specificity of a classifier is factored into its bid; this allows 
more specific exception classifiers to outbid, and "protect", general classifiers 
from making an error.

In most classifier systems, the bid has included specificity, yet default 
hierarchies have not appeared in abundance. Riolo (1987) showed, in 
experiments not using the genetic algorithm, that default hierarchies could be 
stable, once formed. The implication is that something about the genetic 
algorithm inhibits default hierarchy formation.

Wilson (1988) hypothesized that the bid competition not only protected 
defaults when they were wrong, it also tended to starve them when they were 
right, so that defaults, if generated, could not survive. The starvation resulted 
because the genetic algorithm could be expected to generate, besides the 
default, more specific versions of the default, and these latter classifiers 
would outbid the default and prevent it from being activated.

Under our standard bidding scheme, a classifier pays out a fraction b of its 
strength S, so that the bid itself approaches b -S  = b ( R /b ) = R , where R  is the
long-term average income (after taxes). Under this arrangement, the 
expected asymptotic strength values of classifiers are such that a general 
rule and a specific rule active in the same situations will come to bid the 
same amount (because the strength of a general classifier increases to the 
point that it can compensate for its smaller specificity dependent bid value). 
Consequently, a more specific rule, despite its greater specificity, can not 
stably beat the more general rule.
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Holland (1987) has suggested that, stability might result under a bidding 
process that more closely reflects that of auctions in real markets. In real 
market economies, individuals examine an item they wish to purchase, 
decide how much they can afford, and bid up to the point where the buyer's 
bid meets or exceeds other bids and the seller agrees to sell. In a classifier 
system, a classifier matches a message, it pays out a fixed percentage of its 
bank balance, if that amount happens to be selected in the auction process. 
To make the standard bucket brigades more similar to real markets, we can 
have the winner classifiers pay out only the amount necessary to beat their 
competitors. In one simply implemented scheme, each classifier simply 
broadcasts its standard bid value, a winner is selected, but the winner only 
pays out an amount equal to the bid made by the second best rule. Whether 
these or other schemes can encourage superior default hierarchy formation 
and result in their persistence and stability are a subject for further research.

Our implemented classifier system, for the design heuristic extraction, has 
produced a set of useful design heuristics which relate the nature of the 
influence of the centre-boss size, the effective radius and relative corrugation 
depth to the overall characteristics of corrugated diaphragms. The induced 
design rules are more accurate than Andreeva's because, they are based on 
a more accurate representation of the design environment. The produced 
design heuristics can constitute a part of an overall design methodology for 
the design of corrugated diaphragms. In order to extend this work, we must 
modify the design environment and construct an appropriate syntax for the 
classifier rules enabling the classifier system to induce a sequence of design 
heuristics, constituting a design methodology. The design heuristics are 
based on empirical relationships derived from set(s) of dimensionless curves. 
The aim of this extension is to simulate a number of techniques for the 
inductive extraction of design methodologies (Mirza, 1983).
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CHAPTER 7

Conclusions
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7.1 Conclusions

Our aim in this thesis has been clear. We have directed our efforts into the 
utilisation of DAI techniques for the purpose of design automation of 
instrument transducers.

We have argued that design problems, by nature, are parallel, distributed 
processes and are best implemented using DAI techniques. DAI systems 
have a multitude of advantages as compared to conventional rule-based 
systems. These include: naturalness, reliability, efficiency, resource sharing, 
extendibility and cost-effectiveness. However, complex research issues must 
be resolved when a distributed approach is used. These issues are classified 
into four categories:

1- Formulation, decomposition and allocation of problems
2- The methods for achieving distributed control
3- Communication processes for coordination
4- Modelling other agents

Unfortunately, there has been relatively little research in problem formulation, 
decomposition and task allocation issues. In most DAI systems, 
decomposition of problems into sub-problems is known before the initiation of 
the problem solving process. This has influenced current approaches to the 
design of DAI systems. In these systems, almost always, there exist a 
predefined specification of a static conceptual hierarchy of the design 
problem and the way to decompose a design problem is provided by the 
developer. These systems support a routine type of problem solving. Non-
routine type of design problem solving requires the generation of an 
extensive number of possible decompositions into subfunctions providing 
alternative synthesis plans for the overall design process.

In order to resolve these problems, we have proposed and implemented a 
Distributed Problem Solver framework for conceptual design of instruments. 
The implemented system consists of a community of knowledge-based 
agents with expertise on design of instrument sub-systems. The control 
structure of the system is in the form of a community of cooperative design 
organizations. Each design organization represents an energy domain. The



energy domain organizations are hierarchical in their architecture in which 
functional-agents are the central coordinators which give commands to their 
sub-system agent organization members for design purposes.

On top of the above mentioned control structure, we have designed a 
communication protocol to coordinate agent interactions for problem- 
decomposition and sub-problem distribution. The designed protocol is based 
on the Contract-Net style of negotiation and supports a task-sharing form of 
cooperation among the agents.

The contribution of this work has been to consider the problem formulation 
and decomposition as major design problems which can be resolved via 
negotiations among cooperative agents. In other words, in our DPS system, 
the problem decomposition processes, themselves, have been distributed 
and are achieved by negotiations using a task-sharing form of cooperation. 
These negotiations result in dynamic configuration of design organizations 
which represent alternative conceptual design solutions (supporting 
alternative synthesis plans).

Our approach is in contrast to conventional Contract-Net style of negotiations 
in which the problem decomposition knowledge is embedded in Manager 
agents and negotiations are only directed towards the dynamic distribution of 
sub-problems.

In order to avoid excessive negotiations and support learning capabilities, 
each agent has been provided with self-model and env-model qualifiers. The 
env-model attribute allows agents to incorporate detailed models of the 
behaviour and capabilities of their acquaintances and reason about their 
actions.

Another contribution of our proposed DPS system is its utilisation of the 
complementary nature of both forms of cooperation (i.e., task-sharing and 
result-sharing) as opposed to a conventional CNET framework (Smith[10j) 
which only supports task-sharing or a Hearsay-ll (Lesser [19]) type of 
framework in which only result-sharing is supported.

In order to study the techniques by which the adaptive capabilities of our 
DPS system can be enhanced, we directed our efforts into the investigation 
of machine learning techniques for single knowledge-based agents and their
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possible extension into our multi-agent system. The integration of learning in 
our DPS system is of immense importance. Machine learning techniques 
such as case-based reasoning, or inductive learning should be an integral 
part of distributed problem solving. These techniques help the multi-agent 
system performance through acquiring new knowledge, refining existing 
knowledge, using better coordination strategies, or memorizing cases 
previously proven to be unsuccessful. Therefore, incorporation of learning 
processes in our multi-agent system will enhance its problem-solving by 
enabling it to exploit the complementary role of group learning during the 
problem solving activity.

The result of our critical investigations of these issues has been to propose a 
theoretical DPS framework which can be considered as an extension of 
contractual form of cooperation into fine-grained level of processing (i.e. 
single agent arena). In this framework, an agent is considered as a Classifier 
System module. Classifier-systems (a fine-grained DAI system), span both 
syntactic and connectionist approaches. This computational framework 
(representing a cognitive system) incorporates the semantic aspects of 
induction by being environment-oriented in its problem-solving. The major 
inductive mechanism in classifier systems, for accumulation of experience, is 
the Bucket Brigade algorithm (which supports a task-sharing form of 
cooperation). Furthermore, classifier systems use genetic operators to 
recombine the genetic characteristics of well performing rules to produce 
plausible better rules.

The proposed system, also, uses a contractual form of cooperation (also 
used for our implemented DPS system) at its coarse-grained level of 
processing by using the Bucket-Brigade algorithm for accumulation of 
experience. The Bucket-Brigade algorithm introduces an element of 
competition into the cooperetive process, i.e., a knowledge-based agent that 
successfully bids for a task receives a reward which positively affects its 
ability to bid for future tasks. Agents not successful in the bidding process 
are eventually degraded. Crossover and mutation operators can also be used 
at this level of processing resulting in the generation of new agents which 
inherit the abilities of the successful agents. An advantage of this proposal is 
that, it is relatively easier to apply crossover and mutation operators to 
classifier systems at their coarse-level of processing, as compared to a 
syntactic or a connectionist knowledge-based agent.
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In order to investigate the capabilities of classifier systems, we concentrated 
on the practical uses of Classifier Systems and Genetic Algorithms as 
applied to the design of instruments at the sub-component level.

Genetic algorithms are highly adaptive processes which can efficiently 
search environments characterized as discontinuous, vastly multimodal and 
noisy, without auxiliary information requirement. However, genetic algorithms 
occasionally suffer from "premature convergence". The primary cause of this 
behaviour is identified as "genetic drift" that characterizes the stochastic 
errors caused by reproductive strategies. A secondary cause of this 
behaviour might be caused by genetic algorithm hard problems. These 
issues were investigated in the context of the design optimization of two 
instrument sub-systems (i.e., corrugated diaphragms and LVDTs), using a 
three operator genetic algorithm. In our applications, we were able to find 
optimal values, for design parameters, satisfying the design requirements.

In our optimization problems, an stochastic remainder without replacement 
selection, in conjunction with elitisism and an scaling process (St-EI-Wn), 
gave relatively superior, near optimal results as compared to stochastic 
remainder selection strategy alone. Although St-EI-Wn can reduce the 
stochastic errors due to similarity of fitnesses near convergence, it is not 
effective in maintaining diversity across the gene pool, i.e., a chromosome 
with substantially higher fitness, will tend to dominate the population, causing 
premature convergence.

In order to investigate a different selection strategy, a ranking selection has 
been implemented. The result obtained from our ranking selection strategy, 
in conjunction with elitisism, are substantially better as compared to previous 
selection methods used. This comparison is based on a best of run 
performance metric. In both of our design optimization formulations, optimal 
designs have been identified by this selection strategy. The ranking 
selection, completely solves the scaling problem and provides a consistent 
means of controlling offspring allocation. In general, ranking methods provide 
an even, controllable pressure to push for the selection of better individuals.

In the context of our design optimization problems, we have also considered 
a number of sharing schemes for multi-modal design optimization of 
instruments. The sharing scheme, together with a proportionate selection 
strategy, is an effort to maintain a pressure to balance the sub-population





sizes around each peak; by making sure that strings are reproduced 
according to shared fitness values. We have proposed a normalized 
formulation in conjunction with sharing schemes. In this proposal, the 
formulated normalized phenotypic values become independent of a particular 
design search space. Our new normalized sharing function takes into 
account the similarity of all independent design variables evenly and in a 
straight-forward linear function of the degree of similarity among them. 
Alternative optimal designs have been found, for both of our design 
optimization problems (satisfying more relaxed user specified design 
criteria), by using the sharing schemes, together with the stochastic 
remainder without replacement selection strategy. This confirms that, for 
more relaxed design specifications, there will be alternative optimal designs 
in both of our design optimization problems.

In chapter 6, we detailed a number of important proposals for the application 
of classifier systems to the development of methodologies for the design 
automation of instruments. In particular, we worked on the process of design 
heuristic extraction for corrugated diaphragms, using a set of dimensionless 
curves. The dimensionless formulation is based on a lumped parameter 
mathematical model.

In our application, the implemented classifier system has been able to 
discover design heuristics successfully by direct interactions with the 
specified mathematical model representing its environment. In our particular 
empirical rule discovery and learning task, environmental messages relate to 
different diaphragm design problems. Therefore, different environmental 
messages, lead the classifier system to form different categories of design 
problems for which different design actions are necessary. This is achieved 
through the establishment of a set of design rules, covering the entire 
problem range, that relate the geometric features of a diaphragm type (i.e., 
the relative radius ratio of the Centre Boss, the diaphragm height and its 
thickness) to its performance.

In a number of simulations, using the standard Bucket Brigade Algorithm, the 
classifier system, starting from no appropriate knowledge of the specified 
design environment, has gradually created a set of useful design heuristics 
postulated as if/then statements. The discovered design heuristics are in the 
form of default hierarchies. In the created default hierarchies, fairly general
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rules cover the most frequent design cases and more specific rules (that 
typically contradict the default rules) cover exceptions.

7.2 Future Work

In this thesis our main efforts have been the identification and implementation 
of appropriate DAI techniques for the design automation of instruments. In 
this direction, we have proposed and implemented a Distributed Problem 
Solver for the conceptual design of instruments, and investigated the 
application of classifier systems, as inductive knowledge-based agents, for 
the automation of inductive reasoning in the design process. We, also, have 
identified a multitude of research problems which have to be resolved. These 
issues are listed below and are left for future investigations:

The most important issue to be resolved in future expansions of our DPS 
system for conceptual design of instruments is the identification and 
implementation of appropriate conflict resolution strategies during the sub-
problem solution and answer synthesis phases of the problem solving 
process. The conflict resolution strategies are needed, because in the 
instrument design domain, the number of alternative conceptual 
decompositions is high and there are no easy, formalizable heuristics to 
choose among them. In the implemented DPS system, a functional-agent 
must be able to select the best candidate sub-system Agents, using its expert 
knowledge and local model of the design environment (i.e., award tasks to 
the most suitable contractor sub-system agents within its organization). This 
choice depends on conflicting aspects of the design environment such as 
cost, weight, functionality, robustness, appearance, topology, ergonomic 
characteristics, performance and so on. Furthermore, during the subproblem 
solution phase and answer synthesis phase of the problem solving process, 
design conflicts must be resolved, because the sub-system solutions are 
highly dependent.

In general, when different agents give incompatible specifications for a given 
design component, or one agent has a negative critique of specifications 
asserted by another agent, we can say that a conflict has occurred and it 
must be resolved for coherent problem solving. Therefore, conflict resolution 
strategies represent an essential part of the cooperative design problem 
solving. These strategies are mostly induced by generalization of specific
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conflict solutions to produce domain-independent expertise suitable for a 
wide range of conflicts. Conflict resolution strategies represent a mainly 
unexplored but important next step in providing truly effective support for 
cooperative design.

Our next step is to incorporate learning techniques such as explanation- 
based learning, case-based reasoninq and/or inductive learning techniques 
into our DPS system resulting in a truly intelligent and adaptive system. For 
example, the heuristic nature of conflict resolution expertise necessitates the 
exploration of analogy and learning to enhance the coverage and 
effectiveness of existing conflict expertise.

We have proposed the use of classifier system modules as inductive 
knowledge-based agents for this purpose. In future, other syntactic and 
connectionist learning approaches can and must be explored; providing 
alternative solutions to the same design problem and forming a concrete 
ground on which comparative studies can be carried out.

Our application of classifier systems for the simulation of sensitivity analysis 
as done by designers during the initial stages of the design process has 
produced a set of useful design heuristics which can constitute a part of an 
overall design methodology for the design of corrugated diaphragms. In order 
to extend this work, we must investigate appropriate modifications of the 
design environment, and classifier rule syntax that enables the classifier 
system to induce a sequence of design heuristics, each based on empirical 
relationships derived from set(s) of dimensionless curves. The process 
involves an inductive search within a set of possible design heuristics 
constituting a design methodology. The set of dimensionless curves 
representing the design environment, must invariably contain all the relevant 
design information regarding the class of the diaphragm. The allocation of 
reward to the classifier system must be based on the quality of the induced 
design methodology which incorporates the degree to which it can satisfy the 
design requirements.

Mirza (1983) has suggested and derived a number of techniques for the 
extraction of design methodologies for snap-action diaphragms. These 
techniques are based on a set of constructed dimensionless curves. His 
derived design methodology has been used for industrial design automation. 
However, he used a manual procedure for the derivation of his design

214



methodology. Consequently the automation of this process has a high 
practical importance and can be extended to much more complex inductive 
design heuristic extraction processes which are impractical using 
conventional methods.

We also suggest the use of a community of classifier system modules that 
cooperate according to our proposed theoretical framework. We can also use 
syntactic or connectionist knowledge-based agents in this framework. In this 
way, we can also investigate group induction processes at the coarse-
grained level of processing.

As elaborated in chapter 6, in our application of a classifier system, some 
undesirable behaviour related to the stability of default hierarchies has been 
observed. A number of schemes, for making the bidding competition in 
classifier systems more similar to auctions in real markets, have been 
suggested. To complement the above studies, we must also investigate 
alternative Bucket-Brigade schemes for encouraging superior default 
hierarchy formation and achieving better persistence and stability.

In the case of genetic algorithmic optimization, we must construct better 
theories of trial allocation, and carry out more studies of genetic algorithm 
hard problems. These studies are, also, vital to our understanding of 
inductive learning. In particular, we suggest more investigations for improving 
the sharing schemes used in multi-modal design optimization applications. 
For example, simple on-line and off-line performance measures are not 
directly suitable forjudging the distribution pattern of the trials over the peaks 
in the case of multimodal function optimization. Therefore, experiments with 
better performance metric indicators, such as Deb & Goldberg's (1989b) chi- 
square-like criterion, for the analysis of the performance of our normalized 
sharing formulation and possible extensions of this formulation is also an 
important future work.

Finally, in our use of genetic algorithms for the design optimization of 
instrument sub-systems, we must strive for the development and use of more 
accurate mathematical models. These more accurate mathematical models 
are invariably in the form of distributed parameter mathematical models and 
are based on the solution of differential equations emerging from the 
application of the basic physical laws to a design concept. These 
mathematical models are expected to be more accurate as compared to
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analytical models, because they take into account all the geometric features 
and material properties. Therefore, the use of more accurate mathematical 
models will enable the genetic algorithm to exploit its more realistic image of 
its design environment to come up with much better optimal designs.
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APPENDIX-1

1 The software documentation of the Distributed Problem Solver for 
Conceptual Design of Instruments

The Object Oriented Design methodology, introduced by Booch (1991), was used to 
develop the software architecture. During the analysis and the early stages of 
design, the developer has two primary tasks:

1- Identify the classes and objects that form the vocabulary of the problem domain.
2- Invent the structures whereby sets of objects work together to provide the 
behaviours that satisfy the requirements of the problem.

This design methodology is based on separate independent kinds of design 
decisions. Among other things, a developer must consider the following 
fundamental issues in Object-Oriented design:

1- What classes exist and how are those classes related?
2- What mechanisms are used to regulate how objects collaborate?

Answers to these questions can be expressed in each of the following diagrams, 
respectively:

1- Class diagrams
2- Object diagrams

These diagrams form the basic notation of Object-Oriented design (Booch, 1991). 
Whereas class diagrams reflect the vocabulary of the problem domain, object 
diagrams represent mechanisms by which instances of particular classes 
collaborate to provide some behaviour that satisfies a requirement of the 
problem.Once a developer decides upon a particular mechanism, the work is 
distributed among many objects by defining suitable methods in the appropriate 
classes.

Using the informal strategy arrived at during the specifiction of the software 
requirements (Please refer to chapter 3, section 3.4), the following tangible objects 
are found as the key abstractions of the problem domain:

1- Manager (Interfacing) Agent
2- Functional Agents
3- Sub-System Agents
4- Env-Model or Acquaintances Model
5- Input-Queue and Output-Queue
6- Messages
7- Scheduler
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Accordingly, The following Top-Level Class Diagram is derived:

The Top-Level Class Diagram

1.1 Defining The Semantics and Relationships of the Top-Level Classes

Given the design decisions expressed in the class structure (represented in the 
above figure), we can now reasonably establish the interfaces of some of these 
higher level classes:

1- Manager Class

Name: Manager 
Cardinality: 1
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Implementation:
Superclass: NIL 
Uses: functional-agent 
Fields: name, num-items, entries 

Public Interface:
Operations:

1 -Constructor
2- nm (accessor)
3- env-mod (accessor)
4- execute-message (virtual method inherited down the hierarchy, supports- 

polymorphism)
5- execute-f-message (virtual method inherited down the hierarchy, supports- 

polymorphism)
6- Link (modifier)

Concurrency: sequential 
Persistence: dynamic

2- Functional-Agent Class

Name: (one of Mech-Mech, Mech-Elect, Elect-Mech, Elect-Elect, etc.) 
Cardinality: 1 

Hierarchy:
Super-Class: Manager Class 

Public Interface:
Operations:

1- Constructor
2- Link (modifier)
3- nm (accessor)
4- env-mod (accessor)
5- execute-f-message

Above methods are all inherited from the Manager Agent.
6- execute-message (overloaded virtual)

Implementation:
Uses: Sub-System Agent, stack 
Fields: name, entries (inherited)

Concurrency: sequential 
Persistence: Dynamic

3-Sub-System Agent Class

Name: (name of a particular instrument sub-system that belongs to a specific 
energy domain organization)

Cardinality: 1 
Hierarchy:

Super-Class: Functional Agent Class 
Public Interface:

Operations:
1 -Constructor
2- Link (modifier)
3- nm (accessor)

Above methods are all inherited from the Manager Agent.
4- execute-message (overloaded virtual)
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Implementation:
Uses: Functional-Agent Class 
Fields: name, entries (inherited) 

Concurrency: sequential 
Persistence: Dynamic

4-String Class

Name: Identifier 
Cardinality: 1 

Hierarchy:
Super-Class: NIL 

Public Interface:
Operations:

1 -Constructor
2- assign (modifier)
3- length (accessor)
4- st() (accessor)
5- print() (accessor)
6- Operator == (accessor)
7- Operator = (modifier)

Implementation:
Uses: Pointers to string characters 
Fields: String instances, Integer length instances 

Concurrency: sequential 
Persistence: Dynamic

5- Acq-List Class

Name: env-mod 
Cardinality: 1 

Hierarchy:
Super-Class: NIL 

Public Interface:
Operations:

1- Constructor
2- Destructor
3- add
4- Update
5- ls-ln
6- Display 

Implementation:
Uses: Acq-node
Fields: List of Acq-node instances 

Concurrency: sequential 
Persistence: Dynamic

6-Acq-node Class

Name: Identifier 
Cardinality: n
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Hierarchy:
Super-Class: NIL 

Public Interface:
Operations:

1 -Constructor 
Implementation:

Uses: Acq-table 
Fields: Acq-table instance 

Concurrency: sequential 
Persistence: Dynamic

7- Acq-table Class

Name: Identifier 
Cardinality: n 

Public Interface:
Operations:

1 -Constructor
2- isnt-in-connect
3- isnt-out-connect
4- is-in-inconnect 

Implementation:
Uses: in-out class 

string class 
Fields:

name string class 
in-out skill instance 
in-connect string instance 
out-connect string instance 
integer mark 

Concurrency: sequential 
Persistence: Dynamic

8-Stack Class

Name: Identifier 
Cardinality: 2 

Hierarchy: 
Super-Classes: NIL 

Public Interface: 
Operations:

1 -Constructor
2- Destructor
3- reset
4- push
5- pop
6- top-of (accessor)
7- pri (accessor)
8- ptpri (accessor)
9- empty (accessor)
10- full (accessor)



Implementation:
Uses: Message class 
Fields:

Array of message instances 
Integer instance variable "top" 

Concurrency: sequential 
Persistence: Dynamic

9-Message Class

Name: Identifier 
Cardinality: n 

Hierarchy:
Super-classes: NIL 

Public Interface:
Operations:

1 -Constructor
2- printm (accessor)
3- fn (accessor)
4- tn (accessor)
5- sone (accessor)
6- stwo (accessor)
7- mt (accessor)
8- mb (accessor)

Implementation:
Uses: String class

Mess-Bod Class
Fields:

1- string instance from-name
2- string instance to-name
3- Mess-Bod instance message-body
4- string instance sub-one
5- string instance sub-two
6- string instance message-type 

Concurrency: sequential 
Persistence: Dynamic

10-Agent-List Class

Name: Identifier 
Cardinality: 1 

Hierarchy:
Super-class: NIL 

Public Interface:
Operations:

1 -Constructor
2- next() (accessor)
3- add_after (accessor)
4- is_in (accessor)
5- findJn 

Private Interface:
1 -is_not_marked
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2-findJn
Implementation:

Uses: functional-agent class 
Fields: list of functional-agent instances 

Concurrency: sequential 
Persistence: Dynamic

11-Scheduler Class Utility

Name: Scheduler 
Documentation:

Schedules functional-agents, with out-queue messages, for processing. It sends 
the out-queue messages of a functional agent to addressee destination agents and 
invokes the execute-f-message method of each destination agent for processing of 
the received message. It terminates when there are no functional agents with out- 
queue messages to be processed.

Parameters: Agent-List 
Implementation:

Uses: Agent-List Class
Fields: Message object instances

12-Main Utility

Name: Main 
Documentation:

Sets up the agents of the DPS system. Sets up the Agent-List container class of 
the energy domain functional agents. Supports the interface of the software by 
sending the top-level design requirements to the manager agent. After the task-
sharing phase is completed, it sends appropriate messages to the created agent-list 
instance for the initiation of the result-sharing phase.
Implementation:

Uses: Manager class and all of its sub-ordinate energy domain functional agents, 
Agent-List class and scheduler utility.

Fields: String object instances, Message object instances.

2 Objects and Object Relationships

A single object diagram represents all or part of the object structure of a system. 
Typically, the design of a system requires a set of object diagrams.

The purpose of each object diagram is to illustrate the semantics of key 
mechanisms in the logical design. Classes are largely static in the design of a 
system, whereas objects are much more transitory, in that many of them may be 
created and destroyed during the execution of a single program. Therefore, we use 
object diagrams to capture the dynamic semantics of operations. A single object 
diagram represent a snap-shot in time of an otherwise transitory event. In this 
sense, object diagrams represent the interactions that may occur among a 
collection of objects, no matter what specifically named instances participate in the 
mechanism.
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In what follows, we give the important object diagrams of the implemented DPS 
system.

2.1 Object Mechanisms for Task-Sharing

During the task-sharing phase of the problem solving (as described in chapter 3) 
the following object diagram mechanisms are invoked sequentially:

Figure-1 The Manager Object Diagram

The object templates for the above object diagram are shown below:

1-1 Manager object template:

Name: Identifier
Documentation: Is the interfacing agent which sends design goals, contained 

within the HAVE? message-type to all of its sub-ordinate functional agents.
Class: Manager 
Persistence: dynamic

1-1-1 Message Operation:

Name: execute_message 
Formal Parameters:

Message object instances
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This message is initiated by the main() class utility. The executejnessage method 
is a virtual method that is inherited by all of the agents sub-ordinate to the manager 
object instance. The manager object instance, by using this method, sends the 
initial overall design goal to all of the functional agents across the problem solving 
net. Each functional agent responds according to its particular execute_message 
method (i.e. this process supports polymorphism).
Exception: NIL 
Concurrency: sequential

Action:

Figure-2 Functional-Agent object disgram

2-1 Functional-Agent object template:

Name: The name of the functional agent object instance 
Documentation: Each functional-agent object instance is instantiated during the 

setting up stage of the network. A functional-agent object, with an allocated design 
requirement, by using this method, sends the received messages to its sub-system 
organization members. In turn, the addressee sub-system agents might return 
information providing messages to the input-queue of their functional agents. The 
input-queue messages are next poped (by the functional agent) and used to update 
the env-model attribute of the functional agent.
Class: Functional agent's class (one of functional agent classes, i.e., Mech-Mech, 
Mech-Elect, Elect-Elect, etc.).
Persistence: dynamic

2-1-1 Message Operation: 

Name: execute_message
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Formal parameters: Message object instances 
Action:
This method is invoked by the manager object instance (during the allocation of 
the top-level design goals, as shown in figure 1). It is overloaded by each functional 
agent class across the DPS system. Each functional agent, by using this method, 
will invoke the execute_message methods of its appropriate sub-system 
organization members. In this way, it sends the allocated top-level design goal to its 
sub-system organization members. Next, during negotiations, according to the 
received messages from its sub-system agents (as shown in figure-2), it updates its 
env_model object instance.
Exception: If no information providing messages are received from the sub-system 

agents, the env_model instance will not be updated.
Concurrency: sequential

2-2 Sub-System object template:

Name: The name of the sub-system object instance (i.e., the name of a 
particular sub-system instrument that belongs to a specific energy domain 
organization)
Documentation: A sub-system object instance belongs to a particular energy 

domain organization (i.e., a private field of its energy domain functional agent). Sub-
system object instances relate input power,effort or flow variables, represented by a 
particular energy domain, to the output power, effort or flow variables, represented 
by the same or a different energy domain. Each sub-system object instance might 
have domain knowledge, concerned with other compatible energy domain 
organizations, across which compatible sub-system elements might be found that 
can be connected to them for a particular overall design goal. Sub-system agents, 
during negotiations, will send information-providing and/or information-requiring 
messages to their functional agent queues.
Class: The class of the sub-system 
Persistence: dynamic

2-2-1 Message operation:

Name: execute_message 
Formal Parameters: Message object instances 
Action:
This is a virtual method that is inherited from the manager class down the class 
hierarchy. It is overloaded, by each sub-system agent instance, to support 
polymorphism. During the negotiations, this method is invoked by each functional 
agent (as shown in figure-2). It is used, by each sub-system agent instance, to 
respond to the design requirement messages allocated by functional agents. These 
messages are processed according to their types.
Exception: If the capability of a sub-system agent is not relevant to an allocated 

design requirement message, the addressee sub-system agent does not participate 
in the negotiations.
Concurrency: sequential
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Name: env_model identifier for a particular functional agent object instance. 
Documentation: Each env_model object instance is a private field which belongs to 
a particular energy domain functional agent (as shown in figure 2). It supports the 
overall structure and methods of the env_model qualifier for a specific functional 
agent object instance.
Class: Acqjist 
Persistence: dynamic

2-3 env_model object template:

2-3-1 Message Operation:

Name: update
Formal Parameters: Information providing message object instances 
Action:
A functional agent, during negotiations with sub-ordinate sub-system agents and 
other energy domain organizations, invokes this method to update its env_model 
instance of the design environment. This method modifies the env_model attribute 
of a functional agent according to the message type received.
Exception: If a message type is not understood, no action takes place. 
Concurrency: sequential
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3-1 Agent_List object template:

Name: Identifier (the name of one of the contained functional agents is 
sufficient)
Documentation: The Agent_List is the container class of the functional agents that 

belong to the problem solving net. It is implemented in the form of a circular linked- 
list data structure.
Class: Agent_List class 
Persistence: dynamic

3-1-1 Message Operation:

Name: is jn
Formal Parameters: NIL 
Action:
This method is invoked by the Scheduler utility to check the existence of functional 
agents with output-queue messages across the problem solving net.
Exception: NIL 
Concurrency: sequential

3-1-2 Message Operation:

Name: next()
Formal Parameters: NIL
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This method is invoked, by the scheduler utility, to find the addressee functional 
agent of an intra-organizational message. It returns a pointer to the next functional 
agent within the Agent_List object instance.
Exception: NIL 
Concurrency: sequential

Action:

3-1-3 Message Operation:

Name: execute_f_message (is a method that belongs to the manager class and 
is inherited down the problem solving hierarchy)
Formal Parameters: message object instances 
Action:
This method is invoked, by the scheduler utility, to enable a functional agent to 
start processing its input-queue messages. It deals with the intra-organizational 
messages received by a functional agent. The execute_f_message can have 
s have or s need message-type instances as its formal parameters. The invoked 
functional agent uses this method to respond to the received message by either 
updating its env_model, invoking negotiations across its organization or checking its 
env_model instance. Each action depends on the type of received message. 
Exception: If the received message instance is not understood, no action is 

invoked.
Concurrency: sequential
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2.2 Result Sharing

The result-sharing occurs during the answer-synthesis phase of the problem 
solving. During answer-synthesis, the energy domain functional agents will share 
their partial solutions to arrive at complete conceptual design solutions. During this 
phase, the main utility invokes the "findjn" method of the AgentJJst container 
class which contains a circular linked-list of the energy domain functional agents (as 
shown in figure 4).

Figure4  The Object diagram mechanism for the 
Answer-Synthesis phase of the problem solving

4-1 Message Operation:

Name: Findjn (belongs to the AgentJJst class)
Formal Parameters: String object instances 
Action:
Finds functional agent instances which possess, inside their env_model attributes, 
models of sub-ordinate sub-system agents satisfying the overall input of the design 
goal. If they are complete concepts, they are displayed to the user, otherwise a 
recursive method is initiated to synthesize the partial solutions existing across the 
network of functional agents. During this process, alternative conceptual designs 
are derived. This method supports the result-sharing concept.
Exception: If functional agents have no partial solutions, no overall solutions are 

synthesized.
Concurrency: sequential
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APPENDIX-II

Genetic Algorithm Program Listing

MAIN PROGRAM

#include <stdio.h> 
#include <math.h> 
#include <stdlib.h> 
#include <string.h> 
#defme maxpop 100 
#defme maxstring 40 
#deftne max_best 34 
#define N_parms 4 
#defme Cmax 1000.0 
#define toumeysize 3 
#include "Tmd.h"

main(int arge, char** argv)
f

numfiles = arge - 1;

if(numfiles == 0)
{
infp = stdin; 
outfp = stdout;
}

if(numfiles == 1)
{

if((infjp = fopen(argv[l],Y')) == NULL)
{
fprintf(stderr,"Cannot open input file %s\n",argv[l]); 
exit(-l);
}
outfp = stdout; 
grp_fp_max = stdout; 
grp_fp_avg = stdout;

}
if(numfiles == 3)
{
if((infp = fopen(argv[l],''r'')) == NULL)
{
fprintf(stderr,''Cannot open input file %s\n",argv[l]); 
exit(-l);
}

outfp = stdout;

if((grp_fp_max = fopen(argv[2],"w")) == NULL)
<
fprintf(stderr,"Cannot open output file %s\n",argv[3]); 
exit(-l);
}

if((grp_fp_avg = fopen(argv[3],"w")) == NULL)
{
fprintf(stderr,"Cannot open output file %s\n",argv[3]); 
exit(-l);
}

if(numfiles == 4)
{
if((infp = fopen(argv[l],''r'')) == NULL)
{
fprintf(stderr,"Cannot open input file %s\n",argv[l]); 
exit(-l);
}
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if((outfp = fopen(argv[2],"w")) == NULL)
{
fprintf(stderr,"Cannot open output file %s\n",argv[2]); 
exit(-l);
}

if((grp_fp_max = fopen(argv[3],''w")) == NULL)
{
fprintf(stderr,"Cannot open output file %s\n",argv[3]); 
exit(-l);
)

if((grp_fp_avg = fopen(argv[4],''w")) == NULL)
{
fprintf(stderr,"Cannot open output file %s\n",argv[4]); 
exit(-l);
}

while(l)
{
int k,j,flag,GEN; 
flag = GEN = 0; 
initializeO; 
do {

GEN++;
flag++;
generation(GEN);
statistics(ne wpop);
if((flag% 10)=0)
report(GEN);
short_report(GEN);
fprintf(outfp,''After report in main \n");
fprintf(outfp,"=== = = = = = = = = = = = = = = = = = = = = = = = ========\n'
Assign(oldpop, newpop); /* assign old population to new population */
} while(GEN <= MAXGEN);

Disp_GLBST(GLB_BST); /* Display Global Best Design */

printf("Do you wish to start a new design ? \n"); 
scanf("%s", &a); 
if  (strcmpfa, "yes")); 
break;
}

}

GLOBAL VARIABLES

int numfiles; 

typedef struct indiv {
int chromosome[maxstring]; /* Genotype = bit position */ 
double x 1; /* Phenotype = unsigned integer (for n) */ 
double x2; /* Phenotype = unsigned integer (for Teta) */ 
double x3; /* Phenotype = unsigned integer (for h) */ 
double x4; /* Phenotype = unsigned integer (for Hh) */
/* Note: don't have double x,i.e. Phenotype = unsigned integer */ 
double obj; /* Objective function value, equivalent to rw_fit */ 
double d_rw_fit; /* Parameter to account for environmental niche */ 
int Needs_evaluation; /* Used for ranking selection */ 
double HH; /* Corrugation depth */ 
double RR; /* Radious of diaphragn */ 
double 11; /* Linear term */ 
double cc; /* Cubic term */
double errorl, error2; /* percentage nonlinearity error */ 
double Terror; /*Total error */ 
int itr_n; /* Iteration Number */
double Partition; /* Partition coef., only used by the Best_List data structure */ 
int parent 1, parent2, xsite; /* parents and cross point */

) individual;
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typedef struct parms {
int lparm; /* length of parameter */
double parameter, maxparm, minparm; /* Parameter and range */ 

} parameter;

parameter parm_arr[N_parms]; 
individual oldpop[maxpop];
individual newpop[maxpop]; /* oldpop & newpop represent two nonoverlapping populations */ 
individual GLB_BST; /* Represents global best design */
int choices[maxpop], nremain; /* Parameters used with the stochastic remainder selection */ 
float fraction[maxpop]; 
individual Best_List[max_best];

int POPSIZE, LCHROM, GEN, MAXGEN; /* integer global variables */
double PCROSS, PMUTATION; /* double global variables */
double RWJ3UMFIT; /* Raw sum_fitness, based on obj */
double D_RW_SUMFIT; /* d_rw_sumfit based on d_rw_fit, for sharing purposes*/
int NMUTATION, NCROSS; /* integer statistics */
double AVG,D_AVG;
double W_AVG, WDOW_SUM_FIT; /* average and sumfitness for scaling */ 
double RW_MAX, RW_M1N; /* statistics, based on obj */
double D_RW_MAX, D_RW_MIN; /* statistics, based on d_rw_fit, for sharing purposes */
double Pmax,Wmax,E; /* Design parameters */
double perc; /* percentage of elite for ranking selection */
double (*p) (individual&); /* pointer to chosen fitness function */
double Mu; /* Penalty coefficient */

INTERFACE ROUTINES

double objfunc_Force_to_Disp (individual& CR)
{
/* Objective function, returns cost */ 
fprintf(outfp,''cr.x3 = %f\n", CR.x3); 
return/-1.0);
}

double objfunc_Press_to_Disp (individual& ind)
{
/* Objective function, returns cost */

double k, k l, k2, alph, expl, exp2,H; 
double exp3,exp4,exp5; 
double R,a,b;
double ER1,ER2,TER; /* Nonlinearity error */ 
double OBJl,OBJ2;
double L,C,outputl ,output2,output3,output4;

k = cos(ind.x2); 
k l = 1.0/k;
H = (ind.x4*ind.x3); 
ind.HH = H;
k2 = (((ind.x4*ind.x4)*kl)+k); 
alph = sqrt(kl*k2);
expl = (2.0*(3.0 + alph)*(1.0 + alph)); 
exp2 = (3.0*kl*(l-(0.09/(alph*alph)))); 
a = (expl/exp2);
exp3 = (32.0*kl)/((alph*alph)-9.0);
exp4 = (1.0/6.0)-(2.7/((alph-0.3)*(alph+3.0)));
b = exp3 * exp4;
R = (H*(2.0*ind.xl))/(tan(ind.x2)); 
ind.RR = R;
L = (E/(R*R*R*R))*(ind.x3*ind.x3*ind.x3)*a; 
ind.ll = L;
C = (E/(R*R*R*R))*ind.x3*b; 
ind.cc = C;

outputl = (L*(Wmax))+(C*(pow(Wmax,3.0))); 
output2 = (Pmax);
ER1 = fabs(outputl - output2); 
ind.errorl = ER1;

output3 = (L*(Wmax/2.0))+(C*(pow(Wmax/2.0,3.0)));
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output4 = (Pmax/2.0);
ER2 = fabs(output3 - output4); 
ind.erTor2 = ER2;

if (R < REQS) /* Required constraint on diaphragm's radious */ 
ER3 = 0.0; 

else
ER3 = fabs(R - REQS);

TER = ER1 + ER2 + (Mu*((ER3*ER3))); 
ind.Terror = TER; 
return ( 1.0/(1.0+(TER)));
}

double decode (int* chromosome, int lbits)
{
/* Decode string as unsigned binary integer - true=l, false=0 */ 
int j;
double accum, powerof2;

accum = 0.0; powerof2 = 1.0;

for(j=0; (j<=lbits-l); j++)
{
if (check(chromosome[j]))
{
accum += powerof2;
}
powerof2 *= 2;

}
return accum;
}

double map_parm(double x,double max_parm,double min_parm, double full_scale)
{
double value;
value = min_parm+(((max_parm-min_parm)/full_scale)*x); 
return value;
)

void extract_parm(const int*& chromfrom,int *chromto,int& jposition.int lchrom,int lparm)
(
/* Extracts a sub_string from a full string *1 
intj,jtarget;
j=0;
jtarget = jposition+lparm-1 ; 

if(jtarget>lchrom-1 )
jtarget=lchrom-l ; /* clamp if excessive */ 

while (jposition <= jtarget)
{
chromto|j]=chromfrom[j position] ; 
j++; jposition++;
)
)

void map_parms(int N_Parms,int Ichrom,const int *chrom,parameter *par_ar)
(
int j jposition;
int chr_temp[maxstring]; /* Temp chrom buffer */
j=0; /* Parameter counter */
jposition = 0; /* string position counter */

for (int k=0; k<N_Parms; k++)
{
if(par_ar[k],lparm > 0)
{
extract_parm(chrom,chr_temp jposition,Ichrom,(par_ar[kj.lparm)); 
par_ar[k] .parameter=map_parm((decode(chr_temp,par_ar[k] .lparm)),

par_ar[k].maxparm,par_ar[k].minparm,(pow(2.0,(par_ar[k].lparm))-1.0));
}
else
{
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par_ar[k].parameter=0.0;
}

} /* Termination of loop */
}

I n it ia l iz a t io n  P r o c e d u r e s

void choose_fitness_function(void)
{
char b[12];

while(l)
{
fprintf(outfp,"Is Diaphragm being used for sensing 'Force' or 'Pressure' ?\n"); 
fscanf(infp,"%s”,&b);

if (!strcmp("force", b))
{
fprintf(outfp,"You have chosen force \n");
p = objfunc_Force_to_Disp;
break;
}

else if (!strcmp("pressure", b))
{
fprintf(outfip,"You have chosen pressure \n");
p = objfunc_Press_to_Disp;
break;

void init_parms ( parameter *parm)
/*----------------

Purpose : Initializes parameters and ranges
called by : initdata
calls : none

*1
{
forCint j=0; j<N_parms; j++)
(
fprintf(outfp,"Enter length of parm number %d \n",j); 
fscanf(infp,"%d", &parm|j].lparm); 
fprintffoutfp,"Enter its min_range \n"); 
fscanf(infp,"%lf',&parm[j].minparm); 
fprintfioutfp,"Enter its max_range \n"); 
fscanf(infp,"%lf',&parm[j].maxparm);

}

void initdata(void)
/*------------

Purpose : interactive data enguiry and setup
called by : initialize(void)
calls : init_parms,choose_fitness_function,randomize

*/
{
fprintf(outfp,"Enter population size--------- > \n"); fscanf(infp,"%d", &POPSIZE);
f^rintf(outf^,"Enter chromosome length-------->\n"); fscanf(infp,"%d", &LCHROM);
fprintffoutlp,"Enter max. generations---------> \n"); fscanf(infp,"%d", &MAXGEN);
fprintf(outfp,"Enter crossover prrobability — > \n"); fscanf(infp,"%lf', &PCROSS); 
fprintf(outfp,"Enter mutation probability-----> \n"); fscanf(infp,"%lf', &PMUTATION);
iprintf(OUtfp "*’t‘’t,**************Hc*************Hc**Xo»c*Ho|c\n").
fprintf(outfp,"** Need Diaphragm design parameters ** \n"); 
fprintf(outfp "***>ie>ie**>ioioie**>i«*>ic******H«H<****************\n").
init_parms (parm_arr);
choose_fitness_function();
fprintf(outfp,"Enter Max. Pressure —>\n");
fscanf(infp,"%lf', &Pmax);
fprintffoutfp,"Enter Max. Displacement —>\n");
fscanf(infp,"%lf', &Wmax);
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fprintf(outfp,"Enter the Young's modulus of the material —>\n"); 
fscanf(infp,"%lf', &E); 
fprintf(outfp,"Enter Penalty Coefficient \n"); 
fscanf(infp,"%lf',&Mu);

/* Initialize random number generator */ 
randomizeO;
/* Initialize counters */
NMUTATION = 0;
NCROSS = 0;
fprintf(outfp,"END of initdata \n");
}

void Disp_GLBST(individual& bst)
/*--------------------

Purpose : Displays best design after required number of iterations 
called by : initreport, report 
calls : none

*1
{
fprintf(outfp,"Genotype = "); Twritechrom(bst.chromosome, LCHROM); 
fprintf(outfp,"\n");
fprintf(outfp,"Phenotypel (n) = %f \n",bst.xl); 
fprintf(outfp,"Phenotype2 (Teta) = %f \n”,bst.x2); 
fprintf(outfp,"Phenotypc3 (h) = %f \n",bst.x3); 
fprintf(outfp,"Phenotype4 (Hh) = %f \n",bst.x4); 
fprintf(outfp,"obj = %f \n",bst.obj); 
fprintf(outfp,"d_rw_fit = %f \n",bst.d_rw_fit); 
fprintf(outfp,"H = %f \n",bst.HH); 
fprintf(outfp,"Radious = %{\n",bst.RR); 
fprintf(outfp,"ll = %f \n",bst.ll); 
fprintf(outfp,"cc = %f \n",bst.cc); 
fprintf(outfp,"error 1 = %f\n",bst.errorl); 
fprintf(outfp,"error2 = %f \n",bst.error2); 
fprintf(outfp, "Terror = %f \n",bst,Terror); 
fprintf(outfp,"Iteration number = %d \n",bst.itr_n);

}fP

void Disp_Best (individual *B_L)
/*

Purpose : Displays relative best designs in each partition 
called by : initreport, report 
calls : none

*/
{
const double coef = 7.0;

for(int j=0; j<max_best; j++)
{
fprintf(outfp,"Best individual number %d \n" j);
fprintf(outfp,"Genotype = "); Twritechrom(B_L[j].chromosome, LCHROM); 
fprintf(outfp,"\n");
fprintf(outfp,"Phenotypel (n) = %f\n",B_L[j].xl); 
fprintffoutfp, "Phenotype 1 (Teta) = %f \n",B_L[j].x2); 
fprintf(outfp, "Phenotype 1 (h) = %f \n",B_L[j].x3); 
fprintftoutfp, "Phenotype 1 (Hh) = %f \n",B_L[j].x4); 
fprintf(outfp,"obj = %f \n”,B_L[j].obj); 
fprintf(outfp,”d_rw_fit = %f \n",B_L[j].d_rw_fit); 
fprintf(outfp,"H = %f \n",B_L[j].HH); 
fprintf(outfp,"Radious = %f \n",B_L[j].RR); 
fprintf(outfp,"ll = %f \n",B_L[j].ll); 
fprintf(outfp,"cc = %f \n”,B_L[j].cc); 
fprintftputfp, "error 1 = %f \n",B_L[j].etrorl); 
fprintf(outfp,"error2 = %f \n",B_L[j].error2); 
fprintftoutfp,"Terror = %f \n",B_L(j].Terror); 
fprintf(outf(),"Partition = %f \n",B_L(j].Partition); 
fprintfioutfp, "Iteration number = %d \n",B_L[j].itr_n); 
fprintf(outfp "***********************************\n\n"yf
i
i
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void initreport(void)
/*------------

purpose : generate Initial report
called by : initialize
calls : Disp_Best

*/
{
/* Initial report */ 
int gen = 0;
fprintf(outfp,"---------------------------------------------------------------------- \n");
fprintf(outfp,"-GENETIC ALGORITHM FOR DIAPH. SIMULATIONS -An");
fprintfToutfp,"---------------------------------------------------------------------- \n");
fprintf(outfp,"$$$$$$$$$$$$$$$$$$$$$ GEN ALG PARMS $$$$$$$$$$$$$$$$$$$$$\n"); 
fprintf(outfp,"Population size (POPSIZE) = %d\n", POPSIZE);
fprintf(outfp,"Chromosome length (LCHROM) = %d \n", LCHROM); 
fj)rintf(outf)),"Maximum number of generation (MAXGEN) = %d \n", MAXGEN); 
fprintf(outfp,"Crossover probability (PCROSS) = %f \n", PCROSS); 
fprintf(outfp,"Mutation probability (PMUTATION) = %f \n", PMUTATION);
fprintf(outfp,"############### Initial Generation Statistics #########1 
fprintf(outfp,"------------------------------------------------------------------------ \n");
fprintf(outfp," Initial population maximum fitness = %f \n", RW_MAX); 
fprintf(grp_fp_max,"%d %f \n",gen,RW_MAX); /* init. file pointer for GRAPHICS */ 
fprintf(grp_fp_avg,"%d %f \n",gen,AVG); /* init. file pointer for GRAPHICS */ 
fprintf(outfp," Initial population average fitness = %f \n", AVG); 
fprintf(outfp," Initial population minimum fitness = %f \n", RW_MIN); 
fprintf(outfp," Initial population sum of fitness = %f \n", RW_SUMFIT); 
fprintf(outfp," ********* USER SPECIFIED DESIGN VARIABLES ********* \n"); 
fprintf(outfp," Pmax = %f Wmax = %f\n",Pmax,Wmax); 
fprintf(outfp," Penalty coefficient = %f \n",Mu); 
fprintfioutfp," Young's Modulus = %f \n",E);
Disp_Best(Best_List);
)

void init_Best_List(individual *B_List)/*
purpose : Initialize the BestJList data structure
called by : initpop
calls : none

*/
{
double Part_coef = 0.5; /* Using partitions 0.5 apart for the H/h parameter */ 
for(int j=0; j<max_best; j++)
{
B_List[j].x3 = 0.0;
B_List[j].Partition = ((j+1) * Pait_coef); /* Set Partition coef. for each Best_List element */ 
B_List[j].obj = 0.0;

)

void initpop(void)
/*

purpose : Initialize a population at random
called by : initialize
calls : map_parms, objfunc_press_to_disp, init_Best_List

check, flip, spéciation */
{
in tj.jl;

init_Best_List(Best_List); 
for(j=0; j<POPSIZE; j++)
{
for(j 1 =0; j 1 <LCHROM ; jl+ + )
{
oldpopU].chromosome[jl] = check(flip(0.5)); /* A fair coin toss */
}
map_parms(N_parms,LCHROM,oldpop[j].chromosome, parm_arr);
oldpoplj] .x 1 =parm_arr[0] .parameter;
oldpoplj] ,x2=parm_arr[ 1] parameter;
oldpoplj] .x3=parm_arr[2] .parameter;
oldpoplj] .x4=parm_arr[3] .parameter;
oldpoplj] obj = (*p) (oldpoplj]);
oldpop[j].parentl = oldpop[j].parent2 = oldpop[j].xsite = 0; 
oldpoplj].itr_n = 0;

}
speciation(oldpop) ;

1
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void initialize(void)
{
/* Initialization coordinator */
initdataO;
initpopO;
statistics(oldpop);
initreportO;
>

Reporting Procedures

void Twritechrom(const int chromosomeG , int lchrom)
{
/* write a chromosome as a string of l's (true's) and 0's (false's) */ 
int j;

for(j=lchrom-l;j >= 0 ;j —) 
if (check(chromosome[j])) 

fprintf(outfp,"l"); 
else

fprintf(outfp,”0");
)

void report(int gen)
/*----------------

Purpose : write detailed population report
called by : main
calls : writechrom,Disp_GLBST

*/
{
int j;

/* write the population report */ 
fprintf(outfp,"Population Report \n"); 
fprintf(outfp,"Generation %2d \n", gen-1); 
fprintf(outfp,"Generation %2d \n", gen); 
fprintf(outfp," String X
fprintf(outfp," # parents xsite");
fprintf(outfp," string X
fprintf(outfp,"\n");

for (j=0; j<POPSIZE; j++)
{
fprintf(outfp,"%2d) ” j);

/* old string */ 
writechrom(oldpop[j].chromosome, LCHROM);
fprintf(outfp," %10.6f%10.6f %6.6f I", oldpop[j].x3,oldpop[j].x4, oldpop[j].obj);
/* new string */

fprintf(outfp," %2d ) (%2d , %2d )%2d"j,newpoplj].parent l,newpop[j].parent2,newpop[j].xsite); 
wntechromtnewpopfj] .chromosome, LCHROM);
fprintf(outfp," %10.6f %10.6f %6.61\n", newpop[j].x3, newpop[j].x4, newpop[j].obj);
)

fprintf(outfp,"\n");
/* Generation statistics and accumulated values */ 
fprintf(outfp,"Note: Generation %d & accumulated statistics\n”,gen);
fprintf(outfp,” max=%6.6f min=%6.6f avg=%6.6f d_sumf=%6.6f nmutation=%d ncross=%d\n",RW_MAX, RW_MIN, 
AVG,RW_SUMFIT,NMUTATION, NCROSS);
Disp_Best(Best_List);
fprintf(grp_fp_max,"%d %f \n”,gen,RW_MAX); 
fprintf(grp_fp_avg,"%d %f\n\n",gen,AVG); 
fprintf(outfp" ************************************ \n ")• 
fprintf(outfp,"Best design was : \n”); Disp_GLBST(GLB_BST); 
fprintf(outfp" ************************************ \n\n")’

}

fitness”);

fitnessVi");

void short_report(int gen)
/*----------------

Purpose : write short population report
called by : main
calls : none

*/
{
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fprintf(outfp " ******************** Short Report **********************\n"); 
fprintf(outfp,''Note: Generation %d & accumulated statistics\n",gen);
fprintf(outfp," max=%6.6f min=%6.6f avg=%6.6f sumfitness=%6.6f nmutation=%d ncross=%d\n",RW_MAX, RW_MIN, 

AVG,RW_SUMFIT, NMUTATION, NCROSS);
iprintf(outfp "***********************************************************\n\n"̂ -

}

Pseudo Random Number Generator

static double oldrand[55J; /* array of 55 random numbers *1 
static int jrand; /* current random */ 
static int mdcalcflag; 
static double mdx2;

void advance_random (void) /* create next batch of 55 random numbers */
{
in tjl;
double new_random;

for(j 1=0; j 1 < 24  ; jl++)
{
new_random = oldrand[jl] - oldrand[jl+31]; 
if (new_random < 0.0)

new_random = new_random + 1.0; 
oldrand[jl]=new_random;

}
for(j 1=24; j 1 < 5 5 ;jl+ + )
{
new_random = oldrand[jl] - oldrand[jl-24]; 
if (new_random < 0.0) 

new_random = new_random + 1.0; 
oldrandjj 1 ]=new_random;

)

void warmup_random (double random_seed) 
/* Get random off and running */
{
int jl.ii;
double new_random, prev_random;

oldrand[54] = random_seed; 
new_random = 0.000000001; 
prev_random = random_seed; 
for ( j 1 = 1; j l  <= 54 ; jl++)

ii = (21*jl) % 54; 
oldrand[ii] = new_random; 
new_random = prev_random - new_random; 
if (new_random < 0.0) 

new_random = new_random + 1.0; 
prev_random = oldrand[ii];
)
advance_random(); advance_random(); advance_random(); 
jrand = 0;
}

double trandom(void)
<
++jrand; 
if (jrand >= 55)
{
jrand = 1; 
advance_random();
}
return oldrand[jrand];
}
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int flip(double probability)
{
if(trandom() <= probability) 

retum(l); 
else

retum(O);
}

int md(int low,int high)
/* pick a random integer between low and high */
{
inti;

if (low >= high) 
i = low; 

else 
{
i =(int) ((trandom() * (high-low + 1)) + low); 
if (i > high) 

i = high;
}

retum(i);
)

void randomize(void)
{
double randomseed; 

do 
{
fprintf(outfp,"Enter seed random number (0.0 .. 1.0) >\n");
fscanf(infp,"%lf", &randomseed);
fprintf(outfp,''randomseed is %f\n",randomseed);
)
while ((randomseed <= 0.0) II (randomseed >= 1.0)); 
warmup_random(randomseed);

}

Utility Functions

int round (double x)
{
int integer; 
double fraction; 
integer=(int)(x/l); 
fraction = (x-integer); 
infraction <= 0.5) 

retum(x/l); 
else

retum((x/l)+l);
}

int trunc (double x)
{
int integer; 
integer=(int)(x/l); 
return (integer);
}

int check(int x)
{
if((x>-1 )&&(x<2)) 
retum(x); 

else {
fprintf(outfp,"EROR!l! - x is %f\n",x); 
retum(x);

}
}
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STATISTICAL ROUTINES

double ASSGN_W_FlT(individual *pop, double RW_MIN)
I
/* Assign scaled fitness values */ 
double wdow_sm_fit = 0; 
static double r_min = 0.0;

if (RW_MIN > r_min) 
r_min = RW_MIN;

for (int j=0; j<POPSIZE; j++)
{
pop[j].W_Fit = (pop[j].obj) - r_min; 
wdow_sm_fit += pop[j].W_Fit;
}
retum(wdow_sm_fit);
}

void statistics (individual * indiv)
{
/* Calculates population statistics */ 
int j,WEAK; 
static int GLB = 0; 
int found_best = 0;

/* Initialize */

/* Note: have used obj, which is equivalent to rw_fit */
RWJSUMFIT = RW_MIN = RW_MAX = indiv[0].obj;
D_RW_MIN = D_RW_MAX = D_RW_SUMFIT = indiv[0].d_rw_fit;

if(GLB =  0)
{
Assign_Global_Best(indiv[0]);
GLB = 1;
)

if(indiv[0].obj > GLB_BST.obj)
{
Assign_Global_Best(indiv [0] ) ; 
found_best = 1;
}

if(indiv[0].obj == GLB_BST.obj) 
found_best = 1;

/* loop for max, min, sumfitness */ 
for (j=l ; j<POPSIZE; j++)
{
RW_SUMF1T += indiv[j].obj; /* accumulate rw_fit sum */ 
D_RW_SUMFIT += indiv[j].d_rw_fit;

if(indiv[j].obj > GLB_BST.obj)
{
Assign_Global_Best(indiv[j]); 
found_best = 1 ;
}

if(indiv[j].obj == GLB_BST.obj) 
found_best = 1; 

if (indiv[j].obj > RW_MAX)
RW_MAX = indiv [j] .obj; /* new rw_max */ 

if (indiv [j] .obj < RW_MIN)
{
RW_MIN = indiv[j].obj; I* new rw_min */
WEAK = j;
}

if (indiv (j] ,d_rw_fit > D_RW_MAX)
D_RW_MAX = indiv[j].d_rw_fit; I* new d_max */ 

if (indiv[j].d_rw_fit < D_RW_MIN)
D_RW_MIN = indiv[j].d_rw_fit; /* new d_min */
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/* Calculate average */
AVG = RW_SUMFIT/POPSIZE; /* Population average fitness */
WDOW_SUM_FIT = ASSGN_W_FIT(indiv, RW_M1N);
W_AVG = WDOW_SUM_FIT /  POPSIZE; /* Population degraded average fitness, using scaling 

window */
D_AVG = D_RW_SUMFIT/POPSIZE; /* Population degraded average fitness, using sharing */

ififoundbest =  0)
{
fprintffoutfp," Best individual has been lost\n");
Assign_All(GLB_BST, indiv[WEAKJ); /* replace weak individual with the best individual */
}

Put_Best(indiv,Best_List); /* put best individuals into the Best_List data structure */
}

GENETIC ALGORITHMIC OPERATORS

int mutation(int alleleval, double pmutation)
{
/* Mutate an allele with probability pmutation , count number of mutations */ 
int mutate;

mutate = flip(pmutation); /* flip the biased coin */ 
if (mutate)
{
NMUTATION += 1; 
if (alleleval) 

return (0); 
else

return (1);
)

return (alleleval);
}

int crossover(int *parentl, int *parent2, int *childl, 
int *child2)

{
/* Cross 2 parent strings, place in 2 child strings */ 
int j,jcross;

if (flip(PCROSS)) /* Do crossover with prob. pcross */
f
jcross = m d(l, LCHROM-2); /* Cross between 1 and 1-1 */ 
++NCROSS;
)
else
jcross = LCHROM-1;

/* First exchange, 1 to 1 and 2 to 2 */ 
for(j=0; j <= jcross; j++)
{
childl[j]=mutation(parentl[j], PMUTATION); 
child2[j]=mutation(parent2[j], PMUTATION);
}

/* exchange, 1 to 2 and 2 to 1 */ 
for(j=jcross+l; j <= LCHROM-1 ; j++)
{
childl[j]=mutation(parent2[j], PMUTATION); 
child2[j]=mutation(parentl[j], PMUTATION);
)

/* Note must return jcross here */ 
retum(jcross);
1

********************************************************************* */ 
/* Roulete Wheel Selection */

I* ********************************************************************* */

int select()
/* roulette-wheel selection */
{
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float sum, pick; 
int i;

pick = trandomO; 
sum = 0;

if(D_RW_SUMFIT != 0)
{

for(i = 0; (sum < pick) && (i < POPSIZE); i++) 
sum += oldpop[i].d_rw_fit/D_RW_SUMFIT;

else
i = md(0,POPSIZE-1); 

retum(i-l);
)

********************************************************************** */ 
I* Tournament Selection */

I*  ************>(£********************************************************* */

void reset(void)
/* Shuffles the toumeylist at random */
{

int i, randl, rand2, temp;

for(i=0; i<POPSIZE; i++) toumeylist[i] = i;

for(i=0; i < POPSIZE; i++)
{

randl=md(i,POPSIZE-l); 
rand2=md(i,POPSIZE-l); 
temp = tourney list[randl]; 
toumeylist[rand l]=toumeylist[rand2]; 
toumeylist[rand2]=temp;

)
}

void preselect(void)
{

reset();
toumeypos = 0;

)

int selectO
{

int pick, winner, i;

/* If remaining members not enough for a tournament, then reset list */ 
if((POPSIZE - toumeypos) < toumeysize)
{

reset();
toumeypos = 0;

}

/* Select toumeysize structures at random and conduct a tournament */
winner=tourneylist[toumeypos];
for(i=l; i<toumeysize; i++)
{

pick=toumeylist[i+toumeypos];
if(oldpop[pick].obj > oldpop[winner].obj) winner=pick;

)
/* Update toumeypos */ 
toumeypos += toumeysize; 
return) winner);

}
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/* Schotastic Remainder Selection */
J* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  * /

/* ********************************************************************** */

void preselectO
/* preselection for stochastic remainder method */
{

int j, jassign, k; 
float expected;

if(AVG == 0)
{

for(j = 0; j < POPS1ZE; j++) choices[j] = j;
}
else
{

j  = 0; 
k = 0;

/* Assign whole numbers */ 
do 
{

expected = ((oldpop[j].obj)/AVG); 
jassign = expected;
/* note that expected is automatically truncated */ 
fraction[j] = expected - jassign; 
while(jassign > 0)
{

jassign-; 
choices [k] = j; 
k++;

}
j++;

}
while(j < POPSIZE);

j = 0;
/* Assign fractional parts */ 
while(k < POPSIZE)
I

if(j >= POPSIZE) j = 0; 
if(fraction[j] > 0.0)
(

/* A winner if true */ 
if(flip(ffaction[j]))
{

choices [k] = j;
fraction])] = fraction]]] -1.0;
k++;

j++;
}

}
nremain -  POPSIZE - 1;

int select])
/* selection using remainder method *1
{

int jpick, sleet;

jpick = md(0, nremain);
sleet = choicesljpick];
choicesljpick] = choices [nremain];
nremain-;
retum(slect);

}
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/* RANKING SELECTION */
I*  ********************************************************************** */

/* ********************************************************************** */

void RANK_POP()
{
double perf; /* next best perf (for ranking) */ 
double rank_max; /* max number of offspring under ranking */ 
int best; /* index of next best structure */
int i,j;

/* Assign each structure its rank within the population. */
/* rank = Popsize-1 for best, rank = 0 for worst */
/* Use the Needs_evaluation field to store the rank */

/* clear the rank fields */ 
for (i=0; i<POPSIZE; i++)

oldpop[i].Needs_evaluation = 0;

for (i=0; i < POPSIZE-1; i++)
{

/* find the ith best structure */ 
best = -1; 
perf = 0.0;
for (j=0; j<POPSIZE; j++)
{

if (oldpop[j].Needs_evaluation =  0 &&
(best == - 1 II (oldpop(j].obj > perf)))

{
perf = oldpop[j].obj; 
best = j;

}
)
/* mark best structure with its rank */ 
oldpop[best].Needs_evaluation = POPSIZE -1 - i;

}
/* normalizer for ranking selection */ 
for (int k=0; k<POPSIZE; k++)
(
if(oldpop[k].Needs_evaluation >= round(POPSIZE - (perc*POPSIZE)))

{
oldpop[k].Needs_evaluation = 2.0;
}

else if(oldpop[k].Needs_evaluation <= round(perc* POPSIZE))
{
oldpop[k].Needs_evaluation = 0.0;
}

else
{
oldpop[k].Needs_evaluation = 1.0;
}

)
}

void preselectO
/* preselection for ranking method */
{

int j, jassign, k; 
float expected;

if(AVG == 0)
{

printfC AVG is zero in ppreselect, ************** \n "); 
for(j = 0; j < POPSIZE; j++) choices[j] = j;

}
else
{

j = 0 ;  
k = 0;

I* Assign whole numbers */ 
do 
{

254



expected = oldpop[j].Needs_evaluation; 
jassign = expected;
/* note that expected is automatically truncated */ 
fraction[j] = expected - jassign; 
while(jassign > 0)
{

jassign-; 
choices [k] = j; 
k++;

}
j++;

)
while(j < POPSIZE); 

j = 0;
/* Assign fractional parts */ 
whilefk < POPSIZE)
{

if(j >= POPSIZE) j = 0; 
if(fraction[j] > 0.0)
{

/* A winner if true *1 
if(flip(fraction[j]))
{

choicesfk] = j;
fraction[j] = fractionjj] - 1.0;
k++;

j++;

nremain = POPSIZE -1;
}

int selectf)
I* selection using ranking method */
{

int pick, select;

pick = md(0, nremain);
sleet = choices [pick];
choices[pick] = choices[nremain];
nremain--;
retum(select);

}

Generation Coordinator

void generationCconst int iter)
i
/* Create a new generation through select, crossover, and mutation */

/* First we call preselect */ 
preselect]);

int j, matel, mate2, jeross; 

j=0;
do { /* selection, crossover, and mutation until newpop is filled */

matel = select]); 
mate2 = select]);

/* Crossover and mutation - mutation is called by the crossover operator */

jeross = crossover(oldpop[matel].chromosome,oldpop[mate2]. chromosome, 
newpop[j].chromosome,newpop[j+1 ] chromosome);

/* decode string, evaluate fitness & record parantage for both children */ 
map_parms(N_parms,LCHROM,newpop[j].chromosome, parm_arr); 
newpop[j].xl=parm_aiT[0].parameter; /* n */ 
newpop[j].x2=parm_arr[l].parameter; /* Teta */
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newpop[j].x3=parm_arr[2].parameter; /* h */ 
newpop[j].x4=parm_arr[3] parameter;/* Hh */ 
newpop[j].obj = (*p) (newpop[j]); 
newpop[j].parentl = matel; 
newpop[j].parent2 = mate2; 
newpop[j].xsite = jcross; 
newpop[j].itr_n = iter;

map_parms(N_parms,LCHROM,newpop[j+l].chromosome, parm_arr); 
newpop[j+l].xl=parm_arr[0].parameter; /* n */ 
newpop[j+l].x2=parm_arr[l].parameter; /* Teta */ 
newpop[j+l].x3=parm_arr[2].parameter; /* h */ 
newpopU+l].x4=parm_arr[3].parameter;/* Hh */ 
newpop[j+l].obj = (*p) (newpop[j+l]); 
newpop[j+l].parentl =m atel; 
newpop[j+l].parent2 = mate2; 
newpop|j+l].xsite = jcross; 
newpop|j+l].itr_n = iter; 

j+=2;
}
while(j<=POPSIZE);
speciation(newpop);
}

Global variables for LVDT simulations

#defme maxstring 60 
#define max_best 40

int numfiles; 

typedef stmct indiv {
int chromosome[maxstring]; /* Genotype = bit position */ 
double B; /* Phenotype(l) -> Length of primary coil */ 
double M; /* Phenotype® -> Length of secondary coil */ 
double La; /* Phenotype® -> Armature Length */ 
double Ri; /* Phenotype® -> Inner radious of coils */ 
double Ro; /* Phenotype® -> Outer radious of coils */ 
double Fs; /* Phenotype® -> Supply frequency */
double Bx; /* Normalized Phenotype/1) -> Normalized Length of primary coil */
double Mx; /* Normalized Phenotype® -> Normalized Length of secondary coil */
double Lax; /* Normalized Phenotype® -> Normalized Armature Length */
double Rix; /* Normalized Phenotype® -> Normalized Inner radious of coils */
double Rox; /* Normalized Phenotype® -> Normalized Outer radious of coils */
double Fsx; /* Normalized Phenotype® -> Normalized Supply frequency */
int Needs_evaluation; /* Used for ranking selection */
double obj; /* Objective function value, equivalent to rw_fit */
double d_rw_fit; /* Parameter to account for environmental niche */
double I_P, N_P, N_S, AR, RS, IMPD, percent_nlt; /* Dependent Variables */
double K_l, K_2, ERR1, ERR2;
double OBJECTIVE;
int itr_n; /* Iteration Number */
double Partition; /* Partition coef., only used by the Best_List data struc. */ 
int parentl, parent2, xsite; /* parents and cross point */

} individual; /* Represents a design candidate */

typedef stmct parms {
int lparm; /* length of parameter */ 
double Ph_typ; /* Phenotype used for sharing */ 
double parameter, maxparm, minparm; /* Parameter and range */ 

} parameter;

double Vs; /* Supply voltage */
double Nv; /* Number of turns per unit volume */
double Xm; /* Maximum displacement range */
double Lm; /* Maximum possible length of the transducer */
double Rho; /* Resistivity of the coil wire */
double PER; /* Relative permeability of the core */
double AREA; /* cross sectional area of coil wire */
double RES, IMPID; /* D C. resistance and Impedance of primary coil */
double (*p) (individual&); /* pointer to chosen fitness function */
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double Mu; /* Penalty coefficient */
double NLT, SENST; /* user required minimum % non-linearity & maximum sensitivity */

Interface Routines for LVDT simulations

double Get_Primary_Ip(double L_P,double Rin,double Rout,double Fs,double Nv)
{
\*
Purpose : Calculates primary excitation current
called by :objfunc_LVDT
calls :None
n
double Lav, Rdc, N; 
double Ar, I; 
double EXP1, EXP2; 
double Rm,Lc,IMP;

N = Nv * L_P * 3.1415926 * ( pow(Rout,2.0) - pow(Rin,2.0));
Lav = 3.1415926 * ( Rin + Rout );
Ar = ((3.1415926 * (pow(Rout,2.0) - pow(Rin,2.0)) * L_P)/(Lav * N)) * 0.92; 
AREA = Ar;
Rdc = Rho * 3.1415926 * (N/Ar ) * (Rin + Rout);

Rm = 0.5 * (Rin + Rout);
EXP1 = 4.0*(pow(3.1415926,2.0))*(0.0000001)*(pow(N,2.0))*(pow(Rm,2.0)); 
EXP2 = sqrt(pow(L_P,2.0)+(4.0*pow(Rm,2.0)));
Le = EXP1/EXP2;

IMP = sqrt(pow(Rdc,2.0)+pow((2.0*3.1415927*Fs*Lc),2.0));
IMPID = IMP; /* GLOBAL VAR IMPID */

I = Vs/IMP; 
retum(I);
}

double objfunc_LVDT (individual& ind)
{
/* Objective function, returns cost */
double Ip, Kl,K2,Np,Ns,Xo,PER_NLT;
double EXP1, EXP2, EXP3, EXP4,EXP5,EXP6,EXP7,EXP8;
double OPl,OP2,ERl, ER2, ERR,TER 1 ,TER2,TER,OBJ;
double Cl,C2,C3,C4;
EXP7 = C l = C3 = 0.0;

if (ind.Ro <= ind.Ri) 
retum(O.O);

Ip = Get_Primary_Ip(ind.B,ind.Ri,ind.Ro,ind.Fs,Nv); 
ind.I_P = Ip; ind.AR = AREA; ind.IMPD = IMPID;

Np = Nv * (ind.B) * 3.1415926 * ( pow(ind.Ro,2.0) - pow(ind.Ri,2.0)); 
ind.N_P = Np;
Ns = Nv * (ind.M) * 3.1415926 * ( pow(ind.Ro,2.0) - pow(ind.Ri,2.0)); 
ind.N_S = Ns;
Xo = 0.5 * (ind.La - ind.B ); 
if (Xo <0.0) retum(O.O);

EXP1 = 16.0 * pow(3.1415926,3.0) * ind.Fs * Ip * Np * Ns * (ind.B + Xo) * Xo;
EXP2 = 10000000.0 * log(ind.Ro/ind.Ri) * (ind.M) * ind.La;

K1 = EXP1/EXP2; ind.K_l = K l;
K2 = 1.0/((ind.B + Xo) * Xo); ind.K_2 = K2;

ERR = Kl*Xm*(1.0 - (K2*Xm*Xm)); 
if (ERR <0.0) retum(O.O);

ER1 =(Kl*Xm) - ERR; /* Nonlinearity measure at max displacement w.r.t zero displacement */ 
ind.ERRl = ER1; /* This must be minimized */
PER_NLT = (ERl/(Kl*Xm))* 100.0; ind.percent_nlt = PERJ4LT;
ER2 = Kl * (1.0 - (K2*(Xm*Xm))); /* Sensitivity measure at max. displacement. This must be maximized */ 
ind.ERR2 = ER2;
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EXP3 = Lm - (ind.B + (2.0 * ind.M) ); 
if(EXP3 >= 0.0) C l = 0.0; 
else
Cl = Mu*pow(EXP3,2.0);

EXP4 = ind.La - ind.B;
if(EXP4 >= 0.0) C2 = 0.0; 

else
C2 = Mu*pow(EXP4,2.0);

EXP5 = (ind.B + (2.0 * ind.M) - (2.0 * Xm)) - ind.La; 
if(EXP5 >= 0.0) C3 = 0.0; 
else
C3 = Mu*pow(EXP5,2.0);

EXP6 = (ind.Ro - ind.Ri); 
if(EXP6 <= 0.001)
EXP7 = Mu*(0.001 -(EXP6))*(0.001 -(EXP6));

if(PER_NLT <= NLT)
OP1 = (PER_NLT /  NLT); 

else
OP1 = (NLT / PER_NLT);

if(ER2 <= SENST)
OP2 = (ER2 /  SENST); 

else
OP2 = (SENST /ER2);

OBJ = ((OP1 + OP2)/2.0)-EXP7-C1-C2-C3; 
return (OBJ);

}

double decode (int* chromosome, int lbits)
{
/* Decode string as unsigned binary integer - true=l, false=0 */ 
int j;
double accum, powerof2;

accum = 0.0; powero£2 = 1.0;

for(j=0; (j<=lbits-l) ; j++)
{
if (check(chromosome[j]))
{
accum += powerof2;
}
powerof2 *= 2;

}
return accum;
}

double map_parm(double x,double max_parm,double min_parm,double full_scale)
{
double value;

value = min_parm+(((max_parm-min_parm)/full_scale)*x); 
return value;
)

void extract_parm(const int*& chromfrom.int *chromto,int& jposition,int lchrom.int lparm)
{
/* Extracts a sub_string from a full string */ 
int j, jtarget;
j=0;
jtarget = jposition+lparm-1; 

if(jtarget>lchrom-1)
jtarget=lchrom-l; /* clamp if excessive */ 

while (¡position <= jtarget)
{
chromto[j]=chromfrom[j position]; 
j++; jposition++;
)
)
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void map_parms(int N_Parms,int lchrom,const int *chrom,parameter *par_ar)
{
int j,j position; 
double decde, full_sc;
int chr_temp[maxstring]; /* Temp chrom buffer */
j —0; /* Parameter counter */
jposition = 0; /* string position counter */

for (int k=0; k<N_Parms; k++)
{
if(par_ar[k].lparm > 0)
{
extract_parm(chrom,chr_temp,jposition,lchrom,(par_ar[k].lparm)); 
decde = decode(chr_temp,par_ar[k].lparm); 
fulLsc = pow(2.0,(par_ar[k].lparm))-1.0; 
par_ar[k].Ph_typ = decde/full_sc;
par_ar[k] ,parameter=map_parm(decde,par_ar[k] ,maxparm,par_ar[k] .minparm,full_sc);
}
else
(
par_ar[k].parameter=0.0;
}

} /* Termination of loop */
}

Sharing procedures in conjunction with the LVDT simulations

void init_Best_List(individual *B_List)
/*

purpose ; Initialize the Best_List data structure
called by : initpop
calls : none

*/
{
double Part_coefl = 0.061237244;
double Part_coef2 = 0.12247449; /*Using partitions 0.12247 apart based on the normalized distance*/ 
B_List[0].M = 0.0;
B_List[0]. Partition = Part_coefl;
B_List[0].obj = 0.0; 
for(int j= l ; j<max_best; j++)
{
B_List[j].M = 0.0;
B_List[j].Partition = ((j) * Part_coef2) + Part_coef 1; /* Set Partition coef. for each BestJList element */ 
B_List[j].obj = 0.0;

}

void Put_Best(const individual* indiv, individual *B_L)
/*-------------------------------------

Purpose : Puts a relatively better candidate design in its related partition 
called by : Statistics
calls : Assign_All

*/
{
double d.Dmin; /* relative dist.(d) and minimum rel. dist. (Dmin) */ 
int index; /* Partition index to be replaced */

for(int j=0; j<POPSIZE; j++)
{
d = fabs((indiv[j].Lx) - (B_L[0].Partition)); /* init. d and Dmin */
Dmin = d; 
index = 0;
for(int x=l; x < max_best; x++) /* Loops through the best list */
(
d = fabs((indiv[j].Lx) - (B_L[x],Partition)); /* Find closest partition for indiv[j] */ 

if( Dmin > d)
{
Dmin = d; 
index = x;
}

}
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if((indiv[j].obj)><B_L[index].obj)) /* If this candidate has higher fitness, -*/ 
{ /* replace it with the previous candidate. */
Assign_AU(indiv[j], B_L[index]);

}

double share (ind iv idual indl, ind iv idual ind2)
/*---------------------------

Purpose : Compares relative similarity of two individuals
called by : Niche
calls : none

*/
{
const double sigm_share = 0.7433466; 
double exxp; 
double dist.sh;

/* Calculate Normalized distance metric */
exxp = pow(indl .Bx-ind2.Bx,2.0)+pow(indl.Mx-ind2.Mx,2.0)+pow(indl.Lax-ind2.Lax,2.0) 

+pow(indl .Rix-ind2.Rix,2.0)+pow(ind 1 .Rox-ind2.Rox,2.0)+pow(indl .Fsx-ind2.Fsx,2.0);

dist = sqrt(exxp);

if ((dist < sigm_share))
(
sh = (1.0 - (dist/sigm_share)); /* Triangular sharing function */ 
return (sh);
}
else
retum(O.O);
}

double Niche(individual& ind,individual *indivl)
I*

Purpose ; calculates Niche count for each candidate design 
called by : speciation 
calls : share

*/
{
double count; 

count = 0.0;
for ( int j=0; j<POPSIZE; j++)
(
count += share(ind, (indivl[j]));
}
return (count);
}

void speciation( individual *indivl)
I*--------------------

Purpose : loops and assigns shared fitness (i.e d_rw_fit) to each individual 
called by : initpop, generation
calls ; Niche

*1
{
double niche_count;

for (int k=0; k< POPSIZE ; k++)
{
niche_count = Niche((indivl[k]), indivl); 
indivl[k].d_rw_fit = indivl[k].obj/niche_count;

/* Calculate distance from the origin of the hyperspace */ 
indivl[k].Lx = sqrt(pow(indivl[k].Bx,2.0)+pow(indivl[k].Mx,2.0)+pow(indivl[k].Lax,2.0)+ 

pow(indivl[k].Rix,2.0)+pow(indivl[k].Rox,2.0)+pow(indivl[k].Fsx,2.0));
)
}
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APPENDIX-III

Result of the Sharing Experiment for multimodal design optimization of a Diaphragm

= 0.85

**************************************
Best individual number 1
Genotype =1111101110111000101000000001000000000011
Phenotype 1 (H/h) = 1.062546
Phenotype2 (R) = 56.159495
Fitness = 0.999995
Degraded Fitness = 0.097795
Linear Term of the Characteristic = 0.105995
Cubic Term of the Characteristic = 0.105500
Profile Coefficient a = 7.583523
Profile Coefficient b = 1.658391
H = 0.498049
Thickness = 0.468732
errorl = 0.000005
error2 = 0.000000
Terror = 0.000005
Partition = 1.000000**************************************
Best individual number 2
Genotype = 1001110001111000110000010011111010110001
Phenotype 1 (H/h) = 2.244889
Phenotype2 (R) = 37.448157
Fitness = 0.998133
Degraded Fitness = 0.091170
Linear Term of the Characteristic = 0.104129
Cubic Term of the Characteristic = 0.105500
Profile Coefficient a = 12.762260
Profile Coefficient b = 0.673436
H = 0.512318
Thickness = 0.228215
errorl =0.001871
error2 = 0.000000
Terror = 0.001871
Partition = 2.000000
>|c * ** * * * * * * * * * * * * * * * * * * * * * * * ** * * ** **** *
Best individual number 3
Genotype = 0111011011111110100100100001010101011011
Phenotype 1 (H/h) = 3.083422
Phenotype2 (R) = 30.085911
Fitness = 0.996673
Degraded Fitness = 0.101821
Linear Term of the Characteristic = 0.109338
Cubic Term of the Characteristic = 0.105500
Profile Coefficient a = 17.832677
Profile Coefficient b = 0.413188
H = 0.477812
Thickness = 0.154962
errorl = 0.003338
error2 = 0.000000
Terror = 0.003338
Partition = 3.000000**************************************
Best individual number 4
Genotype = 0101011101001100000100101011110110001011
Phenotype 1 (H/h) = 3.740405
Phenotype2 (R) = 23.859126
Fitness = 0.952653
Degraded Fitness = 0.088003
Linear Term of the Characteristic = 0.056300
Cubic Term of the Characteristic = 0.105500

261



Profile Coefficient a = 22.521593
Profile Coefficient b = 0.300242
H = 0.315489
Thickness = 0.084346
errorl = 0.049700
error2 = 0.000000
Terror = 0.049700
Partition = 4.000000
**************************************
Best individual number 5
Genotype = 0011111001101100110101000111001000010011
Phenotype 1 (H/h) =  5.445607
Phenotype2 (R) = 18.973120
Fitness = 0.998230
Degraded Fitness = 0.091936
Linear Term of the Characteristic = 0.107773
Cubic Term of the Characteristic = 0.105500
Profile Coefficient a = 37.504689
Profile Coefficient b = 0.155570
H = 0.354482
Thickness = 0.065095
errorl = 0.001773
error2 = 0.000000
Terror = 0.001773
Partition = 5.000000
**************************************

Best individual number 6
Genotype = 0011001010101100100101010101100100000011
Phenotype 1 (H/h) = 6.347707
Phenotype2 (R) = 16.664693
Fitness = 0.995330
Degraded Fitness = 0.078679
Linear Term of the Characteristic = 0.110692
Cubic Term of the Characteristic = 0.105500
Profile Coefficient a = 47.045605
Profile Coefficient b = 0.117659
H = 0.325163
Thickness = 0.051225
errorl = 0.004692
error2 = 0.000000
Terror = 0.004692
Partition = 6.000000
**************************************

Best individual number 7
Genotype = 0010101000110001010001100001101110111011
Phenotype 1 (H/h) = 7.108328
Phenotype2 (R) = 14.998504
Fitness = 0.999746
Degraded Fitness = 0.110519
Linear Term of the Characteristic = 0.106254
Cubic Term o f the Characteristic = 0.105500
Profile Coefficient a = 55.951251
Profile Coefficient b = 0.095421
H =  0.294600
Thickness = 0.041444
errorl = 0.000254
error2 = 0.000000
Terror = 0.000254
Partition = 7.000000
**************************************
Best individual number 8
Genotype = 0010001000111000100001101100111111011111
Phenotypel (H/h) = 7.812003
Phenotype2 (R) = 13.432503
Fitness = 0.980996
Degraded Fitness = 0.086767
Linear Term of the Characteristic = 0.086628
Cubic Term o f the Characteristic = 0.105500
Profile Coefficient a = 64.889727
Profile Coefficient b = 0.079975
H = 0.248516
Thickness = 0.031812
errorl = 0.019372
error2 = 0.000000
Terror = 0.019372
Partition = 8.000000
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**************************************
Best individual number 9
Genotype = 0001101011101010110110000001100000010011
Phenotype 1 (H/h) = 9.094048
Phenotype2 (R) = 11.997770
Fitness = 0.999830
Degraded Fitness = 0.111440
Linear Term of the Characteristic = 0.106170
Cubic Term of the Characteristic = 0.105500
Profile Coefficient a = 82.900033
Profile Coefficient b = 0.060000
H = 0.245431
Thickness = 0.026988
errorl = 0.000170
error2 = 0.000000
Terror = 0.000170
Partition = 9.000000
**************************************

Best individual number 10
Genotype = 0001100010001011100010001001000000111111 
Phenotype 1 (H/h) = 9.563469 
Phenotype2(R)= 11.531739 
Fitness = 0.994020 
Degraded Fitness = 0.113332 
Linear Term of the Characteristic = 0.112016 
Cubic Term of the Characteristic = 0.105500 
Profile Coefficient a = 90.050988 
Profile Coefficient b = 0.054511 
H = 0.242453 
Thickness = 0.025352 
errorl = 0.006016 
error2 = 0.000000 
Terror = 0.006016 
Partition = 10.000000 
**************************************
Best individual number 11
Genotype = 0000111111000001011010011111101101000000 
Phenotype 1 (H/h) = 10.981455 
Phenotype2 (R) = 9.805072 
Fitness = 0.979845 
Degraded Fitness = 0.066861 
Linear Term of the Characteristic = 0.085430 
Cubic Term of the Characteristic = 0.105500 
Profile Coefficient a = 113.461525 
Profile Coefficient b = 0.041813 
H = 0.189702 
Thickness = 0.017275 
errorl = 0.020570 
error2 = 0.000000 
Terror = 0.020570 
Partition = 11.000000 
**************************************
Best individual number 12
Genotype = 0000011001101000001110101111111011111001 
Phenotype 1 (H/h) = 11.995997 
Phenotype2 (R) = 7.968623 
Fitness = 0.930691 
Degraded Fitness = 0.077387 
Linear Term of the Characteristic = 0.031530 
Cubic Term of the Characteristic = 0.105500 
Profile Coefficient a = 131.879044 
Profile Coefficient b = 0.035254 
H = 0.107222 
Thickness = 0.008938 
errorl = 0.074470 
error2 = 0.000000 
Terror = 0.074470 
Partition = 12.000000 
**************************************
Best individual number 13
Genotype= 0000100010101011100011000101100110011111
Phenotype 1 (H/h) = 13.350094
Phenotype2 (R) = 8.413167
Fitness = 0.996876
Degraded Fitness = 0.081596
Linear Term of the Characteristic = 0.109134
Cubic Term of the Characteristic = 0.105500
Profile Coefficient a = 158.626942
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Profile Coefficient b = 0.028646
H = 0.182465
Thickness = 0.013668
errorl = 0.003134
error2 = 0.000000
Terror = 0.003134
Partition = 13.000000H* * * * **** ****** >1« ********** ** **** H« ***** *
Best individual number 14
Genotype = 0000011000101010011011001111110001111110 
Phenotypel (H/h) = 13.986310 
Phenotype2 (R) = 7.921190 
Fitness = 0.990042 
Degraded Fitness = 0.085911 
Linear Term of the Characteristic = 0.095942 
Cubic Term of the Characteristic = 0.105500 
Profile Coefficient a = 172.049315 
Profile Coefficient b = 0.026163 
H = 0.164474 
Thickness = 0.011760 
errorl = 0.010058 
error2 = 0.000000 
Terror = 0.010058 
Partition = 14.000000 
**************************************
Best individual number 15
Genotype = 0000001011101010000011100111100100101011 
Phenotypel (H/h) = 15.473326 
Phenotype2 (R) = 7.282454 
Fitness = 0.999757 
Degraded Fitness = 0.105213 
Linear Term of the Characteristic = 0.105757 
Cubic Term of the Characteristic = 0.105500 
Profile Coefficient a = 205.552542 
Profile Coefficient b = 0.021477 
H = 0.158357 
Thickness = 0.010234 
errorl = 0.000243 
error2 = 0.000000 
Terror = 0.000243 
Partition = 15.000000 
**************************************
Best individual number 16
Genotype = 0000001011101111100011101001011010110011 
Phenotypel (H/h) = 15.588683 
Phenotype2 (R) = 7.286675 
Fitness = 0.993587 
Degraded Fitness = 0.097181 
Linear Term of the Characteristic = 0.112455 
Cubic Term of the Characteristic = 0.105500 
Profile Coefficient a = 208.276350 
Profile Coefficient b = 0.021167 
H = 0.162249 
Thickness = 0.010408 
errorl = 0.006455 
error2 = 0.000000 
Terror = 0.006455 
Partition = 16.000000 
**************************************
Best individual number 17
Genotype = 0000001000100110000011111110100100101101
Phenotypel (H/h) = 16.910858
Phenotype2 (R) = 7.132051
Fitness = 0.933929
Degraded Fitness = 0.126134
Linear Term of the Characteristic = 0.176745
Cubic Term of the Characteristic = 0.105500
Profile Coefficient a = 240.778414
Profile Coefficient b = 0.018045
H = 0.189489
Thickness = 0.011205
errorl = 0.070745
error2 = 0.000000
Terror = 0.070745
Partition = 17.000000
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APPENDIX-IV

Result of the Sharing Experiment for multimodal design optimization of an LVDT

Is LVDT being used for sensing DISPLACEMENT ?
You have chosen DISPLACEMENT
Enter Number of turns per unit volume —> 162.929e+07 tums/m*m*m
Enter Supply voltage —> 2.7 VOLTS
Enter Maximum displacement range —> 1.27 mm
Enter Maximum possible length of the transducer —> 89.0 mm
Enter resistivity of the coil w ire—> 1.8e-08 ohm-meter
Enter seed random number (0.0 .. 1.0) >
randomseed is 0.630591
END of initdata

$$$$$$$$$$$$$$$$$$$$$$ GENETIC ALGORITHM PARAMETERS $$$$$$$$$$$$$$$$$$$$$$

Population size (POPSIZE) = 400 
Chromosome length (LCHROM) = 60 
Maximum number of generation (MAXGEN) = 140 
Crossover probability (PCROSS) = 0.950000 
Mutation probability (PMUTATION) = 0.003000

############### Initial Generation Statistics ###############

Initial population maximum fitness = 0.635062 
Initial population average fitness = 0.109754 
Initial population minimum fitness = 0.000000 
Initial population sum of fitness = 43.901594

Results at generation 140 :

Best individual number 1
Genotype=000000000000000000000000000000000000000000000000000000000000
Phenotype 1 (B) = 0.000000
Phenotype2 (M) = 0.000000
Phenotype3 (La) = 0.000000
Phenotype4 (Ri) = 0.000000
Phenotype5 (Ro) = 0.000000
Phenotype6 (Fs) = 0.000000
Percentage range (Bx) = 0.000000
Percentage range (Mx) = 0.000000
Percentage range (Lax) = 0.000000
Percentage range (Rix) = 0.000000
Percentage range (Rox) = 0.000000
Percentage range (Fsx) = 0.000000
(I_P) = 0.000000
(N_P) = 0.000000
(N_S) = 0.000000
(AR) = 0.0000000000
(IMEDANCE) = 0.0000000000
(K _l) = 0.000000
(K_2) = 0.000000
(ERR1) = 0.000000
(ERR2) = 0.000000
objective = 0.000000
DIST = 0.000000
Degraded Fitness = 0.000000
Partition = 0.061237
Iteration number = 0
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***********************************
Best individual number 2
Genotype =000000000000000000000000000000000000000000000000000000000000
Phenotypel (B) = 0.000000
Phenotype2 (M) = 0.000000
Phenotype3 (La) = 0.000000
Phenotype4 (Ri) = 0.000000
Phenotype5 (Ro) = 0.000000
Phenotypeô (Fs) = 0.000000
Percentage range (Bx) = 0.000000
Percentage range (Mx) = 0.000000
Percentage range (Lax) = 0.000000
Percentage range (Rix) = 0.000000
Percentage range (Rox) = 0.000000
Percentage range (Fsx) = 0.000000
(I_P) = 0.000000
(N_P) = 0.000000
(N_S) = 0.000000
(AR) = 0.0000000000
(IMEDANCE) = 0.0000000000
(K_l) = 0.000000
(K_2) = 0.000000
(ERR1) = 0.000000
(ERR2) = 0.000000
objective = 0.000000
DIST = 0.000000
Degraded Fitness = 0.000000
Partition = 0.183712
Iteration number = 0
***********************************

Best individual number 3
Genotype = 000001100100001000110000000010010001111000100100000000010000 
Phenotypel (B) = 0.001454 
Phenotype2 (M) = 0.005082 
Phenotype3 (La) = 0.008269 
Phenotype4 (Ri) = 0.001010 
Phenotype5 (Ro) = 0.002274 
Phenotypeô (Fs) = 19.530792 
Percentage range (Bx) = 0.015640 
Percentage range (Mx) = 0.140762 
Percentage range (Lax) = 0.279570 
Percentage range (Rix) = 0.001955 
Percentage range (Rox) = 0.034213 
Percentage range (Fsx) = 0.024438 
(I _P) = 25.779174 
(N_P) = 30.877409 
(N_S) = 107.956725 
(AR) = 0.0000000547 
(IMEDANCE) = 0.1047357081 
(K_l) = 40.436131 
(K_2) = 60367.810618 
(ERR1) = 0.005000 
(ERR2) = 36.498977 
objective = 0.535838 
DIST = 0.316211 
Degraded Fitness = 0.075982 
Partition = 0.306186 
Iteration number =135 
***********************************
Best individual number 4
Genotype = 001000011100001111000000000010011010111000110010100000000100
Phenotypel (B) = 0.001113
Phenotype2 (M) = 0.006726
Phenotype3 (La) = 0.011929
Phenotype4 (Ri) = 0.001010
Phenotype5 (Ro) = 0.002469
Phenotype6 (Fs) = 61.466276
Percentage range (Bx) = 0.003910
Percentage range (Mx) = 0.197458
Percentage range (Lax) = 0.420332
Percentage range (Rix) = 0.001955
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Percentage range (Rox) = 0.058651
Percentage range (Fsx) = 0.131965
(I_P) = 24.503232
(N_P) = 28.935626
(N_S) = 174.807761
(AR) = 0.0000000517
(IMEDANCE) = 0.1101895436
(K _l) = 185.762639
(K_2) = 28358.166975
(ERR1) = 0.010791
(ERR2) = 177.266063
objective = 0.457898
DIST = 0.486357
Degraded Fitness = 0.052897
Partition = 0.428661
Iteration number = 22
***********************************
Best individual number 5
Genotype = 011000101000000000110001000110010111111000110110010001000001
Phenotype 1 (B) = 0.002843
Phenotype2 (M) = 0.007152
Phenotype3 (La) = 0.010709
Phenotype4 (Ri) = 0.001342
Phenotype5 (Ro) = 0.002023
Phenotypeô (Fs) = 160.205279
Percentage range (Bx) = 0.063539
Percentage range (Mx) = 0.212121
Percentage range (Lax) = 0.373412
Percentage range (Rix) = 0.068426
Percentage range (Rox) = 0.002933
Percentage range (Fsx) = 0.385142
(I_P) = 22.701182
(N_P) = 33.364572
(N_S) = 83.939205
(AR) = 0.0000000534
(IMEDANCE) = 0.1189365387
(K_l) = 428.276132
(K_2) = 37524.942392
(ERR1) = 0.032920
(ERR2) = 402.355156
objective = 0.574535
DIST = 0.584375
Degraded Fitness = 0.067548
Partition = 0.551135
Iteration number = 90***********************************
Best individual number 6
Genotype = 001010100100111110100001000100100100111101010101100000011110
Phenotype 1 (B) = 0.001850
Phenotype2 (M) = 0.010695
Phenotype3 (La) = 0.016021
Phenotype4 (Ri) = 0.001332
Phenotype5 (Ro) = 0.003955
Phenotypeô (Fs) = 74.428152
Percentage range (Bx) = 0.029326
Percentage range (Mx) = 0.334311
Percentage range (Lax) = 0.577713
Percentage range (Rix) = 0.066471
Percentage range (Rox) = 0.244379
Percentage range (Fsx) = 0.165200
(I_P) = 2.335780
(N_P) = 131.343814
(N_S) = 759.129779
(AR) = 0.0000000340
(IMEDANCE) = 1.1559309114
(K_l) = 292.026108
(K_2)= 15795.718077
(ERR1) = 0.009449
(ERR2) = 284.586184
objective = 0.625611
DIST = 0.733353
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Degraded Fitness = 0.044262 
Partition = 0.673610 
Iteration number = 8 
***********************************
Best individual number 7
Genotype = 001100000000111001110000111101101100111101010100100000010101 
Phenotypel (B) = 0.001595 
Phenotype2 (M) = 0.010582 
Phenotype3 (La) = 0.019274 
Phenotype4 (Ri) = 0.001298 
Phenotype5 (Ro) = 0.003806 
Phenotype6 (Fs) = 83.196481 
Percentage range (Bx) = 0.020528 
Percentage range (Mx) = 0.330401 
Percentage range (Lax) = 0.702835 
Percentage range (Rix) = 0.059629 
Percentage range (Rox) = 0.225806 
Percentage range (Fsx) = 0.187683 
(I_P) = 3.148476 
(N_P) = 104.552646 
(N_S) = 693.494116 
(AR) = 0.0000000352 
(IMEDANCE) = 0.8575577023 
(K _l) = 396.098804 
(K_2)= 10842.144933 
(ERR1) = 0.008797 
(ERR2) = 389.172107 
objective = 0.776340 
DIST = 0.832666 
Degraded Fitness = 0.041817 
Partition = 0.796084 
Iteration number = 20 
***********************************
Best individual number 8
Genotype = 001000101100001010110000010010110111101001101100000000010011 
Phenotypel (B) = 0.001539 
Phenotype2 (M) = 0.013246 
Phenotype3 (La) = 0.023620 
Phenotype4 (Ri) = 0.001088 
Phenotype5 (Ro) = 0.002336 
Phenotype6 (Fs) = 62.991202 
Percentage range (Bx) = 0.018573 
Percentage range (Mx) = 0.422287 
Percentage range (Lax) = 0.869990 
Percentage range (Rix) = 0.017595 
Percentage range (Rox) = 0.042033 
Percentage range (Fsx) = 0.135875 
(I_P) = 21.740420 
(N_P) = 33.663333 
(N_S) = 289.816920 
(AR) = 0.0000000525 
(IMEDANCE) = 0.1241926350 
(K_l) = 384.985586 
(K_2) = 7200.395151 
(ERR1) = 0.005678 
(ERR2) = 380.514549 
objective = 0.924728 
DIST = 0.977800 
Degraded Fitness = 0.064428 
Partition = 0.918559 
Iteration number =116 
***********************************
Best individual number 9
Genotype = 001000111001001110110001101010111100001101101110010000110000
Phenotypel (B) = 0.002361
Phenotype2 (M) = 0.013501
Phenotype3 (La) = 0.025475
Phenotype4 (Ri) = 0.001518
Phenotype5 (Ro) = 0.004463
Phenotype6 (Fs) = 64.134897
Percentage range (Bx) = 0.046921
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Percentage range (Mx) = 0.431085 
Percentage range (Lax) = 0.941349 
Percentage range (Rix) = 0.103617 
Percentage range (Rox) = 0.307918 
Percentage range (Fsx) = 0.138807 
(I_P) = 1.125831 
(N_P) = 212.871772 
(N_S) = 1217.467876 
(AR) = 0.0000000300 
(IMEDANCE) = 2.3982279151 
(K _l) = 402.570826 
(K_2) = 6216.910128 
(ERR1) = 0.005127 
(ERR2) = 398.534146 
objective = 0.995575 
DIST = 1.094985 
Degraded Fitness = 0.048145 
Partition = 1.041033 
Iteration number = 129 
***********************************
Best individual number 10
Genotype = 00100010000000000000000001111011111010100 1110010100011011011 
Phenotype 1 (B) = 0.007208 
Phenotype2(M) = 0.013983 
Phenotype3 (La) = 0.026466 
Phenotype4 (Ri) = 0.001147 
Phenotype5 (Ro) = 0.002000 
Phenotype6 (Fs) = 61.847507 
Percentage range (Bx) = 0.214076 
Percentage range (Mx) = 0.447703 
Percentage range (Lax) = 0.979472 
Percentage range (Rix) = 0.029326 
Percentage range (Rox) = 0.000000 
Percentage range (Fsx) = 0.132942 
(I_P) = 8.747408 
(N_P) = 99.074003 
(N_S)= 192.196042 
(AR) = 0.0000000571 
(IMEDANCE) = 0.3086628729 
(K _l) = 402.436681 
(K_2) = 6168.028450 
(ERR1) = 0.005085 
(ERR2) = 398.433075 
objective = 0.996530 
DIST = 1.106420 
Degraded Fitness = 0.055047 
Partition = 1.163508 
Iteration number = 64 
***********************************

Best individual number 11
Genotype = 001000111101111111100100011100111110000001110000000010111101
Phenotype 1 (B) = 0.006358
Phenotype2 (M) = 0.013700
Phenotype3 (La) = 0.026212
Phenotype4 (Ri) = 0.002388
Phenotype5 (Ro) = 0.005988
Phenotype6 (Fs) = 64.516129
Percentage range (Bx) = 0.184751
Percentage range (Mx) = 0.437928
Percentage range (Lax) = 0.969697
Percentage range (Rix) = 0.277615
Percentage range (Rox) = 0.498534
Percentage range (Fsx) = 0.139785
(I_P) = 0.123766
(N_P) = 981.372198
(N_S) = 2114.688093
(AR) = 0.0000000215
(IMEDANCE) = 21.8153598111
(K_l) = 402.575421
(K_2) = 6185.687762
(ERR1) = 0.005101
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(ERR2) = 398.558968 
objective = 0.998111 
DIST = 1.229378 
Degraded Fitness = 0.042053 
Partition = 1.285982 
Iteration number = 133* * Ht * * * * * * * * * * * * * * * * * * * H« * * * * * * * * * * *
Best individual number 12
Genotype = 001000111100001011100000000110111111001011101001000011110110
Phenotypel (B) = 0.007974
Phenotype2 (M) = 0.027420
Phenotype3 (La) = 0.026670
Phenotype4 (Ri) = 0.001029
Phenotype5 (Ro) = 0.002360
Phenotype6 (Fs) = 64.516129
Percentage range (Bx) = 0.240469
Percentage range (Mx) = 0.911046
Percentage range (Lax) = 0.987292
Percentage range (Rix) = 0.005865
Percentage range (Rox) = 0.044966
Percentage range (Fsx) = 0.139785
(I_P) = 4.058844
(N_P) = 184.019474
(N_S) = 632.822149
(AR) = 0.0000000530
(IMEDANCE) = 0.6652139571
(K _l) = 403.749947
(K_2) = 6175.802431
(ERR1) = 0.005108
(ERR2) = 399.728213
objective = 0.998916
DIST = 1.372652
Degraded Fitness = 0.062120
Partition = 1.408457
Iteration number = 62* * *** ****** sfe ******** * ********** * ** *
Best individual number 13
Genotype = 001000101111100110111000000010111100001101110110100000010001 
Phenotypel (B) = 0.001482 
Phenotype2 (M) = 0.014437 
Phenotype3 (La) = 0.025475 
Phenotype4 (Ri) = 0.003512 
Phenotype5 (Ro) = 0.009218 
Phenotype6 (Fs) = 62.991202 
Percentage range (Bx) = 0.016618 
Percentage range (Mx) = 0.463343 
Percentage range (Lax) = 0.941349 
Percentage range (Rix) = 0.502444 
Percentage range (Rox) = 0.902248 
Percentage range (Fsx) = 0.135875 
(I_P) = 0.095978 
(N_P) = 550.961549 
(N_S) = 5367.513933 
(AR) = 0.0000000141 
(IMEDANCE) = 28.1314851006 
(K_l) = 404.144598 
(K_2) = 6184.451716 
(ERR1) = 0.005120 
(ERR2) = 400.113295 
objective = 0.997929 
DIST = 1.478535 
Degraded Fitness = 0.057894 
Partition = 1.530931 
Iteration number = 120 
***********************************
Best individual number 14
Genotype = 001000000111001111101110111100111100010001110110010000010100
Phenotypel (B) = 0.001567
Phenotype2 (M) = 0.014409
Phenotype3 (La) = 0.025500
Phenotype4 (Ri) = 0.005673
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(K_l) = 405.399277 
(K_2) = 6147.621830 
(ERR1) = 0.005105 
(ERR2) = 401.379541 
objective = 0.997785 
D IST= 1.952326 
Degraded Fitness = 0.050804 
Partition = 1.898355 
Iteration number = 75 
***********************************
Best individual number 17
Genotype = 001000100011111111111111001110111110101011110110010011000100 
Phenotype 1 (B) = 0.006556 
Phenotype2 (M) = 0.028923 
Phenotype3 (La) = 0.026466 
Phenotype4 (Ri) = 0.005761 
Phenotype5 (Ro) = 0.010000 
Phenotype6 (Fs) = 61.847507 
Percentage range (Bx) = 0.191593 
Percentage range (Mx) = 0.962854 
Percentage range (Lax) = 0.979472 
Percentage range (Rix) = 0.952102 
Percentage range (Rox) = 1.000000 
Percentage range (Fsx) = 0.132942 
(I_P) = 0.015215 
(N_P) = 2242.254677 
(N_S) = 9891.729743 
(AR) = 0.0000000114 
(IMEDANCE) = 177.4622886428 
(K_l) = 403.091883 
(K_2) = 6083.836230 
(ERR 1) = 0.005023 
(ERR2) = 399.136496 
objective = 0.991405 
DIST = 1.961462 
Degraded Fitness = 0.073864 
Partition = 2.020829 
Iteration number = 52 
***********************************
Best individual number 18
Genotype=111100110111111110111001000111111110100011111010111010000110
Phenotype 1 (B) = 0.019313
Phenotype2 (M) = 0.029433
Phenotype3 (La) = 0.026415
Phenotype4 (Ri) = 0.003849
Phenotype5 (Ro) = 0.009969
Phenotypeô (Fs) = 380.938416
Percentage range (Bx) = 0.631476
Percentage range (Mx) = 0.980450
Percentage range (Lax) = 0.977517
Percentage range (Rix) = 0.569892
Percentage range (Rox) = 0.996090
Percentage range (Fsx) = 0.951124
(I_P) = 0.001903
(N_P) = 8358.786366
(N_S)= 12738.930885
(AR) = 0.0000000130
(IMEDANCE) = 1418.9449911848
(K_l) = 420.274233
(K_2) = 12315.602064
(ERR1) = 0.010602
(ERR2) = 411.925975
objective = 0.726038
DIST = 2.130069
Degraded Fitness = 0.069649
Partition = 2.143304
Iteration number = 81

Best individual number 19
G enotype=111000101111111110111110010011111111111111110100011011010100 
Phenotype 1 (B) = 0.021524
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Phenotype2 (M) = 0.028696
Phenotype3 (La) = 0.027000
Phenotype4 (Ri) = 0.005472
Phenotype5 (Ro) = 0.009969
Phenotype6 (Fs) = 355.777126
Percentage range (Bx) = 0.707722
Percentage range (Mx) = 0.955034
Percentage range (Lax) = 1.000000
Percentage range (Rix) = 0.894428
Percentage range (Rox) = 0.996090
Percentage range (Fsx) = 0.886608
(I_P) = 0.002084
(N_P) = 7649.338932
(N_S)= 10198.192183
(AR) = 0.0000000116
(IMEDANCE) = 1295.8645595125
(K_l) = 410.094422
(K_2)= 15053.461682
(ERR1) = 0.012645
(ERR2) = 400.137441
objective = 0.701483
D1ST = 2.234107
Degraded Fitness = 0.078705
Partition = 2.265778
Iteration number =139
* * * * * * * * * * * * * * * * >1« * * * * >1« * * >1« * * * * * >1« >1« * * *
Best individual number 20
Genotype = 111101101011111110001111110010111111101011110011101101000000
Phenotype 1 (B) = 0.024586
Phenotype2(M) = 0.028611
Phenotype3 (La) = 0.026873
Phenotype4 (Ri) = 0.005936
Phenotype5 (Ro) = 0.009945
Phenotypeô (Fs) = 385.894428
Percentage range (Bx) = 0.813294
Percentage range (Mx) = 0.952102
Percentage range (Lax) = 0.995112
Percentage range (Rix) = 0.987292
Percentage range (Rox) = 0.993157
Percentage range (Fsx) = 0.963832
(1_P) = 0.001839
(N_P) = 8011.974587
(N_S) = 9323.783714
(AR) = 0.0000000113
(IMEDANCE) = 1468.5407858425
(K_l) = 195.030373
(K_2) = 33983.102115
(ERR1) = 0.013576
(ERR2) = 184.340495
objective = 0.418255
DIST = 2.334154
Degraded Fitness = 0.043909
Partition = 2.388253
Iteration number =114***********************************
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APPENDIX-V

The Software System Architecture of the Classifier System

The implemented class diagram of the classifier system is shown below:

Please note that, detector, effector and creditor classes have been included as 
methods of the Classifier System (represented by the population class). For more 
sophisticated applications, it is prefered to represent these modules as separate 
class objects. This supports further modularity and ease of future expansions of the 
software.

The most important object templates and their message operations are documented 
below:

1- Population Object Template:

Name: Population Object

Documentation: Represents the Classifier System instance with its appropriate set 
of parameters and data. It has appropriate methods for:

1 -Its initialization.
2- lnitial report and reports of its status at iteration instances specified by the user.
3- Detection of the design environment using its detectors method.
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4- Rule and Environmental Message-List matching (using Match_Classifiers 
method).
5- Invocation of the Apportionment of Credit Algorithm (via invocation of its auction 
method).
6- Effecting its design environment by calling its effector method.

Class: Population

Persistence: Dynamic

2- Genetic Algorithm Object Template:

Name: Genetic Algorithm object instance name.

Documentation: Encapsulates an instance of the Genetic Algorithm parameters and 
methods. It is instantiated via the Main utility and contains methods for the initial 
report of its instantiated parameters and field classes. It, also, reports, at specific 
intervals (as set by the user), the statistical and parametric information resulting 
from the application of the genetic operations.

The genetic algorithm is applied to the classifier system at specific intervals (as set 
by the user). It is supported by the aalafpopulation & pop) method of the genetic 
algorithm object instance and is invoked via the main utility. The overall functionality 
of this method (which uses other private methods including select, crowding, 
crossover, and mutation), using pseudo code, is:

BEGIN
1-Statistics (population & pop);
{Calculates population statistics:
MAX, AVG, MIN, and sum_of_strength for roulete wheel (Monte Carlo) selection.

}
REPEAT

2- Select Matel
3- Select Mate2
4- Crossover(Mate1, Mate2);
{Uses mutation methods during the transfer of strings}

5- Crowding(child1, population & pop);
{Uses DeJong's crowding method to maintain a diverse population of rules. 
The classifier-rule index for replacement by childl is 
returned by using this method.}

6- Crowding(child2, population & pop);
7- Insert childl and child2 in place of classifier-rule members, as specified by 

Crowding method invocations.
8- Update population statistics.

UNTIL (enough mates are piked according to CF parameter)
END;

Class: GA class 

Persistence: Dynamic
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Name: The name of the reinforcement object instance.

Documentation: A particular reinforcement object instance monitors the 
performance of the classifier system and pays instantiated reward for correct 
answers. This functionality is provided by the invocation of the reinf(environment & 
env, population & pop) method within the main utility.

The overall functionality of this method, using pseudocode, is:

BEGIN
if (Criterion (environment &))
{ Criterion is a private method invoked within the reinf(environment &, 
population &), which compares the classifier system's answer to a particular 
design problem with the correct answer, as contained and simulated within the 
environment object instance (in the form of a mathematical model). It returns 
TRUE or FALSE based on correct or wrong classifier system responses.
}
payreward (population & pop);
{ Pay instantiated reward to the winner classifier rule}

END;

The reinforcement object instance, also, has appropriate report methods which are 
invoked at simulation intervals (as set by the user). These reports (including 
graphical and statistical information) provide the user with information regarding the 
rate of improvement of the classifier system behaviour, and are vital for analysis of 
the classifier system performance.

Class: Reinforcement class

Persistence: Dynamic

3-Reinforcement Object Template:

4- Environment Object Template:

Name: The name of the environment object instance.

Documentation: An environmental object instance represents the design 
environment to the classifier system. This functionality is supported by the 
Coordinate(); method. The overall functionality of this method, using pseudocode, 
is:

BEGIN
1 -generate_signal();
{In our application, at this stage, this private method produces two random sub-
strings. The overall concatenated mapped fixed point string represents the 
design problem encountered by the classifier system.
}
2-Correct_Action();
{The environmental object instance, using its knowledge of the Diaphragm- 
Mathematical Model, and its generated design signal, works out the correct 
design response by using the error rangefH/h. rr} routine. This information is 
used by the reinforcement object instance for the evaluation of classifier system
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}
END;

The environment object instance, also, possesses methods for the initialization of 
its atributes and class fields. It, also, has methods that report the current status of 
the environmental object instance in terms of its design signal, decoded design 
parameters, correct design action and further statistical information.

The program listing of the classifier system is given in the following pages.

performance.
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// Main Program

main(int argc, char** argv)
{
int numfiles = argc -1 ;

if(numfiles == 0)
{
infp = stdin; 
outfp = stdout; 
prop_rew = stdout; 
prop_rew_50 = stdout;
}

if(numfiles == 4)
{
if((infp = fopen(argv[l],"r")) == NULL)
{
fprintf(stderr,"Cannot open input file %s\n",argv[l]); 
exit(-l);
)

if((outfp = fopen(argv[2],"w")) == NULL)
{
fprintf(stderr, "Cannot open output file %s\n",argv[2]); 
exit(-l);
}

if((prop_rew = fopen(argv[3],"w")) == NULL)
{
fprintf(stderr,"Cannot open output file %s\n",argv[3]); 
exit(-l);
}

if((prop_rew_50 = fopen(argv[4],"w")) == NULL)
{
fprintf(stderr,"Cannot open output file %s\n",argv[4]); 
exit(-l);

}

int i=0; 
initmdO;
population pop(NCLASS.NPOS); 
environment env; 
reinforcement reinf;
GA gag(MARSIZE); 
timer tme;

pop.init_population();
pop.init_report_classifiers();

env.initenvironmentO;
env.initrepenvironmentO;
pop.repmatchlistO;

reinf.initreinforcementO;
reinf.initrepreinforcementO;

gag.initga(pop);
gag.initrepgaO;

tme.inittimerO;
tme.initreptimerO;

pop.detectors(env);

fprintf(outfp," Console Report \n");
fprintfioutfp,"------------------\n");
env ,reportenvironment();
pop.reportdetectorsO;
pop.report_classifiers();
pop.repmatchlistO;
pop.reportaocO;
reinf.reportreinforcementO;
reinf.plot_reportreinforcementO;
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while(i<MAX_ITER)
{
tme.timeO;
env.coordinate();
pop.detectors(env);
pop.matchclassifiersO;
pop.aocO;
pop.effector(env);
reinf.reinf(env,pop);

if(tme.get_gaflagO)
{
gag.galg(pop);
}
if(tme.get_plotrepflag())
{
reinf.plot_reportremforcement();
I

if(tme.get_reportflagO) { 
fprintf(outfp "********************\n")- 
fprintf(outfp, "Iteration number is :\n"); 
tme.reporttimeO;
fprintf(outfp "********************\n"); 
fprintf(outfp, "Console Report \n");
fprintf(outfp, "------------------\n");
gag.reportga(pop);
env.reportenvironmentO;
pop.reportdetectorsO;
pop.report_classifiers();
pop.repmatchlistO;
pop.reportaocO;
reinf.reportreinforcementO;

}
pop.advanceO;
i++;

Ì
fprintf(outfp,"Console Report \n");
fprintf(outfp, "------------------\n");
env .reportenvironmentO ;
pop.reportdetectorsO;
pop.report_classifiersO;
pop.repmatchlistO;
pop.reportaocO;
reinf.reportreinforcementO ;
pop.advanceO;
}

// Classifier System Classes and Methods

class classifier_rule {
IntArray cond; 
int action;
double strength, bid, ebid;
int matchflag;
int specificity;
friend class population;

public:
classifier_rule ()

{}
void init_classifier(int n_position); 
void count_specificityO; 
double& Bid()

{return bid;} 
double& Ebid()

{return ebid;} 
int& get_matchflag()

{ return matchflag;} 
int& get_action()

{ return action;} 
int get_int_act()

{ return action;} //See matchcount
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int get_int_cond(int indx)
{ return (condfindx]);) //See matchcount 

int get_cond_size()
{ return (cond.getSizeO);} 

int& get_cond(int indx)
( return (cond[indx]);} 

double getstr()
{ return strength;} 

double& get_strength()
{ return strength;}

};

void classifier_rule::init_classifier(int n_position)
{
cond=n_position; 

bid=0.0; 
ebid=0.0; 
matchflag=0; 
strength =1.97; 
action = 679;

}

void classifter_rule; :count_specificity()
{
int npos = cond.getSizeO; 
int temp=0;
for (int i=0; i<npos; i++)
{
if (cond[i] !=2)

++temp;
}
specificity = temp;
}

class classifier_store { 
int size;
classifier_mle *rules; 

public;
classifier_store (int sz.int npos); 
~classifier_store() { delete mles; } 
void rangecheck(int ix); 
classifier_rule& operator}] (int); 
int getSize() { return size; }
};

classifier_store::classifier_store(int sz,int npos) { 
size = sz;
rules = new classifier_rule[size]; 
for(int i =0; i < size; i++) 
rules [i] .init_classifier(npos);
}

void classifier_store;:rangecheck(int ix)
{
if ((ix<0) II (ix >= size))
{
cerr «  "Index out of bounds for classifier_store 

«  "\n\t size: " «  size 
«  "\t index : " « ix «  "\n"; 
exit(17);

}
}

classifier_mle& classifier_store:;operator[] (int index)
{
rangecheck(index); 
return rules [index];
}



class population { 
classifier_store store; 
int nclassifters;
IntArray matchlist;
IntArray envmessage; 
int n_position;
double pgeneral, cbid, bidsigma; 
double bidtax, lifetax; 
double bidl, bid2, ebidl, ebid2; 
double sumstrength, maxstrength; 
double avgstrength, minstrength; 
int winner, oldwinner; 
int bucketbrigadeflag; 
friend class reinforcement; 
friend class GA; 

public:
population (int sz.int nposition)

;store(sz,nposition),matchlist(0)
{
n_position=nposition;
nclassifters=sz;
winner=0;
oldwinner=0;
sumstrength=maxstrength=0.0;
avgstrength=minstrength=0.0;
}

void repmatchlistO; 
void init_population(); 
void read_classifiers(); 
void init_report_classifiers(); 
void report_classifiers(); 
void initrepaocO; 
void reportaocO;
void detectors(environment& env);
void reportdetectors();
void writemessageO;
void effector(environment& env);
void matchclassifiersO;
int match(IntArray& c, int npos);
int auction();
void taxcollectorO;
void clearinghouseO;
void aoc();
void advance();
);

void population::repmatchlist()
{
fprintf(outfp, "Matchlist ="); 

for(int j=0; j<matchlist.getSize(); j++) 
fprintf(outfp,"%d-", matchlistQ]); 
fprintf(outfp,"\n");

}

void population;;init_population()
{
fprintf(outfp, "inside init_classifiers \n"); 
fprintf(outfp, "Enter pgeneral\n"); 
fscanf(infp," % lf' ,&pgeneral); 
fprintf(outfp, "Enter cbid\n"); 
fscanf(infp,"%lf', &cbid); 
fprintf(outfp,"Enter bidsigma\n"); 
fscanf(infp,"%lf\ &bidsigma); 
fprintf(outfp, "Enter bidtax\n"); 
fscanf(infp,"%lf', &bidtax); 
fprintf(outfp, "Enter lifetax\n"); 
fscanf(infp,"%lf', &lifetax); 
fprintf(outfp, "Enter bid l\n"); 
fscanf(infp,"%lf', &bidl); 
fprintf(outfp, "Enter bid2\n"); 
fscanf(infp,"%lf', &bid2); 
fprintf(outfp,"Enter ebidl\n"); 
fscanf(infp,"%lf', &ebidl); 
fprintf(outfp, "Enter ebid2\n"); 
fscanf(infip,"%lf', &ebid2); 
fprintf(outfp, "Enter bucketbrigadeflag\n");



fscanf(infp,"%lf, &bucketbrigadeflag); 
fprintf(outfp, "Enter classifiers \n"); 
read_classifiers();
}

void population: :read_classifiers()
{
char ch; 
double s;
fprintf(outfp, "Enter Strength \n"); 
fscanf(infp,"%lf', &s); 
for(int j=0; j<  nclassifters; j++)
{
store [j].strength=s;
for (int i=0; i<store[j].cond.getSize(); i++)
{
fscanf(infp,"%ls", &ch); 
switch(ch) {

case 'O':
store [j].cond[i]=0; 
fprintf(outfp, "in zero \n"); 
break; 

case T :
store [j].cond[i]=l; 
fprintf(outfp," In one \n"); 
break; 

case '#':
store [j].cond[i]=2; 
fprintf(outfp, "In two \n"); 
break; 

case 'R':
store [j].cond[i]=randomchar(pgeneral); 

fprintf(outfp, "In R \n"); 
break; 

default:
store [j].cond[i]=6; 
fprintf(outfp," inside default \n"); 
break;

};
fscanf(infp,"%ls", &ch); 

if (ch = = T ) 
store[j].action=l; 
else if (ch =  '0') 
store |j].action=0; 
else
store [j].action=6;
store [j].count_specificity();

}

void population::init_report_classifiers()
{
//Initial report on population parameters 
fprintf(outfp, "\n");
fprintf(outfp, "Population Parameters \n");
fprintf(outfjp, "------------------------\n");
fprintf(outfp, "Number of Classifiers = %d \n",nclassifters); 
fprintf(outfp,"Number of Positions = %d \n", n_position); 
fprintf(outfp, "Generality Probability = %f \n",pgeneral); 
fprintf(outfp, "Bid Coefficient = %f \n",cbid); 
fprintf(outfp, "Bid Spread = %f \n",bidsigma); 
fprintffoutfp, "Bidding tax = %f \n",bidtax); 
fprintftoutfp, "Existence Tax = %f \n",lifetax); 
fprintf(outfp, "Bid Specificity (Ml) = %f \n",bidl); 
fprintf(outfp, "Bid Specificity Multiplier (M2) = %f \n",bid2); 
fprintf(outfp, "Effective Bid Specificity = %f \n",ebidl); 
fprintftoutfp, "Effective Bid Specificity Multiplier = %f\n",ebid2);; 
initrepaocO;
}
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void population: :initrepaoc()
{
fprintf(outfp, "Approportion of Credit Parameters\n");
fprintf(outfp,"---------------------------------\n");
fprintf(outfp, "Bucket Brigade Flag = "); 

if(bucketbrigadeflag) 
fprintf(outfp, "TRUE\n"); 

else
fprintf(outfp, "FALSE\n");

)

void population::reportaoc()
{
fprintf(outfp, "New winner [% d]: oldwinner [%d] \n",winner,oldwinner);
}

void population: :report_classifiers()
{
fprintf(outfp, "\n");
fprintf(outfp, "No strength bid ebid M Classifier \n");
fprintf(outfp,11------------------------------------------------------------ \n");
for(int j=0; j<nclassifters; j++)
{
fprintf(outfp,"%d %f %f %f"j,store[j].strength,store|j].bid,store[j].ebid); 
if (store[j].matchflag) 

fprintf(outfp,"X ”); 
else

fprintf(outfp," ");
{
for(int i=0; i<store[j].cond.getSize(); i++) 
fprintf(outfp,"%d", store[j].cond[i]); 
fprintf(outfp,"->%d \n", store[j].action);
fprintf(outfp,"Specificity for this classifier is: %d\n",store[j].specificity);
}

)
I

int population::auction()
{
double bidmaximum=0.0;
winner=oldwinner; //if no match old winner wins again 
if (matchlist.getSizeO > 0)
{
int k;
for(int j=0;j<matchlist.getSize();j++)
{
k=matchlist[j];
store[k].bid = cbid*(bidl+bid2*(store[k].specificity))*(store[k].strength); 
store [k],ebid=cbid*(ebidl+ebid2*(store[k].specificity))*(store[k].strength) 
+noise(0.0,bidsigma);

if ((store[k].ebid)>bidmaximum)
{
winner=k;
bidmaximum=store[k] .ebid;

)
)

// matchlist=0; 
return (winner); 
}

void population::taxcollector()
{
//Collects head and bidding taxes from population members 
double bidtaxswitch;
//Take head tax from all rules and bidding taxes from active rules 
if((lifetax != 0.0)ll(bidtax != 0.0))
{
for(int j=0; jcnclassifiers; j++)
{
if (store[j].matchflag) 

bidtaxswitch=1.0; 
else
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bidtaxswitch=0.0;
store[j].strength=store[j].strength-(lifetax*store[j].strength)-

(bidtax*bidtaxswitch*store[j].strength);
}

}
!

void population::clearinghouse()
{
//Distribute payment from recent winner to old winner 
double payment; 
payment = store[winner].bid; 
store[winner] strength-=payment; 
if (bucketbrigadeflag) //Pay oldwinner receipt if BB is on 

store[oldwinner].strength+=payment;
}

void population: :aoc()
{
//apportionment of credit coordinator 
winner = auction(); 
taxcollectorO; 
clearinghouseO;
}

void population: :detectors(environment& env)
{
//converts environmental state to env. message 
envmessage=env.signal;
)

void population ::effector(environment& env)
{
env.classifieroutput=store[winner].action;
}

void population::reportdetectors()
{
fprintffoutfp, "\n");
fprintf(outfp,"Environmental message = ”);

writemessageO;
fprintf(outfp,"\n");
}

void population::writemessageO
{
for (int j=0; j<n_position; j++) 

fprintf(outfp,"%d",envmessage[j]);
)

void population: :matchclassifiers()
{
matchlist = 0;
forfint j=0; j<nclassifiers; j++)
{
store[j].get_matchflag()=match(store(j].cond, store[j].cond.getSizeO);
if (store[j].matchflag)
matchlist.add(j);
}
}

int population: :match(IntArray& c, int npos)
{
int matchtemp = 1; 
npos-=l;
while (matchtemp && (npos>-l))
{
matchtemp = ((c[npos] =  2)ll(c[npos]==envmessage[npos])); 
npos-=l;
}
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retum(matchtemp);
}

void population: :advance()
{
//register oldwinner for the next cycle 
oldwinner = winner;
}

// The environment class, methods, and mathematical model calculations

double ap (double Hh)
{
const double k l = 1.011775539; 
const double kinv = 0.98836151; 
double k2, alph, a; 
double expl,exp2;

k2 = (((Hh*Hh)*kl)+kinv); 
alph = sqrt(kl*k2);
expl = (2.0*(3.0 + alph)*(1.0 + alph)); 
exp2 = (3.0*kl*(l-(0.09/(alph*alph)))); 
a = (expl/exp2); 
retum(a);
}

double bp(double Hh)
{
const double k l = 1.011775539; 
const double kinv = 0.98836151; 
double k2, alph, b; 
double exp3,exp4;

k2 = (((Hh*Hh)*kl)+kinv);
alph = sqrt(kl*k2);
exp3 = (32*kl)/((alph*alph)-9.0);
exp4 = (1.0/6.0)-(2.7/((alph-0.3)*(alph+3.0)));
b = exp3 * exp4;
return(b);
}

double np (double Hh, double rr)
{
const double k l= l.011775539; 
const double kinv = 0.98836151; 
double k2, alph, res; 
double expl ,exp2,exp3; 
double exp4,exp5;

k2=(((Hh*Hh)*kl)+kinv); 
alph = sqrt(kl*k2);

expl=(3.0-alph)*(1.0-alph); 
exp2=(3.0+pow(alph,2.0))*(1.0-pow(rr,4.0)); 
exp3=(4.0*alph)/(l-pow(rr, 2.0*alph)); 
exp4=2.0*pow(rr, alph+1.0)*(1,0+pow(rr,2.0)); 
exp5=(l .0+pow(rr, 2.0*alph))*( 1,0+pow(rr,4.0));

res = expl/(exp2+(exp3*(exp4-exp5))); 
retum(res);
)

double fp (double Hh, double rr)
{
const double k l= l .011775539; 
const double kinv = 0.98836151; 
double k2, alph, res; 
double expl, exp2, exp3, exppl; 
double expp2, expp3, exp4, exp5; 
double expp4, exp6, exp7,expp5;
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double expppl, exppp2;

k2=(((Hh*Hh)*kl)+kinv);
alph = sqrt(kl*k2);
expl = pow((1.0-pow(rr,2.0)),4.0);
exp2 = exp 1 *( 1.0+pow(rr,2.0));
exp3 = (1.0/6.0)-(2.7/((alph-0.3)*(alph+3.0)));
exppl = 1.0/(exp2*exp3);

expp2 = (1.0-pow(rr, 6.0))/6.0;

expp3 = (2.7/(1.0-pow(rr, 2.0*alph)));

exp4 = pow((l-pow(rr, alph+3.0)), 2.0); 
exp5 = (alph-0.3)*(3.0+alph); 
expp4 = exp4/exp5;

exp6 = pow((pow(rr,alph)-pow(rr, 3.0)), 2.0); 
exp7 = (alph + 0.3)*(3.0-alph); 
expp5=exp6/exp7;

expppl= expp4 + expp5; 
exppp2 = expp3*expppl; 
res = exppl *(expp2-exppp2); 
return (res);
)

int error_range (double Hh, double rr)
{
double error;
double AP,NP,BP,FP;
const double kl=1.011775539;
const double kinv = 0.98836151;
double k2, alph;
const double wh = 6.0;
double outputl,output2;

k2=(((Hh*Hh)*kl)+kinv); 
alph = sqrt(kl*k2);
AP=ap(Hh);
NP=np(Hh,rr);
BP=bp(Hh);
FP=fp(Hh,rr);
outputl = (AP*NP*wh)+(BP*FP*wh*wh*wh); 
output2 = (AP*wh)+(BP*wh*wh*wh); 
error = (outputl-output2)/(outputl);

if (error <= ACCER) 
retum(O); 

else
retum(l);

}

class environment ( 
int Iparaml, lparam2, lsignal; 
int output, classifieroutput;
int xl,x2; // decoded value of param.s in unsigned int 
double Hh, rr; //Corresponding values of design parm.s. 
double ACCER; // Acceptable range of error 
int one, zero;
Int Array signal; 
friend class population; 
friend class reinforcement; 

public;
void initenvironmentO; 
void initrepenvironmentO; 
void writesignalO; 
void reportenvironmentO; 
void generatesignalO; 
void Correct_Action(); 
int decode(int parm, int len); 
void coordinateQ;



void environment::initenvironment()
{
fprintfioutfp, "Enter acceptable range of error \n");
fscanf(infp,"%lf', &ACCER);
fprintfioutfp, "Enter lparaml \n");
fscanf(infp,"%d", &lparaml);
fprintfioutfp, "Enter lparam2 \n");
fscanf(infp,"%d", &lpararn2);
lsignal = lparaml+lparam2;
fprintf(outfp,"Inside env.h, lsignal is %d \n",lsignal);
// generatesignal 1 ()
signal = lsignal;
Hh=rr=0.0;
xl=x2=output=0;
zero=one=0;
classifieroutput=0;
}

void environment: :initrepenvironment()
(
fprintf(outfp,"\n");
fj)rintf(outfp,"Environmental Parameters \n");
fprintfioutfp,"--------------------------------------\n");
fprintf(outfp,"lparaml (Hh) %d\n",lparaml); 
fprintfioutfp, "Iparam2 (RR) %d \n",lparam2); 
fprintfioutfp, "Total length of signal %d \n",lsignal); 
}

void environment::writesignal()
{
forfint j=0; j<lsignal; j++) 

fprintfioutfp, "%d", signal[j]);
}

void environment: :reportenvironment()
{
fprintfioutfp,"\n");
fprintfioutfp, "Current Environmental Status \n");
fprintfioutfp,"---------------------------\n");
fprintfioutfp, "Signal ="); 

writesignalO; 
fprintffoutfp, "\n");
fprintf(outfp,"Decoded paraml = %d, Hh = %f\n",xl,Hh); 
fprintf(outfp,"Decoded param2 = %d, RR = %f\n",x2,rr); 
fprintfioutfp, "Correct output = %d \n".output); 
fprintf(outfp,"Number of ones = %d, Number of zeros = %d\n",one,zero); 
fprintfioutfp,"Classifier output = %d \n",classifieroutput);
}

void environment::generatesignal()
{
foriint j=0; j<lsignal; j++)
{
if (flip(0.5)) 
signal [j]=l; 

else
signal [j]=0;
}
)

void environment: :Correct_Action()
{
x 1 =decode(lparam 1,3); 
Hh=(il6.0/7.0)*xl)+1.0; 
x2=decode(lparam 1 +lparam2,3); 
rr=(1.0/7.0)*x2;

if (error_range(Hh,rr))
{
output=l;
++one;
}

else
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{
output=0;
++zero;
)

}

int environment ::decode(int parm.int len)
{
int acc, pw2, n; 
acc=0.0; pw2=1.0; n=0;

for(int j=parm-1 ;j !=-1; j —)
{
++n;
acc+=(pw2*signal[j]);
pw2*=2;
if(n=len)
break;
}
retum(acc);
)

void environment::coordinate()
{
generatesignal();
Correct_Action();
}

// The Genetic Algorithm Classes and Methods

const int maxmating=10;

class marriage_record { 
int matel, mate2; 
int mortl, mort2, sitecross; 
friend class GA; 
public:
marriage_record()

{}
void initializeO
{
matel=mate2=0; 
mort 1 =mort2=sitecross=0; 
}

};

class marry_store { 
int sze;
marriage_record *marry_rec; 

public:
marry_store(int size);
-marry_store() {delete marry_rec;) 
void range_check(int idx); 
marriage_record& operator!] (int index); 
};

marry_store::marry_store(int size)
{
sze = size;
marry_rec = new marriage_record[sze]; 
for(int i =0; i < sze; i++) 
marry _rec[i] .initializeO;

)

void marry_store::range_check(int idx)
{
if ((idx<0) II (idx >= sze))
{
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ceir « "Index out of bounds for marry_store 
« ”\n\t size:" «  sze 
« "\t index :"  « idx « "\n"; 
exit(17);

marriage_record& marry_store::operator[] (int index)
{
range_check(index); 
return marry_rec[index];
}

class GA
{
marry_store marr_str; //mating record for genetic algorithm report
double proportionselect, pmutation, pcrossover;
int ncrossover, nmutation, crowdingfactor;
int crowdingsubpop, nselect;

public:
GA(int size)

: marr_str(size)
{) //Modify later for children 

void initga(population& pop); 
void initrepgaO; 
void reportga(population& pop); 
void galg(population& pop); 
void statistics(population& pop); 
int select(population& pop);
int crossover(classifier_rule& parent 1 ,classifier_rule& parent2, 

classifier_rule& cl_rule,classifier_rule& c2_rale); 
int bmutationfconst int& ac); 
int mutation (const int& trit);
int crowding(classifier_mle& c_mle,population& pop); 
int worst(population& pop);
int matchcount(classifier_rule& c_rule,classifier_rule& member);
};

void GA::initga(population& pop)
(
//Initialize genetic algorithm parameters 
fprintffoutfp, "Enter proportionselect \n"); 
fscanf(infp,"%lf',&proportionselect); 
fprintf(outfp,"Enter pmutation \n"); 
fscanf(infp,"%lf',&pmutation); 
fprintffoutfp,"Enter pcrossover \n"); 
fscanf(infp,"%lf',&pcrossover); 
fprintf(outfp,"Enter crowdingfactor \n"); 
fscanf(infp,” %d" ,&cro wdingfactor); 
fprintf(outfp, "Enter crowdingsubpop \n"); 
fscanf(infp,"%d",&crowdingsubpop);

//Number of mate pairs to select
nselect = round((proportionselect*(pop.nclassifiers)*0.5));
nmutation = 0;
ncrossover = 0;
}

void GA::initrepga()
{
//Initial report
fprintf(outfp,"GA parameters \n"); 
fprintf(outfp,"--------------\n");
fprintf(outfy),"Proportion select = % f\n”,proportionselect); 
fprintf(outfp,"Number of selections = %d \n",nselect); 
fprintf(outfp,"Probability of mutation = %f\n",pmutation); 
fprintf(outfp,"Probability of crossover = %f\n",pcrossover); 
fprintf(outfp,"Crowding factor = %d \n",crowdingfactor); 
fprintf(outfp,"Crowding subpop = %d \n",crowdingsubpop); 
)
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void GA::reportga(population& pop)
{
//Reports mating, crossover and replacement 
fprintf(outfp,"\n");
fprintffoutfp,"Genetic Algorithm Report\n");
fprintf(outfp,"-------------------------\n">;
fprintf(outfp,"\n");
fprintf(outfp,"Pair Matel Mate2 Cross_Site Deadl Dead2\n'');
f^>rintf(outfip,”-------------------------------------------- \n”);
for (int j=0; j<nselect; j++) //******
(
fprintf(outfp,"%d %d %d %d %d %d

\n",j,marr_str[j].matel,marr_str[j].mate2,marr_str[j].sitecross,marr_str[j].mortl,marr_str|j],mort2);
}
fprintf/outfp,"Statistics Report \n"); 
fprintf(outfp,"-----------------\n")l
fprintf(outfp," Average Strength = %f \n",pop.avgstrength); 
fprintf(outfp, "Maximum Strength = %f \n",pop.maxstrength); 
fprintf(outfp,"Minimum Strength = %f \n", pop.minstrength); 
fprintf(outfp, "Sum of Strength = %f \n",pop.sumstrength); 
fprintf(outfp,"Number of crossovers = %d \n",ncrossover); 
fjrrintf(outf^),"Number of mutations = %d \n",nmutation);
}

void GA::galg(population& pop)
{
//Coordinates genetic operations 
classifier_rule child l,child2;

child 1 ,init_classifter(pop .n_position); 
child2,init_classifier(pop.n_position);

statistics(pop);

for(int j=0; j<nselect; j++)
{
marr_str[j] .mate l=select(pop); 
marr_str[j] ,mate2=select(pop); 
int x = marr_str[j].matel; 
int y = marr_str[j].mate2;

marr_str[j].sitecross=crossover(pop.store[x],pop.store[y],childl,child2);

marr_str[j] .mort l=crowding(child 1 ,pop);
//Update sumstrength 
int w=marr_str[j].mortl;
pop.sumstrength=pop.sumstrength-pop.store[w].getstr()+childl.getstr(); 
pop.store[w]=childl; //Insert child in Deadl's place

marr_str[j].mort2=crowding(child2,pop);
//Update sumstrength 
int z=marr_str[j].mort2;
pop.sumstrength=pop.sumstrength-pop.store[z].getstr<)+child2.getstr(); 
pop.store[z]=child2; //Insert child in Dead2's place 
)
}

int GA::select(population& pop)
{
//Select a rule using roulete wheel selection

double rand.partsum; 
int j;
partsum =0.0; j=-l; 
rand = trandom()*pop.sumstrength; 
do 
{
++j;
partsum+=pop.store[j].get_strength();
} while((partsum < rand)&&(j != pop.nclassifiers-1));
//Return selected member's index
return®;
}
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int GA::crossover(classifier_rule& parentl,classifier_rule& parent2, 
classifier_rule& cl_rule,classifier_rule& c2_rule)

{
double inheritance; 
int sitecrss;

if (flip(pcrossover))
{
sitecrss = md(l,parent l.get_cond_size());
++ncrossover;
}
else sitecrss = (parentl ,get_cond_size())+l; // i.e. transfer but no cross 
//transfer action part
cl_rule.get_action()=bmutation(parentl.get_action());
c2_rule.get_action()=bmutation(parent2.get_action());

//Transfer and cross above crossover site
for(int j=sitecrss-l;j<parentl.get_cond_size()u++)
{
c2_rule.get_cond(j)=mutation(parentl.get_cond(j));
cl_rule.get_cond(j)=mutation(parent2.get_cond(j));
)

//Transfer only below crossover site 
for(int k=0;k<sitecrss-l ;k++)
{
cl_rule.get_cond(k)=mutation(parentl.get_cond(k));
c2_rule.get_cond(k)=mutation(parent2.get_cond(k));
}
//Children inherit average of their parents strength values
inheritance=avg(parentl.getstr(),parent2.getstr());
c 1 _rule.get_strength()=inheritance;
c l_rule.get_matchflag()=0;
cl_rule.Bid()=0.0;
c 1 _rule.Ebid()=0.0;
cl_rule.count_specificity();

c2_rule.get_strength()=inheritance;
c2_rule.get_matchflag()=0;
c2_rule.Bid()=0.0;
c2_rule.Ebid()=0.0;
c2_rule.count_specificity();

retum(sitecrss);
}

int GA::bmutation(const int& ac)
{
//Mutate a single action bit with specified probability 
int tmpmut;

if (flip(pmutation))
{
tmpmut=(ac+1 )%2;
++nmutation;
}

else
tmpmut = ac; 

retum(tmpmut);

int GA::mutation(const int& trit)
{
//Mutate a single condition-bit with specified probability 
int tempm;

if (flip(pmutation))
{
tempm = (trit+md(l,2))%3;
++nmutation;
}
else
tempm=trit;
retum(tempm);
}
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int GA: :crowding(classifier_rule& c_rule,population& pop)
{
// Replacement using DeJong’s crowding method 
int popmember,match,matchmax.mostsimilar; 
matchmax=-l; 
mostsimilar=0;

if(cro wdingfactor<l ) 
crowdingfactor= 1 ;

for(int j= l ; j<=crowdingfactor;j++)
{
popmember=worst(pop); //Pick worst of n
match = matchcount(c_mle, pop.storefpopmember]);

if(match > matchmax)
{
matchmax=match; 
mostsimilar = popmember;
}

}
retum(mostsimilar);
}

int GA::worst(population& pop)
{
//Select worst individual from random subpopulation 
int wrst, candidate; 
double worststrength;

wrst=md(0,pop.nclassifiers-l);
worststrength=pop.store[wrst].getstr();

if(crowdingsubpop >1)
{
for(int j=2; j<=crowdingsubpop; j++)
I
candidate=md(0,pop.nclassifiers-1 ); 
if(worststrength>pop.store[candidate].getstr())
{
wrst=candidate;
worststrength=pop.store[wrst].getstr();
}

}
remm(wrst);
}

int GA::matchcount(classifier_rule& c_rule,classifier_rule& member)
(
//Count number of similar positions 
int tmpent;

if ((c_rule.get_int_act())==(member.get_int_act()))
{
tmpent=l;
}

else
tmpent=0;

for(int j=Oy<c_rule.get_cond_size() y++) //*****!!!!!!! 
if(c_rule.get_int_cond(j)==member.get_int_cond(j)) 

++tmpent; 
return (tmpent);

void GA::statistics(population& pop)
{
//Population statistics
pop.maxstrength=pop.store[0].get_strength();
pop.minstrength=pop.store[0].get_strength();
pop.sumstrength=pop.store[0].get_strength();

for(int j= l ; j<pop.nclassifiersy++)
{
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pop maxstrength=max(pop.maxstrength,pop.store[j].getstr());
pop.minstrength=min(pop.minstrength,pop.store[j].getstrO);
pop.sumstrength+=pop.store[j].getstr();
}
pop.avgstrength=pop.sumstrength/pop.nclassifiers;
)

// The Reinforcement Class and its methods

class reinforcement
{
double reward, rewardcount, totalcount, count50;
double rewardcount50, proportionreward, proportionreward50;
int lastwinner;

public:
reinforcementO;
void initreinforcementO;
void initrepreinforcement();
void reportreinforcementO;
void plot_reportreinforcement();
int criterion(environment& env);
void payreward(population& pop);
void reinf(environment& env, population* pop);
};

reinforcement::reinforcement()
{
reward = 0.0; 
rewardcount = 0.0; 
totalcount = 0.0; 
count50 = 0.0; 
rewardcount50 = 0.0; 
proportionreward = 0.0; 
proportionreward50 = 0.0; 
lastwinner = 0;
)

void reinforcement: :initreinforcement()
{
fprintf(outfp, "Enter Reward >\n"); 
fscanf(infp,"%lf',&reward);
}

void reinforcement: :initrepreinforcement()
(
fprintf(outfp,"\n");
fprintf(outfp,"Reinforcement Parameters \n");
fprintf(outfp,"-------------------------\n");
fprintf(outfp," Reward = %f\n",reward);
}

void reinforcement: :plot_reportreinforcement()
{
fprintf(prop_rew,"%f %f\n",totalcount,proportionreward); 
fprintf(prop_rew_50,"%f %f\n",totalcount,proportionreward50); 
}

void reinforcement: :reportreinforcement()
{
//Report reward 
fiprintf(outfp,"\n");
fprintf(outfp,"Reinforcement Report\n"); 
fprintf(outfp,"--------------------\n");
fprintf(outfp, "Proportion correct (from start) = %f\n",proportionreward); 
fprintf(outfp, "Proportion correct (from last fifty) = %f \n",proportionreward50); 
fprintf(outfp, "Last winning classifier = %d \n".lastwinner);

}
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int reinforcement::criterion(environment& env)
{
int flag;
if(env.output == env.classifieroutput)
flag = 1;
else
flag=0;
totalcount+=l; 
count50+=l; 
if (flag)
{
rewardcount+=l .0; 
rewardcount50+=l .0;
}

//Calculate reward proportions: running and last 50 
proportionreward = rewardcount/totalcount; 
if((roundd(count50-50.0))==0)
{
proportionreward50=rewardcount50/50.0; 
rewardcount50=0.0; count50=0.0; //reset 
}

retum(flag);
}

void reinforcement::payreward(population& pop)
{
//pay reward to appropriate individual 
int k = pop.winner; 
pop.store[k].get_strength()+=reward; 
lastwinner = pop.winner;
Ì

void reinforcement::reinf(environment& env, population& pop)
f
if(criterion(env))
payreward(pop);
}

// The Timer Class utility

const int iterationsperblock = 10000;

class timer (
int initialiteration, initialblock, iteration, block;
int reportperiod, gaperiod, plotrepperiod;
int nextreport, nextga, nextplotreport;
int reportflag, gaflag, plotrepflag;

public;
timer()

{}
void inittimerO; 
void initreptimerO; 
void time(); 
void reporttimeO;
int addtime(int t, int dt, int& carryflag); 
int get_reportflag()

( retum(reportflag);) 
int get_gaflag()

{ retum(gaflag);} 
int get_plotrepflag()

{ retum(plotrepflag); )

void timer: :inittimer()
{
//initializes timer 
int dummy; 
iteration=block=0;
fprintf(outfp,"Enter initialiteration \n"); 
fscanf(infp,''%d’',&initi alteration);
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fprintf(outfp, "Enter initialblock \n"); 
fscanf(infp,"%d",&initialblock); 
fprintf(outfp, "Enter reportperiod \n"); 
fscanf(infp,"%d",&report period); 
fprintf(outfp, "Enter gaperiod \n"); 
fscanf(infp,”%d",&gaperiod); 
fprintf(outfp,"Enter plotrepperiod \n”); 
fscanf(infp,"%d",&plotrepperiod); 
iteration=initialiteration; 
block=initialblock;
nextga=addtime(iteration,gaperiod, dummy); 
nextreport=addtime(iteration, reportperiod, dummy); 
nextplotreport = addtime(iteration, plotrepperiod, dummy); 
}

void timer: :initreptimer()
{
//Initial timer report
fprintf(outfp,"\n");
fprintfioutfp, "Timer Parameters \n");
fprintf(outfp,"-------------------\n");
fyrintf(outfp,"Initial iteration = %d \n",initialiteration); 
fprintf(outfp,"Initial block = %d \n",initialblock); 
fprintf(outfp,"Report period = %d \n",reportperiod); 
fprintf(outfp,"Genetic algorithm period = %d \n",gaperiod); 
fprintf(outfp,"Plot Period = %d \n", plotrepperiod);
)

void timer: :time()
{
//registers time and sets flags for user specified events 
int carryflag=0; 
int dummyflag=0;

iteration = addtimefiteration, 1, carryflag); 
if (carryflag)
++block;

reportflag = (nextreport == iteration); 
if (reportflag)

nextreport = addtime(iteration, reportperiod, dummyflag); 
gaflag = (nextga == iteration); 
if (gaflag)

nextga = addtime(iteration, gaperiod, dummyflag); 
plotrepflag = (nextplotreport == iteration); 
if ( plotrepflag)

nextplotreport = addtime(iteration, plotrepperiod, dummyflag);

void timer: ;reporttime()
{
// print out block and iteration
f]printf(outfp,"Block = %d Iteration = %d \n",block,iteration);
}

int timer: :addtime(int t, int dt, int& carryflag)
(
int tempadd; 

tempadd = t+dt;
carryflag = (tempadd >= iterationsperblock); 

if (carryflag)
tempadd = (tempadd % iterationsperblock); 

retum(tempadd);
}

295



// Utility routines and the integer array class utility

const int ArraySize = 24; //default size

class IntArray { 
public:
// operations performed on arrays 

IntArray (int sz = ArraySize);
IntArray (const IntArray&);
-IntArrayO {delete ia;}
IntArray& operator=(const IntArray&); 
IntArray& opcrator=(int szz); 
int& operator[](int); 
void add(int x); 
void rangeCheck(int index); 
int getSize() {return size;} 

protected:
//internal data representation 

int size; 
int *ia;
};

IntArray: :IntArray(int sz)
{
size = sz;

//allocate an integer array of size 
//and set ia to point to it 
ia = new int[size];

//initialize array 
for (int i = 0; i<sz; ++i) 

ia[i] = 0;
}

IntArray::IntArray(const IntArray &iA)

size = iA.size; 
ia = new intfsize]; 
for (int i = 0; i<size; ++i) 

ia[i] = iA.iafi];
}

IntArray& IntArray: :operator=(const IntArray &iA)
{
delete ia; //free up existing memory
size = iA.size; //resize target
ia = new intfsize]; // get new memory
for (int i=0; i<size; ++i)
ia[i] = iA.ia[i]; //copy

return *this;
)

IntArray& IntArray: :operator=(int szz)
{
delete ia; 
size = szz; 
ia = new int[size]; 
for (int i=0; i<size; ++i) 
ia[i] = 0; 

return *this;
)

void IntArray::add(int x)
{
int* oldia = ia; 
int oldsize = size; 
size+=l;
ia = new int[size];
// copy elements of the old array into new array 
for (int i=0; icoldsize; ++i)
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ia[i]=oldia[i];
// init remaining elements to x 
for (;i<size; ++i) 

ia[i]=x; 
delete oldia;
)

int& IntArray::operator[](int index)
(
rangeCheck (index); 
return ia[index];
}

void IntArray;: rangeCheck (int index)
{
if (index < 0 II index >= size) { 
cerr «  "index out of bounds for IntArrayRC: 

«  " \n \ts ize:"«  size 
«  "\tindex:" « index "\n"; 

exit(17);
}

)

int randomchar(double pgen)
(
if (flip(pgen)) 

retum(2); 
else if (flip(0.5)) 

return (1); 
else

return (0);
}

void initrandomnormaldeviateO 
/* initialization routine for randomnormaldeviate */ 
{

mdcalcflag = 1;
}

double randomnormaldeviateO
/* random normal deviate after ACM algorithm 267 / Box-Muller Method */
{

doublet, mdxl;

if(mdcalcflag)
{

mdxl = sqrt(- 2.0*log((double) trandomO)); 
t = 6.2831853072 * (double) trandomO; 
mdx2 = sin(t); 
mdcalcflag = 0; 
retum(mdxl * cos(t));

}
else
{

rndcalcflag = 1; 
retum(mdx2);

}
}

double noise(double mu .double sigma)
/* normal noise with specified mean & std dev: mu & sigma */
{

retum((randomnormaldeviate()*sigma) + mu);
}

int roundd (double x)
{
int integer; 
double fraction; 
integer=(int)(x/l); 
fraction = (x-integer);
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infraction <= 0.5) 
retum(x/l); 

else
retum((x/l)+l);
1

double avg(double x, double y)
{
//Returns average 
retum((x+y)/2.0);
}

double max(double x, double y)
{
//returns maximum 
if(x>y) 
retum(x); 

else
return (y);
}

double min(double x, double y)
{
//returns minimum 
if(x<y) 
retum(x); 

else
retum(y);
}

// The Pseudorandom Number Generator

#deftne M 1 259200 
«define IA1 7141 
«define IC1 54773 
«define RM1 (1.0/M1) 
«define M2 134456 
«define IA2 8121 
«define IC2 28411 
«define RM2 (1.0/M2) 
«define M3 243000 
«define I A3 4561 
«define IC3 51349 
int seed;

float ran 1 (int& idum)
(
static long ixl, ix2, ix3; 
static float r[98]; 
float temp; 
static int iff=0; 
int j;
//void nrerrorO; 

ifiidum < 0 II iff =  0)

iff=l;
ixl =(ICl-(idum))%M l; 
ixl = (lA l*ix l+IC l)% M l; 
ix2 = ixl%M2; 
ixl = (IAl*ixl+ICl)% M l; 
ix3 = ixl%M3;

for(j=1; j<=97 j ++)

ixl = (IA l*ixl+IC l)% M l; 
ix2 = (IA2*ix2+IC2)%M2; 
r[j] = (ixl+ix2*RM2)*RMl 
)

idum = 1;
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)
ixl=(IA l*ixl+ICl)% M l; 
ix2=(IA2*ix2+IC2)%M2; 
ix3=(IA3*ix3+IC3)%M3; 
j = l+((97*ix3)/M3);

if(j>97 II j< l)
(
fprintf(outfp,"RANl: This cannot happen.\n"); 
exit(l);
}
temp = r[j];
r[j]=(ixl+ix2*RM2)*RMl; 
return temp;
}

double gasdev(int& idum)
{
//Returns a normally distributed deviate with zero mean and unit variance,
//using random() as the source of uniform deviates.
static int iset=0;
static double gset;
double fac, r, v l, v2;

if (iset =  0) //We don't have an extra deviate handy, so
(
do {

vl=2.0*ranl (idum)-1.0; //Pick two uniform numbers in the square - 
v2=2.0*ranl (idum)-1.0; //extending from -1 tO +1 in each direction 
r = v 1 * v 1 +v2* v2; //See if they are in the unit circle,
} while (r >= 1.0 II r =  0.0); //and if they are not try again 
fac=sqrt(-2.0*log(r)/r);

//Now make the Box-Muller transformation to get two normal deviates. 
//Return one and save the other for next time. 

gset=vl*fac; 
iset = 1; //Set flag 
return (v2*fac);

} else {
iset=0; //We have an extra deviate handy, so unset the flag, 
return (gset);

}
i

double noise(double mu,double sigma, int& p)
{
// cout« "P is = " «  p « "\n";

//Normal noise with specified mean & std dev: mu & sigma 
return (gasdev(p)*sigma+mu);
)

void initmdO
{
fprintf(outfp,"Enter seed \n"); 
fscanf(infp,"%d", &seed); 
float z = ranl(seed);
fprintf(outfp,"In md.h, Init z is = %f \n",z);
)
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