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ABSTRACT

The problem of determining the optimal asset allocation strategies for a non-profit life 
company is approached from a rational decision-making framework. Initially, a number 
of methods for analysing investment risk are discussed, from which utility theory is felt 
to be the most appropriate. Stochastic simulation and numerical optimization methods 
are employed in order to allow more realistic assumptions to be used in these decision 
models.

The multiperiod consumption of dividends is dealt with by considering the expected 
utility of accumulated dividends, or payouts. At first, the case of an open fund is 
investigated in a static asset allocation framework. In general, the results produced are 
quite intuitive. At low levels of risk tolerance, the optimal portfolios seem reasonably 
matched in relation to the liabilities. As the risk tolerance level increases, the 
preference for matching is seen to reduce. If payouts are measured in real terms, greater 
proportions tend to be invested in the real asset classes. From a mean-variance 
perspective, the utility maximizing portfolios generally appear to be efficient. However, 
imposing insolvency constraints on the objective function can have the effect of shifting 
some of these portfolios away from the efficient frontier.

In the case of a closed fund, dynamic asset allocation strategies are investigated. Due to 
the restrictive assumptions it requires, the possibility of applying dynamic programming 
in this situation is rejected. Instead, it is proposed that the asset proportions be made 
functions of the duration of the liabilities, so that the expected utility may be maximized 
in respect of these function parameters. Overall, this appears to produce reasonable 
results, although the occasional emergence of less intuitive strategies leaves further 
scope for refining the treatment of multiperiod consumption.
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1. INTRODUCTION

1.1 Background and Aims

According to Markowitz (1991), the theory of rational behaviour in respect of 

investment decisions may be characterized by:

1. the information relating to all the assets concerned

2. the criteria for selecting the most suitable portfolios

3. the procedures for computing these portfolios given the information available.

Although few, if any, may argue against the merits of such an assertion, practical 

experience however may suggest that investors do not always appear to follow these 

three steps when making investment decisions. While it is conceivable that a sensible 

investor will try to gather as much relevant information as possible before making an 

investment decision, the process of defining the appropriate criteria and its subsequent 

use in portfolio selection is rarely explicit. Thus, the work of Markowitz (1952, 1991) 

and other financial economists (see for example, Ziemba and Vickson, 1975) have 

mainly been concerned with formalizing stages 2 and 3 above. These have led to the 

general risk-return approaches commonly used in portfolio selection, such as mean- 

variance analysis.

In principle, the notion of determining investment choices based on well-defined 

objectives should be just as appealing in the context life insurance funds. But as the 

circumstances of a life fund are very different from that of pure asset funds, special 

consideration is needed in the case of the former. For instance, the presence of long 

term liabilities points to the question of long term investment strategy, rather than short 

term tactical manoeuvres. Consequently, the allocation by asset class is of greater
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strategic relevance in the management of a life fund than is the selection of individual 

securities within each of these asset classes. Moreover, there are a number of interested 

parties that need to be considered in the case of a life fund. These may include 

shareholders, policyholders, regulators and possibly others such as management, as 

well. While shareholders and participating policyholders are mainly interested in the 

regular distribution of surplus, all parties are concerned with the solvency position of 

the life office. In general however, these issues tend not to be adequately tackled by 

portfolio selection models commonly found in the literature.

Therefore, the aim of this research is to investigate a risk and return approach to asset 

allocation strategies for life offices. However, a more general approach to risk is taken 

than in the traditional portfolio selection models.

In this thesis, the basic approach used for deriving the optimal strategies is to maximize 

the expected utility of surpluses distributed, though these strategies are considered in a 

mean-variance framework for comparison. Where appropriate, the risk of statutory 

insolvency is also incorporated into the decision-making process. In order to provide a 

realistic representation of the liability profile, a model of a non-profit proprietary life 

office is developed and stochastic simulation techniques applied to calculate the 

shareholders' expected utility. The only stochastic variables used relate to the economic 

variables of inflation and the asset classes. For this purpose, a stochastic investment 

model is used. Numerical optimization methods are then employed to obtain the 

optimal strategies for different liability profiles and risk preferences.

It should be stressed that the aim is 'strategic' rather than 'tactical'. A strategic allocation 

usually refers to a policy best suited to the decision-maker's circumstances based on 

some long term view. This contrasts with tactical allocations, which are more to do 

with profit-making using shorter term predictions. For example, a strategic allocation 

could be equivalent to an immunized position; but if the investment manager anticipates
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a rise in yields in the near future, it would be a tactical decision to switch into shorter 

term gilts. Although both are important aspects in the management of any fund, this 

study will be restricted to one of strategic allocations alone.

The approach used attempts to generalize some of the more traditional actuarial 

principles, including those in Pegler (1948) and Redington (1952), by showing how 

their extreme positions of maximum return and minimum risk may be traded off. As 

mentioned before, it extends the work of financial economists by giving detailed 

consideration to long term liability structures. The models developed also allow for the 

complexities of multiperiod consumption and regulatory insolvency, thus progressing 

from the single period models of Wise (1984a, 1984b, 1987a, 1987b) and Wilkie 

(1985). This is facilitated through the application of stochastic simulation techniques 

which are increasingly being used in asset/liability studies (see for example, Ross, 1989; 

Hardy, 1993). These life office simulation models, however, are taken a stage further 

here by actually optimizing the decision variables concerned. In this case, these 

variables are the proportions to be held in each asset class. Suggestions are then given 

as to how the multiperiod consumption-investment problems addressed by Samuelson 

(1969) and Sherris (1992) may be dealt with in a life office context.

1.2 Structure of the Thesis

In the chapter that follows, a survey is given of the literature that has been published in 

the area of investment decision-making. As many of the approaches previously used 

may be framed in a utility maximization framework, the concept of utility theory is also 

analysed critically.

Chapter 3 deals with the investment model used in these investigations. The model is 

essentially based on that suggested by Wilkie (1986) and the main properties of this
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model are reviewed. Details are given of how this model may be extended to 

encompass additional asset classes. Simulation output from the resulting model is then 

analysed.

Chapter 4 introduces the general methodology used to derive optimal asset allocations 

for a simple asset fund with no explicit liabilities. Numerical optimization is briefly 

described and then applied to an asset fund problem. The potential sources of error in 

the optimization results are also considered.

Chapter 5 discusses how the methodology may apply to a non-profit proprietary life 

office. The assumptions used in the model office are detailed, including a description of 

the treatment of cashflows, dividend policy and insolvency. As the issue of multiperiod 

consumption of dividends will need to be addressed, shareholders' utility is discussed 

with particular regard to time preference.

Chapter 6 combines the methodology in the previous two chapters to arrive at the 

optimal asset allocations for a model office issuing only twenty year endowments. This 

office (Model A) assumes that shareholders will be prepared to provide additional 

capital to the office in times of crisis, i.e. statutory insolvency. Utility maximizing 

portfolios are obtained for different levels of initial surplus and risk preferences, with 

and without constraints on the probability of insolvency. All optimal portfolios are then 

analysed from a mean-variance perspective.

In Chapter 7, Model B is used. Here, instead of absorbing additional capital from its 

shareholders, the long term business funds are effectively 'sold' when the office 

becomes insolvent. As well as a liability profile of twenty year endowments alone, ten 

year endowments and a mix of index-linked annuities and twenty year endowments are 

also considered. If the proposed asset allocation methodology is effective, the optimal
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asset allocation should change with the nature of the liabilities in a broadly intuitive 

way. The results from using different liability profiles are discussed in this context.

Up until Chapter 7, the optimal asset allocation strategies are obtained assuming that the 

mix of assets remains constant over the period concerned, in an open fund situation. 

These optimization models may therefore be referred to as static models. In Chapter 8, 

the problem of allowing the asset mixes to change over time is discussed. Such models 

are often described as dynamic optimization models and can be applied to closed funds.

Neither analytical nor simulation based results have been found in respect of optimal 

asset allocation strategies for complex, static, open fund liability profiles in a utility 

maximization framework. Furthermore, solutions to dynamic asset allocation problems 

have previously been limited to certain, simple, special cases.

Finally, Chapter 9 discusses the main conclusions derived from this research.
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2. THE ANALYSIS OF INVESTMENT RISK AND
UTILITY THEORY

2.1 Introduction

The problem of investment risk has interested economists, financial economists and 

actuaries for decades and as a result much literature has been published on the subject. 

This chapter reviews some of the proposed approaches to analysing investment risk.

The chapter begins with the development of actuarial investment principles and 

immunization theory. Traditional mean-variance analysis is then introduced, followed 

by a discussion on how this has been extended to include simple liability structures. 

Assessment of insolvency risk through the use of stochastic simulation is then 

considered together with more general measures of downside risk.

Following this, utility theory is introduced: a fundamental concept of rational decision-

making in the face of uncertainty. Utility theory is not mutually exclusive of the other 

approaches to investment risk mentioned and underlies the foundations on which most 

financial economic theories have been built. Due to its importance, both to this thesis 

and to the subject of risk itself, it was felt appropriate to discuss the theory separately 

and in some depth.

Based largely on the work in Fishbum (1988: Chapters 1 and 2), a brief historical 

review of expected utility theory is given. This is followed by a discussion of the main 

properties of utility functions and an outline of stochastic dominance. Lastly, the risk 

measures described earlier are analysed in the context of expected utilities, which draws 

from some of the issues discussed in Booth (1995b).
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2.2 Review of Investment Risk

2.2.1 Early Actuarial Investment Principles

The discussion of investment strategy in insurance can be traced back to the nineteenth 

century, when Bailey (1862) suggested a set of investment principles to the actuarial 

profession, commonly known as Bailey's canons. He considered adverse fluctuations in 

asset values to be the primary risk to life funds. As a result, his first canon placed 

paramount importance on the security of capital. His second canon stated that subject to 

this, the aim of the life fund should be to earn the maximum practicable rate of interest 

on its investments. As higher returns may not be accepted at the expense of higher risk, 

the implication of Bailey's canons is a minimum risk strategy.

Pegler (1948) continued the discussion on " ... the actuarial principles on which the 

investment policy o f life assurance offices should be founded ", recognizing some of the 

shortcomings in the canons proposed by Bailey (1862). Pegler criticized Bailey's 

emphasis on the security of capital on two grounds. Firstly, he made the valid point that 

a secure investment which provided a return lower than the yield assumed in the 

premium basis would be nearly certain to produce losses and was therefore 

unacceptable. Secondly, he also suggested that an asset which produced a reliable 

income would also maintain its capital value, hence achieving this objective. With the 

benefit of hindsight, this latter assertion may seem less appropriate given the relatively 

poor performance from Consols since the 1950's.

Consequently, Pegler suggested that the components of capital and income should be 

considered together in terms of total returns. In addition, he felt that taking expectations 

would automatically allow for the probability of achieving poor returns. Hence, Pegler 

proposed that the aim of life funds should be to earn the maximum expected return on 

investments. Nevertheless, Pegler also proposed that investments should be spread over
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the widest possible range in order to minimize the exposure to adverse outcomes due to 

common causes.

In an attempt to reconcile the positions of Bailey (1862) and Pegler (1948), Clarke 

(1954) emphasized the need to balance risk with reward. He essentially agreed with 

Pegler in that the security of investments should not be of paramount importance but 

also disputed the proposal that maximizing expected return could adequately allow for 

this. Clarke believed that neither principle should be held in preference to the other and 

that the conflict may only be resolved through personal judgement. Furthermore, he 

suggested that the assets should, as far as is practicable, be matched to the liabilities by 

duration and currency.

2.2.2 Matching and Immunization

Shortly before Clarke's discussion, Redington (1952) examined the interaction between 

assets and liabilities, deriving his theory of immunization. According to Redington's 

theory, a fund may be immunized against any loss due to small movements in interest 

rates if certain conditions hold. The derivation of these conditions is shown below:

Let L, be the liability outgo (claims and expenses less premiums) for year t and let A, be 

the asset proceeds (interest plus maturing investments) for year t. Define VL and VA to 

be the present value of liability outgo and asset proceeds respectively at the force of 

interest 5, and assume that VL= VA.

Suppose the force of interest changes from 5 to 5 + s. Let the present value of liability 

outgo and asset proceeds at this revised force of interest be VL' and VA respectively. By 

Taylor's theorem, the amount of surplus that may arise from this change in the force of 

interest would be:
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If the objective is to ensure that no profit or loss is incurred as a result of this movement 

in the force of interest, then all terms involving s would have to be zero. This may be 

achieved when every liability outgo is matched by an asset proceed equal in amount and 

timing, whereby the fund is then said to be absolutely matched.

However, providing that s is sufficiently small so that third and higher order terms in s 

are negligible, it should be possible to immunize the fund against loss if:
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db
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In other words, the conditions for immunization are satisfied when:

1. the discounted mean term of the asset proceeds and liability outgo are equal

2. the spread of the value of asset proceeds about the mean term is greater than that of 

the liability outgo.

The theoretical appeal of an immunized strategy is that it guarantees the ability of a fund 

to meet all its liabilities regardless of the direction in which the interest rate may move. 

However, there are a number of deficiencies with this approach. The immunized 

conditions only apply in respect of small movements in interest rates. Traditionally, the 

theory had been assumed to hold only if interest rate changes could be represented by 

parallel shifts in the yield curve. Although this may be extended to allow for 

deterministic non-parallel yield curve shifts (see Reitano, 1994), immunization may still 

fail in an environment with a stochastic term structure of interest rates.
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Another drawback with the application of immunization relates to the availability of 

assets with adequately long discounted mean terms. For example, the discounted mean 

term of an irredeemable gilt is approximately 1 Id, where d is the discount rate. As it is 

unlikely that there would be assets available with much longer discounted mean terms 

than this, it may not always be possible to immunize long term liabilities, especially 

when coupon rates are high. The new 'strips' market (see Bank of England, 1995: 228) 

will, however, enable investors to effectively purchase zero coupon bonds and 

immunize more closely longer term liabilities. In addition, the theory only applies 

directly to fixed interest assets and fixed liabilities of the same currency. Hence, it 

excludes asset classes such as equities and property, and limits the applicability of 

immunization to with-profit funds.

Even in situations where immunization may be possible, it may not necessarily be the 

most suitable strategy to pursue. The portfolio would need to be continuously 

rebalanced in order to maintain the immunized position. This would be impractical and 

incur substantial transaction costs. As immunization works against profits as well as 

losses, it may sometimes be desirable to deviate from such a position in anticipation of a 

particular movement in interest rates, with the aim of making additional profits: 

immunization provides no framework for trading risk and return.

Despite its limitations, immunization still offers a theoretical basis for asset/liability 

management and its implications on life and pension funds have been assessed by others 

including Day (1966). In respect of life funds, his conclusions are broadly intuitive: that 

a life office should maximize returns subject to being immunized, but may deviate from 

this position in accordance with the level of free reserves available. This suggestion 

does not, however, indicate how free reserves may be used to trade risk with return. 

Day felt that pension funds should largely be invested in equities, both as a means of 

hedging inflation and because matching by term would be inappropriate in this context.
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This issue of real liabilities was later revisited in Fellows (1981), who took a similar 

view to Day (1966) regarding the unsuitability of bonds as a match to pension fund 

liabilities. Nevertheless, Fellows argued against the use of equities and property 

towards this end, due to their volatile nature, and suggested cash as the most appropriate 

means of hedging real liabilities. With the introduction of index-linked gilts around that 

time, this would appear to have resolved the question relating to index-linked liabilities. 

But as pension fund liabilities are not strictly inflation linked, the justification for 

investing in index-linked gilts is still debatable.

Overall, it would appear that Redington's theory of immunization may at least provide a 

benchmark by which investment strategies of life and pension funds may be devised. In 

circumstances where an immunized position is adhered to, it may be viewed as a 

minimum risk position. But deliberate mismatching may be reasonable if adequate 

surplus is available, though it remains unclear as to how this additional risk should be 

quantified and how much risk may be considered acceptable. This thesis provides a 

framework for answering this question.

2.2.3 Portfolio Selection Models in Finance

The development of modem portfolio theory is best known from the pioneering work of 

Markowitz (1952). In his analysis of portfolio selection, Markowitz claimed that 

investors would generally try to maximize the expected return and minimize the 

variance of return, implying that variance could be used as a suitable proxy for risk. 

Hence the selection process could be reduced to the consideration of the means and 

variances of portfolio returns.

Using the means and covariance matrix of returns from the available assets, Markowitz 

showed how a set of E-V (mean-variance) efficient portfolios may be constructed. (A
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portfolio is said to be E-V efficient if there are no other portfolios with a higher mean 

and the same variance or a lower variance and the same mean than that portfolio.) The 

portfolio that best meets the risk-return preference of the investor may then be chosen 

from this efficient set or frontier.

One attraction of Markowitz's analysis is its simplicity. The method only makes use of 

the means, variances and covariances of returns rather than the entire distributions. 

These statistics are reasonably easy to compute from historical data and have obvious 

interpretations. The approach is also intuitive, supporting the widely held view that 

diversification is beneficial, and has been found to be useful in portfolio construction. 

In practice, mean-variance analysis is also not inconsistent with an expected utility 

approach (see Section 2.3).

Apart from its convenience and intuitive appeal, the mathematics of the efficient frontier 

has other useful properties, especially that of separability due primarily to Tobin (1958). 

In his example, Tobin assumed the existence of a risk-free asset and a set of risky assets, 

and showed that the optimal portfolio for any E-V investor will be a linear combination 

of the risk-free asset and an efficient portfolio of risky assets which is the same for all 

E-V investors. Hence, the problem may be separated into the two stages of deriving this 

mutually optimal portfolio of risky assets, and choosing the appropriate combination 

between this portfolio and the risk-free asset to suit the investor's risk preference. 

Separation theorem also underlies the foundation for the Capital Asset Pricing Model or 

CAPM as derived by Sharpe (1964) and Lintner (1965).

But despite being able to simplify the selection problem of many assets to one of just 

two assets, the efficient portfolio of risky assets still needs to be computed. As 

Markowitz's analysis had been aimed at the selection of equity portfolios, a practical 

difficulty with this approach relates to it requiring the entire covariance matrix of all the 

available assets. For an equity portfolio with say a thousand securities under
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consideration, this would mean computations involving over half a million covariance 

estimates. Hence, the model in that particular form was still impractical for such 

purposes given the limited computational capabilities available at that time.

Sharpe (1963), however, simplified the portfolio selection model by assuming that the 

returns of various securities are related only through some common index, I. Hence, if 

there are n securities available, then the return from security i, may be represented by:

Ri = ai + biI+ e i i= \ , . . . ,n

where ai and 6, are parameters and ej is a random variable with mean zero. As indicated 

by Sharpe, the index may be any factor thought to be the most important single 

influence on the returns from the securities, such as the stock market index or the Gross 

National Product. (If the index used is the market portfolio, one may recognize this to 

be of a form similar to the CAPM.) The index value being a random component itself 

may be given by:

where a,I+1 is a parameter and ell+l is a random variable with mean zero. Such a 

formulation, usually referred to as Sharpe's diagonal model, effectively reduces the full 

covariance matrix to a diagonal matrix. This is significantly more efficient than 

Markowitz's original model as it only requires 3n + 2 estimates as opposed to (n2 + n)/2 

estimates. Using a historical data sample of stock returns, Sharpe also showed that the 

diagonal model produced very similar results to those derived using the full covariance 

matrix. The apparent accuracy and efficiency of this model made it a practical 

alternative to the traditional Markowitz approach.
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From an actuarial perspective, modem portfolio theory put Pegler's first two principles 

on a more solid footing. It encourages higher expected returns and aims to reduce the 

variance of returns through diversification. But in contrast to Pegler's principles, the 

mean-variance approach acknowledges the conflict between the two more explicitly and 

hence, the need to trade off risk with return. However, it only goes as far as identifying 

the efficient set of portfolios, relying on judgement to select the optimum portfolio.

Although the original mean-variance models were exclusively concerned with asset 

funds, the approach can be generalized to incorporate certain liability structures. In the 

following section, it will be shown how these models relate to asset/liability studies and 

the actuarial concepts of matching.

2.2.4 Actuarial Portfolio Selection Models

The main aim of Wise (1984a) had been to examine the subject of matching from a 

more mathematically rigorous standpoint. He denoted the expected net cashflows by 

the row vector, 1T = (/,,..., /J ,  where l} is the liability outgo at time j, and the set of base 

assets by n linearly independent vectors, e,, ... , e„, where e /  = (eKl, ... , ekm) and ekj is 

the expected asset proceeds from the Ath asset in year j. Defining the amounts held in 

each base asset by the vector, xT = (jc, , ... , xn), the vector of asset proceeds is a = xT E, 

where the matrix E = (e,, ... , en). If the accumulation factor to time m is F, then the 

amount of ultimate surplus, S  = F(a) -  F(l).

From this definition of accumulated surplus, Wise proposed two main forms of 

matching:

1. minimizing E(S2) with respect to x.

2. minimizing E(S2) with respect to x subject to constraining E(S) = 0. (This Wise 

referred to as the unbiased match)
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Hence, E(S2) = 0, is a special case whereby the asset and liabilities are absolutely 

matched.

Although the cashflows in Wise's model span m time periods, the asset portfolio is only 

chosen at the start of the investigation period. Since the model does not allow for any 

further rebalancing of this portfolio during the period, it may be described as a static 

model. In this respect, it is similar to Markowitz's model and those which are discussed 

in Chapters 4, 6 and 7 of this thesis.

Extending his model further, Wise (1984b) investigated the matching strategy of a 

simple pension fund. When equities and gilts of varying terms were made available, 

Wise found a significant proportion of the unbiased match to be in equities, with the 

remainder being in long term gilts. The result seemed to contradict the conclusions 

reached by Fellows (1981), who suggested that equities would not be the most suitable 

match to pension fund liabilities. However, this may be explained to a large extent by 

considering the assumptions underlying Wise's equity model.

In his example, Wise assumed that the gap between the increase in dividends and the 

increase in inflation is constant and that the dividend yield also remains constant. He 

acknowledged that such an asset resembles index-linked gilts more than equities, which 

is mainly why 'equities' feature strongly in that matching portfolio. Nevertheless, 

Wise's analysis does show that matching by term is appropriate for index-linked 

liabilities. The difficulty in the case of pension funds however is that index-linked gilts 

with a long enough term to redemption may not be available in practice.

Wilkie (1985) showed how the work by Wise (1984a, 1984b) is actually a special case 

of the mean-variance approach. The problem was defined in portfolio selection terms 

with the liabilities taken as a negative asset, requiring the means, variances and 

covariances of each 'asset' to be calculated. In addition, Wilkie introduced asset prices
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into the selection process. By plotting the price-mean-variance or P-E-V space, Wilkie 

demonstrated that Wise's two matching criteria were not in general E-V efficient, as 

defined in modem portfolio theory. The price is an attempt to take into account inter-

temporal issues and the trade-off between current and future surplus.

Wilkie also addressed the issue of investor preference. He defined A. = dE/dP, to be the 

marginal trade-off between expected surplus and price, and p = dE/dV, to be the 

marginal trade-off between expected surplus and variance. In doing so, each 

combination of (A., p) would then point to a unique point on the efficient frontier. Thus, 

an investor could select the optimum portfolio by choosing values of A, and p 

appropriate to his or her needs, although there is no theoretical basis for doing so.

A further enhancement, referred to as the ¿-solvency region, had been suggested by 

Wilkie and involved the requirement that P(surplus < 0) < a. Assuming that surplus is 

normally distributed with mean, E and variance, ct2, this would then be equivalent to 

requiring £  -  ¿ct > 0, where P{Z < -k) = a  and Z has a standard normal distribution. 

Although this does not generally lead to a single portfolio, it imposes a constraint 

around a feasible region within which the optimum portfolio may be chosen.

The contribution made in Wilkie (1985) was re-examined by Wise (1987a, 1987b). 

Wise (1987a) suggested that from the investment manager's point of view, the price of 

the portfolio is pre-defined and the objective would be to find a suitable mean-variance 

trade-off. For the actuary, however, the objective would be to optimize the balance 

between price and variance for a given amount of expected surplus. In Wilkie (1985), 

rather eccentric prices had been used to demonstrate the inefficiency in Wise's unbiased 

match. Wise (1987a) showed that this inefficiency would not be of practical 

significance if realistic prices were used. He also proved that the optimum portfolio 

comprised a linear combination of the unbiased match, the mean surplus and the level of 

risk, -dV/dP.
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Using different assumptions about current market conditions, Wise (1987b) found the 

high risk portfolios to be quite sensitive to the varying conditions, unlike his unbiased 

match. This seemed to echo the concern expressed in Moore (1972) that "... the results 

o f any portfolio selection method are very sensitive to the quality o f the data." Wise 

felt that sensitivity analysis of the assumptions would be necessary before making any 

judgements on the results obtained using a mean-variance approach. He concluded that 

because of this, efficient frontiers may be difficult to justify for practical purposes.

Sherris (1992) reviewed the Wise-Wilkie model, describing how it may fit into a 

broader utility maximization framework. As in Wilkie (1985), liabilities were included 

as a negative asset, although Sherris removed the extra dimension of price. Therefore, 

the objective would be to maximize the expected utility of ultimate surplus for a given 

amount invested. Using an exponential utility function and assuming that surpluses 

were normally distributed, Sherris proved that the utility maximization portfolio would 

always be E-Vefficient. Hence, the Wise-Wilkie model was shown to be a special case 

of the more general utility maximization approach. However, Wise's implied utility 

function has been found to have some counterintuitive properties (see Booth, 1995b).

In summary, the portfolio selection models discussed in this section have provided a 

useful contribution to the study of asset/liability modelling. They place matching and 

immunization in a more general setting and extend traditional portfolio selection models 

to problems involving liabilities. But like all mathematical portfolio selection models in 

general, these models are subject to some practical limitations. For instance, complex 

liability structures and distribution policies would not be feasible in models of this form. 

Moreover, the models are also path independent, meaning that the optimal strategy is 

not dependent on the intermediary surplus levels occurring at each of the sub-periods. 

This would clearly be a crucial aspect in devising the optimal investment strategy for 

any life office. One approach to dealing with solvency and other complex issues is to 

use stochastic simulation techniques.
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2.2.5 Stochastic Simulation Models

In spite of the advances made with regards mathematical models, it remains a fact that 

analytical methods tend to rely on some fairly simplistic assumptions in order for these 

approaches to work successfully. Stochastic simulation methods on the other hand can 

provide far greater scope for realism by allowing less limiting assumptions to be used. 

However, greater care is necessary in interpreting results from simulation, in the context 

of the probability models used. More complex features may be incorporated into the 

investigations concerned, with the only restrictions, if any, being computational ones. 

Since the late eighties, the use of simulation techniques for actuarial purposes has 

become more widespread in the United Kingdom (UK). The publication of an actuarial 

investment model by Wilkie (1986) and the vast improvements in computational power 

seen over the last few years have contributed to this trend.

One application of simulation methods has been in assessing the effects of different 

investment or bonus strategies on the solvency position of a with-profit office (see Ross, 

1989; Roff, 1992; Hardy, 1993). Apart from being able to deal with life insurance 

solvency in a fairly realistic manner, these models highlighted the possible variability in 

performance that could be expected in the future. In Hardy (1993), simulation 

techniques were also shown to reveal certain insolvency risks in offices that were not 

apparent from deterministic scenario testing.

A related application of simulation has been in the development of more sophisticated 

measures of solvency. Rather than computing the asset/liability ratio to assess solvency 

as is commonly done, MacDonald (1993) considered the concept of adequacy, meaning 

the ability of an office to meet all its liabilities if it was to be closed to new business. 

The notion of relative insolvency on the other hand has been investigated in Hardy 

(1994a, 1994b). This is an alternative approach to determining regulatory insolvency 

and may be said to occur when the performance of a particular office moves out of line
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relative to the industry as a whole. Although much of the research in this field relates to 

the solvency of life offices, simulation techniques have also been applied to the areas of 

general insurance (Daykin and Hey, 1990), pensions (Booth, 1995a) and investments 

(Booth and Ong, 1994).

2.2.6. Downside Risk Measures

The concept of insolvency or ruin probability mentioned in Section 2.2.5 above is just 

one example of a downside risk measure. Broadly speaking, downside risk refers to risk 

measured in relation to the incidence and often the intensity of unfavourable outcomes; 

the definition of an unfavourable outcome being based on some criteria. Clearly, ruin 

probabilities are only concerned with the incidence of outcomes in which the 

asset/liability ratios fall below one.

Although ruin probabilities as such do not have any immediate interpretation in the case 

of a pure asset fund (with no explicit liabilities), the probability of underperforming a 

target return may instead be used in such portfolio selection problems. For example, if 

x is a random variable representing the return on an investment and x* is the target 

return, the investor could choose one of the following criteria:

minimize P(x < x*) (Roy's criterion)

maximize x* subject to P(x < x*) < a  (Katoaka's criterion)

maximize E(x) subject to P(x <x*)< a  (Telser's criterion)

These, often referred to as safety-first approaches, have been discussed in various 

sources including Pyle and Tumovsky (1970), Elton and Gruber (1991) and Tse et al
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(1993). Safety-first criteria are often felt to be intuitive and objective concepts with 

which risk may be assessed. However, it may sometimes be necessary to consider the 

intensity with which adverse outcomes occur, as is the case with variances of returns.

One problem though, with using variance as a measure of risk is that it penalizes upside 

and downside variability equally. A better approach therefore could be to measure the 

variability of returns only when these returns are below some target level. This measure 

of downside risk is known as semi-variance. Hence, if x is the actual return and h is the 

target return, then the semi-variance of jc may be defined as:

h
J ( x -h )2dF(x)

From this, one may then obtain a mean-semi-variance efficient frontier. Although semi-

variance has been suggested by many, including Porter (1974) and Markowitz (1991), to 

be superior to variance as a measure of risk, the latter has in the past been preferred to 

the former on the grounds of its mathematical tractability. However, with the immense 

computer power available at present, such an issue should now be of little consequence.

Clarkson (1989) attempted to generalize the features of investment risk by proposing a 

set of basic axioms from which investment decisions could be made based on downside 

risk measures. These axioms may be stated as follows:

1. risk is a function of the probability and severity of adverse outcomes

2. risk may be measured by a weighted function of these adverse outcomes

3. for a given expected return, investors should aim to minimize this risk

4. all investors have a threshold level of risk which must not be exceeded

5. investors should maximize expected returns subject to satisfying this threshold level

6. risk preferences may be accounted for using different weighting functions and/or 

threshold levels.
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Combining axioms 1 and 2, Clarkson's measure of risk may be expressed in the form:

h
R= \W (h-x)dF(x)

—CO

where x and h are defined as before and the weighting function W(s) > 0 V s. Clearly, 

this is a more general downside risk measure than semi-variance. In fact, if W(s) = sc 

and c = 2, then R is identical to the semi-variance. Along similar lines, McKenna and 

Kim (1986) pointed out that setting c = 1 is equivalent to measuring the expected 

shortfall below h, while setting c = 0 would imply the probability of underperforming h.

In Section 2.3.4, it will be shown how Clarkson's risk measure, R broadly fits into a 

utility maximization framework. Requiring the threshold level to be satisfied, as stated 

in axioms 4 and 5, however, does imply a utility maximization approach but subject to 

constraints.

2.3 Utility Theory

2.3.1 Historical Background and Critique o f Expected Utility

The development of utility theory is thought to have begun in the eighteenth century 

through the independent works of Daniel Bernoulli and Gabriel Cramer. Prior to this, 

risky decisions had generally been assessed on the basis of expected returns. However, 

this had been proved to be inadequate in evaluating gambles such as the St. Petersburg 

game. In such a game, a fair coin is tossed until a head appears. If n tosses are required, 

then a sum of 2" is won. Hence, the expected return from the gamble is infinite, though 

most people would offer this game at a finite price.
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Bernoulli and Cramer explained the St. Petersburg paradox by proposing that it is the 

expectation of the subjective value, or utility, of outcomes that should be considered, 

where the utility is an increasing but concave function. This is equivalent to the concept 

of diminishing marginal rates of substitution in economics. Bernoulli suggested a 

logarithmic utility function whereas Cramer proposed a power utility function.

Over two centuries later, von Neumann and Morgenstem (1944) devised a very different 

expected utility theory. Instead of being a subjective value on an outcome, utility was 

defined as a preference relation on a convex set which is assumed to behave according 

to the stated axioms of order, independence and continuity. It was from these axioms 

that expected utility had been derived, rather than being merely stated as was the case 

with the Bemoullian expected utility. With either derivation, the end result implies that 

the optimal decision is that which maximizes the expected utility of outcomes.

Despite being the backbone of much finance and economic literature, expected utility 

theory has been criticized. One of these criticisms relates to how a choice may be 

influenced by the way a question is asked, sometimes called a framing effect. Tversky 

and Kahneman (1981) demonstrated this in a life and death situation. Given a choice of 

two treatments programs p  and q, individuals generally preferred p  to q if the scenarios 

were phrased in terms of lives saved but favoured q to p  when they were framed in 

terms of lives lost. This appears to contradict expected utility theory, which implies that 

decisions should depend on the probability distributions of alternatives and not how 

they are described.

Allais (1953) described a paradox where, given the choice between a certain event a and 

risky alternative b, most respondents picked a in favour of b. However, when faced 

with the choice between c -  pa + (l-p)e and d= pb + (l-p)e, where p is some carefully 

chosen parameter and e is a third event, the majority of them preferred d to c, which 

breaches the independence axiom stated by von Neumann and Morgenstem. This is not
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really a consequence of framing but may instead be attributed to one's affinity for 

certainty, commonly referred to as the certainty effect.

Other issues which utility theory is unable to address include the existence of 

nontransitive relations and probability preferences. An example of a nontransitive 

indifference relation, ~ is whenx ~ y  andy ~ z but where x is preferred to z. Probability 

preference refers to an individual's (distorted) perception of probability. Experimental 

work has suggested that individuals tend to overvalue small probabilities and 

undervalue large probabilities.

In view of these criticisms, attempts have been made to generalize utility theory so as to 

account for some of its limitations. One example is prospect theory suggested by 

Kahneman and Tversky (1979). An important difference between this and expected 

utility theory is that the probabilities as well as the outcomes are weighted. However, 

more complex methods such as this can be difficult to implement objectively and are 

beyond the scope of this research.

Furthermore, it is important to appreciate that many of the criticisms directed towards 

expected utility really only pertain to special circumstances and should not have a 

material effect on asset allocation decisions in general. For instance, framing effects 

should not apply when the description of alternatives is fully transparent, which is the 

case in these investigations. Allais' paradox is not only based on having to choose 

between risky and certain outcomes, but also relies on rather extreme payoffs being 

made. Individuals may not be able to relate to these payoffs, particularly as any 

experiment in the area of utility theory involves hypothetical and not real money. In 

reality, few asset allocation decisions involve scenarios that may be predicted with 

certainty and outcomes that have such extreme consequences. Hence, maximizing 

expected utility should provide a reasonable basis for making consistent investment 

decisions under normal circumstances.
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2 .3 .2  P ro p er tie s  o f  U tility  F u n c tio n s

Although utilities may take any functional form, there are a few general properties 

which most utility functions should satisfy in decisions involving wealth. The utility 

functions, U{.) should be monotonically increasing (£/'(•) > 0), meaning that individuals 

prefer more wealth to less. Secondly, they should be concave (£/"(.) < 0), which 

corresponds to investors being risk averse. It is also usual for them to be continuous 

functions of wealth, though there may be situations where discontinuities may be 

included on intuitive grounds.

The extent to which an individual avoids risk may be reflected in the risk premium that 

is required by the individual before a particular gamble is considered to be acceptable. 

In particular, Pratt (1964) showed that any risk premium is approximately proportional 

to a(.) = -U"(. )/U'(. ), where a(.) had been defined as the measure of risk aversion. The 

larger this value, the more averse the individual is to risk. Moreover, Pratt distinguished 

between the concepts of absolute risk aversion (which is equivalent to a(.) above) and 

relative risk aversion which will be defined in due course. Their meanings may be 

better understood by considering specific utility functions.

The quadratic utility function has some useful properties, and usually takes the form:

U(x) -  ax2 +x

The first and second derivatives are U'(x) = 2ax + 1 and U"(x) = 2a respectively. In 

order for the function to exhibit risk aversion it is necessary for a < 0. However, the 

resulting function will then only be increasing for x < -U2a, which implies that the 

quadratic utility function is only meaningful over this range. From a(x) = -\/{x  + l/2a), 

it is clear that the level of risk aversion is an increasing function of x while x < -1/2a.
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In other words, the individual becomes more averse to risk and will demand higher risk 

premiums at higher levels of wealth, which seems counterintuitive.

The main advantage of using a quadratic utility function is its tractability. By reducing 

the decision criteria to just a function of the first two moments of the distributions 

concerned, closed form solutions to many problems may be derived. This also implies 

that maximizing the expected quadratic utility will lead to a mean-variance decision. 

Unfortunately, the restricted range in which the quadratic utility function is meaningful 

and the property of increasing risk aversion make it less appealing, especially in 

comparison with the exponential, logarithmic or power utility functions.

The exponential utility function is most commonly expressed as:

U(x) = -exp(-ax),

where a > 0. Unlike the quadratic function, it has the desired properties of U'(x) > 0 and 

U"(x) < 0 for all real values of x. Another useful feature of the exponential function is 

that a(x) = a, a property normally referred to as constant absolute risk aversion. This 

implies that the decision making process will depend on the amount invested and not 

initial level of wealth for a given investment, as illustrated below.

If an individual with an exponential utility function of wealth w invests an amount x at a 

random rate of return R, the utility maximizing decision is to maximize:

E[U(xv + xi?)] = £[-exp(-a(w + xR))] = fc£[exp(-axi?)],

where k = -exp(-aw). Hence, the optimal decisions based on maximizing E[U(w + x/?)] 

and E[U(xR)] will be identical.
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U(x) = ln(x)

Clearly, the function will only be valid over the range x > 0. But apart from this 

disadvantage, it has the required properties of U'(x) > 0 and U"(x) < 0. However, the 

most significant difference between this and the exponential utility function is in the 

measure of risk aversion. For the logarithmic utility function, a(x) = l/x, which implies 

decreasing absolute risk aversion, though it also has the property of constant relative 

risk aversion, defined in Pratt (1964) as p(x) = x.a(x). Having constant relative risk 

aversion means that decisions will depend on the proportion of wealth invested, and not 

on the starting level of wealth.

For example, if the individual with wealth w investing an amount x has a logarithmic 

utility function, the objective would then be to maximize E[ln(w + xR)]. If the 

proportion invested is defined to be, k = x/w, then the objective function to be 

maximized may be expressed as:

£[ln(w + foW?)] = £[ln(w(l + A:i?))] = ln(w) + £[ln(l + &i?)]

Therefore, given the proportion of wealth invested, the decision-making process will be 

independent of the initial amount of wealth.

The only other utility function that exhibits constant relative risk aversion is the power 

function:

U(x) = xc,

where 0 < c < 1. It may be shown that p(x) = 1 -  c. As the measure of relative risk 

aversion is less than one, it means that power function is also less risk averse than the

A n o th e r  c o m m o n ly  u s e d  u til i ty  fu n c tio n  is th e  lo g a r i th m ic  fu n c tio n , g iv e n  by :
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logarithmic function. If c = 1, this is simply a linear utility function and a(x) = p(x) = 0, 

which implies risk neutrality.

It has already been mentioned that the utility maximizing decision for the quadratic 

utility function leads exactly to a mean-variance result. However, it would also be true 

to say that expected utility from the exponential, logarithmic or power utility functions 

may be approximated by a suitable function of mean and variance. In fact, there is 

much empirical evidence to suggest that decisions based on mean-variance functions are 

almost identical to most of their expected utility equivalents (see for example, Levy and 

Markowitz, 1979; Pulley, 1983; Kroll et al, 1984; Reid and Tew, 1986; Booth, 1995a). 

However, despite being somewhat justified in practice, mean-variance analysis has been 

criticized on theoretical grounds; one criticism being its inconsistency with stochastic 

dominance.

2.3.3 Stochastic Dominance

Put simply, a probability distribution function F(x) is said to stochastically dominate 

another probability distribution function G(y) if EF[U{x)\ > EG[U(y)\, where U(.) is any 

member of a particular class of admissible utility functions (see Hanoch and Levy, 

1969; Huang and Litzenberger, 1988). If this admissible set applies to all non-

decreasing utility functions, then F is said to have first degree stochastic dominance 

over G. The necessary and sufficient conditions for this as given in Hanoch and Levy 

(1969) are:

and

F(x) < G(x) Vx 

F(x0) < G(x0) for some x0.
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However, if F dominates G for all utility functions belonging to the class of non-

decreasing and concave (i.e. risk averse) utility functions, then F  is said to have second 

degree stochastic dominance over G. The necessary and sufficient conditions for this

Returning to situations where mean-variance analysis may be inadequate, consider the 

following example which has been adapted from Hanoch and Levy (1969). Let X  and Y 

be uniformly distributed random variables over the intervals [b,d\ and [a,c] respectively, 

where a < b < c < d. In addition, assume that the interval for X  is wider than that of Y, 

i.e. (d-b) > (c-a). As X  has a greater mean and variance than Y, both these distributions 

would appear efficient from a mean-variance perspective. But it is also clear that F(x) is 

never less than G(y), which by first degree stochastic dominance implies that X  will 

always give a higher expected utility to Y as long as the decision maker prefers more to 

less. Hence, it is not necessary for a stochastically dominant random variable to have a 

lower variance than another.

In addition, Hanoch and Levy (1969) showed that the mean-variance criterion is also 

not a sufficient condition for second degree stochastic dominance. For example, it is 

possible to have two random variables X  and Y, such that E(X) > E(Y) and V(X) < V(Y) 

even though U{Y)> U(X) for some increasing and concave utility function. However, it 

may also be shown (see Huang and Litzenberger, 1988) that if F(x) stochastically 

dominates G(y) for all (increasing and decreasing) concave utility functions, then it 

implies that E(X) = E(Y) and V(X) < V(Y). In this respect, there is at least some 

theoretical basis for mean-variance analysis, i.e. if one asset is preferred to another by 

all risk averse investors, then the dominant asset must have the lower variance.

are:

x x

and

F(x0) * G(x0) for some x0
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2 .3 .4  G en era liza tio n s  o f  O ther R isk  M ea su res

In addition to mean-variance methodology, it may also be possible to describe the other 

approaches to risk analysis stated earlier in an expected utility framework (see Booth, 

1995b). There are two main reasons for doing so. Firstly, it is useful to be able to 

compare these criteria amongst themselves and with other utility functions by 

effectively standardizing them. Secondly, some of the more descriptive risk measures 

will need to be formulated mathematically if they are to be used objectively for 

decision-making. One example is the set of canons postulated by Bailey (1862).

From Section 2.2.1, it may be recalled that Bailey's first canon requires the security of 

capital to be maintained. But rather than distinguishing between income and capital, it 

would seem more sensible and convenient to formulate Bailey's canons in terms of total 

returns. One possible interpretation of the first canon then is to ensure a non-negative 

return from the investment. The second canon states that subject to this, the highest 

expected return should be earned. Therefore, Bailey's implied utility function may be 

represented by:

U(x) = x x> L

x - k x< L

where k is a large, positive amount and L is the wealth level associated with a zero rate 

of return. As long as total returns are non-negative, the insurer will seek the portfolio 

with the highest expected return, hence a linear (riskless) utility function above x = L. 

If the condition is breached and k is sufficiently large, then no expected return will be 

sufficient to compensate for the disutility of earning negative returns. So in the utility 

maximization process, the only portfolios that will be considered are those which 

minimize the probability of yielding negative returns.
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Pegler (1948) on the other hand advocated maximizing expected returns as his first 

investment principle. Taken on its own this implies risk neutrality, or a utility function 

which is linear over all levels of wealth. Hence, the utility function could be:

U(x) = x V x

However, Pegler also encourages the spreading of risk, suggesting some hint of risk 

aversion in his utility function. But since Pegler is only concerned with diversifiable 

risk, there does not appear to be any utility function which can represent Pegler's 

principles precisely. In a sense, Pegler is suggesting positive infinitesimal risk aversion.

With the analysis given by Clarke (1954), it had been proposed that investors should 

trade risk with return, where risk is given the broad definition of the uncertainty with 

respect to expected returns. Hence, a range of risk measures could be used including 

variance, mean absolute deviation, etc. Furthermore, no objective criteria had been put 

forward for choosing the optimal portfolio. In this sense, Booth (1995b) describes 

Clarke's approach as being similar to an efficient frontier, rather than a utility 

maximizing one.

Wise (1984a, 1984b) set out a number of matching criteria based on minimizing the 

second non-central moment of ultimate surplus. Taking ultimate surplus to mean 

ultimate wealth, X, the aim is essentially to minimize E(X2). Since this is equivalent to 

maximizing - E{X2), an obvious utility function for such an investor would be the 

quadratic function:

U(x) = -x2

In Booth (1995b), it was noted that Wise's utility function has the property, U'(x) = -2x, 

which means that the function is only increasing for negative amounts of wealth.
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Hence, Wise's approach has rather limited appeal both in terms of utility theory, and 

from a mean-variance perspective as demonstrated by Wilkie (1985).

The safety-first approaches described earlier may also be considered in a utility context. 

Roy's criterion of minimizing P(x < x*) may correspond to that of an investor with a 

utility function such as:

U(x) = 0 x > x*

-k  x < x*

where k > 0. However, this implies that the investor has a zero marginal utility of 

wealth at all values of x apart from x = x*.

Pyle and Tumovsky (1970) showed that maximizing x* subject to F(x*) = P(x < x*) < a  

(Katoaka's criterion), may be rewritten as maximizing E(X) + F"‘(a).^V(X), assuming X  

belongs to the class of two-parameter distribution functions. If this assumption holds, 

then the decision-making process will be equivalent to a mean-variance one.

Maximizing E(X) subject to P(x < x*) < a  (Telser's criterion), may be seen as a utility 

maximization approach subject to a constraint, where the utility function is linear. It 

seems unlikely, though, that such a constraint could be incorporated directly into a 

simple utility function.

If the approach in Clarkson (1989) had been limited to one of minimizing downside 

risk, fV(.) for a given level of expected return, then a utility function which is consistent 

with this could be:

U(x) = x x> L

= x -  k. W(x-L) x < L
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where k > 0. With a utility function of this form, the extent to which expected returns 

may be traded against downside risk is determined by the value of k. As k increases, 

greater importance is placed on reducing downside risk. If IV(.) is a quadratic function, 

then one may recognize this to be consistent with a mean-semi-variance approach.

Nevertheless, the additional axiom of Clarkson's, requiring investors to maximize return 

subject to a threshold level of risk, cannot be integrated into a consistent utility function 

shown above. On its own though, the latter axiom implies a linear utility function 

subject to a constraint, as in Telser's criterion.

2.4 Summary

In this chapter, some of the main criteria and methods for dealing with the problem of 

investment risk have been reviewed. Early actuarial investment principles tended to be 

descriptive and lacked mathematical rigour, making them difficult to apply objectively. 

In these respects, they were bettered by the development of mathematical portfolio 

selection models and in particular, mean-variance analysis. Although this had originally 

been aimed at stock selection problems, the approach was later extended to allow for 

liabilities, bringing it closer to the actuarial principles of matching and immunization.

Unfortunately, analytical methods such as this generally suffer from numerous practical 

limitations, most of which relate to the restrictive assumptions that these methods 

require. One solution, though, has been to harness the enormous computing power 

currently available to facilitate stochastic simulation techniques. Through the use of 

simulation, complex issues such as life office solvency can now be addressed with far 

greater realism than had been possible previously.
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In this chapter, it was also suggested that these criteria for decision-making may be 

assessed in terms of utility theory. Many of the approaches to risk mentioned could be 

reflected by appropriate utility functions, usually piecewise linear utility functions. 

Those which could not were generally found to be either inconsistent within themselves, 

or counterintuitive. In particular, mean-variance analysis may sometimes imply utility 

functions which are counterintuitive, and is therefore capable of leading to inappropriate 

investment decisions. Empirically however, mean-variance analysis has been found to 

be an adequate approximation to the expected utility approach in many circumstances.
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3. THE INVESTMENT MODEL

3.1 Introduction

As with most investigations involving asset allocation decisions, the results derived will 

inevitably depend on the assumptions relating to the characteristics of the asset classes 

involved. It would therefore seem appropriate to devote at least one chapter to the 

model of the United Kingdom (UK) economy used in this research.

This chapter begins with a brief discussion of the basic requirements for any investment 

model and how well the chosen model meets these objectives. A description of the 

model is given and reviews of it which have been conducted by independent sources are 

considered. Measures taken to allow for some of its limitations and simulation results 

produced by the final model are then analysed.

3.2 Basic Requirements

3.2.1 The Asset Classes

In order to arrive at the optimal investment strategy for a life insurance fund, it is 

imperative that the investment model used consists of all the asset categories that would 

feature in such a strategy. Although it would be impractical to include all possible asset 

classes in an investment model, it should still comprise those categories which are 

important to an insurer. Therefore, one criterion for including a particular asset class in 

the model would be if there is a strong intuitive reason for an insurer investing in that 

asset class. In addition, the investment instruments used should also be distinct in
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nature from each other so that the portfolio resulting from the optimization process may 

be more meaningful. If two or more asset classes have similar characteristics, the 

relative preferences for these asset classes are likely to be very sensitive to sampling 

error and model specification.

In practice conventional non-profit life insurance funds have generally been backed by 

fixed-interest securities with suitable terms to maturity in order to minimize potential 

losses due to changes in investment conditions. Such a strategy is deeply rooted in the 

concepts of matching and immunization. According to Redington's theory of 

immunization (see Section 2.2.2), a set of fixed liabilities may be protected against 

movements in interest rates if the fund is invested in a portfolio of stocks with the same 

discounted mean term as the liabilities. So if immunization is at all possible, then this 

should be able to be achieved by an appropriate combination of the shortest and longest 

stocks available.

Notwithstanding all the limitations of immunization in practice, it would therefore seem 

adequate for modelling purposes just to consider two fixed-interest asset classes with 

extreme terms to maturity, such as cash and Consols. These two asset types also happen 

to possess much more historical data compared with redeemable gilts, which should 

lead to more credible stochastic investment models.

As well as needing to hedge fixed liabilities, a typical insurer would also have inflation- 

linked liabilities to contend with. The most general source of inflationary liabilities 

comes in the form of maintenance expenses, although these may also arise directly from 

certain types of business such as index-linked annuities. From a matching perspective, 

the most suitable investments for these liabilities would be index-linked gilts. Apart 

from its clear merits as a match to inflation, this asset class has unique characteristics 

which provide yet another possibility for insurers to gain from the benefits of 

diversification.
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Any investigation into risk-return strategies should include at least one volatile asset. 

Insurance companies of all types and sizes tend to invest some proportion of their assets 

in UK equities. The reason for this is twofold. If past experience is anything to go by, 

equities should provide the best means for maximizing returns, particularly of surplus 

assets, in the long run. Secondly, they are considered to be a good long term inflation 

hedge and therefore may be used as a crude match for long term inflationary liabilities. 

Their characteristic short term price volatility and longer term growth potential 

distinguish them clearly from the other assets mentioned above.

Hence, the four asset classes of cash, Consols, index-linked gilts and UK equities are 

arguably the building blocks of a well-diversified fund in the context of an insurance 

company and are essential components of the stochastic investment model. In addition, 

the model should also comprise some inflationary measure such as the retail price index, 

so that inflation-linked liabilities may be incorporated in the investigations.

For the sake of simplicity, it is helpful to limit the number of asset classes to as few as 

possible. Although overseas equities and property are two asset classes which also tend 

to be associated with the assets held by life offices, they are not being used here as their 

inclusion may only really be justified for the purpose of diversification. The difference 

between overseas equities and UK equities may be attributed to the added currency risk 

inherent in the former. Nevertheless, it may be sensible to consider this asset class if 

some of the liabilities themselves are denominated in foreign currencies.

In the case of property, there is difficulty in encapsulating, via an investment model, the 

unique features of this asset class i.e. its lack of marketability and the fact that a 

property portfolio is less diversifiable than most other asset classes. If these are not 

properly accounted for in the model, then property as an asset class may appear more 

favourable than it would otherwise be in reality. But for these characteristics, its strong 

growth potential would make property similar in nature to UK equities.
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3 .2 .2  G en era l C riteria

In addition to encompassing a wide enough range of asset classes, the adequacy of the 

investment model should also be judged on more general criteria. Ideally, it should be 

based, at least in part, on sound statistical fitting procedures and applied to a sufficiently 

large and accurate historical data set. The model should be realistic, meaning that the 

distribution of values produced by the model would need to be consistent with one's 

own intuition. As the model is to be used in an insurance context, it should be capable 

of medium or long term projections. Moreover, it should be widely available and 

independently scrutinized so that the features and implications of the model are well 

understood.

Having set out these fairly stringent requirements of the investment model, it is worth 

emphasizing that the process of deriving a long-term econometric model is fraught with 

difficulties. Data inadequacy is just one of the problems. The underlying mechanism 

which generates economic variables is unclear and appears to evolve with time. This 

may imply that the understanding about the way in which the economy behaves cannot 

necessarily be captured in a statistical model. Consequently, a number of authors 

including Chatfield (1995: 15-16) and Miller and Newbold (1995) have discussed the 

issue of uncertainty in time series models and how this level of uncertainty is often 

underestimated.

It is therefore not surprising that a model has yet to be produced which satisfies all the 

above requirements. In fact, the only published long term model in the UK at the time 

of when these investigations were being carried out was that developed by Wilkie 

(1984, 1986). Although this model has since been refitted using data from 1923 to 

1990, the resulting parameter values were merely quoted in Wilkie (1992, 1995a), 

without any details of the fit being given. These have now been superseded by a range
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of possible models detailed in Wilkie (1995b) and are based upon data up to June 1994. 

However, this most recent publication was not available in time to be used here.

Despite the obstacles faced in econometric modelling, Wilkie's 1986 model would on 

the surface seem reasonable for practical purposes. It has also been reviewed in a 

number of sources including Kitts (1988, 1990), Geoghegan et al (1992) and Huber 

(1995), and their conclusions will be discussed shortly. As the model probably remains 

the most widely used and accepted investment model in the actuarial profession, it 

would seem to be a sensible base case for these investigations.

3.3 Wilkie's Model

3.3.1 Description

As there is more than one version of Wilkie's model currently available, the one actually 

used in these investigations is outlined here for completeness. The model adopted is 

identical to the 'Full Standard Basis' as specified in Wilkie (1986) and comprises the 

retail price index (RPI), UK equities share dividend index and dividend yield and the 

yield on 2.5% Consols. Hence the asset classes which this model encompasses are UK 

equities and Consols, together with a model for inflation.

The model for the retail price index, Q(t) is:

V In Q(t) = QMU + QA(V ln Q ( t - l ) -  QMU) + QSD. QZ(t)

where the backward difference operator, VX(t) = X (t)-X (t-1) and QZ(t) are 

independent, identically distributed (i.i.d.) unit normal variates. The model implies that 

the force of inflation follows a first order autoregressive or AR(1) process about a mean
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of QMU, while QSD relates to its standard deviation. The autoregressive parameter QA, 

determines the extent to which the current force of inflation depends on the previous 

years' force of inflation. The parameter values in Wilkie's Standard Basis are:

QMU = 0.05, QA = 0.6, QSD = 0.05.

The model for the share dividend yield, Y{t) is:

In 7 (0  = YW.V  In Q(t) + YN (t)

with:

YN (0  = In YMU + Y A .(Y N (t-1) -  In YMU ) + YSD. YZ (t)

where YZ{t) ~ i.i.d. N(0,1). This model implies that dividend yields follow an AR(1) 

process with lognormally distributed error terms and includes the force of inflation as a 

transfer function. YMU and YSD reflect the general level of the mean and standard 

deviation of dividend yields respectively. YA in this model has a similar interpretation 

to QA in the retail prices model, and YW indicates the extent to which the force of 

inflation influences the level of dividend yields. The parameter values are:

YMU = 0.04, YA = 0.6, YW= 1.35, YSD = 0.175.

The model for the share dividend index, D{t) is:

V In D(t) = DW. DM(t) + DX. V In Q(t) + DMU + DY. YSD .YZ (t - 1)

with:

+DSD. DZ(t) + DB. DSD. DZ(t -1)

DM(t) = DD.V In Q(t) + (1 -  DD). DM(t - 1)

where DZ(t) ~ i.i.d. N(0,1).
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Basically, the model suggests that the force of increase in dividends comprises a random 

component with mean, DMU, a moving average of the force of inflation, DW.DM(t), 

and an additional weighting of DX on the current force of inflation. For example, 

constraining DW + D X -  1 ensures that an increase in retail prices will eventually result 

in unit gain in dividends. The parameter DD determines the relative influence which 

more recent inflation has in the moving average term. The error terms are lognormally 

distributed and are linked to the previous year's residual term in the dividend yield 

model via DY. The parameters values are:

DMU =0.0, DY= -0.2, £>£> = 0.2, DW= 0.8, £>5 = 0.375, DX= 0.2, £>£'£> = 0.075. 

The model for the Consols yield, C(t) is:

C(t) = CW.CM(t) + CN(t)

with:

CM(t) = CD. V In Q(t) + (1 -  CD). CM(t - 1) 

and

In CN(t) = In CMU + (CA1. B + C42. B2 + CAS. B3)(ln CN(t) -  In CMU)

+CY. YSD. YZ (0  + CSD.CZ(t)

where the backshift operator, BX(t) = X(t-Y), and CZ{t) ~ i.i.d. N(0,1). The model 

consists of two distinct parts: an inflationary moving average component, CW.CM(t), 

similar to that in the dividend index model, and a real yield component, CN(t) which 

assumes an AR(3) process about a mean, CMU. The error terms are lognormally 

distributed and also include the residual from the dividend yield model. The parameters 

values are:

CMU= 0.035, CY= 0.06, CD = 0.045, CW= 1.0, 

CA1 = 1.2, CA2 = -0.48, CAS = 0.20, CSD = 0.14.

53



The neutral initial conditions as stated in Wilkie (1986) are used:

V In Q(0) = QMU,

F(0) =YMU.exp (YW.QMU), YE{0) = 0,

DM{0) = QMU, DE{0) = 0,

CM(0) = QMU, CN(0) = CN(-\) = CN(-2) = CMU.

In addition, it is necessary to specify an arbitrary starting value for the retail price index. 

It would seem sensible to choose Q(0) = 1. The recommended minimum value for C(t), 

CMIN~ 0.5%, is also imposed.

3.3.2 Review o f Wilkie's Model

One general requirement on which the original model falls short is the absence of cash 

and index-linked gilts. The necessary enhancements are dealt with in the next two 

sections. Nevertheless, Wilkie's model does have a number of useful features. Many of 

the model parameters such as the long term means can be readily interpreted and may 

with some degree of caution, be adjusted to suit the needs of the individual user. The 

model had been fitted with some contribution of personal judgement on the part of its 

author, as opposed to a purely statistical perspective which is usually the case in Vector 

Autoregressive (VAR) models. More specific evaluations of Wilkie's model carried out 

by a number of independent parties are summarized below.

Kitts (1988, 1990) looked at the model for the retail price index alone, being the driving 

force of the whole model. He concluded that the residuals were in fact correlated,
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implying that "... the model undergenerates sustained periods o f retail price inflation 

and deflation" (Kitts, 1990). He also found the residuals to be not even approximately 

normally distributed. Kitts remarked that these problems were amplified because the 

stochastic component in the model is large relative to the systematic component, but 

also noted that the model would ultimately be most sensitive to long term assumptions 

like the mean, QMU.

A Working Party set up in 1989 to review Wilkie's model published their report in 

Geoghegan et al (1992). This report recommended that a model should be fitted using 

post 1945 data to reflect the fundamental changes that have occurred since the Second 

World War. It was also stated that "... there was little evidence that a better fitting 

parsimonious model could be estimated using standard Box-Jenkins methodology", 

though some concerns were expressed over the fit of the model to the data.

Problems of heteroscedasticity of residuals, random shock effects and non-normality of 

residuals had also been discussed but the general conclusions were that the use of 

Autoregressive Conditional Heteroscedastic (ARCH) effects, mixture models and 

different distributions for residuals would not make a significant difference to predicted 

values in the long term. Nevertheless, the difficulties in modelling non-stationary time 

series were acknowledged. In applications, the Working Party suggested that the aim of 

the model should be to provide the long term means and the covariance matrix of future 

values, rather than extreme values.

Huber (1995) analysed Wilkie's model from a statistical perspective, uncovering a 

number of fundamental problems with the model. Apart from problems concerned with 

non-stationarity and random shocks in the series modelled, he also highlighted some 

inconsistencies in the data used. These essentially stemmed from including data going 

further back in time than there was clean data available.
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In Huber's analysis, more crucial inadequacies were unveiled relating to the structure of 

the model itself. Many of the structural parameters including QA, YW, DW, DX  and CY 

were found to be inappropriate, either because they were unstable over sub-periods of 

the data in which they were fitted, or because they were shown not to be statistically 

significant. It was also shown that a more parsimonious model for Consols could be 

fitted by setting CW= 0. The net effect of implementing such changes, however, would 

result in an investment model which may not make good economic sense. Eliminating 

QA implies that the force of inflation is simply white noise. When YW, DW, DX  and 

CW are set equal to zero, the result is that the dividend yield, the dividend index and the 

Consols yield are no longer linked to inflation. The removal of CY also breaks the link 

between the dividend yield and the Consols yield. This appears to cast doubts as to the 

appropriateness of the cascade structure in Wilkie's model.

In summary, there appears to be some uncertainty regarding the extreme values 

produced by the model, the cascade structure and some of the parameter estimates 

suggested. Although these deficiencies do not detract from the methodology used in 

this research, the absolute results implied in later chapters should, nevertheless, be 

treated with a fair degree of caution. If sufficient care is used in interpreting the relative 

results produced, some benefit may still be derived from applying the model in the 

determination of appropriate asset allocation strategies.

3.4 Index-linked Gilts

3.4.1 Model Structure

Despite their importance as an asset class, index-linked gilts had not been included in 

Wilkie's original model. Although no reasons were given in Wilkie (1986), it may be 

assumed that their exclusion was mainly due to the lack of data available at the time.
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Even now, nearly a decade since this model has been published, it is arguable whether 

sufficient data exists for a long term model of index-linked gilt yields to be fitted with a 

reasonable degree of credibility.

A possible solution, apart from excluding index-linked gilts from the investigation 

altogether, could be to make a minor adjustment to Wilkie's model that may allow for 

this. For example, the share dividend yield, Y(t), less a constant could be used to 

represent real yields on index-linked gilts, as suggested in Daykin & Hey (1990). 

Although this form of deterministic adjustment may not critical to the distributions of 

long term returns, it does impose an artificial relationship between the dividend yield 

and the real yield. As the latter has repercussions on the determination of the reliable 

yield calculation in the statutory valuation basis for insurance liabilities, the inclusion of 

some stochastic variation would be preferable.

It may be recalled that the model for the Consols yield is essentially made up of two 

components: an inflationary element, CM(t) and a real yield element, CN(t). It should 

therefore be possible to make appropriate adjustments to some of the parameter values 

in CN(t) and so that this version may be used as a crude proxy for the real yield on 

index-linked gilts, IL{t). Restricting these adjustments to just the parameters concerned 

with the mean and variance should allow for the main characteristics of index-linked 

gilts while maintaining the relationship between the real yield and the Consols yield as 

implied in Wilkie's model. For this reason, it also seems appropriate to use the same 

error terms, YE(t) and CZ{t) in both the index-linked gilts yield and the Consols yield 

models. Thus:

In71(f) = InILMU +(CALB + CA2.B2 +G43.B3)(lnIL(t) -  InILMU)

+CY.YSD .YZ(t) + ILSD.CZ(t)
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where ILMU and ILSD are the parameters associated with the mean and standard 

deviation of this model for index-linked gilt yields respectively.

3.4.2 Selection o f Parameter Values

In determining the extent to which any changes should be made, historical monthly real 

yields on index-linked gilts with five or more years to maturity assuming 5% inflation 

had been assessed (see Figure 3.1). Although this index is only readily available from 

the beginning of 1986, it may still give an indication as to the general behaviour of 

index-linked gilt yields.

Figure 3.1. Historical monthly yields on index-linked gilts with terms to maturity 

in excess o f 5 years and an inflation assumption of 5%.

In relation to this data, the mean real yield of CMU = 0.035, suggested in Wilkie's 

Consols yield model seems about right (correct to the nearest 0.5%) and its value was 

retained in the IL(t) model as well, i.e. ILMU = 0.035. It is, however, less obvious 

whether the setting ILSD equal to CSD = 0.14, attributes variability in the index-linked
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gilts model appropriately to the historical data. As the data set is too small to give a 

credible measure of annual variance, prior judgement was used.
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Figure 3.2. 100 simulations of the index-linked gilt model over 20 years:

ILMU = 0.035 and ILSD = 0.07.

By simulating a hundred scenarios of IL(t) over twenty years, a feel for the range of 

values the model may produce can be obtained. With the recommended parameter 

values for CN(t) i.e. ILMU = 0.035 and ILSD = 0.14, the model exhibits fairly high 

levels of variability, with about a 55% chance that real yields will exceed 5%, a 30% 

chance of exceeding 6% and a 15% chance of exceeding 7% at some time over the next 

20 years. This contrasts with past data which reveals only one month during the period 

1986 to 1994 where real yields had risen above 4.5%.

There are arguments for and against retaining these parameter values for IL(t), but on 

balance a reduction in variability would appear to be more reasonable. Thus, the 

simulations, repeated for the parameter ILSD halved from 0.14 to 0.07, are shown in 

Figure 3.2. These results seem to be more in tune with the historical yields shown in 

Figure 3.1. It would also seem sensible to allow real yields to occasionally climb as
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high as 6%, bearing in mind the limited past experience with this asset class. Hence, the 

parameter values chosen for IL(t) were: ILMU-  0.035, ILSD = 0.07.

It is perhaps worthwhile comparing the model for IL(t) above with a basic model for the 

index-linked gilt yield, R(t), recently published in Wilkie (1995b):

In R(t) = In RMU + RA (In R(t -1) -  In RMU) + RSD. RZ(t)

where RZ(t) ~ i.i.d. N(0,1). One notable difference between R(t) and IL(t) is that an 

AR(1) rather than an AR(3) process was proposed. This is consistent with the Reduced 

Standard Basis in Wilkie (1986) and subsequent versions of Wilkie's Consols yield 

model (see Wilkie, 1995a, 1995b). The resulting autoregressive parameter RA of about 

0.5 implies much stronger mean reversion properties than the net effect of the three CA 

parameters used in the model for IL(t), as CA 1 + CA2 + CA3 « 0.9.

Comparing the residual parameters, the value for RSD = 0.0731 is remarkably close to 

the value for /LSD = 0.07, while ILMU = 0.035 appears to be a reasonable 

approximation to the fitted value of RMU = 0.0386. Wilkie also suggests that the error 

terms in R(t) are strongly correlated with CZ(t), though not to the extent implied in IL(t). 

Hence, IL{t) may produce index-linked gilt yields which are more highly correlated with 

the Consols yield than one might expect in practice (also see Table 3.7 later).

Although this is unlikely to have much impact on the correlation between the returns 

from these two asset classes, it may limit the ability of either asset class to be diversified 

against changes in the statutory minimum basis for valuing insurance liabilities. This 

may in turn reduce the extent to which these two asset classes appear together in any 

optimal portfolios derived in respect of a life office and should be kept in mind when 

analysing results produced in later chapters. Nevertheless, the relative stability of
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index-linked gilt yields and the fact they are not perfectly correlated with the Consols 

yield may help to constrain this affect.

In conclusion, it must be emphasized that the choice of model for IL(t) and in particular 

the parameter values is somewhat arbitrary and has not undergone any rigorous 

statistical tests. While the proposed model is far from ideal, data inadequacies limit the 

usefulness of statistical fitting procedures to a long term model. Even so, it is 

reassuring that the model adopted is broadly similar to the model fitted by Wilkie, 

particularly in terms of the implied means and variances. With index-linked gilts, the 

most important variable which affects the total return is inflation, rather than the real 

yield. Such crude adjustments may not be so easily justified with other asset classes.

3.5 Cash

The importance of including some form of short term fixed interest assets in these 

investigations has been briefly discussed, though Wilkie's original model did not 

incorporate short term interest rates. Daykin & Hey (1990) attempted to alleviate this 

deficiency by using a deterministic yield curve, in conjunction with the Consols yield 

produced by Wilkie's model, in their investigations. As with the real yield adjustment, 

deterministic yield gaps should be avoided even if they appear to behave in a reasonable 

fashion over a long period of time.

For this reason, an attempt had been made to produce a stochastic model for short term 

interest rates in Ong (1994), the main results of which are detailed in Sections 3.5.1 and 

3.5.2. Using a Box-Jenkins approach, a model was fitted which could be used alongside 

Wilkie's model, without requiring the latter to be altered in any way. The data used as a 

proxy for short term interest rates was the discount rate on three-month Treasury Bills.
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3.5.1 P re lim in a ry  investig a tio n s

Considering the purpose of the model, it would seem reasonable, a priori, to conduct 

the fitting procedure using data from 1919 to 1982, similar to the period used in Wilkie 

(1986). However, a more recent period had been chosen for two reasons. During the 

Second World War, short term interest rates were fixed by the government at 0.5%. 

This artificial restriction on cash yields seemed inappropriate for linear modelling. As 

with other asset categories, the general trend of cash yields has also changed over the 

past 70 years. Therefore, it should be preferable to use a more recent data set while 

maintaining a reasonable number of observations with which to achieve a reasonable fit. 

Although government restrictions on interest rates were eventually removed in 1951, it 

seemed sensible for modelling purposes to allow some time for yields to revert back to 

their more usual state. Hence, the data period selected was from 1955 to 1993.

Figure 3.3. Historical cash yield, Consols yield and force o f inflation.

Figure 3.3 above shows a graph of cash yields together with the Consols yield and the 

force of inflation over this period. From the graph, it appears that the series are non-
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stationary, thus failing a pre-requisite of the Box-Jenkins approach. In Autoregressive 

Integrated Moving Average or ARIMA modelling, a non-stationary series may often be 

fitted satisfactorily by differencing the data one or more times. This had been decided 

against in order to maintain as much consistency with Wilkie’s model as was possible.

A more appropriate way of dealing with non-stationarity would be to model the 

relationship between cash yields and some other series such as Consols or inflation. 

Looking at Figure 3.3, it would appear that the three series do tend to track each other 

over the time. If the relationship between cash yields and at least one of the other two 

series is fairly stable over time, a reasonable fit may be possible by including the 

Consols yield and the force of inflation as input variables in the model.

Figure 3.4. Historical [cash yield -  Consols yield] and [cash yield -  force o f inflation].

A time series is said to demonstrate weak form stationarity when its mean and 

autocorrelation function remain the same over different time segments (see Chatfield, 

1989). Figure 3.4 shows how the mean of the series [cash yield] -  [Consols yield] does 

not appear to change much over time which brings it closer to the definition of
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stationarity. However, the higher variance over the second half of the period may 

indicate the possibility of heteroscedasticity in this series. With regards the spread 

between the cash yield and the force of inflation, there appears to be even less evidence 

of stationarity, with higher means being exhibited over the last decade and exceptionally 

high variances during the mid-seventies.

Further justification for including transfer functions for the Consols yield and the force 

of inflation may be observed from the crosscorrelation plots shown in Figures 3.5 and 

3.6. In both cases, the highest crosscorrelation occurs at lag zero.
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Figure 3.5. Sample crosscorrelation function between the cash yield and the force o f inflation.
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Figure 3.6. Sample crosscorrelation function between the cash yield and the Consols yield.
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Figure 3.7. Sample autocorrelation function for the cash yield.

Figure 3.8. Sample partial autocorrelation function for the cash yield.

The autocorrelation function (a.c.f.) and partial autocorrelation function (p.a.c.f.) of the 

cash yield were then computed over a number of lags and illustrated in Figures 3.7 and 

3.8 respectively. From the a.c.f. plot, the lack of stationarity in cash yields is evident 

whilst the plot of the p.a.c.f. appears to suggest an AR(1) process.

3.5.2 A Model for Cash -  Consols

Based on the preliminary investigations, an AR(1) model for the cash yield, K(t), was 

fitted with the Consols yield and the force of inflation included as transfer functions, the 

form of the model being:
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K(t) — (i + A./(f) + coC(t) -----------e(t)
(1 — <j)B)

where I(t) and C(t) are the force of inflation and the Consols yield at time t, with the 

error term e{t) ~ i.i.d. N(0, a 2). B is the backshift operator, BA(f) = X ( t- 1). As with 

this and subsequent models fitted here, the estimation procedure had been carried out by 

the method of maximum likelihood using SAS/ETS® (SAS Institute Inc., 1988). The 

parameter estimates obtained for the above model are given in Table 3.1.

Parameter Estimate Approx. S.E. t-Ratio

<t> 0.44 0.15 2.84

X 0.03 0.15 0.20

(0 1.02 0.25 4.12

p 0.00 0.02 -0 .25

<7 0.02 - -

Table 3.1. Parameter estimates for 5-parameter cash model.

The parameters X and p were found to be insignificant and correlated with the parameter 

co. Hence, both parameters were discarded and the estimation procedure was repeated 

for the reduced model:

K(t) = <aC(t) +---- -— -e(t)
(1 —4>B)

The resulting estimates (see Table 3.2) remained very much unchanged in relation to 

those shown in Table 3.1. This was also true of the standard deviation of the residuals 

which had been marginally increased from 0.02189 to 0.02194. The parameters <j> and to 

were not significantly correlated, yielding a correlation coefficient of -0.023.
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Parameter Estimate Approx. S.E. t-Ratio

<t> 0.43 0.15 2.92

CO 1.00 0.06 15.53

(7 0.02 - -

Table 3.2. Parameter estimates for 3-parameter cash model.
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Figure 3.9. Residual plot of [actual -  forecast] for (1 -  <j>B).(/f(/) -  C(/)).

Looking at Figure 3.9, the residual plot for the reduced model seems satisfactory. It 

may also be noted that the two outliers of greatest magnitude occurred in 1974 and 

1979, two years of economic crisis in the UK. When the residuals were tested for 

autocorrelation over 6 and 12 lags, the results provided no evidence to suggest that the 

residuals correlated. In addition, the Box-Ljung Q-test for heteroscedasticity (see 

Harvey, 1989) was found to be insignificant, giving a Q-value at lag 6 of 2.78.

Summary statistics of the residuals are shown in Table 3.3 below. From the first three 

moments given, it would appear that the distribution of residuals are roughly 

symmetrical about a mean of zero. The only indication of non-normality of residuals
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exists in the relatively high measure of kurtosis obtained, which is mainly due to the 

presence of the two outliers mentioned earlier. Nevertheless, the residuals still pass the 

Jarque-Bera test for normality (see Wilkie, 1995b) at the 10% significance level.

Mean S.D. Skewness Kurtosis

0.00 0.02 0.24 1.59

Table 3.3. First four central moments o f the residuals for (1 -  <J>B).(/f(r) -  C(t)).

Alternative models were also tested by altering the transfer function relating to Consols 

yield (see Ong, 1994). For each of these variants, the standard deviation of the residuals 

still remained at about 0.022, indicating that the increased parameterization in the 

transfer function was not leading to significantly better fits. Hence, the model 

suggested in Ong (1994) was of the form:

K(t) = C(t) + KA.(K(t-1) -  07-1 )) + KSD.KZ(t)

where KZ(t) ~ i.i.d. N(0, 1), with parameters values (rounded to one significant figure):

KA = 0.4, KSD = 0.02.

The neutral initial condition for this model is K(0) = C(0). For practical reasons, a 

lower bound on the cash yield of 0.5% had also been imposed. When tested by 

simulation, the model appeared to produce reasonable results.

3.5.3 A Model for ln(CashJConsols)

Shortly after these results were published, Wilkie (1995a) released for the first time a 

model for short term interest rates. Although it was not clear exactly which data period

68



had been used, it may be inferred from the text that it probably included the years from 

1923 to 1990. The proposed model structure was essentially the same as that of K(t) 

above, except that the logarithms of the cash yield and the Consols yield were being 

used, as opposed to the untransformed variables. Using the log transformation means 

that it is the ratio between the two variables is being modelled rather than the difference. 

This also implies that the model residuals are assumed to be lognormally distributed.

Regardless of which approach is perceived to be more intuitive, a definite advantage of 

the log transformation is that the cash yields produced by the model will always be 

positive. However, as no such transformation had been applied to C(t) in Wilkie's 

model, using InC{t) as an input variable in the cash yield model may be considered 

inconsistent.

The model for short-term interest rates proposed in Wilkie (1995a) is given by B(t), 

where:

\nB(t) = lnC(i) + BA.(lnB(t-\) -  lnC(t-l)) -  (\-BA).BMU + BSD.BZ(t)

and BZ{t) ~ i.i.d. N(0, 1). The parameter values are:

BA = 0.75, BMU =0.185 and BSD = 0.175.

Comparing the two models, it is clear that the parameters values in B(t) are very 

different from those in K(t). In particular, the autoregressive parameter of BA = 0.75 is 

very high compared with KA = 0.4, and the model includes an extra term BMU = 0.185, 

which translates to the cash yield being proportionately smaller on average than the 

Consols yield. While these discrepancies may be the result of the log transformation, 

the more likely cause relates to the artificial restrictions placed on cash yields during 

and shortly after the Second World War.
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In order to investigate this further, the following model was fitted over the period from 

1955 to 1993 inclusive, where K(t), C(t), I(t) and e(t) are defined as before.

InK(t) = \x + XI(0  + co.lnC(0 +

Parameter Estimate Approx. S.E. t-Ratio

0.40 0.16 2.59

X -0 .44 1.43 -0 .31

(0 1.27 0.22 5.82

P 0.64 0.61 1.05

a 0.24 - -

Table 3.4. Parameter estimates 5-parameter log transformed cash model.

Looking at Table 3.4, it may be seen that the parameters X and p are not significant. In 

addition, they were also found to be strongly correlated with each other and the 

parameter co. Hence, both X and p were felt to be inappropriate and the model was 

refitted with these parameters set at zero, i.e.:

In K(t) = to. In C(f) + ----------e{t)
(1-4>B)

The resulting parameter estimates for this reduced model are given in Table 3.5. It may 

be noted that these values of (f> and to are very similar to those shown in Table 3.2 for 

the untransformed series. With a correlation coefficient of 0.057, it would appear that 

they are also uncorrelated.
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Parameter Estimate Approx. S.E. t-Ratio

<t> 0.40 0.15 2.66

0) 1.03 0.02 41.81

a 0.23 - -

Table 3.5. Parameter estimates model for 3-parameter log transformed cash model.
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Figure 3.10. Residual plot o f  [actual -  forecast] for (1 -  <j)B). ln(AT(/)/C(r))-

In relation to the fit of the model, the standard deviation of the residuals has increased 

slightly from 0.2268 to 0.2315, as a result of removing the parameters A. and p. The 

residual plot shown in Figure 3.10 appears to be better than that of Figure 3.9 for the 

untransformed model, with outliers being less pronounced. As before, the residuals 

show no significant autocorrelation over 6 and 12 lags. A Q-value at lag 6 of 3.69 also 

suggests no evidence of heteroscedasticity in the residuals. Summary statistics of the 

residuals are shown in Table 3.6 below. The log transformation has succeeded in 

eliminating the sizeable fourth moment from the residuals and appears much more 

satisfactory compared with the untransformed model. With Jarque-Bera test statistic of 

0.37, there is no evidence to suggest the distribution of these residuals is non-normal.

71



Mean S.D. Skewness Kurtosis

0.00 0.23 -0.21 -0.22

Table 3.6. First four central moments o f the residuals for (1 -  <})B). ln(AT(r)/<T(r)).

Overall, the log transformed model does seem to be more appropriate. The residuals 

appear to have more favourable properties, particularly in relation to the measure of 

kurtosis observed. In addition, the transformations do away with the need to impose a 

minimum on the cash yield. Hence, the model for cash chosen for these investigations 

is:

InK(t) = lnC(f) + KA.(\nK(t-\) -  lnC(t-l)) + KSD.KZ(t) 

where KZ(t) ~ N(0, 1), with parameters values:

KA = 0.4 and KSD = 0.25.

The neutral initial condition for this model is K(0) = C(0).

Overall, this would appear to be the best fitting model in the context of a Box-Jenkins 

framework. The differences in parameter values when compared against Wilkie's model 

may be attributed to the different data periods used.

3.6 Simulation Results

The purpose of this section is to analyse the simulation results produced by the 

investment model. As well as highlighting the main features of the variables concerned, 

the simulation results should provide a means of checking that the model has been 

implemented correctly. A thousand simulations are employed in all computations that
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follow. The same initial random seed is also used throughout, so that the different sets 

of results may be more comparable.

3.6.1 Means, Standard Deviations and Correlations o f Yields

The results from a thousand simulations of the yields after one year are summarized in 

Tables 3.7. Yields for RPI, cash, Consols, index-linked gilts and equities in this context 

are defined as Q( 1)— 1, 77(1), C(l), IL( 1) and Y(l) respectively. The average yields are 

broadly compatible with the neutral assumptions specified in the model, i.e. 5.17% for 

the inflation rate, 8.5% for both 77(0) and C(0), 3.5% for 71(0) and 4.28% for 7(0).

RPI Cash Consols IL Gilts Equities

MEAN (%) 5.4 8.9 8.6 3.5 4.4

S.D. (%) 5.1 2.3 0.5 0.3 0.8

CORRELATION

Cash 0.10

Consols 0.36 0.27

IL Gilts -0.04 0.25 0.91

Equities 0.32 0.00 0.21 0.15

Table 3.7. Means, standard deviations and correlation coefficients o f yields after 1 year.

Amongst the asset classes, cash yields are the most variable, followed by dividend 

yields, Consols yields and index-linked gilt yields, which seems reasonable. The only 

variables which are highly correlated with each other are Consols and index-linked gilts, 

which is to be expected given that the same error terms are used in both CN(t) and IL{t).
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In this section, the accumulated or 'rolled-up' amounts of 1 over one and twenty years is 

examined. The accumulations of Consols and equities are calculated exactly as 

described in Wilkie (1986). Index-linked gilts are assumed to have a real coupon of 

2.5% at all times and a term to maturity of exactly ten years when first purchased. At 

the end of each year, the stocks are sold as nine year gilts and the proceeds used to 

purchase ten year gilts with the assumption that the real yield is identical for both nine 

and ten year gilts. For simplicity, the eight month lag used in practice for indexing 

coupons and redemption proceeds has not been implemented. Tax rates are assumed to 

be zero for all asset classes.

3 .6 .2  M eans, S ta n d a rd  D ev ia tio n s a n d  C o rre la tio n s o f  N o m in a l A cc u m u la tio n s

RPI Cash Consols IL Gilts Equities

MEAN (%>) 5.4 8.9 8.0 8.8 10.6

S.D. (%>) 5.1 2.3 6.3 5.8 21.0

CORRELATION

Cash 0.10

Consols -0.37 -0.28

IL Gilts 0.93 0.00 -0.01

Equities -0.21 -0.01 0.18 -0.14

Table 3.8. Means, standard deviations and correlation coefficients o f nominal rates o f return over 1 year.

Results for one year accumulations are summarized in Table 3.8 in terms of annual rates 

of return. The mean return for each of the variables seems intuitively reasonable, 

although Consols do not appear to perform as well as one might have expected. This 

because yields on average have risen from 8.5% to about 8.6% during that year. In 

contrast to the variability in yields seen in Table 3.7, the asset class with the lowest
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standard deviation of returns is cash. Overall, the results are very similar to those 

obtained in Wilkie (1986), except for equity returns which Wilkie found on average to 

be 12.17%. This discrepancy could be attributed to sampling error as the two estimates 

of equity returns may still lie within two standard errors of the true mean.

The accumulations over a twenty year period are presented in Table 3.9. However, only 

the mean accumulations are expressed here in terms of effective annual rates of return. 

It is important to note how this differs from calculating the annual rate of return in each 

simulation and then taking averages, which was the approach adopted in Wilkie (1986). 

In the case of inflation say, the estimate calculated here is that of E[Q{20)]1/20- l ,  as 

opposed to Wilkie's estimate of E[Q(20)1/2°] -1 . The differences between these two 

approaches may be checked by deriving the analytical distributions for these statistics.* 

Estimates of standard deviations and correlation coefficients on the other hand are 

calculated in respect of the actual accumulations.

From this table, the expected return on Consols appears to be more in line with that of 

cash. This is reasonable given that the model basically assumes a flat yield curve in the 

long term. The variability in Consols is also very much reduced relative to cash, which 

seems sensible. Index-linked gilts appear to outperform fixed interest assets though at 

the expense of having much higher variability than either cash or Consols. 

Nevertheless, the equity class maintains its position as the asset class with the highest 

mean and standard deviation of accumulations.

t Assuming the neutral initial condition VlnC(O) = QMU and if Q(0) = 1, then Q(T) ~ logNormal(p, a 2),

Therefore, E[Q(T)]1/r = exp(|j./7’+a2/27) and E[Q(T)xrI'} = exp(p/7’+CT2/272). At T = 20, p = 1.0 and a 2 = 

0.274416 resulting in £ [g (2 0 )]1/2° -  1 = 5.85% and £ [g (2 0 )1/2°] -  1 = 5.16%. These are approximately 

equal to their corresponding simulated values.

where p = T.QMU and G 2 — T +
QA2(QA2T - 1) -  2QA(QAr -  l)(QA + 1)

m 2- 1)
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RPI Cash Consols IL Gilts Equities

MEAN (%) 5.8 9.2 8.8 9.6 11.0

S.D. 1.7 1.9 1.1 3.5 6.4

CORRELATION

Cash 0.53

Consols -0.08 0.28

IL Gilts 0.99 0.58 0.00

Equities 0.57 0.29 0.03 0.57

Table 3.9. Means, standard deviations and correlation coefficients of 

nominal accumulations over 20 years.

Looking at the correlation matrix, accumulations of index-linked gilts appear to be 

almost perfectly correlated with the retail price index. In addition, cash and equities 

also exhibit quite a strong positive correlation with both inflation and index-linked gilts 

over a twenty year period. Consols on the other hand seem to be independent of all the 

investment variables apart from cash, with which they are weakly correlated.

3.6.3 Histograms o f Nominal Annualized Returns over Twenty Years

In order to examine the distributions of nominal annualized returns over twenty years, 

histograms are plotted for each of the variables and shown in Figure 3.11. From these 

plots, it is possible to get some idea of the range of values which each variable may 

take. For example, inflation and equities are the only two variables which seem to 

produce negative 'returns' in the long term. In contrast, the returns on both cash and 

Consols are rarely less than 5% over a twenty year period.
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Another notable feature of these plots is that the distributions appear almost symmetric, 

which is partly to do with the fact that annualized rates of return are being used. If 

frequencies had been plotted against the accumulated amounts, the distributions would 

have appeared much more skew. This increased skewness may account for the 

generally higher effective mean rates of return observed in respect twenty year 

accumulations compared with one year returns.

Consols

Index-linked Gilts Equities

Inflation

Figure 3.11. Histograms o f nominal rates o f returns (% per annum) from 1000 simulations over 20 years.
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The results shown in Tables 3.10 and 3.11 are equivalent to those of Tables 3.8 and 3.9 

when calculated in real terms. In each simulation, the accumulated amount is divided 

by Q(i) before any estimates are calculated. Hence, the retail price index is now 

redundant.

3 .6 .4  M eans, S ta n d a rd  D ev ia tio n s a n d  C o rre la tio n s o f  R e a l A ccu m u la tio n s

Cash Consols IL Gilts Equities

MEAN (%) 3.6 2.9 3.3 5.4

S.D. (%) 5.3 9.3 2.0 21.8

CORRELATION

Consols 0.66

IL Gilts -0.14 0.57

Equities 0.41 0.41 0.14

Table 3.10. Means, standard deviations and correlation coefficients o f real rates o f return over 1 year.

In Table 3.10, the mean real returns are roughly consistent with the mean nominal 

returns less the mean rate of inflation. Index-linked gilts are now shown to be the most 

stable asset class in real terms, which was to be expected. Compared with the results in 

the nominal case, it may be noted that the level of variability has increased quite 

dramatically in both cash and Consols, reduced considerably in index-linked gilts and 

remained about the same in the case of equities. The high volatility seen from real cash 

returns in the short term is an inherent property of the model due to there being no direct 

relationship specified between cash and inflation.
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Looking at Table 3.11, the real accumulations from equities now appear to be slightly 

less volatile in relation to Consols. This, to a limited extent, may have been anticipated 

from the estimated correlations between these asset classes and inflation shown in Table 

3.9. Over twenty years, the standard deviation of real returns from index-linked gilts is 

almost negligible when compared with the other asset classes. From the above table, it 

is interesting note how on average, Consols and cash seem to outperform index-linked 

gilts in real terms. This is in contrast to the effective average nominal returns over the 

same period, which are 8.8%, 9.2% and 9.6%, for Consols, cash and index-linked gilts 

respectively.

Cash Consols IL Gilts Equities

MEAN (%) 4.1 4.3 3.5 5.2

S.D. 0.99 1.74 0.13 1.67

CORRELATION

Consols 0.73

IL Gilts 0.34 0.20

Equities 0.18 0.16 0.04

Table 3.11. Means, standard deviations and correlation coefficients o f real accumulations over 20 years.

The curious reversal of orderings is possible because the mean real accumulation is not 

necessarily comparable with the mean nominal accumulation divided by the mean value 

of the retail price index. In fact, this situation is not different in principle to the earlier 

discrepancy between mean effective rates of return and effective mean rates of return. 

From the figures obtained, it may be deduced that the chances of obtaining high 

nominal returns when inflation is low, must be greatest in Consols and smallest in 

index-linked gilts. The correlations shown in Table 3.9 also support this explanation.
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3.7 Summary

In summary, the investment model described in this chapter comprises the asset classes 

of cash, Consols, index-linked gilts and equities, as well as the retail price index. The 

'Full Standard Basis' specified in Wilkie (1986) had been chosen to represent the retail 

price index, the Consols yield, the share dividend yield and the share dividend index. 

With an appropriate reduction of variance, the real yield component in the Consols yield 

model was felt to be a crude but adequate proxy to the index-linked gilt yield for the 

purposes of this research.

It was also shown that cash yields could be modelled by a first-order autoregressive 

process of the log of the ratio between the cash yield and the Consols yield. In arriving 

at this model, two interesting issues had emerged. Firstly, the results gave little 

evidence for incorporating inflation directly into the cash model. While it may be 

perceived in some circles that inflation rates and cash yields are closely linked, the 

correlation between these two variables has only become prominent since the 1980's. 

Secondly, there was sufficient evidence from the data observed since 1955 that the yield 

curve should on average be flat. This contrasts with perhaps the more usual view that 

the yield curve tends to be upward sloping.

From the simulation results, it would appear that the overall distributions obtained are 

intuitively reasonable. Over one year, cash returns are predicted to be the most stable in 

nominal terms whereas Consols seem to be the least volatile over a twenty year period. 

Index-linked gilts on the other hand are the most stable in real terms over both short and 

long time horizons. In all cases, equities appear to outperform the other asset classes on 

average, though they also tend to exhibit the greatest variability as well.

Although the general orderings described above are broadly intuitive, the choice of 

model structure and parameter values seems more uncertain. For instance, the strong
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link between equity returns and the retail price index implied by the cascade structure 

does not appear to be supported by the data. This should be kept in mind when 

assessing the role of equities in relation to real liabilities. In addition, it would also be 

sensible to note that the model for index-linked gilt yields had not been fitted with any 

degree of statistical rigour due to data inadequacies. The slope of the yield curve also 

appears to be sensitive to the data period chosen, thus introducing greater uncertainty to 

the relative position of cash in any optimal asset mix which may be obtained.

Despite the uncertainty in the investment model, it is important to remember that this 

research is aimed at investigating optimal asset allocation strategies based upon rational 

decision-making, rather than obtaining the correct answers. Rational decisions need to 

take into account the decision maker's future beliefs and hereafter, it will be assumed 

that this investment model accurately describes these future beliefs. Ultimately, 

however, the optimal decisions which will be obtained later must be viewed in the light 

of the assumptions which underlie the investment model and not in absolute terms.
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4. STATIC OPTIMIZATION I - AN ASSET FUND

4.1 Introduction

Although the aim, ultimately, is to investigate the optimal asset allocation strategies for 

life offices, the process involved could potentially become too complex for the results to 

be interpreted in isolation. Apart from having to contend with the interactions between 

an investment model, a liability model and a utility function all at once, incorporating a 

liability structure may severely increase the computation time required, thus putting 

restrictions on the scope for experimentation.

As the methodology used in this research is applicable whether or not a liability model 

is included, it would seem instructive to first consider the case of an asset fund in the 

absence of explicit liabilities. Being fairly transparent, this situation should provide a 

feel for the appropriateness of the asset model and utility functions. From this position, 

it should then be easier to understand the more complex case with insurance liabilities 

involved. Hence, this chapter deals exclusively with an asset fund where no explicit 

liabilities are present.

In this chapter, consideration is first given to the framework in which the investment 

decision is being made. The procedure for obtaining analytical solutions is outlined and 

its limitations are discussed. Numerical optimization is introduced as an alternative to 

closed form solutions, including a brief description of the methods that will be used 

throughout this research. These methods are then applied to the framework set out 

earlier and the results analysed. Problems which may arise in the process are also 

investigated here. Finally, the accuracy of the results are interpreted with regard to the 

uncertainty inherent in this form of modelling.
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4.2 Utility Maximization

4.2.1 Formulation o f the Problem

This section considers the case of a personal investor about to invest a fixed sum of 

money in a pool of assets, such as a unitized fund. It will be assumed that the investor is 

required to select the best asset mix for this fund from a given set of asset classes. In 

order for the problem to be resolved rationally, the optimal decision will need to take 

account of a number of factors. These generally pertain to the characteristics of the 

asset classes and the investor's risk preferences.

The joint distributions of returns from the asset classes are obviously crucial to any 

portfolio selection problem. In arriving at the optimal decision, a rational investor 

would not only need to ascertain the expected return that could be derived from the 

portfolio concerned, but also the level of risk that is involved. This issue is related to 

the period of investment as the behaviour of the asset classes tend to be different over 

different time periods. Cash, for example, would usually be considered a sound 

investment over a fairly short time scale. On the other hand, the return from Consols 

should be more stable relative to cash in the longer term, but not in the shorter term. 

However, unless one portfolio stochastically dominates all the others, assessing the 

characteristics of the asset classes is only one part of the portfolio selection problem.

The investor will also have to decide how to trade off risk with return, and this relates to 

the investor's risk preferences. Although the reason for investigating the asset fund is so 

that the complexity of a liability structure may be ignored, it is almost inevitable that 

implicit liabilities will play a role in the decision-making. Unless the investment is 

being made for no reason at all, the investor's perception of risk should depend on the 

individual's commitments. For example, if the investment is being made in order to 

repay a loan of a fixed amount at a fixed date, it would be sensible to look at the returns
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over the period concerned in nominal terms. The extent to which the investor is affected 

by returns other than that necessary to repay the loan will determine the shape of the 

utility function. However, if the investor simply wishes to maintain the purchasing 

power of the fund, it would then be more appropriate to look at real returns.

Consider the case where the investment is to be made over a one year time horizon. 

Suppose there are M  asset classes available. Let the row vector of accumulation factors 

be vT = (v, ... v j ,  where v, is the random variable representing an amount of 1, 

accumulated over one year in asset class i. For the investment model described in 

Chapter 3, the asset classes could be ordered as follows: {/' = 1,2,3,4} s  {cash, Consols, 

index-linked gilts, UK equities}.

In addition, let the asset mix be represented by the row vector wT = (w ,... wM), where w, 

is the proportion invested in asset class i. Clearly, all the w/s must sum to one. 

Although it would be common to include the non-negativity constraint of w > 0, this 

will be ignored for the time being. So for a given amount, A to be invested, the 

accumulated sum, S at the end of the year is defined to be S = A. wT v. Hence, the 

objective is to choose w which maximizes the expected utility of S, i.e.:

max £[U(S)].

Throughout this chapter, the investor will be assumed to have an exponential utility 

function, U(S) = -exp(-57r). When written in this manner, r is generally referred to as 

the measure of risk tolerance of the investor. This is simply the inverse of the measure 

of absolute risk aversion (see Section 2.3.2). The higher the value of r the greater the 

tolerance to risk. So an investor with a higher value of r than another, for a given 

amount invested, would be expected to invest in a more risky portfolio. Use of the 

exponential function therefore enables us to compare a range of investor risk 

preferences.
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4.2.2 Analytical Solutions

Under certain conditions, it may be possible to obtain closed form solutions for the 

utility maximizing portfolios. Using an exponential utility function in conjunction with 

the assumption that all random variables are normally distributed, Sherris (1992) 

derived a very useful analytical result for just two asset classes and a set of liabilities, L, 

by defining the ultimate surplus, S = A.(wlvl + w2v2) -  L. In fact, solutions for any 

number of asset classes may be obtained when the problem is defined in such a 

framework. The derivation below is related to that of Sherris (1992), but pertains to the 

asset only case with M  asset classes.

If the investor has an exponential utility function, U(S) = -expf-SVr), then the optimal 

portfolio is that which maximizes E(-e~slr), or minimizes E(e~slr). Putting t = -Mr, the 

objective function to be minimized, E{e‘s), may be recognized as the moment generating 

function (m.g.f.) of S. So whenever the m.g.f. of S exists, it should be possible to obtain 

analytical solutions to the problem. A situation in which this applies is when all the v,'s 

may be assumed to be normally distributed. If these assumptions hold, then S  would be 

a linear combination of normal random variables, implying that the distribution of S 

would also be normal. Hence, the m.g.f. of S may be expressed as exp(p/+aV/2), with 

p = A wTe and a2 = yf2.wTCw, where:

and:

C =
r, ■ CM\

C\M
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E! and Vi represent the mean and variance of the accumulation factor for asset i and Cij is 

the covariance of accumulation factors for assets i and j. So, the problem reduces to one 

of minimizing exp(pr+a2/2̂ ) , or more simply, minimizing (pl+crt2/^). Hence, the 

optimal portfolios may be obtained by setting wM= 1 -  (w,+ ...+ wM_,) and solving the 

following system of linear equations:

For just two asset classes with normally distributed accumulation factors, the optimal 

portfolio will be (see Appendix B):

and w2* = 1 -  w,*. Although this is the simplest case possible, such an expression may 

be very useful in checking the results obtained using other methods. The approach 

described may also include various inequality constraints, such as w > 0, using Kuhn- 

Tucker conditions (see Walsh, 1975).

However, the analytical approach does have some drawbacks. The method described 

above for the exponential function may be of limited use as it would not usually be 

appropriate to assume that the distributions of the accumulation factors are such that the 

m.g.f. of S exists. Where most other utility functions are concerned, the more restrictive 

assumption of normality may be necessary before it is possible to derive simple closed 

form solutions to the problem. Although quadratic functions do not require these 

assumptions, they suffer from various criticisms as described in Section 2.3.2. Even 

when all these limitations do not apply, analytical methods may still break down if 

complex liability structures are incorporated.

d([it +a2t2 / 2) 
dwi

(r / A)(E] -  E2) + V2 -  Cn 
V\ +V2 ~2Cn

(4.1)
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4.3 Numerical Optimization

4.3.1 Introduction

The method used above to obtain optimal solutions analytically is a simple example of 

classical optimization techniques. Restrictive assumptions were required for the 

objective function to be written in a form which could be optimized, even though these 

assumptions may not have been valid. However, an alternative could be to solve for the 

optimal portfolios numerically. By simulating a large number of scenarios (e.g. 1000) 

from the investment model, an estimate of the true objective function may be optimized 

using minimization algorithms.

There are many classifications for numerical optimization routines, depending on 

whether the objective function is linear or non-linear, whether the problem is 

constrained or unconstrained, etc. The present problem clearly requires a non-linear 

optimization routine as the objective function is non-linear in w. If the non-negativity 

constraints of w > 0 are introduced, then a linearly constrained non-linear routine will be 

needed. Although the intention is to eventually include non-negativity constraints in the 

problem, it will be shown in due course how this may be achieved by appropriately 

transforming the decision variables in the unconstrained case. So for the time being, it 

should suffice just to consider the problem of unconstrained non-linear optimization.

Another issue that arises in choosing a suitable optimization algorithm is whether first 

(and possibly even second) derivatives for the objective function are available. These 

may usually be computed using finite difference techniques, though at the cost of 

additional function evaluations. In addition, this is also conditional upon whether the 

objective function is sufficiently smooth. As the objective function being considered 

here is smooth, very efficient classes of non-linear routines involving first derivatives 

may be used in this particular problem.
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4 .3 .2  U n id im en sio n a l M in im iza tio n

Before proceeding to discuss multidimensional minimization, it is worth noting that the 

most of these methods include unidimensional minimization (sometimes referred to as 

line minimization) as a sub-routine in the overall procedure. Therefore, an efficient 

unidimensional minimization routine, known as Brent's method (see Press et al, 1992), 

is outlined here.

Brent's method is a hybrid method which combines inverse parabolic interpolation with 

the golden section search to obtain a minimum point. Brent's method uses the former 

when the function is sufficiently well-behaved and switches to the less efficient but 

more robust golden section search when this fails. Given an interval in which a 

minimum is known to exist, the golden section search is guaranteed to converge to this 

point (as far as floating point precision will allow). This applies regardless of the 

behaviour of the function within the interval.

4.3.3 Multidimensional Minimization

The most commonly used multidimensional minimization algorithms generally work by 

an iterative process of deriving an appropriate search direction and minimizing the 

function along this direction using a unidimensional sub-algorithm. So for a function,/ 

at the co-ordinate vector, xk and given the search direction, p*, the Afh iteration involves 

minimizing J(xk + Xkpk) with respect to the scalar, Xk. Setting x*+1 = xk + Xkpk, the 

process is then repeated until the specified precision tolerance level is satisfied. The 

core of multidimensional optimization is described in various sources including Walsh 

(1979), Scales (1985) and Beale (1988). Details regarding the practical aspects of 

optimization may also be found in Gill et al (1981) and Press et al (1992).
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Unlike the one-dimensional case, there is no multidimensional minimization routine 

which is ideal in all situations. The choice of method will usually depend on the nature 

of the problem and some degree of experimentation. For this reason, three different 

types of multivariate minimization routines have been considered. The first (Powell's 

method) is a basic technique which does not require the calculation of derivatives. The 

other two (conjugate gradient and quasi-Newton methods) involve the use of derivatives 

in the determination of search directions and are therefore more superior methods. 

However, they may not be appropriate if first derivatives cannot be computed.

Powell's method

For an jV-dimensional problem, the variant of Powell's method described in Press et al 

(1992) begins for a starting vector x0 by initializing N  search vectors p„ ..., pv to the 

basis vectors. The function is successively minimized along each of these search 

directions, resulting in a new point xN. If pd is the search vector which caused the 

largest decrease in function value, then set p y = pijM, pd¥i = pd+2 and so on until pv_, = pv. 

Next, set p^ = x^ -  x0 before x0 is replaced by the abscissa of the minimum of J(xN) 

along this new search direction pN. This is then repeated for the updated starting vector 

and search vectors until the process converges. The reason for displacing the direction 

of greatest descent is to reduce the chance of linear dependence between the resulting 

search vectors. In doing so however, the property of quadratic convergence is forfeited.

Conjugate gradient method

The aim of conjugate gradient methods is to find N  mutually conjugate search directions 

so that the minimum of a quadratic function will be found in no more than N  line 

minimizations. For non-quadratic functions, subsequent cycles of N  line minimizations 

should eventually converge quadratically to the minimum. This is a widely used 

technique with the general form of the Ath mutually conjugate search vector being:

P* = -g* + P*P*-i
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with the initial condition, p0 = go and where gk is the gradient vector at \ k. Variations of 

the method differ in the definition of the scalar, p*. The routine used actually used here 

is the Polak-Ribiere variant which defines:

P* = AgLg*
gig*

where A is the forward difference: Ag*= gA+1 -  gk. Derivations of this together with the 

Fletcher-Reeves and the Hestenes-Steifel variants are set out in Scales (1985).

Quasi-Newton methods

Newton's method for obtaining a function minimum involves searching for a zero 

gradient. For any quadratic function, the gradient at the point xk+] = xk + pk is given by 

g*+i = g* + G pk where G is the Hessian matrix. If G is positive definite, xt+1 is the 

minimum point when gi+1 = 0, i.e. p* = -G “1 gk. Under these conditions, the minimum 

can be obtained in a single iteration. With non-quadratic functions, this procedure will 

need to be carried out iteratively. However, there is no guarantee that the Hessian 

matrix will be positive definite at all points. The intention of quasi-Newton methods is 

to build up a good approximation to the inverse Hessian matrix through a series of 

iterations, without the computational burden of requiring the true Hessian at any stage. 

In addition, the process begins with a positive definite symmetric approximation, H0 

(usually the unit matrix, I) and updates successive approximations, HA in such a way 

that they remain positive definite and symmetric. This ensures a downhill movement in 

each iteration as well as quadratic convergence near the minimum. The variant chosen 

here is the Broyden-Fletcher-Goldfarb-Shanno updating formula (see Scales, 1985), 

which is given by:

H*+i ~
T Ax*AgI H* T Ax*AgI

AxlAg* _ AxIAg*.
+ Ax*AgI 

AxIAg*

90



4 .3 .4  B o u n d  C o n stra in ts  a n d  G lo b a l O p tim iza tio n

Most techniques for handling constraints may be used in conjunction with any method 

of unconstrained optimization. When faced with a constrained optimization problem 

the general aim, as stated in Walsh (1979), is to reduce it to an unconstrained problem or 

to a sequence of such problems.

In the case of imposing simple bound constraints on the decision variables, such as the 

requirement for non-negative asset proportions, this may be achieved by transforming 

the decision variables as suggested by Nash (1979) and Walsh (1979). One approach 

could be to set w, = a,2, for i = 1, 2, 3, and w4 = 1 -  (w, + w2 + w3). Then the 

unconstrained optima for a, will give the positively constrained optima for wr The main 

drawback is of course that w4 may still be negative. If this occurs, then switching w4 for 

the wi with the largest weight and a single re-run should give the required result.

In addition to the occasional inconvenience of having to repeat the optimization once, 

transforming the variables is not the most numerically efficient way of addressing 

constraints as it increases the extent of non-linearity in the problem. Nevertheless, it 

had been noted by Box (1966) that despite not being 1: 1,  such transformations would 

still yield correct results as additional local optima would not be introduced as a 

consequence. Moreover, as the method seemed to work well in this situation, it was 

adopted in preference to the complexity of programming a more sophisticated linearly 

constrained algorithm.

The three unconstrained algorithms outlined in Section 4.3.3 were implemented as 

prescribed in Press et al (1992), with the above mentioned adjustments to allow for the 

non-negativity constraints. Where required, forward differencing was used to obtain 

first derivatives. In terms of efficiency, Powell's variant performed more poorly 

compared to the two gradient methods, as had been expected. Between the gradient
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methods, there did not appear to be a dominant routine although the quasi-Newton 

method occasionally gave rise to roundoff errors causing to become nearly singular 

or non-positive definite. Given that the conjugate gradient method seemed to work well 

in these circumstances, it was felt unnecessary to attempt the recommended Cholesky 

factor modification on the existing quasi-Newton algorithm in order to correct this (see 

Scales, 1985 and Press et al, 1992).

Nevertheless, the results which will be shown in Section 4.4 were obtained using all 

three methods, primarily as a means of checking that the processes were properly 

converging to the global minimum. In addition, various different starting positions were 

also used for this purpose. Although global optima cannot generally be guaranteed, a 

variety of starting positions and routines can usually give a good indication as to 

whether the global optimum has been reached.

However, bearing in mind that all the asset proportions or weights have to be non-

negative and sum to one, it may be feasible to construct a multidimensional grid of all 

admissible combinations to an acceptable resolution. With just four asset types, a four 

dimensional grid in steps of 5% would only require 1771 function calculations. For 

example, a co-ordinate on such a grid could be wT = (0.40, 0.45, 0.00, 0.15).

This is remarkably efficient as each accumulation, (which makes up the bulk of the 

computation), only needs to be performed once regardless of the required number of 

utility functions to be used. These utility functions may then be applied to each 

accumulation for a mere fraction of the total effort. Having constructed the grid for a 

given utility function, the globally optimal weights correct to the nearest 5% may be 

obtained by simply sorting the grid-points. From here on, this will be referred to as the 

'grid approach', and will be used as a check for global optimization alongside any of the 

three optimization algorithms. The grid approach is in fact similar in principle to the 

method employed in Booth (1995a).
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4.4 Results from the Optimization Process

4.4.1 One Year Case in Nominal terms

The aim here is to obtain the optimal asset mix for a fund over one year applying the 

same set of simulations considered in Section 3.6 earlier. The fund is assumed to have 

an initial amount of 1 invested with no explicit liabilities involved. As the exponential 

utility function is being used, the objective function may be optimized for different 

values of risk tolerance r, to see how the optimal mix may change with different risk 

preferences. Optimization routines are used to compute w numerically subject to w > 0. 

This process is similar in principle to that found in Booth and Ong (1994).

The optimal asset mixes rounded to the nearest percent for various values of r are given 

in Table 4.1, including the means and standard deviations of the accumulated amounts. 

A graphical summary is shown in Figure 4.1.

r CASH CON ILG EQ Mean S.D.

4 0 0 0 100 1.1060 0.2098

2 8 0 12 80 1.1026 0.1670

1 46 0 13 41 1.0959 0.0859

1/2 66 0 13 21 1.0925 0.0461

1/4 75 0 13 12 1.0909 0.0303

1/8 80 0 13 7 1.0901 0.0238

1/16 82 2 12 4 1.0894 0.0209

1/32 80 8 10 2 1.0885 0.0188

1/64 80 10 9 1 1.0882 0.0183

Table 4.1. Optimal portfolios for the 1 year case in nominal terms, with 

the means and standard deviations o f the accumulated funds.
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Figure 4.1. Optimal portfolios for the 1 year case in nominal terms at various values o f r.

As the reason for using a range of risk tolerance parameters is merely to compare 

different risk strategies, the method for selecting these risk parameters was arbitrary. In 

this case, having found that the value of r = 1 resulted in a reasonably diverse portfolio, 

subsequent values of r were simply increased and decreased by multiples of two until 

the optimal mixes appeared to reach some limit.

Taking into account the main properties of the asset classes produced by the investment 

model, these results appear to be reasonable. The optimal strategy for the investor with 

the highest risk tolerance is found to be 100% in equities and this proportion decreases 

steadily as the level of risk tolerance reduces. Cash on the other hand is the asset class 

with the lowest variability, and its optimal proportion can be seen to increase as r is 

decreased. However, the proportion in cash seems to reach a limit of about 80% 

because the portfolio can be made more stable without reducing the expected return 

through diversification. This may be also seen by comparing the standard deviation of a 

fund entirely invested in cash (0.023) with the standard deviations of the portfolios 

which are optimal at values of r below 1/8, shown in Table 4.1. Another feature worth
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noting from the results is how insensitive the optimal proportions in index-linked gilts 

are to the value of r, remaining between 9% and 13% when r takes values of 2 or below.

Figure 4.2 is a graph showing the position of the utility maximizing portfolios in 

relation to those that are efficient from a mean-variance (E-V) perspective. The 

horizontal and vertical axes represent the means and standard deviations (S.D.) of the 

accumulated fund respectively. The E-V efficient frontier was not computed exactly but 

had been estimated in the following manner. From the set of 1771 portfolios tested 

using the grid approach, those portfolios which had a higher standard deviation but with 

the same or a lower mean than any other portfolio present were discarded, leaving the 

'efficient' portfolios. A line drawn through these portfolios therefore is an approximate 

E-V efficient frontier. The fact these mixes were computed in steps of 5% accounts for 

the lack of smoothness seen in the frontier.

Figure 4.2. Graph o f S.D. vs. Mean for E-V efficient and utility maximizing portfolios:

1 year nominal accumulations.

Looking at the graph it may be noted that the utility maximizing portfolios all seem to 

lie on the E-V efficient frontier. However this is hardly surprising given how closely the
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exponential utility function may be approximated by a suitable function of mean and 

variance. This approximation is made even closer by the fact that the distributions of 

accumulated amounts from the investment model over a one year period are nearly 

symmetric.

4.4.2 Twenty Year Case in Nominal terms

Next, consider how the optimal portfolios over twenty years compare with those over 

one year. In this situation, an issue arises which did not apply in the one year case. 

Suppose that for a given asset mix, an amount is to be invested without making any 

withdrawal over a twenty year. At the end of the first year, there are two possible 

interpretations regarding such a strategy. The total accumulations earned from each 

asset class could be i) reinvested in the same asset class, or ii) pooled and reinvested in 

the same proportions as those in which the fund was invested at the start of the first 

year. Algebraically, if xm l is the accumulation of an amount 1 from asset class m over 

the period t— 1 to t, and wm is the proportion invested in asset class m, then for an initial 

investment of A, the accumulated fund of S at the horizon date could be either:

s=A£(wm.n*m,,)
m l

i)

ii)
t m

The first situation relates to a 'buy and hold' strategy which may be reasonable when no 

contribution or consumption is made to or from the fund during the period concerned. 

This is what essentially happens when a person chooses a particular asset mix in a group 

of unit trusts without issuing any switching instructions thereafter. Hence, the resulting 

asset mix at the horizon date may be very different from that chosen at the start.
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The second strategy however would seem more sensible particularly if money may be 

added to or withdrawn from the fund. Due to the fact that the asset mix at time t will be 

the same as at the start of the investment period, the treatment of new money at time t 

would be straightforward. This in fact is a discrete time approximation to a continually 

rebalanced fund. As this approach would seem more general, it will be used in the 

twenty year case here.

r CASH CON ¡LG EQ Mean S.D.

64 0 0 14 86 8.1011 5.8861

32 0 0 18 82 8.0858 5.7440

16 0 0 24 76 8.0476 5.5341

8 16 0 17 67 7.7938 4.6621

4 25 24 0 51 7.1641 2.9844

2 17 48 0 35 6.6452 2.0050

1 19 58 0 23 6.2770 1.5019

1/2 24 61 0 15 6.0387 1.2777

1/4 29 60 0 11 5.9273 1.2119

1/8 31 59 0 10 5.9023 1.2042

1/16 34 56 0 10 5.9153 1.2276

1/32 37 54 0 9 5.8943 1.2312

Table 4.2. Optimal portfolios for the 20 year case in nominal terms, with 

the means and standard deviations of the accumulated funds.

Similar to the one year case, the optimal mixes over twenty years were obtained 

numerically and these results are shown in Table 4.2. From the table, a number of 

similarities to that of the one year case may be seen. Equities remain the main asset 

class for high risk strategies and their optimal proportions reduce consistently with
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decreasing r. Low risk portfolios are predominantly in fixed interest assets as before, 

although the mix between cash and Consols now favours Consols which makes intuitive 

sense as their returns are more stable over a twenty year term.

One notable difference is the trend in the index-linked gilt proportions over various 

levels of risk tolerance. These do not feature in the low/medium risk portfolios and only 

appear when r takes very high values. Being the asset class with a mean and standard 

deviation second only to equities may partly explain their presence in high risk 

portfolios. The reason for failing to appear in lower risk strategies is probably due to 

their unfavourable balance between risk and reward in relation to the other asset classes, 

when the control variable is denominated in nominal terms.

m  Equities 

□  IL Gilts 

H  Consols 

I  Cash

Figure 4.3. Optimal portfolios for the 20 year case in nominal terms at various values o f r.

The effect of rebalancing the fund at the end of each year may also be seen to alter the 

pattern of optimal mixes. Looking at Figure 4.3 it may appear as though the range of r 

has not been extended far enough to allow the highest risk strategy to emerge, 

presumably 100% in equities as in the one year case. While r = 64 may not be the most

98



extreme level of tolerance possible in this situation, increasing r to infinity would not 

produce an optimal mix with 100% in equities. This is because the mean accumulation 

of an all-equity portfolio is 8.090, which is smaller than 8.1011 when equities only 

make up 86% of the fund with the balance being in index-linked gilts. Rebalancing can 

therefore be seen to remove the linear relationship between the expected accumulations 

over the twenty year period.

Figure 4.4. Graph o f S.D. vs. Mean for E-Vefficient and utility maximizing portfolios:

20 year nominal accumulations.

As before the E-V efficient frontier and the utility maximizing portfolios may be plotted 

on the same graph which can be seen in Figure 4.4. The bunching of the high risk 

utility maximizing portfolios at the top right-hand-side of the diagram confirms that 

they are very close indeed to the ultimate high risk portfolio. This may also be seen 

from observing the scatter plot of all the feasible portfolios in steps of 10% (see Figure 

4.5). The uppermost point represents the 100% equities portfolio while the point just 

below and to the right of it represents 90% equities and 10% index-linked gilts. The 

100% equities portfolio is clearly inefficient in a mean-variance framework.
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Figure 4.5. Graph o f S.D. vs. Mean for all 286 portfolios: 20 year nominal accumulations.

Returning to Figure 4.4, it appears that at least two of the utility maximizing portfolios 

(r = 1/16, 1/32) lie above the efficient frontier. This may be checked by considering the 

means and standard deviations given in Table 4.2. For low levels of risk tolerance, the 

optimal mixes would seem to defy the rules of mean-variance efficiency. When r = 1/8, 

the optimal fund has a mean and standard deviation of 5.9023 and 1.2042 respectively. 

When r is halved to 1/16, the mean and variance now rise to 5.9153 and 1.2276 

respectively. At r = 1/32, their respective values are 5.8942 and 1.2312.

In order to ensure that the results had been computed correctly, the optimization 

procedure was checked by appropriately rescaling the objective function and trying 

additional starting positions with all three optimization routines. The function values in 

the neighbourhoods of the supposed optima were computed and all were found to be 

less than these optima. As a result, it was felt that the possibility of computational error 

had been sufficiently small for it to be ruled out.
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In an ideal situation, the results would be compared with analytical solutions for 

confirmation. However, this was not possible here being a twenty year annually 

rebalanced portfolio. Furthermore, this divergence from mean-variance efficiency could 

be due to the effect of third or higher order moments, which would not be taken into 

account using a closed form solution to the problem. An alternative might be to create a 

simple situation where analytical solutions are both feasible and valid, and to then 

observe whether or not a similar phenomenon could occur.

4.4.3 A Test Case with Normally Distributed Returns

Consider the situation where there are only two asset types available and where the 

objective is to maximize the expected utility of returns over a given period without 

rebalancing during that period. Let it also be assumed that the returns over the period 

are normally distributed and that the utility function is of the exponential form. In this 

situation, the solutions may be derived analytically which, in theory, should be identical 

to those obtained numerically.

Two sets of a thousand standard normal pseudo random variables were generated as 

proxies to these asset returns. The first two moments from these samples were as 

follows: £, = 0.007488, E2 = -0.02190, Vt = 0.97708, V2 = 0.95138, C12 = -0.00955. 

Measures of skewness and kurtosis were also computed for these two samples to ensure 

that they were approximately normal. Inserting the values given above into equation 

(4.1) would therefore yield the optimal proportion to be invested in asset type 1. This 

was done for a range of values of r and the solutions were then compared with those 

obtained through numerical optimization methods (see Table 4.3).

For each risk tolerance level (except zero) in Table 4.3, two sets of figures are given. 

The first set of numbers relate to the analytical optima and the ones below them in

101



brackets refer to the numerical optima. For example, in the case when r = 25.6, the 

optimal proportion in asset type 1 obtained from the formula is 87.97% which 

corresponds to a mean and standard deviation of 0.0040 and 0.8763 respectively. The 

numerical optimum here is 88.06% in asset type 1 which gives a mean of 0.0040 and a 

standard deviation of 0.8771.

r wi Mean S.D.

25.6 87.97 0.0040 0.8763

(88.06) (0.0040) (0.8771)

12.8 68.66 -0.0017 0.7416

(68.73) (-0.0017) (0.7419)

6.4 59.00 -0.0046 0.7039

(59.07) (-0.0045) (0.7041)

3.2 54.17 -0.0060 0.6941

(54.27) (-0.0060) (0.6942)

1.6 51.75 -0.0067 0.6917

(51.89) (-0.0067) (0.6918)

0.8 50.55 -0.0071 0.6910

(50.67) (-0.0070) (0.6911)

0.4 49.94 -0.0072 0.6909

(49.64) (-0.0073) (0.6909)

0.2 49.64 -0.0073 0.6909

(47.51) (-0.0079) (0.6913)

0.1 49.49 -0.0074 0.6908

(43.64) (-0.0091) (0.6954)

0 49.34 -0.0074 0.6908

- -

Table 4.3. Optimal portfolios, means and standard deviations for normally distributed returns

102



The analytical results seem reasonable, with means and standard deviations decreasing 

monotonically as r decreases. However, when the solutions are computed numerically, 

the problem outlined in the twenty year case emerges. As the risk tolerance level is 

reduced, both sets of solutions remain very similar until r starts to fall below 0.4, when 

the optima begin to diverge. At low values of r, the numerically derived solutions again 

lead to funds which are not mean-variance efficient.

Given that the distributions of returns are normal in both assets types, a utility 

maximization approach should yield the same solutions as those derived using a mean- 

variance approach. The analytical solutions shown in Table 4.3 seem to confirm this. 

But due to the assumption regarding normality of returns, these solutions should also be 

the same as their numerical equivalents. Assuming that the numerical optimization has 

been carried out correctly and to adequate precision, there must be another explanation 

for this discrepancy.

A utility function may be thought of as a means of attaching weights to individual 

outcomes. In a risk neutral situation, equal weighting is given to each outcome, thus 

making the expected utility proportional to the expectation. Now if the decision maker 

is risk averse, then greater weights will be attached to the more severe outcomes. As the 

level of risk aversion increases, the expected utility becomes more and more dependent 

on the lower (i.e. left) tail of the distribution of outcomes. This is when the estimation 

of expected utilities by simulation can begin to fail. A finite sample will generally 

provide a poor description of the extreme values of an underlying distribution.

In the case of the exponential utility function, as r -> 0, the expected utility calculated 

from n simulated outcomes tends towards \/n times the utility of the worst outcome. As 

the value of the worst outcome from a set of simulations is a particularly unreliable 

quantity, so too is the expected utility. When r is moderately small, the credibility of 

the expected utility can be improved upon slightly by increasing the sample size.
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However, this is generally not an appropriate remedy for much smaller values of r as the 

number of simulations required to maintain the same level of credibility tends would not 

be computationally feasible.

The conclusions which may be drawn from the last two examples is that the expected 

utilities and hence the optimal asset mixes may be unreliable at very low levels of risk 

tolerance, in some cases leading to inefficient portfolios. Although this was only tested 

here for the exponential utility function, in principle similar problems may occur in 

other utility functions with low tolerance to risk. Computing the means and variances 

may give an indication of such a problem occurring, as would other measures such as 

the ratio of the expected utility to the utility of the worst outcome.

4.4.4 Twenty Year Case in Real terms

In the previous cases involving one and twenty year time horizons, the expected utilities 

were calculated from the nominal accumulations. While some investors may have 

specific reasons for considering nominal returns, in a world of inflation, the desire to 

achieve good real returns may be more sensible. It would therefore be logical to repeat 

the twenty year case in Section 4.4.2 with accumulations measured in purchasing power 

terms. The results in real terms are given in Table 4.4 and Figure 4.6 below.

The optimal portfolio when the investor has high tolerance to risk is made up of equities 

and Consols, the two highest yielding assets in real terms. Although Consols actually 

give a lower mean and higher variance than equities, a combination of the two is still 

efficient as there is little correlation between these two assets. As r decreases, the 

proportion in equities diminishes to be replaced by index-linked gilts. Cash also begins 

to take over from Consols, being less volatile in real terms. Cash is highly correlated 

with Consols which is possibly why these two asset classes rarely appear together.
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r CASH CON ILG EQ Mean S.D.

64 0 12 0 88 2.7572 1.5063

32 0 14 0 86 2.7564 1.4828

16 2 15 0 83 2.7538 1.4440

8 16 8 0 78 2.7438 1.3544

4 29 0 0 71 2.7250 1.2546

2 10 0 29 61 2.6390 0.9717

1 1 0 52 47 2.5232 0.7002

1/2 0 0 68 32 2.3822 0.4608

1/4 0 0 80 20 2.2523 0.2935

1/8 0 0 88 12 2.1581 0.2003

1/16 0 0 92 8 2.1091 0.1639

Table 4.4. Optimal portfolios for the 20 year case in real terms, with 

the means and standard deviations o f the accumulated funds.

100%

80%

60%

40%

20%

0%
1/16 1/8 1/4 1/2 1 2 4 8 16 32 64

m  Equities 

□  IL Gilts 

H  Consols 

I  Cash

Figure 4.6. Optimal portfolios for 20 year case in real terms at various values o f r.
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At lower risk tolerance levels, cash is displaced by index-linked gilts and the 

proportions in the latter continue to rise as the value of r reduces. Small holdings in 

equities are still preferred at low values of r because they are uncorrelated with index- 

linked gilts, thus helping to reduce variability in the overall portfolio while providing 

better returns.

In terms of mean-variance analysis, the optimal portfolios appear reasonable. Both the 

mean and variance reduce monotonically as r reduces. Nevertheless, bearing in mind 

the problems that occurred in respect of nominal accumulations, the optimal portfolios 

at lower risk levels should be interpreted with some degree of caution. If r had been 

reduced further, some deviation from mean-variance efficiency may have resulted. * 20

0.0 -
2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8

Figure 4.7. Graph o f S.D. vs. Mean for E-V efficient and utility maximizing portfolios:

20 year real accumulations.

Although the values of r in the nominal and real case are not directly comparable, it may 

be seen that the two sets of portfolios are distinct and that their differences are 

intuitively reasonable. But the fact that they are so different does bring into question 

which set of optimal portfolios should one be looking at. In deciding on this, some

106



consideration must be given to the reason for making the investment. If say the fund is 

to be used to repay some form of fixed interest loan, then nominal amounts may be 

more sensible. On the other hand, if the fund is a proxy for a pension fund, then real 

amounts should be used. As the choice of transformation on the accumulated amount 

depends on the purpose of the fund, the 'asset only' utility maximization process does 

after all involve liabilities, albeit implicitly as in the case here.

4.4.5 Twenty Year Case in Real terms: a Truncated Distribution

So far, one of the conclusions that may be drawn from the situations studied earlier is 

that the utility maximizing portfolios all seem to be approximately mean-variance 

efficient. While this could be expected in the one year case given the nearly symmetric 

distributions produced by the investment model, it was interesting to observe how close 

the twenty year optimal portfolios were to the mean-variance efficient frontier. One of 

the reasons for applying utility theory in these investigations was to allow scope for 

involving more than just the first two moments in the decision-making process. Perhaps 

these distributions were still not adequately skewed to make a significant difference. 

One way of increasing the level of skewness could be to use a truncated distribution.

Consider the investor with the same choice of asset classes as before, looking to 

maximize the expected utility of real accumulations over a twenty year period. But 

suppose that an opportunity has arisen to invest through a special fund where the 

accumulated real amount is guaranteed to be no less than a fund earning a guaranteed 

real rate of return of 3% per annum. In other words, if S is the real accumulation for the 

normal fund, then the accumulated amount for the special fund is: max (S, 1.0320). 

Including such an investment guarantee would do a number of things to the distribution 

of the accumulations. It would increase the mean while lowering the variance for a 

given asset mix. More importantly the truncated distribution would be less symmetric.
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For example, when 100% of the fund is invested in equities the guarantee increases the 

measure of skewness from 1.91 to 2.41. This should increase the likelihood of 

producing utility maximizing portfolios that are not mean-variance efficient.

r CASH CON ILG EQ Mean S.D.

8 0 0 0 100 2.9116 1.5284

4 3 8 0 89 2.8870 1.3894

2 17 7 0 76 2.8422 1.2279

1 27 0 6 67 2.7828 1.0809

1/2 0 0 48 52 2.6008 0.7319

1/4 0 0 64 36 2.4396 0.4954

1/8 0 0 81 19 2.2557 0.2739

1/16 0 0 90 10 2.1348 0.1790

Table 4.5. Optimal portfolios for the truncated 20 year case in real terms, with 

the means and standard deviations o f the accumulated funds.
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Figure 4.8. Optimal portfolios for the truncated 20 year case in real terms at various values o f r.
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The optimal portfolios for this fund are shown in Table 4.5 and Figure 4.8. The 

guarantee appears to have made what were previously very risky strategies more 

favourable. This was to be expected as the guarantee should have a greater effect on the 

more volatile portfolios. In particular, 100% in equities is optimal at r = 8, whereas 

with the normal fund (see Table 4.4), only 92% were optimal at the much higher risk 

tolerance level of r = 64. Otherwise the general pattern of mixes is broadly similar to 

those seen in Section 4.4.4.

Figure 4.9. Graph o f S.D. vs. Mean for the E-V efficient and utility maximizing portfolios: 

truncated 20 year real accumulations.

The efficient frontier and the utility maximizing portfolios may be seen in Figure 4.9. 

Despite the higher degree of skewness characterized by these distributions, the utility 

maximizing portfolios still seem to remain very close to the E-V efficient portfolios. 

This would appear to support the proposal made by many, including Levy and 

Markowitz (1979), that the mean-variance framework is in practice an adequately good 

approximation to the utility maximization approach. However, the utility approach has 

the additional feature that it can determine which of the infinite number of E-V efficient 

portfolios is optimal.
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4.5 Uncertainty in the Estimates of the Optimal Portfolios

4.5.1 Sources o f Uncertainty

The values obtained for w* for a given utility function are really only estimates of the 

optimal portfolios and are subject to a few sources of error. One possible source of error 

is in the numerical optimization, though all reasonable measures have been taken to 

ensure that the values quoted above are at least correct to 1%. Another pertains to the 

accuracy that may be attributed to the number of simulations used and how this relates 

to the uncertainty in the investment model.

Until now, inaccuracies in computing w* have only been shown to occur when the risk 

tolerance level is small. This had been attributed to the fact that Monte Carlo simulation 

rarely gives an adequate representation of the tails of a distribution. But regardless of 

the risk tolerance level, w* will still be subject to some degree of sampling error due to 

there being a finite number of simulations used. It would therefore be very useful to 

know the extent of error in the production of the point estimates, w* due to sampling 

error. The main aim of this section is to obtain approximate error bounds for the 

optimal portfolios. Ideally this would entail deriving 95% confidence intervals for w*. 

However, as the distribution of w* is unknown, the alternative is to compute the 

approximate standard errors for these estimates.

4.5.2 Jackknife Standard Errors

A robust technique which may be used for estimating the standard error and bias of an 

estimate is the jackknife as described in Efron and Tibshirani (1993). For a sample of 

size n, the jackknife involves calculating the estimates for the sample, leaving out one 

observation at a time. So if s(x) is an estimator from a sample x = (x, , ... , xn), the z'th
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jackknife replication of this estimator is s(x(i)), where x(/) = (x, , ... x,_, , x/+] ,... x j  is the 

z'th jackknife sample. Defining:

In the context of the asset fund, s(x) may be interpreted as the estimate for the optimal 

proportion in a particular asset class, based on a sample of n simulated investment 

scenarios denoted by x. As n -  1000, each s(x(i)) is the optimal asset mix based on 999 

scenarios, with the z'th scenario left out.

Although the method involves recalculating the sample estimate n times, the resulting 

jackknife replications, i(x(i)) are likely to be very close to the original estimate, s(x) as 

only one observation is left out on each occasion. For the purpose of estimating the 

standard error of an estimated optimal asset proportion, s(x), this may be an advantage 

in one respect as it should not require many iterations to converge to each s(x(/)), if s(x) 

is used as the initial starting position. However, this efficiency factor may be offset 

somewhat by the need to increase the precision level of the optimization algorithm to a 

sufficient degree, so that the subtle differences between s(x) and s(x(l)) may be 

accurately reflected in the estimates of bias and standard error.

s = - £ s ( x (/))

the jackknife estimate of the standard error is:

and the jackknife estimate of bias is:

b = ( n - l)(,s -  s(x))
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The jackknife is a reasonable technique in this context as it does not generally make any 

assumptions about the distribution of s(\). A situation where it may fail, however, is 

when the distribution of s(x) is not smooth. Although this mainly relates to situations 

where there are discontinuities in the distribution of s(x), the deficiency may still occur 

in the case of the asset fund as the optimal asset proportions are constrained to non-

negative values. If the optimal proportion in an asset class, s(x) is found to be zero, the 

removal of one observation, xj will be unlikely to increase this by enough to produce a 

positive value for s(x(/)); so the jackknife estimate of the standard error will probably be 

zero as well, even though the true standard error may be strictly positive. Having said 

this, the estimated standard error will only be significant if the unconstrained optimal 

proportion is very close to the constrained optimal, which should be a rare occurrence.

r CASH CON 1LG EQ

64 0 0 14.17 85.83

- - (2.98) (2.98)

16 0 0 24.27 75.73

- - (2.20) (2.20)

4 24.99 24.22 0 50.80

(5.93) (5.93) - (1.68)

1 18.80 58.08 0 23.12

(3.03) (2.87) - (1.20)

1/4 29.01 60.14 0 10.86

(2.93) (3.40) - (1.43)

1/16 33.83 56.47 0 9.70

(5.57) (7.27) - (2.89)

1/64 39.42 51.83 0 8.75

(8.27) (9.42) - (5.03)

Table 4.6. Optimal portfolios and standard errors for the 20 year case in nominal terms
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Table 4.6 shows the optimal portfolios and the jackknife estimates of the standard errors 

for a range of risk tolerance levels for an asset fund over a twenty year period. The 

estimates of bias were close enough to zero to be ignored. In order to ameliorate the 

problem of non-smooth estimators, the standard errors shown were estimated on the 

basis that any asset type which had an optimal proportion of zero was excluded from the 

procedure. For example, the optimal mix when r = 64 is 14.17% in index-linked gilts 

and 85.83% in equities. The jackknife estimates of their standard errors assuming that 

only these two assets are available are 2.98%.

A curious pattern may be observed from these results. From the highest risk tolerance 

level shown, the standard errors in each asset type at first decrease as r decreases. This 

may be intuitively reasonable as the high risk portfolios are associated with higher 

variances, which feed through to the standard errors of the optimal portfolios. When r is 

1/4, the trend is reversed with the standard errors beginning to increase with decreasing 

levels of risk tolerance. This is caused by the excessive reliance of the objective 

function on the extreme tails of the distribution of the accumulated fund, as explained in 

Section 4.4.3.

This reasoning may also be confirmed by considering the empirical distribution of the 

jackknife replications. For higher levels of risk, practically all the replications exhibited 

some variability relative to the original estimate, with the degree of variability being 

higher for higher levels of risk.

At very low risk levels, most replications remained the same correct to five decimal 

places with a few replications showing quite considerable variability. In the case when 

r = 1/64 for example, only two replications out of one thousand produced significant 

variability from the original Consols estimate of 51.8%. The values obtained for these 

replications were 46.6% and 59.5%, which together account for over 98.5% of the 

standard error estimate.
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4 .5 .3  A sse ssm en t o f  U ncerta in ty

Taking an overall view of the results, there appears to be a reasonable amount of 

uncertainty in the estimates obtained using a thousand simulations. If it may be 

assumed that the 95% confidence interval for the optimal weights is sufficiently close to 

s(x) ± 2e, then ignoring the very low risk tolerance levels, these confidence intervals 

would roughly be between 2.5% and 12% either side of the original estimates, 

depending on the value of r and the asset class. But even ± 5% may be considered too 

large to justify higher precision optimization routines when the grid approach in steps of 

5% would give results which largely fall within the 95% confidence intervals.

There is however another issue that is worth bearing in mind when considering the level 

of uncertainty inherent in the optimal portfolio weights. While it is true that the 

confidence intervals for these weights could be reduced by increasing the number of 

simulations used, there are doubts regarding the real benefits of such an action. The 

disadvantage of performing say ten times the number of simulations would need to be 

outweighed by the ability to obtain more accurate and meaningful results.

It is worth bearing in mind that the simulations are derived from an investment model, 

which like any other model has its deficiencies. However, this is particularly significant 

here due to the acknowledged difficulties in modelling economic time series. An 

infinite number of simulations will only serve to reflect the full features of the model, 

rather than reality.

A far more sensible approach could be to balance the computational effort involved with 

the amount of confidence associated with the investment model used. For instance, in 

these investigations, 1000 simulations had been found to be a manageable sample size 

to deal with. But in relation to the accuracy of the optimal proportion in Consols say, 

the standard error obtained at r = 4 is almost 6%. This contrasts with the 95%
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confidence interval for the twenty year accumulation in Consols of about 5.4 ± 0.07 s  

(1.087320, 1.088720), which is fairly narrow. So while it may be desirable to reduce the 

standard error on the optimal Consols weight by running more simulations, it may or 

may not be reasonable to assume the narrower confidence interval for the accumulation 

factor for that asset class which this implies. However, in assessing the level of 

uncertainty associated with the optimal proportion in Consols, consideration would also 

need to be given to the confidence intervals of the accumulation factors for the other 

asset types as well, as the optimal proportion in Consols is dependent on them too.

Although the level of uncertainty in the investment model does not have a direct 

relationship with sampling error, performing an extremely large numbers of simulations 

will tend to result in spurious accuracy. Bearing this in mind, it would be helpful to 

have some indication of what may be a reasonable number simulations to use. A 

possible starting point could be to look at the projected mean accumulations and their 

standard errors, particularly as these are easy to compute and interpret. Only if these 

standard errors are found to be too large would the simulation number then seem worth 

increasing. In a mean-variance context, the optimal decisions are very sensitive to the 

means. Hence, if one is unsure about these statistics, then it would be sensible not to 

place too much confidence on the results derived from them.

4.6 Summary

In this chapter, it has been shown how investment decisions may be derived in a utility 

maximization framework. Under fairly restrictive assumptions regarding normality of 

asset returns and liability cash flows, closed form solutions may be found. However, if 

more complex asset or liability models are to be used, then numerical methods appear to 

be the more sensible route to pursue.
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Using numerical optimization routines, results for the optimal asset allocation strategies 

for an asset fund were computed for short durations in nominal terms and long durations 

in both nominal and real terms. These appeared sensible in relation to the investment 

model described in the previous chapter. It was also noted that these portfolios were 

approximately if not on the mean-variance efficient frontier, even when the distributions 

of the portfolios were clearly skewed.

However, as with all portfolio selection models, the optimal asset mixes are subject to 

sampling error and model error. Jackknife estimates of standard error in the optimal 

portfolios for 1000 simulations were found to be between about l%-5% under normal 

situations and even greater for very low risk tolerance levels. This indicated that with 

this number of simulations, accurate optimal mixes would rarely be possible. 

Unfortunately, increasing the number of simulations may lead to spurious accuracy as 

the results are ultimately subject to uncertainties which cannot really be reduced without 

improving the credibility of the investment model itself.
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5. INCORPORATING LIFE OFFICE LIABILITIES INTO 
THE DECISION-MAKING PROCESS

5.1 Introduction

In this chapter, a description is given of how the decision-making process may apply in 

the context of a UK proprietary life office. It will be assumed throughout that the office 

only transacts conventional non-profit business, with surplus being distributed to 

shareholders in the form of dividends. Hence, the asset allocation decisions will largely 

be based on the expected utility of shareholders' dividends.

It is also proposed that the long-term objectives of the office will be to:

1. distribute smoothed dividends to shareholders

2. maintain the same free asset ratio that existed at the start of the projection period

These aims contradict each other because if the degree of smoothing is high, then there 

is a greater possibility that the free asset ratio will tend to drift away from its intended 

level. On the other hand, if excessive priority is given towards maintaining the desired 

level of free assets, then the resulting dividends may be too volatile. As in practice, an 

acceptable balance may have to be struck between these two objectives.

In order to incorporate a realistic liability structure into the investigations, the 

application of a model office will be essential. A description is given regarding the 

treatment of cashflows, reserves and surplus in the model office. Following this, it 

would also be appropriate to discuss the issue of shareholders' utility. But before the 

structure of the model is explained in any detail, it would be helpful to first set out the 

types of contracts that may be issued by the office, together with the various 

assumptions made in respect of individual policies and business volumes.
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5.2 Liability Profile

5.2.1 Benefit Structure

Two broad classes of business used in these investigations are endowments and index- 

linked annuities. Unless otherwise stated, endowments are taken to be annual premium 

non-profit endowment assurances with a guaranteed sum assured, payable either at the 

end of the year of death or at maturity. Index-linked annuities are assumed to be single 

premium non-profit temporary annuities with annual payments increasing in line with 

inflation. The use of index-linked annuity contracts enriches the study somewhat as it 

increases the number of liability types. In all cases, mortality rates are assumed to be 

deterministic and correspond to the premium bases stated in Section 5.2.3. Although 

the assumption of deterministic mortality rates may remove a layer of realism from this 

study, it does help to minimize the number of stochastic variables involved and should 

ease the process of interpreting the results from what will be a fairly complex set of 

investigations.

5.2.2 Expenses and Commission

All contracts incur acquisition costs in the form of initial expenses and commission, 

which are payable in full at inception. From the second year onwards, maintenance 

expenses and renewal commission are incurred simultaneously with each premium 

received or annuity payment made. In all cases, expenses are assumed to increase 

stochastically each year in line with the retail price index. Commission rates are 

expressed as fixed percentages of the actual premiums paid. Apart from future inflation 

rates which are stochastic, these quantities are assumed to be the same as those given in 

the premium bases below.

118



5.2.3 Prem ium Bases

The following assumptions apply to premiums rated at the start of the projection period:

All contracts:-

• interest: 8%
• inflation: 5%
• risk discount rate: 15%

20 year endowments aged 50 at entry:-

• sum assured: 10000
• initial expenses: 100 per policy
• renewal expenses: 30 per policy, increasing with RPI
• initial commission: 50% of first year's premium
• renewal commission: 2.5% of subsequent premiums
• mortality: AM80(2)
• profit criterion: 40% initial commission at risk discount rate
• reserves: net premium valuation at a rate of interest of 6%

10 year endowments aged 50 at entry:- as in 20 year endowments except for

• initial commission: 30% of first year's premium

20 year index-linked annuities aged 65 at entry:-

• annuity: 1000 per annum increasing with RPI
• initial expenses: 100 per policy
• renewal expenses: 30 per policy, increasing with RPI
• initial commission: 2% of single premium
• mortality: IM80(1)
• profit criterion: 50% initial commission at risk discount rate
• reserves: gross premium reserve using 2% real interest rate
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For the purpose of relating these policies to those issued in the insurance industry, most 

of the quantities listed in this section are set in amounts which may reasonably be found 

in practice. It must be emphasized, however, that no attempt was made to ensure that 

these assumptions were wholly consistent with industry averages at the time of writing.

5.2.4 Reserves

Realistic reserves are essentially calculated by performing a gross premium valuation 

using realistic rates of interest. These are taken to be the yields on Consols and index- 

linked gilts when valuing nominal and real cashflows respectively. However, in order 

not to capitalize future profits, the office premiums used in the valuations are stripped of 

profit margins. The adjusted office premiums are calculated on the basis of a zero profit 

criterion at a risk discount rate equal to the interest rate assumed in the premium basis.

Published statutory reserves are (unzillmerized) net premium reserves calculated using 

the smaller of a prudent fixed rate of interest and the reliable yield on total assets. The 

prudent rate of interest is assumed to be 6% when net premiums and benefits are fixed 

in nominal terms and 1% when linked to the retail price index. Reliable yield is taken to 

be 92.5% times an average yield (running yield on equities and gross redemption yields 

for all other assets), weighted by the proportions in the corresponding asset classes. 

Where single premium annuities are concerned, renewal expenses are treated as index- 

linked benefits for the purpose of the valuation.

The published statutory rate of interest used here mainly differs from that prescribed in 

the Insurance Companies Regulations 1994 (see Gallen and Kipling, 1995) in two 

respects. Firstly, a reduction of 7.5% rather than 2.5% is applied to the average yield. 

This extra margin of 5% had actually been part of the 1981 Regulations and is 

maintained here for prudence. Secondly, the 1994 regulations also require the rate of

120



interest used to be no greater than the gross redemption yield on 15 year medium 

coupon gilts. As this particular asset has not been modelled here, it is not possible to 

take this part of the regulations into account. The effect of omitting this part of the 

Regulations from the published basis assumed here is to make this basis less stringent 

than the Statutory basis on certain occasions. But given the level of conservatism 

already built into this published basis, such instances should be relatively infrequent.

5.2.5 Business Volumes

Due to the long-term nature of life insurance liabilities, the position of the office at the 

start of the projection period (t = 0) will inevitably depend on past conditions. 

Therefore, some assumptions will need to be made regarding business volumes over the 

previous P years, where P is the number of years since the earliest policies currently in 

force were written. For simplicity, it will be assumed that the number of new policies 

issued has remained constant over the past P years, but that the per policy amounts have 

been growing with inflation throughout this period. The rate of inflation in the past is 

taken here to be constant at 5%. This is in fact consistent with the inflation assumption 

in premium bases (see Section 5.2.3) and is close to the average inflation rate of 5.13% 

assumed in the investment model (see Section 3.3.1). As benefits and expenses have 

been increasing in line with the retail price index, the same may be assumed of the 

premiums, as long as they have been priced using bases consistent with those stated in 

Section 5.2.3. Hence, the liability profile of the office is approximately stationary in 

real terms at the start of the projection period.

With regards to future business volumes, there are three possible situations which may 

be assumed. The office could remain open to new business throughout the projection 

period, remain open for a limited number of years and be closed to new business 

thereafter, or be closed to new business as from the start. If the fund were assumed to
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be ongoing during the entire period, it would seem a reasonable starting point to assume 

also that business volumes would continue to grow with the retail price index. As such 

a fund would have the duration of its liabilities approximately constant over time, it 

would seem appropriate to analyse this as a static model, i.e. with asset proportions 

remaining constant over time. This is very appealing as the static models are 

considerably simpler to deal with than dynamic models.

The main purpose of dynamic models is to accommodate liability profiles which are 

continually changing with time. This may be due to changing volumes or mix of 

business, varying solvency margins and so on. Simple dynamic models have been 

employed in situations similar to a stationary fund, by allowing the asset mix to 

gradually switch from equities into gilts when the solvency margin falls below some 

threshold value, as in Ross (1989), Roff (1992) and Hardy (1993). Although such 

dynamic reallocation strategies may be sensible for with-profits funds, where the 

average solvency level is likely to be fairly high, they would be of little value if the 

solvency margin is weak to begin with, which should be the case in most non-profit 

funds. Further consideration of dynamic models will be given in Chapter 8.

The other extreme to an office open to new business throughout the projection period 

would be an office closed to new business as at t = 0. As the duration of the liabilities 

will be shortening with time, a dynamic model will be absolutely essential if the asset 

mix is to reflect the changing liability profile. Unlike the open fund where any 

projection period would probably be appropriate, it would seem more meaningful in a 

closed fund to use a sufficiently long projection period to allow every single policy on 

the company's books to run off. This is feasible here as the contracts being issued have 

outstanding terms of no more than twenty years.

Another possibility would be to assume that the office will remain open to new business 

for a short period and then assume it will be closed thereafter. This is also the most
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complicated situation to consider from an asset allocation perspective. Not only will a 

dynamic asset allocation strategy be necessary but the projection period will also need 

extending as it must at least equal the term of the longest contracts plus the number of 

years in which the fund remains open to new business. While this approach may be a 

reasonable means for appraising the valuation system (see MacDonald, 1993), it would 

seem to be an unnecessary complication in this particular decision-making process.

Therefore, only two of the three situations will be considered in the investigations which 

follow, these being the office open to new business throughout (open fund) and the 

office which is closed to new business from the start (closed fund). As the open fund is 

the situation which life offices would be most likely to find themselves, it will be 

discussed in some detail in Chapters 6 and 7. The more dynamic situation of a closed 

fund will be considered in Chapter 8.

5.3 General Structure of the Model Office

5.3.1 Global Variables

The following definitions relate to the main global variables used in the projections:

Real_Liab{t) = realistic value placed on liabilities at time t.

Stat_Liab(t) = published statutory value of liabilities at time t.

SMSM{t) - statutory minimum solvency margin at time t.

Acc'(t) = total amount of assets before distribution of dividends at time t.

Acc(t) = total amount of assets after distribution of dividends at time t.

Fund'(t) = value of fund before distribution of dividends at time t.

Fund{t) = value of fund after distribution of dividends at time t.

Dist{t) = amount distributed as dividends to shareholders at time t.
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Statutory minimum solvency margin is defined to be the 4% of the published statutory 

liabilities plus 0.3% of the sum at risk. Fund in this context is simply the difference 

between the total amount of assets and the target amount of free assets. The precise 

definition of target free assets will be made clear in Section 5.3.2 below.

5.3.2 Cashflow Projections

Let the projection period be the time interval [0, H], where H  is the horizon date. 

Initialize the total amount of assets at the start of the projection period to be:

Acc(0) = (1 +sm) x (net premium reserve at the prudent fixed rate of interest)

where sm (the initial solvency margin) is an input value for specifying the initial amount 

of assets. The net premium reserve is basically the same as Stat_Liab{0), except that the 

reliable yield is not used in its calculation. Therefore, the valuation is independent of 

the asset mix held at time 0. Next, initialize the fund value at the start to be:

Fund(0) = [Stat_Liab( 0) + SMSM(0)]

Define the free asset ratio (as stated in objective 2, Section 5.1) at the start to be p, 

where:

Acc (0) -  Fund(0)
P ~ Fund(0)

Note that since p is a function of Stat_Liab(0), its value will depend on the asset mix 

held at time 0. This will be the target free asset ratio over the entire projection period. 

It then follows that the target amount of free assets at time t is:
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Target{t) = p . [,Stat_Liab(t) + SMSM(t)\

For simplicity, all valuations and cashflows including premiums, expenses, claims and 

payments of dividends are assumed to occur at the start/end of each projection year. 

Define the net cash flow at time t, Ncfij), to be the total of premiums less expenses and 

commission in respect of all business, new and in force, between time t and t+1, less all 

benefits payable in respect of business in force during the period /-I  to t. In addition, 

define i{t) to be rate of return earned between time t- 1 and t. Hence, for 0 < t < H, the 

accumulated amount of assets before distribution will be:

Acc'(t) = [Acc(t-1) + N cjit-1)]. [1

As the fund is the difference between the total assets and the target amount of assets:

Fund'it) = Acc'(t) -  Target(t)

At this stage, it should be pointed out that the fund is only used as an aid for 

determining the amount of surplus distributable to shareholders. However, as the 

process of establishing dividend policy is reasonably complex, it is perhaps worth 

giving it separate consideration (see Sections 5.3.3 to 5.3.5). Hence, assuming for the 

moment that Dist(t) may be obtained from the computations performed thus far, the 

fund value after distribution will be:

Fund(t) = Fund'it) -  Dist(t)

It also follows from the definitions that the relationships below will hold:

Acc(t) = Acc'(t) -  Dist{t) = Fund(t) + Target(t)
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5.3.3 Determination o f Surplus

On a simplistic level, the amount of surplus available for distribution could be described 

as the realistic amount of surplus which has accrued since the previous distribution date. 

However, there are many other aspects which need to be considered before the 

appropriate amount of dividends may be declared. Two of these relate to the calculation 

of realistic surplus. First, it would be prudent to not to capitalize on future profits 

arising from the margins assumed in the premium bases. This could be avoided by 

calculating the realistic gross premium reserves using office premiums which have been 

stripped of profit margins. Second, in order to try and maintain the target free asset 

ratio, it would be helpful to define the increase in surplus net of that needed to for this 

purpose. Therefore, a more sensible definition of realistic surplus arising may be:

SA(t) = [Fund'(t) -  Fund(t-1)] -  [Real Liab(t) -  Real_Liab(t-\)\

Moreover, there are legislative requirements regarding minimum solvency levels which 

must be accounted for in determining distributable surplus. Again from the perspective 

of maintaining the target free asset ratio, one definition of distributable surplus could be:

DS(t) = Fund'd) -  [Stat Liab(t) + SMSM(t)]

So in the absence of smoothing, the office may reasonably wish to declare:

max {min [&4(/), e.DS{t)\, 0} (5.1)

where 0 < e < 1. (It may be necessary to use a value for e of less than unity to prevent 

the statutory free assets from being depleted too frequently.) But in order to satisfy the 

objective of distributing smoothed dividends, additional complexity will have to be 

introduced into the procedure.
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The method of smoothing adopted here involves a weighted average of the unsmoothed 

dividends (see expression 5.1) and some smoothing component. As it would be logical 

to apply more smoothing when the solvency position is strong and vice versa, the 

weights will be defined in terms of the existing level of statutory surplus. Define R(t) to 

be the ratio of statutory surplus to total assets before distribution:

D. , f  Acc' (r) -  [Stat_ Liab{t) + SMSM(t)]\
 ̂ Acc'(t) )

Let and [1 -f(R(t))] be the weights placed on the smoothing component and the

unsmoothed dividends respectively. It then follows that the function/ would need to be 

monotonically increasing and bounded between 0 and 1. While the choice of function is 

fairly arbitrary, it seems intuitive that /  should also be concave. The expression used 

here is:

A m )  = o, R(t)<o,

= L [ l - ( l - c . ^ ( 0 ) 2] 0 < c.i?(0 < 1,

= k, c.R(t) > 1,

where 0 < k < 1 and c > 0. The parameter k may be seen as the maximum extent of 

smoothing permissible whereas c may be interpreted as the rate at which this maximum 

may be reached. The values of k, c and e (see expression 5.1) were selected on the basis 

of their ability to smooth the dividends by as much as possible, without excessive 

deviation from the target free asset ratio.

This had been done by carrying out twenty year projections of an open fund with just 

twenty year endowments in force and comparing the average free asset ratios at t = 20 

with those at the start, for a range of asset mixes. The parameter values which appeared 

to result in the smallest variation from the target free asset ratio were: k = 0.5, c = 0.5 

and e = 0.9. It should be noted that the method used for choosing these values is rather
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crude and by no means implies the optimal values. They are just a possible combination 

of parameter values which seem to broadly satisfy the required objectives. Unless 

otherwise stated, it should be assumed that these values will be used in all the 

investigations hereafter.

If the smoothing component is assumed to be the average inflation adjusted dividends in 

the previous two years, the smoothed dividends may be expressed as:

SD(t) =J(R(t)).V2Q(t).(B + B2)[Dist(t)/Q(t)] + [1-/(£(/))]. max {min [&4(t), e.DS(t)], 0},

where BX(t) = X ( t-1) and Q(t) is the value of the retail price index at time t. This 

would follow the pattern described in Blake (1990). However, unless dividends 

declared at t = 0 and t = -1 are specified, it is clear that this expression for SD(t) only 

applies for t>  2. So it will be assumed that for SD(2), the smoothing component is just 

the previous year's inflation adjusted dividend and that no smoothing is applied in 

SD(\). On the surface, it would seem as though the actual dividends distributed, Dist(t), 

may be taken to be: max [SD(t), 0]. But before any dividend is declared, a final check 

on solvency is required.

5.3.4 Insolvency

The life office is assumed to be technically insolvent when the total amount of assets at 

any time is less than the published statutory reserves plus the guarantee fund (taken to 

be one third of the statutory minimum solvency margin). So when the following 

inequality:

max [SD(t), 0] < Acc'(t) -  [StatJLiab(t) + SMSM(t)/3] (5.2)

is satisfied, it would be appropriate to set:
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Dist{t) = max [SD(t), 0].

If condition (5.2) does not hold and the right-hand-side is positive, then:

Dist{t) = Acc'(t) -  [Stat_Liab{t) +  SMSM(t)/3],

The office is only said to be technically insolvent when the right-hand-side of the 

inequality (5.2) is negative.

When an office becomes technically insolvent, two possible courses of action are to:

A. require a capital injection from the shareholders to bring the solvency margin up to 

the guarantee fund so the office remains in business;

B. transfer the portfolio of liabilities to another company and distribute the remaining 

surplus, if any, to the shareholders.

Rather than trying to determine which course of action would be more appropriate under 

which circumstances, separate treatment will be given to the two liability models, A and 

B. The implications of the different models in these investigations are important not 

only in the practical sense but also impact on the choice of utility function (see Section 

5.4) and the optimization procedure (see Section 6.1).

Hence, if the office follows course of action A at the point of insolvency, clearly:

Dist(t) =  Acc'(t) -  [Stat Liab(t) + SMSM(t)/3 ],

It is being assumed that shareholders have an unlimited source of capital with which to 

support the business in times of difficulty. This also means that the fund will remain a 

going concern, at least until the horizon date.
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In the case of Model B, no presumptions are made regarding the ability of shareholders 

to raise additional capital. When the guarantee fund is breached, the entire portfolio of 

liabilities is assumed to be taken over by another office at a cost equal to the realistic 

reserves. Any positive surplus remaining is distributed to shareholders as a final 

dividend and the office ceases to operate thereafter. Hence, if insolvency occurs at time 

/, then:

Dist(t) = max [Acc'(t) -  Real_Liab(t), 0], t = I,

= 0, t>I.

Realistic reserves are used to calculate the takeover value because they were found to be 

good approximations to what might be considered fair values for the liabilities, i.e. 

statutory reserves less the present value of future profits (PVFP). Empirical evidence 

for this may be seen by computing [realistic reserves] -s- [statutory reserves -  PVFP] in 

the case of twenty year endowments, assuming future conditions follow those used in 

the premium basis. Although the ratio was fairly close to unity for durations in excess 

of about 5 years, it was shown to be a poor approximation at earlier durations. But 

given that the fund will always be either stationary in real terms or running-off, this 

effect at early durations will be hardly noticeable, as the ratio will be weighted by 

relatively small reserves when the approximation is poor and vice-versa. For example, 

the reserve weighted ratio for the twenty year open fund is 1.018, even though the ratio 

for contracts at duration 1 are -0.304. The approximation is even better in the closed 

fund as the average duration of contracts increases with time.

5.3.5 Value o f Shareholdings at the Horizon Date

In situations where the office remains in business up to the horizon date, the value of the 

shareholdings at that point will need to be ascertained. Whether this is interpreted as 

being some present value of future dividends, assuming shareholders retain their equity
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beyond the horizon date, or the market value, if the shares are to be sold immediately, is 

of little relevance as the two amounts should in theory be identical. But as it would 

seem impractical to model market values, a crude approximation may also be to use:

Dist(H) = max [Acc'(H) -  Real_Liab(H), 0],

as a proxy for the value of the shareholdings at the horizon date just before dividends 

for period H  are declared. Arguably, this amount may be considered fairly conservative 

as it does not explicitly incorporate goodwill and other factors that may be thought to 

affect share prices. However, as any such adjustment would be arbitrary, this issue will 

not be pursued further. A possible implication of ignoring this from the decision 

maker's perspective is that the relative advantage of remaining solvent in liability model 

B may not be quite as great as it might otherwise have been. But relative to all the other 

factors involved, it seems unlikely that this simplification would have a significant 

impact on the decision-making process.

5.4 Shareholders' Utility

5.4.1 Time Preference

Due to the nature of the problem defined in Chapter 4, there was little debate regarding 

the amount to which the utility function should be applied. The asset fund had been 

accumulated in respect of a fixed horizon date with total consumption taking place at 

this point. However, in attempting to create a realistic life office model, it has been 

necessary for dividends to be declared regularly. Otherwise, the life office fund could 

build up artificially over time, thus increasing the solvency margin as it approaches the 

horizon date.
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However, if this is to be consistent with the concept of discounting utilities as suggested 

above, then combining (5.3) and (5.4) implies that there must be some constant term, b, 

for which:

U0(A) = b'U0(A(\+i)1) Vi. (5.5)

A class of utility functions which satisfies equation (5.5) is the power utility function, 

U(x) = xc, for x > 0 and where c e (0, 1). Here, b would need to take the value, (1 +i)'c. 

For the linear utility function (c = 1), the factor used to discount utilities is identical to 

that used to discount amounts of wealth. However, it may be shown that equation (5.5) 

holds for neither the exponential nor the logarithmic utility function as b cannot be 

expressed independently of t with either function.

As it may not be sensible to assume that equation (5.3) holds in all circumstances, the 

results produced when adopting this approach may be meaningless if applied without 

due care. Therefore, it would be preferable if a more robust method could instead be 

used to account for investor preference over time.

Ultimately, if the objective is to ensure that some actuarially acceptable time preference 

relation holds, an obvious approach would be to accumulate the dividends to the horizon 

date, thus reducing the problem to one of ultimate surplus. As long as the dividends are 

kept separate from the assets held by the life office, the problem of artificially high 

solvency margins will not apply. It therefore seems reasonable that dividends be treated 

in such a manner in the liability model. However, a suitable accumulation rate for this 

dividend fund will need to be determined.

An interesting issue arises here because the accumulation rate should depend on the 

reasons for investing in the life company in the first place. In assuming that time 

preference may be accounted for by accumulating dividends to the horizon date, it is
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being implied that shareholders are not relying on dividends for the purpose of 

consumption in the real sense of the word, but rather as a means of achieving good long 

term growth from their investment. This may not be too unreasonable as most sensible 

investors would not normally expect company dividends to provide them with a reliable 

income for managing their cashflow position in the short term. As long term growth 

would generally seem to be the main aim of shareholders, the accumulation rate may be 

assumed to be the rate of return earned in the equity market at the time. This is 

equivalent to saying that the office should only retain surplus available for distribution 

if it expects to be able to earn a higher return on this surplus than if it were to be 

invested in equities over the same period. Defining the payout to be the accumulated 

dividends (including the value of the business at the horizon date):

where RE(t) is the rate of return earned on equities between time t- 1 to t. The objective 

will then be to maximize the expected utility of payouts, using a single-attribute utility 

function as had been the case in Chapter 4. An extension of this work could involve 

looking further at intertemporal utility maximization issues.

5.4.2 Choice o f Utility Function

Contrary to dealing with one individual's risk preferences, it is in theory necessary for 

the company to consider the expected utility of all its shareholders. While it would 

clearly be an impossible task to aggregate utilities of individual shareholders, it is also 

worth recalling that the purpose of the utility maximization approach is to set out a 

framework in which consistent decisions may be made in the face of uncertainty. 

Therefore, it would still be useful just to consider a single utility function for reflecting
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a particular level of risk tolerance, as this may provide a valuable tool for assessing and 

making rational decisions.

There is though some philosophical justification for using a single utility function. 

Intuitively, investors would only purchase shares in the life company if the expected 

nature of the dividend stream is suitable to their needs. Therefore, any reasonable utility 

function should appeal to at least one subset of potential shareholders with similar 

preferences. So having selected the utility function which reflects a particular 

risk/reward position, the optimal investment strategy for the insurance company should 

be to consistently maintain this level of tolerance to risk by maximizing the expected 

utility of payouts. In a sense, this is equivalent to the concept of satisfying 

policyholders' reasonable expectations in the case of a with-profit office. Thus, 

maximizing the expected utility of future dividends may be viewed as means of 

fulfilling shareholders' reasonable expectations.

In practice, it would be a matter for the life office to determine the utility function which 

best represents the level of risk that would be acceptable to its shareholders as a whole. 

But for the purpose of these investigations, it would be more useful to consider a range 

of risk tolerance levels, as had been done in Chapter 4. An obvious choice for this could 

be the exponential class of utility functions, as it has been shown to be well suited to 

this task. In addition, the exponential function can accommodate negative quantities 

which may arise in the case of Model A.

One drawback of the exponential function is that the risk tolerance parameter, r is linked 

to the initial amount invested, A and is therefore not universal. Ceteris paribus, 

investors will only arrive at the same decision if their values of Air are the same, rather 

than if r is the same. A direct consequence is that for a given amount invested, an 

investor will take a riskier decision if the value of r is increased. But conversely, it also 

means that a riskier decision will be taken if the amount invested is decreased for a
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given value of r. The latter is intuitive in so far as risk-averse investors would tend to 

be more prudent with larger investments than with smaller ones. However, it also 

means that decisions made for a given value of r under different circumstances may not 

be directly comparable.

Hence, it follows that due to the relatively large fund sizes associated with the model 

office described above, the values of r used in the asset fund with an amount of 1 

invested will be far too small to be meaningful here. In fact, from preliminary 

projections, a reasonable range for the level of risk tolerance had been found to be of the 

order 104. So for convenience, the exponential utility function used hereafter is 

redefined to be: U(S) = -expf-SYlOOOO).

This peculiarity of the exponential function actually relates its property of constant 

absolute risk aversion, which means that for a given amount invested the optimal 

decision is independent of the initial level of wealth. If a utility function with constant 

relative risk aversion is used, such the logarithmic function or power function, then this 

rescaling would not normally be necessary. The results would then be valid for any 

investor investing a given proportion of wealth (rather then a given absolute amount) in 

the shares of the life company. Unfortunately, these two functions may only operate 

when outcomes are bounded within the set of positive real numbers and would cause 

difficulties if applied to Model A.

Despite some minor difficulties in using utility theory, it is worth noting that utility 

maximization is a general approach for decision-making in the face of uncertainty. 

More common techniques used in portfolio analysis such as the mean-variance approach 

are also subject to similar shortcomings. These include the treatment of multiperiod 

consumption and the fact that more than one individual's preferences may need to be 

considered in the decision-making process. However, as the assumptions which
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underlie the theoretical justification for the mean-variance approach are not as 

transparent, these issues are rarely noticed in its applications.

5.5 Summary

Broadly speaking, the aims of the model office described in this chapter are to distribute 

smoothed dividends to shareholders, whilst maintaining a stable solvency margin over 

the period of investigation. At the horizon date, the business in force is transferred at a 

cost equal to the realistic reserve, with any remaining surplus being distributed as a final 

dividend. In the case of insolvency, two separate courses of action are considered: 

shareholders could be required contribute more capital (Model A), or the company may 

be wound up on terms similar to that at the horizon date (Model B). Whichever model 

is used, all dividends (including the final dividend) are accumulated to the horizon date 

at the same rate of return earned by equities. The objective function is then taken to be 

the expected utility of these accumulated dividends, or payouts.

The main limitations of the life office model may be attributed to its divergence from 

models necessary in practice. Assuming cashflows occur at the valuation dates is one 

simplification. Apart from the unnecessary complexity that would result if cashflows 

are assumed to occur midway between valuation dates, the use of an annual asset model 

would also require approximations to be made when calculating the rate of return earned 

between such intervals. Items deliberately left out of the cashflows include taxation, 

surrenders and termination expenses. Although the last item is a minor omission, both 

surrenders and taxation are significant components in the cashflows of a life office. 

However, the inclusion of taxation and surrenders would add little to the issues being 

investigated in this research.



In relation to the utility maximization procedure, there are clearly elements which 

cannot be fully and realistically taken into account. Multiperiod consumption and 

shareholders' aggregate utility have only been dealt with pragmatically by accumulating 

dividends in equities and assuming only one risk tolerance level applies. Although 

utility functions with constant relative risk aversion have been felt to be superior to the 

exponential function (due to their self-scaling properties), they may not be used in 

situations which involve outcomes of negative amounts. Hence, the exponential 

function, which does not suffer from the latter problem, was felt to be more suitable, 

although some rescaling of the risk tolerance parameter may be necessary. As long as 

the utility maximization approach is used in order to arrive at consistent decisions under 

uncertainty, these techniques should be useful tools in the management of life 

company's asset portfolio.
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6. STATIC OPTIMIZATION II - LIABILITY MODEL A

6.1 Introduction

As the ultimate objective of this research is to investigate the optimal asset allocation 

strategies for insurance companies, this chapter and the next deal with the investment 

strategy for an office which is open to new business. The optimal asset mixes for this 

office are derived using the numerical optimization routines described in Section 4.3. 

Sensitivity analysis is then performed with regard to some of the assumptions made in 

the investment model. Finally, the effect of insolvency constraints on these optimal 

portfolios is investigated and analysed in a mean-variance framework.

All the results derived in this chapter relate to Model A, which has been described in 

Chapter 5. It may be recalled that in the case of Model A, additional capital is obtained 

from shareholders whenever the solvency margin of the office falls below the guarantee 

fund. This capital injection is set at an amount which is just sufficient to meet the 

guarantee fund. In reality, if shareholders were prepared to provide more capital to the 

office when in difficulty, it would be sensible if this capital input was sufficient to raise 

the solvency margin to a more sustainable level, say 5% or 10%, rather than to the exact 

amount of the guarantee fund. One reason for making this less realistic assumption in 

Model A is to facilitate the optimization process.

As mentioned in Section 4.3, the most efficient non-linear optimization routines require 

the calculation of gradient vectors. Providing that the objective function in Model A is 

a continuous function of the asset proportions, the optimal portfolio may be obtained 

using these algorithms. However, if the capital injection had been assumed to bring the 

solvency margin up to a pre-determined level at the point of insolvency, the objective
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function would no longer be smooth, hence requiring less efficient means of arriving at 

the optimal portfolios. This in fact is one reason for giving Models A and B separate 

consideration. Model B is distinct from Model A because of the discontinuity which 

results when insolvency occurs in the former. In Model B, the liabilities are sold at the 

point of insolvency. So while Model A can take advantage of gradient methods of 

optimization, Model B may not. Hence, the case of Model B is discussed in Chapter 7.

6.2 Optimal Portfolios

The optimal asset mixes for Model A are computed by carrying out a thousand 

simulations of asset and liability cashflows over a period of twenty years. It is assumed 

that only twenty year endowments are currently in force and that the volume of new 

business over this period will continue to grow in line with inflation. The amount of 

assets at the start of the projection period is given by (l+s/w) times the prudent value 

placed on the liabilities, where sm is a measure of the initial solvency margin. In these 

investigations, just the two situations with sm = 15% and 25% are considered. Utilities 

of total payouts (accumulated dividends plus final surpluses) are computed for a range 

of risk tolerance levels, giving separate consideration to nominal and real amounts.

6.2.1 Nominal Payouts

Table 6.1 shows the optimal asset mixes when payouts are measured in nominal terms, 

assuming sm = 15%. Increasing values of r as one moves down the first column implies 

riskier investment strategies. The next four columns show the optimal percentages in 

each of the asset classes: cash, Consols, index-linked gilts and equities in that order. 

The last four columns give the expected utility, the mean payout, the standard deviation 

of the payouts and the percentage of scenarios in which the guarantee fund is ever
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breached, referred to hereafter as the probability of ruin. A graphical representation of 

these optimal portfolios is also shown in Figure 6.1.

r CASH CON /LG EQ E (utility) Mean S.D. Ruin %

2 0 100 0 0 -0.00955 127384 47281 62

4 2 97 1 0 -0.07003 128203 48483 57

8 5 79 1 15 -0.22750 144090 77178 36

16 23 32 11 34 -0.43362 174772 146169 48

32 0 0 41 59 -0.60943 215163 245795 99

Table 6.1. Optimal portfolios: sm = 15% in nominal terms.

2 4 8 16 32

Figure 6.1. Optimal portfolios: sm = 15%, in nominal terms.

On the surface, these results seem intuitively reasonable. At the lowest level of risk 

tolerance shown, the optimal mix is entirely in Consols. These are gradually shifted 

into cash, index-linked gilts and equities as the risk tolerance parameter is increased.
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The mix at r = 8 appears to represent a moderate strategy, with about 85% of the fund 

invested in fixed income assets and the remainder being in real assets. At very high 

levels of risk tolerance, the optimal strategy is entirely in real assets, with about 40% in 

index-linked gilts and 60% in equities. This is reasonable as these are the asset classes 

with the highest expected return over this twenty year period (see Table 3.9). In terms 

of the means and standard deviations of the payouts, the figures shown in Table 6.1 

seem intuitive, with both these quantities increasing monotonically with r.

From Table 6.1, it may be noted that the ruin probabilities observed throughout the 

spectrum of risk tolerance levels are generally quite high, ranging from 36% at r = 8, to 

99% at r = 32. While it is possible that this may be just a consequence of the 

investment model, (in which case even greater emphasis should be placed on the 

relative probabilities rather than the absolute ones computed), the existence of sub- 

optimal portfolios with much lower probabilities of ruin would appear to refute this 

view. For example, if 40% of the fund were to be invested in cash with the remaining 

60% invested in Consols, the office would only expect to endure a 2% ruin probability. 

Hence, there must be another reason why such high ruin probabilities are permissible.

A more plausible explanation for this lies in the link between the objective function and 

the probability of ruin. In the case of Model A, the incidence of ruin has hardly any 

impact on the amount of the payout. Apart from incurring negative dividends in order 

to make up the guarantee fund, no real penalty is imposed on the fund by becoming 

technically insolvent. As long as the amounts by which the fund breaches the guarantee 

fund are small, these should not have serious consequences on the expected utility, even 

if they do occur in as many as 62% of the simulations generated, which is the case for 

the all-Consols portfolio. Ruin is therefore more of an indicator that negative dividends 

are required, rather than the cause of considerable disutility which would usually be 

associated with the event of an insolvency in practice. This seems reasonable given that 

the objective function is defined as a continuous function of the asset proportions.

142



Table 6.2 is similar to Table 6.1 but with sm set at 25% instead of 15%. Initially, one 

might expect this increase in the initial solvency margin to result in lower probabilities 

of ruin and possibly more adventurous asset mixes. Comparing these two tables, it is 

clear that the probabilities of ruin have dropped considerably, now ranging from 12% to 

87%, rather than from 36% to 99% as shown in Table 6.1. However, the optimal asset 

mixes appear to have been rather indifferent to the increase in the value of sm.

r CASH CON ILG EQ E(utility) Mean S.D. Ruin %

2 0 100 0 0 -0.00415 152810 54672 22

4 0 100 0 0 -0.04302 152810 54672 22

8 0 85 0 15 -0.17498 169146 83723 12

16 9 53 3 35 -0.37739 196123 142112 20

32 0 0 42 58 -0.56753 247310 269243 87

Table 6.2. Optimal portfolios: sm = 25%, in nominal terms.
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2 4 8 16 32

Figure 6.2. Optimal portfolios: sm = 25%, in nominal terms.
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When analysing these results, it should be noted that increasing sm also is similar in 

principle to increasing the initial amount invested by the shareholders. Since the risk 

tolerance parameter is only comparable for a given amount invested, the values of r in 

Tables 6.1 and 6.2 may not be directly comparable. However, this will depend on how 

this additional capital has be raised.

Hypothetically, if it is assumed that the increase in sm has come from the same group of 

shareholders with the same amount of initial wealth, then any differences between 

Tables 6.1 and 6.2 would be due to the net effect of increasing both the free asset ratio 

of the fund and the proportion of shareholders' wealth invested. While the former could 

be expected to yield more adventurous asset mixes, the latter should have an opposite 

effect. Coincidentally or not, these effects seem to have cancelled each other out to a 

large extent.

Conversely, if this additional capital is assumed to have been raised by a new group of 

shareholders, then the initial amount invested by the original shareholders would remain 

the same, although their proportionate shareholdings would also be diluted from 100% 

to only 60%. Hence, the original shareholders should only be entitled to 60% of the 

payouts. In terms of the exponential utility function, multiplying the payouts by 0.6 is 

equivalent to dividing r by the same factor, as -exp[Ax/r] = -exp[xl{rlk)]. Therefore, the 

value of r = 8 shown in Table 6.1 would be comparable with a value of r = 8 -r 0.6 « 13 

in Table 6.2. On this basis, the optimal portfolios do seem more adventurous when the 

initial solvency margin in increased.

This latter situation, however, assumes that the value of sm accurately reflects the 

amount of initial surplus which has been contributed by the shareholders. But as the 

amount of surplus held by an ongoing fund is a function of the valuation basis, 

interpreting the results as such may be less valid.
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6.2.2 Utility Maximization, Immunization and Ruin Probability.

In Tables 6.1 and 6.2, the optimal portfolios at r -  2 represent very low risk strategies, 

and these have been found to be entirely invested in Consols. This seems reasonable 

given the long term nature of the liabilities and the fact that Consols is the asset class 

showing the lowest variability of accumulations over twenty years. Nevertheless, it 

would also be worthwhile examining how this portfolio compares with more traditional 

approaches to minimizing risk, such as an immunized strategy. From Section 2.2.2, one 

may recall that immunization had been described as a means of minimizing the effect of 

small changes in interest rates on the level of surplus in a fund. Hence, at very low 

levels of risk tolerance, the utility maximizing portfolio should be broadly similar to an 

immunized portfolio.

Generally speaking, a fund is said to be immunized if the discounted mean term of its 

asset proceeds is the same as that of its liability outgo. Using a realistic valuation basis 

with an interest rate assumption of 8.5% for nominal cashflows and 3.5% for real 

cashflows, the discounted mean term of the liability outgo for an open fund of twenty 

year endowments is 9.92 years. At the interest rate of 8.5%, the discounted mean term 

of Consols is the reciprocal of the discount rate or 12.76 years. Assuming cash to have 

a discounted mean term of zero, this implies an immunized ratio of about 2 : 7 in cash 

and Consols respectively. On this basis, the discounted mean term of a fund entirely 

invested in Consols would seem to be too long in relation to its liabilities. This 

discrepancy between utility maximization and immunization may be explained in terms 

of the different objectives which these two methods seek to achieve.

Although utility maximization is a general approach to decision analysis, the expected 

utility in this particular decision model has been defined in relation to the accumulated 

dividends or payouts. At very low levels of risk tolerance, the aim of this approach is to 

minimize the variability of payouts. On the other hand, immunization is a theoretical
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concept which aims to minimize the variability of surplus in respect of a single change 

in interest rates, after which the portfolio has to be rebalanced if an immunized position 

is to be maintained. In the context of the type of decision model employed in these 

investigations, the situation in which utility maximization and immunization would be 

most comparable is if payouts were to be calculated after one year. i.e. no multiperiod 

consumption involved and ultimate surplus is only defined in terms of realistic reserves. 

This may be verified empirically by minimizing the variance of payouts over one year, 

for which the optimal portfolio (with sm = 15%) is 26% in cash, 62% in Consols and 

12% in index-linked gilts. Given that the initial surplus on a realistic basis is about 

25%, this portfolio clearly lies within the immunized ratio of 2 : 7 indicated above.

It would, however, seem reasonable to suggest that a portfolio which can minimize the 

variability of realistic surplus over one year should also be capable of producing very 

stable dividends in a multiperiod consumption framework. Returning to the twenty year 

open fund, it may be shown that the variability of dividends in any year will tend to be 

slightly lower for a portfolio with say 10% in cash and 90% in Consols, than for one 

entirely invested in Consols. Hence, it seems as though the compounding of dividends 

is leading to more stable payouts for the portfolio with 100% in Consols.

Initially, it may appear counterintuitive that a strategy which produces more variable 

dividends than another is nevertheless capable of yielding accumulated dividends which 

are more stable. In fact, this is analogous to the case of a pure asset fund where the cash 

had the more stable accumulations over one year although Consols had the more stable 

accumulations over twenty years. This should be possible if the two stochastic variables 

are serially correlated to different extents and may be connected with the fact that the 

investment model assumes Consols yields to be mean reverting. Where the model 

office is concerned, a sudden rise in the Consols yield may result in a reduction in the 

amount of surplus available for distribution at a particular valuation date. However, as
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the yield tends to revert to its mean value of 8.5%, this apparent loss of surplus may be 

made up at a later date, given sufficient time.

As a result, the optimal portfolios obtained for the twenty year case should be treated 

with some caution. If the investment model truly reflects reality and if the objective is 

to minimize the variability of payouts in twenty years time, then the best investment 

strategy may well be to invest 100% of the fund in Consols. However, if the difference 

between the immunized position and this minimum variance strategy is a consequence 

of an invalid assumption about the stationarity of Consols yields, then the 100% 

Consols strategy may be misleading.

Another approach which is sometimes used to minimize risk is to minimize the 

probability of ruin. In this decision model, the ruin probability is defined as the 

proportion of simulations in which the guarantee fund is ever breached during the 

twenty year projection period. So if the surplus level of a fund is resilient to changes in 

economic factors, then the ruin probability should be fairly minimal. In other words, an 

immunized strategy should also be equivalent to a minimum ruin strategy.

A limitation of duration analysis is that it depends on the valuation basis being used, not 

only in calculating the discounted mean term but also in determining the amount of 

surplus being held. With this model office, distributable surplus is a function of both 

the realistic reserves and the published reserves. As these reserves are generally quite 

different, it may be impossible for the fund to be immunized on both these bases.

Furthermore, ruin is defined in terms of the published reserves which are subject to an 

upper limit of 6% on the rate of interest used for valuing nominal cashflows. So when 

Consols yields rise beyond 6%, the fall in Consols prices will not be compensated for 

by an equivalent decrease in the published reserves. This actually explains why the ruin 

probability for an all-Consols portfolio is so high relative to most of the other 'higher
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risk' optimal portfolios shown in Tables 6.1 and 6.2. Conversely, if the fund is entirely 

invested in cash, it will be resilient to rises in interest rates but vulnerable when interest 

rates fall. Therefore, it is clear that immunization may not be a feasible proposition in 

respect of published reserves.

As immunization theory does not necessarily lead to low ruin probabilities in situations 

which may reasonably occur in practice, this approach would appear to be an inadequate 

means of assessing whether a fund is secure or not. In the circumstances which have 

been discussed so far, the stability of payouts was shown to be even less useful as a 

criterion for determining the level of risk attributable to the office. Overall, ruin 

probabilities seem to provide a straightforward and informative method for quantifying 

solvency risk. One of its limitations, however, is that it does not distinguish between 

the different extents of insolvency. If the ruin probability could be incorporated into the 

utility maximization framework in a suitable manner, the net result may be a more 

sensible balance between the interests of shareholders and that of the fund itself. This 

issue is discussed in greater detail in Section 6.3.

6.2.3 Real Payouts

This section deals with the optimal portfolios when the payouts are expressed in real 

terms, as shown in Tables 6.3 and 6.4, and Figures 6.3 and 6.4. Comparing these two 

tables, there appears to be little variation between the optimal asset mixes at sm -  15% 

and sm = 25%, as was the case when the payouts were measured in nominal terms (see 

Tables 6.1 and 6.2). As expected, the ruin probabilities are noticeably larger in Table

6.3 than in Table 6.4, due to there being more initial surplus available in the latter case.

From Tables 6.1 and 6.2 shown earlier, it had been pointed out that the ruin probabilities 

in nominal case did not appear to be strongly linked to the risk parameter, r. Out of the
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five portfolios shown in each of these tables, the optimal mixes with the lowest ruin 

probabilities were associated with the value of r = 8. This seemed to indicate that a 

strategy which on average produced higher and more variable nominal payouts to 

shareholders could also result in an office which is less prone to becoming technically 

insolvent. From Tables 6.3 and 6.4 though, the correlation between ruin probability and 

risk tolerance appears more convincing when payouts are assessed in real terms.

r CASH CON ILG EQ E(utility) Mean S.D. Ruin %

2 1 61 31 7 -0.11634 49733 19514 10

4 6 59 13 22 -0.31283 53340 27076 27

8 16 47 0 37 -0.53442 56385 35154 65

16 0 31 0 69 -0.71379 61024 51707 99

32 0 0 0 100 -0.83289 65317 69677 100

Table 6.3. Optimal portfolios: sm = 15%, in real terms.
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Figure 6.3. Optimal portfolios: sm = 15%, in real terms.
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r CASH CON ILG EQ E(utility) Mean S.D. Ruin %

2 3 57 36 4 -0.07743 58641 20746 0

4 2 56 20 22 -0.25306 63123 29845 3

8 8 52 0 40 -0.47498 67709 40842 31

16 3 38 0 59 -0.67133 70723 51331 74

32 0 0 0 100 -0.80767 76318 75880 99

Table 6.4. Optimal portfolios: sm = 25%, in real terms.
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Figure 6.4. Optimal portfolios: sm = 25%, in real terms.
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Looking at Tables 6.3 and 6.4, the ruin probability increases monotonically with r, 

which is a more intuitive result. As in the nominal case, Consols are the main asset 

class for the low and medium risk strategies with cash only playing a minor role in these 

portfolios. The most notable difference between the nominal and real case is in the 

proportion of index-linked gilts held at the lower risk tolerance levels. The higher 

proportions held in this asset class when payouts are expressed in real terms is due to 

the need to earn stable real returns from the solvency margin. But as index-linked gilts
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also produce the lowest expected accumulations in real terms, their proportions 

eventually decline towards the higher risk strategies. Another difference between the 

nominal and real case is in the generally larger proportion of equities held in the case of 

the latter. This may be a consequence of the strong correlation between equity returns 

and inflation assumed in the investment model.

6.3 Precision and Efficiency

All the optimal portfolios shown in Section 6.2 were computed using the conjugate 

gradient method. In order to keep computation time to a minimum, the routine had been 

run initially with a moderately high precision tolerance level. (The higher the precision 

tolerance level, the less accurate are the results). As a check that the portfolios obtained 

were in fact global optima, the results were also compared against all the feasible 

combinations of asset mixes in steps of 10%. On a few occasions, one or more of these 

combinations produced expected utilities which were higher than those obtained using 

the optimization algorithm. In these instances, the precision tolerance level was 

decreased and the routine re-run, leading to more accurate optima. As a result, every 

single portfolio shown in the tables above has an expected utility at least as great as any 

portfolio obtained by the grid approach steps in of 10%.

For the initial level of precision, the number of function evaluations n and iterations I 

for each of the twenty variants are given in Table 6.5. For example, N15-32 indicates 

the variant involving nominal payouts, sm = 15% and r = 32. This required 6 iterations 

and 128 function evaluations. The variations in computational effort generally depend 

on the proximity of the starting position to the true optimum and whether the function is 

well scaled. If a function is poorly scaled, it means that the function is relatively 'flat' 

and the process may converge prematurely. Rescaling the function or decreasing the 

precision tolerance level usually helps to ameliorate this problem.
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Variant n / Variant n I

N 15-02 144 8 R15-02 147 6

N 15-04 146 7 R15-04 85 4

N 15-08 212 10 R15-08 147 6

N15-16 204 8 R15-16 204 4

N 15-32 128 6 R15-32 76 4

N25-02 100 6 R25-02 78 4

N25-04 84 5 R25-04 118 5

N25-08 104 5 R25-08 67 3

N25-16 68 3 R25-16 78 3

N25-32 57 3 R25-32 62 3

Table 6.5. Number o f function calculations and iterations required for the various situations.

Looking at Table 6.5, an average of about 115 function calculations were required for 

the optimization process to converge. This compares with the grid approach (in steps of 

10%) which needs 286 function calculations. It has been explained in Chapter 4 how 

the grid approach requires little additional computational effort when applied to more 

than one utility function, as most of the computation time goes towards calculating the 

amounts to which the utilities are applied. This economy also applies when computing 

the utilities of real and nominal amounts. Hence, it should only take about a quarter of 

the time to derive the optimal mixes for the five risk parameters in both nominal and 

real terms using the grid approach than it would using the optimization routine.

It then follows that with just four asset classes involved, the only potential advantage of 

using numerical optimization routines would be in achieving greater precision. If much 

more accurate results were to be required, the grid approach would not be feasible. The 

only sensible means of achieving this would be to use optimization routines set to very 

low precision tolerance levels. However, bearing in mind the potential uncertainty that
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could be associated with these results, the apparent benefit from the additional accuracy 

obtained using such optimization routines may be spurious. One approach that may be 

used to assess the extent of this uncertainty would be to conduct sensitivity analysis on 

the optimal portfolios.

6.4 Sensitivity Analysis

In previous chapters, it had been noted how the investment model may influence the 

conclusions one may draw from the results if these are not interpreted carefully. It is 

therefore important to gain some idea about the sensitivity of the results obtained so far 

to the investment model used. While it would be ideal to make comparisons between 

different types of models, Wilkie's model still remains the only widely available 

investment model in the actuarial field. In view of this, the alternative may be to assess 

the sensitivity of these results to changes in the model's parameter values. Nevertheless, 

it is worth noting that this will not allow for uncertainty in the model structure itself.

6.4.1 Parameter A Iterations

The sets of parameter alterations which have been chosen for this purpose are first 

detailed here before their resulting optimal portfolios are shown in Section 6.4.2. An 

obvious place to begin would be to consider parameter estimates obtained using a more 

recent data period, as published by Wilkie (1995a). These estimates were based on the 

period 1923-1990 and any differences between this version and the Standard Basis are 

shown in Table 6.6. The last three parameters, BMU, BA and BSD refer to Wilkie's 

short term interest rates model. As the Standard Basis did not include such a model, the 

comparison is made against the parameters, KA and KSD described in the cash model 

from Section 3.5. KMU = 0.0 is implicit in this cash model.
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Parameter Standard Basis Wilkie (1995a)

QSD 0.050 0.040

YW 1.350 1.950

YMU 0.040 0.038

YA 0.600 0.500

YSD 0.175 0.160

DMU 0.000 1.35%

DY -0.200 -0.175

DB 0.375 0.550

DSD 0.075 0.060

CMU 0.035 0.031

CAI 1.200 0.900

CA2 -0.480 0.000

CA3 0.200 0.000

CY 0.060 0.150

CSD 0.140 0.175

BMU 0.000 0.185

BA 0.400 0.750

BSD 0.250 0.175

Table 6.6. Parameters alterations specified in Wilkie (1995a).

The main effects of these changes may be summarized as follows:

1. Reducing QSD lowers the variance of the force of inflation.

2. The net effect of increasing YW and reducing YMU is to reduce the long-term 

average dividend yield by about 0.1%.

3. Increasing DMU raises the long-term average annual rate of increase in dividends by 

about 1.5%, while lowering DSD reduces its variance.
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4. Reducing CMU lowers the long-term mean of the Consols yield by 0.4%, while 

raising CSD increases its variance.

5. Introducing BMU and reducing CMU lowers the long-term average cash yields by 

about 1.75%, while lowering BSD reduces its variance.

RPI Cash Consols IL Gilts Equities

MEAN (%) 5.6 1.3 8.4 9.3 12.1

(5.8) (9.2) (8.8) (9.6) (11.0)

S.D. 1.3 1.2 0.9 2.6 6.4

(1.7) (1.9) (1.1) (3.5) (6.4)

CORRELATION

Cash 0.41

(0.53)

Consols -0.11 0.19

(-0.08) (0.28)

IL Gilts 0.99 0.46 -0.01

(0.99) (0.58) (0.00)

Equities 0.54 0.23 0.04 0.54

(0.57) (0.29) (0.03) (0.57)

Table 6.7. Means, standard deviations and correlation coefficients o f  20 year 

nominal accumulations using Wilkie (1995a).

Using the same random seed as before, the simulation results over twenty years for this 

revised version may be summarized in Table 6.7. The corresponding figures for the 

Standard Basis obtained from Table 3.9 are shown in brackets. When compared with 

the Standard Basis, noticeable changes have occurred in the means and variances of the 

accumulations. The mean accumulation rate for cash has fallen from 9.2% to 7.3% per 

annum. The mean accumulation rates for inflation, Consols and index-linked gilts have 

fallen to a lesser extent and the mean accumulation rate on equities has increased from
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11.0% to 12.1%. The standard deviations of the twenty year accumulations factors have 

decreased for all variables, most notably for inflation, cash and index-linked gilts.

Another basis for sensitivity testing could involve the use of parameter estimates which 

are a stated number of standard errors above or below their best estimates. In Wilkie 

(1984), it had been suggested that 1.5 standard errors (s.e.) would be appropriate degree 

of uncertainty to adopt for this purpose. However, rather than testing the numerous 

parameter changes this would involve, only the three alterations shown in Table 6.8 will 

be used here. These parameter alterations will be tested individually.

Parameter Best Estimate Estimate+1.5 s.e.

QA 0.600 0.750

YMU 0.040 0.045

CMU 0.035 0.045

Table 6.8. Three alternative parameter values suggested in Wilkie (1984).

The effect of increasing in QA is to lower the tendency for the force of inflation to 

return to its mean value of QMU, making it more unstable. Increasing CMU and YMU 

on the other hand only serves to raise the mean real yield component in Consols and the 

mean share dividend yield respectively. It is also worth noting that the QA parameter is 

a structural parameter, rather than a residual parameter as in CMU and YMU.

The final set of parameter changes used here relates to a recent review of Wilkie's 1986 

model by Huber (1995). On the basis that Wilkie's structural parameter values were 

appropriate, Huber recalculated the residuals over the out-of-sample period from 1983 

to 1993 and the set of residual parameter alterations implied by this analysis is shown in 

Table 6.9. The changes will be applied simultaneously and have should have the
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following effects: a decrease in the variance of the force of inflation, an increase in the 

mean growth rate of the dividend index, a decrease in the mean yield on Consols, and 

increase in the variance of the Consols yield.

Parameter Standard Basis 1983-93

QSD 0.050 0.0250

DMU 0.000 0.0188

CMU 0.035 0.0318

CSD 0.140 0.3000

Table 6.9. Parameter alterations based on 1983-93 errors

Therefore, the five sets of parameter alterations discussed so far could be referred to as:

1. Wilkie (1995a)

2. QA -  0.75

3. YMU= 0.045

4. CMU= 0.045

5. 1983-93 errors

6.4.2 Optimization Results

For each of these five variants, the optimal mixes at r = 8 assuming sm = 15% were then 

recalculated with payouts measured in nominal and real terms, as shown in Tables 6.10 

and 6.11 respectively. This particular risk parameter was chosen because it appeared to 

represent a sensible risk position based on the results shown in Table 6.1.
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In Table 6.10 the range of optimal proportions in Consols and equities is rather wide. 

'Wilkie (1995a)' requires 45% and 55% in Consols and equities respectively, compared 

with 79% and 15% respectively for the Standard Basis. Similarly, increasing CMU to 

0.045 produces an optimal mix with 92% in Consols and no equities. It is also 

interesting to note how similar the optimal mix from '1983-93 errors' is to that of 

'Wilkie (1995a)', perhaps indicating the influence which the past ten years' data may 

have had on the latter's parameter values.

Model CASH CON ILG EQ E(utility) Ruin %

Standard 5 79 1 15 -0.22750 36

Wilkie (1995a) 0 45 0 55 -0.18420 91

QA = 0.75 0 90 0 10 -0.22961 51

YMU = 0.045 1 76 0 23 -0.20708 49

CMU =0.045 8 92 0 0 -0.14326 39

1983-93 errors 0 51 0 49 -0.11805 82

Table 6.10. Optimal portfolios for six versions o f Wilkie's model: sm = 15%, in nominal terms, at r = 8.

Model CASH CON ILG EQ E (utility) Ruin %

Standard 16 47 0 37 -0.53442 65

Wilkie (1995a) 0 0 0 100 -0.41852 100

QA = 0.75 0 73 0 27 -0.53481 60

YMU= 0.045 0 42 0 58 -0.49770 94

CMU =0.045 58 41 0 1 -0.45117 0

1983-93 errors 0 0 0 100 -0.34298 100

Table 6.11. Optimal portfolios for six versions o f Wilkie's model: sm = 15%, in real terms, at r = 8.
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In real terms, the results seem even more erratic. This is a little surprising given the 

cascade structure of the model. One would expect real amounts to be fairly insensitive 

to parameter changes involving the retail price index. But this has clearly been offset by 

changes in other parameters, given that 100% in equities is optimal for 'Wilkie (1995a)' 

compared with only 1% in equities when CMU = 0.045. As with Table 6.10 though, 

'1983-93 errors' produces optimal mixes which are similar to those of'Wilkie (1995a)'.

The high degree of sensitivity in these optimal asset allocations has a number of 

implications in decision-making. For a given utility function and liability profile, the 

optimal asset mix will always be conditional on the asset model. Regardless of how 

well a model may be perceived to represent economic variables, there will always be 

some degree of uncertainty relating to the model structure and its parameter values.

In the case of Wilkie's model, updating the model parameters using more recent data led 

to moderate changes in the distributions of the asset classes. However, judging from the 

results above, it would seem that even a 1% change in the mean accumulation rate per 

annum may significantly affect the optimal mixes obtained. Although this points to the 

need for an investment model whose parameters are more stable over time, it seems 

doubtful whether an alternative model could be constructed which would be able to 

cope with the inherent instability in economic variables.

Another implication relates back to the issue of precision discussed in Section 6.3. It 

was mentioned that the only apparent benefit of using optimization routines with just 

four asset classes was in achieving greater precision. However, given the uncertainty in 

the optimal portfolios obtained, the grid approach now seems to be the most sensible 

method for analysing asset allocation strategies under these circumstances. As well as 

being able to guarantee global optima within the precision level specified, the grid 

approach is also capable of incorporating ruin criteria into the analysis, which otherwise 

would have been extremely difficult to implement satisfactorily.
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6.5 Incorporating Ruin Criteria

In all the optimization problems considered so far, the sole objective has been to 

maximize the expected utility of shareholders. From a practical perspective, though, the 

portfolio selected should also aim to satisfy the other interested parties involved, such as 

policyholders and regulators. Broadly speaking, this means ensuring that an adequately 

low ruin probability is maintained. One way of achieving this could be to select the 

portfolio with the highest expected utility subject to the constraint that the probability of 

ruin does not exceed a specified limit. This will be considered shortly in Section 6.5.2. 

Including constraints of this form, however, may take the analysis away from the 

traditional utility maximizing framework.

A feature of the grid approach is that it enables all the portfolios included to be ranked 

by expected utility or any other measure. This could be particularly useful if another 

factor such as the probability of ruin needs to be taken into account, but not treated as a 

strict constraint. For example, the optimal or highest ranking portfolio may have an 

unacceptably high ruin probability, whereas say the fifth ranking portfolio might give a 

much more acceptable probability of ruin. In this respect, the fifth ranking portfolio 

may be preferred to the optimal one.

Clearly, this form of analysis is also not wholly consistent with a utility maximizing 

approach either, allowing additional scope for subjectivity which is both an advantage 

and a disadvantage. The ranking approach is flexible in that it encompasses portfolios 

which may be more acceptable in practice but could also have been overlooked through 

a constrained or unconstrained utility maximizing approach. However, this also means 

that individual consideration needs to be given to all these grid portfolios, which may be 

an overwhelming number in total. Therefore, in order to make this approach more 

practicable, one could limit the portfolios under consideration to say the ten with the 

highest expected utilities, as described below.
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6.5.1 Top Ten R a n k in g  P o rtfo lio s

The series of tables which follow in this section relate to the top ten portfolios ranked by 

expected utility, at values of r = 2, 8 and 32. This is performed for sm = 15% and 25%, 

and with payouts expressed in nominal and real terms. In each table, the expected 

utilities, means and standard deviations of payouts, and ruin probabilities are also given 

next to the corresponding optimal portfolios.

Rank CASH CON ILG EQ E(utility) Mean S.D. Ruin %

1 0 100 0 0 -0.00955 127384 47281 62

2 10 90 0 0 -0.00973 129079 50103 42

3 20 80 0 0 -0.01024 130739 54146 25

4 0 90 10 0 -0.01039 132205 56726 40

5 10 80 10 0 -0.01091 133994 61002 21

6 30 70 0 0 -0.01112 132537 59380 9

7 0 90 0 10 -0.01182 137370 64042 47

8 20 70 10 0 -0.01183 135976 66339 9

9 10 80 0 10 -0.01218 139212 67669 31

10 0 80 20 0 -0.01225 137569 70549 24

Table 6.12. Top ten portfolios: sm = 15%, in nominal terms, at r = 2.

Table 6.12 above refers to the top ten portfolio at r = 2, with sm = 15% and payouts 

measured in nominal terms. Here, the point made earlier about neighbouring portfolios 

possibly having better overall characteristics is quite apparent. The asset mix giving the 

highest expected utility is that of 100% Consols, even though 62% of the simulations 

have become technically insolvent within the twenty year projection period. On the
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other hand, shifting 30% of these assets into cash would leave the resulting portfolio 

ranked sixth out of 286, but with a more favourable ruin probability of 9%. Given the 

choice between these two portfolios, an investment manager may well prefer the latter. 

Hence, considering ruin probabilities may allow for the fact that the smooth objective 

function does not deal adequately with insolvency risk.

Looking at the means and standard deviations of the payouts, it is fairly clear why the 

optimal mix is entirely invested in Consols. As a relatively low risk tolerance parameter 

is being used, there is a strong affinity for portfolios with low standard deviations of 

payouts. From Table 6.1, it would seem that the asset mixes which give lower ruin 

probabilities are sub-optimal because they also tend to produce more variable payouts. 

This emphasizes the difference between the objective of stabilizing payouts and other 

approaches for managing risk such as immunization and minimizing ruin probabilities.

Rank CASH CON 1LG EQ E (utility) Mean S.D. Ruin %

1 10 70 0 20 -0.22803 150018 89136 37

2 0 80 0 20 -0.22810 147727 84799 50

3 10 80 0 10 -0.22857 139212 67669 31

4 0 90 0 10 -0.22898 137370 64042 47

5 0 80 10 10 -0.22901 142467 76018 29

6 20 60 0 20 -0.22908 152327 94169 23

7 20 70 0 10 -0.22940 141046 72212 14

8 0 70 10 20 -0.22972 153389 98407 35

9 10 70 10 10 -0.22979 144450 80674 14

10 10 60 10 20 -0.23093 155732 103422 21

Table 6.13. Top ten portfolios: sm = 15%, in nominal terms, at r = 8.
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When r takes the value of 8 represented by Table 6.13, the ruin probabilities from the 

top ten portfolios appear more uniform when compared with Table 6.12, although a 

reasonable reduction in ruin probability may be secured by choosing say the seventh 

ranking portfolio rather than the optimal one. The means and standard deviations of the 

payouts imply that the trade-off between these two statistics is key in determining the 

ranks, as opposed to an affinity for either high means or low standard deviations. When 

r = 32 (see Table 6.14), there is clearly no justification for choosing any portfolio other 

than the optimal one on grounds of ruin probabilities. Although there seems to be some 

relationship between the rank and the mean payout, the optimal portfolio is not the 

portfolio with the highest mean payout. Therefore, this risk position still represents a 

compromise between the variance and the expected return of the payouts.

Rank CASH CON ILG EQ E(utility) Mean S.D. Ruin %

1 0 0 40 60 -0.60943 215385 246260 100

2 0 0 50 50 -0.60998 213034 241962 99

3 0 0 30 70 -0.61007 217443 251278 100

4 10 0 30 60 -0.61036 211017 234218 99

5 10 0 40 50 -0.61070 208699 229624 98

6 10 0 20 70 -0.61125 213023 239614 100

7 0 10 30 60 -0.61168 207949 227985 99

8 0 0 60 40 -0.61174 210405 238523 98

9 0 0 20 80 -0.61182 219238 257030 100

10 20 0 20 60 -0.61184 206546 222449 98

Table 6.14. Top ten portfolios: sm = 15%, in nominal terms, at r -  32.

When the office has more surplus to begin with, the ruin probabilities should be lower 

and this is evident in the case where sm = 25% (see Tables 6.15 to 6.17). However, the 

same feature noted in Table 6.12 also appears in Table 6.15, with the ruin probability of
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the optimal portfolio being much larger than that of the nine others shown. A more 

reasonable alternative might be the third ranking portfolio, with a ruin probability of 

only 3%. If achieving a low ruin probability is paramount, then the seventh portfolio 

may be ideal, with approximately none of the one thousand scenarios resulting in ruin. 

On closer inspection though, an unusual ranking seems to have emerged. The seventh 

portfolio is clearly mean-variance inefficient compared with the eighth portfolio even 

the former has a higher expected utility. This is probably due to the problem of using a 

very low risk tolerance parameter discussed in Section 4.4.3.

Rank CASH CON ILG EQ E(utility) Mean S.D. Ruin %

1 0 100 0 0 -0.00415 152810 54672 22

2 10 90 0 0 -0.00424 154109 57225 10

3 20 80 0 0 -0.00446 155542 61170 3

4 0 90 10 0 -0.00460 157107 64219 9

5 10 80 10 0 -0.00483 158849 68491 2

6 30 70 0 0 -0.00485 157237 66431 1

7 20 70 10 0 -0.00523 160862 73950 0

8 0 90 0 10 -0.00530 163496 72838 13

9 40 60 0 0 -0.00549 159326 73059 0

10 10 80 0 10 -0.00551 164984 76229 5

Table 6.15. Top ten portfolios: sm = 25%, in nominal terms, r = 2.

At r = 8 (see Table 6.16), there is a slight tendency to hold asset mixes with low 

standard deviations of payouts, in preference to those with higher expected payouts. 

Nevertheless, some benefit may still be derived from picking say the sixth or seventh 

ranking portfolio, as these have much lower ruin probabilities. At the highest risk level, 

all portfolios shown in Table 6.17 perform just as poorly in terms of ruin probabilities.
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Rank CASH CON ILG EQ E(utility) Mean S.D. Ruin %

1 0 90 0 10 -0.17543 163496 72838 13

2 0 80 0 20 -0.17577 174959 95543 13

3 10 80 0 10 -0.17593 164984 76229 5

4 10 70 0 20 -0.17661 176898 99750 6

5 0 80 10 10 -0.17704 168266 84997 6

6 20 70 0 10 -0.17723 166610 80682 1

7 10 70 10 10 -0.17818 170189 89785 1

8 20 60 0 20 -0.17822 178965 104679 3

9 0 70 10 20 -0.17875 180249 109291 7

10 30 60 0 10 -0.17915 168570 86350 0

Table 6.16. Top ten portfolios: sm = 25%, in nominal terms, r = 8.

Rank CASH CON ILG EQ E(utility) Mean S.D. Ruin %

1 0 0 40 60 -0.56756 247809 270244 89

2 0 0 50 50 -0.56796 245130 265504 81

3 10 0 30 60 -0.56801 243236 257421 84

4 10 0 40 50 -0.56822 240521 252170 75

5 0 0 30 70 -0.56854 250017 275641 94

6 20 0 30 50 -0.56890 235864 239137 69

7 20 0 20 60 -0.56893 238580 244906 80

8 0 10 30 60 -0.56901 240014 250794 85

9 0 10 40 50 -0.56916 237270 245259 75

10 10 0 20 70 -0.56923 245414 263228 91

Table 6.17. Top ten portfolios: sm = 25%, in nominal terms, r = 32.
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When payouts are measured in real terms, the ruin probabilities seem to increase with r, 

as seen by comparing Tables 6.18 to 6.20. However, at low levels of risk, the ruin 

probabilities are relatively more uniform within the top ten portfolios. In the case where 

r = 2, the ruin probabilities lie between 2% and 17% when payouts are in denominated 

real terms compared with 9% and 62% when payouts are denominated in nominal 

terms. While this may be a consequence of the more diverse portfolios resulting from 

the need to hold real assets, it also means that there is comparatively less benefit in 

selecting from any of the nine lower ranking portfolios.

At higher risk levels (see Table 6.19 and 6.20), the scope for choosing other asset mixes 

is reduced further as all the ruin probabilities are very high. The need to hold real assets 

remains but with the emphasis now shifting away from index-linked gilts into equities. 

At r = 32, the all-equities portfolio is optimal (see Table 6.20). Looking at the means 

and standard deviations of payouts, it is clear that this represents the ultimate high risk 

strategy. At this extreme level of risk tolerance, the chance of ruin is near certain.

Rank CASH CON ILG EQ E(utility) Mean S.D. Ruin %

1 10 60 30 0 -0.11677 48417 17177 1

2 0 60 30 10 -0.11683 50359 20754 11

3 10 60 20 10 -0.11727 50563 21290 8

4 0 70 30 0 -0.11739 48361 17496 14

5 0 70 20 10 -0.11791 50603 21822 17

6 20 50 30 0 -0.11793 48503 17555 2

7 0 60 40 0 -0.11799 48126 17039 11

8 20 50 20 10 -0.11805 50576 21319 3

9 10 50 30 10 -0.11827 50394 20970 5

10 20 60 20 0 -0.11905 48602 18378 3

Table 6.18. Top ten portfolios: sm = 15%, in real terms, r = 2.
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Rank CASH CON /LG EQ E (utility) Mean S.D. Ruin %

1 10 50 0 40 -0.53448 56822 36602 75

2 20 40 0 40 -0.53461 56886 36692 70

3 0 60 0 40 -0.53479 56770 36750 79

4 0 50 10 40 -0.53504 56634 36208 75

5 20 50 0 30 -0.53506 55265 31852 45

6 10 60 0 30 -0.53533 55255 32081 55

7 30 30 0 40 -0.53533 56953 37031 65

8 10 40 10 40 -0.53541 56704 36404 71

9 30 40 0 30 -0.53549 55266 31941 36

10 10 50 10 30 -0.53557 54973 31044 43

Table 6.19. Top ten portfolios: sm = 15%, in real terms, r = 8.

Rank CASH CON ILG EQ E(utility) Mean S.D. Ruin %

1 0 0 0 100 -0.83289 65317 69677 100

2 10 0 0 90 -0.83350 64133 64319 100

3 0 10 0 90 -0.83359 63963 63697 100

4 0 0 10 90 -0.83381 64152 65031 100

5 20 0 0 80 -0.83452 62879 59108 100

6 10 10 0 80 -0.83457 62728 58428 100

7 0 20 0 80 -0.83467 62583 57889 100

8 10 0 10 80 -0.83472 62912 59713 100

9 0 10 10 80 -0.83481 62735 58978 100

10 0 0 20 80 -0.83511 62919 60573 100

Table 6.20. Top ten portfolios: sm = 15%, in real terms, r = 32.
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If additional capital were available initially i.e. sm = 25%, the optimal portfolios in real 

terms would be quite satisfactory at low values of r. The utility maximizing portfolio at 

r -  2 shown in Table 6.21 has a ruin probability of 1%, which if accurate in absolute 

terms should be an acceptable level of risk for most offices. However, given the lack of 

credibility associated figures of this nature, it would be difficult to justify choosing a 

lower ranking portfolio on the basis that it has a zero probability of ruin.

Rank CASH CON /LG EQ E(utility) Mean S.D. Ruin %

1 0 60 40 0 -0.07798 57602 19212 1

2 0 60 30 10 -0.07822 60068 23538 1

3 20 50 30 0 -0.07831 58039 19922 0

4 10 60 30 0 -0.07833 57937 19872 0

5 10 50 30 10 -0.07841 60096 23478 0

6 10 50 40 0 -0.07862 57705 19564 0

7 0 70 30 0 -0.07955 57846 20483 1

8 20 50 20 10 -0.07957 60283 24248 0

9 10 60 20 10 -0.07974 60279 24489 0

10 0 50 40 10 -0.07990 60081 24112 1

Table 6.21. Top ten portfolios: sm = 25%, in real terms, r = 2.

Compared with Tables 6.16 and 6.17, the general level of ruin probabilities seen in 

Tables 6.22. and 6.23 is also reduced as a result of the higher initial solvency margin. 

However, the significant equity investment and the high ruin probabilities associated 

with these levels of risk tolerance would probably render most of these portfolios as 

being inappropriate in practice.
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Rank CASH CON ILG EQ E(utility) Mean S.D. ÄW/rt %

1 10 50 0 40 -0.47498 67704 40799 30

2 0 60 0 40 -0.47518 67737 41136 35

3 20 40 0 40 -0.47535 67675 40748 26

4 0 50 10 40 -0.47569 67404 40218 31

5 10 40 10 40 -0.47621 67398 40281 27

6 30 30 0 40 -0.47623 67672 40982 24

7 0 50 0 50 -0.47685 69356 46209 57

8 20 50 0 30 -0.47695 65679 35736 9

9 10 60 0 30 -0.47700 65771 36164 14

10 10 40 0 50 -0.47710 69384 46187 52

Table 6.22. Top ten portfolios: sm = 25%, in real terms, r = 8.

Rank CASH CON ILG EQ E(utility) Mean S.D. Ruin %

1 0 0 0 100 -0.80767 76318 75880 99

2 10 0 0 90 -0.80788 75165 70239 97

3 0 10 0 90 -0.80796 74995 69655 97

4 0 0 10 90 -0.80826 75150 70873 98

5 20 0 0 80 -0.80849 73943 64743 94

6 10 10 0 80 -0.80853 73792 64093 94

7 0 20 0 80 -0.80860 73657 63605 94

8 10 0 10 80 -0.80881 73922 65258 95

9 0 10 10 80 -0.80888 73747 64561 95

10 0 0 20 80 -0.80926 73896 66036 97

Table 6.23. Top ten portfolios: sm = 25%, in real terms, r = 32.
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In conclusion, there seem to be definite benefits that may be derived from this form of 

analysis. Depending on the liability model used, there may be instances when a utility 

maximizing portfolio may not be suitable in practice. With Model A, the ruin 

probabilities do not appear to have a consistent relationship with the means and standard 

deviations of payouts, which largely determine the expected utilities. This is because no 

real penalty is imposed on the objective function when ruin occurs. By considering a 

limited selection of high ranking asset mixes, a reasonable compromise between ruin 

probability and expected utility may sometimes be obtained. In effect, one is proxying a 

discontinuity in the objective function by doing so. From a general viewpoint, even 

when the optimum portfolio is acceptable, looking at the top slice of the full range of 

asset mixes may help to highlight the features which make this portfolio optimal.

6.5.2 Optimal Portfolios with Ruin Constraints

Notwithstanding the usefulness of having fuzzy boundaries when allowing for ruin 

probabilities (see Section 6.5.1), it may often be necessary to employ more objective 

methods for making decisions in view of such criteria. As mentioned earlier, one 

approach could be to maximize expected utilities subject to satisfying a ruin constraint. 

In this section, only portfolios which have a ruin probabilities of no more than 5% will 

be considered. A typical feature seen in these results is that some of the optimal 

portfolios may be identical to those at values of r adjacent to them. This is generally 

due to the fairly large steps of 10% used in the grid approach.

Figure 6.5 below shows the constrained optimal mixes at various values of r. Imposing 

the constraint appears to result in a more sensible range of asset mixes, given the 

relative size and nature of the liabilities. When r takes the value of either 2 or 4, the 

optimal portfolios are found to be entirely invested fixed-interest assets, as had been 

seen for the unconstrained case. However, in contrast to those shown in Figure 6.1,
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these portfolios are consistent with the immunized ratio of 2 : 7 in cash and Consols 

respectively. As the realistic liabilities form on average about three quarters of the total 

assets, a minimum of 0.75 x 2/9 = 17% and 0.75 x 7/9 = 58% of the total fund must be 

invested in cash and Consols respectively if it is to be immunized on this basis. The 

constrained optima at these levels of risk tolerance lie within this range, with 40% and 

60% invested in cash and Consols respectively. The fact that much more had been 

invested in cash than was necessary probably enforces the assertion that with an upper 

limit on the published valuation rate of interest, lower ruin probabilities may be 

achieved by investing shorter than implied by the 2 : 7 ratio.

100%

80%

60%

40%

20%

0%

S3 Equities 

□  IL Gilts 

I  Consols 

I  Cash

2 4 8 16 32

Figure 6.5. Optimal portfolios with 5% ruin constraint: sm = 15%, in nominal terms.

As the level of risk tolerance increases, the constrained portfolios tend to become more 

diverse in order that higher expected payouts may be achieved. However, they are still 

predominantly invested in fixed income assets as this is necessary to maintain the low 

ruin probabilities required. These portfolios differ strongly from their unconstrained 

counterparts in Figure 6.1, which were largely invested in the real asset classes.
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Figure 6.6. Optimal portfolios with 5% ruin constraint: sm = 25%, in nominal terms.

From Figure 6.6, it is apparent that the higher initial solvency margin of 25% may 

permit more volatile portfolios compared with those in the 15% case. At lower risk 

tolerance levels, as much as 80% of the assets are allowed to be invested in Consols. 

While this portfolio may lie within the immunized range on a realistic basis, such a fund 

is in fact less well matched on a published basis given the ceiling which applies to the 

valuation rate of interest. This portfolio would not have been able to satisfy the 5% ruin 

probability if sm had only been 15%. When r is increased to values of 16 or 32, the 

resulting portfolios are still heavily invested in fixed interest assets, as had been the case 

with sm = 15%. However, the higher proportions that may now be invested in equities 

are a result of the additional solvency margin.

Figures 6.7 and 6.8 show the constrained portfolios when payouts are calculated in real 

terms. When sm = 15% and r = 2, the optimal portfolio comprises 20% in cash, 50% in 

Consols and 30% in index-linked gilts. Hence, it would appear that the fund is not fully 

immunized on a realistic basis as this would require at least 17% and 58% of the total 

assets to be invested in cash and Consols respectively. However, given that the optimal
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proportions derived are only correct to the nearest 10%, and the fact that the published 

valuation basis has a tendency to cause portfolios with shorter durations to incur lower 

ruin probabilities, this mix seems quite reasonable. As index-linked gilts have the most 

stable real accumulations over this period, investing the free assets in this asset class 

would seem to be a natural means of reducing the variability of real payouts.

9  Equities 

□  IL Gilts 

H  Consols 

I  Cash

Figure 6.7. Optimal portfolios with 5% ruin constraint: sm = 15% in real terms.

As r is increased to 4 and 8, the need to achieve higher expected real payouts causes 

10% of the assets to be switched from index-linked gilts to equities. However, as it 

would not be possible to maintain the 5% ruin criterion whilst investing 20% of the fund 

in equities, the proportions in equities remains at 10%, even when r is increased beyond 

the value of 8. At r = 16 and 32, higher expected real payouts are obtained by switching 

from index-linked gilts to cash. Index-linked gilts are less appealing at such high levels 

of risk tolerance because they yield the lowest expected real accumulations over twenty 

years. Nevertheless, they are switched into cash rather than Consols because investing 

more in the latter would lead to unacceptable ruin probabilities.
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Figure 6.8. Optimal portfolios with 5% ruin constraint: sm = 25%, in real terms.

With sm = 25% (see Figure 6.8), more scope is available for greater mismatching. For 

example, the optimal mix at r = 2 has 60% in Consols and the remainder in index-linked 

gilts, i.e. no cash is necessary to satisfy the ruin constraint. As r is increased, the 

proportions in index-linked gilts are seen to decrease, allowing more of the fund to be 

invested in equities. When r takes the values of 8 or greater, 30% of the assets are 

invested in equities. However, in order to maintain a ruin probability of 5% or below 

with such a high proportion of the fund invested in equities, a large proportion of 

Consols had to be switched into cash.

Therefore, it has been shown that constrained utility maximization can be an appealing 

method for practical decision-making. The method is objective and leads to intuitively 

reasonable solutions. However, a possible drawback of this approach is that it accepts 

or rejects portfolios based on absolute values of the ruin probabilities. Due to the lack 

of credibility generally associated with investment models, additional caution may need 

to be exercised when basing decisions on the tails of the distributions produced by these 

models. As noted in Geoghegan et al (1992), " ... [Wilkie's] model may not be
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considered appropriate for the estimation o f extreme values, such as probabilities o f 

ruin, etc.” This contrasts with the 'top ten' approach in Section 6.5.1, in which greater 

emphasis had been placed on the relative ruin probabilities.

6.6 Mean-Variance Efficiency

6.6.1 Efficient Frontiers

Figures 6.9 to 6.12 show for each of the four situations (i.e. sm = 15% or 25%, with 

nominal or real payouts), the E- V efficient frontier, the unconstrained utility maximizing 

portfolios and the utility maximizing portfolios subject to a 5% ruin constraint. The 

main purpose of these graphs is to highlight the extent to which ruin constraints may 

alter the optimal mixes in relation to the E-Vefficient frontier. It also provides a means 

of checking for any other peculiar trends occurring in the results. As stated in Chapter 

4, the line representing the E-V efficient frontier should in theory be a smooth curve. 

However, as the grid has only been computed in steps of 10%, the curves shown may 

appear quite jagged. In all cases, the standard deviations of payouts are measured along 

the vertical axes, while the horizontal axes represent the mean payouts.

Looking first at Figure 6.9, the results seem consistent with those of the asset fund (see 

for example Figure 4.4), with all the unconstrained utility maximizing portfolios lying 

on the E-V efficient frontier. However, imposing the 5% ruin constraint on the utility 

maximizing portfolios appears to alter these portfolios in a number of respects. As a 

result of the constraint, the portfolios are concentrated in a smaller region near the more 

risk averse end of the efficient frontier, but away from the extreme points of the frontier. 

The optimal portfolios at r = 2 and 4 have shifted up the curve, whereas the higher risk 

portfolios seem to have shifted downwards. More significantly, two of these portfolios
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(r = 16 and 32) now lie above the efficient frontier, which means that they are no longer 

efficient from a mean-variance perspective.
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Figure 6.9. Graph o f S.D. vs. Mean for E-Vefficient and utility maximizing portfolios 

with and without ruin constraints: sm = 15%, in nominal terms.

Increasing the initial level of surplus from 15% to 25% does not really alter the shape of 

the frontier, as shown in Figure 6.10. However, the additional surplus has reduced the 

influence of the constraints on the utility maximizing portfolios, resulting in them being 

shifted in the same manner as before, but to a lesser degree. As a consequence, some of 

the constrained optimal portfolios may appear to be E-V efficient when in fact they are 

not. For instance in the Figure 6.10, the uppermost triangle (r = 32) is lying virtually on 

one of the unconstrained optima (r = 16). But by looking at the exact means and 

standard deviations of payouts resulting from these two portfolios, it is clear that the 

constrained portfolio must actually be lying above the unconstrained portfolio, and 

hence above the efficient frontier. Nevertheless, they both seem close enough to being 

E-V efficient for most practical purposes.
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Figure 6.10. Graph of S.D. vs. Mean for E-Vefficient and utility maximizing portfolios 

with and without ruin constraints: sm = 25%, in nominal terms.
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Figure 6.11. Graph o f S.D. vs. Mean for E-V efficient and utility maximizing portfolios 

with and without ruin constraints: sm = 15%, in real terms.
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Figure 6.12. Graph o f S.D. vs. Mean for E- V efficient and utility maximizing portfolios 

with and without ruin constraints: sm = 25%, in real terms.

Figures 6.11 and 6.12 above are equivalent to Figures 6.9 and 6.10 when payouts are 

expressed in real terms. Comparing these two pairs of graphs, the general shapes of the 

frontiers in Figures 6.11 and 6.12 are quite similar to their nominal counterparts, despite 

being somewhat more jagged. Although constraining the utility maximizing portfolios 

does not seem to have the effect of drawing these portfolios away from the efficient 

frontier for real payouts, it does seem to be more severe in terms concentrating these 

portfolios into the bottom left-hand-side of the frontier. This perhaps indicates the 

stronger relationship between the variability of payouts and the probability of ruin when 

payouts are measured in real terms, rather than nominal terms.

6.6.2 Scatter Plots o f Standard Deviation vs. Mean

Most of the features noted from Figure 6.9 to 6.12 above may be examined further by 

looking at the scatter plots of standard deviation versus (vs.) mean of payouts for all the 

286 portfolios sampled. In Figures 6.13 to 6.16 which follow, each dot represents a
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single portfolio. The small black dots represent the portfolios which have more than a 

5% probability of ruin, while the white triangles represent those portfolios which do 

satisfy the 5% ruin constraint.
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Figure 6.13. Graph o f S.D. vs. Mean for all 286 portfolios: sm = 15%, in nominal terms.

Comparing Figures 6.13 and 6.14, the office with sm = 25% can be seen to possess a 

larger range of portfolios which satisfy the 5% ruin constraint. This demonstrates why 

the constrained portfolios from the office with more initial surplus are likely to be closer 

to the efficient frontier. In addition, the scatter plots appear quite narrow relative to the 

vertical. This is significant as it means that all possible portfolios are either on or are 

reasonably close to the mean-variance efficient frontier. In these circumstances, E-V 

efficient frontier analysis may not be of much assistance to the decision-maker. This is 

because the greater emphasis should then be placed on selecting the most appropriate 

portfolio from the mean-variance efficient frontier. Such a choice may be made with 

the aid of utility theory.
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Figure 6.14. Graph o f S.D. vs. Mean for all 286 portfolios: sm = 25%, in nominal terms.

In real terms, the patterns seen in Figures 6.15 and 6.16 are quite different to those in 

nominal terms (see Figures 6.13 and 6.14). The variation in the standard deviations of 

real payouts gradually becomes larger as the mean real payout reduces. Compared with 

the nominal case, it seems as though greater mileage could be gained from E-V analysis 

at low risk tolerance levels, with or without constraints. Portfolios which satisfy the 5% 

ruin constraint tend to be grouped near to the efficient frontier rather than away from it.

Another feature of these two graphs is that all the portfolios appear to be grouped into 

clumps, each being separated by a 10% difference in the proportion of equities held. 

For example, the portfolio with highest expected real payouts comprises 100% in 

equities and is symbolized by the solitary point on the extreme right-hand-side of the 

plots. The clump of three dots just below and to the left of this represents the three 

combinations of asset mixes with 90% of the assets invested in equities, and so on down 

to the largest clump which represents the combinations of asset mixes without any 

investment in equities. Hence, it appears that mean-variance efficiency can be achieved 

in such cases only by considering the proportions invested in cash, Consols and index-
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linked gilts. In other words, for a given proportion invested in equities, it should be 

possible to find a combination of the other three asset classes such that the resulting 

portfolio is E-Vefficient.

75000 r

60000

* P(ruin) <= 5% 

- P(ruin) > 5%

45000

30000

15000

■C-A -

a  a ®

46000 50000 54000 58000 62000 66000

Figure 6.15. Graph of S.D. vs. Mean for all 286 portfolios: sm = 15%, in real terms.
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Figure 6.16. Graph of S.D. vs. Mean for all 286 portfolios: sm = 25%, in real terms
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6.7 Summary

In this chapter, the optimal asset allocation decisions were derived for an ongoing office 

issuing twenty year endowments, producing some interesting insights into problems of 

this nature. At high levels of risk tolerance, the results were quite similar to those 

obtained for the pure asset fund (see Sections 4.4.2 and 4.4.4), with portfolios being 

predominantly invested in equities. But at lower risk tolerance levels, the presence of 

liabilities seemed to encourage greater proportions to be invested in Consols than had 

been the case in the asset fund. This difference was most notable when payouts were 

computed in real terms.

Compared with an immunized strategy using a realistic valuation basis, the duration of 

these optimal portfolios at lower values of r were generally found to be too long in 

relation to the liabilities, despite being shown to produce the most stable payouts. This 

highlighted the difference between the objective of minimizing the variance of 

accumulated dividends and immunization, which aims to stabilize the value of one- 

period surplus. Although there is a close relationship between an immunization and 

minimum ruin probabilities, the former is less general as it only applies in respect of one 

valuation basis, which must also be free from limits on the valuation rate of interest.

When the efficiency of numerical routines had been compared with more crude methods 

such as the grid approach, there did not appear to be a huge advantage in using the 

former, except for reasons of precision. Sensitivity analysis performed in respect of the 

investment model parameters showed that the results may be highly dependent on the 

assumptions made in the asset model, thus supporting the case for the grid approach 

even further. This more robust method also enabled the probabilities of ruin to be taken 

account of in the decision-making process. When ruin constraints were introduced into 

the utility maximization process, the optimal portfolios were more diverse and better 

matched as a result. However, the merits of ruin constraints were challenged by the
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more subjective process of selecting the most suitable portfolio from a representative 

sample of portfolios ranked by their expected utilities. Ruin constraints could 

sometimes be inflexible and too reliant on the accuracy of the investment model. 

Subjectivity was felt to be a limitation as well as a benefit of the 'top ten' approach.

From a mean-variance perspective, the utility maximizing portfolios were generally 

shown to lie on the efficient frontier, though this was not the case with a couple of 

portfolios which had been subject to ruin constraints. In some of the situations that 

were considered, E-V scatter plots revealed that all possible portfolios in steps of 10% 

were quite close to the mean-variance efficient portfolios. This strengthens the case for 

using utility theory to determine optimal investment portfolios because choosing 

between E-V efficient portfolios (which utility theory enables one to do) may well be 

more important than ensuring that a portfolio is E-V efficient, even if one assumes that a 

mean-variance approach is appropriate.
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7. STATIC OPTIMIZATION III - LIABILITY MODEL B

7.1 Introduction

In Chapter 6, a number of investigations were carried out on Model A, for which 

negative dividends were permitted whenever an insolvency occurred. As the objective 

function was smooth, it enabled efficient gradient methods to be used in the numerical 

optimization process. The resulting optimal portfolios were clearly affected by the 

structure of the liabilities, which distinguished them from the portfolios obtained for the 

pure asset fund in Chapter 4. However, the impact of insolvency was barely noticeable 

in the derivation of these optimal asset mixes, requiring ruin constraints to yield more 

sensible portfolios. This was a direct consequence of assuming a smooth objective 

function in the decision model.

When the sensitivity of the optimal portfolios to the investment model had been 

analysed, it became apparent that the benefits of high precision optimization routines 

were not really merited under the circumstances. With only four asset classes involved, 

a simpler method, referred to as the grid approach, was found to work just well. In 

addition, the grid approach could readily handle ruin constraints and would allow the 

assumption of continuity in the objective function to be relaxed. Hence, it should also 

be ideal in the case of Model B.

Model B assumes that in the event of a technical insolvency, the office's liabilities are 

transferred at a cost equal to the realistic reserves at that time (see Section 5.3.4). Any 

surplus remaining is then distributed as a lump sum to shareholders which is assumed to 

be invested in equities together with all dividends previously distributed for the
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remainder of the twenty year projection period. This effectively means that there is a 

discontinuity on the objective function at the point of insolvency in Model B.

Throughout this chapter, the grid approach is used to investigate the optimal portfolios 

for Model B. As the payouts are guaranteed to be positive (due to limited liability of 

shareholders being strictly enforced), the logarithmic utility function will also be used. 

The office is assumed to be open to new business, as had been the case in Chapter 6. In 

the first instance, the liability profile considered for Model B will be identical to that 

investigated for Model A, i.e. involving only twenty year endowment assurances. After 

comparing the results from the two models, the liability profile will then be extended to 

include index-linked annuities and ten year endowments, in order to examine the effects 

of index-linked liabilities and shorter term contracts on the optimal asset allocations.

7.2 Twenty Year Endowments

Apart from the consequences of insolvency, Model B is projected using the same set of 

simulations and assumptions as in Model A. All possible asset mixes in steps of 10% 

are computed to obtain the optimal portfolios for initial surplus levels of 15% and 25%, 

with payouts being determined in both nominal and real terms. Sensitivity analysis is 

also performed on some of the unconstrained optimal portfolios. Optimal portfolios 

subject to a ruin constraint and the top ten portfolios are then investigated. Finally, 

scatter plots of standard deviation versus mean of payouts are shown.

7.2.1 Unconstrained Optima

Figure 7.1 represents the optimal asset mixes to the nearest 10% for five different values 

of r using the exponential utility function, and the log function. The horizontal axis is
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ordered from left to right by increasing expected payouts (which is equivalent to 

increasing tolerance to risk). This ordering serves to highlight the position of the log 

function in relation to other risk tolerance parameters. The vertical axis on the right 

hand side of the graph relates to the ruin probability of the optimal portfolios. The 

vertical axis on the left hand side relates to the proportions in each asset class as in 

Chapters 4 and 6. For example, at r = 16, the optimal portfolio comprises 30% in cash, 

40% in Consols, 10% in index-linked gilts and 20% in equities. As it has a higher 

expected payout to the optimal mix under the log function, it is shown to the right of 

this mix. Just under 8% of the scenarios tested for this portfolio lead to insolvency 

within the twenty year projection period.

Figure 7.1. Optimal portfolios: sm = 15%, in nominal terms.

In isolation, the asset mixes in Figure 7.1 seem entirely sensible. At the lowest levels of 

risk tolerance, the liabilities are very closely matched with all the assets being held in 

fixed interest investments. The 30-70 split between cash and Consols is also well 

within the range of immunized portfolios described in Section 6.2.2. (On a realistic
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valuation basis, the immunized ratio is 2 : 7 in cash and Consols, with free assets 

making up 25% of the total assets.) As the level of risk tolerance increases, the 

proportion in Consols reduces, only to be taken up by more index-linked gilts and 

equities. This is to be expected given the ordering of the asset classes by mean 

accumulation over the twenty year period (see Table 3.9).

In comparison with Model A, the portfolios for Model B shown above appear to be 

much more restrained from a solvency perspective. With Model A (see Figure 6.1), the 

optimal mix at r -  2 consisted entirely of Consols, giving a ruin probability of 62%. 

This contrasts with the 30-70 split between cash and Consols seen here which only has a 

9% ruin probability. The trend in lower ruin probabilities for Model B persists 

throughout the entire range of risk tolerance and is even more striking at higher values 

of r. When r = 32, the diverse mix for Model B has an 11% ruin probability, which is 

much lower than the 100% ruin probability seen in the optimal mix for Model A.

It is important to keep in mind that the probability of ruin for a given asset mix will be 

identical whether Model A or B is being used. The two models only differ in the 

treatment of the situation after an insolvency occurs. Hence, the only way in which the 

ruin probabilities may be altered between these two models is by actually changing the 

optimal asset mixes themselves, which has happened above.

The preference for more solvent strategies in Model B is a direct result of introducing a 

discontinuity on the payout at the point of insolvency. However, as the discontinuity is 

implicit, it may be difficult to predict the direction and extent to which each payout is 

shifted. This will depend on the circumstances prevailing at each time epoch, in each 

simulation. But as the optimal solutions have tended to move towards portfolios with 

fewer insolvencies, this implies that the discontinuity in the objective function must 

generally lead payouts being reduced in the event of an insolvency, i.e. a penalty is
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being imposed on insolvency. Hence, it may be inferred that it is to the benefit of 

shareholders if the office remains a going concern, which is intuitively reasonable.

Similarly, the results for an initial surplus of 25% are summarized in Figure 7.2. Due to 

the lower ruin probabilities experienced by this office, the impact of the discontinuities 

on the payouts should be less than they were with sm = 15%. This is reflected in the 

optimal portfolios obtained. More Consols are permissible at the lower risk tolerance 

levels, despite their tendency to increase the probability of ruin. At r = 32, the optimal 

proportion in real assets is now 60%, compared with 40% when the initial solvency 

margin was 15%. This occurs even though the ruin probability for the former portfolio 

with sm = 25% is greater than that of the latter portfolio with sm = 15%.
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Figure 7.2. Optimal portfolios: sm = 25%, in nominal terms.

Figure 7.3 shows the optimal asset mixes when payouts are measured in real terms and 

sm = 15%. The portfolios at lower values of r are quite similar to those shown for 

Model A (see Figure 6.3), with 30% of total assets being invested between the real asset
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classes of index-linked gilts and equities. This is consistent with the notion of investing 

the solvency margin in real assets to stabilize real surpluses, whilst broadly matching 

the remaining assets to the fixed liabilities, which is the case here. The more diverse 

portfolios that result from such a strategy also contribute towards lowering the ruin 

probabilities obtained. This in turn means that less penalties are imposed on the payouts 

due to insolvencies. However, as r increases, the optimal portfolios in the Models A 

and B diverge quite radically since maintaining reasonably low ruin probabilities is of 

great importance in Model B. At r = 32, the 100% equities portfolio for Model A leads 

to almost certain ruin. This contrasts with the more cautious portfolio of 80% in fixed 

interest assets and 20% in equities seen in Figure 7.3.

Equities

] IL Gilts

H H  Consols 

Cash

. . .a . . . .

Figure 7.3. Optimal portfolios: sm = 15%, in real terms.

When the office with an initial surplus of 25% is considered in real terms, the pattern of 

results shown in Figure 7.4 does not differ much from that seen when sm = 15%. Index- 

linked gilts are only significant at lower levels of risk tolerance and gradually drop out 

from the optimal portfolios, mainly being replaced by equities, when more risk can be
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tolerated. Compared with Figure 7.3, equities are generally found in higher proportions 

which is intuitively reasonable as the higher level of surplus also means that the office is 

less likely to become technically insolvent for a given asset mix. The importance of 

avoiding excessive insolvencies in Model B is evident by the low ruin probabilities seen 

in Figure 7.4.

100%

80%

60%

40%

20%

0%

6%

log 16 32

Figure 7.4. Optimal portfolios: sm = 25%, in real terms.

7.2.2 Sensitivity Analysis

Before proceeding any further, it may be worth analysing the sensitivity of the optimal 

portfolios for Model B to different investment assumptions. In order to be consistent 

with the results obtained in Section 6.4 earlier, only the portfolio at r = 8 with sm = 15% 

will be considered here. It may also be recalled that of the five sets of parameter 

alterations made in Wilkie's model, the version which produced the greatest change in 

results had been 'Wilkie (1995a)'. Therefore, it should suffice just to consider the 

sensitivity of the Standard Basis with Wilkie's later version.
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Figure 7.5. Optimal portfolios for two versions o f Wilkie's model: sm = 15%, in nominal terms, at r = 8.
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Figure 7.6. Optimal portfolios for two versions o f Wilkie's model: sm = 15%, in real terms, at r -  8.

Figures 7.5 and 7.6 show the optimal asset mixes for the two investment models in the 

case of Model B, with payouts expressed in nominal and real terms respectively. The 

main difference seen when changing from the standard model to the updated model is
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the shift from cash into the other three asset classes. This is understandable given that 

mean cash accumulations over the twenty year period are nearly 2% per annum lower in 

the latter version. From Section 3.5, it may be recalled that the differences between the 

two cash models may be attributed to the different data periods used when fitting the 

models. However, it still means that the investor needs to decide which data set would 

be more appropriate for predicting cash yields in the future.

Comparing the two liability models, it would appear that Model B is less sensitive to the 

parameter values in Wilkie's model than Model A. For example, in the case of Model 

A, the proportions in equities increased from 15% to 54% when payouts were measured 

in nominal terms, and from 37% to 100% when payouts were expressed in real terms. 

This occurred despite the fact that the proportions held in cash had only been 5% and 

16% respectively. Therefore, these changes must have been due to the increase of 1% 

in the mean accumulation rate for equities from 'Wilkie (1995a)'. But in Model B, 

equity proportions only rose by 10% for the nominal case and remained unchanged for 

the real case, even though a large vacuum had been created by the departure of cash 

from the optimal portfolios.

This is probably related to the negative effect which insolvency has on the objective 

function in Model B. Given this feature, it is reasonable that Model B will try to avoid 

asset mixes which result in very high ruin probabilities. However, it would appear that 

the ruin probability has not been significantly reduced as a result of the 1% increase in 

the mean return on equities. Hence, the optimal portfolios in Model B will also be less 

attracted to these higher yielding equities.

There is a possibility that the use of different model structures or distributions of 

residual components may bring about increased sensitivity in results produced from 

Model B. However, due to the very limited availability of investment models in the 

public domain, a comprehensive sensitivity analysis may not feasible at present.
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7.2.3 R u in  C o n s tra in ed  O p tim a

Depending on the risk preferences of the insurer, it may be desirable that all asset mixes 

considered meet a strict ruin constraint. As the ruin probabilities in the unconstrained 

optimal mixes obtained so far are already fairly close to the 5% level, a 1% constraint 

has been adopted to heighten its impact.

The optimal asset mixes subject to a 1% ruin constraint with sm = 15% and payouts 

expressed in nominal terms are given in Figure 7.7. Despite this stringent restriction, 

the effect of the ruin constraint in relation to Figure 7.1 has only been to reduce the 

maximum proportions in Consols from 70% to 50% and equities from 20% to 10%. 

With sm = 25%, as shown by Figure 7.8, the maximum proportions in equities and 

index-linked gilts were lowered from 30% to 20% and from 80% to 70% in the case of 

Consols. These relatively minor changes in the asset mixes are a consequence of the 

unconstrained optimal portfolios already having implicit penalties imposed in the event 

of ruin.
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Figure 7.7. Optimal portfolios with a 1% ruin constraint: sm = 15%, in nominal terms.
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Figure 7.8. Optimal portfolios with a 1% ruin constraint: sm = 25%, in nominal terms.

In Figure 7.9, where sm = 15% and payouts are measured in real terms, constraining the 

ruin probability to be no greater than 1% generally appears to have reduced the
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proportions of equities permitted, whilst increasing the proportions held in index-linked 

gilts for the medium risk portfolios, i.e. r = 8 and the log function. The ruin probability 

is also improved by investing about 10% more in cash at most levels of risk tolerance.

When the initial solvency margin is increased to 25%, the resulting constrained optimal 

portfolios are shown in Figure 7.10 above. As the unconstrained optimal mixes for the 

log utility function and the exponential function at r = 2 already satisfy the 1% ruin 

criterion, they are naturally unaffected by this constraint. For all other portfolios, the 

ruin constraint is satisfied by limiting the proportion invested in index-linked gilts and 

equities to 10% and 20% respectively. This leaves between 70-80% of the remaining 

assets to be invested in fixed interest assets, which is a suitable match to the office's 

fixed liabilities.
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7.2.4 Top  Ten P o rtfo lio s

For reasons given in Chapter 6, it may not always be sensible to disregard a portfolio 

simply because it fails a particular ruin criterion. From a selection of portfolios, one 

may be able to choose a portfolio which represents a better compromise between 

shareholders' utility and ruin probability. Hence, some consideration will be given here 

to the top ten utility maximizing portfolios for Model B.

As shown in Table 7.1, the optimal mix at r = 2 produces a ruin probability of 8.6%. 

The second highest ranking portfolio on the other hand, with 10% more cash and 10% 

less Consols, gives a mere 1.9% ruin probability. From a traditional mean-variance 

perspective, the latter portfolio would actually appear more risky to shareholders. 

However, it is arguable whether the lower variability of payouts in the former justifies 

the lower expected payouts and the higher ruin probability that results from it.

Rank CASH CON ILG EQ E(utility) Mean S.D. Ruin %

1 30 70 0 0 -0.01239 131130 60976 8.6

2 40 60 0 0 -0.01266 134091 65920 1.9

3 20 70 10 0 -0.01332 133591 67090 8.5

4 30 60 10 0 -0.01344 137547 72590 1.9

5 20 80 0 0 -0.01353 125773 58935 25.0

6 50 50 0 0 -0.01450 136826 72813 0.3

7 20 70 0 10 -0.01474 138210 74327 14.2

8 30 60 0 10 -0.01480 141955 77662 5.6

9 10 80 10 0 -0.01496 127973 62094 20.8

10 40 50 10 0 -0.01531 140747 79661 0.2

Table 7.1. Top ten portfolios: sm = 15%, in nominal terms, at r - 2.
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Rank CASH CON ILG EQ E (utility) Mean S.D. Ruin %

1 40 50 0 10 -0.23345 145468 84206 1.3

2 30 60 0 10 -0.23407 141955 77662 5.6

3 30 50 10 10 -0.23439 149052 92802 1.2

4 20 60 10 10 -0.23474 145506 86272 5.3

5 50 40 0 10 -0.23671 148040 91398 0.3

6 40 40 10 10 -0.23721 151765 99748 0.2

7 20 50 20 10 -0.23779 152427 103045 2.6

8 30 60 10 0 -0.23804 137547 72590 1.9

9 20 70 0 10 -0.23826 138210 74327 14.2

10 40 40 0 20 -0.23863 156042 106788 6.7

Table 7.2. Top ten portfolios: s/n = 15%, in nominal terms, at r = 8.

Rank CASH CON ILG EQ E(utility) Mean S.D. Ruin %

1 40 20 20 20 -0.63668 167872 141158 10.4

2 30 20 30 20 -0.63678 171338 154603 19.2

3 50 10 20 20 -0.63718 169981 149183 15.8

4 30 30 20 20 -0.63757 165296 133681 9.4

5 20 30 30 20 -0.63759 168817 147386 17.0

6 50 20 10 20 -0.63823 164373 130303 7.6

7 40 10 30 20 -0.63846 172914 162529 25.1

8 40 30 10 20 -0.63871 162064 122778 5.7

9 60 10 10 20 -0.63940 166035 138322 12.5

10 20 40 20 20 -0.63944 162434 126727 10.2

Table 7.3. Top ten portfolios: sm = 15%, in nominal terms, at r = 32.
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Rank CASH CON ILG EQ E(utility) Mean S.D. Ruin %

1 40 40 0 20 11.74338 156042 106788 6.7

2 30 50 10 10 11.74239 149052 92802 1.2

3 30 40 10 20 11.74137 159466 115949 7.3

4 20 50 20 10 11.74074 152427 103045 2.6

5 30 40 20 10 11.74044 155758 110063 0.8

6 40 40 10 10 11.73960 151765 99748 0.2

7 40 50 0 10 11.73689 145468 84206 1.3

8 20 50 10 20 11.73558 155606 109681 12.2

9 20 60 10 10 11.73388 145506 86272 5.3

10 30 50 0 20 11.73359 151899 100368 13.1

Table 7.4. Top ten portfolios: sm = 15%, in nominal terms, with the log function.

Table 7.2 is an example of how the strict application of constraints may not yield the 

desired effect when the grid approach is being used. For practical purposes, it should be 

insignificant whether a portfolio is insolvent 10 or 13 times out of a thousand scenarios. 

But the 1% constraint discards the utility maximizing portfolio in favour of the fifth 

ranking portfolio. In the case of Table 7.3, the ruin probabilities for the ten portfolios 

shown are of a similar order and so little benefit is to be gained by choosing a sub- 

optimal portfolio. However, it would appear from Table 7.4 that there is ample scope 

for reducing the ruin probability when the log utility function is used.

Tables 7.5 to 7.8 show the ten asset mixes with the highest rankings when payouts are 

measured in real terms. In Table 7.5, where r = 2, a 2.6% ruin probability for the 

optimal mix may seem adequate. Depending on the affinity for low ruin probabilities, 

the third ranking portfolio which has a 0.5% chance of insolvency may be obtained by 

shifting 10% from equities into cash. Switching another 10% from Consols into cash 

reduces the observed probability of ruin to zero.
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Rank CASH CON 1LG EQ E(utility) Mean S.D. Ruin %

1 20 50 20 10 -0.11945 50298 21206 2.6

2 20 50 30 0 -0.11948 48187 17458 1.9

3 30 50 20 0 -0.11983 48648 18542 0.5

4 30 50 10 10 -0.12068 50736 22472 1.2

5 30 40 20 10 -0.12099 50601 21953 0.8

6 10 50 30 10 -0.12163 49910 21018 4.9

7 20 60 20 0 -0.12204 48107 18257 3.4

8 10 60 20 10 -0.12207 49812 21302 7.7

9 40 40 20 0 -0.12223 48742 19261 0.0

10 40 40 10 10 -0.12231 50813 22880 0.2

Table 7.5. Top ten portfolios: sm = 15%, in real terms, at r -  2.

Rank CASH CON ILG EQ E(utility) Mean S.D. Ruin %

1 40 40 0 20 -0.54366 52900 27874 6.7

2 30 40 10 20 -0.54443 52528 26805 7.3

3 50 30 0 20 -0.54487 52918 28504 5.6

4 40 30 10 20 -0.54583 52556 27561 5.7

5 30 50 0 20 -0.54699 52398 27895 13.1

6 20 50 10 20 -0.54709 52039 26510 12.2

7 60 20 0 20 -0.54749 52853 29524 7.0

8 20 40 20 20 -0.54809 51910 26404 10.2

9 50 20 10 20 -0.54888 52469 28712 7.6

10 30 30 20 20 -0.54913 52070 27415 9.4

Table 7.6. Top ten portfolios: sm = 15%, in real terms, at r = 8.
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Rank CASH CON 1LG EQ E (utility) Mean S.D. Ruin %

1 40 40 0 20 -0.85071 52900 27874 6.7

2 50 30 0 20 -0.85081 52918 28504 5.6

3 60 20 0 20 -0.85122 52853 29524 7.0

4 30 40 10 20 -0.85148 52528 26805 7.3

5 40 30 10 20 -0.85158 52556 27561 5.7

6 70 10 0 20 -0.85199 52689 30929 10.3

7 30 50 0 20 -0.85205 52398 27895 13.1

8 50 20 10 20 -0.85207 52469 28712 7.6

9 20 50 10 20 -0.85272 52039 26510 12.2

10 30 30 20 20 -0.85284 52070 27415 9.4

Table 7.7. Top ten portfolios: sm = 15%, in real terms, at r = 32.

Rank CASH CON ILG EQ E(utility) Mean S.D. Ruin %

1 40 40 0 20 10.74781 52900 27874 6.7

2 30 50 10 10 10.74682 50736 22472 1.2

3 30 40 10 20 10.74580 52528 26805 7.3

4 20 50 20 10 10.74517 50298 21206 2.6

5 30 40 20 10 10.74487 50601 21953 0.8

6 40 40 10 10 10.74403 50813 22880 0.2

7 40 50 0 10 10.74132 51036 24287 1.3

8 20 50 10 20 10.74001 52039 26510 12.2

9 20 60 10 10 10.73831 50315 22403 5.3

10 30 50 0 20 10.73802 52398 27895 13.1

Table 7.8. Top ten portfolios: sm = 15%, in real terms, with the log function.
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The higher risk strategies in Tables 7.6, 7.7 and 7.8, relating to r -  8, r = 32 and the log 

function respectively, have the same optimal portfolio despite there being differences in 

the lower ranking asset mixes. From the overall level of standard deviations of payouts 

amongst the three tables shown, it may be inferred that the log function represents a 

lower risk tolerance level than the exponential function when r -  8. Unlike the cases 

where r is 8 or 32, Table 7.8 offers some choice between the low ruin portfolios. In 

contrast with Model A (see Table 6.20), it is apparent that the optimal portfolio for 

Model B at r = 32 does not represent the ultimate high risk tolerance strategy. There are 

portfolios which yield higher expected real payouts than the utility maximizing one.

7.2.5 Scatter Plots o f Standard Deviation vs. Mean

Figure 7.11 below shows a plot of the standard deviation versus the mean of nominal 

payouts for all the 286 portfolios tested, with sm = 15%. Portfolios satisfying a 5% ruin 

constraint are highlighted by the white triangles as in Section 6.6.2.
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Figure 7.11. Graph o f S.D. vs. Mean for all 286 portfolios: sm = 15%, in nominal terms.
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One may recognize Figure 7.11 as being essentially similar to the almost linear plot of 

Model A (see Figure 6.13), but with the upper half of the plot folded back upon the 

lower half. The extreme point on the lower edge has a mean of about 113,000 and 

represents 100% in Consols. The extreme point on the upper edge represents 100% in 

equities. This has a mean of about 104,000. The points in this upper section mainly 

comprise portfolios with substantial proportions in real assets and are clearly inefficient 

compared with those below them. From this plot, it is also clear that portfolios which 

satisfy the 5% ruin criterion are either on or very close to the efficient frontier.
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Figure 7.12. Graph o f S.D. vs. Mean for all 286 portfolios: sm = 15%, in real terms.
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Figure 7.12 shows all the asset mix vectors when payouts are expressed in real terms. 

The vast majority of points appear grossly inefficient. Most of the efficient portfolios 

also satisfy a 5% ruin constraint: it would seem that the disutility of going insolvent is 

relatively greater when payouts are measured in real terms as opposed to nominal terms. 

The portfolio furthest to the left in Figure 7.12 comprises 100% in equities. Those 

marked by the white triangles are the same subset of portfolios as their nominal 

counterparts shown in Figure 7.11.
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7.2 .6  The D yn a m ics  o f  In so lven cy

The only difference between Models A and B is that in the case of the latter, the office 

is wound up at the point of insolvency. As the office is fairly profitable, one penalty for 

becoming insolvent is the loss of profits that would have been earned had the office 

remained in business. Hence, it is not really surprising when the asset mixes which give 

the best payouts are those which lead to the office staying solvent most of the time. 

Nevertheless, the plots in Section 7.2.5 perhaps deserves a more detailed explanation.

For simplicity consider the effects of these four asset mixes: 100% investment in each 

asset class. (It may be assumed that the proportion of inflationary liabilities present is 

not sufficiently large to be the sole cause for any insolvencies which may occur.) With 

all assets in cash, the ruin probability is fairly small because asset values are very stable 

and insolvency really only occurs due to a dramatic or prolonged reduction in cash 

yields. The low frequency of insolvency means that this asset mix produces very 

similar payouts to that of Model A.

In the case where all assets are invested in Consols, the probability of ruin is high 

because the office is very vulnerable to a rise in yields. Reasons for this have been 

outlined in Section 6.2.2. Although the high frequency of insolvencies reduces the 

average payouts, the adverse effect is dampened by the fact that the circumstances under 

which the company will be wound up are generally not unfavourable. The cost at which 

the liabilities will be transferred is calculated using the current yield on Consols. 

Hence, despite the fall in asset values due to a rise in yields, the cost of transferring the 

liabilities will also fall. The only penalty is the loss of future profits.

The asset classes which are most affected by the winding up of the company are index- 

linked gilts and equities, due to the extremely high ruin probabilities associated with 

them. One reason for the almost certain ruin in both cases is the very low yields these
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asset classes possess. In fact, this is so pronounced in the case of index-linked gilts that 

the statutory surplus at the start of the projection period with sm = 15% barely covers 

the guarantee fund. Despite this disadvantageous start, its position is relatively strong in 

comparison with equities because of the stable real yields assumed in the asset model. 

Furthermore, since the office declares no dividends while the statutory minimum 

solvency margin is breached, the fund should be able to strengthen its solvency margin, 

providing it actually manages to remain solvent during the first few years.

In the event of insolvency, the amount of final surplus released at that point may be 

quite substantial. This is because of the difference between real yields and Consols 

yields. However, as insolvencies tend to occur quite early on in the projection period, 

the resulting loss of profits is significant. Hence, the net effect is still a reduction in the 

mean and standard deviation of payouts compared with that of Model A.

With equity portfolios, the extremely high probabilities of ruin are caused by both low 

and volatile dividend yields. As with the index-linked gilts portfolio, insolvencies tend 

to occur early on in the projection period, leading to a considerable loss of profits. But 

due to the high volatility of equity prices, insolvencies sometimes take place when asset 

prices are significantly depressed. Often in these situations, there is no final surplus 

available for distribution after the liabilities have been sold. Hence, this further reduces 

the average payout that emerges from an equity portfolio.

Therefore, the preference in Model B would be for portfolios which comprise a 

substantial proportion of fixed-income assets in order to maintain solvency. For a low 

risk strategy, the proportion in cash may be higher than that justified by the usual 

duration analysis because of the vulnerability of liabilities backed by Consols to high 

yields, induced by the ceiling on the valuation rate of interest. At high levels of risk 

tolerance, the concept of matching is less important, although fixed income assets are 

still necessary to ensure a sufficiently high valuation rate of interest.
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7.3 Mix of 20 Year Endowments and 20 Year Index-Linked Annuities

This section considers Model B when a mix of twenty year index-linked annuities and 

twenty year endowments are being issued. It is assumed that even proportions (by 

numbers) of index-linked annuity contracts and endowment contracts are in force at all 

times. However, as the former are larger contracts in terms of amounts, the net effect is 

an office with predominantly index-linked liabilities on its books. In terms of the 

prudent valuation at the start of the projection period, the ratio of the reserves held 

between annuities and endowments is about 5 : 2 .  Analysing this liability profile will 

enable the robustness of the methodology to be checked as the optimal portfolios should 

include a greater proportion of real assets at low levels of risk tolerance.

7.3.1 Unconstrained and Ruin Constrained Optima

Figures 7.13 and 7.14 represent the unconstrained and constrained optimal asset mixes 

respectively for such a fund with payouts calculated in nominal terms. In Figure 7.13, 

the unconstrained portfolios at r = 2 and 4 consist of 10% in cash, 30% in Consols and 

60% in index-linked gilts, which seems to be a reasonably well-matched position. 

Switching 10% of the assets from Consols into equities appears to reduce the probability 

of ruin, as seen by the optimal portfolio at r = 8. A further reduction in ruin probability 

is also observed at r = 16, when the 10% of assets held in cash is switched for index- 

linked gilts. However, as greater proportions are invested in equities, the probability of 

ruin may be seen to rise quite sharply. Introducing a ruin constraint of 1%, though, does 

not alter the optimal asset mixes significantly (see Figure 7.14), as the unconstrained 

portfolios are already close to satisfying the constraint. At r = 2 and 4, reallocating 10% 

of the assets from Consols into index-linked gilts appears to produce sufficiently low 

ruin probabilities, despite having the effect of increasing the variability of payouts. At 

higher risk tolerance levels, a reduction in the proportion of equities is generally needed
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to maintain the 1% ruin constraint. Nevertheless, it is still possible for portfolios with 

10% invested in equities to satisfy this constraint.
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Figure 7.13. Optimal portfolios: a mix o f 20 year endowments and 

20 year index-linked annuities; sm = 15%, in nominal terms.
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Figure 7.14. Optimal portfolios with a 1% ruin constraint: a mix o f 20 year endowments and 

20 year index-linked annuities; sm = 15%, in nominal terms.
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Figures 7.15 and 7.16 summarize the results obtained when payouts are calculated in 

real terms. For the lowest risk strategy, 90% of the fund are in index-linked gilts with 

the remainder being in Consols. From the nominal case (see Figure 7.14), it became 

apparent that a portfolio largely invested in index-linked gilts could produce very low 

ruin probabilities. But where the unconstrained portfolios were concerned, the need to 

maintain stable nominal payouts encouraged sizeable proportions of the lower risk 

portfolios to be invested in fixed income assets. When dealing with real payouts, 

however, it may be reasonable to expect higher proportions of index-linked gilts to be 

found in the low risk strategies.
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Figure 7.15. Optimal portfolios: a mix o f 20 year endowments and 

20 year index-linked annuities; sm = 15%, in real terms.
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Looking at Figure 7.15, the progression of ruin probabilities with risk tolerance may 

seem less intuitive, initially. The increasing ruin probabilities between r = 2 and r = 8 

are entirely reasonable as more is being invested in equities. But beyond this point, the 

ruin probability uncharacteristically falls. This is caused by the 10% shift from index- 

linked gilts into cash, which may be justified by the fact that index-linked gilts yield
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lower real returns over this period. However, the ruin probability is also reduced as the 

stable asset value of cash stabilizes the value of a fund with as much as 20% in equities. 

Imposing a ruin constraint of 1% produces the set of asset mixes shown in Figure 7.16. 

The first two mixes have obviously remained unchanged as they had previously 

satisfied the 1% constraint. At higher risk levels, the proportions in equities is again 

restricted to 10%.
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Figure 7.16. Optimal portfolios with a 1% ruin constraint: a mix o f 20 year endowments and 

20 year index-linked annuities; sm = 15%, in real terms.

7.3.2 Scatter Plots o f Standard Deviation vs. Mean

Scatter plots of the standard deviation against the mean of nominal payouts for this mix 

of business are shown in Figure 7.17. From this graph, one may note that the pattern 

formed by these portfolios is very different from portfolios where the only liabilities 

were endowments (see Figure 7.11). The portfolios in Figure 7.17 seem to be grouped 

into a series of strips, parallel to the group satisfying the 5% ruin criterion. Consecutive
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strips broadly signify a 10% difference in equities, although the groupings become 

indistinguishable lower down the plot. It is also apparent that the low ruin portfolios are 

roughly mean-variance efficient.
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Figure 7.17. Graph o f S.D. vs. Mean for all 286 portfolios: a mix of 20 year endowments and 

20 year index-linked annuities; sm = 15%, in nominal terms.
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Figure 7.18. Graph o f S.D. vs. Mean for all 286 portfolios; a mix o f  20 year endowments and 

20 year index-linked annuities; sm = 15%, in real terms.
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When payouts are measured in real terms, the plot shown by Figure 7.18 is vaguely 

similar to that of Figure 7.12 for endowments alone. The three protrusions on the right 

hand side of the plot represent the low ruin portfolios with 0%, 10% and 20% invested 

in equities. Hence, the low ruin asset mixes also seem to be mean-variance efficient in 

real terms. But unlike Figure 7.17, there is no apparent scope for choosing an efficient 

portfolio which has a probability of ruin higher than 5%.

7.4 Ten Year Endowments

Another factor in the liability profile which should affect the optimal asset mixes is the 

term of the contracts in force. If an office were to transact business with terms to 

maturity shorter than that of twenty year endowments, then it should tend to favour asset 

mixes which have shorter durations. Hence, this section investigates the optimal asset 

mixes for Model B when only ten year endowment contracts are being issued.

7.4.1 Unconstrained and Ruin Constrained Optima

When payouts are measured in nominal terms, the unconstrained optimal portfolios with 

sm = 15% may be represented by Figure 7.19 below. Compared with twenty year 

endowments, the differences are subtle but evident: the optimal proportions in cash 

consistently being between 40% and 50% for ten year endowments, in contrast to being 

between 30% and 40% as shown for twenty year endowments in Figure 7.1 earlier.

From Figure 7.19, it would seem that moving a moderately small proportion of Consols 

(see r = 4) into equities and index-linked gilts (see the log function) may help to reduce 

the ruin probability. This probably relates to the maximum rates of interest permitted in 

the published valuation basis. Although both the real yield and the dividend yield are

2 1 0



fairly low on average, the introduction of a small proportion of real assets into a fixed 

income portfolio will tend to have little effect on the valuation rate of interest used. The 

resulting fund will have a smaller proportion of total assets invested in Consols and will 

therefore be more resilient to sharp rises in Consols yields. This diversifying effect also 

appears to counteract the higher short-term price volatility inherent in real assets. 

However, if considerably more is invested in equities and index-linked gilts, then this 

eventually leads to higher ruin probabilities, as seen for the riskier strategies.
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Figure 7.19. Optimal portfolios: 10 year endowments; sm = 15%, in nominal terms.

Figure 7.20 below shows the optimal portfolios at each level of risk which satisfies the 

1% ruin constraint. When r is either at 2 or 4, the 1% ruin criterion may be achieved by 

shifting 10% of assets from Consols into index-linked gilts. As r is increased to 8, the 

unconstrained portfolio can be made to meet this criterion by switching 20% of the fund 

from Consols to cash. For the log function, the 20% switch into cash is made possible 

by disinvesting in both Consols and index-linked gilts. When r is 16 and 32, equity 

proportions are reduced to 10%. The resulting mix of 40% cash, 30% Consols, 20%
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index-linked gilts and 10% equities would appear to be a well-matched and diverse 

portfolio, ensuring a low probability of insolvency and reasonably high average payouts.
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Figure 7.20. Optimal portfolios with a 1% ruin constraint: 10 year endowments; 

sm = 15%, in nominal terms.

Finally, consider the same situation, but with total payouts measured in real terms. The 

unconstrained optimal mixes are shown in Figure 7.21. This graph shows quite clearly 

that higher expected real payouts may be achieved by increasing the proportions in cash 

and equities, while keeping the ratio of nominal to real assets roughly constant. In 

switching from index-linked gilts into equities, the higher expected real return from the 

latter more than compensates for the disutility which arises from the increased number 

of insolvencies, as long as the overall proportion in equities remains low. However, the 

slight advantage which Consols have over cash in relation to expected real returns does 

not appear to make up for the higher incidence of insolvencies when greater proportions 

are being invested in Consols.
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Figure 7.21. Optimal portfolios: 10 year endowments; sm = 15%, in real terms.
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Figure 7.22. Optimal portfolios with a 1% ruin constraint: 10 year endowments;

sm = 15%, in real terms.

The optimal mixes obtained as a result of imposing a 1% ruin constraint is shown in 

Figure 7.22. At r = 2, the constraint can be satisfied by switching 10% of the assets 

from equities into cash. However, this could also been achieved by switching 20% of
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the fund from Consols into cash, which would result in the optimal constrained portfolio 

at r = 4. This may indicate the stabilizing effect which holding substantial proportions 

of Consols has on the real payouts. For higher levels of risk tolerance, the same utility 

maximizing portfolio which meets the 1% ruin criterion is that of 60% cash, 30% 

Consols and 10% equities.

7.4.2 Scatter Plots o f Standard Deviation vs. Mean

The scatter plot for ten year endowments (see Figure 7.23) closely resembles Figure 

7.11, involving twenty year endowments. In the plot shown below, it would also appear 

that all the portfolios with no greater than a 5% probability of ruin lie either on or 

alongside the efficient frontier. However, the range of portfolios satisfying this 5% ruin 

criterion also seem to be further up the efficient frontier in comparison with the twenty 

year case. This is because the portfolios lower down in the plot tend to have larger 

proportions in Consols.

Figure 7.23. Graph of S.D. vs. Mean for all 286 portfolios: 10 year endowments; 

sm = 15%, in nominal terms.
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Figure 7.24. Graph o f S.D. vs. Mean for all 286 portfolios: 10 year endowments;

sm = 15%, in real terms.

The scatter plot in real terms, as shown in Figure 7.24, looks quite similar to those 

relating to other liability profiles (see Figures 7.12 and 7.18). The portfolios satisfying 

the 5% constraint appear to cluster around the E-V efficient frontier, but do not 

dominate it as had been the case where index-linked annuities contracts were involved.

7.5 Summary

In this chapter, the approximate optimal asset mixes for Model B were obtained using 

the grid approach and compared where possible with the equivalent results for Model A. 

The impact of discontinuing the business at insolvency was significant, as the loss of 

profits resulting from the office being wound up prematurely had a negative effect on 

the payouts. This led to much lower probabilities of ruin observed in the optimal 

portfolios for Model B. Where twenty year endowments were concerned, this meant 

that substantial proportions of nominal assets were preferred at all risk tolerance levels.
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When the office was assumed to issue mainly index-linked annuities, the optimal mixes 

changed dramatically. Index-linked gilts now dominated the optimal portfolios both in 

nominal and real terms. It was also interesting to see that equities were only held in 

small proportions, despite their supposed long-term relationship with inflation. The 

short term volatility of equities and the penalty associated with the higher incidence of 

insolvencies thus produced seemed to be the reason for this result.

From an immunization perspective, an office transacting only ten year endowments had 

been investigated in order to compare the durations of the optimal asset mixes with 

those of an office issuing only twenty year endowments. The results obtained were very 

much as one may have expected, with higher proportions being held in cash and lower 

proportions being held in Consols for the office issuing the shorter term contracts.

Overall, the optimal proportions for the different liability profiles seemed intuitively 

reasonable. The discontinuities in the payouts caused by insolvencies significantly 

favoured the more solvent asset mixes, therefore leading to more sensible portfolios. 

This also appeared to reduce the sensitivity of the portfolios to the investment model, 

increasing the relative importance of liabilities on the decision variables. In these 

respects, Model B would appear to be superior to Model A. However, the effect of 

these discontinuities also makes the objective function more difficult to optimize 

precisely.
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8. DYNAMIC OPTIMIZATION MODELS

8.1 Introduction

In preceding chapters, the asset allocation strategy had been optimized on the basis that 

the proportions in each asset class would remain constant from year to year until the 

horizon date. While it does not mean that the investor will be prevented from altering 

the asset mix at a later date, failing to allow for this possibility in determining the initial 

allocation may lead to sub-optimal strategies. An asset allocation strategy which could 

be optimized allowing for changes to be made over time should give at least as high an 

expected utility as that of a static strategy. Nevertheless, it would be useful to isolate 

the main factors that may give rise to inter-temporal reallocations.

The most important aspect of this study has been to allocate assets in ways which are 

best suited the liability profile. Therefore, if the mix and size of liabilities are expected 

to change in the future, it would seem more sensible to consider a dynamic strategy 

rather than a static one. A situation where this may apply would be a fund which is to 

be closed to new business at some stage. In this case, the optimal asset allocation at the 

point of closure will be vastly different from that just before the last policy matures. 

The main aim of this chapter is to investigate how the optimal asset mix should change 

over time for a closed fund.

According to immunization theory, the asset mix for a closed fund (with liabilities 

predominantly fixed in nominal terms) should typically be in long term gilts at the point 

of closure, moving to shorter term gilts nearer the end of the period of closure. This 

would seem appropriate for a low risk investment strategy, which is what an immunized 

position implies. If, on the other hand, a static optimization model were to be used, the
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asset allocation derived would most probably be a compromise between these two 

extreme positions, i.e. medium term gilts throughout the period of closure. While this 

may be unsatisfactory in a closed fund situation, a static strategy should be adequate in 

the case of a stationary fund. This was why the open funds investigated in Chapters 6 

and 7 were assumed to be stationary in real terms.

Another issue which has not been analysed in detail until now is the effect of a horizon 

date on the decision-making process. Although some arbitrary horizon date had to be 

assumed in the models used so far (an infinite time horizon is not computationally 

feasible), the notion of a horizon date is much more intuitive in the case of a closed fund 

or an individual life insurance contract. In actuarial circles at least, it is widely accepted 

that for an individual with-profit policy, the investment mix may be more adventurous 

early on in the policy, as long as the asset mix is gradually allowed to move into a more 

matched position towards maturity. Similar strategies also seem to be adhered to in 

other spheres of asset/liability management, such as pension schemes. However, unlike 

immunization, this strategy does not appear to be based on any firm theoretical footing.

There are at least four possible reasons for suggesting such an investment strategy in the 

context of a single with-profit endowment contract. The first concerns the level of free 

assets available over the life of the policy. In the normal course of events, the ratio of 

free assets to total assets will tend to be highest soon after inception, and least towards 

the maturity date, because reversionary bonuses are continually being attached to the 

sum assured. This offers some justification for greater mismatching at early durations.

The second reason may be tactical. If there is a long time period between the inception 

of the policy and when the assets need to be sold to pay the maturity value, it may seem 

sensible to invest predominantly in equities initially and then gradually switch into gilts 

over time. Presumably, this is based on the premise that equities should outperform 

gilts in the long term. Hence, given a sufficiently long investment period, there is less
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danger that equities will need to be realized when markets are depressed. A criticism of 

this, however, is that it assumes that markets will recover given a reasonable cushion of 

time in which to do so: this would seem to imply market inefficiency. Even if this were 

true, hardly any tactical advantage could be gained by specifying that the asset mix 

should evolve over time in a predictable manner. Instead, the process would have to be 

capable of identifying when the market is or is not depressed and then act accordingly. 

This form of tactical manoeuvring is well beyond the scope of these investigations.

Two other features that may have some affect on the asset allocation over time are the 

notions of increasing wealth and time dependency. The former simply refers to when 

the value of the investment as a proportion of wealth increases over time. This should a 

feature of most regular premium contracts. Under these circumstances, it is conceivable 

that investors would behave more cautiously nearer the horizon date as a greater 

proportion of wealth may be at stake. Time dependent utility functions are best 

understood in the context of dynamic programming (see section 8.2 below). Due to 

their more abstract nature, both these features are only of limited interest in the context 

of the dynamic strategies discussed here.

In view of these arguments, the use of a static optimization model in the open fund 

situation would seem justified on the whole. The mix of business and the statutory free 

asset ratio were assumed to remain about constant over time. Assuming that business 

volumes would on average be stationary in real terms should also have resulted in the 

discounted mean term of the liabilities remaining constant throughout.

However, in situations where volumes, mix of business or solvency levels may change 

quite dramatically, it would be necessary to employ dynamic asset allocation strategies, 

and these will be investigated in this chapter. Initially though, it would be helpful to 

review the method of dynamic programming before more pragmatic approaches to the 

problem are discussed.
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8.2 Dynamic Programming

8.2.1 Introduction

Dynamic programming is described in Walsh (1975) as an optimization technique 

applicable to problems involving multistage decisions. It is based on the Principle of 

Optimality by Bellman (1957), which states that: "An optimal policy has the property 

that, whatever the initial state and initial decision, the remaining decisions must 

constitute an optimal policy with regard to the state resulting from the initial decision."

In the field of finance, dynamic programming has been applied to various multiperiod 

investment-consumption problems (see for example, Samuelson, 1969; Merton, 1971). 

However, it is only valid for problems where, having obtained the decision variable for 

a particular stage, the remaining sub-problem retains the exact structural form of the 

previous sub-problem. This is best illustrated by the two-period investment problem 

described in Mossin (1968).

8.2.2 Mossin's Two-Period Investment Problem with Quadratic Utility

In many respects, the two-period portfolio selection problem is a very intriguing and 

difficult problem to solve. Here, the decision involves choosing a portfolio now which 

maximizes the expected utility of wealth at the end of two consecutive periods, while 

allowing for the option of revising the portfolio at the end of the first period. Clearly, at 

the end of the first period, the amount of wealth held then will be known and the process 

of optimizing the asset mix for the second sub-period is similar to that of a single period 

problem. However, this decision cannot be determined at the outset as the amount of 

wealth held at the end of the first period is not known in advance. Similarly, the first 

period decision will usually depend on the investment policy in the second period.
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Despite the apparent circularity of such an argument, Mossin (1968) showed how under 

certain circumstances, a multiperiod problem may be solved through the use of dynamic 

programming. The general approach for an «-period problem involves expressing the 

maximum utility of ultimate wealth with respect to the «th period decision, in terms of 

the amount held at the start of that period, i.e.:

max£[t/(TJ] = Fn_,(An̂ )
W n

where wk is the decision vector in respect of period k, and Ak is the amount of wealth 

held at the start of the &th period. Similarly, the maximum of £ [ F , m a y  be 

expressed as F ^ A ^ ) ,  and so on until the ultimate objective may be rewritten as one of 

maximizing E[FX(AX)\ with respect to w,. Because £[F,(/!,)] and the optimal decision 

vector, w,* are functions of A0 (which is known), the multiperiod problem may then be 

solved as a series of single period problems.

Mossin demonstrated this technique by using the results from a one-period problem to 

solve a two-period portfolio selection problem. Consider first the one-period portfolio 

selection problem involving two risky assets with random rates of return, X, and X2. If 

A is the initial amount invested and w is the proportion invested in asset 1, then the 

accumulated amount of assets at the end of the period will be:

Y=A[( \+ X 2) + w (X ,-X 2)]

Now let Ej = E(X), Vj = Var(X), and for convenience assume that Cov{Xx, X2) = 0, i.e. 

that X , and X2 are uncorrelated. If the investor's risk preference may be represented by 

the quadratic utility function, U(Y) -  Y -  aY2, it then follows that:

E[U(Y)] =A[( 1 + E2) + w(£, -  £2)] -  aA2[ (V2 + (1 + E2f )  (8.1)

-  2w (V2 -  (1 + £ 2)(F, -  E2)) + w2 ((£, -  E2)2 +V, + V2)]
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Differentiating E[U(Y)] with respect to w and solving for E'[U(Y)] = 0, will yield the 

optimal proportion in asset 1:

£, - E 2 -2a4[(l + £ 2)(£, - E 1) -V 1]

Substituting (8.2) into (8.1), it may be shown that the expected utility for the optimal 

portfolio is given by:

where:

E[U(Y)]* = g(A -  hA*) + c

f
h = a

v
¥¿1 + E2)2 +V2(\ + E,)2 + 7 ^  

V,(\ + E2) + V2(l + E,) )

Vx{\ + E2) + V2{\ + Ex) 
( £ , - £ 2)2+F1+F2

(8.3)

(8.4)

(e x - e 2)2
4 a[F1+F2+ ( £ , - £ 2)2]

In his two-period example, Mossin assumed that the random rates of return, X ] and X2 

apply to both periods and that these returns are serially independent. Without the latter 

assumption, the problem would be much more complicated as ultimate wealth would 

not only depend on the amount of wealth at the start of the second period, but also on 

the returns experienced in the previous period. He denoted the amount of initial wealth 

to be A0 and defined A] and A2 to be the amounts of wealth at the end of the first and 

second periods respectively. Similarly, he denoted w] and w2 to be the proportions 

invested in asset 1 during the first and second periods. Hence, the objective would be to 

maximize £[i7(/i2)].
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At the beginning of the second period, the single period case may be applied directly:

maxE[U{A^)\ = maxE[A2 -  aA22] = FX{AX)
Wp Wp

where FX{AX) is given by g(Ax -  hAx2) + c from equation (8.3) earlier. It then follows 

that the optimal portfolio at the start of the first period will be that which maximizes the 

expectation of the intermediate return function, FX(AX). But:

takes exactly the same functional form as that of the one-period case in (8.1). So from 

(8.2) and (8.4), the optimal proportion in asset 1 at the start of the first period will be:

Hence, the optimal proportion for the first period may be found through maximizing the 

expectation of a quadratic function in Ax, as one would have done if it were a single 

period situation. The difference is that the parameter values of the quadratic function in 

Ax may only be obtained by considering the situation in the second period. The 

information derived from optimizing the second period's decision feeds through to the 

first period in the parameter h. A point worth noting is that the optimal proportion in 

the second period cannot be determined initially, as it is a function of Ax and will only 

be known at the end of the first period. Although such a policy makes intuitive sense, a 

corollary to this is that the optimal decision may not be obtained solely through the use

m ax i^F ^ ,)] = maxE[A, -  hA,2]w, w.

Ex - E 2-  2hA[{\ + E2)(EX- E 2) - V 2] 
2hA((Ex- E 2)2 +VX+ V2)

where:
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of numerical optimization routines. Numerical routines only work on the basis that the 

level of wealth at the start of the period concerned is known. This places quite severe 

restrictions on the types of problems that may be solved using dynamic programming 

techniques.

8.2.3 The Exponential and Logarithmic Utility Functions

For instance, consider a one-period portfolio selection problem using the exponential 

utility function. As general analytical solutions in this situation are not possible without 

more simplifying assumptions being made, dynamic programming would not be 

suitable for multiperiod versions of this problem either. But even if the required 

assumptions are made to enable closed form solutions to be obtained, it does not 

automatically follow that the identical problem structure will be preserved over 

successive recursions when applied to the multiperiod case.

In Chapter 4, it was shown that if returns are normally distributed, then the expected 

utility for an exponential utility function may be expressed in a form which can be 

solved analytically: E[U(Y)\ = -£[exp(-T7/-)] = -exp(~E(Y)/r + Var(Y)/2r2). However, 

having solved for the optimal weight in the two asset case as given by equation (4.1), it 

may be shown (see Appendix B) that inserting this expression for w* back into E[U(Y)\ 

yields a rather more complicated expression:

E[U(Y)]* = -qexp A\V,V2- C n2)-2ArKV2- C n ) ( E , - E 2) + E2(V,+V2 -2C „)] 
2r2(Vl +V2 -2 C ]2)

where:
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be maintained. Furthermore, the return function E[U{Y)\* is the exponent of a quadratic 

in A, which means that it can only be maximized numerically. So although it would be 

possible for dynamic programming techniques to be applied to a two-period problem for 

the exponential utility function with normally distributed returns, the process may break 

down for cases involving more than two periods.

An interesting situation arises, though, if the logarithmic utility function is used. While 

it may be the case that single-period portfolio selection problems cannot be solved 

analytically for the logarithmic utility function, this fact does not exclude the function 

from multiperiod problems. It has been shown in Mossin (1968) and Samuelson (1969) 

that the logarithmic utility function leads to optimal policies which are myopic. This 

simply means that the optimal decision in any period is not dependent on future events. 

In a multiperiod selection problem, an investor with a logarithmic utility function will 

only need to be concerned with maximizing the expected utility of wealth at the end of 

the first period.

In relation to the asset fund analysed in Chapter 4, this means that an investor with a 

logarithmic utility function should make the same optimal decision over the first year of 

investment regardless of whether the horizon date is in one or twenty years time. 

However, as the distributions of simulated returns are only approximately the same 

from year to year, the one-period optimal decisions in subsequent years will only be 

roughly the same as that derived in the first year.

When long-term liabilities are involved, the situation is less simple: the amount of 

wealth (surplus) at the end of each period is only an estimate, as surplus is a function of 

the valuation basis used. The true amount of wealth may only be determined when all 

business is run off the companies books or if the business is wound up at or before some 

finite horizon date. Hence, even if a logarithmic utility function is used in the context 

of a model office, it would seem inappropriate just to consider the expected utility of
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surplus at the end of the first period, as this would place excessive importance on the 

valuation basis assumed.

So apart from exceptional circumstances, there generally remains a need to consider 

investment decisions in a multiperiod framework. Although dynamic programming has 

been shown to work under certain conditions, its range of applications is very limited 

indeed. Therefore, in the following section, a brief review is given on some of the more 

pragmatic approaches which have been suggested for dynamically reallocating assets.

8.3 Pragmatic Decision Rules

8.3.1 Resilience Testing

A well known dynamic reallocation rule, though rarely thought of as a decision rule 

(probably due to the fact that it features as a statutory requirement), is resilience testing 

(see Purchase et al, 1989). Rather than specifying a percentage of funds which needs to 

be matched to liabilities or invested in gilts, resilience testing simply ensures that the 

free assets held by an office are adequately resilient to fluctuations in key economic 

variables within a specified range. For example, consider the rule that free assets should 

be resilient to falls in equity values of up to x%. An office operating on this basis would 

be allowed to invest in any asset mix, providing that this requirement is satisfied. 

Should the free asset ratio fall beyond the level needed to maintain this degree of 

resilience, then the x% rule imposes the required switch from equities into gilts. This 

rule gives insurers the choice of paying the cost of higher capital, which may permit an 

investment that leads to a higher expected return, or holding less capital with a more 

matched investment strategy.
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Resilience testing may be quite useful in optimization models, acting as a partial 

constraint on the optimal asset allocation. If a sufficiently risk tolerant utility function 

is used, the model should still permit adventurous asset mixes when the solvency 

position is strong, but curtail excessive ruin probabilities by limiting the proportion in 

equities when the solvency position is weak. Static optimization models may be 

criticized on the grounds that the optimal asset mixes are based on the assumption that 

no intermediate reallocation of assets is possible. Incorporating this type of rule may 

help to make these models more realistic.

There are, however, a number of points which should be made regarding this approach. 

Firstly, the rule is a practical method for controlling insolvency probabilities and is not 

intended to lead to an optimal investment strategy in any sense. Secondly, if the rule is 

convoluted (including mis-matching tests for various other asset classes say), then the 

procedure for determining the appropriate switches may be extremely complex. 

Thirdly, the approach may not produce meaningful optimal asset mixes if the rule 

actually happens to take effect most of the time. This may occur if the rule is too 

stringent relative to the initial solvency position. Lastly, the rule should also reflect 

how the life office would be expected to react in those circumstances when they arise. 

It would defeat the point of imposing the rule in the first place if the optimization 

process assumed a switching rule that would not actually be implemented in practice.

8.3.2 Solvency Based Reallocations

A technique related to resilience testing involves a switching rule that is dependent on 

some measure of solvency. For example, a rule may be imposed whereby no less than 

100(x -  p)/(x -  y)% of the assets must be invested in gilts if the ratio of assets to 

liabilities, p falls below x but remains above y. If p falls beyond y, then all assets must 

be invested in gilts. In Ross (1989) and Hardy (1993), x = 1.25 and>> = 1.05. This not
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only encourages a more cautious investment strategy when solvency is onerous, but also 

aims to improve the statutory solvency margin by permitting a higher valuation rate of 

interest to be used in calculating the statutory reserves.

However, the considerations outlined with regards to resilience testing also apply here. 

In general, the rule is not optimal and only works well if the solvency position is strong 

to begin with. It also assumes the initial asset mix is predominantly in equities and 

other risky asset classes.

8.3.3 Tactical Switching

Although it is not the intention of this thesis to investigate tactical allocations, such 

methods tend to be dynamic by nature and would be worth mentioning in the context of 

dynamic optimization models. An example of a tactical decision rule has been 

discussed in MacDonald (1991). Using the investment model developed by Wilkie 

(1986), MacDonald attempted to determine which asset class (gilts or equities) would 

be more likely to perform better following a recent spell of good performance relative to 

the other asset class. As expected, equities were found to be better following poorer 

performances relative to gilts and vice-versa. MacDonald acknowledged that this was 

not really surprising given the autoregressive nature of Wilkie's model.

Regardless of whether models such as this may be useful in practice (particularly due to 

their excessive reliance on the more predictive characteristics of the investment model), 

tactical switching does not really deal with concerns about changing solvency positions, 

as tackled to a certain extent in resilience testing or the solvency based switching rule 

described in Sections 8.3.1 and 8.3.2 respectively. All three models, however, do not 

address directly the problem of a changing liability profile, which would be a key issue 

in the asset allocation strategy for a closed fund.
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8.4 The Closed Fund

8.4.1 Duration Based Models

The closed fund is an attractive situation to consider because it allows ultimate surplus 

to be accounted for in a more realistic manner than in an open fund. Furthermore, there 

is naturally a dynamic element involved in the asset allocation of a closed fund. The 

main reason for this relates to the fact that the unexpired duration of the liabilities is 

reducing over time. From an immunization perspective, the average term to redemption 

of fixed-interest assets held should also be reducing in tandem with the duration of the 

fixed liabilities.

For a fairly risk averse investor, a suitable strategy could be to immunize (as far as this 

is possible) an amount of assets equal to the value of the liabilities and to invest the rest 

in assets which have higher expected returns. But should there be ample free assets 

available, it may be unnecessary to be as cautious as this. In any case, it may be more 

useful to investigate the optimal strategies for a range of risk tolerance levels, as done in 

previous chapters, rather than just a single level of risk tolerance.

Ideally, the strategy used for the closed fund should at least be dynamic enough to take 

account of changes in duration of its liabilities and be able to accommodate a range of 

risk preferences. A possible approach could be to optimize a separate vector of weights 

for each time interval. If there are H  years to the time when the last liability payment is 

due, then the objective may be to optimize the ultimate surplus at this horizon date in 

respect of the decision vectors, w,, ..., ww, where w, is the asset mix in the tth year. 

However, as well as having to optimize over H x ( M - 1) parameters, M  being the 

number of asset classes available, there would also be an element of tactical switching 

involved if the distributions of returns differ from year to year. The latter problem 

would almost be inevitable with simulated returns.

2 2 9



In view of this, it would be desirable if fewer parameters could be used, both for reasons 

of computational efficiency and to reduce the effect of tactical switches on the optimal 

strategy. A simple remedy could be to split the whole period into fewer sub-periods of 

five year intervals, for example. However, even with a twenty year time horizon, such 

an approach could produce fairly crude changes in asset mix whilst involving as many 

as 4 x (M -l) parameters.

Before an alternative approach is considered, it would be worth briefly returning to the 

numerical routine used to derive the optimal portfolios in a static context. In Chapters 4 

and 6, the basic procedure had been to set the proportion in the kth asset class, wk = ak2, 

for k = 1, ..., M -l, leaving the balancing proportion, wM -  1 -  (w, + ... + wM_,). The 

optimal asset mix could then be found by unconstrained optimization of the objective 

function with respect to the parameters a„ ..., aM_v However, this is not the only 

transformation that results in asset proportions that are non-negative and sum to unity. 

An equivalent formulation could be:

7=1

(8.5)

while setting aM = c (an arbitrary constant) to avoid over-parameterization.

Returning to the dynamic case, consider the following function:

M

7=1

(8.6)

where <J>i( is a random component dependent on simulation s at time r; a,, ..., aM_x and 

bx, ..., bM are the parameters over which the objective function is to be optimized, with
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aM = c. If (j) represents the discounted mean term of liabilities, then for a given set of 

parameter values, the asset proportions will vary as the discounted mean term changes. 

In this way, the asset mix can be made a function of the duration of the liabilities. 

Hence, the problem may be approached from the perspective of optimizing the expected 

utility of payouts in relation to the parameters av ..., aw_, and 6,,..., bM.

A feature of this formulation is that it effectively reduces to the static case if the liability 

profile is constant over s and t, or if bk~ 0, V k. This means that it will always yield an 

expected utility which is at least as high as that of a static strategy i.e. expression (8.5). 

It also has relatively few parameters, making it computationally efficient and should 

result in smoothed asset mixes over time. In so doing, however, there is a possibility 

that this function may not be sufficiently flexible in accommodating the necessary 

switches in the asset proportions over time. Nevertheless, it should be worthwhile 

investigating how the dynamic reallocation method given by expression (8.6) performs 

in the closed fund situation.

8.4.2 Optimal Strategies with Nominal Payouts

Unless otherwise stated, Model A will be assumed throughout. This means that 

negative dividends are permitted when the guarantee fund is breached. Therefore, the 

fund will always remain in operation throughout the period of closure. At the start of 

the projection period, the fund is assumed to be stationary in real terms. The liabilities 

in force are assumed to be twenty year endowments, as in Chapter 6. Closure to new 

business is assumed to take immediate effect, which means that the last contract is 

issued a year before the start of the projection period. This implies that the last maturity 

payment is due at time 19. The algorithm used for distributing dividends is identical to 

that used in the open fund (which had been aimed at maintaining the same ratio of assets 

to published liabilities throughout the projection period).
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The discounted mean term of liabilities is calculated on the same basis as the realistic 

reserves, i.e. gross premium valuation at a rate of interest equal to the current yields on 

Consols and index-linked gilts for nominal and real liabilities respectively. As these 

yields are stochastic from time 1 onwards, only the asset mix at time 0 will be known 

for a given set of parameter values. In subsequent periods, the parameter values just 

determine the allocation rule, rather than the unconditional asset mixes. However, as a 

particular set of parameter values may be difficult to interpret in isolation, all optimal 

strategies obtained will be graphically illustrated in relation to a 'typical' scenario. This 

typical scenario assumes that the relevant yields remain at their neutral values, i.e. 8.5% 

for Consols and 3.5% for index-linked gilts. As the discounted mean terms do not vary 

extensively between scenarios, the trends in asset proportions shown by means of this 

neutral scenario should be fairly representative of the general trends that would be 

observed from each of the one thousand simulations used.

Figure 8.1 shows how the optimal proportion in each asset class changes as the duration 

of the liabilities decreases. The initial solvency margin is assumed to be sm = 15%. 

Payouts are measured in nominal terms and the level of risk tolerance used is r = 2. The 

probability of ruin together with the mean and standard deviation of the nominal 

payouts are also indicated at the top of the graph.

Overall, the asset allocation strategy over time seems broadly intuitive, with the optimal 

proportions in cash and Consols rising and falling respectively as the discounted mean 

term of the liabilities decreases. Holdings in index-linked gilts and equities remain 

small throughout, which is to be expected given the low level of risk tolerance assumed. 

In fact, the asset mix seems to be quite well immunized, with about 25% in cash and 

over 70% in Consols when the duration is highest, evolving to about 80% in cash and 

20% in Consols at the shortest duration. The immunized strategy also appears to be 

reflected in the low ruin probability of 1% observed for the nineteen year projection 

period.
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Figure 8.1 Graph o f Optimal Asset Proportions vs. Discounted Mean Term o f liabilities: 

sm = 15%, in nominal terms, at r = 2.

In Figure 8.2, the same situation applies except that a 'medium risk' strategy with r = 8 

is considered. The mean and standard deviation of payouts shown here are higher than 

those observed in Figure 8.1, which is facilitated by investing greater proportions of 

assets in the higher yielding real asset classes. Given the small fraction of inflationary 

liabilities incurred throughout the projection period, this strategy appears to be more 

mis-matched in relation to the liabilities, particularly at the shorter durations.

Although it is intuitive that the fund would be mis-matched to a greater extent (with the 

aim of achieving higher average payouts), it is less obvious how this mis-matching 

should evolve across time. As the ratio of assets to published liabilities should, on 

average, remain constant over time, it would be reasonable to expect the optimal 

proportions invested in real assets to also remain the same throughout the projection 

period. This does not appear to be the case here, with the percentage invested in fixed 

income assets falling steadily from 73% in the first year to 23% in the last year. Despite 

this peculiar trend, the observed probability of ruin still remains at 1%.
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100%

Figure 8.2 Graph o f Optimal Asset Proportions vs. Discounted Mean Term o f liabilities: 

sm = 15%, in nominal terms, at r = 8.

In view of these results, it may be helpful to examine the free asset ratio (FAR) over 

time, both on a realistic and a published basis. Define the free asset ratio at time t to be:

Acc(t)

where Acc(t) is the total amount of assets immediately following the distribution of 

dividends at time t (see Section 5.3) and Liab{t) is the value placed on liabilities at time 

t. The realistic free asset ratio uses Liab{t) = Real_Liab{t) whereas the published free 

asset ratio uses Liab(t) = Stat_Liab{t), as defined in Section 5.3 earlier.

Figure 8.3 below shows the average realistic and published free asset ratios at the start 

of each projection year, assuming the optimal strategy at r = 8 is adopted. In many 

respects, the free asset ratios shown are not unreasonable. The published FAR at t = 0 

of 13.04% is consistent with the initial solvency margin of 15% as a proportion of 

published liabilities, i.e. 0.1304 « 1 -  1/1.15. The average published FAR also remains
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below the average realistic FAR throughout the projection period, which reflects the 

fact that the published basis is more stringent than the realistic basis. As the horizon 

date approaches, the two ratios must converge because the reserves will become less 

sensitive to interest rate assumptions as the duration of the liabilities shortens.

50%

40%

30%

20%

10%

0%
0 2 4 6 8 10 12 14 16 18

Figure 8.3 Graph o f Mean Realistic Free Asset Ratio and Mean Published Free Asset Ratio 

over time: sm = 15%, in nominal terms, at r = 8.

A striking feature of Figure 8.3 is the steep rise in free asset ratios towards the horizon 

date. The intended distribution policy had been to declare dividends in a manner which 

would maintain the published solvency margin held initially throughout the projection 

period. While the formula for doing this had worked well in the case of the open fund, 

the same formula appears to be inadequate for the closed fund in this respect. One may 

recall that the smoothing parameters k, c and e had been specifically chosen so as to 

satisfy this objective in the open fund situation. It therefore seems probable that an 

alternative set of smoothing parameters may be more appropriate for the closed fund 

situation if constant published free asset ratios are to be maintained. Nevertheless, the 

scenario being considered here is very much a hypothetical one and it is debatable
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whether striving towards such an objective would be ideal in practice. A positive aspect 

of the resulting distribution policy is that it errs on the side of prudence by allowing the 

published FARs to build up over time, thus making insolvency less likely.

In each projection year, the office is retaining a modest amount of surplus over and 

above the intended level. As the published reserve tends to remain above its initial level 

for the first half of the projection period, the published free asset ratio is only seen to 

rise very gradually for the first 10-15 years. However, in the last five or so years, the 

published reserve begins to decline much more rapidly. Although the absolute amount 

of free assets held is also decreasing, it is doing so at a much slower rate (due to the lag 

in the dividend distribution policy); so towards the horizon date, the free assets may be 

seen to rise more sharply as a proportion of total assets.

Given the free asset ratios shown in Figure 8.3, the optimal strategy shown in Figure 8.2 

now appears more intuitive. The office is quite well matched initially, with both the 

amount invested in fixed income assets and the realistic value of liabilities forming 

roughly three quarters of the total fund at the start. Even though the proportion invested 

in fixed income assets decreases with time, the fund does not on average deviate too far 

from a matched position over the next ten or so years. For example, at time 10 when the 

mean realistic FAR is 24%, only 22% and 14% of assets are invested in equities and 

index-linked gilts respectively. This makes it unlikely that free asset ratios will fall to 

an onerous level during this period.

Now consider the more extreme position at the start of the final year when 76% of the 

fund (32% and 44% in equities and index-linked gilts respectively) is invested in real 

assets. At first this asset mix may appear much more prone to lead to insolvency with 

both the mean realistic and published FARs standing at about 36%. However, even if 

the returns on equities and index-linked gilts were to fall by two standard deviations in 

one year, i.e. returns of about -31.8% and -2.8% respectively (see Table 3.8), this would
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ceteris paribus result in a reduction in total fund value of about 11%. So as well as 

requiring the free asset ratio to fall to about a third of its mean value by t = 18, the office 

would have to experience another year of very poor returns for insolvency to occur then. 

This explains the very low ruin probability observed in Figure 8.2.

A useful comparison to study may be the 'high risk' strategy with r -  32 shown in 

Figure 8.4. From this graph, there appears to be a definite preference for more volatile 

assets nearer the horizon date, as had been noted in Figure 8.2 earlier. This time though, 

the asset allocation strategy is much more extreme, with none of the fund being held in 

fixed interest assets at any time. The resulting 91% ruin probability would seem 

consistent with such a strategy, as would the relatively high mean and standard 

deviation of payouts shown.

♦—  Cash 

—  Consols 

*—  IL Gilts 

° —  Equities

Figure 8.4 Graph o f Optimal Asset Proportions vs. Discounted Mean Term o f liabilities: 

sm = 15%, in nominal terms, at r = 32.

Looking at the mean published free asset ratio shown in Figure 8.5, there should be little 

difficulty in explaining why the observed ruin probability for such a strategy is so high. 

Being invested entirely in real assets, the valuation rate of interest that may be used for
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published reserves is generally very low. This is clear from the published FAR at t = 0. 

As the office is barely able to cover the guarantee fund at this early stage and is heavily 

mis-matched throughout, ruin would seem the most probable outcome.

Realistic

Published

Figure 8.5 Graph o f Mean Realistic Free Asset Ratio and Mean Published Free Asset Ratio 

over time: sm = 15%, in nominal terms, at r = 32.

A far more challenging task though would be to explain the trend towards the more 

volatile asset categories over time. Unlike the optimal strategy obtained when r = 8, the 

strategy shown in Figure 8.4 does not appear to be greatly influenced by the office's free 

asset ratios. In Figure 8.2 earlier, the optimal proportions in real assets remained low 

for the majority of the projection period, rising sharply only when both the realistic and 

published FARs rose sharply as well. In contrast to this, the rate at which index-linked 

gilts are being switched into equities when r = 32 is much more uniform over the entire 

period. While this may reflect the gradually increasing published FAR seen in Figure 

8.5, intuition would tend to suggest the realistic FAR as being a more influential factor 

in determining the optimal asset allocation strategy. However, the realistic FAR in this 

case appears to exhibit more of a downward trend over time.
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An alternative explanation of this result may relate to the way in which the objective 

function has been defined. In order to allow for time preference, dividends that have 

been declared are rolled up to the horizon date at the rate of return earned on equities 

during that accumulation period. This not only increases the significance of early 

dividends in terms of expected payouts, but also enhances their contribution to the 

variability of these payouts. With r = 32, relatively more heed is given to the average 

payouts than to the variance of payouts. Hence, it is possible that the contribution to the 

variance of payouts from later dividends is not sufficiently material relative to that of 

earlier dividends to require asset mixes later in the projection period to be as cautious as 

those preferred early on. This could explain the trend towards increasing equity 

investment over time, as seen in Figure 8.4.

8.4.3 Optimal Strategies with Real Payouts

The above investigations were also carried out in real amounts, the results of which are 

discussed in this section. Figure 8.6 below shows the optimal trend when r = 2 and 

exhibits many of the features seen in Figure 8.2 earlier. The initial asset mix seems 

quite reasonable with about 72% of the fund being invested in fixed income assets, 

although the optimal proportion gradually falls to 57% after 10 years. This is not too 

dissimilar to the trend shown in Figure 8.2, with the corresponding proportions being 

73% at t = 0 and 64% at t = 10. As the outstanding duration of the liabilities decreases 

further, the optimal proportion in the real asset classes rises quite sharply, eventually 

reaching about 85% in the final year of operation. This compares with the figure of 

76% as implied by Figure 8.2.

Although the optimal strategies in Figure 8.2 (nominal payouts with r = 8) and Figure

8.6 (real payouts with r = 2) should not be directly comparable, there are reasons for the 

similarities between the two. Both require a reasonable degree of matching initially as
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their free asset ratios are at their lowest levels during this time (see Figures 8.3 and 8.7). 

As their free asset ratios rise towards the horizon date a greater degree of mis-matching 

is acceptable. However, the two strategies tend to mis-match for different reasons.

♦ Cash 

■*—  Consols 

—  IL Gilts 

° —  Equities

Figure 8.6 Graph o f Optimal Asset Proportions vs. Discounted Mean Term o f liabilities:

sm = 15%, in real terms, at r = 2.

Realistic

Published

Figure 8.7 Graph o f Mean Realistic Free Asset Ratio and Mean Published Free Asset Ratio 

over time: sm = 15%, in real terms, at r = 2.
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The strategy in Figure 8.6 aims to keep the variability of real payouts down to a very 

low level, thus strongly favouring index-linked gilts at shorter durations. The strategy 

in Figure 8.2, though, aims to increase the mean nominal payout while constraining the 

variability of nominal payouts to a suitable level. Hence, this strategy favours a more 

balanced mix between equities and index-linked gilts. As with Figure 8.2, the strategy 

in Figure 8.6 still manages to maintain a negligible ruin probability despite appearing 

mis-matched at the shorter durations. Given the high free asset ratios observed towards 

the end of the projection period (see Figure 8.7) and the low proportion invested in 

equities throughout, this result is hardly surprising.

100%

80%

60%

40%

20%

0%

10 8 6 4 2 0

Figure 8.8 Graph o f Optimal Asset Proportions vs. Discounted Mean Term o f liabilities:

sm = 15%, in real terms, at r -  8.

At the higher risk tolerance level of r -  8, the optimal strategy for real payouts is shown 

in Figure 8.8. As expected, the ruin probability, mean and standard deviation of real 

payouts are all greater than for r -  2. Despite having substantial proportions in nominal 

assets at the earlier stages, the fund still appears mis-matched as less than 15% of assets 

are invested in Consols at all times. Investment in index-linked gilts is negligible
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throughout, being the asset class with the lowest mean real accumulation over this 

period. The high proportions held in equities in the later years contribute to the high 

ruin probability of 51 %, as do the more moderate free asset ratios seen throughout (see 

Figure 8.9). The optimal strategy for r -  32 is not shown here as it simply comprises 

100% investment in equities throughout.

------ Realistic

—  Published

Figure 8.9 Graph o f Mean Realistic Free Asset Ratio and Mean Published Free Asset Ratio 

over time: sm = 15%, in real terms, at r = 8.

8.4.4 Optimal Strategies for a Simple Closed Fund

Although the distribution policy used in Sections 8.4.2 and 8.4.3 above failed to fulfil 

the aim of maintaining a constant free asset ratio, the study did demonstrate the ability 

of duration based models to deal with changing liability profiles. Nevertheless, it also 

seemed possible that factors other than those relating to increasing free asset ratios may 

have been affecting the optimal strategies obtained. In order to investigate this further, 

it may be more appropriate to analyse a much simpler version of the closed fund.
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Consider a fund at time 0, F0 -  38000. At the start of each year, the fund, Ft is invested 

in asset mix, w, to yield a random amount, [1 + z'(w,)].F, in one year's time. At the end 

of each year for the next 19 years, a fixed amount of 2000 is paid out from the fund. 

Immediately following each payment made at time t, a reserve of Vt = 2000.(19 -  t) is 

set up, i.e. the reserve is equal to the sum of the remaining payments due in the future. 

The difference between the remaining fund and the reserve at time t is:

^ = [ l+ / ‘(w,.1)].JF/_1-2 0 0 0 -F ,

where d, is the dividend declared at time t, which is assumed to be invested in equities 

until the horizon date. It then follows that F, = Vr

If this simple fund is then optimized, with the objective of minimizing the variance of 

real accumulated dividends (payouts), the optimal strategy is similar to that shown in 

Figure 8.6. Initially, the fund favours fixed income assets, although towards the later 

projection years the optimal asset mix mostly comprises index-linked gilts. In a way 

this was to be expected as the minimum variance strategy should be very similar to a 

utility maximizing strategy at low levels of risk tolerance. However, this result also 

shows that the trend seen in Figure 8.6 is not unique to the complex liability structure 

and distribution policy assumed in the model office. In fact, the same trend emerged 

even when dividends from the simple fund were accumulated using a constant rate of 

interest, thus reinforcing this view.

A useful feature of the simple closed fund is that the fund value at the start of each year 

is known with certainty. Hence, the variance of dividends arising from any one year 

may be computed independently of the outcome in any other year. In this sense, each 

year of operation may be treated as a separate single period problem. So when the 

objective was to minimize the variance of dl9/Q( 19) with respect to w19, where Q(t) is 

the retail price index at time t, the optimal asset mix in the final year was shown to
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consist mostly of cash, which is intuitive. However, this contrasts with the result of the 

optimal multiperiod strategy which favours more index-linked gilts in the 19th year.

In order to resolve this paradox, consider a variant of the simple closed fund. As before, 

the objective will be to minimize the variance of real payouts. However, instead of 

optimizing the asset proportions dynamically, let the investment strategy in the first 18 

years be fixed and for the sake of argument let this be assumed to follow the optimal 

multiperiod strategy derived for the simple closed fund earlier. It then follows that the 

only decision variables involved are the asset proportions in year 19. Under these 

circumstances, the optimal asset mix was found to be entirely in index-linked gilts. 

Therefore, it must be deduced that the anomaly is not caused by any limitation of the 

dynamic optimization procedure but is the result of some other influence.

Assuming that these results have been derived accurately, the only other explanation for 

this inconsistency must lie with the different objective functions used. In other words, 

the aim of minimizing the variance of real dividends in the final year may not be 

consistent with the aim of minimizing the variance of real accumulated dividends at the 

horizon date. As an immunized strategy is closely related to one which minimizes the 

variance of dividends over one time interval, this would imply that a strategy which 

minimizes the variance of payouts may also be inconsistent with an immunized strategy.

8.4.5 Multiperiod Consumption and Ultimate Surplus

Regardless of whether the deductions made in Section 8.4.4 had been justified 

adequately, there remains a fundamental problem with the results obtained for the 

closed fund. When accumulated dividends were expressed in real terms, the optimal 

strategy was to invest most of the fund in fixed income assets initially, while gradually 

switching more and more of the fund into index-linked gilts over time. This resulted in
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the optimal mix for the final year being predominantly invested in index-linked gilts. 

Nevertheless, the optimal mix for the first year had been well matched, which is 

consistent with a minimum variance strategy. Therefore, at least the decision at time 0 

seemed reasonable, even if it had been based on the supposition that less intuitive 

decisions would be made at a later stage. However, the main limitation of this strategy 

is that it is incompatible with the strategies which will be optimal in the future.

For example, with just one year remaining, the optimal strategy for the simple closed 

fund was to invest a significant proportion of assets in cash. However, this seemed to 

contradict the optimal dynamic strategy derived at time 0, which found index-linked 

gilts to be the optimal asset class in the final year of operation. So not only has the 

optimal decision at time 0 been reliant on less intuitive strategies being adopted later on, 

but it has also been based on the assumption that certain decisions will be made in the 

future, decisions which may not actually be made at such a time.

In effect, the objective function itself is evolving as time progresses. The objective 

changes from being one of minimizing (at t = 0) the variance of accumulated dividends 

to one of minimizing (at t = 18) the variance of the final year's dividends. Hence, the 

concept of ultimate surplus is perhaps less robust than had been thought in Section 5.4. 

In this particular regard, time additive multiattribute utility functions may have been 

more suitable, although these would still have suffered from one or more practical 

limitations relating to non-constant levels of relative risk aversion, inconsistencies with 

present values and the inability to deal with negative valued outcomes.

8.5 Summary

It has been seen in this chapter how the decision-making process can be complicated 

considerably when analysed in a multiperiod setting. Under simplistic conditions, the
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powerful optimization technique of dynamic programming may be used to solve such 

problems. This process essentially reduces the multiperiod problem to a sequence of 

single period problems through backward induction. However, these single period 

problems need to have certain analytical properties in order for the whole procedure to 

work, placing restrictions on the types of problems that may be dealt with in this 

manner.

When faced with more complex situations, particularly in cases involving life office 

models, pragmatic approaches to dynamic asset allocation strategies may be more 

appropriate. These have usually focused on the reallocation of assets when the solvency 

position is relatively poor, either by switching into a more resilient or matched position, 

or by investing more heavily in gilts to increase the statutory solvency margin. 

However, these approaches have tended to be predetermined rather than optimal and do 

not tackle the issue of changing liability profiles over time.

Hence, the objective of the final part of this chapter had been to consider a dramatically 

changing liability profile by looking at the closed fund situation. A possible approach 

was to extend the static strategy, making the asset mix a function of some key variable 

such as the discounted mean term of the liabilities. Despite being very much at its 

developmental stage, the method appeared to be capable of yielding some quite intuitive 

results, especially by maintaining a roughly immunized position for a low risk strategy 

when payouts were expressed in nominal terms. When payouts were expressed in real 

terms, there was a strong tendency for the low risk strategy to be mis-matched towards 

the horizon date which could partly be attributed to the steeply rising free asset ratios 

observed towards the end of the projection period. This trend in free asset ratios was 

the result of the dividend policy used.

Investigations into a simple closed fund threw further light onto the issue. It was shown 

here that similar results could be obtained without many of the complexities built into
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the model office. From these investigations, it also became apparent that the objective 

of minimizing the variance of accumulated dividends was not necessarily consistent 

with one of minimizing the variance of one-period dividends and hence not necessarily 

consistent with one of achieving an immunized position.
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9. CONCLUSIONS

9.1 Overview

In this thesis, it has been suggested that the optimal asset allocation strategies for a life 

insurance company may be determined in a rational decision-making framework. The 

approach used builds on methods which have been developed in financial economics by 

introducing complex liability structures into the analysis. It also enhances many of the 

studies carried out in the field of asset/liability modelling by attempting to optimize the 

investment strategies, from a static as well as a dynamic perspective.

As decisions were considered in the context of utility theory, the approach is general, 

and has been shown to be broadly compatible with many other existing techniques for 

investment decision-making, such as mean-variance analysis and immunization theory. 

In order to accommodate greater realism in these decision models, the results were 

computed using stochastic simulation techniques and numerical optimization routines. 

Hence, many of the restrictive assumptions usually associated with portfolio selection 

models could be relaxed.

9.2 Main Results

In relation to the simulations results produced by the investment model, the optimal 

asset mixes for a pure asset fund seemed intuitive. At low levels of risk tolerance over a 

one year time horizon, much of the optimal fund was in cash, while over a twenty year 

time horizon, the optimal fund was predominantly in Consols. When the fund had been 

expressed in real terms, the optimal proportions in index-linked gilts were seen to
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increase. At higher levels of risk tolerance, the optimal asset mixes were dominated by 

equities, which is reasonable given that this is the asset class with the highest expected 

return over any period. The results were generally consistent with a mean-variance 

approach, although the optimal portfolios at low risk tolerance levels were occasionally 

shown to lie away from the E-Vefficient frontier. This was attributed to the inability of 

simulations to represent adequately the tails of the underlying distributions.

In the case of Model A, it was assumed that shareholders would provide additional 

capital to make up the guarantee fund when this had been breached, meaning that the 

objective function would be smooth. Consequently, the optimal portfolios were quite 

indifferent to the ruin probabilities produced. Initially though, it seemed less intuitive 

why the optimal portfolios at low levels of risk tolerance, such as 100% Consols, also 

had very high ruin probabilities. This was primarily due to the upper limit imposed on 

the valuation rate of interest used for calculating published reserves.

The results also showed that it was possible for the optimal portfolios at low risk 

tolerance levels to deviate from an immunized position, as the objective function had 

been defined in terms of accumulated dividends over a twenty year time horizon. 

Immunization, on the other hand, is only valid in respect of surpluses which arise as a 

result of a single movement in interest rates. In this sense, ruin probabilities were felt to 

be superior in assessing mis-matching risk: they are not restricted to situations involving 

a once and for all change in interest rates and reflect the risk position better when the 

valuation basis is complex. However, they cannot distinguish between the different 

extents to which an office may be insolvent. A suitable compromise between dividend 

performance and solvency may be achieved by placing ruin constraints on the utility 

maximizing portfolios.

With Model B, hardly any mis-matching was noticeable in the optimal portfolios at all 

levels of risk tolerance because winding up the business in the event of insolvency had a
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penalizing effect on the payouts. This, in turn, was due to the loss of future profits and 

the possibility that the office could be wound up under unfavourable terms when 

insolvent. Therefore, Model B often resulted in better matched and more diverse 

optimal portfolios than Model A. This pattern was also maintained when different 

liability profiles were assumed in Model B. In situations where the office was assumed 

to be writing mainly index-linked annuity contracts, the optimal portfolios were heavily 

biased in favour of index-linked gilts. Similarly, the discounted mean terms of the 

optimal portfolios tended to be shorter for offices issuing ten year endowments than for 

those issuing twenty year endowments.

When Model A was considered in a closed fund situation, the optimal asset proportions 

were defined as functions of the discounted mean terms of the liabilities. This was done 

as a means for allowing the asset mixes to change dynamically with the ever-maturing 

liability profile. At low levels of risk tolerance for nominal payouts, the optimal asset 

mix was largely in Consols at the start of the period and largely in cash at the end of the 

period of closure, which is consistent with immunization theory. Increasing the risk 

tolerance level encouraged higher proportions in index-linked gilts and equities which is 

also reasonable, although the proportions in these more risky asset classes were seen to 

increase as the horizon date approached. This affinity for higher yielding assets towards 

the horizon date was partly due to the rising free asset ratios seen during this period.

A similar trend was also observed when payouts had been expressed in real terms. 

Here, the optimal proportions in index-linked gilts for low levels of risk tolerance 

increased quite rapidly towards the end of the period of closure, even though cash would 

have seemed a better match. From simpler investigations performed in parallel with 

this, it appeared that the results were in fact accurate, in that these strategies did 

genuinely produce the most stable real payouts. However, it was also shown that 

investment in cash would result in more stable real dividends in the final year. 

Therefore, the anomaly was attributed to the difference between an immunized strategy
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and a strategy which sought to maximize the expected utility of real payouts at very low 

levels of risk tolerance.

9.3 Review of the Methodology

A logical step towards concluding this research would be to analyse the three stages of 

rational decision-making (assumptions, decision criteria and optimization) in the light of 

the investigations performed. In addition, it would also seem appropriate to include 

'interpretation' as a final stage in the decision-making process. Where appropriate, 

suggestions will be made regarding possible extensions to this research.

9.3.1 Assumptions

The investment model used in this research has been based on the model developed by 

Wilkie (1986). Despite it being the most widely accepted stochastic investment model 

in the actuarial profession to date, many independent reviews of the model have drawn 

attention to levels of uncertainty associated with both its parameter estimates and linear 

structure. The instability of linear models over time was also evident when a model for 

cash yields had been fitted over the period from 1955 to 1993: this model implied an 

average yield of nearly 2% greater than when the same model structure had been fitted 

using data from 1923 onwards (see Wilkie, 1995a). The existence of such discrepancies 

illustrated the importance of interpretation when using any stochastic investment model.

This concern was heightened when the optimal portfolios obtained for the open fund 

were found to be very sensitive to the assumptions made in the investment model. Even 

when assuming the model structure to be correct, changes in parameter values caused by 

using different data periods resulted in significant alterations in the optimal portfolios
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obtained. This brought into question the credibility of the optimal proportions 

produced. However, as many of the deficiencies in Wilkie's model relate to problems 

which have yet to be resolved in the field of econometrics, uncertainty is likely to 

remain a crucial barrier in most practical applications of stochastic investment models.

In addition to the investment model, consideration should also be given the sensitivity 

of the results to the assumptions made in respect of the liability model. For example, 

the difference between Model A and Model B is in the assumed course of action when 

the fund is technically insolvent. From these investigations, the implications of the two 

models were seen to have a significant influence on the optimal strategies derived. For 

Model B, the discontinuity in the payout at insolvency produced more intuitive asset 

allocation strategies and appeared to override some of the deficiencies in the decision 

criteria. This implicit penalty on the objective function also took account of the severity 

as well as the incidence of insolvency, which would not have been achieved by simply 

imposing ruin constraints on the objective function. As a result, Model B was shown to 

be superior to Model A.

Similarly, it may be reasonable to expect that the terms on which the liabilities may be 

transferred, either at the point of ruin or at the horizon date, will have some impact on 

the results. The same could be said for assumptions relating to the distribution policy or 

the valuation bases employed. Hence, this research could be enriched by studying the 

possible effects which these and other assumptions may have on the optimal portfolios.

9.3.2 Decision Criteria

An advantage which utility theory has over mean-variance analysis is that it provides a 

means of assessing which E-V efficient portfolio should be chosen. However, the theory 

does not suggest how the decision-maker's utility function may be ascertained, which

2 5 2



implies that the utility maximization approach could be quite subjective in practice. 

Nevertheless, utility theory can be a useful method of ensuring that consistent decisions 

are made in all situations. Having selected a particular level of risk tolerance, a life 

company which maintains this risk tolerance level by maximizing the expected utility of 

dividends should, hypothetically, be fulfilling its shareholders' reasonable expectations.

While it appears sensible that a utility function used in this context should exhibit 

constant relative risk aversion, the only utility functions with this property are the log 

function and the power function. These utility functions only operate over positive real 

numbers, which is consistent with the notion of utility being a function of wealth. 

However, there may be occasions, as in Model A, where it is expedient to assume 

otherwise. In these situations, utility functions without this property of constant relative 

risk aversion would have to be used.

There is, though, another practical limitation with both the logarithmic and the power 

utility function. In the case of Model B, it has been shown how the log function tends 

to yield optimal portfolios which appear similar to those using the exponential function 

at fairly high levels of risk tolerance. However, it was also shown in Section 2.3.2 that 

the power utility function was in fact more risk tolerant than the log utility function. 

Hence, the range of risk tolerance levels available in the exponential utility function 

would not generally be possible with either of these constant relative risk averse utility 

functions. In using the latter, one appears to be implicitly assuming high levels of risk 

tolerance.

A further difficulty arises in the case of a life fund because the multiperiod consumption 

of dividends needs to be taken into account. In much of finance literature, multiperiod 

consumption is usually dealt with by assuming the utility at each epoch to be time 

additive. Although the problem is reduced to one of discounting expected utilities, the 

results are generally inconsistent with the notion of present values. Furthermore, if the
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utility function does not have the property of constant relative risk aversion, the 

effective level of risk tolerance at each epoch will depend on the general level of surplus 

available. This would be a particularly serious implication in a closed fund situation.

Therefore, it was felt that the most suitable approach to the problem of multiperiod 

consumption would be to accumulate dividends to the horizon date and to treat these 

payouts as a form of ultimate surplus. As long as these accumulations were separated 

from the life fund, there would not be any danger of artificially high levels of surplus 

building up over time, thus giving a false picture of the solvency position. However, 

this approach led to some less intuitive results for Model A.

In an open fund, with payouts measured in nominal terms, the optimal low risk 

portfolios had durations which were too long in relation to the liabilities. Although the 

variability of the dividends in each year were more stable in portfolios with slightly 

shorter durations than this, the accumulated dividends were found to be more volatile. 

Analogous to this is the effect seen in the simulations produced by the investment 

model: while the annual return from Consols is more volatile than cash over one year, 

the opposite is true over twenty years. This feature is probably linked to the assumption 

that the Consols yield in the investment model is mean reverting, outlining the potential 

for misinterpreting the results.

With a closed fund situation, the optimal low risk portfolios when payouts were 

measured in real terms also seemed mis-matched in relation to the nominal liabilities. 

Significant proportions were invested in index-linked gilts towards the horizon date, 

even though large proportions in cash would have produced the most stable dividends in 

the final few years. Again, this highlighted the difference between the stability of 

dividends in each year and the stability of their accumulated amounts. But in the closed 

fund situation, this result is less acceptable than it is with the open fund. In minimizing 

the variability of real payouts, the apparent purpose of investing in more index-linked
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gilts near the horizon date is to reduce the contribution to this variability of real payouts 

from dividends arising in earlier years. However, when these earlier dividends are then 

paid, the investor is left with the decision criterion of minimizing the variability of 

accumulated dividends over the last few years, for which the optimal strategy is to 

invest mainly in cash rather than index-linked gilts. Hence, the optimal portfolios in 

earlier years are conditional upon a strategy at a later stage that may not be pursued 

when the time actually comes, which seems illogical.

The most important thing to recognize with these results is that the use of payouts in 

decision criteria may not be as robust as previously expected. Having said this, the 

incorporation of ruin criteria, through the use of constraints or discontinuities in the 

objective function, have been shown to alleviate this problem in the open fund situation. 

However, with a closed fund, the low ruin probabilities observed for the low risk 

strategies imply that such measures would have little impact on these strategies. Hence, 

the development of more pragmatically and theoretically sound approaches to 

multiperiod consumption would seem to be a fruitful area for further research.

9.3.3 Optimization

In most of the situations considered in this research, analytical methods were found to 

be inappropriate in dealing with more realistic circumstances. Therefore, numerical 

optimization algorithms had been applied instead. As far as numerical methods were 

concerned, optimization algorithms seemed to be the only feasible method for 

producing solutions to a high degree of precision. However, given how sensitive the 

optimization results were to the investment model parameter values, the need to obtain 

optimal portfolios with high levels of accuracy was deemed to be spurious.
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With just four asset classes being considered in these investigations, the approximate 

method of testing a representative sample of all possible combinations of portfolios 

(referred to as the grid approach) was often shown to be just as useful. The approach is 

not dependent on the behaviour of the objective function, unlike gradient methods used 

in most optimization algorithms. Hence, discontinuities in the objective function and 

ruin constraints may be introduced with no additional effort when the grid approach is 

used. However, the grid approach would have been impractical in the case of a closed 

fund, where as many as seven decision variables were required to be optimized.

9.3.4 Interpretation

In the traditional approach to portfolio optimization suggested by Markowitz (1952), the 

selection procedure ended at the point where the optimum solution was obtained. The 

simplicity of mean-variance analysis in respect of one-period returns meant that detailed 

examination of the results was unnecessary. Moreover, the enormous number of 

securities involved would have made interpreting these results virtually impossible. The 

approach was treated as an objective means of making investment decisions.

However, with just four asset classes involved in these investigations, it has been 

feasible to take the decision-making process beyond the stage of computing the optimal 

strategies to one of actually analysing the results. Where liabilities were present, it was 

also possible to interpret the results against the background of existing theories such as 

immunization, and a conceptual understanding of the economic quantities of different 

assets. On the few occasions where these decisions were felt to be less intuitive, 

attempts were made at determining the assumptions which led to these results: thus 

providing feedback on the weaknesses of the model. However, the application of 

simulation techniques did make the task of interpreting the results quite difficult.
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9.4 Theoretical and Practical Implications

One of the contributions of this research has been to establish a more unified framework 

in which investment decisions may be made. It links the approaches of utility theory, 

mean-variance analysis, downside risk measures and immunization theory more closely, 

and demonstrates how analytical and numerical solutions may complement each other. 

The work also furthers the theoretical developments of others by actually implementing 

these ideas in a simulated environment. This has led to the discussion of practical issues 

such as those relating to multiperiod consumption and dynamic strategies. Although the 

proposed solutions to these problems have generally been found to work satisfactorily, 

these approaches do leave some room for improvement. In particular, it would be worth 

extending the scope of dynamic strategies beyond duration based reallocations and 

developing an alternative to ultimate surplus which would lead to more consistent 

decisions over time.

From a practical perspective, portfolio selection models are often criticized because the 

results produced can be counterintuitive and highly sensitive to the assumption set used. 

Nevertheless, the majority of the results obtained in this research are perfectly intuitive, 

which seems to refute the first criticism. Furthermore, those which were less intuitive 

(as were all the results) had been a direct consequence of the assumptions and decision 

criteria adopted: the optimal decisions in any decision model will only be as meaningful 

as the set of inputs used. However, the sensitivity of the results to assumptions such as 

the investment model also means that the ultimate aim of obtaining the optimal 

solutions will not be possible.

Notwithstanding these limitations, investment decisions still need to be made in 

practice. If these decisions are to be made rationally, they will have to be based on all 

the information known about the variables concerned and the criteria which the 

investors must satisfy. This is precisely the approach adopted throughout this thesis.
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Having said this it is vital that the extent of the uncertainty in the optimal strategies 

obtained is understood; and where the results are believed to be less intuitive, it is 

important that the factors which have led to these solutions are isolated. Although 

decision models may not be able to point the investor at the true optimum, they should 

at least be capable of increasing the investor to understand better the implications of the 

assumptions being made and the decision criteria used. Thus, this approach essentially 

epitomizes the actuarial methodology. Mathematical and statistical techniques may be 

used to solve financial problems but mathematical and statistical models can never 

describe or represent the financial problem in its full complexity.

258



REFERENCES

ALLAIS, M. (1953). Le comportement de l'homme rationnel devant le risque: Critique 
des postulats et axiomes de l'ecole americaine. Econometrica, 21: 503-546.

BAILEY, A. (1862). On the Principles on which the Funds of Life Assurance Societies 
should be Invested. Journal o f the Institute o f Actuaries, 10: 142-147.

BANK OF ENGLAND. (1995). Bank o f England Quarterly Bulletin, 35: 219-309.

BEALE, E. (1988). Introduction to Optimization - edited by Lynne Mackley 
(Chichester: Wiley)

BELLMAN, R. (1957). Dynamic Programming. (Princeton University Press).

BLAKE, D. (1990). Financial Market Analysis. (London: McGraw-Hill).

BOOTH, P. (1995a). The management of investment risk for defined contribution 
pension schemes. Transactions o f the 25th International Congress o f Actuaries, 
Brussels, 1995, 3: 105-122.

BOOTH, P. (1995b). Utility theory and actuarial investment risk. City University 
Actuarial Research Report, (to appear).

BOOTH, P. and ONG, A. (1994). A Simulation Based Approach to Asset Allocation 
Decisions. Proceedings o f the 4th Actuarial Approach to Financial Risks International 
Colloquium, Orlando, 1994, 1: 217-240.

BOX, M. (1966). A comparison of several current optimization methods and the use of 
transformations in constrained problems. The Computer Journal, 9: 67-77.

CHATFIELD, C. (1989). The Analysis o f Time Series - an introduction, Fourth 
Edition. (London: Chapman & Hall).

2 5 9



CHATFIELD, C. (1995). Model Uncertainty, Data Mining and Statistical Inference. 
Journal o f the Royal Statistical Society, A, 158: 363-417.

CLARKE, H. (1954). A broad analysis of the problem of the investment of life funds. 
Journal o f the Institute o f Actuaries, 80: 335-389.

CLARKSON, R. (1989). The Measurement of Investment Risk. Journal o f the 
Institute o f Actuaries, 116: 127-178.

DAY, J. (1966). The Actuarial Contribution to Investment Thought. Journal o f the 
Institute o f Actuaries, 92: 253-295.

DAYKIN, C. and HEY, G. (1990). Managing Uncertainty in a General Insurance 
Company. Journal o f the Institute o f Actuaries, 117: 173-277.

EFRON, B. and TIBSHIRANI, R. (1993). An introduction to the Bootstrap. (London: 
Chapman & Hall).

ELTON, E. and GRUBER, M. (1991). Modern Portfolio Theory and investment 
analysis, Fourth Edition. (Wiley).

FELLOWS, D. (1981). Pension Fund Liabilities and Asset Matching. Journal o f the 
Institute o f Actuaries, 108: 211-228.

FISHBURN, P. (1988). Nonlinear preference and utility theory. (Wheatsheaf).

GALLEN, M. and KIPLING, M. (1995). Recent developments in life office financial 
reporting. Presented to the Staple Inn Actuarial Society, March, 1995.

GEOGHEGAN, T., CLARKSON, R„ FELDMAN, K„ GREEN, S„ KITTS, A., 
LAVECKY, J., ROSS, F„ SMITH, W. and TOUTOUNCHI, A. (1992). Report on the 
Wilkie Stochastic Investment Model. Journal o f the Institute o f Actuaries, 119: 173- 
228.

GILL, P., MURRAY, W. and WRIGHT, M. (1981). Practical Optimization. (London: 
Academic Press).

HANOCH, G. and LEVY, H. (1969). The Efficiency Analysis of Choices Involving 
Risk. The Review o f Economic Studies, 36: 335-346.

2 6 0



HARDY, M. (1993). Stochastic Simulation in Life Office Solvency Assesment. 
Journal o f the Institute o f Actuaries, 120: 131-152.

HARDY, M. (1994a). Incorporating individual life company variation in simulated 
equity returns. Proceedings o f the 4th Actuarial Approach to Financial Risks 
International Colloquium, Orlando, 1994, 3: 1147-1162.

HARDY, M. (1994b). Simulating the Relative Insolvency Probability of Life Insurers. 
Presented to the 4th International Conference on Insurance Solvency and Finance, 
Philadephia, April, 1994.

HARVEY, A. (1989). Forecasting, structural time series models and the Kalman 
filter. (Cambridge University Press).

HUANG, C. and LITZENBERGER R. (1988). Foundations for Financial Economics. 
(New Jersey: Prentice Hall).

HUBER, P. (1995). A Review of Wilkie's Stochastic Investment Model. Transactions 
o f the 25th International Congress o f Actuaries, Brussels, 1995, 3: 333-364.

KAHNEMAN, D. and TVERSKY, A. (1979). Prospect Theory: An analysis of 
decision under risk. Econometrica, 47: 263-292.

KITTS, A. (1988). Applications of stochastic financial models: a review. Department 
of Social Statistics, University of Southampton.

KITTS, A. (1990). Comments on a model of Retail Price Inflation. Journal o f the 
Institute o f Actuaries, 117: 407-413.

KROLL, Y., LEVY, H. and MARKOWITZ, H. (1984). Mean-Variance Versus Direct 
Utility Maximization. Journal o f Finance, 39: 47-62.

LEVY, H. and MARKOWITZ, H. (1979). Approximating Expected Utility by a 
Function of Mean and Variance. American Economic Review, 69: 308-317.

LINTNER, J. (1965). The valuation of risk assets and the selection of risky 
investments in stock portfolios and capital budgets. The Review o f Economics and 
Statistics, 47: 13-37.

261



MACDONALD, A. (1991). On investment strategies using the Wilkie model. 
Proceedings o f the 2nd Actuarial Approach to Financial Risks International 
Colloquium, Brighton, 1991, 3: 413-427.

MACDONALD, A. (1993). What is the value of a valuation? Proceedings o f the 3rd 
Actuarial Approach to Financial Risks International Colloquium, Rome, 1993, 2: 723- 
743.

MARKOWITZ, H. (1952). Portfolio Selection. Journal ofFinance,! : 77-91

MARKOWITZ, H. (1991). Portfolio Selection - efficient diversification o f investments, 
Second Edition. (Cambridge, Mass.: Basil Blackwell).

MCKENNA, F. and KIM, Y. (1986). Managerial Risk Preferences, Real Pension Costs 
and Long-Run Corporate Pension Fund Investment Policy. Journal o f Risk and 
Insurance, 53: 29-48.

MERTON, R. (1971). Optimal Consumption and Portfolio Rules in a Continuous- 
Time Model. Journal o f Economic Theory, 3: 373-413.

MILLER, J. and NEWBOLD, P. (1995). Uncertainty about Functions of Arima Model 
Parameters and Estimation of the Persistence of Economic Shocks. Journal o f Business 
and Economic Statistics, (to appear).

MOORE, P. (1972). Mathematical Models in Portfolio Selection. Journal o f the 
Institute o f Actuaries, 98: 103-130.

MOSSIN, J. (1968). Optimal Multiperiod Portfolio Policies. Journal o f Business, 41: 
215-229.

NASH, J. (1979). Compact Numerical Methods for Computers - linear algebra and 
function minimization. (Bristol: Hilger).

ONG, A. (1994). A Stochastic Model for Treasury-Bills: An extension to Wilkie's 
Model. City University Actuarial Research Report 68.

PEGLER, J. (1948). The actuarial principles of investment. Journal o f the Institute o f  
Actuaries, 74: 179-211.

2 6 2



PORTER, R. (1974). Semivariance and Stochastic Dominance: A comparison. 
American Economic Review, 64: 200-204.

PRATT, J. (1964). Risk Aversion in small and large. Econometrica, 32: 122-136.

PRELEC, D. and LOEWESTEIN, G. (1991). Decision making over time and 
uncertainty: a common approach. Management Science, 37: 770-786.

PRESS, W„ TEUKOLSKY, S„ VETTERLING, W. and FLANNERY, B. (1992). 
Numerical Recipes in C: The Art o f Scientific Computing, Second Edition. (Cambrige 
University Press).

PULLEY, L. (1983). Mean Variance Approximations to Expected Logarithmic Utility. 
Operations Research, 31: 685-696.

PURCHASE, D„ FINE, A., HEADDON, C„ HEWITSON, T., JOHNSON, C„ 
LUMSDEN, I., MAPLE, M., O'KEEFE, P., POOK, P. and ROBINSON, D. (1989). 
Reflections on Resilience: Some Consideration of Mismatching Tests, with Particular 
Reference to Long-term Insurance Business. Journal o f the Institute o f Actuaries, 116: 
241-268.

PYLE, D and TURNOVSKY, J. (1970). Safety-first and expected utility maximization 
in mean-standard deviation portfolio analysis. The Review o f Economics and Statistics, 
52: 75-81.

REDINGTON, F. (1952). Review of the principles of life office valuations. Journal o f 
the Institute o f Actuaries, 78: 286-340.

REID, D. and TEW, B. (1986). Mean-Variance Versus Direct Utility Maximization: a 
comment. Journal o f Finance, 41: 1177-1180.

REITANO, R. (1994). Non-Parallel Yield Curve Shifts and Immunization. Proceedings 
o f the 4th Actuarial Approach to Financial Risks International Colloquium, Orlando, 
1994, 1:427-456.

ROFF, T. (1992). Asset and Liability Studies on a With Profit Fund. Presented to the 
Staple Inn Actuarial Society, November 1992.

263



ROSS, M. (1989). Modelling a With-profits Life Office. Journal o f the Institute o f 
Actuaries, 116: 691-716.

SAMUELSON, P. (1969). Lifetime Portfolio Selection by Dynamic Programming. 
The Review o f Economics and Statistics, 51: 239-246.

SAS Institute Inc. (1988). SAS/ETS® User's Guide, Version 6, First Edition. (Cary, NC: 
SAS Institute Inc.).

SCALES, L. (1985). Introduction to Non-Linear Optimization. (London: MacMillan).

SHARPE, W. (1963). A Simplified Model for Portfolio Selection. Management 
Science, 9: 277-293.

SHARPE, W. (1964). Capital asset prices: a theory of market equilibrium under 
conditions of risk. Journal o f Finance, 19: 425-442.

SHERRIS, M. (1992). Portfolio Selection and Matching: A Synthesis. Journal o f the 
Institute o f Actuaries, 119: 87-105.

TOBIN, J. (1958). Liquidity Preference as Behaviour Toward Risk. Review o f 
Economic Studies, 26: 65-86.

TSE, K., UPPAL, J. and WHITE, M. (1993). Downside Risk and Investment Choice. 
The Financial Review, 28: 585-605.

TVERSKY, A. and KAHNEMANN, D. (1981). The framing of decisions and the 
psychology of choice. Science, 211: 453-458.

VON NEUMANN, J. and MORGENSTERN, O. (1944). Theory o f Games and 
Economic Behaviour, First Edition. (Priceton University Press).

WALSH, G. (1975). Methods o f Optimization. (London: Wiley).

WILKIE, A. (1984). Steps towards a Stochastic Investment Model for Actuarial Use. 
Occasional Actuarial Research Discussion Paper 36.

2 6 4



WILKIE, A. (1985). Portfolio Selection in the Presence of Fixed Liabilities: A 
Comment on "The Matching of Assets to Liabilities". Journal o f the Institute o f 
Actuaries, 112: 229-277.

WILKIE, A. (1986). A Stochastic Investment Model for Actuarial Use. Transactions 
o f the Faculty o f Actuaries, 39: 341-403.

WILKIE, A. (1992). Stochastic Investment Models for XXIst Century Actuaries. In: 
Transactions o f the 24th International Congress o f Actuaries, Montreal, 1992, 5: 119- 
137.

WILKIE, A. (1995a). The risk premium on ordinary shares. British Actuarial Journal, 
1:251-293.

WILKIE, A. (1995b). More on stochastic asset models for actuarial use. British 
Actuarial Journal, (to appear).

WISE, A. (1984a). A Theoretical Analysis of Matching Assets to Liabilities. Journal o f 
the Institute o f Actuaries, 111: 375-402.

WISE, A. (1984b). The Matching of Assets to Liabilities. Journal o f the Institute o f 
Actuaries, 111: 445-485.

WISE, A. (1987a). Matching and Portfolio Selection: Part 1. Journal o f the Institute o f 
Actuaries, 114: 113-133.

WISE, A. (1984b). Matching and Portfolio Selection: Part 2. Journal o f the Institute o f 
Actuaries, 114: 551-568.

ZIEMBA, W. and VICKSON, R. (1975). Stochastic Optimization Models in Finance. 
(London: Academic Press).

265



APPENDIX A. DATA SOURCES

Retail Price Index

General Index of Retail Prices for December in each year: 

1955-1993: Employment Gazette

Consols Yield

Yield on 2.5% Consolidated Stock at last day of each year: 

1955-1993: Financial Times

Cash Yield

Average discount on 91 Day Treasury Bills calculated on last Friday of each year:

1955-1958: The Bankers'Magazine 
1959-1977: Bank o f England Quarterly Bulletin 
1978-1993: Financial Statistics

Index-Finked Gilt Yield

Gross Redemption Yield on British Government Index-linked Stock with more than five 
years to maturity and an inflation assumption of 5% (monthly):

1986-1995: Datastream
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APPENDIX B. DERIVATIONS

Expression for w*:

Let w and (1 -  w) be the proportions invested in assets 1 and 2 respectively.

Let Ei and Vi be the respective means and variances of the accumulations from asset /.

Hence, the portfolio mean and variance will be:

p = A(w(Ex -  E2) + E2) (B.l)

and

a 2 = A2 (w2 (V, + V2-  2C12) -  2w(V2 -  Cn) + V2) (B.2)

respectively.

Need to maximize: E[U(.)] = -exp(-p/r + a2Hr2).

If L = log(£[£/(.)], then:

dJ A A2
—  = — (El - E 2) + — T[2w(Vx+V2-2 C l2)-2 (V 2- C n )\ 
dw r 2 r

when —  = 0, 
dw

* _ (rlA){Ex- E 2) + V2- C X2 
Vj +V2 -  2Cn

(4.1)
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