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Abstract: In a recent paper we studied the entanglement content of zero-density excited
states in complex free quantum field theories, focusing on the symmetry resolved entangle-
ment entropy (SREE). By zero-density states we mean states consisting of a fixed, finite
number of excitations above the ground state in an infinite-volume system. The SREE is
defined for theories that possess an internal symmetry and provides a measure of the con-
tribution to the total entanglement of each symmetry sector. In our work, we showed that
the ratio of Fourier-transforms of the SREEs (i.e. the ratio of charged moments) takes a
very simple and universal form for these states, which depends only on the number, statis-
tics and symmetry charge of the excitations as well as the relative size of the entanglement
region with respect to the whole system’s size. In this paper we provide numerical evi-
dence for our formulae by computing functions of the charged moments in two free lattice
theories: a 1D Fermi gas and a complex harmonic chain. We also extend our results in two
directions: by showing that they apply also to excited states of interacting theories (i.e.
magnon states) and by developing a higher dimensional generalisation of the branch point
twist field picture, leading to results in (interacting) higher-dimensional models.
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1 Introduction

The symmetry resolved entanglement entropy (SREE) is a relatively new measure of entan-
glement for many-body quantum systems. The concept was introduced in [1–3] although
the name SREE first appeared in [4], where it was defined as a new measure of entangle-
ment associated to theories that posses an internal discrete or continuous symmetry. The
role of symmetries in the structure of the entanglement entropy and the contributions of
symmetry sectors to the total entropy were also studied in [5], simultaneously and inde-
pendently of [4]. The approach of [4], which we adopt here, falls within the framework of
branch point twist fields [6–10] and their composite generalisations [4, 11–13]. These fields
have only been formally defined for 1+1D theories and have proven particularly useful
in the study of entanglement measures for conformal field theories (CFTs) [8, 14–16] and
integrable quantum field theories [9, 17–20]. In this context, typical examples of theories
that posses internal symmetries are the Ising field theory, with (discrete) Z2-symmetry,
and the sine-Gordon model which has (continuous) U(1)-symmetry.
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Interest in the SREEs has been motivated in part by the fact that they can be measured
experimentally [21–23]. Our interest however stems from 1+1D quantum field theory and
related models, such as integrable spin chains, where powerful analytical and numerical
computational techniques can be employed. In this context, there has been an enormous
wealth of results in recent years. These include many studies in CFT [4, 5, 24–33], integrable
quantum field theories [34–39], holography [1–3, 40–42], lattice models [5, 24–26, 34, 43–50],
out of equilibrium [22, 25, 48, 51–54] and for systems with unusual dynamics [55–60].

Let us recall the general definition of the SREEs. Consider a 1+1D quantum field
theory and a bipartition of space into two complementary regions A and Ā so that the
Hilbert space of the theory H also decomposes into a direct product HA ⊗ HĀ. Assume
that the theory is in a pure state |Ψ〉. We define the reduced density matrix of subsystem
A as

ρA = TrĀ(|Ψ〉〈Ψ|) , (1.1)

and the standard von Neumann and nth Rényi entropy of subsystem A are defined as

S = −TrA(ρA log ρA) and Sn = log(TrAρnA)
1− n with S = lim

n→1
Sn , (1.2)

where TrAρnA := Zn/Zn1 is the normalized partition function of a theory constructed from
n non-interacting copies or replicas of the original model.

Assume now that the theory has an internal symmetry, with symmetry operator Q
whose projection onto subsystem A we call QA. By construction, we have that [QA, ρA] = 0.
Let q be the eigenvalue of operator QA in a particular symmetry sector. Then

Zn(q) = TrA(ρnAP(q)) , (1.3)

with P(q) the projector on the symmetry sector of charge q, is the symmetry resolved
partition function. In terms of this object, the SREEs can be written as

Sn(q) = 1
1− n log Zn(q)

Zn1 (q) and S(q) = lim
n→1

Sn(q) . (1.4)

In particular, for n = 1 the partition function (1.3) represents the probability of obtaining
the value q upon measuring the charge.

In part I of this series [61], we presented a study of these SREEs by focusing on complex
free theories and qubit states. We considered a class of excited states |Ψ〉 consisting of a
finite number of excitations and a particular scaling limit, namely one in which parts A
and Ā are infinitely large, but the ratio of their lengths by the total length of the system
is r and 1− r respectively, with r ∈ [0, 1]. Since the ratio of particle number to volume is
zero, we call these states zero-density excited states.

As discussed in [4] the partition function (1.3) can best be obtained in terms of its
Fourier modes, the charged moments

Zn(α) = TrA(ρnAe2πiαQA) . (1.5)

– 2 –
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If the symmetry is U(1) the following relationship holds

Zn(q) =
∫ 1

2

− 1
2

dαZn(α)e−2πiαq , (1.6)

which we employed in [61] in order to compute the SREEs. However, similar formulae hold
for other symmetries and, in particular, the integral is replaced by a sum if the symmetry
is discrete (see e.g. [39]).

Let us now summarise the main results of [61]. We computed the ratio of charge
moments between the excited and ground states. As anticipated, the results are functions
of the state |Ψ〉, the parameter α and the ratio r. Formally, we define the ratios

MΨ
n (r;α) := ZΨ

n (r;α)
Z0
n(r;α) , (1.7)

generalising the notation in the definition (1.5) to include the dependence in r.
We found that for a state consisting of a single particle excitation of charge ε = ±1

above the ground state |Ψ〉 = |1ε〉, the ratio is

M1ε
n (r;α) = e2πiεαrn + (1− r)n , (1.8)

and for a state of two excitations with opposite charges ±ε we have

M1ε1−ε
n (r;α) = (e2πiεαrn + (1− r)n)(e−2πiεαrn + (1− r)n) . (1.9)

For a state of k identical excitations, that is, with the same charges ε and momenta, we
obtain

Mkε

n (r;α) =
k∑
j=0

[fkj (r)]ne2πiεjα , (1.10)

where fkj (r) := kCj r
j(1−r)k−j and kCj = k!

j!(k−j)! is the binomial coefficient. This formula
acts as the fundamental building block for all other cases. A generic state comprising s
groups of kεii identical particles of charge εi will have

M
k
ε1
1 ...kεss

n (r;α) =
s∏
i=1

M
k
εi
i

n (r;α) . (1.11)

In the present follow up paper we test these results numerically as well as extend them to
interacting and higher dimensional theories.

Note that the possibility of having identical excitations is excluded for fermionic the-
ories. For α = 0 these formulae reduce to those found in [62, 63], later generalised to
entanglement measures of multiple disconnected regions [64] and to higher dimensions for
free bosons in [65]. These results in turn have been extended in a series of works [66–71] to
deal with finite volume corrections and non-localised excitations. More recently, some of
the α = 0 results were recovered as a semiclassical limit in the presence of an interaction
potential [72]. This semiclassical picture had already been invoked much earlier, see for
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instance [73]. However, it is worth emphasising that our formulae are not merely semiclas-
sical limits but hold for genuine quantum theories. The quantum nature of the model is
encapsulated by the symmetry resolved entanglement entropy of the ground state (and its
associated moments), which are highly non-trivial for quantum models. In other words, it
is only the ratios (1.7) that are simple, not the individual charged moments.

This paper is organized as follows: in section 2 we present numerical results for two
(free) discrete systems: a 1D lattice Fermi gas and a 1D (complex) harmonic chain. We
find that in both cases the formulae above are reproduced with great precision, even if
the scaling limit of the Fermi theory is a massless free fermion whereas for the harmonic
chain it is a complex massive boson. For the complex free boson, we show how the SREE
can be computed by employing a wave-functional method partly presented in this section
with technical details in appendix A. In section 3 we show that our formulae also hold for
some magnon states in interacting theories, including those of two interacting magnons.
In section 4 we present an extension of our results to higher-dimensional quantum field
theories, which draws on the connection between entanglement measures and twist fields
and is close in spirit to the wave-functional approach employed for the complex free boson.
We conclude in section 5.

2 Numerical results

In this section we present numerical results for two very different discrete models. First
we consider a 1D lattice Fermi gas, which has critical features but also possesses highly
excited states whose entanglement is well described by our formulae, and then we look
at the harmonic chain, whose scaling limit is a massive free boson. Whereas for the first
model we can only consider distinct excitations, for the second we consider also states of
identical excitations. The good agreement found confirms the more general picture put
forward in [62] that these kinds of formulae hold under the broad assumption of localised
excitations. These are present both in gapped systems due to finite mass scale/correlation
length, and in critical systems, when the De Broglie wave length of the excitations (which is
inversely proportional to their momentum) is sufficiently small compared to subsystem size.

2.1 1D lattice Fermi gas

In this section we analyse a particle-hole excited state of a 1D lattice Fermi gas, comparing
our analytical predictions with the numerical data. Even though the model is critical,
it was realised in [68] that certain highly energetic quasiparticle excitations still have a
universal entanglement content. More precisely, if one assumes that a set of quasiparticles
with small enough De Broglie wavelengths (compared to the typical geometric lengths)
is present and their momenta are sufficiently separated, then the quasiparticles will be
essentially uncorrelated with each other and with respect to zero-point fluctuations. We
refer the interested reader to [66–71] for further details about the universal entanglement
content of quasiparticles in critical systems.

Our goal here is to briefly review the numerical techniques involved in the characterisa-
tion of fermionic Gaussian states [74] and their application to the computation of symmetry

– 4 –
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resolved measures. We start by considering the Hamiltonian of free spinless fermions on a
circle of length L

H = −1
2
∑
j

f †j+1fj + f †j fj+1 + µ
∑
j

f †j fj , (2.1)

where µ is the chemical potential and {fj}j=1,...,L, {f †j }j=1,...,L are the ladder operators
obeying the standard anticommutation relations

{fj , fj′} = {f †j , f
†
j′} = 0, {fj , f †j′} = δjj′ . (2.2)

When |µ| < 1 the theory is gapless, and the ground state is a Fermi sea with Fermi
momentum kF = arccos(µ). The two-point function evaluated in the ground-state at
Fermi momentum kF takes the following form

C0(j, j′) ≡ 〈f †j fj′〉0 = sin kF(j − j′)
L sin π(j−j′)

L

. (2.3)

Here, we analyse the quasiparticle excited state described by the following two-point
function

C(j, j′) = C0(j, j′) + 1
L
e−i(kF+π

4−
π
L)(j−j′) − 1

L
e−i(kF−π4 + π

L)(j−j′) . (2.4)

It corresponds to the insertion of a fermion of momentum k = kF+ π
4 above the ground state

and the removal of another fermion (or equivalently, the insertion of a hole) at k = kF− π
4 .

The choice of the momentum shift |k − kF| = π
4 is not important in the continuum limit,

where the only necessary condition is that |k − kF| remains finite when L→∞.1 We now
have to specify the symmetry of the model. The Hamiltonian (2.1) is invariant under an
internal U(1) symmetry associated to the number of fermions generated by

Q =
∑
j

f †j fj , (2.5)

and it clearly satisfies the locality condition Q = QA +QĀ, with

QA =
∑
j∈A

f †j fj , QĀ =
∑
j∈Ā

f †j fj . (2.6)

As subsystem A we consider the segment of length `, that is the sites j = 1, . . . , ` and
investigate its entanglement properties with the complementary region Ā containing sites
j = ` + 1, . . . , L. We denote by CA0 and CA the ` × ` matrices resulting from projection
of the matrices C0 and C (defined by eqs. (2.3) and (2.4) respectively) onto subsystem A,
keeping only j = 1, . . . , ` as spacial indices. Following [27] we express the charged moments
of the particle-hole state and the ground state by means of the determinants

TrA(ρnAe2πiαQA) = det
(
(CA)ne2πiα + (1− CA)n

)
, (2.7)

TrA(ρnA,0e2πiαQA) = det
(
(CA0 )ne2πiα + (1− CA0 )n

)
, (2.8)

1In the work [27] another particle-hole state satisfying |k − kF| ∼ 1/L was analysed. The entanglement
measures of that low-lying state turned out to be captured instead by CFT predictions, due to the strong
correlation effects between the particle/hole and the zero-point fluctuations.
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with ρA and ρA,0 the respective reduced density matrices. According to our analytical
predictions, we expect that the ratio of the charged moments takes the following univer-
sal form

TrA(ρnAe2πiαQA)
TrA(ρnA,0e2πiαQA) ' (rne2πiα + (1− r)n)(rne−2πiα + (1− r)n) , (2.9)

that is, the expression for two distinct excitations with charges ±1, which contribute to
the charged moment with an Aharonov-Bohm phase e±2πiα. We write ' to indicate that
equality is only expected in the scaling limit of the lattice model.

To test the validity of eq. (2.9) we consider two entanglement measures, namely the
excess of (total) Rényi entropy and the so-called (following the terminology of [27]) “excess
of variance”. The excess of entropy is recovered from our formulae for α = 0 and for two
distinct excitations takes the simple form

∆Sn ≡
1

1− n log TrA(ρnA)
TrA(ρnA,0) '

log (rn + (1− r)n)2

1− n . (2.10)

We define the variance2 associated to ρA as

〈∆Q2
A〉n ≡

TrA(ρnAQ2
A)

TrA(ρnA) −
(
TrA(ρnAQA)
TrA(ρnA)

)2

= 1
(2πi)2

d2

dα2 log TrA(ρnAe2πiαQA)
TrA(ρnA)

∣∣∣∣∣
α=0

. (2.11)

Similarly, we denote by 〈∆Q2
A〉n,0 the variance of the ground state ρA,0. From (2.9) it then

follows that the excess of variance is given by

〈∆Q2
A〉n − 〈∆Q2

A〉n,0 '
2rn(1− r)n

(rn + (1− r)n)2 . (2.12)

A way to physically interpret the result of eq. (2.12) is to regard this excess of variance as
twice the contribution associated to a single quasiparticle, since particles and antiparticles
contribute in the same way. The latter is just the variance of a Bernoulli random variable
with success probability given by

p = rn

rn + (1− r)n , (2.13)

namely the probability one associates to the presence of a quasiparticle in A computed
with the density matrix ρnA. Since the variance of a Bernoulli variable with probability p
is just p(1− p), we get eq. (2.12).

In figure 1 we report the numerical values of ∆Sn and 〈∆Q2
A〉n−〈∆Q2

A〉n,0, computed
from (2.7) and (2.8) using exact diagonalisation of the correlation matrices CA, CA,0, and
our analytical predictions. We keep L fixed, analysing different values of r = `/L. Our
choice is motivated by the expectation that these plots should be “universal”at large L,
meaning different data obtained with different L should collapse to the same universal
prediction (independent of lattice details as kF) when L→∞. As we see from the plots in
figure 1, the match between numerics and analytics is really good.

2The choice of this terminology comes from the fact that for n = 1 the physical variance of the charge
is obtained. For n > 1 this variance has not a direct physical meaning, nevertheless it is still useful for the
understanding of the symmetry resolved entanglement.
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Figure 1. Numerical data versus analytical prediction for the particle-hole excited state described
by the correlation function (2.4). The data is for kF = π/2, L = 200 and different values of n for
r = `/L ∈ [0, 1]. Left: excess Rényi entropy checked against eq. (2.10). Right: excess variance,
checked against eq. (2.12). The numerical results are in very good agreement with the analytical
formulae.

2.2 Complex free bosons and the wave-functional method

In this section we consider a complex massive free boson. Unlike the 1D Fermi gas, this
model and its lattice version allow us to test formulae for states containing two or more
identical excitations. Furthermore, thanks to the computation technique that we outline
below, we are able to directly access the ratios MΨ

n (r;α) defined in (1.7) for different values
of α. Our numerical computation is based on the wave-functional method introduced in [63]
(see appendix A of that paper). Here we need to extend the technique to a complex theory
and to the symmetry resolved moments. These extensions are not entirely trivial and for
that reason we review the wave-functional method in detail.

Let us consider a 1D complex massive boson on the line [0, L] with Hamiltonian:

H =
∫ L

0
dx
(
Π†Π + (∂xΦ)†(∂xΦ) +m2Φ†Φ

)
, (2.14)

where
Π(x) = Φ̇†(x) , Π†(x) = Φ̇(x) . (2.15)

Alternatively, we can introduce a pair of real bosons Φ1,Φ2, and express Φ and Π as

Φ = Φ1 + iΦ2√
2

, Π = Π1 + iΠ2√
2

, (2.16)

so that the Hamiltonian becomes that of two real bosons. The only non-vanishing equal-
time commutators are:

[Φ(x),Π(y)] = [Φ†(x),Π†(y)] = iδ(x− y) . (2.17)

Since space is compact, there are discrete energy levels with dispersion relation:

Ep =
√
m2 + p2 , p ∈ 2π

L
Z , (2.18)

– 7 –
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and the Hamiltonian is diagonalised via the introduction of two sets of creation/annihilation
operators. The annihilation operators are:

Ap = 1√
2LEp

∫ L

0
dxe−ipx(EpΦ(x) + iΠ†(x)) (2.19)

Bp = 1√
2LEp

∫ L

0
dxe−ipx(EpΦ†(x) + iΠ(x)) (2.20)

and as usual A†p (B†p resp.) creates a positively (negatively) U(1)-charged particle with
momentum p from the vacuum. These operators satisfy:

[Ap, A†p′ ] = [Bp, B†p′ ] = δp,p′ . (2.21)

Φ(x), Π(x) then admit the usual Fourier decomposition

Φ(x) =
∑
p

1√
2LEp

(
Ape

ipx +B†pe
−ipx

)
(2.22)

Π(x) = −i
∑
p

√
Ep
2L

(
Bpe

ipx −A†pe−ipx
)
. (2.23)

Finally, the charge operator corresponding to the U(1) symmetry of the theory is:

Q = i

∫ L

0
dx :

(
Φ†(x)Π†(x)− Φ(x)Π(x)

)
: =

∑
p

(A†pAp −B†pBp) , (2.24)

where the normal ordering means that we subtract every non-operatorial term resulting
from the commutation relations (i.e. terms involving δ-functions).

2.2.1 The wave-functional method

A very useful way to represent the states in the theory is provided by the wave-functional
formalism. In this approach, we associate to every state a functional Ψ acting on the space
of classical field configurations φ, φ† : [0, L]→ C and formally defined by:

Ψ[φ, φ†] = 〈φ, φ†|Ψ〉 . (2.25)

The action of the operators Φ, Π on the (rather abstract) state |φ, φ†〉 mimics the action
of the position and momentum operators on the state |x〉 in non-relativistic quantum
mechanics, so that in the wave-functional representation:

Φ(x)Ψ[φ, φ†] = φ(x)Ψ[φ, φ†] , iΠ(x)Ψ[φ, φ†] = δΨ[φ, φ†]
δφ(x) , (2.26)

and analogously

Φ†(x)Ψ[φ, φ†] = φ†(x)Ψ[φ, φ†] , iΠ†(x)Ψ[φ, φ†] = δΨ[φ, φ†]
δφ†(x) . (2.27)

– 8 –
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Notice that, for consistency, when iΠ, iΠ† act on a ket |φ, φ†〉 there is a minus sign in front
of the functional derivative. The functional of the vacuum state is defined by:

ApΨvac = BpΨvac = 0 ∀ p , (2.28)

and the only solution to these functional differential equations up to normalisation is the
Gaussian functional:

Ψvac[φ, φ†] = exp
[
−
∫ L

0
dxdy φ†(x)K(x− y)φ(y)

]
, K(x− y) = 1

L

∑
p

Epe
ip(x−y) .

(2.29)
Notice that K(x) is a real, even function of x. The functionals of the positively and
negatively charged one-particle states are obtained through the action of A†p and B†p:

A†pΨvac = αp[φ†]Ψvac , αp[φ†] =
√

2Ep
L

∫ L

0
dx eipxφ†(x) (2.30)

B†pΨvac = βp[φ]Ψvac , βp[φ] =
√

2Ep
L

∫ L

0
dx eipxφ(x) , (2.31)

and the functional for a state with k+ positive excitations and k− negative excitations (all
with different momenta) is:

Ψk+,k−
pi,qj [φ, φ†] =

k+∏
i=1

A†pi

k−∏
j=1

B†qjΨvac =
k+∏
i=1

αpi [φ†]
k−∏
j=1

βqj [φ]Ψvac[φ, φ†] . (2.32)

A correct choice of the normalisation in (2.29) ensures that the functional above has unit
norm with respect to the bra-ket product. However, the normalisation must be modified
when some of the particles’ momenta are equal, according to (2.21). If there are k+

i (k−i )
positively (negatively) charged particles with momentum pi (qi), for i = 1, . . . ,m+ (m−)
we define:

Ψk+,k−
pi,qj [φ, φ†] =

m+∏
i=1

(A†pi)
k+
i√

k+
i !

m−∏
j=1

(B†qj )
k−j√

k−j !
Ψvac (2.33)

with∑m+
i=1 k

+
i = k+,∑m−

i=1 k
−
i = k−. The action of the charge operator on a wave-functional

immediately follows from that of the fields and their conjugates:

QΨ[φ, φ†] =
∫ L

0
dx

(
φ†(x) δ

δφ†(x) − φ(x) δ

δφ(x)

)
Ψ[φ, φ†] , (2.34)

and in particular one finds that the vacuum and the Fock state functionals are charge
eigenstates:

QΨvac = 0 , QΨk+,k−
pi,qj = (k+ − k−)Ψk+,k−

pi,qj . (2.35)

However, because |φ, φ†〉 is not associated to any charged state in the Fock space, it is not
a charge eigenstate. The exponential of the charge operator acts on |φ, φ†〉 by introducing
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phases (notice the minus sign in front of the integral):

e2πiαQ|φ, φ†〉 = exp
[
−2πiα

∫ L

0
dx
(
φ†(x) δ

δφ†(x) −φ(x) δ

δφ(x)

)]
|φ, φ†〉 = |e2πiαφ, e−2πiαφ†〉 .

(2.36)
This can be argued, for instance, by looking at the corresponding infinitesimal translation:

|φ+ 2πiαφ〉 ' |φ〉+ 2πiα
∫ L

0
dxφ(x) δ

δφ(x) |φ〉 . (2.37)

Employing these results it is possible to show (see appendix A for the derivation) that

TrA(ρn0,Ae2πiαQA) =
∫
Dφ1 . . .Dφn exp [−Gα] , (2.38)

where Gα is a known gaussian functional of the fields φ(x), φ†(x) given in (A.23). Results for
the harmonic chain can then be obtained by discretisation, as we see in the next subsection.

2.3 The harmonic chain

Since the Hamiltonian (2.14) reduces to the sum of two Hamiltonians for the real bosons
Φ1, Φ2 with prefactors 1

2 , the discretisation proceeds exactly as for the real boson [63]. We
divide the interval [0, L] in N parts introducing a spacing:

∆x = L

N
(2.39)

and we define x = L
N x̄, x̄ ∈ {0, 1, . . . , N − 1}, so that we can replace every integral with

a sum: ∫
A
⋃
Ā

dx → L

N

L−∆x∑
x=0

,

∫
A

dx → L

N

`−∆x∑
x=0

,

∫
Ā

dx → L

N

L−∆x∑
x=`

. (2.40)

If we discretise the Laplace operator as:

∂2
xΦ(x) → Φ(x+ ∆x) + Φ(x−∆x)− 2Φ(x)

(∆x)2 (2.41)

and impose periodic boundary conditions Φ(0) = Φ(L), Φ†(0) = Φ†(L), the Hamilto-
nian (2.14) reduces (upon integration by parts) to two independent harmonic chains for
real fields. The set of momenta is now restricted to the first Brillouin zone, p = 2π

L p̄, p̄ ∈
{0, 1, . . . , N − 1}, and the dispersion relation becomes:

Ep =

√
m2 +

(2N
L

sin pL

2N

)2
, (2.42)

from which the relativistic relation E2
p = m2 + p2 is obtained when pL

2N � 1. Notice
that since we restrict the set of momenta, the function K(x) defined in (2.29) becomes a
finite sum:

K(x) = 1
L

2π(N−1)/L∑
p=0

Epe
ipx , (2.43)

thus it is no longer an even function of x, though the property K∗(x) = K(−x) still holds.
For the sake of simplicity we will take Φ and Φ† to be the fundamental degrees of free-

dom in the following, while keeping in mind that the real degrees of freedom are recovered
using (2.16). In the formula (A.26) the functions U±i , V ±i are modified by simply replacing
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the integrals with sums following the prescription (2.40). On the other hand, discretisation
of the measure Gα leads to a finite-dimensional (nN)× (nN) matrix G which couples the
fields φ†i (x) and φj(y):

Gα =
(
L

N

)2 n∑
i=1

2

 ∑
x∈A ,y ∈A

+
∑

x∈ Ā ,y ∈ Ā

φ†i (x)K(x− y)φi(y)

+
∑

x∈A ,y ∈ Ā

(
φ†i (x) + φ†i+1(x)e−2πiαδi,n

)
K(x− y)φi(y)

+
∑

x∈ Ā ,y ∈A

φ†i (x)K(x− y)
(
φi(y) + φi+1(y)e2πiαδi,n

) ≡ n∑
i,j=1

L∑
x,y=0

φ†i (x)Gix,jyφj(y) ,

(2.44)

where we explicitly wrote the complex conjugate in (A.23) before discretising the integrals.
Wick’s theorem ensures that the Gaussian average in (A.26) can be computed from the
contractions of pairs of fields, which are in turn obtained via the inversion of the matrix G:

φi(x)†φj(y) = (G−1)ix,jy . (2.45)

The matrix G has a block structure, consisting of n2 blocks Gi·,j·, each of which is an N×N
matrix. From the above expression we see that the only non-vanishing blocks are either
in the diagonal Gi·,i· or just off the diagonal, Gi·,(i±1)·. Each block G admits a sub-block
structure in terms of the matrices KQ1Q2 , Q1, Q2 ∈ {A, Ā}, whose elements are:

(KQ1Q2)xy =
(
L

N

)2
K(x− y) , x ∈ Q1 , y ∈ Q2 . (2.46)

Notice that KAA is a square matrix with dimensions `
LN ×

`
LN , KAĀ has dimensions

`
LN ×

L−`
L N and so on. From (2.44) we obtain the following basic structures:

• Diagonal blocks Gi·,i· ∑
x∈A ,y ∈A

+
∑

x∈ Ā ,y ∈ Ā

+
∑

x∈A ,y ∈ Ā

+
∑

x∈ Ā ,y ∈A

φ†i (x)Gix,iyφi(y)

=
(
L

N

)2

2
∑
x∈A
y ∈A

φ†i (x)K(x− y)φi(y) + 2
∑
x∈ Ā
y ∈ Ā

φ†i (x)K(x− y)φi(y)

+
∑

x∈A ,y ∈ Ā

φ†i (x)K(x− y)φi(y) +
∑

x∈ Ā ,y ∈A

φ†i (x)K(x− y)φi(y)



⇒ Gi·,i· =

2KAA KAĀ

KĀA 2KĀĀ
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• Off-diagonal blocks Gi·,(i+1)·∑
x∈ Ā ,y ∈A

φ†i (x)Gix,(i+1)yφi+1(y) =
(
L

N

)2 ∑
x∈ Ā ,y ∈A

φ†i (x)K(x− y)φi+1(y)e2πiαδi,n

⇒ Gi·,(i+1)· =

 0 0
KĀAe

2πiαδi,n 0


• Off-diagonal blocks G(i+1)·,i·∑

x∈A ,y ∈ Ā

φ†i+1(x)G(i+1)x,iyφi(y) =
(
L

N

)2 ∑
x∈A ,y ∈ Ā

φ†i+1(x)K(x− y)φi(y)e−2πiαδi,n

⇒ G(i+1)·,i· =

0 KAĀe
−2πiαδi,n

0 0


Note that the block structure is different from that in [63] because the roles of regions
A and Ā are now exchanged. Although this exchange has no effect on the form of the
entanglement entropy, for the SREE it makes a difference as the symmetry between A, Ā

is broken when we choose to place the charge in subsystem A.
In terms of the N×N blocks above, we can schematically write the matrix G as follows:

1 2 n− 1 n︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷
A Ā A Ā A Ā A Ā︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

1
{

A
{

2KAA KAĀ 0 0
· · ·

0 0 0 λ∗αKAĀ

Ā
{

KĀA 2KĀĀ KĀA 0 0 0 0 0

2
{

A
{

0 KAĀ 2KAA KAĀ · · ·
0 0 0 0

Ā
{

0 0 KĀA 2KĀĀ 0 0 0 0
...

... . . . ...
...

n− 1
{

A
{

0 0 0 0
· · ·

2KAA KAĀ 0 0

Ā
{

0 0 0 0 KĀA 2KĀĀ KĀA 0

n

{
A
{

0 0 0 0
· · ·

0 KAĀ 2KAA KAĀ

Ā
{

λαKĀA 0 0 0 0 0 KĀA 2KĀĀ

where we introduced λα = e2πiα.

2.3.1 Numerical results

In appendix A we have explicitly derived the ratio of charged moments for excited states.
We thus have all the ingredients needed to obtain numerical results. Let us take a bi-
partition where A is a segment made of NA ≤ N consecutive sites, with NA/N = r and
analyse the behaviour of MΨ

n (r;α).
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Figure 2. Numerical data (triangles) versus analytical predictions (dashed lines) for M1+1+

2 (r;α)
(top row) and M2+

2 (r;α) (bottom row). We consider n = 2, system size L = 30 with m = 0.1.
The left/right panels in each row show the real/imaginary part of the function. In both rows we
take values of the flux α = 0, 0.1, . . . 0.5. The numerics for the top row figures employ momenta
p1 = π, p2 = 2π/5 whereas for the bottom row we took equal momenta p1 = p2 = π.

In figure 2 we compare results for two kinds of two-particle excited states: those of
particles with identical charges and either distinct or equal momenta p1 and p2. Our
analytical predictions for Mn(r;α) are

M1+1+
n (r;α) = (rne2iπα + (1− r)n)2 , p1 6= p2 ,

M2+
n (r;α) = r2ne4πiα + 2n(1− r)nrne2πiα + (1− r)2n , p1 = p2 . (2.47)

In our numerics we have chosen L = N = 30, so that the lattice spacing L/N = 1. We
also fix the mass scale to m = 0.1, which corresponds to a typical correlation length of
ξ = m−1 = 10 sites. Finally we choose either p1 = p2 = π or p1 = π and p2 = 2π

5 , both in
units of the lattice spacing.

Similarly, figure 3, we consider the following three-particle excited states: a state of
three equal momenta, that is p1 = p2 = p3, a state of two equal momenta among the three,
that is p1 = p2 6= p3, and a state with three distinct momenta, that is p1, p2, p3 distinct. In
this case the analytical predictions are

M3+
n (r;α) = r3ne6iπα+3nr2n(1−r)ne4iπα+3nrn(1−r)2ne2iπα+(1−r)3n , p1 = p2 = p3 ,

(2.48)
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Figure 3. Numerical data (triangles) versus analytical predictions (dashed lines) for M3+

2 (r;α)
(top row),M2+1+

2 (r;α) (central row), andM1+1+1+

2 (r;α) (bottom row). We consider n = 2, system
size L = 30 with m = 0.1. The left/right panels in each row show the real/imaginary part of the
function. In each rows we take values of the flux α = 0, 0.1, . . . 0.5. The numerics for the top row
figures employ momenta p1 = p2 = p3 = π, for the central row p1 = p2 = π, p3 = π/3, whereas for
the bottom row we took p1 = π, p2 = π/3, p3 = π/5.

and

M2+1+
n (r;α) = M2+

n (r;α)(rne2iπα + (1− r)n) , p1 = p2 6= p3 ,

M1+1+1+
n (r;α) = (rne2iπα + (1− r)n)3 , p1 6= p2 6= p3 .

(2.49)

The set of momenta is p1 = p2 = p3 = π for the first excited state, p1 = p2 = π, p3 = π/3
for the second state, and p1 = π, p2 = π/3, p3 = π/5 for the third one.
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In all our figures we chose non-negative values of α. Given the formulae above, taking
α < 0 is equivalent to complex conjugation with α positive, so the figures for negative α
are identical except for a change of sign in the imaginary part of all functions. We have
also considered the value α = 0 (in green) which is the limit where there is no flux. As
expected, in this case our formulae recover those for the excess Renyi Entropies in [62, 63],
which are symmetric in r and have vanishing imaginary part. Despite the fact that the
correlation length is not particularly small with respect to the system’s size L (ξ ' 0.33L),
we took highly energetic states (momenta being fixed in the large-volume limit) and we
thus expect the validity of our predictions.

In both figure 2 and 3, we plot the numerical data (triangles) against analytical pre-
dictions (2.47) and (2.49) as functions of r fixing n = 2 for several values of α between 0
and 1

2 , which correspond to flux ±1, respectively. At these two points, the ratio becomes
purely real. The figures show excellent agreement between numerical data and analytical
predictions.

3 Magnon states

The numerical results of the previous section provide convincing evidence that the results
of [61] are correct. We now consider how our results might be applicable in a broader
context. A natural starting point are magnon states. Such states describe the eigenstates
of a variety of spin chain Hamiltonians, with or without interactions. They admit a simple
explicit form in the spin basis so that entanglement computations are easy to perform. We
also know from [63, 71] that the total entanglement entropy of magnon states is described
by our formulae with α = 0. As we see below, even in the presence of non-trivial scattering,
the agreement extends to α 6= 0.

The main idea behind this construction is somewhat similar in spirit to the qubit pic-
ture [61, 63], namely, that the entanglement content of quasiparticles can be easily under-
stood if one factors out the zero-point fluctuations. In other words, instead of considering
the full quantum theory where the quasiparticles are constructed on top of a nontrivial
ground state, which in general has its own entanglement content, we consider a simpler
theory in which particles are constructed above a trivial ground state. It turns out that
the entanglement of this simpler model keeps track of the exact entanglement of the quasi-
particle and discards explicitly the entanglement of the true ground state. Our magnon
states belong to a Fock space generated by multiparticle configurations. In this case, the
symmetry we construct will be “internal”, meaning that it acts just as a phase on each
multiparticle state; this phase is directly related to the quantum numbers of each particle.

3.1 One-magnon states

We firstly focus on a single magnon state on the lattice, belonging to the one-particle sector
of a quantum spin-1

2 chain of length L. A one-magnon state can be written as

|Ψ1〉 = 1√
L

L∑
j=1

eipj |j〉 , (3.1)
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where |j〉 is the state of a localised magnon of momentum p in position j. If one imposes
boundary conditions on the chain, the momentum p is quantised as follows

p ∈ 2π
L

Z . (3.2)

We introduce the action of the symmetry operator e2πiαQ, where Q is associated with an
internal symmetry. For our purposes we just need to specify its action on the vacuum state
|0〉 and on the one-particle sector. In addition we assume that the magnon is charged with
respect to Q, and it has charge +1.

We are interested in the entanglement between spins 1, 2, · · · , ` in region A and the rest
of the system. Associated to this region there is a restricted symmetry generator e2πiαQA ,
which acts as

ei2παQA |0〉 = |0〉 , e2πiαQA |j〉 = e2πiαδj∈A |j〉 , (3.3)

where δj∈A gives 1 if j is in A and 0 otherwise. The reduced density matrix of the region
A is

ρA ≡ TrĀ (|Ψ1〉〈Ψ1|) = 1
L

∑
j,j′∈A

eip(j−j
′)|j〉〈j′|+ (1− r)|0〉〈0|. (3.4)

These two terms appearing in the formula above are interpreted as the contributions as-
sociated to the presence/absence of magnon in subsystem A, respectively. It is easy to
show that

e2πiαQAρnA =

 1
L

∑
j,j′∈A

eip(j−j
′)|j〉〈j′|

n e2πiα + (1− r)n|0〉〈0|, (3.5)

a relation which shows explicitly the presence of the symmetry for this state ([ρA, e2πiαQA ] =
0). After a straightforward calculation one gets

TrA

 1
L

∑
j,j′∈A

eip(j−j
′)|j〉〈j′|

n = rn, TrA ((1− r)n|0〉〈0|) = (1− r)n. (3.6)

Putting the previous two pieces together, we arrive at the expected final result

Tr
(
ρnAe

2πiαQA
)

= rne2πiα + (1− r)n , (3.7)

with r = `/L, which provides the exact charged moments of a single magnon state.

3.1.1 Two-magnon states

In the following we consider a state of two magnons with the same symmetry charge. This
example is more interesting because it allows us to test whether the presence of non-trivial
interaction changes our results. Given a pair of quasimomenta p and p′, we parametrise
this state in the following way

|Ψ2〉 = 1√
L

L∑
j,j′

Sj,j′e
ipj+ip′j′ |jj′〉, (3.8)
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where S is a scattering matrix and |jj′〉 is the state with two localised magnons in sites j
and j′. The choice of the S-matrix is not really relevant for our purpose, but for the sake
of concreteness we set

Sjj′ =


eiϕ for j > j′,

1 for j < j′,

0 for j = j′,

(3.9)

using the same conventions as in [62]. The action of the restricted symmetry operator
e2πiαQA on the two-particle sector of the Hilbert space is

e2πiαQA |jj′〉 = e2πiα(δj∈A+δj′∈A)|jj′〉. (3.10)

It is possible to decompose ρA ≡ TrĀ (|Ψ2〉〈Ψ2|) as follows

ρA = 1
L

(
ρ

(1)
A + ρ

(2)
A + ρ

(3)
A

)
, (3.11)

where ρ(1)
A is the two-particle contribution (both particles in A), ρ(2)

A is the vacuum contri-
bution (no particles in A) and ρ(3)

A is the one-particle contribution (one particle in A and
one in Ā). The introduction of the flux gives rise to the following relation

ρnAe
2πiαQA = 1

Ln

(
(ρ(1)
A )ne4πiα +

(
ρ

(2)
A

)n
+
(
ρ

(3)
A

)n
e2πiα

)
. (3.12)

No approximation was made up to this point, but the explicit expressions of ρ(j)
A , given

in [62], are cumbersome and not particularly enlightening for our purpose. However, one
can show that in the limit L → ∞ and `/L, p 6= p′ kept fixed, TrA

(
(ρ(j)
A )n

)
simplifies

drastically:

TrA
(
(ρ(1)
A )n

)
' Lnr2n, TrA

(
(ρ(2)
A )n

)
' Ln(1− r)2n, TrA

(
(ρ(3)
A )n

)
' 2Lnrn(1− r)n.

(3.13)
Putting all the pieces together one finally gets

TrA
(
ρnAe

2πiαQA
)
' r2ne4πiα + 2rn(1− r)ne2πiα + (1− r)2n = (rne2πiα + (1− r)n)2.

(3.14)

This computation shows that in this particular scaling limit the interaction between par-
ticles has no effect on the final result, and the total charged moment is just a product of
two single-particle charged moments. A different result is obtained if p = p′ and fixed. In
that case, the magnons are indistinguishable and one can prove that

TrA
(
(ρ(1)
A )n

)
' Lnr2n, TrA

(
(ρ(2)
A )n

)
' Ln(1− r)2n, TrA

(
(ρ(3)
A )n

)
' 2nLnrn(1− r)n,

(3.15)
so that

TrA
(
ρnAe

2πiαQA
)
' r2ne4πiα + 2nrn(1− r)ne2πiα + (1− r)2n, (3.16)

which no longer factorises into one-magnon contributions. Both results are special cases
of (1.8) and (1.10).
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The results of this section generalise previous work for the excess entanglement entropy
of excited states [63] and are also related to the results of [71] where the entanglement of
magnon states was considered more generally. In particular, it was shown that for states
consisting of several magnons, entanglement will factorise into the contributions of groups
of magnons which are well-separated from each other in momentum space (that is their
momentum difference is of order 1 rather than 1/L, where L is the length of the system).
Such results also apply to the present case up to the introduction of the appropriate phases.

4 Further generalisations: higher dimensions

So far we have derived the behaviour of the charged moments of the SREE of quasiparticle
excited states making use of two different formalisms: the form factor expansion in 1+1
integrable QFTs [61] and the analysis of qubit/magnon states on the lattice. Unfortunately
these techniques are specially suited for 1+1D theories. In this section we want to consider
instead a generic QFT in higher dimensions. To this aim we introduce a slightly different
approach. Indeed, on the one hand, the description of the Rényi entropy as a correlation
functions of branch point twist fields inserted at some points of the space is special of
1+1 dimensional QFT [8, 9]. On the other hand, the description of excited states as
magnon/qubit states, even if generalisable to higher dimensions, has the disadvantage that
it does not take into account the zero-point fluctuations.

Despite these technical limitations, we expect that in the particular scaling limit we
are considering the universal entanglement content of the Rényi entropy, together with
its symmetry resolved version, should not depend on dimensionality, presence or not of
interactions or even integrability. To support these claims, section 3 on magnonic states
provided evidence that the same results tested numerically for free theories in section 2
can be recovered for interacting systems. As for higher dimensions, at least one precedent
for this generalisation already exists. In a previous work [65] the excitations of the free
massive boson in D := d + 1 dimensions have been extensively analysed and their Rényi
entropy was computed in terms of graph partition functions, and found once more to fit
the same formulae, with r replaced by the ratio of generalised volumes.

In this section we slightly generalise the formalism of [65], to take into account possible
interactions, and provide, as a proof of concept, a simple calculation of symmetry resolved
entanglement of a single-particle excited state. The key ingredients we need are the de-
scription of the excited states as local operators acting on a vacuum state and a twist field
operator, which generalizes the composite branch point twist field to higher dimensional
settings (an introduction to composite twist fields can be found in [61]). The only strong
assumption we make in our derivation is the presence of a finite mass gap m, whose inverse
m−1 is much smaller than the typical lengths of the system.3

3This is probably not necessary, since the emergence of the universal entanglement content is also
expected for some high-energy states in massless theories (see [69, 71], for the analysis of the gapless XY
chain). However, we keep this assumption here mostly to avoid technical complications, leaving the analysis
of CFTs to future investigations.
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We anticipate here that our formulae (1.8)–(1.11) are unchanged in higher dimensional
theories, up to the identification

r = VA
V
, (4.1)

which is the ratio of (generalised) volumes between subsystem A and the total system.
It may seem surprising that results should only depend on r, as defined in (4.1), and

not on other features of the entanglement region, such as the connectivity and smoothness
of its boundary. Indeed, the charged moments and symmetry resolved entropies of both the
ground state and of excited states will depend on such properties, as would finite volume
corrections to our results. However, our computations deliver results for the ratio of charged
moments between the excited and ground states in the infinite volume limit, and it is this
ratio in this limit which is universal and independent of boundary features, not the charged
moments themselves. This independence of boundary features has been analytically shown
for one simple example, namely the case of one-dimensional disconnected regions, where
the same formulae as for one connected region were found to apply, with r the sum of the
lengths of all disconnected parts [63].

4.1 Excited states and operator algebra

Let us consider the vacuum state |0〉 of a Hilbert space H, together with an algebra A of
observables4 acting on H which has |0〉 as a cylic vector (see [75] for a modern review of
this algebraic viewpoint in QFT). This allows us to represent any state |Ψ〉 of the Hilbert
space as

|Ψ〉 = O|0〉 with O ∈ A . (4.2)

We would like to assume further that the vacuum state is translation invariant, namely
that it is invariant under a certain faithful representation of the translation group in d

dimensions. Strictly speaking, since we consider a finite-size system, we have to slightly
modify this requirement. Specifically, we put our system on a d-dimensional torus M of
volume V and we require that |0〉 is invariant under the isometries of the torus. Other
boundary conditions can be considered too, but they do not change the picture in the
scaling limit we are interested in. We also require locality of the observables, asking that
A is generated by a set of fields {O(x)}, which can be applied at any point ofM.

For any field O(x) one can construct its Fourier transform O(p) as

O(p) =
∫
M
ddxe−ipxO(x) , (4.3)

and these transformed fields are building blocks for the following set of translation invariant
states

O1(p1) . . .Ok(pk)|0〉 . (4.4)

The state above corresponds physically to k particles distributed on M with momenta
{pj}j=1,...,k, and the choice of the fields {Oj} may depend on the particle species and

4In the case of a single real boson, A is just the algebra of operators generated by the field Φ(x) and its
conjugated momentum Π(x).
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quantum numbers. At first sight, this construction is similar to the usual way of generating
particle states in free theories acting with creation operators on the vacuum on a Fock
space. However, the real advantage of our formulation is that it is directly related to local
observables, a property which is fundamental to correctly define entanglement measures.

Let us take a set of orthogonal fields {Oj}, so that the correlation function 〈O†
i (x)Oj(x′)〉

vanishes for i 6= j. In other words the fusion

O†i ×Oj → 1 (4.5)

is present only if i = j and their operator product expansion (OPE) can be expressed
formally as

O†i (x)Oj(x′) ' δij〈0|O†i (x− x′)Oi(0)|0〉+ . . . , (4.6)

where we neglected explicitly the contributions coming from less relevant operators (with
respect to the identity). The exact evaluation of the correlation function above can be
hard, but the assumption of a finite gap m ensures that it vanishes exponentially for
|x− x′| � m−1. This is the only property we really need in our subsequent discussion.

Consider a smeared version of the modes O(p), with support in a subsystem only, that
is a region of space. To each spacial region A ⊆M and field O(x), we associate

OA(p) =
∫
A
ddxe−ipxO(x). (4.7)

Given any two regions A and A′, we compute5 O†A(−p)OA′(p′), making use of some ap-
proximations. First, we consider only the most relevant term in the fields OPE, namely

O†A(−p)OA′(p′) '
∫
A
ddx

∫
A′
ddx′eipx−ip′x′〈0|O†(x)O(x′)|0〉 . (4.8)

Second, since we are working in the limit of small correlation length (compared to the
geometry), the leading contribution comes from the insertion of the fields at small distances,
which is present if x,x′ ∈ A ∩ A′; this observation motivates the change of variable x′′ =
x′ − x, and the subsequent approximation

O†A(−p)OA′(p′) '
∫
A∩A′

ddxei(p−p′)x ·
∫
M
dx′′e−ip

′x′′〈0|O†(0)O(x′′)|0〉 . (4.9)

The second integral may be difficult to compute and in principle it could require a UV
regularisation for |x′′| < ε� m−1. However it does not depend on the regions A,A′ and in
our computation appears only as a multiplicative constant. In conclusion, we end up with

O†A(−p)OA′(p′) ∝ VA∩A′δp,p′ , (4.10)

where VA∩A′ is the volume of A∩A′, which is the main result of this subsection. Since the
volume in (4.10) emerges from the integrals (4.9), which involve a Fourier transform, we
require that subsystem A ∩ A′ consists of a finite number of disconnected regions, whose
boundaries are piecewise smooth.

5One should note that hermitian conjugation and Fourier transform do not commute. Indeed, we have
that O†A(−p) = (OA(p))†.
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It is natural to ask how our discussion above would be modified for a vanishing gap
m = 0. The main change is in the scaling of correlations functions: exponential localization
of the correlation function in a region of typical length m−1 does not hold any longer, due
to the long algebraic tails of the correlation functions. We conjecture that, as long as the
momenta are fixed in the infinite-volume limit, the main conclusion (4.10) is unchanged. A
qualitative argument is that in this case the inverse momentum, say the De Broglie length,
plays the role of typical length scale. In order to make this consideration more precise, let
us analyse eq. (4.9) for a 1+1D CFT, where O is a field of conformal dimension ∆O. We
focus on the following integral∫

M
dx′′e−ip

′x′′〈0|O†(0)O(x′′)|0〉, (4.11)

which we regulate both in the UV, with a cutoff ε, and in the IR, with a cutoff L, as follows
∫ L

ε
dxe−ipx

1
x4∆O

+ (c.c.). (4.12)

This integral can be explicitly computed. However, the important feature is that for
∆O > 0, p > 0 and ε > 0 all fixed, the integral converges to a finite value when L→ +∞.
This is no longer the case if p ∼ 1/L in the infinite-volume limit. In practice, this means
that for small momentum and scaling dimension 0 < ∆O ≤ 1 the considerations we made
so far regarding the scaling at large sizes cannot be applied. As a matter of fact, for free
CFTs the scaling dimensions of the fundamental fields are smaller than 1: the fermionic
field Ψ has dimension 1/2 while the derivative of a compact boson ∂xΦ has dimension 1.

While these considerations are not mathematically rigorous in establishing convergence
of the OPE expansion in the large volume limit, they are sufficient to explain why low-
energy states of gapless theories, or multiparticle states with small momenta difference, are
not well captured by our predictions. Indeed, for such states the excess entanglement was
computed in [76, 77] and is clearly different from the formulae in [62, 63].

4.2 Replica construction for symmetry resolved entanglement

Consider now a replica version of the theory, consisting of n copies. For any state |Ψ〉 we
consider its replicated version |Ψ〉n. Our goal is to define a composite twist operator, which
generalises the composite branch point twist field as defined in [4], generalising [9], to higher
dimensional theories. It is well known from a large body of literature e.g. [4, 36–39] that
the charged moments of the symmetry resolved Rényi entropies are given by correlation
functions of composite twist fields (CTF). A short review of their main properties can be
found in [61].

In this section, we want to extend the notion of CTFs to higher dimensions. To this
aim we will introduce a composite twist operator whose expectation value over |Ψ〉n gives
exactly the charged moments Zn(α). This type of operator was already considered in the
literature, especially in the absence of the flux insertion (see for example [65, 78–80]), but
here we are mostly interested in its relationship with the algebra of local operators.
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The first point we have to clarify regards the symmetry, and its action on the space of
fields. Starting from e2πiαQ, the global generator of U(1) symmetry in the non-replicated
theory, we say that O(x) has charge κO if

e2πiαQO(x)e−2πiαQ = e2πiακOO(x). (4.13)

Since one can decompose the space of fields as irreducible representations of U(1), we
restrict our analysis to charged fields. Going back to the replicated theory, we consider the
algebra of replicated observables An as the algebra generated by the tensor product of n
observables in A. Thus, to any field O(x) ∈ A, we associate Oj(x) ∈ An defined as

Oj(x) = 1⊗ · · · ⊗ 1⊗O(x)⊗ 1 · · · 1, (4.14)

where O(x) lives only in the jth replica. Consider a spacial region A, and its complement
Ā. We define a composite twist operator TαA which implements the structure of the n-
sheeted, cyclically connected, Riemann surface where the replica theory is defined. That is
TαA “implements” the gluing of the replicas along A with an additional flux insertion due to
the action of the U(1) symmetry. As for a standard CTF, it does so via its commutation
relations with any charged field Oj(x), which we require to be

TαAOj(x) =

e2πiκOαδj,nOj+1(x)TαA x ∈ A,
Oj(x)TαA x ∈ Ā.

(4.15)

Using this choice, the flux is inserted only between the nth and the first replica. We would
like to emphasize that a similar definition has already appeared in the context of 1+1D
integrable QFTs (see [36–39]). In particular for A = [0, `], one can identify

TαA = T αn (0)T̃ αn (`), (4.16)

and the commutation relations for TαA can be expressed as commutation relations for the
CTF T αn . The only novelty here is that for higher-dimensional theories it is not clear what
the replacement for CTFs is, thus how to represent T αn . Regarding the definition of the
twist operator TαA , it is worth mentioning also that in QFT it is known [81, 82] that the
twist operators are not local observables of the algebra An. They are rather observables
of the orbifolded algebra usually written as An/Zn, which extends An and is obtained by
taking the coset over the cyclic symmetry of replicas.

We are now ready to relate the twist operator to the symmetry resolved entanglement.
The charged moments of |Ψ〉 are given by

ZΨ
n (α) =

n〈Ψ|TαA |Ψ〉n
n〈Ψ|Ψ〉n . (4.17)

The above definition, together with the commutation relations (4.15) and the OPE of
eq. (4.10), should be enough to prove the explicit analytical expression of the ratio of
charged moments between |Ψ〉 and the ground state defined in (1.7). We now show how
these ideas come together for a simple example.
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4.3 Single-particle state

In this section we analyse an excited state |Ψ〉 made of a single quasiparticle with momen-
tum p generated by a charged field O. Its explicit expression is given by

|Ψ〉 = O(p)|0〉, (4.18)

and the replicated version is just

|Ψ〉n = O1(p) . . .On(p)|0〉n. (4.19)

For the sake of convenience, we split

Oj(p) = OjA(p) +Oj
Ā

(p), (4.20)

so that its commutation relations with TαA become more transparent. Indeed, using
just (4.15) one can express

TαA |Ψ〉n = TαA(O1
A(p) +O1

Ā
(p)) . . . (OnA(p) +On

Ā
(p))|0〉n

= (O2
A(p) +O1

Ā
(p)) . . . (O1

A(p)e2πiακO +On
Ā

(p))TαA |0〉n.
(4.21)

Up to now everything looks exact, while the approximate evaluation of n〈Ψ|TαA |Ψ〉n makes
use of the OPE contraction in (4.10). Note also how the phase e2πiα is only present for
nth factor above, similar to the Gaussian measure found by employing wave-functionals in
section 2. Among all the terms which are generated, all but two are vanishing and they give

n〈Ψ|TαA |Ψ〉n ' e2πiακO n〈0|(O†)nA(−p) . . . (O†)1
A(−p)O2

A(p) . . .OnA(p)O1
A(p)TαA |0〉n

+n 〈0|(O†)n
Ā

(−p) . . . (O†)1
Ā

(−p)O1
Ā

(p)O2
Ā

(p) . . .On
Ā

(p)TαA |0〉n

∝
(
e2πiακOV n

A + (V − VA)n
) n〈0|TαA |0〉n

n〈0|0〉n .

(4.22)

Similarly, we can evaluate the norm n〈Ψ|Ψ〉n which does not require the splitting of Oj(p)
n〈Ψ|Ψ〉n = n〈0|(O†)n(−p)(O†)1(−p)O1(p) . . .On(p)|0〉n ∝ V n. (4.23)

In the evaluation of the ratio
n〈Ψ|TαA |Ψ〉n
n〈Ψ|Ψ〉n (4.24)

the proportionality constant (which is non-universal and could be absorbed in a redefinition
of the field) cancels out, and one can write

n〈Ψ|TαA |Ψ〉n
n〈Ψ|Ψ〉n '

(
e2πiακOrn + (1− r)n

) n〈0|TαA |0〉n
n〈0|0〉n (4.25)

with r = VA
V . In the expression above, the first piece is universal while the second is not,

it is just the nth charged moment of the ground-state. Taking the ratio with the ground
state contribution, we finally arrive to the desired result

MΨ
n (r, α) =

n〈Ψ|TαA |Ψ〉n
n〈Ψ|Ψ〉n

n〈0|0〉n
n〈0|TαA |0〉n

' e2πiακOrn + (1− r)n. (4.26)

Results for multiparticle states can be obtained in a similar fashion.
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To conclude, the striking simplicity of these results, and the possible generalisations
to multiparticle states, rely especially on the truncation of the OPE in (4.6), which is
expected to become exact in the limit mdV � 1. We further expect that for finite mdV

further contributions in the OPE can be recast as a (possibly non-integer) power series
in (mdV )−1, which generalises the explicit (mL)−1 power expansion that is obtained for
1+1D free theories using form factor techniques [61]. In massless theories, we instead
expect corrections as a power series in (|p|dV )−1.

The explicit evaluation of these corrections, which are expected to be non-universal,
that is, momentum and QFT-dependent, and any possible issues regarding the convergence
of these power series are all beyond the scope of this work.

5 Conclusions

In this paper we have extended the results of [61] by first, providing numerical evidence
for their validity and second, showing that they apply much more broadly than the form
factor computation of [61] would suggest, to interacting and higher dimensional theories.

Regarding the numerics, we have considered a 1D Fermi gas and a complex harmonic
chain. Although both these models are discrete and amenable to numerical computations,
their microscopic features are extremely different. Whereas the 1D Fermi gas is a fermionic
theory whose continuous limit is a massless complex free fermion, the complex harmonic
chain’s continuous limit is a complex massive free boson. It is therefore quite remarkable
that the same set of formulae for the ratios of charged moments should apply for both
theories. This is nonetheless the case. Whereas for the 1D Fermi gas our formulae hold
for highly excited states containing excitations of large momenta, thus small De Bloglie
wavelengths, for the complex harmonic charge, the formulae hold as long as the correlation
length is small compare to subsystem size and the excited states are usually of low energy.
The common feature of both types of states is that they are characterised by localised
excitations.

A simple class of states in one space dimension are magnon states. These are typical
excited states of quantum spin chains, with and without interaction. They have a simple
representation in terms of spin degrees of freedom and their entanglement entropies can
be computed analytically. We have shown that, irrespective of interaction, the formulae
found in [61] still apply, in line with observations made in [63, 71].

Finally, we have proposed a method to compute the charged moments of zero-density
excited states in higher-dimensions with or without interactions. The generalisation re-
lies on generalising the action of branch point twist fields to higher dimensions (without
generalising the fields themselves) and on standard assumptions about the asymptotics of
correlations functions of local fields.

There are several extensions of this work that are still outstanding: the study of finite-
volume corrections to these results in a QFT setting, the extension of our formulae to other
symmetry resolved measures of entanglement, such as the logarithmic negativity [22, 53,
64], and the study of theories where quasiparticle excitations are not localised (such as free
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fermion chains where the local degrees of freedom are the spins, which are non-local with
respect to fermions). We hope to return to these problems in future work.
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A Trace calculations via wave functional method

In this appendix we present explicit calculations of the ratio of charged moments for excited
states in a complex free boson theory using the wave functional method introduced in
section 2.2. The discretisation of these results leads to the formulae for the complex
harmonic chain presented in subsection 2.3.

A.1 Zero flux

We now wish to compute the ratio of charged moments

TrA
(
ρnA e

2πiαQA
)

TrA
(
ρn0,A e

2πiαQA
) , (A.1)

where ρA and ρ0,A are the reduced density matrices of the excited and ground states,
respectively.

We define restricted wave functionals which take as arguments (complex) fields that
either have support on region A ≡ [0, `) or on Ā ≡ [`, L]. Leaving the dependence on the
conjugate fields implicit, we write:

Φ(x)Ψ[φA, φ′Ā] =
(
δx∈Aφ(x) + δx∈ Āφ

′(x)
)
Ψ[φA, φ′Ā] , (A.2)

iΠ(x)Ψ[φA, φ′Ā] =
(
δx∈A

δ

δφ(x) + δx∈ Ā
δ

δφ′(x)

)
Ψ[φA, φ′Ā] , (A.3)

and similarly for the action of Φ†(x), iΠ†(x). The action of the charge operator QA on the
wave functional is simply:

QAΨ[φA, φ′Ā] =
∫
A

dx
(
φ†(x) δ

δφ†(x) − φ(x) δ

δφ(x)

)
Ψ[φA, φ′Ā] , (A.4)
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while from (2.36) it follows that

e2πiαQA |φA, φ′Ā〉 = |e2πiαφA, φ
′
Ā
〉 . (A.5)

The reduced density matrix then admits the functional representation

ρA = TrĀρ =
∫
DφĀ〈φĀ|ρ|φĀ〉 ⇒ 〈φ

′
A|ρA|φ′′A〉 =

∫
DφĀΨ[φ′A, φĀ]Ψ[φ′′A, φĀ]∗ , (A.6)

where Dφ is shorthand for DφDφ†.
We start with the simple case where there is no symmetry resolution, that is, we

compute (A.1) for α = 0, following [63]. For n integer, we can insert the resolution of the
identity n times, with the identification n+ 1 ≡ 1, and we get:

TrA(ρn0,A) =
∫
Dφ1A . . .DφnA〈φ1A|ρvac,A|φ2A〉 . . . 〈φnA|ρvac,A|φ1A〉

=
∫
Dφ1 . . .Dφn

n∏
i=1

Ψvac[φi,A, φi,Ā]
n∏
i=1

Ψvac[φi+1,A, φi,Ā]∗ . (A.7)

The product of the diagonal terms, i.e. those in which the fields act on the same copy for
both subsystems is

n∏
i=1

Ψvac[φi,A, φi,Ā] = exp
[
−

n∑
i=1

∫
A
⋃
Ā

dxdy φ†i (x)K(x− y)φi(y)
]
, (A.8)

with K(x) defined in (2.29). For the non-diagonal terms we notice that since K(x)∗ =
K(−x) we have Ψvac[φi+1,A, φi,Ā]∗ = Ψvac[φi+1,A, φi,Ā] and:

n∏
i=1

Ψvac[φi+1,A, φi,Ā] = exp

−
n∑
i=1

∫
x∈A
y ∈A

dxdy φ†i+1(x)K(x− y)φi+1(y) (A.9)

+
∫
x∈ Ā
y ∈ Ā

dxdy φ†i (x)K(x− y)φi(y) +

∫
x∈A
y ∈ Ā

dxdy φ†i+1(x)K(x− y)φi(y) + c.c.

 .

(A.10)
Putting all the terms together, we end up with the Gaussian measure:

TrA(ρn0,A) =
∫
Dφ1 . . .Dφn exp [−G] , (A.11)

where

G =
n∑
i=1

2

∫
x∈A
y ∈A

+
∫
x∈ Ā
y ∈ Ā

φ†i (x)K(x− y)φi(y)

+
n∑
i=1

∫
x∈A
y ∈ Ā

(φi(x) + φi+1(x))†K(x− y)φi(y) + c.c.

 . (A.12)

The numerator of (A.1) instead is

TrA (ρnA) =
∫
Dφ1 . . .Dφn

n∏
i=1

Ψ{pj+pj−}[φi,A, φi,Ā]
n∏
i=1

Ψ{pj+pj−}[φi+1,A, φi,Ā]∗ (A.13)

for a state of k± particles of charges ±1 and momenta pj± (assuming pj± 6= pi± for j± 6= i±),
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and using (2.32):

n∏
i=1

Ψ{p
j+pj−}[φi,A, φi,Ā] =

∏
j+

2Ep
j+

L

∏
j−

2Ep
j−

L

n
2 n∏
i=1

∏
j+

∫
A
⋃
Ā

dxeipj+xφ†i (x)

×
∏
j−

∫
A
⋃
Ā

dxeipj−xφi(x)
n∏
i=1

Ψvac[φi,A, φi,Ā] ,

n∏
i=1

Ψ{p
j+pj−}[φi+1,A, φi,Ā]∗ =

∏
j+

2Ep
j+

L

∏
j−

2Ep
j−

L

n
2

×
n∏
i=1

∏
j+

(∫
A

dxe−ipj+xφi+1(x) +
∫
Ā

dxe−ipj+xφi(x)
)

×
∏
j−

(∫
A

dxe−ipj−xφ†i+1(x) +
∫
Ā

dxe−ipj−xφ†i (x)
) n∏
i=1

Ψvac[φi+1,A, φi,Ā] .

(A.14)

Putting everything together we have that

TrA (ρnA)
TrA(ρn0,A) =

∏
j+

2Epj+
L

∏
j−

2Epj−
L

n 〈 n∏
i=1

∏
j+

U+
i (pj+)V +

i (pj+)
∏
j−

U−i (pj−)V −i (pj−)〉

(A.15)
where the correlation function is defined with respect to the Gaussian measure:

〈O[φ1, φ
†
1 . . . , φn, φ

†
n]〉 =

∫
Dφ1 . . .DφnO[φ1, φ

†
1 . . . , φn, φ

†
n] exp [−G]∫

Dφ1 . . .Dφn exp [−G] (A.16)

and the operators are

U+
i (p) =

∫
A
⋃
Ā

dx eipxφ†i (x) , U−i (p) =
∫
A
⋃
Ā

dx eipxφi(x) (A.17)

V +
i (p) =

∫
A

dx e−ipxφi+1(x) +
∫
Ā

dx e−ipxφi(x) , (A.18)

V −i (p) =
∫
A

dx e−ipxφ†i+1(x) +
∫
Ā

dx e−ipxφ†i (x) . (A.19)

If the excited state is of the form (2.33), the result (A.15) is minimally modified. The terms
inside the correlator are exactly the same, except that now the range of the indices j± is
that specified after (2.33) and the prefactor is modified to: m+∏

j+=1

1
k+
j+ !

(2Epj+
L

)k+
j+ m−∏

j−=1

1
k−j− !

(2Epj−
L

)k−
j−
n . (A.20)

A.2 Non-trivial flux insertion

We now come to the quantity (A.1) with α 6= 0, assuming the excited state to be of the
form (2.32). Let us consider the denominator first. Because of the flux insertion to the right
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of the nth operator ρ0,A, everything is the same as in (A.7) except for the last resolution
of the identity, which produces a term:

〈Ψ|φnĀ〉e2πiαQA |φ1A〉 = 〈Ψ|e2πiαφ1A, φnĀ〉 = Ψ[φ1Ae
2πiα, φnĀ]∗ . (A.21)

Thus, the Gaussian measure in the presence of the charge is modified as follows:

TrA(ρn0,Ae2πiαQA) =
∫
Dφ1 . . .Dφn exp [−Gα] , (A.22)

with

Gα =
n∑
i=1

2

∫
x∈A
y ∈A

+
∫
x∈ Ā
y ∈ Ā

φ†i (x)K(x− y)φi(y)

+

∫
x∈A
y ∈ Ā

(
φ†i (x) + φ†i+1(x)e−2πiαδi,n

)
K(x− y)φi(y) + c.c.

 . (A.23)

As for the numerator of (A.1), we have similarly

TrA(ρnA) =
∫
Dφ1 . . .Dφn

n−1∏
i=1

Ψ{pj+ ,pj−}[φiA, φiĀ]Ψ{pj+ ,pj−}[φi+1,A, φiĀ]∗

×Ψ{pj+ ,pj−}[φnA, φnĀ]Ψ{pj+ ,pj−}[φ1,Ae
2πiα, φnĀ]∗ . (A.24)

The product in the first line gives what we already had found in the α = 0 case, with the
replica index running up to n− 1 only. The product of the last two functionals gives:∏

j+

αpj+ [φ†n]αpj+ [φ†1Ae
−2πiα, φ†

nĀ
]∗
∏
j−

βpj− [φn]βpj− [φ1Ae
2πiα, φnĀ]∗


×Ψvac[φnA, φnĀ]Ψvac[φ1,Ae

2πiα, φnĀ]∗ . (A.25)

and from the definitions of the α and β operators we obtain our final result:

TrA
(
ρnA e

2πiαQA
)

TrA
(
ρn0,A e

2πiαQA
) =

∏
j+

2Epj+
L

∏
j−

2Epj−
L

n

× 〈
n∏
i=1

∏
j+

U+
i (pj+)V +

i (pj+)
∏
j−

U−i (pj−)V −i (pj−)〉α , (A.26)

where 〈. . . 〉α is defined as in (A.16) with respect to the Gaussian measure (A.23). U±i (p)
are defined exactly as in (A.17), while V ±i (p) are now modified by the presence of the
charge as follows:

V +
i (p) = e2πiαδi,n

∫
A

dx e−ipxφi+1(x) +
∫
Ā

dx e−ipxφi(x) , (A.27)

V −i (p) = e−2πiαδi,n
∫
A

dx e−ipxφ†i+1(x) +
∫
Ā

dx e−ipxφ†i (x) . (A.28)

If the excited state is given by (2.33), the right-hand side of (A.26) is changed exactly as
in the case α = 0.

– 28 –



J
H
E
P
1
2
(
2
0
2
2
)
1
2
8

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
the goals of the International Year of Basic Sciences for Sustainable Development.

References

[1] P. Caputa, G. Mandal and R. Sinha, Dynamical entanglement entropy with angular
momentum and U(1) charge, JHEP 11 (2013) 052 [arXiv:1306.4974] [INSPIRE].

[2] A. Belin, L.-Y. Hung, A. Maloney, S. Matsuura, R.C. Myers and T. Sierens, Holographic
charged Rényi entropies, JHEP 12 (2013) 059 [arXiv:1310.4180].

[3] P. Caputa, M. Nozaki and T. Numasawa, Charged Entanglement Entropy of Local Operators,
Phys. Rev. D 93 (2016) 105032 [arXiv:1512.08132] [INSPIRE].

[4] M. Goldstein and E. Sela, Symmetry-resolved entanglement in many-body systems, Phys.
Rev. Lett. 120 (2018) 200602 [arXiv:1711.09418] [INSPIRE].

[5] J.C. Xavier, F.C. Alcaraz and G. Sierra, Equipartition of the entanglement entropy, Phys.
Rev. B 98 (2018) 041106 [arXiv:1804.06357] [INSPIRE].

[6] V. Knizhnik, Analytic fields on Riemann surfaces. Part II, Commun. Math. Phys. 112
(1987) 567.

[7] L.J. Dixon, D. Friedan, E.J. Martinec and S.H. Shenker, The Conformal Field Theory of
Orbifolds, Nucl. Phys. B 282 (1987) 13 [INSPIRE].

[8] P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech.
0406 (2004) P06002.

[9] J.L. Cardy, O.A. Castro-Alvaredo and B. Doyon, Form factors of branch-point twist fields in
quantum integrable models and entanglement entropy, J. Stat. Phys. 130 (2008) 129
[arXiv:0706.3384] [INSPIRE].

[10] B. Doyon, Bi-partite entanglement entropy in massive two-dimensional quantum field theory,
Phys. Rev. Lett. 102 (2009) 031602 [arXiv:0803.1999] [INSPIRE].

[11] O.A. Castro-Alvaredo, B. Doyon and E. Levi, Arguments towards a c-theorem from
branch-point twist fields, J. Phys. A 44 (2011) 492003 [arXiv:1107.4280] [INSPIRE].

[12] E. Levi, Composite branch-point twist fields in the Ising model and their expectation values,
J. Phys. A 45 (2012) 275401 [arXiv:1204.1192] [INSPIRE].

[13] D. Bianchini, O.A. Castro-Alvaredo, B. Doyon, E. Levi and F. Ravanini, Entanglement
entropy of non-unitary conformal field theory, J. Phys. A 48 (2015) 04FT01
[arXiv:1405.2804].

[14] P. Calabrese, J.L. Cardy and E. Tonni, Entanglement entropy of two disjoint intervals in
conformal field theory, J. Stat. Mech. 0911 (2009) P11001.

[15] P. Calabrese, J.L. Cardy and E. Tonni, Entanglement negativity in quantum field theory,
Phys. Rev. Lett. 109 (2012) 130502 [arXiv:1206.3092] [INSPIRE].

[16] P. Ruggiero, E. Tonni and P. Calabrese, Entanglement entropy of two disjoint intervals and
the recursion formula for conformal blocks, J. Stat. Mech. 1811 (2018) 113101
[arXiv:1805.05975] [INSPIRE].

– 29 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/JHEP11(2013)052
https://arxiv.org/abs/1306.4974
https://inspirehep.net/literature/1239372
https://doi.org/10.1007/JHEP12(2013)059
https://arxiv.org/abs/1310.4180
https://doi.org/10.1103/PhysRevD.93.105032
https://arxiv.org/abs/1512.08132
https://inspirehep.net/literature/1411517
https://doi.org/10.1103/PhysRevLett.120.200602
https://doi.org/10.1103/PhysRevLett.120.200602
https://arxiv.org/abs/1711.09418
https://inspirehep.net/literature/1639049
https://doi.org/10.1103/PhysRevB.98.041106
https://doi.org/10.1103/PhysRevB.98.041106
https://arxiv.org/abs/1804.06357
https://inspirehep.net/literature/1683546
https://doi.org/10.1007/BF01225373
https://doi.org/10.1007/BF01225373
https://doi.org/10.1016/0550-3213(87)90676-6
https://inspirehep.net/literature/230342
https://doi.org/10.1088/1742-5468/2004/06/p06002
https://doi.org/10.1088/1742-5468/2004/06/p06002
https://doi.org/10.1007/s10955-007-9422-x
https://arxiv.org/abs/0706.3384
https://inspirehep.net/literature/753922
https://doi.org/10.1103/PhysRevLett.102.031602
https://arxiv.org/abs/0803.1999
https://inspirehep.net/literature/781338
https://doi.org/10.1088/1751-8113/44/49/492003
https://arxiv.org/abs/1107.4280
https://inspirehep.net/literature/919422
https://doi.org/10.1088/1751-8113/45/27/275401
https://arxiv.org/abs/1204.1192
https://inspirehep.net/literature/1104777
https://doi.org/10.1088/1751-8113/48/4/04FT01
https://arxiv.org/abs/1405.2804
https://doi.org/10.1088/1742-5468/2009/11/p11001
https://doi.org/10.1103/PhysRevLett.109.130502
https://arxiv.org/abs/1206.3092
https://inspirehep.net/literature/1118306
https://doi.org/10.1088/1742-5468/aae5a8
https://arxiv.org/abs/1805.05975
https://inspirehep.net/literature/1673374


J
H
E
P
1
2
(
2
0
2
2
)
1
2
8

[17] O.A. Castro-Alvaredo and B. Doyon, Bi-partite entanglement entropy in integrable models
with backscattering, J. Phys. A 41 (2008) 275203 [arXiv:0802.4231] [INSPIRE].

[18] O.A. Castro-Alvaredo and B. Doyon, Bi-partite entanglement entropy in massive QFT with a
boundary: The Ising model, J. Stat. Phys. 134 (2009) 105 [arXiv:0810.0219] [INSPIRE].

[19] O.A. Castro-Alvaredo, Massive Corrections to Entanglement in Minimal E8 Toda Field
Theory, SciPost Phys. 2 (2017) 008 [arXiv:1610.07040] [INSPIRE].

[20] D. Bianchini and O.A. Castro-Alvaredo, Branch Point Twist Field Correlators in the
Massive Free Boson Theory, Nucl. Phys. B 913 (2016) 879 [arXiv:1607.05656] [INSPIRE].

[21] R. Islam et al., Measuring entanglement entropy in a quantum many-body system, Nature
528 (2015) 77.

[22] A. Neven et al., Symmetry-resolved entanglement detection using partial transpose moments,
npj Quantum Inf. 7 (2021) 152 [arXiv:2103.07443] [INSPIRE].

[23] V. Vitale et al., Symmetry-resolved dynamical purification in synthetic quantum matter,
SciPost Phys. 12 (2022) 106 [arXiv:2101.07814] [INSPIRE].

[24] N. Laflorencie and S. Rachel, Spin-resolved entanglement spectroscopy of critical spin chains
and Luttinger liquids, J. Stat. Mech. 1411 (2014) P11013 [arXiv:1407.3779].

[25] N. Feldman and M. Goldstein, Dynamics of Charge-Resolved Entanglement after a Local
Quench, Phys. Rev. B 100 (2019) 235146 [arXiv:1905.10749] [INSPIRE].

[26] R. Bonsignori and P. Calabrese, Boundary effects on symmetry resolved entanglement, J.
Phys. A 54 (2021) 015005 [arXiv:2009.08508] [INSPIRE].

[27] L. Capizzi, P. Ruggiero and P. Calabrese, Symmetry resolved entanglement entropy of excited
states in a CFT, J. Stat. Mech. 2007 (2020) 073101 [arXiv:2003.04670] [INSPIRE].

[28] S. Murciano, R. Bonsignori and P. Calabrese, Symmetry decomposition of negativity of
massless free fermions, SciPost Phys. 10 (2021) 111 [arXiv:2102.10054] [INSPIRE].

[29] H.-H. Chen, Symmetry decomposition of relative entropies in conformal field theory, JHEP
07 (2021) 084 [arXiv:2104.03102] [INSPIRE].

[30] L. Capizzi and P. Calabrese, Symmetry resolved relative entropies and distances in conformal
field theory, JHEP 10 (2021) 195 [arXiv:2105.08596] [INSPIRE].

[31] P. Calabrese, J. Dubail and S. Murciano, Symmetry-resolved entanglement entropy in
Wess-Zumino-Witten models, JHEP 10 (2021) 067 [arXiv:2106.15946] [INSPIRE].

[32] B. Estienne, Y. Ikhlef and A. Morin-Duchesne, Finite-size corrections in critical
symmetry-resolved entanglement, SciPost Phys. 10 (2021) 054 [arXiv:2010.10515]
[INSPIRE].

[33] H.-H. Chen, Charged Rényi negativity of massless free bosons, JHEP 02 (2022) 117
[arXiv:2111.11028] [INSPIRE].

[34] R. Bonsignori, P. Ruggiero and P. Calabrese, Symmetry resolved entanglement in free
fermionic systems, J. Phys. A 52 (2019) 475302 [arXiv:1907.02084] [INSPIRE].

[35] S. Murciano, G. Di Giulio and P. Calabrese, Entanglement and symmetry resolution in two
dimensional free quantum field theories, JHEP 08 (2020) 073 [arXiv:2006.09069] [INSPIRE].

[36] D.X. Horvath, L. Capizzi and P. Calabrese, U(1) symmetry resolved entanglement in free
1 + 1 dimensional field theories via form factor bootstrap, JHEP 05 (2021) 197
[arXiv:2103.03197] [INSPIRE].

– 30 –

https://doi.org/10.1088/1751-8113/41/27/275203
https://arxiv.org/abs/0802.4231
https://inspirehep.net/literature/780374
https://doi.org/10.1007/s10955-008-9664-2
https://arxiv.org/abs/0810.0219
https://inspirehep.net/literature/798208
https://doi.org/10.21468/SciPostPhys.2.1.008
https://arxiv.org/abs/arXiv:1610.07040
https://inspirehep.net/1494101
https://doi.org/10.1016/j.nuclphysb.2016.10.016
https://arxiv.org/abs/1607.05656
https://inspirehep.net/literature/1477064
https://doi.org/10.1038/nature15750
https://doi.org/10.1038/nature15750
https://doi.org/10.1038/s41534-021-00487-y
https://arxiv.org/abs/2103.07443
https://inspirehep.net/literature/1954186
https://doi.org/10.21468/SciPostPhys.12.3.106
https://arxiv.org/abs/2101.07814
https://inspirehep.net/literature/1842208
https://doi.org/10.1088/1742-5468/2014/11/P11013
https://arxiv.org/abs/1407.3779
https://doi.org/10.1103/PhysRevB.100.235146
https://arxiv.org/abs/1905.10749
https://inspirehep.net/literature/1736933
https://doi.org/10.1088/1751-8121/abcc3a
https://doi.org/10.1088/1751-8121/abcc3a
https://arxiv.org/abs/2009.08508
https://inspirehep.net/literature/1818053
https://doi.org/10.1088/1742-5468/ab96b6
https://arxiv.org/abs/2003.04670
https://inspirehep.net/literature/1784882
https://doi.org/10.21468/SciPostPhys.10.5.111
https://arxiv.org/abs/2102.10054
https://inspirehep.net/literature/1847661
https://doi.org/10.1007/JHEP07(2021)084
https://doi.org/10.1007/JHEP07(2021)084
https://arxiv.org/abs/2104.03102
https://inspirehep.net/literature/1856564
https://doi.org/10.1007/JHEP10(2021)195
https://arxiv.org/abs/2105.08596
https://inspirehep.net/literature/1863768
https://doi.org/10.1007/JHEP10(2021)067
https://arxiv.org/abs/2106.15946
https://inspirehep.net/literature/1873462
https://doi.org/10.21468/SciPostPhys.10.3.054
https://arxiv.org/abs/2010.10515
https://inspirehep.net/literature/1824291
https://doi.org/10.1007/JHEP02(2022)117
https://arxiv.org/abs/2111.11028
https://inspirehep.net/literature/1973219
https://doi.org/10.1088/1751-8121/ab4b77
https://arxiv.org/abs/1907.02084
https://inspirehep.net/literature/1742632
https://doi.org/10.1007/JHEP08(2020)073
https://arxiv.org/abs/2006.09069
https://inspirehep.net/literature/1801464
https://doi.org/10.1007/JHEP05(2021)197
https://arxiv.org/abs/2103.03197
https://inspirehep.net/literature/1850037


J
H
E
P
1
2
(
2
0
2
2
)
1
2
8

[37] D.X. Horváth and P. Calabrese, Symmetry resolved entanglement in integrable field theories
via form factor bootstrap, JHEP 11 (2020) 131 [arXiv:2008.08553] [INSPIRE].

[38] D.X. Horváth, P. Calabrese and O.A. Castro-Alvaredo, Branch Point Twist Field Form
Factors in the sine-Gordon Model. Part II. Composite Twist Fields and Symmetry Resolved
Entanglement, SciPost Phys. 12 (2022) 088 [arXiv:2105.13982].

[39] L. Capizzi, D.X. Horváth, P. Calabrese and O.A. Castro-Alvaredo, Entanglement of the
3-state Potts model via form factor bootstrap: total and symmetry resolved entropies, JHEP
05 (2022) 113 [arXiv:2108.10935].

[40] S. Zhao, C. Northe and R. Meyer, Symmetry-resolved entanglement in AdS3/CFT2 coupled
to U(1) Chern-Simons theory, JHEP 07 (2021) 030 [arXiv:2012.11274].

[41] K. Weisenberger, S. Zhao, C. Northe and R. Meyer, Symmetry-resolved entanglement for
excited states and two entangling intervals in AdS3/CFT2, JHEP 12 (2021) 104
[arXiv:2108.09210].

[42] S. Zhao, C. Northe, K. Weisenberger and R. Meyer, Charged moments in W3 higher spin
holography, JHEP 05 (2022) 166 [arXiv:2202.11111] [INSPIRE].

[43] S. Fraenkel and M. Goldstein, Symmetry resolved entanglement: exact results in 1D and
beyond, J. Stat. Mech. 2003 (2020) 033106 [arXiv:1910.08459].

[44] H. Barghathi, C.M. Herdman and A. Del Maestro, Rényi Generalization of the Accessible
Entanglement Entropy, Phys. Rev. Lett. 121 (2018) 150501 [arXiv:1804.01114].

[45] H. Barghathi, E. Casiano-Diaz and A. Del Maestro, Operationally accessible entanglement of
one-dimensional spinless fermions, Phys. Rev. A 100 (2019) 022324 [arXiv:1905.03312]
[INSPIRE].

[46] S. Murciano, G. Di Giulio and P. Calabrese, Symmetry resolved entanglement in gapped
integrable systems: a corner transfer matrix approach, SciPost Phys. 8 (2020) 046
[arXiv:1911.09588].

[47] P. Calabrese, M. Collura, G. Di Giulio and S. Murciano, Full counting statistics in the
gapped XXZ spin chain, Europhys. Lett. 129 (2020) 60007 [arXiv:2002.04367] [INSPIRE].

[48] G. Parez, R. Bonsignori and P. Calabrese, Quasiparticle dynamics of symmetry-resolved
entanglement after a quench: Examples of conformal field theories and free fermions, Phys.
Rev. B 103 (2021) L041104 [arXiv:2010.09794].

[49] M.T. Tan and S. Ryu, Particle number fluctuations, Rényi entropy, and symmetry-resolved
entanglement entropy in a two-dimensional fermi gas from multidimensional bosonization,
Phys. Rev. B 101 (2020) 235169.

[50] S. Murciano, P. Ruggiero and P. Calabrese, Symmetry resolved entanglement in
two-dimensional systems via dimensional reduction, J. Stat. Mech. 2008 (2020) 083102
[arXiv:2003.11453] [INSPIRE].

[51] S. Fraenkel and M. Goldstein, Entanglement measures in a nonequilibrium steady state:
Exact results in one dimension, SciPost Phys. 11 (2021) 085 [arXiv:2105.00740].

[52] G. Parez, R. Bonsignori and P. Calabrese, Exact quench dynamics of symmetry resolved
entanglement in a free fermion chain, J. Stat. Mech. 2109 (2021) 093102
[arXiv:2106.13115] [INSPIRE].

[53] G. Parez, R. Bonsignori and P. Calabrese, Dynamics of charge-imbalance-resolved
entanglement negativity after a quench in a free-fermion model, J. Stat. Mech. 2205 (2022)
053103 [arXiv:2202.05309] [INSPIRE].

– 31 –

https://doi.org/10.1007/JHEP11(2020)131
https://arxiv.org/abs/2008.08553
https://inspirehep.net/literature/1812342
https://doi.org/10.21468/SciPostPhys.12.3.088
https://arxiv.org/abs/2105.13982
https://doi.org/10.1007/JHEP05(2022)113
https://doi.org/10.1007/JHEP05(2022)113
https://arxiv.org/abs/2108.10935
https://doi.org/10.1007/JHEP07(2021)030
https://arxiv.org/abs/2012.11274
https://doi.org/10.1007/JHEP12(2021)104
https://arxiv.org/abs/2108.09210
https://doi.org/10.1007/JHEP05(2022)166
https://arxiv.org/abs/arXiv:2202.11111
https://inspirehep.net/2036911
https://doi.org/10.1088/1742-5468/ab7753
https://arxiv.org/abs/1910.08459
https://doi.org/10.1103/PhysRevLett.121.150501
https://arxiv.org/abs/1804.01114
https://doi.org/10.1103/PhysRevA.100.022324
https://arxiv.org/abs/1905.03312
https://inspirehep.net/literature/1750713
https://doi.org/10.21468/SciPostPhys.8.3.046
https://arxiv.org/abs/1911.09588
https://doi.org/10.1209/0295-5075/129/60007
https://arxiv.org/abs/2002.04367
https://inspirehep.net/literature/1794028
https://doi.org/10.1103/PhysRevB.103.L041104
https://doi.org/10.1103/PhysRevB.103.L041104
https://arxiv.org/abs/2010.09794
https://doi.org/10.1103/physrevb.101.235169
https://doi.org/10.1088/1742-5468/aba1e5
https://arxiv.org/abs/2003.11453
https://inspirehep.net/literature/1788195
https://doi.org/10.21468/SciPostPhys.11.4.085
https://arxiv.org/abs/2105.00740
https://doi.org/10.1088/1742-5468/ac21d7
https://arxiv.org/abs/2106.13115
https://inspirehep.net/literature/1870191
https://doi.org/10.1088/1742-5468/ac666c
https://doi.org/10.1088/1742-5468/ac666c
https://arxiv.org/abs/2202.05309
https://inspirehep.net/literature/2031382


J
H
E
P
1
2
(
2
0
2
2
)
1
2
8

[54] H.-H. Chen, Dynamics of charge imbalance resolved negativity after a global quench in free
scalar field theory, JHEP 08 (2022) 146 [arXiv:2205.09532] [INSPIRE].

[55] X. Turkeshi, P. Ruggiero, V. Alba and P. Calabrese, Entanglement equipartition in critical
random spin chains, Phys. Rev. B 102 (2020) 014455 [arXiv:2005.03331] [INSPIRE].

[56] M. Kiefer-Emmanouilidis, R. Unanyan, M. Fleischhauer and J. Sirker, Evidence for
Unbounded Growth of the Number Entropy in Many-Body Localized Phases, Phys. Rev. Lett.
124 (2020) 243601 [arXiv:2003.04849] [INSPIRE].

[57] M. Kiefer-Emmanouilidis, R. Unanyan, M. Fleischhauer and J. Sirker, Unlimited growth of
particle fluctuations in many-body localized phases, Annals Phys. 435 (2021) 168481
[arXiv:2012.12436] [INSPIRE].

[58] K. Monkman and J. Sirker, Operational entanglement of symmetry-protected topological edge
states, Phys. Rev. Res. 2 (2020) 043191 [arXiv:2005.13026] [INSPIRE].

[59] E. Cornfeld, L.A. Landau, K. Shtengel and E. Sela, Entanglement spectroscopy of
non-Abelian anyons: Reading off quantum dimensions of individual anyons, Phys. Rev. B 99
(2019) 115429 [arXiv:1810.01853].

[60] D. Azses and E. Sela, Symmetry-resolved entanglement in symmetry-protected topological
phases, Phys. Rev. B 102 (2020) 235157 [arXiv:2008.09332] [INSPIRE].

[61] L. Capizzi, O.A. Castro-Alvaredo, C. De Fazio, M. Mazzoni and L. Santamaría-Sanz,
Symmetry resolved entanglement of excited states in quantum field theory. Part I. Free
theories, twist fields and qubits, arXiv:2203.12556 [INSPIRE].

[62] O.A. Castro-Alvaredo, C. De Fazio, B. Doyon and I.M. Szécsényi, Entanglement Content of
Quasiparticle Excitations, Phys. Rev. Lett. 121 (2018) 170602 [arXiv:1805.04948]
[INSPIRE].

[63] O.A. Castro-Alvaredo, C. De Fazio, B. Doyon and I.M. Szécsényi, Entanglement content of
quantum particle excitations. Part I. Free field theory, JHEP 10 (2018) 039
[arXiv:1806.03247] [INSPIRE].

[64] O.A. Castro-Alvaredo, C. De Fazio, B. Doyon and I.M. Szécsényi, Entanglement content of
quantum particle excitations. Part II. Disconnected regions and logarithmic negativity, JHEP
11 (2019) 058 [arXiv:1904.01035] [INSPIRE].

[65] O.A. Castro-Alvaredo, C. De Fazio, B. Doyon and I.M. Szécsényi, Entanglement Content of
Quantum Particle Excitations. Part III. Graph Partition Functions, J. Math. Phys. 60
(2019) 082301 [arXiv:1904.02615] [INSPIRE].

[66] A. Jafarizadeh and M.A. Rajabpour, Bipartite entanglement entropy of the excited states of
free fermions and harmonic oscillators, Phys. Rev. B 100 (2019) 165135
[arXiv:1907.09806] [INSPIRE].

[67] J. Zhang and M.A. Rajabpour, Excited state Rényi entropy and subsystem distance in
two-dimensional non-compact bosonic theory. Part I. Single-particle states, JHEP 12 (2020)
160 [arXiv:2009.00719] [INSPIRE].

[68] J. Zhang and M.A. Rajabpour, Universal Rényi entanglement entropy of quasiparticle
excitations, Europhys. Lett. 135 (2021) 60001 [arXiv:2010.13973] [INSPIRE].

[69] J. Zhang and M.A. Rajabpour, Corrections to universal Rényi entropy in quasiparticle excited
states of quantum chains, J. Stat. Mech. 2109 (2021) 093101 [arXiv:2010.16348] [INSPIRE].

– 32 –

https://doi.org/10.1007/JHEP08(2022)146
https://arxiv.org/abs/2205.09532
https://inspirehep.net/literature/2085221
https://doi.org/10.1103/PhysRevB.102.014455
https://arxiv.org/abs/2005.03331
https://inspirehep.net/literature/1794817
https://doi.org/10.1103/PhysRevLett.124.243601
https://doi.org/10.1103/PhysRevLett.124.243601
https://arxiv.org/abs/2003.04849
https://inspirehep.net/literature/1801987
https://doi.org/10.1016/j.aop.2021.168481
https://arxiv.org/abs/2012.12436
https://inspirehep.net/literature/1838127
https://doi.org/10.1103/PhysRevResearch.2.043191
https://arxiv.org/abs/2005.13026
https://inspirehep.net/literature/1828931
https://doi.org/10.1103/PhysRevB.99.115429
https://doi.org/10.1103/PhysRevB.99.115429
https://arxiv.org/abs/1810.01853
https://doi.org/10.1103/PhysRevB.102.235157
https://arxiv.org/abs/2008.09332
https://inspirehep.net/literature/1812829
https://arxiv.org/abs/2203.12556
https://inspirehep.net/literature/2057547
https://doi.org/10.1103/PhysRevLett.121.170602
https://arxiv.org/abs/1805.04948
https://inspirehep.net/literature/1672966
https://doi.org/10.1007/JHEP10(2018)039
https://arxiv.org/abs/arXiv:1806.03247
https://inspirehep.net/1677193
https://doi.org/10.1007/JHEP11(2019)058
https://doi.org/10.1007/JHEP11(2019)058
https://arxiv.org/abs/arXiv:1904.01035
https://inspirehep.net/1727792
https://doi.org/10.1063/1.5098892
https://doi.org/10.1063/1.5098892
https://arxiv.org/abs/1904.02615
https://inspirehep.net/literature/1728121
https://doi.org/10.1103/PhysRevB.100.165135
https://arxiv.org/abs/1907.09806
https://inspirehep.net/literature/1745955
https://doi.org/10.1007/JHEP12(2020)160
https://doi.org/10.1007/JHEP12(2020)160
https://arxiv.org/abs/arXiv:2009.00719
https://inspirehep.net/1814619
https://doi.org/10.1209/0295-5075/ac130e
https://arxiv.org/abs/2010.13973
https://inspirehep.net/literature/1826450
https://doi.org/10.1088/1742-5468/ac1f28
https://arxiv.org/abs/2010.16348
https://inspirehep.net/literature/1827369


J
H
E
P
1
2
(
2
0
2
2
)
1
2
8

[70] J. Zhang and M.A. Rajabpour, Excited state Rényi entropy and subsystem distance in
two-dimensional non-compact bosonic theory. Part II. Multi-particle states, JHEP 08 (2021)
106 [arXiv:2011.11006] [INSPIRE].

[71] J. Zhang and M.A. Rajabpour, Entanglement of magnon excitations in spin chains, JHEP
02 (2022) 072 [arXiv:2109.12826].

[72] G. Mussardo and J. Viti, The ~→ 0 Limit of the Entanglement Entropy, Phys. Rev. A 105
(2022) 032404.

[73] J. Mölter, T. Barthel, U. Schollwöck and V. Alba, Bound states and entanglement in the
excited states of quantum spin chains, J. Stat. Mech. 1410 (2014) P10029
[arXiv:1407.0066] [INSPIRE].

[74] I. Peschel, Calculation of reduced density matrices from correlation functions, J. Phys. A 36
(2003) L205 [cond-mat/0212631].

[75] E. Witten, APS Medal for Exceptional Achievement in Research: Invited article on
entanglement properties of quantum field theory, Rev. Mod. Phys. 90 (2018) 045003
[arXiv:1803.04993] [INSPIRE].

[76] F.C. Alcaraz, M. Ibáñez Berganza and G. Sierra, Entanglement of low-energy excitations in
conformal field theory, Phys. Rev. Lett. 106 (2011) 201601.

[77] M. Ibáñez Berganza, F.C. Alcaraz and G. Sierra, Entanglement of excited states in critical
spin chains, J. Stat. Mech. 1201 (2012) 01016 [arXiv:1109.5673].

[78] L.-Y. Hung, R.C. Myers and M. Smolkin, Twist operators in higher dimensions, JHEP 10
(2014) 178 [arXiv:1407.6429].

[79] A. Svesko, Extending charged holographic Rényi entropy, Class. Quant. Grav. 38 (2021)
135024 [arXiv:2011.08258] [INSPIRE].

[80] J. Long, Area law of connected correlation function in higher dimensional conformal field
theory, JHEP 02 (2021) 110 [arXiv:2007.15380] [INSPIRE].

[81] R. Dijkgraaf, C. Vafa, E.P. Verlinde and H.L. Verlinde, The Operator Algebra of Orbifold
Models, Commun. Math. Phys. 123 (1989) 485 [INSPIRE].

[82] T. Dupic, B. Estienne and Y. Ikhlef, Entanglement entropies of minimal models from
null-vectors, SciPost Phys. 4 (2018) 031 [arXiv:1709.09270] [INSPIRE].

– 33 –

https://doi.org/10.1007/JHEP08(2021)106
https://doi.org/10.1007/JHEP08(2021)106
https://arxiv.org/abs/arXiv:2011.11006
https://inspirehep.net/1832540
https://doi.org/10.1007/JHEP02(2022)072
https://doi.org/10.1007/JHEP02(2022)072
https://arxiv.org/abs/2109.12826
https://doi.org/10.1103/physreva.105.032404
https://doi.org/10.1103/physreva.105.032404
https://doi.org/10.1088/1742-5468/2014/10/P10029
https://arxiv.org/abs/1407.0066
https://inspirehep.net/literature/1304349
https://doi.org/10.1088/0305-4470/36/14/101
https://doi.org/10.1088/0305-4470/36/14/101
https://arxiv.org/abs/cond-mat/0212631
https://doi.org/10.1103/RevModPhys.90.045003
https://arxiv.org/abs/1803.04993
https://inspirehep.net/literature/1662490
https://doi.org/10.1103/physrevlett.106.201601
https://doi.org/10.1088/1742-5468/2012/01/P01016
https://arxiv.org/abs/1109.5673
https://doi.org/10.1007/JHEP10(2014)178
https://doi.org/10.1007/JHEP10(2014)178
https://arxiv.org/abs/1407.6429
https://doi.org/10.1088/1361-6382/abfed4
https://doi.org/10.1088/1361-6382/abfed4
https://arxiv.org/abs/2011.08258
https://inspirehep.net/literature/1830606
https://doi.org/10.1007/JHEP02(2021)110
https://arxiv.org/abs/2007.15380
https://inspirehep.net/literature/1809485
https://doi.org/10.1007/BF01238812
https://inspirehep.net/literature/24933
https://doi.org/10.21468/SciPostPhys.4.6.031
https://arxiv.org/abs/1709.09270
https://inspirehep.net/literature/1626133

	Introduction
	Numerical results
	1D lattice Fermi gas
	Complex free bosons and the wave-functional method
	The wave-functional method

	The harmonic chain
	Numerical results


	Magnon states
	One-magnon states
	Two-magnon states


	Further generalisations: higher dimensions
	Excited states and operator algebra
	Replica construction for symmetry resolved entanglement
	Single-particle state

	Conclusions
	Trace calculations via wave functional method
	Zero flux
	Non-trivial flux insertion


