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A B S T R A C T

This thesis considers the determination of the mortality rate qx from full data for the year 
of age x to x+1 in which some lives enter or leave observation during the year of age. It 
commences with a survey of previous literature concerned with mortality rate estimators.

New aspects of the conventional actuarial, method of moments, product limit and maximum 
likelihood mortality rate estimators are identified and discussed. In particular, a fresh 
rationale of the conventional actuarial estimator is developed and it is argued that Hoem 
(1984) is incorrect in claiming that this estimator is flawed. It is also argued that Hoem’s 
suggested approximated “operational moment relations” estimators are not satisfactory.

The rectangular hyperbolic mortality law, a two-parameter mortality law embracing three 
common mortality assumptions as special cases, is developed and investigated. Its 
application in the estimation of qx is considered, including by means of the maximum 
likelihood estimation of the two parameters, a method included in the later simulations. 
Similar attention is also given to the Gompertz law.

A general theory of mortality rate estimators is developed which generates most, if not all, 
established mortality rate estimators that assume parametric mortality laws, particular 
estimators being obtained by the choice of appropriate weighting functions applied to the 
elements of the year of age. It is shown that all estimators, assuming a one-parameter 
mortality law, obtained from the general theory are asymptotically unbiased, when the 
correct mortality law has been assumed. Use of the general theory also identifies the 
mortality law assumptions for which different mortality rate estimators coincide.

A number of new mortality rate estimators are identified in the thesis, some through 
application of the general theory.

Computer models are used to generate simulated mortality data in order to examine the 
performance of a wide range of mortality rate estimators, including a number developed in 
the thesis. Among other things, the results support the view that the conventional actuarial 
estimator is not flawed.
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C H A P T ER  I

Introduction

1.1 Introduction

The author of this thesis had been intrigued by the conclusion drawn by Hoem (1984), that 

there was a flaw in conventional exposed-to-risk theory, and although there seemed little 

alternative initially but to accept this disconcerting view, it gave a strong feeling of unease, 

particularly about the apparently accepted interpretation of the “conventional actuarial 

estimator”. This estimator generally seems to be regarded as arising from a modified 

application of the method of moments, the essense of Hoem’s argument being that the 

modification is unsatisfactory.

The author began to conjecture that it was not adequate to view the conventional estimator 

as a modified form of the method of moments estimator and that a better understanding of 

the conventional estimator ought to be possible.

It is believed that this has been achieved and one consequence is a conviction, contrary to 

Hoem (1984), that the conventional actuarial estimator is not flawed.

A number of further developments have flowed from the intellectual investigations 

stimulated by this initial work and are discussed in this thesis:

(a) The approximated “operational moment relations” estimators proposed by Hoem 

(1984) are not believed to be satisfactory.

(b) New aspects of the conventional actuarial, method of moments, product limit and 

maximum likelihood mortality rate estimators are identified and discussed.

(c) The rectangular hyperbolic mortality law, a two parameter mortality law embracing 

three common mortality assumptions as special cases, is developed and investigated.

(d) A general theory of mortality rate estimators is developed which enables most 

mortality rate estimators to be derived by a common method, each distinctive 

estimator being created by the particular choice of a variable weighting function.

-  13 -



(e) A number of new mortality rate estimators are developed, some through application 

of the general theory.

(f) The general theory leads to theoretical results concerning the asymptotic 

unbiasedness, or otherwise, of mortality rate estimators derived using the general 

theory, when one-parameter mortality laws apply, and to results concerning the 

mortality assumptions under which different mortality rate estimators coincide.

(g) Computer models are used to generate simulated mortality data in order to examine 

the performance of a wide range of mortality rate estimators, including a number 

developed in the thesis. Among other things, the results support the view that the 

conventional actuarial estimator is not flawed.

The development of the general theory of mortality rate estimators is regarded by the 

author as the most important result of the research reported in this thesis.

1.2 Structure of the thesis

Chapter 1 of the thesis introduces the area of research and presents a survey and discussion 

of previous literature concerned with mortality rate estimators.

Chapter 2 considers aspects of the conventional actuarial estimator and of the method of 

moments, product limit and maximum likelihood mortality rate estimators. Particular 

attention is paid to their rationales and, where appropriate, to the comments of Hoem 

(1984) who has alleged that there is a flaw in conventional exposed-to-risk theory. A further 

estimator design is also considered.

Chapter 3 introduces the rectangular hyperbolic mortality distribution, a two-parameter 

mortality law that embraces three common mortality assumptions as special cases. The 

properties of the distribution are investigated and it is applied in association with various 

statistical criteria to produce formulae for the estimation of qx . Similar attention is also 

given to the Gompertz law.

Chapter 4 develops a general theory of mortality rate estimators which generates most, if 

not all, established mortality rate estimators that assume parametric mortality laws, 

particular estimators being obtained by the choice of appropriate weighting functions 

applied to the elements of the year of age. A wide range of such functions and their 

corresponding estimators are examined. Other theoretical implications of the general theory 
are also considered.

-  14 -



Chapter 5 describes the simulation studies that were undertaken in association with the 

theoretical work and presents a detailed review and analysis of the results obtained.

Chapter 6 sets out the important conclusions from the research.

Appendix I  shows the derivation of a number of results, quoted in Chapter 3, relating to the 

rectangular hyperbolic mortality distribution.

Appendix II  gives the printouts of the simulations, together with a key to the details shown. 

Finally, the “references and bibliography” section follows.

1.3 Preliminary assumptions and definitions

This thesis will consider the determination from observed data of the value of the mortality 

rate qx , ie the proportion of lives in the life table aged x exact who will die before reaching 

age x+1.

Throughout it will be assumed that full data is available about movements in and out of the 

observed population during the year of age from age x to age x+1.

Therefore we assume that, for the ith life in the investigation, we know exactly the age x+Sj 

at which the life entered the investigation (0 < ŝ  <  1) and the age x+b at which the life left 

the investigation, and whether this was due to death or withdrawal (0 <  b < 1) or by 

survival (t- = 1).

Generally we will not distinguish between withdrawals whose exit at the observed value of b 

was scheduled to occur, of which “enders” in UK terminology is a major example, and those 

whose exit at the observed value of b was not scheduled in advance.

Throughout we will assume that the behaviour of a life is independent of the behaviour of 

any other life and that the force of mortality is a function only of age and is independent of 

any forces or influences causing a life to enter the investigation or to leave for a non-death 
reason.

Let us define the following symbols to represent various (sub) sets of the lives involved in an 

investigation to determine the mortality rate qx for a certain age:

-  15 -



L is the subset of lives who entered the investigation at age x

I is the subset of lives who entered the investigation at age x-fs- for any s- such that 

0 < S j <  1

D is the subset of lives who left the investigation by death

W is the subset of lives who left the investigation by withdrawal

S is the subset of lives who left the investigation by survival to age x+1

N is the set of all lives who are involved in the investigation in any capacity at some

point.

When the context is appropriate, let L, I, D, W, S and N also represent the number of lives 

in each (sub) set.

We can immediately note that:

N =  L + I =  W + D + S ( 1.1)

1.4 The “actuarial estimator”

Traditionally, given the data described, British and North American actuaries have 

calculated qx using formulae based on “exposed-to-risk” techniques. As any past or present 

student of exposed-to-risk would be able to confirm, an appropriate formula using the data 

described would be:

SD
si) +  £ ( ‘i -  si)w

( 1.2)

In this expression for qx , it can be seen that the divisor (known as the “exposed-to-risk”)

can be “interpreted” in terms of exposure time. Thus the interpretation could be made that

survivors and withdrawals are “exposed” for the amount of time from the points at which

they entered the year of age up to their points of exit, ^  (1 -  s.) and (t- -  s-)
S 1 W  1 1

respectively, and that deaths are “exposed” for the amount of time from their points of

entry up to the end of the year of age QT (1 -  s-)).
D 1
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There are many texts giving an exposition of the techniques of exposed-to-risk including 

Gershenson (1961), Benjamin and Haycocks (1970), Batten (1978), Benjamin and Pollard 

(1980) and Puzey (1986).

Traditionally however, it would have been unusual for exact values of s- and b to be used in 

an exposed-to-risk formula of this type because, firstly, the information was unlikely to be 

collected in this detail and, secondly, if it had been available, its processing as precise 

information would very probably have been far too labour intensive to be contemplated. 

And so, if the grouping assumptions involved appeared satisfactory, it is likely that equation 

(1.2) would have been modified to:

fix =  ------ — T—L + |I  -  |W

Viewed from the broader academic perspective, it is a little disconcerting that actuaries do 

not appear to have felt any need to create a name for this form of estimator of qx .

However non-actuarial users of the estimator have noted the long history of use of this 

method of calculation within the actuarial profession and, in one form or another, the 

estimator has been referred to in recent decades by non-actuaries as the “actuarial 

estimator” or the method of estimation as the “actuarial method”. The description “life 

table estimator” has also been used. Seal (1977) attributes the name “actuarial method” to 

the clinical researchers Berkson and Gage (1950).

Generally, by the names “actuarial method” or “actuarial estimator” etc, non-actuarial 

users, usually working in the fields of clinical, biological or reliability research, will be 

referring to a grouped function of the type in expression (1.3) and, because of the nature of 

the experiments or observations concerned, there are commonly no individuals entering the 

investigation during the year of age, so that the “actuarial estimator” is frequently expressed 

by non-actuaries in the form:

dx = (1.4)

where N =  L + I =  W + D +  S

Presentation of the “actuarial estimator”, “actuarial method” or “life table estimator” in 

these broader research contexts can be found in Elandt-Johnson and Johnson (1980), Nelson 

(1982) and Kalbfleisch and Prentice (1980).
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1.5 The Cantelli rationale of the “actuarial estim ator”

Actuaries have been using formulae of the “actuarial estimator” type for a very long time, 

and it appears clear that this very successful method has existed for much longer than its 

most commonly accepted rationale.

As Seal (1954, 1961) reports, the first complete exposition of this rationale seems to have 

been given by Cantelli (1914) and therefore, for convenience, we will refer to the rationale as 

the “Cantelli rationale”. This is not a description in general use.

The Cantelli rationale for deriving the “actuarial estimator” in the form of equation (1.2) 

will now be described. As will be seen, it involves two important steps.

Let us consider the mortality investigation. The number of deaths expected between age x 

and x+1 from the lives entering the investigation is:

E i-ŝ x+s, a-5)
LI

where the summation is taken over those lives who are members of either the subset L or 

the subset I (all the lives in fact).

However some lives withdraw during the year of age and the number of deaths that would 

have been expected to occur after withdrawal and before age x+1 in respect of these 

withdrawals is:

E l-t^x+t,- (L6)
W

The first important step in calculating the conventional actuarial estimator is to equate the 

observed number of deaths D to:

E l-s qx+s- E l-t,.qx+ ti (1-7)
LI W

This first step clearly has the potential for controversy since at first sight it appears to be an 

attempt to apply the “method of moments” to the distribution of the number of deaths in 

the investigation, namely by equating first moments:

expected deaths =  actual deaths ,

whereas a few moments’ thought will make it clear that expected deaths are not being
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determined in accordance with conventional principles of calculating expected values, 

because the number of deaths expected to be lost from observation due to lives having 

withdrawn is being calculated as a function of the actual withdrawals which occur, and not 

as purely a function of the probability distributions involved.

This potentially controversial step appears to have been generally accepted in the actuarial 

profession although it has met strong and consistent criticism from Seal (1954, 1961, 1981b) 

and was the root of the paper by Hoem (1984), dramatically entitled “A flaw in actuarial 

exposed-to-risk theory”. In Chapter 2 of this thesis, it will be argued that the method used 

to calculate expected deaths in the Cantelli rationale forms part of a satisfactory method of 

estimation in its own right, and the simulation results reported in Chapter 5 appear to 

confirm this.

The second important step in the Cantelli rationale is to develop the relationship:

E l-s qx+st- -  E l- tfqx+t,- =  D (L8)
LI W

with the introduction of a mortality assumption, by expressing the probabilities of the form 

_̂rqx_l_r as a function of qx and r. In the Cantelli rationale, the particular formula adopted

for l-rqx+r is:

l-rqx+r =  (! -  r)*qx (1-9)

This expression is known as the Balducci hypothesis or assumption, a name which it appears 

to have acquired as a result of a letter written by Balducci (1921) to the Journal of the 

Institute of Actuaries, in which, among other things, he demonstrated that the conventional 

actuarial method for calculating qx is obtained when the step summarised in equation (1.8) 

was performed and followed by the assumption of the relationship (1.9).

As already implied, Balducci’s letter was not the first exposition of the relationship (1.9) in 

this context, the complete rationale having already been set out of course by Cantelli (1914) 

and also, as London (1988) reports, having already been discussed by Balducci himself 

(1917).

The implication of the Balducci assumption is that mortality during the year of age from x 

to x+1 follows the following law:

^x+t
qx

1 (1 t)*qx
0 < t< l (1.10)
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It can be seen that this mortality law implies that falls over the year of age as t

increases. Usually this is unrealistic but has been tolerated because of the very convenient 

formulae to which the assumption leads and because the effect of using the unrealistic 

assumption has not been regarded as having any seriously deleterious effect, in practical 

terms, in estimating qx .

Obviously it is the unreality of the Balducci assumption that is the main objection raised by 

critics of the second step in the rationale.

Thus, applying the Balducci assumption to complete the derivation of the “full data 

actuarial estimator” (to use the description coined in Broffitt (1984)), we have:

d  =  qx (f ~  si) ~  qx E  (i ~  li) (L11)
LI W

B 1 -  si) -  E d  -  V
LI W

E d  -  si) +  E d i  -  si)
SD W

The Cantelli rationale appears to have become well established among British and North 

American actuaries by at least the 1940’s. Expositions of the Cantelli rationale are in effect 

given in the papers by Wolfenden (1942), Beers (1943), Marshall (1945) and Bailey and 

Haycocks (1947), and in the texts by Gershenson (1961), Benjamin and Haycocks (1971), 

Batten (1978), Benjamin and Pollard (1980) and Puzey (1986).

1.6 The contribution of Wittstein ('18621

In fact Seal (1977) reports that the equating of observed deaths to expected deaths, with 

expected deaths being calculated on similar principles to those subsequently employed in the 

Cantelli rationale, had been described by Wittstein (1862).

As Seal (1977) reports, Wittstein (1862) considers a year of age running from age x to age 

x+1. He assumes that A lives start the investigation at exact age x, that B lives enter the 

investigation during the year of age and that C lives “escape from observation” during the 

year of age. It is assumed that d deaths occur during the year of age to this changing group 

of lives.

-  20 -



As Seal (1954) confirms, Wittstein (1862) aggregates deterministic and random exits from 

observation.

Seal (1977) describes further how Wittstein assumes that the two components of the 

difference (B -  C) are each distributed uniformly over the year of age, so that (B -  C) <5t net 

exits are assumed to occur in the time element <5t at age x+t (0 < t <  1). Wittstein gives an 

expression for the expected number of lives remaining under observation at age x+1 and 

equates this to the actual number of lives present at age x+1:

A(1 — qx) + (B -  C) i 1 i 1 _  l-tqx+t) dt =  A + B -  C -  d (1.13)

This is of course equivalent to:

A qx + (B -  C) l-tqx+t dt (1.14)

Thus it can be seen that Wittstein has determined expected deaths using observed non-death 

movements, and equated this expression to actual deaths applying similar principles to those 

used subsequently in the Cantelli rationale.

As Seal (1977) comments, Wittstein uses his equation to estimate qx , having first expressed 

j_tqx_l_£ (0< t < 1) in terms of qx.

Seal (1977) reports that Wittstein chose two alternatives:

(I-

l-tqx+t =  ! - ( ! -  Sx)1 1 i 1-16)

It can be seen that equation (1.15) assumes the uniform distribution of deaths over the year 

of age, and equation (1.16) assumes a constant force of mortality over the year of age.

Seal (1977) further reports that, if either expression (1.15) or (1.16) is substituted in 

equation (1.13) and if the “log” item which arises in either integration is developed as a 

series, the following expression is obtained as a first approximation, as may be readily 

verified:

l-tqx+t
9x (1 ~  t) 
1 — t Sx

Sx A +  i (B -  C) (1.17)
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Further Wittstein pointed out that the first neglected term is:

-  KB -  c) d2
{A +  1 (B -  C)}3

(1.18)

when equation (1.15) is used and that the first neglected term is half of this if equation

(1.16) is used.

As Seal (1977) comments, in actuarial practice the value of expression (1.18) would be very 

small.

Thus Wittstein (1862) has derived a form of the actuarial estimator, namely expression

(1.17) , for the scenario he considers, but his expression arises as an approximate solution, 

reflecting the fact that he has not used the Balducci assumption.

Hoem (1984) reports that, in a paper entitled “The German and Italian contributions to 

exposed-to-risk: a historical review” then expected to appear, Seal had reported that 

Wittstein (1862) had first suggested the Balducci assumption, although the precise context 

is not specified. However the expected paper by Seal does not appear to have been 

published. In his published papers, Seal (1954, 1961, 1977, 1981a) does not appear to 

associate the Balducci assumption with Wittstein (1862), and this thesis will rely on the 

accounts given in those sources.

1.7 Seal’s criticism of the Cantelli rationale, and his alternative approach

Seal (1961) regards the Cantelli rationale as incorrect because it does not apply the method 

of moments principle to the number of deaths in the investigation and he comments in 

particular on the exposure which is given to deaths among “prospective existings”; this 

refers to deaths occurring to lives who have been scheduled to leave the year of age before 

reaching age x-fl, as for example in the case of lives who would have been enders before age 

x+1, if they had not died first.

It will be seen that in equation (1.2), which is of course consistent with the Cantelli 

rationale, a death which had been a “prospective existing” will receive “exposure” until the 

end of the year of age, notwithstanding the fact that, had he lived, the life could only have 

remained at risk of dying until his scheduled exit date, before the end of the year of age.

Seal plainly regards as unreasonable this exposure which is given to deaths among 

“prospective existings” as a consequence of the Cantelli rationale.
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A contrary view, shared by the author of this thesis, is that the apparent exposure times 

arise fortuitously from the method of estimation concerned and are of no significance for 

individual lives, simply being convenient figures that arise at an intermediate stage in the 

calculation of the estimator, having an apparent but only partial interpretation in terms of 

“exposure” time. Batten (1978), for example, cautions his readers not to search for a logical 

interpretation of the result, advising that “the tendency of students to think of the result as 

illogical must be tempered with the realization that it is merely an automatic mathematical 

consequence of an assumption as to the pattern of mortality”, although of course an equally 

essential factor is the statistical criterion used in estimating the mortality rate.

Seal (1954, 1961) argues that in a single decrement environment, an “unbiased” estimate of 

qx is obtained by calculating:

D
E (ui - si)
N

where u- is the scheduled exit age of the ith life (0 < i < 1).

(1.19)

This approach implies that the “exposures per life”, ie the exposure times allocated to each 

individual life, are precisely those implied under the Cantelli rationale, except that a 

“prospective existing” which dies before the scheduled exit date will only be given exposure 

up to the scheduled exit date.

Unfortunately, the derivation of this estimator, using the method of moments approach, 

equating expected deaths to actual deaths, requires the relationship:

E ui-siqx+Si - D
N

( 1.20)

to be modified to:

q x E  (ui _  si) =  D
N

( 1.21)

which involves the purported relationship:

Uj-s^x+s, =  (ui -  si)*9x (1-22)

As Broffitt and Klugman (1983) observe and Broffitt (1984) again states, there is no 

mortality distribution that satisfies this relationship. Indeed for general values of Sj and m,
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it is a relationship which is self-contradictory; for example, consider a demonstration given 

by Slawski (1991):

u.-s.qx+s,- “  rr siqx-|-sj + rr s,.Px+ s. * ur rt.qx+r,. (1.23)

Substitution from equation (1.22) gives:

ur s,qx+ s. =  (ri -  s.) qx +  (1 -  (rj -  Sj) qx ) (m -  r;) qx (1.24)

ur s,qx+s,. =  (ui -  si) qx +  (rj -  s.) (u; -  rj) (qx )2 (1.25)

which contradicts equation (1.22) (unless qx = 0).

However if s- = 0 for all i, the relationship (1.22) is then true if the uniform distribution of 

deaths applies, while if Uj = 1 for all i, the relationship (1.22) is then true if the Balducci 

assumption applies. If both Sj = 0 and m = 1 for all i, the relationship (1.22) is then 

trivially true, but we are then considering a simple binomial distribution of deaths. 

However for general values of Sj and m, the relationship (1.22) appears never to be true 

(unless qx = 0).

Seal (1954, 1961) describes his proposed estimator as “unbiased” but as, London (1988) 

states, it is in fact only “unbiased” under the approximation (1.22) used to derive it, and it 

is actually biased to the extent that the expression (1.22) deviates from the expression 

applicable under the mortality distribution to which the sample is actually subject.

When several forces of decrement operate, Seal (1954) suggests that a similar format of 

estimator be used to estimate the dependent rates of decrement; then the numerator is equal 

to the number of exits by the particular mode of decrement concerned and the exit ages on 

which the denominator is based are those scheduled to occur if none of the modes of 

decrement have operated.

In this application, the relationship (1.22) is imposed on the dependent rates, eg

By a letter written initially to the Society of Actuaries newsletter “The Actuary”, Seal 

(1981b, 1984) stimulated a brief debate in the pages of ARCH concerning the Cantelli 

rationale and in particular the treatment of deaths among “prospective existings”, but there 

does not appear to have been very much enthusiasm for Seal’s position among the small

(1.26)

-  24 -



number of correspondents, Batten (1983), Beekman (1983), Broffitt and Klugman (1983), 

Edwards (1983) and Sohn (1983), to whom Seal (1984) responded in a further published 

letter. However, in giving a lucid discussion of method of moments procedures and of the 

criticisms of the Cantelli rationale for not using the method of moments, London (1988) is 

sympathetic to Seal’s approach. It is a sympathy not shared in this thesis, which does not 

regard the non-use of the method of moments procedure by the Cantelli rationale as a 

matter for criticism.

Basically the situation appears to be that the concept of exposure time does not arise 

naturally from the application of the method of moments to the number of deaths in the 

investigation, and in order to create quantities interpretable, at least in part, as exposure 

time, it is necessary either to introduce an approximation which in general will never be 

correct for any mortality distribution, as in Seal’s approach, or to adopt an alternative to 

the method of moments as in Cantelli’s rationale.

In referring to the method of moments, the wry thought occurs that it is that we are 

seeking to estimate and yet it is the first moment of another variable, the number of deaths 

in the investigation, that we apparently regard as so central to our approach, and which 

leads to some methods of estimating qx being designated as “method of moments”. There 

does not appear to be a tenable approach actually based on the first moment of qx itself.

1.8 Other mortality assumptions: G reville 11978)

Batten (1978) indicated that the equations (1.27) and (1.28), which follow, arise from the 

Cantelli rationale if the Balducci assumption is replaced by either the assumption of a 

uniform distribution of deaths (equation (1.27)) or the assumption of a constant force of 

mortality (equation (1.28)). The expression relating to the uniform distribution of deaths 

had also been indicated by Gershenson (1961). Equations (1.27) and (1.28) are also of 

course closely related to the equations which Wittstein (1862) developed by substituting 

equations (1.15) and (1.16) respectively into equation (1.13).

Lfix + £
I

(1 sj) fix ^  0  -  tj) qx 
2 ^  i -  t
wsjqx ¡qx

=  D (1.27)

Lqx + £  {i — (i — qx) '}
w

(1 qx)1"1’} D (1.28)

(L denotes the number of lives who start the year of age at age x exact, as was defined in
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Section 1.3).

As is apparent, expressions (1.27) and (1.28) both provide equations in qx which in general 

can only be solved by numerical methods and there is no evident possibility of formulating a 

set of “exposures-per-life” which could be used to calculate a quantity which on division into 

the number of observed deaths would give an estimate of qx . This again reflects the 

experience of Wittstein who produced approximate solutions.

Greville (1978) sought modifications of the “actuarial method” in which the generally 

unrealistic Balducci assumption was replaced by either the uniform distribution of deaths 

assumption or the “constant p” assumption but with the system of “exposures-per-life” still 

retained in a suitably modified form, thereby keeping the convenience of calculating an 

exposed-to-risk in order to evaluate qx .

He reported two different sets of possible “exposures-per-life” for the uniform distribution of 

deaths assumption, one of which was unfortunately impracticable in application (as 

discussed in Section 2.3 of this thesis) though the other, proposed by D Schuette, was 

certainly practicable (as also discussed in Section 2.3 of this thesis), and in addition a set for 

the “constant /i” assumption that provided an exposed-to-risk to estimate /i, in fact the 

familiar “central” exposed-to-risk.

Unfortunately, it is probably fair to say that the derivation of all of these alternative sets of 

“exposures-per-life” owed more to the ingenuity of the algebraic manipulation or to the 

creative interpretation of algebraic expressions than to consistent adherence to a statistical 

criterion, and the precise statistical criterion by which each procedure estimated qx was not 

apparent from the derivation, nor established in the paper.

The starting point of all of the new derivations was to equate actual deaths with expected 

deaths, the latter being determined as in the Cantelli rationale, but subject to the revised 

mortality assumption. However in each case the Cantelli rationale is not maintained due to 

the subsequent algebraic manipulation or to the way in which relevant expressions are 

subsequently interpreted.

The reader is referred to Greville (1978) for the full details of these derivations, although an 

indication of the points of departure from the Cantelli rationale is briefly given below.

In the case where the “uniform distribution of deaths” assumption leads to the impractical 

set of “exposures per life” (version (a) in Section 2.3 of this thesis), the following sequence of 

development is applied to the deaths between ages x+t and x+1, associated with lives 

entering/exiting at age x-ft:
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expected” deaths =  actual deaths (1.29)

=i- (“expected” deaths)*(l — ^qx ) =  (actual deaths)*(l — tqx) (1.30)

=> (“expected” deaths)*(l — tqx) + (actual deaths)*tqx =  actual deaths (1.31)

At this point, the “uniform distribution of deaths” mortality assumption is introduced and 

Greville shows that the left-hand side of equation (1.31) can then be re-expressed in the 

form:

“exposure” *qx (1.32)

By interpreting the expression for “exposure”, Greville obtains a set of suggested exposures 

per life. However the transfer of the “(actual deat,hs)*tqx” item in equation (1.30) to the 

left-hand side, to give equation (1.31), means that the expression implied for expected 

deaths on the left-hand side of equation (1.31) will no longer conform to the original 

Cantelli definition when exposures relating to different values of t are added.

In the case where the “uniform distribution of deaths” assumption is applied in the method 

proposed by D Schuette (version (b) in Section 2.3 of this thesis), the method commences 

with the following representation of the Cantelli principle:

D =
’1

h(x + t) /¿x+t dt (1.33)

where h(x+t) denotes the number of persons under observation at exact age x-ft.

With the introduction of the “uniform distribution of deaths” mortality assumption, the 

following expression for Ex in “Ex*qx =  D” is obtained:

Ex
'l

h(x -f t) dt +
J o

'l
. o

th(x + t) /ix_j_t dt (1.34)

In obtaining sets of “exposures per life” from this approach, Greville (1978) interprets the 

second integral in terms of the “exposure per life” to be associated with actual deaths 

whereas it is actually an expression relating to the exposure of lives expected to die. This 

means that the original determination of “expected” deaths on Cantelli principles has been 

modified by this interpretation of the exposure.

In the case where the “constant /i” assumption is used, Greville departs from Cantelli
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principles in his interpretation of the “expected” number of deaths per life after age x+t 

associated with lives entering/exiting at age x+t, namely in his interpretation of the 

expression:

'l-t
. o

ri-t
sPx+t px+t+s ds =  ^ sPx+t ds (1.35)

Greville interprets the right-hand side in terms of “p times actual exposure”, ie in terms of 

the alleged effect on the quantity p Ex , after age x+t, of these lives who enter/exit at age 

x+t. Thus a quantity relating to the expected exposure of lives is interpreted in terms of the 

actual exposure of lives and again the original determination of “expected” deaths on 

Cantelli principles has been modified by the way in which the exposure is interpreted.

Thus these new methods of estimation were not on the same statistical criteria as the 

Cantelli rationale used for the original Balducci based “actuarial method”, and it also 

explains how it was possible for Greville to obtain two different sets of “exposures-per-life” 

when using the uniform distribution of deaths assumption. The original Cantelli principle 

had been modified in two different ways, so as to produce estimation calculations which 

conformed to two different statistical criteria. Greville discusses the difference in terms of 

the mechanics of the calculations, but does not refer to this more fundamental aspect.

With regard to the central exposed-to-risk when used to estimate p, assumed constant, and 

hence to estimate qx , it can be readily shown, as in Section 2.22 of this thesis, that this 

arises from the combination of the criterion of “maximum likelihood” with the “constant pi” 

assumption and it is apparent from equation (1.28) that the same estimator is not obtained 

by correctly combining the statistical principle in the Cantelli rationale with the “constant 

p” mortality assumption.

Further discussion of the “exposures-per-life” derived in Greville (1978) will be given in 

Chapter 2 of this thesis (Sections 2.3-2.4).

Greville (1978) also gives a description of the product limit estimator.

1.9 floem’s criticism of the “actuarial estimator”

Hoem (1980, 1984) responded to Greville (1978) in a letter to ARCH, published in 1980, 

and subsequently expanded his comments in his 1984 paper.

In effect Hoem (1980, 1984) pointed out that the established derivation of the conventional 

actuarial estimator of qx did not conform to the method of moments applied to the number
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of deaths in the investigation, and he concluded that the derivation of this estimator uses a 

faulty argument, stating the fault to be that entries and exits had been incorrectly treated 

symmetrically in that entries and (non-death) exits were treated as contributing expected 

deaths conditionally on being respectively entries and exits, whereas for correct expectations, 

expected deaths not observed after exits should be conditional on lives being entries, not 

exits.

In this regard of course, Hoem (1984) makes essentially similar points as in Seal (1954, 

1961).

Hoem is uncompromising in rejecting the “faulty argument” and concludes that: “correct 

reasoning leads to much more complicated formulas, which makes the conventional 

procedures lose their appeal”. He suggests the use of the central exposed-to-risk to estimate 

p under the assumption that the force of mortality is constant over the year of age, this 

procedure being derived by maximum likelihood and having the attractions being “a 

classical and simple alternative”.

Hoem (1980, 1984) also gives “correct moment relations” for the uniform distribution of 

deaths assumption and the Balducci assumption but, in order to do this, he has to assume 

that associated with every life in the mortality investigation there is an age x 4- at which 

the life is predestined to withdraw if he does not die first. Of course for many lives r . may 

well be 1. The age x+rj is thus the maximum age at which the ith life can exit from the 

investigation.

Of course, if lives are subject to random withdrawals, the values of Tj in respect of deaths 

are not known, and those for withdrawals are only available by observation during the 

investigation.

For the uniform distribution of deaths and Balducci assumptions respectively, the “correct 

moment relations” are:

Thus the values of qx solving these equations are the correct “method of moments” 

estimators under the respective assumptions.

(1.36)

r. — s-
(1.37)
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It can be seen that in both these cases, the moment estimator given in Seal (1954, 1961) for 

qx, if there is no force of withdrawal present, ie all withdrawals are scheduled, namely:

9x = D
E (ri - si) (1.38)

will be positively biased relative to the correct “method of moments” estimator (assuming 

the population mortality distribution is as assumed).

Hoem proceeds to develop his “correct moment relations” by making the approximation 

that:

Ti =  tj + (! -  tj) Dj (1.39)

where:

Dj = 0 if the ith life is not an exit by death

Dj = 1 if the ith life is an exit by death

It can be seen that equation (1.39) provides the correct value of Tj if Dj =  0, but always 

gives Tj = 1 if Dj =  1, which will not, in general, always be correct.

As a consequence of this development, Hoem presents the following approximate 

“operational moment relations” for the uniform distribution of deaths and Balducci 

assumptions respectively:

E
N

(tj ~  Sj) +  (1 -  tj) D;
1 - qx qx D (1.40)

E
N

(tj -  Sj )  +  (1 -  tj) Dj 
1 -  (1 -  tj) (1 -  Dj) qx qx =  d (1.41)

The approximation used by Hoem appeared clearly unsatisfactory to the author of this 

thesis, since some deaths would surely have withdrawn earlier than age x + 1, had they not 

died, and therefore the expression for “expected deaths” for a given qx is overstated; 

therefore, in order to achieve equality when this expression for “expected deaths” is equated 

to actual deaths, the implied value of qx is lower than that which would have been 

applicable without the distortion to “expected deaths”.

It therefore appears that the approximation used in the “operational moment relations”
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given in Hoem (1984) will introduce a negative bias, and the estimates of qx obtained using 

this estimator in the simulation studies reported in Chapter 5 of this thesis (see Section 

5.20) do indeed display a pronounced negative bias when the mortality distribution to which 

the simulated lives are subjected is the same as that assumed in the estimator.

In Section 2.9 of this thesis, Bayes Theorem will be applied to show that Hoem’s 

approximation implies that:

r r s>qx+st- — 0 if t-j < 1 

which can also be deduced intuitively.

Slawski (1991) has also argued that these estimators are unsatisfactory as her analysis shows 

that the average maximum age of deaths, ie the average value of x+Tj for deaths, which 

Hoem effectively assumes to be x+1, should be less than x-f 1.

Hoem (1984) also gives equations defining the maximum likelihood estimators of qx for the 

three mortality assumptions of uniform distribution of deaths, Balducci and “constant p”, 

and it is clear that, for the first two of these, qx can in general only be determined by 

numerical methods, whereas for the assumption of “constant //”, qx is obtained from:

qx =  1 -  e ^ (1.42)

where: p =  „  D------- (1.43)
L  -  si)
N

ie in this case, p is obtained using the central exposed-to-risk.

The derivation of equation (1.43) is given in Section 2.22 of this thesis. Section 2.22 also 

quotes the formulae for the maximum likelihood estimators of qx using the uniform 

distribution of deaths assumption and the Balducci assumption (equations (2.73) and (2.74) 

respectively).

Hoem (1984) comments that the equations defining the maximum likelihood estimators of 

qx for the uniform distribution of deaths and Balducci assumptions appear “reminiscent” of 

his earlier approximate “operational moment relations” but do not “coincide” with them.

One feature which Hoem (1984) fails to observe is that, after rearrangement, his equation 

(12) defining the maximum likelihood estimator of qx under the uniform distribution of 

deaths assumption is identical with his equation (3A) defining the conventional actuarial
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estimator based on the uniform distribution of deaths assumption, an estimator which he 

has uncompromisingly rejected for using the Cantelli expected deaths principle!

Hoem’s equation (3A1:

m(0) qx +  Yl mW ^1 "-T a^" =  D
t Hx

(1.44)

Hoem’s equation (121:

E (1 ~  Dj) b qx
1 — qx E

Sj qx
1 -  si qx

=  D (1.45)

[In Hoem’s notation, m(t) is the net number of lives entering the year of age at duration t 

(net entries =  entries minus non-death exits), qx is the value of the conventional estimator, 

Dj is a variable taking the value 0 if the ith life becomes a non-death exit and the value 1 if 

the ith life exits by death, qx is the value of the maximum likelihood estimator and s-, t-, D 

have similar interpretation as in this thesis.]

The fact that qx and qx in the above equations are identical will be demonstrated in 

Section 2.23 of this thesis.

No reference has been found in the literature in which the fact has been recognised that the 

conventional and maximum likelihood estimators under the uniform distribution of deaths 

assumption are identical. This identity will be demonstrated in this thesis by three different 

analyses (see Sections 2.23, 3.12 and 4.7); it arises most neatly as a trivial implication of 

the theory developed in Chapter 4, as demonstrated in Section 4.7.

As indicated earlier, it will be argued in Chapter 2 of this thesis that the method used to 

calculate expected deaths in the Cantelli rationale represents part of a satisfactory method 

of estimation in its own right.

1.10 Method of moments derivation of the conventional actuarial (Balduccil exposure 

formula: Broffitt and Klugman (19831

Broffitt and Klugman (1983) provide a derivation of the conventional actuarial estimator 

which takes as its starting point the application of the method of moments principle to the 

deaths in the investigation. Necessarily a modification is introduced during the 

development. The argument put forward by Broffitt and Klugman follows the lines set out
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below.

Applying the method of moments definition of “expected deaths” to the ith life:

E(Dj) -  r.-s^x+s. (1-46)

where D-, Tj, Sj are as defined in Section 1.9.

=* E( ° i )  =  1-s^x+s,. -  TrSiPx+Sj * 1 -r^ x + r , ( E47)

=  (1 -  s.) qx -  E(Wj) (1 -  r.)  qx (1.48)

applying the Balducci assumption and where Wj =  1 — Dj. 

For all lives:

Expected deaths = E a
N

sj) -  £  {E(Wj) (1 -  rj)} 
N

qx (1.49)

As Broffitt and Klugman (1983) state, the modification that produces the usual estimator is 

to replace E(Wj) by Wj, so that:

“Expected deaths” £  d -  si) -  £N W
( 1  -  E) qx (1.50)

It will be noted that, for withdrawals, b = rj where tj is the observed duration at exit. 

Broffitt (1984) also gives this argument.

Slawski (1991) applies a similar argument to produce the corresponding result 

mortality distribution and, on the basis of this, argues that Hoem (1984) 

asserting that actuarial exposed-to-risk theory is flawed.

In Chapter 2 of this thesis, an alternative rationale for the actuarial estimator will be 

deduced which does not depend on using a modified method of moments argument.

for a general 

is wrong in

1.11 The product limit estimator

The product limit estimator is mainly attributed to Kaplan and Meier (1958) although
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earlier it had been proposed by Böhmer (1912), with similar proposals being made 

subsequently by Linder (1935), as Seal (1981) reports, and by Meier (1953), and the Böhmer 

proposal had been discussed by Seal (1954).

In order to define the product limit estimator, let us suppose that there are n+2 durations, 

during the year of age from age x to x+ 1 , at which non-death movements occur, comprising 

durations 0  and 1 , and n intermediate durations at which lives enter or make non-death 

exits. Note that more than one person may be involved in entering or exiting at any of the 

durations. Let the n+2 durations be labelled from r =  0 to r = n+1.

Let Pf  be the total population of lives present at the rth duration immediately before the 

movement(s) occur, and let P^_i be the total population of lives present immediately after 

the movement(s) at the rth duration. If any deaths occur exactly at the rth duration 

( l< r< n + l) , these deaths will be considered to have occurred before the population is 

counted.

Then the product limit estimator of qx is given by:

n + lp 2

^  =  i -  n  b i (i-5 i)
r = l +  r

An alternative but equivalent method of calculation is given by:

P. -  1
9x =  1 -  I I  -i p—  (1-52)

D j

where Pj is the population existing in the year of age immediately before the j th death 

occurs and it is assumed that no deaths occur simultaneously. Should d; deaths occur 

simultaneously, one term in the product, of the form:

P ' -  d'
P ' ’

would deal with the d/ lives where P; is the population existing in the year of age 

immediately before the deaths of the d' lives occur.

It will be noted that the product limit estimator does not require the use of a mortality 

assumption expressed in the form of a formula involving one or more parameters which have 

to be estimated.

Instead it is effectively assumed that the behaviour of a life when unobserved can be 

represented by the average behaviour, at the corresponding points of the year of age, of the 

lives which are observable.
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The price for this is that there must always be appropriate data available for every point of 

the year of age to define the average behaviour of lives. This means that, if there are no 

surviving lives present at a point of the year of age, there must have been at least one life 

previously present in the year of age and the most recent exit of a life must have been an 

exit by death.

This means that, in theory at least, the product limit estimator is not always defined and 

cannot always be calculated.

Mortality assumptions based on parametric equations do not suffer this restriction since 

data available from just part of the year of age can be used to fit a formula representing the 

force of mortality to the whole of the year of age.

Kaplan and Meier (1958) explain that their choice of the name “product limit” arises 

because “this estimate is a limiting case of the actuarial estimates”, ie the product limit 

estimator is a limiting case of the use of the principle of the actuarial estimator.

It can be seen that the product limit estimator can be interpreted as applying the principle 

of the actuarial estimator to each period between non-death movements to estimate the 

probabilities of death and survival during these periods, the probabilities then being 

combined to provide estimates of the probabilities of death and survival during the whole 

period covered by the product limit estimator. Because, by definition, there are no non-

death movements during the periods between non-death movements, no mortality 

assumption is needed to determine the actuarial estimates.

1.12 Bias of the product limit estimator

Kaplan and Meier (1958) present an apparent demonstration that the product limit 

estimator is supposedly unbiased but then point out that the demonstration is flawed since 

it ignores the fact that the product limit estimator may not always be defined.

The exclusion of certain mortality experiences, because this has resulted in the estimator 

being undefined, will generally mean that those cases where the estimator can be defined 

represent a biased selection from all possible mortality experiences.

Admittedly, as Kaplan and Meier indicate, the probability of a situation occurring in which 

the product limit estimator is not defined is generally very small. But since the possibility 

exists, however remotely, Kaplan and Meier do not present the product limit estimator as 

unbiased, unlike one or two subsequent writers, eg Broffitt (1984), London (1988).
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The following very simple example demonstrates how bias can arise.

Consider a species of animal which is such that an individual which survives to age x then 

has probability of 0.9 of surviving to age x+ |, and an individual which survives to age x+^ 

then has probability of 0.9 of surviving to age x+1.

Suppose that we have two such individuals A and B each aged x and that we will observe 

both animals up to age x + | and that we will then observe animal B only to age x+1, 

perhaps because animal A is scheduled for a terminal appointment with the researcher’s 
scalpel at age x+L

Table 1.1 summarises all the possible outcomes that would arise, if animal A would have 

continued to be observed through period 2  (age x+^ to age x + 1 ), if it had survived through 

period 1 (age x to age x+j).

Table 1.1 Product limit estimator:

Summary of possible outcomes in animal A and B example

Value of qx according to
Out- Deaths in Deaths in Probability _____ the PL estimator_____
come Period 1 Period 2 of outcome A included A excluded

in period 2 in period 2

(i) (2 ) (3) (4) (5) (6 )

a none none .6561 0 . 0 0 . 0

b none A .0729 0.5 0 . 0

c none B .0729 0.5 1 . 0

d none AfcB .0081 1 . 0 1 . 0

e A&B — . 0 1 0 0 1 . 0 1 . 0

f A none .0810 0.5 0.5

3 A B .0090 1 . 0 1 . 0

h B none .0810 0.5 not defined

J B A .0090 1 . 0 not defined

1 . 0 0 0 0

Column (4) gives the probability of each outcome, column (5) gives the estimate of

provided by the product limit estimator for each outcome assuming A would continue to be
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observed through period 2 if A had survived period 1, while column (6 ) gives the estimate of 

qx provided by the product limit estimator assuming A would not continue to be observed 

through period 2 if A had survived period 1.

It will be noted that if A dies in period 1 (outcomes e, /  and g), the estimate of qx provided 

by the product limit estimator is the same whether or not A would have continued to be 

observed in period 2  in event of its survival.

Where B dies in period 1 but A survives (outcomes h and j), the product limit estimator is 

undefined if A is not to be observed in period 2.

Where A survives period 1 and the other life does as well (outcomes a, b, c and d), the 

expected value of the product limit estimator conditional on this joint survival of period 1 is 

the same, whether A is observed during period 2 or not, since we have at least one life to 

observe during period 2  and the expected rate of death during period 2  will be the same 

irrespective of the number of lives studied.

When A is assumed to be observed in period 2 if A survives period 1, the expected value of 

the estimate of qx provided by the product limit estimator is:

E(qx ) =  0.0*.6561 + 0.5*(.0729 + .0729 + .0810 + .0810)

+ 1.0*(.0081 + .0100 + .0090 +  .0090)

=  0.19

This is obviously the appropriate result since the probability of an individual animal dying 

between age x and x+ 1  is:

1 -  ( 1  -  0 .1 0 ) 2

If we now consider the situation where A is not observed in period 2 even if A survives 

period 1 , the expected value of the estimate of qx provided by the product limit estimator, 
conditional upon the product limit estimator being defined, is:

E felP L E  is defined) =

{0.0*.6561 + 0.5*.0810 + 1.0*(.0729 + .0081 + .0100 +  .0090)}
(1 -  .0810 -  .0090) ~  0 - 1 5 4 4

Clearly in this extremely simple example, there is a severe negative bias in the estimate of 

qx provided by the product limit estimator.
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In the example, it can be seen that the relevant effect of excluding those outcomes where the 

product limit estimator is not defined (outcomes h and j) is to exclude outcomes in which 

the period 1 experience had one life dying out of two, when the probability of a life dying 

was only 0 .1 , ie in calculating our expected value of the product limit estimator conditional 

upon the product limit estimator being defined, we excluded some experience that was 

heavier than that expected on the basis of the population mortality rates. Hence we obtain a 

negatively biased expected value of qx .

It can be seen that if the probability of a life dying in period 1 had been greater than 0.5, 

we would have been excluding experience which is lighter than that expected on the basis of 

the population mortality rates and so in this case we would obtain a positively biased 

expected value of qx . Thus it appears that the product limit estimator can be either 

negatively or positively biased.

Broffitt (1984) gives a purported proof of unbiasedness of the product limit estimator that 

appears to run along very similar lines to the demonstration given by Kaplan and Meier 

which they explain is flawed.

His argument seeks to show the unbiasedness of the expected value of the estimate of qx 

conditional on a given set of ages at withdrawal, entry and forced withdrawal, and assumes 

firstly that, given this set of ages, the year of age will be split into the same periods between 

the non-death movements for all realisations and that secondly all realisations in earlier 

periods can be allowed, for the given set of ages, whereas in fact realisations in earlier 

periods cannot be allowed if they result in the product limit estimator being undefined, 

through there being no surviving lives left to carry on after a non-death exit.

That the first of these assumptions is wrong is illustrated by outcome e in the simple 

example, where the product limit estimator would be based on one period covering the year 

of age, whereas Broffitt’s method of proof would seem to assume in the simple example that 

the split into period 1 and period 2  is immutable.

That the second of these assumptions is wrong is illustrated by outcomes h and j  which 

cannot be allowed as the product limit estimator is then undefined.

Working backwards through the year of age, the Broffitt proof argues for each period in turn 

that the proportion surviving the period is independent of the proportions surviving in 

earlier periods, which appears reasonable if the proportion is defined, but also argues that 

the expected value of the proportion surviving the period is unbiased, which is unlikely to be 

true if some realisations of the proportion surviving have to be excluded to ensure that the 

product limit estimator is defined over the entire year of age.
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In fairness, it should again be emphasised that for all but the very smallest experiences, the 

probability of the product limit estimator being undefined is normally very tiny, so that in 

the very great majority of mortality investigations the product limit estimator can be 

treated as effectively unbiased.

London (1988) also states without qualification that the product limit estimator is unbiased, 

but does not offer any argument in support of this.

1,13 Maximum likelihood estimators

Estimators which use the maximum likelihood criterion to estimate parameters of 

distributions have an important role in the theory of statistical estimation.

As summarised for example by Wonnacott and Wonnacott (1977), under mild conditions a 

maximum likelihood estimator has the following properties:

(a) Asymptotic unbiasedness and variance tending to zero as sample size increases. 

Therefore a maximum likelihood estimator also has the weaker property of 

consistency.

(b) An asymptotic distribution which is normal.

(c) Asymptotic efficiency, ie among the class of consistent estimators that have normal 

asymptotic distributions, there is none that has a variance smaller than that of the 

maximum likelihood estimator when the sample size is large.

Larson (1982) defines consistency as follows:

“Let T be an estimator for 7 , based on a random sample of size n. If

lin^  Prob (|T — t | > e) =  0 for any e >  0,

then T is a consistent estimator for 7 .”

It should be emphasised that in general maximum likelihood estimators are biased, 

notwithstanding the property of asymptotic unbiasedness.

Broffitt (1984) presents a unified treatment of maximum likelihood estimators for qx , 

derived from models which make allowance for withdrawals. As Broffitt states, the major
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reason for considering maximum likelihood estimators is that they are asymptotically 

efficient under mild conditions.

Broffitt presents maximum likelihood estimators for the “full data” case which is the 

situation considered in this thesis, and also for the “partial data” case in which only the 

number of withdrawals and deaths during the year of age are known and not the exact ages 

at exit. Broffitt considers two withdrawal models reflecting two types of assumption about 

withdrawals: a random withdrawal model in which unforced withdrawals occur at durations 

which are random variables, and a fixed withdrawal model in which unforced withdrawals 

occur at durations which are fixed but unknown. (“Forced” withdrawals refer to 

withdrawals scheduled to occur at known fixed times, such as enders.)

For the full data situation, Broffitt finds the likelihood to be the same under the fixed 

withdrawal model as under the random withdrawal model, so that for a particular mortality 

assumption, the two models yield the same maximum likelihood estimator. He shows 

derivations of maximum likelihood estimators in these scenarios for the “constant p” 

mortality assumption and the uniform distribution of deaths mortality assumption. The 

derivations for these mortality assumptions in the case of the full data random withdrawal 

model are also given in Sections 2.22 and 2.23 of this thesis.

Broffitt reports that most of the maximum likelihood estimators he presents have been 

previously derived by other writers, for example: Steelman (1968), Elveback (1958), Chiang 

(1961, 1968) and Elandt-Johnson and Johnson (1980).

Broffit also discusses, but does not derive, the product limit estimator and also compares 

four estimators by means of their asymptotic properties and the use of simulation. The four 

estimators are the maximum likelihood estimator for the “constant /i” assumption and full 

data, the product limit estimator and two versions of the actuarial estimator (for full data 

and for partial data).

A possibility discussed by one or two writers is to estimate more than one parameter 

relating to a mortality distribution using maximum likelihood.

Grenander (1956) considers, among other things, the use of the method of maximum 

likelihood to estimate the three parameters A,B and c in the Makeham formula:

PX =  A + Bcx (1.53)

Powell (1984) applies the method of maximum likelihood firstly to obtain estimators for the 

parameters cr (r = 1 , 2 , ... k) when the force of mortality is given by:
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(1.54)

and secondly to obtain estimators for the parameters a and A when the Weibull distribution 

applies:

fix = a X xa _ 1  (1.55)

In both cases, Powell takes the partial differential of the log-likelihood with respect to each 

parameter and, setting each derivative to zero, obtains a system of simultaneous equations 

to be solved for the estimate of each parameter. Powell suggests possible methods of 

solution in sampling situations for the polynomial mortality law (1.54) and gives an 

iterative procedure for the Weibull law (1.55). Powell tests the iterative procedure for the 

Weibull distribution using simulation and the method is found to perform satisfactorily.

London (1988) presents the method of maximum likelihood as one of several possible 

methods for estimating both parameters in two parameter mortality laws, and illustrates 

this for the Weibull law. Slawski (1991) differentiates the log-likelihood in the full data 

situation when the Gompertz law px = Bcx applies, to obtain two simultaneous equations 

in the estimates of the parameters B and c.

p x  — 4” C2 X 4" •••• 4“ c jj x ^

1.14 Maximum likelihood derivation of the product limit estimator

There appear to be conflicting interpretations as to whether the product limit estimator is a 

maximum likelihood estimator.

Kaplan and Meier (1958) apply the principle of maximum likelihood in order to select from 

the class of admissible distributions the population distribution of ages at death and non-

death movement which best fits the observed data and they show that this leads to the 

product limit estimator.

Broffitt (1984) does not give a derivation of the product limit estimator but states that the 

product limit estimator is the full data maximum likelihood estimator of qx in the random 

withdrawal model if the distributions of the random times to death and withdrawal are 

discrete, or in the fixed withdrawal model if the distribution of the random time to death is 

discrete.

London (1988) interprets the product limit estimator of qx as the product of a sequence of 

maximum likelihood estimators, but states categorically that the product limit estimator 

itself is not a maximum likelihood estimator. Elandt-Johnson and Johnson (1980) also
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show the derivation of the product limit estimator as a product of maximum likelihood 

estimators, each relating to a very short time element.

Kalbfleisch and Prentice (1980) recognise that the Kaplan and Meier approach represents a 

generalisation of the usual concept of maximum likelihood used in parametric models and 

refer to the product limit estimator as a “non-parametric maximum likelihood estimator”, 

which also reflects comments in Kaplan and Meier (1958).

1.15 Bias and consistency of the “actuarial estimator” and of other estimators of cix 

Breslow and Crowley (1974) have shown that the actuarial estimator in the form:

%  =  n ^ T w  (1'56>

is generally inconsistent. They assume a random withdrawal model which does not admit 

the possibility that lives may enter observation after the beginning of the interval over 

which qx is measured (ie after the beginning of the year of age in actuarial applications).

They show that the estimator (1.56) is consistent if and only if it is consistent when all 

individuals are due for withdrawal before the end of the year of age (or its non-actuarial 

equivalent), and this leads to their Theorem 1 which gives a general form for the 

mortality/failure distribution that must apply if the estimator is to be consistent. This 

distribution is a function of the distribution of the random variable denoting the durations 

at which withdrawals are due (the “censoring distribution” ).

If the censoring distribution is uniform, the required mortality distribution for consistency of 

the estimator (1.56) is one in which, among other things, the force of mortality decreases 

with increasing age. Breslow and Crowley (1974) quote results obtained by Crowley (1970) 

concerning the asymptotic bias of the estimator (1.56) when the censoring distribution is 

uniform, firstly when the mortality assumption is “constant /i”, and secondly when the 

mortality assumption is the uniform distribution of deaths. In both cases the asymptotic 

bias of the estimator is negative, the bias being greater when the uniform distribution of 

deaths assumption applies.

At least two writers, Elandt-Johnson and Johnson (1980) and London (1988) state without 

qualification that the actuarial estimator is negatively biased. Elandt-Johnson and Johnson 

(1980 page 157) appear to base their statement on Breslow and Crowley (1974) while 

London (1988 page 129) refers specifically to Breslow and Crowley (1974) and Broffitt
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(1984) while also implying that there are other unspecified confirmatory references.

Broffitt (1984) conducts simulations, which include the actuarial estimator, assuming either 

that the mortality distribution and the censoring distribution are both uniform or that both 

are exponential (ie constant forces of decrement). Again the model does not admit the 

possibility that lives may enter observation after the beginning of the year of age. Broffitt’s 

results are consistent with the view that the estimator (1.56) is negatively biased for the 

mortality distribution and censoring distribution considered.

The evidence does not appear to rule out however the possibility that the actuarial 

estimator (1.56) could be positively biased for other appropriate mortality and censoring 

distributions. For example, the results quoted in Breslow and Crowley (1974) suggest that, 

when the censoring distribution is uniform, the most plausible guess is that the estimator 

(1.56) would be positively biased for suitable mortality distributions in which the force of 

mortality decreases more rapidly with increasing age than in the mortality distribution 

indicated by their Theorem 1 as giving the estimator (1.56) the property of consistency.

In general, it does not appear satisfactory merely to specify that an estimator is unbiased, or 

positively biased, or negatively biased, without specifying the assumptions for which these 

results are believed to apply. The case of the “unbiased” method of moments estimator 

proposed by Seal (1954, 1961) is a further example of this arguably misleading practice.

Two likely factors contributing to bias in the actuarial estimator (1.56) can be identified.

Firstly it will be noted that the actuarial estimator in the form:

9x = D
N -  lW (1.57)

is an approximation (with no entries into observation during the year of age) to the full 

data actuarial estimator, which is the description coined in Broffitt (1984) for:

- s;) + B h -  si)
SD w

D
~ si) + B 1 ~ 4i)

N D

D
B 1 -  si) -  B 1 -  ‘¡)
N W

(1.58)

(1.59)

(1.60)
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The full data actuarial estimator can be derived using the Cantelli rationale incorporating 

the Balducci mortality assumption. It follows from a result to be shown in Section 4.13 of 

this thesis that the full data actuarial estimator is asymptotically unbiased when applied to 

data from a population subject to the Balducci mortality assumption, and that more 

generally any estimator derived using the Cantelli rationale, but incorporating a different 

mortality assumption, will be asymptotically unbiased if used with a population subject to 

the same mortality assumption.

It would hardly be surprising if the introduction of an approximation into the formula were 

thereby to introduce asymptotic bias.

It is to be noted that if a similar approximation were made for example in evaluating Seal’s 

proposed moment estimator, one might anticipate that a similar effect might occur in that 

estimator also.

A second likely source of asymptotic bias in the actuarial estimator is its use with 

populations which are not subject to the Balducci assumption. Plainly when we apply an 

estimator which has been derived assuming a particular mortality assumption to data from 

a population subject to another mortality assumption, we are in effect applying an estimator 

designed for one statistical distribution to data from another statistical distribution, and it 

would hardly be surprising if this produces an asymptotically biased result.

Clearly if we consider an alternative estimator to the actuarial estimator, the alternative 

may also suffer asymptotic bias for precisely similar reasons as in the actuarial estimator. 

In particular, when we consider maximum likelihood estimators, and are especially attracted 

by their asymptotic properties, we have to bear in mind that their attractive properties will 

only be obtained if the assumptions underlying the maximum likelihood estimator are 

realised in its application, for example only if a maximum likelihood estimator which 

assumes a particular mortality distribution is applied to a population subject to the 

distribution.

Indeed, Breslow and Crowley (1974) have pointed out that “while large sample properties 

for such estimates may be derived from the corresponding likelihoods, these can only be 

expected to hold under the assumed model”, and Elandt-Johnson and Johnson (1980) have 

commented that “these properties depend on the model being a sufficiently accurate 

presentation of reality”. Elandt-Johnson and Johnson (1980) have also pointed out that 

“even if the model is valid, the desirable properties are asymptotic — they apply when the 

volume of data is sufficiently large, and it is not always clear what is “sufficiently large””.

The fact that the actuarial estimator has a uniquely long history of use doubtless reflects its
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ease of calculation and its apparently acceptable performance. Generally most maximum 

likelihood estimators of mortality parameters appear to be difficult to calculate without the 

use of numerical methods and computer facilities, although the estimator of p which 

assumes a constant force of mortality is an obvious exception; however even in this latter 

example, the required central exposed-to-risk is more demanding to calculate than the initial 

exposed-to-risk for the full data actuarial estimator, because the exposure of the deaths must 

be calculated precisely, and not merely taken to the end of the year of age.

And if one were to calculate the central exposed-to-risk under the same circumstances in 

which the initial exposed-to-risk has in the past been approximated by the introduction of 

the “g factors, the same approximation would obviously be made to the central exposed-to- 

risk, doubtless with similar apparent adverse consequences for the estimator’s asymptotic 

unbiasedness.

Apart from maximum likelihood alternatives to the actuarial estimator, there is also of 

course the product limit estimator. As already discussed, this is effectively unbiased for all 

but the very smallest experiences, and this unbiasedness is not subject to any assumptions 

about the mortality distribution. However it is only with the advent of computerised data 

manipulation that the calculation of the product limit estimator has become a practicable 

proposition for any data volume beyond the smallest experiences.

At this point, it is of interest to note that, in the simulations discussed in Section 5.26, the 

full data actuarial estimator (or “Balducci” conventional estimator) appears to be positively 

biased for all population mortality distributions in which the force of mortality has a more 

positive gradient than in the Balducci mortality assumption, the amount of bias decreasing 

as the Balducci assumption is approached. When the Balducci mortality assumption applies 

in the population, any bias which might be present appears too small to be distinguished in 

the simulation results from the random fluctuations.

As already commented, the apparent bias must be considered, among other things, as a 

function of all the parameters of the investigation. Doubtless, some would be surprised that 

a negative bias is not manifested. However none of the writers who comment on the bias of 

the actuarial estimator in the form (1.56) appear to consider the possible effect, among other 

things, on an appropriately generalised form of the estimator of allowing lives to enter 

observation after the beginning of the year of age.

Roberts (1987) considered theoretically the bias involved in estimating qx using the full 

data actuarial estimator when the mortality law applicable in the population is different 

from the Balducci mortality assumption. He similarly considered the bias involved in 

estimating mx using the “constant p” maximum likelihood estimator of p when the
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mortality law applicable in the population is different from “constant /i”; here the 

estimator of mx is taken as the expression which we earlier identified as the maximum 

likelihood estimator of p when the “constant p” mortality law applies (Section 1.9), and 

this is of course correct if the “constant p” mortality law applies:

mx D
£  (‘i -  si)
N

(1.61)

However in order to facilitate his analysis, Roberts assumes that the number of lives exposed 

to risk of dying during any element of the year of age is non-random and that, in addition, 

the expected value of the full data actuarial estimator of qx can be approximated 

satisfactorily as the expected value of the number of deaths observed in the investigation 

divided by the expected value of the initial exposed-to-risk (which depends on the number 

and timing of deaths occurring as well as on the number of lives exposed to risk in any 

element of the year of age).

These are obviously important assumptions which may affect the levels of bias apparently 

detected and analyzed, although Roberts comments that the assumptions are adequate 

provided the number of decrements is not too large relative to the number of lives in the 

experience, and he refers the reader to Roberts (1986) for further justification.

Given these important assumptions, Roberts’ analysis leads to the following conclusions:

(a) When the Balducci mortality assumption holds in the population, the full data 

actuarial estimator is unbiased.

(b) When the “constant p” assumption holds in the population, the “constant p” 

maximum likelihood estimator provides an unbiased estimate of mx .

(c) When the uniform distribution of deaths assumption holds in the population, the 

proportional bias (ie bias as a proportion of the true qx or mx value) in the full data 

actuarial estimator of qx is about twice the proportional bias in the “constant p” 

maximum likelihood estimator of mx).

(d) If the force of mortality does not fall over the year of age, the full data actuarial 

estimator will be subject to greater bias than mx .

(e) The proportional bias in both estimators are about the same for extremely concave or 

convex survival functions (lx curves).
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Plainly, some or all of these conclusions may be subject to modification if the 

approximations inherent in Roberts’ assumptions are taken into account. A result obtained 

in Section 4.13 of this thesis indicates that the above conclusions (a) and (b) are 

asymptotically exact.

Forfar, McCutcheon and Wilkie (1988) report that, in constructing the new mortality tables 

based on the 1979-82 CMI experience, the Executive Committee of the Continuous 

Mortality Investigation Bureau decided that the “constant p” maximum likelihood 

estimator should be used to estimate the force of mortality. This was a break from the 

previous practice when qx was estimated assuming the theory of the full data actuarial 

estimator. (It should be noted, however, that in both cases the required exposed-to-risks 

were determined approximately using a census method).

Among the arguments advanced for this change were the views put forward by Hoem (1984) 

and the analysis of Roberts (1987). As has been commented, Iloem’s criticisms of the full 

data actuarial estimator are based on theoretical considerations whose validity will be 

argued against in this thesis, and Roberts’ conclusions are subject to important assumptions 

which are likely to introduce approximation. However the simulation studies reported in 

Chapter 5 of this thesis do suggest that the “constant p” maximum likelihood estimator 

may be subject to less bias than the full data actuarial estimator when the mortality law in 

the population is different from that assumed in the estimator, for most mortality laws 

likely to be encountered in practice in the population (see Section 5.26).

Forfar et al (1988) also appear to demonstrate that the “constant p” maximum likelihood 

estimator is unbiased if the “constant p” assumption applies in the population but, as in 

Roberts (1987), this is achieved because the central exposed-to-risk is taken as non-random; 

for, according to equation (2.4.14) in Forfar et al, the expected value of p*, the estimator of 

p, is derived as follows:

E[p*] =  E[A/R] =  E[A]/R =  pR/R  =  p

where R represents the central exposed-to-risk and A represents the actual number of deaths.

This author is not aware of any other work, apart from these approximate analyses of 

Roberts (1987) and Forfar et al (1988), that indicates that the “constant p” maximum 

likelihood estimator is unbiased for finite sample sizes when applied to a population in 

which the “constant p” mortality law applies.
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1.16 Terminology and notation

The discussion in this thesis is presented from the point of view of an actuary concerned 

with the evaluation of qx relating to human life, and terminology and notation familiar to 

actuaries is generally used. However it will be obvious that much of the material discussed 

is likely to be equally relevant to biostatisticians, whether concerned with animal or human 

mortality, and to engineering reliability scientists, concerned with failure rates of 

components, machines and engineering systems in general.

While the general principles underlying the estimation of mortality/failure rates will be 

common to all fields of research, there are differences in the methodology, terminology and 

notation which has come into use.

For example there are differences in the mortality/failure laws which are appropriate in the 

different fields, there are differences in the measures conventionally used to express the 

phenomenon of mortality/failure/survival, and there are differences in the nature of the data 

typically gathered.

With regard to the last of these points, the actuary typically observes a human being over 

only a relatively small fraction of that person’s lifetime and typically has to contend with 

significant numbers of people entering observation during the year of age, or rate year, and 

with significant numbers of people exiting for non-death reasons during the year of age, or 

rate year.

In contrast, the reliability scientist or biost.atistician may be able to observe 

systems/components/animals for their entire lifetimes, may not suffer the entry of any lives 

into observation equivalent to the actuary’s “new entrants” or “beginners” and might 

conduct investigations in which observations are terminated at a point determined by the 

experience, for example when the observed number of deaths/failures equals a pre-specified 

number.

Those who are interested in gaining familiarity with methodology, terminology and notation 

used by non-actuaries will find appropriate accounts in Elandt-Johnson and Johnson (1980), 

which has an especially strong human biostatistical perspective, Nelson (1982), where the 

perspective is strongly from the point of view of the reliability scientist, and Kalbfieisch and 

Prentice (1980), where the intention is to serve as a text both in the analysis of failure data 

and in biostatistics and statistics. Lee (1992) also deals with the analysis of biostatistical 

data and consciously emphasises applications over rigorous mathematics. London (1988) 

gives an account that is written primarily for actuaries, but which also seeks to be of 

interest to a broader audience and includes consideration of study designs encountered by
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clinical statisticians and reliability engineers.

1.17 Censored/truncated data

Actuaries are very used to dealing with data in which there are significant numbers of lives 

entering, or exiting for non-death reasons, during the year of age; indeed, it would probably 

be regarded as rather a novelty to have data in which one or both features were absent. 

Perhaps because it is very much the norm, British actuaries have not evolved any general 

technical terms to describe such features, other than the description of the particular lives as 

beginners, new entrants, withdrawals or enders.

As intimated in Section 1.16, practitioners in other fields may be more likely to encounter 

data without such features, but they may also meet a wider variety of formats of data in 

which lives are absent for part of the time from observation for non-death or non-failure 

reasons. The terms “censored” and/or “truncated” are used by practitioners in other fields, 

to describe such loss of observation, generally qualified by the use of further descriptive 

words reflecting different forms or mechanisms of loss of observation. The 

terminology/usage may differ slightly between different fields, and even between different 

authorities.

Thus, data where survivors are not observed beyond a certain point appear to be generally 

described as “censored on the right”, as for example in Nelson (1982). Thus in the actuarial 

context, “enders” and “withdrawals” represent such data in the calculation of qx .

However Elandt-Johnson and Johnson (1980) would use “censored” to refer only to data 

where observation ceases when a preassigned number of deaths has occurred, and would use 

“truncated” to refer to data where observation ceases at a predetermined time.

The expression “censored on the left” appears to be generally used to refer to the situation 

where it is only known that an individual has already died/failed before a certain time, ie 

before observation commenced, as for example in Nelson (1982) and Cox and Oakes (1984).

Cox and Oakes (1984) use the term “left-truncation” to describe the situation where 

individuals come under observation only some known time after the natural time origin of 

the phenomenon under study. As they explain, had the individual failed before the 

truncation time in question, that individual would not have been recorded. Thus in the 

actuarial context, “beginners” and “new entrants” represent left-truncated data in the 

calculation of qx .

-  49 -



C H A P TER  II

Aspects of some mortality estimators 

and their rationales

2.1 The “actuarial estimator” again

As we have seen in Section 1.5, the estimator for qx given by traditional exposed-to-risk 

theory in the form described by Broffitt (1984) as the “full data actuarial estimator”, is:

B > - si) +  B ‘i -  si)
SD w

D
E < ‘i - s;) + B 1 -  *';)
N D

D
B 1 -  si) -  B 1 -  V
N W

(2.1)

(2.2)

(2.3)

As previously commented, it can be seen that the divisor, known as the “exposed-to-risk”, 

can be presented in terms of exposure time. Survivors and withdrawals are “exposed” for

the amount of time from their points of entry into the year of age up to their points of exit,

^2 ( 1  -  s.) and '¿2 (t; -  s;) respectively, while deaths are “exposed” for the amount of time
s w  1 1

from their points of entry up to the end of the year of age, ( 1  -  s-).
D 1

This very convenient interpretation of the “exposed-to-risk” as the summation of so much 

exposure time per life, where the amount of time per life depends on the subset of lives to 

which the life belongs, is seen as a major advantage of adopting the generally unrealistic 

Balducci mortality assumption in deriving the “actuarial estimator”.

However it perhaps carries the risk that the user may be blinded to the fact that these 

rations of exposure time per life do not represent any sort of fundamental truth but are

simply a consequence of the method of equating the number of observed deaths to the

expression based on “expected” deaths, together with the assumption made about the 

behaviour of over the year of age.
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We are simply considering a method of estimation and this thesis supports the view, already 

set out during the discussion in Section 1.7, that the apparent exposure times arise 

fortuitously from the method of estimation concerned and are of no significance for 

individual lives, simply being convenient figures that arise at an intermediate stage in the 

calculation of the estimator.

2.2 The conventional estimator

The “actuarial estimator” is derived by applying what we have termed for convenience the 

“Cantelli rationale”. In Section 1.8, we considered the effect of replacing the Balducci 

mortality assumption in the Cantelli rationale by alternatives, namely the uniform 

distribution of deaths or a constant force of mortality, and equations (1.27) and (1.28) were

Henceforth in this thesis we will refer to an estimator derived using the method of the 

Cantelli rationale, but incorporating any mortality assumption, as a “conventional 

estimator”, the characteristic of a conventional estimator thus being that it uses the 

statistical criterion of the Cantelli rationale in equating actual deaths to an expression for

exit is calculated using the numbers of actual non-death exits.

Thus the term “conventional estimator” will be used to refer to all estimators produced 

from the relationship:

no matter what formula is assumed to express  ̂ rqx_j_r terms of qx and r, ie no matter 

what mortality assumption is made.

2.3 Other sets of “exposures per life”

As described in Section 1.8, Greville (1978) sought modifications of the “actuarial method” 

in which the generally unrealistic Balducci assumption was replaced by either the uniform 

distribution of deaths assumption or the “constant p” assumption but the system of 

“exposures-per-life” still retained in a suitably modified form, thereby keeping the 

convenience of calculating an exposed-to-risk in order to evaluate qx .

obtained.

'expected deaths” in which the “expected” loss of deaths from observation after non-death

(2.4)
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He reported two different sets of possible “exposures-per-life” for the uniform distribution of 

deaths assumption, one of which was unfortunately impractible in application though the 

other, proposed by D Schuette, was certainly practicable, and a set for the “constant p” 

assumption.

In deriving these sets of “exposures-per-life”, the Cantelli rationale (subject to the modified 

mortality assumption) was not maintained meaning that none of the estimators involved are 

conventional estimators.

For the “constant p” assumption, the set of “exposures-per-life” given in Greville (1978) 

defines the central exposed-to-risk and, when p is constant, the central exposed-to-risk 

corresponds to the maximum likelihood estimator of p, as is readily shown, as for example 

in London (1988). Then p is estimated by:

Mx = D
5> i “ si)
N

(2.5)

ie, to evaluate this estimator, the “exposure per life” for every life in the investigation is

(L -  Sj).

We will now consider the two sets of exposures per life presented in Greville (1978) for the 

uniform distribution of deaths assumption (hereafter called the “level deaths” assumption). 

The second set of exposures per life arose from the method of derivation proposed by D 

Schuette.

The two sets of exposures per life are summarised below.

(aj “Level deaths” assumption: Exposures per life - Version (a)

(1) Any life who does not die during the investigation, and also does not subsequently die 

between age x + b and age x + 1 , receives an exposure per life equal to (tj -  Sj) 

which includes the cases where s- = 0  and/or t- = 1 .l ' l

(2) Any life who dies during the investigation receives an exposure of 1

(3) Any life who dies after leaving the investigation at age x + b but before age x + 1 

receives an exposure of nil.
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(1) Any life who does not die during the investigation receives an exposure per life equal 

to (b -  Sj) which includes the cases where Sj = 0  and/or t  = 1 .

(2) Any life who dies during the investigation receives an exposure per life of 

(t- -  s-) + t- = 2 t- -  s-.v l l' l l l

fbl “Level deaths” assumption: Exposures per life - Version fbl

As has already been suggested in Sections 1.7 and 2.1, in connection with the “actuarial 

estimator” (the Balducci conventional estimator), “exposures per life” are simply a 

convenient means of calculating the observed value of the estimator and again it is of no 

relevance to seek to place any form of rationalisation on the actual “exposures per life” 

applicable. (It will be noted for example that in version (b), category (2), the “exposure per 

life” can take values approaching 2 ).

As previously commented, the two sets of “exposures per life” differ because different 

estimators are concerned in the two versions.

It will be noted that version (a) of the “exposures per life” for the “level deaths” assumption 

is of limited practical use since it requires knowledge of whether a life who withdraws goes 

on subsequently to die before age x + 1. On the other hand, there are not any practical 

limitations to the application of version (b) of the exposures per life.

It is perhaps arguable whether the estimator which version (a) calculates is actually valid as 

an estimator, since it requires information which we do not apparently regard ourselves as 

having. It should perhaps be a prerequisite of an estimator that it uses information that is 

available!

If the information concerning whether or not withdrawn lives survive to age x+1 is in fact 

always available, “withdrawal” seems a quite pointless and redundant concept in version 

(a); it appears to this author that all lives who do not die before age x+ 1  could be regarded 

as remaining in the investigation until age x+ 1 , receiving an exposure per life of ( 1  -  Sj) 

according to rule (1 ) of version (a), while those who die between age x+s^ and age x+ 1  

could be given an exposure per life of one year according to rule (2) of version (a). As no 

lives would now be regarded as withdrawals, rule (3) of version (a) would be redundant. In 

calculating the mortality rate, the numerator would now of course consist of all the deaths 

occurring between age x + S j  and age x+1.

Basically, version (a) is a technique that cannot cope with a normal withdrawal scenario.
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One conclusion that may be drawn from this is that, whatever method of estimation version 

(a) represents, it is not one of the well-known methods of estimation such as conventional, 

method of maximum likelihood or product limit, nor one of the new estimators developed in 

this thesis, since none of these have any difficulty in coping with a normal withdrawal 

scenario.

In Section 4.9 of this thesis, version (b) will be seen to be an example of a “time-count 

estimator”, a type of estimator which will be identified using a new analytical approach.

2.4 “Level deaths” assumption: reconciliation of total “exposure” contributed by the 

deaths under version (al and version (b) of the “exposures per life”

It is interesting to note that the total amounts of “exposure” expected to be contributed by 

the deaths, under version (a) and under version (b) of the “exposures per life”, is the same if 

the “level deaths” assumption does indeed apply. (In calculating the “expected” exposure, it 

will be assumed that every life has a predestined age of non-death exit).

From the set of lives who enter the investigation at age x + s and who die between the ages 

of x + s and x + 1 including those who had already left the investigation before death, let us 

consider the subset of these lives who withdrew at duration t^ or who would have done if 

they had not died first. In accordance with the “level deaths” mortality assumption, we will 

assume that the deaths of these lives are uniformly spread between ages x + s and x + 1 .

Then let:

k * ^  — s) =  the number of deaths occurring between age x + s and x + t*

k*(l — t ?) =  the number of deaths occurring between age x + t f and x + 1

Therefore under version (a) of the “exposures per life”, the total “exposure” contributed by 
these deaths is:

k (t/ — s)*l =  k (tr — s).

And under version (b) of the set of “exposures per life”, the total “exposure” contributed by 
these lives is:

(2 r -  s) k dr + k ( 1  -  t')* (t' -  s)
s
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where the integral is again based on the “level deaths” mortality assumption and recognises 

that the k*<$r deaths occurring in the segment (r, r+<5r), s < r < t , each contribute an 

“exposure per life” of (2 r -  s).

On evaluation, the expression for version (b) also gives the value k * ^  -  s) so that both sets 

of “exposures per life” lead to the same expected total contribution of “exposure” from this 

subset of lives.

Thus the expected total amount of exposure contributed to the investigation from lives who 

die between entering the year of age and age x + 1 is the same under both version (a) and 

version (b) of the “exposures per life”. Further the exposure contributed to the investigation 

by lives who have entered the investigation and are still alive at age x + 1 (whether or not 

they have already left the investigation before age x + 1 ) is measured identically under both 

versions. Thus the expected total amount of exposure from all lives is the same under 

version (a) and version (b).

Of course the fact that the two versions of “exposures per life” give the same expected total 

amount of exposure does not give any indication that the expected values of the two 

estimators are the same.

2.5 “Exposed-to-risk” is a function of qx

When we use “exposed-to-risk” methods to estimate qx , we use an expression of the form:

(2.6)

where Ex is the “exposed-to-risk”.

Alternatively, these formulae can be expressed in a form in which actual deaths are equated 

to an item of the form Ex*qx .

It is important to realise that the item Ex generally depends, among other things, on qx 

itself, so that potentially we might appear to have a “chicken and egg” situation. We 

require Ex to calculate qx , but Ex is a function of qx , which is a quantity we do not know.

The “exposures per life” methods deal with this apparent conundrum very neatly by 

reflecting the number, and possibly the timing, of the observed deaths in the calculation of 

Ex . Thus the observed deaths are a reflection of qx (admittedly an imprecise reflection) 

and these are used in the calculation of Ex , thus bringing the influence of qx into the

-  55 -



calculation of Ex . The fact that different mortality assumptions, or different methods of 

obtaining the estimator, lead to different sets of “exposures per life” is therefore reassuring 

since Ex is a different function of qx for different mortality assumptions or different 

methods of obtaining the estimator.

2.6 A simple example illustrating the contention that Ex is generally a function of qx

The assertion that Ex is a function of qx will now be illustrated for a simple example.

Suppose N lives all enter an investigation at age x + s and that each life will exit at age 

x + t if he is still alive. ( 0  < s <  t < 1 ).

Note that this is a very special case in that we know the point at which the lives who die 

would have exited if they had not died. Generally we do not know this. This limited 

situation, which excludes new entrants and withdrawals at random durations, is being 

considered for simplicity.

Now, our conventional estimator is given by

N * l- S q x + S  ( N D)*l-tqx+t -  D (2.7)

where D is the observed number of deaths.

=> N (l-sqx+s -  l-tqx+t) =  D ( 1  -  l-tqx+t) (2 .8 )

=$>
Jkj / l-tpx+t — l-spx+s>. ^  

l-tpx+t 1 “ (2.9)

=> N (1 1_SDX + S ) =  D 
V 1—t Px—|— t (2 .1 0 )

=> N (1 -  t-sPx+S) =  D (2 .1 1 )

= > N*t-sqx+s =  D (2 .1 2 )

So, in this special case, the criterion giving the conventional estimator is the same as the 

criterion giving the method of moments estimator. This is not generally the case.

In Section 2.10 of this thesis, an analysis will be presented which confirms that the
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conventional estimator and the method of moments estimator will always give the same 

value if all lives are predestined to withdraw at the same point in the year of age if they do 

not die first.

Now N*t-sclx+s =  D =  Ex*qX (2.13)

However, for convenience in subsequent algebraic development, we will write this in the 

form:

N (l t S S ?  - D -  Ex*qx

Line (2.10) demonstrates that this form is correct.

(2.14)

Let us assume that the Balducci assumption applies.

Then

Thus

1 -  ( 1  -  s)qx 
1 — ( 1  — t)q ’

— expected deaths

N (t -  s)qx 
1 -  ( 1  -  t)qx — Ex*qx

N (t -  s)
'X “  1 -  (1 -  t)qx

(2.15)

(2.16)

Obviously Ex is a function of qx .

If it is the case that Ex is a function of qx when we have new entrants and withdrawals only 

entering or leaving the investigation each at a fixed point in the year of age, it seems 

unlikely that Ex would not remain a function of qx in the more general scenario of new 

entrants and withdrawals occurring at random points in the year of age.

Note that in our scenario, we seem to have an “exposure per life” of:

(t ~ s)
i -  (i -  t)qx

irrespective of whether the life exits as a death or not. However, it explicitly depends on qx , 

which we do not know. And of course the purpose of evaluating Ex is so that we can 

evaluate qx !

(2.17)

However from:

Expected deaths =  N*q_gqx_|_s = N (t -  s) qx 
1 -  ( 1  -  t) qx ’

(2.18)
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we can write:

N+t-s^x+s “  N+t-s^x+s (1 -  t) qx =  N (t -  s) qx (2.19)

=► N*t-sclx+s =  (N (t -  s) + N*t_sqx+s (1 — t)) qx (2.20)

ie Ex =  N (t -  s) +  N*t_gqx+S (1 -  t) (2.21)

ie Ex can be calculated giving exposure per life of (t -  s) to all lives, plus additional

exposure per life of (1 -  t) for the N*̂ _gqx_|_s lives expected to die. Or, alternatively, we can

say that Ex can be calculated using a total exposure per life of (1 -  s) for the N*£_gqx_j_g

lives expected to die, and exposure per life of (t -  s) for the rest.

So one practical way of evaluating Ex would appear to be to give exposure of (1 -  s) to the 

D lives who actually die, rather than to the N*t_gqx_̂ s lives expected to die, and exposure of 

(t -  s) to the rest.

This latter procedure is an estimation procedure, and arises from using actual deaths in 

place of expected deaths in expression (2.21). It is this step in association with the earlier 

mortality assumption and initial statistical criterion that creates the “exposures per life” of 

(t -  s) for survivors and (1 -  s) for deaths. These “exposures per life” are only relevant 

while we are using this estimation procedure and mortality assumption.

2.7 Exposures per life: some parting comments

We have seen that exposed-to-risk should be regarded as a function of qx and, in 

formulating sets of “exposures per life” for calculating the exposed-to-risk in an 

investigation, we effectively replace expressions for exposures which are functions of qx by 

alternative sets of exposures which reflect the dependence on qx by requiring different 

exposures to be ascribed to lives that die and to lives that do not.

These alternative sets of “exposures per life”, for the calculation of Ex , will be such 

quantities as are appropriate to ensure that the figure reached for the total exposure will be 

that appropriate for the method of estimation concerned. There is no need for a mechanism 

that ensures that the exposure apparently ascribed to an individual is reasonable and there is 

therefore no reason to expect that such a mechanism exists.

And the evidence indicates that generally there is no mechanism to ensure that the exposure 

apparently ascribed to an individual is reasonable. Thus, for example, when the Cantelli
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rationale of the Balducci conventional estimator is expressed in terms of “exposures per life”, 

we obtain the exposure ascribed to “prospective existings” which, as discussed in Section 1.7, 

Seal (1954, 1961, 1981b, 1984) found so unsatisfactory and, when we consider version (b) of 

the “exposures per life” for the “level deaths” mortality assumption given in Greville (1978) 

and discussed in Section 2.3, we see that deaths can receive an “exposure per life” of as 

much as nearly 2  years.

It should be clear that systems of “exposures per life” simply represent rules of thumb which 

happen to be conveniently available for calculating particular estimators and that the 

existence of this convenient method of calculation says nothing about the quality of the 

estimator concerned. They do carry the danger however that the user may be beguiled into 

thinking that there is a rational interpretation of the amounts of “exposure per life” and 

that, in some way, these are fundamental and absolute quantities.

2.8 The alleged flaw in the conventional estimator

Hoem (1984) contends that the conventional estimator for qx is flawed because “expected 

deaths” is calculated taking account of the expected loss of observed deaths occurring to the 

lives who actually withdraw. He points out that this is not the statistical estimation 

method known as the “method of moments”. Under the “method of moments” approach, 

“expected deaths” would be determined using a probability distribution which embraces 

withdrawals, as well as deaths, so that “expected deaths” would be determined using 

predictions of the withdrawals, and not the actual withdrawals.

Clearly there can be little argument that the conventional estimator is not the method of 

moments estimator. However, this author would dispute whether the conclusion drawn in 

Hoem (1984), that the conventional estimator is not a satisfactory estimator, is correct. In 

the view of this author, the arguments put forward in Hoem (1984) to criticise the 

theoretical basis of the conventional estimator are simply not relevant, because they apply 

the requirements of the “method of moments”, as interpreted in Hoem (1984), to an 

estimator which is not a “method of moments” estimator.

The fact that an estimator would be acceptable if it is a method of moments estimator does 

not of course mean that an estimator would be acceptable only if it is a method of moments 

estimator.

In Sections 2.17 and 2.18 of this chapter, an interpretation of the conventional estimator 

will be presented which, in the opinion of the author, gives the conventional estimator a 

very rational theoretical basis (and one which does not depend on being a flawed version of
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some other theoretical basis).

In addition, extensive simulation experiments have been conducted which, as reported in 

Chapter 5, appear to support strongly the view that the conventional estimator is very 

satisfactory. (The simulation results for the conventional estimator are discussed for 

example in Sections 5.19, 5.23 and 5.27).

2.9 Use of Bayes Theorem to show the theoretical inconsistency in the derivation of 

Hoem’s suggested “operational moment relations”

In Section 1.9, an account has been given of the “operational moment relations”, suggested 

by Hoem (1984), which rely on the approximation of assuming that all the lives who die 

would otherwise have continued in the investigation until age x + 1 , ie would have been at 
risk of dying until age x + 1 .

It was argued that this approximation was clearly unsatisfactory since some deaths would 

surely have withdrawn earlier than age x + 1 , had they not died, and the argument lead on 

to the conclusion that the approximation creates a negative bias in the suggested estimators, 

a conclusion confirmed by simulation studies.

We will now see that Bayes Theorem can be invoked to show that it is unsatisfactory to 

assume that all lives dying would otherwise have continued in the investigation to age 
x +  1 .

Consider the ith life. Suppose that this life will leave the investigation at age x+Tj 

(0 <T j < 1 ) if he does not die first.

Let Dj be a function such that Dj = 0 if the ith life does not die before age x+ l, and let

D- = 1 if he does. i

Then, in deriving his suggested “operational moment relations”, Hoem (1984) assumed:

P('ri= l|D j= l)  =  1

which gives:

p(ri< l |D i= l)  =  0

Now, with this assumption, Bayes Theorem tells us:

-  60 -



p ( 7- i < 1 lD i = 0 ) p ( D i = ° )

p(Di_ 0 |r i< l) -  p (ri< 1 |D.=0) p(Di=o) + p (ri< l|D j= l) p(Di= l)

=  1 (noting that the second term in the divisor equals zero).

=* r r s ^ x+s . =  0  if r i <  1

where the life enters the investigation at age x+Sj.

Quite apart from the obvious unreality of this, it also directly contradicts the mortality 

assumption on which the estimator is purportedly based, whatever form this mortality 

assumption takes.

2.10 The link between the conventional estimator and the method of moments estimator

An interesting feature of the simulation experiments reported in Chapter 5 of this thesis is 

that the conventional estimator and the method of moments estimator appear to give very 

similar values when the mortality assumption is correct, and in fact it can be seen 

theoretically that the values of the two estimators are likely to be very similar. (The 

similarity of the values of the conventional estimator and the method of moments estimator 

in the simulation studies is discussed in Sections 5.21 and 5.27).

Let us consider a mortality investigation in which we observe lives for all or part of the year 

from age x to age x+1. Let the typical life be observed from age x+Sj (0<Sj < 1) up to age 

x+tj (0 < tj< l) .

Let us suppose for the purpose of analysis that the typical life will withdraw at age x+Tj 

(0<7"j<l), if the life has not died already. Thus, if the life exits by a cause other than 

death, we have t- =  t . but, if the life exits by death, we have t- <r- .i i ’ i — i

Then the conventional estimator for qx is the value of qx which, in association with the 

assumed mortality law, solves the equation:

E l-s^x+s,. -  E l- t^ x + t, =  D (2-22)
N W

which, since L =  r- for all lives which exit by a cause other than death, can be re-expressed 

as:
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=  D (2.23)X  l-s,-qx+s. X  l -r ,qx+ r ■ 
N W

The assumed mortality law will have the form:

Px+t =  f(^,t) where qx =  q(<?i)

Most plausible mortality laws are likely to be expressible in the form:

^x+t =  f(qx,t)

and for simplicity of argument, we will assume that this is the case here, although similar 

conclusions, to those which follow here, would be reached in the more general scenario. (It 

is worth noting that <f> could, possibly, be taken as mx , px or p x).X+ 2

We will rearrange equation (2.23) as follows:

X  l -s^x+s- X  1-r qx + r { X  ^  1-r qx + r  •)
N N D *

X  ^l-r.px+r; — l-s ,px+Sj) =  X  l-r.-Px+T;
N ‘ D

X i 1 ~  ! r *P X+T‘.) ( l-r ,px+r,.) =  X  l -r ,px + r t- 
N L Ti ^  » D

X  i1 -  T-,-s,px + Si) ( l - r ^ x + r , )  =  X  l - r ipx + r i 
N D

X  r̂ r s.qx+s ) ( l-r  px + r ;) =  X  l-r .Px+r;
N 1 D ’

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

Now the method of moments estimator of qx is the value of qx which, in association with 

the assumed mortality law, solves the equation:

X  r r s . q x + s { ~  D  ( 2 -2 9 )
N

X  r r siqx + Bi =  X  1 (2-3°)
N D
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Thus the equation (2.28) which defines the conventional estimator differs from equation 

(2.30) which defines the method of moments estimator in that the contributions from the ith 

life on either side of the equation (and note that the contribution on the right-hand side is 

either 0 or 1) are weighted by the factor  ̂ r .PX-fr-’ ^  w*̂  now be arguec* that the 
modified method of moments equation given by equation (2.28) still provides an estimate of

qx -

Suppose that we had divided the year of age into a series of segments of age bounded by 

ages x, x+rl5 x+r2, .... x+rn, x+1 where obviously 0<r1< r2....<rn< l. Let us associate 

each life in the investigation with the segment in which his value of x+Xj falls. Now the 

lives associated with a particular segment can be used to provide a self-contained sample to 

estimate qx , since we can apply the method of moments principle to just these lives based 

on their experience during the whole investigation. Thus in respect of the experience of 

these lives, we write:

Expected deaths =  Actual deaths

It will be noted that, since x+Xj represents the latest age at which the ith life will exit from 

the investigation, the contribution of expected deaths and actual deaths by lives associated 

with a segment can only relate to the period from entry into the year of age up to the 

segment, and the lives will contribute no experience relating to the year of age after the 

segment.

Nevertheless, even if we are using only the experience of the lives associated with just one 

segment of x+Xj values, we are still able in theory to estimate qx , which relates to the 

whole of the year of age, because we have assumed a law of mortality which in effect relates 

at any point in the year of age to qx for the whole year of age.

We can create a bigger sample than that provided by a single segment by combining the 

data of many segments together to give combined values for “expected deaths” and “actual 

deaths”, and these combined segments should provide a better estimator of qx than 

individual segments, because of the increased sample size.

Since the data of any segment on its own can provide an estimate of qx , we can give the 

data from different segments different weightings in the process of combination, in 

calculating expected deaths and actual deaths, and still have a combined sample which gives 

an estimate of qx .

We can take this process to the limits of considering each segment as of elemental length, 

with a different weighting factor for each element, and of combining all elements of the year
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of age together in this way to provide a single combined calculation of qx based on all the 

data.

And what is more, this argument has not referred to the way in which the weighting factors 

vary over the year of age, ie to the relative size of the weights at different points in the year 

of age.

Now, in fact, we know that, in most mortality investigations, the weights , Px+ r  be 

very close to unity and will change very little as r i takes values from 0 to 1.

Because of this small variation in  ̂ r  px _j_r . as T i varies, the estimate of qx given by 

equation (2.28) is likely to be very similar to that given by the method of moments as 

defined by equation (2.30). (This assumes that there is a reasonable number of lives 

involved, so that any one individual life does not have a disproportionally large effect in the 

calculations). This conclusion appears to be borne out by the simulation studies.

It will however be noted that, when all lives in the investigation have the same value of rj, 

equation (2.28) simplifies to give equation (2.30), as the factor of  ̂ r  .Px+r- f°r ^he single 

value of r- will cancel from both sides of the equation. In other words the conventional 

estimator and the method of moments estimator will then give the same value, as was 

observed to be the case in Section 2.10 in the example used to illustrate that Ex is a 

function of qx .

In the view of this author, the preceding analysis gives strong evidence that the conventional 

estimator is very soundly based. And of course if the Balducci assumption in particular is 

accepted, the conventional estimator is very readily applied in practice, unlike in general the 

method of moments estimator.

Also, the method of moments generally requires a force of withdrawal to be assumed at 

every point of the investigation which, given the complex, changeable and often very 

unpredictable nature of the factors determining withdrawal rates (eg the abolition of life 

assurance premium tax relief), appears potentially very difficult, whereas the conventional 

estimator does not require any such assumption.

2.11 A search for an alternative to the conventional estimator

This author was initially persuaded by the arguments in Hoem (1984) that the conventional 

estimator was indeed unsatisfactory and set out to design an alternative approach which was 

not subject to the apparent objection.
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Eventually the search brought the author back to the conventional estimator and to the 

strong conviction that this estimator was in fact very sound.

However, before this stage was reached, the author investigated two possible designs for 

estimators for qx , which will be referred to as:

(1 ) the whole-year estimator

(2) the implication-B estimator

It was subsequently realised that the “whole-year” estimator was identical with the “product 

limit” estimator.

2.12 The whole-year estimator

The idea here was that the mortality rate should be based primarily on those lives who go 

through an entire year of age from x to x + 1 , or who would have done if they had not died 

first, these lives being termed “whole-yearers”. Where a death occurred, it was proposed 

that this be proportioned between the population of whole-yearers and the rest of the lives. 

Then the mortality rate would be obtained by dividing the sum of the proportions of deaths 

credited to whole-yearers by the number of whole-yearers.

In removing a death from the investigation, it was assumed that the withdrawal experience 

lost subsequently for that individual would have been exactly typical of the average 

subsequent withdrawal experience of the lives who remained in the investigation at the 

moment of that death, ie the life dying was assumed to be an exactly typical representative 

in terms of potential withdrawal behaviour of the body of lives carrying on.

In practice, the procedure would be as follows:

(1) Let WP be the number of whole-yearers surviving to age x+1, and let T P be the 

total number of all lives surviving to age x-f 1 .

(2) Starting at age x+1, work backwards in time until the first new entrant, withdrawal 

or death is encountered:

(a) If it is a new entrant, reduce T P by deducting 1.

(b) If it is a withdrawal, increase T P by adding 1.
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W W P  T(c) If it is a death, increase P by adding and increase P by adding 1.T ,

(3) Continue working back in time until another new entrant, withdrawal or death is 

encountered and repeat the adjustment set out in (2) using the current values of WP 

and ^P , and so on until age x is reached.

Then if the original value of WP is WP? and the final value of WP is WP,,) the deaths 

allocated to the whole-yearers is (WP,i -  WPr) and the estimate of qx is

W j) II _ W p  I
Ŵ TT

w p;
W p  II

W p  I
Obviously is an estimate of px .

(2.31)

Numerical experiments using this procedure produced very encouraging results. However, it 

was then noticed that the method always produced results identical with those produced by 

the product limit estimator!

A subsequent algebraic investigation revealed that the whole-year estimator was in fact the 

very same thing as the product limit estimator.

2.13 Demonstration that the whole-year estimator is identical with the product limit 

estimator

Let there be n+2 durations, during the year from age x to x + 1, at which non-death 

movements occur, comprising durations 0  and 1 , and n durations at which new entrants 

enter or withdrawals exit. Note that more than one person may be involved in entering or 

exiting at any of the durations. Let the n+2 durations be labelled from r = 0 to r = n+1.

Let T Pr be the total population of all lives present at the rth duration immediately before 

the movement(s) occur, and let T P*_p1 be the total population of all lives present 

immediately after the movement(s) at the rth duration. If any deaths occur exactly at the 

rth duration ( l < r < n + l ) ,  it will be considered that these deaths have occurred before the 

population T P^ is counted. Let WP^ and WP '̂_(_1 be the corresponding populations of 

whole-yearers. Let T Pj and WPj; be respectively the populations of all lives and of whole- 

yearers at the beginning of the year of age, and let T P^ + 1  and WP ^ + 1  be respectively the 

populations of all lives and of whole-yearers at the end of the year of age.

It will be noted that WP^ equals WP̂ _pi ( l < r < n )  whereas of course T P^ does not 

normally equal T P ^ 1.
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Then the product limit estim ator gives the following estimate of qx :

n+ l T p 2
qx -  1 -  I I

r = l  h r
(2.32)

Turning to the whole-year estimator, we have the following relationship linking WP2  and
W p 2 . 

r r + l-

w p 2
W p 2  — ( T p l  T p 2  Vi r+ t  i W p 2  i ^ ^

* r  -  l ^ r + l  -  F r + l ) * T ^ 2 —  +  F r+ 1  ’
* r + l

(2.33)

(Note that, if several deaths occur during a segment between non-death movements, the 

proportion of each death allocated to the population of whole-yearers is always effectively:

W p 2
r r + l

T p 2  >
r r + l

where the deaths occur in the segment following the rth non-death movement).

The relationship (2.33) simplifies to give:

so that we can deduce that:

W p 2    W  p2
r r — r r+ l *

t p 1
r + l
2
r + l

W p 2  — W p 2  
f 1 — r n + l*

n+ l T p ln t 2̂
r= 2  c  r

and so:

W p l  _ W p 2
r l  — * n + l *

n + l T p l
n  P lxx T p 2  
r = l  r r

(2.34)

(2.35)

(2.36)

Thus the whole-year estimator for qx is given by:

qx
W p  1 W  p2

r l  ~  r n-f 1 
w P i

i -
W p 2

n+ 1
W p l

r l

W p 2 
r n +  l

WP2  * 1 n +  1*

T+TTpl
n r f i
r = l  c r
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(2.37)
n + l  T

=  i - n T
r = l

Pjr
Pr

which is identical with the product limit estimator.

Although it is disappointing that the whole-year estimator only represented a re-invention of 

the product limit estimator, it is interesting to see how a link is provided between an 

estimator whose rationale is to follow lives through the year of age, and adjust for the effects 

of non-death entries and exits, and the seemingly different product limit estimator which 

apparently just considers the year of age as a series of separate and distinct intervals whose 

experience is simply combined together without any reference to the continuity of individual 

lives.

2.14 The imr>lication-B estimator

(This estimator was originally called simply the “implication estimator”, but in order to 

avoid potential ambiguities arising as a result of subsequent developments, it was relabelled 

the “implication-B estimator”).

The rationale behind the implication-B estimator is that we know the details of the lives 

exiting by withdrawal and survival, and assuming a law of mortality, we can construct an 

expression to estimate the number of deaths that could be expected to correspond to this 

withdrawal/survival experience. This expression can then be equated to the observed 

number of deaths and a value for c^ derived.

This was viewed as being an interesting line of research since it had no pretensions to being 

a “method of moments” estimator but simply took the final position reached at the end of 

the investigation and attempted to work backwards to infer a value of qx from the finishing 

position.

For each life exiting the investigation as a withdrawal or survivor, the number of deaths 

implied was taken to be:

t,-s,-qx+s,-
V s»Px+ si

where the life entered at age x+Sj, 0 <S j < 1 and exited at age x + fi, 0 < t j < l .

Thus the number of deaths implied is given by:
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1)

Equating this to the observed number of deaths leads to:

(2.38)

Thus, the total number of lives in the investigation is given by:

(2.39)

The probabilities in this equation would be expressed in terms of qx by means of the

to obtain the value for qx from the equation.

2.15 The implication-B criterion

Thus the rationale of the implication-B estimator can be re-expressed as determining an 

expression for the number of lives implied by the withdrawals and survivors as entering the 

investigation, and then equating this expression to the actual number of lives entering the 

investigation, to obtain the estimate of qx which is the solution of the resulting equation. 

(The assumption of a mortality law is necessary in order to express probabilities of the form 

s .px and . px in terms of qx ).

2.16 The implication-B estimator for some mortality assumptions

The following forms of the equation defining the implication-B estimator can be derived for 

various mortality assumptions:

fal “Level deaths” assumption

assumed mortality law. An iterative method of solution will commonly be needed in order

(2.40)
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(b) “Constant u” assumption

n  =  E
(i -  q x ) 1

sw (i _  qx) *

(c) Balducci assumption

n = E
SW

i — (i — tj)qx
1 -  ( 1  -  Sj)qx

(2.41)

(2.42)

Numerical experiments indicated that the implication-B estimator produced reasonable 

results, and this has subsequently been confirmed by the simulation studies reported in 

Chapter 5 of this thesis. (The simulation results for the implication-B estimator are 

discussed for example in Sections 5.22, 5.23 and 5.27).

During the numerical experiments, it was found that generally the implication-B estimator 

and the conventional estimator gave slightly different estimates of qx , but that if all lives 

entered the investigation at the same age x + s, the two estimators gave identical results.

This latter effect can be shown algebraically.

If all lives enter the investigation at age x + s, the implication-B estimator gives us:

D +  W +  S =  J 2

SW
sPx
t.Px (2.43)

(D + w  + S ) * ^  = V" 1
t Px SW '

(2.44)

(D + W +
SW

(2.45)

(D +  W +  S) (1 -  U s q x + S )  =  £  (1 -  M  qx + t ) (2.46)
SW

(D +  W +  S) =  N*1_sqx_|_s +  S +  W -  £  x q
SW

(2.47)

D -  N*l sqx+S -  1-t.qx+ti
W

(2.48)
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Equation (2.48) defines the conventional estimator.

2.17 The conventional estimator revisited

The link between the implication-B estimator and the conventional estimator, when all lives 

had a common entry age, led the author to seek a re-interpretation of the conventional 

estimator as an implication estimator.

Starting from the familiar rationale for the conventional estimator, the following algebraic 

manipulation was made:

D =  E  l-s^x+s, -  E  1-t^x+t, ( 2 A 9 )
N W

=* D =  E  i1 “  1-s.Px+sP -  E  t1 “  l-t,.Px+t,.) (2'5°)
N * WS ’

=> D =  (D + W + S ) - ^ ^ - ( W  +  S) +  X : t %  (2.51)
N ! WS

=> E  i k  = E  i k  • (2-52)
N 1 WS '

remembering that: N =  D - f W  +  S =  L +  I

2,18 The implication-A criterion

The above equation (2.52) gives an entirely fresh perspective to the rationale for the 

conventional estimator. The left-hand side of the equation gives the number of lives implied 

as being present at age x in order to provide the requisite number of lives surviving under 

mortality to enter the investigation for whatever age x + Sj at which they enter, while the 

right-hand side gives the number of lives implied as being present at the beginning of the 

year of age to provide the requisite number of lives surviving under mortality to exit the 

investigation as non-deaths, for whatever age x + f  at which they exit.

The estimator for qx is that value for qx which, in association with the assumed mortality 

law, ensures that the number of lives implied as present at the beginning of the year of age, 

to provide the lives entering the investigation, equals those implied as present at the
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beginning of the year of age, to provide the lives exiting as non-deaths from the 

investigation.

The author gave this criterion the name “implication-A criterion”; as we have seen it is 

closely related to the experimental “implication-B estimator”, but will be seen to have a 

more fundamentally satisfying basis.

A feature of the implication-A criterion which is particularly pleasing is that the treatment 

of every life involved in the investigation involves reference back to the beginning of the year 

of age, even for those lives who enter the investigation after age x. We are, after all, seeking 

to use the experience of every life to determine the rate of mortality over the entire year 

from age x to age x + 1 and, also, to be an entrant at age x + Sj does imply that the life 

was alive at age x, which is a piece of mortality data about that life in the year of age 

concerned.

It will be noticed that no knowledge of any probability distribution for withdrawals, nor 

new entrants, is required at any stage. This is viewed by the author as a particularly 

important feature and strength of this estimation criterion (and also of the implication-B 

criterion), given the complex, changeable and often very unpredictable nature of the factors 

determining withdrawal rates, or new entrance rates.

Thus it is contended that the conventional estimator has an acceptable, and intuitively 

attractive, theoretical basis giving results which, according to the analysis in Section 2.10, 

would be similar to those given by a method of moments estimator, if it could actually be 

calculated, when the correct mortality assumption is made.

Subsequently it will be shown, in Section 2.20, that the calculation of the conventional 

estimator according to the Implication-A criterion is analogous to the calculation of a 

money-weighted rate of return in a financial transaction, further enhancing the intuitive 

attraction of the criterion.

Further the simulation studies reported in Chapter 5 appear to confirm that the 

performance of the conventional estimator is satisfactory and is not compromised by alleged 

theoretical flaws as suggested by Hoem (1984). The performance of the conventional 

estimator in the simulations is discussed in particular in Sections 5.19, 5.21, 5.23, 5.26 and 

5.27. The simulation studies also suggest that, even when the wrong mortality assumption 

is made, the results given by the conventional estimator are just marginally more biased 

than those that would be given by a method of moments estimator (see Section 5.27).
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2.19 The product limit estimator also conforms to the imnlication-A criterion

It is a further pleasing feature of the implication-A criterion, applicable for the conventional

estimator, that the product limit estimator can also be shown to conform to this criterion.

In the case of the product limit estimator, the probabilities used in the equation:

are not based on the assumption of a mortality law such as “level deaths” or Balducci, as in 

the conventional implication-A method, but instead, if the year of age is split into intervals 

bounded by the points at which lives have entered or left the investigation for reasons other 

than death, then the proportion of lives observed to survive across an interval is taken as 

the underlying probability of surviving across the interval concerned. The product limit 

estimator for qx is obviously determined by deducting from unity the amalgamation of the 

survival rates for the fractional periods represented by the intervals.

It is found that these survival probabilities satisfy the implication-A criterion and so, 

therefore, does the product limit estimator of qx .

This is easily shown. Let there be n+2 durations, during the year from age x to x + 1, at 

which non-death movements occur, comprising durations 0  and 1 , and n durations at which 

new entrants enter or withdrawals exit. Note that more than one person may be involved in 

entering or exiting at any of the durations. Let the n+2 durations be labelled from t =  0 to

(2.53)

t =  n + 1 .

Let be the population present at the t th duration immediately before the movement(s) 

occur and let PjL|_i be the population present immediately after the movement(s) at the t th 

duration. Further let P j and Pn-fi be the populations at the beginning and end of the year 

of age.

Also let n̂  and Wj. be respectively the numbers of new entrants and withdrawals at the tth 

duration, and let x+r^ be the age at this duration.

Then from the mortality assumption made in the product limit estimator:

1 _  r t+ l (2.54)

where rt _̂1 -rt Px+rt ^ e  probability that a life aged x+rt will die within time (r^.^ -  rt ).
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We also have:

P t  + n t -  wt =  P t1+ 1 (2.55)

so that:
Pt , nt Pt+ 1  . wt 
rt Px rtPx rtPx rt Px (2.56)

Pt+ 1  . wt 
" rt+ lPx rt Px

(2.57)

noting that: rtPx*(rt+ i-rtpx+rt ) =  h + lPx ‘ (2.58)

Summing from r  ̂ =  1 to r̂  =  n, and cancelling common terms on either side of the
equation, gives:

p 2  n _ p 2  n ... 
P 1 . V-' nt _  1 n+ 1  y - ' wt 
r,Px 2- î rtPx Px 2- î rtPx 

1 rt= l 1 rt= l t
(2.59)

ie
n ,, p 2  n p i | y '  nt _  Kn+ 1  wt

1 2—< rtPx Px 2—t rtPx 
rt= l  ‘ 1

(2.60)

which gives the criterion for the implication-A estimator.

In fact, it can be shown that the product limit estimator satisfies the implication-A criterion 

over any section of the year of age, if lives present at the beginning and end of the section 

are treated respectively as entering and exiting at these points.

Thus the implication-A criterion provides a means of unifying the product limit estimator 

with the conventional estimator, the difference between them lying in the nature of the 

mortality assumption.

2.20 A comparison of the use of the irnplication-A criterion to calculate the rate of 

mortality with the technique of equating present values to calculate the rate of return 

in a financial transaction

At a seminar on 7th May 1991, the author presented these results concerning the 

implication-A criterion to colleagues, and Professor Steven Haberman (1991) pointed out to 

him that the concept of equating expressions for the number of lives implied as present at 

the beginning of the year of age in order to evaluate the mortality rate has a resemblance to 

the concept of equating present values, as encountered in financial mathematics, in order to
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evaluate a financial rate of return. This analogy will now be discussed.

Let us consider a financial scenario in which we have a sum of money in an interest bearing 

account which is having interest continuously added. Let us also think of the account- 

holder adding sums of money to the account and withdrawing sums of money from time to 

time.

If we study the account over a period of time, we know that we can equate the money in the 

account at the beginning of the period, plus the sums of money added to the account during 

the period, to the money which is in the account at the end of the period, together with the 

monies withdrawn during the period, so long as we adjust the various sums for the effect of 

interest.

A common calculation would be to work out the present values of the sums of money to be 

“equated”, by discounting their values back to the beginning of the period using the force of 

interest. (Commonly we are able to work with the more convenient rate of interest, rather 

than with the force of interest).

Then if the correct force of interest is used and interest has been correctly credited to the 

account, the sum of the present values of the monies “in-coming” equals the sum of the 

present values of the monies “out-going”. It is of course elementary that the interest 

additions are not regarded as movements of money whose present values are also to be 

included in these sums of present values.

If we now turn to the mortality scenario studied in this thesis, the year of age is analogous 

to the period for which we considered the interest bearing account. The number of lives 

present at any moment corresponds to the money in the account at any moment (after 

addition of the continuous interest). The lives starting, or entering during, the year of age 

correspond to the monies starting the period in the account or subsequently paid in by the 

account-holder during the period. The lives surviving the year or withdrawing during the 

year correspond to the money in the account at the end of the period or withdrawn during 

the period. The lives dying during the year, and hence removed from the population, 

correspond to the continuous interest added to the money in the account.

It is here that we see an important difference in the comparison of the two scenarios, namely 

that one involves the positively acting force of interest while the other involves the 

negatively acting force of mortality. However this does not prevent us from drawing a close 

analogy between the interest bearing account and the mortality bearing population, and just 

as we can discount, say, a sum of money withdrawn at time t ' by a factor of the form:
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(2 .61)v =  exp ft' dt
_ 0

where <5̂ is the force of interest at time t, so similarly we can “discount” a group of lives 

withdrawing at time t 1 using a factor of the form:

1 _ 
/Px

rt'
exp — 0  < -  »x+ 0  dt (2 .62)

where is the force of mortality at time t.

So for example, in the financial scenario, we can calculate the sum of money implied at 

duration 0  as corresponding to a sum of money withdrawn at time t ' , ie the sum that will 

grow under interest to the amount withdrawn, and similarly in the mortality scenario, we 

can calculate the number of lives implied at duration 0  as corresponding to a number of 

lives withdrawing at time t*, ie the number of lives that will decrease under mortality to the 

number of lives withdrawing.

Then just as we can equate the present values of the monies moving in and out of the 

account, so we can equate the implied numbers of people at duration 0  corresponding to the 

numbers of people moving in and out of the population.

Again it is elementary that the deaths themselves are not regarded as movements of lives to 

be “discounted” and included in the sum of implied numbers, just as the additions of 

interest are not regarded as movements of money to be discounted and included in the sums 

of present values.

Also, just as the financial present values can be calculated and equated at any chosen point 

in time, so similarly can the implied numbers of lives be calculated and equated at any 

chosen point in time. However the beginning of the year of age is a convenient point at 

which to make the calculation, and one which is intuitively helpful in understanding the 

procedure.

There is no theoretical difficulty implied by the fact that deaths occur as a random process 

and in units of one. In fact both these features have analogies in the financial scenario, in 

that the force of interest can vary as a random variable and money is itself expressed in 

units of currency which are ultimately indivisible, and these features do not give rise to 

difficulty in the financial scenario.

In the financial scenario, there are two important ways in which we can use the discounting 

technique. Either we can use the force of interest as actually credited, taking any changes in
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the force of interest into account in making the calculations, in which case the present values 

will automatically balance out, or we can seek to calculate the “internal rate of return”, 

which is the rate of interest which, if applicable unchanged throughout the period, would 

also result in the present values balancing.

In our mortality scenario, we also have two choices, more or less corresponding to the two 

financial alternatives. We can either use the force of mortality, as observed in the intervals 

between non-death movements, to reconcile the numbers of lives moving in or out, or we 

can seek the value of a mortality parameter which, in association with a mortality law 

dependent on this single parameter, will ensure that the numbers of lives at duration 0  

implied by the incoming and outgoing lives balance.

The first approach is the basis of the product limit estimator which uses the mortality 

experience between each adjacent pair of non-death entries or exits to determine the 

mortality rate observed to apply during the segment of the year of age concerned, and then 

combines the rates from each such segment to give a mortality rate for the whole year of 

age.

The second approach is the basis of the conventional estimator. It is of interest to note that 

the method is more sophisticated than the corresponding calculation of an internal rate of 

return. In the case of the conventional estimator, the force of mortality is assumed to vary 

according to a mortality law, the general level of the force of mortality being governed by a 

single mortality parameter, which is to be determined by the calculation. This mortality 

parameter is either qx or some other parameter which will allow qx to be determined.

In contrast, the calculation of the internal rate of return simply assumes that the force of 

interest is constant during the period of the scenario, and in calculating the internal rate of 

return, we effectively determine this force of interest (though in practice it is the rate of 

interest that is generally calculated).

An interesting feature that becomes apparent from the analogy is that the calculation of the 

mortality parameter determining the value of the conventional estimator is “lives-weighted”. 

In the financial scenario, the force of interest experienced at the time when the balance of 

money in the account is high will have a greater influence on the value calculated for the 

internal rate of return than the force of interest experienced at the time when the balance in 

the account is low, all other things being equal. The internal rate of return thus calculated 

is said to be a “money-weighted” rate of return.

Similarly the force of mortality experienced when the number of lives present is high will 

have a greater influence on the value calculated for the mortality parameter than the force
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of mortality experienced when the number of lives present is low, all other things being 

equal.

In contrast, the product limit estimator is not “lives-weighted” but is “time-weighted” since 

the mortality rate experienced in each segment is applied for the time covered by the 

segment in the calculation of the product limit estimator, and the number of lives involved 

is not reflected in combining the observed rates for each segment.

The mortality rate determined by the product limit estimator has its counterpart in the 

financial scenario in the single interest rate which if applied to a sum of money over the 

whole period of the financial scenario, without any withdrawals or additions of money, will 

produce the same closing balance as the interest rates actually experienced over the various 

intervals between money movements in the original scenario. It is the rate of return given 

by the administrators of the account on an undisturbed sum of money over the period of the 

financial scenario. Such a rate of return is said to be a “time-weighted” rate of return. 

Adams (1989) gives a concise discussion of “money-weighted” and “time-weighted” rates of 

return.

An implication of the fact that the product limit estimator is “time-weighted” whereas the 

conventional estimator is “lives-weighted” may be that the product limit estimator may 

generally have a greater standard deviation than the conventional estimator because the 

importance given to the data at each point of the year of age is not weighted to reflect the 

amount of data involved, unlike the approach used in the conventional estimator. The 

extent to which this apparent implication is borne out will depend on the suitability of the 

weighting given in the conventional estimator. In the simulations reported in Chapter 5, it 

is found that in most cases, but not all, the product limit estimator does have a larger 

standard deviation than the conventional estimator (see Section 5.23).

Thus there appears to be a very strong resemblance between the method of calculating the 

conventional estimator of qx , which involves the application of the implication-A criterion, 

and the method of calculating the internal rate of return in a financial transaction; further 

there also appears to be a very strong resemblance between the method of calculating the 

product limit estimator and the method of calculating a time-weighted rate of return.

2.21 The method of moments: some parting observations

In general, the method of moments can be seen to be highly impractical for application to a 

mortality investigation, both in terms of the formulae and calculations that would be 

involved and in terms of making accurate assumptions about the distribution of
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withdrawals, and if appropriate about the distribution of new entries.

If we look at a proposed mortality investigation with the intention of applying the method 

of moments to estimate qx , a number of observations can be made.

Firstly, the experiment extends over finite time (unlike, say, a coin tossing experiment 

which can be thought of as taking place in an instant).

Secondly, the experiment consists of a sequence of events, or potential events, the occurrence 

or potential occurrence of which depends on earlier events in the experiment. Since the 

whole experiment occupies finite time, we might take the view that we have a sequence of 

an infinite number of potential events, each of which individually requires just an instant to 

occur (eg withdrawal/non-withdrawal, death/non-death).

Thirdly, the question arises of what exactly constitutes the starting position of the 

experiment. When does the experiment start? If a life is a new entrant at duration one 

month into the year of age say, does the experiment start at that point for that life, 

notwithstanding that other lives have already been involved at an earlier point of the year of 

age? If we accept this point of view, the starting position consists of knowing, before the 

experiment, the precise number and age at entry of all the lives who will enter the 

experiment. This is the point of view adopted for example in Hoem (1984).

Alternatively, one might take the view that the starting point of the experiment for all lives 

is at age x since we are studying mortality over the year of age from age x exact to age x+ 1  

exact; on this view we cannot take an event occurring at age x+f (0 <f< 1 ), such as entry at 

age x+f, as part of the starting position. There must exist some mechanism operating from 

age x, for lives defined as existing at age x, whereby entries of some of these lives occur at 

subsequent ages. The entry of a life at age x+f (0<f< 1) will occur if the life is still alive at 

age x+f and if at that point he becomes an entrant. Clearly survival under mortality is 

involved in the required mechanism; several possibilities concerning occurrence of entry 

suggest themselves, including the following:

(1) At age x, a life is earmarked to be an entrant at a particular age x+f if he survives to 

age x+f.

(2) At age x, a life is earmarked as an entrant at a particular age x+f if he is still alive 

at age x+f and if a random variable subject to a defined probability distribution 

takes an appropriate value.

(3) At age x, a life is earmarked as an entrant at any age x+f (0<f< 1) if a random
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variable subject to a defined probability distribution takes the value f and the life is 

still alive at age x+f.

Thus arguably, it appears that there is not a unique theoretical approach for the application 

of the method of moments to the mortality investigation scenario, so that it may not be 

enough simply to talk without qualification about applying the method of moments in this 

scenario.

An important factor giving rise to this ambiguity seems to be the fact that the experiment 

extends over finite time, so that we have to define at what time the experiment begins for 

different individuals. As already noted, when we are applying the method of moments, it 

more usually seems to be in scenarios where the experiment can be thought of as occurring 

instantaneously, so that this issue does not arise.

There is also the consideration that survival from age x up to entry involves mortality, the 

very phenomenon that the experiment is designed to investigate.

In this thesis, it has been assumed that the force of mortality is not a function of calendar 

time. If this could not be assumed, the “starting position” would also have to specify the 

point of calendar time at which each life attains exact age x (or an equivalent piece of 

information).

In addition, there seems to be a further arbitrary factor in any proposed application of the 

method of moments to a mortality investigation, namely what random variable is the 

method of moments to be applied to? Of course in practice, it is the first moment of the 

number of deaths during the appropriate year of age that we use, but there seems no 

fundamental theoretical reason for selecting this particular random variable, above any 

other, the justification appearing to be that it is the least impractical thing to do.

This discussion of the theoretical ambiguities draws attention to the fact that decisions have 

been made, and are taken for granted, in the application of the method of moments to 

estimate qx , as discussed for example in Hoem (1984).

A further observation concerning application of the method of moments to the mortality 

investigation experiment is the need to assume the general form of a probability distribution 

for withdrawals, and possibly new entrants. As already commented this may be difficult, 

given the complex, changeable and often very unpredictable nature of the factors 

determining withdrawal rates, or new entry rates.
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2.22 The derivation of maximum likelihood estimators for qx

The derivation of maximum likelihood estimators for qx has been discussed by a number of 

writers, including Broffitt (1984). The general procedure is to create a likelihood function of 

the form:

l na t.-ŝx+Bj) trstrx+st) n ̂ x+t,. n "x+t (2.63)
N D W’

where  ̂,_s ,rx_|_s . is the independent rate of unscheduled withdrawal analogous to the 

independent rate of mortality t -s 9x+s-’ ^x+t rePresents the force of unscheduled 
withdrawal analogous to the force of mortality and W* represents those withdrawals

not occurring at durations fixed in advance.

It should be commented that, in order to formulate the likelihood, it is assumed that we 

know whether a withdrawal was scheduled to occur or was a random unscheduled event, and 

that we know the force of withdrawal, governing unscheduled withdrawals, at every point of 

the investigation. The latter information in particular might be difficult to establish in 

practice, if the details were actually to be required, given the complex, changeable and often 

very unpredictable nature of the factors determining unscheduled withdrawals (eg the 

abolition of life assurance premium tax relief), as previously commented (in Section 2.10). 

However, it can be subsequently seen that the information concerning withdrawals, needed 

to formulate the likelihood, is not actually used in the evaluation of the maximum 

likelihood estimator of qx .

Generally a mortality assumption is made which is equivalent to the form:

Px+t =  f(qx.t) , ( 0< t < l )  (2.64)

and L modified accordingly.

Then, in the most common approach, we differentiate L (or more conveniently log L) with 

respect to qx and equate the derivative to 0 .

This gives an equation which can be solved to give the estimator for qx .

The most convenient result comes when “px_|_[ =  f(qx,t)” is taken as:

=  constant , ( 0  < t < 1 ) (2.65)
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Then we obtain:

qx =  i -  e (2.66)

where:

D
£ (  \ - s0
N

(2.67)

This is easily shown. The log-likelihood function is:

log L =  ^  log -f ^  log t px — ^  log s .px + terms independent of mortality
D N N

=  £  log /i +  5Z (—‘i*^) -  £  (—Sj*p) -f terms independent of mortality (2 .6 8 ) 
D N N

where: f'x+t ~  ^  ' (0 < t< l)  (2.69)

Here, it is more convenient to determine the maximum likelihood estimator of p rather than 

the maximum likelihood estimator of qx . Then, by the invariance property of maximum 

likelihood estimators (see for example Larson (1982)), the maximum likelihood estimator of 

qx will be the value of qx that occurs when /i in equation (2 .6 6 ) takes the value given by 

the maximum likelihood estimator of p.

So: dlog L _  D
dp ~  0 £  (h -  si)

N
(2.70)

Equating dlog L 
dp to zero gives:

By considering:

p  = D
£ ( t i _ s i)
N

d2log L _  _  d .
dp 2 p 2

(2.71)

(2.72)

we confirm that the log-likelihood is maximised by the value given by expression (2.71), so 

that we confirm that the maximum likelihood estimator of p is given by expression (2.71),

-  82 -



from which the maximum likelihood estimator of qx can be determined using equation

( 2.66) .

If, alternatively we consider the maximum likelihood estimator of qx when the “level 

deaths” assumption applies, we obtain, as demonstrated for example in Hoem (1984), 

Broffitt (1984) or in Section 2.23 of this thesis, the following equation defining the estimator 

for qx:

JD
9x 1 -  Sj*qx - Esw 1

t;
— tj*qx =  0 (2.73)

Obviously this can generally only be solved by an iterative method.

If, as a further alternative, we consider the maximum likelihood estimator of c^ when the 

Balducci assumption applies, we can obtain after some simplification the following equation 

defining the estimator for qx :

E
N

______ !______
1 -  (1 -  Sj)*qx E  i _  (! _  tj)*qx

Again, this can generally only be solved by an iterative method.

(2.74)

2.23 Demonstration that, when the “level deaths” assumption applies, the maximum 

likelihood estimator is identical with the conventional estimator

Before proceeding to demonstrate that the maximum likelihood estimator is identical with 

the conventional estimator when the “level deaths” assumption applies, we will derive 

equation (2.73), quoted in the previous section, which defines the maximum likelihood 

estimator for this mortality assumption.

The log-likelihood function is:

log L =  ^  log Px_|_t + ^  log t px — ^  log s px + terms independent of mortality 
D ' N ’ N

=  E  lo8 (l J E q  ) +  E  loS t1 _  V ^ x) -  E  *°8 t1 -  si*9x)
D i Hx N N

+ terms independent of mortality
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=  E loS qx -  E lo§ t1 _  ti*<3bc) + E l o 8  (* _  h ^ x )  -  E l o 8  0  “  si+(lx)
D D N N

+ terms independent of mortality

=  Y log qx + Y log -  q*qx) -  Y log ^  ~~ si+cix)
D SW N

+ terms independent of mortality (2.75)

dlog L _  H  sj
dqx qx 1 — Sj*qx E  —

SW tj*qx (2.76)

Equating <91og L
5qx

to zero gives:

D. + V ___ ' -qx 1 — s-*qv
N * MX

Y
SW

t;
1 — tj*qx =  0 (2.77)

which is the equation defining the maximum likelihood estimator. This was quoted earlier 

as equation (2.73).

It can be seen that this equation is the same as equation (1.45) which set out equation (12) 

of Hoem (1984).

We will now proceed to develop this equation into a format which defines the conventional 

estimator.

From the equation (2.77) we have:

_D
fix Y 1 -  q +  Y 1

S HX W tj*qx E 1 — s-*qx N > x
(2.78)

Then multiplying through by (1 -  qx ) and remembering that N = D + W + S, we have:

(2.79)D* ( 1  ~ .qx) =  N -  W -  D + y  E - Ix)ti _  y  £ ___h
1 tj^qx 1qx w N Sj*qx

Gathering together the terms relating to the (sub)sets N, W and D, we have:
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(2.80)

(2.81)

D X  l-S^X  +  S; X  l- t.^ X + t,
N 1 W

(2.82)

because under the “level deaths” assumption:

Equation (2.82) is of course the familiar equation solved by the value of qx given by the

conventional estimator. It can also be seen to be the same equation as equation (1.44) 

which set out equation (3A) of Hoem (1984).

Thus when the “level deaths” mortality assumption applies, the maximum likelihood and 

conventional estimators are identical.

This author is not aware of this general co-incidence of the conventional and maximum 

likelihood estimators under the “level deaths” assumption having been previously noted in 

the literature, although coincidences in less general situations have been noted; certainly 

Hoem (1984) did not refer to the co-incidence when making unfavourable comments on 

conventional estimators and favourable comments on maximum likelihood estimators, and 

did not note that his equations (3A) and (1 2 ), defining respectively the conventional and 

maximum likelihood estimators of qx under the “level deaths” assumption, are identical 

when expressed in a common notation and rearranged to a common format (as 

demonstrated in this section).

Broffitt (1984) observes that if all lives enter the year of age at age x exact, and that half 

the withdrawals occur at age x and the other half at age x+ 1 , then the value given by the 

maximum likelihood estimator assuming “level deaths”, defined by equation (2.77), is the 

same as that given by the actuarial estimator:

The actuarial estimator is of course based on the full data conventional estimator using the

qx =  ---- —
x N -  |W

(2.83)
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Balducci assumption but, in the situation considered by Broffitt, there are no lives making 

non-death movements during the year of age, and this means that the conventional 

estimator will be the same for all mortality assumptions. Consequently, the maximum 

likelihood estimator using the “level deaths” assumption will give the same value as the full 

data conventional estimator using any mortality assumption. Here, it also equals the 

actuarial estimator, as the equal split of the withdrawals between the beginning and end of 

the year of age accommodates the approximated “|W ” term in the divisor of the actuarial 

estimator.

Slawski (1991) shows that the maximum likelihood estimator and conventional estimator for 

full data using the “level deaths” mortality assumption are asymptotically equal.

It is interesting to note that equation (2.77), which defines the maximum likelihood 

estimator of qx when the “level deaths” mortality assumption applies, can be simplified to:

v ___ i___ =  V ____ 1___
N 1 "  Si*qx SW 1 ~  ‘i* *

(2.84)

and that this then does suggest that the maximum likelihood and conventional estimators of 

qx are identical when the “level deaths” assumption is made; because the “level deaths” 

mortality assumption applies, equation (2.84) can be written as:

X  =  X  '¡“kc (2-85)
N ’ VVS 1

and, from equation (2.52), this defines the conventional estimator.

2.24 An alternative criterion generally producing the same estimator as the method of 

maximum likelihood

We will now consider the general form of the equation for the estimator of a general 

mortality parameter <j>, which could be qx , given by the maximum likelihood approach just 

discussed, and we will then identify an alternative criterion which gives the same estimator 

without involving a notional withdrawal distribution. Starting from the general likelihood 

function set out earlier in equation (2.63):

l = n t1 ~ vŝx+s.x1 - t.-s/x+s,.) n ̂ x+t; n "x+t,.
N D w*
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(2.86)
 ̂ Px= n S;px n ̂ x+t, no-vs/x+sp n x̂+t,

N ' D 1 N W*

log L =  ]C  log Px+t- + Y 1  log t-Px -  log s^Px 
D 1 N ‘ N

+ terms independent of mortality (2.87)

g^x+ ti gt,Px ^s.Px
Slog L   y '  9<j> v~'' d<f> v-'  d<j>

d<t> ~  f a  ^x+t,- f a  l ^ T  ~  f a
(2.88)

Equating to zero leads to:

d/'x+t, Sg.px
d(j) _  y v  d(j>

2—d Pv-l-t ~~ t—* s.Px D + * N
£
N t.Px (2.89)

Further manipulation leads to:

£

¿Kt.Px px+ ti) ^s,Px a t,Px
d<t>

=  £
N

d(j>
- £

SW

d<f>
t.Px Px+t,. s.Px t,Px (2.90)

Alternatively we have:

Ss;Px
V '
f a  s P̂x

S(t .Px Px + t.)
y '  à<t> 
f a  t,.PxA*x+t,. + £

SW t,Px (2.91)

Let us look closely at this last expression. It has an interesting and exciting interpretation.

The expression inside the summation on the left-hand side is the rate of proportionate 

change, as <j> varies, in the number of lives surviving from age x to be entrants at age x+Sj, 

and this is applied to each of the actual entrants for the appropriate values of x-fsj to give, 

after summing, the rate of change as <j> varies of the number of those entering.

The expression inside the first summation on the right-hand side is the rate of proportionate 

change, as <j> varies, in the number of lives dying at age x+tj, and this is applied to each of
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the actual deaths for the appropriate values of x+b to give, after summing, the rate of 

change as <j) varies of the number of those dying.

The expression inside the second summation on the right-hand side is the rate of 

proportionate change, as <f> varies, in the number of lives surviving from age x to be non-

death exits at age x+b, and this is applied to each of the actual non-deaths for the 

appropriate values of x+b to give, after summing, the rate of change as cj> varies of the 

number of those exiting other than by death.

Thus equation (2.91) equates the rate of change, as <j> varies, of the number of those entering 

the investigation to the rate of change, as <fi varies, of the number of those exiting the 

investigation.

It is important to note that in each of the three summation expressions, we are considering 

the lives surviving under mortality from age x, the beginning of the year of age, up to entry 

and exit. The period from age x up to the point of entry, if this is after age x, thus plays an 

essential role in this analysis. This is pleasing from the philosophical point of view since we 

are attempting to estimate <j>, a parameter related to the probability of dying in the year 

commencing at exact age x, and to be an entrant at age x+Sj, a life must survive from 

age x.

It is also pleasing that this type of estimator can be seen to arise from considering the 

survival under mortality from age x exact of both entrants and exits, because the 

conventional estimator was also seen to arise from a consideration of the survival under 

mortality from age x exact of both entrants and exits, a pleasing common feature.

Thus, by considering only mortality aspects of the mortality investigation scenario, we are 

able to reproduce the equation defining the estimator of a general mortality parameter 

which was previously obtained by using the technique of maximum likelihood.

This is a very interesting result, and it is also interesting that the new scenario-based 

derivation does not at any stage assume knowledge of the nature of withdrawals (ie whether 

scheduled or unscheduled) or of the force of withdrawal governing unscheduled withdrawals. 

The method of maximum likelihood assumes initially that such knowledge is available, 

although it generally become irrelevant in the subsequent mathematical development.
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C H A P T ER  III

Properties and applications

of the rectangular hyperbolic and Gompertz 

mortality distributions

3.1 Three common mortality assumptions

Three particular mortality assumptions have been introduced very frequently in the 

literature when exposed-to-risk methods and the derivation of mortality rates have been 

discussed. They are also three assumptions to which frequent reference has also been made 

already in this thesis, namely:

A — uniform distribution of deaths (“level deaths”)

B — Balducci assumption

C — constant force of mortality (“constant p”)

The notation A, B and C appears to have been first used by Batten (1978) and has been 

followed by a number of subsequent authors, for example Greville (1978), Hoem (1980, 

1984) and Broffitt (1984). However it should be noted that the assumptions do not form a 

logical sequence in the order A, B, C, as Batten himself recognised.

It is easily shown, as demonstrated in Section A 1.1 of Appendix 1, that these mortality 

assumptions are special cases of a more general mortality law, namely:

''x + t =  ¡ T u  ’ (3.1)

As further demonstrated in Section A 1.1 of Appendix 1, 

b =  —1 gives assumption B, “Balducci” 

b =  0 gives assumption C, “constant p”
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b =  1 gives assumption A, “level deaths”

It will be seen that the three assumptions fall into the natural sequence B, C, A or A, C, B.

3.2 The rectangular hyperbolic mortality distribution

Under the mortality distribution defined by the equation:

(3.2)^x+t bt (0 <t <l ) ,

the force of mortality follows the mathematical form known as the rectangular hyperbola, 

and therefore it appears appropriate to call this distribution, “the rectangular hyperbolic 

mortality distribution”.

It can be seen that the constant a determines px , the value of the force of mortality at the 

beginning of the year of age, and in fact px equals the reciprocal of a, while the constant b 

determines how the force of mortality develops over the year of age from the value set at 

exact age x by the constant a.

As shown in Section A 1.4 of Appendix 1,

if b ¿  0 , a =  -------- -------- r  (3.3)
1 -  ( 1  -  qx)b

if b =  0  , log ( 1  -  qx ) (3.4)

Thus Px_|_£ can be expressed in the range (0<t <l )  as a function of qx and b, where b is the 

parameter determining the particular mortality distribution.

The constant b can be expressed in terms of px and Px_j_̂  as follows:

(3.5)

and this reflects the fact that, once it is decided that the rectangular hyperbolic distribution 

is applicable, there is only one possible curve that can represent px_|_(- if its values at t =  0  

and t =  1 are already determined, ie the distribution is then fully defined.

Ll x ^x+ 1

Further expressions which arise are:
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(3.6)
l l

qx =  1 -  ( 1  -  g)b =  1 -  ( 1  -  b/ix)b if b *  0  

or qx =  1 — e a = l  — e ^ if b =  0  (3-7)

Differentiation of the expression:

Px+t =  ^ H t  ’ t0^ 1)’ (3‘8)

with respect to t leads to the results:

for b < 0 (3.9)

for b > 0 (3.10)

These show that px_^ decreases or increases with decreasing t according to whether b is less 

than or greater than zero, which is consistent with the fact that b = 0  corresponds to 

“constant /(”.

d^x+t
dt

d/V ft
dt

As also shown in Section A 1.6 of Appendix 1, we have the further results:

dV t  0

dt2
for b < 1 (3.11)

dV tx7  < o
dt2

for b > 1 (3.12)

These expressions show that the life table curve lx_|_̂  is convex downwards or upwards 

according to whether b is less than or greater than one. This implies that a transition from 

b < 1 to b > 1 , or vice versa, indicates the presence of a point of inflection in lx_|_(., which is 

consistent with b = 1 corresponding to the uniform distribution of deaths, for which lx_j_̂ 

will be a straight line.

Thus, given a table of px for successive integral ages x, it is easy to detect the approximate 

location of points of inflection in the lx curve by calculating:

b = _L
Mx

1

^x+ 1
(3.13)

for successive x and looking for the ages at which b moves either up or down past the value 

b = 1 as x increases.

Table 3.1 shows some values of b, calculated using equation (3.13), for a selection of
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mortality tables. It will be seen that the progress of b as age increases is broadly similar in 

the five tables considered, the value of b declining from values of the order 50-100 for ages 

in the late 30’s, through values of the order 5-10 around age 60, to values of the order 

0.1-0.2 around age 100. The decline in b appears to be generally delayed for mortality 

tables with lighter mortality.

Table 3.1 Some values of b calculated using the formula
b = j l  _  n z

** ^x+ 1

Age A1967-70 ELT 14 ELT 14 a(90) ult a(90) ult
ultimate males females males females

2 0 -63.311 -80.183 79.365
25 -53.635 15.056 64.102

30 28.933 38.314 73.992

35 99.658 62.730 101.351

40 81.242 59.249 81.454

45 46.109 37.003 49.735

50 24.372 19.445 27.925
55 13.072 1 0 . 0 2 2 15.297
60 7.247 5.268 9.072 6.928 10.989
65 4.148 3.149 5.784 4.336 7.202
70 2.438 1.971 4.106 2.628 4.500
75 1.462 1.192 2.563 1.568 2.676
80 0.890 0.716 1.546 0.925 1.563
85 0.548 0.427 0.853 0.544 0.897
90 0.341 0.242 0.398 0.319 0.511
95 0.214 0.167 0.193 0.188 0.290

1 0 0 0.135 0.165 0.204 0 . 1 1 0 0.163
105 0.087

Some further important results derived in Sections A1.7 and A1.8 of Appendix 1 are:

r ”  b *  t-sPx+s =  ( ^ 1 *  =  (3.14)

For b =  0:
-(t-s)

t-spx+s =  e-(t-s)p
=  (Px)t-s (3.15)
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And:

where x is a given integer and 0 <r < l .

For b =  0: lx+r oc e"*" (3.17)

where x is a given integer and 0 <r < l .

It will be noted that, when b = 1 (“level deaths” assumption), we have:

^x+r*^x+r =  a constant> (3.18)

which is a familiar result from life contingencies, and that when b = -1 (Balducci 

assumption), we have:

lx_l_r =  px_|_f*constant, (3.19)

so that both lx_j_r and px_|_r have the same downward sloping, convex downwards, shape. 

Using the mortality law that

1
F o r b ^ O :  lx+ r «  ( ¿ ^ ) b (3.16)

Mx+t =  ^ b t -  (0<t< 1), (3.20)

it is possible to derive a number of interesting life contingencies relationships and to create 

some possibly useful approximations for application when the law is not strictly true. 

Perhaps these might be thought of as enhancements of approximations based on the 

common “level deaths” assumption, since b is now no longer assumed to take the value 

unity, but is estimated from available tabulated items.

Some interesting results are the following expressions for px , t_gpx_j_s and mx , when p is not 

constant, requiring only values of px and p .  ̂ for evaluation:

Px =  (

^xPx+l 
Px ^ x + l - ^ x

Px+ 1
(3.21)

PxPx+ l
_  tpx + ( 1  -  t^ x + l/x + l-Z b c  

t-sPx+s -  ls/ix +  ( 1  _  s)px+1j (3.22)
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^xPx+ 1

1 _  ( ^x \^x+l
[VX+1>mx =  -------------- 3 -n -n ------------- */ ¿‘xA'x+l | + ^x+l^

\ u „  I 1 — Uv +  G
1 _  /_££x_\ ^x+ 1  ^x

^ x + lJ

The expressions for px and _̂spxq_s follow from the earlier result (3.14):

_  /^x+s.b 
t-s^x+s — '-tix+ t;

(3.23)

(3.24)

by firstly expressing the right-hand in terms of a and b, and then expressing a and b in 

terms of fix  and Px_j_̂ -

The derivation of the expression for mx is summarised in Section A1.9 of Appendix 1.

Many of the results just developed for the rectangular hyperbolic mortality distribution will 

be applied in the subsequent development of ideas relating to the determination of qx .

It is of course a major aspect of the rectangular hyperbolic mortality distribution that it 

involves two constants in order to define the mortality assumption concerned; another 

mortality distribution also involving two constants is of course the Gompertz distribution, 

and this distribution will also be applied in the subsequent work. Although the Gompertz 

distribution is very well known, some results based on it will be used in forms which may 

not be immediately familiar. These will be derived next.

3.3 The Gompertz mortality distribution

The form in which “Gompertz’s Law” is traditionally quoted is:

/ix =  B cx (3.25)

where the law is typically taken to apply over a large range of age, perhaps as originally 

from a young age up to the limiting age u>. However in most of our applications, we will 

only be concerned with the behaviour of as t varies in the range 0 < t < l ,  with x being

fixed. Therefore we will consider the Gompertz mortality distribution in the form:

px+t =  B 'c 1 ( 0<t<l )  (3.26)

Now we will proceed to derive some results applicable under this mortality law.
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Ifc +  1 ,
ft

tPx =  exp ( -
0

/ix+r dr )

=  exp ( -  

=  exp (~  

=  exp ( -

.  y - »

1 B' cr dr )
J 0

B;
log c

B'
log c

where h =  exp ( — B'
log c)

(3.27)

(3.28)

t-spx+s
tPx
sPx (3.29)

Px ,c-l

t-SPX+S Px
(c —c )** c — 1 >

(3.30)

(3.31)

An interesting form is:

t-spx+s -  px

px+t px+s
P x + l ~ P x  '

(3.32)

When c = 1, we have the “constant p” assumption again. Bearing in mind equation (3.15) 

applying to the rectangular hyperbolic distribution when b = 0 , and observing that px = B? 

here, the following results can be seen to apply:

For c =  1: -(t-s) p -(t-s)B, 
t-spx+s =  e =  e (Px)1-’ (3.33)

It is worth noting that the situation where both distributions give the “constant p” 

assumption is the only occasion on which the rectangular hyperbolic mortality distribution 

and the Gompertz distribution give the same distribution, for appropriate values of the 

distribution parameters.

We will recall that in the case of the rectangular hyperbolic mortality distribution, we noted 

that one parameter, a, determined px , the value of the force of mortality at the beginning of 

the year of age, while the other parameter, b, determined how the force of mortality 

developed over the year of age from the value set at exact age x by the parameter a.

It is interesting to note that a similar situation applies over the year of age in the case of the
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Gompertz distribution: the parameter determines px (and in fact equals px ) while the 

parameter c determines how the force of mortality develops over the year of age from the 

value set at exact age x by the parameter B/.

3.4 The shape of the rectangular hyperbolic mortality distribution

In Sections 3.19 to 3.27 of this chapter, the shapes of the rectangular hyperbolic and 

Gompertz mortality distributions are compared in some detail.

It is found in Section 3.20 that both curves are monotonically increasing or decreasing, and 

that both have a second differential coefficient which is always positive.

However the curvature of the rectangular hyperbolic curve will be greater than that of the 

Gompertz curve and, in particular, the vertical displacement of the rectangular hyperbolic 

curve at the age x+^ from the straight line joining the given values of px and ^x_|_j will be 

about twice as great as that of the Gompertz curve (as shown in Section 3.22).

Although the rectangular hyperbolic curve would appear typically to exhibit greater 

curvature than the Gompertz curve over a year of age, it is not so great that it appears in 

any way calamitous. In fact the curve seems to provide a useful alternative to the 

Gompertz curve for experimentation and investigations over a year of age.

A useful benefit of fitting the rectangular hyperbolic curve to over a year of age is the

convenient algebraic development which it permits, when other mortality functions are 

evaluated. The curve is arguably more co-operative in terms of algebraic simplicity than 

the Gompertz curve.

However, as also discussed in Section 3.27, the shape of the rectangular hyperbolic curve is 

unlikely to be suitable for fitting over a wide age span to px_^ for human data.

3.5 Applications of the rectangular hyperbolic and Gompertz mortality distributions

We will now re-express the equations defining the conventional and implication-B estimators 

in terms of the parameters defining:

(a) the rectangular hyperbolic mortality distribution

(b) the Gompertz mortality distribution
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3.6 The conventional estim ator for the rectangular hyperbolic m ortality distribution

The conventional estimator is the value of qx that solves:

E  like  =  E  7 1 ^  (3-34)
N * WS 1

When the rectangular hyperbolic distribution applies (and b ^  0), we have:

E  — =  E  — 1— i (3-35)
^  (a — bs-)b ^  ^ (a — bb)b

or ------~---- 1  =  E  ------1-----1 where k =  S (3-36)
N (1 -  ksj)b WS (1 -  kb)5

An interesting form of the equation is:

E  (^x+s . ) 5  =  E  K + t . ) 5  (3-37)
N 1 WS 1

It will be recalled that the normal use of the conventional estimator involves making a 

mortality assumption, and of course, commonly, the Balducci assumption is used, since this 

does not lead to an iterative derivation of qx . Making a mortality assumption is equivalent 

to assuming a value for b in expression (3.35) or (3.36) and solving for a or k.

We then obtain qx by applying equation (3.6):

1 1

qx =  1 -  (1 -  g)b =  1 -  (1 -  k)b (3.38)

This procedure has been used in the simulation studies.

It will be apparent that the solution of the equation for a or k will normally involve an 

iterative method; however it can be seen that, if b = - 1 , the equation for k, say, simplifies 

to:

k = -D (3.39)

which thus avoids an iterative solution. Of course, b = - 1  corresponds to the Balducci 

assumption, and the appropriate expression for qx follows.
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3.7 The conventional estim ator for the Gompertz m ortality distribution

Again we recall that the conventional estimator is the value of qx that solves:

E
N

1
s,-Px Ews

(3.40)

When the Gompertz distribution applies (and c ^  1), we have:

e -v e -^
N hc WS hc ‘

(3.41)

The equivalent of assuming a value for b under the rectangular hyperbolic distribution is to 

assume a value of c. (Both of these parameters relate to the way the force of mortality 

develops over the year of age from the value of px at the beginning of the year of age).

Therefore we assume a value for c and then solve the equation, almost certainly by an 

iterative method, to obtain a value for h.

We then obtain qx by applying the following relationship, which follows from equation 

(3.30) derived for px for the Gompertz distribution:

qx =  1 -  hcA (3.42)

Again this procedure has been used in the simulation studies.

3.8 The implication-B estimator for the rectangular hyperbolic mortality distribution

The implication-B estimator is the value of qx that solves:

Ews
s.-Px
TT5

-  N (3.43)

When the rectangular hyperbolic distribution applies (and b ^  0), we have:

bs- i _!)■>
bt. N (3.44)

or E<
WS

1 — ks- 1 _____ lib
1 -  kt.J =  N (3.45)
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An interesting form of the equation is:

£<
WS ^X+S:')b =  N (3.46)

Following a similar procedure as for the conventional estimator, we assume a value for b, 

which is equivalent to choosing a mortality assumption, and solve iteratively for a (or k).

As before we then obtain qx by applying equation (3.38):

1 1

qx =  1 -  (1 ~  !i)b =  1 -  (1 -  k)b (3.47)

This procedure has also been used in the simulation studies.

3.9 The implication-B estimator for the Gomoertz mortality distribution

Again we recall that the implication-B estimator is the value of qx that solves:

WS ‘

When the Gompertz distribution applies (and c ^  1), we have:

s.-

(3.48)

E
WS hc

hc _
t. =  N (3.49)

Again following a similar procedure as for the conventional estimator, we assume a value for 

c, which is equivalent to choosing a mortality assumption, and solve iteratively for h.

As before we then obtain qx by applying the following relationship:

qx — 1 — h0 ' 1 (3.50)

This procedure has also been used in the simulation studies.

3.10 The conventional and implication-B estimators when “constant o” mortality 

assumption is made

It will have been noticed that the cases b = 0 and c = 1 have been omitted in our
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consideration of the rectangular hyperbolic and Gompertz distributions respectively. It will 

be seen that the equations considered previously, which define the conventional and 

implication-B estimators in terms of the distribution parameters, cease to be defined when 

b = 0  or c = 1 .

It is easily established that, when the “constant p” assumption applies, the following 

equations can be obtained from the general equations defining the conventional and 

implication-B estimators:

Conventional estimator:

£ - ^  = £ - 4
N (Px) WS (Px) '

(3.51)

Implication-B estimator:

5 3  (Px)_ =  N (3.52)
WS (Px) '

These equations may be solved iteratively for px .

3.11 Maximum likelihood estimators

We turn now to consider the derivation of maximum likelihood estimators when the 

rectangular hyperbolic and Gompertz mortality distributions apply.

In Section 2.24, we saw that generally the method of maximum likelihood leads to an 

estimator of a mortality parameter <fr (which could be qx) which satisfies the equation:

d(t,-Px ^x+tP ôs .px 3t .Px
v-' ' ____ dcfr____  _ d<j> r - '  d<f>
2— /  t .p x px-i-t. — 2—1 s.Px 2—1 t-Px
D » + * N * SW !

(3.53)

This is obtained by differentiating the following log-likelihood function with respect to <j> 

and equating the derivative to zero:

lo§ L =  1 2  lo§ ^x+t- + 1 2  lo§ t -Px -  1 2  l o 8  s{Px 
D N ’ N

+ terms independent of mortality (3 .5 4 )
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The value of <f> given by equation (3.53) will correspond with the maximum likelihood 

estimate of qx , and so when we consider the situations where the rectangular hyperbolic or 

Gompertz mortality distributions apply, we can use the method of maximum likelihood to 

obtain values of the parameters corresponding to the maximum likelihood estimate of q*.

Firstly, we will proceed as we did in the cases of the conventional and implication-B 

estimators, and suppose that we choose a mortality assumption, ie in the case of the 

rectangular hyperbolic distribution, we will choose the value of b and then obtain the value 

of a by applying the method of maximum likelihood, while in the case of the Gompertz 

distribution, we will choose the value of c and then obtain the value of Bi.

Later, in Sections 3.16 and 3.17, we will consider the exciting alternative of letting the data 

choose the mortality assumption, by using the method of maximum likelihood to evaluate b 

or c.

However, firstly we consider the situation where a mortality assumption is made.

3.12 The rectangular hyperbolic mortality distribution: the maximum likelihood estimator 

of the parameter a when the value of parameter b is assumed

For convenience we will use the expression for the log-likelihood as our starting point, that 

is:

log L =  £  lQg f'x+t,. +  £  lo8 t.Px -  £  '°g 8,-Px 
D N N

+ terms independent of mortality (3.55)

When the rectangular hyperbolic distribution applies (and b ^  0), this may be rewritten:

rt _ Kf 1  rt __ Kç 1

log L =  • £  log 1 + £  log (— 5 — ■)» -  £  log ( - A *  + etc (3.56)
D a “  bti N N

log L =  - £ l o g ( a - b t j )  + r  £  log (a -  btj) -  i  log(a -  bs.) + etc (3.57) 
D N N

Now b is regarded as having been fixed in advance by the choice of the mortality 

assumption. We proceed to obtain a maximum likelihood estimate for a.
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Differentiating with respect to a gives:

dl°g L _  _  y '  1 , I r '  1 _  1 y '  1
5a A ^  a — bt. b Ar^ a — bt. b a — bs-D I N  I N  »

(3.58)

Equating to zero gives:

£
D

1
a — bt- l

V  ______ i______
V  a -  b8i

(3.59)

Equation (3.59) obviously ceases to be defined when b = 0 and appears to require an 

iterative solution for a when b ^  0  for general data.

It is interesting to note that when b = 1, equation (3.59) simplifies to:

£ a 4
N

£
WS

a (3.60)

which is equation (3.35) defining the conventional estimator when b = 1. This then 

provides elegant confirmation of the result in Section 2.23 that, when the “level deaths” 

mortality assumption applies, the maximum likelihood estimator and the “conventional” 

estimator are identical.

As with the equations for the conventional estimator and the implication-B estimator, the 

item k = b/a might be introduced into the equation, giving the following expression, and 

the equation solved for k in this form:

V '  1 _  1  V ' 1 _  V '  1
4 4  1 — kt- b A-j 1 — kt- 4 -̂  1 — ks-
D i N I N  i

(3.61)

An interesting form of the equation is:

I
b X  ^x+t.

N 1
X  ^X+S.
N

(3.62)
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As earlier, we obtain qx by applying equation (3.38):

1 1

qx =  1 -  (1 -  s ) b =  1 -  (1 -  k)b (3.63)

This procedure has been used in the simulation studies.

3.13 The Gomncrtz mortality distribution: the maximum likelihood estimator of the 

parameter lV when the value of parameter c is assumed

When the Gompertz distribution applies (and c ^  1), the log-likelihood may be written:

log L =  ^ 2  log B'c1' + Y  log h 
D N

(c *-1 )
Y log h
N

( A l ) + etc (3.64)

where it will be recalled that (equation (3.28)):

11 =  “ T ( " I # ! ) (3.65)

log L =  D log B' +  (log c) 53 tj +  (log h) Y, c ‘ -  (log h) Y, ** (3-66)
D N N

log L =  D log B' + (log c) Y ,  S -  E  (c‘‘ -  ■ “’>
D l0eC N

(3.67)

Now c is regarded as having been fixed in advance by the choice of the mortality 

assumption. We proceed to obtain a maximum likelihood estimate for B/

Differentiating with respect to B/ gives:

dl°g L _  D ___ L_ V '
dB1 B1 log c y cS‘ )

Equating to zero gives:

B' D

log c N
( c

t,

(3.68)

(3.69)
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By considering:

<92log L 
<9B' 2

it is immediately obvious that the value of B; given by this equation corresponds to a 

maximum of the likelihood.

It will be seen that expression (3.69) does not define B; when c =  1.

Expression (3.69) is very interesting. Firstly B7 can always be evaluated without resorting

to an iterative method.

Secondly the format of the expression is redolent of a traditional “exposed-to-risk” style 

expression but with the divisor based on transformations of the times from the beginning of 

the year of age up to entry and up to exit, the transformation being achieved by the 

function:

(3.70)

If the data is held on a computer, the expression (3.69) for B7 is very easy to calculate.

The value for qx can readily be obtained from B; and the assumed value of c, by applying 

equations (3.28) and (3.30):

qx =  1 -  hc l where h =  exp ( - j ^ —)log c (3.71)

In fact, if we substitute for Br in the expression for h using equation (3.69), we see that qx 

can be estimated directly using:

qx =  1 -  exp
— D (c -  1) (3.72)

N

Again this procedure has been used in the simulation studies.

It is interesting to note that the expression (3.69) giving B/ can be re-expressed as:

(3.73)
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3.14 The maximum likelihood estimator when the “constant u” mortality assumption is 

made

It will have been noticed that the cases b = 0 and c = 1 have again been omitted in our 

consideration of the rectangular hyperbolic and Gompertz distributions respectively. It has 

been seen that the equations defining the parameters a and B , respectively, cease to be 

defined when b = 0  or c =  1 .

As shown in Section 2.22, when the “constant p” assumption applies, the method of 

maximum likelihood leads to the following estimator of p:

p = D
£  <h -
N

si)
(3.74)

3.15 Maximum likelihood estimators with no distribution parameter assumed

Now we come on to the exciting alternative of allowing the data to determine the mortality 

assumption used in the analysis, by using the method of maximum likelihood to evaluate b 

or c.

3.16 The rectangular hyperbolic mortality distribution: maximum likelihood estimators 

with no distribution parameter assumed

We have the following expression for the log-likelihood under the rectangular hyperbolic 

mortality distribution (when b ^  0 ):

log L =  -  l o 8  (a -  bti) + f  log (a ~~ bV  "  f  E  lo® (a “  bsi) + etc (3-75) 
D N N

Now we are regarding both a and b as parameters to be evaluated by the method of 

maximum likelihood. Therefore we will determine the partial differential coefficients of the 

log-likelihood with respect to a and b, equate them to zero and solve the resulting 

simultaneous equations for a and b. We must however bear in mind that difficulties will 
arise if b = 0 .

The simultaneous equation obtained from the partial differential coefficient with respect to a 

will be identical with that obtained when b was regarded as a pre-chosen constant, that is 

(equation (3.59)):
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(3.76)V __ ì.... =  I  y '  i^ a - b t  b ^ a - b t j V  ______ ì______
V  a  -  b si

When we differentiate with respect to b, we obtain:

T  =  T  - A t  -  \  T  log (a -  bt.) -  ì  V  
dh D a _ b t i b N 1 b Y a _ b t i

+  ¿5 £  ‘°g  (a  -  b si) +  5  £  A b i
N N

(3.77)

Equating this to zero gives:

E t.i _  1
„  a — bt- b D i

V __ -i____ V  — i— )
N a “  bti N a ~~ b8i

b2
log (a -  bsj) -  l o 8  (a -  bti) l  (3-78)

N N

This is obviously a more complicated equation than we have met previously.

However if we view it as one of a pair of simultaneous equations, it is possible that 

application of the other equation in the pair can achieve some simplification, and this proves 

to be the case.

The other equation in the pair is:

which gives:

v __ ì__= ì  T v ___ 1__
t r a - bti b n  a ~  bti

v __ i__
N a ~  bSi

V '  a 1 r y r a
A . a - b t  b ¿ ^ a - b b 1 ) a

a — bs.l
i)

leading to:

E
D a

_ !__
— bt-l

t-l
a — bt-

(3.79)

(3.80)

(3.81)

Thus, in the pair of simultaneous equations, equation (3.78) can be replaced by:
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V“' i _ a r  1 __ !_
^  a -  btj b ^  a -  btj b2 Y log <a ~  bsi ) ~  £ log (a ~  bti)

N N
(3.82)

This equation can be rearranged to give:

£  !r= -bu  =  -  b  [ " £ log (a -  bsî  -  £ log (a ~ bt ;)
D i N  N

(3.83)

D =  B Y log (a ~  bsi) -  £ log (a -  bti)
N N

(3.84)

Thus the values of a and b given by the method of maximum likelihood can be obtained by 

solving the simultaneous equations:

D 1
b Y log (a ~  bsi)

N
Y log (*
N

b t) (3.85)

y '  l = l y  l _  \   ̂ l
a — bt- b -¿y a — bt- a — bs-D 1 N I N  i

(3.86)

As before, the equations can be expressed and solved using k = b which gives:

D 1
b Y log ~  ksi) -  £ log (* _  kti)

N N
(3.87)

\ " l _  I  v  1 _  l
4 ^  1 — kt- b 1 — kt- L ?  l — ks- D 1 N I N  1

(3.88)

It will be noted that these equations are not defined when b = 0. In practice an iterative 

method of solution will almost certainly be required, and steps must be taken to ensure that 

the procedure can cope, should the value b = 0  be thrown up during the iterative process.

These equations were employed as part of the simulation studies and a practical expedient 

was successfully employed to circumvent the complication.

The equation (3.85) of the pair of simultaneous equations has some interesting features.

Firstly, if a mortality assumption is being made, ie a value of b assumed, this equation 

provides another estimator for a, and simulation studies have shown this to give very

-  107 -



satisfactory results. In Chapter 4 of this thesis, theory will be developed which will give a 

better understanding of this estimator. The author will refer to this estimator as the 

“log-estimator”.

Secondly, equation (3.85) can be expressed in some interesting forms. From equation (3.85), 

we have:

D = i E ‘°s
N

a — bsj 
a — btj

which leads to the forms:

=  £  '°g (
N

a
a

bs-
bt-

i
b

D =  £  log
N

P x + t ,

^x+s,.

(3.89)

(3.90)

and D =  £  iog 
N

1

t r siPx+si
(3.91)

Expression (3.91) is superficially reminiscent of the expression defining the implication 

estimator, namely:

E
WS

1
t,-S,-PX+S; =  N (3.92)

Clearly however, there are major differences in these two expressions.

Expression (3.91) can also be expressed as:

n
N

V SiPX+S»' e
D (3.93)

which appears a quite remarkable relationship. The left-hand side is the probability that all 

the lives in the investigation will each survive under mortality for exactly the period for 

which they were actually present in the investigation.

In Section 4.8 of this thesis, a derivation of equation (3.93) will be presented that does not 

exclude the case b = 0 , as here, and it can be seen that if the left-hand side is evaluated 

assuming the “constant p” mortality law, the familiar maximum likelihood estimator for
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(equation (2.67)) is obtained , namely:

A* =
D

E  (*i -  si)
N

(3.94)

3.17 The Gompertz mortality distribution: maximum likelihood estimators with no 

distribution parameter assumed

We have the following expression for the log-likelihood under the Gompertz mortality 

distribution (when c ^  1 ):

log L =  D log B' + (log ( c 1 -  cSi) (3.95)
D 8  N

Now we are regarding both and c as parameters to be evaluated by the method of 

maximum likelihood. Therefore we will determine the partial differential coefficients of the 

log-likelihood with respect to B; and c, equate them to zero and solve the resulting 

simultaneous equations for B* and c. We must however bear in mind that difficulties will 
arise if c = 1 .

The simultaneous equation obtained from the partial differential with respect to B, will be 

identical with that obtained when c was regarded as a pre-chosen constant (equation (3.69)), 
that is:

B'

log

D

E  -
N

(3.96)

When we differentiate with respect to c, we obtain:

d]°£ L _  1 V  t + B' V  <cli cSM B' *i +  c (log c)^  (c - c ) - “ v"') <«7>N

Equating this to zero (and assuming c ^  1) gives:

V  t; =  X  ( V  ( U 1* -  S|CSi) -  1 V  (c*< -  c8‘))^ i  log C l i  > log c Ÿ (3.98)

Again this is a complicated expression. However if we view it as one of a pair of
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simultaneous equations, we are able to effect some simplification by application of the other 

equation in the pair of equations.

The other equation in the pair is:

B' =

log c

D

E (cti -
N

cS')
(3.99)

and substituting for B/ in equation (3.98) gives:

E li =  D
D

E - sicS')
N____________

E (cti - cSi)
N

1
log c (3.100)

This equation has only one unknown, namely c, and it must be solved iteratively. 

Obviously the equation is not defined when c = 1 and steps must be taken to ensure that 

the iterative procedure can cope, should the value c = 1 be thrown up during the iteration.

Thus the values of B1 and c given by the method of maximum likelihood can be obtained by 

solving the simultaneous equations:

E b  = o
D

E (tict‘ - sicSi)
N____________

E (c‘‘ - ^
N

1
log c (3.101)

B' = D

log c N
cS‘)

(3.102)

As before the value of qx can be readily obtained using the relationship:

qx =  1 — hc"̂  where h =  exp ( — ¡-- )log c'

These equations have been successfully used in the simulation studies.

(3.103)
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In fact, if we substitute for Bi in the expression for h using equation (3.102), we see that qx 

can be estimated directly using:

qx =  1 -  exp ~ D ( c  ~  1 )

E  (<=*' -
N

(3.104)

and we need only to solve equation (3.101) iteratively for c in order to evaluate this.

3.18 An approximate relationship between b and c

In the simulation studies reported in Chapter 5 of this thesis, values of both b and c are 

estimated for the same bodies of data as part of the estimation of qx using two-parameter 

maximum likelihood estimators, assuming firstly a rectangular hyperbolic mortality 

distribution and secondly a Gompertz mortality distribution.

It is useful to have an approximate relationship linking values of b and c fitted to the same 

data, in order to apply a rough check to the results. Such a formula must of necessity be 

approximate because, as already noted, the two mortality distributions never coincide except 

in the special case when /j, is constant.

A simple approximate relationship can be readily found. Consider the rectangular 

hyperbolic mortality distribution which is such that:

1

Px =  a > Px + 1  =  ¡-3 - 5  and qx =  1 -  (1 -  g)B (3.105)

Let c be the value of Hx in the Gompertz mortality distribution which has the same

values of as the rectangular hyperbolic mortality distribution when t =  0  and t =  1 .

Then it is apparent that:

Px — 1 — Ox — (1 — g)b — (g)b (3.106)

This gives: (3.107)

or alternatively: b log c 
log px (3.108)
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It should be noted that px in the formulae (3.107) and (3.108) refers to the probability of 

surviving from age x to x+1 in the rectangular hyperbolic mortality distribution. The 

probability of surviving from age x to x+1 in the Gompertz mortality distribution will be 

slightly different. This reflects the fact that the two distributions do not coincide.

3.19 Comparison of the shapes of the rectangular hyperbolic and Gompertz mortality 

distributions over the year of age

The remainder of this chapter will be devoted to a detailed comparison of the shapes of the 

rectangular hyperbolic and Gompertz mortality distributions over the year of age.

3.20 Preliminary examination of the shapes

The shape of the Gompertz distribution is well-known; it is of course an exponential curve of 

the general shape:

=  k, k2x (kl5 k2 constants) (3.109)

With regard to the rectangular hyperbolic curve, as t increases, travels from the value

px to the value Px_^ along a monotonically increasing or decreasing curve which arcs below 

the straight line joining the values px and Aix_|_p he. the curve is concave upwards.

This can be seen from the first and second derivatives of:

A'x+t =
1

a — bt (3.110)

namely:

and:

d^x+t =  b 
dt (a — bt) 2 b K + t ) 2

d~/ix+t, _  2 b2

dt2 (a — bt) 3 2 b2 ( /V f t ) 3

(3.111)

(3.112)

The first derivative never changes sign and the second derivative is always positive.
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3.21 Measures to compare the rectangular hyperbolic and Gompertz curves

In order to compare the shape of the rectangular hyperbolic curve with the Gompertz curve 

and the straight line, we will investigate two features of the curves. Figure 3.1 will illustrate 

the discussion that now follows.

Firstly we will identify the position of the Gompertz and rectangular hyperbolic curves at 

age x+^ and examine their displacements vertically from the straight line i.e. the vertical 

displacement of the point (|, p j) for each curve from the point (i, lp x + Ip ,). This 

vertical displacement will be expressed on a scale in which the displacement (px_^ -  px) is 

one unit and will be denoted by -~(x and - j 2 for the Gompertz and rectangular hyperbolic 

curves respectively. These measures will give an indication of the relative positions and the

relative curvatures of the two curves. Let us call the point (1, p x) “the sag-point”, and
X + 2

let us call the mid-point of the straight line, ie (¿, ^px + |p x_j_j), “the mid-marker”.

Secondly for each of the Gompertz and rectangular hyperbolic curves we will identify the 

co-ordinates of the point at which the slope of the curve is parallel to that of the straight 

line joining the points p = px and p = px_|_j. Let us call this point “the parallel-point”.

The horizontal and vertical displacements of the parallel-point from the mid-marker, i.e. 

from the point (i, ip x + |pzx_|_̂ ), will be used as further measures of the shape of the 

Gompertz and rectangular hyperbolic curves. Again the vertical displacement will be 

expressed on a scale in which the displacement (a*x _|_i  -  px) is one unit. Using the modified 

scale for the vertical displacement, let us denote the horizontal and vertical displacements of 

the parallel-point from the mid-marker by (-T]1, ipx) for the Gompertz curve and by 

(-772, ip2) for the rectangular hyperbolic curve.

The measures (-77, ip) will again allow comparison of the positions and curvatures of the 

curves and the extent of any tendency to skewness.

3.22 Expressions for j 1 and ~f2

Now, assuming the Gompertz distribution:

Ti =  3
'V f i  ~  ^x
^x+l “  ^x

B'c2 -  B' 
B'c -  B'
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Figure 3.1 : Comparison of

the rectangular hyperbolic and Gompertz curves

The extents of the displacements have been very 

greatly exaggerated compared to those likely to 

occur in fitting the curves to mortality data.

Names of points Distances

A =  mid-marker £IIin<

S2 =  Gompertz sag-point AS2 =  7 2

Pj =  Gompertz parallel-point BPi =  rh
S2 =  rectangular hyperbolic sag-point AB =  Vi
P2 =  rectangular hyperbolic parallel-point ^1^2 =  V2



_  1 _  -fe — 1
_  2 C -  1

_ 1 _  1 
2 fb + 1

1

* í^ ± l  + l

J t *  +  ^ + 1

^ x + 1

^  +  ^ x + 1
(3.113)

And, assuming the rectangular hyperbolic distribution:

72 1
2

^x+i 
^x+l _

_  1 ' 2

I
a

1
a

_ i _  a — b 
2 2 a -  b

1

^x+l

Vx + ^x+l

_  1 ______Vx
2 Mx + Mx+ 1

^x+ 1  _  1

^x + ^x+ 1  2
(3.114)

There is a remarkable similarity of form between the expressions (3.113) and (3.114) for y 1 

and 7 2 respectively.

Let us consider the ratio of j 2 to
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72 _  
7i ~

^x+ l _  i 
/X  + A*x + 1 2_

■v ^x+l_____ 1

^  5

^x+ 1  ~  ^x 
/ x + 1  + px_

^ x + 1  ~
J^x + 1  + ^

^ x + 1  + JJ*  
Vx + 1 + Mx 

1

^ x + 1  + 'ft1*

^x+ 1  + ^X +  2 ^ x A*x + 1  

^x+l +

=  1 + J ^ x + l
(t*x+l +  ^x)/2

(3.115)

If px and /ix_j_j have values of similar size, it can be seen that this ratio will be very 

slightly less than 2  since J7 bc/^~jT[ is the geometric mean of px and while

(px +  /ix_|_j) / 2  is the arithmetic mean, and the geometric mean is less than or equal to the 

arithmetic mean, the values being very close if px and px_^ are similar in size (and are 

equal if px and A'x_(_̂  are equal).

Thus we can see that, at age x+ |, the rectangular hyperbolic curve will diverge vertically 

from the straight line virtually twice as far as the Gompertz curve, ie the sag-point will be 

about twice as far below the mid-marker for the rectangular hyperbolic curve as for the 

Gompertz curve.

We will now obtain power series expansions for and 7 2 in terms of “d”, where:

d =  ^ z j r  -  i ’ (3-116)

that is, for the Gompertz distribution:

d =  c — 1 (3.117)
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and for the rectangular hyperbolic distribution:

d = (3.118)

We have:

=  3 ~  ¿{(1 +d ) 5 -  1 }

=  \  ~  g { ( i  +  3d ~  §d ~ +  red3 ~  n M 4 +  • • • ) -  1 }

=  Id -  + rfsd 3  -  -  (3-119)

In addition, we have:

72
Mx

Mx +  Mx_|_i

_  i ____ L_
_  2 2  + d

=  | d  

=  H i

____ i__)
1 +  3d

-  (1 -  |d  +  id 2 -  |d 3 +  ... )}

=  3d Id 28U + —d3  —~  16u (3.120)

Now the value of d is typically in the region of 0.1, so that typical values of -y1 and 7 2 are 

in the region of:

y 1 =  0.012 and ~f2 =  0.024

Thus the rectangular hyperbolic curve appears to have a more exaggerated curvature than 

the Gompertz curve but not, on this evidence, to an implausible extent for the purposes of 

modelling mortality over a year of age.

It will be noted that the power series expansions of and 7 2 are consistent with the result 

earlier in this section that the ratio 7 2 / 7 1  was slightly less than 2:

72 .. | d - | d 2 +  iLd3

7 1  _  Id -  ^  +  ilsd 3
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(3.121)
id -  |d 2 + 1 0 -d3 -  ^-d31 2 8 u  6 4 u

§d -  ¿ d 2 + — da 1 2 8 u

Thus:

i d 28 U (3.122)

For a typical value of d = 0.1, this expression gives iy ~  1.99875 . (A precise calculation 

based on equation (3.115) gives yy = 1.9988647....)

3.23 Expressions for ?71 ,V,i> 0 2  ar*d %t) 2

Now firstly for the Gompertz curve, let us derive the value of t at which the parallel-point 

occurs ie the value of t (0 < t < l )  for which:

dp„ , t
- a r *  =  ^x+i -  vx  , (3 .1 2 3 )

that is, for which:

(Br log c) c1 =  B'c -  B'

c1 = log c

(3.124)

(3.125)

log
log c (3.126)

Thus we have:

V i

log (■: ~  i )
log c ;

log c
1
2

log (Iog (dl+d) 
log (1 +d)

)
1
2

log
i d 22U

l ^ 5+ Id -5 -  id 4 + id
d _  id 2 + id -5 -  id« + id 3 -

1
2
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. 1log
1 _  id + i d 2 -  id 3  + |d 4 -  ...

d ( 1 _  id + id 2 -  id 3 + |d 4 -  ... )

-  log (1 -  K) _  ! 
d (1 -  K) 2

where: K =  jd — gd2 + |d 3  — gd4 + ...

Thus:

Vi =  g (K +  iK 2 +  ¿K3 +  | K 4 +  ... )(1 +  K +  Iv2 +  K3 +  K 4 +  . . . ) -  i 

=  3 (K +  | K 2 +  ^ K 3 +  ||K 4 + . . . ) -  I 

=  ¿ d  -  ¿ d 2 + i f 0d3 -  ...

Now let us consider the value of corresponding on the Gompertz curve to:

log (' log c
log c

This value is:

^x+t

log (■log c

B'c log c
)

B'e
(log c)(-log ( f e 1)

log c

B'elog (feir)

=  B' c — 1
log c

From this we have:

_  1
— 2

B' C — 1 -  b 'log c_
B'c - b '

(3.127)

(3.128)

(3.129)

(3.130)

(3.131)
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1 _  _ J _  + _ I _
2 log c c — 1

1 + 1 _____1___
2 d log ( 1  + d)

I +  1O I
2 d d ( 1  -  id + id 2 -  id 3  + id 4 -  ... )

1 + 1 _____ I___
2 +  d d (1 -  K)

where as before: K =  |d  — |d 2 + Id 3 H 4 +

Thus:

V'l =  3 +  a -  a (1 +  K + K2 +  K3  + K4 +  ... )

\ +  3 -  g (* +  ^d -  ^ d -  +  ¿ d 3 -  d ^ d 4 +  ... )

± d  -  d-d2 + d£.d3 -12u  2 4 u  ' 7 2 0 u

(3.132)

(3.133)

(3.134)

Now secondly for the rectangular hyperbolic curve, let us derive the value of t at which the 

parallel-point occurs ie the value of t (0 < t < l )  for which:

d^x+t
- d t ~  = ^X+l ~  ^ (3.135)

that is, for which:

b
(a — bt) 2 — ^x+i ~ (3.136)

JL______L_
Px ^x+ i

JL
Px ‘(k -^X /*x+ l '

— ^X+l - (3.137)

t = ^x+ 1  ±  
^x+ 1

j ^ x + 1

~  /'x (3.138)

But since 0< t < l ,  we adopt the solution:

-  119 -



t = ^X+ 1  ~  ^ x//x+l 
^x+ 1  “  ^x

Thus

f x + 1

^  + J^x + 1

F x + 1

^  + ^ 7 ^ 1  2

=  Ti

Equation (3.141) follows when we recall equation (3.113).

(3.139)

(3.140)

(3.141)

And so, from the power series derived for ~/1 (see equation (3.119), we have:

V2 §d f6 d2 + — d 3 — 128u (3.142)

Now let us consider the value of px_j_t corresponding on the rectangular hyperbolic curve to:

V x + l
+ ^ x + 1

(3.143)

This value is:

^x+t

1

1 r 1 1 1 »x+ l  ~  ^ x/ix+ l
Vx ¡_Mx Vx+ l] ^x+ 1  _  ^x

=  ^ x + 1 (3.144)

But  ̂ is the value of the Gompertz curve when t =  ij, and therefore gives

the value of the Gompertz curve at its sag-point.

Therefore: V2 =  7i (3.145)

And so, from the power series derived for (again see equation (3.119)), we have:

^  ^  -  f6 d2 +  rfgd3 -  -  (3.146)
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3.24 Discussion of f]1,ip1,r)2 and tp2

In the last section, we have obtained the following expressions:

11 =  &  -  ¿ d 2 + ¿rod3 -  ... (3.147)

=  f2d -  ^ d 2 + df0d3 -  ... (3.148)

^ 2  =  §d — rgd + r2 8 d — (3.149)

V>2 =  |d  -  f6d2 +  rfgd3 -  ... (3.150)

It will be seen immediately that, for the rectangular hyperbolic curve, the parallel-point is 

displaced from the mid-marker by the same distance vertically (^ 2 ) as it is horizontally 

(rj2), whereas, in the case of the Gompertz curve, the parallel-point is displaced about twice 

as far vertically (Vq) from the mid-marker as it is horizontally (rq), but these distances are 

respectively about two-thirds and one-third of the corresponding distances for the 

rectangular hyperbolic curve.

It is quite remarkable that, in making comparisons between the displacements for the 

Gompertz and rectangular hyperbolic curves, such simple proportions should be almost 

exactly true, and yet not precisely. A similar phenomenon was seen when we compared the 

respective displacements of the sag-points from the mid-marker (see equations (3.119) and 

(3.120) giving 7 j and 7 2 respectively). It will be noted that as d tends to zero, these 

approximate proportions appear to become precisely correct.

A further fortuitous relationship between the curves is that the vertical displacement of the 

parallel-point for the rectangular hyperbolic curve from the mid-marker (^ 2) is the same as 

the displacement of the sag-point of the Gompertz curve from the mid-marker (7 ^  i.e. the 

sag-point of the Gompertz curve is on the same horizontal level as the parallel-point of the 

rectangular hyperbolic curve (which point of course lies to the right of the Gompertz 

sag-point, by a distance (r/2) equal to the vertical displacement of the two points from the 

mid-marker (7 2)).

If again we consider a typical value for d of 0.1, we obtain

r)1 = 0.004 

i>x = 0.008

r]2 = 0.012 

ip2 = 0.012
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As before, these figures indicate that the rectangular hyperbolic curve indeed has a more 

exaggerated curvature than the Gompertz curve, but again the extent to which the shape is 

more exaggerated does not seem untenable for mortality purposes, in the context of a single 

year of age. These figures also provide reassurance that skewness does not arise as a 

problem in using the rectangular hyperbolic curve in this context.

3.25 General comment

The rectangular hyperbolic curve provides a shape for modelling mortality over a year of age 

which is distinct from the exponential curve of the Gompertz Law, and in which the 

curvature, and the displacement from a straight line representation, are more pronounced 

but not to an extent that appears in any way calamitous. In fact the curve seems to 

provide a useful alternative to the Gompertz curve for experimentation and investigations 

over a year of age.

It must be borne in mind that our comparison has been based on the premise that the 

curves are being fitted between given values of px and  ̂- In fitting a curve for px_^ to 

the mortality experience of a year of age, we would not have the constraint of conforming to 

given values of px and so that a rectangular hyperbolic curve fitted to the mortality

experience of a year of age is likely to give values of px_|_̂  which are very slightly above 

those of the fitted Gompertz curve, at either end of the year of age, and very slightly below, 

around the middle of the year of age.

A useful benefit of fitting the rectangular hyperbolic curve to px_|_̂  over a year of age is the 

convenient algebraic development which it permits, when other mortality functions are 

evaluated. The curve is arguably more co-operative in terms of algebraic simplicity than 

the Gompertz curve.

3.26 Symmetry of the transformed rectangular hyperbolic curve

It is not a coincidence that the vertical and horizontal displacements of the parallel-point 

from the mid-marker are the same for the rectangular hyperbolic curve. When we changed 

the vertical scale of measurement so that the distance (px_|_̂  -  px ) was unity, we were in 

effect making a transformation which produced a rectangular hyperbolic curve which is 

symmetrical about the line which passes through the mid-marker at right angles to the line 

joining the points p = px and p = px^ | .  Using the transformed scale, this line (which is 

the “transverse axis” of the hyperbola) is at 45 degrees to the t and p axes, so that the point 

at which the curve intercepts this axis of symmetry is displaced from the mid-marker by
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equal amounts on the t-axis and the p-axis.

These assertions follow from the classical properties of the rectangular hyperbolic curve.

The symmetry can also be confirmed by expressing the formula of the rectangular 

hyperbolic curve in appropriate transformed Cartesian coordinates and, to demonstrate this, 

let us start with the formula:

=  ¡rd -in  <3-151>

Let us adopt the revised variables:

l ^x+t -  
y -  Mx+ l -  Vx (3.152)

and x' =  t (3.153)

Then y' =  (! “  where k =  £ 
1 -  kx' a

(3.154)

Let us adopt revised axes, as illustrated in Figure 3.2, such that the new X-axis lies along 

the straight line joining the original px_^ and px values on the curve, with the origin lying 

at the midpoint of that line (i.e. the mid-marker) and with the positive X-axis passing 

through the original px value. The positive Y-axis is the perpendicular to the X-axis at the 

new origin which intercepts the rectangular hyperbolic curve.

-L + X  
42 42

Then: *' =  %  -  X)

_  1 _  X  , x
~ 2  4 2  + 4 2

(3.155)

i _  1 _  x  _  x
~  2  42 42

We have:

-  y' ~  x '
~  x V  -  x'

42Y
( Y l  +  X  +  1)
l 2  + 4 2

X.2
2

(3.156)

(3.157)

X2 =  Y2 + 42 (1 — l )  Y + 1 (3.158)
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Figure 3.2 :

Alternative axes for the rectangular hyperbolic curve



Clearly if (X,Y) satisfies this equation, so does (-X,Y), demonstrating that the curve is 

symmetrical about the Y-axis.

3.27 Applicability of a fitted mortality curve over a range of years

As is well-known, the Gompertz Law can in theory be applied over a wide age range if the 

data is appropriate. Obviously the same value of c must apply in each year of age.

Now we will consider whether it is possible for the rectangular hyperbolic curve to apply 

over a wide age range also, and not just over a single year of age.

For the rectangular hyperbolic curve, we can find:

d^x+t =  b 
dt (a — bt)2

d~^x+t _  2b2
dt2 (a -  bt)3

(3.159)

(3.160)

dn^x+t n!bn
dt‘ (a — bt)n+1 ~  n! h ^ x + t )

n+1 (3.161)

It can be seen that the curve can in theory be applied over a wide age range if the same 

value of b applies in each year of age, since if the curves fitted over each year of age join at 

the integral ages, all the derivatives of the curve will then be continuous.

However, this curve seems unlikely to be of relevance in studies of human mortality over a 

wide age range since observed values of b appear to fall quite markedly over the human life 

span, as illustrated in Table 3.1 in Section 3.2.

The curvature of a rectangular hyperbolic curve increases far more strongly towards the end 

of the life span than is the case for a Gompertz curve. This can be seen by examining the 

proportionate rate of growth of Px _̂t , namely:

1 d^x+t 
^x+t dt
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For the Gompertz Law, this is constant and equals log c. For the rectangular hyperbolic 

law, this gives bpx _̂t . It will be recalled that b must be greater than zero for px_|_t to 

increase with t, as we will need, as the end of the life span approaches. Thus as t and px_|_j 

increase, b//x_|_j. increases, i.e. the proportional rate of growth of px_|_̂  increases as t 

increases, unlike the position under the Gompertz Law, where it is constant.

If the rectangular hyperbolic law were fitted to human data over a wide age range, it would 

involve a large value of a and a small value of b; then there is a small value of /ix at the 

lower end of the age range, and values of Px_|_̂  will be generated over a wide age range 

before values of px_|_j appropriate to the end of the age span are reached.

A feature of the rectangular hyperbolic curve used in this way is that there is a limiting age 

to the life span beyond which no one can survive. If the curve is given by:

=  • <3-162>

this limiting age is u  = |j.

This arises since the line x = ^ on the graph of y = l/(a  — by) is an asymptote of the 

hyperbola as illustrated in Figure 3.3 .

However as intimated, the shape of the rectangular hyperbolic curve is unlikely to be 

suitable for use in practice with human mortality data over a wide age range.

It does however provide a useful formula for fitting to Px_|_t within a year of age because of 

the convenient algebraic development which it permits, when other mortality functions are 

evaluated.
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Figure 3.3 : Graph of y = — 1=— (for b > 0)
_________________________________a -  bx _______

The range of this curve potentially used for modelling px is that lying between

x =  0 and x  — r  ■



C H A P T ER  IV

A general theory of mortality rate estimators

4.1 The general theory

Let us consider a mortality investigation in which we observe lives for all or part of the year 

from age x to age x+1. Let the typical life be observed from age x+s- (0 < S j < 1 )  up to  age 

x+tj (0 < t.< l).

Let us suppose that the lives are subject to a mortality law which can be expressed as:

Mx+t =  f(M ) (4-1)

ie the force of mortality at any duration in the year is assumed to be fully determined once 

a single mortality parameter <f> is known.

(Later, in Sections 4.7, 4.23 and 4.30, we will also consider situations where is a

function of a number of mortality parameters <]>. ).

If there is a single mortality parameter <j>, the mortality rate qx will be a function solely of

this parameter <j>, and most plausible mortality laws are likely to be capable of being

expressed in a form where qx itself is actually used as the mortality parameter <j>. It is also

worth remarking that perhaps <j> could alternatively be mx , px or p „  or a parameter
X+2

representing the complementary phenomenon of survival, such as px .

However for generality, we will denote the mortality parameter by <j>, and we will proceed to 

obtain estimators for <j>.

Consider an element of the year of age from age x+t to age x+t+5t.

Let the number of lives at age x+t be P(t).

Then the number of deaths expected in the time element, considered in isolation, is:

P(t) /ix+t ¿t (4.2)
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Let the actual number of deaths in the time element be denoted by D(t,6t).

We could regard our element as providing a self-contained sample to estimate <fi, using the 

method of moments principle, applied to the deaths, that within the element:

Expected deaths =  Actual deaths

This assumes of course that there is sufficient volume of data within the element to give 

sensible results.

Proceeding in this way gives:

P(t) px+t <5t =  D(t,<5t) (4.3)

Even if we are using only data from a single element of the year of age, we are able in 

theory to establish 0, which applies for the whole of the year of age, because we have 

assumed a law of mortality which expresses at any point in the year of age as a

function of t and <f>.

We can create a bigger sample than that provided by a single element by combining the 

data of many elements together to give combined values of “expected deaths” and of “actual 

deaths”, and these combined elements should provide a better estimator of <j> than 

individual elements, because of the increased sample size.

Since the data of any element on its own can provide an estimate of <f>, we can give the data 

from different elements different weightings in the process of combination, in calculating our 

combined values of “expected deaths” and “actual deaths”, and still have a combined 

sample which gives an estimate of <f>. (Further discussion of the process of combining the 

elements is given later, in Section 4.12).

If we proceed in this way, combining the data from all elements in the year of age, our

estimate of <j> is the value which solves the equation:

* * 
t= l t= l
E  P(t) A*x + t g(t,<£) St = D(t,6t) g(t,<£) (4.4)
t=0 t=0

where g(t,< )̂ is the weighting inserted at duration t, and the symbol:

t= l*
E
t=0

denotes summation over all elements in the year of age. The weights g(t,0) will not change
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sign for t varying in the range 0 < t< l.

It is important to note that g(t,</>) will in general be regarded as itself a function of the 

mortality parameter <j>. This is allowable since the data from any element can be weighted 

in any way we like, except that the weighting should not be linked to the actual mortality 

experience in the element (nor indeed that in other elements). Failure to observe this 

prohibition could be a serious source of bias in the estimate of the value of <f>. (For example, 

if the weighting applied to the experience of an element was proportional to the value of <j> 

as calculated solely from the observations of the element, the value of <j> estimated from the 

combined experience of all the elements would be positively biased, since those elements 

indicating higher values for <f> would be given heavier weighting in the combination).

Now let us express P(t) as:

P(t) =  £  7i(t)
N

where, for the ith life in the investigation:

(4.5)

Then we have:

7 -(t) =  0 if t < sj or t >  tj

7j(t) =  1 if Sj <  t < tj

t= l t= l
£  £  7j(t) Px+ t g(M ) ¿t =  D(t,<$t) g(t,<6)
t=0 N t=0

t=t- 1 t=l
£  £  Px+ t g(M ) èt = Y ,  D(4*6t) 8M )
N t——s* t=0

where the symbol:
t=t.l
£

t=s-

denotes summation over all elements between ages x+s- and x-ft*.

(4.6)

(4.7)

Now let <5t—►(). Then we have:

H  s' px+ t g(t^ ) dt =  J 2  «(‘i^ )
N 1 D

(4.8)

where of course the right-hand side is summed over all deaths and t- denotes the duration at 

death.
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We can alternatively proceed from equation (4.4) without making the substitution given in 

equation (4.5).

Under this alternative approach, let ¿ t—+0 in equation (4.4), so that:

fi
o P(t) fix+t dt =  Y j g(v^) (4.9)

D

P(t) is a function that increases or decreases in discrete steps (a step is always an integer 

since a number of lives is being represented), but the integral in equation (4.9) can 

nevertheless be evaluated (as confirmed by the alternative form given in equation (4.8)).

4.2 g-estimators

The value of ^ which solves equation (4.8):

4.3 Category I and Category II

It will quickly become apparent that, once a g-function has been assumed, one or other of 

equations (4.8) and (4.9) will generally be more convenient for the derivation of the 

g-estimator, and a g-estimator will be referred to as a “category I” g-estimator or a

and, equivalently, equation (4.9):

D

will be called the “g-estimator” of <f> corresponding to the “g-function” g(t,<̂ >).

“category II” g-estimator according to whether equation (4.8) or equation (4.9) gives the 
more convenient derivation, ie:

Category I equation:

Category II equation:
D
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Obviously all g-estimators will satisfy both equations and the categorisation simply reflects 

the format of the g-functions.

4.4 Identification of some g-estimators

We will proceed shortly to identify some familiar g-estimators.

It will be seen that most, if not all, known mortality rate estimators which assume a 

mortality law of the form described in equation 4.1 can apparently be expressed as a 

g-estimator, ie a g-function can be identified.

In addition to identifying some known estimators, a number of new estimators will also be 

discovered.

Results for a number of category I g-estimators are presented at this stage, in order to 

indicate the unexpected power of the theory, before further discussion of the derivation of 

the g-estimator equations (4.8) and (4.9).

Then, several aspects of the g-estimator theory, including the procedure for combining the 

experience of elements together, will be given further attention in Sections 4.12-4.19, and in 

particular, it will be demonstrated that all estimators, assuming a one-parameter mortality 

law, derived using the theory are asymptotically unbiased (Section 4.13), so long as the 

estimator assumes the correct mortality law.

Subsequently, some further estimators, mainly from category II, will be discussed in Sections 

4.20-4.28, and in Section 4.29, the use of the Dirac delta function in a modified derivation 

of the general theory is considered.

4.5 Summary of g-estimators

For ease of reference, Table 4.1 summarises the g-estimators of qx which will be discussed in 

this chapter.

It should be noted that the g-functions are not unique functions of <f>. For, if the 

g-function g(t,0) corresponding to a particular g-estimator is multiplied by a function of <}>, 

k(<?i>) say, the revised g-function k(<)>)*g(t,(/>) will still define the same g-estimator, as can be 

confirmed by considering equations (4.8) and (4.9). It will be seen that the function k(0) 

can be taken out of the integrals and summations in the equations and cancelled.
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Table 4.1 Summary of (^-estimators of qT discussed in Chapter IV

Section g-function Category

I or II

4.6 1
t px

I

4.7 1 d»x+t 
Px+t d(j) I

4.8 constant I

4.9 1
^x+t I

4.10 sPx
tPx I

4.11 tPx I

4.11 (u )r ^ x+t ^ x + t)  at I

4.20
W )

II

4.21 tPx
P(t) II

4.22
p (t) px+t

II

4.23 1 d»x+t
P(t) px+t <9̂

II

4.24 1
P(0 tPx

II

4.25
(px+ t)r dfix+t 

P(t) St II

4.27 (Px+ t)n I

4.28 h(l) p (l) £ + ‘ depends

on h(t)

* These names are suggested in this thesis.

Name of estimator of qx, 

if any

Conventional 

Maximum likelihood 

Log-estimator * 

Time-count * 

Implication-B * 

(un-named) 

(un-named)

Nelson-Aalen

Life-profde *

(un-named)

(un-named)

(un-named)

(un-named)

n-estimator *

Weighted least squares
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Also, it will be noted that the “constant” which forms the g-function for the log-estimator is 

strictly speaking an arbitrary function of the mortality parameter <j>; what is important is 

that the g-function is independent of the duration into the year of age, t.

4.6 Conventional estimator

Firstly let us consider the g-function:

g(t ,<t>) = tPx (4.10)

Then, using the category I equation, the g-estimator for <f> is given by:

£
N

ft, (V h
S; tPX dt = E

D t,Px (4.11)

Now can be expressed as:

-1 5tPx
^ x + t =  “(Px ~ d T (4T2)

so that we have: y " r* -1 ^  dt -  v  1dt d t ~ E(tPx) D YP*

E
N L

1
tPx

t,
= E k

D «t.Px

E t .Px E s,Px _  E t.F
N * N D YPX

E s. Px ~  E t.FN WS
t..Px (4.13)

But this is the equation that gives the conventional estimator.

Thus the g-estimator for <fi is the conventional estimator when the g-function is:

g(M ) tPx
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It is of interest to note that introduction of this particular g-function into the integral on 

the left-hand side of the category I equation is equivalent to writing the integral in the form:

dt

where f ^ )  — ^x+t and g(M )

It is perhaps worth emphasing that the conventional estimator determined using the 

“constant /¿” mortality assumption is not the familiar estimator for fi based on the central 

exposed-to-risk. The equation determining the conventional estimator for this mortality 

assumption was quoted in equation (1.28) and will generally require an iterative solution. 

Equation (1.28) can be readily derived by applying the “constant //” assumption in equation 

(4.11).

It will be recalled, from Section 2.22, that the familiar estimator for /r involving the central 

exposed-to-risk arises from the use of the maximum likelihood criterion when the “constant 

/i” mortality law applies.

4.7 Maximum likelihood estimator

For our consideration of the maximum likelihood estimator, we will consider the more 

general situation where the mortality law involves a number of mortality parameters 0.:

=  .......<t>n) (4.14)

We will assume that the values of n -  1 of these parameters are being held constant and we 

wish to establish the value of the remaining parameter, denoted by <j>.

(The situation where we work with just one parameter could in fact be a representation of 

this situation with the other parameters being assigned values by virtue of mortality 

assumptions like “level deaths”).

Let us consider the g-function:

«(*'« = v k i  <4-15>

Then, using the category I equation, the g-estimator for 0 is given by:
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(4.16)v -  ft; d/*x+t
W J S< d<t>

dt = Y ,
D

1 ^*+1,.
Px+t,- d<t>

Let us consider the left-hand side of this equation.

£
N

ft,, dp x-ft
d<j) dt = £

N

= £
N

= £
N

= £
N

d -1 5tPx’
si d<{> tPx dt _

ft i 1 <9tPx <9tpx 1 9 \ p*
si _(tPx)2 d(f> dt tPx d(j>dt

ft. 9 -1 5tPx
Js, dt _tPx d<j>

_T_ gtPxl^ 
tPx d<f> Js;

Thus:

^s,Px \ P x ^ x + t ,
V" d(j) \  " d<f> II d<t>

s.Px N * N ‘<PX dx+ti (4.17)

But this is equation (2.89), one form of the equation giving the maximum likelihood 

estimator of <fr when the likelihood is maximised with respect to the mortality parameter <f>.

Thus the g-estimator for <j> when the g-function is:

g (t^ )
1 d/ix+t

Px+t d<j>

is the maximum likelihood estimator of (j> when the likelihood is maximised with respect to 

the mortality parameter </>.

To summarise, if we have a set of parameters <j>j (i =  1, 2, ... n) of which n -  1 are being 

held constant, we can obtain an equation to evaluate the remaining parameter.

This is the same equation as obtained from the traditional approach using partial 

differential coefficients of the likelihood.

As with the traditional approach, an equation for each of the <j>- can be obtained assuming
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the other n -  1 parameters are held constant. We will then have n equations each 

expressing one of the <f>. in terms of the other n -  1 parameters. These equations can then 
be solved for each of the <f>-.

It is interesting to note the form of the g-function given by:

**•« “ V *

for some specific mortality laws.

When the Gompertz Law, =  b V', applies:

if 0 =  B', g(M ) 1 ^ x+t _  _  ]_ 
^x+t OB' b 'c* B;

(4.18)

if (j) =  c, g(M ) = 1 d^x+ t _  B'tc1' 1 
^x+t dc g ict

t
c (4.19)

Both of these g-functions are interesting. The first is constant over the year of age, while 

the second varies drastically over the year of age starting from nil at age x.

When the rectangular hyperbolic mortality law applies:

if <{> =  a, g(M ) 1 dpx+t
^x+t da

=  — - .1 / ___ 1___
(a -  bt)2/ (a -  bt)

-1
(a — bt)

=  “ A'x+t (4.20)

if <j> =  b, g(M ) 1 dfix+t 
^x+t <9b

=  ___ Í___ / ____1___
(a -  bt.)27 (a -  bt)

t
(a — bt)

=  ^ x + t (4.21)
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The first of these g-functions will usually vary only gradually over the year of age whereas 

the second will show drastic variation over the year of age.

It will be recalled (Sections 1.9, 2.23, 3.12) that the conventional estimator and the 

maximum likelihood estimator for qx are identical for the “level deaths” assumption. This 

can be confirmed by examining the relevant g-functions.

For the conventional estimator, the g-function is l/^ p x while, for the maximum likelihood 

estimator with b held constant, the g-function has just been identified as -px_|_t -

If the two estimators are the same, we must have:

=  K . ( - ^ x+ t) (4.22)

where K is a constant independent of t (since such a factor will not alter the effect of the 

weights). The value of I\ will be determined by the population value of the mortality 

parameter 4>.

Thus, if these two estimators are the same, we have:

tPx Px+1 =  consfant independent of t, (4.23)

and of course this is indeed a property of the “level deaths” mortality assumption, 

confirming the identity of these two estimators.

Again, it will also be recalled that, when the “constant p” mortality law applies, the 

maximum likelihood estimator for p is the familiar estimator using the central exposed-to- 

risk (as shown in Section 2.22). In this case, the g-function is seen to be a constant, since 

(remembering 0 = p and px_|_̂  = p) we have:

g(t,0)
1 dpx+ t _  i

^x+t d<j> P

and it will be seen in the next section that this estimator is therefore identical with the 

newly identified “log-estimator” when the “constant p” mortality law applies.

Further comments on the use of the general theory when the mortality law involves more 

than one mortality parameter are given in Section 4.30 .
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4.8 Log-estimator

Let us consider the g-function:

=  constant

Then, using the category I equation, the g-estimator for <f> is given by:

£
N

t,-
/‘x+t dt £ 1

D

(4.24)

(4.25)

X  (lo8 s.Px -  log t px ) =  D (4.26)
N

remembering that: tPx =  exp ( -
ft

px+t d t) (4.27)

This clearly defines an estimator which is a general version, for any mortality distribution, 

of the estimator which was stumbled across in Section 3.16 when we considered the 

application of the method of maximum likelihood to the rectangular hyperbolic distribution 

to evaluate both parameters. This estimator was referred to as the “log-estimator” .

Thus the g-estimator for <j> is the log-estimator when the g-function is:

g(t,0) =  constant

As discussed previously (Section 3.16), the equation which defines the log-estimator can be 

expressed in a number of alternative forms:

X (log sipx ~log t.px) = D (4-28)
N

X log
N

1
ti-s.Px+Sj =  D (4.29)

n  t-s -P x + s j_  e
N

(4.30)

The derivation of this equation did not here exclude the use of the “constant p” mortality 

law; the “constant p” law implies:
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t-spx+s -  e (4.31)
/z(t-s)

so that when this law applies, equation (4.29) implies that:

M £  (‘i -  si) =  D (4‘32)
N

=> p =  ^  - (4.33)
L  (*i -  si)
N

which is the familiar estimator for p normally obtained by the method of maximum 

likelihood when the “constant p” law applies (see Section 2.22).

This is clearly a situation where the log-estimator coincides with the maximum likelihood 

estimator.

When the Gompertz law applies, the equation solved by the log-estimator can be expressed 
as:

(log l / C ^  -  log h^C ^ )  =  D (4.34)
N

=> log h (c3' ~  c*') =  D (4.35)
N

But h =  exp (—j~7~:) (4-36)

log c
N

D

( c
t.

c“ )
(4.37)

This is of course the maximum likelihood estimator for B/ when c is fixed and it should be 

no surprise that this coincidence occurs as we have already seen that, when we consider the 

g-function for the maximum likelihood estimator for B^ we obtain g(t,<f>) = l /B 1, 

ie g(t,<̂ >) = constant, showing that this estimator coincides with the log-estimator.

The log-estimator was included in the simulation studies and appears to have performed 

very satisfactorily.
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4.9 Time-count estimator

Let us consider the g-function:

g(M ) = 1
^x+t (4.38)

Then, using the category I equation, the g-estimator for <j> is given by:

£
N

'* dt =  V  *!.. ^X+t,- (4.39)
D

Y (‘ i -  si) =  Y
N D ^x+t,- (4.40)

Thus when the g-function is:

we obtain a quite simple equation which is solved by the g-estimator for <j> in which the left- 

hand side is simply the total amount of time that lives were present in the investigation.

We will call this estimator the “time-count estimator”.

This is a very interesting estimator because it always involves the actual exposure of the 

lives during the investigation. Whether it will lead to an expression for <j> which is easily 

evaluated will depend on the expression which the mortality law produces for the right-hand 

side.

When the rectangular hyperbolic distribution applies, we have the g-function:

g(t,0) =  1 bt =  a -  bt (4.41)

Then the time-count estimator is given by:

Y _  si) =  Y (a -  bti) (4-42)
N D

=  Da — b '^2  tj (4-43)
D

Thus if b is chosen, ie a mortality assumption specified, we have a very simple equation
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giving a, namely:

1a A'x D

E ( ‘i -  si) + b E h
N D

(4.44)

qx can then be obtained by applying the result:

1
qx =  1 -  (1 -  ^ )b (4.45)

When the “level deaths” assumption applies, we have b = 1, giving the following time-count 

estimator:

qx =  i  -  (i
E ( h  -  si) +  E h
N D

D
E ( h  -  si) + E h
N D

(4.46)

Thus we have an exposed-to-risk style expression leading to qx in which all lives are exposed 

for the time they are actually present in the investigation and deaths are given additional 

exposure for the period from the beginning of the year of age up to the point of death.

These exposures are of course those given by version (b) of the “exposures per life” for the 

“level deaths” assumption discussed in Sections 2.3 and 2.4. This set of exposures per life 

had been presented in Greville (1978), where it is reported that this set of exposures per life 

arose from a method of derivation suggested by D. Schuette.

It is fascinating to see that “version (b)” fits into the well-defined structure of estimators. 

When the Balducci assumption applies, ie b = -1, we have:

qx =  1 -  (1 +  i r 1 =  ï+rg  (4.47)

where from equation (4.44):

a =  b  ( E  (h -  si) -  E  h)
N D

E  (*i -  si) -  E  h  +  D
N D

(4.48)
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(4.49)
E ( ‘i ~ si) + E ^ 1 - * i )
N D

This is obviously the very familiar conventional estimator under which lives are exposed for 

the time that they are present in the investigation, except for deaths which are exposed to 

the end of the year of death.

The g-function for the conventional estimator is 1/fPx and the g-function for the time-count 

estimator is l//rx_|_(.. If the two estimators are identical, we have:

1
tPx (4.50)

for some constant K independent of t, since such a factor will not alter the effect of the 

weights. The value of K will be determined by the population value of the mortality 

parameter <j>.

This relationship can be re-expressed as:

lx_l_t =  /ix_|_t *constant (4-51)

and, as we have seen in Section 3.2, this relationship is true when the Balducci assumption 

applies, thus confirming that the conventional estimator and the time-count estimator are 

identical when this mortality assumption applies.

It is ironic that, for so long, much exposed-to-risk theory relied so heavily on the unrealistic 

Balducci assumption when, for example, a method could have been employed involving 

equally simple calculations using the “level deaths” assumption which, although not ideal, is 

clearly preferable to the Balducci assumption. And indeed many alternative mortality 

assumptions could have been considered, including the whole rectangular hyperbolic family, 

ie for any value of b.

When the “constant p” assumption applies, ie b = 0, we obtain:

E  (li -  si) =  Da (4-52)
N

D
E ( ‘i
N

si)
(4.53)
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thus giving once more the familiar result generally associated with the method of maximum 

likelihood.

We also obtained this result for the log-estimator. The g-functions are respectively l / p x^  

(time-count estimator) and a constant (log-estimator) so that, if they give the same 

estimator, we have:

px_l_̂ =  constant. (4.54)

This confirms that the estimators are identical if (and only if) the mortality law is “constant 

/*”•

For the Gompertz law with fixed c, the time-count estimator for B/ is given by the 

equation:

2 > i
N

s. ) =  i r  
1 b ' D̂

(4.55)

B'
E i
D c 1

£ ( * -
N

si)
(4.56)

This is a relatively easy estimator to evaluate, based on actual exposure time, and just 

requiring in addition the calculation of the factor 1/c 1 for each death, which is certainly 

trivial if a computer is involved, and is even very practicable in a paper and pencil study if 

a calculator with a key giving powers of numbers is available.

Moreover it is easy to study the results of assuming several different values of c. When 

c = 1, we obviously again get the “constant p” assumption.

This estimator appeals very strongly to the author, by virtue of the realistic mortality law, 

the ease of its application and the flexibility in allowing several values of c to be considered.

The time-count estimator was included in the simulation studies and appears to have 

performed very satisfactorily.

4.10 Implication-B estimator

It is also possible to bring the implication-B estimator into the g-estimator framework, but
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this requires our analysis to commence with an elemental equation relating to deaths 

occurring in the element from age x+t to age x+t+6t in respect of lives who were age x+s 

at entry.

Then, if a factor of:

sPx __ 1
t px t-spx+s (4.57)

is applied to each such elemental equation and summation is made over all values of t and 

s, this can be seen to produce an equation for a g-estimator which is in fact the implication- 

B estimator.

This will now be demonstrated. As already indicated, our analysis commences with an 

elemental equation relating to deaths occurring in the element from age x+t to age x+t+<§t 

for lives aged x+s at entry. Our criterion for estimating <f> from the experience of this 

element and these lives is:

P(t,s) px_|_t =  D(t,5t,s) (4.58)

where P(t,s) is the number of lives present at age x+t who entered at age x+s, and D(t,<5t,s) 

is the actual number of deaths occurring in the element to lives who entered at age x+s.

We then introduce the factor g(t,s,<̂ >) so that we have:

P(t,s) px+t g(t,s,<f>) St =  D(t,<5t,s) g(t,s,<(>) (4.59)

Proceeding as before, but also summing over all values of s, we have:

N t= l*
Y Y  p ^ ’si) ^x+t « ( ^ p ^ ) a  =  Y  s(ti’si><̂) (4-6°)
i= lt= 0  D

where, as before, the symbol:

t=0

denotes summation over all elements in the year of age.

Further development similar to that used previously will give:
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(4.61)Px+ t S ^ i ^ )  dt E  «(V 8̂ )
D

If we then adopt the function:

g(t,s,^) sPx _  1
tPx t-sPx+s (4.62)

we have: 2 ^  s.Px s-
N J '

Px+t
tPx dt = E

D

s.Px (4.63)

Taking note of the development we saw when the g-function is l/j.px , we have:

E  SiP*(-n
N

s.Px
t.Px s,-Px7 4 ^  t,Pxu  l

e) = E (4.64)

\  - / 8,-Px _  i x _  V - S.PX
11 Px ' t PxN * D *

(4.65)

WS '
(4.66)

And this equation is solved by the value of 4> which is the implication-B estimator.

Thus the g-estimator corresponding to the g-function:

g(t,s ,<j>) =  -§2x =  — 1----
> vv  t P X t - S P X + S

is the implication-B estimator.

4.11 Some other category I estimators

It is possible to identify a number of further g-functions g(t ,<f>) which allow the analytical 

development of the category I g-estimator equation.

Briefly we will consider the following possibilities:
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(a) g(t ,<j>) =  tpx

(b) g(t,^) =  (^x + t)r ^Xt+ t ^  any r.

Using: g(t ,<t>) =  tPx, (4.67)

we obtain: e j
ft 1, 
s . tPx ^x+t dt =  E  t.px (4.68)

N

=> E (t-Tx — s-<lx) -= E  t,.px (4.69)
N l 1 D

or E (s,Px -  t-Px) -= E  t.px (4.70)
N

or E * ¿Px t r siqx+si =  E  t,.px (4.71)
N D ‘

or E  t.dx + E  t.dx - E  S;qx =  D (4.72)
N ‘ D N

This estimator is identical with the time-count estimator when the “level deaths” 

assumption applies and is identical with the maximum likelihood estimator for the 

Balducci assumption.

(b) Using: g(t.0) =  K + t )
dn x-ft

x + t' dt for any r, (4.73)

we obtain:

£
N

!' (^«)r+1 ^  *dt E  (^x+ t,)1
D

dfj,x+t
dt Jt=t.-

(4.74)

If r ^  -2, this gives:

FT2 E  ( ^ X + t / ^  -  (.X+S,.)r+2) =  E  W + t /
N D

d/ix+t
dt t= t. (4.75)

If r =  -2, equation (4.74) gives:

-  145 -



1 (4.76)0°g »x+t; 
N

lo§ A'x+s,.) =  E  7ff— T2  | 
D (A'x+t.) L

9/ix+t
3t t= t ,

or E  lo§
N

''x+t,-
^x+s. =  V ___1___

D K + t /

9/ix+t
dt t= t, (4.77)

If the rectangular hyperbolic distribution applies with any assumed value of b 

except 0, this estimator is identical with the time-count estimator when r = -3, with 

the log-estimator when r =  -2 and with the maximum likelihood estimator of a 

when r = -1.

If the Gompertz Law applies with any assumed value of c except 1, this estimator is 

identical with the time-count, estimator when r = -2 and with the log-estimator 

when r = -1, and also with the maximum likelihood estimator of when r = -1.

4.12 Review of the process of combining the experience of elements of the year of age

It is of interest to review the effect of the process by which the experience of the individual 

elements of the year of age are combined.

As before, let us consider an element of the year of age of width ¿>t from which we estimate 

the value of <f> by means of the relationship:

P(t) px+t 6t =  D(t,«5t) (4.78)

and the one-parameter mortality law:

Mx+t =  f(t,<A) (4.79)

Let this element be the ith element located at time t-, and let us now use d>- to denote the
J J

estimate of <j> it gives. We assume that all elements are of equal width 61.

Let us rewrite equation (4.78) as:

P(tj) f(tj^j) st =  D ( y t ) (4.80)

where we will describe ^  as the observed value of <j> for the j th element, and f(fji^j) 35 the 

observed force of mortality for the j th element.
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Now in combining the experience of the individual elements, we multiply equation (4.80) for 

each element by the appropriate weighting factors, sum the left-hand and right-hand sides 

of the equations, and then create a revised equation by replacing all the individual values of 

4>j by the new unknown <j>.

Thus we create the equation:

8(tj.^) p (tj) (4.81)

where the symbol: E
j

denotes summation over all elements in the year of age.

We will describe the value of <f> solving equation (4.81) as the estimated value of <f> and the 

value of f(tj,0) corresponding to the estimated value of <j> as the estimated force of mortality 

for the j th element.

Substituting in equation (4.81) for D(tj,6t) using equation (4.80) and cancelling ¿t, we 

obtain:

g(tj,tb) P(tj) (f(tj,^) -  f(tj,0j)) =  0 (4.82)
J

Now we will assume that f(tj,<̂ >), the force of mortality in the j n element corresponding to

the value of <j>, is a strictly monotonie function of <j>, which is obviously the only admissible

situation if <j> is a parameter representing mortality (eg qx , mx , px or p i) or the
XT;,

complementary phenomenon of survival (eg px ).

We will note also that g(tj,</i) does not change sign for t varying in the range 0 < t< l.

Firstly, we will consider the assumption that f(tj,(/>) is a strictly increasing function of (j) (eg 

(j) equals qx , mx, px or p ,).
X -]-  ry

Then: f(tj,< )̂ >  f(tj,^j) => <t> > <(>j

and: f(tj,0) <  f(tj,</>j) => <$> < <i>j

So, obviously, the estimated value of <j> is greater than all those <j>- (observed values of <f>) for 

which f(tj,0) >  f(tj,0j), ie for which the estimated force of mortality in the j th element is
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greater than the observed force of mortality in that element, and similarly the estimated 

value of <j> is less than all those ^  for which f(b,<?i) < f(tj,</>j).

And, secondly, we will consider the assumption that f(tj,(/>) is a strictly decreasing function 

of <j) (eg <j> equals px ).

Then: f(tj,<£) >  f(tj,<£j) => <f> < <t>j

and: f(tj,^) < f(tj,<0j) => <t> > j

Now here we can see that the estimated value of <j> is greater than all those <j>̂ for which 

f(t-,<̂ >) <  f(t-,<j>.), and similarly the estimated value of <j> is less than all those <j>. for which

Whether we assume that f(tj,0) is a strictly increasing or decreasing function of <f>, equation 

(4.82) implies that some of the (f(tj,^) — f(tj,<^)) will be positive and the rest will be 

negative (or zero). The effect of the expression (4.82) is to equate the weighted sum of the 

positive values of (f(tj,0) — f(tj,</>j)) to the absolute value of the weighted sum of the 

negative values of (f(tj,0) — f(tj,(/>j)), and the estimated value of <fr will obviously be the 

value of <j) for which this equality occurs. Clearly, the estimated value of <f>, the value at 

which the equality occurs, will depend on the choice of the g(t,<j>) function.

This balance is generally struck for a different value of <j> for each estimator though, as we 

have seen, the same value of <f> can be reached for different estimators in special 

circumstances.

The analysis in this section demonstrates that the estimated value of tfi will lie somewhere in 

the range between the smallest and the largest values of the the precise position in the

range depending on the choice of the g(t,<p) function.

4.13 Every g-estimator which assumes a one-narameter mortality law is asymptotically 

unbiased, so long as the g-estimator assumes the correct mortality law

Let us continue to assume that the one-parameter equation:

/V ft =  (4-83)

correctly represents the mortality law (where f(t,^) is a strictly monotonic function of <j>).
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Let us denote the population value of <j> by the symbol <j>*, and let us use the symbol <pM to 

denote a g-estimator of <j>*, ie the estimate of <f>* based on the combined experience of all the 

elements, using the weighting function corresponding to the g-estimator concerned.

Consider the j th element of the year of age.

f(t:>:) 6t -  % * * )  6t
■T J J

as P(tj)—>oo

as P(tj)—>oo

Then, since f(t,<̂ >) is a strictly monotonic function of <f>, it follows that:

as P ( tj ) —y oo

Now we have seen (Section 4.12) that, in combining the experience of all the elements to

Thus every g-estimator which assumes a one-parameter mortality law is asymptotically 

unbiased so long as the g-estimator assumes the correct mortality law. It should be noted 

that this discussion has not considered the position for g-estimators which assume a 

mortality law involving more than one parameter.

An alternative, and intuitively simple, argument can be put forward if we are prepared to 

make the very mild assumption that the value of the g-estimator, 0a(|, does actually tend to 

a limit as the sample size approaches infinity.

This is based on the argument that, as the sample size approaches infinity, the experience in 

the sample will come to resemble the probability distribution in the population.

When the experience in the sample does resemble the probability distribution in the

obtain an estimate of <f>, we obtain a value which lies in the range between the smallest and 

largest values of the {^j}-

So if we let P(tj) -—>oo for all j, then ^  —xf>* for all j with the consequence that the estimate 

of 0 based on the combined experience of all the elements, <j>a(|, is such that ie it

tends to the population value <f>* as P(L)—+oo for all elements.
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This follows if we remember that, in the j th element, we have P(tj) Bernoulli trials each of 

which can yield a death with probability f(tj,d>*) <5t, and that f(tj,d>j) 61 will be an unbiased

f(tj,0j) =  f ( y * ) (4.84)

Then, remembering that f(t,<?!>) is a strictly monotonic function of d>, it follows that:

(4.85)

Now we have seen (Section 4.12) that, in combining the experience of all the elements to

on the combined experience of all the elements, 4>a(|, equals <j>*.

Thus, when the experience in the sample resembles the probability distribution in the

have noted, the experience in the sample will come to resemble the probability distribution 

in the population, as the sample size approaches infinity.

Therefore, if in this alternative approach we make the very mild assumption that the value 

of the g-estimator, d>aM, does tend to a limit as the sample size approaches infinity, we know 

that the g-estimator will be asymptotically unbiased (so long as the g-estimator assumes the 

correct one-parameter mortality law).

The first approach we considered also indicated that the value of the g-estimator does 

indeed tend to a limit as the sample size approaches infinity.

The result proved in this section is very notable since it states an important asymptotic 

property of all g-estimators, when the correct one-parameter mortality law has been 

assumed; moreover, this general result is shown using very simple arguments.

An even more powerful result, were its proof to be possible, would be that such estimators 

are also consistent under these circumstances. The property of consistency, which refers not

obtain an estimate of <j>, we obtain a value which lies in the range between the smallest and 

largest values of the { d e -

population, the estimated value <j>a  ̂ equals <j>*, ie the g-estimator is unbiased and, as we
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only to the asymptotic behaviour of an estimator but also to the manner in which the 

fluctuation of values of the estimator behaves as the sample size approaches infinity, was 

introduced in Section 1.13 .

Preliminary investigations suggest that, if it is true that a g-estimator is consistent when a 

correct one-parameter mortality law has been assumed, a proof of this would be analytically 

more demanding than the comparatively simple proof of asymptotic unbiasedness presented 

in this section. It is intended that further research will be undertaken to obtain such a 

proof, if the property of consistency does indeed apply, as appears intuitively plausible.

4.14 If a g-estimator assumes an incorrect one-narameter mortality law, it is not generally 

asymptotically unbiased

If the wrong one-parameter mortality law is assumed, the wrong set of {^j} values is 

obtained, and as P(tj) —>-oo for all j, each will in general tend to a different limit, <j>? say. 

This is fairly obvious since, if the correct law produces the value </>* in the limit in the j th 

element, the incorrect law will produce the incorrect value in the j th element in the limit, 

and there is no reason to expect that the incorrect value </>? will be the same for all j.

And there is certainly no reason to expect that the estimate of the population value 

produced in the limit by combining the experience of the individual elements as P(tj) —>oo 

will be <j>*, which would have to be the result if the estimator is to be asymptotically 

unbiased.

That this cannot be expected to be the case is conveniently demonstrated by an example.

Suppose that the correct mortality law is:

Px+1 =  f(M )

and that the incorrect mortality law which is assumed is:

(4.86)

Px+t =  f(t, <^+k1+k2t) (4.87)

where kj > 0 and k2 > 0

Then use of this incorrect law will produce values of <p? which are related to <j>* by the 

relationship:
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(4.88)

The incorrect function f(t, ^+k1+k2t) still obeys the requirement of being a strictly 

monotonic function of <j> (because the correct function f(t,</>) did so), so that in the limit, as 

the P(tj)—*-oo for all j, the estimated value of <j> based on the combined experience of all the 

elements will tend to a value which lies somewhere between the values:

<j>* — kx and <j>* — kx — k2

This estimated value will be clearly different from <j>* so that, in this example, the 

assumption of the incorrect mortality law means that the estimator is not asymptotically 

unbiased.

4>j =■ <f>* -  k i -  k2tj

4.15 Concerning the possible presence of bias in g-estimators when applied to a finite 

number of lives

When we are considering an investigation in which a finite number of lives are observed, 

there is not in general any immediately apparent demonstration that a given g-estimator, 

even if based on the correct mortality law, will provide an unbiased estimate of the 

mortality parameter and, in the absence of any such demonstration, the presence of bias 

must be accepted by default as a likely possibility.

It has already been commented in Section 1.15 that the analysis by Roberts (1987), which 

would appear to show unbiasedness of certain g-estimators when the correct mortality 

assumption is made, involves approximations, and similarly for an apparent demonstration 

of unbiasedness in Forfar et al (1988), repeating one of Roberts’ results.

Slawski (1991) points out some simplified situations in which there would be no bias, for 

example if there are no “withdrawals” or “enders” in a population subject to the Balducci 

mortality law, but then goes on to argue that bias must exist in all other situations. 

However this author has difficulty with the safety of the latter inference, as it appears to be 

based on the argument that certain conditions that provide unbiasedness are the only 

conditions that can provide unbiasedness (ie that an “if’ condition is also an “only if” 

condition), and this author could not see that this had been proved.

Clearly on the face of it, there appears no reason to assume that the procedure described in 

Section 4.1, for estimating <j> in each element of the year of age and then amalgamating the 

estimates to provide an estimate of <j> for the whole year of age, will necessarily provide a 

bias-free estimate when finite numbers of lives are observed.
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Of course, as discussed in Section 1.12, one estimator which is known to be virtually 

unbiased for all but the very smallest number of lives is the product limit estimator and, in 

the simulations, the values given by this estimator provide something of a bench-mark 

against which the values given by other estimators can be compared.

As will be discussed in Chapter 5, there is some evidence in the simulations to suggest the 

presence of bias in one or two of the estimators studied but, for g-estimators where the 

correct mortality law is assumed, the degree of any possible bias appears encouragingly 

small and, in particular, too small to be distinguished in the simulation results from the 

random fluctuations (as summarisd in Section 5.28).

4.16 Some comments on the general theory

In principle, g(t,</>) can be any function of t. However in general it seems sensible to use 

g-functions that give approximately balanced weights over the age range, so that the data 

from one point of the year of age does not have undue influence, which would thereby 

reduce the effect of the sample in balancing the random fluctuations of the individual 

observations.

The following weights can be seen to approximately achieve this or seem to be likely to do 

so:

I I  . , I ^ x + l
I px ’ i v r , ’ co,,sl“ ‘’ ‘Px’ ¡ 5 1 T

There might be an intuitive argument in favour of the g-function l/^px (conventional 

estimator), since this weighting seems to compensate for the natural reduction in the volume 

of data over the year of age due to mortality, though random fluctuations could be slightly 

accentuated.

The research has however revealed that some accepted estimation techniques do throw up 

some g-functions which vary drastically over the year of age: namely when the method of 

maximum likelihood is applied to the Gompertz distribution to estimate c, the g-function is 

t/c  and when the same method is applied to the rectangular hyperbolic distribution to 

estimate b, the g-function is t/ix_^. (See Section 4.7 for derivation of these g-functions).

Clearly data at the beginning of the year of age is being given very little weighting in the 

equation defining the estimators of c and b, and very heavy weighting at ages approaching 

x+1.
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If however B/ or a is also derived from the method of maximum likelihood, the relevant 

equations for those parameters have much more balanced g-functions, respectively 1/B/ (i.e. 

constant) or (Again, see Section 4.7 for derivation of these g-functions). If we

regard the two equations used to evaluate B; and c, or to evaluate a and b, as a system of 

two simultaneous equations, it can be argued that the apparent imbalance in the use of the 

data is ameliorated, the two equations providing a contrast, which is greatest when the 

second equation appears to make least use of the data, and it is impossible to say that data 

at either end of the year of age is being neglected or over-emphasised.

It is difficult to conceive of a practical situation where we would assume B, or a, and then 

seek to establish c or b.

The simulation studies appear to indicate that the use of the maximum likelihood 

estimators for (B^c) or (a,b) tends to produce values of B' and a which are fairly stable as 

data fluctuates, but values of c and b which appear to fluctuate much more considerably. 

The values of c and b appear to require significantly more data in order to obtain reliable 

values, than is the case with B/ and a; c and b depend on the variation of over the

year of age whereas B1 and c depend on the level of px_j_t during the year of age, and 

random fluctuations will tend to obscure the former while averaging out in the latter.

If the estimator is based on a mortality law which is not quite correct, distortions are likely 

to become significant since the contribution of each element towards estimating <fi, drawn 

from the effect of px_|_t in the element, will not be correctly determined since the 

relationship:

px+t = f(t,0) (4.89)

will not be quite correct.

In other words the estimator will tend to give a distorted estimate of </>. This is perhaps an 

argument in support of the obvious, especially in the light of the discussion about 

asymptotic unbiasedness, and it has been borne out in the simulation studies, as will be 

discussed in Section 5.27 .

4.17 Identification of estimators

It can be seen that for a given mortality law, g-functions provide a simple and immediate 

specification of an estimator and we do not necessarily have to refer to the estimation 

method, but can instead simply refer to the g-function.
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The g-function also has the attraction of having a simple and readily understandable role in 

the estimation procedures, defining the weights given to the elements of the year of age.

As has been apparent, the g-function also provides a powerful tool for identifying those cases 

where different methods of estimation give the identical estimator for a particular mortality 

law.

4.18 Why is the general theory possible?

It is very intriguing that a theory, which permits most forms of mortality rate estimator to 

be derived from a common starting point, can be developed in the context of a mortality 

investigation. This is not a situation which is familiar in other contexts.

It appears to this author that the general theory is possible in the context of a mortality 

investigation because we are applying our analysis to an experimental situation that lasts a 

finite time. An individual time element of the investigation presents us with a very simple 

scenario but it is the manner in which we combine the experience of the individual time 

elements to obtain an estimator embracing the experience of the entire investigation that 

determines the character of the estimator concerned.

Again the author would express the opinion that the particular feature of a mortality 

investigation in being of finite length is one whose significance has probably not been 

properly recognised in the past.

4.19 Category II g-estimators

We will shortly consider some category II g-estimators. It will be seen that the g-function

for all the category II g-estimators which will be considered includes the factor . ThisP(t)
eliminates the factor P(t) in the category II equation:

and this generally opens the door to a convenient mathematical development.

Indeed it will be seen that in general, that if g(t.,0) is a g-function which allows a convenient 

mathematical development of a category I g-estimator, then it is very likely that a 

g-function in the form:

fi
(4.90)

D
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g(t,0)
P(t)

will allow the convenient mathematical development of a category II g-estimator.

The inclusion of the factor r^-r in the g-function needs to approached with a little caution 

for fear of the factor being a possible source of bias.

Strictly speaking, P(t) is a function of the mortality experience in the elements of the year

of age preceding time t and, if for example the preceding mortality experience has been

predominantly heavy, then P(t) will be slightly reduced as a result and the factor r jLP(t)
somewhat increased.

Thus if the experience in the elements up to time t has been predominantly heavy, this will

have the effect of giving greater weight to the experience of the element at time t which

implies that the elements in which the heavy mortality occurred will be given a relatively

reduced weighting, so that, assuming that <t> is a parameter representing mortality (eg qx ,

mx, [¿x or P 1 ) and not the complementary phenomenon of survival (eg px), the X+2
estimated value of <f> may tend to be subject to negative bias from this source. (Of course, 

there may also be bias present from the sources discussed in Section 4.15).

If the experience in the preceding elements has been predominantly light, the weighting 

given to the element at time t will tend to be reduced with the result that the earlier 

elements will be given relatively increased weighting, so that again the estimated value of <j>, 

if once more assumed to represent mortality and not survival, may tend to be subject to 

negative bias from this source.

It seems almost unavoidable that this source of negative bias will operate, whatever the 

actual observations of deaths might be, because the population mortality will correspond to 

an idealised situation in which the life table population changes continuously as age 

advances and not in discrete jumps, so that any set of actual observations which necessarily 

consists of deaths occurring in discrete units of one will represent a fluctuation from the 

population mortality, thus causing the negative bias from this source to be manifested. The 

only apparent circumstance in which an exception could occur would seem to be if the 

population mortality could be assumed to that actually observed, including the deaths 

occurring in units of one, and the product limit estimator seems to be the only estimator 

which could offer this possibility. In Section 4.21, an adaption of a category II estimator 

which leads to the product limit estimator will be discussed.

However, it may be possible that this biasing effect could be feared to be more important
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than it really is, bearing in mind that the effect of mortality on P(t) within a year of age is 

likely to be relatively very small, so that the biasing effect may also be very small.

Unfortunately, the author only realised the potential of using g-functions which included the

factor P(t) at a very late stage in the research, and such estimators have not been included

in the simulation studies. The author hopes in due course to conduct further research using

simulation studies to investigate the performance of such estimators and, in particular, to

investigate the extent to which the apparent potential for bias due to the -J— factor is ofP(tj
any practical importance.

Of course the factor P(t) does have a perverse effect in exaggerating the importance of

elements where there is little data and suppressing the importance of elements where there is 

a large amount of data, and as a general principle this perverse treatment of the weight of 

data is unattractive because of the enlarging effect it will have on the variance of the 

estimated value of <f> given by the estimator.

Bearing in mind the adverse effect on the variance of such g-estimators of having P(t) that 

fluctuates greatly through the year of age, it appears good policy to avoid using g-estimators 

which have a g-function that includes the factor ^rrv, in those situations where P(t) is not 

reasonably steady over the year of age. This does not appear a very restrictive stipulation 

as generally it seems unlikely that P(t) would fluctuate greatly over a single year of age.

We will now consider some category II g-estimators, in which the g-functions include the

factor
p ( t y

4.20 Nelson-Aalen estimator

Let us consider the g-function:

s M )  =

Then, using the category II equation, the g-estimator for </> is given by:

'l

J o ^ x + t dt =  E
D P (\)

But life contingencies tells us that:

Px =  exp ^x+t dt

(4.91)

(4.92)

(4.93)
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Px =  exp (4.94)
P (V

9x 1 - exp E
D P (\)

(4.95)

This estimator is noteworthy in not requiring the assumption of a mortality law, a 

characteristic which it shares with the product limit estimator. It is also to be noted that 

the estimator does not require an iterative evaluation.

In fact the estimator has been described in the literature by Nelson (1972). Accounts are 

also given in Elandt-Johnson and Johnson (1980) where it is referred to as “Nelson’s Method 

for Ungrouped Data” and in London (1988) where it is referred to as the “Nelson-Aalen 

Estimator”.

In London (1988), the estimator is obtained by approximating the cumulative hazard 

function of the product limit estimator, and the derivation in Elandt-Johnson and Johnson 

(1980) also involves the approximation of a cumulative hazard function. In Nelson (1972), 

the estimation method is developed by assuming initially an exponential distribution 

(constant /¿).

In Section 4.19 it was argued that where a g-estimator of qx is obtained using a g-function 

including the factor J - r ,  the presence of the factor will tend to introduce a negative bias.
P(t)

This estimator, for which the g-function is just
P(t)!

appears to be strongly consistent with

the argument, although it has to be recognised that there may also be other sources 

contributing to the net bias observed; as London (1988) reports, where the Nelson-Aalen 

estimator gives a non-zero value of qx , this value will be less than that given by the product 

limit estimator. And, of course, the product limit estimator is known to be virtually 

unbiased for all but the very smallest experiences.

This relationship between the Nelson-Aalen estimator and the product limit estimator is 

easily demonstrated, as shown below.

The product limit estimator of qx can be written in the form:

P L qx  =  1 -  p l p x (4.96)

with PL _  TT [Pr -  dr
~~ t i i  L J

(4.97)

where:
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(a) Pr is the population present immediately after the rth movement in or out of the 

population present during the year of age (embracing both deaths and non-death 

movements), and Pj in particular is the population present immediately after the 

start of the year of age.

(b) dr is the number of lives dying at the next movement in or out of the population, 

following the rth movement. It will be noted that dr can be 0 if the next movement 

does not include a death, 1 if the next movement consists of (or includes) one death, 

or more than 1 if several deaths coincide at the next movement.

(c) m+1 is the total number of movements (deaths or non-deaths) and includes the 

movement on of all the lives starting the year of age, and excludes the movement off 

of the lives reaching the end of the year of age.

Now:

m
-  log pLpx =  -  log n

r=l

E
r=l

log (1 d r \

m
> E

dr
Pr

(assuming the right-hand side is non-zero).

m i
ie -  log PLpx >  E  F  (4-98)

r= l r

where the summation on the right hand side is taken over the individual deaths, and P(b) is 

the population present when the ith life dies.

PL
Px <  e x P E

D P(t;) (4.99)

where P(tj) is the population present when the ith life dies.
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qx >  1 -  exp (4.100)PL
£
D P ( \)

ie the product limit estimator of qx is always greater than the Nelson-Aalen estimator of qx , 

so long as the values are non-zero.

Another feature of this estimator is that it only appears to use data relating to the points at 

which deaths occur. Of course the P(b) items will reflect influences affecting the size of the 

population before time t-, but P(t) could behave in a variety of contrasting manners during 

non-death periods without this affecting the calculation of qx ; the estimator does not 

appear to consider exposure, nor any similar measure, during the non-death periods, relying 

instead on the fact that no deaths occur and what that implies.

If the factor is removed from the g-function for this estimator, we are left with ar(t)
constant, which would be the g-function for the log-estimator. Thus if the population P(t) 

is reasonably steady over the year-of-age, which appears a desirable situation for the use of 

category II g-estimators such as the Nelson-Aalen estimator, the results given by the Nelson- 

Aalen estimator may possibly be similar to those of the log-estimator, without requiring a 

mortality assumption or iterative evaluation, as in the case of the log-estimator.

4.21 Life-profile estimator

Let us consider the g-function:

*<*’*> = (4.101)

Then, using the category II equation, the g-estimator for <\> is given by:

_  ̂ j. Px
tPx ^x+t dt =  £  p t ) (4.102)

_ ^  t,-Px
q x - Ç p ( v

(4.103)

\ PxThe g-estimator given by the g-function has been named the “life-profile” estimatorI (tj
since in combining the experience of each element, the weight of the number of lives actually 

present in each element, P(t), has been scaled to tpx , the weighting in the life table obeyed 

by the population.
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We obviously need to assume a mortality law to express * px in terms of the mortalityL i
parameter (generally denoted by <f>, but probably taken as qx ). Generally this will lead to 

an iterative derivation of qx , but for certain mortality assumptions this is avoided.

Suppose we make the “level deaths” assumption.

Thus, here, an iterative derivation is not required.

If in expression (4.103), we calculate  ̂ px using the same principle as in the product limit 

estimator, ie reflecting the proportions surviving between movements in the actual 

experience, the expression we obtain for qx is the product limit estimator.

This is readily demonstrated. If t px is determined in this way, the expression (4.103) can 

be expressed in the form:

Then (4.104)

(4.105)

(4.106)

where Pr , dr and m are defined as in the previous section, and where:

equals unity when r = 1.

Then:
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(4.107)

and the latter expression on the right-hand side defines the product limit estimator.

t PxIt is very interesting that defining the factor ,px in the g-function, ¿rrr, in this way leads toP(t)
the virtually unbiased product limit estimator. In reaching this result, we have also 

implicitly based the formula in equation (4.1):

/*x+t =  fM )

on this definition of .̂px .

When the life table is based on ^Px items which are determined using the product limit 

principle, it is interesting that the product limit estimator is obtained, which is virtually an 

unbiased estimator for all but the smallest experiences.

As has been discussed in Section 1.12, such bias as is present in the product limit estimator 

is due to the generally remote possibility of the sample mortality experience not being 

available throughout the entire year of age, so that an expected value of the product limit 

estimator based on all possible sample outcomes cannot be determined. As demonstrated in 

Section 1.12, this can be a source of either positive or negative bias.

Since this particular life-profde estimator is virtually unbiased for all but the very smallest

experiences, and the source of any such bias is known to be due to the generally remote

possiblity of the product limit estimator being undefined, we can deduce that the normally

ubiquitous biasing effect of the factor contained in the g-estimator is absent.r( t)

This might probably be rationalised by noting that the mortality experience observed is

exactly the same as that expected on the basis of the mortality assumed to apply in the

population. Hence the factor  ̂ , which generally tends to introduce negative bias due toP(t)
fluctuations in the experience before duration t, will not have this effect here because the 

mortality assumption means that there are no fluctuations.

This argument appears to provide an independent collaboration of the conventional 

demonstration, discussed in Section 1.12, that the product limit estimator is virtually 

unbiased.
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4.22 The g-estimator with g(t,<f>)
PW ^x+t

Let us consider the g-function:

PW ^x+t
(4.108)

Then, using the category II equation, the g-estimator for <f) is given by:

*1

o dt =  E
D P(ti} ^x+t,-

(4.109)

D P^i) ^x+t,
(4.110)

Again we need to assume a mortality law.

Firstly let us assume the Gompertz Law, Px_|_̂  = B ^ ,  with an assumed value of c.

i =  i y __ i__r>/ Z_y t-
B D P(t.) c '

B' =  E —
D P(tj) c *

(4.111)

(4.112)

This gives a relatively easy non-iterative calculation.

Secondly let us use the rectangular hyperbolic mortality law with an assumed value of b, 

that is:

^x+t _  __1
bt (4.113)

Then: E
D

(a — bt.)
p ( y 1

(4.114)

P(\) (4.115)
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(4.116)— a —
¥  p(‘i(

i + *>E
D P<‘i>

Then:

or:

qx 1 -  (1 -  ^

qx =  1
~ [¿X

for b ^  0

for b =  0

(4.117)

(4.118)

Again this gives a non-iterative calculation.

It will be noted that, when b = 1, this estimator is identical with the life-profile estimator 

for the “level deaths” assumption, which is confirmed by equating the g-functions:

tPx _  K 
P(t) P(t)

tPx ^x+t =  K

(4.119)

(4.120)

which is a relationship that is true if (and only if) the “level deaths” assumption applies.

When the “constant p” mortality assumption applies, ie when b = 0, this estimator 

coincides with the Nelson-Aalen estimator, as is confirmed by considering the g-functions. 

When the “constant p” assumption applies, the g-function for this estimator becomes

Constant
P(t)

which defines the Nelson-Aalen estimator.

4.23 The g-estimator with g(t,<?i) =
1 d^x+t

p (t) /*x+t d<t>

Let us consider the g-function:

g (M ) x+t
P(t) Px+t d<t>

Then, using the category II equation, the g-estimator for <j> is given by:

(4.121)

l d/ux+t
o d<f> *  = £

D

d/ix+t,;
P(‘i) ^x+t, d *

(4.122)
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From the mathematical development in Section 4.7, we see that:

*1

J o
dj'x+t

d(j) dt -  1 
tPx

J_ ÖPx
Px d<j> (4.123)

Thus the value of qx given by this estimator is the value of qx that satisfies the equation:

d^ + t ,1 <?Px _  y  
Px d<j) ~

l
P(t;) Px+t d<i> (4.124)

d(log Px) _  V - _ J _  a l̂og ^x+ t;) 
H  2 ^  p(t.) d<f> (4.125)

Let us suppose that the Gompertz Law applies, that is:

Px+ t =  B'c1 (4.126)

By using equation (4.125), we can successively take <j) = B1 and (j) = c. Alternatively it 

appears that we can assume a fixed value for one of the parameters and use the appropriate 

equation to determine the other parameter, ie the equation in which <j) is the parameter to 

be estimated.

This procedure can be seen as analogous to the derivation of maximum likelihood 

estimators, and of course the g-function involved is the g-function for the maximum 

likelihood estimator multiplied by the further factor of pjr^y

Taking <j> = B^ the g-function becomes:

1
B' P(t)

(4.127)

But B; is constant with respect to t and so this g-function is the same as that applicable for 

the Nelson-Aalen estimator. This means that equation (4.125) with <f> =: B1 can be 

manipulated to provide a value for qx , and this value will be the Nelson-Aalen estimate.

We can verify this by considering equation (4.125) with <j> = Bi.

Firstly we will note that the Gompertz Law gives:
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Px =  hc_1 =  exp ( -  B' (c  -  l)/log c)

ie

and also:

log Px =  -  B' (c  -  l)/log c

log /Jx+t =  log B' + t log c

(4.128)

(4.129)

(4.130)

Thus equation (4.125) with <f> = B1 gives:

(c ~ 1)
log c v __ !__

I f  P(ti) B'
(4.131)

B' (c — 1) __ 1

log c PftD P(tj)
(4.132)

>°8Px =  - E p ^ (4.133)

qx =  1 -  exp
'  ?  p < \ >

(4.134)

which is the Nelson-Aalen estimator.

Thus to establish qx , we do not need to assume a value of c (nor indeed a value of B/). 

However if we need to estimate the value of either B̂  or c, we can use the second equation 

with (f> — c for this purpose.

Now equation (4.125) with <j> = c gives:

B'
log c

B' (c -  1)
c (log c)2 E

D P(tj)
t-Jc (4.135)

B ' c  _  (c  — 1) _  \ -  Ij 
log C (log c)2 ^  P(tj) (4.136)

log Px 1
log c £

t-
P(B)

(4.137)

The estimate of qx can be used to evaluate log px yielding an equation for c.
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It will also be noted that, since c is typically in the range 1.05 to 1.10, there may be scope 

for expanding the functions of c as power series in d, where d = c -  1, and obtaining an 

easily solved approximate equation for d, and hence c, by ignoring higher powers of d.

If the rectangular hyperbolic mortality distribution is assumed to apply, it is found that the 

values of a and b, which solve the simultaneous equations formed by taking <j) =  a and 

4> = b successively in equation (4.125), will combine together to give an estimate of qx 

which is again the Nelson-Aalen estimate. It should be noted that, in this case, it is 

necessary for both equations to be solved to obtain this value of qx , whereas when we 

considered the Gompertz Law., only one of the two equations was involved in obtaining the 

estimate of qx .

For the rectangular hyperbolic law, we have:

Mx+t =  (a -  bt)1----  and Px =  (1 ~  s ) b

log px+t =  -  log (a -  bt)

log Px =  l  (log (a -  b) -  log a)

Now applying equation (4.125) with <j> = a gives:

-  b a = V  -*____ - l-
% P(t;) (a -  btj)

l _ i______l
(a — b) 2 ^  p(t .) (a -  btj)

(4.138)

(4.139)

(4.140)

(4.141)

If a fixed value of b were assumed, the equation could of course be used alone to estimate a.

It is curious to note that this equation is equivalent to:

P'x+t-
^x *p x + i  =  E  p ( t f  (4-142)

Now if we take <j> = b in equation (4.125), we obtain:

i  (log ( ,  -  b) -  log a) -  1 ( =  x ;  p A j p  (4.143)
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(4.144)i  (log (a -  b) -  log a) + 1 _  v  _ J _  bti
a -  b P(t.) (a -  b t)

Thus equations (4.141) and (4.144) constitute a pair of simultaneous equations that can be 

solved for a and b. In fact these values of a and b, when used together to calculate qx , will 

give the Nelson-Aalen estimate of qx .

This can be seen by writing equation (4.144) in the form:

i bt-
los Px + srrr^B j =  E  pop (4'145)

and substituting for:

1
a (a — b)

from equation (4.141) to give:

log +  Ç  pft“) ( r = T t j j
2 btj

P(tj) (a -  btj) (4.146)

Equation (4.146) simplifies to:

‘»i»x = - E p ^ (4.147)

qx =  1 -  exp
Ç  p < y

(4.148)

which is the Nelson-Aalen estimator.

4.24 The g-estimator with g(t,</>) * 1 1
P(t) tPx

Let us consider the g-function:

g(M ) 1
P(fc) tPx

Then, using the category II equation, the g-estimator for <f> is given by:

(4.149)
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P^i) t,-Px
1 (4.150)

From the mathematical development in Section 4.6, we can see that:

(4.151)

Thus the value of qx given by this estimator is the value of qx that satisfies the equation:

(4.152)

(4.153)

This expression is deceptive in appearing to give a neat formula for qx , because it is 

necessary to assume a mortality law and express the  ̂ px items on the right-hand side in 

terms of qx .

A development which is algebraically simple occurs if we make the rather unattractive 

Balducci assumption. When this assumption applies, we have the following relationships:

Therefore when we make the Balducci assumption, equation (4.152) can the be written as:

Ox _  1___t
1 -  qx Px (4.154)

(4.155)

(4.156)

Ox = (4.157)

because when the Balducci assumption applies, we have:
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qx = /̂ x
1 + Px

Thus if the Balducci assumption is adopted, a relatively simple expression for 

involving an iterative evaluation, is obtained.

It can also be seen that, when the Balducci assumption applies, this estimator is 

with the estimator for which the g-function is:

g(M) = f w k r .

4.25 The g-estimator with K + t ) 1 9fix+t
p(t) at

Let us consider the g-function:

g(M ) ^ x + t) r 9Px+t
P(t) dt

Then, using the category II equation, the g-estimator for (j) is given by:

r+ l <^x+t
'x+t' dt dt = S

x+t,:

D P(b) L dt
dn x+t

t= t.

If r ^  -2, this gives:

F +  ( + + 1 > '+2 -  (i-x)r+2) =  E
D

W + t /
P(V

d[ix+t
dt t= t,

If r =  -2, equation (4.161) gives:

o°g / 'x , ] -  log / 'v ) =  e
D P<V (fx + t,)'

dfi x+t
dt t= t.

1" * T T  =  E
<9/ix+t

~Q P^i) (PX+t;
dt t= t.

(4.158) 

qx , not

identical

(4.159)

(4.160)

(4.161)

(4.162)

(4.163)

(4.164)
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A number of circumstances can be identified in which this g-estimator is identical with other 

g-estimators. For example, the estimator is identical with the Nelson-Aalen estimator if 

r = -1 when the Gompertz Law applies with any assumed value of c except 1, or if r = -2 

when the rectangular hyperbolic distribution applies with any assumed value of b except 0.

4.26 Some further estimators and other topics

We will continue this chapter with a discussion of “n-estimators” which were developed by 

the author as an embryonic form of the g-estimator and a discussion of a weighted least 

squares estimator which the author developed very much as an intellectual exercise, having 

noted the very wide range of estimators that were possible.

Then Section 4.29 will consider the use of the Dirac delta function in a modified derivation 

of the general theory, and Section 4.30 will briefly discuss the application of the general 

theory when a multiple-parameter mortality law is assumed to apply.

Finally, Section 4.31 examines an approach which is presented by Slawski (1991) as 

“equivalent to the conventional approach”.

4.27 n-estimators

The simulation programs were developed before the general theory had been evolved into its 

full form.

Included in the simulations were an embryonic form of the g-estimators in which the 

g-functions were limited to functions of the form:

(px_l_|.)n for any value of n.

These estimators were named n-estimators in reference to the arbitrary power n.

The n-estimators were given especial attention because it had been noted that, when the 

rectangular hyperbolic mortality distribution with an assumed value of b applies, a number 

of important estimators are obtained for particular values of n. It was subsequently realised 

that the g-function could be generalised so that virtually any estimator assuming a 

parametric mortality law could be produced.
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The following n-estimators are of particular interest:

n = - 1

For any one-parameter mortality law, the n-estimator with n = — 1 is the time-count 

estimator.

n = 0

For any one-parameter mortality law, the n-estimator with n =  0 is the log-estimator, 

and for the Gompertz Law, it is also the maximum likelihood estimator of B,>

n = 1

For the rectangular hyperbolic distribution, the n-estimator with n =  1 is the maximum 

likelihood estimator of a.

When the rectangular hyperbolic distribution with a given value of b applies, the 

n-estimator with n = 1/b is the conventional estimator.

All of these estimators were calculated in the simulations and, in addition, n-estimators for 

the rectangular hyperbolic distribution (incorporating a given value of b) with n = — 2, 

n = 2 and n = 3 were also calculated.

It will be noted that, when the “constant /i” law applies, the n-estimators for all finite 

values of n are identical and give the familiar maximum likelihood estimator based on the 

central exposed-to-risk.

It will also be noted however that the n-estimator corresponding to the conventional 

estimator, when the rectangular hyperbolic law applies, has n = 1/b for b ^  0. As the 

mortality law approaches the “constant fi” position, n —>oo and the conventional estimator 

approaches a value which is different from that taken by the n-estimator for finite n when 

the “constant /i” law applies.

The fact that all n-estimators for finite n coincide, if “constant ¡i" mortality is assumed, 

implies that, if px_|_j- is assumed to vary only very slightly over the range (0 < t< l), 

n-estimators with n = - 1 ,  0 or 1 are likely to give very similar results, regardless of how 

the data fluctuates, because we are close to the “constant /i” situation. As we have seen,
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these values of n include the time-count estimators, the log-estimators and the maximum 

likelihood estimators for a in the rectangular hyperbolic distribution and B/ in the Gompertz 

distribution. It does not necessarily include the conventional estimator nor its close relatives 

the implication-B estimator and the ethereal method of moments estimator.

4.28 A weighted least squares estimator

The author was encouraged that estimators based on so many different criteria could be 

identified and fitted into the g-estimator framework of the general theory and become 

intrigued by the possibility of an estimator based on the least squares principle, a principle 

not previously employed in the context of the year of age mortality scenario under 

investigation.

A weighted least squares estimator applicable in this scenario was developed and this will 

now be described.

Let us consider the observations over a year of age from age x to age x+1, where P(t) is the 

number of lives observed as alive at exact age x + t during the investigation. Let us consider 

the year of age as split into a series of time elements each of length <5t. Let D(t,<5t) denote 

the number of deaths observed to occur in the element 5t at age x + t.

Let us consider the weighted sum of squares:

t 1*
Q =  £  ( ^ )  (D(Mt) -  P(t) px+t ¿t)2 (4.165)

t=0

where: (D(t,<5t) — P(t) px <5t,)2

is the square of the difference between the observed deaths and the expected deaths in the 

element 61 at age x+t, considered in isolation, and:

Mt)
8t

is the weighting applied to the squared difference for the element ¿t at age x+t, where h(t) 

can be a function of t but is not a function of <j>,

and where the symbol: *

£
t=0
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denotes summation over all elements in the year of age.

Thus, multiplying out the squared item, we have:

Q =  E  (t t ) (D(Mt))2
t=0

t= l t= l
2 £  h(t) D(t,6t) P(t) px+t +  Y ,  h(t) (P(t))2 (/ix + t)2 St 

t=0 t=0

(4.166)

Now, we can make ¿t as small as we like, and as ¿t decreases, the first term in Q becomes 

increasingly large, the second term is unaffected and the third term approaches an integral.

We are interested in minimising Q with respect to the mortality parameter <f>. If we 

differentiate Q with respect to <j>, we see that, however small <§t is and however large the 

first term in Q is, the differential coefficient of the first term is zero, since the term is not a 

function of <j>, while the second and third terms give:

ÔQ _
d<f> 2 Y  h(t) D(t,5t) P(t) 

t=0

d»x+t
d<f>

t=4 , dp , t
+  2 Y h ( t )  (P(t))2 Px+t - ^ ± - ‘ i t

t= 0
d<j> (4.167)

It seems legitimate to regard the limit as St —>0, of the differential coefficient of the first 

term in Q, also as zero, since this differential coefficient took the value zero for all <$t>0, 

however small.

f then, in the expression for 0, we obtain:

<9Q _
d<j> 2 Y  Mh) P(ti)

D

^ x + t,.
d<j> + 2 h(t) (P(t))2 ^x+t g,), dt (4.168)

where, in the first of the terms in -rrr shown above, the summation is taken over thed<p
individual deaths and tj denotes the duration at death.

It will be noted that as ¿ t—+0, the weighting h(t)/<5t, applied to the squared quantity for an 

element, approaches infinity.

This is not viewed as any difficulty, since it is the result that we achieve in the limit for 

that is of relevance.

<9Q
d<t>
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Equating to zero gives:

Mt) (P(t))= »x+dt E  hdj) p (V
D

<9/ix+t,-
d<j> (4.169)

This relationship can also be expressed as

E ¡: I'd) Fd) H + t% a  dt = E »di) p(y (4.170)
N

By introducing a mortality law of the form:

/V ft =  fM )  (4.171)

either relationship can in principle be used to obtain an equation which may be solved to 

give a weighted least squares estimator of <j>. A practical difficulty may arise in choosing a 

function h(t) which represents a sensible weighting function whilst allowing a convenient 

algebraic development.

It is interesting to compare equation (4.169) with the equation for a category II g-estimator 

obtained from the general theory, namely:

P(t) hx+t g(M ) dt =  §Oy^) (4.172)
J °  D

It will be seen that the equations for the g-estimator and the least squares estimator are the 

same when:

g(M ) =  h(t) P(t) (4.173)

where it will be remembered that h(t) is part of the weighting function in the weighted 

squares expression and can be a function of t, but not of <j>. The g-function g(t,</>) may be 

function of both t and <f>.

Thus the weighted least squares estimator fits into the g-estimator framework of the general 

theory, and is obtained when the g-function is:

g(M ) -  h(t) P(t)
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The estimator was developed at a late stage in the research and consequently it was not 

included in any form in the simulations.

4.29 Use of the Dirac delta function

In developing the equation which defines the general g-estimator, and also in developing the 

equation which defines the weighted least squares estimator, it was necessary to reconcile 

expressions involving expected deaths, based on the density of a continuous variable, with 

expressions involving actual deaths based on discrete observations of observed deaths. In 

the event, it was possible to achieve this even in the limit as the length of the time elements 

approaches zero, and no special methodology was explicitly introduced.

It is interesting to note however that the Dirac delta function, originally developed by 

PAM Dirac in the context of quantum mechanics, and also used in engineering applications, 

can also be employed in an alternative presentation of the derivation of these equations.

The properties of the Dirac delta function are well discussed in many textbooks, and the 

author has found a number of textbooks helpful, notably the classic text by Dirac (1930) 

and texts by Miller (1956) and Dicke and Wittke (1960).

It is sufficient for our purpose to note that the Dirac delta function <$(t) is defined by the 

relationships

and

<5(t) dt =  1

6(t) =  0 if t 0

(4.174)

(4.175)

We will also note the following results:

-oo
f(t) 5(t) dt =  f(0) (4.176)

-oo
<5(t — t?) dt =  1 (4.177)

6(t -  t') =  0 if t ^  t ' (4.178)

fO O

oo
f(t) ¿(t -  t') dt =  f(t') (4.179)
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Now when we refer to the deaths observed in an element <5t at age x+t, let us write them, 

not as previously:

D(t,ét) (4.180)

but now instead as:

P(t) x̂+t (4.181)

where n ' i s  the observed mortality density defined by:

p M ^ x+t =  £ * ( * -  V  
D

where x+fi is the age at death of the ith life.

(4.182)

Then the total number of observed deaths over the year of age is given by:

P(t) Ai'x+t dt' =  ~ V  dt
D J0

Now since <$(t -  t.) =  0 for all t and 0 < f  < 1, we have:

•oo
é(t — t-) dt =  <5(t — t-) dt =  1

(4.183)

(4.184)

The total number of observed deaths is:

P(t) / x+t dt =  1 =  d
D

which is correct.

(4.185)

In our development of the category I and category II equations defining the g-estimator, we 

previously had (in equation (4.4)) the term:

t= l
D(t,<St) g(t,<5

t=0
(4.186)

representing the weighted sum of actual deaths over the elements of the year of age. 

In the alternative presentation, this would be written as:
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(4.187)

t= l t= l
E  P(t) /i'x+t g(M ) ¿t =  E  g(t,0) E  6(t -  tj) <5t
t=0 t=0 D

t= l
E E  g(M ) ¿(t -  V  5t
D t=0

As <5t —!• 0, this becomes:

E  g(t,</>) 6(t -  tj) dt (4.188)
D j0

which, remembering that <5(t -  tj) = 0 for all t yt t- (with here 0 <  t- < 1) and applying the 

well-established property of the Dirac delta function expressed by equation (4.179), gives:

E  * M )  (4-189)
D

thus leading to the same result as before (as in equations (4.8) and (4.9)).

Similarly in the derivation of the weighted least squares estimator, the following item in the 

expression for j-j- when ¿t > 0 (equation (4.167)):

dfi
2 E  h(t) D (t,a) P(t) 

t=0
x+t

dcj) (4.190)

would alternatively be written as:

t_ l*  g
-  2 £  h(t) P(t) - f e t i  (P(t) / I + , it) 

t=0 v

t= l*  Qn
=  -  2 E  hw p w  - * ? -  E  w  -  V 6 t

t=0 v  D

l= l dfj, , t
-  -  2 e  E  h(l ) p (t) E f - 6 ( t  -  V s t  (4-191)

D t=0 V

As <5t—>0, this becomes:
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D

1 ô/i , t
0 h«  m  «(* t;) dt (4.192)

which again, remembering that ¿(t — t-) =  0 for all t ^  f  (with here 0 <  t- < 1) and 

applying the well-established property of the Dirac delta function expressed by equation 

(4.179), gives:

-  2 £  h(tj) P(tj) 
D

dfxx+tj
d(f> (4.193)

thus leading to the same result as before (as in equation (4.168)).

4.30 Application of the general theory when a multiple-parameter mortality law is assumed 

to apply

In developing and discussing the general theory, attention has been given predominantly to 

its application where a mortality law applies which involves one mortality parameter, ie a 

law of the form:

/V ft =  f(M ) (4.194)

However, in discussing the maximum likelihood estimator (Section 4.7), we did consider 

mortality laws which involved n mortality parameters (n > 1), ie laws of the form:

Px_j_̂ =  f(f>0ii<(>2>.......^n) (4.195)

and obtained the familiar simultaneous equations for the parameters, normally obtained by 

equating the partial differential coefficients of the likelihood to zero, by the use of 

g-functions. Each g-function gives arise to one of the equations. The equation 

conventionally given by considering the partial differential coefficient of the likelihood with 

respect to the mortality parameter cj)1 is obtained using the g-function given by:

=  ( 4 ' 1 9 6 )

This application of the general theory in the context of a multiple-parameter mortality law, 

when maximum likelihood estimators are used, illustrates how the general theory may be 

applied in the context of a multiple-parameter law using g-functions chosen more generally.
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So, for example, if we have a mortality law which involves two parameters (f>1 and <f>2, we 

can adopt two g-functions gi(t,<̂ >1,<̂>2) and g2(t,01,02) and f°rm the simultaneous equations 

(if using Category I equations):

Y  g ^ x + t  S l ( C 0 1 i0 2) d t  — 2̂ g l ( t j )0 1 i0 2 )
N ' D

(4.197)

y  s ^x+t 82(^1^15^2) dt — y  82(^101)^2) 
N ' D

(4.198)

Thus for the maximum likelihood approach, we saw that:

gi(t,0i,02) =  jr̂ rt (4-199)

1 d^v-L-t
and g2(t.0i.02) =  p“ ; d<£  (4.200)

More generally we could choose other g-functions than those adopted in the maximum 

likelihood approach and obtain other simultaneous equations for the mortality parameters.

Obviously we might obtain two simultaneous equations that are very similar, so that the 

solution for the two unknowns is very unstable in that a minor fluctuation in the 

observations might cause a big fluctuation in the values of and <f>2 obtained. However it 

might possibly be the case that the value of qx calculated from the solutions for cj)1 and <f>2 

might be more stable.

A phenomenon of this type appeared possibly to occur in the simulations involving the 

two-parameter maximum likelihood estimators, where values of qx , calculated during single 

runs of simulation studies, seemed more stable than the related pairs of values (B/, c) or

(a, b).

It is also interesting to recall that, in Section 4.23, we considered the Category II g-function:

g(t>0) 1 d^x+t
p (t) ^x+t 50

(4.201)

which has obvious structural similarities to the maximum likelihood Category I g-function 

given by equation (4.196), and its application when the two-parameter Gompertz and 

rectangular hyperbolic mortality distributions apply. Among other things, we solved the 

simultaneous equations (4.141) and (4.144) corresponding to 0 = a and <j> =  b to obtain an 

expression for qx when the rectangular hyperbolic mortality distribution was assumed.
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It should be emphasized that, apart from the use of the maximum likelihood criterion to 

estimate the parameters of the Gompertz law and the rectangular hyperbolic law, and the 

discussion of the g-function given by equation (4.201) in Section 4.23, no further attention 

has been given to the use of the general theory when multiple-parameter mortality laws 

apply.

Clearly this is a possible area for further research.

4.31 Comments on the alternative “conventional” approach of Slawski 119911

When research work for this thesis was nearly complete, the author received a copy of a 

Master of Business Science dissertation by Slawski (1991) in which several issues addressed 

in this thesis had also been considered, for example, as we have seen, the comments by 

Hoem (1984) concerning the conventional estimator and his approximated “operational 

moment relations” (Sections 1.9 and 1.10) and the question of bias in estimators of qx 

(Section 4.15).

Also, an approach to estimating qx is given in Slawski (1991) which is interpreted as an 

alternative version of the conventional estimation of qx , but which in fact leads, not to the 

conventional estimator, but to the log-estimator. This arises because Slawski gives two 

equivalent expressions for the expected number of deaths, both involving expectations, 

which if equated to actual deaths will define the method of moments estimator, namely:

expectations on the right-hand sides, giving in the case of equation (4.202) the estimator 

that is described in this thesis as the conventional estimator and in the case of equation 

(4.203) the estimator that is described in this thesis as the log-estimator. In the case of the 

conventional estimator, Slawski’s derivation from equation (4.202) is the same in general 

principle as the derivation of the Balducci conventional estimator given by Broffitt and 
Klugman (1983).

The modifications introduced by Slawski have produced two estimators operating according 

to different statistical criteria, but Slawski appears to regard them as simply two versions of

(4.202)

(4.203)

and then makes approximations by substituting suitable expressions to eliminate the
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one approach, which she describes as the “conventional approach”.

Thus Slawski claims that the “conventional estimator of p” is the same as the maximum 

likelihood estimator of p when the “constant p” assumption applies. In fact she is referring 

to her derivation that yields the log-estimator and not the conventional estimator, and this 

result is in fact the same as one reported in Section 4.8 of this thesis. The conventional 

estimator, as defined in this thesis and as determined in Slawski’s first approach using 

equation (4.202), is different to the maximum likelihood estimator when the “constant p” 

mortality assumption is made.

As has been observed in Section 1.13, Slawski also obtains two simultaneous equations for 

the maximum likelihood estimators of the parameters B and c, when the Gompertz law 

px = Bcx applies, by differentiating the log-likelihood.

The equation obtained by differentiating the log-likelihood with respect to B is of course the 

equation that gives the maximum likelihood estimator of B when c is fixed.

In fact the maximum likelihood estimator for B when c is fixed is the same as the 

log-estimator for B. This is noted in Section 4.8 of this thesis in respect of B^ where 

B = B/ * cx , and the result in respect of B̂  applies also to B, given that c is held constant 

and x is fixed, being the age at the beginning of the year of age, so that B = B? * constant.

Given that the maximum likelihood estimator for B coincides with the log-estimator for B, 

it is not surprising that Slawski interprets the equation obtained by differentiating the log- 

likelihood with respect to B as representing a version of the conventional estimation of B 

when the value of c is assumed, and goes on to say therefore that “the maximum likelihood 

estimators [of B and c] are one possible pair of solutions from the set of solutions satisfying 

the conventional approach”. Obviously this is not true if the “conventional approach” is as 

defined in this thesis and as derived by Slawski from equation (4.202).
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C H A P TER  V

The Simulations

5.1 Introduction

As the author developed the ideas discussed in this thesis, he naturally became concerned 

whether the ideas were soundly based. Therefore a computer program was developed which 

would generate simulated bodies of mortality data from known mortality laws, subject to 

known mortality parameters, so that the various mortality estimators could be calculated 

and their values compared with each other and with the known population values 

underlying the simulated mortality experience.

A particular early motivation was increasing disagreement with the position argued for by 

Hoem (1984), that the conventional estimator was flawed, and the apparent suggestion that 

the approximated “operational moment relations” estimator developed in Hoem (1984) 

represented an improvement on the conventional estimator.

The original simulation program written by the author was relatively unsophisticated in 

structure and was written in BBC Basic to run on a BBC Master computer. However, the 

speed of computation when iterative calculations were involved proved simply too slow to 

allow simulations of adequate size and number to be contemplated. Nevertheless the results 

that were obtained appeared supportive of the theoretical developments reported in this 

thesis and encouraged the author to invest considerable time and effort to develop a more 

sophisticated program on more capable equipment.

The author in fact developed four new programs, each a variant of the same underlying 

model. The programs were written in Fortran to run on a Personal Computer employing a 

80286 processor, and with the benefit of a mathematics co-processor. The speed of 

computation was spectacularly increased although, with the subsequent availability of 

machines employing 80386 and 80486 processors, the simulations reported in this thesis 

employ a more modest number of repetitions than would be possible with the equipment 
now readily available.

Obviously, the simulation programs provided a very useful test-bed for comparing the 

results given by different mortality estimators and became particularly valuable as new 

estimators such as the “time-count” estimator were developed, and as other estimators were
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extended, in particular the maximum likelihood estimator when two parameters are 

estimated from the data.

5.2 The general model underlying the simulation programs

The model deals with a single year of age. A tranche of nt lives is regarded as starting at 

duration t = 0 in the year of age, and a further tranche of n2 lives is regarded as entering at 

the beginning of a chosen month of the year of age, when duration equals r months, where 

all months are regarded as being one-twelfth of a year in length. Withdrawals are regarded 

as taking place at the end of every month of the year of age.

Lives can die of course at any time and the model allows the assumption of either the 

rectangular hyperbolic mortality law or the Gompertz mortality law as the mortality law 

governing the population. The parameters of either law can be assigned any values that the 

experimenter wishes to consider. Thus for example the “level deaths” and Balducci 

assumptions can be used, as particular cases of the rectangular hyperbolic law, and the 

“constant p” assumption can be used as a particular case of either the Gompertz or 

rectangular hyperbolic law. Deaths are generated at random using a pseudo-random 

number generator, whilst ensuring that their probability of occurrence conforms to the 

chosen mortality law.

The programs allow the distribution of withdrawals to be specified in several ways. The 

primary option is to specify the annual withdrawal rate wx and to allow the program to 

calculate and apply the equivalent monthly withdrawal rate on the assumption that the 

underlying population rate of withdrawal applicable at the end of each month is constant. 

However the option is also provided for the experimenter to specify individually the 

equivalent annual underlying population rates of withdrawal applicable at the end of each 

month of the year of age (eleven such values, as the withdrawals occurring at the end of the 

last month are irrelevant for the purpose of calculating the mortality rate). Withdrawals 

are generated at random using a pseudo-random number generator, whilst ensuring that 

their probability of occurrence conforms to the chosen withdrawal distribution.

Further options for specifying withdrawals are also available in two variants of the model, 

to be discussed shortly.

5.3 Comments on the general model underlying the simulation programs

The model provides for withdrawals occurring at the end of each month, rather than
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occurring continuously. This design was adopted for the practical purpose of simplifying the 

programming. The main purpose of the programs is to compare different estimators and it 

was felt that this design was more than adequate to test how the different estimators 

performed in the presence of withdrawals.

With regard to new entrants, the model allows for one tranche of new entrants to enter “en 

bloc” at the beginning of a month. This is of course a rather restricted new entrant model, 

but it is believed to be more than sufficient to allow the performance of different estimators 

to be compared in the presence of new entrants. Again a simplified model was adopted in 

order to simplify the programming.

The benefits of adopting these simple models in respect of the withdrawals and new entrants 

arises at two stages in the programs: firstly when the simulated data is generated, and 

secondly when the values of the mortality estimators are calculated. As well as the benefits 

at the programming stage, the speed of operation of the program may also be assisted.

Another benefit of the relatively straight-forward model was that further structure was able 

to be incorporated fairly easily into the model. Also the relatively simple structure of the 

models assisted in the testing of the programs and the tracing of programming errors, which 

was undertaken very assiduously.

However, even with these simple models, the programming to produce the simulated data 

and to calculate estimators was not without its complexities; the full development of the 

programs took many weeks, and was only possible because the author had been granted 

sabbatical leave.

The four variants of the simulation program are denoted by the names ASP, ASPSIM, 

ASPMOM and ASPMMSIM. These will now be briefly introduced.

5.4 Program ASP

The first variant of the Fortran program, denoted by the name “ASP”, produces a single set 

of simulated data as described above and calculates the values of a variety of mortality 

estimators based on the simulated data.

5.5 Program ASPSIM

The second variant of the Fortran program, denoted by the name “ASPSIM”, essentially
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allows the programming of ASP to be run a specified number of times and the average value 

of each estimator based on all the runs in a simulation study to be calculated, together with 

an estimate of the standard deviation of a single observed value of each estimator, and lower 

and upper confidence limits for the population value of the mortality rate q ^  based on each 

estimator.

The confidence limits are set at distances of two standard deviations of the average observed 

value of the estimator concerned, above and below the observed average value of the 

estimator. Therefore, given the large number of runs used in each simulation study, namely 

500, and bearing in mind the Central Limit Theorem (as discussed for example in Larson 

1982), the distribution of the average observed value of an estimator can be taken as 

virtually normal, and the lower and upper confidence limits produced by the program can be 

taken as defining 95% confidence intervals for the population value of qx .

The standard deviation of a single observed value, qx say, of an estimator is determined as 

the square root of the variance of qx estimated using the following formula:

variance of qx :
r=m

m A £  (rqi)a -  ( A £  r4  )!
r= l r= l

(5.1)

where m is the number of runs made in a simulation study and rqx is the value of the 

estimator observed in the r^1 run of the simulation. It will be noted that the estimate of 

the population value of the estimator obtained from the data is used in estimating the 

variance and not the true value, which is known from the parameters of the simulation. It 

was felt appropriate to use the estimated figure, so that, if the estimator were biased, we 

would be estimating the standard deviation of the biased estimate.

5.6 Program ASPMOM

The third variant of the Fortran program, denoted by the name “ASPMOM”, produces a 

single set of simulated data similarly to the program ASP, but from a modified simulation 

model.

The program ASPMOM operates by firstly obtaining values of m(t) and mr(t), the number 

of lives entering respectively at durations 0 and r months, who will withdraw at duration t 

months (t =  1, 2, 3, .... 11) if they do not die first, and the values of m(12) and mr(12) 

representing all the lives who will reach the end of the year of age if they do not die first.
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The primary option for creating the values of m(t) and mr(t) is to specify an annual 

withdrawal rate, together with the values of nx and n2, and then to randomly generate the 

values of m(t) and mr(t) for each month as withdrawals occurring at the end of each month 

in the presence of a zero force of mortality, assuming that the underlying population rate of 

withdrawal per month is constant, with m(12) and mr(12) being the numbers of lives 

reaching the end of the year of age.

Alternatively, the values of all the m(t) and mr(t) may be directly specified by the 

experimenter, in which case the values of n: and n2 are automatically determined as the 

sums of the m(t) and mr(t) respectively.

These are the further options for specifying withdrawals briefly alluded to previously.

Having established the values of m(t) and mr(t), the program ASPMOM follows each set of 

m(t) and mr(t) lives through to duration t, ie the date on which they are predestined to exit 

if they do not die first, and generates deaths randomly from them according to the chosen 

mortality law.

The purpose of ASPMOM is to generate mortality data in which each individual life is 

predestined to exit at a known date if he does not die first. The purpose of creating such 

data was to allow the method of moments estimator to be calculated, since the expected 

number of deaths, as “expected” in the statistical sense, can be calculated if the date on 

which lives are predestined to exit, if they do not die first, is known. Such information can 

be made available for simulated lives, despite being seldom available for real lives. As the 

program was intended to facilitate calculation of the “method of moments” estimator, it 

was denoted by the name ASPMOM.

The program ASPMOM enables the performance of all the estimators discussed in Hoem 

(1984) to be compared, and in particular allows a comparison to be made between the 

“method of moments” estimator and the conventional estimator which, in Hoem (1984), 

appeared to be viewed as a poor replacement for the “method of moments” estimator, the 

latter being impossible to calculate in practice with normal data.

As has already been intimated, the simulations appear to show that there is a very close 

similarity between the values given by the conventional estimator and the “method of 

moments” estimator, both estimators appearing to give sound estimates of the population 

mortality rate; the simulations also appear to confirm this author’s suspicions that values 

of qx given by the approximated “operational moment relations” estimator will have a 

negative bias.
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5.7 Proeram ASPMMSIM

The fourth variant of the Fortran program, denoted by the name “ASPMMSIM”, essentially 

allows the programming of ASPMOM to be run a specified number of times and the average 

value of each estimator based on all the runs in a simulation study to be calculated, 

together with an estimate of the standard deviation of a single calculation of each estimator, 

and lower and upper confidence limits defining 95% confidence intervals for the population 

value of the mortality rate qx , based on each estimator.

5.8 Determination of the simulated deaths and withdrawals

It may be of interest to briefly describe the procedure by which the simulated deaths and 

withdrawals are determined. This brief description is made with reference to program ASP, 

but the same principles are used for the other programs.

Let us consider the lives entering at duration 0. For these we construct a double decrement 

table showing, for a radix of 999999.99 lives, the number of lives surviving mortality in 

month 1, then the number of lives surviving after the withdrawals at the end of month 1, 

then the number of lives surviving mortality in month 2, then the number of lives surviving 

after the withdrawals at the end of month 2 and so on through the year of age, culminating 

with the number of lives surviving at the end of the year of age after all deaths and 

withdrawals. The double decrement table is obviously constructed using the chosen 

mortality law and withdrawal distribution.

Then, in turn for each simulated life in the tranche, a pseudo-random number, taken from a 

uniform distribution between 0 and 1, is generated and multiplied by 999999.99. The 

resulting “life identity number” is then compared with the numbers of lives calculated in the 

double decrement table as surviving at each stage and is used to identity the life’s position 

in the sequence of exits from the population, and hence to identify the monthly group of 

deaths or withdrawals, if any, to which the life belongs. If the life identity number is less 

than the number of lives surviving the year in the double decrement table, the life is 

regarded as completing the year.

In order to evaluate some of the estimators, it is also necessary to know the durations at 

which deaths occur, and therefore, for the simulated lives identified as exiting by death, the 

“life identity number” is used in conjunction with the chosen mortality law and the double 

decrement table to calculate the precise duration within the month at which the life dies, 

and hence the duration from the beginning of the year of age at which death occurs, which 

is the information needed for the estimators concerned.
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This procedure is also used, after appropriate modification, to determine the simulated 

deaths and withdrawals in respect of the tranche of new entrants entering at duration r 

months.

The pseudo-random numbers are obtained using the routines G05CCF and G05CAF from 

the NAG Fortran Workstation Library.

To assist the testing of the programs during development, all the programs include the 

option of using a set of uniformly distributed numbers in place of the pseudo-random 

numbers. This provides a representative and repeatable sample of deaths and withdrawals.

5.9 Years of age with only partial exposure

It will be noted that, by taking nx as equal to zero, it is possible to study the derivation of 

mortality rates from a year of age in which mortality experience is only available after a 

specifed duration, r months, up to the end of the year of age.

Further, by also using the option available in programs ASPMOM and ASPMMSIM of 

specifying the durations at which surviving lives definitely withdraw, it is possible to study 

the derivation of mortality rates from a year of age in which mortality experience is only 

available between two specifed durations within that year of age.

Such studies have not yet been undertaken.

5.10 The estimators calculated in Programs ASP and ASPSIM

In the programs ASP and ASPSIM, the values of 41 different estimators are given in the 

output, although only 34 separate calculations are required, because of duplications.

For those estimators which require a mortality assumption to be made, five different 

assumptions are generally used, namely:

(a) the rectangular hyperbolic distribution with b = 2

(b) the rectangular hyperbolic distribution with b = 1 (ie the “level deaths” assumption)

(c) the rectangular hyperbolic distribution with b = 0 (ie the “constant p” assumption)

(d) the rectangular hyperbolic distribution with b = -1 (ie the Balducci assumption)

(e) the Gompertz distribution with c = 1.1
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Thus values of the conventional, implication-B, time-count and maximum likelihood 

estimators are calculated for all five of these assumptions. Four n-estimators, for values of 

n equal to -2, 0 (the log-estimator), 2 and 3, are calculated for the first four of these 

assumptions, ie excluding the Gompertz assumption.

The programs also calculate the approximated “operational moment relations” estimators 

for the “level deaths” and “Balducci” assumptions using the formulae given by Hoem 

(1984), and quoted in Section 1.9 of this thesis (equations (1.40) and (1.41)).

Finally, the programs calculate the product limit estimator (so long as the simulations cover 

the entire year of age) and two maximum likelihood estimators of qx , assuming respectively 

the rectangular hyperbolic and Gompertz mortality distributions, but with the values of b or 

c also being estimated from the data by the method of maximum likelihood.

Thus, in the latter two cases, the data largely “chooses” the mortality assumption used in 

the calculation of the estimator. Along with the average for all the runs of the estimated 

values of qx , the output also presents the averages of the estimated values of the mortality 

parameters b and c, and ASPSIM also gives estimates of the standard deviations of single 

calculations of b and c, and of 95% confidence limits for the population values of b and c.

In addition to the values presented in ASPSIM of the average observed qx (Table I of the 

output), the estimated standard deviations (Table II of the output) and the estimated lower 

and upper confidence limits (Tables III and IV of the output), ASPSIM also gives, in Table 

V, the difference of the average observed value of each estimator from the average observed 

value of the two-parameter maximum likelihood estimator for the general mortality law, ie 

rectangular hyperbolic or Gompertz, assumed for the population in generating the simulated 

data.

The purpose of this was to give a strong visual impression of the degree to which the 

two-parameter maximum likelihood estimator concerned had agreed in its average value 

with the estimators in which the correct mortality distribution parameter had been assumed.

The program ASP also contains the facility, after the standard results have been produced, 

to request the calculation of further estimators using the same body of simulated mortality 

and withdrawal data but with different mortality assumptions being made in estimators, ie 

different values of b and c assumed, and in the case of n-estimators, with different values of 

n. In addition, ASP gives the facility to display the numbers of deaths and withdrawals in 

each month in the simulated data.
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5.11 The estimators calculated in Programs ASPMOM and ASPMMSTM

In the programs ASPMOM and ASPMMSIM, the values of 25 different estimators are given 

in the output, although only 22 separate calculations are required, because of duplications.

For those estimators which require a mortality assumption to be made, four different 

assumptions are generally used, namely:

(a) the rectangular hyperbolic distribution with b

(b) the rectangular hyperbolic distribution with b

(c) the rectangular hyperbolic distribution with b

(d) the Gompertz distribution with c = 1.1

Thus values of the method of moments, conventional, implication-B, time-count and 

maximum likelihood estimators are calculated for all four of these assumptions.

The “method of moments” estimator is calculated using the formulae given by Hoem 

(1984), when the “level deaths” and Balducci assumptions apply (equations (1.36) and 

(1.37) in this thesis) and by the following corresponding equation for the “constant /i” 

assumption:

= 1 (ie the “level deaths” assumption) 

= 0 (ie the “constant p” assumption) 

= -1 (ie the Balducci assumption)

£  (1 -  (1 -  qx )ri S‘) =  D (5.2)
N

Again the programs also calculate the approximated “operational moment relations” 

estimators for the “level deaths” and Balducci assumptions using the formulae given by 

Hoem (1984) (equations (1.40) and (1.41) in this thesis), the product limit estimator (if 

calculable) and the two maximum likelihood estimators of qx involving the estimation of 

the distribution parameter b or c from the data.

For each estimator, the output of ASPMOM gives the same details as ASP, and similarly 

ASPMMSIM gives the same details as ASPSIM. Also ASPMOM gives the same options for 

further information as ASP.

5.12 Iterative derivations of estimator values

The values of many of the estimators are of necessity obtained from the defining equations 

using an iterative approach. The iterative solution of equations is achieved by the use of 

routine C05ADF from the NAG Fortran Workstation Library. This routine locates a zero

-  191 -



of a continuous function in a given interval by a combination of the methods of linear 

interpolation, extrapolation and bisection.

Iterative calculations were continued until successive iterations gave values of the estimator 

which differed by less than .0000001 . The values of the estimators are shown in the 

printouts to seven decimal places and therefore any calculation error due to the iterative 

method is of the same order as the rounding applied in displaying the estimator values.

The estimators for which iterative methods of solution are employed are:

(1) All conventional estimators, except when the Balducci assumption is made.

(2) All implication-B estimators.

(3) All maximum likelihood estimators, except when the Gompertz Law is assumed with 

a given value of c which includes the “constant / / ’ assumption.

(4) All method of moments estimators.

(5) The approximated “operational moment relations” estimators (calculated for the 

“level deaths” and “Balducci” assumptions only).

(6) The n-estimators for n = -2, 0 (the log-estimator), 2 and 3, except when the 

“constant /r” assumption is made and in the case of the log-estimator when the 

Gompertz Law is assumed.

In fact the only estimators for which an iterative solution is not used are the product limit 

estimator, the entire family of time-count estimators (which includes the conventional 

estimator for the Balducci assumption, the maximum likelihood estimator for the “constant 

/r” assumption and indeed all n-estimators for the “constant p” assumption) and maximum 

likelihood estimators for the Gompertz Law if a given value of c is assumed (which also 

includes the “constant / / ’ assumption and embraces the log-estimator which is identical 

with the maximum likelihood estimator for the Gompertz Law if a given value of c is 
assumed).

5.13 A technical complication in determining the two-parameter maximum likelihood 

estimators

The two-parameter maximum likelihood estimators are calculated by solving two
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simultaneous equations in the two parameters. A complication arises when b equals 0 or 

when c equals 1 in that one of the two equations is not then properly defined. Depending on 

how the equations have been expressed, one of them will then either contain items which 

cannot be evaluated, such as zero divided by zero, or will become identical with the other 

equation, so that solution for the two unknowns becomes impossible. This creates general 

difficulties as the simultaneous equations have to be solved iteratively and, even if the 

eventual solution is not in the region of b = 0 or c = 1, the anomalous value can still arise 

as a trial value during the iterations.

Although in theory, the anomaly only occurs at one point, in practice severe complications 

arise in a band of values around the anomalous point as the computer experiences difficulty 

in calculating the necessary values close to the anomalous point, where the situation 

becomes increasingly extreme. If the program is not designed to cope with this in some 

way, there is the high probability that it will malfunction at some stage of its use and will 

terminate or, more insidiously, continue to run but produce spurious values.

Such a malfunction will be disastrous if the program is being used to produce a large 

number of simulations, the results of which are to be averaged.

In the programs ASP, ASPSIM, ASPMOM and ASPMMSIM, this problem is overcome by 

the provision that when a value of k = b/a in the range -0.05 to 0.05, or a value of c in the 

range 0.98 to 1.02, is to be used as a trial value in the iterations, the values k = -0.05 and 

k = 0.05, or c =; 0.98 and c = 1.02, are used and first difference interpolation employed to 

obtain values corresponding to the actual values of k or c involved.

Even when the values of the two parameters which solve the simultaneous equations have 

been successfully obtained, problems can still remain, in that the value of qx , corresponding 

to the parameter values, has to calculated and, in the region of b = 0 or c = 1, a similar 

anomaly has to be coped with.

At precisely b = 0 or c = 1, the “constant /i” assumption applies and the formula for 

calculating qx is different from the formula when b ^  0 or c /  1, this latter formula being 

undefined at the anomalous point, and indeed impossible for the computer to calculate in 

the immediate region of the anomalous point.

In the programs ASP, ASPSIM, ASPMOM and ASPMMSIM, this problem is overcome by a 

provision that when, for example, a value of qx is to be calculated for k = b /a in the range 

0.0 to 0.1, values at k = 0 and k — 0.1 are calculated by the appropriate formulae and the 

value of qx for the required value of k obtained by first difference interpolation; similar 

methods are used when a value of qx is required for k = b /a in the range -0.1 to 0.0, c in
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the range 0.995 to 1.000 or c in the range 1.000 to 1.005.

5.14 Population and sample parameters assumed for the simulation runs

All the simulation runs were made for a standard set of population and sample parameters. 

These were:

qx =  0.2 wx =  0.4 r =  3

nx =  10000 n2 =  10000 no. of runs =  500

For both programs ASPSIM and ASPMMSIM, simulations have been made assuming 

population mortality in which b = 2, 1, 0, -1 and c = 1.1, 1.05. Obviously, the runs with 

b = 0 are equivalent to runs with c = 1.

The values assumed in the population for the mortality rate, of 0.2, and for the withdrawal 

rate, of 0.4, are very high, but have been deliberately chosen so, in order to test the different 

estimators under fairly extreme circumstances, so that any differences might be emphasised.

The monthly withdrawal rate in the population is assumed to be constant.

The tranche of new entrants are assumed to enter at duration three months, which is 

regarded as providing a suitable test of the different estimators in the presence of new 

entrants.

The number of lives assumed to enter at duration zero in the year of age, and subsequently 

at duration 3 months, namely 10000 in each case, was regarded as providing a suitably 

substantial number of lives to give stable calculations of the estimators. The main purpose 

of these investigations was to compare the general performance of the different estimators, 

and comparison of their performance for smaller numbers of lives is a possible area for 

future work.

The speed of computation provided by the 80286 processor then dictated that a practical 

number of individual runs in a simulation study would be 500. For the program ASPSIM, 

500 runs take about 28 hours, while for the program ASPMMSIM, 500 runs take about 35 

hours.

It will be noted that the results of 500 such runs are thus based on the experience of ten 

million simulated lives.
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5.15 Comments on the population and sample parameters common to all the simulation 

runs

The estimators have been studied in the simulations using one set of values for the 

parameters qx , wx , nx, n2 and r, and this needs to be borne in mind in interpreting the 

behaviour of individual estimators.

The benefits of the simulations are considered to lie in checking that proposed new methods 

of estimating qx do indeed work satisfactorily, and in the comparisons that are facilitated 

between different estimators; it is felt that the comparisons made using the common 

parameter values assumed in these simulations will provide conclusions about the relative 

behaviour of the estimators that can be expected to be broadly valid over a wide range of 

values of these parameters. However it remains a possibility that an apparent effect, 

observed when two estimators are compared, could be modified significantly if alternative 

values of the parameters were adopted. This obviously provides an area where further 

research could be undertaken.

It should be noted that the simulations using b = 2 provide a test of the estimators which is 

more extreme and demanding with qx = 0.2 than any situation likely to be met in practice. 

The roughly equivalent value of c in a Gompertz distribution is shown in the simulations, 

by the maximum likelihood estimator of c, to be of the order of 1.57 . Moreover the shape 

of the rectangular hyperbolic curve for Px_|_̂  will be significantly more skewed to the right 

than the Gompertz curve.

To a somewhat lesser degree, the same comment applies to the “level deaths” assumption 

(b = 1) where, with qx = 0.2, the roughly equivalent value of c appears to be about 1.25 .

It is felt that if estimators can perform satisfactorily under such demanding situations, they 

are likely to perform no less adequately under more moderate circumstances such as where 

the roughly equivalent value of c is 1.1 or less.

5.16 The tabulations of the simulation outputs

Printouts showing the outputs from the simulations are presented in Appendix II. The 

twelve simulations have been labelled 1A, IB, 2A etc as indicated in the Table 5.1.

Appendix II also provides a key to the layout of the simulation outputs.
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Table 5.1 Labelling of the simulations

Simulation Distribution Simulation
label parameter program

1A b =  2 ASPSIM

IB b =  2 ASPMMSIM
2A b = 1 ASPSIM
2B b = 1 ASPMMSIM

3A b = 0 & c = 1 ASPSIM
3B IIOoII-Q ASPMMSIM
4A b = -l ASPSIM
4B b = -1 ASPMMSIM
5A c = 1.1 ASPSIM
5B c = 1.1 ASPMMSIM
6A c = 1.05 ASPSIM
6B c = 1.05 ASPMMSIM

5.17 Software quality

It is perhaps appropriate at this point to consider the possibility that, while the programs 

appear to have run without apparent malfunctions, the results could be unreliable due to 

errors in the programming.

As the programs have been developed, they have been tested most assiduously and any 

apparently inconsistent aspects of the outputs have been investigated very carefully for 

possible programming error.

If results were contaminated by software errors, there would seem to be three main areas in 
which this could occur:

(1) The simulation of deaths and withdrawals in the population according to the 

assumed distributions.

(2) The calculation of the values of individual estimators.

(3) Failure of the pseudo-random number generator to provide random numbers.

The results of the virtually unbiased product limit estimator and the two-parameter 

maximum likelihood estimators appear to suggest strongly that the assumed population 

mortality distributions have been simulated correctly. Although the evidence available

-  196 -



concerning withdrawals is less exacting, the withdrawal distributions also appear to have 

been simulated satisfactorily. The programs ASP and ASPMOM, which produce single 

runs, allow the numbers of deaths and withdrawals occurring in each month to be printed 

out, and this evidence is satisfactory.

With regard to the calculation of the individual estimators, all the values obtained appear 

reasonable, especially in the light of the 95% confidence intervals. In each case in the 

results, where a 95% confidence interval does not contain the population value of qx = 0.2, 

an obvious explanation can be found in terms of an inappropriate mortality assumption 

being used in the calculation of the estimator value or of a methodological shortcoming, for 

example as argued in the case of Hoem’s approximated “operational moment relations” 

estimator.

Given that the distributions appear to have been satisfactorily simulated, it is also believed 

that the pseudo-random number generator has performed satisfactorily.

Perhaps the biggest residual risk is of the survival of a programming error that produces a 

very minor effect in the calculation of an individual estimator, which is not of a sufficient 

size to be apparent as an obvious aberration. It is strongly felt that the stringent checking 

of results in the development stages of the programs means that the possibility of this is 

very small. However the most reliable check would appear to be for another researcher to 

develop programs independently which duplicate the specifications of the existing programs 

and for the characteristics of the outputs from the duplicate and original programs to be 

compared. This would appear to be an exercise which would be virtually prohibited by the 

amount of work involved.

Although the printouts shown in Appendix II do not show any details of individual runs, 

but only averages and other statistics based on all 500 runs, the fuller printouts generated 

by the programs also include summarised details for each individual run, namely the values 

of a selection of estimators, in order that any unexpected malfunction of the program 

leading to obviously spurious values in an individual run can be detected by a visual check 

of the full printouts.

Obviously it is very important to avoid the possibility that a simulation study of 500 runs 

would be accepted despite being tainted by a run in which the program had “crashed”. No 

such spurious results indicating a “crash” have been detected in any of the runs performed 

for use in this thesis, using the fully tested versions of the programs.

Also, if for any reason the iterative method of solution by which the routine C05ADF 

locates a zero of a continuous function in a given interval were unsuccessful, an error
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message would be printed out, although the program would not be not terminated. 

Therefore the full printouts have also been carefully inspected for such error messages, but 

not a single one has occurred.

5.18 The product limit estimator

Table 5.2 summarises the 95% confidence limits for the value of the population qx , based on 

the observed values of the product limit estimator in each of the 12 simulations. In view of 

the large number of lives involved in each individual repetition within a simulation 

program, the product limit estimator is effectively unbiased here and so its simulated values 

can provide an indication of whether the programs are correctly simulating the adopted 

population mortality distribution and correctly calculating the product limit estimator.

Table 5.2 The product limit estimator: 95% confidence intervals for population qx

Pop. distn. ASPSIM ASPMMSIM

parameter Lower limit Upper limit Lower limit Upper limit

b = 2 .1999008 .2004999 .1995682 .2001447
b = 1 .1996938 .2003005 .1998742 .2004546
b = 0 .1996041 .2001961 .1998425 .2004628
b = -1 .1995400 .2001436 .1998066 .2004278
c = 1.1 .1997424 .2003433 .1995761 .2001371
c = 1.05 .1999333 .2005470 .1997168 .2003300

It can be seen that the population value of qx = 0.2 falls very satisfactorily within each 

confidence interval, which is an encouraging indication that the programs are performing 

correctly in the areas mentioned.

5.19 The conventional estimator

Table 5.3 summarises the 95% confidence limits for the value of the population qx, based on 

the observed values of the conventional estimator, calculated using the same mortality 

assumption as that adopted in the population from which the simulated observations were 

derived, for the 9 simulations where this estimator was calculated in this way.
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Table 5.3 The conventional estimator: 95% confidence intervals for population qx 

(Estimator uses the same mortality assumption as in the population).

Pop. distn. ASPSIM ASPMMSIM

parameter Lower limit Upper limit Lower limit Upper limit

b = 2 .1999414 .2005103

b = 1 .1996035 .2001968 .1999105 .2004679

oII .1995766 .2001567 .1998453 .2004434
b = -1 .1995819 .2001706 .1997758 .2003848

C  =  1.1 .1997738 .2003723 .1995396 .2001036

It will be seen that the population value of qx = 0.2 falls satisfactorily within each 

confidence interval. This result appears to support the contention of this thesis that the 

principle of the conventional estimator is not flawed, despite the views put forward by Hoem 

(1984).

If the conventional estimator is subject to bias in the circumstances simulated here, such 

bias does not appear to be of a sufficient magnitude to be apparent compared with the effect 

of the random fluctuations.

5.20 Iloem’s approximated “operational moment relations” estimator

Table 5.4 summarises the 95% confidence limits for the value of the population qx , based on 

the observed values of Hoem’s approximated “operational moment relations” estimator, 

calculated using the same mortality assumption as that adopted in the population from 

which the simulated observations were derived, for the 4 simulations where this estimator 

was calculated in this way.

It will be seen that in every case the upper limit of the confidence interval for the population 

value of qx falls well below the true value of qx = 0.2, the distance of the population value 

of qx from the centre of the confidence interval being an average of about 18 times the 

standard deviation of the average observed value of the estimator, ie this distance is about 

41 times as big as the width of the confidence interval.

This appears to provide very strong evidence to support the contention in Section 1.9 that 

the approximation used in constructing this estimator introduces a negative bias, and that 

therefore the estimator is not satisfactory.
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Table 5.4 Iloem’s approximated “operational moment relations” estimator: 

95% confidence intervals for population qx 

(Estimator uses the same mortality assumption as in the population).

Pop. distn. ASPSIM ASPMMSIM

parameter Lower limit Upper limit Lower limit Upper limit

b = 1 .1969729 .1975527 .1972732 .1978160
b = -1 .1969815 .1975543 .1971685 .1977624

5.21 The method of moments estimator

Table 5.5 compares the average observed values of the method of moments and conventional 

estimators, calculated using the same mortality assumption as that adopted in the 

population from which the simulated observations were derived, for the 4 simulations where 

the method of moments estimator was calculated in this way.

Table 5.5 Comparison of the average observed values 

of the method of moments and conventional estimators of qx 

(Estimator uses the same mortality assumption as in the population).

Pop. distn. ASPMMSIM ASPMMSIM

Parameter Method of moments Conventional

b =  1 .2001887 .2001892
b = 0 .2001428 .2001443
b = -1 .2000702 .2000803
c = 1.1 .1998304 .1998216

It will be seen in each case that the values of the two estimators are very close.

These simulation results appear to give strong evidence to support the contention in Section 

2.10 of this thesis that the values of the conventional estimator and the method of moments 

estimator are likely to be very similar when the correct mortality assumption is made, and 

to support the more general contention that the conventional estimator is not flawed.
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The argument against the conventional estimator in Hoem (1984) appears to be that the 

principle underlying the conventional estimator differs from that of the method of moments 

estimator, which is regarded in Hoem (1984) as a satisfactory estimator, in a way which 

renders the conventional estimator unsatisfactory. However if the two estimators give 

similar values, the argument that the difference in the principle renders the conventional 

estimator unsatisfactory would not appear to be sustainable.

Some further discussion of the relationship between the conventional estimator and the 

method of moments estimator is given in Section 5.27 .

5.22 The implication-B. maximum likelihood, log and time-count estimators

Table 5.6 summarises the 95% confidence limits for the value of the population qx , based on 

the observed values of the implication-B estimator, calculated using the same mortality 

assumption as that adopted in the population from which the simulated observations were 

derived, for the 9 simulations where this estimator was calculated in this way.

Table 5.6 The implication-B estimator: 95% confidence intervals for population qx 

(Estimator uses the same mortality assumption as in the population).

Pop. distn. ASPSIM ASPMMSIM
parameter Lower limit Upper limit Lower limit Upper limit

b = 2 .1999445 .2005161
b = 1 .1996015 .2001966 .1999067 .2004653
b = 0 .1995744 .2001540 .1998383 .2004366
b = -1 .1995797 .2001685 .1997727 .2003822
c = 1.1 .1997796 .2003783 .1995432 .2001063

Table 5.7 summarises the 95% confidence limits for the value of the population qx , based on 

the observed values of the maximum likelihood estimator, calculated using the same 

mortality assumption as that adopted in the population from which the simulated 

observations were derived, for the 9 simulations where this estimator was calculated in this 
way.
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Table 5.7 The maximum likelihood estimator with mortality assumption: 

95% confidence intervals for population qx 

(Estimator uses the same mortality assumption as in the population).

Pop. distn. ASPSIM ASPMMSIM

parameter Lower limit Upper limit Lower limit Upper limit

b = 2 .1999355 .2005059
b = 1 .1996035 .2001968 .1999105 .2004679

b = 0 .1995708 .2001485 .1998515 .2004510
b = -1 .1995723 .2001598 .1997770 .2003781
c = 1.1 .1997689 .2003647 .1995545 .2001146

Table 5.8 summarises the 95% confidence limits for the value of the population qx , based on 

the observed values of the log-estimator, calculated using the same mortality assumption as 

that adopted in the population from which the simulated observations were derived, for the 

6 simulations where this estimator was calculated in this way. It will be remembered from 

Section 4.8, that when the Gompertz mortality distribution is assumed in the estimator, the 

log-estimator is identical with the one-parameter maximum likelihood estimator.

Table 5.8 The log-estimator: 95% confidence intervals for population qx

(Estimator uses the same mortality assumption as in the population).

Pop. distn. ASPSIM ASPMMSIM
parameter Lower limit Upper limit Lower limit Upper limit

b = 2 .1999445 .2005161 ASPMMSIM does not
b = 1 .1996064 .2002022 calculate the log-estimator

oII .1995708 .2001485 for the rect. hyper, dist.
b = -1 .1995781 .2001645
c =  1.1 .1997689 .2003647 .1995545 .2001146

Table 5.9 summarises the 95% confidence limits for the value of the population qx , based on 

the observed values of the time-count estimator, calculated using the same mortality 

assumption as that adopted in the population from which the simulated observations were 

derived, for the 9 simulations where this estimator was calculated in this way.
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Table 5.9 The time-count estimator: 95% confidence intervals for population 

(Estimator uses the same mortality assumption as in the population).

Pop. distn. ASPSIM ASPMMSIM

parameter Lower limit Upper limit Lower limit Upper limit

b = 2 .1999443 .2005310

b = 1 .1996106 .2002099 .1999279 .2004906
b = 0 .1995708 .2001485 .1998515 .2004510
b = -1 .1995819 .2001706 .1997758 .2003848
c = 1.1 .1997669 .2003612 .1995608 .2001197

It will be seen that, in every case, the population value of qx = 0.2 falls satisfactorily within 

each confidence interval. Again if any of these estimators are subject to bias in the 

circumstances simulated here, such bias does not appear to be of a sufficient magnitude to 

be apparent compared with the effect of the random fluctuations.

5.23 Comparison of mortality rate estimators which generally require assumption of the 

population one-parameter mortality distribution

When Tables 5.6, 5.7, 5.8 and 5.9 are studied, one gains the impression that the values 

taken by the various estimators concerned are very similar, when the estimators adopt the 

same one-parameter mortality assumption as that applicable in the population. This 

impression is confirmed in Tables 5.10 and 5.11 which compare the average values of the 

estimators, and also the product limit estimator which does not require a mortality 

assumption. The estimators shown are the product limit estimator (“pie”), the conventional 

estimator (“Conv”), the implication-B estimator (“ImpB”), the maximum likelihood 

estimator (“mle”), the log-estimator (“log”), the time-count estimator (“Time”) and the 

method of moments estimator (“Mom”).

It is seen that all the estimators which require an explicit mortality assumption generally 

have very similar average observed values and in fact this also tends to be the case for 

observed values in single runs from the 500 constituting a simulation study.

It is especially interesting to note the close similarity between the values of the conventional 

estimator and the maximum likelihood estimator, in view of the comments in Hoem (1984) 

which are critical of the conventional approach but favourable to the maximum likelihood 

approach.
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Table 5.10 ASPSIM : Comparison of the averaged observed values of estimators 

(If needed, the mortality assumption is same as in the population).

P ara pie Conv Im pB mle log Time

b =  2 .2002003 .2002258 .2002303 .2002207 .2002303 .2002376
b = 1 .1999971 .1999002 .1998990 .1999002 .1999043 .1999102

b = 0 .1999001 .1998666 .1998642 .1998596 .1998596 .1998596

b = -1 .1998418 .1998762 .1998741 .1998660 .1998713 .1998762
c =  1.1 .2000429 .2000730 .2000789 .2000668 .2000668 .2000641

Table 5.11 ASPMMSIM : Comparison of the averaged observed values of estimators 

(If needed, the mortality assumption is same as in the population).

Para pie Mom Conv ImpB mle Time

b =  1 .2001644 .2001887 .2001892 .2001860 .2001892 .2002093

b = 0 .2001527 .2001428 .2001443 .2001374 .2001512 .2001512
b = -1 .2001172 .2000702 .2000803 .2000775 .2000776 .2000803
c =  1.1 .1998566 .1998304 .1998216 .1998247 .1998346 .1998403

The greatest differences between estimators appears to arise between the product limit 

estimator on the one hand and all the other estimators on the other. Of course it has to be 

born in mind that, due to random fluctuations, the observed data may not be perfectly 

representative of the mortality distribution underlying the population so that the estimators 

which use the mortality assumption may estimate values of the population rate of qx which 

are marginally biased for this reason.

The most compelling conclusion arising from these figures appears to be that, if one is 

confident of making a reasonably accurate mortality assumption, there seems little to choose 

between any of the estimators requiring a mortality assumption, which are considered in 

Tables 5.10 and 5.11.

Tables 5.12 and 5.13 show the estimated standard deviations of single observed values of the 

estimators considered in Tables 5.10 and 5.11 . The feature which appears most striking is 

that the estimated standard deviation of the product limit estimator is greater than the 

estimated standard deviation of each of the other estimators in 42 out of 45 possible 

comparisons.
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Table 5.12 ASPSIM: Estimated standard deviations of single observed values of estimators

(If needed, the mortality assumption Is same as in the population).

Para pie Conv ImpB mle log Time

b = 2 .0033495 .0031801 .0031951 .0031891 .0031958 .0032798
b = 1 .0033918 .0033168 .0033267 .0033168 .0033305 .0033498

b = 0 .0033094 .0032429 .0032401 .0032295 .0032295 .0032295
b = -1 .0033741 .0032909 .0032915 .0032840 .0032781 .0032909
c = 1.1 .0033591 .0033454 .0033470 .0033309 .0033309 .0033220

Table 5.13 ASPMMSIM: Estimated standard deviations of single observed values of estimators 

(If needed, the mortality assumption is same as in the population).

Para pie Mom Conv ImpB mle Time

b = 1 .0032442 .0031250 .0031164 .0031230 .0031164 .0031459

oII .0034677 .0033561 .0033437 .0033444 .0033516 .0033516
b = -1 .0034726 .0034018 .0034041 .0034070 .0033604 .0034041
c = 1.1 .0031362 .0031390 .0031525 .0031480 .0031309 .0031244

The estimated standard deviations of the other estimators are generally quite similar to each 

other and usually the estimated standard deviation of the product limit estimator can be 

seen to be greater by an unambiguous margin, although the distinction is least pronounced 

among the estimators that assume the Gompertz law with c = 1.1, most notably in the 

results of the simulation using ASPMMSIM with c = 1.1, where the estimated standard 

deviations of the method of moments, conventional and implication-B estimators are 

slightly higher than that of the product limit estimator. In the corresponding simulation 

from ASPSIM, the estimated standard deviation of the product limit estimator is the largest 

of those considered, but by a relatively modest margin.

Intuitively one might expect the product limit estimator to have a larger standard deviation 

than those estimators which assume a mortality law, because the latter use additional 

information. Of course the additional information will only benefit the estimators which are 

rivals to the product limit estimator so long as the information is correct. If the assumed 

mortality law were not correct, bias would be likely to be introduced into those estimators 

making the incorrect assumption.
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A consequence of the results, when the Gompertz law with c = 1.1 applies, may be that the 

product limit estimator should be regarded as the best estimator to use out of the selection 

considered in Tables 5.10-5.13, assuming its computational requirements can be met, since 

if the assumed law does indeed apply, giving its rivals additional information, the product 

limit estimator still appears to perform similarly to its rivals and if the assumed law does 

not apply, the product limit estimator will continue to give virtually unbiased results, 

whereas its rivals will be likely to produce values which are biased.

Of course this conclusion is drawn from observations based on a single set of population and 

sample parameters, and it would be necessary for the effects, if any, on these conclusions of 

varying the population and sample parameters to be investigated.

The possible biasing effect of making wrong mortality assumptions in estimators is discussed 

in Section 5.27, and also the asymptotic effect of wrong mortality assumptions was 

considered in Section 4.14 .

5.24 The maximum likelihood estimator, where the mortality distribution parameter is not 

assumed

As has been explained, the method of maximum likelihood was also applied to estimate 

both parameters, a and b, where the rectangular hyperbolic mortality distribution was 

assumed to apply, and both parameters, and c, where the Gompertz mortality 

distribution was assumed to apply.

In Table 5.14 the average estimated value of the population qx obtained in this way 

assuming the rectangular hyperbolic distribution, “ML H”, and the corresponding value 

assuming the Gompertz mortality distribution, “ML G”, are compared with the value of the 

product limit estimator for each of the 12 simulations.

The comparison is interesting as the three estimators make either no mortality assumption 

(product limit estimator) or a minimal assumption as to the general shape of the mortality 

distribution (ML H and ML G).

Table 5.14 shows that the average observed values of the three estimators are similar. 

However it is quickly apparent that the average observed value of the ML II estimator is 

greater than the average observed value of the ML G estimator for all the simulations.

Further the difference between these values can be seen to follow a pattern in which the 

difference between the two appears to fall to a minimum (for the distribution parameters
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tabulated) when b =  0, ie when the force of mortality is constant and the two mortality 

distributions take the same shape. There is a reassuring similarity in the “differences” 

between ML H and ML G produced by the ASPSIM and ASPMMSIM programs.

Table 5.14 Comparison of the two-parameter maximum likelihood estimators 

and the product limit estimator

Program Distn

para

ASPSIM b = 2

ASPMMSIM b = 2

ASPSIM b = 1

ASPMMSIM b = 1

ASPSIM b =  0

ASPMMSIM b = 0

ASPSIM b = -1

ASPMMSIM b =  -1

ASPSIM c = 1.1

ASPMMSIM c = 1.1

ASPSIM c = 1.05

ASPMMSIM c = 1.05

Average

product mle

limit est ML H

.2002003 .2002398

.1998565 .1999311

.1999971 .1999161

.2001644 .2002110

.1999001 .1998702

.2001527 .2001689

.1998418 .1998782

.2001172 .2000893

.2000429 .2000870

.1998566 .1998616

.2002401 .2002021

.2000234 .2000854

.2000328 .2000451

mle difference:

ML G H minus G

.2000295 .0002102

.1997198 .0002113

.1998588 .0000573

.2001542 .0000568

.1998620 .0000082

.2001608 .0000081

.1998187 .0000595

.2000280 .0000613

.2000705 .0000165

.1998463 .0000153

.2001921 .0000100

.2000749 .0000105

.1999846

It is tempting to hypothesise that the value of the ML H estimator is always greater than 

the ML G estimator. However a small number of individual runs when b = 0 appear to 

show the value of ML H as less than that of ML G. This is an area where further research 

could be undertaken to confirm that this is a genuine effect.

However it does appear that it can be stated with some confidence that the ML G estimator 

of q* is more negatively biased or less positively biased than the ML G estimator of qx .

The averages of values of the three tabulated estimators over the 12 simulations provides a 

very crude comparison which shows an average for the product limit estimator which lies 

between the average values of the ML H and ML G estimators; from these figures, the 

value of the product limit estimator appears to lie much closer to the ML II value than to 

the ML G value, the averaged product limit estimator value splitting the distance between
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the average ML H value and the average ML G value in the ratio 1:4.

Given that the product limit estimator is effectively unbiased here, it may be the case that 

the ML G provides a negatively biased estimator of qx . Certainly if the ML G estimator is 

negatively biased relative to the ML H estimator, then obviously one or both of these 

estimators must be biased in some way. However it is true that in three of the simulations 

the average observed value of the ML G estimator was greater than that of the product 

limit estimator.

It is to be noted that the three simulations, for which the average observed value of ML G is 

greater than the average observed value of the product limit estimator, all assume a 

Gompertz population distribution (including c = 1.0, ie when b = 0) and represent more 

moderate shapes of the curve (more moderate than for b = -1, 1, 2).

If we consider the average values of the three tabulated estimators over the six simulations 

for which c = 1.0, 1.05 and 1.1 in the population, we obtain the following averages:

Table 5.15 Observed averages of product limit estimator, ML H and ML G for

c =  1.0, 1.05 and 1.1

Average pie = .2000360 

Average ML H = .2000459 

Average ML G = .2000344

Here it can be seen that the average ML G value is very close to the average product limit 

estimator value, whereas the average ML H value is relatively higher. In fact the average 

product limit estimator value splits the distance between the average ML H value and the 

average ML G value in the ratio 6:1.

A different situation is found if we consider the average values of the three tabulated 

estimators over the six simulations for which b = -1, 1 and 2 in the population; we obtain 

the averages shown in Table 5.16.

It is seen that the average product limit estimator and ML H values are of a similar order as 

previously but the average ML G value is markedly lower than the average ML G value 

calculated for the six simulations using c = 1.0, 1.05 and 1.1 .
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Table 5.16 Observed averages of product limit estimator, ML H and ML G

for b =  -1, 1 and 2

Average pie = .2000296 

Average ML II = .2000443 

Average ML G = .1999348

The hypothesis that is now suggested by these results is that:

(a) The ML H estimator might have a slight positive bias, although the apparent effect is 

of such modest proportions that it could simply be a random effect in the data and 

further research would be advisable to establish whether the effect is genuine. If 

positive bias is genuinely present, the simulations suggest that it may not be greatly 

affected by the distribution shape parameter applicable in the population, at least 

within the range considered in the simulations.

(b) The ML G estimator may have negligible bias when used in populations with c of the 

order 1.0, 1.05 and 1.1 , but a distinctly negative bias when used in rectangular 

hyperbolic populations with b of the order -1, 1 and 2. What is not clear is whether 

the distinction may be ascribed to the fact that, in the first group of populations, the 

population mortality distribution is Gompertz and, in the second group of 

populations, the population mortality distribution is rectangular hyperbolic, or to the 

fact that the population mortality distribution is simply more extreme in the second 

group of populations than in the first.

Obviously further research could help resolve these speculations.

Tables 5.17 and 5.18 give the 95% confidence limits for the values of qx given by the ML H 

and ML G estimators in the 12 simulations. Despite the probable existence of some bias, 

the population value of qx = 0.2 falls within all these confidence intervals although, in the 

ASPMMSIM simulation with b = 2, it is a very close run thing for ML G as the upper limit 

is .2000008! This again indicates that further evidence is necessary in order to resolve the 

earlier speculations about possible bias in these estimators of qx .

In fact the averaged product limit estim ator value now splits the distance between the

average ML H value and the average ML G value approximately in the ratio 1:6 .
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Table 5.17 The two-parameter maximum likelihood estimator, 

assuming the rectangular hyperbolic mortality distribution (ML H): 

95% confidence intervals for population q*

Pop. distn. ASPSIM ASPMMSIM
parameter Lower limit Upper limit Lower limit Upper limit

b = 2 .1999537 .2005260 .1996486 .2002136
b =  1 .1996178 .2002143 .1999312 .2004908
b = 0 .1995801 .2001604 .1998691 .2004686
b = -1 .1995859 .2001705 .1997887 .2003899
c = 1.1 .1997896 .2003845 .1995817 .2001415
c = 1.05 .1999026 .2005015 .1997912 .2003797

Table 5.18 The two-parameter maximum likelihood estimator, 

assuming the Gompertz mortality distribution (ML G):

95% confidence intervals for population qx

Pop. distn. ASPSIM ASPMMSIM
parameter Lower limit Upper limit Lower limit Upper limit

b =  2 .1997447 .2003143 .1994388 .2000008
b = 1 .1995600 .2001576 .1998740 .2004343
b = 0 .1995718 .2001522 .1998611 .2004606
b = -1 .1995256 .2001119 .1997272 .2003288
c = 1.1 .1997733 .2003678 .1995667 .2001258
c = 1.05 .1998925 .2004917 .1997813 .2003686

An interesting feature becomes apparent if we compare the values of qx given by the

one-parameter maximum likelihood estimator and the two-parameter maximum likelihood 

estimator, where the mortality distribution assumed (rectangular hyperbolic or Gompertz) is 

that applicable in the population, for the nine simulations where both the one-parameter 

and two parameter maximum likelihood estimators have been determined. These values are 

given in Table 5.19, together also with values of the product limit estimator for comparative 

purposes.

-  210 -



Table 5.19 Comparison of the two-parameter and one-parameter 

maximum likelihood estimators where the assumed mortality law 

corresponds to that applying in the population 

(also showing values of the product limit estimator)

Program Distn product mle (a) mle (/?) difference:
para limit est ML H or ML G one-para a  minus /?

ASPSIM b = 2 .2002003 .2002398 (ML H) .2002207 .0000191
ASPSIM b = 1 .1999971 .1999161 (ML H) .1999002 .0000159
ASPMMSIM b = 1 .2001644 .2002110 (ML H) .2001892 .0000218
ASPSIM b = 0 .1999001 .1998702 (ML H) .1998596 .0000106
ASPMMSIM b = 0 .2001527 .2001689 (ML H) .2001512 .0000177
ASPSIM b = -1 .1998418 .1998782 (ML H) .1998660 .0000122
ASPMMSIM b = -1 .2001172 .2000893 (ML H) .2000776 .0000117
ASPSIM c = 1.1 .2000429 .2000705 (ML G) .2000668 .0000037
ASPMMSIM c = 1.1 .1998566 .1998463 (ML G) .1998346 .0000117

Average (excl. c = 1.1) .2000534 .2000534 .2000378 .0000156

It is seen that the values of the one-parameter and corresponding two-parameter maximum 

likelihood estimators are very close, but that in each of the nine simulations, the average 

value of the one-parameter maximum likelihood estimator is lower than that of the 

two-parameter maximum likelihood estimator.

To provide an unsophisticated comparison, Table 5.19 also shows averages, over the seven 

simulations in the table which use the rectangular hyperbolic distribution, of the estimates 

of the population value of qx given by the one-parameter and two-parameter maximum 

likelihood estimators, and of the product limit estimator.

It will be seen that the average values, over the seven simulations, of the two-parameter 

maximum likelihood estimator and the product limit estimator are actually the same and 

that the average value of the two-parameter maximum likelihood estimator is greater than 

that of the one-parameter maximum likelihood estimator by .0000156 .

The fact that for these seven simulations the average value of the ML H estimator equals 

the average value of the unbiased product limit estimator does nothing to strengthen the 

previous tentative speculation, based on Tables 5.15 and 5.16, that the ML H may have a 

very slight positive bias.
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However the fact that there seems to be a consistent tendency for the average value of the 

estimate given by the two-parameter maximum likelihood estimator to be very slightly 

greater than that given by the corresponding one-parameter maximum likelihood estimator 

is interesting, since it suggests the presence of a small amount of bias somewhere in the 

calculation of the two-parameter maximum likelihood estimator and/or the calculation of 

the one-parameter maximum likelihood estimator. However to keep matters in perspective, 

it should be noted that the difference between the values of the two estimators appears to be 

less than 0.01% of the value of qx of 0.2 . Again, this possible bias is a feature which could 

be given further attention in subsequent research.

It is worth pointing out that, in the rectangular hyperbolic calculations, the values of the 

parameters a and b which are calculated, when the two-parameter maximum likelihood 

estimator is being determined, are those values for which the one-parameter maximum 

likelihood estimator and the log-estimator give the same value of qx (being the values of the 

one-parameter maximum likelihood estimator and log-estimator given by equations (3.86) 

and (3.85) respectively in Section 3.16 for the appropriate value of b).

If the average value of the two-parameter maximum likelihood estimator differs slightly 

from that obtained when b is assumed at the value applicable in the population, this could 

suggest that the estimate of b obtained in the two-parameter calculation may be slightly 

biased, or alternatively, it may be the case that any random fluctuation in the estimated 

value of b, whether the fluctuation is positive or negative, has a tendency in either case to 

lead to an increase in the value of qx estimated by the two-parameter maximum likelihood 

estimator.

Table 5.20 shows 95% confidence intervals for the mortality distribution parameters b or c. 

It can be seen that the population value of the parameter b for the rectangular hyperbolic 

mortality distribution appears to lie satisfactorily within the confidence interval in each 

case.

When we consider the population value of the parameter c for the Gompertz mortality 

distribution, we again find that it falls within the 95% confidence intervals, but there is a 

tendency for the value to lie towards an end of the confidence interval.

For both the simulations using the population value c = 1.05, this population value of c lies 

towards the lower limit of the interval, as is also the case for c =  1.1 where the ASPSIM 

program was used. In contrast however the population value of c lies, quite unambiguously, 

closer to the upper limit of the interval where the ASPMMSIM program was used with an 

assumed population value of c = 1.1 .
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where a two-parameter maximum likelihood estimator is used

Table 5.20 95% confidence intervals for the distribution param eter b or c

Pop. distn. ASPSIM ASPMMSIM
parameter Lower limit Upper limit Lower limit Upper limit

b = 2 1.96319 2.02283 1.97374 2.03032
b = 1 0.96553 1.02262 0.95697 1.01223
b = 0 -0.02564 0.02960 -0.04755 0.01030
b =  -1 -1.01845 -0.96391 -1.02729 -0.97178
c = 1.1 1.09834 1.11188 1.09060 1.10431
c = 1.05 1.04853 1.06153 1.04804 1.06183

To show more clearly these effects, Table 5.21 gives the distances of the upper and lower

limits of each confidence interval from the population value of the mortality distribution 

parameter.

Table 5.21 Position of the 95% confidence limits 

relative to the population distribution parameter b or c 

where a two-parameter maximum likelihood estimator is used

Pop. distn. ASPSIM ASPMMSIM
parameter Lower limit Upper limit Lower limit Upper limit

b = 2 -0.03681 +0.02283 -0.02626 +0.03032
b =  1 -0.03447 +0.02262 -0.04303 +0.01223
b = 0 -0.02564 +0.02960 -0.04755 +0.01030
b = -1 -0.01845 +0.03609 -0.02729 +0.02822
c = 1.1 -0.00166 +0.01188 -0.00940 +0.00431
c = 1.05 -0.00147 +0.01153 -0.00196 +0.01183

Examination of the data printed out for each individual repetition of the simulation runs 

using the Gompertz population law does not give any indication of any program 

malfunction.

Intuitively, one might expect that the estimate of c would be positively biased since it might 

be anticipated that half the estimated values of c would be greater than 1.1 in a range from 

1.1 up to oo, while the other half of the estimated values of c would be less than 1.1,

-  213 -



occupying a range running from 1.1 down to 0.0, the compression of the second range 

suggesting that the average estimated value over both ranges might be positively biased.

A positive bias would mean that the population value of c = 1.1 would lie closer to the 

lower limit of the confidence interval, because the interval would be displaced to reflect the 

positive bias of the observations on which it is based.

Despite the apparently contrary indication provided by one simulation, the broad indication 

from the simulation outputs seems to be that the estimate of c might be subject to a 

positive bias. Obviously this is another area which could be clarified by further research.

It will be recalled that the attractive properties of maximum likelihood estimators do not in 

general include unbiasedness.

Table 5.22 gives an indication of the effectiveness of the approximate relationships (3.107) 

and (3.108) linking b and c. For each of the 12 simulations, it shows the distribution 

parameter b or c assumed to apply in the population, the value of the alternative parameter 

c or b which is approximately equivalent to this according to equations (3.107) and (3.108), 

and the values of b and c estimated by the maximum likelihood estimators of these 

parameters. It is seen that the values given by the approximate relationships agree well 

with the values estimated from the simulated data.

Table 5.22 Effectiveness of the approximate formula« linking b and c

Program Distn Approx value mie mie

para of other para of b of c

ASPSIM b = 2 c = 1.56250 1.99301 1.56950

ASPMMSIM b = 2 c = 1.56250 2.00203 1.57152

ASPSIM b = 1 c = 1.25000 .99407 1.25140
ASPMMSIM b = 1 c = 1.25000 .98460 1.24993
ASPSIM b = 0 c = 1.00000 .00198 1.00515
ASPMMSIM b = 0 c = 1.00000 -.01862 1.00040
ASPSIM b = -1 c = .80000 -.99118 .80368
ASPMMSIM b = -1 c = .80000 -.99954 .80241
ASPSIM c = 1.1 b = .42715 .43215 1.10511
ASPMMSIM c = 1.1 b = .42715 .40015 1.09745
ASPSIM c = 1.05 b = .21865 .22203 1.05503
ASPMMSIM c = 1.05 b = .21865 .22018 1.05494
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Table 5.23 shows the estimated standard deviations of single observed values of the 

two-parameter maximum likelihood estimators, the one-parameter maximum likelihood 

estimator and the product limit estimator.

Intuitively, one might expect that the largest standard deviations would apply to the 

product limit estimator since this estimator uses no extra information about the nature of 

the underlying mortality distribution and that the smallest standard deviations would apply 

to the one-parameter maximum likelihood estimator since this estimator assumes not only 

the form of the mortality distribution, but also the value of one distribution parameter. 

Further one might expect that the standard deviation applying to the two-parameter 

maximum likelihood estimators would lie in-between, since these assume the form of the 

mortality distribution, but not the value of any distribution parameters.

Also one might perhaps hypothesise that the standard deviation of the two-parameter 

maximum likelihood estimator which assumes the Gompertz distribution, when the 

rectangular hyperbolic distribution applies in the population, would be greater than that of 

the two-parameter maximum likelihood estimator which assumes the rectangular hyperbolic 

distribution, and vice versa.

Table 5.23 Estimated standard deviations of single observed values of 

the two-parameter maximum likelihood estimators, 

the one-parameter maximum likelihood estimator and the product limit estimator 

(If needed, the mortality assumption is same as in the population).

Program Distn product

para limit est

ASPSIM b = 2 .0033495

ASPMMSIM b = 2 .0032227

ASPSIM b = 1 .0033918
ASPMMSIM b = 1 .0032442

ASPSIM b = 0 .0033094

ASPMMSIM b = 0 .0034677

ASPSIM b = -1 .0033741

ASPMMSIM b = -1 .0034726
ASPSIM c =  1.1 .0033591

ASPMMSIM c =  1.1 .0031362

ASPSIM c =  1.05 .0034309

ASPMMSIM c = 1.05 .0034279

mle mle mle

ML II ML G one-para

.0031991 .0031845 .0031891

.0031579 .0031417 (not calc)

.0033345 .0033401 .0033168

.0031285 .0031321 .0031164

.0032441 .0032447 .0032295

.0033512 .0033514 .0033516

.0032678 .0032776 .0032840

.0033605 .0033633 .0033604

.0033254 .0033237 .0033309

.0031294 .0031258 .0031309

.0033483 .0033494 (not calc)

.0032898 .0032829 (not calc)
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The results of the simulations, as summarised in Table 5.23, only partially support these 

intuitive anticipations.

In each of the 12 simulations, it is true that the standard deviation of the product limit 

estimator is the largest of the four estimators tabulated. However in the case of the 

one-parameter maximum likelihood estimator, this estimator has the smallest standard 

deviation in only 4 of the 9 simulations where the one-parameter maximum likelihood 

estimator has been determined, has the largest standard deviation after the product limit 

estimator in 3 simulations, is sandwiched between the standard deviation of the ML H and 

ML G in one case and features in a virtual dead-heat between the ML H, ML G and one- 

parameter maximum likelihood estimator in the ninth case, one of the simulations for which 

b = 0 .

It will be seen that the two-parameter maximum likelihood estimator which assumes the 

correct form of the mortality distribution in the population has a smaller standard deviation 

than the two-parameter maximum likelihood estimator which assumes the wrong form of 

the mortality distribution in 7 out of 10 relevant simulations, the two simulations for which 

b = 0 (ie c = 1) in the population having been excluded.

We may be basing our observations of these standard deviations on a sample which is too 

limited in size for the purpose, so that random effects are very dominant. Again perhaps 

further investigations might be undertaken, and practical considerations might dictate the 

use of faster computing equipment to allow a major increase in the volume of the 

simulations.

In Table V of each of the simulation printouts shown in Appendix II, the many values of 

the average observed qx from Table I of the printouts are taken and the average observed 

value of the “ML H” or the “ML G” maximum likelihood estimator is deducted from each 

of them; the “ML H” or “ML G” value is used according to whether the simulation had 

assumed that the underlying population was subject to the rectangular hyperbolic mortality 

distribution or the Gompertz mortality distribution. However, with regard to the 

parameters b and c relating to the “ML H” and “ML G” estimators, the figures shown are 

simply repetitions of the values of the maximum likelihood estimators of the parameters.

As already stated in Section 5.10, the purpose of this was to give a strong visual impression 

of the degree to which the two-parameter maximum likelihood estimator concerned had 

agreed in its average value with the estimators in which the correct mortality distribution 

parameter had been assumed. Examination of Table V in the printouts confirms that the 

two-parameter maximum likelihood estimators have been very effective in estimating the 

population value of qx without the assumption of a distribution parameter, and the
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presentation of the results in Table V gives an effective visual impression of how the 

different estimates of qx compare.

5.25 Examination of n-estimators

As explained in Section 4.27, the n-estimators were an embryonic form of the g-estimators 

in which the g-functions were limited to functions of the form:

(px^ ) n for any value of n.

As previously explained, the n-estimators were given especial attention because it had been 

noted that, when the rectangular hyperbolic mortality distribution with an assumed value of 

b applied, a number of important estimators were obtained for particular values of n. It 

was subsequently realised that the g-function could be generalised so that virtually any 

estimator assuming a parametric mortality law could be produced.

The simulation programs were developed at a stage of the research when n-estimators were 

receiving maximum attention, before the generalisation to g-estimators had occurred, and 

therefore n-estimators featured heavily in the outputs of programs ASP, ASPMOM and 

ASPSIM. Programs ASP, ASPMOM and ASPSIM were designed to calculate n-estimators 

for n equal to -2, -1, 0, 1, 2 and 3. Programs ASP and ASPMOM also offer, among other 

things, the option to calculate this range of n-estimators for any assumed value of the 

parameter b, and further to calculate an n-estimator for any value of n and assumed value 

of b.

Table 5.24 shows average values of n-estimators determined from 4 simulations in which the 

population is assumed to be subject to the rectangular hyperbolic mortality distribution 

with b equal to 2, 1, 0 and -1. The n-estimators shown are for n equal to -2, -1, 0, 1, 2 and 

3; the n-estimators shown incorporate the same mortality assumption as applies in the 

population. These results have been obtained using the program ASPSIM. For comparative 

purposes, average values of the product limit estimator and two-parameter maximum 

likelihood estimator are also shown, together with the average maximum likelihood estimate 

of the parameter b.

It must be stressed that the discussion in this Section considers only the case of the 

rectangular hyperbolic mortality distribution for both the population mortality and the 

mortality assumption in the estimator. Obviously estimators with the g-function in the 

form:
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g(M ) =  (/¿x + t)n

can be created assuming the Gompertz mortality distribution, but it is found that the one- 

parameter maximum likelihood estimator does not correspond to n =  1 as for the 

rectangular hyperbolic mortality distribution, but instead it corresponds to n = 0 and it 

coincides with the log-estimator.

In the printouts, the Gompertz one-parameter maximum likelihood estimator is shown in 

the line labelled “MLE” or “Max Likelihood” but is not an n-estimator with n = 1 as is the 

case for the other estimators shown in the same line (which assume the rectangular 

hyperbolic mortality distribution).

Table 5.24 Program ASPSIM: Average observed values of n-estimators, 

with other estimators for comparison 

(n-estimators use the same mortality assumption as in the population).

Mortality assumption in the population

n-estimator b = 2 b = 1 b = 0 b = -1

n = -2 .2002432 .1999178 .1998596 .1998811
n =  -1 (Time) .2002376 .1999102 .1998596 .1998762

n = 0 (log) .2002303 .1999043 .1998596 .1998713
n = 1 (mle) .2002207 .1999002 .1998596 .1998660
n =  2 .2002094 .1998977 .1998596 .1998607
n =  3 .2001960 .1998969 .1998596 .1998548

PL .2002003 .1999971 .1999001 .1998418
ML H .2002398 .1999161 .1998702 .1998782
est. of b 1.99301 .99407 .00198 -.99118

As can be verified from the simulation printouts (for program ASPSIM) reproduced in 

Appendix II, the 95% confidence intervals based on these estimators, and their 

corresponding estimated standard deviations, all contain the population value of qx for 

every estimator summarised in Table 5.24 . Therefore all the n-estimators shown in Table 

5.24 appear to be satisfactory if measured by this criterion.

Three of the simulations, for b = 2, b = 1 and b = -1, appear to indicate that the average
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values of n-estimators appear to decrease as n increases over the range of n considered. For 

the case when b = 0, all the n-estimators shown give the same value because the g-function 

is constant over the year of age for all values of n.

The apparent tendency for the average value of n-estimators generally to decrease as n 

increases is perhaps another feature which would require confirmation through further 

investigation and the possibility must be borne in mind that the feature could be related to 

the particular assumptions common to all the simulations reported in this thesis.

It is interesting to note that Table 5.11 shows 3 further simulations assuming the 

rectangular hyperbolic mortality distribution in the population (from program ASPMMSIM 

which does not compute a full range of n-estimators) which are also consistent with the 

apparent tendency for the average value of n-estimators to decrease as n increases. This is 

seen if one examines the values shown in Table 5.11 for the time-count estimator (n = -l), 

the maximum likelihood estimator (n = 1) and the conventional estimator (n = 1/b).

If this apparent tendency is a genuine feature, it does imply the presence of a small amount 

of bias in at least some of the n-estimators.

When the values of n-estimators as calculated for single runs are considered, and not values 

averaged over 500 runs, some interesting patterns are seen. (For reasons of brevity, 

printouts of single runs have not been included in this thesis.) If, in single runs, the 

n-estimators are calculated assuming for the parameter b the value estimated by maximum 

likelihood, it is found that the log-estimator (n-estimator with n = 0) and the one- 

parameter maximum likelihood estimator (n-estimator with n = 1) give identical values 

which is theoretically correct since this is the condition for determining the two-parameter 

maximum likelihood estimator, which is based on the maximum likelihood estimate of b. 

This has previously been discussed in Section 5.24 .

When, in single runs, one goes on to consider n equal to -2, -1, 2 and 3, it appears that, in 

roughly half the cases, the values of the n-estimators when n = 0 and n = 1 are minimum 

values, and that values increase as we go from n = 0 to n = -1 to n = -2, and from n = 1 to 

n = 2 to n =  3. In nearly all the other cases, this pattern appears to be inverted and the 

values for n = 0 and n = 1 are maximum values. However at least one case has been 

observed in which the values of the n-estimators increased from n = -2 to n = 0 and again 

from n = 1 to n = 3, although in the latter range the increase was the minimum 

measurable. A methodical study of this behaviour has not been undertaken, so that the 

possibility also of the values decreasing from n =  -2 to n = 0 and again from n = 1 to n = 3 

cannot be ruled out.
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Thus it seems that the apparent tendency for the average value of n-estimators to decrease 

as n increases is not a reflection of the general behaviour of n-estimators in individual sets of 

data, as n increases, but is the net result of averaging the fluctuations over the many runs.

Table 5.25 shows estimated standard deviations of single observed values of n-estimators 

determined from the same 4 simulations considered in Table 5.24 in which the population is 

assumed to be subject to the rectangular hyperbolic mortality distribution with b equal to 2, 

1, 0 and -1. As before, the n-estimators shown are for n equal to -2, -1, 0, 1,2 and 3; again 

the n-estimators shown incorporate the same mortality assumption as applies in the 

population.

Table 5.25 Program ASPSIM: Estimated standard deviations of single observed values 

of n-estimators, with other estimators for comparison 

(n-estimators use the same mortality assumption as in the population).

Mortality assumption in the population

n-estimator b = 2 b = 1 b = 0 b = -1

n = -2 .0034197 .0033977 .0032295 .0033110
n = -1 (Time) .0032798 .0033498 .0032295 .0032909
n = 0 (log) .0031958 .0033305 .0032295 .0032781
n = 1 (mle) .0031891 .0033168 .0032295 .0032840
n = 2 .0032315 .0033181 .0032295 .0032872
n = 3 .0033251 .0033280 .0032295 .0033226

PL .0033495 .0033918 .0033094 .0033741
ML H .0031991 .0033345 .0032441 .0032678
est. of b .33341 .31914 .30881 .30492

It is seen that the estimated standard deviation of the product limit estimator is the largest 

in each simulation except for the n-estimator with n = 2 in the simulations where the 

population is subject to mortality with b = 2 and b = 1 . It is also seen that, apart from 

the simulation where the “constant p” mortality law applies in the population, the standard 

deviations of the n-estimators appear to pass through a minimum value as n increases from 

-2 to 3. In two cases the minimum occurs for the one-parameter maximum likelihood 

estimator (n-estimator with n = 1) and in the other case it occurs for the log-estimator 

(n-estimator with n =  0).
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It is interesting also to note how reasonably the estimated standard deviation of the 

two-parameter maximum likelihood estimator compares with the estimated standard 

deviations of the n-estimators, which unlike the two-parameter maximum likelihood 

estimator assume a value for one mortality distribution parameter.

5.26 Comparison of some estimators using fixed mortality assumptions

The application of traditional exposed-to-risk theory involves the estimation of qx by 

calculating the conventional estimator always using the Balducci mortality assumption. For 

this of course, we calculate qx using formulae involving the initial exposed-to-risk, as given 

for example by equation (1.12).

Table 5.26 shows, for the 12 simulations, the 95% confidence limits for the population qx 

given by the “Balducci” conventional estimator.

Table 5.26 The “Balducci” conventional estimator: 

95% confidence intervals for population qx

Pop. distn. ASPSIM ASPMMSIM
parameter Lower limit Upper limit Lower limit Upper limit

b =  2 .2024408 .2030248 .2021294 .2027068
b = 1 .2014789 .2020843 .2017920 .2023605
b = 0 .2006245 .2012109 .2008948 .2015021
b = -1 .1995819 .2001706 .1997758 .2003848
c = 1.1 .2012137 .2018205 .2009778 .2015518
c = 1.05 .2011513 .2017599 .2010345 .2016317

It will be seen that the population value of qx only falls within the confidence intervals in 2 

out of the 12 simulations, namely where the Balducci mortality assumption applies in the 

underlying population.

For all the other simulations (in which the population force of mortality had a more positive 

gradient with increasing age), the estimated value of qx is greater than the true value.

This suggests that, in these circumstances, the “Balducci” conventional estimator is 

positively biased.
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This is contrary to the impression given in London (1988) where the “actuarial estimator” is 

defined by the “full data” formula (London 1988 page 128), which is of course the Balducci 

conventional estimator, and is subsequently stated to be negatively biased (London 1988 

page 129) when “enders” are involved. In discussing the bias and consistency of this 

estimator, London refers to Breslow and Crowley (1974) who did not in fact consider the full 

data actuarial estimator (nor a model which admits the possibility that lives may enter 

observation after the beginning of the year of age) and to Broffitt (1984) whose simulation 

results involving the full data actuarial estimator but excluding the possibility that lives may 

enter observation after the beginning of the year of age are reasonably consistent with a 

negative bias. Broffitt considers just two population distributions: either a “level deaths” 

mortality distribution (associated with a similar censoring distribution) or a “constant pv 

mortality distribution (also associated with a similar censoring distribution).

Broffitt also considers a model in which lives can enter observation after the beginning of 

the year of age, but the results are reported in a form which does not appear to allow bias to 

be identified as negative or positive. London also implies that there are other references 

which would apparently confirm that the full data actuarial estimator is negatively biased, 

but does not specify these.

As commented in Section 1.15, it seems likely that the bias of an estimator will be affected 

by the values of all the parameters involved in defining the environment in which it is 

applied, including the parameters governing entry and withdrawal, so that it is probably not 

enough to simply state without qualification that an estimator is positively biased or 

negatively biased.

Hoem (1984) advocates the estimation of qx by applying the maximum likelihood estimator 

using the “constant p" assumption. This combination of criterion and mortality 

assumption leads of course to the familiar estimator for p involving the central exposed-to- 

risk as derived in Section 2.22 and as summarised later in this section in equation (5.3).

Table 5.27 shows, for the 12 simulations, the 95% confidence limits for the population qx 

given by the “constant p” maximum likelihood estimator.

It will be seen that the population value of qx falls within the confidence intervals for 8 out 

of the 12 simulations, the exceptions being the 2 simulations assuming a Balducci mortality 

distribution in the population, and one each of the simulations assuming population 

mortality with b = 1 (“level deaths”) and b = 2.
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Table 5.27 The “constant p ” maximum likelihood estimator:

95% confidence intervals for population qx

Pop. distn. ASPS1M ASPMMSIM

parameter Lower limit Upper limit Lower limit Upper limit

b = 2 .2001049 .2006730 .1997988 .2003577
b = 1 .1997951 .2003916 .2001078 .2006663

b = 0 .1995708 .2001485 .1998515 .2004510
b = -1 .1991585 .1997437 .1993544 .1999592
c = 1.1 .1998879 .2004810 .1996732 .2002330

c = 1.05 .1999527 .2005522 .1998394 .2004280

A better performance from the “constant p” maximum likelihood estimator compared with 

the Balducci conventional estimator might be expected, given that the mortality 

distribution assumed in the estimator is generally less remote from that actually applying in 

the simulated population.

However it may also be the case that the use of the maximum likelihood criterion gives an 

estimator which copes better in the presence of a different mortality distribution to that 

assumed in the estimator, than is the case if the implication-A criterion is used to create a 

conventional estimator. Some insight into this possibility might be gained by examining the 

performance of the conventional estimator which incorporates the “constant p” assumption 

and the maximum likelihood estimator which incorporates the Balducci assumption.

Table 5.28 shows, for the 12 simulations, the 95% confidence limits for the population qx 

given by the “constant p” conventional estimator. It will be recalled that the combination 

of this estimation method and mortality assumption leads to an equation for qx requiring 

an iterative solution, as set out for example in equation (1.28). (It should not be confused 

with the familiar estimator just considered, involving the central exposed-to-risk, which 

arises when the maximum likelihood method is used in combination with the “constant p” 

mortality assumption).

It is seen tha t the population value of qx falls within the confidence intervals for 4 out of

the 12 simulations, including the two simulations which assume a “constant p” m ortality

distribution in the population (b =  0).
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Table 5.28 The “constant p ” conventional estimator:

95% confidence intervals for population qx

Pop. distn. ASPSIM ASPMMSIM
parameter Lower limit Upper limit Lower limit Upper limit

b = 2 .2013824 .2019571 .2010737 .2016456
b = 1 .2004263 .2010240 .2007353 .2012974

cr II o .1995766 .2001567 .1998453 .2004434
b = -1 .1985417 .1991210 .1987303 .1993344
c = 1.1 .2001617 .2007613 .1999276 .2004931
c = 1.05 .2000969 .2007000 .1999821 .2005729

Table 5.29 shows, for the 12 simulations, the 95% confidence limits for the population qx 

given by the Balducci maximum likelihood estimator. This estimator also requires an 

iterative calculation, which can be achieved using equations (3.61) and (3.63) with b = -1 

inserted.

Table 5.29 The Balducci maximum likelihood estimator:

95% confidence intervals for population qx

Pop. distn. ASPSIM ASPMMSIM
parameter Lower limit Upper limit Lower limit Upper limit

b =  2 .1986417 .1992012 .1983379 .1988841
b = 1 .1989611 .1995502 .1992680 .1998227
b = 0 .1993486 .1999253 .1996415 .2002364
b =  -1 .1995723 .2001598 .1997770 .2003781
c = 1.1 .1993949 .1999817 .1992050 .1997580
c = 1.05 .1995945 .2001868 .1994800 .2000647

It is seen tha t the population value of qx falls within the confidence intervals for 5 out of

the 12 simulations, including the two simulations which assume a Balducci mortality

distribution in the population (b =  -1).
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These observations will now be summarised: when a conventional estimator is used, the 

population value of qx falls within the confidence intervals for 2 out of the 12 simulations if 

the Balducci mortality assumption is made and within the confidence intervals for 4 out of 

the 12 simulations if the “constant /r” mortality assumption is made; if a maximum 

likelihood estimator is used, the population value of qx falls within the confidence intervals 

for 5 out of the 12 simulations if the Balducci mortality assumption is made and within the 

confidence intervals for 8 out of the 12 simulations if the “constant ¡i" mortality assumption 

is made.

The apparent conclusion to be drawn from these simulations appears to be that, not only is 

a better performance obtained when the “constant p” assumption is made and not the 

Balducci assumption, as might be expected given that the mortality distribution assumed in 

the estimator will then be generally less remote from that actually applying in the 

population, but also the maximum likelihood estimator appears to cope better in the 

presence of a different mortality distribution to that assumed in the estimator, than does the 

conventional estimator. However it must be borne in mind that these results may vary if 

the common assumptions underlying all the simulations are altered, or if different mortality 

assumptions are made in association with the maximum likelihood criterion or the 

implication-A criterion (which leads to the conventional estimator).

Thus it appears that, in terms of performance, the “constant p” maximum likelihood 

estimator is to be preferred in general application to the “Balducci” conventional estimator. 

However, it is interesting to speculate whether there are any other estimators making a fixed 

mortality assumption which might be used in preference to the “constant /r” maximum 

likelihood estimator or the “Balducci” conventional estimator. It will be noted that both of 

the latter estimators are also time-count estimators, which accounts for the simplicity of 

their evaluation, ie involving the counting of exposure time.

This may suggest that the time-count estimator assuming the Gompertz distribution with 

c = 1.1 might provide a further improvement in general performance, by virtue of its more 

generally realistic mortality assumption.

Table 5.30 shows, for the 12 simulations, the 95% confidence limits for the population qx 

given by the “Gompertz 1.1” time-count estimator. (The calculation of this estimator is 

summarised in equations (5.4) and (5.5) which follow shortly).

It will be seen tha t the population value of qx falls within the confidence intervals for 11 of

the 12 simulations, the sole exception being one of the simulations assuming a population

m ortality distribution with b =  2.
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Table 5.30 The “Gompertz 1.1” time-count estimator:

95% confidence intervals for population qx

Pop. distn. ASPSIM ASPMMSIM
parameter Lower limit Upper limit Lower limit Upper limit

b = 2 .1995646 .2001340 .1992578 .1998174
b = 1 .1995263 .2001222 .1998389 .2003995
b = 0 .1995622 .2001431 .1998498 .2004514

b = -1 .1994150 .2000038 .1996151 .2002199
c = 1.1 .1997669 .2003612 .1995608 .2001197
c = 1.05 .1998876 .2004870 .1997749 .2003636

However it may be the case that this better performance of the “Gompertz 1.1” time-count 

estimator compared with, say, the “constant /z” maximum likelihood estimator is obtained 

at the cost of a more complicated estimation calculation. This aspect will now be examined.

The “constant /z” maximum likelihood estimator is calculated as follows:

H = ^  D------ , where qx =  1 -  e ^
E  (*i -  si)
N

(5.3)

The “Gompertz 1.1” time-count estimator is calculated as follows (with c = 1.1):

and

B' =
E - (
D c *

E  (*i -  si)
N

where /¿x_|_t =  B,cX̂ "t

qx =  1 — hc  ̂ where h =  exp ( — —)'  log c'

(5.4)

(5.5)

It will be seen that the “Gompertz 1.1” time-count estimator is slightly more complicated to 

calculate than the “constant /z” maximum likelihood estimator, as indicated by formulae 

(5.3), (5.4) and (5.5) but with modern aids to calculation the differences, and in particular 

the adjustments required to the deaths in calculating the numerator of B \ do not seem to 

represent a complication of any great significance.

It is also interesting to examine the general performance of the maximum likelihood
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Table 5.31 shows, for the 12 simulations, the 95% confidence limits for the population qx 

given by the “Gompertz 1.1” maximum likelihood estimator. (The calculation of this 

estimator is summarised in equations (5.6) and (5.7) which follow shortly).

estim ator with the fixed assumption of the Gompertz distribution with c =  1.1 .

Table 5.31 The “Gompertz 1.1” maximum likelihood estimator: 

95% confidence intervals for population qx

Pop. distn. ASPSIM ASPMMSIM
parameter Lower limit Upper limit Lower limit Upper limit

b = 2 .1999895 .2005586 .1996832 .2002441
b = 1 .1996788 .2002745 .1999915 .2005501
b = 0 .1994496 .2000308 .1997341 .2003312
b = -1 .1990348 .1996207 .1992315 .1998352
c = 1.1 .1997689 .2003647 .1995545 .2001146
c = 1.05 .1998342 .2004333 .1997210 .2003094

It is seen that the population value of qx falls within the confidence intervals for 10 of the 

12 simulations, the exceptions being the 2 simulations assuming a Balducci population 

mortality distribution.

We will consider whether the calculations involved in evaluating this estimator are more or 

less complicated than those needed to evaluate the “Gompertz 1.1” time-count estimator.

The “Gompertz 1.1” maximum likelihood estimator is calculated as follows (with c = 1.1):

B' = D

log £(<
N

where ^x+t =  B'cX+t (5.6)

and fix =  1 where h =  exp (- log c' (5.7)

It can be seen that the calculation of the “Gompertz 1.1” maximum likelihood estimator is 

more complicated than that of the “Gompertz 1.1” time-count estimator, adjustments being
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Obviously there would be no problem if the data and calculations were dealt with on the 

computer. The calculations would be straightforward to program, particularly as an 

iterative method is not involved.

On balance, one can argue that the “Gompertz 1.1” time-count estimator is marginally to 

be preferred to the “Gompertz 1.1” maximum likelihood estimator, since it performs slightly 

better in the simulations and is somewhat simpler to calculate. And, as we have seen, the 

performance of the “Gompertz 1.1” time-count estimator appears better in our simulations 

than the “constant p” maximum likelihood estimator, and it is only marginally more 

complicated to calculate.

involved in the calculation of the “exposed-to-risk” of all lives, as shown in formula (5.6) .

5.27 Effect of making wrong mortality assumptions in estimators

In the previous section, we considered the performances of certain estimators which make 

fixed mortality assumptions when they are applied to populations in which other mortality 

assumptions apply. Predictably it was found that a disparity between the mortality law 

applicable in the population and that assumed by the estimator leads to a reduction in 

performance as measured by the frequency with which supposed 95% confidence intervals 

based on the estimator contained the population value of qx . The reduced frequency with 

which such intervals contain the population value of qx reflects the bias introduces into the 

estimator by the discrepancy in the mortality law.

A more comprehensive view of this effect can be obtained by studying the simulation 

printouts contained in Appendix II, which show for each simulation the values of estimators 

for a range of mortality assumptions, together with estimated standard deviations and 

confidence intervals.

As an example, let us consider the printout for Simulation 2A (Appendix II) which is based 

on the results of 500 runs of the program ASPSIM where the mortality law in the 

population is “level deaths” ie the rectangular hyperbolic mortality distribution with b = 1.

A key to the abbreviations used in the printouts is provided in Appendix II.

It is seen that the population value of qx falls within the confidence interval for all 

estimators which assume the “level deaths” (b = 1) mortality law.

However when the rectangular hyperbolic mortality distribution with b = 2 is assumed, only
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When the “constant p” assumption (b = 0) is made, the confidence interval based on the 

“constant p” maximum likelihood estimator, and all the coincident n-estimators, contains 

the population qx but the confidence intervals based on the conventional estimator or the 

implication-B estimator do not.

When the Balducci assumption (b = -1) is made, none of the estimators provide “95%” 

confidence intervals which contain the population qx .

When the “Gompertz 1.1” assumption is made (c = 1.1), the confidence intervals based on 

the one-parameter maximum likelihood estimator (which is also the log-estimator) and the 

time-count estimator contain the population qx , as does very marginally that based on the 

implication-B estimator, whereas the confidence interval based on the conventional 

estimator does not. The “Gompertz 1.1” assumption lies approximately somewhere between 

the b = 1 and b = 0 assumption; indeed the approximate formulae (3.107) and (3.108) 

linking b and c indicate that a value of b = 0.42715 corresponds approximately to c = 1.1 

when qx == 0.2 .

Further examination of the Simulation 2A printout shows that the average observed values 

of the conventional estimator and the implication-B estimator appear to decrease 

monotonically as b increases over the range from b = -1 to b = 2; this suggests that there is 

likely to be a value of b which, if assumed in the estimator, will produce an estimator with 

zero bias, and that the absolute value of the bias increases as the assumed value of b 

diverges from this value, either positively or negatively, within the range considered.

The simplest interpretation of the behaviour of the value of any of the rectangular 

hyperbolic n-estimators shown for Simulation 2A, as b varies from b = -1 to b = 2, is that 

there is a turning point which is either a maximum or minimum in the range b = -1 to 

b = 2.

Thus for example, on the simplest interpretation, the average observed values of the time- 

count estimator and log-estimator appear to reach a minimum somewhere between b = 0 

and b = 2, while for example the average observed value of the one-parameter maximum 

likelihood estimator appears to reach a maximum somewhere between b = -1 and b = 1.

One must bear in mind the dangers of interpreting the behaviour of a function from just 

four measurements of the function: the function could behave with more subtlety than can 

be portrayed by this small number of measurements. However it seems unlikely that the 

averaging of 500 individual runs in each simulation would produce a function that behaves

the confidence interval based on the log-estimator contains the population qx .
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with greater subtlety than the simple turning point that has been hypothesised here.

It is interesting that nearly all the rectangular hyperbolic n-estimators in the other runs of 

ASPSIM (Simulations 1A, 3A, 4A, 5A, 6A) appear to exhibit the same behaviour. The one 

slight exception is Simulation 4A where the population is assumed to obey the Balducci 

mortality assumption (b = -1) and the average observed values of the log-estimator, 

one-parameter maximum likelihood estimator and the n-estimators with n = 2 and n = 3 all 

appear broadly to decrease in the range b = -1 to b = 2.

Most probably a turning point does occur but falls either outside the range b = -l to b = 2 

or just within its edges. The behaviour of the figures may suggest that, for this simulation, 

a minimum in the average observed value of the log-estimator occurs in the region of b = 2 

and that, for the other three estimators, a maximum occurs in the region of, or below, 

b = -1.

It will be noted that in the range considered for the value of b which is assumed in the 

estimator, namely b =  -1 to b = 2, the corresponding average observed values of the 

log-estimator (n =  0) change relatively little. Larger changes, but still relatively modest, 

are shown by the one-parameter maximum likelihood estimator (n = 1) and the time-count 

estimator (n — -1) perhaps with the one-parameter maximum likelihood estimator being 

marginally superior. When n = -2, n = 2 and n = 3 are considered, the average observed 

values of the estimators appear broadly to change more significantly over the range of b 

considered, as b changes.

A relatively modest change in the values of an estimator as the assumption in the estimator 

concerning b changes, indicates that the estimator should perform relatively robustly if the 

wrong assumption for b is made. These simulations seem to suggest that, within the range 

of b discussed, the log-estimator, the one-parameter maximum likelihood estimator and the 

time-count estimator should perform quite favourably in this regard. The conventional 

estimator, whose bias appears to change monotonically with changes in b, appears to behave 

less favourably in this regard over the range considered, and this perhaps sheds further light 

on the results of the comparisons made in Section 5.26 between the Balducci conventional 

estimator and the “constant ¡i" maximum likelihood estimator.

The values of the implication-B estimator are broadly similar to those of the conventional 

estimator and so the general comments relating to the conventional estimator apply also to 

the implication-B estimator.

The n-estimators with n =  -2, n = 2 and n = 3 appear to perform satisfactorily if the correct 

value of b is assumed, but the more the value of n diverges from the values n = -1, 0 or
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n = 1, the less robust the estimators appear in coping with a wrong assumption of the value 

of b.

Of course in interpreting these simulation results, it must again be borne in mind that one 

particular set of assumptions has been used throughout with regard to the number of lives in 

the investigation, the number and entry point of “new entrants”, the rate of mortality, the 

rate of withdrawals and the distribution of withdrawals, and that variation in these details 

might cause modification in the observed behaviour of estimators and possibly in the 

comparative performance of different estimators. There are so many parameters defining 

the scenario of the investigation that it would require a more extensive piece of research to 

investigate the effects of varying them all.

It is also of interest to consider how the method of moments estimator and the conventional 

estimator compare when the mortality assumption made in the estimator differs from that 

applicable in the population. Table 5.32 shows the difference between the average observed 

values of the conventional estimator and the method of moments estimator for the 24 pairs 

of mortality assumptions, applying in the population and assumed in the estimators, that 

were observed in the six simulations using program ASPMMSIM.

Table 5.32 Program ASPMMSIM:

Average observed values of conventional estimator minus method of moments estimator

Popn. distn. Parameter assumed in estimator

parameter b = 1 b = 0 b = -1 c = 1.1

b = 2 .0001484 .0002855 .0004195 .0002279
b =  1 .0000005 .0001415 .0002791 .0000820

cr
 II o -.0001425 .0000015 .0001414 -.0000598

b = -1 -.0002766 -.0001311 .0000101 -.0001934
c = 1.1 -.0000903 .0000517 .0001902 -.0000088
c = 1.05 -.0001138 .0000294 .0001688 -.0000313

It is seen that the absolute difference between the average observed values of the 

conventional estimator and the method of moments estimator increases as the disparity 

between the mortality assumption applying in the population and the mortality assumption 

assumed in the estimator increases. It is of further interest to investigate whether the value 

given by the conventional estimator or the value given by the method of moments estimator 

is likely to be closer to the true population value when there is a disparity between the
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mortality assumption applying in the population and the mortality assumption assumed in 

the estimator.

Tables 5.33 and 5.34 show the differences between the average observed values of the 

conventional estimator and the product limit estimator and between the average observed 

values of the method of moments estimator and the product limit estimator respectively. 

The product limit estimator has been adopted as a virtually unbiased estimator of the true 

population rate of mortality so that, if because of random fluctuations the simulated data is 

not exactly representative of the population distribution, the effect of these fluctuations on 

the estimated values of qx will hopefully be largely eliminated in the comparisons of the 

respective estimators with the product limit estimator, which would not be the case if the 

population value of qx were used.

Table 5.33 Program ASPMMSIM:

Average observed values of conventional estimator minus product limit estimator

Popn. distn. 

parameter b = 1

Parameter assumed in estimator 

b = 0 b = -1 c = 1.1

b = 2 .0006788 .0015031 .0025616 .0011162
b = 1 .0000248 .0008520 .0019118 .0004635

oII -.0008332 -.0000084 .0010458 -.0003973
b = -1 -.0019070 -.0010848 -.0000369 -.0014742
c = 1.1 -.0004709 .0003537 .0014082 -.0000350
c = 1.05 -.0005714 .0002541 .0013097 -.0001349

Table 5.34 Program ASPMMSIM:

Average observed values of method of moments estimator minus product limit estimator

Popn. distn. 

parameter b = 1

Parameter assumed in estimator

b = 0 b = -1 c = 1.1

b = 2 .0005304 .0012176 .0021421 .0008883
b = 1 .0000243 .0007105 .0016327 .0003815

cr
 II o -.0006907 -.0000099 .0009044 -.0003375
b = -i -.0016304 -.0009537 -.0000470 -.0012808
c = 1.1 -.0003806 .0003020 .0012180 -.0000262
c = 1.05 -.0004576 .0002247 .0011409 -.0001036
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It is seen that, when there is a disparity between the mortality assumption applying in the 

population and the mortality assumption assumed in the estimator, the average observed 

value of the method of moments estimator is slightly closer to the average observed value of 

the product limit estimator than is the average observed value of the conventional 

estimator, the disparity from the average product limit estimator value in the case of the 

method of moments estimator being of the order of 80-85% of that applicable in the case of 

the conventional estimator, and always of the same sign in the simulations.

Thus we can conclude that, when the mortality assumption in the estimator is the same as 

that applicable in the population, the values of the conventional estimator and the method 

of moments estimator are extremely close, and that when there is a disparity between the 

mortality assumption applying in the population and the mortality assumption assumed in 

the estimator, the two estimators behave in a broadly similar way although the method of 

moments estimator appears to give a value of qx which is slightly closer to the true 

population value of qx , than the conventional estimator, but not spectacularly so. It is also 

of interest that the two estimators seem likely to be biased in the same direction, ie either 

both negatively biased or both positively biased.

It must be borne in mind that fairly extreme values of mortality and withdrawal rates have 

been considered, deliberately to emphasize any effects. Also, it must again be remembered 

that the possibility exists that these conclusions could be subject to modification if the 

common assumptions underlying all the simulations were varied.

5.28 Evidence of bias in estimators incorporating the correct mortality assumption

Examination of the 95% confidence intervals indicates that, for all the estimators calculated 

from the simulated data which assume a one-parameter mortality law, bias is not discernible 

against the background of random fluctuations when the correct mortality assumption has 

been made (with the inconsequential exception of the approximated “operational moment 

relations” estimators suggested by Hoem (1984), as discussed in Section 5.20). Of course it 

must be borne in mind that modification of the parameters assumed for all the simulations 

could modify this situation, and in particular a reduction in the numbers of lives observed 

during the year of age, nj and n2. This appears a pertinent area for further research.

However some subtle effects have been noted in the simulation results which would tend to 

imply the existence of low levels of bias even when the correct mortality assumption has 

been made; this implication arises where it is noted that one method of estimation appears 

to give values that tend to be higher than values given by another method, even when both 

calculations incorporate the correct mortality assumption.
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In particular, it has been noted that, in the simulations, the average observed values of 

n-estimators incorporating the correct mortality assumption showed an apparent tendency 

to decrease as n increased (see Section 5.25). (It will be recalled that n-estimators are 

g-estimators in which the g-function takes the form (px_|_̂ )n, as discussed in Section 4.27).

However, the actual amount of possible bias implied by these simulation results is very 

small, so that any such bias is not readily apparent from examination of the 95% confidence 

intervals, the random fluctuations being dominant. This is an area where further simulation 

studies could be undertaken to seek additional evidence.

5.29 Tailpiece: the anachronistic “direct method”

In 1986, the Institute of Actuaries introduced the “direct method” into its examination 

syllabuses. As described in Puzey (1986), the “direct method” involves the use of a 

computer to count initial or central exposed-to-risk directly, and it could be argued that this 

is an anachronism, representing the use of late twentieth century technology to carry out 

methods evolved to meet the computational limitations of the nineteenth century. These 

computational limitations have to a great extent been swept away, so that there is no 

computational reason to continue using the Balducci assumption to estimate qx , nor indeed 

the “constant /i” assumption to estimate px or mx .

If the data is available on computer in a form which allows the “direct method” to be 

carried out, there is available a number of arguably more attractive methods of analysis, 

including a number of the methods discussed in this chapter. Some of these estimators 

make relatively few additional computational demands, for example the time-count and 

maximum likelihood estimators for the Gompertz assumption with an assumed value of c, 

and the product limit estimator.

As discussed in Section 5.26, the Gompertz time-count and maximum likelihood estimators, 

with c assumed equal to 1.1, appear to provide simple but effective estimators which 

generally appear to give better estimates than the two traditional estimators based on 

deaths divided by initial or central exposed-to-risk. As a further refinement, the value 

assumed for c could of course be chosen from knowledge of populations similar to that under 

investigation.

In Section 5.23, it was noted that the virtually unbiased product limit estimator appeared to 

be an attractive alternative to any of the estimators which required the assumption of a 

one-parameter mortality law, at least at the sample sizes considered in the simulations. 

Further investigations would be advisable to see whether a reduction in sample size would

-  234 -



affect this comparison; possibly the use of fewer observations could make a mortality 

assumption more important.

Data prepared for the “direct method” would almost certainly be suitable for the 

non-iterative calculation of the product limit estimator, an estimator which hitherto has 

been omitted from the syllabus of the Institute of Actuaries, doubtless because it was not 

suitable for use with large volumes of data before the computer became available.

There are further approaches, some of which involve more complex and invariably iterative 

calculations, such as the two-parameter maximum likelihood estimators. However the 

two-parameter maximum likelihood estimators in particular also extract additional 

information from the data about the mortality distribution, and they may be considered 

attractive for this reason. They also avoid the consequences of making a poor choice of an 

assumed distribution parameter.

The inclusion in 1986 of the “direct method” as the only computer based approach in the 

syllabus of the Institute of Actuaries might be seen as an illustration of “exposures per life” 

having gained an unjustified grip on the thinking of actuaries, a possibility pointed out in 

Section 2.7.

London (1983) implied that “the actuarial tradition of expressing estimated rates as the 

ratio of observed decrements to a measure of exposure” had tended to exclude other 

procedures from consideration by actuaries.

Modern computing technology offers the opportunity to escape from the prison of using only 

traditional exposed-to-risk methods to estimate mortality rates from observed data, and 

perhaps the simulations discussed in this chapter give an indication of some of the attractive 

alternatives.
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C H A P T ER  VI

Conclusions

6.1 Introduction

Conclusions arising from the work will be given under six broad headings:

The alleged flaw in the conventional estimator

Further aspects of the conventional estimator and aspects of other estimators

The rectangular hyperbolic mortality distribution

Two-parameter mortality rate estimators

A general theory of mortality rate estimators

Areas for further research

6.2 The alleged flaw in the conventional estimator

The conventional estimator appears to have an acceptable theoretical basis giving results 

which would be similar to those given by a method of moments estimator, if it could 

actually be calculated, when the correct mortality assumption is made. This conclusion is 

based on the following considerations:

(a) An analysis of the mechanics of the calculations of the conventional estimator and 

the method of moments estimator has been presented in Section 2.10 from which it 

can be seen that the two estimators would be likely to produce similar values when 

the correct mortality assumption is being made.

(b) A new rationale of the method of calculating the conventional estimator has been 

identified in Section 2.18 which does not rely on explaining the estimator as a 

modified, or even degraded, version of the method of moments estimator, and which 

as shown in Section 2.20 is analogous to the calculation of a money-weighted rate of
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return in a financial transaction. This new rationale appears intuitively attractive.

(c) The simulation studies reported in Chapter 5 suggest that the performance of the 

conventional estimator is satisfactory and is not compromised by alleged theoretical 

flaws as suggested by Hoem (1984). The performance of the conventional estimator 

in the simulations is discussed in particular in Sections 5.19, 5.21, 5.23, 5.26 and 5.27. 

It must be borne in mind that, because of the volume of analysis that would be 

required, it has not been possible to consider the effect of changing some parameters 

governing the simulated scenarios, but it is felt that further research covering other 

parameter values is unlikely to require revision of these conclusions.

It is therefore concluded that Iloem (1984) is wrong to describe the conventional estimator 

as flawed.

6.3 Further aspects of the conventional estimator and aspects of other estimators

Further conclusions of note relating to the conventional estimator or other estimators are

the following:

(a) Simulation studies suggest that even when the wrong mortality assumption is made, 

the results given by the conventional estimator are just marginally more biased than 

those that would be given by a method of moments estimator (see Section 5.27).

(b) Simulation studies reported in Section 5.26 do suggest however that the “constant p” 

maximum likelihood estimator may generally perform somewhat better than the 

Balducci conventional estimator under the mortality distributions likely to be 

encountered in practice, which will generally be different to those assumed in the 

estimator, and that this is due not only to the mortality assumption in the estimator 

but also to the statistical criterion used. This would confirm the recommendations of 

Hoem (1984) and of Roberts (1987) that the “constant p” maximum likelihood 

estimator be used in preference to the Balducci conventional estimator, although the 

argument preceding the recommendation in Hoem (1984), that the conventional 

estimator is theoretically flawed, is not accepted.

(c) Simulation studies also suggest that the time-count estimator, developed in this 

thesis, is likely, when the Gompertz mortality law with c = 1.1 is assumed, to 

perform even better than the “constant p” maximum likelihood estimator under the 

mortality distributions likely to be encountered in practice with little sacrifice of 

computational simplicity (see Section 5.26). A further refinement would be to choose
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the value for c using knowledge of populations similar to that under investigation. 

Also in the simulation studies, the maximum likelihood estimator assuming the 

Gompertz law with c equal to 1.1 performed almost as well as the corresponding 

time-count estimator and is only marginally more complicated to calculate (see 

Section 5.26).

(d) The “direct method”, in which a computer is used to count traditional exposed-to- 

risk directly, to the exact day, is argued to be a poor use of computer technology as, 

it is contended, there are more attractive estimators, including those mentioned in 

the previous paragraph, that can be calculated with a computer using data in a 

format similar to that required for the “direct method” (see Section 5.29).

(e) In the course of the research relating to the conventional estimator, consideration was 

also given to the calculation of exposed-to-risk by means of “exposures per life”. As 

summarised in Section 2.7, this examination has readily confirmed the view that the 

exposure which an individual life receives under such systems cannot be expected to 

have a rational explanation in terms of the behaviour of that life, as also commented 

for example by Batten (1978) in connection with “prospective existings”.

(f) Examination of the 95% confidence intervals suggests that, for all the estimators 

studied in the simulations which assume a one-parameter mortality law, bias is not 

discernible against the background of random fluctuations when the correct mortality 

assumption has been made (with one inconsequential exception, discussed in 

paragraph (j) below), although comparisons of average estimator values do give some 

subtle indications that bias of relatively trivial levels could be present in some 

estimators (see Section 5.28). Of course it must be borne in mind that a reduction in 

the numbers of lives observed during the year of age might alter the conclusion that 

bias is generally unimportant when the correct mortality assumption is made.

(g) In the course of research into the conventional estimator, a related estimator of 

mainly theoretical interest was evolved and designated the “implication-B” estimator 

(see Section 2.14). The simulation studies indicate that the implication-B estimator 

performs satisfactorily (see Sections 5.22, 5.23 and 5.27).

(h) The log-estimator is a further estimator developed in this thesis (see Sections 3.16 

and 4.8); the log-estimator performs well in the simulation studies (see Sections 5.22, 

5.23, 5.25 and 5.27).

(i) In general, simulation studies suggest that the maximum likelihood estimator, 

log-estimator and time-count estimator may be more robust, if the wrong mortality
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assumption is made, than in general the conventional estimator or the implication-B 

estimator (see Section 5.27).

(j) It is argued in Sections 1.9 and 2.9 that the approximated “operational moment 

relations” estimators of qx , suggested by Hoem (1984), are unsatisfactory as the 

inherent approximation will introduce a negative bias and, indeed, simulation studies 

using the correct mortality assumption in the estimator have confirmed the presence 

of a marked negative bias (see Section 5.20).

(k) It is shown in Section 2.24 that an alternative rationale for the derivation of a 

maximum likelihood estimator of a mortality parameter can be obtained which 

involves the reconciliation of the rates of change, with respect to changes in the 

mortality parameter, of the numbers of lives entering and leaving the mortality 

investigation.

(l) Extension of the analogy between the calculation of the conventional estimator and a 

money-weighted rate of return shows that the calculation of the product limit 

estimator can be viewed as analogous to that of a time-weighted rate of return (see 

Section 2.20).

6.4 The rcctaneular hyperbolic mortality distribution

A valuable conclusion, discussed in Chapter 3, is that it is possible to formulate the 

rectangular hyperbolic mortality distribution:

^x+t — a — bt

which is a two-parameter mortality law embracing three well-known mortality assumptions 

as special cases, namely the uniform distribution of deaths assumption, the “constant p” 
assumption and the Balducci assumption.

Use of this law enables the equations defining a number of estimators to be expressed in 

simple and generalised forms.

6.5 Two-parameter mortality rate estimators

The rectangular hyperbolic mortality distribution allows the development of a new
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maximum likelihood estimator involving two parameters, one relating to the general level of 

the mortality rates and the other relating to the general shape of the mortality curve (see 

Section 3.16) and this estimator has performed satisfactorily in the simulation studies (as 

discussed in Section 5.24). A tenuous and slightly ambiguous suggestion of minor positive 

bias may have been due to random effects.

The two-parameter maximum likelihood estimator based on the Gompertz mortality law 

has also been considered (see Section 3.17) and in the simulations there were indications of 

minor negative bias that appeared more distinct and unambiguous in certain circumstances 

than the tenuous indications of slight positive bias mentioned above in the case of the 

two-parameter rectangular hyperbolic maximum likelihood estimator (see Section 5.24).

The attractions of these two-parameter estimators include the features that they require a 

very minimal assumption about the mortality law applicable in the population and that one 

of the parameters relates in general terms to the shape of the mortality curve over the year 

of age; this latter feature is not provided by any mortality rate estimator requiring the 

assumption of a one-parameter mortality law, nor indeed by the product limit estimator.

6.6 A general theory of mortality rate estimators

Perhaps the most important conclusion in this thesis is that it is possible to develop a 

general theory of mortality rate estimators which permits most, if not all, mortality rate 

estimators assuming a parametric mortality law to be derived by a common method (see 

Section 4.1 and subsequent sections).

An important implication of this theory is that all estimators derived by its application, 

assuming a one-parameter mortality law, are asymptotically unbiased if the correct 

assumption about the mortality distribution in the population has been made (see Section 

4.13).

The general theory has permitted new or previously unrecognised mortality rate estimators 

to be identified, such as the time-count estimator assuming the Gompertz mortality law for 

a given value of c (see Section 4.9), and the log-estimator for various assumptions (see 

Section 4.8).

Also, the general theory allows the mortality assumptions under which estimators based on 

different statistical criteria give identical values to be identified. For example it can be 

readily seen (Section 4.7) that, if the uniform distribution of deaths is assumed, the 

conventional estimator and the maximum likelihood estimator are identical, a result first
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identified earlier in the thesis by more laborious means (Section 2.23).

6.7 Areas for further research

As summarised in the previous section, an important theoretical result presented in this 

thesis is that all estimators, assuming a one-parameter mortality law, which can be 

produced using the general theory are asymptotically unbiased when the correct mortality 

law has been assumed (Section 4.13). As noted in Section 4.13, an even more powerful 

result would be that such estimators are also consistent under these circumstances, but 

preliminary investigations suggest that such a proof, if indeed these estimators have this 

property of consistency, would be analytically more demanding than the comparatively 

simple proof of asymptotic unbiasedness presented in Section 4.13. As stated in Section 

4.13, it is intended that further research will be undertaken to obtain such a proof, if the 

property of consistency does indeed apply to these estimators.

There are a number of areas in which further simulation studies would be likely to yield 

important new insights or clarify uncertainties remaining from the present studies. 

Fortunately, the availability of ever faster personal computers at moderate cost makes it 

possible to carry out further simulations using considerably higher numbers of runs than was 

possible previously, and the increase in the number of runs should allow more clear-cut 

distinctions to be drawn between genuine effects on the one hand and random fluctuations 

on the other. The use of greatly increased numbers of runs should also allow the standard 

deviations of estimator values to be better estimated.

As has been previously pointed out, all the simulation studies reported in Chapter 5 have 

been conducted assuming the same values for certain parameters, namely the following 

values as quoted in Section 5.14:

qx =  0.2 wx =  0.4 r =  3

nj =  10000 n2 =  10000 no. of runs =  500

Clearly the conclusions drawn in Chapter 5 would be broadened by investigations into the 

effects of changing the values of qx , wx , r, nx and n2, although it is felt that the conclusions 

presented in Chapter 5 about the relative behaviour of the estimators are likely to remain 

broadly valid over a wide range of values of these parameters.

It would be especially instructive to investigate whether bias in the estimates of qx becomes 

an important issue, when the estimator incorporates the correct mortality assumption, if 

smaller numbers of lives are observed, ie when smaller values of nj and n2 apply.

-  241 -



In Section 5.23, it was noted that the virtually unbiased product limit estimator appeared to 

be an attractive alternative to any of the estimators which required the assumption of a 

one-parameter mortality law, at least at the sample sizes considered in the simulations.

Further simulation studies could show whether a reduction in sample size would affect this 

comparison; possibly the use of fewer observations could make a mortality assumption more 

important.

The simulations reported in Chapter 5 did not include the use of g-estimators where the 

g-function involved the factor because these estimators had not been considered at the

time the simulations were planned and the programs written. Simulation studies, extended 

to cover this group of estimators, should be considered to facilitate comparisons of these 

estimators with those previously studied. These studies would also cast light on the extent 

of the negative bias which is inherent in these estimators of qx , even when the correct 

mortality assumption has been made, and on the circumstances, if any, in which this bias is 

sufficiency severe to be a serious difficulty.

In the discussion of n-estimators calculated from the simulated data and incorporating the 

correct mortality assumption, it was noted that their average observed values showed an 

apparent tendency to decrease as n increased (see Section 5.25). This is another area where 

further simulations could be of great value, in order to confirm that this apparent tendency, 

with its important implications concerning bias, is genuine and to investigate whether the 

effect is modified by changes in the assumed parameters.

A number of apparent effects were noted in Section 5.24, in connection with the estimation 

of qx using the two-parameter maximum likelihood estimators assuming the rectangular 

hyperbolic mortality distribution (“ML H”) and the Gompertz mortality distribution (“ML 

G”), and further investigations were suggested. Thus, the following apparent phenomena 

were highlighted for further investigation:

(a) For a given set of mortality data, the value of qx given by the ML II estimator was 

greater than the value given by the ML G estimator m all but a very small number of 

cases, the exceptions occurring when the population mortality corresponded to b = 0 

and c = 1.

(b) There appeared to be a clear effect that the ML G estimator was subject to a distinct 

negative bias when used with populations subject to a mortality distribution of a 

distinctly rectangular hyperbolic shape (that is, with b of the order -1, 1, 2 when 

qx = 0.2). There was also speculation that the ML H estimator might be subject to 

a slight positive bias, although the evidence was tenuous and a little ambiguous.
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(c) There appeared to be a consistent tendency for the average value of the ML H 

estimator to be very slightly greater than that given by the corresponding 

one-parameter maximum likelihood estimator.

(d) The values of c estimated in evaluating the ML G estimator appeared to be positively 

biased.

Also comparisons of the standard deviations of the ML H estimator, the ML G estimator, 

the one-parameter maximum likelihood estimator and the product limit estimator yielded 

results in which a consistent pattern was not clear, and it would be interesting to repeat the 

investigation using simulations based on greatly increased numbers of runs, which would 

reduce the random effects in measuring the standard deviations.

As noted in Section 5.9, the construction of the two programs ASPMOM and ASPMMSIM 

would make it possible to study the derivation of mortality rates from a year of age in 

which there is a single fixed duration of entry and a single fixed duration of non-death exit 

applicable to all lives. It would be instructive to conduct simulations to study the degree to 

which bias occurs in these circumstances when the estimator incorporates the correct 

mortality assumption, and to identify the parameters which are particularly important in 

determining the extent of such bias.

In Section 4.30, brief attention was given to the extension of the “general theory” to the 

estimation of the parameters where a multiple-parameter mortality law applies in the 

population. There may be scope for further research here, to develop theory and make 

applications.

Despite the detail of the research reported in this thesis, there clearly remain many 

intriguing uncertainties still to be resolved. The availability of ever faster personal 

computers at modest cost provides the actuarial researcher with unprecedented 

opportunities, that previous generations could only have dreamt of, to investigate the 

mysteries of mortality rate estimation.
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A PPEN D IX  I

Derivation of Miscellaneous Results for the 

Rectangular Hyperbolic Mortality Distribution

A l.l Introducing the rectangular hyperbolic mortality distribution

Firstly we will state the formulae for Px_|_̂  under respectively the “level deaths”, “constant 

//” and Balducci assumptions, from which it will be seen that these are all particular cases 

of the more general rectangular hyperbolic mortality distribution.

(a) Level Deaths Assumption

This is most conveniently stated as:

t^x — f*qx (0 < t< l)  (Al.l)

which leads to the result:

"x+t =  r z 3! ^ ;  =  x 1—  (“S ' S 1) <A1-2)
qx 1

(b) Constant p Assumption

Obviously this can be directly stated as:

P x _l_t  =  constant (A 1.3)

(c) Balducci Assumption

This is most conveniently stated as:

l-t^x+t — ( I - t)*qx (0 < t< l) (Al.4)

which leads to the result:
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( 0 < t < l ) (A1.5)

Clearly, we can express all of these results in the general form:

"x+t =  ~ S i  (»<‘ <1) (A 1.6)

where immediately we can see that:

(A1.7)

and we have:

b =  —1 for the “Balducci” assumption

b =  0 for the “constant p” assumption

b =  1 for the “level deaths” assumption.

A1.2 Expression for qx when b ^  0

We will now derive an expression for qx under the rectangular hyperbolic distribution in 

terms of a and b, for b yt 0.

In general:

1
qx =  1 -  exp ( - px+t d t) (A1.8)

0

Let us consider the integral:

-  b  log ( ^ ) (A1.9)

qx =  1 -  exp ( Ì  log (3-g-k)) (A l.10)
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(A l.11)qx i -  (i -  k)B

A l.3 Expression for qx when b = 0

When b =  0, we have:

which also follows from:

1

qx = bh2?o ^  “  (1 “

A 1.4 Expressions for the parameter a in terms of b and qx

We also have from equations (A l.ll) and (A1.12) :

1 -  (1 -  Qx)
k when b ^  0

-1
log (i -  qx)

when b =  0

A 1.5 Expressions for the parameters a and b in terms of /xx an(l /¿x^  j

A pair of expressions for a and b that can be useful in some applications are:

a = À  ’ b l l
Vx Vx+ i

These follow immediately from:

^x+t a — bt (0 < t< l)

A1.6 Concerning the second differential coefficient of lx_^

We will now obtain the following results:

(A1.12)

(A 1.13)

(A1.14)

(A1.15)

(A1.16)

(A1.17)
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d"lx+t
dt"

>  0 for b <  1

dt
^  < 0 for b >  1

We know from life contingencies that:

^x+t
1 dIx+t

W t  dt

dlx-ft
dt X +t^X +t

d2lX+t _  _  dlx+t _  , * W + t
dt2 dt "x+t x+ t clt.

d nx+tWt^x+t) Wt dt

But since: ^x+t a — bt

we have:
d/ix+t

dt (a — bt)"

d"lx+t
dt"

(1 -  b)= x+t
(a — bt)^

from which the results follow.

A1.7 Expressions for j_sPx.ps

We will now obtain the following results:

for b ^  0: .. _ fa — bt \ b
t-spx+s -  -  bs;

/^x+s\ b
W + t '

for b =  0:
~(t-S) , X

_  a _  ~(t-s)p _  , >t-s 
t-sPx+s ~  e — e — (P x )

(A1.19)

(A1.20)

(A1.21)

(A1.22)

(A1.23)

(A1.24)

(A1.25)

(A1.18)

(A1.26)

(A1.27)
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Now n -  tPx t-s^x+s -  sPx

Firstly we will consider the case when b ^  0. Now:

tPx =  exP /ix+r dr )

Let us consider the integral:

^x+r dr = '  dr =  J _  P 
0  a -  br - b  J 0

dr

- b O < '- § > ]

.1 lo g ( « ^ M ,

tPx =  «*P(g log a bt))

t-sPX+S

-  ( 1  -

I K  =  < f^ G > 6 =  ((* ~  »‘) * d - E > 6
/^x+S\ b
^ x + C

remembering that:

^x+r a — br'

When b =  0, is constant and life contingencies tells us:

d  -  e ' ( t ' S ) / /  t-sPx+S — e

t-sPx+s (Px)
t-S

and since in general a is the reciprocal of px , we also have:

-(t-s)
t-sPx+s =  e

A 1.8 Concerning lx_j_r

Further results follow:

For b yt 0: t-sPx+s
x+t

^x+s
/^x-ps\b
^ x + C

(A1.29)

(A1.28)

(A1.30)

(A1.31)

(A1.32)

(A1.33)

(A1.34)

(A1.35)

(A1.36)

(A1.37)
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so that: (A I.38)

And for b =  0:

>x+t «  ( ¿ f ; )b

where x is a given integer and 0<r<l .

t-spx+s 1 — ex+s
W t  _ -/rs (A1.39)

that: ‘x+r (A1.40)

where x is a given integer and 0<r<l .

A1.9 Expression for mx in terms of /¿x and j

We will now derive an expression for mx in terms of px and Px + p

mx =_  dx _  1 — Px
f l

tPx dt
f l

tPx dt
(A1.41)

Let us consider the integral:

tPx d t  = (1 -  | t ) 5 dt

_1

- a , ( l  ~ § t )b fx5+ 1

( i  +  i)

( f t b )^1 “ t1 -  ä)5 ' ’)
+ 1

(AI.42)

Using expression (A1.42) and the following result, which follows from equation (A1.31):

1
px  =  (■ -  b 6 (A1.43)

we have:
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(A1.44)mx ■ -  (i -  fe)E

i -  a  -  l )* +1

Substituting for a and b using the expressions:

Mx
b =_  1

Mx Mx + 1

leads to the result:

Mx Mx + i

1 _  , ' _ M x _ ' A + 1 ~ /ix
lMx+l j___________

, , Mx > x + l “ Mx +  L>
Mx-pi'

“*(1 + Vx -

(A1.45)

(A1.46)
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A P PEN D IX  II

The printouts of the simulation output

Key to the printouts of the simulation outputs: 

A2.1 ASPSIM Table I

Table I shows, for the simulation concerned, the average of the 500 values of qx calculated 

for each estimator.

Table I of ASPSIM shows for assumptions b = 2, b = 1 (“Level deaths”), b = 0 (“Constant 

n”) and b = -1 (Balducci) of the rectangular hyperbolic mortality distribution, values of the 

following estimators:

“Hoem”

“ImpB”

“Conv”

“n = -2 ”

“Time”

“Log”

“MLE”

“n=2”

“n=3”

: Hoem’s approximated “operational moment relations” estimators (for 

b =  1 or b = -1 only)

: the Implication-B estimator 

: the conventional estimator 

: the n-estimator for n = -2

: the time-count estimator (the n-estimator for n = -1)

: the log-estimator (the n-estimator for n = 0)

: the maximum likelihood estimator (the n-estimator for n — 1)

: the n-estimator for n = 2 

: the n-estimator for n = 3

Table I of ASPSIM also shows for assumption c = 1.1 of the Gompertz mortality 

distribution, values of the following estimators:

ImpB” : the Implication-B estimator

Conv” : the conventional estimator

Time” : the time-count estimator

MLE” : the maximum likelihood estimator

In addition Table I shows values of the following estimators:
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“PL” : the product limit estimator

“ML H” : the value of qx , assuming the rectangular hyperbolic mortality 

distribution, calculated from the maximum likelihood estimators of both 

a and b, ie the two-parameter maximum likelihood estimator of qx 

assuming the rectangular hyperbolic mortality distribution.

“parameter b” : the maximum likelihood estimator of b, assuming the rectangular 

hyperbolic mortality distribution, (and used in calculating “ML H”).

“ML G” : the value of qx , assuming the Gompertz mortality distribution, 

calculated from the maximum likelihood estimators of both a and b, ie 

the two-parameter maximum likelihood estimator of qx assuming the 

Gompertz mortality distribution.

“parameter c” : the maximum likelihood estimator of c, assuming the Gompertz 

mortality distribution, (and used in calculating “ML G”).

A2.2 ASPSIM Table II

Table II shows, for the simulation concerned, the estimated standard deviation of each 

estimator. It must be emphasised that the standard deviation shown is for a single observed 

value of the estimator concerned, and not for the average of 500 observed values. The latter 

standard deviation may be obtained by dividing the corresponding figure shown in Table II 

for a single observed value by the square root of 500.

The figures are presented in a similar layout to that used in Table I of ASPSIM. It will be 

noted that the item “sd of para b” in the printouts gives the standard deviation of the 

maximum likelihood estimator of the parameter b calculated when the rectangular 

hyperbolic mortality distribution is assumed, and that the item “sd of para c” gives the 

standard deviation of the maximum likelihood estimator of the parameter c calculated when 

the Gompertz mortality distribution is assumed .

A2.3 ASPSIM Tables III and IV

These tables show respectively the lower limit and upper limit of the confidence intervals for 

the population value of qx based on each of the estimators calculated in the simulation 

concerned.
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For each estimator, the limits have been obtained by respectively subtracting or adding 

twice the estimated standard deviation of the average observed value from/to the average 

observed value of the estimator, the latter figure being that shown in Table I. The 

estimated standard deviation of the average observed value is obtained by taking the 

standard deviation of a single observed value, as given in Table II, by the square root of 

500.

Lower and upper limits for the population parameters b and c based on the values estimated 

in connection with the “ML H” and “ML G” estimators are also shown, and similarly 

calculated.

The distribution of the average observed value of each estimator will be very close to a 

normal distribution so that the confidence interval based on the addition/subtraction of two 

standard deviations will be a 95% confidence interval.

A2.4 ASPSIM Table V

In Table V, the many values of the average observed qx from Table I are taken and the 

average observed value of the “ML H” or the “ML G” maximum likelihood estimator is 

deducted from each of them; the “ML II” or “ML G” value is used according to whether 

the simulation had assumed that the underlying population was subject to the rectangular 

hyperbolic mortality distribution or the Gompertz mortality distribution. However, with 

regard to the parameters b and c relating to the “ML H” and “ML G” estimators, the 

figures shown are simply repetitions of the values of the maximum likelihood estimators of 

the parameters.

A2.5 ASPMMSIM Tables I-V

The general principles upon which the output is presented for the ASPMMSIM tables are 

similar to those used for the ASPSIM tables. The descriptions of the estimators in the 

tables are less abbreviated than in the ASPSIM tables and in general should need no 

additional explanation.

It will be noted that a reduced number of estimators are dealt with, although the “method 

of moments” estimator (calculated using simulated values of “t j” and applying equations 

(1.36), (1.37) and (5.2)) is now included.

It will also be noted that estimators which make the b =  2 assumption under the
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rectangular hyperbolic mortality distribution are also omitted.

The main purpose of the ASPMMSIM program was to allow comparison of the “method of 

moments” estimator with other mortality rate estimators. This estimator was not 

incorporated into the ASPSIM program due to the more complex simulation procedure 

which it required, which among other things could have lengthened the time taken by a run.

A2.6 The printouts

The printouts of the simulation outputs now follow.
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Printout IA Simulation 1A

page 1 

ASPSIM

b =  2

Program : ASPSIM A S Puzey 1990

Mortality distribution : Rectangular hyperbolic

Mortality rate : 0.20 

Withdrawal rate : 0.40

Distn parameter : 2.00

Random deaths/wdls

No of lives exposed from beginning of year : 10000

No of lives exposed from duration 3 months : 10000

No of runs :: 500

TABLE I - Average observed q

b=2 Level Dths Const Mu Balducci * Gompz

Hoem 0.1981701 0.2000149
ImpB 0.2002303 0.2007837 0 .2015292 0.2024830 * 0.2011793
Conv 0.2002258 0.2008413 0.2016698 0.2027328 * 0.2012816

n=-2 0.2002432 0.1989462 0.2003889 0.2047307
T ime 0 .2002376 0.1995725 0.2003889 0.2027328 * 0.1998493
Log 0.2002303 0.2002050 0.2003889 0.2007952
MLE 0.2002207 0.2008413 0.2003889 0.1989215 X 0.2002741
n= 2 0.2002094 0.2014794 0.2003889 0.1971138
n= 3 0.2001960 0.2021164 0.2003889 0.1953730

PL 0.2002003
ML H 0.2002398 parameter b = 1.99301
ML G 0.2000295 parameter c = 1.56950

TABLE II - Standard deviation of observed q

b=2 Level Dths Const Mu Balducci X Gompz

Hoem 0.0031140 0.0031681
ImpB 0.0031951 0.0032043 0.0032292 0.0032659 X 0.0032230
Conv 0.0031801 0 .0032052 0.0032129 0.0032647 'X 0.0032246

n=-2 0.0034197 0 .0032067 0.0031756 0.0033663
Time 0.0032798 0.0031893 0.0031756 0.0032647 X 0.0031831
Log 0.0031958 0.0031903 0.0031756 0.0031892
MLE 0.0031891 0.0032052 0.0031756 0.0031278 X 0.0031812
n= 2 0 .0032315 0.0032289 0.0031756 0.0030817
n= 3 0.0033251 0.0032761 0.0031756 0.0030527

PL 0.0033495
ML H 0.0031991 sd of para b = 0.33341
ML G 0.0031845 sd of para c = 0,.11785
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Printout 1A continued Simulation 1A

page 2 

ASPSIM

b =  2

TABLE III - Confidence interval for q - lower limit

b=2 Level Dths Const Mu Balducci * Gompz

Hoem 0.1978916 0.1997315
ImpB 0.1999445 0.2004972 0.2012404 0.2021908 * 0.2008910
Conv 0.1999414 0.2005547 0.2013824 0.2024408 * 0.2009932

n = -2 0.1999373 0.1986594 0 .2001049 0.2044296
Time 0.1999443 0.1992873 0.2001049 0.2024408 * 0.1995646
Log 0.1999445 0.1999196 0.2001049 0 .2005100
MLE 0.1999355 0.2005547 0.2001049 0.1986417 * 0.1999895
n= 2 0.1999204 0.2011906 0.2001049 0.1968381
n= 3 0.1998986 0.2018234 0.2001049 0.1951000

PL 0.1999008
ML H 0.1999537 para b lower limit = 1.96319
ML G 0.1997447 para c lower limit = 1 .55896

TABLE IV - Confidence interval for q - upper limit

b=2 Level Dths Const Mu Balducci * Gompz

Hoem 0.1984487 0.2002983
ImpB 0.2005161 0.2010703 0 .2018181 0.2027751 * 0.2014676
Conv 0 .2005103 0.2011280 0.2019571 0.2030248 * 0.2015700

n=-2 0.2005491 0.1992330 0.2006730 0.2050318
T ime 0.2005310 0.1998578 0.2006730 0.2030248 * 0.2001340
Log 0.2005161 0.2004903 0.2006730 0.2010805
MLE 0.2005059 0.2011280 0.2006730 0.1992012 * 0.2005586
n= 2 0.2004984 0.2017682 0.2006730 0.1973894
n= 3 0.2004934 0.2024094 0.2006730 0.1956461

PL 0.2004999
ML H 0.2005260 para b upper limit = 2.02283
ML G 0.2003143 para c upper limit = 1.58004

TABLE V - Diff wrt two-para Rect Hyper/Gompertz MLE

b=2 Level Dths Const Mu Balducci * Gompz

Hoem
ImpB
Conv

-0 .0000095 
-0.0000140

-0.0020697
0.0005439
0.0006015

0.0012894
0.0014299

-0.0002249 
0 .0022431 
0.0024929

* 0.0009395
* 0.0010418

n=-2 
Time 
Log 
MLE 
n= 2 
n= 3

0 .0000034 
-0.0000022 
-0 .0000095 
-0.0000191 
-0.0000304 
-0.0000439

-0 .0012936 
-0.0006673 
-0.0000349 
0.0006015 
0.0012396 
0.0018766

0 .0001491 
0.0001491 
0.0001491 
0.0001491 
0.0001491 
0.0001491

0.0044909 
0.0024929 
0.0005554 
-0.0013183 
-0.0031261 
-0 .0048668

* -0.0003905

* 0.0000342

PL
ML H
ML G

-0.0000395 
0.0000000 
-0.0002103

parameter
parameter

b = 1 
c = 1

.99301

.56950
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ASPMMSIM

b = 2

Program: ASPMMSIM A S Puzey 1990

Mortality distribution : Rectangular hyperbolic

Mortality rate : 0.20 Distn parameter : 2.00

Withdrawal rate : 0.40 Random deaths/wdls

No of lives exposed from beginning of year : 10000

No of lives exposed from duration 3 months : 10000

No of runs : 500

TABLE I - Average observed q

Level Dths Const Mu Balducci * 1 .1 Gompz

Hoems Adjusted 0.1978693 0.1997061
Meth of Moments 0.2003869 0.2010741 0.2019986 * 0.2007448
Implication-B 0.2004692 0.2012104 0.2021590 * 0.2008619
Conventional 0.2005353 0.2013596 0.2024181 * 0 .2009727
Max Likelihood 0.2005353 0.2000782 0.1986110 X 0.1999636
T ime-count 0.1992587 0.2000782 0.2024181 X 0.1995376

Product Limit 0.1998565
MLE - Rect Hyper 0.1999311 parameter b = 2.00203
MLE - Gompertz 0.1997198 parameter c = 1.57152

TABLE II - Standard deviation of observed q

Level Dths Const Mu Balducci * 1 .1 Gompz

Hoems Adjusted 0.0030913 0.0031549
Meth of Moments 0.0031628 0.0031925 0.0032162 * 0.0031794
Implication-B 0.0031666 0.0031849 0.0032129 * 0 .0031787
Conventional 0.0031699 0.0031972 0.0032279 X 0.0031987
Max Likelihood 0.0031699 0.0031245 0.0030529 X 0.0031354
T ime-count 0.0031133 0.0031245 0.0032279 X 0.0031281

Product Limit 0.0032227
MLE - Rect Hyper 0.0031579 sd of para b = 0.31630
MLE - Gompertz 0.0031417 sd of para c = 0.11245
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b =  2

Printout IB continued Simulation IB

TABLE III - Confidence interval for q - lower limit

Level Dths Const Mu Balducci * 1.1 Gompz

Hoems Adjusted 0.1975928 0.1994239
Meth of Moments 0.2001040 0 .2007885 0.2017109 * 0.2004604
Implication-B 0.2001859 0.2009256 0.2018716 * 0.2005776
Conventional 0.2002518 0.2010737 0.2021294 * 0.2006866
Max Likelihood 0.2002518 0.1997988 0.1983379 X 0.1996832
T ime-count 0.1989803 0.1997988 0 .2021294 ■X 0.1992578

Product Limit 0.1995682 '
MLE - Rect Hyper 0.1996486 para b lower limit = 1.97374
MLE - Gompertz 0.1994388 para c lower limit = 1.56146

TABLE IV - Confidence interval for q - upper limit

Level Dths Const Mu Balducci X 1 .1 Gompz

Hoems Adjusted 
Meth of Moments

0.1981458
0.2006698 0.2013596

0.1999883
0.2022862 X 0.2010292

Implication-B 0.2007524 0.2014953 0.2024464 X 0.2011462
Conventional 0.2008188 0.2016456 0 .2027068 X 0.2012588
Max Likelihood 0.2008188 0.2003577 0.1988841 X 0 .2002441
T ime-count 0.1995372 0.2003577 0.2027068 X 0.1998174

Product Limit 
MLE - Rect Hyper

0.2001447
0.2002136 para b upper limit = 2.03032

MLE - Gompertz 0.2000008 para c upper limit = 1.58157

TABLE V - Diff wrt two-para Rect Hyper/Gompertz 1MLE

Level Dths Const Mu Balducci X 1.1 Gompz

Hoems Adjusted -0.0020618 -0.0002250
Meth of Moments 0.0004558 0.0011430 0.0020675 X 0 .0008137
Implication-B 0.0005381 0.0012793 0.0022279 X 0.0009308
Conventional 0 .0006042 0.0014285 0.0024870 X 0.0010416
Max Likelihood 0.0006042 0.0001471 -0.0013201 X 0.0000325
T ime-count -0.0006724 0 .0001471 0.0024870 X -0.0003935

Product Limit -0.0000746
MLE - Rect Hyper 0.0000000 parameter b = 2.00203
MLE - Gompertz -0.0002113 parameter C = 1.57152
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ASPSIM

b =  1

Printout 2A Simulation 2A

Program : ASPSIM A S Puzey 1990

Mortality distribution : 

Mortality rate : 0.20 

Withdrawal rate : 0.40 

No of lives exposed from 

No of lives exposed from 

No of runs : 500

Rectangular hyperbolic 

Distn parameter : 1.00

Random deaths/wdls 

beginning of year : 10000

duration 3 months : 10000

TABLE I - Average observed q

b=2 Level Dths Const Mu Balducci * Gompz

Hoem 0.1972628 0.1990980
ImpB 0.1993401 0.1998990 0.2006481 0.2016034 * 0.2002952
Conv 0.1992846 0.1999002 0.2007251 0.2017816 * 0.2003370

n=-2 0.2025719 0.1999178 0.2000934 0.2030889
T ime 0.2012300 0.1999102 0.2000934 0.2017816 * 0.1998242
Log 0.1999213 0.1999043 0.2000934 0.2005026
MLE 0.1986622 0.1999002 0.2000934 0.1992556 * 0.1999766
n= 2 0.1974661 0.1998977 0.2000934 0.1980431
n= 3 0.1963426 0.1998969 0.2000934 0.1968673

PL 0.1999971
ML H 0.1999161 parameter b = 0.99407
ML G 0.1998588 parameter c = 1 ,.25140

TABLE II - Standard deviation of observée1 q

b=2 Level Dths Const Mu Balducci * Gompz

Hoem 0.0032410 0.0032984
ImpB 0 .0033098 0 .0033267 0.0033520 0.0033806 * 0.0033551
Conv 0.0033008 0.0033168 0.0033417 0.0033842 * 0.0033420

n=-2 0.0036617 0 .0033977 0 .0033347 0 .0034573
Time 0.0034804 0.0033498 0.0033347 0.0033842 X 0.0033310
Log 0.0033581 0.0033305 0 .0033347 0.0033377
MLE 0.0032704 0.0033168 0.0033347 0.0032932 X 0.0033302
n= 2 0.0032352 0.0033181 0.0033347 0.0032639
n= 3 0.0032632 0.0033280 0.0033347 0.0032486

PL 0 .0033918
ML H 0.0033345 sd of parai b = 0 .31914
ML G 0.0033401 sd of para C = 0 .08901
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b = 1

Printout 2A continued Simulation 2A

TABLE III - Confidence interval for q -- lower limit

b=2 Level Dths Const Mu Balducci * Gompz

Hoem 0.1969729 0.1988030
ImpB 0.1990441 0.1996015 0 .2003483 0.2013010 * 0.1999951
Conv 0.1989894 0.1996035 0.2004263 0.2014789 * 0.2000381

n=-2 0.2022444 0.1996139 0.1997951 0.2027797
Time 0.2009187 0.1996106 0.1997951 0.2014789 * 0.1995263
Log 0.1996209 0.1996064 0.1997951 0.2002040
MLE 0.1983697 0.1996035 0.1997951 0.1989611 X 0.1996788
n= 2 0.1971768 0.1996009 0.1997951 0.1977512
n= 3 0.1960507 0.1995992 0.1997951 0.1965767

PL 0.1996938
ML H 0.1996178 para b lower limit = 0.96553
ML 6 0.1995600 para c lower limit = 1.24344

TABLE IV - Confidence interval for q - upper limit

b=2 Level Dths Const Mu Balducci X Gompz

Hoem 0.1975527 0.1993930
ImpB 0.1996362 0.2001966 0.2009479 0 .2019058 X 0.2005953
Conv 0.1995799 0.2001968 0.2010240 0.2020843 X 0.2006359

n=-2 0.2028994 0.2002217 0.2003916 0.2033982
T ime 0.2015413 0.2002099 0.2003916 0.2020843 X 0.2001222
Log 0.2002216 0.2002022 0 .2003916 0 .2008011
MLE 0.1989547 0.2001968 0.2003916 0.1995502 X 0.2002745
n= 2 0.1977555 0.2001945 0 .2003916 0.1983351 .
n= 3 0.1966345 0.2001945 0.2003916 0.1971579

PL 0.2003005
ML H 0.2002143 para b upper limit = 1 .02262
ML G 0.2001576 para c upper limit = 1 .25936

TABLE V - Diff wrt two-para Rect Hyper/Gompertz MLE

b=2 Level Dths Const Mu Balducci X Gompz

Hoem -0.0026533 -0.0008181
ImpB -0.0005759 -0 .0000170 0.0007320 0.0016873 X 0.0003791
Conv -0.0006314 -0.0000159 0.0008091 0.0018655 X 0.0004209

n=-2 0.0026558 0.0000017 0 .0001773 0.0031729
Time 0.0013139 -0.0000058 0.0001773 0.0018655 X -0.0000918
Log 0.0000052 -0 .0000118 0.0001773 0.0005865
MLE -0.0012539 -0.0000159 0.0001773 -0.0006604 X 0.0000606
n= 2 -0 .0024499 -0.0000184 0.0001773 -0.0018729
n= 3 -0.0035734 -0.0000192 0.0001773 -0.0030488

PL 0 .0000811
ML H 0.0000000 parameter b = 0.99407
ML G -0.0000573 parameter C  =  1 ..25140
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ASPMMSIM

b - 1

Program : ASPMMSIM A S Puzey 1990

Mortality distribution : Rectangular hyperbolic

Mortality rate : 0.20 Distn parameter : 1 .00

Withdrawal rate : 0.40 Random deaths/wdls

No of lives exposed from beginning of year : 10000

No of lives exposed from duration 3 months : 10000

No of runs : 500

TABLE I - Average observed q

Level Dths Const Mu Balducci * 1 .1 Gompz

Hoems Adjusted 0.1975446 0.1993852
Meth of Moments 0.2001887 0.2008749 0.2017971 * 0 .2005459
Implication-B 0.2001860 0.2009369 0.2018946 * 0.2005838
Conventional 0.2001892 0.2010164 0.2020762 * 0 .2006279
Max Likelihood 0.2001892 0.2003871 0.1995454 * 0.2002708
T ime-count 0.2002093 0.2003871 0 .2020762 * 0.2001192

Product Limit 0.2001644
MLE - Rect Hyper 0.2002110 parameter b := 0.98460
MLE - Gompertz 0.2001542 parameter c ;= 1.24993

TABLE II - Standard deviation of observed q

Level Dths Const Mu Balducci * 1.1 Gompz

Hoems Adjusted 0.0030346 0.0030919
Meth of Moments 0.0031250 0.0031412 0.0031742 * 0.0031379
Implication-B 0.0031230 0 .0031404 0.0031824 X 0.0031366
Conventional 0.0031164 0.0031419 0.0031781 X 0.0031298
Max Likelihood 0.0031164 0.0031222 0 .0031005 '* 0.0031224
T ime-count 0.0031459 0.0031222 0.0031781 X 0.0031338

Product Limit 0 .0032442
MLE - Rect Hyper 0.0031285 sd of para b = 0.30893
MLE - Gompertz 0 .0031321 sd of para c = 0.08673
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Printout 2B continued Simulation 2B

TABLE III - Confidence interval for q - lower limit

Level Dths Const Mu Balducci * 1.1 Gompz

Hoems Adjusted 
Meth of Moments 
Implication-B 
Conventional 
Max Likelihood 
T ime-count

0.1972732 
0.1999092 
0.1999067 
0.1999105 
0.1999105 
0.1999279

0.2005939
0.2006560
0.2007353
0.2001078
0.2001078

0.1991087 
0.2015131 
0.2016100 
0.2017920 
0.1992680 
0.2017920

* 0.2002652
* 0.2003033
* 0.2003480
* 0.1999915
* 0.1993389

Product Limit 
MLE - Rect Hyper 
MLE - Gompertz

0.1998742
0.1999312
0.1998740

para b lower 
para c lower

limit = 
limit =

0 .95697 
1.24217

TABLE IV - Confidence interval for q - upper limit

Level Dths Const Mu Balducci * 1 .1 Gompz

Hoems Adjusted 0.1978160 0.1996618
Meth of Moments 0.2004682 0.2011558 0.2020810 * 0.2008265
Implication-B 0.2004653 0.2012178 0 .2021793 * 0.2008643
Conventional 0.2004679 0.2012974 0.2023605 * C .2009078
Max Likelihood 0.2004679 0.2006663 0.1998227 * 0 .2005501
T ime-count 0.2004906 0.2006663 0.2023605 X 0.2003995

Product Limit 0.2004546
MLE - Rect Hyper 0.2004908 para b upper limit = 1.01223
MLE - Gompertz 0.2004343 para c upper limit = 1.25768

TABLE V - Diff wrt two-para Rect Hyper/Gompertz 1MLE

Level Dths Const Mu Balducci X 1.1 Gompz

Hoems Adjusted -0.0026664 -0.0008258
Meth of Moments -0.0000223 0 .0006639 0.0015860 X 0.0003349
Implication-B -0.0000250 0.0007259 0.0016836 X 0.0003728
Conventional -0.0000218 0.0008053 0.0018652 X 0.0004169
Max Likelihood -0.0000218 0.0001761 -0.0006656 X 0.0000598
T ime-count -0.0000017 0.0001761 0.0018652 X -0 .0000918

Product Limit -0.0000466
MLE - Rect Hyper 0.0000000 parameter b = 0.98460
MLE - Gompertz -0.0000568 parameter c = 1.24993
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ASPSIM

b =  0 & c =  1

Program : ASPSIM A S Puzey 1990

Mortality distribution : 

Mortality rate : 0.20 

Withdrawal rate : 0.40 

No of lives exposed from 

No of lives exposed from 

No of runs : 500

Rectangular hyperbolic 

Distn parameter : 0.00

Random deaths/wdls 

beginning of year : 10000

duration 3 months : 10000

TABLE I - Average observed q

b=2 Level Dths Const Mu Baiducei * Gompz

Hoem 0.1964406 0.1982689
ImpB 0.1985442 0.1991098 0.1998642 0.2008233 * 0.1995079
Conv 0.1984284 0.1990440 0.1998666 0.2009177 * 0.1994781

n=-2 0.2049535 0.2009277 0.1998596 0.2015705
Time 0.2022599 0.2002926 0.1998596 0.2009177 * 0.1998526
Log 0.1996729 0.1996643 0.1998596 0 .2002727
MLE 0.1972203 0.1990440 0.1998596 0.1996369 * 0.1997402
n= 2 0.1949204 0.1984341 0.1998596 0.1990129
n= 3 0.1927845 0.1978364 0.1998596 0.1984019

PL 0.1999001
ML H 0.1998702 parameter b = 0.00198
ML G 0.1998620 parameter c = 1.00515

TABLE II - Standard deviation of observed q

b=2 Level Dths Const Mu Balducci * Gompz

Hoem 0.0031252 0.0031933
ImpB 0 .0032021 0.0032152 0.0032401 0.0032767 * 0.0032353
Conv 0.0031956 0.0032156 0.0032429 0.0032781 * 0.0032427

n=-2 0 .0036401 0 .0033362 0.0032295 0.0033244
Time 0 .0034177 0.0032974 0.0032295 0.0032781 * 0.0032473
Log 0.0032528 0 .0032416 0.0032295 0.0032371
MLE 0.0031427 0.0032156 0.0032295 0.0032237 * 0.0032487
n= 2 0.0030966 0 .0032027 0.0032295 0.0032001
n= 3 0 .0030736 0.0031901 0.0032295 0.0032056

PL 0.0033094
ML H 0.0032441 sd of para1 b = 0.30001
ML G 0 .0032447 sd of para C = 0.06980

-  203 -



Printout 3A continued Simulation 3A

page 2 

ASPSIM

b =  0 k. c =  1

TABLE III - Confidenee interval for q - lower limit

b=2 Level Dths Const Mu Balducci * Gornpz

Hoem 0.1961611 0.1979833
ImpB 0.1982578 0.1988222 0.1995744 0.2005302 * 0.1992186
Conv 0.1981426 0.1987564 0.1995766 0.2006245 * 0.1991881

n=-2 0.2046280 0.2006293 0.1995708 0.2012731
Time 0.2019543 0.1999977 0.1995708 0.2006245 * 0.1995622
Log 0.1993820 0.1993743 0.1995708 0.19998^2
MLE 0.1969392 0.1987564 0.1995708 0.1993486 * 0.1994496
n= 2 0.1946435 0.1981476 0.1995708 0.1987267
n= 3 0.1925096 0.1975511 0.1995708 0.1981152

PL 0.1996041
ML H 0.1995801 para b lower limit = -0.02564
ML G 0.1995718 para c lower limit = 0.99890

TABLE IV - Confidence interval for q - upper limit

b=2 Level Dths Const Mu Balducci X Gompz

Hoem 0.1967202 0.1985545
ImpB 0.1988306 0.1993974 0.2001540 0.2011164 X 0.1997973
Conv 0.1987143 0.1993316 0.2001567 0.2012109 X 0.1997681

n=-2 0.2052791 0.2012261 0.2001485 0.2018678
Time 0.2025656 0.2005875 0.2001485 0.2012109 X 0.2001431
Log 0.1999639 0.1999542 0.2001485 0 .2005622
MLE 0.1975014 0.1993316 0.2001485 0.1999253 X 0.2000308
n= 2 0.1951974 0.1987206 0.2001485 0.1992991
n= 3 0.1930594 0.1981218 0.2001485 0.1986886

PL 0.2001961
ML H 0.2001604 para b upper limit = 0.02960
ML G 0.2001522 para c upper limit = 1.01140

TABLE V - Diff wrt two-para Rect Hyper/Gompertz MLE

b=2 Level Dths Const Mu Balducci X Gompz

Hoem -0.0034296 -0.0016013
ImpB -0.0013260 -0 .0007604 -0 .0000061 0.0009530 X -0 .0003623
Conv -0.0014418 -0.0008262 -0.0000036 0.0010474 X -0.0003921

n = -2 0.0050833 0 .0010574 -0.0000106 0 .0017002
T ime 0.0023897 0.0004224 -0.0000106 0.0010474 X -0.0000176
Log -0.0001973 -0.0002060 -0.0000106 0 .0004025
MLE -0.0026499 -0.0008262 -0.0000106 -0 .0002333 . X -0.0001300
n= 2 -0.0049498 -0 .0014361 -0 .0000106 -0 .0008573
n= 3 -0.0070858 -0.0020338 -0.0000106 -0 .'0014684

PL 0.0000298
ML H 0.0000000 parameter b = 0.00198
ML G -0 .0000082 parameter C = 1.00515
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Printout 3B Simulation 3B

Program: ASPMMSIM A S Puzey 1990

Mortality distribution : Rectangular hyperbolic

Mortality rate : 0.20 Distn parameter : 0.00

Withdrawal rate : 0.40 Random deaths/wdls

No of lives exposed from beginning of year : 10000

No of lives exposed from duration 3 months : 10000

No of runs : 500

TABLE I - Average observed q

Level Dths Const Mu Balducci * 1.1 Gompz

Hoems Adjusted 0.1967082 0.1985416
Meth of Moments 0.1994620 0.2001428 0 .2010571 * 0.1998152
Implication-B 0.1993816 0.2001374 0.2010986 X 0.1997808
Conventional 0.1993195 0.2001443 0.2011985 X 0.1997554
Max Likelihood 0.1993195 0.2001512 0.1999390 * 0.2000326
T ime-count Ö .2006023 0.2001512 0.2011985 * 0.2001506

Product Limit 0.2001527
MLE - Rect Hyper 0.2001689 parameter b = -0.01862
MLE - Gompertz 0.2001608 parameter c = 1.00040

TABLE II - Standard deviation of observed q

Level Dths Const Mu Balducci * 1.1 Gompz

Hoems Adjusted 0.0032275 0.0033031
Meth of Moments 0.0033314 0.0033561 0.0033864 * 0 .0033506
Implication-B 0.0033131 0.0033444 0.0033866 X 0.0033466
Conventional 0.0033265 0.0033437 0.0033954 X 0.0033454
Max Likelihood 0.0033265 0.0033516 0.0033260 X 0 .0033379
T ime-count 0.0033942 0.0033516 0 .0033954 X 0.0033634

Product Limit 0 .0034677
MLE - Rect Hyper 0.0033512 sd of para b = 0.32343
MLE - Gompertz 0 .0033514 sd of para c = 0.07255
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b =  0 & c =  1

TABLE III - Confidence interval for q - lower limit

Level Dths Const Mu Balducci * 1.1 Gompz

Hoems Adjusted 
Meth of Moments 
Implication-B 
Conventional 
Max Likelihood 
T ime-count

0.1964196
0.1991641
0.1990853
0.1990220
0.1990220
0.2002987

0.1998427 
0.1998383 
0.1998453 
0.1998515 
0.1998515

0.1982461 
0.2007542 * 
0.2007957 * 
0.2008948 * 
0.1996415 * 
0.2008948 *

0.1995155 
0.1994815 
0.1994562 
0.1997341 
0.1998498

Product Limit 
MLE - Rect Hyper 
MLE - Gompertz

0.1998425
0.1998691
0.1998611

para b lower 
para c lower

limit = -0.04755 
limit = 0.99391

TABLE IV - Confidence interval for q - upper limit

Level Dths Const Mu Balducci * 1.1 Gompz

Hoems Adjusted 
Meth of Moments 
Implication-B 
Conventional 
Max Likelihood 
Time-count

0.1969969 
0.1997600 
0.1996780 
0.1996170 
0.1996170 
0.2009059

0.2004430 
0.2004366 
0.2004434 
0 .2004510 
0.2004510

0.1988370 
0.2013600 * 
0.2014015 * 
0.2015021 * 
0.2002364 * 
0.2015021 *

0.2001148 
0.2000801 
0.2000546 
0 .2003312 
0.2004514

Product Limit 
MLE - Rect Hyper 
MLE - Gompertz

0.2004628 
0.2004686 
0.2004606

para b upper 
para c upper

limit = 0.01030 
limit = 1.00689

TABLE V - Diff wrt two-para Rect Hyper/Gompertz MLE

Level Dths Const Mu Balducci * 1.1 Gompz

Hoems Adjusted -0.0034606 -0 .0016273
Meth of Moments -0.0007068 -0.0000260 0.0008882 * -0.0003537
Implication-B -0.0007872 -0.0000314 0.0009297 * -0.0003881
Conventional -0 .0008494 -0.0000245 0 .0010296 * -0.0004135
Max Likelihood -0.0008494 -0.0000176 -0.0002299 * -0.0001362
T ime-count 0.0004334 -0.0000176 0.0010296 * -0.0000183

Product Limit -0 .0000162
MLE - Rect Hyper 0 .0000000 parameter b = -0.01862
MLE - Gompertz -0 .0000080 parameter c = 1.00040
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b = -1

Program : ASPSIM A S Puzey 1990

Mortality distribution : 

Mortality rate : 0.20 

Withdrawal rate : 0.40 

No of lives exposed from 

No of lives exposed from 

No of runs : 500

Rectangular hyperbolic 

Distn parameter : -1.00

Random deaths/wdls 

beginning of year : 1 0Q00

duration 3 months : 10000

TABLE I - Average observed q

(M 1 
Il 
1 

.Û 1 Level Dths Const Mu Balducci * Gompz

Hoem 0.1954472 0.1972679
ImpB 0.1975774 0.1981507 0.1989112 0.1998741 * 0.1985506
Conv 0.1973951 0.1980113 0.1988314 0.1998762 * 0.1984423

n = -2 0.2072675 0.2017938 0.1994511 0.1998811
Time 0.2031334 0.2005076 0.1994511 0.1998762 X 0.1997094
Log 0.1992417 0.1992458 0.1994511 0.1998713
MLE 0.1956173 0.1980113 0.1994511 0.1998660 X 0.1993277
n= 2 0.1922715 0.1968074 0.1994511 0.1998607
n= 3 0.1892030 0.1956365 0.1994511 0.1998548

PL 0.1998418
ML H 0.1998782 parameter b = -0 .99118
ML G 0.1998187 parameter c = 0 ,.80368

TABLE II - Standard deviation of observed q

b = 2 Level Dths Const Mu Balducci X Gompz

Hoem 0.0031375 0.0032023
ImpB 0 .0032182 0.0032281 0.0032481 0.0032915 X 0.0032532
Conv 0.0032060 0.0032176 0.0032384 0.0032909 X 0.0032453

n=-2 0 .0038145 0.0034277 0.0032714 0.0033110
Time 0.0035214 0.0033498 0.0032714 0.0032909 X 0.0032919
Log 0 .0032850 0.0032701 0 .0032714 0.0032781
MLE 0.0031445 0.0032176 0.0032714 0.0032840 X 0.0032754
n= 2 0 .0030452 0.0031771 0 .0032714 0 .0032872
n= 3 0.0029957 0.0031515 0.0032714 0.0033226

PL 0.0033741
ML H 0.0032678 sd of para b = 0.30492
•ML G 0 .0032776 sd of para c = 0.05476
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b =  - 1

TABLE III - Confidence interval for q - lower limit

b=2 Level Dths Const Mu Balducci * Gompz

Hoem 0.1951666 0.1969815
ImpB 0.1972895 0.1978620 0.1986206 0.1995797 * 0.1982596
Conv 0.1971083 0.1977235 0.1985417 0.1995819 * 0.1981520

n=-2 0.2069263 0.2014872 0.1991585 0.1995849
T ime 0.2028184 0.2002079 0.1991585 0.1995819 * 0.1994150
Log 0.1989478 0.1989533 0.1991585 0.1995781
MLE 0.1953360 0.1977235 0.1991585 0.1995723 * 0.1990348
n= 2 0.1919991 0.1965232 0.1991585 0.1995667
n= 3 0.1889351 0.1953546 0.1991585 0.1995576

PL 0.1995400
ML H 0.1995859 para b lower limit = -1.01845
ML G 0.1995256 para c lower limit = 0.79878

TABLE IV - Confidence interval for q - upper limit

b=2 Level Dths Const Mu Balducci * Gompz

Hoem 0.1957279 0.1975543
ImpB 0.1978652 0.1984395 0.1992017 0 .2001685 * 0.1988416
Conv 0.1976818 0.1982991 0.1991210 0.2001706 * 0.1987326

n=-2 0.2076087 0 .2021003 0.1997437 0.2001772
T ime 0.2034483 0.2008072 0.1997437 0.2001706 * 0.2000038
Log 0.1995355 0.1995382 0.1997437 0.2001645
MLE 0.1958986 0.1982991 0.1997437 0.2001598 * 0.1996207
n= 2 0.1925439 0.1970916 0.1997437 0.2001547
n= 3 0.1894710 0.1959184 0.1997437 0.2001520

PL 0.2001436
ML H 0.2001705 para b upper limit = -0 .96391
ML G 0.2001119 para c upper limit = 0.80858

TABLE V - Diff wrt two-para Rect Hyper/Gompertz MLE

b=2 Level Dths Const Mu Balducci * Gompz

Hoem
ImpB
Conv

-0 .0023008 
-0.0024831

-0.0044310 
-0 .0017275 
-0.0018669

-0 .0009671 
-0.0010468

-0.0026103 
-a.0000041 
-0.0000020

* -0.0013276
* -0.0014359

n = -2 
Time 
Log 
MLE 
n= 2 
n= 3

0 .0073893 
0.0032552 
-0.0006365 
-0.0042609 
-0 .0076067 
-0.0106752

0.0019155
0.0006294
-0.0006325
-0.0018669
-0.0030708
-0.0042417

-0 .0004272 
-0.0004272 
-0.0004272 
-0.0004272 
-0 .0004272 
-0.0004272

0.0000029 
-0.0000020 
-0 .0000069 
-0.0000122 
-0.0000175 
-0.0000234

* -0.0001688 

* -0.0005505

PL
ML H 
ML G

-0.0000364
0.0000000
-0.0000595

parameter
parameter

b = -0
C = 0

.99118

.80368
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b =  - 1

Program : ASPMMSIM A S Puzey 1990

Mortality distribution : Rectangular hyperbolic

Mortality rate : 0.20 Distn parameter : -1 .00

Withdrawal rate : 0.40 Random deaths/wdls

No of lives exposed from beginning of year : 10000

No of lives exposed from duration 3 months : 10000

No of runs : 500

TABLE I - Average observed q

Level Dths Const Mu Balducci * 1 .1 Gornpz

Hoerns Adjusted 0.1956406 0.1974654
Meth of Moments 0.1984868 0.1991635 0.2000702 X 0.1988364
Implication-B 0.1983497 0.1991121 0.2000775 X 0.1987512
Conventional 0.1982102 0.1990324 0.2000803 X 0.1986430
Max Likelihood 0.1982102 0.1996568 0.2000776 X 0.1995333
T ime-count 0.2007204 0.1996568 0.2000803 X 0.1999175

Product Limit 0.2001172
MLE - Rect Hyper 0.2000893 parameter b = -0.99954
MLE - Gompertz 0.2000280 parameter c = 0.80241

TABLE II - Standard deviation of observed q
Level Dths Const Mu Balducci X 1.1 Gompz

Hoems Adjusted 0.0032541 0 .0033200
Meth of Moments 0.0033509 0.0033728 0.0034018 X 0.0033673
Implication-B 0.0033527 0 .0033615 0.0034070 X 0.0033599
Conventional 0.0033420 0 .0033771 0.0034041 X 0.0033578
Max Likelihood 0.0033420 0.0033810 0.0033604 X 0.0033750
T ime-count 0.0034330 0.0033810 0.0034041 X 0.0033808

Product Limit 0 .0034726
MLE - Rect Hyper 0.0033605 sd of para b = 0.31032
MLE - Gompertz 0.0033633 sd of para c = 0.05508
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b = -1

TABLE III - Confidence interval for q - lower l-imit

Level Dths Const Mu Balducci * 1.1 Gompz

Hoems Adjusted 
Meth of Moments

0.1953495
0.1981871 0.1988618

0.1971685 
0.1997659 * 0.1985352

Implication-B 0.1980499 0.1988115 0.1997727 * 0.1984506
Conventional 0.1979113 0.1987303 0.1997758 * 0.1983427
Max Likelihood 0.1979113 0.1993544 0.1997770 * 0.1992315
T ime-count 0.2004133 0.1993544 0.1997758 * 0.1996151

Product Limit 
MLE - Rect Hyper

0.1998066
0.1997887 para b lower limit = -1 .02729

MLE - Gompertz 0.1997272 para c lower limit = 0.79748

TABLE IV - Confidence interval for q - upper limit

Level Dths Const Mu Balducci * 1 .1 Gompz

Hoems Adjusted 
Meth of Moments 
Implication-B 
Conventional 
Max Likelihood 
T ime-count

0.1959316 
0.1987865 
0.1986496 
0.1985092 
0.1985092 
0.2010274

0.1994651 
0.1994128 
0.1993344 
0.1999592 
0.1999592

0.1977624 
0.2003744 * 
0.2003822 * 
0.2003848 * 
0.2003781 * 
0.2003848 *

0.1991376 
0.1990517 
0.1989434 
0.1998352 
0.2002199

Product Limit 
MLE - Rect Hyper 
MLE - Gompertz

0.2004278
0.2003899
0.2003288

para b upper 
para c upper

limit = -0.97178 
limit = 0.80733

TABLE V - Diff wrt two-para Rect Hyper/Gompertz MLE

Level Dths Const Mu Balducci * 1 .1 Gompz

Hoems Adjusted -0.0044487 -0.0026239
Meth of Moments -0.0016025 -0.0009259 -0.0000191 * -0 .0012529
Implication-B -0.0017396 -0 .0009772 -0.0000119 * -0.0013382
Conventional -0.0018791 -0.0010570 -0.0000090 * -0.0014463
Max Likelihood -0.0018791 -0.0004325 -0.0000117 * -0 .0005560
T ime-count 0.0006310 -0.0004325 -0.0000090 * -0.0001719

Product Limit 0.0000279
MLE - Rect Hyper 0.0000000 parameter b = -0.99954
MLE - Gompertz -0.0000613 parameter c = 0.80241
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c - 1.1

Program : ASPSIM A S Puzey 1990

Mortality distribution : 

Mortality rate :■ 0.20 

Withdrawal rate : 0.40 

No of lives exposed from 

No of lives exposed from 

No of runs : 500

Gompertz

Distn parameter : 

Random deaths/wdls 

beginning of year : 

duration .3 months :

1 .10

10000

1 0 0 0 0

TABLE I - Average observed q

b=2 Level Dths Const Mu Balducci * Gompz

Hoem 0.1970107 0.1988452
ImpB 0.1991164 0.1996802 0.2004341 0.2013941 * 0.2000789
Conv 0.1990203 0.1996365 0.2004615 0.2015171 * 0.2000730

n=-2 0.2041458 0.2007134 0.2001844 0 .2024533
T ime 0.2020465 0.2003527 0.2001844 0.2015171 * 0.2000641
Log 0.2000084 0.1999933 0.2001844 0.2005945
MLE 0.1980564 0.1996365 0.2001844 0.1996883 * 0.2000668
n= 2 0.1962090 0.1992832 0.2001844 0.1988009
n= 3 0.1944795 0.1989348 0.2001844 0.1979344

PL 0.2000429
ML H 0.2000870 parameter b = 0.43215
ML G 0.2000705 parameter c = 1 ,.10511

TABLE II - Standard deviation of observée1 q

b=2 Level Dths Const Mu Balducci * Gompz

Hoem 0.0032380 0.0033061
ImpB 0.0033126 0.0033286 0 .0033486 0.0033847 * 0.0033470
Conv 0 .0033058 0.0033293 0.0033518 0.0033922 * 0.0033454

n=-2 0 .0036331 0 .0033803 0 .0033158 0.0034688
Time 0.0034541 0.0033549 0.0033158 0.0033922 * 0.0033220
Log 0 .0033411 0.0033352 0.0033158 0 .0033307
MLE 0.0032820 0.0033293 0.0033158 0.0032807 * 0.0033309
n= 2 0.0032701 0.0033276 0.0033158 0 .0032487
n= 3 0.0032852 0.0033443 0.0033158 0.0032356

PL 0.0033591
ML H 0.0033254 sd of para b = 0.31157
ML G 0 .0033237 sd of para c = 0.07570
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c =  1.1

TABLE I I I  - Confidence interval for q - lower limit

b=2 Level Dths Const Mu Balducci * Gompz

Hoem 0.1967211 0.1985495
ImpB 0.1988201 0.1993825 0.2001346 0.201091,4 * 0.1997796
Conv 0.1987246 0.1993387 0.2001617 0.2012137

1
* 0.1997738

n = -2 0.2038208 0.2004110 0.1998879 0 .2021430
Time 0.2017375 0.2000526 0.1998879 0.2012137 * 0.1997669
Log 0.1997096 0.1996950 0.1998879 0 .2002966
MLE 0.1977628 0.1993387 0.1998879 0.1993949 * 0.1997689
n= 2 0.1959165 0.1989856 0.1998879 0.1985103
n= 3 0.1941856 0.1986356 0.1998879 0.1976450 •

PL 0.1997424
ML H 0.1997896 para b lower limit = 0.40428
ML G 0.1997733 para c lower limit = 1.09834

TABLE IV - Confidence interval for q - upper limit

i 
cr
 

1 
1! 

i 
i\> Level Dths Const Mu Balducci * Gompz

Hoem 0.1973003 0.1991409
ImpB 0.1994127 0.1999779 0.2007336 0.2016968 * 0.2003783
Conv 0.1993160 0.1999343 0.2007613 0.2018205 * 0.2003723

n=-2 0.2044708 0.2010157 0.2004810 0.2027635
T ime 0.2023554 0.2006528 0.2004810 0.2018205 * 0.2003612
Log 0.2003073 0 .2002916 0.2004810 0.2008924
MLE 0.1983499 0.1999343 0.2004810 0.1999817 * 0.2003647
n= 2 0.1965015 0.1995809 0.2004810 0.1990915
n= 3 0.1947733 0.1992339 0.2004010 0.1982238

PL 0.2003433
ML H 0.2003845 para b upper limit = 0.46001
ML G 0.2003678 para c upper limit = 1.11188

TABLE V - Diff wrt two-para Rect Hyper/Gompertz MLE

b=2 Level Dths Const Mu Balducci * Gompz

Hoem -0.0030598 -0.0012253
ImpB -0 .0009541 -0.0003903 0.0003636 0.0013236 * 0.0000084
Conv -0.0010503 -0.0004341 0.0003910 0.0014466 * 0.0000025

n = -2 0 .0040753 0.0006428 0.0001139 0 .0023827
Time 0.0019759 0.0002822 0.0001139 0.0014466 * -0.0000065
Log -0 .0000621 -0.0000772 0.0001139 0.0005240
MLE -0.0020142 -0.0004341 0.0001139 -0.0003822 * -0.0000037
n= 2 -0 .0038615 -0.0007873 0.0001139 -0 .0012696
n= 3 -0.0055911 -0.0011358 0.0001139 -0.0021361

PL -0 .0000276
ML H 0.0000165 parameter b = 0.43215
ML G 0 .0000000 parameter c — 1.10511
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c =  1.1

Program : ASPMMSIM A S Puzey 1990

Mortality distribution : Gompertz

Mortality rate : 0.20 Distn parameter : 1.10

Withdrawal rate : 0.40 Random deaths/wdls

No of lives exposed from beginning of year : 10000

No of lives exposed from duration 3 months : 10000

No of runs : 500

TABLE I - Average observed q

Level Dths Const Mu Balducci * 1.1 Gompz

Hoems Adjusted 0.1967706 0.1986043
Meth of Moments 0.1994760 0.2001586 0.2010746 * 0.1998304
Implication-B 0.1994264 0.2001801 0.2011392 * 0.1998247
Conventional 0.1993857 0.2002103 0.2012648 * 0.1998216
Max Likelihood 0.1993857 0.1999531 0.1994815 * 0.1998346
T ime-count 0.2001370 0.1999531 0 .2012648 * 0.1998403

Product Limit 0.1998566
MLE - Rect Hyper 0.1998616 parameter b = ' 0.40015
MLE - Gompertz 0.1998463 parameter c = 1.09745

TABLE II - Standard deviation of observed q

Level Dths Const Mu Balducci * 1.1 Gompz

Hoems Adjusted 0.0030594 0 .0031228
Meth of Moments 0.0031432 0.0031612 0.0031862 * 0.0031390
Implication-B 0.0031423 0.0031657 0.0031900 * 0.0031480
Conventiona1 0.0031263 0.0031612 0.0032085 * 0.0031525
Max Likelihood 0.0031263 0.0031292 0.0030915 * 0.0031309
T ime-count 0.0031403 0.0031292 0.0032085 * 0.0031244

Product Limit 0.0031362
MLE - Rect Hyper 0.0031294 sd of para b = 0.31446
MLE - Gompertz 0 .0031258 sd of para c = 0.07667
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TABLE III - Confidence* interval for q - lower limit

Level Dths Const Mu Balducci * 1.1 Gompz

Hoems Adjusted 0.1964970 0.1983250
Meth of Moments 0.1991949 0.1998758 0.2007896 * 0.1995496
Implication-B 0.1991453 0.1998969 0.2008539 * 0.1995432
Conventional 0.1991061 0.1999276 0.2009778 * 0.1995396
Max Likelihood 0.1991061 0.1996732 0.1992050 * 0.1995545
T ime-count 0.1998562 0.1996732 0.2009778 * 0.1995608

Product Limit 0.1995761
MLE - Rect Hyper 0.1995817 para b lower limit = 0.37203
MLE - Gompertz 0.1995667 para c lower limit = 1.09060

TABLE IV - Confidence interval for q - upper limit

Level Dths Const Mu Balducci * 1.1 Gompz

Hoems Adjusted 0.1970443 0.1988836
Meth of Moments 0.1997572 0.2004413 0.2013596 * 0.2001112
Implication-B 0.1997074 0.2004632 0.2014245 * 0.2001063
Conventional 0.1996653 0.2004931 0.2015518 * 0.2001036
Max Likelihood 0.1996653 0.2002330 0.1997580 * 0.2001146
T ime-count 0.2004179 0.2002330 0.2015518 * 0.2001197

Product Limit 0 .2001371
MLE - Rect Hyper 0.2001415 para b upper limit = 0.42828
MLE - Gompertz 0.2001258 para c upper limit = 1.10431

TABLE V - Diff wrt two-para Rect Hyper/Gompertz 1MLE

Hoems Adjusted

Level Dths 

-0.0030756

Const Mu Balducci * 

-0.0012420

1.1 Gompz

Meth of Moments -0 .0003702 0 .0003123 0.0012283 * -0.0000159
Implication-B -0.0004199 0.0003338 0.0012930 * -0.0000215
Conventional -0.0004606 0.0003641 0.0014185 * -0 .0000247
Max Likelihood -0.0004606 0.0001068 -0.0003647 * -0.0000117
T i me-cou nt 0 .0002908 0 .0001068 0.0014185 * -0 .0000060

Product Limit 
MLE - Rect Hyper 
MLE - Gompertz

0.0000103 
0 .0000154 
0.0000000

parameter
parameter

b = 0.40015 
c = 1 .09745
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c =  1.05

Program : ASPSIM A S Puzey 1990

Mortality distribution : 

Mortality rate : 0.20 

Withdrawal rate : 0.40 

No of lives exposed from 

No of lives exposed from 

No of runs : 500

Gompertz

Distn parameter : 

Random deaths/wdls 

beginning of year : 

duration 3 months :

1 .05

10000

10000

TABLE I - Average observed q

b=2 Level Dths Const Mu Bai ducei * Gompz

Hoem 0.1969525 0.1987902
ImpB 0.1990537 0.1996199 0.2003761 0.2013382 X 0 .2000199
Conv 0.1989535 0.1995718 0.2003985 0.2014556 X 0.2000092

n=-2 0 .2047883 0.2010488 0.2002525 0.2022570
Time 0.2023843 0.2005511 0.2002525 0.2014556 X 0.2001873
Log 0.2000695 0.2000582 0.2002525 0.2006661
MLE 0.1978692 0.1995718 0.2002525 0.1998906 X 0.2001337
n= 2 0.1958025 0.1990935 0.2002525 0.1991315
n= 3 0.1938807 0.1986250 0.2002525 0.1983905

PL 0.2002401
ML H 0.2002021 parameter b = 0.22203
ML G 0.2001921 parameter c = 1.05503

TABLE II - Standard deviation of observée1 q

b=2 Level Dths Const Mu Balducci X Gompz

Hoem 0.0032604 0.0033147
ImpB 0 .0033281 0.0033392 0.0033534 0 .0033930 X 0 .0033486
Conv 0.0033389 0.0033421 0.0033712 0 .0034026 X 0.0033643

n=-2 0.0036931 0.0034155 0.0033514 0.0034715
Time 0.0035100 0.0033791 0.0033514 0.0034026 X 0.0033507
Log 0 .0033688 0.0033533 0.0033514 0 .0033493
MLE 0.0033001 0.0033421 0.0033514 0.0033109 X 0.0033489
n= 2 0.0032665 0.0033446 0.0033514 0.0032865
n= 3 0.0032660 0.0033427 0.0033514 0.0032631

PL 0.0034309
ML H 0.0033483 sd of para b = 0.31446
ML G 0.0033494 sd of para c = 0.07266
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TABLE III - Confidence interval for q - lower limit

b=2 Level Dths Const Mu Balducci * Gompz

Hoem 0.1966609 0.1984938
ImpB 0.1987561 ■ 0.1993213 0.2000761 0.2010347 X 0.1997204
Conv 0.1986549 0.1992729 0.2000969 0.2011513 * 0.1997083

n=-2 0.2044580 0.2007433 0.1999527 0 .2019465
Time 0.2020704 0.2002489 0.1999527 0.2011513 * 0.1998876
Log 0.1997682 0.1997582 0.1999527 0.2003665
MLE 0.1975741 0.1992729 0.1999527 0.1995945 * 0.1998342
n= 2 0.1955104 0.1987944 0.1999527 0.1988375
n= 3 0.1935885 0.1983260 0.1999527 0.1980986

PL 0.1999333
ML H 0.1999026 para b lower limit = 0.19390
ML G 0.1998925 para c lower limit = 1 .04853

TABLE IV - Confidence interval for q - upper limit

b=2 Level Dths Const Mu Balducci * Gompz

Hoem 0.1972442 0.1990867
ImpB 0.1993514 0.1999186 0.2006760 0.2016416 * 0.2003194
Conv 0.1992522 0.1998708 0.2007000 0.2017599 * 0.2003101

n=-2 0.2051187 0.2013543 0 .2005522 0.2025675
T ime 0.2026983 0.2008533 0.2005522 0.2017599 X 0.2004870
Log 0.2003708 0 .2003581 0.2005522 0.2009657
MLE 0.1981644 0.1998708 0.2005522 0.2001868 X 0.2004333
n= 2 0.1960947 0.1993927 0.2005522 0.1994254
n= 3 0.1941728 0.1989240 0.2005522 0.1986823

PL 0.2005470
ML H 0.2005015 para b upper limit = 0.25015
ML G 0.2004917 para c upper limit = 1 .06153

TABLE V - Diff wrt two-para Rect Hyper/Gompertz MLE

b=2 Level Dths Const Mu Ba1 ducei X Gompz

Hoem -0.0032396 -0.0014019
ImpB -0 .0011384 -0.0005722 0 .0001840 0 .0011460 X -0 .0001722
Conv -0.0012386 -0.0006203 0.0002064 0.0012635 X - 0 .0001829

n=-2 0.0045962 0 .0008567 0.0000604 0 .0020649
Time 0.0021922 0.0003590 0.0000604 0 .0012635 X -0.0000048
Log -0 .0001226 -0 .0001339 0 .0000604 0 .0004740
MLE -0.0023229 -0.0006203 0.0000604 - 0 .0003015 X - 0 .0000584
n= 2 -0 .0043896 -0.0010986 0 .0000604 - 0 .0010606
n= 3 -0.0063114 -0.0015671 0.0000604 -0  .0010016

PL 0.0000480
ML H 0.0000100 parameter b = 0 .22203
ML G 0 .0000000 parameter C ~ 1 .05503
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c =  1.05

Program : ASPMMSIM A S Puzey 1990

Mortality distribution : 

Mortality rate : 0.20 

Withdrawal rate : 0.40 

No of lives exposed from 

No of lives exposed from 

No of runs : 500

Gompertz

Distn parameter : 

Random deaths/wdls 

beginning of year : 

duration 3 months :

1 .05

10000

10000

TABLE I - Average observed q

Level Dths Const Mu Balducci * 1.1 Gompz

Hoems Adjusted 
Meth of Moments 
Implication-B 
Conventional 
Max Likelihood 
T ime-count

0.1968364
0.1995658
0.1995016
0.1994520
0.1994520
0.2004334

0.2002481 
0.2002569 
0.2002775 
0.2001337 
0.2001337

0.1986719 
0.2011643 * 
0.2012180 * 
0.2013331 * 
0.1997724 * 
0.2013331 *

0.1999198 
0.1999008 
0.1998885 
0.2000152 
0.2000692

Product Limit 
MLE - Rect Hyper 
MLE - Gompertz

0.2000234 
0 .2000054 
0.2000749

parameter b 
parameter c

= 0.22018 
= 1.05494

TABLE II - Standard deviation of observed q

Level Dths Const Mu Balducci * 1 .1 Gompz

Hoems Adjusted 
Meth of Moments 
Implication-B 
Conventional 
Max Likelihood 
T ime-count

0.0031818
0.0032693
0.0032699
0.0032694
0.0032694
0.0033248

0.0032910
0.0032956
0.0033031
0.0032904
0.0032904

0.0032464 
0.0033180 * 
0.0033169 * 
0.0033381 * 
0.0032683 * 
0.0033381 *

0.0032981 
0.0032834 
0.0032905 
0 .0032897 
0.0032908

Product Limit 
MLE - Rect Hyper 
MLE - Gompertz

0 .0034279 
0.0032898 
0 .0032829

sd of para b 
sd of para c

= 0.33021 
= 0.07705
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TABLE III - Confidenee interval for q - lower 1 ifflit

Level Dths Const Mu Balducci * 1.1 Gompz

Hoems Adjusted 
Meth of Moments 
Implication-B 
Conventional 
Max Likelihood 
T ime-count

0.1965518 
0.1992734 
0.1992091 
0.1991595 
0.1991595 
0.2001360

0.1983816 
0.1999538 0.2008676 
0.1999621 0.2009213 
0.1999321 0.2010345 
0.1998394 0.1994800 
0.1998394 0.2010345

* 0.1996248
* 0.1996071
* 0.1995942
* 0.1997210
* 0.1997749

Product Limit 
MLE - Rect Hyper 
MLE - Gompertz

0.1997168 
0.1997912 
0.1997813

para b lower limit= 
para c lower lirnit=

0.19065 
1.04804

TABLE IV - Confidence interval for q - upper 1 imit

Level Dths Const Mu Balducci * 1.1 Gompz

Hoems Adjusted 0.1971209 0.1989623
Meth of Moments 0.1998583 Ö .2005425 0.2014611 * 0.2002148
Implication-B 0.1997941 0.2005516 0.2015147 * 0.2001945
Conventional 0.1997444 0.2005729 0.2016317 * 0.2001828
Max Likelihood 0.1997444 0.2004280 0.2000647 * 0.2003094
T ime-count 0.2007308 0.2004280 0.2016317 * 0.2003636

Product Limit 0.2003300
MLE - Rect Hyper 0.2003797 para b upper limit- 0.24972
MLE - Gompertz 0.2003686 para c upper 1imit= 1 .06183

TABLE V - Diff wrt t:wo-para Rect Hyper/Gomper tz MLE

Level Dths Const Mu Balducci * 1.1 Gompz

Hoems Adjusted 
Meth of Moments 
Implication-B 
Conventional 
Max Likelihood 
T irne-count

-0.0032386 
-0 .0005091 
-0.0005733 
-0.0006230 
-0.0006230 
0 .0003584

0.0001732
0.0001319
0.0002026
0.0000588
0.0000588

-0.0014030 
0 .0010894 * 
0.0011431 * 
0.0012582  ̂
■0.0003026 * 
0.0012582 *

-0.0001552 
-0.0001741 
-0.0001364 
-0.0000597 
-0 .0000057

Product Limit 
MLE - Rect Hyper 
MLE - Gompertz

-0.0000516 
0.0000105 
0.0000000

parameter 1: 
parameter c

:> = 0.22018 
: - 1.05494
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