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ABSTRACT

The objective of this study is to formulate a simple and practical but rigorous 
two-step analysis procedure for the geometrical detection of spatial deformation using 
geodetic methods. A thorough and critical study of theory and current practice of 
deformation monitoring has been undertaken, and a practical scheme has been 
developed for 3-D least squares estimation (LSE) and one-stage detection procedure 
(i.e. stability determination and localization of spatial deformation) via two-epoch 
analysis.

In LSE, a simple datum definition via minimum constraints with fixed 
coordinates has been adopted; a strategy for rank defect analysis of normal equations 
by simplified eigenvalue decomposition (EVD) has been developed; an optimised 
computational procedure for S-transformations has been formulated; a mathematical 
model for additional parameters and pseudo observables (distance differences and 
ratios) has been extended and established for 3-D application; a procedure for 
handling of algebraically correlated pseudo observations via observation de-correlation 
has been established; a procedure for robustified LSE for multiple gross errors 
detection has been formulated and its effects has been derived; a simple method of 
variance component estimation (VCE) has been extended; and the use of global and 
local tests and reliability analyses in LSE has been presented.

In deformation detection, a strategy for determination of common stations 
between epochs via S-transformations and partitioning has been developed; a flexible 
one-stage computational procedure for geometrical detection of spatial deformation 
by iterative congruency testing and S-transformations has been established; the robust 
method for deformation detection has been modified to allow one-stage computation; 
and general S-transformations equations have been applied in all cases.

This developed strategy has been implemented in five computer programs 
(ESTIMATE, COMPS, COMON, DETECT and ROBUST). The developed programs 
can be executed either on an IBM based personal computer (PC) or under the UNIX 
environment. Links between these programs and two of the Engineering Surveying 
Research Centre’s (ESRC) programs (GAP and DCRE) have been established. The 
programs have been successfully applied and evaluated using simulated and real data. 
Five real photogrammetric monitoring schemes undertaken by the ESRC, with up to 
169 stations, were analysed for detecting the significance of spatial deformation 
between epochs. The results obtained confirmed the suitability of the strategy in 
practical applications.

Further refinement to the developed programs are suggested to make them 
more user friendly. Further possible research activities include a combined or 
integrated approach for deformation analysis and real time deformation monitoring.
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1. INTRODUCTION

This chapter introduces some of the important aspects related to the detection of spatial 

(3-D) deformation, highlights current research trends, and summarizes the work involved in this 

thesis.

1.1 Background

Surveying is the determination of the relative positions of points on the earth’s surface 

by means of terrestrial and / or space-based measurements. It is customary to divide surveying 

into geodetic and plane surveying, depending on the area of coverage. Geodetic surveying 

generally extends over large areas and takes into account the curvature of the earth. Plane 

surveying involves relatively small areas (e.g. for distances up to 100 m where the linear effect 

of curvature is about 1 mm) and the earth’s surface is considered as a plane. This project is 

concerned only with plane surveying, but the computations are in three dimensions (3-D).

Deformation survey or monitoring of deformation is an important area of engineering 

surveying. Its prime purpose is the detection of spatial deformation to provide information on 

the stability and extent of any movement or deformation of an object occuring over time. 

Information obtained from the detection process is useful for the purpose of safety assessment, 

as well as for predicting and preventing the possibility of failure or disaster in the future.

In general, the earth’s crust and man-made features undergo deformations. The 

deformation could be caused by some of the following factors (Vanicek and Krakiwsky, 1986): 

tidal phenomena; crustal loading and rebound; tectonic phenomena; ground consolidation; 

combined effects; as well as short and long term movement of engineering structures brought 

about by loading and ground settlement.

Deformation surveys are mainly carried out to investigate crustal movement, slope 

stability, glacier and shelf ice movement, ground subsidence and deformation of man-made 

engineering structures (Caspary, 1987b). Examples of such structures which are commonly 

studied are dams, bridges, pipelines and tall buildings.

The determination or detection of deformation consists of design, measurement and
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analysis stages. The measurement techniques (Richardus, 1984) are generally divided into 

geodetic and geotechnical / structural methods. Geodetic methods can be based on the following 

measuring techniques: conventional or terrestrial surveys (including photogrammetry) and space- 

based methods. Figure 1.1 illustrates the performance of the geodetic measuring techniques. In 

general, the accuracy decreases with increasing baseline.

The geotechnical and structural methods are the most accurate for monitoring over short 

distances (Teskey, 1986, 1988), say up to a few tens of metres. Special geotechnical equipment 

is used to measure directly the changes in height (settlement gauge), length (extensometer), 

water pressure (piezometer) and tilt (inclinometer). The structural measuring equipment 

measures changes in displacement (displacement meter), strain (strainmeter) and inclination 

(inclinometer). However, such methods only provide information about local movement, and 

are suitable only to determine movements within the structures, not the overall movement of 

an object under investigation.

Geodetic methods are capable of determining movements within structures (only if 

access is possible) and overall movements. Terrestrial surveys with electromagnetic distance 

measurement (EDM) instrument and theodolite are the most commonly used for distances 

ranging up to 10 km. Their accuracy (affected by refraction) can be improved by several means, 

such as adopting proper measurement schemes (Ashkenazi et al, 1980; Secord, 1986) or 

modifying the functional model (Gruendig and Teskey, 1984).

The space system using Global Positioning System (GPS) is suitable for baselines of 

several km, and with the use of dual frequency receivers, allows corrections for ionospheric 

effect to give millimetre (mm) level accuracy. Very Long Base Line Interferometry (VLBI) and 

Satellite Laser Ranging (SLR) used for tectonic studies, are highly accurate but very expensive. 

Photogrammetry (especially the close range configuration) is a powerful non-contact measuring 

technique using metric cameras, suitable when multiple targets are involved. Inertial methods 

are typically of lower accuracy and are also expensive. The selection of the most appropriate 

technique depends on factors such as cost, accuracy required and scale (coverage). Combination 

of the measuring techniques is also possible.

In engineering surveying, the first scheme of deformation monitoring using geodetic 

methods was carried out in Switzerland in the 19th century (Caspary, 1987b). Generally,

2
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Figure 1.1 The performance of the geodetic measuring techniques (taken from Wells et al, 1986)
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although movements are actually three dimensional (3-D), their detection is usually divided into 

horizontal and vertical components. This research allows 3-D detection of deformation.

Application of the geodetic method is quite simple when the object under investigation 

is represented by targetted or marked points. A set of observations is used to connect the points 

into a monitoring network. The observations repeated at different epochs of time provide data 

for deformation detection.

In theory, all observations at each epoch are carried out simultaneously. However, as 

this is often impossible from the practical point of view, the effects of deformations during 

observational periods are usually neglected, provided the rate of deformation is small and the 

observational period is short compared to the interval between epochs. Alternatively, time can 

be considered as a parameter, and Papo and Perelmuter (1981) suggest the use of displacement 

velocities and accelerations to describe the deformation (i.e. kinematic model).

Subsequent analysis to determine significant deformations can be performed in one 

(simultaneous) step or two-step analysis. One-step analysis involves extensive computation, and 

is rarely applied in practice. Two-step analysis consists of independent least squares estimation 

(LSE) of single epoch (or analysis of observation) followed by deformation detection (or 

analysis of deformation) between epochs. Only two-step analysis will be dealt with from now 

on.

Determination of any deformation occuring can be based on geometrical, physical or 

combined geometrical and physical approaches. In the geometrical approach, a high precision 

survey monitoring network is needed (Biacs, 1989). It describes the estimated deformation in 

the form of the displacement vectors, without interpretation of the cause of movements. The 

physical approach (via geotechnical and structural methods) gives only relative measurements 

(Richardus, 1984), and is beyond the scope of this study. The combined approach is the best, 

but more research is needed.

Several methods for the geometrical approach to deformation detection via two-step 

analysis with geodetic methods are available. The method chosen depends on the differencing 

technique, type of network, coverage and type of model being used.

4



Deformation detection can be based on either coordinate or observation differencing. 

Coordinate differencing is used commonly, due to its flexibility, the most important aspect being 

its ability to handle different observational schemes at different epochs. Observation differencing 

has the advantage of being datum invariant, but has the major drawback of requiring identical 

observational schemes at different epochs. Cooper (1987) gives more details on differencing.

There are two types of monitoring networks depending on their purpose: absolute and 

relative. An absolute monitoring network usually consists of the reference points (expected to 

be stable) and the object points (under investigation). In a relative monitoring network, all points 

are considered as object points. The absolute monitoring network approach is more meaningful 

in engineering applications as the deformation of the object points is determined relative to a 

set of stable reference datum points. In the relative network approach, only the pattern of the 

relative displacement between points can be determined. Further details are given by Chen 

(1983).

The coverage of the deformation survey can be on micro, local, regional, continental 

or global scales, and is closely related to the measuring techniques. Most engineering 

applications are within micro, local and regional scales (several m to 10 km), employing 

terrestrial survey (such as triangulation, trilateration, levelling), photogrammetric and GPS 

techniques. A common example is dam monitoring. For monitoring at continental and global 

scales, such as the monitoring of crustal movements, space-based techniques (GPS, VLBI, SLR) 

combined with high precision gravimetry are usually employed.

Analysis between epochs can be based on two-epoch or multi-epoch analysis. For 

engineering applications, two-epoch analysis (assuming no correlation between epochs) is 

generally adequate and provides enough information.

Models chosen for analysis are either static, kinematic or dynamic, depending on the 

temporal variations (Biacs, 1989). The static model examines only the existence or non-

existence of deformations. The kinematic model deals with the motion of network points. The 

dynamic model takes into account the effects of various underlying forces on the motions of 

network points.
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1.2 Reasons for carrying out research in this area

The commonly adopted methods for monitoring deformation in engineering are based 

on the repeated observation of a survey monitoring networks at different epochs, followed by 

two-step analysis. The detection of deformation uses two-epoch analysis, an absolute monitoring 

approach and a static model to compare the coordinates between the epochs.

The stages of LSE and deformation detection are highly critical and need special 

attention because the significance of the estimated deformations depends on the observational 

accuracy and network design. In most engineering cases, the magnitudes of deformation to be 

detected are small, and at the margin of observational error. In LSE, a realistic mathematical 

model is needed because an erroneous model will lead to apparent deformation. During 

deformation detection, it is required to transform the results into a common datum, identify a 

set of stable points and localize the deformation.

Extensive research work has been carried out on LSE and deformation detection in 

Europe and North America, involving many sophisticated methods. However, very little effort 

has been made to arrive at a simple and practical, but rigorous, method suited to the practising 

surveyor. In most cases, the applications are restricted to two dimensional (2-D) or one 

dimensional (1-D) only (Dodson, 1990), whilst deformation actually occurs in 3-D. Usually, the 

deformation detection procedure consists of two-stage computations (Gruendig et al, 1985; Chen 

et al, 1990a): analysis of the reference points followed by analysis of the whole network.

This thesis sets out to devise practicable means for meeting the following important 

requirements for geometrical detection of spatial deformation using terrestrial surveying 

observables: coordinate datum definition; rank analysis and error modelling in LSE; 

identification of common or stable stations; congruency testing; S-transformations; and 

localization and testing of deformation.

1.3 Summary of the historical theoretical development

The two-step analysis has been devised over several decades. Originally, the theory of 

LSE was developed independently by Gauss in 1795 and Legendre in 1806, and later refined 

by Markoff in 1912 (Cross, 1983; Cooper and Cross, 1988). Since then, the theory has been
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continually examined, refined and applied using linear equations (Searle, 1971; Lawson and 

Hanson, 1974).

The theory of generalized inverses, developed by Moore in 1920 and Penrose in 1955, 

is applied for solving the datum problem in the singular linear model (Cooper and Cross, 1991). 

The solution uses the inner constraints method (Meissl, 1969; Blaha, 1971). A derivation for 

the complete inner constraints is presented by Papo (1987) and Dermanis (1994). Network 

optimization studies (Grafarend, 1974), carried out before any observations are made can be 

used to estimate network quality.

As an alternative to inner constraints, Baarda (1973) introduced S-transformations for 

transforming LSE results from one datum to another. A more simple explanation of the theory 

of S-transformations is given by Strang Van Hees (1982). Teunissen (1985) discusses the 

concepts of the generalized inverses and S-transformations.

Statistical testing was first used for detailed analysis of LSE results in engineering 

surveying only in 1960’s (Baarda, 1968). This was followed by the development of outlier 

detection and reliability theories (Baarda, 1977). Aspects of statistical testing are discussed in 

great detail by Mikhail (1976) and Vanicek and Krakiwsky (1986). Today, the mathematical 

model for LSE is known as the Gauss-Markov model.

In the past, approximate methods have been employed in analysis for detecting 

deformation. During the 1970’s, statistical testing was used extensively in the analysis. Pelzer 

(1971) was the first to apply statistical testing to deformation detection (Biacs and Teskey, 

1990). Further developments, resulting in several methods for deformation detection were made 

by Van Mierlo (1975), Heck et al (1977), Neimeier (1979), Koch (1980) and Kok (1982).

In order to compare different approaches of geometrical analysis for deformation 

monitoring, the International Federation of Surveyors (or Fédération Internationale des 

Géomètres (FIG)) established a Committee of Working Group on Analysis of Deformation 

Measurements (Commission 6 on Engineering Surveys) in 1978.

The committee initially identified five main research groups, named after their locations, 

i.e. Delft, Fredericton, Hannover, Karlsruhe and Munich (Chrzanowski, 1981; Heck et al, 1983).
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More groups were established later. FIG also organized several symposia, which were held in 

Cracow, 1975; Bonn, 1978; Budapest, 1982; Katowice, 1985; and Fredericton, 1988. In 1986, 

the Committee published its final report (Chrzanowski and Chen, 1986) with details on various 

methodologies and possible further work.

The real application of deformation monitoring is extensive in Europe (Gruendig et al, 

1985) and North America (Chen et al, 1990a; Teskey and Biacs, 1991; Teskey et al, 1992 ). 

Several program packages were developed, for example LOKAL (Gruendig et al, 1985), 

DEFNAN (Chrzanowski et al, 1986) and CANADAS (Biacs, 1989).

Current trends in deformation monitoring include integrated analysis in which the 

measured displacements are combined with the finite element method (Teskey, 1986; Teskey 

and Biacs, 1990; Szostak-Chrzanowski and Chrzanowski, 1991), robust estimation of 

deformation (Caspary and Borutta, 1987a), and real time monitoring using telemetric and 

automatic data acquisition (Chrzanowski et al, 1991).

The most recent development in monitoring activities is on the micro-scale in real time 

for close-range industrial applications. Bayly and Teskey (1992) successfully applied an 

electronic theodolite system to close-range three dimensional high precision machinery 

alignment surveys in near real time.

1.4 Outline of the thesis

The objective of this research project is to formulate a simple and practical but rigorous 

procedure for 3-D LSE and the geometrical detection of spatial (3-D) deformation using 

geodetic methods. Moreover, fully 3-D applications and one-stage detection process (for stability 

determination and localization of deformation) are anticipated.

To achieve this objective, several important aspects of LSE and deformation detection 

have been examined, developed, adopted and implemented by writing and testing computer 

programs. As a consequence, a practical strategy has been developed by the author, and 

successfully applied to evaluate both simulated and real data.

As summarised in the title of the thesis, 3-D LSE (including error modelling) and
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geometrical detection of spatial deformation are discussed. Practical aspects and testing have

been confined to engineering applications.

1.5 Thesis contributions

The particular contribution of this research includes the following:

(1) A thorough and critical study of theory and current practice of deformation monitoring 

has been carried out and is described in chapters 2, 3 and 4.

(2) A full 3-D case has been applied and presented throughout this study, as opposed to the 

commonly used 2-D application.

(3) A strategy for one-stage detection procedure (i.e. stability determination and localization 

of spatial deformation) has been developed (sections 4.2.3 and 4.4).

(4) A simple method for handling datum defects by means of a minimum constraints 

solution with fixed coordinates has been adopted (section 2.2.2).

(5) A strategy for rank defect analysis of normal equations via simplified eigen value 

decomposition (EVD) has been developed (section 2.2.6).

(6) A suitable and efficient computational procedure for the practical application of S- 

transformations for transforming LSE results from one datum to another has been 

formulated (section 2.3.5).

(7) The general S-transformations equations have been applied in all cases (sections 2.3.1, 

2.3.5, 4.2.1, 4.2.3.2 and 4.2.3.4).

(8) A general functional model for additional parameters, allowing single, combination or 

multiple errors has been developed (section 3.5.3.1).

(9) Functional and stochastic models for pseudo observables have been extended for the 3- 

D case (section 3.5.3.2).

(10) A procedure for incorporating the algebraically correlated pseudo observations into 

ordinary LSE algorithms by de-correlation of observations has been established (section 

3.5.3.2.3).

(11) A practical blunder detection strategy via robustified LSE has been formulated (section 

3.6.2.2) and its effects on the estimated solution derived (section 3.6.2.3).

(12) A simple method of variance component estimation (VCE) for estimating variances of 

uncorrelated observations has been extended (section 3.7.3).

(13) A strategy for LSE with global and local tests, together with precision and reliability
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analyses has been presented (section 3.9).

(14) A strategy to determine common stations between two epochs and to apply S- 

transformations to transform LSE results of each epoch into a common datum has been 

developed (section 4.2.1).

(15) A one-stage computational procedure for geometrical detection of spatial deformation 

that incorporates flexible initial datum station definitions, relevant global and local 

statistical testing, and S-transformations has been established (sections 4.2.2 and 4.2.3).

(16) A one-stage computation for robust method has been formulated (section 4.2.3.4).

(17) Five computer programs have been developed based on the practical strategy. Links 

with relevant programs have been established too (chapter 5).

(18) Simulated and real data have been analysed to evaluate the applicability of the 

developed strategy (chapter 6).

(19) Recommendations for future work have been presented (chapter 7).

1.6 Thesis structure

The thesis consists of seven main Chapters, seven Appendices and a list of References 

and Bibliography.

Chapter 2 gives a brief introduction to the principles of LSE. It also highlights the related 

important aspects of rank defect analysis and datum re-definition. Strategies developed for rank 

defect analysis and S-transformations of LSE results are discussed.

Chapter 3 summarizes the main sources of model errors and the importance of quality measures 

and statistical testing in LSE. The remaining part of this chapter describes the strategy 

developed for modelling of systematic, gross and random errors. Moreover, a strategy for 3-D 

LSE is presented.

Chapter 4 initially highlights some of the requirements for deformation detection. This is 

followed by a description of the modules developed for geometrical detection of spatial 

deformation.

Chapter 5 focuses on the actual implementation of the concepts, described in chapters 2, 3 and 

4, into five computer programs developed for LSE and geometrical detection of spatial
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deformation (programs ESTIMATE, COMPS, COMON, DETECT and ROBUST).

Chapter 6 discusses the results obtained from the application of the developed computer 

programs using simulated and real data to assess the adopted strategy.

Chapter 7 summarizes the outcome of the research and the developed practical strategy for 

deformation detection. It also highlights related future work that can be explored.

Appendices contain relevant information not shown in the main sections.

References and the Bibliography contain lists of sources which were consulted in the course of 

the research. They are listed under the authors’ names arranged in alphabetical order, 

chronologically for each author.
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2. LSE, RANK DEFECT ANALYSIS AND S-TRANSFORMATIONS

The process of LSE, as applied in monitoring of deformation, suffers from rank 

deficiency due to datum and / or configuration defects. Moreover, relevant results from LSE are 

datum dependent. Consequently, it is important to incorporate checks for rank defects and also 

a facility for transformation of LSE results into an appropriate datum.

This chapter describes some fundamental aspects of LSE, rank defect analysis and 

transformation of LSE results from one datum to another. A simple method for handling datum 

defects has been adopted (section 2.2.2). A strategy for checking rank defects of normal 

equations has been developed (section 2.2.6), utilizing simplified eigenvalue decomposition 

(EVD). Practical application of S-transformations has been formulated (section 2.3.5), with 

emphasis on special computational procedures optimised for stability and speed.

2.1 Estimation process

In engineering surveying, the computational problems are concerned with the 

determination (or estimation) of parameters or unknowns from the measurements (or 

observations) by means of the chosen mathematical models. The main tasks involved can be 

divided into eight inter-related steps (Grade and Krakiwsky, 1987; Vanicek and Krakiwsky, 

1986). These steps are shown in Figure 2.1: identification of the parameters, formulation of the 

mathematical model, design or pre-analysis, data acquisition (observations), data pre-processing, 

data processing (estimation), assessment and representation of the results.

This study concentrates on the estimation task, which is actually comprised of 

estimation, assessment and the representation of results. Whenever necessary, other tasks are 

considered too, as they are inter-related. For example, formulation of mathematical model and 

pre-analysis.

Surveying measurements, such as distances, angles and height differences, are used to 

estimate the parameters (for example 3-D coordinates, orientation unknowns, scale factor, etc.). 

The relationship between measurements and parameters is known as the mathematical model. 

While the measurements are made in the physical space or real world, the estimation of 

parameters is made in abstract space using a particular and suitable mathematical model.
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Figure 2.1 The main tasks in the determination of the parameters 

(taken from Gracie and Krakiwsky, 1987).
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The mathematical model is composed of two parts (Mikhail, 1976), functional and 

stochastic models. The functional model describes the geometrical relationship between the 

measurements and the parameters to be estimated, and in the general case has an implicit form 

of

f(x,l)=0 (2.1)

where x is the vector of parameters to be estimated and 1 is the vector of observations. Let m 

equations in the functional model relate n observations and u parameters.

The stochastic model describes the random nature (or statistical properties) of the 

measurements. It is represented in the form of a covariance matrix (X,) or weight matrix (W) 

or cofactor matrix (Q,) of the observations. The relationship between X„ Q, and W is simply

W=g 02X,-1 (2.2)

(2.3)

W=a02Z1-'=Q(1 (2.4)

where 0O2 is the a priori variance factor (often assumed to be known with value of unity).

The functional model is generally non-linear (as given in Appendix A), and 

consequently leads to a non-linear computational problem. Also, there are redundancies in the 

data, i.e. the number of measurements is larger than the number of parameters. In other words, 

there are more measurements than the minimum needed for a unique solution of the parameters. 

Redundancy results in an overdetermined system of equations.

For simplicity and convenience, non-linear problems are usually ’linearised’ by using 

Taylor’s theorem, and then reduced to the utilization of linear mathematical models, matrix 

notation and consequently solution of linear algebraic equations. Solution using non-linear 

models (Press et al, 1988; Rawlings, 1988) is beyond the scope of this study.

2.1.1 Least squares problem

In order to obtain unique estimates of parameters from the overdetermined linear
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equations, certain criteria are required. The most commonly used is known as the least squares 

criterion, and the (estimation) problem is termed the linear least squares problem or simply the 

least squares method. In numerical analysis (Golub and Loan, 1990), the method which uses the 

least squares criterion is sometimes known as 2-norm or L2 norm minimization.

Essentially, the least squares criterion minimizes the quadratic form of the residuals 

(corrections to the observations), i.e. the sum of the squares of the weighted residuals

v'Qf'v — > minimum (2.5)

or v‘Wv — > minimum

where v is the vector of residuals.

The least squares problem is known by different names in different scientific disciplines. 

For example, most surveyors use the term least squares adjustment. Statisticians are more 

comfortable with linear regression. Cooper (1987) prefers the term least squares estimation 

(LSE) because the term has a more proper statistical meaning than least squares adjustment. The 

term LSE will be used throughout this study.

2.1.2 Parameter estimation

Linearization of equation (2.1) via the application of Taylor’s theorem to the first order 

(Appendix A) produces a linearised form of the functional model as

Ax+Bv=b (2.6)

where

A=5f/3x is the first design matrix, dimensions (m,u) 

x=vector of corrections to the parameters, dimensions (u,l)

B=3f/3l is the second design matrix, dimensions (m,n) 

v=vector of residuals, dimensions (n,l) 

b=-f(x0,l) is the misclosure vector, dimensions (m,l) 

x0=approximate values of parameters with dimensions (u,l) 

l=vector of the observables, dimensions (n,l)
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In equation (2.6), the quantities in A, B and b are computed using x0 and 1. The 

solutions for equation (2.6) with least squares criterion of equation (2.5) can be written as

x=[At(BW'1Bt)"1A]'1A'(BW"1Bt)‘1b (2.7)

v=-W"1Bt(BW"1Bt)'1(Ax-b)

Further details on the solution are given by Cross (1983) and Cooper and Cross (1988). Usually, 

it is necessary to iterate the solution due to the approximations (i.e. the initial approximate 

values of the parameters are not accurate enough because only first order terms of Taylor’s 

series are used in the linearisation procedure). In each iteration, the parameters are updated to 

give

xa=x0+x (2.8a)

where xa represents updated parameters, x0 the approximate values of parameters (updated in 

each iteration), and x is computed from equation (2.7). At the end of LSE, the least squares 

estimates of the observables (la) are

la=l+v (2.8b)

The general functional model of equations (2.1) and (2.6) is also known as the 

combined model (Cross, 1983) or general model (Cooper, 1987). In practice, two special cases 

of the functional model of equations (2.1) and (2.6) are considered. Firstly, if each measurement 

can be written as an explicit function of the unknowns, the functional model becomes

l=f(x) (2.9)

Equation (2.9) is known as LSE of parameters or LSE using observation equations or parametric 

LSE or LSE of indirect observations or the variation of coordinates.

Secondly, if the model is a function of only the observations and the parameters do not 

appear in the model the functional model is

f(D=0 (2.10)
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Equation (2.10) is called LSE using condition equations or LSE of corrections to measurements 

or LSE of observations only.

The linearised forms of equations (2.9) and (2.10) are simply obtained by substituting 

B as unit matrix (with negative sign) and A as null or zero respectively into equation (2.6). The 

results can be written as

Ax=b+v (2.11)

Bv-b=0 (2.12)

In each case, the number of equations in (2.11) and (2.12) will be n and (n-u) respectively.

All of the above techniques of LSE (i.e. general, observation and condition equations) 

produce identical results when applied to the same problem (Mikhail and Grade, 1981). 

However, the most commonly used method is LSE using observation equations (equations 2.9 

and 2.11), due to its simplicity. In this method, the formulation of equations is simple and 

straightforward, as the number of observation equations is exactly the same as the number of 

observations. Moreover, it is easy to implement the procedure using computer programs. This 

method of LSE is used throughout this study.

2.1.3 LSE using observation equations

In general (Lawson and Hanson, 1974), there are six cases of the LSE problems using 

observation equations, depending on the number of observations and parameters, and rank of 

A, as shown in Figure 2.2. Cases 1, 2 and 3 are called exactly determined (no redundancy), 

overdetermined (with redundancy) and underdetermined (not enough data) problems 

respectively. In this study, with data redundancy, only case 2 is applicable, which can be either 

full rank (case 2a) or rank deficient (case 2b).

Equations for LSE are shown here without further derivation. More details are found 

extensively in surveying literature, for example Mikhail (1976), Olliver and Clendinning (1978), 

Mikhail and Gracie (1981), Cross (1983), Cooper (1987), Koch (1987) and Leick (1990). The 

fundamental equations for LSE of full rank (only if Cayley inverse N'1 exist; section 2.1.5) with 

n observations and u parameters with redundancy r are:
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CASE la

RANK (A) « m=n

CASE lb

RANK (A) = W < m=n

CASE 2a CASE 2b

Ax = b Ax 5 b

RANK (A) = n<m RANK (A) = It < n <  m

CASE 3a CASE 3b

Ax = b ' Ax S b

RANK (A) = m < n RANK (A) » It <  m < n

Figure 2.2 The six cases of the least squares problem.

The cases depend on the sizes of observation (m), parameters (n) and rank of (A) 

(taken from Lawson and Hanson, 1974).
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Non-linear model i.e. functional model

l=f(x) (2.13)

Observation equation (linear model)

Ax=b+v (2.14)

where

A = d f / d x  is the design matrix, dimensions (n,u), rank u 

x=vector of corrections to x0, dimensions (u,l) 

b=l-lD is the misclosure vector, dimensions (n,l)

l=vector of actual observation (corrected and reduced for systematic errors), 

dimensions (n,l)

l0=f(x0) is the computed observation, dimensions (n,l) 

x0=approximate values of parameters, dimensions (u,l) 

v=vector of residuals, dimensions (n,l)

Weight matrix W (equation 2.4) of dimensions (n,n) i.e. stochastic model

where o02 is the a priori variance factor.

If observations are uncorrelated, W is diagonal matrix, and weight of observation i is

(2.15a)

(2.15b)

where o f  is the variance of observation i.

Normal equations

Nx=u (2.16)
where
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N=AtWA with dimensions (u,u) 

u=A‘Wb with dimensions (u,l)

(2.17)

(2.18)

Estimated parameters (x) and their cofactor matrix (Q*)

x=N"1u=(AtWA)'1A‘Wb (2.19a)

xa=x0+x are the updated parameters (2.19b)

Q*a=Qx=N-1=( A‘W A)"1 (2.20)

Estimated residuals (v) and their cofactor matrix (Qç)

v=Ax-b (2.21)

Qç=Q1-AN"1A'=W1-AN'1At (2.22)

The estimated (or a posteriori) variance factor 602, useful for statistical testing (section 3.3.1) 

is

d02=£2/r (2.23)

where

r=n-u is the number of degrees of freedom or redundancy 

Q=v‘Wv is the quadratic form of the residuals

Least squares estimates of the observables la (sometimes called adjusted observations or adjusted 

observables) and their cofactor matrix (Qia)

îa=l+v

Qia=AN"1 A‘=AQ* A‘

Relationship between cofactor matrices is shown by equations (2.22) and (2.25), hence

Qt=QrQta or Qîa=Q,-Qo (2.26)

All the cofactor matrices (equations 2.20, 2.22, 2.25 and 2.26) are symmetrical. The 

process of LSE is generally iterative, as described in section 2.1.2. Equations (2.14) to (2.23)

(2.24)

(2.25)
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are evaluated repeatedly during iteration. At the end of iteration, Cooper (1987) recommends 

that the estimated variance factor (equation 2.23) is used for statistical testing only (section 

3.3.1), and not for scaling Q* (equation 2.20). Such concept is applied in this work.

2.1.4 Properties of least squares estimates

In general, there are an infinite number of solutions to equation (2.14), depending on 

the chosen criteria. In practice, it is common to apply least squares criterion (equation 2.5), 

leading to LSE (equations 2.13 to 2.26). The main reasons for this are based on both practical 

and mathematical considerations (Cross, 1983; Cooper and Cross, 1988), as discussed below.

Practically, LSE is very simple to apply, gives a unique solution of parameters and 

provides simple quality measures via the error propagation. Equations (2.17), (2.18) and (2.19a) 

show that the least squares estimate of the parameters is a linear estimate (transformation) of 

the measurements.

Mathematically, the LSE given by equations (2.19) and (2.20) has the properties 

(Caspary, 1987b) of the best linear unbiased estimate (BLUE), and consequently the estimated 

variance factor (equation 2.23) being the best invariant quadratic unbiased estimate (BIQUE). 

BLUE means that the linear estimate is unbiased and has minimum variance, i.e.

Equation (2.27) reflects the unbiased property, where the expectation of x is equal to the true 

value of x. Equation (2.28) indicates that the trace of Q* obtained by LSE is smaller than Q* 

of any other linear unbiased estimate. If the observations are normally distributed, LSE has the 

property of a maximum likelihood estimate (Cross, 1983).

The estimated parameters (usually coordinates) and their cofactor matrix computed from 

equations (2.19) and (2.20) are datum dependent, depending on the choice of datum constraints. 

However, there exist functions of x that are invariant or independent of the datum (Caspary, 

1987b), known as estimable or datum invariant quantities. Examples of estimable quantities are 

v, Qo, la and Qia, as well as D and & 02 .

E{x}=x

trace (Q^minimum
(2.27)

(2.28)
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2.1.5 Assumptions in LSE

The process of LSE given in section 2.1.3 is based on the following assumptions: 

1. Linearity.

The basic assumption in LSE is that the functional model (equation 2.14) is linear. 

Generally, the linear model can be used to provide an adequate and satisfactory approximation 

of the actual model. Non-linear functions are linearised via the application of Taylor’s theorem.

2. Computational or full rank system.

The solution from LSE, as shown by equations (2.13) to (2.26), assumes that the Cayley 

inverse, N'1, exists. Hence, rank of N (or A) is equal to the number of parameters u, i.e. full 

rank.

3. Model is correct.

It is usually assumed that the mathematical model is a true representation of the physical 

reality. Both selected functional and stochastic models are considered correct, adequate and 

complete.

4. Independent and uncorrelated observations.

For simplicity and convenience, observations are assumed to be independent and 

uncorrelated. This results in a diagonal weight matrix (equation 2.15b).

5. Observational data are free from errors.

The observations are assumed to be free from systematic and gross errors (or blunders 

or mistakes).
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6. Normality.

For the purpose of statistical analysis of LSE results, observations (and consequently 

residuals) are assumed to be normally distributed, with zero mean. This normality assumption 

is not necessary for the LSE process, but is required for statistical testing purposes.

It is necessary to check the validity of the above assumptions. If any failures of such 

assumptions are found, they must be rectified. A strategy for rank defect analysis is developed 

in section 2.2.6. A procedure for error modelling is formulated in sections 3.5.3, 3.6.2 and 3.7.3. 

In some cases, the observations are algebraically correlated, the treatment of such correlated 

observations is established in section 3.5.3.2.3. The detection of gross errors is formulated in 

section 3.6. Statistical testing is discussed in section 3.3. In engineering surveying, the linear 

model is adequate, and the linearity assumptions are usually satisfactory.

2.2 Rank defect analysis

In general, LSE suffers from rank deficiency (section 2.2.1). Moreover, critical 

configurations will introduced ill-conditioned or near singularity situations. Although several 

means of handling datum defects are available, a simple approach will be useful. In addition, 

checks for rank defects (due to configuration) during LSE are required.

It is necessary to examine the nature of any defects (section 2.2.1), define the datum 

(section 2.2.2), and to check the rank defects (section 2.2.3). The powerful numerical technique 

of singular value decomposition (SVD) and eigenvalue decomposition (EVD) are introduced 

(sections 2.2.4 and 2.2.5) for determination of the rank of the normal equations. Simplified EVD 

is formulated and applied as a practical tool for rank defect analysis (section 2.2.6).

2.2.1 The nature of defects

In section 2.1.3, LSE technique (equations 2.13 to 2.26) uses the following linearised 

equations:

Ax=b+v (2.29)

Nx=u (2.30)
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where N=A'WA and u=A‘Wb

x=N ‘u and Q*=N' (2.31)

The above equations are only applicable in the case of full rank. Generally, matrices A 

(and N) are not full rank, due to configuration and / or datum defects (Cooper and Cross, 1991). 

In such cases, N becomes singular and its ordinary inverse does not exist. Configuration defects 

are sometimes called internal defects, while datum defects are termed external defects.

The datum defects or datum problem arises when the required parameters are not 

estimable from the measurements, because the datum or reference system for the parameters is 

incompletely defined by the measurements. The parameters are therefore not estimable from the 

measurements. Configuration defects are caused by insufficient measurements for unique 

determination of size and shape of the network. Normally, datum defects are handled by means 

of constraints (Koch, 1987), whilst configuration defects can be removed (during the design 

stage) by introducing additional measurements.

2.2.2 Datum defects and definition

Fortunately, the causes of datum defects are usually known, and any datum defects of 

N can be removed by defining a proper datum. For a 3-D network, the datum definition requires 

seven datum elements, three for translation, three for rotation and one for scale. The datum is 

defined by specifying the minimum number of required datum elements, which in fact is equal 

to the datum defect of N.

For example, assuming the measurements do not contain any datum information, the 

datum can be simply defined by fixing six coordinates of two points and one coordinate of 

another (non-collinear) point. Alternatively, the datum can be defined by means of other 

combinations as well. The following notation is used in this chapter

tx=translation along x-axis (2.32)

tytranslation along y-axis

tz=translation along z-axis

rx=rotation about x-axis (rotation matrix R,)

ry=rotation about y-axis (rotation matrix R2)
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rz=rotation about z-axis (rotation matrix R3)

s=?L=scale

d=datum defect

Some measurements contain datum information which defines datum elements, and will 

consequently reduce the number of required datum elements (i.e. datum defect). For example 

distance measurements provide scale, while zenith angles provide orientation in x and y axes. 

A typical 3-D network comprising of slope distances, zenith angles and horizontal directions 

will provide three datum elements (Table 2.1), and hence leaves four datum elements undefined 

(three translation and one rotation about z-axis).

In general, the number of required datum elements (or datum defects) depends on the 

dimension of the network and types of measurements, as illustrated in Table 2.1. The 

relationship between the number of datum defects d, rank and the order of N (u) is

d=order (N) - rank (N) (2.33)

or rank (N)=order(N)-d=u-d

Mathematically, datum definition is carried out by adding a minimum number of 

constraint equations to the observation equations for removal of rank deficiency. In such a case, 

the datum is called minimum constraints datum. It is well known in LSE that the coordinates 

and their cofactor matrix are datum dependent (section 2.1.4). Therefore, different choices of 

constraints for datum definition will lead to different solutions of x and Q*.

The most common and useful choices of datum for the monitoring network are 

minimum constraints (or zero variance computational base), minimum trace (or inner constraints 

or free network) and partial minimum trace datums. The solutions are called minimum 

constraints, minimum trace and partial minimum trace solutions respectively. A more detailed 

explanation can be found in Caspary (1987b) and Biacs (1989).

The general constraint equation (Biacs, 1989) to define the missing datum information 

of the network can be written as
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type
of
network

type of 
observations

defined
datum
elements

defect
d

required
datum
elements

1-D height
differences

s 1 tz

2-D distances s 3 ^X> ty> I*Z

planar
azimuths r z 3 tj, ty, s

max
d=4 coordinates tx> ty> rz> s - -

coordinate
differences

rz, s 2 ^X> ty

horizontal angles or 
directions or 
distance ratios

- 4 tx» ty> *̂z»

s

3-D
spatial

distances or 
distance differences

s 6 ^X» ty» ^2,

r r r*x» Ay> Az

max
d=7

azimuths h 6 tx» ty ,  t z ,

rx, ry, s
directions or 
horizontal angles or 
zenith or 
vertical angles

rx, ry 5 tjl» ty ,  t z, 

r z , S

height
differences

rx, ry, s 4 t X9 ty ,  t z,

r z

coordinates t X5 ty ,  t z,

r r rAx» Ly> Lz» 
S

- -

coordinate
differences

r r rAy» *z»

s
3 t X) ty> t z

distance ratios or 
distance with 
scale bias or 
photo coordinates

7 tX, ty ,  tz, 
r r rAx» Ay» *z»

S

distance, zenith angle 
and
horizontal angle 
or direction

rx, ry, s 4 tx» ty ,  t z,

r z

Table 2.1. Surveying observables and the datum elements.
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(2.34)C‘x=0

where C=IpG and C -G ‘Ip

C and G are called general and inner constraints matrices respectively. Ip is a diagonal matrix 

with values of unity for datum stations and zero for non-datum stations. For a 3-D network with 

m stations, the maximum dimensions of the matrices are C (3m,7), Ip (3m,3m diagonal), G 

(3m,7) and x (3m,1).

In engineering surveying, matrix G‘ (shown in Figure 2.3) is well known. The first three 

rows of G‘ define the translation along x, y and z respectively. The next three rows define the 

rotations about x, y and z, respectively, while the last row defines the scale of the network. If 

the observations contain datum information, the rank deficiencies are less than seven (i.e. 

number of rows of G‘), and the corresponding rows of G‘ are omitted.

+1 0 0 +i 0 o ..„ +1 0 0
0 +i 0 0 +i 0 .. . 0 +1 0
0 0 +1 0 0 +1 ... 0 0 +i
0 +Z1 -yi 0 +Z2 -y2 . 0 +zn -y„

- Z1 0 +xi ~Z2 0 +X2 - . -zn 0 +xn

+yi - X1 0 +y2 ”X2 0 ..• +yn -xn 0

+xi +y. +z, +X2 +y2 +z2 ... +xn +y„ +zn

Figure 2.3 Full components of matrix G‘ for a 3-D network

Let the number of coordinates used for datum definition of m stations in a 3-D network 

be mdat, and datum defect is d. Also let mm be any number between d and 3m. The three types 

of the above datums can be easily realised as follows:
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mdat tvpe of datum

3m minimum trace

d minimum constraints

mm partial minimum trace

The application of constraints (equation 2.34) to the observation equations leads to the 

bordering of the singular normal equations in the form

A'WA C X AW b
C 0 k 0

(2.35)

The use of equation (2.35) implies that the sum of the corrections to the provisional 

coordinates will be zero, and the network will have zero rotation and zero scale change with 

respect to the selected datum points (Biacs, 1989).

The solution for x and Q* (Caspary, 1987b; Biacs, 1989; Cooper, 1994) becomes:

For a minimum trace datum

x=(N+GG1)"1 A'Wb (2.36)

Qs=(N+GGt)'1N(N+GG')'1 (2.37)

Q*=(N+GGt) 1-G(GtGGtG )1Gt=N+ (2.38a)

where N=A‘WA

If the coordinates for computing G are reduced to the centroid and G is 

2.41 to 2.43), expression for Q* becomes

normalized (equations

Q,=(N+GGt)'1-GGt (2.38b)

For a partial minimum trace datum

x=(N+CCt)"IAtWb (2.39)
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Qi=(N+CCt) 1-G(G,CCtG)-,G,=Nr (2.40)

N+ in equation (2.38a) is the pseudo inverse or Moore-Penrose inverse, while Nr in 

equation (2.40) is called the symmetrical reflexive generalized inverse (Koch, 1987; Biacs, 1989; 

Appendix D). Both inverses are computed indirectly as shown above. Equations (2.38) and also 

(2.40) are used instead of equation (2.37) for computing the cofactor matrix, since they are more 

efficient computationally. This is because the matrix to be inverted in the second term has 

maximum dimension of 7, hence avoiding the multiplication of large matrices.

To achieve numerical stability (Caspary, 1987b), the approximate or provisional 

coordinates used for computing matrix G‘ are reduced to the centroid (centre of gravity) of the 

network, followed by the normalization of Gl. Reduction to the centroid for a network of m 

stations can be written as

Xi’=xr x0, y,’=yr y0, Zi’=zr z0 (2.41)

[x0 y0 z0]=[Ex/m Ey/m Ez/m]

where (x0, y0, z0) defines the centroid of the network. The normalization is

Gnt=(G'G)‘1/2Gt and Gn‘Gn=I (2.42)

where (GtG )1/2=[(G,G)1/2]'1

G‘G=(GtG)I/2[(G‘G)l/2]t (2.43)

Factorization of equation (2.43) is easily achieved by Cholesky factorization.

Further derivation and computational details are given in Cooper and Cross (1988, 

1991). Due to datum dependencies, the estimated x and Q* are biased, depending on the selected 

constraints. However, some quantities are datum invariant (section 2.1.4). These invariant 

quantities play an important role in reliability analysis and statistical evaluation of LSE results.

In practice, the conventional minimum constraints datum is adopted due to its simplicity 

(Cooper and Cross, 1988). The solution can be obtained either by fixing d coordinates of the 

network, or using ’fixed’ pseudo observations with realistic a priori variances.
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By holding fixed a minimum number of coordinates (the number is equal to d) linearly 

dependent rows and columns of N are deleted. Such approach removes the selected fixed 

coordinates from the system of equations to form a reduced normal equation set, resulting in 

a non-singular system of equations as follows (Caspary, 1987b)

[A, AJ = tb+v] (2.44)

where x2 are the fixed coordinates used to define the datum (known as zero variance 

computational base), their number equals the rank defect d. The solution becomes

x1=(A,tWAI)'1A1tWb, QjU=(A1tWA1)"1 (245a)

x2=0, Q*2=0 (2.45b)

In this manner, the minimum constraints solution (equation 2.45a) is based on equations (2.13) 

to (2.26). The choice of the fixed coordinates is arbitrary. Moreover, minimum constraints by 

fixed distance or azimuth (Cooper, 1987) is possible too.

Suitable pseudo observations with realistic a priori variances will be ’fixed’, and may 

be used to remove the datum defects (Koch, 1987; Biacs, 1989; Chen et al, 1990a). For 

example, fixed azimuth provides the unknown rotation parameters of the network about z-axis. 

Let

1= l h  12]‘ (2.46)

where 12 are the pseudo observations with weights (W2). The solution becomes

N-(A1tW1A1)+(A2'W2A2)=N,+AN (2.47)

u=( A, ‘W, b,)+(A2lW2b2)=u, +Au 

x=N"‘u, Q pN '1

In equation (2.47), the addition of AN changes the singular N, into non-singular N.
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The solution via a minimum trace datum (equations 2.36 to 2.38) has the property of 

minimum trace and minimum norm, i.e

x‘x=min, tr (Q¡,)=min (2.48)

According to Cooper and Cross (1991), the datum is defined by the approximate coordinates 

of all the stations used. After LSE, the centroid, as well as the average direction and average 

distance (or scale) of all points from the centroid remain constant (equation 2.35). The solution 

by partial minimum trace datum minimizes both the partial trace and partial norm. Such a 

solution is useful for deformation detection purposes, because only a subset of stations 

considered as stable is used to define the datum.

In this study, the minimum constraints solution with fixed coordinates (equations 2.44 

and 2.45a) has been adopted. Moreover, a simple procedure has been formulated to expand the 

reduced Q*, to its full size, by appropriate re-ordering and filling with respect to the fixed datum 

stations. If required, it is possible to transform the minimum constraints solution into the 

minimum trace, partial minimum trace or other minimum constraints solution via S- 

transformations (section 2.3).

2.2.3 Qualitative analysis of linear equations

In the method of LSE using observation equations (section 2.1.3), the normal equation 

matrix N (equations 2.17 and 2.30) is square, symmetric, positive definite, non-singular and of 

full rank (i.e. its dimension and rank are equal to the dimension of parameters x). In other 

words, the linear equation is consistent. The matrix is full rank and N has a unique inverse only 

if it is square and non-singular (Appendix D)

N'1N=NN'1=I (2.49a)

It is therefore important to analyse and determine if A (or N) is of full rank. Several quantitative 

measures can be computed for analysis purposes, such as rank, condition and determinant. 

Further details on matrix algebra are given by Mikhail (1976), Mikhail and Gracie (1981) and 

Golub and Loan (1990).
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The rank of matrix A (dimensions n x u, where n > u), denoted by k, is the maximum 

number of linearly independent rows or columns in the matrix. The matrix is full rank if k = 

min (n,u), and rank deficient if k < min (n,u). For a square matrix ( where n=u), A is non-

singular if k=n, and singular if k < n.

Theoretically, the rank of a matrix can be determined (Rawlings, 1988) by Gaussian 

elimination using elementary row and column operations to reduce it to an equivalent matrix 

(echelon form). Elements below the diagonal are reduced to zero. The rank of the matrix is the 

number of non-zero elements remaining on the diagonal.

The condition of a matrix indicates the stability or sensitivity of the solution, and is 

measured by the condition number. The condition number of a matrix A (of full rank) is the 

ratio of the largest to the smallest singular values of A (Forsythe et al, 1977; Lawson and 

Hanson, 1974; equation 2.51).

If the condition number is too large, the system is ill-conditioned or nearly singular, 

otherwise it is well-conditioned. Methods of computing the condition number are given in 

Golub and Loan (1990) and Forsythe et al (1977).

The determinant (denoted by det) of a square matrix is a scalar quantity. For matrix N 

(of dimensions uxu), it is equal to the sum of the products of the elements of the first row of 

N and their corresponding cofactors (Mikhail and Gracie, 1981)

det N=n11Dll+n12D12+...+nluDlu (2.49b)

where n is element of the first row of N and D is the respective cofactor.

In theory, the determinant of a square matrix is non-zero if it is non-singular, and zero 

if it is singular. However, Golub and Loan (1990) show that there is little relationship between 

determinant and condition, as a well-conditioned matrix can have a very small determinant, or 

vice versa. For this reason, throughout this research, only the rank and condition are used in the 

qualitative analysis of the linear equations.
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2.2.4 Concept of SVD

The solutions of LSE are accomplished routinely on a computer, using double precision 

floating-point arithmetic. Hence the computations are generally affected by round-off errors 

(Forsythe et al, 1977; Dyck et al, 1984) because the numbers cannot be represented to their full 

precision, due to the process of rounding or truncating.

In practice, the determination of the rank of a matrix is not an easy task. In some cases, 

Gaussian elimination can transform a rank deficient matrix into a full rank matrix (Stewart, 

1973). Also, the presence of round-off error may produce the same effect.

In numerical analysis, SVD is a powerful computational tool for analyzing linear 

equations because it reveals qualitative information about the structure of the matrices, 

especially rank and condition. The technique is very effective for handling rank deficiency in 

the presence of round-off errors. The theoretical aspects on SVD can be found in Golub and 

Loan (1990), Forsythe et al (1977), Lawson and Hanson (1974) and Press et al (1988).

The SVD of a real matrix A (dimensions nxu) is the factorization of

A = UEV‘ (2.50)

where U (dimensions nxn) and V (dimensions uxu) are orthogonal matrices, i.e. both U‘U and 

V‘V are equal to unit matrix. The columns of U and V are called the left and right singular 

vectors respectively. Matrix E (dimensions nxu) has non-negative elements on the diagonal (of 

uxu sub-matrix) and zeros elsewhere. The diagonal elements of E are the singular values of A. 

The above orthogonal transformation is important because the orthogonal matrix is non-singular 

(i.e. full rank), and the rank of the diagonal matrix is equal to the number of its non-zero 

diagonal elements.

Equation (2.50) above involves the actual sizes of the matrices. In practice (Lawson and 

Hanson, 1974), the maximum number of singular values is u. Hence, the matrices required (i.e. 

economy size) in computing the SVD are A (n,u), U (n,u), E(uxu diagonal matrix) and V (u,u).

Clearly, the rank of A (denoted by k) is the number of non-zero singular values
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(denoted by s). A is full rank if k is equal to u, and rank deficient if k is less than u. Moreover, 

the condition number of A is the ratio of the largest to the smallest singular values. Hence

rank (A)=k 

cond (A)=smax/smin

(2.51)

(2.52)

where smax and smin are maximum (largest) and minimum (smallest) singular values respectively. 

Integer k is the number of non-zero singular values.

If A is rank deficient, the condition number can be considered as infinite. Moreover, if 

the matrix is ill-conditioned, the condition number will be very large, although the matrix is of 

full rank.

The SVD algorithm is mostly based on Golub and Reinsch (1970). The objective is to 

determine an orthogonal U and V so that

The algorithm consists of two stages. First, matrix A is reduced to superdiagonal form using 

Householder’s bidiagonalization. Then, the superdiagonal elements are reduced iteratively using 

Francis’ QR algorithm to a neglible size, leaving the desired diagonal matrix. This algorithm 

is very fast and effective. Further discussions on these aspects can be found in Forsythe et al 

(1977) and Golub and Loan (1990).

For proper and effective use of SVD, it is required to set a tolerance or limit, which 

reflects the accuracy of the data and any round-off error. For example (Forsythe et al, 1977)

tolerance =(accuracy of data)*(largest singular value)

In practice, the computed rank (called numerical or effective rank) is the number of singular 

values greater than the tolerance. Consequently, SVD is a very stable technique for handling 

rank defects in the presence of round-off error because the tolerance does not enter into the 
decomposition process.

U'AV = X is diagonal (2.53)
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The numerical rank and condition number computed via SVD (equations 2.51 and 2.52) 

is very useful for analyzing linear equations. By this means, it is possible to determine whether 

the system is rank deficient or ill-conditioned, prior to the computation of the inverse.

2.2.5 SVD solution

SVD can also be used to solve the least squares problems. Golub and Loan (1990) show 

that the SVD solution minimizes the sum of squared residuals, norm and the variance, and 

hence a solution identical to LSE is obtained. SVD can also handle both full rank and rank 

defect systems.

The SVD solution can be computed in two ways, by factorization or via a pseudo 

inverse. The factorization is similar to LU factorization, and involves manipulation of diagonal 

matrices (Forsythe et al, 1977). After SVD analysis, the following equations are employed

In the above equations, if any singular value Sj is less than the tolerance, the corresponding z ,  

must be set to zero.

In engineering applications, it is required to compute the cofactor matrix of the 

parameters, Q*. For this reason, a direct solution through the computation of pseudo inverse can 

be employed. Fortunately, SVD parameters can also be used to evaluate the inverse. The 

expression for pseudo inverse of A (Forsythe et al, 1977) can be written as

A = U IV ; z = V‘x and d = U‘b (2.54)

Hence d, z and x are solved respectively using

d=U‘b, Xz=d and x=Vz (2.55)

A+= V I+U' (2.56)

where Z+ = [s,+, s2+’ ... su+] is the (u,u) diagonal matrix 

Sj+ = (1/Sj) if s; is greater than the tolerance, 

otherwise it is zero
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A+ satisfies all four Moore-Penrose equations (Golub and Loan, 1990; Appendix D), i.e. 

AA+A=A, A+AA+=A+, (AA+)‘=AA+ and (A+A )-A +A. If A is square and nonsingular, A+=A"' is 

the ordinary inverse. The solution for the parameters, their cofactor matrix and residuals then 

becomes

x=A+b (2.57)

Q r W

v=Ax-b

An important relationship occurs when A is square and symmetric. According to 

Lawson and Hanson (1974), A has an eigenvalue-eigenvector decomposition (also known as 

eigenvalue decomposition (EVD))of the form

A=QEQl (2.58)

where Q is orthogonal and E is diagonal. This is similar to equation (2.50) for SVD. The 

diagonal elements of E are the eigenvalues of A and the column vectors of Q are the 

eigenvectors of A. This relationship is useful because the normal equation matrix is usually 

square, symmetric and positive definite (section 2.2.3). Hence, based on equations (2.50) and 

(2.58), the eigenvalues of A are equal to its singular values, and the eigenvectors are the 

columns of U.

Both SVD and EVD give the same qualitative analysis and can be used for analyzing 

and solving the normal equations. The solution for equation (2.16) via SVD and EVD can be 

summarized as

Nx = A‘Wb (2.59)

N = UXU1 or N = QEQ' (2.60)

N+ = UX+U‘ or N+ = QE+Q‘ (2.61)

x = N+(A‘Wb) and Q* = N+ (2.62)

In terms of computer storage, if the dimension of N is (u,u), SVD uses N (u,u), U(u,u), 

U‘(u,u) and X(uxu diagonal). The storage needed for EVD is N(u*(u+l)/2), Q(u,u) and E(uxu 

diagonal). This shows that the use of eigenvalue decomposition reduces the storage.
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Another important application of EVD is related to the establishment of the confidence 

regions around the estimated coordinates for the assessment of precision (section 3.3.5). The 

confidence region for the 3-D case is described by an ellipsoid.

The function describing the ellipsoid (Vanicek and Krakiwsky, 1986) for a point with 

coordinates x (actually 3-D) and cofactor matrix Q* is

y=(x-xc)'Qx1(x-xc) (2.63a)

with the probability that the point lies within the ellipsoid as

probability (%23 < y) = l-a  (2.63b)

where y is the expansion factor, xc the centre of ellipsoid, a  the significance level and (1-a) the 

confidence level or probability.

The parameters of the ellipsoid (semiaxes and orientation) can be computed by EVD

of Qj as

Q*=QEQ‘ (2.64)

where the diagonal elements of E are eigenvalues of Qs and column vectors of Q are 

eigenvectors of Q*. The semiaxes of the ellipsoid are the eigenvalues, while the respective 

orientations are the eigenvectors. Further details are given in section 3.3.5.

2.2.6 Using EVD for rank defect analysis

The least squares criterion mentioned earlier provides a unique solution to an 

overdetermined system when the system is of full rank (section 2.1.3). However, in general, the 

system is rank deficient (section 2.2.1). The rank of A (dimension nxu) is therefore

rank(A) = k = u - defect (2.65)

and u = k + defect ; defect = dd + dc
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where dd (or simply d) is the datum defect and dc is the configuration defect.

In practice, it is assumed that A is not full rank because of the datum defect only, and 

consequently free from configuration defect. The handling of datum defects are described in 

section 2.2.2.

Both SVD and EVD (equations 2.54 to 2.62) may be used for simultaneous analysis and 

solution of the linear equations. However, ordinary LSE based on equations (2.13) to (2.26) is 

commonly adopted in practice. For this reason, EVD is used for rank defect analysis of N, prior 

to the inversion process.

In this research, a strategy has been developed for incorporating EVD (i.e. simplified 

EVD) into ordinary LSE (Setan, 1993a). The developed strategy can now be summarised. 

Initially, using minimum constraints, any datum defects (dd) are removed by means of equations 

(2.44) and (2.45a). These constraints remove the rows and columns of A that correspond to 

fixed stations. Qualitative analysis on the reduced normal equations via EVD (equation 2.58) 

based on rank and condition (equations 2.51 and 2.52) can then be used to determine whether 

the system is full rank or rank deficient.

If the normal equations are full rank and the condition is not too large, the network is 

considered as free from the configuration defects, and ordinary LSE is performed. On the other 

hand, a rank deficient system or a large condition number indicates that the network suffers 

from configuration defects or ill-conditioning respectively. The number of defects (dc) reflects 

the minimum number of additional measurements required to handle the configuration defect. 

It is then necessary to examine the network and add the relevant measurements where necessary. 

In the case of ill-conditioning, the observations with very small redundancy numbers (section 

3.8) indicate the weak area of the network. The rank analysis is performed at each iteration.

From equations (2.51) and (2.52), only eigenvalues are required for computations of 

rank and condition. Therefore, only eigenvalues need be computed, as eigenvectors are not 

needed. Such procedure will speed up computational time and save storage, and it is called a 

simpified EVD.
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2.3 S-transformations and datum re-definition

The three dimensional coordinates and their cofactor matrix obtained from LSE of each 

epoch for deformation detection are datum dependent (section 2.1.4), and must be referred to 

a common datum. During the process of deformation detection, it is also required to re-define 

the datum with respect to a set of stable points. Consequently, a facility to allow for changes 

of datum or computational base is needed.

The transformation of LSE results and datum re-definition can be carried out via the 

similarity covariance transformation (S-transformation). In terms of implementation, direct 

evaluation of S-transformations is time consuming as it involves multiplication of large 

matrices and hence is not practical. In this study, a special computational procedure has been 

formulated (section 2.3.5) to handle such transformations efficiently. Moreover, the application 

of S-transformations use the general transformation equation.

The concepts of datum re-definition and S-transformations are described in sections 

2.3.1, 2.3.2 and 2.3.3. The uses of S-transformations in LSE and deformation detection are 

presented in section 2.3.4.

The formulated computational procedure (section 2.3.5) involves reducing the 

coordinates to a centroid and the normalization of matrix G to achieve numerical stability. 

Decomposition of matrix S is also carried out to speed up the computations. Use of the reduced 

coordinates is also recommended for flexible S-transformations.

2.3.1 Need for datum re-definition

The required variables estimated from LSE of each epoch for the purpose of 

deformation detection (section 3.9) are estimated three dimensional coordinates (xa), their 

cofactor matrix (Q*), estimated variance factor (d02), degrees of freedom (r) and datum defect 

(d). For simplicity, x and Qx will be used to represent xa and Q* respectively throughout this 

chapter.

Both x and Qx are datum dependent. For the purpose of deformation detection, LSE can 

be based on the minimum trace, minimum constraints or partial minimum trace datum (section
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2.2.2). Datum invariant quantities (d02, r, d) remain the same because of their datum 

independence property (section 2.1.4).

The concept of datum definition (section 2.2.2) is readily applicable in the monitoring 

of deformation. The observations at each epoch are processed independently by LSE to estimate 

x and Qx. In general, the monitoring network is treated as free network where all stations are 

assumed to be unstable a priori, and hence a minimum trace datum is used. In some cases, a 

set of stable points is known in advance, and in this case a partial minimum trace datum can 

be used. In practice, the conventional minimum constraints datum is favoured due to its 

simplicity. In this case S-transformations of x and Qx into either minimum or partial minimum 

trace datum is needed.

In the initial stage of deformation detection, x and Qx of any two epochs are differenced 

to estimate displacement vectors and their cofactor matrix. Theoretically, x and Qx have to be 

referred to the same common datum. However, different datum definitions may be necessary 

for each epoch, possibly because of different defects in the configuration or practical limitations 

(such as obstruction of the line of sight or destruction of points).

The solution with respect to a common datum can be obtained either from LSE of each 

epoch where the new datum is defined by a common set of points, or via S-transformations 

(section 4.2.1) of x and Qx of each epoch to the new datum. The S-transformations approach 

is very useful as it replaces the repeated LSE and inversion of the normal equations coefficient 

matrix. Moreover, during the localization of deformation (section 4.2.3.2.3), S-transformations 

are used repeatedly for transforming the displacement vectors and their cofactor matrix with 

respect to new datums defined by different sets of stable points. This approach is analagous to 

a partial minimum trace solution.

2.3.2 Concept of S-transformations

The S-transformation is based on the work of Baarda carried out in the 1950s which 

was published later in Baarda (1973).

The following formulation for S-transformations is adopted from Strang Van Hees 

(1982). In general, it is based on a fundamental linear equation in the form of
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x=Gp (2 .6 6 )

or dxj=dxi+Gdp in differential form

For a 3-D network, the equation for transforming coordinates Xj to Xj is (Cooper and Cross, 

1991)

x j=x 0+XR|R2R3x i 

or Xj=x0+ÀRXj

(2.67a)

Equation (2.67a) contains a maximum of seven transformation parameters: three translation in 

x0, three rotation in R and a scale factor X. The rotation matrices R„ R2 and R3 are with respect 

to the x, y and z axes respectively (equation 2.32).

1 0 0 cosP 0 -sinP cosy siny 0

V 0 cosa sina 
0 -sina cosa

, R2= 0 1 0 
sinp 0 cosP

, r 3 -siny cosy 0 
°  0 1

Differentiation of the above equation for one point gives

dx dx dX dy -dp X dx
dy = dy + -dy dX da y + dy
dz

j
dz 0 dp -da dX z i dz

or dxj=dxj+Gdp 

where

1 0 0 0 -z. y. x.i i i

G= 0 1 0 z.1 0 1
j*

0 0 1 -yt xi 0 z,

dxj=[dx dy dz]j‘ 

dx—[dx dy dz]j‘ 

dp=[dx0 dy0 dz0 da d(3 dy dX]'

(2 .68)
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For a 3-D network with m stations and a maximum datum defect (d) of seven, the dimensions 

are dXj(3m,l), dxi(3m,l), G(3m,7) and dp(7,l). A solution for dp can be obtained using a 

generalised inverse of G denoted by G£. Hence

dp=G£(dxj-dxi) (2.69)

dXj=dxi+GGs(dxj-dxi) 

and (I-GGs)dXj=(I-GGs)dxi

The relationship between cofactor matrices is obtained by multiplying each side of the above 

equation with their respective transpose.

(I-GG£)QXj(I-GGE)t=(I-GG£)Qxi(I-GGs)1 (2.70)

By using the g condition (Appendix D), which is satisfied by all generalised inverses, the 

fundamental equation of S-transformations may be derived for transforming Xj and Qxi to Xj and 

Qxj according to a generalised inverse Gg.

Qxj=(I-GG£j)Qxi(I-GG£j)t

or in a simple form

xj=SjXj (2.71)

Qxj=SjQxiSjt

Sj=(I-GG£j)

In order to transform x and Qx into a minimum trace datum, the pseudo inverse G+ is 

employed. Therefore

(2.72)Sp=(I-GG+)

GM G’Gy’G*

Sp=(I-G(GtG )1Gt)
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In a minimum trace datum, all points are used for datum definition. Therefore, a more 

general expression for the S-transformations of any arbitrary and Qxi into Xj and Qxj becomes

xj=Sjxi (2.73)

Qxj=SjQxiSjt

Sj=(I-G(GljG)1 GTj) or 

Sj=(I-G(C‘G)'1Ct) if C=IjG

In equation (2.73), Ij (3mx3m) is a diagonal matrix for defining the computational base after S- 

transformations. If only some of the points are used for datum definition (partial minimum trace 

datum), the elements of Ij for datum and non-datum points are one and zero respectively. 

Dimensions of the S-transformations matrices involving m stations and maximum datum defect 

are Xj (3m, 1), Xj (3m, 1), Qxi (3m,3m symmetric), Qxj (3m,3m symmetric), G (3m,7), I (3m,3m 

diagonal), C (3m,7), C‘G (7,7) and Sj (3m,3m generally non-symmetric). Hence, one only need 

to invert a maximum of a (7 by 7) matrix, which is quite simple.

A closer look at matrix G (equation 2.68) shows that it is actually the same as the inner 

constraints matrix in equation (2.34). The number of its columns is equal to the number of 

datum defect. As shown in section 2.2.2, depending on the type of observations, G will have 

corresponding fewer columns whilst (C‘G) is still of full rank.

The expression for S-transformations can also be obtained by appplying the concept of 

propagatian of variance and the g condition (Caspary, 1987b). Let the solutions with respect to 

two different constraints (equation 2.37) be

x, and Qxl=(N+C1C1t)-1N(N+C1C1t) 1 (2.74)

with C,‘x=0 [datum 1]

x2 and Qx2=(N+C2C2t)-1N(N+C2C2t)-1

with C2'x=0 [datum 2]

The two cofactor matrices can be connected by means of g condition (Appendix D) which is 

correct for any Qx

g condition: NQXN=N (2.75)
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Hence the cofactor matrix with respect to datum 2 is

Qx2=(N+C2C2t)-'N(N+C2C2t)-1 (2.76)

=(N+C2C2t)'1NQxlN(N+C2C2t)"1 because NQxlN=N 

or Qx2=S2QxiS2l where S2=(N+C2C2l)‘'N

The above equation is of the type obtained from the general law of propagation of variance 

applied to a linear function y, where

Sj=(N+CCt)‘1N=(I-G(CtG)‘lC‘) where C=IjG

2.3.3 Properties of S-transformations

In general, the square matrix S is non-symmetric, and only symmetric for a minimum 

trace datum. Two important properties of S-transformations are :

(i) S is idempotent

For successive S-transformations, only the last transformation determines the resulting 

x and Qx.

Let S=SkSj i.e. first Sj then Sk (equation 2.71)

If y=Ax, Qy=AQxA‘ 

Hence, x2=S2x,

(2.77)

The transformation of and Qxi into Xj and Qxj is similar to equation (2.73) above

(2.78)

S=(I-GGk)(I-GGj)

=(I-GGk-GGj+GGkGGj)

applying g condition, GGkG=G

44



(2.79)S=(I-GGk-GGj+GGj)=(I-GGk) 

hence SkSj=Sk

Since S is idempotent, rank (S)= trace (S)

(ii) Product of SG is zero.

This property is useful for checking the computation of the S matrix.

SG=(I-GG£)G 

=G-GG*G

=G-G as g condition gives 00*0=0 

SG=0 (2.80)

Another important aspect is that the datum invariant quantities (section 2.1.4) do not 

change between either minimum trace, partial minimum trace or minimum constraints datums.

2.3.4 Application in deformation detection

S-transformations can be applied in both LSE and deformation detection. As will be 

shown below, the general S-transformations equation can be applied directly.

In LSE (section 2.2.2) the types of solutions can be based on either a minimum trace, 

partial minimum trace or minimum constraint datum. The transformation equations for 

transforming Xj and Qxi into Xj and Qxj based on the chosen datum are given by equation (2.73) 

as

Xj=SjXi, Qxj=SjQxiS/ (2.81)

S=(I-G(C‘G)"1Ct), C=IjG

Let m be the number of stations in the 3-D network, d be the datum defect and mm the number 

of coordinates chosen for datum definition. The elements of Ij will be unity for datum points 

and zero for other points. The solutions (section 2.2.2) can be realised as
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if mm=3m, minimum trace datum (2.82)

mm=d, minimum constraints datum

mm between d and 3 m, partial minimum trace datum

In most cases, it may be necessary to divide the points into two groups, datum and non-

datum points. Fraser and Gruendig (1985) and Cooper (1987) adopted the partitioning and 

ordering of x( and Qxi with respect to datum and non-datum points as the following:

Mxr xe]' ; Qç
Q r  Q re

Q er Q e

(2.83)

where r (retain) refers to datum points and e (eliminate) refers to other non-datum points. 

Hence, equation (2.81) becomes

Xj=Sxi and Qxj=SQxiSl (2.84a)

S=I-
G(GrtGr)-1Gr‘

Ge(Gr‘GI)-,Grt

0

0
(2.84b)

This partitioning approach requires re-ordering of x, Qx, Gr and Ge.

Prior to deformation detection, x and Qx of any two epochs must be referred to a 

common datum defined by sets of common points (section 4.2.1). Assume that each epoch has 

different stations and datum definitions. Let the coordinates and their cofactor matrices for the 

two epochs be x„ Qxl (refers to datum A) and x2, Qx2 (refers to datum B), and it is required to 

be referred to datum C. Reordering of x and Qx via equation (2.83) gives

;Qx =
Q r  Q re

Q e r  Q e

(2.85)

where xr and xe are referred to common (datum) and non-common points respectively. The 

transformation equations become
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(2 .8 6 )

S2=(I-G2(C2tG2)'IC2t); C2=IcG2

This is the equivalent of obtaining a solution with respect to a partial minimum trace datum. 

Once x and Qx are referred to a common datum, the displacement vector (d) and the cofactor 

matrix of displacement (Qd) for the common stations can be computed as

If both epochs utilize the same stations, but need to be referred to the same datum (say 

datum C), d and Qd can be determined directly

During the localization of deformation, S-transformations of this type (equation 2.88) 

are very useful for the iterative transformation of displacement vector and its cofactor matrix 

into a datum defined by a set of stable points. The S-transformations, used together with a 

partial congruency test and test of the largest quadratic form, is in effect removing each unstable 

or suspected point interactively, one at a time. Elements of d and Qd need to be re-ordered each 

time a suspected point is removed from the computational base. Details on such procedures are 

given in section 4.2.3.2.

Another application of S-transformations is demonstrated by Chen et al (1990a) for 

identification of stable points via a robust method. Using the general S-transformation, I is 

interpreted as a weighting factor (weight matrix) for obtaining an iterative weighted similarity 

transformation of d and Qd. Further aspects on robust methods are discussed in section 4.2.3.4.

The deformation detection procedure developed in chapter 4 uses the general S- 

transformations formulation effectively for simultaneous identification of stable points and 

estimation of the deformation of unstable points. This is conceptually correct due to the basic 

property of the S matrix being idempotent. Hence, once the final datum is defined by the stable

d - X 2c-X lc ; Q d - Q x 2c+ Q x lc (2.87)

xic=SX[; x2c=Sx2; d=x2c-xlc=S(x2-x1)

Q d = Q x 2 c + Q x lc = S (Q x2 + Q x l)S t

(2.88)
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points, the final transformation determines the resulting d and Qd.

2.3.5 Computational procedure

The general equation for S-transformations of Xj and Qxi to Xj and Qxj (equation 2.73) 

is simply

Xj=SjXj (2.89)

Qxj=SjQxiSjt

Sj=(I-G(GtIjG) ‘GtIj) or 

Sj=(I-G(C'G)"1Ct) if C=IjG

Although the above equation looks simple, its direct implementation is not practical because the 

transformation matrix S is non-symmetric in general and the computation of QXJ is time 

consuming.

In terms of storage requirements, for a 3-D network of m stations, the major storage 

areas are occupied by S, Qxi and Qxj (section 2.3.2). Matrix S is full and non-symmetric 

(3m,3m), while Qxi and Qxj are symmetric, each requires [(3m)(3m+l)/2] spaces. The main task 

is in the computation of Qxj as it involves multiplication of large matrices. Another problem is 

the numerical instability that might occur.

In this study, a computational strategy has been formulated (Setan, 1993b) based on the 

following criteria in order to produce an efficient implementation of the equation (2.89) into a 

working computer program:

i. Working with single arrays in most cases and only the triangular matrix Qx is needed.

ii. Reduction of all approximate coordinates for computing G to their centroid to avoid 

numerical instability.

iii. Further normalization via Cholesky factorization to achieve numerical stability.

iv. A special procedure by decomposition of S matrix (Biacs, 1989; Biacs and Teskey, 1990) 

to speed up the computation.

v. Using reduced coordinates during S-transformations.
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To save storage, single arrays are used and some of the spaces are used again, the main 

storage being for S (full matrix), and the triangular matrices Qxi and Qxj. To achieve numerical 

stability, the provisional coordinates used for computing elements of matrix G‘ are reduced to 

the centroid of the network, followed by normalization of G‘. Reduction to the centroid 

(equation 2.41) is obtained from

x ’=x,-x0, y j ’= y i - y 0, z,’=zr z0 (2.90)

x0=Ix/m, y0=Ly/m, z0=Iz/m

where (x0, y0, z0) are coordinates of the centroid of m stations, which are simply the means of 

each xi; y( and coordinates.

The purpose of normalization of a matrix is to make the norm (or length) or the rows 

equal to unity. The normalization of G‘ (equations 2.42 and 2.43) is

Gn'=(GtG)-I/2G‘ and Gn'G„=I (2.91)

(GtG)"1/2=[(G'G)1/2]"1

The factorization of the square matrix G‘G can be carried out by means of the standard 

Cholesky factorization in the form A=U‘U where U‘ and U are lower and upper triangular 

matrices respectively. Hence

G‘G=(G'G)1/2[(GtG)1/2]t (2.92)

Evaluation of the cofactor matrix during S-transformations involves multiplication of 

large matrices (equation 2.89). To speed up the computation, Biacs (1989) decomposed the S 

matrix as follows:

xj=SjXi, Qxj=SjQxiSjt (2.93)

S^I-GfC'Gj ’C1, C=IjG 

Qxj=[I-G [C'G]"1 C‘] Qxi [I-C [C'G] "1 G‘] 

=Qxi-G[CtG]-1CtQxi-QxiC[CG]1Gt+G[CtG ]1CtQxiC[CtG ]1Gt

also xj=[I-G[CtG] 'CjXj
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letting Pt=[CtG]'1CtQxi or similarly P=QxiC[C‘G ]1 

and Rt=[CtG]'*Ct

The S-transformations equation can be written as

Xj=[I-GRt]xi and Qxj=Qxi-GPt-PGt+GRtPGt (2.94)

In equation (2.94), the computation of Qxj which involves multiplication of large 

matrices (equation 2.89) is reduced to an addition of matrices, which can be performed more 

quickly.

The computational scheme developed for practical applications of S-transformations 

(section 5.1.2) uses equations (2.83), (2.93) and (2.94), together with the options for datum 

defects, reduction to centroid and normalization. Hence, the equations for transforming Xj and 

Q xi to Xj and Qxj are:

In equation (2.95), elements of Ij are one and zero for datum and non-datum points respectively. 

The partitioning procedure is adopted here to simplify the uses of S-transformations in 

localization of deformation (section 4.2.3.2.3). However, if the purpose is only to transform 

results of LSE, there is no need for partitioning, and all the remaining equations are still 

applicable.

In this work, further refinement to the computational scheme has been developed by 

using reduced coordinates during the computations of S-transformations. The general procedure 

for transforming Xj and Qxi to Xj and Qxj is:

(2.95)

where

xj=[I-GRt]xi

Qxj=QxfGPt-PGt+GRtPGt

Pt=[CtG]'1C‘Qxi

R -fC G j'C 1

C=LG
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(i) Reduce xi to X;’ with respect to the approximate coordinates.

Xi’=Xi-X0

where x0 is the approximate coordinates

(ii) Apply reduction to centroid in computing matrix G (equation 2.90).

(iii) Normalize matrix G (equation 2.91), if necessary.

(iv) Compute S-transformations

xj ’ =Sjxi’

Qxj=SjQxiSjt
(use equation 2.95 for optimization).

(v) Compute final coordinates

xj=x0+xj’

This scheme allows transformation into minimum trace, partial minimum trace or 

minimum constraints solutions.
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3. ERROR MODELLING IN LSE

A realistic mathematical model is needed for LSE, with respect to systematic, gross and 

random errors. Such requirements are essential because any significant errors (especially gross 

errors) will lead to apparent deformation.

This chapter examines the modelling of significant systematic, random and gross errors 

in measured uncorrelated surveying data. The applications of the precision and reliability 

analyses, together with the statistical testing for assessment of LSE results are described. A 

strategy has been formulated for error modelling and LSE (sections 3.5.3, 3.6.2, 3.7.3 and 3.9).

3.1 Sources of error

The LSE process as described in section 2.1 uses observational data for estimation of 

parameters via a linearised mathematical model (i.e. Gauss-Markov Model) consisting of both 

functional and stochastic models (Appendices A and C). In reality, it is important that every 

possible source of error be considered. The main sources of error (Caspary, 1987b) are in the 

mathematical model (functional and stochastic), observational data and in the computations.

Theoretically, the chosen functional model should represent the reality. Unfortunately, 

this is rarely achieved in practice due to unmodelled effects. The difference between the 

functional model and reality is called systematic error or bias. Typical sources of systematic 

error are instrumental factors (maladjustment), physical effects (for example atmospheric 

condition), choice of the mathematical model and observer’s limitations such as personal bias 

(Cooper, 1974, 1987; Davies et al, 1981).

The stochastic model (section 2.1) describes the random errors of the measurements. 

Random (or accidental) errors are the unavoidable small differences between the measurements 

and their expectations, and follow statistical distributions. In surveying, observations are 

considered as random variables, and random errors are assumed to follow the normal 

distribution. Further details are given in Cooper (1974) and Cross (1983).

Errors in observational data are normally large errors attributed to gross errors, also 

known as blunders, outliers or mistakes (Hawkins, 1980). This type of error arises due to the
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malfunction of equipment, techniques and / or observers. Common examples of gross error are 

incorrect reading and recording of measurements.

In this study only systematic, random and gross errors in the observations are 

considered, while other error sources are assumed to be handled separately and beyond the 

scope of this research.

In deformation monitoring, both functional and stochastic models have to be correct and 

accurate, while errors in the observational data need to be detected and removed. Any 

significant errors (especially gross errors) will lead to apparent deformations and hence will 

contaminate the results of deformation detection (section 1.2).

Modelling of these errors requires an assessment of the quality of the LSE results and 

the application of the concept of hypothesis or statistical testing. Aspects related to quality 

measures and statistical testing are discussed in sections 3.2 and 3.3 respectively. The remaining 

sections describe the strategy developed for error modelling and detection.

3.2 Quality criteria

The quality of LSE results is usually assessed using some form of quality criteria. The 

measures of precision, reliability and accuracy are useful to describe the quality with respect to 

random, gross and systematic errors respectively (Cooper and Cross, 1988). For monitoring 

networks, it is also important to assess the capability of the network to detect the expected 

significant movement, i.e. sensitivity. As monitoring networks generally need to be of high 

accuracy, it is very important to assess the quality of a network with respect to precision, 

reliability, accuracy and sensitivity (Niemeier et al, 1982).

Precision is indicated by random errors. In general, a relatively high precision network 

(small random errors) is required to guarantee detection of instabilities. Criteria for precision 

are derived from the cofactor matrix of the estimated parameters Qr  Most measures of precision 

are therefore datum dependent, and can be either global or local. Extensive discussions are given 

by Caspary (1987b) and Cross (1983). Examples of global measures are the trace of Q*, the 

maximum eigenvalue of Qs and criterion matrices. Local measures include standard deviations 

of the individual parameters (coordinates) and confidence regions in the form of absolute or
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relative error ellipses and ellipsoids.

Reliability is dependent on the network configuration and the precision of 

measurements. It indicates the extent to which the network measurements as a whole are self-

checking. The reliability of a network (Baarda, 1968) is its capability of detecting gross errors 

by suitable testing procedures. Reliability measures consist of two parts, internal and external 

reliability. Criteria for reliability can be computed from the cofactor matrix of the estimated 

residuals Q „ .

Internal reliability is related to the probability of gross error detection, whilst external 

reliability measures the effect of undetected errors on the parameter estimation. The measures 

for internal reliability of a measurement can be based on the sizes of the corresponding (local) 

redundancy number and marginally detectable gross error (MDGE). Both measures of internal 

reliability are datum independent.

For external reliability, the basic measure is datum dependent (Caspary, 1987b). 

However, datum independent measures can be determined by means of influential factors. In 

deformation monitoring, we seek a high reliability network, since higher internal reliability 

(larger redundancy number, smaller MDGE) increases the probability of detecting gross errors. 

In addition, higher external reliability (smaller influential factor) indicates that the model 

responds insignificantly to undetected errors. It is obvious that high internal reliability leads to 

high external reliability.

Accuracy indicates the quality with respect to systematic errors. This approach is used 

by Cooper and Cross (1988) by extending the functional model via bias parameters to include 

any suspected systematic errors. After LSE, the variances of the bias parameters (obtained from 

Qs) are examined to determine if such parameters are significant. Some researchers use the term 

precision, as the measure is also based on Q*.

Measures of the sensitivity with respect to certain deformation models provide quality 

to determine movements. Niemeier et al (1982) and Cooper (1987), among others, show the 

importance of sensitivity analysis. The measure is in terms of a form vector, which is actually 

the minimum size of detectable deformation for the assumed model.
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The quality criteria mentioned above are very important for proper assessment of LSE 

results. In practice, all the measures of precision, reliability and sensitivity can be determined 

at the design stage. In this thesis, it is assumed that the monitoring network is being designed 

and optimized by taking into consideration all or most of these aspects.

In network optimization study (Grafarend, 1974; Cross, 1983), the LSE problems are 

classified into four sections:

(i) Zero-order design (ZOD) or datum problem, to search for an optimal datum.

(ii) First-order design (FOD) or configuration problem, to optimize the configuration.

(iii) Second-order design (SOD) or the generalised weight problem, to determine the optimal 

distribution of the observational work in a fixed configuration.

(iv) Third-order design (TOD) or the densification problem, to optimize the improvement of an 

existing network.

In monitoring networks, the required precision is generally known, and only ZOD, FOD 

and SOD are applicable (Neimeier, 1987). Basically, it is required to optimize the configuration 

(i.e. station positions and observation scheme) that will satisfy the observation weights and the 

required precision, and to optimize the selection of instruments and observing procedure.

The solution to the network optimization problem can be based on either computer 

simulation (or pre-analysis) or analytical approach (Cross, 1983; Cooper and Cross, 1988). Pre-

analysis is commonly used, while the analytical approach is still under investigation. In pre-

analysis, equations (2.20) and (2.22) are utilised for this purpose where

Q*=N'1=(AtWA)'1 (3.1a)

Q^W'-AQtA*

The subject of network optimization is beyond the scope of this research, but details can 

be found in Grafarend (1974), Cross and Thapa (1979), Schaffrin (1981), Grafarend and Sanso 

(1985) and Kuang et al (1991).

Measures of both precision and reliability are used in this study. In addition, pre-

analysis (equation 3.1a) has been adopted for computing precision and reliability of the network
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prior to LSE of the actual data. The relevant formulae for precision and reliability analyses are 

given in section 3.8.

3.3 Statistical testing

The linear mathematical model for LSE relates the observations and parameters (section 

2.1.3). Statistical testing on the LSE results is performed to ensure that the results obtained 

using the adopted model are satisfactory and there are no significant errors in the observational 

data.

The linearity and computational assumptions are necessary for the LSE process, while 

distributional assumptions are required for valid statistical testing (section 2.1.5). It is usually 

assumed that the observations are normally distributed, and the mathematical model is correct 

and complete.

The statistical testing procedure consists of three steps: formulation of a null hypothesis, 

computation of a suitable test statistic and the selection of risk level to determine critical value 

of the test statistic (Caspary, 1987b). In LSE and deformation detection, such tests can be either 

global or local.

Initially, the null hypothesis H0 is formulated to express the condition to be tested. To 

get an idea of what is true if H0 fails, an alternative hypothesis Ha is formulated, although it is 

not always expressed explicitly. For example, in the global test on the estimated variance factor 

(section 3.3.1), H0 and Ha can be expressed as

The test statistic T is usually chosen so that its distributional properties are known if 

H0 is true (i.e. normal distribution) and it is sensitive to small departures from H0. For the above 

global test, the computed T has a %2 distribution (under H0) with expectation r (number of 

degrees of freedom in LSE)

or

one tailed test

two tailed test

(3.1b)
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(3.2)

where Q is the quadratic form of the residuals (equation 2.23).

Finally, the risk level a  is selected (normally based on experience) and the critical value 

of the test statistic for a  (as determined from tables or computation) is compared with T to 

determine the outcome of the testing. A decision is made whether to accept H0 (actually do not 

reject H0) or reject it (i.e. accept Ha). Hence, the result of the testing is either rejection of H0 

or no rejection. In the above example (equation 3.2), H0 is not rejected at risk level a  if

Otherwise, H0 is rejected at risk level a .

In statistical testing, two types of errors may be made, namely Type I and Type II 

errors. A Type I error is the rejection of H0 although it is actually true or correct, e.g. rejection 

of a good observation. The probability of this error is called risk or significance level a. In 

practice, typical values for a  (Caspary, 1987b) are 0.1, 0.05, 0.01 and 0.001. A Type II error 

is the acceptance of H0 although Ha is actually true (or H0 is wrong), e.g. accepting a bad 

observation. The probability of this error is (3. The quantity (l-(3) is called the power of the test. 

A typical value of P is 0.20 or 20%.

Ideally, it is required to minimize the probability of both types of error. However, P 

increases as a  decreases and vice-versa (Cross, 1983), indicating that the probabilities of Type 

I and Type II errors cannot be reduced at the same time, and both errors need to be optimised. 

Testing procedures that handle both types of errors are attributed to Baarda (1968), i.e. Baarda’s 

data snooping and B-method. Such testing procedure is also closely related to reliability 

analysis. Basically, the methods standardize both the risk levels and commonly used values are 

a 0 0.1% and Pc 20%. The related aspects of testing in deformation detection is discussed in 

section 4.3. In practice, only Type I error is considered, due to the difficulty of knowing 

probability density function (pdf) for test statistic under Ha.

The applications of statistical testing in surveying are extensive and only the relevant

|T |< X 2r,a
T is between x2r,,.«/2 and x \ , o J 2

(one tailed test) 

(two tailed test)
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tests will be discussed here. A more detailed explanation may be found in Vanicek and 

Krakwisky (1986), Cooper (1987), Cross (1983), Mikhail (1976) and many others.

In LSE, statistical testing can be applied either before LSE (to assess the quality of 

observed data) or after LSE (to assess the results of estimation) (Cooper, 1987), the latter will 

be examined here.

Statistical tests are useful as an aid in assessing the results of LSE. In the following 

discussion, it is generally assumed that the a priori variance factor is known, and its value is 

unity. The most commonly used tests following LSE are:

1. Test on the estimated variance factor (global).

2. Goodness of fit test on the estimated residuals (global).

3. Significance test on parameters estimated by LSE (local).

4. Test for outlying estimated residuals (local).

5. Test on confidence region of parameters (local).

Wherever applicable, the tests should be used for statistically checking on LSE results.

3.3.1. Test on the estimated variance factor

The test on the estimated (or a posteriori) variance factor, often termed a global (model) 

test, is used to check that both functional and stochastic models are acceptable. Such a test 

checks the validity of the following important assumptions: the model is correct and complete, 

on average the observations are normally distributed (i.e. contain random errors only), and no 

systematic and gross errors are present in the measurements. The above assumptions are stated 

as the null hypothesis H0.

As the outcome of LSE, an unbiased estimate of the variance factor can be found 

(equation 2.23). The idea behind the global test is to determine whether the a posteriori variance 

factor is significantly different from the a priori variance factor or not.

The basic hypotheses for the test are formulated as equation (3.1b)
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H0: 3o2=C02 and Ha: So2*c?02 (3.3)

To test H0, the test statistic T (equations 3.2 and 2.23) is computed

T=v‘Wv/c02 ~ x2r (3.4)

= n /a02=rd02/a02

where quantities v, W, Q, c 02 and d02 and r are as defined in section 2.1.3. H0 is accepted and 

the test passes at the chosen significance level a  if the computed T lies within the specified 

interval (based on percentage point of a %2 distribution) as follows

X 2r,l-a/2< T < )C 2r,a/2 ( 3 - 5 )

If T falls outside the interval, H0 is rejected and the test fails.

The above test (equation 3.5) is known as two-tailed test. It is likely that significant 

errors will increase the value of the estimated variance factor. For this reason, especially in the 

detection of gross errors, it is usual to adopt a one-tailed test (equation 3.1b) where

H0: S02=a02 and Ha: So2>c02 (3.6)

H0 is accepted if T<%2r0t

Interpretation of the test is useful as the acceptance of H0 (i.e. the test passes) indicates 

that there is no objection to H0, but does not prove it. Also, rejection of H0 (i.e. the test fails) 

only shows that either the model or the observations or both are wrong. Hence, to determine 

the causes, further investigations or statistical tests are needed. The most often accepted reasons 

for the failure of the global test are: an incorrect or incomplete functional model (i.e. systematic 

errors); unrealistic stochastic model (weighting of observations and correlations) and; gross 

errors in the measurements. Such reasoning is called a posteriori reasoning by Cooper (1987).

The global test described above can also be performed using an F test based on the 

Fisher statistic (Gruendig and Bahndorf, 1984), and the same results are obtained. An important 

relationship between the critical values of %2 and F is
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Fr,~,a=(X2r,ayr (3.7)

3.3.2. Goodness of fit test (on the estimated residuals)

For the purpose of statistical testing, it is assumed that the observations (and also 

estimated residuals) are normally distributed. Hence, it is important to test the normality 

assumption using a goodness of fit test. The hypotheses are

H0: observations are normally distibuted (3.8)

Ha: observations have some other distribution

The test statistic is (Cooper, 1987)

T= I i=i,nc(oi-ei)2/ei~x2nc.1 (3.9)

where o¡ is the actual frequency (or number) of observations (or residuals) in each class i, e¡ is 

the expected frequency in each class (based on normal distribution) and nc is the number of 

classes. The normality test passes, and H0 is accepted at the selected significance level a  if T 

is less than critical value %2nc_la

0 < T < x2nc.i,a (3.10)

Otherwise, H0 is rejected, and the test fails, indicating the failure of the normality assumption.

In reality, surveying observables are of different types, such that although the 

observations are normally distributed, the estimated residuals across all types of measurements 

are not. In such a case it is necessary to normalize or standardize the estimated residuals prior 

to testing. Standardized or normalized residuals can be computed by

(3.11)
Q«=[W_l-AN"1At]

where Vj\ v; and Q?i (aw) are standardized residuals, estimated residuals and cofactor matrix 

(standard deviation) of the residuals respectively. Values for 6vi are obtained from the square
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root of the diagonal elements of Q(1. An approximation (Pope, 1976) for dvi can also be 

computed with the following expression

G?i=(S0*o/o0)*((n-u)/n)1/2 (3.12)

where CTj is the standard deviation of observation i, n the number of observations and u the 

number of parameters.

If the variance factor is known, the standardized residuals will have a normal 

distribution with zero mean and unit variance. The goodness of fit test can be applied either to 

the whole or to a group of observations (residuals).

3.3.3. Significance test on parameters (estimated by LSE)

In LSE, it is also possible to extend the functional model by means of additional 

parameters, for example, the incorporation of a scale factor to the measured EDM distance 

(section 3.5.3.1). The significance of any such parameters must be tested statistically.

For each estimated additional parameter (p), the test is based on (Cooper, 1987)

H0: p=0 Ha: p*0 (3.13)

The test statistic is

T=p/6p~tmP-i (3.14)

where dp is the square root of the diagonal element of the cofactor matrix (i.e. standard 

deviation) of the estimated parameter and mp is the number of observation equations containing 

the bias parameter. The test passes, and Hc is accepted, indicating the additional parameter is 

not significant (i.e. no scale discrepancy) if T lies within the interval

knp-U-a/2 < T < tmp Pa/2 (3.15a)

Otherwise H0 is rejected, and the estimated additional parameter is considered to be significant.
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If H0 is accepted, LSE should be repeated without the additional parameter.

If more than one additional parameter are included in the functional model, any 

correlations between the parameters have to be determined. The correlation coefficient between 

parameters x and y (Mikhail, 1976) is

pxy=axy/(axa y) (3.15b)

where pxy is the correlation coefficient, oxy is the covariance between x and y, and ctx, a y are 

the standard deviations of x and y respectively. If the coefficient is zero, parameters x and y are 

uncorrelated. On the other hand, a coefficient close to unity indicates highly correlated 

parameters. If pxy=l, x and y are functionally correlated.

3.3.4. Tests for outliers

LSE provides a means of checking individual observations through the examination of 

their estimated residuals. The use of statistical tests in this respect is related to the concept of 

data snooping, and can be very useful for outlier detection.

The test for outlying estimated residuals (or outlier test) examines the standardized 

residuals Vj’ (equation 3.11; Caspary, 1987b)

Ho:E {V }= 0  (3.16)

or each v/ is free from gross error 

or each v/ belongs to N(0,aw2)

Ha: one residual is an outlier or EfVj’J^O 

or one residual contains gross error

The test statistic is

T=Vi’= | v/(a0a yi) | ~N(0,1) (3.17a)

or T=<V=|v/(ô0Cw)|~Tr (3.17b)

Equation (3.17a) is used when g 02 is known, and it is called un-studentized test, while
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equation (3.17b) (studentized test) is employed when a 02 is unknown and is estimated by d 02 . 

Evaluation of Q0i in order to get Gw will require extensive computation, as shown in equations 

(2.22) and (3.11). For uncorrelated observations, only diagonal elements of Q4 need to be 

computed, and expression for ctw (section 3.8) can be written as

a ^ o ^ r , )  (3.18)

ri=l-a,N'1a1'wl

where

c —standard deviation of observation i 

^redundancy number of observation i 

apelements of design matrix A for observation i 

N"'=Cayley inverse of N 

w—weight of observation i

In this work, equation (3.18) is adopted because it involves less computation than 

equation (3.11) and computes values of ri5 needed for reliability analysis.

In principle, both tests (equations 3.17a and 3.17b) examine each standardized residual 

individually, ’out of the context’ of the other residuals. In fact, since all residuals are tested 

simultaneously (’in context’), the probability of the test is higher than (1-a), and some form of 

standardization is required. Further details on ’in context and out of context’ testing are given 

by Vanicek and Krakiwsky (1986).

In practice, the application of the above tests (i.e. equations 3.17a and 3.17b) with the 

appropriate standardization procedure is known as data snooping (Schwarz and Kok, 1993), and 

consists of either Pope’s (Tau) or Baarda’s (data snooping) methods. Pope’s method uses the 

studentized test and standardizes for Type I error (a) only by invoking Bonferroni’s inequality 

(Vanicek and Krakiwsky, 1986). Baarda’s method uses the un-studentized test and standardizes 

both Type I and Type II errors (a  and (3).

Pope’s or Tau method (Pope, 1976) assumes o02 as unknown, and applies the estimated 

602 in computing the normalized residuals. The test statistic (equation 3.17b) is one-dimensional

Tp=vi/(60a w)~xr (3.19)
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where r is the number of degrees of freedom (redundancy), and <7W may be computed rigorously 

(equation 3.18) or by approximation (equation 3.12). Based on the concept of in context testing, 

ignoring the correlation amongst the residuals, a  is standardized as

a n= l-(l-a)1/n=oc/n (3.20)

where n is the number of the observations. H0 is accepted if

ITPI — T.ao where a 0=an/2 (3.21)

Otherwise (if T>Tr ao), H0 is rejected, and the corresponding observation must be examined.

As tables of T-distribution are very rare in statistical books, the following relationship 

between I and the t-distribution may be used (Pope, 1976)

Tr=rI/2tr_ ,/(r-1 +tr_ ,2)1/2 (3.22)

The computation of the critical value of T is given by Pope (1976), together with the listing of 

a useful Fortran subroutine.

Baarda’s method (Baarda, 1968) assumes that ct02 is known a priori, and employs a 

multi-dimensional test. The test statistics (equation 3.17a) is

Tb=vi/(a0a?i)~N(o,aw) (3.23)

H0 is accepted if |Tb| < N(iy2. Given a 0.05 (5%), the critical value of N is 1.96.

In the actual implementation of Baarda’s method, both Type I and Type II errors are 

taken into account. Typical values for standardized a 0 and P0 are 0.1% and 20% respectively 

(section 3.3) leading to the critical value uao of 3.29 (Figure 3.1). H0 is accepted if

|Tb| < u ao (3.24)

Otherwise H0 is rejected if T>uao. Interpretation of the test is similar to Pope’s method.
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Baarda’s method also provides a measure of reliability, both internal and external. Some 

expressions for reliability (see section 3.8) of each observation i (datum independent quantities) 

are:

internal reliability 

r1=l-aiN'1aj‘wi 

MDGEj=V i=oi(A.0/ri)1/2

external reliability

8i=^0(l-ri)/ri (3.26)

where ^redundancy number of observation i

MDGE—V—size of the MDGE in observation i.

^influential factor or global distortion parameters of observation i 

)i0=non-centrality parameters, computed from a 0 and (30

A typical value of X 0 (with a 0 0.1% P0 20%) is 17. Baarda (1968) provides a nomogram 

for the evaluation of uao (with respect to type I error) and X 0 (with respect to degrees of freedom 

and type I and II errors). Figure 3.1 shows the nomogram for Po=20%.

When c02 is known (section 3.3.2), the normalized residuals are normally distributed 

(Steeves and Fraser, 1987) with N(0,1). For simplicity, as an alternative to equation (3.24), 

standard normal distribution can be used (equation 3.23), and H0 is accepted if

|T| < N a/2 (3.27)

In equations (3.24) and (3.27), the critical values are independent of r.

3.3.5. Testing on confidence region of parameters

The application of statistical analysis to LSE results allow the establishment of 

confidence regions around the estimated coordinates, via the utilization of cofactor matrix Q„ 

(see section 3.8), where

(3.25a)

(3.25b)
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Figure 3.1 Baarda’s nomogram for P0 20% 

(taken from Caspary, 1987b).
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The confidence region can be either absolute or relative in nature (Dodson, 1990). The 

absolute (or point) confidence region is datum dependent and gives an overall picture of 

network precision. The relative confidence region is datum independent and reflects the relative 

precision between stations.

In multi-dimensional space, the confidence region is in the form of a hyper ellipsoid, 

and for 3-D is ellipsoid. The parameters of a confidence region are the semiaxes and their 

orientation, which can be determined via EVD, as outlined in section 2.2.5. For details, see 

Mikhail (1976).

The probability for standard confidence region (when expansion factor y1/2 is equal to 

one) is 0.683, 0.394 and 0.199 for 1-D, 2-D and 3-D cases respectively. In spatial (3-D) space, 

the probability that the point lies within the standard point error (confidence) ellipsoid is about 

20%. It is then necessary to increase the probability with respect to the appropriate or selected 

significance level (typically 5%) by multiplying the semiaxes of the ellipsoid by the expansion 

factor. For example y1/2 is 2.796 for 5% significance level or 95% confidence level. The 

following values are taken from Mikhail (1976):

probability

0.500

0.900

0.950

0.990

expansion factor(y1/2)

1-D 2-D 3-D

0.678 1.177 1.538

1.646 2.146 2.500

1.960 2.447 2.796

2.575 3.035 3.368

Table 3.1 Expansion factor for confidence region 

3.4 Strategy for error modeling

In principle, the method of LSE is valid without any assumption with respect to errors. 

However, in qualitative analysis and the statistical evaluation of LSE results, it is generally 

assumed that the selected mathematical models are correct, i.e. all the systematic and gross 

errors have been eliminated prior to LSE, and the measurements contain only realistic random 

errors and are regarded as random variables. These assumptions are important (Caspary, 1987b)
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due to the high sensitivity of LSE to both systematic and gross errors. Equally important is the 

proper handling of random error.

In practice or reality, the model may be affected by errors (section 3.1). Treatment of 

these errors is very important in the measurement and analysis of survey data, such a procedure 

is termed error modelling. The purpose of modelling systematic and gross errors is to reduce 

the effects of such errors and to ensure that their magnitudes are insignificant, either before 

(preferably) or after LSE. Stochastic modelling is useful for realistic estimation of random 

errors. In this research, a strategy for error modelling has been developed by examining the 

nature of each type of error in turn.

Systematic errors have a constant effect on repeated measurements and consequently 

cannot be recovered or detected via repetitive measurements. Hence, measurements need to be 

corrected and reduced for systematic effects. Corrections are related to known physical effects, 

while reductions are related to the geometry involved (Cooper, 1987).

Traditionally, the effects of systematic error are minimized either by calibration of 

instruments and applying the appropriate corrections and reductions to measurements, and / or 

adopting a suitable measurement scheme. In practice, systematic errors are usually either 

neglected or assumed to be insignificant.

It is equally important to detect any gross errors in the measurements. During the 

measurement process, large gross errors can be handled or avoided by screening, i.e. adopting 

a proper and suitable measurement scheme (Cooper, 1974, 1982; Secord, 1986) that provides 

some independent checks. In this way, suspect measurements can be examined, rejected and re-

measured as necessary.

If any gross errors remain undetected in the measurements, it is also possible to detect 

them after LSE (post-LSE) based on the techniques employing the analysis of residuals. 

Generally (actually not necessarily) large residuals will indicate erroneous measurements. 

Whenever such residuals are detected, the corresponding measurement is examined to find out 

if a gross error can be found. That measurement is then deleted or remeasured.

In general, post-LSE techniques for gross error detection are based on either the mean
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shift model (such as Baarda’s and Pope’s methods) or the variance inflation model (i.e. de-

weighting of observations). Details on this aspect are given by Cross and Price (1985), Chen 

et al (1987), Kubik and Wang (1991), Gao et al (1992) and Schwarz and Kok (1993). The most 

popular techniques for gross error detection in surveying are Baarda’s (data snooping), Pope’s 

(Tau) and the Danish method (Caspary, 1987b).

Both Pope’s and Baarda’s methods assume that just one measurement is affected by a 

gross error, and are based on rigorous statistical theory. In fact, it is likely that the 

measurements contain multiple gross errors. The general procedure for both methods in this 

situation is by successive re-application of the relevant tests (section 3.3.4) to identify suspected 

erroneous observation and then to eliminate that particular observation and repeat the LSE until 

no gross errors are detected.

The Danish method is not based on rigorous statistical theory and uses a suitable de-

weighting strategy to locate and eliminate the gross errors (Kubik et al, 1987). Moreover, the 

Danish method can provide a simultaneous solution in the presence of multiple gross errors, and 

the erroneous measurements are not deleted completely. Hence, the Danish method can be 

considered as robust in nature.

Although measurements may not contain significant systematic and gross errors, they 

will still be inconsistent (i.e. repeated measurements of same elements will give rise to different 

measured values) due to random errors. In LSE, the stochastic model describes these random 

effects by means of a weight coefficient or cofactor or covariance matrix of measurements 

(section 2.1). It is therefore essential to determine the cofactor matrix prior to LSE. Estimates 

of the cofactor matrix of the measurements may be obtained either from experiments or previous 

performance (Cooper and Cross, 1988)

Survey measurements can be correlated algebraically (for example horizontal angles) 

or uncorrelated (such as photo measurements, distances, directions and height differences). For 

simplicity and practical purpose, measurements are generally assumed to be uncorrelated and 

independent. In this simplified case, only the variances are needed, and the cofactor or weight 

matrix becomes diagonal (equation 2.15b).
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As an extension to the existing method of error modelling, a strategy has been 

developed in this study to cope with uncorrelated surveying measurements. The most significant 

systematic errors are in distance measurements. Modelling of systematic errors in measured 

EDM distances can be carried out via the application of additional parameters (scale and / or 

zero errors) and pseudo observations (distance ratio and distance difference). The modelling of 

systematic errors is formulated in section 3.5. As pseudo observations are theoretically 

correlated algebraically, a de-correlation technique is applied (section 3.5.3.2.3).

In gross error detection, successful implementation of the Danish method requires a 

proper termination criterion and a suitable de-weighting function. Section 3.6 gives a description 

of the developed strategy of robustified LSE, which consists of a modified Danish method and 

the incorporation of global and local tests, together with reliability analysis. The effects of de-

weighting the observations on the parameters are also derived (section 3.6.2.3).

In stochastic modelling, a more suitable method of estimating the cofactor matrix of 

observations is based on an iterative numerical technique of VCE (Caspary, 1987b; Chen et al, 

1990b). Unfortunately, the computational effort required is extensive for the general case. 

Assuming uncorrelated and independent observations, the iterative and simplified technique of 

VCE for estimating the variances of observations is extended by adding tests on the global and 

group estimated variance factors as termination criterion (section 3.7).

The procedure developed for error modelling and LSE also incorporates global and local 

tests, together with precision and reliability analyses (section 3.8). Such a procedure is discussed 

in section 3.9.

3.5 Modelling of systematic errors

Sources contributing to systematic error are described in section 3.1. Some examples 

of the systematic errors in surveying are given by Anderson and Mikhail (1988). Details on 

sources of error affecting EDM measurements are discussed in Rueger (1988).

The method for modelling systematic error consists of both pre-LSE and post-LSE 

techniques, and is composed of combinations of the following:
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.instrument calibration and applying corrections 

.a proper measurement scheme 

.improvements to the functional model

The first two are known as field or pre-LSE methods, while the later (focus of this study) is a 

computational technique that also includes post-LSE analysis. The above methods are described 

in sections 3.5.1, 3.5.2 and 3.5.3 respectively.

3.5.1 Instrument calibration and applying corrections

Most surveying observables consist of angular and linear measurements. The instruments 

normally used for this purpose are theodolite, tacheometers and levels. The instmments, being 

man made, are subject to mechanical or optical defects due to imperfections in their construction 

or lack of adequate adjustment. Most of these mechanical or optical defects can be reduced by 

careful calibration and adjustment of instmments before their use for measurement. Cooper 

(1982) provides a more detailed description on the calibration and adjustment of such 

instmments.

Nowadays, with the wide and accepted use of EDM for distance measurement, regular 

calibration and performance evaluation of EDM instmments becomes very important, if their 

suitability and precision are to be assured at the time of usage. The method of calibration 

(Kennie, 1990) to determine the systematic errors of an EDM instmment can be either 

laboratory or field based. Calibration procedures for EDM are given in detail by Ashkenazi and 

Dodson (1975), Rueger (1977), Deeth et al (1978), Sprent (1980) and Dracup et al (1982).

It is generally necessary to apply the appropriate corrections and reduction to the raw 

observations for known systematic effects before computation. Atmospheric refraction is a 

source of serious systematic errors in the measurements, especially zenith (or vertical) angles 

and EDM distances. Cooper (1987) describes in detail the necessary systematic corrections for 

the measured angles, height differences and EDM distances.

In EDM measurement, variations in the atmospheric conditions will change the 

refractive index along the EDM wavepath, and thereby limit the accuracy. It is then necessary 

to determine the refractive index of the atmosphere, and apply the computed atmospheric
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correction to the measured EDM distances. The most common method to determine atmospheric 

refractive index is by measuring temperature, pressure and humidity at the two ends of the 

measured line, and applying the computed correction to the measured distance. More details are 

given in Rueger (1988) and Cooper (1987), amongst others. Several approaches for handling 

this problem include the use of airborne sensors (Savage and Prescott, 1973), multi-mavelength 

EDM (Hugget and Slater, 1975), and improving the atmospheric model (Fraser, 1984; Dodson 

and Zaher, 1985).

3.5.2 A proper measurement scheme

Sometimes it is not always possible or convenient to calibrate the instruments 

frequently, especially for angular measurements. In this situation, errors due to the instrumental 

imperfection and / or non-adjustment can contaminate the measurements. Fortunately, most of 

the systematic errors (including observer’s error) can be eliminated or reduced to a negligible 

amount via a proper observational procedure or measurement scheme.

For example (Cooper 1982), the principle of reversal (i.e. reading angular measurements 

on both faces of a theodolite) is often used to reduce the effects of horizontal collimation errors 

in the measured horizontal angles or directions. Also, errors due to natural causes, especially 

atmospheric conditions or refraction on horizontal angles, can be rendered negligible by 

choosing appropriate times for observing (Anderson and Mikhail, 1988), for example, at night 

when temperature and atmospheric conditions are almost constant. Further aspects on this 

approach can be found in Cooper (1982), Anderson and Mikhail (1988) and Davies et al (1981). 

High precision horizontal angle measurements can be achieved with the use of forced centring 

and good targeting (Ashkenazi et al, 1980). Teskey and Biacs (1990) adopt a special procedure 

of precise trigonometric heighting that enables zenith angle to be corrected for earth curvature 

and refraction.

3.5.3 Improvements to the functional model

Measured EDM distances are subject to instrumental error (Burnside, 1982; Rueger, 

1988): constant error independent of distance such as zero error, reflector constant and centring 

error; error dependent on distances such as scale and frequency errors ; cyclic error such as 

electromagnetic coupling and effects of signal strength. In practice, the cyclic error should be
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calibrated and corrected before LSE because it is difficult to estimate the parameters related to 

cyclic error at the stage of LSE processing. Therefore, during network LSE, systematic errors 

in EDM distances can be either dependent (example scale error) or independent (such as zero 

error) of the measured distances.

As discussed in section 3.5.1, instrumental errors of EDM can be determined via 

calibration. The most common being scale and zero errors. As an alternative, it is possible to 

model the systematic error by extending, refining or improving the functional model for LSE. 

Modelling of this type can be either via the inclusion of additional parameters or using pseudo 

observables. The development made during this research is discussed in sections 3.5.3.1 and 

section 3.5.3.2.

3.5.3.1 Inclusion of additional parameters

In this approach, the effects of the particular systematic errors are represented and 

included in the functional model as additional or bias parameters (Cooper, 1987; Gruendig and 

Bahndorf, 1984). The most common approach in this case is to improve the functional model 

with respect to the measured EDM distances by introducing scale or zero errors as additional 

parameters.

A more general concept has been developed in this study, allowing the modelling of 

either scale (or bias), zero (or constant) errors or both in combination. It is also possible to 

model all or only a group of measured distances. Moreover, multiple (and independent) scale 

or zero error can be modelled as well, and are treated in the same manner as direction 

(Appendix A). In all cases, the significance of the parameters are determined by means of 

significance testing (section 3.3.3). For combination of scale and zero errors, correlation analysis 

(equation 3.15b) will indicate whether the parameters are correlated. Ideally, there should be 

little correlation between parameters.

The functional model is extended from the basic functional model of a spatial (slope) 

distance (sk) between points i and k (Appendix A)

f(x)=sk-[(xk-xi)2+(yk-yi)2+(zk-zi)2]1/2=0 (3.29)

where sk=[dx2+dy2+dz2]1/2, dx=xk-xi; dy=yk-yi, dz=(zk+htk)-(zi+hti)
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htj=height of instrument at i, htk=height of reflector at k

Let k, and k2 be the scale (or scale bias) and zero errors of the measured distance. The 

improved functional models and parameters to be estimated become:

(i) for combination of scale and zero errors

sco=( 1 +k,)[dx2+dy2+dz2] 1/2+k2 (3.30)

p a ra m e te r s= [X j y, z, xk yk zk ... k ,  k 2]' w h e r e  (1+k,) is k n o w n  a s  s c a le  f a c t o r

(ii) for scale error only

sse=(l+k,)[dx2+dy2+dz2],/2 (3.31)

param eters^  y, z, xk yk zk ... k,]‘

(iii) for zero error only

sze=[dx2+dy2+dz2]1/2+k2 (3.32)

parameters=[x, y, z, xk yk zk ... k2]‘

The above expressions show that equations (3.31) and (3.32) are the special case of 

equation (3.30) when k2 is zero and (1+k,) is unity respectively.

Linearization of the above equations via Taylor’s series expansion (Appendix A) results 

in the following observation equations:

(i) combination of scale and zero errors

a,5xi+a28yi+a35zi+a48xk+a58yk+a68zk (3.33)
+a78k,+a88k2=(sobs-sco)+vk

where a,=3f/3x,=-(l+k,)dx/s; a2=3f/3yi=-(l+k,)dy/s 

a3=3f/3z,=-( 1 +k,)dz/s; a4=c)f/dxk=( 1 +k,)dx/s 

a5=3f/3yk=( 1 +k,)dy/s; a6=3f/3zk=( 1 +k,)dz/s 

a7=3f/3k,=s; a8=3f/3k2=1.0
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(ii) scale error only

a, 8xi+a28yi+a38zi+a48xk+a58yk+a68zk (3.34)

+a78k1=(sobs-sse)+vk

where a^Sf/Sxp-fl+k^dx/s; a2=3f/3yi=-(l+k,)dy/s 

a3=3f/8zi=-( 1 +k,)dz/s; a4=3f/dxk=( 1 +k,)dx/s 

a5=3f/3yk=( 1 +k, )dy/s; a6=3f/3zk=( 1 +k, )dz/s 

a7=3f/3k,=s

(iii) zero error only

a, 8xi+a28yi+a3Szi+a48xk+a58yk+ab8zk (3.35)

+a75k2=(sobs-sze)+vk

where a,=3f/3xi=-dx/s; a2=3f/3yi=-dy/s 

a3=3f/3z;=-dz/s; a4=3f/dxk=dx/s 

a5=3f/3yk=dy/s; a6=3f/3zk=dz/s 

a7=3f/3k2=1.0

s0bs=observed spatial distance between i and k 

sco=computed spatial distance (equation 3.30) 

sse=computed spatial distance (equation 3.31) 

sze=computed spatial distance (equation 3.32) 

s=computed spatial distance (equation 3.29)

Equations (3.33), (3.34) and (3.35) can be used to model the whole or a group of 

measured distances. Furthermore, single or multiple (independent) scale or zero errors can be 

modelled via equations (3.34) and (3.35) respectively. The same formulation can also be written 

for horizontal distances, i.e. a special case of the above requiring 2-D coordinates only.

Another approach to improve the functional model is via the use of scaled distances 

(Angus-Leppan, 1972; Vincenty, 1969, 1979). Gruendig and Teskey (1984) demonstrate an 

appropriate functional model, observational scheme and procedure in using scaled distances.

The functional model can be written as
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(3.36)f(x)=sk( 1 +k ,)-[dx2+dy2+dz2] 1/2=0 

sk( 1 +k,)=[dx2+dy2+dz2]1/2

where scale error k, obtained from LSE is applied to the observed distance.

In this research, the linearised observation equation for 2-D case (Gruendig and Teskey, 

1984) has been modified for 3-D case, and becomes

al5x1+a2Syi+a38zi+a4Sxk+a55yk+a<)Szk=(sobs(l+kl)-s)+vk (3.37a)

where apdf/dxp-dx/s; a2=3f/3yi=-dy/s 

a3=3f/3z;=-dz/s; a4=3f/dxk=dx/s 

a5=3f/3yk=dy/s; a6=3f/3zk=dz/s

Equations (3.36) and (3.37a) indicate that the estimated scale error is applied to the 

observed distance, instead of the computed distance as in equation (3.34).

The concept of scaled distances is useful in deformation detection. Once the scale and 

/ or zero errors are estimated via equations (3.33), (3.34) or (3.35), they can be applied into the 

LSE process in the same manner as equation (3.37a). For this purpose, the functional model of 

equation (3.30) can be re-arranged as

[s( 1 +kj)+k2]=[dx2+dy2+dz2]1/2 (3.37b)

Equation (3.37b) allows the estimated scale and / or zero errors to be applied to the observed 

distances. The components of observation equations (a, to â ) are as in equation (3.37a).

3.5.3.2 Using pseudo observables

In practice, sometimes not all the significant systematic errors in EDM distances can 

be reduced, by either calibration, measurement scheme or via additional parameters. To make 

matters worse, some systematic errors are difficult to model. In this situation, it is recommended 

that the appropriate pseudo observables (i.e. observables that are derived from the 

measurements) be used. Two types of pseudo observables can be used to cope with systematic 

error, either dependent or independent of the distance, i.e. distance ratios and distance
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differences respectively. With pseudo observables, both functional and stochastic models are 

taken into account.

The effects of atmospheric refraction will cause an error that is dependent on the 

distance measured. If two or more such distances are quickly measured from the same point by 

EDM, it can be assumed that the effects are the same for each measurement and the 

corresponding ratios (i.e. distance ratios) will be free from such errors. In addition, the effects 

of other errors that are linear and dependent on the distances will be eliminated too.

Constant errors (such as zero error, reflector constant and centring errors) will cause the 

measured distances to be either too short or too long. By taking differences (i.e. distance 

differences) between the distances (measured at the same point), the effects of the constant error 

which are linear, independent of the distances and common to all measurements will be 

cancelled.

During this study, the basic formulation of pseudo observables for spatial (slope) 

distances (distance ratios and differences) together with the expression for their covariance 

matrix, ignoring physical correlation, has been derived (sections 3.5.3.2.1 and 3.5.3.2.2).

Consider three stations i, j, k, with their corresponding coordinates (xi5 y  ̂ z t) ,  (xj, yJ5 Zj) 

and (xk, yk, zk). Let Sj and sk represent the spatial distances from i to j and i to k respectively, 

with the standard deviation of the measurements CTj and ak. Let hf be the heights of instrument 

at i, htj and htk be heights of targets at j and k respectively.

3.5.3.2.1 Distance difference

In this work, the functional model for the 2-D case given by Cooper (1987) has been 

extended for 3-D case, such that the functional model for distance difference (As) is

f(x)=As-(sk-Sj)=0 (3.38)

As=sk-Sj

where sk=[dxk2+dyk2+dzk2]1/2, Sj=[dXj2+dyj2+dZj2]1/2

dxk=(xk-xi), dyk=(yk-yj), dzk=(zk+htk)-(zi+hti)

dXj=(Xj-Xj), dyj=(yj-yi), dzj=(zj+htj)-(zi+hti)
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The observation equation for distance difference becomes

a,8xi+a28yi+a38zi+a48xj+a58yj+a68zj (3.39)

+a78xk+a88yk+a98zk=(Asobs-As)+v 

where a1=(dxj/sj)-(dxk/sk); a2=(dyj/sj)-(dyk/sk)

a3=(dZj/Sj)-(dzk/sk); a4=-dxj/sj; a5=-dyj/sj; 

a6=-dz/Sj; a7=dxk/sk; a8=dyk/sk; a9=dzk/sk 

Asobs= difference of measured distance sk-Sj 

As=difference of computed distance sk-Sj

The variance a As2 of the above "observable" can be determined by applying the principle 

of variance propagation.

If y=Ax, Zy=JXxJ‘ where J=3y/dx (3.40)

A s = h ~ s i i ~ l  ]]
sk

< 4 = ^ - 1  l]
0 a t

°As2=(°'J2+ak2) (3.41)

In this work, the covariance matrix for multiple distance differences has been derived 

using equation (3.40), and for three observables can be obtained as follows. Let As,=s2-s„ 

As2=s3-s2 and As3=s4-s3, and the variances of s1; s2, s3 and s4 be a , 2, a 2 , o 2 and o42 respectively. 

Then

a2, 0 0 0

- 1 1 0 0
0

2
0 0^ 2

0 - 1 1 0 ;
0 0 - 1 1

0 0 a ] 0

0 0 0 a 2

£As=J£sJ‘
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0

E. =As

aj+a2

~ c 2 g 2 + g 2

- G 3 tt3+04

(3.42a)

Similarly, the covariance matrix of n observables can be written as

g W i 0 0

_°2
2 2 G2+CJ3 ~ ° 3  . . 0

0 -a? 2 _2 a 3+a4 .

0
(3.42b)

• aiU+On-l - a l ,

0 0 • 0 A + A
.

3.5.3.2.2 Distance ratio

In this research, a functional model for spatial distance ratio (r) has been extended from 

the 2-D case (Vincenty, 1979)

f(x)=sk/sj-r=0 (3.43)

r=Sk/Sj

The observation equation becomes

a18xi+a25yi+a38zi+a48xj+a58yj+a68zj (3.44)

+a78xk+a88yk+a98zk=Ar+v

where ap rK d x /s /M d x ^2)]; a2=r[(dyJ/s/)-(dyk/sk2)]

a3=r[(dzj/sj2)-(dzk/sk2)]; a4=-rdx/Sj2; a5=-rdyj/sj2; 

a6=-rdzj/sj2; a7=rdxk/sk2; a8=rdyk/sk2; a,j=rdzk/sk2 

Ar=(robs-r)

The variance (ar2) is derived by propagation of variance via equation (3.40)
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J=[3r/3sj 3r/3sk]=[-r/Sj r/sk]

a ?  0 f-r/s.
O ^ E r=[-r/Sj r/sk]

0 Gk [ r/sk

Gr2=r2[(oj/sj)2+(ok/sk)2] (3.45)

The covariance matrix for multiple distance ratios (e.g. three) has been derived in a 

similar fashion (equation 3.40). Let r^Sj/Sj, r2=s3/s2, r3=s4/s3, with variances of a ,2, a 22, g 32 and 

o42 respectively. Hence, the expression for the covariance matrix becomes

where c11=r12[(G,/s1)2+(G2/s2)2]; c12=c21=-r,r2(G2/s2)2; c13=c31=0 

c22=r2 [(CJ2/s2) +(g 3/s3) ], c23=c32=-r2r3(G3/s3)

C33=r32[(G3/s3)2+(G4/s4)2]

To simplify the computation, use of natural logarithms of distance ratios as observables, 

instead of the ratios themselves is recommended by Vincenty (1979). The following formulation 

for 3-D has been modified from Vincenty (1979).

The observation equation given by equation (3.44) can also be expressed as

vr=r[a|8xi+a28yi+a38zi+a48xj+a55yj+a68zj (3.47)

+a78xk+a88yk+a98zk]-Ar

(3.46)

C31 C32 C33

where a1=[(dx/sj2)-(dxk/sk2)]; a2=[(dyJ/sJ2)-(dyk/sk2)] 

a3=[(dzJ/sJ2)-(dzk/sk2)]; a4=-dx]/sJ2; a5=-dy/Sj2; 

a6=-dZj/sj2; a7=dxk/sk2; a8=dyk/sk2; a9=dzk/sk2

Let Oq^ g / s , and c m = c 2/ s 2 . Then equation (3.45) becomes
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o r2= r 2( a ol2+ 0 O22) (3.48)

The observation equation for the logarithm of a ratio is obtained simply by dividing 

equation (3.47) by r. The new observation equation is

aI8xi+a28yi+a38zi+a48xj+a58yj+a68zj (3.49)

+a78xk+a88yk+a98zk=(Ar/r)+vln 

where a,=[(dx/Sj2)-(dxk/sk2)]; a2=[(dy/sj2)-(dyk/sk2)] 

a3=[(dzj/sj2)-(dzk/sk2)]; a4=-dx/Sj2; a5=-dy/Sj2; 

a6=-dz/sj2; a7=dxk/sk2; a8=dyk/sk2; a9=dzk/sk2

Similarly, equation (3.48) becomes

am2=(Ooi2+<%2) (3.50)

The covariance matrix for multiple observables has been derived as follows. Let r]=s2/s,, 

r2=s3/s2, r3=s4/s3, with variances of a ,2, a22, c 32 and a 42 respectively. Also, a 0i=CT,/s,; a 02=a2/s2; 

a ()3=o3/s3 and a04=a4/s4. Therefore, applying the principle of variance propagation

In r,

In r2 =

In r3 _

1
-1
0

0
1

-1

0
0
1

In s, 

In s2 

In s3 

In s4

(3.51)

Hence £,n=JXsJ‘ where

a 2 0 0 0

- 1 1 0 0
0

2
0 0^ 2

0 - 1 1 0 ; E  =

0 0 - 1 1

’  s
0 0 O ? 0

0 0 0 a 2
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0

(3.52)

0

Equation (3.52) is similar to equation (3.42) and covariance matrix of correlated 

horizontal angles (Appendix C). This demonstrates that covariance matrices for distance 

difference, correlated angles and logarithms of distance ratio can be computed in the same 

manner.

3.5.3.2.3 De-correlation of observations

Most of the surveying observables described in Appendix A are assumed to be 

uncorrelated, for example distances, directions and height differences. However, as shown by 

the derived covariance matrix of observations (for example, equations 3.42 and 3.52), the 

formulated pseudo observables are algebraically correlated. Hence, the covariance matrix of the 

observations will not be diagonal anymore.

In this study, the correlated pseudo observables have been applied into ordinary LSE 

using the concept of transformation or de-correlation (Milbert, 1985). The transformation 

process decorrelates the transformed observations, and the covariance matrix of the transformed 

observation equations becomes a unit matrix. In this way, the normal equations and variance 

factors are formed and solved as in ordinary LSE. However, the final residuals need to be 

transformed back again. Details on the formulation of de-correlation as given by Milbert (1985) 

are described here.

Let A be the design matrix, b the misclosure vector, v the residuals, X, be the (positive 

definite) covariance matrix of measurements and R the Cholesky factor of X,.

Normal equations are conventionally formed as

N = A % ' A  and u=A‘Xf1b (3.53)

The Cholesky factor R of X, is (equation 2.43)
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(3.54)Z,=R‘R or Zf^R-'R-*

T=R'-(R'1)t

where T is the de-correlation matrix

The de-correlation of A, b, v, X, and Xla via matrix T results in A’, b \  v \  Xr and Xla.

A’=TA=R_tA or R‘A’=A (3.55)

b’=Tb=R tb or R‘b’=b 

v’=Tv=R‘v or RV=v 

X,,=I

X|a.=A’N"1A’t

Also the quadratic form becomes

v V v ^ ’V  (3.56)

The normal equations are obtained by inserting equation (3.55) into equation (3.53), 

resulting in

A‘Xf1A=A’tA’ and A‘Xl 1b=A’b’ (3.57)

Equations (3.53) and (3.57) show that the normal equations remain invariant after de- 

correlation or transformation. Factor R for each set of correlated measurements needs to be 

computed once only at the beginning of LSE and then stored. The computations of A’, B’ and 

v’ involve lower triangular linear equations, and can be computed quickly columnwise by 

forward reduction.

At the end of LSE, residuals are needed, especially for the purpose of gross error 

detection. In this case, the transformed residuals (v’) need to be transformed back. From 

equation (3.55) it can be seen that computation of v is straightforward via a direct solution of 

the triangular equations.

The redundancy matrix (M), required for reliability analysis, may be obtained easily 

without additional computations. Usually,
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M=(I-AN'1AÏ,-1)

For de-correlation, utilizing equation (3.55)

M=(I-A’N'1A’t)=X,.-Zla. (3.58)

Equation (3.58) shows that the redundancy matrix is the covariance matrix of residuals 

Xv. after de-correlation (see also equation 2.22 in section 2.1.3).

3.6 Modelling of gross errors

In common with the treatment of systematic errors, it is required to check and detect 

the presence of gross errors during the measurement process (i.e. prior to LSE) and also during 

LSE. Consequently, a method for gross error detection incorporating both pre-adjustment (pre- 

LSE checking on gross errors) and also robustified LSE (the focus of study) is presented. Both 

methods are described in sections 3.6.1 and 3.6.2 respectively.

3.6.1 Pre-LSE checking on gross errors

It is of prime importance that all observations are checked against systematic (section

3.5.2) and gross errors, prior to LSE. Checks on gross errors are important for initial assessment 

of data quality. In fact, independent checks during measurement and checks on data consistency 

during preliminary computation will reduce most of the gross errors in the measurement prior 

to LSE.

The adopted measurement scheme designed to eliminate systematic errors as mentioned 

in section 3.5.2, will at the same time provide quick independent checks on gross error. For 

example, the application of the principle of reversal in measuring horizontal angles or directions 

on both faces of the theodolite eliminates horizontal collimation error and provides an 

independent check on any measuring gross error. Further examples of independent checks on 

gross errors (for measuring and recording errors) are rounds of horizontal angles on different 

zeros, taking stadia reading in geodetic levelling, and independent sets of measured EDM 

distances. With the trend towards automation in the measuring process, such checks should be 

performed automatically.
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In the preliminary computations, data can be checked against gross errors by misclosure 

analysis of horizontal angles, heights and triangles. Moreover, preliminary computation of 

provisional coordinates can also be used as a check on gross errors. A detailed explanation on 

this aspect may be found in Cooper (1987). It should be emphasised here that the outlined initial 

check procedure is capable of detecting some (not all) of the gross errors in the measurements.

3.6.2 Robustified LSE

Assuming a correct stochastic model, and no significant systematic errors in the 

measurements, only significant and undetected gross errors remain in the uncorrelated 

measurements. In this research, a procedure for robustified LSE (RLSE) has been developed for 

simultaneous detection and localization of the remaining multiple gross errors. RLSE is a 

modification of the Danish method.

The next three sub-sections examine the concept and develop the procedure of RLSE 

(sections 3.6.2.1 and 3.6.2.2) followed by the derivation of effects of de-weighting during RLSE 

(section 3.6.2.3).

3.6.2.1 Concept of RLSE

The basic concept used in RLSE is based on the Danish method proposed by Krarup 

(Caspary, 1987b; Straub, 1983). In the Danish method, large (estimated) residuals are associated 

with gross errors.

The objective of this method is to find observations which are not consistent with the 

majority and to exclude them from the LSE by reducing their weights (i.e. de-weighting). In this 

manner, weights are treated as dynamic quantities such that only the consistent measurements 

are used effectively in the LSE process. It is expected that the effects of gross error on the final 

estimation will be insignificant.

Application of the Danish method is very simple (Straub, 1983). After a conventional 

LSE using a priori weights, the estimation is repeated several times during which the weights 

of certain measurements are reduced according to their residuals after the preceeding estimation. 

Weights of the observations with higher residuals are reduced (i.e. low weights), while the
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weights of observations with lower residuals (i.e. lower than a certain limit) are held stable 

(equation 3.59a, Appendix B).

With a proper and suitable choice of de-weighting function and constant (factor) c, 

convergence is achieved. In the final solution, weights of outlying observations will approach 

zero, effectively removing them from the LSE. Moreover, the observations affected by gross 

error are found with corrections of the same order of the magnitude of their corresponding 

residuals but with reversed sign.

In practice, the de-weighting schemes for the Danish method are based on trial and 

error, see for example Kubik et al (1985), Jorgensen et al (1985), Straub (1983) and Kubik et 

al (1988). Some of the de-weighting schemes are given in Appendix B. However, simulation 

studies with known gross errors indicate that most of the de-weighting schemes either flagged 

additional measurements, or were unable to detect some of the errors. During the course of this 

research (Setan, 1992), it is found from experience that the following de-weighting scheme 

(modified from Caspary, 1987b) is acceptable:

wj=l/Oj2 (3.59a)

if lvjl<limit; Pi=1.0; wi’=pi*wi (weight unchanged) 

if lvjl>limit; Pi=e"f; wi’=pi*wi (weight changed) 

limit=c*Oj*d0

f=K>il/(c*oi*d0)

the weighting factor c is usually between 2.0 and 3.0.

If use the normalized residuals (equations 3.17b and 3.18)

v ^ v / C W '2):
if IVi’l<c; ppl.O; wi’=pi*wi (weight unchanged) 

if IVj’bc; Pj=e'f; w^p^Wj (weight changed)

In principle, the developed technique of RLSE uses the above de-weighting scheme 

(equation 3.59a) and provides a facility for variation of the weighting factor. In addition, global 

and local tests are used as stopping criteria, together with reliability analysis (section 3.8) to 

determine the capability of gross error detection.
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A global test on the estimated variance factor, employing the chi-square test (section

3.3.1) is useful as an initial check on the residuals of LSE. For the purpose of gross error 

detection, it is expected that the estimated variance factor will be bigger, and hence a one-tailed 

test can be adopted (equations 3.4 and 3.6).

The passing of the global test does not necessarily indicate that the measurements are 

free from gross errors as such a test is not very sensitive. Therefore, a local test is applied to 

each normalized residuals thereby examining each observation in turn. Tests such as those based 

on Baarda (equations 3.23 and 3.24) and Pope (equations 3.19 and 3.21) can be used for this 

purpose.

In practice, only type I error is considered (section 3.3). In addition, Pope’s test is more 

adaptable than Baarda’s test (Teskey, 1994), due to its high sensitivity. Taking all these into 

consideration, Pope’s test is found more suitable, and is recommended for RLSE.

3.6.2,2 Procedure for RLSE

The formulation of the developed procedure for RLSE of uncorrelated measurements 

can then be summarized as follows:

(a) During and after ordinary LSE (section 2.1.3), using the weights wh compute the 

estimated residuals Vj and the estimated variance factor d02. The one-tailed global test 

(equations 3.4 and 3.6) is employed. As the global test is not sensitive enough, a local 

test based on Pope (equations 3.19 and 3.21) is also employed. If both tests pass, the 

LSE results are acceptable, and step (e) (below) can be executed for reliability analysis. 

Otherwise, a RLSE must be performed, via steps (b), (c) and (d).

(b) Define the de-weighting scheme (equation 3.59a) and weighting factor c. It is 

recommended that RLSE is begun with a factor c of 3.0 (i.e. bigger factor) to avoid the 

possibility of additional flagging of good or acceptable measurements. The same factor 

c is applied during RLSE until no observation weights are changed. Factor c is then 

reduced interactively by 0.1 (new c becomes 2.9, 2.8 and so on) until the weights of 

some observations are changed. If c becomes too low, for example less than 1.5, RLSE 

should be stopped. The use of normalized residuals (equation 3.59a) is also useful.
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(c) Compute new weights for all the measurements (i.e. w  ’ ) .  In this manner, weights of 

measurements with Vj greater than the limit (i.e. suspect measurements), will be reduced. 

Otherwise, the previous weights are maintained (equation 3.59a).

(d) A new LSE is carried out using the new weights. This process of re-estimating and de-

weighting (a, b and c) is iterated until convergence is achieved, using the selected c 

factor in (b). If both global (equations 3.4 and 3.6) and local (equations 3.19 and 3.21) 

tests are passed, the procedure is stopped. Otherwise, the c factor is reduced again, and 

the procedure is repeated until the termination criteria are met (i.e. both global and local 

tests are passed).

(e) At this stage, two options are possible, either direct or indirect use of RLSE. In both 

options, statistical testing (section 3.3) and reliability analysis (section 3.8) are useful 

for proper assessment of the final result.

(i) Direct use of RLSE

Once the stopping criteria are met, final computations of RLSE can also be performed, 

and all the changed weights will be drastically reduced to zero, for example weights of le-10. 

The final weights must not be too small in order to avoid numerical instability. The purpose is 

to minimize or greatly reduced the effects of measurements with gross errors on the final 

solutions of coordinates, trace, rmse and residuals. Results of the RLSE will be the same as 

ordinary LSE without the erroneous or flagged observations, as in (ii) below.

(ii) Indirect use of RLSE/ new LSE

It is advisable to check the results of LSE. In particular, erroneous measurements need 

to be carefully examined, and deleted or remeasured as necessary. In this case, a new LSE must 

be carried out with the new data, to arrive at a final result.

To speed up the computations of RLSE, the earlier de-weighting scheme (equation 

3.59a) has been modified as:

wpl/Gi2 (3.59b)
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if IVjl l̂imit; p—1.0; w^p^W;

(weight unchanged) 

if IVjWimit; p—f; w ^Pj 

(weight changed) 

limit=c*oi*60

f is the smallest weight, for example le-10 

the weighting factor c is between 2.0 and 3.0

In equation (3.59b), observations with residuals greater that the limit are de-weighted drastically 

closer to zero. Another possibility has been developed by using the normalized residuals 

(equation 3.17b) as the following:

if IVj.l l̂imit; ppl.O; wi’=pi*wi (3.59c)

(weight unchanged) 

if lvj.l>limit; ppf; Wj’=Pi 

(weight changed)

normalized residual^vr=v/(d0Cjr1 /2) 

limit=Tar

f is the smallest weight, for example le-10

Equation (3.59c) incorporates Pope’s method (section 3.3.4) into the RLSE. In the 

presence of multiple gross errors, equations (3.59a), (3.59b) and (3.59c) will de-weight more 

than one observation simultaneously. Residuals can also be normalized by adopting Baarda’s 

method (section 3.3.4).

A simulation study carried out during this research indicated the use of normalized 

residuals with de-weighting scheme of equation (3.59a) as the most suitable RLSE scheme. If 

observations are de-weighted drastically to speed up the computation (equations 3.59b and 

3.59c), it is possible that some good observations may be flagged as gross errors and some gross 

errors may be left undetected.

The method of RLSE is capable of detecting and localizing gross error correctly since 

both global and local tests are used to verify the results. Another important aspect is related to 

reliability analysis (section 3.8). Redundancy numbers together with MDGE will indicate
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whether a gross error can be detected or not. If the redundancy number for a particular 

measurement is very small (i.e. very large MDGE), gross errors in that measurement will be left 

undetected since there is very little controllability. On the other hand, a redundancy number 

close to unity indicates that the effects of that measurement (and gross error in it) on the 

solution are almost insignificant.

3.6.2.3 Effects of de-weighting during RLSE

The method of iterative RLSE for the detection and localization of multiple gross errors 

(section 3.6.2.2) has the following properties: approximate magnitudes of gross errors (with 

opposite signs) are directly recovered in the bigger residuals, and the final solutions are 

relatively insensitive to the presence of the detected and localized gross errors. Moreover, if 

weights of suspected measurements are greatly reduced (for example to le-10 but not exactly 

zero to avoid numerical instability), the final estimated parameters, precisions and residuals from 

RLSE are the same as ordinary LSE if the gross errors were removed.

Clearly, RLSE is based on the concept of de-weighting suspected measurements 

iteratively via a suitable weighting function. In principle, as will be shown later, the de-

weighting process will change the estimated parameters, their cofactor matrix and redundancy 

numbers (i.e. dx, dQ* and r). In this study, the effects of the de-weighting process on the 

solutions of RLSE has been derived via a step by step procedure.

The relevant equations for linear LSE (section 2.1.3) are:

Observation equations:

Ax=b+v; W=Q,-,=0o2Xi‘1 (3.60)

Normal equations:

A‘WAx=A‘Wb or (3.61)

Nx=u where N=A‘WA and u=A'Wb

Solution:
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(3.62)x=( A'W A)"1 A‘Wb=N' 1u=Qjiu 

where QjpN 1

Let W=the a priori weight matrix 

W’=new weight matrix=W+dW 

x’=new parameters=x+dx

For simplicity, x, Qx and Qv will be used to represent x, Q* and Q„ respectively, in this section.

The new normal equations with new weight become

At(W+dW)A(x+dx)=At(W+dW)b 

( A‘W A+A‘d W A)(x+dx)=AtWb+A‘dWb (3.63)

From equation (3.61), N=A‘WA and u=AtWb. Let

dN=A‘dWA and du=A‘dWb (3.64)

Combining equations (3.63) and (3.64) gives

(N+dN)(x+dx)=u+du

Nx+Ndx+dNx+dNdx=u+du (3.65)

But Nx=u and Nx-u=0. Equation (3.65) can then be written as

(N+dN)dx+dNx=du 

(N+dN)dx=du-dNx 

dx=(N+dN)"1 (du-dN x) (3.66)

Substituting equation (3.64) into equation (3.66) produces

dx=(N+dN)"1(AtdWb-AtdWAx) 

dx=(N+dN)"1 ( A‘dW [b-Ax] ) (3.67)
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As Ax=b+v, then b-Ax=-v. Equation (3.67) can be simplified as

dx=-(N+dN)"1AtdWv

dx=-(N+AtdWA)'1A‘dWv (3.68)

Employing the matrix equality (Mikhail, 1976)

if X=Y+UZV (3.69)

then X"1=Y'1-Y'1U(Z‘1+VY"1U)"1VY'1

in this case, (N+A'dWA) is actually (Y+UZV). Therefore

N=Y, A‘=U, dW=Z and A=V (3.70)

Applying equation (3.69) into part of equation (3.68) results in

(N+A'd W A)"1=N" '-N‘1 Al[dW‘'+AN‘1 A‘]"1 AN"1

=N'1-N"1At[dW(I+AN"1A‘dW)"1]AN"1

(N+dN)‘1=N"1-N‘1AtdW(I+AN"1AtdW)‘1AN4 (3.71)

Equation (3.71) can also be written as

Q x = Q x+ d Q x  (3.72)
where

QX’=(N+dN)"\ Q=N-‘ 

dQx=-N'1AtdW(I+AN',AtdW)'1AN'1

Substituting equation (3.71) into (3.68) leads to

dx=-(N+A‘dWA)1A,dWv 

=- [N'1 -N"1 A‘d W (I+AN'1AtdW)"1AN'1] A‘d W v 

=- [N"1 A’dW v-N'1 A‘d W (I+AN‘1 A‘d W)"1 AN"1 A‘dW v]

=-N"1 A’dW[ v-(I+AN"1 A‘dW)‘1 AN"1 A‘dW v]
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dx=-N‘1 A'd W (1+AN" 'dW)‘1 (I+AN'1AtdW)[v- 

(I+AN1A,dW )1A N 1AtdWv]

=-N'1 A‘d W (1+AN"1 A‘dW)"1 [(1+AN"1 A‘dW)v-AN"1 A‘dW v]

=-N"1 A‘dW (1+AN"1 A‘dW)'1 [ v+AN"1 A‘dW v-AN"1 A‘dW v]

dx=-N1A,dW(I+AN-'A,dW )1v (3.73)

The effects of de-weighting on parameters and cofactor matrix are given by equations 

(3.72) and (3.73) respectively, i.e.

dx=-N"1AtdW(I+AN1A,dW )1v (3.74)

dQx=-N"1 A’d W (1+AN"1 A‘d W)‘1 AN 1

The new parameters and cofactor matrix become

x’=x+dx (3.75)

Q x = Q x + d Q x

Further simplification is obtained by incorporating cofactor matrices Q, and Qv (Cooper, 

1994). An expression for Qv is (equation 2.22)

Q ^W '-A N  'A1 and AN 'A^W '-Q^QpQ, (3.76)

where W''=Q, from equation (2.4).

Substituting equation (3.76) into equation (3.74) produces

dx=-QxAtdW[I+(Qr Qv)dW]1v (3.77)

Similarly, an expression for the effects on cofactor matrix is

dQx=-QxAtdW[I+(Q1-Qv)dW]'1AQx (3.78)

The above general expression can be written specifically for de-weighting of some 

observations only. This is very important because during RLSE, only a group of observations
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are de-weighted.

Close examination of equation (3.74) for dx and dQx shows the same pattern as the 

expression for sequential LSE with the same parameters, as shown in Mikhail (1976), Cooper 

(1987) and Cross (1983). Due to the similar pattern, the derivation of an expression for de-

weighting of some observations only, will be the same as in sequential LSE, and will be given 

here without going into detail.

The measurements can be divided into two groups: group 1 contains the original 

observations (or more precisely, observations of unchanged weights), and group 2 contains the 

de-weighted observations. Observations equations are

A,x=b,+v, for group 1 (3.79)

A2x=b2+v2 for group 2

Let n be the number of original observations, m the number of de-weighted observations and 

u be the number of parameters. Expression for dx and dQx (i.e. equation 3.74) become

dx=-N"1A2tdW2(I+A2N"!A2tdW2)"1v2 (3.80)

dQ=-N-1A2tdW2(I+A2N-1A2‘dW2)-,A2N-1

Dimensions of the relevant matrices are dx(u,l), N '(u,u), A2(m,u), dW2(m,m), I(m,m), v2(m,l) 

and dQx(u,u). The dimensions of the new matrix to be inverted is (m,m).

From the relevant dimensions of matrices involved, it is clear only smaller matrices 

(m,m) need to be inverted. This is the same as the number of de-weighted observations. As in 

sequential LSE, the same provisional coordinates are required for computation. In general, the 

step by step procedure for computing the effect of de-weighting has similar patterns and 

advantages as sequential LSE.

The above formulae (equation 3.80) also demonstrate that the effect of de-weighting on 

x and Qx is a function of the design matrix in addition to the changes in weights.
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A more direct approach of computing effects of de-weighting is obtained via 

simultaneous computation of RLSE. By taking differences of estimated coordinates and cofactor 

matrices (equation 3.62) before and after de-weighting, the effects can be determined directly. 

This approach is more practical as it forms part of the RLSE process.

Redundancy numbers, useful for reliability analysis will also be affected by de-

weighting. A rule of thumb indicates that, as weights of a group of observations are reduced, 

their redundancy numbers will be increased, and redundancy numbers for other observations will 

be slightly reduced. The expression for the redundancy number of observation i (equation 3.18) 

is given by

ri=l-aiN‘1ai'wi (3.81)

De-weighting of observation i will reduce Wj and hence increase q. As the sum of q is the 

number of degree of freedom (section 3.8), redundancy numbers for other observations will be 

reduced or decreased.

If weights of suspected observations are greatly reduced to zero, their redundancy 

numbers will be close to one, indicating the insignificance of such observations towards the final 

estimation. As mentioned in section 3.6.2.2, the final estimated parameters and cofactor matrix 

via RLSE are expected to be close to the results of ordinary LSE (after removal of the suspected 

observations).

3.7 Stochastic modelling

In LSE, assuming no significant systematic and gross errors, the remaining errors are 

in the stochastic model. This section deals with the stochastic modelling of uncorrelated 

surveying observables. The method of simplified variance component estimation (VCE) has been 

extended for this purpose.

3.7.1 Need for stochastic modelling

In general, although being ignored in most cases, the process of LSE requires a realistic 

stochastic model (section 3.4), and hence proper stochastic modelling.
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Two important aspects in stochastic modelling are the information on a priori Q, and 

the correlations amongst the observations. For simplicity, it is generally assumed that survey 

observations are independent and uncorrelated. This approach leads to diagonal Q, (sometimes 

called the weight matrix W) matrices and easy manipulation for LSE (section 2.1.3). The 

relationship between Q, and W for uncorrelated observations is given by equation (2.15b)

£,=a02Q, where q—o 2 (3.82)

W=a02Z ,1 where wi=a02/a j2

Current advances in instrumentation and observational methods allow very high 

precision observations (i.e. small variances or small weights) to be made with angular 

measurements standard deviations of within one second of arc, and of linear measurements 

(height difference and distance) at mm level (Appendix C).

The methods for estimating the variances (or standard deviations) of the observations 

can be based on study of repeated measurements (Cooper, 1974), experiments or previous 

performance (Cross, 1983; Cooper and Cross, 1988; section 3.4). The estimated variances are 

used as variances of observations during LSE. The method of experiments and previous 

performance are often used in practice.

Experiments utilise the instruments and procedures similar to the actual field work in 

order to estimate the variances, for example calibration of EDM instruments. Previous 

performance of instruments and methods are in the form of previous experience, manufacturer’s 

specifications or reports, and research findings in scientific publications. In practice, variance 

based on previous performance is found to be acceptable.

Appendix C gives an example of the formulae for computing the variances of common 

uncorrelated surveying observables. Further details are given by Blachut et al (1979) and Secord 

(1986).

In some cases, the adopted angular measurements are horizontal angles. However, such 

angles are actually not measured directly, but are derived indirectly from the measured 

uncorrelated horizontal directions. In fact, angles are derived from the differences of directions. 

Hence, horizontal angles, in the same manner as distance differences, are algebraically
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correlated. The cofactor matrix for angles may be derived using the concept of error propagation 

(Appendix C), and the expression for Q, is analagous to equation (3.42) in section 3.5.3.2.1 

describing distance difference error propagation.

In section 3.5, pseudo observables (distance ratios and differences) are introduced for 

handling systematic errors in distances. Although distance measurements are uncorrelated, the 

derived pseudo observables are algebraically correlated, and the cofactor matrix is non-diagonal. 

Computations of the elements of the cofactor matrix for pseudo observables have been presented 

in detail in section 3.5.3.2.

In a more general situation of correlated observations, proper stochastic modelling can 

be carried out via a numerical method of variance component estimation (VCE), as discussed 

in detail by Chen et al (1990b) and Caspary (1987b). However, such a procedure requires 

extensive computations.

In the case of independent and uncorrelated observations, the most important aspect in 

stochastic modelling is the proper determination of variance (or standard deviation) of the 

observations. A more simple method for modelling in terms of computational effort, known as 

simplified VCE is adopted and extended in the following section.

3.7.2 Principle of simplified VCE

LSE (section 2.1.3) is based on the following linearised equations

Ax=b+v (3.83)

k=N1u=(A'WA)-'AtWb 

£ = I i=.k a oi2Q„

where k is the number of observation groups.

The basic problem related to the general VCE is to simultaneously estimate parameters 

x and k variance factors ôoi2. The general stochastic model can be written as
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^ o i 2Q n + ^ o 2 2Q i 2 + - + O o l2Q n (3.84)

In the above equation, each group of observations has its own error characteristics and should 

be modelled separately.

The rigorous solution for general VCE is iterative and requires considerable 

computational effort in order to arrive at a unique Best Invariant Quadratic Unbiased Estimation 

(BIQUE) of 6 02 . See Caspary (1987b) for details on VCE and the relevant computational 

aspects.

To reduce the computations and arrive at the same results, Caspary (1987b) uses an 

approximate method, termed simplified VCE. It is assumed that all observations are independent 

and of equal variance. The following equations (section 2.1.3) are relevant

Ax=b+v (3.85)

Z=a02I

&02=vtWv/r=vtWv/(n-u)

where r is number of the degrees of freedom, n the number of observations, u the number of 

parameters and v the estimated residuals (v).

The observations are partitioned, according to their types, into j groups, for example 

group one contains distance measurements, group two direction observations, and so on. The 

partitioning of observations, residuals, variances and weights can be expressed as

observations: MV,12‘,.••,!/]
residuals: v t=[v 1‘,v2t,...,Vjt]

variances: o2=[a0l2,a022' ’o0j2]

weights: W t= [ w 1t,W 2t,...,W jt]

=[l/a0l2,l/a022--1/a,

Hence, v'Wv=v, Sv t v,+v2‘w2v2+.. ,+VjSvjVj

The variance factor for group j of observations is

(3.86a)
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( d oj2) i+i= (V jtW jv j/rj) i (3.86b)

It is then required simultaneously to determine parameters and the variance factor for 

each group of observations. Some form of iterative procedure is required, and the extended 

procedure is described in section 3.7.3.

3.7.3 Computational procedure

In this research, the computational procedure for simplified VCE has been extended 

from Caspary (1987b), with the addition of statistical test for global and local (or group) 

estimated variance factors, as stopping criterion.

The procedure can be summarized as the following. Let j be the number of groups, and 

i the number of iterations. Initially, set the global variance factor o()2 to be unity (1.0) and select 

the initial diagonal weight matrix W as I. In other words, for each group,

(doj2)=1.0, Wj=1.0 (3.87)

The computations can be summarised below:

a. In i iterations

( W ^ l / ^ / X  (3.88)

Perform ordinary LSE and estimate both the global and local (group) variance factors,

(i) global variance factor

602=v‘W v/r (as equation 2.23) (3.89)

(ii) local variance factor for j groups

(6oj2)i+1=(vjtWjv/rj)i (3.90)
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where ^ is sum of redundancy numbers for group j.

The new standard deviation becomes

(ôoj2)i+1=(ôoj2)1(ôoj2)2...(ôoj2)i+1 (3.91)

b. Test statistically the estimated variance factors

Both global and local variance factors can be tested statistically using the test on the 

estimated variance factor of section 3.3.1 (via equations 3.4 and 3.5). In this case

For the global variance factor

H0: 6o2=1.0 and Ha: S > 1 .0  (3.92)

T=v‘Wv~x2r

accept H0 if x i a/2, r<T<X2a/2,r 

For the local variance factor

H0: doj2=1.0 and Ha: dojVl.O (3.93)

T=v“W v ~ y 2J J J A, rj

accept H0 if X2,KV2fl<T<%2aflfl

If all estimated variance factors are not equal to one statistically (i.e. H0 is rejected), the 

procedure outlined in (a) is iterated using new weights until the tests are passed. At the end of 

iteration, all variance factors will be statistically equal to one.

The purpose of incorporating the statistical test is to speed up the computations. The 

relevant test here is the two-tailed chi-square test on the estimated variance factors (equations 

3.92 and 3.93). During VCE, it is required that the estimated variance factors be equal to one 

as a termination limit for iteration. By applying this test, the VCE procedure can be stopped 

once the estimated global and local variance factors are not significantly different from one and 

pass the test.

100



In using VCE, it is important that sufficient redundancies are available for each group 

of observations. Because VCE assumes the errors as normally distributed, the presence of 

systematic or gross errors will corrupt the results of VCE. For proper usage of VCE, both 

systematic and gross errors need to be eliminated first.

3.8 Precision and reliability analyses

In section 3.2, aspects of precision and reliability are highlighted to demonstrate their 

importance as measures of quality in a monitoring network. Both precision and reliability 

measures are functions of observable precision and network geometry. In this section, the 

relevant equations for uncorrelated observations are presented. Further details are given by Cross 

(1983), Cooper (1987), Caspary (1987b) and Gruendig and Bahndorf (1984).

The most commonly used measures of precision for u parameters are: trace; mean 

variance; variances of parameters and; error ellipses and ellipsoids.

(i) Trace of the cofactor matrix of the parameters (global)

The trace of Q* is the sum of diagonal elements of Q* (equation 2.20). 

tr(Q,)=[6,2+cf22+...+du2)

(ii) Mean variance (global)

dm2=tr(Q,)/u

Sometimes, the square root of the mean variance is used, known as root mean square 

error (RMSE). For a 3-D network, both trace and mean variance may be computed separately 

for x, y and z axes. Usually, the highest precision LSE solution is the minimum trace solution.

(iii) Variances of individual parameters (local)

The precision of each parameter is given by the appropriate diagonal elements of Q*.
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(iv) Error ellipses and ellipsoids (local)

Local precision can be represented graphically by the confidence regions of the 

parameters (section 3.3.5). These are derived from Q*, in the form of absolute and relative error 

ellipses (2-D network) and ellipsoids (3-D network). The computations of the axes and 

orientations of the error ellipsoid can be carried out using EVD as outlined in section 2.2.5.

Reliability analysis provides two measures, internal and external reliability (Baarda, 

1977). Datum independent quantities are useful (equations 3.25 and 3.26).

(i) Internal reliability (redundancy number and MDGE)

Internal reliability shows the controllability of observations. A smaller MDGE indicates 

a more reliable observation, whilst a larger MDGE indicates a less reliable observations. Gross 

error in any observations that is less than its MDGE will be left undetected. An expression for 

MDGE of observation i (equation 3.25b) is (Gruendig and Bahndorf, 1984; Biacs, 1989)

MDGEi=Vi=oi(V ri)1/2=(V riwi)1/2 

where o~standard deviation of observation i 

r—redundancy number of observation i 

A,0=non-centrality parameters, computed from a 0 and (30 

wpweight of observation i

Value of X 0 is 17 for a 0 0.1 % and (30 20 % (Figure 3.1). Alternatively, X 0 may also be 

computed using Tau factor as outlined by Cooper and Cross (1988).

The redundancy number (or local redundancy) describes the contribution of the ith 

observation to the overall redundancy of the model. Redundancy number q can be computed 

for each uncorrelated observation i as (equations 3.18 and 3.25a)

r=tr (Q«W)

Q ^W -A N 'A 1 

ri=l-aiN"'aitwi 

=l-hj if hpajN'Vwi
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From the above equations, relationship between redundancy and the number of parameters can 

be seen. The sum of all q is equal to the redundancy, and the sum of all Iq is equal to the 

number of the parameters.

If r, is unity, observation i will not influence the solution. In relation to RLSE, the 

effects of gross errors are greatly reduced or insignificant, as de-weighting of observation i will 

increases q close to unity. If w, is closer to zero, q will be closer to unity. On the other hand, 

if q is zero, gross errors in observation i will never be detected, indicating a weak area of the 

network, and the MDGE becomes too large. The mean of all redundancy numbers is also useful.

The use of redundancy numbers is recommended as they are very useful in determining 

weak areas within a network. An observation with a redundancy number close to zero indicates 

that it is unreliable and a gross error in it could be undetectable. In such a case, additional 

measurements may be needed to strengthen the network.

(ii) External reliability

External reliability measures the influence of a gross error on the unknown parameters,

i.e. the change of Xj caused by the MDGE V;. The expression of external reliability is (Caspary, 

1987b)

Vxj=-(AtWA)'AtWVi

The above measure is datum dependent. A more useful datum independent measure can 

be obtained for each observation. Gruendig and Bahndorf (1984) show the expression for the 

datum independent external reliability. For each observation i, the external reliability is the 

measure of the maximum effect of undetected MDGE, in the form of influential factor or global 

distortion parameters (5;)

8i=(l-q)wiVi2

=A,0(l-q)/q

A good and high reliability is guaranteed if observations control each other (i.e. smaller 

MDGE, larger q), and if the influence of a blunder on the parameters of the network is small
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(i.e. smaller influential factor). The minimum value of any redundancy number for general 

purpose surveying observables (Caspary, 1987b) should be 0.3. For a monitoring network of 

high accuracy, q should be greater than 0.8 (Cooper, 1994), the mean of all q about 0.5 

(Caspary, 1987b), MDGE ranges between (6-8)CTj, and 5j smaller than 100 (Baarda, 1977), 

preferably between 40-70.

3.9 A strategy for LSE of single epoch

The strategy developed for LSE (using observation equations) of a single epoch 

(incorporating chapters 2 and 3) can be summarised as Figure 3.2. Starting with a chosen 

mathematical model, which consists of both the functional (Appendix A, section 3.5) and 

stochastic (Appendix C, section 3.7) parts, the observation and normal equations are formed 

(section 2.1.3). The datum definition (section 2.2.2) being simply constructed via minimum 

constraints of fixed coordinates.

The normal equation is analysed for rank deficiency by means of simplified EVD 

(section 2.2.6). As the datum defect is known, any deficiency is related to configuration, and 

additional observations may be required. If the normal equation matrix is non-singular, the LSE 

solutions are computed (section 2.1.3), followed by the global test (section 3.3.1), local test 

(section 3.3.4), precision and reliability analyses (section 3.8). Failure of the global test indicates 

the presence of either systematic or gross errors. If the system is ill-conditioned, low redundancy 

numbers (section 3.8) indicate weak area of the network, and it may be necessary to check the 

configuration.

Systematic errors in EDM distances (i.e. scale, zero errors) can be tackled by improving 

the functional model via additional parameters (sections 3.5.3.1 and 3.3.3) or pseudo observables 

(3.5.3.2). The correlated pseudo observables can be handled via de-correlation of observations 

(section 3.5.3.2.3). Gross errors can be detected by means of iterative RLSE procedure (section

3.6.2). Assuming no systematic and gross errors in the observations, the method of VCE 

(section 3.7.3) is useful for estimating variances of groups of observations.

It is also possible to carry out precision and reliability analyses (section 3.2) via pre-

analysis. In this manner, the network quality can be determined prior to the actual LSE.
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It is recommended that LSE results are accepted only if both the global and local tests 

(sections 3.3.1, 3.3.2 and 3.3.4) are passed. This is important because sometimes global test is 

not sensitive enough. In addition, the precision and reliability analyses (section 3.8) must be 

acceptable too. The results from LSE for the purpose of deformation detection consist of the 

estimated variance factor (d02), degrees of freedom (r or df), number and types of datum defect 

(d), number of stations (m), provisional 3-D coordinates (x0), estimated 3-D coordinates (xa) and 

their cofactor matrices (Q*).

If required, S-transformations (section 2.3.5) can be used to transform the results of LSE 

(i.e. coordinates and cofactor matrix) from minimum constraints datum into minimum trace, 

partial minimum trace or other minimum constraints datum. Invariant quantities (v, 6 02, r and 

d) remain the same during such transformation.
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Figure 3.2 Strategy for LSE of a single epoch
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4. DETECTION OF SPATIAL DEFORMATION

During the detection of deformation, displacement vectors are referred to a set of 

common stable datum points between any two epochs. Hence, the analysis procedure requires 

amongst others, the transformation of LSE results into a common datum, identification of a set 

of stable common points, and the localization of deformation together with the appropriate 

statistical testing (globally and locally).

The main aim of this chapter is to highlight the above requirements and present the 

analysis procedure developed for the geometrical detection of spatial deformations via one-stage 

computation.

4.1 Requirements for detection of deformation

For most engineering applications, deformation detection is based on two-epoch analysis 

(section 1.1). The main aims of deformation detection are (Caspary, 1987b): to confirm the 

stability of datum or reference points; to detect and determine any significant deformation or 

movement (with respect to the stable datum points) and; to provide a graphical representation 

of deformation vectors. Statistical tests are used to verify the estimated results.

The general procedure for detection of deformation assumes common stations, and 

similar datum definition and defects between the two epochs. In other words, the analysis is 

restricted to common points only. However, in practice, epochs may have differing network 

configuration, different numbers and types of observations, different numbers of stations, and 

possibly different datum definition and defects. Therefore, it may be necesary to transform the 

LSE results of each epoch into common stations and datum prior to detection of deformation 

(section 2.3.1).

Another important aspect is that no stations are to be assumed stable until tested for 

stability. Hence, a method for identifying and testing the stable common points to be used as 

datum (or computational base) is needed, followed by the localization of deformations (i.e. 

transformations of results with respect to the selected datum points). In terms of statistical 

verification of the estimated results, both global and local tests are needed. Such statistical 

testing on the estimated deformations are used to establish whether significant movements have
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or have not occured between the two epochs.

Hence, important requirements for deformation detection can be summarised as the 

following:

1. For each epoch, the same number of stations, station names and datum definition are 

required. If different configurations, numbers of stations or datum definition are used in each 

epoch, the analysis can be applied to common stations and datum only. Therefore, data must 

be transformed into the common stations and datum prior to analysis.

2. Assuming common stations and datum definition in both epochs, global tests are needed to 

decide whether to continue the analysis or not, and also to determine whether significant 

movements have occured between epochs.

3. The stable points (used as datum) can either be known or unknown in advance. If they are 

known, a global test is needed to verify their stability. Otherwise, a method of identifying and 

testing the stable points is required. In both cases, it is necessary to transform the results with 

respect to this new datum.

4. Once the global test is passed, a local test is needed to verify the significance of the estimated 

movements that have occured between the two epochs. Final results should consist of both 

numerical and graphic output.

In this study, a procedure for geometrical detection of spatial deformation based on the 

above needs has been developed (section 4.2). The developed procedure uses one-stage 

computation, employs two-epoch analysis, absolute monitoring networks, static model and 

coordinate approach. Most of the statistical tests used for verification of results are based on 

Fisher’s F-distribution, and aspects of the significance level of testing are briefly described in 

section 4.3. Consequently, the developed procedure is summarized in section 4.4.

4.2 Main modules of analysis

To meet the requirements imposed in section 4.1, the main modules developed for 

geometrical detection of spatial deformation can be divided into three main stages:
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.Transformation into common datum (section 4.2.1)

.Initial check and preliminary testing (section 4.2.2)

.Stability determination and localization of deformation (section 4.2.3)

Each module is discussed in sections 4.2.1, 4.2.2 and 4.2.3 respectively.

4.2.1 Transformation into common datum

In this study, S-transformations and partitioning scheme (section 2.3.4) have been 

employed in order to transform LSE results of each epoch into a common datum, defined by 

points common to each epoch. Let the main data (coordinates and cofactor matrix) for epochs 

one and two be x„ QSI and x2, Q n  (or simply x^ Qxl, x2, Qx2 from now on). Assume that 

different numbers of stations and datum definition are used in each epoch. Let the computational 

bases for epochs one and two be i and j respectively. It is then required to transform the main 

data into the new datum defined by common stations (n points) for both epochs.

Initially, it is necessary to determine the common stations, and then re-arrange the data 

so that the common stations are ordered at the beginning of arrays x and Qx. By using the 

partitioning scheme, with common stations ordered at the beginning of arrays x and Qx, equation 

(2.85) becomes

for epoch one: x,(l) and Qxl(,) with computational base i 

for epoch two: x2® and Qx2(j) with computational base j

X,(i)=
X lr Q l r l r Q l , e '

. V Q l e l r Q le le

X ® =
X2r

. Q * 2  =
0 * 2 ,

X2e (^2e2r Q2e2e

(4.1a)

(4.1b)

where r refers to common stations, and e refers to non-common stations.

The transformation of the LSE results of each epoch into the new datum defined by n
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common stations is similar to equation (2.86)

new x
(n)

=S1x1(l) , new =S1Q®S1t (4.2)

X2r(n) zr c  Q)new x, = =S,x, , new
„00 2

:2Q®S2‘ (4.3)

Values of In are 1 and 0 for common (or datum) and non-common (non-datum) stations 

respectively.

The optimised computational procedure outlined in section (2.3.5) is recommended for 

the evaluation of equations (4.2) and (4.3). After this transformation, the useful results for 

deformation detection are the coordinates and cofactor matrix of the common stations in each 

epoch:

epoch one: xlr(n) and Qlrlr(n)

epoch two: x2r(n) and Q2r2r(n)

The displacement vector d and its cofactor matrix Qd for the common stations can be simply 

computed via equation (2.88)

As shown earlier in section 2.3.3, the transformation process does not change the datum 

invariant quantities, and hence variance factors and degrees of freedom for each epoch can be 

used straight away. However, the deformation detection will be based on common stations only.

d=x2r(n)-xlr(n) and Qd=Qlrlr(n)+Q2r2r(n) (4.4)
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Equation (4.4) for computing d and Qd clearly demonstrate the advantage of ordering 

the common or datum stations at the beginning of arrays x and Qx. One only needs to extract 

the upper parts of the arrays, without the need of additional computations, for the purpose of 

deformation detection.

In this study, LSE is computed using a simple minimum constraints solution with fixed 

coordinates (section 2.2.2). Depending on whether stable points are known or not in advance, 

the S-transformations (section 2.3.4 and equation 2.95) can be used to transform the minimum 

constraints solution into minimum trace, partial minimum trace or other minimum constraints 

solutions respectively. In general, any of these LSE solutions can be used for detection of 

deformation.

4.2.2 Initial check and preliminary testing

The data required for detection of deformation are obtained directly from the results of 

the LSE of each epoch, i.e. the estimated variance factor 6 02 , degrees of freedom (df or r), 

datum defect d, estimated coordinates x and their cofactor matrix Qx (section 3.9). In this work, 

a procedure has been established for initial checking and preliminary testing of data.

As an initial check prior to deformation detection, it is important to examine that for 

both epochs, the same (common) stations (number and names) and datum definition 

(computational base) are being used in LSE. This is very important because of the requirement 

for common stations and also x and Qx (hence d and Qd) are datum dependent. If needed, x and 

Qx can be transformed into the common datum prior to analysis as shown in 4.2.1.

Once the initial check is acceptable, and before commencing with the stability 

determination, it is required to test the compatibility of the independent variance factors of the 

two epochs. For this purpose, a preliminary test on variance ratios, as given by Biacs (1989) and 

Caspary (1987b) should be performed. The test can be either one or two-tailed, and the most 

commonly used is the one-tailed test.

The null hypothesis examines whether the estimated variance factors of each epoch have 

same expectation, and for one-tailed test can be written as
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H0: doi2=doj2 at significance level a  

Ha: doi2>doj2 or d0j2>60 2

(4.5)

where 60i2 and 6oj2 are the estimated variance factors of epochs i and j. Let their respective 

degrees of freedom be df, and dfj.

The test statistic is in the form of a ratio of the variance factors

T=d0j2/60i2 ~ Fdfjdfl (4.6a)

assuming j and i referred to the larger and smaller variance factors respectively. Their relevant 

degrees of freedom become dfj and df;. The outcome of the one-tailed test on the variance ratio 

is

if T < F dg dfi a, test passes, accept H0 (4.6b)

if T > Fdf]dfia, test fails, reject H0

For the two-tailed test, the relevant equations are:

H0: 60,2=60j2 and Ha: 601Vri0j2 (4.7a)

T=doj2/doi2

The test passes, and H0 is accepted at significance level a  if

Fdfj,dfi,l-a/2 <  T <  F dfj idfi a/2 (4.7b)

where Fdgdfl l_0d2=l/(Fdgdfia/2)

If T lies outside the region, the test fails, and H0 is rejected.

If H0 is accepted, indicating the two variance factors are statistically equivalent, the 

variance ratio test passed, and the pooled (or combined or common) variance factor d02 may be 

computed as
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602=[(60i2)(dfi)+(d0j2)(dfj)]/df (4.8)

where df=df¡+dfJ.

Further analysis (i.e. stability determination and localization of deformation) are developed in 

sections 4.2.3. On the other hand, failure of the above preliminary test (i.e. rejection of H0) 

indicates (Chen et al, 1990a) improper weighting of observations, and requires the examination 

of observational data and / or LSE results. The analysis should be stopped at this stage.

4.2.3 Stability determination

Following the initial check, the stability determination and localization of deformation 

are performed iteratively. In this study, a procedure has been established for geometrical 

detection of spatial deformation. The developed procedure uses congruency testing together with 

the sucessive removing of the unstable points from the datum, re-ordering and S-transformations 

of d and Qd with respect to the re-defined datum points. This procedure is a combination of the 

Hannover, Karlsruhe and Stuttgart (Fraser and Gruendig, 1985) methods (Appendix E). It is 

slightly different from Biacs (1989), which is based on the Bonn method.

The procedure also modifies the robust approach of the Fredericton method (developed 

at the University of New Brunswick Canada) as an alternative for the automatic identification 

of stable stations or deformation detection.

Moreover, the procedure allows manual selection of the datum stations, and change of 

significance level a  between global and local tests. Another important aspect is that the 

procedure enables simultaneous analysis of datum stations and detection of spatial deformation, 

via one-stage computation. Hence, no additional computations are required.

The procedure can be summarized into three stages: congruency tests of common 

stations (section 4.2.3.1), localization of deformation (section 4.2.3.2) and final local testing of 

the estimated deformation (section 4.2.3.3). A brief description of the robust method is included 

in section 4.2.3.4.
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4.2.3.1 Congruency test

A statistical test known as the congruency test is required to determine whether 

significant movements have occured between any two epochs. Its purpose is to determine 

whether or not a set of the ’tested’ points have moved between any two epochs (Caspary, 

1987b; Fraser and Gruendig, 1985). The tested points can be either all points common to both 

epochs (a global congruency test) or selected points used for datum definition (a partial 

congruency test).

The application of congruency tests is very simple. Initially, the congruency of common 

datum points at each epoch is tested by the global congruency test. If the test indicates 

significant movements, localization is performed followed by a similar test on the remaining 

(partial) datum points through the partial congruency test.

Let the estimated coordinates and cofactor matrices for both epochs be x„ Qxl and x2, 

Qx2. During deformation detection, it is assumed that these data are referred to a common 

datum, defined by the same datum points in each epoch.

According to Caspary (1987b), the outcome of the global congruency test is independent 

of the a priori selected datum. Hence, either minimum constraints, minimum trace or partial 

minimum trace datums may be used. However, in general, the minimum trace datum is 

recommended as the initial datum, if no information on the stability is available. Otherwise, a 

partial minimum trace datum is used. Transformation from one datum to another is easily 

achieved via S-transformations (section 2.3.5).

At the start of deformation detection process, the computation of d and Qd follows 

equation (4.4)

d=x2-x,

Q d = Q x2+ Q x l

The global congruency test (based on Pelzer, 1971) examines the null hypothesis of:
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H0: E{x2}-E{Xl}=E{d}=0 (4.9)

i.e. no significant deformation 

or H0: E{x2}=E{Xl}

i.e. coordinates are the same 

or H0: d=x2-X]=0 and Ha: d^O

In other words, the null hypothesis states that the common points in both epochs are stable or 

have not moved.

The test statistic is datum independent (Fraser and Gruendig, 1985)

where

H^d'Q/d is the quadratic form 

d=x2-Xl is the displacement vector

Qd=Qx2+Qx, is the cofactor matrix of displacement vector d 

h=rank(Q)=rank(QX|+Qx2) is the rank of Qd

=3n-d for 3-D network of n common datum stations and datum defect d 

602=pooled variance factor (equation 4.8) 

r=df=r,+r2 is the sum of degrees of freedom in both epochs 

Qd+ is the pseudo inverse of Qd 

Q/KQd+GG') '-GiG'GG'Gy'G1 (Caspary, 1988)

Matrix G1 is given in Figure 2.3. If G is normalized,

a  is the chosen significance level, typically a=0.05

In the deformation detection process, the displacement vectors are usually computed 

with respect to the first epoch. In computing matrix G, the provisional coordinates of the first 

epoch are used, and they are referred to the centroid to avoid numerical instability. Further 

numerical stability may be obtained by normalizing G. Details on reduction to centroid and 

normalization are given in section 2.3.5. The above means of computing the pseudo inverse is 

adopted because of its simplicity, involving inversion of a small matrix. Details may be found 

in Biacs (1989).

T=Q/(h*S02)

=(d‘Qd+d)/(h*d02)~Fhir

(4.10)
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The outcome of the congruency test at significance level a  is that if T is less than the 

critical value (i.e. T<Fhra), the test passes, and H0 is accepted. This means that there is no 

significant deformation within the group of reference points and analysis can be stopped at this 

stage. Otherwise, if (T>Fhrct), the test fails and H0 is rejected, indicating the existence of 

significant deformations or movements. It is then necessary to examine the nature of the 

movements via localization, followed by the partial congruency test.

In the case of very large degrees of freedom, it is possible to replace the pooled 

variance factor (equation 4.8) with known variance factor equal to unity. The test statistic of 

equation (4.10) becomes (Biacs and Teskey, 1990)

T=Q/h~Fhoo

and H0 is accepted if T < Fhoo a

(4.11a)

The partial congruency test examines the stability of the partial network formed by the 

selected or retained datum points only. This is applicable because the set of the retained datum 

points is actually part of the initial computational base. Let the vector of deformation d and the 

cofactor matrix Qd be partitioned as (Fraser and Gruendig, 1985)

(4.11b)

where r refers to (retained) datum points, and e refers to non-datum points (i.e. datum points 

eliminated from the computational base).

The null hypothesis for the partial congruency test becomes

H0: E{dr}=0 (4.12)

i.e. the partial network has not changed in shape

The test statistic

T=(drlQr+dr)/((h-3k)d02)~Fh.3kr (4.13)
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where k is the number of eliminated points in sub-vector de. Interpretation of the test is similar 

to the global congruency test. If T is less than Fh.3kra, the test passes, H0 is accepted and the 

analysis may be stopped. Otherwise, the test fails, H0 rejected and further localization is 

required.

4.2.3.2 Localization of deformation

If the global congruency test fails, and hence indicates occurrence of significant 

deformation, it is required to locate and isolate any suspect unstable points, and at the same time 

to re-define a new datum for the computations (with respect to datum points). Several methods 

of localization are available (Caspary, 1987b; Chrzanowski and Chen, 1986; Appendix E). In 

this study, the localization procedure has been modified from Fraser and Gruendig (1985).

Starting with a chosen computational base (usually based on a set of known reference 

datum points), the procedure removes one point at a time from the computational base. Points 

are removed via the successive application of decomposition (of quadratic form), re-ordering 

and partitioning (with respect to the datum points), S-transformations (of d and Qd), and partial 

congruency test until the congruency test passes.

The computational base can be either chosen manually (based on some priori 

information, for example) or computed by means of the congruency testing or the robust 

method. The procedure for localization via decomposition, re-ordering and S-transformations 

is discussed in sections 4.2.3.2.1, 4.2.3.2.2 and 4.2.3.2.3 respectively.

4.2.3.2.I. Decomposition of quadratic form

If the global congruency test (equation 4.10) fails (i.e. rejection of H0), the required 

information on non-congruency between the two epochs is contained in the quadratic form Q.

In this case, the main task is to investigate the individual contributions of each point 

(£2j) to the total quadratic form Q. The point with the largest (maximum) £2j is usually 

considered as the most significantly deformed.

Computation of Qj is carried out using a decomposition or splitting method. In this
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study, the decomposition procedure is based on Fraser and Gruendig (1985) using techniques 

of partitioning adopted by Niemeier (1979) and Van Mierlo (1981). The vectors d and Qd+ are 

partitioned for each point as

(4.14)

£2—

dj=[dXj dyi dZil'

drPj'P^+dj
Qj=djj'Pjdjj for each point j

The above computation is repeated for each point giving rise to Qj. This computational scheme 

removes the effect of other points in the computed Qj; i.e. the effect of other points is excluded.

Following this decomposition procedure, the point with the largest Qj (considered as the 

most significantly deformed) is interactively removed from the computational base.

As an alternative to the decomposition procedure, a single point test can also be 

performed for each point as an aid for identifying the most suspect point, ignoring the 

correlation amongst points (Biacs, 1989). It is expected that this test is slightly less sensitive 

than using decomposition (equation 4.14). The single point test is based on

H0: dj=[dXj dyj dZj]‘=0 (4.15)

The test statistic for the 3-D case is

Tj=flj/(3d02)=(d/Pjdj)/(3d02)~F3idf (4.16)

If T<F3 df a, the point has not significantly moved. Otherwise, it is considered as being unstable. 

For practical purpose, it is recommended that, only the point with the largest test statistic Tj is 

considered as significantly moved and hence removed from the computational base.

In order to remove the suspected point j from the computational base, it is required to 

re-order some of the relevant data followed by S-transformations (sections 4.2.3.2.2 and
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4.2.3.2.3).

4.2.3.2.2. Re-ordering with respect to datum points

Re-ordering with respect to datum points is necessary everytime a point is removed 

from the computational base. Re-ordering is also required initially for easy extraction of 

common and / or reference stations, and for easy manipulation of pre-defined datum points.

The relevant data to be ordered are displacement d, cofactor matrix Qd, matrix G 

(related to datum defect) and diagonal matrix Ip. In this study, the re-ordering strategy has been 

established as equation (4.17), using the same notation as equation (4.11b)

; I„ =
l"r

; G=
Qr

; Q,r
'Q r Q r e '

de
p Ie Ge Q e r Qe.

(4.17)

In the above equation, de refers to the suspected point with significant deformation, i.e. 

de=dj=[dXj dy_j d z /

Qe is a (3x3) symmetric cofactor matrix for de. Elements dr and Qr refer to the partial or 

remaining datum points. Matrix Ip and G are re-ordered to facilitate the use of general equations 

for the S-transformations (section 2.3.5) and partial congruency test (section 4.2.3.1) 

respectively. Elements of Ie corresponding to the non-datum points are set to zero, while 

elements of Ir (for datum points) remain one. Matrix G is computed once only.

4.2.3.2.3. S-transformations

In this study, the general S-transformations equation (section 2.3.5) has been applied for 

transforming d and Qd into the new computational base defined by the remaining datum points. 

The S-transformations scheme of d and Qd into d’ and Qd’ (equation 2.85) becomes

■ Q f
Q r  Q re  

Q e r  Q e

(4.18a)
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(4.18b)=Sd , Qd =SQdS '=
q ;

Q e r

Fraser and Gruendig (1985) use the following strategy

G=[Gr Ge]‘

S=I-
Gr(GrtGr) '1Grt 0 

Ge(Gr,Gr) '1Grt I

(4.19)

In this research, use of the general S-transformations equation (section 2.3.5) has been 

established as

S=[I-G(GtIdG)"1G‘Id] (4.20)

d’=Sd; Q’=SQdS‘

Elements of Id are one (unity) and zero for datum and non-datum points respectively. In the 

above equations, the elements G, Id, d and Qd have been ordered (section 4.2.3.2.2). The 

computational strategy is similar to the evaluation of the S-transformations (section 2.3.5). 

Vectors dr’ and de’ refer to the datum and non-datum points respectively.

After this transformation, the remaining network formed by the retained points (dr’) 

must be tested for stability by means of the partial congruency test described in section 4.2.3.1. 

The test statistic given by equation (4.13) can be written as

T=(dr’ lQr’ +dr’)/((h-3k)602)~Fh_3kdf

where k is the number of points removed from the computational base. If the test fails, the 

process of decomposition of the quadratic form Q (section 4.2.3.2.1), re-ordering (section

4.2.3.2.2) and S-transformations (section 4.2.3.2.3) are repeated until the partial congruency test 

passess.
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At the end of the localization stage, de’ (equation 4.18b) represents the vectors of 

deformation of the non-datum points with respect to the datum defined by dr’. In other words, 

the solution is in the form of the partial minimum trace datum. The same applies to their 

cofactor matrix. In order to confirm the localization finding, final testing of deformation may 

be performed, as discussed in section 4.2.3.3.

As a final confirmation of the localization procedure, combined LSE of the data from 

both epochs can be performed, using the stable points (dr’) as datum. The points in epoch two 

suspected as significantly moved (i.e. de’) are assigned different numbers in each epoch. 

Alternatively, S-transformations similar to section 4.2.1 can be used for this purpose. The 

vectors of deformation of the non-datum points may be computed directly from their differences 

(equation 4.4) in coordinates.

Fraser and Gruendig (1985) show that the difference betweeen the vector of 

deformations from combined LSE and the final significant deformation vectors obtained by 

localization (de’ in equation 4.18b) will be insignificant. Hence, results of localization can be 

used directly for demonstrating the deformation trends.

4.2.3.3 Final testing of deformation

Having determined the significant vectors of deformation by means of the localization 

procedure, the final testing of deformation for verification or confirmation purpose is in the 

form of a local test known as single point test. A graphical plot to represent the deformation 

vectors against their point confidence ellipsoid is also useful.

The single point test (equation 4.15) is based on the null hypothesis (Cooper, 1987)

H0: dj=[dxj dy, dzJ]'=0 (4.21a)

for each point j

The test statistic for point j is based on the multi-dimensional F-test

Tj=(djtQdj'1dj)/(md02)~Fmdf (4.21b)
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where m is the dimension of the network. The test statistic for a 3-D network (m=3) is

Tj=Qj/(3d02)=(djtQdj-1dj)/(3d02)~F34f (4.22a)

where Qdj is the cofactor matrix of the displacement vector dj. This local test is performed for 

each individual point. If Tj is less than F3dfa, point j is considered as stable, i.e. the 

displacement vector is not significant. Otherwise it is considered as moved or unstable. In the 

above test, any correlation between points is neglected. A more general approach of computing 

Oj is by applying the concept of decomposition of quadratic form (section 4.2.3.2.1). The single 

point test can also be computed using a t-test. In this study, the developed procedure permits 

change of significance level a  (section 4.3) between congmency (section 4.2.3.1) and single 

point tests (equation 4.22a).

It is expected that all datum points will be stable (i.e. the test passes), while non-datum 

points can either be stable or unstable. Hence, the points with significant movements are 

expected to be unstable.

The final displacement of each point can be shown graphically, by comparing the 

displacement vector of each point against its confidence region at a specific significance level. 

In a 3-D case, such graphical representation is not straight forward. The first and simplest 

method is by splitting the information into a plot of horizontal and vertical deformations.

The second method, adopted in this study is by considering the confidence region in all 

three axes, i.e. xy, xz and yz axes (section 5.2). The displacement vector of any point that lies 

outside the corresponding confidence region (i.e. error ellipse in horizontal and confidence 

interval in vertical in the first method; and error ellipses in the xy, xz and yz axes for the 

second method) indicates significant movements. For stable datum points, the plots of 

displacement vectors will be within the confidence region.

Both the local single point test and plot of deformation vectors (and error ellipses) give 

similar interpretation. The plot is very useful as it gives an overall picture of any trends in the 

estimated deformation, both in direction and magnitude. Examination of the plot will also 

indicate if there are any group movements.
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Another useful test is a one-dimensional single point test for testing the significance of 

the magnitude of a spatial deformation vector ds in the specified direction (Heck, 1984; Biacs 

and Teskey, 1990)

T=ds/ods~N(0,l) (4.22b)

The movement is insignificant if

|T| < Na if use variance factor of unity 

|T| < tra if use estimated variance factor

4.2.3.4 Robust method in the detection of deformation

The congruency testing method described earlier (sections 4.2.3.1 and 4.2.3.2) identifies 

the stable datum reference stations and localizes the deformation. The method will iteratively 

remove one station (i.e. suspected as unstable) at a time from the initial chosen computational 

base until the partial congruency test passes. Alternatively, a type of robust method known as 

an iterative weighted similarity transformation may be used.

This robust method has been developed at the University Of New Brunswick, Canada 

(Chen et al, 1990; Chen, 1983; Chrzanowski and Chen, 1986; Chrzanowski et al, 1986). In this 

method, the strategy is to minimize the first norm of the displacement vectors of the reference 

points via a weighted transformation. Stations with less movement should have most influence 

in the definition of a datum (more weights), or vice versa. The method can produce a datum that 

is robust to the unstable reference points and gives less distorted displacements.

Let d and Qd be the displacement vector and its cofactor matrix for the common points 

in both epochs. By partitioning or ordering with respect to the reference datum points (equation 

4.18a), elements dr and Qr for reference points can be easily extracted.

(4.23)

where r and e refer to the reference (datum) and object (non- datum) points, respectively. The

123



transformation of dr and Qr into another datum can be written as

dr’=Srdr=[I-Gr(GrtWrGr)'1GrtWr]dr (4.24a)

Qr’=SrQrSr‘ (4.24b)

The weight matrix Wr in the above equation is selected so that the first norm of the

displacement vector dr’ approaches a minimum, hence

K ’ l^min (4.25)

This equation indicates that the sum of magnitudes of all displacement components is a

minimum. Let the transformation parameters (t) be

t=(GrtWrGr)"1 Gr‘Wrdr (4.26)

I dr’ | ,=Z | dr-Grt | =min

The weight matrix Wr for iterative weighted similarity transformation is taken as identity in the 

first iteration, and in the (k+1) iteration becomes

Wr(k+I)=diagonal {1/|dr(k)(i)| } (4.27)

where dr(k)(i) is ith component of vector dr’ after the kth iteration. The iterative transformation, 

utilising equations (4.24a) and (4.27), continues until the absolute difference between successive 

transformed displacement components is smaller than the tolerance 8 (for example, half of the 

average accuracy of displacement components, such as 0.0001 m)

|dr(k+1,-dr(k)|<8 (4.28)

To avoid numerical instability in computing Wr (when dr(k,(i) approaching zero), two 

approaches are possible, either by expanding the expression for Wr or setting a lower bound. 

In the first approach (Chen et al, 1990a), the expression for Wr can be written as

Wr<k+1)=diagonal{ l/( |dr(k)(i) |+8)} (4.29)
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With the second approach, if ldr(k)(i)l is smaller than the lower bound (say 8), its weight is set 

to zero. Hence, approximate solutions are obtained.

In the final (k+1) iteration, the cofactor matrix is computed as

Qr’=Sr(k+1)Qr[Sr(k+1)]‘ (4.30)

Identification of unstable reference points at a specified significance level a  is by means of a 

single point test or by comparing the displacement of each point against its confidence region. 

The interpretation is similar to the testing of deformation outlined in section 4.2.3.3.

Examination of the equations involved indicated that the iterative weighted similarity 

transformation is equivalent to a weighted S-transformations, and hence the general S- 

transformations equations (section 2.3.5) are equally applicable. The weight matrix Wr (or Ir in 

the general S-transformations) is initially taken as identity in order to transform the solutions 

with respect to all the points.

Compared to congruency testing, this robust method is quicker if there are more 

unstable reference points, as the main computation modules (equation 4.24a) involve only the 

displacement vectors, and the cofactor matrix (equation 4.30) is only computed once during the 

final stage. Also, there is no need for the ordering of relevant elements necessary for the 

congruency method. However, this method only can be used to analyse reference stations only, 

and as indicated by Chen et al (1990a), further computations are needed for localization of 

deformation. Also, the number of iterations may be large. On the other hand, the congruency 

testing method can be used to analyse both reference and object stations simultaneously in one- 

stage computation, and the results can be used directly. In this study, the robust method has 

been modified to allow for one-stage computation. In the final S-transformations, the stable 

datum points are given weight of unity, while weight for other points are assigned as zero. The 

computational procedure for S-transformations developed in section 2.3.5 has been applied into 

equation (4.24).

In terms of application, the robust method may be used as an alternative method to 

determine a set of stable reference points initially, prior to congruency testing.
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4.3 Significance level in testing

During statistical testing of LSE results, the selection of a significance level (a) is to 

some extent arbitrary. Associated with the test are the Type I and Type II errors. A Type I error 

is simply rejecting a good observation with probability of a, whilst Type II error is in fact 

accepting a bad observation at probability level (3 (section 3.3). In deformation detection (Biacs, 

1989), a Type I error occurs when significant movements are detected but did not occur, i.e. 

false alarm. On the other hand, a Type II error exists when existing movements are not detected, 

i.e. missed detection. In practice, selection of of a  (and also (3) to be used for global (i.e. 

congruency) and local (single point) tests (sections 4.2.3.1 and 4.2.3.3) is quite important. 

Generally, smaller significance levels are required for local (single point) test.

Standardization of significance levels is discussed in section 3.3.4. To date, only the B- 

method (developed at Delft Technological University, Netherlands) synchronized the 

significance levels via a  and (3. However, this method has been shown to lead to a high 

probability of false alarm (Biacs, 1989). In most applications, only Type I errors are considered, 

and standardization of a  is carried out via Bonferroni’s inequality.

During the detection of deformation, an arbitrary value of a  for the global test may be 

selected. For a local single point test, neglecting correlation between stations, standardization 

of a  via the application of Bonferroni’s inequality (Vanicek and Krakiwsky, 1986; equation 

3.20) gives

a p l- I l-a g ^ ^ a /m  (4.31)

where m is the number of stations, a g and a, are significance levels for global and local tests, 

respectively.

However, as the number of stations is increased, a, becomes too small, and 

consequently the critical values become too large, leading to missed detection. A more practical 

expression (Cooper, 1994) is simply

al=aj(m1'2) (4.32)
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In monitoring works, a  is usually chosen as 0.05 and 0.01 for global and local test 

respectively. The procedure developed for detection of deformation (section 4.4) allows user to 

select any a  for both global and local tests, with standardization via equation (4.32).

4.4 Procedure for deformation detection

From a practical point of view, it is necessary to divide the monitoring network into 

reference (or datum) and object (non-datum) points. Initially, analysis needs to be carried out 

on the reference points only (Teskey, 1994), and not on the whole network. Usually, with a 

properly designed network, survey control stations can be used as an initial datum stations.

In addition, the stability of the initial datum stations can be based on the geotechnical, 

geological or engineering knowledge. In the case of no previous information, it is also possible 

to use the points with the smallest local statistics as initial datum stations, and applying the 

Bonn method (Appendix E).

With this in mind, the application of the 3-D deformation detection modules developed 

in section 4.2 can be summarized into several stages as shown in Figure 4.1:

i. Preliminary checks and if necessary, transformation into a common datum (section

4.2.1). At this early stage, information related to the common reference and datum 

stations need to be extracted. By rearranging the data of common stations at the 

beginning of arrays, the extraction process is straightforward.

ii. Initial check and preliminary testing to determine whether the analysis is to be 

continued (section 4.2.2). A one-tailed test on the variance ratio (equations 4.5, 4.6 and 

4.8) is used.

iii. One-stage computation for stability determination of the datum or reference points, and 

localization of deformation. The initial datum points can be considered as either 

unknown or known. In the case of unknown datum points, a minimum trace datum is 

adopted. Otherwise, a partial minimum trace datum is employed.
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Starting with a chosen computational base (datum), and after appropriate ordering, the datum 

points are analysed via the methods of congruency testing and localization until the congruency 

test passes and a set of stable datum points are found. Sequences of congruency testing (section

4.2.3.1), decomposition (section 4.2.3.2.1), re-ordering (section 4.2.3.2.2) and S-transformations 

(section 4.2.3.2.3) are performed iteratively in the analysis. This is then followed by final testing 

of deformation via the single point test (section 4.2.3.3). During testing, significance level a  can 

be changed between congruency and single point tests. Standardization of a  can be determined 

computationally (equation 4.32) or manually.

All the datum stations must pass both the congmency (global) and single point (local) 

tests (i.e. stable). Otherwise, only the stable datum stations must be used to define the datum, 

and the detection procedure are repeated.

Alternatively, the robust method (section 4.2.3.4) may be used for the determination of 

initial stable datum points or deformation detection. It is expected that both congruency and 

robust methods will give similar results on the stability of datum points. However, the 

congruency testing method is more flexible with respect to datum definition and therefore more 

suitable in practice.

The above approach is purely geometric and produces the vectors of deformations, 

showing the movement trends. Further analysis may be performed to check any group 

movements. Theoretically, the method requires that three times the number of datum stations 

be equal to or greater than the number of datum defect, to avoid the singularity. In the extreme 

case of photogrammetric data with a maximum of seven datum defects, a minimum of three 

(hence nine coordinates) stable datum points are needed. If no stable points can be found, other 

methods such as strain analysis (Brunner, 1979; Cooper, 1987) may be used.
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Figure 4.1 Procedure for geometrical detection of spatial deformation 

(*datum stations can be determined manually or computationally)
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5. IMPLEMENTATION

This chapter describes the implementation of the concepts and methodologies discussed 

in sections 2, 3 and 4 into five computer programs for 3-D application. The description of 

program modules developed for LSE, S-transformations, determination of common stations and 

detection of spatial deformation (two programs) between two epochs are given. The links 

between these programs and two of ESRC’s programs (GAP and DCRE) for deformation 

detection have been established.

5.1 Description of programs

The procedure adopted for deformation detection between two epochs is summarized 

in Figure 4.1 (section 4.4). The main tasks are independent LSE at each epoch, S- 

transformations of LSE results into a common datum, determination of common stations 

between epochs, and the detection of spatial deformation.

In this research, the tasks have been implemented into five computer programs for 3-D 

application as the following:

a. ESTIMATE for 3-D LSE of a single epoch (section 5.1.1).

b. COMPS for 3-D S-transformations of LSE results into the selected datum prior to 

deformation detection (section 5.1.2).

c. COMON for 3-D determination of common stations between two epochs, with the necessary 

re-ordering and S-transformations with respect to the common stations (section 5.1.3).

d. DETECT for geometrical detection of spatial deformation between two epochs based on 

congruency testing (section 5.1.4).

e. ROBUST for geometrical detection of spatial deformation between two epochs based on a 

robust method (section 5.1.5).

All the computer programs were written in FORTRAN77, and were developed for 

applications on both personal computer (PC) and UNIX environments. FORTRAN77 (Dyck et 

al, 1984) was used mainly due to its powerful computing ability, and compatibility between PC 

and UNIX compilers. Another reason is familiarity of the author with FORTRAN77.
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In general, all the programs are interactive in nature to allow users some flexibility in 

decision making, such as computation modes, continuation of computations, selection of 

significance level for statistical testing, creation of output files and termination of the programs. 

Whenever necessary, the programs automatically compute approximations of critical values for 

statistical tests, using the formulations of Cooke et al (1990). For program portability between 

PC and UNIX environments, all routines are developed independently, and no external routines 

are used.

In terms of storage, single arrays are used in most cases, using the strategy outlined by 

Healy (1986). Some of the dummy arrays are used repeatedly. For cofactor matrix, only upper 

triangles are stored in single arrays. Error checking and trapping methods are included, on both 

input errors and singularity. The program will be terminated automatically if either data input 

files are not available, on the existance of input errors or singularity.

Another important task in deformation detection (Figure 4.1) is the presentation of 

results. In general, results can be presented numerically and / or graphically. Although the above 

programs provide the results numerically, a more helpful presentation of the results is in the 

form of graphics plots.

For this purpose, a special graphics program developed by Chandler (1994) at the 

Engineering Surveying Research Centre (ESRC) called DCRE is used. This program runs under 

the INTERGRAPH MicroStation environment, and has a flexible on-screen graphics capability 

of showing plots of results of LSE and deformation detection. For example, plots of points, 

station names, error ellipses and deformation vectors can be produced. Error ellipses can be also 

portrayed in three axes, xy, xz and yz.

In order to use DCRE, the outputs of all five implemented programs are produced so 

that they are compatible with input for DCRE. Each program can produce an additional 

specialised output file as input for DCRE if requested. Three types of input format for DCRE 

are used for plots of the networks, plots of stations with ellipses, and plots of deformation 

vectors with ellipses.

Another useful program available at ESRC is GAP for LSE of single epoch (section

5.1.1). Link between GAP, DCRE and all the five implemented programs, as well as their usage
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have been established and described in section 5.2.

5.1.1 Program ESTIMATE [LSE]

ESTIMATE is a program designed for the LSE of local monitoring 3-D networks using 

terrestrial observations. The basic structure is shown in Figure 5.1 (based on Figure 3.2).

The program can currently handle thirteen types of (assumed) uncorrelated observations 

(Appendix A and section 3.5.3.1): horizontal and slope (or spatial) distances, height differences, 

horizontal directions (with orientation parameters), horizontal angles, zenith angles (or zenith 

distances), azimuths, vertical angles and specialised slope distances (with scale, zero or 

combination errors, and multiple scale or zero errors). The program is also capable of processing 

three types of algebraically correlated observations: horizontal angles and pseudo observables 

(spatial distance ratios (equation 3.44) and distance differences) (section 3.5.3.2).

Two data input files are required for ESTIMATE, one contains the provisional 

coordinates and the other contains the observations and their variances. As engineering 

monitoring surveys are confined to a specific area requiring a special network, a locally defined 

3-D cartesian coordinates system is employed. Datum definition (via minimum constraints) is 

also included in the provisional coordinate file. The observations are assumed to have been 

corrected and / or reduced for systematic errors where appropriate.

The adopted procedure for LSE of parameters is based on equations (2.13) to (2.26). 

Handling of the minimum constraints datum is carried out by holding fixed a minimum number 

of coordinates (equal to the datum defect d). These points are then removed from the system 

of equations to form reduced non-singular normal equations (equations 2.44 and 2.45a).

The program starts with the selection of computational modes, reading and checking of 

input files, followed by checks on the datum deficiency of the network. The datum deficiency 

is determined automatically from the types of observations, as indicated in Table (2.1). For a 

minimum constraints solution (adopted for deformation detection), the datum defect must be 

equal to the number of fixed coordinates. An overconstrained solution is obtained if the number 

of fixed coordinates is greater than the datum defect. If the number of fixed coordinates is less 

than the datum defect, the program is terminated automatically.

132



Figure 5.1 Flowchart for program ESTIMATE
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In ESTIMATE, the observations are not stored. During the formation of the normal 

equations, an initial check on gross errors is incorporated by means of misclosure vectors 

(equation 2.14). Any misclosure vector bigger than a pre-defined limit will be flagged for 

checking and the program will terminate. Consequently, it is required to check the observational 

data. The limit must not be too small to allow for inaccuracy in provisional coordinates, for 

example 10 m for linear and 5° for angular observations. In practice, this check is very useful 

for detecting any very large gross error prior to further analysis.

For deformation detection purposes, the inverse of the normal equations is required, and 

hence an ordinary inversion routine is adopted. During LSE, prior to inversion, a rank defect 

analysis on normal equations via simplified EVD is carried out, utilising equations (2.51), (2.52) 

and (2.58). The program allows for the manual entry of limits for checking the rank and 

condition. Depending on the effective rank, non-singular normal equations allow further 

computation, whilst any singular normal equations will cause automatic termination of the 

program. In the singular case, it is necessary to check the network configuration and datum 

definition. In certain cases, although the normal equation is non-singular, large condition number 

will indicate that it is ill-conditioned.

The LSE process computes the solution, updates the estimated coordinates, and 

computes the variance factor. The solution is usually iterated due to the linearisation and 

approximation process. During iteration, a check for convergence and divergence of the variance 

factor is also carried out. Divergence will automatically stop the program.

Relevant global and local statistical tests (section 3.3) are incorporated in the program. 

In most cases, users can define the significance level for testing, while critical values are 

computed automatically. It is also possible to enter the critical value manually.

The global (chi-square) test is computed once the solution has converged. Such a test 

can be either a one or two-tailed test, following equations (3.3) to (3.6). In practice, a one-tailed 

test of equation (3.6) is commonly used. Following the outcome of the global test, redundancy 

numbers (equation 3.18) necessary for reliability analysis are computed, and the user has the 

option for executing an outlier detection module and creating output files.

The outlier detection module is based on robustified LSE using equation (3.59a) in the
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ordinary case and equation (3.59b) to speed up the computations. During the process of iterative 

robustified LSE, a weighting factor is interactively determined by the user. In relation to de-

weighting, it is also possible to compute the effect of changing observation weights on the 

estimated parameters (section 3.6.2.3).

All the adopted statistical tests are based on the normality assumption (section 2.1.5). 

This assumption is tested by means of a chi-squared goodness of fit test, given by equations 

(3.9) and (3.10), using all observations. The local test is related to gross error detection, and the 

adopted test is based on Pope’s Tau method (equations 3.19 and 3.21), with automatic 

computation of the critical values. If an additional parameters approach is adopted for handling 

systematic errors, a significance test on each additional parameters follows (equations 3.14 and 

3.15a).

All the foregoing discussion assumes uncorrelated and independent observations. 

Horizontal angles are algebraically correlated, and need to be treated differently. In handling 

systematic errors, introduction of pseudo observables (distance differences and ratios) also 

creates algebraically correlated observations (sections 3.5.3.2.1 and 3.5.3.2.2). In order to use 

this ordinary LSE scheme, the concept of observation de-correlation (section 3.5.3.2.3) is 

applied and implemented in ESTIMATE.

Precision and reliability analyses follow section 3.8. For reliability analysis, values of 

\  (Figure 3.1) need to be entered manually, which are available in Baarda (1968). For internal 

reliability, both redundancy number and MDGE (equations 3.25a and 3.25b) are computed, 

whilst the infuential factors (equation 3.26) are computed as a measure of external reliability. 

Precision measures are based on trace, mean variance and the variances of individual parameters 

(section 3.8).

In relation to the precision measures, the parameters defining the error ellipsoid can be 

computed via EVD using equation (2.64). Such an ellipsoid allows graphics representation of 

the confidence region of the estimated parameters (section 3.3.5). However, in this case the 

measure is not computed, as graphics are handled separately by program DCRE. A compatible 

format suitable for using DCRE is produced, where the sub-cofactor matrix for each station is 

extracted.
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The computational mode in effect so far is the ordinary or robustified LSE. Two other 

computational modes are pre-analysis and VCE. The program is designed so that all three 

computational modes can be executed, without any modification to the original input data files.

In pre-analysis, equations (2.20) and (2.22) are used to determine the expected precision 

and reliability of the solution based on the provisional coordinates and precision of the 

observations. The actual observation vectors are not used in this mode.

Assuming observations as uncorrelated and free from both systematic and gross errors, 

the computational mode for simplified VCE (section 3.7.3) is executed iteratively for estimating 

variances of observations in groups. Two-tailed global and local tests (equations 3.92 and 3.93) 

are used for stopping criteria.

Program ESTIMATE will produce up to three output files, depending on the user’s 

selection. The output consists of summary file (compulsory) containing LSE results, a file for 

detection of deformation or S-transformations (i.e. deformation file), and a plot file for DCRE. 

The adopted LSE solution (equation 2.45a) is based on reduced normal equations. In order to 

produce output files for deformation detection and DCRE, the reduced cofactor matrix Qx 

obtained from LSE is expanded to its full size (section 2.2.2).

The summary file contains information on the LSE such as estimated coordinates, global 

and local tests, reliability and precision analysis. Data in the deformation file (section 3.9) 

consist of the estimated variance factor, degrees of freedom, the datum defect, provisional 3-D 

coordinates, estimated 3-D coordinates and their full (i.e upper triangular) cofactor matrix. The 

plot file for DCRE contains estimated coordinates and sub-cofactor matrix for each station.

ESTIMATE only deals with surveying data. At ESRC, most of the monitoring activities 

use combinations of photogrammetric and ordinary surveying data, and LSE is carried out by 

a program called GAP (General Adjustment Program), developed by Clark (1992). GAP is 

capable of processing the combination of photogrammetric and uncorrelated surveying data 

(horizontal and slope distances, height differences, horizontal and vertical angles). Program GAP 

also produces summary, deformation and plot files. During development of ESTIMATE, GAP 

was used to check and verify some computations.
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5.1.2 Program COMPS [S-transformations]

COMPS is a program for the S-transformations of the results of single epoch LSE (i.e 

coordinates and cofactor matrices) from one datum to another, prior to deformation detection. 

This facility is useful as the solution obtained from ESTIMATE is with respect to a minimum 

constraints datum only. With the aid of COMPS, it is possible to transform the minimum 

constraints solution into a minimum trace, partial minimum trace or other minimum constraints 

solution, depending on the selected datum.

At the beginning of the deformation detection process, it is required that coordinates and 

cofactor matrices of common stations for each epoch are based on the same datum. If these 

requirement is not fulfilled, the LSE results at each epoch must be transformed into the same 

datum via program COMPS.

The fundamental of program COMPS is demonstrated in Figure 5.2, and the adopted 

computational procedure is described in section 2.3.5. The required data input file for COMPS 

(i.e. deformation file) is generated by ESTIMATE (or GAP) for each epoch (section 5.1.1). The 

same data format is applicable for COMON, DETECT and ROBUST.

Datum definition for S-transformation is included in the estimated coordinates simply 

by assigning codes with values of one and zero for datum and non-datum points respectively. 

It may be necessary to edit the input (deformation) file to define the required datum. For 

convenience, COMPS provides automatic datum definition if minimum trace datum is selected.

The program begins with reading and checking of input file, and consequently checking 

on the number of datum defects. Depending on the number of coordinates used for datum 

definition (equation 2.81), transformation results can be based on either a minimum trace, partial 

minimum trace or minimum constraints datum. If the number of selected coordinates is less than 

the number of datum defects, the program is terminated automatically.

In COMPS, the general form of S-transformations is used (section 2.3.5 and equation 

2.95). Options are included for datum definition, reduction to centroid and normalization. For 

numerical stability in evaluating matrix G, the computational mode allows for reduction of 

coordinates to their centroid (equation 2.90) and normalization of G (equations 2.91 and 2.92).
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Figure 5.2 Flowchart for program COMPS
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To speed up the computation, matrix S is decomposed by equations (2.93) and (2.94) to change 

multiplication into addition of large matrices. During development of program COMPS, 

computational check via equations (2.79) and (2.80) was performed.

Output of program COMPS consists of two files, as chosen by the user. The first file 

(compulsory) is in the same format as deformation file and is suitable for deformation detection, 

while the second file is a plot file for DCRE with the format similar to program ESTIMATE.

5.1.3 Program COMON [determination of common stations]

COMON is a program which allows the determination of common stations between two 

epochs, with the necessary re-ordering and S-transformations with respect to the common 

stations. Figure 5.3 summarizes the steps involved, based on section 4.2.1.

The program requires two data input files (i.e. deformation files), one from each epoch. 

Both epochs can be based on different numbers of stations and datum definition. For flexibility, 

common stations for each epoch do not necessarily have the same approximate coordinates. At 

the moment, for convenience in computation, the number of stations in the first epoch must be 

greater than those in the second epoch.

The program starts by reading and checking the input files and data. If the datum defect 

between epochs is different, the program automatically determines the biggest defect as the 

common defect for checking purposes. This is followed by searching and indexing of the 

common stations with respect to the first epoch. If three times the number of common stations 

is equal to or greater than the common defect, the procedure continues with re-ordering and S- 

transformations. Otherwise (or if no common stations are found), the program will automatically 

stop.

Re-ordering involves re-arrangement of the data in each epoch (station names, 

provisional and estimated coordinates together with their cofactor matrix) so that common 

stations are ordered at the beginning of arrays, based on the partitioning scheme of equations 

(4.1a) and (4.1b). If provisional coordinates of common stations are different, it is also possible 

to continue the process using values of first epoch.
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Figure 5.3 Flowchart for program COMON
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The next step is the independent S-transformations (section 2.3.5) of the estimated 

coordinates and cofactor matrix from each epoch into the new datum defined by the common 

stations (equations 4.2 and 4.3). The transformation process does not change the datum invariant 

quantities (including degrees of freedom and variance factor) for each epoch.

COMON produces up to four output files, two for each epoch, namely deformation and 

plot files. The deformation file (compulsory) contains data with respect to the common stations 

only, suitable for the application of deformation detection via DETECT or ROBUST. The 

format for the plot file for graphics display via DCRE is the same as that of ESTIMATE.

5.1.4 Program DETECT [deformation detection by congruency testing]

DETECT is a computer program for geometrical detection of spatial deformation with 

the following properties: geometrical method; based on surveying and / or photogrammetric 

data; uses two-epoch analysis, an absolute monitoring network, static model, coordinate 

differencing and; assumes no correlation between epochs. The one-stage computational 

procedure for DETECT is based on section 4.4 and is summarised in Figure 5.4.

Two data input files are required for DETECT, one from each epoch. The data files 

(deformation files) can be obtained from the appropriate output of ESTIMATE, GAP, COMPS, 

or COMON. The data format is described in section 5.1.1.

Program DETECT starts with the reading and checking of input files, selection of datum 

definition, and initial checks on the data. The initial checks (section 4.2.2) examine that the 

same common stations, provisional coordinates and datum definition are being used in the LSE 

of each epoch. Any discrepancies will cause termination of the program, and if applicable, 

followed by the on screen advice for executing COMPS or COMON.

At the start of deformation detection, the datum used for LSE at each single epoch can 

be either minimum trace, minimum constraints or partial minimum trace (section 4.2.1). Datum 

and non-datum points are related to stable (or reference) and unstable (or object) points 

respectively. Program DETECT allows the user to define the status of datum points, whether 

known (i.e. partial minimum trace) or unknown (minimum trace or minimum constraints) in 

advance. This can be carried out by editing the input files.
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Figure 5.4 Flowchart for program DETECT
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If datum points are not known, all stations will be used for datum definition. Otherwise, 

the relevant data for the datum stations at each epoch (coordinates, cofactor matrix and datum 

codes) are rearranged at the beginning of their respective arrays for simplicity in further 

computations (equation 4.17). A check on the number of coordinates used for datum definition 

against the datum defect is also carried out at this stage, and whenever the datum is redefined. 

The program is terminated automatically if three times the number of coordinates is less than 

the number of datum defects.

Three statistical tests are employed in DETECT, one-tailed test on the variance ratio 

(equation 4.6b), congruency test (section 4.2.3.1) and single point test (section 4.2.3.3). During 

this testing, the user can select the appropriate significance levels, while approximate critical 

values are computed automatically. The user also has the option of entering the critical values 

manually.

Following initial checks, a preliminary test on the variance ratio examines the 

compatibility of the independent variance factors at each epoch. Acceptance of the test leads to 

computation of common variance factor (equation 4.8) and stability determination. Failure of 

the test will terminate the program automatically, and requires the examination of LSE results 

and observational data.

Stability determination starts with checks on the stability of initial datum points in both 

epochs via congruency tests (equation 4.10). If the test indicates significant movements of the 

datum points, localization of deformation (section 4.2.3.2) is performed. Stability determination 

and localization of deformation consists of an iterative process of congruency testing, 

decomposition of the quadratic form (equation 4.14), re-ordering with respect to datum points 

(equation 4.17) and S-transformations (equations 4.18b and 4.20) until the partial congruency 

test (equation 4.13) passes. During this iterative procedure, the datum point with the largest 

quadratic contribution is removed from the computational base.

In DETECT, approximate coordinates are used for computing matrix G. Computation 

of displacement is with respect to the first epoch. The program also provides automatic and 

manual modes of the above iterative procedure. In the manual mode, user can also select which 

datum point is to be removed from the computational base. This facility is not possible in 

automatic mode. During datum re-definition, a check against datum defect is also carried out.
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Once the congruency test passes, the localization procedure will compute any significant 

deformation vectors of non-datum points with respect to the final datum points. Final testing 

of deformation is in the form of a single point test (equation 4.22a). Program DETECT 

computes the standardized significance level for this test via equation (4.32), and also allows 

the user to change the level and its critical value.

Another useful feature of DETECT is the direct comparison between two epochs 

(equation 2.88). In this mode, each epoch must be based on the same datum.

DETECT will produced summary and plot files, as selected by the user. The summary 

file (compulsory) contains the full results of deformation detection, whilst the plot file contains 

useful information for DCRE. In the plot file, data for each station consists of station names, 

coordinates, deformation vectors, and their respective sub-cofactor matrix. By using DCRE, the 

deformation vectors and error ellipses (in three axes) can be portrayed graphically.

5.1.5 Program ROBUST [deformation detection by robust method]

ROBUST is also a program for detection of spatial deformation, but on a different 

principle to DETECT. Whilst DETECT uses congruency testing, ROBUST is based on the 

robust method (section 4.2.3.4) of iterative weighted S-transformations. Figure 5.5 shows the 

concept and one-stage computational procedure of ROBUST.

The program has two computational modes, deformation detection by robust method and 

direct S-transformations assuming known datum. In deformation detection, the user can decide 

on the maximum number of iterations. The data input handling, initial checks and the test on 

variance ratio are similar to DETECT.

The procedure for deformation detection via ROBUST is quite simple. Following the 

test on the variance ratio, the program computes the iteration limit (equation 4.28) based on the 

RMSE of the variances (section 3.8). It is also possible to enter the limit manually. At the 

beginning of iteration, the weight matrix is taken as identity, and in successive iterations, the 

weighting scheme of equation (4.29) is applied in equation (4.24a). In effect, stations with less 

movements are given more weight, and hence have more influence in the datum definition. At 

the end of iteration, the cofactor matrix of displacement is updated via equation (4.30). This is
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Figure 5.5 Flowchart for program ROBUST
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followed by the single point test (section 4.2.33) in a similar manner to DETECT.

Program ROBUST computes S-transformations via equation (2.95). It also allows the 

user to perform final computation with the datum defined by the stable points. In this case, S- 

transformations and the single point test are applied again. Similarly, if datum points are known 

in advance, program ROBUST performs direct S-transformations, followed by the single point 

test. The output files from ROBUST are similar to those from DETECT (section 5.1.4), 

consisting of summary and plot files.

5.2 Using the programs

All the five implemented programs and GAP are connected for deformation detection 

purposes, and can produce special output for DCRE. During this research, the links between all 

seven programs have been established, as shown in Figure 5.6.

If datum (and hence stable) stations are known prior to deformation detection, results 

from LSE can be transformed via COMPS. Generally, assuming different stations and datums, 

and before proceeding with deformation detection, COMON can be used to search for common 

stations between epochs, with the appropriate S-transformations.

Programs ESTIMATE, GAP, COMPS and COMON produced deformation files suitable 

for deformation detection. For initial datum definition in detection process these files may be 

edited.

DETECT or ROBUST can be used for geometrical detection of spatial deformation via 

one-stage computation (i.e. stability determination and localization of deformation), and provide 

numerical results. For graphics display, a plot file for DCRE can be created by both programs.

For LSE at each epoch, ESTIMATE is suitable for processing terrestrial surveying data 

as described in section 5.1.1, while GAP is capable of processing both photogrammetric and 

ordinary surveying data. Programs COMPS, COMON, DETECT and ROBUST, however, are 

capable of processing LSE results obtained from any combinations of surveying, 

photogrammetry and / GPS data, because the datum defect forms part of the input data.
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Figure 5.6 Linking the programs for geometrical detection of spatial deformation 

(* indicates that the program is only executed if necessary)
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In practice, interpretation of the results obtained from the usage of the above programs 

is very helpful. In LSE (via ESTIMATE or GAP), the solutions should pass both the global and 

local tests. Failure of the above tests requires the application of strategies outlined in section 3.9. 

Moreover, the precision and reliability analyses must be acceptable too. In geometrical detection 

of spatial deformation (program DETECT or ROBUST), it is expected that all datum points will 

be stable, while non-datum points can be either stable or unstable as indicated by the single 

point test (section 4.4).

In program DCRE, views can be rotated about three axes, and the standard views are: 

top, bottom, right, left, front, and isometric view. Top (or plan), front and right views can be 

used to show ellipses and deformation vectors in xy, xz and yz planes respectively. The 

isometric view is useful for portraying the trend of overall movements. Figure 5.7 is an 

isometric view of a cube to show the concept of 3-D views.

Graphically (program DCRE), plots of displacement vectors for stable datum points will 

be within the ellipses describing the confidence regions. On the other hand, plots of 

displacement vectors for unstable non-datum points (i.e. with significant movement) will be 
outside the ellipse.

A guide for using the developed programs is given in Setan (1995), whilst sample input 

and output of the programs are listed in Appendix G.
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6. APPLICATION

This chapter discusses the actual application and testing of the implemented programs 

described earlier in chapter 5, for processing simulated and real data. Analysis and interpretation 

of the results obtained are also discussed in this chapter.

6.1 Simulation tests

During initial testing, simulated data were used extensively to verify the correctness of 

the adopted procedure. The simulated data used were based on properly generated normally 

distributed observations and also published data. The simulation tests were divided into four 

parts: rank analysis (section 6.1.1), datum definition and S-transformations (section 6.1.2), LSE 

and errors (section 6.1.3), and deformation detection (section 6.1.4). A significance level a=0.05 

was chosen for most of the statistical testing.

6.1.1 Rank analysis

Two networks have been used to illustrate the importance of rank analysis: levelling and 

3-D networks. The levelling network shown in Figure 6.1 is adopted from Caspary (1987b). The 

observations (all of equal weights as I) are

M l ,  12 13 14 15 1J-[1.2 1.6 1.7 1.2 2.1 1.3]* mm

After forming the observation equations, the normal equation coefficient matrix N(4,4) 

according to equation (2.17) is

3 -1 -1 -1
-1 3 -1 -1
-1 -1 3 -1
-1 -1 -1 3
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Figure 6.1 Simple levelling network

[number of observations n=6, number of parameters u=4]

The eigenvalues (equation 2.58) of N=[4.0 2.2e-16 4.0 4.0]'. If the limit or tolerance is 0.00001, 

rank (N) is 3. Hence, rank deficiency (equation 2.33) of N is

d=u-rank (N)=4-3=l

Matrix N is singular, and it does not possess the ordinary (Cayley) inverse. This is because the 

levelling network has one datum defect (Table 2.1). Although the limit can be chosen to be very 

small (for example le-20), such that N becomes full rank, the condition cond(N) will be too 

large (2el6) indicating an ill-conditioned situation. Moreover, any ordinary inversion routine 

will not be able to compute the inverse of N.

In order to solve the above singular equation, it is required to define a datum. The most 

simple can be defined by means of a minimum constraints (equations 2.44 and 2.45a), achieved 

for example by keeping point 1 as fixed hence u reduces to 3. The reduced N(3,3) becomes

-1
3
-1

-1
-1
3

With eigenvalues of N=[4 1 4]', r(N)=3, and cond(N)=4. Matrix N is now non-singular, its 

inverse and subsequent solution can be computed as usual.
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Figure 6.2 is a simulated six station 3-D network consisting of 54 observations (12 slope 

distances, 30 horizontal directions and 12 height differences). Details on the simulated data are 

given in section 6.1.3. To demonstrate the handling of these deficiencies, all observed distances 

and height differences related to station 2 were removed from the scheme, leaving only angular 

observations connecting station 2 into the network. The number of observations reduces to 47, 

and the number of parameters is 24 (18 unknown coordinates and 6 orientation parameters).

Figure 6.2 Network 1 (plan view)

Initially, no station was considered fixed, and program ESTIMATE in pre-analysis mode 

revealed a datum defect of four (i.e. 3 translation along all axes and one rotation about the z 

axis). These datum defects may be removed by fixing 4 coordinates, in this case, x„ y„ z, and 

y3, such that the number of parameters becomes 20. The following LSE with a minimum 

constraints datum gives a set of normal equations with an effective rank of 19, indicating one 

configuration defect.

Geometrically, this is due to not enough observations to locate station 2. By adding one 

observation (and its standard deviation), such as the slope distance from 1 to 2, the normal 

equation matrix becomes non-singular. However, the normal equation was found to be ill- 

conditioned via rank analysis (section 2.2.6). In reliability analysis, the redundancy number
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(section 3.8) of the added observation was found to be close to zero, indicating a weak area in 

the network, and more observations connected to station 2 are required. By iteratively adding 

relevant observations and performing pre-analysis, an acceptable scheme can be designed.

6.1.2 Datum definition and S-transformations

Several tests were carried out to demonstrate the important aspects of datum definition 

and S-transformations. In the first test, the levelling network shown in Figure 6.1 was used. LSE 

by the method of observation equations (section 2.1.3) utilized equations (2.29), (2.30), (2.31) 

and (2.34).

Assuming all observations have equal weights (given by I), and using approximate 

values of parameters as [10.0 11.1 11.5 11.6]', three types of solutions were computed:

#1. Ordinary minimum constraints with station 1 chosen as the datum point.

#2. Minimum trace where all stations are used for datum definition.

#3. Partial minimum trace with stations 2 and 3 as datum points.

The results obtained are similar to Caspary (1987b) and are depicted in Table 6.1. 

Solution #2 gives minimum norm and minimum trace whilst solution #3 minimizes the partial 

norm and partial trace, with respect to the datum points. The residuals remain unchanged due 

to their independence on the selection of datum constraints. Although not computed here, other 

invariant quantities (section 2.1.4) are adjusted observations, cofactor matrices of the adjusted 

observations and the residuals.

S-transformations of the LSE results in Table 6.1 were performed using equation (2.89) 

where G=[l 1 1 1]'. Three types of computational bases were chosen:

1. Minimum trace to minimum constraints 

Datum point = station 1; Ip = [1 0 0 0]'

2. Minimum constraints to minimum trace 

Datum points = all stations (1,2,3,4); Ip = [1 1 1 1]'

3. Minimum trace to partial minimum trace 

Datum points = stations 2 and 3; Ip = [0 1 1 0]'
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solution #1 
minimum 
constraints 
datum

solution #2 
minimum 
trace 
datum

solution #3 
partial
minimum trace 
datum

datum defined 1 1,2,3,4 2,3
by stn [all]

parameter
*i 1 0 . 0 9.925 10.25
x2 1 0 . 6 10.525 10.85
x3 11.5 11.425 11.75
x4 12.4 12.325 12.65

norm 0.94 0.93 1.14

partial - - 0.35
norm

cofactor
matrix
Qn 0.00 0.1875 0.375
Q 2 1 0.00 -0.0625 0.000
Q 22 0.50 0.1875 0.125
Q 3 1 0.00 -0.0625 0.000
Q 32 0.25 -0.0625 -0.125
Q 33 0.50 0.1875 0.125
q 4, 0.00 -0.0625 0.125
Q 42 0.25 -0.0625 0.000
Q 43 0.25 -0.0625 0.000
Q 44 0.50 0.1875 0.375

trace 1.500 0.750 1.000

partial - - 0.250
trace

residuals
Vi - 0 . 6 - 0 . 6 - 0 . 6

V2 -0.1 -0.1 -0.1
V 3 0.7 0.7 0.7
v4 -0.3 -0.3 -0.3
V5 -0.3 -0.3 -0.3
v6 -0.4 -0.4 -0.4

Table 6.1 LSE results for levelling network (unit in mm).
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Results of the transformations are summarised in Table 6.2. Comparison of the results 

of LSE in Table 6.1 with results of S-transformations in Table 6.2 (columnwise) shows that the 

parameters and cofactor matrices are identical. Invariant quantities are not affected by this 

transformation.

sol#2 to #1 
minimum trace to 
minimum 
constraints

sol#l to #2 
minimum 
constraints to 
minimum trace

sol#2 to #3 
minimum trace 
to partial 
minimum 
trace

datum defined 1 1,2,3,4 2,3
by stn * [all]

parameter
x, 10.0 9.925 10.25
x 2 10.6 10.525 10.85
x3 11.5 11.425 11.75
x4 12.4 12.325 12.65

cofactor
matrix
Qn 0.00 0.1875 0.375
Q 2 1 0.00 -0.0625 0.000
Q 22 0.50 0.1875 0.125
Q 3 1 0.00 -0.0625 0.000
Q 32 0.25 -0.0625 -0.125
Q 33 0.50 0.1875 0.125
Qu 0.00 -0.0625 0.125
Q 42 0.25 -0.0625 0.000
Q 43 0.25 -0.0625 0.000
Q 44 0.50 0.1875 0.375

Table 6.2 S-transformations results for the levelling network (unit in mm).

The second test was based on a simulated 3-D network of four stations (Figure 6.3) with 

21 survey measurements (slope distance, height difference, vertical angle and uncorrelated 

horizontal angle), giving rise to a datum defect of four. The above observables can be handled 

by GAP, and hence allowed an independent check of computations via GAP. LSE were carried 

out (using ESTIMATE and GAP) with a minimum constraints datum (fixing x,, y,, z, and x3) 

and a minimum trace datum (using GAP). The results are shown in Table 6.3. The minimum 

constraints solution is transformed into the minimum trace solution using COMPS with the
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following options for handling matrix G:

(a) Ordinary computation without reduction to centroid and normalization

(b) Reduction to centroid and normalization

(c) Reduction to centroid only

(d) Normalization only

Figure 6.3 Network 2 (plan view)

All the options were found to produce identical results (Table 6.3). Differences between 

the transformed solution and results obtained from GAP are found to be insignificant. For 

practical purposes, reduction to the centroid is recommended, since S-transformations results are 

automatically referred to the centroid defined by the datum points. Normalization provides 

further computational stability.

Similar tests were performed using the six station 3-D network shown in Figure 6.2. 

Initially, ESTIMATE was used to obtain the minimum constraints solution (fixing x,, y,, z, and 

x3. Error ellipses in all 3 axes are shown in Figures 6.4, 6.5 and 6.6 respectively. All the 

graphics in this chapter will be shown in plan, front and right views to portray ellipses and 

deformation vectors in xy, xz and yz directions respectively. Isometric view is used to show the
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trend of deformation.

stn coordinates standard deviation
X y z °*

1.0
minimum 1 100.0000 100.0000 10.0000 0.0000 0.0000 0.0000
constraints 2 199.9969 99.9967 19.9999 0.0025 0.0028 0.0018
datum 3 200.0000 199.9954 14.9989 0.0000 0.0042 0.0018

4 100.0014 199.9968 4.9994 0.0025 0.0025 0.0018

2.0
minimum 1 100.0016 100.0016 10.0005 0.0013 0.0013 0.0010
trace 2 199.9985 100.0007 20.0004 0.0014 0.0014 0.0013
datum 3 199.9993 199.9993 14.9993 0.0013 0.0013 0.0011
(from GAP) 4 100.0007 199.9984 4.9998 0.0014 0.0014 0.0013

3.0 S-transformations from minimum constraints to minimum trace datums

X y z Cx ° y
3.1
ordinary 1 100.0016 100.0016 10.0004 0.0013 0.0013 0.0010
computation 2 199.9985 100.0006 20.0004 0.0014 0.0014 0.0013

3 199.9993 199.9993 14.9994 0.0013 0.0013 0.0011
4 100.0007 199.9984 4.9998 0.0014 0.0014 0.0013

3.2
reduction 1 100.0016 100.0016 10.0004 0.0013 0.0013 0.0010
to centroid 2 199.9985 100.0006 20.0004 0.0014 0.0014 0.0013
and 3 199.9993 199.9993 14.9994 0.0013 0.0013 0.0011
normalize G 4 100.0007 199.9984 4.9998 0.0014 0.0014 0.0013

3.3
reduction 1 100.0016 100.0016 10.0004 0.0013 0.0013 0.0010
to centroid 2 199.9985 100.0006 20.0004 0.0014 0.0014 0.0013
only 3 199.9993 199.9993 14.9994 0.0013 0.0013 0.0011

4 100.0007 199.9984 4.9998 0.0014 0.0014 0.0013

3.4
normalize 1 100.0016 100.0016 10.0004 0.0013 0.0013 0.0010
G only 2 199.9985 100.0006 20.0004 0.0014 0.0014 0.0013

3 199.9993 199.9993 14.9994 0.0013 0.0013 0.0011
4 100.0007 199.9984 4.9998 0.0014 0.0014 0.0013

differences
(3.2M2.0)

1 0.0000 0.0000 -0.0001 0.0000 0.0000 0.0000
2 0.0000 -0.0001 0.0000 0.0000 0.0000 0.0000
3 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000
4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 6.3 Comparison between the results of S-transformations for a small 3-D network 
(unit m).
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Figure 6.4 Minimum constraints solution for network 1 (plan view and xy ellipse) 

[datum defined by fixing x„ yi, z, and y3]
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Figure 6.5 Minimum constraints solution for network 1 (front view and xz ellipse)

Figure 6.6 Minimum constraints solution for network 1 (right view and yz ellipse)

158



Figure 6.7 Minimum trace solution for network 1 (plan view and xy elipse) 

[datum defined by all stations]
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Figure 6.8 Minimum trace solution for network 1 (front view and xz ellipse)

©
z axis

0

100 m s c a l e  o f  network

y axis
0-02 m scale of e I 11pse

Figure 6.9 Minimum trace solution for network 1 (right view and yz ellipse)
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Figure 6.10 Partial minimum trace solution for network 1 (plan view and xy ellipse) 

[datum defined by stations 1, 2 and 3]
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Figure 6.11 Partial minimum trace solution for network 1 (front view and xz ellipse)

Figure 6.12 Partial minimum trace solution for network 1 (right view and yz ellipse)
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The minimum constraints solution was then transformed by COMPS into minimum and 

partial minimum trace (with respect to stations 1, 2 and 3) solutions. The pattern of error ellipse 

for the minimum trace solution is shown in Figures 6.7 to 6.9, while that for partial minimum 

trace solution is given in Figures 6.10 to 6.12. The minimum trace solution (Figures 6.7 to 6.9) 

gives overall smaller ellipses, whilst the partial minimum trace solution (Figures 6.10 to 6.12) 

gives smaller ellipses at the datum stations.

The third test examined the time necessary to compute S-transformations by means of 

equations (2.89) and (2.94). LSE of a nine stations 3-D photogrammetric network was 

performed using GAP via minimum trace datum. It is required to transform the solution into 

partial minimum trace datum with respect to the first four stations.

The computational time for evaluation of equations (2.89) and (2.94) with reduction to 

centroid and normalization are 104 secs and 20 secs respectively, using an IBM compatible 286 

(12 Mhz) personal computer. This shows that the decomposition process greatly improves the 

speed of computations. It is anticipated that the computational time will be quicker on a high 

performance computer or workstation.

6.1.3 LSE and errors

Simulation tests were conducted to evaluate pre-analysis, handling of random, systematic 

and gross errors. The 3-D network used is shown in Figure 6.2. The simulated network consists 

of 6 stations and 54 uncorrelated observations (12 slope distances (sd) with a simulated random 

error o  of 5 mm, 30 directions (dir) with a  of 5 secs and 12 height differences (dh) with a  of 

5mm). The randomized observations are free from both systematic and gross errors because they 

are derived from known assigned coordinates. The data are listed in Appendix F.

The rank deficiency (d) is 4 (i.e. 3 translation and one rotation about z axis), and is 

removed by fixing coordinates x1; yt, z, and y3. The number of parameters is 20 (14 coordinates 

and 6 orientation unknowns), giving rise to 34 degrees of freedom. The commonly accepted 

significance level a  of 0.05 is used for statistical test. In subsequent reliability analysis, a 0 0.1% 

and (30 20% are used, leading to a value of as 17.0 (Figure 3.1).
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1. Pre-analysis and handling of random error

Pre-analysis is very important as it allows a preliminary evaluation of the network and 

computation of precision and reliability measures, through the use of provisional coordinates 

and observation precisions without actually using the observations.

Results from pre-analysis are shown in Table 6.4 (column 2), indicating a reasonable 

network with high precision (trace of 0.0001 m2 in each axis) and reliability. In reliability 

analysis, all the redundancy numbers are greater than 0.3, and their average is 0.6. Also, the 

MDGE ranged between five to eight times a .  The external reliability is quite small, with the 

maximum influential factor less than 40.

LSE of the above network is then performed, and the results are indicated in Table 6.4 

(column 3). After one iteration, the global, local and goodness of fit tests passed. Precision and 

reliability measures are the same as those from pre-analysis.

Assuming the precisions of the observations as unknown, VCE mode is executed, and 

the observations are divided into three groups. The results obtained are portrayed in Table 6.4 

(column 4). After three iterations, global and local tests on the estimated variance factors passed. 

The usual global, local and goodness of fit tests also passed as well. The observation estimated 

precisions are 4.4 mm, 4.4 secs and 5.0 mm for distances, directions and height differences 

respectively. Such values are very close to the simulated a. The precision and reliability 

measures are similar in magnitude to the pre-analysis results.

2. Handling of systematic error

For testing purposes, two types of systematic error (zero and scale) were introduced into 

all the distances measured from stations 1 and 3.

Firstly, a 50 mm zero error was introduced into the randomized distance observations. 

Three types of model were used to examine the effect of this zero error on the solution: using 

ordinary distances; multiple zero errors as additional or bias parameters and; distance differences 

as pseudo observables.

164



pre-
analysis

ordinary
LSE

VCE

simulated 
random errors

estimated

sd 5 mm 4.4 mm
dir 5 secs 4.4 secs
dh 5 mm 5.0 mm

rank analysis ok ok ok

iteration 1 1 3

global test pass (0.82) pass (0.94)

goodness of 
fit test

pass pass

local test pass pass

trace x axis 0.0001 0.0001 0.0001
y axis 0.0001 0.0001 0.0001
z axis 0.0001 0.0001 0.0001

(unit m2)

redundancy
numbers

0.32-0.78 0.32-0.78 0.33-0.78

internal
reliability

23.33-36.53 23.33-36.53 20.57-31.33

external
reliability

4.77-36.38 4.77-36.78 4.86-33.27

Table 6.4 Pre-analysis, LSE and VCE for network 1
(units for internal reliability are mm for linear and secs for angular observations)

The solutions obtained are summarized in Table 6.5. Solution with ordinary LSE failed 

both global and local (2 observations) tests, and hence cannot be accepted. With the use of zero 

error in a bias parameter approach, both global and local tests passed. The simulated 50 mm 

zero error at stations 1 and 3 was recovered and found to be significant as 48+8 and 47+8 mm 

respectively. With distance differences as pseudo observables, the solution also passed both the 

global and local tests.
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ordinary LSE LSE / add 
parameter 
[zero error]

LSE / pseudo 
observables 
[distance 
difference]

no of obs 54 54 52

df 34 32 32

rank analysis ok ok ok

iteration 1 3 1

variance
factor

5.67 0.89 0.86

global test fail pass pass

local test fail (2) pass pass

zero error (m) - 0.048+0.008
0.047+0.008
significant

-

trace x axis 0.0001 0.0001 0.0003
y axis 0.0001 0.0001 0.0001
z axis 0.0001 0.0001 0.0001

redundancy
number

0.32-0.78 0.00-0.78 0.14-0.77

internal
reliability

23.33-36.53 23.38-too
large

23.44-54.58

external
reliability

4.77-36.38 5.06-too
large

4.97-102.17

Table 6.5 Test with 50 mm zero error for network 1

Secondly, a scale error of 40 ppm (i.e. scale factor 0.99996) was incorporated into the 

randomized distance observations from stations 1 and 3. Three types of models were used for 

testing: using ordinary distances; multiple scale errors as additional parameters and; distance 

ratios as pseudo observables.

The solutions are shown in Table 6.6. The ordinary solution passed the global test but 

failed the local (one observation) test. Solutions using additional parameter and pseudo 

observable approaches passed both global and local tests. With the inclusion of an additional 

parameter, the scale factor was estimated to be significant as 0.99997±0.00001 at stations 1 and

3.
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The results of ordinary LSE in Table 6.6 demonstrate that sometimes global test is not 

sensitive enough, and it is necessary to incorporate local test in LSE.

As shown in Tables 6.5 and 6.6, solutions based on the additional parameter and pseudo 

observable approaches are similar, but not exactly the same, due to different configurations. 

However, both approaches lead to a less reliable network as indicated by reliability analysis. The 

uses of pseudo observables and additional parameters provided satisfactory results. However, 

the use of additional parameters caused the redundancy numbers of some observations to be 

very close to zero.

ordinary
LSE

LSE / add 
parameter 
[scale factor]

LSE / pseudo 
observables 
[distance 
ratio]

no of obs 54 54 52

df 34 32 32

rank
analysis

ok ok ok

iteration 1 2 1

variance
factor

1.22 0.82 0.82

global test pass pass pass

local test fail (1) pass pass

scale error 0.99997±0.00001
0.99997±0.00001
significant

trace x axis 0.0001 0.0003 0.0003
y axis 0.0001 0.0001 0.0001
z axis 0.0001 0.0001 0.0001

redundancy
number

0.32-0.78 0.17-0.77 0.17-0.77

internal
reliability

23.33-36.47 23.45-49.41 23.45-49.41

external
reliability

4.77-36.20 4.98-80.66 4.99-80.66

Table 6.6 Test with 0.99996 scale factor for network 1
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For practical purposes, the use of additional parameters is recommended because it is 

simple to apply, as compared to pseudo observables. However, one should be very careful in 

using either additional parameters or pseudo observables as the reliability of the network will 

be decreased.

To maintain the network reliability, the estimated (significant) additional parameters, 

especially scale, can be used for correcting the observed distances during LSE process, as 

outlined in section 3.5.3.1 (i.e. scaled distances). By applying the estimated scale factor (Table 

6.6) to scale the distances, the solution converged after one iteration, with estimated variance 

factor of 0.79, and both global and local tests passed. The precision and reliability measures is 

similar to the ordinary LSE (column 1 of Table 6.6).

3. Handling of gross error

To study the capability of gross error detection, 6 gross errors with the magnitudes of 

10g  were introduced into the randomized data (see Table 6.7, column 1). Four cases were 

examined: ordinary LSE; robustified LSE; Pope’s and; Baarda’s methods.

The computed solutions are displayed in Table 6.7 (column 3). Ordinary LSE is 

unacceptable as both global and local tests are failed. With robustified LSE, using equation 

(3.59b) to speed up the computation, the solutions converged after 13 iterations, with the 

estimated variance factor of 0.73 and weighting factor c of 2.3. The solution passed both global 

and local tests. RLSE procedure deweights all 6 observations that contain gross errors. During 

RLSE, the weights of the 6 observations were drastically reduced to zero. Consequently, degrees 

of freedom for computing variance factor may be reduced by 6, i.e from 34 to 28, and the 

variance factor was estimated as 0.89.

The final residuals (with opposite sign) of the deweighted observations indicated that 

the estimated magnitudes of gross error were close to the simulated gross error (columns 1 and 

3 of Table 6.7). Hence, robustified LSE is able to detect and locate all the gross errors in this 

network correctly. Also, the redundancy numbers of the deweighted observations are close to 

unity showing the effects of gross error in the solution as being negligible.

In Pope’s and Baarda’s methods, the sequence of LSE with global and local tests
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followed by successive elimination of suspected observations were repeated until both global 

and local tests passed. These methods both resulted in variance factors of 0.89, the same as from 

robustified LSE. As shown in Table 6.7, all three methods detect the gross errors correctly.

ordinary
LSE

robustified
LSE

Baarda’s
method

Pope’s
method

simulated ge residuals
sd 1-2 +50 mm **[-43.71] * *
sd 1-5 -50 mm **[+40.52] * *
dir 1-3 -50 sec **[+44.90] * *
dir 2-1 +50 sec **[-47.21] * *
dh 2-3 +50 mm **[-54.50] * *
dh 4-6 -50 mm **[+48.21] * *

rank analysis ok ok ok ok

variance
factor

10.68 0.89 0.89 0.89

iteration 1 13 l@run l@run

global test fail pass pass pass

local test fail(l) pass pass pass

trace x axis 0.0001 0.0001 0.0001 0.0001
y axis 0.0001 0.0001 0.0001 0.0001
z axis 0.0001 0.0001 0.0001 0.0001

redundancy
number

0.32-0.78 0.19-0.78 0.19-0.78 0.19-0.78

internal 23.33- 23.33-47.12 23.33- 23.33-
reliability 36.53 47.12 47.12

external 4.77- 4.79-71.83 4.79- 4.79-
reliability 36.38 71.83 71.83

Table 6.7 Test with 6 gross errors for network 1

(note: * indicates deleted observations (one at a time) by Pope’s Tau and Baarda’s methods 
** indicates de weighted observations during robustified LSE)

Comparison between the solutions via robustified LSE and Pope’s method also revealed 

that the final coordinates, their standard errors and trace were exactly the same in both cases. 

Moreover, residuals and reliability measures for non-deweighted observations are also identical. 

This result shows that by adopting robustified LSE, the solution can be used directly without 

the need to eliminate the observations.
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The method of robustified LSE is also used to detect gross error in the data shown in 

Table 6.8, based on Brownlee (section 13.12) (1965). The equation for these data (Daniel and 

Wood, 1980) is in the form Ax=b where x represents the unknowns, b the misclosure vector and 

A the design matrix

a, x,+a2x2+a3X3+a4X4=b

The values of A (21,4) and b (21,1) are given in Table 6.8. These data were examined 

by many researchers (Daniel and Wood, 1980; Gao et al, 1992; Schwarz and Kok, 1993). 

Initially, the weight matrix was taken as I. The solution using RLSE converged after 12 

iterations, and in the final computations, the weights of the de-weighted observations were 

reduced close to zero (le-10). A total of 5 observations were deweighted as shown in Table 6.9 

(observations 1, 3, 4, 13 and 21 with *), and the estimated variance factor was 1.05. As 5 

observations are deweighted, the number of degrees of freedom was reduced from 17 to 12.

observation
number

vector 
b (21,1)

design matrix 
A (21,4)

1 42 1

o00 27 89
2 37 1 80 27 88
3 37 1 75 25 90
4 28 1 62 24 87
5 18 1 62 22 87
6 18 1 62 23 87
7 19 1 62 24 93
8 20 1 62 24 93
9 15 1 58 23 87

10 14 1 58 18 80
11 14 1 58 18 89
12 13 1 58 17 88
13 11 1 58 18 82
14 12 1 58 19 93
15 8 1 50 18 89
16 7 1 50 18 86
17 8 1 50 19 72
18 8 1 50 19 79
19 9 1 50 20 80
20 15 1 56 20 82
21 15 1 70 20 91

Table 6.8 Misclosure vector and design matrix 
(taken from Schwarz and Kok, 1993)
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Daniel and Wood (1980) and Gao et al (1992) found that observations 1, 3, 4 and 21 

contain gross errors. By applying iterated data snooping (i.e. Tau and Baarda methods), Schwarz 

and Kok (1993) recovered observations 1, 3, 4, 13 and 21 as containing gross errors, resulting 

in an estimated variance factor of 1.05. Hence, both RLSE and iterated data snooping find 

observations 1, 3, 4, 13 and 21 as erroneous. Results in Table 6.9 also show that the final 

estimated residuals and redundancy numbers are the same for robustified LSE (non-deweighted 

observations) and the Tau method. Moreover, both solutions passed both global and local tests. 

Redundancy numbers of erroneous observations are close to one showing their insignificance 

in relation to the final solution.

observation
number

Tau method 
v r

robustified LSE 
v r

1* - - 5.92 1.00
2 0.82 0.29 0.82 0.29
3* - - 6.13 1.00
4* - - 8.30 1.00
5 -0.81 0.92 -0.81 0.92
6 -1.26 0.89 -1.26 0.89
7 -0.15 0.74 -0.15 0.74
8 0.85 0.74 0.85 0.74
9 -0.88 0.82 -0.88 0.82

10 -0.30 0.71 -0.30 0.71
11 0.54 0.78 0.54 0.78
12 -0.11 0.67 -0.11 0.67
13* - - -3.11 1.00
14 -1.54 0.76 -1.54 0.76
15 1.31 0.78 1.31 0.78
16 0.03 0.85 0.03 0.85
17 -0.71 0.55 -0.71 0.55
18 -0.06 0.82 -0.06 0.82
19 0.58 0.79 0.58 0.79
20 1.69 0.91 1.69 0.91
21* - - -9.32 1.00

Table 6.9 Results of Tau method and robustified LSE

6.1.4 Deformation detection

Two test networks have been used to demonstrate the detection of spatial deformation, 

surveying and photogrammetric networks. The significance level for testing in LSE and 

deformation detection was chosen as 0.05, except for the single point test, where a significance
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level of 0.01 was used.

The 6 station surveying network of Figure 6.2 was again used, with 54 surveying 

observations and 34 degrees of freedom (simulated random error of 5 mm for slope distances 

and height differences and 5 secs for directions). The following deformations were simulated 

at stations 3, 5 and 6 to generate data for a second epoch:

station simulated deformation (m)
dx dy dz

1 - - -

2 - - -

3 -0.050 +0.100 -0.100
4 - - -

5 +0.010 +0.050 -

6 - - +0.300

Table 6.10 Simulated deformation for network 1

The simulated random error for the second epoch is 5 mm for slope distances and height 

differences and 7 secs for directions.

To demonstrate the applicability of the adopted method for handling gross and 

systematic errors as applied to deformation detection, the following errors were introduced into 

the data of second epochs:

(i) Epoch (2a) contains 6 gross errors of 10a (see Table 6.7)

(ii) Epoch (2b) contains multiple scale factor of 0.99996 (see Table 6.6) for distances measured 

from stations 1 and 3.

LSE for each epoch was carried out, using program ESTIMATE, by minimum 

constraints, i.e. fixing xl5 y,, z, and x3. This was followed by deformation detection using 

DETECT and ROBUST.

Seven cases of LSE for the second epoch were considered:

(i) LSE using randomized data without gross error.

(ii) Robustified LSE (equation 3.59a) but suspect observations are de-weighted drastically, i.e.

172



scheme 1.

(iii) Robustified LSE (equation 3.59a) via ordinary de-weighting, i.e. scheme 2.

(iv) LSE using data after gross errors were eliminated.

(v) LSE using the multiple scale errors as additional parameters.

(vi) LSE using distance ratio.

(vii) LSE using multiple scale errors estimated in (v), i.e. scaled distances.

Cases (ii), (iii) and (iv) use data from epoch (2a), whilst case (v), (vi) and (vii) use data 

from epoch (2b). The LSE results for each epoch passed both global and local tests. The 

variance factor for the first epoch was estimated as 0.814 with 34 degrees of freedom. The 

results of the second epoch are displayed in Table 6.11.

c a s e s e s t im a te d

v a r ia n c e

f a c t o r

d e g re e s  o f  

f r e e d o m

n u m b e r  o f  

it e r a t io n

( i) 0.593 34 1

( i i ) 0.837 28 11

( i i i ) 1.364 34 33
( iv ) 0.837 28 1

(V ) 0.603 32 2
( v i) 0.603 32 1

( V i i) 0.578 34 2

Table 6.11 LSE results for second epoch (network 1)

The number of degrees of freedom for case (iv) were reduced to 28 due to the deletion 

of 6 observations. Case (ii) converges after 11 iterations, with a variance factor of 0.837 and 

degrees of freedom of 28, as 6 observations were deweighted drastically. After 33 iterations, 

case (iii) converges. Results from cases (ii) and (iv) were identical. For case (v), scale factors 

were estimated as 0.99997±0.00001 and 0.9999610.00001 for stations 1 and 3 respectively. 

Results of cases (v) and (vi) were very close. In case (vii), the multiple scale errors estimated 

in (v) are used for scaling the observed distances during LSE.

As both epochs use the same stations and datum, deformation detection can be 

proceeded straight away. LSE results for each epoch passed the test on variance ratio, indicating 

the compatibility of the variance factor of each epoch. An initial run of DETECT lead to the 

failure of global congruency test, confirming the existence of deformation.
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Initially, all stations were used to define the datum. Starting with 6 datum stations, the 

successive process of removing suspected points from the datum was repeated until a (partial) 

congruency test passed. This resulted in 3 datum stations (1,2 and 4) for the final computations. 

All the datum points passed the single point test and were confirmed as stable. Points 3, 5 and 

6 failed the single point test and were suspected as significantly deformed. The estimated 

deformation obtained via DETECT for each case was very close to the simulated deformation 

(Table 6.10), as summarized in Table 6.12.

In ROBUST, appropriate weightings were applied followed by weighted S- 

transformations, until the solution convergenced. Results from ROBUST are shown in Table 

6.13. For cases (i) to (iv), 3 stations (1, 2 and 4) were found to be stable and passed the single 

point test. Significant deformations were detected at stations 3, 5 and 6. However, for cases (v), 

(vi) and (vii), only two stations (1 and 2) were found as stable, indicating the effect of 

weighting (section 4.2.3.4) on the solution. Consequently, the results of ROBUST were rejected.

For further verification, COMPS was used to transform the LSE results of each epoch 

(for case (i) only) with respect to a new datum defined by stations 1, 2 and 4. The coordinate 

differences between epochs were computed using DETECT, and the results are the same as 

solution (i) in Table 6.12. Solution (i) is the expected result for acceptable data (Table 6.12). 

Solutions (ii) and (iv) are identical, showing that the effect of gross error in robustified LSE 

with scheme 1 for deformation detection is insignificant. Solution (iii) differs slightly from the 

other solutions, demonstrating the small effect of scheme 2. Solutions (v), (vi) and (vii) were 

similar and very close to solution (i), demonstrating that the effect of scale error is almost 

negligible.

The graphical presentation of solution (i) is depicted in Figures 6.13 to 6.16, and clearly 

shows that stations 3, 5 and 6 lie outside the ellipses. The deformation trend shown in Figure 

6.13 indicates the movement of stations 3, 5 and 6. Figure 6.14 demonstrates movement of 

stations 3 and 5 in the xy directions, while Figures 6.15 and 6.16 show movement of station 6 

in the z direction and station 3 in the xz and yz directions respectively.

Figure 6.17 is a plan view of a real 19 station photogrammetric monitoring network 

(Cooper, 1994), with seven datum defects. Deformations were simulated at stations A1 as (- 

0.100, 0.050, 0.030) m and B1 as (-0.100, 0.100, 0.100) m to generate data for a second epoch.
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station solution (i) 
dx dy dz

solution (ii) 
dx dy dz

1 _ _ _ -0.001
2 0.001 - -0.001 -
4 -0.001 - 0.001
6 0.001 -0.001 0.300 -0.001 - 0.298
3 -0.050 0.100 -0.100 -0.050 0.100 -0.101
5 0.012 0.051 - 0.008 0.050 -0.001

station solution (iii) 
dx dy dz

solution (iv) 
dx dy dz

1 -0.002 -0.001 -0.001
2 0.001 0.001 -0.001 -0.001 -
4 -0.001 - -0.001 0.001
6 -0.002 - 0.297 -0.001 - 0.298
3 0.051 0.101 -0.100 -0.050 0.100 -0.101
5 0.006 0.050 -0.001 0.008 0.050 -0.001

station solution (v) 
dx dy dz

solution (vi) 
dx dy dz

1 0.003 0.001 - 0.003 0.001 -
2 -0.001 - -0.001 -
4 -0.002 -0.001 - -0.002 -0.001 -
6 -0.002 -0.001 0.300 -0.002 -0.001 0.300
3 -0.051 0.102 -0.100 -0.051 0.101 -0.100
5 0.009 0.050 - 0.009 0.050 -

station solution (vii) 
dx dy dz

1 0.004 0.002 -
2 -0.001 -0.001 -
4 -0.003 -0.001 -
6 -0.002 -0.001 0.300
3 -0.052 0.100 -0.100
5 0.009 0.050 -

Table 6.12 Estimated deformation for network 1 via DETECT 
(Datum stations comprised of stations 1, 2 and 4. Unit m)
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station solution (i) 
dx dy dz

solution (ii) 
dx dy dz

1 _ _ -0.001
2 0.001 - - -0.001 -
4 -0.001 - 0.001
6 0.001 -0.001 0.300 -0.001 - 0.298
3 -0.050 0.100 -0.100 -0.050 0.100 -0.101
5 0.012 0.051 - 0.008 0.050 -0.001

station solution (iii) 
dx dy dz

solution (iv) 
dx dy dz

1 -0.002 -0.001 -0.001
2 0.001 0.001 -0.001 - -0.001 -
4 0.001 0.001 -0.001 0.001
6 -0.002 - 0.297 -0.001 - 0.298
3 -0.051 0.101 -0.100 -0.050 0.100 -0.101
5 0.006 0.050 -0.001 0.008 0.050 -0.001

station solution (v) 
dx dy dz

solution (vi) 
dx dy dz

1 0.001 0.001 - 0.001 0.001 -
2 0.007 -0.004 - 0.007 -0.004 -
4 -0.020 - -0.020 -
6 -0.013 -0.007 0.300 -0.013 -0.007 0.300
3 -0.044 0.089 -0.100 -0.044 0.089 -0.100
5 0.002 0.032 - 0.002 0.032 -

station solution (vii) 
dx dy dz

1 0.002 0.001 -
2 0.009 -0.005 -
4 -0.001 -0.023 -
6 -0.014 -0.007 0.300
3 -0.043 0.085 -0.100
5 0.001 0.030 -

Table 6.13 Estimated deformation for network 1 via ROBUST (unit m)
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Figure 6.13 Estimated deformation for network 1 (isometric view)

Figure 6.14 Estimated deformation for network 1 (plan view)
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Figure 6.15 Estimated deformation for network 1 (front view)

Figure 6.16 Estimated deformation for network 1 (right view)
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In each epoch, a LSE with minimum trace solution (Cooper, 1994) was obtained using 

GAP. Each solution was found to pass the global test. The estimated variance factors and 

degrees of freedom for the first epoch were 1.1963 and 128, whilst those for the second epoch 

were 1.1779 and 94. Special files for deformation detection were created by GAP.

The results of deformation detection from DETECT and ROBUST are quite close as 

summarised in Table 6.14. Starting with 19 datum stations, DETECT resulted in 15 stable 

datum stations and 4 non-datum (1 stable and 3 unstable) stations. The unstable stations were 

found to be Al, B1 and A2. Station Cl is stable, although it is actually a non-datum point. 

Results of ROBUST indicated 16 stable datum stations, and detected stations Al, B1 and A2 

as unstable. All the datum stations were confirmed as stable, passing the single point test. 

Station A2 is flagged as unstable because its computed statistic for single point test was bigger 

than the critical value at a=0.01. A2 has small deformation vector (0.003 m) compared to 

stations Al and Bl, and is significant but small. Significant deformations for stations Al and 

B1 are shown below:

Differences between the simulated and estimated deformation are very small, and almost 

negligible. Graphically, Figure 6.18 shows the displacement of stations Al and Bl. The results 

from DETECT (congmency testing) are shown in Figures 6.19 to 6.21, where deformation 

vectors of stations Al, Bl and A2 are outside the ellipse. Similarly, results from ROBUST 

(robust method) as given by Figures 6.22 to 6.24 also indicated stations Al, Bl and A2 as 

significantly deformed.

6.2 Processing real data for deformation detection

In addition to the simulation tests, real data are also processed, in order to determine 

the capability of the adopted procedure for deformation detection. The real data consist of up 

to 169 stations.

station Al (m) station Bl (m)
simulated [-0.100 +0.050 +0.030]
DETECT [-0.101 +0.048 +0.031]
ROBUST [-0.101 +0.048 +0.031]

[-0.100 +0.100 +0.100] 
[-0.099 +0.100 +0.101] 
[-0.099 +0.099 +0.101]
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DETECT
[congruency testing] 
dx dy dz

ROBUST 
[robust method] 
dx dy dz

A1 -0.101 0.048 0.031 * -0.101 +0.048 +0.031 *
A4 0.000 0.000-0.001 0.000 -0.001 0.000
C2 0.001 0.000 0.000 0.001 0.000-0.001
Cl 0.000 0.001 0.000 0.001 0.001 0.000
H3 0.000 0.000 0.000 -0.001 0.000 0.000
A2 0.001 -0.003 -0.001 * 0.001 -0.003 -0.001 *
A3 0.000-0.001 0.000 0.000-0.001 0.000
B1 -0.099 0.100 0.101 * -0.099 0.099 0.101 *
B2 0.000 0.001 0.000 0.000 0.001 0.000
B3 -0.001 0.001 0.001 -0.001 0.000 0.001
B4 0.000 0.000 0.000 0.000 0.000 0.000
C3 -0.001 0.000 0.000 -0.001 0.000 0.000
C4 0.001 0.000 0.000 0.001 0.000 0.000
HI 0.001 0.000-0.001 0.001 0.000 -0.001
H2 0.000 0.000 0.000 0.000 0.000 0.000
H4 0.000 0.000 0.000 0.000 0.000 0.000
XI 0.000 0.002 0.001 0.000 0.002 0.001
X2 0.000 -0.003 0.000 0.000 -0.003 0.000
X3 0.000 0.000 0.001 0.000 0.000 0.001

global test
#1 pass pass
#2 fail
#3 pass

local test pass pass
(single
point test)
(a  0.01)

global test:
#1 test on variance ratio (significance level a  0.05) 
#2 global congruency test (a  0.05)
#3 partial congruency test (a 0.05)

Table 6.14 Estimated deformation for network 3 
(unit in m, * indicates unstable stns)

Data obtained from five real photogrammetric monitoring schemes with seven datum 

defects were processed in order to detect their spatial deformation: Mary Rose network, wood 

panel testing, A55 network A, A55 network B and deformation study of wood panel. The first 

three and the final scheme (Mary Rose, wood panel testing, A55 network A (September 1992-
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Figure 6.18 Estimated deformation for network 3 by congruency testing (isometric view)
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Figure 6.19 Estimated deformation of network 3 by congruency testing (plan view)
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Figure 6.20 Estimated deformation for network 3 by congruency testing (front view)
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Figure 6.21 Estimated deformation for network 3 by congruency testing (right view)
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Figure 6.22 Estimated deformation for network 3 by robust method (plan view)
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Figure 6.23 Estimated deformation for network 3 by robust method (front view)
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Figure 6.24 Estimated deformation for network 3 by robust method (right view)
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December 1993) and deformation study of wood panel), each consisted of two epochs of data 

with the same number of stations in each epoch. The fourth scheme, (A55 network B (July 

1991-December 1993)) had a different number of stations in each epoch.

Robustified LSE for each epoch was not carried out using ESTIMATE since it is 

currently limited to processing surveying data, not photogrammetric data. LSE was carried out 

using GAP with a minimum trace solution, because this is the only mode in which GAP will 

produce deformation files. However, the solution could be transformed to a minimum constraints 

datum using COMPS if required.

All the LSE results passed the global test and were found to be acceptable. Deformation 

detection for all the schemes was performed using DETECT and graphics output was obtained 

via DCRE. For processing the fourth scheme, program COMON was used to extract information 

on common stations, prior to deformation detection.

In a minimum trace solution, all stations are used to define the datum for LSE. The 

strategy adopted for deformation detection is composed of two steps, initial and final 

computations. Initially, DETECT was used to provide a set of datum points. Only datum points 

that passed the single point tests were used to define the datum for the final computation carried 

out using DETECT. In the final computation, all datum points should pass the single point test. 

Otherwise they must be removed from the computational base and the procedure repeated until 

stable datum points are found. A significance level of 0.05 was used for global testing. 

However, for the single point test, a significance level of 0.01 was adopted, as the computed 

standardized level was very close to 0.01. In the sections 6.2.1 to 6.2.5, only aspects of 

deformation detection will be discussed.

6.2.1 Mary Rose

The Mary Rose monitoring scheme consists of 41 stations as shown in Figure 6.25. The 

first and second epochs were measured in August 1991 and February 1993 respectively. In LSE, 

the number of degrees of freedom were found to be 110 and 174, whilst the estimated variance 

factors were 0.9997 and 0.9996, for the first and second epochs respectively.

Deformation detection resulted in 15 stable datum stations and 26 non-datum (13 stable
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Figure 6.25 Mary Rose network (plan view)
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Figure 6.26 Estimated deformation for Mary Rose network (isometric view)
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Figure 6.27 Estimated deformation for Mary Rose network (plan view)

Figure 6.28 Estimated deformation for Mary Rose network (front view)
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Figure 6.29 Estimated deformation for Mary Rose network (right view)
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and 13 unstable) stations. The stable datum stations were: 1, 13, 17, 21, 32, 2, 6, 18, 29, 22, 

26, 33, 42, 47 and 50. The results are shown graphically in Figures 6.26 to 6.29, and indicate 

that station 34 moved significantly. The components of the movement at station 34 were (- 

0.072, -0.010,-0.024) m, the displacement vector being 0.077 m. Station 34 also has maximum 

movement in the x and z directions. Station 30 has maximum movement in the y axis of 0.013 

m. It was later confirmed by the Mary Rose Trust that point 34 was deliberately moved during 

construction works.

6.2.2 Wood panel testing

The wood panel testing is an experimental scheme to investigate the deformation of a 

wood panel brought about by changes in the relative humidity. A test wood panel with 74 pre-

marked points was imaged by five digital cameras in a square-based pyramid configuration, to 

obtain data for the first epoch (Robson, 1994). The layout of the targetted points is shown in 

Figure 6.30. The test panel was about 1 m square (i.e. micro-scale application). Before the 

second epoch, a constraining baton had been glued to the right-hand section of the panel, and 

the panel was deformed by wetting it with water.

During LSE (Robson, 1994), the number of degrees of freedom for each epoch was 495, 

whist the estimated variance factors were 0.9989 and 1.0915 for epochs one and two 

respectively.

The outcome of the deformation detection resulted in 13 stable datum stations and 61 

non-datum (3 stable and 58 unstable) stations. The stable datum station includes stations 100, 

104, 105, 109, 110, 111, 112, 115, 116, 118, 119, 121 and 143. Most of the stable stations were 

in the right section of the panel, where the constraining baton was fixed (Figure 6.31). Three 

stations were found to have the largest overall movements especially in the z axis of up to 13 

mm, i.e stations 173 (0.3, -0.5, 13.3) mm, 162 (0.3, -0.6, 9.8) mm and 167 (0.3, -0.6, 9.5) mm. 

Maximum movements in the x and y directions were detected at stations 124 (1.3 mm) and 168 

(4.2 mm). Figures 6.31 to 6.34 show the pattern of the estimated displacements. Figure 6.31 

indicates that the left section of the panel was bent upward. Overall movement in xy was 

detected in the upper region of the panel (Figures 6.31 and 6.32), while the most significant 

movement is in the z direction (figures 6.33 and 6.34). Such deformation trends were expected, 

since the constraining baton had been glued to the right section of the panel.
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Figure 6.30 Wood panel network (plan view)
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Figure 6.31 Estimated deformation for wood panel (isometric view)

195



Figure 6.32 Estimated deformation for wood panel (plan view)
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Figure 6.33 Estimateci deformation for wood panel (front view)

Figure 6.34 Estimated deformation for wood panel (right view)
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6.2.3 A55 network A (September 1992-December 1993)

Monitoring engineering works along a part of A55 highway in North Wales is one of 

the activities being undertaken by ESRC. The data used here are taken from the east site, which 

consisted of 72 stations, as shown in Figure 6.35. The first epoch was measured in September 

1992 whilst the second epoch was in December 1993. In robustified LSE (Cooper, 1994) the 

number of degrees of freedom for first and second epochs were 629 and 539 respectively, whilst 

their estimated variance factors were 1.0854 and 1.0591.

Results of deformation detection found 15 stable datum stations and 57 non-datum (16 

stable, 41 unstable) stations. The stable datum stations comprise of station D32, D33, D35, E91, 

E92, E94, E95, F91, F94, F95, G94, G95, H94, F i l l  and G101. The most significant overall 

deformation and movement in the y direction were detected at station b2 (-0.004, -0.103, 0.003) 

m, giving rise to a 0.103 m displacement vector. Maximum movements in the x and z directions 

were found at stations kl 7 (0.028 m) and 68 (-0.018 m) respectively. Figure 6.36 shows that 

most of the points on the west region were unstable. Plots of deformation vectors and ellipses 

are shown in Figures 6.37 to 6.39.

6.2.4 A55 network B (July 1991-December 1993)

In this scheme, there were 70 stations in epoch one (July 1991) and 79 in epoch two 

(December 1993), with corresponding degrees of freedoms of 603 and 616. During LSE 

(Cooper, 1994) the estimated variance factors were computed as 1.0383 and 1.0501 respectively.

Program COMON was used to determine the common stations between these two 

epochs. A total of 60 common stations was found, as shown in Figure 6.40. After re-ordering 

the coordinates and cofactor matrices with respect to the common stations, S-transformations 

of each epoch were carried out, using common stations for datum definition. Hence, a partial 

minimum trace solution was computed for each epoch. The variance factors and degrees of 

freedom remain unchanged since they are independent of the S-transformations.

It was found that some of the provisional coordinates of the common stations were 

slightly different in each epoch. In DETECT, the deformation detection must be based on the 

same provisional coordinates for common stations. To arrive at the same provisional
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Figure 6.35 A55 network A (plan view)
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Figure 6.36 Estimated deformation for A55 network A (isometric view)
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Figure 6.37 Estimated deformation for A55 network A (plan view)

Figure 6.38 Estimated deformation for A55 network A (front view)
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Figure 6.39 Estimated deformation for A55 network A (right view)
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Figure 6.40 A55 network B (plan view)
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Figure 6.41 Estimated deformation for A55 network B (isometric view)
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Figure 6.42 Estimated deformation for A55 network B (plan view)
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Figure 6.43 Estimated deformation for A55 network B (front view)
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Figure 6.44 Estimated deformation for A55 network B (right view)
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coordinates, values from the first epoch were chosen, since deformation detection was to be 

based on the first epoch. To facilitate the process of deformation detection, only common data 

(numbers and names of stations, provisional and estimated coordinates, and also the cofactor 

matrix) for each epoch were written to the deformation files. Such facility is a part of module 

for program COMON.

Deformation detection on the 60 common stations found 17 stable datum and 43 non-

datum (7 stable, 36 unstable) stations. The stable datum stations were stations h5, D21, D31, 

D32, D33, D34, D35, D41, E91, E94, E95, F91, F94, F95, G94, P51, El 11. The most 

significant deformation (Figure 6.41) was detected at station j l  12 with 1.163 m displacement 

vector, i.e (1.036, 0.478, -0.228) m. Other unstable stations were found to have small 

movements. Later, site investigation revealed that station j 112 was moved deliberately during 

site works. Figures 6.41 to 6.44 show the trend of the deformation.

6.2.5 Deformation study of wood panel

This scheme is the actual application of the wood panel testing (section 6.2.2), to 

investigate the effect of moisture (temperature and humidity) on the behaviour of the wood 

panels. Such panels are used widely as a frame for the preservation of painting. This study is 

being carried out by ESRC at Hamilton Kerr Institute, Cambridge.

This scheme is still under investigation, and involves several epochs and various types 

of wood panels. A special room that allows temperature and relative humidity to be controlled 

are used in this study. In general, each panel with pre-marked points, is slotted into a fixed 

frame, and then imaged by 5 digital cameras. Data are automatically transferred into a PC, using 

the concept of 3-D measuring system. Automated methods of target location, identification and 

matching are followed by LSE of camera parameters and object coordinates. Details of the data 

collection procedure and LSE are given in Robson et al, (1995).

Data from two epochs that comprised 169 points in each epoch, were analysed (Figure 

6.45). Twelve points are situated on the fixed frame (Al, A2, A3, Bl, B2, B3, Cl, C2, C3, Dl, 

D2 and D3), whilst the remaining 157 points are on the panel. In the second epoch, the room’s 

temperature and relative humidity were increased drastically. During LSE, the number of 

degrees of freedom were 1154 and 1156, whilst the estimated variance factors were 0.6835 and
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0.5497, for the first and second epochs respectively.

Initially, the twelve points on the fixed frame were used to define the starting datum for 

deformation detection. The results of the detection indicated station B2 as unstable, and 11 

stable datum stations and 158 non-datum (16 stable, 142 unstable) were found. The pattern of 

the deformation is displayed in Figures 6.46 to 6.49, indicating the significant upward 

movement of both left and right sides of the panel. The maximum displacement vector (18.1 

mm) and movement in z direction (18.1 mm) were detected at station 233. Maximum 

movements in the x and y directions were found at points 258 (-0.7 mm) and B2 (-0.8 mm) 

respectively.

6.3 Chapter summary

Simulated numerical tests were carried out using a PC, since only small data sets were 

involved. All the real data consisted of between 40 to 169 stations, and were processed using 

workstation under UNIX environments. The graphics were produced using Intergraph 

MicroStation. In these applications, the relevant files were transferred between the PC, 

workstation and MicroStation using the UNIX based file transfer utility (program FTP).

All the developed programs were originally written and checked using the PC, and only 

transferred to the workstation for processing large data. Since FORTRAN 77 is compatible 

between the PC and UNIX based environment, only the dimension parameters need to be 

changed.

The results obtained in sections 6.1 and 6.2 show that the developed strategy and 

programs are applicable for the geometrical detection of spatial deformation. The strategy 

adopted for handling systematic and gross errors is directly applicable for deformation detection. 

Agreement of the results with known data, published results and actual situations demonstrated 

that the adopted procedure has fulfilled its expectations.
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Figure 6.45 Wood painting network (plan view)
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Figure 6.46 Estimated deformation for wood painting network (isometric view)

210



Figure 6.47 Estimated deformation for wood painting network (plan view)
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Figure 6.48 Estimated deformation for wood painting network (front view)

Figure 6.49 Estimated deformation for wood painting network (right view)
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7. CONCLUSIONS AND RECOMMENDATIONS

This chapter summarizes the outcome of this program of research, and highlights the 

developed practical strategy for the detection of spatial deformation. In addition, some areas for 

possible further work are suggested.

7.1 Outcome of the research

The study is focused on practical, but rigorous, two-step geometrical analysis for the 

detection of spatial (3-D) deformation using geodetic methods. The two-steps consist of 

independent least squares estimation (LSE) of each epoch followed by deformation detection 

using two-epoch analysis. Since LSE and deformation detection are very important and critical, 

an extensive critical review of theory and current practice has been undertaken (chapters 1, 2, 

3 and 4). Relevant aspects were examined and strategies were formulated in order to arrive at 

a practical approach for LSE and deformation detection in 3-D.

Several important LSE aspects that have been analysed and implemented (section 3.9) 

include: pre-analysis (section 3.2); datum definition via minimum constraints with fixed 

coordinates (section 2.2.2); rank defect analysis via simplified eigenvalue decomposition (EVD) 

(section 2.2.6); treatment of scale and zero errors in EDM distances by means of additional 

parameters (section 3.5.3.1) and pseudo observables (section 3.5.3.2); handling of the 

algebraically correlated pseudo observations via de-correlation of observations (section

3.5.3.2.3); detection of multiple gross errors by robustified LSE (section 3.6.2); stochastic 

modelling (section 3.7.3) by simplified variance component estimation (VCE); assessment of 

LSE results (section 3.9) using statistical testing (section 3.3) together with precision and 

reliability analyses (section 3.8); and datum re-definition via general S-transformations equation 

(section 2.3.5) with optimised computational procedure.

In deformation detection, the following aspects were implemented (section 4.4): initial 

testing (section 4.2.2); transformation into common stations using partitioning and S- 

transformations (section 4.2.1); determination and verification of stable datum stations by 

congruency testing (sections 4.2.3.1) and robust method applying S-transformations (4.2.3.4); 

localization of deformation through decomposition, re-ordering and S-transformations (section 

4.2.3.2); and the testing of spatial deformations via single point tests (section 4.2.3.3).
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The developed strategy for 3-D LSE and geometrical detection of spatial deformation 

(via one-stage computational procedure) is summarized in sections 3.9 and 4.4. The strategy is 

applied using five computer programs (section 5.1) developed during this research for 

independent 3-D LSE of surveying data for each epoch (program ESTIMATE (section 5.1.1)) 

and the geometrical detection of spatial deformation between any two epochs. The deformation 

detection modules include the determination of common stations between two epochs (program 

COMON (section 5.1.3)), S-transformations of single epoch LSE results (program COMPS 

(section 5.1.2)) and the detection of spatial deformation (programs DETECT (section 5.1.4) and 

ROBUST (section 5.1.5)) via one-stage computation. Programs COMON, COMPS, DETECT 

and ROBUST use the general S-transformations equations and the computational procedure 

outlined in section 2.3.5.

All five programs are independent of external routines, and can be executed under the 

personal computer (PC) (IBM compatible) environment for small data sets or under the UNIX 

environment for processing large data sets. Links between these programs and two of the 

ESRC’s programs (GAP and DCRE) have also been established (section 5.2).

Tests carried out with simulated and real data show that the developed procedure and 

programs are applicable for the detection of spatial deformation (chapter 6). Rank analysis 

(section 6.1.1) was found useful for checking the effective rank and condition of normal 

equations. Optimised computational procedures for S-transformations (section 6.1.2) were tested 

and verified (Tables 6.2 and 6.3). In simulation tests, the simulated errors (section 6.1.3) and 

deformation (section 6.1.4) were correctly recovered. The use of published data (Tables 6.8 and 

6.9) also indicate that the robustified LSE strategy is applicable. Moreover, the developed 

strategy for handling systematic and gross errors was shown applicable for deformation 

detection (Tables 6.12 and 6.13).

Real data from five monitoring schemes with up to 169 stations were processed under 

the UNIX environment. In processing these data (section 6.2), the links established between 

programs (section 5.2) were found advantageous, especially when different stations were used 

in each epoch (section 6.2.4). Flexibility in datum definition was proven useful (section 6.2.5). 

Agreement between the estimated results and real situations (section 6.2) confirmed the 

suitability of the procedure for deformation detection. Moreover, the procedure was found to 

be suitable for wide range of uses, from local (sections 6.2.1, 6.2.3 and 6.2.4) to micro-scale
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(sections 6.2.2 and 6.2.5) applications.

7.2 Practical strategy for deformation detection

A practical strategy for the geometrical detection of spatial deformation is summarized 

below. It is derived from the outcome of this research. The procedures for 3-D LSE, S- 

transformations and deformation detection (via one-stage computation) adopted during this 

research are found to be flexible and useful for practical engineering work.

In the LSE of each epoch, for simplicity, the observations need to be uncorrelated. Prior 

to the actual LSE, pre-analysis (section 3.2) should be carried out first to evaluate the expected 

precision and reliability. An initial datum definition via minimum constraints (section 2.2.2) is 

recommended for reasons of simplicity. Rank defect analysis (section 2.2.6) is important to 

check the deficiency of the normal equations. A suitable computational scheme allows practical 

S-transformations (section 2.3.5) of LSE results from one datum to another prior to and during 

the detection process.

It is necessary to handle systematic and gross errors during measurement prior to LSE. 

This can be carried out by regular calibration (section 3.5.1), proper measurement scheme 

(section 3.5.2) and independent checks (section 3.6.1) or combination. Observations also need 

to be reduced and corrected properly for systematic effects, before they are used in LSE.

During LSE, any significant scale and zero errors in the measured EDM distances can 

be handled by improving the functional model based on either the additional parameters (section

3.5.3.1) or pseudo observables (section 3.5.3.2) approach. Use of the algebraically correlated 

pseudo observables requires application of de-correlation technique (section 3.53.2.3). Although 

additional parameters seem to be the most obvious choice, precision and reliability analyses 

(section 3.8) should be used to determine the most suitable approach. For the purpose of 

deformation detection, use of additional parameters is recommended, due to its simplicity. 

Consequently, significant parameters must be included with the measured distances in the same 

manner as scaled distances (section 3.5.3.1) in order to maintain network precision and 

reliability.

Multiple gross errors in the observations can be handled conveniently by adopting
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robustified LSE (section 3.6.2), without the need to eliminate the suspected observations. This 

is possible because the effects of gross errors on the final estimation are almost negligible.

Of equal importance is the proper handling of random error, which can be determined 

in practice with reference to experience and some prior knowledge. The use of a simplified VCE 

(section 3.7.3) is recommended for this purpose. However, both systematic and gross errors have 

to be tackled first in order to obtain a reliable estimation of variances.

During LSE, the effects of any significant systematic and gross errors need to be 

controlled, and results are only acceptable if the solution passes both global and local tests. This 

is important because the global test is sometimes not sensitive. In addition, precision and 

reliability analyses must be acceptable as well (section 3.9).

Prior to deformation detection, it is necessary to verify that LSE results of each epoch 

are referred to common stations and datum (section 4.2.2). In the case of differing 

configurations or datum definition between epochs, it is necessary to apply S-transformations 

to transform the LSE results into a common datum (section 4.2.1).

In most monitoring activities, the reference stations are known in advance, and such 

stations can be used as an initial datum for deformation detection. During deformation detection, 

the stability determination and testing of datum points, localization and testing of deformation 

can carried out effectively in one-stage computation (section 4.2.3.1, 4.2.3.2 and 4.2.3.3). The 

results of this computation can be used directly without additional computations, due to the 

idempotent property of S-transformations matrix. To obtain uniformity in testing, it is necessary 

to vary or standardize the significance level a  between global and local test (section 4.4). In 

practice, regular values of a  are 0.05 and 0.01 for global and local tests respectively.

Interpretation of the results of deformation detection is very important. All the datum 

stations must be confirmed as stable, otherwise, it is necessary to repeat the computations until 

a set of stable datum stations is found. Unstable non-datum stations represent the stations that 

have been deformed significantly between epochs (section 4.4).

With the available knowledge on these aspects and developed strategy, engineering 

surveyors will be able to routinely carry out deformation monitoring. Correct interpretation of
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the estimated solutions is necessary in order to fully understand the underlying concepts.

7.3 Suggestion for further work

This study has concentrated on the 3-D LSE processing of surveying data and the 

detection of spatial deformation by geometrical means. Some aspects on the developed programs 

need to be refined and open the possibility of further work. In addition, related subject matter 

can also be pursued in the future.

The developed programs can be refined to make them more attractive and user friendly. 

For example by the inclusion of on-screen graphics display so that plots of deformation vectors 

can be viewed directly during computation. Other possible refinements include menu templates 

and on-line help.

Related subject matter includes the application of integrated method and a near real time 

scheme. For engineering purpose, it is not sufficient to simply compute deformation vectors, and 

the estimated deformation must be linked to the physical process occuring during the 

deformation study. The most complete approach is via the integrated method which combines 

the geometric model with the finite element method. Such an integrated method combines all 

data (geodetic, geotechnical and structural) into one solution. By these means both geometrical 

and physical information are taken into account. This research has provided a sound geometric 

basis for the integrated method.

Technological development in instrumentation allows automatic and remotely controlled 

telemetric data acquisition. This advancement has led to the development of real time 3-D 

positioning and analysis, and opens the possibility of near real time industrial applications and 

continuous monitoring with telemetric data acquisition.
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APPENDIX A. THE FUNCTIONAL MODEL FOR SURVEYING OBSERVABLES

In the method of LSE using observation equations (Chapters 2 and 3), the functional 

model relating n observations with u unknown parameters is generally non-linear

l=f(x)

In order to apply linear algebra for LSE, the model needs to be linearised. The linearised model 

is in the form

Ax=b+v 

where A=3f/3x

A is the design (or linearisation or coefficient or configuration) matrix, x vector of parameters, 

b the misclosure (i.e. observed minus computed) vector, and v the vector of residuals.

Matrix A can be determined either by applying differential calculus or numerical 

modeling. In both cases, Taylor series expansion is used. Differential calculus is commonly 

adopted and is applied in this study. Numerical modelling is suitable for evaluation of complex 

functions. However, a proper selection of the limit is required, depending on the types of 

functions. Aspects on numerical modelling are discussed by Seager and Shortis (1993).

The use of Taylor series expansion in differential calculus (Cooper, 1974; Mikhail and 

Gracie, 1981) is simple. Let

l=f(x)

then l=l0+(3f/3x)8x+higher order terms 

l0=f(x0)
8x=x-x0

3f/3x=first derivatives of f with respect to x evaluated at x=x0 

In LSE, the higher order terms are ignored, and the result is
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l=lc+(3f/3x)8x or Ax=b 

where A=3f/3x, b=l-l0, x=8x

Similarly, if

l=f(xl5 x2, xu)

then l=l0+(3f/3x 3 8x,+(3f/3x2)8x2+.. .+(3f/3xu) 8xu

or Ax=b

where A=[3f/3x, 3f/3x2 ... 3f/3xu], b=l-l0 

x=[8xt 8 x 2 ... 8xu]‘

The relevant functional models and linearised observation equations for ordinary 

surveying observables can be found in many textbooks, for example Cooper (1987), Mikhail and 

Gracie (1981), and Blachut et al (1979). In most cases, only the 2-D case is considered.

Here, the functional models and observation equations are formulated to enable 3-D 

LSE. Whenever applicable, both 1-D and 2-D cases are also shown. Consider three stations i, 

j and k, with their coordinates (xi5 yi( Zj), (xj5 yj5 Zj) and (xk, yk, zk) respectively. Let

s=spatial or slope distance from i to k

d=horizontal distance from i to k

h=height difference from i to k

a=azimuth from i to k, measured clockwise

((^direction from i to k, measured clockwise

P=horizontal angle at i, measured clockwise from j to k

^=zenith angle or distance from i to k

9=vertical angle from i to k

httar=height of reflector at k (if applicable)

htins=height of instrument at i if applicable)

1. Spatial (slope) distance (s) i to k

Functional model:
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s=[(xk-xi)2+(yk-yi)2+(zk+httar-zi-htins)2]1/2

=[dx2+dy2+dz2]1/2

where dx=(xk-x,), dy=(yk-yi), dz=(zk+httar)-(zi+htins)

Observation equation:

-(dx/s)8xi-(dy/s)5yr (dz/s)8zi 

+(dx/s)8xk+(dy/s)8yk+(dz/s)8zk=(s0bs-s0)+v 

where sobs=observed value (after applying appropriate corrections) 

s0=computed value (using functional model)

2. Horizontal distance (d) i to k 

Functional model:

d=[dx2+dy2]1/2 

Observation equation:

-(dx/d)8xr (dy/d)8yi+(dx/d)8xk+(dy/d)8yk=(d0bs-d0)+v

3. Height difference (h) i to k 

Functional model:

h=(zk+httar)-(zi+htins)=dz 

Observation equation:

-8zi+8zk=(h0bs-h0)+v

4. Azimuth (a) i to k (clockwise)

Functional model:

220



oc=tan '(dx/dy)

Observation equation:

-(dy/d2)6xi+(dx/d2)5yi+(dy/d2)6xk-(dx/d2)ôyk=(a0bs-a0)+v

5. Direction (d>) i to k (clockwise)

Functional model:

(|)=a-w=tan "1 (dx/dy )-w

where a  is azimuth, and w is orientation parameter to be estimated for each group of the 

directions measured.

Observation equation:

-(dy/d2)8xi+(dx/d2)8yi+(dy/d2)8xk-(dx/d2)ôyk-8w=((l)0bs-(j)0)+v

6. Horizontal angle (B) at i, from i, to k (clockwise)

Functional model:

(3=tan‘1 (dxk/dyk)-tan‘(dxJ/dyj) 

w h e re  d x k= (x k-X j), dyk=(yk-yi) 

dxj=(xj-xi), dyj=(yj-yi)

Observation equation:

[(dyj/dj2)-(dyk/dk2)]8xi+[(dxk/dk2)-(dxj/dj2)]8yi

-(dyj/dj2)8xj+(dxj/dj2)8yj

+(dyk/dk2)8xk-(dxk/dk2)8yk=(P0bs-p0)+v
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where dj=[dxj2+dyj2]1/2 is the horizontal distance between i and j 

dk=[dXj2+dyj2]1/2 is the horizontal distance between i and k

7. Zenith angle (£) i to k 

Functional model:

^=cos'1 (dz/s)=cos"1 [dz/ (dx2+dy2+dz2) m ]

Observation equation:

- [dx/(s2tan^)] 8xr  [dy/(s2tan^)]8yi+(d/s2)8zi 

+[dx/(s2tan^)]8xk+tdy/(s2tan^)]8yk-(d/s2)8zk=(^obs-y + v

8. Vertical angle (8) i to k 

Functional model:

0=tan"‘(dz/d)

Observation equation:

(dx)(tan0/s2)8xi+(dy)(tan0/s2)8yr (d/s2)8zi

-(dx)(tan0/s2)8xk-(dy)(tan0/s2)8yk+(d/s2)8zk=(0obs-0o)+v
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APPENDIX B. VARIOUS WEIGHTING FUNCTIONS FOR RLSE

RLSE is actually a modification of the Danish method. The procedure of RLSE is 

outlined in section 3.6.2., where iterative process of LSE and de-weighting of observations are 

repeated until convergence is achieved. In this section, various weighting functions used by 

others are highlighted.

The original Danish method is an iterative algorithm to minimize the weighted square 

sum of the residuals when the solution converge as follows

X(v‘Wv) -> min

The original de-weighting scheme uses the following exponential weights

if | Vj | < limit; p—1.0; weight unchanged as wi’=pi*wi 

if | Vi | > limit; pj=exp"f; new weight becomes wi’=pi*wi 

limit=c*ainpul*S0 

f= | Vj |/limit

where vpestimated residual for observation i 

Wj’=new weight for observation i 

(Jinpu,original standard deviation of observation i 

d0=square root of the estimated variance factor 

c=weighting constant

Constant c is usually set to 3. This value is chosen (Straub, 1983) because the probability that 

a true error exceed 3a is 0.0027.

The statistic of the Danish method is simply

(lanish ^ / ( T in p u t^ o )  ~  C

In practice, variations of the above deweighting functions are used for different 

problems. Selection of constant c is usually based on experience.
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For photogrammetric problem, Kubik et al (1988) use the following

if |Vj | < limit; p—1.0; wi’=pi*wi 

if |Vj | > limit; p—exp'1; wi’=pi*wi 

limit=2ainput 

f= | Vj |2/(limit)2

Jorgensen et al (1985) suggested a slightly different function for photogrammetric 

bundle adjustment

Pi=exp'fl; wi’=pi*wi for first 3 iterations 

fl=0.05( | Vj | /limit)44 

p—exp_f2; wi’=p,*wi for further iterations 

f2=0.005( | Vj |/limit)30 

limit=cinput*60

Kubik et al (1987) give examples of weight functions for levelling and resection 

problems. For levelling network:

p—exp‘fl; wi’=pi*wi for first 5 iterations 

f 1=0.01 ( | |/limit l)4 4 

limit l=oinput*60

P i= e x p  K ; w j ’ = p i * w i for further iterations 

f2=0.05( | Vj |/limit2)20 

limit2=2*ainpu,*d0

For resection problem

P i= e x p  f l ; w i ’ = p i * w i for first 3 iterations 

f 1 =0.03( | Vj | /limit 1 )25 

limit l=0.4*a(,i*do

Pi=exp Wi’=Pi*Wi for further iterations 

f2=0.05( | Vj |/limit2)20 

limit2=15*<7(,i*d0
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where 6 vi=esti mated standard deviation of residuals

Chong (1987) uses normalized residuals and adopted

if |vj.| < limit; Wi’=l 

if Iv/ | > limit; Wj’=0 

vi’=6i/(d0o i,i) is normalized residual 

limit=critical value of Tau statistic

Jianjun (1991) uses the following function

if |v( | < limit; Wj^Pi 

if |Vj | > limit; Wj^p/fac 

limit=c*CTw

P,=W
fac=l+(Vi/(Oiri))2

c=critical value of Baarda’s statistic
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APPENDIX C. THE STOCHASTIC MODEL FOR SURVEYING OBSERVABLES

The surveying observables normally use in monitoring activities consist of angular 

(directions, azimuths, horizontal, vertical and zenith angles) and linear measurements (distances 

and height differences). Such observations are assumed to be uncorrelated but with different 

precisions. The angular, distance and height difference measurements are usually obtained using 

theodolites, EDMs and levels respectively.

The expression for variances of these observables are given below, based on Blachut 

et al (1979), Secord (1986) and Reuger (1988). The units of variances are secs2 and mm2 for 

angular and linear measurements respectively. Further details may also be found in Cooper 

(1982).

The precisions of the observations depend on the instruments used, the method of 

observations and to some extent, the environmental circumstances. Errors in the angular 

measurements are due to the instrument and / or observer (typically pointing, reading, levelling 

and centring) and due to the refraction or environment (proportional to distance). Errors in 

distance measurements are due to phase determination and refraction.

1. Direction

The variance (adj2) of the measured direction is the combination of pointing, reading, 

levelling and centering errors. It can be expressed as (Blachut et al, 1979; Secord, 1986)

where

odi2=variance of the direction

appointing error, ranges from (30 secs/m) to (60 secs/m)

m=telescope magnification

Opreading error, ranges from 0.3d to 2.5d

d=least division of the micrometer (horizontal) in secs

Opmislevelment error=Gvcot(z)

Gplevelling error, ranges from 0.02v to 0.2v 

v=sensitivity of the vertical spirit level in secs
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z=zenith angle to target

Gc=centering error of theodolite=p(Gcl2+oc32)1/2/d 

ocl=centering error of the target 

oc3=centering error of the theodolite 

d=distance to target 

p=206265 secs

The final right-hand term of the above expression is known as external error, dependent 

on distance. Levelling error is negligible for small value of vertical angle.

2, Horizontal angle

A horizontal angle is the difference of two directions, and the variance (oha2) is (Secord, 

1986; Blachut et al, 1979)

CTha2=[2(CTp2+Gr2)+CTn2+CT122+Gc.2]

where

Gn=(ovcot(z,))

c5l2=(°vcot(z2))

z, and z2=zenith angles to the targets

CTc2=p2[(0cl2/dl2)+(Gc22/d22)+(Gc32/d12d22)(dI2+d22-2d1d2cosa)]

ocl and oc2=centring errors of the targets

ac3=centring error of the theodolite

d, and d2=distances to the targets

a=measured horizontal angle

The horizontal angles are algebraically correlated, and the covariance matrix Z, is not 

diagonal. Elements of Z, may be determined by the propogation of the variance as follows

measured directions s,,s2,s3,s4

standard deviations c t , ,ct 2,ct 3,g 4

horizontal angles a 1=s2-s1, 0C2=s3-s2, (X3=s4-s3

227



0

£,= ^ 2
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3. Zenith or vertical angle

The variance of a zenith angle (oza2) is (Secord, 1986)

where

CTv=levelling error, ranges from 0.02v to 0.2v as before 

c c.=centering error=a,(sin(z)/d)

CTt=precision of the target height 

0 ref=effect of refraction=ak(d/2R) 

k=coefficient of refraction 

d=distance between stations 

R=mean radius of curvature of earth

Typical formulae for computing k is (Bomford, 1980)

k=502(p/t2)(0.0341 +dt/dh)

where p is pressure in mbar, t is temperature in 0 Kelvin (K) and (dt/dh) is vertical temperature 

gradient in km"1.

4, EDM distance

Variance of EDM distance (os2) can be written as (Blachut et al, 1979; Secord, 1986)

where a and b represent constant (i.e.zero) and distance dependent (i.e.scale) errors of the EDM 

respectively, as given by the manufacturers. Parameter b is based on the knowledge of the 

refractive index of the air and the stability of the modulation frequency. aAs is the error due to
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the reduction applied to the instrument output.

In practice, the variance of EDM distances is usually adopted as

a s2=a2 + b2s2 where a is in mm, b in ppm (parts per million), and s in m.

5. Height difference

Typical precision of orthometric height difference determination via spirit levelling is 

in the form (Blachut et al, 1979)

a=ah(L)1/2 mm

where a h=standard deviation per unit distance (typically few mm)

L=length of the levelling line (km)

The observed height differences are referred to the actual surface of geoid, whilst the 

computations are referred to the model surface of ellipsoid. In general, the observed height 

differences need to be reduced to the ellipsoid. However, for small areas, geoid-ellipsoid 

separation is very small, and height differences can be used directly without reduction to the 

ellipsoidal surface.

Nowadays, modem instrumentation together with proper observing scheme allow high 

precision measurements. The direction, horizontal angles, vertical and zenith angles can be 

measured using a high precision theodolite with precision of equal to or less than 1 sec. The 

vertical and zenith angles are less accurate due to the uncertainty of vertical refraction. In 

distance measurements, precise EDM instruments such as Geomensor and Mekometer allow 

measurement to 0.2 mm ± 0.2 ppm. Height differences may be obtained either by spirit levelling 

or trigonometric heighting. Spirit levelling allow height differences to be determined to mm 

level, whilst trigonometric heighting is less accurate due to the refraction effects.

In order to utilise the potential of the present precise surveying instruments for mm level 

monitoring, special attachment devices are required (Ashkenazi et al, 1980), such as precision 

(forced) centring and targetting devices.

229



APPENDIX D. CONDITIONS SATISFIED BY THE GENERALISED INVERSE

The generalised inverse (or g-inverse) of an (mxn) matrix A (denoted by Ag) satisfies 

the following equation

There is a variety of generalised inverses, and all the inverses satisfy the g condition. 

The types of generalised inverses applicable for LSE are reflexive generalised, pseudo (or 

Moore-Penrose) and normal (or Cayley) inverses.

The reflexive generalised inverse (A1) of A (Caspary, 1987b) satisfies

According to Cooper and Cross (1991) and Forsythe et al (1977), the pseudo-inverse 

or Moore-Penrose inverse of an nxu matrix A (denoted by A+) satisfy the following four 

important conditions (Moore-Penrose conditions)

When A is square and full rank, normal inverse (A 1) exists. The inverse satisfies all the 

above four conditions

AA'1A=A

A 'A A ^ A 1

(AA'^-AA'1

(A'1A)t=A"*A

Reflexive generalised inverse is used in the partial minimum trace solution, while

AAgA=A [g condition]

AArA=A [g condition]

ArAAr=Ar [r condition]

AA+A=A

A+AA+=A+

(AA+)‘=AA+

(A+A)‘=A+A

[g condition]

[r condition for reflexive property]

[1 condition for least squares property]

[m condition for minimum norm property]
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pseudo inverse is used in the minimum trace or free network solution. Normal inverse is 

computed during minimum constraints solution (section 2.2.2).
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APPENDIX E. THE MAIN APPROACHES TO THE ANALYSIS OF DEFORMATION 

SURVEYS

The FIG ad hoc committee on the analysis of deformation surveys (Chrzanowski and 

Chen, 1986) identifies ten main groups or approaches to the analysis of deformation surveys. 

The groups, named after their locations, are Bonn, Delft, Fredericton, Haifa-Tel Aviv, Hannover, 

Karlsruhe, Munich I, Munich II, Stuttgart and Warsaw I.

The differences between these groups are in the strategies of deformation modelling, 

identification of deformation models, determination of deformation parameters, selection of the 

significance level for testing and quality control. Details on the different approaches are given 

by reports of the ad hoc committee (Chrzanowski, 1981; Heck et al, 1983; Chrzanowski and 

Secord, 1983; Chrzanowski and Chen, 1986).

In deformation modelling, three groups (Fredericton, Haifa-Tel Aviv and Munich I) 

concentrate on the deformation of the whole body. The other groups focus on the determination 

of the movements of the single points or a group of points, and (except Warsaw I) are based 

on the congruency testing on a group of reference points. The Warsaw I group applies 

congruency testing on the differences of the individual observations.

In the identification of deformation model, the applications of the congruency testing 

differ in the strategy of localization of the unstable reference points. The Hannover, Karlsruhe 

and Stuttgart groups remove the suspected unstable reference points from the computational 

base, one by one until the congruency test passes. The Bonn group uses a minimum number of 

selected points as reference points, and adds stable point one by one until the the congruency 

test fails. The Munich II group uses the Cholesky decomposition, whilst the Delft group adopts 

a trial and error method. The Warsaw I group applies trend analysis to identify the stable 

reference points.

The Haifa-Tel Aviv, Munich I and Fredericton groups adopt different approaches. The 

Haifa-Tel Aviv group uses the velocity model for the simultaneous estimation of the velocity 

and coordinates. The Munich I group applies the finite element method to determine the 

deformation pattern of the individual triangular elements of the network. The Fredericton group 

uses a robust method to identify the displacement pattern and the deformation model.
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All the groups apply least squares criterion to estimate the deformation parameters. 

However, the determination of the single point movements is different. Most of the groups 

(Delft, Fredericton, Hannover, Karlsruhe, Munich II, Warsaw) consider each reference points 

as the same point between two epochs. The Bonn and Stuttgart groups consider such points as 

two separate points, and hence the single point movements are referred to the datum defined by 

the reference points.

The selection of the significance level in testing also varies. The Hannover, Stuttgart 

and Karlsruhe groups fix the significance level as 0.05 for the congruency test. The Delft group 

applies Baarda’s test. The Fredericton group uses an arbirtarily selected significance level in all 

tests. The Bonn group uses the Bayesian inference to obtain a less sensitive test.

The groups use different tests for the detection of gross errors. The Bonn and Hannover 

groups fix the significance level for the simultaneous tests on all the observations, whilst the 

Delft, Fredericton and Karlsruhe groups fix the standardized significance level for tests on the 

individual observations.
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APPENDIX F. SIMULATED DATA FOR NETWORK 1

Data for network 1 (see Figure 6.2) consist of 54 uncorrelated observations (12 slope 

distances, 12 height differences and 30 directions) derived from 6 stations. The coordinates for 

the stations are as follows:

station Provisional coordinates (m)
x______ y_________ z

1 1200.000 2600.000 120.000
2 1350.000 3000.000 140.000
3 1700.000 2950.000 80.000
4 1950.000 2750.000 90.000
5 1900.000 2400.000 150.000
6 1450.000 2250.000 100.000

Observations obtained from the above coordinates are perfect and contain no random, 

systematic or gross errors. To generate normally distributed observations, random errors a  of 

5 mm and 5 secs were simulated into the linear (slope distances and height differences) and 

angular (directions) observations respectively. The randomized observations are listed below.

(i) 12 slope distances

am to slope distance (m)
1 2 427.6666
1 3 611.6399
1 4 765.4421
1 5 728.6376
1 6 430.5789
3 4 320.3127
3 5 589.4070
3 6 743.5670
3 2 358.6066
5 6 476.9706
5 2 814.0091
5 4 358.6068
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(ii) 12 height differences

from to height difference (m)
1 2 19.9952
2 3 -59.9933
3 4 9.9963
4 5 59.9983
5 6 -50.0033
6 1 20.0009
1 3 -40.0076
3 5 70.0027
5 1 -29.9849
6 2 40.0011
2 4 -49.9887
4 6 10.0026

(iii) 30 directions

from to direction (decimal degree)
1 2 20.5546
1 3 55.0070
1 4 78.6900
1 5 105.9452
1 6 144.4608
2 3 98.1299
2 4 112.6194
2 5 137.4913
2 6 172.4069
2 1 200.5545
3 4 128.6593
3 5 160.0191
3 6 199.6534
3 1 235.0065
3 2 278.1310
4 5 188.1318
4 6 225.0016
4 1 258.6916
4 2 292.6198
4 3 308.6606
5 6 251.5679
5 1 285.9467
5 2 317.4883
5 3 340.0176
5 4 8.1317
6 1 324.4617
6 2 352.4068
6 3 19.6539
6 4 45.0018
6 5 71.5674
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APPENDIX G. SAMPLE PROGRAM INPUT AND OUTPUT

This section gives the sample program input and output. The relevant files contain the 
data necessary for executing programs ESTIMATE, COMPS and DETECT. The same data 
format are applicable for programs COMON and ROBUST.

Input files for ESTIMATE

epoch 1:
sep.tar (provisional coordinates)
sepa. obs (observational data of epoch 1)

epoch 2:
sep.tar (provisional coordinates)
sepb. obs (observational data of epoch 2)

Output files of ESTIMATE

epoch 1:
l.res (summary of LSE)
l.def (deformation file)
l.plo (plotting file)

epoch :2:
2.res (summary of LSE)
2.def (deformation file)
2.plo (plotting file)

Deformation file can be used directly as input for COMPS, DETECT, COMON and ROBUST. 
Plotting file is used as input file for DCRE.

Example of using COMPS

epoch 1:
1. def (input file) 
la.def (deformation file) 
la.plo (plotting file)

epoch 2:
2. def (input file)
2a.def (deformation file)
2a.plo (plotting file)

Example of using DETECT

la.def 2a.def (input files of two epochs) 
def.sum (summary of detection)
def.plo (plotting file)

The following nine files are listed for demonstration purpose: sep.tar, sepa.obs, l.res, 
l.def, l.plo, la.def, la.plo, def.sum and def.plo. The note is intended to explain the relevant
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information related to the files.

(i) sep.tar

1 1200.000 2600.000 120.000 1 1 1
2 1350.000 3000.000 140.000 0 0 0
3 1700.000 2950.000 80.000 0 1 0
4 1950.000 2750.000 90.000 0 0 0
5 1900.000 2400.000 150.000 0 0 0
6 1450.000 2250.000 100.000 0 0 0

Note:
The data is in free format.
column 1 is an integer representing station name.
columns 2, 3 and 4 contains 3-D coordinates (x, y, z) in m.
columns 5, 6 and 7 are integer code for datum definition (1 for datum, 0 for non-datum).

(ii) sepa.obs

0 0 1 2 427.6666 5.0000 1.000 0.000 0.000 1
0 0 1 3 611.6399 5.0000 1.000 0.000 0.000 0
0 0 1 4 765.4421 5.0000 1.000 0.000 0.000 0
0 0 1 5 728.6376 5.0000 1.000 0.000 0.000 0
0 0 1 6 430.5789 5.0000 1.000 0.000 0.000 0
0 0 3 4 320.3127 5.0000 1.000 0.000 0.000 0
0 0 3 5 589.4070 5.0000 1.000 0.000 0.000 0
0 0 3 6 743.5670 5.0000 1.000 0.000 0.000 0
0 0 3 2 358.6066 5.0000 1.000 0.000 0.000 0
0 0 5 6 476.9706 5.0000 1.000 0.000 0.000 0
0 0 5 2 814.0091 5.0000 1.000 0.000 0.000 0
0 0 5 4 358.6068 5.0000 1.000 0.000 0.000 0
1 0 1 2 19.9952 5.0000 0.000 0.000 0.000 1
1 0 2 3 -59.9933 5.0000 0.000 0.000 0.000 0
1 0 3 4 9.9963 5.0000 0.000 0.000 0.000 0
1 0 4 5 59.9983 5.0000 0.000 0.000 0.000 0
1 0 5 6 -50.0033 5.0000 0.000 0.000 0.000 0
1 0 6 1 20.0009 5.0000 0.000 0.000 0.000 0
1 0 1 3 -40.0076 5.0000 0.000 0.000 0.000 0
1 0 3 5 70.0027 5.0000 0.000 0.000 0.000 0
1 0 5 1 -29.9849 5.0000 0.000 0.000 0.000 0
1 0 6 2 40.0011 5.0000 0.000 0.000 0.000 0
1 0 2 4 -49.9887 5.0000 0.000 0.000 0.000 0
1 0 4 6 10.0026 5.0000 0.000 0.000 0.000 0
3 1 1 2 20.5546 5.0000 0.000 0.000 0.000 1
3 0 1 3 55.0070 5.0000 0.000 0.000 0.000 0
3 0 1 4 78.6900 5.0000 0.000 0.000 0.000 0
3 0 1 5 105.9452 5.0000 0.000 0.000 0.000 0
3 0 1 6 144.4608 5.0000 0.000 0.000 0.000 0
3 1 2 3 98.1299 5.0000 0.000 0.000 0.000 0
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3 0 2 4 112.6194 5.0000 0.000 0.000 0.000 0
3 0 2 5 137.4913 5.0000 0.000 0.000 0.000 0
3 0 2 6 172.4069 5.0000 0.000 0.000 0.000 0
3 0 2 1 200.5545 5.0000 0.000 0.000 0.000 0
3 1 3 4 128.6593 5.0000 0.000 0.000 0.000 0
3 0 3 5 160.0191 5.0000 0.000 0.000 0.000 0
3 0 3 6 199.6534 5.0000 0.000 0.000 0.000 0
3 0 3 1 235.0065 5.0000 0.000 0.000 0.000 0
3 0 3 2 278.1310 5.0000 0.000 0.000 0.000 0
3 1 4 5 188.1318 5.0000 0.000 0.000 0.000 0
3 0 4 6 225.0016 5.0000 0.000 0.000 0.000 0
3 0 4 1 258.6916 5.0000 0.000 0.000 0.000 0
3 0 4 2 292.6198 5.0000 0.000 0.000 0.000 0
3 0 4 3 308.6606 5.0000 0.000 0.000 0.000 0
3 1 5 6 251.5679 5.0000 0.000 0.000 0.000 0
3 0 5 1 285.9467 5.0000 0.000 0.000 0.000 0
3 0 5 2 317.4883 5.0000 0.000 0.000 0.000 0
3 0 5 3 340.0176 5.0000 0.000 0.000 0.000 0
3 0 5 4 8.1317 5.0000 0.000 0.000 0.000 0
3 1 6 1 324.4617 5.0000 0.000 0.000 0.000 0
3 0 6 2 352.4068 5.0000 0.000 0.000 0.000 0
3 0 6 3 19.6539 5.0000 0.000 0.000 0.000 0
3 0 6 4 45.0018 5.0000 0.000 0.000 0.000 0
3 0 6 5 71.5674 5.0000 0.000 0.000 0.000 0

Note:
The data is in free format.
column 1 is an integer of observation code.
(0=spatial or slope distance, 1 height differences, 2=uncorrelated horizontal angle, 3=direction, 
4=zenith angle, 5=correlated horizontal angle, 6=azimuth, 7=vertical angle,
-1 horizontal distances, -2=spatial distance ratio, -3=spatial distance difference, -4=spatial 
distance plus scale error, -5= spatial distance plus zero error, -6=spatial distance plus scale plus 
zero errors, -8=spatial distance with multiple scale errors, -9=spatial distance with multiple zero 
errors).
column 2 is an integer representing reference station used as reference in measurement of 
horizontal angle. Its value is zero if not applicable. For direction measurement, value of 1 
indicates start of set at a station.
column 3 and 4 are integers representing instrument and target stations respectively (in m). 
column 5 is observation in unit m for linear and unit decimal degree for angular. The 
observation is assumed as been corrected or reduced properly.
column 6 is standard deviation of measurements in mm for linear and secs for angular.
column 7 is mainly for manipulating correlated observations. It contains standard error for start
of horizontal angle, distance ratio and difference. For uncorrelated observation, its value is 0.
For slope distance, its value is scale for the distance (default value is 1).
column 8 and 9 are heights of instrument and target respectively in m.
column 10 is mostly 0. Value of 1 indicates start of the observational group for VCE.
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(iii) l.res

LSE MODE: full analysis

coord file:sep.tar 
obsns file:sepa.obs

global variance factor: 0.81415
no of iteration: 1 degree of freedom: 34

GLOBAL TEST 
significant level for test: 0.050 
chi-square test [one-tailed] :pass 

0.570 is less or equal to 1.000

OBSERVATIONS/RESIDUALS
no code ro at to obs se v r vn

1 0 0 1 2 427.6666
2 0 0 1 3 611.6399
3 0 0 1 4 765.4421
4 0 0 1 5 728.6376
5 0 0 1 6 430.5789
6 0 0 3 4 320.3127
7 0 0 3 5 589.4070
8 0 0 3 6 743.5670
9 0 0 3 2 358.6066
10 0 0 5 6 476.9706
11 0 0 5 2 814.0091
12 0 0 5 4 358.6068
13 1 0 1 2 19.9952
14 1 0 2 3 -59.9933
15 1 0 3 4 9.9963
16 1 0 4 5 59.9983
17 1 0 5 6 -50.0033
18 1 0 6 1 20.0009
19 1 0 1 3 -40.0076
20 1 0 3 5 70.0027
21 1 0 5 1 -29.9849
22 1 0 6 2 40.0011
23 1 0 2 4 -49.9887
24 1 0 4 6 10.0026
25 3 1 1 2 20.5546
26 3 0 1 3 55.0070
27 3 0 1 4 78.6900
28 3 0 1 5 105.9452
29 3 0 1 6 144.4608
30 3 1 2 3 98.1299
31 3 0 2 4 112.6194
32 3 0 2 5 137.4913
33 3 0 2 6 172.4069

0.5000E+01 0.4650 0.33 0.18 
0.5000E+01 -1.6775 0.54 -0.50 
0.5000E+01 2.8161 0.50 0.88 
0.5000E+01 -4.3053 0.53 -1.31 
0.5000E+01 -1.9678 0.32 -0.77 
0.5000E+01 2.6472 0.40 0.93 
0.5000E+01 2.4858 0.54 0.75 
0.5000E+01 -0.5356 0.44 -0.18 
0.5000E+01 3.3965 0.38 1.22 
0.5000E+01 -0.8132 0.34 -0.31 
0.5000E+01 -1.1071 0.47 -0.36 
0.5000E+01 2.4538 0.37 0.90 
0.5000E+01 -4.9844 0.58 -1.44 
0.5000E+01 -2.2100 0.59 -0.64 
0.5000E+01 3.6952 0.58 1.07 
0.5000E+01 -0.0167 0.58 0.00 
0.5000E+01 4.0755 0.58 1.18 
0.5000E+01 5.3405 0.58 1.55 
0.5000E+01 2.3056 0.58 0.67 
0.5000E+01 -4.4215 0.59 -1.28 
0.5000E+01 -8.0840 0.58 -2.34 
0.5000E+01 -4.6440 0.58 -1.35 
0.5000E+01 -6.8148 0.58 -1.98 
0.5000E+01 -3.5412 0.58 -1.03 
0.5000E+01 1.8952 0.69 0.51 
0.5000E+01 1.0615 0.77 0.27 
0.5000E+01 -1.9227 0.77 -0.49 
0.5000E+01 -1.6687 0.77 -0.42 
0.5000E+01 0.6347 0.68 0.17 
0.5000E+01 1.8687 0.68 0.50 
0.5000E+01 2.6556 0.76 0.68 
0.5000E+01 -5.6379 0.78 -1.42 
0.5000E+01 -5.1468 0.76 -1.31
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34 3 0 2 1
35 3 1 3 4
36 3 0 3 5
37 3 0 3 6
38 3 0 3 1
39 3 0 3 2
40 3 1 4 5
41 3 0 4 6
42 3 0 4 1
43 3 0 4 2
44 3 0 4 3
45 3 1 5 6
46 3 0 5 1
47 3 0 5 2
48 3 0 5 3
49 3 0 5 4
50 3 1 6 1
51 3 0 6 2
52 3 0 6 3
53 3 0 6 4
54 3 0 6 5
sum of r: 34.00

200.5545 0.5000E+01 
128.6593 0.5000E+01 
160.0191 0.5000E+01 
199.6534 0.5000E+01 
235.0065 0.5000E+01 
278.1310 0.5000E+01 
188.1318 0.5000E+01 
225.0016 0.5000E+01 
258.6916 0.5000E+01 
292.6198 0.5000E+01 
308.6606 0.5000E+01 
251.5679 0.5000E+01 
285.9467 0.5000E+01 
317.4883 0.5000E+01 
340.0176 0.5000E+01 

8.1317 0.5000E+01 
324.4617 0.5000E+01 
352.4068 0.5000E+01 
19.6539 0.5000E+01 
45.0018 0.5000E+01 
71.5674 0.5000E+01

6.2604 0.69 1.67 
1.8348 0.62 0.52 

-8.0810 0.75 -2.07 
2.7516 0.76 0.70 
6.2264 0.75 1.59 

-2.7318 0.62 -0.77 
-2.6422 0.64 -0.73 
0.0723 0.75 0.02 

-1.2653 0.78 -0.32 
3.6279 0.75 0.93 
0.2074 0.65 0.06 

-3.0629 0.70 -0.81 
-1.1386 0.77 -0.29 
7.0869 0.77 1.79 

-0.1157 0.77 -0.03 
-2.7697 0.67 -0.75 

3.0084 0.70 0.80 
-3.1783 0.76 0.81 
3.2005 0.78 0.80 

-1.4515 0.76 -0.37 
-1.5791 0.71 -0.41

CHI-SQUARE GOODNESS OF FIT TEST ON 
normalized/standardized estimated residuals 
[number of group = 2]
[degrees of freedom= 1]

obs f exp f [o-e] [o-e]**2/e
29.000 27.000 2.000 0.148
25.000 27.000 -2.000 0.148

sum= 0.296 
0.296 < 3.840

test passes...res are normally distributed 

LOCAL TEST
[critical value of tau statistic= 3.11]
no of obsns fail the test[ie v norm > tau]= 0

RELIABILITY ANALYSIS
obs no rnum irel erel

1 0.3340 35.6692 33.8918
2 0.5429 27.9789 14.3128
3 0.4989 29.1874 17.0762
4 0.5305 28.3050 15.0468
5 0.3184 36.5322 36.3841
6 0.3964 32.7454 25.8905
7 0.5417 28.0113 14.3854
8 0.4436 30.9537 21.3253
9 0.3832 33.3011 27.3585
10 0.3393 35.3917 33.1029
11 0.4748 29.9175 18.8024
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12 0.3676
13 0.5847
14 0.5859
15 0.5850
16 0.5849
17 0.5848
18 0.5843
19 0.5844
20 0.5851
21 0.5841
22 0.5840
23 0.5841
24 0.5838
25 0.6914
26 0.7688
27 0.7664
28 0.7726
29 0.6839
30 0.6833
31 0.7562
32 0.7780
33 0.7595
34 0.6917
35 0.6208
36 0.7510
37 0.7560
38 0.7545
39 0.6224
40 0.6394
41 0.7540
42 0.7751
43 0.7458
44 0.6491
45 0.6967
46 0.7705
47 0.7660
48 0.7675
49 0.6712
50 0.6996
51 0.7644
52 0.7809
53 0.7628
54 0.7139

STN COORDS/SE
stn X

1 1200.0000
0.0000

2 1349.9985
0.0049

3 1700.0009

34.0000 29.2400
26.9607 12.0752
26.9335 12.0165
26.9541 12.0610
26.9560 12.0651
26.9580 12.0693
26.9694 12.0939
26.9669 12.0886
26.9513 12.0549
26.9737 12.1032
26.9760 12.1082
26.9734 12.1025
26.9809 12.1188
24.7937 7.5891
23.5116 5.1118
23.5486 5.1815
23.4543 5.0042
24.9278 7.8557
24.9395 7.8792
23.7075 5.4819
23.3732 4.8522
23.6552 5.3827
24.7875 7.5769
26.1646 10.3836
23.7893 5.6372
23.7095 5.4857
23.7338 5.5317
26.1318 10.3148
25.7807 9.5859
23.7418 5.5469
23.4156 4.9316
23.8713 5.7936
25.5887 9.1913
24.6987 7.4010
23.4854 5.0625
23.5555 5.1944
23.5311 5.1485
25.1627 8.3264
24.6477 7.3004
23.5796 5.2398
23.3284 4.7686
23.6039 5.2857
24.4000 6.8144

y z
2600.0000 120.0000

0.0000 0.0000
2999.9999 139.9902

0.0036 0.0032
2950.0000 79.9947
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4
0.0041 0.0000 0.0032

1950.0039 2749.9990 89.9947
0.0037 0.0049 0.0035

1900.0043 2399.9978 149.9930
0.0039 0.0044 0.0032

1450.0012 2250.0062 99.9938
0.0049 0.0035 0.0032

trace and rmse:
0.0001 0.0001 0.0001
0.0043 0.0041 0.0033

PARAMETERS FOR DIRECTIONS
stn orientation (deg) se(sec)

1 0.00073 2.46813
2 -0.00038 2.74444
3 -0.00020 2.69119
4 -0.00105 2.90129
5 -0.00091 2.82163
6 -0.00083 2.78661

Note:
This file is summary of LSE. It contains results of global and local tests, estimated coordinates, 
together with precision and reliability analyses.

(iv) l.def

#coord file:sep.tar ;obsn file:sepa.obs 
34 #degrees of freedom

0.814147 #posteriori variance factor 
4 #rank defect 

1 1 1 0  0 10  #datum code 
6 #no of stns 

#prov coords
1 1200.0000 2600.0000 120.0000
2 1350.0000 3000.0000 140.0000
3 1700.0000 2950.0000 80.0000
4 1950.0000 2750.0000 90.0000
5 1900.0000 2400.0000 150.0000
6 1450.0000 2250.0000 100.0000

#estimated coords
1 1200.0000 2600.0000 120.0000 1 1 1
2 1349.9985 2999.9999 139.9902 0 0 0
3 1700.0009 2950.0000 79.9947 0 1 0
4 1950.0039 2749.9990 89.9947 0 0 0
5 1900.0043 2399.9978 149.9930 0 0 0
6 1450.0012 2250.0062 99.9938 0 0 0

#covariances
1 O.OOOOOOOOOOOOOOOE+OO
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2 O.OOOOOOOOOOOOOOOE+OO
3 O.OOOOOOOOOOOOOOOE+OO
4 0.000000000000000E+00
5 O.OOOOOOOOOOOOOOOE+OO
6 O.OOOOOOOOOOOOOOOE+OO
7 O.OOOOOOOOOOOOOOOE+OO
8 O.OOOOOOOOOOOOOOOE+OO
9 O.OOOOOOOOOOOOOOOE+OO
10 0.236183885669249E-04
11 O.OOOOOOOOOOOOOOOE+OO
12 O.OOOOOOOOOOOOOOOE+OO
13 O.OOOOOOOOOOOOOOOE+OO
14 0.318689947526138E-05
15 0.133093456840842E-04
16 O.OOOOOOOOOOOOOOOE+OO
17 O.OOOOOOOOOOOOOOOE+OO
18 O.OOOOOOOOOOOOOOOE+OO
19 0.292294604460585E-06
20 -0.259234592607668E-06
21 0.103827347930409E-04
22 O.OOOOOOOOOOOOOOOE+OO
23 O.OOOOOOOOOOOOOOOE+OO
24 O.OOOOOOOOOOOOOOOE+OO
25 0.121601761515521E-04
26 0.159591717351124E-05
27 -0.841677250603603E-07
28 0.171197227643384E-04
29 O.OOOOOOOOOOOOOOOE+OO
30 O.OOOOOOOOOOOOOOOE+OO
31 O.OOOOOOOOOOOOOOOE+OO
32 O.OOOOOOOOOOOOOOOE+OO
33 O.OOOOOOOOOOOOOOOE+OO
34 O.OOOOOOOOOOOOOOOE+OO
35 O.OOOOOOOOOOOOOOOE+OO
36 O.OOOOOOOOOOOOOOOE+OO
37 O.OOOOOOOOOOOOOOOE+OO
38 O.OOOOOOOOOOOOOOOE+OO
39 O.OOOOOOOOOOOOOOOE+OO
40 -0.923877759816369E-07
41 -0.128679687536849E-06
42 0.520950994117585E-05
43 0.540198853457363E-06
44 O.OOOOOOOOOOOOOOOE+OO
45 0.103894613411439E-04
46 O.OOOOOOOOOOOOOOOE+OO
47 O.OOOOOOOOOOOOOOOE+OO
48 O.OOOOOOOOOOOOOOOE+OO
49 0.570871105645641E-05
50 0.306472478974394E-06
51 0.848559801470249E-07
52 0.721931610389486E-05
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53 O.OOOOOOOOOOOOOOOE+OO
54 0.340750523513292E-06
55 0.134185425902084E-04
56 O.OOOOOOOOOOOOOOOE+OO
57 O.OOOOOOOOOOOOOOOE+OO
58 O.OOOOOOOOOOOOOOOE+OO
59 -0.787433113386810E-05
60 -0.628624098083962E-06
61 0.119879569006635E-06
62 -0.755341818786170E-05
63 O.OOOOOOOOOOOOOOOE+OO
64 -0.340779443787870E-06
65 -0.332350422512976E-05
66 0.241566006473863E-04
67 O.OOOOOOOOOOOOOOOE+OO
68 O.OOOOOOOOOOOOOOOE+OO
69 O.OOOOOOOOOOOOOOOE+OO
70 0.859061576317848E-07
71 -0.15825832142743IE-06
72 0.623050254771579E-05
73 0.232603667390580E-06
74 O.OOOOOOOOOOOOOOOE+OO
75 0.624430265377008E-05
76 0.235799129219890E-06
77 0.460753735614827E-06
78 0.124747084939587E-04
79 O.OOOOOOOOOOOOOOOE+OO
80 O.OOOOOOOOOOOOOOOE+OO
81 O.OOOOOOOOOOOOOOOE+OO
82 0.105428849813906E-05
83 -0.237005119803232E-05
84 0.612291441257390E-07
85 0.100433824021053E-05
86 O.OOOOOOOOOOOOOOOE+OO
87 -0.120576193252030E-06
88 0.324307801765336E-05
89 0.606382040241949E-05
90 -0.403335653117243E-07
91 0.152279439882472E-04
92 O.OOOOOOOOOOOOOOOE+OO
93 O.OOOOOOOOOOOOOOOE+OO
94 O.OOOOOOOOOOOOOOOE+OO
95 -0.794000573068074E-05
96 0.620714577369019E-06
97 -0.196625252110583E-06
98 -0.639978966271142E-05
99 O.OOOOOOOOOOOOOOOE+OO

100 -0.498974248051832E-06
101 -0.211491840728978E-05
102 0.134157856381365E-04
103 -0.259629678017574E-06
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104 0.710564767845698E-05
105 0.189987669570203E-04
106 O.OOOOOOOOOOOOOOOE+OO
107 O.OOOOOOOOOOOOOOOE+OO
108 0.000000000000000E+00
109 -0.135186282106819E-06
110 0.380160366358185E-08
111 0.415599808289926E-05
112 0.196392400602223E-06
113 O.OOOOOOOOOOOOOOOE+OO
114 0.520684978593921E-05
115 0.925879047424945E-07
116 -0.143695175151357E-06
117 0.624692007313709E-05
118 -0.114445636293589E-06
119 0.401696861938354E-06
120 0.103967707657788E-04
121 O.OOOOOOOOOOOOOOOE+OO
122 O.OOOOOOOOOOOOOOOE+OO
123 O.OOOOOOOOOOOOOOOE+OO
124 -0.146594562034047E-05
125 -0.196027725515107E-05
126 0.486968380053489E-07
127 -0.661306121131798E-06
128 O.OOOOOOOOOOOOOOOE+OO
129 -0.359757678289836E-07
130 0.168583260148196E-05
131 0.728585177587548E-05
132 0.881143661380316E-07
133 0.108633884837057E-04
134 0.842496554760888E-05
135 0.412757504476116E-06
136 0.238748650035446E-04
137 O.OOOOOOOOOOOOOOOE+OO
138 O.OOOOOOOOOOOOOOOE+OO
139 O.OOOOOOOOOOOOOOOE+OO
140 0.113815827084233E-05
141 0.795570860755044E-06
142 -0.156527405267326E-06
143 0.188447802152499E-05
144 O.OOOOOOOOOOOOOOOE+OO
145 -0.135045722980187E-06
146 0.698390356251991E-06
147 0.485314944362405E-06
148 -0.126555546135624E-06
149 0.709962443442664E-06
150 0.145324906016725E-05
151 0.322396517696441E-07
152 -0.911559808208819E-06
153 0.122980971019547E-04
154 O.OOOOOOOOOOOOOOOE+OO



155
156
157
158
159
160 
161 
162
163
164
165
166
167
168
169
170
171

O.OOOOOOOOOOOOOOOE+OO 
O.OOOOOOOOOOOOOOOE+OO 
0.361730762146149E-08 

-0.138265287616770E-06 
0.518777370420365E-05 
0.920073639328803E-08 
O.OOOOOOOOOOOOOOOE+OO 
0.416070448802979E-05 
0.115232045268282E-06 
0.265381530471828E-06 
0.623110446042786E-05 
0.229449080497125E-06 
0.184523144866072E-06 
0.520455976580990E-05 
0.11269248110932IE-06 

-0.162107224002597E-06 
0.103921145563762E-04

Note:
This deformation file contain data necessary for detection purpose, i.e degrees of freedom, 
estimated variance factor, datum defect information, number of stations, provisional coordinates 
together with estimated coordinates and cofactor matrix (upper triangle).

1 1200.0000 2600.0000 120.0000 0.0000 0.0000 0.0000
# se: 0.0000 0.0000 0.0000
# var: 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
2 1349.9985 2999.9999 139.9902 0.0000 0.0000 0.0000
# se: 0.0049 0.0036 0.0032
# var: 0.2362E-04 0.1331E-04 0.1038E-04 0.3187E-05 0.2923E-06 -0.2592E-06
3 1700.0009 2950.0000 79.9947 0.0000 0.0000 0.0000
# se: 0.0041 0.0000 0.0032
# var: 0.1712E-04 0.0000E+00 0.1039E-04 0.0000E+00 0.5402E-06 0.0000E+00
4 1950.0039 2749.9990 89.9947 0.0000 0.0000 0.0000
# se: 0.0037 0.0049 0.0035
# var: 0.1342E-04 0.2416E-04 0.1247E-04 -0.3324E-05 0.2358E-06 0.4608E-06
5 1900.0043 2399.9978 149.9930 0.0000 0.0000 0.0000
# se: 0.0039 0.0044 0.0032
# var: 0.1523E-04 0.1900E-04 0.1040E-04 0.7106E-05 -0.1144E-06 0.4017E-06
6 1450.0012 2250.0062 99.9938 0.0000 0.0000 0.0000
# se: 0.0049 0.0035 0.0032
# var: 0.2387E-04 0.1230E-04 0.1039E-04-0.9116E-06 0.1127E-06 -0.1621E-06 

Note:
This file provides suitable data for plotting of coordinates and error ellipses via DCRE.

(v) l.plo
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(vi) la.def

# RESULTS OF S-TRANSFORMATIONS
# input file: 1 .def

34 #degrees of freedom
0.814147 #posteriori variance factor 

4 #rank defect 
1 1 1 0  0 10  #datum code

6 #no of stns 
#prov coords

1 1200.0000 2600.0000 120.0000
2 1350.0000 3000.0000 140.0000
3 1700.0000 2950.0000 80.0000
4 1950.0000 2750.0000 90.0000
5 1900.0000 2400.0000 150.0000
6 1450.0000 2250.0000 100.0000

#estimated coords
1 1199.9986 2599.9993 120.0056 1 1 1
2 1349.9969 2999.9993 139.9958 1 1 1
3 1699.9993 2949.9996 80.0003 1 1 1
4 1950.0024 2749.9987 90.0003 1 1 1
5 1900.0029 2399.9975 149.9986 1 1 1
6 1449.9999 2250.0057 99.9994 1 1 1

#covariances
1 0.483515970784850E-05
2 -0.143926387321563E-06
3 0.499959880687926E-05
4 0.724147237042138E-07
5 -0.432184575703288E-07
6 0.450534002656987E-05
7 -0.127903494625284E-05
8 -0.149973694366921E-05
9 0.376360980739105E-07

10 0.72575566543995 IE-05
11 0.307574851420544E-06
12 -0.184663620105944E-05
13 0.736226572353050E-07
14 -0.343499225530364E-06
15 0.773916579713363E-05
16 0.400242025980504E-08
17 0.473317276509568E-07
18 -0.689079818269369E-06
19 0.270164089362218E-06
20 -0.983038840031267E-07
21 0.449923512993229E-05
22 -0.740288545345684E-06
23 -0.754405098970337E-06
24 -0.845606441574500E-07
25 -0.202428847971961E-05
26 -0.107263077984547E-05
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27 -0.229575693674104E-06
28 0.484233898036141E-05
29 0.430338450171833E-06
30 -0.909220668258191E-06
31 -0.318793446210695E-07
32 0.741422867635749E-07
33 -0.824043744888095E-06
34 0.478637277600519E-07
35 0.486840931886210E-07
36 0.469480248702341E-05
37 -0.555828485969781E-08
38 -0.430210990978524E-07
39 -0.696464675106598E-06
40 -0.320349359071107E-06
41 0.154995803957332E-07
42 -0.681374578769990E-06
43 0.213493612211466E-06
44 0.202848854600743E-06
45 0.449119196436083E-05
46 -0.181131528591609E-06
47 -0.107026625045615E-06
48 -0.758579406623945E-07
49 -0.341382476816685E-05
50 -0.480729490203568E-06
51 -0.561721301077291E-07
52 -0.817320642833034E-06
53 0.172542078382677E-06
54 0.116560322062185E-06
55 0.736178166887803E-05
56 0.174631270827266E-06
57 -0.412402999596825E-06
58 -0.864664908387838E-07
59 0.233947569243452E-05
60 -0.120098090456151 E-05
61 0.107752594128891E-06
62 0.101258986042732E-05
63 -0.142141418212310E-05
64 -0.752523150301732E-07
65 0.156819302781020E-06
66 0.712772480070406E-05
67 -0.309950001552210E-07
68 -0.871483114416700E-08
69 -0.173258301159838E-05
70 0.411252039468850E-07
71 -0.580042898036984E-07
72 -0.69650030872183IE-06
73 0.630018874617417E-07
74 -0.236165583206883E-07
75 -0.690085059504770E-06
76 0.644037167357949E-07
77 0.369429611013534E-06
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78 0.450420244419207E-05
79 -0.949322799162536E-06
80 0.824991909490967E-06
81 0.743965639229974E-07
82 -0.246990713269599E-06
83 -0.331890459030529E-06
84 0.628905594682620E-07
85 -0.736809646185436E-06
86 -0.698596806697350E-06
87 -0.303403015932098E-07
88 -0.829517289820531E-06
89 -0.887192621670245E-06
90 -0.798430612984739E-07
91 0.497380101826121E-05
92 -0.48502408333277IE-06
93 -0.298405089368933E-06
94 0.341578291212280E-07
95 0.526632791900110E-06
96 -0.160453695661097E-06
97 -0.870471957442992E-07
98 0.619573024466683E-06
99 -0.122426114710237E-05
100 -0.136275883409057E-06
101 0.364887563517050E-06
102 -0.213741404582686E-05
103 -0.227705398646277E-06
104 0.198540410709275E-06
105 0.478948398451307E-05
106 -0.148227040005214E-07
107 -0.124166213695252E-07
108 -0.696509719024170E-06
109 -0.103280554814232E-06
110 0.776609507534110E-07
111 -0.173493148096415E-05
112 0.959130035480232E-07
113 -0.102961329574531E-06
114 -0.691464634761431E-06
115 -0.399423172783557E-07
116 -0.352185561520734E-06
117 -0.687512684055332E-06
118 -0.168040028537033E-06
119 0.324019177644415E-06
120 0.449841130116059E-05
121 -0.168538188849583E-05
122 0.168010314551575E-05
123 -0.240288008812771E-07
124 -0.293417746990606E-06
125 0.192117510318939E-05
126 -0.513092453084518E-07
127 -0.523631666277637E-06
128 -0.271101018093563E-07
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0.261940112503630E-07 
-0.211998743946601E-05 
-0.279632350479988E-05 
-0.576927466907266E-07 
-0.22111605698231 IE-05 
-0.122460970726035E-05 
0.230172601082118E-06 
0.683357931105319E-05 

-0.283594101765309E-06 
-0.153293384859587E-05 
0.537838066736491E-07 

-0.109701460189864E-05 
-0.370705125096349E-05 
-0.175969697924734E-07 
0.146188900733195E-06 

-0.31586274465166IE-06 
0.362008625406066E-07 

-0.106492829431562E-06 
-0.195551266859576E-05 
-0.513885330987034E-07 
0.894147567197883E-06 

-0.968950006553818E-06 
0.658833840669645E-07 
0.446765065164430E-06 
0.848031051936060E-05 

-0.250411549485787E-07 
0.600392815309167E-07 

-0.690702802571360E-06 
0.74704522502325IE-07 

-0.104750145776242E-07 
-0.697348943206953E-06 
-0.582721653896770E-07 
-0.922553498445062E-07 
-0.173180301621804E-05 
-0.89916507495004IE-08 
0.367221622472666E-07 

-0.697521380311752E-06 
0.140936268037457E-06 
0.928514710339906E-07 

-0.687992782355503E-06 
-0.123335819452026E-06 
-0.868825503900435E-07 
0.450536892466361E-05

129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160 
161 
162
163
164
165
166
167
168
169
170
171

stn
1
2
3
4
5
6

sx
0.0022
0.0027
0.0022
0.0027
0.0022
0.0026

sy
0.0022
0.0028
0.0022
0.0027
0.0022
0.0029

sz
0.0021
0.0021
0.0021
0.0021
0.0021
0.0021
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Note:
This file (same format as file l.def) contains results of S-transformations, and can be used 
directly for detection purpose.

(vii) la.plo

1 1199.9986
# se: 0.0022
# var: 0.4835E-05

2 1349.9969
# se: 0.0027
# var: 0.7258E-05

3 1699.9993
# se: 0.0022
# var: 0.4842E-05

4 1950.0024
# se: 0.0027
# var: 0.7362E-05

5 1900.0029
# se: 0.0022
# var: 0.4974E-05

6 1449.9999
# se: 0.0026
# var: 0.6834E-05

2599.9993 120.0056 0.0000 0.0000 0.0000 
0.0022 0.0021
0.5000E-05 0.4505E-05 -0.1439E-06 0.7241E-07 -0.4322E-07
2999.9993 139.9958 0.0000 0.0000 0.0000 

0.0028 0.0021
0.7739E-05 0.4499E-05 -0.3435E-06 0.2702E-06 -0.9830E-07 
2949.9996 80.0003 0.0000 0.0000 0.0000
0.0022 0.0021
0.4695E-05 0.4491E-05 0.4868E-07 0.2135E-06 0.2028E-06 
2749.9987 90.0003 0.0000 0.0000 0.0000

0.0027 0.0021
0.7128E-05 0.4504E-05 0.1568E-06 0.6440E-07 0.3694E-06 
2399.9975 149.9986 0.0000 0.0000 0.0000

0.0022 0.0021
0.4789E-05 0.4498E-05 0.1985E-06 -0.1680E-06 0.3240E-06 
2250.0057 99.9994 0.0000 0.0000 0.0000

0.0029 0.0021
0.8480E-05 0.4505E-05 0.4468E-06 -0.1233E-06 -0.8688E-07

Note:
This file is similar to file l.plo (plotting of coordinates and error ellipse).

(viii) def.sum

DETECTION OF SPATIAL DEFORMATION/summary

epochl file:la.def epoch2 file:2a.def

...test on variance ratio...[significance level: 0.050] 
dfl= 34.0;df2= 34.0
[fcom.le.ftab?] 1.373 1.772
test passes
pooled var fac 0.704

...congruency testing...
[significance level: 0.050]

...global congruency test... 
dfl= 14.0;df2= 68.0
test fails [w.ge.f] 888.150 1.840
existence of deformation
station removed from datum automatically: 6
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1.932

...partial congruency test... 
dfl= 11.0;df2= 68.0
test fails [w.ge.f] 182.727 
existence of deformation 
station removed from datum automatically: 3

...partial congruency test... 
df 1 = 8.0;df2= 68.0
test fails [w.ge.f] 18.151 2.076
existence of deformation
station removed from datum automatically: 5

...partial congruency test... 
df 1 = 5.0;df2= 68.0
test passes [w.lt.f] 0.017 2.345
no significant deformation

single point test 
[significance level: 0.010] 
df 1= 3.0 ;df2= 68.0

...single point test... 
stn dx dy dz 
1 0.0000 - 0.0001 0.0000 
2 0.0008 -0.0002 0.0000
4 -0.0008 0.0003 0.0000 
6 0.0015 -0.0006 0.3000 
3 -0.0499 0.0998 -0.1001
5 0.0118 0.0510 0.0000 
no of stns: 6 
no of datum stns/stable 
no of datum stns/moved 
no of non-datum stns/stable: 
no of non-datum stns/moved :

fcom ftab info 
0.00 4.09:stable[1.0] 
0.02 4.09:stable[1.0] 
0.03 4.09:stable[1.0] 

3179.88 4.09:moved [0.0] 
640.44 4.09:moved [0.0] 
47.75 4.09:moved [0.0]

3

disp vect 
0.0001 
0.0009 
0.0009 
0.3000 
0.1499 
0.0523

3
0 
0

[codes: 1.0 datum pts,0.0 non-datum pts]

Note:
This file is summary of detection procedure.

(ix) def.plo

# DETECTION OF DEFORMATION/plotting input
# epoch 1 file=la.def ;epoch2 file=2a.def
# significance level of single point test= 0.010
# critical value of chi-square= 11.3717

1 1199.9986 2599.9993 120.0056
To: 1199.9986 2599.9992 120.0056 

Def: 0.0000 -0.0001 0.0000 ( 0.0001)
Se: 0.0028 0.0028 0.0028
Va: 0.7818E-05 0.7919E-05 0.7850E-05 0.1298E-05 0.2561E-06 -0.1028E-06

252



Test: 0.0012
datum point/stable

#
#

2 1349.9969 2999.9993 139.9958
To: 1349.9977 2999.9991 139.9958

Def: 0.0008 -0.0002 0.0000 ( 0.0009)
Se: 0.0036 0.0034 0.0025
Va: 0.1327E-04 0.1160E-04 0.6464E-05 -0.2225E-05

Test: 0.0525
datum point/stable

4 1950.0024 2749.9987 90.0003
To: 1950.0016 2749.9990 90.0003

Def: -0.0008 0.0003 0.0000 ( 0.0009)
Se: 0.0036 0.0018 0.0028
Va: 0.1277E-04 0.3267E-05 0.7859E-05 -0.2337E-05

Test: 0.0615
datum point/stable

6 1449.9999 2250.0057 99.9994
To: 1450.0014 2250.0051 100.2994

Def: 0.0015 -0.0006 0.3000 ( 0.3000)
Se: 0.0071 0.0057 0.0037
Va: 0.4974E-04 0.3251E-04 0.1341E-04 0.8657E-06

Test: 6712.5346
non-datum point/moved

3 1699.9993 2949.9996 80.0003
To: 1699.9494 2950.0994 79.9002

Def: -0.0499 0.0998 -0.1001 ( 0.1499)
Se: 0.0044 0.0046 0.0037
Va: 0.1895E-04 0.2118E-04 0.1336E-04 -0.6094E-06

Test: 1351.9228
non-datum point/moved

5 1900.0029 2399.9975 149.9986
To: 1900.0147 2400.0485 149.9986

Def: 0.0118 0.0510 0.0000 ( 0.0523)
Se: 0.0052 0.0052 0.0038

0.1977E-06 -0.1631E-06

0.2013E-06 0.6358E-07

0.5020E-07 -0.1917E-06

0.8644E-06 0.6330E-06

Va:
Test:

0.2684E-04
100.7903

0.2697E-04 0.1478E-04 0.1110E-04 0.1782E-06 0.1536E-05

#
#
#
#
#
#
#

non-datum point/moved

no of stns: 6 
no of datum pts/stable 
no of datum pts/moved : 
no of non-datum pts/stable: 
no of non-datum pts/moved

0
0

Note:
This file contains data for plotting of deformation vectors and the error ellipsoids.
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