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Abstract

Abstract

This work is a study of the important parameters of synchronous and 
nonsynchronous, weakly and strongly coupled optical directional couplers, 
primarily using the finite element method. This method can be used to find 
accurate modal solutions of the isolated waveguides or the coupled waveguides 
with arbitrary shapes, index profiles, and anisotropies. Unlike the traditional 
coupled mode theory, the vector supermodes obtained by using the finite element 
method are orthogonal to each other, even when the guides are strongly coupled or 
when they are not identical. From an accurate knowledge of the propagation 
constants of the two supermodes, the coupling length of the system can also be 
calculated.

However, the finite element method cannot provide directly the power- 
transfer efficiency or the cross-talk between the coupled waveguides. Calculations 
of the important coupling parameters can be achieved by introducing the coupled 
mode approach along with the accurate modal solutions obtained by using the finite 
element method. In this approach, the overlap integrals of the isolated modes and 
the coupling factors are calculated numerically and these values are subsequently 
used to find the power coupling efficiency from one waveguide to another. 
Recently, there have been several innovative approaches to improving the 
traditional coupled mode theory by enforcing orthogonality of the supermodes or 
by maintaining the power conservation criteria. In this work, some of these new 
coupled mode approaches have been implemented to study the coupling parameters 
along with the exploitation of the accurate modal solutions obtained using the finite 
element method.

As an alternative, the least squares boundary residual method can be 
applied to find the excitation coefficients of the two supermodes by considering the 
butt-coupling between the input waveguide and the directional coupler section. In 
this approach, the continuity of the tangential electric and magnetic fields is 
achieved in a least squares sense at the junction discontinuity interface. Once the 
transmission coefficients of the two guided even- and odd- like supermodes are 
calculated, the power carried by the two guides along the axial direction can be 
easily evaluated.

In this work, the power transfer from one optical waveguides to another by 
the use of the finite element based propagation model has also been studied. 
Simulation results are presented for a wide range of directional coupler based- 
devices including electro-optic switches and semiconductor filters. To show the 
advantages of the finite element-based approaches, the power transfer efficiency 
between coupled waveguides with two-dimensional confinement is also presented.
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Chapter 1

Introduction

1.1 Historical development of Lightwave Technology

From a historical perspective there is one particularly noteworthy date in the 

development of lightwave technology, the year 1880, in which Alexander Graham 

Bell invented the "photophone". This was a device that varied the intensity of 

sunlight incident upon it in response to the amplitude of speech vibrations. At 

receiver, the light variations were reconverted into an electrical signal by means of 

a selenium detector, and subsequently back into sound. While the photophone itself 

was impractical due to the rapidity with which its optical signal intensity weakened 

with propagation distance, the concept of optical communication that it 

demonstrated is in many ways responsible for the development of the field of 

lightwave and integrated optics. The transmission and processing of signals carried 

by optical beams rather than by electrical currents or radio waves has been a topic 

of great interest ever since the early 1960s, when the development of the laser first 

provided a stable source of coherent light for such applications. In spite of the 

tremendous potential bandwidth offered by the laser, strong absorption by rain,
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snow, fog, and smog prevented the effective propagation of laser light through the 

atmosphere for practical distances for communication. It was not until the 

development of low-loss optical fibers that optical communications could become 

a reality. Their development, along with that of compact single-mode 

semiconductor lasers, has led to the demonstration of communication systems that 

can transmit information at a rate of over two billion bits per second over 130 

kilometres with an error rate of one per billion bits. With the capacity to transmit 

optical signals also came the necessity periodically to reamplify and recondition 

them by the use of "repeater" spaced every so often along the transmission path. It 

is here that the classical optics approach was unsatisfactory. The optical telephone 

repeater typically involved a laser, detector, lenses, and mirrors, spread out on an 

optical bench. Although the initial research in integrated optics was primarily 

directed toward the optical communications area, other potential applications for 

combining the unique properties of light into an extremely small package were 

apparent.

The history of radio communications technology has seen a steady increase 

of the carrier frequency used for the transmission of information. With the 

invention of the laser, this steady climb made a huge jump from the millimetre 

wavelength to the optical frequency range, an increase by three to four orders of 

magnitude. There is now little doubt that guided wave optical devices will have a 

lasting impact on electrical engineering in the coming years. In the last two decades 

the optical fibre has finally allowed the practical use of light as a carrier of

2
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information. The semiconductor laser is also a guided wave device. It can emit 

light of the wavelength at which silica fibre shows minimum dispersion and 

minimum propagation loss, near = 1.3 and 1.55 pm, respectively. With careful 

design, the output can also consist of very nearly a single optical frequency. This is 

an important advantage for communications, since it reduces the effect of modal 

dispersion. Together, these are currently in the process of revolutionising the 

telecommunications industry, and making considerable advances in a variety of 

other new and exciting application areas. The appreciation that optical fibres could 

be used as a method of conveying information, with the availability of huge 

bandwidth, generated a new technology through which telecommunications 

companies throughout the world have been able to gain massive economies of 

scale. Now that optical techniques are well established in telecommunications, 

there is increasing interest in using optics to extend and replace electronics for 

some purposes. One major activity in research laboratories throughout the world is 

the demonstration of various optical integrated circuits (OIC) to replicate and 

enhance the performance of electronic integrated circuits, and also to perform 

novel functions particularly suited to optics. An essential feature of these optical 

components is a method of optically linking various parts of the circuit, and optical 

waveguides can be considered as equivalent to the connecting wires of optical 

circuits.

The optical integrated circuit has a number of advantages when compared 

to either its counterpart, the electrical integrated circuit, or to conventional optical

3
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signal processing systems composed of relatively large discrete elements. The 

major advantages of the optical integrated circuits (OIC) are increased bandwidth, 

the possibility of expanded frequency (wavelength) division multiplexing, low-loss 

couplers, including bus access types, expanded multipole switching (number of 

poles, switching speed), smaller size, weight, lower power consumption, batch 

fabrication economy, improved reliability, improved optical alignment and 

immunity to vibration. The major disadvantage is high cost of developing new, 

associated fabrication technology.

The OIC inherently has the same large characteristic bandwidth as the 

optical fiber because, in both cases, the carrier medium is a lightwave rather than 

an electrical current. Thus, the frequency limiting effects of capacitance and 

inductance can be avoided. The design and fabrication of a practical OIC with a 

bandwidth to match that of an optical fiber, while feasible in principle, probably 

will require many years of technology development. Light can be guided, 

modulated, deflected, filtered, radiated into space or, by using laser action, it can 

also be generated within a thin-film structure. Integrated optical devices promise to 

provide optical communication systems with components such as the lasers, 

modulators, filters, optical switches, and directional couplers. However, practical 

applications of OICs have already been accomplished, and the future is promising. 

In order to develop new optical communication systems or optical devices, we 

need fully to understand the principles of optical guiding, while obtaining accurate

4
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quantitative propagation characteristics of waveguides and utilising them 

effectively in actual design.

Maxwell’s equations are need to be solved to calculate the propagation 

characteristics of optical waveguides. It is, however, rather rare to obtain a precise 

analytic solution, and therefore, a precise analysis of optical waveguides is 

generally considered to be difficult. For this reason, various methods of optical 

waveguide analysis have been developed. These methods may be broadly classified 

into two categories: analytical approximate solutions and numerical solution using 

computers. In order to analyze and design optical waveguides, it is necessary to 

study these analysis methods in depth, and to be able to use these methods as tools. 

Some of the representative analytic solutions and numerical solutions are 

introduced in this thesis.

Historically, planar waveguide integrated optics was the first system to be 

developed, followed shortly by the more sophisticated and successful channel 

waveguide integrated optics system. An optical waveguide that is uniform in the 

direction of propagation is the most basic type of waveguide, but this alone is not 

sufficient for the construction of an optical integrated circuit. In reality, an 

appropriate combination of various forms of optical waveguides is placed on the 

substrate to construct an optical circuit with the desired features. These may be, for 

example, comer-bent waveguides, S-shaped waveguides, and bent waveguides 

which are used to change the direction of the lightwaves. Tapered waveguides are 

used to alter the width of waveguides; branching waveguides and crossed

5
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waveguides are used for splitting, combining, and interference; and optical 

waveguide directional couplers and two-mode waveguide couplers are used for 

coupling. Waveguide gratings, with a periodic structure in the direction of 

propagation, play many important roles in optical integrated circuits containing 

components, such as wavelength filters, mode converters, reflectors, resonators, 

demultiplexers, etc. Waveguide gratings are also used widely as a laser element, 

such as a distributed Bragg reflector (DBR) laser or a distributed feedback (DFB) 

laser.

Although waveguides come in various forms and with a variety of 

functions, the fact remains that the optical waveguide that is uniform in the 

direction of propagation is the essential form of waveguide. The information 

regarding the propagation characteristics of the optical waveguide is thus the most 

basic and important information required when designing this type of waveguides. 

Therefore, the discussion in this thesis will be restricted to optical waveguides in 

which material constants such as structure and refractive index do not change in the 

direction of propagation.

1.2 Analysis of Optical Waveguides

Some of the major reasons for a study of the propagation of light in optical 

waveguides are listed below. Firstly, it is necessary to establish how many optical 

modes the structure will support. Most applications will require the propagation of 

one or two modes. Some factors such as small changes in dimensions or refractive

6
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indices can frequently result in the structure being either at "cut-off" i.e. not able to 

support a propagating mode or supporting more than one mode. The circular 

symmetry of an optical fibre as shown in Fig. 1.1a ensures that one or more modes 

will always be supported whatever the value of d, the core diameter as long as 

ng>ns, where ng and ns are the refractive indices in guide and substrate respectively. 

In a nonsymmetrical planar structure, such as is shown in Fig. 1.1b, however, this 

is not necessarily the case, and if ng, ns and d are sufficiently small, the structure 

will be "cut-off" and no mode can be supported. However, for symmetrical planar 

structure if ns = nc then this cutoff will not occur for the fundamental mode.

Fig. 1.1 Refractive index profile of (a) an optical fibre and (b) a planar 
waveguide structure.

Secondly, it is often desirable to know the precise field profile of the mode. 

This is important when designing devices for high coupling efficiency between 

planar waveguides and optical fibres. Also, the performance of some practical
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waveguides is limited by scattering losses caused by roughness induced by the 

fabrication process, and detailed information about the magnitude of the field at the 

rough edges allows these losses to be assessed.

Thirdly, it may be necessary to know the propagation constant (p) of a 

mode in a waveguide. For single mode propagation, knowledge of this parameter is 

not usually very important. However, for most optical switching functions, the 

operating principle is the interference between two modes, and an exact knowledge 

of the difference between the (3 value of the two modes is necessary. This 

difference is usually a very small percentage of |3, and so a precise calculation of (3 

for each guide is very important, and for this, the most accurate techniques for 

calculating |3 for practical waveguides are needed.

1.3 Optical Waveguide Analysis Techniques

1.3.1 Analytical Approximation Solution and the Numerical 
Solution

The propagation characteristics of optical waveguides can be calculated by 

solving Maxwell's equations, but this is not an easy task. There are many reasons 

that optical waveguide analysis is difficult; some of the major reasons are listed 

below:

-Practical optical waveguides have complex structures,

-The general propagation mode is the hybrid mode,

8
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-Some optical waveguides have an arbitrary refractive index distribution 

(graded optical waveguides), as in doped optical waveguides and non- 

uniform-core optical fiber,

-The electromagnetic field extends outside the guide core and guides are 

not of the closed type,

-Anisotropic materials and nonlinear optical materials may be used to 

increase the range of performance,

-Materials with a complex refractive index, such as semiconductors and 

metals, are also used.

To overcome these difficulties, various methods have been developed for 

the analysis of optical waveguides. Such methods may be roughly classified into 

two groups, analytical approximation solutions and numerical solutions using 

computers.

1.3.1.1 Analytical Approximation Solutions for Optical Waveguides

An exact analytical solution can be obtained for a simple stepped 1-D 

optical waveguide and a stepped optical fiber. If, however, the waveguide has an 

arbitrary refractive index distribution, such an exact analysis is no longer possible. 

Therefore, various types of analytical approximation solutions have been 

developed for 1-D optical waveguides in which the refractive index changes 

gradually in the thickness direction, and for optical fiber whose refractive index 

changes gradually only in the radial direction. In the case of 2-D optical
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waveguides for optical integrated circuits and nonaxisymmetrical optical fiber, 

hybrid-mode analysis is required to satisfy the boundary conditions, even if the 

individual materials that constitute the waveguide are homogeneous. However, the 

analytical approximation solutions developed for these optical waveguides 

generally do not treat them as a hybrid mode, and therefore, the accuracy of the 

solution deteriorates near the cutoff frequency.

1.3.1.2 Numerical Solutions for Optical Waveguides

Numerical solutions can grouped into the domain solution, which includes 

the whole domain as the operational area, and the boundary solution, which 

includes only the boundaries as the operational area. The former is also called a 

differential solution, and the latter, an integral solution. The domain solutions 

include the finite element method (FEM), the finite difference method (FDM), the 

variational method (VM), and the multilayer approximation method (MAM). The 

boundary solutions include the boundary element method (BEM), the point-

matching method (PMM), and the mode-matching method (MMM). Among these 

are the perturbation technique, the method of conformal transformation, the mode 

matching technique, the finite difference method, and the variational method 

(Koshiba, 1992).

The perturbation techniques are particularly useful, and can produce quite 

good results if there exists a compact solution for the unperturbed waveguide and 

the perturbation of the physical configuration is so small that the unperturbed fields
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are only slightly disturbed. When the perturbation terms are large, the perturbation 

methods become tedious and the physical meaning of the results is clouded by the 

complexity of the expressions used and normally, in such a case, the use of the 

perturbation techniques will yield a relatively poor approximation. When the 

perturbation becomes large, it becomes an inconvenient procedure, when the 

variational method becomes is more appropriate (Davies, 1980).

The development of new ideas in theory and in applications in numerical 

methods for partial differential equations has been particularly influenced by the 

innovation brought about by the computer era. In general, a numerical method 

leads to an algorithm for the solution of a problem, and to get an overall picture, it 

may have to be solved separately for each set of values of the parameters. 

However, this algorithm may be simple in many problems where an analytical 

solution is difficult or impossible. Before numerical, computer-based solutions of 

real problems dealing with complex continua can be solved, it is necessary to limit 

their infinite degrees of freedom to a finite number of unknowns. Such a process of 

discretization was first successfully performed by the use of the finite difference 

method which was, until recently, one of the most popular numerical methods.

The basic idea behind the finite difference formulation of a problem is the 

discretization of the differential operator equations which represent the physical 

system by a set of difference equations. This can be done by expanding the field at 

a point in terms of its value and derivatives at a neighbouring point by a Taylor 

series and suitably truncating this series. In this way a relation between the field
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value for the central point of a cluster with the field values of neighbouring nodal 

points can be derived. Operations are then performed not upon continuous 

functions but rather approximately, in terms of fields over a discrete point set. The 

main disadvantages of finite difference methods are the lack of geometrical 

flexibility in fitting irregular boundary shapes, and in concentrating points in 

regions of the solution domain where the variable changes most rapidly. The other 

difficulties experienced in using the finite difference methods are the treatment of 

singular points and when any boundary or interface boundary does not coincide 

with constant coordinate surfaces.

An alternative approach, the variational method, is becoming increasingly 

more important than other approximate methods. If the domain does not conform 

to one of the major coordinate systems, the problem is often more readily solved by 

using a finite element method. This method is in essence a variational method 

which makes use of the Rayleigh-Ritz procedure. The ability of the finite element 

to represent a complex shape is a point in its favour. Isoparametric elements are 

well adapted for problems with curved boundaries (Miniowitz and Webb, 1991; 

Koshiba and Inoue, 1992). In this thesis, the finite element method with its simple 

numerical integration and its simple logic makes it ideally suited to implementation 

using a computer.

The finite element method, which is one of the domain solutions, can be 

very easily applied not only to optical waveguides of any shape, but also to optical 

waveguides with any refractive index distribution and to those with any anisotropic
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materials or nonlinear optical materials. In Chapter 5 and in subsequent chapters, 

actual analysis examples are given to demonstrate that the finite element method 

can be used effectively for the analysis of various optical waveguides, including 2- 

D optical waveguides, as discussed in Chapter 8 and Chapter 9.

The finite element method enables a solution of the problem by applying 

the variational principle to the functional of the subject system, instead of solving 

directly the differential equation for the system. The distinctive feature of the finite 

element method is that it first divides the subject domain into small sections called 

elements, develops an equivalent digitising model for each of these elements, and 

then re-assembles the whole. Another words, the finite element method is a type of 

Ritz-Galerkin method, or a numerical analysis technique, that uses a partitioned 

polynomial expression as an approximating function and converts a continuous 

system into an equivalent discrete system. In recent years, there has been a trend to 

call any method that employs division into elements a finite element method, even 

if it does not use the variational principle, as in the Galerkin method and other 

weighted-residual methods. As a result, the range of application of the finite 

element method has expanded, and the definition of the term has also broadened.

1.3.2 Methods for analyzing waveguides

Many of the simpler techniques that may be used are based on the solution 

for a one dimensional slab waveguide which can be solved semi-analytically and 

calculated to any specified degree of accuracy. If a typical slab waveguide of

13
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thickness a, and refractive index na confined by two semi-infinitely thick layers of 

refractive indices nc and n as shown in Fig. 1.2, supports a TE mode given 

(without the exp(jcot) time dependence) by

y/(x,z) = A(x)e-Jfk (1.1)

where p is the propagation constants, z the direction of propagation, tj/(x,z) is the 

field component of the TE modes and A(x) the field profile of the mode and P is 

given by the solution of the transcendental equation

tan (aq-Nn) (P + r)q
W ~ p r )

( 1.2)

where

P2 = F - n l k 2 

q2 = nlk2 -fi2

r2 = [32 - n 2k2

(1.3)

(1.4)

(1.5)

with A, being the free-space wavelength, and N is an integer 0,1,2,... corresponding 

to different modes.
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Fig. 1.2 Schematic of a slab waveguide, showing waveguide of thickness a, and 
refractive index na confined by two semi-infinitely thick layers of refractive 
indices nc and n* supporting a TE mode.

1.4 Multilayer Planar Waveguide Couplers

While butt coupling can be used to couple two planar waveguides, the more 

commonly used method is to bring the guides in question into close proximity and 

allow coupling to occur through phase coherent energy transfer (optical tunnelling). 

The indices na and n2 in the guiding layers, as shown in Fig. 1.3, must be larger 

than the indices in the separation region and the substrate region, nt and n3, 

respectively, and the thickness of the confining layer of separation must be small 

enough that the evanescent tails of the guided modes overlap. In order for efficient 

energy transfer to occur between the two guides, they must have identical 

propagation constants. Thus, the indices and the thicknesses of the waveguiding 

layers must be very carefully controlled to provide matching propagation constants, 

during the fabrication process of any such coupler system.
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Fig. 1.3 Coupling between two planar waveguides by optical tunnelling.
Transfer of energy occurs by phase coherent synchronous coupling through the 
isolation layer with index nr

1.5 Dual-Channel Directional Couplers

The dual-channel directional coupler, which is analogous to the microwave 

dual-guide multihole coupler (Lance, 1964), consists basically of two parallel 

channel optical waveguides sufficiently closely spaced so that energy is transferred 

from one to the other by optical tunnelling, as shown in Fig. 1.4. This energy is 

transferred by a process of synchronous coherent coupling between the overlapping 

evanescent tails of the modes guided in each waveguide. Photons of the driving 

mode, say in guide a, transfer into the driven mode in guide b, maintaining a phase 

coherence as they do. This process occurs cumulatively over a significant length; 

hence, the light must propagate with the same phase velocity in each channel in
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order for this synchronous coupling to occur. The fraction of the power coupled per 

unit length is determined by the overlap of the modes in the separate channels. 

Thus, the coupling factor depends on the separation distance, s, and the interaction 

length, L, in particular.

Fig. 1.4 Diagram of a dual channel directional coupler. The amplitudes of the 
electric field distributions in the guides are shown below them.

1.6 Coupled-Mode Theory of Synchronous Coupling

A concise theory of operation of the dual-channel directional coupler can be 

developed by following the coupled mode theory approach of Yariv (1973). The 

electric field of the propagating mode in the waveguide is described by
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E(x,y,z)  = A{z) E(x,y) (1.7)

where A(z) is a complex amplitude which includes the phase term exp(-jfiz) ■ The 

term S(x,y) is the solution for the field distribution of the mode in one waveguide, 

assuming that the other waveguide is absent. By convention, the mode profile 

E(x,y) is assumed to be normalised to carry one unit of power. Thus, for example, 

the power in guide b is given by

Ph(z) = Ab(z)2 = Ab(z)Al(z) (1.8)

where A'h(z) is a complex amplitude in guide b.

The coupling between modes is given by the general coupled mode 

equation for the amplitudes of the two modes. Thus,

dAa(z)
dz

~ jP a Aa(z) + KahAh{z) (1.9)

and

dAh(z)
dz

- jPbAh(z) + KhaAa(z) ( 1. 10)

where [5a and [5h are the propagation constants of the modes in the two guides, and 

Kab and Kba are the coupling coefficients between the modes.
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The guides shown in Fig. 1.4 may be considered, and it can be assumed that 

these guides are identical and that they both have an exponential optical loss 

coefficient, a. Thus,

f> = O H )

where [5 = pa = fih, and is the real part of ¡5. For the case of identical guides, 

it is obvious from reciprocity that

Kb = Ka = ~ j x  a - 12)

where k  is real. Then, using (1.11) and (1.12), Eq. (1.9) and (1.10) can be rewritten 

in the form

dAa{z)
dz

~ jP Aa(z)~ jKAh(z) (1.13)

and

= -jPAt (z)-jKA„(z) (1-14)
dz

If it is assumed that light is coupled into guide a at the point z = 0, so that 

the boundary conditions for the problem are given by

Aa(0) = 1 and A„(0) = 0 (1.15)
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then the solutions are described by

Aa(z) = cos (Kz)e~Jpz (1.16)

and

Ab(z) = -  j  sm(Kz)e~jpz (1.17)

Thus, the power flow in the guides is given by

Pa(z) = Aa(z)A*a(z) = cos 2(Kz)e~az (1.18)

and

Ph(z) = Ah(z)A'h(z) = sin^KzV'“2 (1-19)

From (1.18) and (1.19), it can be seen that the power does indeed transfer 

back and forth between the two guides as a function of length. Note also, in 

equations (1.16) and (1.17), the distinct phase difference that exists between the 

amplitude of the fields in the two guides. The phase in the driven guide always lags 

the phase of the driving guide by 90°. Thus, initially at z = 0, the phase in guide b 

lags 90° behind that in guide a. That lagging phase relationship continues for 

increasing z, so that at a distance z that satisfies Kz = n /2 ,  all of the power has 

been transferred to the guide b. Then, for n/2 < kz  < n, the phase in guide a lags 

behind that in guide b. This phase relationship results from the basic mechanism
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which produces the coherent transfer of energy. The field in the driving guide 

causes a polarization in the dielectric material which is in phase with it, and which 

extends into the region between the guides because of the presence of the mode 

tail. This polarization then acts to generate energy in the mode of the driven guide. 

It is a basic principle of field theory that such generation occurs when the 

polarization leads the field, while dissipation occurs when the polarization lags the 

field. Thus, the lagging field in the driven guide is to be expected. Because of this 

definite phase relationship, the dual-channel coupler is a directional coupler. No 

energy can be coupled into a backward wave travelling in the -z direction in the 

driven waveguide. This is a very useful feature in many applications.

From (1.18) and (1.19), it can be seen that the length, L, necessary for 

complete transfer of power from one guide to the other is given by

r n mnL = —  + ----
2 k  k

( 1.20)

where m = 0,1,2,.... In a real guide, with absorption and scattering losses, /3 is 

complex. Hence, the total power contained in both guides decreases by a factor 

exp(-az).

The coupling coefficient, K , is a strong function of the shape of the mode 

tails in the guides. For well confined modes, in which the overlapping of the tails 

causes only a negligible perturbation of the basic mode shape, it can be shown that 

the coupling coefficient is given by (Somekh, 1974)
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K pW(q2+h2)
( 1.21)

where W is the channel width, s is the separation, h and /3 are the propagation 

constants in the y and z directions, respectively, and q is the extinction coefficient 

in the y direction. It will be recalled that these parameters have been assumed to be 

identical for both waveguides. In a practical situation, it may be difficult to 

fabricate two identical waveguides to form a coupler. If, for example, the guides do 

not have exactly the same thickness and width, the phase velocities will not be the 

same in both. This will not necessarily destroy the coupling effect entirely. If the 

difference in phase constants, A0, is small, it can be shown that the power 

distributions in the two guides are given by (Somekh et al., 1974a)

( 1.22)

and

(1.23)

where

(1.24)
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It can be seen from (1.22-1.24) that, in the presence of a constant phase 

difference, A(3, a transfer of power will still occur. However, the transfer will be 

incomplete, since (1.22) will never go to zero for any values of z.

The preceding equations can be used to calculate the expected performance 

of dual-channel directional couplers for the case of slightly non-identical guides, 

with a non-zero A(3.

1.7 Applications Involving Directional Couplers

The dual-channel directional couplers are among the more useful of 

integrated optic devices. They can be used as power dividers, input or output 

couplers, and directionally selective taps on an optical data bus. The foregoing are 

all examples of passive applications, in that the fraction of power coupled in each 

case is a constant. However, the most important application of the dual-channel 

coupler is an active modulator or switch, in which the coupled power is 

electronically controlled. It has been shown in (1.22) and (1.23) that the coupled 

power is a strong function of any phase mismatch between the two waveguides.

1.8 Aims and Objectives of the thesis

The information given so far has provided a background to the work which 

is reported in this thesis and has provided several objectives for the research 

undertaken in this field. The following presents the primary aims of the work 

presented here which are
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(1) To investigate established work on the structure of optical devices, based on a 

directional coupler analysis. First, to carry out a study on planar structures for 

calculating the coupling length, Lc, and making a comparison of the results 

obtained using the finite element and the analytical approaches. Next, the aim 

is to calculate the coupling length, Lc, in 2-D confinement using the finite 

element method.

(2) To implement an improved coupled-mode theory to study the influence of the 

coupling parameter, along with the exploitation of the accurate modal 

solutions obtained using the finite element method.

(3) To study three separate approaches, namely the coupled mode approach, the 

least squares boundary residual method and the propagation model in detail 

and to use them to calculate the power transfer efficiency in a planar 

waveguide directional coupler and then to make a comparison with alternative 

methods. However, to our knowledge so far, a numerical simulation of the 

power transfer efficiency in 2-D confinement has not been previously 

reported.

(4) To develop an extension of the system, once the results obtained from the first 

stage of the application are achieved, to be implemented in a further, more 

detailed study to characterize 2-D confinement directional coupler 

waveguides.

The objective of this work is to do these by testing the 1-D results obtained

using the coupled mode approaches, the propagation model and the least squares
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boundary residual method. Finally, these methods are then extended to calculate 

the power transfer efficiency in a 2-D confinement directional coupler problem, 

where the advantages of these more sophisticated methods can be more clearly 

seen.

1.9 Structure of the Thesis

This thesis is comprised of work carried out by the author in the use of the 

finite element method, the coupled-mode theory and the least squares boundary 

residual approach in the analysis of certain types of interesting optically guiding 

devices. The subsequent discussion gives an outline of the carefully structured 

thesis, beginning with an Introduction to the subject in a review of optical 

waveguides as presented in this first Chapter.

In Chapter 2, the relevant theoretical background on the finite element 

method and a comparison of several variational formulations are presented. A 

detailed study of the finite element approach along with the use of triangular 

coordinates and shape functions is undertaken, to calculate the eigenvectors and the 

propagation constants. Since the analysis of an axially-uniform waveguide is 

essentially a two-dimensional problem, the application of the method is restricted 

to two-dimensional domains. The application of finite elements to waveguides of 

optical structures is first studied. The variationally-based finite element analysis of 

the modes in a uniform waveguide is then considered. Scalar and vector 

formulations are also employed, as is the choice of the variational form. This leads
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to the difficulty of spurious modes, which is addressed in the work. By applying 

the penalty approach, the relation V • H = 0 is satisfied and the spurious modes do 

not appear. Methods for their avoidance are considered at the end of the Chapter.

In Chapter 3, the implementation of this approach will be described, along 

with matrix solution techniques. An abrupt discontinuity problem, in the transverse 

plane z = 0, between two quite arbitrary uniform waveguides is also considered. 

The use of the least squares boundary residual (LSBR) method along with the 

vector finite element method for accurate calculation of this wide range of optical 

waveguide discontinuity problems is also presented at the end of this Chapter.

General coupled-mode theory and an implementation of the three 

approaches used in this part of the work is described in Chapter 4, with the aim of 

calculating the power transfer efficiency. In this Chapter the various forms of the 

coupled-mode theory for two parallel uniform optical waveguides is first reviewed, 

with the aim of describing subtle distinctions between different forms of the 

conventional theory. Then, a comparison between different coupled mode 

approaches is applied to the analysis of optical directional couplers made of slab 

waveguides. The power transfer efficiency of the couplers is also studied, based on 

the use of the theory developed.

Chapters 5, 6, 7, 8, and 9 will deal with the results of the application of 

these methods to various types of important and relevant optical waveguide 

problems. Our solutions will be proved by comparing the results obtained with

26



Chapter 1 Introduction

analytical and other alternative results available. In Chapter 5, results are presented 

on a study of the important parameters of synchronous and nonsynchronous, 

weakly and strongly coupled optical directional couplers using the finite element 

method. Accurate propagation constants and field profiles have been obtained for 

the modes of the isolated guides and supermodes of the coupled system. The power 

transfer efficiency and cross-talk are calculated from the individual guide modes 

using improved coupled mode approximations and from the supermodes using the 

least squares boundary residual method. The results of an adjustment of the length 

of the directional coupler, both in terms of the separation distance between two 

waveguides and width of guide are also presented in this chapter. The effect of 

mesh divisions is also presented. The results for an electro-optic directional coupler 

switch showing the effect of An and the separation distance are presented in 

Chapter 6. In this Chapter also, the power coupling efficiency between two optical 

waveguides is presented.

In Chapter 7, the coupling length and power transfer variation with 

wavelength are presented for both synchronous and nonsynchronous directional 

couplers. The effect of mesh divisions is also shown in this Chapter. The accurate 

calculation of coupling parameters is of considerable interest, more specifically for 

strongly coupled nonidentical guides, as may be used in the design of wavelength 

filters or a polarizer.

The results of an analysis of the characterization of optical channel 

waveguide directional couplers is shown in Chapter 8. A discussion of coupling
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length variation with fabrication tolerances and asymmetry for directional couplers 

used as elements of optical devices is presented using the finite element method, 

employing an accurate vector H-field formulation. The effect of the curved guide 

sections, leading to the directional couplers, on the coupling length of the device is 

also presented.

The coupled mode theory, so far, has been based on the mode coupled 

equations introduced by Miller (1954). The analytical methods based on mode 

coupling between weakly coupled waveguides are difficult to apply to strongly 

coupled waveguides. In Chapter 9, the coupling properties in strongly coupled 

waveguides are given theoretically using a method based on the interference 

between the waveguide modes supported by the coupled waveguide system, say for 

two even and odd modes. In this method, the coupling coefficient is defined as the 

power transfer ratio between the two waveguides. The power transfer efficiency 

between the two guides in an electro-optic channel waveguide directional coupler 

is presented in this chapter.

Finally, general conclusions arising from the whole research programme are 

explored and summarized in the last Chapter. The future trends and possible 

extensions of the work are also suggested. Finally, a list of references used in this 

thesis is presented.
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The Finite Element Method

2.1 Introduction

The finite element method, first developed for application to continuous 

and structural mechanics, is widely used in different fields of science and 

technology. It is a numerical technique for obtaining approximate solutions to 

boundary-value problems of mathematical physics. The method has a history of 

about fifty years. It was first proposed in the 1940s and its use began in the 1950s 

for aircraft design. Turner, Clough and their associates (1956) at the Boeing 

Aircraft Company used this method to calculate the stress-strain relations for 

complicated aircraft structures for which no known solution existed. In 1960, 

Clough introduced the term "finite elements" to describe the new technique for 

plane stress analysis. Although the finite element method originated in structural 

engineering, within a decade the basic concepts were being recognised as having 

wider applicability and were being used for the solution of problem in various 

areas like structural and fluid mechanics, heat transfer, electromagnetic theory, 

acoustics, and biomedical engineering. Subsequent development has been rapid,
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and the techniques are now well established within many scientific and engineering 

disciplines. Obviously, the finite element method, because of its tremendous utility, 

is in a rapid process of evolution. The basic idea of the finite element method is 

that any piecewise-continuous function can be approximated by a set of piecewise- 

continuous polynomials, each defined over a part of the field of domain of the 

above function. Instead of the function itself, its values at several points of the 

domain are calculated.

Mathematically, this method is an extension of the Rayleigh-Ritz-Galerkin 

technique (Zienkiewicz, 1977). It is therefore applied to a wide class of partial 

differential equations. When the method was first used it was not recognised at the 

start as an instance of the Rayleigh-Ritz principle. The whole procedure became 

mathematically respectable at the moment when the unknowns were identified as 

the coefficients in a Ritz approximation, and the discrete equations were seen to be 

exactly the conditions for minimising the system potential energy.

The Rayleigh-Ritz method has been used to yield approximate solutions for 

variationally formulated problems in many areas of physics and engineering. It is, 

however, associated with certain difficulties which prevent it from being used in a 

wider class of problems.

Firstly there is no systematic way of choosing the trial functions used in the 

approximation. Besides, for irregular-shaped boundaries, the required enforcement 

of the essential boundary conditions can be really problematic. Therefore the class
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of problems is immediately limited to those involving geometrically simple 

boundaries. Also for non-positive definite operators, the matrices obtained are 

often ill-conditioned.

There are also certain difficulties inherent in the fact that the Rayleigh-Ritz 

approximation is applied over the whole domain. Generally, very high degree 

polynomials have to be used to give an accurate description of the unknown 

function. In this case the procedure becomes more complicated, if the domain 

contains interfaces at which discontinuous changes of the material properties occur. 

Besides, the method does not offer the possibility of concentrating more on areas of 

interest or where the unknown function varies more rapidly.

Given the above shortcomings of the Rayleigh-Ritz method, the finite 

element approximation offers a very attractive alternative. The method is applied in 

a discretized way, free of the difficulties associated with "overall" techniques. 

Irregular boundaries and discontinuous domains can be easily handled and the 

mesh can be refined or expanded where appropriate. Even linear polynomials are 

sufficient to approximate almost any function and the discretized nature of the 

finite element method enables the systematic selection of the trial functions. The 

finite element technique also lends itself easily to computer implementation 

because it involves a large number of repetitive steps.

In particularly, it is suitable for automatic computation, and has been 

formulated to take maximum advantage of the capabilities of modem computers.
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With the introduction and advancement of computers, engineers realised that the 

solution of a large number of simultaneous equations no longer posed an 

insurmountable problem and this stimulated many new fields of applied research.

The electromagnetic waveguide can be classified into two categories from 

its cross-sectional shape. One is a planar waveguide or an axially symmetrical 

waveguide, which can be treated as an equivalent one-dimensional problem. The 

other is the more general arbitrarily shaped waveguide, which should be treated as 

a two-dimensional problem. Furthermore, depending on the eigenmode property in 

a waveguide, either a scalar wave analysis will be acceptable, or a vectorial wave 

analysis will be required.

This Chapter is concerned with the use of one- and two-dimensional finite 

element techniques applied to optical waveguide problems. The arbitrarily shaped 

optical waveguide can be considered, as shown in Fig. 2.1, being composed of 

several different materials, each of which can be described by arbitrary permittivity 

and permeability tensors e and p. The waveguide is assumed to be uniform along 

its longitudinal z axis. Assuming the time (t) and z variation are given by exp(jcot) 

and exp (-y/fe) functions respectively, the electromagnetic fields, X(x,y,z,t) and 

i (x,y,z ,t )  which are the magnetic field and the electric field at the angular 

frequency, co, have the form:

K (x,y,z, t) = H (x,y) exp [j (cot -  ßz) ] (2. 1)
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£ (x,y,z,t) = E (x,y) exp [/' (cot -  ßz) ] (2 .2)

where /3 is the propagation constant in the positive z-direction. H(x,y) and E(x,y) 

are the spatial time-independent magnetic field and the spatial time-independent

electric field respectively. The general geometry of the guide can, if necessary, be 

quite complicated, with an arbitrary permittivity profile e(x, y) in the transverse

(i.e. thex-y) directions.

2.2 Variational formulations

Finite element formulations are usually established via a variational or a 

Galerkin (method of moment (Harrington, 1968) or weighted residuals) approach.

y

z

Fig. 2.1 A general arbitrarily shaped optical waveguide geometry, which 
consists of several regions, where each may be of different type of materials.
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The latter is more flexible but when it is possible, it is advantageous to take a 

variational approach, especially when one global parameter such as the propagation 

constant is required. This form of derivation only will be considered in this chapter.

2.2.1 Maxwell's equations

Maxwell's equations are a set of fundamental equations governing all 

macroscopic electromagnetic phenomena. The equations can be written in both 

differential and integral form, but here they are presented only in differential form, 

since they lead to differential equations to be dealt with by the finite element 

method.

For general time-varying fields, the familiar Maxwell's equations in 

differential form can be written as

¿BV x E + = 0
dt

(Faraday's law) (2.3)

V x H ^ °  = J 
d t

(Maxwell-Ampere law) (2.4)

V ■ D = p (Gauss's law) (2.5)

V • B = 0 

where

(Gauss's law-magnetic) (2.6)

E = electric field intensity (volts/meter)

D = electric flux density (coulombs/ meter2)
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H = magnetic field intensity (amperes/meter)

B = magnetic flux density (webers/meter2)

J = electric current density (amperes/meter2) 

p = electric charge density (coulombs/meter3)

Another fundamental equation, which is known as the equation of continuity, can 

be written as

which specifies the conservation of charge.

The associated constitutive equations for the medium may be written as:

D = eE  (2.8)

B = p H  (2.9)

where e is the permittivity and |i is the permeability of the medium.

It is convenient to assume a complex time dependence through the factor 

exp (jcot), where j  is the imaginary unit, CO is the radian (circular) frequency, and t

denotes the time. With this assumed time variation, all time derivatives may be 

replaced by jco. We will not include the factor exp (jcot) explicitly as this factor

always occurs as a common factor in all terms.
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2.2.2 The Scalar Approximations

Several different variational formulations have been proposed for use 

(Koshiba et al., 1982; Silvester, 1969; Mabaya, 1981) with the finite element 

method. The simplest one is scalar, given in terms of only one field component and 

this type of formulation has been used for solving optical waveguide problems. 

This formulation is valid only in situations where the modes can be described as 

being predominantly TE or TM and one form suitable for quasi-TE modes can be 

written as (Mabaya et al., 1981):

k ln2(x,y)} (j)2 dx dy ( 2. 10)

where /3 is the propagation constant, n(x,y) is the refractive index profile and the 

integration is carried out over the waveguide cross-section domain, Q. A finite 

element program based on this formulation can yield ft2 as the eigenvalue of the

matrix equation for a given free-space wave number, k0, and the eigenvector, 

<p(x,y) is the transverse field distribution which is the Ex field component for the

quasi-TE modes. Similarly, the scalar variational formulation for the quasi-TM 

modes can be written as (Mabaya et al., 1981):

J(y/) = [ 2 1 ■n2(x,y)

(2.11)
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In this formulation y/(x,y) is the transverse field distribution, which is the Hx field 

component for the quasi-TM modes.

In the finite element approximation, the primary dependent variables are 

replaced by a system of discretized variables over the domain of consideration. To 

achieve this, the entire waveguide cross section is first divided into a patchwork of 

subregions or elements, usually triangles or quadrilaterals. Elements can have 

various shapes, such as triangles or rectangles, and they can also be of various 

sizes. Triangles are commonly used because they are easy to adapt to complex 

shapes. Using many elements, any cross-section with a complex boundary and with 

an arbitrary permittivity distribution can be accurately approximated. The simplest 

triangular element assumes a linear interpolation between the field values at the 

vertices of the triangle. Higher order interpolation polynomials are also used, with 

a larger number of nodal values which are unknowns of the problem in each 

element. By expressing the fields in terms of nodal values and with the assumed 

shape functions, the resulting field components are continuous over the whole 

domain.

To find these nodal fields, the usual (Rayleigh-Ritz) procedure is to force 

stationarity of the functional with respect to each nodal variable. This yields a 

matrix eigenvalue equation, with vector {x} of nodal field variables :

[A] {x}-MB] {x}=0 (2.12)
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where [A] and [B] are real symmetric matrices, and [B] is also positive definite. 

The eigenvalue A may be k] or ft2 depending on the variational formulations. It

should be emphasised that it is most desirable for the resulting matrix equation to 

be of this canonical form, to allow for an efficient and robust solution. This 

equation can be solved by one of various standard subroutines to obtain the 

different modal eigenvalues and associated eigenvectors.

2.2.3 The Vector formulations

The single scalar formulation is inadequate (except as an approximation) 

for the inherently hybrid mode situation of anisotropic or genuinely two 

dimensional, inhomogeneous optical waveguide problems. A vector formulation is 

necessary to represent accurately the general waveguide fields, of which there are 

at least two field components. However, as will be seen later, some vector 

formulations are affected by spurious or non-physical solutions which appear 

mixed with those which are correct in the computation.

One of the first vector formulations used for microwave and optical 

waveguides was in terms of the axial field components, Ez-Hz (Csendes and 

Silvester, 1970). This Ez-Hz formulation (Mabaya et al., 1981; Yeh et al., 1975; 

Vandenbulcke and Lagasse, 1976; Ikeuchi et al., 1981) cannot treat general 

anisotropic problems without destroying the canonical form of equation (2.12). 

Also, for a waveguide with an arbitrary dielectric distribution, enforcing boundary 

conditions in this approach can be quite difficult. Another fundamental
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disadvantage for optical waveguide problems is that this Ez-Hz formulation is 

based on axial field components which are the least important of the six 

components of the two vector E and H fields. For the Wmn mode, Hy is dominant 

but for the Hxmn mode, Hx and Ey are dominant. Additionally, this formulation is 

also affected by spurious solutions, and techniques to reduce them (Mabaya et al., 

1981) can be at the expense of greatly increasing the computing cost.

In 1956, Berk (1956) presented a number of vector variational formulations 

in the form of Rayleigh quotients for loss-free anisotropic microwave waveguides 

and resonators in terms of the H field, the E field or a combination of both. Later, 

Morishita and Kumagai (1977) and Chen and Lien (1980) established general 

procedures to derive variational formulations for self-adjoint and non-self-adjoint 

operators.

A vector E formulation has been applied to analyze cylindrical waveguides 

(English and Young, 1971), optical fibers (Katz, 1982), and magnetically 

anisotropic waveguides used for the solution of a variety of optical (and 

microwave) waveguides. These formulations have attracted attention because they 

can be used to analyze general anisotropic but loss-less problems. The natural 

boundary conditions for the E-field formulation are equivalent to a magnetic wall 

and so an electric wall has to be specifically implemented (i.e. h x E = 0). It is 

because of this need to force electric boundary conditions, that the E-field 

formulation is extremely difficult to implement for irregular shaped waveguides.
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However, the main problem is the enforcement of the field continuity across the 

dielectric interfaces.

When considering the H-field formulation, the natural boundary condition 

is that of an electric wall and so for the majority of electromagnetic problems it can 

be left free. However to force h-H = 0, on an arbitrary shaped waveguide is 

considerably easier than n x H = 0 where h is the unit vector normal to the 

boundary, and it can be specifically implemented to reduce the size of the matrices 

involved in the solution, and thus reduce the computational time. Another 

advantage of the H-field formulation is that for variations of the refractive index 

through the cross section of the waveguide there is no need to impose interface 

boundary conditions. The H-field formulation is more suited to dielectric 

waveguide problems where the magnetic field is continuous everywhere; 

furthermore, as the natural boundary condition corresponds to that of an electric 

wall boundary condition, there is no need to force the trial fields at conducting 

boundaries. This formulation can be written as (Berk, 1956; Rahman and Davies, 

1984):

Integration is carried over the waveguide cross-section, Q, where an 

asterisk denotes complex conjugation and e and p  are respectively the

£o2 (2.13)
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permittivity and permeability (which may be of arbitrary anisotropy) of the loss- 

free medium. Application of the Rayleigh-Ritz procedure to equation (2.13) leads 

to a similar eigenvalue problem as shown in equation (2.12), where now [A] is a 

complex Hermitian matrix which can be reduced to the real symmetric case by 

using a suitable transformation (Rahman and Davies, 1984a) for the loss-free 

condition, [B] is real symmetric and positive definite, and the eigenvectors {x} 

represent the unknown field components at the nodal points for different modes 

with co2 as their corresponding eigenvalues. Unfortunately, spurious solutions also 

appear in this formulation (as in the E-field formulation), but however, it will be 

seen later that these nonphysical modes can be avoided. In order to obtain a 

solution for a given wavelength, the P value has to be changed iteratively until the 

output eigenvalue corresponds to the correct wavelength.

The vector formulation has a disadvantage over the scalar formulation in 

that its matrix problem is larger than for the scalar approach. However, with this 

program, the use of the subspace iteration method (Bathe and Wilson, 1976) to 

solve the matrix problem makes this a less important issue.

Variational formulations in terms of the transverse H-field or E-field 

components have also been recently considered, including an implicit satisfaction 

of the divergence-free condition. These formulations use the minimum number of 

variables required and can completely eliminate spurious solutions but at the 

expense of the complexity of the matrix problem or the sparsity of the matrices
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(Hayata et al., 1986). In this case, the matrix order can be reduced to two thirds of 

what is needed in the full vector formulation but more work wilL be required in the 

future, particularly in the development of the formulations and in efficient matrix 

solution techniques (Fernandez and Lu, 1990) before this formulation becomes 

more popular.

The full 6-component E and H formulation (English, 1971a; Svedin, 1989) 

does not appear to have much advantage over the H-field or E-field formulation, 

since in this case, the degrees of freedom per node double. Apparent advantages 

reside in the simpler modelling of the basic equations, which allows the 

elimination of spurious modes, and this can be important when considering 

problems with special material properties.

2.3 Natural Boundary Conditions

The boundary condition which is automatically satisfied in the variational 

procedure is called the natural boundary condition. The advantage of the 

variational formulation is that the natural boundary condition can be automatically 

satisfied if left free. The functional defined in equation (2.10) has the continuity

outward unit normal vector. By contrast, the vector H-formulation given in 

equation (2.13) has the h ■ H = 0 (electric wall) as the natural boundary condition.

as the natural boundary condition where h is the
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If necessary, if the natural boundary condition may also be enforced to 

reduce the matrix order, and even these boundary conditions are satisfied if 

automatically left free. However, in some cases, it may be necessary to change the 

unsuitable natural boundary condition by introducing an additional surface integral 

around the desired boundary. If symmetry of a waveguide exists, then the 

advantage of that should be taken by imposing that waveguide symmetry. 

However, it may be necessary to analyze the structure with complementary 

symmetry conditions to get all the modes, but exploitation of the symmetry greatly 

reduces the computational cost.

2.4 Finite Element Formulation

The finite element method is based on the following principle. The 

differential operator equations which describe the physical problem are replaced by 

an appropriate extremum functional J, which is the variational for the desired 

quantity and is written in Euler density form. The problem may be regarded as that 

of constructing a solution surface H(x,y) over a specified region of the x-y plane, 

such as to satisfy the boundary conditions as well as the extremum requirement on 

J.

Most real problems are three dimensional. With certain assumptions, it is 

possible to approximate most of them as two-dimensional problems. For uniform 

waveguide problems an axial dependence in the form of exp (-jfiz) is assumed and 

the transverse plane is considered for the further characterization.
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2.5 Discretization of the problem

The use of the Finite element method starts with the subdivision of the 

region of physical interest into smaller regions called elements. There are a great 

many competing element shapes and it is not clear whether it is more efficient to 

subdivide the region into triangles or into quadrilaterals. Each element is 

essentially a simple unit within which the unknown can be prescribed in a simple 

manner. For the problem in hand, the continuum is separated by imaginary lines 

into a number of triangles, as shown in Fig. 2.2

y
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A consequence of such a division is that the distribution of the unknown H 

is also discretized into corresponding subzones. The subdivided, elements are now 

easier to examine, as compared to the entire body and the distribution of H over it.

In this scheme of grading, a number of vertices are generated and a set of 

field values is assigned to these vertices. The intersections of the sides of the 

elements are called nodes or nodal points, and the interfaces between the elements 

are called nodal lines. The elements are assumed to be interconnected at a discrete 

number of nodal points on their boundaries. The values of H at these nodal points 

will be the basic unknown parameters. In a two-dimensional problem, the 

triangular elements are better able to deal with curved or awkward boundaries. 

Owing to the flexibility of their size and shapes, the finite elements are able to 

represent a given domain more faithfully, however complex its shape may be. 

Problems with curved boundaries or surfaces have lead to the development of 

elements with curved edges or faces (Koshiba and Inoue, 1992; Miniowitz and 

Webb, 1991).

2.6 Shape Functions

Having decided on the discretization, the next choice is that of the 

representation of the element approximation, the shape functions, in terms of the 

variational parameters. The most common form of approximation in each element 

is the polynomial approximation. This is probably due to the fact that polynomials 

are relatively easily manipulated, both algebraically and computationally.
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Polynomials are also attractive from the point of view of the Weierstass 

approximation theorem, which states that any continuous function may be 

approximated, arbitrarily closely, by a suitable polynomial. The chosen functions 

should possess continuity, of the type required by the variational basis of the 

formulation, within the element and across the element boundaries. Without this 

interelement continuity, the functions are not admissible for the variational 

formulation, and the energy over the domain cannot be found by adding the 

separate contributions from within each element.

Within the domain described by an element, the pattern or shape for the 

distribution of the unknown field quantity, H, is approximated by some complete 

set of polynomials called shape functions. The shape functions are chosen uniquely 

to define the field within each finite element under consideration and which are 

linearly dependent on the values of fields assigned to the vertices of the element. A 

number of mathematical functions such as polynomials and trigonometric functions 

can be used for this purpose. The polynomials are specially used because of the 

ease and simplification they provide in the finite element. In this method, the actual 

field over the entire domain may be approximated by a finite number of trial sets of 

algebraic functions which are uniquely defined and differentiated.

The solution needs to be independent of the orientation of the local 

coordinate system geometrically, and this requirement implies that the solution 

surface is permitted an equal complexity of curvature in any direction. In order to 

guarantee this solution isotropy, the polynomial expression applicable to each
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subregion must be a complete polynomial ; that is, if the highest order term in it is 

xN and yN, and it must also contain all possible terms xmyn, 0 < m+n < N but no 

other terms. The polynomial will then contain, altogether, M = (N+l) (N+2)/2 

terms. The necessary terms for all possible polynomials up to a complete quadratic 

are shown below in Fig. 2.3. This figure is effectively the Pascal triangle.

degree of polynomial

1 constant

X y 1 linear

X2 xy y2 2 quadratic

x2y xy2 y3 3 cubic

x3y x2y2 xy3 y4 4 quartic

Fig. 2.3 Polynomial terms for complete polynomials in the two-dimensional 
analysis.

2.7 Representation of fields

The continuous field function (j)(;c,y) in the problem domain may be 

replaced by a set of discrete values (<t>p, p= 1,2,3,...,m) where m is the total number 

of nodes. This function will be continuous across adjacent triangles, so that if the 

potential is interpreted like a third dimension, it can be viewed as a surface with 

many triangular facets. To be admissible functions, they must satisfy some specific 

conditions between the elements; usually the continuity of the field across the 

boundaries is preferred.
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Inside each first order triangle and between the discrete nodes, <)> is 

interpolated continuously. This can be achieved by introducing- the "nodal shape 

functions", Nj(x,y). The field inside an element, tĵ Qc.y) when m = 3, can be written

as

< )  = £iv,(*,}O -0/ (2.14)
i=1

where ())( are the nodal field values. Equation (2.14) can be written in the matrix 

notation as,

,(x,y) = [/V, AT,]
0 1

02

.03

(2.15)

= [Af] U ,} (2.16)

where the row vector f/V] is called the shape function matrix and the column 

vector {(j)e} is the vector corresponding to nodal field values of the element. The 

simplest use of triangular elements is by first order elements, where a first-degree 

polynomial (a + bx + cy) is used over each element. It can be shown that element 

shape function {N} = |W]T can be written as (Reddy, 1993)

W
i

2 A

yt -y> f  -  F V
xiyl - x tyi y ,-y , X

k J Lx,y2- x 2y, yt - y 2
(2.17)
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where T denotes a transpose, Ae the area of the triangle and x,, x2, x3, y,, y2, and y3
t

are the x, y coordinates of the three nodes respectively. [TV] can also be written as

w

btx
= a. b2x CJ

A . b2x CJ  _

(2.18)

By comparing equation (2.17) and (2.18) the coefficients a;-, and ci are calculated

as

= *’* - * ’*  (2.19)
' 2 Ae

b. = y i ~ y' (2.20)

and

ci = (2.21)

Similarly a2, b2, c2, a3, b3, and c3 can be calculated by cyclic exchange of 1 -» 2 —» 

3 in equations (2.19) to equation (2.21).
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y

Fig. 2.4 This figure shows coordinates and node numbers of a typical first order 
three-noded triangular element.

The typical point P somewhere in the triangle of Fig. 2.4 with vertices 1,2 

and 3 can be considered, and thus N,- can also be denoted by

area of the triangle P12 
area of the triangle 123

( 2 .22)

Similarly N2 and N3 can be defined. It immediately follows from the area 

definition that

Nx+N2 + N3 = 1 (2.23)
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2.8 Infinite Elements

In this section, the implementation of so-called infinite elements is 

described. The field extends up to infinity for open-type problems where this is 

particularly important for the solution close to cutoff. In this case, the field decays 

slowly and the region of significant field value is considerably bigger. In orthodox 

finite element discretization, the region of consideration cannot extend up to 

infinity, yet in many of the waveguide problems, the problem domain extends up to 

infinity. Rahman (1984a) has developed the infinite element approach, which is 

found to be very useful to extend the effective region of interest up to infinity, as 

shown in Fig. 2.5. However, the use of the infinite element will extend the domain 

up to infinity with the shape functions decaying exponentially. For open types of 

structures, a small number of infinite elements need to be added starting from the 

end of the regular element boundaries. One "free" parameter, the decaying shape 

function parameters for the fields needs to be assumed and contributions to the 

functional are calculated from these infinite elements in a separate subroutine and 

added with the original global matrices. This is done by assigning a value to an 

integer through BLOCK DATA which can switch this subroutine ON or OFF 

according to the requirements. Simple shape functions were used to develop the 

formulation for isotropic materials. Assumptions were made using the linear field 

variation for the finite dimensional side, and on the other side, the field decaying 

exponentially. Similar assumptions lead to the development of two dimensional 

infinite elements, suitable for use at the corners.
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y

Fig. 2.5 Infinite strip

Suppose the infinite element extends toward the positive x direction up to 

infinity (shown in Fig. 2.6), then, any field component, such as Hx, can be written

as

Hx = f (x ,y )H Xi
(2.24)

where H and H are the x-components of the magnetic field at nodes 1 and 2 

respectively.
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y

b

Fig. 2.6 Two dimensional strips that one dimension extend up to infinity.

For the simplest case, this can be written as

Hx = (a,+b,y)e(̂ x,L)HXi+(a2 +b2y)e(' xlL)HXi (2.25)

where L is the free parameter related to the field decay and a,, a2, b,, and b2 can be 

evaluated in terms of the finite width of the infinite element, then

^ J~*ß)H _ + 1 - ^  \eK ' ’Hy }j -x/l ) ,

-  [iv„ W2]{h v  t t j
(2.26)

where b is the width of infinite strip and

N] = Zgi-x/z) (2.27)
b
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N2 = 1- -
b)

A-x/l ) (2.28)

Hy and Hz can be expressed in a similar way, and thus the vector field H can be 

described by

Hx 0 0 n 2 0 0

'Hy . = 0 0 0 n 2 0
0 0 0 0 n 2

= [N]{H}

(2.29)

Using these shape functions, the denominator of equation (2.13) can be evaluated

as

f {H}'[N]'p[N]{H}ds = {//}*f [N]'p[N]ds{H}JA JA

= W M « }

Components of the [Be] matrix can be evaluated, as discussed in Appendix 1.

Similarly the numerator of the equation (2.13) can also be calculated as follows: 

£{//}*[V x [A]]*£-'[Vx [A]]{//}^ = {H}'[Ae]{H} (2.31)

and this is also shown in Appendix 1.

The infinite elements extending in the y direction, or in two dimensions can be 

solved by using this technique.
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2.9 Element and Global Matrices

For any one triangular element, the functional, Je can be calculated and the 

total functional, J, associated with the assemblage of many elements is, in general, 

the sum of all the individual elements

J = (2.32)
1

x j > . r
e=l

' Ì W . M 1 +
v dx  dx

¿>{yv} d[N] 
dy dy

\
dxdy

7
{♦.}

+
m

1 1  {f.}"(/3={^}[^]-
e=l

(2.33)

where m is the number of the element, and represents integration carried over
J  A

each element.

The spatial derivative matrices [X] and [Y] can also be written in matrix form as

i M  = [fc, b2 A,] = [X]
OX

(2.34)

m
dy

c2 c3] = [T] (2.35)

where bi and c, are constant values only depending on the coordinate values of the 

three nodes for a given element, which are given by the equations (2.20) and (2.21)

55



Chapter 2 Finite Element Method

The integration required in Equation (2.33) can be easily carried out by using the 

following relation for a triangular element

J 1v; Ni N\ dQ. i ' . j ' . k W .  A 
(i + j  + k + 2)! e

(2.36)

After carrying out the integration, equation (2.33) can be written as

J = itY lM l'p A -H i'.Y m U ,}  (2-37)

where the eigenvalue X = P2 and the [A] and [B] matrices, for the scalar 

formulation (2.10) are given by

m
a  = X jJ{x}[x]+{i’}[y]-*0V{/v}[w]]<s} (2.38)

and

m

B = (2.39)

where {X} and {Y} are the transposed column matrix of [X] and [Y] respectively.

Since the energy expression of equation (2.38) is quadratic in nodal potentials, 

{</>,}, to minimise the energy functional, it is sufficient to set

(2.40)
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Following the minimization, the standard eigenvalue equation may be obtained as 

shown in equation (2.12).

The vector formulation can be similarly derived, except that instead of one 

unknown potential per node there are three unknown field components given by 

Hx, Hy and //,. Over each element, the three components of the magnetic field can 

be written in the matrix form as

= [at ] {««}

Hy(x,y) = [JV] {»>'} 

H,(x,y) = [W] {/#'}

(2.41)

where {//,'}, {///}, and {//;} are the three nodal field vectors of an element 

representing the x, y, and z component of the magnetic field. The full vector 

magnetic field over an element can be written as

(2.42)

where jc, y, z are the unit vectors in the x, y and z directions.

The application of the standard finite element techniques to find the 

stationary condition to the vector H-formulation given in equation (2.13) will yield 

the same generalized eigenvalue equation as shown in equation (2.12). However, 

for this vector formulation matrix [A] will be a complex Hermitian matrix and [B] 

will be a real symmetric positive definite matrix.
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2.10 Matrix generation

As mentioned earlier, the denominator of the equation (2.13), can be represented 

by matrix [B], as shown below.

[B] = f H'pHdCl  (2.43)JA

where A shows integration over a given triangle.

However, from equation (2.41)

[5] = ia({H}[W])-£([W]{ff})<ffi 1

[b ] = {ffr/ii[A'r[A'Hn{ff}JA J

where {H } is a column vector.

By considering |i as scalar, the [Be] element matrix can be defined as

[BJ = f [NX[N]dQ. (2.45)
•'A

From equation (2.44) the 9x9 [Be] matrix can be calculated and so, for example,

B -  /i [ ilh row ofN',  j th column ofN dQ. (2.46)
t ij J  A

The generation of the element matrices are shown in Appendix 2.

In this way all the components of the element matrix, [BJ, can be calculated. The 

numerator of equation (2.13) can be written by the [A] matrix and
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1. If e is isotropic, then it is scalar and it can be taken outside the integral.

2. If e is a tensor, then it is represented by 3x3 matrix and £'* is also a 3x3 

matrix.

If it is assumed it is isotropic, then £ is a scalar, and it can be taken out of the 

integration.

[A] = £ 1 £  (V x [N]{H})* ■ (V x [N]{H}) dCl (2.47)

then

[A] = -  JJ{[Q] [/i]}'[öpi])<Ä2

where

[Q]  =

0 d d

d z d y
d 0 d

d z d  x
d d 0

d y d  x

m

[AJ = 4 f [  Q]'[Q\da
c  J  A

(2.48)

(2.49)

(2.50)

From equation (2.50) the Ae element matrices can be calculated. All the elements 

of the matrix are assembled to form a global matrix [Ae] and [Be] in order to 

generate the eigenvalue problem. The most important parameter for the Global 

matrix is the sparsity, which is related to the number of non-zero elements. In 

solving waveguide problems by finite elements, the key factor affecting storage
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requirements and the computational effort is the choice of algorithm to solve the 

matrix equation.

2.11 Spurious solutions

A problem associated with the vector formulation of the finite element 

method is the presence of spurious solutions that arise along with the desirable 

physical solutions.

To eliminate these spurious solutions, the penalty function has been 

utilised, a method which has been successful (Rahman and Davies, 1984b) in 

eliminating these solutions previously resulting in problems associated with 

microwaves and optical waveguides.

The first stage in the elimination is the identification of solutions being either real 

solutions or spurious. This is achieved using the principle that for a real solution, 

its eigenvector should satisfy divH = 0. Thus, in essence, divH is calculated over 

the guide cross-section. The nature of divH variations for different eigenvectors are 

then examined and only those solutions are considered which have a low value of 

divH. Now since only the eigenvectors with low divergence are checked, a real 

solution can readily be identified among the spurious.

To implement this logic as the penalty function method, an integral is added to the 

functional (equation 2.13) which satisfies divH = 0. Thus the divergence-free 

constant is imposed by the using the penalty technique, and it can be written in the 

new expression for the functional
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J (V x H)* £-' (WxH)dQ  + \ \ ( y - H ) ' - ( y - H ) d &
0) = V £ o .

f H* pHdQ.
J  A

(2.51)

This method is comparable to the classical addition of an integral which changes 

the natural boundary conditions. The penalty function method thus reduces the 

spurious solutions, and it has been shown (Rahman and Davies, 1984b) to improve 

the quality of the field eigenvectors.

A separate subroutine can be introduced to implement the penalty function 

method and which adds the contributions from the second term of the numerator 

(2.51), when it is necessary to reduce the spurious solutions and improve the 

eigenvectors. It can be noted that this applies only to the vector solutions and not to 

the scalar approximations because they satisfy V • H -  0 condition.

Mabaya, Lagasse and Vandenbulcke presented an approximate scalar finite- 

element formulation for the analysis of the isotropic optical waveguide (Mabaya et 

al., 1981). This approach has as main advantages the smaller matrix dimensions, 

the requirement for less computer time, the presence of no spurious modes and the 

capability of easily computing higher-order modes. Spurious modes do not occur 

with the scalar approximation, and when appropriate this can be used to flush out 

spurious modes from the vector formulation, but much effort has gone into their 

proper removal from the accurate approaches over the last 8 years (Rahman et al., 

1991). Davies presented two ways of properly avoiding spurious modes (Davies, 

1993). One is the use of a new vector formulation in terms of the transverse
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magnetic field, Ht. It solves the difficulty by a new formulation with no need for 

special new finite elements. It follows that these spurious solutions will no longer 

appear if the basis functions are chosen to be divergence-free. This leads to the 

second which is the use of the original variational form of (2.13) but applying a 

more appropriate choice of basis vector functions from the armoury of finite 

elements. This is done by taking advantage of the recent introduction of "edge 

elements" (Bossavit and Mayergoyz, 1989). This method uses established 

formulations but with new finite elements some form of vector finite elements.

2.12 Summary

This chapter has considered the history and formulation of the finite 

element method. Various aspects of the use of the method have been considered, 

including the natural boundary conditions, the discretization of the problem, the 

shape function, and the representation of fields. The infinite element was also 

considered for open-type problems where the field extends up to infinity, and then 

the use of method to eliminate the spurious solutions that arise along with the 

desirable physical solutions was discussed. This lays the basis for the work 

described in subsequent Chapters on the use of the method to solve the problems 

defined in later chapters, forming the core of this thesis, starting with the 

implementation of the finite element method and consideration of the power 

transfer in the next Chapter.
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Implementation of the Finite Element 
Method and the Power Transfer 
Efficiency

3.1 Introduction

In Chapter 2, the formulation and general theory of the finite element 

method has been presented. The prime objective in this chapter is to discuss some 

important computational aspects related to the implementation of the finite element 

analysis. Here, briefly, the technique to obtain solutions of the eigenvalue problems 

will be mentioned.

Since the nature of the finite element method has been described 

previously, here only the implementation of the finite element method will be 

discussed. In general, using many elements, any continuum with a complex 

boundary and with an arbitrary index distribution can be approximated to such a 

degree that an accurate analysis can be carried out, even though the execution of 

the programme will require a large amount of computational time when the number 

of elements used is increased. The time to prepare the input data and to interpret
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the results will be discussed, as will the steps involved to obtain the results in the 

next section.

3.2 Flow Chart

The steps involved in the use of the finite element method are expressed in 

the flow chart given in Fig. 3.1. The required data for the implementation of the 

finite element method is entered through a data file. For example, the x and y 

coordinates of all the nodes and the relationship between the node identifiers and 

node numbers for all elements has to be defined and entered for an arbitrary two 

dimensional problem.

The required time for the preparation of these data should be considered, 

and to minimize the volume for these input data, it is necessary to develop 

problem-dependent mesh generators. In this semi-automatic approach, the problem 

domain is divided into a few large zones and the fineness of element subdivisions 

within each is specified. The initial input data about the large zones and 

refinements required are given as an input in the normal way in BLOCK DATA 

form, and the subdivisions are processed automatically. Alternatively, they can be 

input as "parameters" or can be read from a data file. For a particular problem, the 

nonidentical directional coupler waveguide, the input data are shown along with 

the structure in Fig. 3.2
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Fig. 3.1 Flow chart for the implementation of the finite element method.
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Fig. 3.2 Input data for a nonidentical directional coupler

Once the geometry of the structure has been defined, it is necessary to 

specify the boundary conditions. When the required boundary condition is same as 

the natural boundary condition of the variational formulation, then it can be left 

free. Since forcing of the boundary conditions reduces the size of the matrices, for 

regular or semi-regular structures, it is advantageous to implement it. The 

implementation of the boundary conditions also reduces the size of the matrices, 

and however, also to reduce the required storage, these boundary conditions are 

applied at the time of assembling the global matrices, resulting in only the reduced 

matrices being assembled.

For problems with one-fold symmetry, only half of the region of interest 

need to be considered. Similarly for problems with two fold symmetry, only one
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quarter of the problem need be taken into account. So in problems with two-fold 

symmetry, for the same mesh sizes, the matrix orders are reduced to one-fourth. 

However, one obvious drawback for this exploitation of symmetry is that the given 

waveguide must be solved four times for different possible ODD/EVEN 

symmetric combinations, if all the modes are required. However, by considering 

the direct matrix eigenvalue solution, as the matrix order is one-fourth of the 

original system, so its associated computational time is only one-sixty-fourth. 

Although the problem may need to be solved four times, however, the overall 

savings could be considerable.

It is also necessary to specify the degrees of freedom associated with each 

node. For the vector formulation, each node has three degrees of freedom, namely 

Hx, Hy, and Hz, the x, y and z components of H field, respectively. The degrees of 

freedom can be different for different formulations. For the solution of a new 

problem, initially it may be useful to attempt a solution by using an approximate 

scalar formulation. This is because the scalar formulation is free from spurious 

solutions and it requires a smaller computer time. In this scalar run "rough" 

eigenvalues for different modes can be found and these values can be used to 

choose an optimum "input beta" for subsequent runs using vector formulations. 

The present computer program can consider both the vector and scalar 

formulations and a particular formulation can be selected by giving different values 

to an integer variable.
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3.3 Output arrangements for Finite Element Method

The output of any solution should be checked properly, this being 

particularly important in the vector formulation, as the physical and spurious 

solutions can be intermixed, and because of the presence of the spurious solutions, 

eigenvectors along with their eigenvalues should be printed. However, a contour 

plot of the Hx, Hy, and Hz fields, the variation of the fields and power contours can 

be obtained by using a simple semi-automatic mesh generation program (or 

"APPLE" software package)

In this thesis, the least squares boundary residual (LSBR) method has been 

used along with the vector finite element method to analyse the power transfer 

from a single waveguide section to a guided wave section. The vector H-field finite 

element method is capable of providing accurate eigenvalues and eigenvectors for a 

wide range of optical waveguide problems including those of arbitrary shape, 

arbitrary index distribution, and using anisotropic materials. The least squares 

boundary residual method matches the continuity of the tangential electric and 

magnetic fields in the least squares sense by including many modes at the 

discontinuity plane, to yield the general scattering matrix.

In the next section, a brief account of the principles of the least squares 

boundary residual method will be given. The use of the LSBR method along with 

the vector finite element method is discussed and the results of its application to a
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series of relevant problems are presented in Chapters 5 to 9. A final discussion 

follows in Chapter 10.

3.4 Least Squares Boundary Residual (LSBR) Method

Discontinuity problems in optical waveguide devices are of considerable 

theoretical and practical interest. They play an important role in designing practical 

devices such as an isolated abrupt step discontinuity as in butt joints or as finite 

cascade sections such as gratings, tapers, bendings, or y-junctions. The problem 

considered here is an abrupt discontinuity, in the transverse plane, at z = 0, between 

two arbitrarily shaped uniform waveguides. Each guide can have a scalar or tensor 

permittivity that varies arbitrarily in the two transverse directions, and an incident 

wave is presumed in respect of one mode.

3.4.1 Basic theory of the Least Squares Boundary Residual 
method.

The Least Squares Boundary Residual method was introduced as an 

alternative to point-matching (and Galerkin) methods, satisfying the boundary 

conditions in the usual least-squares sense over the discontinuity interface. The 

method is rigorously convergent, the error minimization being global rather than 

sampled, and has the flexibility of introducing an electric/magnetic weighting 

factor.
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X

(a)

Fig. 3.3 Discontinuity at the junction of two dielectric waveguides, (a) Vertical 
section of the discontinuity between sides I and II. (b) Transverse cross section of 
the discontinuity at the junction of two sides.

The incoming wave incident on the discontinuous junction between 

dielectric waveguides I and II as shown in Fig. 3.3 is partly reflected, partly 

transmitted, and the rest radiated. Let E\ and H\ be the transverse components of 

the electric and magnetic fields of the incident wave, respectively. Some of the 

incident wave is reflected into side I. Besides, there will be many modes generated 

at the discontinuity plane to satisfy the boundary conditions. These can be guided
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or radiated modes in sides I and II. The transverse components of the total 

electromagnetic fields Ej and H{ in side I and E1/  and H 1/  in side II at the 

discontinuity plane (z = 0) can be expressed in terms of the eigenmodes of side I 

and side II, respectively, as follows:

£/ =
/=i

(3.1a)

Hi = H . ' - i a ,« , !  
1 = 1

(3.1b)

E" = 2 > ,£ "
/ = 1

H!' = ±b,HZ

(3.1c)

(3.Id)

where a, are the amplitudes of the ith modes reflected from the junction with 

E'ti, H[ transverse modal field components in side I. Similarly ¿>- are the amplitudes 

of the ith modes transmitted in side II with E " , H" transverse modal field 

components. Many modes are generated to satisfy the boundary conditions at the 

discontinuity plane and they may be propagating, radiating, or evanescent.

The LSBR method enables the calculation of a stationary solution to satisfy 

the continuity conditions of the tangential fields in a least squares sense by 

minimizing the error functional, 7, given by
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J = j \ E i - E j ' f +  (X-ZZ\h ! - H ! ' \ 2dQ (3.2)

where Z0 is the free-space wave impedance and a  is a dimensionless weighting 

factor. To obtain the approximate numerical solution to the problem, the infinite 

series expansions of equations (3.1) and (3.2) are truncated, including all the 

relevant propagating modes plus as many radiating and/or evanescent modes as is 

convenient. The minimum criterion of (3.2) reduces to the following linear 

equation :

where C is square matrix generated from the eigenvectors and v is an array due to 

the incident mode. Vector {*} is made up of all the unknown modal amplitudes. 

The elements of C and v are given by

where i,j = N  and N  is the total number of modes in sides I and II and the 

vectors Et and Ht are made up of all the corresponding modal fields in both sides.

Inner products involved in the above expressions are defined as

Cx = v (3.3)

(3.4a)

(3.4b)

(3.5)
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j|c
where JCj and x 2 are two field vectors, x 2 is the complex conjugate of x 2 and

integration is over the guide cross-section. The solution of equation (3.3) gives in 

{x} the required approximate coefficients of a,- and bj. These constitute one 

column of the scattering matrix, corresponding to the chosen incident mode.

3.4.2 Numerical Analysis

Nodal values of the complete H field for each mode for both the guides are 

obtained using the FE program. The E field over each element can be calculated 

from these nodal H fields by using Maxwell's equations. Many modal eigenvalues 

and eigenvectors for both sides of the discontinuity plane can be used as the input 

to the LSBR program. These eigenvalues and eigenvectors are generated by the 

vector FEM program. The LSBR program calculates the integral J and minimizes 

the error criterion (3.2) with respect to each value of af- and for any given 

incidence, by solving a homogeneous linear equation (3.3). Such a solution will 

give the unknown column vector {x} consisting of the unknown reflected and 

transmitted coefficients of all the modes considered in the analysis. The singular 

value decomposition algorithm was used to solve the linear equation (3.3). For 

numerical efficiency, the FE nodal points in side I are matched with the nodal 

points of side II across the transverse plane at the interface. There is no need of 

extrapolation to find J as these points can be computed over each triangular

element and summed over all the elements over I I  Jc . Also there is no need to
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generate nodal E fields, as nodal H field values can be used directly to calculate the 

electric field part of the integral, 7, in equation (3.2).

This is the outline of the least squares boundary residual technique which is 

applied the work discussed in Chapter 5 to treat the discontinuity problem in 

directional coupler design and evaluation.

3.5 The Propagation Model

The beam propagation simulations based on the finite element method 

applied for the transverse domain and the use of unconditionally stable Crank- 

Nicholson scheme along the axial direction were also undertaken to check the 

results of the Least Squares Boundary method and the coupled mode approaches.

The time-dependent wave equation for pulse propagation in a nonlinear 

waveguide is given by (Adachihara et al, 1990):

d 2E
d z 2

+ 2jk0P
dE BE
d z /3v; d t

Æ d
d 2E 
d t 2

- k l [ p 2 - ( n 2+8)\E  = 0 

(3.6)

where k0 is the wavenumber of the field in the vacuum, p is the effective 

index, v,- is the group velocity of the field in medium i, Dp is the group velocity 

dispersion and 5 is the total nonlinear contribution to the refractive index. Ignoring 

group velocity dispersion for the propagation distances under consideration and
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applying the slowly varying envelope approximation to equation (3.6) leads to the 

time-dependent paraxial wave equation:

2jk0P
d E  n, dE
d z  P v, d t

+ ■d 2E
- k l [ p - t f ) ] E  = 0 (3.7)

The numerical simulations are carried out on the paraxial wave equation 

(3.7) by a combination of the finite element/Crank-Nicolson method (Hermansson 

et al., 1990; Hayata et al., 1990) and a characteristic scheme similar to that of 

Adachihara et al. (Shi and Chi, 1991; Mitchell and Moloney, 1990; Adachihara et 

al., 1990) equation (3.7) can be expressed symbolically in the form

d E  ni d E  
dz /3vi d t

= (L)E (3.8)

where L is the second-order diffraction. The total derivative on the left side 

of equation (3.8) is expressed in terms of a directional derivative in the (z,t) plane 

and integrations in the plane are taken from (zj,tn) to (z;+1,in+1). In the spirit of the

split-operator technique (Hayata et al., 1990) the right hand side of equation (3.8) 

is split into the linear and nonlinear parts solving them separately and combining 

the results. The linear part of equation (3.8) is first discretized using the standard 

Galerkin/finite-element method for the transverse direction only and the resulting 

matrix differential equation is finite difference to yield the following algorithm,
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taking into consideration the characteristics condition — At = Az, for which At
P v,

is calculated for any given Az :

[A + e A z i ,^ . , ] ^ . ,  = [A + (e-l)A zL „]£„ (3.9)

In the Crank-Nicolson approach, 0 = 0.5 has been used for all the 

simulations in this work.

3.6 Summary

This chapter has described the important computational aspects related to 

the implementation of the finite element method. The approach to the use of the 

method was presented in the form of a flow chart. Two different methods to 

calculate the power transfer between two guides, namely, the least squares 

boundary residual approach and the propagation model approach were discussed. 

The application of this approach will be presented in Chapter 5, 6, 7, and 9. 

However, in the next Chapter, an alternative approach using coupled mode theory 

is considered first, reviewing the development and applications of the theory to the 

problem in hand.
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Coupled-Mode Theory

4.1 Introduction

Actual waveguides are never perfect. There are always index 

inhomogeneities or slight changes of the core width, which cause the modes of the 

waveguide to couple among each other. For example, if a pure mode is excited at 

the beginning of the guide, some of its power may be transferred to other guided 

modes, resulting in signal distortion since each guided mode travels at its own 

characteristic group velocity. Transfer of power to the radiation modes cause losses 

since the power is carried away from the core regions into the cladding which is 

effectively of infinite dimensions. Therefore, it is very important to know the 

amount of coupling that is caused by the different types of waveguide 

imperfections, as a knowledge of the coupling coefficients makes it possible to 

determine the tolerance requirements, if bounds on the allowed radiation losses or 

on guided mode coupling have been established. Mode coupling may even be a 

desirable effect. For multimode operation of waveguides it is possible, at least in 

principle, to reduce the pulse dispersion resulting from the different group
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velocities of the modes by coupling all the guided modes among each other. The 

theory of mode coupling is thus of fundamental importance for the design and 

operation of dielectric waveguides.

A brief historical perspective of the coupled mode theory is first given, 

including the development and applications of the theory in microwaves in the 

early years and in optoelectronics and fiber optics in recent years. The coupling 

between the waveguide modes is examined and the more general coupled-mode 

equations are considered, and applications which are described by general coupled-

mode equations such as codirectional coupling, contradirectional coupling and the 

coupling coefficient. Directional coupling, which assumes that only two 

waveguides are involved in the coupling is considered, followed by three different 

coupled-mode approaches which were used to calculate the power transfer in this 

work.

4.2 Historical perspective

The concept of coupled modes in electromagnetics may be first considered 

to have begun in the early 1950s. The application was initially to microwaves and 

developed gradually through the contributions of many research workers. In 1954, 

Pierce applied the coupled mode theory to the analysis of microwave travelling- 

wave tubes (Pierce, 1954). Later the work of Gould (1955) followed on the 

backward-wave oscillators. The coupled mode theory was then employed to treat 

parametric amplifiers, oscillators, and frequency converters (Louisell, 1960).
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In the meanwhile, various microwave waveguides and devices were being 

developed. Miller (1954) first introduced the coupled mode theory to the analysis 

and design of microwave waveguides and passive devices. Louisell (1955) soon 

generated a theory to treat tapered waveguide structures, where the coupling 

coefficients depend on the length z. In the 1960s, the coupled mode theory was 

further developed to describe mode conversions due to various irregularities in 

microwave waveguides (Miller, 1968; 1969), and periodic waveguide structures 

(Tang, 1969; Huang, 1981).

A rigorous derivation of coupled mode theory was carried out by 

Schelkunoff (1955). He obtained a set of generalised telegraphist's equations which 

are a different version of the coupled mode equations, obtained directly from 

Maxwell's equations by expanding the unknown electromagnetic fields of a 

coupled system in terms of the known modes of an uncoupled system. Once the 

modes of the uncoupled system are defined the coupling coefficients may be 

determined clearly. The coupled mode equations are equivalent to Maxwell's 

equations as long as a complete set is assumed for the mode expansion. For most 

applications, however, only a limited number of modes (usually two) is used in the 

expansion. Therefore, the coupled mode theory remains an approximate, yet 

valuable and often fairly accurate mathematical description of electromagnetic 

oscillation and wave propagation in a coupled system. Haus showed in 1958 that 

the coupled mode theory could be derived from a variational principle set up for 

the propagation constant of the coupled system (Haus, 1958). Due to the stationary
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nature of the variational principle, the errors made in an incomplete expansion do 

not lead to a dramatic deterioration of the accuracy for the propagation constants 

calculated from the use of the coupled mode theory. If the fields of the coupled 

system are approximated as a linear superposition of the fields of the uncoupled 

systems, then the optimum result obtainable for the propagation constants 

originates from the coupled mode equations.

The coupled mode theory for optical waveguides was developed by 

Marcuse (1971; 1973), Snyder (1970; 1972), Yariv and Taylor (1973), and 

Kogelnik (1969; 1975), from the early 1970s. It has been successfully applied to 

the modelling and analysis of various guided-wave optoelectronic and fiber optical 

devices, such as optical directional couplers made of thin films and channel 

waveguides (Taylor, 1973; Kogelnik, 1975; Noda, 1981; Haus, 1981). It has also 

been used to study the wave coupling phenomena in nonlinear media such as 

harmonic generation in bulk materials (Armstrong et al., 1962) and nonlinear pulse 

or soliton propagation (Crosignani et al., 1981; 1982).

The conventional coupled mode theory assumed that the modes of the 

uncoupled systems are orthogonal to each other. This may be true if the modes 

belong to the same reference structures. In studying the mode coupling in coupled 

systems, however, the modes of the isolated systems are often chosen as the basis 

for the mode expansion and these modes may not be orthogonal. The orthogonal 

coupled mode theory (OCMT) is not correct for the description of the mode-

coupling process in this case. The effect of nonorthogonality between waveguide
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modes on cross-talk in optical couplers was first recognised by Chen and Wang 

(1984) and then studied by Haus and Whitaker (1985) in a proposal to eliminate 

the cross-talk due to this effect. Later on, several formulations of the nonorthogonal 

coupled mode theory (NCMT) were developed by Hardy and Streifer (1985), Haus, 

Huang, Kawakami, and Whitaker (1987), and Chuang (1987). The new 

nonorthogonal coupled mode theory (NCMT) is shown to yield more accurate 

dispersion characteristics and field patterns for the modes of the coupled 

waveguides. It also calls for a modification of the description of the power 

exchange between the waveguides.

There were some discrepancies among the different formulations at the 

early stage of the development. Some were superficial and soon resolved by 

reformulation (Streifer et al., 1987). Snyder, Ankiewicz, and Altintas (1987) 

showed that the nonorthogonal formulations could lead to erroneous results for the 

coupling length of the TM modes of parallel slabs when the index discontinuity is 

large. The origin of the error is apparent in this case since the waveguide modes 

used as the trial solution in the coupled mode theory are subject to serious error 

when the index steps are large. They have also demonstrated, in the same example, 

that the conventional orthogonal coupled mode theory based on the same trial 

solution gives excellent prediction about the coupling length, as was earlier 

resolved by Haus, Huang, and Snyder (1989).

Despite the controversies, there has been an intense level of research 

activity in the past few years in developing and applying the nonorthogonal
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coupled mode theory in the areas of optoelectronics and fiber optics. Vassallo 

(1987), Marcatili (1986), Syms (Syms and Peall, 1988), Huang (1989) developed 

simplified scalar versions that may be applied to weakly guiding structures and a 

modified vector version for the strongly guided structures.

4.3 Coupling between waveguide modes

4.3.1 The Coupled-Mode Equations

Many of the experimental situations of guided wave optics and especially 

those which involve the exchange of power between modes can be treated by 

means of the coupled-mode approach. As mentioned earlier, this formalism, 

introduced originally by Pierce (1954), describes the total propagating disturbance 

in a structure as a sum of (usually two) unperturbed modes of the system whose 

amplitudes vary with axial distance, z, due to some coupling between them. It has 

produced useful results when the z variation is slow, and has been applied to the 

description of different guided-wave phenomena (Yariv, 1973). In the following 

section some of the main features of this formalism will be discussed.

Consider two electromagnetic modes with, in general, different frequencies 

whose complex amplitudes are A and B. These are taken as the eigenmodes of the 

unperturbed medium so that they represent propagating disturbances

a(z,t) = Aei M °z) 

b(z,t) = BeHt°b'±PbZ)
(4.1)
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where A and B are the complex normalized amplitudes which are independent of z 

in the unperturbed structure .

In the presence of a perturbation, power is exchanged between modes a and 

b. The complex amplitudes A and B in this case are no longer constant but depend 

on z. They can be shown to obey relations of the type

^  = K+Be-*  
dz

dz

(4.2)

The constant, A, is equal to the difference in the propagation constants of 

the driven waves and the driving polarizations. The phase mismatch constant, A, 

merits some discussion. It is clear from the structure of (4.2) that a cumulative 

sustained exchange of power between modes a and b requires that A = 0. Otherwise 

the values of dA/dz, for example, from different parts of the propagation path 

interfere destructively. In most of the problems of interest, the process of power 

exchange can be visualised as follows. Travelling mode b interacts with the 

perturbation to yield a travelling polarization wave. This wave in turn drives mode 

a. Simultaneously, mode a interacts with the perturbation to drive mode b.

The coupling coefficients K ^  and K are determined by the physical 

situation under consideration and will be discussed in section 4.3.2.
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However, before proceeding with specific experimental situations, some 

general conclusions which apply to the large number of phenomena which are 

described by equations of the general form of (4.2) are discussed.

4.3.2 Codirectional Coupling

First, the case where modes a and b carry electromagnetic power in the 

same direction is considered. It is extremely convenient to define A and B in such a 

way that |A(z)|2 and |Z?(z)|2 correspond to the power carried by mode a and mode 

b, respectively. The conservation of total power is thus expressed as

If the boundary conditions are such that a single mode, say b, is incident at z = 0 on 

the perturbed region, z > 0, the following applies:

(4.3)

which, using (4.2), is satisfied when

(4.4)

b( 0) = B0
(4.5)

a(0) = 0

Subject to these conditions, the solutions of (4.2) become
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A(z) = B0
2 Kab

(4K2 + A2)
- e ' W 2 )  sin j ( 4 K ! + A2)’ (4.6a)

B(z) = B0e(;'Az/2) cos 1 ( 4 * ’ +*’)**' - J
(4K2 +A2)X sin i(4 * > +4’)*z

(4.6b)

where = l ^ l 2.

Under phase-matched condition (A = 0), a complete spatially periodic 

power transfer between modes a and b takes place with a period, k /K, in this 

situation,

a(z,t) = B0^ e j{o>°‘-p°z) sin(Kz) 
K

b{z,t) = B0ej{Wb‘-M  cos(Kz)

(4.7)

4.3.3 Contradirectional Coupling

In this case the propagation in the unperturbed medium is described by

a = Aej{co°'+p‘z) 

b = Bel{<0b‘~PbZ)
(4.8)

where A and B are constant. Mode a corresponds to a left (-z) travelling wave while 

b travels to the right. A time-space periodic perturbation can lead to power
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exchange between the modes. Conservation of total power may now be expressed

as

dz

which is satisfied by (4.2) if we take

* *  = K a

(4.9)

(4.10)

so that

—  = K,Be~Ita 
dz “

—  = K 'A e 1*
dz ab

(4.11)

In this case, mode b is taken with an amplitude B0 to be incident at z  = 0 on 

the perturbation region which occupies the space between z = 0 and z - L .  Since 

mode a is generated by the perturbation, this yields a{L) = 0. With these boundary 

conditions, the solution of (4.11) is given by

Mz) = B0 2 jK ahe—y(Az/2)

. . , SL ,S L-Asinh-----h /5cosh —
2 2

sinh ' ¡ ( z - L ) ' (4.12)
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,y(Az/2)
B ( Z )  = B{0 A . USL , SL 1Asinh-----h /Scosh—  L

2 2

Asinh ' f ( - i ) + y'Scosh

(4.13)

where

S = ^ 4 K 2 -  A2 , and /IT s  |K&

Under phase-matching conditions (A = 0) we have

A(Z) -
sinh[AT(z -  L)] 

cosh(AX)

B(z) = B0
cosh[if(z -  L)] 

cosh(^L)

(4.14)

4.3.4 The Coupling Coefficient

The general behaviour of the two coupled modes is described by (4.6), 

(4.12) and (4.13) for the case of codirectional and contradirectional coupling, 

respectively. The form of these equations is independent of the numerical 

magnitude of the coupling coefficient, K. The latter, however, determines the 

interaction strength or, in practice, the distance over which a given fractional power 

exchange between the two modes takes place.

Consider the coupling between, say, a TE mode

a(±){x,z,t) = A {±)(z)ei{0,°*p"z) e;a)(x) (4.15)
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and a forward-travelling TM mode

b ^ (x ,z ,t)  = B{+](z)ej{0h'-M  X\b)(x) (4.16)

where A and B are the power-normalised mode amplitudes. The (+) and (-) 

superscripts refer to forward and backward waves respectively. Consider the 

dielectric waveguide sketched in Fig. 4.1.

i
X
k

fc. 7

n , ------------ ►
propagation

A.---L

n 3

Fig. 4.1 Schematic of a planar dielectric waveguide.

It consists of a film of thickness, t, and index of refraction, n2, sandwiched 

between media with indices, and n3. Taking = 0, this guide can, in the

general case, support a finite number of confined TE modes with field components 

Ey, Hx, and Hz and TM modes with components Hy, Ex, Ez. The transverse function 

Sy(x) is taken as
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' C exp(-qx), 0 < x < oo

C [cos(/ix) ~(q / ft)sin(/ix)], - t< x <  0

C [cos(fa) + (<7//z)sin(fo)] exp[p(jc + f)],

where

h = ( n \ e - p f

9 = ( F - n t e f  

p  = ( p ' - n l k 1)*

c

and the transverse function Ky(x) is taken as

- - Ce~qx,

« ,(* ) =

C ~ —cos(hx) + sin(hx)
q

-C  —cos(ht) + sin(/if)
q

where

n 2q = — qn,

0 < x < °o 

- t  < x < 0

< x < - t

The wave equation for the perturbed and unperturbed case are

(4.17)

(4.18)
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(4.19a)

V 2Ey(r,t) = fj£ (4.19b)

where Ppert represents the deviation in the medium polarization responsible for the 

mode coupling. The wave equation for the perturbed case follows directly from 

Maxwell's equation if D = EqE+P is taken into consideration. Formal, but 

straightforward considerations show that the coupling between the two modes may 

be described by

where, in this case, Ppert(r,t) is a polarization arising from the interaction of field 

of the TM mode, b+(x,z,t), and the medium perturbation responsible for the 

coupling of the two, otherwise independent, modes. This perturbation can be due, 

as an example, to a travelling sound wave, mechanical corrugations, an induced 

electrooptic birefringence, or a magnetooptic Faraday rotation. Now, synchronous 

exchange of power (i.e., one which does not fluctuate in time or space) requires 

that the exponents on both side of (4.20) be equal. Since this will not occur in 

general for both A(') and A(+), a coupling will take place from the forward TM 

mode to either Af) or A(+). This last statement can be expressed analytically, by 

comparing (4.20) to (4.2) which gives

 ̂cj((oat+p„z)
dz

) cK‘»,l-PgZ)
dz

(4.20)

(4.21)
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In the cases of interest in this work A+ » A or vice versa, and the

coupling is limited to the pair of modes for which A is small. When equation (4.21) 

is applied, as will be done in the following sections, it will be found that Ppert(r’t) 

is proportional to B+(z)eia}°' so that Kab is a constant.

4.4 Directional Coupling

Exchange of power between guided modes of parallel waveguides is known 

as directional coupling. In an optoelectronic system, waveguide directional 

couplers perform a number of useful functions in thin-film devices, including 

power division, modulation, switching, and frequency and polarization selection.

The power can be completely transferred from one waveguide to the other 

when two coupled waveguides have equal propagation constants (the synchronous 

case). There is only a fraction of the power initially propagating in one waveguide 

which can be transferred to the other when the propagation constants are unequal 

(asynchronous case).

Waveguide coupling can be treated theoretically by using coupled mode 

theory. Consider the case of the two planar waveguides as shown in Fig. 4.2. The 

refractive index distributions for the two guides in the absence of coupling are 

given by na(x) and nb(x). The transverse electric field distribution for a particular 

guided mode of waveguide, a, and a particular mode of waveguide, b, will be
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denoted by E{ya) and £*b), and the propagation constants by (3fl and The field for 

the coupled-guide structure for propagation in the positive z direction may be 

approximated by

Ey = A { z ) ^ \ x ) e i{w,-^ z)+ B {z)Z ^ \x )e j[̂ l] (4.22)

Fig 4.2 Spatial variation of refractive index for uncoupled waveguides na{x) and 
nb(x), and for a parallel coupled waveguide structure nc (x).

The perturbation polarization responsible for the coupling may be calculated by 

substituting (4.22) into (4.19), neglecting the variation of A and B. The result is

92



Chapter 4 Coupled-Mode Theory

Pm  = - e ' - e ^ A i z i ^ - n D e - ' ^ + S ^ B l z i n l - n D e - ^ ] (4.23)

where nc{x) is the refractive index for the two-guide structure.

Substituting (4.23) into (4.20) and integrating over * yields

dA
—  = K^Be-’“ + M„A 
az

^  = KabA e ^
dz

(4.24)

where

A =

K„  = -^f-linl-nlW'cydx

M, J£0v

(4.25)

The terms Ma and Mb represent small corrections to and so (4.24) reduces to 

the familiar form of (4.2), with A = -  (3b -  j[Ma - M b). The solution is given

by (4.6). If a power, P0, is initially coupled into guide b at z = 0, the interguide 

distribution for z > 0 may be given by
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(4.26)

J ( 4 / s: 2+A 2f 2z
2

Complete power transfer occurs in a distance L = k /IK  in the synchronous case (A 

= 0). In the asynchronous case (A * 0), both the coupling length and the maximum 

power transfer are less than in the synchronous case.

The coupling between waveguides with different propagation constants

most efficient coupling by a sinusoidal perturbation requires that A = 0, where

and A is the period of the perturbation, measured in the z direction. Both 

codirectional and contradirectional power transfer are possible.

The preceding discussion assumes that only two waveguides are involved in 

the coupling, but coupled-mode theory can also be applied to problems involving 

more than two waveguides. In the case of an array of equally spaced, synchronous 

waveguides, the coupled-mode relations are given by:

(/3<a) * $ h) ) can be improved by a periodic perturbation in the refractive index. The

(4.27)

(4.28)
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where K may be obtained from (4.25), and An represents the mode amplitude for 

the nth waveguide. If all of the incident power is initially in the zeroth guide for z = 

0, the solution to (4.28) is then given by

A M  = A0(0)(-j)nJ.(2jKz) (4.29)

for z > 0, where Jn is the Bessel function of order n.

4.5 Three different Coupled-Mode approaches

4.5.1 Introduction

Theoretical improvements in the understanding of strongly coupled 

waveguides have only been attempted very recently (Hardy and Streifer, 1985; 

Chuang, 1987). A simple and approximate version of the coupled-mode equations 

for parallel dielectric waveguides has also been presented by Marcatili (1986) to 

account for the asymmetric properties of waveguides using a newly found relation 

between the coupling coefficients and the overlap integral of two-coupled 

waveguides. A few conditions are assumed in that paper :

1) A scalar formulation of the fields is considered.

2) The refractive index perturbation is very small, such that second-order 

terms can be ignored.

n1 2 = n02[l + Aa(x,y) + Ai (x,y)]2 

n2 » «o[l + 2Aa(x,y) + 2Ai,(x,y)]
(4.30)
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Thus the new relation between the two coupling coefficients in the work of 

Marcatili (1986) is only approximate.

3) The overlap integral C is assumed to be small (weakly coupled) and is 

not included in the coupled-mode equations because the coupled-mode equations 

in the work of Marcatili (1986) are almost the same as those for the conventional 

theory without including the overlap integrals in the four coupling parameters, yfl,

7b' Kab» Kfoa.

Chuang has applied the theory developed in several papers (Hardy and 

Streifer, 1985; 1986; 1986a; Haus et a i, 1987; Chuang, 1987; 1987a) and showed 

that all the above conditions are not required. It has been shown that an exact 

analytical relation governing the coupling coefficients, the overlap integrals, and 

the propagation constants derived in the paper from Chuang (1987) using a 

generalised reciprocity theorem can be combined with the formulation of Marcatili 

and will give very good numerical results, even for strongly coupled waveguides. It 

has been pointed out in the work of Hardy (Hardy and Streifer, 1985) that the four 

parameters ya, yfc, Kab, and Kba should include the overlap integrals to obtain the 

correct propagation constants of the supermodes. Since only (3a, of the 

individual waveguides and Kab, Kba of the conventional coupling coefficients are 

used in the coupled-mode equations in the work of Marcatili (1986), that theory 

will not yield accurate numerical results and may violate energy conservation 

significantly, unless the overlap integral C «  1, which is assumed by Marcatili 

(1986).
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Three very similar formulations of strongly coupled waveguides have been 

presented in recent publications (Hardy and Streifer, 1985; Haus et ai, 1987; 

Chuang, 1987). The formulation by Haus et al. (1987) is limited to the lossless 

system and has a small difference in the z-component of the electric field for the 

trial functions in the variational approach. The formulation of Hardy and Streifer

(1985) does not satisfy energy conservation and the reciprocity theorem and still 

contains a small error, while the theory of Chuang, (1987) (which was derived in a 

much simpler way) satisfies these laws analytically. Independently, a reformulation 

of the work of Hardy (Hardy and Streifer, 1985) has been made (Streifer et ai, 

1987) recently and is identical to that of Chuang (1987) after the modifications.

The formulations from Hardy and Streifer, Marcatili and Chuang have been 

used in this work to calculate the power transfer and some parameters such as Cab, 

Cba, Kab, Kba, P7 and [32 in different structures in this thesis. A comparison, is then 

made of those results. Those formulations are shown in the following section.

4.5.2 The formulations from Chuang for Two Coupled 
Waveguides

Starting with the coupled-mode equations

dU
dz

J ï 'U  + jKobV (4.31a)

dV_
dz j r bv+jKbau (4.31b)
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where

f t ,+(*11 ~ C ^ 2 l )
r° (1 -c l)

f t ,+ ( * 2 2 - C atKu )

n  = r a

(*1 2  *2 2

K*  = ( 1 - c i )

*„« =
(^21

(1 - c i )

(4.32a)

(4.32b)

(4.32c)

(4.32d)

where the subscript 1 refers to waveguide a or 1, and 2 refers to waveguide b or 2, 

whichever is convenient.

and Kpq (p,q = 1,2 or a, b) are defined as

C„  =

Cpq ~ ~2^PH + Cqp) ~ Cqp

Kpq = l \ \
Ae(?) E t̂h . £■(?) _ __ (̂p)jp(?)

(4.33)

(4.34)

(4.35)

where £(x,}0 is the permittivity function of the multiwaveguide system and 

£('<l\x ,y )  is the permitivity function of a single waveguide, q, defined as
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Ae(q̂ = e(;c,;y)- £(<?)(x,y) (4.36)

In the theory of Marcatili (1986),

1) is assumed to be zero in the above four parameters,

2) Ku  and K22 are ignored, and

3) KI2 and K21 are defined only for scalar fields (pure TE case).

Thus, that formulation is almost the same as that for the conventional theory 

(Yariv, 1973) and will lead to significant errors if Q* becomes larger than, say, 10

percent (where Caa and C ^  are normalised to be 1).

The asynchronism factor in terms of the more correct parameters ya, Kab, and 

Kfra in (4.32a)-(4.32d) have been defined, where

Given the initial excitation at z = 0 of a two-coupled waveguide, a(0) = 1, b(0) = 0, 

the following is obtained:

(4.37)

U(z)
.A .

cos y / z - j —sin y/z e 
V

(4.38a)

V(z) = sin yrz e1"* 
¥

(4.38b)
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where

2

¥ =  ^ i +KabKba 

A =
2

The two eigenvalues 7t, 72 and eigenvectors are well known:

Yi = <P+¥ 

y2 = <t>~V

It is also easy to show that

E T _  E T
.V*-* i f* *

(4.39a)

(4.39b)

(4.39c)

(4.40a)

(4.40b)

(4.41)

where

-  -  Qa

The solutions (4.38a) and (4.38b) can be written as
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U(z) = COS a -J -
M ’)

y
■sin z(l + 5 2)K >ej«z

(4.42a)

sinh 1 cS

% )  = j
Vi + s :

: S in J r j < Z z ( l  + S2)y ,j<pz (4.42b)

The output power Pa in waveguide a when waveguide b terminates at z = / is 

obtained using

E,(x,y,z = /) = U(l)Eia){x,y)+V(l)E}b)(x,y) (4.43a)

E,(x,y,z = /) = ^ u {na)E{ta)n(x,y) (4.43b)
n =1

= /) = U(l)Hia)(x,y)+V(l)Hib\x ,y )  (4.44a)

# , ( w  = /) = ¿ v i B)flia)-(x,y) (4.44b)
n=l

where the expansion in (4.43a) or (4.44a) is in terms of individual waveguide 

modes and in (4.43b) or (4.44b) is in terms of all the guided and radiation modes of 

waveguide a alone, since they form a complete set. Multiplying (4.43) by H\a) and

integrating over the cross section, the following is obtained

= £/(/)+C*V(/) (4.45)

Similarly,
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vi“1 = £/(/)+ C (4.46)

These boundary conditions at z = 0 and z = l follow very closely those of Marcatili

(1986). The guided power due to the first mode, Pa, in waveguide a is, thus,

Pa = -R e
" 2

u\a)v\a)' -  JJ Eja) 1 x Hla) 1 • z dxdy (4.47a)

P, = 1 - Isinh-'ci : 2

1+ S 1 1 4Tj C i(i +s2)'a (4.47b)

using equations (4.42), (4.45), and (4.46). A similar procedure for the output power 

in waveguide b when waveguide a is terminated at z = l leads to

n  =  R e [ ( C t . C / + v X C U *  +  V ) ]  ( 4 ' 4 8 a )

Pi = C.tCta + 1 s i n l )  (4.48b)

These results are very similar to those of Marcatili (1986) except that the 

parameters are defined in terms of the more accurate parameters ya, y ,̂ Kab, and 

Kba-

4.5.3 The formulations from Hardy and Streifer for Two Coupled 
Waveguides

The propagation constants, ya and yfc, are given by
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f t + [ g | i - c ^ 2.+ Q > c J f t ,-A ,) ]  
(i - c , * c j

and

( l - C * C j

(4.49a)

(4.49b)

where the corrections to the individual waveguide mode propagation constants, Pa 

and ( 3 describe the effects of the modal interactions. The coupling coefficients are

(i - c * c j
(4.50a)

and

(4.50b)

In (4.49a)-(4.50b), the coefficients, Ca£ and C^a describe the individual waveguide 

mode overlap, i.e.,

Cpq = 2£• j j [ £ , (?) x //,(p)] îîx^ ,  = a,/? (4.51).

The individual modes may be normalised such that

Caa ~ Cbb -  \ (4.52)
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The constants Kpq (p,q = 1,2) depend on the perturbations to the individual 

waveguides and are defined by

Kpq ■»JiAeIp) E^p) . e ^ __—
.(<?)

£0n2 £z ^z dxdy, p,q = 1,2 (4.53)

where £(/>), /? = 1,2 refer to the individual waveguides and Ae(P), p = 1,2 are the 

perturbations to the respective guides. Note that the integrals in equation (4.53) 

extend only over the regions in which the perturbations occur. For example, in a 

simple case, the region of waveguide b is that over which the perturbation is 

applied to waveguide a, and vice versa. By contrast, the integrals in (4.51) extend 

over all space. More complicated waveguiding structures may be decomposed into 

two individual guides, as follows

e(1)(x,y) +Ae(1)(x,y) = e0n2(x,y) (4.54a)

and

e(2)(x,y) + Ae(2)(x,y) = e0n2(x,y) (4.54b)

where e(1)(jc,y) and £a\x,y) each represent the individual waveguides singly 

embedded in the surrounding medium. Note that

e(1)(x,y) + e(2)(x,y) * e(x,y) = e0n2(x,y),

since each function contains the same surroundings. Moreover, most generally 

e0n2(x ,y ) need not even equal the mathematical union of e(1)(x,y) and ê 2)(x,y),
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because an additional index perturbation not encompassed by either waveguide 

also could be included.

Considering two parallel lossless guides with U = 0 and V = V0 at z = 0, it is 

not necessary to address the question of how that initial connection is established, 

but that issue must be considered in any analysis, regardless of the equations used 

to describe the propagation and coupling along the length where the guides are 

parallel. Upon solving equation (4.31) subject to these initial conditions, the 

following is obtained

V(z) = V0 cos(y^) + — sin(y^)
yr

(4.55a)

and

U(z) = V0^ s in (y * > ? 'te (4.55b)

JZ | |It can be observed that when y/z = —, \U\ is maximum. If waveguide, b, could be

terminated at that point, the modal amplitude and power in a can be estimated. 

Thus by multiplying the entire field by and integrating the result, U+Cai,V can

be obtained. Based on this estimate, the power remaining in waveguide a is given 

by

K ^+ C ^A  I2 (4.56)
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and this result is independent of the formula used to evaluate Kab.

Instead, however, the coupling process can be considered to begin with U = V0 and 

V = 0 at z = 0. If, after propagating y/z = n /2 , waveguide a can be terminated

then, as above, the modal amplitude in waveguide h would be V+CbaU. 

Consequently, the power remaining in waveguide b may be estimated to be

h  = ^ V + C 'J j f  = -  CioA|2 (4.57)

In order to satisfy reciprocity in a lossless waveguide system, Pa and Pb as given by 

equation (4.56) and (4.57), should be equal.

4.5.4 The formulations from Marcatili for Two Coupled 
Waveguides

The overlap integral Cab and Cba may be defined as

Cpq = J  EpEqdxdy, p,q = a,b (4.58)

The coupling coefficient Kab and Kba can also be defined as

K  “  ns )EaEbdxdy -  k c \  (na -  ns )EbEhdxdy Kah _ _ _ _

k \{n b - n s)EaEbdxdy- k c \ {nb - ns)EaEadxdy

Kba = ( I

(4.59a)

(4.59b)
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2kwhere the wave number, k = — , n, is refractive index in the substrate and in this
A

case Cafy — Cfoa — C.

The power outputs from both devices are

a 1 + <52 2
(4.60a)

Pb = C2 + i -  c 2 . 2 ^ n— iT------^-sin — Vl + 8
1+ 52 2

(4.60b)

and the two eigenvalues are well known

Y u  = (4.61)

4.6 Summary

The history and development of the coupled-mode theory were considered 

in summary in this Chapter. The conventional coupled-mode theory assumed that 

the modes of the uncoupled systems are orthogonal to each other. However, the 

orthogonal coupled-mode theory is not correct for the description of the mode-

coupling process in the mode expansion. In subsequent work, several formulations 

of the nonorthogonal coupled mode theory were developed by several groups, but 

there have been some discrepancies among the different formulations at the early 

stage of the development. Despite the controversies, there has been an intense level 

of research activity in the past few years in developing and applying the
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nonorthogonal coupled mode theory in the areas of optoelectronics and fiber optics. 

In this Chapter, the general coupled-mode theory was also considered, to lead to 

improving of coupled-mode theory. However, the three different coupled-mode 

approaches namely, the Hardy and Streifer approach, the Marcatili approach and 

the Chuang approach were taken into consideration in their application in different 

directional coupler structures. The comparison of results obtained on several 

waveguides using the three different approaches will be presented in Chapters 5, 6 

and Chapter 7.
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Strongly Coupled Dielectric 
Waveguides

5.1 Introduction

Directional couplers are important for many applications in optical 

communications and integrated optics (Lee, 1986; Hunsperger, 1984). In its 

simplest form, a directional coupler consists of two parallel dielectric waveguides 

in close proximity to each other (Marcuse, 1989). Under suitable conditions, a light 

wave launched into one of the waveguides can couple completely into the opposite 

guide. However, once the light has crossed over, the wave can also couple back 

into the first guide, so that power is exchanged continuously, as often as the length 

of the device permits. However, complete exchange of light power is only possible 

between modes that have equal phase velocities or, equivalently, equal propagation 

constants. To be more precise, the propagation constants must be equal for each 

guide in isolation for complete power transfer. Equality of the propagation 

constants, also called phase synchronism, occurs naturally when the two 

waveguides are identical and the use of this leads to what is termed a synchronous
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directional coupler. In that case, all the guided modes (if there are more than one) 

of both guides are in phase synchronism and can couple one to the other at all 

wavelengths. However, two dissimilar waveguides can also have modes that are in 

phase synchronism, a condition that can exist only for certain specific wavelengths.

Directional couplers can be used as power dividers. In principle, since 

complete exchange of power is possible for a synchronous directional coupler, any 

arbitrary power splitting ratio can be achieved by proper adjustment of the length 

of the directional coupler. In this chapter, the effects of the adjustment of the length 

of the directional coupler both in terms of the separation distance between two 

waveguides and the width of a guide will be shown. Another important use of 

directional couplers - light switching and modulating (Alfemess, 1982; Auracher et 

al., 1984; Neter, 1984; Alfemess and Veselka, 1985)-requires that the propagation 

constants can be influenced by external means. For example, if one or both 

waveguides consists of electro-optic materials exhibiting the Pockels effect, the 

refractive index and hence the propagation constants of the guided modes can be 

modified by externally applied electric fields. This makes it possible to influence 

the phase synchronism between the two modes of the coupled waveguides, 

permitting a modulation of the coupling efficiency. Thus, it is possible to switch 

(or modulate) light from one waveguide to the other at speeds that are only limited 

by the length of the device (Veselka and Korotky, 1986). The results of an electro-

optic directional coupler switch are shown in Chapter 6.
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Finally, directional couplers can be utilized to design optical wavelength 

filters (Taylor, 1973; Alfemess and Veselka, 1985). For couplers made of identical 

waveguides, this application is made possible by the fact that the coupling strength 

depends on the wavelength. The coupling coefficients Kâ  and K^a are identical at 

a particular wavelength. Thus, if a directional coupler permits complete exchange 

of power at a certain wavelength, it becomes less effective at shorter as well as at 

longer wavelengths so that every directional coupler is also a wavelength filter. 

However, the achievable bandwidth is not satisfactory. The filter becomes 

narrower if the two waveguides are as dissimilar as possible, achieving phase 

synchronism only in a narrow wavelength range. The result of the simulation of an 

optical filter employing a synchronous and a nonsynchronous directional coupler, 

has also been shown in Chapter 7.

The accurate calculation of the coupling parameters is of considerable 

interest, in order to study the loss of synchronism in electro-optic modulators and 

switches or in optical filters in the use of nonidentical sections to reduce 

bandwidth. In most of the practical directional coupler-based devices, the 

individual waveguides use two-dimensional confinement and can be of arbitrary 

cross-section with anisotropic, nonlinear, lossy or active materials. However, our 

concern here has been restricted to slab waveguides in order to make a comparison 

with other published work. The finite element method (Rahman et al., 1991) has 

already been established as one of the most powerful methods available to 

characterize a wide range of practical waveguides. This chapter mainly deals with
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specific parallel waveguides, where the power coupling efficiency between two 

optical waveguides is presented using the finite element method, along with the 

results of improved coupled mode approaches (Hardy and Streifer, 1985; Marcatili, 

1986; Chuang, 1987) and the least squares boundary residual method (Rahman and 

Davies, 1988; 1988a).

5.2 The Finite Element Method and Least Squares 
Boundary Residual Method approaches

It is possible to find the power transfer between two guides starting from 

the individual modes of the isolated guides or from the supermodes of the complete 

coupled structure. In this work, both such approaches are used, after obtaining 

accurate eigenvalues and eigenvectors of the individual guides and the coupled 

structures.

Since the finite element method (FEM) can provide accurate solutions for 

the supermodes of the coupled system, an alternative to the coupled mode 

approach, the Least Squares Boundary Residual (LSBR) method has been applied 

to directional coupler problems. This procedure may be used to find the power 

carried by the even and odd supermodes for a given incident power in guide "a" or 

"b". Here it is assumed that a single isolated waveguide section, section I, is butt 

coupled to the directional coupler section, section II, as shown in Fig 5.1. The 

main objective is to calculate the amplitudes of the even and odd modes blt b2 

respectively in section II. The LSBR approach is better than the use of the

112



Chapter 5 Strongly Coupled

traditional overlap integral methods as many modes can be considered to satisfy the 

field continuity at the discontinuity junction plane. This approach is also more 

satisfactory than the point matching methods because the error integral is evaluated 

over the discontinuity interface, rather than just field matching at some specific 

points.

Fig. 5.1 Butt coupling of an isolated guide to the directional coupler section.

A directional coupler consists of two adjacent waveguides arranged so that 

the tail of the field supported by one waveguide overlaps the other waveguide. This 

overlap causes a coupling between the two waveguides. If the incident wave of 

total power, PQ, is launched into one waveguide such as guide a, it will transfer it 

to waveguide b over the coupling length Lc, and then transfer back again. The wave
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propagates in the two waveguides with the propagation constants f5a and f3b, 

respectively. If the coupler is asymmetric (i.e., the two waveguides have different 

geometries and/or refractive indices) there will be a propagation constant 

difference between the modes,

Under the approximation that the coupling is weak (i.e., the coupling 

coefficient K is small) and that 8 is small, the coupling can be described by the 

following formula (Yariv, 1976)

where Pa is the output power of waveguide a and l is the physical length of the 

coupling region. Obviously, complete power transfer requires that 5 = 0, i.e., that 

the light has the same propagation constant in both waveguides. All the power will 

then be found in waveguide b if the coupler length, l, is equal to an odd multiple of 

Lc (Lc = n/(2K). For electro-optic modulators or filters with a narrow bandwidth 

directional coupler, couplers with a high degree of asymmetry or strong coupling 

must be considered. The treatment in two familiar texts (Taylor, 1973) and (Yariv, 

1976) which are based on perturbation technique is not applicable in this case. A 

method proposed by Suematsu and Kishino (Suematsu and Kishino, 1977) is, 

however, employed. The case of the TE mode is treated here, but the case of the 

TM mode can be easily dealt with in a similar way. The procedure is as follows.

2(5= (A,-A,) (5,1)

(5.2)
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A two-parallel-slab-waveguide system is considered, which consists of five 

dielectric layers, that is, there are two waveguiding layers or cores and three other 

regions with lower refractive indices that separate and clad the two waveguiding 

layers. These layers are assumed to be lossless. The refractive index distribution 

varies along the transverse y-axis and is independent of the transverse x and the 

longitudinal z axes. This two-parallel-waveguide system supports the two 

fundamental waveguide modes He(y,z), H0(y,z), that is, even and odd modes which 

have slightly different propagation constants ¡3e and , respectively, and are

orthonormal with respect to the Poynting power. First the finite element method is 

used to find the lowest-order even and odd supermodes. From the related 

eigenvalue equations, the propagation constants for the two modes can be obtained. 

The field distribution in the two waveguides can be described as a superposition of 

the two supermodes. Provided that the input waveguide is single mode, higher 

order supermodes can generally be neglected since their coupling to the input mode 

is weak at the wavelengths of interest. The two supermodes interfere and since they 

propagate with slightly different velocities, optical power transfer occurs from one 

waveguide to the other along the propagation direction. In the absence of higher- 

order modes, the travelling wave can be expressed in terms of

E l y .  7 ) = btE , ( y y >f-' +  bIE X y Y 11-' (5.3)

H ( y , z )  = b , H , ( y y i f-’ + b 2H ' ( y y if-* (5.4)
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where b, and b2 are the amplitudes of the normalized even and odd lowest 

order supermodes with field distributions He and H0 and propagation constants

and , respectively. In this work, the supermode coefficients, bt and b2 are solved

by using the least squares boundary residual method. To discuss the coupling 

between two parallel waveguides, their boundary is defined as the middle plane, for 

the sake of simplicity. Since the two modes travel at different phase velocities, they 

alternately add and cancel with respect to each other. Therefore, the guide wave 

given by equation (5.3) and equation (5.4), which is a combination of these modes, 

exchanges power periodically. It is assumed that the starting point of the 

longitudinal axis, z = 0, is the point where the maximum power is observed in 

waveguide a. The power can be gradually transferred to waveguide b as it 

propagates. However, the small amount of power which is observed in waveguide 

b at z = 0, is not transferred to waveguide a. Thus, that small amount of power may 

be called the uncoupled factor at waveguide b. On the other hand, at z =LC, the 

coupling length, the power transfer from waveguide a to b becomes maximum, but 

a small fractional amount of power will remain in waveguide a.

The wave is normalized by

The power density at any point is given by the amplitude of the Poynting

vector :

(5.5)
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P{y,z) = Re|£ x if  | = Re[£(j,z)//'(y,z)]

= ^E,(y)K(y)+biEMKb)+bA ■
K  (y )K  (y) + E,(y)Hl (?)]. cos[(/J, -  )z]

(5.6)

By integrating over each side of y = 0, the power carried by each waveguide 

can be expressed as a function of the propagation distance, z.

The power fraction in guide b is thus given by

At z = 0 the power distribution in the guides has a profile given by the 

launching conditions. For optimal launching into guide a, the power fraction in 

guide b should have a minimum value, or uncoupled factor.

From equations (5.7) and (5.8), there are now four equations which may be written

as:

o
pb(z) = \ p { y , z ) d x

= b l 0 -  ) + b 2 0 - Z o o ) -  b A  ( L o  + L ' ) -  C°S[ { P '  ~ P o ) z ]

(5.7)

where £00, %eo, and are defined as (i,j = e, o) :

(5.8)
0

P a (2 = 0 )=  b \ L <  +  b l Z 00 + b A Ì L o  + Z o o  ) (5.9)
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Fig. 5.2 Schematic diagram of synchronous directional coupler.

The directional coupler to be dealt with in the second example (shown in 

Fig. 5.3), analyzed by Hardy and Streifer (1985), is considered. Two slab 

waveguides "a" and ”b" with film thicknesses xa and xb are separated by x3 (of p.m 

dimensions). The refractive indices for the guides a and b, the separation and the 

cladding region are na, nb, ns and nc respectively and the operating wavelength is 

0.8 |im. Generally, our interest is limited to geometries in which the modal fields 

of the entire structure are well represented by a superposition of the fundamental 

individual waveguide modes so that the fields {£,,//,} under consideration are 

those for which higher order modes are small in comparison with the other terms.
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So, the higher order modal interaction is ignored in this work and only the coupling 

between the fundamental modes of the cores is considered.

Fig. 5.3 Schematic diagram of two parallel coupled optical waveguides.

5.3.2 Solutions for identical coupled slab waveguide.

Results for the Ex field profiles for even and odd TE supermodes, the 

variation of the coupling length, Lc, the cross-talk for the first example (shown in 

Fig. 5.2), will be shown.

Fig. 5.4 shows the Ex field profiles for the even and odd TE supermodes for 

a synchronous directional coupler when xa and xb are identical (2.0 pm) and the 

separation distance, x3 = 5.0 pm. It can be seen that the modal profiles are 

symmetrical since the individual guides are identical.
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Fig. 5.4 Ex field profiles for the even- and odd-like TE supermodes.

Fig. 5.5 shows the variation of the coupling length, Lc, with the separation 

distance, t 3. It can be seen that the coupling length, Lc becomes larger with 

increasing t 3 and follows an exponential law, so that the resulting coupling length, 

Lc vs Tj plot is linear on a log-linear scale. It can also be noticed from this figure 

that the analytical result and the FEM result are indistinguishable one from another.
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Fig. 5.5 Variation of the coupling length with the separation distance.

To find the power transfer efficiency and cross-talk, using the coupled mode 

approaches, the overlap integrals and coupling coefficients need to be calculated. 

To illustrate the procedure and the steps taken, some intermediate results are 

presented for the first example with coupled identical waveguides, which is easier 

than in the second example, which is for the coupled nonidentical waveguides. Fig. 

5.6 shows the variation of Ka^ and K^a with the separation between the two 

waveguides, x3, when the thicknesses of the guide a and b are fixed at 2.0 pm. In 

this figure, Ka^ and K^a are almost identical when the separation becomes larger. It 

can also be observed that Kab and Kba reduce monotonically as x3 increases. The
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coupling coefficients Kab and Kba may be calculated by using the following 

equation (Hardy and Streifer, 1985).

0 - Q . c J  

(1 - C * c j

(5.13)

(5.14)

where

K a b  =  «0 J J a e (a) E (a) . £(*) 21 E''a)
£„«2 z

.<*) ?(a) T?(b) dxdy (5.15)

^  = G> J | Ae(p) ’ (i>) zr (o )
. ( a )

r w  — r*(fc) r ( a )„ 2 Cî Cz dxdy (5.16)

Fig. 5.7 shows the cross-talk in dB with the separation distance, t 3, using 

the coupled mode approach (CH) (Chuang, 1987) and the Least Squares Boundary 

Residual method (LSBR) approach. In this example, results from both the 

approaches agree reasonably with those from the work of Chen and Wang (1984). 

It is clear that the extinction ratio decreases exponentially as the waveguide 

separation increases. When the separation, Tj, was greater than 5.0 (J.m, the 

extinction ratio was less than -22.1 dB for all three different approaches. However, 

the shorter the coupling length is, the worse the cross-talk gets. This is due to
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unequal coupling of the input wave to the even and odd eigen mode in the coupling 

region.

Fig. 5.6 Variation of coupling coefficients with the separation between two 
waveguides, t 3.
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Fig. 5.7 Cross-talk between the guides with the separation distance for an 
identical coupled waveguides.

5.3.3 Solutions for nonidentical coupled slab waveguide.

In this example, two waveguides with identical refractive indices, na = =

3.6 and the cladding refractive index, ns -  nc = 3.4 are considered. In this case xa 

and t 3 are fixed at 0.15 pm and 0.4 pm respectively, but X/, varies from 0.1 pm to 

0.2 pm. Here (3̂  is the propagation constant for the isolated guide b and (3e and (30 

are propagation constants for the even and odd supermodes of the coupled guides. 

The analytical solutions (AN) may be obtained by finding roots of the 

transcendental equation due to the field matching at the dielectric interfaces. The 

finite element (FEM) solutions are obtained by using 4000 mesh divisions. It takes
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about 10 seconds to find the modal solutions in this way on a SUN Sparcstation 2 

for this mesh refinement. Table 5.1 shows the comparison of the finite element 

solutions with the analytical solutions for the individual TE mode of the isolated 

guide "b" and the even and odd TE supermodes of the coupled structure. It shows 

the excellent agreement of the finite element results obtained with the analytical 

results and if required, the accuracy of the results can be further improved by using 

an even finer mesh.

P* P< P.

in pm AN FEM AN FEM AN FEM
0.10 26.97534 26.97534 27.20137 27.20137 26.93143 26.93143
0.12 27.06138 27.06138 27.20992 27.20992 27.01436 27.01436
0.15 27.18799 27.18798 27.24361 27.24360 27.11346 27.11346
0.18 27.30535 27.30534 27.32241 27.32241 27.15637 27.15636
0.20 27.37685 27.37685 27.38579 27.38578 27.16669 27.16668

Table 5.1 The comparison of finite element solutions (FEM) with analytical 
solution (AN) for P̂ ,, Pe and PG.

Fig. 5.8 shows the Ex field profiles for the even and odd- TE supermodes 

for a synchronous directional coupler when %a = = 0.15 pm, with the separation

distance, x3 = 0.4 pm. It can be observed that the modal profiles are symmetrical 

since the individual guides are identical.
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Fig. 5.8 Ex field profiles for the even- and odd- like TE supermodes for an 
identical coupled waveguide.

Fig. 5.9 shows the Ex field profiles for the even- and odd-like TE 

supermodes for a nonsynchronous directional coupler when xa and x^ are 0.15 |im 

and 0.1 p.m respectively, with the separation distance, x3 = 0.4 (im. It can be 

observed that the modal profiles are not symmetrical since the individual guides are 

not identical. The first supermode is the even-like mode with most of the power 

confined in the guide "a" whereas the second supermode is the odd-like mode with 

most of the power confined in the guide "b". This occurs because the dominant 

mode in guide "a" has a higher propagation constant than the mode in guide "b" (as 

xa > Xfr) so the first supermode with higher propagation constant resembles more

1 2 7



Chapter 5 Strongly Coupled

the mode Ea when the individual modes are not phase matched. The power intensity 

profiles obtained from these field profiles match accurately with the exact profiles 

shown in Fig. 2 of the results of Hardy and Streifer (1985).

Fig. 5.9 Ex field profiles for the even- and odd- like TE supermodes for 
nonidentical coupled waveguide.

The coupling length of the coupled waveguides can be accurately calculated 

from the propagation constant difference of the first two supermodes. In the finite 

element method, the propagation constants of the two supermodes are obtained
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directly, whereas using the coupled mode theory, these can also be estimated from 

the individual modes of the two isolated guides by using different coupled mode 

approaches.

Fig. 5.10 shows the variation of the propagation constants of the two 

supermodes with the second guide thickness, xb. The finite element results (FEM) 

and analytical results (AN) are identical and cannot be distinguished in this figure. 

Results using the Hardy and Streifer (HS) approach (1985) agreed better with the 

analytical and the FEM results. Results using the Marcatili (MA) approach (1986) 

are consistently higher value than the actual eigenvalues. The propagation constants 

of individual modes and (3A are also shown. Results using the Chuang (CH)

approach (1987) are also satisfactory except when Xy = 0.10 pm, resulting in pf 

being smaller than [3a , which cannot be correct. The propagation constant of the 

even supermode should be higher than that of the first isolated mode and the 

propagation constant of the odd supermode should be lower than that of the second 

isolated mode.
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Fig. 5.10 Variation of the calculated supermode propagation constants with the 
second guide thickness, xb.

Fig. 5.11 shows the coupling length variation with the second guide width, x 

b, when xa = 0.15 pm for different separation distances, x3. It has been shown in 

Table 5.1 that the analytical (AN) and the finite element results (FEM) agree 

extremely well even when the guides are strongly coupled and they cannot be 

distinguished one from another, whereas the calculation of the propagation 

constants of the supermodes by using the coupled mode approaches may be 

satisfactory but not very accurate, as shown in Fig. 5.10. The coupled mode (CH)
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approaches (Chuang, 1987) agree well for the weakly coupled conditions but in 

general they overestimate the coupling length when the guides are not synchronous, 

as shown for x3 = 0.4 |im . This is due to the fact that the coupled mode approach 

suffers from nonorthogonality between the modes of different waveguides when the 

guides are not identical. It should also be noted that when i a = x ,̂ the coupling 

length varies exponentially with the separation distance, t 3, but when xa is not equal 

to x ,̂ the coupling length depends strongly on the factor |Pa -  pfc| .

T h( jm )

Fig. 5.11 Variation of coupling length with the second guide thickness, x* for 
different separation between the guides, Tj (Analytical AN solution overlaps FEM 
solution).
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Fig. 5.12 shows the variation of the coupling length with the separation 

distance, x3, for different approaches. It can be seen that the coupling length 

increases with separation x3 and follows an exponential law. It can also be observed 

that the analytical (AN) solution and FEM solution are identical. However, the 

results from Marcatili have overestimated whereas the results from HS and CH 

have underestimated the values obtained using the previous methods.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Fig. 5.12 Variation of coupling length with the separation distance, x3 for 
different approaches (the AN solution overlaps the FEM solution).
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Fig. 5.13 shows the variation of Ca  ̂and C^a with the thickness of the guide 

b, Xfr, when the thickness of guide a and x3 are fixed at 0.15 (tm and 0.4 pm 

respectively. It can be observed from this figure that Ca  ̂and C^a are identical at x^ 

= 0.15 pm and slightly different when the two waveguides are nonidentical.

Fig. 5.13 Variation of the overlap integral Cafr and C^a with the thickness of 
guide b.
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Fig. 5.14 shows the variation of Ka i and K^a, Kah and Kba with the

thickness of guide b, x^, when the thickness of guide a and x3 are fixed at 0.15 |im 

and 0.4 |im respectively. In this figure, Kab and K^a are compared with the 

approximate coupling coefficients Kba and Kab. Ka^ reduces monotonically as xb 

increases, where as Kba increases. It can be observed that the coupling coefficients 

are identical when xa = x ,̂ but when the guides are not identical, the coupling 

coefficients can differ widely. Our results agree well with those of Hardy and 

Streifer (1985).

Fig. 5.14 Variation of coupling coefficients with the second guide thickness, xb.
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One of the major emphases of this thesis has been the calculation of the 

power transfer efficiency between the two optical waveguides. It has been 

mentioned earlier that the power transfer ratio can be obtained by starting from the 

individual modes of the isolated guides or from the supermodes of the complete 

coupled structure. Results are shown later in which both approaches are used, after 

obtaining accurate eigenvalues and eigenvectors of the individual guides and the 

coupled guides.

To do so, first the amplitudes of the even and odd supermode field 

coefficients are calculated using the LSBR approach as discussed in section 5.2. 

Fig. 5.15 shows the variation of coefficients b] and b2 with a second guide 

thickness, x^. When guide a is wider than guide b, (x < xa), the amplitude of the 

odd-like supermode (b2) is higher than that of the even-like supermode (¿>,). 

Similarly, when guide b is wider than guide a (Xf, > xa) an even-like supermode 

carries more power than the odd-like supermode. It can be noted that when = 

0.15 |im, although the guides are identical, the two supermodes carry unequal 

power, where bj is equal to 0.786 and b2 is equal to 0.617. This is due to the strong 

coupling between the isolated modes and their inequality is responsible for a less 

than 100% power transfer between the guides. However, it has been shown by the

authors that for weakly coupled identical guides, and each

supermode will carry half of the incident power in section I.
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Fig. 5.15 Variation of supermode amplitude coefficients, bI and b2 with the 
second guide thickness, ly.

Fig. 5.16 shows the variation of the maximum power transfer efficiency with 

xb using three different approaches. In this case the total length of the device has 

been adjusted to be equal to the coupling length for different values of the widths of 

the guide, b. Contrary to the result of the use of the coupled mode approaches, the 

LSBR result shows the maximum power transfer between the guides when x  ̂ is 

slightly smaller than 0.15 |im. However, it has been shown by the authors by using
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the LSBR approach that maximum power transfer between the guides takes place 

when x^ = xa, only if the guides are weakly coupled.

Fig. 5.16 The maximum power transfer efficiency between the guides with the 
second guide thickness, Tfr.

Fig. 5.17 shows the variation of the power transfer efficiency with x^ using 

the coupled mode (CH) (Chuang, 1987) and LSBR approaches. In this case, the 

total length of the device is fixed at Lc for x^ = 0.15 fim, where both the effect of 

the lack of phase synchronism and the change of the coupling length have been 

considered. This condition simulates the loss of synchronism due to fabrication
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tolerances or to external effects. Here, the power transfer efficiency is significantly 

lower than the maximum power transfer, as shown in Fig. 5.16. This reduced power 

transfer is due to the additional effect of the coupling length mismatching as the 

value of Lc changes with T̂ , whereas the device length is kept fixed.

Fig. 5.17 The power transfer efficiency between the guides with the second 

guide thickness, for a fixed length directional coupler devices.
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Table 5.2 shows the effect of mesh division for different approaches. The 

result, Pn which represents different values of power in guide a and b for HS is 

seen to improve with increasing mesh division. However, the result from Marcatili 

and that of Chuang does not show such an improvement whereas the LSBR result is 

seen to be independent of mesh division.

Lcchanged
tb mesh HS MA CH LSBR

Pb Pr Pb P, Pb Pt Pa Pa+Pb (bi+b2)2
0.10 1x500 0.40321 0 .0022 0.15781 1.140 0 .34246 1.264

1x1000 0 .40520 0 .0008 0.15810 1.141 0.30391 1.239
1x2000 0.40607 0 .0002 0.15824 1.141 0.30289 1.239 0 .38968 1.000 1.001
1x4000 0 .40659 0 .0002 0.15832 1.141 0.33961 1.263

0.12 1x500 0.58631 0 .0065 0.46244 1.237 0.54975 1.286
1x2000 0.58311 1.000 1.003

1x4000 0 .59194 0 .0004 0.54281 1.285

0.15 1x500 0 .99250 0.015 0.99983 1.053 0.99960 1.050
1x1000 0 .99623 0 .0076 0 .99996 1.056 0.99985 1.055
1x2000 0.99811 0.0038 0.99999 1.057 0.99992 1.057 0.99558 1.000 0 .99924

1x4000 0 .99906 0.0018 1.00000 1.058 0.99993 1.058

0.20 1x500 0.26605 0 .0046 0 .03869 1.034 0.24454 1.0660
1x2000 0.24595 1.000 0.998
1x4000 0 .26632 0 .0009 0.24834 1.069

Table 5.2 The power transfer efficiency with mesh division (Pr = Pa-Pb, Pt =  

Pa+P„).

5.4 Summary

The extinction ratio for an identical directional coupler using different 

approaches has been presented and good agreement with the work of Chen has 

been seen. Results for the overlap integral, Cah and Cba, and the coupling 

coefficients, Kab and Kha, for planar waveguide were presented to verify the 

different approaches and they are seen to agree very well with those of Hardy and 

Streifer. The power transfer efficiency between the two waveguides was also
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calculated by using the three different coupled mode approaches and the least 

squares boundary residual approach. All the results were seen to agree well. 

However, to develop further the verification and applicability of the method and to 

develop these approaches, a further application in directional couplers in an electro-

optic switch and an optical filter will be shown in Chapter 6 and Chapter 7.
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Chapter 6

Electro-Optic Directional Coupler 
Switch

6.1 Introduction

In chapter 5 the solution of the coupled-mode equations for strongly 

coupled dielectric waveguides has been described. In this chapter, the result of an 

investigation of electro-optic directional coupler will be shown. A knowledge of 

coupling between optical waveguides is important for many directional coupler- 

based devices, such as those, made from electro-optic materials, which are the basis 

of several important guided-wave devices including switches and modulators. The 

refractive index of the waveguide material changes due to the applied modulating 

field, as shown schematically in Fig. 6.1 which in turn affects the propagation 

constants of the two individual guides, the phase matching between them and the 

coupling length. When the refractive indices of the two guides are not identical, 

then the power transfer efficiency deteriorates, due to the lack of phase matching 

between the guides. All these effects, combined together, change the total power
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transfer from one guide to another as a function of the applied potential, for 

applications to switches and modulators.

n=n,
air

Electrooptic 
n=n3 material

Fig. 6.1 The applied field increases the refractive index of one waveguide and 
decreases that of the other.

The use of the finite element method can provide an excellent means to 

obtain accurate modal field profiles and propagation constants for all the modes of 

each individual guide or for all the supermodes for a coupled structure consisting of 

two or more waveguides. Once the modal properties of the isolated and 

supermodes are known, the power transfer efficiency between the guides can be 

calculated by using the coupled mode approaches. Since the finite element method 

can provide accurate solutions for the supermodes of the coupled system, as a

142



Chapter 6 Electro-Optic...

complimentary approach, the Least Squares Boundary Residual (LSBR) method 

has also been applied in this Chapter to characterize such directional coupler 

devices. Beam propagation simulations based on the versatile finite element method 

for the transverse domain and the unconditionally stable Crank-Nicholson scheme 

were also undertaken to compare with the results by using the other methods.

6.2. Solution for Electro-Optic Directional Coupler Switch

In this example, a titanium-diffused LiNb03 electro-optic directional coupler 

switch is considered together with its simplified equivalent planar structure, as 

shown in Fig. 6.2. The unperturbed guides are 2 (im wide and with a refractive 

index value of 2.2, when no modulation is applied. The separation region between 

the guides is s (im wide with a refractive index in this region, and as well as in the 

two cladding regions, of value 2.19. The operating wavelength is 1.06 |i.m. In this 

work it is assumed that when a positive modulation field is applied, the refractive 

index in the left guide is increased by An/2 and decreased by an equal amount in the 

right guide, due to the opposite sign of the electric field, and the guides lose their 

identity. Although the refractive index change due to the electro-optic effect, Arij, 

can be tensor and proportional to the modulating field components, the variational 

formulation given by equation (2.13) can handle this, but in this planar example only 

an isotropic refractive index change is considered, to compare our results with 

published work.
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n=2.2+An/2

n=2.2-An/2

n=2.19

M----------------- H------------------- M------------------¥

2.0 s 2.0 
x

--------*y

Fig. 6.2 Schematic diagram of the structure representing an electro-optic 
directional coupler switch.

The electric modal field profiles for the first TE supermode are shown in 

Fig. 6.3a for An = 0 and 0.002 when the guide separation, s, is 1.9 |im. When no 

modulation is applied, An = 0, the two guides are identical and the even and odd 

supermodes are symmetrical and antisymmetrical respectively. The even supermode 

for identical coupled guides is shown by solid line for s = 1.9 |im. However, when a 

modulation is applied, it can be observed that the first supermode is the deformed 

even-like mode with more power confined in the left guide which has a higher 

refractive index than the right guide as shown by dotted line. In Fig. 6.3(b), the field 

profiles for the second supermodes are shown when An = 0 and An = 0.002. It can 

observed that the second odd-like supermode is more confined in the right guide 

when An = 0.002, which is shown in Fig. 6.3(b). This deformation is more 

prominent when the guide separation, s, is increased (s = 2.5 (i.m) as shown in Fig.
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6.4. The even supermode for identical coupled guides for different separations, s, is 

also shown in Fig. 6.5. It can be observed that due to increased separation between 

the two guides for 5 = 2.5 pm, the field intensity is lower at the centre of the couple 

structure.

Fig. 6.3a The first TE supermode field profiles for An = 0, and 0.002.
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Fig. 6.3b The second TE supermode field profiles for An = 0, and 0.002.

Fig. 6.4 The first TE supermode field profiles for An = 0.002 for different 
separations.

146



Chapter 6 Electro-Optic...

Fig. 6.5 The first TE supermode field profiles for An = 0 for different 
separations.

The coupling length decreases with the applied modulation, since the 

propagation constant difference, A[J, between the two isolated waveguide modes 

increases. Propagation constants of two supermodes can also be calculated from the 

unperturbed modes of the two isolated guides using the coupled mode approach. 

Fig. 6.6 shows that the coupling length variations with An using the analytical 

method [AN], the finite element method [FEM] and using the coupled mode 

approach [CH]. The analytical results and the finite element results are identical and 

cannot be distinguished one from another. The results using the coupled mode 

approach (Chuang, 1987) [CH] shows slight disagreement. It can be observed that
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the coupling length is 296 p.m when An = 0.002, compared to 583 p.m at An = 0. 

It can also be mentioned that the coupling length varies exponentially with 

separation, s, when the two waveguides are identical at An = 0. However, for the 

larger value of An, the coupling length is not sensitive to the separation, s. This 

situation is due to the fact that in this case the coupling length affects mainly by the 

difference between the propagation constants of isolated guides a and b, i.e.,

Ip. - p.I-

Fig. 6.6 Variation of the coupling length with An, using different procedures.
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Next, the overlap integral, Cab and Cha and the coupling coefficients, Kah and 

Kba are calculated by using the coupled mode approach. Fig. 6.7 shows the 

variation of the coupling coefficients , Kab, Kba and the overlap integral, Cab, Cba by 

applying the coupled mode approach (Chuang, 1987). It can be noticed at An = 0, 

Kab = Kba, whereas when An increases, Kab increases and Kba decreases. It may 

also be observed that Cab and C^a both increase with |Ah | and Cab and Q,a are 

nearly identical.

C/5•4—>c<L>
O

s
<L>Oo
c
'S,3O
u

An

Fig. 6.7 The variation of the overlap integral and coupling coefficients with An.
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The least-squares boundary residual method also has been applied to obtain 

the coefficients of the two supermodes excited at the directional coupler interface, 

stemming from the fundamental mode in guide b. Fig. 6.8 shows the variation of the 

supermode coefficients with An for different separations between the two guides, s. 

It can be observed that when An = 0 and the separation distance is large, bj = b2 = 

0.707, which proves that the cross-talk will be insignificant. It can be seen that the 

coefficient of the even supermode, decreases with An whereas that of the odd 

supermode, b2, increases. It can be also noticed that at a large separation, such as s 

= 6.0 |im, bj and b2 are identical at An = 0 but > 0 and b2 —> 1.0 rapidly as An 

increases.

Fig. 6.8 The variation of the supermode coefficients with An.
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Table 6.1 shows the coefficient of the even supermode, bt, and the odd 

supermode, b2, with different values of the separation, s, when An = 0. It can be 

seen that the coefficients of the even supermode and the odd supermode become 

equal when the two waveguides are weakly coupled.

separation, s (p,m) bi b2

1.9 0.76388 0.64497

2.5 0.74470 0.66728

4.0 0.71959 0.69440

6.0 0.70969 0.70449

Table 6.1 The supermode coefficients, bi, b2 with different value of separation, 
s, for An = 0.

Next, the finite element based propagation method is used to follow the 

evolution to mode coupling from one waveguide to another. Fig. 6.9(a) shows the 

evolution of the optical wave propagation along the axial direction when An = 0, 

and in this case the guides are identical. The initial power was launched in guide b, 

and at a distance equal to the coupling length, Lco, most of the power has been
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transferred to guide a. Fig. 6.9(b) shows the evolution of the optical wave 

propagation along the axial direction when An = 0.0015 and in this case the guides 

are not identical. It can be observed that at the coupling length, Lc, which is smaller 

than Lco, only part of the incident power in guide b has been transferred to guide a, 

and beyond this length, the power from guide a transfers back to guide b.

transverse y (pm)

(a)

transverse y (/¿m)

(b)

Fig. 6.9 Propagation of optical power along the axial direction when (a) An = 0. 
(b) An = 0.0015.
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Fig. 6.10 shows the variation of the maximum power transferred from guide 

b to guide a with the change of refractive index difference, An, between the guides. 

This is the maximum power that can be transferred in each case by adjusting the 

device length to be exactly equal to its coupling length for given An. It can be seen 

that results obtained using the LSBR and the finite element propagation method 

agree very well but the results from the coupled mode approaches (CH) (Chuang, 

1987) and (HS) (Hardy, 1985) underestimate the maximum power transfer.

Fig. 6.10 Maximum power transfer between two coupled waveguides.
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Fig. 6.11 shows the variation of the output power transfer from guide b to 

guide a with the change of refractive index, An, between the guides, when the 

device length is kept fixed at L = Lc0 = 583 |im, which is the coupling length when 

no modulation is applied. Results obtained using the LSBR approach show that the 

power efficiency becomes nearly equal to unity, only when the guides are weakly 

coupled. It can be seen that the results agree reasonably well for all the approaches 

used. Here, the power transfer efficiency is significantly lower than the maximum 

power transfer, as shown in Fig. 6.10. This reduced power transfer is due to the 

additional effect of the coupling length mismatching as the value of Lc changes with 

An, whereas the device length is kept fixed.

Fig. 6.11 Variation of the coupled output power in guide a with the refractive 
index change An.
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Fig. 6.12 shows the power transfer efficiency between the guides under 

three different situations. The first, which is approximate and termed A, neglects the 

phase mismatch (A(3) but considers only the effect of the coupling length (Lc) 

change due to the applied modulation. It can be seen that almost 100% power 

transfer occurs from guide a to guide b when An = 0. However, as An increases to 

0.002, the power transfer from guide a to guide b is very small. This is due to the 

fact that at this situation the coupling length is nearly half of the coupling length at 

An = 0, so the power moves back to guide a as the total device length is now twice 

the coupling length for An = 0.002. In the second approximate case, B, the 

maximum power transfer is calculated when the device length is adjusted to be 

identical to the coupling length for all values of An. In this case, only the effect of 

phase mismatching between the two isolated guides is considered. It can be 

observed that almost 100% power transfer occurs from guide a to guide b when An 

= 0 but again less power transfer is possible as An increases. In case C, as in the 

practical situation, the device length is fixed at L=Lco, Lco being the coupling length 

when no modulation is applied and also, in this case, the effect of phase 

mismatching is considered. The power transfer from guide a to b is always less than 

the maximum power transfer, as shown by curve B. Our result agrees very well with 

the results of Chuang (1987).
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Fig. 6.12 Variation of power transfer for three different situations.

Fig. 6.13 illustrates the faster switching properties when the separation 

length, s, is increased when both coupling length and phase mismatching is 

considered. This is due to the fact that two isolated modes lose their synchronism 

faster because of reduced modal interactions. However, it should also noted that 

with a larger waveguide separation, s, the device length will be longer and 

fabrication tolerances may be more critical.
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Fig. 6.13 Variation of power transfer for two separation distances between the 
guides.

Table 6.2 shows the power transfer efficiency with mesh division. In this 

case Pr is the difference of Pa and P^, and Pt is the total of Pa and P^ and the 

coupling length, Lc is varied for each An. In order to satisfy reciprocity in a lossless 

waveguide system, Pa and Pt as given by equations (4.56) and (4.57) should be 

equal and P, should be equal to 1.0 to satisfy energy conservation. It can be seen 

that the result from HS improves with mesh division but the result from CH and for 

the two mesh divisions used the LSBR result are seen to be independent of mesh
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division. However, the results of all approaches converge with the use of a finer

mesh. It can be also observed that Pb decreases with a higher value of An.

An mesh HS CH LSBR

Pb Pr Pb P, Pa Pa+Pb b]+b2

0.0000 1*1000 0.99308 0.014 0.99941 1.021
1*2000 0.99653 0.007 0.99983 1.024 0.99146 1.000 0.99950
1*4000 0.99827 0.003 0.99992 1.026 0.99147 1.000 0.99950
Aitken 0.99979 0.0003 0.99994 1.028

0.0005 1*1000 0.84607 0.011 0.85510 1.137
1*2000 0.84932 0.005 0.84845 1.138 0.84512 1.000 0.99972
1*4000 0.85095 0.002 0.84507 1.139 0.84513 1.000 0.99971
Aitken 0.85259 0.0004 0.84158 1.140

0.0010 1*1000 0.58826 0.008 0.58662 1.168
1*2000 0.59066 0.004 0.58028 1.168 0.58891 1.000 0.99975
1*4000 0.59187 0.002 0.57709 1.168 0.58893 1.000 0.99975
Aitken 0.59310 0.00004 0.57386 1.168

0.0020 1*1000 0.27732 0.003 0.26745 1.135
1*2000 0.27851 0.001 0.26498 1.134 0.27859 1.000 0.99949
1*4000 0.27907 0.0004 0.26378 1.134 0.27862 1.000 0.99949
Aitken 0.27957 0.00035 0.26265 1.134

Table 6.2 The power transfer efficiency with mesh division

6.3 Summary

Results for the coupling length, Lc, the power transfer, Pa, Pb, are presented 

for planar waveguide to compare the applicability of the different approaches 

considered. Our results agree very well with those of Chuang. The formulation of 

Hardy and Streifer (1985) does not satisfy energy conservation and the reciprocity 

theorem and still contains a number of small errors, while the theory of Chuang

(1987) which was derived in a much simpler way, satisfies these laws analytically.
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Independently, a reformulation of the work of Hardy (1985) has been made 

(Streifer, 1987) recently and is identical to that of Chuang after the modifications. 

However, the main advantages of these approaches is their applicability for 2-D 

confinement structures. Some results in the application of these techniques to an 

optical filter directional coupler will be shown in Chapter 7.
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Chapter 7

An Optical Filter using a 
Synchronous and Nonsynchronous 
Directional Coupler

7.1. Introduction

In this chapter, work is presented on the characterization of an optical filter 

using a synchronous and nonsynchronous directional coupler. The photonic 

communication systems operating at 1.30 or 1.55 pm are particularly important due 

to the zero fibre dispersion or extremely low loss at these wavelengths respectively. 

The semiconductor material system, particularly Inx_xGaxAsyPx_y is suitable for the

construction of a wide range of photonic components at these wavelengths. In this 

chapter, a novel wavelength-selective integrated optical directional coupler using 

InGaAsP waveguide embedded in InP is characterized. Due to the flexibility of the 

InGaAsP-InP material system, the wavelength and the bandwidth can be freely 

chosen in the design and electronic tuning is also possible. Very narrow bandwidths 

may be obtained which extend the potential applications to include wavelength-
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stabilized semiconductor lasers, wavelength-modulation decoders, etc (Broberg et 

ai, 1986).

The accurate calculation of coupling parameters is of considerable interest, 

more specifically for strongly coupled nonidentical guides, as may be used in the 

design of wavelength filters. These devices with narrow bandwidth, using 

nonsymmetrical structures, are important for wavelength-division multiplexing in 

photonic devices. In the next section, the results of such identical and nonidentical 

directional coupler waveguides will be shown.

7.2 Directional couplers consisting of identical waveguides

In this chapter, two directional coupler examples, one identical case and the 

other a nonidentical case are studied in terms of their coupling length and power 

transfer coefficient variation with wavelength. Two slab waveguides "a" and "b" 

with film widths a and b are separated by a distance, s. The refractive indices for the 

guides a and b, the separation region and the cladding region are given by na, nb, 

ns, and nc respectively. The materials that make up the waveguides considered here 

are Inl_xGaIAsyPUy for the guiding layers and InP for the cladding and separation

layers. The refractive indices na and nb for the two guiding layers, when lattice 

matched to InP, are calculated by using the formulae given by Broberg and 

Lindgren (1984) as shown below :
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n -
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where

E0 = 0.595 x2(l -y )  + 1626 x y - 1.891 >> + 0.524 2:+ 3.391 

Ed = (12.36 x-12.71) y + 7.54 x + 28.91

E  =
1240

Eg(eV) = 1.35-0.72 y + 0.12 y2

1240
Eg(eV)

(7.1)

(7.2)

(7.3)

(7.4)

(7.5)

(7.6)

(7.7)

Fig. 7.1 shows the variation of refractive index in the guide, ng, with the 

value of arsenic concentration, y. It can be seen that refractive index increases with 

the value of y.

The wavelength dependent refractive index of InP in the cladding and the 

separation layers is determined by the formula given by Glembocki and Piller (1985) 

as shown in equation 7.8.

n2 = A + B K
( X2 - c 2)

(7.8)

where A. is in angstroms and the constants for room temperature are A = 7.255, B = 
2.316, and C2 -  0.3922 xlO8.
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Fig. 7.1 Variation of refractive index, ng with value of arsenic concentration, y.

Fig. 7.2 shows the variation of refractive index in guide a, b, na, and the 

separation layers, ns with wavelength, 7i for the values of y in guide a and b are 0.25 

and 0.15 respectively. The refractive indices of guides a and b decrease with the 

wavelength, but their rates of change are different as shown in Fig. 7.2.
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Fig. 7.2 Variation of refractive index, n with X.

In this structure, the coupling between the two identical waveguides with 

their dimensions, a = b = 1.6 [im and the arsenic concentration, y = 0.15 are 

considered. In this example, two waveguides have identical refractive indices and 

these values decrease with wavelength. Here, two guides are phase matched at all 

wavelengths and maximum power is transferable whenever the interaction length is 

equal to the coupling length.

Fig. 7.3 shows the variation of the coupling length with the operating 

wavelength. The normalized guide dimensions decrease with the wavelength and 

also the refractive index differences between the guides and claddings decrease, 

these effects together reducing the modal confinement of two individual modes.
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This reduced modal confinement increases the coupling coefficient, so the coupling 

length decreases with the wavelength. It can also be observed that the coupling 

length increases with the separation of the waveguides, because the modal 

interaction also decreases.

Fig. 7.3 Variation of the coupling length with the operating wavelength for 
coupled identical waveguides.

If the effective interaction length of the directional coupler is equal to the 

coupling length at 1.3 |im, then maximum power transfer is possible from one guide 

to another at this wavelength. However, for other wavelengths, the power transfer 

will be reduced, as the wavelength-dependent coupling length is not equal to the 

device length. Fig. 7.4 shows the maximum power transfer between the two guides 

with wavelength, for different waveguide separations, s. This figure shows that the
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maximum power is transferable when the wavelength is equal to 1.3 |im, the 

designed wavelength. When the wavelength decreases, the maximum power transfer 

decreases monotonically. However, when the operating wavelength increases, the 

power transfer decreases and reaches zero when the wavelength-dependent 

coupling length becomes twice the coupling length at 1.3 Jim, and after that it again 

increases. It can also be observed that the power transfer curve is slightly sharper 

when the separation between the guides is larger, although the tuning property is 

still very poor for the optical filter using coupled identical waveguides.

X(/xm)

Fig. 7.4 Variation of the power transfer efficiency with the operating wavelength 
for coupled identical waveguides.
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7.3 Directional Couplers consisting of a nonidentical 
waveguides

In the second example, two nonidentical guides, both index matched to InP, 

but with widths 1.6 pm and 0.53 pm and arsenic concentrations (y) of 0.15 and 

0.25 respectively, are considered.

Fig. 7.5 shows the variation of (3a/(3b with the operating wavelengths, A,. It 

can be observed that (3a and Pb are equal at a wavelength A = 1.30 pm. For this 

dimension and material combination, the two isolated guides are phase matched at a 

wavelength of 1.3 pm. Alternatively phase matching can be achieved at any given 

wavelength by adjusting waveguide parameters.

Fig. 7.5 Variation of ßa /ßb with different wavelength.
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For a planar structure, analytical solutions are possible, in order to obtain 

the propagation constants for the even and odd supermodes (3, and P2 by applying 

field continuity at the dielectric interfaces. The finite element (FE) solutions agree 

very well with the analytical solutions. It can be noted here that an analytical 

solution cannot be obtained for a waveguide in 2-D confinement because of hybrid-

mode analysis is required to satisfy the boundary conditions, but the FEM can 

provides accurate modal solutions for isolated guides and for coupled structures for 

a wide range of such practical waveguides. Starting from Pa and Pb, the 

propagation constants of the isolated modes, the even and odd supermodes P, and 

P2, may be also calculated using coupled mode approximation.

Table 7.1 shows a comparison of the finite element solutions with the three 

different appproaches for the even and odd TE supermodes of the coupled 

structures. Here Pj and P2 are propagation constants for the even and odd 

supermodes of the coupled guides. The FEM solution is obtained by using a 1x4000 

mesh division of the structure. It takes about 5 seconds to find a modal solution on 

Sun-Sparcstation 2 for this mesh refinement. Table 7.1 shows excellent agreement 

of the FEM and coupled mode approach results and if required, the accuracy can be 

further improved by using an even finer mesh.
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X in 
pm

FEM HS MA CH

Pi P; P; (3; Pi P̂ Pi P;

1.28 16.01373 16.00814 16.01373 16.00814 16.01373 16.00816 16.01373 16.00815

1.29 15.87338 15.86958 15.87337 15.86958 15.87338 15.86959 15.87337 15.86958

1.30 15.73609 15.73326 15.73609 15.73325 15.73610 15.73327 15.73609 15.73325

1.31 15.60200 15.59873 15.60200 15.59872 15.60202 15.59873 15.60200 15.59872

1.32 15.47080 15.46627 15.47080 15.46626 15.47082 15.46627 15.47080 15.46626

Table 7.1 Propagation constants of supermodes.

Fig. 7.6 shows the Ex field profiles for the even-like TE supermodes for a 

nonidentical directional coupler when a and b are 0.53 pm and 1.6 pm respectively, 

with the separation distance, j  = 1.4 pm. When X = 1.30 pm, the two isolated 

guides are phase matched. It can be observed that in this case the power is equally 

divided in two guided regions but the supermode is not symmetrical because of the 

asymmetrical geometry of two guides. However, when X = 1.26 pm, it can be 

observed that the modal profiles are highly asymmetrical, and the first supermode is 

the even-like mode with most of the power confined in the guide a. This is because 

the dominant isolated mode in guide a has a higher propagation constant than the 

isolated mode in guide b so the first supermode with a higher propagation constant 

resembles more the mode Ea, when not phase matched. By contrast, the second 

supermode (odd-like) carries more power in guide b, as shown in Fig. 7.7. On the 

other hand, when X = 1.34 pm, the propagation constant of the dominant mode in 

guide b is higher than the propagation constant of the similar isolated mode in guide
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a, and hence the first supermode has most of the power confined in the waveguide 

region b and the second supermode carries more power in guide a.

Fig- 7.6 Ex field profiles for the even-like TE supermodes.
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Fig. 7.7 Ex field profiles for the odd-like TE supermodes.

Fig. 7.8 shows the variation of the effective refractive index for even-like 

and odd-like modes with wavelength. It can be seen that the effective refractive 

indices decrease with wavelength. It can also be observed that the effective 

refractive index for the even-like mode is higher than that of odd-like mode due to 

the higher propagation constant. It can be observed that their phase difference is 

minimum at X, = 1.3 fim.
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Fig. 7.8 Variation of effective refractive indices for even-like mode and odd-like 
mode with wavelength, X.

Fig. 7.9 shows the variation of the coupling length with the operating 

frequency for this structure. It can be observed that the coupling length is a 

maximum at a wavelength of 1.3 pm and it decreases for other wavelengths. 

Further, the coupling length is higher for larger waveguide separations with sharp 

resonant features. When the wavelength is far away from the resonance value, the
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coupling length is not sensitive to the waveguide separation, s. In this situation the 

coupling length depends mostly on the factor |Pa -  Pfc|. It can also be noted that

coupling lengths are smaller for all other nonphase matching wavelengths for similar 

waveguide separations.

Fig. 7.9 Variation of the coupling length with the operating wavelength for 
coupled nonidentical waveguides.

Fig. 7.10 shows the power transfer efficiency for this same structure with 

the operating wavelength, by simply considering the change in the coupling length. 

Here, the power transfer also reduces when the wavelength is not the designed 

value, which is 1.3 Jim, but it can be observed that nonsymmetrical couplers have a 

much smaller bandwidth. It should be noted that the horizontal axis of Fig. 7.9 is
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expanded in comparison to Fig. 7.4. The effect of varying the separation distance is 

also very prominent for this example.

Fig. 7.10 Variation of the power transfer efficiency with the operating 
wavelength for coupled nonidentical waveguides by considering only 
the mismatching of the coupling lengths.

Next, the maximum power transfer between the two waveguides is 

calculated by using coupled mode theory (Hardy and Streifer, 1985). In this case, 

the effects of phase mismatching (A) and modal overlap (Ca{,) are taken into 

account. Even when the device length is adjusted to make it equal to the coupling 

length for each wavelength, all the power cannot be transferred from one guide to 

the other due to a mismatch in their phase velocities. The coupling coefficient Kab is 

the coupling per unit length from guide b to a, whereas the coupling coefficient K^a 

is the coupling per unit length from guide a to b. Fig. 7.11 shows the variation of
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the coupling coefficient Kab and the coupling coefficient Kba with the wavelength, 

X, when the waveguide separation, s = 1.4 pm. It can be observed that Kab and Kba 

increase with wavelength and they have identical values when X = 1.30 pm.

Fig. 7.11 Variation of the coupling coefficients with the operating wavelength.

The power transfer efficiency may be calculated by using the three different 

coupled mode approaches. Given the initial excitation at z = 0 of two coupled 

waveguides, Pa (z = 0) = 1 and Pb (z = 0) = 0, Pbm is the maximum output power in 

guide b. This is given as P(b) in equation (15) by Hardy and Streifer (1985) and as 

Pb in equation (26) by Chuang (1987)

1 75



Chapter 7 An Optical Filter...

Fig. 7.12 shows the variation of P^ with mesh divisions for X = 1.31 |im and 

5 = 1.4 (im using three different approaches. In this experiment, the X = 1.31 pm 

has been selected to test a case where power remained in both the guides are 

significant. It can be seen that all three methods result in power converges, but at 

different values. The results of Hardy and Streifer (HS) agree better with those of 

Chuang (CH) when the mesh increases whereas the results of Marcatili show a 

larger deviation.

Fig. 7.12 Variation of the power transfer efficiency with mesh.

Instead, however, if the initial excitation is in guide b, (Pa (z=0) = 0 and P^ 

(z=0) =1), then Pam is the maximum power in guide a, given as P(°) in equation 

(14) by Hardy and Streifer and as Pa in equation (25) by Chuang. In order to satisfy 

reciprocity in a lossless waveguide system, Pam and P^m should be equal.
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Fig. 7.13 shows the variation of the different values of the power transfer 

efficiency Pa and Pb for the Hardy and Streifer (HS) situation with the mesh 

density. It can be observed that the error reduces as the mesh increases. For all the 

values of wavelengths, it has been found that the reciprocal error reduces 

monotonically with the total mesh division.

Fig. 7.13 Variation of the power difference of Pa and Pb with mesh.

Considerable disagreement between the results of the three procedures can 

be observed, even when a very fine mesh has been used.

Fig. 7.14 shows the maximum power transfer between the guides when the 

device dimension is adjusted for each wavelength, that is, in this case the lack of
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power transfer due to phase mismatching only is considered. Results are also 

presented when the length of the device is not adjusted with the wavelength, as in 

the practical case, and further, phase mismatching is taken into account using the 

coupled mode approach.

Fig.7.14 Variation of the power transfer efficiency with the operating 
wavelength for coupled nonidentical waveguides by considering only the phase 
velocity mismatching.

Fig. 7.15 shows the variation of pa/p^ for the TM mode for several different 

wavelengths, A. It can be observed that pa and P  ̂ are equal at a wavelength A = 

1.2627 p.m. For this situation, the two isolated guides are phase matched at a
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wavelength of 1.2627 |im, clearly illustrating polarization dependent properties for 

this structure.

Fig. 7.15 Variation of (3a /p* for TM mode with different wavelength.

Fig. 7.16 shows the power transfer between the two waveguides with the 

operating wavelength using the CH and the LSBR approaches. In this case, the 

total length of the device is fixed at a value Lco, (where Lco is the coupling length at 

X = 1.3 |im), when both the effect of the lack of phase synchronism and the change 

of the coupling length have been considered. It clearly shows a filter characteristic 

with very sharp wavelength tuning. The results obtained agree well with those of 

Huang et al. (Huang et al., 1992), who used the finite-difference based beam
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propagation method (FDBPM) in their analysis. It can be noted that for TM modes 

there is a significant shift of the tuning wavelength, due to the vector nature of the 

electromagnetic waves. Additionally, a degradation of the extinction ratio for the 

TM mode is also observed due to the polarization dependence of the coupling 

length.

Fig. 7.16 The polarization dependence of the directional coupler filter.
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7.4 Summary

The results presented in this section for optical filters using identical and 

nonidentical directional couplers show the comparison between the coupled mode 

approaches and the least squares boundary residual approach. The result of Chuang 

agree better with those of the least squares boundary residual approach. A 

polarization dependency is also shown for this structure. These agreements show 

the capability of the finite element method, even when it was applied to a planar 

waveguide, but its main advantages will be seen in the case of a 2-D confinement 

directional coupler which will be discussed in Chapter 8 and Chapter 9 where other 

simpler methods are not satisfactory. Thus, based upon the confidence given in the 

use of the method for several simpler approaches, it is now appropriated to apply it 

to several more complex problem, discussed subsequently.
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Chapter 8

Characterisation of Optical Channel 
Waveguides Directional Couplers

8.1. Introduction

In chapters 5, 6, and 7 the solution of a planar waveguide directional 

coupler, in terms of various of its important operational parameters such as the 

width of the guide, and different values of refractive index and wavelength used, 

have been described. One of the practical dielectric waveguides of special interest 

for fabrication in integrated optics form is the channel waveguide, which is also 

known as the embedded strip waveguide. In its ideal form, it is a rectangular 

dielectric waveguide surrounded on three sides by a substrate which has a slightly 

smaller refractive index. The fourth side is generally exposed to the air, while most 

of the fields are confined in the central strip. The analysis of this type of guide is 

complex and no exact analytical solutions for the modes are available. The modes 

are nearly transverse electromagnetic as in a rectangular dielectric waveguide, 

having smaller longitudinal components. In order to understand the operating 

characteristics of such a device and to achieve an optimization of these directional
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coupler-based devices, it is important to be able to predict the coupling properties 

between the guides. Since the design, modification, development and optimization 

of such devices can be both tedious and expensive, a clear need exists for an 

accurate and versatile design method to ensure high and consistent quality for the 

use of such a device.

Thus, over the years, there has been considerable interest in and importance 

given to the theoretical analysis of such devices. Many simple methods have been 

developed and used, such as the method of Marcatili (1969), and the effective index 

method (Knox and Toulios, 1970; Robson and Kendall, 1990; Cheng, 1991) for 

such analysis. However, in order to use these simple methods, the waveguide cross- 

section must be very much restricted to simpler cross-sections. The Beam 

Propagation method (Feit et al., 1983) has been used to find the power transfer for 

axially variant coupled waveguides but with a restriction on small index differences, 

and it can provide only scalar solutions. The finite difference method (Schultz et al., 

1991) and scalar (Bersiner et al., 1991) and vector (Rahman and Davies, 1984a; 

Koshiba et al., 1984; Rahman and Davies, 1988a) finite element methods have also 

been used to characterise such devices. In this chapter the finite element analysis has 

been used to study the characterisation of optical channel waveguide directional 

couplers.
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8.2. Application of the method

To show the usefulness of this method, some results for channel waveguide 

and coupled channel waveguides are presented. Such results can also be obtained 

for different types of waveguides, including optical fibres and semiconductor rib 

waveguides, with if necessary, graded or anisotropic or nonlinear materials.

Modes in channel waveguides are neither pure TE nor pure TM. In two- 

dimensional optical waveguides they are generally classified as the Exmn modes if the 

transverse electric field is primarily in the ¿-direction and Eymn mode if the transverse 

electric field is primarily in the y-direction. The m and n subscripts denote the 

number of maxima for the principal field component in the x and y directions, 

respectively. The Exmn can also be denoted as Wmn and similarly the Eymn modes as 

Hxmn modes. The lowest order mode has m = 1 and n -  1. For most purposes, the 

Exmn modes can be considered as quasi-TE modes while the E}mn modes can be 

considered as quasi-TM modes.

8.2.1. Numerical Results for Channel Waveguide

In this example, the solutions of a simple channel waveguide are presented. 

The waveguide under consideration is shown schematically in Fig. 8.1. The 

refractive indices of the guide core, ng, substrate, ns, and top cladding, na, are 2.30 

2.29 and 1.0 respectively. The dimensions of the guide core are given by the guide
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width, W, and the guide depth, D, with operating wavelength, X = 0.85 p.m. The 

normalized propagation constant, V, used here is given as follows

V  =

- n .

n g ~ n s

(8 .1)

where (3 is propagation constant and the wave number, k = I t i/Xq.

Fig. 8.1 Schematic of channel waveguide.
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Fig. 8.2 shows the variation of the normalized refractive index, ne = $/kB, 

for the H{x and H$x modes (quasi TE modes) for the step index channel waveguide. 

In this example the guide depth, D, and the half-guide width, W/2, are varied. This 

wavelength structure has been analyzed using the vector H-formulation and 3200 

first order elements. It is also necessary to select other dimensions, c, d, and e such 

that the orthodox boundary does not influence the solutions. Near to cut-off, the 

normalized propagation decreases very quickly.

Fig. 8.2 Dispersion characteristics for a step-channel waveguide.
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In the finite element method, the solution accuracy improves (Svedin, 1989) 

with the mesh refinement in a similar way to the finite difference method. Fig. 8.3 

illustrates the effect of mesh divisions when W = 4.0 p.m and D = 3.0 fim. This 

figure shows monotonic convergence with the mesh divisions. Note that in this 

figure the normalized propagation constant (which itself represents an expanded 

version of the propagation constant) is drawn in an enlarged scale to show this 

variation itself.

Fig. 8.3 The convergence of the finite element solution with the total number of 
elements.

Convergence of the finite element solution is often studied by refining the 

size of the elements. The accuracy of the results can be considerably increased by
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the use of careful extrapolation techniques. The technique employed is based on 

solving the physical problem with, say, two or three rather coarse meshes and 

extrapolating systematically from these results, with considerable saving in 

computer time being produced. If the pattern of the element shapes is suitably 

preserved, then a powerful extrapolation procedure such as Aitken's extrapolation 

procedure can be employed. In this technique the mesh refinement should follow a 

fixed geometric ratio and the results for the three calculations may be put into the 

following extrapolation formula (Rahman and Davies, 1985).

x
(xr+l- x rf

{xr+l- 2 x r+xr_l)
(8.1)

Table 8.1 shows the extrapolated result from the use of different mesh 

divisions, although the mesh divisions in the x and y directions need not be equal.

No. of division V
9x9 0.55100

18x18 0.57200
36x36 0.57546

Extrapolated 0.57614
16x16 0.57082
24x24 0.57433
36x36 0.57546

Extrapolated 0.57600

Table 8.1 Results with the use of Aitken's extrapolation.
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Perhaps the most serious difficulty in using some vector formulation is the 

appearance of extraneous nonphysical or spurious modes (Rahman and Davies, 

1984). In the conventional vector finite element formulations such as are seen with 

equation (2.13), the associated Euler equation is consistent with the two Maxwell 

curl equations but does not imply V B = 0, which is believed to be responsible for 

the spurious modes. By imposing the divergence constraint by using the penalty 

technique (Rahman and Davies, 1984), spurious solutions can be effectively 

removed. Besides removing them from the region of interest, the penalty procedure 

also improves the eigenvector quality. A variational expression with the divergence- 

free constraint (V ■ H = 0) imposed in a least-squares sense is given by equation 

(2.51).

It is necessary to comment on the use of the free term a, the penalty 

coefficient because the accuracy of the solution depends on its value. Generally, 

with a larger a  value, the modal solutions get more stable but their accuracy for the 

eigenvalues deteriorates. On the other hand, the smaller the values of a becomes, 

the better the accuracy of the physical solutions. However, with a smaller a value, 

the more spurious solution couples with a physical solution to form two 

degenerative eigenvectors, and then the accuracy of the physical solution may be 

considerably worse or be very unpredictable. By considering the eigenvalues k, for 

a  = a, and k2 for a = a 2 respectively, the correct eigenvalue ka (a = 0) can be 

extrapolated (Hayata et al., 1986). It is also observed, from our experience, that 

spurious solutions can be avoided by setting a  = l/ns. The error resulting is very
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small for reasonable mesh refinement. Fig. 8.4 illustrates the effect of the penalty 

parameter for the H yn mode. It can be seen that an error becomes less with a finer 

mesh, for example the errors of mesh divisions 15x15, 20x20, 30x30 and 40x40 

are 3.7%, 1.9%, 1.3% and 0.82% respectively. It can be also noticed that for below 

a certain value of a  = 0.15, the values of normalized propagation constants, V, are 

unpredictable.

Fig. 8.4 Effect of the penalty parameter for the Hxl mode with mesh division.

8.2.2. Solutions for the coupled channel waveguide

For this example, it is considered that the core, substrate and top cladding

refractive indices are 2.30, 2.29 and 1.0 respectively as shown in Fig. 8.5, typical of
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the channel waveguide used. The width and depth of the left guide are W], Dj, and 

those of the right guide are W2, D2 (microns) respectively. The operating optical 

wavelength in this example is considered to be 0.85 (im.

In a directional coupler, two optical waveguides are place in parallel, and at 

close proximity. The interaction of the overlapping evanescent fields of the guided 

modes in the individual guides causes power exchange between the coupled guides. 

This power exchange can be controlled by adjusting the synchronization and the 

coupling coefficient between the two guides. Complete energy transfer can occur 

between the two coupled identical waveguides if their length is equal to the 

coupling length, Lc, for a given separation between the guides, s. The coupling 

length, Lc, may be defined as the length required to achieve 180 degree relative 

phase shift between the two normal modes propagating along the directional 

coupler, i.e.

n _ n
Ap " P,-P„

(8.2)

where (3e and P0 are the propagation constants of the even and odd supermodes of 

the coupled guides.
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Fig. 8.5 Asymmetrical channel waveguide directional coupler.

Fig. 8.6 illustrates the variation of the propagation constants for the "even-

like" and "odd-like" supermodes with the variation of the width of the second 

channel waveguide, W2, for different guide separations, s. In this example the depth, 

Dj, and the width, WI, of the first guide are 2.5 pm and 2.6 pm respectively and the 

depth of the second guide, D2, is 3.0 pm. The two guides are not identical but when 

W2 is 2.0 pm, the propagation constants of the two isolated guides are identical, 

that is they are phase matched. In this situation, the two supermodes are almost the 

even and odd types and there can be full transfer of power between the two guides. 

The top curves EI and E2 are representative of the first supermodes which are even 

or even-like supermodes, whereas the lower curves O, and 0 2 are for the second
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supermodes which are odd or odd-like supermodes. When the width of the second 

guide, W2, is larger than necessary for the synchronous condition (i.e. W2 > 2.0 pm) 

then the first supermodes almost resemble the modes of the isolated second guide 

and second supermode resembles that of the isolated first guide.

However, when W2 is smaller than 2.0 pm, the first supermodes resemble 

those of the first isolated guide and second supermodes resemble those of the 

second isolated guide. The above statement is true for all the values of waveguide 

separation, s, but when the guides are in close proximity, the coupling between 

them is larger. The effect of the separation distance on the field profiles for the 

same waveguide dimensions can also be seen from the eigenvectors drawn in Fig. 

8.6. For the finite element results presented in this work, 4320 first order triangular 

elements are used to represent the complete coupled waveguide cross-section and 

the resulting order of the matrix eigenvalue equation is 6771. This takes about 20 

minutes of CPU time on Sun Sparcstation 2, to find the propagation constant and 

the associated vector field profiles using a sparse solver.
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w 2

Fig. 8.6 Variation of propagation constants of the first two quasi-TE 
supermodes.

Fig. 8.7 shows the variation of the propagation constants for the "even-like" 

and "odd-like" supermodes with the variation of the separation, s. In this case, the 

depth, Dj, and width, Wj, of the first guide are 2.5 (im and 2.6 (im respectively and 

the depth and width of the second guide, D2, are 3.0 |im and 2.01 p.m respectively. 

The propagation constants of the two guide are almost those of the propagation of 

the isolated guide when the separation, s, increases.
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Fig. 8.7 Variation of the propagation constants for the even-like and odd-like 
supermodes with separation, s.

Fig. 8.8 shows the variation of the coupling length, Lc, with the half 

separation distance, s, for four different waveguide cross-sections when the two 

guides are identical, i.e., Wi =W2, Di =D2. It can be seen from this figure that Lc 

becomes larger with increasing s and follows an exponential law, so the Lc vs s plot 

is linear on a log-linear scale. To reduce the device length, a benefit in practical 

applications where space may be limited, it is important to have a shorter value of 

Lc which in turn requires a strong coupling between the guides. Unlike the finite 

element method, many simple methods of analysis which are based on the 

perturbation of the normal modes of the two individual guides fail to preserve the 

orthogonality of the supermodes and power conservation criteria in strong coupling 

situations.
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Fig. 8.8 Variation of the coupling length with the separation distance.

Due to fabrication tolerances, it is not always possible precisely to control 

the waveguide dimensions W and D or the refractive indices in different regions. It 

is important to see the effect of such a variation on the coupling lengths. Fig. 8.9 

shows this variation of the coupling length with the change in the width fraction 

('WAV0) for two different half-separation distances, s. When the half-separation 

distance, s = 0.5 p.m, the central coupling length required is 0.688 mm, compared to 

2.13 mm when 5 = 1.0 p.m. Although ALC/AW  is smaller for smaller separation 

distances, its effect on the power transfer will be detrimental as ALC/LC becomes

higher, which introduces significant cross-talk. It can be also noticed that slope 

increases with larger separation, s, i.e., the effect of coupling length, Lc, becomes
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more significant with longer device length. The percentage changes are of 1.13% 

and 5.03% when the half-separation distances, s, are 0.5 pm and 1.0 pm 

respectively.

Fig. 8.9 Variation of the coupling length with W/Wa for different half-separation 
distances.

Similarly Fig. 8.10 shows the variation of the coupling length with the 

tolerance of the guide depth (D/D0). It can be seen that the effect of tolerances of 

guide depth and guide width are in the same law, i.e., slope is more sharp with 

larger separation, s. The variation of the coupling length changes 0.5% and 4.1% 

when the half-separation are 0.5 pm and 1.0 pm respectively.

19 7



Chapter 8 Characterisation of....

Fig. 8.10 Variation of the coupling length with D/D0 for different half-
separation distances.

However, the effect of structural asymmetry due to the fabrication 

procedure is much more severe in its effect on their performance than the 

symmetrical structural deviations. This is because the two modes in the two isolated 

nonidentical guides will have different propagation constants, (3, and will not be 

phase matched to transfer power effectively between the guides. Fig. 8.11 shows 

the variation of the coupling length, Lc, with the second waveguide width, W2, for 

various waveguide separations when W1, D, and D2 are 2.6 pm, 2.5 pm and 3.0 p. 

m respectively. When the two waveguides are phase matched, AP is a minimum and 

so the value of Lc is highest at that point. Lc decreases steadily away from the 

synchronous position and in this condition only negligible power can be transferred
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between the waveguides as their propagation constants are different. When the 

separation between the guides, s, increases Lc is very high at the phase matching 

condition and decreases very sharply away from this point, in which case a very 

sharp frequency response is possible. Although such unintentional loss of phase 

matching in couplers, designed to be symmetrical may not be desirable, specially 

designed asymmetrical couplers have excellent wavelength-dependent coupling 

ratios and find their application in the construction of wavelength division 

multi/demultiplexing systems.

Fig. 8.11 Variation of the coupling length with W2.
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Fig. 8.12(a) shows the Hy field (the dominant component) for the H f  even 

mode, when the two isolated guides are phase matched. It can be observed that the 

supermode is nearly symmetrical but reflecting only the slight asymmetry of the 

individual guide cores. Fig. 8.12(b) shows the H field contour for the Hfx odd 

supermode which is nearly antisymmetrical. Fig. 8.12(c) shows the H  field of the 

even-like mode at W2 = 1.8 pm and in this case the two waveguides are not phase 

matched. In this situation, as the eigenvalue of the left isolated guide is higher than 

that of the isolated right guide and so for this, in the first supermode (even-like) 

more power is concentrated in the left-hand side. By contrast, the second 

supermode (odd-like) carries more power in the right-hand side guide, as shown in 

Figure 8.12(d).
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( a )

(b )

( c )

Fig. 8.12 Contour plots of the Hy field at synchronous condition (W2 = 2.0 pm) 
(a) Even supermode, (b) odd supermode; Nonsynchronous modes at W2 = 1.8 pm, 
(c) Even-like supermode, (d) Odd-like supermode.
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In optical circuits, it is essential to have bent or curved guiding sections to 

connect the directional coupler region to other optical devices which may be 

employed, such as optical fibres. The separation between the guides is increased 

outside the coupling region either by introducing a sloped straight or a curved 5 

section, as shown in Fig. 8.13(a) and 8.13(b). These bent or curved sections will 

introduce an offset or radiation loss. It is desirable that power transfer should be 

only in the actual directional coupler region and there should not be any power 

transfer between the two connecting guides, but in fact, there will always be some 

transfer of power in this region.

A

2s

A

B L B

(a)
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(b)

Fig. 8.13 Input and output sections of directional couplers (a) straight line 
approach (b) curved S shaped approach.

If the angle, 0, is smaller, to obtain a certain final waveguide separation, a 

longer transition length, B, is required making the total device length longer. These 

tapered transition sections leading towards and away from the coupler region will 

also introduce an additional power transfer between the guides which can be written 

as an additional phase shift, AO, from the two transition regions. Fig. 8.14 shows 

the variation of AO with angle, 0, for different separation distances, with F is fixed 

at 50 |im. When the angle, 0, is increased, for a given F, the required horizontal 

distance B will be smaller and the additional AO will also be reduced, but it will 

introduce more loss due to sharp transitions. It can be observed that AO reduces 

with 0, and also for higher separation distances. Similarly Fig. 8.15 shows the 

variation of the additional phase with the A/B ratio.
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Fig. 8.14 Variation of the additional phase shift, AC> with the slope angle 0.

Fig. 8.15 Variation of the additional phase with A/B ratio.
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In the design of a practical directional coupler, its effective length, Le, is 

usually chosen so that

Ap Le = m i (8.3)

where n is an odd integer. If the additional phase shift AO is not taken into 

account, the effective length of the directional coupler is not exactly equal to an odd 

number of times the coupling length, and so the performance of the directional 

coupler will be degraded and the power output from port 1, PI? is not be exactly 

zero. This cross-power ratio, when the effect of Ad> is neglected may be given by:

P /P 0 = sin2(A4>/2) (8.4)

where P0 is the total power. However, as this additional phase shift can be 

accurately calculated for different designs, if the length of the parallel section(Lc) is 

shortened appropriately so that Le = Lc, only then may 100 percent power transfer 

will be possible. Fig. 8.16 shows the length of the parallel section for a straight line 

approach for different angles, 0, and separation distances. Similarly, Fig. 8.17 

shows the actual coupling length for the use of the curved section approach.
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ig. 8.16 Effective coupling length variation for straight line approach.

Fig. 8.17 Effective coupling length variation for curved S section approach.
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8.3 Summary

Initially modal solutions for channel waveguides, including the effect of 

mesh division and penalty parameter were presented. It can be noted that the 

solutions become unique with the use of a finer mesh. The effect of separation 

distance, fabrication tolerances of the guide width and the guide depth, WAV0 and 

D/D0, were also discussed. The coupling length for nonidentical guides and the 

supermode field profiles for synchronous and nonsynchronous waveguides were 

also illustrated. Additionally, the effect of curved section in terms of the additional 

phase shift, AO, and the length of the parallel section ( Lc) were discussed. As an

illustration of further applications, the power transfer between the two guides on an 

electro-optic directional coupler switch in 2-D confinement will be presented in the 

next Chapter.
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Chapter 9

Electro-Optic Channel Waveguides 
Directional Coupler Switch

9.1 Introduction

In chapter 6, the solutions of the coupled-mode equations for electro-optic 

planar waveguide directional couplers have been described. The coupling properties 

of the directional coupler were also presented in Chapter 8, where an electro-optic 

directional coupler with two-dimensional confinement is presented. As has been 

mentioned in chapter 5, the finite element method can provide a means to obtain 

accurate modal field profiles and propagation constants for all the modes of each 

individual guide or for all the supermodes for a coupled structure consisting of two 

or more waveguides. Once the modal properties of the supermodes are known, the 

least squares boundary residual (LSBR) method can be applied to calculate the first 

and second supermode coefficients, b1 and b2. To carry out the calculations of 

power transfer efficiency, equation (5.5) is integrated over the cross section of the 

waveguides and their values tire substituted into equation (5.6) and finally the
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results of an analysis of the electro-optic directional coupler, in two dimensional 

channel waveguides are presented as follows.

9.2 Design Example

A two-parallel-channel-waveguide system is considered, which consists of 

five dielectric layers in x-direction and three dielectric layers in y-direction. In this 

example, a titanium-diffused LiNb03 electro-optic directional coupler switch is 

viewed together with its simplified equivalent channel structure, as shown in Fig 

9.1.

Fig. 9.1 Schematic diagram of channel waveguides directional coupler.
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The unperturbed guides are 2.6 pm wide and 2.5 pm in depth and with a 

refractive index of 2.3, when no modulation is applied. The separation region 

between the guides is s pm wide with a refractive index in this region of 2.29. The 

operating wavelength is 1.3 pm. In this work, it is assumed that when a positive 

modulation field is applied, the refractive index in the left guide is increased by An/2 

and decreased by An/2 in the right guide due to the opposite sign of the electric 

field, and the guides are no longer identical. Fig. 9.2 shows the variation of the 

propagation constants for the "even-like" and "odd-like" TE supermodes with An. It 

can be observed that the propagation constants of the two guides are almost those 

of the propagation of the isolated guide when the separation, s, increases. It can 

also be noted that when An = 0, the difference of their values of p, A(3, is very small 

and it almost zero when the separation is very large.

Fig. 9.2 Variation of the propagation constants for the even-like and odd-like 
supermodes with separation, s.
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The electric modal field profiles for the first TE supermode are shown in 

Fig. 9.3 for An = 0 when the guide separation, 5, is 1.5 |im. The dominant field is 

the Hy field. When no modulation is applied, in this case An = 0, the two guides are 

identical and the even and odd supermodes are symmetrical along the centre of the 

separation region as shown in Fig. 9.3 (a) and (b). The peak values of even field are 

positive for both sides and along the symmetry plane whereas the values of the odd 

field occur with positive and negative peaks and the field become zero at the centre 

of the guide.

(a)
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Position, x (/xm)

(b)

Fig. 9.3 Contour plots of the Hy field at An = 0 and the separation, s, is 1.5 pm 
(a) Even supermode (b) Odd supermode.

However, when a modulation is applied, it can be observed that the first 

supermode is the deformed even-like mode with more power confined in the left 

guide which has a higher refractive index than the right guide. Similarly the second 

odd-like supermode will be more confined in the right guide, which is shown in Fig. 

9.4 (a) and (b) at An = 0.0005 for the separation, s, is 1.5 pm. When the modulating 

voltage is increased further, the coupled waveguides are far away from synchronous 

condition and then the even-like and the odd-like modes almost resemble the mode 

of isolated guide, as shown in Fig. 9.5 (a) and (b) at An = 0.001 where the 

separation, s, is 1.5 pm.
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(a)

(b)

Fig. 9.4 Contour plots of the Hy field at An = 0.0005 (a) Even supermode (b) 
Odd supermode.
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(a)

0.0 2.5 5.0 7.5 10.0 12.5

Position, x (¿¿m)

(b)

Fig. 9.5 Contour plots of the Hy field at An = 0.001 (a) Even supermode (b) Odd 
supermode.

Fig. 9.6 (a) and (b) shows the contour plots of the Hy field for the first 

supermode and the second supermode when An = 0.0005 and in this case the 

separation, s, is increased to 2.5 |im. It can be observed that when the separation, s, 

is increased the two guides become weakly coupled and the even-like mode has 

most of the power in the left guide compared to the case when 5=1.5 |im as shown
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in Fig. 9.4(a). Similarly, the second odd-like mode is more confined in the right 

guide. It can be seen that at the same An but where the separation is larger, the two 

waveguides become further apart so the modal interaction is less, and the 

supermodes lose their synchronicity faster as compared to the situation in Fig. 9.4 

(a), (b).

0.0 2.5 5.0 7.5 10.0 12.5

Position, x (/¿m)

(a)

(b)

Fig. 9.6 Contour plots of the Hy field at An = 0.0005 and the separation, s, is 2.5 
pm. (a) Even supermode (b) Odd supermode.
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Fig. 9.7 shows the variation of the coupling length, Lc, with An for different 

values of the separation distance, s. It can be seen that Lc decreases with increasing 

An since A(3 increases when An increases. It can also be noted that with the increase 

in separation, the coupling length decreases more rapidly with the change in 

refractive index, An, since the coupling length, Lc, depends on the difference of the 

propagation constants, |(3a — | . At small values of An, the coupling length, Lc is

more sensitive to the separation, s, as Pa = |3A.

Fig. 9.7 Variation of the coupling length with An for different separation 
distances, s.
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Next, the least squares boundary residual method is applied to obtain the 

coefficients of the two supermodes excited at the directional coupler interface, 

when excited by the fundamental mode in the guide b. Fig. 9.8 shows the variation 

of the supermode coefficients with An for different separations between the guides, 

s. It can be observed that when An = 0 and the separation distance is large, b1 = b2 

= 0.707. It can be seen that the coefficient of the even supermode, bj, decreases 

with An, whereas that of the odd supermode, b2, increases. From the curve, when 

the separation distance, 5 = 2.5 |im the odd supermode, b2 converges to 1.0 faster 

and in the same time the even supermode, bi, also converges to zero faster.

Fig. 9.8 The variation of the supermode coefficients with An.
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Fig. 9.9 and Fig. 9.10 show the variation of the maximum power transferred 

and the output power from guide b to guide a with the change of refractive index 

difference, An, at values of the separation, s, of 2.5 pm and 1.5 pm respectively. 

The output power is the power transferred from guide b to guide a when the device 

length is kept fixed at Lc = Lc0 = 3414.77 pm and 1013.42 pm when the separation 

distances, s, are 2.5 pm and 1.5 pm respectively, which are the coupling lengths 

when no modulation is applied. The maximum power means the power transfer 

from guide b to guide a when the device length is changed for a particular coupling 

length, Lc, which is changing with An. Results show that the power efficiency 

becomes nearly equal to unity, only when the guides are weakly coupled. With 

increasing An, the two guides lost their synchronicity and thus complete transfer of 

power between them can no longer occur and it falls nearly to zero. Here, the 

power transfer efficiency is significantly lower than the maximum power transfer. 

This reduced power transfer is due to the additional effect of the coupling length 

mismatching as the value of Lc changes with An, whereas the device length is kept 

fixed. It can be seen from the results that the output power increases to maximum 

and decreases to minimum alternatively when An is greater than 0.0003, due to the 

effect of the coupling length. The output power increases to maximum and 

decreases to minimum when the coupling length is equal to an even multiple of Lc 

and an odd multiple of Lc respectively. The output power and the maximum power 

curves when the separation, 5 = 2.5 |im decrease more rapidly compared to the case 

when the separation, s = 1.5 pm in Fig. 9.10. However, with the decrease of the
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separation, s, the two guides have a greater interaction, the coupling length does 

not change much, but the output power starts increasing when An is greater than 

0.00092, as shown in Fig. 9.10. The comparison of the effect of separation, s, will 

be shown in Fig. 9.11.

Fig. 9.9 Maximum power transfer and the output power transfer between two 
coupled waveguides at a separation, s, of 2.5 pm.

219



Chapter 9 Electro-optic...

Fig. 9.10 Maximum power transfer and the output power transfer between two 
coupled waveguides at the separation, s, is 1.5 pm.

Fig. 9.11 shows the variation of the output power transfer from guide b to 

guide a with the change of refractive index, An, between the guides, when the 

separations, s, are 1.5 pm and 2.5 pm respectively. It shows that with the increase 

in the separation, s, the output power decreases more rapidly with the change in 

refractive index, An, since the waveguides loose their synchronicity faster under 

these circumstances.
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Fig. 9.11 Variation of the coupled output power in guide a with the refractive 
index change An.

9.3 Summary

Results for the coupling length, Lc, the modal solution field profiles, the 

supermode coefficients, bi and b2, and the power transfer in 2-D confinement were 

presented in this Chapter. An accurate field profile and the coupling length were 

obtained from the use of the finite element method. Both synchronous and 

nonsynchronous field profiles were also illustrated. It can be noted that the 

waveguides will loose their synchronisity when An increases. The supermode 

coefficients, bI and b2 were calculated from the least squares boundary residual
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approach. It can be noticed from Fig. 9.8 that b2 must be greater than b, because b, 

and b2 are the coefficients which need to make the sum of b]Ee + b2Ea equal to the

incident mode in guide b. From the values of supermode coefficients, bi and b2, the 

power transfer from guide b to guide a could be calculated. The effect of the 

separation, s, between the two guides was also shown.

It can be seen that complete power transfer is not possible when An 

increases and its transfer is faster with larger separation, s. The effect of the 

coupling length that makes the output power increase to maximum and decrease to 

minimum alternatively can be used in the design of an optical switch. It is important 

to note that the 2-D confinement approach is valid for diffused n(x,y) and 

anisotropic material and in future work an optical filter and An(x,y) can be 

considered. In the next Chapter, an overall conclusion of this work will be 

discussed, and also further work in this research theme will be suggested.
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Chapter 10

Discussion and Suggestions for 
further work

10.1 Discussion of aims and objectives of this thesis

The objectives set out at the beginning of the study were essentially 

achieved during the course of the work. The results obtained were, in general 

satisfactory in showing agreement where possible with the results of other 

numerical experimental work and the use of other methods and they provide 

encouragement for further applications of the technique in a range of practical 

optical waveguides. The prime objective of this work was to develop numerical 

procedures to characterize directional couplers and directional coupler-based 

devices in terms such as the fabrication tolerances in the dimensions of the 

waveguides, and the bend input and output sections for a range of directional 

couplers and devices such as optical filters, modulators or electo-optic switches. An 

important objective of this work was to provide a straightforward technique to 

solve problems whose solutions are of significant practical interest in the 

optoelectronics industry. Most of the industrial interest in waveguides is in two
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dimensional confinement that needs better and more accurate design methods to 

which most of simpler approaches may not applicable. The finite element method is 

one of the most powerful numerical methods which can handle a wide range of 

optical waveguide problems such as the arbitrary cross section waveguide, including 

open boundaries, the arbitrary refractive index profile n{x,y) and the use of 

anisotropic materials. In this work, emphasis was placed on developing the finite 

element based techniques for further use in the design and understanding of 

practical waveguides. The characterization of the TE mode coupling in planar 

structures is presented only to make a comparison with published results using 

different procedures and to confirm the validity of the procedure used in this work. 

The method was then developed for hybrid modes in optical waveguides with two- 

dimensional confinement, which so far has not been reported and represents an 

important advance in this work. The results obtained on the power transfer in two- 

dimensional confinement are satisfactory, showing the validity of the method in this 

approach.

10.2 Use of Numerical Techniques in Problem Solving

Unfortunately the range of available analytical techniques is inadequate to 

solve the problems of most the optical waveguides available. In this thesis it has 

been demonstrated why numerical analysis has become standard for most of the 

dielectric waveguide structures which are usable at optical frequencies, due to its 

success in problem solving. The finite element method has undoubtedly become a 

powerful tool for the analysis of electromagnetic problems and it stands as one of
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the most important techniques for carrying out such numerical analysis for a wide 

range of optical waveguides. In this thesis, the finite element method was 

implemented to obtain the modal solution for supermode field profiles, to obtain 

accurate propagation constants and the coupling length, Lc, of coupler devices. A 

specific finite element formulation involving the vector magnetic field, H, and a 

penalty function term to eliminate spurious modes has been used for the solution of 

optical waveguide problems, mostly for application to directional couplers of real 

practical interest. Several different types of directional coupler have been analyzed 

and the results obtained compared with others from alternative approximate 

methods, showing the value of the method.

The main advantages of the finite element method, over other approximate 

techniques, are its generality and suitability for the development of efficient and 

flexible computer programs. While most analytical and numerical approximate 

methods are mainly applicable to guides with relatively regular or slightly perturbed 

shape and material composition, the finite element method has been shown in this 

work to be suitable to treat waveguide structures with quite complicated shape and 

material properties. Another advantage is that its index distribution can be arbitrary, 

which is important for many practical waveguides. Hence it has been shown that it 

can be used to solve a wide range of practical waveguide problems.

For integrated optics problems, there is the need for special boundary 

conditions at the dielectric interfaces. As a result, the formulation involving the 

magnetic field vector H is the most advantageous, since H is naturally continuous
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across the dielectric interfaces, and the associated natural boundary condition is that 

of an electric wall, which is also convenient to consider in most practical situations. 

However, with this formulation, there is an appearance of spurious modes amongst 

the physical modes. To eliminate the spurious modes, the penalty function technique 

was added to impose the constraint V • H = 0 , and it has proved to be very 

effective and quite easy to implement, as demonstrated in this work.

The structures analyzed in this thesis have been two-core directional 

couplers. These dielectric configurations exploit the interchange of modal power 

between the two adjacent guides and their importance is seen in that they are at the 

heart of many important optical devices, such as modulators, wavelength filters and 

sensors. Their analytical treatment may be quite complicated and in most cases 

reported this has involved approximations that are not always realistic. The finite 

element method has proved to be very useful in that respect in this work, since it 

has enabled the evaluation of the basic coupling parameters, such as the coupling 

length and the transferred power, in a generalized and conceptually straightforward 

manner, showing its superiority over the analytical methods.

10.3 Specifics of the Application of the Finite Element 
Method in this work

With this method, the modal solution field profile and the propagation 

characteristics of a wide range of practical optical waveguides are easily attainable. 

The results show the validity of the method even when used with strongly coupled,
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synchronous or nonsynchronous waveguides. The effect of fabrication tolerances, 

D/D0, W/W0, and the bend input and output sections were shown in Chapter 8. It 

can be noted that the effect of fabrication tolerances, D/D0 and WAV„ on the 

coupling length become higher when the device length is longer and it will introduce 

significant cross-talk. For the case of bend input and output sections, it can be seen 

that the transition sections will introduce an additional power transfer between the 

guides in the two transition regions. The effect of an additional phase shift on 

different parameters can accurately be calculated, as shown in Fig 8.14 to Fig. 8.17. 

The effect of two free parameters, the penalty term (a) and the mesh division has 

also been presented. There are a few types of errors which have become clear in the 

total solution of the problem. One is called the discretization error, which is due to 

the replacement of the continuous problem by a discrete model. It is necessary to 

use a large number of elements and nodal points to achieve a satisfactory 

convergence with the finite element methods. This is due to the fact that the shape 

functions provide only approximate representations of the true fields. The resulting 

error decreases as the mesh number increases, because the numerical model comes 

closer to an accurate representation of the continuous physical problem.

Once the accurate modal solution field profile and the coupling length, Lc, 

are obtained from the finite element approach, the coupled mode formulation was 

applied to describe a wide range of directional couplers. The application of 

improved coupled mode theories along with the use of accurate eigenvectors and 

eigenvalues obtained by the finite element method provide the power transfer ratio
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between such coupled waveguides. Different coupled mode approaches have been 

considered to study some of the coupled guided structures. Explicit expressions for 

the coupling coefficients, which play a central role in this theory, are given. The 

formalism treats the case of slab dielectric waveguides, thus assuming no variation 

in one (y) direction. In this work, three such approaches, namely, the coupled mode 

approaches, the least squares boundary residual approach and the propagation 

model approach, were considered to test the applicability of the formulations. The 

coupling coefficient and the overlap integral has been tested by varying three 

different parameters of the waveguides, as follows in:

• Simulation of strongly coupled nonidentical waveguides by changing the width 

of the second guide b, where the results in Chapter 5 show excellent agreement 

with those of Hardy and Streifer (1985),

• Simulation of optical modulators/switches by changing refractive index different, 

An, where the results in Chapter 6 show good agreement with those of Chuang 

(1987),

• Simulation of optical filters by changing the wavelength, A, where the results in 

Chapter 7 show close agreement with those of Huang (1992).

Alternative methods, such as the least squares boundary residual method and 

the propagation model method were used to test the accuracy of the result. Here 

the results from the least squares boundary residual method have also been
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presented, and the power transfer efficiency has been shown to agree well with the 

results obtained from the coupled mode approaches.

Finally, these approaches presented were developed for hybrid modes in 

optical waveguides with two-dimensional confinement. The extension to guides 

where the confinement is in both the x and y directions principally involves replacing 

the integration over all jc, in the expressions for the coupling coefficients, by an 

integration over both x and y. For the cases where the modes are very well confined 

in the y direction, the numerical correction is small. The applications of the coupled 

mode formulations to the two dimensional confinement has not been discussed. 

However, these approaches presented are valid for hybrid modes in optical 

waveguides with two-dimensional confinement, and the results obtained on the 

power transfer shown in Chapter 9 are reasonably satisfactory. The calculation of 

important device parameters, such as power transfer, cross-talk, and filter 

bandwidth, for practical optical waveguides, will be very useful in the optimization 

of the design of modem directional coupler-based photonic devices.

10.4 Further potential of this work

It has been shown that the use of the finite element method, the coupled-

mode theory, and the least squares boundary residual method are of fundamental 

importance for the design and understanding of a wide variety of integrated optics 

and optoelectronic devices based on the coupling of optical waves. A further 

application of this work could be in the consideration of waveguides with different

229



Chapter 10 Discussion...

index profiles, as well as anisotropic guides. Some important integrated optical 

devices are made of anisotropic materials in practice. The permittivities of these 

waveguide systems are characterized by a dielectric tensor, e , given by:

f  £ £ ~XX

e £  „ „
y * y y

e ev « zy

yz
'zz J

Generally, e is complex when there exists loss or gain in waveguide 

systems. For the lossless case, it is Hermitian, and for isotropic media, it 

degenerates to a scalar. As has been shown in this study, the finite element method 

can be applied to any guided mode (TE, TM, or hybrid) in a waveguide of arbitrary 

cross section, dissimilar index and nonidentical shape. In the finite element method, 

the guide cross section is divided into a finite number of triangular elements to 

represent the problem, thus allowing each element to have a different tensor 

permittivity. This property enables the finite element to be applied to the analysis of 

a range of arbitrarily shaped anisotropic waveguides. The modal solutions and the 

propagation constant of the waveguide using anisotropic materials can thus be 

obtained by using the finite element method. A future orientation of the work in this 

field could lie in the development of the coupled mode equations and the least 

squares boundary residual methods to calculate the coupling coefficient, the power 

transfer and cross-talk from the solutions obtained by the use of the finite element 

method. This work would also serve as a useful basis for the modelling of vertical 

cavity devices such as wavelength selective waveguides, carrier induced
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semiconductors switches, multimode interference systems (MMI) and in the 

investigation of the use of lateral coupling for efficient laser-fibre coupling.
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Appendix 1

Infinite Elements

The components of [Be] matrix in eq. (2.30) which represents the denominator of 

the eq. (2.13) can be evaluated as:

5,(1,1) = | i j  N?ds

= [ l jp -e (-2xlL)dxdy

\lbL 
~  ~ 6 ~

Be{ 1,4) = [i\N ,N 2ds 

\\bL
~ ~ \T

where b and L are the width of infinite strip and the free parameter related to the 

field decay respectively.

Similarly the other matrix components can be also calculated.

The numerator of the equation (2.13) can also be calculated as follows:

J{ //} ’[Vx[)V]]*e-1[Vx[)V]]{//}^ = [A 1.1]

where
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[A,] = ij[Vx[W ]]'[Vx[JV]]* [A 1.2]

Any particular component of [AJ matrix can be easily evaluated, and as an 

example,

Ar(l>l)
ß26L

and similarly other components of [AJ matrix can also be calculated. The infinite 

elements extending in the y direction, or being extended in both the transverse 

directions can be solved by using similar approach.
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Matrix generation

From equation (2.44) the 9x9 [£,] matrix can be calculated, and as an 

example the ijth component as

Be = \ i ^ i th row of N ', j lh column of N dQ. [A2.1]

From eq. (2.36), the integral of this form (2.45) can be evaluated numericallly as 

following:

¿¡,(U) = ¡¡N fd n  = 4 [A2.2]

B e(  1,2) = 0 [A2.3]

5, (1,3) = 0 [A2.4]

¿¡,(1*4) = 4  [A2.5]

The shape functions for the first order case can be written as
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AT = a.+fc.x + c,? [A2.6]

From eq. (2.49) a few components of [Q] matrix can be shown as

Qn = o

Q„ = = -7PW,

a n ,
0 ,1  ~

[A2.7]

[A2.8]

[A2.9]

From eq. (2.50)the 9x9 [Ae] matrix can be calculated as:

A,(l,l) = + $!N!dW

d A + £ L . ±
E £  6

A ,(U ) =
b,c,A

e

3 b , - -
K 'e 3

[A2.10]

[A2.ll]

[A2.12]
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