

City, University of London Institutional Repository

Citation: Hunt, S., Sands, D. & Stucki, S. (2023). Reconciling Shannon and Scott with a

Lattice of Computable Information. Proceedings of the ACM on Programming Languages,
7(POPL), pp. 1987-2016. doi: 10.1145/3571740

This is the published version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/29743/

Link to published version: https://doi.org/10.1145/3571740

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

68

Reconciling Shannon and Sco�

with a La�ice of Computable Information

SEBASTIAN HUNT, City, University of London, United Kingdom

DAVID SANDS, Chalmers University of Technology, Sweden

SANDRO STUCKI∗, Amazon Prime Video, Sweden

This paper proposes a reconciliation of two di�erent theories of information. The �rst, originally proposed in

a lesser-known work by Claude Shannon (some �ve years after the publication of his celebrated quantitative

theory of communication), describes how the information content of channels can be described qualitatively,

but still abstractly, in terms of information elements, where information elements can be viewed as equivalence

relations over the data source domain. Shannon showed that these elements have a partial ordering, expressing

when one information element is more informative than another, and that these partially ordered information

elements form a complete lattice. In the context of security and information �ow this structure has been

independently rediscovered several times, and used as a foundation for understanding and reasoning about

information �ow.

The second theory of information is Dana Scott’s domain theory, a mathematical framework for giving

meaning to programs as continuous functions over a particular topology. Scott’s partial ordering also represents

when one element is more informative than another, but in the sense of computational progress – i.e. when

one element is a more de�ned or evolved version of another.

To give a satisfactory account of information �ow in computer programs it is necessary to consider both

theories together, in order to understand not only what information is conveyed by a program (viewed

as a channel, à la Shannon) but also how the precision with which that information can be observed is

determined by the de�nedness of its encoding (à la Scott). To this end we show how these theories can be

fruitfully combined, by de�ning the Lattice of Computable Information (LoCI), a lattice of preorders rather

than equivalence relations. LoCI retains the rich lattice structure of Shannon’s theory, �lters out elements

that do not make computational sense, and re�nes the remaining information elements to re�ect how Scott’s

ordering captures possible varieties in the way that information is presented.

We show how the new theory facilitates the �rst general de�nition of termination-insensitive information

�ow properties, a weakened form of information �ow property commonly targeted by static program analyses.

CCS Concepts: • Theory of computation → Program analysis; Denotational semantics; • Security and

privacy→ Information �ow control.

Additional Key Words and Phrases: Information Flow, Semantics

ACM Reference Format:

Sebastian Hunt, David Sands, and Sandro Stucki. 2023. Reconciling Shannon and Scott with a Lattice of

Computable Information. Proc. ACM Program. Lang. 7, POPL, Article 68 (January 2023), 30 pages. https:

//doi.org/10.1145/3571740

∗This publication was written while the third author was at Chalmers, prior to joining Amazon.

Authors’ addresses: Sebastian Hunt, s.hunt@city.ac.uk, City, University of London, London, United Kingdom; David Sands,

dave@chalmers.se, Chalmers University of Technology, Gothenburg, Sweden; Sandro Stucki, sastucki@amazon.com,

Amazon Prime Video, Gothenburg, Sweden.

© 2023 Copyright held by the owner/author(s).

2475-1421/2023/1-ART68

https://doi.org/10.1145/3571740

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 68. Publication date: January 2023.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
HTTPS://ORCID.ORG/0000-0001-7255-4465
HTTPS://ORCID.ORG/0000-0001-6221-0503
HTTPS://ORCID.ORG/0000-0001-5608-8273
https://doi.org/10.1145/3571740
https://doi.org/10.1145/3571740
https://orcid.org/0000-0001-7255-4465
https://orcid.org/0000-0001-6221-0503
https://orcid.org/0000-0001-5608-8273
https://doi.org/10.1145/3571740
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3571740&domain=pdf&date_stamp=2023-01-11

68:2 Sebastian Hunt, David Sands, and Sandro Stucki

1 INTRODUCTION

Note to Reader: this paper is not about information theory [Shannon 1948], but about a theory of
information [Shannon 1953].

1.1 What is the Information in Information Flow?

The study of information �ow is central to understanding many properties of computer programs,
and in particular for certain classes of con�dentiality and integrity properties. In this paper we are
concerned with providing a better semantic foundation for studying information �ow.

The starting point for understanding information �ow is to understand information itself. Shan-
non’s celebrated theory of information [Shannon 1948] naturally comes to mind, but Shannon’s
theory is a theory about quantities of information, and purposefully abstracts from the information
itself. In a relatively obscure paper1, Shannon [1953] himself notes:

. . . � (-) [the entropy of a channel -] can hardly be said to represent the actual
information. Thus, two entirely di�erent sources might produce information at
the same rate (same�) but certainly they are not producing the same information.

Shannon goes on to introduce the term information elements to denote the information itself.
The concept of an information element can be derived by considering some channel – a random
variable in Shannon’s world, but we can think of it as simply a function 5 from a “source” domain
to some “observation” codomain – and asking what information does 5 produce about its input.
Shannon’s idea was to view the information itself as the set of functions which are equivalent, up
to bijective postprocessing, with 5 , i.e. {1 ◦ 5 | 1 is bijective on the range of 5 } – in other words,
all the alternative ways in which the information revealed by 5 might be faithfully represented.
Shannon observed that information elements have a natural partial ordering, re�ecting when

one information element is subsumed by (represents more information than) another, and that any
set of information elements relating to a common information source domain can be completed
into a lattice, with a least-upper-bound representing any information-preserving combination of
information elements, and a greatest-lower-bound, representing the common information shared
by two information elements, thus providing the title of Shannon’s note: “A Lattice Theory of
Information”. Shannon observes that any such lattice of information over a given source domain
can be embedded into a general and well-known lattice, namely the lattice of equivalence relations
over that source domain [Ore 1942]. In fact, the most precise lattice of information for a given
domain, i.e. the one containing all information elements over that domain, is isomorphic to the
lattice of equivalence relations over that domain. In the remainder of this paper will think in terms
of the most precise lattice of information for any given domain.

This lattice structure, independently dubbed the lattice of information by Landauer and Redmond
[1993], can be used in a uniform way to phrase a large variety of interesting information �ow
questions, from simple con�dentiality questions (is the information in the public output channel
of a program no greater than in the public input data?), to arbitrarily �ne-grained, potentially
conditional information �ow policies. The lattice of information, described in more detail in §2, is
the starting point of our study.

1.2 Shortcomings of the La�ice of Information

The lattice of information provides a framework for reasoning about a variety of information �ow
properties in a uniform way. It is natural in this approach, to view programs as functions from
an input domain to some output domain. But this is where we hit a shortcoming in the lattice of

1With around 150 citations, a factor of 1000 fewer than his seminal work on information theory [Shannon 1948] (source:

Google Scholar); according to Rioul et al. [2022], all but ten of these actually intended to cite the 1948 paper.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 68. Publication date: January 2023.

Reconciling Shannon and Sco� with a La�ice of Computable Information 68:3

information: program behaviours may be partial, ranging from simple nontermination, to various
degrees of partiality when modelling structured outputs such as streams. While these features can
be modelled in a functional way using domain theory (see e.g. [Abramsky and Jung 1995]) the
lattice of information is oblivious to the distinction between degrees of partiality.
Towards an example, consider the following two Haskell functions:

parity1 x = if even x then 1 else 0

parity2 x = if even x then "Even" else "Odd"

Even though these two functions have di�erent codomains, intuitively they release the same infor-
mation about their argument, albeit encoded in di�erent ways. In Shannon’s view they represent
the same information element. The information released by a function 5 can be represented simply
by its kernel – the smallest equivalence relation that relates two inputs whenever they get mapped
to the same output by 5 . It is easy to see that the two functions above have the same kernel.

What about programs with partial behaviours? A natural approach is to follow the denotational
semantics school, and model nontermination as a special “unde�ned” value, ⊥, and more generally
to capture nontermination and partiality via certain families of partially ordered sets (domains

[Abramsky and Jung 1995]) and to model programs as continuous functions between domains.
Consider this example:

parity0 x = if even x then 1 else parity0 x

Here the program returns 1 if the input is even, and fails to terminate otherwise. The kernel of (the
denotation of) this function is the same as the examples above, which means that it is considered
to reveal the same amount of information. But intuitively this is clearly not the case: parity0
provides information in a less useful form than parity1. When the input is odd, an observer of
parity0 will remain in limbo, waiting for an output that never comes, whereas an observer of
parity1will see the value 0 and thus learn the parity of the input. The two are only equivalent from
Shannon’s perspective if we allow uncomputable postprocessors. (Of course, we are abstracting
away entirely from timing considerations here. This is an intrinsic feature of the denotational
model, and a common assumption in security reasoning.)

Intuitively, parity0 provides information which is consistent with parity1, but the “quality” is
lower, since some of the information is encoded by nontermination.

Now consider programs A and B, where the input is the value of variable x and the output domain
is a channel on which multiple values may be sent. Program A simply outputs the absolute value of
x. Program B outputs the same value but in unary, as a sequence of outputs, then silently diverges.

A: output(abs(x))

B: y := abs(x);

for i := 1 to y {

output ()

};

while True { };

Just as in the previous example, A and B compute functions which
have the same kernel, so in the lattice of information they are
equivalent. But consider what we can actually deduce from B after
observing = output events: we know that the absolute value of x
is some value ≥ =, but we cannot infer that it is exactly =, since we
do not know whether there are more outputs yet to come, or if the
program is stuck in the �nal loop. By contrast, as soon as we see
the output of A, we know with certainty the absolute value of x. In
summary, the lattice of information fails to take into account that
information can be encoded at di�erent degrees of de�nedness2.

2Here we have drawn, albeit very informally, on foundational ideas developed by Smyth [1983], Abramsky [1987, 1991] and

Vickers [1989], which reveal deep connections between domain theory, topology and logics of observable properties.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 68. Publication date: January 2023.

68:4 Sebastian Hunt, David Sands, and Sandro Stucki

A second shortcoming addressed in this paper, again related to the lattice of information’s
unawareness of nontermination, is its inability to express, in a general non ad hoc way, a standard
and widely used weakening of information �ow properties to the so-called termination-insensitive

properties [Sabelfeld and Myers 2003; Sabelfeld and Sands 2001]. (When considering programs with
stream outputs, they are also referred to as progress-insensitive properties [Askarov and Sabelfeld
2009].) These properties are weakenings of information �ow policies which ignore any information
which is purely conveyed by the de�nedness of the output (i.e. termination in the case of batch
computation, and progress in the case of stream-based output).

1.3 Contributions

Contribution 1: A re�ned lattice of information. In this paper we present a new abstraction
for information, the Lattice of Computable Information (LoCI), which reconciles Shannon’s lattice
of information with Scott’s domain ordering (§3). It does so by moving from a lattice of equivalence
relations to a lattice of preorder relations, where the equivalence classes of the preorder re�ect
the “information elements”, and the ordering between them captures the distinction in quality of
information that arises through partiality and nontermination (the Scott ordering). Just as with the
lattice of information, LoCI induces an information ordering relation on functions; in this ordering,
parity0 is less than parity1, but parity1 is still equivalent to parity2. Similarly programs �
and � above are related but not equivalent. We show that LoCI is, like the lattice of information,
well behaved with respect to various composition properties of functions.

Contribution 2: A generalised de�nition of termination-insensitive noninterference. The
lattice of computable information gives us the ability to make �ner distinctions about information
�ow with respect to progress and termination. By modelling this distinction we also have the
ability to systematically ignore it; this provides the �rst uniform generalisation of the de�nition of
termination-insensitive information �ow properties (§4).
The remainder of the paper begins with a review of the lattice of information (§2), which is

followed by our re�nement (§3), the treatment of termination-insensitivity (§4), a discussion of
related work (§5), and some directions for further work (§6).

2 THE LATTICE OF INFORMATION

The lattice of information is a way to abstract the information about a data source � which might
be revealed by various functions over that data. Mathematically, it is simply the set of equivalence
relations over� , ordered by reverse inclusion, a structure that forms a complete lattice [Ore 1942], i.e.
every set of elements in the lattice has a least upper bound and a greatest lower bound. The lattice
of information has been rediscovered in several contexts relating to information and information
�ow, e.g. using partial equivalence relations (PERs) [Hunt 1991; Hunt and Sands 1991]. Here we
use the terminology from Landauer and Redmond [1993] who call it the lattice of information.
To introduce the lattice of information let us consider a simple set of values

� = {Red,Orange,Green, Blue}

and the following three functions over � :

isPrimary(2) =

{
True if 2 ∈ {Red, Blue}

False otherwise
isTra�cLight(2) =

{
False if 2 = Blue

True otherwise

primary(2) =

“The primary colour red” if 2 = Red

“The primary colour blue” if 2 = Blue

“Not a primary colour” otherwise

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 68. Publication date: January 2023.

Reconciling Shannon and Sco� with a La�ice of Computable Information 68:5

Now consider the information that each of these functions reveals about its input: isPrimary and
isTra�cLight reveal incomparable information about their inputs – for example we cannot de�ne
either one of them by postprocessing the result of the other. The function primary, however, not only
subsumes both of them, but represents exactly the information that the pair of them together reveal
about the input, nothing more, nothing less. The lattice of information (over �) makes this precise
by representing the information itself as an equivalence relation on the elements of � . Elements
that are equivalent for a given relation are elements which we can think of as indistinguishable.

Definition 1 (Lattice of Information). For a set � , the lattice of information over � , LoI(�),

is de�ned to be the lattice

LoI(�) = (ER(�), ⊑LoI,⊔LoI,⊓LoI)

where ER(�) is the set of all equivalence relations over � , % ⊑LoI &
def
= & ⊆ % , the join operation ⊔LoI

is set intersection of relations, and the meet, ⊓LoI, is the transitive closure of the set-union of relations.

Note that LoI(�) is a complete lattice (contains all joins and meets, not just the binary ones)
[Ore 1942]. The top element of LoI(�) is the identity relation on � , which we write as Id� , or just
Id when � is clear from context; the bottom element is the relation which relates every element to
every other element, which we write as All� , or just All.
In the above de�nitions we consider equivalence relations to be sets of pairs of elements of

� . Another useful way to view equivalence relations is as partitions of � into disjoint blocks
(equivalence classes). Given an equivalence relation % on a set � and an element 0 ∈ � , let [0]%
denote the (necessarily unique) equivalence class of % which contains 0. Let [%] denote the set of
all equivalence classes of % . Note that [%] is a partition of �.

red

blue green

orange

red

blue green

orange

red

blue green

orange

red

blue green

orange

red

blue green

orange

isPrimary

isPrimary ⌴ isTrafficLight

Id

All

isTrafficLight

Fig. 1. An Example Subla�ice of the la�ice of Information over {Red,Orange,Green,Blue}

In Fig. 1 we present a Hasse diagram of a sublattice of the lattice of information containing
the points representing the information provided by the functions above, and visualising the
equivalence relations by representing them as partitions. Note that with the partition view, the
ordering relation is partition re�nement. The full lattice LoI{Red,Orange,Green, Blue} contains 15
elements (known in combinatorics as the 4Cℎ Bell number).

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 68. Publication date: January 2023.

68:6 Sebastian Hunt, David Sands, and Sandro Stucki

2.1 The Information Ordering on Functions

To understand the formal connection between the functions and the corresponding information
that they release, we use the well-known notion of the kernel of a function: We recall that the kernel
of a function 5 : � → � is the equivalence relation ker(5) ∈ LoI(�) which relates all elements
mapped by 5 to the same result: 0 ker(5) 1 i� 5 (0) = 5 (1).
Thus the points illustrated in the lattice do indeed correspond to the respective kernels of the

functions, and it can readily be seen that ker(primary) = ker(isPrimary) ⊔LoI ker(isTra�cLight).
Note that taking kernels induces an information preorder on any functions 5 and 6 which have

a common input domain (we write dom(5) = dom(6)), namely 5 ≾ 6 i� ker(5) ⊑LoI ker(6), i.e. 6
reveals at least as much information about its argument as 5 .

Note that this information ordering between functions can be characterised in a number of ways.

Proposition 1. For any functions 5 and6 such that dom(5) = dom(6) the following are equivalent:

(1) 5 ≾ 6
(2) {? ◦ 5 | codom(5) = dom(?)} ⊆ {? ◦ 6 | codom(6) = dom(?)} (where codom(5) is the

codomain of function 5)

(3) There exists ? such that 5 = ? ◦ 6

The proposition essentially highlights the fact that the information ordering on functions can
alternatively be understood in terms of postprocessing (the function ?). The set {? ◦ 5 | codom(5) =

dom(?)} can be viewed as all the things which can be computed from the result of applying 5 .

2.2 An Epistemic View

In our re�nement of the lattice of information we will lean on an epistemic characterisation of the
function ordering which focuses on the facts which an observer of the output of a function might
learn about its input.

Definition 2. For 5 : � → � and 0 ∈ �, de�ne the 5 -knowledge set for 0 as:

 5 (0) = {0′ ∈ � | 5 (0) = 5 (0′)}

The knowledge set for an input 0 is thus what an observer who knows the function 5 can
maximally deduce about the input if they only get to observe the result, 5 (0). For example,
 primary (Green) = {2 | primary(2) = primary(Green)} = {Green,Orange}. Note that although we
use the terminology “knowledge”, following work on the semantics of dynamic security policies
[Askarov and Chong 2012; Askarov and Sabelfeld 2007], it is perhaps more correct to think of this
as uncertainty in the sense that a smaller set corresponds to a more precise deduction. The point
here is that 5 ≾ 6 can be characterised in terms of knowledge sets: 6 will produce knowledge sets
which are at least as precise as those of 5 :

Proposition 2. Let 5 and 6 be any two functions with domain �. Then 5 ≾ 6 i� 6 (0) ⊆ 5 (0)

for all 0 ∈ �.

2.3 Information Flow and Generalised Kernels

Although we can understand the information released by a function by considering its kernel as an
element of the lattice of information, for various reasons it is useful to generalise this idea. The �rst
reason is that we are often interested in understanding the information �ow through a function
when just a part of the function’s output is observed. For example, if we want to know whether a
function is secure, this may require verifying that the public parts of the output reveal information
about at most the non-secret inputs. The second reason to generalise the way we think about
information �ow of functions is to build compositional reasoning principles. Suppose that we know

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 68. Publication date: January 2023.

Reconciling Shannon and Sco� with a La�ice of Computable Information 68:7

that a function 5 reveals information % about its input. Now suppose that we wish to reason about
5 ◦6. In order to make use of what we know about 5 we need to understand the information �ow of
6 when the output is “observed” through % . This motivates the following generalised information
�ow de�nition (the speci�c notation here is taken from [Hunt 1991; Sabelfeld and Sands 2001], but
we state it for arbitrary binary relations à la logical relations [Reynolds 1983]):

Definition 3. Let % and & be binary relations on sets � and �, respectively. Let 5 : � → �.

De�ne:

5 : % ⇒ & i� ∀0, 0′ .(0 % 0′ implies 5 (0) & 5 (0′))

When % and & are equivalence relations, these de�nitions describe information �ow properties
of 5 where % describes an upper bound on what can be learned about the input when observing
the output “through” & (i.e. we cannot distinguish &-related outputs).
We can read 5 : % ⇒ & as an information �ow typing at the semantic level. As such it can

be seen to enjoy natural composition and subtyping properties. Again, we state these in a more
general form as we will reuse them for di�erent kinds of relation:

Fact 1. The following inference rules are valid for all functions and binary relations of appropriate

type:

% ′ ⊆ % 5 : % ⇒ & & ⊆ & ′

5 : % ′ ⇒ & ′
Sub

5 : % ⇒ & 6 : & ⇒ '

6 ◦ 5 : % ⇒ '
Comp

When these relations are elements of the lattice of information, the conditions % ′ ⊆ % and & ⊆ & ′ in

the Sub-rule amount to % ′ ⊒LoI % and & ⊒LoI &
′, respectively.

Information �ow properties also satisfy weakest precondition and strongest postcondition-like
properties. To present these, we start by generalising the notion of kernel of a function:

Definition 4 (Generalised Kernel). Let REL(�) denote the set of all binary relations on a set �.

For any 5 : � → �, de�ne 5 ∗ : REL(�) → REL(�) as follows:

G 5 ∗ (') ~ i� 5 (G) ' 5 (~)

We call this the generalised kernel map, since ker(5) = 5 ∗ (Id).

Now, it is evident that 5 ∗ preserves re�exivity, transitivity and symmetry, so restricting 5 ∗ to
equivalence relations immediately yields a well de�ned map in LoI (Landauer and Redmond [1993]
use the notation 5 # for this map). Moreover, we can de�ne a partner 5!, which operates in the
opposite direction and has dual properties (as formalised below):

Definition 5. For 5 : � → �:

(1) 5 ∗ : LoI(�) → LoI(�) is the restriction of the generalised kernel map to LoI(�).

(2) 5! : LoI(�) → LoI(�) is given by 5! (%) =
⊔

LoI{& ∈ LoI | 5 : % ⇒ &}.

Note that we are overloading our notation here, using 5 ∗ for both the map on REL and its
restriction to LoI. Later, in §3.6, we overload it again (along with 5!). Our justi�cation for this
overloading is that in each case these maps are doing essentially the same thing3: 5 ∗ (&) is the
weakest precondition for & (i.e. the smallest % such that 5 : % ⇒ &) while 5! (%) is the strongest
postcondition of % (i.e. the largest & such that 5 : % ⇒ &), where “smallest” and “largest” are
interpreted within the relevant lattice (LoI here, our re�ned lattice LoCI later). The following
proposition formalises this for LoI (see Proposition 6 for its LoCI counterpart):

3This can be made precise, categorically. See §3.7.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 68. Publication date: January 2023.

68:8 Sebastian Hunt, David Sands, and Sandro Stucki

Proposition 3. For any 5 : � → �, 5 ∗ and 5! are monotone and, for any % ∈ LoI(�) and

& ∈ LoI(�), the following are all equivalent:

(1) 5 : % ⇒ & (2) 5 ∗ (&) ⊑LoI % (3) & ⊑LoI 5! (%)

We have summarised a range of key properties of the lattice of information that make it useful
for both formulating a wide variety of information �ow properties, as well as proving them in a
compositional way. An important goal in re�ning the lattice of information will be to ensure that
we still enjoy properties of the same kind.

3 LOCI: THE LATTICE OF COMPUTABLE INFORMATION

Our goal in this section is to introduce a re�nement of noninterference which accounts for the
di�erence in quality of knowledge that arises from nontermination, or more generally partiality,
for example when programs produce output streams that may at some point fail to progress. We
will assume that a program is modelled in a domain-theoretic denotational style, as a continuous
function between partially ordered sets. In this setting, the order relation on a set of values models
their relative degrees of “de�nedness”. Simple nontermination is modelled as a bottom element,
⊥, and in general the ordering relation re�ects the evolution of computation. Following Scott,
the pioneer of this approach, when one element 3 is dominated by another 4 , one can think of 4
as containing more information than 3 . In the domain-theoretic view, a partial element is not a
concrete observation or outcome, but a degree of knowledge about a computation. In this sense ⊥
represents no knowledge – you do not fully observe a nonterminating computation, it may still
evolve into some more de�ned result. Note how this view emphasises how we are abstracting away
from time. This also explains the basic requirement that all functions (which will be the denotation
of programs) are monotone: if you know more about the input (in Scott’s sense) you know more
about the output. In domain theory (a standard reference is [Abramsky and Jung 1995]) one restricts
attention to some subclass of well-behaved partially ordered sets (the domains of the theory), in
order that recursive computations may be given denotations as least �xpoints. Being well-behaved
in this context entails the existence of suprema of directed sets (and usually a requirement that the
domain has a �nitary presentation in terms of its compact elements). In this paper we keep our
key de�nitions as general as possible by stating them for arbitrary partially ordered sets, but still
requiring that the functions under study are continuous (preserve directed suprema when they
exist). We expect that some avenues for future work may require additional structure to be imposed
(see §6).

3.1 Order-Theoretic Preliminaries

A partial order on a set � is a re�exive, transitive and antisymmetric relation on �. A poset is a
pair (�, ⊑�) where ⊑ is a partial order on �. We typically elide the subscript on ⊑� when � is clear
from the context.
The supremum of a subset - ⊆ �, if it exists, is the least upper bound

⊔
- with respect to ⊑�.

A set - ⊆ � is directed if - is non-empty and, for all G1 ∈ -, G2 ∈ - , there exists G
′ ∈ - such

that G1 ⊑ G
′ and G2 ⊑ G

′. For posets � and �, a function 5 : � → � is monotone i� 0 ⊑ 0′ implies
5 (0) ⊑ 5 (0′). A function 5 : � → � is Scott-continuous if, for all - directed in �, whenever

⊔
-

exists in � then
⊔
5 (-) exists in � and is equal to 5 (

⊔
-). From now on we will simply say

continuous when we mean Scott-continuous. Note:

(1) Continuity implies monotonicity because 0 ⊑ 0′ implies both that {0, 0′} is directed and that⊔
{0, 0′} = 0′, while

⊔
{5 (0), 5 (0′)} = 5 (0′) implies 5 (0) ⊑ 5 (0′).

(2) Monotonicity in turn implies that, if - is directed in �, then 5 (-) is directed in �.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 68. Publication date: January 2023.

Reconciling Shannon and Sco� with a La�ice of Computable Information 68:9

Notation. In what follows, we write 5 ∈ [� → �] as a shorthand to mean both that � and � are

posets and that 5 is continuous.

3.2 Ordered Knowledge Sets

Our starting point is the epistemic view presented in §2.2. Recall that we de�ned the 5 -knowledge
set for an input 0 to be the set {0′ | 5 (0′) = 5 (0)}, which is what we learn by observing the
output of 5 when the input is 0. However, as discussed in the introduction to this section, in a
domain-theoretic setting, observation of a partial output should be understood as provisional: there
may be more to come. This requires us to modify the de�nition of knowledge set accordingly. What
we learn about the input when we see a partial output is that the input could be anything which
produces that observation, or something greater. Hence:

Definition 6. For 5 ∈ [� → �] and 0 ∈ �, de�ne the ordered 5 -knowledge set for 0 as:

 ⊑
5
(0) = {0′ ∈ � | 5 (0) ⊑ 5 (0′)}

Recall (Proposition 2) that the LoI preorder on functions has an alternative characterisation in
terms of knowledge sets: the kernel of 6 is a re�nement of (i.e. more discriminating than) the kernel
of 5 just when each knowledge set of 6 is a subset of (i.e. more precise than) the corresponding
knowledge set of 5 . Unsurprisingly however, if we compare continuous functions based on their
ordered knowledge sets, the correspondence with LoI is lost. Consider the examples parity0 and
parity1 from §1.2. We can model these as functions 50, 51 ∈ [/ → /⊥], where / is discretely
ordered (the partial order is just equality) and the lifting /⊥ adds a new element ⊥ which is ⊑
everything. We have:

50 (G) =

{
1 if G is even
⊥ if G is odd

and 51 (G) =

{
1 if G is even
0 if G is odd

As discussed previously, these two functions have the same kernel and so are LoI-equivalent.
Moreover, in accordance with Proposition 2, it is easy to see that they induce the same knowledge
sets: 50 (G) = 51 (G) for all G ∈ / . However, they do not induce the same ordered knowledge sets.

In particular, when G is odd we have ⊑
51
(G) = {~ ∈ / | ~ is odd} but ⊑

50
(G) = / . In fact, not only

do the two functions induce di�erent ordered knowledge sets, but 51 is (strictly) more informative
than 50, since

⊑
51
(G) ⊆ ⊑

50
(G) for all G (and ⊑

51
(G) ≠ ⊑

50
(G) for some G).

Our key insight is that it is possible to de�ne an alternative information lattice, one which
corresponds exactly with ordered knowledge sets, by using (a certain class of) preorders, in place
of the equivalence relations used in LoI.

3.3 Ordered Kernels

A preorder is simply a re�exive and transitive binary relation. Clearly, every equivalence relation is
a preorder, but not every preorder is an equivalence relation. As with equivalence relations, it is
possible to present a preorder in an alternative form, as a partition rather than a binary relation,
but with one additional piece of information: a partial order on the blocks of the partition. In fact,
there is a straightforward 1-1 correspondence between preorders and partially ordered partitions:

(1) Given a preorder & on a set �, for each 0 ∈ �, de�ne [0]& = {0′ | 0 & 0′ ∧ 0′ & 0} and
[&] = {[0]& | 0 ∈ �}. (Note: although we appear to be overloading the notation introduced
in §2, the de�nitions agree in the case that & is an equivalence relation.)
Then de�ne [01]& ⊑& [02]& i� 01 & 02. This is a well-de�ned partial order on [&].

(2) Conversely, given a poset (Φ, ⊑), where Φ is a partition of set�, we recover the corresponding
preorder on � by de�ning 0 & 0′ i� [0]Φ ⊑ [0′]Φ.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 68. Publication date: January 2023.

68:10 Sebastian Hunt, David Sands, and Sandro Stucki

For a preorder& , we refer to the equivalence relation with equivalence classes [&] as the underlying
equivalence relation of & . Clearly, the underlying equivalence relation of & is just & ∩&−1.
Taking the same path for kernels that we took from unordered to ordered knowledge sets, we

arrive at the following de�nition:

Definition 7. Let (�, ⊑) be a poset. Given 5 ∈ [� → �], de�ne its ordered kernel ker⊑ (5) to be
5 ∗(⊑), thus G ker⊑ (5) ~ i� 5 (G) ⊑ 5 (~).

Proposition 4. ker⊑ (5) is a preorder, and its underlying equivalence relation is ker(5).

Only some preorders are the ordered kernels of continuous functions. For example, if 0 ⊑ 0′ and
& is the ordered kernel of some continuous 5 , then it must be the case that 0 & 0′, since 0 ⊑ 0′

implies 5 (0) ⊑ 5 (0′).

Definition 8 (Complete Preorder). Let � be a poset and let & be a preorder on �. We say that

& is complete i�, whenever - is directed in � and
⊔
- exists:

(1) ∀G ∈ - . G & (
⊔
-)

(2) ∀0 ∈ �. (∀G ∈ - . G & 0) implies (
⊔
-) & 0

Note that part (1) entails that every complete & contains the domain ordering (⊑).

It is perhaps more illuminating to see the de�nition of completeness for & presented in terms of
its corresponding partially ordered partition:

Lemma 1. Let � be a poset and let & be a preorder on �. Then & is complete i�, whenever - is

directed in � and
⊔
- exists in �,

⊔
{[G]& | G ∈ - } exists in ([&], ⊑&) and is equal to [

⊔
-]& .

In other words, & is complete i� the quotient map (_0.[0]&) : � → ([&], ⊑&) is continuous.

To round o� this section, we establish that the complete preorders on a poset are just the ordered
kernels of all the continuous functions with that domain:

Theorem 1. Let � be a poset. Then & is a complete preorder on � i� there is some poset � and

5 ∈ [� → �] such that & = ker⊑ (5).

Proof. The implication from left to right is established by Lemma 1.
For the implication right to left, assume 5 is continuous and let & = ker⊑ (5). Let - be directed

in � such that
⊔
- exists. Then:

(1) Let G ∈ - . Since 5 is monotone, 5 (G) ⊑ 5 (
⊔
-), thus G & (

⊔
-).

(2) Let 0 ∈ � be such that G & 0 for all G ∈ - . Then 5 (G) ⊑ 5 (0) for all G ∈ - , hence
(
⊔
5 (-)) ⊑ 5 (0), hence 5 (

⊔
-) ⊑ 5 (0). Thus (

⊔
-) & 0.

□

3.4 LoCI

We now de�ne the lattice of computable information as a lattice of complete preorders, directly
analogous to the de�nition of LoI as a lattice of equivalence relations. In particular, we can rely on
the fact that the complete preorders are closed under intersection:

Lemma 2. Let {&8 } be an arbitrary family of complete preorders. Then
⋂
&8 is a complete preorder.

Definition 9 (Lattice of Computable Information). For a poset �, the lattice of information

over �, LoCI(�), is de�ned to be the lattice

LoCI(�) = (PRE(�), ⊑LoCI,⊔LoCI)

where PRE(�) is the set of all complete preorders on �, % ⊑LoCI &
def
= & ⊆ % , and

⊔
LoCI

def
=
⋂

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 68. Publication date: January 2023.

Reconciling Shannon and Sco� with a La�ice of Computable Information 68:11

Since LoCI(�) has all joins (not just the binary ones), with the bottom element given by All� =

� ×�, and top element ⊑�, it also has all meets, and hence is a complete lattice. Meets are not used
in what follows so we do not dwell on them further here.
As for LoI, we can de�ne a preorder on (continuous) functions based on their ordered kernels:

5 ≾LoCI 6 i� ker⊑ (5) ⊑LoCI ker⊑ (6). As claimed above, this corresponds exactly to an ordering of
continuous functions based on their ordered knowledge sets:

Proposition 5. Let � be a poset and let 5 and 6 be any two continuous functions with domain �.

Then 5 ≾LoCI 6 i�
⊑
6 (0) ⊆ ⊑

5
(0) for all 0 ∈ �.

3.5 An Example LoCI

In this section we describe LoCI(+) for the simple four-point domain + shown in Fig. 2a. A Hasse
diagram of the lattice structure is shown in Fig. 2b. On the right we enumerate all the complete
preorders on+ , presented as partially ordered partitions. Note that we write 0 to mean the singleton
block {0}, and 02⊥ to mean {0, 2,⊥}, etc.

⊥

a b

c

(a) Domain+

a b

c

⊥
c

⊥

a

b

c

⊥

b

a

⊥

a

bc

⊥

b

ac

⊥

ab

c

c⊥

a

b

c⊥

b

a

a

bc⊥

b

ac⊥

A B C D E

L F G H I

ab

c⊥

abc

⊥

K M
abc⊥

N

a b

⊥c

J

A

B J C

F L G ED

M K IH

N

(b) Preorders over +

Fig. 2. LoCI(+)

Let us now consider two continuous functions whose ordered kernels are presented here, 51, 52 ∈
[+ → +] where:

51 = _G.0 52 = _G .

0 if G = 0

2 if G ∈ {1, 2}

⊥ if G = ⊥

Since 51 is a constant function it conveys no information about its input, so its ordered kernel is
the least element, N (= All). The ordered kernel of 52 is D: when the input is 0, the observer learns
this exactly; when the input is 1 or 2 , the observer learns only that the input belongs to {0, 1, 2};
when the input is ⊥, the observer (inevitably) learns nothing at all. Thus, in the LoCI ordering, 52 is
strictly more informative than 51. It is interesting to note by contrast, that in the Scott-ordering on
functions, 51 is maximal, and strictly more de�ned than 52 (recall that 5 ⊑ 6 in the Scott-order i�
5 (G) ⊑ 6(G) for all G). In general, the Scott-ordering between functions tells us little or nothing
about their relative capacity to convey information about their inputs. This can be viewed as an
instance of the re�nement problem known from secure information �ow [McLean 1994], where a
point in a domain can be viewed as its upper set (all its possible “futures”) and a higher point is
then a re�nement (a smaller set of futures).

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 68. Publication date: January 2023.

68:12 Sebastian Hunt, David Sands, and Sandro Stucki

3.6 Information Flow Properties in LoCI

We can directly use the notation 5 : % ⇒ & introduced earlier to express information �ow properties
for % and & in LoCI. Since the ordering on relations in LoCI is still reversed set containment, both
the “subtyping” and composition properties stated previously (Fact 1) hold equally well for LoCI
as for LoI. And, as promised, we also have weakest precondition and strongest postcondition
properties, provided by appropriate versions of 5 ∗ and 5! for continuous 5 and complete preorders:

Definition 10. For 5 ∈ [� → �]:

(1) 5 ∗ : LoCI(�) → LoCI(�) is the restriction of the generalised kernel map to LoCI(�).

(2) 5! : LoCI(�) → LoCI(�) is given by 5! (%) =
⊔

LoCI{& ∈ LoCI | 5 : % ⇒ &}.

(Well-de�nedness of 5 ∗ : LoCI(�) → LoCI(�) is slightly less immediate than for the LoI variant,
but the key requirement is to show that 5 ∗ (&) is complete and this follows easily using continuity
of 5 .) The LoCI analogue of Proposition 3 is then:

Proposition 6. For any 5 ∈ [� → �], 5 ∗ and 5! are monotone and, for any % ∈ LoCI(�) and

& ∈ LoCI(�), the following are all equivalent:

(1) 5 : % ⇒ & (2) 5 ∗ (&) ⊑LoCI % (3) & ⊑LoCI 5! (%)

3.7 A Category of Computable Information

Some of the de�nitions and properties introduced earlier can be recast in category-theoretic terms
through the framework of Grothendieck �brations. In this subsection, we brie�y sketch the relevant
connections. The subsection is intended as an outline for interested readers rather than a de�nitive
category-theoretic treatment of LoCI – which is beyond the scope of this paper. The remainder of
the paper does not depend on any of the ideas discussed in this subsection, but some notational
choices and technical developments are inspired by it.

So far we have treated posets�, � and continuous functions 5 : � → � as a semantic framework,
in which we have studied, separately, the information associated with individual domains � via
LoCI(�), and the �ow of information over a channel 5 via 5 : − ⇒ −. An alternative approach is
to combine the information represented by a preorder % ∈ LoCI(�) and its underlying poset � into
a single mathematical structure, and to study the overall properties of such information domains.

Definition 11. An information domain is a pair (�, %) consisting of a poset � and a complete

preorder % ∈ LoCI(�). An information-sensitive function between information domains (�, %) and

(�,&) is a continuous function 5 : � → �, such that 5 : % ⇒ & .

Information domains and information-sensitive functions form the category of computable in-

formation CoCI. Identities and composition are de�ned via the underlying continuous maps;
composition preserves information-sensitivity by Fact 1 (Comp).
The category CoCI and the family of lattices LoCI(�) are related by a �bration or, to use the

terminology coined by Melliès and Zeilberger [2015], by a type re�nement system. Intuitively, we
may think of a poset� as a type, and of an information domain (�, %) as a re�nement of�. For each
type �, there is a subcategory of CoCI, called the �bre over �, whose objects are the re�nements of
�, and which is equivalent to LoCI(�).

Formally, there is a forgetful functor * from CoCI to the category PC of posets and continuous
functions that maps re�nements to their types * (�, %) = � and information-sensitive functions
to the underlying continuous maps * (5) = 5 . The �bre CoCI� over � is the “inverse image”
of � under * , i.e. the subcategory of CoCI with objects of the form (�, %) and arrows of the
form id� : (�, %) → (�,&), where %,& ∈ LoCI(�). Note that the objects of CoCI� are uniquely
determined by their second component, and that there is an arrow between the pair of objects (�, %)

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 68. Publication date: January 2023.

Reconciling Shannon and Sco� with a La�ice of Computable Information 68:13

and (�,&) i� % ⊒LoCI & . In other words, the category CoCI� is equivalent to the dual lattice of
LoCI(�), thought of as a complete (and co-complete) posetal category. In line with the terminology
of Melliès and Zeilberger, we may call CoCI� the subtyping lattice over �.
Furthermore, the functor* is a bi�bration. Intuitively, this ensures that we can reindex re�ne-

ments along continuous maps. The formal de�nition of a bi�bration is somewhat involved [see e.g.
Melliès and Zeilberger 2015], but it can be shown, in our setting, to correspond to the existence
of weakest preconditions and strongest postconditions as characterised in Proposition 6, plus the
following identities

id∗� = idLoCI(�) (6 ◦ 5)∗ = 5 ∗ ◦ 6∗ (id�)! = idLoCI(�) (6 ◦ 5)! = 6! ◦ 5!

which are easy to prove. For the last one, rather than showing (6 ◦ 5)! = 6! ◦ 5! directly – which is
awkward – it is simpler to show (6 ◦ 5)∗ = 5 ∗ ◦ 6∗ �rst, and then use the fact that each (ℎ∗, ℎ!) is
an adjoint pair. The cartesian and opcartesian liftings of 5 : � → � to (�,&) and (�, %) are then
given by 5 : (�, 5 ∗ (&)) → (�,&) and 5 : (�, %) → (�, 5! (%)), respectively.

Using the reindexing maps 5 ∗ and 5!, we can extend the poset-indexed set {CoCI�}�∈PC of �bres
over � into a poset-indexed category, that is, a contravariant functor � : PCop → Cat, that maps
posets � to �bres � (�) = CoCI� and whose action on continuous maps 5 : � → � is given by

� (5) : CoCI� → CoCI�

� (5) (&) = 5 ∗ (&)

Replacing the reindexing map 5 ∗ with 5!, we obtain a similar, covariant functor � : PC → Cat.4

The family of lattices LoCI(�) and the category CoCI fully determine each other: we may obtain
LoCI(�) as the �bres of CoCI via* , and conversely, we may reconstruct the category CoCI from

the indexed category � via the Grothendieck construction CoCI =
∫
� .

Finally, note that the above can also be adapted to the simpler setting of LoI. In that case, types
are simply sets, and re�nements are setoids, i.e. pairs ((, ') consisting of a set (and an equivalence
relation ' ∈ LoI((). The relevant �bration is the obvious forgetful functor* : Setoid → Set from
the category of setoids and equivalence-preserving maps to the underlying sets and total functions.

3.8 A Partial Embedding of LoI into LoCI

As discussed earlier, a key advantage of LoCI in comparison to LoI is that it distinguishes be-
tween functions which have the same (unordered) kernel but which di�er fundamentally in what
information they actually make available to an output observer, due to di�erent degrees of partiality.
But there is another advantage of LoCI: it excludes “uncomputable” kernels, those equivalence

relations in LoI which are not the kernel of any continuous function. Consider the example
of LoCI(+) in Fig. 2b. Since + has four elements, there are 15 distinct equivalence relations in
LoI(+). Note, however, that LoCI(+) has only 14 elements. Clearly then there must be at least
one equivalence relation which is being excluded by LoCI(+) (in fact, �ve elements of LoI(+) are
excluded). Let us settle on some terminology for this:

Definition 12. Let � be a poset. Let ' be an equivalence relation on � and let & be a complete

preorder on �. Say that & realises ' if ' is the underlying equivalence relation of & . When such &

exists for a given ', we say that ' is realisable.

Note that, by Proposition 4, the underlying equivalence relation of ker⊑ (5) is ker(5), so by
Theorem 1 it is equivalent to say that ' is realisable i� ' is the kernel of some continuous function.

In LoCI(+), note that A, B and C all realise the identity relation. Similarly, F, G and J all realise the
same equivalence relation as each other. Thus, while LoCI(+) has 14 elements, together they realise

4The existence of � and� is in fact su�cient to establish that* is a bi�bration.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 68. Publication date: January 2023.

68:14 Sebastian Hunt, David Sands, and Sandro Stucki

only 10 of the 15 possible equivalence relations over + . As an example of a missing equivalence
relation, consider the one with equivalence classes {0, 1,⊥}, {2}. Recall that a subset - of a poset is
convex i�, whenever G ⊑ ~ ⊑ I and G, I ∈ - , then ~ ∈ - . Note that {0, 1,⊥} is not convex, but it is
easy to see that all equivalence classes in the kernel of a monotone function must be convex. (The
convexity test also fails for the four other missing equivalence relations. But convexity alone is not
su�cient for realisability, even in the �nite case. See §3.8.1 below.)

When an equivalence relation (is realisable, we can show that there must be a greatest element
of LoCI which realises it. Moreover, we can use this realiser to re-express an LoI property 5 : ' ⇒ (

as an equivalent LoCI property. To this end, we de�ne a pair of monotone maps which allow us to
move back and forth between LoI and LoCI:

Definition 13. For poset � de�ne Cp� : LoI(�) → LoCI(�) and Er� : LoCI(�) → LoI(�) by:

(1) Cp� (') =
⊔

LoCI{% ∈ LoCI(�) | % ⊇ '} =
⋂
{% ∈ LoCI(�) | % ⊇ '}

(2) Er� (%) is the underlying equivalence relation of % : Er� (%) = % ∩ %−1

It is easy to see that both maps are monotone. We will routinely omit the subscripts on Cp and Er in

contexts where the intended domain is clear.

Note that, by de�nition, ' ∈ LoI(�) is realisable i� there exists some % ∈ LoCI(�) such that
Er(%) = '. Now, Cp(') is de�ned above to be the greatest % ∈ LoCI(�) such that % ⊇ '. But
observe that Er(%) ⊑LoCI ' i� Er(%) ⊇ ', and Er(%) = % ∩ %−1 ⊇ ' i� % ⊇ ', since ' is symmetric.
So we have actually de�ned Cp(') to be the greatest % ∈ LoCI(�) such that Er(%) ⊑LoCI '. The
following propositions are immediate consequences:

Proposition 7. ' is realisable i� Er(Cp(')) = ' (in which case Cp(') is its greatest realiser).

Proposition 8. The pair (Er�,Cp�) forms a Galois connection between LoCI (A) and LoI (A).

That is to say for every % ∈ LoCI(�) and every ' ∈ LoI(�):

Er(%) ⊑LoI ' i� % ⊑LoCI Cp(') (GC)

(See [Erné et al. 1993] for an introduction to Galois connections.)

This extends to an encoding of LoI properties as LoCI properties:

Theorem 2. For all 5 ∈ [� → �], for all ' ∈ !>� (�), for all & ∈ LoCI(�):

5 : ' ⇒ Er(&) i� 5 : Cp(') ⇒ &

Proof. By Propositions 3 and 6, it su�ces to show 5 ∗ (Er(&)) ⊑LoI ' i� 5 ∗ (&) ⊑LoCI Cp('). First
we note that the following holds by an easy unwinding of the de�nitions:

5 ∗ (Er� (&)) = Er� (5
∗ (&)) (∗)

Then we have:

5 ∗ (Er(&)) ⊑LoI ' i� Er(5 ∗ (&)) ⊑LoI ' i� 5 ∗ (&) ⊑LoCI Cp(')

where the �rst equivalence holds by (∗) and the second by (GC). □

Corollary 1. If (is realisable then 5 : ' ⇒ (i� 5 : Cp(') ⇒ Cp(().

Proof. By Proposition 7, (is realisable i� (= Er(Cp(()), so let & = Cp(() in the theorem. □

It is interesting to note that Corollary 1 does not require ' to be realisable. However, in general,
the equivalence does not hold unless (is realisable. For a counterexample, consider the three-point
lattice � = {0, 1, 2} with 0 ⊏ 1 ⊏ 2, and let (be the equivalence relation with equivalence classes
{0, 2} and {1}. The �rst of these classes is not convex, so (is not realisable. Now consider the

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 68. Publication date: January 2023.

Reconciling Shannon and Sco� with a La�ice of Computable Information 68:15

property 5 : All ⇒ (. For continuous 5 : � → �, it is easy to see that this property holds i� 5 is
constant. However, Cp(() = Cp(All) = All and 5 : All ⇒ All holds trivially. (Of course, this is no
great loss if the property of interest is actually constancy. The appropriate choice of (in this case
is (= Id, which is realisable.)

⊥

a b

a' b'

Fig. 3. An Unrealisable Equiva-

lence Relation

3.8.1 Verifying Realisability. We describe a simple necessary con-
dition for realisability, which is also su�cient in the �nite case. It
is motivated by the following example. Let ' be the equivalence
relation shown in Fig. 3. The three equivalence classes are clearly
convex, but ' is not realisable. To see why, suppose that ' is the
kernel of 5 . There must be distinct elements G and ~ such that
5 ({0, 1′}) = {G} and 5 ({1, 0′}) = {~}. If 5 is monotone then, since
0 ⊑ 0′ and 1 ⊑ 1′, it must be the case that G ⊑ ~ ⊑ G , which
contradicts the assumption that G and ~ are distinct.

The example of Fig. 3 generalises quite directly. Given any equiv-
alence relation ' on a poset�, de�ne q as the relation on ['] which
relates two equivalence classes whenever they contain (⊑)-related elements: [0]' q [1]' i� ∃G ∈

[0]' .∃~ ∈ [1]' .G ⊑ ~. In Fig. 3, unrealisability manifests as a non-trivial cycle in the graph of q ,
that is, a sequence [01]' q · · · q [0=]' q [01]' with = > 1 and such that all [08]' are distinct. By
the obvious inductive generalisation of the above argument, any monotone 5 necessarily maps all
08 to the same value, thus making ker(5) = ' impossible. So if the graph of q contains a non-trivial
cycle, ' is not realisable. (Note also that this generalises the convexity condition: if any [0]' is
non-convex, there will be a non-trivial cycle with = = 2.)
Conversely, to say that q is free of such cycles is just to say that the transitive closure q+

is antisymmetric. Clearly, q+ is also re�exive and transitive, thus � = (['], q+) is a poset. Let
5 : � → � be the map 0 ↦→ [0]' . Then 5 is monotone (because G ⊑ ~ implies [G]' q [~]') and
ker(5) = '. In the case that ⊑� is of �nite height, this establishes that ' is realisable.

3.9 Post Processing

In §2 we introduced three equivalent ways of ordering functions, the �rst based on inclusion of
their kernels (≾), the second in terms of their inter-de�nability via postprocessing (Proposition 1),
and the third in terms of their knowledge sets (Proposition 2). Moving to a setting of posets and
continuous functions, we have presented direct analogues of the �rst of these in terms of ordered
kernels (≾LoCI), and of the third in terms of ordered knowledge sets (Proposition 5). However, it
turns out that there is no direct analogue of the postprocessing correspondence. To see why, we
consider two pairs of counterexamples which illustrate two essentially di�erent ways in which the
postprocessing correspondence fails for LoCI.

Counterexample 1: Non-Existence of a Monotone Postprocessor. Consider a test isEven1 on
natural numbers which simply returns True or False. This can be modelled in the obvious way by a
function isEven1 ∈ [# → Bool⊥], where # is the unordered set of natural numbers and Bool⊥ is
the lifted domain of Booleans in Fig. 4a.
Now consider the following Haskell-style function de�nition

isEven x = if even x then ((), spin) else (spin, ())

where spin = spin

Tuples in Haskell are both lazy and lifted, so this can be modelled by a function isEven2 ∈ [# →

�], where � is the lifted diamond domain in Fig. 4a. (Haskell does not have a primitive type for

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 68. Publication date: January 2023.

68:16 Sebastian Hunt, David Sands, and Sandro Stucki

(∗, ⊥) (⊥, ∗)

⊥

(⊥, ⊥)

(∗, ∗)

True False

⊥ 0

1

2

⋮

𝝎

Bool⊥ D 𝝮

(a) Codomains

{1}

{2}

{3}

⋮

{0}

ker⊑(S1)

N\{0}

{0}

ker⊑(S2)

(b) Kernels

Fig. 4. Postprocessing Counterexamples

natural numbers, but only integers, but for the sake of the example let us assume that the program
operates over naturals.)

Both these functions have the same kernel (ordered and unordered): it simply partitions # into
the sets of even and odd numbers. So (isEven2 ≾LoCI isEven1) and (isEven1 ≾LoCI isEven2). We
can certainly obtain isEven2 from isEven1 by postprocessing: map ⊥ to ⊥, map) to (∗,⊥), and
map � to (⊥, ∗). However, there is no continuous postprocessor ? ∈ [� → Bool⊥] such that
isEven1 = ? ◦ isEven2. The problem is that any such ? must map (∗,⊥) to) and (⊥, ∗) to � . But
then, since (∗, ∗) is greater than both (∗,⊥) and (⊥, ∗), ? must map (∗, ∗) to a value greater than
both) and � , and no such value exists. Note, however that (∗, ∗) is not actually in the range of
isEven2. If ? was not required to be monotone, the problem would therefore be easily resolved,
since ? could arbitrarily map (∗, ∗) to either) or � (or even to ⊥). Unfortunately, such ? would
not actually be computable. Nonetheless, it is clear that it is indeed computationally feasible to
learn exactly the same information from the output of the two functions. For example, we may
poll the two elements in the output of isEven2 in alternation, until one becomes de�ned; as soon
as this happens we will know the parity of the input. This behaviour is clearly implementable
in principle, even though it does not de�ne a monotone function in � → Bool⊥. (Of course, we
cannot implement this behaviour in sequential Haskell, but this is just a limitation of the language.)

Conceivably, a slightly more liberal postprocessing condition could be designed to accommodate
this and similar counterexamples (allow postprocessors to be partial, for example).

Counterexample 2: Non-Existence of a Continuous Postprocessor. Consider these two
programs:

S1: if (x == 0) while True output();

for i := 1 to x - 1 {

output ()

};

while True { }

S2: if (x == 0) while True output();

while True { }

Both programs take a natural number G and produce a partial or in�nite stream of units. They
can be modelled by functions (1, (2 ∈ [# → Ω], where Ω is the poset illustrated in Fig. 4a. (In the
picture for Ω we represent each partial stream of units by its length; the limit pointl represents the
in�nite stream.) When G = 0, both programs produce an in�nite stream. When G > 0, S1 produces
a stream of length G − 1, and then diverges; S2 simply diverges immediately.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 68. Publication date: January 2023.

Reconciling Shannon and Sco� with a La�ice of Computable Information 68:17

As illustrated in Fig. 4b, the ordered kernel for (1 is isomorphic to Ω, while the ordered kernel
for (2 is a two-point lattice. Clearly, (2 ≾LoCI (1. But there is no continuous ? ∈ [Ω → Ω] such that
(2 = ? ◦ (1. The problem in this case is that ? would have to send all the �nite elements of Ω to the
bottom point 0, while sending the limit point l to a di�erent value.

The key thing to note here is that, although [ker⊑ ((1)] contains {0} as a maximal element (it is
the inverse image under S1 of the in�nite output stream) an observer of S1 will never actually learn
that G = 0 in �nite time. With each observed output event, the observer rules out one more possible
value for G , but there will always be in�nitely many possible values remaining. After observing =
output events, the observer knows only that G = 0 ∨ G > =. By contrast, an observer of S2 learns
that G = 0 as soon as the �rst output event is observed. (On the other hand, when G > 0, an S2
observer learns nothing at all.)

Perhaps the best we can claim is that the LoCImodel is conservative, in the sense that it faithfully
captures what an observer will learn “in the limit”. But, as S1 illustrates, sometimes the limit never
comes.

4 TERMINATION-INSENSITIVE PROPERTIES

In this section we turn to the question of how LoCI can help us to formulate the �rst general
de�nition of a class of weakened information-�ow properties known as termination-insensitive

properties (or sometimes, progress-insensitive properties).

4.1 What is Termination-Insensitivity?

We quote Askarov et al. [2008]:

Current tools for analysing information �ow in programs build upon ideas going
back to Denning’s work from the 70’s ⟨[Denning and Denning 1977]⟩. These sys-
tems enforce an imperfect notion of information �ow which has become known
as termination-insensitive noninterference. Under this version of noninterference,
information leaks are permitted if they are transmitted purely by the program’s
termination behaviour (i.e. whether it terminates or not). This imperfection is
the price to pay for having a security condition which is relatively liberal (e.g.
allowing while-loops whose termination may depend on the value of a secret)
and easy to check.

The term noninterference in the language-based security literature refers to a class of information
�ow properties built around a lattice of security labels (otherwise known as security clearance

levels) [Denning 1976], in the simplest case two labels, � (the label for secrets) and ! (the label
for non-secrets), together with a “may �ow” partial order ≺, where in the simple case ! ≺ � ,
expressing that public data may �ow to (be combined with) secrets.

On the semantic side, for each label : there is a notion of indistinguishability between inputs and,
respectively, outputs – equivalence relations which determines whether an observer at level : can
see the di�erence between two di�erent elements. These relations must agree with the �ow relation
in the sense that whenever 9 ≺ : then indistinguishability at level : implies indistinguishably
at level 9 . Indistinguishability relations are either given directly, or can be constructed as the
kernel of some projection function which extracts the data of classi�cation at most : . Thus “ideal”
noninterference for a program denotation 5 can be stated in terms of the lattice of information as a
conjunction of properties of the form 5 : %: ⇒ &: , expressing that an output observer at level :
learns no more than the level-: input.
Without focusing on security policies in particular, we will show how to take any property of

the form 5 : % ⇒ & and weaken it to a property which allows for termination leaks. The key to

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 68. Publication date: January 2023.

68:18 Sebastian Hunt, David Sands, and Sandro Stucki

this is to use the preorder re�nement of & to get a handle on exactly what leaks to allow. The case
when % and & are used to model security levels will just be a speci�c instantiation. But even for
this instantiation we present a new generalisation of the notion of termination sensitivity beyond
the two special cases that have been studied in the literature, namely (i) the “batch-job” case when
programs either terminate or deliver a result, and (ii) the case when programs output a stream of
values. In the recent literature the term progress-insensitivity has been used to describe the latter
case, but in this section we will not distinguish these concepts – they are equally problematic for a
Denning-style program analysis. Case (i) we will refer to henceforth as simple termination-insensitive

noninterference and is relevant when the result domain of a computation is a �at domain.
As a simple example of case (i) consider the programs

� = while (h>0) { } and � = while (h>0) {h := h-1}.

Assume that ℎ is a secret. Standard information �ow analyses notice that the loop condition
in each case references variable ℎ, but since typical analyses do not have the ability to analyse
termination properties of loops, they must conservatively assume that information about ℎ leaks in
both cases (when in fact it only leaks for program �). This prevents us from verifying the security
of any loops depending on secrets. However, a termination-insensitive analysis ignores leaks
through termination behaviour and thus both � and � are permitted by termination-insensitive
noninterference: such an analysis is more permissive because it allows loops depending on secrets
(such as �), but less secure because it also allows leaky program � (which terminates only when
ℎ ≤ 0).

Case (ii), progress-insensitivity, is the same issue but for programs producing streams. Consider
here two programs which never terminate (thanks to � = while True { }):

�′
= output(1); �; output(1); � versus �′ = output(1); �; output(1); � .

Here �′ is noninterfering but �′ is not, but both are permitted by the termination-insensitive
condition (aka progress-insensitivity) for stream output de�ned in e.g. [Askarov et al. 2008]. The
point of this example is to illustrate that the carrier of the information leak is not just the simple
“does it terminate or not”, but the cause of the leak is the same.

The de�nition in [Askarov et al. 2008] is ad hoc in that it is speci�c to the particular model of
computation. If the computation model is changed (for example, if there are parallel output streams,
or if there is a value delivered on termination) then the de�nition has to be rebuilt from scratch,
and there is no general recipe to do this.

4.2 Detour: Termination-Insensitivity in the La�ice of Information

Before we get to our de�nition, it is worth considering how termination-insensitive properties
might be encoded in the lattice of information directly. The question is how to take an arbitrary
property of the form % ⇒ & and weaken it to a termination-insensitive variant % ′ ⇒ & ′.
We are not aware of a general approach to this in the literature. In this section we look at a

promising approach which works for some speci�c and interesting choices of % and & , but which
we failed to generalise. We will later prove that it cannot be generalised in a way which matches
the de�nition which we provide in §4.3.
So how might one weaken a property of the form % ⇒ & to allow termination leaks? It is

tempting to try to encode this by weakening & (taking a more liberal relation) – and indeed that is
what has been done in typical relational proofs of simple termination-insensitive noninterference
by breaking transitivity and allowing any value in the codomain to be indistinguishable from
⊥. Our approach in §4.3 can be seen as a generalisation of this approach. But it is useful �rst to
consider how far we can get while remaining within the realm of equivalence relations. Sterling

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 68. Publication date: January 2023.

Reconciling Shannon and Sco� with a La�ice of Computable Information 68:19

and Harper in a recent paper on the topic [Sterling and Harper 2022] say (in relation to a speci�c
work [Abadi et al. 1999] using a relational, semantic proof of noninterference)

“Amore signi�cant and harder to resolve problem is the fact that the indistinguishability
relation . . . cannot be construed as an equivalence relation”

While this seems to be true if we restrict ourselves to solving the problem by weakening & , in
fact it is possible to express termination-insensitivity of types (i) and (ii) just using equivalence
relations. The trick is not to weaken & , but instead to strengthen % .

The approach, which we brie�y introduce here, is based on Bay and Askarov’s study of progress-
insensitive noninterference [Bay and Askarov 2020]. Their idea is to characterise a hypothetical
observer who only learns through progress or termination behaviour. In the speci�c case of [Bay
and Askarov 2020] it is a “progress observer” who sees the length of the output stream, but not the
values within it. Let us illustrate this idea in the more basic context of simple termination-insensitive
properties. Suppose we want to de�ne a simple termination-insensitive variant of a property of the
form 5 : % ⇒ & for some function 5 ∈ [� → +⊥] where + is a �at set of values. We characterise
the termination observer by the relation) = {(⊥,⊥)} ∪ {(li�(D), li�(E)) | D ∈ + , E ∈ + }. The
key idea is that we modify the property 5 : % ⇒ & not by weakening the observation & , but by
strengthening the prior knowledge % . We need to express that by observing & you learn nothing
more than % plus whatever you can learn from termination; here “plus” means least upper bound,
and “what you learn from termination” is expressed as the generalised kernel of 5 with respect to
) , namely 5 ∗ ()). Thus the simple termination-insensitive weakening of 5 : % ⇒ & is

5 : % ⊔LoI 5
∗ ()) ⇒ &.

The general idea could then be, for each codomain, to de�ne a suitable termination observer) . Bay
and Askarov did this for the domain of streams to obtain “progress-insensitive” noninterference.
We see two reasons to tackle this di�erently:

(1) Reasoning explicitly about % ⊔LoI 5
∗ ()) is potentially cumbersome, especially since we don’t

care what is leaked in a termination-insensitive property.
(2) Finding a suitable) that works as intended but over an arbitrary domain is not only non-

obvious, but, we suspect, not possible in general.

In §4.4 we return to point (2) to show that it is not possible to �nd a de�nition of) which matches
the generalised termination-insensitivity which we now introduce.

4.3 Using LoCI to Define Generalised Termination-Insensitivity

Here we provide a general solution to systematically weakening an LoI property 5 : ' ⇒ (to a
termination-insensitive counterpart (we assume (is realisable).
The �rst step is to encode 5 : ' ⇒ (as the LoCI property 5 : % ⇒ & , where % = Cp(') and

& = Cp((), as allowed by Corollary 1. Preorder & has the same equivalence classes as (, but the
classes themselves are minimally ordered to respect the domain order; it is precisely this ordering
which gives us a handle on the weakening we need to make.

As a starting point, consider how simple termination-insensitive noninterference is proven: one
ignores distinctions that the observer might make between nontermination and termination. In a
relational presentation (e.g. [Abadi et al. 1999]) this is achieved by simply relating bottom to every-
thing (and vice-versa) and not requiring transitivity. What is the generalisation to richer domains
(i.e. domains with more “height”)? The �rst natural attempt comes from the observation that, in a
Scott-style semantics, operational di�erences in termination behaviour manifest denotationally as
di�erences in de�nedness, i.e. as inequations with respect to the domain ordering.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 68. Publication date: January 2023.

68:20 Sebastian Hunt, David Sands, and Sandro Stucki

Towards a generalisation, let us start by assuming that (is the identity, so preorder & = Cp(Id)

is the top element of LoCI, i.e. it is just the domain ordering. This corresponds to an observer who
can “see” everything (but some observations are more de�nite than others). The obvious weakening
of the property 5 : % ⇒ (⊑) is to symmetrise (⊑) thus:

{(3, 4) | 3 ⊑ 4 or 4 ⊑ 3}

This is “the right thing” for some domains but not all. As an example of where it does not do the
right thing, consider the domain 2 × 2 where 2 = 1⊥, and 1 = {∗}. This domain contains four
elements in a diamond shape. Suppose that a value of this type is computed by two loops, one
to produce the �rst element, and one to produce the second. A termination-insensitive analysis
ignores the leaks from the termination of each loop, so our weakening of any desired relation on
2 × 2 must relate (⊥, ∗) and (∗,⊥) (and hence termination-insensitivity must inevitably leak all
information about this domain). But what do (⊥, ∗) and (∗,⊥) have in common? The answer is
that they represent computations that might turn out to be the same, should their computations
progress, i.e. they have an upper bound with respect to the domain ordering.
What about when the starting point is an arbitrary & ∈ LoCI(�)? The story here is essentially

the same, but here we must think of the equivalence classes of & instead of individual elements,
and the relation & instead of the domain ordering.

Definition 14 (Compatible extension). Given two elements 3, 3 ′ ∈ � , and a preorder & on � ,

we say that 3 and 3 ′ are &-compatible if there exists an 4 such that 3 & 4 and 3 ′ & 4 . De�ne &̃ , the

compatible extension of & , to be {(3,3 ′) | 3 is &-compatible with 3 ′}.

For any preorder & , compatible extension has the following evident properties:

(1) &̃ ⊇ & (if 3 & 4 then 4 is a witness to the compatibility of 3 and 4 , since & is re�exive).

(2) &̃ is re�exive and symmetric (but not, in general, transitive).

A candidate general notion of termination-insensitive noninterference is then to use properties of
the form

5 : % ⇒ &̃

where % and & are complete preorders. This captures the essential idea outlined above, and passes

at least one sanity check: 5 : % ⇒ &̃ is indeed a weaker property than 5 : % ⇒ & (simply because

&̃ ⊇ &). However, a drawback of this choice is that it lacks a strong composition property. In

general, 5 : % ⇒ &̃ ∧ 6 : & ⇒ '̃ does not imply that 6 ◦ 5 : % ⇒ '̃. For a counterexample, consider
the following function 6 ∈ [� → �], where � = {0, 1, 2}⊥:

6(0) =

⊥ if 0 = ⊥

0 if 0 = 0

1 if 0 = 1

⊥ if 0 = 2

& =

{⊥}

{0} {1}

{2}

Let & be the complete preorder whose underlying equivalence relation is the identity relation but
which orders the elements of � in a diamond shape, as pictured above. It is easily checked that

6 : & ⇒ (̃⊑). Now, since& has a top element, &̃ is just All, so for every % and 5 of appropriate type,

it will hold that 5 : % ⇒ &̃ . But it is not true that 6 ◦ 5 : % ⇒ (̃⊑) holds for every % and 5 (take
% = All and 5 = id, for example).
Clearly, the above counterexample is rather arti�cial. Indeed, it is hard to see how we might

construct a program with denotation 6 such that a termination-insensitive analysis could be

expected to verify 6 : & ⇒ (̃⊑). Notice that 6 not only fails to send &-related inputs to (⊑)-related
outputs, it e�ectively ignores the ordering imposed by & entirely, in that it fails even to preserve

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 68. Publication date: January 2023.

Reconciling Shannon and Sco� with a La�ice of Computable Information 68:21

&-compatibility. This suggests a natural strengthening of our candidate notion. We de�ne our
generalisation of termination-insensitive noninterference over the lattice of computable information
to be “preservation of compatibility”:

Definition 15 (Generalised Termination-Insensitivity). Let 5 ∈ [� → �] and let % and &

be elements of LoCI(�) and LoCI(�), respectively. De�ne:

5 : % ⇒ti & i� 5 : %̃ ⇒ &̃

Crucially, although this is stronger than our initial candidate, it is still a weakening of _ ⇒ _:

Lemma 3. Let 5 ∈ [� → �]. Let % and & be complete preorders on � and �, respectively. Then

5 : % ⇒ & implies 5 : % ⇒ti &.

Proof. Assume 5 : % ⇒ & and suppose G %̃ ~. Since G %̃ ~, there is some I such that G % I and

~ % I. Since 5 : % ⇒ & , we have 5 (G) & 5 (I) and 5 (~) & 5 (I), hence 5 (G) &̃ 5 (~). □

Furthermore, De�nition 15 gives us both compositionality and “subtyping”:

Proposition 9. The following inference rules are valid for all continuous functions and elements of

LoCI of appropriate type:

% ′ ⊒LoCI % 5 : % ⇒ti & & ⊒LoCI &
′

5 : % ′ ⇒ti & ′
SubTI

5 : % ⇒ti & 6 : & ⇒ti '

6 ◦ 5 : % ⇒ti '
CompTI

Proof. We rely on the general Sub and Comp rules (Fact 1).

For SubTI, the premise for 5 unpacks to 5 : %̃ ⇒ &̃ and the conclusion unpacks to 5 : %̃ ′ ⇒ &̃ ′.

It su�ces then to show that % ′ ⊒LoCI % implies %̃ ′ ⊆ %̃ (and similarly for &,& ′), since we can then

apply the general Sub rule directly. So, suppose % ′ ⊒LoCI % , hence %
′ ⊆ % , and suppose G %̃ ′ ~. Then,

for some I, we have G % ′ I and ~ % ′ I, thus G % I and ~ % I, thus G %̃ ~, as required.
For CompTI we observe that it is simply a specialisation of the general Comp rule, since the

premises unpack to 5 : %̃ ⇒ &̃ and 6 : &̃ ⇒ '̃, while the conclusion unpacks to 6 ◦ 5 : %̃ ⇒ '̃. □

4.4 Impossibility of a Knowledge-based Definition

In this section we return to the question of whether there exists a knowledge-based characterisation
which matches our de�nition of termination-insensitivity, and show why this cannot be the case.

Suppose we start with an “ideal” property of the form 5 : % ⇒ (, where (is assumed to be
realisable (by Cp(()), and (for simplicity but without loss of generality) % is over a discrete domain
(so Cp(%) = %).

The question, which we will answer in the negative, is whether we can construct a “termination
observer”) from the structure of the codomain of 5 such that

5 : % ⊔LoI 5
∗ ()) ⇒ (i� 5 : % ⇒ti Cp(()

We build a counterexample based on the following Haskell code:

data Kite = Body () () | Tail

spin = spin

f h = if h then Body () spin else Body spin ()

g h = if h then Body () spin else Tail

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 68. Publication date: January 2023.

68:22 Sebastian Hunt, David Sands, and Sandro Stucki

We will use some security intuitions to present the example (since that is the primary context in
which termination-insensitivity is discussed). Suppose that we view the input to f and g as either
True or False, and that this is a secret. We are being sloppy here and ignoring the fact that the
input domain is lifted, but that has no consequence on the following.

⏊

Body ()⏊ Body ⏊ ()

Body ()()

Tail

Body ⏊ ⏊

Fig. 5. Domain representing Kite

Now consider the output to be public, and the ques-
tion is whether f and g satisfy termination-insensitive
noninterference. Standard noninterference in this case
would be the property (_ : All ⇒ Id). Our de�ni-
tion of termination-insensitive noninterference is thus
(_ : All ⇒ti (⊑)) where ⊑ here is the ordering on the do-
main corresponding to Kite, namely the domain in Fig. 5.
By our de�nition, f satis�es termination-insensitive non-
interference but g does not. This is perhaps not obvi-
ous for f because a typical termination-insensitive anal-
ysis would reject it anyway, so it is instructive to see
a semantically equivalent de�nition f' (assuming well-
de�ned Boolean input) which would pass a termination-
insensitive analysis5.

f' h = Body (assert h ()) (assert (not h) ())

where assert b y = seq (if b then () else spin) y

We claim that a semantic de�nition of termination-insensitive noninterference should accept f'
(and hence f) but reject g. The reason for this is a fundamental feature of sequential computation,
embodied in programming constructs such as call-by-value computation or sequential composition
in imperative code. In Haskell, sequential computation is realised by a primitive function seq,
which computes its �rst argument then, if it terminates, returns its second argument. Consider an
expression of the form seq a b where amay depend on a secret, but b provably does not. The only
way that such a computation reveals information about the secret is if the termination of a depends
on the secret. This is the archetypal example of the kind of leak that a termination-insensitive
analysis ignores. A particular case of this is the function assert in the code above, which leaks the
value of its �rst parameter via (non)termination. For this reason, even when h is a secret, terms
assert h () and assert (not h) () are considered termination-insensitive noninterfering (and
thus so is f'). This example forms the basis of our impossibility claim, the technical content of
which is the following:

Proposition 10. There is no termination observer) (i.e. an equivalence relation) on the Kite

domain for which f : All ⊔LoI f
∗ ()) ⇒ Id but for which this does not hold for g.

Proof. The problem is to de�ne) in such a way that it distinguishes di�erent Body instances
but none of the Body instances from Tail, while still being an equivalence relation.) would either
have to (1) relate Body() ⊥ and Body⊥() or (2) distinguish them and also distinguish one of them
from Tail (if it related both to Tail, then, by transitivity and symmetry, it would also relate the
two Body instances). Without loss of generality, assume (Body() ⊥, Tail) ∉) (otherwise adjust g
accordingly). In case (1), f does not have property All ⊔LoI f

∗ ()) ⇒ Id, because f∗ ()) is All, but
fTrue ≠ f False. In case (2), g does have this property because g∗ ()) is the identity relation. □

5One should not be surprised that a program analysis can yield di�erent results on semantically equivalent programs –

as Rice’s theorem [Rice 1953] shows, this is the price to pay for any non-trivial analysis which is decidable, and having a

semantic soundness condition.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 68. Publication date: January 2023.

Reconciling Shannon and Sco� with a La�ice of Computable Information 68:23

4.5 Case Study: Nondeterminism and Powerdomains

In this section we consider the application of generalised termination-insensitive properties to
nondeterministic languages modelled using powerdomains [Plotkin 1976]. In the �rst part we
instantiate our de�nition for a �nite powerdomain representing a nondeterministic computation
over lifted Booleans and illustrate that it “does the right thing”. In the second part we prove that
we have an analogous compositional reasoning principle to the function composition property
CompTI (Proposition 9), but replacing regular composition with the Kleisli composition of the �nite
powerdomain monad.

Example: Termination-Insensitive Nondeterminism. We are not aware of any speci�c studies
of termination-insensitive noninterference for nondeterministic languages, and the de�nitions in
this paper were conceived independently of this example, so it provides an interesting case study.

{⊥}

{⊥,True,False}

{⊥,True} {⊥,False}

{True}

{True,False}

{False}

Fig. 6. Powerdomain ℘(Bool⊥)

Suppose we have a nondeterministic program � , mod-
elled as a function in Bool → ℘(Bool⊥), where ℘

is the Plotkin powerdomain constructor and Bool =

{True, False}. In the case of powerdomains over �nite
domains, the elements can be viewed as convex subsets
of the underlying domain (see below for more technical
details). In this section we only consider such �nite pow-
erdomains. ℘(Bool⊥), for example, is given in Figure 6.
Each element of the powerdomain represents a set of

possible outcomes of a nondeterministic computation.
Let’s consider the input of some program � to be a secret, and the output public. The property of
interest here is what we can call TI-security, i.e., � : All ⇒ti (⊑).

To explore this property, let us assume an imperative programming language with the following
features:

• a choice operator �1 | �2 which chooses nondeterministically to compute either �1 or �2,
• a Boolean input x, and
• an output statement to deliver a �nal result.

Note how the semantics of | can be given as set union of values in the powerdomain.
Under our de�nition, the compatible extension of the domain ordering for ℘(Bool⊥) relates all

the points in the lower diamond to each other. Note that in particular this means that {⊥, True}
and {⊥, False} are related. This in turn means that the following program � is TI secure:

while True { } | output x

This looks suspicious, to say the least. A static analysis would never allow such a program. But our
de�nition says that it is TI-secure, since the denotation of � maps True to {⊥, True} and False to
{⊥, False}, and these are compatible by virtue of the common upper bound {⊥, True, False}.
To show that our de�nition is, nonetheless, “doing the right thing”, we can write � in a semanti-

cally equivalent way as:

(while x { } ; output False) | (while (not x) { }; output True)

Not only is this equivalent, but the insecurity apparent in the �rst rendition of the program is now
invisible to a termination-insensitive analysis.
Now we turn to properties relevant to compositional reasoning about generalised termination-

insensitivity for nondeterministic programs modelled using �nite powerdomains.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 68. Publication date: January 2023.

68:24 Sebastian Hunt, David Sands, and Sandro Stucki

Compositional Reasoning for Finite Powerdomains. We review the basic theory of �nite
Plotkin powerdomains, as developed in [Plotkin 1976]. We then de�ne a natural lifting of complete
preorders to powerdomains and show that this yields pleasant analogues (Corollary 2) of the
SubTI and CompTI inference rules (Proposition 9) with respect to the powerdomain monad. Note:
throughout this section we restrict attention to �nite posets, so a preorder is complete i� it contains
the partial order of its domain.
The Plotkin powerdomain construction uses the so-called Egli-Milner ordering on subsets of

a poset, derived from the order of the poset. For our purposes it is convenient to generalise the
Egli-Milner de�nition to arbitrary binary relations:

Definition 16 (Egli-Milner extension). Let ' be a binary relation on �. Then EM(') is the

binary relation on subsets of � de�ned by

- EM(') . i� (∀G ∈ - .∃~ ∈ . .G ' ~) ∧ (∀~ ∈ . .∃G ∈ - .G ' ~)

Fact 2. (1) EM(_) is monotone. (2) EM(_) preserves re�exivity, transitivity, and symmetry.

The Egli-Milner ordering on subsets of a poset � is then EM(⊑). Note that (2) entails that EM(')

is a preorder whenever ' is a preorder. However, since antisymmetry is not preserved, in general
EM(⊑) is only a preorder, so to obtain a partial order it is necessary to quotient by the induced
equivalence relation. Conveniently, the convex subsets provide a natural canonical representative
for each equivalence class:

Definition 17 (Convex Closure). The convex closure of - is Cv(-)
def
= {1 ∈ � | 0 ∈ -, 2 ∈

-, 0 ⊑ 1 ⊑ 2}.

Fact 3. (1) Cv is a closure operator. (2) Cv(-) is the largest member of [-]EM(⊑) .

Definition 18 (Finite Plotkin Powerdomain). Let (�, ⊑) be a �nite poset. Then the Plotkin
powerdomain ℘(�) is the poset of all non-empty convex subsets of � ordered by EM(⊑). The union

operation is de�ned by - ∪̄ .
def
= Cv(- ∪ .).

The powerdomain constructor is naturally extended to amonad, allowing us to compose functions
with types of the form � → ℘(�).

Definition 19 (Kleisli-extension). Let �, � be �nite posets. Let 5 ∈ [� → ℘(�)]. The Kleisli-

extension of 5 is 5 † ∈ [℘(�) → ℘(�)] de�ned by 5 † (-) = Cv(
⋃

G∈- 5 (G)) .

Definition 20 (Kleisli-composition). Let �, �,� be �nite posets and let 5 ∈ [� → ℘(�)] and

6 ∈ [� → ℘(�)]. Then the Kleisli-composition 5 ;6 ∈ [� → ℘(�)] is 6† ◦ 5 .

We lift the powerdomain constructor to binary relations in the obvious way:

Definition 21. Let ' be a binary relation on �nite poset �. Then ℘(') is the relation on ℘(�)

obtained by restricting EM(') to non-empty convex sets.

Lemma 4. If % is a complete preorder on �nite poset � then ℘(%) is a complete preorder on ℘(�).

Now, in order to establish our desired analogues of SubTI and CompTI, we must be able to relate
�℘(%) to %̃ . The key properties are the following:

Lemma 5. Let ' be a preorder and let % be a complete preorder. Then:

(1) �EM(') = EM('̃) (2) Cv(-) �℘(%) Cv(.) i� - �EM(%) . (3) �℘(%) = ℘(%̃)

We then have:

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 68. Publication date: January 2023.

Reconciling Shannon and Sco� with a La�ice of Computable Information 68:25

Theorem 3. Let �, � be �nite posets and let 5 ∈ [� → ℘(�)]. Let %, % ′ be a complete preorders on

� and let & be a complete preorder on �.

(1) If % ′ ⊒LoCI % then �℘(% ′) ⊆ �℘(%).
(2) If 5 : % ⇒ti ℘(&) then 5 † : ℘(%) ⇒ti ℘(&).

Proof.

(1) By de�nition % ′ ⊒LoCI % i� % ′ ⊆ % hence, as argued in the proof of Proposition 9, % ′ ⊒LoCI %

implies %̃ ′ ⊆ %̃ . The conclusion then follows by monotonicity of EM(_) and Lemma 5.
(2) Assume 5 : % ⇒ti ℘(&). By the de�nition of 5 † and Lemma 5, it su�ces to show that

-1 EM(%̃) -2 implies /1 EM(&̃) /2, where /8 =
⋃

G∈-8
5 (G). Let I1 ∈ /1, thus I1 ∈ 5 (G1) for

some G1 ∈ -1. Since -1 EM(%̃) -2, there is some G2 ∈ -2 with G1 %̃ G2. Since 5 : % ⇒ti ℘(&),

it follows that 5 (G1) �℘(&) 5 (G2), hence by Lemma 5 5 (G1) EM(&̃) 5 (G2), hence I1 &̃ I2 for

some I2 ∈ 5 (G2) ⊆ /2. Thus ∀I1 ∈ /1.∃I2 ∈ /2 .I1 &̃ I2. It follows by a symmetrical argument

that ∀I2 ∈ /2.∃I1 ∈ /1 .I1 &̃ I2. □

Corollary 2. Let �, �,� be �nite posets and let 5 ∈ [� → ℘(�)] and 6 ∈ [� → ℘(�)]. The

following inference rules are valid for all elements of LoCI of appropriate type:

% ′ ⊒LoCI % 5 : % ⇒ti ℘(&) & ⊒LoCI &
′

5 : % ′ ⇒ti ℘(& ′)

5 : % ⇒ti ℘(&) 6 : & ⇒ti ℘(')

5 ;6 : % ⇒ti ℘(')

5 RELATED WORK

Readers of this paper hoping to see a reconciliation of Shannon’s quantitative information theory
with domain theory may be disappointed to see that we have tackled a less ambitious problem
based on Shannon’s lesser-known qualitative theory of information. Abramsky [2008] discusses
the issues involved in combining the quantitative theory of Shannon with the qualitative theory of
Scott and gives a number of useful pointers to the literature.

As we mentioned in the introduction, Shannon’s paper describing information lattices [Shannon
1953] is relatively unknown, but a more recent account by Li and Chong [2011] make Shannon’s
ideas more accessible (see also [Rioul et al. 2022]). Most later works using similar abstractions
for representing information have been made independently of Shannon’s ideas. In the security
area, Cohen [1977] used partitions to describe varieties of information �ow via so-called selective

dependencies. In an independent line of work, various authors developed the use of the lattice of
partial equivalence relations (PERs) to give semantic models to polymorphic types in programming
languages e.g. [Abadi and Plotkin 1990; Coppo and Zacchi 1986]. PERs generalise equivalence
relations by dropping the re�exivity requirement, so a PER is just an equivalence relation on a subset
of the space in question. An important generalisation over equivalence relations, particularly when
used for semantic models of types, is that “�ow properties” of the form 5 : % ⇒ & can expressed
by interpreting % ⇒ & itself as a PER over functions, and 5 : % ⇒ & is just shorthand for 5 being
related to itself by this PER. The connection to information �ow and security properties comes
via parametricity, a property of polymorphic types which can be used to establish noninterference
e.g. [Bowman and Ahmed 2015; Tse and Zdancewic 2004].

Independent of all of the above, Landauer and Redmond [1993] described the use of the lattice of
equivalence relations to describe security properties, dubbing it a lattice of information. Sabelfeld
and Sands [2001], inspired by the use of PERs for static analysis of dependency [Hunt 1991; Hunt
and Sands 1991] (and independent of Landauer and Redmond’s work) used PERs over domains
to give semantic models of information �ow properties, including for more complex domains for
nondeterminism and probability, and showed that the semantic properties could be used to prove

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 68. Publication date: January 2023.

68:26 Sebastian Hunt, David Sands, and Sandro Stucki

semantic soundness of a simple type system. Our TI results in § 4.5 mirror the termination-sensitive
composition principle for powerdomains given by Sabelfeld and Sands [2001]. Hunt and Sands
[2021] introduce a re�nement of LoI, orthogonal to the present paper, which adds disjunctive
information �ow properties to the lattice. Li and Zdancewic [2005] use a postprocessing de�nition
of declassi�cation policies in the manner of Proposition 1(2); Sabelfeld and Sands [2009] sketched
how this could be reformulated within LoI.

Giacobazzi and Mastroeni [2004] introduced abstract noninterference (ANI) in which a security-
centric noninterference property is parameterised by abstract interpretations to represent the
observational power of an attacker, and the properties to be protected. Hunt and Mastroeni [2005]
showed how so-called narrow ANI in [Giacobazzi and Mastroeni 2004] and some key results can be
recast as properties over LoI. In its most general form, Giacobazzi and Mastroeni [2018, Def 4.2]
de�ne ANI as a property of a function 5 parameterised by three upper closure operators (operating
on sets of values): an output observation d , an input property q which may �ow, and an input
property[“to protect”. A function 5 is de�ned to have abstract noninterference property {q, [}5 {d}
if, for all G,~:

q ({G}) = q ({~}) implies d (5̂ ([({G}))) = d (5̂ ([({~})))

where 5̂ is the lifting of 5 to sets. Note that this can be directly translated to an equivalent property
over the lattice of information, as follows:

5̂ ◦ [′ : ker(q ′) ⇒ ker(d)

where q ′ (G) = q ({G}) and [′ (G) = [({G}). In the special case that [is the identity, this reduces
simply to an information �ow property of 5 , namely:

5 : ker(q ′) ⇒ ker(d ′)

where d ′ (~) = d ({~}). In the general case, Giacobazzi and Mastroeni [2018] observe that the ANI
framework models attackers whose ability to make logical deductions (about the inputs of 5) is
constrained within the abstract interpretation �xed by d and [. Inheriting from the underlying
abstract interpretation framework, ANI can be developed within a variety of semantic frameworks
(denotational, operational, trace-based, etc.).

The lattice of information, either directly or indirectly provides a robust baseline for various
quantitative measures of information �ow [Malacaria 2015; McIver et al. 2014]. In the context of
quantitative information �ow, Alvim et al. [2020, Chapter 16] discuss leakage re�nement orders
for potentially nonterminating probabilistic programs. Their ordering allows increase in “security”
or termination. Increase in security here corresponds to decrease in information (a system which
releases no information being the most secure). Thus Alvim et al.’s ordering is incomparable to ours:
the LoCI ordering re�ects increase in information (decrease in security) or increase in termination.

Regarding the question of termination-sensitive noninterference, the �rst static analysis providing
this kind of guarantee was by Denning and Denning [1977]. This used Dorothy Denning’s lattice
model of information [Denning 1976]. It is worth noting that Denning’s lattice model is a model
for security properties expressed via labels, inspired by, but generalising, classical military security
clearance levels. As such these are syntactic lattices used to identify di�erent objects in a system and
to provide a de�nition of the intended information �ows. But Denning’s work did not come with
any actual formal de�nition of information �ow, and so their analysis did not come with any proof
of a semantic security property. Such a proof came later in the form of a termination-insensitive
noninterference property for a type system [Volpano et al. 1996], intended to capture the essence
of Denning’s static analysis. The semantic guarantees for such analysis in the presence of stream
outputs was studied by Askarov et al. [2008]. There they showed that stream outputs can leak

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 68. Publication date: January 2023.

Reconciling Shannon and Sco� with a La�ice of Computable Information 68:27

arbitrary amounts of information through the termination (progress) insensitivity a�orded by a
Denning-style analysis, but also that the information is bound to leak slowly.
In recent work, Sterling and Harper [2022] propose a new semantic model for termination-

insensitive noninterference properties using more elaborate domain-theoretic machinery. The
approach is fundamentally type-centric, adopting sheaf semantics ideas from their earlier work
on the semantics of phase distinctions [Sterling and Harper 2021]. The fundamental di�erence
in their work is that it is an intrinsic approach to the semantics of information �ow types in the
sense of Reynolds [2003], whereby information �ow speci�cations are viewed as an integral part of
types, and thus the meaning of the type for a noninterfering function is precisely the semantics
of noninterference. This is in contrast with the extrinsic relational models studied here in which
information �ow properties are characterised by properties carved out of a space of arbitrary
functions. Though the merger of domains and relations sketched in §3.7 may be considered an
intrinsic presentation, the approach of Sterling and Harper goes further: it requires a language of
information �ow properties to be part of the type language (and the underlying semantics). In their
work the class of properties discussed is quite speci�c, namely those speci�able by a Denning-style
(semi)lattice of security labels. The approach is particularly suited to reasoning about systems in the
style of DCC [Abadi et al. 1999] in which security labels are part of the programming language itself.
Unlike in the present work, the only kind of termination-insensitive noninterference discussed in
their paper is the simple case in which a program either terminates or it does not.
The most advanced semantic soundness proof of termination-insensitive noninterference (in

terms of programming language features) is the recent work of Gregersen et al. [2021]. In terms
of advanced typing features (combinations of higher-order state, polymorphism, existential and
recursive types. . .) this work is a tour de force, although the notion of termination-sensitivity at the
top level is just the simplest kind; any termination-insensitive notions that arise internally through
elaborate types are not articulated explicitly.

6 CONCLUSION AND FUTURE WORK

In this paper we have reconciled two di�erent theories of information:

• Shannon’s lattice model, which gives an encoding-independent view of the information that
is released from some data source by a function, and orders one information element above
another when it provides more information about the source; and

• Scott’s domain theory, where an “information element” is a provisional representation of the
information produced so far by a computational process, and the ordering relation re�ects
an increase in de�nedness, or computational progress.

Our combination of these models, which we have dubbed the Lattice of Computable Information (as
a nod to the fact that Scott’s theory is designed to model computable functions via continuity, even
if it does not always do so perfectly) retains the essential features of both theories – it possesses
the lattice properties which describe how information can be combined and compared, at the same
time as taking into account the Scott ordering in a natural way. We have also shown how the
combination yields the �rst de�nition, general in its output domain, of what it means to be the
termination-insensitive weakening of an arbitrary �ow property.
We identify some lines of further work which we believe would be interesting to explore:

New Information Flow Policies using LoCI. LoCI allows the expression of new, more �ne-
grained information �ow properties, but which ones are useful? One example worth exploring
relates to noninterference for systems with input streams. In much of the literature on noninter-
ference for such systems there is an explicit assumption that systems are “input total”, so that
the system never blocks when waiting for a secret input. Using LoCI we have the machinery

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 68. Publication date: January 2023.

68:28 Sebastian Hunt, David Sands, and Sandro Stucki

to explore this space without such assumptions – we can formulate what we might call input
termination-sensitive and input termination-insensitive properties within LoCI (without weakening).
Input termination-sensitive properties are very strong since they assume that the high user might
try to sneak information to a low observer via the decision to supply or withhold information,
whereas insensitive properties permit upfront knowledge of the number of high inputs consumed,
thus ignoring these �ows.

Another place where LoCI can prove useful is in required release policies [Chong 2012], where a
minimum amount of information �ow is required (e.g. a freedom of information property). In this
case we would like to ensure that the information which is released is produced in a “decent” form
– i.e. as a maximal element among those LoCI elements which have the same equivalence classes.
This prevents the use of nontermination to obfuscate the information.

Semantic Proofs of Noninterference. We have developed some basic semantic-level tools
for compositional reasoning about information �ow properties in LoCI, and their termination-
insensitive relatives (e.g. Proposition 9 and Corollary 2). It seems straightforward to establish a
�ow-sensitive variant of the progress-insensitive type system of Askarov et al. [2008] that can be
given a semantic soundness proof based on the de�nition of termination-insensitivity given here
(the proof in [Askarov et al. 2008] is not given in the paper, but it is a syntactic proof). It would be
interesting to tackle a more involved language, for example with both input and output streams, and
with input termination-sensitive/insensitive variants. It would be important, via such case studies,
to further develop an arsenal of properties, established at the semantic level, which can be reused
across di�erent proofs for di�erent systems. For languages which support higher-order functions,
semantic proofs would call for the ability to build complete preorders on continuous function
spaces [� → �] by the usual logical relations construction. That is, given complete preorders %
and & on � and �, we would like to construct a complete preorder % ⇒ & , relating 5 , and 6 just
when 0 % 0′ implies 5 (0) & 6(0′). In fact, de�ned this way, the relation % ⇒ & will in general only
be a partial preorder (some elements of [� → �] will not be in the relation at all). Promisingly,
the results in [Abadi and Plotkin 1990] suggest that complete partial preorders are well-behaved,
yielding a cartesian-closed category.

Domain Constructors. The powerdomain results in §4.5 are limited to �nite posets. It would be
interesting to extend these results beyond the �nite case and, more generally, to see if other domain
constructions, including via recursive domain equations, can be lifted to complete preorders. Clearly
this will require restriction to an appropriate category of algebraic domains, rather than arbitrary
posets. It remains to be seen whether it will also be necessary to impose additional constraints on
the preorders.

ACKNOWLEDGMENTS

Thanks to the anonymous referees for numerous constructive suggestions, in particular connections
to category theory that formed the basis of §3.7, and the suggestion to use an example based on
powerdomains. Thanks to Andrei Sabelfeld and Aslan Askarov for helpful advice. This work was
partially supported by the Swedish Foundation for Strategic Research (SSF), the Swedish Research
Council (VR).

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 68. Publication date: January 2023.

Reconciling Shannon and Sco� with a La�ice of Computable Information 68:29

REFERENCES

M. Abadi, A. Banerjee, N. Heintze, and J. Riecke. 1999. A Core calculus of Dependency. In Proc. ACM Symp. on Principles of

Programming Languages. 147–160.

Martín Abadi and Gordon D. Plotkin. 1990. A PER model of polymorphism and recursive types. [1990] Proceedings. Fifth

Annual IEEE Symposium on Logic in Computer Science (1990), 355–365.

Samson Abramsky. 1987. Domain Theory and the Logic of Observable Properties. Ph. D. Dissertation. University of London.

Samson Abramsky. 1991. Domain theory in logical form. Annals of Pure and Applied Logic 51, 1 (1991), 1–77. https:

//doi.org/10.1016/0168-0072(91)90065-T

Samson Abramsky. 2008. Information, processes and games. J. Benthem van & P. Adriaans (Eds.), Philosophy of Information

(2008), 483–549.

Samson Abramsky and Achim Jung. 1995. Domain Theory. In Handbook of Logic in Computer Science (Vol. 3): Semantic

Structures. Oxford University Press, Inc., USA, 1–168.

Mário S. Alvim, Konstantinos Chatzikokolakis, Annabelle McIver, Carroll Morgan, Catuscia Palamidessi, and Geo�rey

Smith. 2020. The Science of Quantitative Information Flow. Springer. https://doi.org/10.1007/978-3-319-96131-6

Aslan Askarov and Stephen Chong. 2012. Learning is Change in Knowledge: Knowledge-Based Security for Dynamic

Policies. In 25th IEEE Computer Security Foundations Symposium, CSF 2012, Cambridge, MA, USA, June 25-27, 2012, Stephen

Chong (Ed.). IEEE Computer Society, 308–322. https://doi.org/10.1109/CSF.2012.31

A. Askarov, S. Hunt, A. Sabelfeld, and D. Sands. 2008. Termination Insensitive noninterference leaks more than just a bit. In

Proc. European Symp. on Research in Computer Security.

A. Askarov and A. Sabelfeld. 2007. Gradual Release: Unifying Declassi�cation, Encryption and Key Release Policies. In Proc.

IEEE Symp. on Security and Privacy. 207–221.

Aslan Askarov and Andrei Sabelfeld. 2009. Tight Enforcement of Information-Release Policies for Dynamic Languages. In

2009 22nd IEEE Computer Security Foundations Symposium. 43–59. https://doi.org/10.1109/CSF.2009.22

Johan Bay and Aslan Askarov. 2020. Reconciling progress-insensitive noninterference and declassi�cation. In 2020 IEEE

33rd Computer Security Foundations Symposium (CSF). 95–106. https://doi.org/10.1109/CSF49147.2020.00015

William J. Bowman and Amal Ahmed. 2015. Noninterference for Free. In Proceedings of the 20th ACM SIGPLAN International

Conference on Functional Programming (Vancouver, BC, Canada) (ICFP 2015). Association for Computing Machinery,

New York, NY, USA, 101–113. https://doi.org/10.1145/2784731.2784733

Stephen Chong. 2012. Required information release. J. Comput. Secur. 20, 6 (2012), 637–676.

Ellis Cohen. 1977. Information Transmission in Computational Systems. SIGOPS Oper. Syst. Rev. 11, 5 (Nov. 1977), 133–139.

https://doi.org/10.1145/1067625.806556

M. Coppo and M. Zacchi. 1986. Type inference and logical relations. In LICS.

D. E. Denning. 1976. A Lattice Model of Secure Information Flow. Comm. of the ACM 19, 5 (May 1976), 236–243.

Dorothy E. Denning and Peter J. Denning. 1977. Certi�cation of Programs for Secure Information Flow. Commun. ACM 20,

7 (1977), 504–513.

M. Erné, J. Koslowski, A. Melton, and G. E. Strecker. 1993. A Primer on Galois Connections. Annals of the New York Academy

of Sciences 704, 1 (1993), 103–125. https://doi.org/10.1111/j.1749-6632.1993.tb52513.x

Roberto Giacobazzi and Isabella Mastroeni. 2004. Abstract non-interference: parameterizing non-interference by abstract

interpretation. In Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

POPL 2004, Venice, Italy, January 14-16, 2004. ACM, 186–197. https://doi.org/10.1145/964001.964017

Roberto Giacobazzi and Isabella Mastroeni. 2018. Abstract Non-Interference: A Unifying Framework for Weakening

Information-Flow. ACM Trans. Priv. Secur. 21, 2, Article 9 (feb 2018), 31 pages. https://doi.org/10.1145/3175660

Simon Oddershede Gregersen, Johan Bay, Amin Timany, and Lars Birkedal. 2021. Mechanized Logical Relations for

Termination-Insensitive Noninterference. Proc. ACM Program. Lang. 5, POPL, Article 10 (jan 2021), 29 pages. https:

//doi.org/10.1145/3434291

Sebastian Hunt. 1991. Abstract interpretation of functional languages: from theory to practice. Ph. D. Dissertation. Imperial

College London, UK.

Sebastian Hunt and Isabella Mastroeni. 2005. The PER Model of Abstract Non-interference. In Static Analysis, Chris Hankin

and Igor Siveroni (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 171–185.

Sebastian Hunt and David Sands. 1991. Binding Time Analysis: A New PERspective. In In Proceedings of the ACM Symposium

on Partial Evaluation and Semantics-Based Program Manipulation (PEPM’91. ACM Press, 154–164.

Sebastian Hunt and David Sands. 2021. A Quantale of Information. In 34th IEEE Computer Security Foundations Symposium,

CSF 2021, Dubrovnik, Croatia, June 21-25, 2021. IEEE, 1–15. https://doi.org/10.1109/CSF51468.2021.00031

J. Landauer and T. Redmond. 1993. A Lattice of Information. In 6th IEEE Computer Security Foundations Workshop - CSFW’93,

Proceedings. IEEE Computer Society, 65–70.

Hua Li and Edwin K. P. Chong. 2011. On a Connection between Information and Group Lattices. Entropy 13, 3 (2011),

683–708. https://doi.org/10.3390/e13030683

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 68. Publication date: January 2023.

https://doi.org/10.1016/0168-0072(91)90065-T
https://doi.org/10.1016/0168-0072(91)90065-T
https://doi.org/10.1007/978-3-319-96131-6
https://doi.org/10.1109/CSF.2012.31
https://doi.org/10.1109/CSF.2009.22
https://doi.org/10.1109/CSF49147.2020.00015
https://doi.org/10.1145/2784731.2784733
https://doi.org/10.1145/1067625.806556
https://doi.org/10.1111/j.1749-6632.1993.tb52513.x
https://doi.org/10.1145/964001.964017
https://doi.org/10.1145/3175660
https://doi.org/10.1145/3434291
https://doi.org/10.1145/3434291
https://doi.org/10.1109/CSF51468.2021.00031
https://doi.org/10.3390/e13030683

68:30 Sebastian Hunt, David Sands, and Sandro Stucki

Peng Li and Steve Zdancewic. 2005. Downgrading Policies and Relaxed Noninterference. In Proceedings of the 32nd

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Long Beach, California, USA) (POPL ’05).

Association for Computing Machinery, New York, NY, USA, 158–170. https://doi.org/10.1145/1040305.1040319

Pasquale Malacaria. 2015. Algebraic foundations for quantitative information �ow. Mathematical Structures in Computer

Science 25, 2 (2015), 404–428. https://doi.org/10.1017/S0960129513000649

Annabelle McIver, Carroll Morgan, Geo�rey Smith, Barbara Espinoza, and Larissa Meinicke. 2014. Abstract Channels and

Their Robust Information-Leakage Ordering. In Principles of Security and Trust, Martín Abadi and Steve Kremer (Eds.).

Springer Berlin Heidelberg, Berlin, Heidelberg, 83–102.

J. McLean. 1994. A general theory of composition for trace sets closed under selective interleaving functions. In Proceedings

of 1994 IEEE Computer Society Symposium on Research in Security and Privacy. 79–93. https://doi.org/10.1109/RISP.1994.

296590

Paul-André Melliès and Noam Zeilberger. 2015. Functors Are Type Re�nement Systems. In Proceedings of the 42nd Annual

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’15). Association for Computing

Machinery, New York, NY, USA, 3–16. https://doi.org/10.1145/2676726.2676970

Oystein Ore. 1942. Theory of equivalence relations. Duke Math. J. 9, 3 (09 1942), 573–627. https://doi.org/10.1215/S0012-

7094-42-00942-6

Gordon D. Plotkin. 1976. A Powerdomain Construction. SIAM J. Comput. 5, 3 (1976), 452–487. https://doi.org/10.1137/0205035

John C. Reynolds. 1983. Types, Abstraction and Parametric Polymorphism. In IFIP Congress.

John C. Reynolds. 2003. What do types mean? — From intrinsic to extrinsic semantics. In Programming Methodology.

Springer New York, New York, NY, 309–327. https://doi.org/10.1007/978-0-387-21798-7_15

H. G. Rice. 1953. Classes of Recursively Enumerable Sets and Their Decision Problems. Trans. Amer. Math. Soc. 74, 2 (1953),

358–366.

Olivier Rioul, Julien Béguinot, Victor Rabiet, and Antoine Souloumiac. 2022. La véritable (et méconnue) théorie de

l’information de Shannon. In 28e Colloque GRETSI’22.

A. Sabelfeld and A.C. Myers. 2003. Language-based information-�ow security. IEEE Journal on Selected Areas in Communi-

cations 21, 1 (2003), 5–19. https://doi.org/10.1109/JSAC.2002.806121

A. Sabelfeld and D. Sands. 2001. A Per Model of Secure Information Flow in Sequential Programs. Journal of Higher-Order

and Symbolic Computation 14, 1 (March 2001), 59–91.

Andrei Sabelfeld and David Sands. 2009. Declassi�cation: Dimensions and principles. J. Comput. Secur. 17, 5 (2009), 517–548.

https://doi.org/10.3233/JCS-2009-0352

C. Shannon. 1948. A mathematical theory of communication. The Bell system technical journal 27, 3 (1948), 379–423.

C. Shannon. 1953. The lattice theory of information. Transactions of the IRE Professional Group on Information Theory 1, 1

(1953), 105–107. https://doi.org/10.1109/TIT.1953.1188572

M. B. Smyth. 1983. Power domains and predicate transformers: A topological view. InAutomata, Languages and Programming,

Josep Diaz (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 662–675.

Jonathan Sterling and Robert Harper. 2021. Logical Relations as Types: Proof-Relevant Parametricity for Program Modules.

J. ACM 68, 6, Article 41 (oct 2021), 47 pages. https://doi.org/10.1145/3474834

Jonathan Sterling and Robert Harper. 2022. Sheaf semantics of termination-insensitive noninterference. In FSCD, the 7th

International Conference on Formal Structures for Computation and Deduction.

Stephen Tse and Steve Zdancewic. 2004. Translating Dependency into Parametricity. SIGPLAN Not. 39, 9 (sep 2004), 115–125.

https://doi.org/10.1145/1016848.1016868

Steven Vickers. 1989. Topology via Logic. Cambridge University Press, USA.

D. Volpano, G. Smith, and C. Irvine. 1996. A Sound Type System for Secure Flow Analysis. J. Computer Security 4, 3 (1996),

167–187.

Received 2022-07-07; accepted 2022-11-07

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 68. Publication date: January 2023.

https://doi.org/10.1145/1040305.1040319
https://doi.org/10.1017/S0960129513000649
https://doi.org/10.1109/RISP.1994.296590
https://doi.org/10.1109/RISP.1994.296590
https://doi.org/10.1145/2676726.2676970
https://doi.org/10.1215/S0012-7094-42-00942-6
https://doi.org/10.1215/S0012-7094-42-00942-6
https://doi.org/10.1137/0205035
https://doi.org/10.1007/978-0-387-21798-7_15
https://doi.org/10.1109/JSAC.2002.806121
https://doi.org/10.3233/JCS-2009-0352
https://doi.org/10.1109/TIT.1953.1188572
https://doi.org/10.1145/3474834
https://doi.org/10.1145/1016848.1016868

	Abstract
	1 Introduction
	1.1 What is the Information in Information Flow?
	1.2 Shortcomings of the Lattice of Information
	1.3 Contributions

	2 The Lattice of Information
	2.1 The Information Ordering on Functions
	2.2 An Epistemic View
	2.3 Information Flow and Generalised Kernels

	3 LoCI: The Lattice of Computable Information
	3.1 Order-Theoretic Preliminaries
	3.2 Ordered Knowledge Sets
	3.3 Ordered Kernels
	3.4 LoCI
	3.5 An Example LoCI
	3.6 Information Flow Properties in LoCI
	3.7 A Category of Computable Information
	3.8 A Partial Embedding of LoI into LoCI
	3.9 Post Processing

	4 Termination-Insensitive Properties
	4.1 What is Termination-Insensitivity?
	4.2 Detour: Termination-Insensitivity in the Lattice of Information
	4.3 Using LoCI to Define Generalised Termination-Insensitivity
	4.4 Impossibility of a Knowledge-based Definition
	4.5 Case Study: Nondeterminism and Powerdomains

	5 Related Work
	6 Conclusion and Future Work
	Acknowledgments
	References

