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Abstract

Measurement of Corneal Topography and Transparency.

A new method is described for measuring and modelling corneal topography. The 
method does not make assumptions about the underlying corneal shape and calculates 
radius of curvature at any point on the surface. This allows derivation of apex position, 
apex radius of curvature and rate of flattening away from the apex. The system 
reconstructs the surface shape independently of alignment of the eye with the 
instrument and can be applied to both regularly and irregularly shaped corneas.

To measure the corneal surface without any assumption about underlying shape, a 
system was set up to project vertical planes of light onto the cornea. An image o f the 
diffuse reflection of the planes on the cornea was captured by a computer frame 
grabber. Intersection points of the light planes with the corneal surface were calculated 
to give a matrix of x,y,z points lying on the corneal surface. A polynomial surface 
equation was fitted to these points using a u,v co-ordinate system embedded in the 
surface. Differential geometry theory was applied to this equation to calculate radius of 
curvature across the surface. The results are output in the form of a contour map 
showing the apex position and other numeric parameters including rate o f flattening 
from the apex.

The system has been applied to both normal and keratoconic eyes and has been 
used to measure keratoconic apex radius of curvature down to 5 .1mm. The contour 
map output gives a good visual impression of the actual shape of the cornea. Further 
applications would include - 1. Assessment of irregular corneal shape prior to 
photoablative surgery. 2. Monitoring of progression of Keratoconus. 3. Post operative 
assessment of corneal grafts. 4. Accurate surface description of aspheric contact lenses.

A method is also developed to give a quantitative measure of corneal scarring. The 
system is attached to a modified slit lamp for observation of the eye and measurement 
of backscatter from corneal haze. The results are output as a corneal map showing the 
location of the scarring and area values for different scar densities. The map and density 
values are in a convenient form to be kept with patient records, so that improvement or 
regression in scarring can be accurately monitored.
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Chapter 1.

Introduction

1.1 Background

The function of the eyes is to obtain information about the distribution o f light in 

the environment and to convert this information into a suitable form for transmission to 

the visual areas o f the brain. The eyes are therefore the receivers for the visual system 

and the quality of the final perception is limited by the fidelity of the information 

obtained from the eyes. This, in turn, is dependent on the characteristics o f the optical 

system of the eye.

The main refracting surface of the eye is the cornea and the shape o f the cornea plays 

a key role in determining the quality of the retinal image and ultimately the quality of 

visual perception. Small changes in either the shape or the transparency of the cornea 

can have a marked effect on visual performance. Knowledge o f the exact topography of 

the cornea is therefore of importance both theoretically and clinically. To the clinician, 

knowledge of corneal topography is of particular interest in detecting and monitoring 

corneal disease (e.g. keratoconus), contact lens design and fitting, keratoplasty and 

refractive surgery.

The instrument in most widespread use today for routine assessment o f corneal shape 

is the keratometer. Keratometers take advantage o f the reflective properties o f the 

cornea to form an image of an illuminated mire pattern. By measuring the magnification 

o f the image, the curvature of the central portion of the cornea can be estimated. 

However, standard instruments are incapable of assessing the topography of other parts 

o f the cornea and because the instruments assume sphericity between the mire images, 

they do not provide meaningful results with irregular corneas. Keratoscopes operate on

13



the same principle as keratometers, but by using a mire pattern consisting of a series of 

concentric rings, an estimate of the topography of a larger area o f the cornea can be 

obtained. However, like keratometers, keratoscopes make a number o f a priori 

assumptions about corneal shape and are incapable of providing results when

the cornea is irregular.

The advent of laser refractive surgery has renewed interest in corneal shape and 

transparency measurement (Gartry (1991), Salz (1993), McCarey (1992)). Detection 

o f subtle, but clinically significant, topographical detail are seen as important steps in 

the refractive surgical procedure (Wilson, 1994). However, at present there are no 

instruments available which are capable of providing precise topographical information 

about irregular corneas.

The aim o f the research programme described in this thesis was to review current 

methods for assessing and describing corneal topography and to develop a system 

which would be capable of providing precise topographical information about any 

surface shape. A system for assessing the transparency of the cornea is also described.

1.2. The Optical System of the Eye.

The largest change of refractive index in the eye occurs at the front surface boundary 

between the front o f the cornea and the air. The cornea therefore provides the greatest 

amount o f optical refractive power for the eye and contributes approximately two- 

thirds of the eye's total refractive power (Boff, 1988).

The transparent cornea at the front of the eye is approximately 0.5 mm thick at the 

centre and 0.9mm thick at the limbus (cornea-scleral junction). The anterior corneal 

surface is covered by a thin layer of lacrimal fluid and it is at this air-lacrimal fluid 

boundary that the greatest change of refractive index occurs. The focusing power of
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the eye which is usually attributed to the cornea, is in reality due to this air-lacrimal 

fluid boundary. The anterior and posterior corneal surfaces are often treated optically 

as being spherical, with radius o f curvatures of 7.7mm (anterior) and 6.8mm 

(posterior). For schematic optical eyes (e.g. Gullstrand) the refractive index o f the tear- 

layer/comea is taken as 1.375.

Behind the cornea is the anterior chamber which has, on average, an axial length 
'b'l

of about mm (Longhurst, 1973) and is filled with a watery fluid called the aqueous

humour. The refractive index of the aqueous humour is usually taken as 1.336. At the 

back of the anterior chamber is the pupil which acts as a variable aperture in front of 

the crystalline lens. The crystalline lens is a biconvex lens which can change its anterior 

and posterior surface curvatures through action of the ciliary muscle. This change of 

shape is used to focus images sharply on the retina and this action is called 

accommodation. When the ciliary muscles are relaxed, the radius of curvature o f the 

anterior lens surface is approximately 10mm and that o f the posterior surface is 6mm. 

The central thickness is of the order of 3.6mm. The internal structure o f the lens shows 

layers of fibres forming a radial pattern with a central biconvex nucleus surrounded by a 

region called the cortex. The refractive index inside the lens displays a gradient, with a 

maximum of 1.40 at the centre of the nucleus, to 1.375 at the lens equator. This 

gradient index gives the lens a greater focusing power than if it were constructed of a 

uniform refractive index. Peripheral flattening of the cornea and crystalline lens help to 

reduce the spherical aberration in the eye. This flattening makes the shape o f the cornea 

and lens difficult to measure and also implies that schematic eyes containing spherical 

optics only approximate the eyes real optical characteristics.

Behind the lens is the vitreous humor, which is a transparent gel with a refractive 

index of 1.336. At the back of the eye, images are focused on the retina where the light 

is absorbed by photorecepters.
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There are considered to be 3 optically important axes o f the eye (Bennett & 

Rabbetts, 1984(a)). The first axis, called the Optical axis, is the axis through which the 

4 Purkinje images are aligned. The Purkinje images are the images formed of an object 

reflected from the 4 reflecting surfaces in the eye. The images are designated as 

Purkinje I, II, III and IV corresponding to the four reflection surfaces. These surfaces 

are the anterior and posterior corneal surfaces and the anterior and posterior lens 

surfaces. The Visual axis is the axis passing through the centre of the entrance and exit 

pupils. This represents the best axis along which rays enter the eye for vision. One 

further axis, called the Pupillary axis, is defined as the line from the centre of the 

entrance pupil which meets the anterior corneal surface normally. This line also passes 

through the centre of curvature of the corneal surface intersected by the axis. The angle 

between the Optical axis and the Visual axis is donated as angle a  (alpha) and the angle 

between the Visual axis and Pupillary axis is angle k  (kappa). These axes and angles are 

shown below in fig. 1.1.

N asal side

fig. 1.1. View of the eye showing the relationship of the different axes.

Points E and E' are the centres of the entrance and exit pupils respectively.

16



The value of angle a  can be measured using an instrument called Tscherning's 

Ophthalmophakometer (Bennett & Rabbetts, 1984(b)). This uses a telescope placed at 

the centre of a circular arc with the eye placed at the arc's centre o f curvature. Above 

and below the telescope, two lamps are placed to produce two sets o f Purkinje I, III 

and IV images which are viewed through the telescope. A fixation point is then moved 

until the sets of Purkinje images are seen to be in best vertical alignment along the axis 

o f the telescope. The telescope axis is then coincident with the eye's optical axis and the 

angle a  can be found from the position of the fixation po in t. In practice, the optical 

axes o f the refracting surfaces in the eye are not coincident so there is no position 

where the Purkinje images are in perfect alignment.

1.3. Anatomy of the eye.

1.3.1. Tears.

The lacrimal fluid or tears are produced mainly by the lacrimal gland (Crouch, 1978), 

located in the upper lateral side of the eye orbit which opens into 6 to 12 ducts leading 

to the upper part of the palpebral conjunctiva. The tears move over the anterior corneal 

surface at each blink and form a precorneal film. Following each blink, the tear fluid 

flows in a medial direction and empties into two small lacrimal ducts leading to the 

lacrimal sac. The lacrimal sac drains via the large nasolacrimal duct into the inferior 

nasal meatus. The functions of the tears are to help regenerate corneal epithelium cells, 

remove discarded cells and provide a smooth surface for refraction o f light entering the 

eye. The structure of the tear film shows three distinct layers; an outer lipid layer 

lOOnm thick above an 8 micron aqueous layer and below which is a mucous layer 

approximately 1 micron thick in contact with the corneal epithelium's microvilli surface. 

The lipid layer prevents evaporation of the aqueous layer and therefore stabilises the 

tear film. The condition of the lipid layer has no effect on the corneal curvature value as 

measured by keratometric methods (Lamberts, 1983), but instillation o f flourescein into
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the tear film does affect the stability of the lipid layer and so also affects the rest of the 

tear film. Many non-keratometric corneal measurement systems such as the one
/ - A to r e s c e t 'a

developed in this project involve the introduction of into the tear layer, so

possible consequences on tear film stability must be recognised as important. Below 

the lipid layer is the aqueous layer which contains the necessary salts, sugars, proteins 

and vitamins to maintain a healthy cornea. Anti-microbial substances are also 

contained in tears which help protect the cornea from bacterial infection.

Motion of tears remove cellular debris, circulate oxygen required for healthy 

epithelial cell development and remove waste carbon dioxide. Adjacent to the aqueous 

layer is a semi-solid mucus layer which adheres to the anterior surface of the corneal 

epithelium. This layer gradually merges into the aqueous layer and helps protect the 

epithelium from infection.

1.3.2. Epithelium.

The anterior cellular surface of the cornea, which is separated from the air by the 

precorneal tear film, has a uniform thickness of 50 to 60 microns and constitutes 10% 

of the total corneal thickness (Bergmanson ,1991). The internal limit o f the epithelium 

is a membrane known as Bowman's layer or membrane. At the perimeter or limbus of 

the cornea, the corneal epithelium is continous with the conjunctival epithelium. The 

epithelium layer consists of 5 to 6 layers of cells, whose function is to resist damage to 

the central delicate layers of the cornea. The epithelium must also repair rapidly when it 

is damaged. This is achieved by moving existing cells to an area of damage and 

regeneration to replace lost cells. The surface of the epithelium shows a fine structure 

o f irregularities (microvilli), providing a large surface area for bonding to the tear film. 

Corneas with epithelial damage show a reduced ability to maintain an intact tear layer. 

The cell structure of the epithelium layer shows cell migration from the basement 

membrane (Bowman's layer) to the anterior surface. At the basement membrane, cells 

are young with a circular appearance and are called basal cells. As the cells develop,
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they move through the cornea towards the anterior surface becoming flatter in 

appearance and are described as 'wing' cells. Finally the cells reach the corneal anterior 

surface as very flat 'squamous' cells and are removed by tears having reached the end of 

their life cycle.

The epithelium also contains a large number of nerves to provide a response to 

physical stimuli. Between 70 and 80 nerves enter the cornea radially, passing through 

the cornea and ending in the basal epithelium layers. The energy requirements for rapid 

regeneration of cells necessitate oxygen intake from tears and glucose uptake from the 

aqueous humor via posterior corneal layers.

1.3.3. Stroma.

The stroma lies below the corneal epithelium and forms 90% of the thickness o f the 

cornea. It comprises of layers of lamellae lying on each other (Davson, 1972), with 

collagen fibrils running parallel within each lamella. The lamellae are composed of 78% 

water, 15% collagen and 5% other proteins. Between the lamellae are scattered cells 

called Keratocytes and also nerve fibres which weave around the lamellae. The lamellae 

constitute a solid framework which resists disruption to fibrils but allows diffusion of 

nutrients through the structure. The stroma also exhibits negative 'imbibition' pressure 

of 60mmHg which has the effect of sucking fluids into the stroma which helps preserve 

the regular structure of the stroma. To keep the stroma in equilibrium, the outer 

corneal layers pump out any excess fluid from the stroma. The transparency of the 

stroma is thought to depend on the parallel nature and spacing of the collagen fibrils in 

the lamella (Maurice, 1957). The configuration of the fibrils is such that incident light is 

either transmitted, or reflected with destructive interference producing no reflection.

1.3.4. The Corneal Endothelium and Descemet's Membrane.

The corneal endothelium is a single cell layer comprising around 400,000 cells, each 

of 25 micron diameter on average (Hirst ,1991). Each cell has a regular hexagonal 

shape in the normal cornea, but a less regular structure in abnormal corneas. If  the
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endothelium layer suffers damage, such as surgical trauma, the wound healing will not 

produce normal shaped endothelium calls. To maintain corneal clarity, excess fluid 

must be removed from the cornea and this is the principle function o f the endothelium 

layer. The layer has a passive pump action in the form of a permeable membrane, 

removing excess fluid from the stroma to the aqueous humor. If the stroma fluid 

content is not in equilibrium but is much higher than normal, an active pump 

mechanism comes into operation. This mechanism pumps ions into the aqueous humor 

reducing stromal swelling. At the base of the endothelium on the endothelium-stroma 

boundary is Descemet's Membrane. Descemet's Membrane is secreted by the 

endothelium and forms a 10 micron thick elastic membrane which can recover quickly 

after deformation.

1.3.5. Loss o f corneal transparency.

The most common cause of transparency loss in the cornea is disruption o f the 

stromal lamellae. This may be caused by Oedema, stretching of the cornea or trauma 

(Benjamin, 1991). The regular lattice structure of the collagen fibrils is disrupted and 

light scatter occurs from the irregular lattice structure. In some cases scarring within 

the stroma can be severe, leading to complete corneal opacity. Loss o f transparency 

can also occur in the corneal epithelium layer. Oedema in the epithelium caused by 

trauma may disrupt the close adhesion of the epithelium to Bowman's layer. The 

subsequent spaces become filled with fluid causing light scatter. Certain chemical 

deposits such as calcium, may also occur in the epithelium due to corneal pathologies. 

Even a small loss of corneal transparency, whether localised or covering the whole of 

the cornea, can cause a significant reduction in visual performance.
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1.4. Corneal Refractive Surgery.

1.4.1 Penetrating Keratoplasty.

In severe cases of corneal disease, surgical correction in the form of a corneal 

transplant (Caroline, 1991) may be the only method of improving vision. This is true in 

cases o f advanced Keratoconus, where scarring is severe over the visual axis and the 

cornea is significantly distorted. In these cases the central area of the cornea (up to 

8mm diameter) will be totally removed and replaced by a donor cornea. Success rates 

for this type of operation are better than 90% for the graft to be accepted by the host 

cornea. One reason for the low rejection rate is the total absence of blood vessels in the 

normal cornea. The two main post-operative sequelae are irregular astigmatism, which 

is sometimes severe and tilting of the graft cornea relative to the host cornea. Both 

conditions are difficult to measure accurately using current topographical instruments, 

but general areas of steepening and irregularity are visible with photokeratoscopes.

1.4.2. Epikeratophakia.

Epikeratophakia is used to treat severe myopia (Maguire, 1987) and central corneal 

thinning found in Keratoconus (Kaufman, 1982) when the condition has not reached an 

advanced stage with severe scarring. A circular explant is sutured on top of the central 

part of the cornea after removal of the epithelium to reinforce and flatten the conical 

cornea. This has the advantage over penetrating keratoplasty of less risk during surgery 

and lower probability of explant rejection relative to graft rejection. The technique 

cannot be used if the cornea has developed scar tissue because this would not be 

improved by the explant. As in penetrating keratoplasty, one o f the main post-operative 

problems is residual astigmatism which is minimised by careful adjustment and selective 

removal of sutures.

1.4.3. Radial Keratotomy.

Radial keratotomy is a technique to reduce myopia (McDonnell, 1989) where 

incisions are made on the corneal surface from the centre of the cornea to the limbus.
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The incisions avoid the central 3mm of the cornea and are equally spaced and radially 

outward from the visual axis. The technique depends on the incisions weakening the 

corneal structure which results in a flattening of the corneal surface and a reduction in 

myopia. The amount o f flattening is dependent on the length and depth o f the incisions, 

therefore sucess of the procedure is largely determined by the skill and experience of 

the surgeon. After the operation, the patient is left with scars where the incisions were 

made which may cause different amounts of glare depending on pupil diameter.

1.4.4. Photoreffactive Keratectomy (PRK)

The surgical procedure for correction of myopia using excimer laser is o f particular 

relevance to this project. In this technique, the surface of the central cornea is cut 

(photoablated) with high precision, producing a new smooth surface contour. The 

curvature o f the cornea after ablation should be that required to fully correct myopia. 

(Gartry, 1991).

In PRK, photoablation of the cornea is achieved using an argon fluoride excimer 

laser, emitting ultraviolet radiation at 193nm. At this wavelength, radiation is absorbed 

within a few microns o f entering the cornea. Each photon has an energy of 6.4 electron 

volts, which exceeds the binding energy of carbon-carbon bonds in the cornea. 

Therefore with each laser pulse a layer of only a fraction o f a micron will be ablated 

from the corneal surface. A circular aperture in front of the laser beam produces 

photoablation of a circular zone on the cornea and damage to unexposed tissue is 

limited to 300nm from the boundary of the ablation zone. For the photoablated area to 

result in a smooth clear cornea, certain properties of the cornea must function correctly 

after healing. The properties which may be disrupted after surgery include epithelial 

adhesion and cell migration, transparency loss of the stroma caused by disruption of the 

lamella lattice structure and cell loss in the corneal endothelium.
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Prior to photoablation, the epithelium is softened and mechanically removed to 

expose the stromal layers. When correct fixation is achieved, the laser is pulsed at 10 

Hz photoablating the cornea. A flattening of the cornea is achieved by increasing the 

laser aperture size during the operation, ablating the central areas more than the outer 

areas. The overall diameter of the ablation zone is typically 4-6mm with a total of 400 

pulses applied to the cornea. The depth of tissue removed per pulse has been estimated 

at 0.24 microns on average, giving a final ablation depth o f the order o f 0 .1mm. 

Immediately after the ablation is completed, a series o f ridges are visible indicating 

discrete changes in the laser aperture, producing distinct ablation zones. Thirty six 

hours after treatment, the anterior surface of the cornea has re-epithelialised and shows 

a smooth appearance but is distinct from the non-ablated area.

Post-operative examination of treated eyes includes measurement o f refraction and 

acuity, corneal thickness (pachymetry), eye pressure (tonometry), fundus examination, 

visual field examination and keratometry (usually with a computerised system such as 

EyeSys). Slit lamp examination is also made with subjective grading o f corneal haze. 

This haze does not occur immediately after treatment but seems to appear between 1 

and 3 months following surgery and is often accompanied by extensive regression in the 

corneal refractive state (Seiler, 1994). The corneal haze has been graded (Salz, 1993) 

as follows: Grade 4 - opacity prevents view of anterior chamber details; Grade 3 - 

opacity easily visible and markedly interferes with refraction; Grade 2 - haze easily 

visible and interferes with refraction; Grade 1 - haze easily visible but does not interfere 

with refraction; Grade 0.5 - barely visible; Grade 0 - cornea clear and ablation zone not 

apparent. Although it is reported (Salz, 1993) that 99% of treated corneas eventually 

achieve Grade 1 haze of better, this can still leave the patient with irritating light scatter 

and ghost images. The current opinion (Taylor, 1994) on the efficacy of treatment is 

that PRK is acceptable when the result is a clear cornea with an accurate and stable 

dioptric result.
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In addition to corneal haze, further post-operative complications of PRK include 

regression to myopia, increased corneal astigmatism and loss of best corrected visual 

acuity. These problems are thought to be due to the reformation and abnormal growth 

o f the corneal epithelium after surgery (hyperplasia), over which there is no control and 

no method of predicting the final outcome at present. Although most studies o f PRK 

claim that over 90% of patients achieve a refractive correction within ±1.0 D o f the 

required correction for emmetropia and an uncorrected V. A. of 6/12 or better, this 

usually means that patients still require a correction for acceptable vision. Success rates 

for results of ±0.5 D or better which would not require further correction are not 

generally quoted.

Monitoring and prediction of epithelium growth seem not to have been attempted to 

date, probably due to the irregular nature of post-operative corneal changes. The major

topographical change appears to be the formation of central islands on the cornea
krueyeC

( " , 1994) covering the central 3mm and producing up to 3 diopters o f regression

in addition to astigmatism and scarring. Efforts are being made to objectively quantify 

scarring by measuring backscatter (Braunstein, 1994) but little information on the 

methods or use are available at present.

In this study, a method to measure surface topography was developed which can be 

used successfully on irregular corneas such as in post-operative PRK patients as 

described above. The system could also assist post-operative planning in penetrating 

keratoplasty to improve astigmatism by adjustment of sutures. It has already been 

shown in cases of high astigmatism that reference to corneal topography measurements
\/ciridoa-t$a<;

can produce significant improvements ( , 1994). In addition to topography

measurement, a system was developed to give objective measurement o f corneal haze 

by backscatter measurements. This system was designed to be easy to use in a clinical 

environment and to provide quantitative data which could be used in further statistical 

studies for correlation of the effects of haze.
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Chapter 2.

Review of Corneal Topography Measurement Systems

2.1. Keratometry.

The instrument in most widespread use today for routine assessment o f corneal 

shape is the Keratometer (sometimes referred to by the older term 

Ophthalmometer). Keratometers take advantage o f the reflecting properties o f the 

cornea to form an image of an illuminated mire pattern o f known dimensions.

The size o f the mire image formed by the cornea is viewed and measured through 

the Keratometer. If  the cornea is treated as a spherical convex reflecting surface, 

standard paraxial ray equations can be applied to the mire images and the corneal radius 

o f curvature can be calculated. Keratometers are usually designed to make radius 

measurements in one meridian or in two orthogonal meridians, with the viewing system 

able to rotate for measurements along the maximum and minimum curvature axes.

The results are usually assumed to represent the shape of the central 

3mm of the cornea and can be used as an initial "shape value" when fitting contact 

lenses. One problem when making direct measurements o f the reflected images is image 

motion caused by eye movements. To overcome this, keratometers 

typically have an optical system which doubles the image from the cornea (Ruben, 

1975). This is achieved by placing a prism system behind half of the Keratometer 

aperture, producing a second shifted mire image next to the direct image from the 

cornea. The size and relative displacement of both images depends on the corneal 

radius o f curvature. This displacement is then measured by shifting the images to a 

fixed separation indirectly giving the radius of curvature value. Image motion caused 

by eye movements is eliminated because both images move together.
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2.2.1. Photokeratoscopes and the PEK.

Keratoscopes have been developed which extend the keratometer principle to 

measure the entire corneal surface, replacing the keratometer mires with a set of 

concentric black and white circles. The image of the circles formed by the cornea is 

viewed through the keratoscope and the shape and size o f the circles give an indication 

o f the corneal topography. The simplest form of keratoscope is the hand held Plácido 

disc, where the ring images are viewed by eye through the disc centre. To record and 

analyse these images, Gullstrand used photographic recording techniques thus 

producing the first photokeratoscope (Gullstrand ,1924 ). A further important 

refinement of the photokeratoscope was introduced by Knoll (1957) when he placed 

the concentric circular object rings on a hemispherical surface. The centre o f curvature 

o f the hemispherical surface was designed to coincide with the centre o f curvature of 

the cornea under study. If this condition is met, which in general it is not, the image of 

all object rings will be simultaneously in focus on the photographic plane.

Photokeratoscopes came into relative widespread use with the 

development of the Wesley-Jessen PEK (Townsley ,1967 ; Bibby ,1976 ). This is a 

robust and simple to use photokeratoscope, designed to give enough 

information about corneal shape to allow contact lens design and fitting from the 

shape measurements. Seven concentric object rings are internally illuminated in the 

instrument and their reflected images are photographed on Polaroid film. Quantitative 

analysis of the corneal shape was carried out by the manufacturers on receipt o f the 

PEK pictures. Before the introduction of computer based photokeratoscopes, this 

instrument was widely used in the general study of corneal shape in addition to contact 

lens fitting requirements.

Accuracy measurements of instruments based on the keratometry principle have been 

made by Hannush (1990) using a Bausch & Lomb keratometer on 4 calibrated steel
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spheres showed results within ±0.25 D of the true equivalent power value, (assuming a 

refractive index of 1.3375 for conversion from radius of curvature to power). These 

results are typical of these types of instruments, but only after careful alignment of the 

test spheres.

2.2.2. Keratometry measurement principles.

If the cornea is treated as a convex mirror, topographical information can be derived 

by measuring the image size of an object reflected from the corneal surface. Applying 

standard paraxial ray equations to the image and object sizes,the radius of curvature of 

the equivalent spherical mirror is calculated (Stone ,1975 ). Fig 2.1 shows the ray 

diagram for a convex spherical mirror.

^  M

fig. 2.1 Ray from an object 0  is reflected from a spherical convex

mirror M, forming an image at v of height i. The object distance 

is u and the focal length of the mirror is f.

Considering the image magnification we have

o u

Further, the image distance is assumed to coincide with the focal point o f the mirror. 

Then, if r is the mirror radius of curvature
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To find the incident ray intersection point with the surface, R and vj/ must be calculated. 

For a known image size, R can be found from equation (2.3) and vj/ is derived from fig.

2.2 as follows

(2.4) u' + u+3= 180°

(2.5) S+ 2<p = 180°

(2.6) u' + u = 2<p 

and

(2.7) cp + 4 + v|/= 180°

(2.8) u + ^=  180°

(2.9) cp + vj/ = u 

substitute cp into equation (2.6)

(2.10) u' + u = 2 ( )

(2.11) \\i = (u - u')/2 

where tan u' = h/ 'X-

and tan u = o/x where o = object ring height.

To build up the profile, the cornea is assumed to have a smooth shape with no abrupt 

changes in radius of curvature. Consecutive arc elements can then be joined together at 

the reflection points.

fig. 2.3 Two consecutive arc elements joined at a reflection point.
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Fig 2.3 shows the situation for 2 circular sections and also shows the movement o f the 

centre of curvature. Points on the surface in x,y must be found and an ellipse fitted to 

them to complete the description of the profile. The semichord c in fig.2.2 gives the y 

value and is found at each reflection point by

(2.12) y = R sinvj/

The x value of each reflection point is calculated by summing the sagittal distance of 

successive curve elements from the vertex x q . This is shown in fig. 2.4.

fig. 2.4. Calculating x values of reflection points from curve elements.

In fig. 2.4 x q  = radius of curvature of central arc rg.

For the first point

(2.13) xi=rocosv)/o 

The first sag value is then

(2.14) sagO = xO - xl

For the next point, x2 is given by

point 3

point 1

(r1- r 0)ccsV'0 (r2- r 1)cosV'l
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(2.15) x2 = r lc o sy l - [(rl-r0)cosvj/0] 

and the sag value (sagl) is

(2.16) sagl = x l - x2

For the third point, x3 is given by

(2.17) x3 = r2cosvj/2 - [(r2-rl)cos\j/l +(rl-r0)cosv|/0] 

and the sag value (sag2) is

(2.18) sag2 = x2 - x3

Hence for successive points the sag distances are calculated and summed from the 

vertex position to give successive x,y points on the cornea relative to the vertex.

After points on the surface have been calculated, an ellipse or other conic section 

must be fitted to them to give a description of the surface. Unfortunately the usual 

ellipse or conic section equations are unworkable when applied to a least squares 

method of data fitting (Townsley ,1970 ). The equations must therefore be fitted using 

an iterative method giving results within some error bound chosen by the operator 

(Bookstein ,1979 ; Sampson ,1980 ; Porrill ,1990 ). Because points on the ellipse are 

only known around the central curvature area, a large number of ellipses posessing 

identical central curvatures but different shape factors can be fitted to the data 

(Bibby,1976 ). This is shown in fig. 2.5.

fig.2.5 Different ellipses with the same central curvature.
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Therefore in fitting an ellipse, the establishment of the ellipse centre is probably the 

most important step in achieving acceptable results (Yuen, 1989). The first assumption 

to be made is to place the major axis of the fitted ellipse along the axis o f the 

instrument. Further, the locus of the centres of curvature (evolute) o f the curve 

elements has the minor axis as its asymptote. If the position of the minor axis can be 

estimated by extrapolating the evolute, then the semi-major axis of the ellipse can be 

established. This fixes the position of the origin along the x axis.

The equation of the ellipse centered about the origin is given by

(2.19) 4  + ^  = 1 cr o

a = semi-major axis 

b = semi-minor axis 

with shape factor given by
l 2

(2.20) 5 = 1 ---- r-
a

2.3. Autocollimation systems.

A variation on the keratoscope method outlined above, is the measurement of 

radius of curvature using Drysdales' method (Drysdale ,1900 ). This method measures 

the distance between the two positions of keratoscope autocollimation on the corneal 

surface. The principle is shown in fig 2.6 where rays from the keratoscope 

are reflected back along their path to form images.



fig 2.6. The keratoscope objective 0  forms an image from the cornea c at both 

autocollimation positions. The radius of curvature R of the cornea is the 

distance between these two positions.

Bennett (1964) described an autocollimating keratometer which allows simultaneous 

observation of both autocollimation positions. Independent adjustment of both imaging 

systems, shown in fig. 2.7, allow measurement of the radius of curvature R.

fig. 2.7 Adjustment of both imaging systems LI and L2 allow measurement 

of the radius of curvature R. The object 0  is projected onto the cornea 

with the aid of a beamsplitter B.
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2.4. Collimated keratoscopes.

One theoretical objection to keratoscope measurements in modelling corneal shape, 

is that the image is constructed from light reflected from different parts o f the corneal 

surface. If the whole o f the surface is spherical then no problem arises. However, if the 

surface varies in curvature, the area of the reflecting surface creating a given image is 

uncertain. To overcome this problem and also measure over a wide corneal diameter, 

Fujii (1972) developed a collimated keratoscope. This limits the light forming an image
t

to a narrow bundle of rays reflected from the cornea. The principle is shown in fig. 2.8, 

where a collimator L projects light onto the cornea from a source at a fixed angle 3 to 

the corneal optical axis. The cornea is then \iewed by an imaging system with objective

O. Behind the objective 0  is a pinhole P which only allows a narrow bundle o f rays to 

be imaged on the focal plane F.

fig. 2.8 Principle o f collimated photokeratoscopes. Light from a collimator L 

is reflected from the cornea C. After passing through a pinhole P the 

light is focused at the focal plane F.
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The distance of the image from the optical axis is used to calculate the angle 

o f reflection from the corneal surface. In practice, Fujii (1972) used 18 collimated light 

sources arranged in a semi-circle in a plane in front of the cornea. A camera was used 

to record an image of the sources covering a width of about 11mm on the cornea, from 

which the corneal curve could be calculated for a given meridian.

2.5 Computerised photokeratoscopes.

The Corneal Modeling System (CMS) (Gormley ,1988 , Wilson ,1991 ) developed 

by Dennis Gormley and Computer Anatomy Inc. (New York NY) is a 

photokeratoscope with an integrated computer imaging system to process the ring 

images. The computer imaging system replaces the photographic camera with a video 

camera of 500 lines/frame attached to a computer frame store. The CMS can be 

operated with a maximum of 32 concentric object rings with each ring evaluated at 256 

equally spaced points. The results are output graphically on a computer screen as a 

colour coded map. Radius of curvature V values have been converted to power 'p' 

values using the formula p=(n-l)/r where n is the corneal refractive index taken as 

1.3375 (Hannush ,1989 ). Each colour on the colour coded map represents a specific 

power interval and can be displayed in either an absolute scale of 2.5 dioptre interval or 

a relative scale down to 0.2 dioptre interval. In addition to the colour coded map, 

general shape descriptors of the cornea are also calculated. These include -

1. Simulated Keratometry Value (Sim K) which averages results from rings 7,8,9 

approximating a zone of 2.5mm radius on the cornea. The power and location of 

the steepest and flattest meridians are calculated in either spherocylindrical mode 

with meridians at 90°, or non-spherocylindrical mode independent o f angle.
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The Sim K parameter represents probably the most useful measure produced by the 

system, as it allows direct comparison with other keratometric instruments. In studies 

using the CMS, it is the parameter most often quoted as a measure showing significant 

changes in topography.

2. Surface Asymmetry Index (SAI) measures the power difference of points 180° 

apart for 128 equally spaced meridians on the 4 inner mires.

3. Surface Regularity Index (SRI) sums 'local' power fluctuations around 256 equally 

spaced hemimeridians over the 10 central mires.

Hannush (1989) measured the accuracy of the CMS using 4 calibrated steel test 

spheres of radius 8.73mm, 7.85mm, 7.84mm, 6.73mm. A refractive index o f 1.3375 

was used to convert between radius of curvature and dioptric power. The accuracy 

using rings 2 - 26 showed power measurements with a range of ±0.26 D and a mean 

error of +0.10 D and s.d. = 0.07 D. Ring 1 was found to be very variable and was not 

included in the assessment. This should have been included to give a more accurate 

reflection of the overall system performance. Ring 8 corresponds to the usual 

measurement ring of keratometers (at 1 5mm radius from the centre).

Another computerised photokeratoscope similar to the CMS and now commercially 

available is the EyeSys Corneal Analysis System (EyeSys Laboratories, Houston, Tex) 

(Tsilimbaris ,1991 ). This system also displays the radius of curvature results as a 

colour coded power map of similar form to the CMS, but with additional information 

of average power, location and power difference of the two main astigmatic meridians 

for 3mm, 5mm and 7mm diameter zones.
fd cC are^

The accuracy of the EyeSys Corneal Analysis System has been measured by 

(1992) using 4 calibrated steel spheres. Using reflected mire images at 3mm, 5mm and 

7mm radius from the centre of the instrument axis, the average spherical equivalents 

for the spheres showed an error ranging from +0.29 D to +0.46 D. These results 

assume accurate alignment of the test spheres with the instrument axis.
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Accuracy measurements on a radially aspheric surface was made by Roberts (1994). 

Results from an ellipsoid of 7.5mm apical radius of curvature and 0.5 eccentricity 

showed errors of up to 3.00 dioptres at 4mm radius from the apex. This shows the 

order of magnitude of the inherent error in photokeratoscopes, when measuring 

surfaces which are non-spherical.

2.6. Corneal profile measurements.

Direct photography of the corneal profile has been successfully carried out by 

McMonnies(1971). The cornea under study was positioned in front of a brightly 

illuminated background and light passing tangentially across the cornea was viewed by 

a photographic system as shown in fig. 2.9

fig. 2.9 Recording the corneal profile.

Light incident on the cornea from the background is either reflected away from the 

photographic system, or refracted into the eye therefore the cornea always appears 

opaque with a high contrast and sharp profile. The profile was recorded on very fine 

grain film (5 -1 0  ASA) and enlarged onto Kodalith orthoplates. The profiles were 

measured using a travelling microscope designed for stereophotogrammetric plotting.

Two different methods of analysis of results were proposed by McMonnies(1971). 

The first method fitted a circular curve segment between two points on the profile. The 

results on test spheres indicated acceptable accuracy for curve segments with chord
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length greater than 0.86mm. This method gave a computed radius value o f 8.046mm

for a true radius of 8.001mm. A second method of analysis fitted a polynomial o f the
/^oortk

degree to all points. If the fitted function y is a polynomial in x, then the radius of

curvature at any point on the curve can be found from the formula

(2.21) Radius of curvature =

1 (  ¿y1+  —
\d x  j

£ y
dx1

These methods give topography along a single meridian.

2.7. Moiré fringe topography measurement.

The technique of projection type Moiré fringe analysis is well known in engineering 

and has been sucessfully applied to the human cornea by Kawara (1979). It is 

fundamentally different to keratometry in that the eye is not used to create an image of 

an object, but instead an interference pattern is created by two grating images (Idesawa 

,1977 , Mandel ,1966 ). The first grating image is created by projecting a grating 

pattern onto the corneal surface. The second grating image is formed by placing a 

reference grating in the imaging system used to view the cornea. The grating pattern 

on the cornea is superimposed on the reference grating generating moiré contour 

fringes. A simplified schematic diagram of the system used by Kawara (1976) is shown 

in fig.2.10
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Source

SLRC

fig. 2.10 A grating G1 is imaged on the cornea by 02. Objective 0 2  of the 

viewing system focuses the corneal image on the reference grating G2 and the 

resulting interference pattern is recorded by camera SLRC.

To achieve a visible grating pattern image on the cornea, 2% sodium fluorescein is 

instilled onto the subject's cornea to act as a diffusing agent. This has the additional 

advantage o f emitting yellow-green light when illuminated by blue light o f the correct 

wavelength. The iris image could then be removed by chromatic filtering. From the 

photograph o f the interference pattern, the location of each fringe was measured using 

a microdensitometer. The fringe separation gives the depth interval on the cornea and 

depends on the period of the projected grating and the angle of projection.

Typical results show a grating pattern visible out to the corneal periphery, with the 

fringe density increasing radially outwards from the centre of the cornea. The system 

used by Kawara (1979) achieved a depth resolution of ±0.005mm on a reference 

sphere.

2.8. Moiré fringe analysis theory.

The general principle of the method is shown in fig. 2.11 where a grating is placed in 

front of a curved surface 's' under examination and is illuminated at angle i.
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fig 2.11 A matt surface s is illuminated through a grating g. The angle of 

illumination is i and the image is viewed at angle |3 

A shadow of the grating falls on the surface and is viewed at angle (3 by an observer 

looking through the grating. The observer sees an interference pattern between the 

grating and the grating image on the surface. This pattern takes the form of light and 

dark bands or 'fringes', with the dark fringes occuring where the dark band of the image 

can be seen through the light bands of the grating. This is shown in fig. 2.12.

fig. 2.12. Grating image is viewed through grating of width d, producing 

a series of interference fringes.
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The method of calculating the surface depth (Theocaris ,1969 ) at a fringe position is

fig. 2.13 The two positions of a surface at distance w l and w2 from the 

grating produce successive fringes.

For a grating illumination angle i and viewing angle (3, the first shadow can be seen 

creating a fringe when the surface is a distance wl behind the grating.

For a grating band width of d, the first fringe occurs at

(2.22) tan i + tan (3 = d l/w l +d2/wl =(dl+d2)/wl = d/wl 

giving a depth at the first fringe of

(2.23) w l = d / (tan i + tan (3)

When the surface distance to the grating is w2, another fringe is observed. For this 

second position

(2.24) tan i + tan P = 3d/w2 

and

(2.25) w2 = 3d/(tan i + tan P)

The surface height difference between successive fringes is

(2.26) Aw = w2 - w l = 2d/(tan i + tan P)
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Depths on the surface can then be measured by marking the centre of the first fringe 

and simply counting subsequent fringes, taking the distances to the centre of each 

fringe.

2.9. Stereophotogrammetry.

The basic stereophotogrammetric method of calculating 3-dimensional 

position uses 2 images of an object taken simultaneously from 2 different 

points o f view, as shown in fig. 2.14

respectively. The images PI and P2 of a point on the object 

show a relative shift in the photographs.

The relative shift of the image position between the two photographs allows 

the 3-dimensional position and shape of the object to be reconstructed.

Bertotto (1948) successfully studied the anterior corneal surface using this method 

after powdering an anaesthetised eye with lamp black to render the cornea opaque. 

Pictures o f the eye were taken with a Zeiss stereoscopic camera and analysed using a
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Wild A5 Autograph. Horizontal profiles were measured which corresponded to 

transverse sections through the eye, with vertical intervals of 1mm between each 

profile. Bertotto was able to make measurements out to the corneal limbus with a depth 

resolution of 0.017mm.

2.10. Stereophotogrammetry measurement principles.

Stererophotogrammetry techniques have been used in aerial land surveying for many

years and were first applied sucessfully to corneal topography by Bertotto (1948). The

imaging configuration is shown in fig 2.15 where 0  is a point on the object and pl,p2

are 2 independently recorded images of O. The position of 0  is measured in x,y,z

cartesian coordinates aligned with PI.
2 - 0

fig. 2.15. Stereogrammetry imaging of object O by 2 cameras PI and 

P2, record images of O at rl and r2 respectively

43



If PI and P2 are camera image planes, then the focal lengths of each imaging system 

are fl and f2 respectively from the centre of each image plane. The image of O is 

located at rl on PI and at r2 on P3. The image plane PI has its own 'local' co-ordinate 

system with rl=(xi,yi,zi) and is coincident with the globally defined 

system. The image plane P2 also has its own local co-ordinate system with 

r2=(xi2,yi2,zi2), and the centre of the system shifted by (x2,y2,z2) with respect to PI. 

The object point O is at (xO,yO,zO) in the global co-ordinate system. The image point rl 

is along a ray from O through the focal point at fl. In vector form this is given by 

(2.27) = / ,  + 1 (0 -f^)

where t is a distance parameter 

In matrix form (2.27) becomes

(2.28)

solving for t using the z component gives 

(2.29) 0 = / ,  + t(z0 -  f x)

V o

y, = o + 1 To
0

and

(2.30) / = / ,

substituting t (2.30) back into equation (2.28) and solving for x q  and yo gives

(2.31) x, / .

( 2 . 3 2 ) x0 =

( /i - h )  
T (/i  - " o)

/ ,

and

p 3 3 )* = U i V *
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(2.34) : .y 0 = y•Âf - Z p )
/ ,

The second image of 0  in P2 is located at r2 with local co-ordinates 

(2.35) r2 = y 2,
0

and with corresponding global co-ordinates

(2.36) F2 =
*2I+X2
y 2i + y  2

The focal point of P2 in global co-ordinates is

(2.37) F2 y2
Z2 + f2

and the image point in P2 is located on a ray given by 

(2.38) r2 = F2 + fl(d -F 2)

which in matrix form is 

(2.39)

P can be solved using the z component equation 

(2.40) p=

x2 + x2t x2

1
X

o

1 X
to __

1

y 2+ y2, = y 2 +ß T0 - T 2
T _Z0 ~ Z2 ~ f  2 _

( /: +z2 ~ zo)

substituting P back into (2.39) to solve for xq

(2.41) x2+x2i = x2 +p(x0- x 2)

therefore
( / ,  + Z-, — zQ)

(2.42) x0 = x2j -  ■ ‘ +x2
J2

equating (2.42) with (2.32) gives the solution for the z component

(2.43)- , ( f ~ Zo) X2i(f2 + Z2 ~ Zo)
/ . f 2

+ X2
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(2.44):
( x  x  A —2L — —L

\ A ~ f j
= x2 + X 2l - X ,  + K2î 2

h

(2.45)r0 = f  A /i  A
*2*1-*2 / :2j

x2+ x 2, - r +-
/ T

Substituting r0into equations (2.32) and (2.34) gives the x0, j 0,r 0 position of O. The 

parameters / , , / , x 2,r 2 are measured during the calibration process.

In the last 5 years, the stereogrammetric method has been modified to allow 

analysis using a computer imaging system. This form of photogrammetry has been 

termed Rasterstereography (Warnicki ,1988 , Arffa ,1989 ). The hardware 

configuration first developed by Warnicki (1988) replaces one of the cameras of the 

stereophotogrammetric pair in fig. 2.14 by a projection system which projects a grid or 

vertical line pattern onto the cornea. To increase the diffuse reflectance of the cornea,
¡'■(•AO r«-Sc

sodium is instilled in the tear film. An image of the grid on the cornea is

produced using a flash illumination system and recorded by a video camera through a
/^o rescec rL

sodium filter. The image is then digitised by an image processor ready for

computer analysis. The system utilises a modified Zeiss stereo photo slit lamp for ease 

of operation. A schematic diagram of the system is shown in fig. 2.16.
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video camera

fig 2.16 Diagram showing modified slit lamp with grid G projected onto 

the cornea through excitation filter EF. An image of the grid on 

the cornea is viewed by a camera through a barrier filter BF.

The corneal elevation is calculated trignometrically by comparing the horizontal 

displacement of the grid on the cornea, relative to the grid position on a flat reference 

plane. A 2-dimensional matrix of elevation points is produced with approximately 

1500 points in total. The radius of curvature of the cornea along any particular line is 

calculated by fitting the best arc to the elevation points along the given line. The results 

are displayed as a contour plot with each contour at a constant height on the cornea. 

The accuracy of Wamicki's Rasterstereography system is o f the order of 0 .10mm in 

calculating radius of curvature for calibrated steel balls with a depth resolution of 10 

microns. The depth resolution may be increased to 4 microns by increasing the 

magnification (Arffa, 1989).

A version of the Rasterstereography system has now been developed, known as 

the PAR Technology Corneal Topography System (Belin, 1992), but is not 

commercially available at present. The PAR system utilises a modified Topcon Slit 

lamp and projects a grid onto a flourescein-stained tear layer to extract a maximum of
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1700 points for analysis. The results are displayed as either an elevation colour coded 

map; a spherical subtraction map showing the corneal deviation from a best fitted 

sphere; or a profile display showing the actual points along any meridian relative to the 

best fit curve. This system probably represents the most advanced corneal measurement 

system available at present.

2.11. Laser holography

The systems described above may soon be superseded by laser interferometry systems 

designed specifically for measurement of corneal topography (Troutman ,1992 ). A 

laser system, already commercially available, is the KM-1000 CLAS Corneal 

Topography Unit from Kerametrics Inc. Details and results using laser systems are not 

well documented to date.

2.12. Laser holography principles.

The use of laser holography in eye research was first suggested by Wray 

(1970a)( 1970b) and has now been successfully applied to the study of corneal 

astigmatism (Troutman ,1992 ). To understand how 3-dimensional measurements can 

be made using holograms, the principles of holography must be known(Vest ,1979 ).

Basic wave theory states that a travelling wave in one dimension can be described 

by the function

(2.46) Hf{x,i) = A sin(iiV -  At )

A wave in three dimensions is given by

(2.47) T 'O v) = a(x,y,z)s\n(a>t- k *r)

or in complex form

(2.48) ^{F,t) = a ( x , y , z ) e - ^ - ^

If only interested in the spatial structure the time dependence when dealing with light 

can be ignored as the temporal frequency is of the order of 1015Hz.

If the wave function is given by
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(2.49) u(x,y,z) = a(x,y,z)e~'(kr) 

where

(2.50) r -  xx+ yy + zz 

and

(2.51) k -  27i(fxx + f yy  + f zz)

then equation (2.49) becomes

(2.52)

Specifying the spatial frequencies for a wave given by (2.52) determines the direction 

o f propagation. This is shown in fig 2.17

fig 2.17 Wave propagating in direction k  with wavelength X .

The wavefronts intersect each axis with an interval equal to the 

wavelength along that axis.

For example, a wave propagating in direction k  as in fig 2.17 has a wavelength along 

the y axis of
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À
(2.53) X ,= -

sin 3

the reciprocal —  then gives the frequency f y . If k  
Xy

changes w.r.t. the y axis then f y

also changes.

Examining the transmission of a wave through a sinusodial grating, if the grating is 

along the y-axis and has frequency Fy and the wave propagates in the z-direction as

shown in fig 2.18, then the transmission through the grating is

(2.54) l(x ,y) = 10 +/, cos(27iFyy) 

where

/, = amplitude of grating 

t0 -  Bias level of grating

direction
of wave ---------- >

propagation

wavefronts
y
A

-> z

fig 2.18 Wave propagating in z-direction and incident on 

grating G.

In the z-direction the incident wave is

{2.5S)ui - a xe x
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and in the plane of the grating (z=0) 

(2.56) if,=a,

therefore the transmitted wave is given by

(2.57) - tu x =a]t0+a]t] cos|{2nFyy)

expanding cos(2/T^.>’J using
iG , -j#

(2.58) c o s# = ----------

and adding a propagation term,equation (2.57) then becomes

(2.59) u0 a\foe

The first term in equation (2.59) is a wave directly transmitted through the grating, 

while the second and third terms are waves diffracted in a direction determined by the 

frequency of the grating. This is illustrated in fig. 2.19.

fig 2.19 Waves 'a', 'b' and 'c' are transmitted through grating G.
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If the frequency varies across the grating, waves are diffracted in a variety o f directions 

corresponding to the various frequencies. This is the situation in a hologram where a 

reference beam is diffracted in different directions to reconstruct the object wave. The 

method of holographic recording is shown in fig.2.20 where a photographic plate H 

(hologram) is illuminated by a coherent reference wave and an object wave from an 

object under study.

z

fig. 2.20. A photographic plate (hologram) is illuminated by a reference 

wave R and an object w'ave O.

The interference pattern of the reference and object waves are then recorded on the 

photographic plate H as shown in fig. 2.21

52



y

fig. 2.21 Photographic plate H at z=0 recording interference pattern 

between the reference and object waves.

At z=0 the object wave complex amplitude is

(2.60) u0(x,y) = a0(x,y)e"*°(x-r)

the reference is given by

(2.61) uR(x,y) = aRe fy>'

where f  =j  y
sin $R 

A

The irradiance at the film plane z=0 is

(2.62) I(x ,y )  = |?/0 + W/J2 (film responds to|u|")

(2.63) I(x ,y )  = (u0 + aRe 27f>y)(ul +aRe~'2!f>y)
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(2.64) = u0u0 + u0aRe~'24>y + u0aRe'24’y + a

interference pattern on film 

The transmission of the film is given by t where

R

(2.65 ) t  = tb+pi

1b -  constant (including a2R) 
p -  value depending on film

To reconstruct the object wave, the photographic plate H is illuminated by the 

reference wave u'R

(2.66) u'R = a>Reil*’y

At z=0+, ie. just to the right of the hologram H

(2.67) ut =1u'R

therefore

(2.68) //,. = (/„ +ftu0\)a'Re 2̂ y +/3u0aRe~'2*'ya'Re'2,f>y +.pu0aRe,2̂ ya'Re,2̂ y

(2.69) //, = | / 6 +0[uo\)a'Re 2 >y +/Ju0aRa'R +0n*oaRa'Re

The first term in equation (2.69) is a part of the reconstructed wave transmitted with 

attenuation and some modulation. The second term is a replica of the original object

54



wave and propagates as if it were from the original object. The third term is a conjugate 

o f the original object wave.

When the hologram of an object has been taken, the object's 

3-dimensional shape can be measured by making a second hologram of a reference 

object of known shape (eg. a sphere) on the same photographic plate. When the plate is 

illuminated with the reference beam, an interference pattern occurs between the two 

wavefronts of each hologram on the plate. Light fringes on the contour pattern 

correspond to a path difference of 27iN where N=integer. Dark fringes are contours of 

path difference rcN.

For any distance Ax the change in optical phase is

(2.70)
2/zAr

A

For the Nth bright fringe therefore

(2.71)
2/rA.r

A
2nN

The distance Ax is then given by NX, giving the variation in height between object and 

reference object at any bright fringe.
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Chapter 3.

Shape models of the cornea.

3.1.. Descriptive models.

The minimum model representing the shape of the cornea has been presented by 

Ellerbrock (1961) and is shown in fig. 3.1. The sclera is considered to be circular with 

radius of curvature r l . The broken line in fig 3.1 is the scleral curvature in the region of 

the cornea. The cornea can be described as having a central circular optic cap of radius 

of curvature cl surrounded by a peripheral annular zone which flattens toward the 

limbus. The limbus is the zone of transition from cornea to sclera. The corneal 

displacement from the circular contour of the sclera is called ectasia.

fig 3.1 Minimum model of the cornea, rl is the radius of curvature 

of a circular sclera. The cornea has a central radius of 

curvature cl and joins the sclera at the limbus.
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Ellerbrock also made the following general observations -

a/. The corneal diameter is not constant between different corneas and in different 

meridians of the same cornea.

b/. The central curvature of the cornea varies between individuals and may be 

asymmetric or irregular.

c/. The cornea flattens towards the limbus with the amount of flattening varying 

between different corneas.

A more detailed description of the points and zones of interest on the cornea was 

presented by Sampson (1965)(cited by Clark ,1973b,) and is shown in fig. 3.2

fig 3.2 Description of cornea showing its geometric centre E, 

circular optic cap CC, apex A (centre of cc) and visual 

centre V.
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This model is an improvement on that of Ellerbrock in showing the potential non- 

alignment of the visual axis, corneal axis and apex position.

A more quantitative description of corneal shape was made by Knoll (1961) when 

defining 4 different corneal types based on 3 distinct zones on the cornea. The 3 

corneal zones used were -

2. Central - 2mm in diameter.

2. Zone 1 - 4.5mm in diameter.

3. Zone 2 - 8.5mm in diameter.

Using these 3 zones, 4 different types of cornea were defined as follows - 

Type A- Zone 1 symmetric; zone 2 flattening is less than 2.0mm of central zone value. 

Type B- Zone 1 symmetric; zone 2 flattening is 2.0mm or more than central zone value. 

Type C- Zone 1 asymmetric; zone 2 flattening is less than 2.0mm of central zone value. 

Type D- Zone 1 asymmetric; zone 2 flattening is 2.0mm or more than central zone 

value.

From photokeratoscope pictures, Knoll was able to assign each cornea to one of the 

above types by measuring corneal radii at 5 points along the horizontal meridian.

3.2. Conic representation of the cornea

In an x-y Cartesian co-ordinate system the general equation of a conic section given 

by

(3.1) A x2 + Bxy+Cy2 + Dx + Ey + G = 0

where A,B,C,D,E,G are coefficients to be determined for the particular ellipse.

This form of equation was used to describe the corneal shape by Townsley (1970) 

using data from images taken using the Wesley-Jessen PEK. The PEK images were 

analysed to find intersection points on the corneal surface with light rays from the PEK 

rings. For a given meridian a series of points on the corneal surface was produced and 

an ellipse fitted to them. A conic section described by equation (3.1) cannot be fitted
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easily to a series of points using a 'least squares' method, therefore Townsley used an 

iterative method to evaluate the coefficients. The method of calculating the reflection 

points to construct the corneal profile is described in detail in chapter 2. Results from 

normal corneas showed a range of eccentricities for fitted ellipses from 0.4 - 0.9 with 

an average value of 0.55.

A conic section was also selected as an adequate description of the corneal profile by 

Mandell (1971), who fitted ellipses to photokeratoscope images. The results for normal 

corneas showed an eccentricity range of 0.2 - 0.85 with an average value of 0.48.

The Mandell method of fitting ellipses to the photokeratoscope images was different 

to the procedure used by Townsley. Instead of calculating reflection points along the 

corneal profile, the corneal reflecting surface was assumed to be an ellipse with 

unknown apical radius of curvature and eccentricity. For a given photokeratoscope 

object ring, theoretical image heights were calculated for elliptical reflecting surfaces of 

different apical radius of curvature and eccentricities. The basic equation of an ellipse in 

x-y co-ordinates, centred on a point (a,0) is given by

-ci)' y 2 

a b

where 'a' is the semi-major axis and 'b' is the semi-minor axis.

This equation was used to generate the reflecting surface and only rays parallel to the 

x-axis were used to calculate the theoretical image heights as shown in fig 3.3.

(3.2)
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the elliptical reflecting surface at (X,Y). The angle of incidence |3 is such that rays 

forming the image at I were reflected parallel to the x-axis.

A graph of different ellipse parameters (apex radius o f curvature and eccentricity) 

generating a set of image heights is shown in fig 3.4

fig 3.4 For a given keratoscope ring, each curve is a locus o f ellipses 

which will form an image of the ring at height Hn
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The ellipse given by the intersection point of the curves on the graph in fig 3.4 is the 

one ellipse satisfying the formation of all keratoscope ring images. The results from a 

typical cornea show a range of intersection points, the magnitude of which gives a 

measure of the 'goodness o f fit' of an ellipse to the cornea.

Developing the idea of fitting a conic section to a corneal meridian, Kiely (1982) 

modelled the whole corneal surface using a conicoid. The basic measurements were 

obtained using the autocollimating photokeratoscope developed by Clark (1972), 

measuring along 4 equally-spaced meridians. A rotationally symmetric conicoid of the 

form

(3.3) X 2 +Y2 + (\ + 0 )Z 2 -2ZR  -  0

was fitted to the meridian values using a least squares fit. Q in equation (3.3) specifies 

the type of conicoid as shown in fig 3.5 with R being the radius of curvature at Z=0. 

This equation is analogous to the Baker equation with P=l+Q.

Q is related to the eccentricity 'e' of the conicoid by

(3.4) 0  = - e 2

and
(

(3.5) e= 1 +

where b=semiminor axis

a=semimajor axis.
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fig. 3.5 Conicoid cross-section described by equation (3.3).

The Q value specifies the type of conicoid where - 

Q>0 ellipsoid with major axis in x-y plane.

Q=0 sphere

-1<Q<0 ellipsoid with major axis in z direction.

Q=-l paraboloid with major axis along z axis.

Q<-1 hyperboloid

The results for normal corneas modelled by equation (3.3) show R=7.72±0.27mm and 

Q=-0.26±0.18. The absolute range of R was 7.06 to 8.64 and Q was -0.76 to +0.47.

In addition to the rotationally symmetric conicoid, a non-symmetric analysis was 

made by Kiely using equation (3.3), allowing R and Q to vary with angle 9 from the 

horizontal. Q and R then take the form

(3.6) 0(9) = Q,+Q2 c o s2( 0 -  a)

(3.7) R(0) = 7?, +7^ c o s ' ( 9 - p)

a  and P = angles containing either maximum or minimum values of Q and R assuming 

values are mutually orthogonal.
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3.3. Equations of flattening

Equations expressing the peripheral flattening from a central spherical region have 

been applied to corneal meridians by Bonnet (1962) and Fujii (1972).

Bonnet applied a linear law of flattening to the cross-section of an axially symmetric 

cornea of the form

(3.8) log/? = tcy + b

where b is the diameter of the central spherical zone and y is the angle between the 

normal to the cornea at a point and the corneal axis (see fig. 3.6). k  is the coefficient of 

flattening. The deviation A of the cornea from the central zone sphere is shown in fig

3.6 and is given by

(3.9) A = - ^
K

where Ro = radius of curvature of central zone of cornea.

fig. 3.6 The cornea C has a central spherical zone described by sphere with radius of 

curvature Rq . Towards the periphery, the cornea deviates from the sphere by a 

distance A along the normal N to the cornea.

For each meridian Rq , k  and b is determined by measuring the radius o f curvature at 3 

different points across the cornea.
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Fujii (1972) studied the cornea with a photokeratoscope and concluded that the 

corneal configuration could by represented by the formula

where x represents the corneal depth at a distance y from the central point o f the 

cornea. The first term in (3.10) represents a sphere of curvature c and the second term 

represents the deviation of the corneal surface from this sphere. The coefficients c, A} 

and A2 are determined for each cornea.

3.4 Corneal shape indices.

A quantitative method specifying corneal shape using shape indices was introduced 

by Cohen (1984) using results from a Comeascope. The Comeascope is a 9 ring 

photokeratoscope developed by Rowsey (1981) producing the usual images of 

concentric circles reflected from the cornea. Each of the outer 8 rings of the 

Corneascope image was analysed by Cohen, recording the maximum and minimum 

chord lengths for each ring. This is illustrated diagrammatically for 3 rings in fig 3.7

(3.10) x = f ( y )  =

R3

fig 3.7 Rings on Comeascope image showing maximum 'a' and minimum 'i' chords 

for 3 rings R1,R2,R3 reflected from the cornea.
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For individual rings there are 4 indices:

1. Eccentricity (E) = minor chord length/ major chord length. For a circle E=1 and as a 

ring becomes elliptical, E-»0. This is opposite to the usual ellipse eccentricity 

definition.

2. Angularity (A) measures the acute angle a  between major and minor chords where 

A = oc(radians)/7t/2 .

3. Major symmetry SmQ. If e and f  are major chord segments created by the 

intersection of the minor chord, then Smo=f7e where e is the longer chord 

section.

4. Minor symmetry Sma. This is analogous to Smg but for the minor chord.

Combining ring values for one image produces 2 additional 'whole eye' indices -

5. Cluster index - which is further subdivided into

a) angle cluster C ^  = standard deviation of measurements o f angle 

between major or minor chords and a reference line.

b) distance cluster Cp> describing the tendency of chords to pass 

through a common point. Cp> = Standard deviation of the shortest 

distances from a specified point to each chord.

6 . Trend index - which is also subdivided into 2 components

a) eccentricity trend index measuring the change of eccentricity o f the 

rings towards the periphery.

b) angularity index measuring the orientation change of the major chord 

for consecutive rings from the centre to periphery.

This set of 6 indices for a given cornea are given the title Photogrammetric Index 

Method (PIM) by Cohen. PIM was then proposed as a method of distinguishing 

between 3 groups o f corneas -

1. Symmetric corneas - defined as corneas with equal horizontal and vertical 

keratometric readings.

65



2. Regular astigmatic corneas - defined as corneas where the vertical K reading

exceeds the horizontal by 0.5 Dioptres or more.

3. Keratoconic corneas - defined by various clinical criteria.

3.5 Corneal power maps

A feature of computerised photokeratoscopes is the colour coded display of power 

values on the cornea derived from ring image heights. This has led to a classification 

system devised by Bogan (1990) for the Comeal Modelling System (CMS) and using 

power contour patterns to differentiate between comeal types. The method analyses the 

basic contour pattern as shown in fig. 3.8.

fig 3.8 The central contour pattern C on the corneal power map 

is divided into different regions as shown.

The basic pattern is used to define 5 classes of corneal shape as shown in fig. 3.9

fig. 3.9. Contour patterns showing 5 different classes o f corneal shape. 

R=round, O-oval, S=symmetric bowtie, A=asymmetric bowtie, 

I=irregular.
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The shape classes are defined as follows (see fig 3.8)

Round - ratio of shortest to longest diameter 2/3 or more.

Oval - ratio of shortest to longest diameter less than 2/3

Symmetric bowtie - (a) central constriction exists.

(b) —  or —  is — or less
x, x, 3

(c) —  or —  are — or more
x 2 y 2 3

Asymmetric bowtie - criteria (a) and (b) for symmetric bowtie are satisfied and

—  or —  are less than —
* 2  > '2  3

Irregular - no clear basic contour pattern could be identified.

Using this classification system, Bogan (1990) studied the distribution o f normal 

corneas.

The results are given below.

Pattern % of corneas

Round 22.6

Oval 20.8

Symmetric bowtie . 17.5 

Asymmetric bowtie 32.1

Irregular 7.1

In practice, power maps taken of a single cornea show a variety o f patterns, with the 

shape most closely resembling the appearance of the cornea being chosen by the 

operator as the correct result. These variations are probably due to non-alignment of 

the corneal apex with the instrument axis. For most corneas, which flatten towards the 

periphery, a non-alignment will produce an asymmetric power distribution but is not 

indicative o f an astigmatism. The results found by Bogan (1990) are more likely to 

indicate a variation in corneal alignment than a true classification of corneal types.
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Chapter 4

Topography Measurement System Description

4.1 Introduction.

Different methods of measuring the topography and curvature o f the anterior 

corneal surface have been developed over the last 50 years and have been reviewed in 

chapter 2. Although each method has its own unique features, two fundamentally 

different approaches have emerged in modelling the corneal surface.

The first approach uses the cornea as a reflecting convex mirror and measures the 

height o f concentric ring images formed from the corneal surface. Standard 

paraxial ray equations are used to calculate the curvature at different points and 

build up a profile. Photokeratoscopes based on this principle (Townsley, 1967,Bibby 

1976) have been widely used over the last 20 years and have lately been superseded by 

more sophisticated instruments (Gormley , 1988; McCarey, 1992) which photograph 

and analyse the ring images using a microcomputer system.

The second approach to mapping the cornea has been to measure actual points 

on the surface of the cornea and build a 3-dimensional map. Methods using this 

approach, which look directly at the corneal surface, have included profile 

measurements (McMonnies, 1971), moiré fringe analysis (Kawara, 1979) and 

stereophotogrammetry (Bertotto, 1948). Within the last few years, the 

stereophotogrammetry method has been developed into Rasterstereography 

(W arnicki, 1988; Arffa, 1989) using a modified slit lamp and computer 

image grabbing system.

Both approaches work well when the cornea under study is regular and near 

spherical. If the cornea is irregular as in Keratoconus for example, each
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measurement system suffers from its own particular problems.

Keratoconus has been extensively studied and photographed using 

photokeratoscopes (Rowsey, 1981; Rabinowitz, 1990) but pictures typically show 

highly distorted images produced from non-spherical surfaces. Many o f the rings are 

out of focus and there is additional uncertainty in the alignment o f the cornea with the 

instrument axis. The resulting pictures are difficult to and curvature values are

probably invalid in these cases because they are derived from ray equations which 

incorrectly assume spherical surfaces. Stereographic techniques do not assume 

spherical surfaces, therefore they do not suffer from the problems outlined above when 

viewing distorted corneas. However, previous systems have calculated curvature by 

fitting the best arc to the corneal profile along any meridian. When the shape is far 

from spherical this method of measuring curvature is difficult and unreliable.

To measure the corneal topography and curvature of both normal and 

highly distorted eyes, the problems encountered by other instruments must be 

overcome. To achieve this it was necessary to develop a system which could -

1. Measure the corneal surface without any assumption about underlying shape.

2. Reconstruct the surface shape independent of alignment of the eye.

3. Extract parameters at any point on the surface and determine apex position and rate 

o f flattening.

In addition to the above developments, specific system requirements include -

a. Measurement o f corneal shape within the central 4mm. This is the area o f particular 

interest with respect to vision.

b. Identification o f apex position and measurement o f apex curvature value.

c. Adequate depth-of-field of projection and camera system to measure irregular 

corneas.

d. Safety o f the cornea during measurements.
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e. Simple and accurate system calibration method.

f. Simple implementation of shape analysis method.

g. Analysis of surface to extract meaningful and concise parameters to describe the 

corneal surface.

h. Results output in a comprehensive and understandable form.

4.2. Non-mathematical description of the system developed for mapping and analysing 

the corneal shape (Corneal Topography System CTS).

4.2.1. Extraction of points on the surface of the cornea.

Points lying on the corneal surface in x,y,z space are extracted using a light plane and 

camera configuration as shown in Fig 4.1.

fig. 4.1. To extract points on the corneal surface in x,y,z space, a plane o f light is 

projected onto the corneal surface. The image of the light plane is recorded by the 

camera system.
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The light plane is projected onto the corneal surface where it is diffusely reflected and 

the image o f the light plane on the cornea is recorded by a camera system. An arbitrary 

x,y,z co-ordinate system is defined coincident with the camera optical axes. The 

direction of the light plane in x,y,z is completely defined by measuring the angle $ and 

the distance the light plane cuts the z axis. Any point lying on the light plane image 

taken by the camera (e g. at Xpjp) also lies on a ray from the corneal surface passing 

through the camera objective. When Xp and yp are measured, the direction o f the ray is 

known in x,y,z space. The intersection point of the ray and plane is unique and is 

calculated using the ray and plane equations in x,y,z space, giving a point which lies on 

the corneal surface.

4.2.2. Mapping the corneal surface.

To extract points over a large area of the corneal surface, 26 planes o f light are 

projected onto the cornea from opposite sides as shown in fig. 4.2. Points on the 

cornea are then extracted from each plane using the method outlined above.

Top View

fig. 4.2. The central region of the cornea is covered by 2 sets of 13 light 

planes, projected from opposite sides.
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The configuration yields maximum information over the central 4mm of the cornea 

which is the area of particular interest for vision. The depth resolution depends on the 

angle of the light planes with respect to the z axis, with a larger angle giving a higher 

resolution. If only one set of light planes is incident on the cornea, as is the case with 

the PAR system, the planes will appear close together on the side of the cornea 

towards the projection system, becoming wider as the corneal surface slants away on 

the opposite side to the projector. An example showing x,y,z co-ordinates at various 

points on the cornea is shown in fig 4.3.

fig. 4.3. A set of extracted points on the cornea showing the distance of each 

point along the z axis and a point identification code (see inset).

4.2.3. Surface fit for calculation of curvature.

The method described above is able to map the surface irrespective o f surface shape 

and irregularities. However, if the surface shape curvature is to be calculated, the 

curvature of interest is that of the general shape and avoiding any small localised

CORNEAL TOPOGRAPHY
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irregularities of high curvature. This is shown in fig 4.4. where the solid line is the 

actual profile and the dashed line represent the profile o f a fitted surface for calculating 

curvature.
------------  irregular surface profile

-------------fitted surfcce profile

fig 4.4. For surface curvature calculations, a mathematical surface is fitted to 

the points which follows the general shape of the surface.

If it were not done in this way, a small irregularity which has a much larger curvature 

then the general corneal shape would be identified by the computer as the position of 

the corneal apex. A surface is therefore fitted to the points as shown in fig. 4.5. which 

smoothes over small irregularities and filters out system noise but is adjusted to pass 

within a pre-determined distance of the points. This distance is chosen by the operator 

and is usually of the order of the system resolution (10  microns).

surfoce fitted to points

fig. 4.5. Fitted surface following points but smoothing noise and irregularities.
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4.2.4. Calculation of surface curvature.

To calculate the curvature at any point on the surface, the direction of the centre of 

curvature must first be established. This is easily done by finding the plane which is 

tangental to the surface at the required point. This is shown in fig. 4.6.

fig. 4.6. Tangent plane is calculated at any point on the surface.

This plane contains the two tangent vectors to the surface co-ordinate axes. By 

differentiating the surface equation along each axis the tangents are derived thus 

defining the tangent plane. When the tangent plane is known, the normal can be found 

and the centre of curvature of the surface at this point lies along the normal direction. 

This is shown in fig. 4.7.

surface

tangent plane
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surface

normal to surface 
a t point P

fig 4.7. The centre of curvature of the surface at P lies along the direction 

of the surface normal at that point.

To calculate the curvature at P, a plane containing the normal is constructed in a given 

direction with respect to the surface co-ordinate axes. The intersection o f this plane 

with the surface defines a line whose curvature gives the curvature o f the surface at 

that point. As the plane is rotated using the normal as the axis of rotation, different 

lines in the surface are defined giving different curvature values. This is shown in fig.

curvature of a line defined by the intersection o f the surface 

with a plane containing the normal to the surface.
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Gauss showed that as the plane is rotated, positions of maximum and minimum 

curvature are found and are orthogonal.

In the calculation o f curvature for the cornea, the corneal surface within a very small 

area of 0.05mm radius has been taken as spherical. Radius of curvature values within 

these small areas have been calculated for 100 different points within the central 4mm 

of the surface, to show the variation o f curvature (astigmatism) over the cornea. Small 

area averaging has been used to eliminate noise and an average value of the flattening 

from the apex is calculated together with the apex position and radius o f curvature. 

This gives 3 parameters classifying the surface shape (Edmund ,1987 ) and allowing 

concise comparisons between corneas.

4.3. System design.

The system consisted of a computerised imaging system and two custom made light 

plane projection systems. A block diagram showing all the system elements is shown in 

fig. 4.9.
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light plena

fig. 4.9. System block diagram

4.3.1. Light plane projector description.

Two projection systems were built to project 26 light planes over a 6mm width of 

the cornea. The 2 projectors were aligned at approx 60° on either side o f the visual axis 

so that the projected planes covered opposite sides of the cornea. The projector was 

constructed with a 150 watt tungsten projector bulb behind a condensing lens and stop 

to give even illumination on a rectangular square wave grating of 12 lines/mm.
d X.ocKm c\

Between the grating and the condensing lens, an I.R^/filter was positioned to protect 

the grating from heat. A 1mm wide vertical rectangular aperture positioned in front of 

the grating allows projection of 13 planes of light. A second I.R^filter was positioned 

in front of the grating to give further protection to the cornea. An objective lens of 

10cm focal length was positioned 22.5 cm from the grating. Behind the objective, an 

aperture stop of 4mm diameter was placed such that the image of the light source 

filament was in focus at the stop. This allowed maximum light through the aperture to
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the objective. The image of the grating is then focused on the cornea at approximately

15cm from the objective lens. A diagram of the projection system is shown in fig. 4.10.
grating

The position of the projection system and camera for corneal measurement is shown in 

fig 4.11.

fig. 4.11. showing the projection systems, CCD camera and position o f subject.
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4.4. Computer imaging system details.

The computer imaging system was based around the Imaging Technology Overlay 

Frame Grabber of 768 x 512 pixels. Each pixel was represented by 12 bits with the 

lower 8 bits holding a black and white image with a possible 256 different grey levels. 

The higher 4 bits hold text information which can be placed over the screen image 

without damaging the screen information. The frame grabber consisted o f a single 

board and was fitted in an I.B.M. compatible PC with 4mb RAM and lOOmb hard disk, 

running Microsoft Windows. All the software for the project was written in Microsoft 

C v6.0 and used the Microsoft 'Software Development Kit' (SDK) to run in Microsoft 

Windows. All the source code for the topography system is given in appendix A. The 

camera used was an iVC 800 BC CCD camera connected to the frame grabber through 

an analog to digital converter (ADC). The ADC could be programmed by the user to 

give real time enhancement of the camera image.

4.5. Real time image enhancement.

The faint image of the light planes on the cornea required an image enhancement to 

be programmed to the camera input, enabling the images to be clearly seen in real time. 

The enhancement used was a histogram equalisation method (Gonzalez, 1987) which 

measures existing grey levels in an image and remaps the levels, changing the relative 

brightness of features in the image. Large areas in the image which have a small 

difference in contrast are remapped to give a large variation in contrast. Areas which 

already have a large variation in contrast are left unchanged. The correct levels for 

remapping are first calculated for an average picture taken without enhancement and 

are then programmed to the ADC enhancing all subsequent levels. The resultant image 

o f the cornea seen by the operator is shown in picture fig. 4.12. This picture shows the 

cornea (black) with the 2 sets of light planes imaged on the surface (curved stripy
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appearance). The image of the light bands on the iris can be seen at either side of the 

fainter corneal bands.

fig. 4.12. Real time corneal image showing projected light band pattern.

4.6. System calibration

The requirement of the system calibration is measurement of the angle and 

intersection distance along the camera axis for each light plane.To facilitate calibration, 

a simple method was designed using a flat white screen placed on a linear stage 

micrometer of 1 micron resolution. The linear stage is attached to a lightweight 

aluminium mounting that slots into a holder on the front of the camera system 

mounting. When switched on, the projected light planes fall on the flat screen and are 

imaged by the camera system. The configuration is shown in fig 4.13.
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fig. 4.13. Mechanical configuration for calibration. Top view.

To correctly align the screen perpendicular to the camera axis, vertical lines are 

drawn by software at the centre of the camera screen and at equal distances either side 

o f the centre. The camera and screen are adjusted such that linear motion o f the screen 

brings the sets o f planes simultaneously to either the centre line or the side lines and are 

vertical. The appearance on the camera screen for both positions is shown 

diagrammatically in fig 4.14.
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s id e  lin e  on s c r e e n c e n t r e  line  cn  s c r e e n s id e  lin e  on  s c r e e n

m ovem ent of plGnes
during calibration 

<-----------------------------------

left light p lane s e t

m ov em en t of p lanes 
during calibration

righ t light plane s e t

fig 4.14. Appearance of camera screen showing both positions for light plane 

calibration

For calibration, the screen is moved such that the light planes are positioned at the 

central line as shown in fig. 4.14. The position of each plane on the screen is identified 

and recorded by the computer and the micrometer reading is recorded by the operator. 

The screen is moved to position the light planes at the side lines and the plane positions 

are recorded by computer. The new micrometer reading is noted by the operator and 

the linear distance moved between screen positions is input to the computer. For a 

fixed camera magnification, the computer calculates the angle for each plane and the 

separation between planes along the z axis. This is shown in fig. 4.15
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z d irection

fig. 4.15 A given light plane image moves a distance P when the screen 

is moved a distance B.

If  angle S is the angle between the light plane and the z-axis then

(4.1) tand =P/B

where P is the horizontal distance moved by a plane when the screen is moved a 

distance B. With the angle $ known for each plane, the separation d between planes 

along the z axis is easily calculated as shown in fig. 4.16
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z axis

fig. 4.16 Calculation of light plane separation d along the z axis, s is the 

horizontal separation of the planes.

The horizontal separation s of the light planes is known from the calibration 

data, therefore d is given by

(4.2) d = s/tanT

The intersection distance along the z-axis of the closest light plane to the camera of 

each set is given a fixed distance value = 150mm and all other plane distance values are 

known relative to this value. An incorrect estimation o f the closest plane distance will 

lead to a linear shift in all the measurements but has no effect on the relative point 

positions, thus not affecting surface shape or curvature measurements.
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4.7. Procedure for obtaining an image.

When the camera input ADC has been programmed for enhancement and the 

equipment calibrated, an image of the light planes on the cornea can be taken. To 

achieve a sharp image, 2% sodium fluorescein was instilled into the tear layer o f the 

eye. The subject was then asked to place their head on the head rest and look directly 

into the camera objective, fixating on a reflected image o f their eye in the camera 

objective. The camera and projection system were mounted on a smooth 

action horizontal and vertical stage and were moved until the two central light 

planes on the cornea were just touching. When this occurs they will also be at the 

centre of the camera plane and in focus. To assist this process, a vertical line was 

drawn at the centre of the monitor screen showing the required position o f the two 

light planes. When the correct position was achieved, the image was grabbed and 

stored in the computer.

The next step is extraction of points on the cornea in x,y,z space from the image of 

the light planes. This step required 3 separate operations -

1. Identification of the geometric centre of the cornea to use as a reference point.

This was achived by placing 2 vertical lines at the horizontal extremities o f the corneal 

image (limbus). A horizontal line was moved down the screen to the position where 

the cornea just touches the vertical lines. The centre of the horizontal line was then 

taken as the geometric centre of the cornea. This is shown in fig 4.17. The direction 

from the centre o f the camera axes to the corneal centre represents a best estimate for 

the visual axis direction.
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fig. 4.17 Identification of the centre o f the cornea.

2. A vertical limit was set between which points were to be extracted. The criteria 

was that the light plane image bands must be in focus and well defined on the cornea.

3. A set of 9 equally spaced vertical positions were calculated on the image between 

the limits set in step 2. At these positions a cursor was moved using the mouse to 

identify the edge of each light plane. At these points the equations given in chapter 5

were solved to give discrete points on the cornea with x,y,z co-ordinate system values. 

9 vertical positions were chosen as an optimum to give an adequate number o f points 

on the cornea and also acceptable processing time for each cornea.

4.8. Implementation o f analysis method.

To implement the surface equations described in chapter 5 section 2, the surface 

points must be moved to produce a set of points on a uniform matrix (equally 

spaced along a given co-ordinate axis) as is required by the surface theory. To
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achieve this, 2 points were established on the central vertical line by horizontal 

interpolation of the corner points. A cubic interpolation scheme described in chapter 5 

(eqn 5.26) was applied to all other points to construct an approximately uniform 

matrix. The points on this matrix were used to generate a surface equation for analysis 

o f curvature over the area of interest. The equation is adjusted to smooth noise and 

irregularities while keeping within a set distance (error) o f all the matrix points. For this 

project the error was set to the system resolution which was approximately 10 microns. 

The surface equation was analysed using the theory given in chapter 5 section 3. Radius 

o f curvature was calculated at 100 different points over the surface. The apex position 

was identified and the apex radius of curvature and average flattening from the apex 

were calculated to give 3 parameters for concise description of the corneal shape. The 

description scheme based on these parameters was first devised by Carsten Edmund 

(1987) for clinical studies of corneal shape using the Wesley-Jessen PEK. Results 

printout of the corneal shape are in the form of a contour map with contours at depth 

intervals chosen by the operator (default = 50 microns). Direction and location of 

surface irregularities and astigmatism are indicated by the lines o f contour and 

variations of the radius of curvature values. On the contour map, a letter 'A' indicates 

the position of the apex. Alongside the contour map are printed the apex radius of 

curvature, the average flattening from the apex ( given the term Apex Factor A.F. by 

Edmund (1987)) and the apex distance from the centre of the cornea. The radius of 

curvature and flattening values are given in both mm and dioptres where the dioptre 

value is calculated from the radius of curvature value using

(4.3) P = (n-l)/r 

where P = power in dioptres

r = radius of curvature in mm

n = refractive index taken as 1.3375 (the value most commonly used with 

conventional keratometers e g. CMS)
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The values in dioptres are given because of their widespread use in the literature, 

however their value is questionable in cases where the cornea is irregular, as for 

example in Keratoconus.
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Chapter 5.
Corneal Topography and Curvature Measurement Theory.

This chapter expands the mathematical details of the measurement system described in 

chapter 4.

5.1 Method

5.1.1. Measurement of surface without previous assumption of surface shape.

A system was constructed to project vertical planes of light onto the eye; then 

a picture of the planes on the cornea was taken by a computer image grabber.

The direction of each plane is known and used in place of a second camera 

in a stereographic system for calculating depth information (Sato, 1982). The 

projection system was arranged to give maximum information over the central 4mm 

of the cornea, which is the area of particular interest for vision. The configuration is

Fig. 5.1. Projector and camera set-up with arbitrary x-y axes aligned with camera 

axes. CO is the camera objective and LP are the light planes projected onto 

the cornea C.

The very faint images from the cornea were enhanced by instilling a drop of 

fluorescein in the eye; also a histogram equalisation image enhancement was applied to 

the camera input which increased the contrast between the light bands and the 

background.

A discrete point P is calculated on the cornea in x,y,z space by finding the
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intersection of a given light plane with a ray from an image point P' on the 

camera image as shown in fig. 5.2.

LP

Fig. 5.2. Intersection of ray and plane LP gives point P in x,y,z space on the 

comeal surface C. The camera objective is CO and CP is the camera image 

plane. The normal to the plane is given by n.

The general equation of the plane LP is (5 .1)

(5.1) = 0

where h p is a unit vector normal to the plane 

Fpo is a vector to a point on the plane 

r p is a general vector in x,y,z space

The unit vector normal to the plane is found by measuring the angle between the plane

and the camera axis.

(5.2) np = sin -  cos \yy
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If the intersection point of the plane with the x axis is at distance L , 

then ipQ can be taken along the x axis to this point.

(5.3) rp0 = Lx

When v|/ and L are measured for each plane, the corresponding plane equation 

can be found from (5.1)

(5.4) (sin y/x -  cosyy)*{xx + y y +zz -  Lx) = 0

(5.5) (sin y a - co syLy)*{{x-  L)ic + yy + zz) = 0

(5.6) sin y / ( x -L ) - y cos y/ - 0

Equation (5.6) is the equation for each plane in x,y,z space 

The general equation of a light ray from P to P' is given by 

(5-7) rR =rR0+aRt 

where is a vector to the ray

aR is a unit vector along the ray 

r R is a general vector in x,y,z space

1 is a scalar distance parameter along the ray.

For each image point p(o ,yp,z'p) , the ray equation (5.7) can be solved.

If the distance from the camera focal plane CP to the centre of the camera 

objective CO = 1, then r R0can be taken along the x axis to CO.

(5.8) rR =/x + t{xI-y 'py - z 'pz)

(5.9) xx + yy + zz = {tl + /)x-ty'py -  tz'pz

equating components

(5.10) x = /(i + l)

(5.11) y  = -y'pt

(5.12) z = -z'pt

The value of t at the ray-plane intersection is found be inserting (5.10), (5.11) and

(5.12) into equation (5.6).

(5.13) sin ydj{t+ \)~ L)+y'pt cos ^ = 0
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The x,y,z point P is found by substituting t in (5.15) back into (5.10),(5.11) and 

(5.12). This gives a unique point on the corneal surface in 3-dimensional space, 

dependent only on image distance y'p (for a given plane).

These equations are solved at chosen points on each plane; there are 26 light 

planes for which the data is collected producing a matrix o f discrete points on the 

corneal surface.

5.2. Reconstruction o f surface independent of x,y,z co-ordinate system (defined by the 

camera system).

After cubic interpolation (using eqn (5.26)) between the discrete points to produce a 

set o f points on a uniform matrix, a surface equation can be developed using u,v 

co-ordinate axes defined in the surface as shown in fig. 5.3.

Fig. 5.3. Co-ordinate axes u,v on surface which uniquely define any point p on 

the surface.
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The form of the surface equation and meaning of the u,v parameters can be 

illustrated by discussing the construction of a simple bilinear surface between 

4 points (Rogers and Adams, 1976). This is a surface in which the boundaries 

between points are linear and the interpolation between boundaries are linear. 

Using 4 points in x,y,z space, a u,v co-ordinate system is constructed through 

the points with Pq , P 1.P2 .P3 at u>v co-ordinates (0 ,0),(0 , 1),(1,0) and ( 1, 1) 

respectively as shown in fig. 5.4.

?0 (0.0) ' p2 O.o)

hou) 0 .1)
V

Fig. 5.4. Four points in u,v parameter space.

Linear interpolation between Pq and P j gives (in vector notation)

(5.16) + .•( /> -/> ) = & ,

Equation (5.16) represents 3 individual equations for the x,y,z components. 

Parameter v then represents the fractional distance along the line Pq  to P j . 

e.g. v=0.5 lies halfway between Pq  and Pj . Similar interpolation between P2 

and P3 gives

(5.17) Qw = P1+v{P,-P:)
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Equations (5.16) and (5.17) represent linear boundaries at constant u. Interpolation 

between the boundaries for any u at a given v is illustrated in fig. 5.5.

% (o.o)

0v

?2 O.o) 
— r~ > u

I

Fig. 5.5. Bilinear interpolation gives x,y,z values of a point Q for a given 

value o f u and v.

For a given v, a linear interpolation between the boundaries gives 

(5.18) Q(u,v) = O0v + u{Ow- Q 0r)

(5.19) O(u,v) = (l-u)O 0v+uO]v

Substituting Q0v and Qlv from (5.16) and (5.17) gives

(5.20) Q(u,v) = ( l -u ) P„+'{P,-Po) + u P + vl h - h ) }

expanding (5.20) we obtain

(5.21) 0(u, v) = ( 1 -  u)( 1 -  v) P0 + (l -  u)vp +u{ 1 -  v)P2 + uvP3
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and in matrix notation (5.21) becomes
(l -  v)(l -  u)P) v(l -u)Px 

(l -  v)uP2 vwP3
(5.22) 0(u,v) =

p  p  r o r \ w

p  p\_r 2 r 0 J V

When the coefficients are separated from the point matrix, the surface equation 

takes the form 

(5.23) 0(u,v) = [(l-u) u]

The coefficients (l-u),u,(l-v),v can be thought of as weighting functions for 

different points.

This method of development of a bilinear surface can be applied to a 

polynomial surface if the linear interpolation function is replaced by a polynomial 

function. A polynomial surface equation using a spline interpolation between 16 points 

has been used to construct the surface. The equation for each component x,y,z o f the 

surface between 4 points is (Beach, 1990)

(5.24) £?(//,v):
36

'- 1 3 -3 f ?/3
r

Poo p * P 02 P o i '- 1 3 -3 f
T

V
' 3 -6 3 0

0u~ P o P n P n A
'JJ - 6 3 0 2

V

. -3 0 3 0 it P o P , P 22 P n -3 0 3 0 V

_ 1 4 1 0 1- - A o P » P n A . _ 1 4 1 0 1

where

Poo p m P q2 Poo

A P n P n P n

P .0 P n P .2 P .o

Poo P n P02 Poo

is a matrix of x,y, or z values.

Using an iterative process, the point matrix is adjusted until the surface passes 

through all the original points within some acceptable error and degree of 

smoothing.

Other interpolation functions giving the required degree of accuracy (see chapter

6 .1.4) have been found to be a 9 point spline interpolation

T
4

‘ 1 - 2 f u2
T

Poo Poi Pn' '  1 - 2 f
T

V
(5.25 )£?(//, v) = - 2 2 0 u P\ 0 Pn Pn - 2 2 0 V

_ 1 1 0_ 1 _Pz 0 Pn Pl2. 1 1 0 1
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and a 9 point cubic interpolation
' 2 -4 2 " V

T

>oo Po 1 Pu ' 2 -4 2 "
T V

(5.26)0(1/, v) = -3 4 - 1 u Pi 0 P\ 1 Pn -3 4 -1 V

1 0 0 _ 1 Pi 0 Pll Pn. _ 1 0 0 _ 1

The whole corneal surface is constructed by building patches between points 

in the point matrix using (5.24), (5.25) or (5.26).

5.3. Extracting values from the surface.

The most common parameter for describing the corneal surface is radius of 

curvature; radius o f curvature can be calculated at any point on the surface using 

differential geometry theory (Stoker, 1969).

The problem of calculating surface curvature is approached by constructing 

a curve in the surface and then calculating the curvature of this curve. The 

radius of curvature is the reciprocal of the curvature. For a general plane curve the 

curvature is defined as

(5.27) ^ -  = kNp 
as

t  = tangent to curve in plane of curve. 

s  = arc length along curve. 

k  = curvature.

Np = normal in plane of curve.

For a plane curve defined by the intersection of the surface with any curve, the 

curvature can be separated into 2 components. One normal component - the 

curvature projection onto a plane in a given direction cutting the surface 

normally and one tangential component - the curvature projection onto the surface
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tangent plane.

(5.28) —  = k N  + k T 
K ds " *

k n = normal curvature.

N -  unit surface normal vector. 

kg = tangential or geodesic curvature.

T = unit tangent vector in tangent plane.

The curvature in the normal plane is the surface curvature in the direction 

o f the normal and has geodesic curvature = 0 .

For geodesic curvature = 0

(5.29) —  = k„N 
as

taking scalar product of (5.29) with the normal N gives

(5.30)
f d P  

ds j
• N  = k_N»N =

But for the tangent to any curve on the surface

(5.31) N * t  = 0

differentiating (5.31) with respect to arc length yealds

..  . . .  d ( ~\ dt ~ -  dN „
(5.32) — L V */I = —  • N Jr t * —— = 0 

dsX ’ ds ds

. dt - -  dN(5.33) .'.— • N  = - t  • ----
ds ds
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with (5.30) the curvature kn is simply the left hand side o f the above equation,

therefore the curvature is given by 

(5.34)

and the tangent vector is the derivative with respect to arc length along the surface, 

therefore

(5.35)
_ _ dx 

ds

where x  is a general vector to the curve in x,y,z space.

The curvature in the normal plane is given by
, dx dN dx*d A

(5.36) k = ----- • —  = ------- —
ds ds ds2

and arc length squared ds2 is by definition

(5.37) ds2 =dx*dx

(5.38) : .kn = - d x '  dN
d x 'd x

k n is the curvature of a curve C in the surface and also in a plane containing

the normal to the surface as shown in Fig. 5.6.

P

Fig. 5.6. Plane P containing normal n to surface and whose intersection 

with surface defines a curve C.
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5.3.1. Calculation of denominator dx»dx in equation (5.38). 

For a surface given as a function of 2 parameters u,v

(5.39) Oc = die , dc , — du + — dv 
dii dv

(5.40) d x» d x-  (xudu + xvdv) • (xudu + xvdv)

. cX , _ dX
where x„ = —  and xv = —

' du dv

(5.41) dx • dx = xu • xudir + 2xu • xvdudv + xv • xvdv2

(5.42) dx • dx = Edit2 + IFdudv + Gdv2

where

(5.43) E  = xu • xu , F  = xu • xv , G = xv • xv

Equation (5.42) is called the First Fundamental Form of the surface and is usually 

donated by I; its square root ds is called the 'element of arc'.

The general vector to the surface x  is given by

(5.44) x = x(u,v)x+y(u,v)y + z{u,v)z

and taking partial derivatives of x  with respect to u and v gives

(5.45) xu
d>c(n,v) . | &(u,v) | &(u,v)

8u dii du
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(5.53) =xu • N udu2 + xu • Nvdudv + xv • Nudvdu + xv • Nvdv2

(5.54) : .kn = -
xu • N d u 2 + (xu *Nv +xv*Nu )ch’du + xv • N vdv2 

Edu2 + 2Fdudv+ Geh’2

(5-55) =
¿■Jw2 + 2 fduch’ + gdv2 
Edu2 + 2 Fduch’ + Gdv2

where

e = - x u»Nu , 2 /  = - (x u»Nv +xv»Nu) , g  = - x v*Nv

The numerator edu2 + 2 fdudv + gdv2 is called the Second Fundamental Form of the 

surface.

At any point on the surface, 2 tangent vectors to the surface in the direction 

o f the parameter axes are found by taking partial derivatives o f the surface 

equation (5.24). The vector cross product of these tangent vectors gives a vector 

normal to the surface at that point, as shown in fig. 5.7.

Fig. 5.7. Surface tangent vectors Qu and Qv lie along co-ordinate axes 

with surface normal vector n orthogonal to both Qu and Qv .
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(5.56) : .xu»N  = 0

(5.57) xv* N  = 0

and the normal is given by
~ X X X

(5.58) N  = t t -— -
I * «  *  * v

To remove the partial (Nv and Nu) of the normal from the second

fundamental form, we take partial derivatives of equations (5.56) and (5.57). 

Taking the partial derivative of Eqn. (5.56) with respect to parameter u

(5-59) = + = 0
au

(5.60) xu* Nu = - x uu • N

taking the partial derivative of Eqn. (5.57) with respect to parameter v

(5-61) • t i )  = x„, • N  + xy • Nv = 0
chi

(5.62) xv»Nv = - x w »N

and using (5.56) and (5.57) taking cross differentials with respect to xv and xu 

(5-63) ^ ( * ,» A f )  + ̂ ( x , . J v )  = 0
Chl (A>

expanding equation (5.63)

(5.64) ■■■xuv»N  + xu»Nv +xn » N + xv»Nu = 0
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and re-arranging

(5.65) 2xuv • N  = -(*„ • Nv + xv • N u)

Inserting the results given by (5.60), (5.62) and (5.65) into e,f and g o f the second 

fundamental form, we can remove the normal partial derivatives.

(5.66) e = - x u»N u = xuu»N  from (5.60)

(5.67) f  = - ^ ( x u*Nv +xv*Nu) = xuv' N

(5.68) g  = - x v • Nv = x%v» N  with (5.62)

and the normal is given by

/s V  X  V*
(5.58) N = , u J ,

XXv|

We may now replace the normal N  completely by partial derivatives of the surface 

equation.

Using Lagranges' identity ( a x i ) * ( a x i )  = (a»a)(b

(5.69) |xu xx .| = ^ ( f  x x j* ( x  x r )

(5.70) = p u*xu){xv. x y) - { x u. x v)2

(5.71) = J E G -F 2

Substituting (5.71) back into equation (5.58) for N
* X X X

(5.72) N  -  “ v
J e g - f 2

The expression for N  contains only partial derivatives of the surface equation and can
cur\((

be substituted for N  in the expressions for e,f g.
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(5.73) :.e = x„ (xu X*v)
y jE G -F 2

expanding e into component form

(5.74) e =

X uu y uu zuu
Xu yu z u

T v  Z v

J e g - f 2

The expression for f  becomes

(5.75) /  = xKV • N = xu.
x.. x x.

■Je g - f 2

and expanding finto component form gives

(5.76) /  =

X uV T vv

* u yu
T v

y /E G -F 2

The expression for g becomes 

(5.77) g = xn,» N  = xn. • ^

and expanding g into component form gives

(5.78) g:

xw T w  Z y

Xu y u z,
F T v  A

y /E G -F 2

5.3.3. Calculation of curvature for a given surface equation Q(u , v )

By applying the surface equation Q(u , v)  in (5.24) the equation for 

curvature k n given by (5.55), the curvature at any point u,v on the corneal surface

in any direction can be calculated.

After dividing (5.55) by du , the equation for curvature is given by
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2
e + 2 f

(5.79) kn =
du J + Z

V

d\>

ydu

E + 2F ( ctv>
+ G

ydu,

and e,f,g,E,F,G are given by (5.66), (5.67) and (5.68)

e = xuu»N  (5.66)

f  = xuv*N  (5.67)

g= x„ .*N  (5.68)

and (5.43)

E  = x„ • , F  = x„ • xv , G = xv • xv (5.43)

The values e,f,g,E,F,G need to be calculated at a given u,v and for a given 
dv

direction —  to give the curvature k n. This is easily done by substituting 
du

Q(u , v)  in place of the general vector x  in (5.66), (5.67), (5.68), (5.43) 

and (5.72) giving

(5 80) e = Ouu • N  

(5-81) f  = Ouv' N

(5.82) g = Gn, • N

(5.83) E = Ou*Qu , F  = Qu*Ov ,G  = Ov*Qv
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In terms of component partial derivatives, the values E,F,G are given by 

(5.47), (5.48), (5.49)

E = x2u +y2u +z2u (5.47)

^ = V v + U + V v  (5-48)

G = x l+ y l+ z 2v (5.49) 

and e,f,g are given by (5.74), (5.76), (5.78)

Xuu y m

y u Zu

*v Tv zv

y /E G -F 2

X UV y  uv

Xu T„

Xv Tv

(5.74)

(5.76)

T v y  vv ^Vv

T v

X v T v  Z v

y /E G -F 2
(5.78)

The component partial derivatives are now calculated directly from the surface 

equation, eg . the x component of the surface Q( u , v )  in (5.24) is given 

by
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1
(5.84) x(u,v)

36

' - 1 3 -3 f M3
T

' - 1 3 -3 f
rV

3 - 6 3 0
1u~
ft]

3 - 6 3 0 v2

-3 0 3 0 u -3 0 3 0 V

1 4 1 0 _ 1 1 4 1 0 1

where [Px] is a matrix of x co-ordinates for 16 points

p1 *00 P1 *01 Px02 P1 *03
P1 *10 Pxw Px\2 PxU
p1 *20 Px2\ Px22 Px2l
P1 *30 Px2\ Pxn Px32

we have similar equations for y(u,v) and z(u,v) replacing point matrix [Px] in equation 

(5.84) by point matrices of y and z co-ordinates respectively.

The first partial derivatives are given by

(5.85)

' - 1 3 -3 f 3u2
T

' - 1 3 -3 f
T

V

dx '  i ‘ J - 6 3 0 2 u
t e l

3 - 6 3 0 2
V

a< u |_36 J -3 0 3 0 1 -3 0 3 0 V

i 4 1 0 0 1 4 1 0 1

with identical equations for y u and z u using y and z point matrices respectively

and
' - 1  3 - 3 f V T

' - 1 3
-> 

—  J r T
~ 3 v2 '

c k "  1  ' 3  - 6 3 0

I P . ]

3 -6 3 0 2 v

¿ V  v )_ 3  6 J - 3  0 3 0 / / - 3 0 3 0 1

1 4 1 0 _ 0 _ 1 4 1 0 o

with identical equations for y v and z v using y and z point matrices respectively.
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The second

(5.87)
$ x  
d u 2

partial derivatives are given by
' - 1 3 -3 1" 6 u T

' - 1 3 -3 f
TV

3 - 6 3 0 2
[K

3 - 6 3 0 v2

-3 0 3 0 0 -3 0 3 0 V

1 4 1 0_ 0 _ 1 4 1 0 1

with identical equations for y uuand z uu using y and z point matrices respectively

and

(5.88)
36

' - 1 3 -3 f l/ 3
T

' - l 3 -3 f
T

6v

3 - 6 3 0 u~ 3 - 6 3 0 2

-3 0 3 0 u -3 0 3 0 0

_ 1 4 1 0_ 1 1 4 1 0 _ 0 _

with identical equations for y vvand z vvusing y and z point matrices respectively.

The cross partial derivative is given by

(5.89)

"-1 3 -3 l l

c?x '  1 ■ 3 - 6 3 0

a id ’ Xuv _36_ -3 0 3 0

1 4 1 °J

3 u2
T

' - 1 3 -3 f
T

_3v2"

2u 3 - 6 ■*> 0 2 v
1 -3 0 3 0 1

0 1 4 1 0 0

with identical equations for y uvand z uvusing y and z point matrices respectively.

5.3.4. Calculation of maximum and minimum curvature directions.

For a given normal at a point P on the surface, an infinite number of planes can
dv

be constructed for different directions —  on the surface. At a point P,
du

the values e,f,g,E,F,G are independent of the chosen normal plane and therefore

are constants at that point. The curvature k n is then determined by the 
. dvdirection —  . 

du 
dv

Setting —  - X  equation (5.79) becomes 
du
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(5.90)
6 + 2 fA  + g A 

E + 2FA + G):

The maximum and minimum values of k n are found from the value o f A
u dkn awhen — -  = 0

dX
dk (E + 2 FA + GA2 )(2 /  + 2 gA) - (e  + 2 fA  + gA2 ){2F + 2 GA)

(5.91) — =- = --------------------------;-------------------TT-------------------------- :
dA (E + 2FA + GA2)

(5.92) (F + 2FA + GAc ) ( /  + gA) - (e  + 2/A + gX~){F + G A) = 0

expanding (5.92) gives a quadratic equation for A 

(5.93) {Fg-fG)A2 + {Eg- eG)A + (E f -eF) = 0

for which the solution is

(5.94)
~ (£g  -  gq ) + V t e  -  F f  ^ A F F  / c )

2 (F g-fG )

Equation (5.94) gives 2 directions for maximum and minimum k n which can be found

by substituting the values of A into equation (5.90). The 2 directions for maximum 

and minimum k n are called principle directions and can be shown to be orthogonal .

The mathematical analysis developed in this chapter will now enable the calculation of 

the radius of curvature at any discrete point on the corneal surface, for any shape of 

cornea whether spherical, aspherical or highly irregular.
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Chapter 6

Topography measurements results
6 .1 Accuracy and precision

6.1.1. Theoretical surface depth resolution

The measurement system depth resolution depends on three factors - 

1/ The angle o f the light planes relative to the camera axis.

2/ The magnification of the camera system.

3/ The pixel resolution of the computer imaging system.

To view the whole of the cornea and assign the geometric centre of the cornea as a 

reference point, the camera magnification was fixed to image 12 mm horizontally on 

the video screen. The angle of the light planes was set to approximately 60° (measured 

accurately during calibration) to allow measurements to be made with particular 

attention to the central 6mm of the cornea. The frame grabber resolution was 768 

pixels horizontally x 512 pixels vertically. This configuration gave a pixel width of 

15.62 pm. The depth resolution is calculated as shown in fig. 6.1 and is given by 

(6.1) depth resolution=tan 30° x 15.62pm = 9.01pm

depth on cornea

fig. 6 .1 The depth resolution is calculated from the pixel width and angle 

of light plane.
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6.1.2. Practical surface depth resolution.

To test if the theoretical depth resolution calculated in 6.1.1. could be achieved, a flat 

screen was mounted on a high precision linear stage micrometer and placed in front of 

the video camera. The linear stage micrometer was accurate to within 

1.0pm. Screen distance measurements were made at increasing screen distances of 200 

pm intervals up to 1600pm from the initial screen position. For each distance, 5 

measurements were made with each measurement consisting of a matrix o f 12 

horizontal x 8 vertical readings, covering an area of 10mm x 8mm to test uniformity. 

The results are shown in table T.6.1. and show a mean distance measurement error o f -

3.0 ± 6.5pm.

distance moved mean measured distance s.d. pm variation across

pm distance in pm screen (s.d. pm)

200 196.5 6.2 3.6

400 398.5 6.2 5.5

600 598.0 6.5 6.0

800 799.8 4.4 5.0

1000 1003.5 5.2 6.0

1200 1205.0 6.5 5.3

1400 1393.8 5.7 6.0

1600 1597.2 8.5 3.7

Table T.6.1. Results of screen distance measurements at 8 different 

screen positions covering 1.6mm depth.
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A typical set o f results for the screen distance measurement is shown in table T.6.2., 

covering one side o f the screen and an area of 5mm horizontally x 8mm vertically.

RIGHT measurement results

x[14 2.502] x[142.510] X[142.505] X[142.500] X[142.507] x[142.503] 

x[142.502] x[142.498] x[142.493] X[142.500] x[142.507] x[142.503] 

X[142.490] X[142.498] X[142.505] x[142.500] x[142.507] x[142.503] 

X [142.490] X[142.498] x[142.505] x[142.500] x[142.507] x[142.503] 

x[142.490] x[142.498] X[142.505J x[142.500] X[142.507] x[142.503] 

x[142.490] x [142.493] x[142.505] x[142.500] x[142.507] x[142.503]

X[142.502] x[142.498J X[142.505] X[142.500] X[142.507] x[142.515]

X [142.502] X[142.498] X [142.505] x [142.500] x[14 2.507] x[14 2.515]

Table T.6.2. Depth measurements o f one side of screen at a distance o f 

142.50mm from the camera. All values are given in mm.
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6.1.3. Theoretical curvature accuracy.

To test if the surface fitting and curvature calculations would work in principle, 

theoretical x,y,z points were generated at equal intervals on a sphere and a surface 

equation was fitted to them. The x,y,z values of each point was calculated using 

spherical polar co-ordinates.

(6 .2 ) x = r sin <pcos9

(6.3) y  = rsin  <psin 9

(6.4) 2 = rcoscp

This is shown below in fig 6.2

fig 6.2 Standard spherical polar co-ordinates used to calculate points 

on a theoretical sphere.

The theoretical sphere calculations were made for radius o f curvature values ranging 

from 6.5mm to 9.0mm in 0.5mm steps. The chord distance between points ranged from

0.2mm to 1.2mm. The results are shown in table T.6.3.
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Theoretical radius 
of curvature, mm.

Point separation 
in degrees

Measured radius of 
curvature(min) mm

Measured radius of 
curvature (max)mm

6.5 0.5 6.500 6.500

6.5 1.0 6.499 6.499

6.5 1.5 6.497 6.497

6.5 2.0 6,495 6.495

7.0 0.5 7.000 7.000

7.0 1.0 6.999 6.999

7.0 1.5 6.997 6.997

7.0 2.0 6.995 6.995

7.5 0.5 7.500 7.500

7.5 1.0 7.499 7.499

7.5 1.5 7.497 7.497

7.5 2.0 7.494 7.495

8.0 0.5 8.000 8.000

8.0 1.0 7.998 7.999

8.0 1.5 7.997 7.997

8.0 2.0 7.994 7.994

8.5 0.5 8.500 8.500

8.5 1.0 8.498 8.498

8.5 1.5 8.496 8.496

8.5 2.0 8.494 8.494

9.0 0.5 9.000 9.000

9.0 1.0 8.998 8.998

9.0 1.5 8.996 8.996

9.0 2.0 8.993 8.994

Table T.6.3 Curvature measurements for different theoretical spheres.
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The results in table T .6.3. show a mean error of 0.004mm. The results are calculated by 

finding the maximum and minimum radius o f curvature values at 25 equally spaced 

points across the fitted surface. A typical results printout is shown in table T.6.4.

x [ 1-473] x
y [ 0.281] y
Z [ 7.858] Z
rl r —3.000] rl 
r 2 [ - 8 . 0 0 0 ] r 2

x [ 1.486] X
y [ 0 . 2 8 4 ]  y
z [ 7 . 8 5 6 ]  Z
rl [ -8.000] rl 
r2 [ -8.000] r2

X [ 1.500] x
y  [ 0 . 2 8 6 ] y
z [ 7.853] z
rl ( -8 .0 0 0 ] rl 
r 2 [ - 3 . 0 0 0 ] r 2

X [ 1 . 5 1 3 ]  X
y [ 0.289] y
z [ 7.850] z
r i  [ —8.000] rl 
r 2 [ - 3 . 0 0 0 ] r 2

x [ 1 . 5 2 6 ]  x
y  [ 0 . 2 9 1 ]  y
Z [ 7 . 8 4 7 ]  Z
rl [ -8.000] rl 
r 2 [ - 3 . 0 0 0 ] r 2

patch results

[ . 1 . 4 7 2 ]  X [ 
[ 0 . 2 8 4 ]  y [
[ 7 . 8 5 8 ]  Z [
[ -3 .0 0 0 ] rl [ 
[ - 3 . 0 0 0 ] r 2 [

[ 1.486] X [
[ 0 .286] y [
[ 7.856] z [
[ -8.000] rl [ 
[ - 8 . 0 0 0 ] r 2 [

[ 1.499] X [
[ 0.289] y t
[ 7.853] z [
[ -8.000] rl [ 
[ - 3 . 0 0 0 ] r 2 [

[ 1.513] X [
[ 0 . 2 9 1 ]  y [
[ 7.850] z [
[ -8.000] rl [ 
[ - 8 . 0 0 0 ] r 2 [

[ 1.526] X [ 
[ 0.294] y [ 
[ 7.847] z [ 
[ -8.000] rl [ 
[ - 8 . 0 0 0 ] r 2 [

1..472] X [
0.,286] y [
7..858 ] z [

- 3  ,.000] rl [
- 3 . . 000] r2 [

1,.485] X [
0,.289] y [
7,.856] z (

- 8 .000] rl [
- 3 , .000] r2 [

1,.459 ] X t
0..291] y C
7,.853 ] z c

-3. .000] rl [
- 8  .. 000] r2 [

1.,512] X [
0,.294 ] y [
7..850] z [

-S ..000] rl [
- 3  .,000] r 2 [

1..525] X [
0..297 ] y [
7.,847 ] z [

- 3 . ,000] rl [
- 3  ..000] r2 [

1 . 471 ]  
0 . 2 8 9 ]  
7 . 8 5 8 ]  

- 8 . 0 0 0 ] 
- 3 . 0 0 0 ]

1 . 4 8 5 ]  
0 . 2 9 1 ]  
7 . 8 5 6 ]  

- 3 . 0 0 0 ] 
- 3 . 0 0 0 ]

1 . 4 9 8 ]  
0 . 2 9 4 ]  
7 . 853  ] 

- 8 . 0 0 0 ] 
- 8 . 0 0 0 ]

1 . 512 ]  
0 . 2 9 7 ]  
7 . 6 5 0 ]  

- 3 . 0 0 0 ] 
- 3 . 0 0 0 ]

1 . 5 2 5 ]  
0 . 2 9 9 ]  
7 . 8 4 7 ]  

- 8 . 0 0 0 ] 
- 8 . 0 0 0 ]

X [ 1 - 471 ]
y [ 0 . 2 9 1 ]
Z [ 7 . 3 5 3 ]
r l  [ - 8 . 0 0 0 ]  
r 2  [ - 8 . 0 0 0 ]

X [ 1 . 4 3 4 ]
y  [ 0 . 2 9 4 ]
z [ 7.856]
r i  [ - 8 . 0 0 0 ]
r 2 [ - 8 . 0 0 0 ]

x [ 1 . 4 9 3 ]
y [ 0 . 2 9 7 ]
z ( 7 . 8 5 3 ]
r l  [ - 8 . 0 0 0 ]
r 2 [ - 8 . 0 0 0 ]

x [ 1-511]
y [ 0 . 2 9 9 ]
z [ 7.850]
r i  [ - 8 . 0 0 0 ]
r 2 [ - 8 . 0 0 0 ]

X [ 1 - 52 4 ]
y [ 0 . 3 0 2 ]
Z [ 7 . 8 4 7 ]
r i  [ - 8 . 0 0 0 ]  
r2  [ - 8 . 0 0 0 ]

Table T.6.4. Curvature results for theoretical surface with 8.0mm radius o f

curvature and 0.28mm chord distance between points, r l  and r2 

are the maximum and minimum radius o f  curvature values at each

point. All values are in mm.

115



6.1.4. Practical curvature accuracy.

To test the accuracy and reproducibility of the Corneal Topography System (CTS) on 

real objects, measurements were made on steel calibration spheres of 6.5mm, 7.5mm, 

8.0mm and 9.0mm diameter. Five readings were taken on each sphere, with the sphere 

moved slightly and system re-focused for each measurement. The results are shown in 

table T.6.5.

Radius o f sphere 

mm

Measured radius 

of curvature mm

s.d. average flattening 

mm/mm

6.5 6.51 0.05 0.020

7.5 7.51 0.03 0.000

8.0 8.02 0.03 0.005

9.0 8.98 0.05 0.010

Table T.6.5 Radius o f curvature measurements on steel calibration spheres.

The results show a mean error of 0.01±0.04mm in radius o f curvature measurement. A 

typical results printout for an 8.0mm radius of curvature sphere is shown in fig 6.3.
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CONTOURS m i c r o n s :  0 0 .  

Apex  d i 5 1 (mm) : 0 . 10;

Apex  R . o f . c  (mm): 7 . 9 8 ;

Apex  Power  (□) ; 4 2 . 3 0 ;

A . F . (D/mm) ; 0 . 1 2 ;

A . F . (mm/mm) : 0 . 0 1 ;

F I L E N A M E :  8 0 0 .
CORNEAL TOPOGRAPHY: EDMUND MODEL.

fig. 6.3 Results for 8.0mm radius o f curvature sphere.



6.2 Typical corneal topography results

Two typical plots o f normal corneas are shown below in fig 6.4 and 6.5. The two plots 

show the two alternative forms of output available from the system, with or without 

radius o f curvature values printed on the plot. The apex position is shown by the letter 

'A'.
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CONTOURS m i c r o n s :  SO. 

Apex d i s  t (mm) : 0.31 ;

Apex R . o f . C  (mm): 7.46 :

Apex Power (0): 45.24;

A .F . (0/mm) : 0.13 ;

A . F . (mm/mm) : 0.01 ;

F I L E N A M E :  m c s l . CORNEAL  TOPOGRAPHY: EDMUND MODEL.

fig 6.5 Corneal plot without radius o f curvature values



The two figures below show results for a relatively flat and steep cornea respectively. 

Fig. 6.6 shows an eye at the flat end of the range with apex radius o f curvature 

8.06mm. Fig 6.7 shows an eye at the steep end of the normal range with a radius of 

curvature of 7.03mm.

COS'.'EiL TOPOGRAPH/: EOKUR'3 k ODEL.

FILENAME: d s d r l .  

CONTOURS m i c r o n s :  5 0 .  

Apex d i s t  (mm) : 0 . 1 3 :

Apex R . of  . C (mm) : 3 . C5:

Apex Power  (D): 4 1 .37 :

A . F . (D/mm) : 0 . 0 1 ;

A . F . (mm/mm) : 0 . 0 0 ;

fig 6.6 Plot o f flat cornea

CORNEAL TOPOGRAPH/: EDWUWD KOOEL .

FILENAME: i s ]  .

CONI OURS mi c r o n s ; 50.

Apex d i s t  (mm) : 0 . 27:

Apex R . o f  . 0 (mm) ; 7 . 0

Apex Power (D) : 43 .00:

A . F . (D/mm) : O'. 2 0 :

A . F. (mm/mm) : 0 . 02;

fig 6.7 Plot o f steep cornea
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Below are typical results for an astigmatic eye (fig 6.8) and a keratoconic eye (fig. 6.9). 

The keratoconic eye shows a much smaller than normal apex radius o f curvature of 

5 .13mm. The rate of flattening from the apex of 0.23mm/mm is far from spherical and 

the apex position is shifted downwards.

CORNEAL TOPOGRAPHY: EDMUND MODEL.

CONTOURS m i c r o n s :  - 50.  

Apex d i s t  (mm) : 0 .38;

Apex R . of  . C (mm) : 7 .45;

Apex Power (0) : 45 .24 ;

A . F . (D/mm) ; 0 .1 5 ;

A . F . (mm/mm) ; 0 .0 2 ;

fig 6.8 Astigmatic cornea

CORN'Cal TOPOGRAPHY: EDMUND MODEL.

CONTOURS m i c r on s :  50. 

Apex d i s t  (mm) ; 0 .52 ;

Apex R . o f  . C (mm) : 5 .13;

Apex Power  (D) : 5 5 .7 5 ;

1 A . F .  (0/mm) ; 4 .1 5 ;

A . F . (mm/mm) ; 0 . 2 3 ;

fig 6.9 Keratoconic cornea
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6.3 Results from subjects with Keratoconus.

Previous systems for measuring corneal topography have been unable to analyse 

accurately irregular shaped corneas as in the case of Keratoconus. The measurement 

system described in this thesis overcomes problems faced by previous instruments and 

in this section, results from three keratoconic subjects are presented.

The first subject MP has been diagnosed as having advanced Keratoconus in both eyes 

with approximately equal severity. The left eye had an apex radius o f curvature = 

6.36mm (fig. 6.10). The right eye had an apex radius of curvature = 6.28mm (fig. 

6.11). Both these radius of curvature values are more than 0.5mm outside the 'normal' 

range but are not near the steepest values measured for Keratoconus. Both eyes had 

considerable scarring and a scar map for the left eye is shown in fig 6.12. The system 

used to measure the corneal scarring is described in chapter 7.
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COHNC AL TCjPCitn/.PHV: c d mu n d  mo d e l  . COMME AL TOPDGPAPHV: EDMU'JD MODEL.

FILENAME: mat9.

CONTOURS microns: 50.

Apex di st (mm) : 0.36;

Apex R . of . C (mm) : 5.35;

Apex Power (D) : 53.11;

A . F . (O/mm) : 0.92:

A . F . (mm/mm) : 0.07;

fig 6.10 Advanced Keratoconus (left eye)

FILENAME: mat3.

CONTOURS microns: 50.

Apex d i s t (mm) : 0.59;

Apex R . o f . C (mm) ; 5.28;

Apex Power (D) ; 53.7 p;

A . F . (O/mm) ; 0.19;

A . F . (mm/mm) ; 0.0 1;

fig 6.11 Advanced Keratoconus (right eye)
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fig 6.12 Scar map of advanced Kcratoconus



The second subject JMH has severe Keratoconus in the right eye (fig 6.13) and has 

sub-clinical Keratoconus in the left eye (fig 6.14). The left eye shows an apex radius of 

curvature of 7.41 and a rate of flattening from the apex (A.F.) of 0.03 mm/mm which is 

effectively spherical. No scarring was observed in the left eye but corneal thinning was 

present together with increased visibility of the corneal nerves. The right eye (fig 6.13) 

shows severe Keratoconus with an apex radius of curvature o f 5.50mm and a rate of 

flattening from the apex of 0.17 mm/mm which is far from spherical. A contrast 

sensitivity measurement of both eyes was taken (fig 6.15) and shows the relative loss of 

vision in the right eye.
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COnNCAL TOPOGRAPHY: CDMUUD MOOCL. CORNUAL TOPOGRAPHY: CDMUND WODCL.

F I L E N A M E :  j m h r 2 .  

C O N TO U R S  m i c r o n s :  5 0 .  

A p e x  d i s t  (mm) : 0 . 0 6 ;

A p e x  R . o f  . C (mm) : 5 . 5 0 ;

A p e x  P o w e r  (□) : 6 1 . 3 3 :

A . F . (D/mn) : 2 . 5 9 ;

A . F . (mm/mr) : 0 . 1 7 ;

fig 6.13 Severe Keratoconus

F I L E N A M E :  j m h ] 2 .  

CON TO U RS  m i c r o n s :  5 0 .  

A p e x  d i  s t  (mm) : 0 . 2 5 ;

A p e x  R . o f  . C (mm) : 7 . a 1

A p e x  P o w e r  (D) : 4 5 . 5 5 ;

A . F . (D/mm) : 0 . 2 7 ;

A . F . (mm/mm) : 0 . 0 3 ;

fig 6.14 Sub-clinical Keratoconus
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fig 6.15 Contrast sensitivity results for subject JMH



The third subject CH has severe Keratoconus in the left eye (fig 6.16) and a corneal 

graft in the right eye a year previously (fig 6.17). The left eye shows a very steep 

cornea of apex radius of curvature = 5.40mm and flattening from apex = 0.20 mm/mm. 

A map of the scarring in the left eye is shown in fig 6.18. The subject indicated that 

there was an overall post-operative improvement in vision in the right eye, except in 

viewing very small objects. This is confirmed by the contrast sensitivity measurement 

(Kelly, 1977) o f each eye shown in fig. 6.19.
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CORNEAL TOPOGRAPHY: CDMUND MDDCL. CORNEAL TOPOGRAPHY: EDMUND MODEL.

F I LENAME :  c h i c k l F I LENAME:  c h i c k .

CONTOURS m i c r o n s : 50. CONTOURS m i c r o n s :  50 .

Apex  d i s t  (mm) :

oino

Apex  d i s t  (mm) : 0 . 5 3 ;

Apex  R . of  . C (mm) i_n fx o Apex R . o f . C (mm) : 7 . 5 4

Apex  Power  (D) : 62 . 50 ; Apex Power  (D) ; 4 4 . 15 ;

A . F . (D/mm) : 3 . 34; A . F . (D/mm) ; 0 . 3 3 ;

A . F . (mm/iiim) : 0 . 20; A . F . (mm/mm) ; 0 . 0 4 ;

fig 6.16 Severe Keratoconus fig 6.17 Corneal graft
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fig 6.18 Severe Keratoconus (left eye) scarring for CH
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6.4. Comparison of corneal topography measurements using CTS and using a 

photokeratoscope for normal corneas.

The measurement and analysis method employed by the CTS is, in theory, superior to 

the methods employed by keratoscopes especially when assessing irregular corneas.

In practice, the CTS has been shown to produce accurate measurements on 

calibrated spheres, but it was of interest to know how the system performed on various 

corneal shapes and how the CTS results compared with the results o f a conventional 

keratoscope.

Measurements of 30 normal corneas were made with the CTS and also with the 

Wesley-Jessen PEK. This was chosen on the basis that the PEK is a well documented 

and established keratoscope. To enable comparisons between the results o f each 

instrument, equivalent shape measurements concisely describing the topography must 

be extracted from each set o f results. This was possible using the analysis method for 

PEK results developed by Edmund(1987) which described the corneal shape in terms 

o f a)the apex location relative to the visual axis, b)the rate of flattening from the apex 

in a given meridian and c)the area o f the spherical zone around the apex. These 

parameters were modified slightly to enable concise statistical analysis and 

compatibility with the CTS. The final form of the extracted parameters gives the apex 

location relative to the centre of the cornea, the average rate of flattening from the apex 

and the value o f curvature at the apex.
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6.5 Shape measurement results.

Shown below in Table 6.6  are the mean shape measurement results from 30 normal 

corneas, taken with the Corneal Topography System(CTS) and the Wesley-Jessen 

PEK. The raw data for all shape and measurements are given in appendix B.

Scatter diagrams of the apex radius of curvature, apex decentration and average rate of 

flattening, obtained by the two systems are shown in figs. 6.20, 6.22 and 6.23 

respectively.

variable mean value standard deviation range

CTS apex radius of 

curvature, mm.

7.82 0.32 7.03-8.35

PEK apex radius of 

curvature, mm.

8.04 0.29 7.37-8.51

CTS apex distance 

from corneal centre, mm.

0.48 0.28 0.05-1.23

PEK apex distance 

from corneal centre, mm.

0.27 0.16 0 .0 2 -0.68

CTS rate o f flattening from 

apex, mm/mm.

0.04 0.03 0 .0 0 -0.11

PEK rate of flattening from 

apex, mm/mm

0.01 0.02 0.00-0.13

Table T. 6 .6 . Shape measurement results.

Fig. 6.20 shows a scatter diagram of Apex radius o f curvature results for PEK and 

CTS. The results show generally lower radius of curvature values for CTS relative to 

PEK and also poor correlation. Previous photokeratoscope measurements o f mean 

central corneal radius o f curvature for 164 normal corneas made by Clark (1974).
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The results showed an average value of 7.75±0.26 mm compared to 7.82±0.32 mm for 

CTS.

In general, there was a fair correlation between the apex radius o f curvature measured 

by the two systems (R^ = 0.61) although the CTS tended to produce lower values than 

the PEK. To investigate if the differences between the two instruments varied 

systematically with the radius of curvature, the difference in CTS and PEK radius of 

curvature measurements were plotted against the mean of the measurements (fig. 6 .2 1 ). 

No obvious trend was apparent in this respect.

fig. 6.20. Comparison o f apex radius o f curvature measured by CTS and PEK systems. 

( R = correlation coefficient)
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Measurements o f the average rate of flattening from the apex also showed very little 

correlation for the CTS and PEK (fig. 6.23). This is probably attributable to the fact 

that the PEK is unable to produce reliable measurements in this respect because the 

mire images are formed from reflections from the whole corneal surface and radius 

calculations assume spherical surfaces.

fig. 6.23 Average rate of flattening from apex (mm/mm)

In summary, the CTS and PEK produce similar values for the apex radius o f curvature 

for normal corneas. Estimates of the décentration of the apex and the average rate of 

flattening are not well correlated for the two instruments.
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Chapter 7
System for the measurement of corneal transparency 

and scarring.

7.1 Introduction.

Optical clarity is a fundamental property of a healthy cornea. However, even in the 

normal cornea a small amount of light scatter occurs which illuminates the retina away 

from the image o f the source. This scattering has the effect o f reducing the contrast of 

the retinal image thus reducing contrast sensitivity and visual function(Barbur, 1993). 

When the cornea is subject to disease, trauma or surgical intervention, any resultant 

scarring causes further light scatter which can severely effect vision especially if the

scarring is over the pupil area.
v a rie s

The form of scars from localised dense opacity to faint haze covering large 

areas o f the cornea. In corneas which have undergone PRK, a faint haze often occurs 

covering the ablated area and must be treated to restore good quality vision. In 

diseased corneas such as with Keratoconus, both dense scarring and faint haze can 

occur and necessitates Penetrating Keratoplasty as the only effective treatment.

Efforts have been made to quantify scarring (Smith, 1990; Olsen, 1982) and a scar 

measurement system (Lohmann, 1991) has been used to measure the ratios o f scattered 

light for treated and untreated corneal areas in PRK patients. Results from the 

Lohmann (1991) system showed a correlation between backscatter light levels and 5% 

contrast visual acuity measurements for PRK treated corneas.

At present there is no system available to objectively measure and map the area and 

density o f scars. In this chapter, a system is described which objectively measures and 

maps corneal scarring. The area and density of scars were measured in 12 keratoconic 

eyes and results recorded on a map of the cornea showing the area and location of the
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scarring with histograms of scar density. The system was used for a preliminary study 

of the effects of different scar densities on visual function.

7.2 Method.

In developing the system to measure corneal scarring and evaluate the density of 

scars, two assumptions were made. The first assumption was that in the absence of scar 

tissue, the cornea is perfectly transparent and the amount o f light scattered from the 

scar is therefore a measure of its opacity. Secondly, that the diffuse reflection from the 

scar tissue follows approximately a Lambertian distribution.

The system consists of a Nikon FS-2 Zoom Photo Slit Lamp through which the 

backscatter from the scar is photographed using a black and white CCD camera of 768 

x 576 pixel resolution. The camera is connected to a Pluto II frame grabber which 

stores the images in a PC. A photograph of the system is shown in fig. 7.1.

fig. 7.1. System for measuring corneal scarring.
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To ensure correct and consistent subject fixation, two small LEDs were located above
f'cotAS

and below the slit lamp objective. When the of the LEDs were located on a

line vertically through the pupil centre and the scars in focus, the image o f the scars 

was grabbed by the computer. It was essential to dilate the pupil before the image was 

grabbed to enable all scarring within the central 5mm of the cornea to be visible. A 

view o f a scarred keratoconic cornea is shown in fig. 7.2.

fig. 7.2 Keratoconic cornea showing scarring 

The image of the scarred cornea was displayed on a high resolution monitor after being 

grabbed (fig. 7.3.)
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fig. 7.3. Grabbed image of scarred cornea.

The centre of the pupil was located by the computer program finding the transition 

points between pupil and iris in horizontal and vertical meridians. These points were 

taken to lie on a circle whose centre corresponded to the pupil centre(fig. 7.4).

fig 7.4. Location of the pupil centre.
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If the location was not correct, the operator had the option o f indicating the best 

position of the pupil centre with the mouse.

The corneal background brightness level was chosen by positioning the mouse on a 

clear area of cornea. The scar is represented by higher levels o f backscatter which was 

measured by the system. The region of scarring was then isolated from the non-scarred 

areas in the image by placing a border around the scarring using the mouse. This is 

shown in fig. 7.5. and fig. 7.6. The computer program then removes the part o f the 

image which is not associated with scarring (fig. 7.7).

fig 7.5. Scar perimeter identified using the mouse.
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fig 7.6. Border placed around scar.

fig. 7.7. Non-scarred areas were removed from the image.
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A map of the scar location relative to the pupil centre was plotted on a laser printer 

shown in fig. 7.8.
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fig. 7.8. Scar map output
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The 127 grey intensity levels in the scar image were further quantized into 14 levels for 

ease o f analysis. Each quantized level corresponds to a pixel range of 9 grey levels. 

Normalised grey level intensity histograms of the scar overlaying pupillary areas of 

0.5mm to 2.5mm in radius were printed out. The percentage of the scar overlaying 

different pupil sizes was also printed. A complete set of results is illustrated in fig. 7.9. 

and fig 7.10.
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fig. 7.9. Scar location map.
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fig. 7.10. Scar grey levels.



7.3. System calibration

To convert the scar backscatter 'brightness' to luminance values, luminance was 

measured against recorded grey levels. A white card (Lambertian surface) was placed 

at the working distance of the slit lamp. The illumination o f the card by the slit lamp 

was adjusted to correspond to the mean pixel brightness for each quantized grey level. 

The luminance of the card at each illumination level was measured by a photometer. 

The spectral response of the camera was approximately the same as the photometer

Grey level Mean luminance cd/m^

1 ..

2 100

3 200

4 370

5 550

6 750

7 1100

8 1400

9 1750

10 2600

11 5000

12 ..

13 _

Table T.7.1. Luminance measurement for different grey levels.

The value for quantized level 1 was below the background level. The values above 12 

could not be achieved using the slit lamp illumination. To assess the noise in the
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system, two pictures o f the white card were taken at maximum illumination and the 

images were subtracted from each other. The resulting image left the system noise and 

showed that the noise value range was within ±3 pixel grey levels. This noise value was 

lower than the quantization range (10  pixel grey levels).

The value o f the slit lamp illumination was fixed at 3100 lux for all subjects. The slit 

lamp illumination was checked and adjusted to this value before examination o f each 

subject and slit lamp magnification fixed at 16x.

7.4.1. Effect o f different scar densities on visual function.

Any loss of transparency of the cornea will tend to reduce the quality o f the retinal 

image. The extent and nature o f the degradation is likely to be related to the size, 

position, density and scattering properties of the opacity. Common sense would 

suggest that large, dense opacities aligned with the centre o f the pupil would be the 

most destructive to vision. However, anecdotal evidence suggests that the apparent 

density of an opacity is not always a good guide to its effect on vision; dense opacities 

sometimes having surprisingly little effect on vision while diffuse scarring can produce 

a relatively large reduction in the quality of vision.

A consideration of the scattering properties of opacities a possible

explanation for this paradoxical result. A dense opacity will reflect and/or absorb much 

o f the light which is incident upon it and relatively little light will be scattered forward 

onto the retina. This is in contrast to a diffuse opacity which will reflect/absorb less 

light but scatter more light onto the retinal image. It is this forward scatter of light 

which is particularly destructive to vision.

To investigate the relationship between scar density / size and visual function, twelve 

eyes with corneal scarring secondary to keratoconus, were analysed. Vision was 

assessed by measuring visual acuity (Snellen chart) and contrast sensitivity (Pelli-
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Robson charts viewed from 3.6 m = 3.6 cycles / degree). Corneal scarring was assessed 

using the scar measurement system.

All subjects were keratoconic and wore rigid contact lenses to correct the resultant 

irregular astigmatism. While in theory, irregular astigmatism is neutralised by the tear 

lens which forms between the cornea and the back surface of the contact lens, in 

practice, decentration and movement of the contact lens often results in a less than 

perfect refractive correction. It is recognised that this may have confounded the results 

and reduced the strength of any correlation between scar size/density and visual 

function.

7.4.2. Results.

For ease of analysis, scarring was categorised as either high, medium or low density 

and the ratio of scarred cornea to clear cornea was calculated for a central 4mm 

diameter pupil. The output quantization levels 3 and below were taken as low density,

4 and 5 as medium density and 6 or above as high density. Data for twelve eyes (9 

subjects) are shown in table T 7.2.

In fig. 7.11 contrast sensitivity has been plotted against standard deviation o f scar 

density with a 2.0mm radius pupil. No significant correlation was found. Standard 

deviation of scar density was used as an indication o f the compactness o f the scarring. 

The correlation was no better when the total scar area was plotted and when scar area 

was broken down into high, medium and low density (figs. 7.12 - 7.15).

Four scar maps showing the typical range of the visual appearance of the scars are 

presented in figs. 7.16-7.19.

It is clear from these results that the relationship between visual function and the area 

/density of corneal scarring is complex and probably involves an interaction between
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the size, density, position and scattering properties of the scar. The small number of 

eyes used in this study precluded further analysis of the form of such an interaction. 

Furthermore, it is likely that the results of this study were confounded by the fact that 

the subjects were keratoconic and had various degrees o f corneal distortion. It would 

be of interest to repeat the study on non-keratoconic eyes. However, since it is 

principally forward scatter which is responsible for degradation o f the retinal image and 

there is no simple relationship between back scatter and forward scatter, it is unlikely 

that simple measurements of back scatter would ever correlate well with the quality of 

vision.

scar area %

Subject Eye Scar

s.d.

Log

C.S.

V.A. Total Low Medium High

1 L 0.656 1.25 6/12 15.83 13.96 1.84 0

1 R 1.023 1.02 6/12 8.84 4.70 3.63 0.50

2 L 0.476 1.00 6/18 10.89 10.58 0.30 0

2 R 0.804 0.95 6/18 11.61 10.23 1.27 0

3 L 1.010 1.05 6/18 37.38 30.47 6.05 0.86

3 R 0.770 0.50 6/18 27.65 23.58 4.04 0

4 L 0.782 0.72 6/24 28.41 2.33 23.58 2.48

5 R 0.664 0.77 6/36 12.29 10.54 1.74 0

6 R 0.731 1.27 6/9 14.25 2.00 11.87 0.38

7 R 0.762 0.97 6/12 23.18 6.39 16.30 0.47

8 L 0.435 1.05 6/18 21.38 17.25 4.12 0

9 R 1.350 1.10 6/9 44.68 18.21 16.72 9.56

Table T.7.2. Scar area and density, Visual acuity and Log Contrast Sensitivity.
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fig. 7.11. Contrast Sensitivity (C.S.) at 3.6 c /d eg  against standard deviation of 
Scar Density .

X Scar Area within 4.0mm Diameter Pupil

fig. 7.12. Contrast Sensitivity  (C.S.) at 3.6 c /d e g  against % of Pupil Covered by 
Scar f o r a  4.0m m  Diameter Pupil
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fig. 7.13. C ontrast Sensitivity  (C.S.) at 3.6 c /d e g  against % of Pupil Covered by 
High Density Scarring for a 4.0m m  Diameter Pupil
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fig. 7.14. C ontrast S ensitiv ity  (C.S.) at 3.6 c /d e g  against % of Pupil Covered by 
Medium D ensity Scarring for a 4.0m m  Diameter Pupil
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fig. 7.15. C ontrast Sen sitiv ity  (C.S.) at 3.6 c /d e g  against % of Pupil Covered by 
Low D ensity Scarring for a 4.0mm Diameter Pupil



SCAR LOCATION.

fig. 7.16. subject 4 (left eye). Log C.S.= 0.72, Scar s.d.= 0.782, Scar area% (low 
density)= 2.33, Scar % area within 2 .0mm of pupil centre = 28.41.

SCAR LOCATION.

fig. 7.17. subject 7 (right eye). Log C.S. = 0.97, Scar s.d. = 0.762, Scar area% (low 
density)= 6.39, Scar % area within 2.0mm of pupil centre = 23.18.



SCAR LOCATION.

fig. 7.18. subject 8 (left eye). Log C.S. -  1.05, Scar s.d. = 0.435, Scar area% (low 
density)^ 17.25, Scar % area within 2.0mm of pupil centre = 21.38.

fig. 7.19. subject 1 (left eye). Log C.S. = 1.25, Scar s.d. = 0.656, Scar area% (low 
density)- 13.96, Scar % area within 2 .0mm o f pupil centre = 15.83.



The software written for the scar measurement system is given in Appendix C.
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Chapter 8
Summary and Conclusion

8.1 Summary

A new system has been developed to measure the topography of the cornea and 

calculate the radius of curvature at any point on the corneal surface. The system has 

been shown to be able to measure both normal and irregular corneal surfaces. The 

results are output in the form of a contour map which gives a good visual impression of 

the cornea being measured. To give a concise description of the cornea, shape 

parameters giving the apex radius of curvature, apex distance from the centre o f the 

cornea and rate of flattening from the apex are output with the contour map.

This system is particularly relevant to the reshaping of corneas in PRK surgery. 

Only a system which can measure any corneal shape and still calculate curvature 

accurately can be used to monitor the results of PRK. This system is theoretically 

capable o f achieving this measure but the current system hardware requires substantial 

refinement to be suitable for clinical use.

The system developed uses stereophotogrammetry methods to calculate discrete 

points which lie on the corneal surface (or more accurately, the air-tear layer boundary 

where refraction occurs). A polynomial surface is fitted to the set of surface points and 

differential geometry is applied to the surface equation to calculate radius o f curvature 

at any point. The position of the apex (position of smallest radius o f curvature) is 

identified and other surface parameters are calculated relative to this point. The centre 

o f the cornea is also identified by the system and is used as a reference point when 

presenting a map of the cornea. Results show that the system configuration used in this 

project gives a depth resolution of approximately 10 microns and a practical mean error
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of 0.01±0.04mm in radius of curvature measurement. Results are presented in chapter 6 

of measurements on normal and keratoconic eyes. In total, 30 normal eyes and 10 

keratoconic eyes were measured to provide the results for this project, although many 

other subjects were measured during the development stages of the system.

Measurements of highly distorted keratoconic corneas taken with the Corneal 

Topography System (CTS) have shown it capable of measuring down to 5.13mm for 

apex radius o f curvature (fig. 6.9).

Shape measurements obtained with the new system (CTS) were compared to values 

obtained by a conventional keratoscope for 30 normal eyes. A Wesley-Jessen PEK was 

chosen as the keratoscope for comparison as this instrument is well known and fully 

documented in the literature.

Values of apex radius of curvature (see table 6 .6 ) show a mean value of 7.82 mm. 

This is a higher value for CTS relative to the PEK with a mean of 8.04mm. This would 

be expected as keratoscopes form images from light reflected from a large area of the 

corneal surface and therefore from areas flatter than the apex. Measurements o f rate of 

flattening from the apex were noticeably different between the two systems, with a rate 

o f 0.04mm/mm for the CTS compared to 0.01 for the PEK. Results suggest that 

photokeratoscopes are biased towards showing a spherical central curvature area, 

although CTS results indicate that the region around the apex is very close to spherical 

in any case (see full results in appendix B).

Measurement of apex distance from the centre of the cornea (table 6 .6 ) show a 

range of values measured by CTS of 0.05 to 1.23 mm, twice that o f the PEK with a 

range of 0.00 to 0.13. It should be noted that the PEK is not designed to identify the 

apex position and assumes for correct operation of the instrument that the apex lies 

along the instrument axis. If the corneal apex position is required to be measured 

accurately then a photogrammetry type instrument will be required.
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Further to the shape measurement system, a system has been developed to 

quantify corneal scarring. The system utilises a slit lamp with CCD camera attached to 

grab images of scarred corneas and quantify the scarring. The system is simple in 

operation and has been found to be convenient to use in a clinical environment. The 

scar measurement system has been used to study the effect o f different scar densities on 

visual function. The variation and irregularity of scar densities found in patients with 

scarred corneas means that a single scar density cannot be assessed in isolation to the 

rest of the scar. However, the density variation of scars measured for each cornea 

and correlated with visual function. Results indicate that loss of visual function does 

not correlate with area of scarring but that low density scarring (haze) may reduce 

vision more severely than highly dense scarring. This may be due to the fact that 

measured high density scarring corresponds to a large amount of backscatter radiation. 

In the case of large backscatter, a proportionately smaller amount o f light is transmitted 

and scattered onto the retina than in the case of low density haze. This system is also 

very relevant to corneas which have undergone PRK, as they often develop haze over 

the ablated area.

8.2  Applications.

Applications of the topography measurement and scar measurement systems would 

include -

1. Assessment of irregular corneal shape prior, during and after photoablative surgery.
„ o f

2 . Assessment of corneal haze after surgery for post-operative planning treatment.

3. Early detection of keratoconus.

4. Post operative assessment of corneal grafts.

5. Accurate surface description of aspheric contact lenses.
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8.3 Further work.

The main improvements to be made in both the topography mapping system and scar 

mapping system is to fully automate the analysis. The scar mapping system could be 

refined to automatically identify the pupil boundary and corneal reflex . Then the 

method would not require the operator to place a boundary around the scar, thus 

requiring a minimum of operator intervention. The topography system could be 

developed to include automatic identification of band edges on the corneal image.

These developments are necessary for the systems to be able to be used in the clinic by 

any operator. However, these modifications present a significant challenge for 

computer image processing techniques in analysing all possible types o f images.

With respect to improving the topography system resolution by changing the 

configuration, the depth resolution would be approximately doubled (to about 4 

microns) if the magnification was doubled. This is a viable change if the system is 

adjusted to use the centre of the pupil as the corneal reference point. At present the 

centre o f the cornea is used as the reference point. In this new configuration, only the 

central 6mm of the cornea would be in view on the monitor screen.

Currently, the topography system is under further development at Guy's 

Hospital, London where the projection system is being replaced by an endoscopic 

projection system. It is hoped that this will create a compact system for use in the 

clinical environment and will lead to one system, combining functions for measuring 

scarring and topography.
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8.4. Presentations / Publications

The description of the topography measurement system was presented at the 1993 

meeting of the Society of Experimental Optometry, under the title 'Measurement of 

Corneal Topography'.

The mathematical details of the theory and results for keratoconic eyes have been 

published in Ophthalmic and Physiological Optics 1993 vol. 13, pg 377 - 382 under the 

title 'Measurement of Corneal Topography in Keratoconus'. ( de Cunha , 1993).

Scar measurement results have been published in the Journal of the Optical Society 

of America. (Barbur, 1993).
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Appendix A.



/ -------------------------------------------------------
# HELLOWIN.MAK make file
# -----------------------------------------------------------

hellowin.exe:hellowin.obj hellowin.def hellowin.res
link /NOD hellowin ,hellowin,Nul,llibcew libw itxvspml itxofgml cmpofg 

itxstbml, hellowin 
rc hellowin.res

hellowin.objrhellowin.c
cl /c /DAT /DMSC /AL /Gsw /Ow /W2 /Zp hellowin.c

hellowin.res:hellowin.rc 
rc -r hellowin.rc



/MAKEFILE

/COMPILE FLAG MACRO DEFINITION 
#/Zi PREPARE FOR CODEVIEW DEBUGGING 
//AL LARGE MEMORY MODEL (LIB LLIBCE.LIB)

CFLAGS=/DAT /DMSC /AL /Zi /F 1024

/LINK FLAG MACRO DEFINITION

LFLAGS=/CO

/COMPILE LINE
/TARGET : {PATH;}DEPENDENTS
# ! DIRECTIVE $(cc) COMPILE WITH cl, COMPILER FLAGS, 
/ COMPILE ONLY, SAME AS (TARGET FILENAME).C

hello.obj : {c:\rac\progs;}hello.c 
!cl $ (CFLAGS) /c hello.c

/LINK COMAND LINE

hello.exe : {c:\rac\progs;}hello.obj
¡link $(LFLAGS) hello.obj,,,llibce itxvspml itxofgml cmpofgml 
itxstbml, NUL



/*-----------------------------------------
/* HELLOWIN.RC resource file

/*---------- '-----------------------------------
^include <resource.h>

-*/
*/

-*/

topomenu MENU 
BEGIN

POPUP "Camera"
BEGIN

MENUITEM "Initilise system",INIT 
MENUITEM "Camera On",VIEW 
MENUITEM "Freeze Image",FREEZE 
MENUITEM "Alignment Lines",ALIGN 
MENUITEM "Input Enhancement",C_ENHANCE 
MENUITEM "Save Image",SAVEIM 

END
POPUP "Calibrate"

BEGIN
MENUITEM "Center Left",CL_CAL 
MENUITEM "Center Right",CR_CAL 
MENUITEM "Outside Right",OR_CAL 
MENUITEM "Outside Left",OL_CAL 
MENUITEM "Calibrate left",L_CAL 
MENUITEM "Calibrate Right",R_CAL 
MENUITEM "Systematic Correction",C_ERROR 
MENUITEM "Test Plane Image",C_PLANE

END
POPUP "Pictures"

BEGIN
MENUITEM "Restore from Disk",P_RESTORE 
MENUITEM "Clear Overlay",P_COVERLAY 
MENUITEM "Extract Points",P_EXTRACT 
MENUITEM "Plot Results",P_PLOT 
MENUITEM "Surface Fit",P_SURFACE 
MENUITEM "Curvature",P_CURVE

END
POPUP "Enhancements"

BEGIN
MENUITEM "Equalization",E_EQUIL 
MENUITEM "Sharpen",E_SHARPEN 
MENUITEM "Smooth",E_SMOOTH

END
END

map ICON map.ico



/*----------------------------------------- */
/* resource.h header file */
/*------------------------------------ */
/define INIT 1 
/define VIEW 2 
/define FREEZE 3 
/define ALIGN 4 
/define CL_CAL 5 
/define CR_CAL 6 
/define OL_CAL 7 
/define OR_CAL 8 
/define L_CAL 9 
/define R_CAL 10 
/define SAVEIM 11 
/define P_RESTORE 12 
/define P_COVERLAY 13 
/define P_EXTRACT 14 
/define C_ENHANCE 15 
/define E_EQUIL 16 
/define E_SHARPEN 17 
/define E_SMOOTH 18 
/define P_SURFACE 19 
/define P_PLOT 20 
/define C_ERROR 21 
/define C_PLANE 22 
/define P CURVE 23



; HELLOWIN.DEF module definition file

NAME HELLOWIN

DESCRIPTION
EXETYPE
STUB
CODE
DATA
HEAPSIZE

'Hello windows Program'
WINDOWS
'WINSTUB.EXE'
PRELOAD MOVEABLE DISCARDABLE 
PRELOAD MOVEABLE MULTIPLE 
1024

STACKSIZE 8192
EXPORTS wndproc



I

/************* hellowin.c ************/

/include <windows.h>
#include <process.h>
/include -¿resource. h>
/define CX 420 
/define CY 460

int lcflag=0,rcflag=0;

long FAR PASCAL wndproc(HWND,WORD,WORD, LONG) ;

int PASCAL WinMain(HANDLE hlnstance, HANDLE hPrevInstance, 
LPSTR IpszCmdParam, int nCmdShow){ 

static char szAppName[]="hellowin";
HWND hwnd;
MSG msg;
ViNDCLASS wndclass;
int x;

if (!hPrevInstance){ 
wndclass.style 
wndclass.lpfnWndFroc 
wndclass.cbClsExtra 
wndclass.cbWndExtra 
w-ndclass. hlnstance 
wndclass.hlcon 
wndclass.hCursor 
wndclass.hbrBackground 
wndclass.IpszMenuName 
wndclass.IpszClassName

=CS_HREDRAW|CS_VREDRAW; 
=wndproc;
=  0 ;
=0;
=hlnstance;
=LoadIcon (hlnstance,"map"); 
=LoadCursor(NULL,IDC_ARROW); 
=GetStockObject(WHITE_BRUSH); 
="topomenu";
=szAppName;

RegisterClass(Swndclass) ;
}

hwnd=CreateWindow(szAppName, 
"Topography ", 
WS_OVERLAPPEDWINDOW, 
CW_USEDEFAULT, 
CW_USEDEFAULT,
CX,
CY,
NULL,
NULL,
hlnstance,
NULL);

ShowWindow(hwnd,nCmdShow); 
UpdateWindow(hwnd);

/♦window class name*/ 
/♦window caption*/
/♦window style*/
/♦initial x position*/ 
/♦initial y position*/ 
/♦initial x size*/
/♦initial y size*/
/♦parent window handle*/ 
/♦window menu handle*/ 
/♦program instance handle*/ 
/♦creation parameters*/

while(GetMessage(&msg,NULL,0,0))

{
TranslateMessage(Smsg); 
DispatchMessage(&msg);
}

I



return(msg.wParam);

}
long FAR PASCAL wndproc(HWND hwnd, WORD message, WORD wParam, LONG lParam){

static HPEN hPenl; 
int x;

switch(message){
case WM_CREATE:/*sent when createwindow is called in winmain*/ 

hPenl=CreatePen(PS_SOLID,1,RGB(0,0,255)); 
break;

case WM_PAINT:
hdc=BeginPaint(hwnd,&ps);
GetClientRect(hwnd,Srect);
SetMapMode(hdc,MM_ISOTROPIC);
SetWindowExt(hdc,5000,5000);
SetViewportExt(hdc,CX/2,-CY/2);
SetViewportOrg(hdc,CX/2,CY/2-15);
SelectObject(hdc,hPenl);
Ellipse(hdc,-4000,4000,4000,-4000); 
SelectObject(hdc,GetStockObject(BLACK_PEN));
MoveTo(hdc,-4000,0);
LineTo(hdc,4000,0);
MoveTo(hdc,0,4000);
LineTo(hdc,0,-4000);
TextOut(hdc,-4900,100,"-4mm",4);
TextOut(hdc,4050,100,"4mm",3);
TextOut(hdc,-250,4500,"4mm",3);
TextOut(hdc,-250,-4000,"-4mm",4);
EndPaint(hwnd, &ps); 
break;

case WM_COMMAND:
hMenu=GetMenu(hwnd);
CheckMenuItem(hMenu,wParam,MF_CHECKED); 
switch(wParam){

case INIT:WinExec("hello 1",SW_SHOWNA);
CheckMenuItem(hMenu,wParam,MF_UNCHECKED); 
break ;

case VIEW :WinExec("hello 2",SW_SHOWNA);
CheckMenuItem(hMenu,wParam,MF_UNCHECKED); 
break;

case FREEZE:WinExec("hello 3",SW_SHOWNA);
CheckMenuItem(hMenu,wParam,MF_UNCHECKED); 
break;

case ALIGN:WinExec("hello 4",SW_SHOWNA);
CheckMenuItem(hMenu,wParam,MF_UNCHECKED); 
break;

case C_ENHANCE:WinExec("hello 15",SW_SHOWNA);
CheckMenuItem(hMenu,wParam,MF_UNCHECKED); 
break ;

case SAVEIM:WinExec("hello 11",SW_SHOWNA);
CheckMenuItem(hMenu,wParam,MF_UNCHECKED); 
break;

HDC
PAINTSTRUCT
RECT
HMENU

hdc;
ps;
rect;
hMenu



case CL_CAL:WinExec("hello 5",SW_SHOWNA); 
break;

case CR_CAL:WinExec("hello 6",SW_SHOWNA) ; 
break;

case OL_CAL:WinExec("hello 7",SW_SHOWNA); 
break;

case OR_CAL:WinExec("hello 8",SW_SHOWNA) ; 
break;

case L_CAL:WinExec("hello 9",SW_SHOWNA); 
lcflag=l; 
break ;

case R_CAL:WinExec("hello 10",SW_SHOWNA); 
reflag=l; 
break;

case C_ERR0R:WinExec("hello 21",SW_SH0WNA); 
if((lcflag==l)&&(reflag==l)) 
(lcflag=rcflag=0;
for(x=CL_CAL;x<=R_CAL;x++)CheckMenuItem (

hMenu,x,MF_UNCHECKED);
CheckMenuIten(hMenu,wParam,MF_UNCHECKED); 
}

break ;
case C_PLANE:WinExec("hello 22",SW_SHOWNA);

CheckKenuItem(hMenu,wParam,MF_UNCHECKED); 
break;

case P_REST0RE:WinExec("hello 12",SW_SHOV7NA);
CheckKenuItem(hMenu,wParam,MF_UNCHECKED); 
break ;

case P_COVERLAY:WinExec("hello 13",SW_SHOWNA);
CheckMenuItem(hMenu,wParam,MF_UNCHECKED); 
break;

case P_EXTRACT:WinExec("hello 14" , SW_SH0WNA) ;
CheckMenuItem(hMenu,wParam,MF_UNCHECKED); 
break;

case P_SURFACE:WinExec("hello 19",SW_SHOWNA);
CheckMenuItem(hMenu,wParam,MF_UNCHECKED); 
break;

case P_CURVE:WinExec("tplot 23",SW_SHOWNA);
CheckMenuItem(hMenu,wParam,MF_UNCHECKED); 
break;

case E_EQUIL:WinExec("hello 16",SW_SHOWNA);
CheckMenuItem(hMenu,wParam,MF_UNCHECKED); 
break;

case E_SHARPEN:WinExec("hello 17",SW_SH0WNA) ;
CheckMenuItem(hMenu,wParam,MF_UNCHECKED); 
break ;

case E_SM00TH:WinExec("hello 18",SW_SHOWNA);
CheckMenuItem(hMenu,wParam,MF_UNCHECKED); 
break ;

case P_PL0T:WinExec("hello 20",SW_SH0WNA) ;
CheckMenuItem(hMenu,wParam,MFJJNCHECKED); 
break;

}

break ;



case WM_DESTROY:
DeleteObject(hPenl); 
PostQuitMessage(0); 
return 0;

return (DefWindowProc(hwnd, message, wParam, IParam));
}

plot(){



I
/*******************
#include <stdio.h> 
/include <graph.h> 
/include <itexvsp.h> 
/include <math.h> 
/include <errno.h> 
/include <string.h> 
/include <stdlib.h> 
/include <process.h> 
/include <resource.h> 
/define ORDER 3 
/define BAND 2 
/define POINTS 9 
/define PLANES 6 
/define CONST3 1.10 
/define CONST15 1.25 
/define CONSTA 1.35 
/define R FACTOR 0.3

hello.c Topography program **************/

/♦polynomial order for basis of patch*/
/♦take points every 2,3, or 4 (BAND) bands*/ 
/♦number of lines to take points*/
/♦number of light bands to measure on each side*/ 
/*3mm zone correction*/
/♦apex R. of C. correction*/
/♦radius of curvature correction*/

int gaoi,gaoil,gaoir,top=255,bottom=l;
/♦kernel for image dilation*/ 
int v_kernel[15]={

1,0,-1,
1 ,0 ,-1 ,
1 ,0 ,-1 ,
1,0,-1,
1,0,-1
} ;

char name[10 ] ;
int ftop=3,fbottom=509;/*limits of extracted points*/ 
int centline;
float fcx=0.0,fcy=0.0;/*cornea centre displacement*/ 
double factor=l.00,dist_per_pixel=20.11;
/♦chosen co-ordinate matrices*/
static double px[ORDER][ORDER],py[ORDER][ORDER],pz[0RDER][ORDER]; 
double pxrect[ORDER][ORDER],pyrect[ORDER][ORDER],pzrect[ORDER][ORDER]; 
double curve[20][20]; 
double centrx=0.0;
double rightup[3],rightdown[3];/'*x,y,z points from right matrix for*/

/♦interpolation 'wing points' */

double matrix(); 
double matsp() ;
FILE *fp;

main(arge,argv) 
int arce; 
char *argv[] ;
{
char opt; 
int arg;
load_cnf("c:\\visnplus\\itex\\lib\\vsp.enf"); 
gaoi=ofg_gaoi_fbereate(CURRENT_F,0,0,768,512) ; 
gaoil=ofg_gaoi_fbereate(CURRENT_F,0,0,384,512); 
gaoir=ofg_gaoi_fbcreate(CURRENT_F,384,0,384,512) ; 
ofg_setframe(I);





break;
case VIEW:real_t();

break;
case FREEZE:grab();

break;
case ALIGN:m_calibration(); 

break;
case C_ENHANCE:w_auto_equalise(); 

break;
case SAVEIM:save();

break;
case CL_CAL:real_t();

grab();
printf("\n\nsharpening image"); 
sharpen();
printf("\n\nsaving image"); 
ofg_im_save(gaoi,EIGHT_BIT,"11"); 
break;

case CR_CAL:real_t();
grab();
printf("\n\nsharpening image"); 
sharpen();
printf("\n\nsaving image"); 
ofg_im_save(gaoi,EIGHT_BIT,"r2"); 
break;

case OL_CAL:real_t();
grab();
printf("\n\nsharpening image"); 
sharpen();
printf("\n\nsaving image");
of g_im_save(gaoi,EIGHT_BIT,"12");
break;

case OR_CAL:real_t() ;
grab();
printf("\n\nsharpening image"); 
sharpen();
printf("\n\nsaving image"); 
ofg_im_save(ga°i,EIGHT_BIT,"rl"); 
break;

case L_CAL:win_calib(11'); 
break;

case R_CAL:win_calib('r') ; 
break;

case P_RESTORE:restore(); 
break;

case P_COVERLAY:clear_overlay(); 
break;

case P_EXTRACT:restore();
centre(); 
limits(); 
r_extract(); 
l_extract(); 

break;
case P_SURFACE:mul_mat(); 

break;
case P_CURVE:mul4_mat(); 

break;



case E_EQUIL:equalise(); 
break;

case E_SHARPEN:sharpen(); 
break;

case E_SMOOTH:median(); 
break;

case P_PLOT:plot();
break;

case C_ERROR:systemerr() ;
break;

case C_PLANE:real_t();
grab(); 
save(); 
break;

}/*end switch*/
};/*end if else*/

}/*end main*/

cls() {
printf("\033[2J");

}
menu () {

cls() ;
printf("\n"); 
printf (" \033[7mTopography image test\033

[0m\n\n");
printf (" a..real time view\n");
printf(" b. .grab image\n");
printf(" c. .sharpen image\n");
printf(" d..sobel operator\n");
printf(" f..save image\n");
printf(" g. .restore image\n");
printf(" h..histogram equalisation\n");
printf(" i.. input lut equalisation\n");
printf(" j..median filter\n");
printf(" k. .curvature calculation\n");
printf (" 1..pixel calibration\n");
printf(" m. .upper threshold\n");
printf (" n. .lower threshold\n");
printf(" p..movement calibration\n");
printf(" q. .extract points right\n");
printf(" u..extract points left\n");
printf (" s..display surface\n");
printf (" v..clear overlay frame\n");
printf(" z .. initialise frame grabber\n");
printf (" e ..end\n");
printf(" ENTER OPTION==>");
printf("%c",7) ;

}
grabinit(){

load cnf("c:\\visnplus\\itex\\lib\\vsp.cnf");
initsys();
ofg_init();
gaoT=ofg_gaoi_fbcreate(CURRENT_F,0,0,768,512) ; 
gaoil=ofg_gaoi_fbcreate(CURRENT_F,0,0,384,512) ;



gaoir=ofg_gaoi_fbcreate(CURRENT_F,384,0,384,512) ;
ofg_setframe(O);
ofg_setvframe(I);
ofg_clf(gaoi, 0) ;
ofg_setframe(I);
ofg_camera(VIDEOO);
ofg_grab(CAMERA,gaoi) ;

}
plot(){

char fname[10],depth[10] ; 
int i,j;
/* matrices of points saved on disk */
static double trx_pos[POINTS][PLANES],try_pos[POINTS][PLANES], 

trz_pos[POINTS][PLANES];
static double tlx_pos[POINTS][PLANES],tly_pos[POINTS][PLANES], 

tlz_pos[POINTS][PLANES];
/*wing coordinates*/
double wu_xpos=0.0,wu_ypos,wu_zpos,wl_xpos=0.0,wl_ypos,wl_zpos; 
cls() ;
printf("\n file name : "); 
gets(name); 
strcpy(fname,name) ;
/*input left side points*/ 
strcat(fname,".dal") ; 
fp=fopen(fname,"rb"); 
fread(tlx_pos,sizeof(tlx_pos),1,fp); 
fread(tly_pos,sizeof(tly_pos),1,fp) ; 
fread(tlz_pos,sizeof(tlz_pos),1,fp); 
fclose(fp) ;
/*input right point file */ 
strcpy(fname,name); 
strcat(fname,".dar"); 
fp=fopen(fname,"rb"); 
fread(trx_pos,sizeof(trx_pos),1,fp); 
fread(try_pos,sizeof(try_pos),1,fp); 
fread(trz_pos,sizeof(trz_pos),1,fp); 
fclose(fp);
/*input upper wing point*/ 
strcpy(fname,name); 
strcat(fname,".dwu"); 
if((fp=fopen(fname,"r"))!=NULL){

fscanf (fp, "%lf, %lf, %lf " , &vu_xpos, &wu_ypos, iv»ai_zpos) ; 
fclose(fp);}

/*input lower wing point*/ 
strcpy(fname,name); 
strcat(fname,".dwl") ; 
if((fp=fopen(fname,"r"))!=NULL){

fscanf(fp,"%lf,%lf,%lf",&wl_xpos,&wl_ypos,Swl_zpos);
fclose(fp);}

/*fprintf(stdprn,"%c&132259.1057J",27);*/
/*fprintf(stdprn,"PG;");*/
/*fflush(stdprn); */
/♦initialise plotter*/
fprintf(stdprn,"IN;SP1;SCO,1000,0,720;DT.;");
/* draw box */
/* total box size = 1000 X  720, map box = 720 X  720 */



/* map box central coordinate = 640,360 */
/* every 100 pixels = 1mm, therefore every pixel = 10 microns*/ 
fprintf(stdprn,"PU;PA0,0;PD;PA0,720;PA1000,720;PA1000,0;PA0,0;PU;") ; 
/♦finish patient box*/
fprintf(stdprn, "PA280,720;PD;PA280,0;PU; ");
/♦print details*/

fprintf(stdprn,"PA10,680;LBFILENAME: %s.;",fname); 
fprintf(stdprn,"PA540,680;LBCORNEAL TOPOGRAPHY.;");
/♦PLOT POINTS*/
fprintf(stdprn,"DT*;SR0.2,0.5;");

for(i=0;i<POINTS;i++)
for(j=0;j<PLANES;j ++){

if(tlx_pos[i][j]!=0.0){
fprintf(stdprn,"PA%d,%d;LB*;",(int)(tly_pos[i][j]*100.0+

640.0) ,(int)(tlz_pos[i][j]*100.0+360.0));
sprintf(depth,"%8.3f",tlx_pos[i](j]-142.0);
fprintf(stdprn,"PA%d,%d;DT,;LB%s,;DT*;",(int)(tly_pos[i][j]* 

100.0+625.0),(int)(tlz_pos[i][j]*100.0+355.0),depth); 
sprintf(depth,"1(%d.%d)",i,j);
fprintf(stdprn,"PA%d,%d;DT,;LB%s,;DT*;",(int) (tly_pos[i][j ] * 

100.0+633.0),(int)(tlz_pos[i][j]*100.0+350.0),depth);
}

if(trx_pos[i)[j)!=0.0){
fprintf(stdprn,"PA%d,%d;LB*;",(int)(try_pos[i][j]*100.0+

640.0) ,(int)(trz_pos[i][j)*100.0+360.0));
sprintf(depth,"%8.3f",trx_pos[i][j]-142.0);
fprintf(stdprn,"PA%d,% d ;DT,;LB%s,;DT*;",(int)(try_pos[i][j]* 

100.0+625.0),(int)(trz_pos[i][j]*100.0+355.0),depth); 
sprintf(depth,"r(%d.%d)",i,j);
fprintf(stdprn,"PA%d,% d ;DT,;LB%s,;DT*;",(int) (try_pos[i)[j]* 

100.0+633.0), (int) (trz_pos[i][j]*100.0+3 50.0),depth); }
}

/*plot wing points if they exist*/ 
if(wu_xpos¡=0.0){

fprintf(stdprn,"PA%d,%d;LB*;",(int)(wu_ypos*100.0+640.0),
(int)(wu_zpos*100.0+360.0));

sprintf(depth,"%8.3f",wu_xpos-142.0);
fprintf(stdprn,"PA%d,% d ;DT,;LB%s,;DT*;", (int) (wu_ypos*

100.0+625.0),(int)(wu_zpos*100.0+350.0),depth);
}

if(wl_xpos!=0.0){
fprintf(stdprn,"PA%d,% d ;LB *;",(int)(wl_ypos*100.0+640.0),

(int)(wl_zpos*100.0+360.0));
sprintf(depth,"%8.3f",wl_xpos-14 2 .0) ;
fprintf(stdprn,"PA%d,%d;DT,;LB%s,;DT*;",(int)(wl_ypos* 

100.0+625.0),(int)(wl_zpos*100.0+350.0),depth);
}

fprintf(stdprn,"DT.;SR;");
/♦PLOT LOCATION GRID*/

fprintf(stdprn,"PA34 0,360;PD;PA940,360;PU;") ;
fprintf(stdprn,"PA340,360;XT;PA440,360;XT;PA540,360;XT;");
fprintf(stdprn,"PA640,360;XT;PA740,360;XT;PA840,360;XT;PA940,360;XT;");
fprintf(stdprn,"PA640,360;CI100;CI300;");
/♦change test size*/
fprintf(stdprn,"SR0.5,0.8;DT;");



fprintf(stdprn,"PA940,330;LB3.0 mm%c;DT.;",3);

fprintf(stdprn,"PG;"); 
fflush(stdprn);
}

contours(xmin)double xmin;{
char pause,opt,fname[10],str[12],vstr[10],ustr[10]; 
int uaxis,vaxis,i;
/*double xmin=142.50;*/
double u ,v,rv[ORDER),cv[ORDER],x,y,z,oldinc,inc=0.05,error=0.005;
cls() ;
do{
printf("\nprint u,v coordinates ? y/n :"); 
pause=getch(); 
printf("%c\n",pause);
printf("\ninput contour interval in mm [%lf] : ",inc); 
gets(str); 
oldinc=inc;
inc=(double)atof(str); 
if(inc==0.0){inc=oldinc;

sprintf(str,"%6.Ilf",inc*i000);} 
fprintf(stdprn,"IN;SP1;SCO,1000,0,720;DT.;");
/* draw box */
/* total box size = 1000 x 720, map box = 720 x 720 */
/* map box central coordinate = 640,360 */
/* every 100 pixels = 1mm, therefore every pixel = 10 microns*/ 
fprintf(stdprn,"PU;PA0,0;PD;PA0,720;PA1000,720;PA1000,0;PA0,0;PU;"); 
/♦finish patient box*/
fprintf(stdprn,"PA280,720;PD;PA280,0;PU;");
/♦print details*/ 
strcpy(fname,name);
fprintf(stdprn,"PA10,680;LBFILENAME: %s.;",fname);
fprintf(stdprn,"PA470,680;LBCORNEAL TOPOGRAPHY:CONTOUR PLOT.;");
/♦PLOT POINTS*/
fprintf(stdprn,"DT*;SR0.2,0.5;");

/♦build patch for different values of u and v*/ 
u=v=0.0;
for(uaxis=0;uaxis<200;uaxis++){ 

u=0.0+(double)uaxis*0.005; 
for(vaxis=0;vaxis<200;vaxis++){ 

v=0.0+(double)vaxis*0.005;

/♦construct surface patch*/
/♦column and row vectors*/
rv [0]=u*u;
rv[1]=u;
rv [2]=1.0;
cv [0]=v*v;
c v [1]=v;
cv[2]=l.0;

/♦calculate x,y,z*/ 
x=matrix(rv,px,cv); 
y=matrix(rv,py,cv); 
z=matrix(rv,pz,cv);

for(i=0;i<8;i++){



if((x>((xmin-error)+inc*i)) && (x<((xmin+error)+inc*i))) 
fprintf(stdprn,"PA%d,%d;LB*;",(int)(y*100.0+640.0),

(int)(z*100.0+360.0));
}

}
}

if(pause=='y1){ 
u=v=0.0;
for(uaxis=0;uaxis<200;uaxis+=20) { 

u=0.0+(double)uaxis*0.005; 
sprintf(ustr,"%d",uaxis); 
for(vaxis=0;vaxis<200;vaxis+=20){ 

v=0.0+(double)vaxis*0.005; 
sprintf(vstr,"%d",vaxis);

/*construct surface patch*/
/‘column and row vectors*/
rv[0]=u*u;
rv [1]=u;
rv[2]=1.0;
cv[0]=v*v;
c v [1]=v;
c v [2] = 1.0;

/‘calculate x,y,z*/ 
x=matrix(rv,px,cv); 
y=matrix(rv,py,cv); 
z=matrix(rv,pz,cv) ;
fprintf(stdprn,"PA%d,%d;SR0.7,1.0;DTX;LBX;SR0.2,0.5;DT*;",

(int) (y*100.0 + 64 0.0),(int) (z*100.0 + 360.0) ) ;
fprintf(stdprn,"PA%d,%d;SR0.3,0.6;DT);LB(%s,%s) ,-SR0.2,0.5;

DT*;",(int)(y*l00.0+625.0),(int)(z*100.0+350.0),ustr,vstr);

}
}

}/*end if*/

fprintf(stdprn,"DT.;SR;");
fprintf(stdprn,"PA10,620;LBCONTOURS microns:%s.;",str);

/‘PLOT LOCATION GRID*/
fprintf(stdprn,"PA340,360;PD;PA940,360;PU;");
fprintf(stdprn,"PA340,360;XT;PA440,360;XT;PA540,360;XT;");
fprintf(stdprn,"PA640,360;XT;PA740,360;XT;PA840,360;XT;PA940,360;XT;");
fprintf(stdprn,"PA640,360;CI100;CI300;");
/‘change test size*/
fprintf(stdprn,"SR0.5,0.8;DT;");
fprintf(stdprn,"PA940,330;LB3.0 mm%c;DT.;",3);

fprintf(stdprn,"PG;"); 
fflush(stdprn);
printf("\nplot another map with different contour increment y/n? : "); 
opt=getch() ;

}
}while(opt=='y ');



con4(xmin,apex_u,apex_v,apex_y,apex_z)
double xmin;int apex_u,apex_v;double apex_y,apex_z;{
char pause,opt,fname[10],str[12],cstr[10],apexstr[10],curl5[10],cur3[10];
char flatstr[10],sphstr[10],radstr[10],apowstr[10],afstr[10];
int ua'xis, vaxis, i, j ,uelement,velement,count15,count3;
double apex=0.0,curvel5=0.0,curve3=0.0,ydist,zdist,dist,flatt=0.0;
double apow=0.0,af=0.0,sphrad=0.0,spharea=0.0;
/♦double xmin=142.50;*/
double u,v,rv[ORDER],cv[ORDER],x,y,z,oldinc,inc=0.05,error=0.005;
cls();
do{
printf("\nprint curvatures ? y/n 
pause=getch(); 
printf("%c\n",pause);
printf("\ninput contour interval in mm [%lf] : ",inc);
gets(str);
oldinc=inc;
inc=(double)atof(str); 
if(inc==0.0){inc=oldinc;

sprintf(str,"%6.Ilf",inc*1000);} 
fprintf(stdprn,"IN;SP1;SCO,1000,0,720;DT.;");
/* draw box */
/* total box size = 1000 x 720, map box = 720 x 720 */
/* map box central coordinate = 640,360 */
/* every 100 pixels = 1mm, therefore every pixel = 10 microns*/ 
fprintf(stdprn,"PU;PA0,0;PD;PA0,720;PA1000,720;PA1000,0;PAO,0;PU;"); 
/♦finish patient box*/
fprintf(stdprn,"PA280,720;PD;PA280,0;PU;");
/♦print details*/ 
strcpy(fname,name);
fprintf(stdprn,"PA10,680;LBFILENAME: %s.;",fname);
fprintf(stdprn,"PA450,680;LBCORNEAL TOPOGRAPHY:EDMUND MODEL.;");
/♦PLOT POINTS*/
fprintf(stdprn,"DT*;SR0.2,0.5;");

/♦build patch for different values of u and v*/ 
u=v=0.0;
for(uaxis=0;uaxis<200;uaxis++){ 

u=0.0+(double)uaxis*0.005; 
for(vaxis=0;vaxis<200;vaxis++){ 

v=0.0+(double)vaxis*0.005;

/♦construct surface patch*/
/♦column and row vectors*/
rv[0]=u*u;
rv [1]=u;
rv [2]=1.0;
cv[0]=v*v;
cv [1]=v;
cv[2]=1.0;

/♦calculate x,y,z*/
x=matrix(rv,px,cv); /*pxrect*/
y=matrix(rv,py,cv);
z=matrix(rv,pz,cv);
if((uaxis==apex_u)4S(vaxis==apex_v))

fprintf(stdprn,"PA%d,%d;DTA;SR0.8,1.0;LBA;DT*;SR0.2,0.5;"
,(int) (y*100.0+64 0.0),(int) (z*100.0 + 3 60.0) ) ;



if(!((uaxis>apex_u-5)&&(uaxis<apex_u+5)(vaxis>apex_v-5)
&&(vaxis<apex_v+5)))

for(i=0;i<8;i++){
if((x>((xmin-error)+inc*i)) &&

(x<((xmin+error)+inc*i)))
fprintf(stdprn,"PA%d,%d;LB*;",

(int)(y*1 0 0 .0+640.0),(int)(z*1 0 0 .0+360.0));

}
}

u=v=curvel5=curve3=0.0; 
countl5=count3=0;
for(uaxis=0;uaxis<2 00;uaxis+=2 0) { 

uelement=uaxis/10; 
u=0.0+(double)uaxis*0.005; 
for(vaxis=0;vaxis<200;vaxis+=20){ 

veleraent=vaxis/10; 
v=0.0+(double)vaxis*0.005;

/*construct surface patch*/
/♦column and row vectors*/
rv[0]=u*u;
rv[1]=u;
rv[2)=1.0;
cv[0]=v*v;
cv(1]=v;
cv[2]=1.0;

/♦calculate x,y,z*/
x=matrix(rv,px,cv);/*pxrect*/
y=matrix(rv,py,cv);
z=matrix(rv,pz,cv);
ydist=(y-apex_y)* (y-apex_y);
zdist=(z-apex_z)* (z-apex_z);
dist=sqrt(ydist+zdist);
if((pause=='y1)&&(dist<l.5)){

sprintf(cstr,"%6.2 If",curve[uelement][velement]+CONSTA- 
R_FACTOR*dist);

fprintf(stdprn,"PA%d,%d;SR0.7,1.0;DTX;LBX;SR0.2,0.5;DT*;", 
(int)(y*100.0+640.0),(int)(z*100.0+360.0));

fprintf(stdprn,"PA%d,%d;SR0.3,0.6;DT);LB(%s);SR0.2,0.5;DT* 
",(int)(y*100.0+630.0),(int)(z*100.0+350.0),cstr);

}
if(dist<1.5){count3++;

curve3+=curve[uelement][velement];} 
if(dist<0.75){countl5++;

curvel5+=curve[uelenent][velement];}

}
}

apex=sqrt(apex_y*apex_y+apex_z*apex_z); 
curve3=curve3/count3; 
curvel5=curvel5/countl5;
flatt=((curve3+CONST3)-(curvel5+CONST15))/1.5;



if(flatt<0.01)flatt=0.001; 
sphrad=0.1/flatt; 
spharea=sphrad*sphrad*3. 142 ; 
apow=3 3 7 .5/(curvel5+CONST15) ;
af=3 37.5*((1.0/(curvel5+CONST15))-(1.0/(curvel5+CONST15+flatt*l.5))); 
sprinti(apexstr,"%7.21f",apex); 
sprinti(cur3,"%6.2 If",curve3+CONST3); 
sprintf(cur15,"%6.21f",curvel5+CONST15); 
sprinti(flatstr,"%7.21f",flatt); 
sprinti (radstr,"%7.21f",sphrad); 
sprinti(sphstr,"%7.2 If",spharea); 
sprinti(apowstr,"%7.2 If",apow) ; 
sprinti(afstr,"%7.2 If",af); 

fprintf(stdprn,"DT.;SR;") ;
fprintf(stdprn,"PAIO, 620 ;LBCONTOURS microns :%s.;",str); 
fprintf(stdprn,"DT;PA10,560;LBApex dist(mm):%s;",apexstr); 
fprintf(stdprn,"PAIO,500;LBApex R.of.C (mm):%s;",curl5); 
fprintf(stdprn,"PAIO,440;LBApex Power (D):%s;",apowstr); 
fprintf(stdprn,"PAIO,380 ;LBA.F.(D/mm):%s;",afstr);

/*PLOT LOCATION GRID*/
fprintf(stdprn,"PA340,360;PD;PA940,360;PU;");
fprintf(stdprn,"PA340,360;XT;PA440,360;XT;PA540,360;XT;");
fprintf(stdprn,"PA640,360;XT;PA740,360;XT;PA840,360;XT;PA940,360;XT;");
fprintf(stdprn,"PA640,360;Cl100;CI300;");
/*change test size*/
fprintf(stdprn,"SR0.5,0.8;DT;");
fprintf(stdprn,"PA940,330 ;LB3.0 mm%c;DT.;",3);

fprintf(stdprn,"PG;"); 
fflush(stdprn);
printf("\nplot another map with different contour increment y/n? : "); 
opt=getch() ;

}v.'hile (opt== 'y ' ) ;

surface(){
int i,j ;
short pixelvalue=15;
char pause,fname[10],depth[10];
/* matrices of points saved on disk */
static double trx_pos[POINTS][PLANES],try_pos[POINTS][PLANES], 

trz_pos[POINTS][PLANES];
static double tlx_pos[POINTS][PLANES],tly_pos[POINTS][PLANES], 

tlz_pos[POINTS][PLANES];
/*wing coordinates*/
double wu_xpos=0.0,wu_ypos,wu_zpos,wl_xpos=0.0,wl_ypos,wl_zpos; 
/*input data file*/
_registerfonts("*.FON"); 
cls();
printf("\n file name : ");
gets(name);
strcpy(fname,name);
/*input left side points*/
strcat(fname,".dal");
fp=fopen(fname,"rb");
fread(tlx_pos,sizeof(tlx_pos),1,fp);



I

fread(tly_pos,sizeof(tly_pos),1,fp); 
fread(tlz_pos,sizeof(tlz_pos) , 1, fp) ; 
fclose(fp);
/♦input right point file */ 
strcpy(fname,name); 
strcat(fname,".dar"); 
fp=fopen(fname,"rb"); 
fread(trx_pos,sizeof(trx_pos),1,fp); 
fread(try_pos,sizeof(try_pos),1,fp); 
fread(trz_pos,sizeof(trz_pos),1,fp); 
fclose(fp) ;
/♦input upper wing point*/ 
strcpy(fname,name); 
strcat(fname,".dwu"); 
if((fp=fopen(fname,"r"))!=NULL){

fscanf(fp,"%lf,%lf,%lf",&wu_xpos,&wu_ypos,&wna_zpos); 
fclose(fp);)

/♦input lower wing point*/ 
strcpy(fname,name); 
strcat(fname,".dwl"); 
if((fp=fopen(fname,"r"))!=NULL){

fscanf(fp,"%lf,%lf,%lf",&wl_xpos,&wl_ypos,&wl_zpos); 
fclose(fp);>

_setvideomode(_VRES16C0L0R);
_setviewport(0,0,640,480);
_setwindow(TRUE,-5.0,-5.0,5.0,5.0);
_setbkcolor (_BRIC-HTWHITE) ;
_remappalette(15,_BLACK);
_setcolor(15) ;
_setfont("courbhl6wl2");
_moveto_w(-5.0,0.0);
_lineto_w(5.0,0.0);
_moveto_w(0.0,5.0);
_lineto_w(0.0,-5.0);
_moveto_w(0.1,5.0);
_outgtext("z") ;
_moveto_w(-5.0,-0.1);
_outgtext("y") ;
_moveto_w(-5.0,5.0);
_outgtext("POINT PLOT");
_setfont("courbh8w6"); 
for(i=0;i<P0INTS;i++) 

for(j = 0;j <PLANES ;j ++)
{

if(tlx_pos[i)[j]!=0.0){
_setpixel_w(tly_pos[i][j],tlz_pos[i](j)) ; 
sprintf(depth,"%8.3f",tlx_pos[i][j]-142.0); 
_moveto_w(tly_pos[i][j]-0.25,tlz_pos[i][j]-0.1); 
_outgtext(depth);
}

if(trx_pos[i][j]!=0.0){
_setpixel_w(try_pos[i)[j],trz_pos[i][j]); 
sprinti(depth,"%8.3f",trx_pos[i)[j]~142.0); 
_moveto_w(try_pos[i][j]-o.25,trz_pos[i][j]-0.1); 
_outgtext (depth);}

>

I



/*plot wing points if they exist*/ 
if(wu_xpos!=0.0){

_setpixel_w(wu_ypos,wu_zpos); 
sprintf(depth,"%8.3f",wu_xpos-142.0);

, _moveto_w(wu_ypos-0.25,wu_zpos-0.1);
_outgtext(depth);
}

if(wl_xpos!=0.0){
_setpixel_w(wl_ypos,wl_zpos); 

sprintf(depth,"%8.3f",wl_xpos-142.0);
_moveto_w(wl_ypos-0.25,wl_zpos-0.1);
_outgtext(depth);
}

pause=getch();

_setvideomode(_DEFAULTMODE);
}

write_cross(last,i,line_step,si,colour) 
int last,i,line_step,si,colour; {
ofg_cline(0,last-2,i*line_step+sl,last+2,i*line_step+sl,colour); 
ofg_cline(0,last,i*line_step+sl-2,last,i*line_step+sl+2,colour);
}

centre(){
char pause,fname[12];
int 1=5,r=7 60,m=5,centre_x,centre_y;
fcx=fcy=0.0;
/*set lut 15 to 255*/ 
ofg_clearlut(OUTPUT,15,255);
/*set dynamic lut mode*/ 
ofg_dlutmode(DYNAMIC); 
ofg_setfrare(0); 
cls() ;
printf("\n Press 'i ' to move in, 'o' to move out, any key to end");
ofg_cline(0,1,0,1,512,15) ;
do{

pause=getch(); 
ofg_cvline(gaoi,1,0,512,0); 
if(pause=='i')l+=2; 
if(pause=='o ')l-=2; 
ofg_cline(0,1,0,1,512,15);
Jwhile(pause=='i 1 | pause=='o');

ofg_cline(0,r,0,r,512,15) ; 
do{

pause=getch(); 
ofg_cvline(gaoi,r,0,512,0) ; 
if(pause=='i ')r-=2; 
if (pause—  'o') r+=2 ; 
ofg_cline(0,r,0,r,512,l5) ;
Jwhile(pause=='i ' | pause=='o');

cls();
printf("\npress 'd ' to move down, 'u' to move up, any key to end"); 
ofg_cline(0,0,m,768,m,15); 

do{
pause=getch(); 
ofg_chline (gaoi, 0,in,1,0) ;



ofg_chline(gaoi,l+l,m,r-l-l,0); 
ofg_chline(gaoi,r+l,m,767-r,0); 
if(pause=='d ')m+=2; 
if(pause==1u 1) m-=2; 
ofg_cline(0,0,m,768,m,15) ; 
}while(pause=='d' | pause=='u'); 

/♦calculate distance shift from centre*/ 
/♦centre x = (r+l)/2, centre y = m */ 
centre_x=((r+1)/2)-384; 
centre_y=m-256;
/♦calculate value in mm*/
fcx=(float)centre_x*dist_per_pixel*0.001; 
fcy=(float)centre_y*dist_per_pixel*0.001; 
printf("\nx = %f mm, y = %f mm",fcx,fey); 
pause=getch(); 
clear_overlay();
}/*end proc*/

limits (){
char pause;
ofg_clearlut(OUTPUT,15,255); 
ofg_dlutmode(DYNAMIC); 
ofg_setframe(0); 
do{

cls() ;
printf("\npress 'd' to move down, 'u' to move up, any key to end") 
printf("\n\ntop_mark = %d",ftop); 
ofg_cline(0,0,ftop,768,ftop,15); 
pause=getch();
ofg_chline(gaoi,0,ftop,768,0); 
if(pause=='d ' && ftop<500)ftop+=2; 
if(pause=='u ' ftop>2)ftop-=2; 
ofg_cline(0,0,ftop,768,ftop,15);
}while(pause=='d' | pause=='u');

do{
els () ;
printf("\npress 'd' to move down, 'u' to move up, any key to end") 
printf("\n\nbottom_mark = %d",fbottom); 
ofg_cline(0,0,fbottom,768,fbottom,15); 
pause=getch();
ofg_chline(gaoi,0,fbottom,768,0) ; 
if(pause=='d ' && fbottom<508)fbottom+=2; 
if(pause— 'u' fbottoms(ftop+1))fbottom-=2; 
ofg_cline(0,0,fbottom,768,fbottom,15);
}while(pause=='d' | pause=='u'); 
clear_overlay();

l_extract(){
int x[POINTS][PLANES],y[POINTS][PLANES],i,j,last_point,last; 
int line_step=50,sl=100;
char choose,pause,line[100],wfname[10],fname[10]; 
double l_cam=-7743.11,1;
static double lx_pos[POINTS][PLANES],ly_pos[POINTS][PLANES], 

1Z_pos[POINTS][PLANES];



double tan_phi=l.84,sep=118.5,deltah=0.0,syserror=0.0; 
double w_xpos,w_ypos,w_zpos; 
float Lminusl[13];
float yp=0.0,zp=0.0,t=0.0,x_coord=0.0,y_coord=0.0, z_coord=0.0;
/*read calibrated values*/ 

strcpy(fname,name); 
strcat(fname,".lcb"); 
if( (fp = fopen(fname,"r"))==NULL){ 

printf("\ncannot open %s file",fname); 
printf("\npress any key to continue"); 
pause=getch(); 
return(-1);}

fscanf(fp,"%lf,%lf,%lf,%lf,%lf",Stan_phi,Ssep,&1, Sdeltah,Ssyserror);
fclose(fp);
l_cam=l;
ofg_clearlut(OUTPUT,15,255); 
ofg_dlutmode(DYNAMIC); 
ofg_setframe(0);
line_step=(fbottom-ftop)/ (POINTS-1);
sl=ftop-line_step;
cls();
printf("\nf..forward, b..back, p..place point, every %ld bands",BAND); 
for(i=l;i<P0lNTS+l;i++){ 

last_point=390; 
last=390;
write_cross(last,i,line_step,si,15) ;
for(j = 0 ;j <PLANES;j ++){
do{

choose=getch();
switch(choose){

case 'f ':write_cross(last,i,line_step,si,0) ; 
last--;
write_cross(last,i,line_step,si,15); 
break;

case 'b ':if(last>=last_point-l)break;
write_cross(last,i,line_step,si,0); 
last++;
write_cross(last, i, line_step,si,15); 
break;

}/*end case*/
}while(choose!='p');
write_cross(last,i,line_step,si,15);
last_point=last;
x[i-l][j]=last;
y[i-l][j]=i*line_step+sl;
last-=4;

}/*next j*/
}/*next i*/

/*****calibration factors*****/ 
printf("\n press any key"); 
pause=getch () ;
Lminusl[0]=150000.0;/‘distance to first plane in microns*/ 
els () ;
printf("\n\nvalues as stored"); 
printf("\ntan phi = %lf",tan_phi); 
printf("\nl=%lf,l_cam=%lf",1,l_cam);



printf("\nseperation along axis in mm= %lf",sep*0.001); 
printf("\ndistance to first plane in mm= %f",Lminusl[0]*0.001); 
for(i=l;i<13;i++)Lminusl[i]=Lminusl[0]-(float)sep*(float)i;

/*print results on screen*/

/*set of POINTS for each plane*/
for(j=0;j<PLANES;j++){/******planes******/

for(i=0;i<POINTS;i++){/******points on plane*****/
YP=(float)(3 84-x[i][j 3); 
zp=(float) (256-y[i)[j]);
/*all plane measured*/
t=Lminusl[j *BAND]*tan_phi/((float)l_cam*tan_phi+yp); 
x_coord=(float)l_cam*(t+1.0)*0.001; 
y_coord=yp*t*0.001; 
z_coord=-zp*t*0.001;
lx_pos[i][j]=(double)x_coord+deltah+(syserror*

(double)yp);
ly_pos[i][j]=(double)y_coord-(double)fcx; 
lz_pos[i j[j] = (double)z_coord+(double)fey;
/*coords multiplied by 0.001 to convert to mm*/
}/*next point*/

}/*next plane*/

/**correct for lost points**/
/**these are set to zero **/
/** and correct for depth error **/

for(i=0;i<P0INTS;i++)
for(j=0;j<PLANES;j++)

lx_pos[i][j]=lx_pos[i][j]+(centrx-
lx_pos[centline][0]);

fer(i=0;i<POINTS;i++){
for(j = l;j <PLANES;j ++){

lx_pos[i][j]=lx_pos[i][j)+(centrx-
lx_pos[centline][0]);

if(x[i][j]>(x[i][j-l]-5)){
lx_pos[i][j]=0.0; 
ly_Po s [ i ] [j] = 0.0; 
lz_pos[i][j]=0.0;}

}
}

printf("\n press any key"); 
pause=getch () ; 
cls() ;

for(i=0;i<POINTS;i++){printf("\n"); 
for(j=PLANES-l;j>=0;j— ){ 

printf("x");
printf("[%7.31f] ",lx_pos[i][j]);} 
printf("\n");

}
printf("\nsend to printer? y/n"); 
pause=getch(); 
if(pause=='y'){



fprintf(stdprn,"\r\n\n\n");
fprintf(stdprn,"\r\n LEFT

measurement results");
for(i=0;i<POINTS;i++){fprintf(stdprn,"\n\n\n\r"); 

for(j=PLANES-l; j>=0; j — ) { 
fprintf(stdprn,"x");
fprintf(stdprn,"[%7.3 If] ",lx_pos[i][j]) ; } 
fprintf(stdprn,"\n\r");

}
fprintf(stdprn,"\f"); 
fflush(stdprn);
}

ofg_dlutmode(STATIC); 
ofg_setframe(I);

/*save matrix on file*/
printf("\n%csave matrix on file ? y/n",7); 
pause=getch () ; 
if(pause=='y1){

printf("\n file name : ") ;
gets(wfname);
strcpy(fname,wfname) ;
strcat(fname,".dal") ;
fp=fopen(fname,"wb");
fwrite(lx_pos,sizeof(lx_pos),1,fp);
fwrite(ly_pos,sizeof(ly_pos),1,fp) ;
fwrite(lz_pos,sizeof(lz_pos),1,fp);
fclose(fp) ;
}

if(pause=='y •){
/♦interpolation for upper wing points*/ 
w_xpos=(lx_pos[0][0]+rightup[0])/2.0; 
w_ypos=(ly_pos[0 j[0]+rightup[1])/2.0; 
w_zpos=(lz_pos[0][0]+rightup[2])/2.0; 
strcpy(fname,wfname); 
strcat(fname,".dwu"); 
fp=fopen(fname,"w");
fprintf(fp,"Ilf,Ilf,Ilf ",w_xpos,w_ypos,w_zpos); 
close(fp);
/♦interpolation for lower w’ing points*/ 
w_xpos=(lx_pos[POINTS-1][0]+rightdown[0])/2.0; 
w_ypos=(ly_pos[POINTS-1][0]+rightdown[1))/2.0 ; 
w_zpos=(lz_pos[POINTS-1)[0]+rightdown[2])/2.0; 
strcpy(fname,wfname); 
strcat(fname,".dwl"); 
fp=fopen(fname,"w");
fprintf(fp,"Ilf,Ilf,Ilf ",w_xpos,w_ypos,w_zpos); 
close(fp);
}/*end if*/

}/*end proc*/ 
r_extract(){

int x [POINTS][PLANES),y[POINTS][PLANES),i,j,last_point,last; 
int line_step=50,sl=100,u_wing_yp,u_wing_zp,l_wing_yp,l_wing_zp; 
char choose,pause,line[100],fname[10); 
double l_cam=-7743.11,1;



static double rx_pos[POINTS][PLANES],ry_pos[POINTS][PLANES], 
rz_pos[POINTS][PLANES];

double tan_phi=l.84,sep=118.5,deltah=0.0,syserror=0.0; 
double Lminusl[13];
double yp=0.0,zp=0.0,t=0.0,x_coord=0.0,y_coord=0.0,z_coord=0.0;
double uwyp,uwzp,lwyp,lwzp,wuxc,wuyc,wuzc;
double wlxc,wlyc,wlzc;
double ul,ll,ut,lt;
double wnum_u,wnum_l;
double wu_xpos,wu_ypos,wu_zpos,wl_xpos,wl_ypos,wl_zpos;
/*read calibrated values*/ 
cls() ;

strcpy(fname,name);
strcat(fname,".rcb");
if( (fp = fopen(fname,"r"))==NULL){

printf("\ncannot open %s file",fname); 
printf("\npress any key to continue"); 
pause=getch() ; 
return(-1) ; }

fscant(fp,"%lf,%lf,%lf,%lf,%lf",&tan_phi,&sep,&1,&deltah,Ssyserror); 
fclose(fp); 
l_cam=l;
ofg_clearlut(OUTPUT,15,255) ; 
ofg_dlutmode(DYNAMIC); 
ofg_setfrane(O);
line_step=(fbotton-ftop)/ (POINTS-1);
sl=ftop-line_step;
cls();
printf("\nf..forward, b..back( p..place point, every %ld bands",BAND); 
for(i=l;i<POINTS+l;i++){

1a st_po i nt=3 8 0; 
last=380;
write_cross(last,i,line_step,si,15);
for(j=0;j <PLANES;j ++){
do{

choose=getch() ;
switch(choose) {

case 'f ':write_cross(last,i,line_step,si,0); 
last++;
write_cross(last,i,line_step,si,15); 
break;

case 'b':if(last==last_point+l)break;
write_cross(last,i,line_step,si,0); 
last--;
write_cross(last,i,line_step,si,15); 
break;

}/*end case*/
}while(choose!='p');
write_cross(last,i,line_step,si,15); 
last_point=last;

[j]=last;
y[i-l][j]=i*line_step+sl; 
last+=5;

}/*next j*/
}/*next i*/

/*****calibration factors*****/



printf("\n press any key"); 
pause=getch();
Lminusl[0]=150000.0;/*distance to first plane in microns*/ 
cls();
printf("\n\nvalues as stored"); 
printf("\ntan phi = llf",tan_phi); 
printf("\nl=%lf,l_cam=%lf",1,l_cam);
printf("\nseperation along axis in mm= Ilf",sep*0.001) ; 
printf("\ndistance to first plane in mm= Ilf",Lminusl[0)*

0 .001) ;
for(i=l;i<l3;i++)Lminusl[i]=Lminusl[0]-(double)sep*(double)

/*print results on screen*/

/*set of POINTS for each plane*/
for(j=0;j<PLANES;j++){/******planes******/

for(i=0;i<POINTS;i++){/******points on plane*****/ 
yp=(double)(x[i][j]-384); 
zp=(double)(256-y[i][j]);
/‘all plane measured*/
t=Lminusl [ j *BAND] *tan_phi/ ((double) l_cam*tan_phi+yp) 
x_coord=(double)l_cam*(t+1.0)*0.001; 
y_coord=-yp*t*0.001; 
z_coord=-zp*t*0.001;
rx_pos[i][j]=(double)x_coord+deltah+(syserror*

(double)yp);
ry_pos[i](j]=(double)y_coord-(double)fcx; 
rz_pos[i][j]=(double)z_coord+(double)fey;
/*coords multiplied ioy 0.001 to convert to mm*/ 
}/*next point*/

}/*next plane*/

/** save central point for calibration correction **/
/** with left points (central depth) **/ 
centrx=rx_pos[centline][0);

/**correct for lost points**/
/**these are set to zero**/ 
for(i=0;i<POINTS;i++){

for(j=l;j <PLANES;j ++){
if(x[i][j]<(x[i][j-l]+6)){

rx_pos[i][j]=0.0; 
ry_pos[i)[j]=0.0; 
rz_pos[i][j]=0.0;}

}
}

/‘save top and bottom (0,0) points for central 'wing' 
interpolation*/

rightup[0]=rx_pos[0][0]; 
rightup[li=ry_pos[0][0]; 
rightup[2]=rz_pos[0][0]; 
rightdown[0]=rx_pos[P0INTS-l][0]; 
rightdown[1]=ry_pos[POINTS-1][0]; 
rightdown[2]=rz_pos[POINTS-1](0);

printf("\n press any key");



pause=getch(); 
cls() ;

for(i=0;i<POINTS;i++) {pnntf ("\n") ; 
for(j=0;j<PLANES;j ++){ 

printf("x");
printf("[%7.31f] ",rx_pos[i]tj]);} 
printf("\n");

}
printf("\nsend to printer? y/n"); 
pause=getch(); 
if(pause=='y'){

fprintf(stdprn,"\r\n\n\n");
fprintf(stdprn,"\r\n RIGHT measurement

results") ;
for(i=0;i<POINTS;i++){fprintf(stdprn,"\n\n\n\r"); 

for(j=0;j<PLANES;j++){ 
fprintf(stdprn,"x"); 
fprintf(stdprn,"[%7.31f] ",

rx_pos[i][j]);}
fprintf(stdprn,"\n\r");

}
fprintf (stdprn,"\f"); 
fflush(stdprn) ;
}

/*save matrix on file*/
printf("\n%csave matrix on file ? y/n",7); 
pause=getch(); 
if(pause=='y'){

printf("\n file name : ");
gets(fname) ;
strcat(fname,".dar") ;
fp=fopen(fname,"wb");
fwrite(rx_pos,sizeof(rx_pos),1,fp);
fwrite(ry_pos,sizeof(ry_pos),1, fp);
fwrite(rz_pos,sizeof(rz_pos),1,fp);
fclose(fp);
}
ofg_clf(gaoi,0) ; 
cls() ;
printf("\n get upper wing point ? y/n"); 
pause=getch(); 
if (pause==1y '){

u_wing_zp=2; 
u_wing_yp=300; 

cls() ;
printf("\n Press 'i ' to move in, 'o' to move out, any key to end");
ofg_cline(0,u_wing_yp,0,u_wing_yp,512,15);
do{

pause=getch();
ofg_cvline(gaoi,u_wing_yp,0,512,0); 
if(pause=='i ')u_wTng_yp++; 
if(pause=='o')u_wing_yp— ; 
ofg_cline(0,u_wing_yp,0,u_wing_yp,512,15);



| pause=='o');
do{

cls() ;
printf("\npress 'd ' to move down, 'u1 to move up, any key to

end");
printf("\n\nmark = %d",u_wing_zp); 
ofg_cXine(0,0,u_wing_zp,7 68,u_wing_zp,15) ; 
pause=getch ();
ofg_chline(gaoi,0,u_wing_zp,768,0); 
if(pause=='d' && u_wing_zp<500)u_wing_zp++; 
if(pause=='u 1&& u_wing_zp>2)u_wing_zp— ; 
ofg_cline(0,0,u_wing_zp,768,u_wing_zp,15) ;

}while(pause=='d' | pause=='u');
printf("\ninput wing number , counting right to left "); 
gets(line); 
wnum_u=atof(line);

/♦calculate x,y,z*/
uwyp=(double)(u_wing_yp-384) ;
uwzp=(double)(256-u_wing_zp);
ul=Lminusl[0)+(double)sep*(double)wnum_u;
ut=ul*tan_phi/((double)l_cam*tan_phi+uwyp);
wuxc=(double)l_cam*(ut+1.0)*0.001;
wnayc=-uw)'p*t*0.001;
wuzc=-uwzp*t*0.001 ;
wu_xpos=(double)wuxc+deltah+(syserror*(double)uwyp);
wu_ypos=(double) wuyc-(double)fcx;
wu_zpos=(double)vuzc+(double)fey;
printf("\n%csave point on file ? y/n",7);
pause=getch() ;
if(pause=='y '){

printf("\n file name : "); 
gets(fname); 
streat(fname,".dvu"); 
fp=fopen(fname,"w");

fprintf(fp,"%lf,%lf,%lf ",wu_xpos,wu_ypos,wu_zpos); 
close(fp) ; >
}/*end if*/ 

ofg_clf(gaoi,0); 
cls();
printf("\n get lower wing point ? y/n"); 
pause=getch(); 
if (pause=='y '){

}while(pause==1i1

l_wing_zp=506; 
l_wing_yp=300; 

els() ;
printf("\n Press •i • to move in, 'o' to move out, any key to

end") ;
ofg_cline(0,l_wing_yp,0,l_wing_yp,512,15); 
do{

pause=getch();
ofg_cvline(gaoi,l_wing_yp, 0,512,0) ; 
if(pause=='i1)l_wing_yp++; 
if(pause=='o')l_wing_yp— ; 
ofg_cline(0,l_wing yp,0,l_wing_yp,512,15);
}while(pause=='i ' J pause=='o');

do{



els() ;
printf("\npress 'd' to move down, 'u' to move up, any key to

end");
printf("\n\nmark = %d",l_wing_zp);
ofg_cline(0,0,l_wing_zp,768,l_wing_zp, 15) ;
pause=getch();
ofg_chline(gaoi,0,l_wing_zp,768,0); 
if(pause=='d' && l_wing_zp<500)l_wing_zp++; 
if(pause— 'u'&& l_wing_zp>2)l_wing_zp— ; 
ofg_cline(0,0,l_wing_zp,768,l_wing_zp,15);

}while(pause=='d' | pause=='u');
printf(”\ninput wing number , counting right to left ") ; 
gets(line); 
wnum_l=atof(line);
/♦calculate x,y,z*/
lwyp=(double)(l_wing_yp-384);
lwzp=(double)(256-l_wing_zp);
ll=Lminusl[0]+(double)sep*wnum_l;
lt=ll*tan_phi/((double)l_cam*tan_phi+lwyp);
wlxc=(double)l_cam*(lt+1.0)*0.001;
wlyc=-lwyp*t*0.001;
wlzc=-lwzp*t*0.001;
wl_xpos=(double)wlxc+deltah+(syserror*(double)lwyp);
wl_ypos=(double)wlye-(double)fex;
wl_zpos=(double)wlzc+(double)fey;
printf("\n%csave point on file ? y/n",7);
pause=getch();
if(pause=='y '){

printf("\n file name : "); 
gets(fname); 
streat(fname,".dwl"); 
fp=fopen(fname,"w");

fprintf(fp,"%lf,%lf,%lf ",wl_xpos,wl_ypos,wl_zpos); 
close(fp);}
}/*end if*/ 
clear_overlay();

}/*end proc*/

m_calibration(){ 
char pause; 
int 1=100,r=668;
/♦set lut 15 to 255*/ 
ofg_clearlut(OUTPUT,15,255);
/♦set dynamic output lut mode - lut depends on pixel values in 
overlay*/
ofg_dlutmode(DYNAMIC); 
ofg_setframe(0);
/♦in overlay frame, draw line down centre of screen*/ 
ofg_cline(0,384,0,384,512,15);
/♦draw lines at equal distances each side of middle line*/ 
do{ ofg_cline(0,1,0,1,512,15); 

ofg_cline(0,r,0,r,512,15); 
ofg_grab(CAMERA,gaoi); 
cls() ;
printf("\nl/ direction of translation along camera axis"); 
printf("\n press 'i1 to move in, 'o' to move out"); 
pause=getch() ;



ofg_cvline(gaoi,1,0,512,0); 
ofg_cvline(gaoi,r,0,512,0); 
if(pause=='i')(l++;r— ;} 
if(pause=='o'){1— ;r++;}

}while(pause=='i1 | pause=='o'); 
clear_overlay(); }

systemerr(){/*adjust for systematic error*/ 
int lx[13],rx[13],i,ldist,rdist;
double ltan_phi,rtan_phi,lsep,rsep,11,rl,deltah=0.0,lsyserror,rsyserror; 
double lx_pos[13],rx_pos[13],yp,t,Lminusl[13] ; 
char pause;

/*open right calibration file*/ 
fp=fopen("right.cal","r");
fscanf(fp,"%lf,%lf,%lf",&rtan_phi,Srsep,&rl); 
for(i=0;i<13;i++)f scanf(fp,",%d",Srx[ i ]) ;
/*open left calibration file*/ 
fp=fopen("left.cal","r");
fscanf(fp,"%If,%lf,%lf",&ltan_phi,&lsep,&11); 
for(i=12;i>=0;i— )fscanf(fp,",%d",&lx[i]) ; 
ldist=lx[l]-lx[ll]; 
rdist=rx[ll]-rx[l];
/♦calculate depths for right*/
Lminusl[0]=150000.0;
for(i=l;i<13;i++)Lminusl[i]=Lminusl[0]-rsep*(double)i; 
for(i=0;i<13;i++){

yp=(double)(rx[i]-384);
t=Lminusl[i]*rtan_phi/(rl*rtan_phi+yp);
rx_pos[i]=rl*(t+1.0)*0.001;
>

/♦calculate depths for left*/
Lminusl[0]=150000.0;
for(i=l;i<l3;i++)Lminusl[i]=Lminusl[0]-lsep*(double)i; 
for(i=0;i<13;i++){

yp=(double)(384-lx[i]J;
t=Lminusl[i]*ltan_phi/(ll*ltan_phi+yp);
lx_pos[i]=11*(t+1.0)*0.001;
}

deltah=(lx_pos[2]-rx_pos[2])/2.0;
lsyserror=(lx_pos[1]-lx_pos[11])/(double)ldist;
rsyserror=(rx_pos[1)-rx_pos[11])/(double)rdist;
printf("\n deltah = %lf microns",deltah);
printf("\n left system error = %lf microns",lsyserror);
printf("\n right system error = %lf microns",rsyserror);
pause=getch () ;
fp=fopen("right.cal","w");
fprintf(fp,"%lf,%lf,Ilf,%lf,%lf",rtan_phi,rsep,rl,-1.0*deltah,rsyserror); 

fclose(fp);
fp=fopen("left.cal","w");
fprintf(fp,"%lf,%lf,%lf,%lf,%lf",ltan_phi,lsep,11,deltah, lsyserror);

win_calib(side)char side;
{



int ascendl[13],ascend2[13],y=256,x,i,z=0;
WORD threshold=50;
double l_line,1=0.0,h=0.0,angle=0.0,phi=0. 0,mean_tan=0.0; 
double mean_phi=0.0,sep=0.0,base,Lminusl[13],p=0.0; 
double cal_dist,meas_dist,leal,left,right,planeO; 
char pause,line[256]; 
ofg_freeze();
if(side=='1')ofg_im_restore(gaoi,"11");

else ofg_im_restore(gaoi,"rl"); 
cls() ;
printf("\nenter threshold [50] : ") ; 
gets(line);
threshold=(WORD)atoi(line); 
if(threshold==0)threshold=50; 
if(side=='l'){
x=n_upper_thresh(1,y,threshold) ; 
for(i=0;i<l3;i++){

ascendl[i]=l_lower_thresh(x,y,threshold) ; 
if(i1=0)if(ascendl[i]==ascendl[i—1]){printf("\nerror in 

plane calibration");
printf("\npress any key"); 
pause=getch(); 
return(-1);}

x=n_upper_thresh(ascendl[i]+1,y,threshold);
}

}
else{

for(i=0;i<l3;i++){
if(i==0)ascendl[i]=l_upper_thresh(l,y,threshold); 

else {ascendl[i]=l_upper_thresh(x,y,threshold) ;
if(ascendl[i]==ascendl[i-l]){printf("\nerror in plane

calibration");
printf("\npress any key"); 
pause=getch(); 
return(-1);}

}
x=n_lower_thresh(ascend1{i]+1,y ,threshold);
}

}/*end if-else*/

if(side=='11)ofg_im_restore(gaoi, "12") ; 
else ofg_im_restore(gaoi,"r2") ;

if(side=='1'){
x=n_upper_thresh(1,y,threshold) ; 
for(i=0;i<13;i++){

ascend2[i]=l_lower_thresh(x,y,threshold); 
if(i!=0)if(ascend2[i]==ascend2[i-l]){printf("\nerror in 

plane calibration");
printf("\npress any key"); 
pause=getch(); 
return(-1 );}

x=n_upper_thresh(ascend2[i]+1,y ,threshold);
}





ofg_dlutmode(STATIC); 
if(side=='r1)

{
fp=fopen("right.cal","w");
fprintf(fp,"%lf,%lf,%lf",mean_tan,sep,1);
for(i=0;i<13;i++)fprintf(fp,",%d",ascend2[i]) ;
fclose(fp);}

if(side=='11)
{
fp=fopen("left.cal","w");
fprintf(fp,"%lf,%lf,%lf",mean_tan,sep,1);
for(i=0;i<13;i++)fprintf(fp,",%d",ascendl[i]) ;
fclose(fp);>

}

/*********************************************************/

upper_thresh (){
char choose; 
do{

cls() ;
printf("\nupper threshold = %d",top);
printf("\npress u - threshold up, d - threshold down, e - end"); 
choose=getch();
if(choose=='d'){if(top==bottora)break; 

ofg_wval(OUTPUT,0,top,0); 
top--;}

if(choose=='u'){if(top==255)break; 
top++;
ofg_wval(OUTPUT,0,top,top);}

}while(choose!=1e 1);
}

lover_thresh(){
char choose; 
do{

cls() ;
printf("\nlower threshold = %d",bottom);
printf("\npress u - threshold up, d - threshold down,
choose=getch();
if(choose=='d'){if(bottom==l)break; 

bottom— ;
ofg_wval(OUTPUT,0,bottom,bottom);} 

if(choose=='u'){if(bottom==top)break; 
ofg_wval(OUTPUT,0,bottom,0); 
bottom++;}

}while(choose!='e 1);
}

e end");

real_t(){
/*set lut 15 to 255*/ 
ofg_clearlut(OUTPUT,15,255); 
ofg_dlutmode(STATIC); 
ofg_setframe(I);



}
grab(){

char pause;
/*draw line down centre of screen*/
ofg_clearlut(OUTPUT,15,255);
ofg_dlutmode(DYNAMIC);
ofg_setfrare(0);
ofg_cline(0,384,0,3 84,512,15) ;
ofg_setframe(I);
cls();
printf("\npress any key to grab image");
pause=getch();
clear_overlay();
ofg_snap(CAMERA,gaoi);
ofg_dlutmode(STATIC);

}
clear_overlay(){

ofg_setframe(O); 
ofg_clf(gaoi,0); 
ofg_setframe(I);

}
sharpen(){

ofg_sharpen(gaoi,gaoi,POSITIVE);
/*sharpen edges in right half of image*/ 
ofg_envert(gaoir,gaoir,POSITIVE);
/*sharpen edges in left half of image*/ 
ofg_convolve(gaoi1,gaoi1,3,5,v_kernel,0,0,POSITIVE);

}
sobel(){

ofg_sobel(gaoi,gaoi,32);
}
save(){

double tan_phi,sep,1,deltah,syserror; 
char pause,fname[10]; 
cls() ;
printf("%cfilename to save image:",7); 
gets(name) ;
ofg_im_save(gaoi,EIGHT_BIT,name); 
strcpy(fname,name);
/* save left calibration file*/
if( (fp = fopen("left.cal","r"))==NULL){

printf("\n%c cannot find left calibration file",7); 
printf("\npress any key to continue"); 
pause=getch(); 
return (-1);}

fscanf(fp,"%lf,%lf,%lf,%lf,%lf",&tan_phi,Ssep,&1,&deltah,&syserror); 
fclose(fp); 
strcat(fname,".lcb"); 
fp=fopen(fname,"w");
fprintf(fp,"%lf,%lf,%lf,%lf,%lf",tan_phi,sep,1,deltah, syserror); 
fclose(fp);

ofg_grab(CAMERA,gaoi);



/* save right calibration file*/
if( (fp = fopen("right.cal","r"))==NULL){

printf("\n%c cannot find right calibration file",7); 
printf("\npress any key to continue"); 
pause=getch(); 
return(-1);}

fscanf(fp,"%lf,%lf,%lf,%lf,%lf",&tan_phi,&sep,SI,Sdeltah,Ssyserror)
fclose(fp);
strcpy(fname,name) ;
strcat(fname,".rcb");
fp=fopen(fname,"w");
fprintf(fp,"%lf,%lf,%lf,%lf,%lf",tan_phi,sep,1,deltah,syserror); 
fclose(fp);

restore(){
cls() ;
printf("%cfilename to restore image:",7); 
gets(name); 
ofg_freeze();
ofg_im_restore(gaoi,name);

equalise(){
DWORD histvals[256];

ofg_histogram(gaoi,2,2,0,histvals); 
ofg_eq_lut(OUTPUT,0,histvals); 
ofg_maplut(gaoi,gaoi,OUTPUT, 0) ; 
ofg_linlut(OUTPUT,0);
>

auto_equalise(){
DWORD histvals[256];

ofg_histogram(gaoi,2,2,0,histvals); 
ofg_eq_lut(ADC,0,histvals);
}

w_auto_equalise(){
static char fname[12]="enhance.pic";
DWORD histvals[2 56] ; 

ofg_freeze ( );
ofg_im_restore(gaoi,fname); 
ofg_histogram(gaoi,2,2,0,histvals); 
ofg_eq_lut(ADC,0,histvals);
}

median(){
static int kernel [] = {
1 , 1 , 1 ,
1 , 1 , 1 ,
1 , 1,1
};
ofg_median(gaoi,gaoi,3,3,kernel) ;
}

mul_mat(){ /*called by contour map plot*/
char str[12],pause,side,elem,fname[10];



static char element[3]=" ";
int i,j,k=0 .0 ,uaxis,vaxis,pont,plne;
int upos,vpos,inc,uflag=0(dflag=0;

/‘row and column vector*/ 
double rv [ORDER],cv[ORDER];

/* matrices of points saved on disk */
static double trx_pos[POINTS][PLANES],try_pos[POINTS][PLANES], 

trz_pos[POINTS][PLANES];
static double tlx_pos[POINTS][PLANES],tly_pos[POINTS][PLANES], 

tlz_pos[POINTS][PLANES];
/*wing points*/
double wu_xpos=0.0,wu_ypos,wu_zpos,wl_xpos=0.0,wl_ypos,wl_zpos; 

/♦co-ordinate matrices*/
/♦used as 5x5 matrix which moves over the surface to average*/ 
/♦curvature for a small area*/
static double x_patch[5][5],y_patch[5][5],z_patch[5][5], 

rl_patch[5][5],r2_patch[5][5]; 
double x,y,z; 
double u,v;

double r,theta,phi,step,xmin=1000.0; 
static double contlx[9],contly[9],contlz[9];

static double deltax[9],deltay[9],deltaz[9]; 
double lefty,topz,righty,bottomz,catch=0.025; 
double pxcentre=0.0,pycentre=0.0,pzcentre=0.0;

/♦initilise matrices*/
for(i=0;i<ORDER;i++) rv[i]=cv[i]=0.0;
for(i=0;i<3;i++)

f°r (j=0;j<3;j++)pxrect[i][j]=pyrect[i][j]=pzrect[i][j]=0.0; 
for(i=0;i<9;i++)deltax[i]=deltay[i]=deltaz[i]=0.0; 
cls() ;
printf("\nis the patch theoretical ? y/n "); 
pause=getch(); 
if(pause=='y'){

printf("\n r = ");
gets(str);
r=atof(str);
printf("\n step = ");
gets(str);
step=atof(str);

for(i=0;i<ORDER;i++){ /*phi varies*/ 
phi=3.142*((step*i)-12.5)/180.0; 
for(j=0;j<ORDER;j++){ /*theta varies*/

theta=3.142*5.0*((step*j)-12.5)/180.0; 
px[i][j]=r*sin(phi)*cos(theta); 
py [i][j]=r*sin(phi)*sin(theta); 
pz[i][j]=r*cos(phi);
}/*next j*/



} /*next i*/
}
else{

/*data points read from disk and placed in */
■/*px[ORDER][ORDER],py[ORDER][ORDER], pz[ORDER][ORDER] */

C l s ( ) ;
printf("\n file name : "); 
gets(name); 
strcpy(fname,name);
/*input left side points*/
strcat(fname,".dal");
fp=fopen(fname,"rb");
fread(tlx_pos,sizeof(tlx_pos),1, fp) ;
fread(tly_pos,sizeof(tly_pos) ,l,fp) ;
fread(tlz_pos,sizeof(tlz_pos),1,fp);
fclose(fp);

/*input right point file */ 
strcpy(fname,name); 
strcat(fname,".dar"); 
fp=fopen(fname,"rb"); 
fread(trx_pos,sizeof(trx_pos),1,fp) ; 
fread(try_pos,sizeof(try_pos) , 1, fp) ; 
fread(trz_pos,sizeof(trz_pos),1, fp) ; 
fclose(fp);

cls();
printf("\noutput points to printer? y/n"); 
pause=getch(); 
if(pause=='y'){

printf("\n%ccheck left file matrix ",7); 
for(i=0;i<POINTS;i++){fprintf(stdprn,"\n"); 

for(j=PLANES-l;j >=0;j — ){ 
fprintf(stdprn,"x");
fprintf(stdprn,"[%7.3 If] ",tlx_pos[i]

[j]);}
fprintf(stdprn,"\n\r") ;

[ j ]);}

for(j=PLANES-l;j>=0;j— ){ 
fprintf(stdprn,"y");
fprintf(stdprn,"[%7.3If] ",tly_pos[i] 

fprintf(stdprn,"\n\r") ;

[ j ]);}

pause=getch ();

for(j=PLANES-l;j>=0;j--) { 
fprintf(stdprn, "z") ;
fprintf(stdprn,"[%7.3 If] ",tlz_pos[i] 

fprintf(stdprn,"\n\r") ;
}
fprintf (stdprn,"\f"); 
fflush(stdprn);

cls() ;
printf("\n%ccheck right file matrix ",7); 
for(i=0;i<POINTS;i++){fprintf(stdprn,"\n") ;



for(j=0;j <PLANES;j++){ 
fprintf(stdprn,"x");
fprintf(stdprn,"[%7.3If] " , trx_pos[i] 

fprintf(stdprn,"\n\r") ;

for(j=0;j<PLANES;j++){ 
fprintf(stdprn,"y");
fprintf(stdprn,"[%7.3 If] ", try_pos[i] 

fprintf(stdprn,"\n\r") ;

[j]) ;>

for(j=0;j<PLANES;j++){ 
fprintf(stdprn,"z") ;
fprintf(stdprn,"[%7.31f] ",trz_pos[i] 

fprintf(stdprn,"\n\r");
}

fprintf(stdprn,"\f"); 
fflush(stdprn);
}/*end if 'print points' */

/*input upper wing point*/ 
strcpy(fname,name); 
strcat(fname,".dwu"); 
if((fp=fopen(fname,"r"))!=NULL) {

fscanf(fp,"%lf,%lf,%lf",Swu_xpos,&wu_ypos,&wu_zpos); 
fclose(fp);}

/*input lower wing point*/
strcpy(fname,name);
strcat(f n a m e d w l " );
if((fp=fopen(fname,"r"))!=NULL) {

fscanf(fp,"%lf,%lf,%lf",Swl_xpos,Swl_ypos,Swl_zpos); 
fclose(fp);> 

pause=getch () ;
/*place points in matrix patch file*/ 
for(i=0;i<3;i++){

for(j=0;j<3;j++){ 
cls();
printf("enter for point (%d,%d) ",i,j); 
printf("\nleft/right/up/down (1/r/u/d) : "); 
side=getch() ;
if(side=='l' || side=='r'){ 

printf("\n point : "); 
elem=getch(); 
element[0]=elem; 
pont=atoi(element); 
printf("\n plane : "); 
elem=getch(); 
element[0]=elem; 
plne=atoi(element);
}/*end if*/ 

switch(side){
case '1':px[i][j]=tlx_pos[pont][pine];

Py[i][j]=tly_pos[pont][pine]; 
pz[i][j]=tlz_pos[pont][pine]; 
break;

'r':px[i][j]=trx_pos[pont][pine];case



py[i][j]=try_pos[pont][pine]; 
pz[i][j]=trz_pos[pont][pine]; 
break;

case 'u':px[i][j]=wu_xpos;
py[i^j]=wu_ypos;

pz[iHj]=vu_zp°s /•
uflag=l; 
break;

case 'd 1:px[i][j]=wl_xpos;
py[i][j]=wl_yp°s; 
pz[i)[j]=wl_zpos; 
dflag=l; 
break;

}/*end case*/
}

>
els();

printf("\n%ccheck patch matrix ",7); 
for(i=0;i<ORDER;i++){printf("\n"); 

for(j=0;j<0RDER;j++){ 
printf("x");
printf (■• [%7.31f ] ",px[i] [j]) ;} 
printf("\n"); 

for(j=0;jcORDER;j++){ 
printf("y");
printf("[%7.3 If] ",py[i][j]);> 
printf("\n"); 

for(j = 0;j<ORDER;j++) { 
printf("z");
printf("[%7.31f] ",pz[i][j]) ;}

>
lefty=py[0][0]; 
righty=py[0][2]; 
for(i=l;i<3;i++)

{
if(py[i][0]>lefty)lefty=py[l][0]; 
if(py[i][2]<r ighty)r ighty=py[i][2];
}

topz=pz[0][0]; 
bottomz=pz[2][0]; 
for(j=l;j<3;j++)

{
if(pz[0][j]<topz)topz=pz[0][j]; 
if(pz[2][j]>bottomz)bottomz=pz[2][j];

}
printf("\nleft=%lf",lefty); 
printf("\nright=%lf",righty); 
printf("\ntop=%lf",topz); 
printf("\nbottom=%lf",bottomz);

/* adjust matrix */
i f ((uflag==l) && (dflag==l)){/*only move centre point*/ 
printf("\ncalculating matrix "); 

u=v=0.0;
for(uaxis=50;uaxis<2 00;uaxis++) { 

u=0.0+(double)uaxis*0.004 ;



for(vaxis=50;vaxis<200;vaxis++){ 
v=0.0+(double)vaxis*0.004;
/♦construct surface patch*/
/♦column and row vectors*/
rv[0]=u*u;
rv[l]=u;
rv[2]=1.0;
cv[0]=v*v;
cv[1]=v;
cv[2]=l.0;

/♦calculate x fy,z*/ 
x=matrix(rv,px,cv); 
y=matrix(rv,py,cv); 
z=matrix(rv,pz,cv) ;

if (pxcentre==0. 0) {
if((y>(lefty+righty)/2.0-catch)&£ (y<(lefty+righty)/ 

2.0+catch)&&(z>(topz+bottomz)/2.0-catch)&£(z<(topz+bottomz)/2.0+catch))
{pxcentre=x;pycentre=y;pzcentre=z; 
printf("\ncorrection made");}

}
>

}
if(pxcentre>0.0){px[l][1]=pxcentre;py[1][1]=pycentre;pz[1][1]

pzcentre;
printf("\ncorrection implemented"); 
printf("\npress any key");} 

pause=getch();
}
else
{/♦rebuild rectangular matrix*/ 
printf("\ncalculating matrix "); 
do{

/* build rectangular matrix */ 
u=v=0.0;
for(uaxis=0;uaxis<250;uaxis++){ 

u=0.0+(double)uaxis*0.004; 
for(vaxis=0;vaxis<250;vaxis++){ 

v=0.0+(double)vaxis*0.004;

/♦construct surface patch*/
/♦column and row vectors*/
rv[0]=u*u;
rv[1]=u;
rv[2]=1.0;
cv[0]=v*v;
cv[l)=v;
cv(2]=1.0;

/♦calculate x,y,z*/ 
x=matrix(rv,px,cv); 
y=matrix(rv,py,cv); 
z=matrix(rv,pz,cv);

if((y>lefty-catch)&&(y<lefty+catch)£S(z>topz-catch)&&



(zctopz+catch))
{pxrect[0][0]=x;pyrect[0][0]=y;pzrect[0][0]=z;} 

if ((y>(lefty+righty)/2.0-catch)&&(y<(lefty+righty)/
2.0+catch)&&(z>topz-catch)SS(zctopz+catch))

{pxrect[0][1J =x;pyrect[0][1]=y;pzrect[0][l]=z;> 
if ( (y>righty-catch)SS(y<righty+catch)SS(z>topz-catch)SS

(zctopz+catch))
{pxrect[0)[2]=x;pyrect[0][2]=y;pzrect[0][2]=z;} 

if((y>lefty-catch)SS(yclefty+catch)SS(z>(topz+bottomz)/ 
2.0-catch)&&(z<(topz+bottomz)/2.0+catch))

{pxrect[l][0]=x;pyrect[l][0]=y;pzrect[l][0]=z;} 
if((y>(lefty+righty)¡2 .0-catch)SS(y<(lefty+righty)/

2.0+catch)SS (z>(topz+bottomz)¡2 .0-catch)SS(zc(topz+bottomz)/2.0+catch))
{pxrect[1][1]=x;pyrect[1][1]=y;pzrect[1][l]=z;} 

if((y>righty-catch)SS(ycrighty+catch)SS(z>(topz+bottomz) 
/2.0-catch)&& (z<(topz+bottomz)/2.0+catch))

{pxrect[l][2]=x;pyrect[l][2]=y;pzrect[l][2]=z;> 
if((y>lefty-catch)SS(yclefty+catch)SS(z>bottomz-catch)SS

(zcbottomz+catch))
{pxrect[2][0]=x;pyrect[2][0]=y;pzrect[2][0]=z;> 

if ((y>(lefty+righty)/2.0-catch)&&(yc (lefty+righty)/
2.0+catch)&&(z>bottomz-catch)&&(zctopz+bottomz+catch))

{pxrect[2][1]=x;pyrect[2][l]=y;pzrect[2][l]=z;> 
if((y>righty-catch)Si(ycrighty+catch)SS(z>bottomz-catch) 

SS(zcbottomz+catch))
{pxrect[2][2]=x;pyrect[2][2)=y;pzrect[2][2]=z;>

}
}

printf("\n%ccheck rectangular matrix ",7); 
for(i=0;icORDER;i++){printf("\n"); 

for(j=0;jcORDER;j++){ 
printf("x");
printf("[%7.3If] ",pxrect[i] [ j ]) ; } 
printf("\n"); 

for(j=0;jcORDER;j++){ 
printf("y");
printf("[%7.31f] ",pyrect[i] [j)) ;} 
printf("\n"); 

for(j=0;jcORDER;j++){ 
printf("z");
printf("[%7.3If) ",pzrect[i][j));>

}
printf("\nif elements = [0], rebuild surface matrix y/n ? "); 
pause=getch () ; 
printf("%c",pause); 
if(pause=='y1){

printf("\n input new error for matrix position
[% 5.3 If] catch);

gets(str);
if (str=="")catch==catch;

else catch=(double)atof(str);} 
}while(pause=='y'); 
for(i=0;ic3;i++)

for(j=0;jc3;j++) {px[i][j]=pxrect[i][j] ;
py[i][j]=pyrect[i][j]; 
pz[i][j]=pzrect[i][j];}

}/*end if (uflag SS dflag) */



}/*end if-else*/

cls();
printf("\nplot contours y/n ? "); 
pause=getch(); 
printf("%c\n",pause); 
if(pause=='y'){
/♦calculate highest (closest) point of surface*/ 

u=v=0.0;
for(uaxis=0;uaxis<100;uaxis++){ 

u=0.0+(double)uaxis*0.01; 
for(vaxis=0;vaxis<100;vaxis++)( 

v=0.0+(double)vaxis*0.01;

/♦construct surface patch*/
/♦column and row vectors*/
rv[0]=u*u;
rv[1]=u;
rv[2]=1.0;
cv[oj=v*v;
cv[1]=v;
cv[2]=1.0;

/♦calculate x,y,z*/ 
x=matrix(rv,px,cv); 
y=matrix(rv,py,cv); 
z=matrix(rv,pz,cv); 
if(x<xmin)xmin=x;
}

>
contours(xmin);)

}
double matrix(rv,points,cv)double rv[ORDER],points[ORDER][ORDER],cv[ORDER];{ 

int i, j , Jc ; 
char pause;

static double new_m[ORDER][ORDER],new_mT[ORDER][ORDER],result_ 
a[ORDER][ORDER],result[ORDER][ORDER]; 

double sum=0.0; 
static double m[3][3]={

{2.0,-4.0,2.0},
{-3.0,4.0,-1.0},
{1 . 0 , 0 . 0 , 0 . 0 }};

static double mT[3][3]={
(2.0,-3.0,1.0},
{-4.0,4.0,0.0},
(2 . 0 , - 1 . 0 , 0 . 0}};

/♦initialise matrices*/ 
for(i=0;i<ORDER;i++){ 

for(j=0;j<0RDER;j++){
new_m[i][j]=new_mT[i][j]=result_a[i][j]=result[i][j]=0.0; 

}/*next j*/



}/*next i*/

/* multiply row and column vectors */ 
/* second suffix = row */
/* _____ */

*/
*/
*/
*/

/* -----------------------  */

for(i=0;icORDER;i++){ 
for(j = 0;j <ORDER;j ++){

new_m[i][j]=m[i][j]*rv[i];
}/*next j*/

}/*next i*/

for(j=0 ;j<ORDER;j++){
for(i=0;i<ORDER;i++){

/*indicies reversed for column multiplication*/ 
new_mT[i][ j ]= m T [ i ] [ j ] * c v [ j ] ;

}/*next i*/
}/*next j*/

/ *  - > D
/*
/* *i 
/*

/* multiply new_m by point matrix */
/* sum row of first matrix by column of second*/ 

for(i=0;icORDER;i++){ 
for(j=0;j <ORDER;j ++){

for(k=0;k<ORDER;k++)result_a[i][j]+=new_m[i][k]*points[k][j];

}
}

/* multiply result by new_mT matrix */ 
for(i=0;i<ORDER;i++){ 

for(j = 0;j <0RDER;j ++){
for(k=0;k<ORDER;k++)result[i][j]+=result_a[i][k]*new_mT[k][j];

>
}

/*sura matrix*/ 
for(i=0;i<0RDER;i++){ 

for(j=0;j<0RDER;j++){ 
sum+=result[i][ j ] ;

}
>
return(sum);

}
double matsp(rv,points,cv)double rv[ORDER],points[ORDER][ORDER],cv[ORDER];{ 

int i,j ,k ; 
char pause;



static double new_m[ORDER][ORDER],new_mT[ORDER][ORDER],result_a 
[ORDER][ORDER] , result[ORDER][ORDER]; 

double sum=0.0; 
static double m[3][3]={

{1.0,-2.0,1.0},
{-2.0,2.0,0.0},
{l.0,1.0,0.0}};

static double mT[3][3]={
{1.0,-2.0,1.0},
{-2.0,2.0,1.0},
{l.0,0.0,0.0}};

/♦initialise matrices*/ 
for(i=0;i<ORDER;i++){ 

for(j=0;j<ORDER;j ++){
new_m[i][j]=new_mT[i][j]=result_a[i][j]=result[i][j]=0.0; 

}/*next j*/
}/*next i*/

/*
/

multiply row and column vectors */ 
second suffix = row */

/* */
/* ->j */
/* */
/* "i */
/* */
/* */

for(i=0;i<ORDER;i++){ 
for(j=0;j <ORDER;j++){

new_m[i][j]=m[i][j]*rv[i];
}/*next j*/

}/*next i*/

for(j=0;j<ORDER;j ++){
for(i=0;i<ORDER;i++){

/♦indicies reversed for column multiplication*/ 
new_mT[i][j]=mT[i][j]*cv[j];

}/*next i*/
}/*next j*/

/* multiply new_m by point matrix */
/* sum row of first matrix by column of second*/ 

for(i=0;i<ORDER;i++){ 
for(j = 0;j <0RDER;j ++){

for(k=0;k<ORDER;k++)result_a[i][j]+=new_m[i][k]*points[k] [ j] ;
}

}
/* multiply result by new_mT matrix */ 

for(i=0;icORDER;i++){ 
for(j=0;j<ORDER;j ++){

for(k=0;k<ORDER;k++)result[i][j]+=result_a[i][k]*new_mT[k][j];



}
}

/♦sum matrix*/ 
for(i=0;i<ORDER;i++){ 

for(j=0;j<ORDER;j++){ 
sum+=result[i][j ];

}
}

sum=sum/(double)4.0; 
return(sum);

}
mul4_mat(){

char str[12],pause,side,elem,fname[10);
static char element[3]="
int i,j, k=0.0,uaxis,vaxis,pont,pine;
int upos,vpos,inc=l;
int apex_u,apex_v,uelement,velement;

/‘row and column vector*/ 
double rv[ORDER],cv(ORDER);

/* matrices of points saved on disk */
static double trx_pos[POINTS)[PLANES),try_pos[POINTS][PLANES), 

trz_pos[POINTS)[PLANES];
static double tlx_pos[POINTS][PLANES],tly_pos[POINTS][PLANES], 

tlz_pos[POINTS)[PLANES];
/*wing points*/
double wu_xpos=0.0,wu_ypos,wu_zpos,wl_xpos=0.0,wl_ypos,wl_zpos; 

/♦co-ordinate matrices*/
static double pxcurve[ORDER][ORDER],pycurve[ORDER][ORDER],pzcurve 

[ORDER][ORDER];
static double x_patch[5][5],y_patch[5][5],z_patch[5][5],rl_patch 

[5][5],r2_patch[5][5];
/♦first and second partial derivative variables*/
double x, y , z, xu, yu, zu, xv, yv, zv, xuu,yuu, zuu, x w ,  y w ,  zvv, xuv, yuv, zuv; 
double u,v;
/♦fundamental form variables*/ 
double E_,F_,G_,e,f ,g;

double denom=0.0,lmax=0.0,lmin=0.0,kmax=0.0,kmin=0.0; 
double complex=0.0,a=0.0,b=0.0,r1=0.0,r2=0.0,eql=0.0,eq2=0.0; 
double r,theta,phi,step,mean_r1=0.0,mean_r2=0.0; 
double av_mean=0.0,gauss_mean=0.0,length,xmin=l000.0; 
static double contlx[9],contly[9],contlz[9];

static double deltax[9],deltay[9],deltaz[9]; 
double lefty,topz,righty,bottomz,catch=0.012; 
double apex_r=2 0.0,apex_y,apex_z;

/♦initilise matrices*/
for(i=0;i<ORDER;i++) rv[i]=cv[i]=0.0;
for(i=0;i<9;i++)deltax[i]=deltay[i]=deltaz[i]=0.0;
for(i=0;i<3;i++)

for(j = 0;j<3;j++)pxrect[i][j]=pyrect[i][j]=pzrect[i] [ j] = 0.0; 
cls();



printf("\nis the patch theoretical ? y/n "); 
pause=getch(); 
if(pause=='y 1){

printf("\n r = ") ;
gets(str);
r=atof(str);
printf("\n step = ");
gets(str);
step=atof(str);

for(i=0;i<ORDER;i++){ /*phi varies*/ 
phi=3.142*((step*i)-12.5)/180.0; 
for(j=0;j<ORDER;j++){ /*theta varies*/

theta=3.142*5.0*((step*j)-12.5)/180.0; 
px[i][j]=r*sin(phi)*cos(theta); 
py[i][j]=r*sin(phi)*sin(theta); 
pz[i][j]=r*cos(phi);
}/*next j*/

} /*next i*/
>
else{

/*data points read from disk and placed in */
/*px[ORDER][ORDER],py[ORDER][ORDER], pz[ORDER][ORDER] */

cls() ;
printf("\n file name : ");
gets(name);
strcpy(fname,name);
/*input left side points*/ 
strcat(fname,".dal"); 
fp=fopen(fname,"rb"); 
fread(tlx_pos,sizeof(tlx_pos),1,fp); 
fread(tly_pos,sizeof(tly_pos),1,fp); 
fread(tlz_pos,sizeof(tlz_pos),1,fp); 
fclose(fp); 

cls();
printf.("\n%ccheck left file matrix ",7); 
for(i=0;i<POINTS;i++){printf("\n"); 

for(j=PLANES-l;j>=0;j— ){ 
printf("x");
printf("[%7.31f] ",tlx_pos[i][j]);}

}
pause=getch();

/*input right point file */ 
strcpy(fname,name); 
strcat(fname,".dar"); 
fp=fopen(fname,"rb"); 
fread(trx_pos,sizeof(trx_pos),1,fp); 
fread(try_pos,sizeof(try_pos),1,fp); 
fread(trz_pos,sizeof(trz_pos),1,fp); 
fclose(fp);

cls();
printf("\n%ccheck right file matrix ",7);



for(i=0;i<POINTS;i++){printf("\n"); 
for(j=0;j<PLANES;j++){ 

printf("x");
printf("[%7.31f] ",trx_pos[i][j]);}

>
/♦input upper wing point*/ 
strcpy(fname,name) ; 
strcat(fname,".dwu") ; 
if((fp=fopen(fname,"r"))!=NULL){

fscanf(fp,"%lf,%lf,%lf",£wu_xpos,&wu_ypos,£wu_zpos); 
fclose(fp);}

/♦input lower wing point*/ 
strcpy(fname,name) ; 
strcat(fname,".dwl") ; 
if((fp=fopen(fname,"r"))!=NULL){

fscanf(fp,"%lf, %lf,%lf",Swl_xpos,£wl_ypos,&wl_zpos) ; 
fclose(fp);} 

pause=getch();
/♦place points in matrix patch file*/ 
for(l=0;i<3;i++){

for(j=0;j<3;j++){ 
cls() ;
printf("enter for point (%d,%d) ",i,j); 
printf("\nleft/right/up/down (1/r/u/d) : "); 
side=getch();
if(side=='l' || side=='r'){ 

printf("\n point : "); 
elem=getch(); 
element[0]=elem; 
pont=atoi(element); 
printf("\n plane : "); 
elem=getch(); 
element[0]=elem; 
plne=atoi(element) ;
}/*end if*/ 

switch(side){
case '1':px[i][j]=tlx_pos[pont][pine];

PY[i][j]=tly_pos[pont][pine]; 
pz-[ i] [ j ] =tlz_pos [pont] [pine] ; 
break;

case 1r*:px[i][j]=trx_pos[pont][pine];
Py[i][j]=try_pos[pont][pine]; 
pz[i][j]=trz_pos[pont][pine]; 
break;

case 'u':px[i][j]=wu_xpos;
py[i][j]=wu_ypos; 
pz[i][j]=wu_zpos; 
break;

case 'd ':px[i][j]=wl_xpos;
Py[i][j)=wl_ypos; 
pz[i][j]=wl_zpos; 
break;

}/*end case*/
}

>
cls();



printf("\n%ccheck patch matrix ",7); 
for(i=0;i<ORDER;i++){printf("\n"); 

for(j=0;j<ORDER;j++){ 
printf("x");
printf("[%7.31f] ",px[i][j]) ; } 
printf("\n"); 

for(j=0;j<ORDER;j++){ 
printf("y");
printf{"[%7.31f] ",py [i][j]) ; > 
printf("\n"); 

for(j=0;j<ORDER;j++){ 
printf("z");
printf("[%7.31f] »,pz[i][j]) ; }

}
lefty=py[0][0] ; 
righty=py[0][2]; 
for(i=l;i<3;i++)

{
if(py[i][0]>lefty)lefty=py[i][0]; 
if(py[i][2 ]<righty)r ighty=py[i][2];
}

topz=pz[0][0]; 
bottomz=pz[2][0]; 
for(j=l;j<3;j++)

{
if(pz[0][j]<topz)topz=pz[0] [j]; 
if(pz[2][j]>bottomz)bottomz=pz[2][j];

}
printf("\nleft=%lf",lefty); 
printf("\nright=%lf",righty); 
printf("\ntop=%lf",topz); 
printf("\nbottom=%lf",bottomz); 
printf("\ncalculating matrix "); 
do{

/* build rectangular matrix */ 
u=v=0.0;
for(uaxis=0;uaxis<2 50;uaxis++) { 

u=0.0+(double)uaxis*0.004; 
for (vaxis=0;vaxis<2-50;vaxis++) { 

v=0.0+(double)vaxis*0.004;

/♦construct surface patch*/
/♦column and row vectors*/
rv[0]=u*u;
rv[l]=u;
rv [2] = 1.0 ;
cv[0]=v*v;
cv[1]=v;
cv[2]=1.0;

/♦calculate x,y,z*/ 
x=matrix(rv,px,cv); 
y=matrix(rv,py,cv); 
z=matrix(rv,pz,cv);

(z<topz+catch))
if((y>lefty-catch)&&(y<lefty+catch)&&(z>topz-catch)&&



{pxrect[0][0]=x;pyrect[0][0]=y;pzrect[0][0]=z;} 
if ((y > (lefty+righty)/2.0-catch)££(y<(lefty+righty)/2.0+ 

catch)££(z>topz-catch)££(z<topz+catch))
{pxrect[0][l]=x;pyrect[0][1)=y;pzrect[0][l]=z;>

' if((y>righty-catch)££(y<righty+catch)££(z>topz-catch)££
(z<topz+catch))

{pxrect[0][2]=x;pyrect[0][2]=y;pzrect[0][2)=z ;} 
if((y>lefty-catch)££(y<lefty+catch)££(z>(topz+bottomz)/ 

2.0-catch)££(z<(topz+bottomz)/2.0+catch))
{pxrect[1][0]=x;pyrect[l][0]=y;pzrect[l][0]=z;> 

if((y>(lefty+righty)/2.0-catch)££(y<(lefty+righty)/2.0+ 
j catch)££(z>(topz+bottomz)¡ 2 . 0-catch)££ (z<(topz+bottomz)/2.0+catch))

{pxrect[1][1]=x;pyrect[1)[l]=y;pzrect[l](l]=z;} 
if((y>righty-catch)££(y<righty+catch)££(z>(topz+bottomz)

] ¡2 .0-catch)& &(z<(topz+bottomz)/2.0+catch))
{pxrect[l][2]=x;pyrect[l][2]=y;pzrect[1)[2]=z;> 

if((y>lefty-catch)££(y<lefty+catch)££(z>bottomz-catch)££ 
(z<bottomz+catch))

{pxrect[2][0]=x;pyrect[2][0]=y;pzrect[2][0]=z;} 
if((y>(lefty+righty)/2.0-catch)££(y<(lefty+righty)/2.0+ 

catch)££(z>bottomz-catch)££(z<topz+bottomz+catch))
{pxrect[2][l]=x;pyrect[2][l]=y;pzrect[2][l]=z;> 

if((y>righty-catch)££(ycrighty+catch)££(z>bottomz-catch)££ 
(zcbottomz+catch))

{pxrect[2][2 ]=x;pyrect[2][2]=y;pzrect[2 ][2]=z;}
}

[%5.31f] n

printf("\n%ccheck rectangular matrix ",7); 
for(i=0;i<ORDER;i++){printf("\n"); 

for(j=0;j<ORDER;j++){ 
printf("x");
printf("[%7.3 If] ",pxrect[i][j ]) ; } 
printf("\n"); 

for(j=0;j <0RDER;j ++){ 
printf("y");
printf("[%7.31f] ",pyrect[i][j]) ;} 
printf("\n"); 

for(j=0;j<ORDER;j ++){ 
printf("z");
printf("[%7.3If] ",pzrect[i][j ]) ;}

}
printf("\nif elements = [0.0] rebuild surface matrix y/n ? "); 
pause=getch(); 
printf("%c",pause); 
if(pause=='y '){

printf("\n input new error for matrix position
,catch) ;

gets(str);
if(str=="")catch==catch;

else catch=(double)atof(str) ; 
printf("\ncalculating matrix");>

}while(pause=='y');
}/*end if-else*/

/‘iteration for centre spline point to pass through centre point*/ 
/* contlx[0]=px[0][0];*/
/* contlx[l]=px[0][1];*/
/* contlx[2]=px[0][2];*/



contlx[3]=px[l][0] ;*/ 
contlx[4]=pxrect[l][1] ;*/ 
contlx[5]=px[l][2] ;*/ 
contlx[6]=px[2][0] ;*/ 
contlx[7]=px[2][1] ;*/ 
contlx[8]=px[2][2] ;*/

do{*/
px[0][0]=px[0][0]-deltax[0];*/ 
p x [0][1]=px[0][1]-deltax[1 ] ;*/ 
px[0][2]=px[0][2]-deltax[2];*/ 
px[l][0]=px[l][0]-deltax[3];*/ 
pxrect[l][l]=pxrect[l][l]-deltax[4];*/ 
px[l][2]=px[l][2]-deltax[5];*/ 
px[2][0 ]—px [2 ][o]-deltax[63;*/ 
px[2][l]=px[2][1]-deltax[7];*/
P X [2][2]=px[2][2]-deltax[8];*/

/♦build patch for different values of u and v*/ 
u—v—0•0;
for(uaxis=0;uaxis<5;uaxis++){ 

u=0.0+(double)uaxis*0.25; 
for(vaxis=0;vaxis<5;vaxis++) { 

v=0.0+(double)vaxis*0.25;

/♦construct surface patch*/
/♦column and row vectors*/
rv[0]=u*u;
rv[l]=u;
rv[2 ] = 1.0 ;
cv[0]=v*v;
cv [1]=v;
cv[2]=1.0;

/♦calculate x,y,z*/ 
x=matrix(rv,pxrect,cv); 
y=matrix(rv,pyrect,cv); 
z=matrix(rv,pzrect,cv);

x_patch[uaxis][vaxis]=x; 
y_patch[uaxis][vaxis]=y; 
z_patch[uaxis][vaxis]=z;
}

}

deltax[0]=x_patch[0][0]-contlx[0];*/ 
deltax[l]=x_patch[0][2]-contlx[1);*/ 
deltax[2]=x_patch[0][4]-contlx[2];*/ 
deltax[3]=x_patch[2][0]-contlx[3];*/ 
deltax[4]=x_patch[2][2]-contlx[4];*/ 
deltax[5]=x_patch[2][4]-contlx[5];*/ 
deltax[6]=x_patch[4][0]-contlx[6];*/ 
deltax[7]=x_patch[4][2]-contlx[7];*/ 
deltax[8]=x_patch[4][4]-contlx[8];*/

} while((x_patch[2][2]-contlx[4])>0.001);*/



printf("\ncalculating curvature\n"); 
printf("\npercent completed : ") ; 
uelement=velement=0; 
for(upos=l;upos<198;upos+=10){ 
uelement=(upos-1)/10; 
for(vpos=l;vpos<198;vpos+=10){ 

velement=(vpos-1)/10; 
printf("%d",uelement*5); 
if(uelement<2)printf("\b");

else printf("\b\b"); 
u=v=0.0;
for(uaxis=0;uaxis<3;uaxis++){

u=0.0+(double)(upos+inc*(uaxis-l))*0.005; 
for (vaxis=0;vaxis<3 ;vaxis++) {

v=0.0+(double)(vpos+inc*(vaxis-1))*0.005;

/♦construct surface patch*/
/♦column and row vectors*/
rv[0]=u*u;
rv[1]=u;
rv[2]=1.0;
cv[0]=v*v;
cv[1)=v;
cv(2]=1.0;

/♦calculate x,y,z*/
pxcurve[uaxis][vaxis]=matrix(rv,pxrect, cv) 
pycurve[uaxis][vaxis]=matrix(rv,pyrect,cv) 
pzcurve[uaxis][vaxis]=matrix(rv,pzrect,cv)

}
}

u=v=0.0;
for(uaxis=0;uaxis<5;uaxis++){ 

u=0.0+(double)uaxis*0.25; 
for(vaxis=0;vaxis<5;vaxis++){ 

v=0.0+(double)vaxis*0.25;

/♦curvature calculations*/ 
/♦calculate partial derivatives*/
/* first derivative*/

/* partial dx/du, dy/du, dz/du */
/* set up column and row vectors */

rv[0]=2.0*u; 
rv[l]=1.0; 
rv[2]=0.0; 
cv[0]=v*v; 
cv[1]=v; 
cv[2]=1.0;

xu=matrix(rv,pxcurve,cv) ; 
yu=matrix(rv,pycurve,cv); 
zu=matrix(rv,pzcurve,cv);



/* partial dx/dv, dy/dv, dz/dv */
/* set up column and row vectors */

rv[0]=u*u; 
rv[1]=u; 
rv[2]=1.0; 
cv[0]=2.0*v; 
cv[l]=l.0; 
cv[2]=0.0;

xv=matrix(rv,pxcurve,cv); 
yv=matrix(rv,pycurve,cv); 
zv=matrix(rv,pzcurve,cv);

/* partial second derivatives d2x/du2, d2y/du2, d2z/du2 */ 
/* set up column and row vectors */

rv[0]=2.0; 
rv[l]=0.0; 
rv[2]=0.0; 
cv[0]=v*v ; 
cv[1]=v; 
cv[2]=1.0;

xuu=matrix(rv,pxcurve,cv) ; 
yuu=matrix(rv,pycurve,cv); 
zuu=matrix(rv,pzcurve,cv);

/* partial second derivatives d2x/dv2, d2y/dv2, d2z/dv2 */ 
/* set up column and row vectors */

rv [0]=u*u; 
r v [1]=u; 
rv(2]=1.0; 
cv[0]=2.0; 
cv[l)=0.0; 
cv [2]=0.0;

xw=matrix(rv,pxcurve,cv) ; 
yw=matrix(rv,pycurve',cv) ; 
zw=matrix (rv, pzcurve, cv) ;

/* partial second derivatives d2x/duv, d2y/duv, d2z/duv */ 
/* set up column and row vectors */

rv [0]=2.0*u; 
rv[1]=1.0; 
rv[2]=0.0; 
cv[0]=2.0*v; 
cv[l]=1.0; 
cv[2]=0.0;

xuv=matrix(rv,pxcurve,cv); 
yuv=matrix(rv,pycurve,cv); 
zuv=matrix(rv,pzcurve,cv);

E_=xu*xu+yu*yu+zu*zu;



F =xu*xv+yu*yv+zu*zv;
G~=xv*xv+yv*yv+zv*zv;

denom=(E_*G_-F_*F_); 
denom=sqrt(denom);

e=(xuu*(yu*zv-zu*yv))-(yuu*(xu*zv-zu*xv))+(zuu*(xu*yv-yu*xv)); 
if(e!=0.0 && denom!=0.0)e=e/denom;
f=(xuv*(yu*zv-zu*yv))-(yuv*(xu*zv-zu*xv))+(zuv*(xu*yv-yu*xv)); 
if(f!=0.0 && denom!=0.0)f=f/denom;
g= (xw* (yu*zv-zu*yv) ) - (yw* (xu*zv-zu*xv) ) + (zw* (xu*yv-yu*xv) ) ; 
if(g!=0.0 && denom!=0.0)g=g/denom;

a= ((E_*g-e*G_)* (E_*g-e*G_));
b = (4 * (E_*f-e*F_)* (F_*g-f*G_));
complex=a-b;
eql=e*G_-E_*g;
eq2=2.0*(F_*g-f*G_);

lmax=l.0; 
lmin=-l.0;

if((E_+2.0*F_*lmax+G_*lmax*lraax)!=0.0)
kmax= (e+2.0*f*lmax+g*linax*linax) / (E_+2.0*F_*lreax+G_*lmax*lmax) ; 

if ( (E_+2.0*F_*lmin+G_*lniin*linin) !=0.0)
knin= (e+2.0*f *lmin+g*lmin*lmin) / (E_+2.0*F_*lroin+G_*lniin*li[iin) ;

if(kmax!=0.0)rl=l.0/kmax; 
if(knin!=0.0)r2=l.0/knin; 
rl_patch[uaxis][vaxis]=rl; 
r2_patch[uaxis][vaxis]=r2;

}/*next v*/
}/*next u*/

mean_rl=raean_r2 = 0 .0 ;
for(uaxis=0;uaxis<5;uaxis++)

for(vaxis=0;vaxis<5;vaxis++){
mean_rl+=rl_patch[uaxis][vaxis]; 
mean_r2+=r2_patch[uaxis][vaxis];} 

jnean_rl=mean_rl/2 5 .0; 
inean_r2=inean_r2/25.0; 
av_mean= (mean_rl+inean_r2 )/2.0; 
curve [uelement] [velenient] =av_mean ; 
gauss_nean=mean_rl*mean_r2;
/*apex position */ 
if(av_mean>0.0)

if(apex_r>av_mean){apex_r=av_mean;
apex_u=upos; 
apex v=vpos;}

/*
/*

/*

if (eq2 ! =0.0) linax= (eql+sqrt (complex) ) /eq2 ; */ 
if(eq2!=0.0)lmin=(eql-sqrt(complex))/eq2;*/ 
lmin=tan((3.142/2.0)+atan(lmax));*/

}/*next upos*/



}/*next vpos*/

cls();
printf("\napex position = %d,%d",apex_u,apex_v);
printf("\nplot contours y/n ? ");
pausè=getch();
printf("%c\n",pause);
if(pause=='y1){
/‘calculate highest (closest) point of surface*/ 

u=v=0.0;
for(uaxis=0;uaxis<100;uaxis++)( 

u=0.0+(double)uaxis*0.01 ; 
for(vaxis=0;vaxis<100;vaxis++){ 

v=0.0+(double)vaxis*0.01;

/‘construct surface patch*/
/‘column and row vectors*/
rv[0]=u*u;
rv[1]=u;
rv[2]=l.0;
cv[0]=v*v;
cv[1]=v;
cv[2]=1.0 ;

/‘calculate x,y,z*/ 
x=matrix(rv,pxrect, cv); 
y=matrix(rv,pyrect,cv); 
z=matrix(rv,pzrect,cv); 
if(x<xmin)xmin=x;

}
}

/‘calculate apex y,z position*/ 
u=apex_u*0.005 ; 
v=apex_v*0.005 ;

/‘construct surface patch*/
/‘column and row vectors*/
rv[0]=u*u;
rv[1]=u;
rv[2j=l.0;
cv[0]=v*v ;
cv[1]=v;
cv[2]=1.0 ;

/‘calculate y,z*/
apex_y=matrix(rv,pyrect,cv);/‘pxrect*/
apex_z=matrix(rv,pzrect,cv);
con4(xmin,apex_u,apex_v,apex_y,apex_z);}

int l_upper_thresh(start_x,y,thresh)int start_x,y;W0RD thresh;{ 
/‘line draw'n at upper threshold*/

WORD pix_val;



int x;
for(x=start_x;x<768;x++){

pix_val=ofg_rpixel(gaoi,x ,y);
if(pix_val>thresh){ofg_cvline(gaoi,x,0,512,OXFF); 

break;}

}
return(x);
}

int l_lower_thresh(start_x,y,thresh)int start_x,y;WORD thresh;{ 
/*line drawn at lower threshold*/

WORD pix_val; 
int x;
for(x=start_x;x<768;x++){

pix_val=ofg_rpixel(gaoi,x,y);
if(pix_val<thresh){ofg_cvline(gaoi, x, 0,512, OXFF); 

break;}

}
return(x);
}

int p_upper_thresh(start_x,y,thresh)int start_x,y;WORD thresh;{ 
/*point drawn at upper threshold*/

WORD pix_val; 
int x;
for(x=start_x;x<768;x++) {

pix_val=ofg_rpixel(gaoi,x,y); 
if(pix_val>thresh){ofg_wpixel(gaoi,x,y,OXFF); 

break;}

}
return(x);
}

int p_lower_thresh(start_x,y,thresh)int start_x,y;WORD thresh;{ 
/*point drawn at lower threshold*/

WORD pix_val; 
int x;
for(x=start_x;x<768;x++){

pix_val=ofg_rpixel (gaoi,x',y) ; 
if(pix_val<thresh)(ofg_wpixel(gaoi,x,y, OXFF); 

break;}
}

return (x) ;
>

int n_upper_thresh(start_x,y,thresh)int start_x,y;WORD thresh;{ 
/‘nothing drawn at upper threshold*/

WORD pix_val; 
int x;
for(x=start_x;x<768;x++){

pix_val=ofg_rpixel(gaoi,x,y); 
if(pix_val>thresh)break;
}

return(x);
>

int n_lower_thresh(start_x,y,thresh)int start_x,y;WORD thresh;{ 
/‘nothing drawn at lower threshold*/



WORD pix_val; 
int x;
for(x=start_x;x<768;x++){

pix_val=ofg_rpixel(gaoi,x,y); 
if(pix_val<thresh)break;

}
return(x);
}

calib_pix(){
int xl=0,x2=0,y=256; 
double size;
WORD threshold=100; 
char line[10]; 
cls();
printf("\nthreshold = "); 
gets(line);
threshold=(WORD)atoi(line);

xl=l_lower_thresh(xl+1,y,threshold) ; 
x2=l_upper_thresh(xl+1,y,threshold); 

printf("\ndistance = "); 
gets(line); 
size=atof(line);
dist_per_pixel=size/(double)(x2-xl); 
printf("\nx2=%d",x2); 
printf("\nxl=%d",xl);
printf("\ndist_per_pixel=%lf",dist_per_pixel) 
gets(line);
}



Appendix B.



Topography Shape Results

--------- To pography system--------
cornea apex 

radius of 
curvature 
mm

apex
distance
mm

A.F.
(flattening)
mm/mm

apex 
radius of 
curvature 
mm

apex
distance
mm

A.F.
(flattening)
mm/mm

1 7.97 0.25 0.06 8.04 0.29 0.00
2 7.81 0.17 0.07 8.00 0.02 0.00
3 7.93 0.71 0.09 8.34 0.51 0.01
4 8.03 0.29 0.03 8.42 0.54 0.00
5 8.06 0.13 0.00 8.12 0.07 0.00
6 7.03 0.27 0.02 7.39 0.15 0.01
7 8.03 0.24 0.01 8.38 0.29 0.00
8 7.74 1.23 0.01 7.66 0.13 0.00
9 8.21 0.38 0.03 8.49 0.36 0.07
10 7.66 0.68 0.02 7.89 0.68 0.00
11 7.67 0.14 0.06 7.90 0.12 0.00
12 7.87 0.36 0.05 8.18 0.20 0.01
13 7.46 0.31 0.01 7.37 0.41 0.01
14 7.09 0.52 0.06 7.56 0.21 0.07
15 7.33 0.58 0.07 8.12 0.10 0.00
16 8.25 0.74 0.00 8.06 0.35 0.04
17 7.46 0.38 0.01 7.70 0.29 0.00
18 8.03 0.54 0.10 8.28 0.24 0.05
19 8.10 1.08 0.10 8.22 0.08 0.13
20 7.89 0.53 0.04 7.90 0.11 0.01
21 7.99 0.53 0.03 8.15 0.36 0.00
22 7.90 0.71 0.05 8.16 0.32 0.00
23 8.35 0.65 0.11 8.51 0.11 0.02
24 7.90 0.06 0.06 8.06 0.35 0.00
25 8.07 0.77 0.06 8.28 0.05 0.00
26 7.92 0.05 0.04 8.13 0.44 0.00
27 7.51 0.70 0.07 7.87 0.13 0.04
28 7.67 0.64 0.01 7.97 0.45 0.00
29 7.66 0.53 0.04 8.03 0.47 0.00
30 8.13 0.33 0.00 8.25 0.31 0.02



Appendix C.



coniig.sys

files=30 
buffers=30
shell=c:\command.com /E:512 /p 
device=c:\dos\ansi.sys 
device=c:\drivers\hpglpltr.sys 
device=c:\drivers\laserjet.sys 
device=c:\drivers\ibmega.sys 
device=c:\drivers\gsscgi.sys 
country=044,, c:\dos\country.sys

autoexec.bat

gecho off 
c ls
set comspec=c:\command.com 
path = c:\;c:\dos;c:\lc; 
keyb uk,,c :\dos\keyboard.sys 
ver
prompt $p $g 
set INCLUDE=c:\le;
MODE COMI:300,N,8,2,P 
MODE LPT1:,,P 
C:\MOUSE\MOUSE 
PGI_PLS 127 
cd c:\cfold 
scar

C: \cfold\remove.bat 

del %l.*

C:\cfold\restore.bat

copy b:%l.* c:\cfold 

c :\cfold\backup.bat 

copy %1.* b:

c:\lc\sc.bat to compile scar.c and link

rem Batch fi l e (SCAR.BAT) for compiling and linking SCAR.C 
programme
lc -ml -ccdmsuw -k2 c:\cfold\scar.c 
Plink86 gSCAR.LNK

1



c: \lc\scar.Ink

OUTPUT C:\CFOLD\SCAR.EXE 
MAP = C:\CFOLD\SCAR.LST
F I L E  
C:\LC\L\C,C:\CFOLD\LIB,C:\IBMDAC\DACC,C:\LC\PGIF_CLL,C :\CFOLD\MIC 
KEY,C :\CFOLD\TITLES,C :\CFOLD\S_PROCS,C :\CFOLD\SCAR 
LIB C:\LC\L\LCM, C:\LC\L\LC

c:\lc\s_procs.bat to compile procedure file s_procs

lc -ml -ccdmsuw -k2 c:\cfold\s_procs.c 

c:\lc\titles.c to compile titles.c

rem Batch file(TITLES.BAT) for compiling and linking TITLES.C 
module
lc -ml -ccdmsuw -k2 c:\cfold\titles.c

2



/♦description - mouse driver interscepts bios calls by placing*/
/«vector at bios address. Thus when screen mode is changed, mouse*/
/♦mode is changed. But need mouse mode at resolution of 1 pixel*/
/♦In text mode resolution 8 pixels. Therefore find bios address*/
/♦when mouse driver not loaded. Then run scar program when mouse*/ 
/♦driver loaded, and set mouse mode to graphics(bios graphics call)*/ 
/♦Replace bios and then (in factors();) reset bios to text mode with*/ 
/♦mouse still in graphics mode. Then replace mouse driver. */

/♦screen.c to display screen mode and bios interrupt 10 address*/ 
#include<stdio.h>
#include<dos.h>
/¡define BI0S_INT 0X10 
union REGS in,out; 
unsigned char far *ptr; 
main() { 
in.h.ah=15; 
in.h.a1=0;
int86(BIOS_INT,&in,&out);
printf("\ncurrent screen mode=%d",out.h.al); 
ptr=0x00000040;
printf("\n bios 10 address=%x:%x:%x:%x",*ptr,*(ptr+1),*(ptr+2 ),*(ptr+3)) ;
}



/*cell.h file*/ 
/define Cxmin 0 /* 
/define Cxmax 632 
#define Cymin 0 
/define Cymax 192 
/define Xmin 40 /* 
/define Xmax 500 
/define Ymin 0 
/define Ymax 200 
/define Xdmin 505 
/define Xdmax 700 
/define Ydmin 0 
/define Ydmax 270 
/define Xgmin 40 / 
/define Xgnax 500 
/define Ygmin 205 
/define Ygmax 270 
struct record{char 

char 
char 
char 
char 
char 
char 
char 
char 
char 
char 
char 
} ;

cursor*/

viewport*/

/*data*/

*graph*/

name[20]; 
date[10]; 
eye[3]; 
sex[3]; 
age[4];
hosp[12];/*hospital 
vas[12];/*V.A. with 
vac[12];/*V.A. with 
diagsl[22]; 
diags2[22]; 
diags3[22]; 
diags4[22];

number*/
specs*/
contact lenses*/



/♦titles.c file*/ 
titlel() {

char *t[6],*p;
int x,y,s=255,i;
t[0]="place boundry";
t[l]“"buttons";
t [2]="L..end";
t [3]="M..remove point";
t[4]="R..place point";
t [5]="Hold R..new boundry";
tblank();
sccol(Ss);
sfcol(Ss);
scsp(Ss);
x=540;y=20;
Boveto(Sx,Sy); 
icsp(Ss);
P=t[0];
i=0;while(*(p+i)){ pchar(p+i);i++;}
x=570;y=60;
moveto(&x,&y) ;
P=t[l];
i=0;while(*(p+i)){pchar(p+i);i++;}
x=520;y=90;
inoveto (Sx, Sy) ;
P=t[2];
i=0;while(*(p+i)){pchar(p+i);i++;} 
y=120;
moveto(&x,Sy);
P=t[3);
i=0;while(*(p+i)){pchar(p+i);i++;} 
y=150;
Boveto(Sx,Sy);
P=t [4];
i=0;while(*(p+i)){pchar(p+i);i++;} 
y=180;
Boveto(Sx,Sy);
P=t[5];
i=0;while(*(p+i)){pchar(p+i);i++;} 
}/*end proc*/ 

title2 (){
char *t[3],*p; 
int x,y,s=255,i; 
t[0]="blank area"; 
t[l]“"buttons"; 
t[2]="Any button..end"; 
tblank(); 
sfcol(Ss); 
scsp(Ss);
x=540;y=20;BOveto(Sx,Sy);
P=t[0];
i=0;while(*(p+i)){pchar(p+i);i++;} 
x=570;y=60;Boveto(Sx,Sy);
P=t[l];
i=0;while(*(p+i)){pchar(p+i);i++;} 
x=520;y=90;BOveto(Sx,Sy); 
p=t[2];
i=0;while(*(p+i)){pchar(p+i);i++;} 
}/*end proc*/ 

title3 () {
char *t[4],*p; 
int x,y,s=255,i; 
t[0]="intensity profile"; 
t[l]="any button: profile";



t[2]="then";
t[3]="any button: end";
tblank();
sfcol(&s);
scsp(&s);
x=530;y=20;moveto(&x,&y);
P=t[0];
i=0 ;while(*(p+i)){pchar(p+i);i++;} 
x=5 2 0 ;y=9 0 ;moveto(&x,&y);
P=t[l];
i=0;while(*(p+i)){pchar(p+i);i++;) 
x=570;y=120;moveto(&x,&y);
P=t [2];
i=0;while(*(p+i)){pchar(p+i);i++;} 
x=520;y=150;moveto(&x,&y);
P=t[3 ];
i=0/while(*(p+i)){pchar(p+i);i++;} 
)/*end proc*/ 

title4(){
char *t[3],*p; 
int x,y,s=255,i; 
t [0)="threshold"; 
t [1]="L..set"; 
t[2]="M & R..display"; 
tblank(); 
sfcol(&s); 
scsp(&s);
x=540;y=20;moveto(Sx,&y);
P=t[0 ];
i=0;while(*(p+i)){pchar(p+i);i++;> 
x=520;y=90;moveto(&x,&y);
P=t[l];
i=0;while(*(p+i)){pchar(p+i);i++;} 
x=520;y=120;moveto(&x,&y);
P=t[2 ];
i=0;while(*(p+i)){pchar(p+i);i++;> 
}/*end proc*/ 

title5 (){
char *t[6j,*p;
int x,y,s=255,i;
t[0)="stretching";
t[l]="any button: lower limit";
t[2]="any button: upper limit";
t[3]="any button: central";
t [4]="threshold";
t[5)="then";
tblank();
sfcol(Ss);
scsp(Ss);
x=560;y=20;moveto(&x,&y); 
p=t[0);
i=0;while(*(p+i)){pchar(p+i);i++;> 
x=508;y=90;moveto(&x,&y);
P=t[l];
i=0;while(*(p+i)){pchar(p+i);i++;> 
x=570;y=120;moveto(&x,Sy);
P=t[5];
i=0;while(*(p+i)){pchar(p+i);i++;> 
x=508;y=150;moveto(&x,&y);
P=t[2 );
i=0;while(*(p+i)){pchar(p+i);i++;> 
x=570;y=180;moveto(&x,&y);
P=t[5 );
i=0;while(*(p+i)){pchar(p+i);i++;>



x = 5 0 8 ; y = 2 1 0 ; m o v e t o ( i x , i y ) ;
P = t [ 3 ] ;
i=0;while(*(p+i)){pchar(p+i);i++;} 
x=600;y=225;moveto(ix,iy);
P = t [ 4 ] ;
i = 0 ; w h i l e ( * ( p + i ) ) { p c h a r ( p + i ) ; i + + ; >  
} / * e n d  p r o c * /  

t i t l e 6 ( ) {
char *t[5],*p; 
int x,y,s=255,i; 
t [0]="stretching"; 
t [1]="buttons"; 
t[2]="L..cancel"; 
t[3]="M..redo"; 
t[4]="R ..accept"; 
tblank(); 
sccol(is) ; 
sfcol(is); 
scsp(is);
x = 5 6 0 ; y = 2 0 ; n i o v e t o ( i x ,  i y )  ; 
p = t [ 0 ] ;
i = 0 ; w h i l e ( * ( p + i ) ) { p c h a r ( p + i ) ; i + + ; >  
x = 5 7 0 ; y = 6 0 ; m o v e t o ( i x , i y ) ;
P=t[l];
i = 0 ; w h i l e ( * ( p + i ) ) { p c h a r ( p + i ) ; i + + ; } 
x = 5 2 0 ; y = 9 0 ; m o v e t o ( i x , i y ) ;
P = t [ 2 ] ;
i = 0 ; w h i l e ( * ( p + i ) ) { p c h a r ( p + i ) ; i + + ; > 
y = 1 2 0 ;
i n o v e t o  ( i x ,  i y )  ;
P = t [ 3 ] ;
i = 0 ; w h i l e ( * ( p + i ) ) { p c h a r ( p + i ) ; i + + ; }  
y = 1 5 0 ;
i n o v e t o  ( i x ,  i y )  ;
P = t [ 4 ] ;
i = 0 ; w h i l e ( * ( p + i ) ) { p c h a r ( p + i ) ; i + + ; > 
} / * e n d  p r o c * /  

t i t l e 7 ( ) {
char *t[5],*p; 
int x,y,s=255,i; 
t[0]="place square"; 
t[l]="any button 
t[2]="top left point"; 
t [3]=" then"; 
t [4]="bottom right point"; 
tblank(); 
sfcol(is); 
scsp(is);
x = 5 6 0 ; y = 2 0 ; m o v e t o ( i x , i y )  ;
P = t [ 0 ] ;
i = 0 ; w h i l e ( * ( p + i ) ) { p c h a r ( p + i ) ; i + + ; }  
x = 5 2 0 ; y = 9 0 ; i n o v e t o  ( i x ,  i y )  ;
P=t[l];
i = 0 ; w h i l e ( * ( p + i ) ) { p c h a r ( p + i ) ; i + + ; >  
x = 5 2 0 ; y = 1 2 0 ; m o v e t o ( i x , i y ) ;
P = t [ 2 ] ;
i=0;while(*(p+i)){pchar(p+i);i++;} 
x=560;y=150;moveto(ix,iy);
P = t [ 3 ] ;
i = 0 ; w h i l e ( * ( p + i ) ) { p c h a r ( p + i ) ; i + + ; }  
x = 5 2 0 ; y = 1 8 0 ; m o v e t o ( i x , i y ) ;
P=t[l];
i = 0 ; w h i l e ( * ( p + i ) ) { p c h a r ( p + i ) ; i + + ; }  
x = 5 2 0 ; y = 2 1 0 ; m o v e t o ( S x , i y ) ;



P=t[4];
i=0;while(*(p+i)){pchar(p+i);i++;} 
}/*end proc*/ 

titles(){
char *t[4],*p; 
int x,y,s=255,i; 
t[0]="place square"; 
t[l]="buttons"; 
t[2]="L..main menu"; 
t[3]="R & M. .draw box"; 
tblank (); 
sfcol(&s); 
scsp(&s);
x=560;y=20;moveto(&x,&y);
P=t[0];
i=0;while(*(p+i)){pchar(p+i);i++;} 
x=570;y=60;moveto(&x,&y);
P=t[l];
i=0;while(*(p+i)){pchar(p+i);i++; } 
x=520;y=90;moveto(&x,&y);
P=t[2);
i=0;while(*(p+i)){pchar(p+i);i++;} 
x=520;y=120;moveto(Sx,&y);
P=t[3];
i=0;while(*(p+i)){pchar(p+i);i++;> 
}/*end proc*/ 

title9(){
char *t[2],*p;
int x,y(s=255,i;
t[0]="pupil centre";
t[l]="place with any button";
tblank();
sfcol(&s);
scsp(&s);
x=540;y=20;moveto(&x,&y);
P=t[0];
i=0;while(*(p+i)){pchar(p+i);i++;} 
x=520;y=90;moveto(&x,Sy);
P=t[i);
i=0;while(*(p+i)){pchar(p+i);i++;> 
}/*end proc*/ 

titlelO () {
char *t[2],*p;
int x,y,s=255,i;
t [0]="background";
t[l)="choose with any button";
tblank();
sfcol(&s);
scsp(&s);
x=540;y=20;moveto(&x,&y);
P=t[0);
i=0;while(*(p+i)){pchar(p+i);i++;> 
x=520;y=90;moveto(&x,&y);
P=t[1] ;
i=0;while(*(p+i)){pchar(p+i);i++;> 
}/*end proc*/



\033[7mCORNEAL
FUNCTIONS\033[0m

/*s_procs.c object module for scar.c*/ 
#include<dos.h>
#include<fcntl.h>
/include<error.h>
#include<stdio.h>
#include<cell.h>
extern int x centre,y_centre,background; 
extern long Tnt grey[5][14]; 
extern double dist_per_pixel,fraction[5]; 
extern struct record patient; 
menu() { 

els() ; 
printf("
printf(" \033[7mTEST
printf(" a..mouse test 
printf(" b. .cursor test 
printf(" 
printf(" 
printf(" 
printf(" 
printf(" 
printf (" 
printf(" 
printf(" p 
printf(" g 
printf(" w 
printf (" 
printf(" 
printf("%c",7)
}/*end proc*/ 

initpat(){
strepy(patient.n a m e ); 

strepy(patient.date, "") ; 
strepy(patient.eye,""); 
strepy(patient.sex,""); 
strepy(patient.age,""); 
strepy(patient.hosp,""); 
strepy(patient.vas,""); 
s t r e p y ( p a t i e n t . v a c , ; 
strepy(patient.diagsl,"") 
strepy(patient.diags2,"") 
strepy(patient.diags3,"") 
strepy(patient.diags4,"")

SCAR

\033[7mFEATURE EXTRACTION\033 [Om
f . .Intensity profile
g. .Grey level histogram
h .  .Measurement of area

.Redo pupil centre 

.Check partitions 

.enter patient details

ENTER OPTION==>");

MEASUREMENT SYSTEM\033[Om\n
\03

c. .Real-time view\n
d. .Grab image\n\n")
m. .save image\n\n")
n. .restore image\n"

\033
1.. Contrast stretch
j . .Thresholding \n\
k.  .Histogram equali
1.. reverse contrast 
s. .smoothing\n\n") ; 
r. .original\n\n") ; 
x..export data file

e..End\n");

>
export(){
/*write grey level results to file in ASCII format*/

FILE *fp; 
int i,j ;
long int histo[14];
char namex[15],namez[15],pause;
char namea[12],namebf12],nanee[12],named[12],nanee[12]; 
double pixel_area;
pixel_area=dist_per_pixel*2*dist_per_pixel; 
for(i=0;i<14;i++)histo[i]=0;

cls() ;
printf("\n%cinput file name to export results :",7);
gets(namex);
strncpy(namez,namex,8) ;
streat(namez,".z") ;
if((fp=fopen(namez,"w"))==NULL){

printf("\n%ccannot open file %s",7,namez); 
printf("\npress any key to continue");



pause=getch(); 
return;}

strcpy(namea,namex); 
strcat(namea,"_a"); 
strcpy(nameb,namex); 
strcat(nameb,"_b"); 
strcpy(namec,namex); 
strcat(namec,"_c"); 
strcpy(named,namex); 
strcat(named,"_d"); 
strcpy(namee,namex); 
strcat(namee,"_e");
fprintf(fp,"%s %s %s %s %s \n",namea,nameb,namec,named,namee); 
for(i=0;i<14;i++){

for(j=0;j<5;j++){histo[i)=histo[i]+grey[j][i];
fprintf(fp,"%f ",(double)histo[i]) ; }

fprintf(fp,"\n");
>

fclose(fp);
}

details(){
char line[100]; 
cls() ;
printf("Patient: :[%s]\033[1;9H",patient.name);
gets(line);
if(strlen(line)>0)strncpy(patient.name,line,18); 
printf("\nDate: :[%s]\03 3 [3 ;6H",patient.date);
gets(line);
if(strlen(line)>0)strncpy(patient.date,line, 8) ; 
printf("\nEye: :[%s]\033[5;5H",patient.eye) ; 
gets(line);
if(strlen(line)>0)strncpy(patient.eye,line,1); 
printf("\nSex: :[%s)\033 [7 ;5H",patient.sex); 
gets(line);
if(strlen(line)>0)strncpy(patient.sex,line, 1) ; 
printf("\nAge: :[%s]\033[9 ;5H",patient.age);
gets(line);
if(strlen(line)>0)strncpy(patient.age,line,2);
printf("\nHospital Number: :[%s]\033[11 ; 17H",patient.hosp);
gets(line);
if(strlen(line)>0)strncpy(patient.hosp,line,10);
printf("\nV.A.(Spectacles): :[%s]\033 [ 13 ; 18H",patient.vas);
gets(line) ;
if(strlen(line)>0)strncpy(patient.vas,line,10);
printf("\nV.A.(Contact Lenses): :[%s]\033[15;22H",patient.vac)
gets(line);
if(strlen(line)>0)strncpy(patient.vac,line,10); 
printf("\nComment line 1: :");
printf("\n [%s]\033 [17 ;16H",patient.diagsl);
gets(line);
if(strlen(line)>0)strncpy(patient.diagsl,line, 2 0); 
printf("\nComment line 2: :");
printf("\n [%s]\03 3 [19 ;16H",patient.diags2);
gets(line);
if(strlen(line)>0)strncpy(patient.diags2,line,20); 
printf("\nComment line 3: :");
printf("\n [%s]\033[21;16H",patient.diags3);
gets(line);
if(strlen(line)>0)strncpy(patient.diags3,line, 20) ; 
printf("\nComment line 4: :");
printf("\n [%s]\03 3 [23 ;16H",patient.diags4);
gets(line);
if(strlen(line)>0)strncpy(patient.diags4,line,20);



}
pat details(){

lprintf("PA10,680;LBPATIENT.;") ; 
lprintf("CP ; CP ;LB DATE.;CP; LB EYE.;CP ;LBDETAILS.;");
lprintf("PAIO,680;CP;LB %s.;"»patient.name);
lprintf("CP;LB %s. patient.date);
lprintf("CP;LB %s.;",patient.eye) ;
lprintf("CP;CP;") ;
lprintf("LBSex %s.;",patient.sex); 
lprintf("CP;LBAge %s.;",patient.age) ; 
lprintf("CP,-LBHospital Number .;"); 
lprintf("CP;LB%s.patient.hosp) ; 
lprintf("CP;LBV A (Spectacles).;"); 
lprintf("CP;LB%s.; ", patient.vas); 
lprintf("CP;LBV A (Contact Lenses).;"); 
lprintf("CP;LB%s.; ", patient.vac); 
lprintf("CP;LBComments."); 
lprintf("CP;LB%s.;",patient.diagsl) ; 
lprintf("CP;LB%s.;",patient.diags2) ; 
lprintf("CP;LB%s.;",patient.diags3); 
lprintf("CP;LB%s.; ", patient.diags4) ;

>
dataplot(){ 
char pause;
int i,j,start_pos,horiz,max_histo,g; 
long int histo[14]; 
double pixel_area;
pixel_area=dist_per_pixel*2*dist_per_pixel;

/*DRAW BOX*/
lprintf("PU;PA0,0;PD;PAO,72 0;PA1000,72 0;PA1000, O;PA0,0;PU;");
/*FINISH PATIENT BOX*/
lprintf("PA28 0,7 2 0;PD;PA28 0,0;PU;");
/*PRINT TITLES*/ 
pat_details();
lprintf("SRO.6,1.0;CP;CP;LBPUPIL RADIUS SCAR FRACTION.;"); 
lprintf("DT%;");

.5mm %6.2f%;",fraction[0]);
% 6.2 f %;",fraction[1]) ;
% 6.2 f %;",fractionf 2]) ;
%6.2f%;",fraction[3]) ;
%6.2f%;",fraction[4)) ;

0mm 
5mm 
0 mm 
5mm

lprintf("SR;CP;CP;LB 
lprintf("CP;LB 
lprintf("CP;LB 
lprintf("CP;LB 
lprintf("CP,-LB 
lprintf("DT.;"); 
lprintf("PA580,680;LBSCAR LOCATION. ;") ;
/*PLOT LOCATION GRID*/
lprintf("PA340,360;PD;PA940,360;PU;") ;
lprintf("PA34 0,3 60;XT;PA440,3 60;XT;PA54 0,3 60;XT;");
lprintf("PA640,360;XT;PA740,360;XT;PA840,360;XT;PA940,360;XT;")
lprintf("PA640,360;CI100;CI300;");
/♦change test size*/
lprintf("SR0.4,0.7;PA740,3 30;DT;LB1.0 mm%c;",3); 
lprintf("PA840,330;LB2.0 mm%c;PA940,330;LB3.0 mm%c;DT.;",3,3) ; 
/♦restore text size*/ 
lprintf("SR;");
lprintf("PA7 4 0,10;LBBACKGROUND=%d.;",background); 
lprintf("PG;"); /*PAGE FEED*/

/♦second page*/
/♦DRAW BOX*/
lprintf("PU,-PAO,0;PD;PAO,720;PA1000,720;PA1000,0;PAO,0;PU;");
/♦FINISH PATIENT BOX*/
lprintf("PA280,720;PD;PA280,0;PU;") ;
/♦PRINT TITLES*/ 
pat details();
lprintf("PA400,680,-LBNORMALISED SCAR GREY LEVEL HISTOGRAM.;");



lprintf("PA450,650;LB(PIXELS AGAINST GREY LEVELS).;"); 
lpr intf (" SRO. 6,1.0; PA2 9 0,6 0 0;LBPUPIL RADIUS .;");
lprintf("DTq;PA600,600;LBAREA PER PIXEL=%8.6f mm sq;SR;DT.;",pixel_area) ;
lprintf("PA400,550;PD;PA400,460;PA960,460;PU;");
lprintf("PA400,440;PD;PA400,350;PA960,350;?U;");
lprintf("PA400,330;PD;PA400,240;PA960,240;PU;");
lprintf("PA400,220;PD,-PA400,13 0;PA960,130;PU;");
lprintf("PA400,110;PD;PA400,20;PA960,20;PU;");
lprintf("PA300,510;DT;LB0.5mm%c;PA300,4 00;LB1.0mm%c;PA300,2 8 0;LB1.5mm%c;",3
lprintf("PA300,170;LB2.0mm%c;PA300,60;LB2.5mm%c;DT.;",3,3);
for(i=0;i<14;i++)histo[i]=0;
lprintf("SRO.3,1.0;DT);");
for(j=0;j<5;j++){

for(i=0;i<14;i++)histo[i]=histo[i]+grey[ j ][ i ] ; 
start_pos=460-(j*110); 

max_histo=0.0;
for(i=0;i<14;i++)if(histo[i]>max_histo)max_histo=histo[i]; 
lprintf("PA400,%d;PD;",start_pos); 
for(i=0;i<14;i++){ 
horiz=i*40; 
g=i+l;
lprintf("PA%d,%d;",400+horiz,start_pos+(90*histo[i]/max_histo)) ; 
lprintf("PA%d,%d;",440+horiz,start_pos+(90*histo[i]/max_histo)); 
lprintf("PU;PA%d,%d;",400+horiz+l,start_pos-10); 
lprintf(”LB%51d(%d);",histo[i],g);
lprintf("PA%d,%d;PD;",44 0+horiz,start_pos+(9 0*histo[i)/max_histo)) ;
>

lprintf("PU;");
}/*next radius*/ 
lprintf("SR;DT.;"); 

lprintf("PG;"); 
flushall();
}

pupil () {
char pause;
int x,y,s,xpos,ypos,xc,yc,b; 
int bl,¿2,b3,b4,xl,xr,yt,yb; 
cls() ;
printf("%c",7) ;
printf("\n place cursor inside pupil"); 
title9 () ;
cursor_block(ixpos,Sypos,ibl,&b2,&b3, &b4); 
x=xpos;
s=255;sccol(&s); 
do{x— ;

rpix(ix,&ypos,&s);
}while(s<50); 

xl=x; 
x=xpos; 
do{x++;

rpix(ix,Sypos,&s);
}while(s<50) ; 

xr=x ; 
y=ypos; 
do{y— ;

rpix(Sxpos,&y,&s);
}while(s<50); 

yt=y; 
y=ypos; 
do{y++;

rpix(Sxpos,&y,&s);
}while(s<50);

yb=y;



xc=xl+(xr-xl)/2 ; 
yc=yt+(yb-yt)/2;
for(y=Ymin+l;y<=Ymax-l;y++)plot(Sxc,Sy); 
for(x=Xmin+l;x<=Xmax-l;x++)plot(Sx,Syc); 
printf("%c",7);
printf("\n\n is the pupil centre correct y/n?"); 
pause=getch();
if(pause=='n'){printf("%c",7);

printf("\n\n place cursor at pupil centre") 
cursor_block(Sxpos,Sypos,Sbl,&b2,Sb3,&b4); 
xc=xpos;yc=ypos; 
s=255;sccol(Ss);
for(y=Ymin+l;y<=Ymax-l;y++)plot(Sxc,Sy); 
for(x=Xmin+l;x<=Xmax-l;x++)plot(&x,&yc); 
printf("%c",7);
printf("\n\npress any key to continue"); 
pause=getch();
}

x_centre=xc;y_centre=yc; 
tblank(); 
original() ; 
cls() ;
printf("%c",7) ; 
titlelO () ;
curs_point{Sxpos,Sypos,£bl,&b2,&b3,Sb4) ; 
rpix(Sxpos,Sypos,Sb); 
backgrounds ;
printf("\n background threshold=%d",background); 
printf("%c\nany key to continue",7); 
pause=getch(); 
tblank () ; 
original () ;
}/*end proc*/ 

save_image(){
long int pos=0;
int fp,fpx,x,y,s,xpos,ypos,s_line,num; 
char name[15],naniex[15),pause,d[4)[460]; 
struct record{

double length_cal;
> ;

struct record saved; 
cls();
printf("\ninput file name to store data : ");
gets(name);
strcpy(namex,name);
strcat(namex,".x");
streat(name,".dat");
saved.length_cal=dist_per_pixel;
fpx=dcreat(namex,0) ;
if(fpx==-l){printf("\ncannot create file");

printf("\npress any key to continue"); 
pause=getch(); 
return;}/*end if*/ 

dseek(fpx,pos,2);
dwrite(fpx,(char*)Ssaved,sizeof(saved)); 
dclose(fpx); 
fp=dcreat(name,0);
if(fp==-l){printf("\ncannot create file");

printf("\npress any key to continue"); 
pause=getch(); 
return;}/*end if*/ 

dseek(fp,pos,2); 
s_line=0;
for(num=0;num<=49;num++){



for(y=0;y<=3;y++){
for(x=0;x<=459;x++) {

xpos=x+40;ypos=s_line+y; 
rpix(&xpos,&ypos,&s) ; 
d[y][x]=(char)s;
}/*next x*/

>/*next y*/
dwrite(fp,(char*)d,1840); 
s_line=s_line+4; 
printf(".");
}/*next num*/ 

dclose(fp);
}/*end proc*/ 

restore_image(){ 
long int pos=0;
int fp,fpx,count,x,y,s ,xpos,ypos; 
int w,h,pl,xl,yl,p2(x2(y2,n,q; 
char name[15],namex[15],pause; 
char d [4)[460]; 
int s_line,num; 
struct record{

double length_cal;
} ;

struct record saved; 
cls();
printf("\ninput file name to restore data : ") ;
gets(name);
strcpy(namex,name);
strcat(namex,".x");
strcat(name,".dat");
fpx=dopen(namex,0_RD0NLY);
if(fpx==-l){printf("\nfile %s cannot be opened",namex); 

printf("\npress any key to continue"); 
pause=getch(); 
return;
}/*end if*/ 

dseek(fpx,pos,0) ;
count=dread(fpx,(char*)Ssaved,sizeof(saved)); 
dclose(fpx);
dist_per_pixel=saved.length_cal; 
fp=dopen(name,0_RD0NLY);
if(fp==-l){printf("\nfile %s cannot be opened",name);

printf("\npress any key to continue");
pause=getch();
return;
}/*end if*/

cls();
printf("dist_per_pixel=%f",dist_per_pixel); 
pinit(); 
lutinitg (); 
blank() ; 
boxes () ; 
s=l;scwp(&s) ; 
s=l;scdp(&s); 
s_line=0; 
dseek(fp,pos,0) ; 
for(num=0;num<=49;num++){ 

dread(fp,(char*)d,1840); 
for(y=0;y<=3;y++){

for(x=0;x<=459;x++){
xpos=x+40;ypos=s_line+y; 
s=(int)d[y][x]; 
sccol(Ss); 
plot(&xpos,iypos);



}/*next x*/
}/*next y*/ 

s_line=s_line+4;
>/*next nun*/
dclose(fp);
istyle(&q);
n=0;sstyle(&n);
pl=l;xl=41;yl=l;
w=459;h=199;
p2=2;x2=155;y2=45;
copy(&w,&h,Spl,&xl,&yl,&p2,&x2,&y2); 
sstyle(&q); 
pupil () ;

}/*end proc*/ 
cam_test(){ 

int t; 
char pause; 
pinit(); 
lutinitg(); 
t=l;preview(&t); 
cls();
printf("\npress any key to return to main menu"); 
pause=getch(); 
t=0/preview(&t);
}/*end proc*/ 

joy_test(){
int jx,jy(sl,s2,s3,s4; 
int stat,adapt=0; 
long int count=50; 
char pause; 
do{

joy_pos(Sjx,&jy); 
buttons(&sl,&s2,&s3,&s4); 
cls();
printf("\nx=%d y=%d",jx,jy);
printf("\n%d%d%d%d",sl,s2,s3,s4); 
delay(adapt,count,Sstat);
Jwhile(sl==l);
printf("\npress any key to return to main menu"); 
pause=getch();

}/*end proc*/ 
viewport(){

int x,y,s;
x=Xmin;
y=Ymin;
s=255;sccol(&s); 
moveto(Sx,&y); 
x=Xmin;y=Ymax; 
lineto(&x,&y); 
x=Xmax;y=Ymax; 
lineto(&x,&y); 
x=Xmax;y=Ymin; 
lineto(&x,&y); 
x=Xmin;y=Ymin; 
lineto(&x,&y);
>/*end of viewport*/ 

boxes(){
int x,y,s; 
viewport(); 
s=255;sccol(&s); 
x=Xdmin;y=Ydmin; 
moveto(Sx,&y); 
x=Xdmin;y=Ydmax; 
lineto(&x,&y);



x=Xdmax;y=Ydmax; 
lineto(Sx,Sy); 
x=Xdmax;y=Ydmin; 
lineto(&x,Sy); 
x=Xdmin;y=Ydmin; 
lineto(Sx,Sy);
/*end dataport*/ 
x=Xgmin;y=Ygmin; 
moveto(Sx,Sy); 
x=Xgmin;y=Ygmax; 
lineto(&x,&y); 
x=Xgmax;y=Ygmax; 
lineto(Sx,&y);
/*end graphport*/
}/*end proc*/ 

blank(){
int s,x,y,xl,yl; 
s=0;sccol(&s) ; 
x=0;y=0; 
moveto(&x,&y); 
xl=Xmin; 
yl=Ymax; 
rfill(Sxl,&yl); 
x=0;y=Ymax; 
moveto(&x,&y); 
xl=7 68;yl=288-Ymax; 
rfill(Sxl,Syl); 
x=Xmax;y=0; 
noveto(Sx,Sy); 
xl=768-Xmax;yl=288; 
rfill(Sxl,Syl);
}/*end proc*/ 

grab_image (){
int t,w,h,pl,xl,yl,p2,x2,y2,n,q,; 
char pause,mag; 
pinit();
lutinitg();/»initialise screen*/ 
t=l,-preview(St); 
cls();
printf("\nwhen ready - press any key to grab image");
pause=getch();
t=0;preview(St);
istyle(Sq);
fgrab();
n=0;sstyle(Sn);
pl=l;xl=0;yl=0;
w=7 60;h=2 8 0;
p2=2;x2=0;y2=0;
copy(Sw,Sh,Spl,Sxl,Syl,Sp2,Sx2,Sy2);
pl=l;xl=154;yl=44;
w=460;h=200;
p2=l;x2=40;y2=0;
copy(Sw,Sh,Spl,Sxl,Syl,Sp2,Sx2,Sy2);
blank();
boxes();
sstyle(Sq);
pupil () ;
cls() ;
printf("%c",7);
printf("\n specify slit lamp magnification"); 
printf("\n\n 1..30x");
printf("\n\n 2..16X");
printf("\n\n 3..10X");
printf("\n\n\n magnification selection==>");



mag=getch(); 
printf("%c",mag); 
switch(mag){

case '1':dist_per_pixel=0.0083 
break;

case '2':dist_per_pixel=0.0144 
break;

case '3':dist_per_pixel=0.0260 
break;

}/*end case*/
printf(”\n%c any key to continue",7); 
pause=getch();

}/*end proc*/

check () {
static int t=l; 
if (t==l)t=2;

else t=l; 
scdp(&t);
>

original(){
int w (h,pl,xl,yl(p2,x2,y2,n,q;
istyle(iq);
n=0;sstyle(&n);
pl=2;xl=154;yl=44;
w=460;h=200;
p2=l;x2=40;y2=0;
copy(iw, &h,&pl,&xl,&yl,ip2,ix2,&y2); 
blank(); 
boxes (); 
sstyle(Sq);
}



/♦scar.c program*/
/include <dos.h>
/include <fcntl.h>
/include <error.h>
/include <stdio.h>
/include <stdlib.h>
/include <math.h>
/include <cell.h>
/include <mickey.h>
union REGS in_regs,out_regs;
int _STACK=3 2000;
int _HEAP=32000;
unsigned char *ptr;
unsigned char mouse_ptr[4];
char opt,pause;
float fjx,fjy,fgx,fgy;
int *boundry();
int x centre,y_centre,backgrounds ; 
long Tnt grey[5][14]; 
float *grey_levels();
double dist_per_pixel=l.0,fraction[5]; 
struct record patient;

main(){
factors () ;
while (opt!='e' && opt!='E'){ 

menu(); 
opt=getch();
printf("\033[7m%c\033[0m",opt)
switch(opt){

case 'a ': joy test(); 
break;

case 'b':cursor_test(); 
break;

case ' c ’ : cam test(); 
break;

• case 'd ':grab_image(); 
break;

case 'f ':profile(); 
break;

case 'g':block_grey(); 
break;

case 'h': cal area(); 
break;

case 'i': stretch(); 
break;

case 'j ': threshold(); 
break;

case 'k': equalise(); 
break ;

case '1': reverse(); 
break;

case 'm':save_image(); 
break;

case ' n ' : restore_image(); 
break;

case ' s '  :all_smooth(); 
break;

case 'r': original(); 
break;

case 'q': check(); 
break;

case 'p': pupil(); 
break;



case 'w':details(); 
break;

case 'x'.‘export () ; 
break;

}/*end case*/
}/*end while*/ 

els ();
}/*end main*/

factors(){ 
int i;
fjx=(float)(Xmax-Xmin)/ (float)(Cxmax-Cxmin); 
fjy=(float)(Ymax-Ymin)/ (float)(Cymax-Cymin); 
fgx=(float)(Xgmax-Xgmin)/255.0; 
fgy=(float)(Ygmax-Ygmin)/255.0;
in_regs.h.ah=0;in_regs.h.al=l6;int86(0x10,Sin_regs,Sout_regs) 
mm_init();
ptr=(unsigned char*)NULL+0x40;/*bios int 10 address*/ 
for(i=0;i<4;i++)mouse_ptr[i]=*(ptr+i);
*ptr=0x75;
* (ptr+1)=0x07;
* (ptr+2)=0x00;
* (ptr+3)=0xc0;
in_regs.h.a1=3;int86(0x10,Sin_regs,Sout_regs); 
for(i=0;i<4;i++)* (ptr+i)=mouse_ptr[i]; 
for(i=0;i<5;i++)fraction[i]=0.0; 
initpat();
}/*end proc*/ 

stretch () {
int x,y,shade; 
for(y=l;y<199;y++){

for(x=41;x<=499;x++){ 
rpix(&x,&y,&shade); 
if(shade<=12 7)shade=shade*2; 
sccol(Sshade); 
plot(&x,&y);
}/*next x*/

}/*next y*/
}/*end proc*/ 

reverse () {
int x,y,shade;
for(x=Xmin+l;x<=Xmax-l;x++){ 

for(y=Ymin+l;y<=Ymax-l;y++){ 
rpix(&x,Sy,Sshade); 
shade=220-shade; 
sccol (Srshade) ; 
plot(&x,Sy);
}/*next y*/

}/*next x*/
}/*end proc*/ 

all_smooth(){
Tnt xl,yl,x2,y2;
xl=42;yl=2;x2=498;y2=198;
smoothing(Sxl,Sy1,Sx2,Sy2);
}/*end proc*/

smoothing(xl,yl,x2,y2)int *xl,*yl,*x2,*y2;{ 
int square[9],shade,x,y;

for(y=*yl+2;y<=*y2-2;y++){ 
for(x=*xl+2;x<=*x2-2;x++){ 

neighbors(square,x,y); 
sort(square) ; 
shade=square[4]; 
sccol(Sshade); 
plot(Sx,Sy);



}/*next x*/
>/*next y*/

}/*end proc*/
neighbors(square,xc,yc)int square[],xc,yc;{ 

int x,y,shade,count=0; 
for(x=xc-l;x<=xc+l;x++){

for(y=yc-l;y<=yc+l;y++){ 
shade=0;
rpix(&x,&y,Sshade); 
square[count]=shade; 
count++;
}/*next y*/

}/*next x*/
>/*end proc*/

sort(square)int square[];{ 
int a,b,t; 
for(a=l;a<9;++a){

for(b=9-l;b>=a;— b){
if(square[b-1]>square[b]){ 

t=square[b-l]; 
square[b-1]=square[b]; 
square[b]=t;
}/*end if*/

}/*next b*/
}/*next a*/

}/*end proc*/

place_corners(tlx,tly,brx,bry)int *tlx,*tly,*brx,*bry;{ 
long int count;
int pos[2],n,shade=230,bl,b2,b3,b4; 
title7();
for(n=0;n<=l;n++){

cursor_block(pos,pos+1,&bl,&b2,Sb3,Sb4); 
place_cursor(pos,Sshade);
for(count=0;count<=20000;count++);/*debounce*/ 

if(n==0){*tlx=pos[0];
*tly=pos[1];} 

else{*brx=pos[0];
*bry=pos[1];}/*end if-else*/

}/*next n*/ 
titles(); 
do{

buttons(&bl,&b2,&b3,Sb4);
}while(bl==l && b2==l && b3==l && b4==l); 

if(bl==0)return(0); 
draw_square(*tlx,*tly,*brx,*bry); 
return(1);
}/*end proc*/

draw_square(xl,yl,x2,y2)int xl,yl,x2,y2;{ 
int s=2 3 0; 
sccol(is); 
moveto(Sxl,&yl); 
lineto(&xl,&y2); 
lineto(&x2,&y2); 
lineto(&x2,&yl); 
lineto(ixl,Syl) ;
}/*end proc*/ 

mean(x,y)int x,y;{ 
int total=0;
int grey,xs,ys,xpos,ypos; 
for(xs=0;xs<=2;xs++){ 

for(ys=0;ys<=2;ys++){ 
xpos=x-l+xs; 
ypos=y-l+ys;



rpix(4x,4y,4grey); 
total+=grey;
}/*next y*/

}/*next x*/ 
total=total/9; 
return(total);
}/*end proc*/

adjust_lut(level) int level[3];{ 
int i,value,a[3]; 
for(i=0;i<=220;i++){ 

value=i;
if((i>level[0])&&(i<level[2]))value=level[0]; 
if((iclevel[ 1])44(i>=level[2]))value=level[1]; 
a [0]=a[1]=a[2]=value; 
wlut(4i,a);
}/*next i*/

}/*end proc*/ 
threshold(){

int x,y,x_grey,shade,s,xpos; 
grey_levels(); 
title4 ();
cursorl_line(4x_grey);
xpos=x_grey+40;
s=2 00;
place_line(Sxpos,Ss); 
for(y=l;y<=199;y++){

for(x=41;x<=499;x++){ 
rpix(&x,Sy,&shade); 
if(shade<=x_grey){ 

s=0;
sccol(4s); 
plot(4x,4y);
}/*end if*/

}/*next x*/
}/*next y*/ 
tblank();

}/*end proc*/

equalise () {
float *value,sum=0,weight[256]; 
int x,y,shade,i,new_shade; 
value=grey_levels();
for(i=0;i<=255;i++) weight[i]=(sum+=*(value+i)); 
for(y=l;y<=199;y++){

for(x=41;x<=499;x++){ 
rpix(4x,4y,4shade);
if(weight[shade]>=1) new_shade=220;/*220 max grey shade*/

else new_shade=220*weight[shade];/*2544255 used for area measure*/ 
sccol(4new_shade); 
if(shade!=0)plot(4x,4y);
}/*next x*/

}/*next y*/ 
tblank();

}/*end proc*/

cal_area(){
int n,s,x,y,*b;
int g_level,element,plotx,ploty; 
long int circle_r[5],x_dist,y_dist; 
double r ,pixel_area,area,area_sum=0.0; 

static double total_area[5) = {0.785,3.142,7.06,12.56,19.63};
/* area in mm for radius= 0.5, 1.0, 1.5, 2.0, 2.5*/

/*circle_r= 0.5, 1, 1.5, 2, 2.5mm*/



/*diameter= 1, 2, 3, 4, 5 mm*/
for(x=0;x<5;x++){circle_r[x]=0;

for(y=0;y<14;y++)grey[x][y]=0;> 
pixel_area=dist_per_pixel*dist_per_pixel*2 ; 

els () ;
printf("\ndist_per_pixel=%f",dist_per_pixel) ; 
printf("\n ISOLATE SCAR");
printf("\n -------------- ") ;
printf("\n\nl..mark boundry with cursor");
printf("\n2..place cursor inside area to be blanked, then EXIT cursor"); 
b=boundry() ;
printf("\n\nls the printer switched on?. If not, please switch it on,"); 
printf("\n%c AND are the boundries correct?",7); 
printf("\npress any key to continue, or 'n' to end"); 
pause=getch() ;
if(pause=='n'){original();return(-1) ; } 
if(b!=NULL){
lprintf("%c&132259.1057J",27);
lprintf("IN;SP1;SCO,1000,0,720;DT.;");/‘INITIALISE PLOTTER*/ 

place_markers (&n) ; 
s=255;spool(&s) ; 
s=254;sccol(&s); 
bfill () ; 
s=0;sccol(&s) ; 
printf("\n.") ; 
for(x=41;x<=499;x++) { 

for(y=l;y<=199;y++){ 
rpix(&x,&y,&s); 
if(s>=2 54)plot(&x,iy) ; 

else{
if((s-background)>0){

x_dist=abs(x-x_centre) ; 
y_dist=2*abs(y-y_centre) ; 
r=x_dist*x_dist+y_dist*y_dist; 
r=sqrt(r); 
r=r*dist_per_pixel; 
element=floor(r*2);

/* g_level=(s-background)/10; */
g_level=s/10; 
if(element>4)element=4; 
cirele_r[element]++; 
grey[element][g_level]++;
plotx=((x-x_centre)*dist_per_pixel*100)+640; 
ploty=(-2*(y-y_centre)*dist_per_pixel*100)+360; 
lprintf("PA%d,%d;PD;PU;",plotx,ploty);
if (g_level>4)lprintf("PA%d,%d;PD;PU;",plotx+1,ploty+1 
if (g_level>5)lprintf("PA%d, %d;PD;PU;",plotx-1,ploty-1 
if(g_level>6)lprintf("PA%d, %d;PD;PU;PD;PU;",plotx,plo 
if(g_level>7)lprintf("PA%d, %d;PD;PU;PD;PU;",plotx+1,p 
if(g_level>8)lprintf("PA%d, %d;PD;PU;PD;PU;PD;PU;",plo 
if(g_level>9)lprintf("PA%d, %d;PD;PU;PD;PU;PD;PU;",plo 
}

}/*end if-else*/
}/*next y*/

}/*next x*/
for(x=0;x<5;x++){area_sum=area_sum+circle_r[x] ;

area=area_sum*pixel_area;
fraction[x]=( (double)area/total_area[x])*100.0;}

}/*end if*/ 
dataplot() ; 
tblank();
if(b==NULL) return(-l); else return(0);

/****************************************************************************y 
/* Variables



global double dist_per_pixel=side length of pixel in mm. This is assigned
in grab_image in module s_procs.c.
The value assigned is hard coded in the 
program from a calibration of the slit lamp, 

global int x_centre,y_centre=pupil centre coordinates in pixels, assigned
in grab image by pupil().

double r=distance in mm to each pixel from centre, 
int element=array element for pixel count.

arrays for count are:
long_int circle_r[5]=the number of pixels within each diameter band of 

1,2,3,4,5 mm
long int grey[5J[14]=the number of pixels of different grey levels 

(14 levels) in each diameter band.

double area_sum=total number of pixels of scar from centre, 
double area=total area of scar in mm from centre, 
double fraction= total area of scar as % of total area of pupil 

at each different radius band.
double total_area=area in mm for pupil of each radius(hard coded)
double length[5]=radius in mm for each step
int plotx,ploty = coordinates of pixel to plot on

page 1 of plotter output - see s_procs */

}/*end proc*/ 
profile(){

int x,xpos,ypos,s,i=0,bl,b2,b3,b4; 
float value[458j; 
bl=b2=b3=b4=l; 
title3 () ;
cursor_block(Sxpos,&ypos,&bl,&b2,Sb3,Sb4); 
for(x=Xgmin+l;x<=Xgmax-l;x++){ 

rpix(ix,Sypos,&s);
*(value+i)= (float)s;
s=255;sccol(Ss);plot(Sx,Sypos);/*draw line across profile*/ 
i++; •
}/*next x*/ 

graph(value); 
do{

buttons(&bl,&b2,&b3,&b4);
}while(bl==l SS b2==l && b3==l && b4==l); 

i=0;
for(x=Xgmin+l;x<=Xgmax-l;x++){ /*restore profile*/ 

s=(int)* (value+i); 
sccol(Ss); 
plot(&x,Sypos) ; 
i++;
}/*next x*/ 

tblank();
}/*end proc*/ 

cursor_line(x)int *x;{
int old_cursor,new_cursor,under_cursor[65],yd;
int shade,bl,b2,b3,b4;
old_cursor=-l;
shade=200;
do{

if (old_cursor>=0)line_replace(&old_cursor,under_cursor); 
joy_pos(Snew_cursor,&yd);
if(new_cursor>260)new_cursor=260;/*220 max grey level allowed*/
line_save(&new_cursor,under_cursor);
old_cursor=new_cursor;
place_line(Snew_cursor,Sshade) ;
buttons(&bl,Sb2,&b3,&b4);



}while(bl==l && b2==l S& b3==l S& b4==l); 
line_replace(&old_cursor,under_cursor);
*x=new_cursor-4 0;
>/*end proc*/ 

cursorl_line(x)int *x;{
int old_cursor,new_cursor,under_cursor[65],yd; 
int shade,bl,b2,b3,b4,a [3 ],i,value; 
old_cursor=-l; 
shade=200; 
do{ 

do{
if(old_cursor>=0)line_replace(&old_cursor,under_cursor); 
joy_pos(&new_cursor,&yd);
if(new_cursor>260)new_cursor=260;/*220 max grey level allowed*/
line_save(&new_cursor,under_cursor);
old_cursor=new_cursor;
place_line(&new_cursor,&shade) ;
buttons(&bl,&b2,&b3,&b4) ;
}while(bl==l && b2==l S& b3==l S& b4==l); 
for(i=0;i<=220;i++){

if(i<(new_cursor-40))value=0;
else value=i; 

a [ 0 ] =a [ 1 ] =a [ 2 ] =va lue; 
wlut(&i,a);
}/*next i*/

}while(bl==l); 
lutinitg();
line_replace(Sold_cursor,under_cursor);
*x=new_cursor-4 0;
}/*end proc*/

line_replace(old_cursor,under_cursor)int *old_cursor,under_cursor[] ; { 
int y,xpos,ypos,shade; 
xpos=*old_cursor; 
for(y=0;y<=64;y++){

shade=under_cursor[y];
sccol(&shade);
ypos=y+205;
plot(ixpos,&ypos);
}/*next y*/

}/*end proc*/
line_save(new_cursor,under_cursor)int *new_cursor,under_cursor[] ; { 

int y ,xpos,ypos,shade; 
xpos=*new_cursor; 
for(y=0;y<=64;y++){ 

ypos=y+205;
rpix(&xpos,Sypos,Sshade); 
under_cursor[y ]=shade;
}/*next y*/

}/*end proc*/
place_line(new_cursor,shade)int *new_cursor,*shade;{ 

int y,ypos,xpos; 
sccol(shade); 
xpos=*new_cursor; 
for(y=0;y<=64;y++){ 

ypos=y+205; 
plot(Sxpos,Sypos);
}/*next y*/

}/*end proc*/ 
float *grey_levels (){ 

int grey,x,y,black; 
float value[458); 
for(x=0;x<=457;x++)value[x]=0 .0 ; 
blank_graph();

for(x=41;x<=499;x+=2){ /*skip every second line and column to speed proc



for(y=l;y<=199;y+=2){ 
rpix(Sx,Sy,Sgrey);
* (value+grey)= * (value+grey)+1;
}/*next y*/

>/*next x*/
black=value[0];value[0]=l;
for(x=0;x<=457;x++)value[x]=value[x]/23000; 
graph(value); 
tick () ;
value[0] = (float)black/2 3 000 ; 
return(value);
}/*end proc*/ 

block_grey(){
int grey,x,y,black,i,group,start; 
float value[458),b_value[26]; 
for(x=0;x<=457;x++)value[x)=0.0; 
for(x=0;x<26;x++)b_value[x]=0.0; 
blank_graph () ;

for(x=4l;x<=499;x++){ 
for(y=l;y<=199;y++){ 

rpix(Sx,&y,Sgrey); 
if(grey==0)group=0;

else group=grey/10;
* (b_value+group)=*(b_value+group)+1;
>/*next y*/

}/*next x*/
for(start=0;start<2 6;start++){ 

group=start*10;
for(i=group;i<group+10;i++) * (value+i)=b_value[start] ;

>
black=value[0);value[0]=l;
for(x=0;x<=4 57;x++)value[x]=value[x]/23000; 
graph(value); 
tick();
value[0)=(float)black/23000;
}/*end proc*/ 

tick(){
int x,y,s; 
x=256+Xgmin; 
y=Ygmax; 
moveto(Sx,Sy); 
s=2 55; 
sccol(Ss) ; 
y=Ygmax-3; 
lineto(Sx,Sy) ;
}/*end proc*/

test_proc(value)float value[];{ 
int x; 
cls() ;
for(x=0;x<=255;x++)

printf(" %d=%f ",x,value[x]); 
pause=getch () ;
}/*end proc*/

graph(value)float value[];{ 
int xpos,ypos,shade=255,i; 
float max_value=0.0;
/♦calculate max value*/
for(i=0;i<=457;i++) if(*(value+i)>max_value)max_value=*(value+i); 
/♦plot histogram*/ 
blank_graph(); 
sccol(Sshade);
for(xpos=Xgmin+l;xpos<=Xgmax-l;xpos++){ 

ypos=Ygmax; 
moveto(Sxpos,Sypos);



ypos=Ygmax-(value[xpos-(Xgmin+1)]*(Ygmax-Ygmin)/max_value) 
lineto(&xpos,&ypos);
}/*next xpos*/

}/*end proc*/ 
blank_graph(){

int x,y,s,xl,yl; 
s=0;
sccol(&s);
xl=(Xgmax)-(Xgmin+1) ;
yl=Ygmax-Ygmin;
x=Xgmin+l;
y=Ygmin;
moveto(&x,&y);
rfill(&xl,&yl);
}/*end proc*/ 

cursor_test(){
int points,*b,x=0; 
els();
printf("\n\nTHE FOLLOWING CURSOR FUNCTIONS ARE TESTED:");
printf("\nl..place boundry");
printf("\n2..place markers");
printf("\n3..histogram line cursor");
pinit();
lutinitg();
fgrab();
blank();
boxes();
b=boundry();
if(b!=NULL)place_markers(^points); 
title4 () ; 
cursor_line(x) ;
}/*end proc*/ 

tblank(){
int x=506,y=l,s=0,xl=194,y1=268; 
sccol(&s); 
moveto(&x,&y); 
rfill(&xl,&yl);
}/*end proc*/

cursor_block(x,y,bl,b2,b3,b4)int *x,*y,*bl,*b2,*b3,*b4;{ 
int old_cursor[2],new_cursor[2],under_cursor[3][2); 
int shade; 
old_cursor[0]=-l; 
shade=255; 
do{

if(old_cursor[0]>=0) replace_block(old_cursor,under_cursor) ;
joy_pos(&new_cursor[0],Snew_cursor[1]) ;
save_block(new_cursor,under_cursor) ;
old_cursor[0)=new_cursor[0] ;
old_cursor[1]=new_cursor[1] ;
place_cursor(new_cursor,Sshade) ;
buttons(bl,b2,b3,b4);
}while (*b4==l && *b3==l &S. *b2==l && *bl==l); 

replace_block(old_cursor,under_cursor) ;
*x=new_cursor[0];
*y=new_cursor[1] ;
}/*end proc*/

curs_point(x,y,bl,b2,b3,b4)int *x,*y,*bl,*b2,*b3,*b4;{ 
int old_cursor[2],new_cursor[2 j,under_cursor[3][2]; 
int shade,threshold; 
old_cursor[0]=-l; 
shade=255; 
do{

if(old_cursor[0]>=0) replace_block(old_cursor,under_cursor); 
joy_P°s(Snew_cursor[0),&new_cursor[1]);



rpix(&new_cursor[0],Snew_cursor[l],&threshold);
save_block (new_cursor, under_cursor) ;
old_cursor[0]=new_cursor[0];
old_cursor[l]=new_cursor[l];
place_cursor(new_cursor,Sshade);
buttons(bl,b2,b3,b4);
cls();
printf("\nchoose level=%d",threshold);
}while(*b4==l && *b3==l &S, *b2==l && *bl==l); 

replace_block(old_cursor,under_cursor);
*x=new_cursor[0];
*y=new_cursor[l];
}/*end proc*/

place_markers(points)int ‘points;{ 
long int count; 
int pos[l],n=0,bl,b2,b3,b4; 
title2(); 
do{

cursor_block(pos,post1,&bl,&b2,&b3,&b4); 
for(count=0;count<=20000;count++);/‘debounce*/
}while(bl==l 4S b2==l && b3==l && b4==l);
*points=n;

}/*end proc*/ 
int *boundry(){

int xpos,ypos,bl=l,b2=l,b3=l,b4=l,shade; 
int pos[2],*xval,*yval,x,n,*b; 
long int count; 
unsigned bytes; 
char ‘rnalloc (), ‘realloc() ; 
do{ 

n=0 ;
xval=(int*)nalloc(sizeof(int)); 
yval=(int*)malloc(sizeof(int)); 
titlel(); 
do{

cursor_block(Sxpos,Sypos,&bl,&b2,&b3,&b4); 
if(bl==l && b4==l){ 

if(b2==l){ 
shade=255; 
pos[0]=xpos;
Pos[1]=ypos;
place_cursor(pos,Sshade); 
n++;
bytes=n*sizeof(int);
xval=(int*)realloc((char*)xval,bytes) ; 
yval=(int*)realloc((char*)yval,bytes); 
if(xval==NULL || yval==NULL){ 

cls();
printf("Error in memory allocation\n"); 
printf("press any key to return to main menu" 
bl=0 ;
pause=getch(); 
b = (int *)NULL; 
return(b);
}/*end if*/ 

xval[n-l]=xpos; 
yval[n-l]=ypos;} 

else{
shade=0;
pos[0]=xval[n-l]; 
pos[l]=yval[n-l]; 
place_cursor(pos,Sshade) ; 
n--;
if(n<0)n=0;



bytes=n*sizeof(int);
xval=(int*)realloc((char*)xval,bytes); 
yval=(int*)realloc((char*)yval,bytes); 
if(xval==NULL || yval==NULL){ 

cls();
printf("Error in memory allocation or last point was removed\n
printf("press any key to return to main menu");
bl=0;
pause=getch(); 
b=(int *)NULL; 
return(b);

}/*end if*/
}/*end if-else*/

}/*end if*/
f or(count=0;count<=2 0 000;count++);/*debounce*/
}while(bl==l && b4==l); 

shade=255;sccol(Sshade); 
moveto(xval,yval);
for(x=l;x<n;x++)lineto(xval+x,yval+x); 
lineto(xval,yval);
free((char*)xval);free((char*)yval);
}while(bl==l);
f or(count=0;count<=2 0000;count++);/*debounce*/

}/*end proc*/
save_block(new_cursor,under_cursor)int new_cursor[],under_cursor(] [2] ;{ 

int x , y , xpos, ypos, shade, xcursor, ycursor ; 
xcursor=new_cursor[0]; 
ycursor=new_cursor[1]; 
for(y=0;y<=l;y++){ 

for(x=0;x<=2;x++){ 
xpos=xcursor+x; 
ypos=ycursor+y; 
rpix(Sxpos,Sypos,Sshade); 
under_cursor[x][y]=shade;
}/*next x*/

}/*next y*/
}/*end proc*/

replace_block(old_cursor,under_cursor) 
int old_cursor[],under_cursor[][2];{ 
int x,y,xpos,ypos,shade,xcursor,ycursor; 
xcursor=old_cursor[0); 
ycursor=old_cursor(1); 
for(y=0;y<=l;y++){ 

for(x=0;x<=2;x++){ 
xpos=xcursor+x; 
ypos=ycursor+y; 
shade=under_cursor(x)[y]; 
sccol(Sshade); 
plot(Sxpos,Sypos);
}/*next x*/

}/*next y*/
}/*end proc*/

place_cursor(new_cursor,shade)int new_cursor[],*shade;{ 
int x,y,xpos,ypos,xcursor,ycursor; 
xcursor=new_cursor[0]; 
ycursor=new_cursor[1]; 
sccol(shade); 
for(y=0;y<=l;y++){ 

for(x=0;x<=2;x++){ 
xpos=xcursor+x; 
ypos=ycursor+y; 
plot(Sxpos,Sypos);
}/*next x*/

}/*next y*/



}/*end proc*/

joy_pos(xcpos,ycpos)int *xcpos,*ycpos;{
/*xcpos,ycpos are actual cursor position in viewport*/ 

- int joyx,joyy,xcvalue,ycvalue;

/* int adapt,device,chanlo,Ctrl,stat; 
adapt=0; 
device=9; 
chanlo=0; 
ctrl=0;
ains(adapt,device,chanlo,Ctrl,Sjoyx,Sstat); 
chanlo=l;
ains(adapt,device,chanlo,Ctrl,&joyy,Sstat); */

mm_get(&joyx,Sjoyy);

xcvalue=j oyx-Cxmin; 
ycvalue=j oyy-Cymin;
*xcpos=xcvalue*fjx+Xmin;
*ycpos=ycvalue*fjy+Ymin;
if(*xcpos<Xmin) *xcpos=Xmin;
if(*xcpos>(Xmax-3)) *xcpos=(Xmax-3);
if(*ycpos<Ymin) *ycpos=Ymin;
if(*ycpos>(Ymax-2)) *ycpos=(Ymax-2);
}/*end proc*/

buttons(bl,b2,b3,b4)int *bl,*b2,*b3,*b4;{ 
long int count; 
int x=0;
*bl=*b2=*b3=*b4=l; 
x=mm_button(); 
switch(x){

case l:*bl=0;
break; 

case 2:*b2=0;
break; 

case 3:*b3=0;
for(count=0;count<=40000;count++); 
if(mm_button()==3){*b4=0;

while(mm_button()==3);}
break;

}/*end case*/

/* int adapt,device,bitl,bit2,bit3,bit4,stat; 
bitl=l2; 
bit2=13; 
bit3=l4; 
bit4=15; 
adapt=0; 
device=8;
bitins(adapt,device,bitl,bl,Sstat); 
bitins(adapt,device,bit2,b2,Sstat); 
bitins(adapt,device,bit3,b3,Sstat); 
bitins(adapt,device,bit4,b4,Sstat);*/
}/*end proc*/



Appendix D.



Measurement of corneal topography in 
keratoconus
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A new method is described for calculating the topography and curvature o f an irregularly shaped cornea. 
Vertical planes o f light are projected onto the cornea and points in x , y ,  z  space are calculated from the 
light images on the corneal surface. A matrix o f points is produced on the cornea and a mathematical 
surface is fitted to them. Using differential geometry theory, curvature values are calculated to find the 
corneal apex position, apex curvature and curvature change away from the apex. Typical results, in the 
form of a contour map, are shown for normal corneas and corneas with mild to severe keratoconus. The 
method gives an accurate quantitative measurement of keratoconic and other irregular corneas.

Keratoconus is an inherited eye disease in w hich localized 
thinning o f  the cornea causes it to distort from its normal 
regular shape. Initially this produces high astigm atism  
and later corneal protrusion and scarring. The m anage-
m ent is usually by rigid contact lens wear but about 
10-15%  o f  eyes becom e so distorted that a corneal 
transplant is required. The progression o f  the disease is 
m onitored by m easuring the changing front curvature 
o f  the eye.

Different m ethods o f  m easuring the topography and 
curvature o f  the anterior corneal surface have been 
developed over the last 50 years and these have been 
reviewed in the literature1’. A lthough each m ethod has 
its own unique features, tw o fundam entally different 
approaches have emerged in m odelling the corneal 
surface.

The first approach uses the cornea as a reflecting 
convex mirror and measures the height o f  concentric ring 
im ages formed from the corneal surface. Standard par-
axial ray equations are used to calculate the curvature 
at different points and build up a profile. Photokerato- 
scopes based on this princip le’-4 have been widely used 
over the last 20 years and have lately been superseded by 
sophisticated instrum ents'6 that photograph and analyse 
the ring images using a m icrocom puter system .

The second approach to m apping the cornea has been 
to measure actual points on the surface o f  the cornea  
and build a three-dim ensional m ap. M ethods using this 
approach looking directly at the cornetti surface have 
included profile m easurem ents7, m oiré fringe analysis® 
and stereophotogrannnetry1'. W ithin the last few years, 
the stcrcophotogram m elry m ethod has been developed  
into rasterstcrcography10-" using a m odified slit lamp 
and com puter im age grabbing system .

K eratoconus has been extensively photographed using 
photokeratoscopes but pictures17,1-1 typically show  highly 

» distorted images produced from non-sphcrical surfaces.

S' 1993 Bwik-rworih-I leinemann for British College of Optometrists 
0275- 540S. 93,040377 06

M any o f  the rings are out o f  focus and there is additional 
uncertainty in the alignm ent o f  the cornea w ith the 
instrum ent axis. The resulting pictures are difficult to 
analyse and curvature values are probably invalid in 
these cases because they are derived from ray equations  
that assum e spherical surfaces. Stereographic techniques 
do not assum e spherical surfaces, therefore they do not 
suffer from the problem s outlined above when view ing  
distorted corneas. Previous system s have calculated  
curvature by fitting the best arc to the corneal profile 
along any m eridian. The further the shape departs from  
sphericity, the m ore difficult and unreliable this m ethod  
becom es.

W e have developed a system  o f  m easuring the corneal 
topography and curvature for both  norm al and highly  
distorted eyes. This has lead to accurate and quantitative  
m easurem ent o f  keratoconic and other irregular corneas. 
To overcom e problem s suffered by other instrum ents we 
needed to develop  a system  which could ,

1. m easure surface w ithout any assum ption about 
underlying shape,

2. reconstruct surface shape independent o f  alignm ent 
o f  eye,

3 . - extract param eters at any point on the surface and
determ ine apex position , apex curvature and rate o f  
flattening.

M eth od

M e a s u r e m e n t o f  s u r fa c e  w ith o u t  p r e v io u s  a s s u m p tio n  o f  
s u r fa c e  sh a p e

A system was set up to project vertical planes o f  light 
onto the eye and a picture o f  the planes on the cornea  
was taken by a com puter im age grabber. The direction  
o f  each plane is known and used in place o f  a second
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Figure 1 Projector and camera configuration with arbitrary .t, y  axes 
aligned with camera axes; CO is the camera objective and LP are the 
light planes projected onto the cornea C

cam era in a stereographic system  for calculating depth  
in form ation14.

The projection system was arranged to give m axim um  
inform ation over the central 4 mm o f  the cornea, which  
is the area o f  interest for vision. The configuration is 
show n in F ig u re  I.

Sodium  fluorescein, 2% , was placed on the cornea to 
increase the brightness o f  the light plane im ages, which 
were very faint w ithout fluorescein; also a histogram  
equalization im age enhancem ent was applied to the 
cam era input. A discrete point P is calculated on the 
cornea in .v, y ,  z  space by finding the intersection o f  
a given light plane with a ray from an im age point P 
o f  the light plane on the cornea as shown in F ig u re  2.

The genera! equation o f  the plane is

"p * (?p -  ?po) =  0 (1)

where

np is a unit vector normal to the plane 
is a vector to a point on the plane 

rp is a general vector in .v, r, z  space

The unit vector normal to the plane is found by m easur-
ing the angle p  between the plane and the cam era axis.

rip =  sin p x  — cos ip y (2)

If the intersection point o f  the plane w ith the . 
at distance L , then r ^  can be taken along the a 
this point.

v axis is 
; axis to

7po =  L x (3)

L P

Figure 2 Intersection of r;iy ;ind plane LP gives point P in v, r. r space 
on the corneal surface C. The camera objective is CO and CP is the 
camera image plane. The normal to the plane is given by n

When ip and L  arc measured for each plane, the corre-
sponding plane equation can be found from E quation (I)

(sin ipx  -  cos iip y )  ■ ( x x  +  y y  +  z z  -  L x )  =  0  (4)

(sin i¡/x  -  cos ip y )  ■ ((.v -  L ) x  +  y y  +  z z )  =  0 (5)

sin  ip ( x  — L )  — y  c o s  ip =  0  (6)

Equation (6) is the equation for each plane in x ,  y ,  z  
space. The general equation o f  a light ray from P to  P' 
is given by

r i  =  f M +  a R t  (7)

where

rR0 is a vector to the ray

a R is a unit vector a long the ray 

rR is a general vector in x , v, z space

For each im age point P '(0 ,y 'f , z'p ) , the ray equation  (7) 
can be solved. I f  the distance from  the cam era focal
plane CP to the centre o f  the cam era objective CO  =  /, 
then r R0 can be taken along the .v axis to CO.

rR =  /.v +  t ( x l - y py  - r ^ r ) (8)

.v.v +  y y  +  z z  =  (// +  l ) x  -  t y py  -  tz 'pz (9)

Equating com ponents

.r = / ( r  +  1) (10)

y = - y Rt (11)

-- =  - : ' „ t (12)

t is a distance param eter along the light ray, and its 
value at the ray-plane intersection is found by inserting  
Equations (10), (11) and (12) into E quation (6).

sin ip ( l ( t  +  1) -  L )  + y Rt c o s p  = 0 (13)

; ( /  sin ip + y ’p c o s i p )  =  ( ! —/)  sin ip (14)

(L — 1) sin ip 

1 sin p  -P f ^c o s  ip
(15)

The .v, _)’, r point P is found by substituting t in E quation  
(15) back into Equations (10), (11) and (12). This gives a 
unique point on the corneal surface in three-dim ensional 
space dependent on y ’p and z p (for a given plane).

These equations are solved at chosen points on each  
plane; there are 26 light planes for which the data is 
collected producing a matrix o f  discrete points on the 
corneal surface.

R e c o n s tr u c tio n  o f  s u r fa c e  in d e p e n d e n t o f  x ,  y ,  z  
c o - o r d in a te  s y s te m

After interpolation between the discrete poin ts to 
produce a set o f  points on a uniform  m atrix, a surface  
equation can be developed using u, v  co-ord inate axes  
defined in the surface as shown in F ig u re  

The form o f  the surface equation and m eaning o f  
the //, r parameters can be illustrated by discussing the
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Figure 3 Co-ordinate axes «, v on the surface which uniquely define 
any point P on the surface

P0 (0,0) P2 (1,0)

---------------- ----------------- — :>u

V

(0,1) p3 0.1)

Figure 4 Four points on u, v parameter space

construction o f  a sim ple bilinear surface between four 
p o in ts15. This is a surface in which the boundaries 
betw een points are linear and the interpolation between 
boundaries are linear. U sing four points in .r, y ,  z  space, 
a u, v  co-ordinate system  is constructed through the 
points with P0, P |, P; , P3 at u, v  co-ordinates (0,0), 
(0,1), (1,0) and (1,1) respectively as show n in F ig u re  4.

Linear interpolation betw een P0 and P, gives (in sector  
notation)

h  +  ¡ (? i  ~ P o )  =  Qo, (16)

E quation (16) represents three individual equations for 
the .r, V, z com ponents. Param eter v  then represents the 
fractional distance a long  the line P0 to P ,. e.g. v  = 0 .5  
lies halfway between P0 and P , . Sim ilar interpolation  
between P, and P3 gives

Qn- =  P : +  e ( P  } - P : ) (17)

E quations (16) and (17) represent linear boundaries at 
constant a . We can now  interpolate between the bound-
aries for any u at a given v  as illustrated in F ig u re  5.

For a given v , a linear interpolation between the 
boundaries gives

Q(u,  e )  =  Q 0r +  u ( Q u - Q a, )  (IS)

2 ( » , r ) “ (l -  ")£?o.. +  "£?,r (19)

Substituting Q k  and Q u. from E quations (16) and (17) 
gives

£?(", r )  =  ( \ - u ) [ P 0+ e ( P , - P 0)]

+  u [ P 2+  ! ( ? > - P : )} (20)

expanding Equation (20) we obtain

5 ( w . r ) - ( l  - « ) ( !
+  ( l  - u ) v P ,  +  u ( ]  - v ) P : +  l l l P i  (21)

and in matrix notation  Equation (21) gives

A . . R l  - t ' ) ( l  - u ) h  v ( \ - u ) P  
= ( 1-,■)„* m h (22)

when the coefficients are separated from  the point 
m atrix, the surface equation takes the form

g (u , r) =  [(I - u ) u ]
'Po K " 1  - v ~

h K V
( 2 3 )

The coefficients (1 — u) ,  u,  (1 — v ) , v  can be thought o f  
as weighting functions for different points.

This m ethod for developm ent o f  a bilinear surface 
can be applied to a polynom ial surface if  the linear 
interpolation function is replaced by a polynom ial 
function. A suitable form o f  surface equation, using a 
spline interpolation between 16 poin ts, has been used. 
The equation for each com ponent ,v, y ,  z  o f  the surface  
between four points is16

Q (u . i ) =

1 3 -3 1

3 -6 3 0

3 0 3 0

1 4 1 0

P 0 0 P 0 1 P o : P  0 3

P i 0 P i . P i 2 P i  y

Py o P m P 2 2 P y y

Py o Py i Py 2 P y ,

-1 3 -3 r T V
3 -6 3 0 ■>

V

-3 0 3 0 V

1 4 1 0 1

where

P oo P m P i,: P o ,

P 10 P n P i 2 P i y

Py o P : i P : : P yy

P \  O Py I P l : P  y y

(24)

is a matrix o f  ,v, y  or z values.
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P0 (0 ,0 ) P2 (1,0)

Figure 5 Co-ordinale axes u, v on the surface which uniquely define 
any point P on the surface

U sing an iteration process, the point matrix is adjusted 
until the surface passes through all the original points 
within som e acceptable error and degree o f  sm oothing.

E x tr a c t in g  v a lu e s  f r o m  th e  s u r fa c e

The m ost com m on parameter for describing the corneal 
surface is radius o f  curvature; radius o f  curvature can be 
calculated at any point on the surface using differential 
geom etry theory17.

A t any point on the surface, two tangent vectors to the 
surface in the direction o f  the param eter axes are found  
by taking partial derivatives o f  the surface Equation  
(24). The vector cross product o f  these tangent vectors 
gives a sector normal to the surface at that point, as 
shown in F ig u re  6.

A plane containing the surface norm al is constructed  
which intersects the surface as show n in F ig u re  7.

For a given normal, an infinite num ber o f  planes can 
be constructed for different directions d r , 'd u  on the 
surface. For any given direction d v / d u  the curvature o f  
the line o f  intersection betw een the plane and surface can 
be calculated18. U sing the surface Equation (24), the 
curvature is given by

Q u u  ' -V + - Q „  ' -V ( ) +  Q r v  ' -V
du Y
du,

0 . ‘ 0 .  +  2 Q . - Q t

(25)

Figure 6 Surface tangent vectors Qm and Q, lie along co-ordinate axes, 
with surface normal vector n orthogonal to both Qm and Qr

P

Figure 7 Plane P through surface containing normal n

R esu lts

The resolution o f  the system  depends on three factors,

1. the angle o f  projection o f  the light planes,
2. the m agnification o f  the cam era system and
3. the pixel resolution o f  the im age grabbing system .

For the results shown below  the projection angle was 
60’, the cam era m agnification was x  20 and the pixel 
resolution was 768 x  512, giving a depth resolution o f  
10/rm.

The appearance o f  the light plane image on the eye is 
shown in F ig u re  8. Points on the cornea are extracted  
from these im ages and used to fit a surface m odel to the 
corneal shape.

Results are displayed as a contour m ap, with contours  
at 5 0 p m  intervals and show ing apex position , apex  
radius o f  curvature in mm and average rate o f  flattening  
from the apex in m m /m m  (F ig u r e  9 ) .

F ig u re  9 ( a )  show s a typical result from a norm al 
cornea with a flatter than average apex radius o f  curv-
ature o f  8.06 mm and a central 3 mm region which is 
effectively spherical. The A on the m ap indicates the 
apex position . By contrast F ig u r e  9 ( b )  shows the results 
from a cornea with keratoconus. The m easurem ents 
indicate a small apical radius o f  curvature and high rate 
o f  flattening. The contour m ap appearance gives a go o d  
v isual im pression o f  the actual corneal shape.

F ig u res  9 ( c )  and (d )  show  results from the left and  
right eye o f  the same patient. The left eye (F ig u re  9 ( c )  

had a visual acuity o f  6/5 when wearing a contact lens

Figure 8 Appearance of normal cornea
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Figure 9 (a) Normal cornea, apex radius of curvature = 8.06 mm, average rate of flattening = 0.00 mm,'mm. (6) Severe keratoconus. apex radius 
of curvature = 5.15 mm, average rate of flattening = 0.23 mm,'mm. (r) Apex radius of curvature = 7.41 mm, average rate of flattening = 0.03 mm/ 
mm. (<f) Apex radius of curvature = 5.50 mm, average rate of flattening = 0.17 mm, mm

o f  back optic zone radius o f  7.SO mm. K eratom etry  
im ages were clear and single giving readings o f  7.95 
a lon g  1 S 0 C , and 7.67 along 9 0 \  The cornea, how ever, 
did have increased visibility o f  the corneal nerves and 
V ogt's straie, suggesting that keratoconus was present 
but had not yet produced any anterior corneal surface  
changes in topography.

The right eye (F ig u re  9 ( d ) )  had paracentral scarring 
and a visual acuity o f  6,12 when wearing contact lens 
o f  back optic zone radius o f  6.50 mm. M eaningful 
kcratom etry m easurem ents could not be obtained ow ing  
to mire distortion. A Fleischers ring was present and the 
visibility  o f  corneal nerves increased.

D isc u ss io n

T he recent expansion o f  corneal surgery for the 
correction o f  refractive errors has generated a renewed 
interest in the investigation o f  corneal topography. N ew  
m ethods have been developed which produce copious  
com puted  data. H owever, the instrum ents still rely on  
eliciting a catoptric image from the cornea, m easuring  
the height o f  concentric ring im ages and using standard  
paraxial ray equations to calculate the curvature at differ-
ent points. The sophistication o f  the system s lie in the

analysis and presentation o f  data, not in the m ethod o f  
obtaining inform ation. They have not addressed the 
problem o f  the poor quality o f  the im age produced from  
irregular surfaces, nor do they collect im ages from the 
centre o f  the cornea. Furthermore, the display o f  co lour  
maps and contour graphs m ay actually  m islead the 
clinician into thinking he has more accurate inform ation  
than is actually the case. A recent paper6 has showm that 
the precision o f  the values output from the EyeSys 
Corneal Topography System are beyond the capability  
o f  the instrum ent. The method described in this paper is 
ideally suited to the quantification o f  irregular surfaces 
such as is found in keratoconus. System s currently co m -
mercially available are noticeably deficient in m easuring  
such corneas. This is particularly the case where the 
cornea is not sym m etric along a given meridian which is 
usually the case in keratoconus, i.e. that typically the 
superior portion o f  the cornea in any m eridian flattens 
faster than the inferior portion.

C on clusion s

Although contem porary m ethods o f  m easuring corneal 
topography can give accurate and easily assim ilable  
results on regular corneas, the new system  described will 
give more accurate and valuable results on irregular
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corneas. The m oniloring o f  the progression o f  kcrato- 
conus has always been a problem atical exercise, relying 
on such inform ation as the back surface o f  the appro-
priate contact lens. The only alternative which had greater 
precision was that o f  serial topographical pachom ctry. 
A lthough this technique is accurate it is highly time 
consum ing and needs an experienced operator. This new  
m ethod o f  m easuring corneal topography should permit 
m ore accurate and easier evaluation o f  the progression  
o f  the disease. It will also allow  quantification o f  such 
factors as the tilting o f  a donor graft in a host cornea  
which is difficult to evaluate by other m ethods.
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.M E T H O D S FO R  T IIE  M EASU REM ENT AND ANALYSIS OF LIGHT SC ATTER ED IN  TH E H U M A N  EYE

B arbur J  L, D e C uhna D, H arlow A J and W oodward E G. A p plied  V ision  R esearch  C entre, D ep artm en t o f  
O ptom etry and V isual Science, T he City U niversity, N ortham pton  Square, L on d on  E C 1V  O H B .

IN T R O D U C T IO N  Scattering o f lig h t  is present in the hum an eye and ends up illum inating the retina away  
from  the im age o f  a source, although som e o f  the light can be back-scattered through the pupil and this is 
particularly evident in patients w ith corneal scars or kcratoconus. Scattered ligh t is present in sm all am oun ts  
even  in w hat o n e  norm ally refers to as pure transparent m aterials. W hen the scattering centres arc o f  equal 
or larger d im en sion  than the w avelength o f  the incident beam , the angular d istribution  o f  the scattered beam  
tends to  fo llow  c losely  the direction o f  the incident beam . Scattered light in the eye has the effect o f  reducing  
visual acuity and contrast sensitivity and can also affect significantly the accuracy o f  psychophysical 
m easurem ents o f  visual perform ance such as colour discrim ination. W hen the leve l o f  scattered light is large, 
either as a result o f  changes in the structure o f  the dioptrics o f  the eye or the p resence o f  in ten se  sou rces o f  
light, this results in significant im pairm ent o f  v ision, som etim es described as visib ility  glare (V os, 1984; V o s  
and B oum an , 1959). Scatter in the human eye and in particular its angular d ep en d en ce  has been  the subject 
o f  num erous studies (H olladay, 1927; Stiles and Crawford, 1937). In the case o f  sm all sources, the angular  
d epend en ce o f  scattered light in the eye can be described adequately by a po in t spread function  which  
decreases w ith  the reciprocal o f  the square o f  the visual angle betw een the sou rce and the poin t o f  in terest on  
the retina (S tiles and Crawford, 1937). This relationsh ip show s clearly that little  or no R ayleigh scattering  
takes p lace in the eye since the very sm all particles involved in Rayleigh scattering w ould , in the extrem e case, 
correspond to the ideal forward diffuser, w ith no angular depend en ce (R ayleigh , 1912). M easurem ent o f  

'Overall scatter level and its angular dependence in the eye can provide valuable inform ation on  the num ber  
and the size  o f  the particles involved. M onitoring changes in light scatter param eters may provide usefu l 
inform ation o n  the underlying m orphological changes in the dioptrics o f  the eye. S in ce  the scattering o f  light 
is not uniform  over the pupil and the form ation o f  ocular opacities tends to start in the periphery o f  the lens, 
m easuring the effect o f  pupil size on light scatter may provide an additional param eter w orth investigating. 
E xtended annular sources o f  light scatter are often  required in order to increase the light flux level en tering  
the eye. T his is usually the case when the scatter source is o f  relatively low  lum inance and generated o n  visual 
display units. T he use o f  extended sources makes it m ore difficult to extract accurately the angular 
d epend en ce  o f  light scatter in the eye since the scatter source can no longer be taken to have a single  
eccentricity. Errors in estim ates o f  light scatter param eters can also  be introduced w hen  the light flux leve l 
entering the eye docs not rem ain constant for different scatter sou rce eccentric ities. In this paper we describ e  
how the various problem s m entioned above can be overcom e and the light scattered  in the hum an eye 
m easured  usin g  a stab le display and appropriate com putational m ethods.

EX PE R IM E N T A L  M ETH O D S T he intraocular light scatter program  used in this investigation  has b een  
im plem ented  on  the P_SC A N  100 pupillom cter apparatus (Barbur, 1991) w hich allow s the sim ultaneous, 
binocular m easurem ent o f  pupil size and eye m ovem ents. T he princip le o f  the m eth od  em ployed is based on  
the flicker com pensation  technique described by van den Berg and Spckreijse (van den Berg, 1986; V an den  
Berg and Spekreijse, 1987). The program m akes use o f  large annuli which vary in e f fe c t iv e  e c c e n tr ic i ty  (ic ., the  
eccentricity  o f  an equivalent, narrow annulus which w ould cause the sam e level o f  scattered light at the  
location  o f  the test stim ulus). The d im ensions o f  the scattering source are adjusted for each eccentricity  o f  
interest so  as to m aintain a constant light flux level in the plane o f  the pupil. T he basic diagram  for the  

-calcu lations involved is show n in figure 1 (a,b). S inusoidal m odulation  o f  scatter sou rce  lum inance is 
achieved at a frequency o f  8.6 H z and this is presented to the subject as a burst o f  flicker lasting for 1.2 s. T he  
lum inance o f  the central test stim ulus is m odulated in counterphase with the scattering source at the sam e  
tem poral frequency. T he subject is required to adjust the m ean lum inance o f  the test stim ulus so  as to  null 
o u t the perceived flicker over the test stim ulus using a m odified staircase procedure. Six estim ates o f  th e  
equivalen t lum inance o f  the test stim ulus which is sufficient to balance the retinal illum inance caused by 
scattered light arc obtained  and averaged for each scatter source eccentricity. E stim ates o f  the standard  
errors involved provide appropriate weights for the regression analysis required to com p u te  the light scatter  
m odel param eters, ic., n and 0 ,  in the em pirical light scatter equation, Ls =  k .E /© n , w here k and n arc  
constants and 0  represents the e f fe c tiv e  e c c e n tr ic ity  o f  the annulus. B efore the regression  analysis can be
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Figure 1. D iagram s show ing a schem atic representation  o f  the stim ulus configuration  used for the  

m easurem ent o f  scattered light on  a visual display unit (A ), and the geom etry o f  the disp lay required for the  

-com putation  o f  annulus size  as a function o f  eccentricity (B ).

T he light scatter program  was im plem ented on the P_SC A N  100 system  (Barbur, 1991) w h ich  provides 

sim ultaneous m easurem ents o f  pupil diam eter. T he system  incorporates facilities for au to m a tic  calibration  

o f  phosphor lum inances over the centre o f  the display and m akes use o f  an L M T  1002 lum inan ce m eter. T h e  

various sizes and the lum inance and chrom aticity param eters em ployed for the uniform  background, the  

scatter annulus and the separating annulus were se lected  on the basis o f  prelim inary experim en ts. T he  

m easurem ent technique is based on  a flicker nulling m ethod sim ilar to that described by van den  B erg (1986). 

T he lum inance o f  the scattering source was m odulated sinusoidally  at a frequency o f  8.6 H z. T h e  lum inance o f  

the cen tre test stim ulus was also m odulated sinusoidally  in counterphase w ith the scattering sou rce  and its 

m ean lum inance adjusted to obtain  a null flicker poin t using a m odified staircase procedure. Section  (B)

show s the basis for the com p u tation  o f  annulus 

size  so as to ensure that the  

illum inance in the pupil p lan e was ind ep en dent o f  

annulus eccentricity.

F igure 2. Averaged, best-fit m o d e l param eters for  

21 norm al subjects p lotted  as a con tin u ou s lin e  

together w ith individual data poin ts. T he error 

bars represent ±  2 standard errors calculated  

from  the best fit data function  for each  object.

T he averaged data arc described by the-em pirical 

light scatter function Ls =  k .E /0 n , w here k and n 

are constants, 0  represents th e  e f fe c t iv e  e c c e n tr ic i ty  

o f  the annulus (ie., a function  o f  n and hence  

different for different observers) and, E, 

represents the illum inance lev e l in the p lane o f  the  

cornea.
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Figure 3. Typical scar profile obtained by m easuring the back scatter from  dam aged corn eal tissu e  in a 
patient w ith keratoconus (section  on  the left), and m easurem ent o f  light scattered o n to  the retina using the  
stim ulus configuration  show n in figure 1 (section  on the right). A  radius o f  3 mm m easured w ith  respect to 
the centre o f  the pupil is show n. T he norm alised frequency histogram  plotted  below  the correspon d ing  scar 
profile  show s the d istribution o f  optical density in the scar, m easured w ith respect to background level, (ie., 
L og (Ls /Ljj), w here Ls represents the relative lum inance o f  a given poin t in the im age o f  the cornea and 
represents the average background level). T he absolute m easurem ents o f  light scattered o n  the retina depend

on the lum inance and area o f  the scattering  
source and the view ing distance. T h e  algorithm  
im plem ented in the program  allow s the iterative  
com putation  o f  the best m odel param eters w hich  
fit the m easured experim ental data.

F igure 4. M easurem ents o f  scattered  light in two 
subjects w ith cortical cataracts. T h e  continuou s  
lines represent best-fit m odel pred ictions for the 
param eters show n on  the diagram  for each subject. 
T he averaged norm al data are sh ow n as a dotted  
line. In sp ite  o f  the apparently n o r m a l  k value  
for subject G R , the m ore gradual decrease in 
scattered light w ith eccentricity, as reflected  by the  
significant decrease in n va lue for this subject, 
causes large im pairm ent o f  v is io n  and a significant 
loss o f  contrast sensitivity.
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carried out, the effective eccentricities o f  each o f  the extended annuli have to be calculated . This is achieved  
by integrating the scatter equation  over the extended source for each ch osen  value o f  n. T h e  eccentricity o f  a 
very narrow annulus which contributes the sam e am ount o f  scattered light over the m easurem ent area as the  
extended scattering annulus can then be calculated for a given value o f  n. Iterative num erical m ethods are 
used to com p u te  effective eccentricities for each value o f  n and to carry ou t w eighted, linear regression  

.analysis o n  the experim ental data. T he best-fit light scatter m odel param eters are ob ta ined  w h en  the value o f  
n extracted from  the regression analysis m atches that used in the com putation  o f  effective eccentric ities.

Prelim inary results on  the m easurem ent o f  corneal scar densities from  back-scattered light are a lso  presented. 
For such m easurem ents, w e  d evelop ed  an im aging system  which is based on  a m odified Z e iss  slit  lam p w hich  
allow s accurate alignm ent o f  the eye and capture o f  the corneal im age by m eans o f  a C C D  cam era. T he  
centre o f  the pupil is located  autom atically  and graphical m ethods are used to iso late  scarred areas and to 
e lim inate  specular im ages. T he lum inance level o f  the scar is quantised in to  14 levels for ea se  o f  analysis.
The area o f  the scar is then expressed as a percentage o f  the total pu pil area for a range o f  pu pil radii.

E X PE R IM E N T A L  F IN D IN G S Prelim inary results show  that sm all changes in light scatter param eters can be  
m easured accurately. F or a given eye, the technique yields light scatter param eters w hich are relatively  
independent o f  stim ulus size, view ing distance and scatter source lum inance, provided changes in pupil size  
are m inim ised. T he function displayed in figure 2 represents the averaged data for 21 norm al subjects. T he  
value o f  k provides a m easure o f  the overall light scatter level and the param eter n determ ines its distribution  
away from  the scattering source. T h e  param eters obtained in this study are in c lose  agreem en t to those  
reported by Fry and A lpcrn (1953) and V o s (1963). Typical results obta ined  in patients w ith  keratoconus are 
show n in figure 3. T he large increase in scattered light level correlates w ell w ith the m easured scar profiles 
and corresponding densities. Patients w ith various forms o f  cataract have a lso  been investigated . T he results 
presented in figure 4 show  why a single  l ig h t s c a tte r in g  f a c t o r  w hich docs not take in to  account the eccentricity  
d epend en ce o f  scattered light fails to identify and describe som e cases o f  cataract. Subject G R  (see  figure 4) 
has norm al light scatter levels according to the value o f  k m easured, but his vision is grossly im paired by what 
can be described as visibility glare which causes a massive loss in the su b ject’s contrast sensitiv ity . T he n value  
m easured for this subject is, how ever, significantly sm aller and describes the m ore gradual decrease in 
scattered light w ith eccentricity. This suggests that sm aller scattering cen tres are involved and they may 
account for this subject’s glare disability. M easurem ents o f  scattered light in the eye w ere a lso  carried out  
under natural and enlarged pupil cond itions so  as to investigate the effect o f  pupil d iam eter o n  such  
m easurem ents. Prelim inary observations show  that changes in pupil size  can cause sign ificant changes in the  
best-fit light scatter m odel param eters in normal subjects. T he results suggest that unless the size  o f  the pupil 
is known at the tim e o f  m easurem ent and its effects accounted for, sm all changes in light scatter  param eters 
cannot be separated from the effects o f  pupil size and therefore they cannot be attributed to  o ther  factors.
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