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Kinematic dynamo action in square and hexagonal patterns

B. Favier∗ and M.R.E. Proctor
Department of Applied Mathematics and Theoretical Physics, University of Cambridge,

Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, UK

(Dated: October 24, 2013)

We consider kinematic dynamo action in rapidly rotating Boussinesq convection just above onset.
The velocity is constrained to have either a square or a hexagonal pattern. For the square pattern,
large-scale dynamo action is observed at onset, with most of the magnetic energy being contained
in the horizontally-averaged component. As the magnetic Reynolds number increases, small-scale
dynamo action becomes possible, reducing the overall growth rate of the dynamo. For the hexagonal
pattern, the breaking of symmetry between up and down flows results in an effective pumping
velocity. For intermediate rotation rates, this additional effect can prevent the growth of any mean-
field dynamo, so that only a small-scale dynamo is eventually possible at large enough magnetic
Reynolds number. For very large rotation rates, this pumping term becomes negligible, and the
dynamo properties of square and hexagonal patterns are qualitatively similar. These results hold
for both perfectly conducting and infinite magnetic permeability boundary conditions.

I. INTRODUCTION

One of the principal goals of dynamo theory is to un-
derstand the origin of large-scale magnetic fields observed
in stars and planets. Although the dynamo action re-
quired certainly depends on many parameters, it is of-
ten useful to study the induction processes in simplified
flows. This approach has led to significant improvements
in our understanding of the generation of magnetic fields
by the motions of an electrically conducting fluid in astro-
physical objects and laboratory experiments. Kinematic
dynamos driven by simplified flows are indeed very use-
ful to model the fundamental induction mechanisms of
more realistic liquid metal experiments [16, 21, 27]. The
velocity field driving the dynamo can be measured ex-
perimentally or modelled analytically [10]. The famous
Roberts flow [32, 33], whose analytical expression is very
simple, is the perfect illustration of what is called a mean-
field or large-scale dynamo, a mechanism which might
explain the origin of magnetic fields coherent on much
larger scales than the ones of the fluid motion. In mean-
field theory, which is a turbulent closure theory describ-
ing the evolution of the large-scale quantities in terms
of the statistical properties of the small-scale perturba-
tions [19, 26], the evolution equation for the large-scale
field is derived from the induction equation by decompos-
ing the magnetic field into mean and fluctuating parts.
The small-scale velocity field interacts with this large-
scale magnetic field creating magnetic perturbations at
small scales. Provided the flow lacks reflectional sym-
metry, these induced small-scale magnetic perturbations
then interact with the small-scale velocity generating a
non-vanishing mean electromotive force, which sustains
the large-scale magnetic field. Although this scenario
is very appealing as an explanation of the existence of
large-scale magnetic fields in many astrophysical objects,
the situation becomes more complicated when the flow is
less ideal, e.g. turbulent, or when the magnetic Reynolds

∗ Corresponding author: b.favier@damtp.cam.ac.uk

number becomes large as expected in the astrophysically
relevant regime.

Of particular interest here is the well-studied topic of
convectively-driven dynamos, where the flow is sustained
by thermal convection between two parallel horizontal
plates [6]. Magnetic fields of planets and stars are often
accepted to be the result of convectively driven flows of
an electrically conducting fluid occupying a large volume
of the star or planet. Early numerical studies have con-
centrated on the turbulent regime [2, 3, 24] where the
Rayleigh number is much larger than its critical value.
However, without rotation, the flow is reflectionally-
symmetric so that only small-scale dynamo action can oc-
cur. When the plane-layer is rotating around the vertical
axis, the viscous force can become of secondary impor-
tance in comparison to the Lorentz force and the flow is
thus strongly controlled by the forces exerted by the mag-
netic field. Fully three-dimensional dynamo solutions in
the rapid rotation limit were numerically studied by sev-
eral authors [17, 34, 39]. It has also been shown by [4]
that turbulent moderately rotating Boussinesq convec-
tion, while breaking reflectional symmetry as required
by mean-field theory, is not necessarily capable of sus-
taining a dynamo of mean-field type. It is certainly able
to sustain a small-scale dynamo, but the magnetic field
is then locally regenerated by the stretching properties of
the flow and is strongly intermittent without large-scale
coherence. Since then, several studies have tried to clarify
the problem [12, 18, 42], but it seems that a definitive an-
swer is still elusive. More recently, a transition has been
shown to occur between two different types of dynamos
in rapidly rotating Boussinesq convection [40]. In order
to clarify the transitions between rotationally-dominated
and more turbulent dynamos, it therefore seems inter-
esting to consider rotating convection just above onset
where the flow is much more coherent spatially and tem-
porally than in the turbulent regime. Several studies
have considered the kinematic dynamo action driven by
simple patterns of convection such as rolls, squares and
hexagons without rotation [8, 22, 44]. In the rotating
case, the pioneering work of [37] has shown the existence
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of a large-scale dynamo in the limit of rapid rotation.

We here consider the kinematic dynamo problem in a
steady velocity field corresponding to rotating Boussinesq
convection just above onset. While we neglect here the
effect of the Lorentz force, our model is sufficient to de-
rive interesting results concerning the transition between
large-scale and small-scale dynamos, as well as the sur-
prising consequence of the so-called turbulent pumping
effect [9, 19, 26, 41]. Near onset, the preferred pattern
consists of rolls providing the system is symmetric with
respect to the mid-layer. However, at sufficiently large
rotation rate, these rolls are unstable to the Küppers-
Lortz instability [20]. In this case, a given set rolls is
unstable to another set of rolls with a different orien-
tation. This new set of rolls is equally unstable to yet
another, leading to spatiotemporal chaos. Surprisingly,
at even larger rotation rates, square patterns were ex-
perimentally found to be stable [1]. The existence of this
square pattern, slowly rotating in the prograde direction,
was later confirmed numerically by [36]. In the case of
convection lacking the up-down symmetry, either due to
temperature-dependent viscosity or non-Boussinesq ef-
fects, theory predicts that the hexagonal pattern is the
primary instability [11, 38] (which is also the case without
rotation). In this paper, the cell pattern is imposed to be
either squares or hexagons, for which the corresponding
velocity fields are analytically known in the Boussinesq
approximation [43]. While we do not self-consistently
solve the momentum equation in the present study, the
previous discussion gives some justifications for the exis-
tence of square and hexagonal patterns in rotating plane-
layer convection. Note that such steady patterns might
not be relevant to liquid metals and planetary dynamos,
since the very low Prandtl number implies that the bifur-
cation to convection is time-dependent in that case. How-
ever, the mechanism discussed in this paper might still
be relevant to more realistic dynamos, provided that the
topological magnetic pumping plays an important role.
In the next section, we describe the model and the nu-

merical approach used to solve the induction equation
with a prescribed velocity field in three dimensions. A
mean-field model is then derived and the associated re-
sults are discussed in section III. Sections IV and V are
devoted to the results from direct numerical simulations
of the dynamo driven by square and hexagonal patterns,
respectively. Finally, we explore the effect of changing
the magnetic boundary conditions in section VI.

II. DESCRIPTION OF THE MODEL

We consider the evolution of a plane-parallel layer of
incompressible fluid, bounded above and below by two
impenetrable, stress-free walls, a distance d apart. The
geometry of this layer is defined by a Cartesian grid, with
x and y corresponding to the horizontal coordinates. The
z-axis points vertically downwards. The layer is rotating
about the z-axis, with a constant angular velocity Ω =
Ωẑ. The horizontal size of the fluid domain is defined by

the aspect ratios λx and λy so that the fluid occupies the
domain 0 < z < d, 0 < x < λxd and 0 < y < λyd. The
physical properties of the fluid, namely the kinematic
viscosity ν and magnetic diffusivity η, are assumed to be
constant.
The velocity field is imposed to be a cellular flow cor-

responding to the onset of Boussinesq convection in a ro-
tating layer. In particular, we consider the solutions first
obtained by Veronis [43]. We focus here on the particu-
lar cases of square and hexagonal patterns. The velocity
field associated with the square pattern is

ux = − π

a
√
2

(

sin
ax√
2
cos

ay√
2

+

√
T

π2 + a2
cos

ax√
2
sin

ay√
2

)

cosπz (1)

uy = − π

a
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2

(

cos
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−
√
T

π2 + a2
sin

ax√
2
cos

ay√
2

)

cosπz (2)

uz = cos
ax√
2
cos

ay√
2
sinπz (3)

where T is the Taylor number defined as T = 4Ω2d4/ν2

and a is is the most unstable wave number in the large
Taylor number limit given by [5]

a =

(

1

2
π2T

)1/6

. (4)

The second terms in the right-hand side of equations (1)
and (2) are O(1) whereas the first terms vary like T−1/6.
For large Taylor numbers, which is the focus of this pa-
per, we therefore expect the second terms to be domi-
nant.
The velocity field associated with the hexagonal pat-

tern is

ux = − π

3a2
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1

3
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2 cos
2π√
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x cos
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3L
y + cos

4π

3L
y

)

sinπz , (7)

where L = 4π/(3a). The same remark applies for this
velocity field. At large Taylor numbers, we expect the
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FIG. 1. Left: Vertical component of the velocity in a horizontal plane located at z = 0.25. Bright and dark colours correspond
to positive and negative values respectively. The horizontal velocity field is shown with arrows. Right: Streamlines which colour
depends on the time spent in the flow (the darker the longer). The starting points of the streamlines are initiated regularly in
a small horizontal square grid whose size is equal to the size of a convective cell. Top: Square pattern. Bottom: Hexagonal
pattern. The Taylor number is T = 108 in both cases.

second term on the right-hand side of equations (5) and
(6) to be dominant.
In addition to the beautiful drawings one can find in

[43], which were reproduced in [5], we illustrate both of
these velocity fields on figure 1. Note that the flows in
figure 1 correspond to T = 108. The vertical compo-
nent of the velocity is shown along with arrows repre-
senting the horizontal components in the horizontal plane
z = 0.25. We also plot streamlines initiated close to
the top boundary. The symmetry between the up and
down flows in the case of the square pattern is appar-
ent, whereas a clear difference is observed in the case of
the hexagonal pattern. Note that at a particular depth
and for large Taylor numbers, the square pattern flow is
nearly identical to the Roberts flow [32, 33] defined by
ux = cosx sin y, uy = − sinx cos y and uz = cosx cos y.
However, and contrary to the Roberts flow, the flows de-
scribed by equations (1)-(3) and equations (5)-(7) are not
maximally helical. The relative kinetic helicity, defined
by

H(z) =
〈u · ∇ × u〉

〈u2〉1/2 〈(∇× u)2〉1/2
, (8)

is presented on figure 2, where < . > denotes the hori-
zontal average over x and y. We plot the results for the
square pattern in thick lines and for the hexagonal pat-
tern in thin lines. For T > 108, both flows converge
towards the same helicity profile. These high Taylor
number flows are nearly Beltrami (i.e. ∇ × u = u) for
z ≈ 0.28 and z ≈ 0.72. Although the volume-averaged
helicity is zero, these flows lack mirror-symmetry and are
therefore good candidate for a mean-field type dynamo.
It is indeed known that, at infinitely large Taylor num-
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FIG. 2. Horizontally averaged relative kinetic helicity as de-
fined by equation (8). The results are shown for various Taylor
number T . The thick lines correspond to the square pattern
whereas the thin lines correspond to the hexagonal pattern.
For T > 108, both patterns converge toward the same helicity
profile.

bers, rotating convection can sustain a large-scale satu-
rated magnetic field, both in the Boussinesq [37] and in
the anelastic [25] approximations. Note that we focus on
flows for which T ≥ 108 in the following.

The purpose of this paper is to study the kinematic
dynamo properties of these flows by solving the induction
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equation

∂B

∂t
= ∇× (u×B − η∇×B) , (9)

where u is the prescribed steady velocity field given by
equations (1)-(3) or equations (5)-(7), and B is the mag-
netic field. Both u and B are solenoidal. We now di-
mensionalize lengths with the layer depth d, so that the
dimensionless depth is unity.
In the horizontal directions, all variables are assumed

to be periodic, with the same periodicity as the flow.
The upper and lower boundaries are assumed to be

impermeable and stress-free, which implies that ux,z =
uy,z = uz = 0 at z = 0 (the upper boundary) and z = 1
(the lower boundary). We choose appropriate conditions
for perfectly-conducting boundaries, which implies that
Bz = Bx,z = By,z = 0 at z = 0 and z = 1. We also
explore in section VI the effect of the magnetic boundary
conditions by considering the case of a vertical field at the
boundaries (the magnetic permeability of the boundaries
is infinite), setting Bx = By = Bz,z = 0 at z = 0 and
z = 1.
The induction equation (9) is solved using a modi-

fied version of the mixed pseudo-spectral/finite difference
code that was originally described by [23]. Due to period-
icity in the horizontal direction, horizontal derivatives are
computed in Fourier space using fast Fourier transforms.
In the vertical direction, a fourth-order finite differences
scheme is used, adopting an upwind stencil for the advec-
tive terms. The time-stepping is performed by an explicit
third-order Adams-Bashforth technique, with a variable
time-step. The resolution goes up to 256 Fourier modes
in each horizontal directions and 480 grid-points in the
vertical direction. A poloidal-toroidal decomposition is
used for the magnetic field in order to ensure that the
field remains solenoidal.

III. MEAN-FIELD MODEL

In this section, we derive a reduced model based on
mean-field theory. The analysis performed here is closely
related to the asymptotic analysis by Soward [37] of a
convectively driven magnetic dynamo in an incompress-
ible medium, in a plane layer with strong background
rotation. Soward [37] derived a set of nonlinear equa-
tions governing the evolution of this dynamo, and sta-
ble periodic solutions are shown to exist. Our approach
is however much simpler as we focus on the kinematic
problem only. This simplification allows us to extend
the analysis to higher order than in [37], revealing new
interesting behaviours.
It is well known that, for large Taylor numbers, the

horizontal scale of the motion at the onset of the insta-
bility is of order T−1/6. The parameter ǫ is therefore
classically introduced [37] and is related to the Taylor
number T through

ǫ = T−1/6 . (10)

We then assume that the horizontal gradients are much
larger than the vertical ones by introducing the substitu-
tion (∂x, ∂y) → ǫ−1(∂x, ∂y) ≡ ǫ−1∇h. We further assume
that u = O(1) and that the magnetic field can be decom-

posed as B(z, t)+ ǫ
1

2 b, where B is the spatial average of
the magnetic field over horizontal coordinates whereas b
is the remaining fluctuating part, which has zero horizon-
tal average. The time derivative scales as ∂t → ǫ

1

2 ∂t. If
〈〉 denotes the horizontal average over x and y, the mean
induction equation can be written as

∂tB = ẑ × ∂

∂z
〈u× b〉+ 1

λ

∂2B

∂z2
, (11)

where λ = O(1) = ǫ1/2RL
m and RL

m = Ud/η is the large-
scale magnetic Reynolds number and U is a character-
istic velocity. The velocity field u will be defined later
but for now, we just assume that ∇2

hu = −u, and that
〈u〉 = 0, which is verified by both square and hexago-
nal patterns (see equations (1)-(3) and (5)-(7)). We de-
fine the small-scale magnetic Reynolds number (based on

the small horizontal scale of the motion) as RS
m = ǫ

1

2 λ.
For a mean-field dynamo to operate, RL

m should be large
whereas RS

m should be small, the product of these two
being a constant [26]. The equation for the fluctuating
magnetic field is

ǫ
∂b

∂t
= ǫ−1B · ∇hu− uz

∂B

∂z

+

(

ǫ−
1

2∇h + ǫ
1

2 ẑ
∂

∂z

)

× (u× b− 〈u× b〉)

+ ǫ−1
1

λ

(

∇2

h + ǫ2
∂2

∂z2

)

b . (12)

We now expand the fluctuating magnetic field as b =
b0 + ǫ

1

2 b1. At leading order, equation (12) gives

0 = B · ∇hu+
1

λ
∇2

hb0 . (13)

Hence b0 = λB · ∇hu. The mean electromotive force is,
at first order,

E0 ≡ 〈u× b0〉 = λ 〈u× (B · ∇h)u〉 . (14)

At the next order, equation (12) gives

0 = ∇h × (u× b0 − 〈u× b0〉) +
1

λ
∇2

hb1 , (15)

and the correction to the mean electromotive force is

E1 ≡ 〈u× b1〉 = −
〈

∇2

hu× b1
〉

= −
〈

u×∇2

hb1
〉

= λ2 〈u×∇h × (u× (B · ∇h)u)〉 .
(16)

To simplify this expression, consider two vector fields P
and Q. Then,

〈P ×∇h ×Q〉x =

〈

Qx∇h ·P −Qj

(

∂Pj

∂x

)〉

. (17)

By taking P = u, the first term in the right-hand side
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FIG. 3. Results from the mean-field equation (25) corresponding to the square pattern. Left: real and imaginary parts of the
growth rate σ versus λ. Right: Eigenfunctions Bx(z) for λ = 6.38 (just above the onset of dynamo action), λ = 12.2 and

λ = 20.1. The eigenfunctions have been normalized so that
∫

1

0
|Bx(z)|dz = 1.

of equation (17) is O(ǫ) and can therefore be neglected.
Thus the x-component of E1 is

−λ2

〈

(u × (B · ∇h)u) ·
∂u

∂x

〉

= −λ2By

〈

u× ∂u

∂y
· ∂u
∂x

〉

,

(18)
while the y-component is

+ λ2Bx

〈

u× ∂u

∂y
· ∂u
∂x

〉

. (19)

The z-component is irrelevant as it will disappear when
the curl is taken in the mean equation, so we assume E1 is
horizontal. This is a result of the fast rotation considered
here [35]. Then clearly E1 is perpendicular to B so that
E1 = V ×B, where

V = λ2ẑ

〈

u× ∂u

∂y
· ∂u
∂x

〉

(20)

= 3λ2ẑ

〈

uz

(

∂ux

∂y

∂uy

∂x
− ∂ux

∂x

∂uy

∂y

)〉

. (21)

V is a pumping velocity, and corresponds to the off-
diagonal terms of the classical α tensor of mean-field elec-
trodynamics.
We now specialise to velocity fields that mimic that

found by Veronis [43]. Let us write the velocity field as

u = (∇hφ× ẑ) cosπz + φẑ sinπz . (22)

In the case of the square pattern, we can choose

φ = cosx cos y . (23)

Note that the resulting flow is not solenoidal, but the
correction necessary to recover equations (1)-(3) is O(ǫ)
and so can be neglected here. In that case, the pump-
ing velocity V is zero and the mean electromotive force
reduces to its first order term

E0 = −1

2
λB sinπz cosπz , (24)

so that the equation to solve is

∂B

∂t
= −1

2
λẑ × ∂

∂z

[

B sin(πz) cos(πz)
]

+
1

λ

∂2B

∂z2
. (25)

Note that the equation does not depend on ǫ, but we
require ǫ ≪ 1.
In the case of the hexagonal pattern, we can choose

φ(x, y) = cosx+ cos
(

− 1

2
x+

√
3

2
y
)

+ cos
(

− 1

2
x−

√
3

2
y
)

. (26)

Again, this flow is not solenoidal, but the correction nec-
essary to recover equations (5)-(7) is also O(ǫ). In that
case, the pumping velocity does not vanish, and equation
(21) can be rewritten after some algebra as

V =3λ2ẑ sin(πz) cos2(πz)

〈

φ

[

(

∂2φ

∂x∂y

)2

− ∂2φ

∂x2

∂2φ

∂y2

]〉

(27)

=− 27

16
λ2ẑ sin(πz) cos2(πz). (28)

A similar calculation for the mean electromotive force at
first order gives

E0 = −3

2
λB sinπz cosπz . (29)

Finally, the equation to solve is

∂B

∂t
= −3

2
λẑ × ∂

∂z

[

B sin(πz) cos(πz)
]

+
27

16
λ2ǫ1/2

∂

∂z

[

B sin(πz) cos2(πz)
]

+
1

λ

∂2B

∂z2
. (30)

Note that equation (30) involves a term depending on
our small parameter ǫ. This is the only additional term
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FIG. 4. Results from the mean-field equation (30) corresponding to the hexagonal pattern. Left: real part of the growth rate σ
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∫
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|Bx(z)|dz = 1. The case λ = 6.21 is a dynamo (Re(σ) = 1.67) whereas

the case λ = 8.32 is not (Re(σ) = −19.39).

at that order, and such a term is exactly zero in the
case of the square pattern (see equation (25)). Higher
order terms are neglected as they do not provide further
insights into the problem, and are similar for both flows.
We now look for a solution of equations (25)

and (30). The horizontally-averaged magnetic field
(Bx(z, t), By(z, t)) is written in the form B(z)eσt, where
σ is the complex growth rate. The functions Bx and By

are represented by their discretized values at the Gauss-
Lobatto collocation nodes

zi = cos

(

iπ

N

)

, 0 ≤ i ≤ N (31)

where N is the Chebyshev truncation order. Each differ-
ential equation is then represented at each of the collo-
cation nodes, using the first and second Chebyshev col-
location derivative matrices. The boundary conditions
are represented at the two boundary points z = 0 and
z = 1, again using the Chebyshev collocation derivative
where needed. The following results are derived using a
Chebyshev truncation order of N = 256. The general-
ized eigenvalue problem associated with equations (25)
and (30) can be written as

MB = σPB , (32)

whereM is the matrix associated with the discretized lin-
ear operators, P is the matrix associated with the bound-
ary conditions and B is a vector containing the variables
Bx and By at the collocation points. We recall here that
the boundary conditions correspond to a perfectly con-
ducting medium at z = 0 and z = 1, which imposes
Bx,z = By,z = 0.
This generalized eigenvalue problem is solved for M

and P using the following method. First, the matrix P
is transformed in an upper-diagonal matrix. We then

reduce the pair of real matrices (M,P ) to a general-
ized upper Hessenberg form using orthogonal transfor-
mations. The eigenvalues are finally computed using the
double-shift QZ method. These different steps are per-
formed using the relevant routines from the Linear Alge-
bra PACKage library. We then select the eigenfunction
associated with the largest real eigenvalue Re(σ), with
the additional constraint that the total horizontal mag-
netic fluxes are zero:

∫

1

0

Bx(z)dz = 0 and

∫

1

0

By(z)dz = 0 . (33)

This constraint must be respected at all times due to
the combination of horizontal periodicity and perfectly
conducting boundary conditions at z = 0 and z = 1.
Let us first discuss the results associated with the

square pattern and equation (25). The only relevant
parameter is here λ, which is related to the large-scale
magnetic Reynolds number by RL

m = ǫ−1/2λ. In the
following, we vary λ between 1 and 12. The real and
imaginary parts of the eigenvalues are plotted on figure
3. The critical value of λ for dynamo action appears
to be λcrit ≈ 6.335. Using the same scaling as in [37],
this corresponds to Λcrit = λ2

crit
/(8π) ≈ 1.597, which is

consistent with the value quoted in the same paper (see
p.623 of [37]). The imaginary part of the growth rate
is always positive with a maximum at λ = 6.93, slightly
after the onset for dynamo, and decays to zero at large λ.
We therefore expect the dynamo to be oscillatory at on-
set. The eigenfunctions for Bx are also shown on figure 3
for various values of λ. Note that dynamo action is con-
fined in the upper and lower halves of the domain, where
the relative helicity and the mean electromotive force are
extremal. The eigenfunctions are anti-symmetric with
respect to the mid-layer, as it is the case for the rela-
tive helicity (see figure 2) and the mean electromotive
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FIG. 5. Magnetic energy B
2 in a horizontal plane located at z = 0.25. For the sake of clarity, the aspect ratio has been

multiplied by two by plotting four copies of the domain side by side. Bright and dark tones correspond to opposite polarity.
From left to right, η = 10−2 (close to the critical value for dynamo action), η = 10−3 and η = 5 × 10−5 (small-scale dynamo
action is possible). The horizontally-averaged magnetic field is oriented in the same direction in all cases.

T ǫ a λS
x = λS

y λH
x λH

y

108 0.0464 28.11 0.316 0.258 0.447

1010 0.0215 60.56 0.147 0.12 0.207

2× 1010 0.0192 67.98 0.131 0.107 0.185

1012 0.01 130.48 0.068 0.056 0.096

TABLE I. Summary of the parameter values for different Tay-
lor number T . ǫ is equal to T−1/6. a is the most unstable
horizontal wave number at onset. λx and λy are the aspect
ratios of the numerical domain. The superscripts S and H
correspond to square and hexagonal patterns respectively. In
the case of the hexagonal pattern, we have λH

y =
√
3λH

x .

force (see equation (24)). As λ is increasing, the small-

scale magnetic Reynolds number RS
m = ǫ

1

2λ increases un-
til mean-field theory is not applicable anymore. As the
Taylor number increases for a fixed λ, ǫ and RS

m decrease
so that the range of applicability of mean-field theory
increases. From this model, we can derive a minimal
Taylor number for large-scale dynamo to occur. By as-
suming that RS

m = ǫ
1

2 λ = 1 and using the critical value
of λ, one finds a limit Taylor number of T ≈ 4 × 109.
Below this value, mean-field theory is not applicable at
the onset of the mean-field dynamo, so that we cannot
conclude as to its existence.

We now discuss the results associated with the hexag-
onal pattern and equation (30). We vary the parameter
ǫ between 0 and 5 × 10−2, which corresponds to T = ∞
and T = 6.4 × 107 respectively. Note that in the case
ǫ = 0, the pumping velocity is zero, and equations (25)
and (30) are identical apart from the numerical coefficient
in front of the mean electromotive force. The parameter
λ is varied between 1 and 10.

We show on figure 4 the evolution of Re(σ) with λ for
different ǫ. When ǫ = 0, the only remaining term in equa-
tion (30) is the α-effect so that a mean-field dynamo is ex-
pected at sufficiently large λ as in the square pattern case.

This is indeed observed and dynamo action is observed
for λ > 3.66. As ǫ increases, the real part of the growth
rate Re(σ) decreases, up to the point where no mean-field
dynamo is observed for approximately ǫ ≈ 0.025, which
corresponds to a critical Taylor number of approximately
T ≈ 4× 109. Below this critical value, no large-scale dy-
namo is possible. Note that this reduction in the growth
rate only happens at sufficiently large values of λ. The
imaginary part of the growth rate is monotonously in-
creasing as λ is increasing (not shown). On figure 4, we
also show as a dashed curve the location where the small-
scale magnetic Reynolds number RS

m = ǫ1/2λ is equal to
unity, which defines the upper limit of validity of mean-
field theory. The reduction in the growth rate, and the
eventual disappearance of any mean-field dynamo action
for sufficiently large ǫ, is well within the range of validity
of the model. For RS

m > 1, small-scale dynamo action
might be possible, and the current mean-field approach
is irrelevant. The reason why dynamo action is less ef-
ficient as ǫ increases can be understood by looking at
the eigenfunctions for the horizontally-averagedmagnetic
field. We show in figure 4 the eigenfunctions associated
with Bx for a fixed value of ǫ = 0.0192 which corresponds
to T = 2× 1010. The results are shown for λ = 6.21 and
λ = 8.32. In the first case, the pumping velocity is weak
so that the resulting eigenfunction is not symmetric with
respect to z = 0.5 but there is still a strong mean-field in
one of the two regions of high helicity. Dynamo action is
in that case possible (see the left part of figure 4). For
λ = 8.32 however, the pumping velocity is dominant and
the magnetic flux is advected vertically, away from re-
gion of efficient α-effect, and dynamo action disappears.
Note that the pumping velocity is directed upward along
−ẑ, see equation (28). While the flow is more compli-
cated in our case due to the presence of rotation, our
results are qualitatively similar to the ones presented by
[9] (see their figure 4 for example). Of course, the mean-
field model is only valid when the small-scale magnetic
Reynolds number ǫ1/2λ is small compared to unity, so
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FIG. 6. Top: Growth rate of the magnetic energy versus λ.
The large empty symbols correspond to the full simulations
whereas the small full symbols correspond to cases where the
mean induction equation (35) is neglected. Bottom: Γ(z), as
defined by equation (34), for the square pattern at T = 108,
and for different values of η.

that small-scale dynamo might still be possible at larger
values of Rm. It is however not possible to address this
aspect of the problem with the current model. Note also
that this simple model does not take into account turbu-
lent diffusion terms or other O(ǫ) corrections, but as will
become apparent in the following, it is enough to capture
the essential properties of the kinematic dynamo action
in such flows.

IV. SQUARE PATTERN

In addition to confirming the predictions of the reduced
mean-field model, the purpose of this section is to ex-

plore the large magnetic Reynolds number regime, for
which mean-field theory is not applicable. The induction
equation (9) is now fully solved in three dimensions using
the numerical scheme described in section II. We focus
in this section on the flow defined by equations (1)-(3)
and corresponding to a square pattern. From the mean-
field model described in the previous section, we expect
a large-scale dynamo at onset. We consider three differ-
ent Taylor numbers: T = 108, T = 1010 and T = 1012.
These flows are all characterized by ǫ ≪ 1, but we never-
theless keep all the terms in equations (1)-(3) so that the
flow is rigorously incompressible. This will lead to quan-
titative differences with the previously studied mean-field
model for which O(ǫ) terms were neglected. We consider
the case T = 108 as it is smaller than the critical value
of T ≈ 4 × 109 predicted by the mean-field model for
the existence of a self-consistent large-scale dynamo. It
should therefore allow us to study the behaviour of the
dynamo as mean-field theory becomes gradually less and
less applicable. The cases T = 1010 and T = 1012 should
be consistent with the mean-field model on a wider range
of parameters. Since the flow is periodic, we restrict our
numerical solution to have the same periodicity by fixing
the aspect ratio to be λx = λy = 2

√
2π/a. We considered

numerical simulations with larger aspect ratios in order
to allow for spatially-modulated solutions, but we didn’t
find any. The corresponding aspect ratios can be found
on Table I. The magnetic field is initialised with a small
perturbation with zero net horizontal flux. We vary the
magnetic diffusivity from η = 10−1 down to η = 5×10−5.
As the diffusivity is reduced, we also increase the numer-
ical resolution. For the case η = 10−1, a resolution of
322 × 48 is sufficient whereas the case η = 5 × 10−5 re-
quires a resolution of 2562 × 480.

After some transient phase, the magnetic energy is
varying exponentially with time, as expected from the
kinematic nature of this problem. Figure 5 shows the
typical horizontal topology of the magnetic energy after
the transient phase, for different η and for T = 108. As
the magnetic diffusivity decreases, the field tends to be
concentrated at the edges of the convective cells. Note
that the vertical structure of the magnetic field is also be-
coming more and more complicated as η decreases (not
shown). The growth rate of the total magnetic energy is
shown on figure 6 as large empty symbols. For all three
Taylor numbers considered here, we observed dynamo ac-
tion. For T = 108, dynamo action is first observed for
η ≈ 0.0176, whereas the critical diffusivity is η ≈ 0.015
for T = 1010 and η ≈ 0.0115 for T = 1012. Note that the
fact that the critical value of the magnetic diffusivity for
dynamo action does depend on the Taylor number, and
therefore on ǫ, is inconsistent with the mean-field model
discussed in section III. This is probably due to the fact
that the values of ǫ considered here are too large for the
mean-field model to be rigorously applicable.

As the magnetic diffusivity is decreased, the growth
rate increases up to a maximum. This maximum growth
rate is reached at smaller diffusivities as the Taylor num-
ber is increased. After this point, a further decrease in
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FIG. 7. Horizontal average of Bx versus depth and time. The
amplitude of the field is compensated to remove the exponen-
tial growth and time is scaled in units of the turnover time
λ/Umax where λ is the aspect ratio of the domain and Umax

is the maximum velocity of the flow. The Taylor number is
T = 108. The magnetic diffusivity is η = 5× 10−3 at the top
and η = 5× 10−5 at the bottom.

η corresponds to a decrease in the growth rate. This
reduction in the growth rate was not predicted by the
mean-field model, since the growth rate was a monotonic
function of λ in that case. Note that as the Taylor num-
ber is increased, the agreement between the model and
the simulations is better, since the range of validity of
the mean-field model increases.
Let us now describe the nature of the dynamo action

at onset. Following [4] and [13], it is helpful to define the
quantity

Γ(z) =
〈B〉2
〈B2〉 , (34)

which is the ratio between the magnetic energy contained
in the mean-field and the total magnetic energy at a given
depth. Our initial condition corresponds to Γ = 0 every-
where. For a small-scale dynamo, this ratio is expected
to be very small, whereas larger values are expected for a
large-scale dynamo. In all cases, we observed an increase
in Γ with time, until the system reaches its exponential
growth for which Γ is steady. Γ(z) is presented on the
right part of figure 6, for the case T = 108. At onset
(i.e. for η = 0.015), the maximum value of Γ(z) occurs
at z ≈ 0.69, which also corresponds to the maximum of
the relative kinetic helicity, as shown on figure 2. For
T = 108, the maximum value is Γ ≈ 0.69, showing the
existence of a dominating mean-field across the convec-
tive layer. Note that the magnetic fluctuations are still
of the same order as the mean horizontal field. This is
expected since this Taylor number is not large enough
for the mean-field model to be applicable at the dynamo

onset, as discussed in section III. As the Taylor num-
ber is increased, the maximum value of Γ close to onset
increases, confirming that the kinematic dynamo is of
mean-field type at onset. To compare, similar but tur-
bulent flows usually produce much smaller values of Γ,
typically of order 10−3 (see for example [4] and [13]). As
η decreases, we observe a decrease in Γ, showing that
the magnetic field is now dominated by its fluctuating
components. This decrease in Γ as the magnetic diffu-
sivity decreases is observed for all three Taylor numbers
considered here.
The structure and evolution of this dominant horizon-

tal mean magnetic field is shown on figure 7 for T = 108.
The horizontal average of Bx is plotted versus depth and
time in a “butterfly” diagram for two different magnetic
diffusivities. The result is normalised in order to compen-
sate for the exponential growth. At any given time, the
structure of the eigenmode predicted by the mean-field
model discussed in section III is qualitatively recovered
(see figure 3 for λ = 12.2 and λ = 20.1). As the magnetic
diffusivity η decreases, smaller wavelengths are observed
in the eigenfunction and the frequency of rotation of the
mean-field decreases, in accordance with the mean-field
model. Note that for all η, the mean horizontal field is
drifting from the boundaries towards the mid-layer and
is anti-symmetric with respect to the mid-layer. At a
fixed depth, this corresponds to a mean horizontal field
rotating around the vertical axis with a given frequency.
The sign of this rotation changes between the upper and
lower half of the domain. Note that this type of solution
is reminiscent of the dynamo solution for the Roberts
flow [33] (but since the helicity is changing sign across
the mid-layer, so is the rotation rate of the rotating hori-
zontal mean-field), and also shares some similarities with
the numerical solution of [39] which reported a strong
horizontal mean-field rotating with time. This is not
surprising as the Roberts flow is locally very similar to
the flow discussed in this section, and by Stellmach &
Hansen [39] who considered rotating Boussinesq convec-
tion at very low Ekman numbers (i.e. very large Taylor
numbers) close to the onset of convection.
To further investigate the nature of the dynamo action

at onset, we run an additional set of simulations, identical
to the previous ones in most respects. However, instead
of solving the mean induction equation

∂ 〈B〉
∂t

= ez ×
∂ 〈E〉
∂z

+ η
∂2 〈B〉
∂z2

, (35)

for the horizontally-averaged magnetic field, where E =
〈u×B〉 is the horizontally averaged electromotive force,
we artificially constrain these mean magnetic fields to be
zero everywhere in the layer. This approach has already
been used by [28] when studying the transition between
large-scale and small-scale dynamos in the Roberts flow,
and by [13] to measure the α-effect generated by rotat-
ing turbulent convection. In these artificial simulations,
the only possible dynamo is of small-scale nature as the
mean electromotive force is neglected. We show on fig-
ure 6(a) the growth rates of such simulations as small full
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FIG. 8. Magnetic energy B
2 in a horizontal plane located at z = 0.25. For the sake of clarity, the aspect ratio has been

multiplied by two by plotting four copies of the domain side by side. Bright and dark tones correspond to opposite polarity.
From left to right, η = 10−2 (close to the critical value for dynamo action), η = 10−3 and η = 5 × 10−5 (small-scale dynamo
action is marginal). The local orientation of the mean-field is the same in all cases.

symbols. The onset for dynamo action in this case corre-
sponds to η ≈ 2.8× 10−4 for T = 108 and η ≈ 1.3× 10−4

for T = 1010. Note that the critical magnetic Reynolds
number based on the horizontal scale of motion is now
the same for both Taylor numbers. This further confirms
that the previous dynamo action observed for smaller val-
ues of η is of mean-field type, since small-scale dynamo
is not possible for that range of parameters. However, as
η decreases, small-scale dynamo eventually becomes pos-
sible and the growth rate of the dynamo then decreases,
along with Γ. This transition between large-scale dy-
namo and small-scale dynamo action shares some simi-
larities with what has been observed for the Roberts flow
[28] and for helically forced flows in spherical shells [31].

V. HEXAGONAL PATTERN

We now consider the hexagonal cells. The flow is de-
fined by equations (5)-(7). We use a similar approach to
the one used in section IV: the induction equation (9)
is numerically solved in three dimensions as described in
section II. We choose three representative Taylor num-
bers: T = 108, T = 2 × 1010 and T = 1012. The corre-
sponding parameters can be found in Table I. The most
unstable wave number of the convective motion a, as de-
fined by equation (4), varies between these simulations
and the aspect ratios are adjusted accordingly. As for
the simulations in the square pattern, the magnetic field
is initialised with a small perturbation with zero net flux.
We show on figure 8 the magnetic energy in a hor-

izontal plane located at z = 0.25, for different values
of the magnetic diffusivity η. As for the square pat-
tern, the magnetic field tends to be expelled from the
center of the convective cells. According to the previ-
ous mean-field model described in section III, the case
T = 108 (for which ǫ = 0.046) is not able to sustain a
large-scale dynamo. On figure 9, we present the growth
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FIG. 9. Growth rate of the magnetic energy versus λ for three
different Taylor numbers in the hexagonal pattern case. For
T = 108, all the growth rates are negative apart from the
smallest value of η which is very close to criticality but the
growth rate is positive.

rate of the magnetic energy versus the magnetic diffusiv-
ity. For T = 108, we indeed observe an increase in the
growth rate up to η ≈ 0.02 followed by a decrease. A
small positive growth rate is obtained at a much smaller
diffusivity of η = 5×10−5. This dynamo is of small-scale
nature and is characterised by Γ ≈ 10−3. Of course, the
possibility of small-scale dynamo action is not predicted
by the mean-field model, but the lack of a large-scale
dynamo is however consistent with the prediction of the
mean-field model.

For this Taylor number, the hexagonal pattern is not
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FIG. 10. Horizontal average of Bx versus depth and time in
the hexagonal case. The amplitude of the field is compensated
to remove the exponential growth and time is scaled in units
of the turnover time λ/Umax where λ is the aspect ratio of the
domain and Umax is the maximum velocity of the flow. The
Taylor number is T = 2 × 1010 and the magnetic diffusivity
is η = 5 × 10−3 at the top (dynamo action is observed) and
η = 3× 10−4 at the bottom (no dynamo action).

capable of sustaining a large-scale dynamo due to the
dominating effect of the pumping velocity. For T =
2× 1010, there is a range of parameters for which mean-
field dynamo is possible, namely 0.02 < η < 0.07. As pre-
dicted by the mean-field model, for η > 0.07, the mean-
field dynamo is shut down due to an increasingly efficient
pumping velocity. Small-scale dynamo action might be
possible at smaller values of the diffusivity, although we
could not check this numerically due to resolution con-
straints. Similar results are obtained for T = 1012, but
the range of magnetic diffusivity for which a large-scale
dynamo is observed increases, as the pumping velocity
is only affecting the dynamo at smaller value of η. Ulti-
mately, for an infinite Taylor number, the pumping ve-
locity will always be negligible, so that the hexagonal
pattern would be qualitatively similar to the square pat-
tern, as predicted by the mean-field model. Note that
the reduction in the dynamo growth rate observed for the
square pattern is not predicted by the mean-field model
and is related to small-scale dynamo action, whereas the
case of the hexagonal pattern and the eventual disap-
pearance of the large-scale dynamo is fully explained by
the mean-field model.

The structure of the eigenmodes is shown as a space-
time diagram on figure 10. We observe a qualitatively
similar behaviour as in the mean-field model. When dy-
namo action is possible, the mean-field is dominant in
the lower half of the domain, as already observed on fig-
ure 4. At smaller magnetic diffusivity, the mean-field is
dominantly advected towards the upper boundary (the
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FIG. 11. Growth rate of the magnetic energy versus η. Left:
results corresponding to the square pattern at T = 108.
Right: results corresponding to the hexagonal pattern at
T = 1012. In each case, we compare the two types of boundary
conditions, perfectly-conducting (i.e. Bx,z = By,z = Bz = 0)
and vertical (i.e. Bx = By = Bz,z = 0).

pumping velocity is directed upward) and the dynamo is
effectively shut down.

VI. EFFECT OF CHANGING THE BOUNDARY

CONDITIONS

Finally, we look at the effect of changing the magnetic
boundary condition. All the previous results have been
obtained for perfectly-conducting boundaries for which
the magnetic field lines are horizontal at z = 0 and z =
1. Instead, we now assume that the boundaries have
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FIG. 12. Horizontal average of Bx versus depth and time
in the square pattern at T = 108 and η = 5 × 10−3. The
upper and lower boundaries have an infinite magnetic perme-
ability so that magnetic field lines are normal to them. The
amplitude of the field is normalised to compensate for the ex-
ponential growth and time is scaled in units of the turnover
time.

an infinite magnetic permeability so that the magnetic
field lines reconnect perpendicularly to the boundaries.
The magnetic field tangent to the boundaries vanishes
along with the normal current density and we therefore
have Bx = By = ∂zBz = 0 at z = 0 and z = 1. Of
course we now have to abandon the constraint of zero
horizontal magnetic flux (see equation (33)), since this is
not a conserved quantity using this new set of boundary
conditions.

Although the magnetic field topology is now very dif-
ferent, the growth rate of the magnetic energy is ex-
actly the same as in the perfectly-conducting case, for
all the values of η considered here, and for both the
mean-field equations and the full three-dimensional simu-
lations. This remarkable result is in fact general and not
a specificity of the current model. It is due to the ad-
jointness property of the induction equation as discussed
by [15, 29, 30]. Provided one can reverse the direction of
the flow by an appropriate set of transformations which
leave the boundaries invariant (we call this class of flows
reversible flows in the following), the growth rate of any
kinematic dynamos will be exactly the same whether the
boundaries are made of a perfect electrical conductor or
have an infinite magnetic permeability. A formal demon-
stration and additional examples of this rigorous result
can be found in [14].

The particular flows considered in this paper are all
reversible so that this general result is applicable in this
case. In the case of the square pattern, a simple hori-
zontal translation can change u into −u. For the hexag-
onal pattern, the direction of the flow is reversed under
point reflection with respect to the mid-layer, effectively
changing the sign of all three spatial coordinates. Using
the mean-field model described in section III but impos-
ing a vanishing horizontal magnetic field at z = 0 and
z = 1 (the conditions (33) are also relaxed since they
are only valid in the perfectly-conducting case), the ex-
act same growth rates as in the perfectly-conducting case
are obtained. The associated eigenfunctions are however
different: they are now symmetric with respect to the
mid-layer.

In addition, a comparison of the growth rates obtained
with the direct numerical simulations described in section
II and for the two different set of boundary conditions is
shown in figure 11. We compare the magnetic energy
growth rates for the square pattern at T = 108 and for
the hexagonal pattern at T = 1012. For all diffusivities
considered here, the growth rates of the magnetic energy
is indeed the same for the two types of magnetic bound-
ary condition. Interestingly enough, in the case of the
square pattern and with vertical boundary conditions,
we obtain a similar space-time diagram as on figure 7,
but the horizontal mean-field is rotating in the opposite
direction (see figure 12), so that each horizontal compo-
nent is drifting from the mid-layer towards the bound-
aries. The eigenfunction is also symmetric with respect
to the mid-layer whereas it was anti-symmetric in the
case of perfectly-conducting boundary conditions, which
is consistent with the results of the mean-field model (not
shown). Although the two eigenfunctions are qualita-
tively different, the real parts of the associated eigenval-
ues are rigorously the same for any magnetic diffusivity.
This result holds for both large- and small-scale dynamos
since it is a property of the general induction equation
for reversible flows.

VII. CONCLUSION

In this paper, we investigated the kinematic dynamo
action in rotating convective flows. By considering the
onset of convection, we were able to select between square
and hexagonal patterns. The flow is then analytically
prescribed and the induction equation is solved numeri-
cally. We first use a reduced model based on a mean-field
approach and we then consider direct numerical simula-
tions of the full induction equation. For the square pat-
tern, we observe first a dynamo of mean-field type where
the mean electromotive force compensates for diffusion.
As the magnetic Reynolds number increases, a transi-
tion towards small-scale dynamo action is found and the
magnetic energy is dominated by its fluctuating compo-
nent. This transition also corresponds to a decrease in
the kinematic growth rate of the magnetic energy.

For the hexagonal pattern, the situation is more com-
plicated. Due to the asymmetry between the up and
down flows, an effective pumping velocity appears. This
effect corresponds to the off-diagonal terms in the clas-
sical α-tensor of mean-field electrodynamics. While such
an effect can be removed in any vertically-invariant flows
(such as the Roberts flow), it is not the case in our plane-
layer confined model. It ensues that the previously ob-
served mean-field dynamo can disappear if the Taylor
number is too small (while being large enough to justify
the small ǫ regime required by the mean-field model).
This is a surprising example where some of the terms of
the α tensor are actually be unhelpful for dynamo action.
For sufficiently large Taylor number, the pumping veloc-
ity becomes negligible and the results become qualita-
tively similar to the square pattern: a large-scale dynamo
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is observed at onset whereas small-scale dynamo action
is probably possible at much larger magnetic Reynolds
numbers (although we only numerically observe a small-
scale dynamo for the case T = 108, where no large-scale
dynamo is possible). These conclusions are derived us-
ing both a mean-field model and direct numerical simu-
lations of the full induction equation with a prescribed
velocity field. Note that the fact that the pumping veloc-
ity decreases with the Taylor number is consistent with
the prediction of [41], although they considered the fully-
turbulent regime in their case.
Many aspects of this problem remain to be studied.

It is worth mentioning that we focus in this paper on
dynamo solutions having the same periodicity as the
background flow. We considered numerical simulation
with larger aspect ratios in order to allow for spatially-
modulated solutions, but we found none that grew more
rapidly. A more complete analysis is however required in
the general case, as we cannot exclude the possibility of
more efficient sub-harmonic dynamos at even larger as-
pect ratios. In addition, the nonlinear saturation of these
dynamos is of interest. This would require the solution
of the momentum equation coupled with the induction
equation. Self-consistently obtaining these square and
hexagonal flows can be challenging in itself. We man-
aged to produce both square and hexagonal patterns in

rapidly-rotating weakly stratified compressible convec-
tion, by varying the horizontal aspect ratio of the nu-
merical domain. The kinematic dynamo properties of
such flows are very similar to what has been described
in the present paper, even if the flows significantly de-
part from equations (1)-(3) and (5)-(7). Much remains
to be done concerning the nonlinear saturation of these
kinematic dynamos.

As mentioned in the introduction, the turbulent regime
far from onset is still problematic when it comes to its
large-scale dynamo action capability. We showed that
both squares and hexagons are capable of sustaining a
large-scale dynamo, providing the Taylor number is large
enough. An interesting question is how does this dy-
namo solution behaves as the flow becomes decorrelated
in space and time. It is known that the mean induc-
tion is dramatically reduced as the flow becomes less spa-
tially correlated [7], and it would therefore be interesting
to study how these well-defined mean-field dynamos be-
have when the Rayleigh number is increased, introducing
spatio-temporal chaos in the flow. This undergoing study
should fill the gap between mean-field dynamos in simple
analytic flows and turbulent dynamos, where the distinc-
tion between small-scale and large-scale dynamos is often
unclear.
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[20] G. Küppers and D. Lortz. Transition from laminar con-
vection to thermal turbulence in a rotating fluid layer. J.
Fluid Mech., 35:609–620, 1969.
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