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Abstract

We introduce a concept of episode referring to a time interval in the develop-
ment of a dynamic phenomenon that is characterized by multiple time-variant
attributes. A data structure representing a single episode is a multivariate
time series. To analyse collections of episodes, we propose an approach that
is based on recognition of particular patterns in the temporal variation of the
variables within episodes. Each episode is thus represented by a combination
of patterns. Using this representation, we apply visual analytics techniques
to fulfil a set of analysis tasks, such as investigation of the temporal distribu-
tion of the patterns, frequencies of transitions between the patterns in episode
sequences, and co-occurrences of patterns of different variables within same
episodes. We demonstrate our approach on two examples using real-world
data, namely, dynamics of human mobility indicators during the COVID-19
pandemic and characteristics of football team movements during episodes of
ball turnover.

Keywords: temporal patterns, multivariate time series, time intervals

1. Introduction

Everything that happens in the world can be conceptualized as a sequence
of episodes representing various events or developments of dynamic phenom-
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ena. The term ‘episode’ means (in the context of our research) a time interval
during which something happens or develops. The happening or development
can be characterized by multiple time-variant attributes, or features. A data
structure containing values of multiple features attained at consecutive time
units is called multivariate time series. Our research presented in this paper
deals with collections of episodes described by multivariate time series where
all features are numeric, i.e., represent measurements rather than categories.

A chronologically ordered sequence of values of a single numeric attribute
forms a certain pattern [6]. When such a sequence is represented by a polyg-
onal line along a time axis, the pattern is visually perceived as a certain
geometric shape. There are shapes, i.e., patterns, that are not only readily
detectable by a human eye but also readily interpretable; moreover, their
meanings are denoted by specific terms, such as ‘increase’, ‘decrease’, ‘peak’,
etc. Temporal variation of a single feature within an interval can thus be
described as one of these simple patterns or a sequence of several simple
patterns. Obviously, this can be done for each individual attribute of a mul-
tivariate time series. However, the resulting description does not provide
immediate holistic understanding of the joint behaviour of the attributes.

The research problem we want to solve is how to proceed from recognition
of temporal development patterns of individual attributes to identifying and
understanding patterns of their joint development in a set of episodes. To
investigate this problem, formulate specific analysis tasks, find approaches
to fulfil these tasks, and test the efficacy of these approaches, we use two
real-world example datasets: mobility data upon the COVID-19 pandemic
and collective movement in football games.

Our research presented in this paper aims to support the following anal-
ysis tasks.

e T1: Identify major temporal patterns in the variation of individual
features within the episodes.

e T2: Study the temporal distribution of the identified univariate
temporal patterns.

e T3: Investigate the transitions between univariate temporal patterns
in consecutive episodes.

e T4: Investigate the co-occurrence of univariate temporal patterns of
different features within episodes.



The tasks were defined based on the theoretical model for pattern discov-
ery |6], which is further referred to as “the pattern theory”. We do not strive
to cover all possible tasks in analysing time series but consider the tasks rel-
evant to the analysis process in which higher-level patterns are constructed
from lower-level patterns. In this process, task T1 extracts lower-level pat-
terns and tasks T2-T4 aim to discover different types of higher-level patterns
formed by the lower-level patterns.

For T1, we introduce an algorithm to extract temporal patterns from
univariate time series. T2 is supported by a timeline display and, when ap-
propriate, by circular charts with the circumference representing a temporal
cycle. The latter can facilitate detection of periodic re-occurrence patterns
in the temporal distribution. For T3, we propose bipartite graphs showing
frequencies of pattern transitions. T4 can be fulfilled by interacting with a
co-occurrence network.

The rest of this paper is structured as follows. Section 2 discusses the
related work. Section 3 introduces the proposed techniques and approaches
using the example of the mobility data during the COVID-19 pandemic. Sec-
tion 4 demonstrates the generality of our approach by example of another
application using football (soccer) data. Section 5 discusses the concept,
approaches, and answered research questions, identifies strengths and limi-
tations, and proposes directions for future work. Finally, section 6 concludes
our work.

2. Related Work

We introduce previous approaches to pattern detection, interpretation
and visualization applicable to multivariate time series in episodes.

2.1. Conceptual foundations

Collins et al. [12] define a pattern as a holistic representation of multiple
(data) items abstracted from the individual items. The concept of a data
pattern and the existing definitions in different research disciplines have been
extensively discussed by Andrienko et al. [6], who argued that patterns are
formed by relationships between data items. A data pattern involves elements
of at least two sets, for example, time units and values of a numeric attribute.
A pattern is made by intrinsic relationships between the elements within these
sets and the correspondences between the elements from the different sets.
The former depend on the nature of the sets and the latter are defined in the



data. The intrinsic relationships between elements of one of the sets create
a particular arrangement of the corresponding elements of the other set. A
pattern is the manner in which the elements of the second set relate one to
another throughout this arrangement.

For example, the intrinsic relationships between time units are temporal
ordering and temporal distance, i.e., the amount of time that passed between
two units. The intrinsic relationships of ordering and distance (i.e., differ-
ence) exist also between values of a numeric attribute. A data set specifies
what attribute values corresponds to which time units. The intrinsic tempo-
ral relationships between the time units create a temporal arrangement, i.e.,
a sequence, of the corresponding attribute values. A pattern is the manner
in which the values differ one from another along this sequence: whether val-
ues that are further in the sequence are greater or smaller than the preceding
values or nearly equal to them. Depending on these relationships, we identify
the pattern as increase, decrease, or constancy.

The definition of a data pattern as a system of relationships implies that
visual discovery of data patterns can be enabled by visualizations satisfying
two requirements: (1) appropriately represent the pattern-forming relation-
ships according to the types of data components and (2) facilitate holistic
perception of multiple data items. Thus, in a case of a numeric time series, a
line chart (a.k.a. time plot) is a suitable visualization: two axes appropriately
represent the ordering and distance relationships between time units and be-
tween numeric attribute values, the positions of points in this coordinate
system accurately represent the correspondences between the time units and
the attribute values, and holistic perception is facilitated by connecting the
points by lines. A temporal pattern is thus perceived as a particular shape
of the resulting polygonal chain. Hence, discovery of temporal patterns can
be done by identifying shapes.

According to the pattern theory [6], data patterns that have been dis-
covered can be treated as new elements of data to which the subsequent
analysis steps are applied. The analysis involves determining relationships
between the patterns throughout arrangements created by elements of other
data components, e.g., how the patterns vary along time or how they are
distributed over space.

2.2. Temporal pattern extraction and classification

A comprehensive overview of visual analytics approaches for temporal
data can be found in monographs by Aigner et al [1|, Andrienko et al [5] and
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Tominski and Schumann [41].

An important pre-requisite for pattern extraction is segmentation of mul-
tivariate time series into semantically meaningful episodes. Papers by Bernard
et al [9] and Gharhabi et al [16] propose visual interactive and computational
approaches to segmentation. Further works propose semantic segmentation
based on TimeMask [4] and its extensions [3].

There exist two major building blocks for temporal pattern extraction and
classification. First, there exist methods that search for patterns specified
by their shapes. Second, similarity measures (also called distance functions)
are used for quantifying similarity and detecting patterns in time series.

Several papers proposed libraries of temporal patterns for univariate [31]
or multivariate [44] time series. Das et al. apply a data-driven approach
for identifying patterns with interpretable and recognizable shapes [14]. Al-
gorithms for measuring similarity to pre-defined patterns were proposed for
detecting time series that contain the given patterns [30] and, in contrast,
for detecting dissimilar subsequences in time series [26]. Other approaches
to pattern detection and analysis include representations of time series as
aggregates |25 or as sequences of symbols [28].

In our work, patterns are identified by means of a new algorithm that
calculates the largest triangle within a time series for determining the pattern
shape. The idea of the algorithm originates from Steinarsson, who aimed at
downsampling time series for visual representation [39]. Unlike the most
common approaches, which are based on computing similarities to earlier
defined shapes, either taken from a library or sketched by a user, our approach
takes into account geometric characteristics of a time series fragment and
provides a useful opportunity to represent the patterns in a highly schematic
and compact manner using two or three points.

Apart from the research on extraction of predefined patterns and on recog-
nition of pattern types, there are also works where time series patterns are
identified implicitly by means of clustering assuming that each cluster defined
a certain pattern. The main idea has been exemplified by val Wijk and van
Selow [42], who clustered daily univariate time series and investigated the
distribution of the clusters over a year. Schreck et al. [37] proposed to treat
time series of two variables as trajectories in 2D space. Long time series were
divided into episodes, the trajectories from the episodes were clustered, and
the original time series were represented as sequences of the averaged tra-
jectory shapes generated for the clusters. From the perspective of our work,
these approaches are interesting for their focus on exploring the distribution



of temporal patterns rather than solely on pattern detection and extraction.

2.3. Visualization of multivariate time series and episodes

An obvious approach to visualization of multivariate time series is to cre-
ate multiple visualizations representing the time series of the individual vari-
ables. For example, Janetzko et al. [24] create multiple horizon graphs [22] to
visualize multiple time series characterizing episodes of a football match. Hao
et al.[20] focus on showing the occurrences of earlier detected frequent pat-
terns (motifs) in long time series represented by line graphs. Pham et al. [33]
complement multiple area charts showing variation of singular variables with
a temporally ordered sequence of radar charts showing combinations of val-
ues of the variables. Other authors strive to create a compact view, such as
Kaleidomaps [8], where each time series is represented by a heat map embed-
ded in a sector of a circle. A popular technique utilized in visual exploration
of multivariate time series data is applying dimensionality reduction to the
combinations of attribute values corresponding to the time steps |10, 40]. In
these works, the authors are dealing with continuous time series rather than
episodes.

In visualizing episodes characterized by multivariate time series, it is nec-
essary to address:

1. When the episodes happened: representing their temporal references
in linear [13] or cyclic time [32, 11| or structural (calendar) models [42];

2. What happens within each episode: temporal dynamics of attributes,
usually represented either by displaying time lines [13| or animating
representations such as scatter plots [35, 36, 21]. Zhao et al. proposed
an interactive visualisation for episodes which facilitated comparison of
timelines with different attributes [45];

3. How multiple episodes relate to each other: what are transitions be-
tween the episodes. This can be represented, for example, by a node-
link diagram with nodes representing patterns and links - transitions
between them [29].

In analysing the times of the episode occurrences (when), not only the
temporal distribution of the episodes is of interest but also the temporal re-
lationships between episodes. Allen and Ferguson systematically introduce
all possible pairwise relations between time intervals [2]. These relationships
can be represented graphically using triangular logic introduced by Van de



Weghe [43]. Qiang et al. [34] used this approach for representing tempo-
ral relationships between episodes. Lee and Shen [27| propose techniques
for visual exploration of temporal relationships between occurrences of user-
defined patterns (called “trends” by the authors) in multivariate time series.
They transform the time series into a sequence of states characterized by
different combinations of trends and propose a visual representation in the
form of a matrix with columns corresponding to the states and rows to the
trends of the different variables.

Our paper uses several visual representations that combine ideas from the
mentioned earlier works. Specifically, the idea of our timeline view (Fig. 1)
is similar to the visualization of state sequences by Lee and Shen [27], the
circular charts (Fig. 6) utilize the idea of Ringmaps [46], and the representa-
tion of temporal patterns by colours in various displays follows the ideas of
van Wijk and van Selow [42].

3. Visual analytics approach

In this section we introduce our visual analytics (VA) approach that helps
analysts to explore and understand large sets of episodes characterised by
multivariate numeric time series.

3.1. Essence of the approach

The key idea of our approach is to abstract each individual time series
within each episode to a temporal pattern. All patterns are assigned to a
finite (preferably small) set of classes, or pattern types, which can be denoted
by semantically meaningful labels or somehow encoded in a symbolic form.
Hence, each individual time series is represented by a reference to the cor-
responding pattern class, and each episode is represented by a combination
of pattern classes of the multiple attributes. The following analysis is done
using this representation of the episodes. For the sake of brevity, we shall
henceforth use the term ‘pattern’ to refer to a pattern class.

According to the pattern theory [6], we treat the temporal patterns that
have been obtained as new elements of data. We strive to find higher level
patterns in the distributions these new elements with respect to the other
components of the data, which are the set of the episodes considered as dis-
crete objects and the time with its intrinsic relationships of temporal ordering
and distances; see Section 2.1.



Hence, based on the pattern theory summarised in Section 2.1, our ap-
proach includes two stages:

1. Detect and abstract temporal patterns of singular attributes appearing
in the episodes.

2. Treating the univariate temporal patterns as data elements, study the
distribution of these “elements” within the set of episodes and along
time.

In this approach, we deal with patterns of two levels of complexity and so-
phistication. The first stage discovers lower-level patterns formed by tempo-
rally ordered numeric values. The second stage aims to discover higher-level
patterns formed by these lower-level patterns due to their relationships and
thereby imposed arrangements within and across the episodes. Within the
episodes, the univariate patterns of multiple attributes are linked by the re-
lationships of co-occurrence. Across the episodes, the univariate patterns are
linked by relationships of temporal ordering and temporal distance.

The task T1 formulated in Section 1 refers to the first stage and the
remaining tasks to the second stage. The task T4 focuses on the relationships
of co-occurrence within episodes. The expected type of higher-level patterns
is which univariate patterns tend to frequently co-occur and which do not
occur together. The task T3 focuses on the temporal ordering and strives to
find patterns of frequent or infrequent occurrence of one lower-level pattern
immediately after another. The task T2 focuses on more distant temporal
relationships regarding the arrangement of the lower-level patterns along the
time axis and, when appropriate, within temporal cycles. The expected types
of higher-level patterns include tendencies to occur earlier or later in time or
at certain positions in a cycle, to re-occur more or less frequently in different
time periods, to occur in a particular sequence, etc.

As stated by the pattern theory [6], pattern discovery is supported by
faithful visual representation of relevant relationships. Taking into account
the aforementioned relationships that are relevant for tasks T2-T4, we pro-
pose the following visualizations to support these tasks:

e T2: A timeline display of the temporal patterns (Fig. 1), where the
horizontal axis represents the linear ordering relationships between time
intervals, plus circular diagrams (Fig. 6), where positions in circles
represent the cyclic arrangement relationships.



e T3: A bipartite graph of immediate transitions between patterns of
the same attributes (Fig. 7).

e T4: A co-occurrence network (Fig. 8).

The task T1 can be fulfilled in different ways, for example, by dividing
the time series into intervals and encoding the interval averages by symbols
according to the value ranges in which the averages fall. The resulting codes
are called SAX patterns [28]. In our paper, we propose another method,
which is based on the recognition of the geometric shape that would be
formed when the time series is represented graphically by a line chart. It
should be noted that the visual analytics techniques we propose for the tasks
T2-T4 do not depend on the method of extracting and encoding temporal
patterns and on the choice of labels to denote the patterns.

We demonstrate our approach on example of Google Mobility data [18].
Continuous time series of daily mobility indicators were divided into disjoint
episodes.

3.2. Approach introduced by example

The COVID-19 pandemic has impelled local authorities and/or govern-
ments to regulate people’s mobility. Such policies generate changes in mo-
bility, which are typically sporadic across a certain period. We should dis-
tinguish those sporadic patterns from seasonal repetitions in mobility data.
For example, we can expect the increasing number of people staying at home
and the decreasing number of those going out during the Christmas season.
Moreover, different categories of places have different patterns of mobility
even during the same time interval. Here, our interest is to visualize tempo-
ral patterns across episodes and to investigate how the mobility changes over
time across different categories of places.
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Figure 1: Timeline of temporal patterns in Google Mobility Data.

Data Description

We preprocess the mobility data provided by Google [18] to obtain mul-
tivariate time series. Since the COVID-19 outbreak around February 2020,
Google has been daily publishing anonymized mobility data for 6 different
categories of places (namely, retail and recreation, supermarkets and phar-
macies, parks, public transport, workplaces, and residential) from different
regions. The data consist of daily visitor numbers to these categories of
places relative to baseline days before the pandemic outbreak. Baseline days
represent a normal value for each day of the week and are given as the me-
dian value over the five-week period from January 3rd to February 6th 2020.
The values in the published data are expressed as percentages of the changes
from the baseline values.

From the continuous time series, we extract the time intervals of weekdays
(i.e., 5 time steps for each week) with the corresponding segments of the time
series. Mobility data for weekends are excluded from the analysis because
changes from weekdays to weekends are very prominent and therefore obscure
the longer-term changes of the mobility behaviours. We process the mobility
data for Germany collected between the 17th of February, 2020 and the 7th
of January, 2022 (i.e., almost for two years), which results in 99 episodes of
the length of five time steps.

For validation purposes, we acquired values of eight policy indicators
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(namely, closing of schools, workplace, and public transport, cancelling public
events, and restrictions on internal and international movement) from the
Oxford COVID-19 Government Response Tracker [19].

T1. What are the major patterns of individual attributes?

In the introduction, we mentioned the existence of simple, easily perceiv-
able and interpretable patterns of temporal variation of numeric attributes.
These patterns can be schematically represented by lines of particular ge-
ometric shapes. Let us use the term ‘“elementary pattern” for a pattern
that can be represented (in abstraction from minor fluctuations) by a sin-
gle straight line. There are three elementary temporal patterns: up-trend,
constancy, and down-trend. More complex patterns can be considered as
sequences of these. Fig. 2 illustrates how elementary temporal patterns can
make more complex temporal patterns. Any temporal pattern starts with
one of the elementary patterns, and a sequence of two or more temporal
patterns can make a composite pattern such as a peak or a trough.

When a sequence consists of the same kind of elementary pattern (i.e.,
up-trend, constancy, or down-trend), we can simply consider it as a single
temporal pattern. For example, a sequence of two up-trend patterns makes a
single up-trend pattern and this temporal pattern makes a peak pattern with
a subsequent down-trend (i.e., up—up—down makes peak). Note that when
the sequence gets longer, it can create a more complicated shape. A long
time series often looks like an oscillation. It can be simplified by means of
temporal smoothing. We assume that the episodes under analysis are short,
so that the time series include a small number of time steps and thus can
be represented by sufficiently simple patterns. Longer episodes can be sub-
divided into shorter ones to enable such representation. Another possibility
is to downsample the time series, i.e., reduce the number of time steps by
dividing a long sequence of time steps into a small number of intervals and
taking a single representative value (e.g., the mean or median) from each
interval.
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(1) pattern 1 (2) pattern 2 (1)+(2): Sequence

; Up Up back to (1)
< Constancy | Up back to (1)
Down Peak *
U [T —
Up Up back to (1)
Constancy,.i ...................... < Constancy Constancy back to (1)
Down Down back to (1)
Down -
Up Trough *
< Constancy | Down back to (1)
Down Down back to (1)

Figure 2: Possible sequences of elementary temporal patterns. For example, a temporal
pattern consisting of up-up-constancy-down-down will be classified as a peak. A long
time series including a peak or a trough (marked *) may require a subtle adjustment to
distinguish different temporal patterns.

We assign an episode to one of the five temporal patterns to represent the
most prominent shape of the time series: up-trend, peak, constancy, trough,
down-trend. To determine a temporal pattern, we adapt the main idea from
the algorithm of Steinarsson [39], which was devised for downsampling of
time series , i.e., reducing the number of points used to represent the time
series. This matches very well our goal to transform time series into simple
shapes that can be represented by very few points. The method is based on
finding the data point that makes the largest triangle when connected to the
first and last data points in a time interval. Fig. 3 shows an example of the
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largest triangle in a time series. Fig. 4 illustrates the work of the pattern
determination algorithm, which is explained below.

The point with
the largest area

/' Ateaofthe largest triangle
4 in the time series O

value

Difference between
start and end values

v

time

—_— m————————— ~ — N e
Down-Trend/Up-Trend/ ! } Down-Trend/Up-Trend/ ! ) } Y " Start > End
Constancy/Trough/Peak } Constancy Difference | és Yes No

I
} between. | A, Down-Trend B, Up-Trend
| max and min }
‘ )
' I No is greater |
Triangle ! than I
area > P threshold? |
is greater | T M| S —
7
[ than } \ / I } No [ ¢, Constancy
Threshold? | ¢ win I > -
! I
\_} > } ~ )
|
} No A
- O T
! Trough/Peak f | ! i
! . g | 2ndvertex | ! The area ofthtg tr;angle
N | - | is the } | is negative?
N, | | | | Yes
N I Yes I extreme Yes |
| | . || D, Trough
D> > point | 1 v
/-\y } | (max or min)? } }
| 7 2N\ | T |
I
} } 20 . | / \’ / } }
- ) [ HJ u} \End point=max 2nd pomt-"—max/ L=

Figure 4: The process of pattern determination. Time series will be classified into either
A. Down-Trend, B. Up-Trend, C. Constancy, D. Trough, or E. Peak.

A time series can be classified as peak or though when the area of the

largest triangle is greater than a chosen threshold. To find the largest trian-
gle, we take the first and the last points of the time series as the first two
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vertices of a triangle and test all intermediate data points one after another
as potential third vertices of the triangle. From these points, we take the one
that makes a triangle with the largest area among all.

If the absolute value of the area of the largest triangle is above the thresh-
old, the time series has either a peak or a trough; otherwise, it can be classified
as a trend (up or down) or constancy. The value of the area is treated as
negative when the order from the start, via the extreme, to the end points is
counter-clockwise. Otherwise, the area has a positive value. The time series
has a peak with a positive area and a trough with a negative area.

When the time series is neither peak nor trough, meaning that the values
do not significantly deviate from the straight line connecting the first and
last points, the time series has either of the following patterns: an up-trend,
a down-trend, or a constancy. Imagine a time-distance graph for uniform
velocity, where distance increases at the same pace. In this case, no triplet of
the points makes a triangle, and we define the area to be zero. This pattern
determination is relatively straightforward; when the difference between the
start and end values is larger than a chosen threshold, the time series has
either an up-trend or a down-trend, otherwise it has a constancy. Then the
time series has a down-trend when the start value is greater than the end,
and an up-trend happens when the end value is greater than the start.

Results of pattern detection depend on two thresholds that we use for
determining peaks vs. troughs and identifying constancy patterns. The
specific values of the thresholds are not essential for demonstrating our ap-
proach. Generally speaking, these thresholds are application-specifics, and
domain knowledge may be needed for setting them properly. In our exam-
ple, we’ve performed self-assessment to choose appropriate values based on
several trials. For the assessment, we used a visualization with time series
translated to a common starting point, as in Fig. 5.

Table 1 presents the distribution of temporal patterns in the mobility
data. We observe constancy as the most frequent among the patterns. This
observation can be confirmed by time series visualizations in Fig. 5.

The types of patterns our algorithm aims to extract can be categorised as
patterns of value change, while, for example, SAX patterns [28| can be seen as
patterns of value magnitude. Our algorithm ignores the magnitudes of values
and considers only the differences with respect to the first value of a time
series. This needs to be taken into account when assessing the suitability
of our algorithm for specific analysis goals. Another important note is that
the algorithm allows extraction of a more refined set of pattern types than

14



Table 1: The overview on temporal patterns in their frequency (Peak/Trough threshold
= 0.1, Constancy threshold = 0.2). We observe constancy as the majority.

Peak UpTrend Constancy DownTrend Trough
retail and recreation 10 0 76 9 4
grocery _and pharmacy | 12 4 7 2 4
parks 11 9 64 7 8
transit stations 10 3 70 ) 11
workplaces 2 6 80 7 4
residential 3 4 81 3 8

we consider in our examples. Thus, for the peak and trough patterns, it
is possible to introduce subtypes based on whether the final value of the
time series increased, decreased, or remained nearly the same as the first
value. For the up- and down-trends, it is possible to distinguish steep and
gradual increase or decrease. An appropriate level of pattern abstraction can
be chosen in accord with the goals of analysis. In our examples, we extract
and use highly abstracted patterns; however, the exploratory techniques we
demonstrate can also be applied to an extended set of patterns.

a0  retail grocery parks transit workplaces residential
250 -
200
150

100 | bz o

cwaf v
[
-

100

150

200 -

250

w7771 1 T T T 1 T T T 1 T 71T T 1 71 T T 1 T 1 T 1

Figure 5: Actual time series with values shifted to align the start points.
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T2. What is the temporal distribution of the patterns?

For this task, we propose two visualizations focusing on different types
of relationships between time intervals. The timeline view (Fig. 1) focuses
on the relationships of linear ordering, which are represented by positions
on a straight horizontal time axis. The circular view (Fig. 6) focuses on
the relationships of cyclic temporal arrangement between the episodes. In
a circular chart, the years are represented by rings, and episodes (weeks of
data) are blocks of the rings arranged clockwise. In both views, the temporal
patterns of the individual episodes are represented by colour coding.

The timeline view (Fig. 1) reveals periods of stable mobility behaviour
(i.e., prevalence of the constancy patterns) and periods of changes, in which
all mobility indicators or some of them are non-constant. It shows when
different patterns of the individual indicators occurred, what pattern com-
binations existed, and when they took place. The prevailing combination
throughout the entire time span was the combination of six constancy pat-
terns. Other combinations are rare and require more attention to be identi-
fied. For example, the combination of simultaneous down-trends of the visits
of all places except homes and an up-trend of the staying at home occurred in
the third week of March, when the first lockdown was issued. Similar combi-
nations (differing by just one constituent pattern) in the Christmas periods
of 2021 and 2022. These were followed by combinations of the trough in
staying home and peaks in visiting all place categories except for parks.

This re-occurrence of similar patterns at the ends of two years can also be
noticed by looking at the circular charts (Fig. 6). Each chart facilitates iden-
tification of seasonal and sporadic temporal patterns of a single attribute.
In Fig. 6 (a), we clearly see that some temporal patterns re-occur annually.
These recurrent patterns can be attributed to seasonal variations represented
in the data. For example, down-trends are seen in the ‘retail and recreation’,
‘public transport’, and ‘workplaces’ features at the end of each year while
we observe an up-trend in the ‘residential’ feature. We can conjecture that
people travel less and prefer to stay home in the Christmas season. While
the circular charts are good in revealing periodic repetitions of single-feature
patterns, detection of re-occurring combinations requires integrating infor-
mation from six charts; hence, holistic perception of pattern combinations is
not supported by this representation. The timeline view, on the opposite,
supports holistic perception of combinations but does not show periodicity
as clearly as the circular charts.
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Figure 6: Circular displays of temporal patterns for features in Google Mobility Data (a)
and stay-at-home requirements level in Germany (b). In all plots inner ring represents year
2020, middle - 2021, outer ring - 2022. Values in (b) mean 0: no measures announced,
1: recommended not leaving house, 2: required not leaving house with exceptions for
daily exercise, grocery shopping, and ‘essential’ trips, 3: required not leaving house with
minimal exceptions (e.g. allowed to leave once a week, or only one person can leave at a
time, etc), NaN: no data [19]

The circular charts also help to detect sporadic occurrences of temporal
patterns, which may be caused by factors or events that do not occur reg-
ularly. For instance, the German government required closing (or working
from home) for some sectors or categories of workers. Fig. 6 (b) shows that
the stay-at-home requirement level goes from 0 (no measures) to 2 (require
not leaving house with exceptions for daily exercise, grocery shopping, and
‘essential’ trips) in the middle of March, 2020. In Fig. 6, as well as in Fig. 1,
we see the effect of this measure: the residential category shows an up-trend
at this time while the others have a down-trend. Moreover, we also see that
the ‘grocery and pharmacy’ category has an up-trend in the week before
the down-trend, which suggests that people went to groceries to stockpile
products of everyday use (e.g., food and toilet paper) in preparation for the
forthcoming restrictions or possible good shortages.

T3. Are there frequent transitions between univariate temporal patterns over
sequential times?

We create bipartite graphs to represent transitions of univariate temporal
patterns between consecutive time intervals. It helps to find patterns of
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temporal succession and adjacency between the same and different temporal
patterns of feature variation. In Fig. 7, there are six bipartite graphs, one
per feature, consisting of three components: two proportionally segmented
bars and curved lines linking the bar segments. The segmented bars show the
overall proportions of the occurrences of the different patterns in the episodes.
The segments are painted in the colours corresponding to the patterns using
the same encoding as in the timeline view and the circular charts. The
opacity and the stroke width of the linking lines represent the frequency of
the transitions between the classes of the temporal patterns represented by
the bar segments.

retail gocery arks transit workplaces residential
o B

. DownTrend Trough Constancy . Peak UpTrend

Figure 7: Bipartite graph of transitions between different patterns.

This representation can be interactively modified for focusing on selected
patterns only. For example, most frequent transitions between constancy
patterns are subject to be omitted for the sake of better visibility of the
other transitions.

T4. Which patterns frequently co-occur?

To answer this question, we build a co-occurrence network, where nodes
represent the temporal patterns of the features and edges connect patterns
of different features that co-occur in the same episodes (Fig. 8, left). The
size of a node represents the frequency of the temporal patterns appearing
in the dataset and the opacity and the stroke width of an edge represent the
frequency of co-occurrence. For example, we see that the decreasing pattern
of visiting residential places and the increasing pattern of visiting workplaces
frequently co-occur with the increase of the use of transit station. Note that,
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same as in the transition graph, the co-occurrence between two constancy
patterns is obvious and therefore omitted from the chart.

Co-occurrence Network

The pattern Constancy-Constancy is omitted as its prevalence is obvious. tranSIt_StatlonS

UpTrend: 3
orkplaces esidential
P T ——@ 3: Peak (retail_and_recreation)
——@ 3: Peak (grocery_and_pharmacy)
ransit etail

= 3: UpTrend (workplaces)

/ V4 ——@ 3: DownTrend (residential)

éuarks érocery
—— ) 1: Constancy (parks)

Figure 8: Co-occurrence network with the up-trend of ‘transit stations’ highlighted.

An analyst can interactively select a node in the network for displaying
the most frequent co-occurrences of the respective temporal pattern with the
temporal patterns of the other features. This interactive exploration reduces
clutter in the chart and facilitates finding important relationships. Thus, the
right part of Fig. 8 demonstrates the effect of selecting the node representing
the up-trend pattern of ‘transit stations’. It shows that this pattern occurred
only three times in our data set, and in all cases it occurred together with
the peak pattern of ‘retail and recreation’ and ‘grocery and pharmacy’, the
up-trend pattern of ‘workplaces’, and the down-trend of ‘residential’. This
reveals a re-occurring multivariate temporal pattern (i.e., a combination of
univariate patterns) in the data set.

4. Case Study: Teams’ behaviours in football

We demonstrate the generality of our approach by applying it to episodes
around ball possession change from a professional football (or soccer) match.
Different types of changes of possession exist in football, each of which forces
both teams to switch their tasks from attacking to defending or vice versa.
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The team can apply different tactics. For example, after regaining the posses-
sion possible options are either to approach the opponent’s goal (i.e., execute
a counter-attack) or to remain at own side to protect the possession.

While different types of transitions are typically visible to a human eye,
experts such as video analysts often have to watch the game to sub-categorize
the transitions (e.g., label them as counter-attacks or securing the posses-
sion), which is a time-consuming and daunting task. Our intention in this
study is to investigate which multivariate temporal patterns appear in tran-
sition episodes in football. We characterize these episodes by spatial features
of collective movement.

Data Description

We extract episodes from positional data of players in one professional
football match. We choose time intervals based on the occurrence of a spe-
cific event, i.e., change of possession. Each time interval consists of players’
positions for ten seconds around transitions and the change of possession
occurs exactly in the middle of the episode. As a consequence, we acquire
115 episodes, each lasting 10 seconds (i.e., 250 timesteps, given that the raw
data has a sampling rate of 25 Hz), with 63 episodes seeing the home team
gaining the possession and 52 episodes featuring the away team. Next, we
characterize time intervals by spatial features that can be computed from
positional data: compactness of the team, distance from their own goal, and
velocity. For each team, we compute team width (i.e., distance perpendic-
ular to the side line, between the most left-positioned field player and the
most right-positioned one), team depth (i.e., distance parallel to the side
line, between the farthest player from the goal and the nearest one, except
the goalkeeper), and distance from the center of the team to the own
goal. Since we observe a strong correlation of average velocities between
players of the two teams, we calculate a common average velocity for the
20 infield players of both teams.

4.1. T1. What are the major patterns of individual attritbutes?

As Fig. 9 shows in grey, episodes consisting of many time steps (250 in
our case) may have complex temporal patterns consisting of multiple funda-
mental patterns. As discussed in T1 in Section 3, temporal patterns need
to be sufficiently simple to allow easy interpretation. Complex patterns can
be simplified by omitting excessive details, which can be achieved through
downsampling of the time series. We use the same algorithm [39] introduced
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in T1 to downsample the episodes. The red dot lines in Fig 9 show how time
series with 250 timesteps are downsampled into 5 timesteps. We begin by
applying the downsampling technique to each half of the episode in order
to get a representative value that would form the greatest triangle with two
ends in the divided half. Then, using our algorithm on the downsampled
episode, we classify temporal patterns. Fig. 10 illustrates all downsampled
time series with colors.
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Figure 9: An overlay of the downsampled time series and the original time series for the
home depth, away depth, home width, away width, home distance to their goal, away
distance to their goal, and average velocity. The larger three points including the start
and end points indicate the points used to classify the temporal pattern, and together with
the other smaller two points they form the downsampled time series. The downsampled
time series is colored to indicate the classified temporal pattern while the original time
series is grey. The dotted line in the middle means the middle point of the episode. Time is
shown on the horizontal axis in frames (1/25th of a second) while the normalized attribute
values ranging from 0 to 1 are shown on the vertical axis.
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Table 2: Frequency of temporal patterns for each feature in the football data set. Two
numbers in each cell represent two types of episodes where the home team begins by
defending (left) and when the away team begins by defending (right). (Peak/Trough
threshold = 0.05, Constancy threshold = 0.1).

Peak UpTrend Constancy DownTrend Trough
home depth | 14, 16 14, 13 19, 6 10, 6 6, 11
away depth |21,12 10,15 12,9 14, 2 6, 14
home width 6, 11 10, 4 10, 6 10, 21 27, 10
away width 11, 2 7,13 12, 15 23,5 10, 17
home distance | 0, 6 8, 7 33, 30 21,9 1,0
away distance | 1,0 23, 10 30, 25 9,10 0,7
avg  vel 31, 26 5,5 1,0 7,0 19, 21

"] home_depth (m) away_dépth (m) home_width (m) away_width (m) home_distance (m) away_distance (m) ° | avg_vel mjs)

-50 T 1 r T 1 r T 1 r T 1 T T 1 T T 1 T 1
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Figure 10: All downsampled time series. Colors indicate classified temporal patterns.
Time is shown on the horizontal axis in frames (1/25th of a second) while the changes
of the attribute values with regard to the initial point are represented by the vertical
positions. The axes are labelled according to the measurement units of the original (not
normalized) attributes.

Table 2 summarizes the detected patterns. For the attribute home_width,
we observe a prevalence of patterns with increase towards the episode end
(i.e., up-trends and troughs) over decreasing patterns (37 vs. 16) in the
episodes when the home team begins the episode by defending (left side of
the cell). This means that the home team tends to expand after they gain the
possession, which is a known behaviour in football [15]. We find the oppo-
site patterns (i.g., down-trends and peaks) to be the majority in away_width
(34 out of 63). Second, we observe a similar number of up-trend patterns
in home_distance as down-trend patterns in away_distance, as well as the
similar number of down-trend patterns in home_distance as up-trend pat-
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terns in away_distance. Fig. 11 confirms this finding with the centroids of
both teams following similar trajectories. Third, we see most of patterns ap-
pear as peaks or trough (50 out of 63) in avg_vel. We can assume that the
change of possession can accelerate or decelerate players abruptly rather than
monotonically. Finally, the significant difference between the both teams may
be the trough pattern of the distance from the goal. We observe only one
trough pattern in home_distance while seven in away_distance. Different
tactics, such as having the away side attempt more counter-attacks than the
opponent, can account for this variation.
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Figure 11: The team centroid shifts during the episode. Each row depicts the shift in the
centroid for both teams over the course of eight episodes (left: home, right: away). The
colors reflect the progression of time, from blue to white to red.

4.2. T2. What is the temporal distribution of the patterns?

We use a linear ordering to represent the temporal distribution of the
temporal patterns. In Fig. 12, rectangles that represent episodes are aligned
more sparsely than in Fig. 1 since the time intervals are selected according
to specific events.
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Figure 12: Timeline of temporal patterns in football data. Markers at the top and bottom
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away).

|I|||||||®H @
»4| By @

I
10

i

Fig. 13 shows a circular view of the temporal distribution of the patterns.
Two arcs in each chart represent the temporal axes, where inner arcs rep-
resent the first half of the match and outer arcs represent the second half.
Although no periodic repetitions can be expected, this view can facilitate
understanding the data as a circle refers to a clock face, which allows to
compare the first and second halves.
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Figure 13: Circular time view of temporal patterns in football data.

4.8. T3. Are there frequent transitions between univariate temporal patterns
over sequential times?

This task is not applicable to this dataset since episodes appear sporadi-
cally.

4.4. T4. Which patterns frequently co-occur?

Fig. 15 shows a co-occurrence network applied to the episodes (left) and
the five multivariate temporal patterns that most frequently co-occur with
the up-trend pattern of home_distance (right), where the home team gains
the ball possession in the middle (at 5 seconds).

One third of the patterns with increasing home_width toward the episode
end (i.e., up-trends and troughs) co-occur with the combination of avg_vel’s
peak, home_distance’s down-trend, and away_distance’s up-trend. Fig 14
illustrates the movement of the team centroids in these episodes. We further
identify from the footage that the defending team slowly rebuilds the attack
after collecting long balls deep in their own side. Other combinations such
as with avg_vel’s trough or home_distance’s up-trend mainly consist of
counter-attacks, collecting balls relatively near to the opponent’s goal, or
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immediate regains of possession by the defending team. Similar tendency is
found in the co-occurrence of increasing patterns of away_width when the
away team is defending. However, we observe more counter-attacks with
avg_vel’s trough (21% vs 14%), which implies that the away team tends to
attack fast after they gain the possession.

The fact that the home side finished the season in the top three and the
other team in the relegation zone explains these distinct tactics. While the
away side may have preferred long balls to possession, the home team may
have felt secure in controlling the ball against the opponent.

Home attacks toward right —+

Osec 10sec
Figure 14: Movement of centroids during episodes with avg_vel=peak,

home_distance=down-trend, and away_distance=up-trend when the home team
is defending
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Figure 15: Features that have co-occurrence with the up-trend pattern of ‘home distance’
(left) and the top 5 co-occurrent features (right) in episodes from Match 1, where the home
team defends.

4.9. Summary of findings

Our approach enabled us to identify similar and distinctive behaviours for
the two teams. Temporal patterns show players often play wide when they
are attacking and narrow when they are defending. Additionally, quick ac-
celeration and deceleration in response to a change of possession is observed.
The co-occurrence chart reveals two typical tactics used by both sides when
they gaining possession of the ball: either executing counter-attacks or grad-
ually rebuilding the attack. After obtaining possession of the ball, the home
team often carefully connects passes while the away team typically attempts
quick counter-attacks.

5. Discussion

With this paper, we are proposing a view of time-varying phenomena as
a sequence of episodes, i.e., time intervals encapsulating fragments of the
temporal behaviours of the phenomena. The term “behaviour” here refers
to any kinds of changes. Episodes can be described by values of multiple
attributes specified for different time slices within the intervals and thus
forming multivariate time series. The rationale for introducing episodes as
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units of behaviour is that they can be short enough to allow abstractive per-
ception and representation of each time series as a single easily interpretable
temporal pattern. Hence, the behaviour encapsulated in an episode can be
represented by a combination of patterns made by the multiple attributes.

Based on the premise that simplification and abstraction are essential
for understanding a phenomenon, i.e., building a mental model of it [7],
we explored in our research the analytical potential of computer-supported
abstraction of time series to temporal patterns and explicit representation
of these patterns for involvement in subsequent analysis. The idea is that
the patterns substitute the original elementary data [6] and are themselves
treated as data to be analysed. We considered several analysis tasks that can
be posed when dealing with such data and defined visual analytics techniques
that can support these tasks.

In our exploratory study, we neither tried to create a complete task tax-
onomy for analysis of temporal patterns of episodes nor strove to design
novel visualisations. The goal was to investigate the principal possibility of
analysing data transformed into temporal patterns. Our study showed that
this approach can be quite useful. By using abstractions of elementary data,
it allows considering the behaviour of a phenomenon at a yet higher level of
abstraction, namely, at the level of relationships between the patterns. This
contributes to obtaining an overall understanding of the behaviour or reveal-
ing its essential features. It can be noted that the very idea of the approach
is generic, i.e., potentially applicable to any type of data.

Given that transformation of data to patterns can be beneficial, a valid
question is what kinds of patterns should be considered and how to obtain
them from data. This question requires a specific answer for each distinct
type of data, because patterns are formed by type-specific intrinsic rela-
tionships between data elements [6]. We have proposed an answer to this
question for data consisting of time series of values of numeric attributes.
We wanted to represent such data by patterns that are well understood by
humans and, preferably, denoted by commonly understandable terms. We
considered a set of basic patterns that can be represented graphically as
particular geometric shapes and are commonly labelled as up-trend, peak,
constancy, trough, and down-trend. We propose an algorithm for automatic
recognition of these patterns and representation of episodes by combinations
of patterns. We acknowledge the possibility to consider other sets of patterns
requiring other algorithms for extraction, but we would like to note that the
same visualisation and exploration techniques may be applied to transformed
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data regardless of the specific pattern “vocabularies” used for encoding the
data.

The visual analytics techniques that we described in this paper are in-
tended to support exploration of (A) the temporal distribution of the differ-
ent types of patterns and (B) relationships between the temporal patterns,
namely, temporal ordering of patterns in a sequence of episodes and co-
occurrence of patterns within episodes. A and B are the two major classes
of analytical tasks relevant to time-referenced data in general. The most
common representation of such data is by some kind of visual marks along a
time axis, and we apply it in our timeline view. A circular representation of
time is also frequently used, particularly, to reveal and explore cyclic changes.
We also propose two time-abstracted and aggregated representations of the
data in the form of graphs showing sequential ordering relationships between
patterns of the same attribute and co-occurrence relationships between pat-
terns of different attributes. Using graphs to visualise relationships is one
of the most common design choices along with the use of a time axis-based
display to visualise a temporal distribution. The visualisations we describe
in the paper should be considered as mere examples of numerous possible
implementations of these fundamental designs.

Thus, there are many methods for laying out nodes of a graph [17]. Most
of the existing algorithms are not suitable for visualising relationships be-
tween patterns, which requires the nodes representing the patterns of the
same attribute to be grouped together and separated from nodes referring
to other attributes. We address this requirement in our design of the co-
occurrence network (Figs. 8 and 15) by arranging groups of nodes in circles.
A more usual design that could satisfy this requirement is the chord dia-
gram [23] using a circular layout, where groups of nodes are arranged in arcs
and separated from other groups by gaps. Figure 16 demonstrates how the
same data as in Figs. 8 and 15 can be visualised in the form of chord dia-
grams. In our design, the grouping of nodes is much better noticeable than
in a chord diagram. A disadvantage of our design is intersections between
some of the graph edges and the circles that visually link nodes belonging
to groups. The circular layout, as in a chord diagram, is potentially suitable
for visualising hierarchical networks by increasing the number of outer cir-
cles; however, this is not needed in our case. The circular layout may also
be more scalable to a greater number of nodes given its simple structure;
however, showing a large number of node groups with sufficient separation
between them may be problematic. Since there is no universally effective
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layout, the choice should depend on properties of data and user preferences.
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Figure 16: An alternative design of co-occurrence chart with two data sets: (a) Google
Mobility Data (2) Football Data

We consider our work as just a first step in the research on analysis of
episodes as a way of representing complex dynamic phenomena. We envis-
age continuous systematic research in this direction. Our exploratory study
shows how this representation can be utilised leveraging the possibility of con-
densing and abstracting elementary data. While we see that this approach
has good potential, we admit that the set of techniques we have developed is
not yet sufficiently powerful. In particular, it provides quite limited opportu-
nities for exploration of multi-attribute temporal patterns, i.e., combinations
of single-attribute patterns. The co-occurrence network shows only pairwise
co-occurrence relationships but does not support joint perception and anal-
ysis of multiple patterns occurring together in episodes. We see the problem
of representing and analysing multivariate temporal patterns as a challenge
for future research that requires significant attention and concentration of
effort.

Hence, one of the next steps in the future research should be towards find-
ing methods for the integration of multiple single-attribute temporal patterns
into composite multi-attribute patterns that can be perceived and treated as
units. We see a possibility to achieve this goal with the help of topic mod-
elling. Our experiments 38| showed that this idea deserves further investiga-
tion. Another step should be towards methods for comprehensive analysis of
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temporal relationships between patterns not limited to co-occurrence and se-
quential ordering. Our initial idea is to consider temporal neighbourhoods of
patterns and try to find re-occurring combinations of patterns whose neigh-
bourhoods overlap.

6. Conclusion

We have introduced a concept of episode as a relatively short fragment
in temporal development or behaviour of a dynamic phenomenon. We have
suggested that data describing episodes may have the form of time series of
values of multiple attributes. Limiting our focus to numeric attributes, we
have presented an approach to analysis of such data by means of automated
abstraction of the time series to temporal patterns represented as categorical
labels. We have demonstrated possible ways of visualising abstracted data for
analysing the temporal distribution of the patterns and relationships between
patterns within and across episodes. Our study has shown that decompo-
sition of complex behaviours into episodes and characterising episodes by
temporal patterns of multiple attributes is a promising approach to analysis
of dynamic phenomena. We call for further research in this direction, partic-
ularly, to find ways to consider and analyse combinations of single-attribute
patterns holistically as integrated patterns incorporating multiple aspects of
the behaviour.
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