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Monetary-Unit Sampling: An Investigation

Jane M. Horgan

ABSTRACT

This study examined the performance of six monetary-unit sampling methods in substantive 
auditing under various population conditions. The investigation involved both a theoretical 
point estimator analysis and an empirical study of upper bound estimates of the total error 
amount using the Stringer, Cell and Moment bounds with two methods of error assignment, 
three nominal confidence levels and three sample sizes.

For a range of thirty audit populations simulated from real accounting populations of debtors 
from commercial entities in the Public Sector in Ireland, it was found that the differential 
effects of simple random, systematic, cell and sieve sampling were independent of the bound 
used, the error assignment method and the nominal confidence level. The reliability and 
tightness of the bounds were found to be similar for all selection methods but differences in 
the precision of the bounds did exist. In terms of the precision of the estimates, systematic 
and cell sampling favoured populations with large line items and sieve sampling favoured 
populations with large line items and low error rates.

Lahiri sampling, a selection method not used in auditing previously and proposed in this study 
as a practical alternative to simple random sampling was not found to be significantly 
different from simple random sampling with respect to any of the performance measures.

Stabilised sieve sampling, a new monetary-unit sampling method developed in this study as 
an alternative to simple random sampling and sieve sampling, was found to be reliable for 
the range of audit populations on which it was tested. In populations with small line items, 
stabilised sieve sampling tended to have a tightness similar to that of simple random sampling 
and sieve sampling for any given error rate, taint size, sample size and bound and in 
populations with large line items, stabilised sieve sampling was more conservative than simple 
random sampling and sieve sampling but the differences were not significant in any case. It 
was more precise than simple random sampling and its precision was similar to that of sieve 
sampling in most cases. As stabilised sieve sampling overcomes the primary disadvantage 
of sieve sampling by returning a constant sample size of monetary units, it was concluded that 
it may be a useful alternative to simple random sampling and sieve sampling in real 
substantive auditing environments.
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Chapter 1

An Introduction to the Background of the Study

1.1 Introduction

Accounting populations consist of a compilation of items (e.g. 

creditors, debtors) put together over a specific period. The 

populations sometimes contain a large number of items amounting 

to balances totalling millions of pounds and the auditor has the 

responsibility of attesting to their truth and fairness. A 

detailed examination of all these accounts is not always 

practicable and it is often necessary to rely on statistical 

sampling to select a subset in order to estimate the 

characteristics of the whole population.

This study explores some of the problems facing the auditor when 

using statistical sampling. Specifically, it investigates how 

existing monetary-unit sampling methods perform in obtaining 

estimates of the total error amount in accounting populations of 

debtors. New monetary-unit sampling methods are developed for 

application in substantive testing of debtors and are tested on 

data obtained from commercial entities in the Public Sector in 

Ireland.
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In the remainder of this chapter;

The nature of auditing and the audit process is discussed (1.2) 

Sampling of accounting populations is explained (1.3) 

Statistical sampling in auditing is discussed (1.4)

The development of monetary-unit sampling is outlined (1.5)

The need for the research is summarised (1.6)

The scope of the research is detailed (1.7)

The objectives of the study are stated (1.8)

The limitations of the study are explained (1.9)

An overview of the remaining chapters is provided (1.10)

1.2 The Nature of Auditing and the Audit Process

The American Accounting Association's Committee on Basic Auditing 

Concepts (1973, p2) defines auditing as:

'a systematic process of objectively 
obtaining and evaluating evidence regarding 
assertions about economic actions and events 
to ascertain the degree of correspondence 
between these assertions and established 
criteria and communicating the results to 
interested users.'

and the explanatory forward of the APC's Auditing Standards and 

Guidelines defines an audit as:

'an independent examination of, and 
expression of opinion on, the financial 
statements of an enterprise by an appointed 
auditor in pursuance of that appointment and 
in compliance with any relevant statutory 
obligations' (APC, 1989).
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Auditing may be classified in a number of ways and two 

classifications which are particularly relevant to this study are

(i) Financial and operational auditing and (ii) External and 

internal auditing. These are defined below.

(i) Financial and Operational Auditing

A financial audit is:

' a systematic examination of financial 
statements, records and related operations 
to determine adherence to generally accepted 
accounting principles, management policies, 
or stated requirements'(Schlosser, 1971,
PP 1-4).

Operational auditing is defined by the AICPA's Special Committee 

on Operational and Management Auditing as

'a systematic review of an organisation's 
activities (or a stipulated segment of them) 
in relation to specified objectives for the 
purposes of assessing performance, 
identifying opportunities for improvement, 
and developing recommendations for 
improvement or further action'(AICPA,1973).

(ii) External and Internal Auditing.

External audits are carried out by personnel who are not 

employees of the organisations being audited. Usually, external 

audits are carried out by firms of public accountants who offer 

their services on a contractual basis. The majority of audits
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performed by public accountants are financial. The most common 

financial audit is an examination of the financial statements for 

the purpose of forming an opinion of their truth and fairness in 

conformity with generally accepted accounting principles (Taylor 

and Glezen, 1994, p3).

Internal auditing is described by the Institute of Internal 

Auditors as 'an independent appraisal function established 

within an organisation to examine and evaluate its activities as 

a service to the organisation' (IIA, 1992). The objective of 

an internal audit is to assist members of the organisation, 

including those in management and on the board, in the effective 

discharge of their responsibilities. To this end, the scope of 

internal auditing should encompass 'the examination and 

evaluation of the adequacy and the effectiveness of the 

organizations's system of internal controls and the quality of 

performance in carrying out assigned responsibilities' (IIA, 

1992) .

As will be discussed further in 1.2.4, this study is concerned 

with external financial auditing of commercial entities in the 

Irish Public Sector by government auditors. Leslie (1975) noted 

that

'Government auditors are frequently called upon 
to carry out many tests of accounting populations 
similar to those undertaken by external and 
internal auditors in the Private Sector.'
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To develop an opinion on the financial statements 'the auditor 

must gather and evaluate many different types of information both 

financial and non-financial' (Mock and Watkins, 1982). This

gathering and evaluation activity is called the audit process and 

the information obtained is called the audit evidence.

1.2.1 Conceptual Framework for Auditing

Authors have sought to identify a conceptual framework for the

audit process as a means of determining the criteria necessary 

for the adequate performance of the audit function. The early 

development of a conceptual framework consisted of a 'postulate- 

based' approach. Mautz and Sharaf (1961, Chap. 3) proposed 

'tentative' postulates and these are listed below:

(i) Financial statements and financial data are 

verifiable.

(ii) There is no necessary conflict of interest between the 

auditor and the management of the enterprise under 

audit.

(iii) The financial statements and other information 

submitted for verification are free from collusive and 

other unusual irregularities.

(iv) The existence of a satisfactory system of internal 

control eliminated the probability of irregularities.
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(v) Consistent application of generally accepted 

principles of accounting results in the fair 

presentation of the financial position and the results 

of operations.

(vi) In the absence of clear evidence to the contrary, what 

has held true in the past for the enterprise under 

examination will hold true in the future.

(vii) When examining financial data for the purpose of 

expressing an independent opinion thereon, the auditor 

acts exclusively in the capacity of an auditor.

(viii) The professional status of the independent auditor 

imposes commensurate professional obligations.

Many authors see some of these postulates as untenable and have 

striven to interpret them less rigidly than stated. For example, 

regarding the verifiability of the audit process, Higson (1987) 

explains that the word 'verifiable' was not taken to mean beyond 

all doubt, but verification is a process that 'carries one to a 

position of confidence about any given proposition'. Hamilton 

(1978) suggests that the conceptual model advanced by Mautz and 

Sharaf (1961) fails to provide a foundation because it has 

neither yielded any testable results nor led to a process of 

theory refinement and development.
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The Mautz and Sharaf postulates deal mainly with whether an audit 

is feasible and what the scope of such an audit should be. They 

say very little about whether an audit is in fact necessary. The 

postulates approach was developed further by Lee (1982) who 

classified postulates under three headings, (i) justifying 

postulates, (ii) behavioral postulates and (iii) functional 

postulates.

Justifying Postulates:

Justifying postulates attempt to justify the audit on the basis 

of the credibility of the accounts. They are:

(i) Statutory accounts in general have insufficient 

credibility to be used confidently by the 

shareholders.

(ii) The enhancement of credibility is the most important 

requirement of the statutory audit.

(iii) The statutory audit provides the best means of 

enhancing the credibility of the accounts.

(iv) The credibility of accounts can be enhanced or 

verified by the statutory audit.
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(v) The shareholders are unable personally to satisfy 

themselves as to the credibility of the information in 

the accounts.

Behaviourial Postulates

Behavioral postulates refer to the qualities of the auditor.

They are :

(i) The audit is not impeded by the existence of conflict 

between the auditor and management.

(ii) The law does not restrict the auditor.

(iii) The auditor is independent, both mentally and 

physically.

(iv) The auditor is sufficiently skilled to undertake the 

audit.

(v) The auditor is accountable for the quality of the work 

and opinion.
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Functional Postulates

Functional postulates are primarily concerned with the existence 

of evidence and the interface of auditing with financial 

accounting. They are:

(i) There is sufficient reliable evidence available, and 

in an appropriate form, to enable the auditor to carry 

out an audit within reasonable time at a reasonable 

cost.

(ii) The accounts are free from major fraud and error.

(iii) There exist generally recognised accounting concepts 

and bases which, when used properly and consistently, 

result in fair presentation.

Sherer and Kent (1988, pl9) state that Lee's postulates succeed 

in fulfilling an important purpose of an audit which is to 

enhance the credibility of the financial statements in the minds 

of the users. They also maintain that the categorisation of Lee 

'forms a rational and comprehensible basis on which to base an 

examination of auditing theory.'

However, the 'postulates-based' approach is not without its 

critics mainly because it focuses more on the circumstances in 

which an audit may be successfully performed rather than on the 

rationale for the auditing. Also, authors disagree as to whether
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there is in fact an adequate theoretical foundation to auditing. 

On the one hand, Robertson (1984) maintains that there is, and 

suggests that the Mautz and Sharaf theory, although imperfect, 

can in fact serve auditors quite well. Robertson also believes 

that no alternative theory structure exists in such breadth and 

depth. On the other hand, Gwilliam (1987) does not believe that 

a theoretical foundation for auditing exists. He contends that

'setting out the basic assumptions on which 
the majority of audits are conducted... may 
well be of value in bringing forward certain 
fundamental issues and in clarifying 
thinking about assumptions that lie behind 
much of present day auditing' (Gwilliam,
1987,p47) .

But he does not believe that it is possible to build a universal 

theory of how auditing should be carried out, by arguing from 

'first principles'. Gwilliam (1987, p49) argues that a greater 

insight may be gained by viewing auditing as an economic activity 

in which benefits may be purchased (e.g., improved management 

performance) in exchange for costs (e.g., time and resources). 

He maintains that currently an agreed economic framework for 

auditing does not exist and states that

' what theoretical and historical evidence 
there is suggests that external auditing 
does provide a valuable monitoring device 
between management and shareholders and also 
between shareholders and bond-holders' 
(Gwilliam, 1987, p58) .
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1.2.3 Auditing Standard and Guidelines

In the conduct of an audit, auditors are expected to comply with 

the auditing standards published by the Auditing Practices Board 

(APB) (formally the Auditing Practices Committee (APC)). This 

consists of representatives of five of the professional 

accountancy bodies whose members are recognised as qualified to 

act as auditors in Ireland or the UK, i.e., The Institute of 

Chartered Accounts of England and Wales, The Institute of 

Chartered Accountants of Scotland, The Institute of Chartered 

Accountants of Ireland, The Association of Certified Accountants 

and the Institute of Certified Public Accountants. In 1980, the 

APC issued its definitive statement on auditing standards and 

guidelines (APC, 1980a) and since then additions have been made 

and some of the initial standards and guidelines have been 

revised. In the explanatory forward of the auditing standards 

and guidelines (APC,1989), auditing standards are defined as

'Basic principles and practices which 
members of the accountancy bodies are 
expected to follow in the conduct of an 
audit.'

Failure to observe auditing standards may result in disciplinary 

action imposed by the accountancy bodies (APC, 1989) .
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Auditing Guidelines, also issued by the APC, give the auditor 

guidance on what procedures may be applied and how to apply 

auditing standards. They are meant to be persuasive rather than 

prescriptive but 'should normally be followed' (APC, 1989) .

The original standards and guidelines were written primarily in 

the context of limited company audits. Since 1980, many of the 

original guidelines have been revised and reissued. The revised 

guidelines extend to Public Sector auditing. The guideline on 

Public Sector auditing issued in July 1987 (APC, 1987a) states 

that auditing standards issued before June 1985 are applicable 

to the Public Sector. All auditing standards and guidelines 

issued since June 1985 apply to the audit of the financial 

statements of Public Sector bodies unless otherwise stated in the 

individual pronouncements (APC,1987a).

1.2.4 Background to Auditing in the Public Sector

In Ireland, the office of the Comptroller and Auditor General 

audits all government departments and some Public Sector 

commercial entities as listed in the Comptroller and Auditor 

General (Amendment) Act (1993). Other Public Sector commercial 

entities (e.g. Aer Lingus and Bord na Mona) are audited, with the 

consent of relevant government ministers, by commercial auditors 

from the private sector. This situation is also encountered in 

other countries. In the UK, the Comptroller and Auditor-
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General's office is responsible for auditing of some 500 

government entities, but the nationalised industries (e.g. The 

Coal Board) are audited by private sector auditing firms. In the 

USA, the office of the Comptroller General is responsible for the 

audit of all Federal departments and agencies but directly audits 

only 20 of some 50 government companies (Hardman, 1991) . The 

auditors of the Comptroller and Auditor General's office are 

employed by the state. They function as external auditors when 

undertaking a financial audit of Public Sector commercial 

entities or other recipients of Government funds. The 

Comptroller and Auditor General's office examines the financial 

statements of the commercial entities for which it is 

responsible, in order to form conclusions about their financial 

positions and to assess the financial accuracy and regularity of 

the accounts. The audit work culminates in a report which 

contains the Comptroller and Auditor General's opinion on the 

financial statements of the entity in a given year.

1.2.5 Stages in the Audit Process

The guideline on operational standards (APC, 1988) states that 

a typical audit should cover:

1. Planning, controlling and recording: The auditor should

adequately plan, control and record all the work needed for 

the audit;
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2. Accounting systems: The auditor should ascertain the

enterprise's system of recording and processing 

transactions and assess its adequacy as a basis for the 

preparation of financial statements;

3. Audit evidence: The auditor should obtain relevant and

reliable audit evidence sufficient to draw reasonable 

conclusions therefrom;

4. Internal Controls: If the auditor wishes to place reliance 

on any internal controls, then these controls should be 

ascertained and evaluated and compliance tests should be 

performed on their operation;

5. Review of financial statements: The auditor should carry 

out a review of the financial statements as is sufficient, 

in conjunction with the conclusions drawn from the other 

audit evidence obtained, to give a reasonable basis for the 

opinion on the financial statements.

A diagrammatic representation of the stages of an audit and their 

objectives is given in Figure 1.1 and from this, it can be seen 

that audit evidence is obtained by carrying out audit tests which 

may be classified as compliance or substantive according to their 

principal purpose.
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F igu re  1 .1 The General Audit

Auditing standard Audit action Audit objective

»  Stages in audit procedures 
------------ -► Contact with management
*A secondary objective of this audit action is to recommend to management improvements in 
systems end controls and in accounting procedures and practices.

(Source: dePaula and Attwood, 1982)
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1 . 2 . 5 . 1  Compliance T e s t in g

The purpose of tests of compliance is to provide reasonable 

assurance that the accounting control procedures are being 

applied as described and are complying with the stated policies, 

plans, laws and regulations. Internal controls are a set of 

procedures that are designed to minimise the chance of errors in 

the operation of the accounting system. The APC's auditing 

guideline on Internal Control (APC,1980c) defines the internal 

control system as

'the whole system of controls, financial and 
otherwise, established by the management to 
carry on the business of the company in an 
orderly and efficient manner, ensure 
adherence to management policies, safeguard 
the assets and secure, as far as possible, 
the accuracy and reliability of its 
records.'

And COSO (1992) describes internal control as a process

'effected by an entity's board of directors, 
management and other personnel, designed to 
provide reasonable assurance regarding the 
achievement of objectives in the following 
categories: Effectiveness and efficiency of 
organisations; Reliability of financial 
reporting; Compliance with applicable laws 
and regulations.'

Compliance tests are designed to establish to what extent the 

controls can be relied on to detect material error and whether 

the internal controls were operating effectively throughout the 

period being audited. The APC's operational standard (APC, 

1980b) suggests that testing internal control is optional and 

'need only be evaluated and tested if the auditor is seeking to 

place reliance on them.'
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1 . 2 . 5 . 2 S u b s ta n t iv e  Procedures

The purpose of substantive procedures is

'to provide audit evidence as to the 
completeness, accuracy and validity of the 
information contained in the accounting 
records or in the financial statements (APC,
1980d).'

Substantive procedures consist of an examination of individual 

transactions in the accounts (substantive tests) and other 

procedures of a more general nature (analytical review).

1.2.5.2.1 Analytical Review

The analytical review examines the financial statements as a 

whole and reviews them for credibility, feasibility and 

consistency (Shaw, 1980, p61) . The guideline on analytical 

review (APC, 1988) states that analytical review procedures can 

be carried out at the planning stage, the testing stage or at the 

financial statements review. Analytical review procedures listed 

in this guideline include:

(i) analysing relationships between items of financial

data (e.g. sales and costs of sales), or between 

financial and non-financial data (e.g. payroll costs 

and number of staff);
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(ii) comparing actual data with predictions derived 

from other analysis;

(iii) comparing data for latest period with corresponding 

data for:

earlier periods; 

comparable enterprises; 

industry averages ;

(iv) investigating unexpected variations;

(v) obtaining and substantiating explanations to 

variances ;

(vi) evaluating the analysis in the light of other 

evidence.

1.2.5.2.2 Substantive Tests

The purpose of substantive tests is to draw conclusions about the 

materiality of the error amounts in the accounts. Substantive 

testing involves detailed examination of the monetary value of 

the account balances to determine their accuracy. The extent and 

nature of substantive testing, depends upon the decisions taken 

about the effectiveness of the system of internal control (Shaw, 

1980, p61). The auditing guideline on audit evidence (APC, 

1980d) states that;
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'the auditor may rely on appropriate 
evidence by substantive testing to form his 
opinion, provided that sufficient of such 
evidence is obtained. Alternatively, he may 
be able to obtain assurance from the 
presence of a reliable system of internal 
control, and thereby reduce the extent of 
substantive testing.'

Many government audits deal only with compliance issues and are 

concerned with whether a reporting entity has utilised its 

resources according to statutes and specific legislative 

appropriations (Banker, Cooper, and Potter, 1992). However, the 

office of the CAG carries our an annual audit of all its 

commercial entities and this audit always involves some 

substantive testing as noted in the Audit System Manual (CAG, 

1992) that 'a minimum of substantive testing is necessary in all 

cases'.

1.3 Sampling of Accounting Populations

Accounting populations consist of a compilation of items, (e.g. 

debtors, creditors) put together over a specific period. 

Internal controls are invoked in an attempt to ensure that the 

items are entered correctly. The populations sometimes consist 

of a large number of items amounting to balances totalling 

millions of pounds and a detailed examination of all accounts is 

not always practicable. Consequently, sampling is often used 

when carrying out compliance or substantive tests. Sampling is 

a process of selecting a subset of a population of items for the 

purpose of making inferences to the whole population. The APC 

issued a draft guideline on audit sampling in 1987 (APC, 1987b)
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and this was followed in 1993 by yet another draft issued by the 

APB (1993) (formally the APC). In the new draft, audit sampling 

is defined as

'the application of audit procedures to less 
than 100% of the items within an account 
balance or class of transactions to enable 
the auditor to obtain and evaluate evidence 
about some characteristic of the items 
selected in order to form or assist in 
forming a conclusion concerning the 
population which makes up the account 
balance or class of transactions.' (APB, 
1993)

To date this draft has not been finalised and its status is that 

of an exposure draft. In the US however, the Auditing Standards 

Board (ASB) of the American Institute of Certified Public 

Accountants (AICPA) published its standard on audit sampling in 

1981 (AICPA, 1981). This established a framework for auditors 

in planning and evaluating audit samples. The AICPA has also 

published an audit sampling guideline (AICPA,1983), to help 

auditors in implementing the concepts of the audit sampling 

standard.

Adams (1989) is critical of the progress of the APC (now the APB) 

and at its tardiness in issuing finalised guidelines. He states

'We are still waiting for the final product 
of the sampling exercise, although our North 
American friends have already made 
significant strides in this direction.'
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Sampling of some sort or another is used in many audit programmes 

as noted by Taylor (1985) .

'A fundamental element of any audit 
programme will be the selection of 
transactions to be tested as a sample of all 
available transactions.'

Generally, sampling in auditing is either judgemental or 

statistical and the professional bodies allow for either 

selection method (see for example, APB ,1993; AICPA, 1983; AICPA, 

1981) .

1.3.1 Judgemental Sampling

Judgemental sampling is a selection process where the auditor 

decides which items should be audited. It involves a subjective 

selection of items for testing and a subjective evaluation of the 

results. Judgemental sampling is accepted by the accounting 

professions as a means of gathering evidence concerning the truth 

and fairness of the financial statements. In the current draft 

guideline on sampling issued by the Auditing Practices Board, it 

is stated that judgemental sampling 'is an acceptable method of 

selection provided the auditor is satisfied that the sample is 

not unrepresentative of the entire population' (APB, 1993).

It could be contended that the reliability of the sample results 

obtained using judgemental sampling cannot be estimated because 

the probability of selection of the individual line items cannot 

be ascertained. Vance (1950, p2) maintains that the sampling 

method is not scientific and enunciates a number of subjective
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influences that may affect the conclusions based on judgemental 

sampling and render them inconsistent and unreliable:

(i) Differences in individual auditor's ability, 

knowledge, experience and prejudices.

(ii) Pressure on the auditor to reduce the client's cost of 

the audit.

(iii) Auditor's state of physical and mental health.

Taylor (1985) criticises judgmental sampling because it 'relies 

on intuition and non-quantitative methods in the evaluation 

process'. It has also been criticised on the basis that the 

extent of audit testing is not consistent between auditors or 

across audits. Sneed (1979) found that different audit firms 

demonstrated significantly different degrees of conservatism with 

regard to sample size in judgemental sampling. In an 

investigation on audit testing, the Canadian Institute of 

Chartered Accountants (CICA, 1980) found that a wide variation 

existed between audits and auditors in the amount of auditing 

done using judgemental sampling.

1.3.2 Statistical Sampling

Statistical sampling involves the random selection of a number 

of items for inspection and is endorsed by the accountancy bodies 

(APB, 1993; AICPA, 1981). In statistical sampling, each item has
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a calculable chance of being selected and therefore the 

reliability of the sample results can be estimated.

A commonly held misconception about statistical sampling is that 

it removes the need for the use of professional judgement. While 

it is true that statistical sampling uses statistical methods to 

determine the sample size and to select and evaluate audit 

samples, it is the responsibility of the auditor to consider and 

specify in advance, factors such as materiality, the expected 

error rate or amount, the risk of over-reliance or the risk of 

incorrect acceptance, audit risk, inherent risk, control risk, 

standard deviation and population size, before the sample size 

can be determined (AICPA, 1983).

McRae (1982, pl4) asserts that

'Statistical sampling allows an auditor's 
judgement to be concentrated on those areas 
of the audit where it is most needed'

Taylor (1985) also described how the auditor uses his/her 

professional judgement in choosing a statistical sample.

'statistical sampling allows the 
quantification of key factors and the risk 
of errors. This is not to suggest that 
statistical sampling methods remove the need 
for professional judgement, but rather that 
they allow elements of the evaluation 
process to be quantified, measured and 
controlled. As a result statistical methods 
may give greater assistance to the auditor 
in the control and direction of audit work.'

23



Statistical sampling has won increasing acceptance in the 

auditing profession as a means of efficiently and effectively 

gathering evidence concerning the fairness of the client's 

financial statements (Carpenter and Dirsmith, 1993). Studies 

have shown that the use of statistical firms in the UK has 

increased in recent years. McRae (1982, pl78) found that only 

11.8% of 136 medium-sized firms in the UK used some form of 

statistical sampling but Abdul-Hamid (1993) found that 43% of 61 

medium-sized accounting firms sampled used some form of 

statistical sampling in their audits. It should be noted also 

that a study carried out by Higson (1987) suggests that the use 

of statistical sampling in auditing is on the decrease among the 

big six firms in the UK.

In the opinion of Arkin (1984) statistical sampling is one of the 

most valuable audit tools and cites the main advantages as:

(i) The sample result is objective and defensible. Nearly

all phases of the statistical process are based on 

demonstrable statistics principles;

(ii) The method provides a means of advance estimation of

sample size on an objective basis. The sample size is 

no longer determined by traditional methods of 

guesswork; it is determined by statistical method;
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(iii) The method provides an estimate of error. When 

probability sampling is used, the results may be 

validated in terms of how far the sample projection 

might deviate from the value that could be obtained by 

a 100% check;

(iv) Statistical samples may be combined and evaluated, 

even though accomplished by different auditors. That 

the entire test operation has an objective and 

scientific basis makes it possible for different 

auditors to participate independently in the same test 

and for the results to be combined as though 

accomplished by one auditor;

(v) Objective evaluation of test results is possible. 

Thus, all auditors performing this audit would be able 

to reach the same conclusion about the numerical 

extent of error in the population. While the impact 

of these errors might be interpreted differently, 

there can be no question as to the facts obtained, 

since the method of determining their frequency in the 

population is objective.

McRae (1982, pl5) states that statistical sampling ensures that 

the sampling process is being handled in a logical, economical 

and consistent way. Colbert (1991) maintains that statistical 

sampling is to be preferred over judgemental sampling when an 

objective measure of risk is needed and an bound estimate of the
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monetary amount of error is desired. As such it seems an ideal 

tool for substantive testing.

1.3.3 Judgemental versus Statistical Evidence in a Court of Law

Auditors disagree on which sampling method is more defensible in 

court. Those favouring statistical sampling maintain that such 

sample testing would carry greater evidential weight in a court 

of law and that 'conclusions drawn from statistical sampling are 

more defensible in court because the risk of error in the 

population is objectively determined' (Colbert,1991). Copeland 

and Englebrecht (1975) maintain that statistical sampling results 

provide the auditor with data readily defensible in court because

'it gives the court quantitative standards 
to measure quantitative results, and the 
probability that deviations from the 
universe are not included in the results 
have been mathematically determined.'

On the other hand, auditors favouring a non-statistical approach 

believe that

'the use of professional judgement is a better 
defence--say in court-- than a statistical 
measure of risk. They would prefer to have 
expert witnesses explain how critical 
professional judgement is on an audit than a 
statistician explain that there is a known 
chance, say 5 or 10 percent, that the auditor's 
conclusion was incorrect.' (Colbert, 1991)

McRae (1982, p328) points out that overall there appears to have 

been very little discussion of the use of sample evidence in UK 

courts and states that there is no evidence to suggest that 

inferences from a statistically validated audit sample carries
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more evidential weight in a court of law than inferences and 

opinions based on a purely judgement audit sample. In the US 

however, there has been a greater legal interest in sampling 

techniques in general. Although no specific case in which the 

extent of audit sampling was a major issue has been brought 

before the courts, McRae (1982, p328) asserts that there was some 

evidence from the US to suggest that the law may be beginning to 

weigh up the adequacy of audit samples, which could lead towards 

statistical evaluation of audit sample size.

1.4 Statistical Sampling in Auditing

Sampling is used in both compliance and substantive testing and 

is described in numerous textbooks in auditing (see, for example, 

Arens and Loebbecke, 1981; Arkin, 1984; Guy, Carmichael and 

Whittington 1994; McRae, 1974; Roberts, 1986).

1.4.1 Statistical Sampling in Compliance Testing

Compliance testing is typically concerned with qualitative 

characteristics or attributes and statistical sampling is used 

to estimate the proportion of violations associated with a 

particular set of controls. For example, purchase orders may 

need to be authorised and compliance testing might estimate the 

proportion of times that they have not been authorised. Tests 

of compliance have normally been designed so as to provide 

information as to the rate of error in terms of control failure 

rather than to enable direct extrapolation in terms of monetary
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errors in the financial statements. There are a number of well

known statistical techniques which have been utilised for 

compliance test purposes. They include:

(i) Estimation Sampling: With estimation sampling, a random 

sample of items of a specified size is selected and the 

proportion of errors or the average error amount is estimated to 

establish if it is less than some acceptable level. This is the 

most widely used statistical approach to compliance testing.

(ii) Acceptance Sampling: Acceptance sampling is a technique 

which enables the auditor to reject or accept the population 

under certain conditions. A sample of a given size is drawn and 

if more than a certain amount of errors is found, the population 

is accepted, otherwise it is rejected. The auditor using 

acceptance sampling seeks to balance out the risks of rejecting 

'satisfactory' populations (and thereby frequently involving 

further audit costs) and of accepting 'unsatisfactory' 

populations (and thereby exposing the auditor to the potential 

risk of giving an inaccurate clean audit opinion). More 

efficient forms of acceptance sampling exist which involve two 

stage, multiple stage and sequential sampling plans. These 

methods are discussed in McRae (1974, pp24-34) . Multistage 

sampling plans reduce the average sample size but the gains may 

be outweighed by the operational problems and costs incurred by 

the need for multiple evaluations.
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(iii) Discovery Sampling: Discovery sampling is a sampling plan 

which selects a sample of a given size, accepts the population 

if the sample is error free, and rejects the population if it 

contains at least one error. With discovery sampling, the 

auditor may not be interested in determining how many errors 

there are in the population. Where there is a possibility of 

avoidance of the internal control system, it may be sufficient 

to disclose one example to precipitate further action or 

investigation.

The theoretical properties of these sampling plans are well known 

and have been applied in other fields, notably the area of 

industrial quality control (see Duncan, 1986) . Their use in 

auditing was initially suggested by Vance (1947) and later by 

Vance and Neter (1956) and Arkin (1961) . The application of 

statistical sampling plans and inference procedures to compliance 

testing presents few difficulties and does not involve any 

special problems (Neter, 1986, Neter and Godfrey, 1988). It will 

not be dealt with in this study.

1.4.2 Statistical Sampling in Substantive Testing

In substantive testing, statistical sampling is used to obtain 

monetary estimates of the total error amount or confidence limits 

for the total error amount in a particular accounting population. 

The objective is to obtain reliable confidence limits, (i.e. 

confidence limits with actual confidence levels never less than 

their nominal levels) which are not conservative (i.e, the
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estimate of the total error amount should not be very much 

greater than the true error amount) with sample sizes that are 

not too large for practical audit applications. Neter (1986) 

points out that serious problems are encountered when applying 

statistical sampling methods to sampling account balances and 

Neter and Godfrey (1988) state that the application of 

statistical sampling and inferential procedures to substantive 

testing presents some challenging problems. The following 

section discusses the statistical sampling problem in substantive 

testing.

1.4.2.1 The Sampling Problem in Substantive Testing

At first glance, it would appear that the sampling and estimation 

procedures for obtaining estimates of the total error amount in 

substantive testing are straightforward. The problem appears to 

be well defined. The population is finite, containing N accounts 

say. The book values B1( B2 ... BN are known. The true values 

Aj, A2 . . . An and the errors E4 = B4 - Aj are unknown. Since N may 

to too large to verify the accuracy of the complete population, 

it is necessary to obtain a sample of accounts in order to 

estimate the total error amount. It would seem appropriate to 

use the set of book values as the auxiliary variable and to 

stratify the population by book value size and select a 

stratified sample using optimum allocation. Auxiliary estimators 

using the book values as the auxiliary variable, and the central 

limit theorem might then be used to estimate the total error 

amount and to obtain confidence limits. This is the classical
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sample survey approach as outlined in standard texts (see, for 

example, Cochran, 1977; Kish, 1965; and Moser and Kalton, 1971) .

Both simple random sampling and stratified sampling of line items 

have been used in substantive testing. Stratification is a 

process of dividing a population into subgroups each of which is 

a set of sampling units with similar characteristics. 

Stratification of accounting populations is usually based on the 

recorded book value amount of the line items and a sample is 

selected independently from each stratum. In the draft 

guideline on audit sampling issued by the APB (1993), 

stratification is advocated as an acceptable sampling method on 

the basis that it enables the auditor

'to direct audit efforts towards the items 
which, for example, contain the greatest 
potential monetary error. For example, the 
auditors may direct attention to larger 
value items for accounts receivable to 
detect major overstatement errors.'

Roberts (1978, Chap. 6) gives a detail account of the application 

of stratified sampling methods in auditing.

Two major problems are encountered when the classical sampling 

and estimation approach is applied to auditing. First, 

accounting populations often have very low error rates and 

consequently the selected sample may yield zero errors and hence 

fail to give any information on the population total error 

amount. For example, when the error rate in the population is
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.01, the probabilities that sample random samples of sizes 30, 

60 and 100 will contain no errors are 0.74, 0.55 and 0.38 

respectively. When this situation occurs, the population error 

amount would be estimated at zero if classical estimation 

procedures are used and confidence limits for the total error 

amount cannot be obtained.

The second problem pertains to the unreliability of confidence 

intervals, i.e., confidence intervals with actual confidence less 

than the nominal. Often, the average line item error amount 

(mean-per-unit) is used as an estimate of the total error amount 

and the central limit theorem is applied to obtain the confidence 

limits. Numerous studies have shown that the mean-per-unit 

estimator with simple random sampling leads to unreliable 

confidence intervals when the populations have low error rates 

and when the line items are highly skewed (see for example, 

Kaplan, 1973; Neter and Loebbecke, 1975). Studies have also 

shown that the confidence intervals are unreliable with 

stratified sampling for most sample sizes used in auditing. 

Menzefricke and Smieliauskas (1987b) examined the mean-per-unit 

stratified estimator and found that the sample size required to 

obtain reliable confidence intervals may be too large for 

practical applications. Dunmore (1986) confirmed that large 

sample sizes within each stratum are necessary for the confidence 

level to be sufficiently close to the nominal.

Auxiliary estimators have been proposed to overcome the 

unreliability problem (see Cochran, 1977 for a description of
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auxiliary estimators). Kaplan (1973) examined the performance 

of the ratio, regression and difference auxiliary estimators. 

Both conceptually and through simulation studies, with sample 

sizes ranging from twenty five to two hundred, Kaplan 

demonstrated that the use of the t-statistic for statistical 

inference is inadequate and leads to unreliable confidence 

intervals. He pointed out that since there is often a high 

correlation between the estimator and the estimate of the 

standard error, the numerator and the denominator of the t- 

statistic will not be independent and hence the t-statistic is 

invalid. Neter and Loebbecke (1975) obtained similar results in 

an empirical study using actual accounting populations. They 

found that with highly skewed, low error rate populations, the 

achieved confidence levels with auxiliary estimators are far 

below the nominal levels. Beck (1980) examined the regression 

estimator using samples of size 600 and found that even with this 

large sample, the regression estimator cannot be relied upon to 

provide a confidence interval with actual confidence close to the 

nominal. Frost and Tamura (1986) proved that the skewness of the 

distribution of auxiliary estimators largely accounted for their 

failure to yield reliable confidence intervals in statistical 

auditing. Neter and Loebbecke (1977) noted that the low error 

rates in accounting populations lead to downward bias in the 

estimates of the standard error and consequent unreliable 

confidence limits.

The jackknife technique has been used to improve the estimate of 

the standard error (see Efron, 1979; Miller,1974; Mosteller, 1971
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for a description of the jackknife technique) and hence to 

provide reliable confidence intervals. Empirical evidence has 

shown that this has not succeeded in its objective. Frost and 

Tamura (1982) found that the unreliability problem is not 

completely solved when the jackknife technique is used to reduce 

the downward bias in the standard error of the estimator. They 

showed that although the jackknifed ratio estimator provides 

higher reliability than the ratio estimator when the error rate 

is high and involves both understatement and overstatement 

errors, however, neither the ordinary ratio estimator nor the 

jackknifed ratio estimator are reliable in accounting populations 

with low error rates or in situations where the errors are all 

overstatements.

Authors are practically unanimous in their verdict that 

conventional sampling methods and estimation procedures are not 

appropriate to substantive testing. Kaplan (1973) concluded from 

his study on auxiliary estimators that 'entirely new approaches 

may be required for statistical sampling in auditing.' Smith 

(1979) deduced that the conventional approach based on confidence 

intervals does not answer the auditors questions. Gwilliam 

(1987, p244) noted that even though there has been an extended 

debate on the properties and suitability of the classical methods 

of statistical sampling, it would not appear that these methods 

enjoy more than limited use by auditing firms for the purpose of 

the substantive testing of value.
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A vast amount of research has gone into developing statistical 

techniques suitable for substantive testing. Sampling methods 

and estimation procedures which do not rely on large sample 

normal theory have been developed to give more reliable bound 

estimates of the total error amount. A non-classical procedure 

which has gained the most significant acceptance among the major 

accounting firms for the purpose of regular audit use is 

monetary-unit sampling (Gwilliam, 1987, p245). The following

discussion provides the historical development of monetary-unit 

sampling methods pertaining to substantive testing.

1.5 The Development of Monetary-Unit Sampling

The term 'monetary-unit sampling', is often used to denote the 

sample selection procedure and the evaluation procedure. Each 

of these is discussed below.

1.5.1 Monetary-Unit Sample Selection

Monetary-unit sample selection views the population, not as a 

population of accounts of different sizes, but as a population 

of monetary units. The size of the population is taken to be the 

total number of monetary units in all the accounts and each 

monetary unit is selected with epsem probability i.e., each 

monetary-unit has an equal chance of selection. Monetary-unit 

sample selection gives each line item a probability of selection 

proportional to its stated monetary value. Probability 

proportional to size selection was originally developed in survey
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sampling theory by Hansen and Hurwitz in 1943 for selecting 

clusters of unequal size. Deming (1960, ppllO-185) was the first 

to put forward the idea of monetary-unit sampling. He suggested 

that an individual dollar of investment could be considered to 

be the sampling unit but he did not elaborate further on the idea 

of monetary-unit sampling.

The first known published research on monetary-unit sampling 

applied to accounting populations was done by Van Heerden (1961) . 

He defined the sampling unit as a guilder, a monetary unit. He 

suggested that an account balance or line item could be thought 

of as a collection of monetary units, some of which were 100 

percent correct and some were 100 percent in error, i.e., the 

all-or-nothing method of allocating error amounts to monetary 

units. The incorrect units were considered to be the last 

monetary units appearing in the line item. Van Heerden suggested 

that a simple random sample of monetary units be taken from the 

total balance.

In 1968, the Canadian Institute of Chartered Accountants (CICA) 

commissioned a study of statistical sampling as it is applied to 

auditing in an attempt to promote a better understanding of 

statistical sampling among auditors. The study was published in 

1972 by Meikle. It included a description of a monetary-unit 

sampling plan, referred to as Cumulative-Monetary-Amounts 

sampling. This sampling method had been used for some years
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previously by Haskins and Sells (later reorganised as Deloitte, 

Haskins and Sells) and described in the Haskins and Sells 

instruction manual on audit sampling (Haskins and Sells, 197 0) .

In 1973, Anderson and Teitlebaum provided the first complete 

description of a monetary-unit sampling method which they called 

Unrestricted Dollar-Unit sampling. This was equivalent to the 

Cumulative-Monetary-Amounts sampling described by Meikle (1972). 

In this study, Unrestricted Dollar-Unit sampling will be referred 

to as simple random sampling of monetary units. Simple random 

sampling of monetary units selects a simple random sample of 

monetary units from a list of cumulated book values. Anderson 

and Teitlebaum (1973) also proposed systematic sampling,, a 

sampling method which divides the total book value amount into 

n (the sample size) equi-sized sections and selects a sample of 

monetary units systematically after a random start in the first 

section. Anderson (1973) discussed the use of statistical 

sampling in auditing and gave a brief description of monetary- 

unit sampling. Leslie (1975) provided a non-technical 

explanation of monetary-unit sampling with particular emphasis 

on its use by government auditors in the International Journal 

of Government Auditing.

In a paper presented at the National Meeting of the American 

Statistical Association in 1973, Teitlebaum presented a more 

formal definition of monetary-unit sampling and introduced 

monetary-unit cell selection. Cell sampling is similar to 

systematic sampling in that it divides the total book value
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amount into n (the sample size) equi-sized sections or cells and 

selects an element at random from each cell. In cell sampling, 

however, an independent random selection is made within each 

cell. Leslie, Teitlebaum and Anderson (1979, pllO) described 

the cell selection method in detail and recommended that cell 

selection should be used whenever monetary-unit sampling is being 

considered and they suggested that cell sampling is preferable 

to systematic sampling 'because it is not significantly harder 

to do and because it avoids any doubt as to rigorousness' . 

Goodfellow, Loebbecke and Neter (1974) discussed the basic 

concepts of monetary-unit sampling.

In the Netherlands, a sample selection method called sieve 

sampling was proposed by Rietveld (1978,79) as a practical 

alternative to simple random, cell and systematic sampling. 

Instead of looking at the population as a collection of monetary 

units, the sieve selection method looks at the population as a 

collection of items, each of which has a probability proportional 

to its monetary value of being selected. The mathematical 

background of the selection method is given by Gill (1983). 

Driessen (1986) showed that the sieve method may, under certain 

conditions, be validly used for two- or three-stage sampling 

schemes, even though the statistical evaluation is based on 

simple random sampling of monetary units.
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1.5.2 Monetary-Unit Sample Evaluation

Research on monetary-unit sampling and non-classical estimation 

procedures has concentrated on trying to obtain bounds for the 

total error amount which are reliable but not too conservative. 

Numerous bound estimates of the total error amount have been 

developed.

In 1963, Stringer proposed a heuristic procedure for estimating 

the total error amount based on the Poisson distribution and 

calculated the error in each monetary unit as a proportion of the 

error in the associated item. This bound is referred to as the 

Stringer bound and is widely used in practice (Felix, Leslie and 

Neter, 1982). Stringer (1963) used stratification and line item 

selection when choosing the items to evaluate the bound. 

Anderson and Teitlebaum (1973) suggested that monetary-unit 

sampling be used with the Stringer estimation procedure and 

claimed that the upper bound estimate gives a conservative upper 

error limit for any population. There is no formal proof of this 

assertion but all empirical evidence tend to support their claim. 

Simulation studies have shown that although the bound always 

achieves the specified confidence, it is conservative in the 

sense that the estimate of the error amount obtained from this 

bound is usually far in excess of the true error amount (see, for 

example, Felix and Kinney 1982; Leitch, Neter, Plante and 

Sinha,1982; Neter and Loebbecke, 1975; Reneau, 1978).
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Teitlebaum (1973) introduced the Cell bound for estimating the 

total error amount. Leslie, Teitlebaum and Anderson (1979) 

defined the Cell bound in detail and suggested that it be used 

'when it is necessary to eliminate the conservatism present in 

regular DUS evaluations.' While this bound was developed for 

cell sampling, its computational form does not restrict its use 

to cell sampling alone (Wurst, Neter and Godfrey, 1989b). 

Fienberg, Neter and Leitch (1977) introduced the multinominal 

bound, a bound for estimating the total error amount based on the 

multinominal distribution. It was found to be computationally 

tedious when the number of errors in the sample was large. 

Leitch, Neter, Planta and Sinha (1982) modified the bound to 

reduce the number of computations required under the original 

model.

Garstka and Ohlson (1979) developed a bound based on an unbiased 

point estimator of the total error amount. It is similar to the 

central limit theorem approach in that the upper bound is defined 

by the point estimator plus the standard error multiplied by an 

appropriate constant. The multiple is a function of both the 

sample size and the number of errors found in the sample. 

Garstka and Ohlson (1979) showed that the multiple is greater 

than the corresponding normal coefficient when the number of 

errors in the sample is low. The main advantage of the Garstka- 

Ohlson bound is its ability to obtain bounds with greater 

reliability than the central limit theorem when the number of 

errors in the sample is low. However, like the central limit 

theorem, it gives no information on error bounds when the number
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of errors in the sample is zero. Tamura (1985) showed that the 

Garstka-Ohlson bound is unreliable in populations with small 

proportionate errors.

The Moment bound was proposed by Dworkin and Grimlund (1984) as 

an alternative to the Stringer bound. They tested the bound 

under a wide range of test conditions and found that it is 

reliable under most of the test conditions. Menzefricke and 

Smieliauskas (1987b) noted that the Moment bound 'is more 

comparable to complex bounds and its robustness is supported by 

considerable empirical evidence'. It has recently been adopted 

by Arthur Anderson as a replacement for the Stringer bound 

(Felix, Grimlund, Roster and Roussey, 1990).

1.5.2.1 Modified Bounds

The non-classical approach appears to have overcome the two major 

problems of the classical approach (i.e., it provides an estimate 

of the total error amount when there are no errors found in the 

sample and it provides reliable confidence intervals). However, 

most empirical research on monetary-unit sampling indicates that 

the bounds are conservative ( i.e., the estimate of the total 

error amount is usually far in excess of the true error amount) . 

Conservative estimates lead to rejection of acceptable 

populations and increases the cost of the audit unnecessarily. 

In an attempt to obtain estimates which are less conservative, 

Smith (1979) suggested a modification of the Stringer bound by 

projecting sample results into the unsampled population. In a
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simulation study comparing the modified and unmodified Stringer 

bounds, he observed that although modification did lead to 

tighter upper error limits, the limits were still conservative. 

Phillips (1985) found that the modified Stringer bound is tighter 

than the unmodified bound and that the mean coverage of the 

modified bound is nearly always equal to the unmodified bound. 

Wurst, Neter and Godfrey (1991) examined the modified Stringer 

and Cell bounds with simple random, systematic and cell 

selection for samples of sizes 65, 150 and 300. They observed 

that while modification reduced the risk of incorrect rejection 

for samples of sizes 150 and 300, the risks of incorrect 

rejection was not reduced for samples of size 65. Since a sample 

size of 65 may be closest to the sizes used in practice, the 

findings indicate that modification may not be of practical use 

to the auditor.

Modification has been considered by MacGuidwin,Roberts and Shedd 

(1982) but not pursued on the basis that it resulted in biased 

estimates of the total error amount. Leslie and Andersley (1982) 

discouraged the use of bound modification, pointing out its 

dangers thus;

'If errors are concentrated in smaller book values, 
the bound will be understated too frequently. If 
errors are concentrated in larger population items, 
the bound will usually be too high. It is only when 
the errors are evenly distributed across the entire 
range of population values that the results are 
acceptable - a condition never known to the auditor. 
Johnson, Neter and Leitch (1981) found larger items 
have a larger probability of containing an error and 
this approach would usually be unduly conservative for 
most acceptable bounds. In addition, the point 
estimates produced by this bound are biased.
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1.5.2.2 Bayesian Bounds

Another approach suggested for reducing the conservativeness of 

the estimates in monetary-unit sampling has been Bayesian 

estimation. Bayesian estimation consists of obtaining a 

probability distribution reflecting possible values of a 

parameter, called a prior distribution and combining this with 

the sample results to obtain a posterior distribution. The 

mathematical foundation of Bayesian methods and a description of 

its applications can be found in Winkler (1972). A Bayesian 

bound allows the auditor to systematically integrate evidence 

derived from sampling procedures with evidence derived from other 

sources and seems appropriate to the particular needs of 

auditing. In fact Smith (197 9) maintained that the only 

satisfactory solution to the problem of estimating the total 

error amount in auditing is the Bayesian approach.

Numerous Bayesian bounds for estimating total error amount have 

been developed for use with monetary-unit sampling. Cox and 

Snell (1979) derived a Bayesian upper bound for the total 

overstatement amount. Much work has been done on the Cox and 

Snell bound to obtain prior distributions that will produce 

reliable bounds which are not conservative (see for example 

Godfrey and Neter 1984; Neter and Godfrey, 1985; Phillips, 1985; 

Tsui, Matsumura and Tsui, 1985). McCray (1984) introduced a 

Bayesian bound for the total error amount which assumed a 

discrete prior distribution. Dworkin and Grimlund (1986) found 

that the Moment bound provided narrower confidence intervals than
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the McCray bound in populations with low error rates (less than 

or equal to 6%) and that the McCray bound was not as conservative 

as the Moment bound in populations with high error rates (greater 

than or equal to 75%). Both bounds provided comparable results 

in the intervening cases but the Moment bound had less 

computational requirements.

The application of the Bayesian methodology to the audit 

situation has been reported by some authors. McRae (1982, pl60) 

reports that a UK firm, Thomsom McLintock had developed a 

Bayesian sampling procedure in auditing. Kirtland and Holstrum 

(1984) state that Deloitte, Haskins and Sells are using a semi- 

Bayesian approach in the MUS system and Abdolmohammadi (1987) 

reports that Touch Ross provide guidelines in their audit 

sampling for assessing inherent assurance based on the analysis 

of the factors that contribute to the likelihood of material 

error.

However, there is very little evidence that auditors are actually 

using Bayesian methods in a rigorous manner. The reason for this 

appears to be the difficulty of estimating prior probability 

distributions, together with an inherent lack of confidence in 

the prior probability distributions. Godfrey and Andrews (1982) 

claim that 'the requirement that prior beliefs be quantified is 

the probably main reason Bayesian methods have not been more 

widely adopted by practitioners'.
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1.5.2.3 Theoretical Approach To Evaluation of Monetary-Unit 

Sampling

Most of the bounds used with monetary-unit selection are 

heuristic in nature (a notable exception is the Stringer/Cell 

bound with the AON error assignment using simple random, cell 

and sieve sampling (see section 2.8)). Attempts to analyse them 

mathematically have been limited in their success. Testing the 

reliability of the heuristic bounds has largely been in terms of 

simulation studies using accounting populations seeded with 

errors appropriate to what might occur in real life. It should 

be pointed out, however, that any conclusions drawn from 

simulation studies on specific audit populations are tentative 

and cannot immediately be generalised to all existing audit 

populations. But this does not appear to have worried 

practitioners, as McRae (1982, p253) explains that

'since the most commonly used versions of 
the MUS system appear to work as predicted 
under the simulated conditions, the absence 
of a full mathematical proof is not likely 
to deter an auditor from using it'

It must be admitted that the lack of a theoretical validation of 

the bound evaluation seems more likely to be of concern to the 

statistician than to the auditor. Recently, a rather novel 

attempt at theoretical validation of the heuristic bounds has 

been taken by Wurst, Neter and Godfrey (1989a, 1989b). They 

hypothesised that the accuracy of a point estimator of the total 

error amount may carry over to the accuracy of the bounds and 

hence a theoretical analysis of the point estimator may give some
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indication of the comparative accuracy of the bounds with 

different sampling methods. They derived and compared the 

precision of a point estimator of the total error amount using 

simple random, cell and sieve sampling (Wurst, Neter and Godfrey, 

1989a). They showed that the comparative behaviour of the bound 

estimates of the total error amount with the different sampling 

methods is similar to the comparative behaviour of the point 

estimator for the total error amount (Wurst, Neter and Godfrey, 

1989b). For example, they proved theoretically that a point 

estimator of the total error amount is more precise with sieve 

sampling than with simple random sampling for larger sample sizes 

but not as precise as cell sampling. In a simulation study, they 

found that the sample selection methods had the same effects on 

the Stringer and Cell bounds estimates of the total error amount.

While in no way can this be taken to be a theoretical validation 

of the heuristic bounds, it is an interesting approach to 

comparing the properties of the bounds for different sampling 

methods. This research intends to develop this approach further 

and to compare the precision of the point estimator with the 

precision of the bound estimators of the total error amount for 

other sampling methods.

1.5.2.4 The Use of Monetary-Unit Sampling

Monetary-Unit sampling has gained wide acceptance in the auditing 

profession in recent years. McRae (1974, p224) stated that the 

monetary-unit sampling system is the best so far devised for
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external auditing. Kaplan (1975) described monetary-unit 

sampling as 'one of the prime statistical sampling procedures 

available to auditors'. Leslie, Teitlebaum and Anderson (1979) 

noted that it has been extensively used by government auditors. 

McRae (1982, pl78) found that in the UK, over 90% of firms using 

statistical sampling to evaluate the total error amount use some 

form of monetary-unit sampling. In a more recent study, Abdul- 

Hamid (1993) also found that, of those firms using statistical 

sampling in substantive testing, the monetary-unit sampling 

approach was used predominantly. Variants of MUS are currently 

being employed by Deloitte, Haskins and Sells, Arthur Young, 

Peat, Marwick, Mitchell and Touche Ross among others. 

Menzefricke and Smieliauskas (1987a) noted that virtually all 

large firms in the US are now adopting monetary-unit sampling, 

'at least on an experimental basis'.

1.6 Need for the Research

Most of the empirical research on monetary-unit sampling method 

has been done in the US. Abdul-Hamid (1993) in comparing the 

UK and the US auditing environment pointed out that:

'Despite the obvious similarities between 
the USA and the UK auditing environments, 
there are important economic,legal and 
cultural differences which differentiate 
results obtained in the USA from those in 
the UK'
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The same could be said of Ireland and therefore research which

attempts to validate the US findings in an Irish environment 

would be useful. This study replicates some of the work done in 

the US and Canada by investigating the performance of existing 

monetary-unit sampling when applied to two Irish accounting 

populations.

In addition, this study addresses some of the issues raised by 

previous authors. In his research on sieve sampling Wurst (1990) 

called for future research on;

(i) the performance of the Moment bound using sieve sampling;

(ii) the comparative performance of sieve sampling and 

systematic sampling of monetary units.

Atkinson (1990) studied the performance of some monetary-unit 

sampling methods and also called for further research on the 

performance of the Moment bound with different sampling methods.

This study extends the work of Wurst (1990) and Atkinson (1990) 

by investigating the performance of sieve sampling using the 

Moment bound for estimating the total error amount and by 

carrying out a study of the comparative performance of sampling 

methods currently used in practice including a comparative 

investigation of systematic sampling and sieve sampling.
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There are practical aspects of the monetary-unit sampling methods 

currently used in practice which may be of concern to the 

auditor. For example, simple random, systematic and cell 

sampling ignore the line item structure of the population when 

selecting the sample and treat the population as a collection of 

monetary units from which a random sample of monetary units is 

selected. Since only the line items containing the selected 

monetary units can be tested by the auditor, the selected 

monetary units must be traced back to their associated line 

items. Wurst, Neter and Godfrey (1989a) point out that this may 

cause implementation problems. Leslie, Teitlebaum and Anderson 

(1979) cite some of the practical disadvantages of simple random, 

of monetary units.

'The first is the minor nuisance of having 
to accumulate the book value totals. The 
second and more important is the need to 
know the total book value amount accurately 
before selection can begin'

The need to know the book value total in advance of sampling may 

impede the planning and implementation of the auditing process 

since as Leslie, Teitlebaum and Anderson (1979) point out that

'often the total book value amount is not 
known accurately during the planning stage, 
nor is it known for transaction streams 
prior to the end of the year'.

Clearly, a sample selection method which overcomes these 

difficulties would be of use to the auditor. The sieve sample 

selection method is a possibility (see 4.7) . Sieve sampling uses
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the line item structure of the population when selecting the 

monetary units and does not require that the book amounts be 

accumulated or that the total book value be known in advance of 

sampling. However, a disadvantage of sieve sampling is that the 

sample size is not constant. It varies depending on the random 

numbers chosen when selecting the sample and this may be of 

serious concern to the auditor when the costs of carrying out the 

audit are being estimated prior to the audit.

New monetary-unit sample selection methods which preserve the 

advantages of sieve sampling while returning a fixed sample size 

may be of benefit to the auditor. Two such sampling methods are 

proposed in this study. A new sampling method, 'Stabilised 

Sieve Sampling' is defined, and a sampling method which has not 

been applied previously in auditing 'Lahiri Sampling' is 

introduced. Both sampling methods use the line item structure 

of the population when selecting a sample. They also return a 

constant sample size of monetary units.

To test the performance of the monetary-unit sampling methods, 

it is necessary to investigate the results obtained when the 

methods are applied to populations with book value and error 

characteristics similar to those found in real accounting 

populations. Previous research on the performance of the 

monetary-unit sampling methods have been tested on data derived 

mainly from accounting populations in the US (for example, Neter 

and Loebbecke, 1975; Johnson, Leitch and Neter, 1981) . As far 

as the writer is aware, only two studies have been carried out
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by UK authors to investigate the performance of monetary-unit 

sampling. Smith (1979) used simulated accounting populations to 

compare the performance of upper bound estimates of the total 

error using monetary-unit sampling. Abdul-Hamid (1993) conducted 

a small simulation study to find out if monetary-unit sampling, 

for sample sizes usually used in the UK, is likely to pick up the 

degree of error that can be anticipated to exist in audited 

populations of accounting data. He based his study on a 

population from the Neter and Loebbecke US database (Neter and 

Loebbecke, 1975).

It is not unreasonable to assume that book values and error 

characteristics of Irish accounting populations may be similar 

to those in the US and hence to expect the comparative 

performance of existing monetary-unit sampling methods to be the 

same when used on Irish accounting populations and US accounting 

populations. However, as has been pointed out above, research 

which attempts to validate the US findings in an Irish 

environment would be useful. This study obtains data on the 

characteristics of the book values and the patterns of errors 

from two commercial entities of debtors in the Public Sector and 

uses these to test the performance of the sampling methods.
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1 .7  Scope o f  th e  Research

This study develops new monetary-unit sampling methods for use 

in substantive auditing of debtors and tests their performance 

on accounting populations of debtors from commercial entities in 

the Irish Public Sector. This research goes beyond prior audit 

sampling research in the following ways:

(i) It examines error characteristics from a sector that 

has not been previously investigated. This study will 

provide, for the first time, information on the 

characteristics of book values and error patterns of 

two populations of debtors in the Public Sector;

(ii) It extends the work done on sieve sampling by Wurst,

Neter and Godfrey (1989a, 1989b) by investigating

sieve sampling using the Moment bound. It also 

compares the performance of sieve sampling with 

systematic sampling;

(iii) It devises and applies monetary-unit sampling methods 

that have not been previously used in auditing.
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1 .8  O b j e c t i v e s  o f  th e  Study

There

( i )

(ii)

(iii)

(iv)

are five major objectives. These are:

To obtain information on the characteristics of book 

values and patterns of errors in two populations of 

debtors in the Public Sector.

To carry out a theoretical analysis of a point 

estimator of the total error amount for six monetary- 

unit sampling methods. Four methods are currently 

used in practice i.e., simple random, systematic, cell 

and sieve sampling), one 'Lahiri Sampling' which has 

not been previously applied in auditing ( see also 

objective (iv)), and a new sampling method 'Stabilised 

Sieve Sampling' which has been developed in this study 

for use in substantive testing (see also objective 

(v) .

To investigate the performance of the Stringer, Cell 

and Moment bounds for estimating the total error 

amount in substantive auditing using monetary-unit 

sampling methods currently used in practice.

To investigate Lahiri sampling as an alternative to 

simple random sampling of monetary units.
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(v) To investigate stabilised sieve sampling as an

alternative to sieve sampling and simple random 

sampling of monetary units.

A more detailed description of these objectives is given below.

1.8.1 Objective 1. Characteristics Debtors in the Public Sector

The first objective is to obtain information on the book values 

and the error characteristics of debtors in the Public Sector and 

to compare the structures of these with accounting populations 

already available.

1.8.2 Objective 2. Point Estimator Analysis

The second objective is to examine and compare the precision of 

a point estimator of the total error amount for all the monetary- 

unit sampling methods used in this study. Wurst, Neter and 

Godfrey (1989a) investigated the statistical properties of an 

unbiased point estimator of the total error amount under sieve 

sampling, simple random sampling and cell sampling. This study 

extends their work and derives the properties of a point 

estimator of the total error amount with Lahiri and stabilised 

sieve sampling and with simple random, cell, systematic and sieve 

sampling. The purpose is to establish whether the theoretical 

properties of the point estimator are consistent with the 

properties of the bounds observed using simulation.
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1.8.3 Objective 3. Comparative Bound Performance with Sampling

Methods Currently Used in Practice

In the bound analysis for sieve sampling, Wurst, Neter and 

Godfrey (1989b) confined their investigation to the Stringer and 

Cell bounds to compare sieve, cell and simple random sampling of 

monetary units. This investigation extends their work to include 

the Moment bound and systematic sampling. This study

investigates the Stringer, Cell, and Moment bounds using four 

monetary-unit sampling methods currently used in practice, i.e. 

simple random, systematic, cell and sieve sampling of monetary 

units. The comparison is performed by means of a simulation 

study using two accounting populations of debtors from the Public 

Sector.

1.8.4 Objective 4. Comparison of the Bound Performance with

Lahiri Sampling and Simple Random Sampling 

of Monetary Units

The fourth objective is to investigate Lahiri sampling as an 

alternate to simple random sampling of monetary units. The two 

sampling methods are compared using the Stringer, Cell and Moment 

bounds to estimate the total error amount. The comparative 

performance of the sampling methods is tested on two accounting 

populations of debtors from the Public Sector.
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1.8.5 Objective 5. Comparison of the Bound Performance with

Stabilised Sieve Sampling and Sieve Sampling 

of Monetary Units

The fifth objective is to investigate stabilised sieve sampling 

as an alternate to sieve sampling and simple random sampling of 

monetary units. The sampling methods are compared using the 

Stringer, Cell and Moment bounds to estimate the total error 

amount. The comparative performance of the sampling methods is 

tested on two accounting populations of debtors from the Public 

Sector.

1.9 Limitations of the Study

This study is an investigation of the comparative performance of 

monetary-unit sampling methods and estimation procedures used in 

substantive testing and applied to accounting populations of 

debtors in the Public Sector. It does not deal with;

(i) Creditors and Stock

(ii) Understatements

(iii) Lower Bounds

(iv) All the populations of debtors in the Public Sector

(v) Wider issues of public accountability.
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The details of the limitations are given below.

(i) Creditors and Stock

In monetary-unit sampling, the probability of selection of any 

line item is proportional to its reported value and not 

necessarily its actual value. Consequently, this selection 

method is predisposed to selection of overstatements as opposed 

to errors of understatement. Since errors in debtors are

predominantly overstatements (see Chapter 3), monetary-unit 

sampling is suitable to selecting samples of debtors. On the 

other hand, errors in creditors are likely to be understatements 

(Johnson, Leitch and Neter, 1981) and therefore, monetary-unit 

sampling is not an appropriate selection method. Consequently, 

accounting populations of creditors are not included. The 

commercial entities studied are service enterprises and in these, 

stock is of negligible importance, hence accounting populations 

of stock are not investigated.

(ii) Understatements.

The study confines itself to overstatement errors because these 

errors are of primary interest to auditors (Wurst, Neter and 

Godfrey, 1989a). It does not consider understatements. While 

some studies have shown (see Chapter 3) that errors in debtors 

are predominantly overstatements, others have found that 

understatements may occur in debtors (see for example, Johnson, 

1987; McRae, 1982, p70) but, as was pointed out in (i) above,
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monetary-unit sampling may not be the most effective type of 

sampling when understatement errors play a dominant role.

(iii) Lower Bounds

Because this study deals with debtors only and because 

overstatements and the estimation of the maximum overstatement 

is one of the main priorities in debtors accounts (Wurst, Neter 

and Godfrey, 1989a), the analysis concentrates on obtaining 

precise estimates of the total error amount and reliable upper 

bounds for the total error amount.

Estimation of lower bounds for the total error amount is not 

included. Some of the procedures used in the study may also be 

applied to estimating lower bounds for the total error amount but 

lower bound analysis is not specifically dealt with here.

(iv) The Populations

This study confines itself to two populations of commercial 

entities audited by the office of the Comptroller and Auditor 

General. The error modelling described in Chapter 3 attempts to 

recreate all possible situations for the populations studied. 

Generalisations to other populations must at most be tentative. 

In particular, Public Sector commercial entities audited by 

private sector auditing firms are not included and would be of 

interest in future research.
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(v) Wider I s s u e s  o f  P u b l ic  A c c o u n t a b i l i t y

Hardman (1991) noted that the CAG has a wider public duty, 

extending beyond the mere expression of an opinion on the 

financial statements, which encompasses the public accountability 

of the government to the legislature and ultimately to the 

electorate. This issue is deemed to be beyond the scope of this 

study.

1.10 Structure of the Thesis

The remainder of the thesis is structured as follows:

Chapter 2 gives an overview of the research methodology. It 

describes how the audit populations are generated. It details 

the sampling methods and defines the point estimator and the 

bounds used in the investigation. The measures for assessing the 

performance of the bounds are defined and the simulation 

procedure is outlined.

Chapter 3 details the statistical characteristics of the book 

values of the Public Sector debtors used in the study. It 

outlines the methodology used in designing the sampling plan to 

obtain the audit samples and describes the error patterns found 

in the audit samples . It also describes how the populations used 

in the simulation study are generated.

Chapter 4 details the monetary-unit sampling methods used in the
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study and derives the properties of each sampling method.

Chapter 5 examines the precision of a point estimator under the 

various sampling methods. In this chapter, an attempt is made 

to discover whether different sampling methods give more precise 

estimates of the total error amount for populations with 

different line item structures and error distributions.

Chapter 6 compares the performance of the four monetary-unit 

sampling methods currently used in practice, using the Stringer, 

Cell and Moment bounds to estimate the total error amount. A 

comparative investigation of the sampling methods is carried out 

by means of a large scale simulation study using the two actual 

accounting populations of debtors from the Public Sector.

Chapter 7 compares the performance of Lahiri and simple random 

sampling of monetary units using the Stringer, Cell and Moment 

bounds to obtain upper bound estimates of the total error amount.

Chapter 8 compares the performance of stabilised sieve and sieve 

sampling of monetary units using the Stringer, Cell and Moment 

bounds to obtain upper bound estimates of the total error amount. 

Simple random sampling of monetary units is used as a bench mark 

in the comparison of stabilised sieve and sieve sampling of 

monetary units.

Chapter 9 summarizes the results and provides suggestions for 

future research.

60



Chapter 2

The Methodology

2.1 Introduction

This chapter outlines the research methodology used to achieve 

the objectives stated in 1.8 and discusses issues arising from 

that methodology.

The study examines the effects of six sample selection methods 

on the behaviour of estimates of the total error amount in 

substantive testing. Accounting populations in the Public Sector 

are examined, and their error characteristics are determined by 

means of large scale investigative audits. Audit populations are 

created with different error rates and error amounts reflecting 

the error patterns found in the investigative audits. A 

theoretical analysis of a point estimator of the total error 

amount is carried out for each sampling method. The sampling 

methods are tested on the populations by means of a simulation 

study, using three upper bound estimates of the total error 

amount, three different sample sizes and three different 

confidence levels.
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This chapter: 

introduces;

(i) the monetary-unit sampling methods (2.2

(ii) the populations of book values (2.3)

(iii) the investigative audits (2.4)

(iv) the error models (2.5)

(V) the simulation study (2.10)

(vi) the data analysis (2.12)

(These issues will be discussed in more detail in later chapters) 

and discusses;

(vii) the error assignment methods (2.6)

(viii) the point estimator (2.7)

(ix) the upper bounds (2.8)

(x) the confidence levels (2.9)

(xi) the criteria for assessing the performance of the 

sampling methods (2.11)

2.2 The Sampling Methods

Monetary-unit sampling is a method of random sampling from 

accounting populations where the sampling unit is a monetary 

unit, e.g., Ir£l. The size of the population is defined as the 

total monetary amount of all the line items. In monetary-unit 

sampling, a line item of monetary value Ir£Bj say, is considered
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to consist of Bj monetary units, each having an equal chance of 

selection. This study examines six such monetary-unit sampling 

methods, four of which are currently used in substantive testing, 

one which has not been applied previously in auditing and a new 

sampling method developed in this study.

The six monetary-unit sampling methods are as follows:

(i) Simple random sampling of monetary units where each 

possible combination of monetary units has an equal 

chance of being selected;

(ii) Systematic sampling of monetary units where units are 

chosen systematically after a random start;

(iii) Cell sampling of monetary units where the population 

is divided into cells and an independent selection of 

one monetary unit is made from each cell;

(iv) Sieve sampling of monetary units where a random number 

is chosen for each line item and one monetary unit 

from each line item is considered for inclusion into 

the sample. It is selected depending on the random 

number chosen;

63



(v) Lahiri sampling of monetary units which selects a pair 

of random numbers, one to decide on a line item for 

consideration for inclusion into the sample and the 

other to determine what monetary unit, if any, should 

be selected from this line item. Sampling of pairs of 

random numbers continues until the required number of 

monetary units is selected;

(vi) Stabilised sieve sampling of monetary units which 

selects an initial sample by means of sieve sampling 

and increases or decreases the sample randomly so that 

the final number of monetary units in the sample is 

equal to the nominal sample size.

Simple random, systematic and cell sampling ignore the line item 

structure of the population when selecting the sample of monetary 

units and consider the population as a collection of monetary 

units from which a random sample is drawn. Lahiri, sieve and 

stabilised sieve sampling, on the other hand, use the line item 

structure of the population when selecting the monetary units. 

With Lahiri, sieve and stabilised sieve sampling, the line items 

are selected randomly and a monetary unit is chosen from each 

selected item. Sieve sampling was proposed as an alternative to 

simple random, systematic and cell sampling by Gill (1983). 

Lahiri sampling was suggested by Lahiri (1951) as a convenient 

method of selecting clusters of unequal size with probability 

proportional to size. It has not yet been used in statistical 

sampling in auditing. Stabilised sieve sampling of monetary
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units is a new sampling method developed in this study. The six 

sampling methods are defined in detail and their statistical 

properties are derived in Chapter 4.

2.3 The Populations of Book Values

The populations of book values on which the sampling methods are 

tested, were supplied by the office of the Comptroller and 

Auditor General. They consist of debtors accounts from two 

commercial entities audited by the office of the Comptroller and 

Auditor General. One population contains a relatively large 

number of small debtors and the second population contains a 

relatively small number of large debtors.

Population 1

Population 1 is composed of 3725 debtors accounts from a state 

scientific consultancy firm. It has a total book value amount 

of Ir£3,522,610. The firm is responsible for a number of 

national standards and also provides various technical services 

to industry.

Population 2

Population 2 consists of 662 debtors accounts from an industrial 

support body. It has a total book value of lr£ll,630,830. The 

firm provides grant aid to industries setting up in Ireland. It 

is also involved in renting factories and other premises to 

entrepreneurs.
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Summary

Populations 1 contains relatively low valued line items while 

Population 2 contains relatively high valued line items. The 

median sizes of Population 1 is Ir£240 and the median size of the 

line items in Population 2 is Ir£3,740. These populations 

provide an excellent opportunity of investigating the sampling 

methods under different conditions. Detailed descriptions of the 

populations together with their distributional characteristics 

are given in Chapter 3.

2.4 The Investigative Audits

A large investigative audit was carried out on each of the 

populations to obtain information on error patterns and error 

amounts. The populations were stratified by book value size and 

disproportionate stratified random samples of line items were 

selected from each population. Stratification by book value size 

was used to investigate error characteristics in line items of 

differing sizes. The purpose was to obtain sufficient 

«information on error patterns in order to model the errors in the 

populations. Stratification was not used in the subsequent 

sampling and estimation procedures. The sample designs used in 

the investigative audits and the characteristics of the error 

patterns are outlined in Chapter 3
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2 .5  The Error Models and Audit  P o p u la t io n s

Audit populations were created from each of the accounting 

populations by seeding errors into the populations of book values 

with error rates and error sizes reflecting the patterns found 

in the data obtained from the investigative audits.

Line items in error found in the investigative audit were either 

(i) 100% in error or (ii) less than 100% in error. A mass of 

100% errors was randomly seeded into each population reflecting 

the amount found in the investigative audit. The simulated 

errors with amounts less than 100% were determined using models 

derived from the data in the investigative audits.

In order to be able to investigate the sampling methods under a 

wide range of conditions, audit populations were created with 

lower and higher error rates and with lower and higher error 

amounts than those found in the investigative audits. In these 

cases, the relative error patterns across strata were maintained.

The audit populations created thus, are used in the simulation 

study described in 2.10 below, to compare the performance of the 

bounds under the differing sampling methods as stated in 

objectives 3, 4 and 5.

Details of the error models and the resultant audit populations 

are given in Chapter 3.
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2 .6  The Error Assignment Methods

Each of the sampling methods outlined in 2.2 selects monetary 

units rather than line items for inclusion in the sample. Prior 

to sampling, it is necessary to assign an error amount to each 

monetary unit. In the cases where the line items are less than 

100% in error, the error amount is distributed among the 

constituent monetary units in each line item. Two methods of 

assigning errors in line items to monetary units are used in 

practice. They are the 'taint' and the 'all-or-nothing' methods 

of error assignment and they are described below.

2.6.1 The Taint Method of Error Assignment

In the taint method of assigning errors to monetary units, the 

errors are assumed to be distributed equally among all the 

monetary units in the line item. For example, if line item i is 

selected and an error amount Ej, = (Bi - Ai ) is found, then each 

monetary unit is considered to have an error amount of Ei/Bj. 

Ei/Bj is referred to as the taint in item i. The number of 

errors found in the sample of n monetary units is the number of 

items in which a non-zero taint is found.

The sample elements obtained using the taint method of error 

assignment are denoted by,

ti, t2;.... tn
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where

ti = (Bi -Aj/Bi if the selected monetary unit is in error 

= 0 if the selected monetary unit is not in error

2.6.2 The All-Or-Nothing Method of Error Assignment

The 'all-or-nothing' (AON) method of assigning errors to monetary 

units considers the line items as a collection of monetary units 

some of which are 100% correct and some of which are 100% in 

error. The monetary units in error must be specified for each 

line item in advance of sampling. Van Heerden (1961) , who 

developed this error assignment method, suggested that the 

incorrect units should be the last units in each line item. Gill 

(1983) adopts the convention of assigning the errors to the 

monetary units at the beginning of the line item. It is not 

important which convention one adopts. In this study, the errors 

are assigned to the units at the beginning of the line item in 

keeping with recent studies (e.g. Wurst, Neter and Godfrey 1989a 

and 1989b).

The sample elements obtained using the all-or-nothing error 

assignment method are denoted by,

U1 ' U2, .... Un

where Ui = 1 if the selected monetary unit is in error

= 0 if the selected monetary unit is not in error
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2.6.3 Discussion

Both error assignment methods are applicable to all the sampling 

methods. The taint method has gained wide acceptance by 

practising auditors and is the method used most often by auditors 

in the USA. The AON error assignment method has gained some 

acceptance in Europe (Wurst, Neter and Godfrey 1989a) but is not 

widely used in general. To illustrate the difference between the 

two methods of error assignment, consider a line item of stated 

value Ir£10 which is overstated by Ir£2. The error assigned to 

the monetary units under each error assignment method is 

illustrated in Table 2.1

Table 2.1 Error Assignment

Monetary Taint AON

Unit

1 0.2 1.0

2 0.2 1.0

3 0.2

oo

4 O to

oo

5 0.2

oo

6 0.2

oo

7 0.2

oo

8 0.2 0.0

9 0.2

oo

10 0.2 0.0
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An advantage of the taint approach is that small error amounts 

on large line items have a high probability of being detected, 

i.e an increased visibility of small taintings. A disadvantage 

is that with the taint approach, the commonly used bounds are 

heuristic and lack mathematical justification.

The AON approach on the other hand is statistically valid. It 

can be shown that the Stringer and Cell bounds will always exceed 

the population total error amount with a probability greater than 

or equal to the nominal confidence level. The AON bound has 

however serious disadvantages which may be the reason why it is 

not widely used by practitioners. A bound has a greater 

variability when calculated with the AON method of error 

assignment than with the taint method. A second disadvantage 

is that the AON bound does not use all the information available. 

For example, a monetary unit from a line item in error may be 

classified as a zero error and hence information about the error 

amount in the line item is not used. Small tainted errors are 

more visible because they are embedded in large line items and 

with PPS sampling they have a large chance of selection with the 

taint error assignment. But as Leslie, Teitlebaum and Anderson 

(1979, p269) point out, the AON approach 'loses the benefit of 

the increased visibility of small taintings in the many audit 

applications where small taintings are typical'.
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2 .7  The Po int  E st im ator  o f  th e  T o ta l  Error Amount

A point estimate is a single value obtained from the data 

intended to represent the 'best estimate' of the unknown 

population value (i.e. the population parameter). A point 

estimator of the total used with probability proportional to size 

sampling was suggested by Horvitz and Thompson (1952) and is 

defined by

LHT

where y i is the measurement for the ich item and ni is the 

probability that the ith item is selected into the sample. This 

is the best known general estimator of the population total for 

unequal probability sampling (Cochran, 1977, p 259). It shall be 

shown in Chapter 4 that, when sampling of line items is done with 

replacement, the probability of selecting a particular item, item 

i say, in a sample of size n is nBj/B. The form the Horvitz- 

Thompson estimator takes when estimating the total error amount

T - £  (B, - A,)
i = 1

is therefore

f  -  X "  -A) _ B y ' Ai) . _ f lA
"  h  ^  -  n £ i  B i  "  n l '  1

B
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In this study, the point estimator of the total error amount is 

used with both the taint and AON error assignment methods. It 

is defined as

A

T = ti w ith  th e  t a i n t  e r r o r  a ss s ig n m e n t

ui w ith  th e  AON a ss ig n m en t

This estimator will be used when sampling is done with and 

without replacement.

In sieve sampling, where the achieved sample size nQ may not 

equal the nominal sample size, the summation is over the 

achieved sample size, 

i. e.

_ n °
A ^  «— ̂  f

T = — t i w ith  t a i n t  e r r o r  a ss ig n m en t
n i = 1

B= —  Uj w ith  AON e r r o r  a ss ig n m en t
n i = 1

In stabilised sieve sampling it is necessary to adjust this 

estimator to avoid bias. The adjustments are defined in 5.3.

The point estimator has been studied empirically by Kaplan 

(1973), Neter and Loebbecke (1975) and Duke, Neter and Leitch
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(1982) using simple random sampling of monetary units with the 

taint error assignment method. Wurst, Neter and Godfrey (1989a) 

derived the statistical properties of the estimator with both 

assignment methods for simple random, cell and sieve sampling of 

monetary units. This study investigates the estimator with both 

error assignments for the six sampling methods outlined in 2.2.

The mean and variance of the estimator for each sampling method 

are derived in Chapter 5. The precision of the estimator for 

each sampling method is compared with the precision for simple 

random sampling of monetary units using the design effect 

suggested by Kish (1965, p258).

2.7.1 The Design Effect

The design effect is a measure of efficiency for comparing two 

sample designs. It is defined as follows;

'The design effect or deff is the ratio of 
the actual variance of a sample design to 
the variance of a simple random sample of 
the same number of elements' (Kish, 1965, 
p258) .

The design effect has two primary uses:

(i) In appraising the efficiency of the sample design compared 

to simple random sampling;

This involves measuring the accuracy of a sampling method 

compared to simple random sampling. If deff is less than
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one, the sampling method is more precise than simple random 

sampling. If deff is greater than one, the accuracy of the 

sampling method under consideration is less than simple 

random sampling and if deff is equal to one the accuracy of 

the two sampling methods are the same. Simple random 

sampling acts as a useful basis of comparison for other 

methods of random sampling.

(ii) In sample size planning;

The design effect may be interpreted as the proportion 

increase or decrease in the sample size of simple random 

sampling to obtain the same precision as the sampling 

method under consideration. For example, if it is 

estimated that the design effect of a particular sampling 

method compared to simple random sampling is .8 with a 

sample of size n = 60, then a simple random sample of size 

n = 75 (i.e. 60/.8) is needed to give the same precision. 

Similarly, if the design effect is 1.2 based on a sample of 

size n = 60, simple random sampling will give the same 

precision with a sample of size n = 50 (i.e. 60/1.2).

Studies, notably those carried out by Kaplan (1973) and Neter and 

Loebbecke (1975) have shown that the confidence intervals 

obtained using the point estimator and the central limit theorem 

are unreliable (see Chapter 1) . This study will not use the 

central limit theorem to obtain upper bounds. However, the 

theoretical properties of the point estimator are considered
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worthy of investigation because they may give some indication of 

how the heuristic upper bounds estimates of the total error 

amount may be expected to behave for the different sampling 

methods. Wurst, Neter and Godfrey (1989a, 1989b) investigated 

the performance of simple random, cell and sieve sampling using 

the Stringer and Cell bounds for estimating the total error 

amount and found that the sampling methods have the same effects 

on the bounds as on the point estimator.

The design effect is derived for systematic, cell, sieve, Lahiri 

and stabilised sieve sampling. For each sampling method, a 

comparative analysis is carried out between the statistical 

properties of this estimator and the properties of the simulated 

sampling distributions of upper bound estimates of the total 

error amount.

2.8 Upper Bound Estimates of the Total Error Amount

In an attempt to overcome the reliability problem of classical 

estimation procedures, confidence bounds have been developed for 

estimating the total error amount using the error taint and the 

error rate components in the sample data which do not depend on 

the assumptions of large sampling theory of classical statistics. 

Most of these bounds are heuristic. No theoretical proof of 

their validity exist and their performance can only be 

investigated empirically. This study looks at three such bounds. 

The notation assumes that m errors are found in a sample of size 

n  and that the total book value amount is B.
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2 . 8 . 1  The S t r i n g e r  Bound

The Stringer bound (1963) is the most widely used non-classical 

procedure for estimating the total error amount (Felix, Leslie 

and Neter, 1982). An upper limit for the total error amount is 

obtained by combining the upper limit for the error rate obtained 

in the sample with the sample error amounts. It is defined below 

for the taint and AON methods of error assignment.

2.8.1.1 The Stringer Bound with the Taint Assignment

With the taint assignment method, and a confidence level of 1-a, 

the bound is defined as

m
STRtunt.i-a =B.P1_a(n, 0) + B £  D - P ^ i n ,  i-1) ] t i

1 = 1

where ta >=t2 . . . . >=tm are the m non-zero taints found in a sample 

of size n. P(i_a) (n,i) is the upper 100 (1-a) percent confidence 

limit for a population proportion of errors when a random sample 

of n is selected and i errors are found in the sample l<=i <= m.

The Stringer bound may be looked upon as a refinement of the 

bound obtained when all the taints are 100%. If P(1.0,(n,m) is the 

upper limit for the proportion of errors, then B . P(1_a) (n,m) is an 

upper limit for the error amount when all the taints are 1. When 

the taints are less than 1 this will overestimate the total error 

amount. Stringer (1963) suggested that the bound be adjusted 

downwards for each taint found in the sample. The Stringer bound
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adjustment for the ith largest taint is;

B.px_a [ n, m) - B. [ (Px.a ( n, i)-P1_a { n, i-1) ]

Similar adjustments are made for the other taints in the sample. 

The Stringer bound then becomes

m
S T R taint.l-a = B  ■ P i-a (n ' m  ) ~B  £  [Px.a (ll; i) -Px.a {ll.i- 1 )] (1-tj)

i = 1

which is equivalent to STRtaintjl_a above.

2.8.1.2 The Stringer Bound with the AON Error Assignment 

With the AON error assignment method, the Stringer bound becomes

SI R aon.l-a = B  • P i -a^n ’ m * )

where m ’ is the number of AON errors found in the sample. This 

is clearly an upper confidence limit for the total error 

amount.

2.8.1.3 Discussion

Studies have shown that the Stringer bound always achieves a 

coverage larger than the nominal and that it is conservative in 

the sense that the estimate of error amount obtained by using 

this bound is usually far in excess of the true error amount (see 

1.5) .
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2 . 8 . 2 The C e l l  Bound

The Cell bound was developed by Leslie, Teitlebaum and Anderson 

(1979, ppl35-147) to provide a bound estimate of the total error 

amount which is not as conservative as the Stringer bound. It 

is obtained by means of an iterative procedure described below.

2.8.2.1 The Cell Bound with Taint Error Assignment

UEL0 =P1.a ( n, 0 )

t  1 t
UELj =max ( UELj _ x + —-, Px.a{n, j) -4) j =1 t o m

n i = i-7

Cellltaint.i-a) =B*UELm

2.8.2.2 The Cell Bound with AON Error Assignment 

With AON error assignment, the Cell bound reduces to

[aon, l-a) ~ P\ - a (n 1 m )

similar to the Stringer bound.
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2 . 8 . 2 . 3  D i s c u s s i o n

Clearly, the Cell and the Stringer bounds with the 'all-or- 

nothing' assignment are equivalent and the bound is an upper 

confidence limit for the total error amount under simple random 

sampling of monetary units. Gill (1983) proved that it is also 

a upper confidence bound under cell sampling and sieve sampling. 

Gill (1983) showed that with this bound under sieve sampling, one 

may run a lower chance than the chosen risk a of rejecting an 

acceptable population but never a higher risk. The Cell (and 

Stringer) bound is included in the simulation study to examine 

its magnitude and its variance. It is calculated for all the 

sampling methods.

2.8.3 The Moment Bound

More recently a bound has been developed by Dworkin and Grimlund 

(1984, 1986) called the Moment bound. This bound assumes that 

the sampling distribution of the mean error can be represented 

by a three-parameter Gamma distribution. To estimate the 

parameters of the Gamma distribution, an analysis of the error 

rate and error taint components is carried out. The error rate 

is based on the binomial likelihood function with the sample size 

and the proportion of errors found in the sample taken to be the 

binomial parameters. The error taint distribution is based on 

the first three sample moments as determined from the taints 

observed in the sample. The error taint distribution also uses 

a hypothetical taint denoted by t*. This is used like any other

80



observation when calculating the sample moments of the error 

taint distribution. It ensures that the bound value is not zero 

when no errors occur in the sample. The three moments of the 

error rate distribution and the three moments of the taint 

distribution are combined to obtain a three moment representation 

of the sampling distribution of the mean error. The Moment bound 

is defined below for the taint and AON methods of error 

assignment.

2.8.3.1 The Moment Bound with the Taint Error Assignment

The mean error is assumed to have a Gamma distribution.

f( t ) 1
D.TA

t  -  G) 
D

A  -
exp [- ( t -G)

D ]

The parameters, A, D and G are estimated from the sample data by 

combining the first three moments of the sampling distribution 

of the error taint with the first three moments of the sampling 

distribution of the error rate as follows;

1 Average and Hypothetical Error Taint

t* = . 8 1  [1 -  . 6 6 7  t a n h d O t J ]  [1 + . 6 6 7  t a n h  ( m / 1 0 ) ]
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2 Error Taint Moments about Zero

TNj

m
(t-)J + £  t}
_______i « 1

(m + 1)
J = 1,2,3

3 Error Rate Moments about Zero

RN: = (m +1)/(n +2)

RN2 = [(m +2)/(n +3)]RNi 

RN3 = [ (m +3)/(n +4)]RN2

4. Mean Error Moments about Zero

UNj = RNj *TNj

u n 2 = [r n 3 *TN2 + (n -1)RN2 *TN2J/n

u n 3 = [RN3 •*TN3 +3 (n -1) RN2*TN!*TN2 +

Mean Error Moments about the Mean

UC3 = UNj

UC2 = UN2 - UNj2

UC3 = UN3 - 3UN!*UN2 + 2UN3!

*TN3J /n2
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6. The parameters of the Gamma distribution may be estimated 

from these moments as shown in Johnson and Kotz (1970) as 

follows;

A = 4UC32/UC23 

D = 0.5UC3/UC2 

G = UCa - 2UC22/UC3,

7. The 1-a Upper confidence bound for the Total Error Amount

The 100(1-a)% upper limit for the mean error is obtained by 

using the Wilson-Hilferty approximation (Wilson and 

Hilferty, 1931) to the Gamma distribution and can be 

written as;

CBUa = G + D . A [ 1 +Z1_a/3V"A - 1/9A]3

where z{1_a) is the 1-a percentile of the standardized normal 

distribution.

The 100(1 - a)% confidence bound for the total error amount 

is

MBltaint.l-a) = B *CB1.a
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2.8.3.2. The Moment Bound with the AON Error Assignment

The Moment bound with the AON error assignment is similar to the 

Moment bound with taint assignment except that (1) and (2) are 

changed to take account of the different error assignment method.

They are:

m u _
1 .  um. = —7 / u* = [1 -  - 667  t a n h ( 1 0 0 u m.] * [1 + . 6 6 7  t a n h  ( — ) ]

2 . m
( u * ) j  + y ,  u ±

TN, = ------- i-hd--  j = 1,2,3
J 777 + 1

2.8.3.3. Discussion

The most distinctive feature of the Moment bound is the 

hypothetical error t* or u* which ensures that the bound has a 

non-zero value when the sample contains no errors. Its value 

has been selected so that the Moment bound is approximately the 

same as the Stringer bound when no errors occur in the sample. 

As the number of errors increases in the sample the relative 

impact of the hypothetical error taint decreases. Dworkin and 

Grimlund (1984) give the mathematical development of this bound.
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2.9 The Confidence Levels

A reliable confidence interval of size 1 - a has the property 

that it will include the true value 100(1 - a)% of the time, in 

repeated sampling. An upper confidence bound has the property 

that the true value is less than the upper bound 100*(1 - a )% of 

the time, in the long run. The upper confidence bound is of 

particular interest to the auditor in trying to assess the 

maximum amount of error present in a set of accounts . An auditor 

has to decide what value of a to choose before carrying out 

substantive testing. The chosen confidence level will depend on 

the circumstances of the audit. For example, the confidence 

level at the substantive testing stage will depend on the degree 

of confidence the auditor can derive from the previous stages of 

the audit process (Grimlund and Felix, 1987) . Studies have shown 

that some bounds perform differently at different confidence 

levels (see for example Jenne, 1982; Grimlund and Felix, 1987; 

Chan and Smieliauskas, 1990). Wurst, Neter and Godfrey (1989b) 

stated that confidence levels of .85 and .95 are frequently used 

in audit practice and Grimlund and Felix (1987) suggested that 

a confidence level as low as .70 may be used in practice, when 

auditors develop their overall confidence using other sources of 

information. McRae(1982, p99) deduced that while the choice of 

a confidence interval is almost invariably a subjective estimate 

based on the auditor's prior knowledge about the quality of the 

accounting procedures in the particular audit, a degree of risk
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somewhere between 30% and 5% seems a reasonable range from which 

to choose. In this study, the bounds are calculated at three 

nominal confidence levels of .70, .85, .95.

2.10 The Simulation Study

In a situation where there is no clear-cut theoretical solution, 

one way of attempting to assess the properties of alternative 

procedures is by simulation. This is particularly true of 

auditing where the populations are finite and real (Smith, 197 9) . 

In this study, a large scale simulation study is carried out to 

investigate the performance of the sampling methods for each 

bound on the actual accounting populations. Samples are drawn 

from each audit population using the six sampling methods 

outlined in 2.2. For each sample design, one thousand 

replications are performed using sample sizes typically used in 

substantive testing.

In practice, the extent of substantive testing, depends upon the 

decisions taken about the effectiveness of the systems of 

internal control (Shaw, 1980, p61). The auditor may 'obtain 

assurance from the presence of reliable internal controls and 

thereby reduce the extent of substantive testing' (APC, 1980d). 

If the auditor is satisfied that the internal controls have 

operated satisfactorily throughout the period under review, then 

the level of substantive testing may be reduced (Coopers and 

Lybrand, 1985). If the overall level of assurance derived from 

compliance and analytical procedures is high, a smaller sample
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size will suffice for substantive testing. In a recent study of 

medium-sized accounting firms it was found that samples sizes of 

25-100 were used in auditing in the UK (Abdul-Hamid, 1993) . In 

this study, samples of sizes 30, 60 and 100 are drawn from each 

audit population using the six sampling methods outlined in 2.2.

Upper bound estimates of the total error amount are calculated 

using the Stringer, Cell, and Moment bounds with both error 

assignment methods at each confidence level. The computations 

are carried out on a VAX 623 0 computer. The programmes are 

written in Fortran and the NAG (1988) and the IMSL (1987) 

libraries of subroutines are used for the statistical analysis. 

The programmes are listed in Appendix K.

2.11 Criteria for Assessing the Performance of the Sampling 

Methods

Royall (1970) stated that the most important criterion for 

evaluating theoretical calculations is their ability to predict 

the actual performance of sampling and estimation procedures in 

practical problems. In this study, the criteria used for 

assessing the performance of the sampling methods are (i) the 

reliability, (ii) the tightness and (iii) the precision of the 

bound estimates of the total error amount. For any real 

accounting population, the performance measures may differ for 

different bounds, for different sample sizes, and for different
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confidence levels. When reference is made to the performance of 

a sampling method, it is assumed that the bound, the confidence 

level and the sample size are known. When it is not clear what 

they are, they are specified.

2.11.1 Reliability

Reliability measures the coverage of the bounds. It refers to 

the proportion of the 1000 replications in which the value of 

bound is greater than or equal to the true error amount in the 

population. The observed coverage is an estimate of the true 

probability that the bound will be correct in repeated sampling 

of the same size from the same population, i.e., the confidence 

level. Since the bounds are heuristic, the actual confidence 

level may not be equal to the nominal confidence level and has 

to be ascertained by experiment. A sampling method is said to 

be reliable for a particular bound if the actual coverage 

obtained in the 1000 replications reaches the nominal confidence 

level. The coverage statistics are calculated for each sampling 

method, using each of the bounds. Numerous studies have used 

the coverage as a measure of the reliability of a sampling method 

(see, for example, Neter and Loebbecke, 1975; Reneau, 1978; 

Dworkin and Grimlund, 1984; Wurst, Neter and Godfrey, 1989b; 

Atkinson, 1990; Chan and Smieliauskas, 1990).
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2 . 1 1 . 2  T ig h tn e s s

Tightness refers to the difference between the bound value and 

the true error amount T. If the average size of the bound in 

repeated sampling is near the true error amount for a particular 

sampling method, the sampling method is said to be tight for that 

bound. If the average size of the bound is substantially greater 

than the true error amount for a sampling method, the sampling 

method is said to be conservative for that particular bound.

A conservative sampling method will lead to too many rejections 

of populations on the basis of a material error when a material 

error does not exist.

Various measures of tightness have been used in previous 

research. Garstka (1977) presented both the number of upper 

bounds which exceeded the true error amount and the average 

amount by which it was exceeded. Reneau (1978) used the upper 

bound estimate expressed as a proportion of the total error 

amount to estimate the tightness. Wurst, Neter and Godfrey 

(1989b) used the mean bound as the measure of tightness. The 

measure of tightness used in this study is the difference of the 

mean bound and the total error amount in the population, 

expressed in units of the total error amount. It is defined as

T - T 
T

where T is the mean of the upper bound averaged over the 1000 

replications. This measure indicates how close the mean bound 

is to the total error amount expressed in units of the total 

error amount.
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2 . 1 1 . 3 P r e c i s i o n

Precision refers to the variability of the bound in repeated 

sampling. For any given tightness and reliability, a less 

variable bound is preferred to a more variable bound for helping 

to distinguish between acceptable and unacceptable total error 

amounts (Wurst, Neter and Godfrey, 1989b). In keeping with 

previous research (see, for example, Neter and Loebbecke, 1975; 

Reneau, 1978; Plante, Neter and Leitch,1985; Wurst, Neter and 

Godfrey,1989b) , this study uses the standard deviation of the 

1000 replications as a measure of the precision for each bound 

using each sampling method. In addition, the comparative 

variability of two sampling methods is measured in terms of the 

relative efficiency. It is the ratio of the variance of a 

particular bound using the two sampling methods. This concept 

is equivalent to the design effect, defined for the point 

estimator in 2.7.1.

2.12 The Data Analysis

Analysis of variance (ANOVA) models are constructed to test the 

performance of the sampling methods using different sample sizes 

and upper bound estimates of the total error amount for 

populations with differing error rates and taint sizes. Five 

factor analysis of variance models are constructed using the 

performance measures as the dependent variables and the sample 

size, error rate, taint size, bound and sampling method as the 

independent variables. Separate ANOVA models are derived for
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each performance measure, for each nominal confidence level and 

for each error assignment. The purpose of the models is to 

determine to what extent the performance measures are influenced 

by the different sampling methods and to what extent the sampling 

methods interact with other factors to affect the performance 

measures. T-, Tukey and Dunnett tests for comparisons of means 

are used to test for significant differences between the sampling 

methods with respect to coverage, tightness and precision. The 

comparative precision of each bound is also compared with the 

comparative precision of the point estimator for the different 

sampling methods. The SPSSx software package (SPSS, 1987) is 

used to estimate the ANOVA models. The details of the models and 

the results are given in Chapters 6, 7 and 8.

2.13 Chapter Summary

The research methodology employed to achieve the objectives has 

been outlined in this chapter. The study investigates the 

performance of six monetary-unit sampling methods in substantive 

auditing under various population conditions. Four of these are 

currently used in practice, (i.e., simple random, systematic, 

cell and sieve sampling), one 'Lahiri sampling' has not been 

previously applied in auditing and a new sampling method 

'Stabilised Sieve sampling' will be developed in this study for 

use in substantive testing. The investigation involves both a 

theoretical point estimator analysis and an empirical study of 

upper bound estimates of the total error amount.
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Two accounting populations of debtors from the Public Sector are 

examined, and their error characteristics are determined by means 

of large scale investigative audits. Thirty audit populations 

are created with different error rates and error amounts 

reflecting the error patterns found in the investigative audits 

and these are used to test the comparative performance of the 

sampling methods.

Samples of size 30, 60, 100 are drawn from each audit population 

using each sample selection method. One thousand replications 

are performed for each sample size and for each sampling plan. 

Upper bound estimates of the total error amount are calculated 

using the Stringer, Cell and Moment bounds with the taint and AON 

error assignment at the 95%, 85% and 70% confidence levels.

The criteria for assessing the performance of the sampling 

methods include reliability, tightness and precision of the upper 

bound estimates. Five factor analysis of variance models are 

constructed using the performance measures as the dependent 

variables and the sample size, error rate, taint size, bound and 

sampling method as the independent variables. The purpose of the 

models is to determine to what extent the performance measures 

are influenced by the different sampling methods and to what 

extent the sampling methods interact with other factors to affect 

the performance measures. The comparative precision of each 

bound is also compared with the comparative precision of the 

point estimator for the different sampling methods.
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The f o l l o w i n g  c h a p te rs  w i l l :

(ii)

(iii)

(iv)

(v)

detail the actual accounting populations, the 

investigative audits, the error models and the study 

populations (Chapter 3);

investigate the properties of the sampling methods 

(Chapter 4);

derive the analytical properties of the point 

estimator under each sampling method (Chapter 5);

analyse the results of the simulation study (Chapters 

6, 7 and 8);

provide a summary of the research, the conclusions 

drawn from the research and recommendations for future 

research (Chapter 9).
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Chapter 3

The Data

3.1 Introduction

To assess the performance of the different sampling methods, it 

is necessary to investigate the results obtained when the methods 

are applied to a spectrum of accounting populations. These 

populations can be created in two main ways;

(i) Hypothetically, by postulating various population 

characteristics and building a model to capture the 

essential features of the populations. This approach can 

fail to represent the relationships that exist between 

different population parameters in real accounting 

populations. It may also fail to capture all the essential 

features of real populations.

(ii) Experimentally, by carrying out audits on a wide range of 

accounting populations. This method is not feasible due to 

cost.
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The approach taken in this study is essentially a hybrid of the 

two methods above. An experimental study involving large audits 

of two accounting populations with different characteristics, is 

carried out and the relationships between different population 

parameters are identified for each population. Hypothetical 

populations are then created by choosing different values for 

population parameters while maintaining consistency with the 

relationships between parameters observed in the real 

populations. Neter and Loebbecke (1975) used a similar approach 

to generate populations for testing the performance of sampling 

methods in substantive auditing. They studied four populations 

and adjusted the error distributions in various ways to generate 

audit populations whose results were expected to be typical of 

real world audits. This study examines two populations of

debtors in commercial entities in the Irish Public Sector and 

modifies the error distributions to generate audit populations 

in various plausible ways. These audit populations are then used 

to test the performance of the sampling methods.

This chapter describes the populations used, giving in 

particular:

(i) A summary of previous research on error 

characteristics in debtors accounts.

(ii) The detailed characteristics of the book values of two 

populations of debtors obtained from commercial 

entities in the Public Sector.
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(iii) The investigative audits which were carried out on 

each population to obtain information on the error 

patterns.

(iv) The models used to create the audit populations for 

use in the empirical investigation of the sampling 

methods.

(v) The characteristics of the created audit populations.

3.2 Prior Research on Accounting Populations and Error 

Characteristics

The need for empirical study of error characteristics in 

accounting populations is well established (see, for example 

Garstka, 1977; McRae 1982; Jenne, 1986; Menzefricke and 

Smieliauskas, 1987a). Knight (1979) noted that many auditors 

choose the appropriate statistical sampling technique depending 

on the nature of the population being sampled and the prior 

knowledge of likely error rates. With increased knowledge of 

error distributions, auditors can more effectively and 

efficiently design audit sampling plans to detect errors. A 

limited number of databases of error characteristics in 

accounting populations are available and their characteristics 

are summarised in Table 3.1
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Table 3.1 Available Databases of Accounting Errors

Author Source of Data Number of 
Populations.

Line Item Error 
Rate (Debtors)

Taint Size (exc. 
100% taints)

Occurrence of 
100% taints

Direction of l 
Debtors Errors

Neter and
Loebbecke
(1975)

Freight and 
Manufacturing 
Companies (US)

4 (3 debtors) 5.7, 7.3, 28.6 0.5% - 50% Mostly in low-
valued items

All
Overstatements 1

Ramage jCriegar 
and
Spero(1979)/ 
Johnson, Leitch 
and Neter 
(1981)

Peat, Marwick, 
Mitchell (US)

97 populations 
(55 debtors)

< 5% in 72% of 
cases.

> 25% in 4% of 
cases.

>= 20% Mostly in low-
valued items

Mostly
Overstatements.

McRae (1982) Two Accounting 
Firms (UK)

76 populations 
(58 debtors)

< 5% in most 
cases.

> 20% in 5% of 
cases.

< 10% Large-taints in 
low valued items

59%
Overstatement

Ham, Losell 
and
Smieliauskas
(1985)

Price
Waterhouse,
(US)

20 medium sized 
firms over 5 
years (58 
debtors)

< 5% in 50% of 
cases.

72%
Overstatements

Johnson (1986) Six UK National 
Accounting firms

55 manufacturing 
firms

A slight bias
towards
overstatements

Kreutzfelt and 
Wallace (1986)

Arthur Anderson
(US)

260 engagements 
258 (debtors)

2.36% on 
average

66%
Overstatements

These data sets have been used by various researchers to generate 

populations which are considered to be typical of actual 

accounting populations. The generated populations are used to 

examine the performance of various sampling plans. The problem 

with this approach is that, when considering a sampling plan for 

populations unrelated to the generated ones, one can never be 

sure that the models used will represent the actual situation 

being studied. Certain patterns do emerge from these data sets 

which appear to be common to all the populations. For example,

(i) The line item error rate in debtors accounts is

usually small.
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(ii) The average taint size is small in most of the 

populations

(iii) Line items which are 100% in error occur predominantly 

in the low valued items

But differences also exist. One major difference which could 

have important implications for the choice of sampling plan 

concerns the incidence of understatement and overstatements. 

Errors in debtors from the US are mostly overstatements while 

data collected in the UK show only a slight bias towards 

overstatements. The direction of errors is an important factor 

when deciding on a sampling plan. For example, since monetary- 

unit sampling selects line items with probability proportional 

to their recorded value and not their actual value, this 

selection method may not be the most effective type of sampling 

when understatement errors play a dominant role.

As far as the author is aware, there is no data on book value and 

error characteristics available from Irish firms. Also there 

appears to be no data available from the Public Sector. In 1989, 

a Panel on Nonstandard Mixtures of Distributions set up by the 

Committee on Applied and Theoretical Sciences of the National 

Research Council Board of Mathematical Sciences, concluded that 

'concerted efforts must be made to improve the statistical 

methodologies used in the Public Sector.' They also noted that 

there is no information available on Public Sector accounting 

populations. (Committee on Applied and Theoretical Research, 

1989) .
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This study obtains data from two commercial entities of debtors 

in the Irish Public Sector and uses these to generate audit 

populations whose results are expected to be typical of such 

populations. The performance of the monetary-unit sampling 

methods are tested on the audit populations.

3.3 Characteristics of the Book Values of Two Irish Public 

Sector Debtors

Two populations are used as a basis for this study. They were 

obtained from commercial entities from the Public Sector in 

Ireland audited by the office of the Comptroller and Auditor 

General. Both populations consist of all positive balances of 

debtors. Line items having zero or negative book values were 

eliminated on the assumption that if these were not of negligible 

importance, the auditor would wish to audit them separately 

(Neter and Loebbecke, 1975) . Population 1 consists of 3725 

debtors from a state scientific consultancy firm and Population 

2 consists of 662 debtors from a government industrial support 

body which provides grant aid to industry setting up in Ireland. 

Tables 3.2 to 3.5 contain frequency tables of the book values and 

the main descriptive parameters of the book value distribution 

for each population.
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T a b l e  3 .2  F r e q u e n c y  T a b l e  o f  Book V a l u e s  o f  P o p u l a t i o n  1

Amount (Ir£s) No. of % Line Monetary Amount % Monetary

Line Items Items (Ir£s) Amount

0-500 2601 69.8 452,988 12.9

500-1000 523 14.0 375,908 10.7

1000-1500 168 4.5 210,834 6.0

1500-2000 95 2.6 167,998 4.8

2000-2500 67 1.8 151,015 4.3

2500-3000 56 1.5 153,488 4.4

3000-3500 34 0.9 110,320 3 .1

3500-4000 25 0.7 94,899 2.7

4000-4500 19 0.5 81,041 2.3

4500-5000 23 0.6 110,327 3.1

5000-10000 74 2.0 512,392 14.5

10000-20000 21 0.6 289,187 8.2

20000-30000 6 0.2 152,001 4.3

>30000 13 0.3 660,212 18.7

Total 3725 100 3,522,610 100
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Table  3 .3  Book Value Parameters o f  P o p u la t io n  1

Total Book Value Ir£3,522, 610.0

Mean Ir£945.7

Standard Deviation 3,661.5

Skewness 14.00

Kurtosis 259.1

Minimum Ir£2.0

First Quartile Ir£88.0

Median Ir£240.0

Second Quartile Ir£646.0

Maximum Ir£96,962.0

Number of Line Items 3725
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T a b l e  3 .4  F r e q u e n c y  T a b l e  o f  Book V a l u e s  o f  P o p u l a t i o n  2

Amount No.of Line Items % of Line Monetary % Monetary

(Ir£s) Items Amount (Ir£s) Amount

0-500 130 19.6 19,884 0.2

500-1000 49 7.4 33,597 0.3

1000-2000 69 10.4 101,427 0.9

2000-3000 51 7.7 123,770 1.1

3000-4000 45 6.8 156,487 1.4

4000-5000 34 5.1 155,484 1.3

5000-6000 28 4.2 153,094 1.3

6000-7000 21 3.2 136,978 1.2

7000-8000 20 3.0 151,667 1.3

8000-9000 10 1.5 85,138 0.7

9000-10000 9 1.4 83,976 0.7

10000-15000 40 6.0 491,178 4.2

15000-30000 61 9.2 1,299,087 11.2

30000-60000 48 7.3 1,988,827 17.1

60000-100000 30 4.5 2,239,324 19.2

>100000 17 2.6 4,410,913 37.9

Total 662 100 11,630,831 100
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Table 3 . 5  Book Value Parameters o f  P o p u la t io n  2

Total Book Value Ir£ll,630,831.0

Mean Ir£17,569.2

Standard Deviation 54,687.8

Skewness Ir£10.0

Kurtosis 130.1

Minimum Ir£l.0

First Quartile Ir£756.6

Median Ir£3,740.7

Third Quartile Ir£13,328.6

Maximum Ir£880,918.2

Number of Line Items 662
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3.3.1 Comparison of the Book Value Characteristics of the

Two Populations.

The characteristics of the two populations of book values are 

similar to that found in other studies, in that they are both 

highly skewed and in each case a small proportion of the line 

items account for a large proportion of the book value total 

(e.g. Neter and Loebbecke, 1975) . The total book value of the 

13 largest accounts in Population 1 represents 18.7% of the total 

population amount and in Population 2, the largest 17 accounts 

represents 37.9% of the total book value amount.

The two populations also display contrasting features. 

Population 1 consists of a relatively large number of small 

debtors while Population 2 consists of a relatively small number 

of large debtors. The number of line items in Population 2 is 

less than one fifth that of Population 1. Also, the average 

book value amount in Population 2 is nearly twice that of 

Population 1 and the median book value amount in Population 2 is 

nearly sixteen times that of Population 1. Plante, Neter and 

Leitch (1985) noted that the variation in sampling method 

performance could be substantial when the line item sizes are 

large.

3.4 The Investigative Audits and the Error Patterns

Audits were carried out on each population to investigate the 

error distributions. Stratified random samples of line items
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with disproportionate allocation were selected for auditing from 

each population. Stratification by line item size was used to 

investigate error characteristics in line items of differing 

sizes. The purpose was to obtain sufficient information on error 

patterns to be able to model the errors in each population.

3.4.1 The Investigative Audit of Population 1

A stratified random sample of 213 line items was selected with 

disproportionate allocation for auditing from Population 1. The 

population was divided into four strata including a stratum 

containing the largest items which was subjected to 100% 

sampling. Table 3.6 shows the sample allocation among the strata 

in Population 1.

Table 3.6 Sample Selection from Population 1

Stratum Book value No. of Line Items Sample Size

1 0-500 2601 80

2 500-5000 1010 100

3 5000-30000 101 20

4 >30000 13 13

Total 3725 213

3.4.1.1 Characteristics of Errors in Population 1

A total of sixteen errors was found in the audit of 213 line 

items from Population 1. Since the sample allocation among the
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strata was not proportionate to the strata size, it was necessary 

to use weighting to obtain the sample estimates of the population 

error rate and the standard deviation of the error rate. 

Formulae for the weighted estimates are given in Appendix A. The 

estimated population error rate is 0.055 with a standard error 

of .016. Table 3.7 gives the distribution of the error incidence 

across strata and the characteristics of the error taints.

Table 3.7 Sample Results from Population 1

Stratum Sample

Size

No. of 

Errors 

(100% 

taints)

Line Item 

Error Rate

Average 

Error 

Amount 

(Ir£s)

Ave. Taint 

(inc.100%)

Ave. Taint 

(exc.100%)

1 80 3 (3) . 0375 143.9 1 -

2 100 9 (4) .09 1173 0.502 .10415

3 20 3 (0) 0.15 179 0.12 0.012

4 13 1 0.077 120 0.003

With such a limited amount of information on the actual errors, 

it is not possible to make definitive extrapolations to the 

population. However, the following observations are made:

1. All errors are overstatements;

2. 7 of the 16 errors are 100% overstatements and all of these 

occur in the first two strata. All the errors in the first 

strata are 100% overstatement errors ;
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3. The taints tend to decrease with book value size. Taints, 

other than the 100% overstatements range from .09% to 28%.

4. If the top stratum is excluded, the error rate tends to 

increase with book value size;

5. The amount of error does not tend to increase with book 

value size.

3.4.1.2 Comparisons with Other Studies

The findings coincide with those of other studies in many 

respects. Johnson, Leitch and Neter (1981) found that 100% 

overstatement errors are frequently present to a large extent in 

debtors and that there is strong evidence to suggest that error 

rate increases as the size of the line item increases. Neter 

and Loebbecke (1975) found that small line items have larger 

taints than larger line items and Neter, Johnson and Leitch 

(1985) noted that in the majority of audits, the size of positive 

taints tends to vary inversely with book amounts.

3.4.2 The Investigative Audit of Population 2

A stratified random sample of 217 line items was selected with 

disproportionate allocation for auditing from Population 2. The 

population was divided into six strata including a stratum 

containing the largest items which was subjected to 100% 

sampling. Table 3.8 shows the sample allocation amongst strata 

for Population 2 .
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T a b l e  3 .8  Sam ple S e l e c t i o n  from  P o p u l a t i o n  2

Stratum Book Value Population Size Sample Size

1 0-500 130 35

2 500-5000 248 60

3 5000-30000 189 60

4 30000-60000 48 25

5 60000-100000 30 20

6 >100000 17 17

Total 662 217

3.4.2.1 Characteristics of Errors of Population 2

A total of sixteen errors was found in the audit of 217 line 

items from Population 2 . Again, since the sample allocation 

among the strata was not proportionate to the strata size it was 

necessary to use weighting to obtain the sample estimates of the 

population error rate and the standard deviation of the error 

rate. Formulae for the weighted estimates are given in Appendix 

A. The estimated population error rate is 0.081 with a standard 

error of .017. Table 3.9 gives the distribution of the error 

incidence across strata and the characteristics of the error 

taints.
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Table 3 .9  Sample R e s u l t s  from P o p u la t io n  2

Stratum Sample

Size

No. of 

Errors 

(100% 

taints)

Line Item

Error

Rate

Average 

Error 

Amount 

(Ir£s)

Ave. Taint 

(inc.100%)

Ave.

Taint 

(exc.100%

1 35 2 (2) .06 206 1

2 60 8 (7) . 13 2917 0.99 0.93396

3 60 2 (1) .03 5432 0.67 0.34671

4 25 1 (1) .04 38,822 .988

5 20 3 (1) . 15 58,889 0.89 0.8423

6 17 0 0 0 0

Again, with such a limited amount of information on the actual

errors, it is not possible to make definitive extrapolations to

the population. However, the following observations are made:

1. All error are overstatements;

2. 75% of the errors are 100% overstatements. All the errors 

in the first strata are 100% overstatement errors;

3. The taints do not tend to decrease with book value size. 

Taints, other than the 100% overstatements, range from 35% 

to 98%;

4. The line item error rate is highest in the stratum with the 

largest book value items;

5. The amount of error increases with book value size.
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3 . 4 . 2 . 2  Comparisons w i th  P o p u la t io n  1 and w i th  P rev ious

Research

The error patterns in this population differ in many respects 

from the error patterns found in Population 1. The taints are 

larger and the proportion of 100% overstatement errors is greater 

in Population 2 than in Population 1. Also, in Population 1, the 

taints size tends to decrease with book value size and line item 

error rate increases with book value size (excluding the top 

stratum) but this is not the case in Population 2. However, 

these findings coincide with some aspects of the research carried 

out by Neter and Loebbecke (1975)„ They found that there is no 

difference in the error rate for large and small line items. 

Neter and Loebbecke (1975) also found that error amount tends to 

increase with the book value size.

The main difference between the error patterns found in 

Population 2 and the findings of other researchers is that the 

average taint size is substantially larger and the incidence of 

100% errors is greater in Population 2 than in any of the 

previous populations studied .

3.5 The Audit Populations

In order to be able to investigate the sampling methods under a 

wide range of conditions, audit populations with different error 

rates and error amounts were created on the basis of the observed
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error patterns found in the two accounting populations described 

above. The error rates and error taint levels observed in the 

investigative audits were varied consistently to provide a range 

of audit populations with error patterns that might occur in real 

audit situations. Five different error rates and three different 

taint levels were used to create the audit populations giving 

fifteen audit populations for each of the two accounting 

populations. This approach is similar to that used by Neter and 

Loebbecke (1975) where study populations were constructed to 

exhibit the same error patterns but different error occurrence 

rates. In addition, a proportion of 100% taints was generated 

into each audit population in keeping with previous research 

which has shown that 100% taints are present in many real 

accounting populations (see, for example, Johnson, Leitch and 

Neter,1981).

3.5.1.1 The Error Rates and Error Taints of Audit Populations 

from Population 1

Audit populations were created for Population 1 with error 

patterns reflecting the patterns found in the sample data.

3.5.1 The Error Rates for Population 1

Errors were generated into Population 1 with five different error 

rates. Table 3.10 shows the error rate in each stratum for each 

overall error rate. In addition, the top stratum with an error 

rate of 0.08 was included.
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T a b l e  3 . 1 0  L i n e  Item E r r o r  R a te s  i n  P o p u l a t i o n  1

Error Rate Rate 1 Rate 2 Rate 3 Rate 4 Rate 5

Stratum 1 .0125 .025 . 0375 . 075 . 1125

Stratum 2 .03 . 06 .09 .18 .27

Stratum 3 .05 .10 .15 .30 .45

Overall . 019 .037 .055 .110 .165

Error *

* Weighted to take account of disproportionate allocation and corrected to 

include the top stratum

In this choice of error rate distribution, it is assumed that the 

relative error rates between strata remain the same as the 

overall error rate increases. The error rate 3 in Table 3.8 is 

the exact error rate found in the sample. The error rates 1 and 

2 are one third and two thirds times the set of sample error 

rates respectively. The error rates 4 and 5 are twice and three 

times the set of sample error rates respectively. This set of 

error rates provides a range of audit populations with error 

patterns that might occur in real audit situations and enables 

the sampling methods to be tested under different conditions.

3.5.1.2 The Taint Distribution for Population 1

To obtain the taint distribution for Population 1, the error 

taint was modeled on the corresponding book value and the model 

was used to predict the error taint in the items containing
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errors. Some previous studies use theoretical probability 

distribution functions (e.g. Plante, Neter and Leitch, (1985) and 

Dworkin and Grimlund (1984) use the chi-squared distribution, and 

Wurst, Neter and Godfrey (1989b) use the exponential 

distribution) to seed errors into the book values. However, 

other studies (e.g. Neter and Loebbecke, 1975, and Duke (1980) 

and Duke, Neter and Leitch, 1982) fit a probability function to 

the sample data and use this to seed errors into the population 

and this research takes a similar approach. A simple linear 

regression model is fitted to the data obtained from the 

investigative audit. Estimates of the regression coefficients 

are based on the actual data obtained in the investigative 

audits. Line items which are not in error and items with 100% 

taints are not included in the taint modelling. The purpose of 

the regression analysis is to predict the taint value other than 

1 or 0 from a particular book value in error. To improve the 

fit, it was necessary to transform both the independent and 

dependent variables and the following model was obtained;

si t a i n t  -  a + B (  — -— ) + e
b o o k v a lu e

The sample data were used to obtain estimates of the coefficients 

using least squares regression and the regression equation was 

found to be; I  t a i n t  =.09 + 220--------—
b o o k v a l ue

Table 3.11 gives the output from the regression analysis.
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T a b l e  3 . 1 1  R e g r e s s io n  o f  T a i n t  on Book V a lu e  i n  P o p u l a t i o n  1

Predictor Coef Stdev t-ratio P

Constant 0.08356 0.03395 2.49 0.04

1
bookvalue

219.69 42.38 5.18 0.00

s = 0.0767 r2 (adj)=.764

This model has an r-squared of .764, indicating that the model 

is able to take account of 76.4% of the total variation in the 

dependent variable. Examination of the residuals indicated that 

heteroscedasticity was not present. The model assumes simple 

random sampling of line items, rather than the disproportionate 

stratified sample design used here. However, Kish and Frankel 

(1974) demonstrated that the relative biases (ratio of the biases 

to parameter) in the estimates of the regression coefficients are 

small even for small stratified samples and Warren (1971) showed 

that selective sampling may lead to a precision greater than that 

of simple random sampling in the estimated regression 

coefficients.

Three taint sizes were used when generating the study 

populations, one exactly as found in the regression equation, a 

lower and a higher taint with the same pattern as found in the 

regression relationship but with the intercept decreased by one 

third and increased by three respectively. The lower and higher
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taints maintain the relationship of the regression in the sense 

that the correlation between the Vt and 1/bv remain the same but 

the intercept is increased and decreased to obtain lower and 

higher taints.

In addition, a proportion of 100% taints was generated into each 

study population, reflecting the proportions obtained in the 

investigative audit. All the errors in the first stratum were 

100% overstatement errors, 50% in the second stratum were 100%

overstatement errors and there were no 100% taints in the third

stratum.

3.5.2 The Error Rates and Error Taints of the Audit

Populations for Population 2

Audit populations were also created for Population 2 with error 

patterns reflecting the patterns found in the sample data.

3.5.2.1 The Error Rates for Population 2

Errors were generated into Population 2 with five different error 

rates. The number of strata used in the sample investigation was 

reduced to three in order to be able to establish the error

pattern more clearly as suggested by Johnson, Leitch and Neter

(1981) and Table 3.12 shows the five error rates. The error rate 

3 in Table 3.12 is the exact error rate found in the sample. The 

error rates 1 and 2 are one third and two thirds times the set 

of sample error rates respectively. The error rates 4 and 5 are 

twice and three times the set of sample error rates respectively.
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T a b l e  3 . 1 2  L i n e  Item E r r o r  R a te s  i n  P o p u l a t i o n  2

Error Rate 

Stratum

Rate 1 Rate 2 Rate 3 Rate 4 Rate 5

1-5000 0.035 0.07 0.105 0.210 0.315

5000-60000 0.017 0.023 0.035 0.07 0.107

60000-

10000

0.05 0.10 0.15 0.30 0.45

Overall

Error

Rate*

0.029 0.054 0.080 0.161 0.245

* weighted tor disproportionate allocation and including the top stratum.

3.5.2.2 The Taint Distribution for Population 2

As there were only four taints found in the sample audit of 

Population 2 which were less than 1, it was not possible to model 

the taints from the sample data and it was therefore decided to 

use a theoretical distribution to generate the taint values. 

While empirical evidence indicates that no single assumption 

about the shape of the taint distribution will be appropriate in 

all audit situations, many studies have shown (for example, 

Johnson, Leitch and Neter, 1981) that most error taints follow 

a reversed J-shaped distribution with a mass at 1. Exponential 

distributions truncated at 1 have been used in many empirical 

studies to model the taints which are less than 1 (e.g. Wurst, 

Neter and Godfrey, 1989a; Leitch, Neter, Plante and Sinha, 1982; 

Peek, Neter and Warren, 1991) . The exponential distributions 

truncated at 1 with mean taints of .94 for the first stratum,
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0.35 for the second stratum and 0.84 for the third stratum were

used to generate the taints which are less than 1. These taints 

represent the mean taints found in the sample data. Audit 

populations with lower and higher mean taint values were also 

created. The lower mean taints were one third and the higher 

mean taints were three times that of the mean taints found in the 

sample data. The formula for the general truncated exponential 

distribution is given in Appendix B. In addition, 100% taints 

were also generated into the audit populations reflecting the 

proportions found in the investigative audit. 90% of errors in 

the first stratum, 30% of the errors in the second stratum and 

33.3% of the errors in the third stratum were 100% in error.

3.5.3 Creation of the Audit Populations.

In order to be able to test the sampling methods under a wide 

range of conditions, audit populations were created with a 

variety of error rates and error taints. This was done by 

utilizing the error pattern found in the investigative audits to 

assign errors at random to the line items in the population in 

order to achieve the specified error rate. For each population, 

the set of fifteen audit populations was created by generating 

errors into the population with the line item error rates and 

error taint distributions outlined above. The procedure used to 

generate errors into each population is detailed below.
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(i) A proportion of line items corresponding to the 

highest error rate was selected at random from 

each stratum.

(ii) From each stratum, a proportion of line items 

corresponding to the first (lowest) error rate 

was selected from the line items selected in step 

1.

(iii) From the selected line items, the number of line 

items which were 100% in error were allocated 

randomly.

(iv) The remainder of the line items were allocated a 

taint value according to the taint distributions 

described above. Three taint values were 

assigned to each line item in error. This gave 

three audit populations with the same line item 

error rate and with three different taint levels.

(v ) For the each of the other error rates, steps

(iii) to (iv) were repeated using the

appropriate number of extra items selected in 

step 1 to obtain each of the remaining four line 

item error rates.
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Thus, a set of 15 study populations with five different error 

rates and three different taint levels was created using this 

procedure for each of the two populations.

3.5.4 The Audit Populations and the Simulation Study.

Before implementing the simulation study, the high value items 

were eliminated from each population. Leslie, Teitlebaum and 

Anderson (1979) recommended that 'the top stratum cut off should 

generally be set equal to the sampling cell-width'. Also, in 

sieve sampling, line items which have book values greater than 

B/n, where n is the sample size are usually audited on a 100% 

basis (Wurst, Neter and Godfrey, 1989b). Therefore, line items 

which were greater than B/100 were not included in the 

investigation. (In the simulation study, 100 is the largest 

sample taken). Wurst, Neter and Godfrey (1989a) point out that 

auditors usually examine large items on a 100% basis regardless 

of the method of the sample selection because of the exposure to 

risk with these large line items. High value items are not 

included in the bound evaluation. This is consistent with 

current audit practice where

'high value items are aggregated 
separately... and reported separately. They 
are not projected by the sample onto the 
population but are added to the statistical 
projection after the errors in the lower 
stratum are assessed.' (CICA, 1990)

The population characteristics of the two accounting populations 

with the high value items excluded together with the set of 

fifteen audit populations associated with each accounting
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population are given in Appendix C. The set of audit populations 

generated for each population are similar in many respects (e.g. 

standard deviation, skewness and kurtosis) and differ mainly in 

their error amounts caused by the different error rates and taint 

sizes. When the high value items are eliminated, the total book 

value amounts for the two populations are similar but the line 

item sizes for Population 1 are smaller than that of Population 

2. Population 1 consists of a relatively large number of small 

items and Population 2 consists of a relatively small number of 

large line items. This provides an excellent opportunity of 

comparing the sampling methods under different conditions.

3.6 Summary

This chapter describes the data collected and generated for use 

in this study.

Two populations of Public Sector debtors were investigated. 

Population 1 contains a relatively large number of small accounts 

while Population 2 contains a relatively small number of large 

accounts.

The error patterns in the two populations differ in many 

respects. The taints are larger and the proportion of 100% 

errors is greater in Population 2 than in Population 1. The 

taint size tends to decrease with book value size in Population 

1 but this is not the case in Population 2.
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Audit populations were created based on the two populations, with 

error patterns reflecting the patterns found in the investigative 

audits.

The difference in book value characteristics and error patterns 

found in the two populations provide an excellent opportunity of 

investigating the sampling methods under different conditions.

The main difference between the data obtained in this study and 

the McRae (1982, pl78) and Johnson (1987) studies pertains to the 

incidence of overstatements errors. All the errors found in this 

study were overstatements while the McRae and Johnson studies 

found only a slight bias towards overstatements.
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Chapter 4

The Monetary-Unit Sampling Methods

4.1 Introduction

This chapter provides a basis for the subsequent analysis of 

estimation procedures by deriving the properties of six monetary- 

unit sampling methods. It defines a new monetary-unit sampling 

method, 'Stabilised Sieve Sampling', and introduces one which 

has not been applied previously in auditing 'Lahiri Sampling'.

The methods are;

(i) simple random sampling

(ii) systematic sampling

(iii) cell sampling

(iv) Lahiri sampling

(v) sieve sampling

(vi) stabilised sieve sampling
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Simple random sampling of monetary units is widely used in the 

States (Wurst, 1990) and systematic and cell sampling of monetary

units are ■used in audit practice in Canada (CICA, 1990) These

selection methods ignore the line item structure of the

population when selecting the sample of monetary units and

consider the population as a collection of monetary units from 

which a random sample is chosen. Since only the line items 

containing the selected monetary units can be tested by the 

auditor, the selected monetary units are traced back to their 

associated line items. The need to identify the line items 

selected for auditing may at times create some practical 

implementation problems (Wurst, Neter and Godfrey, 1989a).

Lahiri, sieve and stabilized sieve sampling, on the other 

hand,use the line item structure of the population when selecting 

the monetary units. In each of these sampling methods, the line 

items are selected randomly and a monetary unit is chosen from 

each selected item.

Lahiri sampling was proposed by Lahiri (1951) as a convenient 

method of selection for unequal size clusters in survey sampling. 

This sample selection method has never been used in auditing and 

is adapted to the auditing situation in this study.
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Sieve sampling was proposed by Gill (1983) as an alternative to 

the sampling methods currently used in auditing. It has gained 

some acceptance in Europe (Wurst, Neter and Godfrey, 1989a). A 

disadvantage of sieve sampling, which may be an important 

consideration of the auditor, is that the sample size is not 

constant. It varies depending on the random numbers chosen when 

selecting the sample.

Stabilized sieve sampling is a new monetary-unit sampling method 

developed in this study which attempts to preserve the advantages 

of sieve sampling while returning a constant sample size. It 

is defined in detail in 4.3.

In the remainder of the chapter, the selection procedures are 

defined and the characteristics of each sampling method are 

derived. In subsequent chapters the effects of these sample 

selection methods on the behaviour of estimates of the total 

error amount are examined.
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4.2 Notation

The notation used in this chapter is given in table 4.1. 

Table 4.1 Notation

N The number of line items in the population

Bi The book value of the ith line item

ID
D max The book value of the largest line item

B £NU1 Bi is the total book value amount of the 

population.

n The sample size

no The sample size achieved using sieve sampling

The probability that the ith line item is included 

in the sample.

(a, b) Integers between a and b excluding a and b. i.e. 

the open interval.

(a, b] Integers between a and b, including b but not 

including a. i.e. the half open interval.

[a, b] Integers between a and b including both a and b. 

i.e. the closed interval

k The sampling interval. k = B/n
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4 .3  Simple Random Sampling

Simple random sampling of monetary units (SRS) selects line items

and monetary units as follows;

(i) The cumulative sum of the line items is formed and a 

range of numbers is assigned to each item.

(ii) A simple random sample of n numbers between 1 and B is 

chosen with replacement and the selected random 

numbers are sorted in order of magnitude.

(iii) The line item whose assigned range first exceeds the 

first random number is selected into the sample. 

Similarly for the second random number and so on until 

n line items are selected.

(iv) Within each selected line item, the monetary unit 

corresponding to the selected random number is chosen. 

If the same line item is selected more than once, then 

one monetary unit is selected from that line item for 

each time the line item is selected.

This method of selection is illustrated in table 4.2 using a

hypothetical population of 6 items.
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Table 4 .2  S e l e c t i o n  o f  Line Items w i th  Simple Random Sampling

Item Size Bi Cumulative Sum Assigned Range

Number

1 30 30 1 - 3 0

2 24 54 31 -54

3 20 74 55 - 74

4 34 108 75 - 108

5 12 120 109 - 120

6 30 150 121 - 150

A random number is selected between 1 and 150. Suppose this is 

69. This falls in the assigned range of item 3 and hence item 

3 is selected. The sampling continues until n items are 

selected. This sampling method was developed originally by 

Hansen and Hurwitz (1943) for selecting unequal size clusters 

with probability proportional to size.

4.3.1 Properties of Simple Random Sampling of Monetary Units

The selection probabilities of line items and monetary units are 

derived in theorems 4.1 to 4.4.

127



Theorem 4.1

The probability of line item i being selected is Bi/B for each 

selection. i.e. SRS selects line items with probability 

proportional to size (monetary value).

Proof:

At each selection a random number, r say, is selected uniformly 

in (0,B]. The probability that line item i is selected is

i =i i = i B B

i.e. at each selection, each line item has a probability 

proportional to its size (PPS) of being selected.

Theorem 4.2

SRS is epsem for monetary units 

Proof:

In SRS, n random numbers are chosen uniformly with replacement 

in (0, B].

The probability that a particular monetary unit is chosen in one 

selection is 1/B.
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Therefore, the probability of selecting any monetary unit is the 

same, regardless in what line item it occurs.

i.e. SRS is epsem for monetary units

SRS views the population as a collection of B monetary units from 

which a simple random sample of n monetary units is selected. 

More than one monetary unit from the same line item may be 

selected into the sample. Thus with SRS, line items are selected 

with replacement, i.e. the number of line items selected for 

auditing may be less than the number of selected monetary units. 

The sample may contain more than one monetary unit from any line 

item. It would seem, at first glance, that sampling of line 

items without replacement would be a better procedure because it 

would return a sample of n monetary units from n distinct items. 

However, when SRS selection is done without replacement of line 

items, it is difficult to keep the line item selection 

probabilities proportional to size and sooner or later becomes 

impossible as the sample size increases. For example, if a 

sample of size 6 is selected without replacement, from the 

population described in Table 4.2 above, every item would be 

included with a probability of 1 irrespective of the sizes of the 

i t ems.

The proportion of times that a line item will occur in a sample 

for SRS is derived in theorem 4.3 and the mean and variance of 

the number of times a particular line item will occur in any 

given sample are derived in theorem 4.4.
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Theorem 4.3

When a sample of size n is selected with replacement, the 

probability that line item i is included at least once in the 

sample is

B • n
*i = 1 " [1 - -fl

Proof :

The probability that the ith item is included at least once in 

the sample is

1 - Prob(ith item is not included in any of the n selections)

The probability that line item is included in any one selection 

is Bj/B (theorem 4.1).

Therefore the probability that it is not included in any one 

selection is

1 B
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Hence, the probability that the ith item is not included in the 

n selections is

Therefore, the probability that the ith line item is included at 

least once in a sample of size n is

This completes the proof.

Theorem 4.4

In simple random sampling with replacement, the mean and variance 

of the number of times line item i is selected in the sample in 

n selections is;

= B

nB1
~B~

Proof:

In theorem 4.1 it was shown that the probability that line item 

i is included in the sample, in any 1 selection is Bi/B.
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Now, let kj be the number of times that the ith line item appears 

in a sample of size n, where ki may have any integer value in 

[ 0 , n] .

Consider the joint frequency distribution of the k1' s for all N 

line items in the population. This is the multinominal 

distribution with a probability density of

P(k1,k2 kN) ~ ----- £J-----
kx\k2 \ ... .kN\ B B ■■‘t »

N
where ]P ki = n

i « 1

The properties of multinominal distribution are derived in 

numerous texts (see for example Kendall, Stuart and Ord, 1987, 

pl95). It can be shown that the marginal distribution of k; is 

binomial with parameters n and Bi /B, 1 <=i <= n. Therefore, for 

each i, the mean and variance of ki are

\ii = EikJ

o\ = V(kj)

nB,

B

n B i
~B~

This completes the proof.

In sampling with replacement of line items, represents the

average rate of occurrence of line item i in n selections.
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Clearly, the mean occurrence rate is greater than one when Bi > 

B/n and less than one when Bj < B/n. In this study, line items 

which are greater than the sampling interval k = B/n are 

considered to be the 'high-valued' items and it is assumed that 

the auditor will examine these on a 100% basis. Hence, in the 

sampled population all the line items have book value amounts 

less than the sampling interval. So, even though SRS is sampling 

with replacement of line items, each line item does not occur 

more than once on average in samples of size n.

4.3.2 Summary

The fundamental characteristics of simple random sampling of 

monetary units are derived in theorems 4.1 to 4.4. The selection 

method chooses an epsem sample of monetary units. The line items 

are selected with probability proportional to size in any one 

selection but in a sample of size n, the line items may occur 

more than once. However, the average rate of occurrence of any 

line item in a sample of size n is less than 1 provided Bj< B/n 

for all line items.
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4 .4  S y s te m a t ic  Sampling

A systematic sample of n monetary units drawn from a population 

of N line items and B monetary units is obtained as follows:

(i) The cumulative sum of the line items is formed and a 

range of numbers is assigned to each line item.

(ii) The population is divided into n subsections of width 

k = B/n.

(iii) A random integer is selected in [l,k], r say.

(iv) The monetary units are then selected in intervals of 

k starting at the rth monetary unit.

i.e. the sample consists of the

rcb, (r+k)th, (r+2k)th,.....  (r+(n-l)k)th

monetary units.

Systematic sampling differs from SRS in that the monetary units 

are not selected independently at each selection. When the 

random number r is selected uniformly from [l,k], the sample is 

completely determined. Also, unlike SRS, systematic does not 

give all the possible sets of monetary units a chance of being 

selected. In fact, there are only k possible samples that can 

be selected under systematic sampling. Once r is selected, the 

sample elements are completely determined, and r can take on only 

k distinct values.
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The selection probabilities of line items and monetary units are 

derived in theorems 4.5 to 4.7.

Theorem 4.5

Systematic sampling is sampling without replacement of line items 

provided Bj < k . i.e. in a sample of size n, the monetary units 

are selected from n distinct line items.

4 . 4 . 1  P r o p e r t i e s  o f  S y s te m a t ic  Sampling o f  Monetary U n it s

Suppose B* is selected in two distinct selections. This means 

that there exists two distinct integers j and h, j < h say, so 

that

Proof :

i-l i
< r + (j - l)k i T  B,

7=1

1 =  1 Î

1 =  1 1 =  1
B x < r + (h - l) k £

Since j < h, then

1

1 =  1
E ̂
f = 1

< r + (j - 1) k < r + (h - 1) k <> £  B2
1 = 1
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Now
tr + {h - 1) k] - [r + (j - l) k] = (h - j) k > k

Therefore

E Bi - E B,> k
1 = 1 1 = 1

which contradicts the assumption that Bi < k for all i .

Therefore, it is not possible to select a line item twice.

i.e. systematic sampling is sampling without replacement of line 

items.

Theorem 4.6

Systematic sampling selects line items with probability 

proportional to size. Specifically, the probability of selecting 

line item i in a sample of size n is

ni
nB,

B

provided Bi <B/n.

136



Proof:

Let j be the largest integer so that

(j - l)k * £  Bi 
1 = 1

if Bi is to be included in the sample, it will be the jth item 

since r lies in the interval [l,k]. This implies that item i is 

selected as the jth item provided r is chosen so that

i-l i
S-Bj < r + (j - l)ic s £ b2 
1=1 1=1

Then, the probability that line item i is selected into the 

sample is the probability that r is chosen so that

2-1
7ti = prob [ J 2 B 1 < r + { j - l ) k i  J2

1 = 1 1 = 1

i-l i
= Prob[ £  B1 - (j - l)ic < r ± J2 Bi ~ O  - l)k ]

1=1 1 = 1

E fli- o  - Die - fl, - (j - Die
_ 1 = 1 1 = 1

i.e. item i is chosen with probability proportional to size.
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Theorem 4.7

Systematic sampling is epsem for monetary units.

Proof:

In systematic sampling, a random selection of one monetary unit 

in made from each interval.

Since each interval contains k monetary units, the probability 

of selecting a monetary unit from any interval is

1 _ n 
k B

i.e. systematic sampling is epsem for monetary units.

4.4.2 Summary

Theorems 4.5 to 4.7 derive the fundamental characteristics of 

systematic sampling of monetary units. The sampling method is 

epsem for monetary units. The line items are selected with 

probability proportional to size and sampling is done without 

replacement of line items provided all the line items are less 

than the sampling interval size k = B/n.
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4 .5  C e l l  Sampling

A cell sample of n  monetary units from a population of N  line

items and B monetary units is obtained as follows;

(i) The cumulative sum of the line items is formed and a 

range of numbers is assigned to each line item

(ii) The population is divided into n subsections or cells, 

each of width k = B/n

(iii) One random number is selected independently from each 

cell as follows;

ra is chosen uniformly from (0,k] 

r2 is chosen uniformly from (k,2k] 

r3 is chosen uniformly from (2k,3k]

r.j is chosen uniformly from ((j-l)k,jk]

rn is chosen uniformly from ((n-l)k, nk]

(iv) The monetary units corresponding to the random numbers 

are selected into the sample and the line items in 

which the monetary units occur are chosen for 

examination by the auditor.
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Cell sampling is similar to systematic sampling in the sense that 

the population of size B monetary units is divided into k = B/n 

intervals or cells and one element is selected from each cell. 

However, in cell sampling, an independent selection of a monetary 

unit is made within each interval whereas in systematic sampling, 

the units occur at the same relative position in each interval. 

This may lead to bias if there are regularities and patterns in 

the error patterns and cell sampling avoids this bias potential. 

Some of the advantages of cell sampling described by Leslie, 

Anderson and Teitlebaum (1979, pl40) are;

(i) The method is simple.

(ii) It results in exactly the sample size desired.

(iii) It avoids any risk of bias associated with systematic 

sampling.

(iv) The sample is distributed evenly across the entire 

population.

4.5.1 Properties of Cell Sampling of Monetary units

The selection probabilities of cell sampling are derived in 

theorems 4.8 and 4.9
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Theorem 4.8

The following line item selection probabilities prevail in cell 

sampling :

(a) Case 1. Line items contained completely in one cell.

If line items do not straddle two cells, cell sampling is 

sampling without replacement of line items and selects line 

items with probability proportional to size.

(b) Case 2. Line items not contained completely in one cell

If a line item straddles two cells, the selection 

probabilities of line items in each cell are proportional 

to the amount of the line items in each cell. The maximum 

number of times any line item is selected into a sample is 

two.
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Proof:

Consider 7̂  the probability that the ith line item with book 

value Bi will be selected into the sample.

Case 1

Suppose item i is contained completely in the jth interval

( (j -1) k, jk] .

i . e .

i-l

E b j
7=1

*(j - l)k

and

E  Bi * ik
i=1

Line item i will be selected at most once in a sample of size n. 

If a random number, is selected uniformly in this interval, 

then line item i is selected as the jth item provided r: is 

chosen in the interval ((j -l)k, jk] so that

Y , b i < I] * t , Bi
i=i i=i

Therefore,the probability of selecting item i as the jth sample 

item is
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i-1 i

7ti = Prob{ Y ,  Bi <rj  ̂E Bi ]
1=1 1=1

i i-1

E B i  ~ E
_ i=i______1=1

jk - (j - l)k

-  B±
jk - (j - l)ic

-

k

_ n B ,
B

i.e. line items are selected with probability proportional to 

size.

Case 2

Suppose item i straddles two cells, the first part in cell (j -1) 

and the second part in cell j say.

i.e.

i-l
(j-2 ) k  <ES 1 * (j-l)ic < J 2 B 1 *

1=1

i

E1=1

In this case, cell sampling is not sampling without replacement. 

Since an independent selection is made in each cell, item i may 

be selected more than once.
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Line item i, straddling two cells, may be selected as the (j-1)

item provided r ^  is chosen so that

i-1

<rj - i - 1)k
1=1

Now since r ^  is chosen uniformly in the interval

Then

( (j -2 ) k, (j-l)k]

i-i
i-l

Prob[Y, B1<r:j_1£ (j-i)k]= —
1=1

(j - D k  -  £  Bi
1 = 1

(j  -  1) ic- ( j  -  2) k

B± fl cell ( j  -  1) 
k

n(B1 D cell (j - 1 )  ) 
B

i.e. the probability that the line item i is selected in the (j- 

l)th cell is proportional to the amount of the book value of the 

line item contained in the (j-l)th cell.
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Similarly the line item i will get selected as the jth item 

provided is chosen so that

i
( j  -  l ) i c  < r ^  £  B1 

1 = i

Since r-j is chosen uniformly in the interval

( (j-l)k, jk]

Then

i  E  B,  -  [ j  -  l ) k

P r o b l U  - D *  < J V k -  (j - Die

B1 n  C e l l ( j )  
k

n  [Bi  f l C e l l  ( j )  ] 
B

Therefore the selection probability of a line item in each cell 

is proportional to the amount of the line item in each cell.

Since Bi <k, for all i, then two is the maximum number of times 

that item i can be selected.
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Theorem 4.9

Cell sampling is epsem for monetary units 

Proof:

Case 1 Line item i is contained completely in the jth cell

When line item i is selected as the jth unit and is included in 

the jth cell then the probability of selecting a particular 

monetary unit from line item i is

p r o b i i t e m  i  i s  s e l e c t e d ) * p r o b i  one u n i t  i s  s e l e c t e d )

B B±

_ n 
B

Case 2: Item i straddles two cells, cell (j -1) and cell (j) say

In the (j - l)th cell, the monetary units will get selected with 

probability

(j - l)ic - £  B,
---------------------- * _________

k
(J -l) - I >

1=1

JL
k

n
B
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And in the jth cell, the monetary units will get selected with 

probability

E ® ,  -
l-i___________

k
1

Y ,  B ! -  ( J '-D *
1=1

l
k

n
B

Therefore cell sampling is epsem for monetary units.

4.5.2 Summary

Theorems 4.8 and 4.9 derive the characteristics of cell sampling 

of monetary units. Cell sampling is sampling without replacement 

of line items if line items do not straddle two cells. But when 

an item straddles two cells, cell sampling is not sampling 

without replacement of line items. It is possible for that item 

to be selected in each of the two cells and hence two monetary 

units will be selected from that line item. Two is the maximum 

number of times that any line item can be selected into a sample 

when Bj < B/n for all line items. Cell sampling returns an epsem 

sample of monetary units.
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4 .6  L a h ir i  Sampling

Lahiri sampling was proposed by Lahiri (1951) as a convenient 

method of selection for unequal size clusters with probability 

proportional to size and is adapted to the auditing situation in 

this study.

A Lahiri sample of monetary units is selected as follows;

(i) A random integer is selected uniformly from [1,N], 

i say

(ii) Another random integer is selected uniformly in 

[1-Bmax], r1 say.

(iii) If is less than or equal to Bj, then the line item 

i and the monetary unit corresponding to ri are 

selected.

(iv) Steps (ii) and (iii) are repeated until n monetary 

units are selected.
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The main characteristics of Lahiri sampling are derived in 

theorems 4.10 to 4.14.

4 . 6 . 1  P r o p e r t i e s  o f  L a h ir i  Sampling

Theorem 4.10

Lahiri sampling selects line items with probability proportional 

to size in each selection.

Proof:

The probability of

Prob (selection of

selecting item i

i from [1,N]) *

A , _ 5 l
N

in any

prob (rt

one selection is; 

<= Bi from [ 1, Bmax]

which is proportional to size of line item i.
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Theorem 4.11

Lahiri sampling is epsem for monetary units.

Proof:

The probability of selecting a monetary unit in one draw can be 

looked upon as a two-stage process. The first stage is the 

selection of a line item and the second stage is the selection 

of a monetary unit within the selected line item.

For any line item, i say, the probability of selection of a 

monetary unit in any one selection is

Prob ( selection of line item i ) * Prob ( selection of one

monetary unit from line item i)

B i 1 _ 1

which is independent of i. Therefore, each monetary unit has the 

same chance of being selected irrespective of what line item it 

belongs.

i.e. Lahiri sampling is epsem for monetary units.
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Lahiri sampling may involve many rejections before a monetary 

unit is selected, especially if the largest line item is very 

much bigger than the smaller ones. The method involves fewest 

rejections when the line items do not differ too much in size. 

Theorems 4.12 derives the average number of trials necessary to 

obtain the desired sample size.

Theorem 4.12

The expected number of trials necessary to obtain n monetary 

units using Lahiri sampling is

B

Proof:

The probability of selecting line item i in one trial is

B±

Therefore, the probability of selecting any item in one trial is

B<

NB„ NB„
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If x is the number of trials necessary to obtain n items, then 

x is a negative binomial distribution with probability density 

function;

f i x ) B
NB„

) (1 - B f o r  x  = n,  n + l, n + 2,  . .

The properties of the negative binomial distribution are derived 

in numerous texts (see for example Kendall, Stuart and Ord, 

1987) .

The mean of x is

H = B

which is the average number of trials necessary to obtain a 

sample of size n.

Lahiri sampling is sampling with replacement of line items. Any 

line item can occur in any trial. Like simple random sampling 

of monetary units, it places no restriction on how often a line 

item may occur in the sample. The proportion of times that a 

line item will occur in a sample of size n is derived in theorem 

4.13. Theorem 4.14 derives the mean and variance of the 

incidence of repeated occurrences of a particular line item in 

a sample of size n. The proofs assume that nNBmax/B is an 

integer. When nNBmax/B is not an integer, the results are 

approximate.
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Theorem 4.13

When a sample of size n is selected using Lahiri selection, the 

probability that line item i is selected at least once in the 

sample is

n. = 1 - [1 - (4
N  B„

) ]

on average.

Proof:

In theorem 4.12 it was shown that the average number of trials 

necessary for n selections in Lahiri sampling is

nNB„

The probability that the ith line item is included at least once 

in nNBmax/B trials is;

1 - Prob(ith item is not selected in any of the selections)

The probability that the ith line item is not included in the 

sample is in [nNBmax] /B selections is
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[1 -
S

N

Therefore, the probability that the ith line item is included at 

least once in a sample of size n is

1 [1
NB,

i-] B

This completes the proof.

Theorem 4.14

In sampling with replacement, with probability Bj/NBmax that line 

item i is chosen in any 1 selection, the mean and variance of the 

number of times line item i is selected in the sample in 

[nNBmax] /B selections are given by

=
nBi

nB± , 
(l

NB,
>
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Proof:

The probability that line item i is selected in any one Lahiri 

selection is Bi/NBmax. Therefore, the number of times line item 

i is selected in (nNBmax/B) selections is a binomial distribution 

with parameters;

Bi =
B  ' ax B

a2d = ( nNB^ x } ( B>
NB„

) ( 1  -

Bi
NB„ ) = ^  (1 -

NB„

Clearly, the mean occurrence rate is less than one when Bi < B/n 

which is the case in this study. So, like SRS, each line item 

does not occur more than once, on average, in samples of size n. 

However, the variance of the rate of occurrence of line items in 

Lahiri selection is greater than SRS since

nBi Bi v nBi ,
--  1 - — i) — 1 l -
B B B NB,

Bi ) =  Vlah

The extent of the differences in the variances depends on how 

much NBmax differs from B.
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4.6.2 Summary

The fundamental characteristics of Lahiri sampling are derived 

in theorems 4.10 to 4.14. The selection method chooses an epsem 

sample of monetary units. The line items are selected with 

probability proportional to their recorded book amounts in any 

one selection. The average number of selections to obtain a 

sample of size n is (nNBmax)/B. The amount of sampling required 

to obtain a sample of size n varies depending on the line item 

structure of the population. If the largest line item in the 

population is very much larger than the smaller ones, Lahiri 

sampling may involve many rejections and hence a lot of sampling 

before the sample of size n is selected. Lahiri sampling 

involves fewest rejections when the Bj do not differ too much in 

size. The sampling method is with replacement of line items and 

the average rate of occurrence of a particular line item is 

nBi/B, similar to SRS. The variance of the number of occurrences 

of each line item using Lahiri sampling, is greater than or equal 

to the variance using SRS. Unlike SRS, Lahiri sampling does not 

require the accumulation of book value totals and consequently, 

Lahiri sampling may be implemented before the total book value 

amount is known accurately. Leslie, Teitlebaum and Anderson 

(1979, plOl) point out that the total book value amount may not 

always be known accurately during the planning stage and it may 

not be known for transaction streams prior to the end of year.
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4.7 Sieve Sampling

A sieve sample of n monetary units is selected as follows:

(i) The population total B is divided by the nominal

sample size n. Let k = B/n. It is assumed that each 

line item is less than or equal to k.

(ii) For each line item, a random integer is selected

uniformly from [l,k], say.

(iii) If rt < Bj then the ith line item is chosen.

(iv) The monetary unit selected into the sample from line

item i is that which corresponds to ri.

4.7.1 The Properties of Sieve Sampling

The main characteristics of sieve sampling are derived in

theorems 4.15 to 4.18.

Theorem 4.15

The probability that line i is selected in a sample of size n 

chosen using sieve sampling is nBi/B.

i.e. sieve sampling selects line items with probability 

proportional to their recorded book amounts.
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Proof:

For each line item, a random integer r; is selected uniformly 

from the interval (0,k ]. The probability that line item i will 

be selected is therefore

, , > B.- nB,
Prob (1 ^r1 zB±) = = - y

which is proportional to the size of the line item.

Another way of looking at sieve sampling is to imagine that every 

item is spread on a sieve with random mesh size, uniformly 

distributed between 0 and B/n. For each item, a mesh size ri is 

generated. Item i remains on the sieve with probability 

Bi/(B/n) . The random number ri is called the item sieve for item 

i .

Theorem 4.16

Sieve sampling is epsem for monetary units 

Proof:

For each line item, a random number is selected uniformly from 

(0,k]. A particular monetary unit in line item i say will be 

selected with probability

_1 _ n 
k  B

Therefore sieve sampling is epsem for monetary units.
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Theorem 4.17

Sieve sampling is sampling without replacement of line items 

provided Bi < k for all i .

Proof:

This proof follows immediately from the selection procedure which 

makes it clear that a line item can be selected at most once.

Sieve sampling is equivalent to cell sampling when all the items 

are of equal size. A practical disadvantage of sieve sampling 

is that the achieved sample size nQ is not always equal to the 

nominal sample size n. The achieved sample size is variable and 

depends on the random numbers selected. However, when all the 

line items are less than or equal to B/n the achieved sample size 

n0 has the properties derived in theorem 4.18

Theorem 4.18

(1) The achieved sample size n0 is an unbiased estimator of the 

nominal value n.

i . e .

E(n0) = n

(2) The variance of the achieved sample size n0 is

Var(n0) = n-
B i=i
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Proof:

For each line item, define a variable so that

Xi = 1 when line item i is selected into the sample

= 0 when line item i is not selected into the sample 

Then Xj is a Bernoulli variable with the following probabilities

with probability ^ 1 

with probability 1 - nBi
B

The achieved sample size n0 is the sum of N Bernoulli variables 

i . e .

no

and

N

E( n0) = £ (  * i )
i =i

n f l i  
B

N

i.e. n0 is unbiased for n

= n
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(2) the variance of n0

V( n0) = V ( £  Xj)
i=l

= t  VI ^
2 . - 1

This completes the proof.

Corollary 1: It follows from theorem 4.18, part 2 that the

standard deviation of the sample size is

n<1 - f 2 t  Bl)iSR
a  i  = 1
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Corollary 2: The coefficient of variation of the sample size

"o
E{n0)

N

a i=i
n

1

The variation in the achieved sample size may be of concern to 

the auditor when the costs of carrying out the audit are being 

estimated prior to the audit. Clearly, the relative variation 

compared to the nominal sample size decreases as the sample size 

increases but it may not be negligible for any sample size.

4.7.2 Summary

The characteristics of sieve sampling are derived in theorems 

4.15 to 4.18. Sieve sampling selects line items without 

replacement and with probability proportional to their recorded 

book amounts. Selection of monetary units is epsem under sieve 

sampling. The sample size is variable but the achieved sample 

size n0 is an unbiased estimator of the nominal sample size n 

and the standard deviation is less than or equal to Vn.
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4 .8  S t a b i l i s e d  S i e v e  Sampling

Stabilised sieve sampling is a sampling method based on sieve 

sampling which returns a constant sample of n monetary units. 

Stabilised sieve sampling chooses the sample in two stages as 

follows:

Stage 1

An initial sample is selected by means of sieve sampling. 

Suppose the achieved sample size is n0

Stage 2

The second stage reduces or increases the initial sample size if 

n0 is not equal to n.

Case 1 Sample Reduction

When n0 is greater than n, a simple random sample of n monetary 

units is selected from the initial sample.

Case 2 Sample Augmentation

If n0 is less then n, then the sample is augmented by selecting 

a further (n -n0) monetary units from the original population 

using the Lahiri selection method (see 4.6).
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When the sample is augmented, the extra line items selected at 

the second stage are chosen without excluding the line items 

originally selected. This is necessary to maintain PPS. Wright 

(1991) documents the problem of augmenting a sample selected with 

probabilities proportional to size. Using systematic sampling, 

he derives the inclusion probabilities for an augmented sample 

obtained by resampling the population with probabilities 

proportional to size of line items, after excluding the line 

items selected at the first stage. He proves that the inclusion 

probabilities of the augmented sample are not, in general, 

proportional to the size of the line items. The results show 

that an augmented sample obtained in this manner possesses biased 

inclusion probabilities. Wright (1991) concludes that expanding 

a PPS sample is not a trivial exercise. Resampling from the 

original population, after excluding the line items already 

selected in the original sample, does not preserve the 

appropriate PPS inclusion probabilities. In general, the 

augmented sample will tend to be comprised of items which over-

represent the smaller population items and under-represent the 

larger items. This is because the inclusion probabilities for 

the augmented sample are higher (lower) for the smaller (higher) 

population items than those for a PPS sample of the same size 

selected in a single stage. If the errors are concentrated in 

the smaller (larger) items, then an over (under) estimate of the 

total error amount will result. Therefore, in order to maintain 

PPS and to avoid biased inclusion probabilities, stabilized sieve 

sampling does not exclude the items selected at the first stage, 

when augmenting a sample at the second stage.
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4 . 8 . 1  P r o p e r t i e s  o f  S t a b i l i s e d  S ie v e  Sampling

The main properties of stabilized sieve sampling are derived in 

theorems 4.19 to 4.21.

Theorem 4.19

Stabilised sieve sampling selects line items with probabilities 

proportional to their recorded book amounts.

Proof:

(1) Sample Reduction (n0 > n)

In sample reduction, the probability of inclusion of any line 

item, line item i say, in the final sample is the probability 

of inclusion of the item at the first stage and the probability 

of inclusion of the item at the second stage.

i . e .

, / v n B iprob (s tagei) = — -
B

( sieve sampling )

p r o b(s tage2) = — ( S R S  )
no

nB
prob(item i is selected) 1 n

B n0

which is proportional to B*.
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(2) Sample Augmentation (n0 <n)

In sample augmentation, the probability of inclusion of any item 

in the final sample is the probability of inclusion in the first 

stage or the probability of inclusion in the second stage.

The probabilities of selecting item i at each stage are

nB,
probistagel) = — ± (sieve sampling)

B

B
prob[stage2) = —  — —  (Lahiri sampling)

N  5 nax

where n' is the number of trials necessary to obtain (n - n0) 

line items. It can be deduced from theorem 4.12 that the average 

number of trials necessary to obtain a sample of size (n-n0) is 

(n-n0)NBmax/B, i.e. n' = (n-nD) NBmax/B.

Since each line item is considered for inclusion at both stages, 

the probability of selection of each line item is proportional 

to the line item size at each selection stage.

This completes the proof.

It should be pointed out that SRS, systematic or cell sampling 

could also be used to augment the sample and the properties 

derived in theorem 4.19 would prevail under these selection 

methods. In this study, Lahiri sampling is chosen to augment the 

sample, because it uses the line item structure of the population 

when selecting the items.
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Theorem 4.20

Stabilised sieve sampling is epsem for monetary units.

Proof:

Case 1: Sample Reduction (n0 > n)

With sample reduction, the probability that a monetary unit is 

selected into the sample is the probability that it is selected 

at stage one and stage two, i.e.,

H * J L  = h 2
B n0 Bn0

Case 2: Sample Augmentation (n0 <n)

With sample augmentation, monetary units may be selected more 

than once into a sample.

The probability that a particular monetary unit is selected at 

the first stage is n/B.
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At stage two, a monetary unit is selected with probability

rr
NB„

where n' is the number of trials necessary to obtain (n - n0) 

line items using Lahiri sampling.

Therefore, the probability that a particular monetary unit is 

selected in the sample is

n
B

n.'
NB„

nri'
BNB„

Clearly, the monetary units have the same selection probability 

irrespective of the line items to which they belong.

The selection process is epsem for monetary units.

Theorem 4.21

The expected number of trials to get a sample of size n is

(i) N + n when the initial sample is reduced 

and

(ii) N + (n - n0)N Bmax/B when the initial sample is augmented
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Proof :

(i) In sample reduction, the initial sieve sample yields a 

sample of size n0 > n in N trials and a simple random sample 

of n is chosen from the n0 monetary units originally 

selected. Therefore, the total number of trials necessary 

to obtain a sample of size n is (N+n).

(ii) In sample augmentation, the initial sieve sample yields a 

sample of size n0 < n. The expected number of trials 

necessary to augment the sample by (n-n0) is

(n -  n ^ N B ^

B

This follows from theorem 4.12.

Therefore the expected number of trials necessary to obtain 

a sample is size n is

N  + -n 0̂ ̂ ̂ max
B

Obviously, the number of repeated selections needed to augment 

a sample of size n0 to n depends on (i) the difference between n 

and n0 and (ii) the size of Bmax relative to B.

Stabilized sieve sampling does not, in general, select line items 

without replacement. At the first stage, the monetary units are 

chosen without replacement provided all the line items have book 

value amounts less than B/n.
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When a reduction is necessary at the second stage, the n selected 

line items are distinct. Therefore stabilised sieve sampling 

with reduction is sampling of line items without replacement.

However, when it is necessary to augment the sample, each line 

item, including those already selected, is considered for 

selection at the second stage. This is necessary in order to 

preserve PPS. Therefore the sample selection method at the 

second stage is sampling with replacement of line items.

Theorem 4.22

When an initial sieve sample of size n0 < n is augmented to n by 

Lahiri sampling, the probability that line item i is selected at 

least once in the sample is

1 (1
NB„

(n-nç)
B

Proof :

The probability that a particular line item, line item i say, is 

included in the sample at least once is

1 ~ Prob(ith item is not included in either stage one or two)
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It follows from theorem 4.15, that the probability that line item 

i is not included in a sieve sample of nominal size n is

1
nB,

B

Also, when a sample of size (n - n0) is chosen by means of Lahiri 

sampling, the probability that line item i is not included is

(1
NB,
B> >

(n - n 0)
m̂ax
B

This follows from theorem 4.13.

The probability that line item i is selected at least once in a 

sample of size n is

1 - Prob(ith item is not included in either stage one or two) 

which is

1 (1 (1
NB„

in -  n0) B

This completes the proof.

Since sieve sampling is sampling without replacement of line 

items, then the maximum number of times a line item can occur in 

an augmented stabilised sieve sample is (n - n0) .
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4.8.2 Summary

Theorems 4.19 to 4.22 derive the fundamental properties of 

stabilised sieve sampling. When the initial sample size is 

reduced, the sampling method is sampling without replacement of 

line item. When the initial sample is increased, the sampling 

method is not sampling without replacement of the line items but 

the maximum number of times any particular line item can be 

selected into the final sample is (n - n0) . At each selection, 

a line item is selected with probability proportional to its 

recorded book amount. Stabilised sieve sampling is epsem for 

monetary units.
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Chapter 5

The Point Estimator

5.1 Introduction

This chapter analyses the properties of a point estimator of the 

total error amount using different monetary-unit sampling 

methods. The purpose of the analysis is, as stated in 1.8.2, to 

examine the precision of the point estimator for the six sampling 

methods under investigation. The mean and variance of the 

estimator with the taint and AON error assignment are derived 

theoretically for simple random, systematic, cell, Lahiri, sieve 

and stabilised sieve sampling of monetary units. The design 

effect (Kish, 1965, p258) is used to compare the precision of 

systematic, cell, Lahiri, sieve and stabilised sieve sampling 

relative to simple random sampling of monetary units. The 

implications of the sample designs for the real accounting 

populations are also discussed.
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The theoretical properties of the point estimator are 

investigated in order to gain some insight into the behaviour of 

the heuristic upper bound estimates of the total error amount for 

the different sampling methods. Previous research by Wurst, 

Neter and Godfrey (1989a and 1989b) shows that the effects of 

simple random, cell and sieve sampling on the precision of the 

point estimator is similar to the effects of the sampling methods 

on the precision of the Stringer and Cell bounds. This study 

extends the work of these authors by investigating the 

theoretical properties of a point estimator using six monetary- 

unit sampling methods, including a new sampling method 

'Stabilised Sieve Sampling' and one not used previously in 

auditing 'Lahiri Sampling'.

Some of the findings obtained are new to this study. Others, 

included for completeness, are in agreement with results obtained 

by other authors.
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5 .2  N o ta t io n

In addition to the notation given in Table 4.1, further notation 

used in this chapter is outlined in Table 5.1.

Table 5.1 Point Estimator Notation

N

T = l > i  
¿=1

The total error amount

A

T
Sample estimate of the total 

error amount

n The total error amount in the

■̂r. ~ 5^ Ur+(j-l)k 
J=1 rth cluster (systematic 

sampling)

n The total taint amount in the

Tr. (taint) = £  
1 rth cluster (systematic 

sampling)

k The total error amount in the

^  ~ 5^ Ur+[i-l)k 
r-1 ith stratum (cell sampling)

k The total taint amount in the

T± (taint) = tr+u.1)k
z-1 ith stratum (cell sampling)
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5 .3  The P o in t E stim ator

A point estimator is a statistic calculated from the sample data 

to estimate a parameter in the population. In this study, a 

point estimator is used to estimate the total error amount in the 

population. The point estimator is defined as

A ^  ^

T taint = —  2^ ti with taint error assignment
n i = 1 

„ n
A ^  «i ^

Taon = —  2Lr ui with AON error assignment
n  i = 1

and is used to estimate the total error amount T in the 

population, where

T -  £  (B, - A , )  -  ± El
1 « 1 i=l

In sieve sampling, the summation is over the achieved sample 

size n0, 

i . e .

_ «0_ n _
7 - 1  E ^

n l = i
with taint error assignment

“i11 J. = 1
with AON error assignment
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For stabilised sieve sampling, it is necessary to adjust the 

estimator to eliminate bias. The estimator used in stabilised 

sieve sampling is

ftaint
B

2 n-n0
with taint error assignment

B
2 n-n0fr{

with AON error assignment

In the remainder of the chapter, the mean and variance of these 

estimators are obtained for each sampling method with each error 

assignment method. The precision of the point estimator based 

on systematic, cell, Lahiri, sieve and stabilised sieve sampling 

is compared to the precision of the point estimator based on 

simple random sampling of monetary units.

5.4 Simple Random Sampling

In simple random sampling of monetary units, the population is 

looked upon as consisting of B monetary units from which a sample 

of size n monetary units is drawn. Each monetary unit has a 

probability of 1/B of being chosen in any selection. The mean 

and variance of the point estimator using simple random sampling 

of monetary units are derived in 5.4.1 and 5.4.2. These 

derivations are similar to the general results for simple random 

sampling available in standard texts, (see, for example Cochran, 

1977) .
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5 . 4 . 1 . Sim ple Random Sampling w ith  th e  T aint Error Assignment

The mean and variance of the point estimator with the taint error 

assignment are derived in theorems 5.1 and 5.2 for simple random 

sampling of monetary units.

Theorem 5.1

With simple random sampling of monetary units,

is an unbiased estimate of the total error amount T. 

i . e

t±) = T, - Ai) 
1  =  1

N

E  *i-I = 1
T

Proof:

E  = |  (ti)
n i= i n

-  b E
1  =  1

N

- B  E ̂
2 =  1

N

= £  Ei = T
2=1
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Theorem 5.2

With s im p le  random sam pling o f  monetary u n i t s ,

V„
D  n „  N  p 2 N  2

< f  E  tt) -  f  t £  f -  -  - § < E  ]
22 i = 1 12 i = i &  i = i

Proof :

With simple random sampling of monetary units,

Now

‘' « I E  v  -22 i = i

□2 dL
fiZ ̂n i = i

= — v(td) 
n 1

V(td) = E( tj) - (EUi))

i=l i=l
if *.2

"  2vE ̂  - <Ei=l •“ i = 1 -®

-1 N 2

1 = 1

Therefore

''I- E ti)= 1
= ^ [ 1 { J2 

n B ^

e \ ( E E , ) 2>]
J = 1

- f IE f - i<E E,u  ̂= ! n1 tf j = i ) ]
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5 . 4 . 2  Sim ple Random Sampling w ith  th e  AON Error Assignm ent

With the AON error assignment, the value of each monetary unit, 

ui# l< = i<=N, is either 1 or 0. In simple random sampling of 

monetary units

Tui =  1 with p r o b a b ility  —
B

=  0 with p r o b a b ility  (1 - — )
B

Therefore, is a binomial variable.

Hence

n

v(j2 ui)
7 = 1 nl(1

The mean and variance of the point estimator with the AON error 

assignment are derived in theorems 5.3 and 5.4 for simple random 

sampling of monetary units.
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Theorem 5.3

With s im p le  random sam pling o f  monetary u n i t s ,

is an unbiased estimate of the total error amount T.

7 = 1

= T

Proof :

i=l

B
n

= r

AT

-
7 = 1
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Theorem 5.4

With s im p le  random sam pling o f  monetary u n i t s

P r o o f  :

d JL » N n N 2
',« . < f E “j> )

11 i= l  11 i=i i=i

srs v(̂ 2 > i >  = f 2Vs r s ^ U i)■'■‘1=1 -H i=i

- ^ n l - I x i  - 1)
n 2 £

J [ r -  Jt]
n B

p _iL , "
|iE'i - i<E^>ai" i=i ■D 1=1
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5 .5  S y s tem a tic  Sampling

To select a systematic sample of n monetary units, one monetary 

unit is selected at random from the first k monetary units and 

every kth unit is selected thereafter. The selection of the 

first monetary unit determines the whole sample. Systematic 

sampling may be looked upon as a special case of cluster sampling 

(Cochran, 1977, p 207) . The population is divided into k 

clusters each containing n monetary units. Table 5.2 illustrates 

the structure of the population with the taint error assignment.

Table 5.2 A Population Divided into k Clusters

Cluster 1 Cluster 2 Cluster r Cluster k

tj ta tr tk

î.k 2̂+k t-r+k 2̂k

tl+2k 2̂.2k r̂.2k t-3k

tlt|j-l)k tr-Mj-lIk t ]k

*-l+(n-l|k -̂2+ ln-1 ) k tr+(n-l)k tnk
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One cluster is chosen at random from the k clusters and the whole

cluster is selected into the sample. The probability of 

selecting any one of the k clusters is 1/k.

In the following analysis, tr+(j_1)k and ur+(j_1)k represent 

respectively the jth taint and the j th AON error amount of the 

rth cluster, r = 1,2, ....k and j = l,2,....n.

The mean and variance of the point estimator with each error 

assignment are derived in 5.5.1 and 5.5.2 for systematic sampling 

of monetary units. Madow and Madow (1944) derived the

theoretical properties of the mean of a sample drawn from a 

finite population using systematic sampling. The results 

obtained in this study are similar to those obtained by Madow and 

Madow (1944) except that they are adapted to the auditing 

situation.

5.5.1 Systematic Sampling with the Taint Error Assignment.

The mean and variance of the point estimator with the taint error 

assignment are derived in theorems 5.5 and 5.6 for systematic 

sampling.
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Theorem 5.5

With s y s te m a t ic  sam pling o f  monetary u n i t s ,

IE

is an unbiased estimate of the total error amount T.

Proof :

tr+U-l)k)

’ i t  [ < E  t,.«-!,*) 4
11 X = 1 j = 1 A

B

= t± since n.k = B
i=l

N

= tiBi since each ti occurs Bi times
Ì = 1

- E7=1
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Theorem 5.6

With systematic sampling of monetary units and the taint 

assignment,

1/,sys ( | E  tr+u-i>*> = (taint) - ^  ( E  E i ) 2]
n j=i n B ¿=1

Proof:

V sys( n E  ^  V sys( - E  + (j-l)k^
n i=l n j=l

= E ^ E  tr^U-iU-D
^>1

E ̂ ̂E tr*{j-l)k T ^ 2\r=1 j=l A

= | E  f|rr. (taint) - T]2
n

{ —  )ZT1I.{ taint) - 2T~y' Tr (taint) + 
B 7=i n nf.ti

(-)2^  (taint) - 2 t E Y Y  E
B &  n * h h

z*(j-l)k + 

^r* (j-l)k

Y ' — tI taint) - 2 tY  — B,

k _
E ~ ^  (taint) - 2T2 + r2^  n

+ T2

£  —  zl (taint) - T2
r=l 7:2

■ - -g < E  Bi>2i
r=l i=1

error
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5 . 5 . 2 S y s tem a tic  Sampling w ith  AON Error Assignment

The mean and variance of the point estimator under systematic 

sampling with the AON error assignment method are derived in 

theorems 5.7 and 5.8.

Theorem 5.7

With systematic sampling of monetary units,

IEn u<
i=1

is an unbiased estimate of the total error amount T.

Proof:

11 j=i n U

k n

Ur+(J-1) J \
n r=l j=l

k n

~ Ui*[]-l)kr=l jr'=l

2=1

N

- E * .
2=1
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Theorem 5.8

With s y s te m a t ic  sam pling o f  monetary u n i t s

sys
r-1 ¿=1

c r=l 11 r-l J-i

= E - 2rE^ + z*
r=l 11 ¿=1

JL d ,= E - 2T2 + T2

k n

r=1 ^

= E  |ii. - r2

f t E ^ .  -n r=1 -o i=1

Ur+ (_7-1 ) Jc + r2
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5 .6  C e l l  Sampling

To select a cell sample of n monetary units, the population of 

B monetary units is divided into n subsets or cells and an 

independent selection is made in each cell. Cell sampling may 

be looked upon as a special case of stratified sampling where the 

population of B monetary units is divided into n strata each of 

size k and one monetary unit is chosen independently from each 

stratum. The mean and variance of the point estimator under cell 

sampling with each error assignment method are derived in 5.6.1 

and 5.6.2. The results are similar to those obtained by Wurst, 

Neter and Godfrey (1989b).

5.6.1 Cell Sampling with the Taint Error Assignment.

With the taint error assignment, each tt is selected 

independently from the ith cell, i<=i<=n. i.e. = tr+(i_m  

where r is chosen randomly from [1, k]. The mean and variance 

of the point estimator under cell sampling with the taint error 

assignment are derived in theorems 5.9 and 5.10.
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Theorem 5.9

With c e l l  sam pling o f  monetary u n i t s ,

n i-i

i s  a n  u n b i a s e d  e s t i m a t e  o f  t h e  t o t a l  e r r o r  a m o u n t  T.

Proof ;

s i - f E
111=1 -“¿=1

NOW ^  r̂+U-pic ̂
r=l

è fci} - -f E E ̂u - D J c j  "here k =n i=1 r=1 JC

n Jc

-  y
« A i  J *

JV £\-= E xBii= i -“ i

- E ' i
7 = 1
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Theorem 5.10

With c e l l  sam pling , th e  v a r ia n c e  o f  th e  p o in t  e s t im a to r  i s

V.c e l l ti)
B
n

N

[E
i = 1

Proof:

v ^ i  E =4E r e  [1 ,k]
iJi = i n  j  = i

v(t r + U  -  l ) k ) = E ( t r + U  -  l )k^  ^r  + (J - l)ic)  ̂2

E{ tz+U -1 )ic) 5 2  + (i _ pjc—
r = 1

+ (i-1)Jt)]2 = [ £  tr+ (i.1} 1]
r = 1

^celi ( 52  fci) 2 52 52 t 2 r + ( i - l ) ^ - V  ( E  t r  + U  -
1 1 1 = 1 n i = x r = l * i = i r = 1

n k

i - l)k

B2 r v-v 72 iC

- p'E - ̂ e iEn i = i B± D B i = i r = i

D JV p2 nB f n
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5.6.2 Cell sampling with the AON Error Assignment

With the AON error assignment, each u£ is selected independently 

from the ith cell, l< = i<=n. i.e. ui = ur+(i_m  where r is chosen 

randomly from [l,k] . The mean and variance of the point 

estimator under cell sampling with the AON error assignment are 

derived in theorems 5.11 and 5.12.

Theorem 5.11

With cell sampling of monetary units,

__ ii

| s > i11 i=i

is an unbiased estimate of the total error amount T.

Proof:

iii=1 iii=l

it

E ( ui) Ur+(i-l) k~iZ
r=1

B(| t U i> ’ | E £ “r.U-l .IT•ni=l r=l

AT

J=1
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Theorem 5.12

With c e l l  sam pling o f  monetary u n i t s

= f [Eej - JE ri2)J.1 1=1 ■Di = i

Proof :

B  —  n2 n

n i = i= i

V(ur+(i - Die) ur+(i -Die)2 ^ ^ ur+(i-l)ic)]2

¿?(u2+(i-l)ic) = E  U' +
r = 1

(i - Die 7, 5 3  +
r=l

1
(2 - Die ̂

[■£■( LZr + (i _ i) je) ] 2 “ [ ur + (i - D ">]
r = 1

n  11 n 2  n k  -, n k

<|E u*> = fhE E “,.u-i>4 -E(E“
1J 2 = l ■“ i = 1 r = 1 ^ i = i r = i

V.coll

t E  “r.u-l)*!2)n i = 1 -S i = l r = 1

|'E Ei - ̂ E y>■“ 2=1 = 1

2

(i - Die
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5 .7  L a h ir i  Sampling

The mean and variance of the point estimator with each error 

assignment method are derived for Lahiri sampling in 5.7.1 and 

5.7.2. As far as can be determined, these results are presented 

here for the first time.

It has been shown in theorem 4.11 that the probability of 

selecting a monetary unit in any one trial with Lahiri sampling 

is

NB„

In theorem 4.12, it was shown that the expected number of trials 

necessary to obtain a sample of size n is

B

Therefore, the expected number of trials necessary to obtain one 

selection is

NB„

These properties will be used when deriving the mean and variance 

of the point estimator.
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5 . 7 . 1 L a h ir i  Sampling w ith  th e  T aint Error Assignment

The mean and variance of the point estimator with Lahiri sampling 

using the taint error assignments are derived in theorems 5.13 

and 5.14.

Theorem 5.13

With Lahiri sampling of monetary units,

is an unbiased estimate of the total error amount T.

Proof:

-B E (tj)

max

N

¿ = 1
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Theorem 5.14

With Lahiri sampling,

Vlah
r, n _ ff p 2 „ N

( f  £  cj >
72 ¿=i n i-i B iti

) ]

Proof :

With Lahiri sampling,

= fE ny 
n  1 = 1
p 2
—  v(tjL) 
n 1

Now

Vi^) = E(tl) - (E(ti)

Therefore

w
-  ̂̂  £ 2 -®max -®i

ÌT

JL = 1 B N.B.max 2 = 1

^ £  t,) =
w i JL

£/<>>>]
-i

w E’i TV 2

) ]
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5.7.2 Lahiri sampling with the AON error assignment

The mean and variance of the point estimator with Lahiri sampling 

and the AON error assignment are derived in theorems 5.15 and 

5.16. In any one trial, with the AON error assignment, uA is a 

Bernoulli variable with the following probabilities

Ujf = 1 with probability -- -
-MEL

= 0 with probability 1 -
NEL

Theorem 5.15

With Lahiri sampling of monetary units

11 i-i

is an unbiased estimate of the total error amount T.

Proof:

11 i=1

N
Eib Y

iti NBmax

NB„

i = 1

197



Theorem 5.16

111=1 11 ¿=1 i=i

With L a h ir i  sam pling o f  monetary u n i t s

N  2

Proof :

With Lahiri sampling of monetary units,

Now

^ 5 »  - f : J > ( Ul>
n ¿=in m.

= — V{u±) 
n 1

^(uf) - ( E (Ul))2

N

rV' Bi
^  ^-Bmax B

.  w „ JV

s k El
- * (£ J

N
- ( V s ^  ~̂ max \ 2 -i

U  ^ m a x  B

Therefore

b JL P2 t N - W 2

11

p , * 2
)11 1 = 1 -0 i=i
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5.8 Sieve Sampling

With sieve sampling, and the taint error assignment the estimator 

used for the total error amount is

0̂

and with sieve sampling and the AON error assignment, the 

estimator used for the total error amount is

B
Ui111=1

no

The mean and variance of the point estimator under sieve sampling 

for each assignment method are derived in 5.8.1 and 5.8.2. 

Similar results have been obtained previously by Wurst, Neter and 

Godfrey (1989b).

5.8.1 Sieve Sampling with the Taint Error Assignment

In sieve sampling with the taint error assignment, each line item 

is considered for selection and is selected if a random number 

generated from [1, k] is less that or equal to the value of the 

line item. The selection process may be modelled by a Bernoulli 

variable kj, where kj = 1  if the line item i is selected and kj 

=0 if the line item i is not selected, l<=i<=N.
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Then

k, = 1 with probability
nB,

B

= 0 with probability 1
nB,

B

Therefore

E(k,)

v(ki)
nB

B
i (1

nB,

B
)

and

* ¡0  N

E = E tiici
i=l ¿=1

where n0 is the achieved sample size.

These properties are used in theorems 5.17 and 5.18 to derive the 

mean and variance of the point estimator under sieve sampling 

with the taint error assignment.
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Theorem 5.17

With s i e v e  sam pling o f  monetary u n i t

0̂

11 i-i

is an unbiased estimate of the total

Proof :

E B
n

ti ) = E ( * 
n

error amount T.

N

E  ki >
1 = 1

ti-ff (iCj)

nB,

1 B

2 0 1



Theorem 5.18

With sieve sampling, the variance of the point estimator is

sie

Proof:

N

■ii0i=l J1i-1

tj m , )
n 2±=i

= B 2 r f  t2^  f  ^  ̂ i , 2!
£ t i (  — ) ]i=1

2 0 2



5 . 8 . 2 S ie v e  Sampling w ith  th e  AON Error Assignm ent

In sieve sampling, with the AON error assignment, a random number 

from [l,k] is generated for each line item. A monetary unit is 

selected from line item i provided the random number is less than 

or equal to Bj. With the AON assignment method, the selected 

monetary unit is given the value one if the random number is less 

than or equal to E,. Otherwise it is given the value 0. This 

may be represented by a Bernoulli variable as follows

nE •
xi = 1 with probability

nE ■
= 0 with probability 1 - --1

Then

N

E  ui = E
.1=1 i=l

This is used in theorems 5.19 and 5.20 to derive the mean and 

variance of the point estimator under sieve sampling with the AON 

assignment method.
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Theorem 5.19

With s i e v e  sam pling o f  monetary u n i t s ,

is an unbiased estimate of the total error

Proof :

N

N

-E nE,

B

= E * i
i =1

amount T .

204



Theorem 5.20

With s i e v e  sampling,  th e  v a r ia n c e  o f  th e  p o in t  e s t i m a t o r  i s

11 2 = 1 ■Di=1

Proof:

"o N

11 1 111=1

AT

t i £n2— i

B2^  DEj (1 nEi)
- £

2  =  1n2f^ B ' B

nE. N
B ^  111211 _ /2 ’C"' „2-,

N N
n\-y „21

11 2=1 ■°2 = 1
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5 .9  S t a b i l i s e d  S i e v e  Sampling

In stabilised sieve sampling, the sample is selected in two 

stages as follows:

Stage 1: An initial sieve sample of size n0 is selected.

Stage 2: The initial sample is increased or decreased to ensure 

that a the final sample size is equal to the nominal 

sample size n. The initial sample is reduced or 

augmented when necessary as follows;

(i) Sample Reduction: When n0 > n, a simple random

sample of size n is selected from the initial sample.

(ii) Sample Augmentation: When n0 < n, a further

(n-n0) monetary units are selected by means of Lahiri 

sampling.

With stabilised sieve sampling and the taint error assignment the 

estimator used for the total error amount is

B
2 n ~n0E tii=i

And with stabilised sieve sampling and the AON error assignment 

the estimator used for the total error amount is

2 n-n,b r E “*o i-l
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The mean and variance of the point estimator of total error 

amount for each error assignment method are derived in 5.9.1 and 

5.9.2. As far as can be ascertained, these results are derived 

here for the first time.

5.9.1 Stabilised Sieve Sampling with the Taint Error

Assignment

The mean and variance of the point estimator with stabilised 

sieve sampling and the taint error assignment are derived in 

theorems 5.21 and 5.22.

Theorem 5.21

With stabilised sieve sampling

E( B
2 n -n 0

n  N

E ti) = E Ei
7 = 1  7 = 1

Proof:

Case 1. Sample reduction (n0 > n)

When the initial sample n0 is greater than the nominal sample 

size n, the sample is reduced from n0 to n. Therefore
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units

2 n

r, n _ n0
—̂ Y  t. = __ — Y  t. --n ^  1 7n-n ^  111o i=i XJo in 2n-n,0 i-(n* 1)

fci

assuming for convenience that the (n+l)th , (n+2)th, . . ,n0th

are randomly rejected.

Hence

e ( - B_ Y  tx) = e {— b Y  tj
2n ^01=1 -̂0 1=1 2 n ^0 i=n+l

E y

= e (— ^ — y  t±) - e (— —  r  h)2 n-n0f^ 1 ?.n-n -¿E 2
5

2/2 n0 ¿=n+1

Now, the n0 are selected using sieve sampling with a sieve size 

of B/n. Therefore, from theorem 5.17

Hence

E[
2 n - n t y  ~ 2n-nQ^

and the set of (n0 n) monetary units is a simple random sample 

of monetary units. Thus, it follows from theorem 5.1

R 0 NE V  = E£j0 11 1 ¿=1

2 0 8



Therefore

n0~n

2n-n,0 j.-j.

N

So

2 n-n.
B

■0 i=n+lE ti) =-n + 1

N n0~n

2n-n

N

N

' T . e iT=11  =  1

Case 2. Sample augmentation (n0 < n)

When the initial sample n0 is less than the nominal sample size 

n, the sample is augmented from n0 to n by selecting (n - n0) 

units by means of Lahiri sampling.

Therefore

B
2n-n01=1

n

2n-n.
B

■o
E
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And

R JL p A)
e {— —  y  tl) = e (— — Y  t5n-n.^ 1 9n-n 4-*>2n-n0 1 2 n-n0fri d 2n-noiÊ fci)

= E (— —  Y  t,) + E (— —  Y  )7 n - n . 4 - ^  1 ? n - n  ^  i '
B

2 n-n,o ¿=1 2 n-n,0 i=no+l

Now, the n0 are selected using sieve sampling, with a sieve size 

of B/n. Therefore, from theorem 5.17

So

E( B
2 n-n0

n0

E ei
7 =1

n
2 n-n0

N

E Ei7=1

and the last (n - n0) units are selected using Lahiri sampling. 

Therefore, it follows from theorem 5.13

N

E ^ - ~  E  ^  - E Ei11 I10 1=n0+1 1=1

2 1 0



So

E{ B
2 n-n

n

- E0 i=n0+l
t±) n ~no y  p 

223-̂ 0 ¿i 1

Therefore

s (t ^ - E v  = s ( T i - E y  + e < - ^ -  r  t2-n 220i=1 2/2 -Hq^  2n 220i +1

w  N

——  5 2  ̂  52 Ej
> - n  1  9  n - r >  '  a2 n-no M  2n-n0£l

2n 230yy
2n-n„E i

■ E * i
1 =1

This completes the proof.
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Theorem 5.22

With stabilised sieve sampling of monetary units,

V(
B yv £  ̂_ nB 

2n-n0fri 1 (2 n-n0)2 I=i (2n-n0)2

w E

[£ | -1=1

Case 1. Sample reduction (n0 >n)

S "0 «0

= V(

Y
2H n o i=n+l

+ V( B E■‘O l=n+1

-2 covi— -0 y  t±,— — Y  t±)
9  n - n  4 - J  1  9  n - r ?  1

«0

2n-n0f^ 2n-n0iin+1

Now, it can be shown that

n p n°
c o v ( — °— Y  t x . — — Y  t j  = o

2n-n0fr' 2 n-noiézix

(see Cochran, 1977, p48).

M
. C
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Since the first n0 units are selected using sieve sampling, then 

from theorem 5.18

N r ,  2 N

Therefore

V( B
2 n-n0E M

i=l

n2
-o

(2n-n0)2 n f=i

nB
AT 77-2

{2n-n0) 2 E  n .i=l •Di
n
B

N

7=1

And since the set of (n0 - n) units is a simple random sample of 

monetary units, it follows from theorem 5.2

V( B
2 n-n

n0

- E  M0 i=n+1

(n0-n)2 

(2n-nQ)2
V( B

n0-n

A)

E M
i=n+1

(n0-n) N N

(2n-n0)2 n0-n SiV E - l r - - s ‘E M ’i
2  =  1

■9(n0-n) 

(2n-n0)2

N

[E si-|(E£i>2i2 = 1 -°2 2 = 1
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Th erefore

B t*' \ _ nB El n ^ „ 2l B(n0-n) e \
v(— ^ —  Y  t±) =■ 

2n-nr 1 ‘ElHE*0 «  (2n-n0)2is S, B£i (2n-n0)2 £ii E t t - 5 < E * 4 2i

nB
N  r-,2 N

iE #-^E hi tE 4 - Ì  <E *i> 2i(222-/20)2 £ri Bi B£i (2n-n0)2 Bi B  ibi

Case 2. Sample augmentation (n0 <n)

n n D h) - n
v ( — ?— Y t i ) = v ( — *— Y t i ) + - ^ — Y  t . )

2n noi x̂ 2n iioi=1 2n  n 0i=n.<i a

0̂
= V(- B Y t±^+V(— —  Ÿ  t.)2i2-n0ibi 2n-720i=̂ +1

D "l R n
2Co v { —  B—  Y  t±, — —  Y  t±) 

2 n~nQf^ 2 n-nQi^ +1

Now, the covariance term is zero because independent selections 

are made to augment the sample and sampling is done with 

replacement.
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Also, since the first n0 monetary units are selected using sieve 

sampling, it follows from theorem 5.18 that

D  N p 2 N

Therefore

V( B
2 n-n0E ti)i=1

n 2
0̂

<̂|E{2n-n0)2

210
ff rp2

(2n-n0) 2 0i=l nl

And since the next (n- n0) units are selected using Lahiri 

sampling, then, from theorem 5.16

V{ B
2 n-n0 i=n0+l

(n-n0) 2 

2n-n0) 2
V( B

n-n

n

- E0
ti)

N
e \ N

no)2 B ryy _ I „,2, 
(2n-n0)2 n-n0 B i B *

B(n-n0) 

(2n-n0) 2

p2 »

i-i -“i i=i
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Therefore

w — £  t,) =— ^ —  t v  ̂ - " y ; e?] + [ £  f t +i  (v  F .)2]
2n~noi=i (2n-n0)2 ¿i Bi Bf£ (2n-n0)2 hi Bi s ¿ 1

_ N  j-,2 If D l _
nB „z-, ̂  B\n-n0] N rp2 N

0 I rV^ hi . 1
(2n-n0)2 Bi B£i (2x2-J20) 2 &  B± B <E*i>

This completes the proof.

5.9.1 Stabilised sieve sampling with the AON error

assignment

The mean and variance of the point estimator with sieve sampling 

and the AON error assignment are derived 5.23 and 5.24.

Theorem 5.23

With stabilised sieve sampling

E{-
o JL N

¿ r E ui> = E * i
iJOl=l ¿=1
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Proof:

Case 1. Sample reduction (n0 > n)

When the initial sample n0 is greater than the nominal sample 

size n, the sample is reduced from n0 to n. Therefore

B v' - B ^
2n-n0&  1 " 2n-n0h l u* 2n n0j=(i2tl)

u.

Hence

(2n-n0| i Ui) ^ (2i7-n0^ Ui Ui)

= E { — 2— Y  u A  - £ ( — «
2/3 n0 i=1 2n E  ui)

Now, the n0 are selected using sieve sampling with a sieve size 

of B/n. Therefore, from theorem 5.19

N

‘ j=l J=1
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Hence

E{
B

2 n-n0

nD

1=1
ui>

n
2 n-n0

N

E Ei
7 =1

and the set of (n0-n) monetary units is a simple random sample of 

monetary units. Thus it follows from theorem 5.3

E(
R l!i »

^ Ui] = Eni=n+i 1=1

Therefore

£■(
B

2n-n E ui>0 l=n+l

•n0--n
2n-n0E * i7 = 1

So

£■(
2/3

B v' \
■“o i=i

- £(
2/2 ^0 i=ntl

¡k

E ui) = n0~n 

2 n-n0T e i
7 = 1

2n-n0 

2 n-n0

N

E ^
7 = 1

- L ' i
7' =1
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When the initial sample n0 is less than the nominal sample size 

n, the sample is augmented from n0 to n by selecting (n - n0) 

units by means of Lahiri sampling. Therefore

Case 2.  Sample augmentation (n0 < n)

B
2 n-n,o 1=1

B ^
v r l > i

B
2 n-n01=1 2n~n0 1 ^ 1 )

Ui

And

E{
no

2 n
—  Y u . )  = E (--i - V u ,
-n0 frt 1 5n-n. 12 n-n0 2=1 2 n- n0 i=n0+1Y  ui}

= E( B Y  + E(
2n-n0£i 1

no

2n -Hq 1=22,1+1Y

Now, the n0 are selected using sieve sampling, with a sieve size 

of B/n. Therefore, from theorem 5.19



So

E{
B

2n-n0

n0

E " i
7 =1

n
2n-n0i = 1

and the last (n - n0) units are selected using Lahiri sampling. 

Therefore, it follows from theorem 5.15

E( B
n-n0

n N

E ui> = E Ei=n- +1 7=1

So

E( B
2n-n

n

E= 71- + ud)
n~nQ 

2 n-n0E^i=l

Therefore

£(— —  V  uj2 n-n *  ̂ -1
“o i=l 2n n0¿=no+1E  uî

2n~noh. 2 2n-n0E  *

2n-n0
2n-n0E * ;7 = 1

= E £i
7 =1

This completes the proof.
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Theorem 5.24

With stabilised sieve sampling of monetary units,

v(  ̂B
2n noi-i (2n-n0)2 i=i -®i=i

nB N N P I T-) _ I N
[ £ Ej-

(2n-n0)2 M

AT

j.

Case 1. Sample reduction (n0 >n)

o i=i noi=1 2n u*>
13 +  1

0̂
=W(— V  Ui)+w(— V  Ui)

2n ^ 01=1 2/J -̂ o i=n+i

-2 Cov ( -■■ B ¿ u — V  u.) 
2n-n0^  Sh-n,,^

Now, it can be shown that

Cov(—  -B V  ulr 
2n-n, 1o i=l 2n-n E ui) = 0

0  1 = 7 3  +  1

(see Cochran, 1977, p48).

2 2 1
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Since the first n0 units are selected using sieve sampling, then 

from theorem 5.20

N  N

[ Y E i- ^ Y e *]
n 1 BfeJL=1

Therefore

V(
B

2 n-n0

no

X ui]
7 =  1

n 2

(2n-n0) 2

(2n-n0) t X ^  - | E Ei ]■°i=li=l

And since the set of (n0 - n) units is a simple random sample of 

monetary units, it follows from theorem 5.4

V{
B

2 72-72,

*>o

X  =0 i-n*l

in0-n)2 

(2n-nj 2
^( — —  X

no~n î f+i

in0-n)2 B 

(2n-n0) 2 ^0--n tE'i
_1
B

N

¿=1

B{n0-n) 

(2n-n0)2

N  N

[E £i“| (E £i)2]
2  =  1 2  =  1

2 2 2



Therefore

V( nB
2 n-n0fr[ 2n-n,

N  N

¿=1 'i =1

B[n0-n) 

{2n-n0)2

nB ry' F Y' C-2-, ^l12 a0|
(2n-n0)2 1 (2n-n0)2

N

2=1 2 =  1

Case 2. Sample augmentation (n0 < n)

E  ui> = o B E ui)+^ —  ê  ui)2/3 -^ 0 2 = 1 2/3 /30i=i 2/3 //oi=720+l

=v{— Ç—  V  uj) +^(— -®—  y  U )
2n-nr*-J 1 ?n-n 1o i=i 2 -̂-TCoi=V+i

H2COV(- Æ E Ui'-n B F  Ui)

Now, the covariance term is zero because independent selections 

are made to augment the sample and sampling is done with 

replacement.

Also, since the first n0 monetary units are selected using sieve 

sampling, it follows from theorem 5.20 that

N
= - [ £ * ; -  n 1i=i
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Therefore

V{ B
2n-n0

n0

E ui'>
7 = 1

n 2

(2n-n0)2

nB

(2n-n0)2

ii AT

r E * ; - | E ^i=i -°i=l

And since the next (n- n0) units are selected using Lahiri

sampling, then, from theorem 5.18

v( B -  ±  a,) B ^
2n noi^+i 2n-n.f.)2 n-n01JE  ui>

0 i=no+l

- n°)2 B [V^ E _ J:(Y'£'.)21
(2n—n0)2 J B i

N

75^ [£V§

Therefore

w ^ £4 - i i  #

710
77

, [E £i-̂ E di iE £i+i <E Bi>2i
AT N

0 1 r nr . 1

(277-770)2 U  B£i (2n~n.Q)2 U j=i

This completes the proof.
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5 .10  Comparison o f  th e  Sampling Methods

'The study of any sampling technique is incomplete unless some 

comparisons are made with other sampling methods' (Madow and 

Madow, 1944). In this section, systematic, cell, Lahiri, sieve 

and stabilised sieve sampling of monetary units are compared 

with simple random sampling of monetary units. The design effect 

(deff), a measure for comparing a sample design with simple 

random sampling, is used as a basis of comparison. The deff of 

a particular sample design is defined as the ratio of the 

variance of an estimate with the sample design to the variance 

of the estimate with simple random sample of the same number of 

elements (Kish, 1965, p258) . If deff is less than one, the

sampling method is more precise than simple random sampling. If 

deff is greater than one, the precision of the sampling method 

under consideration is less than simple random sampling and if 

deff is equal to one, the precision of the two sampling methods 

are the same. A sampling method with a deff of less than one 

is said to be more efficient than simple random sampling and this 

implies that the same level of confidence is obtained with a 

smaller sample size using this method of selection than with 

simple random sampling.

The unbiased point estimator for each assignment method and for 

each sample design is given in Table 5.3.
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Table  5 .3  Unbiased Po int  E st im ator  o f  the  T o ta l  Error Amount T

Sampling Method Error Assignment

Taint AON

SRS, Systematic, 

Cell, Lahiri

_ n 

1=1 111=1

Sieve Sampling
_ "<>

I  £ < *
111=1

S V '
111=1

Stabilised Sieve 

Sampling

„  11 
B y t-

2 n-zioii 1

_ 11 
B

---------  > Ui2 n-n / •*I20 i=l
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From Table 5 . 3 ,  th e  f o l l o w i n g  o b s e r v a t i o n s  are  made

(i) The point estimator is unbiased for simple random, 

systematic, cell, and Lahiri sampling of monetary 

units.

(ii) With sieve sampling, the point estimator is obtained 

by summing over the n0 sample values and dividing by 

the nominal sample size n.

(iii) In modified sieve sampling, the estimator is adjusted 

to eliminate bias. As can be seen from table 5.3, it 

is adjusted downwards when the initial sample size is 

increased and adjusted upwards when the initial sample 

size is reduced.

The variances of the unbiased point estimator with the two error 

assignments for each sample design are summarised in Tables 5.4 

and 5.5. These variances are used to investigate the precision 

of systematic, cell, Lahiri, sieve and stabilised sieve sampling 

compared to the precision of simple random sampling of monetary 

units.
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T a b l e  5 .4 V a r i a n c e s  o f  t h e  P o i n t  E s t i m a t o r  w i t h  th e  T a i n t  E r r o r  A s s ig n m e n t

Sampling method Variance

Simple Random
W ^2 „ N 2

! IE £ - ■!<£**> ] 11 1=1 131 D  1=1

Systematic

!  [ £  r*r.(tain t)- ! ( £ * / ]
11 r-1 °  i=l

Cell

Lahiri

B,y. E t2(S £i)2,

n h  B, B

Sieve
n N p2 N

n i=1 B ± B  *

Stabilised Sieve

n B  r r  t.2i 
(2a-a0)2 Sj B f y  1

+ 1?.'(2J2 I2q ) ¿=i -S _f=i
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T a b l e  5 .5  V a r i a n c e s  o f  th e  P o i n t  E s t i m a t o r  w i t h  t h e  AON E r r o r  A s s ig n m e n t

Sampling Method Variance

Simple Random
N  N  2

f  [ E * i - | < E * i >  1 11 2 = 1 D 2=1

Systematic

|  [ ¿ 2 Î .  - - | ( Î > 2 > 211 r=1 a  1=1

Cell

| [ f * i - |  Ê #2=1 •D2=l

Lahiri
N W 2

| [ E * i - i t E * i )  i 
11 2=1 ^  2=1

Sieve

| l f * i - | t ^ l  ¿ = 1 2 = 1

Stabilised Sieve
N  N

£  * i - |  ( £  *i> *i
(2/3 33q ) i=i “ i=i
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5 . 1 0 . 1 The Design  E f f e c t  o f  S y s te m a t ic  Sampling.

From Table 5.4, it can be seen that the magnitude of the variance 

of the point estimator, with the taint error assignment, under 

systematic sampling depends on the magnitude of

k

^2 (taint)
i-i

and Table 5.5 shows that the magnitude of the variance of the 

point estimator, with the AON error assignment, depends on the 

magnitude of

k

1-1

In both cases, for a fixed error amount in the population, these 

summations are likely to be small if the errors are distributed 

uniformly among the k systematic samples, and they are likely to 

be large if the total error amount differs greatly in each 

systematic sample. This concept applies to cluster sampling in 

general, where the ideal situation is that each cluster is a 

mirror image of the population. Equivalently, systematic 

sampling is precise when monetary units within the same 

systematic sample are heterogeneous and imprecise when they are 

homogeneous. This is intuitive because one sample contains all 

the information about the population parameter when the 

systematic samples are similar to each other.
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Cochran (1977, 207-208) derived the following results for the

variance of systematic samples compared to simple random 

sampling:

(i) Variance estimates based on systematic samples are less 

than variance estimates based on simple random samples 

provided the variance within the systematic sample is 

larger than the population variance as a whole, i.e. 

systematic sampling is more precise when units within the 

same systematic sample are heterogeneous and imprecise when 

they are homogeneous.

(ii) Variance estimates based on systematic sampling are greater 

than variance estimates based on simple random sampling if 

the correlation between elements in the same systematic 

sample is positive.

In accounting populations, identical taints and AONs are 

clustered in the associated line items and hence in adjacent 

monetary units. This leads to systematic samples being similar 

in terms of the total error amount. Also, because similar 

monetary units are clustered, systematic sampling excludes some 

extreme sample combinations from the sampling distribution of the 

estimator. This is the case even if the line items are randomly 

ordered since identical taints and AON values belonging to the 

same line item are still adjacent.
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The extent of the decrease in variation for systematic sampling 

will depend on the population characteristics. It is likely to 

be substantial when the line items and the error amounts in the 

line items are large because a large number of identical taints 

and AONs will then be adjacent. Therefore, substantial gains in 

precision of systematic sampling over simple random sampling 

would be expected when sampling from the audit populations 

generated from Population 2 which consists of relatively large 

line items and relatively large error amounts in the line items 

in error.

In summary, for accounting populations in general, systematic 

sampling should have a design effect of less than or equal to 

one. The design effect will be substantially less than one if 

the population contains relatively large line items and 

relatively large error amounts in the line items in error.

5.10.2 The Design Effect of Cell Sampling

Cell sampling can be looked upon as a special case of stratified 

sampling where the population is divided into n strata and one 

unit is selected from each stratum. As stratification nearly 

always results in a smaller variance for the estimated mean or 

total than a simple random sample of the same size (Cochran, 

1977, p99), the point estimator under cell sampling should have 

a variance less than or equal to the variance with simple random 

sampling, i.e. a deff less than or equal to one. Cochran (1977, 

plOO) showed that the improvement in precision depends on the
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differences between the stratum (cell) means and the greatest 

gains are achieved when the sum of the squares of the deviations 

of the stratum means from the overall means is maximised. This 

is a general desirable property for stratification, where the 

ideal situation is that strata (cells) are internally homogeneous 

and externally heterogeneous (Cochran, 1977, plOl). In 

accounting populations, taints associated with the same line item 

are equal and adjacent and hence are likely to be in the same 

stratum (cell) . Therefore strata or cells will tend to be 

internally homogeneous and externally heterogeneous. Thus, it 

is to be expected that cell sampling will result in a more 

precise point estimator than simple random sampling, i.e. the 

deff of cell sampling is likely to be less than one. The 

greatest gains in precision should occur in accounting 

populations, like Population 2, which have relatively large line 

items.

From Table 5.4 it follows that, with the taint error assignment, 

cell sampling will lead to equal or greater precision than simple 

random sampling, provided

n N
1±( taint) z (^Tf^)2

Now

N n kn K rp
^r+u-pk

i=l r=l D i* (1-1) k1=1
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Therefore, the point estimator with cell sampling and the taint 

error assignment will have equal or better precision than simple 

random sampling provided

n k
nE <Ei=l r=l

E r*U-l)k 

■®r+ (i-1) k

n k

>2 * tE <E
1=1 r=1

Er*(l-l)kj j 2 

E z* (i-1) k

i.e. provided

13 X) t:r*U-l)k')2 * 52 kr+U-l)*;] 2
i=l r=l i=l r=l

The Cauchy-Schwarz inequality guarantees that

^52 t-T*(i-l)k̂  52 ẑ*(i-l)
¿=1 r=1 i=l r=l

Therefore, the point estimator with cell sampling and the taint 

error assignment has equal or greater precision than the 

equivalent point estimator with simple random sampling. The 

gains in precision are obviously greater for larger sample sizes.
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Also, the gains in precision of cell sampling over simple random 

sampling will depend on the pattern of errors in the population. 

If the errors are distributed uniformly over the cells,

i.e. if the summations k

lb
r = 1

I* (i-1) Jc

are similar for each i, then

n k

i=1 z=1
E <E t
7 = 1  r =1

will be small.

Conversely, if the errors are not distributed uniformly over the 

cells, then

will tend to be large, thus leading to substantial gains in 

precision over simple random sampling.

Similarly, with the AON error assignment (Table 5.5), cell 

sampling will lead to a point estimator with equal or greater 

precision than simple random sampling, provided

n k

i=l r-1
E <Ec1=1 r=1

) 2
I* (i-1) Jc'

n N

i=l
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Now,

N

I
1=1

U-l)k
a=l r=l

Therefore, cell sampling leads to a point estimator with equal 

or greater precision provided

n ^2 (ur*U-l)k) 5^ uz+(i-l)k^ 2
¿=1 r=l i=i r=l

This condition follows immediately from the Cauchy-Schwarz 

inequality. The greatest gains in precision occur when the 

errors are not distributed uniformly among the cells, 

i .e . when the

k

Ur+ (i-1)k
r-1

are dissimilar over the i.

Equivalently, for both error assignments, the gains in precision 

of cell sampling over simple random sampling are greatest when 

the cells are internally homogeneous and externally 

heterogeneous. This is a desirable condition for stratified 

sampling in general (Cochran, 1977, pp 89-90) .
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In accounting populations, where the taints and AONs associated 

with the same line item are equal and are likely to be in the 

same stratum, cell sampling would be expected to be more precise 

than simple random sampling of monetary units. The greatest 

gains in precision should occur in accounting populations, like 

Population 2, which have relatively large line items.

In summary, the design effect of cell sampling is less than or 

equal to one. The value of deff will be small in populations 

with large line items and when the sample size is large.

5.10.3 The Design Effect of Lahiri Sampling.

Clearly, from Tables 5.4 and 5.5, the variances of the point 

estimator with Lahiri sampling is identical to the variance of 

the point estimator with simple random sampling for both error 

assignments. Hence, Lahiri sampling has a design effect of one 

or equivalently Lahiri sampling has the same precision as simple 

random sampling. In this study, Lahiri sampling is proposed as 

an alternative to simple random sampling and therefore from the 

point of view of the point estimator at least, the decision to 

use Lahiri sampling instead of simple random sampling will be 

made on non-statistical grounds.
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5 . 1 0 . 4 The Design  E f f e c t  o f  S i e v e  Sampling

From Tables 5.4 and 5.5, it can be seen that, with either error 

assignment method, sieve sampling will have a deff of less than 

or equal to one provided

N  N

7 = 1  7 = 1

2

i.e. provided

( £ Ei >2
i=l_____

N

E * i
7 = 1

The value of n for which sieve sampling is more precise than 

simple random sampling, depends on the pattern of errors in the 

population. Obviously, if the errors are distributed uniformly 

throughout the line items, the denominator will tend to be small 

and hence, the sample size at which the design effect is less 

than or equal to one, will be large. Conversely, if the errors 

are not distributed uniformly throughout the line items, the 

denominator will tend to be large and hence, the sample size at 

which the design effect becomes less than one will be small.

The minimum sample sizes for which the design effect for sieve 

sampling is less than one in each set of populations are given 

in Tables 5.6 and 5.7 respectively.
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Table 5.6 Minimum Sample Size for which the Design Effect of 

Sieve Sampling is less than 1 for Audit Populations 

generated from Population 1

Error Rate Taint 1 Taint 2 Taint 3

Error Rate 1 16 17 22

Error Rate 2 33 35 47

Error Rate 3 47 50 67

Error Rate 4 93 99 132

Error Rate 5 140 150 201

Table 5.7 Minimum Sample Size for which the Design Effect for

Sieve Sampling is less than 1 for Audit Populations 

generated from Population 2

Error Rate Taint 1 Taint 2 Taint 3

Error Rate 1 4 5 5

Error Rate 2 7 7 7

Error Rate 3 11 12 12

Error Rate 4 18 19 19

Error Rate 5 31 33 34
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(i) In both sets of populations, the sample size for which 

the design effect of sieve sampling is less than one 

is small for populations with small taints and low 

error rates.

(ii) In audit populations generated from Population 2 where 

the line items are large, the design effect of sieve 

sampling is less than one for relatively small samples 

for all error rates and for all taint sizes. The 

maximum sample size to ensure a deff of less than one 

is 34 in audit populations generated from Population

2. This contrasts with the audit populations 

generated from Population 1, where the sample sizes 

for which the design effect of sieve sampling becomes 

less than one is quite large in populations with large 

line item error rates.

These results concur with the results obtained by Wurst, Neter

and Godfrey (1989a) who found that

(i) For accounting populations where the total error

amount is small, the sample size at which sieve 

sampling becomes more efficient than simple random 

sampling tends to be small.

From t h e s e  t a b l e s ,  th e  f o l l o w i n g  o b s e r v a t i o n s  are  made:
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(ii) Errors concentrated in large line items and large 

proportional errors per line item tend to favour sieve 

sampling in terms of the precision of the point 

estimator.

Further insights into the gains in precision due to sieve 

sampling can be obtained by calculating the design effects for 

each sample size drawn from each audit population. These are 

given in Tables 5.8 and 5.9 for each error assignment method 

respectively.

The following observations are made from these tables.

(i) The design effect of sieve sampling is similar for 

both error assignments in all cases.

(ii) Although there is a tendency in Population 1 for the 

audit populations with low line item error rates and 

large sample sizes to have a deff of less than one and 

the populations with high line item error rates have 

a deff greater than one, the deff is not substantially 

different from one in any of the audit populations 

generated from Population 1 for any sample size.

(iii) The design effect of sieve sampling is substantially 

less than one for all sample sizes in the audit 

populations created from Population 2. The greatest 

gains in precision for sieve sampling over simple
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random sampling occur in the large sample sizes. 

Populations with low line item error rates have more 

precise point estimators under sieve sampling than 

populations with high line item error rates.

Table 5.8 Design Effect of Sieve Sampling with the Taint (AON) Error 

Assignment for Audit Populations generated from Population 1

Sample Size n = 30 n = 60 n = 100

Error Rate 1

Taint 1 0.99 (0.99) 0.97 (0.97) 0.95 (0.95)

Taint 2 0.99 (0.99) 0.97 (0.98) 0.95 (0.95)

Taint 3 1.00 (1.00) 0.98 (0.98) 0.95 (0.96)

Error Rate 2

Taint 1 1.00 (1.00) 0.98 (0.98) 0.96 (0.96)

Taint 2 1.00 (1.00) 0.98 (0.99) 0.96 (0.96)

Taint 3 1.01 (1.01) 0.99 (0.99) 0.96 (0.97)

Error Rate 3

Taint 1 1.01 (1.01) 0.99 (0.99) 0.96 (0.97)

Taint 2 1.01 (1.01) 0.99 (0.99) 0.97 (0.97)

Taint 3 1.03 (1.02) 1.01 (1.00) 0.98 (0.98)

Error Rate 4

Taint 1 1.04 (1.04) 1.02 (1.02) 1.00 (1.00)

Taint 2 1.05 (1.04) 1.03 (1.02) 1.00 (1.00)

Taint 3 1.07 (1.06) 1.05 (1.04) 1.02 (1.02)

Error Rate 5

Taint 1 1.06 (1.07) 1.05 (1.05) 1.03 (1.03)

Taint 2 1.08 (1.08) 1.06 (1.06) 1.03 (1.03)

Taint 3 1.13 (1.10) 1.11 (1.08) 1.08 (1.06)
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Table 5.9 Design Effect of Sieve Sampling with the Taint (AON) 

Assignment for Audit Populations generated from Population 2

Sample Size n = 30 n = 60 n = 100

Error Rate 1

Taint 1 0.85 (0.85) 0.69 (0.69) 0.46 (0.46)

Taint 2 0.86 (0.86) 0.69 (0.70) 0.47 (0.48)

Taint 3 0.86 (0.86) 0.70 (0.70) 0.48 (0.49)

Error Rate 2

Taint 1 0.89 (0.89) 0.75 (0.75) 0.56 (0.57)

Taint 2 0.89 (0.89) 0.75 (0.76) 0.57 (0.58)

Taint 3 0.89 (0.90) 0.76 (0.76) 0.58 (0.58)

Error Rate 3

Taint 1 0.93 (0.93) 0.81 (0.81) 0.66 (0.67)

Taint 2 0.93 (0.93) 0.82 (0.82) 0.66 (0.67)

Taint 3 0.93 (0.93) 0.82 (0.82) 0.67 (0.67)

Error Rate 4

Taint 1 0.94 (0.94) 0.81 (0.80) 0.62 (0.62)

Taint 2 0.95 (0.95) 0.81 (0.81) 0.62 (0.62)

Taint 3 0.95 (0.95) 0.81 (0.81) 0.63 (0.63)

Error Rate 5

Taint 1 1.00 (1.00) 0.88 (0.88) 0.71 (0.71)

Taint 2 1.01 (1.01) 0.88 (0.89) 0.72 (0.71)

Taint 3 1.02 (1.02) 0.89 (0.89) 0.72 (0.71)
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No general statement can be made on the design effect of 

stabilised sieve sampling. The variance of the point estimator 

with stabilised sieve sampling consists of two variance 

components, one due to the initial sieve sample selection and the 

other due to the reduction or the augmentation process. The 

component due to sieve sampling has the greatest weight so one 

would expect that the design effect of stabilised sieve sampling 

would be somewhat similar to the design effect of sieve sampling.

Obviously, the point estimator with stabilised sieve sampling 

will have a precision less than that with simple random sampling 

if the initial gains in precision due to the sieve sample 

component are larger than the extra variance component caused by 

the reduction or the augmentation process. If the improvement 

in the precision of sieve sampling relative to simple random 

sampling is substantial, then the variance of stabilised sieve 

sampling will be less than the variance of simple random 

sampling. For example, from Table 5.9, it can be seen that the 

gains in precision due to sieve sampling are, in some cases, as 

high as 50% in audit populations generated from Population 2. 

In these cases also, the variance of stabilised sieve sampling 

will be substantially less than the variance of simple random 

sampling, i.e. stabilised sieve sampling will have a d e f f  less 

than one. On the other hand, in the audit populations generated 

from Population 1, the design effect of sieve sampling is near 

one in all cases (Table 5.8), therefore stabilised sieve sampling 

may not lead to gains in precision over simple random sampling.

5 . 1 0 . 5  The D esign  E f f e c t  o f  S t a b i l i s e d  S i e v e  Sampling.

244



5 . 1 0 . 5 . 1 S t a b i l i s e d  S i e v e  Sampling compared t o  S i e v e  Sampling.

Since the variance component due to the initial sieve sample in 

stabilised sieve sampling is the main part of the variance of 

stabilised sieve sampling, it is to be expected that the variance 

of the two sampling methods will be similar, i.e. the efficiency 

of stabilised sieve sampling relative to sieve sampling should 

be near one.

5.11 Summary

In this chapter, the mean and variance of an estimator of the 

total error amount is derived for the six monetary-unit sampling 

methods. The precision of a point estimator of the total error 

amount with systematic, cell, Lahiri, sieve and stabilised sieve 

sampling relative to simple random sampling of monetary units is 

compared.

It was found that

(i) The design effect of systematic sampling depends on

the population characteristics. The design effect is 

likely to be less than or equal to one in all audit 

populations. The greatest gains in precision occur in 

populations with large line items.
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(ii) Cell sampling has a design effect of less than or 

equal to one in all the audit populations. The 

greatest gains in precision occur in populations with 

large line items and with large sample sizes.

(iii) Lahiri sampling has a design effect of one in all 

audit populations.

(iv) Sieve sampling has a design effect of less than or 

equal to one for most sample sizes and for most of the 

audit populations. Substantial gains in precision 

occur when the line items are large and the error 

rates are low.

(v) No general statement can be made on the design effect 

of stabilised sieve sampling. It is likely to be less 

than one when the gains in precision due to sieve 

sampling are substantial and near one otherwise.

In the following chapters, an empirical investigation is carried 

out to establish whether these sampling methods have the same 

effects for upper bounds of the total error amount.
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Chapter 6

Upper Bound Comparisons of Simple Random, Systematic, 

Cell and Sieve Sampling of Monetary Units.

6.1 Introduction

This chapter investigates how different monetary-unit sampling 

methods perform when obtaining estimates of the total error 

amount in substantive auditing. Four methods, currently used in 

practice are examined, namely, simple random, systematic, cell 

and sieve sampling of monetary units. Simple random sampling is 

widely used in the United States (Wurst,1990). Systematic and 

cell sampling are used in audit practice in Canada (CICA, 1990), 

and sieve sampling has been proposed as an alternative to simple 

random sampling of monetary units (Gill, 1983) and has gained 

some acceptance in the Netherlands (Wurst, Neter and Godfrey, 

1989a) . Studies done on the use of monetary-unit sampling in the 

UK (for example, McRae, 1982 and Abdul-Hamid, 1993) have not 

specified the type of monetary-unit sampling plans used in 

substantive testing.

A comparative investigation of the sampling methods is carried 

out by means of a large scale simulation study using the thirty 

audit populations created from the two actual accounting
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populations as described in Chapter 3. Samples of sizes 30, 60 

and 100 are drawn from each audit population. Upper bounds are 

calculated using the Stringer, Cell and Moment bounds, with both 

error assignments at three nominal confidence levels, .70, .85 

and .95. One thousand replications are performed for each sample 

size and for each sample design. Analysis of variance models are 

constructed to compare the performance of the sampling methods.

A number of previous investigations have been carried out to 

compare the performances of monetary-unit sampling methods. 

Jenne (1982) compared simple random, cell and systematic sampling 

but concentrated on the number of observed errors found in the 

sample with each selection method. Plante, Neter and Leitch 

(1985) compared simple random, cell and systematic sampling using 

the Stringer, Cell and Multinominal bounds. Wurst, Neter and 

Godfrey (1989b) compared sieve sampling with simple random and 

cell sampling of monetary units using the Stringer and Cell 

bounds. Wurst (1990) called for further research on the 

comparative performance of sieve sampling and systematic sampling 

of monetary units. Wurst (1990) also called for research on the 

performance of the Moment bound using sieve sampling.

This study addresses the issues raised by Wurst. Extending 

previous research, it provides the first comparative 

investigation of some of the sampling methods and the first 

investigation of the sampling methods using the Moment bound.

In the remainder of the chapter, the analysis of variance models
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used are detailed, the comparative performance of the sampling 

methods for each error rate, taint size, sample size and bound 

is analysed and a comparison is made between the performance of 

the point estimator and the performance of the bounds under each 

sampling method.

6.2 The Analysis of Variance Models

To compare the performance of the sampling methods, five-factor 

Analysis of Variance (ANOVA) models are constructed using the 

performance measures outlined in 2.11 as the dependent variables. 

The purpose of the models is to determine to what extent the 

performance measures are influenced by the different sampling 

methods and to what extent the sampling methods interact with 

other factors to affect the performance measures.

6.2.1 The Independent Factors.

Five independent factors are included in the ANOVA models. They 

are

i) line item error rate (a

ii) taint size ({3)

iii) sample size (y)

iv) bound (8)

V) sampling method (e)

The independent factors are detailed in table 6.1.
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Table 6.1 Description of the Independent Factors for the ANOVA

Models

Factor Description Levels

a Line Item Error Rate i=l Lowest 

i=2 

i=3 

i = 4

i=5 Highest

P Taint Size j=l Low 

j=2 Medium 

j=3 High

Y Sample Size k=l n = 30 

k=2 n = 60 

k=3 n = 100

8 Bounds 1=1 Stringer 

1=2 Cell 

1=3 Moment

h Sampling Method m=l SRS 

m=2 Systematic 

m=3 Cell 

m=4 Sieve

250



The f a c t o r s  o u t l i n e d  in  Table  6 .1  have been i d e n t i f i e d  in

previous studies as likely to influence the performance measures. 

Neter and Loebbecke (1975), Leitch, Neter, Plante and Sinha 

(1982) and Atkinson (1990) demonstrated that the estimates of the 

total error amount are influenced by population characteristics 

such as the line item error rate and the magnitude of the errors 

(taints) in the population. The five line item error rates and 

the three taint levels for each population have been chosen to 

provide a range of population characteristics which may occur in 

real audit situations, as detailed in Chapter 3.

Neter and Loebbecke (1975), Reneau (1978), Wurst, Neter and 

Godfrey (1989b) and Atkinson (1990) demonstrated that the sample 

size influences the accuracy of the estimates of the total error 

amount. McRae (1982, pl91) estimated that the modal sample size 

used in substantive testing by professional accounting firms in 

the UK fell in the range 40 to 80 and in a recent study carried 

out by Abdul-Hamid (1993), it was found that the size of the 

audit sample used by medium sized firms in England ranged from 

25 to 100. In keeping with these studies, it was decided that 

samples of sizes 30, 60 and 100 should represent the range of 

sample sizes currently used in audit practice.
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Three bounds commonly used in auditing i.e. the Stringer, Cell 

and Moment bounds are used to estimate the total error amount. 

The Stringer bound is widely used in audit practice in the United 

States (Wurst, 1990). The Cell bound is used in audit practice 

in Canada (CICA, 1990) and the Moment bound has recently been 

adopted by Arthur Anderson as a replacement for the Stringer 

bound (Felix, Grimlund, Roster and Roussey, 1990) . Each of these 

bounds can be used with each of the monetary-unit sampling 

methods and the two error assignment methods (Wurst, Neter and 

Godfrey (1989b). The analysis of the Moment bound for the 

different sampling methods is given here for the first time.

Sampling method is included as an independent factor so that its 

influence on the performance criteria could be assessed and the 

extent to which it interacts with other factors in affecting the 

performance criteria may be investigated. The four sampling 

methods considered are those which are currently used in audit 

practice. The comparative performance of the estimates with 

sieve sampling and systematic sampling is provided here for the 

first time.
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6 . 2 . 2 The ANOVA Models

Separate ANOVA models are examined using coverage, tightness, and 

standard deviation as the dependent variables for each set of 

audit populations (2), for each nominal confidence level (3) and 

for each error assignment method (2). Therefore, twelve (2x3x2) 

different ANOVA models are examined for each of the three 

dependent variables. Each model includes all first-order 

interactions of the independent factors and can be expressed as

yijkim  = V- + ai + pj + Yjc + 6 2 + ^  + + (ay)ijc + (a&)n + (ar))im

+ (PY) JJc + (Pfi)jI + (pTl)Jm + (YOjci + (Ytl)jcH, + (Win + eijklm

subject to

E “i = E Pj = E Y* = E = E % = 0

where, for i=l,.5, j=l,.3,

is N[0, o)

k=l..3, 1=1,..3, m=l,..4,

253



[X is the overall mean of the dependent variable.

(Xi is the main effect of the line item error rate at the

ith level.

(3 j is the main effect of the taint size at the j th level.

yk is the main effect of the sample size at the kth level

is the main effect of the bound at the 1th level.

T)m is the main effect of sampling method at the mth level

(ocp) i:j is the interaction of the line item error rate and the

taint size at the ith and jth level respectively.

(ay) ik is the interaction of the line item error rate and the

sample size at the ith and kth level respectively. 

(a8)n is the interaction of the line item error rate and the

bounds at the ith and 1th level respectively.

(ar|) im is the interaction of the line item error rate and the 

sample size at the ith and mth level respectively, 

(py) jk is the interaction of the taint size and the sample

size at the jth and kth level respectively.

((38) is the interaction of the taint size and the bound at

the jth and 1th level respectively.

( Pti ) jra is the interaction of the taint size and the sampling

method at the jth and mth level respectively.

(y8)kl is the interaction of the sample size and the bound at

the kth and 1th level respectively.

(yn)i™ is the interaction of the sample size and the sampling

method at the kth and mth level respectively.

(8r|)lm is the interaction of the bound and the sampling 

method at the 1th and mth level respectively.
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In each ANOVA model, there is a total of 540 cells (5 line item 

error rates x 3 taint sizes x 3 sample sizes x 3 bounds x 4 

sampling methods).

6.2.3 Transformations on the Dependent Variables.

To correct for lack of normality and to eliminate 

heteroscedasticity, a transformation was carried out on each of 

the dependent variables. The reliability variable is a 

proportion near one and the arc-sine transformation is used to 

stabilise the variance of this variable. Draper and Smith 

(1981, p223) suggested that this transformation is an effective 

variance stabiliser if the proportion is greater than or equal 

to 0.70 which is the lowest nominal confidence level in this 

study. The logarithmic transformation to the base 10 was used 

on the tightness and precision variables. The effectiveness of 

the transformations were assessed by examining the fit of the 

model and the patterns of the residuals. Normal probability 

plots indicated that the residuals were close to normal for each 

of the dependent variables. Also, examination of residual plots 

against the predicted values confirmed the adequacy of the model 

and the lack of heteroscedasticity in each case. A high r2 

occurred in each of the models. The ANOVA tables are given in 

Appendix D.
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6.3  Comparisons o f  th e  Sampling Methods

The main effects of the sampling-method factor and the first- 

order interactions of the sampling-method factor with each of the 

other factors for each dependent variable are analysed.

The main effects represent general tendencies in the data and the 

main effect for a particular factor represents the average of the 

dependent variable across all levels of the other factors. A 

detailed analysis of the main effects for all the models is 

given.

The first-order interactions measure the relationship between the 

effects of the factors. When comparing two factors, factor 1 

and factor 2 say, the interaction will measure to what extent the 

dependent variable varies for each level of factor 1 with 

different levels of factor 2. Only the interaction terms 

including the sampling method factor are investigated here as the 

study is concerned with the differential performance of the 

sampling methods in each population for each error rate, taint 

size, sample size and bound. Interactions terms which do not 

include sampling method are not important in the context of this 

study and are not analysed. When a first-order interaction of 

the sampling method with a particular factor is found to be 

significant, Tukey's pairwise comparison of means test is used 

to test the significance of the difference of the means of the 

sampling methods for each level of that factor.
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A d e t a i l e d  breakdown o f  th e  f i r s t - o r d e r  i n t e r a c t i o n s  o f  the

sampling method with each of the other factors for the taint 

error assignment at the 95% nominal confidence level is given for 

each of the performance measures. The comparative results for 

the other models (i.e. the taint models at the 85% and 70% 

nominal confidence level and the AON models) are similar and are 

given in appendix E.

In the ANOVA models, a p-value for the test statistic of less 

than 0.05 is said to be statistically significant, i.e. when p 

<.05, for a particular factor or interaction, then that factor 

or interaction is said to have a significant effect on the 

dependent variable. Equivalently, the null hypothesis that the 

factor or interaction has no effect on the dependent variable is 

rejected. Conversely, when p >= .05 for a particular factor or 

interaction, the hypothesis that there is no effect is not 

rej ected.

6.3.1 Comparisons of the Reliability of the Sampling Methods

This section analyses the main effects of the sampling method and 

the first-order interactions of the sampling method with each of 

the other factors for the reliability dependent variable.
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6.3.1.1 The Main Effects of the Reliability Dependent Variable

The reliability main effects of the sampling methods for each 

model are given in tables 6.2 and 6.3.

Table 6.2 Mean Coverage for Each Sampling Method for Audit Populations

generated from Population 1

Confidence Level 95% 85% 70%

Assignment Taint Aon Taint Aon Taint Aon

Sampling Methods

SRS 98.72 99.01 94.67 93 . 88 84.94 83 . 86

Sys 99.43 99.45 96.40 95.16 85.61 85.00

Cell 98.88 99.14 94.92 94.29 84.74 84.36

Sieve 98.63 98.84 94.38 93.70 84.74 83 .88

Table 6.3 Mean Coverage for Each Sampling Method for Audit Populations 

generated from Population 2

Confidence Level 95% 85% 70%

Assignment Taint Aon Taint Aon Taint Aon

Sampling Methods

SRS 98.55 98.71 92.87 93.06 80.66 79.96

Sys 99.51 99.60 96.17 96.40 85.61 85.38

Cell 98.18 99.23 94.17 94.09 82.96 83.14

Sieve 99.18 99.28 95.13 95.18 83.52 82.84
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The f o l l o w i n g  g e n e r a l  o b s e r v a t i o n s  are  made from t h e s e  t a b l e s .

(i) The overall mean coverage does not differ

substantially between sampling methods in any of the 

models.

(ii) The mean coverage is above the nominal in all cases.

6.4.1.2 The First-Order Interactions of the Reliability 

Dependent Variable

The results of the analysis of the interactions between each of 

the independent factors and the sampling method for the 

reliability dependent variable are given. Tables 6.4 and 6.5 

give the significance of the first-order interactions which 

include the sampling method factor for the reliability dependent 

variable for audit populations generated from Population 1 and 

Population 2 respectively.
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Table 6.4 Significance of the First-order Interactions of Each Factor with the 

Sampling Method for Coverage for Audit Populations generated from 

Population 1 with the Taint Error Assignment

Confidence Level 95% 85% 70%

Assignment Taint Aon Taint Aon Taint Aon

Rate NS p <.0001 NS NS NS NS

Taint NS NS NS NS NS NS

Samsize p <.041 p <.0001 p <.01 NS NS NS

Bound NS NS NS NS NS NS

Table 6.5 Significance of the First-order Interactions of Each Factor with the

Sampling Method for Coverage for Audit Populations generated from 

Population 2 with the Taint Error Assignment.

Confidence Level 95% 85% 70%

Assignment Taint Aon Taint Aon Taint Aon

First-order Interactions with Sampling Method

Rate p <.0001 p <.0001 p <.0001 p <.0001 p < .018 NS

Taint NS NS NS NS NS NS

Samsize p <.0001 p <.0001 p <.0001 p <.0001 p <.0001 p<.0001

Bound NS NS NS NS NS NS
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The following observations are made from tables 6.4 and 6.5.

(i) The first-order interaction of the sampling 

method and the line item error rate is 

insignificant for all except the model with the 

AON error assignment at the 95% nominal level in 

Population 1. In Population 2, the first-order 

interaction of the sampling method and the line 

item error rate is significant for all models 

except the model with the AON error assignment at 

the 70% nominal confidence level.

(ii) The first-order interaction of the sampling 

method and the taint size is insignificant in all 

the models.

(iii) The first-order interaction of the sampling 

method and the sample size is significant at the 

95% nominal confidence level with both error 

assignment methods and at the 85% confidence 

level with the taint error assignment in 

Population 1. It is significant in all models in 

Population 2.

(iv) The first-order interaction of the sampling 

method and the bound is insignificant in all the 

models.

261



It would appear from this that audit populations generated from 

Population 2 are more sensitive, (i.e. more significant first- 

order interactions) to the sampling method used than the audit 

populations generated from Population 1, particularly with 

respect to the interactions of the sample size and the error rate 

with the sampling method.

6.3.1.2.1 The First-Order Interaction of the Sampling Method and 

Error Rate for the Reliability Dependent Variable.

The first-order interactions of the sampling method and the error 

rate for the taint error assignment at the 95% nominal confidence 

level are given in tables 6.6 and 6.7 for audit populations 

generated from Population 1 and Population 2 respectively.

Table 6.6 Mean Coverage of the First-Order Interaction of 

Sampling Method by Line Item Error Rate at the 95% 

Nominal Confidence Level for Audit Populations 

generated from Population 1 with the Taint Error 

Assignment

Line Item Error 

Rate

1 2 3 4 5

SRS 100.00 99.72 99.28 97.44 97.13

Systematic 100.00 99.91 99.76 98.90 98.60

Cell 100.00 99.70 99.36 97.64 96.70

Sieve 100.00 99.73 99.36 96.77 97.27
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Table 6.7 Mean Coverage of the First-Order Interaction of 

Sampling Method by Line Item Error Rate at the 95% 

Nominal Confidence Level for Audit Populations 

generated from Population 2 with the Taint Error 

Assignment

Line Item Error 

Rate

1 2 3 4 5

SRS 99.80 99.80 98.84 97.21 97.09

Systematic 100.00 100.00 100.00 98.47 99.07

Cell 99.89 99.83 98.23 98.57 98.35

Sieve 99.91 99.91 99.44 98.70 98.12

From tables 6.6-6.7, the following observations are made

(i) The mean coverage is similar for all the sampling 

methods in each error rate with the exception of error 

rate 3 in Population 2, where systematic sampling has 

a significantly higher coverage than simple random and 

cell sampling.

(ii) Systematic sampling has the highest mean coverage for 

all the error rates.
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6 . 3 . 1 . 2 . 2 The F ir s t - O r d e r  I n t e r a c t i o n  o f  th e  Sampling

Method and th e  Taint  S i z e  f o r  th e  R e l i a b i l i t y

Dependent V a r ia b le .

The first-order interactions of the sampling method and the taint 

size for the taint error assignment at the 95% nominal confidence 

level are given in tables 6.8 and 6.9 for audit populations 

generated from Population 1 and Population 2 respectively.

Table 6.8 Mean Coverage of the First-Order Interaction of the

Sampling Method by the Taint Size at the 95% Nominal 

Confidence Level for Audit Populations generated from 

Population 1 with the Taint Error Assignment

Taint 1 2 3

SRS 98.99 98.91 98.25

Systematic 99.63 99.57 99.10

Cell 99.15 99.09 98.40

Sieve 98.94 98.85 98.08

264



T a b l e  6 .9  Mean C o v e ra g e  o f  t h e  F i r s t - O r d e r  I n t e r a c t i o n  o f  t h e  S a m p l in g

Method by the Taint Size at the 95% Nominal Confidence Level 

for Audit Populations generated from Population 2 with the 

Taint Error Assignment

Taint 1 2 3

SRS 98.62 98.51 98.52

Systematic 99.66 99.48 99.38

Cell 98.22 98.15 99.15

Sieve 99.22 98.18 99.18

The following observations are made from tables 6.8 and 6.9

(i) There are no significant differences between the mean 

coverage of the sampling methods for any of the taint 

sizes.

(ii) Systematic sampling has the highest mean coverage for all 

the taint sizes.
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6.3.1.2.3 The F ir s t - O r d e r  I n t e r a c t i o n  o f  th e  Sampling

Method and th e  Sample S i z e  f o r  th e  R e l i a b i l i t y

Dependent V a r ia b le .

The first-order interactions of the sampling method and the 

sample size for the taint error assignment at the 95% nominal 

confidence level are given in tables 6.10 and 6.11 for audit 

populations generated from Population 1 and Population 2 

respectively.

Table 6.10 Mean Coverage of the First-Order Interaction of the

Sampling Method by the Sample Size at the 95% Nominal 

Confidence Level for Audit Populations generated from 

Population 1 with the Taint Error Assignment

Sample Size n= 30 n= 60 n = 100

SRS 99 66 98 34 98.15

Systematic 99 69 98 27 99.33

Cell 99 60 98 53 98.51

Sieve 99 53 98 28 98.07
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T a b l e  6 .1 1  Mean C o v e ra g e  o f  t h e  F i r s t - O r d e r  I n t e r a c t i o n  o f  th e

Sampling Method by the Sample Size at the 95% Nominal 

Confidence Level for Audit Populations generated from 

Population 2 with the Taint Error Assignment

Sample Size n= 30 n= 60 n = 100

SRS 99 26 98 73 97 65

Systematic 99 47 99 32 99 74

Cell 99 44 99 04 99 05

Sieve 99 24 99 03 99 31

The following observations are made from tables 6.10 and 6.11

(i) Systematic sampling has the highest mean coverage for 

all the sample sizes for audit populations generated 

from Population 1 and Population 2

(ii) In Population 2, systematic sampling has a 

significantly higher mean coverage than simple random 

sampling when the sample size is 100.
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6.3 .1.2.4 The F ir s t - O r d e r  I n t e r a c t i o n  o f  th e  Sampling

Method and th e  Bound f o r  the  R e l i a b i l i t y

Dependent V a r ia b le .

The first-order interactions of the sampling method and the 

sample size for the taint error assignment at the 95% nominal 

confidence level are given in tables 6.12 and 6.13 for audit 

populations generated from Population 1 and Population 2 

respectively.

Table 6.12 Mean Coverage of the First-Order Interaction of the

Sampling Method by the Bound at the 95% Nominal 

Confidence Level for Audit Populations generated from 

Population 1 with the Taint Error Assignment

Bound Stringer Cell Moment

SRS 99.22 99.02 97.91

Systematic 99.78 99.70 98.81

Cell 99.42 99.18 98.04

Sieve 99.22 98.99 97.67

268



Table 6.13 Mean Coverage of the First-Order Interaction of the

Sampling Method by the Bound at the 95% Nominal 

Confidence Level for Audit Populations generated from 

Population 2 with the Taint Error Assignment

Bound Stringer Cell Moment

SRS 98.87 98.82 97.98

Systematic 99.64 99.64 99.64

Cell 99.42 99.40 98.72

Sieve 99.40 99.39 98.78

The following observations are made from these tables

(i) There are no significant differences in the mean 

coverage between sampling methods for any of the three 

bounds.

(ii) Systematic sampling has the highest mean coverage of 

the three bounds.

(iii) The Stringer bound has the highest mean coverage in 

all cases.

6.3.1.3 Summary and Comparisons with other Studies

The mean coverage is above the nominal for the main effects and 

for the first-order interactions in all cases.
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The sample selection method appears to have little effect on the 

reliability of the estimates. The four sample selection methods 

have similar reliabilities for each error rate, taint size, 

sample size and bound. Systematic sampling has a higher 

reliability for each error rate, taint size, sample size and 

bound than the other sampling methods but the difference is not 

substantial. Significant first-order interactions exist but 

these are not of practical importance since the differences are 

not substantial in any case.

The Stringer bound has a higher reliability than the Moment bound 

but again, the difference is not substantial.

The reliability findings are similar to those of other studies. 

Plante, Neter and Leitch (1985) found that the method of sample 

selection (simple random, cell and systematic sampling) appeared 

to have little effect on the coverage of the Stringer and Cell 

bounds. Wurst, Neter and Godfrey (1989b) found that, in almost 

all cases, the coverage for simple random, cell and sieve were 

similar for a given sample size, nominal confidence level and 

bound. They also found that the Stringer bound had the highest 

coverage in all cases.

270



6 . 3 . 2 Comparisons o f  the  T ig h tn e s s  o f  th e  Sampling Methods

The analysis of the main effects of the sampling methods and the 

first-order interactions of the sampling methods with each of the 

other independent factors for the tightness dependent variable 

is reported below.

6.3.2.1 The Main Effects of the Tightness Dependent Variable

The tightness main effects for each sampling method for each 

model are given in tables 6.14 and 6.15

Table 6.14 Mean Tightness for Each Sampling Method for Audit Populations 

generated from Population 1

Confidence Level 95% 85% 70%

Assignment Taint Aon Taint Aon Taint Aon

Sampling Methods

SRS 276.12 287.27 175.26 178.22 105.13 103.33

Sys 274.21 286.31 173.34 177.23 103.29 102.32

Cell 272.47 288.16 172.14 178.93 102.46 103.86

Sieve 273.86 290.19 173.52 180.80 103.78 105.57
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Table 6.15 Mean Tightness for Each Sampling Method in Audit Populations

generated from Population 2

Confidence Level 95% 85% 70%

Assignment Taint Aon Taint Aon Taint Aon

Sampling Methods

SRS 191.05 191.42 118.83 118.58 67.64 67.02

Sys 191.00 193.63 118.45 118.27 67.00 68.27

Cell 191.69 191.51 119.20 118.56 67.86 66.87

Sieve 191.15 190.19 118.70 117.35 62.29 65.77

The following observations are made from these tables 6.14-6.15

(i) The mean tightness measure does not differ substantially 

between sampling methods.

(ii) The lower nominal confidence levels have tighter estimates 

than the higher nominal confidence levels.
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6 . 3 . 2.2 The First-Order Interactions of the Tightness 

Dependent Variable

The results of the analysis of the interactions between each of 

the independent factors and the sampling method for the tightness 

dependent variable are given. Tables 6.16 and 6.17 give the 

significance of first-order interactions which include the 

sampling method factor for the tightness dependent variable.

Table 6.16 Significance of the First-order Interactions of Each Factor with the

Sampling Method for Tightness for Audit Populations generated from 

Population 1

Confidence Level 95% 85% 70%

Assignment Taint Aon Taint Aon Taint Aon

Rate NS NS NS pc.024 pc.02 6 pc.019

Taint NS NS NS NS NS NS

Samsize p<.0001 pc.0001 pc.0001 pc.0001 pc.0001 pc.0001

Bound NS NS NS NS NS NS
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Table 6.17 Significance of the First-order Interactions of Each Factor with the

Sampling Method for Tightness for Audit Populations generated from 

Population 2

Confidence Level 95% 85% 70%

Assignment Taint Aon Taint Aon Taint Aon

Rate NS p <.016 NS p<.014 NS p <.035

Taint NS NS NS NS NS NS

Samsize p <.0001 p <.0001 p <.0001 p <.0001 p <.0001 p<.0001

Bound NS NS NS NS NS NS

The following observations are made from tables 6.16 and 6.17

(i) The first-order interaction of the sampling 

method and the line item error rate is 

significant for the models at the 95% nominal 

level in Population 1 and at the 85% nominal 

confidence with the taint error assignment in 

Population 1. In Population 2, the first-order 

interactions of the sampling method and the line 

item error rate are insignificant for all models 

with the taint error assignment and significant 

for all models with the AON error assignment.

(ii) The first-order interactions of the sampling 

method with the taint size and with the bound are 

insignificant in all cases.
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(iii) The first-order interaction of the sampling 

method and the sample size is significant for all 

models.

6.3.2.2.1 The First-Order Interactions of the Sampling

Method and the Error Rate for the Tightness 

Dependent Variable.

The first-order interactions of the sampling method and the error 

rate for the tightness dependent variable for the taint error 

assignment at the 95% nominal confidence level are given in 

tables 6.18 and 6.19 for audit populations generated from 

Population 1 and Population 2 respectively.

Table 6.18 Mean Tightness of the First-Order Interaction of the 

Sampling Method by the Line Item Error Rate at the 95% 

Nominal Confidence Level for Audit Populations 

generated from Population 1 with the Taint Error 

Assignment

Line Item Error 

Rate

1 2 3 4 5

SRS 622.29 312.14 219.80 129.73 96.64

Systematic 617.18 312.14 217.73 128.61 95.41

Cell 612.71 306.65 216.11 130.62 96.24

Sieve 617.10 310.32 216.57 129.34 95.97
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Table 6.19 Mean Tightness of the First-Order Interaction of the Sampling 

Method by the Line Item Error Rate at the 95% Nominal 

Confidence Level for Audit Populations generated from 

Population 2 with the Taint Error Assignment

Line Item Error 

Rate

1 2 3 4 5

SRS 316.49 252.27 187.26 114.26 84.38

Systematic 315.35 253.26 186.31 114.58 85.48

Cell 316.08 253.27 186.57 116.53 86.01

Sieve 318.61 252.30 186.84 114.27 84.38

The following observations are made from these tables

(i) The sampling method does not appear to have any 

effect on the tightness of the error estimate for 

any given error rate.

(ii) The estimates of the total error amount are 

extremely conservative with low error rates 

especially in Population 1. For example, the 

average error estimate is over six times the 

total error amount for all sampling methods in 

the audit populations generated from Population 

1 with error rate 1.

(iii) The estimates of the total error amount become 

less conservative as the error rate increases.
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6 . 3 . 2 . 2.2 The First-Order Interactions of the Sampling 

Method and the Taint Size for the Tightness 

Dependent Variable.

The first-order interactions of the sampling method and the taint 

size for the tightness dependent variable with the taint error 

assignment at the 95% nominal confidence level are given in 

tables 6.20 and 6.21 for audit populations generated from 

Population 1 and Population 2 respectively.

Table 6.20 Mean Tightness of the First-Order Interaction of the Sampling 

Method by the Taint Size at the 95% Nominal Confidence Level 

for Audit Populations generated from Population 1 with the 

Taint Error

Taint Taint 1 Taint 2 Taint 3

SRS 301.73 289.47 235 .15

Systematic 299.44 287.38 235.83

Cell 297.94 285.72 233.74

Sieve 299.18 287.03 235.38
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Table 6.21 Mean Tightness of the First-Order Interaction of the Sampling 

Method by the Taint Size at the 95% Nominal Confidence Level 

for Audit Populations generated from Population 2 with the

Taint Error Assignment

Taint Taint 1 Taint 2 Taint 3

SRS 195.41 190.79 170.94

Systematic 195.73 190.75 186.53

Cell 198.22 191.66 187.39

Sieve 195.78 190.95 186.73

From these tables, the following observations are made

(i) The sampling method does not have any effect on the 

tightness of the bound for any given taint size.

(ii) The estimates of the total error amount are tighter in 

populations with higher taint sizes.

6.3.2.2.3 The First-Order Interactions of the Sampling

Method and the Sample Size for the Tightness 

Dependent Variable.

The first-order interactions of the sampling method and the 

sample size for the tightness dependent variable with the taint 

error assignment at the 95% nominal confidence level are given 

in tables 5.20 and 6.21 for audit populations generated from 

Population 1 and Population 2 respectively.
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Table 6.22 Mean Tightness of the First-Order Interaction of the Sampling 

Method by the Sample Size at the 95% Nominal Confidence Level 

for Audit Populations generated from Population 1 with the 

Taint Error Assignment

Sampling Size n = 30 n = 60 n = 100

SRS 430 22 238 22 159 92

Systematic 423 93 235 49 163 22

Cell 419 48 237 93 159 99

Sieve 424 60 237 08 159 90

Table 6.23 Mean Tightness of the First-Order Interaction of the Sampling 

Method by the Sample Size at the 95% Nominal Confidence Level 

for Audit Populations generated from Population 2 with the 

Taint Error Assignment

Sampling Size n = 30 n = 60 n = 100

SRS 278 64 173 63 120.87

Systematic 279 50 172 88 120.65

Cell 283 78 169 80 121.50

Sieve 282 45 170 64 120.37

The following observations are made from these tables

(i) The sampling method does not have any effect on the 

tightness of the estimates for any given sample size.

(ii) The estimates of the total error amount are extremely 

conservative for small sample sizes but become less 

conservative as the sample size increases.
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6.3.2.2.4 The F ir s t - O r d e r  I n t e r a c t i o n s  o f  th e  Sampling

Method and th e  Bound f o r  the  T ig h tn e s s  Dependent

V a r i a b l e .

The first-order interactions of the sampling method and the bound 

for the tightness dependent variable with the taint error 

assignment at the 95% nominal confidence level are given in 

tables 6.24 and 6.25 for audit populations generated from 

Population 1 and Population 2 respectively.

Table 6.24 Mean Tightness of the First-Order Interaction of the Sampling 

Method by the Bound at the 95% Nominal Confidence Level for 

Audit Populations generated from Population 1 with the Taint 

Error Assignment

Bound Stringer Cell Moment

SRS 293.26 292.22 239.86

Systematic 293.90 289.85 238.88

Cell 292.78 288.68 235.95

Sieve 295.53 245.15 238.73
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Table 6.25 Mean Tightness of the First-Order Interaction of the

Sampling Method by the Bound at the 95% Nominal 

Confidence Level for Audit Populations generated from 

Population 2 with the Taint Error Assignment

Bound Stringer Cell Moment

SRS 195.95 195.14 182.04

Systematic 195.33 194.61 183.07

Cell 196.83 196.06 182.18

Sieve 196.42 195.67 181.17

The following observations are made from these tables.

(i) The sampling method does not have any effect on the 

tightness of the estimates for any given bound.

(ii) The Moment bound is the tightest bound in all cases.

(iii) The Stringer bound is the most conservative of the 

bounds for all the sampling methods in audit 

populations generated from Populations 1 and 2.

6.3.2.3 Summary and Comparisons with other Studies

The sample selection method appears to have little effect on the 

tightness of the estimates. The average tightness is similar for 

each sample selection method. The four sample selection methods 

have similar tightness for each error rate, taint size, sample 

size, and bound.
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Differences in tightness that exist, are caused by factors other 

than the sample selection method. For example, low error rate 

populations give extremely conservative estimates of the total 

error amount. Estimates are also very conservative for samples 

of size thirty and less so for higher sample sizes. The 

Stringer bound is the most conservative of all the bounds. The 

Moment bound is the tightest in all cases.

The tightness findings are similar to those obtained by other 

authors. Wurst, Neter and Godfrey (1989b) found that simple 

random, cell and sieve sampling have no effect on the tightness 

of the bound as measured by the mean bound. Wurst, Neter and 

Godfrey (1989b) showed that the mean Stringer bound with the 

taint error assignment is consistently smaller than the mean 

Stringer bound with the AON assignment. Plante, Neter and Leitch 

(1985) and Wurst, Neter and Godfrey (1989b) demonstrated that the 

mean Cell bound is consistently smaller that the mean Stringer 

bound. Grimlund and Dworkin (1984) found that the Moment bound 

is tighter than the Stringer bound for most error distributions.

6.3.3 Comparisons of the Precision of the Sampling Methods

The analysis of the main effects of the sampling methods and the 

first-order interactions of the sampling methods with each of the 

other factors for the precision dependent variable is reported 

below.
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6 . 4 . 3 . 1 The Main E f f e c t s  o f  th e  P r e c i s i o n  Dependent V a r ia b le

The precision main effects for each sampling method for each 

model are given in terms of the standard deviation of the 

estimate in tables 6.26-6.27.

Table 6.26 Mean Standard Deviation (000s) for Each Sampling Method for

Population 1

Confidence Level 95% 85% 70%

Assignment Taint Aon Taint Aon Taint Aon

Sampling Methods

SRS 98.74 102.46 87.40 91.46 77.41 81.25

Sys 90.03 94.27 79.48 83.97 70.22 74.41

Cell 94.88 100.43 83.88 89.60 74.21 79.53

Sieve 99.43 104.95 88.12 93.76 78.14 83.36

Table 6.27 Mean Standard Deviation(000s) for Each Sampling Method for 

Population 2

Confidence Level 95% 85% 70%

Assignment Taint Aon Taint Aon Taint Aon

Sampling Methods

SRS 145.86 146.50 130.78 131.73 116.99 117.96

Sys 126.19 128.13 112.99 115.01 100.79 102.73

Cell 134.69 134.57 120.68 120.90 107.83 108.16

Sieve 133.93 133.77 120.15 120.26 107.46 107.66
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As can be seen from tables 6.2 6 and 6.27, substantial differences 

in precision exist between the sampling methods. In particular, 

the following observations are made

(i) Systematic sampling produces the most precise 

estimates of the total error amount in all cases.

(ii) Cell sampling is more precise than simple random 

sampling in all cases.

(iii) In Population 1, sieve sampling is less precise 

than simple random sampling but this is not 

substantial in any case. In Population 2, sieve 

and is more precise that simple random sampling.

(iv) The models with the AON error assignment are less 

precise than the models with the taint error 

assignment.

(v) The models with the lower nominal confidence 

levels are more precise than the higher nominal 

confidence levels.
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This section reports the results of the analysis of the 

interactions between each of the independent factors and the 

sampling method for the precision dependent variable. Tables 

6.28 and 6.29 give the significance of the first-order 

interactions which include the sampling method factor for the 

precision dependent variable.

6 . 3 . 3 . 2  The F ir s t - O r d e r  I n t e r a c t i o n s  o f  the  P r e c i s i o n

Dependent V a r ia b le

Table 6.28 Significance of the First-order Interactions for Precision in 

Population 1

Confidence Level 95% 85% 70%

Assignment Taint Aon Taint Aon Taint Aon

Rate p <.0001 p<.0001 p <.0001 p <.0001 p <.0001 <.0001

Taint NS NS NS NS NS NS

Sample Size p<.0001 p<.0001 p<.0001 p<.0001 p<.0001 p<.0001

Bound NS NS NS NS NS NS
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Table 6.29 Significance of the First-order interactions for Precision in

Population 2

Confidence Level 95% 85% 70%

Assignment Taint Aon Taint Aon Taint Aon

Rate p <.0001 p <.0001 p <.0001 p <.0001 p <.0001 p<.0001

Taint NS NS NS NS NS NS

Samsize p <.0001 p <.0001 p <.0001 p <.0001 p <.0001 p<.0001

Bound NS NS NS NS NS NS

The following observations are made from tables 6.28 and 6.29

with respect to the precision dependent variables.

(i) The first-order interaction of the sampling

method and the line item error rate is 

significant in all the models.

(ii) The first-order interaction of the sampling

method and the taint is not significant in any of 

the models.

(iii) The first-order interaction of the sampling

method and the sample size is significant in all 

models.

286



( iv) The first-order interaction of the sampling 

method and the bound is insignificant in all 

models.

6.3.3.2.1 The First-Order Interactions of the Sampling

Method and the Error Rate for the Precision 

Dependent Variable.

The first-order interactions of the sampling method and the error 

rate for the precision dependent variable with the taint error 

assignment at the 95% nominal confidence level are given in 

tables 6.30 and 6.31 for audit populations generated from 

Population 1 and Population 2 respectively.

Table 6.30 Mean Standard Deviation (000s) of Sampling Method by Line Item Error 

Rate at the 95% Nominal Confidence Level for Audit Populations 

generated from Population 1 with the Taint Error Assignment

Line Item Error 

Rate

1 2 3 4 5

SRS 56.52 81.95 96.44 121.70 137.08

Systematic 53.80 79.34 90.95 107.08 118.98

Cell 54.20 77.20 91.56 118.54 132.56

Sieve 56.73 80.17 96.91 123.91 139.93
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Table 6.31 Mean Standard Deviation (000s) of Sampling Method by

Line Item Error Rate at the 95% Nominal Confidence 

Level for Audit Populations generated from Population 

2 with the Taint Error Assignment

Line Item Error 1 2 3 4 5

Rate

SRS 107.43 118.66 137.04 173.22 192.93

Systematic 85.91 102.20 120.36 167.99 154.47

Cell 95.99 110.67 128.45 157.58 180.57

Sieve 90.08 104.63 126.59 161.11 187.30

Although no significant differences were found between sampling 

methods for each error rate, the following observations are made 

from these tables.

(i) Systematic sampling has the highest precision 

across all error rates. The greatest gains in 

precision due to systematic sampling over the 

other sampling methods occur in the high error 

rate populations.

(ii) In Population 1, cell and sieve sampling have 

approximately the same precision as simple random 

sampling in most cases. In Population 2, cell 

and sieve sampling are consistently more precise 

than simple random sampling. With sieve 

sampling, the greatest gains in precision occur 

in the low error rate populations generated from 

Population 2.
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( Ü i ) The e s t i m a t e s  o f  th e  t o t a l  e rr o r  amount are  more

precise in low error rate populations than in 

high error rate populations.

6.3.3.2.2 The First-Order Interactions of the Sampling

Method and the Taint Size for the Precision 

Dependent Variable.

The first-order interactions of the sampling method and the taint 

size for the precision dependent variable with the taint error 

assignment at the 95% nominal confidence level are given in 

Tables 6.30 and 6.31 for audit populations generated from 

Population 1 and Population 2 respectively.

Table 6.32 Mean Standard Deviation (000s) of Sampling Method by Taint Size at

95% Nominal Confidence Level for Audit Populations generated from 

Population 1 with the Taint Error Assignment

Taint 1 2 3

SRS 97.13 97.87 101.21

Systematic 88.28 89.02 92.79

Cell 93.04 93.88 97.71

Sieve 97.39 98.29 102.62
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Table 6.33 Mean Standard Deviation (000s) of Sampling Method by Taint Size at

95% Nominal Confidence Level for Audit Populations generated from 

Population 2 with the Taint Error Assignment

Taint 1 2 3

SRS 144.33 145.46 147.77

Systematic 125.31 125.81 127.45

Cell 133.63 134.46 135.91

Sieve 132.72 133.60 135.47

The following observations are made from these tables

(i) Systematic sampling has the highest precision

across all taint sizes.

(ii) Sieve and cell sampling are consistently more

precise than simple random sampling for all taint 

sizes in audit populations generated from 

Population 2.

(iii) The precision decreases as the taint size

increases for all sampling methods.
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6.3.3.2.3 The First-Order Interactions of the Sampling

Method and the Sample Size for the Precision 

Dependent Variable.

The first-order interactions of the sampling method and the 

sample size for the precision dependent variable with the taint 

error assignment at the 95% nominal confidence level are given 

in Tables 6.34 and 6.35 for audit populations generated from 

Population 1 and Population 2 respectively.

Table 6.34 Mean Standard Deviation (000s) of Sampling Method by 

Sample Size at the 95% Nominal Confidence Level for 

Audit Populations generated from Population 1 with the 

Taint Error Assignment

Sample Size n = 30 n = 60 n = 100

SRS 135.47 92.60 68.14

Systematic 125.74 85.54 61.80

Cell 128.84 90.44 65.37

Sieve 136.48 92 . 84 68 . 97

Table 6.35 Mean Standard Deviation (000s) of Sampling Method by 

Sample Size at the 95% Nominal Confidence Level for 

Audit Populations generated from Population 2 with the 

Taint Error Assignment

Sample Size n = 30 n = 60 n = 100

SRS 195.34 136.57 105.67

Systematic 199.89 106.88 71.81

Cell 187.87 127.84 88.35

Sieve 194.98 124.78 82.04
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From t h e s e  t a b l e s  th e  f o l l o w i n g  o b s e r v a t i o n s  are  made

(ii)

(iii)

(iv)

Systematic sampling has the highest precision for all 

sample sizes with the exception of sample size 30 in 

the audit populations generated from Population 2. 

Systematic sampling is significantly more precise than 

simple random sampling for samples of sizes sixty and 

one hundred in audit populations generated from 

Population 2.

Cell and sieve sampling are more precise than simple 

random sampling for all sample sizes in audit 

populations generated from Population 2 and 

significantly more precise than simple random sampling 

for samples of size 100.

Cell sampling is more precise than sieve sampling for 

all sample sizes in audit populations generated from 

Population 1.

The precision of the estimate of the total error 

amount increases as the sample size increases.
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6.3.3.2.4 The First-Order Interactions of the Sampling Method 

and the Bound for the Precision Dependent Variable.

The first-order interactions of the sampling method and the bound 

for the precision dependent variable with the taint error 

assignment at the 95% nominal confidence level are given in 

tables 6.34 and 6.35 for audit populations generated from 

Population 1 and Population 2 respectively.

Table 6.36 Mean Standard Deviation (000s) of Sampling Method by

Bound at the 95% Nominal Confidence Level for Audit 

Populations generated from Population 1 with the Taint 

Error Assignment

Bound Stringer Cell Moment

SRS 96.63 97.41 102.173

Systematic 88.21 88.90 92.98

Cell 92.96 93.75 97.93

Sieve 97.52 98.25 102.51
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Table 6.37 Mean Standard Deviation (000s) of Sampling Method by

Bound at the 95% Nominal Confidence Level for Audit 

Populations generated from Population 2 with the Taint 

Error Assignment

Bound Stringer Cell Moment

SRS 141.13 141.23 155.20

Systematic 122.73 122.69 133.15

Cell 130.26 130.39 143.40

Sieve 129.70 129.81 142.28

From tables 6.30-6.37 the following observations are made

(i) Systematic sampling gives the most precise estimates 

in all cases.

(ii) In Population 2, the estimates are more precise with 

cell and sieve sampling than with simple random 

sampling.

(iii) The Moment bound is the least precise of the bounds in 

all cases.
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6.3.3.3 Summary and Comparisons with other Studies 

The sample selection method appears to have substantial effects 

on the precision of the estimates. Systematic sampling is 

consistently more precise than the other sampling methods with 

the greatest gains in precision occurring in the high error rate 

populations. Cell and sieve sampling give more precise estimates 

than simple random sampling in audit populations generated from 

Population 2, i.e. audit populations with large line items.

The precision findings are similar to the findings of other

authors. Jenne (1982 ) compared simple random, cell and

systematic and found that systematic sampling is the most precise

in all cases. Plante, Neter and Leitch (1985) found that

systematic and cell selection reduce the variability of the 

distribution of the bounds compared to simple random sampling of 

monetary units. They also found that populations with large line 

items have a greater reduction in variability for cell and 

systematic sampling. Wurst, Neter and Godfrey (1989b) found that 

while simple random, cell and sieve sampling do not have any 

profound effects on the coverage and tightness, for any given 

bound, confidence level and sample size, they appear to have 

definite effects on the variability of the bounds. They found 

that cell sampling consistently leads to a smaller variability 

of the bounds from sample to sample, for any given bound, 

confidence level, and sample size, than do sieve and simple 

random sampling. Wurst, Neter and Godfrey (1989b) also noted 

that the Stringer and Cell bounds with the AON error assignments 

are less precise than with the taint error assignment.
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6 .4  The Design  E f f e c t  o f  S y s te m a t ic ,  C e l l  and S ie v e  Sampling

Another way of comparing the precision of the sampling methods 

is by means of the design effect (Kish, 1965) . The design effect 

measures the amount of increase or decrease in the variability 

of a particular sampling method compared to simple random 

sampling. It is defined in Chapter 2. It was used in Chapter 

5 to compare the variability of systematic, cell and sieve 

sampling with simple random sampling of monetary units using the 

point estimator. The design effect is calculated for systematic, 

cell and sieve sampling, for each audit population, error 

assignment, nominal confidence level, sample size, using the 

Stringer, Cell and Moment bounds at the three nominal confidence 

level with each taint error assignment. The results for the 

bounds at the 95% nominal confidence level with the taint error 

assignment are reported in 6.4.1 and 6.4.2. The design effect 

for the bounds with the taint error assignment at the 85% and 70% 

nominal confidence levels and the models with the AON error 

assignment are given in Appendix H. These results are similar 

to the results discussed below.

6.4.1 The Design Effect of Systematic Sampling.

The design effect of systematic sampling is calculated for each 

error rate, taint size, sample size and bound at the 95% nominal 

confidence level are given in Tables 6.38 and 6.3 9 for audit 

populations generated from Population 1 and 2 respectively.
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Table 6.38 Design Effects of Systematic Sampling for Bounds at the 95% Nominal

Confidence Level for Audit Populations generated from Population 1 

with the Taint Error Assignment

Sample Size n = 30 n = 60 n = 100

Bound Str Cell Mom Str Cell Mom Str Cell Mom

Error Rate 1

Taint 1 0.97 0.97 0.97 0.92 0.92 0.93 0.81 0.81 0.76

Taint 2 0.97 0.97 0.97 0.92 0.92 0.93 0.81 0.81 0.77

Taint 3 0.97 0.97 0.97 0.92 0.92 0.90 0.82 0.82 0.81

Error Rate 2

Taint 1 1.03 1.03 1.03 0.95 0.95 0.92 0.82 0.82 0.83

Taint 2 1.02 1.02 1.02 0.94 0.94 0.92 0.83 0.83 0.83

Taint 3 1.00 1.00 1.00 0.92 0.92 0.97 0.84 0.85 0.83

Error Rate 3

Taint 1 0.98 0.99 0.92 0.87 0.87 0.85 0.82 0.82 0.90

Taint 2 0.96 0.99 0.92 0.86 0.87 0.86 0.83 0.83 0.90

Taint 3 0.98 0.98 0.95 0.85 0.85 0.88 0.82 0.84 0.85

Error Rate 4

Taint 1 0.66 0.66 0.66 0.87 0.88 0.88 0.69 0.69 0.69

Taint 2 0.66 0.66 0.66 0.88 0.88 0.88 0.69 0.69 0.69

Taint 3 0.69 0.69 0.69 0.81 0.89 0.85 0.74 0.74 0.71

Error Rate 5

Taint 1 0.75 0.75 0.73 0.63 0.63 0.63 0.90 0.90 0.90

Taint 2 0.75 0.75 0.74 0.62 0.62 0.64 0.90 0.90 0.90

Taint 3 0.79 0.79 0.77 0.65 0.65 0.63 0.96 0.96 0.94
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Table 6.39 Design Effects of Systematic Sampling for Bounds at the 95% Nominal

Confidence Level for Audit Populations generated from Population 2

with the Taint Error Assignment

Sample Size n = 30 n = 60 n = 100

Bound Str Cell Mom Str Cell Mom Str Cell Mom

Error Rate 1

Taint 1 1.02 1.02 0.97 0.54 0.59 0.47 0.26 0.26 0.29

Taint 2 1.02 1.02 1.01 0.56 0.55 0.48 0.27 0.27 0.32

Taint 3 1.03 1.03 0.99 0.59 0.58 0.53 0.27 0.27 0.51

Error Rate 2

Taint 1 1.27 1.27 1.27 0.61 0.61 0.57 0.27 0.27 0.31

Taint 2 1.26 1.26 1.26 0.61 0.60 0.56 0.27 0.27 0.30

Taint 3 1.25 1.25 1.25 0.62 0.61 0.57 0.28 0.29 0.32

Error Rate 3

Taint 1 1.09 1.09 1.09 0.65 0.65 0.59 0.44 0.45 0.46

Taint 2 1.10 1.10 1.05 0.71 0.69 0.65 0.41 0.41 0.41

Taint 3 1.09 1.09 1.07 0.78 0.77 0.86 0.44 0.44 0.53

Error Rate 4

Taint 1 1.28 1.29 1.25 0.84 0.85 0.85 0.53 0.53 0.52

Taint 2 1.27 1.28 1.26 0.85 0.85 0.85 0.52 0.52 0.50

Taint 3 1.25 1.25 1.25 0.84 0.84 0.86 0.53 0.57 0.50

Error Rate 5

Taint 1 0.76 0.76 0.71 0.92 0.92 0.92 0.78 0.79 0.80

Taint 2 0.77 0.76 0.71 0.91 0.91 0.91 0.74 0.75 0.75

Taint 3 0.77 0.76 0.76 0.91 0.91 0.91 0.62 0.62 0.61

From these tables the following observation are made

(i) Systematic sampling has a design effect of less than

one in most cases in audit populations generated from 

Population 1
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(ii) Systematic sampling has a design effect of less than 

one in most cases in audit populations generated from 

Population 2. Exceptions occur for samples of size 

thirty in Population 2 for error rates 1, 2, 3 and 4 

where the design effect is greater than one.

(iii) The greatest gains in precision occur for samples of 

sizes sixty and one hundred from the audit populations 

generated from Population 2. This is consistent with 

the point estimator analysis where it was deduced that 

the greatest gains in precision occur if the 

population contain relatively large line items.

(iv) The design effect decreases as the error rate 

increases.

6.4.2 The Design Effect of Cell Sampling

The design effects of cell sampling for each error rate, taint 

size, sample size and bound at the 95% nominal confidence level 

are given in 6.40 and 6.41 for audit populations generated from 

Population 1 and Population 2 respectively.
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Table 6.40 Design Effects of Cell Sampling for Bounds at the 95% Nominal

Confidence Level for Audit Populations generated from Population 1

with the Taint Error Assignment

Sample Size n = 30 n = 60 n = 100

Bound Str Cell Mom Str Cell Mom Str Cell Mom

Error Rate 1

Taint 1 0.84 0.84 0.78 1.03 1.03 1.03 0.92 0.92 0.88

Taint 2 0.84 0.84 0.89 1.03 1.03 1.09 0.92 0.92 0.88

Taint 3 0.81 0.84 0.89 1.01 1.02 1.06 0.93 0.93 0.97

Error Rate 2

Taint 1 0.86 0.86 0.79 0.94 0.95 0.95 0.87 0.87 0.87

Taint 2 0.86 0.86 0.81 0.95 0.95 0.95 0.87 0.87 0.89

Taint 3 0.86 0.86 0.86 0.95 0.95 0.96 0.89 0.99 0.89

Error Rate 3

Taint 1 0.91 0.91 0.86 0.94 0.95 0.93 0.87 0.87 0.91

Taint 2 0.91 0.91 0.87 0.94 0.94 0.96 0.87 0.88 0.90

Taint 3 0.91 0.91 0.92 0.94 0.94 0.95 0.88 0.88 0.88

Error Rate 4

Taint 1 0.93 0.93 0.93 0.95 0.95 0.96 0.96 0.96 0.96

Taint 2 0.93 0.93 0.92 0.95 0.95 0.95 0.96 0.96 0.96

Taint 3 0.94 10.94 0.95 0.97 0.97 0.97 0.97 0.97 0.96

Error Rate 5

Taint 1 0.94 0.94 0.91 0.92 0.92 0.92 0.93 0.93 0.93

Taint 2 0.94 0.94 0.94 0.92 0.92 0.92 0.93 0.93 0.93

Taint 3 0.96 0.96 0.95 0.92 0.92 0.92 0.94 0.94 0.94
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Table 6.41 Design Effects of Cell Sampling for Bounds at the 95% Nominal

Confidence Level for Audit Populations generated from Population 2 

with the Taint Error Assignment

Sample Size n = 30 n = 60 n = 100

Bound Str Cell Mom Str Cell Mom Str Cell Mom

Error Rate 1

Taint 1 0.89 0.89 0.82 0.83 0.83 0.82 0.63 0.63 0.66

Taint 2 0.89 0.89 0.82 0.84 0.84 0.84 0.63 0.63 0.66

Taint 3 0.89 0.89 0.92 0.84 0.84 0.84 0.63 0.63 0.66

Error Rate 2

Taint 1 0.97 0.97 0.96 0.87 0.87 0.89 0.68 0.68 0.71

Taint 2 0.97 0.96 0.96 0.87 0.87 0.89 0.67 0.67 0.71

Taint 3 0.97 0.96 0.96 0.87 0.87 0.90 0.67 0.67 0.71

Error Rate 3

Taint 1 0.92 0.91 0.92 0.88 0.88 0.88 0.74 0.64 0.76

Taint 2 0.93 0.92 0.93 0.88 0.85 0.86 0.72 0.72 0.73

Taint 3 0.94 0.94 0.95 0.87 0.86 0.89 0.71 0.71 0.73

Error Rate 4

Taint 1 0.90 0.90 0.95 0.88 0.86 0.88 0.71 0.71 0.71

Taint 2 0.89 0.90 0.92 0.88 0.89 0.88 0.70 0.70 0.69

Taint 3 0.88 0.89 0.92 0.88 0.89 0.88 0.70 0.70 0.69

Error Rate 5

Taint 1 0.91 0.92 0.93 0.90 0.90 0.90 0.62 0.62 0.65

Taint 2 0.91 0.92 0.91 0.89 0.89 0.90 0.62 0.62 0.65

Taint 3 0.90 0.91 0.91 0.87 0.87 0.87 0.63 0.62 0.66
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(i) The design effect is less than one in most cases for 

the audit populations generated from Population 1. In 

the few cases where it is greater than one, the 

difference between the variance of cell sampling and 

simple random sampling is not substantial.

(ii) In the populations generated from Population 2, the 

design effect is less than one in all cases. The 

greatest reduction in the variability occur for the 

large sample sizes.

(iii) The greatest gains in precision occur for samples of 

sizes sixty and one hundred from the audit populations 

generated from Population 2. This is consistent with 

the point estimator analysis where it was deduced that 

the design effect will be small in populations with 

large line items.

6.4.3 The Design Effect of Sieve Sampling

The design effect of sieve sampling is calculated for each error 

rate, taint size, sample size and bound at the 95% nominal 

confidence level are given in 6.42 and 6.43 for audit populations 

generated from Population 1 and Population 2 respectively.

The f o l l o w i n g  o b s e r v a t i o n s  are  made from t h e s e  t a b l e s .
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Table 6.42 Design Effects of Sieve Sampling for Bounds at the 95% Nominal

Confidence Level for Audit Populations generated from Population 1

with the Taint Error Assignment

Sample Size n = 30 n = 60 n = 100

Bound Str Cell Mom Str Cell Mom Str Cell Mom

Error Rate 1

Taint 1 1.00 1.00 1.06 1.05 1.05 1.14 0.92 0.92 0.91

Taint 2 1.06 1.07 1.06 1.04 1.02 1.14 0.92 0.92 0.92

Taint 3 1.02 1.01 1.04 1.03 1.04 1.07 0.92 0.92 0.92

Error Rate 2

Taint 1 0.97 0.97 0.92 1.00 1.00 1.01 0.88 0.88 0.90

Taint 2 0.97 0.97 0.93 1.00 1.00 1.01 0.89 0.88 0.97

Taint 3 0.98 0.98 0.96 1.00 1.00 1.01 0.89 0.89 0.89

Error Rate 3

Taint 1 0.96 0.96 0.91 1.09 1.09 1.09 0.97 0.99 0.99

Taint 2 0.95 0.96 0.92 1.09 1.09 01.09 0.97 0.97 0.97

Taint 3 0.97 0.97 0.95 1.09 1.09 1.09 0.96 0.97 0.98

Error Rate 4

Taint 1 1.02 1.01 1.01 0.97 0.97 0.96 1.15 1.14 1.14

Taint 2 1.02 1.02 1.01 0.97 0.97 0.96 1.23 1.15 1.14

Taint 3 1.05 1.05 1.02 0.98 0.98 0.99 1.18 1.18 1.16

Error Rate 5

Taint 1 1.07 1.07 1.01 0.95 0.95 0.94 1.07 1.06 1.06

Taint 2 1.08 1.08 1.03 0.95 0.95 0.95 1.08 1.08 1.08

Taint 3 1.14 1.13 1.11 0.97 0.97 0.96 1.12 1.11 1.10

303



Table 6.43 Design Effects of Sieve Sampling for Bounds at the 95% Nominal

Confidence Level for Audit Populations generated from Population 2 

with the Taint Error Assignment

Sample Size n = 30 n = 60 n = 100

Bound Str Cell Mom Str Cell Mom Str Cell Mom

Error Rate 1

Taint : 0.87 0.87 0.83 0.70 0.71 0.71 0.43 0.43 0.49

Taint 2 0.88 0.88 0.88 0.72 0.72 0.71 0.43 0.43 0.49

Taint 3 0.88 0.88 0.81 0.72 0.72 0.72 0.44 0.43 0.51

Error Rate 2

Taint 1 0.96 0.96 0.95 0.77 0.77 0.78 0.51 0.50 0.55

Taint 2 0.96 0.95 0.93 0.77 0.78 0.80 0.51 0.51 0.55

Taint 3 0.95 0.95 0.95 0.77 0.79 0.81 0.52 0.52 0.55

Error Rate 3

Taint 1 1.00 1.00 0.99 0.85 0.85 0.84 0.61 0.61 0.63

Taint 2 1.00 1.00 0.99 0.85 0.85 0.86 0.61 0.61 0.63

Taint 3 1.00 1.00 0.97 0.85 0.85 0.85 0.62 0.62 0.64

Error Rate 4

Taint 1 1.02 1.02 1.01 0.85 0.85 0.96 0.63 0.62 0.62

Taint 2 1.01 1.02 1.01 0.85 0.85 0.86 0.62 0.62 0.62

Taint 3 1.00 1.01 1.00 0.85 0.85 0.86 0.60 0.60 0.60

Error Rate 5

Taint 1 1.10 1.10 1.10 0.91 0.92 0.91 0.74 0.74 0.74

Taint 2 1.08 1.08 1.09 0.91 0.91 0.91 0.73 0.73 0.79

Taint 3 1.06 1.08 1.05 0.92 0.92 0.91 0.73 0.73 0.72
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(i) The design effect is near one in most cases in audit 

populations generated from Population 1.

(ii) In audit populations generated from Population 2, the 

design effect is substantially less than one in most 

cases. Exceptions occur in the high error rate 

populations for samples of size thirty where the 

design effect is somewhat greater than one.

(iii) The greatest gains in precision of sieve sampling over 

simple random sampling occur for the large sample 

sizes and the low error rates. This is consistent 

with the point estimator analysis where it was shown 

that substantial gains in precision of sieve sampling 

over sampling random sampling occur when the line 

items are large and the error rates are low.

6.4.4 Summary

The empirical investigation for the upper bounds give similar 

results with respect to precision as the theoretical results 

derived in Chapter 5 for the precision of the point estimator. 

The sampling methods have similar effects on the upper bound 

estimates of the total error amount as on the point estimator. 

These results are consistent with the findings of Wurst, Neter 

and Godfrey (1989a and 1989b) who studied simple random, cell and 

sieve sampling using the Stringer and Cell bounds.

The f o l l o w i n g  o b s e r v a t i o n s  are  made from t h e s e  t a b l e s .
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6 .5  C o n c lu s io n s

In this chapter, the performance of simple random sampling, 

systematic, cell and sieve sampling were compared in terms of the 

reliability, tightness and precision of upper bound estimates of 

the total error amount. The design effects of systematic,cell 

and sieve were calculated for each error rate, taint size, sample 

size and bound and compared to the design effect of the sampling 

methods for the point estimator. It was found that:

(i) The sample selection method appears to have little 

effect on the reliability of the upper bound estimates 

of the total error amount for any given error rate, 

taint size, sample size or bound. Some significant 

differences exist but these are not substantial in any 

case.

(ii) The tightness of the estimates are similar for each 

sample selection method for any given error rate, 

taint size, sample size and bound. Differences in 

tightness that exist are due to factors other than the 

sampling method. Estimates are more conservative in 

the AON models than in the taint models. The estimates 

are extremely conservative for samples of size thirty. 

The Stringer bound is the most conservative and the 

Moment bound is the tightest in all cases.
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(iii) The sampling methods have substantial effects on the 

precision of the bounds. Systematic sampling leads to 

the most precise upper bound estimates for any given 

error rate, taint size, sample size or bound. Cell 

and sieve sampling give more precise estimates than 

simple random sampling in audit populations generated 

from Population 2. Cell sampling is more precise than 

sieve sampling in most cases. However, sieve sampling 

is more precise than cell sampling when the sample 

size is one hundred in populations with large line 

items (i.e., audit populations generated from 

Population 2). The moment bound is somewhat less 

precise than the Cell and Stinger bounds in most 

cases.

(iv) The results for the empirical comparisons of the 

precision of the sampling methods using the bound 

estimates are similar to the theoretical results 

obtained using the point estimator analysis.

These findings are consistent with those of other studies (e.g. 

Wurst, Neter and Godfrey (1989a and 1989b), Plante, Neter and 

Leitch (1985), Dworkin and Grimlund, 1984). New findings relate 

to (i) the comparative performance of sieve sampling and 

systematic sampling and (ii) the performance of the Moment bound 

with the different sampling methods.
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(i) The Comparative Performance of Sieve Sampling and 

Systematic Sampling

Systematic sampling has a higher mean coverage than sieve 

sampling for each error rate, taint size, sample size and bound 

in audit populations generated from Populations 1 and 2. While 

some of these differences are significant, they are not of 

practical importance since the differences are not substantial 

in any case.

Systematic sampling is similar to sieve sampling with respect to 

the tightness for each error rate, taint size, sample size and 

bound.

Systematic sampling is more precise than sieve sampling for most 

error rates, taint sizes, sample sizes and bounds in audit 

populations generated from Populations 1 and 2 . The greatest 

reductions in the variation of systematic sampling over sieve 

sampling occur in the high error rate populations and for large 

sample sizes where reductions in variability of over 10% occur.
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(ii) The Performance of the Moment Bound with the Different 

Sampling Methods.

The differential effects of the sampling methods on the Moment 

bound estimates of the total error amount are similar to the 

differential effects of the sampling methods on the Stringer and 

Cell bound estimates of the total error amount. The coverage and 

the tightness of the Moment bound are not significantly affected 

by the sampling method for any error rate, taint size, sample 

size and bound. Systematic sampling gives the most precise 

estimates and simple random sampling gives the least precise 

estimates of the total error amount using the Moment bound.

6.6 Final Comments

In choosing between the sampling methods, the auditor needs to 

consider a number of practical issues in addition to the 

performance measures. For example, simple random sampling 

requires that the book value total be known accurately in advance 

of sampling and this requirement may impede the planning and 

implementation of the auditing process. In addition, simple 

random, systematic and cell sampling require that the book value 

sub totals be cumulated. Also, systematic sampling may lead to 

biased selection if there are regularities in the error patterns 

in the population. A practical disadvantage of sieve sampling, 

which may be an important consideration for the auditor, is that 

the sample size is not constant.
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In Chapters 7 and 8, Lahiri sampling and stabilised sieve 

sampling of monetary units are proposed as alternatives to the 

monetary-unit sampling methods currently used in practice. 

Lahiri sampling, proposed as an alternative to simple random 

sampling of monetary units, does not require that the book value 

total is known accurately in advance of sampling. Stabilised 

sieve, proposed as an alternative to sieve sampling, is a 

monetary-unit sampling method which attempts to preserve the 

advantages of sieve sampling while returning a constant sample 

size. Lahiri sampling and stabilised sieve sampling are 

discussed in detail in Chapters 7 and 8 respectively.
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Chapter 7

Upper Bound Comparisons of Lahiri Sampling and Simple Random

Sampling of Monetary Units

7.1 Introduction

Lahiri sampling, defined in Chapter 4, offers potential 

advantages to the auditor as an alternative to simple random 

sampling of monetary units. It uses the line item structure of 

the population when selecting the monetary units and hence avoids 

the possible implementation problems of simple random sampling 

referred to by Wurst, Neter and Godfrey (1989a). Also, unlike 

simple random sampling, Lahiri sampling does not require that the 

book value total is known accurately in advance of sampling and 

the selection procedure may begin before the book value total is 

known accurately.

This chapter compares the performance of Lahiri sampling with 

that of simple random sampling with respect to upper bound 

estimates of the total error amount and investigates the Lahiri 

monetary-unit sampling method as an alternative to simple random 

sampling of monetary units.
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A comparative investigation of Lahiri and simple random sampling 

of monetary units is carried out by means of a large scale 

simulation study using the thirty audit populations created from 

the two actual accounting populations described in Chapter 3. 

Samples of sizes 30, 60 and 100 are drawn from each audit 

population using simple random sampling and Lahiri sampling of 

monetary units. Upper bounds for the total error amount are 

obtained using Stringer, Cell and Moment bounds with the taint 

and the AON error assignments at three nominal confidence levels, 

.70. .85 and .95. One thousand replications are performed for 

each sample size and for each sample selection method. Analysis 

of variance models are constructed to assess the differential 

effects of Lahiri sampling and simple random sampling of monetary 

units on bound estimates of the total error amount, for different 

error rates, taint sizes, sample sizes and bounds.

In the remainder of the chapter, the comparative performance of 

Lahiri sampling and simple random sampling is measured in terms 

of the reliability, tightness and precision (see 2.11) of the 

upper bound estimates of the total error amount (7.2). The 

design effect of is calculated for each error rate, taint size, 

sample size and bound(7.3). The practical implications of Lahiri 

sampling are also discussed (7.4)
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Reliability, tightness and precision, as defined in 2.11 are used 

as the performance measures for upper bound estimates of the 

total error amount with Lahiri sampling and simple random 

sampling of monetary units. ANOVA models, similar to those 

detailed in 6.3, are constructed for each set of audit 

populations, for each nominal confidence level and for each error 

assignment method with the performance measures used as the 

dependent variables. The independent variables are identical to 

those described in Table 6.1 except that the sampling-method 

independent variable is set at two levels, level 1 for simple 

random sampling and level 2 for Lahiri sampling.

The ANOVA models, detailed in Appendix D, show that the main 

effect for the sampling method is significant for the tightness 

dependent variable in audit populations generated from 

Population 1 with the AON error assignment and for the precision 

dependent variable in audit populations generated from Population 

2 with both error assignments. The main effect for the sampling 

method is insignificant in all other models. Tables 7.1 and 7.2 

give the significance (at the 95% confidence level) of the first 

order interactions which include the sampling method for each of 

the dependent variables for audit populations generated from 

Population 1 and Population 2 respectively with the taint error 

assignment.

7 .2  Performance o f  L a h ir i  and Simple  Random Sampling u s in g

Upper Bound E s t im a tes  o f  th e  T o ta l  Error Amount
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Table 7.1 Significance of the First-order Interactions of Each Factor with the 

Sampling Method for Audit Populations generated from Population 1 

with the Taint (AON) Error Assignment

Reliability Tightness Precision

Rate NS (NS) NS (NS) NS (NS)

Taint NS (NS) NS (NS) NS (NS)

Samsize NS (NS) p<.001 (pc.001) p<.001 (p<.001)

Bound NS (NS) NS (NS) NS (NS)

Table 7.2 Significance of the First-order Interactions of Each Factor with the

Sampling Method for Audit Populations generated from Population 2 

with the Taint (AON) Error Assignment

Reliability Tightness Precision

Rate NS (NS) NS (NS) NS (NS)

Taint NS (NS) NS (NS) NS (NS)

Samsize NS (NS) pc.001 (pc.001) pc.001 (pc.001)

Bound NS (NS) NS (NS) NS (NS)

The following observations are made from tables 7.1 and 7.2

(i) The first-order interactions of the sampling method with 

the line item error rate, bound and taint are insignificant 

for all the dependent variables.

(ii) The first-order interaction of the sampling method and the 

sample size is significant for the tightness and the 

precision dependent variables for each error assignment and 

each nominal confidence level. It is not significant for 

the reliability dependent variable.
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Similar results prevailed for the 85% and 70% nominal confidence 

levels. These are given in Appendix D.

Further examination of the sampling method and the sample size 

interaction terms, in the tightness and precision models, using 

t-tests to compare the two sampling methods ( i.e., SRS and 

Lahiri) shows that, for any given sample size, the mean tightness 

or precision of Lahiri sampling is not significantly different 

from the mean tightness or precision of simple random sampling 

of monetary units.

In summary, Lahiri sampling is not significantly different from 

simple random sampling with respect to reliability, tightness and 

precision for any level of the line item error rate, the taint 

size, the sample size and the bound.

The results for the models with the taint assignment at the 95% 

nominal confidence level for each of the populations are reported 

in 7.2.1 and 7.2.2. The comparative results for the other models 

(i.e. the taint models at the 85% and 70% nominal confidence 

level and the AON models) are similar and these are given in 

Appendix F .
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Simple Random Sampling of Monetary Units in Audit 

Populations Generated from Population 1

The overall averages for the reliability, tightness and precision 

dependent variables for audit populations generated from 

Population 1 with the taint error assignment are given in table 

7.3. Each entry in the table is the average of a particular 

performance measure across all levels of the other factors.

7 . 2 . 1  Performance o f  th e  Upper Bounds u s in g  L a h ir i  and

Table 7.3 Average Performance Measures ( across all levels of the independent 

factors) for Audit Population Generated from Population 1 with the 

Taint Error Assignment at the 95% Nominal Confidence Levels

Performance Coverage Tightness Standard

Measures Deviation (000s)

Lahiri 98.69 274.50 98.26

SRS 98.72 276.12 98.74

The results in Table 7.3 indicate that the performance measures, 

averaged over all error rates, taint sizes, sample sizes and 

bounds are similar for Lahiri and simple random sampling of 

monetary units.

A detailed breakdown of the first-order interactions of the 

sampling methods for each error rate, taint size, sample size and 

bound are given in Tables 7.4-7.7.
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Table 7.4 Average Performance Measures for Each Line Item Error Rate for Audit

Population Generated from Population 1 with the Taint Error 

Assignment at the 95% Nominal Confidence Level

Lahiri (SRS) Coverage Tightness Standard 

Deviation (000s)

Rate 1 100.00 (100.00) 520.95 (622.23) 57.74 (56.53)

Rate 2 99.7 (99.7) 309.50 (312.14) 79.42 (81.95)

Rate 3 99.4 (99.3) 217.98 (219.98) 93.47 (96.44)

Rate 4 97.3 (967.41 128.56 (129.73) 123.04 (121.70)

Rate 5 97.1 (97.1) 95.53 (96.64) 137.64 (137.08)

Table 7.5 Average Performance Measures for Each Taint Size for Audit

Population Generated from Population 1 with the Taint Error 

Assignment at the 95% Nominal Confidence Level

Lahiri (SRS) Coverage Tightness Standard 

Deviation (000s)

Taint 1 98.95 (98.99) 399.00 (301.73) 97.13 ( 96.50)

Taint 2 98.89 (98.91) 289.47 (287.79) 98.32 (97.87)

Taint 3 98.21 (98.25) 235.71 (237.15) 101.00(101.21)

Table 7.5 Average Performance Measures for Each Sample Size for Audit 

Population Generated from Population 1 with the Taint Error 

Assignment at the 95% Nominal Confidence Level

Lahiri (SRS) Coverage Tightness Standard

Deviation

n = 30 99.52 (99.66) 421.22 (430.20) 132.85 (135.47)

n = 60 98.18 (98.34) 239.68 (238.22) 93.61 (92.60)

n = 100 98.35 (98.15) 161.92 (159.92) 68.33 (68.14)
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Table 7.7 Average Performance Measures for Each Bound for Audit Population

Generated from Population 1 with the Taint Error Assignment at the

95% Nominal Confidence Level

Lahiri (SRS) Coverage Tightness Standard 

Deviation (000s)

stringer 99.22 (99.27) 291.27 (294.48) 96.63 (96.23)

Cell 99.03 (99.02) 290.31 (292.23) 97.01 (97.41)

Moment 97.76 (97.91) 238.71 (239.86) 101.55 (102.17)

The results from tables 7.4-7.7 indicate that the sampling method 

has no effect on the reliability, tightness and precision of the 

upper bound estimates for any given error rate, taint size, 

sample size and bound. The averages are practically identical 

in each case.

7.2.2 Performance of the Upper Bounds using Lahiri and

Simple Random Sampling of Monetary Units in Audit 

Populations Generated from Population 2

The overall average coverage, tightness and standard deviation 

for audit populations generated from Population 2 are given in 

Table 7.8. Each entry in the table is the average of a 

particular performance measure across all levels of the other 

factors.
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Table 7.8 Average Performance Measures for Audit Population Generated from

Population 2 with the Taint Error Assignment at the 95% Nominal

Confidence Levels

Performance Coverage Tightness Standard

Measures Deviation (000s)

Lahiri 98.34 187.20 148.00

SRS 98.55 191.05 145.86

The results in Table 7.8 indicate that the coverage, tightness 

and standard deviation averaged over all error rates, taint 

sizes, sample sizes and bounds are similar for Lahiri sampling 

and simple random sampling of monetary units. The performance 

measures of the other models (i.e. the taint models at the 85% 

and 70% nominal confidence levels and the AON models at the 95%, 

85% and 70% nominal confidence levels) are also similar for the 

two sampling methods. These are given in the Appendix F.

A detailed breakdown of the first-order interactions of the 

sampling methods for each error rate, taint size, sample size and 

bound are given in Tables 7.9-7.11 for the audit populations 

generated from Population 2 with the taint error assignment at 

the 95% nominal confidence level.
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Table 7.9 Average Performance Measures for Each Error Rate for Audit

Population Generated from Population 2 with the Taint Error 

Assignment at the 95% Nominal Confidence Level

Lahiri (SRS) Coverage Tightness Standard 

Deviation (000s)

Rate 1 99.8 (99.8) 309.76 (316.49) 103.96 (107.44)

Rate 2 99.8 (99.8) 246.57 (252.27) 119.00 (118.66)

Rate 3 98.4 (98.8) 181.87 (187.84) 139.52 (137.04)

Rate 4 96.9 (97.2) 113.32 (114.26) 177.06 (173.21)

Rate 5 96.8 (97.1) 84.33 (84.38) 200.50 (192.93)

Table v.iu Average Performance Measures tor Each Taint Size For Audit

Population Generated from Population 2 with the Taint Error 

Assignment at the 95% Nominal Confidence Level

Lahiri (SRS) Coverage Tightness Standard 

Deviation (000s)

Taint 1 98.34 (98.62) 191.72 (195.41) 146.53 (144.33)

Taint 2 98.27 (97.83) 186.91 (190.79) 147.77 (145.46)

Taint 3 98.41 (98.52) 182.89 (186.94) 149.71 (147.78)

Table 7.11 Average Performance Measures for Each Sample Size for Audit 

Population Generated from Population 2 with the Taint Error 

Assignment at the 95% Nominal Confidence Level

Lahiri (SRS) Coverage Tightness Standard

Deviation (000s)

n = 30 99.16 (99.26) 280.00 (278.64) 197.70 (195.34)

n = 60 98.45 (98.34) 163.84 (173.63) 139.10 (136.57)

n = 100 97.40 (98.15) 117.65 (120.87) 107.14 (105.67)
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Table 7.12 Average Performance Measures for Each Bound for Audit Population

Generated from Population 2 with the Taint Error Assignment at the

95% Nominal Confidence Level

Lahiri (SRS) Coverage Tightness Standard 

Deviation (000s)

Stringer 98.68 (98.87) 192.10 (195.96) 143.40 (141.13)

Cell 98.62 (98.82) 191.34 (195.14) 143.53 (141.23)

Moment 97.72 (97.95) 178.06 (182.05) 157.08 (155.20)

The following observations are made from tables 7.10-7.12 for the 

taint model generated from Population 2 at the 95% nominal 

confidence level.

(i) The mean coverage of Lahiri and simple random 

sampling of monetary units is similar for each 

error rate, taint size, sample size and bound.

(ii) The mean tightness of Lahiri sampling is somewhat 

less than the mean tightness with simple random 

sampling in most cases but this is not 

significant in any case.

(iii) While no significant differences in the standard 

deviation exist between the two sampling methods 

for any error rate, taint size, sample size or 

bound, there is a tendency for the standard 

deviation to be somewhat higher with Lahiri 

sampling than with simple random sampling.
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7.2.3 Summary

The performance of Lahiri sampling is similar to the performance 

of simple random sampling in all audit populations generated from 

Population 1. However, in audit populations generated from 

Population 2, Lahiri sampling is somewhat less precise and 

tighter than simple random sampling for each error rate, taint 

size, sample size and bound. While these differences are not 

significant, they appear to be consistent across all levels of 

the independent factors.

7.3 The Design Effect of Lahiri Sampling

A detailed analysis is carried out on the precision of Lahiri 

sampling compared to simple random sampling of monetary units. 

The design effect (see 2.7.1) of Lahiri sampling is calculated 

for each error rate, taint size, sample size and bound. The 

results are reported in Tables 7.13 and 7.14 for audit 

populations generated from Population 1 and 2 respectively, with 

the taint error assignment at the 95% nominal confidence level. 

The design effect for the bounds with the taint error assignment 

at the 85% and 7 0% nominal confidence levels and the design 

effect for the models with the AON error assignments are similar 

to the results reported in tables 7.11 and 7.12 and are given 

in Appendix I .
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Table 7.13 Design Effects of Lahiri Sampling for Bounds at the 95% Nominal 

Confidence Level for Audit Populations generated from Population 1 

with the Taint Error Assignment

Sample Size n = 30 n = 60 n = 100

Bound Str Cell Mom Str Cell Mom Str Cell Mom

Error Rate 1

Taint 1 1.00 1.04 1.00 1.12 1.12 1.21 0.99 0.99 0.97

Taint 2 1.00 1.00 1.02 1.12 1.12 1.20 0.99 0.99 0.97

Taint 3 1.04 1.05 1.01 1.10 1.10 1.14 1.00 1.01 0.97

Error Rate 2

Taint 1 0.92 0.92 0.88 1.01 1.02 1.04 0.88 0.89 0.89

Taint 2 0.92 0.92 0.91 1.01 1.01 1.03 0.88 0.85 0.89

Taint 3 0.91 0.91 0.93 1.00 1.01 1.02 0.89 0.89 0.89

Error Rate 3

Taint 1 0.88 0.88 0.82 1.04 1.04 1.05 0.95 0.95 0.97

Taint 2 0.88 0.87 0.83 1.04 1.04 1.05 0.95 0.95 0.97

Taint 3 0.88 0.88 0.90 1.02 1.02 1.03 0.95 0.95 0.98

Error Rate 4

Taint 1 1.00 1.00 0.96 1.00 1.00 1.00 1.10 1.10 0.89

Taint 2 1.01 1.01 0.97 1.00 1.00 0.98 1.10 1.10 1.10

Taint 3 1.03 1.02 1.03 0.99 0.99 0.98 1.10 1.10 1. 10

Error Rate 5

Taint 1 1.00 1.00 0.95 0.99 0.99 1.00 1.05 1.05 1.07

Taint 2 1.01 1.01 0.97 0.99 0.99 0.99 1.05 1.03 1.05

Taint 3 1.03 1.03 1.02 0.98 0.98 0.99 1.04 1.04 1.05
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Table 7.14 Design Effects of Lahiri Sampling for Bounds at the 95% Nominal

Confidence Level for Audit Populations generated from Population 2 

with the Taint Error Assignment

Sample Size n = 30 n = 60 n = 100

Bound Str Cell Mom Str Cell Mom Str Cell Mom

Error Rate 1

Taint 1 0.92 0.92 0.87 0.99 0.99 0.92 0.97 0.96 0.94

Taint 2 0.92 0.92 0.87 1.00 1.00 0.96 0.94 0.94 0.93

Taint 3 0.92 0.92 0.87 1.00 1.00 0.96 0.98 0.98 0.98

Error Rate 2

Taint 1 1.01 1.01 1.01 1.02 1.02 0.97 0.98 0.98 0.98

Taint 2 1.01 1.01 1.01 1.04 1.04 1.04 0.98 0.98 0.98

Taint 3 1.01 1.01 1.01 1.04 1.03 1.01 0.98 0.98 0.98

Error Rate 3

Taint 1 1.02 1.02 1.02 1.08 1.08 1.07 1.02 1.02 1.03

Taint 2 1.04 1.04 1.05 1.06 1.07 1.07 1.00 1.01 1.01

Taint 3 1.05 1.05 1.06 1.04 1.04 1.02 0.99 1.00 1.00

Error Rate 4

Taint 1 1.04 1.04 1.02 1.05 1.05 1.04 1.07 1.07 1.06

Taint 2 1.04 1.04 1.04 1.04 1.04 1.03 1.06 1.06 1.06

Taint 3 1.04 1.04 1.04 1.04 1.04 1.04 1.06 1.06 1.06

Error Rate 5

Taint 1 1.10 1.10 1.08 1.06 1.06 1.04 1.11 1.11 1.11

Taint 2 1.10 1.10 1.07 1.06 1.07 1.07 1.08 1.08 1.07

Taint 3 1.06 1.06 1.06 1.06 1.06 1.06 1.09 1.09 1.09
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The f o l l o w i n g  o b s e r v a t i o n s  are  made from Tables  7 . 13  and 7 . 1 4 .

(i) The design effect of Lahiri sampling is near one in 

most cases for both populations.

(ii) Fluctuations exist in the design effect in both sets 

of audit populations but the fluctuations show no 

consistent relationship with respect to sample size, 

taint size or error rate for any bound estimate. This 

is consistent with the theoretical results obtained 

using the point estimator in Chapter 5.

7.4 Practical Comparisons of Lahiri Sampling and Simple Random 

Sampling

There are practical aspects of Lahiri sampling and simple random 

sampling of monetary units which should be considered when 

deciding between the two selection methods. These relate to the 

preparation necessary before selection can begin, the amount of 

sampling necessary to achieve the desired sample size and the 

number of distinct line items selected with each selection 

method.

7.4.1 Preparation Prior to Sampling

Leslie, Teitlebaum and Anderson (1979) cite some of the practical 

disadvantages of simple random sampling of monetary units.
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'The first is the minor nuisance of having 
to sort the selected random numbers. The 
second and more important is the need to 
know the population value accurately before 
selection can begin'.

Regarding the total book value amount, Leslie, Teitlebaum and 

Anderson (1979) also point out that

'often this value is not known accurately during 
the planning stage; nor is it known for 
transaction streams prior to the end of the 
year'.

In addition, simple random sampling ignores the line item 

structure of the population when selecting the sample and treats 

the population as a collection of monetary units from which a 

simple random sample of monetary units is selected. The selected 

monetary units must be traced back to the associated line items 

and this may cause implementation problems (Wurst, Neter and 

Godfrey, 1989a).

Lahiri sampling, on the other hand, uses the line item structure 

when selecting the monetary units and does not require the 

accumulation of the book amounts or necessitate that the total 

book amount be known accurately in advance of sampling. 

Therefore, Lahiri selection procedure may begin before the total 

book value amount is known accurately. The use of the line item 

structure to select the monetary units avoids possible 

implementation problems associated with tracing monetary units 

to associated line items.
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7.4.2 The Amount of Sampling

One possible drawback of Lahiri sampling is that the number of 

selections necessary to obtain a sample of size n is usually 

greater than n. The amount of sampling required to obtain a 

sample of size n varies depending on the line item structure of 

the population. If the largest line item in the population is 

very much larger than the smaller ones, Lahiri sampling may 

involve many rejections and hence a lot of sampling before the 

sample of size n is selected. In theorem 4.12, the expected 

number of trials to obtain a sample of size n was shown to be

n N B „

Table 7.15 gives the average number of trials to obtain the 

required samples of size 30, 60 and 100 from each population 

using Lahiri sampling.
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Table 7.15 Amount of Sampling Required in Lahiri Sampling

Sample Size Population 1 Population 2

n = 30 1101 175

n = 60 2201 352

n = 100 3668 586

It is clear from Table 7.15 that the amount of sampling required 

to obtain any given sample size is far greater than the actual 

sample sizes especially when sampling from Population 1 where the 

largest line item is very much larger than the smaller ones. 

More than likely, however, this repeated selection process will 

not pose serious difficulties if the selection procedure is 

computerised.

7.4.3 The Number of Distinct Line Items

It was shown in Chapter 4 that simple random sampling and Lahiri 

sampling are selection methods which may select more than one 

unit within each line item in any one sample. It was proved in 

theorems 4.4 and 4.14, that the mean number of times the line 

item i is included in the sample is

nB,

B

for simple random and Lahiri selection methods respectively.
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The v a r ia n c e  o f  th e  number o f  t im es  each l i n e  i tem  i s  s e l e c t e d

in any one selection was shown in theorem 4.4 to be

dh(i - h,
B B

for simple random sampling, and in theorem 4.14 it was shown to 

be

i  - - 5 s _ )
B NB,„

for Lahiri sampling

Obviously

nB,

B (1 NB„

The statistics of the distribution of the number of distinct 

items obtained for each sample size using Lahiri and simple 

random sampling in the 1000 replications are given in tables 

7.16 and 7.17 for each population respectively.

Table 7.16 Number of Distinct Line Items obtained for Lahiri (Simple Random) 

Sampling of for each Nominal Sample Size drawn from Population 1

Lahiri (SRS) Mean Std Dev Minimum Maximum

n = 30 29.23 (29.25) 0.87 (0.87) 26 (26) 30 (30)

n = 60 57.18 (57.23) 1.66 (1.59) 50 (50) 60 (60)

n = 100 92.29 (92.20) 2.63 (2.69) 83 (81) 98 (99)
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Table 7.17 Number of Distinct Line Items obtained for Lahiri (Simple Random)

Sampling for each Nominal Sample Size drawn from Population 2

Lahiri (SRS) Mean Std Dev Minimum Maximum

n = 30 28.00 (28.06) 1.30 (1.30) 23 (24) 30 (30)

n - 60 52.62 (52.59) 2.35 (2.39) 45 (45) 58 (59)

n = 100 80.83 (80.84) 3.47 (3.45) 67 (70) 92 (90)

From Tables 7.16 and 7.17, it can be seen that there is very- 

little difference in the number of distinct line items chosen 

with either selection method.

7.4.4 Summary

In summary, the main practical advantage of Lahiri sampling 

compared to simple random sampling of monetary units is that 

Lahiri sampling uses the line item structure of the population 

when selecting the sample of monetary units. Simple random 

sampling of monetary units requires that the random numbers 

identifying the selected monetary units be related to the 

corresponding line items to which the selected sample monetary 

units belong because individual monetary units cannot be audited. 

The need to identify the line items selected for auditing with 

simple random sampling of monetary units may at times create some 

practical implementation problems (Wurst, Neter and Godfrey, 

1989a)
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A disadvantage of Lahiri sampling compared to simple random 

sampling of monetary units is that a large number of selections 

may be necessary before the desired sample size is obtained.

7.5 Conclusions

This chapter investigated the comparative performance of Lahiri 

sampling and simple random sampling for obtaining upper error 

bounds. No significant differences between the sampling methods 

were found in the reliability, tightness and precision of the 

bounds in any of the models in either Population 1 or Population 

2 .

The main practical advantage of Lahiri sampling compared to 

simple random sampling of monetary units is that Lahiri sampling 

relates monetary units to line items in a natural way and 

therefore avoids the possible implementation problems referred 

to by Wurst, Neter and Godfrey (1989a). Also, unlike simple 

random sampling, Lahiri sampling does not require that the book 

value total be known accurately in advance of sampling and this 

enables Lahiri selection to begin before an accurate total book 

value amount is available.
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Chapter 8

A Comparison of Stabilised Sieve Sampling with Sieve Sampling 

and Simple Random Sampling of Monetary Units

8.1 Introduction

This chapter compares the performance of stabilised sieve 

sampling with that of simple random and sieve sampling of 

monetary units with respect to upper bound estimates of the total 

error amount.

Stabilized sieve sampling, defined in Chapter 4, is a new 

monetary-unit sampling method proposed in this study as an 

alternative to simple random sampling and sieve sampling. It 

preserves the main advantages of sieve sampling while overcoming 

its primary disadvantage of producing a sample size which may not 

be equal to the nominal.

In Chapter 4, it was shown that stabilised sieve sampling is a 

monetary-unit sampling method which selects the line items with 

probabilities proportional to their book value amounts. In 

Chapter 5, the theoretical properties of a point estimator of the 

total error amount were derived for stabilised sieve sampling.
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To compare the performance of stabilised sieve sampling with 

simple random and sieve sampling with respect to the upper bound 

estimates of the total error amount, a large scale simulation 

study is carried our using the thirty audit populations created 

from the two actual accounting populations described in Chapter

3. Samples of sizes 30, 60 and 100 are drawn from each audit 

population using simple random, sieve and stabilised sieve 

sampling of monetary units. The Stringer, Cell and Moment bounds 

for the total error amount are calculated with the taint and AON 

error assignments at three nominal confidence levels, .70. .85 

and .95. One thousand replications are performed for each sample 

size and for each sample selection method. Analysis of variance 

models are constructed to assess the differential effects of the 

sampling methods on bound estimates of the total error amount, 

for different line item error rates, taint sizes, sample sizes 

and bounds.

In the remainder of the chapter, the comparative performance of 

bound estimates with stabilised sieve sampling relative to simple 

random and sieve sampling is measured in terms of the 

reliability, tightness and precision of the error estimates 

(8.2). The design effect of stabilised sieve sampling and the 

efficiency of stabilised sieve sampling relative to sieve 

sampling are investigated for each error rate, taint size, sample 

size and bound (8.3) . The practical implications of stabilised 

sieve sampling are also discussed (8.4).
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8.2 Performance of Stabilised Sieve Sampling compared to Simple 

Random and Sieve Sampling using Upper Bound Estimates of 

the Total Error Amount

Reliability, tightness and precision, as defined in 2.11, are 

used as the performance measures for upper bound estimates of the 

total error amount. ANOVA models, similar to those detailed in 

6.3, are constructed for each set of audit populations, for each 

nominal confidence level and for each error assignment method 

with the coverage, tightness and standard deviation of the upper 

bound estimates as the dependent variables. The independent 

variables are identical to those described in table 6.1 except 

that the sampling method independent variable is set at three 

levels, level 1 for simple random sampling, level 2 for sieve 

sampling and level 3 for stabilised sieve sampling of monetary 

units. The ANOVA tables are given in the Appendix D.

The main effects of the sampling methods are compared. First- 

order interactions which include the sampling method are 

investigated and when they are found to be significant, Dunnett's 

multiple comparisons test of means with a control is used to 

compare stabilised sieve sampling with simple random and sieve 

sampling of monetary units. A family significance level of 0.05 

is used in the hypothesis tests.

The results of the analysis using the ANOVA models with the taint 

assignment at the 95% nominal confidence level for each of the
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populations are reported. The comparative results for the other 

models (i.e. the taint models at the 85% and 70% nominal 

confidence level and the AON models) are similar and these are 

given in Appendix G.

8.2.1 The Reliability of Stabilised Sieve Sampling Compared 

to Simple Random Sampling and Sieve Sampling of 

Monetary Units.

The main effects of the sampling method and the first-order 

interactions of the sampling method with each of the other 

factors are analysed for the reliability dependent variable.

8.2.1.1 The Main Effects of the Reliability Dependent Variable

The reliability main effects for each sampling method, for each 

model are given in tables 8.1 and 8.2.

Table 8.1 Mean Coverage of Simple Random, Sieve and Stabilised Sieve Sampling 

for Audit Populations generated from Population 1

Confidence Level 95% 85% 70%

Assignment Taint Aon Taint Aon Taint Aon

Sampling Methods

SRS 98.72 99.01 94.67 93.88 84.94 83.86

Sieve 98.63 98.84 95.38 93.70 84 .74 83.88

Stabilised Sieve 98.91 99.09 94.98 94.30 85.42 84.41
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Table 8.2 Mean Coverage of Simple Random, Sieve and Stabilised Sieve Sampling 

for Audit Populations generated from Population 2

Confidence Level 95% 85% 70%

Assignment Taint Aon Taint Aon Taint Aon

Sampling Methods

SRS 98.55 98.71 92.87 93.06 80.64 79.96

Sieve 99.19 99.28 95.13 95.18 83.52 82.84

Stabilised Sieve 99.41 99.45 95.94 96.03 85.04 85.14

The following general observations are made from these tables.

(i) Like simple random and sieve sampling, stabilised 

sieve sampling has a mean coverage above the nominal 

in all cases.

(ii) Stabilised sieve sampling has a higher coverage than 

simple random and sieve sampling of monetary units in 

all cases.

8.2.1.2 The First-Order Interactions of the Reliability

Dependent Variable.

A detailed breakdown of the first-order interaction of sampling 

method with each of the other factors for the reliability 

dependent variable with the taint error assignment at the 95% 

nominal confidence level is given in tables 8.3 - 8.10.
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Table 8.3 Mean Coverage of Simple Random, Sieve and Stabilised Sieve Sampling 

for each Line Item Error Rate at the 95% Nominal Confidence Level 

for Audit Populations generated from Population 1 with the Taint 

Error Assignment

Line Item Error 

Rate

1 2 3 4 5

SRS 100.00 99.72 99.29 97.44 97.13

Sieve 100.00 99.73 99.36 96.77 97.27

Stabilised Sieve 100.00 99.70 99.29 97.96 97.61

Table 8.4 Mean Coverage of Simple Random, Sieve and Stabilised Sieve Sampling 

for each Line Item Error Rate at the 95% Nominal Confidence Level 

for Audit Populations generated from Population 2 with the Taint 

Error Assignment

Line Item Error 

Rate

1 2 3 4 5

SRS 99.80 99.80 98.84 97.21 97.09

Sieve 99.94 99.91 99.44 98.70 97.97

Stabilised Sieve 99.96 99.94 99.57 98.90 98.67
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Table 8.5 Mean Coverage of Simple Random, Sieve and Stabilised Sieve Sampling

for each Taint at the 95% Nominal Confidence Level for Audit 

Populations generated from Population 1 with the Taint Error 

Assignment

Taint 1 2 3

SRS 98.99 98.91 98.25

Sieve 98.94 98.85 98.08

Stabilised Sieve 98.21 99.13 98.39

Table 8.6 Mean Coverage of Simple Random, Sieve and Stabilised Sieve Sampling 

for each Taint at the 95% Nominal Confidence Level for Audit 

Populations generated from Population 2 with the Taint Error 

Assignment

Taint 1 2 3

SRS 98.62 98.51 98.52

Sieve 99.22 99.18 99.18

Stabilised Sieve 99.44 99.40 99.39
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Table 8.7 Mean Coverage of Simple Random, Sieve and Stabilised Sieve Sampling

for each Sample Size at the 95% Nominal Confidence Level for Audit 

Populations generated from Population 1 with the Taint Error 

Assignment

Sample Size n= 30 n= 60 n = 100

SRS 99.66 98.34 98.15

Sieve 99.53 97.28 98.07

Stabilised Sieve 99.61 98.52 98.60

Table 8.8 Mean Coverage of Simple Random, Sieve and Stabilised Sieve Sampling 

for each Sample Size at the 95% Nominal Confidence Level for Audit 

Populations generated from Population 2 with the Taint Error 

Assignment

Sample Size n= 3 0 n= 60 n = 100

SRS 99.26 98.73 97.65

Sieve 99.24 99.03 99.31

Stabilised 99.56 99.08 99.57
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Table 8.9 Mean Coverage of Simple Random, Sieve and Stabilised Sieve Sampling 

for each Bound at the 95% Nominal Confidence Level for Audit 

Populations generated from Population 1 with the Taint Error 

Assignment

Bound Stringer Cell Moment

SRS 99.22 99.02 97.91

Sieve 99.22 98.99 97.67

Stabilised 99.45 99.24 98.08

Table 8.10 Mean Coverage of Simple Random, Sieve and Stabilised Sieve Sampling 

for each Bound at the 95% Nominal Confidence Level for Audit 

Populations generated from Population 2 with the Taint Error 

Assignment

Bound Stringer Cell Moment

SRS 98.87 98.82 97.95

Sieve 99.40 99.39 98.78

Stabilised Sieve 99.58 99.57 99.08
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From tables 8.3 to 8.10, the following general observations are 

made

(i) Stabilised sieve sampling has a mean coverage above 

the nominal for each error rate, taint size, sample 

size and bound.

(ii) The mean coverage of stabilised sieve sampling is 

similar to that of simple random and sieve sampling 

for each error rate, taint size, sample size and 

bound. Some significant differences exist notably in 

audit populations generated from Population 2 where 

stabilised sieve sampling has a significantly higher 

mean coverage than simple random sampling for some 

factor levels. However, these are not of practical 

importance since the differences are not substantial 

in any case.
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Simple Random and Sieve Sampling of Monetary Units.

The main effects of the sampling method and the first-order 

interactions of the sampling method with each of the other 

factors are analysed for the tightness dependent variable.

8.2.2.1 The Comparative Tightness of Simple Random, Sieve and 

Stabilised Sieve Sampling

The tightness main effects for each sampling method for each 

model are given in tables 8.11 and 8.12

8 . 2 . 2  The T ig h tn e s s  o f  S t a b i l i s e d  S i e v e  Sampling compared to

Table 8.11 Mean Tightness of Simple Random, Sieve and Stabilised Sieve Sampling 

for Audit Populations generated from Population 1

Confidence Level 95% 85% 70%

Assignment Taint Aon Taint Aon Taint Aon

Sampling Methods

SRS 276.12 287.27 175.76 178.22 105.13 103.33

Sieve 273.86 290.19 173.52 180.80 103.78 105.57

Stabilised Sieve 271.85 287.43 171.32 178.34 101.75 103.40
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Table 8.12 Mean Tightness of Simple Random, Sieve and Stabilised Sieve for

Audit Populations generated from Population 2

Confidence Level 95% 85% 70%

Assignment Taint Aon Taint Aon Taint Aon

Sampling Methods

SRS 191.05 191.42 118.83 118.58 67.65 67.02

Sieve 191.15 190.19 118.70 117.25 67.28 65.77

Stabilised Sieve 193.26 196.99 120.65 123.44 69.01 71.21

The following observations are made from these tables 8.11 and

8.12

(i) The mean tightness of stabilised sieve sampling is 

less than or similar to that of simple random and 

sieve sampling in audit populations generated from 

Population 1.

(ii) In audit populations generated from Population 2, 

stabilised sieve sampling is more conservative than 

simple random and sieve sampling but the difference in 

the mean tightness between stabilised sieve sampling 

and the other sampling methods is not sufficiently 

large to be of practical importance in the audit 

setting.
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8 . 2 . 2.2 The First-Order Interactions of the Tightness 

Dependent Variable.

A detailed breakdown of the first-order interaction of sampling 

method with each of the other factors for the tightness dependent 

variable with the taint error assignment at the 95% nominal 

confidence level is given in tables 8.13 - 8.20.

Table 8.13 Mean Tightness of Simple Random, Sieve and Stabilised Sieve Sampling 

for each Line Item Error Rate at the 95% Nominal Confidence Level 

for Audit Populations generated from Population 1 with the Taint 

Error Assignment

Line Item Error 

Rate

1 2 3 4 5

SRS 622.29 312.14 219.78 129.73 96.64

Sieve 617.10 310.32 216.57 129.34 95.98

Stabilised 610.21 306.50 214.31 129.81 97.07

Table 8.14 Mean Tightness of Simple Random, Sieve and Stabilised Sieve Sampling 

for each Line Item Error Rate at the 95% Nominal Confidence Level 

for Audit Populations generated from Population 2 with the Taint 

Error Assignment

Line Item Error 

Rate

1 2 3 4 5

SRS 316.495 252.27 187.84 114.26 84.38

Sieve 318.61 252.30 186.24 114.78 83.84

Stabilised 314.37 254.65 189.00 118.94 89.35
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Table 8.15 Mean Tightness of Simple Random, Sieve and Stabilised Sieve Sampling

for each Taint Size at the 95% Nominal Confidence Level for Audit 

Populations generated from Population 1 with the Taint Error 

Assignment

Taint Taint 1 Taint 2 Taint 3

SRS 301.73 289.47 237.15

Sieve 299.18 287.04 235.38

Stabilised 297.14 284.92 232.68

Table 8.16 Mean Tightness of Simple Random, Sieve and Stabilised Sieve Sampling 

for each Taint Size at the 95% Nominal Confidence Level for Audit 

Populations generated from Population 2 with the Taint Error 

Assignment

Taint Taint 1 Taint 2 Taint 3

SRS 195.41 190.79 186.94

Sieve 195.78 190.95 186.73

Stabilised 197.75 193.15 189.02
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Table 8.17 Mean Tightness of Simple Random, Sieve and Stabilised Sieve Sampling 

for each Sample Size at the 95% Nominal Confidence Level for Audit 

Populations generated from Population 1 with the Taint Error 

Assignment

Sampling Size n = 30 n = 60 n = 100

SRS 430.22 238.22 151.91

Sieve 424.61 237.08 159.90

Stabilised Sieve 417.09 235.61 162.04

Table 8.18 Mean Tightness of Simple Random, Sieve and Stabilised Sieve Sampling 

for each Sample Size at the 95% Nominal Confidence Level for Audit 

Populations generated from Population 2 with the Taint Error 

Assignment

Sampling Size n = 30 n = 60 n = 100

SRS 278.64 173.63 120.87

Sieve 282.45 170.64 120.37

Stabilised Sieve 285.37 172.00 122.41
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Table 8.19 Mean Tightness of Simple Random, Sieve and Stabilised Sieve Sampling 

for each Bound at the 95% Nominal Confidence Level for Audit 

Populations generated from Population 1 with the Taint Error 

Assignment

Bound Stringer Cell Moment

SRS 296.27 292.22 239.86

Sieve 294.36 290.13 237.10

Stabilised Sieve 291.64 287.54 235.56

Table 8.20 Mean Tightness of Simple Random, Sieve and Stabilised Sieve Sampling 

for each Bound at the 95% Nominal Confidence Level for Audit 

Populations generated from Population 2 with the Taint Error 

Assignment

Bound Stringer Cell Moment

SRS 195.96 195.14 182.04

Sieve 196.42 195.67 181.37

Stabilised Sieve 198.30 197.52 183.96
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From tables 8.13 -8.20, the following observations are made

(i) The mean tightness of stabilised sieve sampling is 

similar to that of simple random and sieve sampling 

for any given error rate, taint size, sample size or 

bound in audit populations generated from Populationl.

(ii) In audit populations generated from Population 2, 

stabilised sieve sampling is somewhat more 

conservative than the other two sampling methods in 

all cases but the mean tightness of stabilised sieve 

sampling is not significantly different than the mean 

tightness of simple random or sieve sampling in any 

case.

8.2.3 Comparison of the Precision of Stabilised Sieve

Sampling with Simple Random and Sieve Sampling of 

Monetary Units.

The main effects of the sampling methods and the first-order 

interactions of the sampling method with each level of the other 

factors for the precision dependent variable are analysed.

8.2.3.1 The Main Effects of the Precision Dependent Variable

The precision main effects for each sampling method for each 

model are given in terms of the standard deviation of the 

estimate in tables 8.21 and 8.22.
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Table 8.21 Mean Standard Deviation (000s) of Simple Random, Sieve and 

Stabilised Sieve Sampling for Audit Populations generated from 

Population 1

Confidence Level 95% 85% 70%

Assignment Taint Aon Taint Aon Taint Aon

Sampling Methods

SRS 98.74 102.46 87.40 91.46 77.42 81.25

Sieve 99.43 104.95 88.12 93.76 78.14 83.36

Stabilised Sieve 96.59 100.84 85.43 89.94 75.63 79.83

Table 8.22 Mean Standard Deviation(000s) of Simple Random, Sieve and Stabilised 

Sieve Sampling for Audit Populations generated from Population 2

Confidence Level 95% 85% 70%

Assignment Taint Aon Taint Aon Taint Aon

Sampling Methods

SRS 145.86 146.50 130.79 131.73 116.99 117.96

Sieve 133.93 133.77 120.15 120.26 107.46 107.66

Stabilised Sieve 132.86 136.67 119.21 123.16 106.66 110.53

As can be seen from tables 8.21 and 8.22

(i) Stabilised sieve sampling is more precise than simple

random sampling in all the models. The greatest 

improvements in precision of stabilised sieve sampling 

over simple random sampling occur in audit populations 

generated from Population 2. This is consistent with 

the point estimator analysis in Chapter 5.
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to the precision of sieve sampling in all the models.

8.2.3.2 The First-Order Interactions of the Precision 

Dependent Variable

A detailed breakdown of the precision of the sampling methods 

with each value of the error rate, taint, sample size and bound 

with the taint error assignment at the 95% nominal confidence 

level is given in tables 8.23 - 8.30.

Table 8.23 Mean Standard Deviation of Simple Random, Sieve and Stabilised Sieve 

Sampling for each Line Item Error Rate at the 95% Nominal Confidence 

Level for Audit Populations generated from Population 1 with the 

Taint Error Assignment

( i i )  The p r e c i s i o n  o f  s t a b i l i s e d  s i e v e  sampling i s  s i m i l a r

Line Item Error 

Rate

1 2 3 4 5

SRS 56.53 81.95 96.44 121.70 137.08

Sieve 56.73 80.17 96.41 123.91 139.92

Stabilised Sieve 55.15 78.60 93.81 120.22 135.18

Table 8.24 Mean Standard Deviation of Simple Random, Sieve and Stabilised 

Sieve Sampling for each Line Item Error Rate at the 95% Nominal 

Confidence Level for Audit Populations generated from Population 2 

with the Taint Error Assignment

Line Item Error 

Rate

1 2 3 4 5

SRS 107.44 118.66 137.04 173.21 192.93

Sieve 90.08 104.63 126.59 161.08 187.30

Stabilised Sieve 92.40 107.28 128.91 157.73 177.98
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Table 8.25 Mean Standard Deviation of Simple Random, Sieve and Stabilised Sieve

Sampling for each Taint Size at the 95% Nominal Confidence Level for 

Audit Populations generated from Population 1 with the Taint Error 

Assignment

Taint 1 2 3

SRS 97.13 97.87 101.21

Sieve 97.39 98.29 102.62

Stabilised Sieve 94.92 95.67 99.10

Table 8.26 Mean Standard Deviation of Simple Random, Sieve and Stabilised Sieve 

Sampling for each Taint Size at the 95% Nominal Confidence Level for 

Audit Populations generated from Population 2 with the Taint Error 

Assignment

Taint 1 2 3

SRS 143.33 135.46 147.78

Sieve 132.72 133.60 135.47

Stabilised Sieve 131.68 132.60 134.29
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Table 8.27 Mean Standard Deviation of Simple Random, Sieve and Stabilised Sieve 

Sampling for each Sample Size at the 95% Nominal Confidence Level 

for Audit Populations generated from Population 1 with the Taint 

Error Assignment

Sample Size n = 30 n = 60 n = 100

SRS 135.47 92.60 68.14

Sieve 136.48 92.84 68.97

Stabilised Sieve 130.88 91.34 67.56

Table 8.28 Mean Standard Deviation of Simple Random, Sieve and Stabilised Sieve 

Sampling for each Sample Size at the 95% Nominal Confidence Level 

for Audit Populations generated from Population 2 with the Taint 

Error Assignment

Sample Size n = 30 n = 60 n = 100

SRS 195.93 136.56 105.67

Sieve 194.98 124.78 82.04

Stabilised Sieve 192.78 124.40 81.39

352



Table 8.29 Mean Standard Deviation of Simple Random, Sieve and Stabilised Sieve 

Sampling for each Bound at the 95% Nominal Confidence Level for 

Audit Populations generated from Population 1 with the Taint Error 

Assignment

Bound Stringer Cell Moment

SRS 96.63 97.41 102.17

Sieve 97.51 98.25 102.51

Stabilised Sieve 94.40 95.12 100.26

Table 8.30 Mean Standard Deviation of Simple Random, Sieve and Stabilised 

Sieve Sampling for each Bound at the 95% Nominal Confidence Level 

for Audit Populations generated from Population 2 with the Taint 

Error Assignment

Bound Stringer Cell Moment

SRS 141.13 141.23 155.20

Sieve 129.70 129.82 144.28

Stabilised Sieve 128.52 128.63 141.43
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The results of the analysis of the interactions between each of 

the independent factors and the sampling method for the precision 

dependent variable confirm the overall trends observed in 

8.2.3.1. The following observations are made from tables 8.23 

to 8.30

(i) Stabilised sieve sampling is more precise than simple

random sampling for most error rates, taints, sample 

sizes and bounds. In audit populations generated from 

Population 1, the mean precision of stabilised sieve 

sampling and simple random sampling are very close in 

all cases. The greatest gains in the precision of 

stabilised sieve sampling over simple random sampling 

occur in audit populations generated from Population 

2. This is consistent with the point estimator 

analysis in Chapter 5.

(ii) The precision of stabilised sieve sampling and the

precision of sieve sampling are similar in most cases.
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8.3 Efficiency of Stabilised Sieve Sampling relative to Simple 

Random and Sieve Sampling

A more detailed analysis is carried out on the precision of 

stabilised sieve sampling compared to simple random and sieve 

sampling of monetary units. The design effect, defined in 

Chapter 2, is used to compare stabilised sieve sampling with 

simple random sampling. The relative efficiency, also defined in 

Chapter 2, is used to compare stabilised sieve sampling with 

sieve sampling.

8.3 1 The Design Effect of Stabilised Sieve Sampling

The design effect (see 2.7.1) of stabilised sieve sampling is 

calculated for each error rate, taint size and sample size and 

bound. Tables 8.31 and 8.32 give the design effect for each 

bound for audit populations generated from Populations 1 and 2 

respectively with the taint error assignment at the 95% nominal 

confidence level. The design effect for the bounds with the 

taint error assignment at the 85% and 70% nominal confidence 

levels and the design effect for the bounds with the AON error 

assignments are given in Appendix J.
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Table 8.31 Design Effect of Stabilised Sieve Sampling for Bounds at the 95%

Nominal Confidence Level for Audit Populations generated from 

Population 1 with the Taint Error Assignment

Sample Size n = 30 n = 60 n = 100

Bound Str Cell Mom Str Cell Mom Str Cell Mom

Error Rate 1

Taint 1 0.84 0.84 0.89 1.06 1.06 1.12 0.97 0.97 0.97

Taint 2 0.85 0.84 0.88 1.06 1.06 1.12 0.97 0.97 0.95

Taint 3 0.85 0.84 0.91 1.06 1.06 1.07 0.96 0.96 0.95

Error Rate 2

Taint 1 0.91 0.91 0.89 0.93 0.94 0.96 0.91 0.90 0.93

Taint 2 0.91 0.91 0.99 0.92 0.93 0.96 0.91 0.91 0.93

Taint 3 0.91 0.91 0.92 0.93 0.93 0.96 0.93 0.93 0.93

Error Rate 3

Taint 1 0.91 0.91 0.90 0.99 1.00 0.99 0.94 0.94 0.99

Taint 2 0.92 0.92 0.90 0.99 1.00 0.99 0.94 0.94 0.98

Taint 3 0.92 0.91 0.91 0.99 0.99 1.01 0.93 0.91 0.91

Error Rate 4

Taint 1 0.97 0.97 0.94 0.93 0.93 0.95 1.00 1.00 1.04

Taint 2 0.97 0.97 0.98 0.93 0.93 0.95 1.00 1.00 1.01

Taint 3 0.99 0.99 0.99 0.94 0.94 0.95 1.01 1.01 1.01

Error Rate 5

Taint 1 0.95 0.95 0.94 0.99 0.97 0.98 1.05 1.06 1.06

Taint 2 0.95 0.95 0.97 0.97 0.97 0.98 1.05 1.06 1.06

Taint 3 0.97 0.98 0.99 0.96 0.96 0.97 1.04 1.05 1.05
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Table 8.32 Design Effect of Stabilised Sieve Sampling for Bounds at the 95% 

Nominal Confidence Level for Audit Populations generated from 

Population 2 with the Taint Error Assignment

Sample Size n = 30 n = 60 n = 100

Bound Str Cell Mom Str Cell Mom Str Cell Mom

Error Rate 1

Taint 1 0.93 0.93 0.90 0.67 0.64 0.67 0.47 0.47 0.52

Taint 2 0.93 0.93 0.89 0.73 0.73 0.71 0.48 0.48 0.52

Taint 3 0.93 0.93 0.89 0.73 0.73 0.71 0.49 0.49 0.53

Error Rate 2

Taint 1 1.00 1.00 1.01 0.78 0.78 0.78 0.55 0.55 0.59

Taint 2 1.00 1.00 1.03 0.79 0.79 0.80 0.56 0.56 0.59

Taint 3 1.00 1.00 1.03 0.80 0.80 0.81 0.58 0.58 0.60

Error Rate 3

Taint 1 1.09 1.09 1.11 0.83 0.84 0.84 0.62 0.62 0.64

Taint 2 1.09 1.09 1.11 0.84 0.86 0.86 0.62 0.62 0.64

Taint 3 1.08 1.08 1.09 0.82 0.82 0.83 0.62 0.62 0.63

Error Rate 4

Taint 1 0.94 0.94 0.97 0.85 0.85 0.86 0.60 0.60 0.59

Taint 2 0.94 0.94 0.96 0.89 0.90 0.86 0.59 0.59 0.59

Taint 3 0.92 0.92 0.94 0.86 0.86 0.86 0.59 0.59 0.59

Error Rate 5

Taint 1 0.95 0.96 0.96 0.89 0.89 0.89 0.64 0.64 0.64

Taint 2 0.95 0.95 0.95 0.89 0.89 0.89 0.64 0.64 0.64

Taint 3 0.91 0.91 0.90 0.89 0.89 0.90 0.64 0.64 0.64
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(i) The design effect of stabilised sieve sampling is less 

than one in most cases in audit populations generated 

from Population 1 but not substantially less than one 

in any case. This is consistent with the point 

estimator analysis in Chapter 5.

(ii) In audit populations generated from Population 2, the 

design effect is substantially less than one in all 

cases for samples of sizes sixty and one hundred. 

This is consistent with the point estimator analysis 

in Chapter 5.

8.3.2 The Efficiency of Stabilised Sieve Sampling Relative

to Sieve Sampling

For each bound, the efficiency (see 2.7.1) of stabilised sieve 

sampling relative to sieve sampling is calculated for each error 

rate, taint size, sample size. Tables 8.33 and 8.34 give the 

relative efficiency for each bound in audit populations generated 

from Populations 1 and 2 respectively with the taint error 

assignment at the 95% nominal confidence level. The efficiency 

of stabilised sieve relative to sieve sampling for the models 

with the taint error assignment at the 85% and 70% nominal 

confidence levels and for the models with the AON error 

assignments are given in Appendix J.

From t h e s e  t a b l e s  th e  f o l l o w i n g  o b s e r v a t io n s  are  made
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Table 8.33 Efficiency of Stabilised Sieve Sampling relative to Sieve Sampling

for Bounds at the 95% Nominal Confidence Level for Audit Populations 

generated from Population 1 with the Taint Error Assignment

Sample Size n = 30 n = 60 n = 100

Bound Str Cell Mom Str Cell Mom Str Cell Mom

Error Rate 1

Taint 1 0.85 0.85 0.84 1.01 1.01 1.00 1.04 1.04 1.09

Taint 2 0.84 0.85 0.84 1.01 1.01 0.99 1.04 1.05 1.09

Taint 3 0.84 0.84 0.87 1.02 1.02 1.00 1.04 1.04 1.06

Error Rate 2

Taint 1 0.94 0.94 0.95 0.93 0.93 0.95 1.03 1.03 1.02

Taint 2 0.94 0.94 0.95 0.93 0.93 0.95 1.03 1.03 1.02

Taint 3 0.92 0.93 0.95 0.93 0.93 0.94 1.03 1.05 1.04

Error Rate 3

Taint 1 0.96 0.96 0.98 0.91 0.91 0.90 0.96 0.96 1.00

Taint 2 0.95 0.95 0.98 0.91 0.91 0.91 0.97 0.97 0.99

Taint 3 0.94 0.94 0.96 0.91 0.91 0.92 0.98 0.98 0.98

Error Rate 4

Taint 1 0.95 0.95 0.98 0.95 0.95 0.99 0.88 0.87 0.91

Taint 2 0.95 0.95 0.97 0.96 0.96 0.99 0.89 0.89 0.90

Taint 3 0.93 0.93 0.94 0.95 0.95 0.96 0.88 0.88 0 .89

Error Rate 5

Taint 1 0.89 0.89 0.92 1.02 1.02 1.04 0.94 0.94 0.95

Taint 2 0.89 0.88 0.92 1.02 1.02 1.02 0.93 0.93 0.94

Taint 3 0.85 0.85 0.89 0.99 0.99 1.01 0.91 0.91 0.92
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Table 8.34 Efficiency of Stabilised Sieve Sampling relative to Sieve Sampling

for Bounds at the 95% Nominal Confidence Level for Audit Populations 

generated from Population 2 with the Taint Error Assignment

Sample Size n = 30 n = 60 n = 100

Bound Str Cell Mom Str Cell Mom Str Cell Mom

Error Rate 1

Taint 1 1.05 1.06 1.08 1.01 1.01 0.98 1.10 1.10 1.07

Taint 2 1.03 1.04 1.10 1.01 1.01 0.97 1.11 1.11 1.07

Taint 3 1.02 1.03 1.10 1.02 1.02 1.00 1.10 1.10 1.05

Error Rate 2

Taint 1 1.04 1.05 1.07 1.03 1.01 0.99 1.10 1.10 1.07

Taint 2 1.02 1.03 1.08 1.04 1.04 1.00 1.10 1.10 1.09

Taint 3 1.06 1.06 1.09 1.03 1.03 1.01 1.11 1.11 1.08

Error Rate 3

Taint 1 1.10 1.09 1.13 0.98 0.98 0.98 1.01 1.01 1.02

Taint 2 1.07 1.07 1.11 0.98 0.98 0.98 1.01 1.01 1.01

Taint 3 1.07 1.07 1.10 0.98 0.98 0.98 1.00 1.00 0.99

Error Rate 4

Taint 1 0.92 0.92 0.96 1.00 1.00 0.99 0.95 0.95 0.96

Taint 2 0.92 0.92 0.96 1.00 1.00 0.99 0.96 0.96 0.96

Taint 3 0.91 0.92 0.95 1.00 1.00 1.00 0.96 0.96 0.97

Error Rate 5

Taint 1 0.87 0.87 0.88 0.98 0.98 0.98 0.87 0.87 0.88

Taint 2 0.86 0.86 0.88 0.98 0.97 0.98 0.87 0.87 0.88

Taint 3 0.85 0.85 0.86 0.97 0.97 0.98 0.88 0.89 0.88
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(i) Stabilised sieve sampling is near one in most cases in 

both sets of audit populations. It is somewhat more 

efficient than sieve sampling in most cases in audit 

populations generated from Population 1 and in some 

cases in audit populations generated from Population2.

(ii) Fluctuations exist in the efficiency in both sets of 

audit populations but the fluctuations show no 

consistent relationship with respect to sample size, 

taint size or error rate for any bound estimate.

8.4 Practical Aspects of Stabilised Sieve Sampling

Stabilised sieve sampling has some practical advantages over both 

simple random sampling and sieve sampling of monetary units which 

should be taken into account when deciding on a sampling method.

Simple random sampling, often referred to as 'unrestricted random 

sampling' (Leslie, Teitlebaum and Anderson, 1979, plOO) considers 

the population as a collection of monetary units from which a 

simple random sample of monetary units is chosen. This selection 

method requires that the book amounts are accumulated and that 

the total book amount be known in advance of sampling. In 

addition, with simple random sampling of monetary units it is 

possible to obtain more than one monetary unit from the same line

The f o l l o w i n g  o b s e r v a t i o n s  are  made from t h e s e  t a b l e s .
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item. Therefore, while this sampling method returns the desired 

sample size of n monetary units, the number of distinct line 

items from which these monetary units are chosen may be less than 

n.

Sieve sampling, on the other hand, uses the line item structure 

of the population when selecting the sample and hence does not 

require that the book amounts be accumulated or that the total 

book amount be known accurately in advance of sampling. Sieve 

sampling has a further advantage over simple random sampling in 

that it selects monetary units from distinct line items. 

However, a drawback of sieve sampling, is that the achieved 

sample size in any selection may not be equal to the nominal 

sample size. With sieve sampling, the sample size is a variable 

and this may be of serious concern to the auditor when deciding 

on a sample selection method.

Stabilised sieve sampling attempts to preserve the advantages of 

sieve sampling. It uses the line item structure of the 

population when selecting the sample and it does not require that 

the book amounts be accumulated or that the total book amount be 

known accurately in advance of sampling. In addition, stabilised 

sieve sampling overcomes the primary disadvantage of sieve 

sampling by returning a constant sample size of monetary units.

However, while sieve sampling selects the monetary units from 

distinct line items, with stabilised sieve sampling as with 

simple random sampling, more than one monetary unit may be
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selected from any specific line item. The selection process for 

stabilised sieve sampling, detailed in 4.8, selects the sample 

in two stages. At the first stage, the monetary units are 

selected from distinct line items. Repeated selections of 

monetary units from the same line item is restricted to the 

second stage of selection in stabilised sieve sampling. When the 

sample needs to be reduced, the final sample is a set of monetary 

units selected from n distinct line items. When the sample is 

augmented, it is necessary, in order to preserve PPS, to allow 

the line items selected at the first stage to be considered for 

selection at the second stage (see Chapter 4) . Since the 

possibility of multiple selections of monetary units from the 

same line item is restricted to the second stage selection of the 

stabilised sieve sample, the number of multiple selections in 

stabilised sieve sampling should be less than that of simple 

random sampling of monetary units where all the monetary units 

selected are considered for inclusion in the sample at each 

selection.

An investigation into the number of distinct line items obtained 

using simple random, sieve and stabilised sieve sampling is 

carried out. Samples of sizes 30, 60 and 100 are drawn from 

Populations 1 and 2 using each selection method. One thousand 

replications are performed for each sample size and each sampling

method. Tables 8.35-8.37 give the number of distinct line items

achieved using simple random, sieve and stabilised sieve

sampling, with nominal sample sizes of 30, 60 and 100

respectively.
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Table 8.35 Number of Distinct Line Items Selected using Stabilised Sieve

Sampling, Sieve Sampling and Simple Random Sampling for a Nominal 

Sample Size of Thirty

n =30 Mean Standard

Deviation

Minimum Maximum

Population 1

SRS 29.25 0.87 26 30

Sieve 30.07 5.53 15 45

Stabilised 29.99 0.08 29 30

Population 2

SRS 28.06 1.29 24 30

Sieve 30.09 4.74 16 45

Stabilised 29.91 0.31 28 30

Table 8.36 dumber oT Distinct Line Items Selected using Stabilised Sieve

Sampling, Sieve Sampling and Simple Random Sampling for a Nominal 

Sample Size of Sixty

n = 60 Mean Standard

Deviation

Minimum Maximum

Population 1

SRS 57.23 1.59 50 60

Sieve 60.21 7.66 36 85

Stabilised 59.96 0.21 57 60

Population 2

SRS 52.29 2.39 49 59

Sieve 60.15 6.60 41 85

Stabilised 59.75 0.58 56 60
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Table 8.37 Number of Distinct Line Items Selected using Stabilised Sieve

Sampling, Sieve Sampling and Simple Random Sampling for a Nominal 

Sample Size of One Hundred

n = 100 Mean Standard

Deviation

Minimum Maximum

Population 1

SRS 92.20 2.69 81 99

Sieve 99.78 9.07 74 125

Stabilised 99.90 0.34 97 100

Population 2

SRS 80.84 3.45 70 90

Sieve 99.82 7.44 78 129

Stabilised 99.49 0.97 94 100

The following observations are made from these tables

(i) In audit populations generated from Population 1, each

selection method has a mean number of distinct line 

items near to the nominal sample size for all sample 

sizes. In audit populations generated from Population 

2, sieve sampling and stabilised sieve sampling have 

a mean number of distinct line items near the nominal 

in all cases. The mean number of distinct line items 

selected with simple random sampling is below the 

nominal in all cases in audit populations generated 

from Population 2 and substantially less than the 

nominal for samples of size 100.
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(ii) The variability in the number of distinct line items

is greatest for sieve sampling and least for 

stabilised sieve sampling for all nominal sample 

sizes. The variability of the number of distinct line 

items obtained using sieve sampling is lower in 

Population 2 than in Population 1. It should be noted 

that the variability of the achieved sample size in 

sieve sampling was derived theoretically in theorem 

4.18 where it was shown that the achieved sample size 

in sieve sampling has a standard deviation of

N

For samples drawn from Population 1 using sieve 

sampling, the variability of the achieved sample size

o30 = 5. 33 o60 7. 32 o100 =9.07

for samples of nominal sizes 30, 60 and 100

respectively.

And for samples drawn from Population 2 using sieve 

sampling, the variability of the achieved sample size 

is

° 3o = 5.07 o60 = 6. 56 o100 =7 . 2 7

for samples of sizes 30, 60 and 100 respectively.

The simulated results are consistent with the exact 

results.
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(iii) The number of distinct line items obtained with sieve 

sampling varies greatly from sample to sample. The 

minimum achieved sample size with sieve sampling is 

substantially lower than the nominal and the maximum 

achieved sample size with sieve sampling is 

substantially higher than the nominal for all sample 

sizes.

(iv) The minimum and maximum number of distinct line items 

obtained using stabilised sieve sampling is near the 

nominal sample size for all sample sizes.

(v) The number of distinct line items obtained with 

stabilised sieve sampling has the smallest range and 

lowest variability for each nominal sample size.

8.5 Conclusions

In this chapter, the performance of stabilised sieve sampling was 

compared to simple random and sieve sampling of monetary units 

in terms of the reliability, tightness and precision of upper 

bound estimates of the total error amount. The design effects 

of stabilised sieve sampling and the efficiency of stabilised 

sieve sampling relative to sieve sampling were calculated for 

each error rate, taint size, sample size and bound. Some 

practical aspects of stabilised sieve sampling were also 

considered. It was found that:
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( i )

(ii)

(iii)

Stabilised sieve sampling has a mean coverage above 

the nominal for each error rate, taint size, sample 

size and bound.

The tightness of the estimates with stabilised sieve 

sampling is similar to the tightness with simple 

random and sieve sampling for any given error rate, 

taint size, sample size and bound in audit population 

generated from Population 1. In audit populations 

generated from Population 2, stabilised sieve sampling 

is somewhat more conservative than simple random and 

sieve sampling in all cases but the differences in the 

mean tightness between the sampling methods are not 

significant in any case.

Stabilised sieve sampling is more precise than simple 

random sampling in all the models. The greatest 

improvements in precision of stabilised sieve sampling 

over simple random sampling occur in audit populations 

generated from Population 2. The precision of 

stabilised sieve sampling is similar to that of sieve 

sampling in all the models.

The average number of distinct line items obtained 

using stabilised sieve sampling is similar to the 

average obtained using sieve sampling in all cases and 

greater than simple random sampling is most cases.
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(vi) Stabilised sieve sampling overcomes the variable

sample size problem of sieve sampling and returns a 

sample size of monetary units equal to the nominal 

sample size.

(v) The average number of distinct line items obtained

using stabilised sieve sampling has a range smaller 

than the average using simple random sampling and 

substantially smaller than the average using sieve 

sampling for all sample sizes. The variability in the 

number of distinct line items obtained from sample to 

sample is lower for stabilised sieve sampling than the 

other two sampling methods.

In conclusion, stabilised sieve sampling is a reliable monetary- 

unit sampling method. While some patterns of difference were 

found in the tightness of the bounds with stabilised sieve, 

simple random and sieve sampling, the differences in the mean 

tightness between stabilised sieve sampling and simple random 

sampling or between stabilised sieve sampling and sieve sampling 

are not significant for any line item error rate, taint size, 

sample size or bound. Stabilised sieve sampling was found to be 

more precise than simple random sampling in most cases and 

significantly more precise than simple random sampling with 

samples of size 100 in audit populations generated from 

Population 2. No significant differences in the precision 

occurred between stabilised sieve sampling and sieve sampling.
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Consequently, the decision to use stabilised sieve sampling as 

an alternative to simple random or sieve sampling must be made 

on non-statistical grounds. Wurst, Neter and Godfrey (1989b) 

made the following recommendation to auditors when deciding to 

use sieve sampling instead of simple random or cell sampling of 

monetary units.

'Auditors will need to consider whether 
sample selection in the field is facilitated 
by sieve sampling by determining whether 
ordering of random numbers and accumulating 
of book amounts that is required by random 
or cell selection but not by sieve sampling 
is of serious concern, and whether the 
variability of sample size with sieve 
sampling is of serious concern, as 
contrasted with fixed sample sizes for 
random and cell selection.'

With stabilised sieve sampling, these considerations are no 

longer necessary. Stabilised sieve sampling does not require 

that the random numbers be ordered or that the book amounts be 

accumulated. In addition, the number of monetary units obtained 

using stabilised sieve sampling is always equal to the nominal 

sample size. Stabilised sieve sampling has the added advantage 

that the number of distinct line items obtained in a sample is 

less variable than the number obtained with simple random 

sampling and sieve sampling. It is therefore a useful and 

practical alternative to simple random sampling and sieve 

sampling of monetary units in substantive auditing.
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Chapter 9

Summary, Conclusions and Recommendations for Future Research.

9.1 Introduction

This chapter reviews how the objectives stated in Chapter 1 have 

been achieved (9.2), presents a summary of the findings and draws 

conclusions from the results (9.3). Some areas of future 

research are suggested (9.4).

9.2 Achievement of the Objectives

The purpose of this study was to investigate how different 

monetary-unit sampling methods perform in obtaining estimates of 

the total error amount in substantive auditing. Six monetary- 

unit sampling methods were examined. Four of these are currently 

used in practice, namely simple random, systematic, cell and 

sieve sampling. One method 'Lahiri sampling' has not been 

applied previously in auditing. A new monetary-unit sampling 

method, 'Stabilised Sieve Sampling' has been developed in this 

study and its properties analysed. The performance of the 

sampling methods were compared by studying the behaviour of the 

estimates of the population total error amount given by each 

sampling method. The study involved a point estimator analysis
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and an upper bound analysis. It also investigated practical 

aspects of the sampling methods which must be considered by the 

auditor when choosing a selection method. The sampling methods 

were tested on data obtained from commercial entities in the 

Public Sector in Ireland.

As previously stated in Chapter 1, the specific objectives of 

this study were:

(i) To obtain information on the characteristics of 

book values and patterns of errors in two 

populations of debtors in the Public Sector;

(ii) To carry out a theoretical analysis of a point 

estimator of the total error amount for six 

monetary-unit sampling methods. Four methods are 

currently used in practice (i.e., simple random, 

systematic, cell and sieve sampling), one 'Lahiri 

sampling' has not been previously used in 

auditing (see also objective (iv) below), and a 

new monetary-unit sampling method has been 

developed in this study (see also objective v);

(iii) To compare the performance of the Stringer, Cell 

and Moment bounds for estimating the total error 

amount in substantive auditing using monetary- 

unit sampling methods currently used in practice;
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(iv) To investigate Lahiri sampling as an alternative 

to simple random sampling of monetary units;

(v) To investigate stabilised sieve sampling as an 

alternative to sieve and simple random sampling 

of monetary units.

9.2.2 The Methodology Used to Achieve the Objectives

Two accounting populations of debtors from commercial entities 

in the Irish Public Sector were examined. One contained a 

relatively large number of small accounts and the other contained 

a relatively small number of large accounts. An experimental 

study involving large audits of the two accounting populations 

was carried out and the relationships between different 

population parameters were identified for each population. The 

purpose of the audits was to obtain sufficient information on the 

error patterns in each population to be able to model the errors. 

The characteristics of the book values, the sample designs used 

in the investigative audits and the distribution of errors found 

in each population are outlined in Chapter 3.

Chapter 4 provides a basis for the subsequent analysis of 

estimation procedures by deriving the properties of the six 

monetary-unit sampling methods used in the study.
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A theoretical analysis of a point estimator of the total error 

amount was carried out in Chapter 5. The mean and variance of 

the estimator with the taint and AON error assignment methods 

(see 2.6) were derived for each monetary-unit sampling method. 

The design effect (Kish, 1965) was used to compare the precision 

of the point estimator for systematic, cell, Lahiri, sieve and 

stabilised sieve sampling relative to simple random sampling of 

monetary units. The analysis of the point estimator was 

undertaken in order to gain some insight into the behaviour of 

the heuristic upper bound estimates of the total error amount for 

the different sampling methods. Previous research by Wurst, 

Neter and Godfrey (1989a and 1989b) showed that the effects of 

simple random, cell and sieve sampling on the precision of the 

point estimator was similar to the effects of the sampling 

methods on the precision of the Stringer and Cell bounds. This 

study extends the work of these authors by investigating the 

theoretical properties of six monetary-unit sampling methods, 

including a new sampling method 'Stabilised Sieve Sampling' and 

one not used previously in auditing 'Lahiri Sampling'.

To assess the effects of the sampling methods on the upper bound 

estimates of the total error amount, it was necessary to 

investigate the results obtained when the methods were applied 

to a spectrum of accounting populations. Fifteen audit 

populations were generated from each of the two accounting 

populations by seeding errors into the populations of book 

values, with different error rates and error sizes reflecting the 

patterns found in the data obtained from the investigative
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audits. Details of the error models used to generate errors into 

the populations and the resultant audit populations are given in 

Chapter 3 . These audit populations were used to compare the 

performance of the different sampling methods on the upper bound 

estimates of the total error amount.

A comparative investigation of the sampling methods was carried 

out by means of a large scale simulation study using the thirty 

audit populations created from the two actual accounting 

populations. Samples of sizes 30, 60 and 100 were drawn from 

each audit population. Upper bounds were calculated using the 

Stringer, Cell and Moment bounds, with the taint and AON error 

assignments at three nominal confidence levels, .70, .85 and .95. 

One thousand replications were performed for each sample size and 

for each sample design.

Analysis of variance models were constructed to assess the 

comparative performance of the monetary-unit sampling methods 

currently used in practice (i.e. simple random, systematic, cell 

and sieve sampling), using the Stringer, Cell and Moment bounds 

to estimate the upper bound for the total error amount. The 

criteria for assessing the performance of the upper bound 

estimates were defined in Chapter 2 and include reliability, 

tightness and precision. Tests of significance were applied to 

the performance measures to investigate differences between the 

sampling methods.
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The simulation results were also used to compare simple random 

sampling with its proposed alternative Lahiri sampling and to 

compare simple random sampling and sieve sampling with the 

proposed alternative stabilised sieve sampling in terms of the 

bound performance. The comparative performance of Lahiri and 

simple random sampling of monetary units is given in Chapter 7 . 

The performance of stabilised sieve sampling compared to sieve 

sampling and simple random sampling is given in Chapter 8.

9.3 Summary of the Findings

9.3.1 Population Characteristics and Error Patterns

9.3.1.1 Findings

The book value characteristics and error patterns of the two 

populations of debtors from the Irish Public Sector displayed 

important contrasting features. Population 1 consists of a

relatively large number of small debtors while Population 2 

consists of a relatively small number of large debtors. The 

taints are larger and the proportion of 100% taints is greater 

in Population 2 than in Population 1. The taint size tends to 

decrease with book value size in Population 1 but this is not the 

case in Population 2. The difference in book value and error 

characteristics provided an excellent opportunity of

investigating the sampling methods under different conditions.
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9 . 3 . 1 . 2  Comparison w i th  o th e r  D atab ases .

The characteristics of the two populations of book values of 

debtors of commercial entities in the Public Sector, were similar 

to those found in other studies (for example, Neter and 

Loebbecke, 1975) , in that they are both highly skewed and in each 

case a small proportion of the line items account for a large 

proportion of the book value total.

The error patterns found in the investigative audits suggest that 

errors in debtors from the Public Sector are similar in some 

respects to populations that have been studied previously and 

they are different in other respects. The characteristics of 

errors in Population 1 are similar to the populations studied by 

Neter and Loebbecke (1975) . In Population 2, the mean taint is 

larger and the proportion of 100% overstatement errors is greater 

than those found in the Neter and Loebbecke populations. All the 

errors found in the investigative audits are overstatements. 

This contrasts with the UK studies (e.g. Johnson, 1987, McRae, 

1982) where only a slight bias towards overstatement errors was 

found. However, studies carried out in the US (e.g. Neter and 

Loebbecke, 1975; Johnson, Leitch and Neter, 1981) found that 

errors in debtors were mostly overstatements. Monetary-unit 

sampling is an appropriate selection method when overstatements 

predominate because line items are selected with probabilities 

proportional to their recorded values but it may not be the most 

effective method of sampling when understatements play a dominant 

role (e.g. the UK data).
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9.3.2 Theoretical Analysis of the Point Estimator

9.3.2.1 Findings

In the point estimator analysis, systematic and cell sampling 

were found to have design effects of less than or equal to one 

for both error assignment methods. The design effect of 

systematic and cell sampling was substantially less than 1 when 

the population contained large line items.

The variances of the point estimator with Lahiri sampling was 

shown to be equal to the variance of the point estimator with 

simple random sampling for both error assignments. Hence, Lahiri 

sampling has a design effect of one or equivalently Lahiri 

sampling has the same precision as simple random sampling.

The design effect of sieve sampling, using the point estimator, 

was similar for both error assignment methods in all cases. It 

was smaller with low line item error rates than with high line 

item error rates. In audit populations generated from Population 

1 (small line items), the design effect of sieve sampling was 

near one in most cases. Also, in audit populations generated 

from Population 1, there was a tendency for sieve sampling to 

have design effects of less than one in populations with low line 

item error rates and to have design effects greater than one in 

populations with high line item error rates. In audit 

populations generated from Population 2, where the line items
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are large and the mean error amount per line item is large, the 

design effect of sieve sampling was less than one for most sample 

sizes, error rates and taint sizes. The minimum sample size for 

which the design effect of sieve sampling was less than one 

increased as the line item error rate and the mean taint size 

increased.

The variance of the point estimator with stabilised sieve 

sampling was shown to consist of two components, one due to the 

initial sieve sample selection and the other due to the reduction 

or the augmentation process. The component due to sieve sampling 

has the greatest weight so the design effect of stabilised sieve 

sampling is similar to the design effect of sieve sampling. The 

point estimator with stabilised sieve sampling will have a 

precision greater than that with simple random sampling if the 

initial gains in precision due to the sieve sample component are 

large (for example, in the audit populations generated from 

Population 2) . The efficiency of the point estimator with 

stabilised sieve sampling relative to ordinary sieve sampling 

will be near one in all cases.

9.3.2.2 Conclusions

The findings suggest that the point estimator of the total error 

amount is more precise with systematic and cell sampling than 

with simple random sampling especially in accounting populations 

with large line items. The findings on sieve sampling concur
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with the results obtained by Wurst, Neter and Godfrey (1989a) 

that sieve sampling favours populations with low line item error 

rates and large line items. Lahiri sampling has the same 

precision as simple random sampling. The variance of the point 

estimator with stabilised sieve sampling is similar to the 

variance of the point estimator with sieve sampling and hence 

stabilised sieve sampling favours populations with low line item 

error rates and large line items.

9.3.3 Upper Bound Comparisons of Simple Random, Systematic,

Cell and Sieve Sampling of Monetary Units.

9.3.3.1 Findings

In the simulation study comparing the upper bound performances 

of simple random, systematic, cell and sieve sampling, it was 

found that the differential effects of the sampling methods on 

the reliability, tightness and precision of the bounds were 

similar for bounds with the taint error assignment and the AON 

error assignment at the three nominal confidence levels.

The sample selection method did not affect the reliability of the 

upper bound estimates of the total error amount for any given 

error rate, taint size, sample size or bound. Some significant 

differences did exist between the sampling methods with respect 

to reliability but these were not of practical importance in an 

audit setting since the coverage was above the nominal in all 

cases.
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The tightness of the estimates was similar for each sample 

selection method for any given error rate, taint size, sample 

size and bound. Differences in tightness that did exist were due 

to factors other than the sampling method. For example, upper 

bound estimates of the total error amount were more conservative 

in the AON models than in the taint models. The estimates were 

extremely conservative in populations with low error rates and 

for small sample sizes. The Stringer bound was the most 

conservative and the Moment bound was the tightest bound in all 

cases.

The sampling methods had substantial effects on the precision of 

the bounds. The most precise upper bound estimates for any given 

error rate, taint size, sample size or bound were obtained with 

systematic sampling. Cell and sieve sampling gave more precise 

estimates than simple random sampling in audit populations 

generated from Population 2 (large line items). Cell sampling 

was more precise than sieve sampling in most cases in audit 

populations generated from Population 1. However, sieve sampling 

was more precise than cell sampling for samples of sizes 60 and 

100 in populations with large line items (i.e. audit populations 

generated from Population 2) . Upper bound estimates of the total 

error amount were consistently more variable with the AON error 

assignment than with the taint error assignment. The results of 

the empirical comparisons of the precision of the sampling 

methods using the bound estimates were similar to the theoretical 

results obtained using the point estimator.
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The results of the simulation study comparing the upper bound 

performances of simple random, systematic, cell and sieve 

sampling of monetary units were consistent with the findings 

obtained by Plante, Neter and Leitch (1985), Wurst, Neter and 

Godfrey (1989b) and Dworkin and Grimlund (1984). New findings 

in this area relate to the comparative performance of sieve 

sampling and systematic sampling using the upper bound estimates 

of the total error amount and the performance of the Moment bound 

with the different sampling methods.

In the comparison of sieve sampling and systematic sampling it 

was found that systematic sampling had a higher mean coverage 

than sieve sampling for each error rate, taint size, sample size 

and bound in all the audit populations. While some of these 

differences were significant, the differences were not of 

practical importance since both sampling methods were found to 

be reliable at the three nominal confidence levels. No 

significant differences in tightness between the two sampling 

methods were found in any case. Systematic sampling was more 

precise than sieve sampling for most error rates, taint sizes, 

sample sizes and bounds in all audit populations. The greatest 

reductions in the variation of systematic sampling over sieve 

sampling occurred in the high error rate populations and for 

large sample sizes where reductions in variability of over 10% 

were common. It can be concluded therefore than systematic 

sampling favours populations with high line item error rates and 

large sample sizes.
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In the investigation of the performance of the Moment bound with 

the different sampling methods, it was found that the 

differential effects of the sampling methods on the Moment bound 

estimates of the total error amount were similar to the 

differential effects of the sampling methods on the Stringer and 

Cell bound estimates of the total error amount. The coverage and 

the tightness of the Moment bound were not significantly affected 

by the sampling method for any error rate, taint size, sample 

size and bound. Systematic sampling gave the most precise 

estimates and simple random sampling gave the least precise 

estimates of the total error amount for the Moment bound.

The overall findings of the simulation study indicate that, in 

general, the differential effects of the sampling methods were 

independent of the bound, the error assignment method and the 

nominal confidence level. The reliability and tightness were 

similar for all sample selection methods. The precision of the 

bound estimates however, was affected by the sampling method. 

Cell and systematic sampling favoured populations with large line 

items and sieve sampling favoured large line item and low error 

rate populations. The findings on the precision of the sampling 

methods using the bound estimates are consistent with the results 

of the point estimator analysis.
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9 . 3 . 3 . 3  I m p l i c a t io n s  f o r  A u d i to r s .

In choosing between the simple random, systematic, cell and sieve 

sampling, the auditor needs to consider a number of practical 

issues in addition to the performance measures. These include 

regularities in the patterns of errors in the data, possible 

implementation difficulties of the sampling methods and a 

variable sample size.

Systematic sampling was found to be consistently more precise 

than the other sampling methods in all populations. However, 

with this selection method the danger of periodic variation in 

the data should not be ignored. Systematic sampling may lead to 

biased selection if there are regularities in the error patterns 

in the population (Leslie, Anderson and Teitlebaum, 1979) . Jenne 

(1982) considers the case where there exists a systematic pattern 

with respect to the location of errors in the population. If the 

errors or groups of errors are k units, fractions of k units or 

multiples of k units apart, where k is the sampling interval, 

then a systematic sample would contain either no errors or an 

extremely high proportion of errors when compared to the true 

population error rate. Though this may be unlikely to happen in 

reality, it does illustrate the potential risk of bias in 

systematic sample selection.

Cell sampling also appears to be superior to simple random 

sampling in terms of precision and would not be affected to the 

same extent as systematic sampling by a periodic error in the
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monetary units. However, like simple random sampling, both cell 

and systematic sampling ignore the line item structure of the 

population when selecting the sample of monetary units. When the 

monetary units are selected for auditing using simple random, 

cell or systematic sampling, the units must be traced back to 

their associated line items and the need to identify the line 

items may at times create some practical implementation problems 

(Wurst, Neter and Godfrey, 1989a). The main disadvantage of 

simple random sampling of monetary units is that the book value 

total must be known accurately in advance of sampling. Leslie, 

Teitlebaum and Anderson (1979) point out that the total book 

value amount may not always be known accurately during the 

planning stage and it may not be known prior to the end of year. 

This requirement may impede the planning and implementation of 

the auditing process.

The results also show that sieve sampling may lead to 

improvements in precision over simple random sampling especially 

in populations with large line items. Sieve sampling does not 

require the accumulation of book values and therefore audit 

samples may be chosen before an accurate book value total is 

available. However, a disadvantage of sieve sampling, which may 

have practical implications in the audit setting, is that the 

sample size is not constant. It varies depending on the random 

numbers chosen when selecting the sample and this could be of 

serious concern to the auditor when attempting to estimate the 

cost of the audit.
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Auditors will need to consider the practical advantages and 

disadvantages of each sampling method before deciding which one 

to use. They will need to consider whether the requisites of 

simple random, cell and systematic sampling, i.e., the need to 

cumulate the book value sub totals and the need to trace selected 

monetary-units back to the associated line items, are of serious 

practical concern when carrying out an audit. They will also 

have to decide whether the variability of sample size with sieve 

sampling is of serious concern, as contrasted with fixed sample 

sizes for simple random, systematic and cell selection.

9.3.4 A Comparison of Lahiri Sampling and Simple Random

Sampling of Monetary Units.

9.3.4.1 Findings

In the investigation of the comparative performance of the upper 

bound estimates of Lahiri sampling and simple random sampling, 

no significant differences between the sampling methods were 

found in the coverage, tightness and precision of the bounds with 

either assignment method, at any nominal confidence level, in any 

of the audit populations. However, there was a tendency for the 

standard deviation of the bound estimates to be somewhat higher 

with Lahiri sampling than with simple random sampling of monetary 

units in Population 2 (i.e. large line items) but the differences 

were not significant in any case.
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9 . 3 . 4 . 2 I m p l i c a t io n s  f o r  A u ditors

The findings outlined above indicate that the choice between 

Lahiri and simple random sampling of monetary units will depend 

on criteria other than the performance measures. The main 

practical advantage of Lahiri sampling compared to simple random 

sampling of monetary units is that Lahiri sampling relates 

monetary units to line items in a natural way and therefore 

avoids the possible implementation problems referred to by Wurst, 

Neter and Godfrey (1989a). Also, unlike simple random sampling, 

Lahiri sampling does not require that the book value total be 

known accurately in advance of sampling and this enables Lahiri 

selection to begin before an accurate total book value amount is 

available. Auditors will need to consider whether the requisites 

of simple random sampling, i.e., the need to know the book value 

total in advance of sampling and the need to trace selected 

monetary-units back to the associated line items, are of serious 

practical concern when carrying out an audit. If they are, then 

Lahiri sampling should prove to be a useful alternative to simple 

random sampling of monetary units for the auditor using MUS 

sampling in substantive testing.
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9.3.5 A Comparison of Stabilised Sieve Sampling with Simple

Random Sampling and Sieve Sampling of Monetary Units

9.3.5.1 The Findings

In the comparison of stabilised sieve sampling with sieve 

sampling and simple random sampling of monetary units, it was 

found that stabilised sieve sampling had a mean coverage above 

the nominal for each error rate, taint size, sample size and 

bound with both error assignment methods, at each nominal 

confidence level.

The mean tightness of the estimates with stabilised sieve 

sampling was similar to the tightness with simple random and 

sieve sampling for any given error rate, taint size, sample size 

and bound in audit population generated from Population 1. In 

audit populations generated from Population 2, stabilised sieve 

sampling was found to be somewhat more conservative than simple 

random and sieve sampling in all cases but the differences in the 

mean tightness between the sampling methods was not significant 

in any case.

Stabilised sieve sampling was more precise than simple random 

sampling for most error rates, taint sizes, sample sizes and 

bounds. The greatest gains in the precision of stabilised sieve 

sampling over simple random sampling occurred in audit 

populations generated from Population 2. The precision of 

stabilised sieve sampling was similar to the precision of sieve 

sampling in most cases.
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Stabilised sieve sampling overcomes the primary disadvantage of 

sieve sampling by returning a constant sample size of monetary 

units. However, while sieve sampling selects the monetary units 

from distinct line items, with stabilised sieve sampling as with 

simple random sampling, more than one monetary unit may be 

selected from any specific line item. The selection process for 

stabilised sieve sampling (see 4.8) allows for multiple 

selections when the sample is being augmented at the second 

stage. In an investigation into the number of distinct line 

items obtained using simple random, sieve and stabilised sieve 

sampling, it was found that the average number of distinct line 

items obtained using stabilised sieve sampling was similar to 

sieve sampling in all cases and greater than simple random 

sampling is most cases. The variance of the number of distinct 

line items obtained using stabilised sieve sampling was less than 

the variance with simple random sampling and sieve sampling. In 

addition, the number of distinct line items obtained using 

stabilised sieve sampling had a range smaller than simple random 

sampling and substantially smaller than sieve sampling for all 

sample sizes.

9.3.5.2 Implications for Auditors

The findings outlined above suggest that the decision to use 

stabilised sieve sampling as an alternative to simple random or 

sieve sampling must be made on non-statistical and practical 

grounds. The main practical advantages of stabilised sieve 

sampling compared to simple random sampling of monetary units is
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that stabilised sieve sampling, like sieve sampling, does not 

require that the random numbers be ordered and does not require 

that the book amounts be accumulated in advance of sampling and 

therefore the selection process can begin before an accurate 

total book value amount is available. In addition, stabilised 

sieve sampling overcomes the primary disadvantage of sieve 

sampling by returning a fixed sample size, i.e. the number of 

monetary units obtained using stabilised sieve sampling is always 

equal to the nominal sample size. Stabilised sieve sampling has 

the added advantage that the number of distinct line items 

obtained in a sample is less variable than the number obtained 

with simple random sampling and sieve sampling and this could be 

an important consideration of the auditor when planning the cost 

of an audit. It is therefore concluded that stabilised sieve 

sampling may be a useful alternative to simple random sampling 

and sieve sampling of monetary units in real substantive auditing 

environments.

9.4 Recommendations for Future Research

Since this study defines a new monetary-unit sampling method 

'Stabilised Sieve Sampling' and introduces one which has not been 

applied previously in auditing 'Lahiri Sampling', future research 

in this area might involve investigating:

(i) The performance of Lahiri and stabilised sieve

sampling of monetary units using other accounting 

populations.
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(ii) The performance of other bounds (e.g., the 

multinominal) with Lahiri and stabilised sieve 

sampling of monetary units.

(iii) The performance of Lahiri and stabilised sieve 

sampling using populations with both understatement 

and overstatement errors.

(iv) The performance of Lahiri and stabilised sieve 

sampling using larger sample sizes (for example, 

samples of sizes 150 and 200).

(V) The costs and benefits of the implementation of Lahiri 

and stabilised sieve sampling of monetary units.
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