

City, University of London Institutional Repository

Citation: Child, C. H. T. & Dey, R. (2013). QL-BT: Enhancing Behaviour Tree Design and

Implementation with Q-Learning. Computational Intelligence in Games (CIG), 2013 IEEE
Conference on, pp. 275-282. doi: 10.1109/CIG.2013.6633623

This is the unspecified version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/3000/

Link to published version: https://doi.org/10.1109/CIG.2013.6633623

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

QL-BT: Enhancing Behaviour Tree Design and

Implementation with Q-Learning

Rahul Dey

School of Informatics

City University London

Northampton Square, London, UK

Rahul.Dey.1@city.ac.uk

Dr. Chris Child

School of Informatics

City University London

Northampton Square, London, UK

C.Child@city.ac.uk

Abstract— Artificial intelligence has become an increasingly

important aspect of computer game technology, as designers

attempt to deliver engaging experiences for players by creating

characters with behavioural realism to match advances in

graphics and physics. Recently, behaviour trees have come to the

forefront of games AI technology, providing a more intuitive

approach than previous techniques such as hierarchical state

machines, which often required complex data structures

producing poorly structured code when scaled up. The design

and creation of behaviour trees, however, requires experience

and effort. This research introduces Q-learning behaviour trees

(QL-BT), a method for the application of reinforcement learning

to behaviour tree design. The technique facilitates AI designers’

use of behaviour trees by assisting them in identifying the most

appropriate moment to execute each branch of AI logic, as well

as providing an implementation that can be used to debug,

analyse and optimize early behaviour tree prototypes. Initial

experiments demonstrate that behaviour trees produced by the

QL-BT algorithm effectively integrate RL, automate tree design,

and are human-readable.

Keywords—behaviour tree; Q-Learning; reinforcement

learning; virtual environments; computer games

I. INTRODUCTION

Behaviour trees (BTs) have come to the forefront of
artificial intelligence (AI) in games since their introduction in
the last decade [1], and have been utilized in a number of
games, including Halo 2 [2], Driver [3], and Spore [4]. They
provide an intuitive, human readable and scalable form of
representation for the decision making logic of non-player
characters (NPCs).

Initial design of a BT requires experience and effort on the
part of a designer. A poorly designed tree can cause AI
characters to exhibit strange behaviour, breaking the user’s
sense of immersion. This paper presents Q-learning behaviour
trees (QL-BTs), a method for the application of reinforcement
learning (RL) to enhance BT design. The technique assists AI
designers by identifying the most appropriate scenarios in
which to execute behaviours. Learned knowledge is integrated
into a resulting BT data structure.

Experimental results show that the method exhibits a
number of advantages over standard BT design techniques
including: simplified BT designs; reduced code duplication;

and a restructured tree which provides optimization, taking the
utility values of each action into account.

II. BACKGROUND

A. Behaviour Trees

A BT is a data structure designed to be a more intuitive
revision of a finite state machine (FSM). FSMs represent NPC
behaviour as a group of states and a number of transitions
between these states [5]. As the number of states increases the
number of transitions between the states can grow
exponentially referred to by Knafla as an “often intangible
growing mess” [6].

The combinatorial explosion associated with the number of
transitions in an FSM is often mitigated by using hierarchical
finite state machines (HFSM) where behaviours are split into
smaller tasks. HFSMs with high state counts will, nonetheless,
require a large number of transitions, again becoming difficult
to manage [7]. BTs are similar to HFSMs in that they construct
a hierarchy of behaviours where higher level behaviours (e.g.
Attack) can be composed of atomic lower level behaviours
(e.g. Find Weapon, Aim and Fire Weapon).

On each update, a BT performs a depth-first traversal until
a low level behaviour (represented by a leaf node) has either
succeeded or is set to the “running” state [8]. Due to this
traversal method, behaviours are usually placed from left to
right in descending order of priority to ensure that important
behaviours are visited before less significant ones. For
example, fleeing from the danger of an incoming grenade
should be of higher priority than talking to a team mate [9].

In the standard form, BTs are composed of nodes that either
dictate tree traversal logic or execute behaviours. Behaviour
nodes contain various status codes to indicate the current
behaviour’s state (“success”, “fail” or “running”). Traversal
logic nodes are called Composite behaviours where, depending
on the results returned from one or more of their children, they
can succeed or fail. The most common examples of traversal
logic nodes are the Sequence and Selector nodes [8][10].

Sequence nodes evaluate each child node in order and will
only succeed if all children execute their behaviours
successfully, similar to an AND-node in AND-OR trees [8].
Selector nodes also evaluate each child node in order but will

978-1-4673-5311-3/13/$31.00 ©2013 IEEE

succeed as soon as any child executes a behaviour successfully
and will stop checking later child nodes, similar to OR-nodes.

Another node commonly used in BTs is the Condition node
[10]. These are usually located as part of a Sequence node’s
children and can be used to check the state of an agent or the
environment. Early checks within a Sequence node can indicate
whether any of the node’s children are likely to succeed or fail
and inhibit later behaviours in the sequence from running. This
is particularly useful if the behaviour to be executed is
computationally expensive and the cost could be avoided.
Condition nodes are the primary focus of this research.

B. Machine Learning and BTs

There has been some previous research applying machine
learning techniques to BTs. There is currently, however, little
research into automated manipulation or improvement of an
initial BT implementation. Lim, Baumgarten and Colton [27]
made use of evolutionary algorithms. They generated BTs by
creating an initial population of trees and used genetic
operators to produce improved BTs in the computer game
DEFCON. Results of this research were marginally successful
against the game’s AI players.

Perez et al. [11] have also applied evolutionary computing
to BTs using a genetic programming approach based on
grammatical evolution [13], where “the syntax of possible
solutions is specified through a context-free grammar”. BTs
were applied to procedurally generated levels in the game,
Super Mario [14]. The research found that the initial grammar
was too flexible for use with BT evolution and a modified
version was applied using an AND-OR tree structure [8]. This
structure, using alternating layers of Selector and Sequence
nodes, is also recommended by Champandard [10] and was
therefore considered appropriate for use with this research.

Case based reasoning (CBR) is the process of solving new
problems based on prior experience [15]. Flórez-Puga et al.
[16] applied CBR to BTs in order to dynamically retrieve
behaviours from a knowledge base. The process requires the
addition of querying functionality to the behaviour nodes, such
that, an agent being in a particular state will cause the node to
query the knowledge base for cases of similar states visited in
the past, and load an appropriate behaviour. This method
provided a further source of inspiration for QL-BTs. CBR
techniques generate experiential records manually, whereas a
similar method can be used to create knowledge in an
automated manner, using RL.

A number of hybrid approaches to RL have been
implemented, including hierarchical evolutionary learners [28]
and, more relevant to games AI, evolving game controllers
using RL [29]. Pena utilizes the WEREWoLF algorithm to
combine evolutionary algorithms with RL with effective results
[29]. BTs were used in the research but only as static behaviour
for an opponent controller.

C. Q-Learning

Q-Learning [17] is an RL algorithm that creates and
maintains a table of values which estimate the utility of taking
an action in a state. The agent is given a function associating

states with a predetermined reward. The algorithm then feeds
rewards back to state-action pairs that lead to reward states
creating gradually improving utility estimates.

A state can consist of any configuration of variables in an
environment. Q-learning is not a model based algorithm,
however, and will only record a Q-value for a state that has
been visited by the agent during training. Q-learning can also
be applied as a perceptual model. For example, if percepts
consisted solely of health values of agents, nothing would be
learned regarding the positions of agents in the environment
(which may in fact be an important factor).

The update formula for Q-learning is:

 Q(s, a) = (1 - α)Q(s, a) + α(r + γ maxa’(Q(s', a'))) (1)

Where:

 Q(s, a) is the Q value of the current state-action pair

 Q(s’, a’) is the Q value of the successor state-action pair

 r is the reward associated with the successor state

 α is the learning rate parameter

 γ is the discount factor parameter
The learning rate parameter, α, determines the extent to

which new information overrides the previous information in
the Q value. The discount factor, γ, determines the importance
of future versus immediate rewards [18].

Action selection for an agent is governed by a predefined
policy such as greedy, ε-greedy or softmax [19]. A greedy
policy will select the currently estimated best action at any
time. An ε-greedy policy encourages exploration, over a purely
greedy policy, by introducing a small probability of choosing
any available action at random. This has the effect of balancing
exploitation (choosing the best available action) and
exploration of alternative actions. Experiments in this research
used an ε-greedy policy, providing a flexible approach in the
absence of domain information.

III. QL-BT: INTEGRATING Q-LEARNING INTO A BEHAVIOUR

TREE

This section details the mapping of RL concepts to features
of BTs used in QL-BTs. Q-learning systems are comprised of
states, actions, and a reward function. Each agent’s internal
state values were combined with percept values to provide a
single state for use with the Q-learning algorithm.

In a Q-learning context, the deepest level Sequence nodes
of a BT can be seen as actions, because they group together
lower level actions and execute them consecutively without
interruption. Each Sequence node also contains condition nodes
towards the beginning of the sequence. Xiaoqin et al. [20] split
the lowest level behaviours into atomic actions and applied
hierarchical RL to them. Their preliminary experiments
demonstrated that their architecture could be used by AI
designers to increase productivity by reducing the amount of
logic that they would have to design when creating an agent.
Rather than apply RL in a similar way, the intention of this
research is to assist AI designers by reducing the number of
nodes that need to be created at the outset (specifically,
Condition nodes).

A. Overview

The algorithm begins with a BT as input. The tree is

analysed to find the deepest Sequence nodes. These nodes are

identified as actions for the RL stage. These actions are used

in an offline Q-learning phase to generate a Q-value table. The

table is then divided into sub-tables by action and the highest

valued states for the action are extracted into the Q-Condition

nodes within the BT. The Condition nodes in the input BT are

then replaced with the Q-Condition nodes. Finally, the BT’s

topology is reorganized by sorting each node’s child by their

maximum Q-value, which provides AI designers with a more

optimized permutation of the BT.

B. Generating Knowledge

The Q-learning algorithm is executed in a pre-processing
step, generating experiential data that can be used in future runs
of the simulation to determine the most appropriate action to
execute in the agent’s current state. This inspired the
replacement of Condition nodes with Q-Condition nodes: a
simple lookup table containing all high-utility states, from
which it was possible to select a particular action.

Tabular RL is used so that the Q-value table can be separated
into sub-tables easily. The Q-values resulting from the initial
Q-learning phase are divided into sub-tables for each action
within the QL-BT. Each sub-table is then sorted in descending
order of the Q value for each state. The states with the highest
Q-values are extracted from the table, according to a parameter
that determines the percentage of states to acquire. An example
of the process can be seen in Figure 1. This example keeps all
states for a particular action within the lookup tables. Later, the
algorithm filters these by taking the top x percent of states in
the tables (where x is a modifiable parameter).

C. Q-Condition Nodes

Q-Condition nodes contain a lookup table of high-utility
states for a particular action. When these nodes are updated in
the BT, a test is performed against the agent’s current state to
check whether the state is present in the table. If present, the
node passes, otherwise it fails.

Algorithm 1 shows the pseudo-code used to load Q-values
from the initial Q-learning phase into the Q-Condition nodes.
Rather than use standard Condition nodes that query the
environment each time they are executed to establish whether
an action can be performed (“Can I do this?”), Q-Condition
nodes use knowledge acquired from the prior RL step to find
out if an action should be performed (“Is this a good action
based on what I already know?”).

For example, consider Figure 1. The Sequence node at the
top of the image executes the behaviour “action 0” and the Q-
Condition node contains “state A”. Let “action 0” be the Flee
behaviour and “state A” mean “health is low”. The RL stage of
the algorithm has determined that executing the Flee action
from the low health state is desirable. This is the equivalent of
a designer creating a Condition node testing whether an agent’s
health is low. As the agent’s state updates whilst exploring the
environment, instead of having to test using a manually created
Condition node, it can look up its current state in a Q-

Condition node from a set of pre-evaluated states to determine
whether it should execute a behaviour.

The required conditions for a behaviour to execute could
also include tests that the designer has not previously
considered. The designer can examine the highest utility states
loaded into the Q-Condition nodes to find suggestions for
conditions that could trigger behaviours.

D. Reorganizing Tree Topology

After the Q-Condition nodes have successfully loaded, the
first element in the sorted array is the state exhibiting the
highest Q-value when paired with the action (i.e. the maximum
Q-value for the action). This maximum Q value is first stored
in the Q-Condition’s parent node and can then be used to re-
order the children. Algorithm 2, below, shows the
ReorderChildren function, which recursively traverses the BT
until it reaches one level above the deepest Sequence node. The
children of the node reached are then sorted by their respective
maximum Q-values, in descending order, and the node’s Q-
value is then set to the Q-value of the first child.

Fig. 1: Inserting Q-values into QL-BT

[] GetBestStates(action, pct, qvalues)

// produces a sorted array of state-qvalue

// pairs for an action

{

 foreach(state in stateSpace)

 {

 q = qvalues.GetQValue(state, action)

 if(q > 0)

 results.add(state, action, q)

 }

 sort(results) by descending Q value

 numValues = results.size * (pct/100)

 return results[0]...results[numValues]

}

Algorithm 1: Loading best states into a Q-Condition node

Algorithm 2: Reordering BT children

IV. EXPERIMENTATION

The intention of this research was to assist designers by
suggesting modifications to an input BT. It was therefore
decided to use the most common application of BTs, a game
scenario, to evaluate the performance of QL-BT. A simulation
was created containing a group of prey and a group of predator
agents. The prey’s reward function was designed to encourage
behaviours which led to its survival. The input BT for each
prey agent was also designed to have survival as their primary
goal.

A. Agents

The predator agents made use of a simple finite state
machine (FSM) [5], consisting of two states: Patrol and Attack.

When prey agents were within a predator’s neighbourhood,
the predator would transition from its Patrol to its Attack state
where it selected one of the prey agents randomly and pursued
it. If the predator killed the prey or lost track of it, it would
transition back to the Patrol state where it would wander the
environment randomly.

Both types of agents also made use of steering behaviours
in order to move within the game world [30]. This allowed
agents to move in a relatively free way without having to be
constrained to paths.

100 prey agents and 20 predator agents were used in each
experiment. Each prey agent had a finite set of actions that they
could perform which were organised into a common BT
(Figure 2).

The actions were defined as follows:

 Flee: Follow a steering vector away from the nearest
predator agent

 SeekSafety: Move towards the nearest Haven zone
(described below).

 Forage: Move towards the nearest Food zone
(described below).

 Eat: When inside a Food zone, gain health each time
this action is executed.

 Flock: Move according to location and orientation of
neighbouring agents.

 Wander: Move towards a random point projected in
front of the agent.

 Charge: Attack the nearest predator.

 Assist: Attack the nearest predator agent, targeting a
neighbouring prey agent.

 The initial BT consisted of a root Selector node that chose

from three subtrees. The left most subtree (i.e. the highest
priority branch) consisted of the “retreat” behaviours – Flee
and SeekSafety. This was given the highest priority in order to
try to ensure survival as a priority for prey agents.

The next subtree was the “idle” subtree, that was further
split into two subtrees: “graze” (containing Forage and Eat
behaviours); and “explore” (containing Wander and Flock
behaviours). The “idle” subtree helps to define a prey agent’s
natural behaviour when not under threat of attack.

The final subtree contained the “attack” behaviours. This
subtree was placed at the lowest priority position in the BT as
prey agents were intended to be non-combative but could
defend themselves when necessary.

 The predator-prey scenario incorporated inflicting damage
to each agent so that more complex behaviours could be
defined that extended beyond having a prey agent retreat from
a predator every time. Each agent was given a health value of
100 and collisions between agents were resolved as follows:

 A predator in the Attack state colliding with a prey
agent caused 7 units of damage to the prey agent.

 A prey agent executing a Charge or Assist behaviour
colliding with a predator agent caused 5 units of
damage to the predator agent.

 Predator-predator or prey-prey collisions caused no
damage to either agent.

ReorderChildren()

// traverse the behaviour tree and sort

// each nodes’ children by Q value

{

 foreach(child in children)

 {

 if child is a deep sequence node

 return

 else

 child.ReorderChildren()

 }

 sort(children) by maximum Q value

 this.SetQValue(children[0].maxQValue)

}

Fig. 2: Original Input BT

B. Zones

The environment contained two types of zone in order to
aid prey agents. These were Food zones and Haven zones.

Food zones simulated areas where prey agents could “eat”
in order to regain health. Haven zones were areas that could not
be entered by predator agents. These zones allowed the
creation of interesting behaviour beyond simply fleeing from
predators when they were seen.

C. Prey State and Rewards

Each prey agent was given a percept: a set of state values
representing the agent’s perception of its environment. The
percept was updated each frame of the simulation. The percept
contained values for:

 Health (None, Low, Medium, High);

 Number of ally neighbours (None, Low, Medium,
High);

 Distance to nearest Food (Inside, Near, Medium, Far);

 Distance to nearest Haven (Inside, Near, Medium,
Far);

 Distance to nearest Predator (Inside, Near, Medium,
Far).

Each value in the percept was divided into categories, such

as none, low, medium and high, discretising environmental
states. These were then combined into a single integer value
that represented an index to the state space of the simulation.

Rewards were administered using a predefined table that
associated some state-action pairs with rewards. For example,
when the agent’s health was depleted, any further action had a
penalty of -10. If the agent had low health, was near a haven,
was near an enemy, and then executed the SeekSafety action, it
gained a reward of 15. Table 1 shows the full set of reward
values. All other state-action pairs resulted in a reward of 0.
These values were chosen after initial experimentation and
observation of preliminary results.

In a computer game setting, it is desirable for agents to
exhibit actions that appear intelligent from the perspective of a
human observer. Rewards were therefore biased in favour of
such behaviours. If, for example, an agent is being chased and
is closer to a haven than a food source, it would be appropriate
for the agent to travel to the haven.

D. Implementation and Visualisation

Three sets of simulations were each run 100 times, and the
result of the trials recorded. At the beginning of each trial, both
prey and predators’ positions were randomized within the
confines of the game world. Each trial ended when either:

 All prey agents were within a Haven zone.

 All prey agents were dead.

 All predator agents were dead.

 A timeout value was reached (set to 7500 ticks of the

update loop).

TABLE 1: REWARDS FOR STATE-ACTION PAIRS

The first set of simulations used a standard BT for the prey
AI. The second set used a greedy policy on the learned Q-
values (always choosing the highest utility action from the
current state). The third set used the BT containing Q-
Condition nodes (QL-BT) instead of standard Condition nodes.
Results at the end of each trial recorded:

 Number of living prey;

 Number of living prey that were safe (i.e. within a

haven zone at the end of the trial);

 Average health of prey;

 Number of living predators;

 Average health of predators.

The Q-learning pre-processing stage ran for 1,000,000
iterations and the resulting values were stored. Both the
learning rate (α) and the discount factor (γ) were set to 0.9,
allowing agents to learn at a reasonable speed and providing a
balance between maximizing current rewards and potential
future rewards. An ε-greedy policy was used in order to
promote exploration of the state-action space, with the ε
parameter set to 0.3. No further learning was applied when
each set of trials was run.

In the experimentation stage: the Q-learning prey agents
employed a greedy policy on the previously learned Q-values
in order to make decisions; and the QL-BT prey agents loaded
the appropriate values into each Q-Condition node. The
percentage of states loaded into each Q-Condition node was 50,
resulting in half of the possible states observed for a particular
action being loaded into each sub-table.

In some instances the agents would not perform any action
because they were in a state that none of the Q-Condition
nodes included, resulting in the tree traversal failing because all
conditions would fail. Perez et al. [11] also noticed this when
evolving BTs and resolved the issue by adding an
unconditional fall-back behaviour. During the experiments, a
similar mechanism was adopted, with the use of a fall-back
branch that contained a RandomWalk action which always
succeeded. This provided two advantages: first, the agent
would convey the sense of some intelligence (the illusion of
intelligence is particularly important to maintain player
engagement in a game environment [12]); and second, the
behaviour made the agent wander the environment updating its

H N Df Dh De Action Reward

No
Health

- - - - - -10

L - - N N SeekSafety 15

L - I - - Eat 10

L - N/M/F - - Forage 5

L - - F N Retreat 1

H H - - - Charge 0.6

M/H M - - - Assist 0.5

H Health
N No. of Neighbours
Df Distance to Food
Dh Distance to Haven
De Distance to Enemy

L Low
M Mid
H High
I Inside
N Near
F Far

state accordingly, thus being more likely to be in a state
contained within one of the Q-Condition nodes.

V. EVALUATION

A. Reordered BT

Figure 3 shows the reordered QL-BT after the Q-learning
stage had taken place, in which some of the sub-trees of the
original BT have been reorganized. Most notably, the Idle
branch has been given the lowest priority by making it the last
child of the root node. This indicates that the learning phase
has found that the Wander and Flock behaviours are less useful
in achieving the overall goal of survival for prey agents.

Another suggested reordering was within the Attack branch.
The Assist behaviour had a higher maximum Q-value than the
Charge which still supports the intended passivity of prey
agents, while still able to defend other agents.

B. Number of Prey Alive

Table 2 shows that the majority of prey agents survived in
each of the three trial types. Slightly fewer prey agents
survived when using the Q-learning algorithm on its own, and
the standard deviation indicated slightly more dispersion within
the results, as can be seen in Figure 4. However, the standard
deviations for the BT and the QL-BT trials were very similar
and relatively small, indicating a stable set of values and
providing an indication that the two BT types were performing
similarly.

C. Number of Prey Safe

Table 3 shows the results for the number of prey in Haven
areas at the end of each trial. Use of the standard BT resulted in
some of the prey agents seeking safety. Both the relatively high
standard deviation shown in the table and the trial results
shown in the graph (Figure 5) show that the percentage of
agents seeking safety varied widely between each trial
execution .

When employing the Q-learning algorithm, a relatively
small minority of the remaining prey agents resided within a
haven zone. The percentage of safe prey was substantially
lower (84.9% prey unsafe on average) than the results of the
BT (60.2% prey unsafe on average).

Promising results were demonstrated by the QL-BT. On
average 47% of prey agents were within a Haven zone at the

end of each trial: almost twice as many as the mean number of
prey using the BT alone, and almost half of the entire prey
population. In addition, the standard deviation was
substantially reduced, indicating the QL-BT outperformed the
standard BT in this test.

D. Number of Predators Alive

Table 4, shows the number of living predator agents at the
end of the simulation and provides interesting results. The prey
agents using the original BT did not kill any predators in any of
the trials. In stark contrast to this, however, when the prey used
the greedy Q-learning algorithm they exhibited aggressive
behaviour, resulting in almost all of the predators (~95% on
average) being killed in each trial.

When using QL-BT, less than 5% of the predator
population was killed on average. Use of the original BT
resulted in all predators surviving every trial. The aggression
shown by the Q-learning agents was substantially reduced in
the QL-BT, which indicated attacking predator agents directly
was implicitly discouraged, but necessary in some cases. These
few cases could be inferred to demonstrate altruistic behaviour
by prey agents defending their neighbouring flock mates. This
conclusion is further supported by the reordered BT (Figure 3)
in which the Assist action (attack a predator when a flockmate
was being attacked) has a much higher Q value than the
Charge action (attack the nearest predator).

TABLE 2: MEAN RESULTS FOR ALIVE/DEAD PREY

Simulation Type

BT QL BT with QL

Mean Alive Prey 84.41 79.13 86.5

Standard Deviation 3.44 5.33 3.52

TABLE 3: MEAN RESULTS FOR SAFE/UNSAFE PREY

Simulation Type

BT QL BT with QL

Mean Safe Prey 27.4 8.75 47

Standard Deviation 15.96 4.48 7.1

TABLE 4: MEAN RESULTS OF ALIVE/DEAD PREDATORS

Simulation Type

BT QL BT with QL

Mean Alive Predators 20 0.82 19.01

Standard Deviation 0 0.869 1.08

Fig. 3: Reordered BT (with max Q-Values)

E. Discussion of Results

QL-BT agent attacked fewer predators during the test runs
than Q-learning agents. This behaviour maintained the intended
image of prey passivity, but also demonstrated altruism in
appropriate situations.

BTs re-ordered using QL-BT demonstrated the use of prior
knowledge in order to execute behaviours within Q-Condition
nodes, instead of manually crafted Condition nodes, for each
possible condition. This can reduce both the design and
implementation time required for the tree allowing designers to

shift their focus from the creation of specific conditions to
developing the behaviours of agents.

The tree reordering suggested an optimized BT that
successfully prioritized behaviours by their respective utility
values and ensured that all behaviours would be executed at the
appropriate times. The resulting utility values could provide
designers with an initial metric to determine the frequency of
an executed action, which can be useful for debugging BTs
when creating behaviours that are intended to run in many
situations but are found to be executed rarely.

A drawback of the QL-BT algorithm is its reliance on
correct Q-values. The validity of the Q-values relies on an
appropriate reward function and an effective learning phase
providing accurate utility estimates for each state-action pair.
Values can be improved by a longer training period because
this is an offline pre-processing step and does not cause
performance issues at run-time.

Further drawbacks of Q-learning based techniques, in
general, are that the simulation time for a complex game can be
intractable, and the time taken to produce accurate Q-values is
exponential to the state-action space of the agent. This research
mitigated the problem by discretizing state values into a small
number of categories using an agent’s perception of the state-
space. However, additional research could further develop
techniques for large state spaces.

QL-BT provides an advantage over the manual generation
of prior cases presented in [16], in that the use of RL automates
the generation of knowledge and stores it in the tree at runtime,
providing a simple and intuitive process for designers to use.

The reordering of the BT at the end of the learning process
is an optimization step that can suggest to designers the best
tree-structure to use (as learned by the RL stage of the
algorithm). These changes could signal errors at early stages of
development (an important factor in reducing design and
development time) and allow designers to choose which parts
of the changed structure they incorporate into the final BT.
Llansó et al. [21] demonstrate a method of validating BTs,
however their findings are reliant on a component-based
architecture to identify potential errors within a BT which
requires domain knowledge on the part of the designer. QL-BT
provides an approach which can be generalised more easily,
requiring no domain-dependent tweaks, and can be applied to
many different types of architectures and game engines. The
learning approach is completely independent of the architecture
of the game and the type of game being developed.

VI. CONCLUSIONS AND FUTURE WORK

This paper has presented Q-learning behaviour trees, a
technique which combines RL with BTs. Results in a predator-
prey scenario show that a tree resulting from QL-BT performs
on a par with the original BT or outperforms it in all areas.

The state space of a typical game is, however, a concern if
the technique is to be applied more generally. Combating the
“curse of dimensionality” created by large state-spaces is an
active area of research, and Approximate Dynamic
Programming (ADP) [22] techniques could be applied to the

Fig. 4: Boxplot showing number of prey alive in 100 trials

Fig. 5: Boxplot showing number of safe prey in 100 trials

Fig. 6: Boxplot showing number of alive predators in 100 trials

state space of a game by effectively reducing the dimensions an
agent needs to explore. Furthermore, soft state aggregation [23]
could be used to share knowledge between similar states with
learning applied to the aggregated state space.

Q-learning has many variants which could provide
optimizations to the learning process. Dyna-Q [19] uses a
model of the environment to assist learning and could be
implemented in the system. “On policy” algorithms such as
SARSA [19] could also be utilized within the framework.

BTs are hierarchical data structures, therefore hierarchical
RL techniques [24] such as MAXQ [25] could be used as a
further benchmark for the research.

The Q-learning implementation used in this research could
be improved by dynamically altering the learning rate using
McClain’s formula [26], for example.

In light of the results, it is believed that QL-BT provides a
number of key benefits to existing BT design and
implementation. In the scenario presented the QL-BT
performed on a par with standard BTs in some situations, and
better in other situations. An issue that remains to be addressed
is the reduction and approximation of the state space, but the
simple Q-learning approach shows promising results.

Designing effective AI is a difficult and error prone task for
game developers when manually crafting conditions to decide
when a behaviour should execute. Behaviour trees provide an
intuitive interface with which to create robust NPC AI. Q-
learning behaviour trees integrate well with existing technology
and provide a promising basis for future research.

REFERENCES

[1] D. Isla, "Handling complexity in the Halo 2 AI" in Game Developer
Conf., San Francisco, 2005

[2] Halo 2, [video game] USA: Bungie, Inc., 2004

[3] S. Ocio, “Adapting AI Behaviors To Players in Driver San Francisco” in
The Eighth Annual AAAI Conf. on Artificial Intelligence and Interactive
Digital Entertainment, Stanford, CA, 2012.

[4] C. Hecker, “My liner notes for spore/Spore Behavior Tree Docs”, n.d.

[5] M. Buckland, “AI Game Programming by Example”. Wordware
Gazelle, Plano, Tex.; Lancaster, 2004.

[6] B. Knafla, “Data-Oriented Streams Spring Behavior Trees”, blog, 9 Jul.
2011; http://www.altdevblogaday.com/2011/07/09/data-oriented-
behavior-tree-overview/

[7] I. Millington and J.D. Funge, “Artificial Intelligence for Games”.
Morgan Kaufmann/Elsevier, Burlington, MA, 2009.

[8] A.J. Champandard, “Behavior Trees for Next-Gen Game AI”, blog, 28
Dec. 2008; http://aigamedev.com/insider/article/behavior-trees/

[9] A.J. Champandard, “The #fsmgate Scandal and What it Means for Your
AI Architecture”, blog, 28 Mar. 2012;
http://aigamedev.com/open/editorial/fsmgate-scandal/

[10] A.J. Champandard, “Understanding the Second Generation of Behavior
Trees”, blog, 26 Feb. 2012;
http://aigamedev.com/insider/tutorial/second-generation-bt/

[11] D. Perez et al., “Evolving Behaviour Trees for the Mario AI
Competition Using Grammatical Evolution”, in: Applications of
Evolutionary Computation, Springer Berlin Heidelberg, Berlin,
Heidelberg, 2011, pp. 123–132.

[12] A.J. Champandard, “Teaming Up with Halo’s AI: 42 Tricks to Assist
Your Game”, blog, 29 Oct. 2007;
http://aigamedev.com/open/review/halo-ai/

[13] M. O’Neill, C. Ryan, “Grammatical evolution?: evolutionary automatic
programming in an arbitrary language”. Kluwer Academic Publishers,
Boston, 2003

[14] Super Mario Bros., [video-game], Nintendo, Inc, 1985

[15] J.L. Kolodner, “An introduction to case-based reasoning”, Artificial
Intelligence Review 6, 1992, pp. 3–34.

[16] G. Florez-Puga et al., “Dynamic Expansion of Behaviour Trees”in The
Fourth Annual AAAI Conf. on Artificial Intelligence and Interactive
Digital Entertainment, Stanford, CA, 2008

[17] C.J.C.H. Watkins, “Learning from Delayed Rewards”. Ph.D.
dissertation, Cambridge University, 1989

[18] I. Millington, “Artificial intelligence for games”, Morgan Kaufmann
Publishers, San Francisco, CA, 2006.

[19] R.S. Sutton, “Introduction to reinforcement learning”, MIT Press,
Cambridge, Mass, 1998.

[20] D. Xiaoqin et al., “Applying hierarchical reinforcement learning to
computer games” in the IEEE Symp. on Computational Intelligence and
Games, 2009, pp. 929–932.

[21] D. Llanso et al., “Self-Validated Behaviour Trees through Reflective
Components” in The Fifth Annual AAAI Conf. on Artificial Intelligence
and Interactive Digital Entertainment, Stanford, CA, 2009

[22] W.B. Powell, “Approximate dynamic programming: solving the curses
of dimensionality”, Wiley, Hoboken, N.J, 2011

[23] S. Singh et al., “Reinforcement learning with soft state aggregation”,
1995.

[24] A.G. Barto and S. Mahadevan, “Recent Advances in Hierarchical
Reinforcement Learning” in Discrete Event Dynamic Systems 13, 2003,
pp. 341–379

[25] T.G. Dietterich, “Hierarchical Reinforcement Learning with the MAXQ
Value Function Decomposition”, J. Artif. Intell. Res. (JAIR) 13, 2000,
pp. 227–303.

[26] J. O. McClain, “Dynamics of exponential smoothing with trend and
seasonal terms”, Management Science 20, 1974, pp.1300-1304

[27] C. u Lim, R. Baumgarten, and S. Colton, “Evolving behaviour trees for
the commercial game defcon,” in EvoGAMES, 2010.

[28] M. Yoshikawa, T. Kihira, and H. Terai, “Q-learning based on
hierarchical evolutionary mechanism,” WSEAS Transactions on
Systems and Control, vol. 3, no. 3, pp. 219–228, 2008.

[29] L. Pena, S. Ossowski, J.M. Pena, S.M. Lucas, "Learning and evolving
combat game controllers," in the IEEE Symp. on Computational
Intelligence and Games, 2012, pp.195-202

[30] C. Reynolds, “Steering Behavioirs for Autonomous Characters” in
Game Developer Conf., San Francisco, 1999

