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Abstract—Local surrogate explanation methods are a popular
class of post-hoc interpretability approaches that explain the
rationale of machine learning models in the locality of every
particular instance. Fidelity, which refers to the accuracy of
explanation methods in imitating the actual behavior of a model,
is highly affected by their strategy for identifying the locality
of instances. To find the locality of an instance, we need to
calculate the distance between the instance and perturbed data
points concerning categorical and numerical features. While
the distance of numerical features can be measured precisely,
the existing works usually adopt a coarse-grained or imprecise
approach for comparing categorical features. This is especially
problematic in the categorical data setting, where defining a
representative locality demands fine-grained semantic similarity
information between categories. In this paper, we propose a local-
ity generation approach for categorical data classifiers that makes
no assumption about domain knowledge and infers categorical
similarities by relying on the model’s explanations. Further,
we devise a multi-centered sampling approach based on the
derived similarity information that, compared to the conventional
instance-centered technique, captures the local behavior of the
model more effectively. Moreover, we develop a knowledge-based
locality generation approach based on knowledge graphs to
benchmark our explanation-based method against a scenario
where the similarity information is provided by a domain expert.
The experiments conducted on various data sets demonstrate the
efficacy of our approach in generating faithful explanations.

Index Terms—Interpretable Machine Learning, Local Surro-
gate Explainability, Categorical Data, Domain Knowledge

I. INTRODUCTION

The research around explaining Machine Learning (ML)
classification models in the tabular data setting has received
significant attention over the past years [1]. Local explanation
methods [2] discover the models’ rationale for every single
prediction. The generated explanations for the tabular data
are commonly represented as feature importance vectors and
decision rules. The open problem in the local explanation
domain is the fidelity of explanations [3]. Fidelity implies that
a created explanation for an instance should express the actual
behavior of the model in the locality of the instance. Unfaithful
explanations provide incorrect information about the model’s
decision-making logic that can mislead the user of the model.

Local surrogate explanation techniques (e.g., LIME [4],
LORE [5], and EXPLAN [6]) that explain an instance by
creating an interpretable surrogate model on its locality are

considered a popular approach for tabular applications. The
core task of these methods is to find a precise locality of
the inputs to capture the local behavior of the original model.
Mainly, for a given instance, they generate random data points
by perturbing numerical and categorical features and select the
samples that best represent the locality of the instance. The
selected samples are then used for creating an interpretable
surrogate model (e.g., a linear model [7]) that interprets the
model’s rationale regarding the instance’s decision.

Similarity measurement between data points plays a vital
role in creating an accurate and representative locality [2].
State-of-the-art explanation methods demonstrate high perfor-
mance for numerical data sets because quantitative values can
be subjected to various statistical and arithmetical operations
for measuring similarity. For example, Age is a numerical
feature that can take continuous values within the range
[0, 100]; we can adopt arithmetic operations to precisely
calculate the distance between two individuals regarding Age.
On the contrary, categorical features denote qualitative data,
which in the absence of domain knowledge, the similarity
between different categories is undefined. For instance, the
categorical feature Education that can take various categories
from the set {High-school, Bachelors, Masters,
Doctorate} does not allows to determine a quantitative
similarity between two people with different degrees.

To the best of our knowledge, none of the existing ex-
planation methods considers the semantic or fine-grained
similarity between categorical values. They either use the
Simple Matching Coefficient (SMC) metric [8], which only
evaluates whether two values are identical, [4], [9] or convert
categorical features to ordinal representation and measure their
distance using numerical metrics (e.g., ℓ1- or ℓ2-norm) [5],
[6], [10]. The former approach does not provide detailed and
semantic similarity between categories. The latter approach,
on the other hand, can be incorrect as categorical values
usually do not follow an order. In the case of mixed feature
data sets (including both categorical and numerical features),
these shortcomings can be somewhat alleviated by calculating
the precise distance between numerical features. However,
it can be challenging in merely categorical data scenarios,
especially if no domain knowledge is available to define the
similarity between categories. In this circumstance, calculating



the distance between the input and perturbed samples via SMC
is less likely to result in a neighborhood data set that represent
the actual behavior of the classifier in the input’s locality. One
can convert categorical features to dummy variables and apply
numerical distance metrics [11]. However, similar to SMC,
this approach does not reveal the semantic similarity between
categories, and the provided distance information is identical
to the SMC method.

Another deterrent factor for capturing the accurate locality
in the local surrogate methods, according to [12], is the
instance-centered sampling that can neglect the effect of the
locally important features in favor of the globally impor-
tant ones. Precisely, the instance-centered sampling follows
a coarse-grained approach that does not take into account the
predicted label of data points, a valuable source of information
for understanding the decision boundaries of the original
model. Disregarding this information leads to creating and/or
selecting random samples in any direction within a hyper-
sphere centered on the instance being explained. As a result,
the surrogate model will deviate from the actual locality of the
instance and instead highlights globally important features for
the black-box model [12]. The instance-centered sampling can
also create class-imbalanced neighborhood data for samples
far from the decision boundaries, especially in imbalanced and
multi-class data set settings, where the perturbed data follows
the distribution of the training data.

In this work, we propose a locality construction approach
that resolves the mentioned issues, leading to faithful and
accurate explanations. Specifically, we use global explanations
to identify semantic similarities between the categories of
categorical variables and incorporate this information in a
novel multi-centered sampling approach for capturing the
actual locality of inputs. We evaluate the performance of our
algorithm w.r.t several binary and multi-class classification
data sets, different interpretable models, and various baselines.
Further, to compare the model’s insights versus the expert’s
insights about data similarities within a domain, we develop
a knowledge-based locality generation based on knowledge
graphs in the experiments section. Generally, the main contri-
butions of the work can be summarized as follows:

• We propose a tailored locality generation approach for
categorical data classifiers that derives the semantic sim-
ilarity of categories from the models’ explanations and
utilizes the obtained information in a novel multi-centered
sampling technique to capture the actual behavior of the
models in the locality of every particular instance.

• We develop a knowledge-based locality generation ap-
proach based on knowledge graphs as a baseline to
benchmark the efficacy of classifiers’ insights versus
experts’ insights regarding categorical similarities.

The rest of the paper is organized as follows: Section II fur-
ther investigates the existing challenges and motivates our pro-
posed solution; Section III introduces our explanation-based
locality generation technique for categorical data classifiers;
Section IV presents and discusses the conducted experiments
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Fig. 1: The global explanation of the Education feature from
the Adult Income data set for the Gradient Boosting Classifier
model. The x-axes demonstrate the feature’s categories and the
y-axes represent their global effect on the model’s prediction
probability for the target class Salary > 50K .

for evaluating the efficacy of our proposed method; finally,
Section V concludes the paper and states the future works.

II. MOTIVATION

Categorical Similarity. A potential solution for fine-grained
similarity measurement in the categorical data scenario can be
incorporating domain knowledge, formulated as taxonomies or
knowledge graphs, in the sampling procedure [13]. However,
such information is not available for most ML data sets.
Moreover, employing domain knowledge for explaining a
classifier that is merely created based on observational data
may cause an interpretation gap. Thus, it would be useful to
identify categorical similarities by relying on the model and its
corresponding observational data. Global explanation methods
[14] explain the overall behavior of a model w.r.t a group
of samples (generally training data). Precisely, they determine
the quantitative effect of features’ categories (in the domain
R) in the model’s predictions. The global explanation of a
feature reveals categories with similar influence on the model’s
outcome, providing quantitative semantic similarity between
categories from the model’s viewpoint. The quantitative simi-
larity information allows applying existing numerical distance
metrics (e.g., ℓ1- or ℓ2-norm) for measuring the distance
between data points in the original categorical representation.

In Fig. 1, an example of global feature effect for the
Education feature in the Adult Income data set [15] perceived
by the Gradient Boosting Classifier [16] is illustrated. The
figure demonstrates the global effect of the feature’s categories
on the overall prediction probability of the model for the
target class Salary > 50K . The effects represented as black
dots on the dashed lines indicate that the categories with
positive values tend to increase the probability of data points
to be classified as Salary > 50K , while the categories with
negative values decrease their probability. It can be seen
that the global feature effect plot reveals similar categories
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Fig. 2: An illustrative data sampling comparison: instance-centered vs. multi-centered.

from the model’s perspective that also conform our sub-
jective knowledge about the feature to a great extent. For
example, school-related categories (e.g., Grade-1st-4th,
Grade-10th, and Grade-12th) influence the model to
classify data points as Salary ≤ 50K , while university-related
items (e.g., Bachelors, Masters, and Doctorate) con-
tribute to classifying instances as Salary > 50K .

This approach has several advantages. First, it does not
demand external knowledge about the domain, making it
applicable for every categorical data set. Second, the global
effects are extracted from the classification model, hence, they
represent the actual model’s perspective about the categories.
Third, ML models learn data differently and may have varying
decision boundaries that result in different perceptions about
features’ categories. As explanation methods should always
interpret the true behavior of a model regardless of its validity
(wrong or correct), this approach is insusceptible to the
models’ variations and consistently reveals the actual attitude
of the models about the data. Last but not least, this is a
computationally efficient approach for extracting categorical
similarity that can be used for any ML classification model
regardless of the model’s internal and architecture.

Data Sampling. State-of-the-art local surrogate explanation
methods adopt an instance-centered approach that creates
and/or selects perturbed data points in a hypersphere centered
on the instance of interest. However, this technique usually
highlights the effect of globally important features, failing to
capture the local behavior of the model for a given input
[12]. Moreover, for instances located far from the decision
boundaries, it tends to generate neighborhood samples belong-
ing to the same class as the instances, creating imbalanced
training data for the surrogate model. Apart from this, since
features’ categories have different global effects on various
classes, it is essential to consider the label of data points
while calculating the distance in the global feature effect
representation. Therefore, to resolve the stated issues regarding
instance-centered sampling and to make explanation-based
locality suitable for multi-class classification scenarios, we
propose an efficient multi-centered data sampling technique.
Instead of using the input instance as a reference for finding
the closest neighborhood samples in all classes, we adopt a

fine-grained approach by first identifying its counterpart data
points in every other class and using them as references for
selecting locality samples.

Fig. 2 demonstrates the difference between instance-
centered and our proposed multi-centered locality through an
example from the Iris data set [15]. It can be seen that the
instance-centered sampling (Fig. 2(b)), which only relies on
the feature space similarity, does not capture the local behavior
of the model in the vicinity of the input (denoted by the red
cross). In contrast, the multi-centered approach (Fig. 2(c)) uses
the labels of the data to understand the decision boundaries of
the original model and narrow the sampling direction to select
instances around local inter-class boundaries. Specifically, it
finds the counterparts of the input in other classes (denoted by
the red asterisks) and uses them for guiding the data sampling,
leading to a balanced data set that can precisely describe the
local behavior of the model in the adjacency of the input.
The overall F1-score of the surrogate models created on the
instance-centered and multi-centered data are 0.93 and 0.96,
respectively, indicating the better performance of the multi-
centered sampling in representing the instance’s locality.

III. EXPLANATION-BASED LOCALITY FOR CATEGORICAL
DATA CLASSIFIERS

This section describes our proposed approach for creating
representative neighborhoods to faithfully explain the deci-
sions of classification models in the categorical data setting. It
consists of five procedures outlined in Algorithm 1. Let f be
a black-box classifier, Xtrain be the training data, Xexplain

be a set of unseen data for explanation, C be the set of
classes, M be the set of features, Nrandom be the number
of initial random samples, and Nsamples be the number of
final neighborhood samples. For an instance x ∈ Xexplain,
Algorithm 1 generates a locality (i.e., Xlocality) that is used
as training data for creating an interpretable surrogate model
f ′ that provides explanations for the decision of the original
model f regarding x.

A. Global Feature Explanation

We use global explanation methods to obtain fine-grained
similarity information of features’ categories perceived by the
black-box classifier. Accumulated Local Effects (ALE) [17]



is an effective global explanation technique that provides the
marginal effect of one or two features on the prediction of a
machine learning model. ALE is a faster and unbiased alter-
native to Partial Dependence Plots (PDPs) [16], a widely-used
approach for global explanation of ML models. Compared
to PDP, ALE considers feature correlations, leading to more
accurate and realistic approximation of global feature effects.
This is a valuable property, especially for our use case, because
it provides contextual similarity information about features’
categories. Moreover, it helps to address a common problem
in local surrogate explanation methods, which is generating
inconsistent and unrealistic neighborhood samples in highly-
correlated data sets [18].

Because of the stated advantage of ALE, we employ this
technique to measure the effect of every categorical feature
on the prediction of the model f . Using this approach we
map the feature space from a categorical representation to a
numerical representation that allows calculating fine-grained
similarity between different categories of a feature. Let us
define ALE as a function that given a set of features M , a
set of categories for every feature K, a set of classes C, a set
of training samples Xtrain, and a model f returns a global
feature effect matrix E ∈ RM×K×C , where Em,k,c,m ∈
M,k ∈ K, c ∈ C, represents the effect of category k existing
in feature m on the prediction of the classifier for class c.
Formally, the global effect matrix E for a data set is defined as
E = {ALE(f,Xtrain,m, k, c) : ∀m ∈M, ∀k ∈ K,∀c ∈ C}.
We need to compute the global effect of each feature with
respect to every class because every feature has a dissimilar
impact on different classes, leading to distinct effect vectors.
The GLOBALFEATUREEXPLANATION function in Algorithm
1 outlines the procedure for extracting feature effects. For a
given model f and its corresponding training data Xtrain, this
function is only executed once to generate the global effect
matrix E that is later used for creating the locality of every
input x ∈ Xexplain.

B. Class-wise Nearest Neighborhood Model

This widely-used instance-centered sampling can fail to
capture the effect of locally important features and may
create class-imbalanced neighborhood data for samples far
from the decision boundaries. We resolve these issues by
proposing a multi-centered sampling approach that selects
neighborhood data from every class that captures inter-class
decision boundaries. For every class in the data set, we create a
1-nearest neighborhood model using training data, denoted by
Nc,∀c ∈ C. The NEARESTNEIGHBORHOODMODEL proce-
dure in Algorithm 1 outlines the required steps for constructing
the neighborhood models. The models are created in the
initialization stage of the algorithm. During runtime, they are
queried to find the closest samples to an instance in other
classes. Formally, for an input x ∈ Xexplain, we use the
models to find the following set: R = {Nc(x) : ∀c ∈ C}. The
set R contains x and its immediate neighborhood samples
in other classes, acting as representatives for x. Using the
obtained set, we can perform a multi-centered sampling in

Algorithm 1 Explanation-based Locality
Input: x: instance to explain, f : black-box model, Xtrain: training data,

Nsamples: number of neighborhood samples, M : set of features, K: set
of features’ categories, C: set of classes

Output: Xlocality : a set of samples representing the locality of x

1: procedure GLOBALFEATUREEXPLANATION(f,Xtrain,M,K,C)
2: E = {}
3: for all m ∈M do
4: for all k ∈ K do
5: for all c ∈ C do
6: Em,k,c = ALE(f,Xtrain,m, k, c)

7: return E

8: procedure NEARESTNEIGHBORHOODMODEL(f,Xtrain, C)
9: N = {}

10: for all c ∈ C do
11: X c

train = {x : f(x) = c, ∀x ∈ Xtrain}
12: Nc = CreateModel(X c

train, nneighbor = 1)

13: return N

14: procedure CAT2NUMTRANSFORMER(f,M,E,X cat)
15: Xnum = {}
16: for all xcat ∈ X cat do
17: c = f(x)
18: xnum = ∅
19: for all m ∈M do
20: k = xcat

m
21: xnum

m = Em,k,c

22: Xnum = Xnum ∪ xnum

23: return Xnum

24: procedure RANDOMDATASAMPLING(Xtrain,M,Nrandom)
25: S = {}
26: for all m ∈M do
27: freqm = CalculateFrequencyHistogram(Xtrainm )
28: Sm = GenerateRandomData(freqm, Nrandom)

29: return S

30: procedure NEIGHBORHOODSAMPLESELECTION(
x, f,Xtrain, C,M,E,N , Nsamples)

31: Nrandom = 10 ∗Nsamples

32: S = RANDOMDATASAMPLING(Xtrain,M,Nrandom)
33: R = {}
34: for all c ∈ C do
35: Rc = Nc(x)

36: Snum = CAT2NUMTRANSFORMER(f,M,E,S)
37: Rnum = CAT2NUMTRANSFORMER(f,M,E,R)
38: D = {}
39: for i← 1 to Nrandom do
40: cs = f(Si)
41: cx = f(x)
42: Di = ||Rcs−Si||0+||Rnum

cs −Snum
i ||1+||Rnum

cx −Rnum
cs ||1

43: Xlocality = SelectNClosestSamples(S,D, Nsamples)
44: return Xlocality

which perturbed samples from other classes are compared with
the counterparts of x, rather than being compared with x itself.
This results in a fine-grained sampling strategy that considers
not only the similarity of feature values but also the class of
samples for finding an accurate locality.

C. Categorical to Numerical Transformation

This section defines a function to map features in categorical
representation to continuous numerical representation (i.e.,
global feature effect). Let X cat ∈ ZM be a set of data points
with M -dimensional categorical features. Given the black-box



classifier f and the obtained global feature effect matrix E,
we define a function Φ : X cat → Xnum,Xnum ∈ RM , to
map categorical data to real-valued representation:

Φ(X cat) = {xm ← Em,k,c,∀x ∈ X cat | xm = k ∧ f(x) = c}
(1)

The CAT2NUMTRANSFORMER function in Algorithm 1 im-
plements this mapping. By doing this transformation, we will
achieve a real-valued representation of features’ categories
that allows applying various distance metrics available for
numerical features (e.g., ℓ1- or ℓ2-norm) to calculate the
precise distance between categories.

D. Random Data Sampling

Our proposed approach relies on the distribution of the
observed data for creating localities. For every feature, we
sample random data based on the frequency histogram of its
values (categories) in the training data. Compared to feature
manipulation techniques [5], [10], this is a more reliable
approach as it is less likely to generate out-of-distribution and
outlier data points. The RANDOMDATASAMPLING procedure
in Algorithm 1 outlines the mentioned data generation ap-
proach that given the training data Xtrain, a set of features M ,
and a user-defined number of samples Nsamples, it returns a set
of random samples S following the original data distribution.

E. Neighborhood Sample Selection

In this section, we propose a function
(NEIGHBORHOODSAMPLESELECTION in Algorithm 1)
that utilizes the defined procedures and outputs of previous
stages for selecting a representative neighborhood data for
an instance of interest. The function starts by creating a
set of random samples denoted by S. Given the number
of desired samples for the locality, i.e., Nsamples, initially,
we generate a diverse set of random data points (e.g.,
Nrandom = 10 ∗ Nsamples) to properly cover the feature
space. Next, we find the set counterparts of x in every
class using neighborhood models N , denoted by R (it also
contains x). We use these instances to perform a fine-grained
comparison between x and random samples S. In other
words, we consider the label of data points for measuring
their similarity alongside their feature values. Further, we
transform the set of random samples S and representative
instances R in categorical representation to numerical (i.e.,
global feature effects) representation denoted by Snum and
Rnum, respectively. The distance of the random samples to
x is represented by a vector D that contains the aggregation
of the ℓ0-norm and ℓ1-norm between every random sample
and its same-class representative instance in categorical and
numerical representations, respectively, as well as the ℓ1-norm
between x and its representative instance in the numerical
representation to put more emphasis on the vicinity of x for
sample selection than its counterparts. We chose ℓ0-norm
for calculating distance in categorical representation to count
the number of features having distinct values, whereas we
used ℓ1-norm in numerical representation, a suitable metric

TABLE I: Performance of the classifiers in terms of F1-score.

Data set NN GB

Adult Income 0.816 0.829
COMPAS 0.784 0.785
German Credit 0.718 0.744
Breast Cancer 0.695 0.637
Car Evaluation 0.931 0.968

for real-valued data that takes into account the sparsity of
feature differences in distance calculation. Finally, we select
Nsamples data points from S that are closest to x based on the
distance vector D, denoted by Xlocality. The Xlocality, hence,
is the neighborhood data set of x in the categorical (original)
representation that is used for creating an interpretable
surrogate model that explains the x’s decision.

IV. EXPERIMENTS AND DISCUSSION

We designed two types of experiments to evaluate the effi-
cacy of our proposed approach in generating faithful explana-
tions: i) evaluation of the proposed explanation-based locality
method (called XBL) versus local surrogate explainability
baselines concerning standard ML data sets and ii) evaluation
of XBL against a knowledge-based locality approach (called
KBL) with respect to the Adult Income data set.

We used several binary and multi-class classification data
sets including Adult Income, COMPAS, German Credit, Breast
Cancer, and Car Evaluation. Except from COMPAS data set
that is available at [19], all data sets can be found at [15].
It should be mentioned that the numerical features existing
in some of the data sets are either removed or discretized to
form purely categorical data sets. The data sets were split into
Xtrain and Xtest sets that were used for training and testing
the classifiers, respectively. TABLE I reports the performance
of the models in terms of F1-score.

We employed Multi-layer Perceptron Neural Networks [20]
(NN) consisted of one hidden layer with 100 neurons and
Gradient Boosting Machines [16] (GB) comprised of 100
estimators as black-box classifiers. We explain inputs using
two widely-used interpretable models: CART Decisions Trees
(DT) [21] and Ridge Linear Regression (LR) [7]. This enables
evaluating the efficacy of our approach for different surrogate
models and its generalizability for different explanation for-
mats, i.e., decision rules and feature importance.

The only hyper-parameter required by our approach, which
is also common in baselines, is the number of neighborhood
samples that is set to Nsamples = 1000. We executed the
baseline with their default hyper-parameter settings. For every
data set, we randomly selected Min(500, |Xtest|) samples
from their test set Xtest as explaining set Xexplain.

Our framework has been developed using Python program-
ming language, and experiments were run on a system with
Apple M1 Pro processor and 16GB of memory. We provide
an open-source implementation of our approach, including
data sets and experiments, to facilitate reproducible research:
https://github.com/peymanrasouli/categorical locality.

https://github.com/peymanrasouli/categorical_locality


TABLE II: Fidelity evaluation of XBL versus local surrogate explainability baselines in explaining NN classifiers constructed
for standard ML data sets.

Interpretable Model DT LR

Data Set Method F1-score Precision Accuracy M-score R2-score MAE MSE M-score

Adult Income

GEN 0.922 0.896 0.942 0.844 0.607 0.081 0.010 0.671
MDS 0.921 0.944 0.948 0.791 0.397 0.095 0.015 0.683
RIS 0.753 0.747 0.784 0.787 0.327 0.106 0.017 0.445
XBL 0.910 0.962 0.944 0.930 0.600 0.075 0.010 0.820

COMPAS

GEN 0.977 0.991 0.986 0.933 0.761 0.056 0.005 0.897
MDS 0.941 0.952 0.964 0.945 0.732 0.054 0.005 0.882
RIS 0.884 0.854 0.920 0.768 0.536 0.075 0.009 0.722
XBL 0.990 0.992 0.994 0.994 0.933 0.021 0.001 0.964

German Credit

GEN 0.903 0.87 0.930 0.828 0.444 0.091 0.012 0.696
MDS 0.724 0.743 0.835 0.697 -0.200 0.129 0.027 0.513
RIS 0.499 0.644 0.505 0.656 -0.952 0.180 0.043 0.429
XBL 0.992 0.997 0.995 0.840 0.508 0.078 0.011 0.581

Breast Cancer

GEN 0.934 0.900 0.964 0.910 0.693 0.060 0.006 0.860
MDS 0.808 0.827 0.911 0.829 0.534 0.066 0.008 0.728
RIS 0.868 0.839 0.929 0.824 0.198 0.090 0.014 0.733
XBL 0.962 0.990 0.982 0.913 0.790 0.039 0.004 0.886

Car Evaluation

GEN 0.992 0.989 0.988 0.655 0.403 0.112 0.018 0.773
MDS 0.515 0.556 0.896 0.459 -0.590 0.184 0.049 0.604
RIS 0.902 0.941 0.977 0.818 0.485 0.102 0.016 0.821
XBL 0.969 0.991 0.991 0.947 0.693 0.076 0.010 0.834

A. Evaluation of XBL vs Local Surrogate Explainability Base-
lines on Standard ML Data sets

We benchmark our proposed explanation-based locality
approach (XBL) against various locality generation strategies
including:

• Genetic-based Neighborhood (GEN) [5]: for an input x, it
uses a genetic algorithm to generate a set of neighborhood
data containing a similar number of samples for every
class that are closest to x.

• Meaningful Data Sampling (MDS) [10]: for an input x,
it generates random samples based on the distribution of
the training data, and then makes data points closer to
x by setting x’s values for the features having a similar
contribution to the model’s output.

• Random Instance Selection (RIS) [5]: for an input x, it
generates stratified random samples based on the distri-
bution of the training data that are closest to x, and then
under-samples the data points based on the Condensed
Nearest Neighbour Rule [22].

TABLE II presents the fidelity results of the DT and LR
interpretable models created using various locality generation
techniques for explaining NN classification models. The ex-
planations are evaluated regarding various metrics. For the
DT interpretable model, where the model’s output is the
predicted class of the instance, we used F1-score, Precision,
and Accuracy metrics to measure the similarity between the
predictions of the interpretable model and the original classi-
fication model; the higher these metrics are, the more faithful
explanations are generated. Similarly, for the LR interpretable
model, where the model’s output is the prediction probability
of the instance, we applied R2-score, Mean Absolute Error

(MAE), and Mean Squared Error (MSE) metrics; in this case,
the higher values for R2-score and lower values for MAE
and MSE indicates the crated localities have represented the
actual behavior of the original classification model, leading
to more accurate explanations. Moreover, we measure the
overall score of the interpretable models (using F1-score for
DT and R2-score for LR), denoted by M-score, w.r.t the entire
neighborhood instances. We believe this is an essential metric
for evaluating the performance of local surrogate explanation
methods. Because if an interpretable model only demonstrates
a good performance concerning the input instances and not
their locality data points, it implies that the interpretable model
either has over-fitted on the inputs (caused by training on
very similar neighborhood samples to the inputs, i.e., narrow
localities) or has not covered the actual locality of the inputs,
leading to a poor overall score.

According to the reported results in TABLE II, our proposed
approach, i.e., XBL, has outperformed the baselines regarding
the majority of scenarios. For the DT interpretable model,
the generated localities by XBL resulted in highest perfor-
mance regarding the most instance-level metrics (i.e., F1-
score, Precision, and Accuracy), except for the Adult Income
and Car Evaluation data sets for which GEN demonstrates
a better performance regarding F1-score. The notable point
is that XBL has led to the highest overall score (i.e., M-
score) for the DT model regarding all data sets, indicating the
representativeness of the created localities for the explained
instances. The reported results for the LR intepretable model
are similar to DT, confirming the efficacy of XBL localities
regardless of the employed surrogate model. Except for the
Adult Income data set, XBL significantly outperforms the



Stage 1 Stage 3

Stage 2 Stage 4

Creating a knowledge graph by
instantiating the ontology with the

input and random data 

Building an embedding model on
the resultant knowledge graph to
obtain its vector representation

Applying multi-centered sampling
on the vector representation of data

to create the input's locality

Creating/obtaining an ontology
schema for the studied data set that

represents its semantics

Fig. 3: The procedure of the knowledge-based locality (KBL) approach.

baseline methods in generating faithful explanations in the LR
setting. Furthermore, we notice that MDS and RIS baselines
show high fidelity in the DT scenario whereas their perfor-
mance is considerably diminished in the LR setting. This is
because, compared to the LR model, DT is more prone to over-
fitting and class-imbalance data. However, the similar (high)
performance of XBL in both DT and LR scenarios confirms
that the DT model is not over-fitted and the created localities
captured the actual behavior of the classifier.

Apart from high fidelity performance, our proposed ap-
proach generates localities in a computationally efficient man-
ner. It should be noted that global feature effects (Section
III-A) and class-wise nearest neighborhood models (Section
III-B) are created once in the initialization phase of XBL
and used later for explaining every instance. This eases the
computational burden of our approach and leaves the locality
generation of every instance with lightweight operations and
procedures. We evaluated the execution time of XBL and
the baselines concerning Adult Income which is considered
a standard data set for tabular classification. Our proposed
XBL approach, on average, takes 1.71 seconds to generate
neighborhood data points. In contrast, GEN, MDS, and RIS
take 2.76, 0.28, and 7.94 seconds, respectively. These results
validate the efficiency of our locality generation approach.

B. Evaluation of XBL vs KBL on Adult Income Data set
We benchmark our proposed XBL approach against a

knowledge-based locality method (KBL). This experiment
aims to compare the model’s insight (obtained by global
feature effects) versus the expert’s insight (achieved via a
knowledge graph) about categorical similarities within the
domain for generating faithful explanations. The expert’s
knowledge is represented by the concept of ontology which is
defined as ”a representation of a shared, agreed and detailed
model or set of concepts of a certain problem, domain” [23].
The created ontology schema is used to express and interpret
the data of a knowledge graph, an effective framework for
data integration, unification, linking and reuse [24]. Such a
knowledge graph formally represents semantics by describing
entities and their relationships that allows logical inference
for retrieving implicit knowledge rather than only explicit
knowledge. A common way to use knowledge graphs in ML
tasks is to derive latent feature representations of entities and

relations using Knowledge Graph Embedding (KGE) models
[25]. We implement the above-mentioned approach to convert
categorical data points into feature vectors that enable measur-
ing their conceptual similarity from the expert’s perspective.

The procedure of KBL is illustrated in Fig. 3. The pre-
requisite of the KBL approach is the existence of an ontology
schema for a studied data set (Fig. 3: Stage 1). However, since
such domain formalisms are rarely available for the existing
ML data sets, we decided to create an ontology schema for a
widely-used data set in the explainability research community,
i.e., the Adult Income data set. We created an ontology O
for the data set based on our knowledge about the features
and gathered information from valid sources like regional
groupings by United Nations [26], standard classifications of
occupations by ILOSTAT [27], annual wages in the USA
based on major occupational groups by STATISTA [28], and
structure of the USA education system by WENR [29]. In
the second stage of the KBL approach (Fig. 3: Stage 2), the
created ontology O is instantiated with a CSV data containing
an input of interest x and randomly generated tabular data
S, resulting in an RDF-based knowledge graph KG. The
knowledge graph KG is composed of RDF triples in the
form of ⟨sb, p, ob⟩, where sb represents a subject (a class or
an instance), p represents a predicate (a property), and ob
represents an object (a class, an instance, or a literal); an
example of RDF triple for an individual x in the Adult Income
data set can be ⟨x, hasEducation,Masters⟩. To measure the
similarity between entities in KG we employed OWL2Vec*
[30], a random walk and word embedding based KGE model,
in the third stage of the KBL algorithm (Fig. 3: Stage 3)
that transforms entities in triple representation ⟨sb, p, ob⟩ into
a vector representation esb, ep, eob ∈ Rk, where k is the
dimension of the vector. Having the vector representation of
the data points provided by the KGE model, we apply the
multi-centered data sampling to create the locality of x in the
last stage of the KBL algorithm (Fig. 3: Stage 4).

We constructed a GB classifier for the Adult Income data
set and explained individual instances using interpretable
models created on XBL and KBL localities. The evaluation
results of this experiment are reported in TABLE III. It
can be seen that XBL demonstrates a superior performance
than KBL in both surrogate models. It should be mentioned



TABLE III: Fidelity evaluation of XBL versus KBL in ex-
plaining a GB classifier created for the Adult Income data set.

Interpretable Model Method Metric

DT

F1-score Precision Accuracy M-score

XBL 0.932 0.976 0.960 0.922
KBL 0.844 0.829 0.896 0.893

LR

R2-score MAE MSE M-score

XBL 0.803 0.051 0.004 0.869
KBL 0.412 0.086 0.013 0.850

that designing an ontology schema is a subjective task. The
designer can include/exclude different types of information,
adopt a desired level of abstraction, and define customized
categorizations and relationships between entities. Although
the performance of the knowledge-based locality is highly
dependent on the ontology and KGE model, this experiment
confirms the explanation-based locality, which merely relies
on the model’s insight, can effectively represent the actual
behavior of the classification model in the vicinity of the
inputs. This is because the model’s insight provides precise
and objective information on categorical similarities that are
necessary for creating representative localities.

V. CONCLUSION AND FUTURE WORK

In this work, we studied the locality generation problem
of local surrogate explanation methods in the categorical
data setting. To create representative localities in this setting,
semantic similarity information about features’ categories is
required. We proposed an intuitive and efficient explanation-
based approach that obtains such information from the model’s
insight and utilizes them in a multi-centered sampling tech-
nique to capture the actual behavior of the model in the
locality of every particular instance. To evaluate the efficacy
of our algorithm, we also designed a knowledge-based locality
generation technique that incorporates the domain expert’s
insight about categorical similarities into the data sampling.
Several evaluation scenarios demonstrated the efficacy of
our proposed approach in generating faithful explanations
compared to the knowledge-based and state-of-the-art locality
generation baselines. In future work, we aim to combine the
model’s insight with the expert’s insight to obtain more precise
information about categorical similarities. Moreover, we will
study the generalization of the proposed approach for mixed-
feature data sets.
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