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Many studies encounter clustering due to multicenter enrollment and nonmortality outcomes, such as quality
of life, that are truncated due to death—that is, missing not at random and nonignorable. Traditional missing-data
methods and target causal estimands are suboptimal for statistical inference in the presence of these combined
issues, which are especially common in multicenter studies and cluster-randomized trials (CRTs) carried out
among the elderly or seriously ill. Using principal stratification, we developed a Bayesian estimator that jointly
identifies the always-survivor principal stratum in a clustered/hierarchical data setting and estimates the average
treatment effect among them (i.e., the survivor average causal effect (SACE)). In simulations, we observed low
bias and good coverage with our method. In a motivating CRT, the SACE and the estimate from complete-case
analysis differed in magnitude, but both were small, and neither was incompatible with a null effect. However, the
SACE estimate has a clear causal interpretation. The option to assess the rigorously defined SACE estimand in
studies with informative truncation and clustering can provide additional insight into an important subset of study
participants. Based on the simulation study and CRT reanalysis, we provide practical recommendations for using
the SACE in CRTs and software code to support future research.

always-survivors; Bayesian estimation; cluster-randomized trials; counterfactual outcomes; death truncation;
principal stratification; quality of life; survivor average causal effect

Abbreviations: CRT, cluster-randomized trial; ICC, intracluster correlation coefficient; LMM, linear mixed model; MCMC, Markov
chain Monte Carlo; SACE, survivor average causal effect; WSD, Whole Systems Demonstrator.

Outcomes such as quality of life are frequently measured
nonmortality outcomes used to assess general health, recov-
ery, and the impact of medical interventions (1–3). In studies
with nontrivial mortality, such as those conducted among the
elderly or persons with critical and serious illnesses, patient-
centered outcome measures often cannot be captured for a
sizeable proportion of participants who die during the study
period (4, 5). Nonmortality outcomes with missing data due
to death raise conceptual and empirical issues. First, death
itself is an outcome of interest. Second, because the nonmor-
tality outcome is empirically unmeasured (i.e., undefined)
among persons who die, imputation approaches may not
appeal to certain stakeholders (6–8). Relatedly, composite
outcomes require that some subjective valuation be used
concerning what value should be used for those who die

(9, 10). Further, from a causal inference perspective, many
strategies may not provide estimates with a clear causal
interpretation under the counterfactual outcomes framework
(11–13) because surviving study participants under treat-
ment and control conditions can be systematically different,
which obscures the target estimand.

Adapted from Suzuki (14), Figure 1 portrays what is often
termed the “truncation-by-death” problem. In this setting,
the survivor status (S) and quality-of-life outcome (Y) of an
individual can be influenced by the treatment (D), as well
as by an unobserved variable (U). The unobserved variable
(U) can also be potentially associated with the treatment (D),
but the association would be less likely if the treatment were
assigned in a randomized trial setting. Under the counterfac-
tual outcomes framework, there is considerable literature on
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Figure 1. Conceptual diagram for the problem of an outcome
truncated by death. D, treatment; S, survivor status; Y, outcome; U,
unobserved variables. The solid lines with arrows show the directed
effect; the dashed line shows a potential association; and the dotted-
dashed line with an arrow indicates that the survival status may
prevent the outcome from being observed. Adapted from Suzuki (14).

estimating causal effects using principal stratification (15–
19). This framework has been applied to study nonmortality
outcomes in individually randomized trials (4, 18), as well as
to address protocol compliance, patient encouragement, and
other problems in public health and social science settings
(e.g., the effect of job training programs and behavioral
health interventions) (16, 17, 20, 21). Principal stratification
seeks to identify strata of patients by their preexposure char-
acteristics. The stratum of primary interest includes patients
who would always survive through the end of the trial
period regardless of treatment assignment. The effect of an
intervention in this stratum of “always-survivors” is termed
the survivor average causal effect (SACE). The SACE is a
meaningful estimand because, without additional assump-
tions, only the always-survivors have both counterfactual
outcomes well-defined. Thus, the SACE avoids survivor bias
(i.e., observed and unobserved characteristics of survivors in
treatment and control are likely different) and summarizes
the treatment effect without needing additional assumptions
about the counterfactual outcomes for the nonsurvivors (5,
10, 22, 23). However, the always-survivors target population
is not directly observed; that is, not all participants have
a definitive stratum membership, but principal strata must
be identified to estimate the SACE. Bayesian inference is
particularly attractive for this purpose, since the posterior
strata membership can be updated through a Markov chain
Monte Carlo (MCMC) algorithm, while posterior predictive
distributions for the SACE can be conditional on the strata
membership (15, 16).

Herein, we extend and use principal stratification to
estimate the SACE using Bayesian inference in cluster-
randomized trials (CRTs) with death truncation. In con-
trast to individual-level randomization, CRTs randomize
groups of individuals to treatments (24, 25). Cluster-level
randomization is used when the intervention is designed for
a system-level improvement or when randomization is not
feasible at the individual level (see Turner et al. (25) for
a review). As a result, the outcome observations are often
more similar within clusters than between clusters, causing
a positive intracluster correlation that must be accounted
for at the analysis stage to avoid inflated type I error. To
estimate the SACE in CRTs, we developed a Bayesian
approach that leverages the baseline covariates to predict

the counterfactual survivor status and the counterfactual
outcomes. As we explicate in the Methods section, our
approach includes both a principal stratification model and
an outcome model, for which we developed an iterative
sampling algorithm to estimate the model parameters jointly,
and hence the SACE in CRTs.

METHODS

Causal framework and assumptions

We consider the counterfactual outcome framework,
where the causal effect is defined as the difference between
the 2 counterfactual outcomes averaged across a common
population (12, 13). We assume 1) the stable unit treatment
value assumption by which patients receive no different
forms or versions of treatment and that no interference
exists and 2) that the treatment is randomized at the cluster
level and is independent of both the potential survivor status
and the counterfactual outcome of all individuals in each
cluster. In a CRT with I clusters and ni individuals in each
cluster, let us denote the cluster-level treatment and control
assignment as Di = 1, 0, respectively, where i = 1, . . . , .I
For the j th individual (j = 1, . . . , nj) in the i th cluster,
we define {Yij(1), Yij(0)} as the counterfactual outcomes
for each individual under treatment and control conditions.
We are typically interested in the average causal effect,
δ = E(Yij(1) − Yij(0)), if the counterfactual outcomes
are well-defined for the entire trial population. However,
when outcomes are truncated, the average causal effect
can only be defined for a subset of patients. Estimating
the average causal effect in a meaningful subgroup in
this setting involves 1) using the covariates and survival
status to identify the potentially unobserved always-survivor
stratum and 2) comparing counterfactual outcomes within
the always-survivor stratum under treatment and control
conditions. Below we describe models for each of these
components.

Principal strata model for survivor status

We define Sij as the observed survival status of a patient,
with Sij = 1 indicating survival and Sij = 0 indicating death.
Under the potential outcomes framework, the joint values of
potential survival status produce 4 strata. These include:

1. Always-survivors (Sij(1) = Sij(0) = 1): patients who
will survive until the end of the study regardless of
their treatment status.

2. Protected individuals (Sij(1) = 1, Sij(0) = 0): patients
who will survive only under treatment.

3. Harmed individuals (Sij(1) = 0, Sij(0) = 1): patients
who will survive only under control conditions.

4. Never-survivors (Sij(1) = Sij(0) = 0): patients who
will not survive regardless of treatment.

We make an additional assumption of monotonicity such
that the treatment does not lead to worse survival, and thus
the harmed stratum is assumed away (17, 26). Monotonicity
is a plausible assumption in trials when interventions are
carefully piloted for safety considerations. However, we
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Table 1. Data Elements and Principal Strata Membership Based on Observed Survivor Status and Treatment Status Under the Monotonicity
Assumption

Observed
Group

Observed
Treatment

Status

Observed
Survival
Status

Observed
Outcomea

Unobserved
Outcome

(Possible) Strata
Membership Under

Monotonicity

Di = 1, Sij = 1 Yes Yes Yij = Yij(1) Yij(0) Always-survivor or
protected individual

Di = 1, Sij = 0 Yes No Yij = Yij(1) = ∗ Yij(0) Never-survivor

Di = 0, Sij = 1 No Yes Yij = Yij(0) Yij(1) Always-survivor

Di = 0, Sij = 0 No No Yij = Yij(0) = ∗ Yij(1) Protected individual or
never-survivor

a An asterisk (∗) indicates truncation by death.

acknowledge that an intervention can lead to worse survival
in some patients, and in such instances, the monotonicity
assumption will be questionable. In scenarios where the
proportion of a harmed stratum is close to 0, modeling the
harmed stratum can also lead to computational challenges,
in which case the monotonicity assumption represents a
practical consideration for model-fitting. In our motivating
trial, we considered the harmed patients to be rare (if not
nonexistent) and undertook the analysis assuming mono-
tonicity. Potential approaches to relaxing this assumption are
discussed below. Under monotonicity, the principal strata
membership is observed for survivors in the control group
and the deceased in the treatment group, but it is unknown
for survivors in the treatment group or the deceased in
the control group. Table 1 presents the strata membership
attribution for each observed data group under monotonic-
ity. Baseline covariates play a critical role in identifying
the principal strata. Suppose Gij = {00, 10, 11} indicates
principal strata membership, where Gij = 00 for never-
survivors, Gij = 10 indicates protected individuals, and
Gij = 11 indicates always-survivors. Assuming Xij as a
covariate vector with both cluster-level and individual-level
covariates and further including an intercept, the principal
strata can be modeled using multinomial logistic regression
with Gij = 11 as the reference group:

P(Gij = 00) = eXT
ijβ

1 + eXT
ijβ + eXT

ijγ
;

P(Gij = 10) = eXT
ijγ

1 + eXT
ijβ + eXT

ijγ
;

P(Gij = 11) = 1

1 + eXT
ijβ + eXT

ijγ
.

Here, β and γ are p-dimensional regression coefficient vec-
tors for never-survivors versus always-survivors and for
the protected versus always-survivors, respectively; each
component of β and γ is interpreted as the log odds ratio.
To ensure numerical stability, we recommend choosing the

(likely) largest stratum as the reference category for the
multinomial logistic model.

In addition, cluster-level random intercepts can be added
when principal strata membership is believed to be corre-
lated due to cluster randomization. Alternatively, a nested
probit model for the strata membership can be used (16);
however, the regression coefficients are more challenging
to interpret. Thus, we did not pursue the nested probit
model further but derived its posteriors with a latent variable
specification to support its use by interested readers (see
Web Appendix 1, available at https://doi.org/10.1093/aje/
kwad038).

Models for potential outcomes

After defining the principal strata model, we specify coun-
terfactual outcome models within each principal stratum.
Specifically, only the always-survivors have well-defined
counterfactual outcomes under both treatment and control
conditions (Yij(0), Yij(1)), since they are not subject to
truncation. Patients in protected strata have only 1 well-
defined counterfactual outcome under treatment, but their
counterfactual outcome under the control condition is trun-
cated by death (Yij(0) = ∗, Yij(1)). Among the always-
survivors, each counterfactual outcome can be modeled as a
function of covariates adjusting for clustering, whereas only
1 counterfactual outcome for each protected patient can be
similarly modeled.

Now, let α11
1 , α11

0 , and α10
1 be p-dimensional vectors

of regression coefficients for covariates in these 3 groups:
always-survivors in the treatment group (Gij = 11, Di = 1),
always-survivors in the control group (Gij =11, Di =0), and
protected individuals in the treatment group (Gij = 10, Di =
1). Let Yij be the outcome where (i, j) ∈ {

Sij(Di) = 1
}
.

Let ηi be the cluster-level random effect following a normal
distribution with mean 0 and variance τ2; let the residual
error follow a normal distribution with a mean equal to 0 and
a variance of σ2. The assumed linear mixed models (LMMs)
for the counterfactual outcomes can then be summarized
as in Table 2. The random-effects term ηi is required here
to account for the intracluster correlation coefficient (ICC),
ρ = τ2

τ2+σ2 , a quantity that is central to the design and
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Table 2. Outcome Model According to Principal Stratum and Counterfactual of Treatment Status

Principal Stratum

Counterfactual

Treatment Group
(Di = 1)

Control Group
(Di = 0)

Always-survivors (Gij = 11) Yij(1) = N
(
XT

ij α
11
1 + ηi, σ2

)
Yij(0) = N

(
XT

ij α
11
0 + ηi, σ2

)

Protected individuals (Gij = 10) Yij(1) = N
(
XT

ij α
10
1 + ηi, σ2

)

Never-survivors (Gij = 00)

analysis of CRTs, since ignoring the ICC in the outcome
model leads to an inflated type I error rate (27). With the
outcome model specified for always-survivors, the SACE
can be defined as

δ = E(Yij(1) − Yij(0)|Gij = 11).

We leverage the mixture modeling assumptions and the
monotonicity to jointly estimate the strata membership prob-
ability for each individual and the counterfactual outcome
model parameters. This approach produces the treatment
effect for each always-survivor, which can be averaged over
the always-survivor subpopulation to identify the SACE.
Beyond the mixture modeling approach, we acknowledge
that other structural assumptions can be used to identify
the SACE even in the absence of monotonicity (see, for
example, Hayden et al. (28) and Shepherd et al. (29)).

Joint inference of the outcome model and the principal
strata model

Posterior inference of the parameters in the principal strata
model and the outcome model can be achieved through
an MCMC algorithm. The algorithm is summarized in the
Appendix, and detailed derivations for each step are pre-
sented in Web Appendix 1. The algorithm uses Gibbs sam-
pling steps to update outcome regression model parameters,
where conjugate priors of normal and inverse gamma dis-
tributions are specified (details are given in Web Appendix
1). The algorithm further implements a Metropolis-Hastings
step for the principal stratification model. To increase the
convergence speed for β and γ, we use a random-walk
Metropolis algorithm (30) that draws proposals from mul-
tivariate t distributions, t(sβTβ) and t(sγTγ), that center at
the values of the previous iteration. The parameters sβ and sγ

scale the covariance to achieve optimal acceptance rates, and
both Tβ and Tγ are p × p-dimensional component-specific
scale matrices. We use the adaptive proposal approach by
Haario et al. (31) to tune Tβ and Tγ by utilizing empirical
covariance from an extended burn-in. As indicated by the
asterisks (∗) in the Appendix, when the principal strata
model also accounts for clustering (denoted as χi for the
random intercept, where χi ∼ N(0, φ2)), it can be updated
using the same approach as for β and γ.

Simulation study

We conducted a simulation study to validate our algo-
rithm. Specifically, we simulated a 2-arm CRT with 1,500
individuals with varying cluster size m and number of clus-
ters n as (m, n) = {(50, 30) , (25, 60) , (15, 100)}. We sim-
ulated 2 continuous covariates following Xij1 ∼ N (0, 4)
and Xij2 ∼ Unif (−5, 5), respectively. For the principal
stratification model, we let β = {−1, 0.3, 0.5}, and γ =
{−0.8, 0.6, 0.4} so that the stratum proportions are 21.1% for
never-survivors, 26.5% for protected individuals, and 52.4%
for always-survivors. We generated the potential outcomes
following Table 2, where we set α11

1 = {1.5, 0.5, 0.8}, α11
0 =

{0.2, 0.3, 0.6}, and α10
1 = {−1.5, 0.9, 0.5}. We set σ2 = 5

and τ2 = 1 with an induced ICC of 0.167, which falls
within the commonly reported range of 0–0.2 (32, 33). For
each simulated data set under each combination of (m, n),
we implemented the Bayesian sampler with 10,000 MCMC
iterations (with the first 2,500 iterations as a burn-in). In
addition, to evaluate the impact of varying cluster sizes, we
considered scenarios with mean cluster sizes and numbers
of clusters of (m, n) = {(50, 30) , (25, 60) , (15, 100)} and
generated the data with a large coefficient of variability (CV)
(defined as CV = m/

√
Var(m)) of 1.0. Additional simu-

lations with smaller outcome ICCs (0.01 or 0.05), smaller
numbers of clusters and/or cluster sizes, and principal strata
models including random intercepts (with an induced ICC
of 0.05 or 0.10 on the latent response scale (34)) were
also performed. We calculated the average posterior means,
relative bias, and coverage across 200 simulated data sets.
All analyses were performed using R software, version 4.0.1
(R Foundation for Statistical Computing, Vienna, Austria).
R code for the simulation, including the data-generating
process and the MCMC sampler, is available online.

Analysis of the motivating trial example

We applied our methodology to analyze data from the
Whole Systems Demonstrator (WSD) Telecare Question-
naire Study (35, 36). The WSD Telecare Study was a CRT
randomized at the general practice level that evaluated the
effect of telecare on the health-related quality of life and psy-
chological well-being of 1,189 elderly recipients of social
care in the United Kingdom over 12 months from 2008 to
2009. A total of 639 participants were randomized at the
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cluster level into the telecare arm, and 550 were random-
ized to usual care. Recipients were additionally clustered
within general practices across 3 English local authorities.
The rationale for the telecare intervention was not only its
potential health benefit but also its advantage in terms of
cost-effectiveness (37). There were 204 general practices
in the study, and the cluster size varied from 1 to 26.
The telecare arm installed electronic sensors in the homes
of recipients that provided safety monitoring (e.g., recip-
ient falls, fires in the home). Persons in the usual-care
arm did not receive telecare. Our illustration focuses on
health-related quality of life as measured via the Euro-
Qol Group’s EQ-5D-VAS index, a self-rated scale (score
range, 0–100) with 5 domains (mobility, self-care, usual
activities, pain and discomfort, and anxiety and depression)
measured at 12 months postrandomization (38, 39). Higher
scores represent a better overall quality of life. The results
reported herein vary slightly from the original published
analysis due to different analytical methods and outcome
data.

We considered trial participants to be nonsurvivors if they
were deceased or had seriously deteriorated health, such
that a self-reported health outcome for them could not be
measured or collected and was thus undefined. Recipients
with seriously deteriorated health included those who were
too ill; were unable to continue due to dementia or dete-
riorated mental capacity; had moved to long-term nursing
care, residential care, or sheltered housing; or had a fam-
ily caregiver. For missing data on the baseline covariates
and outcomes not due to death or seriously deteriorated
health, we used multiple imputation (6, 13) to impute a
single data set to fill those missing entries. Note that a
fully Bayesian approach that incorporates the imputation
in the proposed algorithm can also be implemented. Since
the goal of our illustration was not focused on the missing-
covariate problem, we did not pursue this direction. The
resulting data set had 127 (10.7%) cases with truncated
outcomes.

For both the principal stratification model and the poten-
tial outcome models, our baseline covariates included sex,
age, ethnicity, participants’ highest level of education, an
indicator for living in an only-adult household, number
of comorbid conditions, impairment score, physical health
score, mental health score, and EQ-5D-VAS index score
(35). We used LMMs for the outcome regression model
and multinomial logistic regression for the principal strata
model, as previously specified. We did not pursue the more
complex model that accounted for the random effects in
the principal strata model because the average cluster size
was too small and a handful of clusters had a size of 1,
which would cause convergence issues (we discuss this
further in the Discussion). Two MCMC chains of 100,000
iterations were implemented where the first 25,000 iterations
were set as a burn-in. We started each chain using random
initials. Model convergence and chain mixing were checked
by means of trace plots. All analyses were performed using
R 4.0.1. In addition, as a comparison model that might be
frequently used in practice in the absence of our method, we
fitted an LMM based on complete outcomes adjusting for
the same baseline covariates.

Table 3. Bias in Posterior Mean Values and Coverage for α11
1 , α11

0 ,
the Survivor Average Causal Effect, and the Intracluster Correlation
Coefficient in a Scenario of (m,n)= (15,100)a

Parameter and
True Value

Posterior
Mean

% Bias Coverage

α11
1 =

⎛
⎜⎜⎝

1.5

0.5

0.8

⎞
⎟⎟⎠

1.28 −14.4 0.93

0.46 −7.5 0.95

0.77 −3.8 0.95

α11
0 =

⎛
⎜⎜⎝

−1.5

0.9

0.5

⎞
⎟⎟⎠

−1.50 0.1 0.99

0.90 −0.1 0.97

0.50 −0.1 0.96

ICC = 0.17 0.17 0.0 0.96

SACE = 2.85 2.70 −5.2 0.93

Abbreviations: ICC, intracluster correlation coefficient; SACE,
survivor average causal effect.

a The results were based on 200 Markov chain Monte Carlo
sampler simulations, each with 10,000 iterations and a burn-in of
2,500. Full results are provided in Web Appendix 2.

RESULTS

Simulation study

Table 3 presents the simulation results for the key model
parameters in the scenario of (m, n) = (15, 100). (Full
results are shown in Web Appendix 2.) Relative bias and
coverage are presented for α11

1 , α11
0 , the SACE, and the

ICC. Our results show that the posterior mean values for
most parameters were accurate, with less than 10% bias and
more than 90% coverage. In particular, the SACE estimate
was close to the truth (% bias = −5.2%), and the coverage
probability was 0.93. The results for the other two scenarios
of (m, n) = {(50, 30) , (25, 60)} were similar, where SACE
estimates both had less than 5.0% bias and at least 0.95
coverage (see Web Tables 1–3 for full results). Additional
simulations with variable cluster sizes (Web Tables 4–6),
principal strata model specification with random effects
(Web Tables 7–10), a small number of clusters and/or cluster
sizes (Web Tables 11 and 12), and variable outcome ICCs
(Web Tables 13 and 14) showed similar performance.

Illustrative analysis

As noted above, our approach allows for adjustment for
covariates and clustering. As is common in CRTs, several
prognostic variables were preselected for adjustment in the
primary analysis; the variables we used in our analysis are
listed in Table 4. Our model identified 88.8% of recipients as
always-survivors, 2.2% as protected individuals, and 8.9%
as never-survivors. The posterior mean of the ICC was
0.003, with a 95% credible interval (i.e., 2.5% and 97.5%
of the posterior sample) of (0.000, 0.020), suggesting small
intracluster correlation in EQ-5D-VAS scores.

Table 5 shows the analytical results of our analysis. The
SACE point estimate for the effect of telecare on EQ-5D-
VAS score was −0.70, with a 95% credible interval spanning
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Table 4. Baseline Characteristics of 1,189 Participants in the Whole Systems Demonstrator Telecare Question-
naire Study, United Kingdom, 2008–2009a

Covariate
Intervention Control Total

No. % No. % No. %

Sex

Female 205 37.3 219 34.3 424 35.7

Male 345 62.7 420 65.7 765 64.3

Age, yearsb 73.9 (14.3) 74.3 (13.6) 74.1 (13.9)

Ethnicity

White 485 88.2 568 88.9 1,053 88.6

Non-white 65 11.8 71 11.1 136 11.4

Highest level of education

No formal education 359 65.3 421 65.9 780 65.6

GCSE/O-levels 92 16.7 132 20.7 224 18.8

A-levels/HNC 29 5.3 42 6.6 71 6.0

University level 26 4.7 16 2.5 42 3.5

Graduate or professional 44 8.0 28 4.4 72 6.1

Adult-only household

Yes 286 52.0 344 53.8 630 53.0

No 264 48.0 295 46.2 559 47.0

No. of comorbid conditionsb 1.1 (1.5) 1.1 (1.4) 1.1 (1.5)

Impairment scoreb 27.7 (14.3) 28.6 (15.6) 28.2 (15.1)

Physical health scoreb 28.3 (8.7) 27.9 (8.5) 28.1 (8.6)

Mental health scoreb 33.0 (8.0) 33.1 (7.8) 33.1 (7.9)

EQ-5D-VAS index scoreb 52.7 (22.0) 53.2 (22.0) 53.0 (22.0)

Abbreviations: GCSE, General Certificate of Secondary Education; HNC, Higher National Certificate.
a Due to the use of a different imputation method, numbers vary slightly from those in the original trial publications

(35, 36).
b Values are expressed as mean (standard deviation).

potential effects that ranged from a decrease of −3.11 to an
increase of 0.83. The estimated effect suggests that telecare
did not markedly improve EQ-5D-VAS score in comparison
with usual care in the principal stratum of always-survivors.

Web Figure 1 depicts the average number of always-
survivors, protected individuals, and never-survivors by
cluster based on the posterior sample of principal strata
membership after burn-in. Many clusters had recipients that
were possibly from all 3 strata. A notable advantage of
our Bayesian approach is that the baseline characteristics
of always-survivors can be obtained by averaging over
the baseline covariates among always-survivors in the
posterior sample of principal strata membership (summary
provided in Web Table 15). In our illustration, demographic
characteristics, socioeconomic status, and baseline health
status among the always-survivors were similar to those in
the overall population. This is unsurprising in this specific
illustration, since 88.8% of recipients were identified as
always-survivors.

Finally, in Table 5, the LMM point estimate based on
the recipients with observed outcomes was −0.93 (95%
confidence interval: −3.24, 1.38). This result was in line

(again due to overlap in this specific illustration, but this is
not guaranteed) with the SACE. However, it is important to
note that while similar in our illustration, the LMM estimate
does not have a causal interpretation because the analytical
sample for the LMM estimate included recipients who were
deemed to belong to the protected stratum. Intuitively, it
suggests that the protected individuals in the telecare arm
who were likely to die tended to be those with worse health
outcomes in the treatment group.

DISCUSSION

Conclusion

The SACE is a well-defined causal estimand that de-
scribes the effect of an intervention among participants who
would survive regardless of their randomized assignment in
a trial. We used Bayesian principal stratification to estimate
the SACE in a CRT where the hierarchical data structure
due to clustered randomization was accounted for in the
modeling and data analysis. Since stratum membership is not
fully identifiable for some participants, Bayesian estimation
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Table 5. Results for the Survivor Average Causal Effect Estimate
and the Proportion of Recipients in Each Principal Stratum With the
Bayesian Joint Modeling and Linear Mixed-Effects Model Estimates

Posterior Point
Estimate

95% CrI or
95% CI

SACE −0.70 −3.11, 0.83

Y(1) 53.04 51.33, 54.74

Y(0) 53.74 51.88, 55.03

Proportion of never-survivors 0.09 0.07, 0.11

Proportion of protected 0.02 0.00, 0.05

Proportion of always-survivors 0.89 0.88, 0.89

ICC 0.003 0.000, 0.020

Linear mixed-effects model −0.93 −3.24, 1.38

Abbreviations: CI, confidence interval; CrI, credible interval; ICC,
intracluster correlation coefficient; SACE, survivor average causal
effect.

is a particularly attractive strategy with which to address
uncertain stratum membership of the counterfactual survivor
status. Notably, our approach considers the model-based
credible interval estimation under the Bayesian framework,
and therefore differs from the usual cluster-robust variance
approach under the frequentist framework (40). The extent
to which a cluster-robust variance approach applies to our
Bayesian modeling framework merits additional research.

In our simulations, we observed low bias and good cover-
age of the true SACE parameter with our methods. In our
analysis of the WSD telecare trial, 88.8% of the partici-
pants were identified as always-survivors, and the SACE
suggested no significant change in the health-related quality
of life measure (EQ-5D-VAS score) at 12 months (SACE =
−0.70, 95% credible interval: −3.11, 0.83). This point esti-
mate was slightly smaller than that from a complete-case
analysis using a naive LMM model (point estimate = −0.93,
95% confidence interval: −3.24, 1.38). We note that our
result is based on only a one-time measurement taken at
12 months, which differs from the original result published
by Hirani et al. (35), where they utilized repeated outcome
measures at different time points and considered different
covariates. Adapting the principal stratification framework
for CRTs with repeatedly measured outcomes requires addi-
tional methodological development. While our analysis of
the WSD Telecare Study showed a limited effect on the
EQ-5D-VAS outcome, telecare may affect other physical
health outcomes or have cost-effectiveness properties due to
prevention or earlier intervention on health needs.

Practical recommendations

During the development and implementation of our meth-
odology, we identified some analytical considerations that
users may need to consider. First, the monotonicity assump-
tion may be plausible for practice-level interventions like
the one used in the WSD study setting, where installing
electronic sensors in the telecare arm was unlikely to harm

participants. Before the implementation of many medical
trials, interventions are evaluated in pilot studies with safety
monitoring; thus, this assumption may often be reason-
able. Relaxing the monotonicity assumption by adding the
“harmed stratum” (i.e., participants who die in the treatment
group but survive in the control group) is possible. How-
ever, fitting the mixture model with an additional harmed
stratum is an added layer of computational considerations,
and additional simulations are needed to fully understand the
benefit of including this stratum when the harmed population
is relatively rare. Beyond the mixture modeling framework,
other types of structural assumptions or sensitivity parame-
ters are necessary to relax the monotonicity assumption (28,
29, 41, 42), and they represent a fruitful direction for future
investigations in the context of CRTs.

Second, our simulation studies showed that the use of
noninformative priors can achieve adequate performance
without sufficient knowledge of key model parameters from
existing studies. However, Bayesian approaches have an in-
herent advantage of leveraging existing knowledge through
informative priors on key parameters to sharpen the model
performance. For example, Turner et al. (43, 44) have
demonstrated that compared with the noninformative priors,
incorporating informative half-normal and β priors on the
outcome ICC parameter (based on published ICC estimates)
can produce narrower credible intervals for the outcome
ICC and variance components parameters. We anticipate
this finding to be applicable for estimating the SACE.

Third, while we have provided methods to account for
clustering in the principal strata membership model, the
model-fitting can be substantially more challenging than
its counterpart without clustering. In the analysis of the
WSD trial, the principal strata membership model failed to
converge due to several extremely small clusters. Thus, we
did not consider clustering in the principal strata member-
ship model. Therefore, in practice, specifying more com-
plex principal strata membership models often requires the
absence of extremely small clusters. On the other hand, our
additional simulation results (Web Tables 7–10) showed that
when the ICC in the principal strata model is not exceeding
0.10, specifying the principal strata model without a random
intercept can still achieve adequate performance character-
istics and can be sufficient. However, we acknowledge that
our assessment was limited to the data-generating process
we considered, and a more systematic comparison between
clustered and unclustered principal strata models in CRTs is
warranted.

Lastly, our additional simulation (Web Tables 11 and 12)
showed that our method can be employed to estimate the
SACE in relatively small CRTs (e.g., 20 clusters with a
cluster size of 25). We caution against using our model in
even smaller CRTs, as additional research to address small-
sample challenges in these settings is needed.

The use of the SACE in CRTs (and individually random-
ized trials) also requires some practical considerations from
the design perspective, since the always-survivors stratum
is a subset of trial participants that cannot be identified
until after randomization and trial completion. Though it
is a more attractive target estimand and thus alternative
to composite outcomes, imputation, or other approaches to
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dealing with truncated outcomes, there is always a threat
of loss of statistical power with the SACE because of the
inherently smaller sample size of this stratum. However, this
concern may be partially offset when the treatment effect is
likely to be larger in the always-survivors stratum than in the
overall population (i.e., average treatment effect) (45, 46).
Relatedly, without knowing the size or characteristics of the
always-survivors stratum prior to a study, power calculations
may be a challenge, particularly when sample sizes are
constrained and cannot be increased. Thus, we believe we
can offer 3 practical recommendations for using the SACE
in a trial. First, the SACE may be most ideal as a preplanned
secondary analysis in trials with smaller available sample
sizes, and only considered for the primary analysis in larger
pragmatic trials or in trials where effect sizes and always-
survivor rates can be anticipated with reasonable certainty
to be in some range, and thus available sample sizes are
adequate (45). Second, as is recommended when working
with other uncertain trial design elements, we recommend
that Monte Carlo simulation studies be undertaken to assess
statistical power (47, 48). Jo (45) provides statistical power
guidance for trials with treatment noncompliance that is
potentially relevant to those using the SACE. Closed-form
sample size solutions for noncompliance in CRTs could be
extended to the SACE in future work. Third, when there
is interest in conducting primary analysis to estimate the
SACE, approaches for sample size reestimation with pre-
planned interim analysis (49) may be considered, but they
may require future development.
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APPENDIX

The pseudoalgorithm for joint modeling of outcome and principal strata membership follows.

1. Input: Set multivariate normal priors for regression coefficients, α11
1 , α11

0 , α10
0 , β, and γ, and inverse γ priors for σ2, τ2

(and φ2).
2. Set random initials for all parameters.
3. For S iterations, do the following:

4. Sample α11
1 , α11

0 , and α10
0 from multivariate normal posteriors.

5. For each cluster, sample ηi from a normal posterior.
6. Sample τ2 from an inverse γ posterior.
7. Sample σ2 from an inverse γ posterior.
8. Sample β and γ jointly as follows:

a. Draw candidates of β and γ from a proposal distribution (mv-t dist.).
b. Compute the rejection ratio, α, based on likelihood and prior information.
c. Sample a random number κ from a Bernoulli(α) distribution.
d. If κ = 1, then accept the candidates; if κ = 0, then reject the candidates.

9. ∗For each cluster, sample χi using the rejection sampling approach.
10. ∗Sample φ2 from an inverse γ posterior.
11. Update the principal strata membership Gij following the Bayes rule.
12. Estimate the survivor average causal effect (SACE) among always-survivors (Gij = 11).

13. Output: SACE.
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