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Abstract

This thesis develops biharmonic analysis building upon the 

fundamental contributions which have been made by Almansi and 

Hadamard nearly one hundred years ago. The representations of 

Massonnet and Chakrabarty are discussed. It also makes a new 

analysis of the two-dimensional Papkovich-Neuber formula for 

elastostatic displacement fields, which is compared with 

Muskhelishvili's displacement formula for such fields.
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Introduction

Biharmonic analysis was created at the end of the last 

century from two distinct sources: E. Almansi's

representation of a biharmonic function in terms of two 

independent harmonic functions, and J. Hadamard's

existence-uniqueness theorems for biharmonic boundary-value 

problems.These theorems proved indispensable in formulating 

two-dimensional elastostatics through a stress function and 

in the theory of transverse deflections of thin plates. 

However they do not, by themselves, enable appropriate 

solution of the biharmonic equation to be obtained except in 

the simplest cases. Almansi's representation marked a 

considerable step forward in the construction of solutions, 

since it effectively reduces the theory of biharmonic 

functions to that of harmonic functions. Some simple 

examples of boundary-value problems solved directly via 

Almansi's representation are given in Part I of this thesis. 

With the advent of fast digital computers in the early 

1960's, it became the basis for a powerful method of 

numerical attack utilising boundary integral equations e.g. 

by Jaswon, M .A . and Symm, G.T. (1977).

An alternative representation to that of Almansi has been 

proposed by S.K. Chakrabarty in his Ph.D. thesis (1971). 

Here biharmonic potentials are generated from biharmonic 

sources on the boundary, so enabling biharmonic functions to 

be constructed which meet prescribed boundary conditions. 

This theory is outlined systematically in Part II of the 

thesis, which gives (apparently for the first time) the

9



correct asymptotic expansion of a biharmonic potential. 

Dislocation contributions appear in the expansion, which 

makes Chakrabarty's representation particularly suited for 

ring-shaped domains. By contrast, Almansi's representation 

cannot accommodate dislocations as it stands without 

introducing multi-valued harmonic functions, so requiring a 

more complete representation involving only single-valued 

functions. All the problems solved in Part I are also solved 

in Part II, to compare the effectiveness of each 

representation for different types of domain.

Almansi's representation may be regarded as the real-variable 

analogue of Muskhelishvili's complex variable representation, 

as can be readily seen by separating Muskhelishvili's complex 

stress function into real and imaginary components. 

Alternatively we may separate Muskhelishvili's complex 

displacement formula into real and imaginary components and 

compare them with those obtained via Almansi. These formulae 

are discussed in Part III of the thesis and compared with the 

two-dimensional Papkovich-Neuber formula. Muskhelishvili's 

displacement formula (and therefore also Almansi's) proves to 

be a specialised variant of the Papkovich-Neuber formula, 

since the latter formula does not assume the existence of a 

stress function and reduces to the former when this 

constraint is introduced.

Parts I and II of the thesis have been accepted for 

publication (jointly with Professor M.A. Jaswon), in Proc. 

first European Boundary Element Meeting, Brussels, May 1988.
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Also Part III of the thesis has been published as a paper 

(jointly with Professor M .A . Jaswon) in Proc. B.E.M. X, 

Vol.l, Southampton, September 1988. Copies of these papers 

are included at the end of Part II and of Part III.

11



PART I

ALMANSI REPRESENTATION



Chapter 1

Almansi Representation Theory

1.1 Introduction

This chapter will be devoted almost entirely to the 

introduction and identification of Almansi representations, 

which were introduced by Almansi as long ago as 1897. They 

play an important role in the boundary-value problems of 

two-dimensional elastostatics, because of their simplicity and 

also because they present biharmonic functions in terms of 

harmonic functions.

Almansi representations are in fact the analogue of 

Muskheiishvili's complex-variable formulation which will be 

explained later on.

. . 21.2 Almansi representations: x ,v ,r -forms

Let x be a harmonic function in some simply-connected 

domain B bounded by a contour 3B, i.e. x is continuous

everywhere in B+3B, is differentiable to the fourth order in 

B, and satisfies the equation

V4* = V2(V2x) = 0  in B. (1.2.1)

It was shown by Almansi, E. (1897) and is also proved in 

Appendix I that we may always write

X = x<p + \p (or y (p + i/z) in B+3B, (1.2.2)

where </>, iji are harmonic functions in B. This

representation effectively reduces the theory of biharmonic



functions to that of harmonic functions. Note that <p, 0

are not unique for a given x, since

x0 + i// = O=>0 = a + by, ip = -ax - bxy, (1.2.3)

for arbitrary constants a, b, which is a serious limitation 

from the point of view of numerical attack.

An equivalent alternative to (1.2.2) is

X = r2<p + >p; r2 = x2 + y2 in B+3B, (1.2.4)

since <p, i[t are now unique harmonic functions for a given 

X . A formal proof of the uniqueness has been given by 

Jaswon, M.A. and Shidfar, A. (1980) who proved that the 

functional equation

r 2<p + ip = 0, (1.2.5)

has only the two independent non-trivial solutions

-1
(p = r  cos 9 , -rcose

or > '

<p -  r 1sin0, 'll = -rsin0

which could not exist in B if the origin (r = 0)

(1.2.6)

lies in

B.

It may be seen that (1.2.2) forms the real-variable analogue 

of Muskhelishvili's complex variable representation. This 

aspect will be studied in detail in Part II.

14



1.3 Transformations into the x-or v-forms

First it may be verified by direct analysis that each of the 

x-or y-forms can be transformed into the other. To see this 

let us start with the important identity

(x+iy) (<p+i(p*) = (x<p-y<p*) + i(x0*+y<£), (1.3.1)

in which <p, <p* form a pair of conjugate harmonic functions.

Now since (x+iy) (<p+i<p*) is an analytic function, therefore

the expressions in brackets on the right-hand 

conjugate harmonic functions, i.e. writing

side are

h = x<p - y0*; v2h = o,

we have

(1.3.2)

h* = x<p* + y 0; V2h* = 0. (1.3.3)

It follows from (1.3.2), (1.3.3) that

xcp = ytp* + h "j 

y<p = -x<p* + h *  J
(1.3.4)

which are the desired transformations. For instance, if 

X -  xlogr, according to the transformation (1.3.4) we obtain

xlogr = y8 + (xlogr - y0), 

in fact here we have

(1.3.5)

<p = logr, <p* = 0, h = xlogr - y0; V2h = 0. (1.3.6)



Similarly

ylogr = -x0 + (ylogr + x0), 

where in this case

<p = logr, cp* = 0, h = ylogr + x0: V2h* =

In order to transform the r2-form into the 

note that

r 2(p = x 2 <p + y20 = x(x0-y0*) + y(x0*+y0)

= xh + yh*,

where h, h* are defined in (1.3.2), (1.3.3)

Now by virtue of (1.3.4) we have

yh* - xh + (yh*-xh),

so

r 2<p = 2xh + (yh*-xh)

= 2x(x<p-y<p*) + { (y2- x 2)(p + 2xy cp *},

where

V2{(y2-x2)0 + 2xy0*} = 0.

Similarly we obtain

r2<p = 2y (x<p*+ycp) + { (x2-y2)<p -  2xy<p*}, 

where also

V2 { x 2- y 2)cp - 2xy</>*) = 0.

16
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x-or y-forms,

(1.3.9)
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(1.3.10)

(1.3.11)

(1.3.12)

(1.3.13)

(1.3.14)





which shows that the relevant harmonic functions could be 

multi-valued.

To obtain (1.4.2) directly we operate upon both sides of

2(1.4.1) by V , which gives

ax 2 (h + x ah , ah. 
si + y -

(1.4.5)

i. e .

h+r ah
d r

1
2 ax ’ (1.4.6)

This is 

equation 

analysis 

Jaswon, 

formulas

a form of the two-dimensional Bergman-Schiffer 

(Bergman, S. and Schiffer, M. 1953). A complete 

and solution of equation (1.4.6) has been given by 

M .A . and Shidfar, A. (1980), which covers the

(1.4.2).
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Chapter 2

Biharmonic Boundary-value Formulations

2.1 Introduction

In this chapter we develop more analysis for the Almansi 

representation. In particular we show how to exploit the 

Almansi representation in the solution of boundary-value 

problems, covering formulations for interior, infinite 

exterior and also ring-shaped domains. This development 

involves Hadamard's various existence-uniqueness theorems 

relating to biharmonic problems.

2.2 Interior simply-connected domains

The first systematic account of biharmonic boundary-value 

problems was given by Hadamard, J. (1908). In particular he 

showed that, if a set of values of a function x and its 

normal derivative x' are prescribed on 3B, then x can be 

uniquely determined within the interior domain B^, such that

X is continuous and has continuous derivatives up to the

fourth order within B^ and satisfies equation (1.2.1).

This is an existence-uniqueness theorem. To construct x in 

B, we utilise the representation (1.2.4) and note that it 

holds on 3B, since x, <P,  ̂ remain continuous at 3B, i.e.

X = r 2(p + i// on 3B. (2.2.1)

Also an accompanying normal derivative holds on 3B, i.e.

X ' -  (r20+1//) ' = r ?'(p' + 2rr ' (p + \J) ' on 3B. (2.2.2)

19



These provide a pair of coupled functional relations for the

four boundary functions 0, 0, 0', 0' in terms of X, X ' on

3B. However only two of these are independent since, in

principle, <p ' is known on 3B if 0 is known on 3B and

similarly for ij j , \¡>' .

An effective way forward is to represent <p, i¡1 as 

simple-layer logarithmic potentials generated from sources on 

3B, i.e. we write

0 (P) 

0(P)

g(P/q)o'(q)dq

3 B

g(P,q) V ( q ) d q
3 B

p e B+3B, q e 3B (2.2.3)
|P| s r.

Here p = (p1,p2) is the field point, q = (q1,q2) is the

source point, dq is an elementary interval of 3B at q; 

cr, 77 are source-density distributions to be determined, and

g(P/q) = log|p-q|. (2.2.4)

Also, Kellogg O.D. (1929)

</>'( P) - g '  ( P / q ) 0' ( q ) d q  +  n a ( p )
3 B

> P ,q e 3B, (2.2.5)

0' (P) g'(p,q)V (q)dq + nv(p)

3 B

where g'(P/q) denotes the interior normal derivative of 

g(p,q) at p keeping q fixed. Inserting (2.2.3), (2.2.5)

20



into (2.2.1) and (2.2.2) yields a pair of coupled boundary 

integral equations for cr, rj in terms of x, X ' • With these 

known, we may generate <p, 0 and therefore x throughout

B. Exact or even approximate analytical solutions are 

generally out of the question. However numerical solutions 

to acceptable accuracy may be achieved by fast computers 

implementing well established discretisation procedures. 

This approach has been applied to deflection problems of thin 

plates, including a numerical refutation of Hadamard's 

celebrated conjecture, and in two-dimensional stress 

analysis, Brown, I.C. and Jaswon, E. (1971). More recently 

(Bhattacharyya, P.K. and Symm, G.T. 1979, 1984), it has

been applied to two-dimensional displacement problems and 

to mixed boundary-value problems, though here the

representation (1.2.2) is preferable to (1.2.4).

2.3 Infinite exterior domains

For infinite exterior domains, unlike interior domains, 

neither 0 nor 0 as represented by (2.2.3) covers the 

possibility of a constant in x • In fact it follows from

(2.2.3) that

0(p) = log Ip cr(q)dq-|p -2 (p.q)cr(q)dq+0( Ipl 2),

SB SB

as r », (2.3.1)

with the same formula for 0, see Jaswon, M.A. and Symm, G.T. 

(1977). Thus the Almansi representation must be extended in 

this case by writing

21



(2.3.2)X ~ r20 + \Jj + K; p € Be + dB,

where <p, are defined by (2.2.3) and k is an unknown 

constant balanced by the side condition

<x(q)dq=0. (2.3.3)

5 B

This ensures the absence of log r in <p and therefore of

2

r logr in x , which may be justified by Hadamard's uniqueness 

requirement (Hadamard, J. 1908)

X = 0(r) as r = |p|— >• oo. (2.3.4)

Now (2.3.2) holds on dB so that we may write

X ~ T2<p + i/j + k; p e SB. (2.3.5)

Coupling (2.3.5) with

P) = ( r 2<p + \!) + k)^ ; p e 3B, (2.3.6)

and utilising (2.2.3), (2.2.5) together with the side

condition (2.3.3), we have sufficient boundary equations fork,

cr, v to be determined, so enabling cp and ip, and hence x

to be determined in B .e

2.4 Ring-shaped domains

For a ring-shaped domain B bounded externally by 3BQ and 

internally by 3B^ which encloses r = 0, Fig. 2.4.1, the 

Almansi representation must be extended by writing

22



(2.4.1)

£(p) = r <p + i// + axlogr + bylogr;

P = (x,y) € B + <3Bq + 3B]l ,

where <p, ip are defined by (2.2.3) and a, b are unknown 

coefficients balanced by two appropriate side conditions.

Note that

<MP) = g(P/q)o'(q)dq +
V  A *

g(P/q)cr(q) dq;
SB. SB,

p e B + SB + SB , g (p,q) = log|p-q|,
A»* i  ^  y**

where - see (2.3.1) -

(2.4.2)

g(p,q)cr(q)dq = log|p|

SB.

cr(q) dq

SBi

- i P I 2 (P-q)o-(q)dq + O ( I p I 2) as r = |p|.

SBi"

(2.4.3)

Now

P-q = P1q1 + P2q2 ; P = (x d) = (rcose, rsinö), (2.4.4)

2 3



therefore

- cos© sin0_ 

rqi + - —  q2 '
(2.4

so that

1 
r2J

(p.q)o-(q)dq = cose
r

q1cr(q) dq

SB. SB,

sin©
r

f
q2<j(q)dq, (2.4

aB!

p is fixed in these integrations.

the conditions

/
q10'(q) dq

y ■ °' 1 q cr(q)dq = 0, (2.4

5Bl 3 B1

the absence of r 1cos0, r 1sin0 in <p, i. e .

of rcos0, rsin0 in r2<p, which are covered by

Coupling (2.4.7) with the boundary conditions

X = r <p + ip + axlogr + bylogr

X ' = (r <p + ip + axlogr + bylogr)

; (x,y) e B+SB0+3B1

(2.4

we have sufficient equations to determine a, b, cr, v .

6)

7)

the

I//.

8 )

24



Chapter 3.

Some Radially Symmetric Problems via Almansi Representation

3.1 Introduction

Having familiarized ourselves with the two-dimensional

Almansi representation and also the Hadamard existence 

uniqueness theorem it is intended to solve some radially 

symmetric boundary-value problems by utilising this

representation. We shall consider various representative 

types of domain, i.e. interior, infinite exterior and 

ring-shaped domains as follows:

C-l: Interior domain B. of a circle of radius a with thel
boundary 3B(r=a),

C-2: Infinite exterior domain B of a circle of radiuse
a with the boundary SB(r=a),

C-3: Ring-shaped domain bounded by two concentric circles,

i.e. internally by 3B1 (r=a) and externally by

5B0 (r-b).

3.2 Problem C-l

The problem is to identify a biharmonic function x in 

where x, X| are pre-assigned on SB as follows:

X(P) = a" (3.2.1a)

p e SB.

(P) = -2a (3.2.1b)

writing

X = r <p + \Jj ; P = r s a, (3.2.2)

V)



and noting that the problem is radially symmetric, it follows 

that

<p = a (a constant) , y) = (3 (a constant) , (3.2.3)

since these are the only available radially 

harmonic functions inside r  ̂ a. If so

symmetric

X = a2a + (3; r z a . (3.2.4)

By continuity representation (3.2.4) holds on the 

so giving from (3.2.1a) the boundary relation

boundary,

*(a) = a 2 <p (a) + i//(a) = a2; r = a,

i. e .

(3.2.5)

2 „ 2a a  + ¡3 = a  ; r = a. (3.2.6)

Associated with (3.2.2) is the normal derivative relation

X [ (a) = ( r 2<p+\p) i ; r = a,

i . e.

(3.2.7)

-2aa + a20 i + \ p = -2a,r l  ̂l
(3.2.8)

on bearing in mind

h  = * i  = ri - - < a l >  “ -1 -r=a
(3.2.9)

Relations (3.2.6), (3.2.8) form a pair of linear 

for the constants a ,  ¡3 giving

equations

a = 1, (3 = 0 ; r = a , (3.2.10)

26



so yielding the representation

2
X = r

as was anticipated.

r ^ a , (3.2.11)

3.3 Problem C-2

In this problem we propose to determine the biharmonic

function x in B (r3 ' a) subject to the boundary

conditions

X {p ) = a2 

= 2a

i

1'

p e 3B. (3.3.1)

Pursuing the analysis 

representation

of the preceding chapter, we adopt the

X(P) = r 2cp + ip ; ¡PI = r a a, (3.3.2)

subject to Hadamard's uniqueness requirement

X = 0(r) as r— -̂ co. (3.3.3)

Since the problem is radially symmetric, therefore the only 

available harmonic functions <p, <A in r  ̂a are

<p = a  + /31ogr, ip = 7 + Slogr, (3.3.4)

where a ,  (3, y , 5 are constants to be determined. However, 

because of (3.3.3) it follows that

<p = 0 i n r ^ a .  (3.3.5)

27



If so

X(r) = t//(r) = ? + 5logr; r s a, (3.3.6)

i.e. £ is in fact a harmonic function in r i 8.

By virtue of (3.3.1) we obtain

*(a) = (r + Slogr) _ = y + Sloga = a2, (3.3.7)2T—3.

X ' (a) = ” (y + Slogr) = f = 2a, (3.3.8)e v ' drv  ̂ ' r=a a

giving

y = a2 - 2a2loga, 6 = 2a2. (3.3.9)

Consequently

*(r) = 2a2logr - 2a2loga + a2; r £ a, (3.3.10)

which contrasts with the interior solution (3.2.11) obeying 

the same boundary conditions.

The exterior representation (3.3.2) differs slightly from the 

representation (2.3.2), i.e.

X(p) = r2<p.+ ip + -k; |p| = r i a. (3.3.11)

This is because in (2.3.2) the harmonic functions , \p 

appear as the potentials

0(P) = | log|p-q|ff(q)dq

3 B
/

(3.3.12a)

= r i a ,

P) l°g|p-q|7](q)dq 

3 B

(3.3.12b)
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which do not cover a constant component in Be> The constant 

k is balanced by the side condition

cr (q) dq = 0 . (3.3.13)

SB

We may easily identify (3.3.6) with (3.3.11) by noting

a = 0,

7 = k,

/3 = o-(q)dq

SB

0

►

Ô = J ?i(q)dq

SB

(3.3.14)

3.4 Problem C-3

In this section we deal with a ring-shaped domain B as 

described in C-3. Although in practice we will see that the 

Almansi representation for the ring-shaped domains is 

inferior to that of Chakrabarty which will be cited next, 

nevertheless it is of interest to investigate the application 

of the Almansi representation to ring-shaped domains.

Choosing the boundary conditions

2 >X(P) = a

X ' ( P ) = 2a

; P 6 aBl'

*(P) = b‘

(P) = "2b-L **

; p 6 av

(3.4.1)

the problem is radially symmetric and we may therefore write 

X(p) = oir2logr + j3r2 + ylogr + 5 ; a ^ r ^ b ,  (3.4.2)
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where a ,  (3, 7 , 8 are constants to be determined. These 

satisfy the two immediate boundary equations

£(a) = aa2loga + /3a2 + -arloga + 5 = a2, (3.4.3)

X (b) = ab2logb + /3b2 + jlogb + 6 = b2. (3.4.4)

They also satisfy the normal derivative equations

* é (a) = fr(“r2logr + 2 +  ̂lo<5r + 5)r=a,

i . 0 .

(2aloga + a ) a  + 2aß + - = 2a,cl (3.4.5)

and also

X [ ( b )  = - " ( a r 2logr + ß r2 + 7logr + 5)' r=a '

i. e .

(2blogb + b)a + 2hß + g = 2b,

so providing four linear equations

a2loga 2a Ioga 1 a 2a

b2logb b2 logb 1 ß b2

2aloga + a 2a 1
a 0 7 2a

2blogb + b 2b 1
b 0 5

-

2b
-

which has the solutions

/3 =  1 ,  ot =  5 =  j  =  0 .

(3.4.6)

(3.4.7)

(3.4.8)
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Accordingly we get

/ \ 2X(r) = r ; a i r ^ b, (3.4.9)

which satisfies the conditions of (3.4.1) as expected.

3.5 Limiting investigations

The results for C-l, C-2 can be achieved by considering the

ring-shaped domain C-3 and letting either a— *-0, or b-- ĉo,

as appropriate. For instance we may obtain (3.3.10) by 

introducing

X(P) = a"

*4(P) = 2a

; p € aBi'

x(p) = 0

x- ( p ) =  oJL ^

; ? e aBo'

(3.5.1)

i.e. the conditions on SB^ remain unaltered. Now as before 

we have

X -  ar2logr + /3r2 + rlogr + 5; a ^ r ^ b ,  (3.5.2)

which yields the equations (3.4.3), (3.4.5) as they stand and

equations (3.4.4), (3.4.6) with the right-hand sides replaced

by 0,0 respectively. If so,

4a2b2(loga-loqb)
A

-a^+a2b2-2a2b2loga+2a2b2logb+4a2b2log2b-4a2b2logalogb
A

V
2 2 2 2 2a_b__[a_-b_]_

A
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(3.5.3)

2 2 2 8 = a -oca loga-/3a -■yloga,

where

A = - [ (a2-b2) 2+4a2b2 (loga-logb)2] * 0; a < b. (3.5.4)

Now it follows that

a, /3— -0,

7— - 2 a2,

2 25— - a  - 2 a Ioga 

which yields

as b — =-ra,

■2a logr + a - 2a Ioga as

(3.5.5)

(3.5.6)

This conclusion is in agreement with (3.3.10).

p e 3Bq .

(3.5.7)

Now by utilising (3.5.2) we' have the equations (3.4.4), 

(3.4.6) as they stand and equations (3.4.3), (3.4.5) with the

right-hand sides replaced by 0, 0 respectively. If so, it 

follows that

Also (3.2.11) may be obtained by introducing

Z(p) = o

, ; p e 3B ,

Zp(P)  = 0

Z(P) = b

X \ (P) = “2b
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a, ? , 8 — --- -> 0

/3 —

>

which yields

2
* --- r

as a — * 0 , (3.5.8)

as a --0 , (3.5.9)

in agreement with (3.2.11) •



Chapter 4_

Some Non-Radially Symmetric Problems Via Almansi

Representation

4.1 Introduction

In this chapter we construct the analytical solutions for 

several types of non-radially symmetric problem, as an 

illustration of the importance of the Almansi representation 

in biharmonic boundary-value problems. As before we will be 

dealing with the three major categories of domain C-l, C-2, 

C-3. Clearly, in non-radially symmetric cases, if x ,  X '  are 

pre-assigned on circular boundaries, then the source-density 

distributions cr, r, will be functions of 9 .

In this chapter, as in the preceding chapter we employ direct 

techniques to avoid solving the relevant boundary integral 

equations for the sources concerned.

4.2 Problem C-l

We propose to determine x in Eb (r  ̂ a) subject to the 

boundary conditions:

X(p) = «X

X\ (P) = f3x -1 r-* 1

p e SB, (4.2.1)

where a ,  ¡3 are two given constants and p = (x,y)

= (rcosQ, rsinQ)' ' r=a



If so (4.2.1) can be written

*(p) = aacosS

■ ; p e 3B.

Z[(P) = -|3cose ,

(4.2.2)

Now introducing

X = r20 + 1jj ; r i a, (4.2.3)

the simplest possibilities for 0, 0 which 

(4.2.2) are

could meet

0 = Arcos©, 0 = Brcose ; r s a, (4.2.4)

where A, B are constants to be determined. Accordingly

X = r20 + 0 = (Ar3+Br)ccs0 ; r s a, 

so that (4.2.1) gives

(4.2.5)

X(a,0) = (Aa3+Ba)cos0 = aacos0, (4.2.6a)

X\ (a, 0) =-^-[(Ar3+Br)cos0 ]
1 ar r=a

= - (3Aa2+B) cos0 = -|3cos0, 

yielding the solutions

(4.2.6b)

A = , B = 2SI§ .
2a2 2

(4.2.7)

Accordingly

0 = rcos0, 0 = rcos0 ; r s a,
2a2 2

and hence

(4.2.8)
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(4.2.9)2 , , , rr (ß-a) , r ( 3 a - ß ). _^ = r <p + i// = [---u + -->■-- LL]cos0; r  ̂a,
2a2 2

which has the preferable form

rß-a 2 , 3 a-ß .X = [ L - -  r + -- L]x;
2a 2

r s a. (4.2.10)

It can be easily checked this x satisfies the boundary 

conditions (4.2.1).

Putting a  = ¡3 in (4.2.10), we see that

X = a x  ; r ^ a ,  (4.2.11)

which is the expected solution for a harmonic function having 

the compatible boundary data

*(P) = ax, (p) = ax! ; p e SB.
rJ  -L ^  /~<

(4.2.12)

It is interesting to write

<P( P) = log|p-q|a(q)dq

3B

'P(P) = log|p-q|7)(q)dqiJ J r* s*/
3 B

> ; p e B.+B +3B, (4.2.13)l e

since we can obtain a , 7] immediately from the formulae

d>'. + d>'

iJj'. + ilt' i e

= 2rrcr

= 27TT|

on 3B, (4.2.14

3G



see Jaswon, M.A. and Symm, G.T. (1977) . Note that

corresponding with (4.2.8),

tp = cose, I{j = cos© ; r i a, (4.2.15)r 2r ' y 2r

so that

2ncr = <y. + <p' Y1 re
d ,/3-a 0. , d ,ß -a= - --(* rcose) + --(’ cose, ' 2 ‘ r=a , 'dr 2a dr 2r

r=a

--- cose,
2a

(4.2.16a)

„ , , , , d , 3a -ß  d ,3a -ß  227T7] = lAi + tA' = -  - r - ( - - - L rcosö + j - ( - - - La cos0)^e d r v 2 ' r=a d r v 2r r=a

= (|3-3a)cos0. (4.2.16b)

Accordingly

cr = ---- cose,
22iza

ß -3 a
V = ’---

2n
os 0 on SB. (4.2.17)

To fix ideas, note that,by using the Hilbert integral formula 

- see Jaswon, M.A. and Symm, G.T. (1977) - we obtain

log ] p-q I cr (q) dq = [ log | p-q | -^--^cos0 . dq = ^--cos f

SB SB 2rra 2a

) ; r=a,

l og  I p - q I T ( q)dq
J AS

log I p-q I -^----^-cosedq = -g--acosT 
2TT 2

SB SB
(4.2.18)

where p = (acosr , asint ); q = (acose, asine), in agreement 

with (4.2.15), for r=a. From these results it may be 

deduced that the integrals define cp, \Ji everywhere.
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4.3 Problem C-2

We now determine x in Bg subject to the boundary 

conditions

X (p ) = ax

*4 (P) =

p 6 SB , (4.3.1)

where a, ¡3 a r e  given constants and p = (x,y) 

(acos0,asin0). If so the conditions (4.3.1) can be written

^(p) = aacos©

^¿(P) = /3cos0

p € SB. (4.3.2)

The representation

X = r <p + \J] ; r  ̂ a (4.3.3)

is now subject to Hadamard's uniqueness requirement

X = 0(r) as r-- co,

which suggests

, Acos0 
*  ” r ■

/ - §222§v -  r ' r — a , (4.3.4)

where A, B are constants to be determined. Now proceeding 

as before we obtain

_ a+g B = 2=6 a2. (4.3.5)
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Accordingly

l922§
2r «A = i ° : l § l l 2_ 222? l

2r r a a, (4.3.6)

and hence

X = r 2<p + ip = [-|^r + --|^--^-]cos0

•a+g + j r  ̂ a. (4.3.7)
2r

It can be seen that:

1. x is a biharmonic function satisfying the boundary 

conditions(4.3.2) .

2. x is a well-behaved biharmonic function, i.e.

X = 0(r) as r— ->oo.

3. Putting a =|3 in (4.3.7), we get

X = arcosS = ax; r  ̂a,

which is an expected result as already noted in (4.2.11) for 

the corresponding interior problem.

Finally,writing

<P(P) = log|p-q|o'(q)dq

9 B

0(P) = log|p-q|7](q)dq

9 B

p e B.+B +9B, (4.3.8)z i  e ' K
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where corresponding with (4.3.6)

0 = i«±êlï222§ , 0 = i“=êlE222§ ; r < a, (4.3.9)
2a

and utilising (4.2.14), we obtain

cr = ----- cos0, 
- 2 n a 2

T) = ^-- cose on SB. 
2 t t

(4.3.10)

Consequently by using the Hilbert integral formula we have

log|p-q|cr(q)dq = log I p-q I -£-i@l_cos8 • dq =

SB SB -2 n a
---cose
2a

log|p-q|n(q)dq =
V  v  v

log | p-q |-^|--^cos8dq = -^---^acos6

; r=a,

SB SB

(4.3.11)

in agreement with (4.3.6) for r=a.

4.4 Problem C-3

Let x, X ' be given on the boundary of the circular ring as 

follows:

*(P) = x

p e SB.

^4(p) = o .

z(p) = 0

>

x[(p) = o J

p e SBq . (4.4.1)

Utilising the Almansi representation (2.4.1) we write

2
X = r <p + ip + axlogr + /3ylogr; a  ̂ r  ̂b, (4.4.2)

an



where a, ¡3 are constants to be determined. It follows from 

the boundary conditions (4.4.1) that this takes the form

X = r2 (k+k^rcos0+kQ-"-+dlogr) + (K+Kn rcos0+KQ-” -+Dlogr)

+ arcosQ logr, (4.4.3)

in fact the contribution /3ylogr is clearly not relevant 

here. We see that (4.4.3) involves 9 constants to be 

determined. However only 8 linear equations arise from 

meeting the boundary conditions (4.4.1), as will be developed 

below. The difficulty may be resolved by noting that the term

r2(kQ--|-), i.e. kQrcos0, (4.4.4)

is clearly covered by the term K^rcosS. This means that we

may omit the term kQ--p- without loss of generality, so

leaving only 8 unknown coefficients to be determined from 

the 8 linear equations. These subdivide into two distinct 

sets of equations as follows:

- I '
2 2 ' 

a a loga loga 1 k 0

b2 b2logb logb 1 d 0

2a a(l+21oga) - 0
3 .

D 0

2b b (l+21ogb) g 0 K 0

and

3 -, 1
a a l o g a  a X

M

a

b 3 b l o g b  b g a 0

3 a 2 1 + l o g a  1 --
K 1

0

a

2 — 1
3 b  1 + l o g b  1 0

b 2 -

(4.4.5)

(4.4.6)
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The system of equations (4.4.5) is homogeneous; also noting 

that, since 0 < a < b,

2a a2loga loga 1

b2 b2logb logb 1

2a a (l+21oga) 1
a 0

2b b (l+21ogb) 1
b 0

= -¿[(a2-b2)2- 4a2b2 (loga-logb)2] * 0, (4.4.7)clD

it only has the trivial solution

k = d ll o ii * ll 0. (4.4.8)

Also the system of (4.4.6) has always a unique solution since

3a aloga a 1
a

b3 blogb b 1
b

det — n
3a2 1+loga 1 - L

2
a

2 -1
3 b 1+logb 1

b2J

ll 2, 2 . 2 b (a ,2. r/ 2 .2. -b )[(a -b ) + (a2+b2) (logb-loga)] * 0,

(4.4.9)

An interesting conclusion may be obtained from (4.4.6) by

letting b- keeping a fixed We have

k. = 0  (— —  o , a = o ( — ---) — 0, ;
b logb logb

as b — >-oo.

K„ 1
2 K0—  V

(4.4.10)
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Accordingly from (4.4.3), (4.4.10),

X--- >|(1 + ~2^X aS b— (4.4.11)
r

is agreement with (4.3.7), when a = 1, ¡3 = 0 .

Similarly by letting a— *-0, keeping b fixed in (4.4.6), we 

get

k , a, K , Kq ---*■ 0 as a— >-0. (4.4.12)

Accordingly from (4.4.3), (4.4.10),

X--- *■ 0 as a — *-0, (4.4.13)

in agreement with (4.2.10), when a  = ¡3 = 0 .
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PART II

CHAKRABARTY REPRESENTATION



Chakrabartv Representation Theory

5.1 Introduction

Despite its mathematical simplicity and ease of numerical 

implementation, the Almansi approach has not proved popular 

with engineers. Apart from competition with conventional BEM, 

it must be said that the sources concerned do not have clear 

physical significance. Indeed they only serve to generate the 

potentials <p, 0 which are themselves subsidiary to x- We 

owe to Massonet, C.H. (1948) the idea of sources on SB which 

generate directly the quantities of engineering interest in 

B. However the idea could hardly be carried much further at 

that time. A few years later (1956) there came a second paper 

in which he formulated the traction problem as a vector 

integral equation of the second kind for the Neumann problem 

of vector potential theory.

A two-dimensional approach utilising biharmonic potentials has 

been put forward by Chakrabarty, S.K. (1971). This seems
n ,

closer than conventional BEM to the spirit of Massonet's 

original paper.

Chapter 5

5.2 Biharmonic potentials

Note that the function r2logr is a singular biharmonic 

function. More precisely

V2(r‘"logr) = 4 + 41ogr

/ '

V4(r2logr) = 4V2logr = 8n8 (r)

(5.2.1)



is Dirac's delta function defined by

\

5 (p-q) = 0 ; p * q
w  a /  / v

where r denotes the radial distance from the origin and 5

6 (p-q) = 00; p = q ; \ P , q € B,^ ~ I ^ ^(
6 (p-q)dp = 1) r* ~

B /

(5.2.2)

where dp stands for the element of area at p. If so

V2 (-r2+r2logr) = 41ogr, V4 (-r2+r2logr) = 8rr5(r). (5.2.3)

These properties suggest that a suitable 

fundamental solution would be

biharmonic

G(p,q) = ~|P-q|2 + |p-q|2log |p-q|, (5.2.4)

which was first suggested by Chakrabarty, S.K. (1971). This

allows us to construct the simple-layer biharmonic potential

fi(p) = G(p,q)C(q)dq; p e B + SB, q e SB,
" J ~ " — ^ "

SB

(5.2.5)

where £ is a source-density distribution to be determined.

An interesting generalisation of (5.2.4) will be discussed in 

section 6.3.

An arbitrary x in B may always be represented in the form 

x = n + iA; V2«// = o in b . (5 .2 .6)
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To prove this we note that

V2*(p) = V2Q(p) = 4 V G(p,q)C(q)dq

3B

= 4 log|p-q|C(q)dq;

3 B

p 6 B + 3Bj 

q e 3B

(5.2.7)

Now V2* is a known harmonic function

always be written in the form (2.2.3),

. . 2 determined on 3B in terms of 7 x on 3B.

in B, which 

i.e. Ç may 

If so

may

be

v2{x(P) 4 G(p,q) C(q)dq)

3B

0; p e B + 3B, q e SB,

which implies the representation (5.2.6). This also holds on 

3B - see section 5.3 - so providing the boundary relation

X -  ft + on 3B. (5.2.8)

5.3 Continuity of Q in B + SB 

The biharmonic potential

Q(p) G(p,q)C(q)dq;

SB

G(p,q) = -R2 + R2logR; R = |p-q|,

is continuous at the boundary. Thus fixing a field point

pQ e 3B, we see that no problem arises from the contribution

2of R , l.e .
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p-q| C(q)dq P0-q| C(q)dq as P q 6 SB,

3 B d B

where p e 3B or p e B.

However it remains to prove the continuity of

(5.3.1)

U(P) Ç (q) R2logRdq
J ~
3 B

as p__^p e 3B.
~ /v/

(5.3.2)

To do this, first we show that U(p ) exists. Thus let us 

set up a local cartesian co-ordinate system with origin at 

p , where the x - and y - axes are the tangential and normal
v u

directions through p respectively (Fig.5.3.1).

4H



We only need to consider the contribution of the straight line 

interval [-h,h], approximating a small arc of the curve on 

the local x-axis, which is

1(h) 2 | - ( 2 2hJlogh 2h3x log|x|dx = 2 x logxdx =--- — -- .

-h 0

(5.3.3)

Here we have assumed that C(<3) ~ in t îe neighbourhood

of p , so that £ does not enter into the integral (5.3.3).

Now to prove the continuity of (5.3.2), it must be shown that, 

for any preassigned e > 0, the inequality

|U(p) - U(p ) | < e; p e B + SB, (5.3.4)
*+ A* /V

holds for the distance pp sufficiently small. Let

3Bq = (q e SB; |q-pQ | < 5), (5.3.5)

in which <5 is chosen so that

_ i_

NS3log<5-1 < % , 5 < e 2, (5.3.6)
D

e
where N satisfies the inquality

|C(q)I - N; q e SB. (5.3.7)

Now writing

U +  IL (5.3.8)
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where

V P >  = C (q) R logRdq

3B,

) ; P e 3Bq, (5.3.9;

U, (P) = C(q)R logRdq 

3B-3Bq

we have

!D0 (P)| -

dB,

C (q) R2logRdq I £ j |£ (q) R2logRdqj

3B„

i 2N63log5_1 < | ,

(5.3.10)

by noting (5.3.7). Also

V £ o > l  < 3 '
(5.3.11)

so that,no matter where p is located,

lu o<P> - Vj?o>l < I + I = Is •
(5.3.12)

But as p <£ 3B - SB , therefore the continuity of U is 
m* U U d-

obvious, hence

- u i(p0>l < 1 ■
(5.3.13)

for PP0 sufficiently small. Now (5.3.4) follows from

(5.3.• 12) , (5.3.13).
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5.4 Investigation of the normal derivative

By contrast with the simple-layer logarithmic potentials, the 

normal derivative of Q has no jump at 5B. In fact if 

p e SB, then we have

n[(P)

n4(p)

G' (P,q)C(q)dq
I JL ~

3B

; p, q s 3B,
~ aJ

G' (p,q) C (q)dq 

3B

(5.4.1)

where G ' signifies the inward normal derivative of G at p

keeping q fixed, etc. Note that the property (5.4.1) emerges 

essentially from the presence of the term R m  G(p,q).

Although (5.4.1) may be verified by a direct but 

straightforward method analogous to logarithmic potentials, we 

present a simple proof as follows. As before let us set up a 

local co-ordinate system with origin at some point 0 on 3B, 

and the x - and y-axes through 0 are respectively 

tangential and normal directions, as illustrated in Fig.5.4.1.
y A

■p = ( o , y )

—--------------------------- -------------
q  -  ( x , o )

- h
0

h
X

F i  q . 5 . 4 . 1 .



We also take p = (o,y) and q = (x,0) 

small interval on the x-axis, where -h 

without loss of generality we may take 

thus the contribution of Q to I may

nh

h

f(x,y )dx;
j

-h

and I = [-h , h ] is a

< x < h. If so,

C(q) = 1 in I, and

be written

(5.4.2)

where f(x,y) = -R2+R2logR. It follows that

~ 2 ,3, /  2 2 , 4  3, -lh 10 2.
nh "  3 h 1°9v/̂ . + y + 3 y tan ÿ -  2~ Y h

+ 2 y2hlog\/h2+ y2 - | h3,y
(5.4.3)

and that

an._h
3y

a_
ay f(x,y)dx = -6yh + 4yhlogv/n + y 2

-h

+ 4y2tan h
y

(5.4.4)

Also note that

fÿf(x,y) = -y + 2ylog-/x + y2 , (5.4.5)

and accordingly

--f(x,y)dx -6yh + 4yhlogv/h2 + y2 + 4y2tan 1 ^ .

-h

(5.4.5)
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We now examine (5.4.4), (5.4.6) as y— >0. It is easily seen

from (5.4.4) that

a_
ay

h'
f (x, y) dx— »- 0 

-h

as • 0 . (5.4.7)

Also it is seen from (5.4.5) that

ay as y— »-0 , (5.4.8)

so that

£fix,Yl
ay

-h

as y— »-0 . (5.4.9)

Consequently from (5.4.4), (5.4.6), (5.4.7) and (5.4.9)

[ G'(P/q)C(q)dq.J ci r-s
3B

Similarly we conclude that

n,i(P) = f g : (P ,q)C(q)dq.

a b
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Chapter 6

Expansions Of The Biharmonic Potential 0

6 .1 Introduction

So far we have stated some fundamental properties of the 

biharmonic potential 0. In this chapter we carry out more 

analysis for Q by obtaining its exterior expansions. 

Because of Hadamard's existence - uniqueness theorem, we have 

to impose some side conditions for infinite exterior domains. 

Also we consider ring-shaped domains. We shall then be able 

to compare the Almansi representation with that of 

Chakrabarty, and explain the advantages and disadvantages of 

each. This will allow us to choose the more suitable 

representation for any specific problem.

6 .2 Expansions of fi within infinite exterior and 
ring-shaped domains

In order to determine the expansion of fi within B^ 

exterior to SB, we write

where p = (x,y) in B , q = (ÇU/ÇU) on SB, and let r, 9Q. f U  -L Z,

be the angles that p, q make with the positive x-axis
r-» rJ

respectively as illustrated in Fig. 6.2.1. Now by noting the 

expansion - see Durell, C.V. and Robson, A. (1936) -

f2(p) G (P /q)Ç(q)dq; p e B + SB, q e SB, (6.2.1)

dB

00

n=l



p = (x,y)

we have

V2n(p) log|p-q|C(q)dq;
J  r>f

3B

p e B , q s 3B,
/V c V

= 4 ìlog ( I p I 2+ I q I 2-2p. q) Ç (q) dqJ ¿ J-s

3B

= 4
ri „ q , q

g l o g [ ] p I ( 1+ I 2-2 I cos ( 0 - r  ))] Ç (q) dq 
) ¿ ~ P P **’
3B "

= 4 [log IpI + 

3 B

as

00

£ Í3 / lü ip l _ _2 2 § _D Í® l l l  ] ç ( q ) dq 

n=l

I p I ---- »  • (6.2.3)



■

Accordingly, using the property

l
3B n=l

l i
n=l 3 B

(6.2.4)

which can be justified by the theory of uniform convergence 

(Wylie,. C.R. and Barrett. L.C. 1983), we obtain

V2fi(p) = 41ogrf £(q)dq - 4r 1cosr qxC(q)dq

SB 3 B

. -1 •4r s m r

- c o  n , ,  , ,  • .r (b cos nr + b s m  nr) w, , , , . v nc nsq2C(q)dq + 4 ^ --------- n
SB n=-2

as p = r- (6.2.5)

in which q = |q|cos0 , q = |q|sin0 .J- ^ /L r*

Now using

V2 (-r2+r2logr) = 41ogr, V2 (xlogr) = 2r 1 cosr,

2 -1V (ylogr) = 2r sinr, (6 .2 .6 )

we immediately see that (6.2.5) implies

fi(P) = (-r2+r2logr) J  C(q)dq - 2xlogr| q 1 C(q)dq

3B 3 B

2
- 2 ylogr q2 C(q)dq + r ^

3 B n=-2

n
—7 ---r(b cos nr + b sin nr) n(n+l)' nc ns '

as p = r (6.2.7)
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Accordingly

Q(p) = G(p,q)C(q)dq = (-r2+r2logr) C(q)dq

SB SB

- 2 xlogr q 1 C(q)dq - 2ylogr q?C(q)dq

SB SB

+ r I  iEl-iaiH7” i r i5=ilK ( q )dq + h(n+1)
SB n=-2

as r-- (<

1 . e .

fi(r) = (-r2+r2logr) j C(q)dq - 2 xlogr

SB SB

q-,C(q)dq_L

- 2ylogr q9C(q)dq

SB

+ r
n

Y -7 -7 7 7 (b cos nr + b sin nr) + h L n(n+1) v nc ns
n= - 2

as r-- »-co, (<

in which h is the harmonic function

h = (p.q + | q | log|p|)C (q)dq
/ >/

SB

+ 1 [|q|2 I
SB  ̂ n=l

2 V J.3l-iEl--92§_Di§=Il
-n (n+1) ]C(q)dq,

1 . e .

.2.10)

.2.11)

(6.2.12)

h = ax + (3y + Slogr + 0(r 1) as r - (6.2.13)



It may be shown that the constants a, /3, 5 are as follows:

a q1C(q)dq/ 0

3B

C (q) dq, 5 |q|2C (q)dq, 

3B

(6.2.14)

i.e. a ,  ¡3 are essentially the coefficients of -2xlogr, 

-2ylogr in (6.2.10). Note that the results (6.2.14) sharpen

the expression (6.2.13) given in Jaswon, M.A. and Symm, G.T 

(1977).

Within a ring-shaped domain B bounded externally by 3BQ and 

internally by 3B1# which encloses r = 0, - see Fig. 6.2.2
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we write

n(p) = G(p,q) C(q)dq + G(p,q) C (q)dq;

SB, 3B.

p e B + 3B + 3B , (6.2.15)

where the contribution of G(p,q)C(q)dq has the form

3 B.

(6 .2 .1 0 ), and the contribution of G(p,q)C(q)dq for a

3 B,

circle will be discussed in section 6.5.

6.3 Biharmonic Green functions 

Let

G (p, q) = AR2 + BR2logR; p e B + SB, q e 3B, (6.3.1)

where R = |p-q|; q = (|q| cose, |q| sine),
1 ^ nJ v

p = (|p| c o s t , |p| sinx)r>a, see Fig. 6.2.1.

For any choice of A and B, G is a biharmonic Green's 

function, i.e. it is a fundamental solution of the biharmonic 

equation

V4* = 0 . (6.3.2)

In (5.2.4) we have chosen A = -1, B = 1 following

Chakrabarty's suggestion. An alternative choice is A = -1,

B = 2 which gives

G(p,q) = -R2 + 2R2logR, (6.3.3)
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and satisfies the relations

v G (p ,q) = 4 + 8logR

v G (p, q) = 16715 (R)

(6.3.4)

Now introducing the biharmonic potential

n(P) [ -R2 + 2R2logR]C(q)dq, (6.3.5)

oB

we obtain the following exterior expansion for Q:

fi(p) = (-r2+2r2logr) Ç(q)dq - 4xlogr

SB dB

qnC(q)dq
A /

- 4ylogr q2C(q)dg

oB

n
+ 2 r Y —7 ———— (b cos nx + b sin nr) + h, L n(n+1 )v nc ns

n= - 2

as p = r--->< (6.3.6)

in which h is a harmonic function of the form

h = 51ogr + o(r 1) + j. (6.3.7)

where 5 is given by (6.2.14) and j  is a constant.

Clearly (6.3.6), (6.3.7) differ slightly from (6 .2 .1 0 ), 

(6.2.13) respectively. In particular (6.3.7) does not cover 

the term ax + /3y, however it includes a constant which may be 

convenient in some specialised problems.
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6.4 Comparison between the Almansi and Chakrabarty 
representations

We have already introduced some useful expansions of the 

biharmonic potential Q ; however, regarding similar expansions 

of the Almansi representation, it will be of importance to 

have a comparison between these two kinds of representation

and utilise either of them as appropriate. For an infinite

. . . 2 exterior domain the biharmonic functions xlogr, ylogr, r logr

must be excluded from Q by imposing suitable side

conditions. In this case the Chakrabarty representation must

be extended to

£ = fi + i// + ax + by + c; (x,y) e Bg + 3B, (6.4.1)

where a, b, c are unknown constants balanced by the three 

equations

q1C(q)dq = o, q2C(q)dq = o,
{

3B 3B 3B

(q)dq = 0,

(6.4.2)

bearing in mind that these conditions ensure the absence 

respectively of xlogr, ylogr and r2logr in fi, as required 

by Hadamard's uniqueness - existence theorem. However, it 

follows from (6.2.13), (6.2.14) that the linear terms ax+/3y

in h are also eliminated by conditions (6.4.2), so requiring

the explicit introduction of ax+by in (6.4.1). Clearly the

2constant c compensates for the absence of r logr in fi.

As we see from the above analysis and by comparison with the 

Almansi representation (2.3.2), for infinite exterior domains 

the Chakrabarty representation is inferior to that of Almansi 

by reference to Hadamard's requirement.
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However for ring-shaped domains the Chakrabarty approach is

superior to that of Almansi, because the singular biharmonic

.  2  . . .  

functions xlogr, ylogr, r logr could exist within such

domains but are not covered by the Almansi representation,

unless 0, 0 become multi-valued harmonic functions.

6.5 Expansion of Q in C-l

So far we have determined the exterior expansion of Q, i.e. 

the asymptotic expansion (6.2.11) when 3B happens to be a 

circle of radius a. It is also interesting to determine its 

interior expansion in C-l, which is needed in Chapter 8. We 

write

«(P)
2 2

[-R +R logRK (q) dq 
J "
d B

R = |p—qJ; p = (x,y) = (rcosr, rsinr),
^ A/ ^

q = (q1,q2) = (acose, asine);

r  ̂ a , (6.5.1)

where £(q) = £(0). Now it can be shown - see (6.2.9) - that 

G(p,q) = -R2+R2logR = - | q |2 + p.q + |p|2log|q|

+ |q|2log|q| - 2p.qlog|q|
,—t r-f r-/ fJ

+ I q 12 y lEi!ilai_-2 2 s
L n(n-l)

n=2

Ei§lll

+ IP| < |q|• (6.5.2)
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Accordingly

Œ(p) = (-a2+r2loga) j Ç(q)dq - 2xloga

3 B
q n C(q)dq

3 B

- 2ylogaj q 

3 B

C(q)dq

+ a (n-1)
r < a ,

3B n=2

(6.5.3)

in which h is the harmonic function

h a loga Ç (q)dq +
j
3B

( p - q )C (q )d qJ r* ***
3B

+ r
/ n -n .r v r a cos n(0-T),^, 4 ,

[ I  -nT n+ ï ) ---- h C ( q ) d q ;(n+1) r < a, (6.5.4)

3B n=l

Note that expansion (6.5.3) is also true for r = a, in fact

(6.2.10), (6.5.3) provide the exterior and interior expansions 

respectively of the biharmonic potential Q given on r = a.

It is interesting to introduce 

A nf (q) = — + Y (A cos n© + B sin n0) ; q e 3B, (6.5.5)
 ̂ 2 L n n ^

r~ f

n=l

since inserting this into (6.2.10), (6.5.3), we can obtain the

exterior and interior expansions in terms of sin nr, cos nr; 

n = 0 ,  1, 2, .....
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Chapter 7

Some Radially Symmetric Problems Via Chakrabarty
Representation

7.1 Introduction

In the last two chapters we have developed the analysis which 

enables us to solve boundary value problems by utilising the 

Chakrabarty representation. However since this representation 

involves a combination of biharmonic and harmonic potentials, 

our first step is to find the source densities concerned. In 

this chapter we shall embark on the determination of the 

Chakrabarty potentials relevant to the biharmonic 

boundary-value problems C-l, C-2, C-3.

As the Chakrabarty representation is quite new and little

known, its approach has not yet been applied to any

non-trivial problem. However we will consider how the

Chakrabarty representation can be exploited to provide a

formulation of biharmonic boundary-value problems

theoretically competitive with that of Almansi. The 

Chakrabarty representation provides the boundary relations

* = fi + !P

X '  -  f i '  +  ty'

on 3B (7.1.1)

where Q, tJj are defined in (5.2.5), (2.2.3) and fi', ip' are

defined in (5.4.1), (2.2.5) respectively. Accordingly given

X, X' on 5B, we have a pair of coupled boundary integral 

equations for C,, f], which may be solved numerically to 

provide Q, ip, and therefore also x , in the domain concerned.



This aspect will be studied analytically through this chapter

and the next.

7.2 Problem C-l

In this problem we propose to find a biharmonic function x 

in C-l, where x , are given' on 3B as follows:

/ \ 2 ) 
Z(P) = a (7.2.1a)

; p e 3B.

X|(P) = -2a (7.2.lb)

Writing

X = £2 + ip; r  ̂ a, 

and noting the radial symmetry we have*

(7.2.2)

Q = Ar2+ B, ip = C, r s a, (7.2.3)

where A, B, C are constants. If so, from (7.2..2), (7.2.3)

X = Ar2 + D , D = B + C; r a, 

and accordingly from (7.2.1a)

(7.2.4)

*(a) = Aa2 + D = a2; r = a. (7.2.5)

Also from (7.2.1b),

X'. (a) = - ~ ( A r 2+D) = -2aA = -2a. a. x \ / dr' ' r=a (7.2.6)

* Note the absence of r'logr since this becomes singular at 

r = 0.
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Hence from (7.2.5), (7.2.6),

which yields

X = r 2 ; r 5 a. (7.2.8)

A = 1, D = 0, (7.2.7)

7.3 Determination of the potentials Q , ih

It is of considerable interest to obtain the contributions of 

Q, \p to x in (7.2.2). Thus we write

«(P) = |  [-R2+R2logR]C(q)dq 

SB

(7.3.la)

'A(P) = |  t(q)logRdq

a b

> ; p e B . + SB, q e SB,
~  1 z-'

(7.3.lb)

here

R “ |p-qI; q = (acosQ, asinQ), p = (rcosr, rsinr) ,
/%/ r* *  17—a.

(7.3.lc)

and V are sources to be determined. Because of radial

symmetry, these are constants, say 7]Q respectively. If

so

i//(r) = i//Q (a constant)

log|p-q|dq = 2TTa7]Qloga; r  ̂ a, (7.3.2)

SB
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remains to be evaluated. Consequentlywhere 77
0

(P) (p);
-L

p e SB.  ( 7 . 3 . 3 )

From (7.3.1a) we have - see (6.5.3), (6.5.4) for C = Cn »

0(r) = 2an£0 [ (a2+r2) loga - a2]; r s a, (7.3.4)

therefore from (7.2.1b)

ni (a) = " i? [n(r)]r=a = "4TTa2C0loga = -2a, (7.3.5)

so that

^0 27ialoga ' r = a. (7.3.6)

Now from (7.3.4), (7.3.6) it follows that

° (r >  -  r 2 + -• r s a. (7.3.7)

Accordingly from (7.2.2), (7.3.2),

2 . 2, , 2 , a loga-a , ,
' loga v0

= r2 + 9_l29§_5_ + 2rra7) loga; r £ a. 
loga 0 ^

(7.3.8)

By virtue of (7.2.1a) we obtain

2 2/x 2 , a loqa-a , _ , 2
^ (a) = a + -- loga"“ 2rra7]0loga - a , (7.3.9)

which gives



a^l-loga]_ .
^0 _ , 2 27ilog a

therefore

r = a, (7.3.10)

r
#0 (p) log|p q|dq^ y  ̂ ^

3 B

2 2a -a loaa _ ...-- ------  . r £ a . (7.3. 11)
loga

This contribution cancels out the constant term in (7.3.8), to

yield

, x 2X ( r )  = r ; r s a. (7.3.12)

7.4 Problem C-2

We now determine % in C-2 by utilising the Chakrabarty

representation, where the boundary conditions are as follows:

X(P)  = a2 (7.4.la)

■ ; p s 5B.

X ' ( P )  = 2att r*

We write

(7.4.lb)

2 = Q + i/j + k; r  ̂ a, (7.4.2)

where k is a constant to be 

uniqueness requirement,

determined subject to Hadamard's

* = 0(r) as r vm. (7.4.3)

Because of radial symmetry 

(6.2.12) that

if follows from (6.2.10) and

W = A (-r‘ +r"logr) + Blogr; r £ a . (7.4.4)
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Also from (2.3.1), the harmonic function \p will be

ip = Clogr; r  ̂ a ,

where A, B, C are constants to be determined, 

from (7.4.2), (7.4.4), (7.4.5) that

X = A (-r2+r2logr) + Dlogr + k; D = B + C,

Now because of the requirement (7.4.3), we have 

A = 0,

and therefore

X = Dlogr + k; r £ a.

If so, from (7.4.1a),

2
X(a) = Dloga + k = a ,

and from (7.4.1b)

*'(a) = |j(Dlogr+k)r=a = 5 = 2a.

Hence

2 2 2 D = 2a , k = a - 2a loga,

so that

£(r) = 2 a2logr + a2 - 2 a2loga; r  ̂ a.

Clearly it is not possible to determine B, C 

using symmetry arguments.

It follows

(7.4.5)

22 a .

(7.4.6)

(7.4.7)

(7.4.8)

(7.4.9)

(7.4.10)

(7.4.11)

(7.4.12)

separately
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7.5 Determination of the potentials Q , ift 

Writing

n(p) [-R2+R2logR]C (q)dq

3B
p € Be + 3B, q € 3B,

0(P) V(q)logRdq

a b

here

R = |p—q|; q = (acos0, asin©), p = (rcosr, rsinr
A-' s*' ^  A/

and £, -q are constant sources, say £ , 7)

determined. It follows from (7.4.3), that

CQdq = 0,

3B

i. e .

<0 = °' 

so that

n = 0; r a a .

Accordingly from (7.4.2),

X = ^ + k; r i a . (

By virtue of (7.4.1a), (7.4.1b) we get

Z(a) = iA(a) + k = a2, (

(7.5.lb)

' r > a , 

(7.5.1c)

to be

(7.5.2)

7.5.3)

7.5.4)

7.5.5)
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a n d  a l s o

* 4 ( a )  =  04( a )  =  2 a . (7.5.6)

But

0(a) log|p-q|dq
'v' /v/

3 B

2TT7?0 l o g a ,

a n d  a l s o

0 4 (a) = -n0j i°g4 |p-q|dq + m ?0

SB

2tt

= ^oj lä (ad0) + ^ 0  = 2TrV
0

Consequently from (7.5.5)-(7.5.8) we have 

2TraT)0loga + k = a2

v '

2tt7)0 = 2a

i . e .

a . 2 ^ 2,Vq = ~ , k = a - 2a Ioga.

( 7 . 5 . 7 )

(7.5.8)

( 7 . 5 . 9 )

( 7 . 5 . 1 0 )

Therefore

0 (r) lo g  Ip -q Idq 2rrar)0logr ;

SB

a n d  n o w  f r o m  ( 7 . 5 . 4 ) ,  ( 7 . 5 . 1 0 )  w e  d e d u c e

2 2 2 
^ ( r )  =  2 a  l o g r  +  a  -  2 a  I o g a ;

in agreement with (7.4.12).

r ^ a ,

r i a ,

( 7 . 5 . 1 1 )

( 7 . 5 . 1 2 )
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7.6 Problem C-3

We now turn our attention to the ring-shaped domain C-3, and 

we will see that the fundamental idea is closely related to

(3.4.2). Thus considering the boundary conditions

*(P) = a"

\ ; P € dB

(P) 2a

x(p) = b<:

*|(P) = "2b

} ; p e aB0'

(7.6.1)

we utilise the Chakrabarty representation

X = fi + iA; b, (7.6.2)

where

Q(p) = [-R2+R2logRK(q)dq

3B

'P (P) | V (q) logRdq 
9B

(7.6.3a)

} ; p e B + 3B, q e 3B;

(7.6.3b)

3B - SB. + 3B ; R - |p-q|; q = (rcosö, rsinö) . ;

p = (rcosx, rsinr] a^r^b

Now let us split il, i(j as follows:

n — Qq +

*  -  * 0 + * 2

a i r i b, (7.6.4)

here

73



3 B . 
D

( 7 . 6 . 5 a )^(P) = J " [-R2+R2logR]Cj (q)dq

0^(P) = V , (q)logRdq
J a/ J J —'

3B .
1

, ; j =0,1; p e B + 3B, 
q e 3B.

(7.6.5b)

As the problem is radially symmetric, therefore Cj,

j = 1, 2, are constant sources to be determined. If so, 

(7.6.5a), (7.6.5b) we get

QQ (r) = 27rbC0[ (b2+r2)logb—b2] 

fi^r) = 2naC1 [-r2+r2logr+a2logr]

i//Q (r) = 2 T ib 7 )0 l o g b  

ip1 ( r ) = 2rra771logr

; a  ̂ r i b.

J

D

from

(7.6.6)

Since the theory is linear and radially symmetric, we can 

superpose independent solutions determined from C-l, C-2. 

This gives

*(r) = 27rb^0 [ (b2+r2) logb-b2] + 2rra^1 [-r2+r2logr+a2logr ]

+ 2Trb7i0logb + 2Tiag1logr; a  ̂ r  ̂b. (7.6.7)

So that

^ <a) = d h * (r>]r„.

47TabC0logb + 4Tza + 2 (7.6.8)



X[ (b) d f ^ (r)Ir=b

-4TTb^Qlogb + 2naC1 [b-2blogb
2

b J

2 na
"b^l

(7.6.9;

Now by virtue of (7.6.1) , we get four linear equations for 

Cx/ Vq, T71# with the solutions

=  0 , ^0 27rblogb

v = biiilogbi

2Tilog2b
(7.6.10)

Accordingly it follows that

Qx (r) - 0 , <//1 (r) = 0 ,

l ; a s r s b.

„ . . 2 , , 2 b , . . b , 2il_(r) = r + b - 7 — r , i//_(r) = 7 — r - b0 v ' logb ' ' logb

(7.6.11)

Finally from (7.6.2) we obtain

X(r) = r ; a r s b . (7.6.12)

Note that Qq , i//Q introduced in (7.6.11), are as Q, ip in 

(7.3.7), (7.3.11) respectively.
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Chapter 8

Some Non-Radiallv Symmetric Problems Via

Chakrabarty Representation

8.1 Introduction

This chapter provides an interesting application of 

Chakrabarty's representation to some familiar non-radially 

symmetric problems. Also of significance is the exploitation 

of the source-densities in solving these problems.

In conclusion this chapter reproduces results already obtained 

by utilising the Almansi representation.

8.2 Problem C-l

Let us determine the biharmonic function x in C-l where the 

boundary conditions are as follows:

X {p) = ax

here p = (acosr, asinr) and a, (3 are two given constants. 

If so (8.2.1) can be written as

> ; p = (x,y) e 3B, (8.2.1)

£(p) = aacosx (8.2.2a)

' p e 3B.

X[(p) = -/3cost (8.2.2b)

We utilise the Chakrabarty representation

X  =  n + ¡A, (8.2.3)
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where

n(p) [-R2+R2logR]C(q)dq

; D  e B. + SB, a  e SB,

0(p) V (q)logRdq

(8.2.4)

here R= |p-q| ; q = (acos0, asin0) , p = (rcosr, rsinr) , < ,

and Ç, r) are source-densities to be determined. Now since 

only the coefficients of c o s t  in the expansion (6.5.3) 

survive, because of the boundary conditions (8.2.1), therefore 

the source-densities Ç, 77 must be as follows:

Ç(q) = Acos0, 7) (q) = Bcos0; q e SB, (8.2.5)
* * * * * *

where A, B are constants to be determined. If so, it 

appears from the interior expansion (6.5.3), and from

00
n n * _ .

+ j- V £_a__cos_n {0-t }_]7j(q)dq ; p e B. + SB, q 6 SB,
AS -L rJ

(8.2.6)

that the corresponding potentials fi, ifj reduce to

3

fi(r) = (- |- 4- ra2- 2a2rloga) nAcosi ; r s a, (8.2.7)

i//(r) = -Brrrcosi ; r ^ a . (8.2.8)
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Superposing (8.2.7), (8.2.8) gives

3

*(r) = [ (_ I" + ra2- 2a2rloga)An - Brzr] c o s t  ; r £ a.

(8.2.9)

By virtue 

Z(a)

also from

(a)

of (8.2.2a) we have

3

= [ (|- - 2a3loga)A - Bäjrrcosr = aacosr ; (8.2.10)

(8.2.2b)

, 2
= “ är[;t:(r)]r=a = [ ( l “  +  2a2lo<?a)A +  B J t t c o s t

= -ßcosr. (8.2.11)

Solving for A, B:

A
2na

ll2±ß+4aloga-4ßloga}_
2 t t

(8.2.12)

Accordingly

C(q) = --f cose
"  Tia2

; q e SB. (8.2.13)
r->

V(q) - -  (cc+ß + 4o:loga-4/31oga) cose

So we finally obtain

, \ r r3 (/3-a)+ra2 (3a-/3)X(r) = [— -- L----A---'-rjCOSTi r  ̂ a,
2a2

(8.2.14)
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i. e .

Z(r) = + ---@]x ; r i a ,  (8.2.15)
2a2 2

in agreement with (4.2.10) . Note that A = 0 when a = (3, 

i.e. fi = 0 from (8.2.7), therefore x = ^ •

8.3 Problem C-2

We now determine a biharmonic function x 
the boundary conditions 

X(P) = ax

> ; P = (x,y) e SB,

*4(p) =

in C-2 subject to

(8.3.1)

where p = (acosi, asinr) and a ,  ¡3 are two given constants. 

These conditions can be written as

£(p) = aacosr

► ;

*'(p) = |3cosr

p € SB.

(8.3.2a) 

(8.3.2b)

Now we adopt the extended Chakrabarty representation

X = fi + i// + Ax + By + C ; p = (x,y) e B + SB, (8.3.3)
rJ ®

where

H(P) [-R2+R2logR] C (q) dq

S B

!A(P)
r~>

T) (q) logRdq 
, ^
3 B

(8.3.4a)

p e B + SB, q e SB,
^  e  r -J

( 8 .3 .4b )
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here R = |p-q|; q = (q.,q_) = (acos8, asin8),

p = (rcosr, rsinr) , and A, B, C are constants to be
-/ r-a

determined subject to Hadamard's requirements

X = 0 (r) as | p | = r---(8.3.5)

If so, by noting the expansion - see (6.2.11) -

n(p) = ( -r2+r2logr) Ç(q)dq - 2xlogr q n C (q) dq
-A-

SB 3 B

2ylogr q C(q)dq 

3 B

+ r
n

Y — ;~7~r(b cos nr + b sin nr)L n(n+1) v nc ns
n=-2

f -1
+ x q,Ç(q)dq + y q0Ç(q)dq + ôlogr + o(r ) 

; -1 ) *  -,
SB SB

as | p I = r--->-œ(
/-y

(8.3.6)

we must have

C(q)dq qnC(q)dq =
a /

q9C(q)dq = o. (8.3.7)

SB SB SB

These side conditions show that the biharmonic potential Q 

cannot cover the term 0(r) in C-2 - see (6.2.13), (6.2.14) ,

therefore fi no longer makes any contribution to (8.3.3), 

i. e .

Q (p) = 0, p e Be + SB. (8.3.8)

00





Now by virtue of (8.3.2a) we have

£(a) = (-Dan + Aa)cosr = aacosi.

Also, from (8.3.2b),

*4(a) = 5r[x(r)]r=a = (Drr + A) cosx = Pc o s z •

Consequently

A a+13
2 D g-a

271

It follows that

71 <3' = f s a cos0 ;

and therefore

0(r) a!i«I§1
277

c o s t  ;

q e SB,

r a a.

Accordingly

Z(r) [ 5 - ^ 1  + ^f±61]cosx ; r a a,

or

, , ra2 (a-/3) , a+(3.
x(r) = + — L]x ;

2r 2

in agreement with (4.3.7).

r i a ,

(8.3.15)

(8.3.16)

(8.3.17)

(8.3.18)

(8.3.19)

(8.3.20)

(8.3.21)



8.4 Problem C-3

In order to determine the biharmonic function x such that

X(p) = x

*4(P) = 0

X(P) = 0

> ; p € 9B1, f ; P 6 9Bq,

7C\ (P) 0 i

we utilise the Chakrabarty representation

(8.4.1)

*(p) = Q(p) + (P) ; p e B + SB, (8.4.2)

where

n(P ) [-R2+R2logR]C (q)dqz*-'
SB

(P) = 77 (q) logRdq

SB

; p e B + SB, q e SB,
^ r->

(8.4.3)

SB = SB.. + SB ; R = Ip-qI, q = (rcosö, rsinö) ,± U */ rj -L a,D

P - (x,y) = (rcosr, rsinr) a^r^b

Now consider the four potentials

Q. (p)
J rJ

3B ■

[-R2+R2logR]C • (q)dq 
J ^

1
(v ; j =0,1; p e B + SB, q e SB,

0j(P) = V •(q)logRdq 
-J

SB . 
J

(8.4.4)
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where f., 7 7.; i =0, 1 are source densities to be determined
SD J J

subject to the boundary conditions (8.4.1). If so, since only 

the constants and also only the coefficients of c o s t  

survive, therefore £ j, 77̂ ; j =0, 1 are as follows:

(j) (j) ( j ) (j)Ç . = A v J ' + A VJ/cos0, 77. = B VJ/ + B J cos0 ; 3 = 0,1,

(8.4.5)

where A A B B j = 0,1, are 8 constants

to be determined from the expansions (6.5.3), (6.2.10),

(2.3.1), (8.2.6) respectively we get

fiQ (r) = 27rbAQ ̂ 0 ̂ (b2logb+r2logb-b2)

+ rrA.^0  ̂(- + rb2-2rb2logb) c o s t

fi^r) = 2TraAQ ^ ( a 2logr-r2+r2logr)

+ 7ia2A1 ^1^(- + r-2rlogr) c o s t

tf/Q (r) = 2TTbBQ ̂ l o g b  - rnB^^^^cosT

ip1 ( r )  = 27iaB^logr - ttB ^ ^ cost

> ; a  ̂r  ̂b.

(8.4.6)

Superposing these independent potentials gives

X( r )  = nQ( r )  + iî1 ( r )  + 0Q( r )  + ^ ( r ) ;  a 5 r  s b,

(8.4.7)

accord ing ly  we can now determine



*4<a > = - gjUr(r) ]r=a, *!<b) = gj[*(r)]r_b . (8.4.8)

Applying the boundary conditions (8.4.1), we obtain 8 linear 

equations, which subdivide into two distinct sets of equations 

as follows:

2
rra2 ( b - 2 b l o g b -  |g) Tib3 (- -21ogb) -bn:

2 'a
-  b ' 11 PA (°> A1

a

2
Tia"(- - 2 lo g a )  tt (b2-2 b 2lo g b -  |-) -bTT -a tt a / 1» 0

2
7Ta2( -  i - 2 l o g a )  rr ( b2-2 b 2lo g b -  - | - ) -TT n B1(») 0

2 - 
tta2( - —  - l - 2 l o g b )  Tib2( -  -  -21ogb) -71

2a-TT2 Bx'15 0
2b 2 2 b

( 8 . 4 . 9 )
and

2 r r b  ( a 2 l o g b + b 2 l o g b - b 2 ) 2 T i a 3 ( 2 l o g a - l ) 2 T r b l o g b 2 T r a l o g a o
1 < ( 0 )

2 n b "  ( 2 1 o g b - l ) 2 n a  ( a 2 l o g b + b 2 l o g b - b 2 ) 2 r r b l o g b 2 n a l o g b
A o

( 1 )

4 n a b l o g b 4 7 r a 2 l o g a 0 2tt
B o

( 0 )

2
2, a v 0

2 n a
B o

( 1 )4 n b  l o g b 2 r r a  ( 2 b l o g b - b +  g - ) b
_ — -

0

0

0

0

(8.4.10)
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It can be shown that the system of homogeneous equations 

(8.4.10) has no non-trivial solutions, because its 

discriminating determinant has the value

— 16Ti4ab logb[(a2-b2) - 4a2b2 (loga-logb)2] * 0; 0 < a < b.

(8.4.11)

Also the system of equations (8.4.9) has a unique solution, 

since its discriminating determinant has the value

. 4 2 , 2 , 2 .
4 7 T _ a _ _ [ a _ - b _ ) _

b
(a2-b2) + (a2+b2) (logb-loga) ] * 0; 0 < a < b.

(8.4.12)

It should be noted that (8.4.11), (8.4.12) match (4.4.7),

(4.4.9) respectively.
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Some Two— Dimensional Biharmonic Formulations

by

M.A. JASWON and H.ADIBI

Department of Mathematics 

City University 

London

January 1988

Abstract

Useful contributions has been made by Almansi, Massonnet, and Chakrabarty 

to the development of the biharmonic theory. Their formulations are

reviewed and compared and interesting directions of future research work 

are identified.

- 3 . 1 -Potential Problems



1. Introduction

T - o — d i m e n s i o n a l  e l a s t o s t a t i c s  o f f e r s  s c o p e  f o r  s p e c i a l i s e d  b o u n d a r y  

f o r m u l a t i o n s  w h i c h  a r e  n o t  a p p l i c a b l e  t o  t h r e e — d i m e n s i o n a l  p r o b l e m s .  

E v e r y b o d y  i s  f a m i l i a r  w i t h  M u s k h e l i s h v i l i ’ s  c o m p l e x  v a r i a b l e  a p p r o a c h  

( 1 9 5 3 b ) .  H o w e v e r  t h i s  o n l y  w o r k s  w e l l  f o r  d o m a i n s  w h i c h  c a n  b e  m a p p e d  

a n a l y t i c a l l y  o n t o  t h e  u n i t  c i r c l e .  T h e r e  e x i s t s  a  r e a l - v a r i a b l e  a n a l o g u e  

o f  M u s J c h e l i s h v i l i 1 s  f o r m u l a t i o n s  w h i c h  w a s  i n t r o d u c e d  b y  A l m a n s i  a s  l o n g  

a g o  a s  1 8 9 7 .  W i t h  t h e  a d v e n t  o f  d i g i t a l  c o m p u t e r s ,  i t  b e c a m e  t h e  b a s i s  

f o r  a  p r a c t i c a b l e  m e t h o d  o f  a t t a c k i n g  b i h a r m o n i c  b o u n d a r y  -  v a l u e  p r o b l e m s  

t h r o u g h  t h e  n u m e r i c a l  s o l u t i o n  o f  i n t e g r a l  e q u a t i o n s .  A  b r i e f  a c c o u n t  o f  

t h e  t h e o r y  a p p e a r s  i n  S e c t i o n  2 .

A  s i g n i f i c a n t  c o n c e p t u a l  a d v a n c e  w a s  m a d e  i n  1 9 4 8  b y  M a s s o n n e t ,  w h o  

i n t r o d u c e d  ' f i c t i t i v e '  v e c t o r  s o u r c e s  o n  t h e  c u r v e d  b o u n d a r y  o f  a  p l a t e  

w h i c h  g e n e r a t e d  a p p r o p r i a t e  s t r e s s  c o m p o n e n t s  i n  t h e  i n t e r i o r .  T h i s  m a y  

b e  r e g a r d e d  a s  a  p r i m i t i v e  a n c e s t o r  o f  t h e  t h r e e - d i m e n s i o n a l  v e c t o r  

i n t e g r a l  e q u a t i o n s  l a t e r  o n  c o n s t r u c t e d  b y  M a s s o n n e t  h i m s e l f  ( 1 9 5 5 ) ,  a n d  

m o r e  s y s t e m a t i c a l l y  b y  K u p r a d z e  ( 1 9 6 5 ) ,  w h i c h  w o r k e d  w i t h  h y p o t h e t i c a l  

v e c t o r  s o u r c e s  o n  t h e  . b o u n d a r y .  I t  w o u l d  c e r t a i n l y  b e  p o s s i b l e  t o  

d i s c r e t i s e  t h e s e  e q u a t i o n s  o v e r  a  c u r v e d  s u r f a c e  a n d  s o  c r e a t e  a  B E M  

a p p r o a c h  t h e o r e t i c a l l y  c o m p e t i t i v e  w i t h  t h e  e s t a b l i s h e d  B E M  a p p r o a c h .  

T h e s e  i s s u e s  a r e  d i s c u s s e d  m o r e  f u l l y  i n  S e c t i o n  3 .

A  n e w  a n d  l i t t l e  k n o w n  b i h a r m o n i c  r e p r e s e n t a t i o n  h a s  b e e n  i n t r o d u c e d  b y  

C h a k r a b a r t y  ( 1 9 7 1 ) ,  a n d  f u r t h e r  c o n s i d e r e d  b y  J a s v o n  a n d  S y m m  ( 1 9 7 7 ) .  

T h i s  w o r k s  w i t h  b i h a r m o n i c  p o t e n t i a l s  g e n e r a t e d  d i r e c t l y  f r o m  s c a l a r  

s o u r c e s  o n  t h e  b o u n d a r y ,  a n d  i t  c a n  b e  e x p l o i t e d  t o  p r o v i d e  a  f o r m u l a t i o n  

o f  b i h a r m o n i c  b o u n d a r y  -  v a l u e  p r o b l e m s  t h e o r e t i c a l l y  c o m p e t i t i v e  w i t h  

t h a t  o f  A l m a n s i .  A n  a c c o u n t  o f  t h e  t h e o r y  a p p e a r s  i n  S e c t i o n  4 .
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To summarize, bihaxmonic theory continues to flourish, with the aim of 

providing new and more adaptable boundary - value formulations concerned 

with two-dimensional elastostatics.

- 3 . 3Potential Problems



2. Almansi Representation

jjet x  h e  a  b i h a r m o n i c  f u n c t i o n  i n  s o m e  s i m p l y — c o n n e c t e d  d o m a i n  B  

b o u n d e d  b y  a  c o n t o u r  3 B ,  i . e .  x  i s  c o n t i n u o u s  e v e r y w h e r e  i n  B + 3 E ,  i s  

d i f f e r e n t i a b l e  t o  t h e  f o u r t h  o r d e r  i n  B ,  a n d  s a t i s f i e s  t h e  e q u a t i o n

V*x "  V2 (V2x)  “ 0 i n  B .  ( 1)

I t  w a s  s h o w n  b y  A d m a n s  i  ( 1 8 9 7 )  t h a t  w e  m a y  a l w a y s  w r i t e

X  =  x 4 >  +  vj; ( o r  y p  +  ty) i n  B + 3 B ,  ( 2 )

w h e r e  ^  a r e  h a r m o n i c  f u n c t i o n s  i n  B .  . T h i s  r e p r e s e n t a t i o n

e f f e c t i v e l y  r e d u c e s  t h e  t h e o r y  o f  b i h a r m o n i c  f u n c t i o n s  t o  t h a t  o f  h a r m o n i c  

f u n c t i o n s .

N o t e  t h a t  p ,  a r e  n o t  u n i q u e  f o r  a  g i v e n  x *  s i n c e

x b  +  ̂  =  0  -  b  =  a  +  b y ,  4/ =  - a x  -  b x Y ,  ( 3 )

w h i c h  i s  a  s e r i o u s  l i m i t a t i o n  f r o m  t h e  p o i n t  o f  v i e w  o f  a  n u m e r i c a l  

a t t a c h .  A n  e q u i v a l e n t  a l t e r n a t i v e  t o  ( 2 )  i s

X  “  r 2 p  +  * 4 > ;  r 2 * = x 2  +  y 2  i n  B + 3 B ,  ( 4 )

b u t  p ,  vJj a r e  n o w  u n i q u e  f o r  a  g i v e n  x -  S i n c e

p  “  r - 1 c o s e ,  ^  —  — r c o s e

r 2 $  +  -  0  -  / o r  ( 5 )

p  *= r - 1 s i n 9 ,  ”  — r s i n G ,

w h i c h  c o u l d  n o t  e x i s t  i n  B  i f  r  ■= 0  l i e s  i n  B .

T h e  f i r s t  s y s t e m a t i c  a c c o u n t  o f  b i h a r m o n i c  b o u n d a r y - v a l u e  p r o b l e m s  w a s  

g i v e n  b y  H a d a m a r d  ( 1 9 0 8  ). I n  p a r t i c u l a r  h e  s h o w e d  t h a t :
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X a n d  ^  ( 2r x '  ) g i v e n  o n  3 B  -  x  i-3  u n i q u e l y  d e t e r m i n e d  i n  E + 3 B  ( 6 )  

d n

t h i s  i s  j u s t  a n  e x i s t e n c e  t h e o r e m .  T o  c o n s t r u c t  x  i n  B ,  w e  u t i l i s e  t h e  

r e p r e s e n t a t i o n  ( 4 )  a n d  n o t e  t h a t  i t  h o l d s  o n  3 B  s i n c e  x> 0 /  'i' r e m a i n  

c o n t i n u o u s  a t  3 B ;  i . e .

X  =  r 2 q  +  4; o n  3 B .  ( 7 )

A l s o  a n  a c c o m p a n y i n g  n o r m a l  d e r i v a t i v e  r e l a t i o n  h o l d s  o n  3 3 ,  i . e .

X '  =  ( r 2 q  +  q ) ’ =  r 2 0 '  +  2 r r * q  +  o n  3 B .  ( 3 )

T h e s e  p r o v i d e  a  p a i r  o f  c o u p l e d  f u n c t i o n a l  r e l a t i o n s  f o r  t h e  f o u r  b o u n d a r y  

q u a n t i t i e s  q ,  q * ,  v|/' i n  t e r m s  o f  X /  X '  o n  S B .  H o w e v e r  o n l y  t w o  o f  

t h e s e  a r e  i n d e p e n d e n t  s i n c e ,  i n  p r i n c i p l e ,  p '  i s  k n o w n  o n  3 B  i f  q  i s  

k n o w n  o n  3 B  a n d  s i m i l a r l y  f o r  p .

A n  e f f e c t i v e  w a y  f o r w a r d  i s  t o  r e p r e s e n t  p ,  a s  s i m p l e  -  l a y e r

l o g a r i t h m i c  p o t e n t i a l s  g e n e r a t e d  f o r  s o u r c e s  o n  3 B ,  i . e . ,  w e  w r i t e

$(P) g(p»q)c<q)dq

3 B

p  e  B + 3 B

'P(P) - g(P/q)B(q)dq

3 B

q  e  3 B .

( 9 )

H e r e  p  i s  t h e  f i e l d  p o i n t ,  q  i s  t h e  s o u r c e  p o i n t ,  d q  i s  a n  e l e m e n t a r y  

i n t e r v a l  o f  3 B  a t  q  / a, r) a r e  s o u r c e  -  d e n s i t y  d i s r r i b u t i o n s  t o  b e  

d e t e r m i n e d ,  a n d

g(p,q) = log|p-q|. (10)

A l s o ,  K e l l o g g  ( 1 9 2 9 ) ,
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4>'(P) “ g ' ( p , q ) a ( q ) d q  +  rrcr( p ) j

dB
>  p , q  e  dB,

' V ' ( p ) g’(P/q)Ti(q)dq + irn(p)

dB

( 11 )

w h e r e  g ' ( p , c Q  d e n o t e s  t h e  i n t e r i o r  n o r m a l  d e r i v a t i v e  o f  g ( p , q )  a t  p  

k e e p i n g  q  f i x e d .  I n s e r t i n g  ( 9 ) ,  ( 1 1 )  i n t o  ( 7 )  a n d  ( 8 )  y i e l d s  a  p a i r  o f  

c o u p l e d  b o u n d a r y  i n t e g r a l  e q u a t i o n s  f o r  a ,  q  i n  t e r m s  o f  x> X '  • W i t h  

t h e s e  k n o w n ,  w e  m a y  g e n e r a t e  4>, Y  a n d  t h e r e f o r e  x  t h r o u g h o u t  B .  

E x a c t  o r  e v e n  a p p r o x i m a t e  a n a l y t i c a l  s o l u t i o n s  a r e  o u t  o f  t h e  q u e s t i o n s .  

H o w e v e r  n u m e r i c a l  s o l u t i o n s  t o  a c c e p t a b l e  a c c u r a c y  m a y  b e  a c h i e v e d  b y  f a s t  

c o m p u t e r s  i m p l e m e n t i n g  w e l l  e s t a b l i s h e d  d i s c r e t i s a t i o n  p r o c e d u r e s .  T h i s  

a p p r o a c h  h a s  b e e n  a p p l i e d  t o  d e f l e c t i o n  p r o b l e m s  o f  t h i n  p l a t e s ,  i n c l u d i n g  

a  n u m e r i c a l  r e f u t a t i o n  o f  H a d a m a r d • s  c e l e b r a t e d  c o n j e c t u r e ,  a n d  i n  

t w o - d i m e n s i o n a l  s t r e s s  a n a l y s i s  ( s e e  A p p  I ) .  M o r e  r e c e n t l y  ( B h a t t a c h a r y y a  

S  S y m m  1 9 7 9 ,  1 9 8 4 ) , -  i t  h a s  b e e n  a p p l i e d  t o  t w o - d i m e n s i o n a l  d i s p l a c e m e n t  

p r o b l e m s  a n d  t o  m i x e d  b o u n d a r y  v a l u e  p r o b l e m s ,  t h o u g h  h e r e  t h e  

r e p r e s e n t a t i o n  ( 2 )  i s  p r e f e r a b l e  t o  ( 4 ) .
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3 . Massonnet Approach

D e s p i t e  i t s  m a t h e m a t i c a l  s i m p l i c i t y  a n d  e a s e  o f  n u m e r i c a l  i m p l e m e n t a t i o n ,  

t h e  A l m a n s i  a p p r o a c h  h a s  n o t  p r o v e d  p o p u l a r -  w i t h  e n g i n e e r s .  A p a r t  f r o m  

c o m p e t i t i o n  w i t h  c o n v e n t i o n a l  H E M  m e t h o d s ,  i t  m u s t  b e  s a i d  t h a t  t h e  

s o u r c e s  c o n c e r n e d  d o  n o t  h a v e  a n y  c l e a r  p h y s i c a l  s i g n i f i c a n c e .  I n d e e d  

t h e y  o n l y  s e r v e  t o  g e n e r a t e  t h e  p o t e n t i a l s  <$>, 4/ w h i c h  a r e  t h e m s e l v e s  

s u b s i d i a r y  t o  x *  W e  o w e  t o  M a s s o n n e t  ( 1 9 4 8  ) t h e  i d e a  o f  s o u r c e s  o n  3 B  

w h i c h  g e n e r a t e  d i r e c t l y  t h e  q u a n t i t i e s  o f  e n g i n e e r i n g  i n t e r e s t  i n  B .  

H o w e v e r  t h e  i d e a  c o u l d  h a r d l y  b e  c a r r i e d  m u c h  f u r t h e r  a t  t h a t  t i m e .  A  f e w  

y e a r s  l a t e r  ( 1 9 5 6 )  t h e r e  c a m e  a  s e c o n d  p a p e r  i n  w h i c h  h e  f o r m u l a t e d  t h e  

t r a c t i o n  p r o b l e m  a s  a  v e c t o r  i n t e g r a l  e q u a t i o n  o f  t h e  s e c o n d  k i n d ,  

a n a l o g o u s  t o  F r e d h o l m ' s  c l a s s i c a l  i n t e g r a l  e q u a t i o n  o f  t h e  s e c o n d  k i n d  f o r  

t h e  N e u m a n n  p r o b l e m  o f  s c a l a r  p o t e n t i a l  t h e o r y .  A t  a b o u t  t h e  s a m e  t i m e ,  

a n d  i n d e p e n d e n t l y ,  K u p r a d z e  ( 1 9 6 5  ) p r o d u c e d  s i m i l a r  e q u a t i o n s  b u i l d i n g  

u p o n  h i s  s y s t e m a t i c  f o r m u l a t i o n  o f  e l a s t i c i t y  i n  t e r m s  o f  v e c t o r  

s i m p l e - l a y e r  a n d  d o u b l e - l a y e r  p o t e n t i a l s .  H o w e v e r  t h e s e  f o r m u l a t i o n s  w e r e  

n o t  t a k e n  u p ,  p a r t l y  b e c a u s e  t h e y  w e r e  n o t  t o o  w e l l  u n d e r s t o o d  a n d  p a r t l y  

b e c a u s e  f e w  p e o p l e  h a d  a n y  e x p e r i e n c e  w i t h  t h e  n u m e r i c a l  s o l u t i o n  o f  s u c h  

f o r m i d a b l e  e q u a t i o n s .  N o t e  t h a t  t h e y  s u r e  v e c t o r  i n t e g r a l  e q u a t i o n s  o v e r  

c u r v e d  b o u n d a r i e s  i n v o l v i n g  h i g h l y  s i n g u l a r  k e r n e l s .  B y  t h e  e a r l y  1 9 6 0 * s ,  

h o w e v e r ,  i t  b e c a m e  p o s s i b l e  t o  a t t a c k  s u c c e s s f u l l y  t h e  c o r r e s p o n d i n g  

s c a l a r  i n t e g r a l  e q u a t i o n s  o f  c l a s s i c a l ,  p o t e n t i a l  t h e o r y ,  s o  p r o v i d i n g  

n u m e r i c a l  s o l u t i o n s  o f  h i t h e r t o  i n t r a c t a b l e  p r o b l e m s  c o n c e r n e d  w i t h  

t o r s i o n ,  c a p a c i t a n c e ,  c o n f o r m a l  m a p p i n g ,  a n d  p o t e n t i a l  f l u i d  f l o w .

T h e s e  s u c c e s s e s  e n c o u r a g e d  p e o p l e  t o  a t t a c k  t h e  m o r e  d i f f i c u l t  

b o u n d a r y - v a l u e  p r o b l e m s  o f  e l a s t o s t a t i c s , b o t h  t w o  -  a n d  t h r e e  —  

d i m e n s i o n a l ,  s o  e v e n t u a l l y  c r e a t i n g  t h e  f i e l d  o f  E E M  a s  w e  k n o w  i t  t o d a y .  

H o w e v e r  m o d e r n  H E M  i s  b a s e d  e s s e n t i a l l y  u p o n  t h e  B e t t i - S o m i g l i a n a  f o r m u l a ,
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w h i c h  w o r k s  d i r e c t l y  w i t h  b o u n d a r y  d i s p l a c e m e n t s  a n d  t r a c t i o n s ,  i n  

p r e f e r e n c e  t o  t h e  K u p r a d z e  -  K a s B o n n e t  f o r m u l a t i o n  w h i c h  e m p l o y s  

h y p o t h e t i c a l  s o u r c e  d e n s i t i e s  h a v i n g  n o  i m m e d i a t e  p h y s i c a l  s i g n i f i c a n c e .  

I t  i s  w e l l  u n d e r s t o o d  t h a t  t h e  t w o  f o r m u l a t i o n s  a r e  m a t h e m a t i c a l l y  

e q u i v a l e n t ,  b u t  t h e i r  c o m p a r a t i v e  ' n u m e r i c a l  p r o p e r t i e s  h a v e  n o t  b e e n  

t e s t e d .  T h e  r e s u l t s  o f  s u c h  t e s t s  w o u l d  b e  o f  g r e a t  i n t e r e s t .
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4 .  C h a k r a b a r t v  R e p r e s e n t a t i o n

A  t w o - d i m e n s i o n a l  a p p r o a c h  u t i l i s i n g  b i h a r m o n i c  p o t e n t i a l s  h a s  b e e n  p u t  

f o r w a r d  b y  C h a J c r a b a r i y  ( 1 9 7 1 ) .  T h i s  s e e m s  c l o s e r  t h a n  c o n v e n t i o n a l  B E M  t o  

t h e  s p i r i t  o f  M a s s o n n e t ' s  o r i g i n a l  p a p e r .  F i r s t  n o t e  t h a t  r 2 l o g r  i s  a  

s i n g u l a r  b i h a r m o n i c  f u n c t i o n .  M o r e  p r e c i s e l y

V 2 ( r 2 l o g r ) 

7 + ( r 2 l o g r )

4  +  4  l o g  r  

4 V 2 l o g r  “  8 r r 6 ( r )

I f  s o

(12)

V 2 ( - r 2  +  r 2 l o g r )  •» 4  l o g  r

V 2 ( - r 2  +  r 2 l o g r )  =  8 n - S ( r )

(13)

T h e s e  p r o p e r t i e s  s u g g e s t  t h a t  a  s u i t a b l e  b i h a r r o c n i c  f u n d a m e n t a l ,  s o l u t i o n  

w o u l d  b e

G ( J ? , q )  =  - l P - q [ 2  +  l F ~ q | 2  l o q (14)

s o  a l l o w i n g  u s  t o  c o n s t r u c t  t h e  b i h a r o o n i c  p o t e n t i a l

n(p) G(P,q)C(q)dq ;

5 B

p  e  B + 3 B ,  q  ^  3 B , (IS)

w h e r e  C  i s  s c a l a r  s o u r c e  -  d e n s i t y  d i s t r i b u t i o n  t o  b e  d e t e r m i n e d .  I t  

m a y  b e  s h o w n  ( A d i b i ,  1 9 8 3 )  t h a t :

( 1 )  n  e x i s t s  a n d  i s  c o n t i n u o u s  i n  B  a n d  i s  d i f f e r e n t i a b l e  t o  t h e  

f o u r t h  o r d e r  i n  B ;

( 2 )  n  e x i s t s  o n  3 B  a n d  r e m a i n s  c o n t i n u o u s  a s  w e  a p p r o a c h  d B  f r o m  B ;

( 3  ) -  0  i n  B ;
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( 4 )
d n f  o ) 

d n

C'(p,qK(q)dq,

Ö B

p  «  3 B .

An  a r b i t r a r y  x  ^  B  m a y  a l w a y s  b e  r e p r e s e n t e d  i n  t h e  f o r m

x = a + ^ ; 7Z\\I «* 0 in B. (16)

T o  p r o v e  t h i s , n o t e  t h a t

?  X ( P )  = v2n(P ) =  4 V 2 G ( p , q ) C ( q ) d q

3 B

( 17)

l o g i p - q |  C ( q ) d q  ;

p  £  B + 3 B  

q  e 3 3

3 B

N o w  v 2 x  I s  3- " h a r m o n i c  f u n c t i o n  i n  B ,  w h i c h  m a y  a l w a y s  b e  w r i t t e n  i n  t h e  

f o r m  ( S ) ,  i . e .  m a y  b e  d e t e r m i n e d  o n  3 3  i n  t e r m s  o f  V 2 x  o n  3 3 .  I f  

s o

7 2  ( X ( P ) 4 G ( p , q ) C ( q ) d q }
/ w

0,

3 B

w h i c h  i n d i e s  t h e  r e p r e s e n t a t i o n  ( I S ) .  T h i s  h o l d s  o n  3 B ,  s o  p r o v i d i n g  

t h e  b o u n d a r y  r e l a t i o n

X  ** Q +  o n  3 B .  ( 1 8 )

A l s o ,

X ’ m n *  +  * o n  3 B .  ( 1 8 )

A c c o r d i n g l y  g i v e n  x< X *  o n  3 B  a n d  w r i t i n g  i n  t h e  f o r m  ( 9 ) ,  w e  h a v e

a  p a i r  o f  c o u p l e d  b o u n d a r y  i n t e g r a l  e q u a t i o n s  f o r  C / 3 /  w h i c h  m a y  b e
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s o l v e d  n u m e r i c a l l y  t o  p r o v i d e  fl, a n d  t h e r e f o r e  a l s o  x  i n  B .

T h e  C h a k r a b a r t y  a p p r o a c h  h a s  n o t  y e t  b e e n  a p p l i e d  t o  a n y  n o n - t r i v i a l  

p r o b l e m .  E o w e v e r  i t  a p p e a r s  m o r e  s u i t e d  t h a n  t h e  A l m a n s i  a p p r o a c h  f o r  

d e a l i n g  w i t h  r i n g - s h a p e d  d o m a i n s .  T h i s  i s  b e c a u s e  t h e  s i n g u l a r  b i h a r m o n i c  

f u n c t i o n s

x  l o g  r ,  y  l o g  r , (20)

c o u l d  e x i s -  w i t h i n  s u c h  d o m a i n s  b u t  a r e  n o t  c o v e r e d  b y  ( 7 )  u n l e s s  q ,  

b e c o m e  m u l t i - v a l u e d ,  i . e .

2 x l o g  r
xlog v9

r2
) 4- ( x  l o g  r  -  y e  )

(2 1 )

2y log r - £-- — ) +  (ylogr +  x e  )

A c c o r d i n g l y  w e  m u s t  e x t e n d  t h e  A l m a n s i  r e p r e s e n t a t i o n  i n  t h i s  c a s e  b y  

w r i t i n g

X  “  r  2 o  +  v|; +  a x l o g r  +  b  y l o g r ,  ( 2 2 )

w h e r e  a ,  b  a r e  u n k n o w n  c o e f f i c i e n t s  b a l a n c e d  b y  t w o  a p p r o p r i a t e  s i d e  

c o n d i t i o n s .  N o t e  t h a t  ( s e e  f i g . l )

0(p) g(p,qMq)<3q +

3 3 .

g ( p ,  q ) c r ( q ) d q ;  j ?  e B + 3 B , + 3 Bq  , ( 2 3 )

3B„

s o  t h a t

g (  p ,  q  )cr( q ) d q  -  l o g  r c r ( q ) d q  -  r  2 ( p . q ) C T ( q ) c q  +  0 (  r  2 )

3 B , 3 B , 3 B .

a s  r  -  ! p  I -  oo . ( 2 4 )
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If so the conditions

q L a ( q ) d q  -  0 ,

3 3 .  dB

q 2 c r ( q ) d q  -  0  ) q  -  ( q L  , q  ), (25)

e n s u r e  t h e  a b s e n c e  o f  £ q s e  ^ s ^ n ©  i n  i . e . t h e  a b s e n c e  o f

r  c o s  0 ( = x ) ,  r s i n 9 ( s y )  i n  r z6?, w h i c h  a x e  c o v e r e d  b y  B y  c o n t r a c t ,

r r  w e  w r i t e

n(p) G<p.q)c(q)dq + °<P/q)C(q)dq; p e B+aB1+3BQ , (26)

3 B , 3 E .

t h e n

G(P/q )C(q)àq = (-r2 + rzlogr )
rw/ **w'

3B- as

C ( q ) d q  —  2 x l o g r q ,  C ( q ) d q

3 3 .

-  2  y  l o g  r
T"2 _<D

q 2 £ ( q ) d q  +  7 -  z  ~ ".~ ( b n c C O 3 n 0 +  ^  s ’- ^ - n 0 )
4  n — 2  n + 1

3 B ,

+ ^ as r » lp| - cd  , < 2 7  )

w h e r e  vj/ i s  a  h a r a o n i c  f u n c t i o n  o f  t h e  f o r m  c o c  +  (3y 4- s i o g r  +  0 ( r  ~ ) .

T h e r e f o r e  x  l o g  r ,  y  l o g  r  a r e  a u t o m a t i c a l l y  a c c o u n t e d  f o r  b y  n  a s

----- \  A3.
d e f i n e d .

F i g  . 1
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F o r  i n f i n i t e  e x t e r i o r  d o m a i n s  t h e  p o s i t i o n  i s  r e v e r s e d  s i n c e  x  l o g  r ,  

y  l o g  r  ( a n d  a  1 a n  r z l o g  r )  m u s t  n o w  h e  e x c l u d e d  f r o m  n  b y  a p p r o p r i a t e  

s i d e  c o n d i t i o n s .  T h u s  w e  n o w  w r i t e

X - n  +  'V +  a x  +  P y + y  ( 2 8 )

w h e r e  a ,  p, y axe u n k n o w n  c o n s t a n t s  b a l a n c e d ,  b y  t h e  t h r e e  c o n d i t i o n s

q1_i:(q)dq = 0, q 2 £ ( q ) d q  =  0 ,

33 3 B

C ( q ) d q  =  0 . (29)

T h e s e  m a y  b e  r e a d i l y  u n d e r s t o o d  b y  r e f e r e n c e  t o  t h e  e x p a n s i o n  ( 2 7 ) ,  w h i c h  

s h o w s  t h a t  t h e y  e n s u r e  t h e  a b s e n c e  r e s p e c t i v e l y  o f  x  l o g  r ,  y  l o g  r ,  a n d  

r z  l o g  r  i n  n ,  a s  r e q u i r e d  b y  K a r i a . m a . r d '  s  u n i q u e n e s s — e x i s t e n c e  t h e o r e m

f o r e x t e r i o r d o m a i n s . I n p l a c e o f t h e s e  w e h a v e t h e l i n e a r  t e r m s

a x  + PY  +  Y w h i c h  a r e n o t c o v e r e d b y e i t h e r  n o r N o t e  t h a t  t h e

A l m a n s i  r e p r e s e n t a t i o n  ( 7 )  m u s t  b e _  t r i v i a l l y  e x t e n d e d  i n  t h i s  c a s e  b y  

w r i t i n g

X  -  r z 0  +  'i/ +  X ,  ( 3 0 )

where X is an unknown constant balanced by the side condition

[ c r ( q ) d q  «  0 ,  w h i c h  e n s u r e s  t h e  a b s e n c e  o f  l o g  r  i n  p  a n d  t h e r e f o r e  

3 B

o f  r z l o g  r  i n  x -
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Appendix I. The clamped P~! llPtjc plate under a. concentrated

t r a n s v e r s e ,  l o a d

K a d a m a r d  c o n j e c t u r e d  t h a t  a  t h i n  c l a m p e d  p l a t e  u n d e r  c o n c e n t r a t e d

t r a n s v e r s e  l o a d i n g  s u f f e r s  a  t r a n s v e r s e  d e f l e c t i o n ,  w h i c h  e v e r y w n e r e  h a s

t h e  s a m e  d i r e c t i o n  a s  t h e  l o a d .  T h i s  c o n j e c t u r e  i s  k n o w n  t o  b e  t r u e  f o r  a

c i r c l e ,  b u t  i t  m a y  b e  d e m o n s t r a t e d  t h a t  t h e  c o n j e c t u r e  f a i l s  f o r  a  c l a m p e d

e l l i p t i c  p l a t e  o f  a x i a l  r a t i o  g r e a t e r  t h a n  a b o u t  V 2 : l  ( B r o w n  a n d

E . J a s w o n ,  1 9 7 1 ) .  F o r  d e t a i l s  s e e  f i g u r e s  1 - 4 ,  n o t i n g  t h a t  t h e  v e r t i c a l

a x i s  m e a s u r e s  t h e  d e f l e c t i o n ,  w h e r e  t h e  d i m e n s i o n l e s s  q u a n t i t y  —  ( a = 2 ,

8 i 7 D

k  i s  a  c o n s t a n t  a n d  D  b e i n g  t h e  f l e x u r a l  r i g i d i t y ) ,  i s  t a k e n  a s  u n i t .  

T h e  s o u r c e  p o i n t  i s  i n d i c a t e d  b y  a n  a r r o w  o n  t h e  m a j o r  a x i s .
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Appendix II. niharmonic Green’s Function

Let;

G - Ar2 + Brz log r, (1)

r being the radial distance from the origin. For any choice of A and 

B, G is a Biharmonic Green's Function, i.e. it is a fundamental 

solution of the biharmonic equation

V*x -  o.  ( 2 )

In (13) we have chosen A = -1 and B = 1, i.e.

G = -r2 + r2 log r, (3)

which has the convenient properties

VZG = 4 log r 

V2G - B tt6( r)

see (15).

It should be noted that if we choose A = —1 and B « 2, i.e.

G = -r2 + 2r2 log r (5 )

or more generally

G<p,q) - ~IP~q|2 + 2 [p-q|log|p-q|,

then the exterior expansion of the biharroonic potential

n(P)~ G(p,q)C(q)dq

as
(5)

European Boundary Element Meeting 3.  16



d o e s  n o t  c o v e r  t h e  t e r n  c d c  +  (3y. H o w e v e r  i t  c o v e r s  a  c o n s t a n t ,  w h i c h  

r i a y  b e  u t i l i s e  i n  s o m e  s p e c i a l i s e d  p r o b l e m s ,  f o r  f u r t h e r  d e t a i l s  s e e  

( R d i h i ,  1 9 8 9 ) .
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THE TWO-DIMENSIONAL PAPKOVICH-NEUBER FORMULA

PART III



The Two-Dimensional Papkovich-Neuber Formula

9.1 Introduction

Throughout this chapter it will be assumed that the bodies 

under the action of external forces are elastic and isotropic. 

The three-dimensional Papkovich-Neuber formula provides a 

general solution of the homogeneous Cauchy-Navier equation in 

terms of four independent harmonic functions. The 

corresponding two-dimensional formula provides a general 

two-dimensional solution in terms of three independent 

harmonic functions. On the other hand, Muskhelishvili's 

complex variable formalism provides a general two-dimensional 

solution which involves two independent analytic functions, 

i.e. equivalent to only two independent harmonic functions. A 

reconciliation between these two formulations may be effected 

by considering the. role played by the Airy stress function, 

Airy, G.B. (1862).

Chapter 9

9.2 Analysis of Papkovich-Neuber formula

According to Papkovich, P.F. (1932) and Neuber, H. (1934), an 

arbitrary linear elastic displacement field u^; j = 1,2,3

has the representation

2qu . 
3

h . - k
3 fxT(Xlhl+X2h2+X3h3+f); 

3
3 1,2,3 (9.2.1)

where x , x2 , x^ are rectangular cartesian co-ordinates and 

h^, h2, h^, f are harmonic functions; g is the shear modulus 

and k 1 = 4(1-1/) where v is Poisson's ratio. The
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generality of this representation has been proved by 

Stokes-Helmholtz (Sommerfeld, 1964). Note that the scalar 

harmonic function f may not always be necessary. This 

possibility has been discussed by Eubanks, R . A . and 

Sternberg, E. (1956), Jaswon, M.A. and Symm, G.T. (1977) and 

Millar, R.F. (1984). The two-dimensional case of redundancy 

has been discussed by Jaswon, M.A. and Shidfar, A. (1980), see 

Appendix II.

Choosing

h1
(9.2.2)

where is • a constant having the dimension of force and 

r = (x. , X-, x_) is the position vector of a field point, we 

obtain

u . 
D

_1_
2gr

k a F x
—  /-¿-¿i •
2p 3x. r ' ' J

1,2,3 (9.2.3)

which is Kelvin's solution for the displacement field 

generated by a concentrated force of magnitude 2ttF1 acting

in the x^-direction at x^ = x2 = x^ = 0.

Putting x^ = 0, h3 = 0 in (9.2.1) we obtain the

two-dimensional formula

2gu. = h.-jc fx-(x1h1+x2h +f) ; j = 1,2 (9.2.4)
J J j

where h^, h9, f are two-dimensional harmonic functions.
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This immediately invites comparison with the real-variable

analogue of Muskhelishvili's complex-variable 

However the latter only involves two independent 

functions, whilst (9.2.4) involves three independent 

functions. Our essential aim is to investigate this 

inconsistency and explain how it may be resolved.

formula. 

harmonic 

harmonic 

apparent

9.3 Muskhelishvili's formula

Muskhelishvili, N.I. (1953) has introduced the complex 

representation

2g(u1+iu2) = (3-4v)^/ - z^/ - ' f

= 4(1-1,$/- [ f  + z f  ] " / (9.3.1)

where z = x1 + ix2 , $/ and eft are analytic functions of z,

and their complex conjugate functions, and primes

denote differentiation with respect to z. To break this down 

we write

#  = «! + iH2' ' U  = H 1 - 1H2 '

>

F1 + 1F2' /  = F1 - iF2

(9.3.2)

and note that

(9.3.3)

9D



If so

—  5H 5H

Z V  = (xi+ix2><5^ - 1 sJ->

= (Xx
aH! +
3x1 X2

aH2 
— -)
axl

+ i(x2
3H

ax“ “ xi ax

aHl aH2 aH 3H
= <xx ax~ " x2

—  —)
3X1

+ i(x2 -- + x —ax2 l ax

which gives from (9.3.1)

2pu = 4 (1 - 1 /) H. - 3x1 (X1H1+X2H2+F1)

2/uu = 4 (1 - v ) H - ---(x 1H1+x 2V Fi )

(9.3.4)

This formula may also be obtained by direct real analysis, see 

Appendix: III. On incorporating the factor 4(l-v>) into ,

etc., formula (9.3.4) appears identical with (9.2.4) except 

that the conjugate harmonic functions , H2 replace the

uncoupled harmonic functions h^, h2 . Since (9.2.4), (9.3.4)

have the same degree of generality, there immediately arises 

the question as to why (9.2.4) involves three independent 

harmonic functions whilst (9.3.4) involves only two. This 

will be considered in the next section.

9.4 Analysis of x = Xi^i+X2^2+F

It is convenient to write h *, h2* as the conjugate harmonic 

functions to h , h2 respectively, and we note that
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(h^*) = -h^, etc. Clearly (h^-h^*), (h^*+h2) f°rm a pair of

conjugate harmonic functions, so allowing us to write

h -h * hl*+h2
* = V i  + x2h2 + f ” X1 <— 2--> + V i “ "*

h +h * h *-h

t xl(- V - - )  - x2 <“ 2 — :> + f'

(9.4.1)

with the immediate identifications 

h -h * h *+h

Hi = - V - -  ' h2 = - l r ~  • <9 -4 -2>

Also the remaining terms in (9.4,1) - see (9.4.4) below - form 

a harmonic function on bearing in mind

V (x1h1)
3h

2 3 ^  ' V2(*2hl*>

3h *

2

ah
2 a;-' etc"

(9.4.3)

or alternatively noting that - see ( 1.3.1) -

+•
(x1+ix2)(H1+iH2) = (x1H1-x2H2)+i(x1H2+x2H1), (9.4.4)

which shows that the expressions in brackets are harmonic 

functions, so providing the identification

h +h * h *-h

F! = xl(-i2---)-x2 ( - V - - )  + f- (9.4.5)

Accordingly x really involves only two independent harmonic 

functions by virtue of the transformation (9.4.1), giving the 

formula

2gu. = 4(1-r)H . 
D 1 3x . J

j = 1,2 (9.4.6)
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in place of (9.2.4). This is in agreement with (9.3.4) and 

has the advantage of connecting H , , F^ with h^, h^, f.

The formula (9.2.4) always remains valid but suffers from an 

excessive generality. For example, choosing

hl ~ h? = “0*/ f = -*(x 0-x 0*), (9.4.7)

we obtain

X = x^0 - *20* - (X10-X20*) a 0, (9.4.8)

which provides a pure shear field

2gu1 = p, 2gu2 = - p * , (9.4.9)

i.e. a non-trivial field characterised by null dilatation and 

rotation components:

'12

au

2^ a x “ +
5U2 dtp d p *

aui

d* 2
5U2---) =
°X1

dtp

2 3 x 2

d p *

5X1

aui 

11 SX2

aU2

aXl

dp

2 (o x 2

d p *

‘ - I 1

dp

ox.

(9.4.10)

By contrast formula (9.4.6) gives a null displacement field 

since = 0, H2 = 0, F^ = 0 as follows from putting h^ = 0,

- 0 ’ in (9.4.2) and noting that 0 .
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There is no difficulty in representing the displacement field 

(9.4.9) by formula (9.4.6), since we may always write a pair 

of conjugate harmonic functions in the form

. ah .. 
•f ~ 3 x l '  *

(9.4.11)

so allowing us to choose H = 0, h 2 = o, F1 = -h (i.e .

X = -h). It may be verified that V, w are as given in

(9.4.10) and that e 2 - 0 for this field.

9.5 Introduction of stress function

The function x - Xlhl + X2h2 + f
is biharmonic as follows

from the property

_ 3h ah_
= 2(5-l + — -)

ax2 '
(9.5.1)

and it could therefore qualify as a stress function. To 

examine this possibility we compute the stress components 

associated with formula (9.2.4):

1 ahl ah2 d * x
P11 = 2 (ax“ “ ax“) + K ~~2 

1 2 d X 2

22

, dh ah a2x
~ ax") + K ¡"a

ah. 3 2X
1 2

1 ahl + 2.
2 (ax2 ax1j K ax1ax2

(9.5.2)
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Clearly x would be the Airy stress function provided

i. e.

ah2 ahi ah2

~d*~2 ' SX2 aXl
(9.5.3)

h2 must be conjugate harmonic functions, in which

case

H2 =
V + h.

= h. (9.5.4)

so may also be seen directly. Therefore the redundant 

generality of (9.2.4) has been traced to the absence of a 

stress function, by contrast with the formula (9.4.6).

It may be remarked that Muskhelishvili's formulation is based 

upon a complex stress function

+ ' f  , (9.5.5)

where all the symbols have already been defined. Breaking 

(9.5.5) down into its components yields

X = Re{i$/ + 'f ) = x1H1 + x 2H2 + F1 , (9.5.6)

as expected.

Finally we remark that

x1H1 + x2H2 = 2xiHl + f' (9.5.7)

on bearing in mind that

x H - x2H2 = -f ; V2f = 0. (9.5.8)
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This immediately provides the Almansi representation for x 

exploited by Jaswon, M .A . and Symm, G.T. (1977), i.e.

x  =  2x1H1 + g ; v29 =  o ,  g = F ± +  f,

with the associated displacement formula

2UUX - - ||-

>

2UU2“ 4 (l-W H2 - f|-

(9.5.9)

(9.5.10)
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F O R E W O R D

The success of the Boundary Element Method in the last ten years has been 
mainly due to the development of the technique as a practical engineering 
tool. The year 1978 was a milestone in this regard, as it was then that clas-
sical boundary integral equations were interpreted in a different way. The 
emphasis then on the use of quasi-variational concepts and transformations 
of the type already known in finite elements gave origin to a new method-
ology which was well adapted to the direct boundary integral formulation. 
In spite of the rapid advances in boundary element research in subsequent 
years, these definitions are still accepted as the basis of the method.

One of the most versatile interpretations of the technique is provided by 
the use of Lagrangian multipliers, which permits a simple deduction of the 
boundary integrals starting with the differential equations governing the 
problem. Unfortunately this concept, which is not only mathematically 
correct but very elegant, has been misunderstood, perhaps because classi-
cal boundary integral scientists were not famiiiar with variational calculus. 
This branch of mathematics is one of the most difficult to comprehend, 
possibly because it entails understanding a series of philosophical concepts 
rather than purely algebraic expressions.

Another area of confusion has been the relationship between boundary ele-
ments and other numerical techniques. Erroneous concepts about symmetry 
and the correct interpretation of the integral equations in terms of energy in 
the nineteen seventies were followed by a better understanding of the basic 
principles in the nineteen eighties. Many of the original problems seem to 
have been simply due to attempts to force the boundary element method 
to conform to finite element concepts.

The most important development in the last 10 years has been the aware-
ness of the engineering and scientific community that boundary elements is 
a new and more powerful technique than finite elements, and that the lat-
ter can be seen as a particular case of BEM rather than the other way round.

From the history of science point of view it is interesting to point out that 
while finite elements was a method predominantly based on approximations, 
boundary elements combine them with powerful analytical solutions. This 
combination, which in a way was a revaluation of past work is the more 
powerful aspect of boundary elements and the one that gives the method 
great accuracy of results and versatility.

From the engineering point of view, boundary elements can be seen in many 
cases as a computational technique which is better conditioned than finite



elements for analysis and design. While FEM analysis demands an unne 
essary discretization of the domain, boundary elements is a function of tl 
surface configuration only. Further advances are still required to elimina 
the need to discretize surfaces by treating each of them as one large elemei 
instead. The concept of elements is in itself an FEM idea and the next staj 
should be to develop boundary surfaces or patches.

The work carried out in non-linear and time dependent problems has up l 
now also suffered from the application of old FE concepts. Undue emphas 
is put on the subdivision of the continuum into a fixed grid consisting ■ 
the so-called cells. With the exception of some papers such as those dealir. 
with moving internal boundaries and others related to the dual reciprocit 
method, most applications of BEM in non-linear and time dependent prol 
lems are too closely related to similar work previously done using finit 
elements. In this regard it is necessarv for BEM scientists to learn to fc 
more audacious and innovative in their thinking in order to realize the fu 
potentialities of the new method.

These ten years of BEM research have been particularly rewarding for th: 
editor who has seen the technique developing from its humble beginning 
into a powerful engineering method. What in 1978 was an eccentric ot 
session which was deemed to be unnecessary, has now become not only a 
established research technique but a powerful tool for engineering analysis

Carlos Brebbia
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INVITED PAPER

The Two-Dimensional Papkovich-Neuber Formula 
M.A. Jaswon and H. Adibi
Department of Mathematics, The City University, London. E C l V  OEB.
UK

The Papkovicn-.Meuber formula provides a general solution of the 

homooeneous Navier-Caucny equation in terms of four inceoena- 

enc harmonic functions. The corresoonaing two-dimensional 

formula provides a general two-dimensional solution in terms of 

three inaeoendent harmonic functions. On the ocher hand, 

Musk'heiisnvili' s comolex variable formalism provices a general 

two-dimensional solution which involves two inaepenaenc 

analytic funccions. i.e. equivalent to oniv two inceoendenc 

harmonic functions. A reconciliation becween these two 

formulations may be effected by considering the role played 

by the Airy stress function.
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1. Introduction

According to Papkovich (1932) and Neuber (1934), an arbitrary 

linear elastic displacement field ; j - 1, 2, 3 has the

representation

2jiu-j »  t i j  -  k -------( x i h i  + x zh z + x 3h 3 + 3 *  L, 2,
aXi

(1)

where x̂ , x2, x3 are rectangular cartesian co-ordinates and 

hL, h , h3, f are harmonic functions; ji is the shear

modulus and k~ 1 = 4(1-u) where v is Poisson's ratio. For 

instance choosing

h h2 = h3 = f = 0, ( 2 )

where F is a constant having the dimension of force, we 

obtain

k a
2fi ax̂

j

f, x i 
r j 1. 2, 3 (3)

which is Kelvin's solution for the displacement field 

generated by a concentrated force of magnitude 2rF acting 

in the x,—direction at x. = x, = x„ = 0.J. 1 2  3

Putting x3 = 0, h3 = 0 in (1) we obtain the two-dimensional 

formula

2jiu_j K— — (X.h, + x h, + f); j 
ax_̂ * * i, 2

where h , h ,

(4)

f are two-dimensional harmonic functions.
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This immediately invites comparison with the real-variable 

analogue of Muskhelishvili1s complex variable formula. 

However the latter only involves two independent harmonic 

functions, whilst (4) involves three independent harmonic 

functions. Our essential aim is to investigate this apparent 

inconsistency and explain how it may be resolved.

2 . Muskhelishvili 1s Formula

Muskhelishvili (1953 ) has introduced the complex 

representation

2m(u , + iu ) - (3 - 4 iO # - ( 5 )

M l  - «O#- tf/ + -^5 - J * '  (6)

where z - x, + ix2,'̂ / and h/^are analytic functions of z,

%
and their complex conjugate functions, and primes

denote differentiation with resoect to z. To break this down

we write

9 r  = H1 + iH2, - Hx -

7  = Fi + “ z' 7  = -

iH,

iF,
(7)

and note that

ax.
- a.

an.
ax.

£5
ax„

+ i
aH

ax_
i \

8)

r  - ax.
- i

aF.
ax. ax.

+ i
ar,
ax.
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If so

(X — - + X
ax,

3H,

which gives from (6):

2̂ ul - 4( 1—v )H, - (x1H1 + x2H2 + )
3xi

(9)

2^uz - 4(l-i/)H---— <x H + k zEz + P J
ax2

On incorporating the factor 4( 1—v ) into Hx, etc, formula 

(9) appears identical with (4) except that the conjugate 

harmonic functions H, , H2 replace the uncoupled harmonic 

functions h , h2. Since (4), (9) have the same degree of

generality, there immediately arises the question as to why 

(4) involves three independent harmonic functions whilst (9) 

involves only two. This will be considered in the next 

section.

3. Analysis of x = x,h, + xzh2 + £

It is convenient to write h *, h2* as the conjugate harmonic 

functions to hx, h, respectively, and we note that 

(h1*)* = -h , etc. Clearly (h1~h2*p), (h^*-fh2) form a pair
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0 f  c o n j u g a t e  h a r m o n i c  f u n c t i o n s ,  s o  a l l o w i n g  u s  t o  w r i t e

X '  X I h l  + X 2h 2 +  f  '  V '
hi - V h ,  * +  h ,

) +  x  ( =----------- * )  ( 1 0 )

h  +  h , *  h  . * -  h ,

x  ( - * ---------g~)  -  x  ( — ----------- - )  +  f .

w i t h  t h e  i m m e d i a t e  i d e n t i f i c a t i o n s

h ,  -  h , T

H. - V  + hl ( ID

A l s o  t h e  r e m a i n i n g  t e r m s  i n  ( 1 0 )  f o r m  a  h a r m o n i c  f u n c t i o n  o n  

b e a r i n g  i n  m i n d  ( o r  s e e  f o o t n o t e  p . 8 )

ah. ah.* ah.
V 2 ( x . h , ) -  2  ---- » , V 2 ( x  h  *  ) -  2  ------  2  ---------- i  , e t c ,  ( 1 2 )

x i  dx a*-ax, ax.

s o  p r o v i d i n g  t h e  i d e n t i f i c a t i o n

h .  +  h . h . *  -  h .

F ,  “  x , ( —---------— ) -  X  ( ----------- 5 ) +  f . ( 13 )

A c c o r d i n g l y  x  i n v o l v e s  o n l y  t w o  i n d e p e n d e n t  h a r m o n i c  f u n c t i o n s  

b y  v i r t u e  o f  t h e  t r a n s f o r m a t i o n  ( 1 0 ) ,  g i v i n g  t h e  f o r m u l a

4 ( l - v ) a .  -  — , j  -  1 ,  2

I 6
( 1 4 )

i n  p l a c e  o f  ( 4 ) .  T h i s  i s  c o n s i s t e n t  w i t h  ( 9 )  b u t  h a s  t h e  

a d v a n t a g e  o f  c o n n e c t i n g  H  , H , ,  w i t h  h 1 (  h 2 , f .
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182 MATHEMATICAL & COMPUTATIONAL ASPECTS

e x c e s s i v e  g e n e r a l i t y .  F o r  e x a m p l e ,  c h o o s i n g

=  b ,  h 2  •----- b  * ,  f  »  - ( x ^  -  x 2 b * ) / (15)

w e  o b t a i n

X  -  x , _ b  -  x 2 b *  -  ( x ^ b  -  x 2 b * )  =  o , (16)

w h i c h  p r o v i d e s  a  p u r e  s h e a r  f i e l d

2 p u x  =  o ,  2 p u z  =  - b * , (17)

i . e .  a  n o n - t r i v i a l  f i e l d  c h a r a c t e r i s e d  b y  n u l l  d i l a t a t i o n  a n d  

r o t a t i o n  c o m p o n e n t s :

2 MA = 2p(
3u , 3 u ,
----- + -----)
3x .  3x„

2pm — — p( -
3 u  . 3 u .

( Â& _ ibT. )
3 x  ô x 2

3x2 axj.

3 u  3 u

2pe = p(--+ — -) =
dX2 dX,

dx2 3x̂

3 b  _  3 b *

3x2 3x^

(18)

B y  c o n t r a s t  f o r m u l a  ( 1 4 )  g i v e s  a  n u l l  d i s p l a c e m e n t  f i e l d  s i n c e  

H i =  0 ,  H 2  =  0  a s  f o l l o w s  f r o m  p u t t i n g  h , =  b z  h 2  -  - b *  

i n  ( 1 1 )  a n d  n o t i n g  t h a t  x  “  0  u n d e r  t h e  t r a n s f o r m a t i o n  ( 1 0 ) .

T h e r e  i s  n o  d i f f i c u l t y  i n  r e p r e s e n t i n g  t h e  d i s p l a c e m e n t  f i e l d  

( 1 7 )  b y  f o r m u l a  ( 1 4 ) ,  s i n c e  w e  m a y  a l w a y s  w r i t e  a  p a i r  o f  

c o n j u g a t e  h a r m o n i c  f u n c t i o n s  i n  t h e  f o r m
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4> ah
dx.

0» lb
dx ,

V2h O, (19)

g o  a l l o w i n g  u s  t o  c h o o s e  -  0 ,  H 2  -  0 ,  F  =  -  h

( i . e .  X - -  h ) .  I t  m a y  b e  v e r i f i e d  t h a t  A ,  u  a x e  a s

g i v e n  i n  ( 1 8 )  a n d  t h a t  e i 2  * 0  f o r  t h i s  f i e l d .

4 .  I n t r o d u c t i o n  o f  s t r e s s  f u n c t i o n

T h e  f u n c t i o n  x  “  x ^ t ^  +  x 2 h 2  +  f  i s  b i h a r m o n i c  a s  f o l l o w s  

f r o m  t h e  p r o p e r t y *

V2X (20)

a n d  i t  c o u l d  t h e r e f o r e  q u a l i f y  a s  a  s t r e s s  f u n c t i o n .  T o  

e x a m i n e  t h e  p o s s i b i l i t y  w e  c o m p u t e  t h e  s t r e s s  c o m p o n e n t s  

a s s o c i a t e d  w i t h  f o r m u l a  ( 4 ) :

( 2 1 )

C l e a r l y  x w o u l d  b e  t h e  A i r y  s t r e s s  f u n c t i o n  p r o v i d e d

ah

dx.
ah2

dXj
dh

a x .

ah
ax.

(22)

* Note that (xL + ix^) (H^ + iH2> = ( x ^  - x2H2) + K x ^  - x ^ )  

showing that the expressions in brackets are harmonic functions
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i.e. h^, h2 must be conjugate harmonic functions, in which 

case

Hz "
h.* + h.

V (23)

as may also be seen directly. Therefore the redundant 

generality of (4) has been traced to the absence of a stress 

function, by contrast with the formula (14).

It may be remarked that Muskhelishvili’s formulation is based 

upon a complex stress function

z<$ + V, (24)

where all the symbols have already been defined. Breaking 

(24) down into its components yields

X  - R e { z *  + V) - + x 2 H 2  + Fit ( 2 5 )

as expected.

Finally we remark that

XiH1 + x 2H2 - 2x1Hi + f, (26)

on bearing in mind that * 

xiHi - x 2H2 - -f; Vzf - 0.

This immediately provides the Almansi representation for X 

exploited by Jaswon and Symm (1977), i.e.

x - 2X1H1 + g; VZH1 - 0, g - FA + f.
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w i t h  t h e  a s s o c i a t e d  d i s p l a c e m e n t  f o r m u l a

2mu. 4 (  1 - v  ) H  -  K

2 p u  -  4 ( l - v ) H

¿X
3 x .

§x
3x.

(27)
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Appendix X 

Almansi x , v-forms

Given a harmonic functicn h, there exists another harmonic 

function 0 such that

h = ; V20 = 0, (AI.l)ox

(Bhattacharyya, 1975). Now if x be a biharmonic function,

V2* is harmonic and accordingly it may be written as

V2X = 2 || ; V20 = 0. (AI.2)

If so, clearly x0 is a particular biharmonic solution, 

therefore this equation has the general solution

X — x0 + \jj ; V20 = V2!jj = 0. (AI.3)

Similarly we may obtain

x = y<p + 0 ; v2<P = v2i/( = o. (AI.4)

It may be shown that neither the x - nor y-forms are unique 

(see Chapter 1).

For instance let r logr = x + y if so

V2* = 4 + 4 logr = 2 || ; V20 = 0, (AI.5)

in which (p is a harmonic function to be determined up to an 

arbitrary harmonic function of y. In this case

0 =  2 (logr+l)dx + t] (y) V' T) (y)

which g ives

(AI.6)

0 = 2 ( x l o g r - y 0 )  + v(y), (AI.7)



as may be verified by differentiation. The

possibility for tj (y) is v = 0 .

If so, from (AI.3)

X = x[2 (xlogr-y0) ] + i// ; V2ijj = 0, 

in which case

ifj = X ~ x<P

-  r2logr - 2x2logr + 2xy0 

= (y2-x2) logr + 2xy0,

which is a harmonic function, since

i¡i = -Re (z2logz); z = x + iy.

simplest

(AI.8)

(AI.9)

(AI.10)
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Sternberg-Eubanks redundancy

Appendix II

It was first pointed out by Eubanks, R.A. and Sternberg, E., 

(1956) that the harmonic function f, in the

three-dimensional Papkovich-Neuber formula

2/iU = h - KV(r.htf); U = (u , u , u ),

(All.1)

h = (hx, h2, h3),r = (x^ x2, x 3),k_1 = 4(l-u)

is essentially redundant. A simplified argument by Jaswon, 

M .A . and Symm, G.T. (1977) runs as follows. To say that f 

is redundant means that we can find a harmonic vector V

which satisfies the equation

-<Vf = V - xV(r.V), (All.2)
A/ A/ V

for an arbitrary choice of harmonic function f. If V

exists then it may clearly be written V = VS where S is a 

scalar harmonic function, so providing the vector equation

-/cVf = VS - kV (r. VS) , (All.3)
A/

for S, which yields the scalar equation

-<f = S - xr.VS, (All.4)

for S in terms of f. Equation (All.4) may be transformed 

into the spherical polar form

kS + r dS
dr Xl' X2' X3 r , 9 , iJj

k = -k'1 = 4 (u-1)

(All.5)

mn



which is a variant of the Bergman-Schiffer equation (1953) 

with the particular solution

S
0

r

pk-1f (p,e,i//)dp. (All.6)

Now the integral in the right-hand side of (All.6) is 

generally a harmonic function, e.g. if

f = rnPnm (cos0) exp (imi//) ; |m|  ̂n ; n = 0,1,2,..., (All.7)

then

n
SQ = j~- Pn™ (cose) exp (imi//) ; n * -k, (All.8)

which is a harmonic function in the same domain as f. 

Similarly if

f = r n 1Pnm (cose) expimi//; |m|  ̂n; n = 0,1,2,..., (All.9)

then

-n-1
S0 = j P^1" (cos0) exp (imy)) ; n * k-1. (All.10)

Evidently a breakdown occurs in (All.8) if k is an integer

and n = -k £ 0, and similarly for (All. 10) if n = k-1 £ 0.

1On physical grounds v lies within the range 0 < v s - , so

that k lies within the range -4 < k s -2, i.e. k = -2 or 

-3 for the breakdown possibilities. Apart from these

possibilities, we conclude that f may always be eliminated 

without loss of generality.
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This argument can be readily adapted to the two-dimensional 

Papkovich-Neuber formula (9.2.4). Thus (All.5) gets replaced

kS + r || = f; x1# x2---- y r, 0, (All.11)

yielding the particular solution

r

SQ = r k | pk 1f(p,0)dp. (All.12)

0

For instance if

n cos _ r . n0 s m n = 0 ,  ±1, ±2, ..., (All.13)

then

S0

n
_ r _

n+k
cos
sin n0 ; n 0, ±1, ±2, (All.14)

yielding the breakdown possibilities n = -k = 2, 3 as

before.

The above analysis in principle holds for Muskhelishvili ' s 

displacement formula - see (9.3.4) -

2MUX = 4(l^)Hl - jjj- <xlHl + x2H2 + F) 

2yu2 = 4(l-l’)H2 - (X1H1 + x 2H2 + F)

(All.15)

However it would not be relevant here, since H , H2 form a

pair of conjugate harmonic functions which become uncoupled if 

we eliminate f by virtue of (All.2). Clearly the advantage 

of losing f is always outweighed by the disadvantage of 

losing the stress function associated with (All.15).
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Direct determination of the displacement components
via Almansi

Appendix III

Consider the strain-displacement relations

_ 3ui 3u2
en  ax ' e22 ax2 ' ei2

and stress-strain relation

1 9U1 SU2 
2*3*; + âx-)'

(AllI.1)

+ a 'P 1,2;A e^^ + e22' (AIII.2a/3 'a/3 a/3

(Love, 1927); if so, utilising

a2u_
’ll 2

3 X 2

_ ô2U
P2 2 2 ' p12 

0Xi

S2U

3X13X2

(AIII.3)

in which U is Airy's stress function, we get

P11 = 2Meil + XA = 2Meil + X(eil+e22)

2peil + 2(A+p) P̂ll+P22 ̂

SU1 X ?
2 U  - - -  +  7 7 7 7 —7  V U .  3x 2 (A+¡1) (AIII.4)

Accordingly

au

2P 3x7 =
2x n2rT _ n2TT a u x „2

pn  2 ( x + u ) u a 2 2 ( x + u )  '

1 . e .

5ul
2p 3x7 = - -

a2u_ + x _ ± _2_u 2 
a x /  2 <A+P>

(AIII.5)

10 5



Integrating, we obtain

2gu1 = au_ A_+_2g 
ax 2(A+ji) V Udx1, (AIII.5a)

and similarly

2du2 =
au_ a_+_2/ì
dx 2(A+g) ^ V2Udx. (AIII.5b)

On the other hand noting Appendix 1, there exists a harmonic 

function H such that

= 4 |S- = 4 |B- ,
3 x l  ax2

(AIII.6)

where H is the conjugate harmonic function to H,

accordingly from (AIII.5a), (AIII.5b) we obtain

2uu « _ + h
1 Sx. (A+tf)

2pu_ = - au 2 { \ + 2u l  *
a W  + - ( x + h ) H

(AIII.7)

l. e .

2pu1 =

2uU2 “

- |2- +

au *- --- + 4(1 - v )H

(AIII.8)

in agreement with (9.3.4).
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