
              

City, University of London Institutional Repository

Citation: Malaki, S. (2022). Optimal Recruitment of Temporary and Permanent Healthcare 

Workers in Highly Uncertain Environments. (Unpublished Doctoral thesis, City, University of 
London) 

This is the accepted version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/30097/

Link to published version: 

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


Optimal Recruitment of Temporary and Permanent
Healthcare Workers in Highly Uncertain

Environments

Saha Malaki

A THESIS

Submitted to the Faculty of Management

Bayes Business School (formerly Cass), City, University of London

For the Degree of Doctor of Philosophy in Management (Operations and Supply Chain)

Under supervision of:

Dr. Navid Izady

Prof. Lilian M. de Menezes

Dr. Oben Ceryan

September 2022



Abstract

There has been a significant increase in the demand for temporary skilled workers in the

health sector. They provide volume flexibility, but are generally more expensive than their

permanent counterparts. A balance must therefore be struck between staffing cost and

service quality by recruiting the right mix of temporary and permanent healthcare workers.

Focusing on periods of highly uncertain demand, in this thesis, we propose optimization

models aiming to inform permanent and temporary recruitment decision making for settings

in which all patients must be served. We pursue this under two different scenarios, a

mid-term planning horizon and a long-term planning horizon.

The first part of the thesis 1 is devoted to recruitment decision making in a mid-term

planning horizon. The main trade-off in this case is between recruitment lead times and

staffing costs of temporary and permanent workers. More specifically, permanent skilled

workers are cheaper for the healthcare provider than equivalent temporary workers, but have

a substantially longer recruitment lead time. Longer recruitment lead time of permanent

workers implies that providers face a higher level of demand uncertainty when making

permanent recruitment decisions and a higher likelihood of not being able to fill the created

positions. Considering a single-interval planning horizon, we propose a two-stage stochastic

optimization framework to capture this fundamental trade-off. The first stage of our

framework identifies the number of permanent positions to advertise, and the second stage

determines the number of temporary workers to recruit. Our framework accounts for the

uncertainty in the number of permanent vacancies that will be filled, stochasticity of the

service delivery process, and imperfect demand information at the time of advertising for

permanent positions. Under a general setting of the problem, we characterize the optimal

first- and second-stage decisions analytically, propose fast numerical methods for finding

their values, and prove some insensitivity and monotonicity properties for the optimal

decisions and their corresponding costs. The benefit/loss of delaying the advertisement
1This part has been accepted for publication in European Journal of Operational Research.
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for permanent positions to obtain a more accurate demand information, at the expense

of a higher risk of not filling the advertised positions, is also investigated. A case study

based on data from a geriatric ward illustrates the application of our framework to an

inpatient department, and further managerial insights are developed using a combination

of analytical and numerical results.

The second part of the thesis is dedicated to recruitment decision making in a long-term

planning horizon. In addition to the different staffing costs and recruitment lead times of

temporary and permanent workers captured in the first part, we consider the difference in

their placement durations. This is because permanent workers have substantially longer

contracts which may cover periods of low demand, hence in the long run, they are likely to be

more expensive to the provider than temporary workers. We capture this by a multi-interval

optimization framework which involves a two-stage decision making, similar to the two-stage

decision making of the first part, repeated in each interval. The time-varying nature of

demand over different intervals is also incorporated into this framework. Using a Markov

decision process formulation, we prove that the optimal recruitment policy for permanent

healthcare workers in this context has a hire-up-to structure. Numerical experiments then

investigate the sensitivity of the hire-up-to value to different system parameters. The

potential benefits of using the long-term (multi-interval) recruitment model as compared to

the mid-term (single-interval) recruitment model is also evaluated numerically.
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Chapter 1

Introduction

1.1 Motivation

In the past few decades, the healthcare sector has witnessed significant changes in the

way that jobs are structured and work is organized. Chronic staff shortages (Bae et al.,

2010), long lead times in recruiting permanent staff (Lu and Lu, 2017), predictable and

unpredictable variabilities in patient demand (Seo and Spetz, 2013), and rising absenteeism

and turnover among permanent staff (West et al., 2020) have led to a substantial increase

in the use of temporary healthcare workers (HCWs) worldwide. In the UK, for example,

the total hours of temporary nurses requested by the hospitals within the National Health

Service (NHS) doubled from 2011 to 2015 (National Audit Office, 2016).

Temporary workers are a flexible workforce with short-term employment and variable

1
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working hours (Kesavan et al., 2014). They provide volume flexibility, i.e., the ability to

adjust the staffing patterns flexibly and quickly in response to variations in patient demand

and (un)availability of permanent staff (Qin et al., 2015). However, temporary skilled

workers earn higher wages than their permanent counterparts, hence are generally more

expensive to the provider. In fact, findings from a recent survey suggest that savings of

about half a billion pounds could have been made in the UK’s NHS during 2018 if the

hours worked under temporary contracts had been covered by permanent staff (The Open

University, 2018). There is also mixed evidence in regards to temporary HCWs performance,

with some studies linking undesirable outcomes to their deployment (e.g., Roche et al.,

2009), and some other studies refuting such links (e.g., Aiken et al., 2013). We review this

evidence below.

Analyzing the data from a sample of Canadian hospitals, Estabrooks et al. (2005)

conclude that there is a positive correlation between the use of temporary nurses and 30-day

in-hospital mortality. However, the statistical analysis conducted by Aiken et al. (2013) on

data from a wide range of US hospitals reveals that this correlation becomes insignificant

when the quality of work environment is taken into account. Significant associations between

temporary staff use and adverse events are also reported in the literature; see, for example,

Aiken et al. (1997), Bae et al. (2014), Stratton (2008), and Roseman and Booker (1995).

The study by Aiken et al. (2007) on Pennsylvania hospitals, however, indicates that these

associations are rendered insignificant after controlling for staffing levels and resources’

adequacy. Overall, it can be argued that it is the quality of the working environment in
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(some) hospitals with many temporary HCWs, rather than the actual use of temporary

workers, which may be linked to undesirable outcomes.

Disruption in continuity of care is another concern against the use of temporary HCWs,

see, e.g., Roche et al. (2009) and Cabana and Jee (2004). However, Aiken et al. (2007) argue

that continuity of care in hospitals is not ideal, regardless of the use of temporary workers.

Discontinuity, as they suggest, is the outcome of 12-hour shifts in hospitals resulting in

nurses working 3 to 4 days per week. Bae et al. (2010) contend that a higher use of temporary

HCWs increases the administrative burden as such workers may be unfamiliar with policies,

procedures, equipments, colleagues, and patients, thus requiring more supervision. However,

the interviews conducted by Berg Jansson and Engström (2017) in a Swedish intensive care

unit suggest that temporary workers are more likely to develop closer relationships with

patients as, in most cases, they do not have to participate in planning or internal training.

The authors also explain that, since clear documentation is needed in systems with blended

workforce (that is, where both temporary and permanent HCWs are hired), the additional

administrative burden results in greater transparency and better communication, which

can improve performance.

Our review of the literature as outlined above suggests that the use of temporary workers

does not influence the performance negatively in general. The analyses of Aiken et al. (2007)

and Xue et al. (2012) also show that temporary nurses are as well educated as permanent

nurses, and that nurses in hospitals with larger shares of temporary staff are not more likely

to be dissatisfied with their jobs or more burned out. Furthermore, given an appropriate
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environment, temporary HCWs can have positive impacts. For example, their use is linked

with higher efficiency in the study by Hughes and Marcantonio (1991). As such, healthcare

providers need a mix of permanent and temporary HCWs to be able to deliver a quality

service in a timely and efficient manner. However, a balance must be struck between staffing

costs and service quality by recruiting the right mix of permanent and temporary HCWs.

Finding the right mix of temporary and permanent HCWs is challenging for the following

reasons. First, permanent and temporary recruitment decisions are not made at the same

time; advertising for permanent workers must typically start well ahead of the service

delivery, e.g., a few months in advance, whereas recruitment of temporary workers occurs

much later, e.g., a few hours/days in advance. This implies an asymmetry in demand

information, i.e., a more accurate demand information is available at the time of temporary

recruitment than permanent recruitment. Second, there is uncertainty in recruitment

since there is no guarantee that all the required positions can be filled. Third, healthcare

providers often experience periods of highly uncertain demand. In the UK’s NHS, for

example, there is high uncertainty in predicting winter peak demand, with some years

such as 2017 having a substantially busier winter than previous years (NHS Improvement,

2018). The recent COVID-19 pandemic has added to demand uncertainty. For example,

as illustrated in Thorlby et al. (2020), the emergency care demand in the UK dropped

significantly during the first wave of the pandemic (March to June 2020), while it peaked

back up in the second wave (September to December 2020). In addition to making the

role of demand forecasting and the timing of permanent advertisement more critical, a
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highly uncertain demand implies that permanent employees recruited in one year may not

be needed in the following year.

In light of the challenges outlined above, the aim of this thesis is to develop optimization

frameworks to inform permanent and temporary recruitment decision making for highly

uncertain demand periods. We pursue this aim under two different planning horizons, mid

term and long term. The rest of this chapter is organized as follows. The thesis objectives

and scope are outlined in Section 1.2. The structure of the thesis is presented in Section

1.3.

1.2 Thesis Objectives and Scope

For a mid-term planning horizon, e.g., one year ahead, the optimal blend of temporary and

permanent HCWs mainly depends on the following trade-off: permanent HCWs are cheaper,

but their recruitment lead time, i.e., the time between advertisement and recruitment,

is substantially longer. Longer recruitment lead times for permanent HCWs have two

implications for recruitment decision making: limited information about demand is available

when permanent positions are advertised; and some (or even all) of these positions may not

be filled in the desired time frame. Indeed, 10% of permanent nursing vacancies in the NHS

were not filled in 2020 (NHS Vacancy Statistics, 2021). For a long-term planning horizon,

e.g., multiple years ahead, the optimal mix of temporary and permanent HCWs is further

influenced by the difference in their placement durations. More specifically, permanent
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HCWs have substantially longer contracts to the service provider than temporary HCWs,

hence the provider must consider their long-term cost when making recruitment decisions.

This is particularly important under highly uncertain demand.

The core of this thesis is divided into two main chapters: Chapter 3, which addresses the

mid-term recruitment problem, and Chapter 4, which considers the long-term recruitment

problem. More specifically, given a single-interval planning horizon, a framework is proposed

in Chapter 3 which informs decision making for temporary and permanent workforce

recruitment by capturing the trade-off between their staffing costs and recruitment lead

times. In Chapter 4, on the other hand, considering a multi-interval planning horizon, a

framework is proposed that informs recruitment decision making by capturing the trade-off

between staffing costs, recruitment lead times, and contract durations. To simplify the

analysis, the randomness of the permanent recruitment process, which is incorporated into

the framework of Chapter 3, is excluded from the framework of Chapter 4.

In summary, we investigate the following research questions:

• How the trade-off between recruitment lead times, staffing costs, and placement

durations can be captured by stylized analytical frameworks?

• What insights can be derived from such frameworks with regards to the impact of

cost elements, demand uncertainty, timing of permanent advertisement, and service

uncertainty on the optimal permanent and temporary recruitment decisions and the

overall system cost?
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• How much savings can potentially be gained by using our proposed frameworks?

1.3 Thesis Structure

An overview of the analytical approaches proposed in the literature for the mid- and

long-term recruitment problems is presented in Chapter 2. In Chapter 3, we propose a

single-interval stochastic optimization framework for the mid-term recruitment problem.

We characterize the optimal recruitment decisions, propose algorithms for calculating their

values, derive some monotonicity and insensitivity properties for the optimal decisions

and their corresponding costs, and illustrate the implementation of our framework with

data from an inpatient ward. Numerical experiments are also conducted to evaluate the

likely savings obtained from our proposed framework as compared to two simplified models.

While our framework in Chapter 3 is mainly based on a single opportunity for temporary

recruitment, an extension is also proposed which considers multiple opportunities for

temporary recruitment.

In Chapter 4, we propose a multi-interval stochastic optimization framework for the

long-term recruitment problem. We characterize the structure of the optimal policy, perform

sensitivity analysis, and evaluate the potential savings that can be obtained from adopting

the multi-interval framework as compared to the single-interval framework developed in

Chapter 3. Final conclusions, a summary of the contributions, and future areas for research

are discussed in Chapter 5.



Chapter 2

Literature Review

2.1 Introduction

In this chapter, an overview of previous works falling within the scope of this thesis is

presented. The purpose of this chapter is twofold. First, to introduce recruitment models for

blended workforce settings facing uncertain demand. Second, to be more specific about the

focus of this research and justify the frameworks developed in the thesis. This review is not

bound to healthcare systems as other blended workforce environments are also considered.

We start with an overview of the mid-term recruitment models in §2.2. These models

are categorized into single-stage and two-stage optimization models, which are reviewed in

§2.2.1 and §2.2.2, respectively. Long-term recruitment models are then reviewed in §2.3. In

§2.4, we link this research to dual sourcing problems in the inventory management literature.

8
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§2.5 outlines the gaps in the literature, leading to the focus of this research. This chapter

concludes in §2.6.

2.2 Mid-term Recruitment Models

The first part of our review is devoted to analytical recruitment models seeking to determine

the optimal mix of temporary and permanent workers assuming a single-interval (typically

one year) planning horizon. The studies covered assume that there exist a single opportunity

for recruiting permanent employees at the beginning of the planning horizon, and (poten-

tially) multiple opportunities for recruiting temporary employees at given epochs during the

planning horizon. Two main streams can be identified in this literature. The first stream

uses single-stage optimization models (e.g., Dong and Ibrahim, 2020), whereas the second

stream uses two-stage optimization models (e.g., Hu et al., 2021b). Single-stage models

assume simultaneous recruitment of permanent and temporary HCWs, thus ignoring the

higher levels of demand uncertainty for permanent recruitment. Two-stage models, however,

assume that the permanent recruitment decision is made in the first-stage under a limited

demand information, and temporary recruitment decision is made in the second-stage when

a more accurate demand information is available. We note that a comprehensive review

covering the studies up to 2010 is provided in Qin et al. (2015).
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2.2.1 Single-Stage Models

Abraham (1988) uses a combination of analytical and empirical studies to investigate the

employers’ motivations for using temporary workers in a manufacturing setting. In their

analytical study, a model is proposed for identifying the number of permanent workers

to hire so as to minimize the expected labour cost, assuming that unmet demand will

be covered by temporary workers. Demand for output is represented by a probability

distribution, and each permanent (temporary) worker is assumed to be able to produce one

(less than or equal to one) unit of output. Supply uncertainty is modeled by assuming that

a random fraction of permanent workers will not show up. The analytical solutions lead to

the hypotheses that variability in demand and uncertainty in the availability of permanent

workers are the employers’ main motivations for using temporary workers, which are then

supported by an empirical study.

Berman and Larson (1994) formulate a model wherein the number of permanent workers

is fixed and the optimal pool size of temporary workers at the beginning of each month

must be determined. They assume that temporary workers are guaranteed a minimum

number of hours per month as an incentive for pool membership. The cost per hour of

temporary workers is assumed to be lower than the cost per hour of overtime work, thus

the preference is to first use temporary staff and then resort to overtime work. Berman

and Larson (1994) represent daily demand for workforce by a probability distribution, and

capture the supply uncertainty caused by employees’ absenteeism. Their analysis leads to
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an exact model for identifying the optimal pool size of temporary workforce.

Jeang (1996) proposes a mixed-integer programming model to determine the number

of permanent workers to hire on a weekly basis, as well as the number of temporary and

overtime workers needed for each day, in a healthcare setting with uncertain demand. The

workforce demand is captured by a probability distribution, and a constraint is included in

the optimization model ensuring that the labour supply must exceed the demand average

plus/minus a multiple of demand standard deviation. A heuristic enumeration approach is

proposed for estimating the optimal number of permanent employees.

Harper et al. (2010) propose a simulation-based model to find the optimal number of

different types of permanent nurses to hire at the start of the year, as well as the optimal

daily number of temporary nurses. Their model takes the daily demand for nurses from

a discrete-event simulation, and converts it to staffing numbers using either the nurse-to-

patient ratio method or the dependency-activity-quality method. The former estimates the

staffing numbers based on a fixed proportion of occupied beds (de Véricourt and Jennings,

2011), while the latter establishes the number of nurses required based on the care needed

for patients of different dependency levels in a ward (Hurst, 2002). The results suggest

that increasing the number of permanent nurses is more cost-effective for coping with

fluctuations in demand than using temporary nurses.

Dong and Ibrahim (2020) propose stochastic models for situations in which the manager

must decide on the optimal numbers of temporary and/or permanent workers so as to

minimize the sum of staffing cost and performance cost (including the costs of patients



Chapter 2. Literature Review 12

waiting or leaving without being served). The authors consider two modelling scenarios. In

the first one, the number of temporary staff is decided in each period, and in the second one,

the number of permanent staff for the entire planning horizon and the number of temporary

staff for each period are decided at the beginning of the horizon. The dynamics of service

delivery is captured using an abandonment queueing model with a random number of

servers, and the demand is assumed to be Poisson with a known and time-varying rate for

different periods. Due to analytical intractability of the staffing problem with a random

number of servers, the authors consider an asymptotic, many-server, mode of analysis.

For the first scenario, four regimes are identified for the optimal policy depending on the

magnitude of the variability of the random number of servers. For the second scenario, it is

illustrated that when temporary workers are more expensive, the best strategy is to rely

solely on permanent workers in low-demand periods, and to use both types of workers in

high-demand periods.

The main shortcomings of the models outlined above are as follows. Some studies capture

only the permanent recruitment decision (Abraham, 1988) or the temporary recruitment

decision (Berman and Larson, 1994) explicitly in their models. Some others (Jeang, 1996;

Harper et al., 2010; Dong and Ibrahim, 2020) capture both decisions but assume that they

are made simultaneously, and therefore ignore the asymmetry in demand information at

the times of permanent and temporary recruitment. These shortcomings are addressed in

the two-stage models.
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2.2.2 Two-Stage Models

Kao and Queyranne (1985) present a two-stage model for minimizing the overall nursing cost

in inpatient departments of a hospital. They divide a yearly planning horizon into periods of

equal length, e.g., a month. In the first stage, the number of permanent nurses in each skill

class for the entire year is determined. In the second stage, given the number of permanent

nurses and the realized demand in each period, the numbers of overtime and temporary

nurses to utilize are identified. Patient arrival is modelled as a Normal distribution with a

time-varying mean and variance, which are evaluated using an autoregressive integrated

moving average model. This is then converted to nursing hours by the nurse-to-patient

ratio method, taking into account the patients’ random length of stay. The authors propose

different simplifications of their model, and demonstrate that, while ignoring the time-

varying nature of demand does not lead to substantial errors in nursing estimates, ignoring

the demand uncertainty leads to underestimation.

Similarly, Pinker and Larson (2003) divide a yearly planning horizon into periods of

equal length. Their model determines the number of permanent workers to hire and the pool

size of temporary workers to contract (from a temporary labour supplier) over the planning

horizon in order to minimize the expected labour and backlog costs (any unprocessed work

in a period is assumed to be backlogged to the next period.) Embedded within their model

is a Markov decision process that gives the amount of temporary and overtime workers to

utilize in each period. To capture the impact of timing of demand information, the authors
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split each period into two segments, odd and even, and model the demand for workforce as

the sum to two random variables, one that is realized at the beginning of the odd segments

and the other that is revealed at the beginning of the even segments. In an odd segment,

based on the revealed demand variable and the number of present permanent workers, the

number of temporary workers to use out of the contracted pool is obtained. In an even

segment, based on full demand information, the amount of overtime work required from

permanent workers is established. The model accounts for different productivity levels

of distinct types of workers as well as absenteeism. Their results illustrate that labour

flexibility on its own does not provide a better performance, and appropriate demand

information is required as a complementary tool.

Lu and Lu (2017) develop a two-stage stochastic optimization model to capture the

effect of mandatory overtime laws on staffing ratios in nursing homes. In the first stage of

their model, facing an uncertain patient enrolment, the optimal regular hours of registered

nurses is determined. In the second stage, given the actual patient enrolment and the

regular nursing hours, the optimal contract and overtime nursing hours are decided. The

uncertainty in patient enrolment is captured by a random variable whose distribution is

known in the first stage, and its exact value is revealed in the second stage. The objective

is to minimize the total staffing cost, while ensuring a minimum staff-to-resident ratio.

Results from their model support the following hypotheses: (i) mandatory overtime laws

increase (decrease) the nursing hours of contract (permanent) workers; (ii) more (fewer)

staffing hours of contract (permanent) workers are associated with a lower quality of care;
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and (iii) mandatory overtime laws diminish the quality of care in nursing homes.

Recently, Hu et al. (2021b) propose a two-stage model in which the first stage identifies

the base staffing levels (i.e., permanent workforce) and the second stage determines the

surge staffing levels (i.e., overtime and temporary workforce). They capture the dynamics

of service delivery explicitly by an abandonment queueing model, and represent demand as

a Poisson mixture model, i.e., a Poisson process with a random rate. They assume that the

distribution of the Poisson rate is known in the first stage, and the exact value of the rate is

revealed in the second stage. Assuming that the random demand rate follows a specific form,

they show that surge staffing is most beneficial when demand rate uncertainty dominates

the system stochasticity (as driven by random inter-arrival, service and abandonment times).

Taking an asymptotic approach that increases the system scale to infinity, they propose

near-optimal two-stage staffing rules minimizing the sum of staffing and performance costs.

The authors extend their model to allow for the rate prediction error in the second stage,

and also make empirical adjustments to their staffing rules to facilitate their implementation

in an emergency department.

Table 2.1 summarizes the models developed in the mid-term recruitment literature.
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Table 2.1: Summary of the references in mid-term recruitment models literature
References Decisions Features Method Context

Single Stage Models
Abraham (1988) # of permanent workers Demand and supply uncertainty Stochastic optimization Manufacturing
Berman and Larson (1994) Pool size of temporary workers Demand and supply uncertainty,

overtime work
Stochastic optimization Postal services

Jeang (1996) # of permanents weekly, # of temporaries and overtime
daily

Demand uncertainty Mixed-integer programming Healthcare

Harper et al. (2010) # of permanents for the year, # of temporaries daily Staffing levels as the output of
simulation (using nurse-to-patient ratio
or dependency-activity-quality methods)

Stochastic optimization Healthcare

Dong and Ibrahim (2020) # of temporary and/or permanent workers Abandonment queueing system,
Poisson arrivals with time-varying
rate, random servers

Fluid and stochastic-fluid
approximations

Service systems

Two-Stage Models
Kao and Queyranne (1985) # of permanents in the first stage and

# of overtime and temporaries in the second stage
Demand uncertainty Stochastic optimization Healthcare

Pinker and Larson (2003) # of permanents and # of temporaries
to contract for the entire planning horizon,
# of temporaries to use in the first stage and
# of overtime to use in the second stage within each
interval

Demand and supply uncertainty,
backlog of unfinished work

Stochastic optimization
using dynamic programming

Delivery service,
clerical operations,
repair services

Lu and Lu (2017) # of permanents in the first stage,
# of temporaries and overtime in the second stage

Nurse-to-patient ratio model,
demand uncertainty

Stochastic optimization Nursing homes

Hu et al. (2021b) # of permanent workers in the first stage
and # of temporary workers in the second stage

Abandonment queueing system,
Poisson mixture arrivals

Stochastic-fluid approximation Emergency department
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2.3 Long-term Recruitment Models

The planning horizon in long-term recruitment models spans across multiple years. This

implies that, in contrast with mid-term recruitment models, there are multiple opportunities

for hiring and potentially firing permanent employees. We review this literature below.

Gans and Zhou (2002) study a long-term hiring problem with heterogeneous workforce

(different skill levels), in which the decision maker must identify the optimal number of

workers to hire in each interval so as to minimize the sum of staffing, hiring and operating

costs. Employees are hired at skill level 1, and progress through a sequence of skill levels

over time. The problem is formulated as a Markov Decision Process (MDP), with the

number of employees at different skill levels (before a hiring decision is made) identifying the

state of the system at the beginning of each interval. In addition to fixed hiring costs and

per-period wages, the value function of the MDP includes an operating cost function, which

is the solution to a work scheduling optimization model given the numbers of employees

at different skill levels and a (point or distributional) forecast of demand. This function

can potentially capture the amount of overtime and outsourcing that must be done in each

interval to meet the demand. The authors prove that the optimal policy is of a hire-up-to

type, assuming that the operating cost is a convex function of the numbers of employees at

different levels. They also show that when demand is stationary or stochastically increasing,

a myopic policy which optimizes a one-period static problem for each interval is optimal.

The authors further propose a computationally efficient heuristic approach which produces
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near-optimal policies when there is little learning and relatively inexpensive flexible capacity.

Ahn et al. (2005) investigate a similar problem, but allow for hiring decisions to be

made at different levels. They also account for the possibility of employees being fired in

each interval. In addition to the current numbers of workers of different levels, a state

variable representing the current state of the environment is considered. This additional

variable could affect the distribution of the demand, the pool from which the hiring is made,

and/or the probabilities of employees leaving the system. The authors prove that when the

numbers of employees are non-integral, hiring and firing costs are linear, the operating cost

function is convex, and a random fraction of employees of each type may leave at the end of

each interval, the optimal policy has a simple hire-up-to/fire-down-to structure. However,

the optimal policy is more difficult to characterize when the numbers of employees must be

integer.

2.4 Analogy with Dual Sourcing in Inventory Man-

agement

There are connections between our recruitment decision-making problem and the dual-

sourcing problem in inventory management (see Svoboda et al., 2021 for a comprehensive

review on multiple sourcing). In this context, firms must decide, in a newsvendor setting,

how much to procure from short lead-time suppliers (i.e., emergency suppliers) and how

much from long lead-time suppliers (i.e., regular suppliers). With regular suppliers, retail
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prices are typically lower but orders must be placed well in advance of the selling season when

demand forecasts are highly inaccurate. The firms may, therefore, delay some orders to closer

to the time of sales when more accurate demand information is available, but this involves

using more expensive emergency suppliers. We can think of temporary and permanent

workers in the service delivery context as emergency and regular suppliers, respectively, in

the inventory management context. We therefore review studies on inventory management

that investigate the optimal quantity of orders from a portfolio of short and long lead-time

suppliers, and assess the similarities and potential differences with our research.

Gurnani and Tang (1999) consider a system with uncertain demand and two ordering

opportunities wherein the product unit cost in the second opportunity could be lower

or higher than that of the first opportunity. They assume that the demand follows a

given distribution in the first opportunity, and this distribution is updated before the

second opportunity in light of the most recent market information. They formulate the

problem as a nested newsvendor model to identify the optimal order quantities at the two

ordering opportunities. Given specific assumptions for updated demand distribution, they

characterize the situations under which it is optimal to delay the ordering until the second

opportunity.

Yan et al. (2003) study the same problem as in Gurnani and Tang (1999) but with

two simplifications: (i) they assume the unit price in the second ordering opportunity is

given and always larger than that of the first one, and (ii) the demand forecast standard

deviation reduces as a linear (and potentially random) function of time. This enables them
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to fully characterize the optimal ordering policy and also evaluate the marginal benefit of

improved forecasting. They further generalize the model to multiple intervals and show

that the policy is myopically optimal for some demand distribution functions.

Wang and Tomlin (2009) develop a model in which the firm has only a single opportunity

to place orders but it can be any time before the selling season. The unit price is assumed

constant but lead-time is random with a known distribution. The trade-off is therefore

between ordering early to reduce the risk of late arrival, and ordering late to improve

demand forecast accuracy. The dynamics of demand forecasting is captured by a martingale

model of forecast evolution (MMFE) where successive forecasts have a Markovian property.

The authors characterize the optimal procurement time and quantity, and prove that, with

a multiplicative MMFE model, the timing decision is independent of forecast evolution but

the quantity is not.

Wang et al. (2012) study a system in which the unit purchase price and forecasting

accuracy increase as we get closer to the start of the selling season. They propose two

different ordering strategies, single ordering and multi-ordering. In single ordering, the firm

is restricted to a single ordering opportunity. The decision maker must decide when to order

and how much to order. The single-ordering strategy is divided into static and dynamic

models. In the static model, the timing decision is made at the start of the planning horizon

but the quantity decision is delayed until the selected time. In the dynamic model, the

decision maker must decide in each period whether to order (if she has not ordered before)

or wait, and how much to order (if she has decided to order). The authors propose analytical
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solutions for both dynamic and static models. In multi-ordering, the firm can order multiple

times in response to the available stock and most up-to-date demand information. The

optimal policy in the multi-ordering strategy is proved to be a base-stock policy, where the

optimal base-stock level is a function of the current demand information.

The trade-offs considered in the frameworks we develop in Chapters 3 and 4 of this

thesis are similar to those of the inventory models cited above. Our context is, however,

fundamentally different. This is because (i) we are recruiting employees, not ordering

products, so the dynamics and uncertainties of recruitment must be captured explicitly

in modelling, and (ii) measuring performance in service delivery is more complex than in

selling products as it is a function of interactions between random inter-arrival and service

times. Hence, a completely different setup is needed in our models.

2.5 The Focus of the Thesis

Mid-term Recruitment Models. Chapter 3 focuses on the trade-off between staffing costs and

recruitment lead times of temporary and permanent HCWs in a mid-term planning horizon.

Given the asymmetry of demand information at the points of permanent and temporary

recruitment, we follow a two-stage modelling approach in this chapter. The two-stage

models in the literature do not typically capture the dynamics of service delivery explicitly;

they either work directly with the workforce demand distribution (e.g., Pinker and Larson,

2003), or assume a linear relationship between demand and the number of servers required
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to meet this demand (e.g., Lu and Lu, 2017). The former is difficult to measure in service

environments, and the latter amounts to the nurse-to-patient ratio method in healthcare.

As argued in Yankovic and Green (2011), the nurse-to-patient ratio method may lead to

under- or over-staffing as factors such as the unit size and the variability in service durations

are not explicitly accounted for. The work of Hu et al. (2021b) is the only two-stage study

that captures the dynamics of service delivery explicitly, hence it is the closest study to our

research. Our study is different from that of Hu et al. (2021b) in the following ways.

First, Hu et al. (2021b) (and other two-stage studies reviewed in §2.2.2) assume that

the desired permanent staffing level can always be achieved, whereas we will consider the

uncertain nature of permanent recruitment and thus account for the possibility of some

positions not being filled. In addition to making our models more realistic, this would allow

us to investigate the benefit of a lower demand uncertainty as a result of a later permanent

advertisement than scheduled, versus the associated risk of a shorter advertisement window.

Second, Hu et al. (2021b) focus on abandonment queues. This implies that some customers

may leave the queue before their service begins. This captures the reality of some service

systems such as emergency departments where some patients may leave without being

seen. It does not, however, capture the reality of inpatient departments, care homes, or

residential care settings where, once patients are admitted, all of their requests must be

served. The same applies to diagnostic services in hospitals. As such, we focus on delay

queues which are appropriate for situations where all customers joining the queue must

be served. Third, Hu et al. (2021b) derive their staffing rules by taking an asymptotic
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approach which increases the system scale to infinity. This approach may lead to significant

errors in small systems as illustrated in Tables 2 and 3 in Hu et al. (2021b). We aim to

address this problem by taking an exact approach. This is important given that the systems

representing residential or inpatient care settings are relatively small, as we will illustrate

in our case study in §3.6.

Long-term Recruitment Models. Chapter 4 focuses on the trade-off between staffing

costs, recruitment lead times, and contract durations of temporary and permanent HCWs

in a long-term planning horizon. We found only two related studies, as reported in §2.3.

Neither capture the co-existence of temporary and permanent workers explicitly. The

fundamental trade-off prevailed in such settings are therefore not considered. Our aim is to

fill this gap.

Focusing on settings where all patients must be served, i.e., there is no loss or aban-

donment, we capture the dynamics of service delivery by generic delay queueing models

in both Chapters 3 and 4. A cost-minimization approach, including the cost of workforce

plus the waiting cost incurred by patients, is also followed throughout. Further, we model

the patient demand as a Poisson mixture model, i.e., a Poisson process with a random

rate. As illustrated in Jongbloed and Koole (2001) and Maman (2009), this captures the

higher variability relative to the standard Poisson process that is typically observed in

patients’ arrival data. It also allows us to represent the asymmetry in demand information

at the times of permanent and temporary recruitment. In particular, we assume that the

distribution of the Poisson rate is available at the time of permanent recruitment and
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the exact value of the rate (not the demand itself) is revealed at the time of temporary

recruitment. This follows the assumption made in Hu et al. (2021b), and implies that

there remains a degree of demand uncertainty at the time of temporary recruitment, which

matches the reality of service systems.

2.6 Summary

The literature addressing the recruitment of blended workforce in the presence of uncertain

demand was divided into mid-term and long-term categories. Assuming a single-interval

planning horizon, studies in the first category consider a single opportunity for permanent

recruitment and single or multiple opportunities for temporary recruitment. We further

divided this category into single-stage and two-stage streams, and reviewed the studies in

both streams. Special attention was made to the way that demand and supply uncertainties

were represented in different studies. It was highlighted that a two-stage modelling approach

will be followed in this thesis as it captures the asymmetry in demand information available

for temporary and permanent recruitment of skilled workers.

The study of Hu et al. (2021b) was identified as the only study that captures the

dynamics of service delivery explicitly in the two-stage stream. We set out to fill the gaps

in this study by focusing on delay systems (instead of abandonment systems), capturing the

uncertainty in permanent recruitment, and proposing a solution approach that produces

accurate recruitment levels irrespective of the system size. This will be followed in Chapter
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3.

The studies on long-term planning horizon focus on multiple intervals, with a permanent

recruitment opportunity and one or more temporary recruitment opportunities in each

interval. We reviewed two major studies in this category, and highlighted that neither

consider temporary recruitment explicitly. Our objective in Chapter 4 will therefore be to

fill this gap by proposing a multi-interval blended recruitment framework.



Chapter 3

A Mid-Term Recruitment Model

3.1 Introduction

The purpose of this chapter is to capture the key trade-off inherent in the mid-term blended

workforce planning via a stylized analytical model. This trade-off is between the permanent

HCWs, who are cheaper but have a longer recruitment lead time, versus the temporary

HCWs, who are as qualified and more expensive but have a substantially shorter recruitment

lead time. We specifically consider permanent and temporary recruitment decision making

for a highly uncertain demand period (HUDP).

We consider a setting in which patients’ requests arrive to the system during the HUDP,

and wait in a queue until they are served by a member of a pool of HCWs. The provider

must decide how many permanent HCW positions to advertise well ahead of the HUDP,

26



Chapter 3. A Mid-Term Recruitment Model 27

e.g., several months in advance, when only partial information about demand is available.

We refer to this decision as the first-stage decision. Once the permanent positions are

advertised, applications arrive and offers are made to qualified applicants. At the start of

the HUDP, the provider must then decide how many temporary HCWs to recruit given the

number of permanent HCWs recruited and the latest demand information. We refer to this

as the second-stage decision, and propose a two-stage stochastic optimization framework

to capture the dependence of the second-stage decision on that of the first-stage. The

objective is to minimize the expected cost of workforce plus the cost incurred by patients

while their requests are in the system. Our framework is based on the assumption that

advertisement for permanent positions must begin at an exogenously given time. However,

we also investigate the benefit/loss of delaying advertisement to obtain more accurate

demand information at the expense of a higher risk of not filling the advertised positions.

We further consider an extension of the main framework wherein the HUDP is divided into

multiple segments with potentially correlated demand.

As mentioned in Chapter 2, we model the patient demand process as a Poisson mixture

model. This is the model proposed in Jongbloed and Koole (2001) and Maman (2009) for

capturing the higher variability relative to the standard Poisson process that is commonly

observed in patients arrival data. Similar to Hu et al. (2021b), we assume that only the

distribution of the Poisson rate is available to the decision maker in the first stage, while

the true value of this rate becomes known in the second stage. We model the uncertainty in

the permanent recruitment process by considering a probability distribution for the number
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of qualified applicants. The dynamics of service delivery in the HUDP are captured by

a generic delay queueing model, which evaluates the expected system size, i.e., the mean

number of requests waiting or being served, in steady state.

The remainder of this chapter is organized as follows. We start off in §3.2 by proposing

our two-stage framework assuming a generic delay queueing model for representing service

delivery in the HUDP. Under this general setting, we provide analytical characterization of

the optimal first- and second-stage decisions, investigate their monotonicity and insensitivity

properties, and propose numerical algorithms for estimating their values. In §3.3, we

specialize our framework for three specific queueing models to derive further analytical

insight. §3.4 is devoted to conducting numerical experiments, aiming to evaluate the

potential savings that could follow from using our proposed framework. In §3.5, we

investigate the potential benefit/loss of delaying advertisement for permanent positions.

We then develop a unified approach to guide implementation of our two-stage framework

in an inpatient department of a hospital in §3.6. In §3.7, we propose an extension to our

framework, where we allow multiple opportunities for temporary recruitment. Using this

extension, we evaluate the impact of demand correlation between different segments of

a HUDP on the optimal permanent recruitment decision. A summary of the findings is

presented in §3.8.
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3.2 The Two-Stage Framework

Consider a HUDP during which patients’ requests arrive for HCW services according to

a Poisson process with rate λ. The requests wait in a queue until they are served by a

member of the pool of HCWs (permanent and temporary). It takes a random amount of

time to serve each request, and the average of this time is set as the time unit so that the

rate of service delivery is equal to one. As depicted in Figure 3.1, the HUDP is preceded by

a permanent recruitment period of length te, during which advertising and recruitment for

permanent HCWs occur.

Figure 3.1: Schematic diagram of permanent and temporary recruitment decision making process

The rate of Poisson arrivals is unknown to the service provider during the permanent

recruitment period. As such, it is denoted by the random variable Λd, for d ∈ [0, te]. We

assume that the provider knows the distribution (and thus the mean) of Λd. This can be

estimated from historical data as we will illustrate in §3.6. We further assume that the

provider gains full knowledge of the rate at time te, i.e., Λte = λ. This can be achieved

using a forecasting model such as the one proposed in Hu et al. (2021a). Suppose a decision

has been made to advertise for permanent positions at time t ∈ [0, te). This decision is
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exogenous as it depends on external factors, e.g., the timing of nurses graduation. In §3.5,

however, we explore the potential benefit/risk of a later advertisement. The first-stage

problem would then involve the number of permanent full-time equivalent (FTE) positions

to advertise at time t, denoted by a ∈ R+, whereas the second-stage problem would concern

the number of temporary FTEs to recruit at time te, denoted by g ∈ R+ (R+ represents

the set of non-negative real numbers.) Note that, following the blended workforce literature

(e.g., Kao and Queyranne, 1985; Abraham, 1988), we represent the quantity of HCWs (and

their positions) with FTEs, which are non-negative real numbers, thus facilitating the

derivation of analytical results.

We start with the formulation for the second-stage problem. Following Lu and Lu

(2017), we assume that each permanent employee must provide an additional ro ≥ 0.0

percentage of mandatory overtime work. Let cp, co, and cg be the cost rates of permanent,

mandatory overtime, and temporary work, respectively. Similar to Lu and Lu (2017), we

assume that cp < co < cg. The first inequality is in line with the UK’s NHS overtime

payment, which is typically 1.5 times of the standard hourly rate (Royal College of Nursing,

2021). The second inequality is supported by various surveys indicating that temporary

nurses cost the highest to the employers; see, e.g., Vovak (2010) and National Audit Office

(2006). Let cw be the waiting cost incurred by patients per unit of time in the system,

i.e., waiting in the queue and/or being served. We opt to cost the total time the requests

stay in the system, instead of the time they are waiting in the queue, in order to reflect

the nature of services provided by HCWs. For example, a patient cannot be considered
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admitted or discharged until the admission or discharge process is fully completed in an

inpatient ward. We normalize the cost rates so that cp = 1.0. Suppose there exists a total

of p ∈ R+ permanent HCWs in the system at time te (including those employed in the most

recent recruitment period plus those recruited previously). Given request arrival rate λ and

p permanent HCWs, the second-stage problem is then formulated as

v(λ, p) = min
g
{p(1 + roco) + gcg + l(λ, p(1 + ro) + g)cw : g ∈ R+, g > λ− p(1 + ro)}, (3.1)

where l(λ, s) denotes the system-size function representing the mean number of requests

in the system given the rate of requests’ arrival is λ > 0 and the size of the HCW pool is

s ∈ R+ with s > λ. In problem (3.1), the first two terms in the objective function yield the

total staffing cost, the last term in the objective function gives the performance cost, and

the second constraint ensures the stability of the system (recall that service rate is set to

one). We denote the optimal solution to problem (3.1) by g∗(λ, p).

To formulate the first-stage problem, let Qt represent the (random) number of qualified

applications received during the advertisement period (t, te] following a ∈ R+ permanent

FTE positions being advertised at time t. We assume that offers are made to, and accepted

by, qualified applicants on a sequential basis. Sequential recruitment is a search strategy,

in which each applicant is screened immediately upon arrival, and an offer is made if the

applicant is sufficiently qualified (Van Ommeren and Russo, 2014). Recruitment continues

until a maximum of a permanent FTEs are recruited or te is reached. Given n ∈ R+ the
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exact FTE of permanent HCWs available in the system at time t who are expected to

remain in their jobs during the HUDP, the first-stage problem is formulated as

m(n) = min
a
{E[v (Λt, n+ min{Qt, a})] : a ∈ R+}, (3.2)

where v(λ, p) is evaluated through the second-stage problem given in (3.1), and the de-

pendence of m(n) to Λt and Qt is suppressed to simplify the notation. Note that since

permanent HCWs are typically expected to give notices if they intend to resign, it is

reasonable to assume that n is known to the provider at time t. We denote the optimal

solution to problem (3.2) by a∗(n).

In order to characterize the optimal solutions to the first- and second-stage problems,

given in Equations (3.2) and (3.1), respectively, we need to make the following set of

assumptions concerning the system-size function, l(λ, s).

Assumption 1. l(λ, s) satisfies the following properties on its domain {(λ, s) : λ > 0, s ∈

R+, s > λ}:

A(i) It is continuous and twice differentiable on λ and s;

A(ii) limλ↓0 l(λ, s) = 0, lims↓λ l(λ, s) = limλ↑s l(λ, s) =∞, and lims→∞ l(λ, s) is finite;

A(iii) It is strictly increasing in λ, and strictly decreasing in s;

A(iv) It is strictly convex in s;
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A(v) Its first order partial derivative with respect to s is strictly decreasing in λ.

Note that x ↑ y and x ↓ y denote x approaching y from left and right, respectively.

Since the number of servers is typically an integer value in queueing models, an extension

to non-integral server numbers is needed for Assumption 1. As we illustrate in §3.3, such

extensions exist for some common queueing models. These extensions are continuous and

twice differentiable, i.e., property A(i) is met. The first two limits in property A(ii) are

trivial and naturally hold. For the last limit in the same property, note that when the

number of servers tends to infinity, there will not be a queue in the system, and thus the

mean number of requests in the system will be finite. Property A(iii) is trivial. Property

A(iv) implies diminishing returns in queueing systems, i.e., the amount of improvement

achieved in performance as a result of one additional server reduces as the number of servers

increases. Property A(v) implies economies of scale in queueing systems, which can be seen

by changing the order of differentiation and noting that congestion always increases with

the arrival rate, but this increase reduces with the number of servers. In §3.3, we formally

prove these properties for three common queueing models.

Given Assumption 1, we propose

Proposition 1. For the second-stage problem given in (3.1),

g∗(λ, p) =
{

0 if λ ≤ λ̃(p),
g̃(λ, p) if λ > λ̃(p), (3.3)
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where λ̃(p) is the unique root of function

φp(x) , cg + cw
∂l(x, s)
∂s

∣∣∣
s=p(1+ro)

, (3.4)

in the interval (0, p(1 + ro)) when p > 0, and λ̃(0) = 0. g̃(λ, p) in (3.3) is the unique root

of function

θλ,p(g) , cg + cw
∂l(λ, s)
∂s

∣∣∣∣
s=p(1+ro)+g

, (3.5)

in the interval ((λ− p(1 + ro))+,∞), where (x)+ = max{0, x} .

To prove Proposition 1, we first need the following Lemmas.

Lemma 3.2.1. limλ↓0
∂l(λ, s)
∂s

= 0.

Proof. We need to prove that for every ε > 0, there exists a δ > 0 such that

∣∣∣∣∣∂l(λ, s)∂s

∣∣∣∣∣ = −∂l(λ, s)
∂s

< ε, (3.6)

when 0 < λ < δ, where the equality above is due to property A(iii). Since limλ↓0 l(λ, s) = 0

by property A(ii), we can find a δ′ > 0 such that −l(λ, s) > −εh/2 for any h > 0. Also, we

always have l(λ, s+ h) > −εh/2. Combining these two inequalities, we obtain

l(λ, s+ h)− l(λ, s)
h

> −ε. (3.7)

Taking the limit as h goes to zero and setting δ = δ′, the proof is complete.
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Lemma 3.2.2. lims↓λ
∂l(λ, s)
∂s

= −∞ and limλ↑s
∂l(λ, s)
∂s

= −∞.

Proof. To show that lims↓λ
∂l(λ, s)
∂s

= −∞, we first prove that ∂l(λ, s)
∂s

is unbounded on

s ∈ (λ, b] for any b > λ. Supposing that it is not true, i.e., ∂l(λ, s)
∂s

is bounded for all

λ < s < b. Let’s call this bound B. Then, by Mean Value theorem (Thomas, 2014), there

exists an ε ∈ (s, b) such that

l(λ, b)− l(λ, s)
b− s

= ∂l(λ, s)
∂s

∣∣∣
s=ε
.

Thus,

l(λ, s) = l(λ, b)− ∂l(λ, s)
∂s

∣∣∣
s=ε

(b− s),

and so,

|l(λ, s)| =
∣∣∣∣l(λ, b)− ∂l(λ, s)

∂s

∣∣∣
s=ε

(b− s)
∣∣∣∣

|l(λ, s)| ≤ |l(λ, b)|+
∣∣∣∣∂l(λ, s)∂s

∣∣∣
s=ε

∣∣∣∣|b− s|
≤ |l(λ, b)|+B|b− s|,

for all s ∈ (λ, b). However, this implies that l(λ, s) is bounded for all s ∈ (λ, b), which is not

true since lims↓λ l(λ, s) =∞ by property A(ii). Hence, ∂l(λ, s)
∂s

is unbounded on s ∈ (λ, b]

for all b > λ. Now, since l(λ, s) is strictly convex in s by property A(iv), ∂l(λ, s)
∂s

strictly

decreases as s approaches λ from above. Following unboundedness of ∂l(λ, s)
∂s

on (λ, b], we

must have lims↓λ
∂l(λ, s)
∂s

= −∞.
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To prove limλ↑s
∂l(λ, s)
∂s

= −∞, we need to find an ε > 0 for any M > 0 such that
∂l(λ, s)
∂s

< −M , whenever s − λ < ε. Since lims↓λ
∂l(λ, s)
∂s

= −∞, there exists an ε′ > 0

such that ∂l(λ, s)
∂s

< −M , whenever s− λ < ε′. We can set ε = ε′.

Lemma 3.2.3. lims→∞
∂l(λ, s)
∂s

= 0.

Proof. Suppose that lims→∞
∂l(λ, s)
∂s

= L 6= 0. Then, for any ε > 0, there is an M > 0 such

that
∣∣∣∣∂l(λ, s)∂s

− L
∣∣∣∣ < ε when s > M . Now, consider an arbitrary s > M . By the Mean

Value theorem, there is a point δs ∈ (s, s+ 1) such that

l(λ, s+ 1)− l(λ, s) = ∂l(λ, s)
∂s

∣∣∣∣
s=δs

.

Since M < s < δs, we have
∣∣∣∣∂l(λ, s)∂s

∣∣∣∣
s=δs

− L
∣∣∣∣ < ε, and so |l(λ, s + 1) − l(λ, s) − L| < ε.

Taking the limit as s→∞, and noting that lims→∞ l(λ, s) is finite by property A(ii), we

obtain |L| < ε, which cannot be true if L 6= 0, hence lims→∞
∂l(λ, s)
∂s

= 0.

We now prove Proposition 1 as follows.

Proof. The Lagrange function of the optimization problem given in (3.1) is obtained as

L(λ, p, β; g) = p(1 + roco) + gcg + l(λ, p(1 + ro) + g)cw − βg,

where β is the Karush-Kuhn-Tucker (KKT) multiplier. Note that constraint g > λ−p(1+ro)

is not included in the Lagrange function as it is always active and so its multiplier is equal

to zero. This leads to the following scenarios:
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(i) β = 0: the first-order condition is

∂L(λ, p, β; g)
∂g

= cg + cw
∂l(λ, s)
∂s

∣∣∣
s=p(1+ro)+g

= 0. (3.8)

From the primal feasibility conditions, we must also have g ≥ 0.

(ii) β > 0: the first order condition is

∂L(λ, p, β; g)
∂g

= cg + cw
∂l(λ, s)
∂s

∣∣∣
s=p(1+ro)+g

− β = 0,

and so,

β = cg + cw
∂l(λ, s)
∂s

∣∣∣
s=p(1+ro)

,

where g = 0 is obtained from the complementary slackness condition for the non-

negativity constraint. We must also have λ−p(1+ro) < g, or equivalently λ < p(1+ro).

Given the convexity of l(λ, s), the values of g meeting the conditions in scenarios (i) or

(ii) will be optimal. To find these values, focusing initially on the situation with p > 0, we

first show that the function

φp(x) , cg + cw
∂l(x, s)
∂s

∣∣∣
s=p(1+ro)

,

has a unique root in the interval (0, p(1+ro)). By properties A(i) and A(v), ∂l(x, s)
∂s

is contin-
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uous and strictly decreasing in x. By Lemma 3.2.1, we also have limx↓0
∂l(x, s)
∂s

= 0, and so

limx↓0 φp(x) = cg, which is always positive. Further, by Lemma 3.2.2, limx↑s
∂l(x, s)
∂s

= −∞,

and so limx↑p(1+ro) φp(x) = −∞. As such, by the Intermediate Value theorem and Rolle’s

theorem (Thomas, 2014), there exists a unique solution to φp(x) = 0, which we denote by

λ̃(p). Then, for values of λ ∈ (0, λ̃(p)), φp(λ) = β > 0, and also λ < λ̃(p) < p(1 + ro), hence,

the conditions of scenario (ii) are met for g = 0, and so g∗(λ, p) = 0 for λ ∈ (0, λ̃(p)).

For values of λ ∈ [λ̃(p), p(1 + ro)), φp(λ) = β ≤ 0, and so conditions of scenario (ii) do

not hold. For λ = λ̃(p), however, φp(λ̃(p)) = 0. Hence, defining

θλ,p(g) , cg + cw
∂l(λ, s)
∂s

∣∣∣∣
s=p(1+ro)+g

,

we obtain θλ̃(p),p(0) = 0. This implies that conditions of scenario (i) are met for g = 0 and

so g∗(λ̃(p), p) = 0. For λ ∈ (λ̃(p), p(1 + ro)), on the other hand, since cg + cw
∂l(λ, s)
∂s

is

strictly increasing in s (by property A(iv)), there exists a unique value g̃(λ, p) > 0 such

that θλ,p(g̃(λ, p)) = 0, thus meeting conditions of scenario (i). That is g∗(λ, p) = g̃(λ, p) for

λ ∈ (λ̃(p), p(1 + ro)).

Finally, for λ ∈ [p(1 + ro),∞), we show that a g̃(λ, p) ∈ (λ− p(1 + ro),∞) can still be

found to satisfy θλ,p(g) = 0. We know that θλ,p(g) is continuous and strictly increasing in g.

By Lemma 3.2.2, we also have lims↓λ
∂l(λ, s)
∂s

= −∞, and so limg↓λ−p(1+ro) θλ,p(g) = −∞.

Further, by Lemma 3.2.3, lims→∞
∂l(λ, s)
∂s

= 0, and so limg→∞ θλ,p(g) = cg, which is always

positive. As a result, based on Intermediate Value and Rolle’s theorems, there exists a
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unique value g̃(λ, p) > λ − p(1 + ro) satisfying θλ,p(g) = 0. The conditions of scenario

(i) are therefore met for g̃(λ, p), and so g∗(λ, p) = g̃(λ, p) for λ ∈ (λ̃(p),∞). Similarly,

for the situation with p = 0, we can find a value g̃(λ, 0) ∈ (λ,∞) satisfying the equation

θλ,0(g̃(λ, 0)) = 0, and thus the conditions of scenario (i). Therefore g∗(λ, 0) = g̃(λ, 0), and

the proof is complete.

Algorithm 1 outlines the steps for evaluating g∗(λ, p) based on Proposition 1. This

algorithm includes a function for evaluating λ̃(p) as the unique root of φp(x) (given in

Equation (3.4)) in the interval (0, p(1 + ro)). As shown in the proof of Proposition 1, φp(x)

is continuous and strictly decreasing in x, with a positive value when x ↓ 0, and a negative

value when x ↑ p(1 + ro). Hence, its root can be obtained by a bracketing method, such as

Brent’s method (Brent, 1973), with the bracketing interval set to [α1, p(1 + ro)−α2], where

α1 and α2 are small positive numbers. Note that lines 18 to 25 in Algorithm 1 choose α1 and

α2 such that φp(α1) > 0 and φp(p(1 + ro)−α2) < 0, thus ensuring the existence of a unique

root in the interval [α1, p(1+ro)−α2]. Algorithm 1 also evaluates the unique root of function

θλ,p(g) (given in Equation (3.5)) in the interval ((λ− p(1 + ro))+,∞). As shown in the

proof, θλ,p(g) is continuous and strictly increasing in g, negative when g ↓ (λ− p(1 + ro))+,

and positive when g →∞. Its root can therefore be obtained by Brent’s method with the

bracketing interval set as outlined in Algorithm 1. Note that lines 4 to 11 in Algorithm 1

choose α and gu such that θλ,p((λ− p(1 + ro))+ + α) < 0 and θλ,p(gu) > 0, thus ensuring a

unique root can be found in the interval [(λ− p(1 + ro))+ + α, gu].
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Algorithm 1 Numerical method for evaluating the optimal number of temporary HCWs,
g∗(λ, p)
.
Require: l(x, y), λ, p, cg, cw, ro
1: if λ ≤ λ̃(p) then
2: g∗(λ, p)← 0
3: else
4: α← 0.001
5: while θλ,p((λ− p(1 + ro))+ + α) > 0 do
6: α← α/10.0
7: end while
8: gu ← ((λ− p(1 + ro))+ + 10.0
9: while θλ,p(gu) < 0 do
10: gu ← gu × 10
11: end while
12: g∗(λ, p)← root of θλ,p(g) in the interval [(λ− p(1 + ro))+ + α, gu]
13: end if
14: function λ̃(p)
15: if p = 0 then
16: return 0.0
17: else
18: α1 ← 0.001
19: while φp(α1) < 0 do
20: α1 ← α1/10.0
21: end while
22: α2 ← 0.001
23: while φp(p(1 + ro)− α2) > 0 do
24: α2 ← α2/10.0
25: end while
26: return root of φp(x) in the interval [α1, p(1 + ro)− α2]
27: end if
28: end function

Before proceeding to the first-stage problem, we provide the monotonicity properties of

the optimal second-stage decision with respect to λ and p.

Corollary 1. The optimal second-stage decision, g∗(λ, p), is increasing in λ, and decreasing

in p.
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To prove Corollary 1, we first need the following lemma.

Lemma 3.2.4. λ̃(p) is strictly increasing in p.

Proof. By property A(iv), ∂l(x, s)
∂s

∣∣∣
s=p(1+ro)

is strictly increasing in p. This implies that

φp(x) is also strictly increasing in p for all values of x ∈ (0, p(1 + ro)). From this, and

the fact that φp(x) is a strictly decreasing function of x, we conclude that the root of this

function, i.e., λ̃(p), increases strictly with p.

We now prove Corollary 1.

Proof. Since function θλ,p(g) is strictly increasing in g as shown in the proof of Proposition

1, and strictly decreasing in λ by property A(v), its root, i.e., g̃(λ, p), must increase as

λ increases. This implies that g∗(λ, p) is increasing in λ. Further, since θλ,p(g) is strictly

increasing in p by property A(iv), its root, i.e., g̃(λ, p), must decrease when p increases.

This, combined with the fact that λ̃(p) is strictly increasing in p by Lemma 3.2.4, proves

that g∗(λ, p) is decreasing in p.

Following Algorithm 1, we can obtain the optimal second-stage decision g∗(λ, p), and

thus the corresponding cost v(λ, p), for any values of λ and p. In theory, this should enable

us to evaluate the objective function of the first-stage problem given in (3.2) for different

values of a ≥ 0, providing an estimate for a∗(n). More specifically, let ht(·) and ft(·) be the

probability density functions (pdfs) of Λt and Qt supported in intervals [0, λu) and [0, qu),
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respectively, where λu and qu could be infinitely large. Expanding the first-stage objective

function, we then have

E[v (Λt, n+ min{Qt, a})] =
∫ λu

0

∫ qu

0
v(λ, n+ min{q, a})ft(q)ht(λ)dq dλ. (3.9)

Evaluating Equation (3.9) for a given a would require calculating a double integral over

(potentially) infinite intervals. This calculation would require evaluating the integrand

for many pairs of (λ, p), which requires evaluating two pdf functions and the optimal

second-stage cost v(λ, p), which in turn requires evaluating g∗(λ, p). The computation time

would therefore be significant, thus making this approach impractical. Instead, we consider

the structural properties of the objective function as will be elaborated later in the proof

of Proposition 2. In short, let us denote by ψn(a) the derivative of the objective function

conditioned on Qt = q, q > a with respect to a, i.e., ∂E[v (Λt, n+ a)]/∂a. Following integral

differentiation rules, we then have

ψn(a) = 1 + roco + cw(1 + ro)
∫ λ̃(n+a)

0

∂l(λ, s)
∂s

∣∣∣∣
s=(n+a)(1+ro)

ht(λ)dλ

− cg(1 + ro)
(
1−Ht

(
λ̃(n+ a)

))
, (3.10)

where Ht(·) is the cumulative distribution function of Λt. We now propose
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Proposition 2. For the first-stage problem given in (3.2),

a∗(n) =


0.0 if ψn(0.0) ≥ 0.0,

min{ã(n), qu}, otherwise,

(3.11)

where ã(n) is the unique root of function ψn(a) in the interval (0,∞).

We use the following lemmas to prove Proposition 2.

Lemma 3.2.5. lima→∞ ψn(a) is positive.

Proof. By Lemma 3.2.3, lims→∞
∂l(λ, s)
∂s

= 0. From Lemma 3.2.4, we know that λ̃(p) is

strictly increasing in p, so limp→∞ λ̃(p) = ∞. Hence, lima→∞ ψn(a) = 1 + roco, which is

positive.

Lemma 3.2.6. ψn(a) is continuous, and strictly increasing in a and n.

Proof. Continuity is trivial. Taking the derivative from ψn(a) with respect to a gives

∂ψn(a)
∂a

= cw(1 + ro)
∂λ̃(n+ a)

∂a

∂l(λ̃(n+ a), s)
∂s

∣∣∣∣
s=(a+n)(1+ro)

ht(λ̃(n+ a))

+ cw(1 + ro)2
∫ λ̃(n+a)

0

∂2l(λ, s)
∂s2

∣∣∣∣
s=(a+n)(1+ro)

ht(λ)dλ+ cg(1 + ro)
∂λ̃(n+ a)

∂a
ht(λ̃(n+ a))

= (1 + ro)
∂λ̃(n+ a)

∂a
ht(λ̃(n+ a))

(
cg + cw

∂l(λ̃(n+ a), s)
∂s

∣∣∣∣
s=(a+n)(1+ro)

)

+ cw(1 + ro)2
∫ λ̃(n+a)

0

∂2l(λ, s)
∂s2

∣∣∣∣
s=(a+n)(1+ro)

ht(λ)dλ

= cw(1 + ro)2
∫ λ̃(n+a)

0

∂2l(λ, s)
∂s2

∣∣∣∣
s=(a+n)(1+ro)

ht(λ)dλ,

(3.12)
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where the last equality is because λ̃(n+ a) is the unique root of function φn+a(x) given in

Equation (3.4). By property A(iv), the expression obtained for ∂ψn(a)
∂a

is always positive.

For the last part, taking the derivative from ψn(a) with respect to n gives

∂ψn(a)
∂n

= cg(1 + ro)
(
∂λ̃(n+ a)

∂n

)
ht(λ̃(n+ a))

+ cw(1 + ro)
(
∂l(λ̃(n+ a), s)

∂s

∣∣∣
s=(n+a)(1+ro)

(
∂λ̃(n+ a)

∂n

)
ht(λ̃(n+ a))

)

+ cw(1 + ro)
∫ λ̃(n+a)

0

∂2l(λ, s)
∂s∂n

∣∣∣
s=(n+a)(1+ro)

ht(λ)dλ

= (1 + ro)
(
∂λ̃(n+ a)

∂n

)
ht(λ̃(n+ a))

(
cg + cw

∂l(λ̃(n+ a), s)
∂s

∣∣∣∣
s=(a+n)(1+ro)

)

+ cw(1 + ro)
∫ λ̃(n+a)

0

∂2l(λ, s)
∂s∂n

∣∣∣
s=(n+a)(1+ro)

ht(λ)dλ

= cw(1 + ro)
∫ λ̃(n+a)

0

∂2l(λ, s)
∂s∂n

∣∣∣
s=(n+a)(1+ro)

ht(λ)dλ

= cw(1 + ro)2
∫ λ̃(n+a)

0

∂2l(λ, s)
∂s2

∣∣∣
s=(n+a)(1+ro)

ht(λ)dλ

which is positive by property A(iv).

Now, we prove Proposition 2.

Proof. Denoting the expected value in the first-stage problem given in (3.2) by y(n, a), and

conditioning on Qt, we obtain

y(n, a) , E[v (Λt, n+ min{Qt, a})] =
∫ a

0
E [v(Λt, n+ q)] ft(q)dq+E [v(Λt, n+ a)] (1−Ft(a)),

where Ft is the cumulative distribution function of Qt. Taking the derivative of y(n, a) with
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respect to a and simplifying, we arrive at

∂y(n, a)
∂a

= ∂E[v(Λt, n+ a)]
∂a

(1− Ft(a)) = E
[
∂v(Λt, n+ a)

∂a

]
(1− Ft(a)) . (3.13)

For an arbitrary λ, using the Envelope theorem (Takayama, 1985), we then have

∂v(λ, n+ a)
∂a

= ∂

∂a
min {(n+ a)(1 + roco) + gcg + cwl(λ, (n+ a)(1 + ro) + g) :

g ∈ R+, g > λ− (n+ a)(1 + ro)
}

= ∂

∂a

[
(n+ a)(1 + roco) + gcg + cwl(λ, (n+ a)(1 + ro) + g)

]∣∣∣∣
g=g∗(λ,n+a)

, (3.14)

where g∗(λ, n+ a) is the optimal solution to the second-stage problem given in (3.1) with

p = n+ a. From (3.14), we obtain

∂v(λ, n+ a)
∂a

= 1 + roco + cw(1 + ro)
∂l(λ, s)
∂s

∣∣∣∣
s=(n+a)(1+ro)+g∗(λ,n+a)

. (3.15)

Taking the expectation of the above expression, it follows that

E
[
∂v(Λt, n+ a)

∂a

]
= 1 + roco + cw(1 + ro)E

[
∂l(Λt, s)
∂s

∣∣∣∣
s=(n+a)(1+ro)+g∗(Λt,n+a)

]
. (3.16)

Replacing g∗(Λt, n+ a) from Proposition 1, we obtain



Chapter 3. A Mid-Term Recruitment Model 46

E
[
∂v(Λt, n+ a)

∂a

]
= 1 + roco + cw(1 + ro)

(
E
[
∂l(Λt, s)
∂s

∣∣∣∣
s=(n+a)(1+ro)

,Λt ≤ λ̃(n+ a)
]

+E
[
∂l(Λt, s)
∂s

∣∣∣∣
s=(n+a)(1+ro)+g̃(Λt,n+a)

,Λt > λ̃(n+ a)
])

= 1 + roco + cw(1 + ro)
(
E
[
∂l(Λt, s)
∂s

∣∣∣∣
s=(n+a)(1+ro)

,Λt ≤ λ̃(n+ a)
]

+E
[
− cg
cw
,Λt > λ̃(n+ a)

])

= 1 + roco + cw(1 + ro)
∫ λ̃(n+a)

0

∂l(λ, s)
∂s

∣∣∣∣
s=(n+a)(1+ro)

ht(λ)dλ− cg(1 + ro)
∫ ∞
λ̃(n+a)

ht(λ)dλ,

(3.17)

where the last term in the second equality is because g̃(λ, n + a) is the root of function

θλ,n+a(g) given in Expression (3.5) for all values of λ > λ̃(n+ a). Denoting the expression

obtained above for E
[
∂v(Λt, n+ a)

∂a

]
by ψn(a), we have

∂y(n, a)
∂a

= ψn(a)(1− Ft(a)). (3.18)

By Lemma 3.2.6, ψn(a) is a continuous and strictly increasing function of a. Further, by

Lemma 3.2.5, lima→∞ ψn(a) is always positive. Hence, if ψn(0.0) < 0.0, by the Intermediate

Value theorem and Rolle’s theorem, there exists a unique solution to ψn(a) = 0.0, which we

denote by ã(n). ψn(a) is then negative (positive) for a ∈ [0.0, ã(n)) (a ∈ (ã(n),∞)). On

the other hand, if ψn(0.0) ≥ 0.0, then ψn(a) > 0.0 for all a > 0.0.

First, consider the situation where ψn(0.0) < 0.0. Then, when ã(n) < qu, ψn(a)(1−Ft(a))

starts from a negative value at a = 0.0, and increases strictly with a until it becomes 0.0 at
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a = ã(n). It then increases to a positive value and decreases back to 0.0 at a = qu, and

remains equal to 0.0 from that point onwards. This implies that the minimum of y(n, a)

occurs at a = ã(n). On the other hand, when ã(n) ≥ qu, ψn(a)(1 − Ft(a)) starts from a

negative value at a = 0.0, increases strictly with a until it becomes 0.0 at a = qu, and

remains 0.0 for a > qu. This implies that the minimum of y(n, a) occurs at a = qu (Note

that any a ≥ qu will be optimal in this case.) These lead to Equation (3.11).

Next, consider the situation where ψn(0.0) ≥ 0.0. Then ψn(a)(1− Ft(a)) starts from a

non-negative value at a = 0.0, and remains non-negative for all a > 0.0. This implies that

the minimum of y(n, a) occurs at a = 0.0.

Proposition 2 leads to two important corollaries:

Corollary 2. a∗(0.0) > 0.0.

Proof. Setting n = a = 0.0 in Equation (3.10), we obtain ψ0(0.0) = 1 + roco − cg(1 + ro) =

1− cg + ro(co − cg) < 0.0, where the inequality is because 1 < co < cg by assumption. It

then follows from Proposition 2 that a∗(0.0) > 0.0.

Corollary 3. a∗(n) is insensitive to changes in ft as long as its support remains the same.

Further, when qu →∞, a∗(n) will be a hire-up-to policy evaluated as a∗(n) = (ã(0.0)− n)+.

Proof. The first part is because ft does not appear in the expression for ψn(a). For the

second part, first note that, when qu →∞, a∗(n) = 0.0 if ψn(0.0) ≥ 0.0, and a∗(n) = ã(n)

if ψn(0.0) < 0.0, by Equation (3.11). Next, we consider two situations. First, suppose
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that ψn(0.0) ≥ 0.0. Then, since ψn(a) increases strictly with n by Lemma 3.2.6, we have

ψn+x(0.0) > ψn(0.0) ≥ 0.0, implying that

a∗(n+ x) = a∗(n) = 0.0, (3.19)

for any x ≥ 0.0. Second, suppose that ψn(0.0) < 0.0 and so a∗(n) = ã(n) which is

a positive value. Then, since a and n only appear as (a + n) in the expression for

ψn(a), we have ψn(a) = ψn+x(a − x) for 0 ≤ x ≤ a. Setting a = ã(n), we obtain

ψn+x (ã(n)− x) = ψn (ã(n)) = 0, where the second equality is by definition. This implies

that

a∗(n+ x) = ã(n)− x, (3.20)

for 0 ≤ x ≤ ã(n). In particular, for x = ã(n), we obtain ψn+ã(n)(0.0) = 0.0 and a∗(n +

ã(n)) = 0.0. Further, since by Lemma 3.2.6, ψn(a) increases strictly with n, we have

ψn+x(0) > ψn+ã(n)(0) = 0, implying that

a∗(n+ x) = 0.0, (3.21)

for x > ã(n). Combining Equations (3.19), (3.20), and (3.21), we arrive at

a∗(n+ x) =


0.0 if ψn(0) ≥ 0.0,

(ã(n)− x)+ , otherwise,

(3.22)
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for any x ≥ 0. Setting n = 0.0 in Equation (3.22) and a change of variable yield

a∗(n) =


0.0 if ψ0(0.0) ≥ 0.0,

(ã(0.0)− n)+ , otherwise.

(3.23)

But ψ0(0.0) is always negative as shown in the proof of Corollary 2, and thus a∗(n) =

(ã(0.0)− n)+.

Corollary 2 implies that it is never cost-effective to serve customer requests with only

temporary HCWs. Corollary 3 implies that, when qu →∞, evaluating ã(0.0) is sufficient

for characterizing a∗(n) for any value of n.

Algorithm 2 outlines the steps for obtaining a∗(n) based on Proposition 2. The algorithm

needs to evaluate ã(n) as the unique root of function ψn(a) in the interval (0,∞). As shown

in the proof of Proposition 2, ψn(a) is a continuous and strictly increasing function in a

with a negative value at a = 0 and a positive value when a→∞. The root of this function

can therefore be obtained by Brent’s method given a value au > 0 such that ψn(au) > 0.

Indeed, lines 5 to 8 in Algorithm 2 choose au such that ψn(au) > 0 to ensure the existence

of a unique root in the interval (0, au]. Note that each step of Brent’s method would also

require to evaluate ψn(a) for different values of a, which in turn requires evaluating of

λ̃(n+ a) using the function provided in Algorithm 1.

It is important that Algorithm 2 provides an accurate estimate for the optimal first-

stage decision by using function ψn(a), which involves only single integrals over finite
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Algorithm 2 Numerical method for evaluating the optimal number of permanent positions
to advertise, a∗(n).
Require: l(x, y), ht, cg, co, cw, ro, n, qu, and function λ̃(p) from Algorithm 1
1: Evaluate ψn(0) from Equation (3.10) using λ̃(n) as input
2: if ψn(0) ≥ 0 then
3: a∗(n)← 0
4: else
5: au ← 10
6: while ψn(au) < 0 do
7: au ← au × 10
8: end while
9: ã(n)← root of ψn(a) in the interval (0, au]
10: a∗(n)← min{ã(n), qu}
11: end if

intervals, and does not require evaluating the optimal second-stage decision and its cost.

The calculations are fast as a result, leading to the optimal decision in less than a second

in all the numerical experiments we conducted. It is also noteworthy that the methodology

proposed for evaluating a∗(n) lends itself to further analytical investigation, leading to

results such as the monotonicity properties given in the corollaries 4 and 5 below.

Corollary 4. a∗(n) increases with cg and cw, and decreases with co and n.

Proof. (i) Taking the derivative of ψn(a) with respect to cg, we get
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∂ψn(a)
∂cg

= −(1 + ro)
∫ ∞
λ̃(n+a)

ht(λ)dλ+
(
∂λ̃(n+ a)

∂cg

)
ht(λ̃(n+ a))cg(1 + ro)

+ cw(1 + ro)
(
∂l(λ̃(n+ a), s)

∂s

∣∣∣
s=(n+a)(1+ro)

(
∂λ̃(n+ a)

∂cg

)
ht(λ̃(n+ a))

)

= −(1 + ro)
∫ ∞
λ̃(n+a)

ht(λ)dλ

+
(
∂λ̃(n+ a)

∂cg

)
ht(λ̃(n+ a))(1 + ro)

(
cg + cw

∂l(λ̃(n+ a), s)
∂s

∣∣∣∣
s=(a+n)(1+ro)

)

= −(1 + ro)
∫ ∞
λ̃(n+a)

ht(λ)dλ,

which is negative. This, along with the fact that ψn(a) is strictly increasing in a by Lemma

3.2.6, implies that ã(n) and thus a∗(n) is increasing in cg.

(ii) Taking the derivative of ψn(a) with respect to cw yields

∂ψn(a)
∂cw

= cg(1 + ro)
(
∂λ̃(n+ a)

∂cw

)
ht(λ̃(n+ a)) + (1 + ro)

∫ λ̃(n+a)

0

∂l(λ, s)
∂s

∣∣∣
s=(n+a)(1+ro)

ht(λ)dλ

+ cw(1 + ro)
(
∂l(λ̃(n+ a), s)

∂s

∣∣∣
s=(n+a)(1+ro)

(
∂λ̃(n+ a)

∂cw

)
ht(λ̃(n+ a))

)

= (1 + ro)
(
∂λ̃(n+ a)

∂cw

)
ht(λ̃(n+ a))

(
cg + cw

∂l(λ̃(n+ a), s)
∂s

∣∣∣∣
s=(a+n)(1+ro)

)

+ (1 + ro)
∫ λ̃(n+a)

0

∂l(λ, s)
∂s

∣∣∣
s=(n+a)(1+ro)

ht(λ)dλ

= (1 + ro)
∫ λ̃(n+a)

0

∂l(λ, s)
∂s

∣∣∣
s=(n+a)(1+ro)

ht(λ)dλ,

which is negative by property A(iii). This, along with the fact that ψn(a) is strictly

increasing in a by Lemma 3.2.6, implies that ã(n) and thus a∗(n) is increasing in cw.

(iii) ψn(a) is clearly increasing in co. This, along with the fact that ψn(a) is strictly

increasing in a by Lemma 3.2.6, implies that ã(n) and thus a∗(n) is decreasing in co.
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(iv) By Lemma 3.2.6, ψn(a) is increasing in n. This, along with the fact that ψn(a) is

strictly increasing in a by Lemma 3.2.6, implies that ã(n) and thus a∗(n) is decreasing in

n.

Corollary 5. m(n) increases with cg, cw, and co.

Proof. Taking the derivative of m(n) given in Equation (3.2) with respect to cg, we arrive

at

∂m(n)
∂cg

= ∂

∂cg
min

{
E[v(Λt, n+ min{Qt, a})] : a ∈ R+

}

= ∂

∂cg
E [v(Λt, n+ min{Qt, a})]

∣∣∣∣
a=a∗(n)

= ∂

∂cg

[∫ a

0
E [v(Λt, n+ q)] ft(q)dq + E [v(Λt, n+ a)] (1− Ft(a))

] ∣∣∣∣∣∣
a=a∗(n)

=
[∫ a

0

∂

∂cg
E [v(Λt, n+ q)] ft(q)dq + ∂

∂cg
E [v(Λt, n+ a)] (1− Ft(a))

] ∣∣∣∣∣∣
a=a∗(n)

.

(3.24)

For an arbitrary λ, we then have

∂v(λ, n+ q)
∂cg

= ∂

∂cg
min {(n+ q)(1 + roco) + gcg + l(λ, (n+ q)(1 + ro) + g)cw

: g ∈ R+, g > λ− (n+ q)(1 + ro)
}

= ∂

∂cg
[(n+ q)(1 + roco) + gcg + l(λ, (n+ q)(1 + ro) + g)cw]

∣∣∣∣
g=g∗(λ,n+q)

= g∗(λ, n+ q)
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Similarly, ∂v(λ, n + a)/∂cg = g∗(λ, n + a). Substituting these derivatives into Equation

3.24, we obtain

∂m(n)
∂cg

=
[∫ a

0
E [g∗(Λt, n+ q)] ft(q)dq + E [g∗(Λt, n+ a)] (1− Ft(a))

] ∣∣∣∣∣∣
a=a∗(n)

=
∫ a∗(n)

0
E [g∗(Λt, n+ q)] ft(q)dq + E [g∗(Λt, n+ a∗(n))] (1− Ft(a∗(n))),

which is clearly non-negative.

Similarly, since

∂v(λ, n+ q)
∂cw

= ∂

∂cw
[(n+ q)(1 + roco) + gcg + l(λ, (n+ q)(1 + ro) + g)cw]

∣∣∣∣
g=g∗(λ,n+q)

= l(λ, (n+ q)(1 + ro) + g∗(λ, n+ q)),

and

∂v(λ, n+ a)
∂cw

= l(λ, (n+ q)(1 + ro) + g∗(λ, n+ a)),

we have

∂m(n)
∂cw

=
∫ a∗(n)

0
E [l(Λt, (n+ q)(1 + ro) + g∗(Λt, n+ q))] ft(q)dq

+ E [l(Λt, (n+ a∗(n))(1 + ro) + g∗(Λt, n+ a∗(n)))] (1− Ft(a∗(n))),

which is non-negative.
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For co, since

∂v(λ, n+ q)
∂co

= (n+ q)ro,

and

∂v(λ, n+ a)
∂co

= (n+ a)ro,

we have

∂m(n)
∂co

=
∫ a∗(n)

0
(n+ q)roft(q)dq + (n+ a∗(n))ro(1− Ft(a∗(n))),

which is non-negative and the proof is complete.

3.3 Special Cases

In this section, we consider three common queueing models for the system serving patients’

requests. We have chosen these models as their system-size functions are available in

closed form. Further, extensions of these functions to non-integral server numbers are

already available. In the first model, the system is represented by an M/M/1 queue —

with Exponential independent and identically distributed (i. i. d.) inter-arrival times and

services times that are independent, and a single server — whose service rate is inflated by
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the number of servers. This is a common approximation in queueing optimization models;

see, e.g., Mandelbaum and Reiman (1998) and Anily and Haviv (2010). The single-server

approximation model behaves exactly as the original multi-server system when the number

of customers in the system is equal to or larger than the number of servers. When this is

not the case, the single-server approximation overestimates the system performance because

it consolidates all service capacity into one server. This is less likely to happen when traffic

intensity, i.e., the ratio of the arrival rate to service rate, is high. The advantage of this

approximation is that it leads to explicit equations for congestion measures that can be

applied with non-integral server numbers. In particular, for the M/M/1 approximation

model,

l(λ, s) = λ

(s− λ) , (3.25)

with λ > 0 and s ∈ R+ with s > λ. All properties of Assumption 1 are easily verified for

this model. We then have the following proposition.

Proposition 3. For the special case of M/M/1 approximation,

λ̃(p) = p(1 + ro) +
cw −

√
4cgcwp(1 + ro) + c2

w

2cg
, (3.26)

g̃(λ, p) = λ+

√√√√cwλ

cg
− p(1 + ro), (3.27)

and
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v(λ, p) =


p(1 + roco) + λcw

p(1 + ro)− λ
if λ ≤ λ̃(p) ,

(−cg(1 + ro) + 1 + roco) p+ cgλ+ 2
√
cgcwλ if λ > λ̃(p).

(3.28)

Proof. Taking the derivative of l(λ, s) given in Equation (3.25) with respect to s, plugging

it into Equation (3.4), and setting the result equal to zero yields

cg −
cwx

(p(1 + ro)− x)2 = 0.

Solving the above equation for x ∈ (0, p(1 + ro)), we obtain

x = λ̃(p) = p(1 + ro) +
cw −

√
4cgcwp(1 + ro) + c2

w

2cg
.

Inserting the derivative of l(λ, s) with respect to s in Equation (3.5), setting the result

equal to zero and solving for g, we obtain the value for g̃(λ, p) given in Equation (3.27).

Equation (3.28) is then obtained by evaluating the objective function in problem (3.1) for

g = g∗(λ, p).

Equation (3.27) implies that the number of temporary workers when λ > λ̃(p) is obtained

from an expression analogous to the square-root staffing law (see, e.g., Halfin and Whitt,

1981), according to which the staffing requirement is equal to the offered load (λ in our

setting) plus a service quality coefficient multiplied by the square-root of the offered load.

The service-quality coefficient appears as
√
cw/cg in our formula. An adjustment is also

made to account for the number of permanent workers. The expression given in (3.27)
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replaces the numerical procedure for obtaining g̃(λ, p) in Algorithm 1, and the expression

given in (3.26) replaces the function provided in Algorithm 1 for evaluating λ̃(p).

For the second model, we assume that the dynamics of service delivery are captured

by an inflated M/G/1 queue, with G representing a general distribution for service times.

The system-size function in this setting is

l(λ, s) = 1 + τ 2

2
λ2

s(s− λ) + λ

s
, (3.29)

where τ is the coefficient of variation (CV), i.e., the ratio of standard deviation to mean, of

the service time distribution (Gross et al., 2008). We then have the following proposition

for M/G/1 queues.

Proposition 4. The system-size function l(λ, s) given in Equation (3.29) meets the prop-

erties given in Assumption 1.

Proof. Properties A(i), A(ii), and A(iii) are easy to verify. For property A(iv), we obtain

the second derivative of l(λ, s) given in Equation (3.29) with respect to s as

∂2l(λ, s)
∂s2 =

(
1 + τ 2

2

)(
2λ2(3s(s− λ) + λ2)

(s2 − λs)3

)
+ 2λ
s3 ,

which is positive when s > λ. For property A(v), we have

∂2l(λ, s)
∂λ∂s

=
(

1 + τ 2

2

)(
−λs[(2s− λ)2 + λs]

(s2 − λs)3

)
− 1
s2 ,
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which is negative when s > λ.

We prove an important result for M/G/1 queues in the following corollary. It implies

that, for a given n, a higher variability in service time distribution is compensated with

a larger number of permanent positions advertised. Similarly, for given λ and p, a higher

variability in service time results in a larger number of temporary HCWs. The first- and

second-stage optimal cost functions also increase with τ .

Corollary 6. In M/G/1 queues, g∗(λ, p) and its corresponding cost function, i.e., v(λ, p),

as well as a∗(n) and its corresponding cost function, i.e., m(n), all increase with τ .

Proof. Taking the derivative of l(λ, s) given in Equation (3.29) with respect to τ , we obtain

∂l(λ, s)
∂τ

= λ2τ

s (s− λ) . (3.30)

This gives
∂v(λ, p)
∂τ

= cwτ λ
2

(p (1 + ro) + g∗(λ, p)) (p (1 + ro) + g∗(λ, p)− λ) ,

which, given the stability constraint, is always positive, and so v(λ, p) is increasing in τ .

Taking the derivative of l(λ, s) given in Equation (3.29) with respect to τ and s, we obtain

∂2l(λ, s)
∂τ∂s

= λ2τ (λ− 2s)
s2 (λ− s)2 (3.31)

which is negative. This implies that λ̃(p), the route of function φp(x) given in (3.4) in the
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interval (0, p(1 + ro)), is strictly decreasing in τ . It also implies that g̃(λ, p), the unique root

of function θλ,p(g) given in (3.5) in the interval ((λ− p(1 + ro))+,∞), is strictly increasing

in τ . We conclude that, for given λ and p, g∗(λ, p) is increasing in τ . A similar argument

applies for m(n) and a∗(n).

The third model that we consider is an M/M/s queueing model. The mean number of

requests in this system is evaluated as

l(λ, s) = λC(λ, s)
s− λ

+ λ, (3.32)

where C(λ, s) is a continuous extension of the Erlang delay function such as

C(λ, s) =
(∫ ∞

0
λe−λx(1 + x)s−1xdx

)−1
, (3.33)

for each λ > 0 and s ∈ R+ with s > λ as defined by Jagers and van Doorn (1991). For this

system, we propose

Proposition 5. The system-size function l(λ, s) given in Equation (3.32) meets the prop-

erties given in Assumption 1.

Proof. Property A(i) is easy to verify. For property A(ii), note that limλ↓0 C(λ, s) = 0,

lims→∞C(λ, s) = 0, and

lim
λ↑s−

C(λ, s) = lim
s↓λ+

C(λ, s) = lim
λ↑s−

B(λ, s)
1− λ(1− B(λ, s))/s = B(λ, s)

B(λ, s) = 1, (3.34)
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where the second equality is by the relation between delay probability C(λ, s) in M/M/s

queues and blocking probability B(λ, s) in the associated M/M/s/0 loss queues (with 0

representing the waiting space). For the first part of property A(iii), note that

∂l(λ, s)
∂λ

=

(
C(λ, s) + λ∂C(λ,s)

∂λ

)
(s− λ) + λC(λ, s)

(s− λ)2 + 1. (3.35)

Using the relation between C(λ, s) and B(λ, s) given in Equation (3.34), we then have

∂C(λ, s)
∂λ

= (∂B(λ, s)/∂λ)(1− λ/s) + 1/s(1− B(λ, s))B(λ, s)
[1− (λ/s) (1− B(λ, s))]2 ,

which is non-negative because B(λ, s) is increasing in λ (Pacheco, 1993), λ < s, and

B(λ, s) ≤ 1. Hence, the derivative given in Equation (3.35) is positive. For the second

part of property A(iii) and property A(iv), Karsten et al. (2015) prove that the expected

sojourn time, denoted by w(λ, s), is strictly decreasing and strictly convex in s for M/M/s

queues. Since l(λ, s) = λw(λ, s), the same properties apply for l(λ, s). Property A(v) is in

fact economies of scale as explained in §3.2. This has already been proved in the extant

literature; see, e.g., Karsten et al. (2015).

The M/M/1 queue is useful for obtaining rough estimates of optimal decisions with

minimum computational effort. The M/G/1 queue captures the impact of service time

variability, while the M/M/s queue represents the impact of system scale accurately.

More computational effort is needed for the last two models, however, as closed-form

expressions for λ̃(p) and g̃(λ, p) cannot be provided due to the complexity of the derivatives
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of corresponding system-size functions.

3.4 Savings Evaluation

In this section, we assess the savings obtained from our model when compared to a

single-stage model with no temporary recruitment and a two-stage model in which the

uncertainty in demand rate is ignored. In our experiments, we assume that Λt follows a

Gamma distribution with mean ξ and CV κ. This assumption is motivated by the study

of Jongbloed and Koole (2001), and is verified empirically in our case study in §3.6. For

Qt, Pinker and Tilson (2013) propose a Poisson distribution. Since we need a continuous

distribution, however, we use a Log-Normal distribution with mean µr and CV κr instead.

3.4.1 Comparison with a Single-Stage Model with No Temporary

Recruitment

Consider a single-stage model in which the provider has to decide the number of permanent

positions to advertise at time t knowing that there is no opportunity for temporary

recruitment. This is formulated as

msingle(n) = min
a

{
E [(n+ min{Qt, a})(1 + roco)+

l(Λt, (n+ min{Qt, a})(1 + ro))cw|S] :

P(S) ≥ γ; a ∈ R+
}
, (3.36)
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where S is the event of the system being stable, and γ is the minimum probability of

this event as set by the decision maker. In (3.36), we condition the expected value in the

objective function on S and add the corresponding constraint to the optimization model as

in the single-stage decision making with uncertain demand rate, there is a likelihood that

the system becomes unstable for any value of a (unless ht has a bounded support). The

stability condition is represented mathematically as Λt < (n+ min{Qt, a})(1 + ro), and its

probability can be evaluated for any given a by the law of total probability.

We evaluate the savings obtained from our two-stage model as compared to the single-

stage model with no temporary recruitment. In particular, we investigate the impact on

savings of demand rate uncertainty, as measured by its CV κ, for three different scale

scenarios, ξ = 10.0, ξ = 50.0, and ξ = 100.0, using an M/M/s queue. We use the same

queue to also investigate the impact of cg, cw, co, ro, and n on savings. We set µr = 10ξ and

κr = 0.5 in our experiments to minimize the impact on savings of recruitment restrictions

as these will be investigated separately. For each set of parameters, we evaluate the

optimal cost of the two-stage model by inserting the optimal first-stage decision returned by

Algorithm 2 in the objective function of the first-stage problem given in (3.9). The optimal

solution to (3.36) is estimated by complete enumeration over values of a ∈ [0.0, 0.1, . . . , 5ξ].

The cost calculations are performed with 30 digits numerical precision. The results are

plotted in Figure 3.2 for γ = 0.95.

The plots in panel (a) of Figure 3.2 suggest that savings from our model typically

increase with the system scale and the level of uncertainty in demand rate, exceeding 10.0%
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Figure 3.2: The savings of our model as compared to the single-stage model using an M/M/s queue. The
parameters not given in the plots are ξ = 10.0, cg = 1.5, cw = 0.5, co = 1.2, ro = 0.1, n = 0, µr = 10ξ, and
κr = 0.5.

for κ ≥ 0.3 and ξ ≥ 10. They also indicate that savings of at least 3.9% are likely to be

gained with all three scale scenarios even when demand rate uncertainty is very low, i.e.,

κ ≈ 0.1. This is a substantial amount of saving given the high share of staffing cost in

healthcare expenditure (see, e.g., The Kings Fund, 2021). Panel (b) suggests that savings

reduce with the cost rate of temporary HCWs, becoming negative for cg ≥ 4.5 and cg ≥ 5.0

with κ = 0.4 and κ = 0.6, respectively. This implies that the single-stage model may result

in a lower cost than the two-stage model when cg is very large (bear in mind that there

always exists a risk of the system becoming unstable with the single-stage model.) Panel

(c) implies that savings typically decrease, but remain positive, as cw increases. Panels (d)
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and (e) show mildly increasing trends for savings with respect to co and ro, respectively.

Panel (f) suggests that savings are initially stable with respect to n, but then decrease as n

goes beyond a threshold. This is because for n larger than a threshold, there is no need for

temporary recruitment and so the difference between the two models reduces.

We perform another set of experiments with an M/G/1 queue to investigate the impact

of service time variability, as measured by its CV τ , as well as recruitment parameters, µr

and κr. The results are presented in Figure 3.3 for ξ = 10. Panel (a) of this figure shows

that savings vary from 2.8% for κ = 0.2 and τ = 5.0 to 39.4% for κ = 0.6 and τ = 0.0.

Panels (b) and (c) suggest that savings are almost insensitive to µr and κr. This is mainly

because, in order to meet the stability constraint with reasonably small values of a, we

must have µr ≥ 20 for the set of parameters considered. As the starting value for µr is

already large, savings do not change as µr or κr increase.
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Figure 3.3: The savings of our model as compared to the single-stage model using an M/G/1 queue. The
parameters are ξ = 10.0, cg = 1.5, cw = 0.5, co = 1.2, ro = 0.1, n = 0, and (a) µr = 10ξ, κr = 0.5, (b)
τ = 1.0, κr = 0.5, and (c) τ = 1.0 and µr = 20.0.
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3.4.2 Comparison with a Two-Stage Model with No Demand

Rate Uncertainty

We consider a two-stage optimization framework similar to §3.2, but assume that the

decision maker ignores the demand rate uncertainty at time t, and works with the expected

demand rate, denoted by ξ. The first-stage problem then simplifies to

m(n) = min
a
{E[v (ξ, n+ min{Qt, a})] : a ∈ R+}, (3.37)

and its solution is obtained through the following proposition.

Proposition 6. The optimal solution to the first-stage problem with no demand rate

uncertainty as given in (3.37) is obtained from Proposition 2 with ψn(a) simplified as

ψn(a) = 1 + roco +


−cg(1 + ro), λ̃(a+ n) < ξ,

cw(1 + ro)
∂l(ξ, s)
∂s

∣∣∣
s=(n+a)(1+ro)

, λ̃(a+ n) ≥ ξ,

(3.38)

In addition, when the service delivery is represented by an M/M/1 queue, we have

ã(n) =

√
ξcw(1 + ro)

1 + roco
+ ξ

1 + ro
− n. (3.39)

Proof. For the first part, we apply Proposition 2 noting that ignoring demand rate uncer-

tainty is equivalent to assuming P(Λt = ξ) = 1.0. This implies that when ξ is smaller than
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λ̃(n+ a), the third term in Equation (3.10) simplifies to

cw(1 + ro)
∂l(ξ, s)
∂s

∣∣∣
s=(n+a)(1+ro)

,

and the fourth term simplifies to zero. Similarly, when ξ is larger than λ̃(n+ a), the fourth

term in Equation (3.10) simplifies to −cg(1 + ro) and the third term simplifies to zero.

These yield the expression in Equation (3.38).

For the second part, the expression given for ã(n) is obtained by replacing the derivative

of l(λ, s) given in (3.25) with respect to s in Equation (3.38) and solving ψn(a) = 0.0 for

a.

We evaluate the savings obtained from our model as compared to the model with no

demand rate uncertainty. In particular, we investigate the impact on savings of κ for three

different values of ξ using an M/M/s queue. We use the same queue to also investigate

the impact of cg, cw, co, ro, and n on savings. For the same reason as in §3.4.1, we set

µr = 10ξ and κr = 0.5. For the model with demand rate uncertainty, the cost is evaluated

as explained in §3.4.1. For the model with no demand rate uncertainty, the optimal cost is

evaluated by inserting the optimal a produced by Proposition 6 in the objective function of

the first-stage problem given in (3.9) The results are plotted in Figure 3.4.

Panel (a) of Figure 3.4 suggests that savings will be small when demand rate uncertainty

is low and system scale is small. As the scale and/or demand rate uncertainty grow,

however, the savings are likely to increase, exceeding 2.5% for a moderate demand rate
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Figure 3.4: The savings of our model as compared to the model with no demand rate uncertainty using an
M/M/s queue. The parameters not given in the plots are ξ = 10.0, cg = 1.5, cw = 0.5, co = 1.2, ro = 0.1,
n = 0, µr = 10ξ, and κr = 0.5.

uncertainty, i.e., κ ≈ 0.5, and a medium system, i.e., ξ ≈ 50.0. Panel (b) of Figure 3.4

suggests that savings show a non-monotone behaviour with respect to cg, initially decreasing

but then increasing. The increase of savings for values of cg larger than a threshold can be

explained by noticing that obtaining the demand rate distribution at the time of permanent

advertisement leads to a more successful permanent recruitment, which in turn, helps

with relying less on a highly expensive temporary HCWs at the second stage. Panel (c)

illustrates a decreasing trend for savings with respect to cw. Panels (d) and (e) suggest

slowly increasing trends for co and ro, respectively. Panel (f) implies that savings reduce

with n, becoming 0.0 for n ≥ 11.0. This is because for larger values of n, there are already
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enough workers in the system to respond to the possibility of a higher than expected

demand rate, and thus the two models become closer.

We perform another set of experiments with an M/G/1 queue to investigate the impact

of τ , µr and κr. The results are presented in Figure 3.5 for ξ = 10.0. Panel (a) of this figure

shows that savings decrease with τ , while panel (b) suggests that they increase with µr up

to a threshold, then stabilize. Panel (c) shows a mild decreasing trend for κr.
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Figure 3.5: The savings of our model as compared to the model with no demand rate uncertainty using
an M/G/1 queue. The parameters are ξ = 10.0, cg = 1.5, cw = 0.5, co = 1.2, ro = 0.1, n = 0, and (a)
µr = 10ξ, κr = 0.5, (b) τ = 1.0, κr = 0.5, and (c) τ = 1.0 and µr = 10.0.

Overall, when demand rate uncertainty is moderate to high, our two-stage approach

is likely to be beneficial. When demand rate uncertainty is low, on the other hand, the

simplified version of our two-stage approach which uses only the average demand rate (as

illustrated in Proposition 6) would suffice. Furthermore, except in situations where cg

is extremely high, temporary recruitment is likely to provide value, even if demand rate

uncertainty is very low. This value is likely to increase with the system scale, but decrease

with cw.
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3.5 Delaying Advertisement

In §3.2, we assumed that advertisement for permanent HCWs must occur at time t due to

external factors. In this section, we consider the possibility of delaying the advertisement

beyond t. This is because one would expect that, as advertisement is delayed, there will

be a lower level of uncertainty for demand rate. The risk, however, is that with a shorter

window for advertising, a smaller number of qualified applications may be received. We

investigate this trade-off. We note that this is an important investigation, which to the

best of our knowledge, has not been covered in the literature.

We consider the reduction in the number of applications and the reduction in demand

rate uncertainty by assuming that, for t ≤ t′ < te, Qt′ ≤st Qt and Λt′ ≤cx Λt, respectively,

where X ≤st Y denotes that X is smaller than Y in the usual stochastic order, and X ≤cx Y

denotes that X is smaller than Y in the convex order (see, e.g., Shaked and Shanthikumar,

2007). To avoid unnecessary complication, we further assume that the pdfs of Qt′ and Λt′

have the same support as those of Qt and Λt, respectively. Roughly, Qt′ ≤st Qt states that

Qt is more likely to take on large values than Qt′ , whereas Λt′ ≤cx Λt implies that Λt is more

likely to take on extreme values than Λt′ . Λt′ ≤cx Λt also implies that E[Λt] = E[Λt′ ] = ξ,

which is consistent with §3.2. In order to show the dependence of the optimal first-stage

decision and its cost on Qt and Λt, we expand the corresponding notations defined in §3.2

to a∗(n,Qt,Λt) and m(n,Qt,Λt), respectively. We first analyze the impact of reduction in

application numbers and demand rate uncertainty separately.
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From corollary 3, we know that the optimal first-stage decision is not affected by the

distribution of Qt, i.e., a∗(n,Qt,Λt) = a∗(n,Qt′ ,Λt). The optimal cost, however, decreases

as a result of Qt increasing in the usual stochastic order by the following proposition.

Proposition 7. Suppose Qt′ ≤st Qt, then m(n,Qt,Λt) ≤ m(n,Qt′ ,Λt).

Proof. First, note that Qt′ ≤st Qt implies that E [ω(Qt′)] ≥ E[ω(Qt)] for any decreasing

function ω(x). Also, note that, by insensitivity of a∗(n,Qt,Λt) to the pdf of Qt, we have

m(n,Qt,Λt) = E [v(Λt, n+ min{Qt, a
∗(n,Qt,Λt)})] ,

and

m(n,Qt′ ,Λt) = E [v(Λt, n+ min{Qt′ , a
∗(n,Qt,Λt)})] .

Hence, it suffices to show that

ω(q) , E [v(Λt, n+ min{q, a∗(n,Qt,Λt)})] ,

is decreasing in q. For q ≥ a∗(n,Qt,Λt),
∂ω(q)
∂q

= ∂

∂q
E[v(Λt, n + a∗(n,Qt,Λt))] = 0. For

0 ≤ q < a∗(n,Qt,Λt), on the other hand, we have

∂ω(q)
∂q

= ∂

∂q
E [v(Λt, n+ q)]

= 1 + roco + cw(1 + ro)
∫ λ̃(n+q)

0

∂l(λ, s)
∂s

∣∣∣∣
s=(n+q)(1+ro)

ht(λ)dλ

− cg(1 + ro)
∫ ∞
λ̃(n+q)

ht(λ)dλ, (3.40)
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where the second equality is obtained by replacing a with q in Equation (3.17). The

expression given in (3.40) is in fact ψn(q), which by Proposition 2 is negative when

0 ≤ q < a∗(n,Qt,Λt). Hence, ω(q) is decreasing in q and the proof is complete.

The impact of Λt is more complex. When λu is finite, the following propositions set out

the conditions under which the optimal first-stage decision and the corresponding cost show

a monotone behaviour as Λt increases in the convex order.

Proposition 8. Suppose Λt′ ≤cx Λt. Then a∗(n,Qt,Λt′) ≤ a∗(n,Qt,Λt) if

(a) λu ≤ λ̃(n), and

(b) ∂3l(λ, s)
∂s∂λ2 ≤ 0.

Proof. Λt′ ≤cx Λt implies that E[ω(Λt)] ≤ E[ω(Λt′)] for any concave function ω(λ). Define

ω(λ) ,
∂v(λ, n+ a)

∂a
, and note that ψΛt

n (a) = E [ω(Λt)], where we have expanded the

notation for ψn(a) defined in Equation (3.10) to indicate its dependence to Λt. From (3.15),

(3.3), and the fact that g̃(λ, p) is the roof of θλ,p(g), we now have

ω(λ) , ∂v(λ, n+ a)
∂a

=


1 + roco + cw(1 + ro)

∂l(λ, s)
∂s

∣∣∣∣
s=(n+a)(1+ro)

λ ≤ λ̃(n+ a),

1 + roco − cg(1 + ro) λ̃(n+ a) < λ ≤ λu.

The first and second derivatives are

∂ω(λ)
∂λ

=


cw(1 + ro)

∂2l(λ, s)
∂s∂λ

∣∣∣∣
s=(n+a)(1+ro)

λ ≤ λ̃(n+ a),

0 λ̃(n+ a) < λ ≤ λu,
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and

∂2ω(λ)
∂λ2 =


cw(1 + ro)

∂3l(λ, s)
∂s∂λ2

∣∣∣∣
s=(n+a)(1+ro)

λ ≤ λ̃(n+ a),

0 λ̃(n+ a) < λ ≤ λu,

respectively. By condition (b) in the proposition, ∂
2ω(λ)
∂λ2 is non-positive. By condition

(a) and Lemma 3.2.4, λu ≤ λ̃(n) ≤ λ̃(n + a), and so λ ≤ λ̃(n + a) for any value a ∈ R+,

hence, ∂ω(λ)/∂λ is continuous on λ ∈ [0, λu]. From these, we conclude that ω(λ) is concave

when the conditions of the proposition are met (Note that, without condition (a), the

first derivative would not be continuous, and so ω(λ) would not be concave.) As such,

when ψΛt
n (0) ≥ 0, we will also have ψΛt′

n (0) ≥ 0, thus a∗(n,Qt,Λt) = a∗(n,Qt,Λt′) = 0.

On the other hand, when ψΛt
n (0) < 0, we will either have ψΛt′

n (0) ≥ 0, which implies

that a∗(n,Qt,Λt′) = 0 < a∗(n,Qt,Λt), or ψΛt
n (0) ≤ ψ

Λt′
n (0) < 0, which implies that

a∗(n,Qt,Λt′) ≤ a∗(n,Qt,Λt).

Proposition 9. Suppose Λt′ ≤cx Λt. Then m(n,Qt,Λt′) ≤ m(n,Qt,Λt) if

(a) λu ≤ λ̃(n), and

(b) ∂2l(λ, s)
∂λ2 ≥ 0.

Proof. First, note that Λt′ ≤cx Λt implies that E [ω(Λt′)] ≤ E [ω(Λt)] for any convex function

ω(λ). Second, note that m(n,Qt,Λt′) ≤ E[v(Λt′ , n + min{Qt, a})] for all a ∈ R+. Hence,

it suffices to show that ω(λ) , E[v(λ, n+ min{Qt, a})] is a convex function of λ when the

conditions of the proposition are met. To show the convexity of ω(λ), we obtain the first

and second derivatives as
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∂ω(λ)
∂λ

= E
[
∂

∂λ
v(λ, n+ min{Qt, a})

]

= E
[
cw

∂

∂λ
l(λ, (n+ min{Qt, a})(1 + ro) + g∗ (λ, n+ min{Qt, a}))

]
,

and

∂2ω(λ)
∂λ2 = E

[
cw

(
∂2

∂λ2 l(λ, (n+ min{Qt, a})(1 + ro) + g∗(λ, n+ min{Qt, a}))

+∂
2l(λ, s)
∂λ∂s

∣∣∣∣
s=(n+min{Qt,a})(1+ro)+g∗(λ,n+min{Qt,a})

× ∂

∂λ
g∗(λ, n+ min{Qt, a})

)]
.

It then follows from Proposition 1 that

∂2ω(λ)
∂λ2 = cwE

[
∂2

∂λ2 l(λ, (n+ min{Qt, a})(1 + ro) + g̃(λ, n+ min{Qt, a}))

+∂
2l(λ, s)
∂λ∂s

∣∣∣∣
s=(n+min{Qt,a})(1+ro)+g̃(λ,n+min{Qt,a})

× ∂

∂λ
g̃(λ, n+ min{Qt, a}),

λ > λ̃(n+ min{Qt, a})
∫ ]

+ cwE
[
∂2

∂λ2 l(λ, (n+ min{Qt, a})(1 + ro)), λ ≤ λ̃(n+ min{Qt, a})
]
.

By condition (a) and Lemma 3.2.4, λu ≤ λ̃(n) ≤ λ̃(n + min{q, a}), and so λ ≤ λ̃(n +

min{q, a}) for all a, q ∈ R+. This yields

∂2ω(λ)
∂λ2 = cwE

[
∂2

∂λ2 l(λ, (n+ min{Qt, a})(1 + ro))
]
,

which is non-negative by condition (b) of the proposition.

Condition (b) of Propositions 8 and 9 can be verified for M/M/1 and M/G/1 queues
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analytically. Our numerical investigations also suggest that they hold for M/M/s queues.

Condition (a) is more restrictive as it imposes a relatively short interval for the support of

ht. For the special case of M/M/1 queues, for example, Equation (3.26) indicates that λu

should be less than 4.45 for condition (a) to apply when n = 5.0, cg = 2.0, cw = 0.5 and

ro = 0.1. For smaller values of n or cg, the upper bound λu would have to be even smaller.

For the general situation in which the support of ht is unbounded, it is difficult to derive

analytical results, hence, we resort to numerical experimentation. For this, we assume Λt

follows a Gamma distribution with mean ξ and CV κ. Assuming an M/G/1 queue, we

then obtain the optimal first-stage decision and the corresponding cost for increasing values

of κ ∈ [0.1, 3.0], while keeping ξ constant to ensure that Λt increases in the convex order

(Belzunce et al., 2016). Figure 3.6 summarizes the results, and depicts a non-monotonic

behaviour for the optimal first-stage decision (panels (a) to (c))) and its cost (panels (d) to

(f)).

More specifically, the plots at the top of Figure 3.6 illustrate that there exists a threshold

for κ, above (below) which a∗(n) shows a decreasing (increasing) trend as Λt increases in

the convex order. This highlights the different impact of demand rate uncertainty to that

of service time variability. In particular, we proved in Corollary 6 that the optimal first-

and second-stage decisions increase with service time variability. The results presented

here imply that as the uncertainty in the demand rate increases up to a certain threshold,

it is worth to invest in a larger number of permanent positions. Beyond this threshold,

however, it is better to advertise a smaller number of permanent positions (and wait for
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Figure 3.6: Optimal number of permanent positions (top panel) and the corresponding cost (bottom
panel) as a function of demand rate uncertainty. The parameters not given in the plots are cg = 3.0,
cw = 3.0, co = 1.2, ro = 0.1, n = 0.0, τ = 1.0, and ξ = 10.0. For cost evaluations, Qt is assumed to follow a
LogNormal distribution with µr = 15.0 and κr = 0.3.

accurate information on demand rate) so as to avoid over-staffing. The plots also show that

the value of κ threshold increases with cg, but is insensitive to cw and τ . Similarly, the

plots in the bottom panels of Figure 3.6 suggest that there exists a threshold for κ, above

(below) which the optimal cost function, m(n), shows a decreasing (increasing) trend as Λt

increases in the convex order. This also contradicts the impact of service time variability

as proved in Corollary 6. We further observe in Figure 3.6 that the κ threshold for m(n)

(above which the decreasing trend occurs) increases with cg, decreases slightly with cw and

τ , and is significantly larger than the κ threshold for a∗(n).

The implication of these results is that, when the conditions of Proposition 9 are met,
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the savings obtained from the reduction in demand rate uncertainty may be greater than the

increase due to fewer applications, thus making a delay in advertising beneficial. When the

conditions of Proposition 9 are not met, the situation is more intricate because a reduction

in demand rate uncertainty may in fact increase cost, especially if this uncertainty is already

high and the cost rate of temporary workers is small relative to the cost rate of waiting. To

gain further insight into this situation, we plot the optimal first-stage cost as a function of

κ for different levels of µr in Figure 3.7, assuming an M/G/1 queue. In panel (b) of this

figure, cw and τ are deliberately set to large values to highlight the decreasing trend of cost.
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Figure 3.7: Optimal cost as a function of κ for different values of µr. The other parameters are ξ = 10.0,
cg = 2.0, co = 1.2, ro = 0.1, n = 0, and κr = 0.3.

Figure 3.7 shows that for large values of κ, the impact on cost of µr becomes negligible.

This is because, when κ is large, the optimal number of permanent positions will be small

(as illustrated in Figure 3.6), which implies that the number of qualified applications will be

less relevant. We further observe in Figure 3.7 that a delayed advertisement is more likely
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to be beneficial when the current κ falls on the increasing side of the cost curve than when

it is on the decreasing side. For example, assume µr = 15.0 for the current advertisement

epoch. Panel (b) in Figure 3.7 shows that, if κ = 1.0, a delayed advertisement leading to a

13% reduction in the mean number of applications and a 50% reduction in demand rate

uncertainty would be beneficial (see points A and A’ corresponding to the current and

delayed advertisement). Yet, if κ = 2.5, a delayed advertisement with a 13% reduction in

mean application numbers would lead to a higher cost, even if the demand rate uncertainty

became zero (see points B and B’). In fact, when the current κ falls on the decreasing side

of the cost curve, advertising earlier, if feasible, is more likely to be beneficial than later.

The above observations highlight that delaying advertisement beyond t is less likely

to be beneficial when demand rate uncertainty is already high and the cost of temporary

recruitment is small relative to the cost of patients waiting. It also implies that if the optimal

cost with reduced application numbers and no demand rate uncertainty, i.e., m(n,Qt′ , ξ), is

larger than the current cost, i.e.,m(n,Qt,∆t), there is no benefit from delaying advertisement

(Proposition 6 helps in evaluating m(n,Qt′ , ξ) by finding the corresponding optimal first-

stage decision.) Otherwise, a more detailed investigation is needed as illustrated in the

following case study.
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3.6 Case Study

We consider the geriatric department of an NHS hospital. The department has a total of

B = 80 beds and faces significant uncertainty in its winter demand. As an illustration,

Figure 3.8 depicts the empirical coefficient of variation (CV) as well as the theoretical CV

under the Poisson assumption for daily arrivals using the department’s admission data

during December and January over the three-year period 2015-2018. The plots indicate

a larger variability than expected for a standard Poisson process, hence justifying our

use of Poisson mixture models. The department needs to decide how many permanent

nursing vacancies to create and advertise for the winter period. Advertising for permanent

nurses typically occurs around May/June. Our aim in this section is to illustrate how

the framework developed in our study can be applied to guide decision making for nurse

recruitment in the department.

We assume that patients arrive to the department according to a Poisson process with

a rate whose value is unknown to the decision maker during the permanent recruitment

period. This is similar to the assumption made in Hu et al. (2021b) for arrivals to the

emergency department. Upon arrival, a patient is admitted to the ward if a bed and a

nurse are available. If all beds are taken, the patient joins a queue for beds. If a bed is

available but all nurses are busy, an admission request joins a queue for nurses, delaying

the admission until a nurse becomes available. The delay in admission to an inpatient

department due to unavailability of a nurse is an important factor contributing to the
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Figure 3.8: Empirical CV and theoretical CV under Poisson assumption for daily admissions in (a)
December and (b) January.

so-called “trolley wait” in emergency departments (Abo-Hamad and Arisha, 2013). Whilst

in beds, patients generate regular requests for nurses until the end of their length of stay,

at which point a discharge request is submitted. The nurse requests are served in the order

of regular, discharge, and new admissions by the nursing team. At the end of the discharge

process, the patient is discharged from the ward and the bed is cleaned and prepared for

the next patient. This workflow implies a nursing queueing system working in conjunction

with a bed queueing system.

In §3.6.1, we show how a simulation model capturing the interactions between the

bed and nursing queueing systems can be embedded in our two-stage framework to guide

recruitment decision making. We refer to this model as the multi-resource multi-server

(MRMS) model. In section §3.6.2, we show how a single-resource single-server (SRSS) and

a single-resource multi-server (SRMS) approximation, developed based on our analytical
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results, could speed up the calculations, and compare their accuracies to the MRMS model.

In §3.6.3, we use the SRMS approximation to shed some light on the benefit/loss of delaying

advertisement by investigating the trade-off of a more accurate demand information versus

the higher risk of not filling permanent positions.

3.6.1 The MRMS Model

We first develop a detailed discrete-event simulation model involving all dynamics of bed and

nursing queueing systems. Following Yankovic and Green (2011), the model considers two

types of resources, beds and nurses, each of which has its own separate queue. We use the

superscript (b) and (n) to represent the association of a parameter to the bed and nursing

queueing system, respectively. Let λ(b) be the rate of patient arrival during winter, and

denote by Λ(b)
t the corresponding random variable as predicted at time t when advertisement

occurs. As Yankovic and Green (2011), we assume: (i) lengths of stay in the department

are i. i. d. as an Exponential distribution with mean 1/µ(b); (ii) each patient generates

regular requests, independently of other patients, during her stay according to a Poisson

process with a known rate λ(n); and (iii) admission, regular, and discharge processing times

as well as cleaning times are i. i. d. with known distributions. Given patient arrival rate,

λ(b), and number of nurses, s, the simulation estimates the mean number of requests in the

nursing system, l(n)(λ(b), s).

Next, we adapt the two-stage framework by modifying the first- and second-stage



Chapter 3. A Mid-Term Recruitment Model 81

formulations as

msim(n) = min
a

{
E
[
vsim

(
Λ(b)
t , n+ min{Qt, a}

)]
: a = 0, · · · , amax

}
, (3.41)

and

vsim(λ, p) = min
g

{
p(1 + roco) + gcg + l(n)

(
λ(b), p(1 + ro) + g

)
cw :

g = dλ− p(1 + ro)e, · · · , gmax} , (3.42)

respectively, where dxe is the ceiling function of x, and amax and gmax are the respective

upper bounds for a and g. The optimal solution to (3.41) is denoted by a∗sim(n) and is

obtained by complete enumeration.

The parameters of the model are estimated as follows. For Λ(b)
t , we test the null

hypothesis of a Gamma distribution with shape and scale parameters η and ν, respectively,

as per Jongbloed and Koole (2001). This hypothesis implies a Negative Binomial distribution

for arrival counts with η experiments and success probability 1/(1 + ν). Using the daily

arrival counts of December over the three year period (i.e., 93 observations), we estimate

η̂ = 2.92 and ν̂ = 3.52 via maximum likelihood. Applying a Kolmogorov-Smirnov goodness-

of-fit test and bootstrapping (Jongbloed and Koole, 2001), a p-value of 0.395 is obtained,

indicating that the Gamma-distribution hypothesis for arrival rate cannot be rejected. As

such, we assume Λ(b)
t follows a Gamma distribution with mean ξ(b) = η̂ν̂ = 10.3 patients
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per day and CV κ(b) = 1√
η̂

= 0.58. Based on our findings from §3.4.2, the moderate value

obtained for κ(b) indicates that there is value in incorporating the demand rate distribution

into the two-stage decision making process.

Our data gives a mean length of stay of 1/µ(b) = 6.48 days for geriatric patients. This

implies a traffic intensity of ξ(b)/(Bµ(b))× 100 = 83.4% for the bed queueing system. The

processing times for regular requests are assumed to follow an exponential distribution

with rate µ(n) = 4 per hour, based on estimates provided in Lundgren and Segesten (2001)

and Dochterman and Bulechek (2004). Following Yankovic and Green (2011), we assume

that the admission and discharge processing times are uniformly distributed over intervals

[12, 60] and [10, 60] min, respectively, and the time to clean a room after the discharge of a

patient is 30 min. These timings were confirmed by the ward’s nursing team.

For λ(n), Lundgren and Segesten (2001) suggest 0.38 requests per hour, but we consider

λ(n) ∈ {0.4, 0.5} to cover situations with older and relatively more demanding patients.

Following Pinker and Tilson (2013), we assume that Qt follows a Poisson distribution

with mean µr. According to the hospital’s human resource department, a maximum of 20

qualified applications is likely to arrive over a six-month recruitment period starting from

May/June. As such, we consider µr ∈ {10.0, 12.0} so that the probability of receiving more

than 20 applications is small. For the remaining parameters, we consider κ(b) ∈ {0.58, 1.0},

cg ∈ {2, 3}, cw ∈ {1.5, 3.0}, co ∈ {1.5, 1.7}, n ∈ {0, 1}, and ro ∈ {0.05, 0.1}. The values

considered for κ(b) capture the current level of uncertainty in patient arrival data as well as

a situation with a more uncertain arrival rate. The values for ro and cg are consistent with
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the estimates provided in Lu and Lu (2017), and the values of cw follow Hu et al. (2021b).

The values for co capture the current overtime payment in the NHS as well as payments

in more expensive private providers. The combinations of these parameters result in 256

scenarios.

For each of the 256 scenarios, we obtain a∗sim(n) and msim(n) via complete enumeration

with amax = gmax = 21, and l(n)(λ(b), s) estimated by running 50 replications of the

simulation model each over 30 days. The values of amax and gmax are set based on the

maximum value that Qt may take plus n. The computations are carried out in parallel

on a high performance computing system, taking around 3 hours to complete for each

scenario. As an example, Figure 3.9 illustrates the first-stage cost as a function of a for two

specific scenarios. The plot in the left panel of this figure implies that a∗sim(n) = 4, and that

underestimating the optimal a may not increase cost substantially, while overestimating it

may increase cost by as much as 61.22%. By contrast, the plot in the right panel implies

that a∗sim(n) = 9, and that overestimating the optimal a may not significantly increase

cost, while underestimating it may increase cost by as much as 40.66%. Overall, the results

indicate that a∗sim(n) varies between 3 and 9 in the scenarios we considered, and that the

difference between optimal and highest first-stage costs (over the range considered for a)

exceeds 30.0% in 163 scenarios, and reaches a maximum of 67.0%. These observations

highlight the importance of finding the optimal first-stage decision. Note that for larger

values of a, the impact of Q on the cost function diminishes, thus the graph flattens out.
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Figure 3.9: First-stage cost as a function of a for the scenario with (a) cg = 2.0, cw = 1.5, co = 1.5, n =
1.0, ro = 0.1, µr = 12.0, λ(n) = 0.4, and κ(b) = 1.0, and (b) cg = 3.0, cw = 3.0, co = 1.5, n = 0.0, ro =
0.05, µr = 10, λ(n) = 0.5, and κ(b) = 0.58.

3.6.2 The SRMS and SRSS Approximations

The MRMS model is complex to code and time-consuming to run. To speed up the

coding and calculations, we propose SRSS and SRMS approximations by assuming that

the dynamics of service delivery in the department are represented by an M/M/1 queue

and an M/M/s queue, respectively. Focusing on the nursing queueing system, these

approximations do not capture the dynamics of the bed system explicitly. In addition,

the SRSS approximation estimates the performance of the multi-server nursing queueing

system by an inflated single-server queue.

For both approximations, we estimate the demand rate as

λ = (λ(n) + 2µ(b))
(
λ(b)/µ(b)

)
,
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where the first term is the overall mean number of requests generated by a single patient per

unit of time and the second term is the the average number of patients in the bed system.

From this, we obtain Λt = (λ(n) + 2µ(b))
(
Λ(b)
t /µ

(b)
)
, hence, Λt follows a Gamma distribution

with mean ξ = (λ(n) + 2µ(b))ξ(b)/µ(b) and CV κ = κ(b). As an illustration, note that with

ξ(b) = 10.3 patients per day, λ(n) = 0.5 requests per hour, and µ(b) = 1/6.48 patients per day,

we obtain an average arrival rate of 821.528 requests per day, or equivalently an average

offered load of 8.55 (recall that µ(n) = 4 per hour), which is relatively small. For example,

the average offered load observed in the emergency department considered in Hu et al.

(2021b) exceeds 59.0. This highlights the importance of using an exact approach instead of

large-scale asymptotic approximations for inpatient settings.

We use Algorithm 2 to determine a∗(n) for all the 256 scenarios of §3.6.1 with both SRSS

and SRMS approximations. We then run the simulation model developed in §3.6.1 with

da∗(n)e to obtain the corresponding cost. Our results indicate that da∗(n)e obtained from

the SRSS approximation is equal to a∗sim(n) in 108 out of 256 scenarios. This figure increases

slightly to 112 for the SRMS approximation. The average percentage difference in cost for

the SRSS and SRMS approximations, when compared to the MRMS model, are relatively

close at about 0.97%. We repeat the same set of experiments with ξ(b) = 8.64 patients per

day, which yields a traffic intensity of 70.0% for the bed queueing system, to assess the

SRMS and SRSS approximations in a less congested department. In this experiment, we

observe an average percentage cost difference of 1.33% for the SRSS approximation, and

0.80% for the SRMS approximation, when compared to the MRMS model. The reduction
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in the accuracy of the SRSS approximation is because with a lower traffic intensity, it is

more likely that some servers become idle. The improvement in accuracy of the SRMS

approximation, on the other hand, is because with a lower average patient arrival rate, the

impact of the bed constraint on the nursing queueing system diminishes. Overall, both

SRSS and SRMS approximations are reasonably accurate under different load conditions.

3.6.3 Delaying Advertisement

As discussed in §3.6.3, delaying the advertisement may reduce the variability in demand

rate at the expense of a reduction in the number of qualified applications. We also observed

that delaying advertisement is less likely to be beneficial when demand rate uncertainty

is already high (κ > 1.0) and the cost of temporary recruitment is small relative to the

cost of patients waiting. To further investigate this, we numerically evaluate the amount

of reduction needed in demand rate uncertainty to make the cost of a later advertisement

equal to the current cost as a function of the reduction in the mean number of qualified

applications. Given the accuracy of the SRMS approximation illustrated in §3.6.2, it is

used in the analysis that follows.

We consider the scenario with λ(n) = 0.4, µr = 10.0, cg = 2.0, cw = 3.0, co = 1.5, n =

0.0, and ro = 0.05, as the benchmark scenario and evaluate its cost using the SRMS

approximation. We then reduce µr in steps of 5.0%, and evaluate the minimum reduction in

κ that makes the system cost equal to the cost of the benchmark scenario for the resulting
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µr value. The calculation stops when, for a given percentage reduction in µr, the cost with

zero demand rate uncertainty falls above the benchmark cost.

The results are presented in Figure 3.10 for different levels of temporary cost rate, cg,

and different levels of current demand rate uncertainty, κ.
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Figure 3.10: The reduction required in demand rate uncertainty as a function of reduction in mean
application numbers. For panel (a), κ = 0.58 and for panels (b) and (c), cg = 2.0.

The plots in panel (a) of Figure 3.10 show that a larger reduction in demand rate

uncertainty is needed to make a later advertisement beneficial as cg grows. They also imply

that reductions above 30% (25%) in mean application numbers for cg = 2.0 (cg = 3.0 and

cg = 4.0) cannot be compensated even if we knew the demand rate. The plots in panel

(b) show that, when the current demand rate uncertainty is less than or equal to 1.5, the

reduction required in demand rate uncertainty typically reduces with κ. This corresponds

to κ falling on the increasing side of the cost curve. In particular, for κ = 1.5, the required

reduction in demand rate uncertainty is relatively small, even when the mean application

number halves. Panel (c) highlights an opposite behaviour when κ is larger than or equal to

2.0, corresponding to κ falling on the decreasing side of the cost curve. Panels (b) and (c)
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imply that the maximum reduction in mean application numbers that can be compensated

by a reduction in demand rate uncertainty increases (decreases) with κ, when κ is less

than or equal to (larger than or equal to) 1.5 (2.0). Overall, Figure 3.10 provides valuable

insights on how and when delaying advertisement may create value to the provider.

3.7 Extension to a Multiple-Segment HUDP

We extend our framework by dividing the HUDP into N equally spaced segments indexed

by j, and assume there is an opportunity for recruiting temporary HCWs at the beginning

of each segment (see Figure 3.11). We consider the possibility of correlated demand in

different segments of the HUDP. For example, a low demand segment may follows a high

demand segment. There remains a single opportunity for advertising permanent positions

at time t, following which applications arrive over the period (t, te). A decision is then made

at the beginning of each segment j as to how many temporary HCWS to recruit given the

exact demand rate of that segment and the number of permanent HCWs recruited. The

temporary HCWs recruited for each segment are released at the end of the segment, while

permanent HCWs remain in the system until the end of the planning horizon. We assume

the system achieves a steady-state during each segment of the HUDP.

Let Λt = (Λ1
t , . . . ,ΛN

t ) be the vector of random variables representing demand rates of

different segments as predicted at time t, and denote by ht(λ1, . . . , λN) the corresponding

joint pdf. Let Qt, n, a, cost parameters, and v(λ, p) be as defined in §3.2. The first stage
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Figure 3.11: Schematic diagram of permanent and temporary recruitment decision making for the
multiple-segment HUDP.

problem is then formulated as

m(n) = min
a

E
 N∑
j=1

v
(
Λj
t , n+ min{Qt, a}

) : a ∈ R+

 . (3.43)

To obtain the optimal solution to problem (3.43), we revise the definition of function ψn(a)

as

ψh
j
t
n (a) = 1 + roco + cw(1 + ro)

∫ λ̃(n+a)

0

∂l(λ, s)
∂s

∣∣∣∣
s=(n+a)(1+ro)

hjt(λj)dλ

− cg(1 + ro)
(
1−Hj

t

(
λ̃(n+ a)

))
, (3.44)

where

hjt(λj) ,
∫ ∞

0
. . .
∫ ∞

0
ht(λ1, . . . , λN)dλ1 . . . dλj−1dλj+1 . . . dλN , (3.45)

is the marginal pdf of Λj, and Hj
t (·) is the corresponding CDF. We now propose
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Proposition 10. For the first-stage problem given in (3.43),

a∗(n) =


0.0 if ∑N

j=1 ψ
hj

t
n (0) ≥ 0,

min{ã(n), qu}, otherwise,

(3.46)

where ã(n) is the unique root of function ∑N
j=1 ψ

hj
t
n (a) in the interval (0,∞).

Proof. Denoting the expected value in Equation (3.43) by y(n, a), and conditioning on Qt,

we obtain

y(n, a) =
∫ a

0
E

 N∑
j=1

v
(
Λj
t , n+ q

) ft(q)dq + E

 N∑
j=1

v
(
Λj
t , n+ a

) (1− Ft(a)).

Taking the derivative of y(n, a) with respect to a, and simplifying, we arrive at

∂y(n, a)
∂a

=
∂E

[∑N
j=1 v(Λj

t , n+ a)
]

∂a
(1− Ft(a)) (3.47)

=
 N∑
j=1

∂E
[
v(Λj

t , n+ a)
]

∂a

 (1− Ft(a)) =
 N∑
j=1

ψh
j
t
n (a)

 (1− Ft(a)) , (3.48)

where the last equality is by Equation (3.17) and the definition of ψh
j
t
n (a) given in (3.44).

The rest of the proof follows the same logic as that of Proposition 2.

We now investigate the impact of demand correlation between different segments of

the HUDP on a∗(n). According to Proposition 10, optimal a is obtained by finding the

root of equation ∑N
j=1 ψ

hj
t
n (a) = 0, where ψh

j
t
n depends only on the marginal pdf hjt(·). If the
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multivariate distribution is closed under marginalization, the correlation coefficient does

not appear in hjt(λj), and so it does not impact a∗(n). Otherwise, the correlation coefficient

appears in the marginal distributions and a∗(n) changes with the correlation.

As an illustration, we set N = 2 and assume that ht follows a bivariate Normal

distribution with mean M and covariance matrix Σ = [ρ(j,k)σjσk]2×2, where ρ(j,k) is the

correlation between the demand of segments j and k, and σj and σk are the corresponding

standard deviations. In one set of experiments, we assume an M/M/1 queue with M =

(8, 8), (σj, σk) ∈ {(1, 1), (2, 2), (3, 3)}, and find a∗(n) as a function of ρ. As illustrated in

panel (a) of Figure 3.12, a∗(n) is independent of ρ for this set of experiment. In the other

set of experiments, we set M = (2, 2) and use the same values of (σj, σk), but truncate

the bivariate normal distribution to remove the possibility of arrival rate being negative.

The results illustrated in panel (b) of Figure 3.12, shows that a∗(n) does change with ρ.

This is because the marginal distribution of a bivariate truncated normal is not a truncated

normal, and is in fact a function of the correlation (Horrace, 2005).

3.8 Summary

Given the long lead-time in recruiting permanent workers and the higher cost of temporary

skilled workers, it is essential for healthcare providers to know how many permanent

positions they need to advertise well before a period of highly uncertain demand starts.

By representing the service delivery in such periods as a generic delay queueing model, we
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Figure 3.12: a∗(n) as a function of correlation coefficient for (a) ht following a bivariate normal distribution
with M = (8, 8), and (b) ht following a bivariate truncated normal distribution with M = (2, 2). We set
cg = 2, cw = 0.5, co = 1.2, n = 0, and ro = 0.2.

proposed a two-stage stochastic optimization framework to inform recruitment decision

making. The first stage focuses on permanent recruitment and the second stage on temporary

recruitment.

We analytically characterized the optimal first and second-stage recruitment decisions

and proposed fast numerical algorithms for specifying their values. We proved that the

optimal first-stage decision is insensitive to the probability distribution for the number of

qualified applications as long as the distribution support remains the same. Using stochastic

ordering, we also proved that the optimal mean first-stage cost typically decreases when more

applications are likely to be received, and set out the conditions under which the optimal

first-stage decision and the corresponding cost increase when the demand rate becomes

more uncertain. All results were exact and obtained without specific assumptions on the

type or scale of the delay queueing model, and remain valid as long as the corresponding
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system-size function follows several properties. These properties are intuitive and we proved

that they hold for three common queueing models, M/M/1, M/G/1, and M/M/s. We

noted that M/M/1 and M/G/1 models are approximations but are useful as they provide

further analytical tractability. In particular, we obtained a closed-form expression for the

second-stage decision and the corresponding cost for the M/M/1 case, and proved that the

optimal first- and second-stage decisions and their corresponding costs increase with service

time variability for the M/G/1 case.

By combining analytical results with numerical experiments, we derived several man-

agerial insights as follows:

• Except in situations where the cost of temporary recruitment is extremely high, there

is value in recruiting temporary staff even if demand rate uncertainty is very low.

The amount of this value is likely to increase with the system scale and decrease with

the waiting cost.

• When demand rate uncertainty is moderate to high, there is value in obtaining

the demand rate distribution and incorporating it into recruitment decision making.

Otherwise, a two-stage approach using only the average demand rate would suffice.

• As the uncertainty in demand rate increases up to a certain threshold, the optimal

number of permanent positions increases. Above this threshold, however, the optimal

number of permanent positions exhibits a decreasing trend. Similarly, the optimal

system cost decreases when demand rate uncertainty surpasses a threshold. This



Chapter 3. A Mid-Term Recruitment Model 94

threshold increases with the cost of temporary workers and decreases with the cost of

patients waiting. The main implication is that delaying advertisement is less likely to

be beneficial when demand rate uncertainty is already high and the cost of temporary

recruitment is small relative to the cost of patients waiting.

We conducted a case study using data from a geriatric ward in the UK and demonstrated

how our framework can guide nurse recruitment decision making in a complex environment.

In particular, we assumed that the system-size function is estimated by a detailed simulation

model which captures the complexities of nursing care in inpatient wards, including the wide

range of requests from patients and the availability of beds as the second type of resource

(in addition to nurses). We also showed that simple single-resource approximation models

based on our analytical results are reliable and sufficiently accurate for the permanent

recruitment decision. We further illustrated how our models can be applied to evaluate the

reduction in demand rate uncertainty that makes a delayed advertisement beneficial as a

function of the reduction in mean application numbers.

We further extended our modelling framework to allow multiple opportunities for

recruitment of temporary staff during the service delivery. The analytical characterization

of the optimal permanent recruitment decision was derived. We showed that the optimal

permanent recruitment decision is independent of the demand rate correlation if the

(multivariate) demand rate distribution is closed under marginalization.



Chapter 4

A Long-Term Recruitment Model

4.1 Introduction

In this chapter, we aim to capture the difference in placement durations of permanent and

temporary HCWs, in addition to the differences in their staffing costs and recruitment

lead times. This is because permanent HCWs have substantially longer contracts with the

provider than their temporary counterparts. This implies that the provider must consider

their longer term cost and benefits when making recruitment decisions. This is particularly

important when there are periods of highly uncertain demand as permanent HCWs recruited

for one period may not be needed in the next. To simplify the analysis, we ignore the

uncertainty in permanent recruitment in this chapter and assume that the desired number

of permanent HCWs can always be recruited.

95
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We consider a multi-interval permanent and temporary recruitment problem in a setting

where all patient requests must be served. Each interval of the planning horizon is divided

into a permanent recruitment period and a HUDP. A two-stage decision making process is

repeated for each interval: the number of permanent HCWs are decided at the beginning of

the permanent recruitment period (the first-stage decision), and the number of temporary

HCWs are decided at the beginning of the HUDP (the second-stage decision). The first-

stage decision is made when only partial information about demand in the corresponding

HUDP is available, whereas the second-stage decision is made when more accurate demand

information becomes available. We assume that the permanent HCWs recruited in each

interval stay in the system and continue to provide services in the subsequent intervals

until they are dismissed at the end of the planning horizon at a given cost. Temporary

workers, however, are contracted for the interval and thus leave the system at the end of

each interval.

As in Chapter 3, the dynamics of service delivery during the HUDP are captured by

a generic delay queueing model which evaluates the expected system size, i.e., the mean

number of requests waiting or being served, in steady state. Similar to Chapter 3, we model

demand as a Poisson mixture process, with the distribution of the rate being available at

the time of the first-stage decision, and the exact value of the rate when the second-stage

decision is made. To capture the variation of demand over time, we assume that the

distribution of demand rate evolves according to a discrete-time Markov chain (MC) with

a finite state space in consecutive intervals. For instance, we can have two states for the
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demand rate distribution, low and high, such that the parameters (mean and/or variance)

of the high distribution are larger than the parameters of the low distribution. This enables

us to formulate the problem as an MDP, where the system state at the beginning of each

time interval comprises the number of permanent employees already in the system and the

state of the demand rate distribution. The objective is to minimize the total expected cost,

including staffing costs as well as the cost incurred by patients while their requests are in

the system.

The remainder of this chapter is organized as follow. We start with the problem definition

in §4.2. This includes the formulation of the problem and the analytical characterization of

the optimal permanent recruitment policy. We then conduct numerical experiments using

illustrative data in §4.3. This includes investigating the sensitivity of the optimal policy

to system parameters in §4.3.1, and evaluating the potential savings obtained from the

recruitment policy suggested by our multi-interval model as compared to a myopic policy

suggested by a single-interval model (similar to the model developed in Chapter 3) in §4.3.2.

A summary of the findings is presented in §4.4.

4.2 Problem Definition

Consider a planning horizon consisting of T intervals of equal length, which is typically a

year, but may vary depending on the application. We index time intervals by t = 1, 2, . . . , T ,

and denote the end of the planning horizon by T +1. As depicted in Figure 4.1, each interval
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is divided into a permanent recruitment period, during which recruitment of permanent

HCWs takes place, and a HUDP, during which patients’ requests are served by HCWs.

Advertisement for permanent HCW positions starts at the beginning of the permanent

recruitment period in each interval, and recruitment of temporary HCWs occurs at the

beginning of the HUDP in each interval. Patients’ requests arrive according to a Poisson

process with rate λt during the HUDP of interval t. The requests wait in a queue until they

are served by a member of the pool of HCWs (permanent or temporary). The duration of

service is random, and its average is set as the time unit so that the rate of service delivery

is equal to one.

Figure 4.1: Schematic diagram of the long-term recruitment decision making process

The rate of Poisson arrivals is unknown to the service provider at the point of advertising

for permanent HCWs. As such, this rate is a random variable, which we denote by Λt for

t = 1, . . . , T . The distribution of this rate, however, is available to the service provider and

evolves in successive intervals according to a MC with state space S = {0, 1, . . . , k}, where

each state i ∈ S represents a random variable Λi with a known pdf hi(·). We represent the

mean and CV of Λi by ξi and κi, respectively. The transition probability matrix of this

MC is denoted by Q = [qij]i,j∈S . The evolution of the demand rate distribution over time
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may capture variations in the average demand rate, uncertainty of the demand rate, or a

combination of both. The value of the rate becomes known to the service provider at the

start of each HUDP.

As shown in Figure 4.1, each interval t involves a two-stage decision making process.

The first-stage decision concerns the number of permanent FTE positions to advertise at the

beginning of the permanent recruitment period, denoted by at ∈ R+, and the second-stage

decision concerns the number of temporary FTEs to recruit at the beginning of the HUDP,

denoted by gt ∈ R+, for t = 1, . . . , T . Once permanent HCWs are recruited in a time

interval, they remain in the system and provide services in subsequent intervals until they

are dismissed at the end of the planning horizon at a cost c. The temporary HCWs, on the

other hand, are contracted for each time interval.

The state of the system at the beginning of interval t is represented by vector (nt, i),

where nt ∈ R+ is the number of permanent HCWs in the system before the permanent

recruitment decision is made, and i ∈ S is the observed state of the demand rate distribution.

Having observed the state of the system at the beginning of interval t, the provider decides

on the number of permanent positions, at, to advertise. To simplify the analysis, we make

the following assumption.

Assumption 2. The desired number of permanent HCWs can always be recruited.

Accordingly, there will be a total of pt permanent HCWs in the system at the beginning

of the HUDP of interval t, where pt = nt + at. Given pt and the revealed value of the
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demand rate, λt, the provider then decides how many FTEs of temporary HCWs, gt, to

recruit at the beginning of the HUDP of interval t. Let l(λ, s), cp, cg, co, cw, and ro be as

defined in Chapter 3, and suppose that l(λ, s) satisfies the properties given in Assumption

1. Given n1 permanent HCWs at the beginning of the planning horizon, the multi-interval

optimization problem is given by

min
a1,a2,··· ,aT

{
T∑
t=1

αtE [vt(Λt, nt + at)] + αT c(nT + aT ) :

at ∈ R+ and nt+1 = nt + at for all t
}
, (4.1)

where α ∈ (0, 1] denotes the one-interval discount factor and vt(λ, p) is the minimum

expected cost rate of the HUDP of interval t given arrival rate λ and p permanent HCWs.

Since vt(λ, p) does not vary with time, it follows that

vt(λ, p) = v(λ, p) =

min
g

{
p(1 + roco) + gcg + l(λ, p(1 + ro) + g)cw : g ∈ R+, g > λ− p(1 + ro)

}
, (4.2)

for all t, which is the second-stage of the single-interval problem given in (3.1). Hence,

given arrival rate λt and pt permanent HCWs, the optimal number of temporary HCWs to

be recruited at the beginning of the HUDP of interval t is given by g∗t (λt, pt) = g∗(λt, pt),

which is obtained via Proposition 1 (or numerically via Algorithm 1).

We reformulate the problem in (4.1) as a discrete-time MDP with state space {(nt, i) ∈
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R+ × S}. The value function of this MDP is represented through the following recursive

expression (see Puterman, 1994):

Vt(nt, i) = min
at

E [v(Λi, nt + at)
]

+ α
∑
j∈S

qi,jVt+1(nt+1, j) : at ∈ R+

 , (4.3)

for t = 1, . . . , T , where nt+1 = nt + at, and

VT+1(n, i) = cn, (4.4)

for all n ∈ R+ and i ∈ S. Using the structural properties of the MDP formulated in (4.3),

we prove in the following proposition that the optimal permanent recruitment policy in

each time interval is a state-dependent hire-up-to policy.

Proposition 11. Given state (nt, i) at the beginning of interval t, the optimal permanent

recruitment policy is given by

a∗t (nt, i) =


p∗t,i − nt if nt ≤ p∗t,i ,

0 otherwise.

(4.5)

To prove Proposition 11, we need the following Lemmas.

Lemma 4.2.1. If g(y) is convex in y and f(x) is a linear function of x, then h(x) = g(f(x))

is also convex in x.

Lemma 4.2.2. Let f(x) = infy≥x {h(y)}. If h(y) is convex in y, then f(x) is convex in x.
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Lemma 4.2.3. Function v(λ, p) given in Equation (4.2) is convex in p.

For the proofs of Lemmas 4.2.1 and 4.2.2, see the proofs of Lemmas 1 and 2, respectively,

in Gans and Zhou (2002, pp.997). The proof of Lemma 4.2.3 is given below.

Proof. The Lagrange function of the optimization model in (4.2) is obtained as

L(λ, p, β; g) = p(1 + roco) + gcg + l(λ, p(1 + ro) + g)cw − βg,

where β is the K.K.T multiplier. Note that constraint g > λ− p(1 + ro) is not included in

the Lagrange function as it is always active and so its multiplier is equal to zero. Using the

Envelope theorem, we then obtain

∂v(λ, p)
∂p

= ∂L(λ, p, β; g)
∂p

∣∣∣
g=g∗(λ,p)

= 1 + roco + cw(1 + ro)
∂l(λ, s)
∂s

∣∣∣
s=p(1+ro)+g∗(λ,p)

, (4.6)

which yields

∂v(λ, p)
∂p

=


1 + roco + cw(1 + ro)

∂l(λ, s)
∂s

∣∣∣
s=p(1+ro)

, if λ ≤ λ̃(p),

1 + roco + cw(1 + ro)
∂l(λ, s)
∂s

∣∣∣
s=p(1+ro)+g̃(λ,p)

, if λ > λ̃(p),

(4.7)

by Proposition 1. Since g̃(λ, p) is the unique root of function θλ,p(g) given in (3.5), Equation
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(4.7) simplifies to

∂v(λ, p)
∂p

=


1 + roco + cw(1 + ro)

∂l(λ, s)
∂s

∣∣∣
s=p(1+ro)

if λ ≤ λ̃(p)

1 + roco − cg(1 + ro) if λ > λ̃(p),

(4.8)

Taking the derivative of the expression in (4.8) with respect to p, we arrive at

∂2v(λ, p)
∂p2 =


cw(1 + ro)2∂

2l(λ, s)
∂s2

∣∣∣
s=p(1+ro)

if λ ≤ λ̃(p)

0 if λ > λ̃(p),

which is non-negative by property A(iv), and so v(λ, p) is convex in p.

We now prove Proposition 11.

Proof. We rewrite the value function given in (4.3) as

Vt(nt, i) = min
pt
{Jt(pt, i) : pt ≥ nt} , (4.9)

where

Jt(pt, i) = E
[
v(Λi, pt)

]
+ α

∑
j∈S

qi,jVt+1(nt+1, j), (4.10)

and pt = nt + at. We first prove that Jt(pt, i) is convex in pt for all i ∈ S and t = 1, . . . , T .

To show this, we need to prove the convexity of Vt(nt, i) in nt for all i and t. We follow

proof by induction. It is trivial from Equation (4.4) that VT+1(nT+1) is convex in nT+1.
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Now, suppose that Vt+1(nt+1, i) is convex in nt+1 for all i. Then, since nt+1 = nt + at = pt,

Vt+1(nt+1, i) is convex in pt for all i by Lemma 4.2.1. Since a linear combinations of convex

functions is convex, the second term in Equation (4.10) is convex. The first term is also

convex because v(λ, p) is convex by Lemma 4.2.3, and the integral of a convex function

is convex. These imply that Jt(pt, i) is convex in pt for all i. Therefore, by Lemma 4.2.2,

Vt(nt, i) given in Equation (4.9) is convex in nt for all i. Repeating this argument, we

conclude that Vt(nt, i) is convex in nt, and consequently Jt(pt, i) is convex in pt, for all i

and t. Next, convexity of Jt(pt, i) in pt implies that there exists a point p∗t,i that minimizes

Jt(pt, i) without the constraint pt ≥ nt. Convexity of Jt(pt, i) further implies that the

optimal policy with the constraint is to hire up to p∗t,i when nt < p∗t,i, and not to hire

otherwise.

Proposition 11 implies that the number of existing permanent HCWs, nt, need not

be taken into account when deciding on the optimal hire-up-to value, p∗t,i. This reduces

the dimension of the search space from three to two, and so speeds up the calculations.

Algorithm 3 outlines the steps for finding the optimal hire-up-to value and the corresponding

cost given state (nt, i) for any time t ∈ {1, . . . , T}.
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Algorithm 3 Numerical method for evaluating the hire-up-to value p∗t,i for permanent
recruitment
Require: l(x, y), Q, hi, α, c, cg, cw, co, ro, amax, ∆a, and g∗(λ, p) from Algorithm 1.
1: function V (t, nt, i)
2: if t = T + 1 then
3: return cnt
4: else if p∗t,i is not defined then
5: costmin ←∞
6: for at ∈ {0,∆a, · · · , amax} do
7: f = E [v(Λi, at)] + α

∑
j∈S qi,jV (t+ 1, at, j)

8: if costmin < f then
9: p∗t,i = at
10: break
11: end if
12: costmin = f
13: end for
14: end if
15: return E

[
v(Λi,max(nt, p∗t,i))

]
+ α

∑
j∈S qi,jV (t+ 1,max(nt, p∗t,i), j)

16: end function
17: function v(λ, p)
18: if g∗(λ, p) = 0 then
19: return p(1 + roco) + l(λ, p(1 + ro))cw
20: else
21: return p(1 + roco) + g∗(λ, p)cg + l(λ, p(1 + ro) + g∗(λ, p))cw
22: end if
23: end function

4.3 Numerical Analysis

In this section, we first conduct numerical experiments to investigate the sensitivity of

the optimal hire-up-to value with respect to different parameters of the model. We then

assess the savings obtained from our multi-interval model when compared to the single-

interval model developed in Chapter 3. To simplify the analysis, an inflated M/M/1

queue is considered for modelling the dynamics of service delivery during the HUDP. We
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consider only two states for the demand rate distribution, i.e., S = {0, 1}, where 0 and 1

represent states of low and high demand, respectively. We assume that Λi follows a Gamma

distribution with given mean ξi and CV κi. We further assume that there is no permanent

employee at the beginning of the planning horizon, i.e., n1 = 0.

4.3.1 Optimal Policy Illustration

We investigate the impact of c, cg, cw, κi, and t on the optimal hire-up-to threshold p∗t,i.

We set α = 0.8, ξ0 = 5.0, and ξ1 = 10.0, and assume that there is no mandatory overtime

work, i.e., ro = 0.0. For the transition probability matrix, we consider two possibilities, Ql

and Qh, defined as

Ql =
(0.9 0.1

0.9 0.1
)
, Qh =

(0.1 0.9
0.1 0.9

)
,

with the former (latter) representing a high probability of ending up in the low (high)

demand state.

Figures 4.2, 4.3, and 4.4 show the optimal permanent threshold at the beginning of

a two-interval planning horizon (T = 2) as function of c, cg and cw, respectively, for two

initial states of demand (i = 0, 1) and two transition probability matrices (Q ∈ {Ql,Qh}).

These figures suggest that p∗1,i decreases with c, and increase with cg and cw for all values

of i and Q. The impact of cg and cw is the same as those proved in Corollary 4 for the

single-interval model.



Chapter 4. A Long-Term Recruitment Model 107

0.0 0.5 1.0 1.5 2.0
c

0

2

4

6

8

10

12
p
* 1,
i

i=0
i=1

(a) Ql

0.0 0.5 1.0 1.5 2.0
c

0

2

4

6

8

10

12

p
* 1,
i

i=0
i=1

(b) Qh

Figure 4.2: Optimal permanent recruitment threshold at the beginning of a two-interval planning horizon
as a function of penalty cost c for cg = 1.5, cw = 0.5, and κ0 = κ1 = 0.1.
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Figure 4.3: Optimal permanent recruitment threshold at the beginning of a two-interval planning horizon
as a function of temporary cost rate cg for c = 0.0, cw = 0.5, and κ0 = κ1 = 0.1.

The plots in Figure 4.5 show the impact of κ0 = κ1 = κ on the optimal permanent

recruitment threshold. They suggest p∗1,i varies in a non-monotone way as κ increases. This

is similar to the impact of demand rate uncertainty observed in §3.5 for the single-interval

model.

The sensitivity of p∗t,i with respect to t is demonstrated in Figure 4.6 for a five-interval

planning horizon (T = 5). We observe in this figure that the trend varies depending on
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Figure 4.4: Optimal permanent recruitment threshold at the beginning of a two-interval planning horizon
as a function of waiting cost cw for c = 0.0, cg = 1.5, and κ0 = κ1 = 0.1.
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Figure 4.5: Optimal permanent recruitment threshold at the beginning of a two-interval planning horizon
as a function of demand rate uncertainty κ0 = κ1 = κ for c = 0, cg = 1.5, and cw = 0.5.

the value of c. More specifically, p∗t,i is either constant or increases as we approach the end

of planning horizon for c = 0, while it typically decreases for c = 1. This is because the

penalty for dismissing permanent employees discourages the provider from recruiting them

towards the end of the planning horizon.

We also conclude from the plots in Figures 4.2 to 4.6 that more permanent employees

should be hired when the current state of demand is high than when it is low, i.e., p∗t,1 > p∗t,0.
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Figure 4.6: Optimal permanent recruitment threshold as a function of time t for a five-interval planning
horizon with cg = 1.5, cw = 0.5, and κ0 = κ1 = 0.1.

We further observe that p∗t,i corresponding to the transition probability matrix Qh is larger

or equal to that corresponding to Ql.

4.3.2 Savings Evaluation

We evaluate the potential savings obtained from our dynamic recruitment policy as compared

to a myopic recruitment policy, which identifies the number of permanent positions in

each interval based only on the cost of that interval and does not take the cost of future

intervals into account. More specifically, given state (nt, i), we define the myopic permanent
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recruitment policy as

amt (nt, i) = arg min
at

{E
[
v(Λi, nt + at)

]
: at ∈ R+}, (4.11)

for each interval t = 1, . . . , T . Note that the myopic policy yields the same permanent

recruitment number as the single-interval model proposed in Chapter 3 excluding the impact

of Qt.

We perform two sets of experiments, one with T = 2 and the other with T = 5. We

investigate the impact on savings of transition probability matrices and the observed

initial state of the demand. For each set of parameters, p∗t,i and its corresponding cost

are evaluated via Algorithm 3. The myopic policy amt (nt, i) is estimated from (4.11) by

complete enumeration over values of at ∈ [0, 0.1, · · · , 50], and its cost is obtained using the

following recursive equation:

Wt(nt, i) = E
[
v(Λi, nt + amt (nt, i))

]
+ α

∑
j∈S

qi,jWt+1(nt + amt (nt, i), j), (4.12)

for t = 1, . . . , T , where

WT+1(n, i) = cn, (4.13)

for all i ∈ S. We set α = 0.8, c = ro = 0.0, ξ0 = 5.0, ξ1 = 10.0, cg = 1.5, and cw = 0.5. We

consider three variations for Qh, i.e.,

Qh,1 =
(0.01 0.99

0.01 0.99
)
,Qh,2 =

(0.1 0.9
0.1 0.9

)
,Qh,3 =

(0.3 0.7
0.3 0.7

)
, (4.14)
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to represent increasing probabilities of moving to a low state for the situation where

transition to a high state is more likely than a low state, and three variations for Ql, i.e.,

Ql,1 =
(0.99 0.01

0.99 0.01
)
,Ql,2 =

(0.9 0.1
0.9 0.1

)
,Ql,3 =

(0.7 0.3
0.7 0.3

)
, (4.15)

to represent increasing probabilities of moving to a high state for the situation where

transition to a low state is more likely than a high state.

Table 4.1 illustrates the results for the dynamic and myopic policies with T = 2 for

Q ∈ {Qh,1,Qh,2,Qh,3}, i.e., the situation with a higher probability of transition to a high

demand state than a low demand state. They suggest that, when the initial observed

demand state is low, the myopic and dynamic policies are exactly the same, hence no

savings. This is because there is no value in earlier recruitment of permanent HCWs, even

if the demand is expected to increase in the future, when the provider is able to hire as

many permanent HCWs as needed in the next interval. There is a small difference between

myopic and dynamic policies, and thus small savings, when the initial observed demand

state is high and there is some probability of moving to a low state (see panels (b) and (c)).

This is because the possibility of moving to a lower demand state in the next interval is

captured in the dynamic policy, hence a smaller number of permanent HCWs are recruited.

Table 4.2 illustrates the results for the dynamic and myopic policies with T = 2 for

Q ∈ {Ql,1,Ql,2,Ql,3}, i.e., the situation with a higher probability of transition to a low

demand state than a high demand state. We observe that dynamic and myopic policies
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Table 4.1: Comparison between the myopic and MDP policies with T = 2 and κ0 = κ1 = 0.1 for: (a)
Qh,1, (b) Qh,2, and (c) Qh,3.

(a)

i
Myopic MDP Saving

(%)W1(0, i) am1 (0, i) V1(0, i) p∗1,i
0 20.0953 6.6 20.0953 6.6 0.0
1 26.6190 12.2 26.6190 12.2 0.0

(b)

i
Myopic MDP Saving

(%)W1(0, i) am1 (0, i) V1(0, i) p∗1,i
0 19.6281 6.6 19.6281 6.6 0.0
1 26.4572 12.2 26.4488 12 0.03

(c)

i
Myopic MDP Saving

(%)W1(0, i) am1 (0, i) V1(0, i) p∗1,i
0 18.5897 6.6 18.5897 6.6 0.0
1 26.0776 12.2 26.0254 11.6 0.20

produce the same results when the current demand state is low. When the current demand

state is high, however, the dynamic policy proposes a substantially smaller number of

permanent HCWs. This is to avoid over-staffing in the next interval, and creates savings of

1.8%, 3.89%, and 5.0% for Ql,3, Ql,2, Ql,1, respectively.

Table 4.2: Comparison between the myopic and MDP policies with T = 2 and κ0 = κ1 = 0.1 for: (a)
Ql,1, (b) Ql,2, (c) Ql,3.

(a)

i
Myopic MDP Saving

(%)W1(0, i) am1 (0, i) V1(0, i) p∗1,i
0 15.0074 6.6 15.0074 6.6 0
1 24.8574 12.2 23.6141 7.8 5.00

(b)

i
Myopic MDP Saving

(%)W1(0, i) am1 (0, i) V1(0, i) p∗1,i
0 15.4746 6.6 15.4746 6.6 0
1 25.0192 12.2 24.0446 8.1 3.89

(c)

i
Myopic MDP Saving

(%)W1(0, i) am1 (0, i) V1(0, i) p∗1,i
0 16.513 6.6 16.513 6.6 0
1 25.3787 12.2 24.9115 9.7 1.84

Tables 4.3 and 4.4 present the results of experiments with the same parameters as those

presented in Tables 4.1 and 4.2, respectively, but with T = 5. We observe in these tables

that the savings increase to up to 0.56% (17.03%) for the situation with a higher probability
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of moving to a high (low) state. This is because with a longer planning horizon, the system

is more likely to move to a high demand state in one of the intermediate intervals, which is

the situation where the dynamic policy creates savings.

Table 4.3: Comparison between the myopic and MDP policies with T = 5 and κ0 = κ1 = 0.1 for: (a)
Qh,1, (b) Qh,2, (c) Qh,3.

(a)

i
Myopic MDP Saving

(%)W1(0, i) am1 (0, i) V1(0, i) p∗1,i
0 43.1691 6.6 43.1691 6.6 0
1 49.693 12.2 49.693 12.2 0

(b)

i
Myopic MDP Saving

(%)W1(0, i) am1 (0, i) V1(0, i) p∗1,i
0 42.3568 6.6 42.3404 6.6 0.03
1 49.2154 12.2 49.1893 12 0.05

(c)

i
Myopic MDP Saving

(%)W1(0, i) am1 (0, i) V1(0, i) p∗1,i
0 40.391 6.6 40.1834 6.6 0.51
1 48.1542 12.2 47.882 11.3 0.56

Table 4.4: Comparison between the myopic and MDP policies with T = 5 and κ0 = κ1 = 0.1 for: (a)
Ql,1, (b) Ql,2, (c) Ql,3.

(a)

i
Myopic MDP Saving

(%)W1(0, i) am1 (0, i) V1(0, i) p∗1,i
0 28.2042 6.6 28.1269 6.6 0.27
1 44.4928 12.2 36.9151 6.9 17.03

(b)

i
Myopic MDP Saving

(%)W1(0, i) am1 (0, i) V1(0, i) p∗1,i
0 30.5025 6.6 29.8927 6.6 1.99
1 44.9704 12.2 38.6621 7 14.02

(c)

i
Myopic MDP Saving

(%)W1(0, i) am1 (0, i) V1(0, i) p∗1,i
0 34.673 6.6 33.76 6.6 2.63
1 46.0316 12.2 42.4607 7.3 7.75

Overall, we conclude that the dynamic policy is more likely to create savings as compared

to the myopic policy when the current state of the demand rate is high and transition to

a low state is more likely than a high state. The savings also increase as the number of

intervals within the planing horizon increases.
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4.4 Summary

We proposed a multi-interval blended recruitment framework for a provider facing periods

of highly uncertain demand. This framework captures the trade-offs between staffing costs,

recruitment lead times, and placement durations of temporary and permanent HCWs. To

the best of our knowledge, this is the first study that captures these trade-offs explicitly in

a blended workforce environment.

In our framework, a two-stage decision making process is repeated in each interval

given the existing number of permanent workers and the observed state of demand at

the beginning of the interval. The number of permanent workers is decided in the first

stage, and the number of temporary workers in the second stage. The state of demand

identifies the distribution of demand rate out of a finite set of distributions, and evolves

according to a discrete-time MC. This aims to capture the variations in the mean and/or

uncertainty of demand rate over time. Formulating the problem as an MDP, we proved

that the optimal permanent recruitment policy is a state-dependent hire-up-to type. This

reduces the dimension of the search space for each interval to one, enabling us to estimate

the optimal permanent policy for a reasonable-size problem in a short time.

Assuming a high and a low state for the demand rate distribution, we investigated

the sensitivity of the hire-up-to value with respect to various parameters numerically. In

particular, we illustrated that, while this value increases with the cost rate of temporary

workers and waiting cost of patients, it decreases with the dismissal cost of permanent
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workers at the end of the horizon. We also showed that the behaviour of the hire-up-to

threshold is non-monotone with respect to demand rate uncertainty and time interval. Our

results further suggest that the threshold value is typically higher when the current state of

the demand rate distribution is high and subsequent intervals are more likely to be a high

state.

We finally evaluated the savings obtained from our dynamic policy as compared to a

myopic policy in which the permanent recruitment decision is based only on the cost of the

current interval. For a two-state demand rate distribution, we observed that the savings

are likely to be significant when the probability of transition to a low state is higher than a

high state. This is because the dynamic policy captures this potential transition to a low

demand state in the future and thus recruits a smaller number of permanent workers to

avoid over-staffing. The amount of savings are also likely to increase with the length of the

planning horizon.



Chapter 5

Summary, Conclusions and Future

Research

5.1 Summary

The incentives for and challenges of using temporary workforce in the healthcare sector

were reviewed in Chapter 1. This review concluded the necessity of deploying temporary

HCWs, alongside permanent HCWs, for delivering an efficient and quality service. It was

highlighted, however, that finding the right mix of these two types of workforce is difficult,

in particular for periods of highly uncertain demand. This is mainly due to different timings

of permanent and temporary recruitment and the random nature of the recruitment process.

The former implies an asymmetry in demand information at the times of temporary and

permanent recruitment, and the latter results in some positions not being filled. This led

116
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to the general aim of the thesis, which was outlined as developing optimization frameworks

to inform blended recruitment decision making for periods of highly uncertain demand. It

was argued that such frameworks should capture the trade-off between shorter recruitment

lead time and placement duration of temporary workers versus the lower staffing cost of

permanent workers. We explained that the shorter recruitment lead time of temporary

workers implies a more accurate demand information at the time of their recruitment as

well as a higher likelihood of success in recruiting for the desired number of positions. Their

shorter placement duration, on the other hand, implies that future demand information

need not be taken into account for their recruitment. Lower staffing cost of permanent

workers, however, makes them attractive for the provider. We set out to investigate these in

two main chapters of the thesis; Chapter 3 was dedicated to the trade off between staffing

costs and recruitment lead times, and Chapter 4 to the trade off between staffing costs,

recruitment lead times, and placement durations.

The literature of recruitment models was reviewed in Chapter 2. This literature

was divided into two main categories, the mid-term recruitment literature and the long-

term recruitment literature. In the former category, a single-interval planning horizon is

considered with a single opportunity for permanent recruitment, while in the latter category,

a multi-interval planning horizon is considered with multiple opportunities for permanent

recruitment. It was noted that some studies in the mid-term recruitment category consider a

single opportunity for temporary recruitment while some others allow multiple opportunities.

From a methodological perspective, the mid-term literature was divided into single- and
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two-stage streams. In the single-stage stream, recruitment decisions of permanent and

temporary workers are made at the same time, while in the two-stage stream these decisions

are made at different times. We decided to follow a two-stage approach in our research

as it would allow the asymmetry in demand information. Having reviewed the mid-term

two-stage recruitment literature, a gap was identified for a framework which captures the

dynamics of the service delivery in delay systems, accounts for the uncertain nature of

permanent recruitment as well as the asymmetry of demand information, and produces

exact results irrespective of the system size.

Two studies were identified in our review of the long-term recruitment literature in

Chapter 2. We highlighted that neither of these two studies consider the co-existence

of temporary and permanent workers explicitly. A gap was therefore identified for a

framework that considers blended recruitment of temporary and permanent workforce,

taking into account the differences in their recruitment lead times, staffing costs, and

placement durations.

In Chapter 3, we proposed a two-stage stochastic optimization framework to inform

recruitment decision making for a highly uncertain demand period. We provided analytical

characterizations for the optimal first- and second- stage decisions, proposed fast numerical

algorithms for evaluating their values, and proved some insensitivity and monotonicity

properties for optimal recruitment policies and their corresponding cost. We further

investigated the potential benefit/risk of delaying permanent advertisement, and derived

some managerial insight using numerical experiments. A case study was provided to



Chapter 5. Summary, Conclusions and Future Research 119

illustrate how our approach can be applied in conjunction with a simulation model to

inform nurse recruitment in inpatient departments. An extension of the main model, which

considers multiple opportunities for temporary recruitment, was also proposed.

In Chapter 4, we proposed a multi-interval two-stage optimization framework to capture

the trade-off between staffing costs, recruitment lead-times, and placement durations. We

ignored the uncertainty in permanent recruitment by assuming that the required number of

permanent positions can always be filled. Formulating the problem as an MDP, we proved

that the optimal policy is a hire-up-to policy. Using numerical experiments, we investigated

the impact of various model parameters on the hire-up-to value. We also assessed the

savings obtained from our dynamic policy as compared to a myopic policy.

We summarize our major methodological and managerial contributions in the two main

chapters of the thesis in §5.2. We then identify some areas for future research in §5.3.

5.2 Contributions

Our methodological contributions in Chapter 3 are as follows. First, in contrast with

the studies in the blended workforce literature (e.g., Lu and Lu, 2017; Hu et al., 2021b),

our framework accounts for the uncertainty associated with permanent recruitment by

incorporating a probability distribution for the number of qualified applicants. This makes

our framework more realistic. It also allows investigating the potential benefit of obtaining

a more accurate demand information by delaying permanent advertisement versus the
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associated risk of a shorter advertisement window. To the best of our knowledge, such

investigation has not been conducted in the literature.

Second, our framework captures the dynamics of service delivery in delay systems,

i.e., systems where all requests must be served. The other two studies which capture the

dynamics of service delivery explicitly in the blended recruitment literature are those of

Dong and Ibrahim (2020) and Hu et al. (2021b). Both of these studies, however, are focused

on abandonment systems, i.e., systems where some requests may leave the system before

their service begins. This implies that our framework is more appropriate for settings

such as inpatient departments or care homes as in these settings all requests (of admitted

patients) must be served.

Third, we derived our results following an exact approach without making any assumption

on the type or scale of the delay queueing model. This implies that our approach can be

applied for any delay queueing model as long as a set of intuitive assumptions are met.

Further, the results obtained from our model are valid irrespective of the system size. This

is an important feature since the systems representing nursing care in inpatient settings are

typically small, rendering asymptotic large-scale approximations, as followed in Hu et al.

(2021b), inaccurate.

Fourth, we illustrated how a simulation model can be incorporated into our framework

to provide recruitment decision support for multi-resource environments such as inpatient

departments. This complements the study of Yankovic and Green (2011) by distinguishing

between temporary and permanent nurses and capturing the two-stage nature of their
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recruitment. We further showed that single-resource approximations based on our analytical

models provide reliable and robust results with substantially less effort.

Fifth, we developed an extension of our main framework which allows multiple opportuni-

ties for temporary recruitment by dividing the service delivery period into smaller segments.

Our framework accounts for the possibility of correlated demand in different segments,

and our characterization of the optimal permanent recruitment shows that this correlation

influences the optimal permanent recruitment decision only when the multi-variate demand

distribution is not closed under marginalization. To the best of our knowledge, the impact

of demand correlation on the optimal permanent recruitment decision has not been inves-

tigated in the studies with a similar decision making process (e.g., Kao and Queyranne,

1985; Pinker and Larson, 2003).

The managerial contributions in Chapter 3 are a follows. First, we assessed the value of

temporary staffing by comparing the expected overall cost obtained under our two-stage

framework with the cost of a single-stage model where only permanent recruitment is

permitted. We observed that, except in cases where the temporary cost rate is extremely

high, there is value in recruiting temporary HCWs. We also showed that this value is likely

to increase with the system scale but decrease with the cost of waiting. This result, however,

contradicts the findings from Harper et al. (2010), which suggests permanent staffing as a

more cost-effective approach when dealing with fluctuations in demand. This contradictory

result can be due to the fact that Harper et al. (2010) uses either nurse-to-patient ratio

method or the dependency-activity-quality method for identifying staffing levels. Our
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contribution further complements the results from Dong and Ibrahim (2020) and Hu et al.

(2021b) by showing that temporary staffing is valuable even when demand rate uncertainty

is very low. In particular, the findings from Dong and Ibrahim (2020) suggest a blended

staffing approach as the optimal strategy in high-demand periods, and the analyses in

Hu et al. (2021b) illustrate that temporary staffing is most beneficial when demand rate

uncertainty dominates the system stochasticity.

Second, we assessed the value of obtaining demand rate distribution by comparing the

expected overall cost obtained under our two-stage framework with the cost of a two-stage

model which uses only the average demand rate. We observe that when demand rate

uncertainty is moderate to high, there is value in obtaining the demand rate distribution

and incorporating it into recruitment decision making. Otherwise, using only the average

demand rate would suffice. We illustrated how this average can be applied in our framework

to evaluate the optimal number of permanent positions. Such investigation has not been

conducted in the only other study that captures demand rate uncertainty (i.e., the study of

Hu et al., 2021b).

Third, we proved that the optimal first- and second-stage decisions and their corre-

sponding costs increase with service time variability. This result has not been reported in

the blended workforce literature. Finally, we illustrated via numerical experiments that

the optimal number of permanent positions and the corresponding system cost show a

non-monotone behaviour with respect to demand rate uncertainty. In particular, both of

these values exhibit a decreasing trend when demand rate uncertainty exceeds a threshold.
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The main implication is that delaying advertisement is less likely to be beneficial when

demand rate uncertainty is already high and the cost of temporary recruitment is small

relative to the cost of patients waiting. Our study is in fact the first that explores the

impact of demand rate uncertainty on the optimal permanent recruitment decision, and

investigates its implications for delaying advertisement.

Our main methodological contribution in Chapter 4 is capturing the joint impact of

different recruitment lead times, staffing costs, and placement durations of temporary

and permanent workers. In particular, the difference in placement durations is captured

by assuming that temporary workers are released at the end of each interval, whereas

permanent workers stay in the system until the end of the planning horizon. The difference

in recruitment lead time is captured by considering a two-stage decision making in each

interval, and modelling the demand as a Poisson mixture process. The difference in staffing

cost are captured by different cost rates for temporary and permanent workers. Similar to

the framework in Chapter 3, our framework in Chapter 4 is flexible with respect to the

delay queueing model used for representing service delivery. This framework also uses a

Markov chain to represent the variations of mean demand rate or the uncertainty around

it over time. In contrast to the studies of Gans and Zhou (2002) and Ahn et al. (2005),

we explicitly consider temporary recruitment and capture the higher variability of demand

relative to the standard Poisson process. The main managerial implication in Chapter

4 was that the savings created by a dynamic policy is likely to increase when there is a

higher probability of transition to a low demand state, and a longer planning horizon. Note
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that these findings are restricted to situations where there is no limitation for permanent

recruitment.

5.3 Future Research

We propose future areas of research for the mid-term and long-term recruitment problems

below.

The methodology we proposed for the mid-term recruitment problem in Chapter 3 is

based on a cost function defined in terms of the number of requests waiting in the queue

or being served. It would be interesting to investigate if cost functions based on other

performance metrics, e.g., the mean number of requests in the queue or the percentage

of requests waiting above a certain limit, meet the properties in Assumption 1, and so

can be applied with our framework. Also, our methodology is restricted to delay systems.

The application area would expand substantially if it is generalized to cover abandonment

systems. This would be an important generalization as the only study that captures the

dynamics of service delivery in abandonment queues, i.e., the study of Hu et al. (2021b),

applies only to large-scale systems. Further, our methodology works only with stationary

demand rates. The extension proposed in Chapter 3 does consider time-variation of demand

over different segments, but it assumes that the system achieves a steady-state within

each segment of the service delivery. This does not necessarily happen in reality and

so another area worth exploring is expanding our methodology to capture time-varying
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rates during different segments of service delivery. The main difficulty of such extension is

that, with time-varying demand rates, exact performance evaluation would be challenging.

There exist numerical methods and approximations (see, e.g., Defraeye and Nieuwenhuyse,

2016), however, which can be incorporated into our framework. Accounting for staff

absenteeism would also make our models more realistic. This can be achieved by assuming

a random percentage of recruited permanent and temporary workers will not show up for

work during the HUDP. In §3.5, we introduced delayed advertisement as an approach to

reduce the demand rate uncertainty. Using machine learning algorithms to estimate the

probability distribution of demand rate with more accuracy (instead of maximum likelihood

and Kolmogorov-Smirnov goodness of-fit test used in §3.6) or using regression models

with realistic features to predict the exact value of demand rate during HUDP are other

approaches to further reduce the demand rate uncertainty.

In the framework we proposed in Chapter 4, we did not capture the randomness of

the recruitment process to simplify the analysis. An area worth exploring would therefore

be including the random number of qualified applications received during the permanent

recruitment period in the formulation and investigating if the hire-up-to structure still

holds. This would change the recursive function proposed in Equation (4.3) to

Vt(nt, i) = min
at

{
E
[
v(Λi, nt + min{Xt, at})

]
+

α
∑
j∈S

qi,jE [Vt+1(nt + min{Xt, at}, j)] : at ∈ R+

 , (5.1)



Chapter 5. Summary, Conclusions and Future Research 126

for t = 1, . . . , T , where Xt is the random number of qualified applications received during

the permanent recruitment period of interval t, and

VT+1(n, i) = cn,

for all n ∈ R+ and i ∈ S. This addition may lead to new insights. For example, we observed

in Chapter 4 that the myopic policy matches the dynamic policy in a two-interval planning

horizon where the current demand state is low. Inclusion of recruitment randomness may

change this as a dynamic policy may advise advertising a larger number of positions in the

current interval when there is a high probability of transition to a high demand state. This

is to increase the possibility of recruiting the required number of permanent staff for the

next interval.

Another avenue for future research is considering learning and turn over of permanent

workforce over time in the spirit of Gans and Zhou (2002). Learning can be captured by

defining different skill levels for permanent workers, and modeling their evolution as a MC.

Turn over, on the other hand, should be modeled as a function of workload as reported

in the empirical research, see, e.g., Holland et al. (2019). Predicting the performance of

recruited temporary and permanent employees may well be another area worth exploring in

future research. In particular, one can use historical data on the work experience, education,

and training hours of the hired workers, and then apply machine learning algorithms such

as classification to predict how well or poor they will be doing at their jobs.
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