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STRUCTURE OF BLOCKS WITH NORMAL DEFECT AND ABELIAN p′

INERTIAL QUOTIENT

DAVID BENSON, RADHA KESSAR, AND MARKUS LINCKELMANN

Abstract. Let k be an algebraically closed field of prime characteristic p. Let kGe be a
block of a group algebra of a finite group G, with normal defect group P and abelian p′

inertial quotient L. Then we show that kGe is a matrix algebra over a quantised version of
the group algebra of a semidirect product of P with a certain subgroup of L. To do this,
we first examine the associated graded algebra, using a Jennings–Quillen style theorem.

As an example, we calculate the associated graded of the basic algebra of the non-principal
block in the case of a semidirect product of an extraspecial p-group P of exponent p and
order p3 with a quaternion group of order eight with the centre acting trivially. In the case
p = 3 we give explicit generators and relations for the basic algebra as a quantised version
of kP . As a second example, we give explicit generators and relations in the case of a group
of shape 21+4 : 31+2 in characteristic two.

1. Introduction

Throughout this paper p is a prime and k is an algebraically closed field of characteristic
p. The study of blocks with normal defect groups has a long history, starting with the
work of Brauer [6], and continuing with Reynolds [13], Dade [7], and Külshammer [11]. In
the case of abelian normal defect, abelian inertial quotient and one simple module, explicit
descriptions of the basic algebra were given by Benson and Green [3], and Holloway and
Kessar [8]. Dropping the hypothesis of one simple module led to our paper [4]. The main
structural feature of the basic algebras calculated in these papers is that they appear to
be quantised versions of the group algebras of semidirect products of a defect group and a
subgroup of the inertial quotient.

The purpose of this paper is to generalise the results from [4] to blocks of group algebras
over k of finite groups that have a normal defect group P which is no longer necessarily
abelian, but still with abelian p′ inertial quotient L. By a theorem of Külshammer [11], any
such block is isomorphic to a matrix algebra over a twisted group algebra kα(P o L) of the
semidirect product P o L, for some α ∈ H2(L, k×), inflated to P o L. So there is a central
p′-extension

1→ Z → H → L→ 1

and an idempotent e in kZ, such that kα(P o L) ∼= kGe, where G = P oH.

Theorem 1.1. With the notation and hypotheses above, let Ã be a basic algebra of the twisted
group algebra kα(P o L). Then kα(P o L) is a matrix algebra over Ã and Ã has an explicit
presentation as a quantised version of the group algebra k(P o Z(H)/Z).

2010 Mathematics Subject Classification. 20C20, 20J06.
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For the precise presentation and the proof, see Section 4. There are several new ingredients
required to extend the results from [4] to nonabelian defect groups. We first consider the
associated graded gr∗(kGe) =

⊕
n>0 Jn(kGe)/Jn+1(kGe) of kGe, briefly reviewed in the

next section, and make use of the Jennings–Quillen theorem [10, 12] and Semmen [14].
We show that gr∗(kGe) is isomorphic to a matrix algebra over a quantised version of the
associated graded of the group algebra of the group P o (Z(H)/Z). Specialising to the case
α = 0, we get a presentation of gr∗(k(P oL)) which we have not seen before in the literature
(see Remark 3.12). The exact relations are stated in Theorem 3.8; see also Theorems 3.11
and 3.14 and Corollary 3.15. We then show that this may be ungraded to exhibit the basic
algebra of kGe as a quantised version of the group algebra of P o (Z(H)/Z), see Section 4.

In Section 5, in order to illustrate the main results, we explicitly calculate the following
examples of blocks with a normal extraspecial defect group of order p3 and exponent p having
a single isomorphism class of simple modules.

Theorem 1.2. Suppose that p is odd. Let P be an extraspecial group of order p3 and exponent
p, let H be a quaternion group of order 8 acting on P with Z(H) acting trivially, and with
the two generators of H inverting the two generators of P . Set G = P o H. The basic
algebra of the associated graded gr∗(kP ) of kP is given by generators x, y, z, subject to the
relations

xp = 0, yp = 0, xy − yx = z, xz − zx = 0, yz − zy = 0

(these imply zp = 0) while the basic algebra of the associated graded gr∗(kGe) of the non-
principal block e of kG is given by generators x, y, z, subject to the relations

xp = 0, yp = 0, xy + yx = z, xz + zx = 0, yz + zy = 0

(these imply zp = 0).

In the case p = 3, we can be more precise and explicitly describe the algebra kP and a
basic algebra of kGe by ‘ungrading’ the previous Theorem.

Theorem 1.3. With the notation of the previous theorem, assume that p = 3. The algebra
kP is given by generators x̃, ỹ, z̃, subject to the relations

x̃3 = 0, ỹ3 = 0, x̃ỹ − ỹx̃ = z̃, x̃z̃ − z̃x̃ = z̃ỹz̃, ỹz̃ − z̃ỹ = −z̃x̃z̃

(these imply z̃3 = 0) while a basic algebra of kGe is given by generators x̃, ỹ, z̃, subject to
the relations

x̃3 = 0, ỹ3 = 0, x̃ỹ + ỹx̃ = z̃, x̃z̃ + z̃x̃ = −z̃ỹz̃, ỹz̃ + z̃ỹ = −z̃x̃z̃

(these imply z̃3 = 0).

In Section 6 we give an example in characteristic two, with P an extraspecial group of
order 21+4 and H an extraspecial group of order 31+2.

Finally, the appendix contains some corrections to the calculations in [4].

Notation. The bracket [−,−] is used in three different ways, depending on the context: as
commutator [g, h] = ghg−1h−1 for elements g, h in a multiplicatively written group, as Lie
bracket in a Lie algebra, and as additive commutator [a, b] = ab− ba for elements a, b in an
associative algebra.
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2. The associated graded

The associated graded of a finite-dimensional k-algebra A is the graded algebra

gr∗(A) =
⊕
n>0

Jn(A)/Jn+1(A),

with the summands Jn(A)/Jn+1(A) in degree n, where we adopt the convention J0(A) = A.
The image in A/J(A) of a block idempotent of A is a block idempotent of gr∗(A), and this
induces a bijection between the blocks of A and the blocks of gr∗(A). Similarly, the image in
A/J(A) of a primitive idempotent of A is a primitive idempotent in gr∗(A). It follows that
A and gr∗(A) have the same quiver.

Let P be a finite p-group, L an abelian p′-subgroup of Aut(P ), and let α ∈ H2(L, k×).
Since k is algebraically closed, the canonical group homomorphism Z2(G, k×)→ H2(G, k×)
splits (see for example Theorem 11.15 of Isaacs [9]). Thus we may represent α by a 2-cocycle
having the same order in Z2(G, k×) as its image in H2(G, k×), still denoted by α. Such a
choice of α yields a central p′-extension

1→ Z → H → L→ 1

and a faithful character χ : Z → k× such that Z = [H,H] and such that for some choice of
inverse images x̂ in H for all x, we have

α(x, y) = χ(x̂ŷx̂y−1)

for all x, y ∈ L. Moreover, |Z| is equal to the order of α in H2(L, k×); that is, the subgroup
of k× generated by the values of α is equal to χ(Z).

Set G = P o H, where H acts on P via the canonical map H → L, so that Z =
CH(P ) 6 Z(H), and hence Z 6 Z(G). Thus the idempotent

e =
1

|Z|
∑
z∈Z

χ(z−1)z,

is a non-principal block of kG, and the canonical surjection G→ PoL with kernel Z induces
an algebra isomorphism

kGe
∼=−→ kα(P o L),

where α is inflated to P o L via the canonical surjection P o L→ L.
We wish to describe kGe. This being difficult, we tackle first the associated graded algebra

gr∗(kGe) =
⊕
n>0

Jn(kGe)/Jn+1(kGe).

Our goal is to give an explicit presentation of this as a quantum deformation of the corre-
sponding associated graded for the (untwisted) group algebra k(P o Z(H)/Z).
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First, we recall the Jennings–Quillen theorem [10, 12] for the associated graded of kP .
Our treatment follows Section 3.14 of [2]. For r > 1, we have dimension subgroups

Fr(P ) = {g ∈ P | g − 1 ∈ Jr(kP )}.

Thus F1(P ) = P , F2(P ) = Φ(P ), [Fr(P ), Fs(P )] ⊆ Fr+s(P ), and if g ∈ Fr(P ) then
gp ∈ Fpr(P ). Furthermore, Fr(P ) is the most rapidly descending central series with these
properties. Define

Jen∗(P ) =
⊕
r>1

k ⊗Fp Fr(P )/Fr+1(P ).

Then Jen∗(P ) is a p-restricted Lie algebra with Lie bracket induced by taking commutators
in P and pth power map coming from taking pth powers in P . As a restricted Lie algebra,
Jen∗(P ) is generated by its degree one elements because the subgroups Fr(P ) form the lowest
central series with the properties mentioned above. Let UJen∗(P ) be the restricted universal
enveloping algebra of Jen∗(P ) over k. As an associative algebra, UJen∗(P ) is generated by
its degree one elements. The commutator [g, h] of two elements g, h ∈ P becomes the Lie
bracket of the images of g, h in Jen∗(P ), and the image of that Lie bracket in UJen∗(P ) is
in turn equal to the additive commutator of the images of g, h in the associative algebra
UJen∗(P ).

The Jennings–Quillen theorem states that there is a k-algebra isomorphism

UJen∗(P )→ gr∗(kP )

which for any r and any g ∈ Fr(P ) sends the image of g in Fr(P )/Fr+1(P ) to the image of
g − 1 in gr∗(kP ).

The group action of H on P induces an action of H on Jen∗(P ) as a restricted Lie algebra,
because the Lie bracket in Jen∗(P ) is induced by taking commutators in P and the p-
power map in Jen∗(P ) is induced by taking p-th powers in P . The Jennings–Quillen map is
equivariant with respect to H, and therefore extends to an isomorphism

UJen∗(P ) oH
∼=−−→ gr∗(kP ) oH

∼=−−→ gr∗(kG),

where the second isomorphism uses the fact that J(kG) = J(kP )kG = kGJ(kP ) since H is
a p′-group (cf. [14, Theorem 4]). Since we have a canonical bijection between the blocks of
kG and the blocks of gr∗(kG) as described at the beginning of this section, it follows that
the blocks of both kG and gr∗(kG) are the idempotents in kZ.

Remark 2.1. If e is an idempotent in kH, then the restriction of the projective module kGe
to P is a direct sum of dimk(kHe) copies of kP . Furthermore, the radical layers of kGe as
a kG-module are the same as the radical layers as a kP -module. So we have∑

i>0

dimk J
i(kGe)/J i+1(kGe) = dimk(kHe).

∑
i>0

dimk J
i(kP )/J i+1(kP )

= dimk(kHe).
∏
r

(
1− tpr

1− tr

)dimk Jenr(P )

.

It can also be seen by restriction to P that if e is a central idempotent in kH then the
associated graded gr∗(kGe) of the algebra kGe is generated by its degree zero and degree
one elements.
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Remark 2.2. The algebra UJen∗(P ) is a finite dimensional cocommutative Hopf algebra,
which defines a connected unipotent finite group scheme P whose group algebra is kP ∼=
UJen∗(P ). The finite group H acts as automorphism on P , so we may form the semidirect
product G = P oH, which is again a finite group scheme.

3. The quantum relations

In this section, we define an algebra A, which will turn out to be a basic algebra for
gr∗(kGe). The quantum commutation rules for A are given in Theorem 3.8, and the fact
that A is indeed a basic algebra is shown in Corollary 3.15.

By [4, Proposition 3.1] we have a bijection

Irr(Z(H)|χ)
∼=−→ Irr(H|χ), φ 7→ τφ

between one-dimensional characters of Z(H) lying over χ and irreducible characters of H
lying over χ, such that τφ lies over φ. The central idempotent corresponding to τφ is

eφ =
1

|Z(H)|
∑

h∈Z(H)

φ(h−1)h.

Then e =
∑

φ∈Irr(Z(H)|χ)

eφ, and hence

kHe =
∏

φ∈Irr(Z(H)|χ)

kHeφ .

The factors kHeφ are matrix algebras, corresponding to τφ, all of the same dimension. An
element ξ of Hom(H/Z, k×) induces an algebra automorphism of kHe sending he to ξ(h)−1he.
This yields an action of Hom(H/Z, k×) on kHe by algebra automorphisms which in turn
induces a permutation action of Hom(H/Z, k×) on the set of factors kHeφ. The stabiliser
of any factor is the subgroup Irr(H/Z(H)) of Irr(H/Z) and elements of Irr(H/Z(H)) act as
inner automorphisms on each factor.

Choose φ0 ∈ Irr(Z(H)|χ), and set τ = τφ0 . For each φ ∈ Irr(Z(H)|χ), choose a one
dimensional representation ξφ ∈ Irr(H/Z) inflated to H whose restriction to Z(H) is φφ−10 ,
and so that ξφ0 = 1. The ξφ form a set of coset representatives of Irr(H/Z(H)) in Irr(H/Z).
The algebra automorphism induced by ξφ sends eφ0 to eφ, hence restricts to an algebra
isomorphism

kHeφ0
∼= kHeφ

sending heφ0 to ξφ(h)−1eeφ. Taking the product over all φ yields a unital injective algebra
homomorphism

kHeφ0 → kHe

sending heφ0 to
∑

φ∈Irr(Z(H)|χ) ξφ(h)−1heφ. By the above, this homomorphism depends on
the choice of the ξφ, but only up to inner automorphisms of kHe. We write M for the image
in kHe of the matrix algebra kHeφ0 under this algebra homomorphism. This is a unital
matrix subalgebra in kHe.

We have a canonical homomorphism ρ : H → Hom(H, k×) sending g to ρ(g) : h 7→ χ([h, g]).
The kernel of this homomorphism is Z(H) and its image is Hom(H/Z(H), k×). For each
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ψ ∈ Irr(H/Z) and each φ ∈ Irr(Z(H)|χ), we write for simplicity φψ instead of φ (ψ|Z(H)).
Then ξφψξ

−1
φ ψ−1 is trivial on Z(H). So there exists an element gψ,φ ∈ H such that

ρ(gψ,φ) = ξφψξ
−1
φ ψ−1,

or equivalently, such that

χ([h, gψ,φ]) = ξφψ(h)ξφ(h)−1ψ(h)−1

for all h ∈ H. We choose such elements gψ,φ, one for each ψ and φ. Note that these elements
are unique up to multiplication by elements in Z(H).

For any ψ, η ∈ Irr(H/Z) and any φ ∈ Irr(Z(H)|χ), we have

ρ(gη,φψgψ,φ) = ρ(gη,φψ)ρ(gψ,φ) = ξφψηξ
−1
φ η−1ψ−1 = ρ(gηψ,φ).

Lemma 3.1. Let ψi, ηj ∈ Irr(H/Z), φi, ζj ∈ Irr(Z(H)|χ), 1 6 i 6 m, 1 6 j 6 n. Suppose
that φi = φi−1ψi−1 for all 2 6 i 6 m. Then

(i) gψm,φm . . . gψ1,φ1 = gψm···ψ1,φ1z for some z ∈ Z(H).
(ii) Suppose further that ζj = ζj−1ψj−1 for all 2 6 j 6 n, φ1 = ζ1 and ψm . . . ψ1 =

ηn . . . η1. Then gψm,φm . . . gψ1,φ1 = gηn,ζn . . . gη1,ζ1z
′ for some z′ ∈ Z(H).

Proof. Since Z = Ker(ρ), (i) follows by repeated application of the equation displayed above
the lemma. Part (ii) follows from (i) applied to both gψm,φm . . . gψ1,φ1 and gηn,ζn . . . gη1,ζ1 . �

3.2. Since k is algebraically closed, we may choose a k-basis w1, . . . , wm of Jen∗(P ), where
pm = |P |, consisting of homogeneous eigenvectors of the action of H. We arrange the indices
in such a way that if i 6 j then deg(wi) 6 deg(wj). Then for each wi there is a character ψi
of L, inflated to H, such that

gwi = ψi(g)wi

for g ∈ H. Define structure constants ci,j,k and di,k for Jen∗(P ) via

[wi, wj] =
∑
k

ci,j,kwk, w
[p]
i =

∑
k

di,kwk.

Here, [wi, wj] denotes the Lie bracket and w
[p]
i the p-restriction map in Jen∗(P ). We have

g[wi, wj] = [gwi,
gwj] = ψi(g)ψj(g)[wi, wj],

g(w
[p]
i ) = (gwi)

[p] = (ψi(g)wi)
[p] = ψi(g)pw

[p]
i .

It follows that if ci,j,k 6= 0 then ψiψj = ψk, and if di,k 6= 0 then ψpi = ψk.
By the Poincaré–Birkhoff–Witt (PBW) theorem for restricted Lie algebras (Jacobson [?],

page 190), the algebra UJen∗(P ) ∼= gr∗(kP ) has a basis B consisting of words wi1 . . . wir
where i1 6 . . . 6 ir, and each index is repeated at most p− 1 times (so we are writing wai as
wi . . . wi). We follow the convention is that the empty word denotes the identity element in
degree zero. The element wi1 . . . wir is an eigenvector for the conjugation action of H, with
character ψi1 . . . ψir .

In what follows we identify Jen∗(P ) with its image in UJen∗(P ) o H. The calculations
that follow are similar to those in Section 4 of [4] (with the corrections described in Section 7
below). For any φ ∈ Irr(Z(H)|χ), wi a basis element of Jen∗(P ), with associated linear
characters ψi, we write gi,φ for the element gψi,φ.
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Lemma 3.3. With the notation above, the following equations in (UJen∗(P )oH)e hold for
all h ∈ H, all basis elements wi of Jen∗(P ), the associated linear characters ψi ∈ Hom(H, k×)
and all φ ∈ Irr(Z(H)|χ).

(i) wieφ = eφψi
wi.

(ii) (gi,φwi)(ξφ(h)−1eφ h) = (ξφψi
(h)−1eφψi

h)(gi,φwi).
(iii) gi,φwieφ = eφψi

gi,φwi commutes with M.

Proof. We have hwih
−1 = ψi(h)wi, hence wih = ψi(h)−1hwi. Thus if h ∈ Z(H), then

φ(h)−1wih = φ(h)−1ψi(h)−1hwi. Taking the sum over all h ∈ Z(H) and dividing by |Z(H)|
shows (i). Note that [g, h]e = χ([g, h])e for all g, h ∈ H. Thus gi,φhe = χ([h, gi,φ])−1hgi,φe.
It follows that

ξφ(h)−1giφwiheφ = ξφ(h)−1ψi(h)−1gi,φhwieφ = ξφ(h)−1ψi(h)−1χ([h, gi,φ])−1hgi,φeφψi
wi ,

where we have used (i). Note that eφψi
is central in kH. Using the definition of ρ, the scalar

in the last expression is ξφψi
(h)−1. This shows (ii). The equality in (iii) is the special case of

(ii) applied with h = 1. For the commutation with M, we need to check that the elements
in the statement commute with expressions of the form

∑
φ′ ξφ′(h)−1heφ′ . This follows easily

using (ii) and the fact that the eφ are pairwise orthogonal. �

Definition 3.4. We define wi,φ = gi,φwieφ, and let A be the subalgebra of (UJen∗(P )oH)e
generated by the elements eφ and wi,φ.

By Lemma 3.3, the subalgebras A and M of (UJen∗(P ) oH)e commute.

Lemma 3.5. The algebra A is generated by the elements eφ and wi,φ for those i such that
the element wi of Jen∗(P ) has degree one.

Proof. Since Jen∗(P ) is generated by elements in degree one, there exists a basis V of
UJen∗(P ) consisting of a subset of the set of monomials in the degree one wi’s. Let wt
be an arbitrary element of the chosen basis of Jen∗(P ) and write

wt =
∑
v∈V

αvv.

If u, u′ ∈ UJen∗(P ) are eigenvectors for the H action corresponding to characters ψ and ψ′

respectively, then uu′ is an H-eigenvector with corresponding character ψψ′. From this it
follows that if a monomial v = wim . . . wi1 in degree one elements wij is an element of V
such that αv 6= 0, then ψt = ψim . . . ψi1 , where for each j, 1 6 j 6 m, ψij ∈ Irr(H/Z) is
the character of H corresponding to the action on wij . Let ζ ∈ Irr(Z(H)|χ) and let v be as
above. By Lemma 3.1,

gψ,ζ = gim,φm . . . gi1,φ1z

where z ∈ Z(H), φ1 = ζ and φj = φj−1ψij−1
, 2 6 j 6 m. On the other hand, since every wij

is an eigenvector for the H action,

vgim,φm . . . gi1,φ1 = βvwimgim,φm . . . wi1gi1,φ1

for some βv ∈ k×. Since zeζ is a non-zero scalar multiple of eζ , the above equation and
Lemma 3.3 (iii) give that

vgψ,ζeζ = qvwim,φm . . .wi1,φ1
7



for some non-zero scalar qv. Since all wij are in degree one, it follows that

wt,ζ = wgψ,ζeφ =
∑
v∈V

αvvgψ,ζeζ

is a linear combination of monomials in the wi,φ for those i such that wi has degree one.
�

Definition 3.6. We define elements zi,j,φ, z′i,j,k,φ and z′′i,k,φ in Z(H) as follows. By Lemma
3.1 we have

gj,φψi
gi,φ = gi,φψj

gj,φzi,j,φ

for some zi,j,φ ∈ Z(H). If ci,j,k 6= 0 then

gj,φψi
gi,φ = gk,φz

′
i,j,k,φ

for some z′i,j,k,φ ∈ Z(H). If di,k 6= 0 then

gi,φψp−1
i

. . . gi,φψi
gi,φ = gk,φz

′′
i,k,φ

for some z′′i,k,φ ∈ Z(H).

Remark 3.7. We have

zi,j,φeφ = φ(zi,j,φ)eφ, z′i,j,k,φeφ = φ(z′i,j,k,φ)eφ, z′′i,k,φeφ = φ(z′′i,k,φ)eφ.

Also, we have zi,j,φzj,i,φ = 1, and if ci,j,k 6= 0 then z′i,j,k,φ = z′j,i,k,φzi,j,φ.

Theorem 3.8. Defining constants

qi,j,φ = ψi(gj,φzi,j,φ)ψj(g
−1
i,φzi,j,φ)φ(zi,j,φ),

q′i,j,k,φ = ψj(gi,φ)−1ψk(z
′
i,j,k,φ)φ(z′i,j,k,φ),

q′′i,k,φ = ψi(gi,φψp−2
i

)−1 . . . ψi(gi,φψi
)−p+2ψi(gi,φ)−p+1ψk(z

′′
i,k,φ)φ(z′′i,k,φ),

we have

wj,φψi
wi,φ − qi,j,φwi,φψj

wj,φ =
∑
k

ci,j,kq
′
i,j,k,φwk,φ(3.9)

wi,φψp−1
i

. . .wi,φψi
wi,φ =

∑
k

di,k,φ q
′′
i,k,φwk,φ.(3.10)

By changing the choices of gi,φ by elements of Z(H), we may ensure that zi,j,φ ∈ Z, and
then the formula for the parameters qi,j,φ simplifies to

qi,j,φ = ψi(gj,φ)ψj(g
−1
i,φ )χ(zi,j,φ).

Proof. We have

wj,φψi
wi,φ = (gj,φψi

wjeφψi
)(gi,φwieφ)

= gj,φψi
wjgi,φwieφ

= ψj(gi,φ)−1gj,φψi
gi,φwjwieφ

= ψj(gi,φ)−1gj,φψi
gi,φ(wiwj + [wi, wj])eφ

= ψj(gi,φ)−1gi,φψj
gj,φzi,j,φwiwjeφ

+ ψj(gi,φ)−1gj,φψi
gi,φ[wi, wj]eφ
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= ψj(gi,φ)−1ψi(zi,j,φ)ψj(zi,j,φ)gi,φψj
gj,φwiwjzi,j,φeφ

+
∑
k

ci,j,kψj(gi,φ)−1gk,φz
′
i,j,k,φwkeφ

= ψj(gi,φ)−1ψi(zi,j,φ)ψj(zi,j,φ)ψi(gj,φ)φ(zi,j,φ)gi,φψj
wigj,φwjeφ

+
∑
k

ci,j,kψj(gi,φ)−1ψk(z
′
i,j,k,φ)gk,φwkz

′
i,j,k,φeφ

= ψi(gj,φzi,j,φ)ψj(g
−1
i,φzi,j,φ)φ(zi,j,φ)(gi,φψj

wieφψj
)(gj,φwjeφ)

+
∑
k

ci,j,kψj(gi,φ)−1ψk(z
′
i,j,k,φ)φ(z′i,j,k,φ)gk,φwkeφ

= qi,j,φwi,φψj
wj,φ +

∑
k

ci,j,kq
′
i,j,k,φwk,φ.

Similarly,

wi,φψp−1
i

. . .wi,φψi
wi,φ

= (giφψp−1
i
wieφψp−1

i
) . . . (gi,φψi

wieφψi
)(gi,φwieφ)

= gi,φψp−1
i
wi . . . gi,φψi

wigi,φwieφ

= ψi(gi,φψp−2
i

)−1 . . . ψi(gi,φψi
)−p+2ψi(gi,φ)−p+1(gi,φψp−1

i
. . . gi,φψi

gi,φ)wpi eφ

=
∑
k

di,kψi(gi,φψp−2
i

)−1 . . . ψi(gi,φψi
)−p+2ψi(gi,φ)−p+1gk,φz

′′
i,k,φwkeφ

=
∑
k

di,kψi(gi,φψp−2
i

)−1 . . . ψi(gi,φψi
)−p+2ψi(gi,φ)−p+1ψk(z

′′
i,k,φ)gk,φwkz

′′
i,k,φeφ

=
∑
k

di,kψi(gi,φψp−2
i

)−1 . . . ψi(gi,φψi
)−p+2ψi(gi,φ)−p+1ψk(z

′′
i,k,φ)φ(z′′i,k,φ)gk,φwkeφ

=
∑
k

di,kq
′′
i,k,φwk,φ.

For the final remark, just as in Lemma 4.12 (3) of [4], we may change the choices of gi,φ by
elements of Z(H) to ensure that zi,j,φ ∈ Z, with the same argument. Then the characters ψi
take value one on these elements, leading to the given simplifications of the constants. �

Recall that by Lemma 3.5, A is generated by the eφ and the wi,φ for those i such that the
element wi of Jen∗(P ) has degree one.

Theorem 3.11. The algebra A is given as a quiver with relations kQ/I, where Q is the
quiver with |Z(H) : Z| vertices labelled [φ] corresponding to the idempotents eφ ∈ kZ(H)
lying over χ and directed edges

[φ]
i−−−−→ [φψi]

corresponding to the element

wi,φ = gi,φwieφ = eφψi
gi,φwi = eφψi

gi,φwieφ

for those i such that the element wi of Jen∗(P ) has degree one. The relations are those that
follow from the structure constant relations of Theorem 3.8, where for each k such that wk
is in degree greater than or equal to 2, any wk,ζ appearing in Theorem 3.8 is replaced by

9



an element in kQ corresponding via Lemma 3.5 to an expression for wk,ζ in terms of the
wi,φ such that wi has degree one. There is a PBW style basis B′ for A (described below in
the proof), consisting of composable monomials in the wi,φ, giving dim(kQ/I) = dim(A) =
|Z(H) : Z| · |P |.
Proof. By Lemma 3.5, A is generated by the idempotents eφ and the elements wi,φ. By
Lemma 3.3 and Theorem 3.8 they satisfy the given relations. Thus we have a surjective

homomorphism from kQ/I to A taking [φ] to eφ and [φ]
i−−−−→ [φψi] to wi,φ.

The relations holding in kQ/I allow us to write every element of A as a linear combination
of elements of the set B′ consisting of the eφ and composable monomials in the wi,φ where the
indices i are in order, and each index i is repeated at most p− 1 times. The number of such

monomials (including the eφ) is |Z(H) : Z| · |P |. Replacing [φ] by eφ, wi,φ by [φ]
i−−−−→ [φψi]

for those i such that wi has degree one and wi,φ by their chosen lifts in kQ for those i such
that wi has degree greater than or equal to two, we see by the same reasoning that dimkQ/I
is at most |Z(H) : Z| · |P |.

If there were a linear relation in A between the monomials in B′, then there would be a
linear relation between the ones of maximal length, namely length m(p − 1). There is one
of these for each φ, and they are linearly independent elements of the socle of kG because
they are non-zero elements of different projective summands kGeφ. Thus dim(A) is equal to
|Z(H) : Z| · |P | and kQ/I → A is an isomorphism. �

Remark 3.12. The group algebra of the semidirect product P o Z(H)/Z, with the action
given by restricting the action of H/Z on P , has only one block. We can perform the
computations above for this group, and the results look similar, except that the factors of
φ(zi,j,φ), φ(z′i,j,k,φ), and φ(z′′i,k,φ) in the definitions of qi,j,φ, q′i,j,k,φ, and q′′i,k,φ are missing in
Theorem 3.11. So removing these factors, the relations in Theorem 3.8 are the relations in
gr∗(k(P oZ(H)/Z)) ∼= UJen∗(P ) oZ(H)/Z. Thus we can see A as a quantum deformation
of the algebra UJen∗(P ) o Z(H)/Z. Also, we note that in the case that α = 0, we have
Z = 1, H = L and Theorem 3.11 provides an explicit presentation of gr∗(k(P o L)).

As in [4], we now make use of the following lemma (see Chapter 3, Corollary 4.3 in Bass [1]).

Lemma 3.13. Let A 6 B be k-algebras with A an Azumaya algebra (that is, a finite-
dimensional central separable k-algebra). Then the map A⊗kCB(A)→ B is an isomorphism.

�

Theorem 3.14. The multiplication in (UJen∗(P ) oH)e induces an isomorphism

A⊗k M
∼=−−→ (UJen∗(P ) oH)e.

Proof. The proof is similar to that of Theorem 4.15 of [4]. Applying Lemma 3.13 with
A = M and B the subalgebra generated by A and M, we see that the given map is injec-
tive. The dimensions are given by dim(A) = |Z(H) : Z| · |P |, dim(M) = |H : Z(H)| and
dim((UJen∗(P )oH)e) = dim(kGe) = |G : Z|, so dim((UJen∗(P )oH)e) = dim(A) ·dim(M)
and the map is an isomorphism. �

Corollary 3.15. We have

gr∗(kGe)
∼= (UJen∗(P ) oH)e ∼= Matm(A),

where m =
√
|H : Z(H)|. In particular, A is a basic algebra of gr∗(kGe). �

10



Corollary 3.16. The algebra A is generated by its degree zero and degree one elements.

Proof. This follows from Corollary 3.15 and Remark 2.1. �

4. Ungrading the relations

We saw in the last section that the relations for the basic algebra of gr∗(kGe) are a
quantised version of the relations for gr∗(kP o (Z(H)/Z)). In this section, we show that the
same holds without taking the associated graded.

Since |H| is coprime to p, the characteristic of k, we can choose invariant complements
to Jn+1(kP ) in Jn(kP ) for each n > 0. Let w1, . . . , wm be the basis of Jen∗(P ) chosen
in Section 3.2, and let B be the resulting PBW basis of UJen∗(P ) ∼= gr∗(kP ) described
there. Regarding Jen∗(P ) as an k-linear subspace of gr∗(kP ), this enables us to choose
representatives w̃i in kP of the wi in such a way that

gw̃ig
−1 = ψi(g)w̃i.

Let B̃ be the corresponding basis of kP consisting of monomials in the w̃i. That is, if
wi1 . . . wir is an element of B then the corresponding element of B̃ is w̃i1 . . . w̃ir . An element
w̃i1 . . . w̃ir of B̃ is an eigenvector for the action of H for the character ψi1 . . . ψir .

When we ungrade a relation of the form [wi, wj] =
∑

k ci,j,kwk, we obtain a relation of the
form

(4.1) [w̃i, w̃j] =
∑
k

ci,j,kw̃k + yi,j

in kP , where yi,j is a linear combination of elements of B̃ in a higher power of the radical
than deg(wi) + deg(wj). Moreover, each basis monomial w̃i1 . . . w̃ir that occurs in yij is an
eigenvector for the character ψiψj, and consequently

(4.2) ψi1 . . . ψir = ψiψj.

Similarly, when we ungrade a relation of the form wpi =
∑

k di,kwk, we obtain a relation of
the form

(4.3) w̃pi =
∑
k

di,kw̃k + y′′i

in kP , where y′′i is a linear combination of monomial basis elements in a higher power of the
radical than p. deg(wi). Each basis monomial w̃i1 . . . w̃ir that occurs in y′′i is an eigenvector
for the character ψpi and consequently

(4.4) ψir . . . ψi1 = ψpi .

Definition 4.5. As in Definition 3.4, we define w̃i,φ = gi,φw̃ieφ. Then w̃i,φ commutes

with M. We define Ã to be the subalgebra of kGe generated by the elements eφ and

w̃i,φ. For an element w̃ = w̃i1 . . . w̃ir of B̃ and a character φ ∈ Irr(Z(H)|χ), set w̃φ =

w̃i1,φψ1...ψr . . . w̃ir−1,φψrw̃ir,φ. Denote by B̃′ the subset of Ã consisting of the elements x̃φ for w̃

in B̃ and φ ∈ Irr(Z(H)|χ). We shall see below in Theorem 4.7 that B̃′ is a basis for Ã.

Proposition 4.6. The elements w̃i,φ satisfy the following relations.

w̃j,φψi
w̃i,φ − qi,j,φw̃i,φw̃j,φψi

=
∑
k

ci,j,kq
′
i,j,k,φw̃k,φ + ψj(gi,φ)−1gj,φψi

gi,φyi,jeφ.

11



w̃i,φψp−1
i

. . . w̃i,φψi
w̃i,φ =

∑
k

di,kq
′′
i,k,φw̃k,φ + ψi(gi,φψp−2

i
)−1 . . .

. . . ψi(gi,φψi
)−p+2ψi(gi,φ)−p+1(gi,φψp−1

i
. . . gi,φψi

gi,φ)y′′i eφ.

Moreover, suppose that yi,j =
∑

w̃∈B̃ ci,j,w̃w̃ and y′′i =
∑

w̃∈B̃ di,w̃w̃. For each w̃ ∈ B̃, there
exist elements q′i,j,w̃,φ and q′′i,w̃,φ of k× such that

gj,φψi
gi,φyi,jeφ =

∑
w̃∈B̃

q′i,j,w̃,φci,j,w̃w̃φ.

(gi,φψp−1
i

. . . gi,φψi
gi,φ)y′′i eφ =

∑
w̃∈B̃

q′′i,w̃,φdi,w̃w̃φ.

Proof. Following through the proof of relation (3.9), we can replace each w with w until the
sixth line, where we have to use (4.1) for the commutator. At this point, the extra term is

ψj(gi,φ)−1gj,φψi
gi,φyi,jeφ.

Similarly, following through the proof of relation (3.10), we can replace each w with w
until the fourth line, where we have to use (4.3). At this point, the extra term is

ψi(gi,φψp−2
i

)−1 . . . ψi(gi,φψi
)−p+2ψi(gi,φ)−p+1(gi,φψp−1

i
. . . gi,φψi

gi,φ)y′′i eφ.

By Lemma 3.1 and Equation 4.2, for each w = wir . . .wi1 ∈ B̃ such that ci,j,w̃,φ 6= 0,

gj,φψi
gi,φ = gir,φψ1...ψr . . . gi2,φψ1gi1,φz

for some z ∈ Z(H). The second assertion follows from this by the fact that for any g ∈ H,
any z ∈ Z(H), any w̃i, and any ζ ∈ Irr(Z(H)|χ), gw̃i = ψi(g)w̃ig is a scalar multiple of w̃ig,
zeζ = ζ(z)eζ is a scalar multiple of eζ and gw̃ieζ = eζψi

gw̃ieφ. The last assertion follows in a
similar fashion from Lemma 3.1 and Equation 4.4. �

Theorem 4.7. The algebra Ã is given as a quiver with relations kQ/Ĩ, where Q is as in
Theorem 3.11, but with edges corresponding to the lifts w̃i,φ of the wi,φ given there. The rela-
tions are those that follow from the structure constant relations of Proposition 4.6, together
with relations saying that every composite of at least s arrows is zero, where s is the radical
length of kP .

The set B̃′ is a PBW style basis of Ã, giving dim Ã = |Z(H) : H|. There is a natural

isomorphism gr∗(Ã) ∼= A, sending each w̃i,φ to wi,φ.

Proof. It follows from the relations in Proposition 4.6 that the linear span of B̃′ is closed
under multiplication modulo a large enough power of the arrow ideal. The zero relations
for composites of s arrows then show that this ideal is zero, and therefore that B̃′ linearly
spans Ã. The image of an element w̃i,φ in gr∗(kGe) is equal to wi,φ, which lies in A. Since

the elements wi,φ of B′ are linearly independent, it follows that the elements w̃i,φ of B̃′ are

linearly independent, and therefore form a basis for Ã. This therefore induces a natural
isomorphism gr∗(Ã) ∼= A. Since A is generated by its degree one elements, Ã has the same
quiver, with the lifts of the relations. �

Theorem 4.8. The multiplication in kGe induces an isomorphism Ã⊗k M→ kGe.
12



Proof. By Theorem 4.7 we have dim(Ã) = |Z(H) : Z| · |P |. So this is now proved in the
same way as Theorem 3.14. �

Corollary 4.9. We have kGe ∼= Matm(Ã), where m =
√
|H : Z(H)|, so that Ã is the basic

algebra of kGe. �

Remark 4.10. As in Remark 3.12, if we perform the computations of this section with the
group algebra of the semidirect product P oZ(H)/Z instead of kGe, the results look similar

except with different scalars. So we can see Ã as a quantum deformation of the algebra
k(P o Z(H)/Z). This observation, together with Theorems 4.7 and 4.8, complete the proof
of Theorem 1.1.

We shall see some explicit examples of the ungrading of the relations in Section 5.

5. Example: P extraspecial of order p3 and exponent p

Let k have characteristic p, an odd prime, and P be an extraspecial p-group of order p3

and exponent p, with presentation

P = 〈g, h, c | gp = hp = cp = 1, [g, h] = c, [g, c] = [h, c] = 1〉.

We denote by H the quaternion group of order 8, given by a presentation

H = 〈s, t | s4 = 1, s2 = t2, ts = s−1t〉 ∼= Q8.

Set Z = 〈s2〉; this is the centre of H. We consider the following action of H on P , and set
G = P oH.

gs = g−1, gt = g, hs = h, ht = h−1

It follows that cs = ct = c−1, and Z acts trivially on P . This action lifts the action of C2×C2

on Cp × Cp ∼= P/〈c〉, where here the nontrivial element of each copy of C2 acts as inversion
on the corresponding copy Cp. The group algebra kG has two blocks, namely the principal
block e0 = 1

2
(1 + s2) and the nonprincipal block e = 1

2
(1− s2) corresponding to the faithful

central character χ : Z → k× given by χ(s2) = −1. We shall be interested in kGe.

Remark 5.1. Let x = g − 1, y = h− 1, z = c− 1 in kP . Then

(5.2) z = (xy − yx)(1 + x)−1(1 + y)−1

and a presentation for kP is given by generators x and y, and relations saying that xp = 0,
yp = 0, and the element z defined by (5.2) is central with pth power equal to zero. Note that
the element (1 + x)−1(1 + y)−1 is congruent to 1 modulo J(kP ), and so in the associated
graded gr∗(kP ) this term in (5.2) may be ignored. This is used in the proof of Theorem 1.2
that follows.

Proof of Theorem 1.2. Denote by x, y, z the images of g, h, c in Jen∗(P ), respectively. (These
elements are mapped to the images of g− 1, h− 1, c− 1 in gr∗(kP ) under the canonical map
Jen∗(P ) → gr∗(kP )). The three dimensional p-restricted Lie algebra Jen∗(P ) is spanned by
the elements x, y in degree one together with z = [x, y] (by the previous Remark) in degree
two, satisfying [x, y] = [y, z] = 0. The p-restriction map given by x[p] = y[p] = z[p] = 0. Its
p3 dimensional universal enveloping algebra UJen∗(P ) is isomorphic to gr∗(kP ). This shows
the first part of Theorem 1.2.
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The action of H on Jen∗(P ) is given by

xs = −x, xt = x, ys = y, yt = −y, zs = −z, zt = −z.

The elements x, y and z are eigenvectors for H on Jen∗(P ). So we set w1 = x, w2 = y,
w3 = z. The characters ψi of H satisfying gwig

−1 = ψi(g)wi for g ∈ H are given as follows.

ψ1(s) = −1, ψ1(t) = 1, ψ2(s) = 1, ψ2(t) = −1, ψ3(s) = −1, ψ3(t) = −1.

Note that the relation [x, y] = z in Jen∗(P ) implies ψ1ψ2 = ψ3.
Denoting as above by e = 1

2
(1− s2) the nonprincipal block of kG, the block algebra kGe

has a unique isomorphism class of simple modules. Indeed, e corresponds to the unique
2-dimensional simple kH-module, and hence the semisimple quotient of kGe is the matrix
algebra M = kHe ∼= Mat2(k).

Since Z = Z(H), there is only one central character of Z(H) lying above χ, namely φ = χ,
and ξφ = 1. The map ρ : H/Z(H)→ Hom(H/Z(H), k×) takes s to φ2, t to φ1 and st to φ3.
Thus g1,φ = t, g2,φ = s and g3,φ = st; these are only well defined up to multiplication by
Z(H).

The block algebra gr∗(kGe) of gr∗(kG) also has one isomorphism class of simple modules,
namely the same 2-dimensional simple kH-module as above, and by Theorem 3.14 and
Corollary 3.15 we have

gr∗(kGe)
∼= A⊗k M ∼= Mat2(A),

where M = kHe ∼= Mat2(k) and A = (gr∗(kGe))
H . The algebra A contains elements

g1,φw1e = txe, g2,φw2e = sye and g3,φw3e = stze. The constants are given by q1,2,φ = −1
and q′1,2,3,φ = −1, so these satisfy the following relation:

(txe)(sye) + (sye)(txe) = −tsxye− styxe = st(xy − yx)e = stze

Similar computations give

(txe)(stze) + (stze)(txe) = 0, (sye)(stze) + (stze)(sye) = 0.

Writing x = txe, y = sye and z = stze, we therefore have

xy + yx = z, xz + zx = 0, yz + zy = 0, xp = 0, yp = 0, zp = 0.

This is a presentation for the basic algebra A of gr∗(kGe), with generators x and y, and with
z defined as xy + yx. This proves Theorem 1.2. �

Remark 5.3. The first part of the above proof shows that Jen∗(P ) is isomorphic to the

p-restricted Lie algebra of 3× 3 matrices of the form
(

0 ∗ ∗
0 0 ∗
0 0 0

)
.

In order to prove Theorem 1.3, ungrading the algebra is our next task. The problem is
that the generators g−1 and h−1 of kP are not well suited to dealing with automorphisms.
We have an action of F×p × F×p on P where (i, j) sends g to gi and h to hj. The commutator

c = [g, h] is sent to cij. Set

x̃ = −
p−1∑
i=1

gi/i, ỹ = −
p−1∑
j=1

hj/j.

Lemma 5.4. We have x̃ ≡ g − 1 (mod J2(kP )) and ỹ ≡ h− 1 (mod J2(kP )).
14



Proof. Since p is odd,
∑p−1

i=1 1/i =
∑p−1

i=1 i = 0 in k whence x̃ = −
∑p−1

i=1 (gi − 1)/i. Now the
assertion for x̃ follows since (gi − 1)/i ≡ g − 1 (mod J2(kP )) for any i, 1 6 i 6 p− 1. The
proof for ỹ is similar. �

Note that x̃ an eigenvector in the (1, 0) eigenspace and ỹ an eigenvector in the (0, 1)
eigenspace of F×p × F×p . Then we set z̃ = [x̃, ỹ] = x̃ỹ − ỹx̃, an eigenvector in the (1, 1)
eigenspace. By Lemma 5.4 and the proof of Theorem 1.2, kP has a PBW basis consisting
of monomials in the x̃, ỹ and z̃. Moreover, a PBW basis element x̃iỹj z̃k of kP with 0 6
i, j, k < p, is an eigenvector in the (i + k, j + k) eigenspace, where i + k and j + k are read
modulo p− 1.

Lemma 5.5. We have z̃p = 0.

Proof. The element z̃p is an eigenvector in the (1, 1) eigenspace. Further, z̃p has image
zp = 0 ∈ gr2p(kP ), hence z̃p is in J2p+1(kP ). The PBW basis elements in this eigenspace
have i+ k and j + k congruent to one modulo p− 1 and at most 2p− 2, and hence at most
p, but then i + j + 2k 6 2p, so the basis element is not in J2p+1(kP ). It follows that the
(1, 1) eigenspace in J2p(kP + 1) is zero and so z̃p = 0. �

Lemma 5.6. The element [x̃, z̃] is a linear combination of the elements z̃ỹp−2z̃ ∈ Jp+2(kP )
and x̃iỹ2i−1x̃iz̃p+1−2i ∈ J2p+1(kP ) with 1 6 i 6 (p − 1)/2. Similarly, [ỹ, z̃] is a linear
combination of the elements z̃x̃p−2z̃ ∈ Jp+2(kP ) and ỹix̃2i−1ỹiz̃p+1−2i ∈ J2p+1(kP ) with
1 6 i 6 (p− 1)/2.

Proof. We prove the first statement. The proof of the second is identical, with the roles of
x̃ and ỹ reversed.

The element [x̃, z̃] has image [x, z] = 0 in gr3(kP ), and hence lies in J4(kP ). It is in
the (2, 1) eigenspace, so we start by identifying the PBW basis elements of J4(kP ) in this
eigenspace. These are ỹp−2z̃2 and x̃ỹp−1z̃ ∈ Jp+2(kP ) and x̃i+1ỹiz̃p−i ∈ J2p+1(kP ) with
1 6 i 6 p− 2.

However, we also need to make use of symmetry. Let σ be the composition of the auto-
morphism of kP which inverts g and h (and hence fixes c) with the anti-automorphism of
kP which inverts all elements of P . Then σ fixes x̃ and ỹ, reverses multiplication in kP , and
negates z̃. The point is that [x̃, z̃] = x̃2ỹ − 2x̃ỹx̃+ ỹx̃2 is fixed by σ, whereas σ does not fix
all elements of the (2, 1) eigenspace. With this in mind, we modify the PBW basis of this
eigenspace so that the action of σ is more transparent.

The element ỹp−2z̃2, for example, is not fixed by σ, even though it’s fixed modulo Jp+3(kP ).
So instead, we use the element z̃ỹp−2z̃, which is equivalent to it modulo Jp+3(kP ), and
therefore just as good as part of a PBW basis of kP , but is fixed by σ. Since σ(x̃ỹp−1z̃) ≡
−x̃ỹp−1z̃− ỹp−2z̃2 (mod Jp+3(kP )), the element x̃ỹp−1z̃ is not involved in the expression for
[x̃, z̃]. So [x̃, z̃] is congruent to a multiple of z̃ỹp−2z̃ modulo J2p+1(kP ).

For the linear span of the elements x̃i+1ỹiz̃p−i, since there are no (2, 1) eigenvectors lower
in the radical series, reordering the terms in a monomial has the same effect as in UJen∗(kP ).
So we can choose a basis consisting of the elements x̃iỹ2i−1x̃iz̃p+1−2i (1 6 i 6 (p− 1)/2) and
the elements ỹix̃2i+1ỹiz̃p−2i (1 6 i 6 (p− 3)/2). The former are +1 eigenvectors of σ, while
the latter are −1 eigenvectors. So the expression for [x̃, z̃] only involves the former. �

By Lemma 5.6, we can write

[x̃, z̃] = a0z̃ỹ
p−2z̃ + a1x̃ỹx̃z̃

p−1 + a2x̃
2ỹ3x̃2z̃p−3 + · · ·+ a(p−1)/2x̃

p−1
2 ỹp−2x̃

p−1
2 z̃2,(5.7)
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[ỹ, z̃] = −a0z̃x̃p−2z̃ − a1ỹx̃ỹz̃p−1 − a2ỹ2x̃3ỹ2z̃p−3 − · · · − a(p−1)/2x̃
p−1
2 ỹp−2x̃

p−1
2 z̃2.(5.8)

Here, we have used the symmetry of kP which swaps x̃ and ỹ, and negates z̃, to compare
the coefficients in (5.7) and those in (5.8).

Remark 5.9. With the aid of the computer algebra system Magma [5] we have determined
the relation (5.7) for small p as follows:

p = 3 : [x̃, z̃] = z̃ỹz̃,

p = 5 : [x̃, z̃] = z̃ỹ3z̃ + 2x̃ỹx̃z̃4,

p = 7 : [x̃, z̃] = z̃ỹ5z̃ + 4x̃ỹx̃z̃6 + 2x̃2ỹ3x̃2z̃4.

One might surmise that a0 = 1 and a(p−1)/2 = 0, but we have not proved that. Nor have we
spotted the general pattern of the coefficients.

Theorem 5.10. A presentation for kP is given by generators x̃, ỹ, z̃ with the relations (5.7)
and (5.8) together with

x̃p = ỹp = z̃p = 0, [x̃, ỹ] = z̃,

and relations saying that all words of length at least 4p− 3 in x̃ and ỹ are equal to zero.

Proof. These relations hold in kP by Lemmas 5.5 and 5.6, and the fact that J4p−3(kP ) = 0.
Let A be the algebra defined by these generators and relations. Then we have a surjective
map A→ kP taking x̃, ỹ and z̃ to the elements with the same names. This induces a map
gr∗A → gr∗kP . The relations (5.7) and (5.8) imply that the images x, y and z in gr∗A of
x̃, ỹ and z̃ in A satisfy [x, z] = 0 and [y, z] = 0. Thus all the relations in UJen∗(P ) hold in
gr∗A, and gr∗A→ gr∗kP is an isomorphism. Since the radical of A is nilpotent, this implies
that A→ kP is an isomorphism. �

Recall from the proof of Theorem 1.2, that setting x = txe, y = sye and z = stze in
gr∗(kGe), we have that the algebra A is generated by x, y and z centralises M in UJen∗(P )o
kH. Further, these elements satisfy the relations

xp = 0, yp = 0, xy + yx = z, xz + zx = 0, yz + zy = 0

(and these imply that zp = 0).

In kGe, we set x̃ = tx̃e, ỹ = sỹe and z̃ = stz̃e. The algebra Ã generated by x̃, ỹ and z̃
centralises M in kGe. These elements satisfy the relations

x̃p = ỹp = z̃p = 0, x̃ỹ + ỹx̃ = z̃

together with the following quantised versions of (5.7) and (5.8)

x̃z̃ + z̃x̃ = (−1)
p−1
2

(
a0z̃ỹ

p−2z̃− a1x̃ỹx̃z̃p−1 − a2x̃2ỹ3x̃2z̃p−3 − · · · − a(p−1)/2x̃
p−1
2 ỹp−2x̃

p−1
2 z̃2

)
,

ỹz̃ + z̃ỹ = (−1)
p−1
2

(
a0z̃x̃

p−2z̃− a1ỹx̃ỹz̃p−1 − a2ỹ2x̃3ỹ2z̃p−3 − · · · − a(p−1)/2ỹ
p−1
2 x̃p−2ỹ

p−1
2 z̃2

)
,

together with relations saying that all words of length at least 4p− 3 in x̃ and ỹ are equal to
zero.

Using Magma [5], in the case p = 3 we have succeeded in finding a short presentation for
kP in terms of the generators x̃ and ỹ. In this case, we have x̃ = g−1 − g and ỹ = h−1 − h.
Defining z̃ = [x̃, ỹ], the following relations hold in kP .

x̃3 =0, ỹ3 = 0, [x̃, ỹ] = z̃, [x̃, z̃] = z̃ỹz̃, [ỹ, z̃] = −z̃x̃z̃.(5.11)
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It follows from these relations that z̃3 = 0, so it is not necessary to include this in the
relations, and hence that the algebra defined by these relations has dimension 27, and is
isomorphic to kP . This is the content of the next theorem. Note, however, that the proof
is difficult, so for some purposes it is better to adjoin z̃3 = 0 to the above presentation. We
restate and prove the first part of Theorem 1.3.

Theorem 5.12. Suppose that p = 3. The generators x̃, ỹ and z̃ and the relations (5.11)
give a presentation for kP .

Proof. Since the given elements of kP satisfy these relations, it suffices to prove that the
algebra defined by the relations has dimension at most 27. The crucial point is to prove that
z̃3 = 0.

It is more convenient to extend the field so that it has a square root of −1, which we
denote i . Then we set a = x̃+ i ỹ, b = x̃− i ỹ, c = i z̃, and the presentation becomes

a3 = [b, c] = cbc, b3 = −[a, c] = cac, [a, b] = c,

and we must show that c3 = 0.
We have

(1 + c)a(1− c) = a,

(1− c)b(1 + c) = b,

and so

(1 + c)ab = (1 + c)a(1− c)b(1 + c) = ab(1 + c).

Therefore c commutes with ab and with ba.
Next,

cab = acb+ cacb = abc− acbc+ cacb,

and since cab = abc it follows that c commutes with acb. Thus we have

(5.13) cbca = a4 = acbc = cacb = b4 = bcac.

Since we are in characteristic three, we also have

[a, [a, c]] = −[a, cac] = −[a, c]ac− c[a, a]c− ca[a, c] = cacac+ cacac = −cacac
and so

[a3, c] = [a, [a, [a, c]]] = −[a, cacac] = −[a, c]acac− ca[a, c]ac− caca[a, c] = −3cacacac = 0.

Thus c also commutes with a3:

(5.14) a3c = ca3.

Next, using (5.13) we have

c3 = cabc− cbac = acbc+ cacbc− cbca+ cbcac = a4 + b4c− b4 + a4c(5.15)

= −a4c = −b4c = −cacbc = −cbcac = −ca4 = −cb4.

Using (5.14) and (5.15), we have

a4c = ca4 = a3ca = a4c+ a3cac = a4c+ ca4c = a4c− c4

and so c4 = 0.
17



The fact that c4 = 0 enables us to write

ca = ac+ cac = ac+ ac2 + cac2 = ac+ ac2 + ac3 + cac3 = a(c+ c2 + c3)(5.16)

cb = bc− cbc = bc− bc2 + cbc2 = bc− bc2 + bc3 − cbc3 = b(c− c2 + c3).(5.17)

We can use these to move copies of c to the end of expressions, at the expense of accumulating
higher powers of c. Applying this to a6 = cbc2bc, we get b2(c4 + higher powers of c), so we
get a6 = 0. Similarly, we get b6 = 0. Then when we do the same with (ab)9, moving b past
a using ba = ab− c, we get

a9b9 + a8b8cf1(c) + a7b7c2f2(c) + a6b6c3f3(c) + a5b5c4f4(c) + . . .

for suitable polynomials fi(c). Since a6 = b6 = c4 = 0, every term here is zero, and so
(ab)9 = 0.

Now using (5.15) and the same method, we have

c3 = −cacbc = −cab(c− c2 + c3)c = −abc(c− c2 + c3)c = −abc3,
and so (1 + ab)c3 = 0. Since ab is nilpotent, (1 + ab) is invertible, so this implies that c3 = 0.

The original relations together with (5.16), (5.17) and c3 = 0 allow us to rewrite every
element as a linear combination of the elements aibjck with 0 6 i, j, k < 3, so the algebra
has dimension at most 27, and we are done. �

Proof of Theorem 1.3. The relations for kP are proved in Theorem 5.12. As above, using
x̃ = g−1 − g, ỹ = h−1 − h, and z̃ = [x̃, ỹ], to obtain generators for the basic algebra for kGe,
we set x̃ = tx̃e and ỹ = sỹe, z̃ = stz̃e. These satisfy

x̃3 = 0, ỹ3 = 0, x̃ỹ + ỹx̃ = z̃, x̃z̃ + z̃x̃ = −z̃ỹz̃, ỹz̃ + z̃ỹ = −z̃x̃z̃.
Furthermore, the algebra defined by these relations again has dimension 27, and is hence
isomorphic to the basic algebra of kGe. �

Remark 5.18. The above relations for kGe are a quantised version of the relations for kP .
These relations imply that z̃3 = 0, and adjoining this relation makes the presentation easier
to work with if desired.

These presentations can be lifted to give integral presentations. The algebra OP has a
presentation with corresponding generators x̂, ŷ and ẑ subject to

x̂3 + 3x̂ = 0, ŷ3 + 3ŷ = 0, [x̂, ŷ] = ẑ, 2[x̂, ẑ] = −ẑŷẑ, 2[ŷ, ẑ] = ẑx̂ẑ,

while OGe is generated by x̂, ŷ and ẑ subject to

x̂3 = 3x̂, ŷ3 = 3ŷ, x̂ŷ + ŷx̂ = ẑ, 2x̂ẑ + 2ẑx̂ = ẑŷẑ, 2ŷẑ + 2ẑŷ = ẑx̂ẑ.

The expressions for ẑ3 in OP and for ẑ3 in OGe, lifting the fact that they cube to zero
modulo three, are ugly even though they follow from the presentations above.

6. Example: 21+4: 31+2 in characteristic two

The examples in the last section were at odd primes for extraspecial groups of order p3.
In this section we give an example in characteristic two with an extraspecial group of order
25.

Let P be an extraspecial group 21+4 which is a central product of two copies of the
quaternion group of order eight, and let H be an extraspecial group 31+2 of exponent three.
We let the centre Z ∼= Z/3 of H act trivially on P , and the elementary abelian quotient act
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as the automorphisms of order three on the two quaternion central factors of P , and we set
G = P oH. Thus the quotient G/Z ∼= SL(2, 3) ◦ SL(2, 3) is a central product of two copies
of the group SL(2, 3) of order 24.

More precisely, we let

P = 〈g1, g2, h1, h2, c | g21 = h21 = [g1, h1] = g22 = h22 = [g2, h2] = c,

[g1, c] = [g2, c] = [h1, c] = [h2, c] = [g1, g2] = [g1, h2] = [h1, g2] = [h1, h2] = c2 = 1〉,
H = 〈s1, s2, t | s31 = s32 = 1, [s1, s2] = t, [s1, t] = [s2, t] = t3 = 1〉.

Let H act on P with Z = 〈t〉 acting trivially, and

s1g1s
−1
1 = h1, s1g2s

−1
1 = g2, s1cs

−1
1 = c,

s2g1s
−1
2 = g1, s2g2s

−1
2 = h2, s2cs

−1
2 = c.

Let k be a field of characteristic two containing F4 = {0, 1, ω, ω̄}. A basis of eigenvectors in
gr1(kP ) is given by

xi = ω̄(gi − 1) + ω(hi − 1), yi = ω(gi − 1) + ω̄(hi − 1) (i = 1, 2).

These give the following presentation for gr∗(kP ).

x2i = 0, y2i = 0, [x1, x2] = [y1, y2] = [x1, y2] = [x2, y1] = 0, [x1, y1] = [x2, y2].

A lift of xi and yi to eigenvectors complementing J2(kP ) in J(kP ) is given by the elements

x̃i = ωgi + ω̄hi + gihi, ỹi = ω̄gi + ωhi + gihi (i = 1, 2).

The relations lift to

x̃2i = ỹix̃iỹi, ỹ2i = x̃iỹix̃i, x̃4i = 0 (i = 1, 2),

[x̃1, x̃2] = [ỹ1, ỹ2] = [x̃1, ỹ2] = [x̃2, ỹ1] = 0, [x̃1, ỹ1] + x̃31 = [x̃2, ỹ2] + x̃32

(both sides in the last relation are equal to (1+c)). Using the radical filtration, it is not hard
to check that these relations define a k-algebra of dimension at most 32, which is therefore
isomorphic to kP .

The action of H on kP with respect to these generators is given by

gx̃ig
−1 = ψi(g)−1x̃i, gỹig

−1 = ψi(g)ỹi (g ∈ H)

where ψ1(s1) = ψ2(s2) = ω, ψ1(s2) = ψ2(s1) = 1.
Set

e0 = 1 + t+ t2, e = 1 + ω̄t+ ωt2, ē = 1 + ωt+ ω̄t2.

Then kG has three blocks, the principal block kGe0, and two non-principal blocks kGe and
kGē. We examine the non-principal block kGe, the other is similar.

We have s1s2e = ωs2s1e. We set

x̃1 = s2x̃1e, x̃2 = s−11 x̃2e, ỹ1 = s−12 ỹ1e, ỹ2 = s1ỹ2e.

These commute with M = kHe, and generate the subalgebra A, so that kGe ∼= Mat3(A).
They satisfy the relations:

x̃2i = ỹix̃iỹi, ỹ2i = x̃iỹix̃i, x̃4i = 0 (i = 1, 2),

x̃1x̃2 = ω̄x̃2x̃1, x̃1ỹ2 = ωỹ2x̃1,

ỹ1x̃2 = ωx̃2ỹ1, ỹ1ỹ2 = ω̄ỹ2ỹ1,
19



[x̃1, ỹ1] + x̃31 = [x̃2, ỹ2] + x̃32

(both sides in the last relation are equal to (1 + c)e). These are identical to the relations for
kP apart from the commutation relations, which have been quantised by the introduction
of factors ω and ω̄.

7. Appendix: Errata

The present paper supersedes most of our previous paper [4]. In that paper there are a
number of minor errors, mostly in the calculations in Section 4, which have been corrected
in the present work. We give a list of those errors in [4].

In the statements of Theorem 1.2 and Corollary 1.3, it should read ‘...quantised version of
k(P o Z(H)/Z)’ (and not ‘...of k(P o L).’)

In the 3rd line of the proof of Proposition 3.1 insert the word ‘abelian’ between ‘maximal’
and ‘subgroup’ (as is done correctly in line 2 and line 4 of that proof).

On page 1441, third line from the bottom, insert faithful :

“. . . and a faithful linear character χ : Z → k×. . . ”

On page 1443, in the first line, ρ(g) : h 7→ χ([h, g]). The display on the third line should
read

ρ̄ : H/Z(H)→ Hom(H/Z(H), k×)

On page 1444, line four should begin “where ρ(gi,φ)(h) = χ([h, gi,φ]).” The third line of the
proof of Lemma 4.8 should begin with egi,φh = eχ([h, gi,φ])−1hgi,φ. The displayed equation
on the fourth line of the proof of Lemma 4.8 should read

ξφ(h)−1(gi,φwi)(eφ · h) = ξφ(h)−1ψi(h)−1χ([h, gi,φ])−1(eφψi
h)(gi,φwi).

In Definition 4.9 and the four lines following, kHe should be kG̃e four times. The dimension
of A should be given as |P | · |Z(H) : Z| and not |P | · |H : Z(H)|.

On page 1445, in Lemma 4.12 (2), in the displayed equation the last wi should be wj.
The scalar qi,j,φ should equal ψi(gj,φzi,j,φ)ψj(g

−1
i,φzi,j,φ)φ(zi,j,φ) rather than φ(zi,j,φ). Similarly,

in Lemma 4.12 (3) the scalar qi,j,φ should equal ψi(gj,φ)ψj(g
−1
i,φ )χ(zi,j,φ) rather than χ(zi,j,φ).

In the second line of the proof of Lemma 4.12 (1), gj,φφi should be gj,φψi
. The computation

that was suppressed in the proof of Lemma 4.12 (2) uses (1) and equation (4.7). It is similar
to the computation in Theorem 3.8 above, which we have spelled out in detail. There is a
missing Z in the third to last line of the proof of Lemma 4.12 (3), and gji should be gi in
the second to last line.

On page 1447, in Theorem 4.15 and Corollary 4.16, kGe should be kG̃e five times.
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