

City Research Online

City, University of London Institutional Repository

Citation: Amobi, M. C. (2004). Electricity deregulation evidence analysis and public policy - Volume 2. (Unpublished Doctoral thesis, City, University of London)

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/30149/

Link to published version:

Copyright: City Research Online aims to make research outputs of City, University of London available to a wider audience. Copyright and Moral Rights remain with the author(s) and/or copyright holders. URLs from City Research Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

Electricity Deregulation: Evidence, Analysis and Public Policy

By

Marilyn Chikaodili Amobi

Thesis

Submitted to City University for the Degree of Doctor of Philosophy in Economics

November 2004

Bibliography

Abbink, K., Brandts, J & McDaniel, T., (2002), 'Asymmetric demand information in uniform and discriminatory call auctions: an experimental analysis motivated by electricity markets', Available at http/www/iae.csic.es/publications/brandts/assymetric.pdf

Achterberg, R., (2000), 'Competition Policy and Regulation: a case study of telecommunication', Development Southern Africa. vol 17, No 3 p 357.

Ades, A., & Di Tella, R., (1999), 'Rents, competition and corruption', American Economic Review, vol. 89 no 4 pp 982 – 993.

Afexentiou, P., & Serletis, A., (1991), 'A time series analysis of the relationship between government expenditure and GDP in Canada', Public Finance Quarterly, vol. 19:2, pp 316 – 333.

Aghion, P., & Bolton, P., (1987), 'Contracts as a Barrier to Entry', The American Economic Review, pp 388 – 401.

Alam, M, S., (1990), 'Some Economic Costs of Corruption in LDCs', The Journal of Development Studies, vol. 27 no.1 pp 419 – 35

Alberto, G., (2004), 'Policy alternatives in reforming energy utilities in developing countries', Energy Policy, no. 32 pp 1319 – 1337.

Anstey, R, T., (1962), Britain and the Congo in the Nineteenth Century. Oxford University Press.

Arestis, P., & Demetriades, P., (1997), 'Financial Development and Economic Growth: Assessing the evidence', The Economic Journal, vol. 107 pp 783 – 799.

Arellano, M., (2002), 'Diagnosing Market Power in Chile's Electricity Industry'.

Aron, J., (1998), 'Policy rules and bidding behaviour in the Ethiopian foreign exchange auction', WPS/98-11, Centre for the Study of African Economies. Institute of Economics and Statistics. University of Oxford, St Cross Building, Manor Road, Oxford. OX1 3UL.

Armstrong, M., Cowan, S. & Vickers, J., (1994) Regulatory Reform. MIT Press.

Asilis, C, M & Juan-Ramon, V, H., (1994), 'On Corruption and Capital Accumulation' IMF Working Paper WP/94/86-EA

Asteriou, D., & Spiropoulous, C., (2000), 'The Role of Political Instability in Stock Market Development and Economic Growth: The Case of Greece', Economic Notes, Vol. 29, No 3 pp: 355 – 374.

Audretsch, D. B., (1995). Innovation and Industry Evolution. MIT

Bacon, R., (1995), 'Lessons from the Power Sector Reform in England and Wales', Note 61, World Bank.

Bakerman R, S., Rassenti S, T & Smith V, L., (1996), 'Efficiency and Income shares in high demand energy networks: who receives the congestion rents when a line is constrained?' The University of Arizona Tucson Arizona. Economic Science Laboratory.

Baldick, R., (undated), 'Electricity market equilibrium models: The effect of parametrization', Available at http://www.ece.utexas.edu/~baldick/paper/parametrization.pdf

Baker, J., & Bresnahan, T., (1992), 'Empirical method of identifying and measuring market power', Antitrust Law Journal.

Bannock. G, Baxter, R.E & Davies, E., (1998). *Dictionary of Economics*. The Economist Books.

Barberton, C., (1998), 'Restructuring the electricity distribution industry: an analysis of the proposed ownership and governance structures of regional electricity distributors', Development Southern Africa, vol. 15, no 3 pp 323 – 344.

Bardhan, P., (1997), 'Corruption and Development: A Review of Issues', Journal of Economic Literature, vol. XXXV pp 1320 -1349 Barlow, M, T., (2002), 'A diffusion Model for Electricity Prices', Mathematical Finance, vol. 12, no. 4, pp 287–298.

Batel, A.P & Hansson, A.A., (undated), 'Ownership versus environment. Detangling the sources of public sector inefficiency', Available at http:/ideas.ugam.ca/ideas/data/papers/fthwob

Baumol, W. J., (1982), 'Contestable markets: An uprising in the theory of industry structure', American Economic Review, vol. 72, pp 1 – 15.

Becker, G. S., (1983), 'A theory of competition among pressure groups for political influence', The Quarterly Journal of Economics, vol. XCVIII (August) no. 3, pp 371 – 400.

Begg, D., Fischer, S & Dornbush, R., (2003). Economics. McGraw, Seventh Edition,

Bell, W. R., & Hillmer, S. C., (1984), 'Issues Involved with the Seasonal Adjustment of Economic Time Series', Journal of Business and Economic Statistics, vol.2, no 4 pp 291 – 320.

Bell, M., (2003), 'Regulation in developing countries is different: avoiding negotiation, renegotiation and frustration', Energy Policy, no.31, pp 299 – 305.

Bennell, P (1977), 'Privatisation in sub-Saharan Africa: Progress and prospects during the 1990s', World Development, vol.25: 11 pp 1785 – 1803.

Bentz, Y., (2003), 'Quantitative equity investment management with time-varying factor sensitivities', in Dunis, C., Laws, J., & Naim, P, *Applied Quantitative methods for trading and investment*. Wiley.

Bergeman, .L, Doyle, .C, Gual, .J, Hultkrantz, .L., Neven, .D, Roller, .L, & Waverman, .L., (1998). Telecommunications: Europe's Network Industries: conflicting priorities. CEPR. —(1999). A European Market for Electricity? Monitoring European Deregulation 2. CEPR.

Bhagavan, M. R., (eds.) (1999). *Reforming the power sector in Africa*. Zed Books Ltd, London in association with African Energy Policy Research Network (AFREPREN).

Bhattacharyya, A., Parker, E., & Raffiee, K., (1994) 'An examination of the effect of ownership on the relative efficiency of public and private water utilities', Land Economics no. 70, vol.2 pp: 197-209.

Biobaku, S, O., (1962). The Egba and their neighbours 1842 – 1872. Oxford University Press.

Binmore, K & Vulkan, N., (1999), 'Applying game theory to automated negotiation', Netnomics 1 pp: 1–9.

Bird, G., (1988), 'Debt swapping in developing countries: a preliminary investigation', Journal of Development Studies.

Black, J., (1997). Oxford Dictionary of Economics. Oxford University Press.

Blacking, S., (1999), 'Structural Adjustment: Why it wasn't necessary and why it did not work', Review of African Political Economy, vol. 26:80, pp 207 – 227.

Blake, N. S., (1993), 'Detecting Level Shifts in Time Series', Journal of Business and Economic Statistics, vol. 11:1, pp 81 – 92.

Blasi. J. R., Kroumova, M & Kruse, D., (1997). Kremlin Capitalism. Privatising the Russian Economy. Cornell University Press.

Blumstein. C, Friedman. L.S & Green, R. J., (2002), 'The History of Electricity Restructuring in California', CSEM WP 103, Centre for the Study of Energy Markets.

Bolle, F., (1992), 'Supply function equilibria and the danger of tacit collusion. The case of spot markets for electricity', Energy Economics, April, pp: 94 – 102.

Boreinstein, .S., (2004), 'The Long-run effects of real-time electricity pricing', CSEM WP 133.

Boreinstein, .S & Bushnell, J., (2000), 'Electricity Restructuring: Deregulation or Reregulation?' Regulation 46. Vol. 23, no.2: 46 – 52.

----AND Wolak, F., (2002), 'Measuring market Inefficiencies in California's Restructured wholesale Electricity Market', CSEM WP 102, Centre for the Study of Energy Markets. ----AND Wolak, P., (2000), 'Diagnosing Market Power in California's Restructured Wholesale Electricity Market'.

—AND Knittel, C., (1999), 'A Cournot-Nash equilibrium analysis of the New Jersey electricity market',

—AND Knittel, C & Wolfram, C., (2000), 'Price convergence in California's deregulated wholesale electricity markets'. Mimeo at the University of California Energy Institute.
—(May 1998) An Empirical Analysis of the Potential for Market Power in California's Electricity Industry. The Journal of Industrial Economics, vol. XLVII, no. 3, pp: 285–323.

Bresnahan, T. F., (1982), 'The Oligopoly Solution Concept is identified', Economics Letters, vol. 10, pp: 87 – 92.

---AND Baker, J. B., (1992), 'Empirical methods of identifying and measuring market power', Anti-trust law Journal, vol 61, pp 3 – 16.

Brock, W., & Magee, S. T., (1978), 'Decentralisation, Bureaucracy, and Government The economics of Special Interest Politics: the case of the tariff', American Economic Association, vol. 68:2, pp246 – 250.

Boss, .D., (1994). Pricing and Price Regulation An economic theory for public enterprises and public utilities Elsevier.

Bowen R.I., Moncur J.E.T & Pollock R.L., (1991), 'Rent seeking wealth transfers and rights: The Hawaii case', Natural Resources Journal, vol. 31, pp: 429-48.

Bower, J., (2002), 'Why did Electricity Prices Fall in England and Wales? Market Mechanism or Market Structure? Oxford Institute for Energy Studies. EL 02.

Boyer K.D., (Reviewer), (1995), 'Going Private: The international experience with transport privatisation', Journal of Economic Literature, vol. 33, pp: 262–264.

Bunn, D

—AND Larsen, .E. R., Day, C (2001), 'Divesture of Generation Assets in the Electricity Pool of England and Wales: A Computational Approach To Analysing Market Power', Journal of Regulatory Economics, No 19, Vol. 2, pp: 23-141.

Bunn, D

—AND Larsen, .E. R., Day, C. J., (2001), 'Computational Modelling of Price-Formation in the Electricity Pool of England and Wales', Available at

http://forum.london.edu/lbsfacpubs.nsf/researchcentre/9975FA68B115

---AND Bower. J., (2000), 'A model-based comparison of pool and bilateral market mechanisms for electricity trading', Energy Journal, vol. 21, no. 3 pp: 1-29.

---(1999), 'Deregulation in electricity: Understanding strategic and regulatory risk', Journal of Operational Research Society, vol. 50, pp: 337-344.

—AND Day, C., Vlahos, K., (1997). 'Analysis of Latent Market Power in the Electricity
 Pools of England and Wales'. Regulation Initiative Discussion Paper Series Number 012.
 London Business School, Sussex Place, Regents Park, London NW1 4SA.

—(1997), 'Demand Side Participation in the Electricity Pools of England and Wales', Regulation Initiative Discussion Paper Series Number 04. London Business School.
—AND Larsen, E & Vlahos, K., (1997), Energy Economics Special Issue Energy Environmental Modelling, vol. 19:1.

----AND Larsen, E. R., Vlahos, K., (1993), 'Complementary Modelling Approaches for Analysing Several Effects of Privatisation on Electricity Investment', Journal of operational Research Society, vol. 44 no. 10, pp: 957-971.

AND Larsen, E. R., (1992), 'Sensitivity of reserve margin to factors influencing investment behaviour in the electricity market of England and Wales', Energy Policy, May.
 (1999), (eds). Strategic Price Risk In Wholesale Power Markets. Risk Books.

Bushnell. J.,

—AND Saravia, C., (2002), 'An empirical assessment of the competitiveness of the New England Electricity Market.' CESM WP-101, University of California Energy Institute.
—AND Mansur, E. R & Saravia, C., 'Market structure and Competition: A Cross-Market Analysis of U.S. Electricity Deregulation', CSEM Working Paper Number 126.

—(1999), 'Transmission Rights and Market Power'. PWP- 062, University of California Energy Institute.

—AND Wolak, F, A., (1999), 'Regulation and the leverage of local market power in the California Electricity market', PWP-070, University of California Energy Institute.

Byatt, I., (1999). 'Water in England and Wales: Did Privatisation work?' Postgraduate lecture: Economic Regulation and Competition Course. Department of Economics, City University Northampton Square. EC1V 0HB.

Cadwalader, M, D., Harvey, S, M & Pope, L, S., (1998), 'Market co-ordination of transmission loading relief across multiple regions', Centre for Business and Government, John F. Kennedy School of Government. Harvard University. Cambridge, Massachusetts. 02138.

—(1998), 'Reliability, scheduling markets, and electricity pricing', Centre for Business and Government, John F. Kennedy School of Government. Harvard University. Cambridge, Massachusetts. 02138.

Campbell, J. Y., (1991), 'A variance decomposition for stock returns', The Economic Journal, vol. 101, pp 157 – 179.

Campos, J., & Esfahani, H., (1996), 'Why and when do governments initiate public enterprise reform?' The World Bank Economic Review, vol. 10:3, pp 451 – 85.

Cantor, R & Packer, F., (1996), 'Determinants and impact of sovereign credit rating', FRBNY Economic Policy Review, October, pp: 37–54.

—(1995), 'Sovereign Credit Ratings', Current Issues in Economics and Finance, Federal Reserve Bank of New York. vol. 1, no.3.

Cardell, J., Hitt, W & Hogan, W., (1997), 'Market Power and Strategic Interaction in Electricity Power Networks', Resources and Energy Economics, Vol. 19.

Carroll, R. J, Wang, D. G, Stomberg, A. J & Ruppert, D., (1998), 'The Sandwich (Robust Covariance Matrix) Estimator', available at <u>http://stat.tamu.edu/ftp/pub/rjcarroll/sandwich.pdf</u>

Cartier-Bresson, J., (2000), 'Economics of corruption', Observer No. 220. Available at: http://www1.oecd.org/daf/nocorruptionweb/pdf/observer/cartierbresson.pdf.

Chao, Hung-Po, Peck, & Stephen., (1997), 'An institutional design for an electricity contract market with central dispatch', Energy Journal, vol. 18, no. 1 pp: 85-91.

---(1998), 'Reliability management in competitive electricity markets', Journal of Regulatory Economics, vol. 14, pp 189-200.

Clark, J.M., (1961), Competition As A Dynamic Process. The Brookings Institution.

Clarke, R, G, G & Xu, L. C., (2002), 'Ownership, Competition and Corruption: Bribe Takers versus Bribe Payers', World Bank Working Paper. Available at: http://econ.worldbank.org/files/12028_wps2783.pdf

Clark, .T., (eds.) (1994). International Privatisation Strategies and Practices. Walter de Gruyer.

Cohen, R., (2001), 'Energy Regulation should lighten up in line with the industry's new asset business model. Robin Cohen argues for change', Utility Weekly.

Cooper. M. N., (2001), 'Electricity deregulation and consumers: Lessons from a hot spring and a cool summer'.

Available at http://www.consumerfed.org/erspring.pdf

Crain M.W & Zardkoohi.A, (1998), 'A test of the property rights theory of the firm: water utilities in the United States', Journal of Law and Economics, vol. 2, no. 2, pp: 395-408.

Cramton, P

—AND Schwartz, J.A., (2000), 'Collusive bidding in the FCC Spectrum Auctions', Journal of regulatory economics, vol.17, pp 229-52.

---AND Wilson, R., (1998), 'A review of ISO New England's Proposed Market Rules', available at www.cramton.umd.edu/papers1995-1999/ 98mdi-iso-ne-markets-review.pdf

Crampes, C & Estache, A., (1997), 'Regulatory trade-offs in the design of concession contracts, available at:

http://www.worldbank.org/html/dec/Publications/Workpapers/WPS1800series/wps1854/w ps1854.pdf

Crew, A. M., Kleindorfer, P. R., & Smith, M. A., (1990), 'Peak-load pricing in postal services', The Economic Journal, vol. 100, pp 793 – 807.

Cubbin, J. C., (2001), 'The Electricity Industry Background', lecture on Issues in Regulation and Competition, May 29. Department of Economics. City University, Northampton Square. EC1V 0HB.

—(1999). Lectures on Current Issues. M.Sc. Economic Regulation and Competition. City University. Northampton Square, London, EC1V 0HB.

—AND Tzanidakis, G., (1998a), 'Regression versus Data Envelopment Analysis for efficiency measurement: An application to the England and Wales Water Industry', Utilities Policy, Vol. 7, pp: 75-85.

—AND Tzanidakis, G., (1998b), 'Techniques for Analysing Company Performance', Business Strategy Review, Vol. 9 Issue 4, pp 37–46.

Culyer, A. J., (1985). Economics. Basil Blackwell Ltd.

Davis, E. P., (1992), Debt, Financial fragility, and Systemic Risk. Clarendon Press Oxford.

Davidson, J. E. H., Hendry, D. F., Srba, F., & Yeo, S., (1978), 'Econometric Modelling of the Aggregate Time-Series relationship Between Consumers' Expenditure and Income in the United Kingdom', The Economic Journal, vol. 88, pp 661 – 692.

Deb, R, K., Macatangay, E, A & Deb, S., 'An analysis of Generation Market Power in the Midwest Interconnect', an LCG Consulting paper, available at www.energyonline.com/reports/entergymarketpower.pdf

Demsetz, H., (1968), 'Why regulate utilities', Journal of Law and Economics, vol. 11, pp 55 ---6.

Deng, S & Oren, S., (2000), 'Priority network access pricing for electric power', PWP-072, University of California Energy Institute.

Department of Energy, (1998), 'Privatising Electricity', Cm 322, London, HMSO

De Vany, A, S & Walls, W, D., (1999), 'Co integration analysis of spot electricity prices: insights on transmission efficiency in the western US', Energy Economics, vol. 21, pp 435 – 448. Dimopoulos, D., (1981), 'Price schemes for regulated enterprises and their welfare implications in the case of electricity', Bell Journal of Economics, vol. 12, Issue 1 pp 185-200.

DOE (1997). Electricity Reform Abroad and US investment. DOE, Washington DC. Dollar, D., (1992), 'Outward-oriented developing economies really do grow more rapidly: evidence from 95 LDCs, 1976 – 1985', Economic Development and Cultural Change, vol. 40:3 (april) pp 523 – 44.

Donaldson, L., (1984). Economic Development Analysis and Policy. West Publishing Company.

Domberger, S., & Piggot, J., (1986), 'Privatisation policies and public enterprises: A survey', The Economic Record, June, pp 145 – 162.

Dominguez, K., (1991), 'Do exchange rate auctions work? An examination of the Bolivian Experience', working paper no. 3683, NBER.

Doornik, J. A., & Hansen, H., (1994), 'An omnibus test of univariate and multivariate normality, Discussion paper: Nuffield College, Oxford.

Drazen, A., & Grilli, V., (1993), 'The benefit of crisis for economic reforms', American Economic Review', vol. 83:3 pp 598 – 607.

Due, J., (1993), 'Privatisation in Tanzania and Zambia', World Development, vol. 21:12, pp 1981 – 1988.

Dunis, C., Laws, J., & Naim, P., (2003). Applied quantitative methods for trading and investment. Wiley.

Economist Magazine (2000), 'They're burning animals again', 3 March. —(2001), 'Railtrack's bankruptcy. Blood on the tracks', October 13.

Edison Electric Institute, (2000), 'Competition in Electricity Markets: The case against forced divestiture'.

-(2000), 'Electricity rates reflect state policies and priorities'.

---(2000), 'Defining the terms of a changing industry'.

-(2000), 'Electric Power - An overview of the industry and its impact'.

Einhorn, .M.A., (eds.) (1994). From regulation to competition: new frontiers in electricity markets. Kluwer.

—AND Siddiqi, R., (1996) (eds.). *Electricity Transmission Pricing and Technology*. Electric Power Research Institute.

Ellis. A, Bowitz. E & Roland, K., (2000), 'Structural changes in Europe's gas markets: three scenarios for the development of the European gas market to 2020', Energy Policy, vol. 28, pp: 297-309.

Elmaghraby, W.J., (1998), 'Multi-Unit auctions with Complementarities: Issues of Efficiency in Electricity Auctions', PWP-053r, University of California Energy Institute.

The Electricity pool, Demand-side bidding (DSB-1) Scheme. Issue 2 (10.97)

- -Trading sites. Issue 2 (04.98)
- -Pool payments. Issue 2 (06.98)

-The settlement process. Issue 1 (04.97)

—Generator rules & procedures. Issue 1 (9.97)

Energy Modelling Forum (1998) (EMF) Report 15, Vol. 1 (1998), 'A competitive Electricity Industry', Report 15. vol. 1, 1998, available at <u>http://www/Stanford.edu/group/EMF/Publications/docs/summary</u>15.pdf

Enders, W., (2004). *Applied Econometric Time Series*. Second Edition. Wiley Series in Probability & Statistics.

Estrin, S.,

---AND Urga, G., Bennett, J., & Maw, J., (2004), 'Does the Method of Privatisation Matter? The Case of the Transition Economies', CEPR Discussion Paper.

---AND Perotin V., (1991), 'Does ownership always matter?' International Journal of Industrial organisation, vol. 9, pp 55–72.

Estrada, J., et al (1995). The development of European Gas Markets. Wiley, New York.

Ferguson, R., Wilkinson, W., & Hill, R., (2000), 'Electricity use and economic development', Energy Policy, no. 28, pp 923 – 934.

Fernandez, R., & Rodrik, D., (1991), 'Resistance to reform: Status quo bias in the presence of individual-specific uncertainty', American Economic Review, vol. 81:5 pp 1146 – 1155.

Fion, D., Glachant, J., Jullien, C., Quartrain, R., Robin, S & Ruffieux, B, (2000), 'Modifying industry structure or market institution? An experimental analysis of the reform of the English Electricity Pool', ISNIE.

Fitch. (Undated). Sovereign Ratings: Rating Methodology

Fisher, R & Galetoviz, A., (2000), 'Regulatory Governance and Chile's 1998 – 1999 Electricity Shortage, Working Paper. Serie Economia No. 84 Universidad de Chile.

Forster, C.D., (1992). Privatisation, Public Ownership and The Regulation of Natural Monopoly. Blackwell.

Franks, .J & Mayer, C., (1997), 'Ownership, Control and The Performance of German Corporations', IFA Working Paper 265, Department of Finance, London Business School.

Freeman-Grenville, G, S, P., (eds.) (1962), The East African Coast. Oxford University Press

Friedman, J. W., (1971), 'A non-co-operative equilibrium for supergames', Review of Economic Studies, vol. 38, pp 1-12.

Fusaro, P.C., (1998). Energy Risk Management. McGraw-Hill.

Galbraith, J. K., (1988). A History of Economics; The past as the present. Penguin Economics.

Gans, J, S & Williams, P, L., (1998), 'Efficient investment pricing rules and access regulation', Melbourne Business School, University of Melbourne.

Gebreab, A, F., (2002), 'Getting connected: Competition and diffusion in African Mobile Telecommunications Markets', A World Bank Policy Research working paper no. 2863.

George, S., (1988), A Fate Worse than Debt: A radical New Analysis of the Third World Debt Crisis, Penguin Books.

Ghatak, S., (1986), An Introduction to Development Economics. Second Edition. Allen & Unwin.

Gilbert, .R .J & Khan, .E .P., (1996). International Comparisons of Electricity Regulation. Cambridge University Press.

Gibbon, P., Bangura, Y., & Ofstad, A., (eds), (1992). Authoritarianism, democracy and adjustment. Uppsala: Scandinavian Institutte of African Studies.

Gordon, R.L (2000) 'The Electricity Blame Game,' Available at www.Cato.org

Granger, W. L., Engle, R., Ramanathan, R. & Andersen, A., (1979),' Residential load curves and time-of-day pricing an econometric analysis', Journal of Econometrics, vol. 9, pp: 13-32.

Graves, F., Jenkin, T., & Murphy, D., (1999), 'Opportunities for Electricity Storage in Deregulating Markets', The Electricity Journal vol. 12, no 8 pp: 46–56.

Green, R., (1999), 'Draining the pool: The Reform of Electricity Trading in England and Wales,' Energy Policy Vol. 27, No 9, pp: 515–525.

—AND Evans, J., (2003), 'Why did British Electricity Prices fall after 1998?' Available at http://www.hull.ac.uk/hubs/staff/profiles/staff/evans_green_neta_prices.pdf.

—AND Blumstein, C., Friedman, L.S., (2002), 'The History of Electricity Restructuring in California', a CSEM Working paper no. 103.

---(2001), 'Failing electricity markets: should we shoot the pools?' A CEPR Discussion paper No. 3010.

—(1999), 'The Electricity Contract Market in England and Wales', Journal of Industrial Economics, vol. 47, no.1, pp: 107–124.

---(1998a), 'England and Wales---A competitive electricity market?' PWP-060, University of California Energy Institute.

---(1998b), 'Electricity Transmission Pricing: How much does it cost to get it wrong? PWP-058. University of California Energy Institute.

—AND Newberry, M. D., (1998), 'The Electricity Industry in England and Wales', in (eds) Dieter Helm & Jenkinson Tim, *Competition in Regulated Industries*. Oxford.

----(1997), "Electricity Transmission Pricing: An International Comparison", Utilities Policy vol. 6, issue 3, pp: 177-184.

---(1996), 'Increasing Competition in the British Spot Market', Journal of Industrial Economics vol. XLIV pp: 205–216.

----(1994), 'Britains Unregulated Electricity Pool', in Michael A. Einhorn (eds.) From Regulation to Competition: New Frontiers in Electricity Markets, Kluwer.

—(1992), 'Contracts and the Pool: Competition in the British Electricity Market', Mimeo, university of Cambridge. Paper presented at the seventh Annual Congress of the European Economic Association, Dublin, August.

----AND Newbery. D. M (1992), 'Competition in the British Electricity Spot Market', Journal of Political Economy 100, vol. 5, pp 929–53.

Green, W. H., (2000). Econometric Analysis. Fourth Edition. Prentice Hall.

Grenwald, B., & Stiglitz, J,E., (1986), 'Externalities in Economics with Imperfect Information and Incomplete Markets', Quarterly Journal of Economics, 101, 2 May: 229-64.

Griffiths, A & Wall, S., (2001). Applied Economics. Ninth Edition. Prentice Hall

Grijalva, S & Sauer, P.W (1999), 'Reactive Power Considerations in Linear ATC Computation', Proceedings of the 32nd Hawaii International Conference on System Sciences.

Gutierrez, R., (2003), 'Citing references for Stata's cluster-correlated robust variance estimate', available at http://www.stata.com/support/faqs/stat/robust_ref.html

Hale, D, R., Overbye, T, J., & Leckey, T., (2000), 'Competition Requires Transmission Capacity: The case of the U.S. Northeast', Regulation, vol. 23, no.2.

Hamilton, L. C., (2004), Statistics with Stata, version 8. Thomson Brooks / Cole.

Hamilton, J. D., (1994). Time Series Analysis. Princeton.

Hansen, C., (2000), 'Regulatory change and competition in the South African electricity supply industry', Development Southern Africa, vol. 17, no 3 pp 339 – 356. Harvey, A.,

—AND Scott, A., (1994), 'Seasonality in dynamic regression models', The Economic Journal, vol. 104, pp 1324 – 1345.

—AND Ruiz, E., & Shephard, N., (1994), 'Multivariate Stochastic Variance Models', Review of Economic Studies, vol. 61, pp 247 – 264.

—(1989), 'Forecasting Structural Time Series Models and the Kalman Filter. Cambridge: Cambridge University Press.

—AND Henry, S. G. B., Peters, S., & Wren-Lewis, S., (1986), 'Stochastic Trends in Dynamic Regression Models: An Application to The Employment-Output Equation', The Economic Journal, vol. 96, pp 975 – 885.

AND Durbin, J., (1986), 'The effects of seat belt legislation on British road casualties: A case study of structural time series modelling, J. Royal Statistical Society, Series B, Vol. 149, pp 187 – 227.

AND Todd, P. M. J., (1983), 'Forecasting economic time series with structural and Box-Jenkins models', Journal of Business and Economic Studies, vol. 1 pp 299 – 315.
 AND Franzini, L., (1983), 'Testing for deterministic trend and seasonal components in time series models', Biometrika, vol. 70, 3, pp. 673 – 82.

Harrigan, J., Mosley, P & Toye, J., (1991). Aid and Power: the World Bank and policybased lending. Routledge. London.

Harrison, P. J., & Stevens, C. F., (1976), 'Bayesian forecasting', Journal of the Royal Statistical Society series A, vol.38 pp 205 – 47.

Hay, D .A & Lui, G .S., (1996), 'When do firms go in for growth by acquisition?' Middlesex University Business School, Department of Economics, Discussion paper no. 24.

Heffner, G. C & Goldman, C, A, (2001), 'Demand Responsive Programs – An Emerging Resource for Competitive Electricity Markets?' Proceedings of the International Energy Program Evaluation Conference. Helm, D & Jenkinson, T., (1998), Competition in Regulated Industries. Oxford University Press.

Hendry, D. F & Doornik, J. A., (2001). *Empirical Econometric Modelling using PCGive, Volume 1*. Timberlake Consultants London.

Hendricks, K., Porter, R & Tan, G., (2000), 'Joint Biding in Federal Off Shore Oil and Gas Lease Auctions'. Available at http/faculty.Washington.edu/es2000pa/pdf/1763.pdf

Hern, P., (1999). 'Removing the government from European gas', Energy Policy, vol. 27, pp 3-8.

Heese, K., (2000), 'Foreign direct investment in South Africa (1994 – 9) – confronting globalisation', Development South Africa Vol. 17, No 3 pp 299 – 400.

Hjalamarsson. L & Veiderpass. A., (1992), 'Efficiency and ownership in Swedish Electricity Retail Distribution', Journal of Productivity Analysis, vol. 3, pp 7–23.

Hogan, W., (2002), 'Electricity Market Restructuring: Reforms of Reforms', Journal of Regulatory Economics, vol. 21, PP: 103–132.

—(2002), 'Financial Transmission Right Formulations' available from the John F. Kennedy School of Government. Harvard University. Cambridge, Massachusetts 02138, March 31.

----(2001), 'Electricity Market Restructuring: Reforms of Reforms', May 25, Available at Ksghome.harvard.edu/~whogan.cbg.ksg/.

—(March 13, 2001b), 'Designing Market Institutions for Electric Network Systems: Reforming the reforms in New Zealand and the US'.

—(2000a, March 17). 'Market Power in Theory and Practice. Comments on Paul Joskow and Jean Tirole: 'Transmission Rights and Market Power on Electricity Networks'
—(2000b), 'Flowgate rights and wrongs', Centre for Business and Government, John F. Kennedy School of Government. Harvard University. Cambridge, Massachusetts 02138.
—AND Harvey, S, M (2000), 'Nodal and Zonal congestion management and the exercise of market power', Available at ksghome.harvard.edu/ ~ .whogan.cbg.Ksg/zonal_Feb11.pdf
—AND Johnsen, T, A, Verma, S. K, Wolfram, C., (January 27, 2000): 'Zonal Pricing and Demand-side bidding in the Norwegian Electricity Market'. Power Conference, University of California, Berkeley.

—(1999), 'Getting The Prices Right in PJM: Analysis and summary: April 1998 through March 1999 The First Anniversary of Full Locational Pricing', Available at http://facultygsb.stanford.edu/wilson/archive/E542/classfiles/Hogan_PJM9903.pdf —(1999), 'Getting the prices right in PJM: Analysis and summary: April 1998 through March 1999. The first anniversary of full locational pricing', available at

Ksghome.harvard.edu/~whogan.cbg.ksg/

—(1999), 'Market-based transmission investments and competitive electricity markets', Centre for Business and Government, John F. Kennedy School of Government. Harvard University. Cambridge, Massachusetts 02138.

—(1998), 'Transmission Investment and competitive electricity markets', Centre for Business and Government, John F. Kennedy School of Government. Harvard University. Cambridge, Massachusetts. 02138,

-(1998), 'Getting the prices right in PJM: April South Western analysis and summary'.

—(1998), 'Getting the prices right in PJM: Analysis and summary: April – May', (June 3).
 —(1998), 'Reshaping the Electricity Industry', International Program on Privatisation and Regulatory Reform, Harvard Institute for International Development. July 15.

---(1998), 'Getting the prices right in PJM: Analysis and summary: April through September, October 11.

—(1997), 'A Market Power Model with Strategic Interaction on Electricity Networks', Energy Journal, vol. 18 no. 4 pp: 107–142.

—(1996), 'Governance structures for an independent system operators (ISO)', Centre for Business and Government, John F. Kennedy School of Government. Harvard University. Cambridge, Massachusetts. 02138, June.

—(1995), 'Poolco: What's the trick? Co-ordination for Competition, Transmission Pricing and Open Access in the Restructured Electricity Market.' Electric Generation Association Summer Membership Meeting Greenbrier, WV, July 18.

Hortacsu, A. & Puller .S. L., (2004), 'Testing Strategic Models of Firm Behaviour in Restructured Electricity markets: A Case Study of ERCOT', UCEI Working Paper No. 125.

Hudson, R., (1995), 'Analysis of Uniform and Discriminatory Price Auctions in Restructured Electricity Markets', July 18, available at http/www/ornl.gov/ORNL/BTC/Restruturing/pricing.pdf Huber, P. J., (1967), 'The behaviour of maximum likelihood estimates under nonstandard conditions', Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, CA: University of California Press, vol. 1 pp: 221 – 223.

Hunt, S., (2002). Making Competition work in electricity. John Wiley & Sons, Inc.
—AND Shuttleworth, G., (1996). Competition and choice in electricity. Wiley.
—(1995), 'Competition in the Electricity Market: the England and Wales Privatisation', National Economic Research Associates, Topics No 2, pp: 1–15.
—AND Shuttleworth, G., (1993). 'Electricity Transmission Pricing: The new approach', Utilities Policy, Volume 3, nos. 2, pp: 98-111.

Ijediogor, G., (2004a), 'Amobi of Ogidi: A sicon's centenary', The Guardian (Nigeria), Saturday June 26, 2004.

—(2004b), 'Celebrating the centenary of Igwe Amobi 1', The Guardian (Nigeria), Saturday July 17, 2004.

International Energy Agency, (2002), Security of supply in electricity markets, evidence and policy issues'.

--- (2000), 'A background note on Electricity trading arrangements. A review of the international experience'.

---(1999), 'Managing the Privatisation and restructuring of public utilities (water, gas and electricity), available at

http://www.ilo.org/public/english/dialogue/sector/tehmeet/tmpu99/tmpure5.htm —(1998), 'A background note on competitive power pools', IEA Secretariat, available at http://www.iea.org/about/files/regfobac.htm

International Labour Office, (1999), 'Sectoral Activities Programme. 'Managing the Privatisation and Restructuring of Public utilities (Water, Gas, Electricity)', available at http://www.ilo.org/public/English/dialogue/sector/tehmeet/tmpu99/tmpure5.htm

Independent Electricity Market Operator, (2000), 'An assessment of the adequacy and capability of the Ontario electricity system', available at www.iemo.com/imoweb/mkt_info/marketreports/18month-faa.pdf

Imparato, C. F., (1999), 'Self Management of ATC by the Marketplace', Proceedings of the 32nd Hawaii International Conference on System Sciences.

Izaguirre, A, K., (2000), 'Private participation in energy', A World Bank viewpoint note 208.

Jackard, M., (1994), 'Do Canadian electricity prices reflect costs?' Canadian Public Administration, vol. 37, no 1, pp: 167–170.

Jarrow, R & Van Deventer, D. (1999). The New Power Markets Corporate Strategies for Risk & Reward. Risk Books.

Jensen, M.C.,

(1998), 'Takeovers: their causes and consequences', Journal of Economic Perspectives, Vol.2 pp 21 – 48.

(1986), 'Agency costs of free cash flow, corporate finance and take overs', American Economic Review, Vol. 76 pp 323 – 329.

Johnston, M., (1998), 'What can be done about entrenched corruption?' in Annual World Bank Conference on Development Economics 1997, eds. Pleskoviac & Stiglitz, J. E., The World Bank, pp 69 – 90.

Jonsen, T., Verma, S., & Wolfram, C., (1999), 'Zonal pricing and demand-side bidding in the Norwegian electricity market', Mimeo. Available at the Department of Economics, Harvard University.

Joskow, P.,

—AND Tirole, J., (2004a), 'Reliability and Competitive Electricity Markets', CSEM WP 129, Centre for the Study of Energy Markets, University of California Energy Institute. Available at <u>www.ucei.org</u>

—AND Tirole, J., (2004b), 'Retail Electricity Competition', CSEM WP 130, Centre for the Study of Energy Markets, university of California Energy Institute. Available at www.ucei.org.

—(June 7, 2001), 'California's Electricity Market Meltdown', June 7, MIT.

—AND Tirole, J., (2001), 'Transmission Rights and Market Power on Electric Power Networks', Rand Journal of Economics, vol. 31, no. 3 pp: 450-487.

—AND Khan, E., (2001), 'A Quantitative Analysis of Pricing Behaviour in California's Wholesale Electricity Market During the Summer 2000', WP 01-01, Joint Centre, AEI-Brookings Joint Centre for Regulatory Studies.

—(1997), 'Restructuring, Competition and Regulatory Reform in the U.S. Electricity Sector', Journal of Economic Perspectives, Vol. 11, No.3, pp 119-138.

—AND Schmalensee, R. (1983). Markets for Power: An Analysis of Electric Utility Deregulation. MIT Press.

—AND Tirole, J., (1998), 'Transmission rights and market power on electric power networks. 1: Financial rights', available at econ-

www.mit.edu/faculty/download pdf.php?id = 565

—AND Tirole, J., (1998), 'Transmission rights and market power on electric power networks. 11: Physical rights, available at econ-

www.mit.edu/faculty/download_pdf.php?id = 566

—AND Rose, N, L., (1985), 'The effects of technological change, experience, and environmental regulation on the construction cost of coal-burning generating units', Rand Journal of Economics, Vol. 16, no. 1 pp 1 - 27.

---(1985), 'Vertical Integration and Long Term Contracts: The case of coal-burring electricgenerating plants', Journal of Law, Economics and Organisation, Vol. 1, Issue 1

Juris. A., (1998a), 'Market Development in the U.K Natural Gas Industry'

---(1998b), 'Development of Natural Gas and Pipeline Capacity Markets in the United States.'

---(1998c), 'Competition in the Natural Gas Industry: The emergency of spot, financial and pipeline capacity markets', Note No. 137, Public Policy for the Private Sector, The World Bank. Group.

Kagami, M & Tsuji, M, (2000), Privatisation, Deregulation and Economic Efficiency. A comparative Analysis of Asia, Europe and the America. Edward Elgar.

Kamat, R & Oren, S, S., (2000), 'Exotic options for interruptible electricity supply contracts. PWP-071. University of California Energy Institute.

Kaiser, M. J., (2000), 'Pareto-optimal electricity tariff rates in the Republic of Armenia', Energy Economics, vol.22 pp: 463-495. Kalman, R. E., (1960), 'A new approach to linear filtering and prediction problems', Journal of Basic Engineering, March, pp: 35 - 45.

Kamshad. K. M., (1992). 'Firm Growth and Survival: Does Ownership structure matter? Working Paper Series no.138, Centre for Business Strategy, London Business School.

Kanshad K. M., (1992), 'Firm growth and survival: Does ownership structure matter?' Working Paper series No. 138, Centre for business strategy, London Business School. Karekezi, S., (2002), 'Poverty and energy in Africa—A brief review', Energy Policy, vol. 30 pp 915 – 919.

Kaserman, D & Mayo. J., (1991), 'The measurement of vertical economies at the efficient structure of the electric utility industry', Journal of Industrial Economics, vol. 39, no. 5, pp 483 - 502.

Kayo, D., (2002), 'Power sector reforms in Zimbabwe: will reforms increase electrification and strengthen local participation?', Energy Policy, vol. 30, pp 959 – 965.

Kennedy, D. (1999), 'The Evolution of Electricity Generating Prices', Occasional Paper 6. www.ebrd.com/pubs/econ/workingp/41.pdf

Keswell-Burns, J., (1998), 'Restructuring the electricity distribution sector: implications for local government' Development Southern Africa. Vol. 15 No 3 pp 345 – 360.

Keyhani, A., Cruz JR. & Simaan, M, A., (1999), 'Market Monitoring and Leader Follower Incentive Control of Ancillary Services', Proceedings of the 32nd Hawaii International Conference on System Sciences.

Khalema-Redeby, L., Mariam, H., Mbewe, A., & Ramasedi, B., (1998). *Planning & Management in the African Power Sector*. Zed Books Ltd, London in association with African Energy Policy Research Network (AFREPREN).

Khan, E. P., (1998), 'Price Forecasting: Hidden Risks in Single-Part Bidding', Public Utilities Fortnightly, October 15, pp 34–39.

---AND Gilbert, R. J., (1996) (eds.) International Comparisons of electricity Regulation. Cambridge. Khan, A., Crampton, P., Porter, R & Tabors, R., (2001), 'Pricing in the California Power Exchange Electricity Market: should California switch from uniform pricing to pay as bid pricing?', Blue Ribbon Panel Report commissioned by the California Power Exchange, January 23 2001, and Electricity Journal, July 14, 2001, no.6.

King, R, G., Plosser, C. L., Stock, J. H., & Watson, M. W., (1991), 'Stochastic Trends and Economic Fluctuations', the American Economic Review, vol. 81, pp 819 – 840.

Killick, T., (1989), 'A Reaction too Far. Economic Theory and the Role of the State in developing Countries', ODI Development Policy Studies; Overseas Development Institute.

Klein .B, Crawford .R 7 Alchian .A., (1978), 'Vertical integration, appropriable rents, and the competitive contracting process', Journal of Law and Economics, Vol. 21, Issue 2.

Kleindorfer, P. R, Wu, D. J & Fernando, C, S, (2000), 'Strategic gaming in electricity power market', European Journal of Operational Research, vol. 130, pp 156–168.

Klemperer, P., (2001) 'What really matters in auction design?', available at http://www.Nuff.ox.ac.uk/users/klemperer/wrm6.pdf

---(April 2000), 'Applying auction theory to economics', available at

www.nuff.ox.ac.uk/economics/people/klemperer.htm

-(July 2000) 'Why Every Economist Should Learn Some Auction Theory', available at http://www.telecomvisions.com/articles/pdf/klemperer3.pdf

—AND Bulow, J., (1986), 'Auctions versus negotiations', American Economic Review, vol. 86, no 1 pp 180 – 194.

—AND Bulow, J., & Huang, M., (1998), 'Toeholds and take-overs', Journal of Political Economy, vol. 107, no. 3 pp: 427-454.

—(July 1999), 'Auction Theory: A guide to the literature', Journal of Economic Surveys, vol. 13, no.3, pp: 227-286.

----(September 1998), 'Auctions with almost common values: The "Wallet Game" and its applications', European Economic Review vol. 42, pp: 3-5.

---(1995), 'Competition when consumers have switching costs: An overview with applications to industrial organisation, macroeconomics, and international trade', Review of Economic Studies, vol. 62, pp: 515-53.

Knittel, C, R., (1999), 'Does incentive regulation provide the correct incentives: Stochastic Frontier Evidence from the US Electricity Industry', PWP-068, University of California Energy Institute.

Konig. H., (1986), 'Comments 'The pricing of bonds and bank loans in international markets: An empirical analysis of developing countries foreign borrowing by Sebastian Edwards', European Economic Review, vol. 30, pp: 595–597.

Koopman, S. J., Harvey, A. C., Doornik, J. A & Shephard, .N., (2000). *STAMP Structural Time Series Analyser, Modeller and Predictor*. Timberlake Consultants Ltd. London. Kora, V., (1997). An Introductory Guide to EC Competition Law and Practice. Sixth Edition, Hart.

Krumm, K., (1985), 'Exchange Auctions: A Review of Experiences', C.P.D. Discussion paper, No. 1985 – 22, The World Bank.

Kroszner, S, R & Strahan, P, E., (1998), 'What drives deregulation? Economics and Politics of the relaxation of bank branching restrictions', Working paper 6637, NBER.

Kwoka, J. E. JR. (2002). 'The Comparative Advantage of Public Ownership: Evidence from Electric Utilities', Available at

www.fundacion.uc3m.es/earie2002/papers/paper_237_20020325.pdf

----(1997). 'Transforming Power. Lessons from British Electricity Restructuring, Available at http://www.cato.org/pubs/regualtion/reg20n3e.html

Larsen R. E.,

—AND Cavaleri, C., Dyner, I., (2005), 'Selling Chaos and getting gold', Working Paper,
Faculty of Management, CASS Business School, 106, Bunnhill Row, London. EC 1Y 8TZ.
—Dyner, I., Bedoya, L., and Franco, C.J (2004), 'Lessons From Deregulation in Colombia:
Successes, Failures and The Way Ahead', Energy Policy vol. 32, pp. 1767 - 1780.
—AND Bunn, D. W., (1999), 'Deregulation in electricity: Understanding strategic and
regulatory risk', Journal of Operational research Society, vol. 50 pp: 337-344.
—AND Lomi, A., (1999), 'Learning without experience: Strategic Implications of
Deregulation and Competition in the Electricity Industry.' European Management Journal, vol. 17, no. 2, pp 151–163.

—AND Gary, S., (1998), 'Understanding Strategic Decisions in De-Regulated Market: Accelerate Learning through Simulation', System Dynamics Group, WP-0022, London Business School, Susses Place Regent's Park, London. NW1 4SA, UK.

Lam, P., (1999), 'Regulatory effects on electricity prices in Hong Kong'. Energy Economics, vol. 21, pp 529 – 545.

L.de Luca (eds.), (1998), 'Labour and social dimensions of privatisation and restructuring (public utilities: water, gas and electricity)', ILO, Geneva, Available at http://www.ilo.org/public/English/dialogue/sector/techmeet/tmpu99/tmpure5.ht Le Grand, Propper, J, Robinson, C and Ray., (1992). The Economics of Social Problem. Macmillan Press Limited.

Lee J, Park .S & Kim, T., (1999), 'Profit, productivity, and price differential: an international performance comparison of the natural gas transportation industry', Energy Policy, vol. 27, pp: 679-689.

Lienhardt, G., (1962), *Divinity and Experience*. *The Religion of the Dinka*. Oxford University Press.

Lillard .L .A & Acton, J. P., (1981), 'Seasonal electricity demand and Pricing analysis with a variable response model', Bell Journal of Economics, vol 12. Issue 1 pp 71-92.

Lind, D. A, Marchal, W. G, & Mason, R. D., (2002), Statistical techniques in Business and Economics. Eleventh Edition, Mcgraw-Hill Irwin.

Littlechild. S., (2001), 'Reflections on Energy Regulation', Lecture delivered to M.Sc. in Regulation and Competition programme, Department of Economics, City University London.

— (1998), 'The Generation and Supply of Electricity: the British Experience', in Helm D & Jenkinson, T (eds.) Competition in Regulated Industries. Oxford.

—(1994), 'Transition to Competition in Electricity' in Dieter Helm (eds.) British Energy Policy, Oxera press.

Lillis, K., (1997), 'Electricity Reform Abroad and U.S investment. RPI-X: Price Caps Versus Rate-of Return Regulation', available at http://www.eia.doe.gov/emeu/pgem/electric/ch213.html London Economics, (July 1999), 'Simulation of the new trading arrangements. Draft Handbook for players. Produced on behalf of the Neta.

----(October 1999), 'Role-Playing simulations of the new electricity trading arrangements – A Report to the RETA Programme.

Lovei, L., (1998), 'Electricity Reform in Ukraine The impact of weak governance and budget crises', A World Bank viewpoint note no. 168.

---AND McKechnie, A., (2000) 'The Costs of Corruption for the Poor – The energy Sector', World Bank Public Policy for the Private Sector Note No. 207.

Luckey, J., (2001), 'Euro Hydro Development Dries Up', Energy Markets. Vol. 6, no.8.

Macatangay, R, E, A., (1998), 'Space-time prices in wholesale electricity in England and Wales', Utilities Policy vol. 7 pp: 163-188.

Maclaine (2001), 'A jittery start but the message is clear', Power UK April, vol. 86, pp: 2.

Makenete, A., Ortmann, G & Darroch, M., (1998), 'Food-aid dependency in Lesotho: issues and policy implications', Development Southern Africa, vol 15, No 2, pp251 – 266.

Makridakis, S., Wheelwright, S. C., & Hyndman, R. J., (1998). Forecasting Methods and Applications. John Wiley and Sons. Inc.

Mangwengwende, S. E., (2002), Tarriffs and subsidies in Zimbabwe's reforming electricity industry: steering a utility through turbulent times', Energy Policy, vol. 30, pp 947 – 958.

Mankiw, N. G & Whinston, M. D., (1986), 'Free entry and social inefficiency', Rand Journal of Economics, Vol. 17, No 1, pp 48 – 58.

Maravall, A., (1985), 'On Structural Time Series Models and the Characterisation of Components', Journal of Business and Economic Statistics', October 1985, vol.3: 4 pp 350 – 355.

Martin, S., (1993). Industrial Economics Economic Analysis and Public Policy. Second edition. Prentice Hall.

Marandu, E. E., (2002), 'The prospects for local private investment in Tanzania's rural electrification', Energy Policy, vol. 30 pp 977 – 985.

Masawi (1999), 'Southern Africa Power Pool: The role of SAPP in the development, integration, financing and privatisation of power in Southern Africa'. Presented at the World Bank Energy Week April 6 – 8.

Mauro, P., (1995), 'Corruption and Growth', Quarterly Journal of Economics, vol. 110, no. 3 pp: 681-712.

Mayer, C & Alexander, I., (1997), 'Incentives on private infrastructure companies', a World Bank Discussion Paper no. wps1736.

McDaniel, T., (2000), 'Deregulation of the UK Electricity Supply Industry: 1989 – 98', in Kagami. M & Tsuji. M., (eds.), Privatisation, Deregulation and economic Efficiency A Comparative Analysis of Asia, Europe and the Americas. Edward Elgar.

McKinsey Quarterly: http://mckinseyquarterly.com

-Kalkman, J, B., & Peters, M., (2002), 'Branding electrons' nos. 1.

-Birch, D, J., & Burnett-Kant, E., (2002), 'Unbundling the unbundled' in no. 4.

-Birnbaum .L, Aguila. J., Dominguez, O & Lekander. P, (2002), 'Why electricity markets do haywire', no. 1.

—Birnbaum, .L, Grobbel.C, Ninios.P, Rothel.T & Volpin.A, (2000), 'A Shoppers guide to electricity assets in Europe'.

---Heller, W., Jansen, P & Silverman L. (1996), 'The New electricity industry: What's at stake?'.

McMillan, J., (1991), 'Dango: Japan's price fixing conspiracies', Economics and Politics Journal, vol. 3, pp: 201-18.

Megginson. W. L., (1997), Corporate Finance Theory. Addison-Wesley.

Meliopoulos, A.P.S & Cokkinides, G. J, (1999), 'Issues for Reactive Power and Voltage Control Pricing in a Deregulated Environment', Proceedings of the 32nd Hawaii International Conference on System Sciences. Michaels .R .J., (2000), 'A realistic look at the performance of Independent System Operators. Can Non-profit Transmission Be Independent?', Regulation 61. vol. 23, no. 3. —AND Ellig J., (1999), 'Electricity: Price Spike by design?', Regulation 20. vol. 22, no. 2.

Mount, T., (1999), 'Market Power and Price Volatility in Restructured Markets for Electricity', Proceedings of the 32nd Hawaii International Conference on System Sciences.

Moorhouse, .J .C., (1995), 'Competitive markets for electricity', CATO Journal, vol. 14, no.3.

Mork .E., (2001), 'Emergence of financial markets for electricity: a European perspective', Energy Policy, vol. 29, pp: 7-15.

Moron, J. A., (1986), 'Seasonal Fluctuations and the Life Cycle-Permanent Income Model of Consumption. Journal of political economy, vol. 94:60, pp1258 – 1279.

Muellbauer, J., (1983), 'Surprises in the Consumption Function', Economic Journal, vol. 93, pp 34 – 50.

Murillo-Sanchez, C. E., Ede, S M., Mount, T.D., Thomas, R.J & Zimmerman, R.D., (date), 'An Engineering Approach to Monitoring Market Power in Restructured Markets for Electricity.' Connell University and PSERC. Available at Hidraulica.unalmed.edu.co/seminaries/sem_energia/regulacion/ponencias(2)%20Engineering%20.pdf

Murray, R & Hudson, A., (2001), 'Regulation of Energy Utilities in Europe: Spotlight on UK Developments', World Power, available at www.klegal.com

National Grid Transco, (2000a). National grid Seven Year statement, For years 2000 / 01 to 2006/07.

---(19 December 2000b). 'The National Grid Company Plc: Statement of Use of System Charges, April 2001 to 31 March 2002, Based upon: Statement of the Use of system Charging Methodology Version 1 Revision 0, Consultation Draft 3.0.

---(2002a), Transco; Transportation Ten Year statement.

—(undated, b) The Network Code Summary, Transco's Guide to Using Its Gas Transportation System. Navarro, P., (1996), 'Electric Utilities: The Argument for Radical Deregulation', Harvard Business Review, January–February, pp: 112–125.

NEPAD

---(October, 2001) The New Partnership for Africa's Development. Available at http://www.avmedia.at/cgi-

script/csNews/news_upload/NEPAD_2dCORE_2dDOCUMENTS_2edb.NEPAD%20FRAM EWORK%20DOCUMENT%20ENGL.pdf

---(undated) 'A Summary of NEPAD action plans.' Available at http://www.avmedia.at/cgiscript/csNews/news_upload/NEPAD_2dCORE_2dDOCUMENTS_2edb.ASSummaryofNEP ADActionPlans.pdf

Newbury, C, W., (1962), The Western Slave Coast and Its Rulers. European Trade and Administration among the Yoruba and Adja-speaking Peoples of South-Western Nigeria, Southern Dahomey, and Togo. Oxford University Press.

Newberry, D. M., (2003), 'The effect of Neta on wholesale electricity prices' available at http://www.econ.cam.ac.uk/dae/people/newbery/files.Netaefect2.pdf

—(July 5, 2002), 'England's experience with Neta', International Experience with Energy Liberalisation: Lessons for Europe, Oviedo, Spain.

-(2000). Privatisation, Restructuring and Regulation of Network utilities. MIT Press.

—AND Green, R., (1996), 'Regulation, Public Ownership and Privatisation of the English Electricity Industry', International Comparisons of Electricity Regulation, edited by Gilbert and Khan, Cambridge University Press.

---(1995a), 'Power Markets and Market Power', The Energy Journal, vol. 16, no. 3, pp: 39-66.

---- 'Freer Electricity Markets in the UK: A progress Report', Utility Policy 26, no. 10, pp: 743–749.

----(1995b), 'A Template for Power Reform', World Bank, Public Policy for the Private Sector, Note No. 154.

—AND Pollitt, M, G., (1997), 'The Restructuring and Privatisation of the U.K. Electricity Supply – Was It Worth it?' A World Bank viewpoint note no. 124. Ngwane, A., Yadavalli, V & Steffens, F., (2001), 'Poverty in South Africa – a Statistical analysis', Development Southern Africa. Vol.18, No 2 pp 201 – 215.

Nicolaisen, .J., Petrov, .V & Tesfatsion, .L., (2000), 'Market Power and Efficiency in a Computational Electricity Market with Discriminatory Double-Auction Pricing', ISU Economic Report no.52.

O'Leary, .D. T., Charpentier, .J & Minogue, .D., (1998), 'Promoting Regional Power Trade—The Southern African Power Pool', A World Bank Public Sector Policy for the Private Sector Note No. 154.

Omalu, K, M (1999). NAFTA and the Energy Charter Treaty. Kluwer.

Onwuka Dike, K., (1962), Trade and Politics in the Niger Delta: An Introduction to the Economic and Political History of Nigeria. Oxford University Press.

Overbye, T. J., Weber, D. J & Pattern, K. J, (1999), 'Analysis and Visualization of Market Power in Electric Power Systems', Proceedings of the 32nd Hawaii International Conference on System Sciences.

Oxera (1999). Guide to the Economic Regulation of the Electricity industry. The Oxera Press.

Parker, .E & Raffiee K., (1994), 'An examination of the effect of ownership on the relative efficiency of public and private water utilities', Land Economics, vol. 70, pp: 197–209.

Parkin, M., Powell, M & Mathews, K., (2003). Economics. Addison-Wesley, Fifth edition.

Parliamentary Office of Science and Technology (2003), 'Post note: Security of Electricity supplies', September, No. 203, pp 1-4.

Percebois, J., (1999), 'The gas deregulation process in Europe: economic and political approach', Energy Policy, vol. 27, pp: 9-15.

Petroleum Economist (July 2001), 'The changing commercial framework of European natural gas trade'.

Phlips, .L., (1995). Competition Policy: A Game-Theoretic Perspective. Cambridge University Press.

Pinto, .B & Wijnbergen, .S .V., (1995), 'Ownership and corporate control in Poland: Why state firms defied the odds', CEPR discussion paper no. 1273.

Pipattanasomporn, .M., Ongsakul, .W., Pacudan, .R & Lefevre, .T., (2000), 'Electricity prices in a competitive market: a preliminary analysis of the deregulated Thai electricity industry', Utilities Policy, pp: 171–169.

Pineau, P., (2002), 'Electricity sector reform in Cameroon: is privatisation the solution?', Energy Policy, vol. 30, pp 999 – 1012.

Pirrong, C., (1999). 'Electronic exchanges are inevitable and beneficial' Cato Regulation Securities.

Plane, P., (1997), 'Privatisation and economic growth: an empirical investigation from a sample of developing market economies', Applied Economics, vol. 29, pp 161 – 178. – (1992), 'Productive efficiency of public enterprises; a macroeconomic analysis based on cross-section estimation of a neo-classical production function', Applied Economics, vol. 24, pp 833 – 44.

Pollitt, M. G., (1995). Ownership and Performance in Electric Utilities. Oxford University Press.

Porter, R. H & Zona, J. D., (1993), 'Detection of Bid Rigging in procurement auctions,' Journal of Political Economy, vol. 101, pp: 518–38.

Powell, A., (1993), 'Trading Forward in an Imperfect Market: The Case of Electricity in Britain', Economic Journal, vol. 103, pp: 444-453.

—AND Helm, D., (1992), 'Pool prices, Contracts and Regulation in the British Electricity Supply Industry, 'Fiscal Studies, 13(1), February, pp 89-105.

Puller, .S. L., (2000), 'Pricing and firm conduct in California's deregulated electricity market.' PWP-080, University of California Energy Institute.

Pritchard R & Udovenya .P., (2001), 'Eight Principles of Electricity Industry Reform', CEPMLP Internet Journal. Available at www.cepmlp.org

Raffiee, .K., Narayanan, .R., Harris, .T .R., Lambert, .D & Collins, .J .M., (1993), 'Cost Analysis of Water Utilities: A Goodness-of-Fit Approach', Atlantic Economic Journal, vol. 21, no. 3, pp: 18-29.

Radetzki, .M., (1999a), 'Gas in Europe—the thrust for change', Energy Policy, vol. 27. —(1999b), 'European natural gas: market forces will bring about competition in any case', Energy Policy, vol. 27, pp: 17-24.

Rassenti, J. S., Smith, V. L & Wilson, B. J., (2003), 'Discriminatory Price Auctions in Electricity Markets: Low Volatility at the Expense of High Price Levels', Journal of Regulatory Economics, vol. 23, no. 2, pp: 109–123.

Renou-Maissant, .P., (1999), 'Interfuel competition in the industrial sector of seven OECD countries', Energy Policy, vol. 27, pp: 99-110.

Reynolds, S. S., (1985), 'Capacity, output and sequential entry: comment', The American Economic Review, Vol. 75, No. 4 pp 894 – 896.

Riddell, R., (1999), 'The end of foreign aid to Africa? Concerns about donor policies', African Affairs, vol. 98:392, pp 309 – 335.

Rochino, .D., (2001), 'Analysis of Structural and Regulatory Reform in the Electricity Industry: An Application to Uruguay', A postgraduate research project. Department of Economics, City University. Northampton Square London. EC1V 0HB. Rose, K & Macdonald, J. F., (1991), 'Economics of Electricity self-generation by industrial firms', Energy Journal, vol. 12 pp: 47-66.

Rossi.J, (2001), 'Automated Control', Energy Markets, vol. 6, no. 8, pp 78.

Rodney, .W., (1983) How Europe Underdeveloped Africa, Bogle L'Ouverture, London.

Rodriguez, F & Rodrik, D., (2001), 'Trade Policy and Economic Growth: A Skeptic's Guide to the Cross-National Evidence', in Ben Bernanke and Kenneth S. Rogofs (eds), Macroeconomics Annual 2000. Cambridge, MA: MIT Press for NBER) Roggers, W. H., (1993), 'Regression standard errors in clustered samples', Stata Technical Bulletin no. 13 pp: 19–23.

Rose-Ackerman, S., (1999). Corruption and Government Causes, Consequences, and Reform. Cambridge University Press.

—(1996), 'The Political Economy of Corruption—Causes and Consequences', World Bank Public Policy for the Private Sector Note No. 74.

-(1978). Corruption: A Study in Political Economy. Academic Press, New York. NY.

Roy, S., (1990), 'Structural adjustment programmes, the economy and the rural sector', African Quarterly, Vol. 30, No 1-2.

Rudkevich, A., Duckworth, M & Rosen, R., (1997), 'Modelling Electricity Pricing in a Deregulated Generation Industry: The Potential for Oligopoly Pricing in a Poolco', Tellus Institute.

Salvanes, .K .G & Tjotta, .S., (1993), 'Productivity differences in multiple output industries: An empirical application to the electricity distribution', Department of Economics. University of Bergen, Norway. Working Paper no. 0293.

Scheinkman, J.,

—AND Brock., (1985), 'Price Setting Supergames with Capacity Constraints', Review of Economic Studies, L11, pp: 371-382.

—AND Kreps .D., (1983), 'Quantity Precommitment and Bertrand Competition Yield Cournot Outcomes', Bell Journal of Economics, vol. 14, pp 326–337.

Scherer, F. M & Ross, D., (1990). *Industrial Market Structure and Economic Performance*. Third Edition. Houghton Mifflin Company Boston.

Schuler .R .E., (1999), 'Analytic and Experimentally Derived Estimates of Market Power in Deregulated Electricity Systems: Policy Implications for the Management and Institutional Evolution of the Industry', Proceedings of the 32nd Hawaii International Conference on System Sciences. Schumalensee, R., (1979): The control of Natural Monopolies, D. C. Health and Co, Lexington.

---(1982), 'Another look at market power', Harvard Law Review, vol. 95, pp 1789 - 816.

Schweppe, .F. C., Caramanis, .M. C., Tabors, .R. D & Bohn, R. E., (1988). Spot Pricing of Electricity. Kluwer.

Sheble, G, B., (date), Computational Auction Mechanisms for restructured electricity power industry. Kluwer.

Shephard, G., (1995), The Economics of Industrial Organisation Theory and application. MIT Press.

Shepherd, W., (1984), 'Contestability vrs. competition' American Economic Review, vol. 74, pp 572 – 87.

Shleifer, A., (1998), 'State Versus Private Ownership', NBER Working Paper No. 6665. —AND La Porta, R., Lopez-de-Silanes, (1998), 'Corporate ownership around the world', NBER Working paper no. 6625.

---(1985), 'A theory of yardstick competition', Rand Journal of Economics, vol. 16, No. 3 pp: 319 – 327.

---AND Vishny, R., (1993). 'Corruption', Quarterly Journal of Economics, no. 108, vol.3 pp 599 - 617.

Shirley, M., Tusubira, F, T., Gebreab, F., & Haggarty, L., (2002), 'Telecommunications Reform in Uganda', World Bank policy research working paper no. 2864.

Shy, .O., (2001). The economics of network industries. Cambridge University Press.

Sloman, J., (2000). Economics. Fourth Edition. Pearson Education

Smith A., (1776). Wealth of Nations

—(1994). An Inquiry into The Nature and Causes of the Wealth of Nations, 2 volumes. Modern Library.

---(2000). The Theory of Moral Sentiments. Prometheus Books.

Southern Africa Power Pool (1999), Annual Review Report April 1997 - March 1999).

Spalding-Fecher, R & David Khorommbi, M., (2003), 'Electricity and externalities in South Africa', Energy Policy, no. 31, Issue 8, pp 721 – 735.

Spence. A. M., (1981), 'The Learning curve and competition', The Bell Journal of Economics, Vol. 12, pp 49 – 70.

Spulber, D. F., (1985), 'Capacity, Output and sequential entry: reply', The American Economic Review, vol. 75, No 4 pp 898.

—AND Sidak, J. G., (1998). Deregulatory Takings and the Regulatory Contract. Cambridge University Press.

Stage, J & Fleermuys, F., (2001), 'Energy use in the Namibian Economy from 1995 to 1998', Development Southern Africa Vol.18 No.4: 423 – 441.

Staropoli, C., Finon, D., Glachant, J., Jullien, C., Quatrain, R., Robin, S., & Ruffieux, B (undated), 'Modifying industry structure or market institution? An experimental analysis of the Reform of the English Electricity Pool' Available at

Stewart, F., (1985), 'The fragile foundations of the neo-classical approach to development', Journal of Development Studies, Vol. 21 (2).

—(1979), 'Plant size, plant factor, and the shape of the average cost function in electric power generation: a nonhomogenous capital approach', Bell Journal of Economics, vol. 10 pp: 549-65.

Stiglitz, J., (2002) Globalisation and its Discontents. Allen Lane. The Penguin Press. —AND Yusuf, S., (eds.) (2001). Rethinking The East Asian Miracle. World Bank & Oxford University Press.

—(2001), 'From Miracle to Crisis to Recovery: Lessons from Four Decades of East Asian Experience', in J.E. Stiglitz and S. Yusuf (eds.), Rethinking the East Asian Miracle. Washington, DC & New York: World Bank and Oxford University Press. 509 – 26.

—(2001), 'Quis Custodiet Ipsos Custodes? (who is to Guard the Guards Themselves?)' in J.E. Stiglitz and Pierre-Alan Muet (eds.), Governance, Equality and Global Markets: *The Annual Bank Conference on Development Economics Europe*, (Washington DC) —AND Eaton, Gersovitz (1986), 'The Pure Theory of Country Risk', European Economic Review.

—AND Miller, M., (1999), Bankruptcy Protection against Macroeconomic Shocks: The case for a "Super Chapter 11", World Bank Conference on Capital Flows, Financial Crisis and Policies'.

—(1998), 'Towards a New Paradigm for Development: Strategies, Polices and Processes', 9th Raul Prebisch Lecture delivered at the Palais des Nations Geneva, UNCTAD

Stigler J.S & Friedland C., (1962), 'what can regulators regulate? The case of electricity', Journal of Law and Economics, vol. V, pp: 1-16.

Stoft, S., (2002). Power system Economics Designing Markets for Electricity. Wiley. —(2000), 'Soft price caps and underscheduling penalties: How would the FERC plan affect California Electricity Markets?' PWP-079, University of California Energy Institute —(2000), 'PJM's capacity market in a price-spike world', PWP-077, University of California Energy Institute.

Stren R.E, (1991), 'Helping African Cities', Public Administration in Development, vol. 113, pp: 275 –279.

Suliman, O., & Ghebreysus, G., (2001), 'Determinants of privatisation in selected Sub-Saharan African Countries: Is privatisation politically induced?', Journal of Economic Development, vol. 26:2 pp 33 – 43.

Sunderland K., (eds.). (1998). Wealth of Nations. Oxford.

Sweeney, J. L., (2002), The California Electricity Crisis. Hoover Institution Press, Stanford Institute for Economic Policy Research.

Tabors Caramains & Assocaites (TCA), (undated), 'Transmission pricing in PJM: Allowing the economics of the market to work.' Working paper: 0299-0216

---(date), 'Auctionable capacity rights and market-based pricing.' Working paper: 101-0499-224

---(1999), 'Institutional alternatives for transmission system operations: ISOs, ISAs and ITCs'.

---(date), 'Transmission Markets. Stretching the rules for fun and profit.' Working paper: 327-0400

Taylor.J & VanDoren. P., (2001), 'California's Electricity Crisis. What's Going On, Who's to Blame, and What to Do', Policy Analysis No 406, CATO.

Teferra, M., (2002), 'Power sector reforms in Ethiopia: Options for promoting local investments in rural electrification', Energy Policy, vol. 30, pp 967 – 975. —AND Karekezi, S., (eds.) (2002). *Capacity Building for a reforming African power sector*. Zed Books Ltd, London in association with African Energy Policy Research Network (AFREPREN).

Tjonneland, E., (1998), 'Aid, development and politics in Southern Africa: a critical look at new conditionalities in official development assistance', Development Southern Africa, vol. 15, no 2 pp 185 – 200.

Tinoro, R., (1992), 'Strategic Price-Quantity Choice in Multi-Unit Auctions', Mimeo. College of Business Administration. University of Notre Dame.

Tirole, J., (1997). The Theory of industrial Organisation. MIT Press
—AND Laffont, J., (1993). A Theory of Incentives in Procurement and Regulation. MIT
—AND Fudenbery .D., (1983), 'Learning by Doing and Market Performance', Bell Journal of Economics, Vol. 14 (autumn 1983), pp. 388-401

Todaro, M., P., (2000). Economic Development. Seventh Edition. Addison-Wesley

Turkson, J., & Wohlgemuth, N., (2001), 'Power sector reform and distributed generation in sub-Saharan Africa, Energy Policy, vol. 29 pp 135 – 145.

Valletti, T, M., (undated), 'The practice of access pricing: Telecommunications in the United Kingdom', (source).

VanDoren, P. M., (1998), 'The Deregulation of the Electricity Industry. A Primer.'

Varian, H., (1995), 'Economic mechanism design for computerised agents', Usenix Workshop on Electronic Commerce.' New York, July 11 – 12. ---(1985), 'Price discrimination and social welfare', The American Economic Review, Vol. 75 No. 4, pp. 870 – 875.

Van Wijnbergen, S & Pinto, B., (1995), 'Ownership and Corporate Control in Poland: why State Firms Defied the Odds', CEPR Discussion Paper No. 1273.

Veall, M. R., (1986), 'On estimating the effects of peak demand pricing', Journal of Applied Econometrics, vol. 1:1, pp 81 – 93.

Viscusi, W., Vernon, J, M & Harrington Jr., J. E., (1995). Economics of Regulation and Antitrust. The MIT Press.

Von der Fehr & Harbord., (1993), 'Spot market competition in the U.K Electricity Industry', Economic Journal, vol. 103, pp: 531-545.

---(1998). 'Competition in Electricity Spot Markets. Economic Theory and International Experience', Department of Economics, University of Oslo, P. O. Box 1095 Blindern N-0317 Oslo; Norway.

Vernon, L. S, 'Regulatory Reform in the Electric Power Industry', Regulation Journal.

Wallace, C, P, (2003). Power of the Market: Consumers in the Nordic region are furious over soaring electricity prices—and they blame deregulation. Time Magazine Vol. March 3, pages 46 to 47.

Wallsten, S, J., (1999), 'An empirical analysis of competition, privatisation and regulation in Africa and Latin America' (source).

Wamukonya, N., (2003), 'Power sector reform in developing countries: mismatched agendas', Energy Policy, vol. 31, pp 1273 – 1289.

Weiss, J., (undated), 'Market Power Issues in the Restructuring of Electricity Industry: An Experimental Investigation', (source) Available at http://www.ksg.harvard.edu/hepg/jurgen2.htm

Whish, R., (1993). Competition Law. Third Edition, Butterworths.

White, H., (1994). Estimation, Inference and Specification Analysis. Econometric Society Monographs. Cambridge University Press.

Wilson, R., (2001), 'Architecture of Power Markets. Research Paper Series.' Graduate School of Business. Stanford University.

Weiner, M., Nohria, N., Hickman, A & Smith, H., (1997). 'Value Networks—The Future of the U.S. Electric Utility Industry', Sloan Management Review, summer, pp: 21–34.

White, H., (1980), 'A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity', Econometrica 48 pp: 817-830.

Whitley .R, Henderson. J, Czban, L & Lengyel, G., (1995). 'Ownership, Control and the Management of Labour in an Emergent Capitalist Economy: the Case of Hungary', Working Paper No. 304, Manchester Business School. Booth Street West. Manchester. M15 6PB.

Williams, R. L., (2000), 'A note on robust variance estimation for cluster-correlated data', Biometrics 56 pp: 645 – 646.

Wish, R., (1993), Competition Law. Third edition. Butterworths.

Woolf, F., (2002). 'Effective Regulatory Arrangements For Expanding Electricity Trans mission Capacity', Presentation at the Regulatory Initiative Seminar, London Business School, Sussex Place, June 26.

Wolak, F., (2003), 'Lessons form the California Electricity Crisis', CSEM W-P 110. University of California Energy Institute.

—AND Patrick (2001), 'The Impact of Market Rules and Market Structure on the Price Determination Process in the England and Wales Electricity Market', National Bureau of Economic Research Cambridge, MA, Working paper no. 8248.

—(1997), 'Market Design and Price Behaviour in Restructured Electricity Markets: An international Comparison', PWP-051, University of California Energy Institute.

Wolfram, C., (1999a) 'Measuring Duopoly power in the British Electricity spot market', The American Economic review, Vol. 89, pp: 805-826. ---(1999b), 'Electricity Markets: Should the Rest of the World Adopt the United Kingdom's Reforms?', Regulation, vol. 22, no. 4.

—(1998), 'Strategic Bidding in a Multi-unit Auction; An Empirical Analysis of Bids to Supply Electricity in England and Wales', Rand Journal of Economics, vol. 29, pp: 703-725.

World Bank., (April 11, 2003) Heavily Indebted Poor Countries (HIPC) Initiative – Statistical Update. Available at http://www.worldbank.org/hipc/statupdate_April03.pdf

Wilson, R., (2001) 'Architecture of Power Markets', Research Paper Series, Graduate School of Business, Stanford University.

Winkler, H., (2005), 'Renewable energy policy in South Africa: policy options for renewable electricity', Energy Policy, no. 33 pp 27 – 38.

Wooldridge, J. M., (2002), 'Econometric Analysis of Cross section and Panel Data. The MIT Press, Cambridge.

Yarrow, G., (1989), 'Privatisation and Economic Performance in Britain', Carnegie Rochester Conference Series on Public Policy 31, pp: 309 –344.

AND Vickers, J., (1998). PRIVATIZATION An Economic Analysis. The MIT Press
AND Vickers, J., (1991). 'Economic Perspectives on Privatisation', Journal of Economic Perspectives, Vol.5, no.2 pp: 111–32.

---AND Vickers, J. S (1991), 'The British Electricity Experiment', Economic Policy, April, pp. 187-232

Zafer, A., Hausen, J., Nick, A., Pfeffer, J & Verhaeghe, P., (1998), 'Managing capacity in basic material', Business Dynamics: Overcoming the limits of growth, Mckinsey Quarterly Anthologies, 55 East 52nd St, new York, NY 10022.

Zimmerman, R, D., Bernard, J, C., Thomas, R, J & Schulze, W., (1999), 'Energy Auctions and Market Power: An Experimental Examination.' Proceedings of the 32nd Hawaii International Conference on System Sciences.

Zhong, W., (2002), 'Impact of the Interconnector Trade on the UK Natural Gas Prices', an M.Sc. Economic Regulation and Competition research project submitted to the Department of Economics in City University London.

List of documents from OFFER and OFGEM

1	2002	'Neta at a Glace' (factsheet)
2	2002	Information and Incentives Project Regulatory Instructions and
		Guidance
3	Sept 17, 2002	Letter regarding an update on the BETTA project
4	July 2002	The Review of the first year of Neta. Volume 1
	48 / 02	
5	July 2002	The review of the first year of Neta. Volume 2
	48b / 02	
6	14/12/01	The Gas Supply Chain (Factsheet)
7	10/09/01	Transco's National Transmission System (NTS) System Operator
		Incentive Arrangements. (Factsheet)
8	Aug 2000a	Interim proposals for the reform of Scottish Trading Arrangements:
		British Electricity Trading and Transmission Agreements (BETTA)
9	Aug 2000b	Initial proposals for NGC's system operator incentive scheme under
		Neta. A consultation document and proposed licence
		modifications.
10	July 26,	Competition Commission Enquiry—Electricity generators.
	2000c	
11	July 2000d	The New gas Trading Arrangements. A review of the new
		arrangements and further developments of the regime. A review
		and decision document.
12	June 22,	Introduction of the market abuse condition into the licences of
	2000e	certain generators. Ofgem second submission to the competition
		commission.
13	May 2000f	Long term investment signals and incentives for investment in
		transmission capacity on Transco's National Transmission System.
		A consultation document.
14	May 4, 2000g	Introduction of the market abuse licence condition into the licences
		of certain generators. Ofgems initial submission to the competition
		commission.
15	May 2000h	Initial proposals and issues for consideration on the reform of the
		Scottish Trading Arrangements.
16	May 31,	Competition Act 1998: Application to the energy sectors. Formal
1	2000i	consultation draft documents

17	April 14,	The market abuse licence condition for generators. A decision
	2000j	document
18	April, 2000k	NGC Incentive schemes from April 2000. Transmission services,
		uplift and reactive power uplift schemes. A decision document
19	August 2001	Report to the DTI on the Review of the Initial Impact of NETA on
		smaller Generators
20	February	The New Gas Trading Arrangements: further development of the
	2000	regime. A decision document
21	February	NGC Incentive schemes from April 2000. Transmission services
	2000	uplift and reactive power uplift schemes. A decision document
22		The National Grid Company Plc. Proposed Modification of
		Transmission Licence Condition 7 (paragraphs 6 to 8) (Settlement
		System) Under Section 11 Electricity Act 1989
23	10/09/01	Transco's National Transmission System (NTS). System operator
		incentive arrangements. (factsheet)
24	December,	Treatment of Transmission Losses in the New Electricity Trading
	2000m	Arrangements Version 1.0
25	December,	NGC system operator price control and incentive schemes under
	2000n	NETA, final proposals
26	December	NGC System Operator Incentives, Transmission Access and Losses
	1999a	under Neta. A consultation document
27	October 1999	Role-playing simulations of the New Electricity Trading
		Arrangements. A report to the RETA programme by London
		Economics.
28	March 1999b	St Fergus and Bacton Investigation: A progress report
29	1999	'Review of Electricity Trading Arrangements'
30	March 1998a	Review of Electricity Trading Arrangements. A report on
		consultation on terms of reference
31	May 1998b	Review of Electricity Trading Arrangements. A possible common
		model for trading arrangements
32	February	Transmission Services Incentive Scheme Proposals
	1998	
33	November 1997	Review of Electricity Trading Arrangements. A consultation paper
34	1994	Report on Trading outside the pool
35	1994	Decision on a Monopolies and Mergers Commission Reference

36	1991	Report on Pool Price Inquiry December 1991
	-	

Table of MMC references / reports

- 1 AES and British Energy: A report on references made under section 12 of the Electricity Act 1989. CC: 453, 31/01/2001
- 2 Pacificorp and the Energy Group Plc: A report on the proposed acquisition. CM: 3816, 19/12/97.
- BG Plc: A report under the Gas act 1986 on the restrictions of prices for the gas transportation and storage services. ISBN 0115154361, 18/06/97.

Gas; a report on the matter of the existence or possible existence of a monopoly situation in relation to the supply in Great Britain of gas through pipes to persons other than tariff customers. (1998)

- 4 National Power Plc and southern Electric plc; A report on the proposed merger. CM: 3230, 25/04/96.
- 5 PowerGen and Midlands Electricity Plc; A report on the proposed merger. CM: 3231, 25/04/96.
- 6 The References (1993) available at: <u>http://www.competition-commission.org.uk/rep_pub/</u> <u>reports/1993/fulltext/335a.1.1.pdf</u>
- 7 Volume 1 of reports under the Fair Trading Act 1973 on the supply within Great Britain of gas through pipes to tariff and non-tariff customers, and the supply within Great Britain of the conveyance or storage of gas by public gas suppliers, available at <u>http://www.competition-</u> <u>commission.org.uk/rep_pub/reports/1993/fulltext/334c1.pdf</u>
- 8 Conclusions to the Fair Trading Act Reference', Available at http://www.competitioncommission.org.uk/rep_pub/reports/1993/fulltext/334c2.pdf

9	Gas and British Gas Plc: volume 2 of reports under the Gas and Fair
	Trading Acts. CM: 2316, 06/09/93.
10	Gas and British Gas Plc. Volume 3 of reports under the Gas and Fair Trading Acts. CM: 2315, 17/08/93.
11	British Gas Plc. Volume 1 of reports under the Gas Act 1986 on the conveyance and storage of Gas and fixing of tariffs for the supply of

gas by British Gas Plc. CM: 2315, 06/09/93.

Competition Commission

(February 17, 2000) Methodologies for establishing national and cross-boarder systems of pricing and access to the gas system in Europe.

European Commission

(May 2000) Discussion papers: Prepared for the 2nd meeting of the European Gas regulatory Forum. 11-12 May 2000 in Madrid.

Table of Cases

- 1 United Brands Co. and United Brands Continental BV v. Commission. Case 27/76, [1978] ECR 207.
- 2 Hoffman-LaRoche and Co. AG v. Commission. Case 85/76, [1979] ECR 461.
- NV Nederlandsche Banden-Industrie-Micheline v. Commission. Case 322/81,
 [1983] ECR 3461.
- 4 Hugin Kassaregister AB and Hugin Cash registers Ltd. V. Commission. Case 22/78, [1979] ECR 1869.
- 5 Hilti AG V. Commission. Case 30/89, [1991] II-1439. Judgement of the Court of First Instance of 12 December 1991.
- 6 Hilti AG v. Commission. Case 53/92, [1994]. Judgement of the Court of Justice of 2 March 1994.
- Istituto chemioterapico Italiano and Commercial Solvents v. Commission. Cases
 6 & 7/73, [1974] ECR 223.
- 8 Consorzio Italiano della Componentistica di Ricambio per Autoveicoli and SpA
 Maxicar v Regie National des usines Renault. Case 53/87, [1988] ECR 6093.
 Opinion of Advocate General Mischo.
- British Broadcasting Corporation & BBC Enterprises Ltd. V. Commission. Case
 70/89, [1991] ECR-II 535. Judgement of the Court of First Instance.
- Radio Telefis Eireann (RTE) and Independent Television Publications Ltd (ITP) v
 Commission. Case 241 & 242/91, [1995] ECR-I 743. European Court of Justice.
- Etablissements Consten Sarl and Grundig-Verkaufs GmbH v. Commission.
 Cases 56 & 58/64, [1966] ECR 299 at 342 3.
- 12 Pronuptia de paris GmbH v. Irmgard Schillgallis. Case 161/84, [1986] ECR 353.
- 13 Remia BV v. Commission. Case 42/84, [1985] ECR 2545.
- Metro SB-Grossmarkte GmbH & co. KG v. Commission Case 26/76, [1977] ECR1875.

Table of reports from NGC Transco

	NGC
1	(2000) National Grid seven Year Statement for years 2000 / 01 to 2006 / 07
2	(December 19, 2000b) 'The National Grid Company Plc: Statement of Use of
	System Charges, April 2001 to 31 March 2002, Based upon: Statement of the Use
	of System Charging Methodology Version 1 Revision 0, Consultation Draft 3.0.
	Transco
1	(2002) Transportation ten year statement
2	(Undated) The Network Code Summary, Transco's Guide to Using its Gas
	Transportation System.

APPENDICES

Appendix 1

D:\mamobi\work\Final Document\Appendix\glossary.doc

Glossary of terms and acronyms

This glossary summarises the common acronyms used in the industry that this project contains. It is complied from CC (1996) and the Electricity Pool. Entries from the latter are identified by ** and the author includes those marked as ***.

AGR	Advanced Gas-cooled Reactor (nuclear). The generation design prior to
	PWR . Most nuclear generation is by AGRs.
Ancillary	Services which are required for the security and stability of the
services (AS)**	transmission system, for example reactive power, hot standby and
	frequency control.
Ancillary	In England and Wales, this is a term used for the party who contracts for
Service Provider	the provision of ancillary services pursuant to the requirements of the
(ASP)**	transmission licence.
Annual average	A particular combination of weather elements which give rise to a level of
cold spell	peak demand within an NGC financial year which has a 50 per cent
	chance of being exceeded as a result of weather variation alone.
Area board	An area electricity board in England and Wales that has been succeeded in
	business by a REC pursuant to the Electricity Act 1989.
Authorized area	The geographical area within which a PES had been authorised by its PES
	license to supply electricity.
Auto-generators	Auto-generators generate electricity primarily for their own needs, but may
	additionally supply other customers on the same site.
Availability	The maximum amount of generation in MW that the operator of a genset
	declared it to be capable of providing.
Baseload; non-	Baseload generation is that used to meet continuous demand even at its
baseload, mid-	lowest level. Non-baseload generation is brought in progressively as
merit, peak-load	demand increases. Peak-load generation is used to satisfy short periods of
generation	maximum demand. Mid-merit generation is that which falls between
	baseload and peak.
Beach price	The price of gas available at the shore terminal.

BNFL British Nuclear Fuels plc.

CapacityThe capacity of a genset or power station is usually given in MW and can
be expressed in a number of ways. Generators are required to register the
capacity of their gensets under the Grid code. The GRC of a genset is
equal to its normal full load capacity, less the power in MW consumed by
it through its transformer when generating at that normal full load
capacity, as declared by the generator and registered with the NGC.
Declared net capacity was the measure of capacity commonly used by the
CEGB and is now principally used for business rating purposes.

CapacityThe difference between SMP and PPP. Capacity payments [reflected] thepaymentsprobability of supply being lost (LOLP) by reason of available generationbeing insufficient to meet demand, and the VOLL.

- CCGT Combined cycle gas turbine. A type of generating plant which turbines, typically fuelled by natural gas (or an oil distillate), are used to drive generators to produce electricity. The exhaust gases are then passed through a boiler to produce steam, which in turn drives an additional turbine coupled to a generator. Overall **thermal efficiency** with current technology is improved to up to about 50 per cent net, compared with about 37 per cent for coal, oil or conventional gas (**OCGT**).
- **CEGB** Central Electricity Generating Board. Replaced at **vesting** by **PG**, **NP**, **NEP** and the **NGC**.
- CfD Contract for differences. CfDs are contracts negotiated between the generators and suppliers in which the parties allocate among themselves the risk of variability in prices otherwise associated with the purchase and sale of electricity through the Pool.
- CHP Combined heat and power. The simultaneous generation of heat and electricity, typically where the need for both arises for industrial or commercial purposes.

CO^2	Carbon dioxide.
Coal-backed contracts	The contracts agreed between NP and PG on the one hand and the RECs on the other for the provision of specified volumes of electricity sales, the electricity having been generated by coal supplied under contracts between these two generators and British Coal (now RJB Mining). Their duration [was] from 1 April 1993 to 31 March 1998. They replaced similar contracts agreed at vesting , on their expiry.
Co-generators	Co-generators can simultaneously generate electricity and steam. The steam is used locally, and the electricity may be used by local customers, sold through the Pool , or both.
Competitive customer	See competitive market.
Competitive market	The market to supply customers whose average power demand [exceeded] 100 kW for three months in a year. [Those] customers [might] purchase their electricity from any supplier as well as their local PES . They [were] known as competitive or non-franchise customers . From 1 April 1998 the

Constrained-off Genets which, despite their output being offered at a price equal to or lower than **SMP**, [were] instructed by **NGC** to limit or cease generation as a result of limitations on the **transmission system** or demand forecasting

See also franchise market.

errors.

competitive, or non-franchise, market [was extended] to all customers.

Constrained-on Generating sets which, despite their output being offered at a price in excess of the SMP, [were] called on by NGC to operate as a result of limitations on the transmission system, demand forecasting errors or breakdown of other gensets.

Demand- weighted Pool price	The demand-weighted Pool price for a given period is obtained by multiplying the price and demand for each half-hour slot, summing them, and dividing the sum by the total demand for the period. It is the price a generator would receive from the Pool over the period of time its output profile was identical to Pool demand.
DGES	The Director General of Electricity Supply, [Professor Stephen Littlechild was the first]. See OFFER [& OFGEM].
DGGE***	The Director General of Gas and Electricity. Mr. Callum McCarthy was the first. Alistair Buchanan is the current DGGE.
Direct Sales	Sales of electricity to an end-customer by a second-tier supplier , particularly a generator .
Distribution system	A system of electric circuits with a nominal voltage of 132,000 volts or less, and associated electrical plant and meters to convey electricity from grid supply points on the national grid to customers. The systems owned and operated by the PESs are regulated by the DGES as local monopolies.
Eastern	Eastern Group plc, the owner of Eastern Electricity, one of the 12 RECs .

EdF	Electricite de France.
EFA	Electricity Forward Agreement. A financial instrument based on contracts similar to CfDs .
Electricity Act	Electricity Act 1989.
Embedded generation	Generating plant, which is connected directly to the distribution system rather than to the transmission system .
FFL	Fossil Fuel Levy. A levy ([was 10 per cent in 1996]) imposed on PES licence -holders and second tier suppliers to share among such holders and suppliers the additional costs incurred by the PES licence -holders as a result of satisfying the NFFO .
FGD	Flue Gas Desulphurisation Equipment. Coal contains sulphur, realised as SO^2 , on burning. Tighter emissions guidelines [were] met by removing SO^2 from the exhaust gas, typically by passing flue gasses through a limestone bed.
First-tier supply	The supply of electricity by a REC in its own area, whether or not this is to a competitive market or franchise market customer.
Fossil fuel	Coal, coal products, lignite, natural gas, crude liquid petroleum or other petroleum products.
Franchise customer	See franchise market .
Franchise market	PESs [had] monopoly right to supply customers in their authorised areas whose demand [was] under 100 kW (see competitive market). [Those were] known as franchise customers, and the market as franchise market. The franchise ended on 31 March 1998.

Generating licence	A licence granted under section 6 of the Electricity Act 1989 authorising the generation of electricity for the purpose of giving a supply or enabling a supply to be given to any premises.
Genset	Generating set. A generator and its associated turbines capable of generating electricity as a stand-alone unit. A power station may comprise one or more gensets.
Generator	A person authorised to generate electricity by way of a licence or an exemption from the requirement for a licence.
GW	Gigawatt—see power .
GWh	Gigawatt-hour—see power .
GRC	Genset registered capacity. See capacity .
Grid Operator (GO)**	The party required by the terms of the transmission licence to operate the transmission system and implement the Grid Code.
Grid Supply Point (GSP)**	Point where electricity is transferred from the transmission system to the distribution system of a Regional Electricity Company or to other users.
НМІР	Her Majesty's Inspectorate of Pollution.
Interconnecto rs	The links between the transmission system in England and Wales and the transmission systems in Scotland and France.
IPPs	Independent power producers. A generator other than a privatised generator (PG , NP , NEP and the NGC's pumped storage business) or REC . They may be partly owned by, or have power purchase agreements with, RECs .

kW	Kilowatt-hour—see power .
kWh	Kilowatt-hoursee power .
Load factor	The ratio (expressed as a percentage) of a net amount of electricity generated by a genset to the net amount which it could have generated were it operating at its net output capacity. A genset operating at full capacity for half the time is said to have a 50 per cent load factor.
LOLP**	Loss of Load Probability [was] used in the establishment of the Capacity Payment. LOLP [was] calculated through the comparison of total declared availability with forecasted demand. The total declared availability figure used in [that] case [was] taken as the maximum of the aggregate bids, on the day, for the day of trading and for the previous seven days.
London	London electricity plc. One of the 12 RECs .
Magnox	Magnesium Oxide Reactor (nuclear). The earliest UK operational reactor design.
Manweb	Manweb plc. One of the 12 RECs .
MEB	Midlands Electricity plc. One of the 12 RECs .
Merit-order**	Ranking in order, of which generation plant should be used, based on ascending order of price together with amount of electricity that will be generated.
MW	Megawatt—See power .
MWh	Megawatt-hour—See power .

Mid-merit generation	See baseload, non-baseload, mid-merit, peak-load generation.
Mothballing	The decommissioning of generating plant to a state from which it may be recommissioned. With the exception of IPPs, generators must seek permission from the DGES for both mothballing and recommissioning.
Must-take contract	See take-or-pay contract.
National grid	See transmission system.
NO ^x	Oxides of nitrogen.
Non-baseload generation	See baseload, non-baseload, mid-merit, peal-load generation.
Non-franchise customer	See competitive market .
Northern	Northern Electric plc. One of the 12 RECs .
NORWEB	NORWEB plc. One of the 12 RECs .
NP	National Power PLC.
OCGT	Open cycle gas turbine. A type of generating plant in which turbines, typically fuelled by gas-oil, are used to drive generators to produce electricity. The exhaust gases are then released to the atmosphere. OCGT plant [was then] typically used only for generation at times of peak demand.

OFFER**	The Office of Electricity Regulation [was] an independent body established by the government under the Electricity Act 1989 to regulate the industry. It [was] headed by the Director General of Electricity Supply. It [was] funded by licence fees and its main duties [were] to promote competition in the electricity industry and to promote customer's interests.
OFGAS***	The Office of Gas Supply (OFGAS).
OFGEM***	The Office of Gas and Electricity Market was formed in 1999 from the merger of OFGAS and OFFER . It is headed by the DGGE .
Orimulsion	An emulsion of bitumen and water. Orimulsion is a trademark of Bitumenas, Orinoco, SA of Venezuela.
Over 100 kW market	See competitive market.
Own-generation limit	The limit set on the level of ownership of generation capacity by a PES, and specified in Condition 6 of the PES licence. This is set by the DGES for each REC, and [was about 15 per cent in 1996] of the total electricity consumption in each REC's area at privatisation.
Pass-through price control	Price control in which a component of cost paid for by a supplier is passed on to the customer.
Peak-load generation	See baseload, non-baseload, mid-merit, peak-load generation.
PEC**	Pool Executive Committee (PEC) was established by the Pooling and Settlement Agreement (P&SA) as the executive body for the administration of the market (as defined in the P&SA). It [was] also the body that [was] empowered to make changes to the P&SA itself, subject to Pool Member agreement. PEC [had] a Chief Executive's Office, which [was] empowered to carry out the administration of the market, and to complete development tasks, as prescribed by PEC.

D:\mamobilwork\Final Document\Appendix\glossary.doc Public Electricity Supplier. A holder of a **PES licence**. PES **PES licence**** The holders of these licenses, known as Public Electricity Suppliers (PESs), [differed] from Second Tier Suppliers in two regards: 1. They [owned] and [operated] the distribution networks in their designated regions: and 2. They [had] an exclusive sales agreement with those non-contestable customers in the transition period to full retail competition. There [were] twelve PESs in the market area of England and Wales (the 12 regional Electricity Companies (RECs) and there [were] two in Scotland (Scottish Power and Scottish Hydro-Electric). PG PowerGen plc. The Electricity Pool of England and Wales. The Pool itself [did] not buy or Pool sell electricity, but [existed] as a mechanism to allow trading between participating generators and suppliers according to a set of rules (the Pool rules) which [governed] the market's operation and the calculation of payments due to and from each member. Pool membership [was] open both to generators and suppliers of electricity, subject to fulfilment of certain membership conditions contained in the Pooling and Settlement Agreement. Pool** The Pool [was] the term used to represent the organisation of the trading parties in the wholesale market. The operation of the market [was] administered by PEC and its sub-committees. Trading members of the Pool [were] represented on PEC by elected representatives. The Pool [acted] as the power exchange in that market. **POOL Funds** The party, who [administered] the banking, billing and associated systems Administrator whereby payments under the Pool trading arrangements [were] made. (PFA)**

Pooling andThe Pooling and Settlement Agreement [contained] the rules for theSettlementWholesale market trading arrangements and the rights and obligations ofAgreementPool members and Parties. The P&SA was established for the time of(PSA)**vesting.

PowerPower is the rate at which energy is used or produced. One kilowatt-hour
(kWh) represents one hour of electricity consumption at a constant rate of
1 kilowatt (kW). Correspondingly:

1 megawatt (MW) = 1,000 kW 1 megawatt-hour (MWh) = 1,000kWh 1 gigawatt (GW) = 1,000 MW 1 gigawatt-hour (GWh) = 1,000 MWh 1 terawatt (TW) = 1000 GW 1 terawatt-hour (TWh) = 1,000 GWh

Power purchaseA contract agreed between a generator and a supplier, typically an IPPagreementand a REC which has an equity holding in that IPP, to supply electricity at
a given price for a given period. It may allow for provision to the supplier
of certain information about the generator; and may confer certain rights
on the supplier, for example to influence the way in which the generator
bids into the Pool.

Pool PurchaseThis [was] the price (\pounds /MWh) awarded by the Pool for electricity generatedPrice (PPP)***by Generators and purchased at Grid Supply Points (GSPs). This price[was] made up as follows: PPP = CP + System M arg *inal* Price (SMP).

Pool SellingThis [was] the price (\pounds/MWh) which Suppliers [paid] for their electricity,Price (PSP)***sold at Grid Supply Points (GSPs). This price [was] made up as follows:PSP = Pool Purchase Price (PPP) + Uplift.

Pumped storageA power station which used electricity to pump water into a high holdingpower stationreservoir. The water can be released to turn turbines to generateelectricity on short notice in order to meet sudden increases in demand.

PWR	Pressurised Water Reactor (nuclear). The most recent commercial reactor design operating in the UK. Sizewell 'B' is the only nuclear power station using PWR technology.
Regional Electricity Companies (RECs)**	At Vesting, the 12 Area distribution boards in the England and Wales market area were established as independent, private companies.
Renewables	Renewable energy sources are either natural, such as wind, water and sun, or sources such as waste or biofuels, which can be replenished.
RJB Mining RPI	RJB Mining Plc. Retail price index.
SE	Southern Electric plc. One of the 12 RECs .
Second-tier customer	A customer who purchases electricity from a second-tier supplier .
Second-tier licence	A licence granted under the Electricity Act 1989 to supply electricity as a second-tier supplier to any customer in the competitive market .
Second Tier Supplier**	Second tier suppliers are those that purchase from the Pool for the purposes of selling into the Second Tier Market. Note that for each of the 12 REC areas in the market area, there [was] one REC with a First Tier Supplier licence whilst the other eleven (and other, independent companies) [could] opt for second tier licences. All RECs [operated] with second Tier licences outside their franchise area.
Second-tier supply	The supply by a REC outside its authorised area , or the supply by any other supplier to a competitive customer in any location.
Section 36 consent	Refers to the consent required under section 36 of the Electricity Act 1989, for the construction, extension or operation of generating stations.

SEEBOARD SEPG	SEEBOARD plc. One of the 12 RECs . Southern electricity Power Generation Limited.
Settlement System Administrator (SSA)**	The party who [administered] the computerised system used to process the data and carry out the other procedures to calculate payments due under the pool trading rules.
SMP**	This price [was] the marginal of electricity, established day-ahead in the Unconstrained schedule through matching of supply-and demand-side price and quantity bids in the Wholesale market. In the market of England and Wales, the demand side bids are forecast demand (volume) and related to Value of Lost Load (VOLL) (price). This price is one component of the price paid (£/MWh) to all generators dispatched through the Pool.
SO ²	Sulphur dioxide.
Strike Price	The price agreed between a generator and a supplier for a CfD . It [might] contain a premium or a discount against current PSP .
Supplier	A person authorised to supply electricity by way of a licence or an exemption from the requirement for a licence.
Supplier**	Person or company purchasing electricity through the Pool's trading arrangements for sale to end customers.
Supply licence	A licence granted under section 6 of the Electricity Act 1989 authorising the supply of electricity to consumers. Both second-tier licences and PES licences are supply licences.
SWALEC	South Wales Electricity plc. One of the 12 RECs .
SWEB	South Western Electricity plc. One of the 12 RECs .

See constrained-off and constrained-on. System constraints Take-or-pay A contract calling for the purchaser to pay the contract price whether or contract not it accepts delivery of the contracted supply. TW Terawatt—see power. TWh Terawatt-hour-see power. Thermal The efficiency with which heat energy contained in fuel is converted into efficiency electricity energy. The thermal efficiency of a power station is the ratio of the electricity energy supplied by the power station (net of power consumed in the generation process) to the total energy of the fuel consumed by the station. **Time-weighted** The time-weighted Pool price for a given period is the average price over **Pool price** the period, obtained by summing the price for each half-hour slot and dividing the sum by the number of half-hour slots. It is the price a generator would receive from the Pool over the period of time if its output were constant. TPHL Teeside power Holdings Limited. TPL Teeside Power Limited. Transmission See transmission system. Transmission The system of electric circuits with a nominal voltage mainly above 132,000 volts, and associated electrical plant and meters to convey system electricity from power stations to **distribution systems** via grid supply points. The system is owned and operated by the NGC and regulated by the [DGGE] as a monopoly.

ork/Final Document\Appendix\glossary.do Transmission Scaling factor applied to metered offtake at the Grid Supply point to allow for losses on the transmission system. Loss factor** Under 100 kW See franchise market. market Uplift** The difference between PSP and PPP [covered] reserve, constrained running, forecasting errors, ancillary services and marginal plant adjustments. Unconstrained The half hour by half hour schedule of generating units notionally required Schedule** to meet forecast demand and reserve, which [was] produced the day ahead of trading, ignoring transmission constraints. UMIS Uplift management incentive scheme. A programme introduced to provide the NGC with financial incentives to reduce uplift. Use of system Charges made on suppliers for the use of distribution systems. charges The transfer, on 31 March 1990, of the property, rights and liabilities (in Vesting England and Wales) of the CEGB and the 12 area boards to their successor companies: NP, PG, NEP, the NGC and the RECs. Value of Lost Load [was] a figure (£/MWh) established at Vesting, and VOLL** subsequently modified by OFFER (with RPI). The figure [reflected] a demand-side bid of the amount which they [were] willing to pay before forgoing generation. At vesting the figure was £2000/MWh. Yorkshire Electricity Group plc. One of the 12 RECs. Yorkshire

Appendix 2

Tables for section 3

Quantitative Analysis of the Components of Pool Selling Price (PSP) in England and Wales' Pool: January 1994 to December 2000

	·	т	able 3.6.1		
	Sur		SMP, Uplift, CP, P	PP and PSP	
Year	SMP	Uplift	СР	РРР	PSP
1994					
Mean	21.50	2.14	1.08	22.58	24.72
Std. Dev	10.40	2.36	10.04	16.68	18.71
Coef. Of var.	0.23	1.22	87.02	0.55	0.57
kurtosis	5.15	126.23	341.23	105.20	113.82
1995					
Mean	18.72	2.14	5.26	23.98	26.12
Std. Dev	16.06	5.71	38.47	45.53	50.82
Coef. Of var.	0.74	7.12	53.53	3.60	3.79
kurtosis	1156.64	110.33	231.75	173.13	159.81
1996					
Меап	18.97	2.01	4.22	23.19	25.20
Std. Dev	10.18	3.55	18.78	24.56	27.87
Coef. Of var.	0.29	3.11	19.83	1.12	1.22
kurtosis	6.73	90.40	190.65	105.27	104.33
1997					
Mean	23.32	0.70	1.16	24.48	25.18
Std. Dev	12.90	2.45	13.08	20.56	22.61
Coef. Of var.	0.31	12.30	127.15	0.71	0.81
kurtosis	8.65	313.73	566.21	151.31	174.30
1998					
Mean	23.58	0.36	1.05	24.63	24.99
Std. Dev	15.22	1.37	5.98	17.72	18.54
Coef. Of var.	0.42	14.88	32.32	0.52	0.55
kurtosis	41.64	152.50	227.38	34.24	35.83
1999					
Mean	22.39	0.62	2.23	24.62	25.24
Std. Dev	12.91	2.23	9.57	17.82	19.44
Coef. Of var.	0.33	12.99	18.41	0.52	0.59
kurtosis	9.89	48.53	76.04	18.05	21.22
2000					
Mean	18.74	1.10	4.94	23.68	24.77
Std. Dev	8.96	3.98	18.64	23.87	27.57
Coef. Of var.	0.23	13.20	14.24	1.02	1.24
kurtosis	7.23	97.09	89.47	54.32	59.81

		Table 3.6.2							
Annual statistics of sqrt (SMP), sqrt(CP), sqrt(Uplift) and sqrt(PSP)									
Statistics	SMP	Uplift	СР	PSP					
1994									
Mean	4.51	2.14	0.27	4.78					
Std. Dev.	1.07	2.36	1.00	1.37					
Coef. Of var.	0.06	1.22	14.20	0.08					
Kurtosis	2.94	126.23	91.63	19.07					
1995									
Mean	4.14	2.14	0.73	4.58					
Std. Dev.	1.25	5.71	2.17	2.27					
Coef. Of var.	0.09	7.12	8.95	0.25					
Kurtosis	30.53	110.33	58.01	41.67					
1996									
Mean	4.22	2.01	0.85	4.69					
Std. Dev.	1.06	3.55	1.87	1.78					
Coef. Of var.	0.06	3.11	4.84	0.14					
Kurtosis	3.87	90.40	22.32	19.24					
1997									
Mean	4.68	0.70	0.25	4.79					
Std. Dev.	1.20	2.45	1.05	1.49					
Coef. Of var.	0.07	12.30	17.46	0.10					
Kurtosis	4.25	313.73	133.36	25.01					
1998									
Mean	4.67	0.36	0.34	4.77					
Std. Dev.	1.34	1.37	0.97	1.50					
Coef. Of var.	0.08	14.88	8.16	0.10					
Kurtosis	6.36	152.50	34.36	7.98					
1999									
Mean	4.58	0.62	0.54	4.78					
Std. Dev.	1.20	2.23	1.39	1.55					
Coef. Of var.	0.07	12.99	6.55	0.10					
Kurtosis	5.09	48.53	19.01	7.45					
2000									
Mean	4.23	1.10	0.92	4.63					
Std. Dev.	0.93	3.98	2.02	1.82					
Coef. Of var.	0.05	13.20	4.84	0.15					
Kurtosis	4.60	97.09	15.12	15.24					

			T	able 3.6.3			
		A	Annual Statistics o	f sqrt(SMP) by W	Veek Days		
Statistics	Sun	Mon	Tues	Wed	Thurs	Fri	Sat
1994							
Mean	4.11	4.59	4.64	4.65	4.68	4.60	4.32
Std. Dev.	1.02	1.16	1.07	1.06	1.06	1.00	1.01
Coef. Of var.	0.06	0.06	0.05	0.05	0.05	0.05	0.05
Kurtosis	2.94	3.28	2.94	3.15	2.81	2.71	2.91
1995							
Mean	3.64	4.24	4.35	4.32	4.36	4.36	3.82
Std. Dev.	0.93	1.31	1.57	1.23	1.25	1.25	0.98
Coef. Of var.	0.07	0.10	0.13	0.08	0.08	0.08	0.07
Kurtosis	5.11	4.01	75.58	3.24	3.51	3.51	4.72
1996							
Mean	3.77	4.33	4.42	4.43	4.34	4.31	3.96
Std. Dev.	0.85	1.17	1.11	1.09	1.02	1.05	0.90
Coef. Of var.	0.05	0.07	0.06	0.06	0.05	0.06	0.05
Kurtosis	6.24	3.38	3.34	3.24	3.44	4.28	4.38
1997							
Mean	4.04	4.85	4.93	4.92	4.93	4.85	4.23
Std. Dev.	0.85	1.34	1.20	1.26	1.19	1.21	0.93
Coef. Of var.	0.04	0.08	0.06	0.07	0.06	0.06	0.05
Kurtosis	5.45	3.69	4.06	4.55	3.49	4.26	4.02
1998							
Mean	3.98	4.85	5.00	4.99	4.91	4.79	4.15
Std. Dev.	0.92	1.45	1.39	1.42	1.38	1.30	1.02
Coef. Of var.	0.05	0.09	0.08	0.08	0.08	0.07	0.06
Kurtosis	7.69	3.71	4.30	12.09	4.77	4.77	8.79
1999	İ		_	_			
Меап	4.00	4.77	4.83	4.82	4.82	4.66	4.14
Std. Dev.	0.88	1.34	1.24	1.25	1.23	1.20	0.84
Coef. Of var.	0.05	0.08	0.07	0.07	0.06	0.07	0.04
Kurtosis	7.86	3.74	4.20	4.85	4.67	5.14	7.75
2000							<u> </u>
Mean	3.90	4.33	4.38	4.38	4.36	4.26	4.01
Std. Dev.	0.72	1.00	0.98	1.00	1.00	0.93	0.70
Coef. Of var.	0.03	0.05	0.05	0.05	0.05	0.05	0.03
Kurtosis	5.27	3.80	3.75	3.71	4.32	4.89	5.09

-			Та	ble 3.6.4			
			Annual Statistics	of Uplift by Wee	ek Days		
Statistics	Sun	Mon	Tues	Wed	Thurs	Fri	Sat
1994							
Mean	1.72	2.34	2.45	2.38	2.27	1.98	1.85
Std. Dev.	1.45	2.95	3.06	2.81	2.59	1.51	1.31
Coef. Of var.	0.71	1.59	1.56	1.39	1.30	0.58	0.50
Kurtosis	2.38	87.10	106.72	94.62	112.16	31.11	2.01
1995							
Mean	1.12	2.51	2.69	2.82	2.72	2.00	1.15
Std. Dev.	0.98	6.91	7.28	7.34	7.20	4.21	0.87
Coef. Of var.	0.76	7.59	7.31	6.80	7.01	4.44	0.57
Kurtosis	1.57	83.57	64.80	73.81	68.40	96.29	1.94
1996							
Mean	1.16	2.50	2.70	2.44	2.29	1.81	1.16
Std. Dev.	0.92	4.62	4.94	4.41	3.76	2.14	0.82
Coef. Of var.	0.63	3.42	3.33	3.27	2.70	1.39	0.50
Kurtosis	2.00	57.85	66.57	52.27	44.04	30.64	2.56
1997							
Mean	0.43	0.77	0.84	0.83	0.92	0.66	0.43
Std. Dev.	0.70	2.35	3.07	2.95	3.92	1.30	0.63
Coef. Of var.	2.67	9.23	13.28	12.68	18.11	3.92	2.16
Kurtosis	5.73	126.97	163.85	154.17	199.49	131.08	4.27
1998							
Mean	0.14	0.43	0.48	0.50	0.48	0.29	0.16
Std. Dev.	0.23	2.16	1.61	1.59	1.58	0.79	0.25
Coef. Of var.	2.55	24.68	11.42	10.02	10.70	7.48	2.56
Kurtosis	3.89	109.78	49.00	76.35	77.74	64.55	3.30
1999							
Mean	0.20	0.71	1.07	0.86	0.75	0.50	0.25
Std. Dev.	0.21	2.70	3.29	2.80	2.44	1.51	0.24
Coef. Of var.	1.12	14.34	9.51	10.62	10.53	9.20	0.91
Kurtosis	4.95	29.24	23.41	33.10	39.32	48.96	3.96
2000							
Mean	0.16	1.54	1.74	1.56	1.68	0.80	0.22
Std. Dev.	0.24	5.38	5.49	4.40	4.88	2.50	0.36
Coef. Of var.	2.10	12.16	9.99	7.95	8.42	9.83	2.60
Kurtosis	14.59	41.25	114.39	28.62	24.93	39.65	14.63

			τ	able 3.6.5					
Annual Statistics of sqrt(Capacity Payment) by Week Days									
Statistics	Sun	Mon	Tues	Wed	Thurs	Fri	Sat		
1994									
Mean	0.00037	0.41	0.46	0.42	0.37	0.20	0.0028		
Std. Dev.	0.0032	1.30	1.34	1.25	1.16	0.0070	0.024		
Coef. Of var.	73.25	9.85	8.61	8.78	9.76	10.87	79.64		
Kurtosis	224.66	55.93	56.67	57.77	68.32	72.51	294.04		
1995									
Mean	0.0045	1.02	1.09	1.12	1.13	0.71	0.03		
Std. Dev.	0.04	2.49	2.65	2.74	2.74	1.82	0.23		
Coef. Of var.	63.23	6.10	5.92	5.97	5.80	6.59	63.03		
Kurtosis	324.63	38.66	36.28	41.06	42.49	44.13	244.14		
1996									
Mean	0.0047	1.24	1.36	1.30	1.23	0.78	0.01		
Std. Dev.	0.03	2.28	2.36	2.24	2.08	1.45	0.08		
Coef. Of var.	29.97	3.37	3.04	2.97	2.84	3.45	30.01		
Kurtosis	171.31	17.42	16.03	15.07	12.86	12.26	366.31		
1997									
Mean	0.00097	0.35	0.38	0.39	0.41	0.21	0.0032		
Std. Dev.	0.01	1.14	1.33	1.32	1.46	0.73	0.03		
Coef. Of var.	116.47	10.48	12.21	11.23	12.78	11.69	109.04		
Kurtosis	468.87	65.70	86.28	78.54	95.80	92.51	413.55		
1998									
Mean	0.00097	0.55	0.54	0.52	0.49	0.27	0.0034		
Std. Dev.	0.0056	1.32	1.17	1.14	1.13	0.71	0.018		
Coef. Of var.	33.35	5.84	4.61	4.84	5.33	7.04	25.92		
Kurtosis	129.72	25.83	17.84	20.41	23.21	27.36	147.26		
1999									
Mean	0.0031	0.83	0.94	0.81	0.77	0.45	0.01		
Std. Dev.	0.018	1.70	1.86	1.65	1.55	1.07	0.03		
Coef. Of var.	32.17	4.23	3.91	4.16	4.09	5.61	13.94		
Kurtosis	257.43	12.40	10.19	13.99	12.71	18.56	41.63		
2000									
Mean	0.008	1.39	1.48	1.37	1.40	0.81	0.02		
Std. Dev.	0.04	2.50	2.53	2.29	2.40	1.58	0.08		
Coef. Of var.	18.67	3.22	2.94	2.81	2.95	3.83	13.19		
Kurtosis	88.38	10.91	10.20	9.10	8.98	13.07	47.56		

	Table 3.6.6								
Annual Statistics of sqrt(Pool Selling Price) by Week Days									
Statistics	Sun	Mon	Tues	Wed	Thurs	Fri	Sat		
1994									
Mean	4.30	4.90	4.97	4.97	4.97	4.83	4.52		
Std. Dev.	1.09	1.61	1.53	1.48	1.40	1.14	1.07		
Coef. Of var.	0.064	0.11	0.094	0.088	0.080	0.56	0.056		
Kurtosis	2.62	17.85	22.54	20.92	21.24	6.87	2.66		
1995									
Mean	3.78	4.80	4.95	4.94	4.98	4.66	3.96		
Std. Dev.	0.98	2.54	2.80	2.71	2.70	1.92	1.03		
Coef. Of var.	0.07	0.28	0.32	0.30	0.29	0.17	0.07		
Kurtosis	4.36	29.30	30.12	34.76	36.52	26.00	4.45		
1996									
Mean	3.91	4.97	5.13	5.08	4.96	4.70	4.10		
Std. Dev.	0.89	2.15	2.15	2.04	1.86	1.48	0.93		
Coef. Of var.	0.52	0.19	0.18	0.16	0.14	0.10	0.05		
Kurtosis	5.25	16.63	17.61	14.92	13.85	9.02	4.02		
1997					<u> </u>				
Mean	4.09	4.98	5.08	5.08	5.10	4.94	4.28		
Std. Dev.	0.87	1.63	1.62	1.65	1.71	1.33	0.95		
Coef. Of var.	0.04	0.11	0.10	0.11	0.11	0.07	0.05		
Kurtosis	5.36	12.76	27.94	22.39	35.46	7.70	3.99		
1998									
Меап	3.99	5.01	5.15	5.14	5.05	4.86	4.17		
Std. Dev.	0.92	1.72	1.59	1.61	1.58	1.37	1.02		
Coef. Of var.	0.05	0.12	0.09	0.10	0.10	0.08	0.06		
Kurtosis	7.61	7.38	5.68	10.53	6.40	4.96	8.61		
1999									
Mean	4.02	5.06	5.20	5.11	5.09	4.81	4.17		
Std. Dev.	0.88	1.80	1.80	1.69	1.61	1.39	0.84		
Coef. Of var.	0.05	0.13	0.12	0.11	0.10	0.08	0.04		
Kurtosis	7.74	5.92	5.68	7.01	6.23	4.80	7.56		
2000					-				
Mean	3.92	4.94	5.05	4.97	4.99	4.55	4.04		
Std. Dev.	0.73	2.23	2.22	2.03	2.13	1.48	0.71		
Coef. Of var.	0.03	0.20	0.19	0.17	0.18	0.11	0.03		
Kurtosis	5.02	11.89	12.63	9.81	9.53	9.74	4.87		

		Summary St	Table 3.6.	7 1P) by Load Regime		
Year	Regime	No. Of obs.	Mean	Std. Dev	Coef of var	Kurtosis
1994	Baseload	1612	3.26	0.29	0.008	19.80
	Mid-merit	15668	4.61	1.02	0.05	2.80
	Peak	240	6.45	1.20	0.03	2.74
1995	Baseload	1108	3.00	0.26	0.007	9.67
	Mid-merit	16004	4.15	1.19	0.08	39.84
	Peak	408	6.73	1.40	0.04	3.68
1996	Baseload	819	3.02	0.24	0.006	13.84
	Mid-merit	15795	4.20	0.97	0.05	3.84
	Peak	954	5.71	1.18	0.04	2.66
1997	Baseload	778	3.32	0.27	0.007	2.84
	Mid-merit	15847	4.63	1.09	0.06	4.60
	Peak	895	6.77	1.08	0.03	3.76
1998	Baseload	606	3.07	0.51	0.03	16.07
	Mid-merit	15986	4.59	1.21	0.07	8.33
	Peak	928	7.01	1.11	0.03	3.35
1999	Baseload	540	3.14	0.50	0.03	4.74
	Mid-merit	15903	4.49	1.06	0.06	6.09
	Peak	1077	6.54	1.25	0.04	2.35
2000	Baseload	415	3.27	0.48	0.02	12.44
	Mid-merit	15580	4.14	0.83	0.04	4.60
	Peak	1573	5.33	1.12	0.04	2.50

Notes: Baseload = $FTSL = \langle 22; Mid-merit = 23 \langle FTSL \langle = 42; Peak = FTSL = \rangle 43$. N = the total number of observations within each load regime.

			Table 3.6			
		Summary Sta	itistics of sqrt(Up	olift) by Load Regime		
Year	Regime	No. Of obs.	Mean	Std. Dev	Coef of var	Kurtosis
1994	Baseload	1612	0.67	1.18	3.14	4.53
	Mid-merit	15668	2.15	1.52	0.50	40.83
	Peak	240	11.42	12.17	1.14	4.29
1995	Baseload	1108	0.33	0.71	4.73	5.19
	Mid-merit	16004	1.60	1.93	1.44	183.94
	Peak	408	28.13	23.67	0.71	3.07
1996	Baseload	819	0.40	0.72	3.25	3.90
	Mid-merit	15795	1.68	2.02	1.43	48.49
	Peak	954	8.86	10.67	1.45	10.48
1997	Baseload	778	0.11	0.15	1.61	2.88
	Mid-merit	15847	0.47	0.63	1.82	130.75
	Peak	895	5.25	9.39	3.20	19.56
1998	Baseload	606	0.06	0.20	10.29	10.24
	Mid-merit	15986	0.25	0.80	10.59	80.27
	Peak	928	2.42	4.46	3.38	17.01
1999	Baseload	540	0.06	0.44	49.68	14.70
	Mid-merit	15903	0.57	2.07	13.30	48.08
	Peak	1077	1.66	4.05	5.94	20.61
2000	Baseload	415	0.07	0.24	11.95	12.59
	Mid-merit	15580	0.93	3.64	13.14	48.81
1	Peak	1573	3.03	7.79	6.60	51.60

Notes: Baseload = $FTSL = \langle 22; Mid-merit = 23 \langle FTSL \langle = 42; Peak = FTSL = \rangle 43$. N = the total number of observations within each load regime.

		Summary Statistics	Table 3.6.	9 Payment) by Load R	egime	
Year	Regime	No. Of obs.	Mean	Std. Dev	Coef of var	Kurtosis
1994	Baseload	1612	0.00	0.00	0.00	0.00
	Mid-merit	15668	0.21	0.65	9.16	65.92
	Peak	240	5.43	4.12	0.63	2.68
1995	Baseload	1108	0.00	0.00	0.00	0.00
	Mid-merit	16004	0.51	1.10	4.60	26.06
	Peak	408	11.15	6.64	0.35	2.95
1996	Baseload	819	0.00	0.00	0.00	0.00
	Mid-merit	15795	0.64	1.35	4.45	12.74
	Peak	954	5.02	3.91	0.61	4.96
1997	Baseload	778	0.00	0.00	0.00	0.00
	Mid-merit	15847	0.11	0.29	6.58	91.47
	Peak	895	2.92	3.54	1.47	9.27
1998	Baseload	606	0.00	0.00	0.00	0.00
	Mid-merit	15986	0.25	0.73	8.27	29.92
	Peak	928	2.03	2.34	1.33	6.02
1999	Baseload	540	0.00	0.00	0.00	0.00
-	Mid-merit	15903	0.48	1.30	7.22	18.69
	Peak	1077	1.69	2.23	1.74	9.44
2000	Baseload	415	0.00	0.00	0.00	0.00
	Mid-merit	15580	0.80	1.87	5.41	14.19
	Peak	1573	2.31	2.98	1.66	9.65

Notes: Baseload = $FTSL = \langle 22; Mid-merit = 23 \langle FTSL \langle = 42; Peak = FTSL = \rangle 43$. N = the total number of observations within each load regime.

		Table 3.6.10		
			Redeclared) and sqrt(Actual)	
Statistics	Gross demand	Declared	Redeclared	Actual
1994				
Mean	124.06	149.62	151.51	149.40
Std. Dev.	11.72	8.51	8.45	8.50
Coef. Of var.	0.01	0.00	0.003	0.003
Kurtosis	2.30	2.16	2.16	2.16
1995				
Mean	125.70	147.64	150.82	147.49
Std. Dev	11.67	8.32	7.97	8.34
Coef. Of var.	0.009	0.003	0.002	0.00
Kurtosis	2.30	2.35	2.34	2.34
1996				
Mean	127.97	151.77	149.54	148.84
Std. Dev	12.06	8.53	9.69	9.25
Coef. Of var	0.009	0.03	0.004	0.003
Kurtosis	2.32	2.47	2.25	2.35
1997				
Mean	127.87	156.74	153.50	153.35
Std. Dev	11.82	9.38	9.72	9.76
Coef. Of var	0.009	0.003	0.004	0.004
Kurtosis	2.33	2.16	2.17	2.17
1998				
Mean	128.90	154.97	152.32	152.20
Std. Dev	11.52	10.10	10.06	10.10
Coef. Of var	0.008	0.004	0.004	0.004
Kurtosis	2.36	2.12	2.22	2.23
1999				
Mean	129.39	156.71	152.60	152.47
Std. Dev	11.80	9.47	9.99	9.96
Coef. Of var.	0.008	0.004	0.004	0.004
Kurtosis	2.30	2.23	2.21	2.22
2000				
Mean	130.80	155.51	150.63	150.53
Std. Dev	11.79	9.71	10.05	10.06
Coef. Of var.	0.008	0.003	0.004	0.004
Kurtosis	2.33	2.35	2.24	2.24

		Annua	Tal	ole 3.6.11 (Gross Demand)	by weekdays		
		,		(Gross Demand)	by weekdays		
Statistics	Sun	Mon	Tues	Wed	Thurs	Fri	Sat
1994							
Mean	114.76	125.27	127.66	128.05	128.19	126.56	118.06
Std. Dev.	9.03	12.90	11.23	10.93	10.78	10.34	8.30
Coef. Of var.	0.0061	0.010	0.0077	0.0073	0.0071	0.0067	0.0049
Kurtosis	2.45	2.26	2.58	2.54	2.60	2.45	2.50
1995							-
Mean	116.67	126.72	129.18	129.52	129.83	128.25	119.90
Std. Dev.	9.19	12.79	11.07	10.70	10.75	10.46	8.68
Coef. Of var.	0.0062	0.01	0.0074	0.0068	0.0066	0.0067	0.0052
Kurtosis	2.41	2.30	2.59	2.54	2.55	2.41	2.34
1996							
Mean	118.85	129.22	131.69	131.68	131.84	130.49	121.90
Std. Dev.	9.95	12.94	11.29	11.17	11.27	10.77	9.25
Coef. Of var.	0.0070	0.010	0.0073	0.0072	0.0073	0.0068	0.0058
Kurtosis	2.30	2.40	2.59	2.49	2.49	2.42	2.28
1997							
Mean	118.64	129.25	131.56	131.75	131.74	130.15	121.91
Std. Dev.	9.44	13.07	11.13	10.84	10.91	10.59	8.67
Coef. Of var.	0.0063	0.01	0.007	0.0068	0.0069	0.0066	0.0051
Kurtosis	2.42	2.29	2.70	2.63	2.50	2.42	2.50
1998		-				_	
Mean	119.99	130.43	132.89	132.85	132.42	130.83	122.81
Std. Dev.	9.24	12.76	10.97	10.52	10.62	10.12	8.28
Coef. Of var.	0.0059	0.0096	0.0068	0.0063	0.0064	0.0060	0.0045
Kurtosis	2.63	2.38	2.73	2.70	2.62	2.47	2.60
1999							
Mean	120.64	130.82	133.15	133.34	133.20	131.23	123.32
Std. Dev.	9.49	13.30	11.30	10.90	10.68	10.52	8.59
Coef. Of var.	0.0062	0.01	0.0072	0.0067	0.0064	0.0064	0.0049
Kurtosis	2.54	2.28	2.64	2.62	2.56	2.33	2.56
2000							
Mean	122.21	131.92	134.34	134.61	134.69	133.07	125.00
Std. Dev.	9.54	13.18	11.30	10.94	10.98	10.47	8.66
Coef. Of var.	0.006	0.010	0.01	0.0066	0.0066	0.0062	0.0048
Kurtosis	2.64	2.25	2.52	2.64	2.66	2.50	2.68

	Table 3.6.12 Annual statistics of Generators: sqrt(Declared Availability) by weekdays										
Statistics	Sun	Mon	Tues	Wed	Thurs	Fri	Sat				
1994											
Mean	144.15	151.07	152.25	152.19	152.26	151.33	144.20				
Std. Dev.	6.90	8.53	7.95	8.01	8.17	8.11	6.50				
Coef. Of var.	0.0023	0.0032	0.0027	0.0028	0.0029	0.0029	0.0020				
Kurtosis	1.98	2.35	2.25	2.21	2.22	2.20	2.11				
1995											
Mean	141.18	149.11	150.48	150.51	150.63	150.04	141.67				
Std. Dev.	6.44	8.47	7.37	7.43	7.32	7.53	6.39				
Coef. Of var.	0.0021	0.0032	0.0024	0.0024	0.0024	0.0025	0.0020				
Kurtosis	2.39	2.37	2.31	2.10	2.14	2.12	2.24				
1996											
Меап	145.94	153.09	154.53	154.42	154.41	153.71	146.22				
Std. Dev.	6.68	8.79	8.04	7.93	7.92	8.05	6.40				
Coef. Of var.	0.0021	0.0033	0.0027	0.0026	0.0026	0.0027	0.0019				
Kurtosis	2.44	2.33	2.28	2.42	2.35	2.21	2.25				
1997											
Mean	150.14	158.26	159.74	159.63	159.80	159.17	150.38				
Std. Dev.	8.06	9.24	8.31	8.26	8.43	8.68	7.98				
Coef. Of var.	0.0029	0.0034	0.0027	0.0027	0.0028	0.0030	0.0028				
Kurtosis	1.80	2.34	2.47	2.43	2.44	2.28	1.81				
1998						· · · ···					
Mean	147.13	156.39	158.42	158.50	158.61	157.64	148.04				
Std. Dev.	8.36	10.40	9.17	8.73	8.71	8.79	8.16				
Coef. Of var.	0.0032	0.0044	0.0033	0.0030	0.0030	0.0031	0.0030				
Kurtosis	1.81	2.11	2.13	2.05	2.14	2.05	1.71				
1999											
Mean	149.27	157.62	160.20	160.24	160.15	159.19	150.28				
Std. Dev.	7.62	10.24	8.50	8.24	8.19	8.20	7.09				
Coef. Of var.	0.0026	0.0042	0.0028	0.0026	0.0026	0.0027	0.0022				
Kurtosis	1.97	2.28	2.09	1.85	1.88	1.92	1.89				
2000											
Mean	147.92	156.28	158.74	159.14	159.23	158.32	149.23				
Std. Dev.	7.92	10.64	8.73	8.41	8.22	8.27	7.60				
Coef. Of var.	0.0029	0.0046	0.0030	0.0028	0.0027	0.0027	0.003				
Kurtosis	1.99	2.31	2.43	2.25	2.22	2.15	1.81				

.

			Table 3.6.	14		
		Distribution	n of Ratios of Vario	us Components of F	PSP	
Year	Ratio	Mean	Min	Max	Std. Dev	Coef. of var
1994	CP/SMP	0.04	0.00	2.33	0.14	10.43
	Uplift/SMP	0.44	0.00	7.46	0.38	0.75
	SMP/PSP	0.95	0.36	1.00	0.05	0.003
	CP/PSP	0.04	0.00	0.85	0.10	7.14
1995	CP/SMP	0.13	0.00	4.52	0.34	6.45
	Uplift/SMP	0.43	-0.29	15.33	0.83	3.79
	SMP/PSP	0.94	0.20	1.05	0.09	0.010
	CP/PSP	0.10	0.00	0.93	0.18	3.49
1996	CP/SMP	0.17	0.00	3.22	0.34	4.21
	Uplift/SMP	0.42	0.00	11.18	0.60	2.03
	SMP/PSP	0.93	0.26	1.00	0.10	0.01
	CP/PSP	0.12	0.00	0.92	0.21	3.01
1997	CP/SMP	0.04	0.00	3.03	0.14	12.94
	Uplift/SMP	0.13	-0.22	11.07	0.33	6.68
	SMP/PSP	0.98	0.29	1.02	0.04	0.002
	CP/PSP	0.03	0.00	0.89	0.09	7.66
1998	CP/SMP	0.06	0.00	1.84	0.16	7.25
	Uplift/SMP	0.06	-0.29	4.95	0.21	10.90
	SMP/PSP	0.99	0.44	1.07	0.05	0.002
	CP/PSP	0.05	0.00	0.82	0.12	5.71
1999	CP/SMP	0.10	0.00	2.23	0.25	6.22
	Uplift/SMP	0.11	-0.66	5.54	0.39	11.81
	SMP/PSP	0.97	0.38	1.12	0.08	0.006
	CP/PSP	0.08	0.00	0.91	0.17	4.61
2000	CP/SMP	0.18	0.00	2.84	0.37	4.38
	Uplift/SMP	0.20	-1.30	13.43	0.69	11.53
	SMP/PSP	0.95	0.30	1.23	0.12	0.02
	CP/PSP	0.13	0.00	0.93	0.22	3.07

Note: all the variables except uplift are transformed to square root.

				Table	3.8.1				
Spike: SMP	three and half times the	daily average value	2						
Jun	e 1995				Novemb	ber 1995			
Day	Daily Average	Daily Average *3.5	Daily Average reserve margins	Number of spikes	Day	Daily Average	Daily Average *3.5	Daily Average reserve margins	Number of spikes
1	17.54787	61.41755	32.47927	0	1	22.99979	80.49927	30.57525	
2	18.32088	64.12308	35.17704	0	2	23.33479	81.67177	31.56878	
3	15.92439	55.73537	33.27441	0	3	23.31901	81.61654	32.50777	
4	16.24298	56.85043	36.43934	0	4	15.7143	55.00005	33.22154	
5	18.14687	63.51405	28.00814	0	5	14.05297	49.1854	35.29581	
6	22.3058	78.0703	26.76956	0	6	30.14913	105.522	27.89151	
7	20.85342	72.98697	26.45547	0	7	29.24526	102.3584	26.22348	
8	21.40522	74.91827	28.28532	0	8	27,48252	96.18882	28.09204	
9	20.26816	70.93856	30.28845	0	9	27.90923	97.68231	26.86845	
10	17.02583	59.59041	29.15058	0	10	26.41981	92.46934	26.29221	
11	15.58144	54.53504	32.86918	0	11	15.90188	55.65658	26.03582	
12	20.25642	70.89747	27.74143	0	12	14.92432	52.23512	29.86741	
13	21.98117	76.9341	25.68152	0	13	26.21953	91.76836	29.24429	
14	20.0992	70.3472	26.7344	0	14	27.51624	96.30684	27.81492	
15	20.86074	73.01259	27.96324	0	15	27.91728	97.71048	28.98286	
16	20.12971	70.45399	29.07759	0	16	29.19648	102.1877	28.28729	
17	17.30695	60.57433	28.58689	0	17	29.50096	103.2534	26.12507	
18	16.07861	56.27514	35.34161	0	18	22.89009	80.11532	23.69806	
19	20.61393	72.14876	31.1143	0	19	18.26391	63.92369	27.78107	
20	20.32147	71.12515	28.99518	0	20	33.71246	117.9936	25.55115	
21	21.55833	75.45416	27.26956	0	21	30.88044	108.0815	24.73817	
22	21.35523	74.74331	28.73105	0	22	29.90207	104.6572	25.52703	
23	20.6851	72.39785	30.66121	0	23	29.3251	102.6379	23.29451	
24	16.38813	57.35846	32.81655	0	24	27.715	97.0025	25.86669	
25	14.95033	52.32616	36.722	0	25	15.57642	54.51747	27.29268	
26	18.6042	65.1147	33.80908	0	26	14.7056	51.4696	30.81504	
27	21.11475	73.90163	33.02801	0	27	28.90298	101.1604	27.47331	
28	19.35054	67.72689	32.97688	0	28	30.16618	105.5816	26.40303	
29	19.17976	67.12916	32.26271	0	29	29.30923	102.5823	27.48747	
30	18.51548	64.80418	33.09228	0	30	33.22328	116.2815	21.56123	
				0					

				Table	3.8.2	· · ·			
			Spike: Sl	MP three and half t	imes the daily avera	age value			
June	e 1998				Novembe	er 1998			
Day	Daily Average	Daily Average *3.5	Daily Average reserve margins	Number of spikes	Day	Daily Average	Daily Average *3.5	Daily Average reserve margins	Number of spikes
1	24.69574	86.43509	30.95463	0	1	19.03793	66.63276	31.20713	(
2	27.26121	95.41424	26.97202	1	2	36.44165	127.5458	28.39896	
3	27.85836	97.50426	27.00835	0	3	31.95106	111.8287	29.3794	(
4	23.95036	83.82626	28.67296	0	4	33.73864	118.0852	29.47679	(
5	25.6902	89.9157	30.97027	2	5	27.94735	97.81573	29.66761	
6	20.51546	71.80411	30.45313	2	6	27.42731	95.99559	32.01983	(
7	13.20842	46.22947	32.87109	0	7	15.27354	53.45739	32.65893	(
8	20.50874	71.78059	29.28674	0	8	14.12019	49.42067	34.50234	(
9	21.08804	73.80814	28.54945	0	9	28.23555	98.82443	33.62086	(
10	20.41206	71.44221	28.32997	0	10	30.7011	107.4539	33.58894	
11	20.07782	70.27237	27.65229	0	11	32.99881	115.4958	32.44748	
12	18.10208	63.35728	30.9817	0	12	33.89815	118.6435	31.5067	(
13	14.78573	51.75006	30.22185	0	13	29.85567	104.4948	31.50198	(
14	14.71312	51.49592	29.53508	0	14	15.76983	55.19441	31.7293	
15	19.57945	68.52808	28.94884	0	15	15.09651	52.83779	31.9401	(
16	18.46729	64.63552	30.01829	0	16	31.20393	109.2138	29.25402	(
17	20.57681	72.01884	28.7478	0	17	30.643	107.2505	28.56456	(
18	22.7954	79.7839	27.69241	0	18	33.56537	117.4788	27.56471	(
19	19.61405	68.64918	30.00223	0	19	33.46328	117.1215	28.87534	(
20	14.49616	50.73656	28.8714	0	20	29.74186	104.0965	29.53288	(
21	12.92334	45.23169	32.7193	0	21	19.15015	67.02553	25.9837	(
22	19.18541	67.14894	31.71518	0	22	19.25031	67.37609	28.25032	(
23	19.94269	69.79942	29.47163	0	23	35.59297	124.5754	27.86433	(
24	18.84421	65.95474	30.37706	0	24	36.98049	129.4317	29.13103	
25	20.74271	72.59949	30.81651	0	25	29.67046	103.8466	30.322	(
26	17.74808	62.11828	33.43803	0	26	34.16333	119.5717	30.52983	(
27	14.09373	49.32806	32.20448	0	27	26.92446	94.23561	32.18417	(
28	12.88249	45.08872	36.9404	0	28	19.38448	67.84568	32.51472	
29	18.25935	63.90773	33.86654	0	29	19.07874	66.77559	34.89695	
30	9.24678	32.36373	32.28481	0	30	30.53128	106.8595	30.45964	(
				5				•	

				Table 3.8.3			
Ac	tual values for SM	P, LOLP, CP, Gross	Demand and gene	erators availability's for	5 spikes in June	1998—a typical Sun	nmer month
Period ¹	SMP	LOLP	СР	Gross Demand	Declared	Actual	Reserve Margin
(Half-hour)				(MWh)	(MWh)	(MWh)	(%)
	(£/MWh)						
June 2							
42 (B)	19.94593	4.81E-07	.00166	16049.9	23288.95	21463.09	31.578
43 (A)	32.88235	1.01E-06	.00265	16226.61	23295.4	21744.14	30.5812
44 (A)	32.88235	1.33E-06	.00471	16304.22	23171.3	21615.05	30.8339
45 (A)**	101.1628	1.13E-06	.00393	15840.36	22811.38	21271.36	30.8509
46 (A)	22.90038	4.51E-07	.00255	15266.52	22484.17	20973.24	33.5586
47 (A)	19.66419	1.22E-08	.00005	14789.5	22018.34	20558.37	34.9591
48 (A)	15.64027	1E-10	0	14084.7	21080.91	19815.41	34.8225
June 5							
41 (A)	23.62013	2.13E-08	.00006	15380.19	23639.25	22281.68	34.9379
42 (A)	13.63013	1.03E-08	.00003	15105.55	23575.48	22333.73	35.9269
43 (A)	22.28292	1.14E-08	.00003	15212.86	23393.9	22149.61	34.9708
44 (A)**	109.0129	1.06E-08	.00003	15114.32	23006.37	21723.61	34.3037
45 (A)	109.0129	5.8E-09	.00001	14741.14	22389.03	21116.31	34.1591
46 (A)	22.28292	1.3E-09	0.	14302.67	22260.45	21059.99	35.7485
47 (A)	14.20111	1E-10	0.	13573.61	21655.02	20621.35	37.3189
48 (A)	14.20111	0	0.	12873.24	20474.69	19770.75	37.1261

¹ Table indicator in parenthesis.

"Three and half times the daily average value of £101.16 (approximated to two decimal places).

** Three and half times the daily average value of £101.16 (approximated to two decimal places).

Ac	tual values for SMI	P, LOLP, CP, Gross		ole 3.8.2 (cont.) erators availability's for	spikes in June 19	98—a typical Summ	ner month
Period ² (Half-hour)	SMP (£/MWh)	LOLP	СР	Gross Demand (MWh)	Declared (MWh)	Actual (MWh)	Reserve Margin (%)
June 6							
17 (A)	11.6747	1.27E-08	.00003	14362.38	20375.7	19333.91	29.5122
18 (A)	14.58546	1.29E-07	.00034	14993.73	20470.13	19337.18	26.7532
19 (A)	16.67628	4.06E-07	.00109	15523.8	20576.94	19765.95	24.5573
20 (A)**	98.48792	7.56E-07	.00196	15629.33	20687.55	20044.51	24.4506
21 (A)	98.48792	1.04E-06	.00271	15737.22	20831.5	20047.09	24.4547
22 (A)	34.75546	1.16E-06	.00308	15894.98	20828.67	20027.05	23.687
23 (A)	34.75546	1.08E-06	.00288	15947.29	20826.19	20018.3	23.4268
24 (A)	20.85577	8.13E-07	.00217	15901.88	20822.43	19927.67	23.631

² Table indicator in parenthesis.

^{**} Three and half times the daily average vales of £71.80 (approximated to two decimal places).

				Table 3.8.3			
Actua Period ³ (Half-hour)	I values for SMP, L SMP (£/MWh)	OLP, CP, Gross De	mand and generate CP	ors availability's for 42 Gross Demand (MWh)	spikes in Novem Declared (MWh)	<u>bber 1998—a typica</u> Actual (MWh)	I Winter month Reserve Margin (%)
Nov 2							
32 (A)	37.54817	0.000106	0.28191	21736.35	27963.47	27077.6	22.26875
33 (A)	37.54817	0.001985	5.27189	22310.15	27901.7	26966.61	20.04019
34 (A)	50.3644	0.010686	28.24935	23088.12	27914.97	27032.62	17.29124
35 (A)	98.69448	0.016316	42.34426	23653.24	27923.5	27358.51	15.29273
36 (A)	98.69448	0.016145	41.90124	23314.08	27923.53	27399.61	16.5074
37 (A)	78.74615	0.007978	20.8645	22699.49	27925	27388.98	18.71267
38 (A)	50.3644	0.002369	6.26264	22243.71	27974.98	27427.93	20.48714
39 (A)	44.013	0.000668	1.7695	21744.93	27921.34	27261.45	22.12075
Nov 3							
32 (A)	37.45157	0.000302	0.80185	21089.23	28215.87	27308.7	25.25754
33 (A)	37.45157	0.004328	11.49668	21862.44	28140.05	27284.55	22.30845
34 (A)	59.24575	0.015648	41.22788	22926.7	28167.05	27413.03	18.60455
35 (A)	84.22222	0.0214	55.84809	23644.9	28193	27622.17	16.13204
36 (A)	84.22222	0.018797	49.05529	23285.41	28193.03	27646.7	17.4072
37 (A)	59.24575	0.00806	21.23703	22676.27	28194.4	27691.15	19.57173
38 (A)	47.18929	0.002149	5.68879	22377.74	28243.58	27574.15	20.76878
39 (A)	47.18929	0.000732	1.93731	21676.77	28173.84	27306.37	23.06064

³ Table indicator in parenthesis.

			Tab	le 3.8.3 (cont.)			
Actua	I values for SMP, L	OLP, CP, Gross De	mand and generate	ors availability's for 42	spikes in Nover	ber 1998—a typica	l Winter month
Period⁴ (Half-hour)	SMP (£/MWh)	LOLP	СР	Gross Demand (MWh)	Declared (MWh)	Actual (MWh)	Reserve Margin (%)
Nov 4							
32 (A)	31.57947	0.000204	0.54243	21036.57	28327.27	27134.4	25.73738
33 (A)	37.99338	0.004237	11.25466	21548.38	28323.65	27494.13	23.92091
34 (A)	49.82373	0.016581	43.84408	22657.41	28327.15	27652.66	20.0152
35 (A)	81.23793	0.023829	62.26045	23663.55	28333	27800.7	16.48062
36 (A)	81.23793	0.021699	56.69421	23438.79	28333.03	27897.57	17.27398
37 (A)	53.07407	0.009788	25.8488	22936.15	28334.53	27893.74	19.05231
38 (A)	40.70895	0.002402	6.37372	22530.33	28361.73	27922.12	20.56082
39 (A)	40.70895	0.000516	1.3687	21960.02	28362.11	27931.72	22.57267
Nov 5							
38 (A)	35.23207	0.002393	6.36138	21972.74	28388.35	27218.47	22.59944
39 (A)	35.23207	0.000874	2.32311	21279.82	28385.3	27109.18	25.03223
40 (A)	40.75909	0.00015	0.39674	20603.38	28382.94	26935.6	27.40928
41 (A)**	112.1229	2.96E-05	0.0765	20049.77	28360	27058.97	29.30266
42 (A)	112.1229	9.13E-06	0.02356	19549.9	28359.75	27131.52	31.06464
43 (A)	31.33982	9.82E-07	0.00262	19243.18	28352.5	27287.42	32.12879
44 (A)	30.39294	1.19E-07	0.00031	18464.17	27866.07	26800.26	33.7396
45 (A)	15.74889	2.5E-09	1E-05	17808.91	27196.26	26079.1	34.51706

^{**} Three and half times the daily average value of £97.82 (approximated to two decimal places).

				le 3.8.3 (cont.)		1 1000	
Actua Period⁵ (Half-hour)	I values for SMP, L SMP (£/MWh)	OLP, CP, Gross De	mand and generate	ors availability's for 42 Gross Demand (MWh)	Declared (MWh)	Actual (MWh)	I Winter month Reserve Margin (%)
Nov 9							
32 (A)	32.46056	1.42E-05	0.03791	19714.34	28907.62	28045.75	31.80225
33 (A)	30.69325	0.001377	3.66738	20408.88	28854.85	28111.5	29.27054
34 (A)	52.66864	0.006489	17.13989	22035.36	28882.25	28272.82	23.70622
35 (A)	84.22222	0.009185	23.9714	22832.87	28891	28238.97	20.96892
36 (A)	84.22222	0.008404	21.9338	22515.62	28891	28244.65	22.06701
37 (A)	56.48092	0.003461	9.12913	22055.02	28889.67	28266.33	23.65777
38 (A)	39.18902	0.000787	2.0901	21693.1	28918.72	28330.49	24.98597
39 (A)	39.18902	0.000208	0.55289	21141.89	28869.19	28349.11	26.76661
Nov 10							
16 (A)	16.47285	5.45E-08	0.00015	19133.1	28768.3	28010.59	33.4924
17 (A)	17.63063	1.15E-07	0.00031	19469.31	28935.44	28445.29	32.71468
18 (A)	17.63063	3.44E-07	0.00092	19495.42	28935.72	28439.33	32.62507
19 (A)	97.16816	5.22E-07	0.00135	19647	28911	28517.66	32.04317
20 (A)	97.16816	6.61E-07	0.00171	19604.58	28910.7	28505.15	32.1892
21 (A)	97.16816	6.64E-07	0.00172	19557.9	28902	28383.6	32.3303
22 (A)	95.65273	6.6E-07	0.00171	19591.09	28902	28321.16	32.21544
23 (A)	25.98985	7.29E-07	0.00194	19815.26	28902.07	28302.21	31.44

⁵ Table indicator in parenthesis.

				ole 3.8.3 (cont.)			
	I values for SMP, L	OLP, CP, Gross De	emand and generate	ors availability's for 42	spikes in Nover	iber 1998—a typica	Winter month
Period ^e (Half-hour)	SMP (£/MWh)	LOLP	СР	Gross Demand (MWh)	Declared (MWh)	Actual (MWh)	Reserve Margin (%)
Nov 11							
22 (A)	34.10997	1.29E-06	0.00342	20087.86	28935.33	28388.36	30.57671
23 (A)	34.10997	1.5E-06	0.004	19994.81	28926.5	28368.71	30.87717
24 (A)	64.91676	1.76E-06	0.00462	19963.1	28923	28329.46	30.97846
25 (A)	98.72914	1.67E-06	0.00432	19918.67	28923	28207.96	31.13206
26 (A)	98.72914	1.11E-06	0.00288	19702.42	28923	28165.26	31.87977
27 (A)	64.91676	6.31E-07	0.00166	19651.98	28923	28136.22	32.05414
28 (A)	23.05255	5.31E-07	0.00142	19774.92	28923.28	27819.96	31.62975
29 (A)	23.05255	4.68E-07	0.00126	19876.42	28938.07	27525.36	31.31392
Nov 12							
16 (A)	26.55993	1.1E-07	0.0003	19654.9	28413.45	27234.5	30.82535
17 (A)	21.1309	3.16E-07	0.00084	20039.25	28582.74	27369.04	29.89039
18 (A)	22.68743	1.21E-06	0.00322	20036.23	28633.17	27118.64	30.0244
19 (A)	93.01134	2.18E-06	0.00567	20177.05	28650.5	26945.62	29.57524
20 (A)	93.01134	2.9E-06	0.00753	20156.24	28650.83	26996.06	29.64867
21 (A)	93.01134	3.31E-06	0.00862	20065.01	28660.5	27113.28	29.99073
22 (A)	93.01134	4.63E-06	0.01206	20130.46	28660.5	27246.71	29.76236
23 (A)	29.13934	7.35E-06	0.01958	20422.34	28660.5	27391.88	28.74395
24 (A)	29.13934	1.24E-05	0.03304	20588.26	28660.23	27552.45	28.16437

Actua	I values for SMP, L	OLP, CP, Gross De		ble 3.8.3 (cont.) ors availability's for 42	spikes in Novem	ber 1998—a typica	l Winter month
Period ⁷ (Half-hour)	SMP (£/MWh)	LOLP	СР	Gross Demand (MWh)	Declared (MWh)	Actual (MWh)	Reserve Margin (%)
Nov 13							
21 (A)	37.06754	2.09E-06	0.00555	20529.87	28286.5	27763.11	27.42166
22 (A)	33.27647	2.47E-06	0.00657	20475.01	28286	27769.9	27.61435
23 (A0	46.03704	2.82E-06	0.00746	20473.51	28280.17	27771.47	27.60471
24 (A)	84.82226	2.86E-06	0.00747	20449.54	28274.45	27788.53	27.67485
25 (A)	84.82226	1.97E-06	0.00514	20362.94	28344	27789.2	28.15786
26 (A)	84.82226	1.1E-06	0.00288	20101.1	28482	27780.57	29.42527
27 (A)	29.65517	4.35E-07	0.00116	19870.81	28509.5	27750.7	30.30108
28 (A)	24.80382	2.42E-07	0.00065	19992.41	28510.52	27748.82	29.87708
29 (A)	24.80382	2.05E-07	0.00055	20018.89	28523.48	27750.84	29.81613

⁷ Table indicator in parenthesis.

				le 3.8.3 (cont.)			
Actua Period [®] (Half-hour)	I values for SMP, L SMP (£/MWh)	ULP, CP, Gross De	mand and generate	ors availability's for 42 Gross Demand (MWh)	spikes in Novem Declared (MWh)	ber 1998—a typica Actual (MWh)	I Winter month Reserve Margin (%)
Nov 23							
14 (A)	21.03314	8.78E-08	0.00023	18592.26	28466.67	27741.37	34.68764
15 (A)	30.67527	9.94E-07	0.00264	19845.08	28801.31	28144.61	31.09661
16 (A)	34.06497	6.26E-06	0.01666	20443.25	29024.7	28224.28	29.56601
17 (A)	92.33845	1.4E-05	0.03643	20767.16	29228.37	28239.12	28.94861
18 (A)	92.33845	3.52E-05	0.09157	20957.89	29236.62	28373.62	28.31631
19 (A)	30.67527	6.45E-05	0.17172	21422.83	29239.5	28180.49	26.73324
20 (A)	92.33845	8.39E-05	0.2184	21550.18	29239.12	28480.92	26.29674
21 (A)	92.33845	8.57E-05	0.22291	21464.43	29234.5	28751.37	26.57844
22 (A)	30.67527	7.56E-05	0.20142	21614.78	29234.5	28756.34	26.06415
23 (A)	45.00971	7.3E-05	0.19341	21679.59	29121.53	28739.19	25.55478
32 (A)	35.5767	0.002209	5.87175	21959.41	28916.35	28690.12	35.5767
33 (A)	41.66366	0.022254	59.02381	23085.17	28916.47	28691.64	41.66366
34 (A)	51.56944	0.052877	139.7251	24107.89	28888.5	28752.27	51.56944
35 (A)	81.33793	0.062553	163.4295	24336.63	28888.5	28884.45	81.33793
36 (A)	81.33793	0.046578	121.6929	23953.65	28888.5	28943.64	81.33793
37 (A)	56.12823	0.017472	46.08983	23400.85	28888.5	28984.13	56.12823
38 (A)	45.49512	0.006165	16.32739	23018	28928.92	28912.85	45.49512

				ble 3.8.3 (cont.)			1
Actua Period ⁹ (Half-hour)	I values for SMP, L SMP (£/MWh)	OLP, CP, Gross De	mand and generate	ors availability's for 42 Gross Demand (MWh)	Declared (MWh)	<u>ber 1998—a typica</u> Actual (MWh)	Winter month Reserve Margin (%)
Nov 24							
18 (A)	39.5632	8.48E-05	0.22505	21601.12	29544	28802.56	26.88493
19 (A)	39.5632	0.000156	0.41399	21852.11	29544	28855.51	26.03536
20 (A)	39.64214	0.000212	0.56351	21902.53	29544	28810.99	25.86472
21 (A)	94.46066	0.000216	0.56049	21732.11	29544	28909.65	26.44155
22 (A)	94.46066	0.0002	0.51951	21757.05	29544	29010.78	26.35714
23 (A)	94.46066	0.000204	0.53131	21789.98	29544	28934.18	26.24567
24 (A)	94.46066	0.000209	0.54445	21828.6	29544.85	28955.13	26.11706
25 (A)	94.46066	0.000166	0.4307	21853.45	29574.9	29033.96	26.10811
26 (A)	33.84541	0.000116	0.30737	21700.91	29577.5	29070.13	26.63033
27 (A)	33.84541	0.00007	0.18621	21739.18	29577.5	29044.25	26.50097
Nov 26							
24 (A)	37.10336	4.63E-05	0.12314	21769.93	29644.21	29332.78	26.56262
25 (A)	63.66667	4.85E-05	0.12766	21676.27	29670.4	29257.62	26.94312
26 (A)	63.66667	4.54E-05	0.11941	21376.63	29672.83	29350.27	27.95892
27 (A)	98.49184	3.31E-05	0.08585	21299.72	29668	29368.28	28.20643
28 (A)	98.49184	2.83E-05	0.0734	21173.96	29662.36	29367.13	28.61673
29 (A)	34.72199	2.11E-05	0.05604	21438.94	29644.5	29340.7	27.67989

⁹ Table indicator in parenthesis.

				able 3.8.3 (cont.)			
Actua	I values for SMP, L	OLP, CP, Gross De	emand and genera	tors availability's for 42	spikes in Novem	iber 1998—a typica	Winter month
Period ¹⁰ (Half-hour)	SMP (£/MWh)	LOLP	СР	Gross Demand (MWh)	Declared (MWh)	Actual (MWh)	Reserve Margin (%)
Nov 28							
23 (A)	17.72608	0	0	18052.74	25711.5	24129.93	29.7873
24 (A)	16.51048	0	0	18014.26	25711.5	24171.85	29.93695
25 (A)	13.21429	0	0	17778.66	25711.5	24251.35	30.85328
26 (A)**	85.85075	0	0	17349.63	25711.67	24319.48	32.52236
27 (A)	85.85075	0	0	16969.56	25697.17	24357.96	33.96332
28 (A)	85.85075	0	0	16668.07	25573.92	24239.47	34.82395
29 (A)	16.51048	0	0	16641.63	25571.5	23974.19	34.92117
30 (A)	16.51048	0	0	16584.65	25605	23916.75	35.22885
Nov 29							
38 (A)	17.61979	1.31E-08	4E-05	19438.69	26414.08	25092.08	26.40787
39 (A)	17.61979	3.5E-09	1E-05	19119.7	26421.35	25246.88	27.63545
40 (A)	17.61979	8E-10	0	18661.35	26239.25	25342.4	28.88003
41 (A)**	94.71721	1E-10	0	18291.57	25925.75	25397.01	29.44631
42 (A)	94.71721	0	0	17915.86	25798.63	25358.25	30.55501
43 (A)	94.71721	0	0	17469.67	25621.05	25347.79	31.81517
44 (A)	17.47936	0	0	16955.97	25407.4	25167.65	33.26364
45 (A)	17.47936	0	0	16232.3	25090.65	25007.66	35.30536

** Three and half times the daily average value of £67.84 (approximated to two decimal places).

^{**} Three and half times the daily average value of £66.78 (approximated to two decimal places).

				able 3.8.4			
	Ac	ctual values for SMP	, LOLP, CP, Gross	Demand and generate	ors availability's c	on April 4	
Period (half-hour)	SMP (£/MWh)	LOLP (£/MWh)	CP (£/MWh)	Gross Demand (MWh)	Declared (MWh)	Actual (MWh)	Reserve Margin
April 4				(())			
16 (A)	15.24	4.31E-07	0.00105	18,603.93	24,244.55	24,103.29	23.27
17 (A)	21.10	8.2E-07	0.002	18,996.55	24,637.93	24,496.67	28.90
18 (A)	21.10	1.68E-06	0.00409	18,592.50	24,633.17	24,491.91	24.52
19 (A)	211.24	2.0534e-06	0.00461	18,531.50	24,774.30	24,633.00	25.20
20 (A)	211.24	2.3844e-06	0.00536	18,462.80	24,932.40	24,791.10	25.48
21 (A)	211.24	0.000000214	0.00481	18,372.10	24,955.50	24,814.20	25.84
22 (A)	211.24	1.9862e-06	0.00446	18,342.20	24,955.50	24,814.20	25.94
23 (A)	21.10	2.03E-06	0.00494	18,507.83	24,952.20	24,810.94	25.29
24 (A)	21.10	2.18E-06	0.00531	18,529.33	24,943.80	24,802.54	25.21
25 (A)	21.10	1.78E-06	0.00433	18,603.75	24,953.50	24,812.24	24.91

				able 3.8.5			<u> </u>
	Ac	tual values for SMP,	LOLP, CP, Gross	Demand and generato	rs availability's o	n April 11	
Period	SMP (£/MWh)	LOLP	CP	Gross Demand	Declared	Actual	Reserve Margir
(half-hour)		(£/MWh)	(£/MWh)	(MWh)	(MWh)	(MWh)	(%)
April 11							
32 (A)	14.66	3.8007e-06	0.00929	17,249.00	24,936.30	24,665.00	30.38
33 (A)	14.66	7.7685e-06	0.01899	17,446.80	25,022.20	24,701.50	29.58
34 (A)	18.68	9.9127e-06	0.02418	17,421.60	25,054.40	24,753.20	29.68
35 (A)	836.16	8.0974e-06	0.01313	17,234.30	25,034.70	24,816.80	30.43
36 (A)	836.16	3.5781e-06	0.0058	16,626.30	25,151.90	24,901.90	32.89
37 (A)	836.16	3.156e-07	0.00051	16,142.00	25,160.90	24,965.50	34.84
38 (A)	12.26	0.00000071	0.00017	15,943.30	25,227.70	25,031.10	35.65
39 (A)	12.26	0.00000017	0.00004	15,835.20	25,252.00	25,059.20	36.08
40 (B)	10.40	1.225e-07	0.0003	15,951.90	24,793.50	24,637.20	35.61

-----the second secon (1 ----more has not up and more

- 389 -

			Table 3.9.2		
		W	inter 1994 / 95		
		Dependent variab	e: sqrt:(System Marginal P	'rice)	
Period	N	Uplift	Gross Demand	R^2	F Statistics
1	90	0.50	0.03	0.36	10.90
		[0.126]	[0.017]		(0.0001)
		(0.000)	(0.090)		
2	90	0.58	0.021	0.27	15.40
		[0.105]	[0.035]		(0.0000)
3	90	(0.000)	(0.554)	0.35	24.70
5	50	[0.113]	[0.038]	0.35	(0.0000)
		(0.000)	(0.890)		(0.0000)
4	90	0.81	0.014	0.37	28.44
		[0.109]	[0.036]		(0.0000)
		(0.000)	(0.702)		
5	90	0.67	0.047	0.36	25.27
		[0.097] (0.000)	[0.022] (0.036)		(0.0000)
6	90	0.52	0.026	0.22	13.46
0	50	[0.103]	[0.027]	0.22	(0.0000)
		(0.000)	(0.331)		
7	90	0.61	0.021	0.30	20.74
		[0.097]	(0.023]		(0.0000)
		(0.000)	(0.367)		
8	90	0.52	0.049	0.36	16.28
		[0.098] (0.000)	[0.016] (0.001)		(0.0000)
9	90	0.50	0.022	0.36	9.05
1. 7.	50	[0.133]	[0.011]	0.50	(0.0003)
		(0.000)	(0.041)		(
10	90	0.41	0.021	0.38	7.75
		[0.120]	[0.010]		(0.0008)
11	90	(0.001)	0.039	0.45	14.70
	90	[0.110]	[0.012]	0.45	14.76 (0.0000)
		(0.000)	(0.003)		(0.0000)
12	90	0.75	0.024	0.60	17.64
		[0.140]	[0.0080]		(0.0000)
		(0.000)	(0.003)	-	
13	90	0.69	0.025	0.57	17.88
		[0.125]	[0.0083]		(0.0000)
14	90	(0.000)	(0.004)	0.75	139.61
14	50	[0.066]	[0.0086]	0.75	(0.0000)
		(0.000)	(0.000)		(0.0000)
15	90	0.62	0.025	0.58	68.79
		[0.092]	[0.001]		(0.0000)
		(0.000)	(0.014)		
16	90	0.55	0.027	0.58	46.33
		[0.12] (0.000)	[0.001] (0.008)		(0.0000)
17	90	0.54	0.035	0.52	46.96
		[0.14]	[0.015]	0.52	(0.0000)
		(0.000)	(0.021)		
18	90	0.46	0.026	0.54	41.04
		[0.103]	[0.011]		(0.0000)
10	00	(0.000)	(0.021)	0.30	
19	90	0.34 [0.105]	0.036 [0.013]	0.38	21.82
		(0.002)	(0.006)	1	(0.0000)

			le 3.9.2 (cont.)		
			nter 1994 / 95		
Period	N		e: sqrt:(System Marginal P		E Guidada
Perioa	N	Uplift	Gross Demand	R^2	F Statistics
20	90	0.26	0.059	0.27	18.17
		[0.108]	[0.017]		(0.0000)
		(0.019)	(0.001)		
21	90	0.23	0.053	0.21	11.63
		[0.101]	[0.018]		(0.0000)
		(0.023)	(0.005)		
22	90	0.29	0.012	0.20	5.48
	(1	[0.102]	[0.017]		(0.0058)
22		(0.005)	(0.461)	0.10	
23	90	0.25	0.011	0.19	4.75
		[0.093]	[0.017]		(0.0110)
24		(0.008)	(0.514)	0.14	2.70
24	90	0.21	0.008	0.14	3.78
		(0.019)	[0.019] (0.662)		(0.0267)
25	90	0.32	-0.005	0.19	4.77
	50	[0.106]	[0.020]	0.15	(0.0108)
		(0.003)	(0.800)		(0.0100)
26	90	0.41	-0.019	0.25	7.86
		[0.104]	[0.019]		(0.0007)
		(0.000)	(0.313)		
27	90	0.52	-0.016	0.35	9.00
		[0.124]	[0.017]		(0.0003)
		(0.000)	(0.357)		
28	90	0.53	0.011	0.42	8.43
		[0.132]	[0.013]		(0.0004)
		(0.000)	(0.384)		
29	90	0.527	0.033	0.48	11.99
		[0.132]	[0.113]		(0.0000)
		(0.000)	(0.004)		
30	90	0.54	0.028	0.52	15.91
		[0.123]	[0.011]		(0.0000)
24		(0.000)	(0.010)		
31	90	0.56	0.022	0.61	40.21
		[0.073] (0.000)	[0.0096]		(0.0000)
32	90	0.203	0.0027)	0.50	23.88
22	50	[0.039]	[0.013]	0.50	(0.0000)
		(0.000)	(0.525)		(0.0000)
33	90	0.08	0.0063	0.44	24.95
		[0.015]	[0.019]		(0.0000)
		(0.000)	(0.743)		
34	90	0.032	0.048	0.36	34.35
		[0.0076]	[0.021]		(0.0000)
		(0.000)	(0.027)		
35	90	0.044	0.037	0.33	26.67
		[0.010]	[0.029]		(0.0000)
		(0.000)	(0.207)		
36	90	0.042	0.019	0.22	14.45
		[0.011]	[0.033]		(0.0000)
		(0.000)	(0.559)		
37	90	0.016	0.034	0.08	4.72
		[0.014]	[0.028]		(0.0114)
20		(0.166)	(0.227)		4.07
38	90	0.017	0.025	0.04	1.85
		[0.023]	[0.025]	1	(0.1629)

		Tat	ole 3.9.2 (cont.)		
		W	inter 1994 / 95		
		Dependent variab	e: sqrt:(System Marginal P	Price)	
Period	N	Uplift	Gross Demand	R^2	F Statistics
39	90	0.089 [0.043] (0.041)	0.013 [0.036] (0.620)	0.07	4.10 (0.0198)
40	90	0.46 [0.095] (0.000)	-0.0093 [0.022] (0.680)	0.29	12.00 (0.0000)
41	90	0.75 [0.100] (0.000)	0.021 [0.019] (0.260)	0.47	28.29 (0.0000)
42	90	0.79 [0.095] (0.000)	0.041 [0.016] (0.016)	0.51	36.01 (0.0000)
43	90	0.73 [0.095] (0.000)	0.070 [0.016] (0.000)	0.53	31.42 (0.0000)
44	90	0.71 [0.063] (0.000)	0.067 [0.014] (0.000)	0.64	111.67 (0.0000)
45	90	0.74 [0.047] (0.000)	0.049 [0.012] (0.000)	0.74	181.39 (0.0000)
46	90	0.75 [0.058] (0.000)	0.025 [0.013] (0.058)	0.74	106.21 (0.0000)
47	90	0.69 [0.077] (0.000)	0.021 [0.010] (0.039)	0.75	41.91 (0.0000)
48	90	0.33 [0.145] (0.024)	0.0064 [0.0059] (0.284)	0.34	3.61 (0.0312)

١

1 1.1

) 1.

3 1

Į

]

÷

1

F

ĩ

1 1

 \boldsymbol{l}_{i}^{i} Э 1: \$ 1 1: λ $\Lambda = I = 0$ C, ų puse

1

ι ť

4

Ŀ

				Table 3.9.3 ummer 1995			
Ī				e: sqrt:(System Margina	Price)		
1	Period	N	Uplift	Gross Demand	R^2	F Statistics	
	1	62	0.22 [0.029] (0.000)	0.016 [0.0097] (0.094)	0.45	43.40 (0.0000)	
	2	62	0.21 [0.045] (0.000)	0.007 [0.0076] (0.345)	0.42	13.37 (0.0000)	
	3	62	0.23 [0.044 (0.000)	0.01 [0.009] (0.210)	0.53	22.36 (0.0000)	
	4	62	0.23 [0.046] (0.000)	0.016 [0.009] (0.083)	0.56	26.98 (0.0000)	-
-	5	62	0.23 [0.046] (0.000)	0.017 [0.0097] (0.089)	0.57	26.94 (0.0000)	
	6	62	0.23 [0.046] (0.000)	0.017 [0.0097] (0.091)	0.56	26.60 (0.0000)	
	7	62	0.244 [0.050] (0.000)	0.019 [0.008] (0.019)	0.56	21.88 (0.000)	
	8	62	0.24 [0.050] (0.000)	0.021 [0.0078] (0.011)	0.57	23.54 (0.0000)	
	9	62	0.20 [0.043] (0.000)	0.026 [0.0046] (0.000)	0.58	24.01 (0.0000)	
ſ	10	62	0.19 [0.045] (0.000)	0.025 [0.0045] (0.000)	0.55	19.75 (0.0000)	
	11	62	0.21 [0.050] (0.000)	0.025 [0.0043] (0.000)	0.65	21.87 (0.0000)	
	12	62	0.24 [0.040] (0.000)	0.024 [0.0039] (0.000)	0.71	35.42 (0.0000)	
	13	62	0.19 [0.050] (0.000)	0.017 [0.004] (0.000)	0.51	11.19 (0.0001)	-
	14	62	0.16 [0.044] (0.001)	0.035 [0.0058] (0.000)	0.56	48.35 (0.0000)	
	15	62	0.17 [0.068] (0.016)	0.038 [0.0052] (0.000)	0.67	128.31 (0.0000)	
	16	62	0.13 [0.063] (0.041)	0.035 [0.0046] (0.000)	0.51	61.82 (0.0000)	_
	17	62	0.22 [0.111] (0.056)	0.039 [0.0047] (0.000)	0.43	37.57 (0.0000)	
	18	62	0.30 [0.154] (0.058)	0.036 [0.0056] (0.000)	0.34	20.29 (0.0000)	_
	19	62	0.47 [0.187] (0.015)	0.038 [0.0075] (0.000)	0.36	21.74 (0.0000)	-

Table 3.9.3 (cont.) Summer 1995								
Dependent variable: sqrt:(System Marginal Price)								
Period	N	Uplift	Gross Demand	R^2	F Statistics			
20	62	0.44	0.047	0.34	20.29			
		[0.187]	[0.010]		(0.0000)			
		(0.023)	(0.000)		(,			
21	62	0.29	0.037	0.26	11.96			
		[0.17]	[0.012]		(0.0000)			
		(0.095)	(0.002)		(
22	62	0.13	0.033	0.15	6.08			
		[0.144]	[0.013]		(0.0040)			
		(0.378)	(0.018)					
23	62	0.12	0.038	0.20	9.50			
		[0.14]	[0.014]		(0.0003)			
		(0.380)	(0.007)					
24	62	0.29	0.035	0.29	11.95			
		[0.13]	[0.015]		(0.0000)			
		(0.030)	(0.021)					
25	62	0.058	0.071	0.29	15.28			
)[]		[0.159]	[0.018]		(0.0000)			
		(0.718)	(0.000)					
26	62	0.17	0.064	0.31	16.09			
		[0.183]	[0.016]		(0.0000)			
		(0.350)	(0.000)					
27	62	0.26	0.023	0.15	5.10			
		[0.189]	[0.011]		(0.0091)			
		(0.175)	(0.037)					
28	62	0.20	0.027	0.21	9.60			
		[0.136]	[0.0063]		(0.0002)			
		(0.140)	(0.000)					
29	62	0.24	0.030	0.30	17.63			
		[0.128]	[0.0051]		(0,0000)			
		(0.070)	(0.000)					
30,	62	0.003	0.033	0.34	21.38			
		(0.007]	[0.0052]		(0.0000)			
		(0.061)	(0.000)					
31	62	0.29	0.031	0.42	27.28			
		[0.085]	[0.0047]		(0.0000)			
		(0.001)	(0.000)					
32	62	0.28	0.030	0.43	29.54			
		[0.075]	[0.0051]		(0.0000)			
		(0.000)	(0.000)					
33	62	0.29	0.049	0.47	38.16			
		[0.095]	[0.0077]		(0.0000)			
		(0.004)	(0.000)					
34	62	0.111	0.095	0.56	87.39			
		[0.171]	[0.0092]		(0.0000)			
_		(0.519)	(0.000)					
35	62	0.185	0.085	0.47	52.22			
		[0.192]	[0.0099]		(0.0000)			
		(0.341)	(0.000)					
36	62	0.31	0.049	0.18	9.76			
		[0.26]	[0.012]		(0.0002)			
		(0.235)	(0.000)					
37	62	0.23	0.022	0.17	5.05			
		[0.104]	[0.0075]		(0.0094)			
		(0.032)	(0.004)					
38	62	0.27	0.029	0.39	20.45			
1		[0.069]	[0.0047]		(0.0000)			
		(0.000)	(0.000)					

			ble 3.9.3 (cont.) jummer 1995					
Dependent variable: sqrt:(System Marginal Price)								
Period	N	Uplift	Gross Demand	R^2	F Statistics	I		
39	62	0.27 [0.070] (0.000)	0.029 [0.0055] (0.000)	0.14	24.99 (0.0000)			
40	62	0.42 [0.043] (0.000)	0.026 [0.0058] (0.000)	0.62	49.36 (0.0000)	I		
41	62	0.50 [0.054] (0.000)	0.035 [0.0096] (0.000)	0.68	43.27 (0.0000)	1		
42	62	0.52 [0.115] (0.000)	0.089 [0.016] (0.000)	0.49	31.79 (0.0000)			
43	62	0.22 [0.271] (0.428)	0.092 [0.017] (0.000)	0.26	13.95 (0.000)			
44	62	0.48 [0.222] (0.036)	0.071 [0.0217] (0.002)	0.18	6.43 (0.0030)	1		
45	62	0.45 [0.162] (0.007)	0.040 [0.017] (0.022)	0.15	4.90 (0.0107)	1		
46	62	0.35 [0.177] (0.049)	0.020 [0.019] (0.283)	0.07	2.35 (0.1038)			
47	62	0.36 [0.210] (0.092)	0.037 [0.013] (0.005)	0.21	5.24 (0.0080)	2		
48	62	0.21 [0.077] (0.008)	0.034 [0.012] (0.005)	0.18	6.98 (0.0019))		

1

1

Ţ

1

3

1

ĩ

I

1

3

I

З Н

ŝ

в.

1

0.

0 5

0

Э.

Á.

pus .

τρ. σ). ρ.

			Table 3.9.4 /inter 1997/98		l à
			e: sqrt:(System Margina		
Period	N	Uplift	Gross Demand	R^2	F Statistics
1	90	0.25	0.14	0.17	18.10
		[0.638]	[0.035]		(0.0000)
		(0.693)	(0.000)		
2	90	-0.27	0.094	0.11	6.56
		[0.51]	[0.031]		(0.0022)
		(0.574)	(0.003)		(0.0012)
3	90	0.026	0.023	0.01	0.50
		[0.310]	[0.034]		(0.6070)
		(0.402)	(0.504)		(,
4	90	0.39	-0.0022	0.01	0.97
		[0.305]	[0.028]		(0.3829)
		(0.207)	(0.937)		(0.0020)
5	90	0.37	0.03	0.07	7.77
		[0.151]	[0.011]		(0.0008)
		(0.016)	(0.071)		(0.0000)
6	90	0.021	0.041	0.05	2.89
		[0.265]	[0.017]	0.00	(0.0607)
		(0.078)	(0.018)		
7	90	0.32	0.026	0.04	1.60
		[0.271]	[0.016]		(0.2069)
		(0.240)	(0.098)		(012003)
8	90	2.70	0.004	0.33	2.69
-		[1.451]	[0.032]	0.55	(0.0736)
		(0.066)	(0.899)		(0.07.50)
9	90	2.60	0.028	0.33	3.60
5	50	[1.57]	[0.033]	0.30	(0.0316)
		(0.101	(0.394)		(0.0510)
10	90	0.40	0.057	0.24	17.54
		[0.311]	[0.013]	0.24	(0.0000)
		(0.205)	(0.000)		(0.0000)
11	90	0.84	0.032	0.17	8.61
		[0.52	[0.013]	0.17	(0.0004)
		(0.111)	(0.020)		(0.0004)
12	90	1.09	0.033	0.25	10.36
		[0.56]	[0.011]	0.23	(0.0001)
		(0.053)]	(0.005)		(0.0001)
13	90	1.36	0.037	0.33	23.12
Du S L		[0.53]	[0.011]	0.55	(0.0000)
6 . U		(0.012)	(0.001)		(0.0000)
14	90	0.67	0.07	0.44	49.80
-		[0.291]	(0.0082]	0	(0.0000)
		(0.023)	(0.000)		(0.0000)
15	90	0.17	0.073	0.63	72.59
		[0.179]	[0.0062]	0.05	(0,0000)
		(0.351)	(0.000)		(0.0000)
16	90	0.119	0.084	0.75	120.56
	50	[0.188]	[0.0055]	0.75	
.L.		(0.530)	(0.000)		(0.0000)
17	90	0.56	0.090	0.84	218.07
• /		[0.133]	[0.0052]	0.04	(0.0000)
		(0.000)	(0.000)		(/
18	90	0.30	0.03	0.82	192.00
10	50	[0.156]	[0.0054]	0.02	183.09
		(0.054)	(0.000)		(0.0000)
19	90	0.24	0.101	0.74	110.73
1.2	30	[0.187]	[0.0073]	0.74	119.73
	1	0+10/	[[0.0073]		(0.0000)

Table 3.9.4 (cont.) Winter 1997/98							
			le: sqrt:(System Margina				
Period	N	Uplift	Gross Demand	R^2	F Statistics		
20	90	-0.025	111	0.63	105.30		
		[0.179]	[0.0079]		(0.0000)		
		(0.889)	(0.000)				
21	90	-0.088	0.110	0.53	72.31		
		[0.185]	[[0.0094]		(0.0000)		
		(0.634)	(0.000)		(
22	90	-0.105	0.088	0.52	56.14		
		[0.146]	[0.0085]		(0.0000)		
		(0.473)	(0.000)		(0.000)		
23	90	-0.174	0.074	0.27	7.35		
		[0.136]	[0.022]		(0.0011)		
		(0.202)	(0.001)		(,		
24	90	-0.079	0.071	0.26	5.91		
		[0.094]	[0.23]		(0.0039)		
		(0.404)	(0.002)				
25	90	-0.021	0.071	0.27	7.41		
		[0.069]	[0.019]		(0.0011)		
		(0.830)	(0.000)				
26	90	-0.095	0.082	0.36	11.95		
1.		[0.074]	[0.0190]		(0.0000)		
		(0.203)	(0.000)				
27	90	0.0076	0.102	0.58	58.33		
		[0.120]	[0.0097]		(0.0000)		
		(0.950)	(0.000)				
28	90	0.070	0.105	0.59	78.08		
		[0.149]	[0.0088]	1	(0.0000)		
		(0.637)	(0.000)				
29	90	0.00015	0.119	0.54	74.46		
		0.151	[0.0098]		(0.0000)		
		(0.999)	(0.000)				
30	90	0.204	0.111	0.48	42.81		
		[0.231]	[0.013]		(0.0000)		
		(0379)	(0.000)				
31	90	0.232	0.099	0.48	46.15		
		[0.181]	[0.0112]		(0.0000)		
		(0.202)	(0.000)				
32	90	0.092	0.0906	0.51	48.31		
0,6,5		[0.056]	[0.012]		(0.0000)		
IONAL		(0.101)	(0.000)				
33	90	0.0043	0.130	0.68	102.87		
		[0.014]	[0.013]		(0.0000)		
		(0.747)	(0.000)				
34	90	0.0022	0.17	0.77	132.40		
1		[0.0089]	[0.016]		(0.0000)		
1		(0.801)	(0.000)				
35	90	0.0026	0.188	0.80	165.18		
o.i		[0.0084]	[0.012]		(0.0000)		
		(0.758)	(0.000)				
<u> </u>	90	-0.0030	0.187	0.79	124.01		
elos.		[0.0106]	[0.016]		(0.0000)		
		(0.778)	(0.000)				
37	90	-0.044	0.135	0.70	96.82		
01 54		[0.0088]	[0.010]		(0.0000)		
		(0.000)	(0.000)				
38	90	-0.046	0.127	0.72	118.10		
		[0.015]	[0.0090]		(0.0000)		
1 S101	90			0.72			

			le 3.9.4 (cont.) /inter 1997/98						
ายมอบต	Dependent variable: sqrt:(System Marginal Price)								
Period	N	Uplift	Gross Demand	R^2	F Statistics				
39.3	90	-0.04	0.118	0.65	102.15				
		[0.043]	[0.0091]		(0.0000)				
ID PAY		(0.334)	(0.000)						
40	90	0.117	0.101	0.64	123.10				
		[0.179]	[0.0076]		(0.0000)				
		(0.512)	(0.000)						
41	90	0.35	0.086	0.60	74.98				
III) (SEC		[0.178]	[0.0075]		רי (0.0000)				
0.0011		(0.054)	(0.000)						
42	90	0.40	0.096	0.61	43.26				
LOISSO		[0.177]	[0.010]		(0.0000)				
1วอโqu		(0.027)	(0.000)		C*				
43	90	0.118	0.095	0.61	53.89				
		[0.177]	[0.010]		(0.0000)				
		(0.507)	(0.000)		(0.0000)				
4400 9	90	0.60	0.110	0.58	58.66				
pue (di		[0.265]	[0.011]		(0.0000)				
		(0.026)	(0.000)		(0.0000)				
ITEASE)	90	0.92	0.123	0.63	96.77				
LISTUI 1.		[0.359]	[0.0122]		(0.0000)				
		(0.012)	(0.000)						
1).12 46	90	1.101	0.105	0.44	58.52				
IC SQUE		[0.470]	[0.015]		(0.0000)				
		(0.021)	(0.000)						
47 -Siver,	90	0.98	0.080	0.30	25.66				
		[0.456]	[0.016]		(0.0000)V				
I and the		(0.034)	(0.000)		no.u				
V18) 01 ···	90	1.719	0.069	0.34	41.44				
		[0.349]	[0.013]		(0.0000)				
T fo estimation		(0.000)	(0.000)		- *****				

an.L.

2.2 Peer Parela Concla

ΟΛΕ

	LGCOL:
bus sguibnit	their.
fo scause of	COUC:
actually are	្រាំក្នុងពារ
to stibus work to	2.1

STICE

Ailens on

broad s'Ioned

iseny s'Ione' o

- 398 -

J

			Table 3.9.5		
			ummer 1998 e: sqrt:(System Margina	Prico)	
Period	N	Uplift	Gross Demand		F Statistics
renou	14	Opint	Gross Demanu	R^2	T Statistics
1	62	-0.056	0.063	0.20	7.58
		[0.431]	[0.020]		(0.0012)
		(0.898)	(0.003)		
2	62	0.368	0.026	0.09	3.28
		[0.294]	[0.017]		(0.0445)
		(0.215)	(0.145)		
3	62	0.36	0.039	0.14	4.46
		[0.284]	[0.019]		[0.0157)
		(0.214)	(0.049)		
4	62	0.055	0.068	0.24	8.22
		[0.268]	[0.19]		(0.0007)
		(0.838)	(0.001)		
5	62	0.08	0.064	0.23	8.70
		[0.272]	[0.017]		(0.0005)
		(0.720)	(0.000)		
6	62	0.189	0.060	0.21	9.74
		[0.271]	[0.015]		(0.0002)
		(0.488)	(0.000)		
7	62	0.088	0.050	0.14	5.70
		[0.341]	[0.0150]		(0.0054)
		(0.797)	(0.002)		
8	62	0.00049	0.049	0.12	5.70
0		[0.351]	[0.016]		(0.0094)
		(0.999)	(0.002)		
9	62	-0.067	0.052	0.13	5.36
	01	[0.375]	[0.016]		(0.0073)
		(0.859)	(0.002)		
10	62	0.28	0.046	0.13	5.10
10	02	[0.317]	(0.014]		(0.0091)
		(0.931)	(0.002)		`
11	62	0.711	0.0445	0.08	2.79
••	01	[0.527]	[0.0212]		(0.0693)
		(0.182)	(0.040)		
12	62	0.71	0.039	0.07	3.08
12	02	[0.510]	[0.021]		(0.0533)
		(0.170)	(0.066)		
13	62	0.033	0.024	0.09	1.53
15	02	[0.441]	[0.015]	0.00	(0.2248]
		(0.456)	(0.111)		
14	62	1.14	0.036	0.33	11.67
1-4	02	[0.30]	[0.013]	0.00	(0.0001)
		(0.000)	(0.009)		(0.000.)
15	62	-0.115	0.046	0.40	9.62
C I	02	[0.137]	[0.0104]	0.10	(0.0002)
		(0.405)	(0.000)		(0.0002)
16	62	-0.192	0.043	0.63	53.54
10	02	[0.117]	[0.0046]	0.05	(0.0000)
		(0.107)	(0.000)		(0.0000)
17	62	-0.056	0.032	0.58	51.93
17	02	[0.075]	[0.0031]	0.50	(0.0000)
		(0.459)	(0.000)		(0.0000)
19	62		0.0518	0.43	16.49
18	62	-0.167	[0.0099]	0.45	(0.0000)
		[0.151]			(0.0000)
10	(2)	(0.275)	(0.000)	0.25	15.82
19	62	-0.46	0.068	0.25	(0.0000)
		[0.319] (0.152)	[0.013] (0.000)		(0.0000)

			ole 3.9.5 (cont.) Summer 1998					
Dependent variable: sqrt:(System Marginal Price)								
Period	N	Uplift	Gross Demand		F Statistics			
20	62	-0.57	0.073	0.22	9.57			
20	02	[0.246]	[0.073	0.22	(0.0003)			
		(0.025)	(0.000)		(0.0003)			
21	62	-0.517	0.047	0.10	3.92			
21	02	[0.235]	[0.0213]	0.10	(0.0251)			
		(0.032)	(0.030)		(0.0251)			
22	62	-0.033	0.019	0.06	2.17			
	02	[0.161]	[0.024]	0.00	(0.1228)			
		(0.044)	(0.422)		(0.1220)			
23	62	-0.166	0.034	0.06	2.28			
20	01	[0.098]	[0.017]	0.00	(0.1117)			
		(0.097)	(0.045)		(0.1117)			
24	62	-0.080	0.054	0.14	9.86			
	52	[0.082]	[0.014]	0.14	(0.0002)			
		(0.335)	(0.000)		(0.0002)			
25	62	-0.106	0.057	0.11	8.95			
	02	[0.117]	[0.0146]	0.11	(0.0004)			
		(0.369)	(0.000)		(0.0004)			
26	62	-0.109	0.050	0.11	7.98			
20	02	[0.111]	[0.013]	0.11	(0.0009)			
		(0.329)	(0.000)		(0.0003)			
27	62	0.018	0.011	0.01	0.16			
27	02	[0.083]	[0.202]	0.01	(0.8521)			
		(0.833)	(0.589)		(0.0521)			
28	62	-0.045	0.025	0.16	5.46			
20	02	[0.048]	[0.0075]	0.16	(0.0067)			
		(0.349)	(0.002)		(0.0007)			
29	62	-0.0598	0.028	0.27	16.33			
29	02	[0.0495]	[0.0050]	0.27	(0.0000)			
		(0.233)	(0.000)		(0.0000)			
30	62	-0.53	0.049	0.21	16.28			
50	02	[0.317]	[0.010]	0.21	(0.0000)			
		(0.098)	(0.000)		(0.0000)			
31	62	-0.433	0.061	0.25	21.04			
51	02			0.25				
		[0.317] (0.177)	[0.011] (0.000)		(0.0000)			
32	62	-0.033	0.044	0.39	25.83			
32	02	[0.074]	[0.0061]	0.39	(0.0000)			
		(0.656)	(0.000)		(0.0000)			
33	62			0.29	20.12			
ن ر	02	-0.056	0.0502	0.38	30.12			
		[0.054]	[0.0069]		(0.0000)			
24	62	(0.307)	(0.000)	0.22				
34	02		0.064	0.32	22.49			
		[0.065]	[0.010]		(0.0000)			
25	(2)	(0.340)	(0.000)	0.20	22.07			
35	62	0.067	0.0620	0.28	22.87			
		[0.729]	[0.0110]		(0.0000)			
26		(0.360)	(0.000)					
36	62	0.017	0.0101	0.05	1.35			
		[0.121]	[0.008]		(0.2678)			
37		(0.888)	(0.106)					
37	62	-0.163	0.0033	0.03	1.21			
		[0.115]	[0.0076]		(0.3064)			
20		(0.0162)	(0.663)	-				
38	62	-0.205	0.0081	0.08	4.30			
		[0.102]	[0.0074]		(0.0181)			
		(0.049)	(0.276)					

			ummer 1998		
	· · · · ·		e: sgrt:(System Marginal P	rice)	
Period	N	Uplift	Gross Demand	R^2	F Statistics
39	62	0.052	0.019	0.09	2.42
		[0.104]	[0.0085]		(0.0977)
		(0.618)	(0.033)		
40	62	-0.344	0.050	0.21	5.41
		[0.196]	[0.016]		(0.0069)
		(0.085)	(0.003)		
41	62	0.422	0.024	0.06	2.55
		[0.409]	[0.013]		(0.0609)
		(0.306)	(0.064)		
42	62	1.200	0.018	0.13	3.83
		[0.483]	[0.012]		(0.0273)
		(0.016)	(0.153)		
43	62	-0.084	0.075	0.07	3.20
		[0.642]	[0.030]		(0.0478)
		(0.896)	(0.015)		
44	62	0.011	0.085	0.06	3.04
		[0.436]	[0.035]		(0.0554)
		(0.800)	(0.018)		
45	62	-0.513	0.0064	0.03	3.56
		[0.216]	[0.019]		(0.0346)
		(0.021)	(0.738)		
46	62	-0.371	0.0081	0.04	1.90
		[0.229]	[0.0153]		(0.1585)
		(0.111)	(0.596)		
47	62	0.144	0.050	0.10	3.33
		[0.206]	[0.019]		(0.0425)
		(0.487)	(0.013)		
48	62	-0.14	0.036	0.06	2.03
		[0.214]	[0.020]		(0.1408)
		(0.524)	(0.069)		(

		Wi	Table 3.9.6 nter 1999/2000		
			le: sqrt:(System Margina	al Price)	
Period	N	Uplift	Gross Demand		F Statistics
1	91	0.434	0.012		1/1
1	91	[0.573]	[0.0069]	0.05	1.61
		(0.450)	(0.085)		(0.2049)
2	91	0.428	-0.021	0.00	4.00
2	91			0.09	4.88
		[0.387] (0.272)	[0.0079] (0.008)		(0.0098)
3	91	0.238		0.03	
3	91		-0.0085	0.03	1.46
		[0.150] (0.116)	[0.0115]		(0.2370)
4	91		(0.465)		
4	91	0.144	-0.0077	0.02	0.83
		[0.128]	[0.0111]		(0.4414)
		(0.266)	(0.488)		
5	91	-0.069	-0.0040	0.01	0.34
		[0.114]	[0.0079]		(0.7105)
r		(0.547)	(0.616)		
6	91	-0.162	0.034	0.14	9.28
		[0.098]	[0.0102]		(0.0002)
7		(0.101)	(0.001)		
7	91	-0.138	0.031	0.13	9.49
		[0.095]	[0.0086]		(0.0002)
		(0.150)	(0.000)		
8	91	-0.23	0.0097	0.06	3.02
		[0.155]	[0.0070]		(0.0537)
		(0.140)	(0.168)		
9	91	-0.270	0.017	0.10	5.74
		[0.182]	[0.0082]		(0.0045)
· · · ·		(0.142)	(0.040)		
10	91	-0.026	0.0081	0.05	2.30
		[0.217]	[0.0065]		(0.1058)
		(0.231)	(0.213)		
11	91	0.107	0.0036	0.01	0.26
		[0.329]	[0.0051]		(0.7694)
		(0.745)	(0.479)		
12	91	0.856	0.018	0.14	5.32
		[0.546]	[0.0056]		(0.0066)
		(0.121)	(0.002)		
13	91	0.020	0.038	0.27	18.21
		[0.433]	[0.0066]		(0.0000)
		(0.964)	(0.000)		
14	91	-0.057	0.058	0.60	75.51
		[0.100]	[0.0051]		(0.0000)
		(0.570)	(0.000)		
15	91	-0.082	0.076	0.71	140.89
		[0.127]	[0.0047]		(0.0000)
		(0.517)	(0.000)		
16	91	-0.19	0.081	0.74	166.34
		[0.180]	[0.0046]		(0.0000)
		(0.291)	(0.000)		
17	91	-0.052	0.089	0.70	171.01
		[0.205]	[0.0050]		(0.0000)
		(0.801)	(0.000)		
18	91	0.159	0.089	0.65	154.08
		[0.213]	[0.0051]		(0.0000)
		(0.458)	(0.000)		
19	91	0.40	0.076	0.66	118.38
		[0.186]	[0.0051]		(0.000)
		(0.036)	(0.000)		

Table 3.9.6 (cont). Winter 1999/2000								
Dependent variable: sqrt:(System Marginal Price)								
Period	N	Uplift	Gross Demand	R^2	F Statistics			
20	91	0.26	0.076	0.57	76.96			
		[0.195]	[0.0062)		(0.0000)			
		(0.186)	(0.000)					
21	91	0.123	0.070	0.57	73.06			
		[0.196]	[0.0059]		(0.0000)			
		(0.531)	(0.000)					
22	91	0.043	0.067	0.61	63.62			
24	51	[0.136]	[0.0059]	0.01	(0.0000)			
		(0.750)	(0.000)		(0.0000)			
23	91	0.024	0.073	0.58	60.78			
23	51	[0.132]	(0.0067]	0.50	(0.0000)			
		(0.855)	(0.000)		(0.0000)			
24				0.55	70.50			
24	91	0.087	0.072	0.55	78.50			
		[0.145]	[0.0061]		(0.0000)			
0.5		(0.550)	(0.000)					
25	91	0.013	0.073	0.47	53.50			
		[0.156]	[0.0072]		(0.0000)			
		(0.934)	(0.000)					
26	91	-0.0046	0.076	0.52	59.31			
		[0.145]	[0.0073]		(0.0000)			
		(0.975)	(0.000)					
27	91	0.097	0.061	0.52	54.61			
		[0.172]	[0.0062]		(0.0000)			
		(0.576)	(0.000)					
28	91	0.180	0.068	0.61	64.02			
		[0.136]	[0.0060]		(0.000)			
		(0.189)	(0.000)					
29	91	0.167	0.068	0.60	47.69			
25		[0.141]	[0.0070]		(0.0000)			
		(0.241)	(0.000)		(/			
30	91	0.015	0.068	0.52	43.67			
30		[0.119]	[0.007]	0.52	(0.0000)			
		(0.901)	(0.000)		(0.0000)			
31	91	0.200	0.056	0.37	34.17			
21	91	[0.183]	[0.0079]	0.37	(0.0000)			
			(0.000)		(0.0000)			
22	01	(0.277)	0.049	0.47	47.36			
32	91	0.182		0.47				
		[0.0640]	[0.0085]		(0.0000)			
		(0.006)	(0.000)	0.68	120 (0			
33	91	0.046	0.073	0.68	130.68			
		[0.013]	[0.0088]		(0.0000)			
		(0.000)	(0.000)	0.75	152.64			
34	91	0.037	0.089	0.75	152.64			
		[0.0074]	[0.0089]		(0.0000)			
		(0.000)	(0.000)					
35	91	0.032	0.104	0.73	115.98			
		[0.0088]	[0.012]					
		(0.000)	(0.000)					
36	91	0.030	0.099	0.70	146.02			
		[0.0089]	[0.0094]		(0.0000)			
		(0.001)	(0.000)					
37	91	0.060	0.071	0.68	132.68			
		[0.0117]	[0.0077]		(0.0000)			
		(0.000)	(0.000)					
38	91	0.165	0.059	0.66	100.36			
		[0.025]	[0.0083]		(0.0000)			
	1	(0.000)	(0.000)					

			le 3.9.6 (cont). hter 1999/2000			
Dependent variable: sqrt:(System Marginal Price)						
Period	N	Uplift	Gross Demand	R^2	F Statistics	
39	91	0.338 [0.059] (0.000)	0.067 [0.0080] (0.000)	0.64	99.16 (0.0000)	
40	91	0.266 [0.175] (0.133)	0.074 [0.0054] (0.000)	0.60	99.13 (0.0000)	
41	91	0.015 [0.109] (0.889)	0.067 [0.0054] (0.000)	0.62	93.99 (0.0000)	
42	91	-0.116 [0.101] (0.254)	0.060 [0.006] (0.000)	0.55	54.68 (0.0000)	
43	91	0.021 [0.590] (0.728)	0.068 [0.0037] (0.000)	0.77	183.75 (0.0000)	
44	91	0.099 [0.073] (0.180)	0.079 [0.0057] (0.000)	0.75	107.75 (0.0000)	
45	91	-0.0049 [0.083] (0.953)	0.085 [0.0062] (0.000)	0.62	113.24 (0.0000)	
46	91	-0.334 [0.241] (0.169)	0.033 [0.0114] (0.005)	0.14	7.76 (0.0008)	
47	91	-0.180 [0.513] (0.727)	0.027 [0.0078] (0.001)	0.14	6.63 (0.0021)	
48	91	0.897 [0.104] (0.000)	0.022 [0.0047] (0.000)	0.43	69.20 (0.0000)	

0

		S	Table 3.9.7 Jummer 2000		
			e: sqrt:(System Marginal	Price)	
Period	N	Uplift	Gross Demand	R^2	F Statistics
1	62	-0.14	-0.0054	0.03	1.58
1	02	[0.083]	[0.017]	0.05	(0.2140)
		(0.088)	(0.746)		(0.2110)
2	62	-0.008	-0.025	0.06	2.39
-		[0.166]	[0.112]		(0.1004)
		(0.961)	(0.033)		
3	62	-0.221	-0.0093	0.02	1.17
		[0.175]	[0.013]		(0.3175)
		(0.213)	(0.464)		
4	62	-0.254	-0.0010	0.027	1.52
		[0.175]	[0.012]		(0.0268)
		(0.150)	(0.415)		
5	62	-0.301	-0.012	0.04	2.15
		{0.168}	[0.011]		(0.1251)
		(0078)	(0.310)	0.04	2.12
6	62	-0.288 [0.170]	-0.013 [0.011]	0.04	(0.1291)
		(0.095)	(0.256)		(0.1291)
7	62	-0.273	-0.013	0.03	1.98
/	02	[0.170]	[0.011]	0.05	(0.1470)
		(0.114)	(0.260)		(01110)
8	62	-0.406	-0.0234	0.10	6.20
0	02	[0.165]	[0.0099]		(0.0036)
		(0.017)	(0.021)		
9	62	-0.150	-0.019	0.05	1.39
		[0.245]	[0.011]		(0.2566)
		(0.544)	(0.104)		
10	62	-0.0132	-0.0099	0.02	0.39
		[0.243]	[0.012]		(0.6799)
		(0.587)	(0.433)		
11	62	-0.114	-0.014	0.02	0.74
		[0.149]	[0.013]		(0.4821)
		(0.466)	(0.287)		0.41
12	62	0.182	0.027	0.03	0.41 (0.6685)
		[0.472]	[0.031]		(0.0003)
12		(0.702)	0.019	0.10	6.62
13	62	-0.167	[0.014]	0.10	(0.0025)
		(0.114)	(0.201)		(0.0020)
1.4	62	0.0086	0.044	0.21	5.07
14	02	[0.076]	[0.017]	0.21	(0.0093)
		(0.911)	(0.011)		
15	62	0.016	0.055	0.42	10.17
		[0.148]	[0.013]		(0.0002)
		(0.914)	(0.000)		
16	62	-0.16	0.032	0.38	12.99
		[0.220]	[0.0071]		(0.0000)
		(0.459)	(0.000)		
17	62	-0.40	0.041	0.32	12.57
		[0.100]	[0.0088]		(0.0000)
		(0.000)	(0.000)		
18	62	0.14	0.046	0.33	13.53
		[0.047]	[0.0088]		(0.0000)
		(0.005)	(0.000)	0.24	20.63
19	62	-0.076	0.057	0.34	20.63 (0.0000)
		[0.035] (0.037)	[0.0093] (0.000)		(0.0000)

			le 3.9.7 (cont.) ummer 2000		
			e: sqrt:(System Marginal	Price)	
Period	N	Uplift	Gross Demand	R^2	F Statistics
20	62	-0.042 [0.028] (0.142)	0.057 [0.0107] (0.000)	0.27	16.23 (0.0000)
21	62	-0.033 [0.019] (0.079)	0.047 [0.0097] (0.000)	0.21	12.48 (0.0000)
22	62	-0.014 [0.025] (0.583)	0.046 [0.0089] (0.000)	0.24	15.74 (0.0000)
23	62	-0.015 [0.023] (0.538)	0.064 [0.012] (0.000)	0.32	20.39 (0.0000)
24	62	-0.025 [0.0174] (0.153)	0.071 [0.0117] (0.000)	0.39	24.59 (0.0000)
25	62	-0.049 [0.018] (0.010)	0.073 [0.014] (0.000)	0.31	13.55 (0.0000)
26	62	-0.052 [0.0218] (0.021)	0.080 [0.015] (0.000)	0.33	15.54 (0.0000)
27	62	-0.020 [0.017] (0.262)	0.025 [0.009] (0.008)	0.12	4.01 (0.0232)
28	62	-0.037 [0.018] (0.047)	0.0213 [0.011] (0.059)	0.08	2.53 (0.0879)
29	62	-0.009 [0.028] (0.739)	0.031 [0.0097] (0.002)	0.18	9.10 (0.0004)
30	62	0.0014 [0.0313] (0.965)	0.030 [0.0093] (0.002)	0.17	12.34 (0.0000)
31	62	0.019 [0.025] (0.463)	0.030 [0.0082] (0.001)	0.25	14.45 (0.0000)
32	62	0.021 [0.023] (0.372)	0.047 [0.0112] (0.000)	0.37	17.65 (0.0000)
33	62	0.086 [0.064] (0.186)	0.050 [0.0126] (0.000)	0.46	17.65 (0.0000)
34	62	0.053 [0.059] (0.376)	0.087 [0.012] (0.000)	0.49	45.59 (0.0000)
35	62	0.062 [0.070] (0.383)	0.071 [0.0157] (0.000)	0.31	16.66 (0.0000)
36	62	0.139 [0.112] (0.219)	0.044 [0.015] (0.005)	0.21	7.44 (0.0013)
37	62	0.035 [0.080] (0.667)	0.035 [0.013] (0.007)	0.12	4.56 (0.0144)
38	62	0.025 [0.187] (0.894)	0.015 [0.013] (0.228)	0.03	0.77 (0.4661)

			le 3.9.7 (cont.) ummer 2000		
			e: sqrt:(System Marginal P	rice)	
Period	N	Uplift	Gross Demand	R^2	F Statistics
39	62	-0.285	-0.013	0.02	0.89
		[0.215]	[0.014]		(0.4160)
		(0.190)	(0.338)		
40	62	-0.24	-0.017	0.06	1.75
		[0.272]	[0.0093]		(0.1827)
		(0.388)	(0.069)		
41	62	0.231	-0.018	0.14	3.34
		[0.166]	[0.0075]		(0.0424)
		(0.170)	(0.018)		
42	62	1.015	0.042	0.24	23.15
		[0.220]	[0.022]		(0.2384)
		(0.000)	(0.057)		
43	62	0.87	0.095	0.23	21.41
		[0.197]	[0.023]		(0.0000)
		(0.000)	(0.000)		
44	62	0.042	0.039	0.03	1.05
		[0.344]	[0.031]		(0.3575)
		(0.902)	(0.210)		
45	62	0.067	-0.059	0.10	3.85
		[0.008]	[0.028]		(0.0268)
		(0.571)	(0.039)		
46	62	-0.0046	-0.058	0.22	5.21
		[0.057]	[0.020]		(0.0083)
		(0.936)	(0.004)		
47	62	-0.034	-0.024	0.10	2.36
		[0.045]	[0.0109]		(0.1033)
		(0.449)	(0.034)		
48	62	-0.108	-0.015	0.02	1.53
		[0.062]	[0.015]		(0.2247)
		(0.086)	(0.316)		