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Integrated effects of auxeticity and
pyro-coupling on the nonlinear static
behaviour of magneto-electro-elastic
sandwich plates subjected to multi-
field interactive loads

Vinyas Mahesh

Abstract
This work presents a detailed investigation of the effect of auxeticity synergised with the pyro-coupling behaviour of
multiphase magneto-electro-elastic (M-MEE) composites using a finite element (FE) framework. The nonlinear
deflection and bending problems of sandwich plates with auxetic core and M-MEE skins subjected to multi-physics load
(electric, magnetic and thermal) are probed. The plate kinematics is governed by Reddy’s higher-order shear
deformation theory (HSDT). The nonlinear relation between the strains and displacements is established through von-
Karman’s nonlinear relations. The temperature profiles are considered linearly and nonlinearly varying across the
thickness of the plate. Various parametric studies presented in this article highlight the influence of the auxetic cell
inclination angle, rib-length ratio, rib thickness, the plate-to-core ratio etc., associated with the pyro-coupling on the
nonlinear deflection and bending of sandwich plates. The results reveal that the plate deflection, bending behaviour and
degree of pyro-coupling significantly depend on the auxetic unit cell dimensions and magnitude of electro-magnetic
loads. The significant influence of temperature profiles on the pyro-coupling are witnessed at lower auxetic cell angle.
The nonlinear deflections of the sandwich plate and hence the potentials developed tend to improve with the lower
values of plate-to-core ratio and rib thickness. The prominent outcomes of this work related to integrated effects of
auxeticity and pyro-coupling are not yet reported in the open literature and are deemed to be utilised as a future
reference.

Keywords
Auxetic, sandwich, nonlinear, magneto-electro-elastic, electro-magnetic load

Date received: 3 November 2022; accepted: 16 December 2022

Introduction

Auxetic materials represent the class of current fron-
tiers in material development due to their structural
properties characterised by a negative Poisson’s
ratio.1 They characterise an opposite trend of defor-
mation than the conventional and incompressible
materials. They are also termed anti-rubber materials.
Auxetics exhibit enhanced toughness, shear resis-
tance, resilience, damping, acoustics and high load
bearing capacity. Further, auxetics significantly influ-
ences the deformation of the structure and, thereby,
its stress distributions. Considering these benefits of
auxetics, several researchers have rigorously worked
on analysing its structural response. Hou et al.2

experimentally assessed the effect of using auxetic
cores on the bending and failure of the sandwich
structure. The experimental data was reinforced with

the numerical analysis as well. The effectiveness of
using auxetic cores in enhancing the blast resistance
of structures was numerically justified by Jin et al.3 Li
et al.4 predicted the nonlinear bending characteristics
of sandwich beams with functionally graded (FG)
auxetic cores operated in a thermal environment.
Boldrin et al.5 studied the vibroacoustic behaviour of
auxetic composite structures using full-scale finite ele-
ments (FE). The influence of the thermal environment
associated with the auxeticity of sandwich beams was
probed by Li et al.6 The same research group7 also
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presented the nonlinear dynamic characteristics of
sandwich beams with FG auxetic core. The auxetics
combined with other variants of conventional sand-
wich structures8–15 can tremendously benefit the engi-
neering domain by increased weight reduction and
structural integrity.

Smart materials provide additional flexibility and
tailorability to engineers in designing structures with
enhanced integrity. Piezoelectric, piezomagnetic,
thermo-electric and other materials are exploited for
this purpose. However, with the recent advancement
in material science, a new class of smart materials
known as magneto-electro-elastic (MEE) composites
has grasped the researchers’ attention.16 The multi-
field interaction between the various fields exhibited
by MEE composites makes them a potential candi-
date for various engineering applications, including
vibration control,17–23 energy harvesting24–27 and
impact engineering.28–30 Zhao et al.31 predicted the
nonlinear response of multiphase MEE plates rein-
forced with CNTs. Zhou et al.32 proposed an
element-free Galerkin method to investigate the MEE
structural problems. Quang et al.33 presented an ana-
lytical model to assess the static buckling of MEE
sandwich structure subjected to Multi-physics loads.
Dinh Dat et al.34 probed the effect of blast loads on
the dynamic behaviour of MEE plates with auxetic
cores. Nie et al.35 developed a stable node-based
smoothed radial point interpolation method to exam-
ine the dynamic response of MEE structures.

Due to the multifield interactive capability of the
MEE composites, it exhibits thermo-electric and
thermo-magnetic coupling when operated in the ther-
mal environment. These are termed ‘pyro-coupling’
effects. Several kinds of research have been reported on
the thermal analysis of smart MEE structures, but a
few focus on the pyro-coupling effects on the structural
responses. Vinyas and Kattimani36,37 showed that
pyro-coupling enhances the multifunctionality of the
stepped functionally graded MEE beams and plates. In
addition, Vinyas et al. and his group conducted several
pilot studies on various structural responses of MEE
composites operated in the thermal environment high-
lighting the influence of pyro-coupling.38–42

The deflections of the structure in the nonlinear
regime seriously threaten its optimal performance.
Hirwani and Panda43 assessed the nonlinear deforma-
tions of pre-damaged composite panels subjected to
thermo-mechanical loads using the FE approach.
Chen and Chen44 probed the influence of initial ten-
sion on the large deflections of the isotropic layered
plate through an analytical approach. Exploiting the
kp-Ritz method, the nonlinear deflections of carbon
nanotube (CNT) reinforced panels were investigated
by Zhang et al.45 The influence of elastic foundation
on the nonlinear deflections of theta ply laminates
was studied by Alamatian and Golmakani46 using
kinetic dynamic relaxation. Sepahi et al.47 assessed the
nonlinear deflections of functionally graded (FG)

annular plates under thermo-mechanical load using
the differential quadrature method. Tiar et al.48 pro-
posed a FE formulation to examine the large deflec-
tions of 2D composite structures. The variation of the
large thermomechanical deflections of FG CNT shell
subjected to various forms of mechanical loads was
studied by Mehar and Panda.49 Gholami and
Ansari50 investigated the influence of graphene rein-
forcement on the large deflections of composite plates.
Mareishi et al.51 studied the effect of piezoelectric
skins on composite beams’ large deflections through
an analytical approach. On the same grounds, focuss-
ing on the nonlinear structural response of MEE com-
posites, Sh et al.52 investigated the influence of
porosity on the nonlinear transient response function-
ally graded MEE plates. Similarly, Mahesh and
Harursampath53 studied the nonlinear deflections of
porous MEE plate. Quan et al.54 analytically studied
the nonlinear dynamic response of imperfect MEE
plate with volume fraction equal of 1. Mahesh et al.55

studied the influence of auxeticity on the natural fre-
quency of MEE cell structures. The effects of CNT
reinforcement and micro-topological textures on the
nonlinear responses of MEE plates have been
reported in Mahesh and Harursampath.56,57

From the literature review, it was realised, to the
best of the author’s knowledge, that no work has been
reported on investigating the inter-dependency of
auxeticity and multi-physics loads with the pyro-
coupling characteristics of sandwich MEE compo-
sites. This motivated the authors to examine sandwich
plates’ nonlinear deflection and bending response with
auxetic core and M-MEE skins, subject to linear and
nonlinear temperature profiles and electro-magnetic
loads, for the first time. In addition, the influence of
different auxetic cell dimensions such as inclination
angle, rib-length ratio, rib- thickness etc., are consid-
ered for the evaluation. Furthermore, this work is car-
ried out using the FE approach owing to its simplicity
in incorporating multi-field interactions and efficiency
in capturing the complex structural responses accu-
rately.58–61 It is believed that the outcomes of this
work will lead to novel designs of light-weight smart
structures for integrated structural health monitoring
and management applications.

Problem description

The sandwich plate is composed of the auxetic core
with multiphase MEE (M-MEE) skins as shown in
Figure 1(a) and subjected to a temperature environ-
ment which can be explicitly represented as62:

T(z)= (Tts � Tbs)
z

h
+

1

2

� �y

+Tbs ð1Þ

where, Tts and Tbs represent the temperature on the
top and bottom surfaces of the sandwich plate.
Meanwhile, y denotes the temperature gradient
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exponent, which can take up values between 1 and
N. For linear temperature profiles (LTP), y =1,
whereas the rest of the higher positive values result in
nonlinear temperature profiles (NTP).

The core of the sandwich plate is made of auxetic
unit cells whose geometrical dimensions are depicted
in Figure 1(b). The length of horizontal and inclined
ribs is represented by l and d. The auxetic cell inclina-
tion angle is shown by u. The rib thickness is denoted
by t. The M-MEE skin comprises 50% BaTiO3 and
50% CoFe2O4, whose material properties are shown
in Table 1.

Materials and methods

The material properties related to the auxetic core of
the sandwich plate can be expressed as6:

E
cð Þ
1 =Ec t=lð Þ3 d=lð Þ � sin uð Þ

cos u 1+ tan2u+ d=lð Þsec2uð Þ t=lð Þ2
h i ,

E
cð Þ
2 =Ec t=lð Þ3

cos u d=lð Þ � sin uð Þ tan2u+ t=lð Þ2
� �

G
cð Þ
12 =Gc t=lð Þ3

d=lð Þ 1+2 d=lð Þð Þ cos u
, G

cð Þ
23 =Gc t=lð Þ cos u

d=lð Þ � sin u
,

G
cð Þ
13 =Gc t=lð Þ

2 cos u

d=lð Þ � sin u

1+2 d=lð Þ +
d=lð Þ+2sin2u

2 d=lð Þ � sin uð Þ

� �
,

v
cð Þ
12 =�

sin u 1� t=lð Þ2
� �

d=lð Þ � sin uð Þ

cos2u 1+ tan2u+sec2u d=lð Þð Þ t=lð Þ2
h i ,

v
cð Þ
21 =�

sin u 1� t=lð Þ2
� �

tan2u+ t=lð Þ2
� �

d=lð Þ � sin uð Þ
,

rc = r
t=lð Þ d=lð Þ+2ð Þ

2 cos u d=lð Þ � sin uð Þa
cð Þ
1 =am

t=lð Þ cos u

sin u+að Þ;

a
cð Þ
2 =am

t=lð Þ d=lð Þ+ sin uð Þ
2d=lð Þ+1ð Þ cos u

ð2Þ

The elastic modulus, shear modulus and density of
the auxetic core are represented by Ec, Gc and rc,
respectively. Also, the core’s Poisson ratio is denoted
as yc21 and yc12.

Analogously, the constitutive equations of M-
MEE facings are as follows36:

sf g= Q½ �feg� e½ � Ef g� q½ � Hf g � Q½ � a½ �DT
Df g= e½ �Tfeg+ h½ � Ef g+ m½ � Hf g+ p½ �DT
Bf g= q½ �Tfeg+ m½ � Ef g+ m½ � Hf g+ t½ �DT

ð3Þ

The matrix [Q] encapsulates the coupled elastic coeffi-
cients, [e] and [q] denote the matrix of piezoelectric
and magnetostrictive coefficients. Similarly, [m], [h]
and [m] show the matrices of electro-magnetic, dielec-
tric and magnetic permeability coefficients. The pyro-
electric and pyro-magnetic coefficients are denoted by
[p] and [t].

(a) (b)

Figure 1. Schematic of the: (a) sandwich plate geometry and (b) auxetic unit cell.

Table 1. Coupled properties of multiphase MEE (50%
BaTiO3-50% CoFe2O4 composite).

Material property Material
constants

0.5 Vf (50% PE
+ 50% PM)

Elastic constants (GPa) C11 =C22 220
C12 120
C13 =C23 120
C33 215
C44 =C55 45
C66 50

Piezoelectric constants
(C/m2)

e31 = e32 23.5
e33 9.0
e15 = e24 0

Dielectric constant
(1029 C2/Nm2)

h11 =h22 0.85
h33 6.3

Magnetic permeability
(1024 Ns2/C2)

m11 =m22 22.0
m33 0.9

Piezomagnetic constants
(N/Am)

q31 = q32 350
q33 320
q15 = q24 200

Magneto-electric constant
(10212 Ns/VC)

m11 =m22 5.5
m33 2600

Pyroelectric-constant
(1027 C/m2K)

p2 27.8

Pyromagnetic constant
(1025 C/m2K)

t2 223

Thermal expansion coefficient
(1026 K21)

a1 = a2 12.3
a3 8.2

Density (kg/m3) r 5550
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The variation of the potentials across the plate’s
thickness can be assumed as follows40,41:

fu =
z� h3

h

� 	
f; fl =

h2 � z

h

� 	
f; f=fu +fl

cu =
z� h3

h

� 	
c; cl =

h2 � z

h

� 	
c; c=cu +cl

ð4Þ

The terms uu and cu denote the variation of the elec-
tric and magnetic potentials on the upper facesheet,
whereas ul and cl represent the same for the lower
facesheet. Meanwhile, the summation of the poten-
tials of upper and lower skins are denoted by u and
c, respectively.

h3 and h2 denote the top layer of the upper face-
sheet and the bottom layer of the lower facesheet,
respectively.

Displacement model

The sandwich plate kinematics is governed by the
HSDT, whose displacements in the x, yand z axes are
as follows63:

u= u0 + zux �
4

3h2
z3 ux +

∂w0

∂x

� 	

v= v0 + zuy �
4

3h2
z3 uy +

∂w0

∂y

� 	
w=w0

ð5Þ

Nonlinear strain-displacement relation

The following is the nonlinear relation between the
strains (bending ebf g and shear esf g strains) and
displacements40:

ebf g=
ex
ey
gxy

8><
>:

9>=
>;=

∂uo
∂x + 1

2
∂wo

∂x


 �2
∂vo
∂y + 1

2
∂wo

∂y

� �2
∂uo
∂y + ∂vo

∂x + ∂wo

∂x :
∂wo

∂y

8>>><
>>>:

9>>>=
>>>;

+ z

∂ux
∂x

∂uy
∂y

∂ux
∂y +

∂uy
∂x

8>><
>>:

9>>=
>>;�

4z3

3h2

∂ux
∂x + ∂2wo

∂x2

∂uy
∂y + ∂2wo

∂y2

∂ux
∂y +

∂uy
∂x +2 ∂2wo

∂x∂y

8>>><
>>>:

9>>>=
>>>;
ð6Þ

esf g=
gxz

gyz

� �
=

ux +
∂wo

∂x

uy +
∂wo

∂y

( )
� 4z2

h2
ux +

∂wo

∂x

uy +
∂wo

∂y

( )

ð7Þ

Finite element formulation

The eight-noded isoparametric element with nine
degrees of freedom at each node is used to discretise
the sandwich plates. They are grouped into displace-
ment and potentials, with designations like
stf g, srf g, sr�f g, c and f. They can also be expressed
using shape functions, such as41

srf g= Nr½ � ser
� 

; sr�f g= Nr�½ � ser�
� 

f= Nf

� �
fef g; c= Nc

� �
cef g

ð8Þ

in which,

set
� 

= set1
� T

set2
� T � � � set8

� Th iT
, ser
� 

= ser1
� T

ser2
� T � � � ser8

� Th iT
,

ser�
� 

= ser�1
� T

ser�2
� T � � � ser�8

� Th iT
ð9Þ

and

stif g= u0i v0i w0i½ �T, srif g= uxiuyi

� �T
,

sr�if g= kxikyi

� �T
:

ð10Þ

The components of the bending strain of equation (6)
include linear and nonlinear strains as follows41:

ebf g= eb Lf g+ eb NLf g ð11Þ

In terms of FE quantities, the strains can be expressed
as

eb Lf g= SDtb½ � stf g+ z SDrb½ � srf g+ c1z
3 SDrb½ � srf g

+ c1z
3 SDrb½ � sr�f g

eb NLf g= 1

2
SD1½ � SD2½ � stf g

ð12Þ

Therefore, equation (11) can be re-written as follows:

ebf g= SDtb½ � stf g+ z SDrb½ � srf g+ c1z
3 SDrb½ � srf g

+ c1z
3 SDrb½ � sr�f g+ 1

2
SD1½ � SD2½ � stf g

ð13Þ

Similarly, the shear strains can be expressed as

esf g= SDts½ � stf g+ SDrs½ � srf g+ c2z
2 SDrs½ � srf g

+ c2z
2 SDrs½ � sr�f g

ð14Þ

The electric and magnetic fields throughout the thick-
ness of the M-MEE facesheets may be represented
using Maxwell’s equation as follows, depending on
the variation of the potentials considered. as
follows41:
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in terms of FE parameters, it can be written as

E=� Zt½ � SDf

� �
fef g � Zb½ � SDf

� �
fef g

H=� Zt½ � SDc

� �
cef g � Zb½ � SDc

� �
cef g

ð16Þ

where,

Zt½ �=
1

h

0 0 0
0 0 0
0 0 z� h3

2
4

3
5; Zb½ �=

1

h

0 0 0
0 0 0
0 0 h2 � z

2
4

3
5

ð17Þ

The total potential energy principle

The total potential energy for the sandwich plate with
auxetic core and M-MEE skins can be written as
follows36:

dTp =
X3
N=1

1

2

ð
ON

d ebf g
T

sbf gdON +
1

2

ð
O

d esf g
T

ssf gdON � 1

2

ð
ON

d Ef g
T

Df gdON

2
64

� 1

2

ð
ON

d Hf gT Bf gdON

3
75� Ð

A

fQfdA�
Ð
A

cQcdA=0

ð18Þ

Replacing the terms of equation (18) with the consti-
tutive equations (equation (3)) and FE entities (equa-
tions (8)–(14)) and further condensing based on the
degrees of freedom as shown in Appendix A, the
equations of motion can be written as follows41:

S1½ �+ SNL1½ �ð Þ stf g+ S2½ �+ SNL2½ �ð Þ srf g
+ S3½ �+ KNL3½ �ð Þ sr�f g+ S4½ �+ SNL4½ �ð Þ ff g
+ S5½ �+ SNL5½ �ð Þ cf g= FTf g

ð19:aÞ

S6½ �+ SNL6½ �ð Þ stf g+ S7½ � srf g+ S8½ � sr�f g+ S9½ � ff g
+ S10½ � cf g=0

ð19:bÞ

S11½ �+ SNL7½ �ð Þ stf g+ S12½ � srf g+ S13½ � sr�f g
+ S14½ � ff g+ S15½ � cf g=0

ð19:cÞ

S16½ �+ SNL8½ �ð Þ stf g+ S17½ � srf g+ S18½ � sr�f g
+ Sff

� �
ff g+ Sfc

� �
cf g= Ff

� 
� FTf

� 
ð19:dÞ

S19½ �+ SNL9½ �ð Þ stf g+ S20½ � srf g+ S21½ � sr�f g
+ Scf

� �
ff g+ Scc

� �
cf g= Fc

� 
� FTc

� 
ð19:eÞ

More generally, equation (19) can be expressed as

Seq

� �
stf g= Feq

� 
ð20Þ

Seq

� �
and Feq

� 
denote equivalent stiffness matrix

and force vector, respectively. The detailed procedure
to arrive at the equations (19.a)–(19.e) and the associ-
ated stiffness matrices and force vectors are demon-
strated in Appendix A and B.

Results and discussion

The FE formulation described in the previous section
is first verified for its correctness through a compari-
son study. To this end, the problem of nonlinear
deflections of MEE plates considered by Sladek
et al.64 is resolved using the proposed formulation. A
converged FE mesh of 10 3 10 is used. It can be seen
in Figure 2 that there exists a close relevance between
the deflection plots. Therefore, an affirmation of the
credibility of the formulation is obtained. Otherwise
stated, the following conditions are used for the
numerical analysis:

a/h=50; a/b=1; Linear temperature profile; d/
l=1; u=20�; t=1mm; h/hc=1.4; t/l=0.013857;
Ec=69 GPa and Gc=26GPa.
Further, the boundary constraints used can be repre-
sented by42:

Clampededge Cð Þ:
u= v=w= ux = uy = kx = ky =f=c=0

Freeedge Fð Þ:
u= v=w= ux = uy = kx = ky =f=c 6¼ 0

Simplysupportededge Sð Þ:
u= ux = kx 6¼ 0; v=w=f=c=0 at x=0, a

v= uy = ky 6¼ 0; u=w=f=c=0 at y=0, b

ð21Þ
The influence of pyro-coupling on the nonlinear

deflection of sandwich plates with a different auxetic
cell inclination angle is shown in Figure 3(a) and (b)
for two cases of inclination angle variation. The two
cases were considered because the rib lengths l and d
are interrelated to the auxetic cell inclination angle.
Altering the cell inclination angle without changing
the rib lengths l and d was impossible. As shown in
Figure 3(a), for Case-1, the inclination angle is varied,
keeping the length of the inclined rib constant,
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whereas in Case-2, the length of the straight rib of the
auxetic cell is kept unchanged, and the inclination
angle is varied. It can be inferred from Figure 3 that
increasing the unit cell inclination angle for both
cases results in enhanced deflection of the sandwich
plate. However, the magnitude of deflection is higher
for Case-2. In addition, the pyro-coupling effects are
predominant for the sandwich plates in which the
auxetic cell angles are varied, keeping the length of
the inclined rib constant (Case-1).

The change trends of nonlinear deflection of a
sandwich plate subjected to different temperature

distributions are recorded in Figure 4. As opposed to
the linear temperature profile, a minimal deflection is
noticed for the sandwich plate exposed to the non-
linear temperature profile. Also, the effect of auxetic
cell inclination angle becomes predominant when the
sandwich plate is subjected to a linear temperature
profile. From Figure 4(b), it can be seen that the
pyro-coupling has a superior influence on the deflec-
tion when the temperature field varies linearly across
the plate’s thickness.

Figure 5(a) shows the relationship between the d/l
ratio and nonlinear deflection of composite sandwich

Figure 3. Effect of auxetic cell inclination angle and pyro-coupling on the variation of the w* of (a) case-1 and (b) case-2 type of
sandwich plate subjected to linear temperature fields.

Figure 2. Validation of the w* of three-layered MEE plate with SSSS and CCCC boundary conditions.

6 Proc IMechE Part C: J Mechanical Engineering Science 00(0)



plates. The lower the value of the d/l ratio, the reduced
the nonlinear deflection of the plate, indicating an
improved stiffness of the plate. Furthermore, the
pyro-coupling effects are minimal for a lower d/l ratio
which can be seen through the discrepancies between
the deflection curves of the plate with pyro (WP) and

without pyro-coupling (WoP). Figure 5(b) compares
the deflection curves of the sandwich plate with differ-
ent h/hc ratios. It can be noticed that the change
trends are opposite to that of the d/l ratio. However,
the pyro-coupling effects enhance with the greater h/
hc ratio values since the volume of multifunctional

(a) (b)

(c) (d)

Figure 5. Effect of pyro-coupling associated with the: (a) d/l ratio, (b) h/hc ratio, (c) rib-thickness and (d) boundary conditions on
the variation of the w* of a sandwich plate subjected to linear temperature fields.

(a) (b)

Figure 4. Effect of temperature profiles associated with (a) auxetic angle (b) pyro-coupling on the variation of the w* of sandwich
plate.

Mahesh 7



MEE skins enhances, facilitating higher coupling
between thermal and other fields. The effect of rib-
thickness on the coupled nonlinear deflection of the
sandwich plate is shown in Figure 5(c). As seen from
this figure, a higher value of rib thickness results in
the higher structural integrity of the plate, thereby
leading to reduced deflection. Furthermore, the pyro-
coupling effects are superior for the sandwich plate
with higher rib-thickness. This can be attributed to
the improved coupled stiffness of the overall plate.
The influence of the plate’s boundary conditions on
its nonlinear deflection is shown in Figure 5(d). Due

to the obvious reason for improved stiffness, the sand-
wich plate with a higher number of clamped con-
straints shows a minimal deflection. The deformation
shapes of the sandwich plate with different boundary
conditions subjected to linear temperature rise are
shown in Figure 6.

The variation of the nonlinear deflections of sand-
wich plates with a different aspect ratio (a/b) and side-
to-thickness (a/h) ratios is presented in Tables 2 and 3,
respectively. It can be witnessed from these tables that
the deflections of the plate are reduced with the higher
magnitude of the a/b ratio, whereas the converse holds

Figure 6. Deflection modes of the sandwich plate with different boundary conditions subjected to linear temperature profiles: (a)
CCCC, (b) CSCS, (c) SFSF and (d) SSSS

Table 2. Effect of aspect ratio on the nonlinear deflection of sandwich plates subjected to a linear and nonlinear temperature profile
(DT = 50; t = 1 mm; d/l = 1.0; h/hc = 1.4; u= 20�, a/h = 50).

Temperature profile a/b DT

20 40 60 80 100

Linear temperature 1 0.853 1.534 2.045 2.475 2.826
2 0.751 1.339 1.784 2.160 2.466
4 0.578 1.039 1.384 1.676 1.913

Nonlinear temperature 1 0.702 1.263 1.683 2.038 2.327
2 0.632 1.136 1.515 1.834 2.094
4 0.514 0.924 1.232 1.492 1.703

Table 3. Effect of thickness ratio on the nonlinear deflection of sandwich plates subjected to a linear and nonlinear temperature
profile (DT = 50; t = 1 mm; d/l = 1.0; h/hc = 1.4; u= 20�, a/b = 1).

Temperature profile a/h DT

20 40 60 80 100

Linear temperature 10 0.557 1.002 1.336 1.617 1.847
50 0.853 1.534 2.045 2.475 2.826
100 1.469 2.643 3.523 4.265 4.870

Nonlinear temperature 10 0.373 0.672 0.895 1.084 1.238
50 0.702 1.263 1.683 2.038 2.327
100 1.044 1.879 2.504 3.032 3.461
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good for the a/h ratio. The variation in the coupled
stiffness is the major reason behind these variation
trends.

The synergistic effect of pyro-coupling and auxetic
unit cell inclination angle on the variations in the
deflections of the sandwich plate is shown in
Figure 7(a) to (c). For a better understanding, the var-
iation is sown as a percentage. It can be seen from
Figure 7(a) that the influence of auxetic angle associ-
ated with the rib-length ratios (d/l ratio) of the sand-
wich plate is predominant up to 30�. Afterwards, the
discrepancies in the variation reduce. This may be due
to the enhanced variation in the Poisson’s ratio up to
30�, which gradually decreases later. In addition, a
higher degree of variation is seen for the sandwich
plate with greater values of d/l ratio. Analogously, the
influence of h/hc ratio and rib-thickness (t) associated
with auxetic cell inclination angle on the variation of
the pyro-coupling effects is shown in Figure 7(b) and
(c), respectively. Compared with the d/l ratio, a
greater discrepancy in the pyro-coupling variation is
witnessed for the h/hc ratio at higher auxetic cell

inclination angles. However, this variation is predo-
minant at the lower inclination angles for the reasons
mentioned earlier. This is due to the dominant effect
of M-MEE skins over the auxetic core. The pyro-
coupling effect drastically drops for lower rib-
thickness values as the cell inclination angle traverses
towards higher values. This may be attributed to the
reduction in the coupled stiffness of the sandwich
plate.

The synergistic pyro-coupling effect associated
with the linear and nonlinear temperature distribu-
tions on the variation of deflections of sandwich
plates is presented in Figure 8(a) to (d). The influence
of different geometrical parameters is also considered
here for better understanding. From these figures, it
is evident that linear temperature distribution has the
upper hand over the nonlinear temperature profile in
terms of pyro-coupling. Further, it is also realised
that a profound synergistic effect of the auxetic unit
cell parameters and the temperature distributions
exist on the pyro-coupling and hence the nonlinear
deflections of the plate.

(a) (b)

(c)

Figure 7. Effect of auxetic cell inclination angle on the pyro-coupling effects associated with the w* of sandwich plate with different
(a) d/l ratio (b) h/hc ratio (c) rib-thickness.
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The investigation is extended to assess the multi-
functional behaviour of the sandwich plate through
its bending response. The variation of the direct (elec-
tric and magnetic potentials) and indirect (electric dis-
placement and magnetic flux densities) static
quantities are examined. The influence of auxetic cell
inclination angle on the distribution of static quanti-
ties is studied from Figure 9(a) to (d). Unlike the
deflection response, a higher magnitude of the static
quantities is noticed for a greater value of the auxetic
cell inclination angle. This is due to the direct piezo-
electric and magnetostriction effect of M-MEE layers.
The sandwich plate with a higher auxetic cell inclina-
tion angle leads to the highest deflection, resulting in
the generation of a greater magnitude of static quan-
tities. In addition, a higher pyro-coupling effect is
seen for greater auxetic cell inclination angle. A simi-
lar trend is followed for rib-length ratio and linear
and nonlinear temperature profiles, as shown in
Figures 10 and 11, respectively due to the obvious
reasons mentioned earlier. Table 4 encapsulates the
inter-related effects of various auxetic cell dimensions
on the developed potentials of a sandwich plate.

The influence of applying an external electro-
magnetic load on the deflection and static response of

sandwich plates in a thermal environment is exam-
ined. For a sandwich plate with different auxetic cell
inclination angles, increasing the positive values of
electric and magnetic loads results in higher deflection
of the plate as shown in Figures 12 and 13. However,
the negative values tend to decrease the deflection.
This is because positive electro-magnetic loads are
tensile and add up to the equivalent force, but the
negative electro-magnetic loads are compressive,
reducing the effective force. In addition, a slightly
higher influence of magnetic loads over the electric
loads on the deflection can be seen. The pyro-
coupling has a predominant effect on the deflection
of the sandwich plate when subjected to positive
electro-magnetic loads. Figures 14 and 15 show the
variation of the electric and magnetic potentials,
respectively, when the sandwich plate is subjected to
different magnitudes of electro-magnetic loads. As
seen from these figures, the negative values of the
electro-magnetic loads display minimal pyro-coupling
effects and reduce the generation of potentials.
Further, Tables 5 and 6 show the inter-related influ-
ence of auxetic cell dimensions on the maximum
potentials generated in a sandwich plate subjected to
the different magnitudes of electric and magnetic

(a) (b)

(c) (d)

Figure 8. Variation of the pyro-coupling effects on the w* of a sandwich plate with different (a) auxetic angle (b) d/l ratio (c) h/hc
ratio (d) rib thickness subjected to different temperature profiles.
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(a) (b)

(c) (d)

Figure 9. Effect of auxetic core inclination angles on the variation of the (a) electric potential (b) magnetic potential (c) electric
displacement (d) magnetic flux density on the M-MEE facesheets of a sandwich plate .

Table 4. Effect of different auxetic cell dimensions on the maximum electric and magnetic potentials of sandwich plates subjected to
a linear temperature profile (DT = 50; h/hc = 1.4).

Rib-length ratio (d/l) Rib-thickness, t (mm) Electric potential Magnetic potential

u = 20� u = 30� u = 40� u = 20� u = 30� u = 40�

d/l = 1 0.2 12.16 14.58 15.84 12.45 17.57 21.79
0.4 11.31 13.34 14.49 11.47 16.32 20.24
0.8 10.66 12.71 13.80 10.77 15.17 18.81
1.0 9.42 11.48 12.47 9.73 13.40 16.62

d/l = 1.6 0.2 14.44 15.42 16.36 15.86 20.74 24.43
0.4 12.78 14.11 14.93 14.28 19.22 22.75
0.8 11.38 13.12 14.01 12.53 17.72 20.07
1.0 10.46 12.12 13.39 10.48 15.32 18.63

d/l = 1.8 0.2 16.17 18.13 20.66 17.23 22.73 25.61
0.4 13.52 16.42 17.55 15.84 21.12 23.68
0.8 12.26 14.98 15.69 13.83 19.27 21.92
1.0 10.80 13.18 14.77 10.95 17.18 20.33
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loads. It can be witnessed that magnetic loads have a
significant effect on the potentials due to higher mag-
netic coupling coefficients.

Conclusions

In this research work, the sandwich plate’s nonlinear
deflection and bending response with auxetic core
and M-MEE skins subjected to the multi-physics
loads (electric, magnetic and thermal) are studied.
The emphasis has been made on studying the inter-
related effects of auxeticity of the core, multi-physics
loads and pyro-coupling characteristics of the smart
skin. A mathematical model reinforced with the
higher order shear deformation theory, and von-
Karman’s nonlinearity is presented using the FE
framework. The numerical examples suggest that the
pyro-coupling and auxeticity effects are interrelated
and jointly dictate the nonlinear deflection of the
sandwich plate. In other words, the degree of pyro-
coupling can be varied by controlling the geometric

parameters of the auxetic unit cells. Few of the promi-
nent outcomes of this work suggest that the linear
temperature profile significantly affects the deflections
more than the nonlinear temperature profile. The sig-
nificant influence of temperature profiles on the pyro-
coupling are witnessed at lower auxetic cell angle. A
variation of 3.77% with respect to the pyro-coupling
effect exists between the linear and nonlinear thermal
profiles when u=20�. Lower values of rib-thickness
and plate-to-auxetic core thickness ratio result in an
enhanced pyro-coupling effect, whereas a predomi-
nant effect of a higher rib-length ratio is seen on the
pyro-coupling. However, due to the direct piezoelec-
tric and piezomagnetic properties of M-MEE skin, a
higher auxetic cell inclination angle and the rib-length
ratio has a beneficial effect on the development of
potentials. The electric and magnetic potentials devel-
oped tend to improve by 32.97% and 38.39% rib-
length ratio is varied from 1 to 1.8. Therefore, it is evi-
dent from this study that mainly by controlling the
auxetic cell parameters, the smart sensing and

(a) (b)

(c) (d)

Figure 10. Effect of rib-length ratios on the variation of the: (a) electric potential, (b) magnetic potential, (c) electric displacement
and (d) magnetic flux density on the M-MEE facesheets of a sandwich plate.
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(a) (b)

(c) (d)

Figure 11. Effect of temperature profiles on the variation of the: (a) electric potential, (b) magnetic potential, (c) electric
displacement and (d) magnetic flux density on the top and bottom M-MEE facesheets of a sandwich plate.

(a) (b)

Figure 12. Effect of: (a) electric and (b) magnetic loads on the nonlinear deflections of a sandwich plate with different auxetic
inclination angle.
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(a) (b)

Figure 13. Effect of pyro-coupling on the centre deflections of a sandwich plate subjected to different magnitudes of: (a) electric
and (b) magnetic loads along with linear thermal loads.

(a) (b)

Figure 14. Variation of the electric potential across a sandwich plate subjected to: (a) electric and (b) magnetic loads.

(a) (b)

Figure 15. Variation of the magnetic potential across a sandwich plate subjected to: (a) electric and (b) magnetic loads.
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actuation capabilities of the structures can be altered.
The prominent outcomes of this work related to inte-
grated effects of auxeticity and pyro-coupling are not
yet reported in the open literature and are deemed to
be utilised as a future reference.
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Appendix A

To derive, equation (20), the previous equations are
condensed based on the d.o.f’s as shown:

The equation (19.e), is solved in a direct manner to
obtain cf g as follows:

cf g=� Scc

� ��1
S19½ �+ SNL9½ �ð Þ dtf g+ S20½ � drf g+ S21½ � dr�f g+
Sfc

� �T
ff g � Fc

� 
+ FTc

� 
( )

ðA:1Þ

The term {c} of equation (19.d) is substituted by the
equation (A.1) and solved for ff g to get,

S16½ �+ SNL8½ �ð Þ dtf g+ S17½ � drf g+ S18½ � dr�f g+ Sff

� �
ff g�

Sfc

� �
Scc

� ��1 S19½ �+ SNL9½ �ð Þ stf g+ S20½ � srf g+ S21½ � sr�f g+

Sfc

� �T
ff g � Fc

� 
+ FTc

� 
 !" #

= Ff

� 
� FTf

� 
S22½ �+ SNL11½ �ð Þ stf g+ S23½ � srf g+ S24½ � sr�f g+ S25½ � ff g

+ Sff

� �
Scc

� ��1
Fc

� 
� FTc

� 
 �
= Ff

� 
� FTf

� 
 �
ff g=

� S26½ � stf g � SNL 12½ � stf g � S27½ � srf g � S28½ � sr�f g�

SF1½ � Fc

� 
� Ftc

� 
 �
� S25½ ��1 Ff

� 
� Ftf

� 
 �
 !

ðA:2Þ

Likewise, the terms {c} and {u} of equation (19.c) is
replaced with the equations (A.1) and (A.2) and
solved for sr�f g, to deduce

S29½ �+ SNL13½ �ð Þ stf g+ S30½ � srf g+ S31½ � sr�f g+ S32½ � ff g

+ SF2½ � Fc

� 
� FTc

� 
 �
=0

S33½ �+ SNL15½ �ð Þ stf g+ S34½ � srf g+ S35½ � sr�f g+

+ SF5½ � Fc

� 
� FTc

� 
 �
� KF3½ � Ff

� 
� FTf

� 
 �
=0

sr�f g=
� S36½ � stf g � SNL 16½ � stf g � S37½ � srf g�

SF6½ � Fc

� 
� FTc

� 
 �
� SF7½ � Ff

� 
� FTf

� 
 �
 !

ðA:3Þ

In a similar fashion, solving for srf g by substituting
equations (A.1)–(A.3) in equation (19.b), we obtain,

S38½ �+ SNL18½ �ð Þ stf g+ S39½ � srf g+ S40½ � sr�f g+ S41½ � ff g
+ SF8½ � Fc

� 
� FTc

� 
 �
=0

S42½ �+ SNL20½ �ð Þ stf g+ S43½ � srf g+ S44½ � sr�f g+

+ SF11½ � Fc

� 
� FTc

� 
 �
� SF10½ � Ff

� 
� FTf

� 
 �
=0

S45½ �+ SNL22½ �ð Þ stf g+ S46½ � srf g+

+ SF15½ � Fc

� 
� FTc

� 
 �
� SF14½ � Ff

� 
� FTf

� 
 �
=0

srf g=
� S47½ � stf g � SNL 23½ � stf g�

SF17½ � Fc

� 
� Ftc

� 
 �
+ SF16½ � Ff

� 
� Ftf

� 
 �
 !

ðA:4Þ

Finally, using equations (A.1)–(A.4) in equation
(19.a), stf g is derived along with the equivalent
matrices Seq

� �
and SNL eq

� �
as follows:

S48½ �+ SNL 24½ �ð Þ dtf g+ S49½ �+ SNL 25½ �ð Þ drf g

+ S50½ �+ SNL 26½ �ð Þ dr�f g+

S51½ �+ SNL 27½ �ð Þ ff g+ SF20½ � Fc

� 
� Ftc

� 
 �
= Ftf g

S52½ �+ SNL 29½ �ð Þ stf g+ S53½ �+ SNL 30½ �ð Þ srf g

+ S54½ �+ SNL 31½ �ð Þ sr�f g+

+ SF26½ � Fc

� 
� Ftc

� 
 �
� SF25½ � Ff

� 
� FTf

� 
 �
= FTf g

S55½ �+ SNL 33½ �ð Þ stf g+ S56½ �+ SNL 34½ �ð Þ srf g+

+ SF32½ � Fc

� 
� FTc

� 
 �
� SF31½ � Ff

� 
� FTf

� 
 �
= FTf g

Seq

� �
stf g+ SNL eq

� �
stf g= Feq

� 
stf g= Seq

� �
+ SNL eq

� �
 ��1
Feq

� 
ðA� 5Þ

Appendix B

The different stiffness matrices leading to linear equiv-
alent stiffness matrix SL eq

� �
can be denoted as,

Se
1

� �
= Se

tb1

� �
+ Se

ts1

� �
; Se

2

� �
= Se

rtb24

� �T
+ Se

rts13

� �T

Se
3

� �
= Se

rtb4

� �T
+ Se

rts3

� �T
; Se

4

� �
= Se

tbf1

h iT
+ Se

tsf1

h iT

Se
5

� �
= Se

tbc1

h iT
+ Se

tsc1

h iT
; Se

6

� �
= Se

rtb24

� �
+ Se

rts13

� �

Se
7

� �
= Se

rrb3557

� �
+ Se

rrs3513

� �
; Se

8

� �
= Se

rrb57

� �
+ Se

rrs35

� �

Se
9

� �
= Se

rbf24

h iT
+ Se

rfs13

h iT
; Se

10

� �
= Se

rbc24

h iT
+ Se

rcs13

h iT

Se
11

� �
= Se

rtb4

� �
+ Se

rts3

� �
; Se

12

� �
= Se

rrb57

� �
+ Se

rrs35

� �
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Se
13

� �
= Se

rrb7

� �
+ Se

rrs5

� �
; Se

14

� �
= Se

rbf4

h iT
+ Se

rfs3

h iT

Se
15

� �
= Se

rbc4

h iT
+ Se

rcs3

h iT
; Se

16

� �
= Se

tbf1

h iT
+ Se

tsf1

h iT

Se
17

� �
= Se

rbf2

h iT
+ Se

rbf4

h iT
+ Se

rfs1

h iT
+ Se

rfs3

h iT
;

Se
18

� �
= Se

rbf4

h iT
+ Se

rfs3

h iT
; Se

19

� �
= Se

tbc1

h iT
+ Se

tsc1

h iT

Se
20

� �
= Se

rbc2

h iT
+ Se

rbc4

h iT
+ Se

rcs1

h iT
+ Se

rcs3

h iT
;

Se
21

� �
= Se

rbc4

h iT
+ Se

rcs3

h iT
;

Se
22

� �
= S16½ � � Sfc

� �
Scc

� ��1
S19½ �

� �

Se
23

� �
= Se

17

� �
� Se

fc

h i
Se

cc

h i�1
Se
20

� �
;

Se
24

� �
= Se

18

� �
� Se

fc

h i
Se

cc

h i�1
Se
21

� �
;

Se
25

� �
= Se

ff

h i
� Se

fc

h i
Se

cc

h i�1
Se

fc

h iT

Se
26

� �
= Se

25

� ��1
Se
22

� �T
; Se

27

� �
= Se

25

� ��1
Se
23

� �T
;

Se
28

� �
= Se

25

� ��1
Se
24

� �T
Se
29

� �
= Se

11

� �
� Se

15

� �
Se

cc

h i�1
Se
19

� �
;

Se
30

� �
= Se

12

� �
� Se

15

� �
Se

cc

h i�1
Se
20

� �
Se
31

� �
= Se

13

� �
� Se

15

� �
Se

cc

h i�1
Se
21

� �
;

Se
32

� �
= Se

14

� �
� Se

15

� �
Se

cc

h i�1
Se

fc

h iT

Se
33

� �
= Se

29

� �
� Se

32

� �
Se
26

� �
; Se

34

� �
= Se

30

� �
� Se

32

� �
Se
27

� �

Se
35

� �
= Se

31

� �
� Se

32

� �
Se
28

� �
; Se

36

� �
= Se

35

� ��1
Se
33

� �T
;

Se
37

� �
= Se

35

� ��1
Se
34

� �T
; Se

38

� �
= Se

6

� �
� Se

10

� �
Se

cc

h i�1
Se
19

� �
;

Se
39

� �
= Se

7

� �
� Se

10

� �
Se

cc

h i�1
Se
20

� �
;

Se
40

� �
= Se

8

� �
� Se

10

� �
Se

cc

h i�1
Se
21

� �
;

Se
41

� �
= Se

9

� �
� Se

10

� �
Se

cc

h i�1
Se

fc

h iT
;

Se
42

� �
= Se

38

� �
� Se

41

� �
Se
26

� �
Se
43�= Se

39

� �
� Se

41

� �
Se
27

� �
; Se

44

� �
= Se

40

� �
� Se

41

� �
Se
28

� ��

Se
45

� �
= Se

42

� �
� Se

44

� �
Se
36

� �
; Se

46

� �
= Se

43

� �
� Se

44

� �
Se
37

� �

Se
47

� �
= Se

46

� ��1
Se
45

� �
; Se

48

� �
= Se

1

� �
� Se

5

� �
Se

cc

h i�1
Se
19

� �

Se
49

� �
= Se

2

� �
� Se

5

� �
Se

cc

h i�1
Se
20

� �
;

Se
50

� �
= Se

3

� �
� Se

5

� �
Se

cc

h i�1
Se
21

� �
Se
51

� �
= Se

4

� �
� Se

5

� �
Se

cc

h i�1
Se

fc

h iT
;

Se
52

� �
= Se

48

� �
� Se

51

� �
Se
26

� �
Se
53

� �
= Se

49

� �
� Se

51

� �
Se
27

� �
; Se

54

� �
= Se

50

� �
� Se

51

� �
Se
28

� �

Se
55

� �
= Se

52

� �
� Se

54

� �
Se
36

� �
; Se

56

� �
= Se

53

� �
� Se

54

� �
Se
37

� �

Se
L eq

h i
= Se

55

� �
� Se

56

� �
Se
47

� �
ðB:1Þ

Similarly, the matrices giving rise to the equivalent
nonlinear stiffness matrix [SNL_eq] can be written as
follows:

Se
NL 1

� �
= Se

tbNLbNL1 tbtbNL1

� �
; Se

NL 2

� �
= Se

rbNL rtb24

� �T

Se
NL 3

� �
= Se

rbNL4

� �T
; Se

NL 4

� �
= Se

bNLf1

h i

Se
NL 5

� �
= Se

bNLc1

h i
; Se

NL 6

� �
= Se

rbNL24

� �T

Se
NL 7

� �
= Se

rbNL4

� �T
; Se

NL 8

� �
= Se

bNLf1

h iT
;

Se
NL 9

� �
= Se

bNLc1

h iT

Se
NL 10

� �
= Se

fc

h i
Se

cc

h i�1
Se
NL 9

� �
;

Se
NL 11

� �
= Se

NL 8

� �
� Se

NL 10

� �

Se
NL 12

� �
= Se

25

� ��1
Se
NL 11

� �
;

Se
NL 13

� �
= Se

NL 7

� �
� Se

15

� �
Se

cc

h i�1
Se
NL 9

� �
;

Se
NL 14

� �
= Se

32

� �
Se
NL 12

� �
;

Se
NL 15

� �
= Se

NL 14

� �
� Se

NL 13

� �
;

Se
NL 16

� �
= Se

35

� ��1
Se
NL 15

� �
;

Se
NL 17

� �
= Se

10

� �
Se

cc

h i�1
Se
NL 9

� �
;

Se
NL 18

� �
= Se

NL 6

� �
� Se

NL 17

� �
;

Se
NL 19

� �
= Se

41

� �
Se
NL 12

� �
;
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Se
NL 20

� �
= Se

NL 19

� �
� Se

NL 18

� �
;

Se
NL 21

� �
= Se

44

� �
Se
NL 16

� �
;

Se
NL 22

� �
= Se

NL 20

� �
� Se

NL 21

� �
;

Se
NL 23

� �
= Se

46

� ��1
Se
NL 22

� �
;

Se
NL 24

� �
=

Se
NL 1

� �
� Se

NL 5

� �
Se

cc

h i�1
Se
19

� �
� Se

5

� �
Se

cc

h i�1
Se
NL 9

� �
�

Se
NL 5

� �
Se

cc

h i�1
Se
NL 9

� �
0
B@

1
CA

Se
NL 25

� �
= Se

NL 2

� �
� Se

NL 5

� �
Se

cc

h i�1
Se
20

� �

Se
NL 26

� �
= Se

NL 3

� �
� Se

NL 5

� �
Se

cc

h i�1
Se
21

� �
Se
NL 27

� �
= Se

NL 4

� �
� Se

NL 5

� �
Se

cc

h i�1
Se

cf

h i

Se
NL 28

� �
= Se

51

� �
Se
NL 12

� �

Se
NL 29

� �
=� Se

NL 28

� �
+ Se

NL 24

� �
� Se

NL 27

� �
Se
26

� �
� Se

NL 27

� �
Se
NL 12

� �
Se
NL 30

� �
= Se

NL 25

� �
� Se

NL 27

� �
Se
27

� �
;

Se
NL 31

� �
= Se

NL 26

� �
� Se

NL 27

� �
Se
28

� �
;

Se
NL 32

� �
= Se

54

� �
Se
NL 16

� �
;

Se
NL 33

� �
= Se

NL 29

� �
� Se

NL 32

� �
� Se

NL 31

� �
Se
36

� �
� Se

NL 31

� �
Se
NL 16

� �

Se
NL 34

� �
= Se

NL 30

� �
� Se

NL 31

� �
Se
37

� �

Se
NL 35

� �
= Se

56

� �
Se
NL 23

� �
; Se

NL 36

� �
= Se

NL 34

� �
Se
47

� �

Se
NL 37

� �
= Se

NL 34

� �
Se
NL 23

� �

Se
NL eq

h i
= Se

NL 33

� �
� Se

NL 35

� �
� Se

NL 36

� �
� Se

NL 37

� �
ðB:2Þ

The matrices contributing to the equivalent force
Feq

� 
are,

Feq

� 
= FTf g � Se

Ff

h i
Ff

� 
+ FTf

� 
 �
� Se

Fc

h i
Fc

� 
+ FTc

� 
 �

where,

Se
Ff

h i
= Se

F31

� �
� Se

F35

� �
� Se

F33

� �
;

Se
Fc

h i
= Se

F32

� �
� Se

F36

� �
� Se

F34

� �

Se
F1

� �
= Se

25

� ��1
Se

fc

h i
Se

cc

h i�1
; Se

F2

� �
= Se

15

� �
Se

cc

h i�1

Se
F3

� �
= Se

32

� �
Se
25

� ��1
; Se

F4

� �
= Se

32

� �
Se
F1

� �

Se
F5

� �
= Se

F2

� �
� Se

F4

� �
; Se

F6

� �
= Se

35

� ��1
Se
F5

� �

Se
F7

� �
= Se

35

� ��1
Se
F3

� �
; Se

F8

� �
= Se

10

� �
Se

cc

h i�1

Se
F9

� �
= Se

41

� �
Se
F1

� �
; Se

F10

� �
= Se

41

� �
Se
25

� ��1
;

Se
F11

� �
= Se

F8

� �
� Se

F9

� �
; Se

F12

� �
= Se

44

� �
Se
F6

� �
;

Se
F13

� �
= Se

44

� �
Se
F7

� �
; Se

F14

� �
= Se

F10

� �
� Se

F13

� �

Se
F15

� �
= Se

F11

� �
� Se

F12

� �
; Se

F16

� �
= Se

46

� ��1
Se
F14

� �
;

Se
F17

� �
= Se

46

� ��1
Se
F15

� �
; Se

F18

� �
= Se

5

� �
Se

cc

h i�1

Se
F19

� �
= Se

NL 5

� �
Se

cc

h i�1
; Se

F20

� �
= Se

F18

� �
+ Se

F19

� �

Se
F21

� �
= Se

51

� �
Se
F1

� �
; Se

F22

� �
= Se

51

� �
Se
25

� ��1
Se
F23

� �
= Se

NL 27

� �
Se
F1

� �
; Se

F24

� �
= Se

NL 27

� �
Se
25

� ��1
Se
F25

� �
= Se

F22

� �
+ Se

F24

� �
; Se

F26

� �
= Se

F20

� �
� Se

F21

� �
� Se

F23

� �

Se
F27

� �
= Se

54

� �
Se
F6

� �
; Se

F28

� �
= Se

54

� �
Se
F7

� �
Se
F29

� �
= Se

NL 31

� �
Se
F6

� �
; Se

F30

� �
= Se

NL 31

� �
Se
F7

� �

Se
F31

� �
= Se

F25

� �
+ Se

F30

� �
+ Se

F28

� �
;

Se
F32

� �
= Se

F26

� �
� Se

F29

� �
� Se

F27

� �
;

Se
F33

� �
= Se

56

� �
Se
F16

� �
; Se

F34

� �
= Se

56

� �
Se
F17

� �
;

Se
F35

� �
= Se

NL 34

� �
Se
F16

� �
;

Se
F36

� �
= Se

NL 34

� �
Se
F17

� �
;

Se
F37

� �
= Se

F32

� �
� Se

F34

� �
� Se

F36

� �

Se
F38

� �
= Se

F33

� �
+ Se

F35

� �
� Se

F31

� � ðB:3Þ
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Se
rrs35

� �
= Se

rrs3

� �
+ Se

rrs5

� �
; Se

rrs13

� �
= Se

rrs1

� �
+ Se

rrs3

� �
;

Se
rrs3513

� �
= Se

rrs35

� �
+ Se

rrs13

� �
; Se

rts13

� �
= Se

rts1

� �
+ Se

rts3

� �

Se
rcs13

h i
= Se

rcs1

h i
+ Se

rcs3

h i
; Se

rfs13

h i
= Se

rfs1

h i
+ Se

rfs3

h i

Se
tbtbNL1

� �
= Se

tb1

� �
+ Se

tbNL1

� �
;

Se
rtb24

� �
= Se

rtb2

� �
+ Se

rtb4

� �

Se
tbNLbNL1 tbtbNL1

� �
= Se

tbNLbNL1

� �
+ Se

tbtbNL1

� �
;

Se
rbNL rtb24

� �
= Se

rbNL24

� �
+ Se

rtb24

� �
;

Se
rbNL rtb4

� �
= Se

rbNL4

� �
+ Se

rtb4

� �

Se
bNL tbf1

h i
= Se

bNLf1

h i
+ Se

tbf1

h i
;

Se
bNL tbc1

h i
= Se

bNLc1

h i
+ Se

tbc1

h i

Se
rrb57

� �
= Se

rrb5

� �
+ Se

rrb7

� �
;

Se
rtbrbNL4

� �
= Se

rtb4

� �
+ Se

rbNL4

� �

Se
rtbrbNL2

� �
= Se

rtb2

� �
+ Se

rbNL2

� �
;

Se
rtbrbNL24

� �
= Se

rtbrbNL2

� �
+ Se

rtbrbNL4

� �

Se
rrb35

� �
= Se

rrb3

� �
+ Se

rrb5

� �
;

Se
rrb5735

� �
= Se

rrb57

� �
+ Se

rrb35

� �

Se
rbf24

h i
= Se

rbf2

h i
+ Se

rbf4

h i
;

Se
rbc24

h i
= Se

rbc2

h i
+ Se

rbc4

h i

Se
tbNLbNL1

� �
= Se

tbNL1

� �
+ Se

bNL1

� �
;

Se
rbNL24

� �
= Se

rbNL2

� �
+ Se

rbNL4

� � ðB:4Þ

where,

Se
rtb4

� �
=

ða
0

ðb
0

SDrb½ �T Db4½ � SDtb½ �dxdy;

Se
rbNL4

� �
=

ða
0

ðb
0

SDrb½ �T DbNL4½ � SD1½ � SD2½ �dxdy

Se
rrb5

� �
=

ða
0

ðb
0

SDrb½ �T Db5½ � SDrb½ �dxdy;

Se
rrb7

� �
=

ða
0

ðb
0

SDrb½ �T Db7½ � SDrb½ �dxdy

Se
rbf4

h i
=

ða
0

ðb
0

SDrb½ �T Dbf4

� �
SDf

� �
dxdy;

Se
rbc4

h i
=

ða
0

ðb
0

SDrb½ �T Dbc4

� �
SDc

� �
dxdy

Se
rtb4

� �
=

ða
0

ðb
0

SDrb½ �T Db4½ � SDtb½ �dxdy;

Se
rtb2

� �
=

ða
0

ðb
0

SDrb½ �T Db2½ � SDtb½ �dxdy

Se
rbNL2

� �
=

ða
0

ðb
0

SDrb½ �T DbNL2½ � SD1½ � SD2½ �dxdy;

Se
rrb3

� �
=

ða
0

ðb
0

SDrb½ �T Db3½ � SDrb½ �dxdy

Se
rrb5

� �
=

ða
0

ðb
0

SDrb½ �T Db5½ � SDrb½ �dxdy;

Se
rbf2

h i
=

ða
0

ðb
0

SDrb½ �T Dbf2

� �
SDf

� �
dxdy

Se
rbc2

h i
=

ða
0

ðb
0

SDrb½ �T Dbc2

� �
SDc

� �
dxdy;

Se
tbNL1

� �
=

ða
0

ðb
0

SDtb½ �T DbNL1½ � SD1½ � SD2½ �dxdy

Se
bNL1

� �
=

ða
0

ðb
0

SD2½ �T SD1½ �T DbbNL1½ � SD1½ � SD2½ �dxdy;

Se
bNLf1

h i
=

ða
0

ðb
0

SDf

� �T
DbNLf1

� �
SD1½ � SD2½ �dxdy;

Se
bNLc1

h i
=

ða
0

ðb
0

SDc

� �T
DbNLc1

� �
SD1½ � SD2½ �dxdy

Se
tb1

� �
=

ða
0

ðb
0

SDtb½ �T Db1½ � SDtb½ �dxdy;

Se
tbf1

h i
=

ða
0

ðb
0

SDtb½ �T Dbf1

� �
SDf

� �
dxdy
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Se
tbc1

h i
=

ða
0

ðb
0

SDtb½ �T Dbc1

� �
SDc

� �
dxdy;

Se
rts3

h i
=

ða
0

ðb
0

SDrs½ �T Ds3½ � SDts½ �dxdy

Srrs3½ �=
ða
0

ðb
0

SDrs½ �T Ds3½ � SDrs½ �dxdy;

Se
rrs5

h i
=

ða
0

ðb
0

SDrs½ �T Ds5½ � SDrs½ �dxdy

Srcs3

� �
=

ða
0

ðb
0

SDrs½ �T Dsc3

� �
SDc

� �
dxdy;

Se
rfs3

h i
=

ða
0

ðb
0

SDrs½ �T Dsf3

� �
SDf

� �
dxdy

Se
tsf1

h i
=

ða
0

ðb
0

SDts½ �T Dsf1

� �
SDf

� �
dxdy;

Se
tsc1

h i
=

ða
0

ðb
0

SDts½ �T Dsc1

� �
SDc

� �
dxdy

Se
rfs1

h i
=

ða
0

ðb
0

SDrs½ �T Dsf1

� �
SDf

� �
dxdy;

Srcs1

� �
=

ða
0

ðb
0

SDrs½ �T Dsc1

� �
SDc

� �
dxdy

Se
rts1

h i
=

ða
0

ðb
0

SDrs½ �T Ds1½ � SDts½ �dxdy;

Se
rrs1

h i
=

ða
0

ðb
0

SDrs½ �T Ds1½ � SDrs½ �dxdy

Sts1½ �=
ða
0

ðb
0

SDts½ �T Ds1½ � SDts½ �dxdy;

Se
rts3

h i
=

ða
0

ðb
0

SDrs½ �T Ds3½ � SDts½ �dxdy

Fc

� 
=

ða
0

ðb
0

Nc

� �T
Qcdxdy; Ff

� 
=

ða
0

ðb
0

Nf

� �T
Qfdxdy;

Ftf g=
ð
ON

Cb½ �N a½ �NDTdON; Ftf

� 
=

ð
ON

p½ �DTdON;

Ftc

� 
=

ð
ON

t½ �DTdON;

ðB:5Þ

The rigidity matrices appearing in equation (B.5) can
be written as follows:

Db1½ �=
X3
N=1

ðh=2
�h=2

Cb½ �Ndz; DbbNL1½ �= 1

4
Db1½ �;

DbNL1½ �= 1

2
Db1½ �; Db2½ �=

X3
N=1

ðh=2
�h=2

z Cb½ �Ndz;

DbNL2½ �= 1

2
Db2½ �; Db3½ �=

X3
N=1

ðh=2
�h=2

z2 Cb½ �Ndz;

Db4½ �=
X3
N=1

ðh=2
�h=2

c1z
3 Cb½ �Ndz; DbNL4½ �= 1

2
Db4½ �;

Db5½ �=
X3
N=1

ðh=2
�h=2

c1z
4 Cb½ �Ndz;

Db7½ �=
X3
N=1

ðh=2
�h=2

c1
2z6 Cb½ �Ndz;

Dbf1

� �
=

ðh4
h3

Zt½ � eb½ �dz+
ðh2
h1

Zb½ � eb½ �dz;

DbNLf1

� �
= Dbf1

� �
;

Dbf2

� �
=

ðh4
h3

z Zt½ � eb½ �dz+
ðh2
h1

z Zb½ � eb½ �dz;

Dbf4

� �
=

ðh4
h3

c1z
3 Zt½ � eb½ �dz+

ðh2
h1

c1z
3 Zb½ � eb½ �dz;

Ds1½ �=
X3
N=1

ðh=2
�h=2

Cs½ �Ndz;

Dbc1

� �
=

ðh4
h3

Zt½ � qb½ �dz+
ðh2
h1

Zb½ � qb½ �dz;

22 Proc IMechE Part C: J Mechanical Engineering Science 00(0)



DbNLc1

� �
= Dbc1

� �
;

Dbc2

� �
=

ðh4
h3

z Zt½ � qb½ �dz+
ðh2
h1

z Zb½ � qb½ �dz;

Dbc4

� �
=

ðh4
h3

c1z
3 Zt½ � qb½ �dz+

ðh2
h1

c1z
3 Zb½ � qb½ �dz;

Ds3½ �=
X3
N=1

ðh=2
�h=2

c2z
2 Cs½ �Ndz;

Ds5½ �=
X3
N=1

ðh=2
�h=2

c2
2z4 Cs½ �Ndz;

Dsf1

� �
=

ðh4
h3

Zt½ � es½ �Tdz+
ðh2
h1

Zb½ � es½ �Tdz;

Dsf3

� �
=

ðh4
h3

c2z
2 Zt½ � es½ �Tdz+

ðh2
h1

c2z
2 Zb½ � es½ �Tdz;

Dsc1

� �
=

ðh4
h3

Zt½ � qs½ �Tdz+
ðh2
h1

Zb½ � qs½ �Tdz;

Dsc3

� �
=

ðh4
h3

c2z
2 Zt½ � qs½ �Tdz+

ðh2
h1

c2z
2 Zb½ � qs½ �Tdz;

Dff

� �
=

ðh4
h3

Zt½ �T h½ � Zt½ �dz+
ðh2
h1

Zb½ �T h½ � Zb½ �dz;

Dcc

� �
=

ðh4
h3

Zt½ �T m½ � Zt½ �dz+
ðh2
h1

Zb½ �T m½ � Zb½ �dz;

Dfc

� �
=

ðh4
h3

Zt½ �T m½ � Zt½ �dz+
ðh2
h1

Zb½ �T m½ � Zb½ �dz;

ðB:6Þ

The derivative of shape function matrices appearing
in the FE formulation can be represented by

SDtb½ �=
Ni, x 0 0

0 Ni, y 0

Ni, y Ni, x 0

2
64

3
75, SDrb½ �=

Ni, x 0

0 Ni, y

Ni, y Ni, x

2
64

3
75,

SDts½ �=
0 0 Ni, x

0 0 Ni, y

� �
, SDrs½ �=

1 0

0 1

� �

SD1½ �=
w0, x 0 w0, y

0 w0, y w0, x

� �T
,

B2½ �= SD21 SD22 � � � SD28½ �; SDf

� �
= SDc

� �

=

Ni, x

Ni, y

Ni, z

2
64

3
75

ðB:7Þ
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