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Randomness is a fundamental property of human behavior. It occurs both in the 
form of intrinsic random variability, say when repetitions of a task yield slightly 
different behavioral outcomes, or in the form of explicit randomness, say when 
a person tries to avoid being predicted in a game of rock, paper and scissors. 
Randomness has frequently been studied using random sequence generation 
tasks (RSG). A key finding has been that humans are poor at deliberately producing 
random behavior. At the same time, it has been shown that people might be better 
randomizers if randomness is only an implicit (rather than an explicit) requirement 
of the task. We therefore hypothesized that randomization performance might 
vary with the exact instructions with which randomness is elicited. To test this, 
we acquired data from a large online sample (n = 388), where every participant 
made 1,000 binary choices based on one of the following instructions: choose 
either randomly, freely, irregularly, according to an imaginary coin toss or 
perform a perceptual guessing task. Our results show significant differences in 
randomness between the conditions as quantified by conditional entropy and 
estimated Markov order. The randomization scores were highest in the conditions 
where people were asked to be  irregular or mentally simulate a random event 
(coin toss) thus yielding recommendations for future studies on randomization 
behavior.
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1. Introduction

Many cognitive tasks could potentially benefit from being able to use randomness, such as 
exploration (Wilson et al., 2014), predator evasion (Humphries and Driver, 1970), improvisation 
(de Manzano and Ullén, 2012), creativity (Benedek et al., 2012) or breaking a decision deadlock 
(see Icard, 2019 for a discussion). The lack of unpredictability in the form of behavioral 
stereotypy is also a marker of psychopathology (Horne et al., 1982). Due to its relevance for 
central executive cognitive function, human randomization has received broad attention in the 
psychology literature (Baddeley, 1966; Miyake et al., 2000; Nickerson, 2002; Oomens et al., 2015).

Traditionally, randomization performance has been assessed by random sequence 
generation (RSG) tasks where participants are required to make a series of random choices from 
a predetermined set of options (see Nickerson, 2002). Commonly used choice sets are the digits 
from 0–9 (Joppich et al., 2004), binary sets, e.g., 0/1 or heads/tails (Nickerson and Butler, 2009), 
letters A-I (Jahanshahi and Dirnberger, 1999), nouns (Heuer et al., 2010) or symbols on Zener 
cards (Sisti et al., 2018). However, experimental parameters have varied considerably throughout 
different RSG versions, including especially the way participants were instructed to be random 
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(Wagenaar, 1972). We hypothesize that this could be a crucial but 
commonly overlooked moderator of randomization performance.

A common finding of RSG studies is that people are bad 
randomizers (Nickerson, 2002, see below). Interestingly, if randomness 
is not overtly requested but rather an implicit requirement, as in 
competitive games such as matching pennies, randomness seems to 
be higher (Budescu and Rapoport, 1992). The purpose of this study is 
to investigate whether randomization performance is affected by how 
(and especially how overtly) randomness is instructed for, by directly 
comparing different instructions in an otherwise identical 
experimental setting.

2. What is behavioral randomness?

Human randomization performance is typically assessed with 
some form of RSG task, where a participant is asked to produce a 
series of random choices from a prespecified choice set in an 
unpredictable way (Nickerson, 2002). In the field of psychology there 
are two related aspects of behavioral randomness, randomness 
production and randomness perception. In this article we focus on the 
first, the way people produce a random sequence of choices. Here 
we encounter multiple methodological challenges.

First, randomization can be described in two ways, by focusing on 
the random process or the random product, i.e., an individual finite 
sequence (Nickerson, 2002). A specific finite sequence could have 
been generated by a random process, but might not appear random, 
e.g., a sequence of 10 heads in a row can be created by a fair coin toss. 
Alternatively, a finite sequence can appear random but it could have 
been produced in a deterministic, predictable way, such as the digits 
of number pi or pseudo-generated sequences used in computers 
(Nickerson, 2002). In our study we can only observe the behavioral 
outcome directly, which is the sequence of choices produced by 
humans. Statements on the process that brought about the outcome 
will ultimately be of speculative nature (see also next section).

Even after narrowing the scope to the observable product of 
randomization, it remains difficult to conceptualize what it actually 
means to say that this product, e.g., a choice sequence, is random. 
Generally, there are different angles from which a random sequence 
can be characterized, e.g., by referring to aspects of incompressibility, 
irregularity, or equiprobability (see Nickerson (2002) for a review). 
Here we focus on sequential independence, which states that a choice 
at any given time point is independent of preceding time points and 
likewise has no bearing on the subsequent choices. In section 6.4.3. on 
randomness measures we present a more detailed reflection and 
description on how we capture aspects of randomness by identifying 
sequential independencies borrowing from Markov Chain Theory. In 
the following, whenever we talk about people “randomizing,” we mean 
attempting to randomize according to their own definition 
of randomness.

3. Randomization and executive 
control

The ability to generate random behavior is cognitively demanding 
(Jahanshahi et al., 2006), but it can be highly useful and adaptive. 
Examples range from protean strategies, i.e., to conceal intentions to 

evade predators (Humphries and Driver, 1970; Tervo et  al., 2014; 
Icard, 2019; Belkaid et  al., 2020), to mixed strategies, where 
randomizing over choice options in a game setting is a Nash 
equilibrium (Platt, 2004; Lee and Seo, 2011). Behavioral randomness 
also plays a role in random exploration to discover new foraging 
opportunities in dynamic environments (Jensen, 2018; Belkaid et al., 
2020), the emergence of creative thought (Campbell, 1960), and the 
mating behavior of songbirds (Jensen, 2018). Not only is the capacity 
for random behavior itself functional, but also the overarching ability 
to successfully identify and calibrate when to use randomization based 
on the given environmental demands: “People and animals choose 
whether, when, and how much to vary […].” (Neuringer, 2002, p. 672; 
see also Neuringer and Jensen, 2010).

Accomplishing this complex task requires the coordination of 
different cognitive processes, which fall under the umbrella of 
executive functions. Executive functions are a set of higher order 
cognitive control processes that are active in planning or problem-
solving where attention is required because they cannot be performed 
automatically (Cristofori et al., 2019). Studies using the RSG task have 
shown that randomization draws on several executive subfunctions 
such as the inhibition of prepotent responses, maintenance of choice 
history in working memory and updating of response strategies 
(Baddeley et  al., 1998; Jahanshahi and Dirnberger, 1999; Miyake 
et al., 2000).

A few mechanistic models of RSG have been proposed. In 
Baddeley et al.’s (1998) verbal model a response (“schema”) is selected 
from a set of possible responses, e.g., “decrease previous response by 
1″ and evaluated relative to the running record of previous responses 
in working memory. If the schema fits one’s notion of randomness, the 
selected response is produced, else it is inhibited and a new response 
is selected. The inhibitory aspect of RSG was further developed by 
Jahanshahi et al. (1998) in their “network modulation model.” Here 
the elements in a given choice set (e.g., numbers 0–9) are linked 
together in a semantic network where link weights are determined by 
learned associations (e.g., adjacent numbers), representation strength 
(e.g., 1 tends to appear more often as a first digit, see the law of 
Benford’s, 1938). As these weights bias the response selection 
(randomness would arise from equal weights), a limited-capacity 
executive controller needs down-regulating stronger weights, thereby 
inhibiting the selection of, e.g., adjacent numbers. Additionally, the 
controller is blocking immediately preceding numbers (“refractory 
mechanism”) to avoid repetition (Jahanshahi et al., 1998).

Shortcomings in any of the executive subfunctions result in 
biased, nonrandom sequences. For example, weak inhibitory 
performance presents itself in the form of a seriation bias, which is the 
propensity to produce stereotypical overlearned responses, such as 
counting upwards. In addition, a deficient ability in updating typically 
leads to the cycling bias, where the participant cycles through every 
possible option in the choice set before repeating (Rabinowitz, 1970; 
Ginsburg and Karpiuk, 1994; Peters et al., 2007). Another pervasive 
bias is the avoidance of repetitions, also called negative recency effect 
or alternation bias, where an excess of alternations and suppression of 
repeating choices can be observed (Falk and Konold, 1997).

Given the strong role of executive functions in randomization, 
there have been a number of studies showing that randomization 
performance is compromised in various psychopathologies that have 
been discussed to also affect executive processes (Horne et al., 1982). 
For example, there is a tendency for responses to be stereotypical in 
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disorders such as schizophrenia (Mittenecker, 1960; Chan et al., 2011), 
Parkinson’s disease (Spatt and Goldenberg, 1993), dementia of the 
Alzheimer type (Brugger et al., 1996), aphasia (Proios et al., 2008) or 
multiple or sclerosis (Geisseler et  al., 2016). But also transient 
variations in executive functions in healthy subjects such as those 
induced by sleep deprivation (Heuer et al., 2005) or working memory 
load manipulations in dual task settings (Naefgen and Janczyk, 2018) 
affect randomization performance.

4. The role of instructions in 
randomization tasks

A comprehensive review by Wagenaar (1972) highlighted a key 
problem in the RSG literature, which is the high variability of task 
parameters across studies. For example, the number of options in the 
choice set, the nature of the choice set (numbers, letters or buttons), 
sequence length, whether responses were paced (e.g., 1 choice per 
second) or not, and visibility of previous responses, to name a few.

There is also considerable variability across studies in the way 
random behavior is instructed. In some experimental versions 
participants were simply asked to make random choices (Oomens 
et al., 2015; Sisti et al., 2018), others used analogies and mental models 
to illustrate the concept of randomness, such as the hat analogy, where 
one imagines to blindly draw pieces of paper with numbers written on 
them out of a hat, reads them out loud and puts them back in the hat 
(Joppich et al., 2004). Also often used were die or coin analogies, 
where the instructions were to report the results of an imagined die 
(Knoch et  al., 2004) or coin toss (Nickerson and Butler, 2009). A 
different way of instructing has been to encourage unpredictability by 
avoiding “schemes” or patterns (Daniels et al., 2003). For example, 
Azouvi et al. (1996) encouraged a “completely jumbled” sequence, 
without consecutive digits like “1-2-3-4-5,” or as instructed in Finke 
(1984): “in such a manner that if another person were trying to predict 
which number would be selected next, he or she would not be able to 
do so” (p. 40).

The above-mentioned instruction types evoke some notions of 
randomness by either mentioning the word random or by means of 
an analogy. In this way behavioral randomness becomes an active goal 
in the task. Alternatively, there are task types where randomization 
can emerge without any reference to randomness or a randomization 
process. One example is to appeal to the concept of spontaneity in free 
choice tasks (Naefgen and Janczyk, 2018). The idea is that people do 
something similar to an RSG task when prompted to decide freely 
between options, which is why tasks related to RSG are frequently 
used in the volition literature for Libet-style experiments (Soon et al., 
2008; Bode et al., 2011; Lages and Jaworska, 2012; Lages et al., 2013). 
Further, several studies suggest that there is an overlap between brain 
activity in free choice tasks and RSG tasks (Frith et  al., 1991; de 
Manzano and Ullén, 2012). However, free choice tasks typically still 
constrain the participants to answer in a specific way, such as avoiding 
patterns and balancing the amount of responses (Goldberg et al., 2008; 
Naefgen and Janczyk, 2018), thus calling into question whether the 
responses are actually subjectively free.

An alternative paradigm to covertly elicit random behavior is by 
means of a zero-sum game, e.g., matching pennies game. In this game 
the best response of each player to each other (Nash equilibrium is 
attained when both play a mixed strategy which means choosing each 

option with a probability of 0.5 (Nash, 1950; Lee and Seo, 2011)). 
Comparing the choice sequences obtained from a matching pennies 
game to those from a standard RSG task on a variety of different 
randomness measures (see below for a discussion), Budescu and 
Rapoport (1992) found a better randomization performance in the 
first than in the latter.

Another case where choice sequences exhibit similar structural 
characteristics as those reported in RSG, is in perceptual judgment 
tasks (Bode et al., 2013; Urai et al., 2019). For instance, although any 
low-level perceptual decision should be based solely on the given 
stimulus content, i.e., history-independent, there is a wealth of studies 
showing the presence of sequential dependencies in choice sequences, 
where an individual’s history of perceptual decisions was shown to 
bias the subsequent decision (Cicchini et al., 2018; Gallagher and 
Benton, 2022).

A similar guessing paradigm is the Zener card test where 
participants have to purely guess one of five symbols on a card that the 
researcher is covertly holding in their hand. Since the symbols are 
neutral, occur with the same probability and participants receive no 
feedback on the correctness of their choices, there should be  no 
preference for choosing any of the symbols which would essentially 
liken the Zener card test to a perceptual judgment task without 
perceptual information. As such, the choice sequences produced in 
this test exhibit similar biases as perceptual judgment and RSG tasks, 
such as repetition avoidance (Sisti et al., 2018).

Apart from RSG it is well known that task instructions are a 
powerful way of modifying behavior (Dreisbach and Haider, 2008; 
Gaschler et al., 2012; Schneider and Logan, 2014). However even in 
the absence of explicit task instructions seemingly moderate changes 
in instruction wording can cause large shifts in behavior (Burnham 
et al., 2000; Cooper et al., 2001; Rahhal et al., 2001; Liberman et al., 
2004; Smilek et al., 2006; Gilbert et al., 2009; McCabe and Geraci, 
2009, see also table 1 in Oppenheimer et al. (2009) for an overview). 
In these experiments people responded very differently to the same 
materials and tasks based only on small differences in instruction 
wording. This phenomenon is also known as the “framing effect” and 
well-documented in behavioral and experimental economics (see 
Levin et al. (1998) for a review). A prominent example is that by solely 
naming the prisoners’ dilemma game either “WallStreet Game” or 
“Community Game” has an impact on cooperation/defection 
outcomes in players (Liberman et al., 2004). While the behavioral and 
experimental economics literature has since established a need for 
clear, decontextualized and standardized rules in which tasks such as 
games are explained to participants, this has not been the case in the 
RSG literature as evidenced by the task instruction variations 
described above.

5. Comparison of five different RSG 
task instructions

All these findings together suggest that randomization 
performance is influenced by the details of the instructions. Thus, in 
the present study we  constructed five different conditions where 
participants were asked to choose either (1) randomly, (2) freely, (3) 
irregularly, (4) according to an imagined coin toss, or (5) according to 
a perceptual guessing task (for full details see below). Our goal was to 
examine how the different ways of instructing participants affect the 
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randomness of the generated sequences. Following the terminology 
of Brass and Haggard (2008), the tasks would constitute a “What” 
decision.

The conditions vary in the degree to which the goal of producing 
a random sequence is made explicit. At one end, there is only one 
condition where we explicitly ask to make a random choice while at 
the other end, there is the perceptual guessing task, where randomness 
is not intended but may occur incidentally. The other instruction 
conditions fall somewhere in between these two extremes. For 
example, in the mental coin toss condition some level of randomness 
is presumably considered essential by the participant to emulate the 
physical process. In none of our conditions was the randomness 
explicitly required to “win” a game as in competitive interaction games.

Importantly, we  kept every other fundamental feature in the 
experiment identical, such as the choice set size, length of time 
window for making the decisions, sequence length, etc., thereby 
addressing the heterogeneity of experimental versions of the RSG task 
in the literature (Wagenaar, 1972) and allowing proper comparability 
across conditions.

Our primary statistical hypothesis was that there is a difference in 
the degree of randomness between the sequences generated in the five 
conditions. Besides this primary hypothesis there are many reasons 
that a specific instruction could either increase or decrease the 
randomization performance compared to the others. These are 
discussed in the following.

First, if it matters how overtly the concept of randomness is 
expressed, we expect a worse performance in the condition where 
randomness is explicitly instructed for and a better performance in a 
condition where randomness is not mentioned at all, such as in the 
guessing task where random behavior might be  elicited as an 
incidental byproduct.

Second, our conditions also differ by the propensity to hold the 
choice history in mind. We expect that participants who were asked 
to choose freely or who completed the guessing task should feel no 
need in keeping a tally of previous responses on each trial. But 
somebody who is, e.g., instructed to create an irregular sequence 
might be monitoring the previous responses in order to assess whether 
they follow the instructions. Consequently, this monitoring process 
would cause additional working memory load. The direction in which 
the additional working memory load will affect however is not so 
clear. Empirically, we know from previous dual task paradigms studies 
that higher working memory load decreases RSG performance 
(Cooper et  al., 2012; Naefgen and Janczyk, 2018). Based on this 
consideration we expect randomization performance to be worse in 
those conditions where monitoring processes consume working 
memory capacity such as in the irregularity condition as well as 
mental coin toss and explicit randomness tasks. At the same time, 
randomness as it is assessed here is per definition a memoryless 
process because it involves sequential independence (see section 2. 
What is behavioral randomness?). This implies that a completely 
depleted working memory should benefit randomization producing 
the opposite expected outcome.

At the same time, these conditions possibly force the participants 
to actively suppress the urge to answer in a patterned, predictable way. 
According to Wegner’s (1994) ironic process theory whenever people 
actively try to avoid thinking a specific thought, it ironically occurs 
more often than it would without the conscious effort to suppress it 

(also known as immediate enhancement effect (Wang et al., 2020)). If 
the effort to suppress creates the opposite effect, we might even see a 
better randomization performance in the free choice and guessing task 
where there is no reason to engage in suppression. Finally, the explicit 
instruction to be random depends on the subjects’ individual concepts 
of randomness. However, instructing somebody to be irregular or 
throw a coin in the head is arguably a more direct and actionable 
instruction that might allow for less space for misunderstanding.

6. Methods

6.1. Procedure

The participants accessed the link to the study via the Prolific 
platform where they were first informed about the experimental 
procedure and required to declare their consent. Then, after being 
randomly assigned to one of the five experimental conditions, the 
respective instructions were presented. After reporting the stimulus 
screens, we proceed with outlining the different instruction types. In 
the beginning participants had the opportunity to practice the task. 
To make sure that the instructions were read and understood, 
we  implemented a brief quiz with 5 questions pertaining to the 
different stages of a trial as well as the overall nature of the task.

Figure 1 shows the experimental procedure. Each trial began with 
a presentation of the front (heads) and backside (tails) of a coin 
(500 ms) to both sides of a fixation cross in the center. The positioning 
of the coin on the left or right side was pseudo-randomized between 
participants and kept fixed throughout the whole experiment within 
each participant. As soon as the fixation cross turned into a circle, 
subjects had 1,000 ms to indicate their choice by pressing the left or 
right keyboard arrow with their right hand. If they succeeded to press 
the arrow in the allotted time, the circle changed to a smiling face. If 
they failed, they saw an “X” instead (please note: the feedback is not 
linked to the specific choice). After this feedback (500 ms) the fixation 
cross appeared again and a new trial began. This procedure was 
identical across all conditions except for a small difference in the 
Perceptual Guessing condition (see below), where the coin images 
were only shown in the fixation phase and disappeared in both the 
choice and feedback stages.

In order to avoid carry-over effects between conditions, the 
experiment was conducted as a between-subject study with five 
different instructions (one per group): Explicit Randomness (ER), Free 
Choice (FC), Irregularity (IR), Mental Coin Toss (MC), Perceptual 
Guessing (PG). These conditions differed in the way participants were 
instructed to generate the sequence.

In the Explicit Randomness condition, we explicitly instructed 
subjects to choose randomly. The Free Choice instruction required to 
spontaneously choose any side of the coin in an unconstrained 
manner. In the Irregularity condition we instructed participants to 
create a sequence that was maximally irregular. The instructions in the 
Mental Coin Toss condition were to mentally simulate a sequence that 
was indistinguishable from a truly random process, i.e., a coin toss. 
The Perceptual Guessing condition involved a perceptual decision-
making task, where the two conditions that had to be identified were 
physically identical. Specifically, the participant was shown the same 
two coins as in the other conditions and was asked to indicate which 
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of the coins was darker in tonal value. Unbeknownst to the participant 
there was no actual difference in tonal values between the two coin 
images, which meant that the participant had to make a random guess. 
See Table 1 for the exact wording used in the experiment.

To ensure a balanced sequence length across all subjects, failed 
trials were not counted by adding another trial to the end of the block. 
Thus, each participant completed 1,000 trials in total, with 200 trials 
per each of the five blocks. There was a two-minute break between 
each block when we presented two questions “How focused was your 
attention during this block?” and “How closely did you follow the 
instructions?” on a five-point Likert scale.

After the main task we repeated the quiz by once again asking 
what the task was. In the final part they had to describe their choice 
strategy in an open-ended form as well as indicate whether and when 
their strategy changed over the course of the study. Additionally, 
we debriefed those who completed the Perceptual Guessing condition 
about the actual task and asked whether they had realized that the 
coins were identical in tonal value. Participation in the experiment 
was compensated with 7€ per hour. The experimental procedure was 
approved by the Ethics Committee of the Department of Psychology 
(Humboldt University of Berlin) in accordance with the Declaration 
of Helsinki.

6.2. Participants

Invitations were sent out via the online recruitment service 
Prolific1 to the participant pool, which was restricted to those who 
self-reported to not have any diagnosed, on-going mental health 
conditions. Within this subject pool, participants would be admitted 
on a first-come-first-served basis.

An initial sample size estimation was performed with G*Power 3.1 
(Faul et al., 2007). The calculations were based on a medium effect size 
(Cohen’s f = 0.25 (Cohen, 1988)), type I error rate alpha = 0.05, statistical 
power (1 - beta) = 0.8 and 5 groups which resulted in a total sample size 
of 200 participants. Given the pervasive problem of underpowered 
studies in the psychology literature (Szucs and Ioannidis, 2017) and the 
ease of online data collection we decided to double the sample size.

A total of 543 participants completed the online experiment. Of 
these participants, 72 failed at least one of our five a-priori established 
exclusion criteria (see “Data analysis plan” section below). Of the 
remaining participants, 62 people in the Perceptual Guessing condition 

1 www.prolific.co

FIGURE 1

Example trial in the experiment. After a brief fixation phase (500 ms) follows the decision phase (1,000 ms), where the participant has to make a choice 
using the left or right keyboard arrow. The subsequent feedback phase (500 ms) indicates the timing of the button press. If the key is pressed on time, 
the circle turns into a smiley (successful trial). If the key is pressed too late, the circle turns into an X (failed trial).

TABLE 1 Wording of instructions.

Condition Instruction

Explicit Randomness (ER) “You have to choose the sides of the coin randomly.”

Free Choice (FC) “There is no right or wrong answer, we want you to decide spontaneously. Which side you choose in every trial is your own free choice.”

Irregularity (IR) “You have to select the sides in a maximally irregular and chaotic way. In other words, someone who would look at your sequence of choices, 

should not be able to see any pattern or regularity.”

Mental Coin Toss (MC) “You have to simulate a coin toss in your head and choose the side that came up. The goal is to produce a sequence of choices that is not different 

from the results of a real fair coin toss.”

Perceptual Guessing (PG) “You will have to indicate which of the coins that you saw was darker.”
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failed the manipulation check, meaning that they realized that the 
coins were the same tonal value. 5 datasets had to be discarded due to 
corrupted files. 16 datasets were removed because these participants 
always pressed the same button in at least one block. These excluded 
participants had been allocated to the following conditions: 3  in 
Explicit Randomness, 11 in Free Choice, 2 in Mental Coin Toss. Finally, 
one person was removed because they reported typing a text in morse 
code during the task (Free Choice condition).

Excluding all these people, we were left with a final sample of 388 
participants aged between 18 and 69 with a mean age of 27 (SD = 8.28). 
In this sample, 277 participants self-reported as male, 111 self-
reported as female as their assigned sex at birth (binary closed-format 
question). None of the subjects have been diagnosed with a psychiatric 
condition. 203 of the 388 participants indicated a student status. 
Participants on the online platform receive a reputation score that 
summarizes how often a person was rejected in past experiments by 
the researchers. The score ranges from 0–100, where the lower the 
number the higher the rejection rate in the past. The participants in 
our sample have a mean score of 99.4 (SD = 1.6), which is reassuring 
in terms of submission quality. Table 2 shows a breakdown of the 
sample characteristics across each condition.

6.3. Materials

The study was written with jsPsych (de Leeuw and Motz, 2016), a 
JavaScript library which was created for web browser-based behavioral 
testing. It was then deployed and hosted on our own university servers 
using JATOS (Lange et  al., 2015). Participants performed the 
experiment on their own devices. Participation was possible only on a 
desktop computer or laptop, no mobile or tablet devices were allowed. 
Further, participants were instructed to use Firefox, Chrome or Opera 
browsers with at least 1,000 × 700 px window size. This was a binding 
requirement without which the experiment would not start. We asked 
the participants to perform the experiment in a calm and distraction-
free environment. The experiment could be aborted at any time by 
clicking on a button in the bottom of the screen which immediately 
deleted the participants’ data from our servers. Importantly, this would 
not affect the participant’s reputation score on Prolific.

6.4. Data analysis

6.4.1. Exclusion
In an online study it is especially difficult to ensure that 

participants fully understand and comply with the task and that they 
concentrate on its completion. To identify low quality data sets, 

we implemented a series of attention checks that were defined a-priori 
in the preregistration. The number of data sets rejected in each 
exclusion category is indicated in parentheses below.

First, we  examined how much time participants dedicated to 
reading the instructions and excluded any submission with less than 
60 s reading time (10 submissions). Second, we took into account the 
answers that participants gave in the brief quiz in the beginning of the 
study. To qualify all but two questions had to be answered correctly in 
a first try (6 submissions) and all questions had to be  answered 
correctly in a second try (22 submissions). The quiz was not difficult 
and we  expected that a reasonably diligent participant would 
be capable of answering all of them correctly after having read the 
instructions and performed the practice trials. Third, after the main 
experiment we probed participants again about the nature of the task, 
which had to be  answered correctly (7 submissions). Fourth, 
we excluded submissions with more than 15 successively failed trials 
in any of the five blocks (39 submissions) or more than 50 failed trials 
over all blocks (34 submissions). And finally, we recorded browser 
interactions, i.e., information on whether and how long a person 
changed to a tab or a window that was not related to the experiment 
or exited the full screen. We excluded any submission with more than 
three instances of browser interactions during either of the five blocks 
(18 submissions).

6.4.2. General statistical properties
Before conducting the main analysis, we computed the statistical 

properties of the sequences. These measures were also calculated from 
a simulated set of 78 binary sequences of length 1,000 digits each, 
created with Matlab’s pseudorandom generator using the default 
“Mersenne twister” algorithm, in order to allow for comparisons. 
We chose to simulate 78 sequences to match the average sample sizes 
across all five conditions.

First, we assessed how balanced the sequences were by calculating 
the proportion value, i.e., the relative frequency of heads to tails 
decisions per block. Since the position of the heads and tails coins was 
randomized across the participants, we entered the higher number of 
the respective options in the numerator, i.e., we  calculated 

max number of heads number of tails
n trials

  ,   [ ] [ ]( ) . A proportion value 

of 0.5 means that both left and right button presses occurred with 
equal frequency, i.e., 100 times each within a block. A proportion 
value of 1 means that only one of the two options was chosen 
throughout the block.

Second, we determined the average run length per person. A run 
is an uninterrupted sequence of identical choices. For example, in the 
sequence H-T-T-H-H-H-T there are two runs of length 1 (H and T), 

TABLE 2 Sample characteristics.

Condition
n Age M SD % Female % Student status

Prolific reputation 
score M SD

Explicit Randomness (ER) 80 26.7 (9.4) 26.3 50.0 99.4 (1.5)

Free Choice (FC) 73 27.7 (8.2) 28.8 52.1 99.6 (1.2)

Irregularity (IR) 80 25.9 (7.3) 27.5 58.8 99.0 (2.4)

Mental Coin Toss (MC) 85 27.3 (8.1) 30.6 51.8 99.5 (1.2)

Perceptual Guessing (PG) 70 27.1 (8.3) 30.0 48.6 99.7 (0.7)
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one run of length 2 (T-T) and one run of length 3 (H-H-H). Note that 
there is a degree of uncertainty regarding the length of the last run 
because this is a truncated observation; we do not know whether this 
run would have continued if we would not have stopped the block. 
This is why we omitted the last run in each of the 5 blocks.

6.4.3. Randomness measures
Randomness is difficult to define and to measure in general 

(Volchan, 2002). One of the issues is that it is not possible to create a 
test that conclusively proves randomness, as this requires a 
demonstration that no regularity exists in the sequence, which is 
essentially a proof of a null hypothesis (Ayton et al., 1989). Moreover, 
violations of randomness could in principle occur in an infinite 
number of different ways, including strategies that are very hard to 
detect; if say a participant knew the digits of pi by heart and would use 
them to determine the choice on each trial. Consequently, we can only 
use tests that detect specific deviations from randomness, or specific 
forms of regularity. These deviations have been captured throughout 
the RSG literature with different sets of tests and measures, such as the 
runs test, digram frequency, count score or turning point index to 
name a few (see Ginsburg and Karpiuk (1994) and Towse and Neil 
(1998) for details).

A problem with these diverse measures is that it is usually unclear 
why a specific randomness measure was chosen in a study. While 
these measures certainly tap into various separate aspects of 
randomness vs. regularity, they lack a theoretical motivation. In this 
study we decided to adopt the perspective of stochastic processes, 
from which the natural way to describe a sequence of discrete choices 
is a Markov chain (Cover and Thomas, 2005; Allefeld et al., 2013). A 
Markov chain is defined by an order k, the number of previous choices 
which affect the subsequent choice, as well as transition probabilities 

( )1 2Pr | ,, ,t t t t kX X X X− − −… , the probability for each possible 
subsequent choice given the previous k  choices (Figure  2). The 
assumption underlying a Markov chain model is that sequential 
dependencies are temporally limited, and the Markov order reflects 
this temporal extent of memory. The transition probabilities are 
summarized by the conditional entropy rate at a given order, the 
natural measure of randomness of a stochastic process. Our approach 
still picks up many if not all of the regularities targeted by the measures 
mentioned above, but does so in a parsimonious and theoretically 
motivated way. Nevertheless, we would like to emphasize that it is still 
possible that a sequence has an underlying structure which cannot 

be captured by these metrics. Further, we would like to point out that 
our approach involves a statistical model, the Markov stochastic 
process, and does not directly relate to a cognitive mechanism that 
brings about the behavior.

In the present study, each participant performed a sequence of 
1,000 binary choices between heads (“H”) and tails (“T”), broken into 
five blocks with a brief break in between. We therefore decided to 
apply the calculations described in the following separately to each 
contiguous sequence of 200 choices, and use the means across blocks 
as the per-participant outcomes entering statistical analysis (see 
next section).

For a given order k, we estimated the transition probabilities by 
maximum likelihood, which results in the following procedure:

 • From the observed choice sequence, collect all subsequences of 
length k + 1, ( )1 2 1, , , ,k kx x x x +… , and count them grouped by (a) 
the last choice xk+1  and (b) the initial choice sequence 
( )1 2, , , kx x x , resulting in counts ( )( )1 1 2, , , ,k kc x x x x+  .

 • For each initial choice sequence separately, divide the counts for 
the two possible last choices by their sum:

 

c x x x x
c x x x x

k k

x k k
k

+

∈{ } +

…( )( )
…( )( )

+
∑

1 1 2

1 1 2
1

, , , ,

, , , ,
H,T

.

This provides the estimates of

 ( )1 1 2 1 1Pr | ., ,t k t k t k t kX x X x X x X x+ − − − −= = = =

For a sequence of 200 choices, estimation of a k th order Markov 
chain is based on 200 - k subsequences of length k + 1. The largest 
order for which the model can be estimated is k = 199, though for 
higher orders the transition probability estimates become more and 
more imprecise.

The maximum likelihood estimation also results in a maximized 
likelihood, which quantifies the precision with which the estimated 
model describes the observed data. However, this quantity is not useful 
to compare the quality of models of different order, because with 
increasing order the number of model parameters increases 
exponentially, so that higher order models always appear to be a better 
fit for the data than lower order models. To estimate the optimal Markov 

FIGURE 2

Example transition probability matrices for orders k = 0, 1, and 2. For the 0th order, there is no dependency on previous choices, and the two values 
represent the probabilities for the subsequent choice to be “H” or “T.” For higher order, each column corresponds to a possible sequence of previous 
choices and gives the probabilities for the subsequent choice under the condition that that sequence occurred. For example, in k = 2, after the choice 
pair “H-H,” the probability to choose a “T” is three times as large as the probability to choose another “H.”

https://doi.org/10.3389/fpsyg.2023.1113654
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Guseva et al. 10.3389/fpsyg.2023.1113654

Frontiers in Psychology 08 frontiersin.org

chain order, we therefore followed the approach of Csiszár and Shields 
(2000) to use the Bayesian Information Criterion (BIC; Schwarz, 1978), 
which chooses the best model by the maximized likelihood minus a 
penalty which depends on the number of parameters. Csiszár and 
Shields (2000) proved that (in contrast to other criteria) the BIC Markov 
order estimator is consistent, i.e., with increasing sample size the 
probability to estimate the true order approaches 1. Our first outcome 
measure is the BIC-estimated optimal Markov order.

The Markov order quantifies the temporal extent of sequential 
dependencies, i.e., how many previous choices influence the 
subsequent choice. As the Markov order of a model increases from 0, 
the subsequent choice becomes more and more precisely determined. 
In the extreme case of an underlying deterministic process all 
transition probabilities are either 0 or 1. However, if at the true order 
(some) transition probabilities remain between 0 and 1, there is an 
irreducible remaining randomness in the process. Information 
entropy (Shannon, 1948; Cover and Thomas, 2005; Jensen et al., 2013) 
quantifies the uncertainty of a signal, for a binary choice between 0 bit 
(perfectly determined) and 1 bit (perfectly random). For a Markov 
chain, one considers the entropy of the probability distribution for the 
next choice conditional on the k  previous choices (i.e., the Markov 
transition probabilities), taking a weighted average across previous 
choices according to their probability; this is called conditional 
entropy rate. The result reflects how much uncertainty remains over 
the subsequent choice, on average. It is called „rate“because it refers 
to a single step in an ongoing process, reflecting that a Markov process 
can be seen as continually producing uncertainty (entropy).

The estimation properties of the conditional entropy rate depend 
critically on the precision with which transition probabilities have 
been estimated, which in turn depends on the assumed Markov order 
(see above). In particular, the larger k, the larger the number of 
previous states over which data are split, and therefore the smaller the 
number of data points available for each conditional probability 
estimate. This tends to make estimated distributions look less flat and 
therefore less entropic. If we were to use the BIC-optimal Markov 
order in each case, because of this estimation bias results would not 
be comparable across participants and conditions, and an observed 
difference in the conditional entropy rate could actually just reflect a 
difference in the optimal order.

To make the measure comparable between participants and 
conditions, we therefore decided to estimate it at a fixed Markov order 
of k = 3, which is as large as or larger than the estimated optimal order 
across participants and conditions. It is not a problem to use a k which 
is larger than the optimal order, because this just means that additionally 
previous choices are used even though they do not characterize the 
process more precisely. Consequently, conditional distributions do not 
lose entropy, and therefore the underlying conditional entropy rate, 
which is being estimated, is unchanged. Our second outcome measure 
is thus the conditional entropy rate estimated at k = 3.

6.4.4. Description of statistical tests
Data processing and statistical analysis were done using Matlab, 

R2020b (R Core Team, 2020) and RStudio (v.1.3.1093). The materials 
for this study are available by emailing the corresponding author. 
Analysis code and data are available under https://osf.io/z8rjx/files. As 
stated above, we calculated the two outcome variables optimal Markov 
order and conditional entropy separately over the choice sequences 
(200 choices) for each of the five blocks and computed the mean over 

the blocks for each person. We  have omitted the trials from the 
analysis where participants failed to make a choice in time and the 
sequence analysis was performed on the remaining trials. Please note 
that this happened only very rarely: On average participants failed to 
make a choice 7 times (SD = 9) across the experiment, which amounts 
to an average of 0.7% (SD = 0.91) of the whole sequence.

Due to the non-normal nature of the summary variables defined 
above, we performed two separate non-parametric Kruskal-Wallis 
analyses at a significance level of 0.05 in order to determine whether 
(a) average optimal Markov orders and (b) conditional entropy values 
differed between the five conditions (independent variable). In case 
the null hypothesis of equal means was rejected, post hoc tests were 
performed at a significance level of 0.05 using a Tukey–Kramer 
adjustment to identify the specific pairs that differed significantly from 
each other. Effect sizes and their CIs were calculated with R rstatix 
package using kruskal_effsize (Kassambara, 2021).

In line with our preregistration report, we also conducted a more 
detailed multilevel analysis of our data (Hox and Maas, 2005). The 
goal of this approach was to account for potential fatigue effects that 
may set in after doing blocks of the rather monotonous task. On the 
first level a regression model explained the outcome variable by block 
number (1–5) plus intercept as random effects. This estimated 
intercept served then as the dependent variable on the second level, 
where a one-way ANOVA was used to identify differences between 
the five instruction conditions. This was done separately for optimal 
Markov order and conditional entropy.

7. Results

7.1. Attention and instruction adherence

Figure  3 shows the distribution of the answers to the two 
questions on attention and instruction adherence that were asked at 
the end of each block. Based on the mode for each participant 
calculated over the five blocks, 84.8% were “very focused” to 
“focused” and 96.9% followed the instructions “very closely” to 
“closely,” indicating a good self-reported level of attention and 
instruction adherence. 64.4% of participants indicated that they used 
the same approach throughout the whole experiment.

7.2. General statistical properties of 
sequences

For a first assessment of the time series, we plotted the cumulative 
sum of the participants’ time series in which we coded “1″ for tails and 
“-1″ for heads. Figure 4 shows the series for each of the five conditions 
as well as the simulated pseudorandom series.

In order to get a better understanding of the time series’ statistical 
properties we then calculated mean proportion values and run lengths 
for each participant (Figure  5). In terms of mean proportions, 
participants in Irregularity (IR; M = 0.54, SD = 0.06) and Mental Coin 
Toss (MC; M = 0.54, SD = 0.04) conditions had the most balanced 
sequences. These proportion values were closest to those of the 
pseudorandom sequences of 0.53 (SD = 0.01). With an average of 0.63 
(SD = 0.07) the performance in Perceptual Guessing was the least 
balanced. The mean run length closest to those of the pseudorandom 
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sequences (M = 2.00, SD = 0.07) was achieved in MC with a run length of 
1.88 (SD = 0.66). Results in Explicit Randomness (ER), Free Choice (FC) 
and Perceptual Guessing (PG) show an average run length of around 3–4 
(M = 3.04, SD = 3.49; M = 3.39, SD = 2. 90; M = 3.81, SD = 2.91 respectively).

7.3. Effect of instructions on entropy and 
optimal Markov order

Conditional entropy values and optimal Markov orders were 
averaged across the five blocks. The median and interquartile range of 
these averaged values are shown in Table 3. The multilevel model that 
was specified in the preregistration is reported in the Appendix, as it 
showed identical results to the following simpler Kruskal-Wallis test 
over the mean values. In an additional exploratory analysis, 
we  extended our main preregistered analysis to include a set of 
pseudorandom sequences created by MATLAB’s pseudorandom 
generator as a sixth condition to illustrate the difference to the human 
generated sequences (see Appendix, Figure A3).

7.4. Conditional entropy

A one-way between-subjects Kruskal-Wallis test showed that 
conditional entropy values differed significantly between the 
conditions (H(79.4), p = 2.30e–16) with a large effect size η2 =0.20 
95% CI [0.11, 0.26] (transformed to Cohen’s d = 0.99). Tukey–Kramer 
adjusted post-hoc tests yielded six significant pairwise comparisons 

(Figure  6A). Performance in both the Irregularity (Med = 0.94, 
IQR = 0.10) and Mental Coin Toss (Med = 0.92, IQR = 0.11) conditions 
differed significantly from the performance in the others conditions 
Explicit Randomness (Med = 0.84, IQR = 0.25, p = 5.46e-07 and 
p = 5.93e-03 respectively), Free Choice (Med = 0.75, IQR = 0.34 
p = 9.92e-09 and p = 2.22e-07 respectively) and Perceptual Guessing 
(Med = 0.82, IQR = 0.15, p = 1.48e-08 and p = 1.92e-04 respectively).

7.5. Optimal Markov order

The results of a one-way Kruskal-Wallis test carried out on 
optimal Markov order shown in Figure 6B revealed a significant effect 
of condition (H(49.8), p = 4.05e–10) with an intermediate effect size 
η2 =0.12, 95% CI [0.04, 0.17] (transformed to Cohen’s d = 0.74). A 
post-hoc analysis with Tukey–Kramer adjustment showed that 
performance in Irregularity (Med = 0.4, IQR = 0.80) differed 
significantly from all other conditions. Additionally, Free Choice 
(Med = 1.0, IQR = 0.80) differed significantly from Mental Coin Toss 
(Med = 0.6, IQR = 0.80, p = 1.45e-03) and Perceptual Guessing 
(Med = 0.8, IQR = 0.60, p = 3.12e-02).

8. Discussion

The purpose of this study was to compare randomness in sequences 
across different instruction types. Our findings show that conditional 
entropy values in Irregularity (IR) and Mental Coin Toss (MC) 

A B

FIGURE 3

Answers to attention (A) and instruction adherence (B) questions after each block. N/A values indicate that the question was not answered. This was 
possible because the experiment automatically continued after the 2-min break was over.
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conditions differed significantly from those in Explicit Randomness 
(ER), Free Choice (FC) and Perceptual Guessing (PG). In terms of 
optimal Markov order a similar finding for the IR condition was 
reported, as average Markov orders in this condition differed from all 
the rest. In general, we found that sequences were most random when 
people were either instructed to be  “as irregular as possible” or to 
“mentally simulate a coin toss.” The least random performance for both 
outcome variables was found in the “free choice” (FC) sequences, 
lending further evidence to the existence of sequential dependencies in 
these types of tasks (see Allefeld et al., 2013; Lages et al., 2013 for a 
discussion). Explicitly instructing the participants to select randomly as 
well as performing perceptual guesses scored somewhere in the middle.

8.1. Irregularity and mental coin toss 
instructions produce the most random 
sequences

Asking to make irregular choices (IR) yielded the most random 
sequences. This contrasts with our initial prediction that these 
participants would show worse randomization results. We initially 

considered two possible mechanisms: First, we reasoned that during 
this task there was a higher working memory load, as the need to act 
irregularly would require actively monitoring and updating the 
choice history (which was not necessary in FC and PG tasks). A 
higher working memory load has been shown to affect 
randomization performance negatively (Naefgen and Janczyk, 2018). 
Second, according to ironic process theory the intention of 
controlling a mental state (e.g., suppressing a specific thought) is 
accompanied by error monitoring processes which undermine that 
very effort. This results in a higher likelihood of that thought to 
emerge, the opposite of what was intended (Wegner, 1994; Wang 
et  al., 2020). Applying this line of reasoning to our experiment 
we  predicted a worse randomization performance in the IR 
instructions, because they encouraged the suppression of patterns or 
regularities (as opposed to FC or PG instructions where suppression 
was not encouraged at all, see Table 1). Our findings do not support 
these predictions.

We propose the following possible explanations for the good 
randomization performance. First, the instructions could have been 
perceived as more intuitive and tied to known experiences. People 
have experience with behaving unpredictably, e.g., in competitive 

FIGURE 4

Plot of cumulative sum sequences for each condition. Every line is one participant.
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game settings (protean behavior). Second, this instruction is 
formulated in a way that implies a second agent (real or imaginary) 
who observes the sequence and tries to detect a pattern (see Table 1) 
which might facilitate randomness generation. Third, IR instruction 
might also simply be clearer and not evoke preconceived notions on 
the concept of randomness (Finke, 1984).

Similarly, simulating a coin toss in the head (MC) produced the 
second best randomization outcome. This is in agreement with the 
idea that focusing on the randomness of the process rather than the 
output should eliminate instructional biases (Brugger, 1997). It is 
possible that this instruction redirects the focus more to the process 

of tossing than to the resulting output, i.e., heads or tails. Further, 
according to a recent review by Schulze and Hertwig (2021), 
experiential engagement with a task versus a mere text-based 
description is an important predictor of statistical reasoning outcomes 
in infants and adults. The mental simulation of a coin toss is arguably 
a more experiential activity than for instance simply trying to 
be random. Consequently, imagining a toss would potentially evoke 
more visual and motor cortex activation. Another possible explanation 
that could be at play in the MC condition is the imagination effect. 
This phenomenon was first reported as an improvement in learning 
outcomes when students were encouraged to imagine a procedure to 
solve a problem as opposed to simply understanding and remembering 
it (Cooper et al., 2001). Hence, the mere act of imagination might have 
been a determining factor for the improved randomization 
performance in our experiment.

8.2. No statistical difference between 
explicit randomness and free choice tasks

We did not find any evidence for differences between ER and FC 
tasks in terms of optimal Markov orders and conditional entropy. This 
is particularly noteworthy as many experiments in the volition and 
action selection literature use free/spontaneous choice paradigms with 
the aim to essentially elicit a random response (Elsner and Hommel, 

A

B

FIGURE 5

Overview of means of proportion values (A) and means of run lengths (B) averaged within subjects across five blocks and between subjects across five 
conditions. The outline of each violin plot shows the kernel density estimate, the black bars in the center indicate the interquartile range with the white 
dot representing the median.

TABLE 3 Median (Med) and interquartile range (IQR) of conditional 
entropy values and optimal Markov orders per condition.

Condition n
Conditional 
entropy Med 

IQR

Optimal 
Markov 

order Med 
IQR

Explicit Randomness (ER) 80 0.84 (0.25) 1.0 (0.80)

Free Choice (FC) 73 0.75 (0.34) 1.0 (0.80)

Irregularity (IR) 80 0.94 (0.10) 0.4 (0.80)

Mental Coin Toss (MC) 85 0.92 (0.11) 0.6 (0.80)

Perceptual Guessing (PG) 70 0.83 (0.15) 0.8 (0.60)
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2001; Frith, 2013; Naefgen and Janczyk, 2018). Interestingly, even 
without requiring balanced sequences or avoiding patterns (as is 
typically done in these types of tasks) the FC behavior is similar to the 
ER condition. From this perspective it seems reasonable to use this 
type of task in volition experiments.

At the same time the lack of a significant difference is striking 
when viewed from a mechanistic perspective. In Baddeley et  al.’s 
(1998) model (and later Cooper (2016)) a response is generated by 
first choosing from a set of schemas (i.e., choices options) and then 
evaluated against the choice history stored in the working memory. If 
deemed “random” enough it is applied, otherwise it is discarded and 
the process starts over. Applying this line of reasoning to the tasks, 
we expected both ER and FC tasks to include some form of choice (or 
schema) selection. However, it remains unclear what shape an 
evaluation process would take in the FC condition because here the 
instructions did not require the evaluation of the choice in a sequential 
context (as opposed to the ER task).

Perhaps individuals in the FC condition used their own criteria to 
evaluate their responses which were not explicitly mentioned in the 
task instructions. For instance, some people might have autonomously 
decided to balance their sequences (while others decided to exclusively 
press one button). This could explain the large spread of randomization 
measures in the FC condition (highest SD of the conditional entropy 
distribution). Response values in ER were also highly spread out 
which is not surprising given that large interindividual differences in 
randomization biases (such as the recency bias) are a consistent 

finding in the RSG literature (Wagenaar, 1972; Budescu, 1987; 
Shteingart and Loewenstein, 2016).

Our findings showed that the randomization performance in the 
FC task was among the least random (see Lages et al. (2013) and 
Allefeld et al. (2013) for a related discussion). This implies that there 
exist better ways to elicit random responses in future studies such as 
appealing to irregularity of a sequence or encouraging participants to 
perform a mental coin toss.

8.3. Incidental randomness in the 
perceptual guessing task

Similar to the FC condition, participants’ behavior in the PG 
condition was less random than in the other conditions. However, it 
is still remarkable that this experimental manipulation actually 
worked at all: 70 out of 132 participants thought that there were 
detectable differences between the identical tonal values. Participants’ 
answers before and after the debriefing reveal that they were genuinely 
surprised and in disbelief about the fact that the coins were identical, 
e.g.: “This was good fun and I really thought the coins were different 
in tonal values. I was surprised to learn they were not!” or “I made 
myself believe that there were different tonal values.” If there was no 
externally discriminable information to base the choice on, it stands 
to reason that any perceptual difference originated from events 
internal to the participant.

A B

FIGURE 6

Tukey–Kramer adjusted post hoc comparisons of (A) average conditional entropy values and (B) optimal Markov orders between conditions. The 
outline of each violin plot shows the kernel density estimate, the black bars in the center indicate the interquartile range with the white dot 
representing the median. The x-axis labels of the violin plots serve as the columns for the half matrices in the bottom, so that each entry displays the p 
value of the comparison between the intersecting pair of row and column conditions. Color code of matrix entries: dark grey: p < 0.001, middle grey: 
p < 0.01, light grey: p < 0.05, white: not significant.
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A potential explanation of why people believed to see a difference 
in tonal value between the coin images is that perception is not an 
objective representation of the outside world but is modulated by 
priors, higher-order predictions causing illusory percepts (Jolij et al., 
2011; Gold and Stocker, 2017). In the PG instructions we emphasized 
the difficulty of the task and stated that we know from previous studies 
that people are actually able to identify the darker coin and make the 
right decision even if they think they do not see anything. This created 
expectations which likely shaped bottom-up visual processing to the 
extent that participants believed there was an actual difference in tonal 
value. This modulation can happen rather early, as Vilidaite et al. 
(2019) showed in a recent study on contrast discrimination where 
participants were required to make perceptual decisions between 
identical stimuli. The authors found that signals in the early visual 
pathway, presumably neural noise, already less than 100 ms after 
stimulus onset, contained information that was predictive of the 
upcoming choice.

The general modulatory top-down effect on expectation on visual 
perception provides a reason for why the manipulation worked at all. 
However, it does not explain the specific visual content that 
participants believed to see. Put differently, what were the mechanisms 
that led to any one of the two choices, heads or tails?

A potential contributing factor might be an underlying choice 
history bias, a well-established phenomenon in the perceptual 
decision-making literature. Here consecutive perceptual judgments 
on sequentially uncorrelated stimuli bear a degree of sequential (or 
serial) dependency, i.e., any given choice is influenced by the choices 
that came before it (Fischer and Whitney, 2014). This dependency can 
manifest itself as an over-alternation or over-repetition of choices 
within a sequence (Urai et al., 2019). The autocorrelation present in 
natural scenes acts as another prior, resulting in sequentially 
dependent perceptual decisions (Bliss et al., 2017; Urai et al., 2019). 
Importantly, serial dependency is positively affected by stimulus 
similarity, so the harder the ability to discriminate the more likely the 
observer will rely on choice history as a guide (Cicchini et al., 2018; 
Gallagher and Benton, 2022). In our data the tendency to repeat the 
previous choice is represented as the average run length, which is the 
highest in the PG condition (M = 3.81, SD = 2.91; Figure 5).

However, it is important to recognize that despite the sequential 
dependencies, the overall performance in the PG condition was still 
quite random (conditional entropy Med = 0.83, SD = 0.15 and optimal 
Markov Order Med = 0.8, SD = 0.6). Moreover, performance in PG was 
statistically indistinguishable from ER in terms of conditional entropy 
and optimal Markov orders. Essentially, even in the absence of any 
explicit suggestion of acting randomly, we still see an intrinsic element 
of randomness in the PG sequences, which remains after accounting 
for sequential dependency effects in visual perception. There have 
been several papers discussing the source of variability which could 
be  either peripheral or central (Shadlen et  al., 1996; Urai and 
Donner, 2022).

Interestingly, PG and FC conditions differed significantly only in 
terms of optimal Markov order, but not conditional entropy. This 
finding is partly comparable to Bode et  al.’s (2013) results, where 
subjects also performed both a free choice and perceptual guessing 
task. In this study the perceptual guessing task required the 
participants to indicate whether a target object was a chair or piano, 
while in reality the presented stimulus contained no information 
(visual noise). The authors report that both tasks share the same 

neural substrates in the medial posterior parietal cortex and suggest 
that both task types potentially share similar mechanisms to produce 
internal choices. However, the comparison to Bode et  al.’s (2013) 
results is limited, because the conditions were (1) administered 
within-subject as opposed to our between-subject design and (2) 
presented in random order, so that they did not record an 
uninterrupted choice sequence in each condition as was the case in 
our study.

8.4. Temporal stability of generated 
sequences

Our alternative multilevel analysis (see Appendix) showed that 
accounting for a potential block effect did not make a large difference 
in terms of the final results. Even though the block effect was 
significant for both outcome variables, it was very small. Considering 
that one third of participants indicated that they changed their 
approach at least once during the experiment, it is noteworthy that 
this did not translate into a large block effect. As a consequence, the 
multilevel results reported in the Appendix were identical to those of 
the simpler analysis, reported in the main text. This might support 
the idea that sequence characteristics are potentially stable across 
time. People tended to make decisions in a similar fashion, 
irrespective of the breaks in-between. This temporal inter-block 
stability is good news for research on using human random sequences 
as individual fingerprints or biometric verification devices (Jokar and 
Mikaili, 2012).

8.5. Limitations

We would like to point out limitations of this study that could 
be addressed in future research. First, the measures that we used to 
assess the choice sequences cannot capture all possible deviations and 
dependencies that might exist. The RSG literature in the past decades 
has used many different measures. However, the trend goes to 
abandoning the use of many separate indices and finding ways to 
adopt all-encompassing, parsimonious tests that capture the same 
information. Examples are algorithmic complexity approaches 
(Gauvrit et al., 2014), recurrence quantification analysis (Oomens 
et al., 2015) or Markov chain modeling – as was done in our study. 
While this limitation is in principle impossible to overcome, there is 
still much room for improvement in terms of creating a standardized 
procedure of randomness assessment of behavioral data.

Second, our results are based on binary choices. As mentioned 
before, a major problem in the RSG literature is the heterogeneity in 
task characteristics, one of which being different choice set sizes. It is 
not unlikely that cognitive processing is affected by whether one has 
to choose randomly between a large set of 0–9 digits or a binary set of 
0–1. However, we believe that opting for a binary choice set in our 
paradigm was a sensible choice since a larger choice set would 
introduce a higher load on working memory. After all, our objective 
was to keep the task as simple as possible to focus on the main 
differences between different task instructions. Moreover, a larger 
choice set would make the Markov process-based analysis require 
much more data. The problem of different set sizes can be dealt with 
in future iterations of our experimental setup.
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Third, an alternative approach to our research question could have 
been to use a within-subject design as it would allow for a stronger 
control for individual characteristics, which, as our data show, are 
somewhat heterogeneous. However, considering that we had a large 
sample size, it is safe to say that these concerns are kept within limits.

Finally, although we have implemented multiple attention checks 
to filter out inattentive participants, one might argue that the lack of 
performance-based payment (i.e., payment contingent on 
randomization performance) reduced the participants’ motivation to 
diligently make 1,000 binary choices and follow a particular instruction. 
Consequently, participants might instead have engaged in satisficing 
practices such as simply pressing left and right arrow keys on time, i.e., 
employing just enough effort to get paid. Note that this criticism is not 
specific to online studies but extends to laboratory-based experiments 
as well. The most direct tool at our disposal to probe this question was 
to repeatedly ask participants how closely they followed the instructions 
in every block. As shown in the results, 96.9% reported following the 
instructions “very closely” to “closely.” Also, as we  have described 
above, it seems that there was no considerable decline in performance 
throughout the blocks, which provides reassurance that motivation 
levels remained at least unchanged. Additionally, we read through the 
written answers on the open-ended questions about participants’ 
strategy and the final general feedback and comments textbox. The 
overall impression is that participants appeared to be  curious and 
interested about the experiment, perhaps because the tasks were 
unusual compared to the other experiments on this platform. Another 
key point to consider is a recent study by Schild et al. (2021) who 
reported a negative relation between approval rate and participant 
dishonesty. The mean approval rate (Prolific score) in our study was 
99.4 (SD = 1.5) which following Schild et al.’s (2021) results would 
suggest lower cheating or satisficing behavior.

At the same time, an incentivized experiment with a reward 
schedule would probably have a strong impact on randomization 
performance, as (Neuringer, 2002) showed in a wide range of 
experiments. However, this is a tricky setup given the elusive 
conceptualization of randomness – the conceptual difficulty is to 
decide on how to measure the desired randomization behavior 
unambiguously. An intriguing design for future experiments would 
be to simply inform the participant that their payment will depend on 
their performance, when in reality everyone would be paid the same 
in the end. Another motivation-increasing factor would be  to 
introduce a game scenario with an actual or computer opponent, as 
has been done several times (Lee and Seo, 2011; Wong et al., 2021).

8.6. Outlook

In this study we  have shown that randomness in generating 
sequences differs based on how it is instructed. The next crucial step 
is to understand why these differences exist. We  have described 
potential reasons for why MC and IR were so successful, so further 
research is required to disentangle these different explanations. By 
understanding the necessary components which determine the good 
performance we  can devise new and improved ways of eliciting 
random decision-making. At the same time, it would allow for deeper 
insights of the cognitive processes involved in the production of 
randomness in general.

Furthermore, an interesting question for future research is 
whether the randomness is dependent on whether participants think 

about their decisions in either a motor (or input) based framework or 
a sensory (or output) based framework (Janczyk et al., 2020).

In terms of Marr’s three level framework (Marr, 1982) a deep dive 
in the me implementational level could provide interesting insights on 
how the different randomization tasks are implemented on a physical 
level. Contemporary research on the neural bases of randomization is 
surprisingly limited and could be a valuable area to explore given the 
newly available analysis tools such as multivariate decoding techniques 
of neuroimaging data. For example, investigating brain activity by 
examining the role of the dorsolateral prefrontal cortex (DLPFC) in 
the context of the network modulation model (Jahanshahi et  al., 
2000). In this model the left DLPFC suppresses the spread of activation 
in in the number associative network in the superior temporal cortex 
(STC) to inhibit habitual counting.

Another emerging field that has not yet been brought in explicit 
connection with RSG in particular is the area of neural variability 
research. Of special interest would be to look into its role in terms of 
inter-individual trait as well as intra-individual state differences in an 
RSG task (Waschke et al., 2021). Not only did our data show that 
participants perform a randomization task differentially depending on 
instruction, it also revealed a high amount of individual variation. The 
key questions are whether and how individuals can up-and 
downregulate behavioral variability and if they potentially leverage 
neural variability signals. Waschke et al. (2021) call this modulatory 
ability “meta-variability,” which is a similar idea found in the 
behavioral literature introduced by (Neuringer, 2002) as described in 
the introduction. The author stipulates an organism’s overarching 
capacity to impose different levels of variability based on different 
environmental demands. Whether this calibration of variability is 
subject to conscious control is another important question to 
investigate in future studies as it might be  useful for improving 
cognitive control and regulation in clinical populations characterized 
by variability deficiencies.

9. Conclusion

Our study demonstrates that the instructions in random sequence 
generation tasks influence the randomness of performance. The most 
random sequences were created in the tasks where participants were 
instructed to choose irregularly and where they had to mentally 
simulate a coin toss. This suggests that special care should be given to 
the exact task instructions and that this latent effect might have 
contributed to the heterogeneity in the literature.
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