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Abstract

The objective o f this thesis is to improve the understanding of the models 

arising in convertible bond (CB) valuation, introduce new models incorporating 

interest rate and credit risk and develop sophisticated numerical methods to im -

plement those models. We carry out our analysis in the CB market because it is 

rapidly increasing and yet not enough research has been done to accurately and ef-

ficiently price those instruments. Moreover, the complexity o f the mathematical 

models arising in CB valuation make this area of finance a particularly challenging 

and interesting one to research. Despite concentrating on CB pricing we believe 

that our work has broader implications. This is because we proposed a very general 

and flexible framework that could be applied to price any American-style contin-

gent claim in a two-factor setting.

In the first part of the thesis we introduce for the first time in finance the 

method of characteristics/finite elements combined with a Lagrange multiplier method 

to solve two-factor pricing models for financial derivatives. To demonstrate the ap-

plicability of the approach, we solve a convertible bond model with equity and in-

terest rate risk;w e focus on the consistent and rigorous specification o f the model, 

and fully address its practical implementation.

The second part of the thesis explores how to incorporate credit risk in CB 

valuation. This is a complex task due to the hybrid nature of CBs and there is no 

consensus in the literature of whether it has to be done in an equity or an asset
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based framework. For this reason, we introduce new equity based and asset based 

models, which include stochastic interest rate, and solve them using the numeri-

cal technique developed in the first part. Regarding the equity based approach we 

propose a unified intensity-based framework of which most existing comparable 

models are special cases; this allows us to implement and analyze previous models 

as well as introduce new ones. We find that different models lead to significantly 

different prices and that it is important to consistently specify the process for the 

stock price, the recovery value and the holder’s rights upon default. The flexibility 

of the approach enables us to generate a great number of default-recovery scenar-

ios. Regarding the asset based approach, we introduce a new model which has both 

structural and reduced form features and in which recovery is endogenised. De-

spite the fact that the state variable is unobserved and a simple capital structure 

is assumed, the possibility that default can be triggered both exogenously and en-

dogenously at a cash-flow time leads to a more realistic formulation than it can be 

achieved in an equity based approach. Moreover our endogenised recovery poten-

tially allows a greater ability to estimate recovery values from market data.

We conclude that both models have a great potential to explain empirical CB 

values and given their advantages and disadvantages can be chosen depending on

the purpose and the circumstances.
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Introduction

Convertible bonds (CBs) are sophisticated financial instruments playing a major role 

in the financing of companies. Typically, they are corporate debt securities or structured 

products that offer investors the right to forgo future coupon and/or principal payments in 

exchange to a specified number o f shares of common stock. This hybrid feature of con-

vertible bonds provides investors with the downside protection o f ordinary bonds and the 

upside return of equities and fund managers with asset allocation strategies that take advan-

tage of both fixed-income and equity markets. Despite the obvious economic importance 

o f this product, relatively little research has been done to accurately and efficiently price 

those instruments. In this thesis we attempt to provide a better understanding of the mathe-

matical models arising in convertible bond valuation, together with the numerical methods 

required in the case that a closed form solution is not available. Moreover, we propose a 

general pricing framework, which can be made market consistent, and provides a balanced 

trade-off between speed and accuracy.

This class of financial products has been chosen due to its complexity and because 

neither the mathematical model for its valuation nor the numerical techniques for its solu-

tion are yet standardized.

This thesis is in two parts. The first part presents a general approach for solving 

two-factor partial differential inequalities (PDI) arising in option-pricing problems with 

American-style embedded options. The method o f characteristics and finite elements is 

proposed for time and space discretization respectively, together with a Lagrange rriulti-
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plier method to deal with the free-boundary problem arising from inequality constraints 

on the solution such as: early-exercise opportunities, conversion provisions, call and put 

provisions. As an application o f the proposed numerical approach, the pricing of callable, 

putable convertible bonds with stochastic interest rates is carried out.

The second part o f the thesis is concerned with the modelling o f credit risk in convert-

ible bond valuation. This is a complex task given the hybrid nature o f convertible bends. 

The literature is divided on whether default risk should be incoiporated in an equity based 

or an asset based framework, given that both approaches offer some advantages and dis-

advantages. For those reasons, we introduce two different models: an equity based and an 

asset based model. Both are implemented using the numerical technique proposed in the 

first part.

The thesis has contributions from four original papers, two of which have been pub-

lished. The first paper, published in Mathematical Models and Methods for Applied Sci-

ences, develops a general methodology to solve partial differential inequalities arising in the 

valuation of financial derivatives. The other three papers develop different two-factor mod-

els for valuing of CBs that are solved numerically using the tailored characteristics/finite 

elements discretization, coupled with a Lagrange multiplier method for free boundaries 

proposed in the first paper.

In the second paper, published in the Journal of Economic Dynamics and Control, 

a two-factor PDE pricing model for convertible bonds is solved. The two factors are the 

stock price and the interest rate. The model fits the observed term structure, calibrates the 

volatility parameters to market data and allows for correlation between the state variables.
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As an empirical exercise we compare prices of actual market issues with prices forecasted 

by the model, leading to very promising results.

The third paper incorporates credit risk into the two-factor pricing framework for 

convertible bonds proposed in the second paper. This paper specifies and implements an 

intensity-based default risk model for convertible bonds in a “two and a h a lf ’ factor setting. 

The factors are the stock price and the interest rate, together with default risk. We model the 

hazard rate as a deterministic function of the stock, the interest rate and time. We account 

explicitly for the stock price behaviour and the CB holder’s rights in the event o f default 

as well as the recovery value on the bond. Most comparable existing models are special 

cases of this general setting. We find that different models lead to significantly different 

convertible bond values. We also introduce new models for the recovery value. We describe 

and implement an algorithm to solve the coupled system of partial differential inequalities 

arising from the model, in a variational formulation we discretize using characteristics 

and finite element methods. An iterative algorithm is applied over the discretized problem 

to deal with free boundaries. We benchmark using special cases for which an analytical 

solution is available. We study the convergence of the numerical method. We compare the 

consequences of different model specifications, including assumptions about the hazard 

rate, the recovery value and the stock price behaviour.

Finally, the fourth paper proposes a two-factor model for CBs in which the issuer may 

default, and where the state variables are the firm’s asset value and an interest rate. The CB 

defaults either at the unpredictable jump time of a counting process, or when the firm is re-

quired to make a cashflow to the CB holder. Recovery upon default is endogenised into the
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model by assuming that the firm can invoke temporary protection against its creditors. As 

before we solve for CB values using a tailored characteristics/finite elements discretization, 

coupled with a Lagrange multiplier method for free boundaries. The formulation enables 

the specification of financially consistent boundary conditions for the convertible bond. 

Summarizing, the thesis has two main contributions:

• Introduce new models for valuing CBs incorporating interest rate and default risk.

• Use sophisticated numerical methods to solve the valuation problems. Those 

methods have not been used before in finance and offer clear advantages over most 

of the currently used numerical techniques.



Chapter 1 
Literature Review

In this Chapter we look at the previous literature on pricing o f convertible bonds and 

on numerical methods commonly used in finance when the valuation models can not be 

solved analytically.

1.1 Pricing of Convertible Bonds

Convertible bonds are ordinary bonds with an option for the bondholder to convert the bond 

into common stock at some contractual price at the bond maturity time or some prespecified 

dates during the life o f the option. Like ordinary bonds, the issuer may pay regular coupons 

to the holder. The conversion option has value to the bond holders, who benefit from future 

potential growth of the company. Convertible bonds provide investors with the downside 

protection o f bonds and the upside return o f equities. Holders of convertible bonds have 

both a debt claim against the company’s assets and an equity claim. For most convertible 

bonds, the issuer reserves the right to call the bonds. Upon a call, the bondholder may 

either convert the bond into shares or redeem it at the call price. Some restrictions on 

the calling privilege may be imposed. There may also be a put feature incorporated into 

a convertible bond, allowing the holder to sell back the bond to the issuing company in 

return for a fixed sum. The call feature will decrease the value of a convertible, while the 

put feature increases it.

5
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Interest in convertibles in the financial markets has increased considerably in recent 

years. However, neither the mathematical models nor the numerical techniques to solve 

them are yet standardized.

There are three main issues on the modelling side: whether the stock value or the 

firm value is the main underlying factor; whether there are additional stochastic factors, 

such as an interest rate; how default is modelled and what happens upon default to the state 

variables, the CB holders’ rights and the convertible value.

The early models of convertible bonds (Ingersoll (1977a) and Brennan and Schwartz 

(1977)) follow Merton (1973) in using the value of the firm with geometric Brownian 

motion as the sole state variable. Brennan and Schwartz (1980) and more recently Ny- 

borg (1996) and Carayannopoulos (1996) include in addition a stochastic interest rate. 

Brennan and Schwartz and Nyborg assume the short rate follows a mean reverting log-

normal process; Carayannopoulos assumes the short rate follows the Cox, Ingersoll and 

Ross (1985) model. Default risk is usually incorporated structurally by capping payouts to 

the bond by the value of the firm.

Recent literature, on the other hand, mainly uses the stock price as a state variable 

and either ignores credit risk (Zhu and Sun (1999), Epstein, Wilmottt and Haber (2000), 

Barone-Adesi, Bermudez and Hatgioannides (2003), Bermudez and Nogueiras (2004)), 

incorporates it via a credit spread (McConnell and Schwartz (1986), Cheung and Nelken 

(1994), Ho and Pfeffer (1996)) or models it in a reduced form setting as an exogenously 

specified default process (see Duffie and Singleton (1999)). However, some authors have 

pointed out (see Schonbucher (2003)) that given the hybrid nature of convertibles, asset
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based models are the right class to consider in order to account for credit risk. Arvanitis and 

Gregory (2001) implement and compare both type of models for CB valuation. Bermudez 

and Webber (2004) (see Chapter 5) propose an asset based model that incorporates both 

endogenous and exogenous default, as well as endogenised recovery.

In the equity based approach most authors use a single factor model, although some 

allow interest rates to be stochastic. The Vasicek (1977) or else the extended Vasicek 

(Hull and White (1990)) models are used by Epstein, Haber and Wilmott (2000), Barone- 

Adesi, Bermudez and Hatgioannides (2003), Bermudez and Nogueiras (2004), and Davis 

and Lischka (2002). Ho and Pfeffer (1996) use the Black, Derman and Toy (1990) model; 

and Zvan, Forsyth and Vetzal (1998a) and Yigitbasioglu (2002) use the Cox, Ingersoll and 

Ross (1985) model. Cheung and Nelken (1995) adopt the model developed by Kalotay, 

Williams and Fabozzi (1993).

Very few authors model the hazard rate stochastically (Davis and Lischka (2002), 

Arvanitis and Gregory (2001)). However from the implementation point o f view, stochastic 

hazard rates offer the same complexity as stochastic interest rates, given that the dynamics 

for both process are often very similar, and their role in the valuation PDE is analogous 

(Duffie and Singleton (1999)). Most recent papers model the hazard rate as a deterministic 

function of the state variables (also called a quasi-factor or half factor).

1.1.1 Credit Risk Modelling

In general, credit risk models fall into two main categories, structural and reduced form.
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Structural Models

In structural models the state variable is usually the value of the firm or firm asset 

value, which moves randomly. All claims on the firm’s value are modelled as derivative 

securities with the firm value as underlying.

Default occurs when the value o f the firm hits or crosses a boundary, the barrier level. 

It is necessary to specify the process for the firm value, the location of the barrier, and the 

form and amount of recovery upon default. This approach was introduced by Black-Scholes 

(1973) and Merton (1973), who allow default only at maturity. Black and Cox (1976) relax 

this assumption allowing default prior to maturity.

The main advantage o f these models are: (1) they provide a link between the equity 

and debt instruments issued by a firm which may he necessary for example in the valuation 

of CBs and callable bonds, (2) they can be used, at least in theory, to optimize the capital 

structure and, (3) default risk is endogenised and measured based upon the share price and 

fundamental data only.

The main disadvantage of structural models is that the firm value is unobservable and 

often difficult to model. Specially the volatility of the firm value is hard to estimate. Also, 

models become too complex for reasonable capital structures. Finally, they are not well 

suited for pricing and hedging of credit instruments.

Most authors assume the firm follows a geometric Brownian motion and interest rates 

are deterministic (Merton (1974) , Geske (1977) , Hull and White (1995) , Nielsen, Saa- 

Requejo and Santa-Clara (1993)). A problem with these models is that the implied credit
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spreads are very low and tend to zero as time to maturity approaches zero. To overcome 

this Schonbucher (1996) and Zhou (1997) introduce jumps into the firm value process.

Longstaff and Schwartz (1995) give a senri-closed form solution for defaultable bonds, 

when interest rates follow Vasicek model and may be correlated with the firm value. They 

assume the firm value follows a GBM, that the barrier level is constant and that the recovery 

value is a fraction of the bond principal.

Briys and de Varenne (1997) also get a closed form solution for risky bonds assuming 

the same process as Longstaff and Schwartz for the firm value and the stochastic interest 

rate. The difference is that they model the barrier level as a fraction o f the discounted face 

value and the recovery as a fraction of the barrier level.

Reduced Form Models

In reduced form models default is exogenous, occurring at the first jump time r  of 

a counting process, Nt, with jump intensity Xt. The main issues in reduced form models 

are the specification o f processes for the riskless short rate r t, the hazard rate Xt, and the 

recovery value.

This approach has been followed, among others, by: Ramaswamy and Sundaresan 

(1986), Jarrow and Turnbull (1995), Hull and White (1995), Duffie and Singleton (1994), 

(1997), (1999), Lando (1998) etc.

The random time of default r  is a stopping time. The hazard rate is the local arrival 

probability of the stopping time per time.
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The hazard rate is closely related to the credit spread implied by the market price of 

bonds issued by a defaultable obligor and the price o f similar default-free instruments For 

this reason the terms modelling of the credit spread and modelling o f the hazard rat»; are 

interchangeable. However, only if default and interest rates are uncorrelated, hazard rates, 

or equivalently default probabilities, can be obtained directly from market credit spreads. 

The fundamental relation between defaultable zero-coupon bond prices and implied default 

probabilities appears for example in Das (1998) and Duffie (1999).

The simplest specification for the counting process N  is a Poisson process. A Poisson 

process with intensity A >  0 is a non-decreasing, integer-valued process with initial value 

N  (0) =  0 whose increments are independent and satisfy, for all 0 < t < T

P  [N (T) -  N  (t) = n] = (T — t)n Xn exp ( -  (T -  t ) A ).
nl

When default is triggered by a Poisson process with constant intensity, the term structure 

of spreads is flat and it does not change over time. This can be improved by modelling the 

hazard rate as a function of time, leading to a so called inhomogeneous Poisson process. In 

that case it is possible to fit a given term structure of defaultable bond prices.

A more realistic specification will allow the credit spread to move randomly; a Pois-

son process with stochastic intensity is a so-called Cox process. Different specifications 

have been proposed for the risk-free interest rate and the hazard rate. Ideally, both should 

be stochastic, correlated and maybe follow a multifactor model. On the other hand, it 

should be possible to work out closed-form solution for simple instruments, such that the

model can be easily calibrated.
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The implied term structure o f credit spreads can be used to price many simple credit 

derivatives, but not convertible bonds. In practice, the calibration of the credit spread curve 

is not easy due to the lack of data. Usually there will be more than one curve consistent with 

the market price of the calibration instruments. To guarantee uniqueness o f the spread curve 

either a parametric form with few parameters is given, or extra smoothness conditions are 

imposed. The methods for calibration of the spread curve are just adaptation of the methods 

to calibrate risk-free interest rate curves. Authors who calibrate the credit spread imposing 

a parametric form are for example Nelson and Siegel (1987) and Svensson (1994), (1995). 

Vasiceck and Fong (1982), Adams and van Deventer (1994), and Waggoner (1997) use 

methods based on splines, which impose smoothness.

Recovery Modelling

Regarding the recovery of defaultable claims, many models (as reviewed by Schon- 

bucher (2003) and Bielecki and Rutowski (2002)) have been proposed in the literature: 

recovery o f treasury (RT), recovery o f par (RP) multiple defaults (MD), recovery of market 

value (RMV), zero recovery (ZR) and stochastic recovery. As Schonbucher points out they 

try to model the value o f the settlement, not the actual outcome of the bankruptcy process, 

they just measure this outcome in different units.

The RT is very convenient from the computational point of view. The reason is that 

the price o f a defaultable issue under RT is a weighted average of the default-free instrument 

and the price under zero recovery, which is usually easy to compute. However the RT can 

lead to unrealistic shapes of spread curves, and lead to recoveries above 100%. The RP and
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RMV model are similar for issues close to part. The RMV is more consistent for the pricing 

of credit risk derivatives, but it does worse in pricing downgraded and distressed debt. The 

RMV is very elegant, in the sense that pricing of financial instruments can be done by 

discounting with the adjusted defaultable rate r  +  A (1 — if), where A is the hazard rate 

and R  is the recovery rate. In the RP pricing is more complicated. Both models are suited 

for the calibration of the implied credit spreads, although in the RMV it is not possible to 

separate the calibration of the hazard rate, A, and the loss rate, (1 — R). The RMV cannot 

be used with firm value models, whereas the RP can be used in intensity based and in firm 

value models. Finally, the intuition behind both models is different: the RMV is motivated 

by the idea of reorganization and renegotiation o f debts; the RP is motivated by the idea of 

bankruptcy proceedings under an authority ensuring strict relative priority.

In general recovery rates are difficult to imply from market prices. Bakshi, Madan 

and Zhang (2001) do so for the RP model and a modification o f the RT under restrictive 

assumptions for the default intensities. A more general calibration algorithm has been 

proposed by Unal, Madan and Guntay (2001).

In absence of implied recovery rates, historical recovery rates could be used as bench-

mark. In that case they need to be adjusted for risk premia. Hamilton, Gupton and Berthault 

(2000) study the recovery rates and losses given by default of defaulted public debt from 

1981 to 2000. They show that recovery rates have extremely high variability across differ-

ent default events. They try to explain recovery rates using variables that are endogenous to 

the defaulted obligor or the defaulted bond issue. They find some empirical indicators that 

explain this variability, but much of the uncertainty cannot be explained. Altman, Resti and
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Sirone (2001) consider a different important issue, the systematic dependence o f recov-

ery rate across different defaults. There are numerous statistical models to predict recovery 

rates based on firm-specific variables, but their explanatory power is generally not too high. 

For pricing, studies using market prices should be more relevant.

1.1.2 Credit Risk in CB Valuation

Since the important work by Ingersoll (1977a), (19776) and Brennan and Schwartz (1977), 

the contingent claims approach (Black and Scholes (1973), Merton (1973)) to pricing con-

vertible bonds is the definitive choice. Traditional methods such as “break-even period” 

analysis, “discount cashflow” analysis and “synthetics” have serious shortcomings as dis-

cussed by Cheung and Nelken (1994). As such, the theoretical equilibrium price of a con-

vertible bond is defined as the value that offers no arbitrage opportunity to either the holder 

or the issuer. Usual provisions such as the possibility o f early conversion, callability by 

the issuer and putability by the holder, make the issuer to follow a call policy (referred to 

as optimal call) that minimizes the value of a convertible bond, and the investor to follow 

conversion (referred to as optimal conversion) and redemption (referred to as optimal re-

demption) strategies that maximize the value of the convertible bond at each point in time. 

Following the analysis of Black Scholes and Merton, Ingersoll (1977a) and Brennan and 

Schwartz (1977) derive a partial differential equation for the value o f a callable convert-

ible bond as a function of the firm value only. They both determine the optimal conversion 

strategy for investors and the optimal call policy for the issuer via the criterion of domi-
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nance, and provide the inequality constraints that must be satisfied by the convertible bond 

value when these embedded options are considered.

Ingersoll (1977a) and Brennan and Schwartz (1977) assume that the firm’s value is 

the underlying stochastic variable that the convertible bond depends upon. Although theo-

retically very attractive, the existence of senior debt, preferred equity and multiple classes 

o f common equity in a typical firm’s capital structure makes the valuation of convertibles 

in such a context difficult in practice. Furthermore, the availability o f credible data on 

non-publicly traded issues poses serious additional problems.

Brennan and Schwartz (1980) extend their own previous work by allowing for the 

uncertainty inherent in interest rates. They compare the two-factor with the single factor 

model and they conclude that CB values under deterministic interest rates are higher than 

values under stochastic interest rate, although overall the differences are very small. This 

conclusion has encouraged some authors to use one-factor models. Nevertheless, since 

convertible bonds have long lifespans, the assumption of a flat term structure is not in 

general valid.

Following Merton (1973), Ingersoll (1977a) and Brennan and Schwartz (1977) as-

sume that the firms’ outstanding securities consist solely of common stock and convertible 

securities and they allow for the possibility that the firm will default either prior or at ma-

turity. When in 1980 they extend their own work by adding the possibility o f senior debt in 

the firm’s capital structure, both the conversion and the maturity condition in the model de-

pend upon the value of the senior debt given that the convertibles are no longer outstanding. 

Therefore when solving for the convertible bond, the value of the senior debt must be found
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first as the solution of the same PDE as the convertible with the appropriate definition of 

total rate of cash distribution to the firms security holders, and final and bankruptcy condi-

tions. These is a clear disadvantage o f choosing the firm value as the state variable. These 

structural valuation approaches, as reviewed by Nyborg (1996), account for credit risk but, 

since they use the total value of the firm as the stochastic variable, involve many unobserv-

able parameters (notably, the volatility o f the firm’s value instead of the underlying equity) 

that make them difficult to use.

If we assume that the value of the convertible depends upon the value of the issuer’s 

common stock, credit risk is easily incorporated in a convertibles’ model by adding a con-

stant option-adjusted spread or effective credit spread to the riskless interest rate as, for 

example, in Ho and Pfeffer (1996),' McConnell and Schwartz (1986) and Cheung and 

Nelken (1994). The main drawback o f these early papers is that they model credit risk in 

an ad hoc manner. It is necessary to specify how default is triggered and what happens 

upon default with the state variable, the holders’ rights and the convertible value.

The first authors to have modelled default exogenously in the spirit of reduced form 

models, are Davis and Lischka (2002) (DL hereafter) and later Takahashi, Kobayahashi 

and Nakagawa (2001) (TKN hereafter) and Arvanitis and Gregory (2001). They assume 

that default occurs at the first jump o f a Poisson process and they model the intensity of 

the jump as a deterministic function o f the stock price. They assume that upon default the 

stock price jumps to zero. DL and Arvanitis and Gregory (2001) model the recovery as 

a constant fraction R  of the par value of the bond, whereas in TKN model the recovery 1

1 The credit risk of the bond is captured by the option adjusted spread (OAS), which added to the one period 
Treasury rate, is used to discount the bond’s cash flows.
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is a fraction of the market value of the bond prior to default. Recently, Andersen and 

Buffum (2003) implement a model very similar to the one of DL focusing their attention 

on calibration issues. Hung and Wang (2002) implement in a lattice a model very similar to 

TKN. Carayannopoulos and Kalimipalli (2003) do an empirical investigation of the TKN 

model, extended to allow for stochastic interest rates.

However, it can be argued that the approach followed in all the above references, 

penalizes unnecessarily the credit risk-free equity upside of the convertible bond. At low 

equity prices, when the conversion option is worth little, the convertible is essentially a 

pure bond and it is clearly correct to price (i.e. discount cash flows) with the full credit 

spread of the issuer. However, it is generally held that a company’s ability to issue stock is 

not strongly influenced by its credit rating. Accordingly the value contributed to the bond 

by its conversion rights should not be subject to the same risky discounting as the fixed 

payments. The value o f a convertible bond has components o f different default risk. The 

equity upside has zero default risk since the issuer can always deliver its own stock. On 

the other hand, coupon, principal payments and any put provisions depend on the issuer’s 

timely access to the required cash amounts, which crucially are not known in advance, and 

thus introduce credit risk. A number o f modelling choices could be made to achieve this 

result2 with different advantage and disadvantages. These are the so called blended dis-

count rate models. In its most simple form, a blended discount rate model uses the full 

risky rate to discount all cash flows and only the risk free rate for the equity component.3

2 A Quantitave Research publication of Deutche Bank (see www.dbquant.com) proposes five alternative 
blended discount rate models in a one-factor PDE model. They use a constant deteministic credit spread to 
discount the fixed payments but not the equity value.
3 In a lattice framework, Connolly (1998) and Phillips (1997) suggest using a different discount factor along

http://www.dbquant.com
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More sophisticated discount rate models, like the probability conversion model of Gold-

man Sachs (1994) or Tsiveriotis and Fernandes (1998) approach, use a weighted blended 

discount factor that accounts for the moneyness of the embedded conversion option.

In the Goldman Sachs model the discount rate is equal to r  +  (1 — Pc)h, where Pc 

is the risk neutral conversion probability, which is a derivative of the underlying stock S. 

At maturity, Pc is set to 1 if the CB is converted, and is set to 0 otherwise. For any other 

time, Pc is re-set to 1 if it is optimal to convert the CB. The conversion probability is a 

derivative on the underlying state variables, and therefore can be found as the solution of a 

Black-Scholes type PDE or in a lattice (by setting the discounting to zero).

On the other hand, Tsiveriotis and Fernandes (1998) (TF) split the convertible into an 

equity component and a bond component which are discounted differently to reflect their 

different credit risk. Yigitbasioglu (2002) extends the TF model by allowing a stochastic 

interest rate and FX risk.

Tsiveriotis and Fernandes (1998) carry on to define a hypothetical derivative security, 

the cash-only part of the convertible bond (COCB) that follows the same dynamics as the 

convertible’s value. The resulting valuation equation for the COCB explicitly involves the 

issuer’s credit spread. On the other hand, the part of the value of the convertible bond 

related to payments in equity is discounted using the risk-free rate.

The holder of the COCB is entitled to all cash flows from the bond part but not any 

equity cash flows. This means that at time t the value o f the COCB, Vco, is set to zero if 

it is optimal to convert. By definition, Vco is a function of the underlying stock price and

the tree for nodes where conversion, call or put has been exercised and nodes where the bond is still alive.



1.1 Pricing of Convertible Bonds 18

the instantaneous interest rate. Therefore Vco should follow the same Black-Scholes type 

differential equation with the discount rate set to be the full risky rate

dVr 1 2o 29 2K 0 , 0 d2Vco , 1 2d2Vco
dt ^  2 a S d s 2 + pSaW dSdr + 2W dr2 ( r S - D ( S , t ) ) ^

^  , , dVco+ { u -  \ rw) —— 
or

(r +  h)Vco =  0. (1.1)

The difference between the CB value V  and Vco is the share related part of the bond (SOCB) 

and its price Vso naturally satisfies the same differential equation with the discount rate 

equal to the risk-free rate r

dVso , 1 2o2d2Vso 
dt + 2a b  d S 2

C, £>2VSo , 1 2d 2Vso , , 0 „ , r ^ d V aopb<jw +  - w  Q  9 +  (rb — D ( 5 ,  t))
dSdr 2 dr2 dS

+  (u — A rw) dVsc
dr

-  rVso =  0. ( 1.2)

From the above two equations, the convertible bond price V  = Vco +  Vso satisfies

dV  1 ,d2V d2V  1 0d2V
+  -uhdt + r 2s 2g ^ +pSawasdr  '  2

dV
+  { u -  Xrw) —--------( r  +  h)Vco -  rVso

dr-

dr2

0.

+ ( r S - D ( S , t ) )
d V
~ds

(1.3)

Equivalently

dSdr
av i  2q2d"-v
- w + r 5 +  p S a w

dV
+  (u -  \ rw) —----- (r +  h*)V = 0,

dr

d2V  1 o d2V
2 W

,, v dV
2 + ( rS - D { S , t ) )  —

dr  2 dS

(1.4)

where h* = h ^ r  is the conversion adjusted credit spread. When the equity price is very 

high, the convertible is certain to convert, Vc0 is very small and the risk-free rate is used to 

discount the corresponding cash flows. On the other hand, if  the equity price is very low, 

the convertible bond behaves like an ordinary debt bond and h* is close to h, which means
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that the full risky rate is used to discount the cash flows. Therefore TF approach is similar 

to the probability conversion model with a different technique to adjust the discount rate.

TF use a constant deterministic credit spread. Moreover, they do not specify what 

happens upon default to the stock price, the convertible bond value, or holder’s rights. 

Ayache, Forsyth and Vetzal (2002), (2003) (AFV hereafter) extend previous literature by 

proposing a general specification o f default in which the stock price jumps by a given per-

centage rj upon default and the issuer has the right either to convert or recover a given 

fraction R  of the bond part of the convertible. The way they define the bond part is dif-

ferent from the original definition of Tsiveriotis and Fernandes. In our understanding, the 

definition o f the bond part in AFV lacks financial intuition and makes any implementation 

extremely complex. Indeed, even though AFV decompose the convertible bond value (and 

therefore write the model as a coupled system of equations) they provide most of their nu-

merical results just for two extreme situations in which the model reduces to one equation 

only.

Summarizing, another important issue on the modelling side is, given the hybrid 

debt-equity nature of convertibles, whether it is necessary to split its value in order to apply 

a different credit regime to the debt and equity components. This was the approach taken 

in the first valuation models, which were pricing convertibles as a portfolio of bonds and 

warrants. Unfortunately this decomposition is valid only if the bond is convertible only at 

expiry and there are no other options embedded in the bond. In general, the value o f the 

debt and equity components will be linked, and the valuation problem is to solve a coupled
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system of equations. How to split the convertible value though, is an open an controversial 

matter.

Whether or not we split the convertible into bond and equity parts, a key issue is 

how to model the credit spreads. Some papers use a constant hazard rate despite a body 

of empirical evidence (Duffie and Singleton (1997) and Schwartz (1998)).4 Other papers 

model the hazard rate stochastically but make the interest rate deterministic (Davis and 

Lischka (2002), Arvanitis and Gregory (2001)).

Most authors model the hazard rate as a deterministic function of the state variables. 

Many parameterizations could be applied. Table 1.1 shows some specifications that have 

been used in the literature. Some authors model the hazard rate as a function of the stock 

price only, and impose negative correlation via a power function or an exponential one. In 

both specifications the spread is a monotonic decreasing function of the stock price; but 

only the power function guarantees an infinite hazard rate for zero stock price, which is a 

desirable property (see Olsen (2002)). Recently Das and Sundaram (2004) have combined 

an exponential dependency on the interest rate with a power dependency on the stock price, 

and have added the time to maturity. They calibrate the hazard rate using market prices 

o f CDS and historical data and they test this approach empirically by pricing some real 

convertible bonds. Their results seem very satisfactory. Andersen and Buffum (2003) are 

concerned with the simultaneous calibration o f the hazard rates and the volatility smiles; 

they point out the need to make the hazard rate time dependent to avoid mispricing.

4 A tutorial from the Convertible Bonds Research group at Barclays Capital (2002) points out that tradi-
tional models perform poorly for volatile, high-yieldmg, low parity convertibles because the credit spread 
does not vary with the stock price. They tend to over-estimate gamma and vega and to under-estimate delta.
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Davis and Lischka (2002)
p t = c + k / S aOlsen (2002)

Takahasi, Kobayahashi, Nakagawa (2001)
Ayache Forsyth and Vetzal (2003)
Arvanitis and Gregory (2001) Pt =  k  exp [—aS t +  d]
Das and Sundaram (2004) p t = k  exp [brt +  c(T — i) +  d] / S a

Table 1.1. Models for the hazard rate

To model the credit spread as a function of the state variables is very intuitive and 

appears to provide realistic valuations, sensitivities and implied parameters, but it does 

constrain the credit spread to have an explicit relationship with the stock price. In real-

ity, credit spreads contain some randomness. This suggests developing a model in which 

both stock prices and credit spreads follow separate but correlated random processes, as 

proposed by Davis and Lischka (2002). As these authors (2002) point out, although there 

are three sources of uncertainty- stock price, interest rate and credit spread- practition-

ers tend to avoid more than two factors. Therefore, and in order to reduce the problem to 

two factors, we will either take the hazard rate to be deterministic and model the interest 

rate stochastically or we will assume the interest rate to be deterministic and the hazard to 

be stochastic. From the modelling perspective, both approaches appear to be symmetrical 

since the stochastic processes assumed for interest rate and hazard rate are in general very 

similar.

In general, the pricing equation for convertibles cannot be solved analytically, hence 

numerical methods need to be used. It is often the case that a number of the complex fea-

tures of convertible bonds are ignored because of the limitations of the adopted numerical 

scheme or because o f the difficulty of implementing and using the model.
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Previous work has focused on finite difference schemes (Brennan and Schwartz (1980), 

McConnell and Schwartz (1986), Tsiveriotis and Fernandes (1998), Nyborg (1996), Ep-

stein and Wilmott (2000), Zhu and Sun (1999), Yigitbasiouglu (2002), Andersen and Buf- 

fum (2003)) or lattice methodologies (see for example Cheung and Nelken (1994), Carayannopou- 

los (1996), Ho and Pfeffer (1996), Philips (1997), Connolly (1998), Davis and Lischka 

(2002), Arvanitis and Gregory (2001), Takahashi, Kobayahashi and Nakagawa (2001),

Hung and Wang (2002), Das, Sundaram (2004)).

The numerical schemes used in previous work present some difficulties. In general, 

no special treatment is done to account for the convection dominance problem. Moreover, 

the treatment of the early exercise in the three shapes it appears in CB valuation (call, 

put and conversion) is almost always explicit, with all consequent inaccuracy problems. 

Finally, when lattice and explicit FD are used, strong restrictions in the definition of the 

time and space step need to be imposed, leading to very slow inefficient algorithms for 

long date instruments in a two-factor setting. In the following Section we examine those 

problems in depth in the context o f numerical methods used in finance for contingent claim 

valuation.

1.2 Numerical Methods in Finance

In the absence of closed form solutions, there are three numerical techniques that are com-

monly employed in finance to price derivative products: (i) numerical solution of partial 

differential equations (PDEs), (ii) lattice methods (binomial and multinomial trees) and (iii) 

Monte Carlo simulation. Whereas lattice approaches and Monte Carlo start with a partic-
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ular description o f the asset price dynamics, PDE methods focus on the dynamics o f the 

no-arbitrage portfolio, only implicitly considering the asset price dynamics.

Each method has characteristics that make it more appropriate for certain type of 

instruments and valuation models and less appropriate for others.

The Monte Carlo technique is clearly very powerful and general. It tends to be nu-

merically more efficient than other procedures when there are three or more stochastic 

variables and provides a standard error for the estimates that are made. Monte Carlo sim-

ulation can accommodate complex payoffs and complex stochastic processes and it easily 

handles path dependent derivatives. Nevertheless, and despite recent developments (see 

for instance Carr and Yang (1997), (1998), Broadie and Glasserman (1997), Longstaff and 

Schwartz (1998), Andersen (1999)), it is not easy to implement this method in the case of 

American-style derivatives. Thus we will concentrate on PDE methods and lattice models, 

which could handle the early exercise premium.

In this Section we do a review o f the numerical techniques that are commonly em-

ployed in finance, focusing our attention on the numerical solution of partial differential 

equations. First we present a comparative analysis of PDE and lattice methods. Then we 

introduce the concept o f variational formulation o f a PDE model, and we discuss the is-

sues of existence and uniqueness of a solution, as well as the convergence of numerical 

schemes. Then we proceed to talk about boundary conditions and the different discretiza-

tion schemes, namely finite differences (FD) and finite elements (FE). In relation to the 

discretization scheme we discuss the convection dominance problem and finally we ad-

dress the numerical solution o f free boundary problems.
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1.2.1 Lattice versus PDEs

Lattice methods are perhaps the most widely used numerical methods in finance. The pop-

ularity of lattice methods can be in part attributed to their intuitiveness (easy to understand) 

and simplicity (easy to implement), at least for relatively basic derivative pricing prob-

lems. These methods assume discrete approximations of the underlying stochastic process. 

In that case, the pricing models can be written as discrete sets o f difference equations, 

and therefore can be implemented directly on a computer. On the contrary PDE methods 

assume that the underlying stochastic processes are continuous and the fair price o f the 

contingent claim solves a partial differential equation. Most of these PDEs do not admit 

simple closed form solution, hence numerical techniques are required. In order to solve a 

PDE numerically we must replace the problem by one with a finite number of degrees of 

freedom i.e., reduce the continuous PDE to a discrete set of difference equations that can 

be solved in a computer. The most common types o f discretization are finite differences 

and finite elements.

The binomial option pricing model was first introduce by Cox, Ross and Rubinstein 

(1979) (CRR hereafter). Binomial trees provide a convenient way to model the asset price 

process using a discrete binomial distribution to approximate the normal distribution of 

log returns assumed in the Black-Scholes analysis. They can be configured in various 

ways according to different parameter choices for probabilities o f up and down movements 

and incremental price changes. These parameters are chosen to match the volatility and 

expected return o f the underlying asset(s). However, since there are three parameters and 

we are only trying to match two values there is a free choice for one of them.
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Whereas in CRR-type trees centering occurs on the current asset price, the Jarrow 

Rudd (JR) type tree centers the lattice on the forward price. In the JR tree both the binomial 

and the lognormal process have the same first two moments for any number of time steps, 

whereas in the CRR tree the choice of parameters ensures equality of the variance only in 

the limit. Also JR parameters insure that the probabilities remain always positive whereas 

CRR approach may lead to negative probabilities for large number of time steps.5 In any 

case, convergence of the binomial option pricing formula to the Black-Scholes formula can 

be guaranteed using the central limit theorem.

Discrete and continuous models are not directly comparable. Among other things, 

lattice methods provide the price at the initial time just for the current value of the state 

variable, whereas PDE methods provide the price for any level of the state vari ables in the 

computational domain. Nevertheless, it is interesting to notice that the discretized versions 

of the continuous models can themselves be interpreted as discrete probabilistic models. In 

fact, already Brennan and Schwartz (1977) show that the explicit finite difference method 

is equivalent to a binomial lattice approach and the implicit finite differences method corre-

sponds to a multinomial lattice where, in the limit, the underlying variable can move from 

its value to infinite possible values at next timestep. A proof of this equivalence in a more 

general setting can be found in Lapeyre, Sulem and Talay (2004).

PDE models are usually more flexible. Although lattices can be adapted to accom-

modate underlying assets paying discrete cashflows (like dividends or coupons) and time-

5 A third possible model is due to Tian (1993) who proposes binomial and trinomial trees in which the 
parameters are derived as unique solution of equation systems where the first two moments of the continuous 
and discrete asset distributions are matched.
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varying parameters (see for example Hull (2002) or Clewlow and Strickland (1998)), these 

features are more easily handled in a PDE framework (as described for example in Wilmott 

(1998)). Also hedge sensitivities may be approximated in a binomial tree using finite dif-

ference ratios, but in a PDE approach are given as a by-product.

Geske and Shastri (1985) compare binomial and finite difference methods applied to 

vanilla option pricing models with one stochastic variable. The comparison is made with 

respect to differences in both the approximation theory and the efficiency of the computa-

tion algorithms, although the latter has not been done very rigorously and is not supported 

analytically. Clearly the discrepancies are sensible to the particular scheme and implemen-

tation. But they make one point clear, namely that lattices loose efficiency when dealing 

with discrete dividends or with American-Style options. Besides, despite o f what the au-

thors say, the generalization to two or more factors will change things substantially.

In general PDE models are more easily analyzed than lattice models. The continuous 

models lead to more manageable discrete models, and there is a well-understood theory 

of convergence and error analysis for discretization o f continuous partial differential equa-

tions.

Theoretical proofs of convergence of discrete time models to their continuous time 

analogues have been frequently addressed in the literature.6 However little attention has 

been given to the rate of convergence, which appears to be one of the central properties of 

a discrete time model. The rate or order of convergence of a discrete model measures the

6 Amin and Khana (1994) for example, prove convergence for American options prices in the case where 
the limiting process of the discrete-time model is a diffusion process satisfying convergence with the first two 
moments and one higher moment.
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asymptotic trade-off between speed and accuracy o f a numerical method. A key question 

is how do we choose the number of time steps to achieve a required accuracy or in other 

words, what is the error incurred as a function o f the number of time steps. Clearly an ap-

proximation algorithm should have a rate of convergence as great as possible. Knowledge 

of the order o f convergence allows ranking the available discrete time models according to 

well measurable and quantifiable criteria. Convergence behaviour is also an issue.

Leisen and Reimer (LR) (1996) examine convergence behaviour and convergence 

speed for the CRR, JR and Tian models. They show that even for the European call, bi-

nomial option prices asymmetrically oscillate with changing amplitude around the Black- 

Scholes solution for increasing tree refinements. Furthermore the error can actually in-

crease with an increase in the number of time steps. They prove that CRR and JR models 

converge with order one for the European call and need to be seen as equivalent. They also 

construct new binomial models where the calculated option prices converge smoothly to 

the Black-Scholes solution and with order two, although they are not able to give a strict 

proof of the greater order of convergence in line with their theorem.7 Finally they compare 

all three models with respect to speed and accuracy following an approach introduced by 

Broadie and Detemple (1996).8 Their model achieves the same degree o f accuracy 1400 

times faster than the standard models. Nevertheless for American options, in which we 

concentrate most here, their method exhibits only order one, although on average the same

' To get rid of the odd-even convergence they build a tree centred on the strike price and to improve accuracy 
they exploit findings of mathematical literature on normal approximations to the binomial function.
8 Option prices are calculated for a large sample of random parameters and then the relative standard devi-
ation to the true solution is calculated and compared to computation time with increasing refinement.
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accuracy is achieved ten-times faster than previous binomial models. Despite these promis-

ing results, LR trees do not seem to be very popular.

Heston and Zhou (2000) extend and contradict somewhat the work of Leisen and 

Reimer (1996) by characterizing the rate o f convergence of discrete-time multinomial mod-

els. They show that the rate of convergence depends on the smoothness of the option payoff 

function, and is much lower than commonly believed because option payoffs are not contin-

uously differentiable. They show that on the standard binomial tree the rate of convergence 

cannot uniformly be first order but it is at least 1 / y/n. They state that although at the cur-

rent node the solution may still have the l / n  rate of convergence that LR claim for CRR, 

the nonsmoothness of the payoff function can have an impact sufficient to cause the well 

known oscillatory pattern of the binomial prices at the current node. In summary, they 

reinforce the idea of Leisen and Reimer that for standard trees not even the rate of conver-

gence is very low for European options but is in general unknown for American and path 

dependent options.9

Binomial methods can be extended to deal with path dependent options and options 

whose payoff depends on more than one asset. A lot of research has been done in this re-

spect. Boyle, Evnine and Gibss (1989) develop an n-dimensional extension of the binomial 

method for valuing multivariate contingent claims. Madan, Milne and Shefrin (1989) and 

He (1990) generalize the CRR model to a multivariate model and in that context show con-

vergence for prices and hedge sensitivities. Regarding path dependency, Hull and White

9 They propose both a smoothing approach and an adjustment approach such that the resulting equation 
achieves its maximum convergence rate across all the nodes and the standard Richardson extrapolation can 
be used. But the numerical results they provide are not very satisfactory, and cannot be supported mathemat-
ically.
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(1993) modify the original CRR model for the pricing of path dependent exotic options by 

linear or quadratic interpolation, like Asian options for example. Cheuk and Vorst (1994) 

present a model where the payoff o f a lookback option is itself modelled in a lattice. Al-

ford and Webber (2001) describe how very high order multinomial lattice methods can be 

constructed and implemented when the SDE followed by the underlying state variable can 

be solved. Incorporating both a terminal correction and appropriate truncation methods, 

they conclude that the heptanomial lattice is the fastest and most accurate of the lattices of 

higher order.

However, when extended to multi-factor or path dependent options, the trees are no 

longer easy to understand or implement. Besides, convergence properties are not clear. As 

Zvan, Forsyth and Vetzal (2000) point out, although most authors have limited themselves 

to illustrating convergence through numerical examples, this does not prove convergence to 

the correct solution. Zvan, Forsyth and Vetzal (2000) compare convergence of lattice and 

PDE methods for pricing Asian options. They show that while it is straightforward to prove 

that PDE methods are convergent, methods like the lattice based Forward Shooting Method 

of Barraquand and Pudet (1996) and the method proposed by Hull and White (1993) for 

path dependent exotic options do not converge for some specific problems. Things become 

even worse when one moves from prices to hedge parameters.

1.2.2 PDE Models. Variational Inequalities

The value of many financial derivative products is conveniently modelled in terms of two 

factors, or stochastic space variables, and time. Based on the contingent claims analysis
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developed by Black and Scholes (1973) and Merton (1973), a PDE for the fair price o f these 

derivatives can be obtained. Valuation PDEs for financial derivatives are usually parabolic 

and o f second order. Furthermore, most PDEs in finance are linear, although non-linear 

cases can appear as well.

The pricing problem is completed by specifying the final condition (the payoff of 

the contingent claim) and the boundary conditions (at zero and infinity). This makes PDE 

methods very general, since just minor changes must be done on the implementation in 

order to price a wide array o f different two-coloured options. Besides, the approach is very 

flexible to incorporate almost any contract specification; PDE models can easily handle 

discrete cashflows (jump conditions arising from dividends or coupons), barriers and path 

dependency in general. Also, algebraic constraints in the solution due to early exercise 

features can be treated in a uniform manner.

The pricing equation for a two-factor contingent claim is simply the two dimen-

sional convection-diffusion equation together with an exponentially decay term due to a 

discounting effect. Accurate modelling of the interaction between convective and diffusive 

processes is one o f the most challenging tasks in the numerical approximation of partial 

differentia] equations. The choice of the numerical method depends on wether the problem 

is diffusion dominated or convection dominated. Very often the diffusion is quite small rel-

ative to the convection, leading to a so-called covenction-dominated problem. In all such 

circumstances standard finite elements and finite differences approximations will present 

difficulties. Thus a very large literature has been built up over the last few decades on a 

variety of techniques for analyzing and overcoming those difficulties. Books like Morton
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(1996) are entirely devoted to the subject. A summary of numerical methods for time- 

dependent convection-dominated PDEs can be found in Ewing and Wang (2001). They 

provide a historical review of classical numerical methods and a survey of the recent de-

velopments on the Eulerian and characteristics Lagrangian methods. Eulerian methods use 

the standard temporal discretization, while the main distinguishing feature of characteristic 

methods is the use o f characteristics to carry out the discretization in time.

In the more general case partial differential inequalities must be considered. The in-

equality arises when the contingent claim’s price must satisfy some inequality constraints in 

order to avoid arbitrage opportunities. Possible constraints include early exercise, conver-

sion, and call and put provisions. These are the so-called free boundary problems because 

there is (a priori) an unknown boundary separating the regions where inequalities are strict 

from those where they are saturated.

It is almost always impossible to find an explicit solution to a free boundary prob-

lem. Therefore we need numerical techniques. The extra complication in those problems 

comes from the fact that we do not know where the free boundary is, it is an extra un-

known that we need to find as part of the solution procedure. Rigorous methods to deal 

with free boundaries do a transformation of the original problem into a new one with fixed 

domain from which the free boundary can be found a posteriori. Two possible transforma-

tions are linear complementary problems, usually combined with finite difference methods, 

and variational inequalities, usually related to finite element methods. The latter has some 

advantages. First, variational inequalities are the mathematical tool of functional analysis 

that best suits the rigorous formulation of early exercise problems. Second, they provide
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an excellent framework to deal with issues such as existence and uniqueness o f the solu-

tion. Finally, they are appropriate to analyze the error incurred in the numerical methods 

(numerical analysis).

To rewrite the problem in a variational form we first multiply the equation with a test 

function from a conveniently chosen functional space and we integrate it over the domain. 

Then we use a Green’s formula to translate second order derivatives into first order deriv-

atives. The resulting integrals over the boundary of the domain can be computed if test 

functions are chosen appropriately. In particular, if we take the test functions to be zero 

on the boundary where Dirichlet conditions are specified, the corresponding integrals will 

vanish. Each solution of the classical formulation is a solution o f the variational problem. 

Conversely, if  a solution of the variational problem is twice differentiable, then it is a solu-

tion o f the original problem in the classical sense. Existence and uniqueness of a classical 

solution require the final and boundary' conditions to be smooth enough (payoff function 

are not even differentiable). These constraints can be weakened when we use a variational 

formulation of the problem; the difficulties do not disappear but solutions are sought in 

more general functional spaces (weighted Sobolev spaces).

1.2.3 Existence and Uniqueness of Solution. Convergence of Numerical 
Schemes

Kangro and Nicolaides (2000) proved the existence and uniqueness of a classical solution 

for the initial-boundary value problem arising in a n-dimensional Black-Scholes equation. 

The idea is that, even if the final condition is not differentiable the diffusion has a regular-

izing effect so that a regular solution exists for times prior to maturity. Unfortunately the
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required assumption o f geometric Brownian motion process for the state variables excludes 

the short interest rate as an underlying process.

Theory for the existence of a solution for evolutionary variational inequalities can be 

seen in several reference books, as for instance Duvaut and Lions (1972), Glowinski, Lions 

and Tremolieres (1973), Bensoussan and Lions (1978) etc. Most existence theorems have 

been proved under the assumption of coerciveness of the bilinear form associated to the 

elliptic operator. However, it turns out that partial differential equations arising in finance 

are usually degenerated because some o f their coefficients vanish as any of the independent 

variables goes to zero. Therefore, the above theorems cannot be applied.

Jaillet, Lamberton and Lapeyre (1990) have weakened some of the regularity as-

sumptions in the general theory, to apply them to one factor pricing models for American 

put and call options. For more general equations it turns out that the notion of viscosity 

solution, introduced by Crandall and Lions, is the right class of weak solutions to be con-

sidered. The theory of viscosity solutions has been developed to solve linear and non-linear 

degenerated problems. This concept was first introduced to solve first order equations and 

subsequently extended to second order elliptic and parabolic equations (see, for instances, 

Crandall, Ishii, Lions (1992), Lions (1983)). This notion of solution is weak enough to en-

sure existence and strong enough to guarantee uniqueness. Moreover reasonable numerical 

schemes provide approximate solutions that converge to viscosity solutions, as described 

by Barles and Sougamdes (1991). Particular applications to financial PDEs can be found 

in Barles, Daher and Romano (1995).
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Unfortunately, although the theory of viscosity solutions can be applied to Ameri-

can vanilla options, a rigorous theory of existence for the general two-factor model with 

inequality constraints has not been found.

1.2.4 Truncation of the Domain. Boundary Conditions

The space-type variables of the pricing equation usually lie in an unbounded subset of W1. 

Clearly, to obtain numerical solutions by finite differences or finite elements this domain 

must be truncated at large values of the state variables and suitable boundary conditions 

must be applied. To that purpose it is necessary to understand the behaviour o f the solutions 

at infinity to propose relevant artificial boundary conditions. As shown by Barles, Daher 

and Romano (1995), artificial boundary conditions lead to small error inside the domain of 

computation. Kangro and Nicolaides (2000) derive pointwise bounds for the error caused 

by various boundary conditions (imposed on the artificial boundary for Black-Scholes type 

equations in multidimensional space) such that it is possible to determine a priori a suitable 

location for the artificial boundary in terms of a given error tolerance.

Although in some cases it is fairly straightforward to determine the asymptotic form 

of the PDE using financial reasoning, this becomes a more complicated task for complex 

contract specifications. Windcliff, Forsyth and Vetzal (2001) use a general boundary treat-

ment, first introduced by Marcozzi (2001), which can be used in many practical situations 

and does not require the exact specification of Dirichlet behaviour on the boundary o f the 

computational domain. No boundary condition is required numerically as the state vari-

ables tend to infinity if a carefully constructed lattice is used. The same can be shown
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to be true for explicit finite differences.10 But as the authors point out, specifying bound-

ary conditions is the price one has to pay to avoid timestep size limitations due to stability 

considerations or to achieve higher rate o f convergence (obtained for example with Crank- 

Nicolson time weighting).

1.2.5 Numerical Solution of PDEs: FE versus FD

The classical discretization techniques are finite differences and finite elements.

It is important to be aware that not all numerical methods perform well on all prob-

lems. In order to have convergence o f numerical approximation, consistency and stability 

properties are necessary. In this case we can sometimes obtain that the approximation has 

a probabilistic interpretation, which means that it can be interpreted as a Markov chain 

problem (or equivalently a lattice).

Finite Difference Method (FD)

FD have been widely used in finance since they were first suggested by Brennan and 

Schwartz (1977).

The idea o f the finite difference methods is to replace the partial derivatives occur-

ring in partial differential equations by approximations based on Taylor series expansions. 

When implementing FD we define a grid on the computational domain by splitting the tem-

poral and spatial axis into a finite number o f subintervals, and we restrict ourselves to the 

nodes o f the mesh.

10 This is one of the advantages that has been put forward regarding explicit methods (Hull and White (1990), 
Geske and Shastri (1985)).
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The space discretization requires approximation o f the first derivatives (convection), 

second derivatives (diffusion) and the function itself (reaction); we will refer to this com-

bination as the elliptic operator. Centered approximations for the second derivatives are 

of order two. Central differences for the first derivative are also second order, whereas 

forward and backward differences are of order one only.

In general, in order to have a stable approximation it is necessary that the matrix 

which approximates the second order elliptic operator is diagonally dominant. This im-

plies in particular that the matrix is invertible and satisfies the discrete maximum principle. 

This can be translated into some constraints on the size o f the space steps involving the 

drifts and the diffusion coefficients. Under these conditions the stability for the second 

order approximation can be guaranteed for uniform elliptic operators. When those con-

ditions are violated or when the elliptic operator is degenerate," which is quite common 

in financial applications, stable approximations can still be obtained by using a one-sided 

differencing approximation for the first derivative. If the drift is non negative we use for-

ward differences and if the drift is negative then we use backward differences. However, 

one-sided approximations have a convergence rate of lower order than the symmetric finite 

difference scheme (order 1 versus order 2).

Once we discretize the pricing equation in space, we are left with an ordinary differ-

ential equation. Several methods are available to solve this final value problem. The most 

common approximation methods are the 0-schemes, which include the well-known explicit 

(0 =  0), implicit (0 =  1) and Crank-Nicolson (0 =  1/2) methods. In any case the final 11

11 The operator is said to be degenerate when the covariance matrix of the diffusion part of the model is not 
positive definite.
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condition of the system is the discretized final conditions o f the parabolic problem (payoff 

function).

Explicit finite differences (0 = 0) are extremely easy to implement even within a 

spreadsheet. The method is called explicit because the solution can be found recursively 

going backwards in a simple iteration from the previous time step. However, convergence 

of the explicit approximation is conditioned upon a strong constraint on the time step rela-

tive to the spatial step. Therefore, the explicit finite difference tends to be rather slow. On 

the other hand, for the remaining 0-schemes (0 ^  0) a linear system of equations must be 

solved at each time step, but the constraint on the time step gets weaker as the parame-

ter increases. In the limit, the fully implicit scheme (0 =  1) always converges when the 

space and time steps tend to zero; no conditions linking the time and spatial steps are neces-

sary; the scheme is unconditionally stable irrespective of the step size. The Crank-Nicolson 

(0 =  1/2) approximation is often used in practice since it may provide a second order ap-

proximation in time whereas for all other values o f 0, the order of the approximation is one 

only.

Books like Wilmott, Dewynne, Howison (1998) and Tavella, Randall (2000) provide 

a comprehensive description of this numerical method and its applications in finance. They 

describe both the pricing models (in terms of its PDE and final and auxiliary conditions) 

and the numerical solution for an extensive range of products, providing clear evidence of

the uniformity of the PDE approach.
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Finite Element Method (FE)

The Basic idea of FE is to divide the domain of the differential equation into small 

non-overlapping parts, the so-called finite elements, and to approximate the unknown so-

lution and the test function o f the variational formulation, with functions from a finite di-

mensional space. This space is usually made up of globally continuous functions that are 

polynomials in each element of a polygonal mesh of the domain. In Galerkin methods the 

solution and the test functions are looked for in the same finite dimension space. The solu-

tion of the PDE is built as a sum of all these local approximating functions. Usually only 

the spatial variables are treated in this way, while time is discretized with FD or other meth-

ods. With two spatial variables, the domain is partitioned into triangles and/or quadrangles. 

Three dimensional spatial domains allow partitions into tetrahedrons, hexahedrons, prisms, 

etc.

The distinction between FE and FD is relevant at the theoretical level, i.e. when 

dealing with the numerical analysis. Once the discrete scheme is written and you are left 

with algebraic transformations of values at the grid points, the distinction vanishes. On 

structured meshes finite differences and finite elements plus numerical integration (using 

for example vertex) can be shown to be equivalent. The contrast should be seen more 

as variational methods versus finite differences rather than finite elements versus finite 

differences.

However, FE are more flexible than FD in incorporating boundary conditions and 

in that they allow unstructured meshes. As shown by Zvan, Forsyth and Vetzal (1998a), 

unstructured meshing can be applied to a wide variety of financial models. The idea is that
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an accurate solution o f the pricing PDE requires in many occasions a fine mesh spacing 

in certain regions of the domain, usually where the gradient is steep, whereas in regions 

where the gradient is flat, a coarser mesh can be used. Some studies have indicated for 

example, the need for small mesh spacing near barriers (Figlewski and Gao, (1997), Zvan, 

Forsyth and Vetzal (2000)). Pooley, Forsyth, Vetzal and Simpson (2000) show that non- 

rectangular barriers pose difficulties for finite differences methods using structured meshes. 

They prove that the finite element method with standard unstructured meshing techniques 

can lead to significant efficiency gains over structured meshes with a comparable number 

of vertices. Pironneau and Hetch (2000) present and test the modified metric Voronoi of 

mesh adaptation for a problem with a free boundary that arises in finance for the pricing of 

American options, leading to satisfactory results.'2

FE has some other computational practicalities compared to FD (see Winkler, Apel 

and Wystup (2001)):

• FE is very suitable for modular programming.

• A solution for the entire domain is computed instead of isolated nodes as with the 

FD method.

• FE provides accurate “derivatives” (risk management parameters) as a by-product.

• FE can easily deal with irregular domains, whereas this is difficultly done in FD. 12

12 They use a characteristics/FE method for the space discretisation and the Brennan and Schwartz algorithm 
to deal with the American early exercised.
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Finite elements, which are a widely spread technique in areas such as computational 

mechanics, have become quite popular in financial engineering in recent years.

Topper (1998), for instance, uses a commercial package to price a wide array of 

two-factor exotic options (Barriers, Power, and Basket options) in this framework. The 

software uses a hybrid o f FD for time discretization (more specifically Crank-Nicolson) 

and FE method for space discretization. Fie delineates some of the advantages of FE with 

respect to the more widely used FD schemes, specially when computing hedge parameters. 

The same author has used a mixture of FD/FE and a penalty method to price a great number 

of passport options.

Winkler, Apel and Wystup (2001) apply the finite element method to value European 

vanilla options in Heston’s stochastic volatility model.13 They actually present a quite 

general two-factor problem and show how it can be written in a variational formulation. 

They also provide a theorem to characterize the existence and uniqueness of solutions and 

they describe the FE discretization in detail.

But the most sophisticated PDE techniques for derivatives valuation, and the most 

comprehensive numerical analysis of the problems has been done by Forsyth et al. ((2002), 

(2001), (2001) (2000), (2001), (2002), (1998a), (19986), (1999)) . They present a general 

approach for two-factor PDE pricing problems using a non-conservative Galerkin FEM 

for the diffusion and finite volume methods (FVM)14 for the convection, combined with a 

penalty method to deal with American-style features. To avoid spurious oscillation caused

13 They use FD for time discretisation (general 6- weighted scheme) and FE for space discretisation (La-
grange triangular FE).

14 Finite Volume Methods can be considered like Galerkin finite element methods with a special quadrature 
rule (Selmin and Formaggia (1996)).
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by convection dominated they formulate a local extremum-diminishing scheme using a 

flux-limiter and central weighting. They apply this uniform approach to the pricing of 

convertible bonds, Asian options and two-asset options. They go on to use finite volume 

methods for both the discretization o f the convection and the diffusion terms. The same 

authors have adjusted this PDE uniform approach for pricing Asian Options, discrete look- 

back with stochastic volatility and callable bonds for example.

1.2.6 Convection Dominance. The Method of Characteristics

When one solves diffusion/convection PDEs, what happens is that the shape of the solu-

tion, starting out with the final condition (the terminal payoff for a contingent claim), gets 

diffused by the second spatial derivative component of the PDE (the volatility component), 

and convected (i.e. displaced) by the first spatial derivative (the drift component).

In mean reverting processes, there exist regions of the domain where the drift is so 

large that the convection effect dominates the diffusion. The consequence for the backward 

time stepping numerical scheme is that the grid point where you are computing the solution 

can no longer collect the information from the grid points o f the previous timestep that are 

its direct neighbours, because the shape of the solution has very quickly “convected”or 

shifted in the meantime to much further (downward or upward, depending on the sign of 

the convection) regions o f the plane. It is widely known that in such situations second 

order centred time-discretization schemes may lead to spurious oscillations. In the lattice 

framework this is equivalent to saying that the local drift is so large that branching into the 

usual binomial or trinomial tree will lead to negative probabilities. Hull and White (1993)
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have solved this with their alternative branching technique. In a PDE approach one has 

to resort to first order upwind time-differencing or to the most recent Eulerian (including 

flux limiters) and characteristics techniques, such as the ones described in Ewing and Wang 

(2001) .

The method of characteristic combined with finite elements is a possible non-centred 

scheme of the convective term. The combination o f both discretization processes is called 

the characteristics/finite element method or the Lagrange-Galerkin method. In the context 

of Continuum Mechanics it has been introduced in the eighties by Benqué, Esposito and 

Labadie (1983), Pironneau (1982), Douglas-Russel (1982). An application in finance has 

been developed by Vázquez (1998) to solve the one-factor model arising in the valuation 

o f American options and Pironneau and Hetch (2000) to solve the two-factor model arising 

in the valuation of an American put on the maximum of two assets.

As Ewing and Wang (2001) point out, this method symmetrizes and stabilizes the 

transport PDE, greatly reducing temporal errors. Therefore, it allows for large timesteps 

without loss o f accuracy. In a characteristic (or Lagrangian) method, the transport is re-

ferred to a Lagrangian coordinate system that moves with the velocity in the convective 

term. The characteristics are paths described by the state variables over time. The time 

derivative along the characteristics of the advection diffusion equation is expressed as the 

standard time derivative (in Eulerian system, which is fixed in space) plus the convec-

tive term. Consequently, the advection-diffusion-reaction PDE is rewritten as a parabolic 

diffusion-reaction PDE in a Lagrangian system. In other words, in a Lagrangian coordinate 

system, one would only see the effect of diffusion, reaction and the right-hand-side terms
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but not the effect of the convection. Hence the solutions o f the advection-diffusion PDEs 

are much smoother along the characteristics than they are in the time direction. This ex-

plains why characteristic methods usually allow large time steps to be used in a numerical 

simulation while still maintaining its stability and accuracy.

Houston and Suli (2000) propose an adaptive Characteristic/Finite Element method 

for the unsteady convection-diffusion equation. For this kind of problems the presence 

of local singularities in the solution may lead to a global deterioration of the numerical 

approximation. Therefore, it is convenient to implement an adaptive algorithm that is capa-

ble of automatically refining the discretization within regions of the computational domain 

where these transitions layers are located. Moreover, they derive a posteriori error bound 

and are able to design and implement the algorithm to ensure global control of the error 

with respect to a user defined tolerance.

The main drawback of the characteristics method is that it is just o f order one as 

opposed to the second order central scheme for the first derivative. However, high-order 

characteristic/finite element methods have been proposed by Boukir, Maday, Metivet and 

Razanfindrakotoand (1997) and Rui and Tabata (2001). Bermúdez, Nogueiras and Vázquez 

(2004a), (2004b) extend the method in Rui and Tabata to degenerated problems; their ap-

proach could directly be applied in our case.

1.2.7 Numerical Solution of Free Boundary Problems. Lagrange 
Multiplier Method

In practice, the most common method of handling the early exercise condition is simply to 

advance the discrete solution over a timestep ignoring the restriction and then to make a
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projection on the set of constraints (see for example Clewlow and Strickland (1998)). This 

is very easy to implement but has the disadvantage that the solution is in an inconsistent 

state at the beginning of each timestep, or in other words, a discrete form of the linear com-

plementary problem or the variational inequality is not satisfied (see Wilmott, Dewynne 

Howison (1993)).

The numerical solution of free boundary problems is difficult, especially when it 

involves two factors. In the case of a single factor American put the algebraic linear com-

plementary problems are commonly solved using a projected iteration method (PSOR) that 

captures the unknown exercise boundary at each time step (See Wilmot (1998), Vázquez 

(1998)).

Clarke and Parrot (1999) suggest a multigrid method to accelerate convergence of 

the basic relaxation method. They show that the algorithm, when applied to the valuation 

of American options with stochastic volatility, gives optimal numerical complexity and the 

performance is much better than for the PSOR.

On the other hand, Forsyth and Vetzal (2002) propose an implicit penalty method for 

valuing American option and show that when varying timestep is used, quadratic conver-

gence is achieved. They derive sufficient conditions to guarantee monotonic convergence of 

the nonlinear penalty iteration and also to ensure that the solution of the penalty problem is 

an approximate solution to the discrete linear complementary problem. They compare the 

efficiency and the accuracy of the method with the commonly used technique o f handling 

the American constraint explicitly in the lattice methodologies. Convergence rates as the 

timestep and the mesh size tend to zero for the standard CRR tree are compared with con-
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vergence rates for an implicit finite volume method with Crank-Nicolson timestepping and 

the penalty method for handling the American constraint. They find that the PDE method 

is asymptotically superior to the binomial lattice method, even if the solution is desired at 

only one point.

Bermudez and Moreno (1981) introduce a Lagrange multiplier method to solve vari-

ational inequalities in a general abstract framework. It consists of an iterative algorithm in 

which the solution o f the variational inequality is approximated by a sequence of solutions 

of variational equalities. It has not been applied in finance before but has been used exten-

sively in other fields such as computational fluid mechanics. The algorithm enjoys great 

generality in the sense that it allows for any type o f free-boundary that may be a function

of the space variables and time.



Chapter 2
Two-factor Pricing for a Class of Contingent

Claims.

We saw in Chapter 1 that the fair price o f many financial derivatives can be obtained 

by solving a final-value problem for a degenerate parabolic partial differential equation 

eventually involving inequality constraints. These constraints appear, for instance, in op-

tions that can be exercised at any time before expiry (the so called American style op-

tions) or in convertible bonds. In those cases the weak formulation o f the problem is a 

parabolic variational inequality, a well known functional tool for unilateral problems in 

Continuum Mechanics (Duvaut and Lions (1972)), free boundary problems (Elliot and 

Ockendon (1982)) and many others (Glowinski, Lions and Tremolieres (1973), Bensous- 

san and Lions (1978)). We recall that writing a weak formulation is of great interest for 

theoretical analysis of the model but it is also an unavoidable step in order to use finite 

element methods for numerical solution.

The contribution of this Chapter is the development of a new approach for solv-

ing two-factor option-pricing problems that are written as partial differential inequalities 

(PDIs). The method o f characteristics and finite elements is proposed for time and space 

discretization respectively, together with a Lagrange multiplier method to deal with in-

equality constraints in the solution. The combination of these three numerical methods has 

not been used before in finance. Our work is published in Bermudez and Nogueiras (2004).

46
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There are three main issues when using numerical methods in contingent claim val-

uation. (1) How to account for early-exercise features; (2) how to discretize the model; 

and (3) how to deal with the convection dominance problem. We discussed those topics in 

detail in Chapter 1, and recall only the most relevant ideas below.

The numerical solution of free boundary problems is diihcult and has not been done 

rigorously in the finance literature. In order to deal with free boundary problems we first 

reformulate them in a weak sense as variational inequalities. Then we propose an iterative 

algorithm in which the solution of the variational inequality is approximated by a sequence 

o f solutions o f variational equalities. This algorithm is a particular application of the one 

introduced by Bermudez and Moreno (1981) and has been used extensively in other fields. 

As pointed out in Chapter 1 the algorithm is very general in the sense that allows for 

any type o f early exercise provision that may be function of time and/or state variable. 

Besides, the algorithm allows keeping track o f the free boundary surfaces at every time 

step. Therefore we can solve not just for the security value at any time during its life but 

also we can determine ex-ante for which levels o f the state variables the free boundaries 

will be hit, or equivalently the embedded options will become in the money. This latter 

feature is very important when pricing convertible bonds.

While most of papers and books on financial derivatives employ finite differences 

(FD) for the numerical solution (see for instance Wilmott, Dewynne and Howison (1993)), 

the use of finite elements (FE) has several advantages: firstly, unstructured meshes can 

be convenient to make refinements at some particular parts of the domain (e.g. near free
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boundaries) (see Pironneau and Hetch (2000)) and, secondly, it provides great flexibility in 

terms of changing final or boundary conditions and incorporating inequality constraints.

When the diffusion is small relative to the convection traditional numerical schemes 

will present difficulties. Many different ideas and approaches have been proposed in dif-

ferent contexts to resolve the difficulties. Exponential fitting, compact differencing, up- 

winding, artificial viscosity, streamline diffusion and Petrov Galerkin methods are some 

examples from the main fields o f FD and FE. As highlighted in Chapter 1 the method of 

characteristics is a possible upwinding scheme that leads to symmetrical and stable approx-

imations o f the transport PDE, reducing temporal errors and allowing for large timesteps 

without loss of accuracy.

Let us remark that the proposed methodology allows us to price a wide range of exotic 

options by doing just slight changes in the computer code. Thus, the characteristics/finite 

element discretization combined with the Lagrange multiplier method may lead to the de-

velopment o f fast and accurate package that obviates the need for a separate numerical 

technique for the pricing of each class o f exotic option, as it is often the case.

This Chapter is organized as follows. In Section 2.1 we introduce the general mod-

elling framework and in Section 2.2 we describe the numerical methods propose for its 

solution.

2.1 Modelling Framework

In this Section we introduce the general two-factor pricing framework; we set the final- 

value problem to be solved, write it in divergence form and make a weak formulation.
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2.1.1 Partial Differential Inequalities

Let the value of a contingent claim, V,  be a function of time, t, and two stochastic variables 

Xi , x2, the evolution o f which is given by the system of stochastic differential equations

dXj = ¡ij (xi, X‘2, t) dt +  <jj (xi, x 2, t ) dZj, j  = 1, 2, (2.5)

where Zi, Z2 are two Wiener processes with correlation coefficient p.

Following the standard dynamic hedging and no-arbitrage arguments by Black and 

Scholes (1973) and Merton (1973), it can be shown that the value V  o f the contingent claim 

is a solution of a partial differential equation o f the following form

BV 2 B2 V  2 B V
m  +  +  ^  +  /  =  o i n S i x ( 0 T ) ' a 6 )

hi—1 3=  1

where Ll is the spatial domain, , B t, A q and /  are given measurable functions of X\, x2, t. 

Typically, x \ , x 2 represent quantities such as the value o f an underlying asset or a stochastic 

interest rate. Therefore they run either in the interval [0, oo) or in the whole real line !ft.

Early-exercise features, in American options, or convertibility features, in convertible 

bonds, may be included in the above model by means of unilateral constraints applied to 

V.  Hence, partial differential inequalities, rather than partial differential equations, have 

to be considered. Precisely, in those cases, the valuation problem consists of finding two 

functions V  and P  such that

f)V 2 B2V  2 BV
E ' 4« s r 7 r r  +  E ^ s v  +  ^ ' /  +  /  =  p . in <2 J >dt i,3=1 3 =1

and furthermore

R , < V  <  R 2, (2 .8)
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with

R x < V  < R 2 ==> P  = 01 (2.9)

V  = Ri ==> P < 0, (2.10)

v  = r 2 ==* P > 0, (2.11)

where ( x i , x2, t), R2 (x \ :x 2, t) are given functions. We also have to include final con-

ditions which depend upon the specific derivative product. The function P  is a Lagrange 

multiplier which adds or subtracts value in order to ensure that constraints in the solu-

tion are being met. Certainly, in the region where P = 0, the equality in (2.6) holds. 

The surfaces separating the regions where P  <  0, P = 0 and P  > 0 are the so called 

free-boundaries.

2.1.2 Variational Formulation

In order to discretize in space using the finite element method we have to rewrite the prob-

lem in a variational (weak) form. Variational inequalities are not only the starting point for 

the finite element discretization, but also constitute a powerful tool to deal with theoretical 

issues, such as existence and uniqueness o f the solution as well as numerical analysis.

We first reverse the direction of time by introducing a new variable, T  — t , which we 

shall still denote by t, such that the valuation Cauchy problem is an initial value problem. 

Also, equation (2.7) needs to be written in divergence form

dV
~dt

xW d (  dV  
2 ^ 7 ~ i a
i,j = 1 dxr %3dx3

z QY

bj d x ~ +  a°v  ~  f  +  p  =  ° ’
3=1 3

(2 . 12)
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where the new coefficients a,:j, bt, a0 are given by

a n

lh

b2

A n ,  a 22 — A 2 2 , a 12 — « 2 1  — 2  ( ^ 1 2  +  ^ 2 l )  ,

i=2

E
¿=i
1=2

E

50ji

dttj2 
dxi

- B x =
dAn 1 d (Ax2 +  A2i ) -  B
dxi 2 dx 2

-  b 2 = dA22 1 d {A\2 +  A21) -  B-
dx2 2 dx 1

(>o — —Ao-

(2.13)

(2.14)

(2.15)

(2.16)

Notice that we have imposed symmetry to azj matrix.

Equation (2.12) is simply a two-dimensional linear convection-diffusion-reaction 

equation, with diffusion tensor a = (a^), velocity vector b = (bi,b2) (convection), and 

reaction term, a0.

It will be useful, for the following Sections, to formulate the model using the material 

or total derivative of V  with respect to (inverse) time t and the velocity field b , namely

dV -
1/ =  —  +  b ■ gradV. (2.17)

With this notation, equation (2.12) becomes

2

v ' - E
M=1

J L
dxi V

dV 
dx ,

+  — /  +  P — 0, (2.18)

In principle, the problem to be solved is a pure Cauchy problem. Hence, only an 

initial condition needs to be prescribed. However, numerical discretization by using ei-

ther finite-difference, finite-elements, or finite-volume methods makes it necessary to cut 

the domain at finite distance and to introduce there “artificial” boundary conditions. Those

are generally obtained by financial arguments, but also by pure mathematical reasoning, 

and have to be included in the weak formulation. This process, called “localization”, of-
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ten arises in numerical finance, and introduces a model error which has been studied, for 

instance, by Kangro and Nicolaides (2000) or by Barles, Daher and Romano (1995). The 

discussion on boundary conditions, sometimes ignored in financial literature, is often a 

complicated task and depends on the particular financial product. We will discuss bound-

ary conditions in detail for convertible bonds.

Let us still call the bounded domain, and F its boundary. We denote TD (respec-

tively TR) the subset of F where Dirichlet (respectively Robin) boundary conditions are 

imposed. More specifically,

dV
driA

+  a V  =  g on F a,

V = h on T /

(2.19)

(2 .20)

where

d V E dv
on a ^ J ' oXji,j=i J

( 2 .21)

and n = (ri\, n 2) denotes a unit outward normal vector to F. In (2.19) and (2.20), functions 

a , g and h are data.

In general, r ^ F c U r # }  is anon-empty set where no boundary conditions are needed 

because the natural condition for the weak formulation is identically satisfied.

Remark 1 The com putational or “lo ca lized ” domain f! is frequen tly  a rectangle [.x)'"", x™ax] x 

[x™n, x™ax]. In such case, the boundary> F m ay be decom posed as:

4

r  =  I j F i ,  (2.22)
i= 1

with
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Fi = r n {x2 = x™m},

r2 = rn  {xi = £™ax},

r3 = rn{r2 = x?ax},

r4 = rn{r1 = x f ]n}.

Let a (f; •, •) be the family ofbilinear symmetric forms

2

(t;V, W) =  ¿  /
, , dV dW , ,

axj (xi, x 2, t)  ---- -— dxxdx2
n ox j oxi

+  /  oo (xi, t) V W d x xdx2 +  /  q  (xi, ^ 2 ,£) VFFdr, (2.23) 
Jsi

and L (£, •) be the family o f linear forms

L (£; W) = /  /  ( x i ,£ 2 , £) W d x xdx2 +  /  g (xi, x 2,f) FF<iF. (2.24)

In order to write a weak formulation of the valuation problem we multiply equation (2.18) 

by a test function, integrate in and use a Green’s formula. Then the following two 

equivalent weak formulations can be obtained.

• Primal Formulation, in which the Lagrange multiplier P  is eliminated leading to a 

variational inequality o f the first kind:

Find V (t) E K, (t ) such that

V  (t ) (W  -  V  (£)) dxjdx2 +  a (t; V  (t ) , W  -  V  (£)) > L (t, W  -  G (£)) MW G /C ( i ) .

(2.25)

• Mixed Formulation, which involves the two unknowns V  and P  :



Jn 
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2.2.1 Dealing with the Free Boundaries: Lagrange-Multiplier Method

In this Section we propose an iterative algorithm to solve the mixed weak formulation

(2.26). It has been introduced in an abstract framework by Bermudez and Moreno (1981), 

who also proved convergence (see Pares, Castro and Macias (2002) for further analysis).

Recall that inequalities (2.8) — (2.11) establish a relation between P  and V  which 

can be written in a more compact way by introducing the following family (indicated by 

Xi, x 2, t ) of multi-valued maximal monotone graphs (see, for instance, Brezis (1983)) de-

fined by

G ( x 1, x 2,t) (Y )

0 if Y  < R\ (xi, x 2, t )
(-o o ,0 ] if  F  =  R x ( x i , x2,t)

< 0 i f R i ( x i , x 2, t ) < Y < R 2 ( x i ,x2,t)
[0, oo) if  y  =  R2 (xlyx 2,t)

 ̂ 0 if  y  >  R2 ( x i , x2, t ) .

(2.29)

Then it is straightforward to show that inequalities (2.8) — (2.11) are equivalent to the 

relation

P  ( x i , x2, t) e  G (xi, x 2, t) (V  (xi, x 2, t ) ) . (2.30)

This means that

P{t) G d l m (V{t)) a.e. in (0 ,T ), (2.31)

where d X denotes the sub-differential of the indicator function of the convex set K.(t) 

(see Brezis (1983)).

Since G (xi, x 2jt) is a multi-valued function, equation (2.30) is not easy to imple-

ment. However we have the following result (see Bermudez and Moreno (1981)):
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Lemma 1 The fo llo w in g  two statem ents are equivalent:

•  U  e  G { x u x 2, t ) ( W ) ,  (2.32)

•  U  = G \  (x i ,  x2, t) ( W  +  XU) f o r  all A > 0, (2.33)

where G \  (xi, x2, t)  is the Yosida approximation o f  G  ( x x, X2, t )  defined by

(  \ ( Y  -  R 1 ( x i , x 2, t ) )  i f Y  < R 1 ( x 1, x 2, t )
G x (xi,x2,t) (Y) = < 6 ifRi(xi,X2 , t ) < Y < R 2(x1,x2,t)

[ \ ( Y  -  R 2 ( x i , X2 , t ) )  i f Y  > R 2 ( x i , X 2 , t ) .

We notice that G \  is a Lipschitz-continuous (univalued) function.

In view of this Lemma and the previous discussion, relations (2.8) — (2.11), or (2.30),

are equivalent to the following equality

P  (xi, x2, t) =  G\  (x i ,x 2 ,i)  (V  (x1 ; x2, t) + AP (x], x 2 , f ) ) , (2.34)

where A is a positive real number.

We are now in a position to introduce the following iterative algorithm:

1. At the beginning, function Pq is given arbitrarily.

2. At iteration m  an approximation of the Lagrange multiplier Pm is known and we 

proceed as follows:

Firstly, we work out a new approximation of V{t), Vm+i, by solving the variational 

equality

[  V m+lW d x xd x 2 + a (t; Vm+1, W )  +  f  PmW d x xd x 2 =  L  (t, W ) VIL G X 0, (2.35) 
J q  Jq.

together with the initial condition

Vm+1 (x i ,x 2 ,0) =  V ° ( x i , x 2) . (2.36)
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Then, we update the Lagrange multiplier P  by using equality (2.34). Precisely Pm+i 

is defined as

Pm+1 (xi,X2, t) = G\ (x1, x 2,t) (Kn+1 ( x 1, x 2, t )  +  APm (x1, x 2, t ) ) , (2.37)

where, in order to achieve convergence, A has to be greater than some positive value 

which depends on the coefficients al3, a0, bt (see Bermudez and Moreno (1981) for 

details).

2.2.2 Time and Space Discretization: a Characteristics/Finite Element 
Method.

We proceed next to solve the general valuation problem (2.26) numerically, with a semi-

discretization in time using the method of characteristics, and a spatial discretization using 

finite elements. The same discretization may be applied to (2.25).

At each time step, the fully discretized problem consists of a discrete variational 

inequality, which will be solved by the iterative numerical algorithm introduced in Section 

2 .2 .1  for its continuous counterpart.

Time Discretization: Method of Characteristics

The total derivative with respect to time and the velocity field b = (bi,b2) introduced 

in (2.17) can be equivalently defined as

dV
V(x , t )  =  —  ( 0 ( x , i ; r ) , r )  |r= t, (2.38)

where <f)(x, t; r )  =  (0 i(x, t; r) , 4>2{x, t; r) )  represents the trajectory described by the ma-

terial point that occupies position x  at time t. It is solution of the ordinary differential
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equation

(2.39)

with final condition

(j)(x, t] t) = x. (2.40)

If  b is a Lipschitz continuous function with respect to the spatial variable and continu-

ous with respect to the time variable, the Cauchy problem (2.39) and (2.40) has a unique 

solution.

Let us consider a partition of the time interval [0, T] = Un=olA»’ W i]- Then, defini-

tion (2.38) suggest the following first-order backward approximation of V  at time /;rl+1

The approximation (2.41) leads to the following implicit semi-discrete scheme for equation

for n =  0 , . . . ,  ./V — 1 and with V°  given by the initial condition, where V n(x) = V(x, tn)

and P n(x) = P(x, tn).

As it is well known, finite elements methods are obtained by restricting both the 

solution and the test functions involved in the variational formulation to be in a finite di-

T ' r / , \ V {x , tn+1) V  (0 (X, , tn) , t n)
V Zn+1) ~  T T (2.41)

(2.26),

'' V n+1(x) -  V  ( 0 ( x , t n+1;tn) , t n)

(2.42)

Space Discretization: Finite Element Method

mensional space. This space is usually made up of globally continuous functions that are
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polynomials in each element of a polygonal mesh of the domain id. In the present work, we 

consider the finite element space consisting o f continuous piecewise linear functions on a 

triangular mesh of the domain id. Let us denote by r h a family of triangulations of the do-

main id, where the parameter h tends to zero and represents the size of the mesh. Linked to 

the triangulation t h  , we define a fami ly of finite-dimensional spaces of functions, namely

X h = {wheC  (id) : Wh/K G  Ply K  G Th} , (2.43)

where, as usual, C (id) denotes the space o f continuous functions defined in id and Pl 

represents the space o f polynomials of degree less or equal than one in two variables. As 

in the continuous problem, we define

X 0,h = { w h G X h : Wh (Q) = 0, Y<5 vertex on PD} . (2.44)

Having chosen the space X h we can define a discrete counterpart of problem (2.42) where 

the function V n is approximated by V£ G X h and the Lagrange multiplier is approximated

by P" G X h.

The discrete problem can be written as:

Find V£+\  P " +1 G X h for n  =  0 ,1 ,..., N  — 1 such that

K +1 (Q)  =  H  (Q) VQ g rD (2 .45)

and

Vh ^ ( x X n +û tn))Whdxldx2 + an+1 (v;n+1
^n+1

wh) + [  P̂ +lWhdx\dx2
Jn

Ln+1 (Wh) , for every Wh G Xç,,h (2.46)
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where

Ph+1 (Q) = 0 t f R 1(Q,tn+1) < V hn+1( Q ) < R 2 (Q,tn+1),

Ph +1(Q) <  0  i f R l (Q,tn+1) = V?+1(Q),  (2.47)

Ph+1 (Q) > 0 i f V hn+'(Q )  = R 2 (QRn+1),

for all Q vertex o f the triangulation r^.

Thus, at each time step, a discrete variational equality is obtained. As discrete initial 

condition we choose the interpolated function o f V°  in the space X h, i.e., Vfi is continuous 

piecewise linear and takes the same values as V° at vertices of As in the continuous 

problem, the discrete variational equality (2.46) can be written in a primal form as a discrete 

variational inequality. Precisely, problem (2.45) — (2.47) is equivalent to:

Find V£+1 G  Kh (tn+ i )  , n  =  0 , 1 , . . . ,  N  — 1 such that

I  Vh +1 in+i;, in)) ^Wh _  yn+l^ +  ftn+1 (yn-H ^  _  yn+1)
«/fi ^n+1

>  ¿ n+1  (w h -  y,n+1) , for every Wh G K h (in+1) , (2.48)

where the convex sets K h (tn) for n  =  0 ,1 ,..., TV are defined by

A'h (in) =  {Wa  e  : Rl (Q, tn) < Wh (Q) < R 2 ( Q ,  tn) and Wh (Q) = H (Q) ,

VQ vertex of r^}. (2.49)

The Iterative Algorithm

The algorithm we have introduced in Section 2.2.1 to solve the continuous variational 

inequalities can now be applied to the fully discretized problem (2.45) — (2.47).
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At time step (n +  1) we start with 1 =  and calculate sequences P ^  andn+l

indexed by m  and defined as follows:

1. At iteration m,  we know P ^ nl .

2 . Then, we first compute as the solution of the linear PDE (written in weak form)

fKA ,  - U "
tn+1

-WhdXldx2 + an+1 (Vhn̂ +1,W h)

+  /  PhdnWhdxxdx 2 =  Ln+1 (Wh) , for every Wh e  X 0)h
Jn

3. Upgrade the Lagrange multiplier using the formula (2.37)

K £+,( Q) = Gx ( Q . i„+1) (V ”L .  (<?) +  ( 0 ) ) .

for all Q vertex o f r ft, where

K y - f t ^ i n + l ) )  i f y  < Ä ! ( Q ,tn +1)

(2.50)

(2.51)

GA(Q ,in+1) ( F )  =  < 0 if  Ri (Q ,i„+ i) < Y  < R 2 (Q,tn+1)
I  ( y  -  Ä 2  ( Q , i n + l ) )  i f  y  >  R 2  (Q,tn+ l)

(2.52)

By applying the results of convergence in Bermudez-Moreno (1981) we know that, 

for A large enough, the sequence { V ^ 1} converges to the solution V£+l as m  goes to 

infinity.

Let us define the bilinear form

^n+1
a (V"+\ W h) = a n+1(V?+\ W h)

1

X t n J q
V;l+1WhdXldx2) (2.53)

and the linear form

~ n + l  1

L m (I V h) =
n JÇI

V,h (0 ( u  tn+i;tn)) Whdx\dx2

- /  P ^ W hdXldx2, (2.54)
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for A tn = tn + 1 — tn. Then step 2 above can be rewritten as:

Find such that

n  4-1 ~ n - f l
a (V?£+I,w h) = L m (Wh) V W h e X om. (2.55)

Let B  =  {</>-[, </>2, } be a basis o f X h. Then the solution of (2.55) can be

written in the form (we omit indices for the sake o f simplicity)

Nh

=  <2-56)
3 =  1

so that the discrete problem is equivalent to finding N h numbers (£i ,£ 2, satisfy-

ing

n+ 1 ~ n + l

=  ( h ) , i  = l ,2  , . . . ,Nh. (2.57)
3 - 1

Equivalently, find ( ^ l5 ^Nh) £ ^ Nh such that

A£ =  b (2.58)

where

A m —
~n+\
a ( 0 0  0 fc) = A ir M k dx

2

E
*,J = 1

a,-,-—---- -— ax
/« lJ dxj dx t

+  /  aofafadx + /  a 0 ,0 fcdT, (2.59)
J  q  J  r

~ n + l  r  r

h  = Lm (4>k) = /
J r*

+  A r  /  (0 (F fn + i; in ) )0 fc ^  -  f  P ^ ( f ) kdx. (2.60)
Tl J Çl J Ç1

If  a is symmetric, clearly the matrix A is symmetric as well. If besides A  is positive defi-

nite, Choleski’s method can be used to solve the system (2.58). In the special case where 

coefficients aij, Go, a  do not depend on time, the linear system has a matrix independent 

of both time step and iteration; therefore it needs to be computed only once. Also, in ex-
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pression (2.60) the first two terms in the right hand side are independent of time (if F  and 

G are) and iteration, whereas the third term must be actualized at every iteration and for 

every time step. Consequently, in order to solve these systems it is convenient to use di-

rect Gauss-like methods, because, since the factorization step needs to be done only once, 

at each iteration just two triangular systems have to be solved.

The problem arising now is how to choose the basis B = {(/q, 02, •••, This

space is usually made up o f globally continuous functions which are polynomials in each 

element o f a polygonal mesh of the domain Q. The elements of the basis are functions 

that become zero in big regions of G so that many tenns of the matrix A  are zero, i.e., 

A  is a sparse matrix. We use Lagrange triangular finite elements o f degree one in a two 

dimensional space; in this case the basis function (pl takes value 1 in the vertex i of a 

triangular mesh of the domain and is zero in all other vertex. In Appendix A we work out 

the matrix o f coefficients and the independent term for this particular case.

2.3 Conclusions

In this Chapter we combined the method of characteristics/finite elements with a Lagrange 

multiplier method to solve two-factor contingent claim pricing models with early-exercise 

features. This numerical methods have not been used before in finance, but have been used 

extensively in other areas to solve similar problems.

We first wrote the PDI in a divergence form and then wrote a weak or variational 

formulation o f the problem. In the continuous model we showed how the solution of the 

variational inequality can be approximated by a sequence of solutions o f variational equal-
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ities. Then we introduced a semi-discretization in time using the methods o f characteristics 

and a discretization in space using a finite element method. Finally the iterative algorithm 

introduced in the continuos setting was applied to the fully discretized problem.



Chapter 3
A Two-factor Equity Based Convertible Bond 

Model Ignoring Credit Risk

In this Chapter, we extend the previous literature by using the numerical methods 

introduced in Chapter 2 to solve a two-factor convertible bond pricing model. The two 

factors are the stock price and the short term interest rate. We present a rigorous formulation 

of the problem and a full specification o f how the numerical methods are implemented, 

including the boundary conditions.

The model fits the observed term structure o f interest rates and allows for correlation 

between the state variables. We use a variant of Hull and White’s (1990) (HW) framework 

for the dynamics of the stochastic interest rate process. This framework (i) incorporates 

deterministically mean-reverting features, (ii) allows for perfect matching of an arbitrary 

input yield curve via the introduction of time dependent parameters, and (iii) permits an 

exact matching of an arbitrary term structure of volatilities (at least as seen from the present 

time). To that end, model calibration to simple volatility-dependent instruments such as 

caps and floors is carried out in a very efficient way. Given that the other state variable in 

our convertibles model is the stock price as opposed to the overall firm’s value, we can use 

implied volatilities from stock options to produce a convertible bond pricing framework 

which is compatible with the current market data for both equity and interest rates. 15

15 This Chapter is based on Bermudez and Nogueiras (2004) and Barone-Adesi, Bermudez and Hatgioan- 
nides (2003).

65
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As noticed in Chapter 1, previous numerical work has focused on finite difference 

schemes and lattice methodologies. However, given the specifications of the financial val-

uation problem at hand, our approach has clear advantages:

Firstly, in the valuation of convertible bonds, a partial differential inequality has to be 

solved. Conversion, call and put provisions impose inequality constraints in the numerical 

solution that have to be taken into account in order to avoid arbitrage opportunities. This 

leads to a so-called free boundary problem. In previous numerical work where FD has been 

used, the treatment of the early exercise is most of the times explicit, and is therefore subject 

to inaccuracy problems. In lattice methodologies the treatment o f American features is 

always explicit.

Second, contract specifications for convertibles are very complex and vary a lot across 

issues; consequently, the FE method provides greater flexibility and has some clear advan-

tages in terms o f computational practicalities over lattices and FD.

Finally, the convertibles’ valuation PDE becomes convection dominated (in the sense 

that convection is big relatively to diffusion) in many regions o f the domain. Convection 

dominance is further reinforced by the theoretically necessary choice o f a mean reverting 

process for the interest rate. It is well known that in such situations traditional discretization 

schemes may lead to spurious oscillations. Previous work did not make explicit account 

for the convection dominance.

To validate the numerical methods we price some simple products for which there are 

analytical solution. We also provide theoretical convertible bond prices for more complex
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contract specifications an we do an empirical investigation into the pricing of an actual 

market issue.

The remainder of this Chapter is organized as follows. In Section 3.1 we present the 

two-factor valuation model for convertible bonds. In Section 3.2 we solve numerically the 

theoretical model. In Section 3.3 we show the numerical results. Section 3.4 concludes.

3.1 The Model

In this Section we present the valuation model: the governing equation, the inequality 

constraints, the auxiliary conditions and the interest rate model.

3.1.1 The Governing Equation

Let V  (r, S, t; T ) be the price of a convertible bond with maturity date T  > t, which is a 

measurable function of the underlying stock price S, the spot interest rate r  and time t. The 

dynamics for equity and term structure are given by the following diffusion processes

dS = [pS -  D{S, t)]d t  + aSdZs , (3.61)

dr = u (r,t) dt +  w (r,t) dZr, (3.62)

E  (dZrdZs) =  p (r, S, t ) dt , with — 1 <  p (r, S, t) < 4 -1 , (3.63)

where p  and a are the expected rate o f return and volatility of the underlying stock, D (S, t) 

is the dividend yield , and u and w are the drift and volatility o f the spot interest rate which 

may be time-dependent. This latter feature o f the interest rate process ensures that the bond
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valuation can be made consistent with the market time value o f money. The two Wiener 

processes dZ$ and dZr have correlation coefficient p.

Following the no-arbitrage arguments by Brennan and Schwartz (1977), for instance, 

it can be shown (see Kwok (1998) or Wilmott (1998)) that the fair value of the convertible 

bond satisfies the following PDE (in order to keep the notation light ,we suppress functional 

dependencies)

where \ r (■r , t) is the market price o f interest rate risk (see Vasicek (1977)) and appears in 

the valuation equation because the state variable r is not a traded asset itself.

3.1.2 Convertible Bond Valuation as a Free Boundary Problem

A rational investor seeks to maximize the value o f the convertible bond at any point in time. 

Following McConnell and Schwartz (1986), the value of a convertible bond must be greater 

than or equal to its conversion value

where n is the number of shares o f the issuer’s common stock into which the convertible 

can be converted (also known as the conversion ratio).

The optimal conversion condition implies that at each point in time t and each level 

o f the interest rate r there is a particular value of S  = S f  (r, t) which marks the boundary 

between the holding region and the conversion region. We assume that this value is unique

+  (u -  Arw) —-----rV  =  0,
or

(3.64)

V  ( r ,  S, t ) >  n S , (3.65)
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and we refer to it as optimal exercise price. This is what is known in the literature as a free 

boundary problem, similar to the valuation of American-style vanilla options, which gives 

rise to the following partial differential inequality

d V  1 2n2d2V  r< d2V  
~ m + 2a S d & +p

dV
+  (u — Arw) — r V  <  0.

or

1 M 2V dV
2 V-r I ^ + ( r S - D I S ’t i ) dS

(3.66)

When it is optimal to hold the convertible bond, the equality in (3.64) is valid and the strict 

inequality in (3.65) must be satisfied. Otherwise, it is optimal to convert the bond and only 

the inequality in (3.66) holds and the equality in (3.65) is satisfied.

In the special case where there are no coupons paid on the bond and no dividend paid 

on the underlying stock, the conversion is not optimal till expiry and the convertible bond 

can be value explicitly as a combination of cash and a European call option. An increase 

in the dividend yield makes early exercise more likely, whereas an increase in the coupon 

payment makes conversion less probable. If the underlying stock pays dividends, before 

expiry there may be a large range of asset values for which the solution of the governing 

valuation equation (3.64) is less than the conversion value nS.

The free-boundary problem also arises from extra provisions in the convertible bond’s 

indenture agreement. A call feature, which gives the issuing company the right to buy back 

the convertible issue at any time (or during specified periods, known as intermittent calls) 

for a specified cash amount (which can be time-varying as w e ll) , say Me,  places an upper 

bound to the convertible’s no-arbitrage price

V(r ,  S, t) < M c . (3.67)
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In practice however, the call policy followed by managers to induce conversion is not con-

sistent with the theoretical work o f Ingersoll (1977a) and Brennan and Schwartz (1977), 

(1980). Ingersoll (19776) and Constantinides and Grundy (1987) provide evidence that 

firms delay calling convertible bonds till long after the market price has exceeded the call 

price. Jalan and Barone-Adesi (1995) demonstrate that the unequal tax treatment of debt 

and equity and the need to tap the financial markets, justifies firms to delay calling in order 

to induce conversion. This allows for a formal linkage between the ex-ante need to issue 

callable convertible bonds, as a way to increase the residual equity value of the firm, and 

the observed reluctance to call ex-post. Hence, we will modify the above call condition by 

writing

V  (r, 5, t) < k M c , (3.68)

where k is a conveniently chosen factor bigger then one.16

Similarly, a put feature which gives the right to the holder of the convertible to sell it 

back to the issuer for a cash amount, say M P (which can be time dependent), at any time (or 

again, during intermittent periods) places a lower bound to the convertibles’ no-arbitrage 

price

V ( r , S , t ) > M P. (3.69)

Clearly, convertible bonds with call features worth less than convertibles without. On the 

contrary, put features increase the value o f the convertible to the holder.

Unilateral conditions such as (3.65), (3.67), (3.69) suggest that at each time there are

in general two stock prices where downside and upside constraints start becoming binding.

16 In view of usual corporate policy to call back convertibles when its price exceeds by 30% the set call 
price, in the empirical implementation of our model we will choose k =  1.3.
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These limiting stock prices are unknown and are part of the problem’s desired solution; in 

other words, they are free boundaries beyond which the governing equation (3.64) does 

not apply. When the value of the bond is strictly between the upper and lower bounds, 

the equality in (3.64) holds. If the upper bound is reached, the equal sign is replaced by 

“greater than” and if the lower bound is reached the “less than” sign becomes into place. 

Precisely, the valuation problem to be solved consists of finding two functions V  and P  

such that

dV  
~dt '

+  (u

i 2o2d2v  0 d2v
r -S  w  + pSaw ^  

dV
Xrw) —-----rV  = P,

or

- w
2

d2V  
dr2

(rS — D (S, £))
dV
~dS

(3.70)

and

max{n S ,  Mp} < V <  M e  (3.71)

together with final and boundary conditions. P  is the Lagrange multiplier which adds or 

substracts value in order to ensure that the constraints in the solution are being met.

3.1.3 Auxiliary Conditions

If  coupons are paid discretely (typically every year or half-year), no-arbitrage arguments 

lead to the jump condition

V  (r, 5, t~) = V  (r, S , i+) +  K  (r, tc) , (3.72)

where K  ( r ,  tc) is the amount of discrete coupon paid on date tc. Such discrete cashflows 

may be incorporated in the governing valuation equation (3.70) by adding the Dirac delta 

function term — KÔ (t, — tc).
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The final condition for the convertible bond is

V  (r, S, T ) =  max (n S , F ) , (3.73)

where F  is the par value of the bond. If we take into account the embedded options and the

possibility of coupons payments, it becomes

V  ( r ,  5 ,  T)  =  min (m ax {nS, M P, F  +  K  (T)} , M c } . (3.74)

Although in (3.74) we have taken into account call and put provisions, convertible contracts 

in the market do not allow the holder to put back the bond at expiration. Furthermore, upon 

call at expiry the issuer pays to the holder not the agreed call price but the redemption 

value (Red) plus the coupon; the same holds if the holder chooses to redeem the bond at its 

final date to get the principal. Redemption value and face value are not necessarily equal. 

Therefore, in the numerical implementation we will use

3.1.4 The Interest Rate Model

The most important criticism of the two-factor models by Brennan and Schwartz (1980) and 

Longstaff and Schwartz (1995) is that they fail to ensure that the convertible bond valuation 

is consistent with the time value o f money observed in the market. To overcome this short-

coming, Ho and Pfeffer (1996) proposed a two-dimensional binomial lattice which takes 

as inputs both the observed Treasury and stock prices. They constructed their quadro-tree 

(the terminology is due to Cheung and Nelken (1994) who suggested a similar approach)

V  (r, S, T)  =  max {n S , Red +  K  (T)} . (3.75)

so that when the stock movement is ignored, the two-dimensional lattice is identical to the
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one-factor, arbitrage-free, term structure model described by Ho and Lee (1986) (HL) and 

Black, Derman and Toy (1990) (BDT). Besides computational difficulties that arise from 

the explosive increase in the number of node points in each discrete time step, conver-

gence problems and the choice of a meaningful time step, since convertibles have long life 

spans, there is a very important drawback of the quadro-tree methodology from a financial 

perspective: the handling o f mean reversion of the interest rate process.

There are two distinct ways of imparting to the spot interest rate process the mean 

reverting feature which is needed in order to bring about a realistic description o f the dy-

namics of the observed term structure. The first way is to impose a decaying behaviour to 

the diffusive component o f the process; this is the approach taken by HL and BDT in their 

algorithmically constructed lattices. The second is to assign an explicitly mean-reverting 

component to the deterministic part of the spot interest rate process; this is the approach 

taken by Hull and White (1990) who extend previous work by Vasicek (1977) and Cox, In- 

gersoll and Ross (1985). As Rebonato (1998) points out, it is always possible to choose the 

parameters of the volatility-decaying process and o f the deterministically mean-reverting 

model in such a way that, as seen from the present time, both distributions will appear 

identical. The same is no longer true, however, if  one considers the distributions obtain-

able, using the same parameters, from a later time. The volatility-decaying process will 

produce a new distribution (as seen from the later time) with much lower variance per 

unit time than it was obtained initially. If the future time step is considerably apart from the 

present point, in order to obtain a stationary distribution, a distribution whose variance does 

not grow as time goes to infinity, the forward rate process for the short interest rate would
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have to be almost deterministic. Clearly this can have serious implications for pricing long-

dated American-type options, as they appear in three guises in convertible structures (i.e., 

convert, call and put).

In order to overcome this important shortcoming o f the HL-BDT models evident in 

quadro-tree approaches, we use the Hull and White (1990) framework in our empirical 

parametrization of the interest rate process (3.62) which (i) incorporates deterministically 

mean reverting features for the spot interest rate process, (ii) allows for perfect matching 

o f an arbitrary input yield curve via an introduction of time dependent parameters, and (iii) 

permits for an exact conditional calibration to an arbitrary term structure of volatilities.

One might correctly argue that the Heath, Jarrow and Morton (1992) (HJM) interest 

rate framework is more general than the HW’s. However, given the potential complexity of 

the calibration and, especially for American-options, evaluation procedure within the HJM 

framework, the latter’s comparative advantage over our adopted HW ’s can be profitably 

split between one and multi-factor (for the interest rate process alone) implementations. 

Rebonato (1998) (Chapters 13 and 17) shows that the benefits o f the HJM approach for 

one factor interest rate models, are indistinguishable from the HW approach. He carries 

on by demonstrating that this picture changes radically in moving to multi-factor interest 

rate approaches, where the HJM approach has a very strong appeal, especially for those 

users who feel that the options they have to price and risk manage require explicit account-

ability of the imperfect correlation among interest rates. We believe that the imperfect 

local correlation among interest rates is of secondary importance to the price of a convert-

ible bond with American-style exercise features, and in any case, it would have required a
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three-factor model (one stochastic process for equity, two correlated interest rate processes) 

which would have induced further, perhaps unnecessary for the problem at hand, complex-

ities.

By setting the risk-neutral interest rate drift u (r, t) — Xr (r, t) w (r, t) in (3.64) equal 

to ¡3 (t) — y r  we obtain the Hull and White model

where w determines the overall volatility of the short rate process and 7  determines the 

relative volatility o f long and short rates.

Both 7  and w can be inferred from market prices of actively traded interest rate 

options. Suppose we have a set of M  interest rate options, the market price of which 

we denote by marketi (i — 1, . Also assume that there is an interest rate option

valuation model that admits closed form solution under the Hull and White specification. 

Let us write modek (7 , w) for the theoretical option values. One way to calibrate is to solve 

the following minimization problem

Then, once 7  and w have been estimated, we choose (3 = ¡3* (t ) at a reference time t* so that 

theoretical model prices and market prices o f an array o f input discount bonds coincide.

Under the risk neutral process (3.76), the value at time t of a pure discount bond with 

face value equal to 1, maturing at time T,  conditional on rt = r is given by

dr = (/3 (t ) — 7 r) dt. + wdZr , (3.76)

(3.77)

Z  (r, t; T) = eW;T)-rB(t;T) (3.78)
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where

A ( t -T )

w
2 f

(3*{s)B{s;T) ds

( r  +  - p - i P - * )  _  _ L p - 2 7 ( r - i )  _  A _ \

V  7  27£ 2 7 / ’

(3.79)

(3.80)B ( t ; T )  = -  (1 -  e - 1^ )  .

In order to fit the yield curve at a reference time t*, ¡3* (t) has to satisfy

A(t*-T) =  - £ p * ( s )B ( s - T )d s  +  ^ 2 ( r - t *  +  ^e-AT- n _ ± e- W T - n ^ ^ j

log (ZM (t*-T))+r*B(t*-T) (3.81)

for Zm  ( 7 * ;  T )  the market price of discount bond expiring at T  as of time t*.

Expression (3.81) is an integral equation which can be solved by differentiating twice 

with respect to time T,

P* {t) = - ^ 2  log (ZM {t*]t)) -  7 ^  log (ZM (i*;t)) + ~  (1 -  e~27(i~n ) . (3.82)

If the drift in (3.76) is independent of time, we obtain the Vasicek (1977) interest rate 

model. In that case, the discount factor is given by

Z  ( r ,  f ;  T) = eAW)-rB{+X)^ ( 3 . 8 3 )

where

B ( t ;T )  = - (  1 -  e - T ^ )  ,

and

A T ) =  7  i s (<;O  -  ( r  -« ) ]  ( / ? /  -

(3.84)

(3.85)
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3.2 The Numerical Solution

The numerical solution of the valuation PDE for convertible bonds can be considered as a 

special case of the more general two-colored option pricing problem discussed in Chapter 

2. Precisely, the governing valuation equation for convertibles in (3.70) is a special case of 

equation (2.7) for the choices:

X\ =  r, (3.86)

x 2 =  S , (3.87)

An =  ^w2, A 12 =  A2 1 =  \paSw , A2 2  =  ^ 2 S 2, (3.88)

B x =  u — Xrw, B 2  =  rS  — D (S , t ) . (3.89)

Moreover, unilateral conditions such as the conversion provision (3.65), the call provision 

(3.67) and the put provision (3.69) fit into the general form of conditions (2.8) — (2.11) for

R i(r ,S ,t)  = m a x {n S ,M p },  (3.90)

R-2 (r, S, t) =  Mc . (3.91)

Indeed,

m ax {nS,M p} < V < Me, (3.92)

max {nS, MP\ < V < Mc => P = 0 , (3.93)

V = max{n S ,M p } => P  < 0, (3.94)

(3.95)
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3.2.1 A Note Regarding the Unilateral Conditions

Notice that the restriction

implies

If

then

n S  < V  < M c ,

S  < Me
n

M c
n

(3.96)

(3.97)

(3.98)

n S  = V  = M c , (3.99)

and according to the discussion in Section 3.1.2, the holder of the convertible will either 

convert into shares or, upon call, will give the bond back to the issuer to get M e  in cash. In 

any case, we do not have a convertible product any more. Therefore, if  the bond is callable 

we need to solve just for

5  G 0 ,
M,c
n

(3.100)

Thus, if  the bond is callable, the spatial domain is the rectangle

7 M cii = (0 , oo) x I 0 ,
n

(3.101)

However, since Me  may depend on time (by definition or when for example we consider 

accrued interest), to work with 0 <  S  <  M c / n  would obey us to change the domain in 

each time step. In order to avoid that, we extend the solution by n S  for M c / n  < S  < oo. 

This may be achieved by setting

R2 (r, S, t ) = max {nS, Me}  ■ (3.102)
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The solution could also be extended by M e  for M c / n  < S  <  oo. The problem is that, 

in such a case, the lower unilateral restriction, V (r , S, t) >  nS, would not be satisfied. 

Notice that for nS >  Me  also nS >  MP and therefore

Ri  (r, S, t ) =  nS.

This implies that

nS <  V (r, S, t) <  nS => V (r, S, t) =  nS.

If  there is no call we set Me = oo. The domain becomes

12 =  (0, oo) x (0, o o ),

and

Ho (r, 5 , t) =  max {nS , Me} =  oo,

i.e., there is no upper restriction.

If there is no put we set M P =  0. In that way

R\ (r, S, t ) =  max {n S , M P} = n S ,

i.e., there is no lower restriction due to put features.

(3.103)

(3.104)

(3.105)

(3.106)

(3.107)

3.2.2 Finite Truncation of the Domain and Boundary Conditions

In order to solve the problem numerically, a weak formulation is written in a rectangular 

finite spatial domain, (see Remark 1). In the present case x™in =  0, x)°ax =  r ^ ,  =  0,

and x™ax =  S 00, where and S 00 are “large enough”fi xed numbers. We will use the 

notation given in Remark 1 for the different parts of the boundary.
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As explained in Chapter 2, the boundary o f the computational domain is made up 

of three parts, depending on the given boundary conditions. We assume coefficient a  (in 

equation (2.19)) is zero, so that we will impose a pure Neumann condition on Tr . In order 

to determine the part of the boundary on which there is no need to impose any condition, 

we develop the boundary integral that appears in the bilinear form (2.23), namely

boundary conditions on the remaining boundaries.

• At a high share price, it is almost certain that the bond will be converted. Hence the 

following boundary condition is considered for S  —> o o

This condition can also be implemented as a Neumann boundary condition, namely

(3.108)

This integral vanishes on Tx because 5  =  0 and n =  (0, —1) and therefore

(3.109)

Thus

Tr cr\{rDurfi}. (3.110)

It will not vanish in general on any of the other boundaries. Hence, we will need to specify

V  ( r ,  S , t) ~  n S  as S  —► o o . (3.111)

n as S
dV
~dS

o o . (3.112)
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At an infinite interest rate, the straight bond component tends to zero and we are left 

just with the call, the put and the conversion feature. Therefore we should have

V  (r, S, t) =  min {max {n S , Mp}  , Me}  for r —> oo. (3.113)

However this definition is not consistent with the extension V  =  n S  for S  > M c / n  

(it would be appropriate if  we extend instead by V  =  Me).  Therefore we have to 

define

V ( r ,S , t )  =  min {max {nS, Mp}  , max {nS, Me}}

=  max { n S , M P},  f o r r —s - o o .  (3.114)

It appears quite difficult to specify the boundary condition for very small interest 

rate. The boundary condition at zero interest rate is not clearly specified in 

the literature. Zvan, Forsyth and Vetzal (1998a), (1999) proposes a PDF on 

this boundary but, besides this complicates the numerical solution, no financial 

justification is given. Wilmott (1998) states that this condition depends on the 

interest rate model specification and suggests assuming a finite partial derivative,

dV
lim —— (r, 5, t) < o o .  (3.115)

r—>0"*" or

However this information is not enough when coming to the implementation. 

Moreover the compatibility between boundary conditions and inequality constraints, 

due to optimal call, put and conversion (as defined by Brennan and Schwartz (1977) 

and Ingersoll (1977a)) is not straightforward and yet unspecified in previous work.
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We have decided to use the homogeneous Neumann condition,

dV
——  =  0 on r  =  0, (3.116)
onA

which is a “natural” condition for the weak formulation (2.25). Notice that the above 

in particular implies a finite partial derivative with respect to the interest rate.

Remark 2 As  we  have shown, no condition is required on IY However, a D irichlet con-

dition on this boundary could  be provided. A t zero share price, the convertible behaves like 

an ordinary bond:

V (r ,0 , t ;T )  = Y ( r , t ; T ) ,  (3.117)

where Y  ( r ,  t\ T ) is the value o f  the corresponding bond w ithout the convertibility feature. 

In the abscence o f  call and  p u t fea tures there is a close fo rm  solution fo r  Y .  In the general 

case, Y  m ust be fo u n d  as the solution o f  a P D E  with the instantaneous interest rate as the 

only spatia l variable, and  subject to appropriate auxiliary conditions. A s P ironneau and  

H etch (2000) po in t out, the above D irichlet condition fo r  S  =  0 is im plicitly defined in the 

P D E  (3.64). In fac t, by setting  S  — 0 in equation  (3.64) the one-factor valuation fo r  the 

ordinary bond is obtained.

3.2.3 The System of Characteristics

The method for time discretization described in Chapter 2 requires the solution of the sys-

tem of characteristics (2.39) subject to conditions (2.40). For some special models of the 

spot rate these equations may be solved explicitly. For example for the Vasiceck (1977)
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parameterization

u (r, t) — Xr (r, t) w(r , t )  =  (3 -  f3,7  G (3.118)

w (r, £) =  w, w G ÏÎ, (3.119)

and if we assume p (r, S', r )  =  p and D  (S', r) = D0S  (i.e. a constant dividend yield Do) 

the system of characteristics becomes

0 i (r ) =  I p ™  -  P +  70i (?-)
0 2  (r ) =  ( ^ 2 -  0 1  (t ) +  Do) 0 2  (r)
0 1  (W l)  =  r
0 2  (^n+1) S'

The solution o f this can be found analytically and is given by17

0 1  ( 0 n )  =  — S - f  [r +  5] e~lAtn =  rc +  5 ( c  — 1 )

0 2 (fn) =  S  exp [ -  (a 2 +  D 0 +  <5) A tn] exp \  (r +  5) (1  -  c)

(3.120)

(3.121)

where

<5

c

-  - p a w - ¡3 ,

7  L2 J
g“7 Atn

(3.122)

(3.123)

Notice that expressions of 0 X (tn) and 0 2 (f„) do not depend on tn, just on the time step 

tn + 1 — tn — A tn. This property allows calculations to be done just once for all time steps, 

in the case where the time step is constant.

If instead we consider the Hull and White (1990) parameterization

u(r,t) — Xr (r,t)w (r,t) =  ¡3 (t) — 7 G 3?, (3.124)

w ( r , t ) =  w w  £ (3.125)

ir See Appendix B for detail calculations.
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and if we assume a constant correlation, p, and a constant dividend yield, Do, the system

o f characteristics becomes

f 0 i (T) =  \ p ° w ~ & (T) +  70i (r )
< 02 0 )  =  -  01 (t ) +  Do) 02 (t )

0 1  (in+l) =  r  
>. 02 (̂ rc+l) *5*

The solution is given by18

01 ( ^ n )  =  r c  +  h  ( c  -  1 )  +  e 7 in  J ^ n+1 e

0 2 ( f n ) =  5  e x p  [ -  (a2 +  D0) Atn) e x p

7T0  (r) d r  

/tln+1 0 i (r )

where

<5

c

-  - p a w -¡3  ,
7  L2  J

g—7Ain

(3.126)

(3.127)

(3.128)

(3.129)

In order to compute this numerically we approximate the integral to get

f 0! (f„) =  i ( c « l )  +  c [ r  +  elAtn (3 (rn) +  0  (f„+i)] A t n/2 
1 0 2  (in) =  S' exp [ -  (a 2 +  D0) A t n] exp [[02 (in) +  0 2 (tn+i)] A in/2 ] ,

Notice that expressions of 0 2 (tn) and 0 2 (£„) depend on tn, besides of the time step tn+ 1  —

tn =  A fn. This property obeys calculations to be done for all time steps.

Starting with the payoff function at the initial time, the solution at each time step is

calculated using the solution at the previous time step. But a problem may appear if the

material point given by (3.121) and (3.127) at the time tn lays out o f the computational

domain. Let us study the “artificial” flows on T driven by the velocity fields,

h  =  ^paw -  ¡3 (t) +  yr, (3.131)

b2 = (a 2 — r + Do) S, (3.132)

18 See Appendix B for detail of the calculations.
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where in Vasicek model, ¡3 (t) = ¡3 is a constant.

• r x = r n { S  =  0}. Since the second component of the velocity always vanishes, the 

flow is tangent on this boundary; it is a streamline.

• r2 =  rn{r =  r 00}. For sufficiently large the first component of the velocity is 

positive and therefore the flow crosses the boundary outwards.

• r 3 =  r n { S  =  s max}. For r > a2 +  D0 an inflow is encountered, since the second 

component of the velocity becomes negative.

•  r 4 =  r n { r  =  0}. On this boundary the first component of the velocity may be 

positive or negative depending on the parameters o f the model, hence inflow or 

outflow may be encountered.

Therefore, by choosing large enough, difficulties may only appear on T3 if  cr2 — 

r  +  D0 < 0 and on T4 if  ^paw — ¡3 (t) < 0. Because on f 3 the actual solution is known 

and may be extended above the boundary outside the domain, we just evaluate Dirichlet 

condition (3.111) on the points above this boundary. On the other hand, because on F4 

neither Dirichlet nor Neumann conditions are known, we just approximate the solution at 

points that fall outside the domain by the solution on the respective nearest points on the

boundary.
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3.3 Numerical Results

In this Section we present some numerical results. Firstly we benchmark the numerical 

method using three simple “test” contracts; secondly we price CBs with more complex 

contract specifications and finally we do an empirical investigation into the pricing of an 

actual market issue.

3.3.1 Benchmarking

In order to test the numerical method we have considered three particular cases for which 

an analytical solution is available; a straight zero coupon bond with no embedded options, 

a bond which is convertible just at expiration under constant deterministic interest rate, 

and a bond which is convertible just at expiration with stochastic interest rate but zero 

correlation between the state variables. In all the tests, we assume constant parameters for 

the interest rate process, i.e. we use Vasicek parametrization. If we were to use Hull and 

White model, we would need the function /3 (t ) depending on first and second derivatives 

o f the yield curve (see (3.82)); therefore, we would have an extra source o f error coming 

from the interpolation used to approximate the market yield curve, and the approximation 

used to estimate its first and second derivatives. In order to isolate the error coming from 

the discretization scheme, we use Vasicek model.
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Test 1: Straight bond

Firstly we price a straight bond by setting

R x (r, 5, t ) = 0, (3.133)

R 2 (r, 5, t) = oo, (3.134)

V  (r ,S ,T)  = F. (3.135)

Under the Vasicek interest rate model the value of a zero coupon bond is given by

V  (r, t;T)  =  F Z  (r,t;T)  (3.136)

where Z (r, t; T ) is the Vasicek discount factor given by (3.83) — (3.85).

Test 2: Bond convertible just at expiration with deterministic interest rates

Secondly we assume a constant deterministic interest rate by setting

/3 =  7 =  w =  p =  0, (3.137)

and we price a bond convertible just at expiration by doing again

Rx (r, S, t) = 0 , (3.138)

R -2 (r, S, t ) =  oo, (3.139)

V  (r, S, T ) =  max (n S , F) . (3.140)
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Notice that

V  (r, S, T) = max (nS, F)

=  max(n5' — F, 0) +  F

= n m ax (5  — 0) +  F. (3.141)

Therefore, the value of the convertible may be written as the sum of the value of the straight 

bond plus n call options on the underlying stock with strike price X  = F/n.  On the other 

hand, under deterministic interest rates the value o f the call is given by the Black-Scholes 

formula. Therefore the value of the convertible may be written as

V (r, 5, i; T) = F Z  (r, i; T)  +  nC {S, t; r, T, X ) , (3.142)

where

Z{r,t-,T) = e -rV - t'>, (3.143)

and

C (S, t; r, T, X )  = S e ^ ^ N  ( d j  -  I Z  (r, t; T ) N  (d2) , (3.144)

with

and

, 1 , /  Se~D°(T~*) \  1 r------
di =    In ( ———-----—  I +  - a y / T  — t,

y / T ^ t  \ X Z  (r, t] T) J  2
(3.145)

d2 =  d\ — ay/T — t. (3 .146)



3.3 Numerical Results 89

Test 3: Bond convertible just at expiration with stochastic interest rate but zero 
correlation between the state variables.

We price a bond convertible just at expiration by doing again

Ri (r, S, t ) =  0 , (3.147)

R 2 ( r ,  S, t) = o o , (3.148)

and

V  (r, S, T)  =  max (nS, F ) . (3.149)

It can be shown that, if  we assume zero correlation between the state variables, the value of 

the convertible may still be written as the sum of the value o f the straight bond plus n  call 

options on the underlying stock with strike price X  =  F/n.  Precisely,

V  (r, S, i; T) F Z  ( r ,  t;T)  + n x C  (.S , t; r ,  T ,  X ) (3.150)

where Z  (r, t; T) is the Vasiceck discount factor given in (3.83) — (3.85) and C is a modified 

Black-Scholes formula where the discounting is done using the Vasiceck discount factors 

Z  (■r , t ; T ). Specifically

C ( S , t ; r , T , X )  = S e - ^ ^ N  -  X Z  (r, t ; T) N  (d 2)  , (3.151)

with

di = In
S e - Do( T - t )

a V T ^ t  \ X Z  ( r ,  t ;  T)
+  ~ a V T  - t , (3.152)

d2 = dx -  o \ / T  -  t. (3.153)

We assume the volatility of the underlying stock is a =  15% and its continuous 

dividend yield is D0 =  4%. We value a convertible bond with face value of F  — 100



3.3 Numerical Results 90

currency unit, T  — 3.5 years to maturity. For Test 2 and Test 3 the bond can be converted 

into n =  1 unit of the asset. For Test 1 and Test 3 the interest rate parameters are ¡3 = 0.007, 

7  =  0.1 and w =  0.02. The instantaneous interest rate is r = 0.07 and the stock price 

S  = 1 0 0 .

Domain bounds are set to be fT =  [0,1.5] and f ls = [0,400]. corresponds to 

roughly a 99.9% confidence interval on S t - We give L2 errors over both the entire domain 

D and also over a narrower region of interest O =  FT x f i5, where FT =  [0, 0.15] and 

Qs  =  [50,200]. D5  is roughly a 99% confidence interval on S t - ^  reflects a range of 

values of r  and S  likely to be observed in practice and so the error on Q, is likely to be more 

representative.

We present results obtained for successive grid refinements for the relative error in 

L~. Mesh 1 is the coarsest with just 15 space steps in the interest rate dimension, 40 in the 

stock dimension, and 35 time steps up to time T  =  3.5. Each successive mesh doubles both 

the number o f space steps in each dimension and the number of time steps so that the finest 

mesh, mesh 5, has 240 interest rate steps, 640 equity steps, and 560 times steps up to three 

and a half years. For Testl we double the number o f time steps for all meshes, because 

better convergence was achieved in that way. We use as benchmarking measure the total 

relative error define as
1

1 1 
2

(3.154)

where

(3.155)
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Testi Test2 Test3
78.44 92.45 92.52

Table 3.2. Analytical solution for r  =  0.07 and S ' =  100

and

errort = exact solutiont — num solutiont. (3.156)

The exact solution for the current interest rate and stock price levels it is given in 

Table 3.2.

The numerical results are presented in Tables 3.3-3.5. On the boundaries we use the 

analytical solution. In each case two of the boundaries are Dirichlet and two are Neumann.

‘Error TD’ is the error on the entire domain Q; ‘Error RE is the error on the region of 

interest, Q. ‘Factor’ is progressive error reduction factor in moving to a finer mesh level 

from the preceding mesh level. Times are in seconds.19

Thecharacteristics/finite element method was analyzed by Pironneau (1982) for convection- 

diffusion equations. Unconditional stability and convergence order of O (h) +  O +

O (At) have been proved under suitable conditions for the coefficients of the equation. Al-

though our models do not satisfy the required assumptions, the same error estimate has 

been obtained empirically. We see that the ratio between two consecutive errors tends to 2, 

which is consistent with the order o f convergence given above. Errors are significantly less 

on the region of interest compared to the total domain.

All specifications lie within the region of interest so, in line with the errors reported,

CB values are given to 2 decimal places.

19 The implementation was in Fortran 77 run on a 2.4 Mhz Pentium IV PC.
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Test!
Mesh Error TD Factor Error RI Factor Time

1 7.38E  -  03 - 1.29£ -  03 1
2 3.77E  -  03 1.96 4.95.E -  04 2.61 4
3 1 .9L E -03 1.98 2.467? -  04 2.01 33
4 9.59£ -  04 1.99 1.27E  -  04 1.93 338
5

OT—1 
00 1.99 6.487? -  05 1.96 4600

Table 3.3. Error and convergence for Test 1

Test2
Mesh Error TD Factor Error RI Factor Time

1 1.69£I -  02 4.547? -  03 0
2 8.86E  -  03 1.91 1.94.E -  03 2.34 3
3 4.55£ -  03 1.95 1.08£;-03 1.79 25
4 2.32E  -  03 1.97 5.90£ -  04 1.83 266
5 1 .1 7 £ -0 3 1.98 3.09.E -  04 1.91 3137

Table 3.4. Error and convergence for Test 2

Test3
Mesh Error TD Factor Error RI Factor Time

1 1.487? -  02 5.627? -  03 1
2 7.81# -  03 1.89 2.477? -  03 2.27 4
3 4.037? -  03 1.94 1.517? — 03 1.64 27
4 2.06£ -  03 1.96 1.007? -  03 1.50 274
5 1.05.E -  03 1.97 7.35E  -  04 1.36 3214

Table 3.5. Error and convergence for Test 3
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M A T U R I T Y Y I E L D

lm 0.07
6 m 0.07447
l yr 0.07016
2 yr 0.06631
5 yr 0.06224
7 yr 0.06121
10 yr 0.06037
30 yr 0.05990

Table 3.6. Term structure of interest rates

3.3.2 Contract Specifications and Theoretical Convertible Bond Prices

We consider here the pricing of a set of theoretical convertible bonds with different contract

specifications using our numerical approach. The Hull and White interest rate model (3.76) 

is fitted to the term structure20 given in Table 3.6 with

7  =  0 . 1, w  =  0 .02 .

We assume a constant correlation between the spot interest rate and the underlying stock 

p = 0.1. The volatility of the underlying stock is 15% and its continuous dividend yield is 

4%. We value a convertible bond with face value of 1 currency unit, 3.5 years to maturity, 

which can be continuously converted into 1 unit of the asset and pays a semi-annual coupon 

of 3%. The bond can be called back at any time for 1.15 and it is continuously putable for 

0.95. The following results were obtained for asset value S  = 1 and spot rate r  =  7%, using 

100 steps with spatial domain [0, 2] x [0, 4] for non-callable bonds and [0, 2] x [0,1.15] for 

callable ones, and a regular mesh that takes 40 points not equally spaced on each axis. 

Results are in Table 3.7.

20 This theoretical term structure as well as other input values are taken from Epstein, Haber and Wilmott 
(2000).
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C O N T R A C T  C H A R A C T E R I S T I C S V A L U E

Zero-Coupon CB on Non-Dividend Paying Stock 1.0243
Zero-Coupon CB on Dividend Paying Stock 1.0000
Coupon-Bearing CB on Dividend Paying Stock 1.0869
Coupon-Bearing, Callable CB on Dividend Paying Stock 1.0498
Coupon-Bearing, Callable, Putable CB on Dividend Paying Stock 1.0810
Coupon-Bearing, Putable CB on Dividend Paying Stock 1.1296

Table 3.7. Convertible bond prices for different contract specifications

The value o f the convertible declines for dividend paying stocks; this occurs because 

a higher dividend yield implies a lower expected rate of stock price appreciation and be-

cause the value o f dividends is not impounded in the bond’s price since the convertibles’ 

investor does not receive dividend payments. Adding coupons to the bond increases, as 

expected, the value o f the contract, and makes the probability of conversion lower. The 

callable feature is valuable to the issuer, hence the convertible decreases in value, whereas 

when the redemption option is added the contract’s value increases; the two effects are 

however non-symmetric.

3.3.3 Empirical Results

In order to validate our two-factor convertible bond price model we carry out a comparison 

of our numerical solution against market quotes for the National Grid 4 — |%  convertible 

issue (rated Aa3 by Moody’s, A+ by S&P) maturing on 17/02/2008.

More specifically, we compare daily market quotes for the convertible’s clean price 

with the projected price given by our model on the 21st of August 2000 for 215 days, i.e., 

from 21st o f August 2000 to 15th of June 2001. As of the starting time in our sample, that
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Fig. 3.1. National Grid share and clean convertible bond market prices from 21st of August 
2000 (reference day) to 15 th of June 2001 (end of sample). Convertible prices are expressed 
in a per share basis. Daily data is used throughout.

is, the 21st of August 2000, the expiration o f the convertible expressed in years is

T  = 7.49589. (3.157)

The bond has face value

F  =  £1, 000.00, (3.158)

and can be redeemed at expiration for £ 1 , 209.31.

The National Grid’s issue can be converted at any time at

n = 239.8082. (3.159)

Figure 3.1 plots the Convertible bond- National Grid share prices from 21st August 2000 to 

15th o f June 2001.

The bond is continuously callable at a variety of rates shown in Table 3.8.
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F R O M  D A T E T O  D A T E C A L L  P R I C E

17 — Feb — 03 17 — A ug — 03 108.975
17 — Aug  — 03 17 — Feb — 04 110.022
17 -  Feb -  04 17 — A ug  — 04 111.100
17 -  A ug  -  04 17 — Feb — 05 112.209
17 — Feb — 05 17 -  A ug  -  05 113.350
17 — A ug  — 05 17 — Feb — 06 114.525
17 — Feb — 06 17 -  A ug -  06 115.734
1 7 -  A u g -Q Q 17 — Feb — 07 116.978
17 — Feb — 07 17 -  A ug  -  07 118.258
17 -  A ug  -  07 17 — Feb — 08 119.575

Table 3.8. Call and put prices for NGG convertible bond

We have used as a proxy for the instantaneous interest rate the UK spot rate (see 

Duffee (1996) for an interesting discussion of alternative interest rate series). The historical 

correlation between the share price o f the National Grid Group and the UK spot rate was 

calculated using daily data for the last five years21

p = 0.1317. (3.160)

As input for the underlying stock’s volatility, we have used at-the-money implied volatility 

{(Tn g ) for the vanilla put option on National Grid Group as of the 21st August 2000

o'n g  — 35.05%. (3.161)

The share has an annual dividend yield

D n g  = 2.51%. (3.162)

The Hull and White interest rate model in (3.76) has been fitted and calibrated to market 

data as of the 21st of August 2000. Values for the overall interest rate volatility parameter w 

and the relative (long/short) volatility parameter 7  have been chosen using actively traded

21 Both time series were obtained from Datasteam.
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T Vi Ri
i 10.50% 0.064959
2 13.40% 0.065984
3 15.40% 0.066527
4 16.20% 0.066567
5 17.00% 0.066677
6 17.10% 0.066546
7 17.20% 0.066416
8 17.27% 0.066222
9 17.33% 0.065890
10 17.40% 0.065289

Table 3.9. Cap data

caps, with tenor of 0.25 years, and with maturities running from 1 to 10 years. Liquid cap 

data with expiration (T)), rate (R^  and at-the-money volatility (c^) for the 21st of August 

2000 are shown in Table 3.9 . The above data set reveals one important advantage of 

imposing mean-revertion directly in the deterministic part of the interest rate as opposed to 

the volatility structure. As discussed in Section 3.1.4, algorithmically constructed lattices 

in the spirit o f Black, Derman and Toy (1990) require a decreasing volatility structure 

for mean reversion of the interest rate to take place. Clearly, this pattern is not evident 

in the caps data above so the quadro-tree approach of Ho and Pfeffer (1996) or Cheung 

and Nelken (1994) for market-consistent pricing of convertible bonds fails to impose mean 

reversion in the interest rate process.

We have chosen as inputs o f market interest rates, the zero spot curve22 with expi-

rations ranging from zero to ten years, equally spaced by r  =  0.25 (compatible with the 

tenor o f the caps). Figure 3.2 depicts the zero curve.

These rates have been used to approximate via cubic splines the logarithm of the 

market zero bond price of arbitrary maturity t as of reference time t* (i.e., the 21st of August

22 The zero spot interest rate curve for the 21st of August 2000 was taken from Datastream.
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Zero Yield Curve 21/08/00

Fig. 3.2. Zero spot yield curves for 21st of August 2000 (reference day).

2000), Z m  (t*, t ). Once the function log (Zm  (t*, t)) has been built, /3 see expression 

(3.82), can be evaluated and the model is guaranteed to fit observed market bond prices. 

Note that we do not add a constant credit spread to the riskless term structure. As discussed 

in Chapter 1, adding a constant option-adjusted spread or effective credit spread to the 

riskless interest rate penalizes the credit risk-free equity upside potential of the convertible 

bond. Flow to account optimally for the credit risk of the issuer will be discussed in later 

Chapters.

After calibration, the following values were obtained for the interest rate volatility 

parameters

7 =  0.00628, (3.163)

w = 0.01025. (3.164)
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We are using 2736 daily time steps (since the convertibles’ expiration is the 17th of February 

2008) in our numerical solution. This provides a clear advantage of our numerical method-

ology compared to quadro-tree approaches which, because of the inherent explosion of the 

number of nodes at each time step, can only accommodate a much smaller number of time 

steps, thus reducing the accuracy o f the calculations. We have chosen a spatial domain of 

[0, 2] x  [0, 20]. We have considered all inputs in a per share basis, i.e., we have normalized 

the conversion ratio to unity, and we have divided all other inputs (face value, redemption 

value, coupons, call price) by the given conversion ratio. On a per share basis, the historical 

share and bond prices, as well as all other inputs, fall in the range [0 , 1 0 ].

As we have seen above, the National Grid Group convertible is not callable before the 

23rd of February 2003 and afterwards the call price varies with time to maturity. Therefore, 

we have made the up unilateral constraint time dependent.

Figure 3.3 plots our numerical valuation results as o f the 21st o f August 2000 against 

actual markets quotes for 215 successive trading days. As it can be seen in Figure 3.3, our 

model systematically underestimates the market. Two reasons can explain this deviation. 

First, it is well known that issuers o f convertible bonds do not actually follow what we 

define as rational call policy. Instead, they wait until the share price is well above the call 

price in order to exercise their right. We have used a value of 30% to account for this 

delayed call practice by issuers, which of course, is an open matter. Second, we did not 

take into account in our valuations the accrued interest (AccIR ) which must be paid by the 

issuer upon call and upon put. In that case, the unilateral constraints in expression (3.92)
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Comparison with Market Data

Time in years

- CB Model 

■ CB Market

Fig. 3.3. Market quotes o f the NGG convertible bond and model forecasted prices from 
21st o f August 2000 to 15th of June 2001. Both are clean prices and expressed in a per 
share basis. Daily intervals for 214 trading days.

should read as

max {nS, M P +  AccIR} <  V < max {M e + Acer I R , nS1} , where

AccIR(t)  = K  (tCi+1) (3-165)

and tCi, tCi+1 are successive coupon payments such that t E [tCiAci+J .  Omission of the 

accrued interest clearly underestimates the convertible bond’s value.

Overall, our valuation results appear to be very promising. As it can be seen in Figure 

3.4, almost all of model predictions fall within 5% of market values.

This is a considerable improvement in the accuracy o f valuation results compared to 

the 10% average overpricing and 12.90% overpricing that King (1986) and Carayannopou-

los (1996) report, respectively.
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Percentage Error

Time in years

Fig. 3.4. Percentage predicted errors in the NGG convertible bond from 21st o f August 
2000 to 15th of June 2001. Daily intervals for 214 trading days.

3.4 Conclusion

In this Chapter we extend the previous literature on the valuation of convertible bonds 

by solving a two-factor model that fits the observed yield curve, imposes mean reversion 

in the interest rate process directly in the drift function, calibrates both interest rate and 

underlying equity volatilities to market data and allows for correlation between the state 

variables.

We have applied the method o f characteristics/finite elements for time and space dis-

cretization together with a Lagrange multiplier method to deal with the early exercise fea-

tures. There are clear advantages of our numerical scheme compared with the traditionally 

used finite differences and lattice methodologies in terms o f its (i) flexibility in incorpo-

rating final conditions (the payoff function o f the contingent claim), boundary conditions 

(at zero or infinity) and jump conditions arising from discrete intermediate payoffs of the
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state variables (discrete dividends and coupons), (ii) generality to pricing a wide array of 

exotic options and (iii) accuracy, especially for two-dimensional problems . Since our al-

gorithm allows keeping track o f the free-boundary surfaces for every discrete time step, it 

provides not just the solution for the price o f a convertible bond at any time but also deter-

mines ex-ante for which levels of the underlying asset and the short-term interest rate the 

embedded conversion, call and put option will become in-the-money.

Empirical investigation into the pricing o f National Grid Group’s convertible issue 

produced prediction errors of less than 5% for 215 successive trading days, a substantial 

improvement compared to the 10-12% biases reported in the empirical studies o f King 

(1986) and Carayannopoulos (1996).



Chapter 4
A Unified Framework for Pricing CBs with 

Interest Rate and Credit Risk

This Chapter introduces a unified intensity-based framework for pricing convertible 

bonds in a two and a half factor setting. The two factors are the stock price and the interest 

rate so that this model builds on the one presented in Chapter 3. We model the hazard 

rate (our half factor) as a deterministic function of the stock, the interest rate and time. We 

account explicitly for the stock price behaviour and holder’s rights in the event of default as 

well as the recovery value on the bond. Most comparable existing models are special cases 

of our general setting. Based on this unified framework we also introduce new models. We 

find that different models lead to significantly different convertible bond values.

To fully specify a model it is necessary to specify how default is triggered and what 

happens upon default to the stock price, the CB value and holder’s rights.

We recall from Chapter 1 that the first authors to have modelled default exogenously 

in the spirit of reduced form models, were Davis and Lischka (2002) (DL) and later Taka- 

hashi, Kobayahashi and Nakagawa (2001) (TKN). They assume that default occurs at the 

first jump of a Poisson process and they model the intensity of the jump as a deterministic 

function of the stock price. They assume that upon default the stock price jumps to zero. 

DL model the recovery as a constant fraction R  of the par value of the bond, whereas TKN 

model recovery as a fraction of the market value o f the bond prior to default. However, 

it can be argued that these approaches penalize the equity upside of the CB. The value of

103
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a convertible bond has components of different default risk; the value contributed to the 

bond by its conversion rights should not be subject to the same risk treatment as the fixed 

payments. Therefore, given the hybrid debt-equity nature of convertibles it may be conve-

nient to split its value into a bond part and an equity part. In general, the value o f the debt 

and equity components will be linked, and the valuation problem reduces to solving a cou-

pled system of equations. Splitting models allow one to apply a different credit regime to 

the debt and equity components. Moreover, they may be of interest to investors in order to 

identify different sources o f risk and be able to hedge them. How to split the convertible 

value though, is an open an controversial matter.

We saw in Chapter 1 that the first authors presenting a splitting and writing the model 

as a coupled system of equations were Tsiveriotis and Fernandes (1998) (TF). The value 

o f the equity component and the value o f the bond component are discounted differently to 

reflect their different credit risk. Ayache, Forsyth and Vetzal (2002), (2003) (AFV) extend 

previous literature by proposing a general specification o f default in which the stock price 

jumps by a given percentage r/ upon default and the issuer has the right either to convert or 

to recover a given fraction R  of the bond part o f the convertible. The way they define the 

bond part is different from the original definition of Tsiveriotis and Fernandes.

We propose a unified framework to price convertible bonds incorporating interest 

rate and credit risk. We assume a jump-diffusion process for the stock price and a mean 

reverting process for the interest rate. We model the intensity as a deterministic function of 

the stock and the interest rate, leading to an extra so called quasi-factor or half factor. Upon
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default, the model allows arbitrary loss rate 77 on the stock price, and an arbitrary default 

value V* on the convertible that may be a function of the state variables.

The model contains many other models as special cases. We identify most of the 

previous models and we show that the main difference between them is the specification of 

the recovery value.

We describe and implement an algorithm to solve the model which recovery is o f (1) 

market value (RMV), (like TKN), (2) par (RP) (like, DL), (3) an equity-part (as for instance 

TF) and (4) a bond part (like AFV). We also introduce new models for the recovery value.

We propose three possible decompositions o f the convertible into bond and equity 

parts and we investigate the need to split the convertible bond value to incorporate credit 

risk. We also analyze the implications o f using different splitting procedures in the valu-

ation. Based on this analysis we choose “our best model” . In “our best model” the bond 

and equity part are defined in a different way to what has been done before in the litera-

ture; also, the recovery is specified separately in the bond and equity part as a fraction of 

the market value prior to default. For this reason, we refer to our model as a dual recovery 

model.

An implicit algorithm is proposed to solve the coupled system of equations arising 

from the splitting procedures. The equations are solved using the numerical methods intro-

duced in Chapter 2.

For all models we compute the analytical solution of the special case of a bond con-

vertible only at expiration. We show how for each model, in this special case, the CB can 

be written as a portfolio of straight bonds, equities and/or vanilla options. We benchmark
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and study the convergence of the numerical method using this special case. Based on the 

analytical solutions and the numerical results, we compare the implications of the different 

model specifications, regarding assumptions about both recovery and stock price behaviour. 

We also provide some sensitivity analysis with respect to the hazard rate parametrization.

In the next Section we present the general valuation framework. Section 4.2 intro-

duces three splitting procedures to decompose the convertible into debt and equity compo-

nents. Section 4.3 provides a detailed specification o f the model, namely the interest rate 

model, the hazard rate, the recovery value and the conversion rights upon default. Also 

in this Section, nested models in the general framework are identified, including previous 

models and the dual recovery model. Section 4.4 provides the analytical solution for a 

special bond convertible just at expiration in all nested models. Section 4.5 describes the 

numerical method. Section 4.6 gives the numerical results and Section 4.7 concludes.

4.1 The Governing Equation

We follow a standard procedure given, for instance, by Protter (1995). Suppose that the 

value St o f the underlying asset follows a jump augmented geometric Brownian motion 

under the objective measure, P*,

dSt = (iis -  dt ) St_dt +  a s St_dZ*St -  rjtS t_dNt , (4.166)

where Z*St is a standard Brownian motion under P* and dt is the continuous dividend yield. 

Nt is a counting process with intensity p*. rjt is a deterministic loss rate. Nt models 

exogenous default events. At a jump time r  for Nt the equity value falls by a proportion
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Vt ’

S t  = St _ (  1 - V r ) -  (4-167)

It is well known that the process u* =  p*t is the P*—compensator o f N t, i.e., the unique 

finite variation previsible process such that N t — p*t t is a martingale under P*.

Under the equivalent martingale measure, P, associated with the accumulator nu-

meraire B t = exp  ̂J* rsds^j, the relative price J f is a martingale so

dSt = (rt -  dt) S t_dt +  a s St_dZSt -  r}tS t_ (dNt -  ptdt) , (4.168)

where Z$t is a standard Brownian motion under P. u (dt) =  ptdt is the P —compensator 

of the jump component. Under the change o f measure, the compensator for Nt changes 

according to Girsanov theorem (see Jacod and Shiryaev (1988))

i't = H (t) v*t

hence

pt = H  (t ) p*t

is the jump intensity under the EMM.

Notice that, the setup defined by equation (4.168) is an incomplete market, meaning 

that there exists at least one contingent claim that cannot be hedged. Equivalently, under the 

assumption of no arbitrage, there is no unique equivalent martingale measure with which to 

price a contingent claim. However, given that the loss rate, r/t, is deterministic, the market 

can be completed by adding a defaultable bond issued by the firm which value of equity is

st.
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Lets also assume that the interest rate follows the stochastic process

drt = prdt +  ardZn , (4.169)

where pr and ay are the expected rate o f return and volatility of the spot interest rate, which 

may be function of the interest rate level as well as time. dZSt and dZrt are both Brownian 

motions that may be correlated

We suppose that the firm has issued a convertible bond with market value Vt. The bond 

matures at time T  with face value F. At any time up to and including time T  the bond 

may be converted to equity. Its value upon conversion at time t is n tS t, where n t is the 

conversion ratio. The bond may be called by the holder for a call price M Ct and also it may 

be redeemed by the holder for a put price M Pt. We assume that call and put prices include 

already accrued interest, which must be paid by the issuer upon call and upon put.

By Ito’s lemma (see Jacod and Shiryaev (1988)), the process followed by Vt is

<  dZn dZst >= ptdt, with — 1 <  pt <  + 1 . (4.170)

where A V  (St_) =  Vt* (S t , t) — Vt (St_, f) and V* (Stl t) is the value of the convertible 

bond if a jump occurs at time t. This is the value of the bond if default occurs.
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Under the EMM the relative price ~  is a martingale. Imposing this condition we

have,

Notice that [Vj* (St,t) — Vt (St_, f)] dt is the compensator o f the jump A V  

When V* is a deterministic function of St = S t_ (I — r/t), equation (4.172) reduces to

o f the CB. On one hand, pt appears on the discounting term, therefore we expect that an 

increase in pt will decrease the CB value. Similarly, if the default value, Vt*, is a function of 

the stock level, St = St_ (1  — rjt), an increase in the loss rate rjt will decrease the recovery 

value, and therefore the CB value. Hence both pt and rjt have a negative effect on the CB 

value. On the other hand, under the EMM, the product of the hazard rate and the loss rate, 

ptr)t, appears with positive sign on the drift of the stock price (and the CB value); this is the 

compensator for the jump component o f S t. The higher the loss rate and/or hazard rate, the 

higher the return required to compensate the risk, and therefore the higher the CB value; 

so pt and r/, have also a positive effect on the CB value. If we think of the convertible as 

made of an equity part and a bond part, we can see that an increase of the hazard rate (and 

maybe the loss rate) will decrease the bond part of the CB, but will increase the equity part;

(4.172)

Notice that the hazard rate pt and the loss rate r)t have two opposite effects in the value

an option to buy a risky asset is worth more than the option to buy a risk free one.
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Inequality constraints that follow from the optimal conversion, redemption and call 

strategies as defined by Brennan and Schwartz (1977), make the convertible bond valuation 

problem a free-boundary problem which can be formulated as a variational inequality. This 

is modelled below via the Lagrange multiplier P  which adds or substracts value to ensure 

that the constraints are being met.

We will use the following notation

If the bond pays coupons discretely, typically every year or half-year, let K  (rt, tc) 

be the amount of discrete coupon paid on date tc. Then the following condition must be 

imposed in order to avoid arbitrage opportunities

(4.174)

to write equation (4.173) in short as

Pt — PVt ~~ (g  +  Pt) Vt +  PtV* (Pt, t) ■ (4.175)

together with conditions (see Chapter 3)

max {ntSt , M Pt} < Vt < max {MCt, n tSt} (4.176)

max {ntS t , M Pt} < Vt < max {MCt,n tSt } = >  Pt = 0, (4.177)

Vt = max {ntS t, M Pt} => Pt < 0 , (4.178)

(4.179)

Vt (rt , S t, tc ) = V t (rt, S t, t+) + K  (rt , tc) . (4.180)
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Such discrete cashflows may be incoiporated in the governing valuation equation by adding 

a Dirac delta function term —K5 (t — tc) to the RHS of (4.175).

The final condition for the convertible bond is the exercise condition at the maturity 

time T,

Vt  (t y , S t , T ) =  m ax (n r  S t , F + K  (t y , T)) =  max (j i t S t , F^j , (4.181)

where we have introduced the adjusted face value F  = F  + K  (rt , T ).

Solving (4.175), (4.176) — (4.179) subject to boundary, final (4.181), and jump 

(4.180) conditions , gives the theoretical value of the convertible bond.

4.2 Splitting Procedures

Given the hybrid nature o f convertibles, it is possible and often desirable to split the value 

V  o f the convertible into a bond part W  and an equity part U. Early models valued CBs by 

replication as a portfolio o f a bond and a warrant. Unfortunately this approach is correct 

when the bond is convertible only at expiration and there are no other embedded options, 

such as call and put features. In general, the two parts are linked and the valuation problem 

is a coupled system of equations. Splitting models allow a different credit treatment to be 

applied to the debt and equity parts. This may be of interest to investors in order to identify 

their risks and be able to hedge them.

We split the value of the bond into an equity part U and a bond part, W. U is the part 

related to payments in equity, and therefore includes the conversion and call option. W  is 

related to payments in cash, and includes the coupons and the put option. In general, both
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are derivatives on the underlying stock price and the instantaneous interest rate, and will 

follow a partial differential equations similar to (4.175) with default values given by W* 

and U* respectively. The two parts have embedded early exercise features, and therefore 

follow inequalities with Lagrange multipliers P u and P u ,

CWt - ( r t + p t)W t + p tW ; { S t,t) = P™, (4.182)

£Ut - ( r t + p t)Ut + ptU ;(S t ,t) = Pi1. (4.183)

We will set Pj" = 0  in the equation for W,  and instead o f solving a free boundary problem 

for W,  we will impose the constraints explicitly using the total value of the convertible V  

(whenever it hits the free boundaries). This approach was initially followed by TF. AFV, 

on the contrary, propose a coupled system of free boundary problems. The latter approach 

makes the implementation extremely complex.

If the bond pays coupons we need to consider the jump condition for W

Wt (rt , Su t~c ) = Wt ( r  t , S t , t+) +  K  (rt , tc) , (4.184)

where K  (rt , tc) is the amount of discrete coupon paid on date tc.

To be fully specified we need to supply inequality constraints and final conditions to 

(4.182) and (4.183). At the final time the payoff to the convertible is given by (4.181)

Vt  {t t , S t , T ) =  max ^u t S t , F^j ■ (4.185)

The splitting determines how Vt  is allocated between W t  and Ut -

The motivation of the splitting is to apply a different credit treatment to equity and 

debt. Originally, in the TF model, the main objective was to use a different discount factor 

for the debt part and the equity part. But if  we model the hazard rate as a function of the
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stock price this is not anymore a priority. When the stock price is low, the equity part 

has very little value and the convertible is almost all debt; the hazard rate will be high as 

well as the spread over the risk-free rate. On the contrary, for high stock prices the value 

of the bond part is little and the convertible is all equity; the hazard rate will be low and 

discounting is almost at the risk-free rate. Hence, there may be no need to split the bond 

value in order to apply a different discounting to the bond part and the equity part. However, 

if  we want to use a different recovery in bond and equity, a splitting is necessary in order to 

define the recovery value o f the convertible. It will be mandatory to solve a coupled system 

of equations only when the default value of the convertible V* depends explicitly on the 

values, either one or both, of the equity value, U and the bond value W.

How to decompose the convertible value, or equivalently how to define the bond and 

equity parts, is an open and controversial matter.

We adopt TF splitting and we propose two new splitting procedures. This amounts 

to providing three payoff functions that will act as final conditions for (4.182) and (4.183).

4.2.1 Splitting 1. TJt ' asset or nothing call, W t ’ cash or nothing put

This is the original splitting introduced by TF. They define a hypothetical derivative secu-

rity, the cash-only part o f the convertible bond (COCB) which entitles the holder to all cash 

flows from the bond part but no equity cash flows. The COCB is the same as W . At time t 

the bond part, IT), is set to zero if it is optimal to convert,

Wt(rt , S t, t) = 0  i f  Vt(rt , S t, t) =  n S t . (4.186)
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Similarly, and because it will be optimal for the issuer to call the bond back when

Vt(rt, S t , t) = M Ct = n S t, (4.187)

they also set2

Wt(rt, S t , t) =  0 i f  Vt(rt, S t , t) = M Ct. (4.188)

On the other hand, when a cash payment takes places due to coupon payments or to re-

demption upon a put or at maturity, the COCB takes a non-zero value. Specifically,

. . [ 0 if  S t  > F / n
WT ( rT, ST, T  ) = < ~ ' A 1

[ b otherwise

Wt{rt, S t, t) = M Pt if  Vt(rt , S t, t) = M Pt, 

If  the bond pays coupons we add the jump condition (4.184)

Wt (rt , S t, t~) = Wt (rt , St , t+) +  K  (rt , tc) .

(4.189)

(4.190)

(4.191)

Notice that the final condition for the cash component W  given in (4.189) is the payoff of 

a cash or nothing put with strike F / n  and payout F. Also notice that with this splitting the 

value of the equity component U becomes at maturity

U [rT , ST, T) = { u S t  lf -  F >n
0  otherwise

(4.192)

which is the payoff o f n  asset or nothing call options with strike F/n .

We now introduce two new splitting procedures. Splitting 2 defines the equity part in 

a natural way as the parity value of the convertible, and then sets the bond part as the total 

value of the convertible minus the equity part. Splitting 3 defines the bond part in a natural

23 Recall that upon call the holder reserves the right to convert into equity.
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way as the bond floor o f the convertible, and sets the equity part to be the difference of that 

with the full CB value.

4.2.2 Splitting 2. U j \  equity, 1 V-fi equity premium (put)

In splitting 2 the equity part is a security that at maturity pays the value of the parity, a 

natural definition for the equity part of the CB. Hence, the payoff of the equity component

which is just the value o f n underlying stocks.

The value o f the bond part is the value above parity, basically the equity premium. 

With this splitting the cashflows of the bond part are the actual cashflows of the CB minus 

the parity; this is consistent with the idea of the bond part being the part at risk, since upon 

default at a cashflow we can always convert into equity, and therefore the amount at risk is 

the cashflow minus the parity.

Specifically, in the event of default at expiration the holder can still convert into 

equity, and therefore the amount he risks is F — nS t rather than F. Because the bond part 

is the portion subject to credit risk, we set its payoff to be

U is

U (r, S, T) — nST, (4.193)

(4.194)

Notice that this is the payoff of n put options with strike F/n .

Similarly, if  the holder decides to redeem the bond by exercising the put, the amount 

subject to risk is not the put price M Pt but the difference M Pt — nS t, since the conversion
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into equity is guaranteed at any time. We have

Wt(rt , S u t) = M Pt -  nS t if  Vt(ru S t , t) = M Pt. (4.195)

Conditions (4.186) and (4.188) apply the same in this case.

It is worth mentioning that with this definition of W ,  the final condition becomes a 

continuous function o f the stock price S. This property, which is not shared by the TF 

splitting, makes the numerical solution far easier.

4.2.3 Splitting 3. risk premium (warrant), W t : bond floor

We define the bond part as the floor value of the convertible. The bond floor is a straight 

bond with the same face value and coupon payments as the convertible, adjusted up if  there 

is an embedded put option. The payoff to W  is then

WT (rT,S T,T)  = F.  (4,196)

With this splitting the final condition for the cash component W  given in (4.196) is the 

payoff of a straight bond with face value F. With the splitting 3 the payoff of the equity 

component U becomes

Up (rr, S t , T ) =  max j n S r  — F, 0 j  , (4.197)

which is the payoff o f n  call options with strike F/n .

The advantage o f this splitting is that is consistent with the standard decomposition 

o f bond plus warrant in the special case in which the bond is convertible just at expiration. 

Also it agrees with the splitting done in convertible bond asset swaps (CBAS). CBAS are 

the most popular way to hedge convertibles.
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4.3 Detailed Specification of the Model

In this Section we discuss in detail the remaining components of the model, namely the 

interest rate model, the hazard rate specification, the recovery value and the conversion 

rights upon default.

4.3.1 The Interest Rate Model

As in the previous Chapter we assume the interest rate model is extended Vasicek. This 

model combines tractability with the flexibility to calibrate to a pre-specified initial term 

structure. We recall that the short rate process under the EMM is

drt = a  (9(t) — rt) dt +  ardZrt, (4.198)

where 6{t) can be chosen so that model spot rates coincide with market spot rates. We set 

Hr =  /j  (t, r) = a  (9(t) — rt) to be the drift of r.

The Vasicek model allows rates to become negative. An alternative would be to use 

the CIR model in which rates are certain to remain non-negative. However, choosing the 

Vasicek model allows us to simplify the numerical procedure.

4.3.2 The Hazard Rate Process

Instead of allowing the hazard rate to be stochastic (like Davis and Lischka (2002)), we 

model it as a deterministic function of the state variables and time. As mentioned in Chapter 

1 several parametrizations have been used in the literature. We assume that pt decreases as 

both St and rt increase. The negative correlation between interest rates and hazard rates 

agrees with some empirical studies, although evidence is mixed (see for example Kiesel,
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Perraudin and Taylor (2002)). For concreteness we assume

pt = k exp [— (aSt +  brt)] a,b > 0 . (4.199)

Das and Sundaram (2004) studied a default process o f the form

pt =  k exp [—aLn (S t) +  brt +  c(T — t) +  d\ (4.200)

From a computational point o f view, our parametrization (4.199) has the advantage over 

(4.200) that (4.199) can be used for St = 0 , which is the lower bound of our computational 

domain in the S direction (see Section 3.2).

4.3.3 The Recovery Value

Suppose default occurs at time r . We define the recovery value on the CB, V *, as the sum 

of the recovery values on the bond and equity parts, W* and U* respectively,

We consider the following models for the recovery value, which are special cases o f the 

general specification above

• Recovery o f bond and equity part (RBE)

We define the recovery on the equity part as a fraction of its market value prior to 

default. We propose to use 1 — p as the recovery rate, to be consistent with the assumption 

about recovery on the stock price upon default. For the bond part the recovery is a fraction 

R  of its market value prior to default, leading to

V* = w* + u*. (4.201)

v;  =  ( i  - v) ut_ + r w t_. (4.202)



4.3 Detailed Specification of the Model 119

• Recovery o f bond part (RB)

The recovery on the equity part is zero. The recovery value on the bond part is a 

fraction R  of its market value prior to default. Therefore the recovery on the CB is

If the the bond part is defined as the bond floor, this recovery model is consistent with the 

CBAS market.

• Recovery of equity part (RE)

The recovery on the bond part is zero. The recovery on the equity part is a fraction 

1 — rj of its market value prior to default. Hence,

• Recovery o f market value (RMV)

The recovery value o f the convertible is a fraction R  of its market value prior to 

default, namely

It can be interpreted as a RBE model in which the recovery rate on the stock equals the 

recovery rate on the debt, (1 — rj) = R. The recovery of market value has the advantage 

that it is very easy to implement.

(4.203)

(4.204)

V* = RVt _ = RUT_ +  RW r_ . (4.205)

Recovery of par (RP)
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The recovery value of the convertible is a fraction R  o f the face value of the bond,

V* = RF. (4.206)

It can be thought as a RB model, in which the recovery o f the bond part is define in terms 

of its principal rather than market value. The recovery of par model is very popular in the 

markets. It is easy to implement and it is consistent with the credit default swap market. A 

variation of the recovery o f par is to define the recovery value as a fraction of the riskless 

discounted par value

V* =  R Z  (t , r T; T) F, (4.207)

where Z  (r, r T; T ) is the riskless discount factor with maturity T  as of time r .

4.3.4 Conversion Rights upon Default

Another important issue regarding the default value, is whether or not the model should 

allow for conversion upon default. Realdon (2003) shows it can be rational for CB holders 

to convert when the debtor approaches distress. In the pricing literature, only AFV allow 

for conversion upon default. This is consistent with the assumption that the stock price falls 

on default by a given fraction 77 and not necessarily vanish. We adopt their assumption and 

redefine the bond value upon default as the maximum between the conversion price and the 

recovery value. In this case the pricing equations can be written as

Pt = CVt -  (rt +  pt) Vt +  pt max {ntS t (1 -  77) , V*} . (4.208)

No other models explicitly consider holder rights on default. However, given that DL and 

TKN assume the stock price jumps to zero upon default, the conversion option is worthless.



4.3 Detailed Specification of the Model 121

This is a special case in our specification. If the stock price vanishes on default, 77 = 1 and

max {nS t_ (1 -  7 7 ) , Vt*} =  max {0 , Vt*} = Vt*. (4.209)

In the RBE and RMV models it is redundant to allow for conversion upon default if  R  >

1 — 77. In that case, at a default time r ,  the value of the CB in the RBE model becomes

VrRBE* =  (1 -  7/) Ut _ + R W t _ > (1 -  T?) UT_ + (  1 -  77) W r_ =  (l -  7/) Vr_ > (1 — 7/) .

(4.210)

where the last inequality follows from (4.176). Similarly for the RMV model

Vtrm v * = RVt _ > (1  -  77) VT_ > (1 -  77) nST_ . (4.211)

4.3.5 Nested Previous Models

Most o f the previous models fit into the general framework presented above. The particular 

specification of the hazard rate, the loss rate and the recovery value will determine the 

difference. We have summarized why is on Table 4.10.

• Davis and Lischka

Their equation is a special case o f (4.175) for deterministic interest rate, loss rate 77 

equal to 1 and recovery o f par.

• Takahasi, Kobayahashi, Nakagawa

Their equation is a special case o f (4.175) for deterministic interest rate, loss rate 77 

equal to 1 and recovery o f market value.
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• Tsiveriotis and Fernandes

Although TF do not discuss about default, and they model credit risk via a credit 

spread, a posteriori we could identify their model in the more general setting of the previous 

Section. The equation they propose for the total value of the convertible is the one factor 

counterpart o f (4.175) for zero loss rate, 77, constant hazard rate, p, equal to the credit 

spread, rc, and value upon default, V*, equal to the equity part of the bond, U,

fit =  0, (4 .2 1 2 )

Pt =  rc, (4 .2 1 3 )

v; = ut. (4 .2 1 4 )

This means that in the event of default the stock price does not jump. Also the bond part 

vanishes, and therefore the holder is not entitled to any cashflows, but conversion is allowed 

at any time after default. This was pointed out by AFV.

We rather give the following interpretation. If we write the credit spread, rc, as the 

product of a hazard rate, p, and a loss rate 1 — R , where R  is the recovery rate on the 

bond part, it can be easily shown that the default value of the convertible turns out to be 

V* (St, t ) =  Ut (St, t ) +  R W t (St, t ). This means that on default the total equity part is 

recovered, which is consistent with the fact that the stock price does not jump on default, 

or equivalently the recovery on equity is one. On the other hand, the recovery on the bond 

part is not zero, which in our understanding is more sensible. Therefore TF can be seen as 

a special case o f (4.175) with zero loss rate r/ and recovery a fraction of bond and equity

part.
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M odel L oss rate r/ D efault va lue V* u ; w ;
TF 0 UT +  R W t u T R W t

TKN 1 RVr RU t R W t

DL 1 R F 0 R F
AFV (not implemented) V n S T (1 — ?/) A R W t (n S T (1 — 77) — R W t ) A 0 R W t

AFV total default 1 0 0 0
AFV partial default 0 n S T n S T 0

Table 4.10. Comparison of previous models

4.3.6 The Dual Recovery Model

We propose to use a recovery of bond and equity model with splitting 2.

In splitting 2 the equity part is a security that at maturity pays off the value o f the 

parity, a natural definition for the equity part of the CB. The value of the bond part is the 

value above parity, basically the equity premium. With this splitting the cashflows of the 

bond part are the actual cashflows of the CB minus the parity; this is consistent with the 

idea of the bond part being the part at risk, since upon default at a cashflow we can always 

convert into equity, and therefore the amount at risk is the cashflow minus the parity. Also, 

as mentioned in Section 4.2, with splitting 2 the final conditions of the bond and equity part 

are continuous functions of the stock price, as opposed to TF splitting 1, and this facilitates 

the numerical solution considerably.

Finally we believe it is reasonable to account for the recovery of equity and bond part 

independently.

To our knowledge this model has not been used before.
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4.4 Analytical Solutions for Bond Convertible just at 
Expiration

We consider a special case for which an analytical solution is available: a zero coupon 

bond, which is convertible just at expiration, with stochastic interest rate and equity value, 

but zero correlation between the state variables. Also, we assume constant hazard rate, loss 

rate and dividend yield and we write

We provide the analytical solution for the value o f the special CB with all the models of the 

recovery value discussed in Section 4.3.3.

In this Section we introduce the risk-adjusted dividend yield q =  d — prj and we write

Pt =  P,

fit =  V,

dt =  d.

The equation for the total value o f the bond V  (4.208) reduces to

CVt - ( r t + p )V t +pVt* = 0. (4.215)

X  for the strike price that we set to X  = —. Then we define d\ and d2 in the usual way as

(4.216)

d‘2 =  dx -  a S y/r, (4.217)



where Z (r, t; T ) is the value at time t of a pure discount bond with face value 1 , maturing 

at time T. If we assume a constant deterministic interest rate by setting
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<d>IIcx.IIs.bIISII (4.218)

we have

Z  (r, t; T) = e_r(T_i). (4.219)

When interest rates are stochastic, under the Vasicek interest rate model the value of the 

zero coupon bond is given by

Z  (r, t; T) = eAd\T)~rB(t-,T)̂ (4.220)

where

a

and

(4.221)

A  ((; T) = 4  (B  (t;T) -  (T - 1)) ( t o 2 -  ((; T ) 2 (4.222)

4.4.1 Analytical Solution with Recovery of Bond Part

For this special case o f bond convertible only at expiry, equations (4.182), (4.183) become

£ W t -  (rt + p (1 — R)) Wt =  0, (4.223)

CUt — f t  +  p) Ut = 0 . (4.224)

Remark 3 Notice that equation (4.223) for W  is a modified Black-Scholes PDE, where 

the drift and the discount term are risk adjusted. I f  X  is the solution o f  the original Black-
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Scholes PDE with dividend y ie ld  q =  d — prj, then

W  (r , S’, t ) =  e-p(i-R)(T-t)x  (4.225)

solves equation  (4.223) above. Similarly, the solution o f { 4.224) is given by

U (r, 5, i) =  e - ^ T~t]X  (r, 5, i ) . (4.226)

We next provide the analytical solution for this special case under the three splitting 

procedures described in Section 4.2.

Recovery of Bond Part with Splitting 1:

The final condition in splitting 1 for the cash component W  is the payoff of a cash 

or nothing put with strike F /n  and payout F. Therefore the solution of equation (4.223) 

together with the final condition (4.189) is given by

W  (r, S , t) = e-p(i-R)(T-t)F  x C O N  Put  (S, t; r, q, T, X ) , (4.227)

where

C O N  Put  (S’, t; r, q, T, X )  =  Z  (r, t; T) N  (~d2) ■ (4.228)

Also with splitting 1 the payoff o f the equity component U is that of n asset or nothing 

call options with strike F/n.  Hence the solution of equation (4.224) together with the final 

condition (4.192) is given by

U (r, 5, t) = n e -r^ -V  A O N  Call (S , t; r, q, T, X ) , (4.229)

where

A O N  Call (S, t; r , T, X )  = S e ^ ^ N  {dx) . (4.230)
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We conclude that with splitting 1 the total value of the bond, and therefore the solution of 

equation (4.175) subject to the final condition (4.181) is given by

V (r , S , t ) =  U (r, S , t ) + W ( r ,S , t )  = ne~p(-T~^ A O N  Call +  e~p('1~R^T~t') F  x C O N  Put.

(4.231)

Recovery of Bond Part with Splitting 2:

With splitting 2 the final condition for the cash component W  given in (4.194) is the 

payoff of n puts with strike F/n. Hence the solution of equation (4.223) together with the 

final condition (4.194) is given by

W  (r, S , t) =  e - p (1- R )(r - t ) n p wi t. r> Qi t , X ) , (4 .2 3 2 )

where

Put (S, t ;  r ,  q, T, X )  =  -  (Se~q(-T~ ^N  ( —cfi) — X Z  ( r ,  t ;  T) N  (—d 2))  . (4 .2 3 3 )

Also the payoff of the equity component (7 is just the value of n underlying stocks. It 

is straightforward to show that the solution of (4.224) together with the final condition 

(4.193) is given by

U (r, 5, t) = e-(p+q){T- t]nS. (4.234)

We conclude that with splitting 2 the total value of the bond, and therefore the solution of 

equation (4.175) subject to the final condition (4.181) is given by

V  (r, 5, t) = e-(p+9)(T-i)nS' +  e~p{1- R)ir- t)Put (4.235)



4.4 Analytical Solutions for Bond Convertible just at Expiration 128

Recovery of Bond Part with Splitting 3:

With splitting 3 the final condition for the cash component W  given in (4.196) is the 

payoff of a straight bond with face value F. Therefore the solution o f equation (4.223) 

together with the final condition (4.196) is given by

W  (r, 5, t) = e~p(1~R)(T~t)F Z  (r , t; T ) . (4.236)

The payoff of the equity component U becomes the payoff o f n call options with strike 

F/n.  Therefore the solution of equation (4.224) together with the final condition (4.197) 

is given by

U (r, S, t ) =  e -p{T- t]nCall (S , t; r, q, T, X ) , (4.237)

where

Call (S, t; r, T, X )  =  Se~<'d~pn'>(T~t'>N  ( ^ )  -  X Z  (r, t; T) N  (d2) ■ (4.238)

We conclude that with splitting 3 the total value o f the bond, and therefore the solution of 

equation (4.175) subject to the final condition (4.181), is given by

V  (r, 5, t) = e - P ^ n C a l l  (S, t; r, q, T, X )  +  e~p{'~ m T -t)F Z  t . T ) . (4.239)

4.4.2 Analytical Solution with Recovery of Par

Equation (4.175) for the recovery o f par case is

CVt - { r t + p )V t + p R F  = 0. (4.240)
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The solution to this PDE subject to the final condition (4.181) can be shown to be

Vt = F Z  ( r , i ; r ) e - p(T- i) +  ̂ ^  (1  -  Z ( r , t ; T ) e - p(r- i)) + e - p(T- i)n C a / / ( 5 , i ; r ,g ,T ,X ) .
r  +  p

(4.241)

4.4.3 Analytical Solution with Recovery of Market Value

Equation (4.175) becomes for the recovery of market value case,

CVt -  (rt + p (1  -  R)) Vt =  0. (4.242)

It is straightforward to show that the following function

Vt = F Z  (r, t; T ) eFp(i-R)(J-t)) +  e- P(i- R ) ( T - i ) n C a U  ( ^  t . q) ^  y )   ̂ (4.243)

satisfies the above PDE together with the final condition (4.181). Notice that we have 

written the convertible value as the value o f a portfolio of a risky bond and n risky call 

options with strike —.

4.4.4 Analytical Solution with Recovery of Bond and Equity Part

For the recovery of bond and equity part, the analytical solution under the three splitting 

procedures can be easily worked out, proceeding as in the previous Section. Results are 

shown in Table 4.11, where we use the following notations

Z  = Z{r, t- T ) , C i=  e“p(T' i), C2 =  e-p (i-« )(r-t)j

C3 = e-(p+9)(r-t)i c 4 = e -d(T- t}, C5 = e-pnlT~t\
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Recovery Convertible value Vj
RP C 1 (nC all + F Z )  + f ^ ( l - C 1)
RMV C2 (nC a ll +  F Z )

spil C xn A O N  C all +  C2F C O N P u t
RB spl2 C ^n S  4- C 2P u t

spl3 C \n C a ll +  C2F Z
spll C5nA O N C a.ll + C2F C O N  P u t

RBE spl2 C ^n S  4- C 2P u t
spl3 C5nC all +  C2F Z

Table 4.11. Analytical solution for a zero coupon CB convertible only at expiry in nested 
models

Remark 4 Table 4.11 show s that all m odels lead to different CB values. O nly i f  the prob -

ability o f  default p  equals zero, it can be shown using p u t call p a rity  that a ll solutions are 

equal. D ifferences are due to

1. different recovery assum ptions in the event o f  default

2. different allocations o f  the p a y o ff  to the CB at the term inal time between Ut  and  W t - 

O nce the term inal payo ffs are assigned  the main difference o f  value is the recovery 

assum ption.

4.4.5 Comparison of Nested Models Based on Analytical Solutions

In this Section we show a graphical representation o f the analytical solution for the value 

of a zero coupon bond, convertible only at maturity in all nested model (see Table 4.11). 

The CB value is plotted against the stock price and interest rates. For simplicity, we assume 

a constant deterministic interest rate. Parameters are base case parameters as provided in 

Section 4.6.1. Stock and interest rates vary in what we define as domain o f interest. Table
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Model TF DL TKN RB RBE
spll spl2 spl3 spll spl2 spl3

CB value 89.27 94.42 95.13 86.11 85.09 89.68 89.80 89.53 90.71

Table 4.12. Analytical solution for bond convertible only at expiration with deterministic 
interest rates in all nested models, for r = 0.07 and S  =  1 0 0

4.12 gives the analytical value of a zero coupon bond, convertible only at maturity and with 

deterministic interest rates, for r  =  0.07 and S  — 1 0 0  in all models.

Comparison between previous models

Figures 4.5 and 4.6 compare the analytical solution of the simple CB in the TF, DL 

and TKN models with respect to the stock price and the interest rate respectively. Both 

Figures show that TKN prices are always above DL prices and TF prices. This can be 

explained as follows. TKN and DL models differ only on the recovery value assumption. 

We expect the higher the recovery value the higher the price. TKN assumes recovery of 

market value and DL recovery of par. Whether the market value of the CB is at a discount 

or at a premium with respect to the face value depends on the parameters. Although in 

general, for a convertible, we would expect the market value to be higher than the face 

value, and therefore prices in TKN to be above prices in DL. This is observed in Figures 

4.5 and 4.6. The difference increases as the stock price increases, since the market value 

will increase, and also for higher interest rates since the present value of the face value will 

decrease.

Figures 4.5 and 4.6 show that TF model prices are always below DL and TKN. The 

justification is as follows. TF model differs from DL and TKN in the recovery value but 

also in the drift term. Although the recovery value in TF is higher than the recovery value
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Fig. 4.5. Comparison between previous models. CB value versus stock price.

in TKN and DL,

VtTF* =  Ut + R W t > RUt +  RW t = RVt = VtTKN*, (4.244)

the instantaneous rate of return in TF is lower

f i l f  = n  - d t < p7vFN =  /rgL = rt — dt + pt . (4.245)

Because in TF the stock does not jump upon default, we do not need an extra compensation 

for risk when we hold an option to buy the stock, and this makes the CB value lower than 

in TKN and DF, where an extra reward for bearing the risk is allowed. The difference is 

higher for higher levels of the stock and the interest rate.

Figure 4.7 shows the difference between the value of the riskless CB (obtained by 

setting p =  0) and the risky CB value, plotted against the stock price, for TF, DF and 

TKN models. Figure 4.7 shows that TF risky prices are always less than riskfree prices, 

and the difference decreases as the stock price increases. On the contrary, for our choice 

o f parameters, Figure 4.7 shows that TKN and DF produce risky prices that are above
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Fig. 4.6. Comparison between previous models. CB value versus interest rate.

Previous Models

Fig. 4.7. Comparison between previous models. Riskless CB minus risky CB values.

their riskless counterparts. The reason is that in their models the stock price is subject to 

default risk and an option to buy a risky stock has a higher value than an option to buy a 

riskless one. If we think of the convertible as a portfolio o f debt and equity, we can see 

that increasing the hazard rate will decrease the value of the debt part but will increase the

value of the equity part.
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Comparison between splitting procedures

Figures 4.8 and 4.9 compare the different splitting procedures in the recovery of bond 

part plotted against the stock price and the interest rate respectively. Figures 4.11 and 4.12 

do the same for the recovery o f bond and equity part model. In all 4 Figures, prices in 

splitting 3 are the highest, followed by splitting 1. Splitting 2 always produces the lowest 

prices.

In splitting 3 at maturity the bond pays the face value in all states of the world, in 

splitting 1 only pays the face value when it is not optimal to convert and in splitting 2  the 

bond always pays less than the face value. If we denote by W l the bond part value under 

splitting i, we have at maturity

W% > Wj. > W 2. (4.246)

Given that in this special case early exercise is not allowed, it follows that at any time t < T

I f f  > IF)1 > IFf.

In the recovery of bond part model, when conversion is allowed only at maturity, the 

default value is given by V f  = RWJ;. Therefore we would expect the following relation-

ship between the CB values

l ) 3 >  V) 1 >  Vt2. (4.247)

This relation can be observed on the Figures 4.8 and 4.9.

Figure 4.10 shows the difference between riskless and risky prices in the recovery 

of bond part model. Risky prices are always below riskfree prices. When the stock price 

increases, risky price increase towards riskless prices, and then decrease again. This be-
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Fig. 4.8. Comparison between splitting procedures in the recovery of bond part model. CB 
value versus stock price.

haviour is different in the recovery of equity and bond part model (Figure 4.13) in which 

risky prices converge monotonically to riskless prices as the stock price increases.

Finally comparing Figures 4.8 and 4.9, for RB, with Figures 4.11 and 4.12, for RBE, 

we can see that the values in the recovery of bond part, if  conversion is not allowed, are 

always below values in the recovery of bond and equity part model. This is easily explained, 

given that both models differ only in the default values, and the default value in the recovery 

o f bond part, R W ,  is always below the default value in the recovery o f bond and equity 

part model, (1 — rj)U + RW .

4.5 Numerical Solution

DL and TKN implement their model in a lattice. TF use explicit finite difference and an 

explicit algorithm to solve the coupled system of equations. AFV use a modified Crank-
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Fig. 4.9. Comparison between splitting procedures in the recovery o f bond part model. CB 
value versus interest rate.

Splitting in RB Model

100 150 200

Stock price

-* —Spll 

—*—Spl2 

— • — Spl3

Fig. 4.10. Comparison between splitting procedures in the recovery of bond part model. 
Riskfree CB minus risky CB value.
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Fig. 4.11. Comparison between splitting procedures in the recovery of bond and equity part 
model. CB value versus stock price.

Splitting RBE Model

Fig. 4.12. Comparison between splitting procedures in the recovery o f bond and equity part 
model. CB value versus interest rate.
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Splitting in RBE Model

10

Spll
Spl2
Spl3

-2

Stock price

Fig. 4.13. Comparison between splitting procedures in the recovery of bond and equity part 
model. Riskless CB minus risky CB value.

Nicolson method combined with a penalty method for the free boundaries and an implicit 

algorithm to solve the coupled system of equations.

We discretize using a Lagrange-Galerkin method, and we use a duality method to deal 

with the free-boundaries. When it is mandatory to solve the coupled system of equations, 

we do so for the total value o f the CB and the bond part, rather than for the equity and bond 

components. In order to solve the coupled system of equations (4.175), (4.182) we use an 

implicit algorithm.

The valuation of convertible bonds can be considered as a special case of the more 

general two-factor option problem presented in Chapter 2. In Chapter 3 the method was 

implemented to price convertible bonds ignoring credit risk. The method described in 

Chapter 2 was for pure diffusion processes. Flowever, as implied from the results in Section 

4.1, we can easily extend the solution procedure to jump diffusion processes. Indeed, 

equation (4.175) differs from equation (3.70), where credit risk was ignored, only by the 

tenn pt max {nSt (1 — rjt) , R W t}, the drift coefficient and the discount term. The term
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pt max {nSt (1 — rjt) , R W t} may be considered as a time and W —depending right hand 

side term in the equation, and can easily be incorporated in the procedure. Moreover the 

model in Section 4.1 is a special case of the problem (2.7) — (2.11) for the choices:

X\ =  rt , (4.248)

= St , (4.249)

A n
1 l l

= 2 °^ ’ A\2 = A 21 = - p S t(JsVri 7122 =  2s St, (4.250)

By = Pn B 2 = (rt -  dt +ptVt) . (4.251)

A q =  rt + p u F  = ptV* (St , t ) , (4.252)

Ri in , Su t) =  max {nSt , Mpt} , (4.253)

Ro (rt ,S u t ) =  max {nS t , M ct} • (4.254)

Also notice that the problem for W ,  (4.182 ), (4.184) together with any of the final condi-

tions (4.189), (4.194) or (4.196), falls also into the general problem (2.7) — (2.11) andean 

be solved numerically using the characteristics/finite element approach. In fact the problem 

for W  is similar to the one for V  but with

and

0'

or (4.255)

R i( r t ,S u t)  =  0, (4.256)

R 2 (rt ,S t,t)  =  0 0 . (4.257)
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4.5.1 Solution of Coupled System of Equations

In the recovery of bond part and in the recovery of bond and equity part it is mandatory to 

solve a coupled system of equations. We will solve the system consisting of the equation 

for V  (4.175) and the equation for W  (4.182) with P w = 0.

In order to solve the coupled system of equations (4.175), (4.182) we use an implicit 

algorithm. Specifically, at each timestep we carry out the following iterative procedure:

• At the beginning, a function Wq approximating the solution at that timestep, is given 

arbitrarily.

• At iteration k an approximation of the bond part value, Wk, is known and we proceed 

to find Wk+1-

• The algorithm stops when two consecutive values of the total value of the bond, 14 

and Vk+i, differ less than a given tolerance.

The iteration step is as follows:

First, we work out a new approximation of V, 14+i, by solving equation (4.175) 

subject to unilateral conditions (4.176) — (4.179), the final condition (4.181) and the jump 

condition (4.180).

Then, we update 144 by solving equation (4.182) subject to the final condition (4.189), 

(4.194) or (4.196) and jump condition (4.184). Then we “block” the values o f the solution, 

Wk+1, according to conditions (4.186), (4.188) and (4.190) (or (4.195)) for the splitting 1 

or 2 respectively by means of the Lagrange multiplier values. Specifically we set:
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Splitting 1

Wk+i (rt,S t,t) = MPt if  Pfe+i (rt, St, t) < 0 and nSt < MPt, (4.258)

Wk+i (rt, S t , t) = 0 if  Pk+1 ( r t , S ' i ,  t) < 0 and n S ’t >  MPt, (4.259)

and

Wfc+1 (rt ,S u t) = 0 i f P fc+1 (rt,S u t) > 0. (4.260)

Also in the region nSt >  Mc where the solution was extended by nSt we set

Wk+1(rt,S t,t) = 0 . (4.261)

Splitting 2

As for splitting 1 except for condition

144+1 (rt, St, t) = M Pt -  nSt if Pk+1 (rt, St, t) < 0 and nSt < M Pt. (4.262)

4.6 Numerical Results

In this Section we first benchmark the model, investigating the convergence properties of 

the numerical method. We then compare the consequences of different splitting procedures 

under the recovery of bond part model. Then we compare convertible bond values obtained 

solving numerically previous models for CB valuation. Finally we provide some sensitivity 

analysis for our model, the dual recovery model.
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4.6.1 Benchmarking

In order to test the numerical method we consider a particular case for which an analytical 

solution for the CB value is available: a bond convertible just at expiration with stochastic 

interest rate but zero correlation between the state variables. This was investigated in detail 

in Section 4.4.

We set

R i{ r t ,S u t) = 0 , (4.263)

R 2 { n ,S t,t) =  o o , (4.264)

given that there is no early-exercise embedded options.

We provide benchmarking results for the TF, TKN, and DL24 and the recovery of 

bond part (RB) and recovery of bond and equity part (RBE) models. We use for the default 

specification p =  0.05, p = 0.7 and R  =  0.4.

The volatility of the underlying stock is a s = 15% and its continuous dividend yield 

is d — 4%. We value a convertible bond with face value of F  = 100 currency unit and 

T  = 3.5 years to maturity. The bond can be converted into n = 1 units of the stock. Interest 

rate parameters are 6t =  6 =  0.07, a = 0.1 and oy =  0.02. We assume zero correlation 

between the spot interest rate and the underlying stock. The instantaneous interest rate is 

r  =  0.07 and the stock price S  =  1 0 0 .

Domain bounds are set to be f lr =  [0,1.5] and f ls = [0,400]. corresponds to 

roughly a 99.9% confidence interval on S t - We give L2 errors over both the entire domain

24 For DL we assume deterministic interest rates.
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Q and also over a narrower region of interest fl = ilr x i ls , where =  [0,0.15] and 

(Is = [50, 200]. Q5’ is roughly a 99% confidence interval on S t - reflects a range of 

values of r  and S  likely to be observed in practice and so the error on fl is likely to be more 

representative.

We present results obtained for successive grid refinements for the relative error in 

L2. Mesh 1 is the coarsest with just 15 space steps in the interest rate dimension, 40 in 

the stock dimension, and 35 time steps up to time T  =  3.5. Each successive mesh doubles 

both the number of space steps in each dimension and the number o f time steps so that the 

finest mesh, mesh 4, has 120 interest rate steps, 320 equity steps, and 280 times steps up to 

three years and a half. For DL and TKN models we double the number of time steps for all 

meshes, because better convergence was achieved in that way; we also show an extra level 

of refinement (mesh 5) for these two models. We use as benchmarking measure the total 

relative error define as

So 11 errort \ \ % dt 2
~r 1 ’

J0 \\solutiont 11j;2 dt

where

and

errort =  exact solutiont —  n t i m  solutiont.

The analytical formulae for the "exact solution" in all nested models is summarized 

in Table 4.11; the value of the "exact solution" for the current level of the interest rate and 

the stock price is given in Table 4.13.
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Model TF DL TKN RB RBE
spll spl2 spl3 spll spl2 spl3

CB value 89.31 94.41 95.16 86.16 85.13 89.72 89.84 89.57 90.75

Table 4.13. Analytical solution for bond convertible only at expiration with stochastic in-
terest rates in all nested models, for r  =  0.07 and S  = 100

The numerical results are presented in Tables 4.14-4.22. On the boundaries we use 

the analytical solution. In each case two of the boundaries are Dirichlet and two are Neu-

mann. ‘Error TD’ is the error on the entire domain O; ‘Error RE is the error on the region 

o f interest, O. ‘Factor’ is progressive error reduction factor in moving to a finer mesh level 

from the preceding mesh level. Times are in seconds.25

The characteristics/finite element method was analyzed by Pironneau (1982) for convection- 

diffusion equations. Unconditional stability and convergence order of O (h) + O +

O (At)  have been proved under suitable conditions for the coefficients of the equation. Al-

though our models do not satisfy the required assumptions, the same error estimate has 

been obtained empirically. In all Tables we see that the ratio between two consecutive er-

rors tends to 2, which is consistent with the order o f convergence given above. Also on 

the region of interest the convergence rate is faster than on the whole domain. Errors are 

significantly less on the region of interest compared to the total domain.

In the following Sections, Tables are computed using mesh 4 and asymptotic bound-

ary conditions. All specifications lie within the region o f interest so, in line with the errors 

reported, CB values are reported to 2 decimal places. With early exercise possible and 

semiannual coupons, a typical execution time is around 2500 seconds if a splitting is spec-

ified and 800 seconds otherwise.

25 The implementation was in Fortran 77 run on a 2.4 Mhz Pentium IV PC.
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TF
M e sh E r r o r T  D F actor E rro r  R I F actor T im e

1 IA 9 E  -  02 - 5.93E  -  03 - 1
2 7.897; -  03 1.90 2.6325 -  03 2.26 8
3 4.0715 -  03 1.94 1.6015 -  03 1.64 119
4 2.08E  -  03 1.96 1.0615 — 03 1.51 1547

Table 4.14. Error and convergence in Tsiveriotis and Fernandes model

TKN
M e sh E r r o r T  D F actor E rro r  R I F actor T im e

1 8.36E  -  03 - 5.25E  -  03 - 0
2 4.597; -  03 1.82 2.9915 -  03 1.76 6
3 2.4515 -  03 1.88 1.9225 — 03 1.56 50
4 1.287;-03 1.91 1.197; - 0 3 1.61 459
5 6.66£ -  04 1.92 7.91 E  -  04 1.51 4811

Table 4.15. Error and convergence in Takahashi, Kobayashi and Nakagawa model

DL
M e sh E r r o r T  D F  actor E rro r  R I F actor T im e

1 9.36E  -  03 4.34E  -  03 0
2 5.077; -  03 1.85 2 .287;-03 1.90 140
3 2.677; -  03 1.90 1.4575 -  03 1.58 280
4

COo100COT—1 1.93 8.10E  -  04 1.79 560
5 7.05E  -  04 1.96 4.287; -  04 1.89 4521

Table 4.16. Error and convergence in Davis and Lischka model

RB with splitting 1
M e sh E r r o r T  D F  actor E rro r  R I F actor T im e

1 1.597; - 0 2 - 4.1025 — 03 - 1
2 8.367; -  03 1.90

COO1i-H 2.11 8
3 4.317; -  03 1.94 1.277;-03 1.53 122
4 2.207;-03 1.96 8.727; -  04 1.46 1813

Table 4.17. Error and convergence in recovery of bond part model: splitting 1

RB with splitting 2
M  esh E rro rT  D F actor E rro r  R I F  actor T im e

1 1.597; -  02 - 5 .517;-03 - 0
2 8.397; -  03 1.90 2.767; -  03 2 8
3 4.337; -  03 1.94 1.687; -  03 1.64 119
4 2.217; -  03 1.96 1.087;-03 1.55 1530

Table 4.18. Error and convergence in recovery of bond part model: splitting 2



4.6 Numerical Results 146

RB with splitting 3
M e sh E rro rT D F actor E rro r  R I Factor T im e

1 1.58£ - 0 2 - 5.08E  -  03 - 1
2 8 .31R -03 1.90 2.532? — 03 2.01 8
3 4.282? -  03 1.94 1 .5 5 £ -0 3 1.63 119
4 2.191? -  03 1.96 9.97E  -  04 1.55 1538

Table 4.19. Error and convergence in recovery o f bond part model: splitting 3

RBE with splitting 1
M e sh E rro rT  D F actor E rro r  R I F actor T im e

1 1.552? -  02 - 4.95E  -  03 - 1
2 8 .1 6 E -0 3 1.90 2 A 8 E  -  03 2 8
3 4 .2 1 £ -0 3 1.94 1.552? — 03 1.6 121
4 2.152? — 03 1.96 1 .0 3 £ -0 3 1.5 1585

Table 4.20. Error and convergence in recovery o f bond and equity part model: splitting 1

RBE with splitting 2
M e sh E r r o r T  D F actor E rro r  R I F actor T im e

1 1 .5 5 E -0 2 - 5.28E  -  03 - 1
2 8 .1 6 £ -0 3 1.90 2 M E  -  03 2 8
3 4 .2 1 £ -0 3 1.94 1 .6 2 £ -0 3 1.63 119
4 2.15E — 03 1.96 1 .0 5 E -0 3 1.55 1528

Table 4.21. Error and convergence in recovery of bond and equity part model: splitting 2

RBE with splitting 3
M e sh E rro rT D F actor E rro r  R I F actor T im e

1 1.55.E — 02 - 5.211? — 03 - 1
2 8.15.E-03 1.90 2.62E  -  03 1.99 7
3 4.20£ -  03 1.94 1.612? -  03 1.63 120
4 2 .1 4 £ -0 3 1.96 1.052? — 03 1.54 1535

Table 4.22. Error and convergence in recovery of bond and equity part model: splitting 3
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Contract parameters
Parameter F T n K
Base 100 3.5 i 3%

Table 4.23. Contract parameter values

Process parameters
For r For S Corn

r e a (T r S &S d P
0.07 0.07 0.1 0.02 too 0.15 0.04 0.1

Table 4.24. Process parameter values

4.6.2 Comparison of Nested Models based on Numerical Solutions

In this Section we extend the comparative analysis done in Section 4.4 by allowing sto-

chastic interest rates, correlated with the stock price, continuous conversion and coupon 

payments. In this case there is no analytical solution for the value o f the CB and the com-

parison is based on the numerical results. First we compare the three splitting procedures 

in the recovery of bond part model. Then we compare CB values in previous models. The 

bond can be converted at any time into n — 1 unit o f the stock. The bond pays a coupon 

K  =  3 semiannually. The numerical solution is shown at fixed points of the domain for dif-

ferent moneyness of the option and different interest rate levels. The instantaneous interest 

rate is r  =  0.07 and the stock price S  — 100 for the ATM case, S  = 95 for the OTM case 

and S  — 105 for the ITM case. We show the sensitivity to the credit spread s = p (1 — R). 

We fix the loss rate, rj, and the recovery rate, R, and we vary the hazard rate, p. All para-

meters are given in Tables 4.23, 4.24 and 4.25. Results have been calculated using mesh 4.
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Recovery and
loss aarameters
R V

0.4 0.7

Table 4.25. Recovery and loss parameter values

Comparison Between Splitting Procedures in the Recovery of Bond Part Model

First we show numerical results for the three splitting procedures in the recovery of 

bond part model.

In the recovery o f bond part model the default value is the maximum between the 

value if converted and a fraction of the bond part. It is mandatory to solve a coupled 

system of equations, given that we need the value of the bond part W  to compute default 

value of the convertible. We expect that different definitions of the bond part (equivalently 

different splittings) will lead to different default values and therefore different convertible 

bond prices.

Table 4.26 shows the numerical solution for the recovery of bond model with split-

ting 1, Table 4.27 for splitting 2 and Table 4.28 for splitting 3. For this coupon bearing, 

continuously convertible CB the monotonic relation among the splitting procedures shown 

in Section 4.4 still holds. Splitting 3 leads to the highest values, followed by splitting 1 and 

2. The three Tables show that in all three models CB values decrease as the credit spread, 

s, increases. The sensitivity to the credit spread is higher for lower stock prices and lower 

interest rates. Splitting 2 is the most sensitive to movements in the hazard rate, followed by

splitting 1 and 2 .
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Splitting 1
r 0.06 0.07 0.08
s OTM ATM 1TM OTM ATM ITM OTM ATM ITM
0 109.59 112.32 115.33 108.13 111.02 114.20 106.80 109.85 113.17

0.01 107.59 110.52 113.75 106.30 109.41 112.79 105.14 108.40 111.92
0.02 105.81 108.98 112.41 104.71 108.03 111.60 103.71 107.17 110.87
0.03 104.28 107.66 111.29 103.33 106.85 110.60 102.48 106.13 109.99
0.04 102.96 106.54 110.34 102.15 105.86 109.77 101.43 105.25 109.26
0.05 101.84 105.59 109.55 101.15 105.02 109.07 100.54 104.51 108.64

Table 4.26. Sensitivity to the hazard rate in the recovery o f bond part model: splitting 1

Splitting 2
r 0.06 0.07 0.08
s OTM ATM ITM OTM ATM ITM OTM ATM ITM
0 109.59 112.32 115.33 108.13 111.02 114.20 106.80 109.85 113.17

0.01 107.41 110.40 113.66 106.17 109.31 112.72 105.03 108.33 111.87
0.02 105.56 108.80 112.28 104.50 107.88 111.50 103.54 107.06 110.79
0.03 104.00 107.46 111.15 103.11 106.69 110.49 102.30 106.00 109.90
0.04 102.69 106.35 110.21 101.93 105.70 109.66 101.25 105.13 109.17
0.05 101.59 105.42 109.43 100.95 104.88 108.97 100.38 104.40 108.57

Table 4.27. Sensitivity to the hazard rate in the recovery of bond part model: splitting 2

Splitting 3
r 0.06 0.07 0.08
s OTM ATM ITM OTM ATM ITM OTM ATM ITM
0 109.59 112.32 115.33 108.13 111.02 114.20 106.80 109.85 113.17

0.01 107.91 110.84 114.03 106.62 109.70 113.05 105.44 108.66 112.14
0.02 106.43 109.54 112.90 105.28 108.53 112.03 104.23 107.62 111.24
0.03 105.12 108.39 111.90 104.09 107.49 111.13 103.16 106.69 110.44
0.04 103.94 107.37 111.01 103.03 106.57 110.34 102.20 105.86 109.73
0.05 102.89 106.46 110.23 102.08 105.75 109.63 101.34 105.13 109.11

Table 4.28. Sensitivity to the hazard rate in the recovery of bond part model: splitting 3
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TF
r 0.06 0.07 0.08
s OTM ATM ITM OTM ATM ITM OTM ATM ITM
0 109.59 112.32 115.33 108.13 111.02 114.20 106.80 109.85 113.17

0.01 107.81 110.74 113.95 106.51 109.60 112.96 105.33 108.57 112.07
0.02 106.10 109.23 112.63 104.95 108.23 111.77 103.91 107.34 111.01
0.03 104.46 107.78 111.36 103.45 106.92 110.63 102.56 106.16 110
0.04 102.88 106.39 110.14 102.01 105.66 109.54 101.25 105.04 109.03
0.05 101.35 105.04 108.97 100.63 104.45 108.50 100 103.95 108.10

Table 4.29. Sensitivity to the hazard rate in Tsiveriotis and Fernandes model

TKN
r 0.06 0.07 0.08
s OTM ATM ITM OTM ATM ITM OTM ATM ITM
0 109.59 112.32 115.33 108.13 111.02 114.20 106.80 109.85 113.17

0.01 108.97 112.05 115.40 107.73 110.96 114.45 106.60 109.98 113.60
0.02 108.78 112.21 115.88 107.74 111.30 115.09 106.79 110.49 114.39
0.03 108.97 112.73 116.69 108.10 111.97 116.04 107.31 111.30 115.45
0.04 109.49 113.55 117.78 108.76 112.92 117.23 108.10 112.35 116.74
0.05 110.29 114.62 119.09 109.68 114.08 118.62 109.13 113.61 118.20

Table 4.30. Sensitivity to the hazard rate in Takahashi, Kobayashi and Nakagawa model

Comparison of Default Specification in Previous Models (TF, TKN, DL )

In this Section we compare convertible prices based on different previous models. 

We present the numerical solution at fixed levels o f stock and interest rate obtained for TF, 

TKN and DL models in Tables 4.29, 4.30 and 4.31 respectively. The numerical results 

in this Section are also consistent with the results based on the analytical solution for the 

special CB with deterministic interest rates in Section 4.4. TKN gives the highest CB 

values, followed by DL and TF.

Table 4.29 shows that in TF model the CB values decrease as the credit spread in-

creases. On the contrary, in TKN (see Table 4.30) and DL (see Table 4.31) models, prices
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DL
r 0.06 0.07 0.08
s OTM ATM ITM OTM ATM ITM OTM ATM ITM
0 109.59 112.32 115.33 108.13 111.02 114.20 106.80 109.85 113.17

0.01 108.79 111.82 115.11 107.56 110.73 114.16 106.43 109.75 113.31
0 .02 108.38 111.68 115.21 107.33 110.76 114.41 106.38 109.94 113.70
0.03 108.28 111.82 115.56 107.39 111.04 114.88 106.58 110.34 114.26
0.04 108.43 112.18 116.09 107.67 111.51 115.50 106.97 110.90 114.96
0.05 108.78 112.69 116.74 108.12 112.10 116.21 107.51 111.57 115.73

Table 4.31. Sensitivity to the hazard rate in Davis and Lischka model

TKN/DL/AFV Total Default with R  =  0
r 0.06 0.07 0.08
s OTM ATM ITM OTM ATM ITM OTM ATM ITM
0 109.59 112.32 115.33 108.13 111.02 114.20 106.80 109.85 113.17

0.01 107.86 110.79 114.00 106.57 109.66 113.01 105.39 108.63 112.13
0 .02 106.34 109.46 112.85 105.20 108.47 111.99 104.16 107.58 111.23
0.03 105.00 108.31 111.86 104.00 107.44 111.12 103.09 106.66 110.46
0.04 103.83 107.30 111.00 102.95 106.55 110.36 102.15 105.87 109.79
0.05 102.80 106.43 110.27 102.03 105.78 109.72 101.34 105.19 109.23

Table 4.32. Sensitivity to the hazard rate in in Ayache, Forsyth and Vetzal Total Default

decrease when the credit spread increases only for low credit spreads. For high credit 

spreads prices increase above their riskfree counterpart.

For zero recovery rate TKN and DL models are identical and they also agree with 

AFV Total Default model (77 =  1, R  — 0). Table 4.32 shows the numerical solution for this 

case. Prices are below TKN and DL with no zero recovery rate as it would be expected. 

But prices are higher than in TF with non zero recovery rate.

For completeness we also show results for AFV Partial Default model with zero 

recovery rate (77 =  0, R  =  0) in Table 4.33. AFV Partial Default model is similar, but 

not identical to TF. In TF the full market value of the equity part is recovered on default. 

In AFV Total Default model, the value upon conversion n S  is recovered instead. In TF 

model the equity part U is a security that pays at maturity either 0 or the equity value upon
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AFV Partial Default with R  = 0
r 0.06 0.07 0.08
s OTM ATM ITM OTM ATM ITM OTM ATM ITM
0 109.59 112.32 115.33 108.13 111.02 114.20 106.80 109.85 113.17

0.01 109.16 111.95 115.03 107.75 110.70 113.93 106.45 109.56 112.94
0.02 108.74 111.60 114.73 107.38 110.39 113.67 106.12 109.29 112.71
0.03 108.34 111.26 114.44 107.01 110.09 113.41 105.80 109.02 112.48
0.04 107.95 110.93 114.17 106.67 109.79 113.17 105.49 108.76 112.27
0.05 107.57 110.61 113.90 106.33 109.51 112.93 105.19 108.51 112.06

Table 4.33. Sensitivity to the hazard rate in in Ayache, Forsyth and Vetzal Partial Default

conversion n S  (see 4.192). Therefore, if  default occurs at maturity, in TF model we may 

recover Ut  = 0 <  n S r  when S t  < F; a similar argument applies to any other default time 

r  < T. That is why AFV Partial Default model produces prices above TF.

Notice that the total default and partial default models reduce to one PDF only, and 

therefore there is no need to solve the couple system of equations.

4.6.3 Pricing in the Dual Recovery Model

In this Section we explore the effect upon CB values o f altering parameter values within 

our dual recovery model, looking particularly at the exercise conditions, equity and interest 

rate values and parameters, the recovery parameters R  and rj, and the default parameters k,

a, b.

Each parameter has a base case value, and a high and a low value. These are given 

in Tables 4.34, 4.35, 4.36 and 4.37. For the base case we suppose that the CB has T  = 3.5 

years to maturity with face value F  =  100. The CB may be converted at any time with 

conversion ratio nt = n = 1. The CB pays a coupon o f 3% every half year, an annual 

dividend yield of 4%. It is callable and redeemable at any time with call and redemption
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Contract parameters
Parameter Face value M a tu r ity K
Base 100 3.5 3%
High 105 5 4%
Low 95 1 2%

Table 4.34. Contract parameter values

Exercise parameter values
Parameter C o nversion  ratio C all P rice P u t P rice
Base 1 110 95
High 1.1 115 100
Low 0.9 105 90

Table 4.35. Exercise parameter values

prices given by Mc = 100 and M P =  95. The initial stock value is S0 = 100 and initial 

interest rate is r 0 =  0.07. For the default intensity function we set k = 0.15, a =  0.015, 

b = 1.5, giving pt £ [0, 0.7] over the computational domain, with pt =  0.03 in the base 

case. For middling values o f S t and rt, pt has about the same sensitivity to changes in each. 

Other parameter values are given in the Tables.

Exercise Conditions

We investigate the effect of the presence or absence o f the various exercise conditions.

We first consider a riskless coupon bond and then, we add default and various combinations 

o f exercise conditions, ending with the full specification of the base case CB. We also

Process parameters

Parameter
For r For S  Corr.

r e a <Jr S d P
Base 0.07 0.07 0.1 0.02 100 0.15 0.04 0.1
High 0.08 0.08 0.15 0.03 105 0.20 0.05 0.15
Low 0.06 0.06 0.05 0.01 95 0.10 0.03 0.05

Table 4.36. Process parameter values
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Default, recovery and loss parameters
Default Recovery Loss

k a b R V
Base 0.15 0.015 1.5 0.4 0.7
High 0.2 0.03 3 0.5 0.8
Low 0.1 0.003 0.3 0.3 0.6

Table 4.37. Default and recovery parameter values

give an approximation to the value o f dVt/d r  found by central difference from CB values 

computed at different initial values of the interest rate.

Tables 4.38 and 4.39 show the results. ‘D ef’ is defaultable (with ‘dual’ recovery), 

‘Con’ is convertible, ‘Red’ is redeemable and ‘Call’ is callable. A and T are the CB delta 

and gamma respectively. The riskless bond values are Vasicek values computed analytically 

and shown for comparison. The base case value o f the CB is 104.14, shown in bold. Table 

4.38 shows the standard case. For comparison, Table 4.39 shows the effect of reducing the 

conversion factor from 1 to 0.9. We first discuss Table 4.38.

With our specification and model parameters, the presence of default reduces the 

value of the corresponding riskless bond by a little over 6 %. The bond has a high credit 

risk, higher for low interest rate and low stock prices.

Adding the conversion feature increases the value of the CB by around 18.5% in the 

base case. The effect is greater at higher values of So as the CB becomes more in the 

money, and at higher values of r .  The introduction of the call feature reduces the value of 

the CB by around 4%. The reduction is greater at higher values of S0 as the CB is more 

likely to be called. Adding the redemption feature has very little effect on the CB value,

with our specification.
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Equity deltas are significant. They vary only a little as the initial interest rate changes, 

increasing slightly as the interest rate increases. Introducing conversion to a straight de- 

faultable bond increases the delta by a factor of 10. The call feature does affect the stock 

delta, reducing it by 17% in the basecase. Adding a redemption feature also affects the eq-

uity delta, reducing it by a bit less than adding a call feature. When added together, call 

and put features reduce the equity delta by around 20%. The basecase CB has delta 0.5 as 

it would be expected from an at the money issue.

dVt/d r, the CB’s rho, indicates the sensitivity of the CB to changes in the initial 

value of the interest rate. The conversion feature reduces the absolute size of the CB’s rho 

by around a third, depending on the initial stock value. The redemption feature has little 

effect, but the call feature reduces rho at higher stock values.

Allowing the riskless bond to become defaultable reduces rho very little but adding 

additional optionality reduces it further, by about 80% in the base case. For this CB, ad-

ditional optionality effectively decreases the interest rate exposure of the CB. Conversion 

significantly increases its equity value exposure, but callability and putability smooth this 

effect.

Table 4.39 shows how the situation changes if the conversion ratio is significantly 

reduced, to n = 0.9. Now the CB is out of the money.

Adding convertibility increases the value of the defaultable bond by about 12%. 

Adding the call increases the value by around 2%, half the effect of the n  =  1 case. The re-

demption features has little effect on the CB value, although the effect doubles with respect 

to the n = 1 case. Sock deltas are affected, but by less that in the n = 1 case when adding
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Exercise Conditions So r d V t/d r
Def Con Red Call 0.06 0.07 0.08

Riskless Bond 100 99.43 96.76 94.16 -263.1
95 93.32 90.91 88.57 -237.9

c - - - 100 93.75 91.32 88.96 -239.6
(Defaultable bond) 105 94.15 91.70 89.32 -241.3

A 0.08 0.08 0.08
r 0.00 0.00 0.00
95 105.77 104.75 103.82 —97.7

c c - - 100 109.11 108.21 107.39 -85.8
105 112.66 111.87 111.16 -74.8
A 0.69 0.71 0.73
r 0.01 0.01 0.01
95 106.22 105.31 104.50 -85.9

c V - 100 109.39 108.57 107.82 -78.3
105 112.84 112.09 111.43 -70.2
A 0.66 0.68 0.69
r 0.01 0.01 0.01
95 102.19 101.30 100.49 -85.3

V V - c 100 104.45 103.81 103.23 -61.1
105 107.05 106.69 106.37 -33.9
A 0.49 0.54 0.59
r 0.01 0.01 0.02
95 102.65 101.88 101.20 -72.4

c c c 100 104.71 104.14 103.63 -53.8
(Base case) 105 107.16 106.84 106.55 -30.7

A 0.45 0.50 0.53
r 0.02 0.02 0.02

Table 4.38. Effect of Exercise Features, base case, n =  1

callability, and by more when adding the put feature. Rhos are reduced, but by much less 

than in the n =  1 case.

The CB of Table 4.39 is relatively ‘bond-like’ whereas that of Table 4.38 is much 

more ‘equity-like’.

Table 4.40 shows the affect of changing exercise conditions. Since the CB is at the 

money changing the conversion ratio has a significant effect. Changing the redemption 

level has little effect but changing the call level has a large effect for this at the money CB.
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Exercise Conditions So r dVt /  dr
Def Con Red Call 0.06 0.07 0.08

Riskless Bond too 99.43 96.76 94.16 -263.1
95 93.32 90.91 88.57 -237.9

7 - - - too 93.75 91.32 88.96 -239.6
(Defaultable bond) 105 94.15 91.70 89.32 -241.3

A 0.08 0.08 0.08
r 0.00 0.00 0.00
95 100.71 99.38 98.15 -127.9

- - too 103.19 101.98 100.87 -115.7
105 105.91 104.83 103.83 -103.7
A 0.52 0.54 0.57
r 0.01 0.01 0.01
95 101.59 100.52 99.56 -101.7

v/ y/ yj - 100 103.79 102.77 101.84 -97.5
105 106.32 105.36 104.49 -91.5
A 0.47 0.48 0.49
r 0.01 0.01 0.01
95 98.82 97.49 96.26 -128.2

V - yj 100. 100.57 99.41 98.34 -111.4
105 102.39 101.44 100.55 —91.6
A 0.36 0.39 0.43
r 0.00 0.00 0.01
95 99.77 98.73 97.80 -98.5

V 7 V 100 101.21 100.26 99.40 -90.8
(Base case) 105 102.81 101.99 101.24 -78.2

A 0.30 0.33 0.34
r 0.01 0.01 0.01

Table 4.39. Effect of Exercise Features, low conversion ratio n = 0.9

Exercise parameter values
Parameter C onversion  ra tio C all P rice P u t P rice
High 110.20 105.58 105.03
Low 100.26 102.28 103.84

Table 4.40. Sensitivities to changes in exercise conditions
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r-parameters 5-parameters Coir.
Parameter: r e a O’ r 5 a s d P
High: 103.63 104.09 104.12 104.27 106.84 104.84 103.76 104.17
Low: 104.71 104.19 104.16 104.00 101.88 103.31 104.50 104.11
Delta: -53.8 - 5 -0 .4 13.5 0.5 15.3 -36.7 0.7
Gamma: 632 50 1 -137 0 -54 -186 0

Table 4.41. Sensitivities to changes in parameter values

Parameter Deltas and Gammas

We investigate the sensitivity of the base case CB to changes in parameter values. We 

value the CB at the higher value and lower value of each parameter. The delta and gamma 

are then computed by central differences. Results are given in Table 4.41. r  is the initial 

value of the stochastic Vasicek interest rate.

Deltas are significant. The stock volatility as  has similar delta to the interest rate 

volatility ar. Increasing the correlation p slightly increases the bond value. 6, the level to 

which rt reverts, has a slightly smaller delta, but still significant since it reflects the longer 

term value o f rt. The sensitivity to the dividend yield is very high, as it could be expected 

for an ATM issue.

The Default Specification

We explore the consequences of changing the default specifications. Tables 4.42, 

4.43 and 4.44 summarizes the results.

Care must be taken in interpreting these Tables. They assume that the initial stock 

value S0 and the default and loss parameters (R, k, a, b, rf) may be determined indepen-

dently, so that, for instance, the default rate might increase while So remains fixed. In
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practice an increase to p might be expected to cause So to fall, so that the CB value would 

be computed for a reduced value of So-

Note that these considerations do not affect the practical implementation of a model. 

Calibrating to market data fits to mutually determined values of So and the default and loss 

parameters, so CB values are correctly determined.

Table 4.42 shows sensitivities to the recovery rate, R, on the bond part and base, 

high and low values of p, conditional on S0 remaining fixed. The effect o f the recovery 

rate is very little, specially for low probability of default. Increasing the probability of de-

fault decreases the bond value by almost 3%, whereas decreasing the probability of default 

increases the convertible value by much less.

Table 4.43 shows the effect on CB values o f k, a and b individually taking high or 

low values, conditional on fixed So. The movements are in the expected direction. Changes 

in a, the coefficient o f the stock price in the hazard rate function, have the bigger effect, 

followed by k, the hazard rate for zero interest rate and stock price, and b, the coefficient of 

the interest rate.

Table 4.44 shows the effect upon the CB value of varying the loss rate, rj, for different 

initial stock values 5 0. Changing rj has two opposite effects in the value o f the CB. On one 

hand, 1 — 77 is the recovery on the equity part of the bond. Therefore, we expect that 

an increase in rj will lead to a lower recovery value and consequently lower value of the 

convertible. On the other hand 77 appears in the drift of the stock price (and the CB value). 

The higher the loss rate on the stock, the higher the return required to compensate the 

risk, and therefore the higher the CB value. With our parameter choice the two effects
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Recovery
Rate

Hazard rate, p t
Base High Low

Base 104.14 101.34 105.58
High 104.19 101.38 105.59
Low 104.10 101.29 105.57

Table 4.42. Sensitivities to changes in default parameters

Parameter
Default Parameters

k a b
High 103.70 105.38 104.27
Low 104.65 102.09 104.03

Table 4.43. Sensitivities to changes in default parameters

almost cancel each other, although the effect on the recovery value seems more important; 

increasing the loss rate decreases slightly the value of the CB for all levels of the stock 

price.

Contract Parameters

Table 4.45 shows the effect on the CB value o f changing the face value, the maturity 

and the cash value of the coupon payments.26 Increasing the face value or the maturity 

of the contract has very little effect on the value of the CB; decreasing any of them has a 

significant effect. Changing the coupon has some effect, as it would be expected from an 

ATM issue.

26 When T  increases or decreases, the time step A t  is held constant and the number of time steps is varied.

So
Loss rate, rj

Base High Low
Base
High
Low

104.14 103.98 104.31
106.84 106.75 106.93
101.88 101.66 102.12

Table 4.44. Effect of Different Loss Rates
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Contract parameters
Parameter Face value M  a tu r ity Coupon
High 104.77 104.22 105.71
Low 101.88 101.66 102.11

Table 4.45. Effect o f contract parameters

Initial
Conditions

Constant r dVt /d r
r

0.06 0.07 0.08
95 102.40 101.61 100.93 -73.2

So 100 104.52 103.93 103.43 -54.4
105 107.05 106.72 106.43 -30.8

A 0.47 0.51 0.55
r 0.02 0.02 0.02

Table 4.46. Effect of a stochastic interest rate

The Effect of a Stochastic Interest Rate

We have seen the effect upon the bond value of changes in the parameters of the 

interest rate process. We can also test the effect of a stochastic interest rate. By setting 

ar =  0 and r = 9 we effectively make r non-stochastic. We investigate the presence of a 

stochastic interest rate in more detail. Table 4.46 gives the results, looking at several sets 

of initial conditions for the basecase convertible.

Comparing to Table 4.38, we see that making r  constant at its initial value has the 

effect of decreasing the value of the CB although the effect is very little. Making r constant 

slightly increases the rho and the delta.

4.7 Conclusions

The main contribution of this Chapter is to provide a valuation framework for contingent 

claims with equity, interest rate and default risk. It allows for early-exercise embedded
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options, modelled via variational inequalities. The model allows calibration o f interest 

rates to the actual yield curve, and hazard rates to market prices of derivatives as well as 

time series data. We identify most o f the previous models for CB valuation as special 

cases of our general framework and we extend them to two factors. We also propose three 

possible splitting of the CB value into bond and equity parts and we introduce new models 

for the recovery value. We analyze the different models and we make a choice among 

the splittings and recovery specification, leading to our dual recovery model. In the dual 

recovery model the bond and equity part are defined as the equity premium and the parity 

respectively. Moreover, the recovery is specified separately in the bond and equity part as 

a fraction o f the market value prior to default.

We propose an implicit algorithm to solve the coupled system of equations arising 

from the splitting procedures. A variational formulation of the problem is the starting point 

to carry out discretization using characteristics and finite element methods. An iterative 

algorithm is applied over the discretized problem to deal with the free boundaries arising 

from the embedded call, put and conversion options. We benchmark and study the conver-

gence.

Based on numerical results and analytical solutions, we compare consequences of 

different model specifications, regarding assumptions about hazard rate function, recovery 

value and stock price behaviour.

We find that different model specifications lead to significantly different CB prices. 

In particular some models produce risky prices that are below their risk-free counterpart. 

We provide some justification for the differences found.
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We conclude that it is necessary to choose the recovery value consistently with the 

hazard rate and the loss rate. In view o f our analysis, this seems easier to do if the con-

vertible value is split and default is specified independently in bond and equity parts. In 

particular, our dual recovery model provides reasonable results for a great number of para-

meter specifications. On the other hand, it has enough degrees of freedom to produce many 

different default-recovery scenarios.



Chapter 5
An Asset Based Model of Defaultable CBs with 

Endogenised Recovery

In the previous Chapter we presented an equity based model. This Chapter proposes 

another two-factor model for CBs in which the state variables are the firm’s asset value, 

Vt, and the short interest rate, rt. As discussed in Chapter 1, firm value models have the 

disadvantage that they require the estimation of the volatility of the firm’s asset, which is 

not observed. Besides, they lead to very complicated models for complex capital structures. 

However, they provide a natural link among the equity and debt, which is ideal to account 

for the hybrid nature of CBs. Also, as we will demonstrate in this Chapter, default risk is 

more easily incorporated in an asset based model.

We assume that the firm has a single debt class composed of convertible bonds. The 

CB defaults either at the unpredictable jump time of a counting process or, potentially, 

when the firm is required to make a cashflow to the CB. We endogenise recovery upon 

default into our model by assuming that the firm can invoke temporary protection against 

its creditors, leading to a quantification of the recovered value of the claim against the 

firm .27

We recall from Chapter 1 that credit risk models fall into two main categories, struc-

tural and reduced form. In structural models default occurs when a state variable, usually 

Vt, breaches a barrier level. It is necessary to specify the process for Vt, the location of the

2' This Chapter is based on Bermudez and Webber (2004).

164
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barrier, and the form and amount of recovery upon default. In reduced form models default 

is exogenous, occurring at the jump time of a counting process, Nt, with jump intensity Xt. 

The main issues in reduced form models are the specification of processes for the riskless 

short rate rt, the hazard rate \ t, and the loss rate wt. Our model has both reduced form and 

structural features.

The early models of convertible bonds (Ingersoll (1977a) and Brennan and Schwartz 

(1977)) follow Merton (1973) in using Vt with geometric Brownian motion as the sole state 

variable. Brennan and Schwartz (1980) and more recently Nyborg (1996) and Carayannopou- 

los (1996) include in addition a stochastic interest rate. Default risk is usually incorporated 

structurally by capping payouts to the bond by the value of the firm.

The majority of the recent literature uses the stock price, St, with geometric Brownian 

motion as the main state variable, incorporating either an interest rate variable, or default, 

or both.

Dimensional problems restrict the use of more than two factors in a model. Single 

factor models that incorporate default risk and do so in the reduced form framework in-

clude Andersen and Bufifum (2003), Takahashi, Kobayahashi and Nakagawa (2001) and 

Ayache, Forsyth and Vetzal (2002), (2003).28 Davis and Lischka (2002) present a reduced 

form modelling framework with several graphical comparisons. Tseveriotis and Fernandes 

(1998) and Yigitbasioglu (2002), extended by Ayache, Forsyth and Vetzal (2002), (2003), 

split the CB value into a bond part and an equity part each with its own discount rate. Tsev-

eriotis and Fernandes and Yigitbasioglu impose a fixed credit spread between the discount

28 Takahashi, Kobayahashi and Nakagawa also discuss a structural model of default.
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rates. Ayache, Forsyth and Vetzal and Takahashi, Kobayahashi and Nakagawa determine 

the credit spread via a hazard rate in a reduced form framework. All o f these models are 

equity based, with St as the main state variable.

Care is required to specify correctly what happens to the convertible bond when de-

fault occurs. When the underlying state variable is the asset value Vt, it is relatively easy 

to so do in a logically consistent way. When the state variable is the equity value St, con-

siderable difficulties may arise. For instance, boundary conditions are hard to specify in a 

financially consistent manner; some models may not require that when St —► 0  the bond 

value goes to zero.

To avoid specification problems inherent in the models based upon St, we choose 

Vt as our primary state variable, taking care to impose financially consistent boundary 

conditions. We are not aware of other reduced fonn specifications that model default when 

Vt is the state variable.

We obtain values by solving numerically a partial differential inequality (PDI) using 

the method described in Chapter 2.

We find that our recovery specification allows a wide range of behaviour upon default. 

For illustrative examples, we find that the sensitivity of the value of the convertible bond 

to changes in the asset value and interest rates depends crucially on the specification of a 

conversion feature. Its sensitivity to the call and redemption values also depends on the

conversion feature specification.
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The first Section of the Chapter describes the CB valuation model. The second Sec-

tion describes the numerical method. The third Section presents numerical results, and the 

final Section concludes.

5.1 An Asset Based Model for Convertible Bond Valuation

Let Vt denote the value of a firm’s assets, St the value of its equity and Dt the value of the 

firm’s debt, so that Vt =  St +  Dt.

Suppose that the value Vt o f the firm’s assets follows a jump-augmented geometric 

Brownian motion under the objective measure,

dVj =  ¡JtVt_dt +  av Vt_dzY ~ wtVt_dNt, (5.265)

where z]' is a standard Brownian motion and N, is a counting process with intensity Xt. wt 

is a proportional loss. Nt models exogenous default events. At a jump time r  for N t the 

asset value falls by a proportion wT,

VT = VT_ (1 -  wT) . (5.266)

Since we focus on asset risk and interest rate risk we assume that wt is non-stochastic. Un-

der the equivalent martingale measure (EMM) associated with the accumulator numeraire 

B t =  exp ^  f*  r sd s j the relative price Vt/B t is a martingale so

dVt = (rt +  A twt) Vt_dt +  av Vt_dzY  -  iutVt_dNt, (5.267)

where rt is the instantaneous short rate, Xt = Xtj  (t ) is the jump intensity under the EMM 

and Xtwtdt is the compensator for the jump component o f Vt. As discussed in the previous
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Chapter, 7  (t) is the measure adjustment of the hazard rate as given by Girsanov’s theorem 

(see Jacod and Shiryaev (1988)).

We suppose that the firm has issued a convertible bond with market value Dt at time 

t. The bond matures at time T  with face value F. At certain times U, i =  1 , . . . ,  N , =  T, 

it pays coupons of size Pti, and Vti = Vti-  — Pt,. At certain times up to and including time 

T  the bond may be converted to equity. Its value upon conversion at time t is ntVt where 

nt is the proportion of the firms asset value acquired by the debt holders.29 Dilution effects 

are absorbed into nt.

We assume that the CB may be both callable and redeemable with call price Ct and 

redemption price Rt at certain times t. On any particular date the CB need be neither 

callable nor redeemable but we assume that if  it is callable on some date then it is also 

convertible on that date. In the sequel we suppose that the call price and redemption price 

are imputed to accrue interest on coupons and that if  t{ < t < C+1 for coupon payment 

dates ti the call price and redemption price are set to be

Ct = c +  1 tl Pt.+1,
î

(5.268)

Rt = R +  f ~ U Pt +1,
î+1 î

(5.269)

for constants C  and R.

If the bond is redeemed, or if  a coupon or principal is to be paid, we suppose that the 

firm may choose to default. We assume that if  the firm defaults, whether exogenously or 

endogenously, the CB holders may choose to convert.

29 Unlike Ayache, Forsyth and Vetzal (2002) and Tsiveriotis and Fernandes (1998) we account for the effect 
of conversion upon the value of the firm’s equity. At conversion, the firm’s total value is unchanged but it 
becomes all equity.
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Our default specification has both reduced form and structural elements. Summariz-

ing, a default event may occur in one o f two ways. Firstly, when the counting process Nt 

jumps, the firm is supposed to have been hit by an unexpected exogenous default. Sec-

ondly, when a claim is made against the firm, specifically when the CB is redeemed or 

when a coupon or principal payment is due to be made, the firm may choose to default.

We first give a detailed specification of the components of the model. Then we dis-

play the PDI obeyed by the convertible bond value in this framework, and its boundary 

conditions.

5.1.1 Detailed Specification of the Model

To specify a model we need to define what happens to the CB value when default occurs, 

define the hazard rate process Xt, and provide an interest rate model. We consider each 

o f these in turn. Finally we bring together the separate components into a fully specified 

model with a consistent set of boundary conditions and inequality constraints.

The Default Event and Recovery Values

So far no assumptions have been made about what happens upon default. We now 

assume that at the time r  of a default event the firm loses the right to call the debt, and 

that CB holders may no longer redeem the debt, but upon default the CB holders have the 

option to convert.30 We write D* for the value of the CB at a default time r  and F* for the 

recovery value of the CB at time r .  Since bondholders have the option to convert in the

30 We see below it may indeed be optimal for the CB holders to do so.
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event of default we have

D* = max {Ft*, k t Vt } . (5.270)

Now we consider the recovery value F* of the convertible bond upon default.

As reviewed in Chapter 1, many different assumptions are made in the credit liter-

ature about the recovery value F* o f a defaulted bond. The most common models are 

the recovery of market value (RMV) and the recovery o f treasury (RT). The RMV model 

assumes that the ratio lT =  (Dt _ — F'*) /D T_, the loss in the event of default, may be 

modelled and so determines F* from D T_. The RT model supposes that F* is a function 

of the riskless present value to time r  of the face value F.

In Section 4.3.3 we analyzed models of recovery in the context o f CB valuation. 

Most models of convertibles assume that the recovery value is a fraction of either the bond 

principal F  (for example Andersen and Bufifum (2003), Davis and Lischka (2002)), or the 

market price of the CB just prior to default Dr_ (for example Takahashi, Kobayahashi and 

Nakagawa (2001)), or, in splitting schemes, some proportion of the bond part of the CB 

(for example Ayache, Forsyth and Vetzal (2003)).31 Each of these assumptions has some 

attractions, but neither attempts to model the recovery process, regarding recovery values 

as exogenously determined and separately estimated.

We endogenise recovery into our model.

In practice default may occur when the firm value is significantly greater than the 

value of its obligations, a feature allowed in our model. The outcome of default is to put 

the firm into reorganization during which time it receives protection against the claims of

31 Ayache, Forsyth and Vetzal (2002) discuss in detail default issues in equity based models.
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its creditors. The effect is that even though theoretically the firm may have the capacity to 

fulfill the claims against it, in practice the values of the claims may be considerably less 

than their face values.

We operationalise this as follows. We interpret a default event simply as a trigger 

that puts the firm into reorganization, giving the firm protection against its creditors. Upon 

default at time r  the bondholders have a claim of value FT against the firm where

F'r =

F  + Pt , 

F  + Pti,

F

if  r  =  T  is at the maturity time T,
J  if  default is at a coupon payment time, r  =  f , 
b o r a  redemption date coinciding with a coupon date,
J if  default is exogenous,
[ or at a redemption date not coinciding with a coupon date.

(5.271)

Alternatively we could assume, for instance, that Fr contains accrued interest, or that on a

redemption date FT =  max {F, R r}.

We suppose that the protection offered by reorganization grants the firm a grace pe-

riod of length s after default, such that during this period the bondholders no longer have 

the right to enforce default, but the firm has the option at any time during this period to 

choose to default (handing the assets over to the holders and not paying the debt). At a 

put time t >  t , the recovery value o f the CB is F t* =  min {Fr , Vt} =  FT — (FT — Vt)+, 

where we suppose that the bond holders’ claim does not earn interest. Hence, given no 

disbursements or refinancing, at a default time r  the value o f debt is

F* = Pv (Ft ) — p (VT] Fr ) , where (5.272)

vr =  VT_ (1 -  wT) , (5.273)
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Pv denotes present value and p is the value of a put option .32 Effectively the bondholders 

are forced to give a put option to the firm allowing the firm to annul the bondholders’ claim 

of Ft  by transferring the firm to the bondholders.

For simplicity we suppose that default is a unique event. Once default has occurred 

we suppose the firm value follows a geometric Brownian motion but that the event of de-

fault influences the growth of firm’s future asset value. If we suppose that both the CB and 

the firm’s equity continue to trade during reorganization, then under the EMM the instan-

taneous return to the firm’s assets is still the short rate rt. However, it seems reasonable to 

suppose that the volatility o f Vt may change, perhaps increasing, as a consequence of de-

fault. We denote the post-default volatility by a*. The recovery value F* (VT) at default 

time r  is thus determined by two parameters, s and a*, each with a natural interpretation.

In the exposition that follows we employ a simplifying assumption. We suppose the 

firm may exercise the put only at the time r  +  s, so p becomes a European put. Effectively, 

after a default event, the bondholders are obliged to wait a period s before receiving a 

payment of min {FT, Vr+s}- This assumption enormously decreases the complexity and 

cost of finding numerical solutions to (5.277).

A feature of our formulation is that at a default time r  the CB holders never receive 

the amount of their claim, Fr. For instance at the maturity time T  there will be a range of 

asset values where the firm will not default but where bondholders will not convert, receiv-

ing instead an amount equal to FT. In our model, if  the bondholders do not convert they 

recover F£, which can be significantly less that FT. This behaviour could be inappropriate

32 We could also assume that the claim does earn interest, in which case F* = min {Fv (FT) , Vt} = 
Fv (Ft ) —(Fv  (Ft ) — Vt)+, where Fv (F ) stands for the future value of F, so that F* = F T—p (VT, Fv {FT)).
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at moderate levels of the firm’s assets. We can overcome this problem by allowing s to de-

pend on ~  so that s ~  0  when VT FT- However, this would complicate the model and 

in any case the effect is likely to be small.

When at a default time r  the asset value VT Fr is high we refer to ‘technical 

default’, since the CB will be converted.

The Interest Rate Model

As in previous Chapters we assume an extended Vasicek interest rate model, which 

process under the EMM is given by

d rt =  a (6{t) — rt) dt +  a rdz[, (5.274)

where 6{t) can be chosen so that model spot rates coincide with market spot rates. We set 

li r = ¡i(t,r) = a  (6{t) — rt) for the drift of r and write p for the correlation between zrt 

and z( , d z[d z j = pdt.

In the Vasicek model when p =  0 there is a simple explicit solution for p (V, r ) . 33

The Hazard Rate Process

We do not model the risk-adjusted hazard rate Xt with its own specific risk. Instead 

we suppose that Xt =  A (Vt , rt) is a deterministic function of Vt and rt. We assume that Xt 

decreases as both Vt and rt increase. In principle a credit spread model implicitly deter-

mines an intensity function. In Chapter 1 we discuss several functional forms for Xt.

33 In fact in our numerical work we use this formula even when p /  0. The error introduced is small (over 
our range of values of p) and the numerical burden is considerably reduced.
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We allow At to depend on Vt and rt. For concreteness we choose the functional form

The coefficients A0, a and b control the background default rate and the sensitivity of At to 

Vt and rt. Default risk decreases as Vt increases. As rt —> — oo, Xt —> oo so that default 

becomes inevitable.

Note that (5.275) does not require Xt to go to infinity when Vt goes to zero. However 

a consequence o f our formulation is that Dt < Vt for all t, so that Dt goes to zero as Vt 

goes to zero without any constraint on Xt.

5.1.2 A PDI for a Convertible Bond

We need to specify both the PDI, its boundary conditions and inequality constraints.

A (rt , Vt) = A0 exp ( -  (aVt + brt)) ,  a, b > 0. (5.275)

The PDI

By Ito’s lemma (Protter (1995)) the process followed by Dt is

+avVtVT7dzt +  ar7)7dzt +  ADt (Vt~) (5.276)

where A A  (Vt_) = D*t (Vt) ~ D t_ (Vt_) is the change in the value of the convertible bond 

if a jump, hence a default, occurs at time t.
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Under the EMM the relative price Dt/B t is a martingale. Imposing this condition we

find,

„ dD . - . d D  1 2t/2 d2D ÔD 1 , d 2D t 32D
rtDt -  —  + {rt + \ twt) V t ~  + - a v Vt ^ i  + iir—  + - a r—  + parav Vt

dt ' v ‘ ' " U~ L/ ' LdV  ' 2~ v ' 1 d V 2

+ « _  [d ; (K) -  A _  (P_) ]

dVdr  

(5.277)

Since we assume deterministic loss and recovery conditions this becomes

,  \  \  t \ t  d D  . -  , 577 1 2 25 277(r< + P) A  — P A  + + (ry + AtWi) + -ovP d V 2
577 1 25277

+ ^ r 7 A  +  2 CTr 5 A
p<7rOyVt

d2D
dV dr

(5.278)

where in our formulation D* = max {F *, ntVt} and F* = Pv (Ft) — p for a put p =  

P (Pt, 7y) where Vt = Vt_ (1 -  wt).

If Vt is the sole state variable this becomes

dD dD  1 , , d ^ D
(n  + Aê) A  — AtD*t + + (r£ + AiWi) p -^7 + ~cryVt

dV  2 5V2 ’
(5.279)

which is the form of equation (43) in Ayache, Forsyth and Vetzal (2003).

Inequality Constraints and Auxiliary Conditions for the PDI

We need to specify the final payoff to the convertible bond at time T  and payoffs at 

intermediate times 0 < t < T. We also specify inequality constraints and other conditions 

on the bond’s value.

At the Final Exercise Time T

At times when a cash payment has to be made to the bond the firm has the option to 

default. At the final time T  the firm will default if  VT_ < FT. If VT_ >  FT we suppose 

the firm acts to maximize the value of equity by minimizing the value of the CB. Since the
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bond may convert upon default, we have

D t  =  Dip =  m ax{F ^, k t Vt } • (5.280)

There is a critical asset value > Ft  such that = Pv (FT) — p (Vt , Ft ) = k t V£. 

The CB holders will convert if  Vr > V£, whether or not the firm elects to default.

At Redemption and Call dates

Consider a redemption date t at which the CB is not callable and which no coupon is 

paid. Redemption is at the option of the bondholders. If the bond is redeemed the firm has 

the option to default. If the firm defaults the CB holders have the option to convert. Hence

max {min {F*, R t} , k tVt} < Dt . (5.281)

At a call date t there is an upper bound on the value of the bond. If it is called at time t the 

CB holders have the option to convert so

KtVt <  A  <  min {Vt, Ct} , Vt < CtjKtl 
Dt = KtVu Vt > Ct/Kt.

We can combine (5.281) and (5.282) into a single expression

max {min {F*, R t} , ntVt} < Dt < m ax {min {V), Ct \ , KtVt} , (5.283)

where R t is set to zero on a non-redemption date, Ct is set to +oo on a non-call date, and 

Kt is set to zero on a non-conversion date.

At a Coupon Date

Suppose a coupon of size Pt is due to be paid at time t and that no exercise conditions 

are invoked so that D*t =  Ff*. We suppose that the firm acts to maximize the value of equity.
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The firm has the choice of paying the coupon or defaulting so the equity value is

St =
(yt_ — Pt) — Du if the coupon is paid,
Vt_ -  FT if the firm defaults,

(5.284)

so St =  max j (Vt_ -  Pt) + -  Dt, Vt_ -  F t*} >  0.

There is a critical value V)* >  Pt with D*_ =  Pt + Dt [V *_), such that the

firm defaults if  Vt_ < V*_ and pays the coupon otherwise. When Vt_ >  V*_ we have 

Dt_ (V*_) >  Pt - Then, if  there are no exercise conditions,

o < d  ( V ) - Î  D ‘- F ) - p ‘<0< D,{v,)- \ Ft-p(v,_), vt_ < v;_. (5.285)

Now suppose that exercise features are present. If  we assume for simplicity that R t =  R t- , 

Ct =  Ct-  and nt =  «;t_, and that the CB specifies that Ft =■ Ft , then the firm may choose 

to call just before the coupon is paid, but the CB holders will not elect to redeem or convert 

until after the coupon is paid. Then ifV t_ > V*_ the firm does not default and

max {min (P*, R t} , KtVt} < Dt (Vt) < max {min {Vt, Ct} , KtVt} . (5.286)

Otherwise, if  Vt_ < V*_ the firm defaults and Dt (Vt) = D^_ — max {P t*_, nt_ Vt_ }.

5.2 The Solution Method

As we mentioned in Chapter 1, several numerical methods have been used in the literature 

to obtain CB values.

We use the numerical method describe in Chapter 2 to solve the PD1 (5.278). The 

valuation problem introduce in previous Section fits into the general framework of Chapter
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2  for the choices:

Xi = rt, ( 5 . 2 8 7 )

x 2 =  vt, ( 5 . 2 8 8 )

j4 i i

1 j  i
=  Aw =  A2 i =  - parav Vt , A2 2  =  ~ayVt2, ( 5 . 2 8 9 )

B i =  B 2 =  (rt +  \ twt) Vu ( 5 . 2 9 0 )

Ao =  ~( r t  + \ ) ,  /  =  A tD\, ( 5 . 2 9 1 )

Early exercise features are modelled by the functions Ri and R 2 and at a call or redemption 

date, for instance,

R i( r t,V t,t)  =  max {min (F t*, R t} , ntVt} , (5.292)

R 2 {rt ,Vt,t)  = max {min {V*, Ct} , ntVt} ■ (5.293)

The final condition is determined by the payoff function of the CB (5.280).

In the next Section we specify the boundary conditions required by the numerical 

method.

5.2.1 Boundary Conditions

For numerical purposes we need to solve the PDI on a finite domain fi = flr x  Qv where 

F T  =  [ r m in , r m a x ] ,  Q,v  =  [0, K n a x ]  and Vmax > R t, Ct at all times when these are defined. 

At the boundaries of the solution domain fl we need to supply boundary conditions to our 

solution method. We suppose that asymptotic approximations can be applied at r m in , r m a x
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Four boundary conditions are required. The convertible bond literature is often not 

explicit about the boundary conditions used. In our framework the asset boundary condi-

tions, at Vt = 0, Vmax are straightforward, as are the conditions at r max. There are problems 

if one tries to supply a boundary condition at rmin =  0. Instead we choose rmin <  0, 

a natural assumption in the Vasicek model where interest rates are not constrained to be 

positive.34

We suppose the final condition and inequality constraints are given by (5.280), (5.283) 

and (5.286) and explore asymptotic conditions. Since the PDI is solved backwards in time 

we re-formulate (5.285) and (5.286). On a coupon date t we first compute a value Dt+, 

notionally the CB value immediately after the coupon has been paid, respecting exercise 

conditions at time t+, post-coupon. We then find D t_ , the CB value immediately before the 

coupon is paid, and impose exercise conditions at time t_ , pre-coupon. Then we continue 

iterating backwards.

Over the coupon payment time we have

(5.294)

(5.295)

then the exercise condition is

max l min < Dt_ (Vt_) , Rt}, KtVrt_ [ < Dt_ < max {min {Vt_ , Ct } , ntVt__}}
(5.296)

34 We find that it is possible to choose r m¡n < 0 so that asymptotic conditions apply and the computation of 
\ t does not cause overflow.
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A Simple CB

First, we consider a convertible bond with no coupons, convertible only at time T, 

nowhere callable or redeemable, where default occurs only at time T  and with no propor-

tional loss. It is modelled by setting the bond payoff to be DT = max {min {VT, F} , k t Vt }. 

Notice that this is the payoff of the general CB defined in (5.280) if the lenght of the reor-

ganization period s is set to zero. We call this a simple CB. In this case,

where the last equality follows from the fact that < 1. Flence, the convertible value 

decomposes into the value of a defaultable straight bond and a call on the firm’s assets, 

with explicit solution

D t  =  max {min (Vx, F} , k t Vt }

max {k t Vt  — min {Vr, F} , 0} -F min {VT, F}

max {k t Vt  — F, 0} 4- min {Vr, F}  , (5.297)

Dt = Vt -  et (Vi, F) +  K,Tct (Vi, F / k t ) (5.298)

where

ct (Vt,F ) = VtN { d 1) - F v ( F ) N { d 2) (5.299)

(5.300)

c?2 =  d\ — o \ jT  — t, (5.301)

N  (•) is the cumulative normal distribution function and Pv (F) is the present value com-

puted in the Vasicek term structure model.
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Boundary:

oT 8ÎN

r —► —  o o r  — > o o

Dirichlet: Dt 0 KT Vt VT KT Vt
Neumann: d D ,

BV 1 k t 1 k t
3D,

_âr_ 0 0 0 0

Table 5.47. Boundary conditions, simple CB

Asymptotic Dirichlet and Neumann boundary conditions can be computed and are 

given in Table 5.47. Note that limits as (V, r) —■> ( + o o ,  — o o )  depend upon the direction 

of the limit. We found it is best to use a Neumami boundary conditions at the r  —> — o o  

boundary, and Dirichlet boundary conditions at the other three boundaries.

Boundary Conditions for the General CB

No we consider the general CB.

High asset value

As V  —> o o  the CB effectively becomes an equity instrument and it will either be 

converted, or converted when it is called, at an optimal time t* that does not depend upon 

V  or the coupon stream. Then, ignoring the possibility o f default, the bond value is

Dt = Kt*Vt + P f  (5.302)

where P f  = J f t<t<t, Pv (Pti) is the value at time t of the future coupons received up to 

time t*.

In general (5.302) may be hard to compute, but when conversion terms are constant 

t* is the first available conversion date. If continuous conversion is possible t* =  t and 

Dt =  Vt-

Low asset value

When V  =  0 we have Dt = 0.
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High interest rate

As r  —> oo for t < T  the present value of the principle F  goes to zero. Cash 

becomes irrelevant and the time value o f money is expressed in returns to the asset process. 

The payoff to the CB at time T  is effectively nTVT, and default is irrelevant. Payoffs, if 

received in cash, will be used to immediately buy the asset.

As before, suppose the bond is exercised by one party or the other at an optimal time 

t*. It may be optimal to redeem if R t/V t is large enough, or to call when Vt < Ct/n t 

if  future values of nt are large enough. At time t* we have D,, =  k *„ Vr  where k *, =  

max{Ct*/Vt*, hit*} if the bond was called and n*. =  max{/ct*, min {!)*,, Rt*} /V t*} 

if the bond is redeemed. Since cashflows are immediately used to buy equity, k *, is the 

effective conversion ratio at time t*. For high r,

Dt = K*t.Vt + V f  (5.303)

where Vt[2 = Vt E tl<s<t2 Ps/^s  is the value at time t\ of asset rebased future coupons 

received up to time t 2-

As before, this simplifies if  conversion terms, et cetera, are constant and continuous, 

and we may set Dt = n* Vt.

Low interest rate

When r  —> —oo the asset value becomes irrelevant and cash values dominate. Default 

occurs at the first cashflow date, if  not sooner. CB holders will wait for a default event at 

some time r  and then take over the firm, so Dt = E t [Pv (VT)} =  Vt.

We see that, with possible small modification, Table 5.47 gives the correct boundary 

conditions for a general convertible bond.
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Exercise parameter values
Convertibility Callability Redeemability

Base: 0.2 22 18
High: 0.22 24 19
Low: 0.18 21 16

Table 5.48. Exercise parameter values

5.3 Numerical Results

In this Section we first benchmark the model, investigating the convergence properties of 

the numerical method. We then explore the effect upon CB values o f altering parameter 

values within the model, looking particularly at the exercise conditions, asset and interest 

rate values and parameters, the recovery parameters s and a*, and the default parameters

Ao, a, b and w.

Each parameter has a base case value, and a high and a low value. These are given 

in Tables 5.48, 5.49 and 5.50. For the base case we suppose that the CB has T  — 5 years 

to maturity with face value F  =  20. The CB may be converted at any time with indirect 

conversion ratio nt = k  = 0.2. The CB pays a coupon of 0.6 every half year, an annual 

coupon yield of 6%. It is callable and redeemable at any time with the call and redemption 

prices determined from (5.268) and (5.269) with C = 22 and R = 18. The initial asset 

value is Vo =  100 and initial interest rate is t q =  0.06. For the default intensity function we 

set A0 =  0.15, a = 0.015, b =  1.5, giving Xt £ [0, 0.7] over the domain, with At =  0.03 in 

the base case. For middling values of V) and rt, Xt has about the same sensitivity to changes 

in each. Other parameter values are given in the Tables.

We note that with this specification the convertible bond is at the money and that in 

the base case the likelihood of exogenous default is relatively low.
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Process parameters

Parameter:
For r ForR Coir.

ro a e a r % a v P
Base: 0.06 0.2 0.06 0.02 100 0.25 0.1
High: 0.07 0.21 0.07 0.025 105 0.30 0.15
Low: 0.05 0.19 0.05 0.015 95 0.20 0.05

Table 5.49. Process parameter values

Default, recovery and loss parameters

Parameter:
Default Recovery Loss

^0 a b s a* w
Base: 0.15 0.015 1.5 1 0.35 0.4
High: 0.2 0.03 3 5 0.45 0.6
Low: 0.1 0.003 0.3 0.25 0.25 0.2

Table 5.50. Default and recovery parameter values

5.3.1 Benchmarking

We benchmark to a simple CB whose value is given by (5.298), investigating convergence.

Domain bounds are set to be 12r =  [—1, 1] and 1217 = [0,800]. 121 corresponds to 

roughly a 99.9% confidence interval on We give L 2 errors over both the entire domain

12 and also over a narrower region of interest 12 =  12r x 12% where 12r =  [0,0.15] and 

121 =  [25,400]. 121 is roughly a 99% confidence interval on 1%. 12 reflects a range of 

values of r  and V  likely to be observed in practice and so the error on 12 is likely to be more 

representative.

For the numerical method we use four mesh specifications of increasing resolution. 

Mesh 1 is the coarsest with just 20 space steps in the interest rate dimension, 40 in the asset 

dimension, and 50 time steps up to time T  = 5. Each successive mesh doubles both the 

number o f space steps in each dimension and the number o f time steps so that the finest
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Errors and Convergence, Analytical Boundary Conditions
Mesh Error TD Factor Error RI Factor Time

1 6.I F —02 - 3.1F-03 - 3
2 3.8F-02 1.6F+00 1.4F-03 2.2F+00 17
3 2.2F-02 1.7F+00 7.4F-04 1.8F+00 154
4 1.2F-02 1.8F+00 4.5F-04 1.6F+00 1648

Errors and Convergence, Asymptotic Boundary Conditions
Mesh Error TD Factor Error RI Factor Time

1 6.7F-02 - 3.I F —03 - 2
2 4.7F-02 1.4F+00 1.4F-03 2.2F+00 15
3 3.4F-02 1.4F+00 7.4F-04 1.8F+00 146
4 2.8F-02 1.2F+00 4.5F-04 1.6F+00 1648

Table 5.51. Error and convergence

mesh, mesh 4, has 160 interest rate steps, 320 asset steps, and 400 times steps up to five 

years.

The results are presented in Table 5.51. Two sets of results are shown. The top panel 

uses analytical values on the boundary, the bottom panel uses asymptotic approximations, 

as given in Table 5.47. in each case three of the boundaries are Dirichlet and the fourth, at 

the lower boundary for r ,  is Neumann. ‘Error TD’ is the error on the entire domain fl; ‘Er-

ror RF is the error on the region of interest, 0 . ‘Factor’ is progressive error reduction factor 

in moving to a finer mesh level from the preceding mesh level. Times are in seconds.35 We 

see that using asymptotic boundary conditions the convergence rate is not as fast as the the-

oretical rate of 2 ,36 although on the region of interest the convergence rate is faster than on 

the whole domain. Errors are significantly less, by a factor of 100, on the region of inter-

est compared to the total domain. Errors are greater on the total domain with asymptotic 

boundary conditions, but they are of the same order of magnitude. On the region of interest

35 The implementation was in Fortran 77 run on a 2.4 Mhz Pentium IV PC.
36 A convergence rate of order 2 has been proven for a related PDI, but not strictly for the PDI of this Chapter.
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Recovery
parameters

Initial values of (Vt , r t )
(100,0.06) (80,0.05) (120,0.05) (80,0.07) (120,0.07)

(1,0.35) 0 . 9 4 1 0.942 0.945 0.937 0.939
(0.25,0.25) 0.985 0.985 0.986 0.984 0.984
(0.25,0.45) 0.985 0.985 0.986 0.983 0.984
(5,0.25) 0.746 0.752 0.755 0.736 0.738
(5,0.45) 0.721 0.715 0.736 0.704 0.722

Table 5.52. The Implied Recovery Rate: Simple CB

the errors for analytical and asymptotic boundary conditions are the same to two significant 

figures, supporting our use o f asymptotic boundary conditions in the sequel.

Subsequent Tables are computed using mesh 4 and asymptotic boundary conditions. 

All specifications lie within the region of interest so, in line with the errors reported in Table 

5.51, CB values are reported to 3 decimal places. With early exercise possible, a typical 

execution time is around G700 seconds, relatively independent of the CB specification.

5.3.2 The Recovery Specification

We investigate the consequences o f our recovery specification, interpreting it by computing 

the implied recovery ratio 5 (Vt, rt) defined as

S(Vt ,r t) E t (5.304)

for a default time r. S is the proportion of face value the bondholders can expect to recover 

in the event of default if  they do not convert.37 We compute S for a simple CB. Table 5.52 

shows 5 for a variety o f initial conditions and recovery specifications. The entry in bold is 

the base case.

37 When the CB is in the money default is technical and the CB will be converted.
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Recovery
parameters

Initial values of (Vt , r t )
(25,0.06) (30,0.06) (35,0.06)

(s ,a*)

(1,0.35) 0.854 0.885 0.904
(0.25,0.25) 0.913 0.942 0.959
(0.25,0.45) 0.904 0.935 0.953
(5,0.25) 0.675 0.697 0.711
(5,0.45) 0.577 0.606 0.628

Table 5.53. The Implied Recovery Rate, Riskier CB

Our example is at the money but the default put is out of the money so the value F£ 

is approximately equal to the present value at time T  of Ft  paid at time T  +  s.

We see that the most important factor for expected recovery is the length of the reor-

ganization period, followed by the interest rate and then the initial asset value. Changing 

the volatility parameter has little effect when the reorganization period is short, but has an 

effect comparable in size to the asset value change when s is longer.

Table 5.53 gives recovery rates for riskier CBs issued at a much lower asset value. 

The implied recovery rates are significantly smaller. With low asset values the put value 

is not negligible; default is no longer technical and CB holders will not find it optimal to 

convert, instead obtaining only the expected recovery rates given in the Table. The effect 

of a* is now significant.

5.3.3 Exercise Conditions

We investigate the effect of the presence or absence of the various exercise conditions. We

consider a riskless coupon bond with default and various combinations of exercise con-

ditions added in, ending with the full specification o f the base case CB. We also give an
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approximation to the value o f dDt/d r  found by central difference from CB values com-

puted at different initial values o f the interest rate.

Tables 5.54 and 5.55 show the results. ‘Def’ is defaultable (with recovery), ‘Con’ 

is convertible, ‘Red’ is redeemable and ‘Call’ is callable. A and T are the CB delta and 

gamma respectively.38 The riskless bond values are Vasicek values computed analytically 

and shown for comparison. The base case value of the CB is 21.085, shown in bold. Table 

5.54 shows the standard case. For comparison, Table 5.55 shows the effect of reducing the 

conversion ratio from 0.2 to 0.15. We first discuss Table 5.54.

With our specification and model parameters, the presence of default reduces the 

value of the corresponding riskless bond by a little over 5%. The bond has a high credit 

risk stemming from a relatively high endogenous default rate.

Adding the conversion feature increases the value o f the CB by around 13% in the 

base case. The effect is similar at all levels of the initial interest rate. It is greater at 

higher values of Vo as the CB becomes more in the money, and at higher values o f r .  The 

introduction o f the call feature reduces the value o f the CB. The reduction is greater at 

higher values of Vo as the CB is more likely to be called. Adding the redemption feature 

has very little effect on the CB value, with our specification.

Asset deltas are not insignificant. They vary only a little as the initial interest rate 

changes. Introducing conversion to a straight defaultable bond increases the delta by a 

factor of 100. The call feature does not greatly affect the asset delta, reducing it slightly, 

and adding a redemption feature affects the asset delta very little.

38 These are reported ‘plain’, without division by the conversion ratio.
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dDt/dr,  the CB’s rho, indicates the sensitivity of the CB to changes in the initial 

value of the interest rate. The conversion feature reduces the absolute size of the CB’s rho 

by a fifth to a tenth, depending on the initial asset value. The redemption feature has little 

effect, but the call feature reduces rho at higher asset values.

Allowing the riskless bond to become defaultable reduces rho by roughly 20% and 

adding additional optionality reduces it further, by about 90% in the base case. For this 

CB, additional optionality effectively decreases the interest rate exposure of the CB and 

significantly increases its asset value exposure.

Table 5.55 shows how the situation changes if the conversion factor is significantly 

reduced, to k  = 0.15. Now the CB is out of the money.

Adding convertibility increases the value of the defaultable bond by about 5%, but 

adding the call and redemption features has little affect on the CB value. Asset deltas are 

affected, but by much less that in the k  = 0.2 case. Rhos are reduced, but by much less 

than in the k  = 0 .2  case.

The CB of Table 5.55 is relatively ‘bond-like’ whereas that o f Table 5.54 is much 

more ‘asset-like’.

Table 5.56 shows the effect o f changing exercise conditions. Since the CB is at 

the money, changing the convertibility condition has a significant effect. Increasing the 

redemption level has little effect but changing the call level has a large effect for this at the

money CB.
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Exercise Conditions Vo r d D t / d r
Def Con Red Call 0.05 0.06 0.07

Riskless Bond too 20.569 19.992 19.432 -56.9
95 19.280 18.835 18.366 -45.7

V - - - too 19.285 18.840 18.370 -45.8
(Defaultable bond) 105 19.290 18.845 18.374 -45.8

A 0.001 0.001 0.001
r -4.0E-05 -3.9E-05 -3.6E-05
95 20.902 20.823 20.738 -8.2

V V - - 100 21.399 21.338 21.274 -6.2
105 22.002 21.957 21.909 -4.7
A 0.110 0.113 0.117
r 0.004 0.004 0.004
95 20.907 20.830 20.748 -7.9

V V V - 100 21.401 21.342 21.280 -6.1
105 22.003 21.959 21.912 -4.5
A 0.110 0.113 0.116
r 0.004 0.004 0.004
95 20.749 20.672 20.588 -8.0

V V - V 100 21.134 21.081 21.024 -5.5
105 21.579 21.551 21.520 -3.0
A 0.083 0.088 0.093
r 0.002 0.002 0.002
95 20.753 20.679 20.598 -7.7

V V V V 100 21.136 21.085 21.029 -5.3
(Base case) 105 21.580 21.553 21.522 -2.9

A 0.083 0.087 0.092
r 0.002 0.002 0.002

Table 5.54. Effect of Exercise Features, base case, k  =  0.2
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Exercise Conditions Vo r d D t / d r
Def Con Red Call 0.05 0.06 0.07

Riskless Bond 100 20.569 19.992 19.432 -56.9
95 19.280 18.835 18.366 -45.7

y - - - 100 19.285 18.840 18.370 -45.8
(Defaultable bond) 105 19.290 18.845 18.374 -45.8

A 0.001 0.001 0.001
r -4.0E-05 -3.9E-05 -3.6E-05
95 19.844 19.632 19.398 -22.3

y 7 - - 100 19.920 19.733 19.526 -19.7
105 20.017 19.856 19.679 -16.9
A 0.017 0.022 0.028
r 7.9E-04 9.0E-04 1.0E-03
95 19.869 19.670 19.449 -21.0

v7 y/ - 100 19.939 19.761 19.565 -18.7
105 20.030 19.877 19.708 -16.1
A 0.016 0.021 0.026
r 8.6E-04 9.7E-04 1.1E-03
95 19.839 19.625 19.388 -22.5

v V - 100 19.912 19.723 19.513 -20.0
105 20.002 19.840 19.660 -17.1
A 0.016 0.021 0.027
r 6.6E-04 7.7E-04 8.8E-04
95 19.864 19.663 19 440 -21.2

y 100 19.931 19.752 19.553 -18.9
(Base case) 105 20.015 19.861 19.690 -16.3

A 0.015 0.020 0.025
r 7.2E-04 8.4E-04 9.5E-04

Table 5.55. Effect of Exercise Features, low conversion rate, n =  0.15

Convertibility Red. Call
Low High

Low 20.347 Low 20.722 21.307
High 22.070 High 20.725 21.311

Table 5.56. Sensitivities to changes in exercise conditions
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r-parameters L-parameters Coir.
Parameter: r a e <Tr V cry P
High: 21.029 21.083 21.072 21.083 21.553 21.193 21.088
Low: 21.136 21.086 21.097 21.086 20.679 20.948 21.081
Delta: -5.34 -0.16 -1.27 -0.23 0.09 2.45 0.07
Gamma: -46.4 0.10 -3.00 -15.20 0.00 -11.52 -0.06

Table 5.57. Sensitivities to changes in parameter values

5.3.4 Parameter Deltas and Gammas

We investigate the sensitivity of the base case CB to changes in parameter values. We value 

the CB at the higher value and lower value o f each parameter. The delta and gamma are 

then computed by central difference. Results are given in Table 5.57. r  is the initial value 

o f the stochastic Vasicek interest rate. Later, Table 5.61 considers the effect o f changes to 

r  where r  is a constant interest rate.

Deltas are very small, ay  has a greater delta than ar, and when oy  is scaled by V  (to 

make it comparable to an absolute volatility) the effect upon A is even greater. Increasing 

the correlation p slightly increases the bond value. 9, the level to which rt reverts, has a 

slightly larger delta since it reflects the longer term value of rt.

5.3.5 The Default Specification

We explore the consequences of changing the default specifications. Tables 5.58, 5.59 and 

5.60 summarize the results.

Care must be taken in interpreting these Tables. They assume that the initial asset 

value V0 and the default and loss parameters ( s ,  a*, A0, a, 6 , w) may be determined inde-

pendently, so that, for instance, the default rate might increase while Vo remains fixed. In 

practice an increase to A might be expected to cause Vo to fall, so that the CB value would
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Recovery
Parameter

Hazard rate, Xt
Base High Low

(s,cr*)

(1,0.35) 21.085 21.112 21.080
(0.25,0.25) 21.138 21.186 21.126
(0.25,0.45) 21.137 21.186 21.126
(5,0.25) 20.473 20.475 20.476
(5,0.45) 20.324 20.317 20.330

Table 5.58. Sensitivities to changes in default parameters

be computed for a reduced value of Vo. This feature is not modelled by the specification 

(5.267), nor reflected in the Tables. This suggests that a full defaultable bond model would 

need to endogenise the effect of default on Vt, perhaps by allowing V0 to be determined 

from future cashflow streams.

Note that these considerations do not affect the practical implementation of a model. 

Calibrating to market data fits to mutually determined values of Vo and the default and loss 

parameters, so CB values are correctly determined.

Table 5.58 shows sensitivities to the recovery parameters and base, high and low 

values of Xt, conditional on Vo remaining fixed. Table 5.59 shows the effect on CB values 

o f Ao, ci and b individually taking high or low values, conditional on fixed Vo, and Table 

5.60 shows the affect upon the CB value o f varying the loss rate, w, for different initial 

asset values Vo.

Bearing in mind the discussion above, because the rate of exogenous default in the 

base case is quite low, varying the hazard rate parameters and w seems to have little effect 

on CB values. Note that in Table 5.60 when Vo =  120 it is optimal to immediately convert

the bond.
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Parameter
Default Parameters

^0 a b
High 21.087 21.080 21.084
Low 21.083 21.101 21.085

Table 5.59. Sensitivities to changes in default parameters

Recovery
Parameters

Loss rate, w
0.2 0.4 0.6

Vo
80 19.864 19.879 19.864
100 21.071 21.085 21.094
120 24.000 24.000 24.000

Table 5.60. Effect o f Different Loss Rates

5.3.6 The Effect of a Stochastic Interest Rate

We have seen the effect upon the bond value o f changes in the parameters of the interest 

rate process. We can also test to find the extend of the affect upon the bond price of a 

stochastic interest rate. By setting ay = 0 and r = 6 we effectively make r non-stochastic. 

We investigate the presence of a stochastic interest rate in more detail. Table 5.61 gives 

the results, looking at several sets of initial conditions.39 Since the coupon rate is close to 

current and future interest rate levels the CB price remains relatively stable as T  increases.

39 When T  increases or decreases, the time step A t  is held constant and the number of time steps is varied.

Initial Stochastic r Constant r
Conditions (T f r

0.015 0.02 0.025 0.05 0.06 0.07
1 20.983 20.986 20.989 21.075 20.988 20.901

T 5 21.086 21.085 21.083 21.183 21.119 21.046
10 21.087 21.086 21.084 21.184 21.123 21.049
95 20.681 20.679 20.676 20.826 20.729 20.619

V0 100 21.086 21.085 21.083 21.183 21.119 21.046
105 21.553 21.553 21.552 21.604 21.571 21.531
0.18 20.351 20.347 20.341 20.544 20.411 20.260

hi 0.2 21.086 21.085 21.083 21.183 21.119 21.046
0.22 22.070 22.070 22.070 22.074 22.073 22.069

Table 5.61. Effect of a stochastic interest rate
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As we have seen elsewhere, the value of the CB is relatively sensitive to the initial asset 

value Vo, and is even more so to the conversion parameter k .

Comparing to Table 5.57, we see that making r constant at its initial value has the 

effect of increasing the value of the CB. Consistent with this, increasing the interest rate 

volatility when the rate is stochastic decreases the value of the CB, except for short times 

to maturity.

5.4 Conclusions

In this Chapter we have introduced a two-factor model for defaultable convertible bond 

pricing where the state variables are the firm asset value and the short interest rate. Default 

can be exogenous, at the jump tune of a counting process, or endogenous at times when the 

firm must make a cash payment. We endogenise recovery into the model by assuming that 

upon default the firm enters a reorganization period.

We price convertible bonds by solving numerically a PDI using finite elements to dis-

cretize in space and the method of characteristics to discretize in time. We deal with early 

exercise using a duality method in the variational formulation of the discretized problem.

Care has been taken to specify correctly the boundary conditions in the model, en-

suring that these are financially and numerically consistent.

We have investigated the effect o f introducing a stochastic interest rate and we have 

explored the consequences of our default, recovery and loss specification, finding that a 

wide range of recovery levels are possible, linked to a natural interpretation of the recovery

process.
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The sensitivity of the CB value to changes in the initial values of the asset and the 

interest rate have been investigated. We have found that with our specification the CB has 

a large asset delta and a relatively low sensitivity to the initial interest rate. Adding the 

conversion feature increases the CB asset delta by a factor of 100.

Despite of the drawbacks of using the asset value as the main state variable, we be-

lieve that the modelling framework presented in this Chapter is more realistic than formu-

lations based upon the equity value. For example, we account for the fact that the issuer is 

more likely to default when a cash-flow has to be paid to the CB holders, whereas in an eq-

uity intensity based approach default is equally likely at any day. On the other hand, our 

endogenised recovery specification potentially allows a greater ability to estimate recovery 

values from the market.

We conclude that the flexible specification of this model may give it greater potential 

to explain empirical CB values than existing models in the literature.



Conclusion

Convertible bonds are an increasingly important financial products that enable issuers 

to obtain relatively cheap finance in exchange for up-side gains. Despite the fact that the 

CB market is growing rapidly and products gain continuously in complexity, research to 

accurately and efficiently price those instruments is relatively scarce. Hence we believe our 

work makes a significant contribution to an important area o f finance.

This thesis extends previous literature on CB pricing in two ways: (f) We provide a 

better understanding of the mathematical models arising in convertible bond valuation and 

we introduce two new models incorporating interest and credit risk, one equity based and 

another asset based; (2) We propose sophisticated numerical techniques and we apply them 

successfully to implement the different models.

The numerical methods developed in the thesis have not been used before in finance 

but have proven to work well for similar problems in other fields. They offer clear ad-

vantages over most of the currently used numerical techniques in terms of its generality to 

price many different financial products, flexibility to incorporate any exotic product speci-

fication and its efficiency, in the sense that they provide a good trade off between speed and 

accuracy.

Regarding the equity based approach, we present a unified intensity based framework 

which incorporates most of existing models, as well as new ones that we introduce. This 

allows us to put models in perspective, as well as implement them and be able to compare 

the prices they produce. We conclude that care is needed to consistently specify the hazard

197
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rate, the loss rate in the stock and the recovery value. We find that in order to do so, it 

may be necessary to split the convertible into an equity and a bond part and apply to each 

of them a different credit treatment. We introduce a new splitting procedure and a new 

recovery model for the CB based on a dual recovery in bond and equity parts. The model 

has a natural financial interpretation and enough degrees of freedom to generate a great 

number of default-recovery scenarios.

Asset based models have the disadvantage that they are based on unobserved state 

variables, but they have the advantage to provide a natural link between debt and equity 

which is ideal in CB valuation. We propose a new asset based model incorporating interest 

rate and credit risk. The CB defaults either at the unpredictable jump time of a counting 

process, or when the firm is required to make a cashflow to the CB holder. Recovery 

upon default is endogenised into the model by assuming that the firm can invoke temporary 

protection against its creditors. The main difference with respect to the equity based model 

is that default can be triggered endogenously at a cash-flow, whereas in the equity based 

model default is equally likely at any time. Besides, the recovery value, which proved to 

be the “key” issue in the equity based models, is easily endogenised.

Furthermore, even though our study focus on CB pricing and as a result substan-

tially enlightens our understanding o f this area o f finance, we believe that our results have 

broader implications. This is because the framework we propose is very general and could 

be used to price any American-style contingent claim with equity, interest rate and credit 

risk. It allows for calibration of interest rates, hazard rates and volatilities. It is also very 

flexible to incorporate any exotic product specification. Flence, our claim to have intro-
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duced a commercially usable pricing framework, which is market consistent and provides 

a balanced trade-off between speed and accuracy.

Finally, we would like to mention a few areas where we believe future research could 

provide some interesting extensions to our work.

From the modelling side, it would be interesting to implement a stochastic hazard rate 

but deterministic interest rate (see Davis and Lischka (2002)). In agreement with previous 

literature, the effect of stochastic interest rates has shown to be very little in our work. On 

the other hand, deterministic hazard rates fail to model some real life totally unpredictable 

defaults. However a more extensive investigation into the pricing of actual market issues 

should be carried out in order to be able to conclude.

Another important issue is to account for volatility surfaces, given that volatility is a 

key element in the pricing and hedging of CBs. This leads us to the need to calibrate local 

implied volatilities, maybe in combination with hazard rates and interest rates. Andersen 

and Buffum (2003) have done some research in this direction in the context of CBs.

From the implementation side, the next step would be to implement a second order 

characteristic/finite element method. Some methods have been proposed (Boukir, Maday, 

Metivet and Razanfindrakoto. (1997), Rui and Tabata (2001), Bermúdez, Nogueiras and 

Vázquez (20046)). The approach followed by Bermudez, Nogueiras and Vázquez (20046) 

could be directly apply to our case. Some other improvements could be done to the current 

numerical methods. One of them is to use an adaptative scheme to refine more the solution 

in some areas of the domain where it is needed, for example near the free boundaries (this
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has been done for example by Pironneau and Hetch (2000)). A second improvement could 

be to use a multi grid method to speed up the algorithm (Clarke and Parrot (1999)).
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Appendix A
Finite Element Calculations

Let il C R n (n =  1, 2, 3 in practice) be an open bounded set with boundary L =  

r D LIT* and

a,j, a0 e  L°° (Q) 1 <  i, j  <  n, (A .l)

TD and two parts of T such that T =  T£> U T r  and measure(Yd  ft ITr ) =  0,

ß  £ L°° (rÄ), g e  L 2 (Tr ) , (A.2)

and

/  e  L 2 ( f i ) . (A.3)

We seek for a solution u G V  of the variational equality

j  alJ— - - ^ ~ d x +  j  do uvdx  + J ß u vd T  =  j  f v d x -  f  J  gvdT,  
i'j=l u 3 ‘ n Tr Q Tr

Vv e v, (A.4)

where

v = { u  G H l (fi) : u /Td  =  0 } . (A.5)

We recall that H 1 (fi) and 1/ are Hilbert spaces when the following scalar product is con-

sidered
n r>

( u ,  v ) = X] J du dv
„ d xx d x x

*J =  1 o

dx -f  / uvdx, (A.6 )

from which the following norm is derived

|u|| =  (w, ti)1̂ 2, (A.7)
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and the distance

d(u,v) = ||u — u|| . (A.8 )

Equation (A.4) can be considered a particular case of the following problem. Let V  be a 

Hilbert space

Find u G  V such that

a(u,v) =  L(y) Vv G  V, (A.9)

where a : F  x F - + l i s a  bilinear function and L : V  —> R is a linear function.

It is possible to study directly the existence and uniqueness o f solution of this problem 

in a general abstract framework. The following result is known as Lax-Milgram Theorem:

Proposition 1 Under the hypothesis:

• a : V  x  V  —> R bilinear

• a(v,v) > a ||u ||y  Vu G V  (coerciveness)

• a(u,v ) <  M ||u ||y ||u ||v Vu, v G  V  (continuity)

• L : V  —> R lineal

• L(v) < C ||v ||v Vv G  V  (continuity)

Problem (A.9) has a unique solution.

Notice that it is not necessary for a to be symmetric, i.e.,

a(u, v) =  a(v, u) V u ,  v G Vr. (A .10)
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If a is symmetric it can be shown that the solution of (A.9) is also the only element of V  

that minimizes the functional

J(y) = )^a(v,v) -  L(v). (A.l 1)

Actually, (A.9) is nothing but the Euler equation of the problem of “calculus of variations”: 

Find u <G V’ such that

J(u) < J(v) Mv <E V, (A.12)

because J  (u)(v) = a(u ,v ) — L(v). This fact justifies the term “variational formulation” 

for (A.9).

A.l Discretization: Galerkin’s method

In order to solve numerically the problem (A.4) a discretization must be done, i.e., the 

problem must be replaced by a new one with a finite number of degrees of freedom or 

unknowns.

One method, known as Galerkin’s method, replaces the space of functions V  by a 

finite dimensional space 1 4  and defines the following discrete problem:

Find Uh G 14 such that

a(uh,vh) = L(yh) \/vh e  14. (A. 13)

Let B = {01; 02, . . . ,  cf)N} be a basis of Vh. Then the solution of (A.13) can be written in 

the form
N

^  = Y . ^ (t)v
j=i

(A. 14)
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so that the discrete problem is equivalent to find N numbers (£l5 £2, ■ • •, £,n ) satisfying

N

=  L ^ i )  i =  (A. 15)
3= 1

Equivalently this linear system can be written in the more compact way

M h  = bh, (A. 16)

where

A ml = a(<(>i,<f>m) = f  ai3^ ° i t LdX+ I  ao M m d x + [  £ 0 i0 m dI\  (A. 17)
n n rR

bm = L{(j}m) =  j  f  4>mdx +  J g<f)md r. (A .l8)

If a is symmetric, clearly the matrix A is symmetric. If, besides, a is coercive then A 

is positive definite, and therefore Choleski’s method can be used to solve the system of 

equations (A. 16). On the other hand, if  a is symmetric, the solution of the discrete problem 

is the unique minimum of the functional J  in the space 14.

An important problem once this stage has been reached, is the estimation of the error 

that is realized in the discretization, i.e., the distance between u and Uh■ There exist a 

mathematical theory that deals with this question, but it is beyond the aim of these notes. 

Let us just say that it can be proved that

M
\ W - u h\\v < —  inf \ \ u - v h\\v . (A. 19)

Oi v h £ V k

This inequality shows that the order o f the error realized is analogous to the error that is 

achieved if u is replaced but its best approximation in 1 4 .
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On the other hand if the equalities (A.9) (with v = Vh) and (A. 13) are subtracted, the 

following is obtained

a(u -  uh, vh) =  0 \/vh G 14, (A.20)

and this proves that Uh is the only element o f 1 4  that minimizes the function

vh —► ci(u - v h, u -  vh) in Vh. (A.21)

The problem arising now is how to chose the space 14 and the basis B = {(f>1, <f>2, . . . ,  <j)N}. 

This space is usually made up of globally continuous functions which are polynomials in 

each element of a polygonal mesh o f the domain 12. The elements of the basis are functions 

that become zero in big regions of 12 so that many terms of the matrix A  are zero, i.e., A  is a 

sparse matrix. We will describe how to build Lagrange Finite Elements in an n-dimensional 

domain 12. Then we will proceed to work out the matrix of coefficients and the independent 

term in the particular case o f Lagrange triangular finite elements of degree one and in a two 

dimensional space.

A.2 Lagrange triangular finite elements

The domain 12 is decomposed in simplex of dimension n (triangles if n = 2, tetrahedron 

if  n = 3, etc.) and the space 14 is the space o f the continuous functions in 12 that are 

polynomials of degree smaller or equal than k over any single simplex.
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A set of n +  1 points not laying on the same hyperplane is considered, i.e., such that 

the matrix
a n ^ 1  n l  '

^ n l l

L ^ n + l l Ü-n+ln l  J

(A.22)

has non zero determinant.

The convex envelope of these n + 1 points, i.e., the set

N + 1 jV+1

K  =  < x  =  A idi, 0 <  Aj <  1, 1 <  i <  n +  1, Àj =  1 > , (A .2 3 )
i= 1

is called n-dimensional simplex.

If x  G K  the correspondent \  =  \ { x )  are known as haricentric coordinates o f x. 

Notice that

A  i  ( cij) A , .

and that A i is an affine function (polynomial o f degree one) in the variables xr  

The subsets of K  obtained when the following conditions are imposed

A ) ] A i 2 . . .  Xir 0,

are called n — r dimensional faces o f K.

The baricenter of K  is the point that has all the baricentric coordinates equal, i.e.,

A,: =
1

71+1
1 <  i < n +  1 .

Let K  be an ?r-simplex and k a positive integer; the subset o f points o f I\

^ 2 ( K )  = i x  e  K  : Xj(x) G {0, . . . ,  1}, 1 < J < n  + l } .  (A.24)

is called lattice o f order k in K.
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Recall that pk is the space of polynomials of degree equal or less than k. Since
/ yi _|_ j —  1 \

an homogeneous polynomial of n variables and degree j  has I ) terms, the

dimension o f pk will be

n +  1 

2
n +  k — 1 

k
n +  k 
k

N + 1

If  x  =  Yh Ai{x )ai is an element of J2k(K)  then,
¿=i

= - Y
k f - '

i—

therefore we will write

N + l N + l

x = fiiai with ¡jl í G {0 , ,  k} and [il = k ,
2=1 2=1

(A.25)

(A.26)

x =  with ¡i =  (/il5. . . ,  /rn+1). (A.27)

It can be proved that the only polynomial q G such that

?K*) =  !» (A.28)

and

is given by

g(6 ) = 0  V6 G b ±  a„,

qM  =
n+l

n
7=i

-i - 1

f ir

n + l  +j 1

n  n  (fcAj ( x ) -  !)•
J = 1.M,>1 *=0

(A.29)

(A.30)

With the triple ( A T ,  ^ . ( A T ) ,  p fc)  we will build spaces of approximation Vh.

Let r h be a partition o f Cl into simplices such that every face of a simplex K x of r h

is:

• Either subset of To

• Or subset of
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• Or a face of other simplex K :j o f r/, ; in such a case K, and K 3 are said to be adjacent

The diameter of K  is denoted by hx  and h = max hk , K  E Th- 

For k >  1 the following functional spaces are built associated to

X {hk) = {uh E C °(0 ) : uh]K E p k( K ) VK E r h). (A.31)

Clearly,

* h ] c  n  (a -32)
K & T h

( k ) •This inclusion simply states that any function of X h is a polynomial of degree equal or 

less than k over each individual element. Conversely, what is the necessary and sufficient 

condition for an element of A' to be in X h , i.e., for the polynomial pieces to stick with 

continuity? The answer is simple: the above will hold if and only if for every pair of 

adjacent elements Ky and Ko the pieces defined on them agree on the points

£ ( * , )  n  Y S - K d-  <A 33)
k  k

(k) •Therefore any function in X yh is uniquely determined by its values at the points of the set

Er = U Ew- <A-34)
K £ r h k

From now on, r/, will be called “triangulation” of Q (even if the dimension n is different 

from 2) and the elements of “nodes of the triangulation”. Notice that there can be 

nodes that are not vertices.

(k)The dimension of the space X Kh equals the number of nodes. Besides it is possible 

to define a basis o f X yh such that its elements are functions with support reduced to a few
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elements of r h. Let Nh be the number of nodes, that we will assume to be numbered.

(k)
Y . h = &'■ ¿ = I.........V,}. (A.35)

( k )The node bt contributes to the basis with the function <pi G X h uniquely determined by

=  6ij 1 <  J < N h. (A.36)

The sets X ^ ' 1 are not subspaces of V  because their elements do not satisfy, initially, the 

boundary condition Vh/rD = 0. Therefore, in order to solve the problem (A.4) the following 

spaces must be used

v f  > =  {»>„ 6 x t >  : vh/r„ =  o } . (A.37)

Notice that the condition Vh/rD =  0 is equivalent to the condition that Vh is zero at the nodes 

that belong to VD. In that way, if  we get rid off the elements of the basis that correspond to 

this nodes, a basis of will be obtained.

A.3 Coefficients matrix and independent term

We consider the problem in two dimensions (n — 2). Let us see how to organize the 

calculations to build A h and bh if  we chose the space o f Lagrange triangular finite elements 

of degree one, i.e.,

Vh =  { v h e C'°(^) : v h\K e P i ( K )  VAT G r h v H\Td  =  0} . (A.38)

First we consider the calculations as if the boundary condition vh/rD =  0 did not exist, i.e., 

assuming that

Vh — {Vh G C,0 (£2) : Vh\x G pi (A ) VK  G Th\ — X^ \ (A.39)
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Let ]T ^ b e  the set of nodes of the triangulation that we will assume to be numbered

( i )

'52 = {bi : i = (A.40)
h

Notice that the dimension of equals N h. Any node bi defines an element in the basis 

0, G ) such that

<f>i{bj) = Sij 1 <  i , j  < Nh. (A.41)

Then the solution Uh can be written as

N h

Uh =  Y t W i  a n d  = U h(bj)-
3 =1

Therefore the column vector (Uh(bi) , . . . ,  Uh{b^ h)) is the solution of the linear system

(A.42)

where

Ami =  a((f)h <f>m) = [  a^ ^ T ~ ^ d x +  I a° h f i m d x X  I  (A.43)
i , j=1

and

bm =  L(<f>m) = j  f<t>mdx + J g4>mdT, 1 <  l,m  < N h. (A.44)

n  r  R
As it will be seen later the calculation of Ah and bh using this formula is inefficient be-

cause the same integrals are calculated several times over the same triangles. The method 

described below, which is the one used in practice, is based on the concept of “elementary 

matrix” and “assembling”.

Let us remind that the discretised problem can be written as follows
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Find Uh E Vh such that

2

E
i,j= 1

c u ,n -~ ^ -~ d x +  f  ciQUhVhdx + f  pUhVhdT
13 d xn dx.j

Q n

f v hdx + /  gvhdY Wv G Vh. (A.45)

Let us consider the first term of the right hand side term of this equality. We have that

duh dvh r /  - w  ^
2

E
t,j=i dxj dxi * * =  E /( It

K&Th JK

h. dvh
dx2

a  11 &12

Û21 °22
f S  ) fix. (A.46)
9x2

Let a f  , 0*2 , 0-3 be the vertex of the triangle K  and rriiKim 2K,m 3K the corresponding 

numbers in the numbering o f Th, i.e., assume

=  6 .miK i M bm2K 5 a? =  bm3 k  ' (A.47)

Let u/i G A g  then Vh/K =  vh{M ) p f , where p f  is the only polynomial of degree equal
j —1

or less than one such that

Pi K  ) =  Sij.

Equivalently

Therefore

vh/ K =  ( Pi P2 P3 ) M a f )  = [Ph ]{vK).
\  M M )  )

( dvh
|S
dx2

¿ > ( T ) gi=1 
3

\

i= 1

dp?
dx\
dpf

dp? 
dx\ 
dp?

dx2 dx2 dx2

dp?
dx\
dp?

[DPK]( vK).

MM) \ 
vh{M)  
M a i )  )

(A.48)

(A.49)

(A.50)
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Substituting the expression obtained we find that

2

E au ' ^ ^ d x  = Y .  I ,vh/K, [DPK[£] [DPK] uh/Kdx,11 dxd dx
(A.51)

3 K&rhK1J =1 n 

where [.E\{j = aij.

A similar process for the other terms leads to

E '(”*)
K£Th

(A.52)t [DPK] [E\ [DPK]dx + j  a0t [PK] [PK]dx
LK  K

The terms in brackets are called “elementary matrix” and “elementary right hand side” of

M

the element K  respectively. Notice that it is a 3 x 3 matrix and a 3 component vector. 

If v is a vector of Nh components, we have that

[BK] (v) =

where \BK ] is the Boolean matrix

[B

i
Jm 2 ,

Jm3.
= M , (A .53)

0  •••
0  1

0
PP-2K 0

Lrn 3K

. . .  0

. . .  0

. . .  0
(A.54)

Therefore the matrix [B h ] selects among the set of all degrees of freedom v E MiV,i the 

three that correspond to the element K.

In that way it can be written

\ v h)
K&Th

= \ v h)

*[BK3 ( I ^ D P K ]  [E] [DPK] dx +  /  a0l [PK\ [BK]
:&rh Xk  k  J

E ‘ {BK}J ‘ [PK] f dx  +  f  ‘[PK}gdT
K £ t h  \ K  d K r \ T R

(Uh)

(A.55)

Notice that this equality must be satisfied for all Vh G Mrh therefore

Ah — Y ‘ [Bk ][A f ]  and
I<&Th

E " o K
K&Th

lBK] K l . (A.56)
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where

[A%] = y j ^ [ D P K) [E] [DPK]dx + j  a0l [PK] [P A'] d x j  , (A.57)

and

[ b £ ] = j t [PK] f d x +  J  t [PK]gdV.  (A.58)
K  O K P iT r

The operations in (A.56) are known with the name of “assembling” of the fundamental 

matrix and the right-hand side terms. Let us see how to do it. We have that

K J (A.59)

Therefore

(‘ [B«} K ]  [B *]V E C W 1  K I L r i '%
n =1
E E  [BK]„ K ] , „
71=1 Z = 1

3 3

Xy X/ ̂ ] In ^

nj

P̂ nKj '
n —1 /=1

The above equals

(A.60)

0 i f  i 7  ̂ miK or j  ^  m nK l , n =  1 ,2 ,3 (A.61)

\Ah\ in i f  i ~  m iK and j  =  m,nK for some Z, n =  1, 2, 3.

In that way, for the calculation of A h and bh the following algorithm can be used:

(A.62)

Initialize Ah and bh to zero

Do a loop over the elements of Th-
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For every K  G r / ( , and are worked out and then we define

{ A h ) m a K m p K “ ( A h ) m a K m p K + \ J' ^ h \ a {3

[bh\maK (bh)maK +  [fyi ] ( 

Later on we will come back again to the assembling.

A.3.1 Change to the reference element

Let K  be he triangle o f vertices

a i = a 2 = > a 3 —
0

1 j ’

that we will call reference triangle. Let K  be any element: of r h. There exists 

affine inversible application FK : K  —> K  such that FK(âi) = a f  i = 1. 2, 3. 

application

Cftr(x) =  CKx  +  o f ,

where CV is the matrix

CK = O f  -  a f , a f  -  a f ).

It is easy to check that

p f  o FK =pi, i = 1,2,3,

where

P i ( x i , f 2) =  1 -  Xi -  x 2,

(A.63) 

(A.64)

(A.65)

a unique 

It is the

(A.6 6 )

(A.67)

(A.6 8 )

(A.69)

P2(æ 1,X2) =  Xj (A.70)
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p 3 ( i! ,X 2) =  X2- (A.71)

Indeed, pt e  p\ and also (p f  o FK)(dj) = pi(dj) = 8tj .

The integrals that appear in the calculation of A% and fr^will be done through a 

change of variable to the reference element.

Let us remind the formula o f the change o f variable

I ipdx = J  p) o  Fk | d e t  Ck\dx.

I< K

On the other hand by the “chain rule” we have that

l t ( i )
few d ( F K )

dx2
Ih w ) )
f e ( W W )

Therefore

dPa
dcci
dPa
d x 2

dpa
_ ts't—1 I dxi

^  K  ( d p a
dx2

or, in summarized form

[DPk ] = lCKl D P

Substituting this expression for [DPh ] in (A.57) we obtain

Ak D P

K

0-0 P

[C ? ] [ £ ] ‘ [CS']

| d e t  Ck  \dx.

D P | d e t  Ck  I dx

P

K

If we call [G] the matrix [Cj/] [E]* \CKl] and A =  | d e t  Ck \ it turns out that

(A.72)

(A.73)

(A.74)

(A.75)

(A. 76)

A ?  = A /  i

K

D P \G\ DP dx + A  üq P P dx.

K

(A.77)
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Therefore

K G  =
M,7=l

D P
J a/i [ G ] M 7

L>P
J 7/3

dx + A  üoPappdx

K
2

A'

A / E [G], <9j5a
,, /i'7 <9x„ dx~ j/i,7=l ^ 1K K

dx +  A / aoPaPpdx. (A.78)

If  the coefficients aly, a0 are constant in A , then [G] is constant in A' and

<9Pa <9P/3
j  , dx1 

A,7=1 ^  M,7=l ^

KfL„ =  A £  [G ]„ /  £ dx +  A a0 / Paftpdx. (A.79)

a :

The numbers

DaPfi-y = f and ,Jag = J Papedx, (A. 80)

a : a :

do not depend on the element considered and are calculated just once. Besides, notice that

Hotfix H,
r\s\

0a-y[n Ja& JBa and j  paf)pdx ^  ^ _j_ 2)1 ' (A.81)

K

In this way just the matrix [G] and ci0 depend on the element. The matrix [G] is worked out 

using the values of atJ and the coordinates of the vertex a f . Completing the calculations 

described we obtain

Ak
A
~2

«o A

S 'il +  2,912 +  ^22 — ( f f i l + ^ l )  — (â'12 +  5'22)

- { g n  +  g u )  g n  g \2

~ ( 021 + 5 2 2) 521 922

1 1/2 1
1/2 1 1/2 
1/2 1/2  112

(A.82)
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and x 1k is given by

1 i f l c T R
0  otherwise. (A.87)

The calculation of the integrals that appear in [b%] , as well as the ones that appear in the 

stiffness matrix when the coefficients a y , a0, are not constant in the element K,  are done 

via numerical integration.

There exists a mathematical theory that proves that the error does not increase if an 

appropriate formula which depends on the finite element space, is used.

If the dimension is n = 2 and triangular Lagrange elements of degree k are used 

(space X h ), the appropriate formulas would be:

\  ( ^ ( l A  I / 2)) (exact in p a)

\  (ip (0 , 0 ) +  ip (1 , 0 ) +  -0 (0 , 1 )) (exact in p 2)
5

jj: ("0 (1 / 2 , 0 ) +  0 (1 / 2 , 1 / 2 ) +  rj){0 , 1 / 2 )) (exact in p 2)

(A.8 8 ) 

(A.89) 

(A.90)

Blocking of the degrees of freedom

The performed calculations correspond to a discretised problem with

Vh = x l 1] = {vh € C°(n)vh\K € P i{K) \/I< e  Th). (A.91)

Therefore, the boundary conditions Uh/rD =  0 has not been taken into account, which 

would be equivalent to replace it by f e  =  ° d .

The “error” arises because we have considered an space Vh bigger than it should be, 

more precisely, functions 0 , of the basis have been used that do not satisfied the boundary
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condition 4>i\vD =  0. To get rid off these function of the basis is equivalent to get rid off 

the correspondent unknowns and equations (degrees of freedom). This process turns to be 

unpleasant from the point of view of the programming. A simpler procedure would be to 

replace the i-th equation (assuming the node i belongs to T¿>), that we are not in the right 

to include because this node does not provide any function to the basis, by the equation

& =  0. (A.92)

Actually the i-th equation is replaced by one, “programming equivalent to ^  =  0”, the one 

obtained by substituting the diagonal term (Ah)ti by a very big number, for example 1 0 30.



Appendix B
Solution of the System of Characteristics

In this Appendix we provide the solution o f the system of characteristics for the 

Vasicek and Hull and White interest rate models. This is a system of ordinary differential 

equations that needs to be solved at every timestep in order to use time discretization with 

characteristics.

B.l Vasicek model

In this Section we solve the system of characteristics for the Vasicek interest rate model.

B.1.1 Equation 1

dcf)-i v . . 1 r . .

—  ( r )  -  7 ^  ( r )  =  -paw -  ß , 0X ( r n + 1 )  =  r (B .l)

We define the integration factor,

V ( T ) =  e 7 T - (B.2)

Multiplying both terms of (B.l)  by the integration factor we find

-7 r 7 0  M  -  e 7T7 0 1 (t ) = -paw -  ß 0~1T (B.3)

d
dr [e 7T0j (r)] -paw -  ß -7 T (B.4)

231
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Integration on both sides of the equation leads

a-7T, -p a w  -  ß e 1Tdr,

e - ^ 0 ! (r) =  -
7

paw — ß e~1T +  C ,

0i (T ) = -
7

Imposing the final condition at time r n+ 1

-p a w  -  ß +  Ce1T.

0 i (T-n+i) =  r r = - -
7

-paw  -  ß +  C e yTn+1,

1 '1
r + - -paw  — p

7 2

we find the value of the constant

C =

and therefore, the solution at time r n is given by

0 1  (Tn) =  - -

Defining

g 7 T n + l

1 "1 1 '1  J '
— -paw  -  ß + r + - -paw  -  ß
7 2 7 2

, - ^ A t

6 =  i
7

^paw -  ß

c =  e“7Ar,

the solution can be written as

0i (r n) =  —S +  [r +  d] e~jAr = rc + 5 (c -  1 )

(B.5)

(B.6 )

(B-7)

(B.8 )

(B 9)

(B.10)

(B. 11) 

(B-12)

(B-13)
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B .l.2 Equation 2

^ 2  =  ( a 2 _  0 i (r ) +  £>0) 0 2 (T) , (B.14)

Reorganizing things,

“T2 (r ) = -  01 (T) + A)) ,
02

integration on both sides o f the equation leads

(B.15)

0 2  (r ) — C exp [(cr2 +  D 0) r] exp 0 i ( t ) dr (B-16)

Imposing the final condition at time r n+1

0 2  (Tn+i) =  S' S  = C  exp [(a 2 +  D0) r n+1] exp -  /  0i  ( t ) d r \ T = T n+1 , (B.l 7)

we find the value of the constant

C = S  exp [ -  (cr2 +  D 0) r n+1] exp 0 !  (t ) d r | r=Tn+1 (B.18)

and therefore the solution can be written as

02  (D i)  =  S  exp [ -  (a 2 +  D 0) T n+ 1] exp 0i (T) A 'r = T n + l

exp 0 ! (t ) h r |T=T

exp [(a 2 +  D 0) r n]

(B.19)

fTn + l
0 2  (Tn) =  5  exp [ -  (cr2 +  Do) A r] exp / 0! (r) d r. (B.20)

Noting that

0 1 ( r ) d r =  f  [—d  +  ( r  +  5) e7(r Tn+1-)] dr  =  — ôA t  +  — ( r  +  d) c, (B.21)
rn J Tn I
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the solution becomes

0 2 (Tn) =  s e x p  [ -  ( a 2 +  D0 +  S) A r ]  e x p -  ( r  +  5 )  (1  -  c ) (B.23)

Notice that expressions of (rn) and 0 2 (Tn) do not depend on r n , just on the time step 

rn+1 — rn = A t . This property together with the fact that the system of the trajectories is 

autonomous (coefficients do not depend on time) allows calculations to be done just once 

for all time steps, in the usual case where the time step is constant.

B.2 Hull and White Model

In this Section we solve the system of characteristics for the Hull and White interest rate 

model.

B.2.1 Equation 1

^  ( r )  -  7 0 1  ( r )  =  ^pvw </>! ( r n + 1 ) =  r . (B.24)

We define the integration factor

( r )  =  e ~ 7 T . (B.25)

Multiplying both terms of (D.24) by the integration factor we find

e 7T^  (T) ~  e 7T7 0 i  (t ) = -paw  -  /3 (t) e _ 7 T , (B.26)

d
[e  7 T 0 j  ( r ) ]  = -paw  -  (3 (t) o~TT (B.27)
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Integration on both sides of the equation leads,

e (r) = -p a w  -  ß  (i) e_7Td r  + C,

e 7 T0 1 (r) =  - paw / e 7Td r  — / e 7r/3 (¿) d r +  (7,

(t ) = ------paw — e7T f  e 1T ß  (t ) d r  +  e7T<7,
2 7  J

Imposing the final condition at time r n+1

i>a ( r n+1) =  r  77 r  =  — —  paw — e7Tn+1 [  e 1Tß (t) dr
2 7  J

+  e7Tn+1C,
T" n-f1

we find the value of the constant

C = r  +  — paw — eyTn+1 / e 7Tß (t) dr
2" n-f-1

3-TTn+l

and therefore the solution can be written as

1
<Mr n) =  - — p a w - e 1TnJ e ' 1Tß(t)d,T +

e7T"e “ 7Tn+1 r  H----- paw — eJTn+1
2 7

e 1Tß (t ) dr
n  +  1

Defining

d =  -p a w ,

equation B.33 becomes

!>i (t „) =  —5—e1Tn /  e~1Tß (t) dr +e -7A T r  +  8 +  e7Tn+1 / e 7T/5 (f) dr

(B.28)

(B.29)

(B.30)

(B.31)

(B.32)

(B.33)

(B .34)

—Tn+1_
(B.35)
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i j  ( r „ )  =  — ò  +  e _ 7 A i  [ r  +  ò ]  +  -  e 7 T "  /  e~^T ß  (;t) dr +  e 7 T "  /  e~1T ß (t) dr
D—7" n-f-1

(B.36)

( r n )  =  - 5  +  e “ 7 A t  [ r  +  S\ +  e 7 T "  / e " 7 T /3 ( r )  dr.
rT n+l

(B.37)

B.2.2 Equation 2

^ 2  =  ( a 2 _  (r ) +  Dq) ^  (r ) ;

Reorganizing things,

^  ( r )  =  ( a 2 -  ^  ( r )  +  D0) , 

integration on both sides o f the equation leads

0 2 ( r )  =  C e x p  [[a2 +  D0 )  r ]  e x p -  /  0 !  ( r )  dr

Imposing the final condition at time r n+1

( r n + 1 )  =  S  < t = >  S ' =  C  e x p  [ ( c r 2 - f  D0) r n+i] e x p

(B.38)

(B.39)

(B.40)

-  /  0 1  ( r )  dT\T=Tn+1 , (B.41)

we find the value of the constant

C  =  S  e x p  [ -  ( a 2 +  D0) r n + 1 ]  e x p 0 !  ( r )  dr\T=Tn+l (B.42)

and therefore the solution can be written as

( r n )  =  S  e x p  [ -  ( a 2 +  D 0 )  Tn+l) e x p 0! (t ) C?T|r=rn+1 e x p  [ ( c r 2 +  Do) Tn]

e x p 01 (r) dr\1 (B.43)
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or equivalently

0 2  ( rn) = S  exp [ -  (a 2 +  D0) A t ] exp i  0 2 (r) d r , (B.44)
Tn

In order to compute (5 .3 7 ), (5.44) numerically, we approximate the integrals to get

01 (t n) ~  $ (e~lAT — l)  +  e~lAr [r +  (/? ( r n+1) +  e7Ar0  ( r n)) A r/2 ] . (B.45)

02 ( r n) «  5  exp [ -  (cr2 +  5>0) A r] exp [(0X ( r n+1) +  0 X ( r n)) A r /2 ] . (B.46)

Notice that, contrary to the Vasicek model, expressions 0 : ( r n) and 0 2 ( r n) do depend on 

t „+i , besides of the time step r n+i — r n =  A r. This requires calculations to be done for

all time steps.


