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A B S T R A C T

This thesis studies the theory of simple-layer and 

double-layer vector potentials. The connection with 

Somigliana's formula is brought out and throws light 

upon the behaviour of such potentials. Our analysis 

provides an easy route to the construction of Volterra 

d islocat ions .
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Introduction

The theory of simple-layer and double-layer vector potentials was first 

systematically given by Kupradze (1 965).He^guided by the well known corresponding 

theory of simple-layer and double-layer scalar potentials,e.g.Kellogg (1929)' 

Kupradze showed that the displacement fields of classical linear elastostatics, 

Knops&Payne (1971),could be represented by vector potentials,and he used his 

results to formulate vector boundary-integral eguations covering all the main 

boundary-value problems of elastostatics. However these formulations were not 

favoured by applied mathematicians and theoretical engineers for three main 

reasons:

1. The potentials were generated by hypothetical vector sources which have 

no clear physical significance;

2. They led to vector integral equations which involved highly singular 

kernels over curved boundaries,so precluding any simple mathematical 

analysis,Smithies(l958),

3. Numerical solutions were out of the question because of the absence of 

adequate discretisation procedures and fast digital computers.

Some years before Kupradze'streatise much experience was gained in the 

discretisation and numerical solution of scalar boundary integral equations.

This development led to a powerful numerical method of attack upon certain 

important problems of classical potential theory e.g.computation of electro-

static capacitance,Symm (1 963), torsional-rigidity, Jaswon&Ponter (1963) and 

potential fluid motion,Hess&Smith (1967).It also opened the way for the 

numerical solution of certain biharmonic boundary-value problems,in particular 

those arising from the bending or stretching of thin plates.This was achieved by 

exploiting Almansi's representation of a biharmonic function in terms of two harmon
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functions, and then representing these harmonic functions as potentials, 

Jaswon & Symm (1977). However, a more far-reaching development was 

Rizzo's exploitation of Somigliana's formula on the boundary. This 

provided a functional relation between boundary displacements and 

tractions, which immediately yielded vector integral equations covering 

all the main boundary-value problems of the elastostatics. It may be 

shown, e..g.Jaswon &Symm(1977), that the. fCupradze boundary formulations 

are mathematically equivalent to those of Rizzo. However Rizzo's 

formulations became widely acceptable because they involved directly 

the quantities of immediate engineering interest, i.g. the boundary 

displacements and tractions. In its discretised version, coupled with 

suitable software- packages e.g.Brebbia (1 973),Rizzo's approafch 

has been developed into the BEM technique as we know it today.

Much of the mathematical foundation for BEM had in fact been 

already laid down by Kupradze, since Somigliana's formula involves 

the superposition of a simple-layer and double-layer vector potential . 

It therefore seems of interest to look closely at Kupradze's potentials 

by reference to some simple elastostatic fields having qualitatively 

distinct behaviours at infinity. No particular difficulty arises in 

representing any of these fields by a simple-layer potential V . This

is because V — > 0(r 1) as r --> OO,. in line with the general

behaviour of a regular elastostatic field <j) . Physically speaking,

0(r behaviour at infinity implies the existence of a resultant 

force acting on the boundary, an inherent feature of V since this is 

generated by a distribution of point-forces on the boundary.

Considerable difficulty arises with the representation of <j>

_2
by a double-layer vector potential W ,because W — > 0(r ) as
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r --> OO whilst in general (|) --> 0(r ) as r --> OO . It has been

suggested by Jaswon & Symm (1977) that we may write A = W if 

(|) — > 0(r as r — > OO, but a closer analysis shows that such

fields fall into two main classes :

1. (j) provides a resultant moment acting on the boundary , in which 

case (j)  ̂W , since W provides no resultant moment acting on the 

boundary Jaswon & Symm (1977) ;

2. (j) provides a null resultant moment acting on the boundary , in 

which case we may write (j) = W.

In case (1) we may supplement W by suitable resultant-moment 

producing terms. More generally we may always supplement W by 

resultant-force and resultant-moment producing terms to achieve a 

representation of any regular (j) . Examples will be given later.

The representation of (j) by V yields vector boundary-integral 

equations of the first kind for the relevant source-density 

distribution 6* . Unique solutions always exist, but do not seem 

to have been achieved numerically . The representation of ^ by W 

yields vector boundary-integral equations of the second kind for the v 

source-density distribution p . A solution may not exist. However 

a set of non-unique solutions always exists if W is suitably 

supplemented,so allowing some flexibility in the choise of p for 

generating W . These issues will be exploited by reference to 

specific problems.

Vector double-layer potentials offer an easy route to the theory 

of Volterra dislocations . This is a sheet in the elastic continuum 

across which the displacement jumps by a rigid-body component , 

the strains and stress remaining continuous . Such jumps may be ensured

-7-



by introducing the double-layer distribution /i = a + b r over the 

sheet, where a , b are constant vectors. If b = 0 we obtain the vector 

analogue of a uniform magnetic shej.1 or vortex-equivalent sheet .

The analysis is given for a uniform magnetic shell . The field of a 

Volterra dislocation on a circular sheet is compared with that of 

a uniform magnetic shell on the sheet . As expected, the two 

fields have similar qualitative features .

This thesis divides naturally into three main parts.

Part I summarises Kupradze's vector potential theory witb a view

to later applications. A new analysis is given for displacement fields 

_2
having 0(r ) behaviour as r -->0O. We show how to complete the double-

layer vector potential so as to represent an arbitrary regular 

elastostatic displacement field.Th’e connection with Somigliana's formula 

is brought out and helps to throw light upon Kupradze S representation

Part II uses the Papkovich-Neuber formula to construct some 

representative displacement fields in the infinite domain exterior to 

a spherical cavity, and it shows how to represent these fields by 

vector potentials.The potentials can not in general be evaluated 

exactly,but their asymptotic equivalence to the fields is verified.

Part III applies Kupradze's double-layer vector potentials to 

construct the field of Volterra dislocations. This brings out 

the analogy with the theory of a uniform magnetic shell and also helps 

to connect Volterra dislocations with crystal dislocations^pearson(l959).

-8-



Part of this thesis has been embodied in three published papers 

of which copies are attached at the end.
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PART I

INTRODUCTORY ANALYSIS

This provides a summary of vector potential theory in a form

suitable for subsequent applications



Chapter 1

Vector Potential Theory

1.0 Introduction

It was Kupradze who first introduced vector potentials into the 

theory of elastostatics. He was very much guided by the role of scalar 

potentials in the theory of harmonic functions. Corresponding to the 

scalar simple-layer potentials there exist vector simple-layer 

potentials. Corresponding to the scalar double-layer potentials there 

exist vector double-layer potentials. Green's formula parallels 

Somigliana's formula. Corresponding to harmonic functions

there exist displacement fields. Corresponding to the normal 

derivatives of a harmonic function there exist the traction vectors 

associated with a displacement field1 . Corresponding to a uniform 

harmonic function there exists a rigid-body displacement field . 

Corresponding to the scalar integral equations there exist vector 

integral equations.

1.1 Vector simple-layer potential

Corresponding to the scalar potential we introduce the vector 

potential

Here 9b is a closed Liapunov smooth surface Jaswon & Symm (1977), 

y signifies a point of <bB, dy signifies the area element at y ,x

(1.1.1)
bB



signifies any point of space i.e. within the interior domain bounded by

dB or within the infinite exterior domain B bounded internally by 3b
e

or on dB itself. Also g(x,y) signifies the displacement dyadic:

g(x,y)

g(ilfy2) g(xr y3)

g U ^ y ^  9 (i2'^2) 9(x2,y3)

3 (* 3 ^ 1 ) ^(-3' -2} g(i3'^3)

(1 .1 .2 )

where, in the isotropic continuum:

1~ 1' s * * ' v W V
-p fiP fi f  ~

1-K
ci + -*■

/ if if
yxp ~otfi pp Sx^, ÒXp

= -ì- S
l 2f

jap où,P p dx^x
P

; f  = | x-y | ; c< , fi =1,2,3,

(1.1.3)

where p is the shear modulus, )) is Poisson's ratio (0 < V $ -- ) and 

F 1 = 4(1-]P). This is Kelvin's solution for the displacement component 

in the <X - direction at x generated by a unit point-force acting in 

the ^-direction at y. Clearly column 1 defines the displacement 

vector at x generated by a unit point-force acting in the 1-direction 

at y, etc. By virtue of the symmetry property::

g(v y  = g(v - o P  '
(1.1.4)

we see that row 1 defines the displacement vector at y generated by
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a unit point-force acting in the 1-direction at x. Finally (T signifies 

a vector source density with components 6 = < ^3>' an^

provides the magnitude of the point-force acting in the 1-direction 

at y etc. Expressed in terms of components, (1.1.1) appears as

V (x) 
d. - I

g (x

bP
' V

eyy) dy -C B i' Be; ^  B ; ^ P =1'2'3
(1.1.5)

It has been proved by Kupridze (196,5) that V has properties entirely 

analogous to those of scalar simple-layer potentials. These have 

been listed by Jaswon (1984).

1.2 Traction vector

Associated with g(x ,y) we may compute the fundamental traction 

dyadic of the medium:

g*(x,y)=

•^-l'-l* 9*(x1,y2) 9*(i1'y3)

9*(Ì2'^1) 9*(x2,y2) 9*(i2'^3:

9*(i3'Z1) 9*(x3,yJ_) 9* (^3, y3 )

(1.2.1)

where

2y-l 1 5 P 'ò P
2(l-y) p1 d à x^ no<

f r 3 bf
+ dd i + — v  ;

d , 'l =1,2,3; x^à B (1.2.2)
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Column 1 of (1.2.1) signifies the traction vector at x generated by 

a unit point-force acting in the 1-direction at y etc. Kupradze 

(1965) proved the important formula:

V*(x) = J  • *f(x)dy —  2"[f(f(x) ; X , y C  SB, (1.2.3)

bB

for the traction vector at x associated with V, corresponding with 

that for the normal derivative V'(x) of scalar potential theory 

Kellog (1̂ 2.9.) • Following the sign convention by Jaswon &Symm(1977),

we replace (1.2.3) by the formulae:

V*(x ) = j  gi (x,y) .¿'(yidy - 2lief(x) ; x , y^SB (̂ ,.2.4)

bB

V* (x) = j g* (x, y) . 6"(y) dy - 2TS"(x) ; x , y C ^ B/ (1.2.5)
-e - -e - - - - - -

dB

referring to the traction at ̂ B acting upon B^,B^respectively. Since

2*(x,y) + g*(x,y) = 0, (1.2.6)
-i - - -e - -

owing to the continuity of 2*(x 'Y) at x for a fixed y, it follows 

that:

V^x) + V*e(x) = — 4"JT̂’(x) . (1.2.7)

This useful result has a simple physical interpretation. Imagine 

the area element dx as a thin elastic strip sandwiched between 

the sides of &B, which is subject to a resultant force 6dx(ifft/ 

generated from its interior and balanced by a resultant force 

(Vi + V*)dx applied over the boundary.



1.3 Vector double-layer potential

A second, equivalent, traction dyadic associated with g(x,y) is

g(x,y)*
g (i2,-i)*

L

g (Xi,y2)*

g(-2'-2)* 

g(-3'-2} *

g (Xi,y3)*

g (ï2,-3)* (1.3.1)

g(x3,y3)*

constructed by interchanging x , y in (1.2.1). It may be shown 

Jaswon & Symm (1977), that column 1 of (1.3.1) signifies an 

elastostatic field, i.e. that generated by a unit traction source 

acting in the 1-direction at y, etc. This field corresponds with 

the scalar field generated by a dipole source at y and has analogous 

properties. jn particular it allows us to construct the vector 

double-layer potential:

W(x) = J g (x,y)* .)iiy) dy ; xCB.,B ; yc'SB. (1.3.2)
6B "

Here )i signifies a vector source-density with components 

p. = ,^2 > J _̂ î dy provides the magnitude of the traction acting

in the 1-direction at y,etc.. Expressed in terms of components 

(1.3.2) appears as:

W°f(-) = L g(ïo< ; ^C ^B ;
U  ,p  = 1,2,3. (1.3.3)

W has properties entirely analogous to those of the scalar

- double-layer potential W.



In particular it defines an elastostatic displacement field 

everywhere except at 5b , and it jumps at according to the formula

lim W(x.) = W(x) + 2"TTp(x) ; xC^B. (1.3.4)
x .-->x
-l

lim W(x) = W(x) - ¿ITpix) ; xC^B, (1.3.5)
x -->x
-e

as we pass from B . or B to ^B.
l e

It will be noted that row 1 of (1.2.1) defines an elastostatic 

displacement field at y, i.e. that generated by a unit traction 

force acting in the 1-direction at x. Also, row 1 of (1.3.1) 

defines the traction vector at y generated by a unit point force 

acting m thel"3itection at x.



Chapter 2

Representation of Elastostatic 

Displacement Fields by Vector 

Potentials

2.0 Introduction

In chapter 1 we noted that vector simple-layer and vector double-layer 

potentials are displacement fields under broad conditions. In this 

chapter we investigate the representation of an arbitrary displacement 

field. by such potentials. We also show how the theory of single— layer 

potential representations can be based upon Somigliana's formula.

2.1 Somigliana's formula

Let ^ be a displacement field in B which assumes a given set 

of boundary values on Bb . Regarding <{>(y) as a vector double-layer 

source density at yC^B, it generates the vector double-layer potential

/ g(x,y)*<l>iy)dy xC B , y<; 3b . (2.1.1)

Also (j) has an associated traction vector (f*(y) at "9b . Regarding 

this as a vector simple-layer source density,it generates the 

simple-layer potential:

/ g(x,y) ,<J)* (y)dy

"ÒB

xCB. ; ycàs. (2.1.2)

Superposing (2.1.1) and (2.1.2) gives the identity:



f  g(x,y);i.<j>(y)dy - T  g(x,y) .<|)* (y)dy 
dB 1 OB - 1--

= 4T^(x ) ; xC B. , yc^B, (2.1.3)

valid for a harmonic function (j> in B_̂ . This is Somigliana's 

formula, Smirnov —— (1964). This formula provides a fundamental 

link between the theory of elastostatic displacement fields 

and vector potential theory. When x lies on dB, (2.1.3) becomes:

j g(x,y)* .(J)(y)dy - f g(x,y) .^*(y)dy 
"dB “ “ 1 " 9b " - 1 ~

= 2T $ ( x ) ; x , y C  d B , (2.1.4)

because the integral (2.1.2) remains continuous as x passes

from B. to *c)B whilst (2.1.1) jumps by — . Formula (2.1.4)

providesafunctional relation between (|) and (£>* on "dB, which has 

been used to generate boundary integral equations covering all 

the boundary-value problems of elastostatics-.

When x passes from~bB into B^ there occurs a further jump 

in the integral (2.1.1), giving Betti's identity:

J* g(x,y)*.$(y)dy - J g(x,y).^*(y)dy 
dB  ~ 1 dB

= 0 ; xc B , ycdB. (2.1.5)
- e -

All exterior equations carry the same signs as their 

interior counterpiarts. Fbr a regular displacement field f  in B^, 

which assumes continuous boundary values f ( y )  and continuous
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boundary tractions f*(y) at yCôB, Scmigliana's formula yields 

the corresponding exterior formula^:

=4Tf(x) ; ïC.Be ,yCbB (2.1.6)

= 2ltf(x) ; x , yC^B (2.1.7)

= 0 ; xCB. , y c  ÔB ( 2 . 1 . 8 )

where

f  ---2—  ! x I 1 f f*(y)dy+ 0( | x | 2 ) ; |x|— >oo. (2.1.9)
4 T  " dB 6 "

2.2 Extension of somigliana's formula

Given a displacement field <j) in defined by Somigliana s 

formula (2.1.3), we may generalise the formula by superposing upon 

it the identity (2.1.8) where f iS an arbitrary regular exterior 

displacement f ieId> Jaswon&Bhargava (1961)I

f g(x,y)*. [<J>(y) - f(y)]dy
4 b 1

g(x,y).($^(y) + f*(y)]dy

; xCB. , yC^B.= 4”IT(j)(x) (2.2.1)



We now consider two distinct possibilities for f:

(i) f = (j) over providing the vector simple-layer representation

1

IT
g(x,y) *. [(j>*(y) f*(y)]dy 

-e -

= <j)(x) ; XCB. , y c  SB (2 .2 .2 )

generated by the source density:

6* = (2.2.3)

This construction assumes the existence of a unique regular f in B^, 

which satisfies:

f = $ at ÔB , (2.2.4)

ensured by the exterior Dirichlet-uniqueness theorem of elastostatics.

(ii) f* = -6* over <̂ B providing the vector double-layer
-e Ii

representation:

— —  \ g(x,y)*.[$(y) - f(y)]dy
4TT ÔB 1

= <j>(x) ; x C  Bi , y C (2.2.5)

generated by the source density:

u = —  (<b - f) .
4ir

( 2 . 2 . 6 )

-20-



This construction assumes the existence of a unique regular f in 

which satisfies:

ensured by the exterior Neumann existence-uniqueness theorem of 

elastostatics. These are fundamental existence-uniqueness 

theorems which are entirely analogous to those for harmonic 

functions in exterior domains.

2.3 Exterior representations

Formulae (2.2.2),(2.2.5) refer to (j) in B̂ . Somigliana's formula 

¡also : holds for (j) in B subject to a suitable restriction on

the behaviour of (j) at infinity, i.e. <J> = 0(r ) a s r  --- >oo.

If so we may always write:

-e
f* on ÒB, (2.2.7)

xc. B , ycàB. 
- e -

(2.3.1)

where

(2.3.2)

assuming the existence of a unique f in B^ which satisfies 

(2.2.4), i.e. ensured by the interior Dirichlet existence-

uniqueness theorem for elastostatics.

Under more restrictive conditions (see below) we may

write :



(2.3.3)$(x) = J
dB

g(x,y^*.£(y)dy ; x c  B e ' yc^B,

where

Ji = — ($ - f),
4TT

(2.3.4)

assuming the existence of a field f in B^ which satisfies:

f* = - 6-l 1
on Bb . (2.3.5;

This field is subject to the interior Neumann existence- 

theorem for elastostatics. Even if f exists, it is not unique since 

equation (2.3.5) has the class of solutions:

f + (a + b A x) , in B, , 
-o 1

(2.3.6)

where f defines a particular solution and a + b A x defines 
- o  -  -  -

an arbitrary rigid-body displacement field. Substituting (2.3.61 

into (2.3.3) we find

<j)(x) = — 1—  [ g(x,y)*.(b(y)dy---—  f g(x,y)*.(a+b A y )dy

oB ̂  f *
- 4fj9(5.jr)i.f0()()dy;xcBe

d8 r n -> -i\

= _k_

2>B

* 1 T
§(i,}')i.^(y)rly-4^ J g(x,y)J.f0 (y)ay>
b " ¿b

(2-3-1)

Since the second integral of (2.3.7) is zero by putting J] = a+b/\y,|

into (2.1.5).It follows that the class of solutions (2.3.6) all

generate the same $> in B .
e

The field f could only exist in B^ provided the traction 

f* on Bb produce neither a resultant force nor resultant moment. 

These conditions may be expressed by writing:

-22-



(y)dy = O,
i n

J y A (y)dy = O,

ÜB

respectively which imply from (2.3.5) that

J*
"bB

*(y)dy = 0, 
e -

j  y A  ^*(y)“3y = o.

"bB

(2.3.8)

(2.3.9)

(2.3.10)

(2.3.11)

Accordingly we may only write (j) = W in B^ provided the traction

(J)* on 'bB produces neither a resultant force nor a resultant moment 
ie

acting on B^. This of course could only be known if <J>* were 

known on "bB.

i —2
Condition (2.3.10) implies (j> = 0(r ) as r --- >oo, since

a resultant force produces 0(r ’*’) behaviour as follows from

Kelvin's point force solution (1.1.3). It might be supposed

, -3
that condition (2.3.11) implies $ = 0(r ) as r --- >oo, since

-2
a resultant moment generally produces 0(r ) behaviour, e. g.

see solution (4.2.10) for a twist nucleus. However there exist

-2
certain special fields characterised by 0(r ) behaviour which do

not produce a resultant moment, e. g. the field defined by W in

B jJaswon & Symm (1977). 
e

Another example will be given in the next chapter. Of course

i ~3(J) = 0(r ) as r --- >oo always implies a null resultant force

-23-
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Chapter 3

Boundary Integral Equations

3.0 Introduction

In this chapter we utilise the preceding theory to formulate 

boundary integral equations. These supplement the theory and allow 

us to complete the vector double-layer representation for exterior 

fields.

3.1 Formulation by vector simple-layer potential

The representation:

<j>(x) = J g(x,y) .(f(y)dy ; x c b ^ b ,̂ yd^B, (3.1.1)

c)b

remains continuous as x approaches ^B whether from B^or B^. 

Accordingly (3.1.1) provides the boundary relation:

j  s<£*y>.?<y>dy = $(£) »• *# y C ^ B# (3.1.2)

^B

which is a vector integral equation of the first kind for C in 

terms of (j). This has a unique solution given by (2.3.2). However 

this theoretical solution would not generally be available, and it 

would be necessary to solve the equation directly for 6\ Direct 

solution^ of (3.1.1) whether analytical or numerical#do not seem 

to have been attempted.

-24-



An interesting choice of ^ is ^ = a + b A  x in B. , where a , 

b are constant vectors which provide (j)*=0. It is convenient 

to break down a + b \ x into the six independent vectors:

d = <1 , 0 , 0 >

d3 = <0, 0 f 1 >

d, = <0 , 1 , 0> A r
- D  -

-2 " <0

so yielding the six independent equations:

J  g(x,y) • Ag(y)dy = dg(x) ; x , y C  ; s=l,—  r6» (3.1.4)

with the corresponding six solutions Ag ; s = 1,...,6.These 

equations are the vector analogues of Symm's equation 

for electrostatic capacitance^Symm(JS63 ,1964).

Computing the traction vector for each side of (3.1.4) 

we find:

j 2^(x,y) .^(y)dy - 2TTAg ; s=l, ,6 (3.1.5)

5b

which is a homogeneous _ vector integral equation of the second

kind for 1 . Clearly this has the six independent non-trivial 
-s

solutions A ;s =1,...,6. Accordingly, assuming that classical
-S ;

Fredholm theory applies, the adjoint equations:

/  g(x,y)£.ds(y)dy - 2lfds (y) = O ; x , yCc>B; s=l,--,6, (3.1.6)

&B
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have corresponding non-triviaj. solutions d . These solutions may be 

confirmed by substituting (j) = dg, ({)* = (d*) = 0 into Somigliana's

boundary formula (2.1.4).

J
9b

Operating upon both sides of (3.1.2) by the integral operator 

^g(x)...dx, we have

J Xg(x). <j> (x)dx / k (ï> *c / g ( x , y )  .6" (y )dy]dx  ;

. x , yC^B. (3.1.7)
ÔB ÀB ^B

Assuming that the order of integration may be inverted ( Fubini's 

theorem), and interchanging x , y in (3.1.4), we find:

J As(x) .<j>(x)dx = g(y,x) ._Às<x)dx } .^(yjdy 

àB àB

=j  5g(y) .f(y

<*B

)dy s —1,...,6. (3.1.8)

Now substituting:

C  = - --- (V* + V*)
4ir ~ e

-i—  (è* + d)*),a e
(3.1.9)

into (3.1.8), yields:

1
Sb

ks(*>.^(x)dx ---—  f d)*(x).d (x)dx. (3.1.10)

This last integral gives the components of the resultant force 

( s = 1,2,3) and the resultant moment ( s = 4,5,6) associated
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with (|)* on ^B. Therefore the left-hand integral in (3.1.10) provides 

these components if <|> is given on bB instead of (|)*.

3.2 Formulation by vector double-layer potential

Corresponding to (1.1.1) we may always write:

(j>(x) = j gixjyit.yuiyidy ; xCB, ; yc^B. (3.2.1)

Sb

This integral jumps at bB, so providing the vector boundary 

integral equation:

J g(x,y)*.ja(y)dy + 2lT>(u(x)

^B

= (|>(x) ; x , y C ^ B  (3.2.2)

for y  in terms of (j). There exists a unique solution given by 

(2.3.4). In practice,of course, it would be necessary to solve

(3.2.2) directly for /i; however neither an analytical nor a 

numerical solution seems as yet to have been attempted.

The exterior equation corresponding with (3.2.2)is:

g(x,y)*./i(y)dy + 2TT î(x ) = <j>(x) ; x , yC^B. (3.2.3)

3b

This requires analysis by vector Fredholm theory since the 

associated homogeneous equation:

2 ( x , y ) *  ./ i(y ) d y  + 2"TTj u ( x ) = 0  ; x , y c ^ B ,  ( 3 . 2 . 4 )

3b
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6.has the six independent non-trivial solutions u = d ;s=l,...,
-s -s

Note that (3.2.4) becomes (3.1.6) on writing g(x,y)* = -g(x,y)*.
- - - e - - - l

Therefore the adjoint equation to (3.2.4):

J 2* (x,y) .^(y)dy + 2TTA(x ) = 0 ; x , yC ̂ B, (3.2.5)

¿B

has the corresponding six independent non-trival solution 

A = A ; s = 1, ...,6. Assuming that vector Fredholm theory 

applies, equation (3.2.2) only has a solution subject to 

the orthogonality conditions:

J (j>(x) . A (x)dx = 0 ; s = l,...,6. (3.2.6)

c)B

By virtue of the equality (3.1.10), these express a null resultant 

force and a null resultant moment produced by (j)* acting upon 3b , so 

confirming the conditions (2.3.10)^(2.3.11) obtained directly 

on physical grounds. If (3.2.6) holds, a general solution exists 

and may be written:

6
u = T  a d + d (3.2.7)

s-s -o
S = 1

where dQ is any particular solution and a^ are arbitrary scalar 

coefficients providing an arbitrary rigid-body displacement, in 

accordance with the previously obtained general solution (2.3.6).

Clearly the representation:

<jf(x) = J g(x,y) *.ju(y)dy ; , yC^B (3.2.8)

c)B
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is incomplete since p may be not always exist. This can also be

-2
seen directly, since W = 0(r ) as r --- >oo whilst in general

<j) = 0(r 1) as r --- >oo. Physically interpreted, W provides no

resultant force at infinity, by contrast with the general be- 

haviour ofdj>. However, even if (|) = 0(r ") at infinity, it may

not necessarily be represented by W. This is because W provides 

no resultant moment at infinity, by contrast with the general 

(j) having 0(r behaviour as r --- >oo.

Accordingly we extend the representation (3.2.1) by writing:

$(x) = j  + a.g(x,y)

bB
y=0

+b AV.g(x,y) ; x c B  , yc c)B. 
- — — — y=0 - e -

(3.2.9)

where a ,b are constant vectors to be determined:

a = <a^, a2, a3> ; b = <b3, b2, b o  ̂ < 3 ^  a â j. (3.2.iO) 

This representation yields the boundary integral equation:

J g(x»y)*.<u(y)3y + 2Ti>u(x)
Sb

= <|>(x) - [a.g(x,y) t b A  V.g(x,y) j=Q. (3.2.11)

It will be noted that a.g has 0(r 1) behaviour as r-- >oo,

giving the resultant force without moment (see below) produced 

by <j); also b /\ V.g(x,y) has 0(r ) behaviour giving the resultant

moment without force(see below) produced by (£.

-29-



In terms of components these vectors appears as:

a a(JT . x ) ; oi =1,2,3
! ß ~P -«

(3.2.12)

b A?.g(y,x) = £  (b A V) g(y , x ) ; 0< = 1,2,3

Operating upon both sides of (3.2.11) by the integral 

operator J } (x)...dx and interchanging.the order of integration
A b“s “

we note that;

0 = J À^(x) •[ J g(x,y)*. ,p(y)dy + 2l̂ j(x) ]dx

= { ^ (x).[(j>(x) - a.g(y,x) - b /\?.g(y,x)]dx (3.2.13)

^B
y=0

i.e.

j À (x).|(x)dx = a.dg(y) = a ; s=l,2,3

<̂ B

=0 ; s=4,5,6

(3.2.14)

showing the absence of a resultant moment. Also:

j' >ls (x) .<j)(x)dx = bA V.dg (̂ ) = 2b ; s=4,5,6

àB
= 0 ; s=l,2,3

(3.2.15)

showing the absence of a resultant force.

With these values of a , b the integral equation (3.2.11) 

always has a solution of the form:

= ^  + £  a=3c
S = 1M  -O  „tTn S - S

(3.2.16)
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I l
L

o
is a particular solution and a

s
s=l, 6 are arbitrary

scalar coefficients



P ART II

INTEGRAL REPRESENTATIONS

Using the Papkovich-Neuber formula, we construct three simpl 

but qualitatively distinct elastostatic fields in the infinite 

domain exterior to a spherical cavity, and we represent these 

fields by both simple-layer and double-layer vector potentials.



Chapter 4

Exterior Sphere Problems

4.0 Introduction

In this chapter we construct three simple but qualitatively 

distinct elastostatic displacement fields in the infinite region 

exterior to a spherical cavity, utilising the Papkovich-Neuber 

formula. We also calculate the tractions associated with these fields. 

This paves the way for vector integral representations in the following 

chapters.

4.1 papkovich-N«uber formula

In an isotropic linear elastic continuum, the elastic displacement 

vector ^ satisfies the Cauchy-Navier equation,Sommerfeld (19641*

^ V 2<{> + (À + p)V(7.<{>) = 0 (4.1.1)

in the absence of body force, where A / p are Lame's elastic constants.

This equation is preferably written:

(4.1.2)

A general solutions to equation (4.1.2) has been given by

papkovich (1932) and Neuber (1934) in the form:

Eubanks& Stechers (1956)
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(t) = < h,,h„,h > - k^(x-,h,+ x h„+ x_h_+ f);
1 2 3 r 1 1 2 2  3 3

h
2

h >
3

0; V2f
-1

0; * = 4 (1-1?)

(4.1.3)

where h is a harmonic vector function and f is a harmonic scalar 

function. It is often possible to solve problems quickly by 

guessing a suitable choice of h, f, (r^a) as will be seen below.

4.2 Construction of displacement fields

We first construct an elastostatic field in B ( r >, a) subject
e

to the following two requirements:

(i) ({> = <0,0,t > on r=a; t^ = a constant ,

i.e. the spherical boundary of radius a is given a uniform 

rigid-body translation of amount t in the 3-direction.

(ii) (j) = 0(r 1) as r --- >oo.

(4.2.1)

(4.2.2)

An efficient way of calculating ({) in r̂ .a is to use 

the Papkovich-Neuber formula (4.1.3). In this case we try:

(4.2.3)

where o( , p  are constants to be determined. If so, 

the required field is

< 0 A  >
o( x.

r >a

K - 4 C 1 - J 0

r
(4.2.4)



This field clearly satisfies conditions (4.2.1) and (4.2.2) 

provided that (App. I):

at.
3at

3
3-2 ̂

(4.2.5)

hence,

i
X1X3 9 X1X3

x x„ 
2 3

2
a x2 3

1- U x2. a2 a2x2 3at U

—  * ~  * “ I “ — > ; * ' T T T  ' (4-2-6’
!*r r 3r r r>a.

We also construct a field satisfing the following two 

requirements:

(i) <j> = <0, 0, £^> A  < xi , x2 , x3 > < - W  °>

on r = a ; = a constant (4.2.7 )

i.e. the spherical boundary is given a uniform rigid-body rotation 

of amount about the 3-direction,

(ii) (j> = 0(r ■*■) as r --->00. (4.2.8)

In (4.1.3) we choose:

2,
a ^ x2

3
3

3
r

h3 = 0 , f = 0 (4.2.9)

which yields:

3
a ct>3

$ ------ —  < x2 / ~ xi / 0 > ; r a,
r

and this clearly satisfies conditions (4.2.7) and (4.2.8).

(4.2.10)



Finally we construct a field satisfing the following two requirements

(i) (j)(a) = h on r =a , h = a constant (4.2.11)

i.e. the spherical boundary is given a uniform radial displacement

of amount h.

(ii) <j> = 0 (r 1) as r --- >oO. (4.2.12)

In (4.1.3) we choose:

h^ = h^ = h^ = 0 ;f = — ^ ; L = a constant, (4.2.13)

which yields:

* =
1 X1 X2 X3

L * V(-) = L " < -  -  -  >
r r r

The radial component of (4.2.14) is:

, X1 X2 X3 X1 X2 X3
tr ■ L U ‘ —  ' —  ' T  ' T" ' T  >

r r r

L K L K
i.e. 2 

a
h,

on using (4.2.13). If so (4.2.14) becomes:

r ha
$ = " X1 ' X9 ' Xo > •3 1 ' 2 ' 3

(4.2i14)

(4.2.15)

(4.2.16)

4.3 Calculation of tractions

To calculate the traction vector on r=a associated with the 

field (4.2.6) we first compute the local dilatation;

V.(¡)
<̂f>o< 3at3(2 i< - 1) 

3- 2 V-
(4.3.1)
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where (j)̂  ; o(. =1/2,3 are the components of (j>.

Clearly V.({) is a harmonic function in r}a. Next we compute the 

stress tensor (D̂  , by using the stress-strain relation:

d(j) (̂j)

^ (4.3.2)
cx

where.

0 ; <* + J3

1 ; cX =
(4.3.3)

The stress components are calculated to be:

11 & '3
r

- 2  2 
3x, x„ a x_ 

1 3  3
,  2 25a x, x

r '3- « U
/ x

22 = 2 (■

_ 2 2 
x„ 3x x„ a x„ 
3 2 3 3

c 2 2 5a x„x
2"3 . ) J  X3

r r

33
„ V  ,2 W-l 3
2r 6 ---- 3

r

3x3 3a2x„ 5a2x3 / X,

5 5
r r r r

12
= (D

4̂ x ix 2x:
21

13
= ffi

31
'J. K-l 1

■r{ —  ~  "
X1X3

23 ID'.32 lfc('
2 K-l X2 6X2X3

* r3

2 2 2 
a x 5a xxx3
--T + --- n-- )

2 2 2
2a x 10a x x 
----c; 1 n >

(4.3.4)

-L>a.
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On the boundary^, (4.3.4) becomes:

2
/ X X X

• u

t X„
2

x x.

■22 - u - f  ♦ « > * - ¥ •

/ X,

33

, „ x 2x

X.X0X
X 1 2 3m = (D = 4uu _

12 21 r  g5

^ , xi S= (D„. = ̂ io (“ — " o + - '
13 31 , 2 5|*a a

"sa (" ” j

x9 4X2X3
2 + - I - 1 )

'23 - “32 S ’  ■ ^ a3 J L

We now compute the traction vector on r=a acting upon B 

substituting from (4.3.5) into :

l

H
 *

__
__

_
1 *■*

(D
11 *12 *13 "l '

* =
<♦>2

= (D
21 ®22 tD23 n2

<b*
3 _

(D
31

(D
32

(D
33 .

n
L 3 J

(4.3.5)

, by

(4.3.6)
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where:

1 a 2 a no = --3 a
(4.:

i.e.

, X1X3 X2X3 X3 juS
¿* = < - H    , -H — —  , -H    - >
Ae 4 ' 4

a a a4 ka2

< 0 , 0 , -  > ' H = A Ü + 4p& -
ka

(4.

This yields the resultant force:

J Aji &
= < O, 0, - --> ,

ĴB

(4.

and the resultant moment:

j  y A <{>*ay = o, (4.

as expected acting on the boundary B

Following these steps for the rotation field (4.2.10) we 

find V.<{> = 0 in r»a as expected . If so (4.3.2) readily gives:

6̂ i3XlX2a' 1
11

-6 */lW3XlX29
22 0) = 0

^ 33

3.8)

3.9)

3.10)
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(D
12

(D
21

5M ^ a3(X2_Xl)
5

r

(D
13 31

3 p ^ x2x3a3

5
r

CD
23 32

^3 XlX3a3
5

r

(4.3.11)

r }a.

On the boundary this becomes

6^W3x ix2

11 2 
a

6>i03XlX2
22 2 

a
a>_, = O33

CD = CD 
12 21 (4.3.12)

CD = CD 
13 31

3m ^ x2X3

^ ^ X1X3
a) = (d =
23 32 2

r>,a.

Now substituting from (4.3.12) and (4.3.7) into (4.3.6) we obtain.
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the traction vector:

I
^e = —  < X2 ' ~ X1 ’ 0 >'

(4.3.13)

This yields the resultant — force :

J $*(y)3y = < o , 0 /0 >. (4.3.14)

as expected, and the resultant moment:

I 3̂ W3 ( 2 2
J ï  A s > £ ( y H y  =  — —  J < x 1 x 3 ' x 2 x 3 ' _ x i _ x 2 > '3 y

ÔB

= < 0 , 0 , - 8 a ^ i ^ > . (4.3.15)

For the displacement field (4.2.16) we note that V.tj) = O in 

r$a. If so (4.3.2) gives:

2 1 3X1
®11 = 2̂ ha (~ -----5}

o v 2, 1 3X2 .
tD2 2 = 2>lha (— 3~ ~  

r r

033 =2pha2 (—-T7----| - )

fl) = (D
12 21

3 5
r r

6pha x3x2

6pha x x
(D = (D _ ______
13 3 1 -

r

(4.3.16)



(4.3.16)(D = Œ
23 32

, . 2 6pha x2x3

5
r

r>a.

On r=a (4.3.16) becomes:

i 3xi
" n  * 2̂ h<- ----7

(D
22

(4.3.17)

(D12 21

6̂ ihx1x2

3
a

(D
13 31

ôjahx^x^

3
a

(D
23 32

6|ihx2x3

3
a

J
r >,&.

Substituting from (4.3.17) into (4.3.6) yields:

* *e (4.3.18)

which gives the radial traction:
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. , X. X X
k* n = < x x x > <_i _2---- L_
Pe-2 2 1' 2' 3 a ' a ' a

a

4mh 2 _ 4jah (4.3.19)

acting on the boundary. Also (4.3.18) yields the resultant force:

1 $*(y)dy = - — 1 / <Y1 ' y2 > y3 >dy
bB

= < o , 0 , 0 > 

and the resultant moment:

(4.3.20)

J y A<j>*(y)3y = ,4̂ h j < o , o , o
àB ÔB

>dy

= < O , 0 , 0 >, (4.3.21)

as expected.

For the interior field we choose

h = L< x1,x2,x3>, f = O ,L = a constant, (4.3.22)

which yields:

(j) = (1-2 *< )L<x ,x ,x > . (4.3.23)

By condition (4.2.11) it follows that:

L =
(1-2 K-)a

(4.3.24),
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giving the interior field

* X1'X2 ' V ‘
(4.3.25)

The associated traction vector is:

( 3 À +2/i)h
2

a

(4.3.26)

which yields the radial traction:

r±
n

(3 K +3u)h
2

a
V a

= - (3À.+ 2ji)h/a,- r = a. (4.3.27)
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Chapter 5

Representation by Vector Simple-Layer

Potentials

5.0 Introduction

We now construct vector simple-layer potentials which represent 

the fields of chapter 4. It seems impossible to evaluate the potentials 

exactly,but we obtain their asymptotic equivalence to the fields 

and also their equivalence at r =0 , Xaswon& El-Damanawi (i986)♦

5.1 Integral representation:translation problem

To represent the field (4.2.6) by a vector simple-layer

potential, we use the vector source-density formula:

(5.1.1)

Here <{>* has been computed in (4.3.8), and (()* = 0, since

<j) = < 0 , 0 , t^> i n r  = a, so (5.1.1) becomes:

(T = <0, 0 (5.1.2)

Substituting from (5.1.2) into:

V(x) = J g(x,y) .(T(y)dy; yC^B ; x C B  , B., 
- - - - - - e l

(5.1.3)

c)B
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we should identically obtain (|> for any choice of x. In practice it 

seems impossible to evaluate this integral exactly, but its 

asymptotic behaviour can be examined as follows:

First we note that:

g(x,y) ---- > g(x,0) as x ---- >oo, (5.1.4)

V(x) --- > g(x,0). j §"(y)dy; x ---- >00,

dB

(5.1.5)

where:

1- * K 1

r  y  r3

g (X, 0)
K

X1X2

y r~

x„ x„ 
K 1 3

y r

The integral of (5.1.2) gives:

* X1X2 

y  r3

K X1 X3

y  r'

1- k
pex. . • x 

V< 3 2

y  r~

• x_x_ 
K 2 3

F 3' r

1- K
^r

(5.1.6)

| x-01=r.

( 6"(y)dy = < 0 , 0 ,  [ .—
J - - ) Air t
5b 5b 4ir k

dy >

< 0 , 0 ,  >. (5.1.7)

Substituting from (5.1.6) and (5.1./) into (5.1.5) we obtain:
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v ( x )  = < v 1 (x )  , v 2 (x )  , v 3<x) >

1 3 2 3 1- K 3
3 ' 3 ' Kr + 3 >

r r r

2
(5.1.8)

which agrees exactly with the asymptotic components of (j) as

given in (4.2.6). Physically speaking the asymptotic field is

that generated by a point force of magnitude
4%! X 

K
acting in

the 3-direction located at y = 0 .

We remark that the integral (5.1.3) can be evaluated 

exactly at the centre of the sphere, i.e. putting x =0 in

(5.1.3) yields:

V(0) = J g(O,y).§Xy)dy

C*B

= < 0 , 0 ,  t > , (5.1.9)

as expected.

5.2 Integral representation:rotation problem

To represent the field (4.2.10) by a vector simple-layer 

potential, we use (5.1.1) where (|>* has been computed in (4.3.13). 

Also <j>* = 0 since <b = U> < - x ,x ,0> on r = a, so that (5.1.1)
1 *5 2* J.

becomes:

3> ^  .
4fla < y2

,-y^o >. (5.2.1)
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The integration of (5.2.1) gives:

J 5"(y)dy = <0 , 0 , 0 >• (5.2.2)

ÒB

Substituting from (5.1.6) ani (5.2.2) into (5.1.5):

V(x) = < 0 , 0 , 0 >, (5.2.3)

i.e. the first-order asymptotic approximation to %(x,y) gives 

a null result. Using the second approximation,Jaswon & Symm (1977):

g(x,y) = g(x,0) + y.V g(x,y) (5.2.4)
" ~y=0 '

where Vg(x,y) denotes the gradient vector at y = 0 associated 

with each component of g(x,y), so:

jc . y  . 0 (0

y . ^ g ( x , y ) ]  = 1- K
3

0 x.y

0 0 x.y

Xiyi

2 K

yr
X2y 2

0 0 x3y3
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K

. 2
3xlX.y

’V i "  Xiy2

3xiX2-"y

_x3yr  xiy3

3X1X3-’-

-x2yr  y2xi

3xix2x.y

- 23x2x.y

•X3y2" X2y3

3x x x.y 
2 3 - -

■x3yr  y3xi

3xix3x.y

’X3y2- X2y3

3x2x3x-y

(5.2.5)

- 2
3x3x.y

Substituting from (5.1.6) and (5.2.5) into (5.1.5), and noting 

the null result from the first approximation, we obtain:

3
9 u)3

V(x) ------ —  < x2 , - x3 , 0 >. (5.2.6)

This asymptotic field exactly agrees with <j) as given by (4.2.10). 

Physically speaking the asymptotic field is that generated by a point 

couple of moment -8TTpa3o) about the 3-axis located at y =0 .

The integral (5.1.3) can be evaluated exactly at the centre 

of the sphere i.e. putting x = 0 in (5.1.3) yields:

v(o) = j .f(y)dy = u53<-x2 , X1 / 0

i>B

= <0 , 0 , 0 > (5.2.7)
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5.3 Integral representation : pressure problem

To represent the field (4.2.16) we use

and (|)* have been computed in (4  3.18) and (4

(5.1.1) where <[> 

3.26), so that:

3 ( A + %u)h 

4Ta2

(5.3.1)

Now, substituting from (5.1.6) ^ (5.2.5) and (5.3.1) into

(5.10) up to the second approximation yields:

V(x ) =
3h (At ja) j"

Stye "ÒB

À +
+ - k  - V

X1X2

(A +  /i)r r

X1X2

X1X3

* + te . +
(A+/i)r ^3

X1X3

x x„ 
2 3

x x„ 
2 3 k+ 2)i _3_

(X+ /i)r+ ^3

dy

3h(A+3p) (

8V 2 r 3

" r
x.y 0 0 yi

0 x.y 0 y2

0 0 x.y y

— •«

3y
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3hU tm) (
2 3 )

8¥^a r ^

r  „  2
r 3x^x.y

■x2yr xiy2 “x3yr xiy3

3x1x 2x . y  Sx ^ x ^ x .y
+ -------- -------  + -------- -------

-x2yr xiy2

3x x x.y

„ 2
3x2x.y

-X3y2-X2y3

3x2x3x.y

x3yr xiy3

3x1x;Jx.y

'X3y2“X2y3

3x x x.y 
2 3- -

3x x?y

dy

(5.3.2)

The first integral gives zero, the others give:

r r r
(5.3.3)

which is the exact field (4.2.16). Clearly the integral of (5.1.3) 

is zero at the centre of the sphere as expected.
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5.4 The general rigid-body displacement

The boundary displacements (4.2.1) , (4.2.7) are particular 

cases of the general rigid-body displacement:

<j> = t + wA r. (5.4.1)

where t = < t ^  t9, t3>, w = < w.̂ , w2> w3> are constant vectors. 

We replace (5.4.1) by the six independent vectors:

*!*! = < t1' 0 ' 0 >; t2-2 = < °' V ° >;

fc3-3 = < 0 ' 0 ' t 3 > > w!^4 = < wx, 0 , 0 >Ar; (5.4.2)

W2-5 = < 0 ' w2' 0 >A -; W3-6 = < 0 ' 0 'W3>A E

exterior .
TheTfields corresponding with t d ,w d have been determined in

J J J—b

(4.2.6),(4.2.10) and therefore by symmetry we may immediately

write down the exterior fields corresponding with t^d^, t2d2 ,

w d and w d . These provide the general formula:
1-4 2-5

[ 2 (x,5 xix,S 2
p i  (1_ i- )<

I* r , 3 - 3 2
3r r r

< V l + t2X2+t3X3^J+ -; r â
r

(5.4.3)



The vector source-densities 6“ ; s =1,...,6 generate the
-s

exterior fields, t.d,; i = 1,2,3, w.d.; i = 4,5,6.
x i  i i

Introducing the normalised source-densities,?3-1 -3)

4 i -
Si

fcl “ 4Ti<

-2
Si

fc2 "
<0 ,

-3 *
-3

s
< 0

II

-< 1

W 1 "

3b . 
4tfa

k =
-5

J 5  _ 

W2 "

3b
4Tfa

k = 
-6

S -

“3 "

3b
4Ka

3n_____
4]fa(3-2 k)

, 0 , 0 >

__ _________
4)fa (3-2 V<)

2iL

, 0 >

4^3(3-2 V<) '

< 1 , 0 , 0  >A'r

(5.4.4)

we obtain the six vector integral equations:

| g(x,y).A (y)dy = dg(x); x C ^ B • s = 1 (5.4.5)

where d ; s = 1,...,6 have been defined in (3.1.3).
-s

We may now verify the important equations

| X^y)dy (y )dy; s 1, 6 , (5.4.6)

* (5-1-2) oC(5-2-1)■
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which hold for a general Liapounov-surface IbB.

First, we verify (5.4.6) for the field (4.2.6): 

The left-hand side of (5.4.6) yields:

i $ -l3(y )dy = | < o , o  ,t3>.< 0 , 0 ,
3p

^B

3̂ at3
3-2 K K

4Tfa(3-2 K)
•>dy

(5.4.7)

and the right-hand side yields:

—  I $4TT l *
dB

*.d (y)dy = 
e -3 -- “ —  ( 4ir )

< 0 , 0 >.

c)B

< 0 , 0 , 1  >dy=

a (3-2 K)

3>iat3

3-2
(5.4.8)

as expected.

Secondly, for the field (4.2.7), the left-hand side of 

(5.4.6) provides:

3^w3 

' 4]Ta
■ j  < -x2,x1,0>.<-x2,x1,0>dy

^B <)B

3^w 3 

' 47ia
( 2 2  3 ■ J (x1+ x2)dy - 2̂ iw3a , (5.4.9)

<̂ B

and the right-hand side provides:

4TT i

3pw3

41T j *e--6(̂ dy = m r
'Sb

-{ <-x2,x1,0>. <-x2,xi,0>dy

3pw a
3 ’

(5.4.10)
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Chapter 6

Representation by Vector Double-layer 

Potentials

6.0 Introduction

In this chapter we represent the previous elastostatic fields 

by double-layer vector potentials. The determination of double-

layer vector source-densities proves to be considerally more 

complicated than that of vector simple-layer source-densities. Three 

qualitatively distinct problems are considered below.jaswon& El-Damanawi (1987>

6.1 Vector double-layer source-densities

As already noted in (4.2.6),the exterior displacement field 

for the translation problem is:

& 1- K 2 2
— r <xnx., x„x_, — —  r + x >
3 <X1X3' X2X3'

5 2
* r + V

3at u
~6a 1 2  2 "6------ .

5 <X1X3' X2X3' 
r

3 r + X3 ' 3-2 K
(6 .1 .1 )

This has 0(r_1) behaviour as r ---- >oo, so that it can not be

represented by a vector double-layer potential. Slightly adapting 

the complete representation (3.2.11), we write:

= W( x ) + a<g(x1,y;J),g(x2,y3),g(x3,y3)>
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(6 .1 .2 )+ b A  V.g(x ,y) , 
"y=0

where

a = a. = j  A 3 ( X). (b (X) dx = ,

¿b " ■

b = J (x) (x)dx = O; s=4, 5,6, 

c)>B

b = <b ,b ,b > s  <b ,b ,b > = < O , O , 0 >. 
1 2 3 4 5 6

(6.1.3)

on using (3.2.14) and (5.4.7). So we have identified a field:

kii= *TT <g(il'y3) ' g(i2'^3) ,g(-3'-3) >

X 1- K 2 2
= —  <x x , x x , — — —  r + x >,

j--3 1 3 2 3 * J
(6.1.4)

which provides the 0(r ’*') component of ¿»yielding a new field:

4 m  - triii

)Sa2 1 2  2
— — - < xx„, x x„, - — — r + x.>
5 1 3 2 3 3 3

(6.1.5)

i.e. (|>
III

6 a 2
“ 3 <X1X3' X2X3' " ~ T  + X3> a r=a

(6.1.6 )

having 0(r ) behaviour as r --- >oo. This field may be represented

by W for a suitable choise of ja.
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There is no difficulty in calculating the stress components and the 

traction vector associated with (j^^. Clearly V.<|) =0 everywhere, 

so we readily compute the exterior traction vector:

)* = 
-III

2^6 „ „ 2 2 2 
—  <3x1x3* 3x2x3, x 1+ x2-2x3>, (6.1.7 )

which yields the resultant force:

)|n^y = < 0 , 0 , 0 >, ( 6.1 .8 )

and the resultant moment:

i ^IIIdy = < 0 ' 0 ' 0 >•

àB

( 6.1.9 )

-3,These are both null as may be expected for an 0(r ) displacement

field. Accordingly <|) could be represented by W for a suitable 

choice of vector source-density p.\

If < r = a, (6.1.10)

where f is an interior field subject to the condition:

f* = - (j)*
Hie. (6.1.Ü)

Now, from ,(6.1.7) and (6.1.11)

_  „ 2 2 „ 2 
f* = ---J O x ^ ,  3x2x 3, X]_ +x 2 -2x3 >, (6 .1 .1 2 )

which yields through fairly straightforward calculations(App.II)
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the boundary field:

f = -------- 7 <(2|+8u)x x , (i|+8u)x x ,
(3A+2>x)aJ 1 J J

-(4^+6^) (x^+x^) - . (

However an arbitrary rigid- body displacement:

5̂ +2̂ } < o, o
( 3À +2ji)a

2£i_____  2
3 Q  + 2p.) 3 ' (6

may be added to (6.1.13Ì. If so (6.1. 1 0 )becomes :

5& (A+2 j u )
~4 ( 3j( +2fd)a <X1X3' X2X3' 'a2+V

(6

As regards the pressure problem, similar analysis from 

(4.3.18),(4.3.16) and 16.1.10) yields:

3 (A + 2ju ) h
M  = 4 (3A+2p)a <X1'X2 >. (

6.2 Integral representation:translation problem

To represent the field 

potential, we use the vector

(6.1.2) by a vector double-layer 

source-density (6.1-15). Also :

2V-\ 1 ~bf
2(1~V) 2 by noC "by nR

cf (jL.i?)

6.1.13 )

.1.14.)

.1.15)

6.1.16 )
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+
i-2J>

ï>J° ïsf
"by "by
p  O'

) ] ; ai ,P  = 1,2,3 (6 .2 .1 )

where

ï'y-
Tr T  “ ar

0(r-1);n
x

;û( =1,2,3, (6 .2 .2 )

This provides the asymptotic expansion:

9(x,y£ - «
1 - 2  K

ar

x.y

-X2yi+Xiy2

■Xiy2+X2yi

x.y

-X V +X V
ly3 3yl

•X2y3+X3y2

~Xiy3+X3yi X2y3-X3y2
x.y

6 v<x.y

ar

(xr  yi1" (xr yi)(v y2) (xr yi)(x3-y3)

(xr yi)(x2~y2) (x2"y2) (xr yi)(x3_y3)

(xr yi)(x3“y3) (x2“y2)(X3"y3) (x3-y3} '

If+IIi

Where Î  s O ( f 2)  & T l + I H  = 0(f3).
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x.y

/- ja

L (À. + 2̂ i) ]
-X V +x V
1-2 2yl

"Xiy2+X2yi

x.y

Xiy3 X3yi X2y3"X3y2

-X V +X V
ly 3 3yl

-x v *x„y„ 
2 3 3 2

x.y

r

+(̂ ) ± _ y

a(A+2^j)r5
X1X2

X1X3

X1X2

X2X3

X1X3

X2X3

J II

XlX3y2y3
. 2 2 ,

xlx3(V y3>

2x2x3y2y3 X2X3 ̂y2+y3’

/ 2
(X2+X3)y2y3

„ 2 2  
2xv„ 

3 3

III

-4
+ 0(r ) ,as r

(6.2,3)
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Substituting from (6.1.IS) and (6.2.3) into (2.3.3) gives:

$ ( x ) I g(x,y)*.>u(y)dy

X1X3
x„x„ 
2 3

(6.2.4)

Dyadics I and II integrate to zero and dyadic III gives (6.2.4), 

which equals the exact field (6.1.5).

6.3 Integral representation:rotation problem

The rotation field (4.2.10) has 0(r “) behaviour as r --- >oo♦

The associated traction (4.3.13) produces a null resultant force 

(4.3.14) but a resultant moment (4.3.15). This resultant-moment 

generates the entire field, leaving no provision for a contribution 

by W. More generally the effect of point -couple would be accounted 

for by the terms involving a,b in the complete representation (3.2.9).

6.4 Integral representation : pressure problem

Substituting from (6.1.16) and (6.2.3) into (2.3.3) yields:

£(*) ha <
x
1
3

r
(6.4.1)
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Also dyadic III gives zero,and dyadics I,II give (6.4.1)

which equals the field (5.3.3)
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Chapter 7

Exact Evaluation of Vector Integrals

7.0 Introduction

We have represented elastostatic displacement fields by 

means of integrals evaluated asymptotically in the infinite 

region exterior to the spherical cavity r = a . In this chapter 

we evaluate the integrals exactly at the particular field point 

x = < 0 , 0 , z >.

7.1 Exact simple-layer integral:translation problem

In the general dyadic:

1 0 0

g(x,y)
1- K

0 1 0
r f

o o 1

2

K 2
+

r r

(Xl”yi ̂ *3 _y3 ) (X2 _y2 ̂ (X3 "y3 ̂ (x3_y3 )2

(7.1.1)
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let x = <0 , 0 , z >. If so (7.1.1) becomes:

g(x,y)
1- K

y p

Kr

2 2 2 2 2
r sin ©cos ijj r sin ©sintjJcoslfr -rsinGcosljJ(z-rcosQ)

2 2 2 2
r sin ©coslpsintlj r sin 9cosl|J -rsin©sinl(r(z-rcos$)

rsin©cosl)l(z-rcos0) rsin©cosllJ( z-rcos©) (z-rcos0)'

(7.1.2))

where:

^^ / »2 . 2 2  »> , (x.-y.) = (z +r -2rzcos0).
& i  1 1

(7.1.3)

There are distinct cases:

(i) z>a : Substituting from (5.1.2) and(7.1.2) into (5.1.3) 

we find (se e  the de r iv a t io n  a t t a c h e d  at the end):

g(x,y) .6"(x)dy 
7 * " “ " “
"̂ B

= < o
[ ,1- X X (z-r

, 0 , ) ( ---  + -----J V P
-rcosQ) , ju&

c>B P /

".r2sin0d0dl|J >
r=a

< 0 - *

2a

... 3 3z
> > (7.1.4)
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i.e.the same value as (4.2.6) for z>a.

(ii) z = a: In this the dyadic (7.1.1) becomes:

g(x,y) =
1- K

2pasin(9/2)

0 0

. 2,

. 2 ,

sin (9/2)

:(e/2 )]

(7.1.5)

Substituting from (5.1.2) and (7.1.5) into (5.1.3) we find:

j  g(x,y) • 6"(x)dy

= < 0 , 0 A l- K______  4 K a 2sin4f9/2 ).
2ausin(9/2)+ 3 . 3. . .
J 8jia sin (9/2)

1
4-TTKa J

2
sin9d9dl^>

= < 0 , 0
fr(3-2 K ) > 
3a K

< 0 , 0 , t > (7.1.6)
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i.e.the same value ai (4.2.6) far z=a

(iii) z<a. In this case we obtain:

< 0 , 0 , t > (7.1.7)

as expected, using a similar analysis to that of (i).

7.2 Exact simple-layer integral:rotation problem

As before there are three distinct cases:

(i) z>a: Substituting from (7.1.2) and (5.2.1) into (5.1.3) 

we find:

i.e. the same value as (4.2.10) at x = < O , 0 , z >.

(ii) z = a: in this case substituting from (7.1.5) and (5.2.1) 

into (5.1.3) yields:

< 0 , 0 , 0 >, (7.2.1)
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3pwo
g(x,y).6-(y)dy = - — I < 0 , 0 ,

if
2 2

Ka sin 8sinl|Jcosltt(a-acos9)
, , 3 3
L 8a jusin (0/2)

2 2 /
. Ka sin 0sinI}Jcosip(a-acos0) / 2 v
T»---------  --- --- ----------r a sin0d0dU

8a ̂ ìsin (0/2 ) ^

< 0 , 0 , 0 >, (7.2.2)

i.e. the same value as (4.2.10) for x = < O , O , a >.

(iii) z<0: Using similar analysis to that of (i):

I g(x,y).ity)dy = < O , O , O >, 

as expected.

(7.2.3)

7.3 Exact simple-layer integral : pressure problem

As before there are three distinct cases:

(i) z>a: Substituting from (5.3.1) and (7.1.2) into (5.1.3) yields:

] g(i'y) .<f(y)dy

i>B

3 (X +2ja) 

4ïïa2
< 0 , O

2 2 2
Ka sin Geos U(z-acos0)_
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Ka sin Qsin liJ(z-acos9) 
3

+
(1- k ) acosQ

+
Xacos8(z-acos9)

3^  P
sinOdQdlJJ >

3(A+2p)h s 
4JTa '

0 it
2 2 2 

K(za cos 0-a z) acos© 7 2 . ,
+ ----- fa sin9d9dl|J\

= < 0 , 0 , 1>, (7.3.1)
z

i.e. the same value as (4.2.16)at x = < 0 , 0 , z>.

(ii) z=a : Substituting from (5.3.1) and (7.1.5) into (5.1.3):

j g(x,y).F(y)3y 
bB 3

3 0l+2jLi)h s 

4la2
O

3 2
U?a sin 9(l-cos6) , 

3 3.
8jua sin (9/2)

(1- K )acos9 
2jaasin (9/2)

3 29
l/a cos9(l-cos9)

3 3
8pa sin (9/2)

a sin9d©dl|ĵ >

= h < O 1 >, (7.3.2)

i.e.the same value as (4.2.16) a t x  = < O , 0 , a >. 

(m) z<a ; (Jsir.g similar analysis to that of f i ) .

7.4 Exact double-layer integral:translation problem

In the general traction dyadic (6.2.3) let xs< 0 , 0 ,  z>, 

If so we obtain:
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3 K

2a sin(9/2)

2 2 2 
cos (9/2)cos Ip cos (9/2J; — cos(9/2)cosljj,

fsinlPcosIp fsTnT9/2)

2 2 
cos (9/2)sin®, cos (9/2).

(fcostP 2
Jsin Ip

-cos (9/2ji cosip. -cos (9/2 ) sinjp> 
isin(9/2) iSin(9/2)

-cos (9/2XsinjL 
■^in(9/2)

sin (9/2)

(7.4.2 )

As before, three cases must be distinguished in each problem: 

(i) z > a : Substituting from (6.1.15) and (7.4.1-) into (3.2.8):

j[ g(x.y)*.;u(x)dy

^ (1-2 K )(a-zcos9)y

f 3 }

r
2 2

6 IX (a-zcos9) (z-y ) y

j°

3 " ^ J a 2 s i n 29 d 9 d lp >

2&a2

3z"
< 0 , 0 , 1 >, (7.4.3)

i.e. the same value as (6-1-5) at x=< 0 , 0 , z >.

(ii) z = a : Substituting from (6.1.15) and (7.4.2) into (3.2.3):
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j + 2lju(x)

>̂B

< O , O , 1 >, (7.4.4)

i.e. the same value a£- (6.1.5) for x = < O , 0 , a >.

(iii) z < a : A similar analysis applies as for (i).

7.5 Exact double-layer integral : pressure problem

(i) z > a : Substituting from (6-4.16) and (7.4.1) into (3.2.1):
e

( g(x,y)*.^u(x)dy= 0 ,

3 ( À + 2.n ) h
(1-2 k ) z ( y ^ + y ^ )

4Tfa(3X+2u)J L  . 3
^B

+
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i.e. the same value of (5.3.3) at x = < 0 0 a >

(iii) z < a : A similar analysis applies as for (i).
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PART III

VOLTERRA DISLOCATIONS

A Volterra dislocation is the elastostatic analogue of a uniform 

magnetic shell or vortex-equivalent sheet. Just as these may be 

regarded mathematically as uniform dipole sheets^ so dislocations .nay 

be regarded as specialised traction sheets. This model is briefly 

explained and connected up with the theory of Taylor dislocations

in a crystal



Chapter 8

Volterra Dislocations

A Volterra (1907) dislocation is a sheet within the linear 

elastic continuum,across which the displacement field jumps by 

a rigid-body translation or rotation '.without impairing 

the continuity of the strain and stress components. Some simple 

dislocation models may be cbhstructed with a hollow cut cylinder 

as exhibited in fig 1‘

We may regard the sheet as a specialised distribution of traction 

sources,and these generate a vector double-layer potential which 

may be identified as the elastostatic field of the dislocation.

The bounding contour of the sheet^L,e .the dislocation line,plays an 

important physical role in the theory of crystal dislocations ,

Taylor (1934); Nabarr* (1967).

Clear]y a dislocation sheet is the vector analogue of a uniform 

magnetic shell or vortex equivalent sheet,which are particular examples of

a'uniform dipole sheet.This generates a scalar double-layer potential, 

eg.a magnetostatic potential or velocity potential,which jumps by 

a uniform amount on crossing the sheet without impairing the continuity 

of the magnetostatic field or fluid velocity. Just as in the dislocation 

case,the bounding contour of the sheet plays an important physical 

role,being identified as an electric current or vortex line as 

the case may be,Pearson (195 9)-

In his original treatment,Volterra utilised Somigliana's formula,which is 

the fundamental formula of vector potential theory,Jaswon-8 Symm (1977).

8.0 Introduction
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However,since this involves the superposition of vector simple-layer

and double-layer potentials,it obscures the useful dipole analogy. 

We exploit the analogy to calculate the field of a dislocation 

having the form of a circular disc.

8.1 Scalar double-layer potentials

A continuous distribution of dipoles over a sheet S contained 

by a contour "̂ S gen-erat$.s, the potential:

W(x) / g(x,y) ja(y)dy; y C S (8.1.1)

where ̂ a(y) signifies the dipole source-density at _y and dy signifies 

the element of area at y. Also

g(x,y) = Ix-y (8 .1.2 )

and

I I
g(x,y) = g (y,x)

d
dn

g(y,x)

y
(8.1.3)

i.e. g(x,y) is the normal derivative of g(x,y) at y keeping x fixed. 

Physically expressed,g(x,y) signifies the potential at xgenerated by 

a unit dipole source at y. It is well established, Kellogg (1929),that 

W has the following general properties:
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(i) W is continuous and differentiable at least to the second order,

2
and satisfies V W =0, everywhere except at S, i.e. W defines a 

harmonic function of x everywhere except at S.

-2
(ii) w = 0(r ) as r -- ^oo.

[W] = 4TT^(x ) at xCS, where [ ] signifies the jump in a

quantity on crossing S.

liv> 3" = ® »i«e. the normal derivative ( but not necessarily

the tangential derivatives) of W remains continuous on crossing S.

If ^p(=m) is uniform over S,then W has the following additional 

properties:

(v) [VW] = 0,i.e. both the normal and tangential derivatives of 

W remain continuous on crossing S.

(vi) [W] = J VW.d X = 4TTm

S

for any circuit which loops "̂ S (fig.2)

These two properties characterise a uniform magnetic shell or vortex- 

equivalent sheet,focusing attention upon 7>S as the physically 

significant entity i.e. seat of an electric current or of fluid 

vorticity as the case may be.

To fix the ideas we choose Sf to' be a. circular disc of radius c 

in the Y 2 Plane with centre at y^ =0, y^= 0. If so
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y = <y1-y2'y3> = <rcos® *rsine ,h >h=Q

dy = rdrdo

Also , for ease of integration , we consider only

(8.1.4)

X = < x ,x ,x > = < 0,0, z > • z^>0 (8.1.5)

, X r 2 , ul2.-l/2g(x,y) = [ r +(z-h) ] h=Q ,

. ,’ d . 2 , . .2.-1/2
= 1 h  [r +(z‘h) h=0

, 2 2.3/2
(r +z )

7.y o. (8 .1.6 )

Inserting thi§ with jiiy) =m, into the integral (1) gives:

W = W(z) = 2 T m
r=c

r=0

zrdr
, 2 2.3/2
(r +z )

2lT m (1 -
, 2 2 , 1/ 2 '
(z +c )

; z > 0 (8.1.7)

■1 z
= 2lfm (l-cosC< ) ) o' = cos — --- —---

(z +c )

(8.1.8)

This is of course a well known classical result usually obtained by 

the method of solid angles, Co I latz (1966)
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Note that:

• —2
(1) W = 0(z ) as z --- s*oo as follows from ("8-1-7)

(ii) W  ^ 2TTm as z * o  . as also follows from {3 ,-] ,j\

(iii) W = 0 for z =0 as follows from (8.1.7fend also directly from

I
the fact that g(x,y) = 0 for xCS.

Referring to the integral (8.1.1) these last two results appear 
, * 

respectively as, Burkill (1970):

(ii) lim J g(x,y) mdy = 2lTm , (8.1.9)
z — ?o S

(iii) J lim g(x,y) mdy 
z — > o

0 , (8.1.10)

w(i.t;h a jump which arises from the non-uniform convergence of the function, 

Ferrar (1938) :

U (r) 
z

zr
, 2 2.3/2
(z +r )

, as z (8 .1.1 1)

Since U (r) is anti-symmetric with respect to z, W is also anti- 
z

symmetric with respect to z, i.e.

W(z) = -27fm(l- , 2 2 , 1/2
(z +r )

) ; z < 0 (8 .1 .1 2 )

so yielding:

dW
[W] = 4||m 1 [ -—  ] = 0

^ dz
(8.1.13)

in line with general theory. A graph of W(z) appears in £ig 3 (m-1)
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f
J ) /y(y)^y ; * >P =1.2,3

s
(8.2.3)

assuming the summation convention for dummy subscripts.

To evaluate (8.2.2) we must first compute the fundamental 

displacement dyadic of the medium:

g(x.y)

g(x1,y1) 

g(-2'-yl}

g(-3'yi'

gi-l'.y2)

g i - 2 ' y 2 )

g(?3'y2)

g (-1 ' - 3 ) 

g(-2'y3)

g(-X3'y3)

(8.2.3

where gvx ,y ) provides thep -component of displacement at y generated 
- p —

by a unit point-force acting along the<X -direction at x. Alternatively^

since g(x ,y ) =g( y ,xj, it also provides the st -component of 
*** — p ~p

displacement at x generated by a unit point-force acting along the 

P -direction at y. Clearly both rcw 1 and column 1 of (8.2.3define elastostatic 

displacement vector^, etc. For an infinite linear isotropic elastic

I
continuum, the dyadic components are nothing more than Kelvin s point- 

force solution^ Love (1927)^written systematically, in subscript notation.

It has been shown by Kupradze ( 1965) that W has the following 

properties in a linear isotropic elastic continuum:
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(i) W is continuous and differentiable at least to the second order, 

and satisfies the Cauchy-Navier equation, everywhere except at S^i.e. 

W defines an elastostatic displacement field everywhere except at S.

(ii) W = 0(r ) as |x| = r --- > oo.

(iii) [W] = 411̂ tx) at x C s-

IfyW.(y) = b + ijJ A  y , where b , u) are constant vectors, i.e. _p. 

varies as a rigid-body displacement over S, then W has the following 

additional property analogous to [VW] = 0 in the scalar case:

(iv)
"&xa 0 ; K ; $ = 1# 2,3,

i.e. the strains associated with W remain continuous on crossing S. 

This means that the stresses and therefore the tractions remain 

continuous on crossing S so identifying the sheet as a Volterra 

dislocation.

If to = 0 ,i.e. no rotational jump, then W has the following 

additional property which replaces(iii) above:

(v) tJPl == VW.dV == 4Tlb 41Tb = Burgers vector,

for any circuit which loops the dislocation line &S. Here 4flb is the 

Burgers vector of the dislocation line as defined in the theory of 

crystal dislocations (see section 8.5)
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8.3 pircular dislocations

Choosing a circular sheet of radius c as before,and again writing

x = < o , o , z >  , y  = <y 1 , y 2 , h  >h=Q (8.3.1)

we compute the components of g(x,y) from the known components of 

(x,y) ,using a similar analysis to that of Section 6*2-‘

g(x,y)
1-K

P P

+ —  3
PP

0

2

yiy2

-yiZ

1

0

yiy2

■y2Z

0

1

-y32

■y2Z

(8.3.2)

g(x,y)
* (1-2 K )z— ■

3
? P

+ 6 l<

r r

yiy2

yiy2

^ 2

-y.

yiz

y2Z

-*2

(8.3.3)
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The integral (8.2.3)may then be evaluated exactly for the six independent 

rigid-body displacements:

b = b <1 , 0 , 0> , b < 0, 1 , 0 > , b <0 , 0 , 1>
1—  1 2 3

Wj<1,0,0>Ay , ^<0,1,0>Ay *><0,0,1>Ay

8.4 Two-dimensional continuum dislocations

Problems of two-dimensional linear isotropic elastostatics,in 

the absence of body forces, may . be conveniently formulated through 

a stress function ^which satisfies the biharmonic equation:

V2 (V2^ )  = 0 ; V2 ¿8.4.1)

The displacement components associated withXare given by the formulae^ 

Muskhelishvili(i953̂ b) ;

^ W! (l-JI)H
1>JL 2̂ 2  =

(l-^)H- 22L (8.4.2)

★

where H, H are conjugate harmonic functions defined by

bH _ ~bH* _ 2 /
bx^ ^ X2 ' (8.4.3)

andjj , y denote the shear modulus and Poisson s ratio respectively.

These formulae simplify somewhat by introducing the Almansi (1897)

representation for

x̂  (J) + if (or x2t> + 41)
(8.4.4)
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where <J> , ijj are harmonic functions, since then, Brown(l 973)

H =2(J) ,

so enabling us to replace (b .4 .2} by

(8.4.5)

2/ Wl 2(1- »)$ 2(1- 17)(j>* .(8.4.6)

Note that the functional equation x <J) + if = 0  has the two independent 

non-trivial solutions^La$kar(l97i):

a 1 i =~x1 ; <}> = x =—x^x^ (8.4.7)

showing that an arbitrary rigid-body displacement may be superposed 

upon w1»w2 keeping invariant.

Formulae (8.4.7)P°int to the dislocation solution (omitting 

dimensional coefficients)

= x^logr ; (f = log r,<|) = 0 , if = 0 (8.4.8)

yielding the translation jumps:

[W 1 = 0 ,  [W„ =  2HL-.
y

n-V) (8.4.9)

for any complete circuit about the origin. They also point to a second, 

independent,solution:

=x2logr ♦ =- <t> =logr, t (x2logr+x^9 ) (8.4.10)
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yielding the translation jumps:

[w1]
2JT

F
(1- V) , [w2] = 0. (8.4.11)

Here the dislocation line coincides with the x^-axis as exhibited in 

fig 4 , so identifying the dislocation sheet as the half-plane x^ =0,

x < 0. These are purely mathematical models. Physical models could 

only be constructed by making the body multiply-connected, i.e. 

replacing the dislocation line by a hollow tube or core which in 

general has the form of a torus enclosing "às.We then cut through 

the material so as to intersect the core, rigidly translate one side 

of the cut relative to the other,and weld the sides together again 

in the new configuration. Six independent dislocations can be 

constructed across the cut, of which two examples have appeared in

fig. 1

8.5 Crystal dislocations

The atomistic structure of an edge dislocation is modelled in 

fig 5 .which depicts a section of the crystal at right angles to 

the dislocation line. This provides a crystalline version of the 

continuum dislocation modelled in fig. 4 • Here the straight lines 

numbered 1,2,..., 6 mark the traces of crystal planes at right angles 

to theslip direction^ i.e. that of the translation jump(s-4-11). Fig.5  (a) 

refers to the perfect crystal . Figure 5"(b) shows the crystal severed 

into two halves across the slip plane, fig . 5 ( c )  shows an extra,Frankf1949),, 

half-plane, denoted p, inserted symmetrically between the upper half-
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planes 3 and 4 . In fig 5 (d) the two halves of the crystal have been 

stitched together by re-introducing the atomic forces, matching as 

faraSpossible half- planes of the same number, and thereby leaving 

the central half-plane without a partner.This operation requires the 

upper half-plane to be compressed and the lower half-plane to be 

extended.The lower edge of p, identified as the x^-axis of fig4 marks 

the edge dislocation line, Foreman,Jafwon,Wood (1951)-

The dislocation lies at the centre of a small region of misfit 

bounded by the almost perfectly matched half-planes 1 and 6, beyond 

which the crystal is perfect. Since the misfit also falls off vertically 

the region is preferably pictured as a cylindrical domain, sometimes 

termed the dislocation core,and indicated oy the circled area in fjg 

,5(3)» In 5 (e) the dislocation has effectively jumped forward by one 

inter-atomic spacing to the right compared with 5 (d)/as the central 

spot now falls between the lower half-planes 4,5 instead of between 

3,4. This jump does not imply any movement of matter: p still remains 

the neighbour of the upper half-plane 3 (being now labelled 4') but its lower 

part deviates slightly to the right, thereby becoming aligned with the lower 

half— plane4.The upper half-plane 4 is left without a partner,to assume the 

role formerly held by p (being now labelled p'). The dislocation thus propagates 

very much like a travelling wave or disturbance,instantaneously separating 

the slipped from the unslipped regions of perfect crystal.lt eventually

becomes blocked at some particular point,or passes right out of the crystal 

as shown in fig.5(f). Since the configurations 5(d) and 5(e). have the same 

energy,the dislocation,to a first approximation moves under a vanishingly small 

stress.This provides the essential mechanism of plastic deformation.
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The locked-up stress field generated by the continuum dislocation

provides a very good approximation to that of a crystal dislocation 

outside the region of the dislocation core. Within the latter region, 

the strains are so large that classical elasticity can no longer be 

applied and a direct calculation of atomic displacements becomes 

necessary.

Since dislocations are singularities in stress fields,they inter-

act with other dislocationsand more generally, with other geometrical 

imperfections. For instance two edge dislocations in the same slip 

plane repel or attract each other^according to whether their signs 

are like or unlike. If they are on different slip planes the situation 

becomes more complex, but the general possibility arises of dislocations 

blocking or locking each other by virtue of their mutual interactions, 

an effect which provides the essential mechanism in all theories of 

work hardening.
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FIGURES



Fig.l Volterra dislocations in a hollow cut cylinder.

(a) cut cylinder

(b) edge dislocation : sides of cut relatively 
displaced in direction at right angles to 
cylinder axis

(c) screw dislocation : sides of cut relatively 
displaced in direction paralled to cylinder axis

Fig.2 Irreducible circuit y  around a contour dS modelling
a dislocation line, vortex or electric current.

Fig.3 Graph of W in terms of the non-dimensional parameter
C = z/c, showing the jump in W and continuity of 
dW/dC at C = 0 (for choice m  = 1).

Fig.4 Model of 2-dimensional continuum dislocation.

(a) section at right angles to dislocation line 
exhibiting the origin as a singularity in the 
field

(b) 3-dimensional picture of dislocation line bounding
the infinite sheet -0 < x^ < 0, x^ = 0

Fig.5 Model of 2-dimensional crystal dislocation (following
Taylor); This is an edge dislocation since it 
propagates in direction.of slip. Note that the extra 
half-plane p becomes successively identified with the
upper half-plane,r 4,£, 6 ....., eventually reaching the
boundary of the crystal.

- 9 0 -



'O
m



figure 1



figure 2
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(a)

figure 5

(f)
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figure 3
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Appendix I

Sphere:translation problem

Given $ =(o,o,t^jon the boundary r= a of a spherical cavity 

where t is a constant,i.e. £ is a rigidy-body translation,find $
w

in the infinite region r ^ a  such that
■f

(i) $ = 0(r 1) as r--- j. oo;

Cii) £ =<o,o, t3>  on r = a.

Ctii) $ =satisfies Cauchy-Navier equation:

We choose:

h =<(o, o , f = p '6 r i/bx3 » Cl.A)

in the Papkovich-Neuber represention,which yields:

$ =<o ,o , (</r>- KVt^Xg/r - px^r3) (1.2)

where c( , p are constants to be determind. In components Cl.2) 

becomes

<5̂  = K(oCXjXg/r- Spx^x^r5)

$2=  K(«f x ^ r 3 -- a p x ^ r 5) (1.3)

<$3 = Cl-K) ^/r + *( o(x3/r3 + /3/r3-3£x^/r5)

Now applying the boundary condition Cii):

$, = 0 , * = OCgive the same value)
J. A

0< X1X3/' *3 = 3^x iX3//&5 i,e* P = °^&2/3» (1.4)
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(1.5)

Also <| = t gives:
O «3

0( /a(l-K) + K(^3a = t , i.e. o< = 3at3/3-2K,

Substituting from (1.4), (1.5) into (1.3) gives the f ield K ° i )

A V , .3 2 . .3 2 .5
$ = * <x1x3/r " a xix3>> x2X3/r * a X2X3/r ’

(1 /* -l)/r + x3/r3 * +a2/3r3-a2x 3/r5 *i

r 7, a

(1 . 6 )

Now we differentiate (1.6) with respect to x^; i = 1,2,3 to obtain:

= X (xg/r3 ~ 3xix3/r5_ a2x3/r5+ 5a2x2x3/r7)

«1/2 = *  ('3xiX2X3/r5 + 5a2xiX2X3/r?)

A V , , 3 „ 2 , 5 2 , 5  c 2 2, 7X /T „
$1/3 = © (x^r - Sx^Xg/r -a x ^ r  + 5a x ^ ^ r  ) (1.7)

* V , , 3 2  , 5  2 , 5  c 2 2 7
«2/2 = * (V r ‘ 3X2X 3/r " a ^3/r + 5a X2X3/r >

«2/1 = * (’3xlX2X3/r5 + 5a2xlX2X3/r7 >

V  3 2 5 2 2
«2/3 = ̂  (V r ‘ 3x2X3/r + 5a X2X3)

3 2 3 2  5 2 2 7
$3/1 = #  ((l-l/(( )x1/r - Sx^Xg/r -a x^/r + 5a x ^ / r  )

«3/3 = ̂  ((3-1//)x3/r3- 3x2/r5 - a ^ ^ r 5 + 5a2x2x2/r7)

«3/2 = * ((1-VK> V 1-3 T 3x2Xf/r5“a2x2/r5+5a2x2X3/r7)

(1.7)
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These expressions readily provide the dilatation:

A=-i,»1/dx1+-b»2/Sx2 +'ï»3/àx3= (I-8>

& (Xg/r3- .'ix̂ x̂ /r3 -a2x3/r5+5a2x3x3/r7

. 3 „ 2 2 5 2 2  7
+xg/r “SXgXg/ r - a Xg/ r + 5a XgXg/r

+ (3-1/k )xg/r3- 3Xg/r5-3a2x3/r5+5a3x^/r7)

= ̂  (2-l/*)Xg/r3 = 3at3 (2 -l)Xg/(3-2K.)r3 

= ï>Xg/r = X Xg/a3; r=a .? V  = 3atg C2K-l>y3_2K (1.9)

which is seen to be a harmonic function.

The accompanying strain tensor at r = a is

i(V  + W  : ^ = 1 ’2 ’3
(I.10)

*11 £ *1/1 = 2*x? V a5 *22= *2/2 =2iix2x3/a5

*33 = *3/3 = * + 2X3/a }

*12 " *21 = 2ixlX2X3/a£

$13 *  * 31=  ^ ( - X ! / 2 K a 3 +  2x!x3/ a 5 >



( I . 10)

From the stress-strain relations:

*< (3  =  V  +  V  ’  + i ' 7 ‘ i  S ?  1 , 2 , 3

we calculate the stress components at r = a:

$11 " ̂  x3 ^ 3 + 4f‘̂ cix3/»5

$22 = + ^ 2 X/ a5 

$33 = ^ x3/a3 + 2A /  ^

$11 = $21 = V *  Xl X2X/ &5

$13 =' $31 = / * * < - V k  ̂  + ^ 1  XY * 5)

$23 = $32 = ̂  ("X2 ^ a3 + ^ 2 XV ^

*23 =*32 =  *  < -V 2K" 3 +  2l21I3/ a 5 )

Finally we obtain the traction vector

s •

■ * r

,

*
$2

é* 
*3

.

i 

*

*13

11

12

r12

f22

* 23

*13

23$:

$33
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. 3  , 2 . 5  . , 5  x 3 / a  +  4 jrA x 1 x 3 / a  4 P  X 1X 2 * 3 ' / 3 X /  2 . 5- X  / a  + 4 x ^ x 3 / a X  / a

, . 5  , 3 . ,  2 / 5 4 f x jx 2 x 3 / a  x 3 / a  + 4 / < x 2 x 3 / a , 3 X/ 2 . 5- x 2 / a  + 4 x ^ x 3 / a x ^ / a

(— X ^  / a 3 + . 4 x ^ x 3 / a 3 ) ( - x 2 / a 3 + 4 x 2 x 3 / a 5) - 2 X j /  a 3 + 4 x ^ / a ^ x 3 / a

- X ' ” 3 i'-*:2^x3 / a .

= < Hx( x̂  /a , H x ^ / a
9 A 2

Hx^/a - A*/Ha >

= < 0, 0, - Ia/^a2>; (1.13)

where

H 4/<*- ^ / K  = 0 . (1.14)

H01-



Appendix II

Vector double-layer source density

Given the boundary traction

0 = -2Z1 Va^ < 3x^2, 3x 2x^, -x ^- x 2+2x  ̂ >, (II. 1)

on a spherical cavity r = a , we determine the corresponding boundary 

displacement field <p. It is clear that $ satisfies the equilibrium
r'

conditions:

( * ( * (II.2)J <$ (jc)dx = 0, J x A $ (x)dx = 0.

r=a r=a

In (4.1.3) we choose the second-degree harmonic functions:

, , 2 2, .2 2. ~|
h 1= a 1x ix2+a2x lx3+ a3x2x3+a4^x2_xr  +a5(X1-x3̂  »

V  V 1V V 1V  b3X2X3+ b4 (x2-x?)+b5(xr x3)»

V  C1X 1X2+ C2X1X3+C2X2X3+ C4 (x2-X 1)+C5 (xr x3);

(II.3)

r^a

where a^,b^,c^;i=1,.,.,5 are constants to be determined. If so,

the Papkovich-Neuber formula gives:

. , 2 2, , 2 2.
$ = <3^ ^ 2+32X ^ 2+32X2X24- a^(x2-x1) + a5 (x1-x3),

2 2 2 2
b ̂ x ̂ x2+ b2x lx3+b3x2x3+b4^x2_x1) + b^x.j^),

, 2 2 ,  ,2 2,
c 1 x "j x2+ c2x 1xs+ C3X2X3+ c4x 2-x1 +C5^X 1_X3^>

? 2 2 3 3 3
• r V (a.x x„+a1x,x„+a,x.x.x1+a,x.x„-acx,+atx.-a,x.x, 

1 1 2  2 1 3  3 1 2 3  4 1 2  5 1  5 1  5 1 3

r^a
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■(•11.10)

2
+(-8b5+8c3)x2x3+(4a2~4c^+4c5)x1 

2 2
f(4b3+4c^)x2-12c5x3 .

Finally

Xt-ì>h/òxr  ll( =(-2b^+3al+2b5>x1x2+(-2c^+2c5+3a2)x1x3

2
+ (2a3+b2+c1)x2x3+(-4a^+4a5)x1 

+b^X2+(-2a3+c2)x3 . til.11)

“äfyfy-(4a + 4b2+4c1)x1x2+(-8a5+8c2)x1x3

XÌ>h2A x 2-h2 =(2a^+ 3b1)x1x2+ (c1+a3+2b2)x ix3

+(2c^+3b3)x2x3+(a1-2b^+2b5)x^

2 2 
+4b^x2+(-2b5+c3)x3

XÌ>h3A x 3~h3 =(2c1+a3+b2)x1xj(3c2~2a5)x1x3

2
+(3c3-2b3)x2x3+(a2-2c^+2c3)x^

2 2 
+(b3+2c4)x2~3c5x3

( 1 1 . 12)

(11.13)
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Now substituting from (II.6),(II.8) and (II. 11) into (II.5) we fine .

[A/jl+2^(a1+2b4+c3) H 3 a 1-2b4+2b5)-K(8a1-8b4+8b4)]x1x2

+ [ V)t+2f (a2+b4+2c5) +(3a2-2c4+2c5)- (8a2-8c4+8c5) I x ^

+ [(2a3+b2+<̂  )- K(4a3+4b2+4c1) ]x2x3 

+ £^/A+2/*(-2a3+2a,-+b1+c2) +(-4a4+4a3)-K(-12a4+12a

+ [ ( 2 3 ^ ) -  V- (4a4+4b1)]x2+[(-2a5+c2)-K(-4a5+4c2)]x3. (II.14)

a$*/p = [^/A+2^(-2a4+2a5b 1+c2) +(2a4+3b1 )-K(6a4+6b1) J x ^  

+[f/A+2^(a2+b3-2c5) + (3b3+2c4)-*<(8b3+8c4) ]x2x3 

+ [ (a3+2b2c1)-K(4a3+4b2+4c1) 1x^2 

+[(a1-2b4+2b5)-K(4a1~4b4+4B^]x^

+ [>lA+2r(ai+2b4+c3)+4b4-12 b4)x2

+[(-2b5+c3) -M(-4b5+4c3)]x3 . (11.15)

'fc
a<J3/p = [ (a3+b2+2c1)- K(4a3+4b2+c1) 1x^2

+ [|/A+2f,(-2a4+2a5+b1+c2) -2a5+3c2 — K(-8a5+8c2) ] x ^ 3 

+ [)/A +2p(a1+2b4+c3) + (-2b5+3c3)-l/<(-8b5+8c3) ]x2x3
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(1 1 .1 6 )

+[ (b^2c^)- K(4b3+4c3)]x2

•+{.V Xt2^ ( a 2+b3- 2c 5 ) - 4c 5+ 12Kc5 ] x 2 .

2
+[(a2-2c^+2c5)- K (4a2-4c4+4c5)]x1

Now the three components of (II.1) are (II.14),(II.15)and

(11.16) respectively which give 15 unknowns in 15 equations By

solving these 15 equations we get:

31= a3=a4= a5= °* b 1= b2= b4= b5= ° ’ C1= C2= C3= ° ’

,= b3= 3(k+2r)fok+2p), c5= -2(A+2f*)^3jl+2flJ*2C4 (11.17)

Substituting from (11.17) into (II.3) gives:

h^= -6^(A+2r)/a^ (3l+2^)x^x3

h2=-6^(A+2^) /a^(3^+2/<)x2x3 

h3=-2tf (k+2p) /a^ (3l + 2f\) (-x ^-x 2+2x 3) 

f = 0

yielding the boundary displacement field:

(11.18)
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on

$  =  j ^ 2 V  (A, +  4 f t ) / a ^  ( 3/1 x ^  , X 2 X 3 ’

-((2A+3p)/(A+v|(x^+xi;)j 

+  f / »  - X ) /  (X + 4 p ) ]  . ( 1 1 . 1 9 )

An arbitrary rigid-body displacement can be superposed

(11.19).
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THE DERIVATION OF THE EQUATION (7.1.4) P  ¿-y

IT 2 Tf

^ g ( x , y ) . r ( y ) d y  = j j  1 -* /y y  

"2)13 o a

/•
1 0 0

M

0
1

0
i .

! 0
0 I / % r t f s 2  j

L * J

. 2
a sin0d8dv

-f Xli
c

( jj&a^14 1 X ) r^-K,3sinflcosifi(z-acos0)/̂ jj)̂  , -KasinQsintti(z-acosB)jj jp'J }

C o
L.

+ (z-acos8 ,2A3 > j sinSdBdy ^ j

It is clear that the first and second integrals components are zero 

therefore (1) gives:

( D



r ^ lli
\ g(x,y).6”(y)dy = (>jS/4jn<X^ * 0 , f (1 +K(z-acos9)2̂ up3/ sin8dSdjj\,

' o o ^

t.

=(p&f2tf<0 , 0 > \j(l-*yiz2+a2-2azcos8)

2 2 2 / 2 2  ^ / 
+X(z -2azcosS+a cos &)yfz +a -2azcos^2j

sinSdS

i

=CJf/2^  , a ,|1 ( i - k/ z 2+a -2 a z c o s8 )‘

+ K  0  z2-2azcos8+a^)+ (a ^ o s^ S - a  Zjj / ( z 2+a2 -2 a z c a s Q ) l
1

¿"sin0d9 \j,

- r

=("<£/2^ , 0 ,')|l//(z2+a2 -2azcose)2-K'a2(l -cos20)//(z2+a2-2azcos0h

v.

z>a (2)

Put cosS = u sin0d8 =-du , u ̂  »

in which case (2) becomes:

( 2 )



g(x,_y ).6" (y)dy = (VoK)<0 

7)0 "

+ ( V  2 * ) < Q

Q , l/(z2+a2-2azu)2 du
>  +

0 , Xa (l-u2)/(z2+a2-2a;
J* ?

:u) Jdu^>J

z > a  ,a/z=\jj

= (X/2K)<£ , Q

+

= (6/2fc) ̂ 0  , □ , (-1/z )I1 + (Ka2/z3)l2 ^  ,
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1/(1+\/2- 2 u u ) 2| du = -  ( l / v )  I (1+v ^ -2 u v )2ĵ (l+u2-2uu):3

= -(l/v)|jl+v)-(l-u) = -2 ; (4)

-u2 )/v ) (1 +v/2- 2 uv ") ' 2 u /v (l+ v  - 2 u v ) p u
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i i -n

= 0 -  j^2u(l+u2-2 u u ) 2/ u j ,(2/u2 ) (1+u2-2uu )5[’ du

= 4/v2 —  (2/3v3)p1+v)-(l-v2)3j = -4/3 (5)

Substituting from (4) and(5) into (3) gives:

 ̂ g ( x , _ y ) . | T ( y ) d y  = ii/ 2 K ^

^  ~ = V < 0

, 0 , 2/z - 4*a2/3z^>

, 0 , i/kz - 
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Vector Potential Theory
M.A. Jaswon, K.E.S.K. El-Damanawi

Department of Mathemetics, The City University, London E C 1 V  O HB, U .K .

ABSTRACT

Linear elastostatic displacement fields may be represented by 
vector potentials analogous to the representation of harmonic 
functions by scalar potentials. We introduce fields which 
vanish at infinity and provide rigid-body displacements on the 
surface of a spherical cavity in an infinite linear elastic 
continuum. The asymptotic identity of the vector potential 
with the field is demonstrated for each problem. This work 
carries an interesting significance in the theory of 
vector boundary integral equations.

SIMPLER-LAYER POTENTIALS

It is interesting to represent elastostatic displacement 
fields by vector potentials. These have properties closely 
analogous to those of scalar potentials. Thus, given a closed 
Liapunov-smooth surface SB, let o(ĝ ) be the source density at 
a point ^ c  3B. If dq denotes the surface element at q C  SB, 
then o(q)dq is the source strength at q. This provides a 
potential g(p,^)o(q)dq at any point p Inside or outside SB or 
lying on SB. Here-'-

denotes the Newtonian potential at p generated by a Unit 
source at g or vice versa. Superposing the contributions from 
all over SB, we obtain the simple-layer potential,

( 1)

f

V(p) = g(p,q)o(q)dq i p C  , Bg C  SB (2)

where B̂  denotes the interior domain bounded by S.B and Bg



denote? the infinite exterior domain internally bounded by 3B. 
If o is Holder-continuous on 6B, then V(j>) has properties 
which may be summarized as follows, Kellogg (1929):

(i) V is continuous and differentiable to any order in
B. , B . Also 

1 ’ e

3V(p) 0
— —  g(p,q)o(q)dq 
3Pl ~ ~ ~ <^i

(3)

where p = < p3 , p2 , p3 > . In some equations we 

write p = < x3 , x2 , x3 >.

(ii) V satisfies Laplace's equation in B̂ , B^ i.e.

V2V(p)
’
V2g(p,q)a(q)dq

3B

0; p c  B ^ Be (4)

since V2g *= 0, p j* q. Accordingly, V is a harmonic 
function everywhere except at 6B.

(iii)

(iv)

V(p) = |P| a(q)dq + |p| (p. q)o (q)dq + 0(|p|3),(5)

3B 3B
as IeJ -*• 00
Therefore V is a regular harmonic function in Bg .
VQ>) exists at every p c3B, and it is continuous at _p 
with respect to its neighbouring values in B̂ , B^, i.e.

(v)

V(p.) -> V(p) as p. -> p, p. c B,-

V(p ) -> v(p) as Pe -> p, Pe c.

V(p) is continuous and differentiable on 3B. 
line with (3)

(6 )

Also, in

(vi)

3V(p) 

31 gY g(p»n)o(q)dq p c  3®»

3B

(7)

9where —  denotes differentiation along any tangential
O t

direction to 3B at g .
V(g) has two formally distinct normal derivatives , 

V! at p C 3B pointing into Bg, B̂  respectively. These 

may be constructed by writing

(8)V'(p) = e ~ gg (p,q)cr(q)dq - 2na(p) ; p(^3B.

3B

V!(p) = 
1 g! (p,q)o(q)dq - 2ira(p) ; pc.38,X <v «v ^ •%» /v. (9)

3B

where g^(p,q) denotes the exterior normal derivative 

of g at p keeping q fixed, and similarly for g!.rsJ 1
Since

g\ (p,q) + g'(p,q) = o do)

it follows that

V!(p) + Vg(j>) = -4iro(p) . (1 1 )

According to the interior Dirichlet existence-uniqueness 
theorem, there exists a unique harmonic function <f> in B.,

which assumes prescribed continuous boundary values on a 
closed Liapunov surface 3B. To construct in B̂ , we

write

<Kp) =»v g(p >q)°(q)dq ; p c  B.
*> **> -V <v- 1

3B

( 12)

where o appears as a hypothetical HBlder-continuous source 
density to be determined. An effective way forward is to 
note that both sides remain continuous at 3B, so yielding the 
boundary relation

•

g(p,q)o(q)dq = <f>(p) ; p c. 3® . (13)

3B

This may be viewed as a Fredholm integral equation of the 
first kind for a in terms of q> on 6B, with a unique solution 
which enables us to generate <p throughout B̂  from (12).

Similarly, according to the exterior Dirichlet existence 
uniqueness theorem, there exists a unique regular harmonic 
function tp in B which assumes prescribed continuous 
boundary values on 3B. Clearly p may be constructed by



solving equation (13) as before and utilising o to generate 
the' simp-le-layer potential

♦ (p) = g(p,q)o(q)dq ; p O  Bg

3B

(14)

Of course

o ( p )  = " ¿ T + • ( 15)

in line with (11). Accordingly, if 4> is available both in B̂  

and B , then a is immediately known from (15) so yielding the 

identities:

4>(p)

Ait

1
4 if

g(p,q) [c{i! (q) + (q) ]dq , p C  B.

3B

g ( p > q ) U ! ( q )  + ( q ) 1 dq = <t>(p) ; p o  3B

3B

♦(P) = - ~r4 TT
g ( p , q )  U J  (q)  + 4 ' I (q) ]dq ; p r  B

3B

In place of (12), (13), (14) respectively.

(16)

(17)

(18)

VECTOR POTENTIAL THEORY

Classical linear elastostatics may be formulated by a vector 
potential theory which closely parallels scalar potential 
theory. It would, indeed be advantageous to employ the same 
symbolism in each theory, its interpretation depending on the 
context. Thus the scalar potential (f> becomes the 
elastostatic displacement vector The normal derivative
<j>' becomes the traction vector <j>* associated with q>. The 
Newtonian unit-source potential g(p,q) becomes the ~ 
fundamental displacement dyadic of the medium. More 
precisely, in this context we mean that

g/p.q)

g(£i,qj)

g(p2 .qx)

8(Pa ’32>

g(p2»a2)

g(PitSa)

8(P2»^3) (19)

-K(£3»^) &(P3».S2> 8(£3’93).

where g(gat9g) signifies the displacement component in the 
a-direction at g generated by a unit point-force in the B- 
direction at q. Clearly column 1 defines the displacement 
vector at g generated by a unit force acting in the 1- 
direction at etc. By virtue of g(p ,q ) = g(g ,p ), we see 
that row 1 defines the displacements vector at ^ generated by 
a unit point-force acting in the 1-direction at p, etc. In 
the isotropic continuum,

g(J ,a * 3 e ) (1-k)6 + k_ _3R_ _3R_
pR aB PR 3p 3p.a B

( 1- O g + JÇ (pa~qa ) (p B~qB)
PR aB P Rs

(20)

1 , _ k 32R
pR aB P 3p 3p„ a p

a, B = 1, 2, 3

where R = . This is Kelvin's solution expressed in
tensor notation, Love (1927).

traction dyadic of the medium, i.e.

g* (Px ) g*(px ,32) g*(px»33)

g*(p,£) = g*(p ,q,) g*(P2 ,q2) g*(p2 ,̂ 3)

g* (p3 »5̂  ) g*(p3 ,q2) g*(p3 ,_q3)

(21)

where g*(pa ,qg) signifies the traction component in the 
a-direction at g generated by a unit point-force acting .in 
the 8-direction at q. Clearly column 1 defines the traction 
vector at p generated by a unit point-force acting in the 
1-direction at q, etc.

Finally,
dyadic

corresponding with g(p,q)' we construct

g(p ,q )* 1 1 g(pi'32)* g(£i'3.3)*

g(p,q)* = g(p2’9-i)* g(E2’i2>* g(P2.i3)*

g(p3,qx)* g(p3,q2)*

(22)

where row 1 defines the traction vector at q generated by a 
unit point-force acting in the 1-direction at p, etc.

The simple-source density o now becomes a vector simple-source 
density a = <alf a2, o3 >. This enables us to construct a



vector simple-layer potential corresponding to (2), viz

V(p)/v ̂ g(p,q).o(q)dq
■

o(q).g(q,p)dq ,

86 36

(23)

with components

Va<P> 8(Pa’̂ 6)a6 ^ )dq ’ 0,6

36

2, 3 (24)

This has properties at 38 entirely analogous to those of the 
scalar simple-source potential, e.g. formulae (8), (9) may be 
read as traction formula, and it defines an elastostatic 
displacement field for any choice of p. These properties 
have been proved by Kupradze (1965) for the linear isotropic 
elastic continuum, but we may conjecture that they also hold 
for the general linear anisotropic elastic continuum.

SPHERE PROBLEMS

We now construct two distinct elastostatic fields external to 
a spherical boundary, and we show how these may be 
represented by vector potentials. First, we seek a field <J> 
with the properties:-

(i) <)> = 0 (r 1) as r -> °°,

(ii) (J> = < 0, 0, t3 > , i.e. a rigid-body translation of 
magnitude ta on the boundary r = a of a spherical 
cavity within an infinite isotropic linear elastic 
continuum.

Utilising the Papkovitch-Neuber representation (Jaswon and 
Symm, 1977), the required field is

= < 0 ,  0 ,  -  > -  k V(
ax, . -1
—  +e
r 3x 3

) ; r > a (25)

where k = 1 ; v = Poisson's ratio (0 < v ^ i )
4(1-v)

3at3 a3t.
, 6 =and a = 3-2k a

3-2k
(26)

In terms of components

<(>1 = Y(
llA3

X2x3 a x x
= y ( --------- —  )

(j, = y( — —  +
Y 3 1 ICC

(27)

where y 3a<

<f * 
~e

a24. __
r3 3r3

*■3 - This

yX2> over
<a2

a2x32

(28)

yielding a resultant force 

~4irpy4>*dq = < 0, 0,
k

(29)

3B

and a resultant moment

<jA<£*dq = < -x2, xx, 0 >dq = < 0, 0, 0 > , (30)

3B 3B

acting on the boundary.

We also seek a field $ with the properties 

(i) = 0(r X) as r -> “

(ii) cf> = < 0, 0, w3 > A (xx, x2, x3 > = <-w3x2, w3x1# 0 > , 

i.e. rigid-body rotation of magnitude w3 on r = a.

The required field is readily seen to be

i  = < “ f r  W 3X 2 • 7 ?  W 3X 1> 0 > = 7 ?  < “ W 3X 2* W 3X 1> 0 > 5 r  >/ a

(31)
which provides a traction vector

3pw3
it* = ---- < x, , -x , 0 > over r = a ,
<̂ e a ¿ i

(32)

yielding a resultant force



4>*(tj)dq = < 0 , 0 , 0 > (33)

dB

and a resultant couple 

3pw,
cjA3>*(q)dq = x x , x x , -x2-x2 >dq 1 3 ’ 2 3 ’ 1 2

3B 3B

= < 0 , 0 , -8ira3pw3 > 

acting on the boundary.

(34)

The above boundary displacements are particular cases of the 
general rigid-body displacement

d> = t + w , rx. ~ - A ~ (35)

where t, w are constant vectors.

It is convenient to break this down into the six independent
vectors

Ü1 = < 1 , 0 , 0 >, P2 = < 0, 1, 0 >, Ü3 = < o, 0, 1 >

(36)
P = < 1 , 0 , 0 > A x , P5 = < °, !, 0 >

A £> H = < 0 , 0 , 1 > r 
A

The fields corresponding with p̂ , jjg have been determined and

therefore by symmetry we may immediately write down the fields 
corresponding with jj ; s = 1 , 2 , 3 , 4 , 5 .

INTEGRAL REPRESENTATIONS: TRANSLATION PROBLEM

Within the interior domain r a there exists mathematically 
a field * = < 0 , 0 , t, > which assumes the same boundary

values as the exterior field (27), i.e. < 0, 0, t3 > on r = a.

This interior field yields the traction vector £*• = 0*

Accordingly, from (15) both the interior and exterior fields 
may be generated from the vector source density.

_1_
4n

(4* +" e if) --!_ **
4tt ~ e < 0, 0,

PY
a

4TT<a2
(37)

on bearing in mind (28). Substituting for o into the integral

V(p) g(p ,q).o(q)dq . (38)

3B

we should identically obtain 4 for any choice of j>. In

practice it is very difficult to evaluate the integral 
exactly, but its asymptotic behaviour can be examined as 
follows. Note that

g(p,q) -> j(p,0) as p -> »

so that

(39)

g(p,q) .0 (q)dq ->_g(p»e). 

dB 3B

Now from (37)

o(q)dq as p -> oo. (40)

a(q)dq = << 0 (q)dq, a, (q)dq,1 ~ 2 _

3B 3B 3B 3B

a3(q)dq > = < 0 , 0 , -^ >,

(41)

so that (40) has the components 

3
V (p) = I g(p ,0 .) 

~ j=i ~ J

3
v2 (p) = I g(p2 ,o.) 

~ j = 1 ~

0j-(q)dq = g(px,03) =

o.(q)dq = g(p2 ,03) ^  =

3
v (p) ■ Ï g(p ,0 .)

j=i
j (q>dq “ g(p, ,0 ) ^  -
J ~ ■iS’-ä K

3B

which agree exactly with the asymptotic components of £ as 
given by (27). We remark that the integral (38) can be 
evaluated exactly at the centre of the sphere, i.e. putting 
p = 0 in the expression (20), and we find V = < 0, 0, t3 >

as expected.



INTEGRAL REPRESENTATIONS: ROTATION PROBLEM

Within r < a there exists a field $ = < -w3x2, w3x1, 0 > which

becomes identical with the exterior field (31) on r = a. 
Accordingly from (15), both fields may be generated by the 
vector simple-source density

« _« -3jjw3
0 = -- (<b* + A*) = -- A*

Air ~e *1 An -*e
< x ;» -X1 > 0 > ». xx » x2C3BAir ~ e •‘l All'ie 4IIa 

on bearing in mind (32) and ef>J = 0. If so, by symmetry,

ô(<|)dq = < 0, 0, 0 >

(43)

(44)

)
3B

showing that the first-order asymptotic approximation to 
g(p,̂ j) gives a null result. In the second approximation we 
Have, Jaswon and Syram (1977), Jaswon (1984),

g(p,q) = g(p,0) + 9-Vg(p,q)q=o + 0(|p| ) ,

so that

(45)

d> (p) -> [q.Vg(p,0)].o(q)dq as p -> « (46)

3B

To evaluate the components of [q.Vg(p,0)]:•s#  ̂ ^

âB = g(~Pa ’V q = o
i J=1 J ~

= Ye 8  ̂ '

„_fj 3q. P^aß P 3p 3p„ 'q=oQ—A j 01 p

< 3*R
W *  R - \z-<\\ ■

(47)

Accordingly

^(p) I [q-vg(p.°)LaQ(q)d9
-a w p

3 2

ß=i - - 18 6 ~ R3
3B

3
<♦>2 (P) ‘ •>*

I [q-Vg(P.O)12 CT (q)dq =
8=i ~

a w.p3 “ 1

3B

(48)

equation continued

$3(p) = (48)

■ 3

I [q-vg(p»o)]300ß(q)dq

8

0

This asymptotic field agrees exactly with <j> as given by (31) 
allowing for a slight adaptation of symbols. We remark that 
the integral (38) can also be evaluated exactly at the centre 
of the sphere i.e. at p = 0:

<K0) g(0,q).a(q)dq = < 0, 0, Q >

3B

(49)

= < -w3x2, w3x3, 0 > at p = < 0, 0, 0 > as expected.

THE RIGID-BODY DISPLACEMENT FIELD

This plays an analogous role in vector potential theory 
(elastostatics) to that of the constant harmonic function in 
scalar potential theory. Thus £  = jj ; s = I, 2, ... 6 on 3B 
implies A = p in B. + SB and d>* = 0Son 3B, in line with well

known corresponding properties of the harmonic function <f> = k 
(a constant) on 3B. Also, given an arbitrary source-free 
displacement field J on B. + 3B, it satisfies the boundary

conditions

¿¿•¿Jgdq = 0; s = 1, 2, ... 6 (50)

3B

These express the fact that the tractions associated with ̂  
produce no resultant force (s = 1, 2, 3) and no resultant 
moment (s =4, 5, 6) acting on 3B, in line with the Gauss 
condition for the flux of a harmonic function over 3B.

Given on 3B, we may generate this by a vector source- 

density which satisfies the vector integral equation of 

the first kind 

■

g(p,q) .Xs(q)dq = ({>) ; p C 3B • (51)

3B



Analytical solutions of (51) have been found for a spherical 
boundary; i.e. (28), (32) bearing in mind (15). For other 
boundaries, solutions can only be achieved by numerical 
methods.

If X is available for 3B, regarded as the internal boundary 
" s

of an infinite external domain, then we may exploit the 
following theorem:

given arbitrary continuous displacements \j> on 3B, 
the tractions associated with £ produce resultant 
forces and moments which satisfy the relations

4tt
ip*.p dq ~e ~s

3B

ip . Xgdq 

3B

s = 1, 2, 6 (52)

These may be proved by introducing a vector source density a 
which satisfies the equation

j?(£,q) .o(g)dq = ¿(g) Î p C  80 (53)

SB

i.e. a generalisation of (51). Operating upon both sides of 
equation (53) by ./ ...X (|>)dp, we find

3B ~ S

t(p).x (p)dp =

'

X (p)dp.— — S ~ ~“S ~ g(p,q).0 (q)dq

3B 3B

•

X (p).g(p,q)dp.

•

o(q)dq =~s = ^ —

3B 3B 3B

(q.) .o(q)dq

(54)

on interchanging the order of integration (Fubini’s theorem) 
and using (51) with p,q interchanged. The right-hand side of 
(54) may be written ~ ~

7~ + i|<*]dq
4tt p s ^1 e
8B

i f
4tt jÌ*s-Ìedq

3B

(55)

by virtue of (52), so defining the force- and moment- 
resultants required. This proves the theorem.
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ABSTRACT

Fields in the infinite region exterior to a spherical cavity 
have been represented by vector simple-layer potentials 
(BETECH 86). We now attempt to represent these Fields by 
vector double-layer potentials. This poses a far more 
difficult problem, both in defining the sources and in 
ensuring acceptable behaviour at infinity. These issues do 
not appear to have been previously explored.

INTRODUCTION

At Betech 861 we introduced linear elastostatic fields on the 
infinite region exterior to a spherical cavity, and we 
represented these fields by simple-layer vector potentials.
In this paper we represent fields by double-layer potentials. 
However the problem is now more difficult for two reasons:

1. The double-layer potential has asymptotic behaviour
0(r-2 ) as r -*• whereas the regular elastostatic field 
generally has 0(r-1), behaviour as r -*■ °°. Accordingly 
either suitable terms must be superposed upon the 
potential or appropriate terms must be removed from the 
field, before such a potential can be constructed. 2

2. The determination of double-layer source densities proves 
to be considerably more complicated than that of simple- 
layer source densities since, as will be explained below, 
the former essentially involves solving a boundary-value 
problem whereas the latter only involves the straight-
forward computation of tractions.
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(he plan ot our paper is as follows, first we briefly 
summarise the DuEoch 116 paper. Next wu introduce double- 
layer potentials. then we reduce the given field to 
0(r~^l behaviour as r -*■ °° and calculate the relevant 
source-density distribution. This enables us to 
construct the required double-layer potential and to 
demonstrate its exact or at least asymptotic equivalence 
with the reduced field.

Single-potential representations of elastostatic fields, 
first proposed by Kupradse2, provide interesting 
theoretical alternatives to Somigliana's formula, which 
involves a superposition of potentials. A clear 
advantage of the formula is that it involves directly 
the boundary displacements and tractions, i.e. the 
data of immediate engineering significance. However 
it may not necessarily yield numerical solutions of 
greater accuracy, for the same cost, as those which 
might be achieved by the Kupradse boundary formulations.
A useful testing ground fur syptoinatic numerical 
comparisons is available though the exact solutions 
presented in this paper.

SUMMARY OF BE IECH 86 PAPER

Within the infinite region exterior to a spherical cavity 
there exists a linear elastostatic displacement field

te ( ! ) = Y
X1X3 a2xxXj

< r 3 - r 5

x2x3 a2 x2x 3 1 -< + xf
r 3 r 5 <r r 3

where r 2 = x2 + xf + xf and

Y = 3a< 1
3-2< 1 3 > K 4(1 — v>) *

af_

3r3
afxi>; r ^ a ( 1)

= Poisson's ratio  (0<v$;i/2) 
= a constant .

( 2 )

This fie ld  is characterised by the behaviour: 

(1) <Pe = ( H r 1) as r- *- ® ;
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( 2 ) <)>e = < 0 , 0 , t 3> on r = a, i .e .  a rigid-body

translation of the boundary in the x3 -direction.

I f  so there exists an accompanying in terio r fie ld

<t-i = < 0 , 0 , t 3>; r N< a. ( 3

Both <j>e , <j>̂ may be represented by the simple-layer 

vector potential

: j g(x,y) a (y) dy ; y c 3B (r  = a)

3B * X c Be (r  ^ a)

or x c B.l (r^< a)

Where dy denotes the element of surface area at 

y c 3B, a is the simple-layer section source 

density at y , and g is the fundamental 

displacement dyadic of the medium. Since $ , ^  

are known we may immediately write (* denotes the 

traction operation)

(4)

a = ~ -T- ((f)  ̂ + (f) .47T v;e : i *) = - <(> * 4tt :e

= i
4̂1

 —
=1 

1 /\ C
D O (5)

since of course <t* = 0 Al so

g (x i,y i) g(x3 .y2) g(xi ,y i)

g(x,y) = g(x2 ,y i) g(x2 ,y2) g(x2 ,ya) ( 6 )

g(x3 ,y i) g(x3 ,y2) g(x3 ,ys)



where

(7)g(x ,y ) = — - 6 +
-a¿S P aS

3 p 3 p .

37 3x 
a B

a = 
B =

1, 2, 3 
1, 2, 3

p - y | »

This dyadic element sign ifies the a-component of displacement 
at x generated by a unit point-force acting in the 
B-direction at y ; a lte rna tive ly , for an isotropic medium, 
i t  could also sign ify  the g-component of displacement at 
y generated by a unit point-force acting the a-direction 
at x. Expressed in component form, (4) appears as

V (x)
(

= g(x , y J„a  ̂p
3B

o (y)dy ; a =
B ' B =

1 , 2 , 3 ( 8 )
Cl ^ 1 , 2 , 3

where Í B = 1 , 2 , 3 is defined in (5 ).

I t  appears not possible to evaluate the integral (4) exactly, 
but its  asymptotic behaviour can be examined as follows.
Note that

g(x, y) -*■ g(x, 0 ) as r -* =° ,

so that

[ g(x,y)o(y)dy 
j z ~ ~ ~ ~
3B

g (x ,0 ) j a(y)dy as r 
= 3B~

(9)

(10)

which gives the asymptotic results

v(x) = Y < -¿.r1 , -fr1- . “77" + 7 * y’ (11)

agreeing exactly with the asymptotic components of 
extracted from (1 ). No such procedure is possible for 
<|>j. We may point out that V can be evaluated exactly 
at the centre of the c a v i t y i . e .  putting x = 0 in (4 ), 
yielding the expected result

r_______________

An exterior f ie ld  of different character is

3 ̂ ’
$e = p- < -uu3 x 2 > <̂3 X1 . 0 >; r a,* w3 = const. (13) 

This has the behaviour:

( 1 ) <j>e -*■ 0 (r  2) as r

( 2 ) <J>0 = < -u3 x2, u3xx 0 > = < -w3y2 , u2yi 0 > (14)

on r=a.

I f  so there exists an in terio r fie ld

= < -i*)3x2 , Mj Xj , 0 > ; r ¿ a. (15)

As before <j>.* = 0 and we find

-j— <p * =4u le 4Tiax < -y2. Y i, 0 > (16)

Now, however o(y)dy = 0 ,
3B

showing that the first-order asymptotic approximation 
gives a null result by virtue of (10). Expanding to the 
second approximation(Jaswon & Symm3):

g(x,y) = g (x ,0 ) + y. vg(0 ,x) + 0 ( r " 3) as r -*■ » ,

(18)

so that

V(x) [y. vg(0 , x)] a(y)dy + 0(r 3) as r ->

3B = (19)



On computing the components of the dyadic [y . g (x ,0 )] 
and evaluating the integral in (19), we recover precisely 
the fie ld  (13). This implies that the asymptotic 
expansion (18) provides a route for the exact integration 
of V everywhere in Be . As before, V can be evaluated 
exactly at x = 0 , yield ing the expected result
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'
g(0 ,y)a(y)dy = < 0 , 0 , 0 >

3BS

= < -co3 x2, 103X2 , 0 > at x = 0 . ( 2 0 )

REPRESENTATION BY DOUBLE-LAYER VECTOR POTENTIALS

Corresponding with g(x 
dyadic = '

,y) we introduce the traction

’"g iX i .y J* g (x j, y 2 )* g(xj ,y 3)*

g (x ,y)* = g ix î . y j * g(x2, y2)* g(x2 ,y 3 )* ( 2 1 )

g ix j.y j )* g(x3, y 2 )* g(x3 ,y 3)*

where

9(x_ a ’V *  =

2 v - 1  1
2( 1 - v ) p 2

[ 3p n - 3p n + —

3y„ a 3y B 3 n
7 3 a

(S 0 +
3 p 3 p

ufi 1 -2.V 3y 3y0 a J 6
)]

I x - y | . ( 22)

S T R E S S  A N A L Y S I S  A r r L l U f t i  lui'io ijj

This dyadic element has two d istinct interpretations: i t  is 
either the 3 -component of traction at y generated by a 
unit point force acting in the a-directTon at x, or i t  is 
the a-component of displacement at x generated by a unit 
traction source oriented in the 3 -direction at y. Only 
the la tte r  interpretation applies here. U tilis in g  (21) we 
construct the double-layer vector potential

W(x) g (x ,y )* p(y)dy ; 
3B = "

y C 3B 

x c  Bi or B0 , (23)

where y s ign ifies the double-layer source density at y. 
Expressed in terms of components, (23) appears as

WQ(x) g(xa ,y6)* Mg(y)dy ; 
3B

a = 1, 2, 3 
3 = 1, 2, 3 .

(24)

An important feature of W is that

W = 0 ( r 2) as r ->- » , (25)

so that i t  could not represent the fie ld  ( 1 ) as i t  stands. 
We therefore remove the 0(»—1) terms to obtain a reduced 
fie ld

41 ( 2 ) 
Te a - 1  g (x,o)

e k = ~ ~ (26)

ya2 y X1X3 
:: ~ ^  >r 5 (27)

0 ( r 3) as r -*■ .

The tractions [jje( 2)] * associated with an 0 (r ” ) fie ld  
produce neither a resultant force nor a resultant moment. 
Accordingly i f  the 8 (r-3)condition is met, then 
<je (*) could be represented by W for a suitable choice
of p.



I t  has been shown (Jaswon & Symm3) that

M = - * . (2 ) ] (28)
- -e - 1 r = a

where sign ifies the in terio r f ie ld  (r  £ a) defined

by

[ $e (2) ] * + [ ]* = 0. (29)

Since the in terio r tractions [ j .^ 2)]*  must constitute a 
self-equilibrated system of forces, the same applies to
u e (2 ) ]*  so explaining the null resultant moment condition.
Now

2(jy <
_ M ^ U  + ia^yl

r r
r = a 

(30)

from which follows the resultant

y a  [<)»e (2 )]*  dy = < 0, 0, 0 > (31)
SB '

By virtue of (30)

U i ( ° ] *  = - | ^  < 3y iy3, 3y2y3, -y| -yf +2y§ > (32)

which yields through fa ir ly  straightforward calculations 
( El -Damanawi **)

$ .(2)= < (*+4p)y y3, (!x+4p)y2y3, -(2x+3p)(y|+y|)

- (iru )y f >. (33)

To this may be added an arb itrary rig id  body displacement

d + b /\ x (34)

where d, b are constant vectors. Substituting (27), 
(33), (34) into (28) gives

ü = ifca,TT-'zr)Tra<) < yiVî • y2V3’ ' ^r1 a* + y| >

+ d + b /y x (35)

which is the vector source density required.

The integral (23) can be evaluated exactly by means of 
the asymptotic expansion

g(x ,y)* =

( 1 -2 k ) x. y - ( 1 -2 <)(xiyz-x2 y l ) - ( 1 -2 K )(x 1 y 3-x3y i )

aPJ
6 kx| x. y

aP 3
6 i Xi X2 x. y

ap3
6 tcxix3 x, y

ap5 a P5 a p5

- ( 1 -2 K)(x2 y i-X iy2 ) ( 1 -2 k )x. y " ( 1 -2 k ) ( x2 y3 -x2 y3)

aP3
6 kXi x 2 x, y

ap3
5kx| x .y

ap3

6 <x2 x3 x.y
T *•» ~

ap5 ap5 apa

( 1 -2 <)(xl y 3 -x3y l ) ( 1 -2 K)(x2y 3 -x3y2 ) ( 1 -2 k )x .y

aP3
6 KXiX3 x.y

ap3
6 KX2 x3 x.y

ap3
ÊKxfx.y

ap5 ap5 3p 5
(a)



ü(1-2<)xix3,yiy3 -

a p5

12Kx1x3x|y2y1 

a P7
6kxix3(x2y|+xfyf+x^y|)

12<x^x3yiy3

ap'

Q f

12icxf x2x3y!y3 2( 1-2i<)x2x3y2y3 6kx2x3(xfyf+xfyf+xfyf )

ap' ap- a f

12<xf x3yiy3

ap '

12<xix|yiy3 ^Kxlxfy^a (x2y|+x|y|+x|y| )

ap' ap'

(b)

0(r_l4) as r (36)

i .e .  dyadic (a) integrates to zero and dyadic (b) gives

(O
W = <j>e everywhere provided that

l() i t  ■ i l w l t l m <°- “• (P5u - >•(37)
and

( i i )  m in (35) is m ultiplied by the factor

5(3 x+2p)___________

4(-X+6p)(1-2<)(1+4k)

i .e. provided that

U. =
_ 5y

< y iy 3» y2y3.
5+8k
~3~ a2 +y| >. (38)

16iTa2 ( 1-2k ) ( 1+4<)
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The rotation fie ld  (13) has 0 (r "2) behaviour as r -► «, 
and the associated tractions produce a resultant moment

(  ̂A îe* dy 
8B ~

_ 3uoi3
a < yi, y2, y3 >A< y2, -yi, o > dy 

3B

3po)3
a (y iy 3, y 2y3.

¿B

-y2i-yl)dy (39)

= <0,0, -8ira3pu3 >. (40)

This moment generates the entire  f ie ld ,  leaving no 
provision for a contribution by W.

CONCLUSION

Owing to the jump in M at 3B, p as defined in (38) 
sa tis fie s  the vector boundary integral equation

g(x,y)* u(y)dy + 2ttu (x ) =

I b = ~ ~

x,x, x,xva2 < -¿"i _ 1 , + >
 ̂ rs ’ rs * 3r3 r$ ' r = a

< x3x3, x2x3, -af_+ x§ > (41)

see equation (27).



Also a as defined in (5) sa tisfies  the vector boundary 
integral equation

'
g(x,y)a(y)dy = < 0, 0. t 3 > , (42)

3B = '  '  '  '

and a as defined in (16) sa tisfies  the vector boundary 
integral equation

’
g(x,y)o(y)dy = < -u>3y2, u)3y i ,  0 > . (43)

3B = ~ '

These provide exact analytical solutions against which 
numerical solutions could be usefully calibrated.

Instead of reducing ge we may superpose suitable 
contributions upon y to accommodate the effects of a 
resultant force and resultant moment, according to the 
general theory put forward by Jaswon5 .
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ABSTRACT

A Volterra dislocation la tha alaatoatatlc analogua of a uniform 

■agnatic shell or vortax-aquivalent sheet. Just as these nay be 

regarded nathenatically aa uniform dipole sheets^so dislocations may 

be regarded as spacialiaed traction sheets. This nodal is briefly 

explained and connected up with the theory of Taylor dislocations 

in a crystal.



1. INTRODUCTION ‘

A Volterra (1907) dislocation is a sheet within the linear 

elastic continuum,across which the displacement field jumps by 

a rigid-body translation or rotation without impairing 

the continuity of the strain and stress components. Some simple 

dislocation models may be constructed' with a hollow cut cylinder 

1, as exhibited in £ig.1

We may regard the sheet as a specialised distribution of traction 

sources,and these generate a vector double-layer potential which- 

may be identified as the elastostatic field of the dislocation.

The bounding contour of the sheet,i.e.the dislocation line,plays an 

important physical role in the theory of crystal dislocations 

Taylor (1934); NabarYo (1967).

Miserly a dislocation sheet is the vector analogue of a uniform magnetic 

shell or vortex-equivalent sheet,which are particular examples of a

uniform dipole sheet.This generates a scalar double-layer potential,

eg.a magnetostatic potential or velocity potential,which jumps by

a uniform amount on crossing the sheet without impairing the continuity

of the magnetostatic field or fluid velocity. Just as in the dislocation

case,the bounding contour of the sheet plays an important physical

role,being identified as an electric current or vortex line as

the case may be.

In his original treatment,Volterra utilised Somigliana's formula,which is 

the fundamental formula of vector potential theory.Jaswon S Symm (1977).

-2-

We exploit the analogy to calculate the field of a dislocation 

having the form of a circular disc..

2. Scalar double-layer potentials

However,since this involves the superposition of vector simple-layer

and double-layer potentials.it obscures the useful dipole analogy.

A continuous distribution of dipoles over a sheet S contained 

by a contour "&S generates the potential

w(x) g(x,y) ̂ i(y)dy; y C ( 1)

where ̂ i(y) signifies the dipole source density at y and dy signifies 

the element of area at y. Also

g(x,y) = |x-y| 1 , (2)

I
|'
and

g(x,y) = g (y,x) = — g(y,x) (3)
y

i.e. g(x,y) is the normal derivative of g(x,y) at y keeping x fixed, 

physically expressed,g(x,y) signifies the potential at a generated by 

a unit dipole source at y. It is well established^Kellogg (1929) that 

W has the following general properties:

-3-



’ (i) W is continuous and differentiable at least to the second order, 

and satisfies V2W = 0, everywhere except at S, i.e. W defines a 

harmonic function of x everywhere except at S.

r '
(ii) W = 0(r 2) as|f)-- >oo.

(iii) [W] = 4TTji(x ) at xCS, where [ ] signifies the jump in a

quantity on crossing S.

(iv) [■?“ ] * 0 , i.e. the normal derivative ( but not necessarilydn

the tangential derivatives) of W remains continuous on crossing S.

If jj(=m) is uniform over S,then W has the following additional 

properties:

(v) [VW] = 0,i.e. both the normal and tangential derivatives of

W remain continuous on crossing S.

(vi) [W] = J VW. d & = 4"TTm
s

for any circuit £  which loops (fig. 2 ).

These two properties characterise a uniform magnetic shell or vortex- 

equivalent sheet,focusing attention upon as the physically 

significant entity i.e. seat of an electric current or of fluid 

vorticity as the case may be.

To fix the ideas we choose S to be a circular disc of radius c 

in the y 1 ,y2 plane with centre at y^ =0, y2= 0. If so

-4-

y * ^ ^ ' ' V  = <rcose , rsine ,h >h=0

dy * rdrde

(4)

Also , for ease of integration we consider only

x = < x1,x2,x3> = < 0,0,2 > ; z>0 (5)

/ X  r 2 / .»2.”1/2g(x,y) = [ r +(z-h) ] ^  ,

g(x,y)
d
dh

[r2+(z-h)2j- 1/2
h=0

, 2 2,3/2
(r +z )

z> 0. ( 6 )

Inserting (6 ), withji(y) =m, into the integral (1 ) gives:

W = W(z) = 2Tm
(r_C zrdr 

J r=0 (r2+z2 ) 3/2

2lTm(l- , 2 2.1/2
(z +c )

; z > 0 (8 )

- 2jm (l-cos«< ) o( = cos 1— ? 2 1 2~i/2'
(z +c ) '

This is of course a well known classical result usually obtained by 

the method of solid angles.



Note that:

—2(i) W = 0(z ) as z --- oc as follows from (8 ).

(ii) W  ^ iRm as z o as also follows from (8).

(iii) W = 0 for z =0 as follows from (7) and also directly from

I
the fact that g(x,y) “ 0 for J C S-

Referring to the integral(1) these last two results appear - 

respectively as

(ii) lim J g(x,y) mdy = 5TTm , (1 0)
z — Jo S

(iii) J lim g(x,y) mdy = 0 , (1 1 )
S z —

with a jump which arises from the non-uniform .convergence of. the 

function:

U (r) = , 2 2.3/2
(z +r )

, as z ( 12)

Since U (r) is anti-symmetric with respect to z, W is also anti- 
z

symmetric with respect to,z i.e.

W(z ) = -Z7Jm( 1- , 2 2.1/2 
(z +r )

) ; z < 0 (13)

so yielding:

[W] = 4l(m ) [ ] = 0 (14)

in line with general theory. A graph of W(z) appears in fig.3 (m-1).

-6-

3. Vector double-layer potential

Corresponding with W, we introduce the vector double-layer 

potential:

W(x) = j g(x,y) ,ya(y)dy ; y C  S x^ S , (15)

S

*

where g(x,y) signifies the fundamental traction dyadic of the medium 

and J*(y) signifies a vector source-density. In terms of components:

g i ï i ' . V g(Xi.y2)* g (* i»y3)

9 ( ï 2'-1>*
g(x2,_y2)* g (*2.y 3)

*
g (*3,y i>* g(-3'-2) 9(-3'-3)

where g(x^) provides the ̂ -component of traction at y generated

by a unit point-force acting along the fl(- direction at x. Clearly row

1 of (16) defines the traction vector at y generated by a unit point-

force acting along the 1-direction at x ,etc. Also column 1 of (16)

defines an elastostatic displacement field , i.e. that generated by

a unit traction-source acting along the 1-direction at y, etc.

★

This means that g(x.y) plays the role of a vector dipole potential

i
corresponding with the scalar dipole potential g(x,y) • Writing 

ja = >, (15) appears in component form as:

-7-



(17)WK(x) | g(x</ŷ ) }̂ (y)̂ y ; * ^ =1,2,3 
s

assuming the summation convention for dummy subscripts.

To evaluate (16) we must first compute the fundamental 

displacement dyadic of the medium:

9i?r . V g(ï r y2) 9 (-Xl'y3)

9 <Ï2'^1 > g<-2'-2) g (ï2,y3)

g'ïs'.V g(Ï3--y2) g(x3,_y3)

where gtx.,y.) provides thep -component of displacement at y generated 

by a unit point-force acting along theK -direction at x. Alternatively 

since g(>t,,y ) =g( y ,xu), it also provides the «1 -component of 

displacement at x generated by a unit point-force acting along the 

^-direction at y. Clearly both.row 1 and column 1 of (18) define elastostatic 

displacement vectors, etc. 'For an infinite linear isotropic elastic 

continuum, the dyadic components , are nothing more than Kelvin s point- 

force solution; Love (1927) written systematically in subscript notation

It has beenshown by Kupradze (1965) that W_has the following 

properties in a linear isotropic elastic continuum:

-8-

(i) W is continuous and differentiable at least to the second order, 

and satisfies the Cauchy-Navier equation, everywhere except at s i e

W defines an elastostatic displacement field everywhere except at S.

(ii) W - 0(r 2) as |x| - r --- =*oo.

(iii) [W] - 4TjuTx ) at xCS.

= b + y > A y  , where b , to are constant vectors,i.e. jl 

varies as a rigid-body displacement over S, then W has the following 

additional property analogous to [TO] ■ 0 in the scalar case:

(iv) •hWy , 0 ; K j p “ 1,2,3,

i.e. the strains associated with W remain continuous on crossing S. 

This means that the stresses and therefore the tractions remain

continuous on crossing S so identifying the sheet as a Volterra 

dislocation.

If to = o ,i.e. no rotational jump, then W has the following 

additional property which replaces (iii) above:

(v) [w] = ^  TO.dV = 41Tb ; 41Tb = Burger's vector,

for any circuit which loops the dislocation line ds. Here 4Tb is the 

Burger'b vector of the dislocation line as defined in the theory of 

crystal dislocations (see section 6 ).

-9-



4 Circular dislocations

Choosing a circular sheet of radius c as before,and again writing

x = <o,o,z> , y = <y1,y2,h >h=0 (18)

we compute the components of g(x,y) from the known components of
X  ~  ~

g(x,y). Details are given by El-Damanawi (1989)(he obtained:

g(x,y) = -±-
PP

+ —  3
PP

g(x#y> =

6 i<

( 1-2  K ) Z

3
y p

r r

1 0 0

0 1 0

0 0 1

2
yi yiy 2 ~y3Z

2
yiy 2 y 2 _y2

2
-yiZ "y2Z

z

1 0
-yi

0 1
- y 2

yi y 2 1

2
yi yiy 2

yiZ

2
yiy 2 y 2 y2Z

yi y2 -z2

(19)

( 20 )

The integral (17) may then be evaluated exactly for the six independent

rigid-body displacements:

b <1 , 0 , 0> , b2< 0, 1 , 0 > , b3<0 , 0 , 1 >

60̂<0,0,y2> _iW<0,0,-y1>_J

5. Two-dimensional continuum dislocations

Problems of two-dimensional linear isotropic elastostatic$, in 

the absence of body forces, may -be conveniently formulated through 

a stress function ̂ which satisfies the biharmonic equation:

v V V2 (V2p() ( 21 )

The displacement components associated withXare given by the formulae:

9*1 = (l-J)H- 2 ^  - (l-y)H*- 1Ì1>H
( 22 )

where H, H are conjugate harmonic functions defined by

ÒH
bx.

*bH
bx_ - " V (23)

1 2
andy  ,y denote the shear modulus and Poisson s ratio respectively. 

These formulae simplify somewhat by introducing the Almansi (1897) 

representation for

Xj't’ + <f(or x2i> + t ) (24)





planes 3 and 4 . In fig. 5 (d) the two halves of the crystal have been 

stitched together by re-introducing the atomic forces, matching as far 

as possible half- planes of the same number, and thereby leaving 

the central half-plane without a partner.This operation requires the 

upper half-plane to be compressed and the lower half-plane to be 

extended.The lower edge of p, identified as the J^-axis of fig.4 marks 

the edge dislocation line.

The dislocation lies at the centre of a small region of misfit 

bounded by the almost perfectly matched half-planes 1 and 6, beyond 

which the crystal is perfect. Since the misfit also falls off vertically 

the region is preferably pictured as a cylindrical domain, sometimes 

termed the dislocation core,and indicated by the circled area in fg.

5(d). In 5(e) the dislocation has effectively jumped forward by one 

inter-atomic spacing to the right compared with 5 (d^ as the central 

spot now falls between the lower half-planes 4,5 instead of between 

3,4. This jump does not imply any movement of matter: p still remains 

the neighbour of the upper half-plane 3 , but its lower part deviates 

slightly to the right, thereby becoming aligned with the lower half-

plane 4. The upper half-plane 4 is left without a partner, to assume 

the role formerly held by p.The dislocation thus propagates very much 

like a travelling waveior disturbance instantaneously separating . the 

slipped from the unslipped regions of prefect crystal. It eventually 

becomes blocked at some particular point, or passes right out of the 

crystal as shown in fig. .3(f). Since the configurations 5 (d) and 5 (e) 

have the same energy, the dislocation, to a first approximation,moves 

under a vanishingly small stress. This provides the essential mechanism

of plastic deformation

The locked-up stress field generated by the continuum dislocation 

provides a very good approximation to that of a crystal dislocation 

outside the region of the dislocation core. Within the latter region, 

the strains are so large that classical elasticity can no longer be 

applied and a direct calculation of atomic displacements becomes 

necessary.

Since dislocations are singularities in stress fields.they inter-

act With other dislocation*.' and more generally, with other geometrical 

imperfections. For instance two edge dislocation in the same slip 

Plane repel or attract each other;according to whether their signs 

are like or unlike. If they are on different slip planes the situation 

becomes more complex, but the general possibility arises of dislocations 

blocking or locking each other by virtue of their mutual interactions, 

an effect which provides the essential mechanism in all theories of 

work hardening.

7. Concluding remarks

Vector potentials play a key role in the formulation of 
elastostatic boundary-value problems by boundary integral 
equations. In these problems the potential is generated 
from simple-lay© or double-layer vector sources on a 
closed surface. However vector potentials may also be 
generated from sources on an open surface (sheet). By 
analogy with the uniform magnetic shell or vortex 
equivalent sheet, which involve a uniform distribution of 
scalar dipoles over the sheet, we can introduce a 
specialised distribution of vector dipoles over the sheet 
so constructing a Volterra dislocation as described in 
section 4. This paper accordingly demonstrates the 
essential mathematical unity between the foundations of 
B.E.M. and the foundations of dislocation theory. In 
consequence the computational methods developed with 
B.E.M. could also be applied to the computation of 
dislocation fields.

The elastic continuum is a smooth approximation to the 
underlying crystal medium. By the same token Volterra 
dislocations are smooth versions of crystalline 
dislocations. These have proved to be extremely
effective in general, but fail in one important respect: 
Volterra dislocations react elastically to applied 
s*-ress' whilst crystalline dislocations become mobile so 
providing familiar metallurgical effects beyond the scope 
of continuum theory. A simplified model of a crystalline 
dislocation is briefly described in section 6, 
corresponding with the two - dimensional Volterra
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