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We provide a mathematical characterization for risk parity/budgeting portfolio construction problems for

general risk preferences. For the general problem when distribution of returns is not known, we demonstrate

the existence of a solution to the risk budgeting problem for any convex and homogeneous risk preferences.

Statistical inferences are determined for those portfolios when risk preferences are ordered by variance

or Conditional Value-at-Risk. A novel Conditional Value-at-Risk estimator is proposed, which is shown

to perform very well on non i.i.d observations, based on simulated and real-life data, especially during

periods of bull market and irrational exuberance. Our numerical results show superior performance of risk

parity portfolios in terms of various measure of performance such as Sharpe ratio and diversification when

comparing with other benchmark portfolios including the equally weighted portfolio. We also find that the

risk parity portfolios with an opportunity set selected via socially responsible investment attributes have

good performance.
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1. Introduction

One of the most important activities in financial markets is robust portfolio construction. Mean-

variance portfolio optimization and its numerous variants have dominated the finance and opera-

tions research literature over the last seven decades; e.g., see Cornuéjols et al. (2018) and references
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1 INTRODUCTION

therein. The rich operations research literature has been proposing a wide variety of theoretically

and computationally sound methods over time. One strand of research is to create robust decisions

by including distributional ambiguity; the underlying distribution is assumed to depart from a

reference probability measure through a probability metric constraint (Pflug and Wozabal 2007,

Blanchet et al. 2022), though other distributional ambiguity settings exist in the literature (e.g., see

Goh and Sim (2010), Wiesemann et al. (2014), Bertsimas et al. (2018)). A second strand of research

is to consider various uncertainty sets for asset returns and/or their dependence structure; e.g.,

see (Goldfarb and Iyengar 2003, Tütüncü and Koenig 2004, Popescu 2007, Bertsimas et al. 2011).

Other approaches have been considered, e.g., (Glasserman and Xu 2014) where the effect of model

error is accounted for and (DeMiguel and Nogales 2009) where robust estimators are employed,

but all models discussed so far have one common goal, namely to generate innovative solutions to

robust investment decisions. Often, this is achieved through robust optimisation (Ben-Tal et al.

2009) and distributionally robust optimisation (Delage and Ye 2010) formulations.

Parsimonious investment strategies that are more agnostic to how uncertainty is modelled and

measured have been considered, and one example is the equally weighted (EW) portfolio that shows

very good out-of-sample performance; for details, see the seminal paper of DeMiguel et al. (2009b).

Shrinking estimators are non-standard efficient estimators, and the econometrics field measures

their efficiency by their out-of-sample performance. This is often achieved in portfolio construction

by using a linear or non-linear combination of some estimators, or by imposing weights constraints.

In other words, shrinking methods reconcile the trade-off between robust and parsimonious traits

of an investment strategy, and these methods have been very popular in the portfolio construc-

tion literature; e.g., covariance matrix (Jagannathan and Ma 2003, Ledoit and Wolf 2017) and

weights (DeMiguel et al. 2009b, Tu and Zhou 2011, Lassance et al. 2022) shrinking methods have

been proposed. Such shrinking methods showed very good performance when compared to various

benchmark portfolios.

An alternative robust investment strategy is the so-called Risk Parity (RP), which is also known

as Equal Risk Contribution (ERC) portfolio (Roncalli 2013, Ang 2014). Such portfolios achieve
2
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diversification through imposing equal individual risk contributions. The first RP formulation can

be traced back to Qian (2005), and the main idea has evolved from a paradigm applied by a well-

known hedge fund (Bridgewater) in the 1990s. The initial RP implementation makes simplified

assumptions for which the weights are inversely proportional to the asset-class risk position, and

risk preferences are ordered by the standard deviation. This portfolio is not the standard RP

portfolio with equal risk contributions, and in fact only approximates RP portfolios (Qian 2005),

which was the practical way to perform RP-like evaluations before bespoke RP algorithms became

available. The first contribution in that respect appears in Maillard et al. (2010), which was followed

by many other important contributions (Roncalli 2013, Spinu 2013, Bai et al. 2016, Mausser and

Romanko 2018, Bellini et al. 2021).

RB/RP portfolios reflect the preference of asset managers to diversify the portfolios with respect

to the individual risk contributions and not with respect to the asset’s weights. Such portfolios

have shown good performance when risk preferences are ordered by various risk measures (Maillard

et al. 2010, Bai et al. 2016, Mausser and Romanko 2018, Bellini et al. 2021), though the variance-

based RB/RP portfolios have been the most prominent choice. The standard RB/RP formulation

disregard the mean asset returns, which has been argued to be a good choice in the wider context

beyond the RB/RP literature; e.g., see (Jagannathan and Ma 2003, DeMiguel et al. 2009a). One

could add the mean asset returns in RB/RP portfolio construction though a different numerical

implementation is required (Haugh et al. 2017).

The RP literature has been widely focusing on equal risk contributions across the assets’ returns,

but the same methodology could be adapted so that equal risk contributions across uncorrelated

factors is imposed (Ang 2014). The variance-based RP with respect to the underlying factors

extracted via Principal Component Analysis (PCA) is provided in Meucci (2009); Roncalli and

Weisang (2016) investigate the same problem by being agnostic on how the factors are obtained.

PCA is a widely used data reduction technique, but the PCA decomposition is designed to extract

uncorrelated underlying factors, which is unsatisfactory as independence and lack of correlation
3
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are two different concepts. A remedy of such drawback is proposed in Lassance et al. (2022) where

parity is achieved over a set of risk factors obtained via Independent Component Analysis; while the

previous papers focus on variance factor RP, Lassance et al. (2022) consider other risk preferences

based on higher moments.

This paper makes three contributions. Our first contribution is a theoretical framework of RB/RP

portfolios for which a mathematical characterization of such portfolios is provided under general

risk preferences. We also show that all RP portfolios are less risky than EW portfolios, but many

other interesting properties of RB portfolios are shown in Section 3.1; e.g., we found that elliptically

distributed asset returns (for which multivariate Gaussian and t-distribution are special cases) lead

to RP and RB portfolios that are invariant with respect to a large class of risk measures. Our

theoretical results confirm and generalize previous results that have been found in the literature

for specific risk preferences; e.g., Conditional Value-at-Risk (CVaR)(Mausser and Romanko 2018),

expectiles (Bellini et al. 2021), standard deviation (SD) or variance (var) (Maillard et al. 2010,

Roncalli 2013). Our findings are quite general and apply to many risk measures, but we do not

discuss the risk measure choice, which is a multifaceted problem investigated by He et al. (2022).

Secondly, statistical inferences are emphasized as vital to the portfolio construction process,

which according to our knowledge, have not been previously attempted in the RB/RP literature.

We discuss the asymptotic distribution of RB/RP estimators corresponding to two popular risk

preferences used in practice, variance and CVaR. Asymptotic results are obtained for general

dependent data assumptions. In addition, a novel CVaR estimator is proposed, which is shown to

perform very well on simulated and real-life data, especially during periods of irrational exuberance.

Thirdly, we provide further empirical evidence in support of RP strategies, which complements

the evidence in the literature. Our research shows how to build portfolios with RP targets and

Socially Responsible Investment (SRI) preferences, and we provide empirical evidence that low

and high ranked SRI portfolios outperform the EW portfolio. Besides the rich portfolio selection

literature driven by risk-based arguments, there is an increasing demand to integrate SRI factors
4
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into investment decisions due to the international societal demand that is pertinent to the Environ-

mental, Social and Governance (ESG) agenda (Hallerbach et al. 2004, Ballestero et al. 2015). Our

findings are in line with previous studies that ESG driven portfolios may produce higher returns

and enhanced risk positions than portfolios constructed without considering ESG attributes (Ver-

heyden et al. 2016). Note that the ESG agenda is a component of the wider SRI agenda that

is now a top priority for policymakers. We believe that portfolio construction under SRI driven

constraints will open up a new strand of literature that will interest regulators and government

sponsored sovereign funds, financial institutions and also the academic world.

The paper is organized as follows. Section 2 introduces all definitions and notations, and essential

background. Section 3 contains the main theoretical results of the RB/RP portfolios and their

statistical inferences. Section 4 contains extensive empirical evidence of why a fund manager should

consider investing in RP portfolios. The main conclusions and recommendations are provided in

Section 5. All proofs and ancillary results are included in the electronic companion.

2. Problem Formulation

We first introduce some generic notations used throughout this paper. Let ∆d be the unit d-simplex

∆d := {x ∈ <d+ : 1Tx = 1} for any positive integer d, where <d+ := {x ∈ <d : x≥ 0} is the standard

polyhedral cone of the positive quadrant of <d. We also use the notation <d++ := {x∈<d : x> 0}.

The financial field is represented by (Ω,F ,P), an atomless probability space, endowed with

L0 := L0(Ω,F ,P), the set of all real-valued random variables on this probability space. Let Lq,

q ∈ [0,∞), be the set of random variables with finite qth moment, and L∞ be the set of bounded

random variables. A risk measure ϕ is a function that maps an element of L0 to the real set, i.e.

ϕ :L0→<∪{±∞}. We recall below some properties for a generic risk measure and generic random

variable Y that represents the future loss of a financial asset. These properties are well-known in

the literature, see Föllmer and Schied (2011).

Convexity: ϕ(aY1 + (1− a)Y2)≤ aϕ(Y1) + (1− a)ϕ(Y2) for any Y1, Y2 ∈L0 and a∈ [0,1];

Homogeneous of order τ > 0: ϕ (cY ) = cτϕ(Y ) for any Y ∈L0 and c≥ 0;
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Shift invariance: ϕ(Y + c) =ϕ(Y ) for any Y ∈L0 and c∈<;

Translation invariance: ϕ (Y + c) =ϕ(Y ) + c for any Y ∈L0 and c∈<.

Four risk measures are often recalled in this paper: SD, var, Value-at-Risk (VaR) and CVaR.

For any p ∈ (0,1), VaR at probability level p is VaRp(Y ) := infx
{
P(Y ≤ x)≥ p

}
, while CVaR at

probability level p is CVaRp(Y ) := minθ
{
θ + 1

1−pE(Y − θ)+

}
with (·)+ := max(·,0) on <. There

are other risk measures interrelated to those four choices; e.g., Median Shortfall (MS) (median of

the tail distribution, i.e., a VaR-type risk measure) which is shown in He et al. (2022) to have

superior robustness properties to CVaR, but we are agnostic of the risk measure choice, since this

is a discussion that goes beyond the scope of this paper.

The investor is assumed to invest in a given opportunity portfolio set, X= (X1, . . . ,Xd) contain-

ing d assets, and the investment strategy is uniquely determined by a vector of proportions α∈∆d;

that is, the portfolio loss is αTX. Note that short sales are not allowed in our portfolio selection

models, which is recommended in the financial literature (Jagannathan and Ma 2003, DeMiguel

et al. 2009b). Furthermore, we assume that the risk preferences of an investor are represented by

the risk measure ϕ and therefore, the investor’s perception of risk is given by R(α) := ϕ
(
αTX

)
.

In our paper, we rely on the mathematical properties of various risk measures assumed to be

homogeneous of order τ ∈R. Hence, by Euler’s Homogeneous Function Theorem, we have that

R (α) =
1

τ

d∑
k=1

αk
∂R (α)

∂αk
=

d∑
k=1

RCk(α), where RCk (α) :=
αk
τ

∂ϕ (αTX)

∂αk
. (1)

By definition, RCk(α) is the risk contribution of the kth individual risk.

Definition 1. Let b := (b1, . . . , bd)
T

be a given constant vector such that b∈∆d∩<d++. An invest-

ing strategy α∈∆d ∩<d++ is a solution to the RB problem based on the risk measure ϕ if

RCk (α) = bkϕ
(
αTX

)
, for all k ∈ {1,2, . . . , d} , where RCk(α) is given in (1). (2)

For any b ∈ ∆d, define RB(b) := {α ∈ ∆d : α is RB} as the set of RB portfolios for a given

budgeting allocation vector b and a general risk measure ϕ. The risk contribution target bk in
6
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(2) represents the pre-specified risk contribution proportion of the kth risk to the overall portfolio

risk. In particular, if bk = 1
d
, for all k ∈ {1,2, . . . , d}, the allocation strategy is called RP. To specify

the specific risk preference, e.g., ϕ= SD, to an RB (or RP) portfolio, we say that the portfolio is

RB−SD (or RP −SD).

Table 1 summarizes the closed-form risk contributions for the four previously-mentioned risk

measures. Note that RB-SD and RB-var strategies are always equivalent. Further, we implicitly

assume that the VaR risk allocations are well-defined, and a sufficient condition is for X to admit

a joint probability density function.

ϕ RCk

Standard deviation
Cov(αkXk,αTX)√

Var(αTX)

Variance Cov (αkXk,α
TX)

Value-at-Risk at level p∈ (0,1) E
[
αkXk|αTX= VaRp (αTX)

]
Conditional Value-at-Risk at level p∈ (0,1) E

[
αkXk|αTX≥VaRp (αTX)

]
Table 1 Individual risk contributions for some well-known risk measures.

Early versions of RB portfolios were reduced to approximations of RP-SD portfolios known in

the literature as the inverse volatility weighted portfolio; for further details, see Qian (2005) and

our Section 4.1. Spinu (2013) showed that (2) could be written as an efficient convex optimiza-

tion problem, which is a much simpler numerical problem than solving the system of non-linear

equations in (2), whenever the aggregate risk position is measured by SD. Similar formulations

are provided by Roncalli (2013) for general homogeneous risk functionals. Finding RP portfolios

under CVaR risk preferences is discussed in Mausser and Romanko (2018), while Bellini et al.

(2021) investigate the RP portfolios for expectiles. Both articles provide excellent computationally

efficient algorithms that make their proposed investment strategies implementable even for a large

number of assets.
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3. Main Results

The main theoretical results are included in this section and all proofs are relegated to

Appendix EC.1. The mathematical characterization of the long-only RB portfolio solutions (defined

in (2)) is provided in Section 3.1. This section also explains how to compute RB portfolios and

describes the ancillary validatory statistical inferences. This is achieved in Section 3.2 for two risk

measures, SD and CVaR, where time dependent data are allowed in our model.

3.1. RB/RP Characterization

We assume a specific parametric distribution of portfolio loss (not returns) X, namely the elliptical

family due to its tractability of aggregating the risks (McNeil et al. 2015). The elliptical class

includes multivariate Gaussian and multivariate t- families of distributions.

We work with a multivariate random vector X that is elliptically distributed. This is signified

by X ∼ Ed
(
µ,Σ,ψ

)
, where µ is the location vector, Σ is the covariance matrix, and ψ is its

generator. This means that X and µ + AZ have the same joint distribution, where A ∈ <d×k

such that Σ = AAT , and Z is an k-dimensional spherical random vector with generator ψ, i.e.

E
(

exp{itTZ}
)

= ψ(tT t) for all t ∈<k (McNeil et al. 2015). Without loss of generality, we assume

that all variances are finite, and in turn, the elliptical distribution is precisely determined by the

triplet (µ,Σ,ψ
)
.

Proposition 1 provides an extension of Theorem 8.28 of McNeil et al. (2015) that determines

closed-form risk measurements for elliptically distributed risks.

Proposition 1. Let X∼Ed
(
µ,Σ,ψ

)
. If ϕ is a homogeneous risk measure of order τ > 0 that is

shift invariant, then

ϕ(αTX+ c) =
(
αTΣα

)τ/2
ϕ(Z1) for any c∈<, (3)

and if ϕ is a homogeneous risk measure of order τ > 0 that is translation invariant, then τ = 1 and

ϕ(αTX+ c) = c+αTµ+
(
αTΣα

)1/2
ϕ(Z1) for any c∈<, (4)

where Z1 is a spherical random variable with generator ψ.
8



3 MAIN RESULTS 3.1 RB/RP Characterization

If X∼Ed
(
µ,Σ,ψ

)
with ϕ being a shift invariant and homogeneous risk measure of order τ > 0

such that ϕ(Z1) 6= 0, then (3) implies that finding RB portfolio strategies relative to ϕ is equivalent

to finding α∈∆d ∩<d++ such that

αk

d∑
i=1

αiΣik = bkα
TΣα for all k ∈ {1,2, . . . , d} , (5)

for any given b ∈ ∆d ∩ <d++, where Σik represents the (i, k)th entry of Σ. Equation (5) tells us

that all shift invariant and homogeneous risk measures of order τ > 0 lead to the same set of RB

portfolio strategies for a fixed b ∈∆d ∩<d++. If ϕ is a translation invariant and homogeneous risk

measure, then the latter conclusion holds under the condition that the aggregated risk position

does not change. These are summarized in Corollary 1 below.

Corollary 1. Let X∼Ed
(
µ,Σ,ψ

)
and a given b∈∆d∩<d++. Further, let ϕ and ϕ̃ be two homo-

geneous risk measures of order τ > 0 and τ̃ > 0, respectively such that ϕ(Z1) 6= 0 and ϕ̃(Z1) 6= 0.

a) Assume that ϕ and ϕ̃ are shift invariant risk measures. If α∗ ∈ RB(b) based on ϕ, then

α∗ ∈RB(b) based on ϕ̃.

b) Assume that ϕ and ϕ̃ are translation invariant risk measures such that τ = τ̃ = 1 and ϕ(Z1) =

ϕ̃(Z1). If α∗ ∈RB(b) based on ϕ, then α∗ ∈RB(b) based on ϕ̃.

Corollary 1 can be helpful to provide a computational shortcut and it suggests focusing on one

risk measure of choice whenever the returns are jointly elliptically distributed. For example, RB

portfolios based on either variance, standard deviation, skewness (skew), kurtosis (kurt), excess

risk (measured by either MS/VaR or CVaR) over the expected return, or any other risk measure

that is a function of centred moments would lead to the same RB portfolios, i.e., if

ϕ∈
{
var,SD,skew,kurt,VaRp−E,CVaRq −E

}
for any 0< p, q < 1. (6)

This invariance result shows that RB/RP portfolios balance the risk across individual (or group

of) assets in the same way across all shift invariant and homogeneous risk preferences. The same

result follows when the risk preferences are modelled by translation invariant and homogeneous
9
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risk measures of order τ = 1 provided that the aggregate risk for these RB portfolios are equal. A

similar result was shown in Asimit et al. (2019) in the context of capital allocation, where VaR

and CVaR based capital allocations are found to be equivalent if the same total amount of capital

ought to be allocated. Further discussions about Corollary 1 are included in Appendix EC.2.

We are now ready to provide two methods of finding and characterizing RB portfolios for a large

class of risk measures without making any assumption on the underlying asset returns distribu-

tion. Two methods are investigated, which are known in the literature (e.g., see Roncalli (2013)

and Bellini et al. (2021)) as the logarithmic barrier formulation (see (8) below) and logarithmic

constraint RB formulation (see (9) below).

Theorem 1. Let b ∈∆d ∩ <d++, and ϕ be a convex, homogeneous risk measure of order τ ≥ 1 .

Further, assume that

min
0<x≤ 1

d1
R(x)> 0. (7)

a) For any given λ> 0, the following instance

min
x∈<d++

1

τ
R(x)−λ

d∑
k=1

bk logxk (8)

admits a unique solution, denoted as x∗(λ,b), that is an interior point of <d++. If R(α) is differ-

entiable at x∗(1,b), then α∗(b)∈RB(b), where α∗(b) = x∗(λ,b)/1Tx∗(λ,b). Moreover,

α∗(b) = x∗(λ∗,b) = (λ∗)1/τx∗(1,b), where λ∗ =
(
1Tx∗(1,b)

)−τ
.

b) For any given c∈<, the following instance

min
x∈<d++

R(x) such that
d∑
k=1

bk logxk ≥ c with c∈< (9)

admits a unique solution, denoted as x∗∗(c,b), that is an interior point of the feasibility set. If R(α)

is differentiable at x∗∗(1,b), then α∗∗(b)∈RB(b), where α∗∗(b) = x∗∗(c,b)/1Tx∗∗(c,b). Moreover,

α∗∗(b) = x∗∗(c∗,b) = ec
∗−1x∗∗(1,b), where c∗ = 1− log

(
1Tx∗∗(1,b)

)
.

Furthermore, strong duality holds in (9).
10
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c) For any b, we have that α∗(b) =α∗∗(b),

min
x∈∆d∩<d++

R(x)≤R
(
α∗(b)

)
≤R(b) (10)

and R
(
α∗(b)

)
≤R.

d) For any b, we have that

d∏
k=1

(
α∗k(b)

α̃k

)bk
≥ 1, where α̃= arg min

x∈∆d∩<d++

R(x). (11)

Further, for any b, there exists ε > 0 such that

R
(
α∗(b)

)
<R(α), for any α∈∆d ∩<d++ satisfying min

1≤k≤d
αk ≤ ε. (12)

Note 2. Theorem 1 summarizes a series of very interesting results and we outline them in a

non-technical language below:

i) Theorem 1 tells us through (8) and (9) that RB portfolios could be found under some mild

conditions (mainly if (7) holds). This means that we show the existence of RB portfolios for any

homogeneous risk preferences, but the uniqueness remains an open problem.

ii) The technical condition in (7) is sufficient (but not necessary) to ensure that our RB portfolios

are found without major computational issues, since (7) guarantees finite optimal solutions in

the surrogate instances (8) and (9). If (7) does not hold, one could bluntly apply the results of

Theorem 1, if there is sufficient empirical evidence that (8) and (9) have finite optimal solutions. If

the latter is not evident, then RB portfolios could be still found, and a method of approximating

RB portfolios in this extreme setting is possible. This requires a longer discussion, and thus, the

entire discussion is put in Appendix EC.3.

iii) Condition (7) is always satisfied for var and SD risk preferences if the covariance matrix is

positive definite. Note that the covariance matrix empirical estimator is guaranteed to be positive

semidefinite if there are no missing values and the assets are observed over the same horizon.

iv) The logarithmic barrier and logarithmic constraint RB formulations in (8) and (9), respec-

tively, lead to the same RB portfolio that does not depend upon the normalizing parameters λ and

c. This means that λ= 1 and c= 0 are recommended for numerical implementations.
11



3.2 Statistical Inferences 3 MAIN RESULTS

v) We found in (10) that R
(
α∗(b)

)
≤R(b) for any risk contribution target vector b. This means

that our RB portfolios with target vector b are less risky (with a lower aggregate risk position

measured through ϕ) than the portfolio with weights given by b. Particularly, the RP portfolio is

always less risky than the EW portfolio.

vi) We also found that R
(
α∗(b)

)
≤R

(
1
d
1
)

for any risk contribution target vector b. This means

that our RB portfolio (obtained by either (8) or (9)) is always less risky than the EW portfolio,

irrespective of the risk preferences. This confirms a similar property found by Roncalli (2013) and

Bellini et al. (2021) for some particular risk measures choices.

vii) We found in (12) that a substantial reduction in at least one asset of the portfolio would

increase the overall portfolio’s risk position.

Theorem 1 extends previous results for var/SD portfolios (Theorem 1.1 of Spinu (2013) and

Lemma 2.2 of Bai et al. (2016)) and expectiles-based portfolios (Theorem 4 of Bellini et al. (2021)).

3.2. Statistical Inferences

The previous section explains how to find RB portfolios with the help of Theorem 1. Even though

variants of Theorem 1 exist in the literature, there are no statistical inferences for RB portfolios

according to our knowledge, which is the main aim of this section. In practice, the sample covariance

matrix is often employed, but for high-dimensional data, it leads to inference problems. Over

time, more advanced methods to estimate the covariance matrix have been introduced (Fan et al.

2008, Ledoit and Wolf 2008, Bailey et al. 2019). Our statistical inferences are focused on two risk

preferences, CVaR and var, which are popular choices in practice.

In this section, we observe
{
Xt = (Xt,1, . . . ,Xt,d)

T
}n
t=1

from the strictly stationary α-mixing

sequence of
{
Xt = (Xt,1, . . . ,Xt,d)

T
}∞
t=−∞ satisfying

αX(k) = sup
{
|P(A∩B)−P(A)P(B)| :A∈F i−∞,B ∈F∞i+k,−∞< i<∞

}
→ 0 as k→∞,

where F ba denotes the σ-field generated by {Xt : a≤ t≤ b}. For statistical inferences, Theorem 1

suggests searching for a non-parametric estimator for R(x), which is convex, homogeneous, and

differentiable.
12
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First, we consider CVaRp risk preferences with 0< p< 1, for which the portfolio risk position is

measured as follows:

inf
θ

{
θ+

1

1− p
E
(
(xTXt− θ)+

)}
;

see Rockafellar and Uryasev (2002). Hence, the simple non-parametric estimator is

R̂empcvar(x) := inf
θ

{
θ+

1

n(1− p)

n∑
t=1

(
xTXt− θ

)
+

}
,

which is convex, homogeneous, but not differentiable, though differentiable almost everywhere

implied by the convexity. To have a differentiable estimator, one can use the smooth non-parametric

estimation in Scaillet (2004) and Chen (2008), defined as

R̂KDcvar(x) :=
1

n(1− p)

n∑
t=1

xTXt

{
1−K

(
θ−xTXt

h

)}
,

where θ= θ(x) solves

1

n

n∑
t=1

K

(
θ−xTXt

h

)
= p,

K(·) is a smooth distribution function on <, and h= h(n)> 0 is the kernel bandwidth. Unfortu-

nately, we cannot ensure R̂KDcvar (x) to be convex and homogeneous. By writing that

E
(
(xTXt− θ)+

)
=

∫
(xTs− θ)+fX(s1, · · · , sd)ds,

where s= (s1, · · · , sd)T and fX(s) is the density function of Xt, we propose the following smooth

non-parametric estimator

R̂cvar(x) := inf
θ

{
θ+

1

n(1− p)

n∑
t=1

∫
(xTs− θ)+

d∏
i=1

h−1
i k

(
si−Xt,i

hi

)
ds

}
,

where k(·) =K ′(·) on <, and hi = hi(n)> 0 is a bandwidth for all i∈ {1,2, . . . , d}. It is straightfor-

ward to verify that R̂cvar(x) is convex, homogeneous with order one, and differentiable everywhere.

Also,

R̂cvar(x) =
1

n(1− p)

n∑
t=1

∫
I(xTs> θ)xTs

d∏
i=1

h−1
i k

(
si−Xt,i

hi

)
ds, (13)

13
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with θ= θ(x) satisfying

1− 1

n(1− p)

n∑
t=1

∫
I(xTs> θ)

d∏
i=1

h−1
i k

(
si−Xt,i

hi

)
ds= 0 (14)

and I denoting the indicator function with I(A) = 1 if A is true, and I(A) = 0 otherwise. Hence,

using τ = 1 for CVaR risk measure and taking λ= 1 in Theorem 1, we estimate x and α by

x̂cvar = arg min
x∈<d++

R̂cvar(x)−
d∑
i=1

bi logxi and α̂cvar = x̂cvar/1
T x̂cvar.

That is, x̂cvar and θ̂cvar = θ(x̂cvar) solve the system of equations for x> 0:
1

n(1− p)

n∑
t=1

∫
I(xTs> θ(x))si

d∏
j=1

h−1
j k

(
sj −Xt,j

hj

)
ds− bi

xi
= 0 for i∈ {1,2, . . . , d} ,

1− 1

n(1− p)

n∑
t=1

∫
I(xTs> θ(x))

d∏
j=1

h−1
j k

(
sj −Xt,j

hj

)
ds= 0.

(15)

On the other hand, the true values x0 and θ0 = θ(x0) solve

E[Z̄t(x, θ)] = 0 forx> 0, (16)

where Z̄t(x, θ) =
(
Z̄t,1(x, θ), . . . , Z̄t,d+1(x, θ)

)T
is given by

Z̄t,i(x, θ) = 1
1−pXt,iI

(
xTXt > θ(x)

)
− bi

xi
for all i∈ {1,2, . . . , d} ,

Z̄t,d+1(x, θ) = 1− 1
1−pI

(
xTXt > θ(x)

)
.

Define Γ̄(x, θ) = EZ̄1(x, θ) and denote the partial derivatives of Γ̄(·, ·) by ˙̄Γ(·, ·) on <d × <. We

assume the following regularity conditions to derive the asymptotic limits of x̂cvar, θ̂cvar, and α̂cvar:

C1) {Xt}∞t=−∞ is a strictly stationary α-mixing sequence with αX(m) =O
(
am
)

for some a∈ (0,1)

as m→∞. Furthermore, assume E||Xt||2+δ <∞ for some δ > 0, where || · || is the l2 norm.

C2) (xT0 , θ0)T is the unique solution to (16).

C3) The probability density function ofXt has bounded second partial derivatives on the closure

of Ω = ∪(xT ,θ)T∈Ω0

{
s ∈ <r : xTs ≥ θ

}
, where Ω0 is an open set covering (xT0 , θ0)T . For any s ≥ 1,

the joint density of Xt and Xt+s has bounded second partial derivatives on the closure of Ω×Ω.

C4) k(·) is a symmetric density function on [−1,1]. For each i ∈ {1,2, . . . , d}, hi = cin
−1/3 for

some positive constant ci.
14
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The next theorem provides the result for deriving inference when risk preferences are ordered by

the CVaRp risk measure.

Theorem 3. Assume conditions C1)–C4) hold and consider the case in which ϕ = CVaRp with

0< p< 1. Then, there is a positive definite matrix Σ̄ such that

E
{
Z̄1(x0, θ0)Z̄T

1 (x0, θ0)
}

+ 2 lim
n→∞

n−1∑
m=1

E
{
Z̄1(x0, θ0)Z̄T

1+m(x0, θ0)
}

= Σ̄. (17)

Furthermore, as n→∞,

√
n
(
x̂Tcvar−xT0 , θ̂cvar− θ0

)T w→N
(
0, ˙̄Γ−1(x0, θ0)Σ̄

( ˙̄Γ−1(x0, θ0)
)T)

, (18)

√
n(α̂cvar−α0)

w→N

(
0,

Σ̄0

(1Tx0)2
− 2x01

T Σ̄0

(1Tx0)3
+
x01

T Σ̄01x
T
0

(1Tx0)4

)
, (19)

where Σ̄0 is the first d× d matrix of ˙̄Γ−1(x0, θ0)Σ̄
( ˙̄Γ−1(x0, θ0)

)T
.

Next, we study the variance risk preferences. Clearly, the portfolio risk position is measured by

the following non-parametric estimator:

R̂v(x) =
1

n

n∑
t=1

xTXtX
T
t x−

(
1

n

n∑
t=1

xTXt

)2

,

which is convex, homogeneous, and differentiable. Using τ = 2 for the variance risk measure and

taking λ= 1 in Theorem 1, we estimate x and α by

x̂v = arg min
x∈<d++

1

2
R̂v(x)−

d∑
i=1

bi logxi and α̂v = x̂v/1
T x̂v.

That is, x̂v and θ̂v = θ(x̂v) solve the system of equations for x> 0:
1
n

∑n

t=1Xt,i{xTXt− θ}− bi
xi

= 0 for i∈ {1,2, . . . , d} ,

1
n

∑n

t=1x
TXt = θ.

(20)

On the other hand, the true values x0 and θ0 = θ(x0) solve

E[Z̃t(x, θ)] = 0 forx> 0, (21)
15
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where Z̃t(x, θ) =
(
Z̃t,1(x, θ), . . . , Z̃t,d+1(x, θ)

)T
is given by


Z̃t,i(x, θ) =Xt,i{xTXt− θ}− bi

xi
for all i= k ∈ {1,2, . . . , d} ,

Z̃t,d+1(x, θ) =xTXt.

Define Γ̃(x, θ) =EZ̃1(x, θ) and denote the partial derivatives of Γ̃(·, ·) by ˙̃Γ(·, ·) on <d×<.

The following regularity conditions are required for deriving the asymptotic behavior of our

estimators, namely x̂v, θ̂v, and α̂v. These conditions are formalized below:

C5) {Xt}∞t=−∞ is a strictly stationary α-mixing sequence with αX(m) =O
(
am
)

for some a∈ (0,1)

as m→∞. Furthermore, assume E||Xt||4+δ <∞ for some δ > 0.

C6) (xT0 , θ0)T is the unique solution to (21).

The next theorem provides the result for deriving inference when risk preferences are ordered by

the variance as a risk measure.

Theorem 4. Assume conditions C5) and C6) hold and consider the variance risk measure, i.e.,

ϕ= var. Then, there is a positive definite matrix Σ̃ such that

E
{
Z̃1(x0, θ0)Z̃T

1 (x0, θ0)
}

+ 2 lim
n→∞

n−1∑
m=1

E
{
Z̃1(x0, θ0)Z̃T

1+m(x0, θ0)
}

= Σ̃. (22)

Furthermore, as n→∞,

√
n
(
x̂Tv −xT0 , θ̂v − θ0

)T w→N
(
0, ˙̃Γ−1(x0, θ0)Σ̃

( ˙̃Γ−1(x0, θ0)
)T)

, (23)

and

√
n(α̂v −α0)

w→N

(
0,

Σ̃0

(1Tx0)2
− 2x01

T Σ̃0

(1Tx0)3
+
x01

T Σ̃01x
T
0

(1Tx0)4

)
, (24)

where Σ̃0 is the first d× d matrix of ˙̃Γ−1(x0, θ0)Σ̃
( ˙̃Γ−1(x0, θ0)

)T
.

A small simulation study for our main results in Theorem 3 is provided in Appendix EC.4, where

we show that our CVaR estimator performs very well.
16



4 RP PORTFOLIO PERFORMANCE

4. RP Portfolio Performance

We provide a comprehensive empirical analysis based on our previous methodologies. Section 4.1

includes some background necessary for the next two sections. Section 4.2 presents extensive com-

parative portfolio performance of RP portfolios and other benchmark portfolios. Section 4.3 inves-

tigates the performance of RP portfolios when the opportunity set is defined by SRI meanings.

The financial data and SRI attributes used in this section are described in Appendix EC.5.1,

while the structural breaks are detailed in Appendix EC.5.2. To this end, we follow 408 firms

from year 2001 to 2020. The analyses in Sections 4.1 and 4.2 are using the top and bottom US

firms, totaling 100; the analysis in Section 4.3 is based on the entire sample, where additional

non-monetary (SRI) preferences are applied for selecting the opportunity set. All details regarding

the RB/RP implementations are provided in Appendix EC.5.3.

4.1. Background and Preliminary Results

This section first describes the six portfolios based on RP principles and also a benchmark portfolio,

they are further examined in Sections 4.2 and 4.3. We then provide a real data analysis that

illustrates the differences between the RP −CVaR portfolios by comparing the independent and

identically distributed (i.i.d.) and non-i.i.d. CVaR non-parametric estimators.

The following portfolios are compared in our numerical analyses:

1. Equal weight (EW) portfolio, denoted as α(EW ) = 1
d
1;

2. RP-SD, where the variance is estimated via the R̂v estimator; recall that RP portfolios based

on SD and var are the same;

3. RP-CVaRiid
95%, where CVaR95% is estimated via the i.i.d. R̂empcvar estimator, which is further

recalled as α(RP−CVaRiid95%);

4. RP-CVaRniid
95%, where CVaR95% is estimated via the non-i.i.d R̂cvar estimator, which is further

recalled as α(RP−CVaRniid95% );

5. IWP-SD is the portfolio with the following weights:

α
(IWP−SD)
k =

1/R̂v(Xk)∑d

k=1 1/R̂v(Xk)
for all k ∈ {1,2, . . . , d};

17



4.1 Background and Preliminary Results 4 RP PORTFOLIO PERFORMANCE

6. IWP-CVaRiid
95% is the portfolio with the following weights:

α
(IWP−CVaRiid95%)

k =
1/R̂empcvar(Xk)∑d

k=1 1/R̂empcvar(Xk)
for all k ∈ {1,2, . . . , d};

7. S&P 500, the benchmark S&P 500 portfolio.

EW is a standard benchmark portfolio in the portfolio construction literature, see DeMiguel et al.

(2009b); the other benchmark portfolio in our analysis is S&P 500. The remaining five portfolios

are selected by searching for RP under various risk preferences. That is, Portfolios 2, 3, and 4 are

standard RP portfolios for SD and CVaR risk preferences. Portfolios 5 and 6 are inverse volatility

weighted and inverse CVaR weighted, which are early implementations of RP portfolios; essentially,

these are heuristic methods with assets being weighted in inverse proportion to their risk (SD and

CVaR, respectively). The inverse volatility weighted portfolio is a very popular portfolio due to its

simple implementation, but these two portfolios are not the same; it is true that RP-SD and IWP-

SD coincide if the asset correlations are equal (Roncalli 2013), but equivalent results are unknown

for other risk preferences. For these reasons, the inverse weighted portfolios are (computationally)

simplified RP portfolios (Qian 2005, Chaves et al. 2011, Ang 2014). In summary, only the (standard)

RP portfolios require bespoke algorithms, which are explained in Appendix EC.5.3.

The second part of this section is to understand the effect of using our proposed non-i.i.d. CVaR

estimator instead of the classical i.i.d. CVaR estimator over the RP-CVaR portfolio performance.

That is, we use financial data to evaluate and compare RP-CVaRiid
95% and RP-CVaRniid

95% that are

SOCP implementations as in Mausser and Romanko (2018); these are showcased in Figure 1.

The opportunity set consists of the top 50 firms (ranked on All Factors Score (AFS)) from the

US-subsample consisiting of 100 firms.
18
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Figure 1 The l1 distances between α(RP−CVaRiid
95%) and α(RP−CVaRniid

95% ) estimates based on the values of top 50

(AFS ranked) US firms during the respective periods.

Figure 1 shows the difference between the RP-CVaRiid
95% and RP-CVaRniid

95% portfolios by plotting the

l1 distances between α(RP−CVaRiid95%) and α(RP−CVaRniid95% ), which are computed so that we understand

how the market conditions may affect the behavior of the two estimators. The estimators are applied

only to the data in that particular period. This plot shows that the two portfolios in Periods 2 and

7 are more different than other periods; these periods are characterized by irrational exuberance on

bull market periods when the views of the majority of investors are highly correlated driven by the

self-fulfilling prophecy that stocks have an ascending trend. Quite small differences are observed

in Periods 1, 4 and 9 that are associated with market disruptions and crises. Further analyses for

various values of the serial dependence parameter ρ are discussed in the Appendix in Figure EC.4.

4.2. Risk Parity Portfolio Performance

The comparative portfolios performance is analyzed from 2001 to 2020. We characterize the finan-

cial stock market by the S&P 500 index and we identify several structural break points using the

Bai-Perron test (Bai and Perron 1998, 2003). The structural breaks are illustrated in Figure EC.5 in

Appendix EC.5.2. For the first structural break (denoted as ‘Period 1’, which is between 01/01/2002

and 21/04/2003), we used the historical prices between 01/01/2001 and 30/12/2001 that is prior to

‘Period 1’ to calculate the asset weights for each portfolio. After that, we used all historical prices
19
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before each structural break period to get the portfolio weights to be used in an out-of-sample

fashion for the next period; e.g., for the ‘Period 2’, the historical data between 01/01/2001 and

21/04/2003 are used.

Our empirical application employs a recursive estimation framework up to the last structural

break for the calculation of portfolio weights. The portfolios constructed in this manner are then

compared for their financial performance over the next period up to the next structural break.

Comparing different portfolios strategies based on the out-of-sample results reflects the important

questions of “what was believed and projected, at what time, using information available at the

time”, as advocated in Diebold (2015). Our portfolios are compared over the nine periods, with

main results summarized in Tables 2 and 3.

Several performance measures are reported in Table 2, including Sharpe ratio (SR), skew-Adjusted

Sharpe ratio (skew-Adj SR) and Calmar ratio in addition to the standard expected return and SD.

It can be noted that skew-Adj SR incorporates a penalty factor for negative skewness, while the

Calmar ratio is defined as the ratio of annualized return over the absolute value of the maximum

drawdown of an investment computed over the last 36 months.

Portfolio performance has been directly linked with the idea of diversification for a long time

in the literature. A recent review on diversification measures appears in Koumou (2020), but two

choices are more popular. The first one is given by the p-norms for which EW is the most diversified

portfolio. A second approach (that we employ in this paper) is the Diversification Index (DI); by

definition, the DI for a linear portfolio αTX with risk preferences order by the risk measure ϕ is

given by DI(α) :=ϕ(αTX)/
∑d

k=1αkϕ(Xk).

Four performance measures are provided in Table 3. The first two are SR-like measurements,

where the CVaR-based and VaR-based SRs replace the SD measure of market risk with CVaR and

VaR, respectively; the two DIs performance measures are computed with ϕ ∈ {SD,CVaR} risk

preferences. Note that all CVaR estimates in Table 3 rely on the standard non-parametric estimator,

CVaRiid
95%; further, all computations in Table 3 are not annualized due to the PerformanceAnalytics
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Table 2 Various Performance Measures for Our Portfolios and All Periods
Structural Portfolio Mean SD SD-SR skew-Adj Calmar
Break SR Ratio
Period 1 EW -0.0661 0.2425 -0.2727 -0.3626 -0.3098
01/01/2002 RP-SD -0.0477 0.1845 -0.2585 -0.3303 -0.2835

- RP-CVaRiid
95% -0.0145 0.1660 -0.0871 -0.1653 -0.1374

21/04/2003 RP-CVaRniid
95% -0.0142 0.1662 -0.0852 -0.1636 -0.1360

IWP-SD -0.0568 0.2206 -0.2576 -0.3427 -0.3055

IWP-CVaRiid
95% -0.0559 0.2220 -0.2517 -0.3378 -0.3015

S&P500 -0.1455 0.2539 -0.5733 -0.6042 -0.5090

Period 2 EW 0.1780 0.1125 1.5830 1.6541 2.5022
22/04/2003 RP-SD 0.1783 0.0922 1.9344 1.9696 3.8350

- RP-CVaRiid
95% 0.1787 0.0936 1.9098 1.9365 3.3021

05/10/2006 RP-CVaRniid
95% 0.1788 0.0935 1.9103 1.9370 3.3037

IWP-SD 0.1698 0.1053 1.6125 1.6820 2.6904

IWP-CVaRiid
95% 0.1702 0.1063 1.6004 1.6699 2.6320

S&P500 0.1458 0.1139 1.2797 1.2998 2.0814

Period 3 EW -0.0737 0.1980 -0.3721 -0.4458 -0.3168
06/10/2006 RP-SD -0.0473 0.1610 -0.2936 -0.3649 -0.2402

- RP-CVaRiid
95% -0.0489 0.1572 -0.3113 -0.3812 -0.2458

06/10/2008 RP-CVaRniid
95% -0.0488 0.1574 -0.3107 -0.3807 -0.2457

IWP-SD -0.0668 0.1955 -0.3418 -0.4163 -0.3036

IWP-CVaRiid
95% -0.0682 0.1960 -0.3480 -0.4221 -0.3064

S&P500 -0.0814 0.2051 -0.3969 -0.4769 -0.3246

Period 4 EW 0.1684 0.2886 0.5836 0.4488 0.3896
07/10/2008 RP-SD 0.1461 0.2307 0.6332 0.5164 0.4128

- RP-CVaRiid
95% 0.1467 0.2281 0.6430 0.5282 0.4245

03/08/2011 RP-CVaRniid
95% 0.1467 0.2280 0.6431 0.5283 0.4246

IWP-SD 0.1550 0.2685 0.5775 0.4496 0.3801

IWP-CVaRiid
95% 0.1555 0.2692 0.5777 0.4496 0.3798

S&P500 0.1112 0.2854 0.3896 0.2528 0.2016

Period 5 EW 0.2400 0.1694 1.4173 0.6401 1.9833
04/08/2011 RP-SD 0.2030 0.1351 1.5025 0.6512 2.4106

- RP-CVaRiid
95% 0.2040 0.1313 1.5529 0.6464 2.5333

20/03/2014 RP-CVaRniid
95% 0.2042 0.1314 1.5533 0.6452 2.5343

IWP-SD 0.2137 0.1563 1.3668 0.6810 2.1216

IWP-CVaRiid
95% 0.2146 0.1569 1.3680 0.6817 2.1120

S&P500 0.1895 0.1692 1.1203 0.7079 1.5981

Period 6 EW 0.0566 0.1306 0.4331 0.3649 0.3837
21/03/2014 RP-SD 0.0729 0.1093 0.6667 0.5875 0.6214

- RP-CVaRiid
95% 0.0751 0.1067 0.7044 0.6237 0.6535

05/01/2016 RP-CVaRniid
95% 0.0753 0.1065 0.7072 0.6261 0.6558

IWP-SD 0.0704 0.1259 0.5591 0.4873 0.5414

IWP-CVaRiid
95% 0.0696 0.1263 0.5509 0.4793 0.5302

S&P500 0.0748 0.1374 0.5446 0.4714 0.5822

Period 7 EW 0.1720 0.1168 1.4728 0.6437 1.9575
06/01/2016 RP-SD 0.1655 0.0947 1.7474 0.6273 2.1749

- RP-CVaRiid
95% 0.1716 0.0924 1.8558 0.6387 2.4257

19/10/2018 RP-CVaRniid
95% 0.1714 0.0925 1.8535 0.6415 2.4231

IWP-SD 0.1562 0.1090 1.4326 0.6076 1.6828

IWP-CVaRiid
95% 0.1566 0.1093 1.4329 0.6080 1.6895

S&P500 0.1625 0.1167 1.3923 0.5717 1.7320

Period 8 EW 0.1337 0.1440 0.9289 0.7841 0.6949
20/10/2018 RP-SD 0.1394 0.1168 1.1939 0.9430 0.9244

- RP-CVaRiid
95% 0.1456 0.1133 1.2847 0.9986 1.0016

02/01/2020 RP-CVaRniid
95% 0.1453 0.1134 1.2807 0.9958 0.9982

IWP-SD 0.1299 0.1351 0.9616 0.7864 0.7347

IWP-CVaRiid
95% 0.1308 0.1354 0.9655 0.7897 0.7374

S&P500 0.1253 0.1482 0.8456 0.6972 0.6493

Period 9 EW 0.2095 0.3664 0.5718 0.3863 0.4165
03/01/2020 RP-SD 0.2153 0.2939 0.7324 0.5298 0.6022

- RP-CVaRiid
95% 0.2222 0.2775 0.8008 0.5672 0.6693

31/12/2020 RP-CVaRniid
95% 0.2213 0.2780 0.7960 0.5651 0.6640

IWP-SD 0.1931 0.3474 0.5559 0.3814 0.4106

IWP-CVaRiid
95% 0.1943 0.3486 0.5574 0.3822 0.4117

S&P500 0.2279 0.3443 0.6618 0.4570 0.5633

Notes: Various annualized portfolio performance measurements (within each period and performance criterion) – the “best”
portfolio is in bold and underlined, the “second best” portfolio is only in bold. (Column 1) Nine structural break periods
are identified with a Bai-Perron test (Bai and Perron 1998, 2003). (Column 2) Six portfolios are compared with the S&P500
benchmark (i.e., EW: Equal Weighted portfolios, RP-SD: Risk Parity portfolios based on Standard Deviation (SD),
RP-CVaRiid

95%: Risk Parity portfolios based on the i.i.d. Conditional Value-at-Risk (CVaR) estimator at 95%, RP-CVaRniid
95% :

Risk-Parity portfolios based on the non-i.i.d. CVaR estimator at 95%, IWP-SD: Inverse Weighted Portfolios (IWP) based on
SD, IWP-CVaRiid

95%: IWP based on the i.i.d. CVaR estimator at 95%). (Column 3) Annualized Mean of each portfolio.
(Column 4) Annualized SD of each portfolio. (Column 5) Annualized Sharpe Ratio (SR) based on SD. (Column 6) Annualized
skew-adjusted SR, which adjusts for negative skewness. (Column 7) Calmar Ratio is the ratio of annualized return over the
absolute value of the maximum drawdown of each portfolio. 21
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R package limitations that is used for Modified VaR95% computations, but this does not affect the

trend captured by our analysis.

Overall, the results in Table 2 show that all RP portfolios (RP-SD, RP-CVaRiid
95% and RP-

CVaRniid
95%) are superior to the other four portfolios over a wide set of market scenarios as spanned by

the structural breakpoints; as expected, these numerical experiments confirm our Note 2 vi). The

annualized SD of RP portfolios is smaller than the other four portfolios, and RP portfolios perform

better than all other portfolios in terms of SR. The RP-CVaRiid
95% and RP-CVaRniid

95% portfolios show

similar performance, though there is a slight advantage for using our proposed (non-i.i.d.) estimator

that does not ignore the serial correlation in the data. This confirms the results of our simulated

data analysis depicted in Figure EC.4. All six portfolios outperform the S&P500 benchmark.

Table 3 indicates that RP portfolios perform really well compared to EW and IWP portfolios.

This is reassuring in the sense that the RP portfolios are not loss making vis-a-vis other strategies

with respect to SR or DI performance; note that the larger the DI value is, the least diversified the

portfolio is. By comparing the DI measurements across all nine periods, we observe that there is a

substantial increase in DI levels during Periods 4 and 9. Thus, our empirical results imply that the

degree of diversification decreases during severe crises (which is equivalent to increased DI levels).

Our results are qualitatively similar to those reported in Capponi and Rubtsov (2022), where it

is inferred that investors tend to prefer less diversified portfolios during periods of market distress

so that systemic risk is reduced. Our portfolio construction method though is different than theirs

which aims at building portfolios focusing on systemic risk. All other results in Table 3 confirm

the same conclusions drawn from Table 2.

4.3. Portfolio Selection and Social Responsibility Investment

An emerging investment demand is from investors who have a strong set of non-monetary prefer-

ences that are expected to be reflected in their investments. For example, pension and insurance

funds in France and most of the Scandinavian countries must consider SRI portfolios; this is not

only driven by compliance meanings, but also by internal policies of such funds due to an increased
22
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Table 3 Modified Sharpe Ratios and Diversification Index Values for Our Portfolios and All Periods
Period Portfolio Modified SR Modified SR DI DI

(CVaR95%) (VaR95%) (SD) (CVaR95%)
Period 1 EW -0.0091 -0.0114 0.5796 0.5218
01/01/2002 RP-SD -0.0079 -0.0106 0.4876 0.4741

- RP-CVaRiid
95% -0.0026 -0.0036 0.4416 0.4391

21/04/2003 RP-CVaRniid
95% -0.0025 -0.0036 0.4418 0.4394

IWP-SD -0.0082 -0.0107 0.5756 0.5357

IWP-CVaRiid
95% -0.0081 -0.0105 0.5756 0.5331

Period 2 EW 0.0500 0.0655 0.4787 0.4611
22/04/2003 RP-SD 0.0609 0.0811 0.3959 0.3792

- RP-CVaRiid
95% 0.0600 0.0799 0.3929 0.3756

05/10/2006 RP-CVaRniid
95% 0.0601 0.0799 0.3930 0.3757

IWP-SD 0.0509 0.0668 0.4769 0.4575

IWP-CVaRiid
95% 0.0504 0.0662 0.4786 0.4595

Period 3 EW -0.0097 -0.0140 0.5803 0.6186
06/10/2006 RP-SD -0.0076 -0.0109 0.4931 0.5274

- RP-CVaRiid
95% -0.0081 -0.0114 0.4868 0.5214

06/10/2008 RP-CVaRniid
95% -0.0080 -0.0114 0.4873 0.5220

IWP-SD -0.0090 -0.0130 0.5837 0.6167

IWP-CVaRiid
95% -0.0091 -0.0132 0.5831 0.6164

Period 4 EW 0.0152 0.0265 0.6476 0.6935
07/10/2008 RP-SD 0.0170 0.0296 0.5517 0.5660

- RP-CVaRiid
95% 0.0174 0.0300 0.5410 0.5514

03/08/2011 RP-CVaRniid
95% 0.0174 0.0300 0.5410 0.5513

IWP-SD 0.0151 0.0265 0.6634 0.7019

IWP-CVaRiid
95% 0.0151 0.0264 0.6620 0.7009

Period 5 EW 0.0377 0.0560 0.6074 0.6455
04/08/2011 RP-SD 0.0400 0.0596 0.5199 0.5463

- RP-CVaRiid
95% 0.0410 0.0617 0.5016 0.5314

20/03/2014 RP-CVaRniid
95% 0.0410 0.0617 0.5020 0.5318

IWP-SD 0.0362 0.0540 0.6327 0.6717

IWP-CVaRiid
95% 0.0362 0.0541 0.6311 0.6701

Period 6 EW 0.0116 0.0164 0.5565 0.5904
21/03/2014 RP-SD 0.0182 0.0254 0.4803 0.5003

- RP-CVaRiid
95% 0.0193 0.0269 0.4664 0.4835

05/01/2016 RP-CVaRniid
95% 0.0194 0.0270 0.4656 0.4825

IWP-SD 0.0152 0.0214 0.5805 0.6034

IWP-CVaRiid
95% 0.0150 0.0211 0.5794 0.6025

Period 7 EW 0.0375 0.0555 0.4766 0.5135
06/01/2016 RP-SD 0.0458 0.0674 0.4035 0.4160

- RP-CVaRiid
95% 0.0494 0.0724 0.3925 0.3999

19/10/2018 RP-CVaRniid
95% 0.0493 0.0723 0.3925 0.4000

IWP-SD 0.0366 0.0538 0.4836 0.5095

IWP-CVaRiid
95% 0.0367 0.0538 0.4830 0.5095

Period 8 EW 0.0235 0.0359 0.5173 0.5648
20/10/2018 RP-SD 0.0305 0.0472 0.4359 0.4640

- RP-CVaRiid
95% 0.0335 0.0516 0.4224 0.4409

02/01/2020 RP-CVaRniid
95% 0.0334 0.0514 0.4232 0.4423

IWP-SD 0.0238 0.0371 0.5209 0.5754

IWP-CVaRiid
95% 0.0239 0.0372 0.5206 0.5750

Period 9 EW 0.0144 0.0230 0.7124 0.7717
03/01/2020 RP-SD 0.0183 0.0286 0.6094 0.6589

- RP-CVaRiid
95% 0.0199 0.0307 0.5741 0.6228

31/12/2020 RP-CVaRniid
95% 0.0197 0.0305 0.5753 0.6238

IWP-SD 0.0140 0.0225 0.7167 0.7721

IWP-CVaRiid
95% 0.0140 0.0226 0.7171 0.7728

Notes: Various modified Sharpe Ratio (SR) that are based on the Conditional Value-at-risk (CVaR) and Value-at-risk (VaR)
at level 95% risk measurements, as well as Diversification Index (DI) based on Standard Deviation (SD) and CVaR95%

portfolio performance measurements (within each period and performance criterion) – the “best” portfolio is in bold and
underlined, the “second best” portfolio is only in bold. (Column 1) Nine structural break periods are identified with a
Bai-Perron test (Bai and Perron 1998, 2003). (Column 2) Six portfolios are presented and compared (i.e. EW: Equal Weighted
portfolios, RP-SD: Risk Parity portfolios based on SD, RP-CVaRiid

95%: Risk Parity portfolios based on the i.i.d. CVaR
estimator at 95%, RP-CVaRniid

95% : Risk-Parity portfolios based on the non-i.i.d. CVaR estimator at 95%, IWP-SD: Inverse
Weighted Portfolios (IWP) based on SD, IWP-CVaRiid

95%: IWP based on the i.i.d. CVaR estimator at 95%). (Column 3)
Modified un-annualized SR based on the i.i.d. CVaR estimator at 95%. (Column 4) Modified un-annualized SR based on
VaR95%. (Column 5) DI based on SD. (Column 6) DI based on the i.i.d. CVaR estimator at 95%.
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demand for green assets and assets with high business ethics standards. Hence, the question is

how to design such strategies that provide portfolios with certain exposures to SRI factors, but

remain viable investment opportunities. A possible methodology and subsequent empirical results

are described in the current section.

The SRI data analysis relies once again on the data described in Appendix EC.5.1. We only

used the US subsample (that have been AFS ordered) in the previous empirical analyses. Here,

the SRI analysis includes all (US and non US) 408 firms, which are ranked again based on AFS.

Specifically, we create two sets of portfolios in this section: i) High-SRI that consists of the top

100 ranked firms, and ii) Low-SRI that consists of the bottom 100 ranked firms. For each of those

two sets of portfolios, six portfolios are constructed as in Section 4.1, but since the opportunity

sets may include non-US companies, S&P 500 is not included in the SRI analysis summarized in

Table 4. As before, the performance is monitored for a buy and hold portfolio for Period k, with

the portfolio constructed based on the information from Period 0 to the end of Period k− 1.

We now compare in Table 4 the performance of six High-SRI and Low-SRI portfolios when the

opportunity set is chosen through SRI meanings. In general, the standard RP portfolios, either

based on SD or CVaR preferences, have a better SR than the benchmark EW portfolio and simpli-

fied RP portfolios (IWPs). In addition, the Low-SRI portfolios show superior SR performance in

all periods following some type of crisis, such as Period 2 following the dot com crisis, Period 5 fol-

lowing the global financial crisis, and Period 9 which covers the COVID-19 period. This conjecture

also holds for Period 6 following events associated to the European sovereign debt crisis (second

bailout in March 2012 for Greece and rescue packages for Spain and Cyprus in June 2012).

The evolution of portfolios with SRI preferences suggests that an RP-SD type portfolio would

perform “best” between 2002 and 2008, followed by an RP −CV aRiid for the periods 2008-2016,

then followed again by an RP-SD portfolio for 2016-2018, and finally, by an RP −CV aRniid for

the last two periods between 2018-2020. Our analysis is ex post but it does highlight that portfolio

construction with different risk-measures may be superior in different periods. More sophisticated
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Table 4 Annualized Sharpe Ratios of High-SRI versus Low-SRI Portfolios Over Time

Period Portfolio High-SRI Low-SRI Period Portfolio High-SRI Low-SRI

Period 1 Period 6
01/01/2002 EW -0.3987 -0.8550 21/03/2014 EW 1.0067 1.1529
- RP-SD -0.2825 -0.7951 - RP-SD 1.2934 1.4828
21/04/2003 RP-CVaRiid

95% -0.3156 -0.8819 05/01/2016 RP-CVaRiid
95% 1.2870 1.4890

RP-CVaRniid
95% -0.3168 -0.8825 RP-CVaRniid

95% 1.2829 1.4867
IWP-SD -0.3463 -0.8067 IWP-SD 0.8769 1.0963
IWP-CVaRiid

95% -0.3377 -0.8000 IWP-CVaRiid
95% 0.8850 1.1035

Period 2 Period 7
22/04/2003 EW 2.2504 2.5359 06/01/2016 EW 0.7130 0.7027
- RP-SD 2.6018 2.8093 - RP-SD 0.9106 0.8228
05/10/2006 RP-CVaRiid

95% 2.5095 2.6900 19/10/2018 RP-CVaRiid
95% 0.9032 0.7988

RP-CVaRniid
95% 2.5069 2.6902 RP-CVaRniid

95% 0.9003 0.7991
IWP-SD 2.3251 2.6106 IWP-SD 0.6654 0.7869
IWP-CVaRiid

95% 2.3206 2.5970 IWP-CVaRiid
95% 0.6752 0.7969

Period 3 Period 8
06/10/2006 EW 0.8152 0.7364 20/10/2018 EW 0.3312 0.0275
- RP-SD 1.0088 0.6446 - RP-SD 0.5242 0.0942
06/10/2008 RP-CVaRiid

95% 0.9684 0.7299 02/01/2020 RP-CVaRiid
95% 0.5388 0.0984

RP-CVaRniid
95% 0.9651 0.7285 RP-CVaRniid

95% 0.5392 0.0968
IWP-SD 0.8148 0.6776 IWP-SD 0.3836 0.1973
IWP-CVaRiid

95% 0.8209 0.6808 IWP-CVaRiid
95% 0.3845 0.1924

Period 4 Period 9
07/10/2008 EW 0.2427 0.2302 03/01/2020 EW -0.5199 -0.4854
- RP-SD 0.2355 0.2302 - RP-SD -0.3142 -0.2961
03/08/2011 RP-CVaRiid

95% 0.2245 0.2435 31/12/2020 RP-CVaRiid
95% -0.3073 -0.2960

RP-CVaRniid
95% 0.2247 0.2424 RP-CVaRniid

95% -0.3063 -0.2955
IWP-SD 0.2292 0.2010 IWP-SD -0.4913 -0.3799
IWP-CVaRiid

95% 0.2294 0.1988 IWP-CVaRiid
95% -0.4780 -0.3815

Period 5
04/08/2011 EW 0.6673 0.7357
- RP-SD 0.7707 0.9316
20/03/2014 RP-CVaRiid

95% 0.7735 0.9486
RP-CVaRniid

95% 0.7740 0.9486
IWP-SD 0.7572 0.6682
IWP-CVaRiid

95% 0.7581 0.6759

Notes: Annualized Sharpe Ratios (SR) of High-SRI (top 100 ranked firms based on All Factors Score) vs Low-SRI (bottom
100 All Factors Score ranked firms) portfolios (within each period) – the “better” SR (High-SRI vs Low-SRI) is in bold and
the “best” portfolio (among the 12 portfolios in each period) is in bold and underlined. (Columns 1 and 5) Nine structural
break periods are identified with a Bai-Perron test (Bai and Perron 1998, 2003). (Columns 2 and 6) Six portfolios are
presented and compared (i.e. EW: Equal Weighted portfolios, RP-SD: Risk Parity (RP) portfolios based on Standard
Deviation (SD), RP-CVaRiid

95%: RP portfolios based on the i.i.d. Conditional Value-at-Risk (CVaR) estimator at 95%,
RP-CVaRniid

95% : RP portfolios based on the non-i.i.d. CVaR estimator at 95%, IWP-SD: Inverse Weighted Portfolios based on
SD, IWP-CVaRiid

95%: Inverse Weighted Portfolios (IWP) based on the i.i.d. CVaR estimator at 95%). (Columns 3 and 7)
Annualized SR based on SD of each portfolio with a High SRI score. (Columns 4 and 8) Annualized SR based on SD of each
portfolio with a Low SRI score.

risk measures and more robust estimators would benefit investors during difficult market conditions

while in normal market conditions standard deviation is preferable since by design it captures also

the positive tail of returns. It is also evident that in bull market periods such as Periods 2, 5, and

6, the low-SRI portfolio performs better, consistent with the literature presenting evidence that in

those times investors “forget” about SRI preferences. Hong and Kacperczyk (2009) demonstrated
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that low-SRI stocks are akin to counter-cyclical instruments, producing relatively better invest-

ment performance than comparable high-SRI stocks during low states of the economy. Period 9 is

more of an anomaly period associated with the Covid-19 pandemic, where the low SRI associated

preferences would produce the portfolios with smaller negative returns than high SRI portfolios.

5. Conclusions

The portfolio construction literature has considered various RB/RP formulations over the last

two decades. We provide a mathematical characterization of such long-only portfolios for general

risk preferences and we derive important multiple theoretical properties of RB/RP portfolios.

We showed that RP portfolios are less risky than the EW benchmark portfolio for a general

risk measure. In addition, we found that elliptically distributed asset returns (that include the

multivariate Gaussian and t-distributed cases) lead to RP and RB investment strategies that are

invariant with respect to a large class of risk measures.

Asymptotic normality for two popular RB portfolios (with variance and CVaR risk preferences)

are provided, which according to our knowledge, is the very first attempt in the literature. Further,

our statistical inferences introduce a novel CVaR estimator that is shown to perform very well

on (serial) dependent data, which is not surprising since the asymptotic distribution of our novel

estimator is found under some fairly general data dependent assumptions.

References

Ang, A. (2014). Asset management: A systematic approach to factor investing. Oxford University Press.

Asimit, A. V., Furman, E., Tang, Q., and Vernic, R. (2011). Asymptotics for risk capital allocations based

on conditional tail expectation. Insurance: Mathematics and Economics, 49(3):310–324.

Asimit, V., Peng, L., Wang, R., and Yu, A. (2019). An efficient approach to quantile capital allocation and

sensitivity analysis. Mathematical Finance, 29(4):1131–1156.

Bai, J. and Perron, P. (1998). Estimating and testing linear models with multiple structural changes.

Econometrica, 66:47–78.

26



REFERENCES REFERENCES

Bai, J. and Perron, P. (2003). Computation and analysis of multiple structural change models. Journal of

Applied Econometrics, 18:1–22.
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EC.1. Proofs

EC.1.1. Proof of Proposition 1

Theorem 8.28 (1) of McNeil et al. (2015) gives that αTX and ||αTΣα||Z1 +αTµ have the same

distribution, which immediately justifies (3) if ϕ is shift invariant.

The other case, when ϕ is translation invariant, is also true as long as τ = 1. The latter follows

from the fact that

ϕ(tY + tc) = tτϕ(Y + c) = tτ (ϕ(Y ) + c) and ϕ(tY + tc) =ϕ(tY ) + tc= tτϕ(Y ) + tc

hold for any t > 0 and c∈<, which in turn implies that τ = 1.

EC.1.2. Proof of Theorem 1

We first prove part a). Let F (x;λ) be the objective function in (8). The first step is to show that

the optimal solution in (8) exists and is an interior point of the feasible set. Now, for any x∈<d++

F (x;λ) =
1

τ
R

 1

d max
1≤k≤d

xk
x

dτ
(

max
1≤k≤d

xk

)τ
−λ

d∑
k=1

bk logxk (EC.1)

≥ δ∗dτ

τ

(
max

1≤k≤d
xk

)τ
−λ log

(
max

1≤k≤d
xk

)
,

since ϕ is homogeneous of order τ , where δ∗ > 0 that does not depend upon x and its existence is

guaranteed by (7). Since limt→∞ δt
τ −λ log t=∞ for any δ,λ, τ > 0, then (EC.1) implies that

F (x;λ)→∞, whenever max
1≤k≤d

xk→∞. (EC.2)

We now prove that (EC.2) holds on the boundary (of the feasibility set) regions away from infin-

ity. That is, let M > ε> 0; note that for any x∈<d++ such that min1≤k≤d xk ≤ ε and max1≤k≤d xk ≤
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M , there exists 0< b∗ ≤ 1 such that F (x;λ)≥−λb∗ log ε by using similar arguments as in (EC.1).

Thus,

F (x;λ)→∞, whenever min
1≤k≤d

xk ↓ 0 and max
1≤k≤d

xk ≤M for any finite M > 0. (EC.3)

Equations (EC.2) and (EC.3) imply that there exist an a> 0 and an ε∈ (0, a] such that

inf
x∈<d++

F (x;λ) = inf
x∈Ba,ε

F (x;λ), where Ba,ε := {x∈Ba : min
1≤k≤d

xk ≥ ε}

with Ba := {x∈<d++ : ||x|| ≤ a} and || · || being the Euclidean distance. Since Ba,ε is a compact set,

the global minimum of F (·;λ) on <d++ (denoted as x∗(λ,b)) is an interior point of the feasibility

set for any given λ > 0. Thus, (8) must have an optimal solution that is an interior point of the

feasible set.

The objective function in (8) is strictly convex in x over the convex cone <d++ for any given

λ > 0, since the logarithmic barrier term (−λ
∑d

k=1 bk logxk) has the same property and the fact

that ϕ is a convex risk measure. Thus, (8) admits a unique solution.

It only remains to prove for part a) the relationship between the unique solution in (8) for various

penalty parameters λ. Note that

F (x;λ) = λF
(
λ−1/τx; 1

)
− λ
τ

logλ, for any x∈<d++ and λ> 0,

and any given b ∈ ∆d ∩ <d++, since ϕ is a homogeneous risk measure of order τ , and in turn,

x∗(λ,b) = λ1/τx∗(1,b) for any λ> 0 and b∈∆d ∩<d++. Further,

F (tx;λ) = F (x;λ)tτ +λ
(
tτ − 1

) d∑
k=1

bk logxk−λ log t, for any x∈<d++ and λ, t > 0,

and any given b∈∆d∩<d++, since ϕ is a homogeneous risk measure of order τ , and in turn, F (;λ)

is differentiable at x∗(λ,b) as R is differentiable at x∗(1,b) and x∗(λ,b) = λ1/τx∗(1,b).

Now, the first-order conditions in (8) and the homogeneity of ϕ imply that RCk is also homoge-

neous of order τ , and thus,

RCk
(
tx∗(λ,b)

)
= bkR

(
tx∗(λ,b)

)
, for all k ∈ {1,2, . . . , d} and any λ, t > 0, (EC.4)
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and any b ∈ ∆d ∩ <d++. Therefore, α∗(b) = x∗(λ,b)/1Tx∗(λ,b) ∈ RB(b) since α∗(b) ∈ ∆d by

construction.

We finish the proof of part a) by noting that

α∗(b) =
x∗(λ,b)

1Tx∗(λ,b)
=

x∗(1,b)

1Tx∗(1,b)
and x∗(λ∗,b) =

(
λ∗
)1/τ

x∗(1,b) =
x∗(1,b)

1Tx∗(1,b)
,

since x∗(λ,b) = λ1/τx∗(1,b).

We now prove part b). As before, we initially show that (9) admits a unique solution that is an

interior point.

Due to the homogeneity of R, the objective function in (9) is unbounded in the neighbourhood of

infinity. Further, for any M > ε> 0 and ε sufficiently small, any x∈<d++ such that min1≤k≤d xk ≤ ε

and max1≤k≤d xk ≤M is not feasible in (9), and in turn, the optimal solutions of (9) are interior

points of the feasibility set.

We now show the uniqueness in (9). The homogeneity property of the objective function in (9)

implies that any optimal solution of (9) satisfies

d∑
k=1

bk logx∗∗k (c,b) = c. (EC.5)

One could show (EC.5) by assuming that (EC.5) does not hold, which implies that (1− ε)x∗∗(c,b)

is feasible for any ε > 0 sufficiently small; further,

R
(
(1− ε)x∗∗(c,b)

)
= (1− ε)τR

(
x∗∗(c,b)

)
<R

(
x∗∗(c,b)

)
due to the homogeneity of ϕ and the fact R

(
x∗∗k (c,b)

)
> 0 (due to (7)), which contradicts our

assumption and concludes (EC.5). The optimal solution in (9) is unique, since the inequality

constraint in (9) is strictly concave due to (EC.5). One could show that by assuming a case in

which there are two optimal solutions, x∗∗(c,b) and y∗∗(c,b). The latter implies that

z∗∗(c,b) := γx∗∗(c,b) + (1− γ)y∗∗(c,b)

is another optimal solution of (9) for any 0<γ < 1, since ϕ is a convex risk measure. Moreover,

d∑
k=1

bk log z∗∗k <γ
d∑
k=1

bk logx∗∗k + (1− γ)
d∑
k=1

bk log y∗∗k = c,
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since the log function is strictly concave, which in turn contradicts that z∗∗(c,b) must satisfy

(EC.5). Therefore, (9) admits a unique optimal solution that is an interior point of the feasibility

set.

It only remains to prove for part b) the relationship between the unique solution in (9) for various

penalty parameters c. We first show that

x∗∗(c,b) = ec−1x∗∗(1,b) for any given b∈∆d. (EC.6)

Again, we show this claim by contradiction and assume that x∗∗(1,b) solves (9) when c= 1, but

there exists c0 6= 1 such that ec−1x∗∗(1,b) does not solve (9) whenever c = c0. Therefore, there

exists y∈<d++ such that

R(y)<R
(
ec0−1x∗∗(1,b)

)
and

d∑
k=1

bk log yk = c0.

Clearly, the above imply that e1−c0y is feasible in (9) when c= 1, and

R
(
e1−c0y

)
= e(1−c0)τR

(
y
)
< e(1−c0)τR

(
ec0−1x∗∗(1,b)

)
=R

(
x∗∗(1,b)

)
by keeping in mind that ϕ is a homogeneous risk measure of order τ , which in turn contradicts

our assumption and concludes (EC.6). Now, (EC.6), the homogeneity of ϕ and the fact that R

is differentiable at x∗∗(1,b) imply that R(α) is differentiable at x∗∗(c;b). All other relationships

among various optimal solutions stated in part b) could be easily shown as in part a). Finally, the

Slater’s condition is clearly satisfied in (9), and therefore, the strong duality holds in (9). The proof

of part b) is fully argued.

We show the claims from part c). Note that α∗(b) =α∗∗(b), which is true since

α∗(b) = x∗(λ,b)/1Tx∗(λ,b), α∗∗(b) = x∗∗(c,b)/1Tx∗∗(c,b),

and the fact that there exists γ∗ > 0 such that x∗∗(c,b) = γ∗x∗(λ,b) for all λ > 0 and any c ∈ <.

The latter is a direct consequence of the fact that solving the primal optimal in (9) is the same

as solving (8) with λ= γ∗/τ , where γ∗ is the dual optimal in (9) corresponding to the logarithmic

constraint
∑d

k=1 bk logxk ≥ c.
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The left-hand side inequality in (10) is trivial, and thus, we show now the right-hand side

inequality in (10). The proof of part a) allows us to say that α∗(b) solves

min
x∈∆d∩<d++

1

τ
R(x)−λ∗

d∑
k=1

bk logxk, (EC.7)

which implies that

1

τ

(
R
(
α∗(b)

)
−R(b)

)
≤ λ∗

d∑
k=1

bk log

(
α∗k(b)

bk

)
=−λ∗×DKL

(
b||α∗(b)

)
≤ 0

where DKL

(
b||α∗(b)

)
is the Kullback-Leibler divergence between the probability distributions

induced by (the probability vectors) b and α∗(b). Therefore, R
(
α∗(b)

)
≤R(b) for any b.

The very last step is to show R
(
α∗(b)

)
≤R

(
1
d
1
)
. From (EC.7) we get that

1

τ

(
R
(
α∗(b)

)
−R

(
1

d
1

))
≤ λ∗

(
d∑
k=1

bk logα∗k(b)−
d∑
k=1

bk log

(
1

d

))

≤ λ∗
(

max
1T x=1

d∑
k=1

bk logxk + logd

)

= λ∗

(
d∑
k=1

bk log bk + logd

)

≤ λ∗
(

max
1T x=1

d∑
k=1

xk logxk + logd

)

= λ∗

(
d∑
k=1

1

d
log

(
1

d

)
+ logd

)

= 0,

which implies that R
(
α∗(b)

)
≤R

(
1
d
1
)
, and in turn, it concludes part c).

Finally, we show the claims from part d). Relation (11) follows from (EC.7), where as before,

1

τ

(
R
(
α∗(b)

)
−R

(
α̃
))
≤ λ∗

d∑
k=1

bk log

(
α∗k(b)

α̃k

)
.

The left hand side is non-negative since α̃ is portfolio minimizer under ϕ risk preferences, which

implies (11). Similarly, one may show (12) by noting

1

τ

(
R
(
α∗(b)

)
−R

(
α
))
≤ λ∗

d∑
k=1

bk log

(
α∗k(b)

αk

)
for any α∈∆d ∩<d++,

which is negative if min1≤k≤dαk ≤ ε for a sufficiently small ε. This completes the proof of Theorem 1.
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EC.1.3. Proof of Theorem 3

For simplicity, assume hi = h for all i∈ {1, . . . , d}. Let f1,1+r(x, x̄) denote the joint density function

of
(
Xt,Xt+r

)
. Put s, s̄,y, ȳ,x∈<d, Zt(x, θ) =

(
Zt,1(x, θ), . . . ,Zt,d+1(x, θ)

)T
,


Zt,i(x, θ) =

1

1− p

∫
I
(
xTs> θ(x)

)
si

d∏
j=1

h−1
j k

(
Xt,j − sj

hj

)
ds− bi

xi
for all i= 1, . . . , d,

Zt,d+1(x, θ) = 1− 1

1− p

∫
I(xTs> θ(x))

d∏
j=1

h−1
j k

(
Xt,j − sj

hj

)
ds.

Then, (15) becomes

1

n

n∑
t=1

Zt(x̂cvar, θ̂cvar) = 0. (EC.8)

Define

γi(s;x, θ) =E
{(
Zt,i(x, θ)− Z̄t,i(x, θ)

)(
Zt+s,i(x, θ)− Z̄t+s,i(x, θ)

)}
−
{
E
(
Zt,i(x, θ)− Z̄t,i(x, θ)

)}2

for i= 1, · · · , d+ 1 and nonnegative integer s. Write

Zt,d+1(x, θ)− Z̄t,d+1(x, θ) =
1

1− p

∫ { d∏
j=1

k(sj)

}{
I
(
xTXt +hxTs> θ(x)

)
− I
(
xTXt > θ(x)

)}
ds,

Zt,i(x, θ)− Z̄t,i(x, θ) =
1

1− p

∫ { d∏
j=1

k(sj)

}{
I
(
xTXt +hxTs> θ(x)

)
sih

+Xt,iI
(
xTXt +hxTs> θ(x)

)
−Xt,iI

(
xTXt > θ(x)

)}
ds

for i= 1, · · · , d. Then,

E{Zt,i(x, θ)− Z̄t,i(x, θ)}=O(h2), E{Zt,i(x, θ)− Z̄t,i(x, θ)}2 =O(h2) (EC.9)

hold uniformly in
{(
xT , θ

)T
: ||x−x0||+ |θ− θ0| ≤ n−1/3

}
for all i∈ {1, . . . , d+ 1}, implying that

|γi(0;x, θ)|=O(h2) (EC.10)
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uniformly in
{(
xT , θ

)T
: ||x−x0||+ |θ− θ0| ≤ n−1/3

}
for all i ∈ {1, . . . , d+ 1}. Here, O(h2) means

less than a constant times h2. Using C2), we have that for any r≥ 1,

E

{∫
I
(
xTs> θ(x)

) d∏
j=1

h−1k

(
Xt,j − sj

h

)
ds×

∫
I
(
xTs> θ(x)

) d∏
j=1

h−1k

(
Xt+r,j − sj

h

)
ds

}

=

∫
I
(
xTs> θ(x)

)
I
(
xT s̄> θ(x)

){ d∏
j=1

h−1k

(
yj − sj
h

)}{ d∏
j=1

h−1k(
ȳj − s̄j
h

)

}

×f1,1+r

(
y, ȳ

)
dsds̄dydȳ

=

∫
I
(
xTs> θ(x)

)
I
(
xT s̄> θ(x)

){ d∏
j=1

k(yj)

}{
d∏
j=1

k(ȳj)

}
f1,1+r(s+hy, s̄+hȳ)dydȳdsds̄

=

∫
I
(
xTs> θ(x)

)
I
(
xT s̄> θ(x)

){ d∏
j=1

k(yj)

}{
d∏
j=1

k(ȳj)

}

×

{
f1,1+r(s, s̄) +h

d∑
j=1

∂

∂sj
f1,1+r(s, s̄)yj +h

d∑
j=1

∂

∂s̄j
f1,1+r(s, s̄)ȳj +O(h2)

}
dydȳdsds̄

=

∫
I
(
xTs> θ(x)

)
I
(
xT s̄> θ(x)

){ d∏
j=1

k(yj)

}{
d∏
j=1

k(ȳj)

}
f1,1+r(s, s̄)dsds̄+O(h2)

holds uniformly in
{

(xT , θ)T : ||x−x0||+ |θ− θ0| ≤ n−1/3
}

. Similarly, we can show that

|γi(s;x, θ)|=O(h2) (EC.11)

holds uniformly in positive integer s and
{

(xT , θ)T : ||x−x0||+ |θ−θ0| ≤ n−1/3
}

for all i∈ {1, · · · , d+

1}. Using C1) and the Davydov inequality, we have

|γi(s;x, θ)|=O
(
{α(s)}1−2/(2+δ)

)
(EC.12)

uniformly in nonnegative integer s and
{

(xT , θ)T : ||x−x0||+ |θ−θ0| ≤ n−1/3
}

for all i∈ {1, · · · , d+

1}. Hence, it follows from (EC.10), (EC.11), and (EC.12) that for any given ξ ∈ (1/2,1),

|γi(s;x, θ)|=O
(
h2ξ{α(s)}1−ξ−2(1−ξ)/(2+δ)

)
(EC.13)

uniformly in nonnegative integer s and
{

(xT , θ)T : ||x−x0||+ |θ−θ0| ≤ n−1/3
}

for all i∈ {1, · · · , d+

1}. It follows from (EC.9), (EC.10), (EC.13), and C1) that

E
{

1√
n

∑n

t=1

(
Zt,i(x, θ)− Z̄t,i(x, θ)

)}2

= γi(0;x, θ) + 2
∑n−1

m=1(1−m/n)γi(m;x, θ) +n
{
E
(
Z1,i(x, θ)− Z̄1,i(x, θ)

)}2

= O(h2) +h2ξO
(∑n−1

m=1{α(m)}1−ξ−2(1−ξ)/(2+δ)
)

+O(nh4)

= o(1)
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uniformly in
{

(xT , θ)T : ||x−x0||+ |θ− θ0| ≤ n−1/3
}

for all i= 1, · · · , d+ 1, implying that

1√
n

n∑
t=1

{
Zt(x, θ)− Z̄t(x, θ)

}
= op(1) as n→∞ (EC.14)

uniformly in
{

(xT , θ)T : ||x−x0||+ |θ− θ0| ≤ n−1/3
}

.

For any constant λ∈<d+1\{0}, it follows from C1) that
{
λT Z̄t

(
x0, θ0

)}
is a strictly stationary

α-mixing sequence with αλT Z̄(m) =O(am) as m→∞. Hence, using the Central Limit Theorem

for α-mixing sequence (e.g., see Rosenblatt (1956)), (17) in Theorem 3 holds and

1√
n

n∑
t=1

λT Z̄t(x0, θ0)
w→N

(
0,λT Σ̄λ

)
as n→∞

Using the Cramér-Wold device, we have that

1√
n

n∑
t=1

Z̄t(x0, θ0)
w→N(0, Σ̄) as n→∞. (EC.15)

Decomposing

1

n

n∑
t=1

{
Z̄t(x, θ)− Z̄t(x0, θ0)−Γ(x, θ) + Γ(x0, θ0)

}
=

1

n

n∑
t=1

{
Z̄t(x, θ)− Z̄t(x0, θ)−Γ(x, θ) + Γ(x0, θ)

}
+

1

n

n∑
t=1

{
Z̄t(x0, θ)− Z̄t(x0, θ0)−Γ(x0, θ) + Γ(x0, θ0)

}
:= I1 + I2,

similar to the proofs of Lemmas 1 and 2 in Chen (2008), one can show that

I1 = op
(
||x−x0||+ |θ− θ0|

)
and I2 = op

(
||x−x0||+ |θ− θ0|

)
as n→∞

uniformly in
{

(xT , θ)T : ||x−x0||+ |θ− θ0| ≤ n−1/3
}

. That is,

1

n

n∑
t=1

{
Z̄t(x, θ)− Z̄t(x0, θ0)−Γ(x, θ) + Γ(x0, θ0)

}
= op(||x−x0||+ |θ− θ0|) as n→∞ (EC.16)
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uniformly in
{

(xT , θ)T : ||x− x0||+ |θ − θ0| ≤ n−1/3
}
. Therefore, it follows from (EC.8)–(EC.16)

that

0 = 1√
n

n∑
t=1

Zt(x̂cvar, θ̂cvar)

= 1√
n

n∑
t=1

Z̄t(x̂cvar, θ̂cvar) + op(1)

= 1√
n

n∑
t=1

Z̄t(x0, θ0) +
√
n

1

n

n∑
t=1

{
Z̄t(x̂cvar, θ̂cvar)− Z̄t(x0, θ0)

}
+ op(1)

= 1√
n

n∑
t=1

Z̄t(x0, θ0) +
√
n
{

Γ̄(x̂cvar, θ̂cvar)− Γ̄(x0, θ0)
}

+ op(1)

= 1√
n

n∑
t=1

Z̄t(x0, θ0) +
√
n ˙̄Γ(x0, θ0)

(
x̂Tcvar−xT0 , θ̂cvar− θ0

)T
+ op(1),

which implies (18). Equation (19) follows from (18) and the fact that

√
n(α̂cvar−α0) =

√
n
x̂cvar−x0

1Tx0

− x0

(1Tx0)2
1T
√
n(x̂cvar−x0) + op(1).

EC.1.4. Proof of Theorem 4

It follows from the same arguments after (EC.14) in the proof of Theorem 3, and thus, no specific

derivations are further required.

EC.2. Further Discussions about Corollary 1

The idealized elliptical assumption in Corollary 1 is a good illustration of the inherit properties

of RP portfolios. Two examples are provided in the next section and their implementations are

outlined in Appendix EC.2.2.

EC.2.1. Examples for Corollary 1

Example EC.1. Let X = (X1,X2,X3) be a trivariate normally distributed random vector with

correlation coefficients corr(X1,X2) = 0.75, corr(X1,X3) = 0.5 and corr(X2,X3) = φ. We consider

φ ∈ [−0.1978,0.9478] so that the correlation matrix is positive definite. The standard deviations

and expected returns are assumed to be as follows:

i) SD(X1) = SD(X2) = SD(X3) = 1 and E(X1) =E(X2) =E(X3) = 1;

ii) SD(X1) = SD(X2) = 1, E(X1) =E(X2) = 1, SD(X3) = 2 and E(X3) = 2.
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We then compute (for details, see Appendix EC.2.2) the RP-SD and RP-CVaR95% portfolios in

Figure EC.1 for various values of φ.

First, we observe that RP portfolios are not too sensitive to the correlation matrix even if RP

targets are based on SD and CVaR95%, which are non-tail and tail risk measures, respectively.

Thus, RP investment strategies might be more robust to out-of-sample portfolio performance.

Second, we note in the left plots that equal variances does not imply RP portfolios to be equally

weighted, even though the individual risk positions are identical. This occurs in spite of the corre-

lation matrix having a wide range of values.

Third, the left plots show that the correlation matrix has a slightly more impact on RP-SD

portfolios than to RP-CVaR95% portfolios, which is a consequence of how risk preferences are

ordered for non-tail risk measures (SD) vs tail risk measures (CVaR95%); this is also explained by

a weak strength of dependence of the Gaussian dependence that implies less variability for tail

risk measures. Further, changing the individual risk position has a similar effect on RP-SD and

RP-CVaR95% portfolios; e.g., top plots in Figure EC.1 show that the riskiest asset (Asset 3) tends

to have a lower proportion in RP-SD in the right-hand-side, and in turn, more is invested in Asset 2

than in Asset 1, which shows that RP portfolios have also a diversification effect besides its equal

risk contribution mechanism.

Note that RP-SD and RP-CVaR95% are not identical in Example EC.2, which does not contradict

Corollary 1 a) since SD/var are shift invariant risk measures while CVaR95% does not have such a

property. If we would have replaced CVaR95% by CVaR95%−E, then the two RP portfolios would

have been identical since Corollary 1 a) holds in this case.

Recall that Corollary 1 does not hold if X is not elliptically distributed. This could be seen in

Example EC.2 below, which shows that one would need to be cautious if parametric assumptions

are imposed in RB/RP modeling.

Example EC.2. Assume that d = 2 and X2 = X3
1 almost surely and X1 ∼ N(0,1), i.e. X1 and

X2 are comonotonic; by definition, X1 and X2 are comonotonic if there exists a non-decreasing

function f such that Pr(X2 = f(X1)) = 1. By construction, (X1,X2) is not elliptically distributed.
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Figure EC.1 Radar plots for RP-SD (top) and RP-CVaR95% (bottom) for settings i) (left) and setting ii) (right)

as defined in Example EC.1 for various values of φ.

If the budgeting target vector is b = (b,1− b) with 0 < b < 1, then the var/SD RB portfolio,

denoted as α∗SD(b), is the solution of x2
1 + 3x1x2 = b

(
x2

1 + 6x1x2 + 15x2
2

)
such that x ∈∆2 ∈<2

++,

since Cov(X1,X2) = 3 and var(X2) = 15. Thus,

α∗SD1 (b) =
24b+ 3−

√
−24b2 + 24b+ 9

20b+ 4
and α∗SD2 (b) = 1−α∗SD1 (b), for any 0< b< 1.

Particularly, the RP-SD portfolio is achieved with α∗SD1 (1/2,1/2) = 0.7948.
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Recall that ϕ∈ {VaR,CVaR} are comonotonic additive risk measures, i.e. ϕ(X1 +X2) =ϕ(X1)+

ϕ(X2) for any comonotonic risks X1 and X2; for details, see Dhaene et al. (2006). Thus, the

RB-CVaR95% portfolio, denoted as α∗CVaR95%(b), is the solution of

x1CVaR95%(X1) = b
(
x1CVaR95%(X1) +x2CVaR95%(X2)

)
such that x∈∆2 ∈<2

++,

since CVaR is a comonotonic additive risk measure. Particularly, the RP-CVaR95% portfolio is

achieved with α
∗CVaR95%
1 (1/2,1/2) = 0.8247, since CVaR95%(X1) =ψ

(
VaR95%(X1)

)
and

CVaR95%(X2) =
1

0.05

∫ 1

0.95

(
VaRs(X1)

)3
ds=ψ

(
VaR95%(X1)

)(
2 +

(
VaR95%(X1)

)2
)
,

where ψ(·) := 1
0.05
√

2π
e−

·2
2 on <. Similarly, one may find that the RP-VaR95% portfolio, denoted as

α∗VaR95%(1/2,1/2), is achieved with α
∗VaR95%
1 (1/2,1/2) = 0.7301.

Since E[X1] = E[X2] = 0, then α∗CVaR95%(1/2,1/2) and α∗VaR95%(1/2,1/2) are RP portfolios if

the risk preferences are also ordered by CVaR95%−E and VaR95%−E, respectively. Note that X2

is a non-linear function of X1, and for this reason, SD does not capture the perfect dependence

between the two assets (corr(X1,X2) = 0.7746) though the RP-SD weights are closer to those

of RP-CVaR95% than RP-VaR95%. Further, CVaR95% is tail sensitive, and the strong associations

between the assets (due to comonotonic (X1,X2)) is better captured by CVaR95% (than VaR95%)

that invests 82.47% (instead of 73.01%) in the less risky X1; similarly, RP-SD balances the risk

better than RP-VaR95% by partially capturing the strong associations as corr(X1,X2) = 0.7746.

These show how different RP-SD is from the RP portfolios based on CVaR95%−E and VaR95%−E

(which are two shift invariant risk measures) and thus, Corollary 1 a) does not hold since the

elliptical assumption is not valid.

EC.2.2. Implementations for Example EC.1

The implementations for RP-SD and RP-CVaR95% computations in Example EC.1 are now pro-

vided. These implementations rely on the formulation in (8).
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Solving for RP-SD portfolios requires first finding

y∗ = arg min
y∈<d++

yTΣy−
d∑
k=1

log yk, (EC.17)

and in turn, the RP-SD portfolio is x∗ = y∗/1Ty∗.

By keeping (4) in mind, solving for RP-CVaR95% portfolios requires first finding

y∗∗ = arg min
y∈<d++

δ
√

yTΣy+
d∑
k=1

ykE[Xk]−
d∑
k=1

log yk, (EC.18)

where δ = CVaR95%(Z1) = 2.06271 and Z1 being a standard normal distribution. Then, the RP-

CVaR95% portfolio is x∗∗ = y∗∗/1Ty∗∗.

Note that (EC.17) and (EC.18) are convex instances that could be solved by any general purpose

convex solver, though both instances are SOCP representable by recasting −
∑d

k=1 log yk as a set

of hyperbolic constraints; e.g., see Mausser and Romanko (2018). Note that we employ MATLAB

(Optimization Toolbox) Quadratic programming ‘quadprog’ for solving (EC.17) and SOCP solver

‘coneprog’ for solving (EC.18).

EC.3. Technical Details regarding Note 2 ii)

An extended discussion to Note 2 ii) is now provided. Recall that Theorem 1 is based on condition

(7), and its rationale is explained in Note 2 ii), where it is highlighted that the optimal solutions

may be on the boundary of the feasibility set (that is, (0,∞)d−d0×∞d0 with 0<d0 ≤ d) with a −∞

optimal objective value. Clearly, (7) ensures that the latter does not happen, which is pointed out

in Bellini et al. (2021) as well, though a slightly different equivalent condition to (7) is considered.

Now, if (7) is not satisfied then one may approximate RB solutions, which is the main aim of

this discussion. The technical details are provided in Theorem EC.1, which is an extension of

Theorem 1, and its proof is skipped because the proofs are quite similar.

Theorem EC.1. Let b∈∆d∩<d++, and ϕ be a convex, homogeneous of order τ ≥ 1 risk measure.

Further, assume that there exists M < 0 such that

min
0<x≤ 1

d1
R(x)−M

d∑
k=1

xτk > 0. (EC.19)
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a) For any given λ> 0, the following problem

min
x∈<d++

1

τ

(
R(x)−M

d∑
k=1

xτk

)
−λ

d∑
k=1

bk logxk (EC.20)

admits a unique solution, denoted as x∗(λ,b,M), that is an interior point of <d++. If R(α) is

differentiable at x∗(1,M), then α∗(b,M) = x∗(λ,b,M)/1Tx∗(λ,b,M) satisfies

RCk (α) = bkϕ
(
αTX

)
+ εk(M), εk(M) :=M

((
α∗k(M)

)τ − bk d∑
l=1

(
α∗l (M)

)τ)
(EC.21)

for all k ∈ {1,2, . . . , d}, where RCk(α) is given in (1). Moreover,

α∗(b,M) = x∗
(
λ∗(M),b,M

)
=
(
λ∗(M)

)1/τ
x∗(1,b,M), where λ∗(M) =

(
1Tx∗(1,b,M)

)−τ
.

b) For any given c∈<, the following problem

min
x∈<d++

R(x)−M
d∑
k=1

xτk such that
d∑
k=1

bk logxk ≥ c with c∈< (EC.22)

admits a unique solution, denoted as x∗∗(c,b,M), that is an interior point of the feasibility set.

If R(α) is differentiable at x∗∗(1,b,M), then α∗∗(b,M) satisfies (EC.21), where α∗∗(b,M) =

x∗∗(c,b,M)/1Tx∗∗(c,b,M). Moreover,

α∗∗(b,M) = x∗∗
(
c∗(M),b,M

)
= ec

∗(M)−1x∗∗(1,b,M), where c∗(M) = 1− log
(
1Tx∗∗(1,b,M)

)
.

Furthermore, strong duality holds in (EC.22).

c) For any b, we have that α∗(b,M) =α∗∗(b,M) and

min
x∈∆d∩<d++

R(x)≤R
(
α∗(b,M)

)
≤R(b) +M

(
d∑
k=1

(
α∗k(M)

)τ − d∑
k=1

bτk

)
. (EC.23)

If τ = 1, then R
(
α∗(b,M)

)
≤R

(
1
d
1
)

for any b.

It should be noted that
∑d

k=1 εk(M) = 0 for any M and τ , which justifies why α∗(b,M) and

α∗∗(b,M) are RB approximations. As expected, Theorem EC.1 recovers the results in Theorem 1 if

M = 0. In fact, most of the RB properties shown in Theorem 1 are shared by the RB approximations

in Theorem EC.1. Note that the right-hand side of (EC.23) is the same as its counterpart in (10)

for any M when τ = 1, since
∑d

k=1α
∗
k(M)−

∑d

k=1 bk = 0.
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One may wonder how to find the “‘best” possible M , for which a practical solution is available.

Clearly, if there exists M0 < 0 such that (EC.19) is satisfied, then (EC.19) holds for any M <M0.

At the same time, there is no theoretical justification to conclude that
(
ε1(M), . . . , εd(M)

)
becomes

closer (in any distance choice) to 0 if M takes smaller values, though this is what would be expected.

Numerical solutions would be needed to find the “‘best” possible penalty parameter M , and a

small numerical example is provided to illustrate our point.

Example EC.3. Let (X1,X2) be a synthetic two-asset portfolio such that each asset may take

one of the m= 23 values from s= {−20,−19, . . . ,0,1,2} with probabilities

Pr
(
X1 = si1 ,X2 = si1

)
=m−2, for all 1≤ i1 ≤m

Pr
(
X1 = si1 ,X2 = si2

)
=m−2−m−2.2, for all 1≤ i1 < i2 ≤m

Pr
(
X1 = si1 ,X2 = si2

)
=m−2 +m−2.2, for all 1≤ i2 < i1 ≤m.

Thus, there are n = 232 = 529 states of the world. We apply a SOCP formulation similar to the

one in Mausser and Romanko (2018) to evaluate RP-CVaRiid
0.9 portfolios based on Theorem EC.1,

i.e., (EC.22) with c= 0. Our results are showcased in Figure EC.2.
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Figure EC.2 The l1 distance |ε1(M)|+ |ε2(M)| of SOCP solutions of (EC.22) (as explained in Example EC.3)

for various values of M .
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Note that condition (7) is not satisfied, since the minimal objective value of that Linear Pro-

gramming (LP) instance is −0.94, which is signified by the blue dashed vertical line in Figure EC.2.

Some simple LP implementations show that the largest negative M such that condition (EC.19)

holds is achieved when M∗
0 = −1.10, which is signified by the green dashed vertical line in Fig-

ure EC.2. We then evaluate the SOCP solutions of (EC.22) for various values of M ≤M∗
0 , and

display the l1 distance |ε1(M)|+ |ε2(M)| in Figure EC.2. We empirically find that M∗ =−1.71 is

the “best” possible choice for M , which is signified by the red dotted vertical line in Figure EC.2.

This is only a simple example for the rule of thumb we recommend using in the extreme case

where (7) is not satisfied, and solving of either (8) or (9) may lead to optimal solutions in the

neighbourhood of infinity. The latter is not the case in this simple example, and our example could

be viewed as a proof of concept for Theorem EC.1.

EC.4. Simulation Study

A simulation study for Theorem 3 is provided in this section by assuming first the case of i.i.d.

data (in Figure EC.3) and then considering strictly stationary α-mixing data (in Figure EC.4).

The main aim is to compare the performance of the two CVaR95% estimators, R̂cvar and R̂empcvar.

Figure EC.3 compares the weights of assets between the two portfolios and EC.4 focuses on the

portfolio risks.

We first generate m = 100 i.i.d. samples of stock returns of size n = 500 from a d-dimensional

Gaussian distribution, and also from a multivariate t-distribution with 3 degrees of freedom, with

zero mean vectors and a randomly generated covariance matrix. The first set of estimates relies on

our novel CVaR estimator (R̂cvar) to compute RP −CVaRniid
95% portfolios. Specifically, we compute

RP−CVaRniid
95% portfolio weights, α̂∗(s) with 1≤ s≤m, for each sample of stock returns of size n; the

second set of estimates relies on the standard CVaR estimator (R̂empcvar) to compute RP −CVaRiid
95%

weights, ˆ̂α∗(s) with 1≤ s≤m. We then compute l
(s)
1 =

∑d

k=1 |α̂
∗(s)
k − ˆ̂α

∗(s)
k |, which is the l1 distance

between the non-i.i.d. and i.i.d. vector estimates of the two sets of weights.
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Figure EC.3 The boxplots for various number of assets d of the l1 distances between the RP-CVaRiid
95% and

RP-CVaRniid
95% estimates (i.e. the weights of assets in the portfolio) based on m = 100 samples of

size n = 500 from the d-dimensional multivariate Gaussian distribution (left) and multivariate t-

distribution with 3 degrees of freedom (right). Asset returns have zero mean vectors and randomly

generated covariance matrices.

As expected, Figure EC.3 shows very few outliers for lighter tailed distribution (Gaussian

returns). The l1 distance increases as the number of assets increases, but the errors are very small.

Note that the increase in the l1 distances is reaching a plateau with the increase in the number of

assets for the distribution with a heavier tail (see the right-hand side plot). This is explained by the

fact that CVaR is a tail risk measure that is more sensitive in risk aggregation when the likelihood

of concomitant extreme events is reduced (Asimit et al. 2011); recall that multivariate Gaussian

distributions exhibit tail independence, while multivariate t-distributions exhibit tail dependence

for which there is a significant likelihood of observing concomitant extreme events. This explains

why the median l1 distance increases by almost 6 times for Gaussian returns and 4 times for the

t-distributed case when the number of assets increases by 3 times (from 20 to 60 assets).

In a nutshell, Figure EC.3 shows that the two estimators (R̂cvar and R̂empcvar) are not significantly

different for i.i.d. data, which could be seen by comparing the RP-CVaR95% weights. We next

show that the two estimators lead to similar CVaR95% estimates for strictly stationary α-mixing

data, though R̂cvar is shown to be slightly more advantageous than the standard estimator (R̂empcvar).

Note that we do not construct portfolios in the second part, and Figure EC.4 is aimed to better



ec18 e-companion to Asimit, Peng, Tunaru and Zhou: Constructing Risk Parity

understand the difference between the two CVaR estimators by comparing them to the “true”

CVaR value.

The second set of simulations is for strictly stationary α-mixing data that are non-i.i.d. data.

Specifically, we generate m= 100 samples of size n= 500 from a multivariate normal distribution

with zero mean vectors and certain covariance matrix so that the resulting data are strictly sta-

tionary α-mixing. That is, we assume d= 1 and X= (X1, . . . ,Xn)∼MVN(0,Σ(ρ)) with the (i, j)th

entry of Σ given by Σij = ρ|i−j| for all 1≤ i, j ≤ n and −1< ρ < 1. Therefore, for each sample of

size n, we estimate CVaR95% via R̂cvar and R̂empcvar, denoted as β̂(s) and ˆ̂β(s), respectively for all

1≤ s≤m. We then compute the MSE ratio and the variance ratio between the two estimators as

follows:

MSE( ˆ̂β||β̂) =

m∑
s=1

(
ˆ̂β(s)−β

)2

m∑
s=1

(
β̂(s)−β

)2
and var( ˆ̂β||β̂) =

var
( ˆ̂β∗
)

var
(
β̂∗
) , (EC.24)

where β is the true value of CVaR95%(X) = 2.06271 that is computed as in Example EC.1.
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Figure EC.4 The boxplots for the MSE ratios (left) and Variance ratios (right) of portfolio risks CVaR95% via

R̂cvar and R̂emp
cvar with the true value of CVaR95%(X) = 2.06271 (based on 50 replications of m= 100

samples of size n= 500 that are strictly stationary α-mixing). Boxplots are shown for various serial

dependence parameter values ρ.
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Recall that MSE/variance ratios greater than 1 in Figure EC.4 mean that our novel estimator

R̂cvar shows better performance than the standard estimator R̂empcvar. Figure EC.4 suggests that

R̂cvar is consistently superior to R̂empcvar.

EC.5. Data and Computational Details

Here we describe the data behind the SRI factors analyzed in this paper and how we identify the

timestamps of the structural breaks for the time series of stock returns over our study period. In

addition, we provide some clarifications on the computational side of portfolio construction.

EC.5.1. Data Description of SRI Factors

We describe the bespoke dataset that is used across our data analysis, which is the same as the

dataset in Hallerbach et al. (2004). According to our knowledge, Hallerbach et al. (2004) is the

earliest reference showing how to build an investment portfolio with investment preferences ordered

by a set of attributes that characterize the societal effects of that business.

The raw dataset came from Triodos Bank, one of the first green banks, and it contains SRI

scores for a set of companies constructed from the questionnaires gathered by the SiRi research

group in year 2000. In our paper, we focus on 11 SRI factor variables: Business Ethics, Community,

Corporate Governance, Customer, Contract Relations, Labor Rights, Labor Care, Environment

Policies and Programmes, Environment Activities, Contractors, and Sin Activities. Each SRI factor

variable is constructed as an averaging index, while the aggregate score (denoted as AFS) combines

all SRI factors variables based on equal weighting. The dataset consists of 590 firms that are SRI

ordered by AFS, but some companies were delisted during the 20-year period. Specifically, we have

an opportunity set consisting of 408 firms from 2000 to 2020 and 100 firms are based in the US.

In addition to these SRI factors and rating scores, we collected historical daily stock prices for all

of these companies between year 2001 and 2020, from various sources: Datastream, WRDS-CRSP,

Compustat, IBES and Yahoo!Finance.
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EC.5.2. Determine the Structural Breaks

We would like to determine the periods in the financial stock market represented by S&P 500 that

were delineated by various important events. The structural break points are identified with a Bai-

Perron test (Bai and Perron 1998, 2003). The structural breaks are time stamped in Figure EC.5,

which considers the S&P 500 daily returns from 01/01/2001 until 31/12/2020.
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Figure EC.5 Structural break points for the S&P 500 time series based on a Bai-Perron test.

Based on the Bai-Perron test, we identify the following structural breaks in our data as illustrated

in Figure EC.5: April 21, 2003, that is the end of the dot-com aftermath period; October 5, 2006

shortly after the housing prices fell by more than 6% in 20 large metropolitan areas, according
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to Standard & Poor’s/Case-Shiller indexes; October 6, 2008, about two weeks after the Lehman

Brothers collapse; August 3, 2011 when US and global stock markets crashed upon Standard and

Poor’s credit rating downgrade of the US sovereign debt from AAA to AA+, the first time in

history the United States was downgraded; March 20, 2014 marking the Maidan revolution in

Ukraine; January 5, 2016 marking the period August 2015-2016 stock market sell off when S&P

500 and DJIA dropped more than 10% twice; October 19, 2018 associated with the loss of nearly 2

trillion dollars in the U.S. stock markets leading to S&P 500 losing about 20% by the end of that

year; and finally January 2, 2020 marking the beginning of the COVID-19 period.

EC.5.3. Portfolio Computations

Specific numerical methods are required for finding the RP-SD and RP-CVaR95% portfolios. Recall

that Theorem 1 provides two general methods called– logarithmic barrier and logarithmic constraint

– that could be applied to finding RB/RP portfolios based on general risk preferences. Solving the

instances from Theorem 1 with high efficiency would require using the specific properties of the

optimization problems from either (8) or (9). The logarithmic barrier and logarithmic constraint

formulations in (8) and (9), respectively are described in the literature (Roncalli 2013, Bellini et al.

2021). Spinu (2013) shows that RB-SD portfolios could be found via an efficient convex algorithm;

alternatively, an efficient algorithm for RP-SD portfolios is suggested in Bai et al. (2016), which

could be efficiently solved via the Alternating Linearisation Method with backtracking (ALM-

bktr) given as Algorithm 3 in Bai et al. (2016). The specific RP-CVaR portfolios (not the general

RB-CVaR portfolios) involve a hyperbolic constraint such as c − 1
d

∑d

k=1 log(αk) ≤ 0, which is

Second-order cone (SOC) representable; thus, the logarithmic barrier and logarithmic constraint

formulations for CVaR-based portfolios can be reduced to solving an SOCP instance, that can be

solved efficiently (Mausser and Romanko 2018).

Note that the multiple integrals in the RP − CVaRniid
95% estimator are approximated via the

Monte-Carlo method by generating N = 50 samples; further, the Epanechnikov kernel function

and a bandwidth choice of hk = 0.2n−1/3 for all k ∈ {1,2, . . . , d} is used for R̂cvar estimations. We
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compute RP −CVaRiid
95% and RP −CVaRniid

95% portfolios by solving SOCP instances as in (Mausser

and Romanko 2018), since the non-i.i.d. CVaR95% estimator is replaced by a linear sum via the

Monte-Carlo method so that the multiple integrals are approximated.


