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ABSTRACT

The present thesis deals with some significant algebraic computations of Control 

Theory. The main problem examined in the Thesis concerns the properties of the Greatest 

Common Divisor (GCD) of a set of polynomials; these properties may be investigated 

using the Sylvester Resultant. New properties of the Sylvester Resultant linked to GCD 

are established and these lead to canonical factorisations of resultants expressing the 

extraction of common divisors from the elements of the original set. These results lead to 

a new representation of the GCD in terms of a canonical factorisation of the Sylvester 

Resultant obtained by a reduced Sylvester Resultant and a Toeplitz matrix representing 

the GCD.

The Sylvester resultant factorisation establishes the framework for the 

characterisation of the “approximate” GCD. The evaluation of the “optimal” approximate 

GCD and its “strength” comes as a result of the above framework. The problem of 

approximate factorisation of polynomials, a problem related to root clustering, is also 

considered and solved using the new techniques. The approximate GCD framework is 

applied to the case of Linear System properties and metrics measuring distances from 

fundamental properties are introduced.

Finally, an additional contribution consists of a detailed account of the 

parameterisation of the family of proper controllers as a solution of a scalar polynomial 

Diophantine equation.
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Chapter

INTRODUCTION



The theory of algebraic and geometric invariants in Linear Systems is instrumental 

in describing system properties and it is linked to solvability of fundamental Control 

Theory problems [Rosenbrock, 1979], [Kailath, 1980], [Kucera, 1979]. These invariants 

are defined on rational, polynomial matrices and matrix pencils under different 

transformation groups (coordinate, compensation, feedback type) and their computation 

relies on algebraic algorithms. The use of symbolic tools may thus be considered as 

natural in developing algorithms for their computation. This introduces some 

considerable problems with the framework based on exact symbolic tools and motivates 

the need for approximate algebraic computations, which is the topic considered in this 

thesis. The underlying assumption behind the use of symbolic computations is that 

mathematical models always have numerical inaccuracies and this has a significant effect 

on the selection and development of the computational tools. The existence of certain 

types and/or values of invariants and system properties may be either generic or 

nongeneric on a family of linear models. Computing or evaluating nongeneric type or 

values of invariant and thus associated system properties on models with numerical 

inaccuracies is crucial for applications. For such cases, symbolic tools fail, since “almost 

always” leads to a generic solution, which does not represent the “approximate presence” 

of the value property on the set of models under considerations. The subject of the thesis 

is the discussion of the fundamentals of this important area of algebraic computations.

The development of a methodology for robust computation of nongeneric algebraic 

invariants, or nongeneric values of generic ones, has as prerequisites: (a) The 

development of a numerical linear algebra characterisation of the invariants, which may 

allow the measurement of degree of presence of the property on every point of the 

parameter set. (b) The development of special numerical tools, which avoid the 

introduction of additional errors, (c) The formulation of appropriate criteria which allow 

the termination of algorithms at certain steps and the definition of meaningful 

approximate solutions to the algebraic computation problem. It is clear that the 

formulation of the algebraic problem as an equivalent numerical linear algebra problem, 

is essential in transforming concepts of algebraic nature to equivalent concepts of analytic 

character; this property is referred to as numerical reducibility (NR) of the algebraic 

computation and it depends on the nature of the particular invariant. The last two
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prerequisites are referred to in short as numerical tools for nongeneric computations 

(NGC).

That effort goes back to the attempt to introduce the notion of almost zero of a set 

of polynomials [Karcanias et al., 1983], [Mitrouli et al., 1997] and study the properties of 

such zeros from the feedback viewpoint. This work was subsequently developed to a 

methodology for computing the approximate gcd of polynomials using numerical linear 

algebra methods, such as the ERES and matrix pencils [Karcanias, 1987], The numerical 

methods in [Mitrouli et al., 1997], [Karcanias, 1987] have used a variety of procedures 

for NGC and a richer set of tools is given in [Mitrouli et al., 1995], An overview of issues 

and a summary of results on some crucial problems are provided in [Karcanias et al., 

1994], The classification of types of computational problems on numerically uncertain 

linear models is first considered and then a set of fundamental tools for NGC are 

examined. Some recent results on the approximate factorization of polynomials and 

evaluation of the approximate least common multiple (LCM) of a set of polynomials 

were considered. The study of GCD and LCM of a set of polynomials is central in many 

algebraic synthesis problems and thus the derivation of methodologies for their 

approximate definition is crucial for the development of the field of approximate 

algebraic computations.

The development of robust algebraic computations procedures for engineering type 

models always has to take into account that the models have certain accuracy and that it 

is meaningless to continue computations beyond the accuracy of the original data set. In 

fact, engineering computations are defined not on a single model or a system S , but on a 

ball of system models (<£•)), where S0 is a nominal system and r ( s )  is some

radius defined by the data error order e  . The result of computations has thus to be 

representative for the family X , r (<£")) and not just the particular element of the 

family. From this viewpoint, symbolic computations carried out on an element of the 

Z(S'0,r(£-)) family may lead to results, which do not reveal the desired properties of the

family. Numerical computations have to stop, when we reach the original data accuracy 

and an approximate solution to the computational task has be given. We consider 

algebraic computation problems which are numerically reducible (i.e. have a numerical
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linear algebra equivalent formulation). The classification of such computational tasks 

according to their behavior under numerical errors is important, since it reveals those 

requiring special attention; this classification is undertaken here and reveals an important 

class, that of nongeneric computations which form the main subject of this thesis.

The study of computations of nongeneric invariants uses the notion of genericity. 

To make the idea of genericity precise, we borrow some terminology from algebraic 

geometry. Consider polynomials with coefficients in R . A variety f c f "

is defined to be the locus of common zeros of a finite number of polynomials (pv ...,(pk :

V = { P e R N :cpi (Pl,...,PN) = 0, i e k }

For example one can prove that the set of all parameters describing a state-space model 

(A,B, C,D)  of fixed dimensions modulo coordinate state transformations in a variety. A

property n  on V is merely a function Yl :V —> {0, l} , where f l (P )  = 1 (or 0) means II 

holds (or fails) at P . Let V be a proper variety, we shall say that n  is generic relative to 

V provided n  (Z3) = 0 only for points P e V  c  V where V  is a proper subvariety of V ;

and that n  is generic provided such a V  exists. As V  is a locus of zeros of polynomials 

in V , the subset of V such that the property is not true is a negligible set (measure zero). 

On the basis of the above we are led to the following classification of algebraic 

computations:

Definition (1.1): Numerical computations dealing with the derivation of an approximate 

value of a property, function, which is nongeneric on a given model set, will be called 

nongeneric computations (NGC). If the value of a function always exists on every 

element of the model set and depends continuously on the model parameters, then the 

computations leading to the determination of such values will be called normal numerical 

(NNC). Computational procedures aiming at defining the generic value of a property, 

function on a given model set (if such values exists), will be called generic (GC).
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On a set of polynomials with coefficients taking values from a certain parameter 

set, the existence of GCD is nongeneric; numerical procedures that aim to produce an 

approximate nontrivial value by exploring the numerical properties of the parameter set 

are typical examples of NG computations and approximate GCD procedures will be 

considered subsequently. NG computations refer to both continuous and discrete type 

system invariants. On the other hand, the eigenvalues of a square matrix, or the zeros of a 

square polynomial matrix are always defined on any model set and their numerical values 

continuously depend on the numerical values of the parameters set; such cases are 

examples of NNC computations and their study is covered well in numerical analysis 

books [Gantmacher, 1988] and are not considered here. For unstructured model sets, the 

generic value of discrete invariants is an issue that is usually simple and follows by the 

dimensionality of the matrices involved and genericity arguments. The various 

techniques which have been developed for the computation of approximate solutions of 

GCD and LCM are based on methodologies where exact properties of these notions are 

relaxed and appropriate solutions are sought using a variety of numerical tests. The basis 

of such approaches is the reduction of the algebraic problems to equivalent linear algebra, 

which are suitable for the study of approximation problems. A fundamental problem is 

the difficulty in characterising the accuracy of effectiveness of such methods, as well as, 

determining whether such solutions are “optimal” in some sense with respect with respect 

to all other techniques that may offer approximate solutions.

The main objective of this thesis is to introduce a new framework within which 

approximate solutions may be evaluated in terms of their error and optimal solutions may 

be determined as the outcome of some appropriate optimisation. A secondary objective of 

the thesis is the further development of some properties of the underlining algebraic 

framework which underpin the development of the main objective

Amongst the large number of the algebraic computation problems we focus here on 

the evaluation of strength of different gcd solutions, the development of the optimal 

approximate gcd and the application of such results to gcd related problems such as root 

clustering, approximate factorisation of polynomials and use of the results developed for 

sets of polynomials to the case of linear systems. The fundamental problems which relate 

to the main objectives are the representation of gcd of many polynomials in terms of the
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factorisation of Sylvester resultants and the parameterisation of proper solutions of scalar 

Diophantine equations as the natural tool for the study of Dynamic assignment and 

stabilisation problems in Linear Systems.

Chapter 2 provides an introduction to the fundamental of the algebraic problem 

linked to the Diophantine equation and serves as an overview and motivator for the 

algebraic computational problems involving gcd and which are considered in the thesis

Chapter 3 provides a detailed account of the parameterisation of the family of the 

proper controllers of a scalar polynomial Diophantine equation. This involves 

development of parameterisations, characterisation of McMillan degree of resulting 

solutions and some other related results linked to the family. These results although 

developed here for the scalar case may be extended to scalar Diophantine equation in 

many variables using a similar approach.

Chapter 4 starts as a review of the classical Sylvester results on resultants of many 

polynomials and their link to the gcd computation. The attempt to provide a new 

improved proof to the generalised Sylvester resultant result [Barnett, 1983], [Vardoulakis 

et al., 1978] has led to the characterisation of gcd in terms of a canonical factorisation of 

original resultant into a product of a reduced resultant and a canonical Toeplitz matrix 

defined by the coefficients of the gcd. This result does not provide a new procedure for 

gcd computation but it establishes the algebraic procedure for the extraction of gcd; it is 

of crucial importance in the development of an analytic framework within which 

approximate gcd evaluations may be assessed and the optimal approximate gcd can be 

defined.

Chapter 5 introduces the fundamentals of the approximate gcd evaluation 

framework. For sets of polynomials for a given number of elements and with fixed the 

two maximal degrees, a point in the projective space is defined, based on the coefficients 

of the polynomials in the set. The family of all sets which have a gcd with a given degree 

d is defined by the properties of the generalised resultant and it is shown to be a special
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variety of the projective space referred to as the d -gcd variety. The factorisation of the 

resultant allows us to define for any d -degree approximate gcd a subvariety of the d - 

gcd variety and thus the “strength” of the approximation , provided by the result of a 

given numerical method, may be completed as the evaluation of the distance of the given 

point (set of polynomials) from its subvariety of the d -gcd variety. This distance is 

worked out as the solution of a simple optimisation problem.

Chapter 6 deals with the characterisation of the optimal approximate gcd of a set of 

polynomials and although it follows the philosophy of the previous chapter, now provides 

also the means for computing the best approximate solution of a given degree for the gcd. 

For a given set of polynomials, the family of all perturbation sets (sets of polynomials 

which may disturb the original set) produce points (sets of polynomials) which belong to 

the d -gcd variety. The definition of the best d -degree approximate solution is 

equivalent to a computation of the distance of the given set from the d -gcd variety. This 

distance is computed by minimising the Frobenius norm of the resultant characterising 

the dynamic perturbations. Use of the resultant properties allows the reduction of the 

complex distance problem into two problems based on independent set of variables which 

are of considerable simpler nature than the original ones. The first of two optimisation 

sub problems is based on a standard minimisation of the norm of polynomials in many 

variables which are defined from the original set; this defines also the “optimal” 

approximate gcd and the “strength” (distance). The second problem always has a trivial 

solution when the solution of the first has been obtained. The results of this chapter 

provide a complete answer to the original objectives, that is the definition of optimal 

approximate gcd and its strength.

Chapter 7 uses the framework established in the last two chapters for the study of 

root clustering of polynomials, expressed as an approximate normal factorisation of a 

given polynomial. The results on the normal factorisation of a given polynomial 

[Karcanias et ah, 2002] are based on the gcd algorithms and this allows the combinations 

of normal factorisation results to the approximate gcd to give solutions to the challenging 

root clustering problem.
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Chapter 8 is a first attempt to extend the approximate gcd framework for a set of 

polynomials to the study of approximate matrix divisors of polynomial matrices and the 

study of properties inferred by such factorisations when applied to linear system 

problems. We use exterior algebra to associate with any polynomial matrix, a polynomial 

multivector [Marcus, 1973]. This expresses the classical Pliicker embedding of an affine 

space into a projective space and yields the set of polynomials which is used for our 

study. These sets of polynomials are not random but they are characterised by the 

property of decomposability of multivectors which implies that the corresponding point 

of the projective space belongs to the Grassmann variety. The framework of the 

approximate gcd previously established is applicable in a straightforward manner to two 

partial cases which guarantee decomposability. In all other cases the optimal gcd results 

are estimates of the solution sort. In the general case the distance problem formulated as 

the distance between the given decomposable polynomial set and subvariety of the d - 

gcd variety defined as an intersection with the corresponding Grassmann variety. The 

results obtained here provide a characterisation of approximate zero polynomials, 

approximate of (input/output) zero polynomials and the errors or strength of 

approximation provide estimates of important system properties such as distance of a 

system from the set of uncontrollable systems and/or unobservable systems.

Finally Chapter 9 summarises the achievement and describes issues related to 

future research.
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Chapter 2 :

POLE ASSIGNM ENT FOR SISO SYSTEMS: THE 

DIOPHANTINE EQUATION APPROACH
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2.1. INTRODUCTION

The aim of this chapter is to introduce the fundamentals of the algebraic approach 

to the design of Single Input, Single Output, (SISO) linear control systems and provide 

some motivation for the algebraic computations problems which are considered in the 

thesis. Furthermore, the problem of characterising the family of proper solutions of 

polynomial Diophantine equations is considered in some detail. More specifically 

Chapter 2 considers the classical problem of pole assignment by dynamic compensation 

that introduces the Diophantine equation approach. Issues related to parameterisation of 

solutions and study of existence of proper solution are considered here. An alternative, 

Linear Algebra formulation of the problem is subsequently given and this opens the way 

for an algorithmic investigation of special types of solutions.

2.2. THE GENERAL FEEDBACK CONFIGURATION

We consider the general feedback configuration shown below

where c (s) denotes the controller and p{s)  the plant transfer function respectively. The 

above configuration is described by the following equations:

eI Wj 0 p ei Ti c 0 ei
c u? - c  0 e2

5
W 0 p
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where ei, ui, y i denote Laplace transforms of the corresponding signals and c, p  denote 

in short the corresponding transfer functions. If we define

e\ Mj y, , F  =
'0 f ~c ( f

e = , U = , y  =
-1 0^

, G =

1 o 1__
_

.G . u2 _y2  _

then (2.1) yield

e - u - F G e ,  y - G e  (2.3)

Given that for a SISO system, if l + c (s )p (s )  ^  0 , we may always solve (2.3) and thus 

obtain

e = ( / 2+ F G )"‘ -u = H ( p , c ) u  (2.4)

where H ( p , c ) is the transfer function inputs to errors and is expressed as

(1 + pc)"1 - p ( l  + cPy '

c(l + pc) 1 (l + cp)
H ( p ,c ) (2.5)

and the transfer function from inputs to the outputs is defined by 

y  = W ( p , c ) u = G ( l 2+ F G y l u

and it is expressed as

W (p,c)
c(l + cp) 

cp(\ + c p ) '

-cp{\  + cp)~X 

p (!  + cp)''

(2 .6)

(2.7)

The above configuration is quite general and it has the following interpretations:

a) If m, is the signal to track and u2 is a plant input disturbance, then we have the 

classical control scheme, where c is a precompensation.
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b) If u2 is the reference signal and «, is the measurement sensor noise disturbance, then

c ( i)  is interpreted as a feedback compensator.

The function f ( s )  = l + c (s)/?(s) 

feedback configuration. If we denote

c W - ^ 4 4 .  p W - " ' w
d c ( s ) d p (s )

is known as the return difference for the

(2 .8)

then clearly

/ ( s )  = l + c (s)/? (s) = n c i S ) n p ( S )  +  d c i S ) d p ( S )  

d c ( S ) d p i S)
M i l
<Po(s )

(2.9)

where cpQ (s) = dc (s ) dp (s) is referred to as the open-loop pole polynomial and

<Pc ( 5) = n c { S )  n p ( S )  +  d c ( S )  d p (s) (2. 1 0)

is defined as the closed-loop polynomial of the feedback configuration. The reason for the 

latter terminology is that (pc (s) is the denominator of all transfer function elements of

H( p , c )  and W( p, c )  as it can be readily verified. In fact, for the SISO case we have

W( p, c )  = G - H ( p , c )
1

Pci*)

n c ( s ) d p { s )

nc{s)np(s)
- n c(s)np (s)
dc(s)np (s)

(2.11)

Remark (2.1): If the plant and the controller are represented by their transfer functions, 

then the feedback configuration of Figure (2.1) has <pc (5 ) as its pole polynomial.
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2.3. ALGEBRAIC SYNTHESIS PROBLEMS AND THE DIOPHANTINE

EQUATION APPROACH

Given the system represented by the transfer function p ( s ) , or the coprime pair 

(np ( s ) , dp the fundamental Pole Assignment Problem, (PAP) [Kucera 1979], is to 

define whether there exists a controller c (s ) . Represented by the coprime pair 

(nc ( s ) , dc (5 )) such that

+ > p ( i ) e * W  (2-12)

where (p(s) is a given polynomial. If in addition we require that

deg{«c(s)}< deg{Jc(y)} (2.13)

then we have the Pole Assignment Problem with Proper controllers, or Proper-PAP (P- 

PAP) [Kucera 1979],.

In addition to the PAP or the P-PAP we have the special case of the Stabilisation 

Problem (SP) if we require that cp(s) is stable rather than having arbitrarily assignable 

roots.

Equation (2.12) is known as Diophantine Equation. A special form of the latter is 

obtained when cp(s} = 1, i.e.

nP (5K  + i s ) dc (*) = 1 (2.14)

The solvability of the general equation (2.12) is facilitated by the study of (2.14)

first.

Theorem (2.1): Necessary and sufficient condition for equation (2.14) to have a solution 

is that the pair (np (s ) , dp (s)) is coprime

14



Proof:

(Necessity): Let us assume that t(s )  is the greatest common divisor of [np (s ) ,dp (5 )]. 

Then (2.14) may be written as

t ( s ) ( « c ( s)n'p ( s) + dc ( s)d'p (5)) = 1

Since t(.s) * c , then for all roots of t( s ) ,  say st , we get that

t (5, ) ( n c ( l ) n 'p 0 ,) + dc (5,.)d'p (5,.)) = 0 * 1

(Sufficiency): Assume that (np ( s ) ,d p (s)) is a coprime pair. Equation (2.14) may be 

written as

h »  ^ ( 5)]
nc(s)

d, (s )
=  1 (2.14a)

Let Q (i)  = c e l ,  c *  0 be a unimodular matrix which reduces

| np ( s ) ,d p (i)^| to its Smith form. Then

[ ^ ( 5) M 5)]
<ln(s ) 
<hx (5)

012 ( 5) 
q22 (5 )

[1 0] (2.15)

from which is clear that

M s) ^CO]
<lu(s )

=  1

and thus equation (2.14) has a solution for nc (s) = qu (s), dc (s) = q2l (s )

■

Corollary (2.1); Let (3 (s )e K 2x2[s], |g (s) | = c e M , c^O  be a right unimodular 

transformation matrix which reduces \jip (s ) ,d p (s)J to its Smith form
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[ n p ( s )  ¿p (5)]
9n (s)

9 n ( s)
9 n ( s )
q22 (s)

[1 0]

The general solution of (2.14) is then given by

k ( 5) = 4 n (5) + i (5k 2 ( 5) 

\ dc(s ) = <hi {s ) + t (sh a { s)
where, / ( j ) e R [ s ]  arbitrary (2.16)

Proof:

By (2.15) it follows that the general unimodular matrix which reduces ^np (s ) ,d p (.s-)J to 

its Smith form is

e 'M
dn(s ) 9 n ( s ) 1 0~ 9'u(s ) 9n (s )
9n{s ) 922 (s )_ t(s )  k JI 2 1  (5) 9 n ( s )_

and thus the first column of Q' (s) gives a family of solutions. In order to show that

(2.16) gives the whole family, let us assume that [nc (s ) ,dc ( s ) ) , (n'c (s),d'c (5 )) are two 

solutions, then

k ( 5K ( s) + ^ ( 5K ( 5) =1
1”p W +rfp (j ) ^ W =1

and by subtracting we have

np (s ) (nc i s ) - K (s)) + dp (s )(dc ( s ) - d ' ( s ) )  = 0

or

nc(s )-n 'c (s) 

dc (s )~d'c (5 )
= 0

By (2.15) it is clear that the second column of Q (s ) defines a least degree basis [Marcus

et ah, 1969] for the right null space of \jip (s ) ,d p (s)] . Thus

nc(S) ~ n'c(S) 9n (*)
dc(s ) -d 'c(s)_ _9l2 (s )_ ?(s )
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By assuming that one solution is defined by the first column of Q (s ) , the result follows.

Remark (2.2): Note that qu (s) = dp (5 ), q22 (5 ) = - n  (s) and thus the general solution 

of (2.14) may be written as

k ( J) = f t i ( s ) - i (JK  (*)
, where, t(s )  e M[s] arbitrary (2.17)

We may now consider the solution of (2.12). Note that if (nc (s ) ,dc (5 )) is a 

solution of (2.14) then by multiplying both sides of (2.14) by cp[s^ we have

{(p(s)nc (5 )} np (s) + {(p(s)dc (5 )} dp (5 ) -  (p(s) (2.18a)

and thus, n'c (5 ) = (p(s)nc (5 ) , d'c (5 ) = <p(s)dc (s) is a solution of (2.12). However such a 

solution is not acceptable since <7 (s) = y 2 (s ) /u , (s) is

q(s)
nc(s)<p(s)np (s)

<p(s) = «c(5K ( * ) eM H (2.18b)

Other types of solution of (2.12) are examined next. We first note that (2.12) may be 

written as

n c ( s )

dc(s) =  0 (2.19)

Thus, the solutions are those vectors in Wr ([«p (s ) ,dp (s ) ,-ç ? (j)])  which are of 

the type [a (s ) ,& (s ) ,l] . If £>(.s) is the unimodular matrix that reduces ^np (s ) ,d p (.v)j 

to its Smith form [l, 0], then
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[np (i),^(5)’-^(5)] <h\ (5)
9,2 (5) 
q22 (i) 9,i (5M s) 

92,(5M 5) = [1,0,0] (2 .19a)
0 0 1

and thus a least degree basis for 5Vr np (s ) ,d p (that is a matrix which has

no finite zeros) is defined by

r ( s )
d p ( s )  9n ( * M 5)

-n p ( i)  q2i(s)(p(s)
0 1

(2 .20)

The general vector in N r (j~np (s ) ,d p maybe expressed as

dr ( s ) qu (s)tp(s)
x (s) = t(s) ~np (s ) + z(s) q2i{s)<p(s)

0 1

and thus the general vector of (2.12) ( z (5) = 1 ) is

x (s ) = t(s)
dp(s ) 9n(s )<P(s )

~np (5) + q2I(s)<p(s)
0 1

(2.20a)

(2.21)

Corollary (2.2): The general solution of the Diophantine equation 

is given by

k ( s )  = ? i.(sM s) + ' ( * K ( 5) 

k  (*) = ?2, ( * M 5H ( 5K  (*)

( 2 . 12)

(2.21a)

Note that now the closed-loop transfer function 9(5) = y2 [s)ju{ (s) is
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<?(s) =
{g,,(s)ff(s) + ; ( s ) ^ ( s ) } np (5 )

<p(s )
(2.21a)

The question that still remains to be answered is how we choose 1 (5 ) such that c[s)  is 

proper and q( s ) is also proper. This problem will be considered in detail on Chapter 3.

Example (2.1): Let p( s )  = -̂ S + ̂  , i.e. (s) = s +1, dp (5 ) = 52 - 5  . Then
5 (5 - 1)

[ 5  +1,52 -  5 J may be transformed to its Smith form as :

[ 5  +1,52 -5 ]^_

[5 + 1,-25]

[5 + 1 ,-5 ]

1 - 5

0 1

1 0
0 1/2

= 0 i ( 5)

= ß 2W

1 0 

1 1 = a W

1 5 

0 1 = Q*(s)

Thus

e W = 0 M a W a W a W = ^

verify that

2 -5
1

- 5 + 5  

5 + 1
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and

2 - 5
1

-52 + s

5 + 1
[1,0]

i n W  = ^ ( 2 - s ) ,  92l(s) = i

From which

2 ( 2  ‘S) i K S) +  i ( ‘S' ) ( ‘S 5 ) ( 2 - 5 ) ^ > ( 5 )  +  2 i ( 5 ) ( i 2 - 5 )

^ ( S) - i (5 ) (5  + l) ^ W - ^ W ^  + l)

Let us chose a ¿(5 ) such that <£>(5 ) = s2 + as + b . One way of doing that is to carry the 

division

(2 -5)^>(5) = - 2t ( s ) ( s2 -ŝ J + r(s)

from which t(s)  = s and r(^ ) = ( l - a ) s 2 + (2a~b)s  + 2b . Then

r ( i )  ( \ - a ) s 2+ ( 2 a - b ) s +  2b
—r-------------- 7------ r = -------— -+--------- ---------, non-proper
5 +u5 + ö -5 (5  + l) ( a - l ) 5  + &

Similarly, let us choose ¿(5 ) by the following division 

(p(s) = s2 +as + b = 5 ( 5  + l) + ( a - l ) 5  + b

i.e. ¿(5 ) = 5 , then this is clearly the same non-proper solution. If / (s) = e e K  then again 

is a non-proper compensator. Similarly, it may be verified that any other value of 

t(5) = ^5 + J  or /(5) with d e g (5 )! >1 gives rise to a non-proper compensator. Thus,
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there is no proper solution for <p(s) of second order. The procedure should be repeated 

for <p(s) = s3 + us~ +bs + y .

2,4. DISCUSSION

The problem of the polynomial Diophantine equation related to the pole assignment 

of SISO system has been introduced and the family of solutions have been classified. It 

has been obvious from Example (2.1) that is difficult to find a proper compensator. The 

problem may be avoided by working in the ring of proper rational functions, or proper 

and stable rational functions. An alternative approach to the study of propemess, that 

reduces the overall study of solvability of Diophantine equation to a linear algebra 

problem, is considered on Chapter 3.
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Chapter3 .

POLYNOMIAL DIOPHANTINE EQUATIONS, TOEPLITZ 
MATRICES AND PROPERTIES OF SOLUTION
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3.1. INTRODUCTION

The use of the Smith form for the solution of polynomial Diophantine equations implies 

resorting to symbolic computations. An alternative approach is formulated in this chapter 

that reduces the problem to standard linear algebra and thus allows the use of numerical 

methods. This alternative method reduces the problem to the investigation of a system 

expressed with Toeplitz matrices and apart from its computational advantages, also 

permits the study of a number of theoretical tasks, which are harder to define in the initial 

algebraic setup.

Firstly we will reduce the problem of the polynomial Diophantine equation to its Toeplitz 

matrix form and we will investigate the solvability of the system. Then the main task will 

be to examine if the solutions are proper. A number of results will be given for this 

purpose. Finally, some further properties of the family of solutions related to McMillan 

degree are considered

3.2. TOEPLITZ MATRIX FORMULATION OF THE DIOPHANTINE 

EQUATION

Let us consider the system and controller represented by the transfer functions

= b ,s+bls + -  + b„s- = ( 3.1)
dp (s) a0+ats-\---- 1-an_xsn +sn ap (s)

c / A - ”c ( ^ ) _ coJ + ̂  + -  + cX  G 2 )
dc{s ) d0s + dis-i----\-dvsv

We assume that (wc (s),<fc (s)) is a coprime pair. Thus the pair [nc ( s ) ,dc (5)) , which

satisfies the Diophantine equation (2.14) is also coprime. We consider now the 

Diophantine equation
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np (5K ( 5) + ^ ( * K ( 5) = p (s ) (3-3)

where it is assumed that (p(s) is an arbitrary polynomial with 

deg^>(i) = k -  max{ra + p ,n  + v] and expressed as

<P (5) = % + <PiS + -  + + s* (3.4)

Substituting (3.1), (3.2) and (3.4) into (3.3) and using the notation of the Toeplitz 

matrices, it may be shown that polynomials nc(s),dc(s) with degrees p , v  respectively, 

which solve (3.3), exist if and only if the following equation has a solution

em+A s ) TA b p) c „ + £ +v(s )Tv{ap) d v =e\(s)<pk , (3.5a)

where

A+i — ► ◄— ' v + 1 ----- ►

bo o 0" kL
a0 0 0 '

bx ho ax a0

h\ ai
K bo m + u + \ . Tv(ap) = a , n «0
0 K v  V— p  > 0

a m
a,

o 0

0 o 1__
__

1 0
0  a , n _

e;(s) = [\,s,.. . ,s‘] (3.5b)

The above equation is readily reduced to an equivalent matrix formulation introduced 

below:

Proposition 3.1: The solution of the Diophantine equation (3.3) is reduced to the study

of solvability of the following matrix equation:

i) If n + v > m + ¡i and p  = n + v - m  -  ju, then (3.5) yields:
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(3.6a)TÂ b- , )

P-P+1
Ç,+Tv(ap) d v =<pk

ii) If n + v < m + p  and p ' ■= m + j u - n - v ,  then (3.5) yields:

o
+

p  ,v+l
^ =<pk (3.6b)

iii) If n + v = m + p  then (3.5) is equivalent to:

TM(bp)cM+Tv(ap) d v = p k (3.6c)

■

Note that TM [bp) e r ("+"+1M*+*) , 7;, (a p) e M(”+1/+1)x(v+1), c ^ r ' ,  d v e W +x and

cpk e R t+1. The above conditions may be expressed in a more compact form as shown 

below:

C "  M ,  ) '* , = ? ,

where l_i:i = (c ',d ;.) and

T ; ; ( b p,a f )Ur

(3.7)

T f e . ) T (a )
_ ®/>,//+1

v \—p J

-
1; (a,,)]

T A b r )

v \ — p )

0
-

p  ,v+1

[TA h ) T,( 2 , i

, if p  = n + v -  m -  p  > 0

, if p '  =m + p - n -  v > 0 

, if  p  = n + v - m - p  = 0

(3.8a)

(3.8b)

(3.8c)

The study of equations (3.7) for different values of p , v  indices is the subject of the 

following investigation. The pair of indices (p , v ) characterises the different types of 

solutions, since the different types of solutions, since p  = deg[«c ( s ) J , v = deg[i/c (s)]
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and will be referred to as the order of the solution. The order is significant for the 

parameterisation and it is linked to the notion of McMillan degree introduced below:

Definition (3.1): Let c (s) = nc ( s ) /dc (s) e R ( s ) , where nc(s), dc(s) are coprime and 

deg[«c (s)] = p  , d eg [Jc (s)J = v . Them number defined as

iM c(5) ) - maxCu’v) (3-9)

is defined as the extended McMillan degree of c(.v). ■

It is well known that SM (c(s)) denotes the total number of finite and infinite poles of 

the rational function c ( s ) . A parameterisation of solutions may be done in terms of 

SM number. Before we embark to the study of solutions, we give a useful alternative 

interpretation of Proposition (3.1).

Theorem (3.1): The Diophantine equation (3.3), or equivalently the linear system (3.7) 

has a solution of order (//,v ) for any arbitrary vector (p , k = max{/u + m,v+ n] if and 

only if

rank 17^;" (bp,ap) J = max {// + m, v + n) (3.10)

■

The proof readily follows by inspections of dimensions of the blocks (3.7). This 

alternative form of the result allows the formulation of algorithmic procedures and be 

used subsequently. We first notice the following important result.

Theorem 13.2): Let p ( s )  = np ( s ) /d p (s) be a plant with m = deg[np ( s ) J , 

« = deg[i/;, ( j ) ] ,  («„(*),</„(*)) coprime. There always exists a solution

c(s) = nc (s^/dc (5 ) with order ( « - l , m - l )  for arbitrary polynomial <p(s),
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d e g [^ (s )]  = m ax[m + /u,n + v ] . Furthermore, the coefficient vectors cn_,, 

respectively defined by

d.m-i are

(3.11)

Proof:

For // = « - l ,  v = m - \ ,  T”\nm_l (bp,ap) e R {n+mH"+m) and thus

c  r , - , |  r . (3.11a)

To prove the result, it is sufficient to show that T™_;"m_, (bp,ap) has full rank; in fact, if it 

has full rank, then (3.7) has a solution and it is given as in (3.11).

We consider T ^ m_x[bp,ap) = \Tn_x(bp) | Tm_x(ap) . By reordering the two blocks, we 

produce |Vm_, (ap) | Tn_, (/y; which by transposition leads to

* ( M 5K ( s))

1 an- 1 a0 0 0
0 1 an-1 ••• a, «o 0 •'' 0

0 0 1 «*-1 a0

bm b„-, bo 0 0
0 bm h\ b0 0

0 0 bm b ^ bi ¿0

(3.11b)

However R[bp (s )a p (5 )) is the Sylvester resultant of np (s ) ,d p (s) polynomials, which 

are coprime and thus {s) ^ p (5))| * 0 [Barnett, 1983]. However, R{bp (s )ap (s)) 

and 7 X - , ( * , . 2 , )  are equivalent and thus they have the same rank. ■
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The above result provides the means for the computation of a particular solution of the 

Diophantine equation without resorting to the use of algebraic means. (Smith form and 

Symbolic computations) and thus allows the parameterisation of the family of solutions. 

The particular solution is given by

c ( s )
nK s) _ c„ + cts + ■ ■. + cn-2s"~2 + cny '  
dc (s ) d0+d1s + ... + dm_2sm 2 + dm_xsm '

(3.12a)

where the c, , dt are defined by solving the matrix equation

-n-\
■(P— m+n

(3.12b)

The matrix T. « . ( è , . 8 , ) - [ ^ ( » , ) i i « ( i , ) ;
p (m+«)x(/n+Aj) has always full rank and

can be used in the study of properties of the solution of the Diophantine equation. The 

solution [ nc (s),d* (s)J will be called the Sylvester Solution of the Diophantine equation.

If (W{bp,ap,(p} denotes the whole family of solutions of (3.3), then according to 

corollary (2.2), this family may be expressed as:

Corollary (3.1): if  [nc (s),d'c (s)) is the Sylvester solution pair of the Diophantine 

equation (3.3) for the m + n - 1 degree polynomial ^ ( s ) ,  tW (bp,ap,(p} is defined by 

nc (5) = «*(*)+ i (5K ( 5) i ( j ) e R [ j ]  arbitrary (3.13)
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Remark (3.1): For a strictly proper system (m < n) the Sylvester solution is clearly non-

proper. However, for the of bi-proper case (m = n) , or for the case of non-proper systems 

(m> n) the Sylvester Solution is proper. ■

3.3. PROPER SOLUTIONS OF THE DIOPHANTINE EQUATION AND 

PARAMETR1SATION ISSUES

The above analysis provides alternative tools for studying the properties of 

solutions of Diophantine equations. Some issues related to propemess and McMillan 

degree parameterisation are considered next. We first note;

Corollary (3.2): Let [nc (s),d*c (5 )) be the Sylvester solution of the Diophantine equation 

defined by (3.12b) and let m < n .  There always exists a proper solution 

| nc (s) jwi th McMillan degree n - 1 which arbitrarily assigns any polynomial of 

degree 2n -1 . This solution is defined by

polynomials with maximal degree m + n - 1. The corresponding equation may be 

extended to that of (3.14). Equation (3.14) maybe written explicitly as

(3.14)

Proof:

We consider first the Sylvester solution which corresponds to
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(3.14a)

where the matrix X  has the form

X  =

1 a n-1
0 1

a„-1
0 1

(n -m )x (n -m ) (3.14b)

and Tn_ \ b p) \ T m_x(ap) is the Tm„(bp,ap) (m + n)x(m + n) full rank matrix. Thus,

the matrix in (3.14b) is upper block triangular with full rank diagonal blocks and this 

proves that Tn (bp,ap ) has full column rank, which implies (3.14). ■

The above result implies the following:

Remark (3.2): If a non-proper solution of order ( k - \ , l - \ ) , k > l may be found, which 

assigns a polynomial (p{s), then we can always find a proper solution of order 

( k - l , k - \ )  that assigns a polynomial (p' (s) which contains <p(s) as a factor, but it is 

otherwise arbitrary. ■

Remark (3.3): Every polynomial with degree k > 2n -1  may be always assigned by a 

proper controller of some appropriate McMillan degree.

Example (3.1): For the case where m = d e g ^  (5 )] = 2 , n = deg[<ip (5 )] = 5, the 

Sylvester solution of the Diophantine equation is non-proper and it is defined by
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t
-1

1

ho 0 0 0 0 «0 0 ' co ~(po
\ \ 0 0 0 «1 a0 c, Pi
b2 \ bo 0 0 a2 ax C2 (p2
0 b2 bo 0 «3 a2 C3 - Vi
0 0 b2 bo a A a, C 4 (Pa

0 0 0 b2 bx 1 a4 do (Ps
_ 0 0 0 0 b2 0 1 A i . _(p6_

«-1=4

Such a solution may be expanded to a proper solution by solving the following equation

t
«-«z=3

I

bo 0 0 0 0 «0 0 0 0 O ' C0 (Po
bl bo 0 0 0 a. a0 0 0 0 Cl <p\
b2 bl bo 0 0 a2 ax a0 0 0 c'2 (p'2
0 b2 bl bo 0 a3 a2 «1 a0 0 C3 (p's
0 0 b2 b\ bo aA a3 a2 a, a0 C4 (Pa
0 0 0 b2 b, 1 aA a} a2 «1 < (Ps
0 0 0 0 b2 0 1 aA a3 U2 d[ (Pi
0 0 0 0 0 0 0 1 «4 a3 d2 (Pi
0 0 0 0 0 0 0 0 1 aA d'* (P'%
0 0 0 0 0 0 0 0 0 1 < %

◄  «=5 ----- ► m= 2 -►

As long as <p'9 * 0, the above solution is proper. ■

The parameterisation of the family W [ b p,ap,(p} is considered next. We assume that 

deg [<p(s)] = k  and shall examine the properties of the entire family.

Remark (3.4): As long as (np (s ) ,dp (5 )) is a coprime pair, then for any p ( s ) ,  the 

family W[b_p,ap,(p} is nonempty and thus the parameterisation of the family is a 

problem that makes sense. Every particular solution is characterised by a pair of ( /i ,v )-
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orders and thus parameterisation in terms of the McMillan degree is a problem that may 

be considered. However, the family W \ b p,ap,(p) rnay not necessarily contain proper

solutions, if deg[<£>(s)J = k is any arbitrary number. ■

Although any (p(s) with arbitrary deg[<^(.v)j = k may be assigned, it is interesting to 

investigate the minimal degree of (p{s) . We have to distinguish between two cases:

i) <p(s), deg[ç£>(s)] = k  is a generic polynomial, i.e. cp is a generic vector of lRi+l

ii) (p{s) , deg[<p(s)~| = k is a non-generic polynomial, i.e. <p is associated with a proper 

variety of P projective space.

The following result provides necessary conditions for the order (¡u,v) of solutions 

for the generic polynomial ç>(s), deg[ç?(s)] = k .

Lemma (3.1): Let bp e l " +1, ap e  1R”+I and consider the Toeplitz matrix T'"'” (hp,ap ) 

defined for some (//, v) pair as in (3.8). Necessary conditions for T”'" (bp,apj to be

epic, i.e. Im jr^;" = i f  , r  = max{w + // + l,« + v + l} are that

/ u > n - \ , v > m - \  (3.15)

Proof:

Note that the matrix Tp [n [bp,ap} has dimensions 

[max{/n + // + l,« + v, + l}]x[^(// + l) + (v + l)] and thus necessary condition for the 

matrix to be epic is that [max{w + // + l,n + v + l} ]x [( // + l) + (v + l)J and thus necessary 

condition for the matrix to be epic is that

(// + l) + (v + l) > max(w + jiu +1,n + v +1) (3.16)
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(3.16a)

The above is equivalent to

fj. + v + 2 > 1 + max (m + ju,n + v ) , or, ju + v + 1 > max (m + ju,n + v)

The problem we now have is to parameterise the family of all (/r,i/) pairs which satisfy 

(3.16a). We distinguish the following cases:

I) m -  n : (3.16a) then becomes

// + v + l > max(m + ju,n + v) = m + m ax(//, v) (3.17a)

i) If /j > v , then (3.17a) leads to

jU + v + \> m  + /u —» v > m - \  and / u > v > m - 1

ii) If then (3.17a) leads to

¡u + v  + \ >m + v —> j u > m - 1 and v > ju > m -1

which establishes the result for m = n

II) m > n :  Let us then write m = n + S , £ > 0 .1 n  this case (3.15 a) becomes

fi + v +1 > max (n + S  + ju,n + v) = n + max (S  + /j ,v ) (3.17b)

i) If S  + jU > v , then condition (3.17b) yields

H + v  + 1>« + S  + /u —> v > n - \  + 8 = n - \  + m - n  —> v > w -1

and

S  + j u > v > m ~  1 —> m - n  + jU>m- 1 -> / u > n - 1

ii) If 8 + j u < v , then condition (3.17b) yields 

// + v + l> «  + v —> j u>n - 1

and
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v > S  + jU = m - n  + ju —> v - m  + n> / u > n - \

or

v - m  + n > n - 1 —» v > m - l

which establishes the result for the m > n case. The case m < n is established in similar 

lines. ■

The above Lemma together with Theorem (3.2) leads to the following result.

Theorem (3.2): Let [np (s ) ,dp (s)) be a coprime pair of polynomials with 

deg(/2p (s)) = m, deg(i/p(s)) = « and let [nc ( s ) ,dc (5)) , deg(nc (s)) = ju, 

d e g (5 )) = v , be a solution of (3.3):

n p { S ) n c ( S )  +  d p { S ) d c ( S ) = ( p ( S )

Necessary and sufficient condition for the orders (//, u) of the solution to correspond to a 

generic ^ ( 5 ) is that

j u > n - l ,  v > m - \  (3.15)

Furthermore, the solution for / /* = « - 1 ,  v* = m -1  is the Sylvester solution, which is 

uniquely defined and has the minimal McMillan degree 5 * = m ax(/w ,«)-l amongst all 

solutions associated with the generic (p(s) polynomial.

Proof:

If is generic, then equation (3.7) must have a solution for all vectors of Rr,

t  = 1 + max[m + /i,n + v}, i.e. T'p ’” (bp,ap) must be epic. By Lemma (3.1) it then follows

that necessary condition is that 

j u > n - 1, v > / n - l

which establishes the necessity. By theorem (3.2) we have that for / /  = n - \ , v* = m - 1, 

there always exists the Sylvester solution which has the minimal McMillan degree
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S'M = max{/w,n}-1 . Using the («* (s),d* (5 )) Sylvester solution, then corollary (3.1)

shows clearly that for every ¡ u > n - 1, v > m - 1 we can select the t (5 ) parameter to get a 

corresponding order solution. This establishes the sufficiency. ■

The above result leads to the following remark:

Remark (3.5): If ^>(s) is an arbitrary polynomial, it can always be assigned by a 

controller {nc ( s ) ,dc (5 )) , but there is no controller with order (/¿,v) that violates 

conditions (3.15). For non-generic polynomials <p(s), there exist solutions with order 

(/u, v) for which /u < n - \  and v < m - 1. ■

The family of non-generic polynomials which are assigned by controllers with order 

(/¿, v) violating (3.15) is defined below.

Corollary (3.3): If (/r, v) order of solution is fixed, j U < n - 1, v < m -1 ,  then the set of 

polynomials that can be assigned, is defined in the vectors in Im jj)'";” (bp,ap ) j . ■

The McMillan degree is important in the parameterisation of the [bp,ap\(p^. We first 

state the following result:

Proposition 13.2): Let W’(bp,ap\(p  ̂ be the family of solutions of the Diophantine 

equation. The following properties hold true:

i) The relationship <R̂M on W [ b p,ap',(p) defined V tv t2 e ^ { j j p,ap-,(p̂  by

^  ( 0  — (̂ 2 ) (3.18)

is an equivalence relation.
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ii) Let t M (?) denote the equivalence class of t e rW{b_p,ap',(p} under . The family 

U M{t)) of all equivalence classes l M (t) form a partition of lW{bp,ap\(pY

■

Showing that is an equivalence relation is trivial. Part (ii) follows immediately from 

part (i). The partitioning of W ( b p,ap;pj  under is indicated below:

Note that each equivalence class is parameterised by a distinct number, which is the 

extended McMillan degree of the class. For the i M (t,) class we shall simply denote

Sm{ti) = Si . The value of 8t characterises the class and will be called the

McMillan index of the class; in turn, the family t M (tt) will be referred to as the 

5i -  family. The set of indices

Iu (kp ,ap\<P) = lM - { %■%  ind e x o f t ? ( i , ) e ( f M)} (3.19)

36



will be called the McMillan index set of W ( b p,ap',(p^. Clearly IM is a subset of the 

nonnegative integers Z a0. Two of the important problems that emerge in relation to the 

parameterisation are defined below:

PARAMETERISATION PROBLEMS: Given a system defined by a pair (np ( s ) , dp ( s ) ) , 

deg \jip (s )] = m , deg \jlp (5 )] = n of coprime polynomials and a polynomial <£>(s),

deg[<jc>(s)] = k  with T f[bp,ap',cp̂  family of solutions, we consider the following 

problems:

i) Minimal Design Problem (MDP): Define the minimal McMillan degree amongst all 

elements of W ( b p,ap',(p) ■

ii) Parameterisation of Proper Solutions Problem (PPSP): Investigation of proper 

solutions and study of properties of the proper family ^ [ b p,ap',(p̂  for any given

polynomial cp(s).

Hi) Index Parameterisation Problem (1PP): Define the McMillan index set IM associated 

with VV[bp,a p\(p} and W  subfamily.

iv) Class Parameterisation Problem (CPP): For every 5  e IM define a parametric 

expression of the equivalent class t M (t) for which SM (¿) = 5 .  Investigation of 

parameterisation aspects of the proper subclass with this degree S .

3.4. THE MINIMAL McMILLAN DEGREE PROBLEM

The study of the above problems involves the polynomial cp(s), deg[<£>(s)] = & 

and its associated coefficient vector (p e R*+1, as well as the order (//, v) of the sought
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solutions. If we denote Z +0 the set of natural numbers (positive integers including zero) 

and

Qm,n -{(/*>v )'- v > m - 1} (3.19a)

then by Qm n we denote the complementary set of Qmn with respect to Z +0 x Z\

Qn* - { ( v > v Y  ^ < n ~ l V v e  N or v < m - \  \/ju e N | (3.19b)

The set Qm n will be referred as regular and Qm n as irregular set of orders. The solution 

to the minimal design problem is considered now for regular and irregular orders and for 

given degree polynomials <p(s).

Proposition (3.3): Let <p(s) be such that k < m  + n - 1. The minimal McMillan degree 

solution is defined by searching through all pairs (,u,v ) for which

j u < n - \ , v < m - \  (3.20)

and the following condition is satisfied

p e t a l  (T ™ (b p,apj)  (3.21)

and selecting the one with min |max {//, v]]

Proof:

Note that the dimension of (p vector is max {/n + // +1,« + v +1 ] and thus if 

k = d e g [^ (s )]  then

k + \ = max{m + // + l,n + v + l |

The above, together with k  +1 < m + n imlies that

max{w + ju + l,n + v + l} < m + n (3.22)
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we distinguish the cases

i) Assume m + /u>n + v . Then (3.22) implies

1 + m + /j  <m + n —» ju < n - 1 

From m + /u>n + v  —> ju> n - m  + v and thus

n - \ > j u > n - m  + v —> n - l > n - m  + v —> v o n - 1

ii) Assume m + /u<n + v . Then (3.22) implies

1 + v + n <m + n —> v < w - 1  

From m + / /< n  + v —> v > m - n  + /u —» /j . < n -1

The conditions v < m - 1 imply that (/¿,v) is irregular and a solution exists

only when <p e h n ( r ”;" )).

If there is no (a ^ )  such that the above condition is satisfied, then for jj = n - \ ,  

v = m - 1 we have a solution, the Sylvester solution which is the minimal. ■

The above case clearly corresponds to irregular orders if a solution exists for some 

fj. < n - 1 , v < /« - 1  and a searching procedure for determing the minimum can be 

defined. Note that such search is restricted to the testing of a finite number of conditions, 

since if one of the jj,,v  becomes larger than n — \,m — \ ,  then it has to be constrained by 

the inequality

k = max (m + ju, n + v) < m + n - 1 (3.23)

because otherwise

k -  max (m + ju,n + v^>m + n - \ (3.24)

then for the polynomial ip (s), we always have the Sylvester solution as the minimal one. 

This leads to the next result readily reduced from the above.
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Corollary (3.4): Let m < n ,  k <n + m - \ . The search for the minimum , v*) -order 

solution of the Diophantine equation is reduced to testing condition (3.21) successively 

for matrices T™’" [bp,ap j corresponding to the pairs:

v = 0, /u = 0 , \ , . . . , n - m  

v - l ,  ju = 0 , \ , . . . , n -m  + \

i (3.25)

v = m - 1, ju = 0,1,...,n —m + v = n — l

The first matrix for which (3.21) is satisfied reveals the optimal i j u , v j .  ■

Example (3.2): Consider the system of Example (3.1) where m = 2 ,  n = 5 and since 

k + \ = m + n = 7, we examine the assignment of polynomials with degree k < 6 . We thus 

distinguish the following cases:

Case fa): k < 5 : and thus k + \ = n + l = 6 . In this case v = 0 and // may take the values 

ju = 0 , /j  = 1, n  = 2, j u - n - m  + v = 5 - 2  + 0 = 3. This implies testing (3.21) for the 

matrix

~K 0 0 0 a0

bo 0 0 a\
b2 bx bo 0 a2
0 b2 bx bo a2
0 0 b2 bx a4
0 0 0 h2 1

If (3.20) is satisfied for the given <p(s) with the vector cp the 6-dimentional coefficient 

vector and the matrix Tx above, then v  = 0 and the exact value of ¡i is revealed by 

testing successfully (3.21) for the following set of submatrices of 7J
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bo ao \ 0 a0 bo 0 0 a,o
ax b\ K «1 h bo 0 ax

b2 a2
T' =

b2 b\ a2 T2 = b2 bx bo a2
0 a3

1
5 0 h2 a3 J

5 0 b2 bx a.,
0 aA 0 0 aA 0 0 b2 a4
0 1 0 0 1 0 0 0 1

C“ = o) ( ^  = 1) (^  = 2) (/^ = 3)

The above tests reveal that the minimal value of /j, as the order of the first submatrix 

from the sequence {T° ,T' ,T 2 for which (3.21) is satisfied. This specifies the 

minimal order (//*, v* j .

Case (b): k <6:  If k = 6 or k <6 and the testing of condition (3.21) has failed for 7], 

then we consider v = 1 and // may take the values /u = 0 , ju = \ , ju = 2,  ju = 3, 

// = 4 = n -  m +1. This implies testing (3.21) for the matrix

' ¿ o 0 0 0 a0

1--------
O

bi K 0 0 a x ao
b2 bx bo 0 a2 ax
0 b2 \ bo « 3 a2
0 0 b2 bx aA « 3

0 0 0 b2 1 aA

1

O 0 0 0 0 1

Note that T2 corresponds to ju = 3, since for // = 4 , v = 1, the resulting matrix is the 

Sylvester and (3.21) is satisfied. If condition (3.21) is satisfied for a given (p[s) with cp 

7-dimensional coefficient vector and the matrix T2 above, then v = 1 and the exact value 

of n  is revealed by testing successively (3.21) for the following submatrices of T2 :
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K a0 0" K 0 a0 O ' 60 0 0 a0 0"

a. ao bx bo a, a0 0 a, a0

b2 a2 a, b2 \ a2 a, bo a2 «.
0 «3 a2 r  

1 2 0 b 2 a3 a 2
T2 
1 2 0 ¿2 a3 a 2

0 «4 a 3
5

0 0 a 4 a3
5

0 0 b2 «4 «3
0 1 aA 0 0 1 «4 0 0 0 1 «4
0 0 1 _ 0 0 0 1 _0 0 0 0 1

(/* = o) (/* = i) (/u = 2) ( ^ = 3)

The above tests reveal the minimal value of // as the order of the first submatrix from the 

sequence j r 2° ,r2I, r 22,7’23j for which (3.21) is satisfied. This leads to the specification of

, v ' \  minimal order. ■

For polynomials with degree k > m  + n - 1 the minimal McMillan degree solution is 

defined below.

Corollary (3.5): Let m < n  and k  = deg ~^n + m -1 .  For every such ^ ( j ) e R [ i ]

the Diophantine equation has a solution, which has the following properties:

i) If k\  m + n - \ < k  < 2 n - \ , then the minimal order is defined by 

(//*, v* j = (n - 1, k -  n) and 5 * = n -1 .

ii) If k : 2n -1  < k , then the minimal order is i //*, v* J = [n - 1,k - n) and 5 * = k - n  

Proof:

For the case k = m + n -1  we have the Sylvester solution and thus if l (bp,ap ) = T*,

then for any k > m + n - 1 we can consider the matrix T™’" (bp,ap ) where fi = n - 1 and 

v = t  + ( m - \ )  = k - n  . This matrix is clearly of the form:
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X o o

r

X

... 
o

1 X X

0 1 X
0

0

X

0 1

and has clearly a full rank. Thus cp can be assigned with /i = n - 1 and v* = k - n . 

Clearly, if k < 2 n - \ ,  8* = m ax{n- l , k - n }  = n - l , whereas, if k > n - 1, then

8 * = k - n .

3.5. PARAMETERISATION OF PROPER SOLUTIONS

The analysis so far deals with the minimal design problem and provides a complete 

solution. The existence of proper solutions of the Diophantine equation has been 

established by remark (3.3), which also defines an upper bound for proper controller. In 

the study of propemess we will use the following Toeplitz matrices:

rpm,n rpm,n  ^  a  'j &  j j ( n + v /+l)x(2v'+2) (3.26)

where it is assumed that m < n ,  v = 0 ,1 ,2 ,...,« -1  and we denote by iTvm’n the space 

cT™’n = colsp\Tvm’n | . A vector x  e <Tvm'n will be called a normal vector of the subspace, if 

x <£ colsp [bp,ap j . In terms of this notation we may state:
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Theorem 3.4: Let m < n  , k = deg [^ ( s ) ]  and cp be the coefficient vector of <p(s). The

family of proper solutions of the Diophantine equation has the following properties:

i) If k < n , then there exists no proper solution.

ii) If n < k < 2 n - 2 , then proper solutions exist, if and only if cp is for some 

v = 0 ,1 ,2 ,...,« -1 , a normal vector of T '™'n space. Furthermore, if such solution

exists, it is uniquely defined and the minimal v for which the above property holds 

determines the proper minimal McMillan degree solution.

iii) If k > 2n - 1 ,  then for every polynomial cp(s) , there exists a proper solution with

minimal McMillan degree 8" - k  — n.

Proof:

i) By the structure of (bp,ap) we see that if j u < n - m  and k < n , then for any

v , equation (3.5) implies that d0 = dx = ••• = dv -  0 and thus there is no solution. 

Thus we have to consider the case ¡ u > n - m  (i.e. jU = n - m  + T , t > 0 and v> /u 

for properties with dv *  0. Assume now that v =■ pi +a, k < n  and that in equation 

(3.5) we have the form

t  b0 0 ••• 0

: 0
m +1 +  u ,

bm b0
0

^ 0 ••• 0 bm▲ --------------------
n

▼

a0 0- • • 0 a

n + l + v  (3.27a)

n - 1

i •. :

a n - 1

1 w

and for propemess v = n - m  + r + a , (v > jU, a>  0). From the above, it follows that
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the condition k < n implies that the last n of the coordinates of d  vector have to be 

zero i.e. dv = dv_] =■■■ = dv n = 0 where 

n = n + \ + v - ( m  + \ -  ¡u) = n - m - v  -  ju = n - m  + a

The above implies that by increasing v above n - m  the possibility of finding 

proper solutions does not improve since the additional a coordinates in d vector 

(from the end) have to be zero. Thus we consider a = 0 and v -  ¡u = n -  m + z . 

Given then that the number of zero coordinates in d will always be n - m , any 

solutions that may exist will have the property that

The above implies that the structure of T™’" (bp,ap  ̂ for v = j u - ( n - m )  is of the 

type described below

o0
 

-cf
1

a0 0 0
c0 %

: o a0 c, <Px

; b0
c

—

bm \ a ,
d0 <Pk

n-1 0
o : 1

0 a ,n—l dv 0-cf

oo_____1 0 . . .  0 1 v _

(3.27b)

and thus the condition k <n implies that the above yields

b b . •••m m-1 ak Ck-M
o bm
; o 1 cu

m + ju - k
0 •. ak d0

V .OO

0 ••• 0 1 d v
r -----------------------►

m + j u - k

(3.27c)
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The only way (3.27c) can imply propemess is when some of the c ,c v ..., become 

zero.

However, if c = 0 , then (3.27) implies that dv = 0 and so forth. Thus, whatever 

solution they exist, they have f i > v  and they are non-proper.

ii) From the proof of part (i) it follows that it suffices to consider the case // = v and 

for k > n .  Note that the matrices T"l,n have more rows than columns when 

« + l-t-v > 2 (v  + l) —> v < n - 1

and thus the maximal degree of k has to be such that 

\ + k < n  + \ + v  = n + \ + n - 2  = 2 n - \  i.e. k < 2 n - 2 .  Solvability with proper 

controller implies testing <p e T /1’" with v = 0 ,1 ,... ,« -2  and with the additional

properties that if for some v this condition is satisfied, then we would like to 

guarantee normal membership. The latter is important, since otherwise the solution 

may have a reduced v , which implies non-propemess. Clearly, testing the condition 

cp e <Tvm,n, starting v = 0,1,... reveals the proper minimal solution.

iii) By corollary (3.2) the result is established for k = 2 n - \  and with a McMillan 

degree 5 = n - 1. For any k > 2 n - 1, condition (3.14a) may be extended to

= <Pk (3.28)

<-------- ►
n - m  + t

TA h ) Y

^  k + l-[m + n ),n k+ \-(m +n),m X
— n-m +T

where we assume v = k - n  for V k > 2n - 1 write such k  as k ~ 2 n - \  + T , z>  0. 

Clearly, X  has the form
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1 «„-1 ■ ■
0 1 a

X  =

■. an-1
0 .............  0 1

and it is full rank. Thus, a proper solution exists and it is of minimal McMillan 

degree, which by construction is S - m - \  + n - m  + T - n - \  + T = k - n  (since 

k = 2 n - \  + z). m

Corollary (3.6): The minimal degree polynomial for which there always exists a proper 

controller has McMillan degree 5 * = « - l .  For polynomials with k : n < k < 2 n - 2  the 

existence of proper solutions is a non-generic property. If k < n there is no proper 

solution for any <p(s) . ■

Example (3.3): The search for proper solutions is examined here for the case of 

polynomials with m = 2 , n = 5 (example (3.1)). We first note that

1
oQ 1
o

1__ <Po
bx ax bi «1 Pi
b2 a2

and
b2 a2 co (Pi

0 a3 0 a3 d0. (Pi
0 a4 0 a4 Va

_° 1 _ ° 1 _ 0

implies d0 = 0 and thus there is no proper solution for k  = 4 < 5. Solutions for k <5 may

exist if  we consider the case for instance of the Sylvester system

K 0 0 0 0 a0 o ' co Vo
h 0 0 0 ax a0 cl Vx
b2 bx bo 0 0 a2 a. C2 v 2

0 bo 0 a, ai C 3
= V3

0 0 b2 bl bo aA a3 C4 V4
0 0 0 b2 b> 1 aA do Vs
0 0 0 0 b2 0 1 Ve.

V ^ e R 7
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which however for \fcp (or a generic cp) has a non-proper solution.

Proper solution for families of polynomials may exist but such families are defined as 

sets with measure zero. In fact by considering the matrices

1
d3

- 0 0 a0 0 O'
b o

b.

0 a o

a,
O'

K a o
b0
b.

a o

a.

b\ b0 0 ai a0 0

\ ai
1

b ,

1
a,

b2 \ b0 a2 a1 ci0

b2
0

a2 

a3

n n 2 ,5  ___

’ ~

s 0
 

0

0
 d

3“ 
-

a3

aA

1
a2
a3

II 0
0

b2

0
k
b0

a2

a4

a2

a.,

ax
a2

0 a. 4 3 0 0 0 1 a A a.4 0 0 1 a. 4 3

0 1 4 0 0 0 0 1 a.
0 0 0 1 4

_0 0 0 0 0 1

7 >2,5  _  

■ '3,3 —

K 0 0 0 a0 0 0 o '

b0 0 0 ax ao 0 0
b2 K b0 0 a2 ax a0 0
0 b2 b i b0 «3 a2 ax a0
0 0 b2 by « 4 a3 a2 ax
0 0 0 b2 1 « 4 «3 a2
0 0 0 0 0 1 aA a3
0 0 0 0 0 0 1 aA

_0 0 0 0 0 0 0 1

b0 0 0 0 0 a0 0 0 0 0

by bo 0 0 0 ax a0 0 0 0

b2 by bo 0 0 a2 ax a0 0 0
0 b2 by b0 0 ai a2 ax ao 0
0 0 b2 by b0 a4 a3 a2 ax ao
0 0 0 b2 by 1 «4 a3 a2 ax
0 0 0 0 b2 0 1 a4 a3 a2
0 0 0 0 0 0 0 1 aA a3
0 0 0 0 0 0 0 0 1 a4
0 0 0 0 0 0 0 0 0 1
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we see that the column spaces of , T̂ 5, 7^’5, r32’5 define vector sets characterising

the coefficients of polynomial vectors, which may be assigned by proper compensators. 

Clearly the column spans of such matrices, which have always a component along the 

lost column (needed to guarantee propemess) define the assignable polynomials by 

proper controllers. The matrix is the smallest dimension matrix that guarantees the 

existence of a proper solution for any arbitrary polynomial of degree 2n -1  = 9.

■

In the study of proper solutions we deal with matrices which are ordered (as far as 

column ordering due to Toeplitz structure). For such matrices, or ordered sets of vectors 

{x,, x2,..., x n} we define the notion of the proper span by

sp{xi,x2,. . . ,x n} = {x: x = CjX, +c2x2 +... + ckx k, Vc(. : ck * 0} (3.29)

The notion of the proper span is more restrictive than the usual span notion, since it 

excludes vectors which are in sp lx j,...,* ^ ,}  . In terms of the notion of the proper span

we may now define the following sets, which characterise special solutions of the 

Diophantine equation; these sets characterise the family of normal vectors in the spaces 

(Tvm'n, v = 0,1,...,« —1 and characterise the polynomials that may be assigned by certain 

McMillan degree compensators.

Definition (3.2): Let bp e  M"'+l, ap e JR"+1, m < n  , and consider the Toeplitz matrices 

defined by (3.25) for v = 0 , 1 , 1  as

If <Tvm’n = colsp |Tm’" | , then we define the proper subset of (Tlm'n, and shall denote it by

Tv , the set of all proper vectors of (Tlm'n.
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Corollary (3.7): For any bp e R m+1, ap e M”+1, m < n , the family of polynomials with 

degree k \  k = n + v, v = 0,1,..., n -1  which may be assigned by proper compensators of

—- m,n
McMillan degree v  is given by the vectors in T v .

We consider next the parameterisation of the family of all solutions for a given (p(s) and

in particular the parameterisation of the proper family of solutions. By considering as a 

basis for the parameterisation the minimal solution (proper, or non-proper) that has been 

previously defined, we have from corollary (3.1):

Remark (3.6): If (»c(j),<?f (s)) is the minimal McMillan degree solution of the 

Diophantine equation (3.3) that corresponds to the k degree polynomial (p(s), then the 

whole family of solutions for the same polynomial ^ ( s ) , Vk\bp,ap\(p) is defined by

nc( s ) ^ n c(s) + i ( s )d p (s)

, d c ( s )  =  d e ( s ) - t ( s ) n p ( s )  ’

t(s)  e IRfs] 

arbitrary

(3.30)

The above leads to the following results dealing with the parameterisation issues:

Corollary(3.8): If S* is the minimal McMillan degree of the family that corresponds to 

a given (p^s), then the McMillan index set IM of W ( b p,ap\(p} is defined by:

IM = [t>’; maxjm,«} + k, k  = 0,1,2,...| (3.31)

Proof:

By (3.30), if  t (5 ) = 0, then the minimal solution is 5*. If degTf (s)] = k , then given that 

for the minimal solution / / < « - ! ,  v* < m - 1, we have that
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< M & M ) = max[n  + k,m + k] ,  since an,bm* 0 , or otherwise max{m,n] + k for 

A: = 0,1,2,... ■

Corollary(3.9): The element of W [ b p,ap\(p} family that corresponds to the minimal 

McMillan degree, where 5J = m ax\m, n\ + j  is parameterised by

< _ (3.32)

where ¿(s) e R [s], degjt(s)} = j

Proof:

For any i ( s ) e R [ s ]  with deg [t(s)] = j  it is clear that SM (^ (^ )) = m ax[m,n] + j  and 

thus by fixing the degree of t(s)  we remain within the family of the given 

8]. = max{m,n} + j  index. For any other choice of degree for t(s) ,  i.e. 

d e g [/( j) ]  = k ^  j , then the corresponding controller will have McMillan degree 

max {m,n] + k ^  max [m, n} + j  and thus it will belong to a different subfamily.

The above results deal with the parameterisation issues of the general solution family. 

Next we consider the parameterisation issues for the proper subfamily of controllers. In 

the following we shall use the Toeplitz representation of the general family, which 

follows from Remark (3.6) and it is described below:

Remark (3.7): If (wc( s ) ,</,(*)) is the minimal McMillan degree solution of the

Diophantine equation that corresponds to the k  degree polynomial, then the Toeplitz 

representation of the general solution vector is given by:
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co ---
-1 cP
’ 1

«0 0 0 ‘

C1 c, ao
0

ao
an-X

h 1
0 0

an-1

s 0
+

0 ... 0 1
d0 d0 K

4 dx bo

bo

dy
0 bo

0

1 -s 1 _0 0 ... 0 1

(3 .33)

where nc (s) = c0 + ... + spc - , dc (5 ) = d0 + ... + svd- and the general solution is described 

by nc (s) = c0 + ... + spc , dc (s) = d0 + ... + srdr , where

/? = deg[nc(s)] = max{/},# + «} = # + « r = deg[i/c (5 )] = max{v,6 + m} = 9 + m , and

0 = deg[f(j)], t{s) = tQ+... + s°tg a

Note that a similar expression to the one given above may be given, if we use as 

fundamental solution any other solution apart from the minimal. The parameterisation of 

proper solutions of the Diophantine equation has the following properties:
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Corollary (3.10): Let m < n ,  k = deg[^(.s')j and S'  be the minimal McMillan degree 

solution for the given (p{s). The family of proper solutions of the Diophantine equation 

for different polynomials (p{s) has the following properties:

a) For all <p(s) with k < In  -  2 for which 5 * < n -1 ,  then the following properties hold 

true:

i) If the minimal solution is non-proper, then all solutions in FF\bp,ap\q>) are 

non-proper

ii) If the minimal solution is proper, then it is the only proper element of the 

4F(<bp,a„\<p) family

b) For all cp(s) with k > 2n - 1 ,  there exists a proper minimal McMillan degree solution

{rCc ( i ) ) , with S * = k - n > n ,  where

nc (s) = c0+... + sd c ., d*(s) = d0+... + ss d , d ± 0 (3.34a)

Furthermore, the MJ[bp,ap\(p} family contains a maximal subfamily of proper 

solutions W [ b p,ap\(p}, all of them having McMillan degree S \  which is defined 

in parametric form by

nc(s ) = nc (s ) + dp (s ) i (s )

¿c(s ) = i/c ( s ) - nA s) ' ( s)
(3.34b)

where i ( s ) e R [ i ]  arbitrary with deg \ j  (5)] - o  <5* - n  = k - 2 n  .

Proof:

a) By using Theorem (3.4) and expression (3.33) it follows that since 

S* = max (/r, v) < n -1 ,  then the general solution will have

nc (s) = nc (s) + t ( s ) d p (5 ) , dc (s) = d* ( s ) - t ( s ) n p (s)
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and thus

deg \jic (s )]  = max {deg [n* (s)],<x + nj =max{//,cr + «} = a  + n 

d e g [ < ( i ) ]  = max |  deg [if* (5 )] , cr + mj =m ax{n,(j + m} - a  + m

If (nc (5 ), if* (x’) j is non-proper then from the above it follows that for all t(s  j 

deg [nc (5 )] = cr + n > deg [ifc (5 )] = a  + m and thus all other solutions are non-

proper. If («* ( s ) , d ’c (5 )) is proper, then the above proves that all other solutions 

are non-proper and thus the minimal solution is the unique proper one.

b) Since 8*>n,  (3.33) indicates that if er = d eg [/(s )] < ¿ T -n  = £ -2 «  , then 

deg[ <  ( s ) - n p (5 ) t (5 )] = S' > deg[nc (s) -  dp (s)t  (s )]

= max {deg [ < ( * ) ] ,  n + <j I = max {<T,« + crj 

Note, that if deg [/ (5 )] > k -  2 n , then

deg [if* ( s ) - n p (s)z(,s)J < deg[n* ( s ) - d p (s)z(.s)J then all solutions are non-

proper.

For the case bi-proper systems (m = n) we have the following result describing the 

properties of ^ ( b p,ap-,(p}.

Corollary (3.11): Let (m - n ) , k = deg[<p(s)] and 8 * be the minimal McMillan degree 

solution for the given order k . For the family w { b p,ap\(p} we have the properties:

a) If cp[s) is generic, then the minimal k for which there exists a proper solution is 

k  = 2n - 1 .  Furthermore, this solution is uniquely defined and 8 ‘mn = 8 = n -1 .
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b) For every <£>(s) such that k > 2 n - \ ,  the family W([bp,ap;(p) has all its elements

proper, the minimal solutions have 5 * = k - n ,  they are not uniquely defined and 

generically bi-proper.

c) If {n*c (s),d'c (s)) is a 8* = k - n  minimal McMillan degree solution for k > 2 n -  \ , 

the family of solutions

” c  ( * )  =  * ; ( * )  +  < * , ( * ) * ( * )

d c ( S )  =  d c ( S ) - n p ( S ) t ( S )

has all its elements proper for every t ( s ) . Furthermore this family may be 

partitioned into subfamilies with fixed McMillan degree as shown below:

i) If deg (s ) l  = a  < k  -  2n , then the McMillan degree of the subfamily is 

S = k —n .

ii) If deg \ j  (5 )] = cr> k - 2 n ,  then for all such t(s )  the subfamily has 

8 = cr + n> k - n  degree.

The proof of the result is rather obvious and follows along the same lines with the 

previous proofs.

Example (3.4): Consider the case m = n = 3 and shall investigate the parameterisation of 

the overall family of solutions M2[bp,ap\(p̂  for all possible values of k .

Case (I): Clearly the minimal k for is for k = 2n -1  = 6 -1  = 5 and this corresponds to 

the solution of
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bo 0 0

bx bo 0
b2 bx bo
bl b2 bx
0 b2 b2
0 0 b2

a0 0 0
a, a0 0

a2 a1 «0
1 a2 a.
0 1 a2
0 0 1

*0 %
c, <Px
2̂ <P2

d0 <Pl
d,

d2 _ JPs_

Which is uniquely defined. For t (5 ) = t0 we have

co

1
__

1 a0

C X
c, «1

C2 b2 «2
C2 0 1

— +
d0 do -A
dx dx -A
d '2 d2 b2

u j _ 0 r b3 _

with S = a  + n = 0 + 3 > k - n = 5 -  3 = 2

For i (s) = ¿jS+ t0 we have

C0

I
' 

00
' 

__
_J a0 0 '

C! cx a, a0

C2 ¿2 a2 ax
C3 0 1 a2

C1
0 0 1

+
4> d 0 ~bo 0

d. d. ~bx ~K
d2 d2 ~b2 ~bx
d2 0 b2 b2

_d3 _ 0 _ 0 b3 _

with S = a  + n - \  + 3 > k - n  = 2
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and similarly for t (s)  = t0+tls + ... + trsr , tr * 0 we obtain the corresponding family with 

5  = cr + n = r + n.

Case (II): Consider now the case where we could like to assign a polynomial with degree 

k = 7 (not the absolute minimum). A minimal McMillan degree that corresponds to 

k = 7 is defined with S'  = £ -  « = 7 -  3 = 4 and computed from the equation

bo 0 0 a0 0 0 0 O' co %
b> bo 0 ax a0 0 0 0 < <Px
b2 bo a2 ax ao 0 0 C2 <p2
bi b2 \ 1 a2 ai 0 0 do <P2
0 bs b2 0 1 a2 0 0 d[ (P̂
0 0 b3 0 0 1 0 0 d2
0 0 0 0 0 0 0 0 d ’ %
0 0 0 0 0 0 0 0 M JPl _

d ’4 =<p7 * 0

We consider now the families of solutions defined by

co co a0 0 0 0 '

C1 C[ ax a0 0 0
c2 4 a2 a\ «0 0

C3 0 0 a2 a, a0

C4 0 0 0 a2 ax

C5 0 0 0 0 a2

C6 0
+

0 0 0 0

d0 do ~bo 0 0 0
d{ d[ ~bo 0 0

d2 d2 -b2 ~bo 0

d2 d\ - h h2 ~bo
d4 d\ 0 -b , -K

d5 0 0 0 ~b} -b2

2̂ | 0 0 0 0 b3 _

Then we distinguish the cases:
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i) d e g [ /( i) ]  = (j< Â :-2«  = 7 - 6  = l, i.e. All solutions are proper with

S = k - n  = 7 - 3  = 4 , which is equal to the minimal.

ii) d eg [i(s )]  = < r > £ - 2 n  = l.  All solutions are proper and if t3 = 0, then <7 = 5, 

whereas if t3 ^  0, i.e. a  = 3, then all resulting solutions are proper with 5 = 6. 
Clearly, if cr = r,  then the corresponding family has McMillan degree S = n + o

3.6. DISCUSSION

In this chapter we have developed a complete analysis of the properties of the 

solutions of scalar Diophantine equations. We focus on the investigation of the proper 

solution, a problem that is related to the pole assignment for SISO systems. The minimal 

McMillan degree solution was characterised and parameterisations of the family of 

solutions according to McMillan degree was given. The results presented here for the 

scalar Diophantine equation may extend to the case of the vector Diophantine equation, 

or the generalised scalar Diophantine equation

x, (s)fl, (s) + *2 (j ) a 2 (s) + ... + xB (s)fl„ (s) = <p(s)

where a (5 ) e  M[s] given and xt (5 ) e  R[s] are the unknowns.
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Chapter 4.
STRUCTURE AND PROPERTIES OF RESULTANTS 
AND THEIR USE IN THE CHARACTERISATION OF 
THE GCD OF MANY POLYNOMIALS
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4.1. INTRODUCTION

The computation of the greatest common divisor (gcd) o f a set o f polynomials 

has attracted a lot o f attention in the recent years ([Barnett, 1983], [Vardoulakis et ah, 

1978], [Pace et ah, 1973], [Karcanias, 1987], [Mitrouli et ah, 1993], [Karcanias et ah, 

1994] and references therein) and has widespread applications in linear system, 

network theory and control [Rosenbrock, 1970], [Kailath, 1980], The methodologies 

dealing with gcd computation may be distinguished into those based on Euclid’s 

algorithm and the matrix based methodologies. The class of matrix based 

methodologies is based on the properties o f the Basis matrix [Karcanias, 1987], or the 

Generalised Sylvester Resultant [Barnett, 1972] of the given set o f polynomials and 

have the advantage that can deal simultaneously with many polynomials and reduce 

computation of gcd to standard linear algebra problems. In particular, the matrix 

pencil approach [Karcanias et ah, 1994] provides an efficient procedure and 

establishes links with standard problems of system theory. The ERES method 

[Mitrouli et ah, 1993] exploits the invariance properties of the gcd under row 

transformations and shifting [Karcanias, 1987] and allows the derivation of 

“approximate gcd”, when the system data are not accurate. The Generalised Sylvester 

Resultant [Barnett, 1990], [Vardoulakis et ah, 1978] provides a simple 

characterisation of coprimeness and a procedure for gcd computation, but increases 

the number o f polynomials used considerably. As far as improving existing 

computational methods, there are clear advantages in linking ERES, Matrix pencil 

and Generalised Resultant approaches.

This chapter deals with the development of some basic properties of resultants 

and with two matrix based algorithms for the computation of the greatest common 

divisor (gcd) o f a set o f polynomials. A new proof of the resultant theorem is shown 

in this chapter based on a new property of the Sylvester matrix. This proof also 

establishes the isomorphism expressing the factorisation out of factors or gcd as an 

equivalent Toeplitz matrix in the resultant representation set up. This property 

expresses also the invariance of the remaining coprime factors o f the polynomials 

under appropriate column operations. An implementation of one o f these algorithms
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using MATLAB 5.3, is also suggested. All basic propositions, in this paragraph, are 

proved by using simple algebraic properties.

The new results in combination with the ERES and Matrix pencil methods will 

then provide simplified procedures for the gcd computation and a new representation 

o f the gcd. Central to these developments are results on the factorisation of resultants 

in terms o f reduced order resultants and square Toeplitz matrices. Such factorisations 

are equivalent to the extraction o f common factors from the set of polynomials; the 

gcd is then represented by a Toeplitz matrix with an irreducible reduced order 

generalised resultant expressing the remaining polynomials in the factorisation. This 

new representation o f the gcd allows the unification of a number o f known results and 

the development of a simplified version of ERES method that avoids the operation of 

shifting. The new representation o f the gcd based on the canonical factorisation of the 

Generalised Resultant into a reduced resultant and a Toeplitz matrix defining the gcd 

opens new ways for study of approximate solutions to gcd evaluation given that it 

provides a minimal parametric description for possible gcds.

The matrix-pencil algorithm, introduced by [Karcanias, 1987], combines the 

mathematical theory on the matrix-pencils developed by [Gantmacher, 1988], with 

properties o f Control Theory. In this Chapter a variation of the matrix pencil 

algorithm is described that uses the resultant set o f polynomials associated with the 

given set. The advantage o f this augmentation of the original set is that the right 

kernel o f the resultant set completely characterises the GCD and this leads to a 

simpler formulation of the matrix pencil algorithm. The factorisation o f resultants in 

terms o f reduced resultant and Toeplitz representations of the GCD provide the means 

for discussing approximate GCD ideas in subsequent chapters.

4.2. DEFINITIONS AND PRELIMINARY RESULTS

Construction of Sylvester Resultant

The construction o f the Sylvester matrix [Barnett, 1990] is described here 

initially for the case o f two polynomials. In this case the Sylvester matrix is square. 

The Sylvester matrix for a set o f three or more polynomials is based on the case of 

two as the dimensions are defined by the two polynomials o f the highest degree.
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Consider two polynomials a(s )  = s n + an_xsn~] + . . .axs + a0 and

b(s)  = b s p +bp_ls p~] + ...bxs + b0 where 0 (5) is monic, and suppose that

deg{h(s)| < d e g (5)}. If the polynomials have a common factor, this means that

there exists a value o f s = s0 for which the equations a (s 0) = 0 , h (s0) = 0 are

simultaneously satisfied. If we multiply the first equation by, sp~ \s p~2 , . . . ,s , \  

respectively, we obtain the n equations

sn+pA + anAsn+p-2 +... + axs n + a0s nA = 0 '

sn+p-2 + a ,sn+p-3 +... + a.spA + s p~2 = 0
. \ (4.1)

s" +anAsnA +... + axs + a0 = 0

Similarly, if  we multiply the second equation by s n 1 ,s" 2,...,.s,l , respectively we 

obtain the m equations

„ n + p - i  u  „ n  +  p - 2  j c n  a _ U  o”“1 _  Q

=  0

bps n+p-' +bp_]Sn+p-2 + ... + bxsn +b0s"-]
n + p - 2  . 1 n + p - 3bps n+p-2 +bp_ls n+p-i +... + bxsn~] + s n~2

bpsP +bpAsPA +--- + bxs + b0 =  0

(4.2)

It is readily established by using factorisation of the above polynomials, that 

such operations do not affect the g.c.d. of the original two polynomials. In fact the set 

(P = |<a (^ ) ,¿>(^)| and the resulting set

s M = { - W  , ) , . . . , sp 'a(s),b(s),sb(s), . . . ,s" 'b(,s)j has the same g.c.d.. The 

set 5'[(p] is called the Sylvester Resultant set of the original set <P = j<3(s),b(.s')j of 

polynomials. Such a construction leads to the following definition:

Definition 4.1: [Barnett, 1990] Given a set o f polynomials <P = |a ( i ) ,h ( s ) |  the 

matrix o f coefficients S e  0p ^ g  + p  ̂ Sylvester Resultant set of (P ,

*S[(p] , defined as:
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where Ph+i e ]g4/,+1W',+1) is referred to as a basis matrix (bm) of <P and Ph+X (5 ) as a

vector representative (vr) o f <P. If c is the integer for which 

p = p = •••= »  = 0, p ^  0 , then c will be referred to as the order of <P and

it is denoted by c = &>(<?) . The set is called proper if  c = 0 and nonproper, if  c > 1.

Remark (4.2): If c > 1 ,then the set <P, then sc is an elementary divisor (ed) of ^>(s) 

and if c = 0 , then the set <P is coprime at s = 0 (^9(0 ) * 0).

■

On sets o f polynomials we may introduce a notion o f equivalence that preserves 

the properties o f gcd and which provide a usefull framework for its computation 

(Karcanias, 1987).

Definition (4.3): Let <Pmn be a set of polynomials and Pm be its bm. On Pm and thus 

also on <Pm n we may define the following operations:

(i) Elementary row operations with scalars from R on Pm .

(ii) Addition, or elimination of zero rows on Pm .

(iii) If a* = e R lx̂ +1\  ae * 0 is a row of Pm, then we define as the

shifting operation shf : s h f^ a 'j^ a * ' = [0,...0,fls,...,fli ] e R 1><̂ ,  ae ^ 0

■

Type (i), (ii) and (iii) operations are referred to as extended row equivalence and 

shifting (ERES) operations, while extended row equivalence (ERE) will be simply 

used for types (i) and (ii). These operations on Pm have an interpretation on the set 

o f polynomials. In fact, type (i) operations imply that we can rearrange the order, 

scale the coefficients by non-zero constants and substitute a polynomial by a linear 

combination of polynomials of the set. Type (ii) operation imply that we may 

eliminate all zero polynomials, or add any number of zero polynomials, or linear 

combinations o f polynomials o f the set. Type (iii) operations, imply that if  we have 

a polynomial p ( s )  = scp ' ( s ) in the set, then we may substitute it by the polynomial
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/ / ( s ) ,  which clearly has less degree. By s h f w e  shall denote the set

obtained from (Pm n by applying shift on every polynomial. A number of properties

of the gcd under the above transformations are summarised below [Karcanias, 

1987]:

Theorem (4.1): For any set (pm n with a bm Pm , p(P m) = r and gcd{<Pm „]■ = cp[s) we 

have the following properties:

(i) If ^  is the row space o f Pm, then (p{s) is invariant of A . Furthermore, if 

r = dim i^ = n +1, then cp(s) = 1.

(ii) If co((Pmn) = c>  1 and shf (<?„,„) = < „  , then cp{s) = gcd{(Pmn} gcd{<Pm*„}

(iii) If (Pm n is proper, then (p{s) is invariant under ERES operations.

■

The above result forms the basis for the ERES methodology where Gaussian 

transformations with partial pivoting are used together with shifting to produce in a 

finite number of steps the gcd, or approximations of the gcd [Mitrouli et al., 1993], 

Some important properties emerging from this result are:

Remark (4.2): In developing methodologies for computing the gcd the following 

points should be taken into account:

(a) Not all polynomials in (Pm n are needed for the computation o f the gcd; in fact, 

only a subset with the property that it provides a basis for the row space <P of 

Pm is required.

(b) The computation o f gcd may always be reduced to computing the gcd of a proper 

set, if  shifting is applied on the original set.

■

The above suggests that studies of gcd for a set <Pmn may be restricted to any 

subset <Pr n o f <Pm n where r = p (P m) and with the property that the rows of P define 

a basis for the row space A of Pm. Any such subset will be referred to as a normal 

subset of <Pmn and it has at most n +1 elements (p (P M)< n  + 1). For numerical
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computations the selection of the “best” normal subset of <Pm n becomes an important 

issue [Mitrouli et al., 1993],

The classical approaches for the study of coprimeness and determination of the 

gcd makes use o f the Sylvester Resultant which in the case o f many polynomials is 

defined as shown below [Barnett, 1983].

Definition (4.4): Consider the set <Ph+ln = ja (s ) ,6 i (s),z e h, « = deg ja (.s)j, 

n>&Qg\bi (s)}\/ze/z, p=max {deg {&,. (s)} ,z e A ||, where 0 (5 ) , b(s)  are described as: 

«(x) = s” + an_xs n~x + ... + a]s + a0, bi (s) = bips p +... + bils + bi0, i = \,2,...h (4.5) 

(i) We can define a p  x {n + p )  matrix associated with a ( s ) :

“ 1
a n - 1 a n - 2 ••• a, a0 0 • ■ • 0

0 1
a n - 1 a2 a, a0 ••• 0

0 0 1 fl„-, a, a0

and an n x (n  + p )  matrix associated with bl(s):

(4.6a)

5,. =

K r  K r h r - 2 -  h h o 0 0 "

0 Kp h r - x -  h i h h o 0
(4.6b)

0 0 h r  h r -1 h i ho_

for each i = 1,2, • • •, h . An extended Sylvester m atrix  for the set <P is then defined by:

(4.6c)

(ii) The matrix S p is the basis matrix of the set of polynomials 

S[<P] = { a (x ),5 a(s),...,5 p"1a(5 );6 ] (s),...,bh (s) ,sbh (s),. . . ,sn~'bh (x)} (4.7)

which is also referred to as the Sylvester Resultant set of the given set <P .
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From the factorisation property of the polynomials in 5[(P] we have the 

following obvious results.

Proposition (2.1): The gcd of <P is the same as the gcd of S [<?], that is

gcd {<P} = gcd [s  [<?]} (4.8)

■

The above suggests that the resultant set may be used for the evaluation o f gcd. 

Note that y[(P] has more elements than (P , but it is advantageous to use it due to

certain special properties. The Sylvester Resultant characterises the gcd in a simple 

way [Barnett, 1972], The classical result is usually given for two polynomials and this 

is also extended to the case of many polynomials [Vardoulakis et al., 1978]. Here we 

examine certain properties of extraction of divisors from the set (P , which are 

equivalently expressed as factorisation of resultant matrices. This leads to 

establishing a link between factorisation o f resultants and a matrix representation of 

the gcd. The new representation of the gcd provides the means for deriving an 

alternative proof to the classical Resultant Theorem for the cases of many 

polynomials; Furthermore, they enable the simplification of ERES numerical method 

[Mitrouli, et ah, 1991] and the Matrix Pencil Method [Karcanias et ah, 1994] for the 

computation o f the gcd.

4.3. FACTORISATION OF SYLVESTER RESULTANTS AND THE 

MATRIX REPRESENTATION OF GCD

Some known results [Barnett, 1990] related with the Sylvester matrix of two 

polynomials will be described first. New proofs for these classical theorems and new 

properties will be introduced then for the case of many polynomials

4.3.1 Properties of Resultant of two polynomials

The following theorem is a classical result for the study of gcd of two polynomials 

based on the Sylvester resultant matrix.
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Theorem 4.2: (Resultant theorem) [Barnett, 1990] Given two polynomials<2(5 ) and 

6 (5 ) then:

i) A necessary and sufficient condition for two polynomials ¿/(s) and ¿(5 ) to have 

nontrivial g.c.d. is that the Sylvester’s Resultant associated with a(s) and b(s) is 

singular.

ii) The degree o f the greatest common divisor of two polynomials <2(5 ) and b(s), of 

degree n and p  respectively, is equal to:

deg£>(s) = n + p - r a n k S  (4.9)

where S  is the Sylvester’s Resultant associated with a(s) and ô(.s).

iii) If we reduce the Sylvester’s Resultant matrix to its echelon form, the last non-

vanishing row defines the coefficients of the greatest common divisor

Example 4.1: Let <2(5 ) = 3s3 -  2 s2 + 3s -  2 , b(s) = 3s2 + s -  2 then the associated 

Sylvester’s matrix is:

3 -2 3 -2 0

0 3 -2 3 -2

3 1 -2 0 0
0 3 1 -2 0
0 0 3 1 -2

Note that rank(S) = 4 and thus the degree o f the g.c.d ¿/(s) equals to 1. If we reduce 

S  to his echelon row form, using only row operations we find

1
1
3

2
3

0 0

0 1
1
3

2
3

0

0 0 1
1
3

2
3

0 0 0 1
2
3

0 0 0 0 0

From the last non-vanishing row and Theorem 4.3 it is implied that
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d(s) = s -  —
V ’ 3

■

In some applications it is more convenient to use a slightly different form of the 

Sylvester matrix in which the last n rows are in reversed order. In this case we can 

construct centrally situated sub-matrices by successively deleting a row and a column 

all the way round. Then we can define the sub-resultants as follows:

Definition 4.5: We denote the i-th sub-resultant Si of two polynomials the

determinant obtained by striking out the first i and the last i rows and also the first i 

columns and the last i columns from the resultant of these polynomials.

Example 4.2: If we have the polynomials a(s) = a3s 3 + a2s 2 + a}s + a0 and 

b(s) -  b2s 2 + b^s + b0 o f degree 3 and 2 respectively then their resultant R is a 

determinant o f order 5 Rt is the sub-resultant of order 3 and R2 the sub-resultant of 

order 1 as it is shown below.

a3 a2 a, ao 0
0 a3 a2 ai a0
0 R, = 0 R 1 = : b2 : bx bo
0 b2 bx K 0

b2 bx K 0 0

The propositions below use the semi-reversed form of the resultant in order to find 

the degree and the coefficients o f the g.c.d. polynomial.

Proposition 4.2: [Barnett, 1990]: The degree of the greatest common divisor of 

and b(s) where deg a (s )  = n and deg b[s) = m ,  is equal to the subscript of the first 

of the sub-resultants which does not vanish.

■

The next theorem describes an alternative procedure for the evaluation o f the g.c.d. of 

two polynomials:
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Sylvester resultant matrix we examine below apply to any polynomial set. The 

significance of these resultant results is that they lead as to conclusions about the 

degree o f the g.c.d. o f the polynomial set and, under certain type of operations, 

methods for its evaluation. For the establishment of the properties of the Sylvester 

resultant matrix we need to examine some general properties of real polynomials.

The factorisation o f common divisors from the set of polynomials <Ph+l n leads to

factorised or reduced sets and has certain implications on the resultant of the set. In 

fact, such a factorization of polynomials leads to a factorization of the corresponding 

resultant, which in turn provides the basis for the matrix representation of gcd. 

Establishing a representation o f gcd is the subject o f this section and it is equivalent 

to a factorization o f the original resultant into a reduced resultant, (corresponding to 

the remaining factors after extracting the gcd) and a square Toeplitz type matrix 

representing the gcd.

We consider first the case of non-proper sets and then examine the factorization 

of proper sets.

Let (Ph+in={a {s) A { s)>i e fb n = degja(s)},» > deg|Z? (s)} Vz e h, />=max{deg{ô((s)}}J. 

If  c = ¿u((PA+1 n | , then we have the obvious factorisation

a (^ ) = 5câ (^ ) , bt (s) = scbj (5 ), Vz e h (4.10)

where deg{â(,s)} = n - c ,  /> = maxjdeg{h; (s)jj = p - c  and the set

(Ph+ln-c ={a(s),t>i(s),ieh} is the reduced set of factorisation o f the sc factor. The

presence o f the common factor in (PA+i n implies that the corresponding generalised

resultant Sv has the following form

Sv = [Sê | 0f ] e M (p+ta)x("+p) (4.11a)

where 0c is c column block of zeros and S$ is the nonzero part o f the Srp Sylvester 

resultant. Note that S$ has the form of the resultant and in fact is the expansion of the 

resultant o f the <Ph+Xn_c set o f polynomials from the ( n - c , p - c )  degrees to (»,/?); 

that is we assume that the two maximal degrees are n ,p  respectively and then we
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drop the first c zero columns of the matrix. Because of the links of S f to the 

resultant o f <Ph+l n_c when we assume that the two maximal degrees are (n, p ), S# will 

be called an (n, p )  -expanded resultant o f the (PA+]n_c set. Expression (4.11a) readily 

implies the following result.

Proposition (4.3): The Sylvester resultant of the c -order set (PA+1 n may be expressed 

as

0
[o ! s J|_ c i J

I n+P- c  0
(4.11b)

This obvious result (block permutation) implies a general property that is 

examined next, that is the extraction of common divisor (in this case sc ) is equivalent 

to a factorization o f the Sylvester resultant. This factorization is expressed in terms of 

two matrices S~ and Qc , where is referred to as a reduced resultant of ST and Q, 

is a Toeplitz matrix o f (n + p ) x ( n  + p )  dimensions characterising the divisor sc . 

Thus, (4.1 lb) may be interpreted as the representation o f the (4.10) factorization.

The representation of the sc common divisor is now extended to the case of 

general, not necessarily divisors at 5 = 0 . Thus let <PA = |a ( s ) ,è j  (s ) , . . . ,b h (s)} be a

set of polynomials such that a ( s )  = ans" + ... + a]s + a0 bt (5 ) = bips p + ... + bt ,5 + bi0,

p < n  and let (5 - r ) ,  r ^ O  be a common factor o f ¿2(5 ) and 6 ,(5 ) i = \, . . . ,h .  

Then we can write:

a (5 ) = ( 5 - r ) ( a 'M5"'1 +a'n_2sn~2 +... + a[s + a ' ) (4.12)

^  (s)  = ( 5  -  r)(b'i ny - x + b'i n_2s n-2 + ... + b'ixs + b'i 0 ) i = 1, . . . , h (4.13)

which express algebraically the factorisation of (s ~ /•) factor. The matrix 

representation o f this factorisation is expressed as shown below:

Proposition(4.4): Let (Ph = |a (5 ) ,è t (s ) , . . . ,b h (5 )} be a set of polynomials such that 

dega (s )  = n ,  degb,.(5 ) < p, i = l, . . . ,n , p < n  and let (5 - r )  be a common
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devisor o f the elements o f (Ph, with r * 0. Then, there always exists a transformation 

Qr defined as in (4.14) and a reduced resultant S^) defined as shown in (4.15) where 

<P' is the reduced polynomial set after extraction of ( s - r )  factor such that if  Sip is 

the resultant of <P , there is a reduced resultant S#) such that

1
0 0 0 • 0 0 0

r
11

•• 0 0 • 0 0 0
r 2 r

1
r k~'

1
rk~x

1
r

0 • 0 0 0

1
r k

1
7

1
r 2

1
r

0 0 0
(4.14)

1 1 1 1 1 1
f.n+p-] r ”+p-2 rl~2 r l~3 r 2 r

1 1 1 1 1 1
r »+p r »+P~ 1 r'~x r l~2 r 3 r 2

= s v q : +p

0 a 'n- 1 a'o 0 0

..
. 

0 0 a 'n- 1 a'o

0

0 0 o a'o

0 K o 0 0

..
. 

O 0
KP~]

K o  '

0

0 0 0  K p - i K o

0 K p - x K o
0 0

0 0
K p - i K o  '

0

0 0 0 K p - i K o

(4.15)

(4.16)
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Proof:

By (4.12) (4.13) and the definitions of the polynomials it is implied that 

an = a'n-p ai =a'i_l -ra'i = a0 =ra'0 (4.17)

Kp = K p- 1 ’ K j  = K j - 1 - rK j  = bi0 = rb'i0, i = l , . . . ,h  (4.18)

and thus the respective Sylvester matrix will have the form indicated in (4.19). 

Supposing r * 0 , we can perform the transformations:

i) multiply the last column by -  — and
r

ii) subtract it from the n + p  -1  column of Sv .

Then the resulting matrix that is derived from (4.19) has the form indicated in (4.20)

a ' n - 2 - r a 'n-X ~ r a ' 0 0 0

■ 
o

<-l a 'g - r a [  - r a ' 0 0

0 0 «',-1 a [  -  r a '2 a '0 -  r a [ - r a ' Q

K p - i K p - 2 ~rKo 0 0
• 

o

0 K P , K p - 2 ~ r K p , ~ r K o 0

0 0 K p, -  K o -rb i ~ r K o

~ r K , 0 0 0

• 
O

0 K P , K , p - 2 ~ r K , P , ~ r b 'hfi 0

0 0 K P , b ' h f i ~ r K \ ~ r K , 0

(4.19)
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0 0

0 ••• a'_! a ’0 - r a [  - r a ' 0 0

0 0 <-1 a[ -  ra'2 -ra[ K

K p-i Kp-2~rKp-1 ~rKo 0 0

• 
O 0 K P-, Kp-2 -rKp., ~rKo 0

0 0 K p rK Ko

K P-\ K p-2 - rblp-i ~ r K o
0 0

• 
O 0 K p-i Kp-2~rbiP.} • * * —v h '

r U h , 0 0
0 0 Kp .  .  . —y h '

f U h , \ Ko

(4.20)

The column transformation for the previous step is represented by the matrix:

n + p-

Q r , n + p

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

0 0 0
1

0
r

0 0 0
1
o

1
r r

(4.21)

We proceed backwards with the same column operations and thus finally we obtain 

the matrix in the form (3.7). The overall reduction procedure is based on steps 

summarised below in an algorithmic way as:

Reduction Procedure fo r  (5 -  r )  fac to r  (Algorithm 4.1):

For i = 0,...,n + p - 2

i) multiply the m + p - i  column by and
r

ii) subtract it from the m + p  -  i +1 column of S . ■
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The transformation matrix in every iteration of the above algorithm is o f the form:

m+n-i+l m+n-i

' 1 0 0 0 0 • • 0 0“

0 1 0 0 0 • • 0 0

0 0 1
1
r

0
1
r

0 • • 0 0

0 0 ••• 0 ■• 0 0

0 0 0 0 1 • • 0 0

0 0 ••• 0 0 0 • • 1 0

0 0 ••• 0 0 0 • • 0 1

for i = 0 ,...,«  + p  — 2 (4.22)

Finally the overall transformation takes the form:

s ?  = S,Qr n r Qr„,p_, = S , Q r  = Sr Q, (4.23)

where Qr has the form indicated by (4.14), as this follows by using the general 

formula o f (4.22) and (4.23).

■

The matrix Q"+p has a structure uniquely defined by the pair (r,n + p ), has

dimensions (n + />)x (« + p ) and provides a representation of (s -  r ) . It is clear that

the above result may be applied for each common factor of multiplicity one and in 

each step one column of the Sylvester resultant becomes zero. In fact, the nonzero 

part in (3.7) is an expanded resultant and it will be shown later on that Proposition 

(3.2) applies also to expanded resultants. The procedure can be repeated for every 

factor o f the gcd and a result may be derived where the corresponding reduced 

Sylvester matrix has a block of zero columns equal to the degree of the gcd.

The above operations lead to the same result for complex roots too. Then the 

transformation matrix will have complex elements. In order to avoid that, we can 

apply a different procedure for the pair of complex conjugate roots. In fact, we 

consider the quadratic k 2s 2 + k l s + k 0 to be a common factor of the 

polynomials <3(5 ), b^s)  j  defined above and let us assume that the roots

of the quadratic are complex. The h +1 polynomials can be written as:
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(4.24)a (s) = [k2s 2 + k:s + k0 ) (a"_2s " 2 + a"n_" 3 + ... + a"s + a" )

b i(s )  = (k2s 1+ kls + k0) (b lr_2s--2 + b l_ ,s - -1+... + bl ,s  + b-0),

The matrix, representation of this factorisation, based on the resultant, is 

established by the following result:

Proposition (4.5): Let CP = {a (s),bx (s ) , . . . ,b h (s)j be a set of polynomials such that 

d eg a (s) = w, d eg £ (s)< /> , i = l,...,h, p < n  and let ç  (s) = k2s 2 + k ^  + k0 b e a n  

irreducible factor o f the GCD of CP . There always exists a real transformation Cs 

and a reduced resultant sjjp defined such that

c(2) -(̂P" = sr -cs (4.26)

where

x0 0
X, *0
x2 Xi

Cs =
x0
X, *0

(4.27a)

X n + P - 2 Xn+P-3 X n + P - j - 2 X n + p - j - 3 X 0
0

_ X n + P - l X n + P - 2 X n + P - j - 1 X n + p - j -  2  ••• *1 x0_

and the x; being defined by

iis-T

H
*

°
II K

AC0

II 1 |-*
“

* ■ft j_

k2
- 7 V 2 >P = 2"- 

X0
,n + p (4.27b)

and the reduced resultant is defined by
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00 0 <_2 «:.3
0 0 0 <-2 0

0
0

0
0

c(2) _ :
^  cp”

0
0 btt

y,p-2 bff
y,P- 2

n -2

Ko

o 0 K  ,h ,p - 2 Kp-x btt
h, 0

0 0 0 0 -  0 K P-2 K , - i Ko 0
0 0 0 0 -  0 ô;,p_2 • K , Ko

(4.28)

where (P" is the reduced set obtained from <P after factorisation o f <p(s).

Proof:

From the factorisation (4.24) and (4.25) the coefficients o f u(^),h(5') can be 

expressed as:

an = k2aln-2

a n - 1 — k 2 a 2 , n - 3  +  k \ a 2 , n - 2

a i  ~  k 2 a 2 , i - 2  "*■ k \ a 2 , i - \  k 0a 2,i ’

a, = kxa2Q + k0a2,
_ 1 tt

a0 — ^0a2,0

i = 2,..., m -  2 (4.29)

h p - y = k A p - 2 + k K P-2

bjJ= k2K,i-2 +kxb"j,i-y+kob"j,i

h x = kxK 0 + W .,

bj,0 = kobj,o

i = 2,... ,p-2 (4.30)

Then the Sylvester matrix S# is expressed as
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k2a"n_2 k2a’_2 + kta"_i +k„a" K)af) 0 0
0 k2a”n_ 2 k2a"iA +kla"+k0a’̂ krf> +*x k < A , 0

0 0 VÓ +k<A kA

K K P - 2 k2b"u_2 + kp’u_ | + kjbh KKo 0 0
0 KKp-2 kp\,o + kAx KKo 0 0

KKp-2 kA«+fA, KKo
hblp-2 K K o 0

0
hK.p-2 kA i-2 +kA i-i+ kA i kAp o 0

0 k - P h ,p - 2 K P h S ) 0 0

k 2 K . p - 2 *A',o+kbL KKi

(4.31)

By applying appropriate column operation, described algorithmically below, the 

matrix S^ can be reduced to the form described by (4.28). The reduction algorithm 

that leads to this result is described below:

Reduction procedure for k2s 2 + kxs + k0 factor (Algorithm 4.2):

i) multiply the n + p  column by —
k0

ii) from the n + p  - 1 column we subtract the n + p  column multiplied by kx

iii) multiply the n + p  -1  column by —
K

iv) For i = 2 + p - 1 we

•  subtract from the n + p - i  column the n + p - i - 2  column multiplied by k2

•  subtract from the n + p - i  column the n-v p - i - 1 column multiplied by kx

•  multiply the n-v p - i  column by —
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It can be readily shown that the product of the above elementary column 

operation has the form of Cs described by (4.27).

■

Propositions (4.3), (4.4) and (4.5) express the factorisation o f elementary factors 

of the sc , (s - r ) and k2s2 + kts + k0 quadratic terms when we start from the original

resultant. The successive extraction o f terms implies that the results have to be 

extended first to the extraction of factors from the expanded resultant and not just the 

resultant. This will then allow consideration o f extraction o f factors in a specific order 

and thus lead to the generalisation of the previous results to the case o f a general 

factor.

Consider the c -order set <Ph+ln with resultant Sv for which Proposition (4.3) 

implies that

S ,= [o , I Si]

or

S i  = [0 f I S ,]  = S , a ( 0 ) ,  G ,(0) = ê ; '  (4.32b)

where <Ph+l n_c is the reduced set after factorisation o f sc . If Sf  is the resultant of 

®h+i,n-c then:

• Sp has h(n - c )  + (p  -c) = hn + p - ( h  + l)c  rows and

(« - c) + ( /? - c )  = « + /> - 2c columns.

• The ( n ,p ) -expanded resultant Sf  has n + hp rows and n + p - c  columns.

The extraction o f an ( s - r )  factor from the gcd of <Ph+Xn may be expressed as a 

factorisation on the different reduced sets as it is shown below:

Proposition (4.6): Let <Ph+i n be a c-order set, ( s - r )  be a divisor o f its gcd and let 

<PA+i n_c, <Ph+Xn_c_x be the reduced sets obtained after factorisation of the /  and

n + p -c

K
o = KQc (4.32a)
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sc ( 5  -  r )  factors. If S:p, Sp , are the resultants of the sets (P, <P, (P respectively 

and Qkr denote the k  -order transformation associated with ( s - r ) ,  then the 

relationship

5 |l)= S i e r ' ’‘' = [ o i S #] (433)

where is an expanded resultant of <Ph+l n_c_, implies the following relationship on 

defined by (4.32b)

s r =[<>», | i ; ] = 5 e ; * '  (4 .3 4 )

where S is also an expanded resultant of <Ph+X n_c_x

The proof of the above result is a straightforward extension of the proof of 

proposition (4.4) and it simply states that extending the factorisation of ( s - r )  from 

the resultant o f the set to the expanded resultant we have to change only the 

corresponding order of the transformation Qkr to the original order n + p. The above 

leads to the following procedure for extracting divisors in the resultant set up.

R em ark (4.3): Let <PA+ln be a c -order set and i -  l ,2 ,...,r  be a set of

divisors o f the gcd of <Ph+ln. If Qc, Q"+p, i = l,2 ,...,r  are the transformations 

representing the divisors, then the extraction of divisors is represented as sequence of 

transformations performed on the resultant S p as:

« „ a e r ' - e r = [ #* I * # ] = * ;  <4-35)

where S ? is an expanded resultant of the reduced set <P obtained after extraction of 

5‘: (5 - r ¡ ) • • • (5 - r r ) = ^(5,) from (p .

The matrices involved in the extraction of divisors are of the Toeplitz type and 

their properties are considered next. In the following we shall denote by [Tn] the set 

of non-singular Toeplitz matrices of nx n dimension of the type
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a0 0 0

a0 0

«2 ax
a o

0

A (n0, Gtj, Cln_\ ) (4.36)

a
n - 2 n - 3

0
a

n - 1 a
n - 2

ax a0

Clearly I n e [Tn}. The following properties for the set {Tn} are readily established.

Lem m a (4.1): The product of any two elements of [Tn} is also an element o f {T }. If 

we consider A,B<e  (Tn} where A = A (a0,ax,...,an_x) , B = B[b0,bx,...,bn_x) then:

i) C = A + B e{Tn} .

ii) D = [d; j ] = AB = BA e{Tn} where

l-J
d i j = T j a i - j - k b i - j ’ f o r  i d J  

otherwise
k = 0

dij = 0
> and dij  = dMJ+l

Lemma (4.2): For all A e Tn with a0 * 0, A 1 e T n. Then A = A 1 is expressed as:

h 0 0 ••• 0

k h 0

h k K
2 =

K - 2 ln -3  - K  o

<N1 k  K

where the elements o f A, A are related as:

h = —  > —  i =
«0 a0 7=0

(4.37a)

(4.37b)
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From lemmas (4.1) and (4.2) we have the following result:

Lem m a (4.3): The set {T„} of Toeplitz matrices is a commutative ring under the

standard operations of addition and multiplication with units the elements with 

a0 * 0.

Some further interesting properties of Toeplitz matrices which are linked to the 

representation o f polynomials are considered next.

Proposition 14.7): Let = Aksk +... + +  A0 be a polynomial and let O e { r n},

k < n , be a special Toeplitz matrix representation of 2 (s )  defined by

0 O'
o ••• 0

A K

è  " == 6  =
A

K K  o 0
0

K 0
0 0 Ak -  a . A 20_

Then the inverse O = è has the Toeplitz form:

’ To 0 0

Ti To

<b =

t 2 Ti

• To 0

T, To
.

T„-2 T n - 3 • y  n - j - 2 Tn - j - 2 To 0

y„-1 Tn - 2 ■ y n-j-1 y n - j - 2 T, To

(4.38)

(4.39a)

where the y i parameters satisfy the relationships
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To = -r- » y i = ■
A v

A
K

To yj
A)

£  V ;-,- 7 = 2 , . . . ,« - ! (4.39b)
1=1

R em ark  (4.4): As a straightforward consequence of the above result we have 

the matrix Q"+p defined in (4.14) is the inverse of the simple Toeplitz matrix Q"+p 

defined as

—r 0 0 •• ■ 0 0
1 —r 0 • 0 0

0 1 —r ■■• 0 0

0 0 0 • 1 >1 o

0 0 0 • 1 —r

e (̂ (" + pH"+p) (4.40)

The above indicates the link of the Q"+p matrix with the representation of 

( s - r )  factor in terms of the (« + /?)x(n  + p )  matrix Q"+p . The significance of the 

Toeplitz representation o f polynomials ç ( s )  as in (3.38) is emphasised by the 

following result expressing the factorisation of a given polynomial.

Proposition (4.8): Let / ( s )  = / / + -  + ü s + / o e R W  and assume a factorisation 

f ( s )  = t ( s ) q ( s )  where i( s )  = t/s / +... + tjS + t0, q (s) -  qmsm +... + q^s + qQ. Then for 

any n > k  the n -th order Toeplitz representations Ô" , Ô ”, of f ( s ) ,  t ( s ) ,  

q(s )  defined as in (4.38) satisfy the relationship:

Ô" = Ô" Ô" = Ô" Ô"/  ‘  q  q  I
(4.41)

Proof:

Note that the multiplication of the t( s ) ,  q(s)  polynomials may be expressed as 

a Toeplitz matrix operation as shown below
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1
0 0 0 __

_1 ’ % ' ' fo "
t\ tQ % f
t2 tx 0

: : ' • t0
; ; tx <lm-1

h-\ h-2 • . .

h h-i
0 : fl+m-2

h h-\ fl+m-\

1 O O
 

1 __ fl+m

(4.42a)

which can also extended to the equivalent condition

0̂ 0 • 0 0 0 O' Vo fo

h 0 0 0 f

h 0

tQ

0̂ 0

h - \ h - 2 0

h h-\ 0

0 f l+ m - 2

h  h-1 h - 2 to 0 f l + m - \

0 0 tl h - 1 h-i t\ t0_ 0 f l+ m

(4.42b)

It can be readily shown by inspection of (4.41) and use o f block multiplication that 

(4.41) is reduced to a set of conditions equivalent to (4.42b) and this establishes the 

result. Commutativity follows from the corresponding property on polynomials and 

by writing (4.42a) in a dual way (Toeplitz of q (5 ) ).

The above result expresses the multiplication of polynomials within their 

Toeplitz representation framework. It is clear that the above group properties may
A |

also be expressed for the inverse transformations O" = which are linked to the 

factorization o f resultants. The results so far lead to the following main result:
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Theorem  (4.4): Let (P = ja  (5 ) 6, (s ) , . . . ,b h (s)j be a 0-order set, dega(,s) = «, 

deg bt [s)<  p < n  , i - 1,..., h be a polynomial set, Sr the respective Sylvester matrix, 

<p(s) = Aks k -\—  + ^ 5  + /^ be the greatest common divisor of the set and let k be its 

degree. Then there exists transformation matrix O e R1""7'* x(n+p) such that:

(4.43)

where Sf£ \  are given by:

<t> =
<p

To
T.

t 2

0

To
T,

y n + p —2 y n + p - 3

Tfl+p-1 T’ n + p - 2

To
T,

0

To

T n + p - j - 2  y  n + p - j - 2  To ^

T n + p - j -1 y  n + p - j - 2  Tl To

(4.44a)

where

To
/L Ti _ K "(Ml

J To »••• » T y = -—  z  ^¡yj-i >j = 2 ,...,«  + jp - l  (4.44b)
4o Aq , =1
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0 • • 0 a(k)U n - k a{k)U n - k - 1 0 0

0 ■ • 0 0 a{k)U n - k alk) a{k)u 0

0

0 • • 0 0 0 a{k)U n -k °,(k)
(*)

0 ■ • 0 b{k)U \ . p - k b(k)U\ , p - k - \ 0 0

0 • ■ 0 0 b(k)U \ , p - k b(k)u \ . p - k - \ b(k)u \,0 0 0

0 • • 0 0 0 b(k)U \ , p - k b{k)u i,0

0 • • 0 b[k ) ,2, p - k b(k)U 2 , p - k - \
¿0)
U 2,0 0 0

0 • • 0 0 b(k)U 2 , p - k b[k)U l , p - k - \ b(k)U 2 f i 0 0

0 • • 0 b(k)U h ,p - k b(k)u h , p - k - \ b(k)U h,0 0 0

0 • • 0 0 b(*>
U h ,p - k

¿0)
u h , p - k - \

6<*)
u h f i 0 0

b(k)U h, 0 0

0 • • 0 0 0 b(k)U h ,p - k b(k)u h , p - k - \ b{k)u h, 1 b<k)U h, 0

(4.45)

where «(*) a{k)
u  p - k  ’  u p - k - \  ’

a{k)'. , UQ b(jk)P-k>bfl-k-i»■ • • j  = l,.. . ,h  are the coefficients

of the coprime polynomials obtained from the original set after the division by the 

gcd, which define the set <PA*+1 n_k and S  . is the corresponding expanded resultant.

Theorem (4.4) in a sense provides a representation in matrix terms of the 

standard factorisation o f the GCD of a set of polynomials and this may be expressed 

in the following form:

C orollary (4.1): Let (P = (s ) , . . . ,b h (5 )} be a 0-order set of

polynomials, deg a (5 ) = « , deg bi ^ < p < n ,  i = l , . . . ,h  and let cp(s} be the GCD 

of Q3 , deg ̂ ( 5 ) = k  . If

a ( j )  = a ' ( j ) ^ ( j ) ,  ¿>1.( j )  = f t / ( j ) ^ ( j ) ,  i = l , . . .h  (4.46)
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and <P* = ( 5 ) | , dega'(s) = n - k  deg (s )< p - k , i = \,.. .h  and

Sp, S y  are the generalised resultants of (P, <P*, where S^J is structured by the 

indices o f <P (it is assumed that the structuring degrees are {n,p)) .  Then (4.46) is 

equivalent to

S » = ^ i ) ® , = K  1 ^ ] ® ,  (4.47)

where S  . is the (n, p)  -expanded resultant of o f <P* and O = <D 1 has the form of 

(4.38) and it is defined by the gcd p ( s ) .

For the case o f sets which are non-proper the above result may be expressed in 

the following way.

Corollary (4.2): Let <P = (s),...,bh (s)} be a c-order set of polynomials,

deg«(,s) = « , degfy (5 ) < p  < n , i = \,...,h and let <£>(s) = sTy(s) , ty (0 )^ 0  be the 

gcd of (p , deg <p(s) = c + k . If <P, <P* are the sets obtained by dividing by sc and 

cp(s} respectively and Sv , S^k.+C'1 be the resultants o f (P and <P*, where S^.+̂  is 

expressed with respect to (n ,p ) then

O Q(O

0

n + p - c (4.48)

where 6 ^  is the representation of the a>(s) divisor of the gcd to the (n + p ) -order.

■

The matrix for the proper case, or S {̂ c) for the non-proper are resultant 

forms which are referred to the original orders (n, p ) ; we may refer to them as 

( n , p) -  reduced generalized Sylvester Resultants and the nonzero part S . will be 

called («, p )  -expanded resultant of the <P* reduced set. The results of this section are
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now used for developing the classical Generalised Sylvester results within the new 

framework.

4.4. GENERALISED RESULTANT: RANK PROPERTIES AND THE GCD

generalised to the case of many polynomials [Barnett, 1990], [Vardoulakis et a l, 

1978], The framework developed in the previous section that allows the linking of the 

gcd to a canonical factorisation of the Generalised Resultant provides the means for 

giving a simpler proof to the classical Sylvester result [Barnett, 1990], The canonical 

factorisation together with the Generalised Sylvester Result, that links the gcd of the 

set to the rank properties of the resultant lead to a canonical representation of the gcd 

which has important implications for the development o f robust computations for the 

gcd. The development o f the main result requires the following Lemma [Barnett, 

1990],

Lemma (4.4): Let q>(s) be the g.c.d. o f <P = {a(s), b(s)} where deg a(s )  = n,

degô(.s) = p  and deg<p{s)~k . Then if  SP, sffj  are the resultants of <P and the 

reduced resultant after extraction o f the gcd

The classical result on the link between resultant and gcd of the set has been

(4.49)

Proof:

derived after division by the gcd, and also denote by

[Km-k’Km-k- t he coefficients in descending order, 

of ak(s), bk(s) respectively. The reduced resultant has the form as shown in

(4.50). We further note that the polynomial s k cannot be a common factor of ak(s) 

and bk (5 ) (as they are coprime). Without loss of the generality we can assume that 

s k is not a factor o f ^ ( 5 ). Thus the polynomials of the set (f] = (ak ( s ) , s kbk (s)) are

' k , n - k  ’ a k , n - k - \  ■ > • • • ■ >  a k ,  0
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coprime. This implies that their resultant is non-singular (classical result) and its 

corresponding form is given as in (4.51).

0 ... 0
a k , n - k  a k , n - k - \ a k , 0

0 0 • 0

0 ... 0 0 a k , n - k a k , l a k f i 0 ■ 0

0 ... 0 0 0 a k . n - k a k ,  1 a k ,  0
s (k.] =

< p
0 ... 0 4,p-i \ , p - k - \ bk , 0 0

0 ... 0
\ , p - k

4,.
4,0 0 0

0 ... 0 4k , p - k \ , p - k - \ 4,1 b k , 0 _

n + p - k w

(4.50

n + p - -k

i i.

a k , n - k a k ,  0 0 0 0 0
0

0
0 0

a k , n - k a k , 0
0 P

0 0 a k , n - k

& j*r* © O 0

a k ,  0 0
1r

0 0 0
a k , n - - k a k ,  0 i i

4 k . p - k

© 0 0 0 ••• 0
0

0 0 n - k

0 0 Ko 0 ••• 0
r

n + p  -  2k

(4.51)
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This resultant is clearly a submatrix of the reduced resultant SffJ. So it is 

implied that

= = ( n - k )  + p  = n + p - k  (4.52)

However, by the reduction we have proved that /?(S) = p [ s ^ ) ^ < m  + n -  k which 

together with (4.52) proves the result. ■

An important question linked to the resultants is their rank properties which will 

be considered next. We consider first a general result linking the rank of resultants to 

expanded resultants. Let <PA+1 n be a set of polynomials with the two maximal degrees

{n ,p ) .  We can always assume that the two maximal degrees are 

(n = n + c, p'  = p  + c ) , c > 0 by assuming the first c coefficients of the polynomials 

to be zero. This representation is referred to as c-extended and it is denoted by (P/+1 n. 

If Sv is the generalised resultant of <PA+1 n and S  is the generalised resultant of the 

c -expanded set then their dimensions are (p  + hn)x(n  + p ) , 

[/> + hn + c (h + 1 )] x {n + p  + 2 c) respectively and ST will be called the c -extended 

resultant. Furthermore, we may express ST as

S . . = [ 0 j 5 ; ]  (4-53)

The matrix S cv has dimensions [/? + /nz + c(/z + l)]x(yH-£> + c) and it is the matrix 

that has been previously defined as expanded or properly(« ',/? ') or c-expanded 

resultant. An important relationship between S,) and Sr is defined below:

Lem m a (4.5): Let (Ph+X n be a set and (P/+1 n its c -extension. If S# , S^ are the 

resultant and the c -expanded resultant, then

p ( s ; )  = p { S v ) + C (4.54)

■

The proof of the above result follows from the way we have constructed S  ̂ and 

it is thus readily established. Using the above two Lemmas and the link o f gcd to the
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factorisation o f the resultant we are led to the Generalised Resultant Theorem 

[Barnett, 1990], [Vardoulakis et al., 1978]:

Theorem (4.5): (Generalised Resultant Theorem): Given a set of polynomials 

(P = {a(s) -  s n + an_xs n~1 + .. .axs + a0, 6 (5 ) = bins n + ... + bn s + bt 0, i = \,2,... ,h

max I deg bt (s)} = p  } with a generalised resultant Sa> the following properties hold 

true:

i) Necessary and sufficient condition for a set of polynomials to be coprime is 

that:

p ( S iP) = n + p  (4.55)

ii) Let < (̂x) be the g.c.d. o f (P . Then:

p ( S v ) = n + p-deg<p(s)  (4.56)

iii) If  we reduce S ^ , by using elementary row operations, to its row echelon form, 

the last non vanishing row defines the coefficients of the g.c.d..

Proof:

We consider first the case o f proper sets and then the non-proper case, 

ii) We start by proving part (ii). Thus, we consider the factorisation of (4.47) and

denote by S^,  the resultant and the reduced resultant (after division by <£>(s)). 

We shall prove first that

p ( S q>) = p ( s ^ > n  + p-&Qgcp{s) (4.57)

We shall use induction and S  will denote the resultant that refers to a set with
m

m elements. For the case of two polynomials ( m ~  2 )  Lemma (4.4) establishes 

already the equality in (4.57) i.e. p [ S , )  = n + p - d e g <p[s).

Using induction we suppose that for the case o f h = m - 1 the relation of the 

rank and the degree of the g.c.d. o f the set is also given by rank (5  (<PmA )) = p ( S m_l ) =

= n + p - d e g t p ( s ) . For the investigation o f the h = m case we shall denote by 

(Pm = (p , <PmA the set containing the first m - 1 polynomials, S((Pm) , S (<?„_,) are 

explicit descriptions of the corresponding resultants and thus we may write:
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<Pm = <Pm_, u  \bm}, degbm(s )< p  and we assume that rank ( S((Pm_l = n + p - k  , 

0 < k < p .  We denote by cpm_x (s),(pm (5 ) the corresponding gcds o f (Pml,(Pm 

respectively where deg \ipm_x ( s )) = k . Thus, it is implied that

rank(iS'(i,m_1)) < rank (»S'((Pm)), vax)k(S (Vm)) = n + p  -  k ' , k ' < k  (4.58)

where k' is the right nullity o f S  (<Pm ) . Clearly k' < k  since addition of rows cannot 

increase the nullity, but only decrease it. Note that the Sylvester matrix of <Pm i is 

equivalent to its row echelon form which is:

(4.59)

where Pm_, e R*"+/>”^ x("+p) and all rows o fPm_x are produced by elementary row 

operations, in other words are linear combinations o f the rows o f the Sylvester matrix 

S(<Pm_ 1) . If we denote p - k - k '  then a base for <Pm consists o f the independent

(non-zero) rows of Pm_̂ and p  rows of the last block of S((Pm) associated with

6m(^). Then, if  we choose the last p  + 1 rows of S (P m),  one of them has to be

dependent on the row set made up from the rows o f E  ) and the rest p  rows

chosen from Sm . This means that for some / e |l,2 ,...,/^  + l |  the / -th from the bottom

row, can be eliminated under suitable elementary row operations. In terms of the 

polynomials corresponding to these rows, this elimination expresses the following 

polynomial relationship:

j u  p -1 m  n -1
s l ~ \  ( s )  = X v h / b h w + Z v 0/ a  (5) + X z  v j / b j  (5) (4-6°)

;'=0 1=0 7=1 (=0
i*l-1

where v; j e K express the elementary row operations for the elimination of the 

columns. The next equation is readily derived from (4.60)

p -  1

K  (s ) Z = a (s ) H vo /  + Z1=0 i=0

n- 1

6y(5) Z v j j s
i=0

where

(4.61)
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p p
= s ‘~ '~ T < vh / = Z v' h / >

i=0 /=0 
M

degv,n(-s) = P

7711

iW
s

II deg Vj (s ) = n - 1 > (4.62)

p - 1

= E vo / ’
i=0

deg v0 (5) = P ~  1

and from (4.59), (4.62) it follows that

(s ) bm M  = v 0 W « W  + {s)b{ (s) + ■ • ■ + vm_, {s)bm_, (5 ) (4.63)

and (4.63) implies that the gcd of <Pm_x divides the LHS of the equation. Thus we may 

write (pm_x (s)|vm (s)bm (s). If we express (pm_x (5 ) in factors that divide vm (s ) , bm (5 ) 

respectively, i.e

<Pm-x {s) = (pv{s)-(pb(s)  (4.64).

such that (pv (5 ), bm (s) are coprime, then it is obvious that cpb (s) is the g.c.d o f  the 

set <Pm , i.e. cpm (5 ) = (pb (5 ) and from the definition o f the polynomials we have that: 

deg <pv (s) < deg vm (.$•) = / / .  By this and knowing that by definition deg <pm̂ ( s )  = k 

we finally obtain that deg <pm(s)> k = k' -  ¡u and this implies that

P { s {cpm) ) ^ n + P - ^ (P{S) (4-65)

However, by the factorisation of the resultant, as this is expressed by (4.47) it 

follows that

p ( s  (&*>)) = p { s *) = p ( K - ) ~ n + p -degcp (s )  (4.66)

and thus by combining (4.65) and (4.66) part (ii) o f the result is established. Clearly, 

part (i) follows from part (ii) in a straightforward way.

iii) The proof o f the last part makes use o f the factorisation of the resultant as this is 

described by (4.47) i.e.

5 ,= [ 0 ,  I S , . ] * ,  (4.67)
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where p ^ S v.^ = n + p - d e g c p ^  = n + p - k , k = deg(p(s) and as given by 

(4.48). Since P^S# .) = n + p  - k  and S^. has n + p - k  columns, there exists 

R e Mrxr, t  = p  + hn such that |i?| * 0 and

^ n + p - k  

0
(4.68)

By (4.55) and (4.56) we have

(4.69)

Taking into account the structure o f Ô (as in (4.38)) for the gcd

(p{̂ Ŝ  = 4— • 4-/^5 + /^ (4.70)

leads to

\ - 2 ............. K 0 • 0
0 K \ - \ \ - 2 K  o 0

II

0 0 \  \ - l K-2 ' ' ' ' •• K

i

The structure o f (4.71) suggests that the echelon form is obtained by making the 

leading coefficient o f each row 1, starting from the first and then making all elements 

in the column above the leading coefficient zero. This process starts from the first 

row in (4.71) and progressively reaches the last and leads to the echelon form
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R 'R S r

1 0 0 . . .  0 * * *

0  1 0 . . .  0 * * *

0 * * *

0  • • • 0  1 K - x K - 2  - • • •  K
(4.72)

0

where are the coefficients of the monic gcd and this completes

the proof o f part (iii).

For the case o f non-proper sets we can use factorisation (4.32) and Lemma (4.5) 

and part (ii) follows. Part (iii) follows along similar lines to that of the proper sets.

■

An important corollary o f the above result that provides an alternative 

representation o f the gcd of the set is given below:

C orollary (4.3): Let <P = (s ),! = l, . . . ,h ,dega(s ) = w,max(b i (s)j = p ,n >  p \

be a set o f polynomials with a (p  + hn)x(n  + p )  generalised resultant S^ and let 

cp(s) = Aks k + A]s + --- + A0, be the gcd o f (P . If <3 (5 ) = ,

(s)  = b[ (5 ) ^ ( 5 ) , i = \,...,h and <P* = {a '(s ) ,b l( s) , i  = is the corresponding

reduced coprime set with a generalized resultant S  . ,  then S:p may be expressed as

S ' = S r.®p (4.73)

where S ,(P is the (p  + hn)x(n  + p - k ) (n ,p )  -expanded resultant of <P\

p ( S v. )  = n + p - k  and 0 is the (n + p  - k ) x ( n  + p )  matrix

\ - \ \ - 2 ............. A0 0 ........... O '

0 K \ - \ \ - 2 A0 0 0

® ,= (4.74)

0 0 \  \ - \ K-2 K_

96



Proof:

The set o f polynomials (P* is by definition coprime and thus its resultant S  . 

which has dimensions [ p  + h n - k (/z + l) ]x (n  + /? -2 k )  has rank (ii + p - 2 k ) .  By 

lemma (4.5) it is clear that p ^ S ^ .) = n + p  -  2k + k  = n + p  -  k  . Consider first the case 

of a proper set <P . Then by (4.47)

« ,= [ » .  ! S ,.]  (4.75a)

and from (4.48) form of 6  we have that

O , ®; (4.75b)

where 0  has the (4.74) structure and thus

s. = [« , ! S ' . ]
0 '

0„
= S m®0

<p <p
(4.75c)

To show that the same factorisation holds true for the non-proper case we start 

from the factorisation (4.48) described by corollary (4.5), that is

0 /
K ] ® , .

I n + P - c  ° j
(4.76)

where now k' denotes the degree o f the gcd after extracting sc factor i.e.

(p (s)  = tp'(s) sc = scAk,sk +--- + Als + A0 (4.77)

and is the (n + /?)x(n  + p ) formed from <p'(s). We can always partition O , as

O , =
<p

%

k'+c

n + p -k ! -c

t>(n + p )x (n + p ) (4.78a)

where © . has the form

® ,=

0 ••• 0

0 ••• 0

K  -
0 Ak,

\  ¿0 0 

K K

o o 4 , •••
— n + p - c

... o

0

4  K

î
n + p - k ' - c  (4.78b)

I
<—c— ► -----------

and by introducing (4.78a), (4.78b) into (4.76) we have
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S 9  = k ,  i s .  1
<p 0

1-----

_  k + c  j < p *  J 0  . /  _ 0L c J [_ n + p - c

= S  .®a.
p  < p

0 K

h + p - c  0

= S ,®a
p  V

where

1__ K ¿ 0 0 ... 0 0 • • o'

®,= ... 
0 4“ 4 A0

0
0 ••• 0 Ay \  K 0 • • 0

(4.78c)

The above however is the 0  matrix that corresponds to the gcd 

<p(s) = 5C [ \ , s k H----- hT^ + zlo) and this completes the proof.

The significance of the above factorization is that unifies the resultant 

factorization for the proper and the non-proper case since (4.73), (4.74) are valid for 

both cases and emphasises the minimality o f this factorization since (P* is obtained 

by the division of the set by the gcd. Such a representation will be called canonical 

representation of gcd and involves the minimal number o f parameters.

Example 4.4: Let <2(5 ) = 53 +As2 + 4s + 3 , b,(s) = s z + 5 - 6 and 62(5) = 52 +5s + 6 

then the associated resultant is:

1 4 4 3 0

0 1 4 4 3
1 1 - 6 0 0

So 0 1 1 - 6 0
S,
s 2

—

0 0 1 1 - 6
1 5 6 0 0

0 1 5 6 0

0 0 1 5 6
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The rank of the resultant is 4 which means that a gcd of order one is expected. Indeed 

if we reduce the resultant to its row echelon form using only row transformation 

gives:

1 0 0 0 -81
0 1 0 0 27
0 0 1 0 -9
0 0 0 1 3
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

and from the last non-vanishing row it follows that the g.c.d. is (p(s) = s + 3. This

implies that the transformation matrix <D, given by:

1
0 0 0 0

3
'3 0 0 0 0“

-l 1 1
0 0 0

1 3 0 0 0 9 3
1 1 1

O ' = 0 1 3 0 0 = 0 0
27 9 3

0 0 1 3 0 1 1 1 1
0 0 0 1 3 — — — — 0

81 27 9 3
1 1 1 1 1

_ 243 81 27 9 3

and then the factorization o f the resultant is expressed as:

S =

0 1 1 1 0

0 0 1 1 1

0 1 - 2 0 0

0 0 1 - 2 0

0 0 0 1 - 2

0 1 2 0 0

0 0 1 2 0

0 0 0 1 2

3 0 0 0 0
1 3 0 0 0
0 1 3 0 0
0 0 1 3 0

0 0 0 1 3
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4.5. RESULTANT SETS FOR POLYNOMIALS AND A SYSTEM

THEORETIC CHARACTERISATION OF GCD

The matrix pencil theory [Gantmacher, 1988] has been used in [Karcanias et a l, 

1994] to provide a procedure for evaluation of the gcd of a set of polynomials. The 

procedure in [Karcanias et al., 1994] makes no special assumption on the nature of 

the set of polynomials and provides also a system theoretic characterization of the 

gcd. In this section we simplify the computational procedure for the gcd evaluation 

and provide a more direct system theoretic characterization o f the gcd by using the 

properties o f the Sylvester set o f a given set of polynomials. We first define:

Definition (4.7): Consider the set <P = {a(s ),bi (s ) , i  = l , . . . ,h,dega(s) = n, 

max |6 (.(s)} = /?,«>/>} and let S9 be its (p  + hn)x (n + p )  resultant. If

ek (5 ) = |^5*,...,j,ll then the polynomial vector

¿ { s )  = Sv en+p(s)  (4.79)

is the polynomial vector representative o f a set

(Ps = (5 ) , /  = 1,.. . ,p + hn, d e g ja ^ )}  = n + p} which will be called the

Sylvester Resultant set o f (P .

■

It is clear that the basis matrix contains information for the gcd (see Theorem 

(2.1)). An alternative way for expressing gcd related properties is through some 

appropriate matrix pencil established by the following result:

Lem m a (4.6): [Karcanias et al., 1994]: For a general set o f polynomials (P of 

maximal degree d  and a basis matrix, P e  5 rank(P) = p  <d  + 1 we define a

basis M e  R ^ +1**'u, p  = d -  p  + \ for Wr {<P} and denote by M ,,M ,th e  matrices 

obtained from M  by deleting the last, first row of M  respectively. The pencil 

Z(s) = M, -  s M 2 is known as the GCD pencil of the set and has the following 

properties:
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i) The set of Kronecker invariants consists of row minimal indices (rmi) and 

possibly finite elementary divisors (fed).

ii) The zero polynomial of Z(s ) (product of all fed) is the g.c.d. of the set <P . ■

The above result is the initial step for the matrix pencil approach to gcd computation 

[Karcanias et al., 1994], The fact that Z(s)  may have nonzero rmi led to a further 

investigation on the evaluation o f the zero polynomial for the case o f a general set. In 

the following we shall explore the resultant properties to avoid the difficulties 

associated with the presence o f non-zero rmi, which may arise with general sets of 

polynomials. The use o f resultant sets leads to the following result.

Theorem  (4.6): Let <P = (s ) , i  = l,...,/*,dega(.s) = n, max {¿>; (s)j- = p ,n >  p j

be a general set o f polynomials Sr be its generalized resultant and <P‘ the 

corresponding resultant set. Then, the following properties hold true:

i) The set <P is coprime, if  and only if Wr {S^ } = {0}.

ii) The set <P has a non-trivial gcd <p(s) if  and only if N r {«Ŝ } *  {0}. In this case 

deg (p(5 ) = dim } = k .

iii) If Z (5 ) is the gcd pencil o f <P‘ resultant set then

a) Z(s)  is characterized by fed and possibly only zero rmi.

b) Z(s)  may be expressed as

Z (5 ) = M l - s M 2 = M ( s I - Z ) ,  Z  e  R*x* (4.80)

where the characteristic polynomial of Z defines the monic g.c.d. ^ ( s )  of (P .

Proof:

(i) and (ii). These parts follow directly from the resultant theorem.

(iii) The g.c.d. is nontrivial when {S’*.} * {0}. In this case the gcd pencil 

Z(s) = s M l - M 2 as defined by Lemma (4.6) [Karcanias et al., 1994]has rmi and 

possibly fed. Then the GCD pencil has the following Kronecker decomposition 

[Gantmacher, 1988]
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Z { s )  =  R (4.81)
0 0

l 2(s ) 0
0 s i  -  A

where L2 (s) is the set o f blocks associated with the nonzero rmi and s i  - A

characterize the finite zeros. Clearly, if  L2 (.s’) exists, then

d e g |^ ( i ) |  = d e g ||j /-y 4 || <dim5Vr and by the resultant theorem that leads to a

contradiction. Thus the GCD pencil Z{s) has no nonzero rmi and thus its structure, as 

expressed by the Kronecker decomposition, becomes

Z(s) = R

s i  -  A
(4.82)

By partitioning R according to the partitioning of the Kronecker form we have

0

z (s )= [ * ' ,* ]  ; q =r (s i - a )q  (4.83)
s i  -  A

Corollary (4.4): If {5^} *  {0} and Z(s)  is the GCD pencil of <P then any minor 

o f maximal order o f Z(s)  which is not identically zero defines the gcd o f the set <P .

■

The above results clearly indicate that use of the resultant set (P1 overcomes the 

difficulties of the presence o f rmi in the pencil and reduces the evaluation of gcd to a 

problem of computing a basis for the right null space of the resultant Sv . An 

interesting corollary that follows from the Theorem and which emphasises this 

alternative computational procedure is given below:

Corollary (4.5): Consider the set (P for which Wr {Sv ) {0} and let M  be a basis 

o f 5Vr [Sp}. If we write
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M  = (4.84)

V
l

1

m'

1 !ä
>

1__ 1 KJ 1__

then colsp {M ,} c: colsp [M 2} and thus

M , = M 2Z , Z e R kxk, d im9ir {Sip} = k (4.85)

where Z is the matrix that has as characteristic polynomial the monic gcd of <P .

Proof:

From condition (4.80) o f Theorem (4.6) it follows that 

M l = - M Z  , M 2 = - M  (4.86)

and thus

M, = M 2Z , Z  e R kxk, d i m {S„} = k

which clearly implies that colsp {M,} c  colsp {M2} with equality holding only when 

the gcd has no zero divisors.

■

The above characterization provides the means for deriving numerical 

procedures which may improve the overall performance of the matrix pencil 

framework for the gcd computation.

Example 4.5: Lets examine again the polynomials a(^) = i 3 + 4 s2 + 4s + 3, 

6, (5 ) = s 2 + 5 - 6  and b2(s) = s 2 + 55 + 6 then

1 4 4 3 0

0 1 4 4 3
1 1 - 6 0 0

0 1 1 - 6 0

0 0 1 1 - 6

1 5 6 0 0

0 1 5 6 0

0 0 1 5 6

The right null space o f S3 is:
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gcd is represented by a Toeplitz matrix characterized entirely by the coefficient vector 

of the gcd and a reduced Sylvester resultant parameterised by the degree set of the 

original set o f polynomials and by the coefficients o f the factor polynomials in the 

gcd factorization.

Next we have considered the significance of the Sylvester set o f polynomials of 

the original set in the Matrix Pencil based computation procedure. After the 

description o f the initial Matrix Pencil algorithm, we examined a new approach that 

combines the Sylvester matrix and the Matrix Pencil algorithm. The benefits of this 

combination is that eliminates the nonzero row minimal indices problem in the 

original Matrix Pencil algorithm (that necessitates further transformations) and thus 

simplifies the gcd computation.

The new resultant factorization opens the way for establishing results on the 

approximate gcd and this will be considered in the following chapters.
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Chapter 5:

CHARACTERISATION OF APPROXIMATE GREATEST 

COMMON DIVISORS OF POLYNOMIALS OF 

DIFFERENT ORDERS
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5.1. INTRODUCTION

In the previous chapter we have dealt with the notion of the gcd of many 

polynomials and we have introduced new properties related to the Sylvester Resultant 

matrix and the matrix representation of the gcd. The notion of gcd of many polynomials 

is characterised by the property that its computation is a non-generic problem [Karcanias 

et ah, 1999]. However, the need for defining notions such as “almost zeros” and 

“approximate gcd” has been recognised as important in many applications. The notion of 

a zero of a set of polynomials (P with vector representative p ( s )  has been extended to 

that of “almost zero” [Karcanias et al., 1983] as a problem of minimisation of the 

function |p(<7 + jco)||.

Methods for computing the gcd of the set <P, which deploy relaxation of the exact 

conditions for gcd evaluation, such as ERES method [Mitrouli et al., 1993] lead to 

expressions for the “approximate gcd” [Mitrouli et al., 1993], Recently, [Noda et al., 

1991], [Emiris et al., 1997], the problem of the “approximate gcd” has been considered in 

the context of the Euclidean division algorithm and for the case of two polynomials and 

the approximate gcd concept has been related to the accuracy of the approximation. The 

definition of the accuracy indicates how good the characterisation of the approximate gcd 

is. The essence of current methods for introduction of “approximate gcd” is the relaxation 

of conditions characterising the exact notion. The difficulty with many of the current 

methods is in quantifying how good is the approximation that is offered. The Euclidean 

approach addresses this problem, but it is limited to the case of two polynomials. The 

efficient numerical method based on ERES Algorithm, defines approximate solutions, but 

does not characterise the strength of approximation.

The problem which is addressed in this chapter is to introduce formally the notion 

of the “approximate gcd” and then develop a computational procedure that allows the 

evaluation of how good is the given “approximate gcd”. We will define the strength or 

quality of a given “approximate gcd” by the size of the minimal perturbation required to 

make a chosen “approximate gcd” an exact gcd of a perturbed set of polynomials. The
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results that were introduced in Chapter 4 based on the representation of the gcd in terms 

of the generalised resultant and its factorisation into a reduced resultant and a Toeplitz 

matrix, allow the parameterisation of all perturbations which are required to make a 

selected “approximate gcd”, an exact gcd of a perturbed set.

5.2. CHARACTERISATION OF APPROXIMATE GCD USING PROPERTIES 

OF THE RESULTANT MATRIX

Let us denote by JT[n,p;h +1) the set of all polynomial sets <Ph+i„ having h + 1 

elements, and with the two higher degrees (n , p ), n > p ; that is if 

^ +i,„ = { M J)» i = 0 , \ , . . . , h }e f f (n ,p ;h  + \) then deg{/?0(s)} =n,  degjp, (5)} = p , 

deg{/>, (5 )} < p  , i = 2 . If we denote

Po (s ) = ans" + an-\s"~' + -  + als + a0 =a'en (s)

P,(s ) =  b i . P s P  + b u p - i s P ~ '  + -  + b i , i s + K o  = ^ P { s )  (5-la)

where ek (5 ) = 1 then to the set <Ph+X n we may correspond the vector

p
— h + \ , n

(5.1b)

where N  = (n + l) + h (p  + l) , or alternatively a point Ph+Un in the projective space '. 

The set jT(n,p;h + \) is clearly isomorphic with , or P v“‘. An important question

relates to the characterisation of all points of P'v_l, which correspond to sets of 

polynomials with a given degree gcd. Such sets of polynomials correspond to certain 

varieties of P''”1, which are defined below. We first note that an alternative 

representation of <Ph+Un is provided by the generalised Sylvester resultant

S» e which is a matrix defined by the vector of coefficients p  . If we
p  J  — h + \ , n
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denote by Ck (•) the k -th compound of Sv [Marcus et al., 1969], then the varieties 

characterising the sets having, a given degree d , gcd are defined below:

Proposition 5.1: Let !JT(n, p;h + V) be the set of all polynomial sets <PA+ln with h + 1 

elements and with the two higher degrees (n ,p ), n > p  and let S9 be the Sylvester 

resultant of the general set <Ph+l n . The variety of P w_l which characterise all sets <Ph+i n 

having a gcd with degree d , 0 < d<  p  is defined by the set of equations

Cn+p-d+l(S*) = °  (5-2)

Proof:

By Theorem 4.5 p ( S ip) = n + p -d e g ^ (s ') . Thus if deg<p(s) = d ,  then all 

n + p  -  d  +1 minors of Sv are zero and there is at least one minor of n + p - d  order 

which is nonzero. These conditions are clearly derived by (5.2)

■

Conditions (5.2) define polynomial equations in the parameters of the vector p h f ,

or the point Ph+l n of P^"1 (note that the gcd of <Ph+X n is not affected by scaling uniformly

all coefficients by a constant). The set of equations in (5.2) define a variety of P^-1, 

which will be denoted by Ad (n,p\h  + 1) and will be referred to as the d -gcd variety of

P ^ 1. Ad («, p\h +1) characterises all sets in 0T (n, p-, h +1) which have a gcd with degree 

d . Clearly all roots of the GCDs may be any.

Rem ark (5.1): The sets Ad(n,p\h + \) have measure zero [Hirsch et al., 1974] and thus 

the existence of a nontrivial gcd d > 0 is a nongeneric property.
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From the above, a generic set <Ph+Un does not belong to Ad (n, p;h +1). The important

question that is posed, is how close the given set <Ph+l n is to given variety Ad (n,p; h + 1).

Being able to define a distance in that sense is the key to defining the notion of the 

“approximate gcd”. The following diagram illustrates the notion of “approximate gcd” 

we are trying to define.

=<P,h+\,n +  Q L  i

Figure 5.1 The d  -gcd variety and the distance problem.

In fact, if  Q‘h+l n is some perturbation set (to be properly defined) and assuming that

K + u ^ h + in  + Q L u  such that <?/), „ e A d(n ,p ;h + 1), then the gcd of <?/(, „, <p(s), 

with degree d  defines the notion of the approximate gcd” and its strength is defined by 

the “size” of the perturbation Q‘h+U. Numerical procedures such as ERES, produce

estimates of an “approximate gcd”. Estimating the size of the corresponding perturbations 

provides the means to evaluate how good such approximations are. By letting the 

parameters of the gcd free and searching for that with the minimal size of the 

corresponding perturbations is a distance problem and this leads to the notion of the
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“optimal approximate gcd”. The key questions which have to be considered for such 

studies are:

i) Existence of perturbations that produce from <PA+1 n an element

cpU n =(ph+u + Qi,+u e A A n ’P'’h + 1)-

ii) Parameterisations of all such perturbations.

iii) Minimal distance of <Ph+Un from an element of Ad(n, p;h + Y) with a given gcd 

<p(s), and thus evaluation of strength of (p(s).

iv) Minimal distance of <Ph+l n from A d (n, p\h  +1) and thus computation of the 

“optimal approximate gcd.

The characterisaton of the Ad (n,p; h + 1) variety in a parametric form, as well as 

subvarieties of it, is a crucial issue for the further development of the topic. The subset of 

A d («, p; h +1), characterised by the property that all <PA+1 n in it have a given gcd

y ( s ) e K [s ] ,  deg{u(s)} = d , it can be shown to be a subvariety of Ad(n,p\h  +1) and 

shall be denoted by A d(n,p;h + \ ) . In fact A d(n,p\h + 1) is characterised by the 

equations of Ad (n,p; h + 1) and a set of additional linear relations amongst the 

parameters of the vector Ph+ln ■ The parametric description of A d(n,p;h+Y) and

(n, p',h + \) follows from the results of Chapter 4 on the factorisation of resultants and 

it is expressed bellow:

Proposition 5.2: Consider the set jT(n,p;h +1), P'v“1 be the associated projective space, 

<Ph+u„ e JT(n,p;h +1) and let S# be the associated resultant. Then,

i) The variety A d(n, p;h + 1) of P v“' is expressed parametrically by the generalised 

resultant
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(5.3)Sp —

where O u is the (/? + p ) x (n  +  p)  Toeplitz representation of an arbitrary u ( i ) e R [ i ]  

with deg (^)| and Sjt, e ^ p+hn')x("+p~d'> is the (n,d)  -expanded resultant of an arbitrary 

set of polynomials <P* e : J T ( n - d , p - d ; h  +1).

ii) The variety A “(n, p-,h + \) of P ^ 1 is defined by (5.3) with the additional constraint 

that i ) ( s ) e l [ s ]  is given.

Clearly, the free parameters in Ad(n,p;h + 1) are the coefficients of the 

polynomials of 9 T ( n - d ,p - d - ,h  + Y). Having defined the description of these varieties 

we consider next the perturbations that transfer a general set <Ph+ln on them. If

<Ph+1 e dT(n,p-,h + 1) we can define an (n, p ) -ordered perturbed set by:

=<ph+i,n-Qj,+in eJ t (n ,p -h  + V) :

^Un = {p'i (*) = Pi (s ) ' <h (s ) ■ deg{q, (i)} < deg{p, (5 )}, i = 0,1,...,/?} (5.4)

Using the set of perturbations defined above we may now show that any polynomial from 

a certain class may become an exact gcd of a perturbed set under a family of 

perturbations.

Proposition (5.3): Given a set <Ph+i n with maximal degrees (n ,p ) , n> p  and a 

polynomial « (s )  e R[s] with deg |iy (i)}<  p .  There always exists a family of (n ,p )-
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ordered perturbations Qj,+U„ such that for every element of this family 

C i,« = C l,«  -<Ci,« has a §cd which is divisible by « ( 5 ).

Proof:

Given (Ph+l n, consider Qj,+ln = {^  (s)} as an arbitrary (n ,p)  -ordered perturbation and 

let C 1,„ = C i,« -Qj,+\,n = [Pi (5)> i = 0,1 ■ Consider now the division of every p t (5 )

by i.e.

M 5) = ^ ( 5M 5) + ̂ ( C  i = 0,1,..., A (5.5a)

Then clearly, by selecting Q j+l n = {rt (5 ), i = 0,1,...,/?} we have that

i = 0,l,...,h  (5.5b)

and thus Q h+hn = qi (s) = qj (s) + rj (s), i = 0,1,...,/? is a perturbation that has the above 

property.

■

The above result establishes the existence of perturbations making co(s) an exact 

GCD of the perturbed set and motivates the following definition, which defines <51(5 ) as 

an approximate gcd in an optimal sense.

Definition (5.1): Let <Ph+l n e JT(n, p;h + Y) and co(s) e M[s] be a given polynomial with 

deg j = r < p . Furthermore, let C = {Q,a+i,«} be the set of all (n ,p)  -order 

perturbations such that

C l,« = C l,« -<C.,« e f t ( n , p ; h  + l) (5.6)
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with the property that <«(5 ) is a common factor of the elements of <PA'+1 n . If Q*h+] n is the 

minimal norm element of the set 2^, then co(s) is referred as an r-order almost common 

factor of <Ph+Un, and the norm of Q j+U„ , denoted by |q ,* || is defined as the strength of 

. If &>(s) is the gcd of

&h+l,n ~  Â+l,n ' Q ji+ \,n  (5-7)

then co(s) will be called an r-order almost gcd of <Ph+ln with strength Q/ll.

The above definition suggests that any polynomial ¿y(s) may be considered as an

“approximate gcd”, as long deg{<y(s)} < p . The best choice of “approximate gcd” is an

issue that is addressed in the following chapter. In this chapter we consider the problem 

of determining the minimal norm perturbation and through that the strength of a given 

£y(s) selection. This is a distance problem from a specific subvariety of A d(n,p-,h + \)

which has ¿y(s) e Mfs] as a given gcd. The solution of this problem involves the 

following important issues:

• Parameterisation of the £ , set.CO

• Definition of an appropriate metric for Q^+1 n.

• Solution of an optimization problem to define Q j+I n.

These problems may be considered within the framework of the resultant 

representation of (Ph+] n set, which also permits the gcd representation through the

factorisation, as we have established in Chapter 4. Note that, the representation of (P/i+l n 

through the resultant, implies that the degrees of the polynomials are structured by the 

maximal two values («,/>), n> p , which define the structure of the resultant Sr .
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Furthermore the perturbations QJ;+1 n and the perturbed sets <P'h+] n are also structured by 

the (n , p ) pair and thus their corresponding generalized resultants are structured in a 

compatible way. It is worth pointing that the elements in Q7i+1 n have nominal degrees 

(n ,p ) ,  whereas the effective values of degrees may be less than those values. The set of 

all resultants corresponding to h + 1 polynomials and with maximal nominal degrees 

(n ,p ) , that is those corresponding to JT'(n,p;h +1), will be denoted by p;h + 1). 

From (5.4) and the compatibility of resultants of JT(n, p;h +1) set we have:

Rem ark (5.2): If <Ph+]n, Qj,+Un, &Jt(n ,p \h  + \) are sets of polynomials in (5.6) and 

S,p, SQ , SP, denote their generalised resultants, then these resultants are elements of 

n, p;h +1) and (5.6) is equivalent to

St , = S r - S (L (5.8)

■

The above remark together with the factorisation of resultants described in Chapter 

4 leads to the following result establishing the parameterization of perturbations which 

lead to that <u(s) becomes exact gcd of the perturbed set.

Theorem (5.1); For <Ph+i n e JT(n, p\h  +1), let e qP(n,p-,h +1) be the corresponding 

generalized resultant and let o(s )  e R [ j ] ,  deg = r < p .  The following properties

hold true:

a) Any perturbation set QJi+1 „ e JT(n, p\ h +1) that leads to = <Ph+Un -Qj,+ln, which 

has u (s) as common divisor, has a generalized resultant e ^ {n , p;h +1) that is 

expressed as shown below:

i) If l >(0) ^  0 then
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(5.9)

(4.38) and S^. e  ' * is the («, p)  -expanded resultant of an arbitrary set of

polynomials <P* e 7 t ( n - r ,  p  - r ; h  + l ) .

where S  . is again the (n, p)  -expanded resultant of an arbitrary set of polynomials 

<P* e Jt(n  -  r, p  -  r;h +1) and ©o is the (« + p - k ) x . { n  + p)  representation of 

u(s )  defined by (4.74).

b) If the parameters of Sv. are constrained such that S  . has full rank, then u(s)  is a 

gcd of the perturbed set <PA'+1 n.

By Proposition (5.3), any arbitrary polynomial y ( j ) e l [ s ] ,  deg{r>(,s)] = r < p  

may be consider as the gcd of some perturbed set of polynomials (P’+ln e J t ( n ,p ;h  +1) 

with some perturbation QJ[+l n e !JT(n,p;h + \), that is <P/+1„ = <Ph+i n - Q^+1>„, which implies 

for the corresponding resultants (Remark 5.2) that

ii) If u[s)  has k  zeros at 5 = 0 , then

Proof:

S9' = S r - S <l (5.10)

Given that <PA'+1 n has l >(s ) as divisor then:

i) If l >(0) ^  0, then Theorem (3.1) implies that

(5.11)
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where Sp. is the (n ,p )-expanded resultant of some <P* e J t ( n - r , p - r , h  +1) and

0^ is the (n + p ) x ( n  + p)  representation of l >(,s ). From (5.8) and (5.11) it follows 

that:

i , = S , - S » , = ^ - [ o ,  (5.12)

ii) If l >(î ) has k zeros at 5 = 0 , then by Corollary (4.3) we have that

s , = s r a u

where S  . is the (n ,p )-expanded resultant of some <P* e J t ( n - r , p - r ; h  + \) and 

©u is the (n + p - k ) x ( n  +p)  Toeplitz representation of 0 (5 ) defined by (4.74) 

From (5.6) and (5.11) we have that

Sd =S9 - S r.®u (5.13)

Clearly in both cases, if (P* is coprime, i.e. S . has full column rank, then the 

matrix Sv. cannot be further reduced (Theorem (4.5)) and the polynomial u(s)  is a gcd 

of <P/+I n . The above holds for every perturbation Qh+i n thet leads to a perturbed QJi+1 n 

with u(s )  a divisor and this completes the necessity of proof. The fact that the perturbed 

polynomials have u (s ) as divisor is obvious.

■

Rem ark (5.3): The above result provides a parameterisation of all perturbations 

Qh+ln e JT(n,p;h + \) which lead to sets <PA'+M having a gcd with degree at least r and

divided by the given polynomial d ( î ). The set of free parameters is the set of

coefficients of the polynomials (PA*+lfl_r e J Ï ( n - r , p - r ' , h  + \ ) . For a given selection of

free parameters, ^ ( 5 ) is a divisor of the elements of <PA+l n and if the polynomials are

generic, then ü ( î ) is a gcd of <PA+1 n.
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Having established a parameterisation of the perturbations generating sets with 

0(5) common divisor we consider now a metric that can be used for evaluation of

strength of “approximate gcd”. Given that such a metric has to relate in a direct way to 

the set of polynomials, the Frobenius norm seems to be an appropriate choice.

Lemma (5.1): If <Ph+x n e Tt(n,p\h  + 1), then the Frobenius norm of the generalized 

resultant Sv is given by

IK If =^ko|[+«Zlbl22 (5-13)
i = \

where p t are the coefficients vectors of the polynomials p i (s)e<Ph+in defined by 

Pi {s) = i n(s )‘ P r  en(s )‘ = [ A - , s , l ] ,  A ,(5) = « (5) ’ p i (s) = bi (s ) , i = l,2,...,h .

The above result follows readily from the definition of the Frobenius norm and the 

structure of . Using this norm and the parameterisation Theorem (5.1) we can define

the strength of a given r-order almost common factor of <Ph+l n .

Corollary (5.1): Let (Ph+Un e JT(n,p;h +1) and u ( s ) e l [ s ] ,  deg = r < p  . The

polynomial u(s )  is an r-order almost common divisor of <Ph+ln and its strength is 

defined as a solution of the following minimization problems:

i) If c>(0) *  0 , then its strength is defined by the global minimum of

/(<P,i>-) = m in | |s , - [ 0, (5.14)

ii) If u(s )  has k  zeros at 5 = 0 , then its strength is defined by the global minimum of

118



(5-15)

where <P* takes values from the set Jt{n,p\h  +1). Furthermore u(s )  is an r -order 

almost gcd of <PA+1 n if the minimal corresponds to a coprime set <P* or to full rank S ..

Example (5.1): We consider the set of two polynomials <P2 2,

<P22 ={ao(i ) = ( ^ - 0 ( 5 “ 2) = 52- 3  ̂+ 2’ b0(s) = s -0.99999} 

We have n = 2, p  = 1 and

1 -3 2
1 -0.99999 0
0 1 -0.99999

An approximate gcd of the set using ERES method [Mitrouli et al., 1993] is u(.s') = .s-- l . 

Then

'-1 0 O' a b
1 -1 0 , 5 . = c 0

5 (P
0 1 -1 0 c

Solving the minimization problem 

get:

= min
V<P*

with MAPLE we

a = 1, b -  -2 , c = 0.999995, /(<P,<P‘) = 0.4-10“1' .

The above demonstrates that the approximation is very good

The computation of the strength of approximation for any given l >(s ) is considered

next.
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5.3. THE STRUCTURED SINGULAR VALUE APPROACH FOR THE

APPROXIMATE GCD EVALUATION

A recent result [Halikias et al., 2003] shows that the optimisation problem of 

finding the smallest perturbation in the coefficients of two coprime polynomials, so that 

they have a common root, can be solved in the context of structured singular values and 

H  -  oo control applications. The calculation of the minimal perturbation is shown next to 

correspond to the distance of a structured matrix from singularity or equivalently to the 

calculation of the structured singular value of a matrix [Young et ah, 1996], [Zhou et ah, 

1998],

Definition 15.2): [Young et ah, 1996]: Let M  e R'"*'" and define the “structured” set:

© — {diag[S\Irx, S2I ri,..., SsIrs ) : St i = l,2, (5.17)

s

where the r are positive integers such that ^  ri =m  . The structured singular value of M
i=i

(relative to “structure” © ) is defined as:

 ̂  ̂ min |||A||: A e<D, det ( /m -M A ) = 0} (

unless no A e © makes In - M A  singular, in which case /i,D (M ) = 0.

■

Provided that //,D (M ) ^ 0 , the problem of the calculation of the structured singular

value, is to find a A e © of minimal norm such that det( /m - M A) = 0. We will show

that this problem is equivalent to the problem of the minimal perturbation for an 

approximate factor.

Theorem (5.2) [Halikias et ah, 2003]: Let us consider the set of two polynomials
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<P = {«(■s) = s" + an_lsn 1 + ... + a,s + a0, ¿>(s) = sp +b/)_tsp 1 +... + ô,j + 60, n > /?} (5.19a)

and denote by Sv the corresponding resultant of the set and assume that SP is non 

singular. The evaluation (in magnitude) of the smallest real perturbation in the 

coefficients so that the perturbed polynomials have a common root is equivalent to the 

finding of the structured singular value of the matrix M  where:

M  = -Z  ■ S~' -W (5.19b)

where

in which

(5.19d)

= (o>,« \  n , k + 1
0

n , p - k ~ .
,) , k  = 0,1,...,«-1 (5.19e)

Proof:

Since a (5 ), b (s) are coprime, their Sylvester matrix Sv is non-singular. The 

perturbed polynomials will have the form:

¿ ( 5) = 5" +(«„_, +Sn_t) s n 1 +... + («, + J 1) i  + (a0 + ^0) (5.20a)

b(s ) = s p +(bp_l +£n_l) s n-' +... + (b] +£l)s + (b0+s0) (5.20b)

Let also denote

r  = max{|^_1||i5,n_2| , . . , | j 0||^ _ 1||^ _ 2|,...,|£0|}=||A|| (5.20c)

and the corresponding Sylvester matrix can be decomposed as Sp, = Sv + E where E 

denotes the perturbation matrix:
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0 ¿ „ - 1 ¿0 0 0

0
 

• •

0
S x 0

• 
0

0 S x ¿0

0
V . £ p - 2 £0 0 0

0 0 er i 0

• 
0

0
V 1 £ 0

(5.21)

Matrix E  can be factorised as E = W ■ A-Z  where W, Z  are defined in (5.19b) and 

(5.19c) respectively and

A diag (Sn_xI p, Sn_21 p S0I p, sp_xIn, sp_2I n,..., sQI n ) (5.22)

Clearly A e(D , i.e. it has a block-diagonal structure, m = n + p , rt -  p  for 1 <i< n  and 

n = n  for n +1 < i < n + p  . Since the resultant matrix Sv loses rank if and only if there is 

a common factor between a (s) and b ( s ) . Then the problem of the minimum strength is 

equivalent to:

min||A|| such that det(5’i> + W ■ A Z )  = 0 and A e®  (5.23)

Using the matrix property that d e t(/ + 5C ) = d e t(/ + Cfi) for any matrices B,C of 

appropriate dimensions, and the fact that the resultant is non-singular, we have that:

det(Sv + W ■ A -Z )  = 0 de t ( l  + Z ■ S;' - W ■ A) a  d e t ( l - M A )  = 0 (5.24)

which establishes the equivalence. The minimum strength is then

m iny = p ¿ ( M )  (5.25)

Example 5.2 Let a ( 5 ) = 5 3 +a2s2 +a{s + a0 and 6 (5 ) = s2 + 6,5 + ̂  . The Sylvester matrix 

of the perturbed set is:
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1 a2 + S2 a{ +5j 0
0 1 a2 +S2 ax +S\ ao +^0
1 bx+£, b0 + £o 0 0
0 1 b,+ sx b0 + £0 0
0 0 1 bi+£i bo + £q

which can be written as:

= S„ + E =

1 a2 ai a0 0
0 1 a2 an a0
1 bx K 0 0
0 1 k bo 0
0 0 1 bi K

0 0̂ 0
0 0 b2 S,
0 £0 0 0
0 0 0
0 0 0 £\ £0

The “perturbation” matrix E can be factored as:

1 0 1 0 1 0 0 0 0 0 0 0
0 1 0 1 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0 1 0 0 1

S2I2
0
0
0
0

0 1 0 0 0
0 0 1 0 0
0 0 1 0 0

0 0 0 0 "
0 0 0 1 0
0 0 0 1 0

0 0 0
0 S2I2 0 0

0 0 0 0 1
0 1 0 0 0

0 0 SJ, 0
0 0 1 0 0

0 0 0 SJ,
0 0 0 1 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

which is of the required form E = WAZ with A e ® . The minimum coefficient 

perturbation is the inverse of the structured singular value of the matrix:
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0 1 0 0 0
0 0 1 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 1 0
0 0 0 0 1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

1 a2 a, (Xq O '
- 1

' 1 0 1 0 1 0 0 0 0 0 0 0

0 1 a 2 a , ao 0 1 0 1 ! 0
]

1 0 0 0 0 0 0

1 bx bo 0 0 0 0 0 0 0 0 1 0 0 1 0 0

0 1 bx bo 0 0 0 0 0 0 0 0 1 0 0 1 0

0 0 1 bx bo 0 0 0 0 0 0 0 0 1 0 0 1

The structured singular value of M  can be computed numerically using efficient existing 
techniques [Zhou et al., 1998], [Young et al., 1996],

The technique described above may be used to develop an algorithm to calculate the 

“best” approximate factor of the two polynomials after finding the perturbation matrix 

that corresponds to the structured singular value. A sequence of iterations consists of 

approximate factor calculation and extraction of the factor, repeated until a termination 

condition is met. The extracted factors will be then the factors of an approximate gcd of 

order equal to the number of iterations. A more elegant non-iterative procedure that will 

estimate the approximate gcd requires rank constraints in order to generalise the notion of 

the structured singular value:

Definition (5.3) [Halikias et ah, 2003]: Let M  e Rmxm and define the “structured” set:

0  = {diag (5xI ri, 82I ri,..., SsIr ) : St e R, i = 1,2,..., 5 J (5.26)

where the r{ are positive integers such that ^  rt = m . The generalised structured
/ = 1

singular value of M  (relative to “structure” 0 )  and for a non-negative integer k is 

defined as:
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A d ,a  ( M )
1

(5.27)
min{||A||: A e® , n u ll( /m -M A ) > &}

unless there does not exist A e ©  such that n u ll( /m -M A ) > k , in which case 

/V* (M ) = 0.

■

It follows from the definition that //,d o (M ) = //0 (M ) and that ^ iD k (M )> Ju(D k+i(M )

for all k > 0 . The following theorem establishes the framework for an approximate gcd 

algorithm:

Theorem (5.3) [Halikias et al., 2003]: Let a (s), b(s) be two coprime polynomials as

defined in (5.18) and let fi(s), ¿ (s )  be the perturbed polynomials as defined in (5.20a) 

and (5.20b) respectively and set

r  =  m a x  {|3 ,-i 11 3 ,-21 > -  > |3 > 11V .  I k - 2 1» - » K 1} =  H I  (5 -28)

where { } ,  {£,.} denote the perturbed coefficients of a (5 ), ¿ ( 5 ) respectively. Further, 

let y * (£) denote the minimum value of y  such that a (s), b (s) have a common factor 

cp(s) of degree deg{<p(s)} > £ (k  = 0 ,1 ,2 ,...,« -!). Then

f ( k )
1

/V a (M )
(5.29)

where //0 jt (M ) denotes the generalised structured singular value of M  = - Z  -S'J -W

with respect to “structure” © defined in (5.16) and Z , W the matrices defined in 

(5.19c), (5.19b) respectively.
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The proof of the above theorem is identical to the proof of Theorem (5.2), on noting 

that the transformations in (5.24) do not affect the nullity of the corresponding matrices.

5.4. DISCUSSION

Based on the factorisation property of the resultant, a new characterisation has been 

given for the approximate gcd. The new definitions are based on the “distance” between 

the Sylvester matrix of the initial set and the resultant of the perturbed set we have 

constructed and it is a distance problem that will be subsequently considered in detail.

An interesting result for the case of two polynomials links the problem to the 

equivalent of the structured singular values of a matrix. This equivalence establishes a 

solution of the optimisation for the “best” common factor of a specific order. An open 

issue is related with possible generalisation of this theory in order to cover the case of 

many polynomials which is still open.

The study of the optimisation problem that leads to the evaluation of the strength of a 

given approximate gcd and the computation of the optimal gcd of a given order is 

considered in the following section. Although it seems that such an optimisation is rather 

hard, it will be proved that it may be reformulated in a way that leads to a standard 

solution.
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Chapter 6

EVALUATION OF THE BEST APPROXIMATE GCD OF A 

POLYNOMIAL SET USING RESULTANT SETS

127



6.1. INTRODUCTION

In the previous chapter, we have defined the notion of approximate GCD as a 

distance problem and we have examined the way we can qualify the quality of the 

approximate gcd by defining the strength of the approximation as the value of the 

distance between the set and the selected gcd on the given d -gcd variety. So far we have 

considered approximate solutions derived from different methods. For a given set of 

polynomials a question that naturally arises is the definition of the best approximate gcd 

of a given degree. It has be shown in the previous chapter that almost every polynomial 

may be considered as an approximate gcd. The key issues addressed here are:

i) Define the “best” approximate gcd of a given degree.

ii) Qualify the “best” selection of degree for the approximate gcd

The theoretic characterisation of the “best” approximate gcd is based on further 

investigation of the optimisation results of Chapter 5. This problem is equivalent to 

defining the distance of the given set from the d -gcd variety. The algorithm focuses on 

the case where the approximate gcd does not have a root at zero. Otherwise we can 

extract first the sk factor and then proceed with the reduced set.

An analytic investigation of the optimisation problem established in Chapter 5 is the 

key to the definition of the approximate gcd and its evaluation. The degree of the gcd is 

considered fixed or can be determined with numerical criteria such as the numerical rank 

[Foster, 1986], [Mitrouli et al., 1991] which will be briefly described. An algorithm for 

the evaluation of the approximate gcd, based again on the resultant sets, will be 

introduced in the present chapter and will be demonstrated by examples.

6.2. EVALUATION OF DEGREE OF THE APPROXIMATE GCD

The existence of a non trivial gcd is determined by the rank properties of the 

Sylvester Resultant. In fact, Theorem (4.5) states that the right nullity of the Sylvester 

Resultant defines the degree of the gcd. In numerical terms, the right nullity of resultant 

is determined by the number of zero singular values. In defining the appropriate degree of

128



the approximate gcd we need to use the notion of numerical rank and thus effective right 

nullity of the Sylvester Resultant. The definition of the effective right nullity is based on 

the notion of the numerical rank of the Sylvester matrix, which in turn is based on the 

following property of the Singular Value Decomposition [Horn et al., 1985]:

Proposition (6.1): Let us consider the matrices A e Rmx" , U e W',xm, I  e Mm*”, V e R"*" 

so that U"LV be the Singular Value Decomposition of A , i.e. UEV = A . Then the 

matrices E,A  have the same rank, p (Z )  = p (A )  .

Considering the structure of £ , with the singular values on the diagonal and zeros 

everywhere else, the rank of a matrix and its Nullity are linked with the number of its 

non-zero singular values. Thus, in the case of very “small” singular values we can 

introduce the approximate version of the concept of the Nullity:

Definition (6.1) [Foster, 1986]: The numerical s  -rank of a matrix A e R m*" is defined by 

P s ( A) = ™ a {p (B )\ \A - B \< s , e  >0} 

and the numerical s  -right nullity

W£(ri) = m a x { ^ (5 ) :  |ri-2 ? ||< £ , e  >0} = n - p £(A)

The generalisations of the notions of rank and of matrix nullity into their numerical 

versions provide the criterion for the degree of the approximate gcd. In the case of the 

exact gcd (generalised resultant theorem) the degree of the gcd is equal to the right nullity 

of the resultant. When we investigate the approximate gcd, we seek a polynomial of 

degree equal to the numerical e  -nullity. The s  -nullity can be evaluated with the use of 

the following theorem:
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Theorem (6.1): [Foster, 1986]: For a matrix p e[A)=  number of singular

values of A that are > s

The above theorem determines the criterion for the degree of the Optimal GCD. 

The degree is chosen to be equal to the numerical loss of rank of the resultant. Th 

e determination of the desirable degree of the approximate gcd is based on the selection 

of a given accuracy s . Before we define the s  -accuracy approximate gcd degree we 

note:

Remark (6.1): The singular values of a matrix A are affected by multiplication of A by 

scaling of A on the left or right by a diagonal nonsingular matrix.

■

The above implies that defining the given accuracy e approximate gcd requires 

some standardization for the set of polynomials and thus for the corresponding resultant. 

This can be done by assuming that the coefficient vector has unit length, or by 

considering sets of polynomials which are monic. In the following we will assume the 

standardization based on polynomials being monic.

Definition (6.2): Let <Ph+ln be a set of monic polynomials with maximum degrees (n ,p ), 

Sp being the (p+hn)x(n+p) generalized resultant and let o\ >a2 >--->an+ , be the set of 

singular values of Sr . For a given accuracy s , e < a x we define

i) If cr„+p > £ , then the set <Ph+Xn will be said to be s  -coprime.

ii) If ax > - ><7k >£><7k+] >--->crn+p, then we say that the set (Ph+ln has an approximate 

gcd of degree 5  - n  + p - k

■

In the following we will assume the above definition of the degree of the 

approximate gcd and we will consider its optimal evaluation.
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6.3. SOLUTION AND COMPUTATION OF THE MINIMAL DISTANCE

PROBLEM

In this section we consider the computation of the distance of a given set of polynomials 

from the d -gcd variety. We will solve this problem by developing the investigation on 

the strength of the approximation by considering the optimisation problem in some detail. 

Let us consider again the case of a given approximate gcd o ( s ) , deg ras) = k of a set 

<Ph+1 e  9T(n, p;h +1) where first we assume that we do not approximate or have exact 

roots at 0. Let us also denote by Sr e n, p; h +1) the corresponding generalized

resultant. If we denote by Qj,+1 „ e j t ( n ,p ,h  +1) the perturbation set that leads to 

(PA'+1„ = <Ph+hn -Qj,+Un, which has u (s) as common divisor, then this set has a generalized 

resultant e rW{n,p\h + 1), expressed as in (5.7) which leads us to the optimization

problem of (5.14) defined by:

/  (<P, <P* ) = min
'  '  ViP*

s , - [ 0 , 1

(5.7)

(5.14)

The following property of the Frobenius norm simplifies the optimisation problem 

and motivates the use of this norm for the study of the optimization problem.

Lemma (6.1): [Horn et al., 1]: The Frobenius norm has the following property:

I M -4 = 1 4 - 1 4

Using Lemma 6.1 in (5.14) we obtain:

/ (« < ? • ) (6.1a)
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and if we denote by S ,̂ = , then (6.1) can be expressed as

/ ( ^ ' ) = i™p ÎI|s . - [ ° .  I s , o . (6.1b)

where 0^ is described by a Toeplitz structure from u (s)  and <I>U, (P have forms given 

in the (6.2) and (6.3) respectively below:

y0 0

y\
y 2 yi

0̂
yt

.
.
 s

- 
0

y n + p - 2 y n + p -3 y n + p - j - 2 y n + p - j - 2 •• 0̂
y n + p -1 y n + p - 2 y n + p - j - \ y n + p - j - 2 • y>

K n K n - X K , o 0 0

0 K  ,n K \ K o 0

0 0 K n K x K , o

K p K P -x K o 0 0

0 0
K p K P -x K o 0

0 0
K p - X K x K o

^ h , p  ĥ , p - X K o
0 • 0

0 0 K p K , p -1 \ o 0
0 ... 0 •• K x

o

o

y<)

(6 .2)

(6.3)
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and thus the matrix =  S ipO u in (6.1) will have the form:

c o  ,n C 0 , n - l C 0 ,0 0 0 . . .  o

e o ,\ C 0 ,n C 0 , n - \ C 0 ,0 0

e 0 , p - 2 e o ,\ C 0  ,n C 0 , n - l «
pi

o O

e 0 , p - l e 0 , p - 3 e 0,l ¿O C0,n-1 C0,0

Cup C U P - X Ci,0 0 0

\  1 Ci,P C U p ~ X c u  0 0 0

3,2 Cup C u p -. T'.o 0 0

\ n - 2 \  2 \ \ C/\0 0

e i , n - l e i , n - 2 C i , 2 3,i c , , p c /,p- i c i f i

C h , P C h , p - l C h , 0
0 0

\ , x c h , P C h , p - \ C h , 0
0 0

...
 *

»1 K) c h , P C h , p - \ C h , 0
0 0

e h , n - 2 e h , 2 c n , \ Ch,p C h , p - \ C h , 0 0

e h , n - \ e h , n - 2 e h ,  2 c h . \ c h , P cA,p-l C h ,  0

(6.4a)

where

= S v
7=0

M = \ > - e iv = ^ bip_jyv+j , i = \,...h , v = l , . . . , n - l
7=0

-O,n-0 = TjKn-jyj-,
j= e

B->
r

0 = O,...,n, cip_a = £ bip_jy j_a , / = 1,...h, a  = 0, , P
j = a

(6.4b)

We may split as follows:

sr = s'r +s”r (6.5)

such that S~ = 0* I s i '1' has the same structure with the reduced resultant 0

(5.14), corresponding to the perturbed set. Thus (6.1) takes the form
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(6.6a)

f(<P,<P*) = min
'  '  VfP *

(6.6b)

Using the standard norm inequalities we have:

< min
V(P*

+ min
V<P*

(6.7)

and this splits the optimisation problem into two independent parts involving different set 

of free variables. In fact, the first part depends only on the selection of the approximate

gcd u (s ) (expressed by the parameters in 6 U, whereas the second can get the absolute

minimum value zero with appropriate selection of the parameters in the Toeplitz 

parameterization of perturbations. This natural splitting of the optimization problem 

provides the means for reducing the original problem and lead to explicit solutions for the 

optimal approximation based on functions defined on the original set of polynomials.

Note that S), and S ” matrices preserve the Toeplitz structure of the blocks, i.e.

k
c o .„ C 0 , n - k + l 0 0 0

e o ,i C 0 , C 0 ,n - / t+ l 0

e 0 ,2 e o , \

C 0,n C 0 , n - k + \ 0 0

e o , p - \ e i ,2 0̂,1 C o , C 0 ,n -& + l 0 . . . 0

c >.p C i , p - k + 1 0 0 ■■■ 0

C,.P C / , p - * + l 0

h  2 *u r c i ,P - * + i

\  3 \  2

«¡,1 C i , p - k + \ 0 0

A n - 1 ë , j «¡,2 e i .  1 C>.P c / ,p - * + l 0 0

C*,P C h , p - k + 1 0 0 0 0

e h , 0 C*.P C i . p - k  +1 0

ë*,, e h ,  0

ë*,i e h ,0 0

U m -2 e h ,2 e h ,\ e h ,0 c >.p c , , . c /',/>-*+! 0  ••• 0

(6.8a)
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and thus S'" is defined as

•* - k
"0 ... o C0,n-k C0,n-k-\ C0,0 0 0
0 ... 0 0 C0,n-k C0,n-k~\ co,o 0 0

0 ... o 0 0 C0,n-k C0,n-k-\ C0,0 0
0 ... 0 0 0 0 C0,n-k C0,l T o

0 •• 0 Ci,p-k T  0
0 0 0 Ci,p-k C,,0

0 0 Ci,n-k c i,0 0 0
0 0 0 0 Ci,n-k T o 0
0 0 0 0 Ct,n-k Ci, 0

0 •• 0 Ch,p-k Ch, 0 0 0
0 0 0 C h,p-k Ch,0 0 0

0 0 0 0 C h.p-k T,0 0 0

0 •• 0 0 0 Ch,p-k T , o 0
0 0 0 0 Ch,p-k T o

(6.8b)

Theorem (6.2): Consider the set of polynomials <P & J f(n , p',h + 1) , and let Sv be the 

corresponding Sylvester matrix , then the following hold true: 

a) The problem of defining the optimal approximate gcd is equivalent to two 

optimisation problems involving different sets of independent variables that is minimise 

the functions

in terms of the parameters in u ( s ) ,

(6.9a)

in terms of the rest of the free parameters.

(6.9b)
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b) For a given approximate gcd o (s) of degree k , then:

i) The perturbed set <P corresponding to minimal perturbation applied on <P, such 

that u(j') becomes the exact gcd of of the perturbed set, is obtained from:

sf =srf o 0 = ( 6 . 10)

ii) The strength of the approximate gcd u (s)  of degree k is independent of the 

coefficients of the perturbation and it is given by:

( 6 . 11)

Proof:

a) The splitting of the optimisation problem follows from the inequality (6.7) and the 

observation that f x involves only the parameters of 0 (5 ), whereas f 2 (CP,CP' )

can be minimised and take the value of the absolute minimum, i.e. the 0 value, by 

choosing only the free parameters in the perturbation matrix.

b) i) For a given approximate gcd u (s)  the matrices 0 (j, <&v are fixed and that

implies that matrices S 'f , S":f, are also fixed. Thus in the optimization problem (6.6)

/ ( < ? , < ? * )  =  m d n j s ; + , the only free parameters are the

elements of the resultant S p. . Thus S , = is an obvious solution of (6.6) 

ii) The proof follows in a straight forward way from the result of part (b) (i) and 

given that is fixed, we have only to compute the norm of the

corresponding matrix.

Theorem 6.2 provides an explicit formula for computing the strength of a given 

approximate gcd in terms of computing the Frobenius norm of a given matrix (condition
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(6.11)). Furthermore, the separation of the general optimization into two separate 

problems leads to the following characterisation of the “best” approximate gcd.

Corollary (6.1): For any polynomial set (P e  JT(n, p;h + \) the Optimal Approximate 

GCD of degree A: is a polynomial that corresponds to the solution of

}= v T >  {«AIL)
deg{ç)(s)}=i

(6.12)

Proof:

Theorem 6.2 states that the overall optimisation problem is divided into two 

independent problems depending on different set of free parameters. When minimisation

of f  ((P,CP* ) is achieved (a problem independent from the parameterisation of

perturbations), then minimisation of / 2 (<?,<?*) is always possible for any selection of

l >(s ). Thus, if ^ ( s )  is the optimal solution, this must be the global minimum of

/(<?,<?*) = min p p ô l  . Thus the gcd of the specific degree that corresponds to the

minimum strength corresponds to the solution of (6.12) and it is the Optimal 

Approximate GCD.

■

The above result provides an elegant solution to the distance problem of a set from 

the d -gcd variety and provides the means for its computation as the solution of a 

standard minimisaton problem based on a set of polynomials defined from the original 

set. In fact, Corollary (6.1) identifies the “best” common factor of a specific degree with 

the one that corresponds to the solution of the optimization problem expressed in (6.11). 

The degree of this factor can be chosen by SVD of the initial Sylvester matrix. The 

matrix S(q = S'q,0>(p that corresponds to the optimal solution (p(s) = \ s k ■■■ \ s  + \  has a 

Toeplitz form as it will be shown in the following analysis. From (6.2) and (6.8) the 

structure Sq = is of the type indicated below:
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Z 0,n Z0,n-*:+l 0 0 ••• 0

A. Z 0,n Z0,n-t + l 0

f 0,2 A.

zo,„ Z 0,n-k+ \ 0 0

f o , p - \ A* A. Z0,„ Z0,«-A+1 0 ... 0

Z i,P Z i ,p - k  +1 0 0 0

A, z.> Z i ,p - k+1 0

A 2 A. Z.> Zi,/J-* + l

f i ,  2

A, z-.p Z i ,p - k  +1 0 0

/« A2 Ai z.> z;, />-*+! 0 ■■■ 0

Z k,p Z/i,/>-*+1 0 0 0 ••• 0

f h , 0 Z K P Z i,p ~ k+1 0

A, f h , 0 ZA,i> Z  i,p -k + \

f h , t i - 3 f h , \ Ao Z h,P - ■ Z i ,p - k+1 0

f h ,n - 2 f h ,2 A.. A.O Ch.p ZA.P Z i ,p - k  +1 0 ••• 0

where

f o , r  ^  e 0 , r - ^ {  + ^  C 0 , n + r - 4 ^ i  > f i , r  ~  X  +  S  Ci , P + r - ^
i=o i=r i=o i=r

(6.13a)

(6.13b)

and by (6.4b) and (6.13a) it follows that

k - \ k - 17 , >

Z 0 , n - 9  ~  Z  C 0 , n - j ^ j

ii

M Z  ̂ 0 , n - f i y 'n - j
j = e \ M = j yi

k -1 p

Z i , n - 9  ~  )  >
j = 9  /,= !

k -1 /î

Z H V ^ a - A )
y=0 a=i

9 = 0 ,. . . ,k - l

(6.13c)

By Definition (4.4) of the Sylvester resultant it follows that the elements the i- 

block of Sr below the diagonal of the block are all zero. Combining that with the fact

that Sr = and using the structure of the related matrices we have that the (v + r,v)  

element of the i -block:
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¿0

4

- .
—  —

-
L  e .  , ■ • e ,  i c, n •

î , p - ( k - r ) j /?-(&-/•)-! • • c. A ()•••()
i , r  j,r—1 Z,1 1 h p z,0

<-------------------------------  n + p  -------------------------------►

î
n + p - k

ï

K*
K

K *

K
o

o

= 0

which implies

f , r  =  X  +  X  ^U p+r-i^ ~  0
1=0 <?=r

and in similar way for the top block:

/o ,= 0

(6.14)

(6.15a)

(6.15b)

The above results simplify the optimisation problem which may now be expressed 

in the following way:

Theorem (6.3): The Optimal GCD is defined by the minimisation of ||s q |j where

SCI = s ; 0 ,  that corresponds to the polynomial (p(s) = \ s k + ... + Âls + Â0 where the 

matrix SQ has a Toeplitz structure with nonzero elements defined by

4-1

Z0,n-e X C° , n - j ^ j  X
i=e J = e

k-\ p
\M=j

H K n -.y ,
M=

^ - * = X X ( V ^ - A )

x,
k - i  n

= Z Z ( V ^ - A )
j=e P=\ (6.16a)

i=e

139



Z 0 ,n  • • • Z 0 , n - k + \ 0 0

0  Z 0  ,n Z 0 , n - k + l

0

0 0 Z 0 ,n Z 0 , n - k + \

Z i ,P  • • • Z i , p - k +1 0 0

IIo’ ..
. 

O
 

*

Z i , p - k + 1

0

0 0
Z i ,P  ■ Z i , p - k + \

Z h , p  ■”  Z h , p - k + 1 ^

0  Z h , p  Z h , p - k + \

0 0 z
h , p

0

0
Z h . p - k + 1 (6.16b)

We may demonstrate the structure of the resulting optimisation problem by an 

example of a generic type.

Example (6.1): Let us now consider the set of two polynomials <P24 = {p0( i) ,p , (5)} 

where y>0(s) = s4 + a3s3 + a2s2 + axs + a0, p ](s) = s2 +b2s2 +bxs + b0 and we search for the 

optimal approximate gcd of degree 2 with representation u (s) = k1s2 + kxs + ka. Then the 

Sylvester resultant is defined by

1 fl3 a2 a, a0 0 0
0 1 a2 a, a0 0
0 0 1 «3 a2 a, ao
1 b2 bx b0 0 0 (6.17a)
0 1 b2 bx b0 :
: ’ •. 1 b2 bx b0 0
0 ■■■ 0 1 b2 h, b0

and the , O u matrices are given by:
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(6.17b)

0̂ 0 0 0 0 0 o ' X 0 0 0 0 0

*1 K 0 0 0 0 0 h k 0 0 0 0 0

2̂ K K 0 0 0 0 h h *0 0 0 0 0

0 k2 K K 0 0 0 o  =’  ̂u h h h k 0 0 0

0 0 k2 K K 0 0 h h h k k 0 0

0 0 0 k2 K K 0 h h h h h k 0

1 O 0 0 0 k2 K K_ Je h h h h h k.

where ®o = 6 u' and thus its elements are defined by

i = h 6 (6.17c)

and thus are given as:

L =  —

l = - A .
1 K

k 2 k1 — 'b Kl-
2 k 3 k 2/CQ /i0

/ _ V  | ? KK
3 fc,4 *ft3

k*
l = -3 - 
4

k 2k k 2 + ̂ 2_

, V  „ f t/c = ----4" + 4 —!—
5 C

k k 2-3_x_2_

. k ,4 A:, k 2k, 2
= ^ _ 5 ^ i  + 6 M  

6 k 1 k 6 k 5Ai0 A-0 Aq

(6.17.d)

The perturbation resultant that introduces the optimisation problem is

(6.17.e)
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where [02 | Sw] is the matrix containing the free parameters associated with the 

perturbation and has the form

0 0 x2 *1 xo 0 0
0 0 0 x2 x , x0 0
0 0 0 0 x2 x0

[ 0 |S * ]  = 0 0 y, ^0 0 0 0
0 0 0 yi y0 0 0
0 0 0 0 y, ^0 0
0 0 0 0 0 y, y0_

Note that the matrix SipO u has the form

C0,4 C0,3 C0,2 C0,l C0,0 0 0

e0,l C0,4 C0,3 C0,2 C0,l C0,0 0

e0,2 ¿0 , 1 C0,4 C0,3 C0,2 C0,l C0,0
sp0 0 = sr = ¿1,3 Cl,2 Cl,0 0 0 0

¿1 , 1 Cl,3 Cl,2 Cl,l Cl,0 0 0

¿1,2 ¿1 , 1 Cl,3 Cl,2 c\,\ Cl,0 0

¿1,3 e\,2 ë,,i Cl,3 Cl,2 ¿1,1 Cl,0

(6-17.f)

(6.17 .g)

where

C0A =l0 + a 3/, +  a2l2 + a,/3 +  a 0/4 C l,3

C 0,3 — ö 3^0 2̂̂ 1 a i ^ 2  f l 0^3 C l,2

Cq 2 = U2/q +  û j / ]  + ¿Zq ^2 c,.,

C 0,l — C l,0

^ 0 ,0  — ao 0

e0 i =lx+ (^3^2 ^ 2 ^ 3  ^1^ 4  ^ 0 ^ 5 ë,.,

^ 0 ,2  ~ ^ 2 ^ ~  a3̂2 a 2 ^ 4  ^1^5 ^ 0 ^ 6 e i ,2

— /0 + b2lx + b j2 + b0l3

— bJo Wi bJi
— b[l() +b0lt

~ bJo

(6.17h)

— /j + 1̂̂3 0̂̂ 4

— /2 + ¿>2̂ 3 0̂̂ 5

and thus 5^ may be split as 5̂ , = S" + S ” which is demonstrated below:
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(6.17.1)

C0,4 C0,3 0 0 0 0

1o 1
o 0 C0,2 C0,l C0,0 0

1----
o

eo,i C0,4 C 0 , 3
0 0 0 0 0 0 0 C0,2 C0,l C0,0 0

g0,2 eo,i C 0 , 4 C0,3 0 0 0 0 0 0 0 C0,2 C0,l C0,0
C,3 C l , 2

0 0 0 0 0 + 0 0 C,1 Cl,0 0 0 0

C,3 Cl,2 0 0 0 0 0 0 0 c\,\ Cl,0 0 0

e \ , 2 \ \ C.3 Cl,2 0 0 0 0 0 0 0
c \ , \ c\.o 0

r u> e i , 2 \x Cl,3 Cl,2 0 0 0 0 0 0 0 Cu C1.0 _

Then S'; 02 j 5" J and thus the optimisation équation can be slit as

S ' A ~ [ o2 (6.17.J)

where by Corollary (6.3) the optimal approximate gcd is obtained from the minimisation 

of the norm of the first part . By Theorem (6.3) it follows that the elements below 

the main diagonal are zero. Finally S'rpO u has the form

Z0,4 Z0,3 0 0 0 0 0
0

Z 0 , 4 Z0,3 0 0 0 0
0 0 Z0,4 Z0,3 0 0 0

ZU ZU 0 0 0 0 0
0 Zl,3 Zl,2 0 0 0 0
0 0 Zl,3 Zl,2 0 0 0
0 0 0 Zl,3 Zl,2 0 0

(6.17.k)

where from (6.17.h) and (6.17.b) we have:

z04 =c0 4k0 + c0 3 kx = (/0 + a3/, + a2l2 + axl3 + a0l4 )k0+ (a3/0 + a2lx +axl2+ a0l3 ) kx

Z 0 ,3  —  ( ^ 3 ^ 0  aoh )  K

Z l,3 — Cl ,3k 0 T  C ,2 ^ 1  — ( h  ^ 2 h  ^1^2 ^0^3 )  ^ 0  {Pl^O  )  ^1

Z\,2 ~ {p2̂ 0 fyjlî ) K

The Frobenius norm of ST is then expressed as:
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a  («v p ' ) = I s ; ® ! = 3 « , + 4 ) + 4 (4 + 4 )

where f x (<P,(P*) = f ( k 0,kx,k2) and thus the minimisation of the resulting function leads 

to the definition of the optimal gcd.

■

Rem ark (6.2): The above example demonstrates the nature of the function f  yP,<P*) as

a function of the coefficients of the given degree polynomial. In fact, the conditions 

(6.16a) together with the relationships between y  and A parameters allow the definition

o f /(<?,<?*) as an explicit function on the set CP ,

■

We may further illustrate the procedure in terms of a numerical example as shown 

below:

Example (6.2): Let the set of three polynomials

(P3 2 = {¿>0 (5 ) = s3 -1 .99s2 -  5 + 2.01, bx (5 ) = s~ -3 s  + 2, b2 (s) = 5 -0 .9 9 j

the corresponding resultant is

1 -1.99 -1 2.01 0
0 1 -1.99 -1 2.01
1 -3 2 0 0
0 1 -3 2 0
0 0 1 -3 2
1 -0.99 0 0 0
0 1 -0.99 0 0
0 0 1 -0.99 0

and the singular values of Sv are

{5.7200, 5.0483, 3.0328, 0.7343, 0.0088}
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Thus from Definition (6.1) and Theorem (6.1) for £- = 0.0088 (or higher) we have 

numerical e -nullity 3\rc (S:p) = 1 • Thus the approximate factor we will estimate will be

of order 1. Let <p(s) = s + k0, k0 + 0 be the the approximate factor then S'p defined in 

(6.5) and the matrix O rp are respectively given by:

k l+ \ .9 9 k l - k 0- 2.01
0 0 0 0h-4Kq

k^ +1.99k.Q — kg --2.01 kl + \.99kl -  kg -2.01
0 0 0

k5Ko k ‘4

kg + 3 kg + 2
0 0 0 0fr3

kg + 3kg + 2 kq + 3 k0 + 2
0 0 0

Ko b-ik 0

kg + 3 kg + 2 kQ + 3&0 ■+■ 2 ■+■ 3Âq + 2
0 0

k 5 O 
4̂

Ko
kg +0.99

k 2Ko
0 0 0 0

kg+ 0.99 kg+0.99
0 0 0m o kl

k0 +0.99 k0 + 0.99 £0+0.99
0 0

kAK0 kl

kg 0 0 0 0
1 kg 0 0 0
0 1 kg 0 0
0 0 1 kg 0
0 0 0 1 kg

and thus S # i s  expressed as shown below:
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~ kl +1.99&2 - k Q -2.01 0 0 0 0]r3 /t0

0
k i0 + \.99k20 - k 0-2 .0 \

0 0 0

¿o + 3k0 + 2 

K0
0 0 0 0

0
hq + 3 Icq + 2

K
0 0 0

0 0
kl + 3A:0 + 2

0 0
K

k0 + 0.99

K
0 0 0 0

0
k0+ 0.99

K
0 0 0

0 0
¿0+0.99

K
0 0

It is now clear that k0 can be obtained from the optimisation problem of Definition (6.2) 

which in the present example is expressed as

f l  (<P,<P*) = min| S' O

= min
( k\ +1.99k\ - k 0 -2 .0 1 ^2

+ 3
r k 20 +3k0 + 2 )2 k0 + 0.99 V

v0

■ min
._ f 2k06 + 1.96k05 +3.9202k04 -1 6 ¿03 -13.9996k02 +S.04k0 +8.0802

' 1 K
+

3k04 + m 03 +39k02 +36k0+ n  , 3k02 + 5.94A:0 + 2.9403
■---------------------------------------------  i ----------------- ---------------

By setting w = — and substituting in the above expression, the problem is reduced to the
K

equivalent problem below:
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f 2 <p* ) = min jl^cD^ ||* I = min{8.0802w6 + 8.04 w5 -1 ,9996w4 + 20w3 + 45.86w2 + 31. 9 w + 8}

Using Matlab we may find the solution of the last minimisation problem to be 

w = -0.9964 and thus k0 -  -1.0036 which means that the best approximate factor order

1 for the polynomials of our example is tp (s) = s - 1.0036

Let us now consider the case where s is an approximate factor of the initial set of 

polynomials. This can be characterized by a norm applied on the last set of columns of 

the matrix. This is expressed by the next definition.

p  ,p  ,...,p  ,p
— n + p  — n + p - 1 — 2 — 1

Definition 6.3: Let (Ph+l B be a polynomial set and = 

corresponding Sylvester matrix expressed in terms of its columns, then

i) s is an <f(0) -approximate factor of (Ph+in if |/?J  < £•(0), ^ (0 )> 0

ii) sk is an £h (0) -approximate factor of <Ph+l n if | b  (°)> sk (°) ^ °

the

The numbers ¿;(0 ) , ek (0) will be referred as the strength o f the approximate factors s 

and sk respectively

6.4. ALGORITHM FOR OPTIMAL APPROXIMAL GCD

We can now design a global algorithm for the evaluation of the approximate gcd 

that will include a check for possible sk factors and elimination of the last k rows.

Evaluation of Approximate Common Factor (Algorithm 6.1):

i) Investigation of existence and extraction of sk' factor
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• Evaluation of numerical nullity (S,p) = k

• For a specified ¿'(0) find the maximum positive integer kx such that sk' is an

s  (0) -approximate common factor of <Ph+h„, obviously kx<k

• Eliminate the last kx columns of the resultant S!P that lead to the S,pi matrix

ii) Extraction of proper approximate common factor from

• Construction of the transformation free-variable matrices 

deg{</o(s)j = k - k x = k2

• Construction of the matrices = ¿y, O , S ’̂

^  *** f ^• Construction of

O O<p9 (p ’

Minimisation of
~ / A
s  o leads to the definition of <p(s)

Best approximate common factor is

6.5. DISCUSSION

The investigation of the approximate common factor and gcd for many polynomials 

has been completed in this chapter. The overall approach has been based on the 

formulation of the “approximate gcd” as a distance problem. This has been achieved by a 

combination of the results on Chapter 3 related to the representation theory, the definition 

of Chapter 4 of the strength of the approximation and the study of the optimisation 

properties of the defined problem. A new algorithm has been established, which is based 

on standard optimisation of functions constructed from the original sets of polynomials. 

New open issues may arise on this, related to the choice of the appropriate rank for the 

optimisation problem and the relation between the accuracy of the numerical nullity and 

the strength of the approximation.
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The explicit form of the reduced optimisation, based only on the free parameters of 

the approximate gcd, simplifies a lot the optimisation and generalises the results on 

almost zeros previously defined [Karcanias et ah, 1983], Furthermore the current results 

provide the means for studying concrete problems such as those considered in the 

following chapters and dealing with issues of root clustering to the case of linear systems. 

The latter extension motivates the need to extend the approach to matrix polynomials.
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Chapter

APPROXIMATE FACTORISATION OF POLYNOMIALS
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7.1 .INTRODUCTION

The algebra of polynomials provides the basis for the development of algebraic 

control approaches and issues such as computation of Smith forms, solvability of 

Diophantine equations, etc. Problems such as factorisations of polynomials play a key 

role within this area. Of special interest is the problem of factorisation of polynomials 

without resorting to root finding, as well as handling issues of approximate factorisations 

and grouping roots which are close. The latter is important especially when there is 

uncertainty on the exact values of the coefficients. Recently [Karcanias et ah, 2000], 

some special factorisation of polynomials has been introduced, which is within the 

general factorisation theory, and which can be performed without resorting to procedures 

based on finding roots. This factorisation is referred to as “normal factorisation” and its 

derivation is based on gcd algorithms. The results on the approximate gcd, introduced in 

the previous chapters, are now used to extend the normal factorisation in an approximate 

sense, which in turn provide the means for handling issues of “root clustering” of 

polynomials in a systematic way, using the notion of approximate gcd.

The essence of the normal factorisation is that we use the original polynomial and 

its derivatives, defined explicitly (and not numerically) and then gcd algorithms provide 

the tools for working this factorisation. The extension of these results is given here to the 

case of approximate factorisation that is linked to the “root clustering problem”

7.2. BACKGROUND RESULTS: NORMAL FACTORISATION

The investigation of the approximate factorization is based on resent results related 

with the normal factorization o f polynomials [Karcanias et al., 2000]. The approximate 

factorization is a generalization of the existing techniques for the exact case based on 

elementary divisors.
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Remark 7.1: For every polynomial i ) ( i ) e l [ s ]  there exist positive integers dv ...,da 

where dx > d2 >... > da > 1 such that b(s)  may be expressed as

b(s)  = f { s ) d' f 2{s f . . . f a { s t  (7.1)

where the polynomials f x ( s ) , / 2 ( ( 5 ) are pairwise coprime and the polynomial 

b(s)  = f  (5 ) f 2 (.s)--- fu  (s) has distinct roots.

■

The factorization introduced above is referred to as normal factorisation [Karcanias 

et al., 2000] and it is characterised by the following properties:

Proposition (7.1): Consider an «-degree polynomial i ) ( j ) e l [ j ] ,

b(s) = s” +bfI_ls"~1 +... + bxs + b0. We assume that (s + T)r is an elementary divisor of 

b(s)  over C . The following properties hold true:

i) The first derivative b ^ ( s )  has (s + /l)r 1 as elementary devisor.

ii) The k -th derivative b ^  ( s ) , k < t  , has (5  + X)T k as elementary divisor.

iii) The b ^  (s) derivative is the smallest order derivative that has no roots at s ~ - A .

m

The proof of the above is obvious. A respective generalised result for the structure 

of the derivatives is the following:

Theorem (7.1): [Karcanias et al., 2000]: Let & ( s ) e l [ i ]  assumed in the irreducible 

factorised, ordered form

i,( j)  = (s + ̂ , ) ' - ( s  + ̂ ) r' ( s  + V , ) . . . ( j + 2 „ )  (7.2)

where r, >... > r CT > 1. The following properties hold true: 

i) The first derivative of b(s ) is expressed as

b{'] (s) = (5  + A, Y'~‘ ■■■(s  + A<7)T<r"' g0 (5 )
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where g0 (s )has no roots from the set .

ii) The k  -th derivative, b{k> ( s ) , where r, >... > rv > rv+l is expressed as

(*) = ( i  + 4  )r,’A ■ ■ • (s + Av f ~ k gk (s)

where gk (s) has no common roots with g k_x (s) .

iii) The integer k = zx is the smallest for which the polynomials b(s) ,  b^'Us),...,  

b ^  (s) become coprime

■

Proposition (7.1) and Theorem (7.1) provide the means to link the problem of the 

normal factorisation of a polynomial and the algorithms for the gcd evaluation of many 

polynomials. Thus the problem is transformed to the evaluation of gcd of the set consists 

of the initial polynomial and its derivatives.

Corollary (7.1): The existence of a non trivial gcd t'(.s') for the set 

jè (s ) , b ^  (s ) ,. . . ,b ^  (s)j implies that ^ ( 5 ) is a polynomial factor of b(s)  of 

multiplicity k , i.e.:

= C7-3)

■

Corollary (7.1) follows from Proposition (7.1) and states that the factorisation of a 

polynomial can be expressed in terms of polynomials with distinct roots in a procedure 

that does not involve root finding. The Matrix Factorisation theory, developed in Chapter 

4, can be applied in the factorisation of a polynomial with respect to Theorem (7.1) or 

Corollary (7.1). This is demonstrated by the following example which motivates the 

developments in the following section.

Example (7.1): Consider the polynomial è (s ) = s7- s 6- 3 s 3 + 3 /  + 2 ^ -2  and its 

corresponding first and second order derivatives ¿ '( 5 ) = 7s6 - 6 s 5 - 9 s 2 +6s + 2 and
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b"[s) = 42s5 -3 0 s 4 - 1 8 s + 6. The resultant matrix, S (b (s),b '(s) ,b "  (s)} is given in

(7.4a) and its row echelon form in (7.4b):

S(b(s),lJ(s),lf(s))

1 -1 0 0 -3 3 2 -2 0 0 0 0 0
0 1 -1 0 0 -3 3 2 -2 0 0 0 0
0 0 1 -1 0 0 -3 3 2 -2 0 0 0
0 0 0 1 -1 0 0 -3 3 2 -2 0 0
0 0 0 0 1 -1 0 0 -3 3 2 -2 0
0 0 0 0 0 1 -1 0 0 -3 3 2 -2
7 -6 0 0 -9 6 2 0 0 0 0 0 0
0 7 -6 0 0 -9 6 2 0 0 0 0 0
0 0 7 -6 0 0 -9 6 2 0 0 0 0
0 0 0 7 -6 0 0 -9 6 2 0 0 0
0 0 0 0 7 -6 0 0 -9 6 2 0 0
0 0 0 0 0 7 -6 0 0 -9 6 2 0
0 0 0 0 0 0 7 -6 0 0 -9 6 2

42 -30 0 0 -18 6 0 0 0 0 0 0 0
0 42 -30 0 0 -18 6 0 0 0 0 0 0
0 0 42 -30 0 0 -18 6 0 0 0 0 0
0 0 0 42 -30 0 0 -18 6 0 0 0 0
0 0 0 0 42 -30 0 0 -18 6 0 0 0
0 0 0 0 0 42 -30 0 0 -18 6 0 0
0 0 0 0 0 0 1 -1 0 0 -18 6 0

(7.4a)

The row echelon form of the resultant is given in (7.4b). From its last non-vanishing row 

it is implied that the gcd of \b (5 ), b' ( s ) , b" (s)} is f x (s) = s - 1 .
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1 - 1 0 0 - 3 3 2 - 2 0 0 0 0 0

0 1 - 1 0 0 - 3 3 2 - 2 0 0 0 0

0 0 1 - 1 0 0 - 3 3 2 - 2 0 0 0

0 0 0 1 - 1 0 0 - 3 3 2 - 2 0 0

0 0 0 0 1 - 1 0 0 - 3 3 2 - 2 0

0 0 0 0 0 1 - 1 0 0 - 3 3 2 - 2

0 0 0 0 0 0 1 0 0 12 - 1 5 - 1 2 14

0 0 0 0 0 0 0 1 - 1 - 2 2 1 - 1

0 0 0 0 0 0 0 0 1 7 - 9 - 7 8

0 0 0 0 0 0 0 0 0 1 - 1 - 1 1

0 0 0 0 0 0 0 0 0 0 1 1 - 2

0 0 0 0 0 0 0 0 0 0 0 1 - 1

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

(7.4b)

Corollary 7.1 implies that f ( s )  is a factor of multiplicity 1 of the initial polynomial 

f  (s). By applying Euclidean division we take:

b(s) = f x (sY ■ b(s) = (s - 1)3 (s4 + 2s3 + 3s2 +4s + 2) (7.4c)

Investigating the resultant of f  (5 ) and its first and second order derivatives, it follows

that the set is coprime and thus we reduce the investigation to the

resultant of j / (5 ), / '  (s) j . The latter has the form:

£ ( /(* )> / '(* ) )

1 2 3 4 2 0 0
0 1 2 3 4 2 0
0 0 1 2 3 4 2
0 0 0 1 -3 -6 -2
0 0 0 0 1 1 0
0 0 0 0 0 1 1
0 0 0 0 0 0 0

and the echelon form is

(7.4d)
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s ( / ( s ) , / '(* ) )

1 2 3 4 2 0 0
0 1 2 3 4 2 0
0 0 1 2 3 4 2
0 0 0 1 -3 -6 0
0 0 0 0 1 1 0
0 0 0 0 0 1 1
0 0 0 0 0 0 0

(7.4e)

Thus f 2 (s )‘ = (s + 1)2 is a factor of f  (s) and thus the polynomial / ( 5) is factorised as

/ M  = ¿ « 7 ,  M 1 • / «  = ( i  -  (» + 1 ) 2 (»1 + 2)

7.3. APPROXIMATE FACTORISATION OF POLYNOMIALS USING THE 

RESULTANT ALGORITHM

The previous discussion links the problem of the normal factorisation with the 

algorithms for the evaluation gcd of polynomials. In Example 7.1 the background theory 

of the resultants has been applied. The combination of the definitions and the properties 

on normal factorisation [Karcanias et ah, 2000], with the analysis in Chapter 5 and 

Chapter 6 on the definition and evaluation of the approximate common factor and the 

approximate gcd of many polynomials lead to the notion of the “approximate 

factorization” which is now considered below:

Definition (7.1): Consider amonic polynomial /? (s )e R [s]  with degi/?(s)] = « and the 

family of perturbed polynomials p(s )  expressed by

p ( s )  = p ( s )  + s ( s ) ,  (7.5a)

where

£(s )  = £„_ls n~'+£„_2s"~2 +... + £is + £0 = £_'-en_x(s) ,  deg {¿r(s)} < « -1  (7.5b)
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We define:

i) p(s )  has an approximate multiple root at s 1 of multiplicity r with error ||y||, if 

(s + T)r is an elementary divisor of p ( s )  with some perturbation with bound

ll-ll < ^  ■

ii) p(s )  has an approximate ||£;|| factorisation defined by the elementary divisors

(s)T" = (s + , p  = 1 , v , t ^ > 1, if there exists a perturbation s  (s) e Qs such 

that ||£|| < 8  and

^ ( 5) = ei ( 5)r' •e2(s)r2- -e „ ( j) r'

An iterated algorithm can be constructed on this basis. First we examine some 

properties of the set of the derivatives and its corresponding resultant

Proposition (7.2): Let <Zf = {A,(*W" + V / “' + - + V + V  bi(s) = bl')(s), i = \,...,h, h<n

be a polynomial set that consists of a n -th degree polynomial and its derivatives of order 

1 . The bt (5 ) polynomial of the set are then given by:

bt {*) = b!‘} (s) = ^ —p — b0JsJ-
J = l u - 0!

(7.6)

The proof of Proposition 7.2 is a straightforward result of the basic properties of 

polynomial derivatives. Differentiation properties of polynomials (linearity) imply the 

following result:

Proposition 7.3: Leth(.s'), h (s), ¿■(s) be polynomials such that h(.s,) = h(s) + <c(.s')

Then, for every h, h - 1,... we have:

d hb(s ) _ d hb(s) d he ( s ) 
dsh ~ dsh + dsh

(7.7)
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Rem ark (7.2): The polynomial sets of the type ©*+1, consists of a polynomial ¿ ( 5 ) with 

degree n and its derivatives of order 1 define a family !JT^h that is clearly a subset 

of T((n,n-\\h-\-X). The perturbation set has to be redefined with respect to the 

restrictions of sub-family that are described in Proposition (7.2) and (7.3). In fact, 

althought the perturbation on b0 (5 ) can be arbitrary the following perturbations on its 

derivatives are functions of the original perturbation.

■

The Sylvester matrix , of the <Dhn+x set will be a [(/z + l ) « - l ] x ( 2 « - l )  matrix of 

the form:

e ( ° )  "

S v  =
c ( 0 ( 7 . 7 a )

c «  
_ ©

w h e r e

' 1 ¿>0,p- l ¿>0 ,p -2 ¿>0,1 ¿>0,0 0 0  "

c ( ° )  -
0 1 ¿ > 0 ,p - l ¿>0,2 ¿>0,1 ¿>0,0 0

( 7 . 7 b )

0 0 1 ¿>0 , „ - >  • • • ¿>0,1 ¿>0,0

\ p - ¿>,,1 0

O . . .  0 0  ■■ 0 '

c ( 0  _
^<D

0

¿’l . p - / ¿>1,p - 1-1 ja
- 

.•
0 0

 
••

•

•

0 0
( 7 . 7 c )

0 0 ¿> i, p - ,  ¿ > / , p - , - i ¿>,,0 0  •• 0

from (7.6) it follows that the elements of S D are:

ft, « = f t? 6 ) = I  ( j r j j A / -' = Z »»**
k = 0

(7.8a)
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(7.8b)

which in terms of the coefficients is expressed as:

(k  + z)!
b = ■Ji,k

(*)'
K m : > k = 0,l,...,n-i,

or

bik -  fk+i,,A ,k+i ’ ^  0,1,...,w i , i — h 

where by Fa b we denote the factorial

J 'a, b
a\

( a - b ) l
, a > b > 0

(7.8c)

(7.8d)

Rem ark (7.3): An alternative and less complicated expression to the above can be 

derived if we express the terms of the coefficients of the i -th order derivative in terms of 

the the ( i - l ) - th  order one, i = h . Then we have the equivalent to (7.8) recursive 

formulas:

b\ j - ]  = jb0,j ,

bij-1 = jbi-ij , j  = i,...,n , i< n

(7.9a)

(7.9b)

Rem ark (7.4); The above demonstrates that the set ©*+l is a special set, generated by a 

single polynomial ¿0 (.v), and thus the general results for approximate gcd developed 

before also apply here. However, because the elements are generated by the derivatives 

of the perturbations of the nominal polynomial b0(s),  this imposes some structure and 

introduces fewer perturbation parameters in the study of the resulting distance problem.

From the above analytic description of the elements of the derivative polynomials 

follows that the Sylvester resultant matrix S „  will have the form:
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K K K \

<3 0 0

0

0

0 o K K j *0,1 *0,0

A  ,n i \ i l*o, 0 0 0

..
. 

o

0 0

0 0 n K „ A j !*o, 0

fnA.n fh+kA,h+k fhA,h 0 0 0

0

fhA,h 0 0

0 0 fnA.n fh+\A,li fh,h\h H 0

(7.10)

Let us now denote by QJl+1 n the set of all the perturbation polynomials applied on 

(D^+l so that ©nA+' +Q7i+1 n, will have a common factor of degree h . Then the perturbation 

is:

Qjw,i. = { ? o ( 5 ) =  9 o , X + - + 9o,,5 +©,o> Qi{s) = qi,n-is"~i + - + qi,is +qt,o> i = o,i,...h}

(7.11)
and we shall also denote by SQ the corresponding resultant matrix of Qh+l n. The 

polynomials of the perturbed set will have the form

® hn+l = { P i ( s )  =  P t ( s )  + <3, ( s ) ’ * = 0,1....A} (7.12)

The investigation for the approximate factors of the polynomial p(s )  is reduced

with the above notation to the problem of approximate common factors of a polynomial 

set and the theoretical algorithm introduced in Chapter 6 can be applied to this case too. 

The difference in this case is that the polynomials in (Dhn+l are “dependent” in the sense

that they are defined as the derivatives of p(s ) .  Thus the perturbations on each

polynomial (and the corresponding resultant block) have to be related in a similar way. 

The structure of these perturbations is a straight forward and it is based on the fact that
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the k -order derivative (where defined) is a linear function. This is expressed in (7.13) 

and according to this expression, (7.14) defines the form of the perturbation set Qh+l n.

Proposition 7.4: The set of perturbed polynomials consists of the perturbed polynomial 

p0(s) = p (s )  + <70 (s) and of its first h derivatives.

PoW (s) = PW (*) + d k)(s) (7-13)

i.e.

Qj ,+1 ,n \ Vo (*)> Qt (5) : 9, (s) = 9o] is ) = Z  f i J (W J ‘
J = l

(7.14)

The problem we investigate in this Chapter, that is the approximate factorisation of 

a polynomial, can now be examined with in the framework of the distance problem of the 

initial resultant set <Df] and a perturbed set <D*,f+l that has an exact nontrivial factor. The

optimal solution will correspond to the minimal distance of O f '  from the family of all

perturbations that satisfy the derivative constrains defined above. This is described by the 

following result:

Definition 7.2: Consider the set O f ' 60(s),6, (s) =
d \  (ä )

ds‘
i eh ,  h < n \ e .  J T f  and

let / ( s ) e l [ i ]  be a given polynomial with deg { /  (s)j = r < « -  /z, r h < n . Furthermore, 

let = | q Ji+1 n|  be the set of all perturbations Qy,+1 „ e T t f ' ' h such that

® 7 +I= ® nA+1- Q ,+1,n e iK h (7.15)

with the property that /  (5 ) is a common factor of the elements of O ’f ' . If Qf+l„ is the 

minimal norm element of the set f f 'n, then /  (5 ) is referred as an h-order almost 

common factor of O f ' , /  (s)h is referred as an approximate factor of b0 (5 ) and the 

norm of Qf+l n, denoted by lb  * II is defined as the strength of /  (s)h. ■
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With the use of the above definition the problem now is to find the optimal 

(minimum distance) ||q / | | .  This is equivalent to the minimum distance between the

resultants of the two sets. This distance is described by equation (7.16a) and their 

equivalent forms (7.16b) and (7.16c). is transformation with low triangular Toeplitz

matrix corresponding to the polynomial o j ( s ) and O oj = O “1. The properties of these 

matrices are described thoroughly in chapter 4. The problem under consideration is then:

min = min S' . -  S'.|| <D ® (7.16a)

u, (<D, © ‘ ) = min (
v > v<d’ t

S  OkJ<D̂a> (7.16b)

and if we denote by = S^O^, then (6.1) can be expressed as

I s . - ] <D. (7.16c)

We may split S0 as follows:

4  = 4  + 4  (7-17)

such that 4  = ^0* | has the same structure with the reduced resultant ^0r | S(;j. J in 

(7.16), corresponding to the perturbed set and thus the optimisation is now equivalent to:

/(<P,<P*) = min
v®‘ {

o. i sP -s . o .

The following Theorem (7.2) is a specialisation of Theorem 6.2 in the case of sets of the 

JT^h family:
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Theorem 7.2: Consider the set of polynomials ©*+l e TC'J' , and let S^ be the

corresponding Sylvester matrix , then the following hold true: 

a) The problem of defining the optimal approximate gcd is equivalent to the solution 

of two optimisation problems involving different sets of independent variables that is

minimise the functions in terms of the free variables O. and S , i.e.:<D

A  ( © , © • ) = ! $  

^  (© ,© •)=

<D.

o ! cf) _ vUi- i ‘' V

(7.18a)

(7.18b)

b) For a given approximate gcd u(s)  of degree k , then:

i) The perturbed set © corresponding to minimal perturbation applied on CP, such 

that u(s )  becomes the exact gcd of of the perturbed set, is obtained from:

©. = © cf) =(̂p P u 0, |S©ê(2) (7.19)

ii) The strength of the approximate gcd u (s) of degree k is independent of the 

coefficients of the perturbation and it is given by:

A (©,©*) = S' <f>‘-’¡D O) (7.20)

Note that (7.19) result is obtained by setting:

//2 (©,© *) = 0 (7.19b)

Theorem (7.2) and the related analysis are applications of the general theory for 

“approximate factors” of polynomial sets to the case of the restricted structure of the 

JT^'h family. Propositions (7.3) and (7.4) denote the invariance of the structure under the 

solution of optimisation. The question of approximate factorisation is considered next and 

we will focus on the generalisation of the factorisation formula of Theorem (7.1) to its
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“approximate” extension. In other words will work on the extraction of almost common 

factors of order 1 from the <D*+1.

Assume that “0” is not an approximate root of the initial polynomial. Then by 

applying the procedure of algorithm (6.1) for the set <Dhn+x, a transformation matrix,

defined by a polynomial of variable coefficients, 0  e wjn have ^ g  form

To 0 ■ 0

Ti To
T2 T.

•• To 0

T, To

y  n - 2 To-3 ■•' y n - j - 2 y n - j - 2  ' •• To 0

T„-1 Tn - 2  ■ •• y n - j - \ T n — j — 2  ' '• T, To

(7.21a)

where in the case of the transformation matrix <f> for the extraction of the factorej

e} = ( .s- + X) j the y t parameters satisfy the relationships

2 e

iii

__
__

.

..... T,=(-lf 1
U J

=  -
1

i T j
To

O is also the inverse of the matrix 0  that is defined by
e . e . */

0 = 2, . . . ,n + p - 1, A/ ^  0 

(7.21b)

0 . =

0 0 ... 0 0
1 0 ... 0 0
0 1

0 0
0 0 1 x} 0
0 0 0 1

(7.22)
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The product of the resultant in (7.10) by is given in (7.23)

C 0 , n C 0 , n - l

e o , \ C 0 , n C 0 , n - i

c0,0 0

C0,0

0
0

0

e 0 , p - 2 e o , i C 0 , n C 0 , n - l C0,0
e 0 , p - \  e 0 , p - 3 e o , t C 0  , n C0,«-l

C U p C U P -1 C i , 0
0 0

\ 1 c u P- . C i , 0
0 0

..
. 

4*
1

C i , p - \ C,,o 0 0

e i , n - 2 ê , ,2 \ \ C u p T.o 0
e i , n - \ e i , n - 2 ë ,.i c u p - i

C h , p - \ C h ,  0 0 0

C h , P C h , p - \ C h , 0
0 0

ë*,2 ë*,i c h , P C h , p - \ C h , 0
0 0

e h , n - 2 C h , 2 c h , P C h , p - 1

• 
o

olU

e h , n - \ e h , n - 2 ë*,2 ë h A C h , p - \ CA,0

where

n - a

C 0 , n - a  ~  ~ X  
6=0

e = o L

r  .  \«+>-

b n = o ~ e

1

It J

n - a

~ z k . . , ( - u Ÿ ‘ " v

0 = 0

,  <7 = 0,1,...,«,

i^e)

(7.23a)

C i , n - i ~ < T  ~  ~  X
0=0 L

K ( n - i ) - c T - 0  ( 4/ ) ~ X  f{n-G-e)Pn-a-d ( P  )

( n - i ) - t r r - -(0+l)
, cr = 0,l

n - i

e i , v  = ~ X  f ( n - 6 ) f i n - e  i ~ P  )
-(̂ +e)

0=0  L
, v = l , . . . ,« -2

(7.23b)

Using the optimisation results of Theorem (6.2), we split as follows:
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s ^ s ' v + s l

such that

c" =

and

w -<̂D

c0,„ 0 . . .  0 0 ... 0

e o . \ C 0 , n 0 ■■■ 0 ... 0

e 0 , p - l e0,l C 0 , n
0 ... 0

c k , p
0 ... 0 0 ... 0

^ h , P
0 0 0

e h , n ~ \ e h , \  C h , p
0 . . .  0

0 c 0 n -1 C0,0 0 0

0 •• 0 C0,n-1 C0,0 0
0 •• 0 0

C 0 , n - \ C0,0
a, 

.
n

f ' 

o
 

■■

o

•* 
o ... 0

■ 
o

0 Ch,p-1 J6
I

o o
 

•

0 ••• 0 0 C h , p - 1 Ch, 0

(7.24)

(7.24a)

(7.24b)

Using the results of Chapter 6, and more specifically those of Theorem (6.3), the

best approximate factor of can be found by the minimisation of . Theorem

(6.4) and in particular conditions (7.22), (7.23) and (7.24b) imply that the specific form 

of the optimisation problem is described by the following theorem:

Theorem (7.3): The best approximate factor e; = (.v + /L j of multiplicity h is obtained

from the minimisation of min S' OU <D e s where

165



Z 0 , n
0 0 0 0

0
Z 0 , n

0 0 0

0 0
Z 0 , n

0 0

S' 0
U < D  e

(7.25a)

ZKp 0 0 0 0
0 z *.p 0 0 0

0 0 ZKP 0 0

Z 0 , n  = 0 , n  ~

n - < 7

- M . K-aA - -x j ) - Z H P u  ■
0 = 0 0 = 0

Z‘,r = K cU P  ~

n - c r

A E K - a A - - K )

-(5+1)-

1scII
-oxi: (7.25b)

5=0 L J 5=0

Note that the above result in (7.14) is for the case of the extraction of the monic 1- 

order factor e/ = ( .s- + X] j . The above analysis is sufficient in order to relate the

“approximate factorisation” of b(s ) with the approximate common factors of the set 

©*+1. Thus the problem can be solved using Algorithm (6.1).

In Chapter 5, we have introduced the strength of the approximation as a quality 

criterion. The strength refers to all perturbations applied on the polynomials. In the case 

of the approximate normal factorisation, the perturbations are dependent on the 

perturbation on the initial polynomial. Thus the accuracy sapp is related to the strength

and is an alternative criterion.

The first step in an algorithm for the extraction of an approximate factor from (D)'*'

is to determine h,  in other words the number of the, additional to the initial, Toeplitz 

blocks of the resultant corresponding to 1,2,..., A -order derivatives. This is chosen to be
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the higher order of derivative for which there exists loss of numerical rank [Foster, 1986]. 

The evaluation of the numerical rank is based on the following theorem.

Definition (7.3) [Foster, 1986]: For a matrix A e  Mmx"

p e ( A) = number of singular values of A that are < s

The results are demonstrated by the following example:

Example 7.1: Let us consider a set (Dh [p (5 )) generated of 6-degree polynomial 

p ( s )  = s6+ 1.01s5 - 4 .9 7 /  -1 .0 7 /  + 7 .9 3 / -3.825 + 0.08

and its h first derivatives, where we now investigate the clustering of a number of roots. 

Note that the derivatives have the form:

p '(5 ) = Ó55 +5.0554 -1 9 .8 8 / -3 .2 1 /  +15.865-3.82 ,

/ ' ( 5 )  = 3054 + 2 0 .2 / -59.6452 -6 .425-15.86 ,

p (3) (5 ) = 12053 +60.Ó52 -119.285-6.42 , ...

Evaluation o f  the approximate factor with higher multiplicity

For the following operations the appropriate functions of Matlab 6 are used. For the

polynomial set ©3 (¿>(5 )) = {¿>(5 ) , / / ( 5 ) , / / ( 5 ) ,/? ^  (s)J the respective Sylvester matrix

has minimum singular value cr = 1.36 which implies that the resultant has clearly full 

column rank and thus an approximate factor of degree 4 cannot be established. The next

step is now to examine the set © 2 (p ( s )) = {¿>(5 ) , / / ( 5 ),/?"(5 )} . The resultant of this set 

has the form
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1 1.01 - 4.97 - 1.07 7.93 - 3.82 -0.08 0 0 0 0
0 1 1.01 - 4.97 - 1.07 7.93 - 3.82 -0.08 0 0 0
0 0 1 1.01 - 4.97 - 1.07 7.93 - 3.82 -0.08 0 0

0 0 0 1 1.01 - 4.97 - 1.07 7.93 - 3.82 - 0.08 0
0 0 0 0 1 1.01 -4.97 - 1.07 7.93 - 3.82 -0.08

6 5.05 - 19.88 - 3.21 15.86 - 3.82 0 0 0 0 0
0 6 5.05 - 19.88 - 3.21 15.86 - 3.82 0 0 0 0
0 0 6 5.05 - 19.88 - 3.21 15.86 - 3.82 0 0 0
0 0 0 6 5.05 - 19.88 - 3.21 15.86 - 3.82 0 0
0 0 0 0 6 5.05 - 19.88 - 3.21 15.86 - 3.82 0
0 0 0 0 0 6 5.05 - 19.88 - 3.21 15.86 - 3.82
30 20.2 - 59.64 - 6.42 15.86 0 0 0 0 0 0
0 30 20.2 - 59.64 - 6.42 15.86 0 0 0 0 0
0 0 30 20.2 - 59.64 -6.42 15.86 0 0 0 0
0 0 0 30 20.2 - 59.64 -6.42 15.86 0 0 0
0 0 0 0 30 20.2 - 59.64 - 6.42 15.86 0 0
0 0 0 0 0 30 20.2 - 59.64 - 6.42 15.86 0

(7.26a)

and the singular values of Sc[)2 are approximately:

[106.06, 103.44, 76.52, 69.07, 44.26, 31.89, 15.86, 8.41, 1.06, 0.71, 5 1015}

where from Theorem (7.4) for a very small accuracy s  = 10 14 we have numerical s -  

nullity | ) = 1 ■ This implies that for the above accuracy there exists an

approximate factor of order 1 of the polynomial set ©2 (/>(s)) = {/?(£),/>'(■?),/>" (■?)}. In 

other words there exists exactly one elementary factor e, (s) = (5  + ̂ )  of multiplicity 3 

with accuracy s  = 10“14. That means that p  (5 ) = (5  + \  f  p x (s) + qx ( s ) .

The factor e, (,s ) is obtained from the minimisation of S^Oc . By (7.25b) and

(7.23b) it is implied that \\S'rD<be has the form:
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w L = 5
'  1.01 4.97 1.07 7.93 3.82 0.08 V

V  

f

o 0 2 n 3 n 4 n 5 no/I, Aj /Lj Aj Aj

+6

+6

6 -

5.05 19.88 3.21 15.86 3.82- + - - + -
A, A, A, A, A,

20.2 59.64 6.42 15.8630--------------;—+ ---r- +--- —
4  ^  ^  ^

V

or

'  =(5w12 + 1 0 .W  +171.4005w'° + 302.703w9 +4313.6525w8 +
F V
+5931.224w7 —16131.258lw6 -15211.8874w5 +21901.0151w4 + 

+8437.4316w3 -9380.3844w2 -1945.8208w+1596.824)

(7.26b)

where w, = (A, ) ' and the global minimum of this polynomial is estimated using a 

standard minimisation procedure at w, = -1 . This implies that the best approximate root 

is rx = -Aj = 1. This is an approximate triple root of the initial polynomial. Now the factor

has to be extracted for the first polynomial and an investigation for possible other factors 

of multiplicity 2 will follow. We do not have to investigate for possible triple factors

because their existence will contradict the fact that 1\rc j = 1.

Extraction o f  the factor (5  - 1)3 = s3 -  3s2 + 3s -1

The extraction can be carried out by Euclidean division or by using the equivalent 

methodology described in Chapter 6 for the approximate factorisation of the resultant. 

Note here that the factorisation involves only the first block of the resultant that 

corresponds to the initial polynomial. That is:

T 1.01 -4.97 -1.07 7.93 -3.82 -0.08 0 0 0 0
0 1 1.01 -4.97 -1.07 7.93 -3.82 -0.08 0 0 0
0 0 1 1.01 -A.9TI -1.07 7.93 -3.82 -0.08 0 0
0 0 0 1 1.01 -4.97 -1.07 7.93 -3.82 -0.08 0
0 0 0 0 1 1.01 -4.97 -1.07 7.93 -3.82 -0.08

(7.26c)
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Using Theorem (6.2) and condition (6.10) the transformation matrices associated 

with the factor (5  - 1)3 = s3 -  3s2 + 3s -1  have the form

where

and

S - 0 = 5", Ò — °1 f Ò<D° el 1 © h

- 1 0 0  0 0 0 0 0 0  0 0~
3 - 1 0  0 0 0 0 0 0  0 0

- 3 3 1 0 0 0 0 0 0  0 0

1 - 3 3 - 1 0 0 0 0 0  0 0
/V 0 1 3 3 -1 0 0 0 0  0 0

0  =e\ 0 0 - 3 3 -1 0 0 0  0 0

0 0 0  1 -3 3 - 1 0 0  0 0

0 0 0  0 1 -3 3 - 1 0  0 0

0 0 0  0 0 1 - 3 3 - 1  0 0

0 0 0  0 0 0 1 - 3 3 - 1 0

0 0 0  0 0 0 0 1 - 3  3 -1

‘ - 1 0 0 0 0 0 0 0 0 0 0

- 3 -1 0 0 0 0 0 0 0 0 0

- 6 -3 1 0 0 0 0 0 0 0 0

- 1 0 - 6 3 -1 0 0 0 0 0 0 0

/ A \-l - 1 5 - 1 0 6 - 3 - 1 0 0 0 0 0 0

(®.,) = -2 1 - 1 5 10 - 6 - 3 -1 0 0 0 0 0

- 2 8 -2 1 - 15 - 1 0 -6 - 3 -1 0 0 0 0

- 3 6 - 2 8 -2 1 - 1 5 - 1 0 -6 - 3 -1 0 0 0

-4 5 - 3 6 - 2 8 -2 1 - 1 5 - 1 0 - 6 - 3 -1 0 0

- 5 5 - 4 5 - 3 6 - 2 8 -2 1 - 1 5 - 1 0 - 6 - 3 -1 0

- 6 6 - 5 5 - 4 5 - 3 6 - 2 8 -2 1 - 1 5 - 1 0 - 6 - 3 -1

(7.26d)

(7.26e)

(7.260

from Theorem (6.2) and using the matrix operations we have

”0 0 0 1 4.01 4.06 0.08 0 0 0 0
0 0 0 0 1 4.01 4.06 0.08 0 0 0

0 0 0 0 0 1 4.01 4.06 0.08 0 0

0 0 0 0 0 0 1 4.01 4.06 0.08 0

0 0 0 0 0 0 0 1 4.01 4.06 0.08

(7.26g)

The last row of (7.26g) gives the quotient polynomial after the extraction of e, (5 ) '. 

The next step is to investigate and extract possible multiple factors from the quotient 

polynomial f  (j) = 53 + 4.0 k 2 + 4.06s + 0.08 •

170



Let us denote <Dh as the set of derivatives, i.e. . For (D,

the respective resultant is

1
0
3
0
0

4.01 4.06 0.08 0
1 4.01 4.06 0.08

84)2...4.06...... 0.........0
3 8.02 4.06 0
0 3 8.02 4.06

and its singular values are approximately |l5.12, 9.48, 4.11, 1.03, 2.5- 10 6 j . Thus with 

an accuracy e  = 10 '5 we have an approximate common factor of ©,, i.e. there is an 

approximate factor e2 (s) = s + A, of f\ (s) of multiplicity 2. Then,

p ; ^ | F= 2
, 4.01 4.06 0.081-------+ --- --------r-
, K V

+ 3
.  8.02 4.06 
3 -------- + — t -
, f  ^

V

(7.26h)

^  2w|  + 16w2 + 75.4w2 - 209.8vî  + 300.3w22 - 196.7w2 + 49.5

where w2 = —  and when(7.26h) is minimised, then the approximate solution is at
K

vv2 = 0.54 or T2 = 1.85. The last implies that the approximate factor is 

e2 (5 ) = s + 1.8367 .

Extraction of e2 (5 ) = s2 +3.6736s + 3.3738 from f  (s) 

Note that

0 , =  1

and

S' =

3 7 3 8 0 0 0 0
3 .7 3 3 7 3 8 0 0 0

1 3 .7  3 3 7 3 8 0 0
0 1 3 .7  3 .3 7 3 8 0
0 0 1 1.7 3 .4 2 _

'0 0 1.177 0.024 0
0 0 0 1.177 0 024

=

0 .2 9 2  0  0  0  0

- 0 .3 1 6  0 .2 9 2  0  0  0

0 .2 5 7  - 0 .3 1 6  0 .2 9 2  0  0

- 0 .1 8 6  0 .2 5 7  - 0 .3 1 6  0 .2 9 2  0

0 .1 2 5  - 0 .1 8 6  0 .2 5 7  - 0 .3 1 6  0 .2 9 2

and this defines the last quotient polynomial f 2 (5 ) = 1.177s + 0.024
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Thus the approximate normal factorisation of /?(s) is 

p  (5 ) = ( s - 1)3 (s + 1.8367)2 (1.1775 + 0.024)

■

A theoretic algorithm may now be defined. Note that this algorithm is not optimised 

in terms of complexity, but it is just a theoretic evaluation approach for the optimal 

approximate factorisation.

Evaluation of Approximate Factor (Algorithm 7.1):

Given a polynomial ¿1(5 ) e R [a’] the approximate factorisation follows the steps:

i) Investigation of the existence and extraction of sk° factor

• For a specified accuracy £0 >0  find the maximum non-negative integer k0 such

that sk° is an ¿^-approximate factor of b(s),  f 0 (5) = bnsn~k° +... + bn_ko+ls + bn_k

• Eliminate the last k0 elements of 6 (5 )

b ^ s ^ 1 + -  + bxs + b0\\• |k o M |H r ( i ) - / o ( J ) s*t

ii) Extraction of proper approximate common factor from the set consists of f 0 and its 

derivatives CPD( f 0)

• Construction of the transformation free-variable matrices O , O , corresponding 

to e, (5 ) , where deg je, (5 )) = 1

• Constmction of where = max jo,l,...,w - k 0 : ’N e ) > lj

Construction of the matrices Shi = 5 ^ 0  , 5* , S'fh Ô

• Minimisation of S hOe
n \ e \

implies e, (5)
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• Derive f  (s) from / 0 (5 ) = (e, (s))ri f  (s) + q{ (s ) with extraction of (e, (s))r' from

the first polynomial, using factorisation properties (Chapter 4 and Chapter 5) on the 

first block.

S hQ e is the strength of the approximation. Alternatively the error can be found

by 1?,

iii) Repeat the above procedure for f t (5 ) for z' = l,...,cr where cr is the maximum 

positive integer for which f [ s ) and its first derivative f ' ( s ) have approximate 

common factor, i.e. tr + 1 = min j& e Z+ : [ s ( f k ( s ) , / / ( s ) ) )  = o| (termination 

criterion)

iv) Best approximate factorization of is sk°e] (.v)r' ■■■eG (5 )^ f a (5 )

v) Final Error polynomial: £•(5 ) = b ( s ) - s k°ei ( i ) r‘ ■■■ea (5 )^ f a (5 )

7.4. DISCUSSION

The results on the Optimal Approximate GCD in Chapter 6 have been combined 

with the theory of Normal Factorisation of polynomials [Karcanias et al., 2000] to create 

an algorithm for the computation of approximate factorisation of a polynomial. The 

algorithm introduced in this chapter includes several steps and iterations that increase its 

complexity. This can be reduced in practice with simplification of the procedure of 

change of the operational order.

The importance of the algorithm is that provides a general theoretical framework 

for the approximate factorisation. The results on the “best approximate factorisation” 

provide the means for defining polynomials close to the original one with clustered roots. 

This can be the basis for many calculations in the algebra of polynomials, where root
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clustering may be the vehicle for defining approximate algebraic forms, such as 

“approximate Smith forms” etc, where standard procedures of the algebraic nature will 

automatically lead to coprimeness, since they will fail to define the notions of 

approximate common factors.
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Chapter

APPROXIMATE DECOUPLING ZERO POLYNOMIALS 

AND APPROXIMATE ZEROS OF LINEAR SYSTEMS
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8.1 INTRODUCTION

The notion of almost zeros and almost decoupling zeros for a linear system has been 

introduced in [Karcanias et al., 1983] and their properties have been linked to mobility of 

poles under compensation. The basis of that definition has been the use of Grassman 

polynomial vectors to define system invariant and the definition of “almost zeros” of a set 

of polynomials as the minima of a function associated with the polynomial vector 

[Karcanias et ah, 1983], In this chapter we use the exterior algebra framework introduced 

in [Karcanias et ah, 1983], expand it by introducing some new invariants and then use the 

results on the approximate gcd defined before to define the notion of “approximate input- 

output decoupling zero polynomial” and “approximate zero polynomial”. The current 

framework allows the characterisation of strength of the given order approximate zero 

polynomial, as well as permits the characterisation of the optimal approximate solutions 

of a given order. As such, the current approach extends the result in [Karcanias et al., 

1983] by introducing approximate polynomials, rather than simple frequencies (roots) 

and by defining the “strength” of such approximate solutions.

The results allow the definition of new measures of distance of systems from 

uncontrollability, unobservabillity using the “strength” associated with a given 

approximate polynomial, and this is another advantage of the current approach. The use 

of Grassmann vectors, that is polynomial vectors in a projective space, implies that the 

general results on the “strength” of approximation yield upper bounds for the 

corresponding approximate polynomials, when these are defined in the affine space set 

up. The current approach makes a distinction between the Grassmann input-state and 

state-output polynomial vectors introduced using the controllability, observability pencils 

and their restricted versions [Karcanias et al., 1994], This distinction permits the 

definition of a classification of almost input-decoupling (output-decoupling) zero 

polynomials into strong and weak. This classification reflects their property of being 

dependent, or invariant under feedback (state, respectively output injection).

The chapter is structured as follows: We review first the exterior algebra framework 

that leads to the Grassmann invariants characterising system properties and then we use
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the previous results to define the approximate zero polynomial notions and the 

corresponding properties. The background on the DAP problems in Control and the 

definition of Grassmann invariants follow [Karcanias et ah, 1983],

8.2 DETERMINAL ASSIGNMENT PROBLEMS IN CONTROL THEORY

Consider the linear system described by

x = Ax + Bu , / le R ™  , B e R nxp
S(A,B,C,D)  : (8.1)

y =  Cx + Du , C e l ”  , D e R mxp

where ( A,B  ) is controllable, (A ,C )  is observable, or by the transfer function matrix 

G(s) = C ( s I - A )  ' B + D,  where rank (G(s)} = min { m , p j . In terms of left, right 

coprime matrix fraction descriptions (LCMFD, RCMFD), G (5 ) may be represented as 

G(s) = D, (Sy '  N, (5 ) = Nr (s) Dr ( i ) _1 (8.2)

where N, (5 ) N r ( i )  e  R"1̂  [5 ], Dt (5) e M'"*'" [5 ] and Dr (5 ) e [s] The system will 

be called square if  m = p  and nonsquare if m ^ p .  Within the state space framework we 

may define the following frequency assignment problems :

(i) Pole assignment by state feedback: Consider L e , where L is a state feedback 

applied on system (8.1). The closed loop characteristic polynomial is then given by

PL(5) = d e t{ 5 /-^ -5 T }  = det {5(^)1} (8.3)

where B[s) = [sl -  A,-B~\ and Z = .

(ii) Design of an n-state observer; Consider the problem of designing an n-state 

observer for the system of (8.1). The characteristic polynomial of the observer is then 

defined by

PT (5 ) = det [ s i - A -  TC} = det TC(s)  (8.4)

where f e l ”  is a feedback, f  = [la,T] and C (s) = [ s / - z f ' , - C 'J  ■
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(iii) Pole assignment by constant output feedback: Consider the system described by 

(8.2) under an output feedback K  e R mx/' . The closed loop characteristic polynomial 

PK (s) is given by [Kailath, 1980]:

PK (s) = det {D, ( s ) + N, (s) *}  = det [Dr (5 ) + KNr (5 )} (8.5)

By defining the matrices

T, ( J ) = [D ,W ,iV ,W ]e K " " (”*')W . l ( s )

K r =[lx, K ] & W x{m+p)

Dr (s)

Nr(* \
J e R (m+p)!

( 8.6)

then,

PK (s)  = det{7; (i)AT,} = det { ¿ X  (*)} (8.7)

(iv) Zero assignment by squaring down: For a system with m> p  we can expect to 

have independent control over at most p  linear combinations of m outputs. If c e KR is 

the vector of the variables which are to be controlled, then c - H y  where H  e  IRpxm is a 

squaring down postcompensator, and G'(sj  = HG(s)  is the squared down transfer 

function matrix [Karcanias, 1989], [Kouvaritakis et al., 1976], A right MFD for G'(s') is 

defined by G'(s') = HNr (s )Dr (s) ' where G (i)  = Nr (s )Dr (5) ' .  Finding H  such that 

G'(.s’) has assigned zeros is defined as the zero assignment by squaring down problem. 

The zero polynomial of S(A , B, HC, HD) is given by

z * ( j)  = det{iflVr (i)} (8.8)

Note that the above problem belongs to the general class of model projection 

problems [Kar.l]. A larger family of problems of determinantal type problemsare 

associated with dynamic compensation and are considered next.
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(v) Dynamic Compensation Problems: Consider the standard feedback configuration 

[Kuc.l] below

If G (s) e  [s], C(s') e R i”<m [s] , and assume coprime MFD’s as in (8.2) and 

C(s)  = A, (s ) _1 Bt (5 ) = Br (5 ) A_, (s)~‘ (8.9)

Then, the closed loop characteristic polynomial may be expressed as

f ( s ) = d e t |[ l) , (5 ), N,(s)]  

/ ( 5 )  = de t | [ 4 ( s ) ,  B,(s)]

A r ( S )

M s).

a W

( 8. 10)

( 8. 11)

i) if p< m, then C(.s) may be interpreted as FEEDBACK COMPENSATOR and we will 

use the expression of the closed loop polynomial described by (8.11)

ii) if p  > m, the C (s) may be interpreted as PRECOMPENSATOR and we will use the 

expression of the closed loop polynomial described by (8.10)

The above general dynamic formulation covers a number of important families of 

C(s) compensators as :

(a) Constant, (b) PI, (c) PD, (d) PID, (e) Bounded degree
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In fact

(a) Constant Controllers: If p  < m, Ax= I p, B} = K  e  R /,xm , then (8.11) expresses the 

constant output feedback case, whereas if p  > m, Ar = I m, Br = K  e  expresses the 

constant precompensation formulation of the problem.

(b) Proportional plus Integral Controllers: Such controllers are defined by

C (s) = K0 + i  K, = [ j / ,  f  [sK, + K, ] (8.12)

where K(), K t e  M[5]/x" and the left MFD for C (s) is coprime, iff rank {AT,} = p  . From

the above and (2.11), the determinantal problem for the output feedback PI design is 

expressed as :

/ ( s )  = det<ds/p, sK0 + ATJ ‘ a W
K  {(s))

= det\ [ IP, K 0, K,]
sDr (s) 
sNr (s) 
N r ( S)

(8.13)

(c) Proportional plus Derivative Controllers; Such controllers are expressed as

C(s) = sKt +K, = [ / , ] ”’ [»ATo+A-,] (8.14)

where K0,K { e W ,/m [5] and the left MFD for C (i)  is coprime for finite s and also for 

s = co if  rank(Al0) = p  . From the above and (8.11) the determinantal output PD feedback

is expressed as:

f ( s ) = det
fr n ~Dr (s) I

' Dr ( i ) T
] [ / , , sx a + x , ]

N,
> -  det • [/„. K„ K„] N r(s) 

_sN, ( j )J

(8.15)

(d) PIP Controllers: These controllers are expressed as 

C ( s ) = K 0 + - K ] + s K 2 = [ slp J 1 [ s 2K 2 + sK0 + K , ] (8.16)
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where K0, Kl e LRTX"! and the left MFD is coprime with the only exception possibly at 

5 = 0 , 5 = 00 (coprimeness at 5 = 0 is guaranteed by rank (.£,) = /? and at 5 = 00 by 

rank(if2) = p  ). From (8.11), the determinantal output PID feedback is expressed as :

f ( s ) = det

= det [ / , ,  K„ K„ K ,]

sDr(s)
sNr(s)
Nr(s)

s‘Nr (s) I

(8.17)

(e) Observability Index Bounded Dynamics (OBD) Controllers: These are defined by 

the property that their McMillan degree is equal to pk, where k is the observability index 

of the controller. Such controllers are expressed as in (2.9) where

[ 4 ( 5 ) , 5 1 ( 5 ) ]  = 7 t 5 t +... + r 0 (8.18)

Tk +Tk_t +... + T0 and Tk = [ /^ ,JSf]. Note that the above representation is not

always coprime, and coprimeness has to be guaranteed first for McMillan degree to be 

p k ; otherwise, the McMillan degree is less than pk . The dynamic determinantal OBD 

output feedback problem is expressed from (8.11) as

/ ( 5) = det j [ r /  +... +T0]

or

/ ( 5 ) = det{(r t 5 * + ... +T0 ) M ( 5 ) } = det- \ Tk) Tk_j , ..., T0]

s kA i  (5) T 
5 WM ( 5 )

M ( s )
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Remark (8.1): The above formulation of the determinantal dynamic assignment 

problems is based on the assumption that p < m and thus output feedback configuration is 

used. If p > m, we can similarly formulate the corresponding problems as determinantal 

dynamic precompensation problems and use right coprime MFDs for C(s).

■

(vi) Decentralised Determinantal Problems: The problems considered above assume 

that the controller is of the centralised type. The decentralisation assumption implies that 

the controller is not a full matrix, but it has a block diagonal structure and thus reduced 

degrees of freedom. For the constant output feedback case (m > p) and assuming that we 

have p  channels, then the decentralised output feedback is expressed as

~K 0 ... 0 '

Kdec =
0 K  ... 0

0 0 ... K p

where K, e M 2= 11 P and y

f (*)=detj[ A  M i l  
_N, M J j

mi = m and thus

( 8.20)

(8.21)

The decentralised problems will be considered separately and their main feature is that 

the controller has a partially fixed structure which introduces some special characteristics 

to the analysis of the problem.

8.3 THE ABSTRACT DETERMINANTAL ASSIGNMENT PROBLEM

All the problems introduced in the previous sections belong to the same problem 

family i.e. the determinantal assignment problem (DAP). This problem is to solve the 

following equation with respect t o polynomial matrix H  (5 ):
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d e t(//(s )W (s ))  = / ( j ) ( 8.22)

where /  (.s’) is the polynomial of an appropriate degree d . The difficulty for the solution

of DAP is mainly due to the multilinear nature of the problem as this is described by its 

determinantal character. We should note, however, that in all cases mentioned previously, 

all dynamics can be shifted from H (s) to N ( s ) , which, in turn, transforms the problem 

to a constant DAP. This problem may be described as follows:

Let M  (5 ) e M/7Xr [s], r < p  such that rank(M(s)) = r rank (M  (,s)) = r and let dC be 

a family of full rank r x  p  constant matrices having a certain structure. Solve with respect 

to H  e H  the equation:

f M(s ,H )  = det ( H - M ( s ) )  = f ( s )  (8.23)

where /  (s) is a real polynomial of an appropriate degree d.

Rem ark 8.2: The degree of the polynomial /  (s) depends firstly upon the degree of 

M  (s) and secondly, upon the structure of H . However, in most of our problems the 

degree of p (s )  is equal to the degree of M(.y) .

■

The determinantal assignment problem has two main aspects. The first has to do 

with the solvability conditions for the problem and the second, whenever this problem is 

solvable, to provide methods for constructing these solutions. We classify the solutions to 

two classes : exact and generic solvability conditions. The characterisation of the generic 

solvability conditions is linked to the problem of system parametrisation.

Notation: Let Qkn denote the set of lexicographically ordered, strictly increasing 

sequences of k  integers from 1, 2, ..., n. If {x; } is a set of vectors of V ,

co={\x,...,\y)&Qkn, then w a  ... a j . = xo) a  denotes the exterior product and by /\rV
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we denote the r-th exterior power of V . If H e  F mxn and r < m in\m ,n \ , then by Cr ( / /  ) 

we denote the r-th compound matrix of H  [Marcus et ah, 1969],

If /z', m^s),  i e r ,  we denote the rows of H , columns of M  (s) respectively, then 

Cr {M ) = h[ a ... a  A' = /z' a  e l ' w

and

Cr (M (s ) )  = ml (■s) a A m r (s) = w a  e cr = f

\ r  J
(8.24)

and by Binet-Cauchy theorem [Marcus et ah, 1969] we have that [Karcanias et ah, 1984]: 

f u ( s ,H )  = Cr (H )  Cr (M (s ) )  = { h A , m ( s ) A . ) =  £  h„m„(s) (8.25)
vcGr.p

where (* , *) denotes inner product, co = (iv ...,ir) e Q r p, and ha , mra (.v) are the 

coordinates of Aa , m (s) a  respectively. Note that ha is the rxr minor of H  which 

corresponds to the co set of columns of H  and thus hoj is a multilinear alternating 

function of the entries hj of H . The multilinear, skew symmetric nature of DAP

suggests that the natural framework for its study is that of exterior algebra. The essence 

of exterior algebra is that it reduces the study of multilinear skew-symmetric functions to 

the simpler study of linear functions. The study of the zero structure of the multilinear 

function f M (5 , H ) may thus be reduced to a linear subproblem and a standard 

multilinear algebra problem as it is shown below.

(i) Linear subproblem of DAP: Set m(s)  a  ^ ( 5) e MCT [5] Determine whether there 

exists a 0 i such that

f M( ^ M )  = k!p{s) = Y Jk,Pi ( s ) = f ( s ) , i e q  / ( s ) e M [ s ]  (8.26)
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(ii) Multilinear subproblem of DAP: Assume that K  is the family of solution vectors 

k of (8.26). Determine whether there exists H' =[h[,...,hr] , where 77' eM pxr, such that

/z, a ...a .̂ = /z a  = k ,  k e K  (8.27)

■

Polynomials defined by Eqn.(8.26) are called polynomial combinants [Karcanias et 

al., 1984] and the zero assignability of them provides necessary conditions for the 

solution of the DAP. The solution of the exterior equation (8.27) is a standard problem of 

exterior algebra and it is known as decomposability of multivectors. Note that notions and 

tools from exterior algebra play also an important role in the linear subproblem, since 

f M (s ,77) is generated by the decomposable multivector m (s) a  .

The essence of our approach is projective, that is we use a natural embedding for 

determinantal problems to embed the space of the unknown, 77, of DAP, into an 

appropriate projective space. In this way we can see our problem as search for common 

solutions of some set of linear equations and another set of second order polynomial 

equations. This also allows us to compactify 77 into 77 and then use algebraic 

geometric, or topological intersection theory methods to determine existence of solutions 

for the above sets of equations. The characteristic of the current framework is that it 

allows the use of algebraic geometry and topological methods [Leventides, 1993] for the 

study of solvability conditions but also computations. Central to the latter is the solution 

of the linear system derived by (8.26) with the quadratics characterising the solvability of 

(8.27), which are known as Quadratic Pliicker Relations (QPR). The importance of the 

DAP framework is that it uses the natural embedding of a Grassmannian into a projective 

space and this in turn defines new sets of invariants characterising the solvability of the 

different DAP problems [Karcanias et al., 1984], We may summarise the results here, 

because they provide the basis for a variety of structural indicators and diagnostics and 

form the basis for defining the “approximate zero polynomial”.

Let J '( s ) e l '" ,r[s], T(s)  = [i,(s ) ,...,( r ( s ) ] , 7>>r,  rank{r(s)] and let 

X, = R ,.[s]( r ( i ) ) .  If r ( 5 )  = M (i)D (5 )_1 is a RCMFD of r ( s ) ,  then M (s) is a
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polynomial basis for X t . If Q (s) is a greatest right divisor of M (s) then 

T (s) = M  ( s ) Q ( s ) D ( s ) ' ,  where M (s)  is a least degree polynomial basis of X t 

[Rosenbrock, 1979], [Kailath, 1980], A GR for X, is defined by [Karcanias et al., 1984]

z ( s )• <v ’ 18.781
P, (5)

t _ ( s ) A  =  t_i ( i )  A... At_r (5) = m, (5) A ... A fh_r (s)

where z, (s) = det{<2(s)} , p t (5 ) = det {-t>(s)} are the zero, pole polynomials of 7 (s ) 

and m [ s )  = mt ( s )  a ... A m r (5 ) e MCT [ s ] , a  = ( p , is also a GR of X t . Since M [ s ) is a

least degree polynomial basis for X t , the polynomials of m (s)A  are coprime and 

w (^ )a  will be referred to as a reduced polynomial GR (R  -Mj^] -GR) of X t . If 

8  = degjw (s')a |  , then 8  is the Fomey dynamical order [For.l] of X t . m(s)A may 

always be expressed as

m (s)A  = p (s )  = p 0+ p is + ... + p sss =Ps -es (s) , Ps e MCTx(i+1) (8.29)

where Ps is a basis matrix for m (i) a  and es (5) = [1,5,...,55] ' . It can be readily shown 

that all M[s] -GRs of X t differ only by a nonzero scalar factor ae 91. By choosing an

w (s)  a  for which p  =1 , a monic reduced Grassman representative (R  - R. [.v] -GR) 

of X t and shall be denoted by g (X t) and is referred to as canonical M[s] -GR; the basis 

matrix Ps of g (X () is defined as the Pliicker matrix of X t [Karcanias et al., 1984]. The 

importance of the above is established by the following results [Karcanias et al., 1984]:

Result (4.1): g (A )), or the associated Plucker matrix Ps , is a complete (basis free) 

invariant of X t . ■
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Result (4.2): Let r ( i ) e R ' 'xr[{], p > r  rank {7 (s)] - r , z ,( s ) ,  p ,(s )  be the monic 

zero, pole polynomials of T (s) and let g (X ,) = p ( s ) be the C -]R[s] -GR of the 

column space X t of 7 (s ) .  ¿(s ) a  may be uniquely decomposed as

z'{ s .
P t  ( s

If M ( i ) e R F [ i] , / ? > r ,  ran k |M (j,) | = r , then M  (s) = M  (s )Q (s ) , 

where A/(s) is a least degree basis and Q (s) is a greatest right divisor of the rows of 

M(s) and thus

»i(s)A  = w ( j)A -d e t(0 ( j) )  = £ ( j ) z m(j)  = Pi -es (s )-zm(s) (8-31)

The linear part of DAP is thus reduced to

f u  (s, k ) = k 'p (s )  zm (s) = k'Ps ■ es (5 ) • zm (5 ) (8.32)

Result 8.3: The zeros of M  (s') are fixed zeros of all combinants of m (s) a

■

The zeros of f M (s ,k ) which may be freely assigned are those of the combinant 

f h-t (s>k) = k ‘in(s) a , where m (s) a  is reduced. Given that the zeros of (s ,k ) are not 

affected by scaling with constants, we may always assume that m (s) a  = P s  -es ( s ) . In the 

following, the case of combinants generated by reduced m (s) a  will be considered. If 

( i ( j ) e R  [5 ] is the polynomial which has to be assigned, then max jdeg a (s)} = S , where 

§  is the Fomey dynamical order of X t . If a(s) = ases (s) = a0 + a}s +... +assd, where 

as e 1R5+1, then the problem of finding k e R cr such that (s ,k ) = a (s)  is reduced to 

the solution of

t(s )  a  = cp (s)
)

, where c e l - { 0 } (8.30)
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(8.33)

The matrix M  (5 ) e M/,xr [5 ] generating DAP will be called linearly assignable 

(LA), if Eqn.(8.33) has a solution for all a ; otherwise, it will be called linearly 

nonassignable (LNA). M  (s) will be called completely assignable (CA), if it is LA and 

Eqn (8.27) has a solution for at least a solution of the linear problem defined by Eqn 

(8.33). An important family of nonassignable M (s) matrices are those for which there is

no k such that f M (s , k ) - c , c e R ;  such M  (s) are called strongly nonassignable (SNA)

and they imply that they cannot assign all zeros at s = 00 . Note that strong 

nonassignability implies nonassignability, but not vice versa. Some results characterising 

the above properties are stated below [Karcanias et al., 1984]:

Rem ark 8.1: Necessary condition for M (s) to be LA is that M  (s) is a least degree 

matrix (i.e. has coprime rows).

Result 8.2; Let M ( j ) 6 R f [j ] be a least degree matrix, Ps be the Pliicker matrix of 

X m and let q = rank [Ps }. Then,

(i) Necessary and sufficient condition for M  (5 ) to be LA is that q = 3 + 1 

(i.e. > <5 + 1 and % = S + 1 ).

(ii) Let M (s) be LA and let P' be the right inverse of P's and Pg a basis for CN r [ Pg j . 

For every a e  M,5+1, the solution of (8.33) is given by

k = P la + PgC , where c e R ff{1 arbitrary (8.(8.34)
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(iii) Let Ps = £ 0,£ 1,...,£ <f] € R ‘Tx(i+1) and let £ = rank{P5} , £= rank{P 5J. M (s)  is

strongly nonassignable, iff Ç =<? ■

The solvability of DAP involves examination of the exterior equation (8.27). We 

summarise next some of the fundamentals which affect the study of approximate zero 

polynomials”. A proper treatment may be found in [Leventides, 1993], [Karcanias et al., 

1984], [Karcanias et ah, 1989], [Karcanias et ah, 1984] etc. A necessary and sufficient 

condition for a solution of DAP is that from the family of solutions of Eqn. (8.26) there 

exists at least a k for which Eqn. (8.27) has a solution. A vector i e T  defines a point 

in the projective space Pa^  ( R ) ; the points of which satisfy for some H  e R rxp Eqn. 

(8.27) are those which belong to the Grassmann variety of / ^ ( R )  which is [Hodge, 

1952] characterised by the following result:

Result 8.5: Let k  e R " , a  = and let km, a> = (/,,..., ir ) e Qr be the coordinates of k

(seen as the Pliicker coordinates of a point in / ^ ( R ) ) .  Necessary and sufficient 

condition for an H e  W *p , H  = , to exist such that

h/\ = hx/\ .../ \h r = k = (8.35)

is that the coordinates koj satisfy the following quadratic relations

r + 1

y ( - i )  k . =o (8.36)
k = \

where 1 < /, <i2 <■■■ < ir_i < n and 1 < j\ < j 2 <■■■ < j r+i < n

The set of quadratics defined by Eqn (8.36) are known [Hodge, 1952], [Marcus et 

ah, 1969] as the Quadratic Pliicker Relations (QPR) and they define the Grassmann 

variety of Pa A ( R ) . Conditions (8.36) clearly reveal the nonlinear nature of DAP. The
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two main questions which naturally arise are: (1) Given a decomposable k , which 

satisfies (8.35), constmct the matrix H . (2) Parameterise the set of conditions (8.36). the 

second question is crucial for the study of compensators which considerably simplify 

DAP.

Example 8.1: Let p  = 5, r = 3 and let (,k0,kx,k2,...,kg) be the coordinates of a vector 

defining a point in the projective space Pg . The set of QPRs describing the Grassman 

variety of Pg (usually denote by Q (3 ,5)) is given by

k0k5 - k xk4 +k2k3 = 0, k0ks - k xk7 +k2k6 = 0, k0k9 - k 2k7 + k4k6 = 0 (8.37)

kxk9 - k 2ks +k5k6 = 0, k2k9 - k 4k% +k5k7 = 0 (8.38)

It may be readily shown that the above set of equations is not minimal; in fact, the set 

(8.38) may be obtained from the set (8.37) and thus (8.37) is a minimal set of quadratics 

describing the Grassmann variety Q(3,5) .

The above example makes clear the need for the definition of a minimal set of 

quadratics describing Q (r, /;) . The problem of reconstructed H  from the decomposable 

k  is examined first [Giannacopoulos et al., 1984]

f  „v
Result 8.6: Let k  = [...,ka,..^  e R a , a  -  P , be a decomposable vector (satisfying the

set of QPRs) and let k  be a nonzero coordinate of k . If we define by

h i j = K .. .............. > i e r ~ ’ J e E

then for the matrix H  = \ jit] J , Cr (7 /)  = k .

(8.39)

f „A
Rem ark 8.4: Let k  = [•■•,£<*,,•••] ^ a  -  K  , be a decomposable vector and let the

\ r )

first coordinate of k be nonzero. The H  matrix defined by Result 8.5 has the form
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H  = [ k aI rX ,  ]' e , where ka =  k i 2.. r * 0 (8.40)

The reconstruction of H  from a decomposable vector is demonstrated by the 

following example.

Example 8.2: Let k = \k 0,kx,k2,k2,kA,k5\  be a point of the Grassmann variety Q (2,4) 

of the projective space .P5(R ). A basis matrix for the vector space V whose Plticker 

coordinates are coordinates of the given point is defined by:

1

0" k2 o '
0 kQ

if k0 * 0 and H 0 = K k0

- K K k5 k}

1 1 i__ 1 o
 

1 __

it may be readily shown that H 2 = H 0-Q where

0 =

k2 • k0
k ,-K '

0
1 M*o

We may verify that C2 ( / / 0) = [&02, k0kv k0k2, k0k2, k0k4, kjc4, -&2fc3] and since

k0k5 -  k{k4 + k2k2 = 0 we have that kxk4 -  k2k3 = k0k5 and thus C2(H ) = K0-k .

■

The above procedure for constructing H  out of a decomposable k  also suggests a 

procedure for writing down an independent set of QPRs which completely describes 

i l( r , p ) ; this set is referred to as the Reduced Quadratic Pliicker Relations (RQPR)

[Giannacopoulos et al., 1984]. Alternative ways for characterising decomposability and 

reconstructing the space from a decomposable vectoris given in terms of the Grassmann 

matrix [Karcanias et al., 1984, 2], which reduces the study of decomposability to a rank 

problem.
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8.4 GRASSMANN AND PLUCKER INVARIANTS FOR LINEAR SYSTEMS

AND THE NOTION OF ALMOST ZEROS

For the control problems discussed in section (8.2), the matrix M  (s) has a special

structure; thus the matrix coefficient of m (s) a  has important properties which stem

from the properties of the corresponding control problem. A number of Pliicker type 

matrices associated with a linear system are defined below:

(a) Controllability Pliicker Matrix:

For the pair (^,Z?), b(s) a  denotes the exterior product of the rows of

B[s) = [sI - A , - B \  and P [A ,B ) is the (w + i)> n + p  

n
basis matrix of b (s)‘ A ,

P (A ,B ) will be called the controllability Pliicker matrix and its rank properties 

characterise the system controllability.

Result (4.5) [Karcanias et al., 1996]: The system S (A ,B ) is controllable iff P (A ,B ) has 

full rank.

The singular values of P (A ,B ) characterise the degree of controllability, affect

state feedback design and are primary controllability indicators associated with state 

feedback design.

(b) Observability Pliicker Matrix :

For the pair ( A,C ) ,  c(.y) a  denotes the exterior product of the columns of

C (s) = [ s / -  Ä ,- C  J  and P (A ,C )  is the (n + 1) basis matrix of c ( s ) a .
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P(A, C) will be called observability Pliicker matrix and its rank properties characterise 

system observability.

Result 8.8 [Karcanias et al., 1996]: The system S (A ,C ) is observable, iff P (A ,C ) has 

full rank

P (A ,C ) is important for observer design and its singular values are prime 

indicators in the solution of such problems.

(c) Transfer Function Matrix Pliicker Matrices

For the transfer function matrix G (s) represented by the RCMFD, LCMFD of 

Eqn.(8.2) we define by t_r (5) a  , t_, (s )' a  the exterior product of the columns of Tr (s), 

rows of T,(s) respectively, where Tr (s), T, (s) are defined by Eqn.(8.6). By P(Tr) we

x(« + l) basis matrix of (« + 1)denote the
b m +

\  P  J

i  m +

V P  )

basis matrix for t i W  A - P(Tr), P(T,) will be referred to as right, left fractional

representation Pliicker matrices respectively. Such matrices provide the prime indicators 

for the solution of the output feedback, or constant pre-compensation problem.

Result 8.9 [Leventides et al., 1995]: For a generic system with mp > n , then the 

corresponding Pliicker matrices P(Tr), P(T,) have full rank.

The full rank of these matrices is a necessary condition for the solvability of pole 

assignment problems and their singular values characterise the norm properties of the 

corresponding solutions. Given that f ( s ) ,  T,(s) uniquely characterise (modulo

unimodular equivalence) the transfer function G(s) ,  we may also refer to P ( f  ),  P { f )
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as the right-, left- transfer function Pliicker matrices and we denote them simply by

P ,(G ),P ,(G ) .

(d) Column, Row Pliicker Matrices

For the transfer function G (5) ,  m> p , we denote by n(s)  a  the exterior product

( m \
of the columns of the numerator Nr (s),  of a RCMFD and by P ( N ) the x(i/ + l)

v ^

basis matrix of n(s)  a  . Note that d - 5 , the Forney order of X g , if G(s)  has no finite 

zeros and d = 5  + k , where k is the number of finite zeros of G(s) ,  otherwise. If Nr (5) 

is least degree (has no finite zeros), then Pc (iV) will be called the column space Pliicker 

matrix of the system. For this case the row space Plücker matrix may be similarly defined 

and it is Pr (TV) = 1. For systems with m< p  and full rank transfer functions Pc ( N ) = 1,

whereas Pr ( tV) is a nontrivial matrix. Such matrices play a key role in problems such as 

the squaring down, or more general model projection problems.

Result 8.10: For a generic system with m > p , for which p [m -  /?) > S  +1 , where S  is 

the Fomey order, Pc (N ) has full rank.

■

(e) Dynamic Compensation Transfer Function Matrices

For the transfer function G (5 ) m> p  we may define the matrices

r , «  =
Dr (s)

K  M

sM(s)

* r W

T fD(s) =
M ( s ) 

sNr (5)
(8.41)
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sM  (s)
skM (s)  
sk4M ( s )

Trm (s)=  N r (s) , T f OBD{s) 
s2N r{s)

(8.42)

By taking the exterior products of the columns of such matrices Prpi (G ), PrPD (G ) ,

pPio  ̂ pk,0 BD w}-1 are referred to as right-, PI-, PD, PID, k-order OBD transfer

function Pliicker matrices. Such matrices enter the solvability of the corresponding 

assignment problems and their singular values are prime design indicators for the 

corresponding problem.

Rem ark 8.5: The matrices Pr (G ) , P,(G) for a given G (s) are not independent, but 

they are related by [Karcanias et al., 1984, 2]

P, (G)' = U ■ Pr (G ), U invertible (8.43)

■

Properties of the rank of the above matrices for the generic case may be established in a 

similar manner.

With a linear system it is clear from the above that we may associate new types of 

invariants, which characterise completely respective vector spaces and they are known as 

Pliicker matrices, or Mfs]- canonical Grassmann representatives. For every Plucker

matrix, there is a polynomial vector associated with it and thus we have the following 

Grassmann representatives:

g (A ,B )  =en (5 )' P (A ,B )  : Controllability - GR 

g (A ,C ) = P (A ,C )en(s) ■ Observability - GR 

g  (g ) = Pr (G) en (.v) : Right Tranfer function - GR
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i , ( 0 ) '= S ,( s ) P , ( G )

ft (A')=i!(%.W
g ,(N )  = eA (s)Pr (N )

: Left Tranfer function - GR 

: Column Space -  GR 

: Row Space - GR

where ek (5 ) = j * n is the McMillan degree and 5C, are the Forney orders of

the column, row rational vector spaces associated with G (s). Similar Grassmann 

representatives are defined for dyadic compensation schemes based on the PrPI (G), 

PrPD (G) , P P,D (G ), Prk’OBD (G) Pliicker matrices when m > p  (respective matrices based 

on left MFD when m < p ). The R [s]- GRs are generating combinants and the full rank

property of the corresponding Pliicker matrix is necessary condition for assignability. The 

problem we examine next is the investigation of consequences of the rank deficiency of 

the Pliicker matrix and especially on the distribution of zeros. Our discussion is presented 

for a general set of polynomials <P expressing the coordinates of any of the above system 

K[s]-GRs.

Let <P =  j p t (5 ) : p i (5 ) e R [ j ] ,  i e  m, dt = deg(/?,. ( j ) ) | and let

d =  max{r/(, i e m ) .  With the set <P we may always associate a polynomial vector 

p (s )  =e M"1 [5 ] where

Pi (s )

_Pm (i).

= _po,p i,...,Pd]ed (s) = Pded (s) (8.44)

where Pd e  R mx*i/+1) and ed (s) € Mrf+1 [5 ]. The polynomial vector p ( s ) is defined as a 

vector representative of <P and d = deg will be referred to as the degree of CP .

The matrix Pd characterises the properties of <P and it is defined as a basis matrix of CP . 

The set <P will be called reduced, if the polynomials /?. (5) are coprime; otherwise it will
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be called nonreduced. Finally, (P will be called monic, if

usual Euclidean norm). The polynomial function defined for any k e 91111

f(s,<P,k) = k ‘Pded ( 5) =  Y j k i P t  ( 5)
/=1

denotes the

(8.45)

is called a k -  polynomial combinant of cPand shall be denoted in short by /(s ,(P ,^ ) .

The families of P  polynomials may be classified according to the properties of P  matrix 

to linearly assignable (LA), nonassignable (NA) and strongly nonassignable sets.

Rem ark (8.6): If s = z is a zero of the set <P , then for all h M " ,  /  (s,(P,P) has a fixed 

zero at s = z .

The presence of zeros in <P, implies the Pd is rank deficient and CP is 

nonassignable. The concept of almost zeros introduced in [Karcanias et al., 1984] 

provides an analytic extension of the algebraic concept and regarding distribution of 

zeros, extends the fixed zero of combinants to discs trapping zeros of combinants. The 

almost zero and its properties are introduced on a general <P set and their application to 

systems is obvious.

When s e  C , the vector representative 71(5 ) of CP defines a vector analytic function 

with domain and C codomain Cm ; we define the norm of p  (5 ) (or norm of (P) as

||p0)|| =  </>(cr,co) =  J p ( s ' ) '  p ( s ) = y jed (5*)' P ‘dPde d { s) (8.46)

where s ’ is the complex conjugate of 5 {s = a  + jco). Note that if ^(5) = s, + a is a 

divisor of P ,  then p ( - a )  = 0 and thus ||/?(-a)|| = 0. This observation leads to the 

following definition.

Definition 8.1: Let <P be a reduced set of polynomials. If s = z , z e C , is a local 

minimum of 7? (5 )II, then z will be called an almost zero (AZ) of (P and the value
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|p (z )  = £ will be referred to as the order of the AZ. If s = z is the global minimum of 

||/>(s)||, then z  will be called the prime almost zero (PAZ) of the set <P .

Clearly, if <P is not reduced, then the set of AZs, which have order e = 0, defines 

the zeros of <P . Thus, the definition unifies the notions of exact and ‘approximate’ zeros, 

since both emerge as minima of a norm function of (P . The order s of an AZ indicates 

how well z may be considered as an ‘approximate’ zero of <P ; we should note, however, 

that scaling of the polynomials of (P b y c e l R ,  c ^ O ,  affects the order s  of an AZ, but 

not its location. In the following, <P will be assumed monic (/>(s)is assumed monic).

The properties of distribution of AZs in the complex plane and their computation is 

discussed in [Karcanias et al., 1984]; their significance in the distribution of zeros of 

polynomial combinants is discussed below for the case of SNA polynomial sets.

Result 8.10: Let (P be a SNA set, a e  C , and let p{w ) = b0 +biw + ... + bdwd , w = s - a  , 

be the Taylor expansion of the vector representative of <P at s = a .

i) For every k e R m, f  (s,(P,k) has at least one zero representative in the finite, minimal 

radius disk Dm \_a,Rm (a ,P )] = {5 : |s - a |  < Rm (a ,£ )} , where Pm(a,P) is defined by

(«,&) = min
\ l J

k ‘br

k'b;
X , i e d (8.47)

ii) For every a e C  there exists a finite, minimal radius disk Dm [a , Rm ( a ) ] , where 

Rm = max IRm (a ,k ) , k  e Mm | , which contains at least one zero of all combinants of (P .

A number of upper bounds for Rm(a ,k ) are given in [Karcanias et al., 1983]. 

Result 8.10 makes no distinction between a general point a e C  and an AZ z of the
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polynomial set (P . The feature that distinguish an AZ of (P from all other points of the 

complex plane is that “strong activity” summarised by the following property [Karcanias 

et al., 1983]:

Remark 8.11: For a family of upper bounds for the radius Rm (a ,k ) , R: (a ,k ) the AZ z 

has the property that for all a e C : |z -  a\ < s  , s  > 0, Rt (z ,k )  < R; (a,k ) for all k .

■

The above suggests that AZs emerge as “strong poles” of attraction for the zeros of 

all combinants /  (s ,k ) . The SNA property makes the radii of such disks finite

The notion os AZs has motivated the study of approximate gcd of polynomials 

undertaken in this thesis. It has been recognised that dealing with single frequencies only 

provides a partial extension of the almost zero notion, since extension to a set requires 

finding a set of AZs that involves a set of minima. Such an approach daoes not easily 

provide estimates of the strength of the approximation, when we refer to approximate 

solutions of order higher that one. The notion of approximate gcd is now used to define 

defferent notion of approximate zero polynomial for linear systems.

8.5 GRASSMANN INVARIANT OF LINEAR SYSTEMS AND 

APPROXIMATE ZERO POLYNOMIALS

The results in Chapters 5 and 6 are now used to define some important system 

concepts related to optimal approximate gcd. We first summarise the results by defining 

them on an arbitrary set of polynomials using the already introduced notation.

Definition 8.2: Let J t(n ,p ;h  + Y) be a set of polynomial sets, Ak(n ,p ;h  + l ) be the k- 

gcd variety o f P^-1 and <Ph+i n e J i(n ,p ;h  + Y) . We shall denote by

(8.48)
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where (? (s )e K [ j] ,  deg(<p(s)) = k , <P* e 9 T ( n - k ,p - k ' ,h  + Y) the A:-distance of (PA+]n 

from the the k  -gcd variety A k(n ,p ;h  + \ ) . The polynomial <p(s) emerging as the 

solution of the optimisation problem will be called the k -optimal approximate gcd (k -  

OAGCD) and the corresponding value d ((P, A) the k -strenght of <Ph+i n.

Rem ark 8.12: If d((P, A) = 0, then the &-OAGCD ip(s) becomes the exact gcd of the 

set (PA+U, which is not now coprime. In all other cases, d  ((P, A) * 0 , the optimal 

approximate gcd notion will be used.

■

In section 8.3, it has been shown that with any polynomial matrix 

r W = [i iW»i2 W » -,£ r ( i ) ]  e W/Xr [5 ], q > r  we can always associate the multivector 

t_(s) A = (5 ) A t 2 (5 ) A... A tr ( i)  (8.49)

where ¿ (s )  a  e  M17 [5 ], a  =
\ r J

. Such vectors f  (s ) a  define sets of polynomials (Px'n

which are introduced by decomposable multivectors [Marcus et al., 1969] and this is 

denoted by the “ a ” symbol. From the discussion in section 8.3, the following important 

property follows:

Lemma (8.1): Consider the set 0T(n,p',h + \) and let J f A(n ,p ;h  + V) denote its subset

defined by polynomial vectors p (s )  e  E 17 [5 ], 0  = V

\ r j
, which are decomposable

correspond to the q x r polynomial matrices with order n . The following properties hold 

true:

i) The set UTA(n ,p ;h  + l) is defined by the Grassmann variety of the

projective space Pa_1 •

ii) p ;h  + Y) is proper subset UT(n, p ;h  + Y) if r ï  1 and q ^ r - 1.
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iii) 9TA(n,p ',h  + 1) = !JT(n,p;h + 1) if either r = 1 or q = r - 1 

Proof:

The result is a direct implication of the decomposability conditions for multivectors 

[Marcus et ah, 1969], which state that the Grassmann variety of a projective space 

coincides with the projective space if either r = 1 and/or q = r -1  ; In all other cases r * 1 

and q r - 1 ,  then it is a proper subset of the projective space.

The above has important implications on the definition of k  -OAGCD defined on 

sets generated by decomposable multivectors obtained from polynomial matrices. The 

analysis is based on parameterising the perturbations that move a general set <Pa n,

g  = V
\ r J

to a set = <Pa n +Qa „ e Ak (n,p; g ) and then determine k -OAGCD by

minimising some norm of Qa n . In this analysis Qa n and <P'a n are free.

However, any analysis that has to be interpreted back to the original polynomial 

matrix, has to be based on sets (Pj n generated by decomposable multivectors and it is the

set denoted by JT*(n,p-,G). The latter will be referred to as the n-order subset of the 

Grassmann variety G (^ ,r ;R [i])  and the sets must be such that

£ f t ( n , p ;g )C\ Ak(n ,p ;g ) = (n ,p ;g ) (8.50)

where A rkJt(n,p\G')  will be called the decomposable subset of A k(n ,p \G ) . Note:

Lemma 8.2: The set A*JT(n, p ;g ) is always nonempty.

Proof:

The above is trivial to show and the proof is based on constructing a matrix 

T (5 ) e R ?xr [5 ] which has a nontrivial right divisor.

■

We may illustrate the formulation of the problem as shown in Figure (8.1) below:
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^  e n \ n ,p \ o )  

6 A; (« ,p ;a )

Figure (8.1): Distance problem under decomposability.

The above suggests that the study of the distance problem takes now a constrained 

form. This is expressed by (8.48) with the additional condition that the set <P' 

corresponding to <P and is decomposable. This new problem will be referred to as

the Grassmann distance problem (GDP). The following main result is deduced from the 

above analysis.

Theorem 8.1: Let <P̂ n e lT A(n,p\<j) and denote by d(<P,Ak) , d(@,Ak \ the distance

from Ak(n,p-,cr) and AA(n ,p ;a )  respectively. The following hold true:

i) If  q = r - \  or r = 1, then the solutions of the two optimisation problems are identical 

and d(<P,Ak) = d (&,Ak )

ii) If q * r - 1 and r ^  1, then d((P,Ak)<d(<P, AAk )

Proof

202



i) By Lemma 8.1, part (iii) n A(n,/>;cr) = Yl(n,p\cr) that is PCT_1 is characterised by 

decomposable set and the result follows.

ii) Assuming q ^ r - 1 and r ^ \  implies again that LIA (n,p;cr) is a proper subset of 

Yl{n, p; a ) . We can always define an element of Ak (n, p\<y) which corresponds to a 

nondecomposable set. This may be proved by constructing simply an example. The 

latter then proves that if q * r - 1, r * l ,  then Ak(n,p-,a) is a proper subset of 

Ak(n,p;cr) and (851) then is obvious.

■

The above suggests that the Grassmann distance problem has to be considered only 

when q ^  r -1  and r * 1. The Grassmann distance problem requires the study of some 

additional topicslinked to algebraic geometry and exterior algebra such as:

• Parameterisation of all decomposable sets (P with a fixed order n .

• Characterisation of the set AA (n, p; a )  and its properties.

The above issues are central for the solution of the GDP and are topics for further 

research. We shall now use the distance d (<P, Ak) to define the notion of k -order almost 

GCD for decomposable sets (PCT i), which in the special cases r = 1, q = r - 1 also define 

the following classes of approximate zero polynomials:

Definition 8.3: Let q > r and let

t ( i ) A C r ( f ( i ) )  be the corresponding Grassmann vector that defines the set (PcrAn . We 

define:

i) The k-almost zero polynomial ( k -AZP) of T (s)  the polynomial, (p(s) , solution of

the distance problem of <P£n from Ak(n ,p ;a )  defined by

(8.51)
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where (¡>(s)eR [j], deg(^>(s)) = A , (P* e JT(n -  k, p  -  A; a ) ; the value d(<P*n,A k )̂ 

will be referred to as its strength.

ii) The A:-optimal approximate zero polynomial (k  -OAZP) of T ( s ) , <p(s), solution of 

the Grassmann distance problem of <P*n from A'¡¡(n,p;cr) defined by

(8.52)

where ( ? ( s ) e i [ s ] ,  deg[cp(5 )) = k , <P* & O T (n -k ,p -k \< j)  and with the

polynomial set (P* being decomposable; the value d{<P^n, will be referred to as 

its strength.

■

The above definition may now be applied to the various polynomial Grassmann 

representatives defined on a linear system and this leads to the following definition.

Definition 8.4: For a linear system described in a state space form S (A ,B ,C ,D ), or

transfer function G(s)  = Nr (s)D r (.?) = D, (s)~' N, (5 ) with dimensions (n, p ,m ) we 

define:

i) For the pair (A ,B ) with controllability -GR g (A ,B )' = en (5 )' P (A ,B )  its A-AZP

will be called the k -almost input decoupling zero polynomial ( k -AID-ZP) and its k - 

OAZP will be called the k -Optimal Approximate input decoupling zero polynomial 

(A -O AID-ZP).

ii) For the pair ( A,C ) with observability-GR g (A ,B ) = P (A ,C )en (s) its A-AZPwill

be called the k -almost output decoupling zero polynomial ( k -AOD-ZP) and its k - 

OAZP will be called the k -Optimal Approximate output decoupling zero polynomial 

(A-OAOD-ZP).
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iii) For the transfer function with column space -GR g  ̂ (N )  = Pc (N )e s (s),  row space -

GR g r (N ) = eSr (s)' P (N )  , the corresponding k-AZP will be called the k -almost 

column zero polynomial (k-AC-ZP), k -almost row zero polynomial ( k -AR-ZP); 

Similarly the k -OAZP of g  ( A ) , g  (A)  will be called the k -Optimal Approximate

column zero polynomial ( k  -OAC-ZP), k -Optimal Approximate row zero polynomial 

( k  -OAR-ZP).

■

The definition above may be extended to “almost” and “approximate” notions 

introduced for the many other Grassmann polynomial representatives introduced in 

section 8.4 and which may cover dynamic and/or decentralised control problems. The 

notions of k-AZP, A:-OAZP introduce new invariants for linear systems, when the 

polynomial sets are introduced by Grassmann vectors associated with a system. The 

system theoretic significance of such notions stems from their definition as solutions of 

distance problems and thus express the most likely system properties to emerge under 

model parameter perturbations, which lead to perturbations in the corresponding 

Grassmann vector generating the polynomial set.

Remark 8.13: The notions of k-AZP, k  -OAZP introduced on polynomial sets generated 

by polynomial-GRs defined by a system are system invariants. The k -OAZP express 

system consepts obtained under minimal parameter variations on the original system 

model and the k-AZP provide estimates for such problems, if we do not solve the 

Grassman distance problem. For the case where the decomposability of polynomial sets 

is guaranteed, the two notions coincide.

■

The above discussion, together with the decomposability property expressed by 

Lemma 8.1 leads to the following results:

Corollary 8.1: For the linear system S (A ,B ,C ,D ) with transfer function G (s) having 

n -states p  -inputs and m -outputs we have the following properties:
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i) The &-OAID-ZP of ( A ,B ), (p0MD (5 ) , defines the input decoupling zero polynomial 

obtained by minimal perturbations of the corresponding system. The respective value 

of the Grassmann distance, d ' (A ,B) expresses the distance of the original system 

from the set of uncontrollable systems with n states and p  inputs.

ii) The &-OAOD-ZP of ( A ,C ) ,  <P0 a o d ( 5 ) >  defines the output decoupling zero 

polynomial obtained by minimal perturbations of the corresponding system. The 

respective value of the Grassmann distance, d A(A ,C ) expresses the distance of the 

original system from the set of uncontrollable systems with n states and p  inputs.

iii) The k -OAC-ZP, tpoc (s),  {k  -OAR-ZP, (pQR (s) )defines for the case m> p (m < p )  

the zero polynomial obtained by minimal perturbations of the corresponding system 

and the respective value of the Grassmann distance, d ' ( N r ) , ( d ' (N, ))  expresses the

distance of the original system from the set of systems which have a zero polynomial 

with degree k .

■

Althought the solution of the Grassmann distance problem is still an open issue, the 

decomposability results and the solution of the general unstructured distance problem 

(without the decomposability constraint) leads to the following important special results.

Corollary 8.2: For the linear system S (A ,B ,C ,D ) with dimensions ( n ,p ,m ) and 

transfer function G(s)  the following properties hold true:

i) If p  = 1, or p  = n - 1 ,  the &-OAID-ZP of (A ,B ), (pOMD (5 ) and the corresponding 

distance, d ' (A ,B ) are given by the solution of the general distance problem, that is 

they are the k -AID-ZP of (A , 5 ) ,  (pMD (5 ) and the distance, d{A, B) .
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ii) If m = 1 or m -  n - 1 ,  the k  -OAOD-ZP of (A , C ) , <p0A0D (5 ) and the corresponding 

distance, d A (A, C)  are defined by the solution of the general distance problem, that is 

they are the k -AOD-ZP of (A , C ) , <pA0D (s)  and the distance, d ( A , C ) .

iii) If m > p ,  and p  = 1 or p = m - 1 the k-OAC-Z? (poc{s) and the corresponding 

distance, d ' (N r) are given by the solution of the general distance problem.

iv) If m < p ,  and m = 1 or m = p - 1 the k -OAR-ZP <p0R (s) and the corresponding 

distance, d ’ (A ,) are given by the solution of the general distance problem.

■

The cases which are not covered by the decomposability of all vectors require the 

study of Grassmann distance problem defined before which is an issue for further 

research. Although we have restricted ourselves here to three different types of 

polynomial-GRs and the corresponding approximate notions, the approach may be 

followed for other system properties associated with other sets of polynomials. Thus, 

notions, such as optimal approximate almost fixed pole polynomial may be introduced 

for decentralised control problems, as well as similar notions for systems associated with 

dynamic control.

8.6 DISCUSSION

The results of the previous chapters on the optimal approximate gcd have been 

applied to linear systems introduce new system invariants with significance in 

defining system properties under parameter variations on the corresponding model. 

The natural way for introducing such notions has been the notion of the polynomial 

Grassmann representative [Karcanias et al., 1984], which introduces new sets of 

polynomials. The fact that such vectors are exterior products of the columns of a 

polynomial matrix implies that the distance problem has to be considered from a sub-
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variety of the general &-gcd variety that is the intersection with the Grassmann 

variety of the corresponding projective space.

This is an open issue that may be handled within the current framework, but 

requires some basic research on the properties and parameterisation of dynamic 

Grossmann varieties. Solutions to this problem were given only for special cases 

where the Grassmann variety coincides with the projective space.
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9Chapter
CONCLUSIONS AND FURTHER WORK
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The main objective of this thesis has been the development of a mathematical 

framework for the characterisation of the optimal approximate GCD of a set of 

polynomials and the characterisation of associated system properties. The results provide 

a complete solution to the optimal gcd, of a given set of polynomials. Evaluation of 

strength of this approximation allows evaluation of strength of approximate GCDs 

worked out with numerical procedures, provides a solution to root clustering and allows 

the characterisation of a number of gcd-dependent properties in an approximate sense. In 

particular, the new results, given in the thesis are:

• Parameterisation of the family of the proper controllers of scalar polynomial 

Diophantine equations.

• New proof of the classical Sylvester resultant theorem, based on the structure of 

polynomials and matrix properties.

• Characterisation of the GCD of a set of polynomials in terms of a canonical 

factorisation of original resultant into a product of a reduced resultant and a canonical 

Toeplitz matrix defined by the coefficients of the gcd.

• The characterisation of the “approximate” gcd based on the resultant factorisation and 

evaluation of the “optimal” approximate gcd and its “strength”.

• A theoretical framework for root clustering based on the results for the approximate 

gcd

• Application of the approximate GCD framework to the case of Linear System 

properties and introduction of metrics measuring distances from fundamental 

properties.

The work of this thesis provides the basis for a proper development of the 

approximate algebraic computations framework and by no means finishes the large 

number of topics which are still open. Future work has to deal with a number of issues 

which relate the algebraic theory, numerical analysis and implementation of the current 

results, and extensions to polynomial matrices and their interpretation in system theoretic 

way. In particular the following issues are left for future work:
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• Extension of the parameterisation of proper solution of matrix Diophantine 

equations, their McMillan degree characterisation and definition of the minimal 

McMillan degree.

• Extension of the resultant factorisation to the case of characterisation of matrix 

divisors as a step for studying approximate factorisations for matrix polynomials 

development of numerical algorithms, Error and Complexity Analysis of the 

algorithmic procedures linked to the approximate gcd and related applications.

• Investigation of the system significance of the approximate gcd in the solution of 

Diophantine equations. This involves an extension of the results characterising the 

properties of almost zeros as disks containing at least one root of polynomial 

combinant

• Further development of root clustering by considering factorisations of different 

order work to the computation of approximate LCMs.

• Extension of the approximate gcd notion using the already introduced frame work 

based on the exterior algebra on [Karcanias et al., 1984] to the cases where 

multivectors are not necessarily always decomposable. This involves the solution of 

the Grassmann distance problem that is evaluation of the distance of the given 

decomposable set of polynomials from the subvariety defined as the intersection of 

the d -gcd variety.

The above problems are direct extensions of the work done in the Thesis and form an 

outline of major topics left for further work.
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Appendix

Implementations on MATLAB 5.3 for the for the construction of the resultant of a 

polynomial set.

('Construction of the GENERALIZED SYLVESTER MATRIX')

disp(' input number of polynomials'); 

h=input('');

disp(' Input the coefficients of the greater order polynomial in 

accending order. (Type [aO al .. an]) ');

bO=input('coeff1 : ');

[1,m]=size(bO); 

m=m-1;

disp(' input the coefficients of the second greater order polynomial in

a c c e n d i n g  o r d e r  

b l = i n p u t ( ' c o e f f 2  

[ 1 , n ] = s i z e ( b l ) ;  

n=n-l;

i  = l ;

) ;

S= [] ; 

i = l;

while i<=n

S0=zeros(1,m+n);

j = i ;
while j<=m+i

S0(1,j)=bO(l, j-i + 1) ;

j=j+i;

end

S= [ S ;S 0] ; 

i = i +1 ;

end
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%

S l= ze ro s (1 ,m+n);

i  = l  ;
while i<=m

S l= ze ro s (1,m+n);

j = i ;
while j<=n+i

S l ( l , j ) = b l ( l , j - i + 1 ) ;
j= j+ i ;

end
S= [S ; S1] ; 
i  = i  +1 ;

end

k=2

while k<h

disp(' input the coefficients of the next polynomial in accending 

order ' ) ;

bk=input('coeff : ');

[1,nk]=size(bk); 

nk=nk-1 ;

i = l ;

while i<=m

SK=zeros(1,m+n);

j = i ;
while j<=nk+i

SK(1,j)=bk (1,j-i + 1) ;

j=j+i;

end

S= [S;SK] ; 
i = i +1 ;

end 

k=k+l;

end

disp(S); 
r=rank(S); 

end
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