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Abstract

The mechanical and physical properties of high strength concrete make it an attractive 

building material, especially for components resisting high compressive loads such as the 

lower columns in high-rise buildings. However, due to the brittle nature of this material, 

concern exists about the ductility of high strength concrete columns. This thesis investigates 

the possibility of improving the ductility of slender high strength concrete columns by 

means of hoop reinforcement.

A total of twelve full-scale columns with 250 mm square cross-sections was experimentally 

tested under either uniaxially or biaxially eccentric compression. The columns had effective 

lengths of either 4 m or 8 m, and were transversely reinforced by hoops with spacings 

ranging from 200 mm to 50 mm. Observations were made on failure mode, axial loads, 

deflections and strains. The tests indicated that a dense reinforcement cage had some effect 

of enhancing both the strength and the pre-peak ductility of the columns. The maximum 

compressive concrete strains at failure were significantly less than the 3.5 mm/m used in 

traditional stress block design of normal strength concrete sections. For none of the 

columns was the hoop reinforcement found to yield at the time of strength failure.

A new confinement model, which is equally valid for normal and high strength concrete, 

was developed. According to this model the effect of confinement on the complete stress- 

strain behaviour of concrete can be expressed directly through its influence on the strength 

and corresponding strain. Empirical equations for estimating both of these quantities are 

presented. By modifying a well-known method for calculating the effective confining 

pressure the stress-strain model is shown to be equally capable of describing test results 

obtained under passive and active confinement conditions.

A computer program, which incorporated the findings from the investigation into the 

modelling of confinement effects, was developed for the analysis of slender high strength 

concrete columns. From a parametric study, backed up by a survey of published information 

on eccentrically loaded reinforced concrete columns, it was demonstrated that the 

unconfined concrete cover plays a major role in negating the structural benefits of 

confinement, and that this is especially the case for high strength concrete columns. For a 

given column slenderness and load eccentricity the deflections at strength failure were 

found to be largely independent of the concrete strength. However, in terms of load capacity 

high strength concrete was shown to be most effective in short columns subjected to nearly 

concentric compression.

-  0.20 -



Acknowledgements

The investigation reported in this thesis was carried out under the supervision of Professor 

K.S. Virdi, to whom the author is deeply grateful. Throughout the investigation and its 

reporting Professor K.S. Virdi provided encouragement and valuable guidance to the 

author.

The author is indebted to the Danish Research Council for the generous financial support 

given by them to cover expenses incurred by the author during the first part of his stay at 

City University, London. Likewise, the funding provided towards the project by The 

Engineering and Physical Sciences Research Council is deeply acknowledged.

The deepest debts of gratitude are owed to my wife Janice, who has shown extraordinary 

patience and support, not least during the darker patches of the tale. Finally, the author 

would like to thank his family for their support.

- 0.21 -



List of Symbols

A Area

Acc eff Cross-sectional area of effectively confined concrete core 

Acc Cross-sectional area of nominal concrete core

Ag Cross-sectional area of all longitudinal reinforcement bars within cross-section

As Cross-sectional area of tie bar

A, , Gross area of cross-sectiontot

an , a s Efficiency factors associated with given tie configuration and distribution 

P Parameter governing the softening behaviour of concrete

d Dimension of cross-section

dc Nominal dimension of concrete core

dg Spacing between laterally supported longitudinal reinforcement bars

dx,dy Dimension of cross-section after x- and y-axis respectively

detJ Determinant of Jacobian matrix

Ec Modulus of elasticity for concrete

E Secant modulus at peak stress for confined concrete, E = f  /s

E Secant modulus at peak stress for concrete, E = f  /e

Es Modulus of elasticity for steel reinforcement

ex, ey Eccentricity of applied axial load after x- and y-axis respectively

sc Compressive strain at peak stress for concrete

sc50 Compressive post peak strain at a 3 = -0 .5 0 f for concrete

ec85 Compressive post peak strain at c 3 = -  0.85 f  for concrete

ecc Compressive strain at peak stress for confined concrete

scc50 Compressive post peak strain at a 3 = -0 .5 0 f  for confined concrete

- 0.22 -



scc85 Compressive post peak strain at a 3 = -  0.85 f c for confined concrete

scc85/ Compressive post peak strain at a 3 = -  0.85 f, for confined concrete

eo Longitudinal strain at centroid of cross-section

£j , s 2 Transverse strains

£ , e3 Longitudinal strain

£s Tensile strain

£sf Strain at peak stress for steel reinforcement

£su Nominal breaking strain for steel reinforcement

£ Yield strain for steel reinforcement
*>y

£v Volumetric strain, £y = £( + £., + e3

f  Compressive strength of concrete

fcc Compressive strength of confined concrete

f  cub Compressive cube strength

f  j Compressive cylinder strength

f2c Equibiaxial compressive strength of concrete

f  Tensile strength of steel reinforcement

f  Split cylinder strength

f  Yield strength of steel reinforcement

ft Direct tensile strength of concrete

yssd Water absorption ratio

h Length of column segments

kx ,k y Spring constants for rotations about x- and y-axis respectively

k x , Ky Curvatures resolved after x- and y-axis respectively

L Length of column or cylinder

Mx ,M  Bending moments about x- and y-axis respectively
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M x, M  ̂ Free bending moments about x- and y-axis respectively

Nj Shape functions, i = 1 , 2 , 3 , 4

v Poisson’s ratio

v0 Initial Poisson’s ratio

vc Poisson’s ratio at peak stress

P Axial load

Pc Axial load capacity of column

px, py Uniformly distributed loads after x- and y-axis respectively 

Px, Py Point loads after x- and y-axis respectively 

(p Angle defining axis for biaxial bending moment

p Bulk density

pa Particle density

pg Volumetric ratio of longitudinal steel reinforcement, pg = A /A tot

ps Volumetric ratio of confining steel reinforcement within nominal core

p* Total transverse steel area in two orthogonal directions divided by the

corresponding concrete area 

s Pitch of transverse reinforcement

a, eff Effective confining stress

a  i nom Nominal confining stress

ocr Critical stress

a, , g 2 Transverse stresses

g  , g 3 Longitudinal stress

g  ( Octahedral normal stress

g  Tensile stress
S

T , Octahedral shear stressoct
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0 Angle of similarity (defines orientation of shear stresses)

0 ,0x ’ y Rotations about y- and x-axis respectively

U , V , W Deflections after Cartesian axes

x ,y , z Cartesian coordinates

ximp’Yimp Imperfections for centroidal axis

o o Centroid of cross-section

Ç.11 Natural coordinates
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Chapter 1: Introduction

1.1 Background

Due to the continuing advances in concrete technology normal weight concrete with 

compressive strengths in excess of 100 MPa can nowadays easily be obtained by using 

carefully selected, but readily available, materials and conventional methods for mixing, 

placing and curing. In particular the development of high range water reducing admixtures, 

which ensure workability of the fresh concrete at very low water-cement ratios, has played 

an essential role in the quest for concrete of ever higher strength. In some cases, silica fume 

is used to enhance the strength of the concrete mix.

High strength concrete has a greater stiffness, a higher strength at early age, a lesser amount 

of shrinkage and creep, and a greater resistance against physical and chemical deterioration 

than normal strength concrete. For these reasons it has been the preferred building material 

in a small, but increasing, number of very different onshore and offshore projects 

(CEB, 1994). However, the major application of high strength concrete has been in the 

lower columns of high-rise buildings, where smaller cross-sectional dimensions can have 

significant economical benefits by increasing the rentable floor space and speeding up the 

construction process.

Since the recommendations in existing Codes of Practice, such as BS 8110 (1997), are 

based on tests on concrete with strengths up to about 50 MPa, these recommendations are 

not directly applicable to members made from high strength concrete. Thus, there appears 

to be a need to test the applicability of the existing Codes for structural design using high 

strength concrete.
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An increase in concrete strength is accompanied by a change in mechanical behaviour. The 

ascending branch of the stress-strain curve becomes increasingly linear, and material failure 

increasingly brittle. The latter reflected by a steep descending branch. In this study concrete 

having compressive strengths below 40 MPa is referred to as being of normal strength, and 

concrete having compressive strengths in excess of 80 MPa as being of high strength. This 

appears to be the currently accepted definition of high strength concrete.

In order to satisfy the design requirements concrete members are, implicitly if not explicitly, 

required to be ductile, i.e. the members need to be capable of responding inelastically 

without losing their load carrying capacity. Ductility is necessary for many reasons. It 

ensures warning in the form of large deflections prior to failure, and facilitates the 

redistribution of forces, for example in continuous construction. In earthquake scenarios 

ductility is important because lateral inertia forces prevail, and because energy dissipation 

dampens the oscillations caused by the loading. Because of the brittle material behaviour 

of high strength concrete, concern exists whether structural components made from this 

material have sufficient ductility.

It is well known that the strength and deformation properties of compressed concrete can 

be enhanced by confinement through suitably arranged transverse reinforcement. Indeed, 

the effects of spiral reinforcement on the behaviour of plain concrete was investigated as 

early as in 1929 by Richart et al. Almost all of the available experimental work carried out 

on confined high strength concrete has focussed on the behaviour under concentric 

compression. Thus, it is not surprising that the modelling of confinement effects is still a 

controversial issue, and no widely used model applies to members made from high strength 

concrete.
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Some experimental results on the structural response of full-scale, or near full-scale, high 

strength concrete columns subjected to eccentric compression have also been reported. In 

the case of short columns, investigations have been carried out by Limsuwan (1993), 

Bjerkeli etal{ 1993), Ibrahim and MacGregor (1996a), Lloyd and Rangan (1996) and Foster 

and Attard (1997), and in the case of slender columns only by Chuang and Kong (1997) and 

Claeson and Gylltoft (1998).

The objectives of the thesis were determined in the context of the above background.
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1.2 Objectives of the Present Project

The objectives of the work described in this thesis may be outlined as follows:

•  To test means of modifying the behaviour of columns of high strength concrete so as 

to obtain a ductile failure mode. The method chosen was to use hoop reinforcement, 

in the manner of shear reinforcement, to confine the concrete through the passive 

straining of the hoop reinforcement

•  To quantify the effect of confinement on the stress-strain characteristics of high 

strength concrete.

•  To extend a previously developed method of stability and ultimate load analysis of 

reinforced concrete columns, incorporating the interaction between the transverse 

reinforcement and the longitudinal stress-strain characteristics of confined concrete, 

making it particularly applicable to high strength concrete columns. •

•  To conduct uniaxial and biaxial eccentric compression tests on a total of 12 full-scale 

high strength concrete slender length columns. Test parameters to be varied included 

the spacings between the reinforcement hoops. The test were to be used to measure the 

effectiveness of the hoop reinforcement on enhancing the ductility of columns made 

of high strength concrete.

- 1.4-



1.3 Organisation of the Thesis

The following outlines how the sections of the thesis are put together.

The next chapter gives a detailed description of the production and material characteristics 

of the two high strength concrete mixes employed in the experimental investigation.

Chapter 3 provides a general description of the material characteristics of high strength 

concrete made from normal weight aggregates, using traditional methods for mixing, curing 

and placing. Aspects of existing empirical expressions used to predict the modulus of 

elasticity, the strain at peak stress, the apparent Poisson’s ratio and the tensile strength are 

assessed when applied to high strength concrete.

An incremental model is developed for calculating the relationship between the average 

longitudinal stress and strain for the concrete core in transversely reinforced stub columns 

subjected to concentric compression. The model, which is equally applicable to normal and 

high strength concrete, is validated against a large set of experimental results. Stress-strain 

curves generated by the new confinement model are compared to the curves generated by 

some of the existing models.

In chapter 4 the investigation is widened to include reinforced concrete columns failing due 

to a combination of flexural and axial loading effects. A versatile numerical method for 

calculating the biaxial load-deformation response of slender high strength concrete columns 

is described. Available test data on columns, covering a wide range of geometric and 

physical properties, are used to validate a computer implementation of the numerical 

method. The effects on the structural response of slenderness, load eccentricity, concrete 

grade, confinement and cover concrete are addressed.
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Although this investigation is limited to pinned columns subjected to uniaxial and biaxial 

eccentric compression, the computer program is capable of analysing braced columns with 

non-constant cross-sections of arbitrary shape supporting flexible beam members. The 

columns can be analysed for increasing eccentric compression under a condition of constant 

lateral loading, and vice versa. In both cases the analysis terminates as soon as further 

incrementation in the principal loading variables cannot be sustained by the column.

Chapter 5 gives a detailed description of the experimental programme, in which a total of 

12 columns was tested in a rig specially built for the purpose.

With the principal test parameters being the column slenderness, the concrete strength, the 

load eccentricity and the distribution of the transverse reinforcement ties, observations on 

failure mode, ultimate load capacity, deflections and strains are discussed. The test results 

are compared to their analytical counterparts, and the likely impact on the results of some 

of the uncertainties associated with the experimental tests are assessed.

A numerical investigation into the effect of confinement on the load-deflection response of 

eccentrically loaded columns is presented in chapter 6. The analysed columns all have cross- 

sectional dimensions identical to the columns tested in the experimental investigation, but 

slenderness, concrete strength, load eccentricity and effective confining pressure all vary 

within significantly larger bounds than was the case for the experimentally tested columns. 

In addition, the effect of increasing the size of the longitudinal reinforcement bars as an 

alternative to confinement is investigated. Special attention is given to the effect that the 

concrete cover has on the behaviour of the confined concrete columns.

Conclusions from the present investigation are described in chapter 7, which also includes 

some suggestions for extending the investigation reported in this thesis.
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Chapter 2: High Strength Concrete Materials

2.1 High Strength Concrete

The principal part of this thesis relates to the behaviour of slender columns made from high 

strength concrete. A total of 12 columns with 250 mm square cross-sections, and lengths 

of either 3.3 m or 7.3 m (nominal length of either 4.0 m or 8.0 m) were fabricated and 

tested in the laboratories of the Civil Engineering Department at City University. The two 

mix designs employed in the production of the test columns had target cube strengths of 

100 MPa and 120 MPa respectively. The basis for the high strength of the mixes was a high 

content of binder material, high quality aggregates, a low water to binder ratio and the use 

of superplasticiser for workability.

Usually the quality assessment of hardened concrete is based on strength tests only. 

However, in order to facilitate a rigorous analysis of the behaviour of the test columns, 

supplementary information on the stress-strain characteristic of the two grades of high 

strength concrete was required. In this chapter, the materials employed in fabricating the 

high strength concrete columns are described.

2.1.1 Mix Design

Table 2.1 lists the mix proportions used in the experimental investigation for producing 

concrete with a target cube strength of 100 MPa and 120 MPa respectively. The mix 

designs, which were the result of several trials, differed primarily by the grade C120 mix 

containing more binder material and less water than the grade C l 00 mix. Furthermore, the 

grade C120 mix contained microsilica in addition to cement as a binder material. The
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tabulated aggregate contents refer in accordance with common practice to aggregates in a

saturated and surface dry state.

Table 2.1
Mix proportions for concretes

Material

Concrete grade 

C100 C120

Cement, ( kg/rn3) 541 512

Microsilica, ( kg/m3) 0 51

Water, ( kg/m3) 142 119

Fine aggregates, ( kg/m3) 899 874

Coarse aggregates, ( kg/m3) 830 874

Superplasticiser, ( kg/m3) 16.2 20.7

Water/binder ratio ( % ) 28.0 23.3

Plasticiser/binder ratio ( % ) 3.0 3.7

Aggregates/binder ratio ( - ) 3.1 3.1

The origin and essential characteristics of the constituent materials were as follows: 

Cement: "Ordinary’ Portland Cement, class 42.5".

Supplied by “Blue Circle Industries, Northfleet Works”.

Particle density, pa = 3140kg/m 3.

Microsilica: "EMSAC 500S" (microsilica slurry).

Supplied by “Elkem Materials”.

Bulk density, p = 1410kg/m3.

50% free water by weight.

Superplasticiser: "Cormix SP6".

Supplied by “W.R. Grace Ltd, Cormix Division”.

Bulk density, p = 1200kg/m3.

59% free water by weight.
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Particle density, pa = 2550kg/m 3.

Water absorption ratio, yssd = 0.0178.

Coarse aggregates: "Crushed Carboniferous limestone, screened 6-10 mm". 

Supplied by “ARC Southern, Chipping Sodbury Quarry”.

Particle density, pa = 2720kg/m 3.

Water absorption ratio, yssd = 0.0032.

Water: “Ordinary tap water ”

The particle densities and water absorption ratios of the aggregates were determined 

following the procedures specified in BS 812: Part 2 (1995). The water absorption ratio is 

defined as the weight of moisture contained in the saturated and surface dry aggregates 

divided by their oven dry weight.

The particle size distributions of the aggregates, shown in figures 2.1 and 2.2, were 

determined by the sieving method described in BS 812: Section 103.1 (1985). Interestingly, 

the coarse aggregates were found to contain a significant proportion of crusher dust. 

Approximately 1.7% of the total weight of these aggregates passed through a sieve having 

a nominal aperture size of 65 pm.

Prior to commencing the column production, an accidental leakage caused a significant 

amount of water to seep into the hopper containing the mixing sand. Besides dramatically 

rising the average moisture content of the sand, the leakage resulted in unacceptable large 

variations in the moisture content of tested samples. A much lower and almost uniformly 

distributed moisture content was achieved by air drying the required amount of mixing sand 

for about a week prior to it being used. The sand was turned over several times throughout

Fine aggregates: "Thames Valley, zone 2".
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the drying period. As a result of the drying procedure the average moisture content of the 

mixing sand on the days of column casting ranged from 1.21% to 2.41%, but the maximum 

difference between the moisture content of two samples taken on any given casting day was 

reduced to below 0.30%. The hopper containing the coarse aggregates was not affected by 

the water leakage, and the moisture content of the coarse aggregates was determined to 

reduce from 0.61% to 0.46% during the four-month period of column production.

Based on the actual moisture content of the aggregates, and when ignoring the temporal 

aspects of water transport, the ratio of effective water content to cement content in the grade 

C l00 concrete mix was calculated to vary between 27.3% and 29.5% during the column 

production period. Likewise, the effective water to binder ratio of the grade C 120 concrete 

mix was calculated to vary between 22.7% and 24.8%.

Nominal aperture size of test sieve, ( pm )

Figure 2.1
Particle size distribution of tine aggregates
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Figure 2.2
Particle size distribution of coarse aggregates

2.1.2 Workability of Fresh Concrete

The workability of the fresh concrete was measured both by means of the slump test 

described in BS 1881: Part 102 (1983), and the flow test described in BS 1881: Part 105 

(1984). The slump measure always exceeded 175 mm, which is considered to be the limit 

for which this test is suitable for describing the workability of fresh concrete. The flow 

measures varied from 390 mm to 490 mm for the grade C l00 mix, and from 390 mm to 

430 mm for the grade C120 mix. Thus, the workability of the employed concrete mixes are 

classified as high to very high. However, their cohesive consistency made them very heavy 

to shovel compared to the much leaner mixes normally used.

2.1.3 Casting and Curing Procedure

The concrete was mixed in a paddle mixer having a maximum capacity of 0.09 m3. Because 

of the mixer’s limited capacity it was necessary to mix three batches of concrete for casting 

a 3.3 m long column, and six batches for casting an 7.3 m long column. Nevertheless, a
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consistent and uniform concrete quality could be guaranteed by adhering to the following 

mixing procedure:

1/ Fine and coarse aggregates are mixed for 2 minutes to give a uniform mixture.

2/ The slurrified microsilica is added, and mixing continues for a further 3 minutes 

to ensure a uniform coating of the aggregates by silica fume.

3/ The cement is added, and mixing continues for a further 3 minutes.

4/ A mixture consisting of 50% of the superplasticiser dissolved in the mixing water 

is added, and mixing continues for a further 3 minutes.

5/ The remaining superplasticiser is added, and mixing continues for a further 2 minutes 

before discharging the concrete.

The full-scale columns were cast in a horizontal position in moulds fabricated from 

“Douglas fir” plywood, and were compacted by means of an internal vibrator. From each 

batch of concrete mix at least two 100 mm cubes and one 100*200 mm cylinder were cast 

so as to facilitate an assessment of the concrete quality. The small-sized control specimens 

were compacted on a vibrating table.

In an attempt to reduce the moisture loss from the newly cast columns to a minimum, the 

columns were covered by impervious sheeting immediately after casting, and by wet 

hessian 24 hours later. The hessian was sprinkled regularly so as to remain moist for 6 days. 

The columns were demoulded after about 10 days, after which they were stored in ambient 

laboratory conditions until the time of testing. The concrete cubes to be tested after the 

standard 28 days were demoulded after 2 days, and then water-cured until the time of 

testing. It is interesting that the cubes had not hardened sufficiently to allow demoulding 

and submersion within the recommended period of 16 hours to 28 hours of casting 

(BS1881: Part 111,1983). This indicates that the large quantity of superplasticiser used in
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the mix had a retarding effect on the rate of hydration of the cement paste. The control 

specimens to be tested on the same days as the full-scale columns were cured under 

conditions closely resembling those of their parent columns.

Despite the meticulous curing procedure, the development of plastic shrinkage cracks on 

the exposed surface of the columns could not be entirely avoided. A few very fine surface 

cracks developed at positions and in directions which appeared to closely follow the 

shrinkage obstructions originating from the hoop reinforcement.

The trowelled ends of the hardened test cylinders were in accordance with BS 1881: 

Part 110 (1983) smoothened by means of mortar-capping. Before applying the 1 - 2 mm 

thick mortar caps, the trowelled ends of the cylinders were roughened by hacking and wire- 

brushing. The capping materials were mixed in the following weight ratios: high alumina 

cement: microsilica: water: silicious sand (screened 150 - 300 pm): superplasticiser, 100: 

10: 30: 33: 4.

2.1.4 Compressive Strength

In the present investigation, the uniaxial compressive strength of concrete was assessed 

from tests on 100 mm cubes and 100x200 mm cylinders. The choice of specimen sizes was 

dictated by the 200 tons loading capacity of the in-house Avery-Denison testing machine. 

The specimens were in accordance with BS 1881: Part 116 (1983) and BS 1881: Part 120 

(1983), tested directly between steel loading platens at a constant stress rate of 0.25 MPa/s. 

The stress rate was maintained constant by manually operating the controls on the testing 

machine.

All the tested specimens failed explosively, and had smooth failure surfaces passing 

indiscriminately through mortar and coarse aggregates. When testing the cubes, a relatively
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large-pyramid shaped fragment containing the face in contact with the stationary loading 

platen of the testing machine usually remained after failure (see figure 2.3). In contrast, the 

face of the cube in contact with the tilt cap always disintegrated into a number of smaller 

fragments. In the cylinder tests failure appeared to initiate at mid-height, and then propagate 

towards the ends so as to produce the well-known conical shape (see figure 2.3). In general, 

the ends of the cylinders remained uncracked after failure, which indicates that the adopted 

capping procedure did not adversely affect the load-carrying capacity of the cylinders. Thus, 

the confining effect of the friction forces developing at the interface between the specimen 

and the loading platen more than compensated for the lesser strength of the capping 

material. The compressive strength of the capping component was 59 MPa when 

determined from tests on 50 mm cubes at 7 days of age. This incidentally was the minimum 

time passing between capping and testing the cylinders.

Tables 2.2 and 2.3 summarise the results from the standard 28 days cube tests. It can be 

noted that both of the targeted concrete grades were obtained with a good degree of 

consistency throughout the duration of the experimental programme.

Tables 2.4 and 2.5 summarise the strength data for the cubes tested on the same days as the 

columns to which they were related. In the case of test series LH10B, only four of the six 

specimens cast were included in the statistics. This was because two of the specimens 

belonging to this test series failed in an asymmetric mode with the failure plane localised 

to a single face, which according to BS1881: Part 116(1983) makes them unacceptable for 

strength assessment. Both of the discarded specimens had a compressive strength equal to 

approximately 83% of the mean strength of the remaining specimens in the series.

When comparing the 28-days strengths to the field strengths, it can be seen that the grade 

C l00 concrete in general gained somewhat more strength with age than the grade C l20 

concrete. The gain in average strength of the cubes made from grade C 100 concrete ranged
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from 10.1 MPa to 21.4 MPa, and for the cubes made from grade C l20 concrete from

10.2 MPa to 16.1 MPa. The tables also show that the field strength of the cubes was little, 

if at all, affected by the variations in testing age.

Table 2.2
28 days cube strength of C100 concrete

Parent column SL05U
SL15U

LL20U LL10U LL05B SL15B All

Casting date 13/6/96 16/9/96 19/9/96 10/10/96 18/10/96 -

Sample size 6 6 6 6 6 30

Mean strength, ( MPa ) 95.4 101.6 97.0 103.7 106.0 100.7

Coefficient of variation, ( % ) 3.8 2.8 6.9 3.5 2.5 5.5

Table 2.3
28 days cube strength of C120 concrete

Parent column SH20U 
SHI 0U

LH15U LH05U LH10B SH20B All

Casting date 14/8/96 26/9/96 3/10/96 15/10/96 18/10/96 -

Sample size 6 6 6 6 6 30

Mean strength, ( MPa ) 124.0 121.8 124.7 121.4 122.0 122.7

Coefficient of variation, ( % ) 6.9 4.1 4.3 4.2 4.2 4.7

Table 2.4
Field cube strength of C100 concrete

Parent column SL05U
SL15U

LL20U LL10U LL05B SL15B All

Casting date 13/6/96 16/9/96 19/9/96 10/10/96 18/10/96 -

Age at testing, ( days ) 208 304 307 316 195 -

Sample size 6 6 6 6 3 27

Mean strength, ( MPa ) 116.8 119.3 115.9 113.8 116.9 116.5

Coefficient of variation, ( % ) 4.1 4.2 6.8 3.6 6.0 4.8

Mean strength gain, ( MPa ) 21.4 20.0 18.9 10.1 10.9 16.2
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Table 2.5
Field cube strength of C120 concrete

Parent column SH20U
SH10U

LH15U LH05U LH10B SH20B All

Casting date 14/8/96 26/9/96 3/10/96 15/10/96 18/10/96 -

Age at testing, ( days ) 176 328 321 315 182 -

Sample size 6 6 6 4 3 25

Mean strength, ( MPa ) 137.6 137.3 134.9 133.0 138.1 136.2

Coefficient of variation, ( % ) 5.6 2.6 5.4 3.6 0.9 4.2

Mean strength gain, ( MPa ) 14.3 15.5 10.2 11.6 16.1 13.5

Tables 2.6 and 2.7 summarise the results from the cylinder tests. Due to various technical 

problems, the statistics for these tests often had to be based on reduced sample sizes. In the 

case of test series LL05B, the compressive strength of 75.9 MPa determined for one of the 

cylinders was significantly lower than the strengths determined for the other cylinders in 

the series. Since the failure plane in the weaker cylinder included the capped end-zone, it 

was concluded that the end preparation had been responsible for the weakening. During test 

series LL10U, problems developed with the testing machine, and the testing of the last 

specimen in the series had to be prematurely abandoned. In the case of test series LH15U, 

the cylinder strengths ranged from 37 MPa to 117 MPa. Furthermore, as illustrated by 

figure 2.4, failure in four of the six specimens developed along a single diagonal crack. It 

was later realised that the erratic results were caused by a machine fault. In view of the 

cube strength data, there is no reason to believe that the quality of test column LH15U was 

impaired in anyw ay. For each of the test series LH 05U and SH20B, a single specimen had 

lost its mortar cap and as such could not be tested using the standard method. In an attempt 

to overcome this problem, the two specimens were tested using soft wood packing. 

However, the lateral expansion of the packing material initiated splitting failure at the top
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of the specimens (see figure 2.5), and caused a strength reduction of approximately 20% 

when compared to the strengths of the similar specimens tested directly between the steel 

loading-platens.

Table 2.6
Field cylinder strength of Cl 00 concrete

Parent column SL05U
SL15U

LL20U LL10U LL05B SL15B All

Casting date 13/6/96 16/9/96 19/9/96 10/10/96 18/10/96 -

Age at testing, ( days) 216 304 307 316 195 -

Sample size 6 6 5 5 6 28

Mean strength, ( MPa ) 95.2 101.3 101.8 98.2 110.4 101.5

Coefficient of variation, ( % ) 7.3 4.9 5.6 1.3 1.3 6.8

Cylinder/cube strength ratio, ( - )  0.82 0.85 0.88 0.86 0.94 0.87

Table 2.7
Field cylinder strength of C120 concrete

Parent column SH20U 
SHI 0U

LH15U LH05U LH10B SH20B All

Casting date 14/8/96 26/9/96 3/10/96 15/10/96 18/10/96 -

Age at testing, ( days ) 176 328 321 316 196 -

Sample size 6 - 5 6 5 22

Mean strength, ( M Pa) 128.8 - 123.0 120.4 128.2 125.0

Coefficient of variation, ( % ) 4.1 - 5.1 5.4 4.5 5.3

Cylinder/cube strength ratio, ( - ) 0.94 - 0.91 0.91 0.93 0.92

It can be seen from tables 2.2 - 2.7 that the coefficients of variation evaluated for the 

individual test series ranged from 0.9% to 7.3%, whereas the six overall coefficients lay 

within the rather narrow band of 4.2% to 6.8%. This suggests that the coefficient of 

variation was largely independent of the quality of concrete, time of testing, and the shape 

of the specimen. According to guidelines for quality control of normal strength concrete, 

a coefficient of variation between 5% and 10% can be classified as “approaching laboratory
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conditions” (Neville, 1959). Considering the strength data obtained in the investigation 

described in this thesis, and in the investigations carried out by Dahl (1992a), Lessard et al 

(1993) and Larrard et al (1994), this classification appears also to be applicable to the 

quality control of high strength concrete. In this context, it should be mentioned that the 

experimental work carried out by Lessard et al (1993) showed that end preparation of 

100x200 mm cylinders by grinding rather than by capping had the effect of reducing the 

coefficient of variation by 1 - 2%.

In the present investigation, the average ratio of the 100x200 mm cylinder strength to the 

100 mm cube strength was determined to be 0.87 and 0.92 for the grade C l00 and C l20 

concrete respectively.

Figure 2.3
Typical failure modes for small-sized concrete specimens
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Figure 2.4
Fracture along diagonal plane in test series LH15U

Figure 2.5
Splitting type failure of wood packed cylinder
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2.1.5 Stress-Strain Characteristics

The uniaxial stress-strain characteristic of the high strength concretes used for fabricating 

the test columns were investigated by strain gauging three of the cylinders in each of the 

test series SL15B and SH20B. The strains were monitored by means of electrical resistance 

gauges of type PL-60-11, and the applied load by means of a 300 tons load cell. The load 

cell had been calibrated with respect to the built-in load cell of the Avery-Dension testing 

machine. The stress-strain data were logged at intervals of approximately 6.3 MPa until 

reaching a load corresponding to 85 - 90% of the expected failure load. Hereafter, the 

stress-strain data were logged at shorter intervals of about 1.3 MPa. Since the testing 

machine operated in a load-controlled mode, the specimens failed immediately after having 

reached their peak stress, and no data points were recorded on the descending part of the 

stress strain curves.

According to BS 1881: Part 121 (1983) the static modulus of elasticity, Ec , should be 

determined as the secant modulus for the third or higher reloading cycle between 33% of 

the full compressive strength and a small basic stress of 0.5 MPa. Both at the peak and floor 

stress in each cycle, a waiting period of 60 seconds is prescribed. The load cycling is 

performed in order to eliminate the effects of primary creep, i.e. initial plastic deformations. 

The strain-gauged specimens were subjected to three such load cycles before being loaded 

to failure, and primary creep strains between 0.02 - 0.04 mm/m were recorded.

Figures 2.6 and 2.7 show the stress-strain curves determined from testing the grade C l00 

and C l20 concrete specimens respectively. The longitudinal strain, e3 , and transverse 

strain, e? , both represent the average of two measurements taken at diametrically opposite 

locations at mid-height of the specimens. The volumetric strain, sy , was calculated from
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the following small strain formulae:

£ v = £ l + £ 2 + £ 3 ( 2 J )

which for axisymmetric conditions simplifies to:

£v = £3 + 2e2 (2-2)

It can be noted that the high strength concrete specimens exhibited a nearly linear stress- 

strain response up to a high fraction of their peak stress. The degree of non-linear behaviour 

can be quantified by the critical stress, ocr , which is defined as the stress at which the 

volume of concrete begins to dilate rather than continue to contract. The critical stress is 

of much structural importance as it is believed to reflect the strength of concrete when 

subjected to long-term loading (Shah, 1968; Smadi, 1985; Loo, 1995).

Table 2.8 lists the experimental results for the critical stress, ocr, the uniaxial compressive 

strength, f  , the modulus of elasticity, Ec , the initial Poisson’s ratio, vQ, and the strain at 

peak stress, ec. Apart from the compressive strength, the main difference between the 

material properties of the two grades of concrete is the somewhat larger critical stress ratio 

of the grade C l20 concrete.

Table 2.8
Key results from strain-gauged cylinder tests

Concrete
grade

f
C

( MP a )
Ec

( GP a )
v o

( - )
a c r / f c

( ' )
£ c

( mm/m )

C100 110.8 48.1 0.20 0.83 2.7
112.2 45.0 0.23 0.80 3.0
110.1 48.5 0.23 0.82 2.8

C120 132.2 48.1 0.22 0.82 3.0
119.9 48.1 0.22 0.90 2.8
131.9 50.2 0.22 0.90 2.9
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Stress-strain behaviour of grade ClOO concrete

150 

125 

100 

75 

50 

25 

0
2.0 1.0 0.0 -1.0 -2.0 -3.0 -4.0

Strain, s¡ , ( mm/m )

V _  X

\
%

1
CLi
CL A a

%
°o
%

A
A*
A

A
A

^ □ 
n QD

□ °

3D

%
O

_  i

A
A

A
A

É
è

□

R 8

!
«
$

/  ë
à s 

È s D Longitudinal strain 
o Transverse strain 
A Volumetric strain.-

©
©
0
c

& g
&s

iSi
1 1 1 1 1 ■ 1 1 1 T T T T J T T T T J T T T T m T m

Figure 2.7
Stress-strain behaviour of grade C120 concrete
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2.1.6 Split Cylinder Strength

A few of the 100x200 mm cylinders were tested for tensile splitting strength, f  , in 

accordance with the procedure outlined in BS 1881: Part 117 (1983). The tensile splitting 

strength was calculated from the following formulae derived from the theory of elasticity:

2 P£  _  _  max

sp 7i L d
(2.3)

where:

f  is the tensile splitting strength 

P is the maximum applied loadmax r r

L is the length of the specimen (here 200 mm)

d is the cross-sectional dimension of the specimen (here 100 mm)

As shown in figure 2.8, the cylinders fractured by a single crack passing through mortar and 

coarse aggregates without bias, so as to link the two diametrically opposite loading strips

Figure 2.8
Fracture of cylinder tested for splitting strength
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The results from the split cylinder tests are given in table 2.9, and are compared to the 

compressive mean strengths of the cylinders cast and tested on the same days as the 

cylinders used in the split tests. The average ratio of split cylinder strength to compressive 

mean strength was determined to be 5.9%.

Table 2.9
Results from split cylinder tests

Concrete
grade

Parent
column

Age 
( days)

fc
( M P a )

fsp
( M P a )

f / fsp C 

( % )

C100 SL05U 216 95.2 5.0 5.3

LL05B 316 98.2 7.4 7.5
6.0 6.1

SL15B 195 110.4 6.0 5.4
6.1 5.5

C120 SH20U 176 128.8 7.8 6.1
7.5 5.8
8.0 6.2

LH05U 321 123.0 7.8 6.3
5.8 4.7

LH10B 316 120.4 7.2 6.0

Mean 5.9
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2.2 Reinforcement Properties

Tensile tests were carried out on samples of the four different types of reinforcement bars 

employed in the experimental programme. The reinforcement bars included ribbed cold 

worked steel bars of grade 460 with a nominal diameter of 10 mm and 12 mm respectively, 

and plain hot-rolled steel bars of grade 250 with a nominal diameter of 8 mm and 10 mm 

respectively.

The tests were carried out in a Dartec 2500 kN tensile testing machine. Operating in a 

displacement controlled mode, the testing machine was adjusted to automatically strain the 

test piece at a constant strain rate of about 5.0-10 5 s , which incidentally is the strain rate 

recommended in BS 4449 (1988). After the occurrence of yielding the testing machine was 

switched to a manual control mode, and the test was continued at a much higher rate until 

the test piece failed. The maximum strain rate during the second phase of testing was 

approximately 1.0-10 3 s ' 1, which according to the research on the effect of elevated 

strain rates carried out by Ammann et al (1982), can be estimated to have raised the tensile 

strength of the test pieces by a maximum of 3%.

Figure 2.9 illustrates a typical stress-strain curve for each of the four types of reinforcement 

bars. Prior to yielding, the strain was determined as the average of the recordings from two 

FLA-6-11 electrical resistance gauges mounted diametrically opposite at mid-height of the 

600 mm long test piece. Thus, the initial straightening of the bar, as well as the slip between 

the test piece and the jaws of the testing machine, was eliminated from the strain data. 

However, soon after the occurrence of yielding, the strain gauges began to give erratic 

readings, and from this point onwards the stress-strain curve was established using the 

overall extension of the test piece.
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Table 2.10 lists the mean values of the essential material properties as determined from 

testing three bars of each type. The material properties listed are: the modulus of elasticity, 

Es , the yield stress, f  , the tensile strength, f  , and the corresponding peak strain, es f .

Figure 2.9
Typical stress-strain curves for reinforcement bars

Table 2.10
Average material properties for reinforcement bars

Bar type

R8 RIO T10 T12

E
S

, ( Gpa ) 209.9 206.4 196.8 198.9
f

s y , ( MPa ) 316.3 369.3 535.2 538.6

f
s

, ( MPa ) 437.9 488.1 649.3 618.9

£ s f , ( % ) 15.6 11.8 4.5 6.6
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Chapter 3: Mechanical Properties of High Strength
Concrete

3.1 Behaviour in Uniaxial Compression

This section describes the stress-strain behaviour of high strength concrete tested in 

uniaxial compression. Existing empirical expressions for estimating the modulus of 

elasticity, strain at peak stress and Poisson’s ratio, are evaluated against experimental 

results obtained in the present and similar investigations on high strength concrete. A new 

analytical formulation for the complete stress-strain curve of concrete in uniaxial 

compression is presented. The formulation, which is equally applicable to normal and high 

strength concrete, serves as the basis for the more complex formulation proposed to 

describe the stress-strain behaviour of confined concrete.

Since high strength concrete is brittle when compared to normal strength concrete, the 

modulus of elasticity and the strain at peak stress are of increased engineering importance. 

Errors in these two material properties will, in general, have relatively more effect on the 

calculated load capacity of a high strength concrete member than of a similar normal 

strength concrete member.

3.1.1 Fracture Phenomenon

On the micro-mechanical level, concrete can be described as a heterogeneous system 

composed of different sized coarse aggregates, i.e. aggregates with a nominal size larger 

than about 2 mm, embedded in a matrix of mortar. When a concrete specimen is subjected 

to uniaxial compression, it is the inclusion of coarse aggregates and flaws in the matrix that 

give rise to the local tensile stress concentrations which are responsible for the progressive
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formation and propagation of micro-cracks in the specimen. The micro-cracks can 

conveniently be classified into the following three types: bond cracks at the interface 

between the coarse aggregates and the mortar; cracks through the mortar; and cracks 

through the coarse aggregates. On the basis of the experimental research reported by Hsu 

et al (1963), Shah and Chandra (1968), Ngab et al (1981), Carrasquillo et al (1981a) and 

Smadi and Slate (1989), a description is given of how the formation and propagation of 

each type of crack is closely related to distinct features in the macro-mechanical behaviour 

of concrete.

A hardened concrete specimen will, even before it is being subjected to loading, contain a 

considerable number of randomly orientated micro-cracks. These cracks, which are mainly 

caused by the early volume changes of the cement paste, are almost exclusively bond 

cracks. When subjecting the specimen to increasing uniaxial compression, the increase in 

the number and length of the bond cracks will initially remain small, and the stress-strain 

response of the specimen will be nearly linear.

Later in the loading process, the stress-strain curve deviates increasingly from the straight 

line to horizontal, and the apparent Poisson's ratio begins to increase continuously. The 

beginning of this part of the stress-strain behaviour is associated with a significant growth 

in the formation and propagation of bond cracks. Smadi and Slate (1989) reported that 

significant bond cracking typically commenced at a stress to strength ratio of 30 - 50% for 

normal strength concrete, and at 60 - 70% for high strength concrete. In the investigation 

carried out by Smadi and Slate, concrete with a compressive strength of 21 - 24 MPa was 

classified as normal strength, and concrete with a compressive strength of 59 - 69 MPa as 

high strength.
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The second stage of the stress-strain behaviour ends when the volume of the concrete 

begins to dilate rather than continue to contract. The stress at minimum volume is termed 

the critical stress, and is on the micro-mechanical level related to a significant increase in 

the formation of mortar cracks bridging between neighbouring bond cracks. In the 

investigation carried out by Smadi and Slate (1989) a noticeable increase in mortar cracking 

was observed at a stress to strength ratio of 70 - 75% for normal strength concrete, and at 

85 - 90% for high strength concrete. The high strength concrete specimens tested in the 

present investigation were observed to have minimum volume at stress-to-strength ratios 

of 80- 90%.

When further increasing the load, the combined bond and mortar cracking will form with 

an increasing rate until the continuous crack-pattern is so extensively developed that the 

load-carrying capacity of the concrete is exhausted. Within this range, the process of micro-

cracking is unstable and with time will eventually lead to failure.

At all stress-to-strength ratios, the amount of micro-cracking observed in a high strength 

concrete specimen is smaller than that observed in a similar normal strength concrete 

specimen. Furthermore, the failure surface in a high strength concrete specimen typically 

develops explosively along a smooth plane which passes through aggregates and mortar 

without bias. In contrast, the typical failure surface in a normal strength concrete specimen 

develops gradually along a tortuous plane which seldom involves aggregate failures. The 

reduction in micro-cracking explains why the stress-strain diagram for high strength 

concrete is more pointed and has a steeper descending branch than that for normal strength 

concrete. Neville (1997) ascribed the reduced micro-cracking observed in high strength 

concrete to the improved mechanical compatibility between the mortar and the aggregates.

- 3 . 3 -



3.1.2 Size and Shape Effects

The mechanical properties of concrete are determined from tests on small-sized specimens, 

and it is necessary to adjust these for the influence of the testing conditions before they can 

be applied on a structural level.

It is well known that the compressive strength of a concrete specimen, which is tested 

directly between dry steel platens in general, is reduced when either increasing its 

slenderness ratio or cross-sectional dimensions. In this context, DS 411 (1984) provides a 

comprehensive table over recommended reduction coefficients when assessing the 

strength of normal strength concrete from tests on specimens of a smaller size than the 

standard 150x300 mm cylinder.

The larger strength observed for a short specimen, such as a cube, can be explained by the 

favourable multiaxial stress state induced by the frictional restraint forces developing 

between the dry steel platens of the testing machine and the contact faces of the specimen. 

Experimental studies have indicated that the common practice of employing a slenderness 

ratio of 2 is sufficient to eliminate the effect of the frictional end restraints on the ascending 

part of the stress-strain curve measured at mid-height of the specimen (Sangha, 1972; 

Kotsovos, 1983).

The ratio of the compressive strengths of 150x300 mm to 100x200 mm cylinders has been 

experimentally investigated for a wide range of concrete qualities. The tests carried out by 

Lessard etal( 1993) on concretes with compressive cylinder strengths ranging from 72 MPa 

to 126 MPa produced strength ratios between 0.91 and 1.00 with a mean value of 0.95. For 

a similar range of concrete qualities, Iravani (1996) found the average strength ratio to be 

0.94 with a sample standard deviation o f0.035. By testing concretes with cylinder strengths
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of 20 - 70 MPa, Carrasquillo et al (1981b) found that the somewhat smaller conversion

coefficient of 0.90 was applicable regardless of the strength and age of the specimens.

In the experimental investigation reported herein, the average ratio of the 100x200 mm 

cylinder strength to the 100 mm cube strength was determined to be 0.87 for the grade 

C 100 concrete, and 0.92 for the grade C 120 concrete. Both of these ratios are significantly 

larger than the conversion factor of 0.75 recommended for normal strength concrete in 

DS 411 (1984).

Imam et al (1995) reported the ratio of the compressive strengths of 100 mm cubes to 

150x300 mm cylinders to lie between 0.86 and 0.92 with an average value of 0.90. The 

cylinder strengths of the specimens tested by Imam et al ranged from 82 MPa to 117 MPa. 

When combining these results with those reported by Lessard et al (1993) it follows that 

a conversion coefficient of 0.95 can be employed to relate the strength of a 100 mm cube 

to that of a 100x200 mm cylinder. This ratio compares to the smaller ratios of 0.87 and 0.92 

determined for the two grades of high strength concrete employed in the present 

investigation. In this context, it should be mentioned that Larrard et al (1994) observed the 

strength ratio to be significantly influenced by the selected mix constituents. By altering the 

mix constituents, it was possible to produce concretes with a constant cube strength of 

aboutl05 MPa and yet to have cylinder conversion coefficients ranging from 0.71 to 1.02. 

As was the case for the concrete mixes employed in the present investigation, the use of 

microsilica was observed to result in a larger cube to cylinder conversion coefficient. The 

results of Larrard et al raise some concern regarding the suitability of the cube tests for 

assessing the strength of high strength concrete.
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When calculating the load capacity of a full scale concrete column, the unconfined 

compressive strength of concrete is usually taken to be 0.85 times the concrete strength as 

determined from standard tests on 150x300 mm cylinders. This reduction factor accounts 

for behavioural differences caused by the compaction of the concrete being less complete, 

the rate of loading being much slower, and the curing conditions being less favourable in 

actual columns than in small-sized control specimens. The review given by Razvi and 

Saatcioglu (1994) indicates that, provided the cover concrete does not fail prematurely due 

to instability of the shell under high compressive stresses, the strength reduction factors for 

high strength concrete members lie within similar bounds as those for normal strength 

concrete members, i.e. from about 0.85 to 1.00. However, the average value of the strength 

reduction factor appears to increase with the concrete strength.

Throughout this thesis, the unconfined compressive strength of full-scale columns was 

assumed equal to 0.85 times the mean strength of the 150x300 mm control cylinders, and 

equal to 0.81 times the mean strength of the 100x200 mm control cylinders. The latter 

reduction factors are obtained by assuming that the 150x300 mm cylinder strength equals 

0.95 times the 100x200 mm cylinder strength.

3.1.3 Modulus of Elasticity

Figure 3.1 shows experimental data for the modulus of elasticity as a function of the 

compressive strength. The experimental data were obtained from tests on 100x200 mm 

cylinders, and the measured strengths were converted to the plotted 150x300 mm cylinder 

strengths by multiplying them with a reduction factor of 0.95. The plotted data supports the 

generally accepted trend of the modulus of elasticity to increase with the compressive 

strength.
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The figure also shows the curves for three of the better known empirical expressions for

predicting the modulus of elasticity. Equation 3.1 is the expression given in BS 8110: 

Part 2 (1985) when assuming that the 150x300 mm cylinder strength can be set equal to 

0.95 times the 150 mm cube strength. The utilised conversion coefficient was drawn from 

the experimental studies on high strength concrete specimens carried out by Imam et al 

(1995). It compares to the conversion coefficient of 0.85 recommended for normal strength 

concrete by CEB (1990).

Carrasquillo et al (1981b) proposed equation 3.2 as an alternative to the expression given 

in A C I318-77, which was observed to overestimate the modulus of elasticity when applied 

to concrete with a compressive strength in excess of about 41 MPa.

The expression recommended in the CEB Model Code 90 (1990) is valid for concrete with 

a compressive strength of up to about 60 MPa. This expression has later been replaced by 

equation 3.3 so as to include concrete with a compressive strength of up to about 110 MPa 

(CEB, 1995).

In the foregoing relationships the modulus of elasticity, Ec , is expressed in GPa, and the 

compressive strength, f  , in MPa.

E = 20 + 0.21 f (3.1)

(3.2)

Ec = 22.0 ( f / l O ) 03 (3.3)
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55

Compressive strength, fc , ( MPa )

Figure 3.1
Modulus of elasticity versus compressive strength

It is likely that at least part of the scattering in the experimental data can be explained by 

differences in the proportions and properties of the utilised coarse aggregates. Carrasquillo 

et al (1981b) observed that for concretes of comparable strength those based on crushed 

limestone aggregates had a higher modulus of elasticity than those based on gravel 

aggregates. Likewise, Hsu and Hsu (1994) found that the use of basalt instead of crushed 

stone as coarse aggregates improved the modulus of elasticity by approximately 29% 

without having much effect on the strength of the concrete. An even more noticeable 

influence of the coarse aggregates was observed in the investigation by Baalbaki et al 

(1992). For a given mix design, the replacement of quartzitic aggregates with sandstone 

aggregates produced a concrete with an 11% higher strength and a 44% lower modulus of 

elasticity than the original mix. The quartzitic concrete had a compressive strength of 

90 MPa and a modulus of elasticity of 42 GPa.
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The dependency of the modulus of elasticity on the type of coarse aggregates is 

incorporated into the recommendations given in the CEB Model Code 90 (1990). 

According to the Model Code, the modulus of elasticity for a concrete based on non- 

quartzitic aggregates can be estimated by factorising the modulus of elasticity for a 

quartzitic concrete of similar strength. A multiplication factor of 1.2 is given for basalt and 

dense limestone aggregates, a multiplication factor of 0.9 is given for limestone aggregates, 

and a multiplication factor of 0.7 is given for sandstone aggregates. However, the revised 

formula recommended for high strength concrete is not associated with such multiplication 

factors accounting for the type of coarse aggregates (CEB, 1995).

It was stated in the references (Baalbaki, 1991) and (Baalbaki, 1992) that, due to an 

increased effect of the mineralogical characteristics of the coarse aggregates, the modulus 

of elasticity of high strength concrete cannot be expressed as a function of the compressive 

strength only. However, in view of the experimental data collected in the present study, it 

appears that an extrapolation of the empirical expressions beyond their intended use does 

not further impair their often rather poor capability in estimating the modulus of elasticity.

When compared to the experimental results for the C 100 and C 120 concretes, the reviewed 

empirical expressions all somewhat underestimate the modulus of elasticity. The most 

accurate of the expressions is the one recommended by CEB (1995), which on average 

predicts the modulus to within 5% of the experimental results.

3.1.4 Strain at Peak Stress

It is generally agreed that the strain at peak stress, or peak strain, has a tendency to increase 

with increasing compressive strength, but it is debatable whether it is feasible to express 

the peak strain as a function of the compressive strength only.
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Figure 3.2 shows experimental data for peak strain together with the curves for three 

expressions proposed for predicting it. The experimental data were obtained from tests on 

100x200 mm cylinders, and the recorded strengths were converted to the equivalent 

150x300 mm cylinder strengths using a conversion factor of 0.95.

Equation 3.4, which was proposed by Saenz (1964) for normal strength concrete, 

approximately defines a lower bound to the experimental data. Equation 3.5, given in 

(CEB, 1995), predicts the peak strain to be constant 2.2 mm/m for concrete with a 

compressive strength less than 40 MPa, and to increase with a decreasing rate for concrete 

with a higher strength than 40 MPa. In this context, it should be recalled that according to 

BS 8110: Part 2 (1985) the peak strain can be assumed to be 2.2 mm/m irrespective of the 

grade of concrete. Equation 3.6, proposed by Hsu and Hsu (1994), was derived entirely on 

the basis of their test results on high strength concrete.

012 Vt  (9.10 - Ve ) (34)

s = max ‘
C

2.2

0.7 f 0.31 (3.5)

sc -  0.013 f  + 2.11 (3.6)

In the above equations the strain at peak stress, ec , is expressed in mm/m, and the 

compressive strength, f  , in MPa.

It can be seen from the figure that none of the empirical models is capable of providing a 

convincing fit to the test results. It is likely that this, at least partly, can be explained by the
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fact that none of the models account for the influence of the type of coarse aggregates.

Figure 3.2
Strain at peak stress versus compressive strength

In the tests carried out by Dahl (1992a) the strain at peak stress was little affected by the 

concrete strength. An increase in the concrete strength from 20 MPa to 114 MPa resulted 

in an increase in the peak strain by a modest 0.2 mm/m. Likewise, the data recorded by 

Iravani (1996) indicate that the strength of the concrete has little, if any, influence on the 

peak strain. In contrast to this, Ahmad and Shah (1982) observed the peak strain to increase 

from 2.1 mm/m for a 26 MPa concrete to 3.0 mm/m for a 65 MPa concrete.

Of the reviewed expressions, the one recommended by CEB (1995) agree the best with the 

results for the two high strength concrete qualities employed in the present investigation. 

The peak strains predicted by the CEB expression are, on average, a modest 6% higher than 

the experimental results.
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3.1.5 Poisson’s Ratio

Figure 3.3 shows experimental data for Poisson’s ratio versus normalised stress. It can be 

noted that, in the immediate vicinity of the peak stress, due to the proliferation of the 

ongoing fracture processes, Poisson’s ratio will often exceed 0.5, which is the theoretical 

maximum value of Poisson’s ratio for a continuum. Since the increase in Poisson’s ratio 

primarily is caused by the formation and propagation of micro-cracks, it is sometimes 

referred to as an apparent ratio.

It is commonly accepted that the initial Poisson’s ratio is independent of the concrete 

strength (ACI, 1984; Ibrahim, 1994; Iravani, 1996). Furthermore, the test observations by 

Dahl (1992b) on concrete with compressive strengths ranging from 20 MPa to 110 MPa 

show that Poisson’s ratio at higher levels of stress is largely independent of the grade of 

concrete when expressed in terms of normalised stress.

Equations 3.7a-b were proposed by Ottosen (1979) for calculating Poisson’s ratio, v, as a 

function of the normalised stress, a , / f  .’ 3 c

V = for 0 < -  a , / f  < a3 c p (3.7a)

v= vc -  ( v - v„ )
l /*• ^

\ a
for a < -  a,  / f <p 3 c (3.7b)

p /

The above expressions were incorporated into the CEB Model Code 90 (1990) with the 

initial Poisson’s ratio, vQ = 0.20, the normalised initiation stress, ap = 0.80, and Poisson’s 

ratio at peak stress, vc = 0.36.

Figure 3.3 shows that the model recommended by CEB (1990) is in reasonable agreement 

with the experimental data taken from the references (Dahl, 1992b; Kupfer, 1973).

-3.12-



However, the two concrete grades employed in the present study exhibited significantly 

more lateral expansion at small to medium range loads than predicted by the CEB model. 

An improved fit to the test data was obtained by adjusting the model parameters as follows: 

v0 = 0.22, ap = 0.40, and vc = 0.40.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Poisson's ratio, v , ( - )

Figure 3.3
Poisson’s ratio versus normalised stress

3.1.6 Analytical Expression for Stress-Strain Curve

With the further goal of facilitating a rigorous analysis of concrete structures, many 

researchers have developed analytical expressions for the stress-strain curves recorded in 

uniaxial compression tests.

A general analytical expression should preferably only require knowledge of parameters of 

physical significance such as: the compressive strength, the modulus of elasticity, and the 

strain at peak stress. Furthermore, since it is not possible to establish a convincing 

functional relationship between these material properties, they should all be included as
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independent variables. However, many of the stress-strain models proposed in the literature 

attain their mathematical simplicity by assuming some kind of functional relationship 

between them. Examples of such models are those given in BS 8110: Part 1 and 2 (1985).

The behaviour of a concrete specimen in the post-peak region is characterised by a 

continuing strain localisation in a narrow failure zone, which is accompanied by strain 

recovery in portions outside the failure zone (Van Mier, 1986; Torrenti, 1993;Choi, 1996). 

As a consequence, when calculating the strains from the overall displacements of a 

specimen, the steepness of the descending branch of the stress-strain curve will increase 

with an increase in the height of the specimen. The steepness of the descending branch of 

the stress-strain curve is also known to increase when reducing the frictional restraints at 

the ends of the specimen (Kotsovos, 1983; Choi, 1996). Thus, a constitutive model based 

on data recorded from standard tests will not represent a state of uniaxial stress in the post-

peak region. However, due to the restraints originating from reinforcement, boundary 

conditions and even the surrounding concrete, actual concrete structures never fail under 

true axial stress conditions. This explains why it is accepted to assume that the softening 

stress-strain characteristics as determined from standard tests on cylinders with a 

slenderness ratio of 2 can be applied on a structural level.

The ascending branch of the uniaxial stress-strain curve for normal as well as high strength 

concrete can be accurately represented by equation 3.8 given in the CEB Model Code 90 

(1990). However, the strain at peak stress should be allowed to vary, and not, as assumed 

in the Model Code, to be a constant of 2.2 mm/m.
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2

°3 = fc

Ec ^3

E cs £c

( \ 
£

V8c/

1 - ' ^ - 2  
V Ecs

\
for | e31 < sc

where: E = f / e  is the secant modulus at peak stress.
CS C C r

Equation 3.8 can be seen to satisfy the following boundary conditions:

a 3 = 0 for s3 = 0

d a ,/d s ,  = E3 3 c for s3 = 0

a 3 = "  f c for e, = -  e3 c

d a 3/d s 3 = 0 for e, = -  e3 c

(3.8)

(3.9a)

(3.9b)

(3.9c)

(3.9d)

Equation 3.10 was developed during the present study to describe the descending branch 

of the stress-strain curve of unconfined concrete. The equation also serves as the basis for 

the more complex formulation proposed to describe the post-peak behaviour of confined 

concrete. The proposed expression incorporates a positive material parameter |3, which 

controls the steepness of the descending branch. The larger the value of p the steeper is the 

descending branch.

for Is, I > £1 3 I c (3.10)

Equation 3.10 can be seen to satisfy the following boundary conditions:

1IIroD oCO1IImCO£

(3.11a)

d o 3/d£3 = 0 for £, = — £3 c (3.11b)

o3^ 0 for s3 -* -  °° (3.11c)

d a 3/d e 3-  0 for s3 -  -  °° (3.1 Id)
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A very satisfactory fit to the available experimental data was achieved by choosing the 

parameter P so as to force the stress-strain curve to pass through the data point 

(ec50, 0 .5 0 f ) on the descending branch. Thus, the parameter p can be determined from 

the strains 8 and s as follows:c c50

£cS0

P = ------- --------  (3.12)
( \ 3

Sc50 _ j

\ £o /

Figures 3.4 and 3.5 compare the proposed formulation for the complete stress-strain 

relationship with experimental results reported by FIsu and Hsu (1994) and Dahl (1992a) 

respectively. The experimental results were made available to this investigation by 

digitizing, and for reasons of clarity are shown as discrete data points in the figures.

Axial strain, - 83 , ( mm/m )

Figure 3.4
Comparison of proposed stress-strain model with experimental data 

reported by Hsu and Hsu, (1994)
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Axial strain, - e 3 , ( mm/m )

Figure 3.5
Comparison of proposed stress-strain model with experimental data 

reported by Dahl, (1992a)

In many practical situations the data point (ec50,0.50 f ) is not available. Under these 

circumstances, it is recommended to calculate the material parameter p from the 

compressive strength, f, , using the following equation:

Equation 3.13 was derived by regression analysis using numerical data generated by the 

model given in the CEB Model Code 90 (1990). For an assumed compressive strength, 

fc , the modulus of elasticity, Ec , and the strain at peak stress, sc , was calculated from 

equation 3.3 and 3.5 respectively. These material properties were substituted into the stress- 

strain relations given in the CEB Model Code 90, where after the strain e and the 

material parameter P corresponding to this strain was calculated. The above described 

process was repeated until a sufficient number of data points had been established for the 

regression analysis to be performed.

(3.13)
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Figure 3.6 compares stress-strain curves generated by the expressions given in the CEB 

Model Code 90 (1990) with those generated by the model proposed herein. For each 

concrete strength, the modulus of elasticity and the peak strain was calculated from 

equation 3.3 and 3.5 respectively. The material parameter p , which in the proposed model 

governs the steepness of the descending branch of the stress-strain curve, was determined 

from equation 3.13.

Figure 3.6
Comparison of proposed stress-strain model with CEB model

Figure 3.7 shows the proposed stress-strain model when applied to the 100x200 mm 

concrete cylinders tested in the present investigation. The compressive strength, the 

modulus of elasticity and the peak strain were taken as the averages of the experimental 

data given in table 2.8. The transverse strains were calculated from equation 3.7a-b with 

the initial Poisson’s ratio, the normalised initiation stress, and Poisson’s ratio at peak stress 

being set to 0.22, 0.40 and 0.40 respectively. In the post-peak region, Poisson’s ratio was 

assumed to be constant at 0.40.
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Strain, s ; , ( mm/m )

Figure 3.7
Modelling the complete stress-strain behaviour of the grade 

C100 and C120 concretes
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3.2 Behaviour in Uniaxial Tension

It is a genera] consensus that the uniaxial tensile strength of concrete will increase, albeit 

with a decreasing rate, with the compressive strength. The direct tensile strength, f  , 

according to CEB (1995) can be estimated from the compressive strength, f  , by equation 

3.14, where both the tensile and the compressive strength are measured in MPa.

/
1.80

V

f  \ 0.6
c

T s J
(3.14)

Figure 3.8 shows available experimental results for the tensile strength versus the 

compressive strength. Since the compressive strengths were determined from tests on 

100x200 mm cylinders, they were converted to the equivalent 150x300 mm cylinder 

strengths by being multiplied with a conversion factor of 0.95. Also, with the exception of 

the investigation conducted by Dahl (1992c), the split cylinder strength rather than the 

direct tensile strength was tested. Because of a more favourable stress distribution, the split 

cylinder test tends to somewhat overestimate the tensile strength. According to the CEB 

Model Code 90 (1990) the ratio of the split cylinder strength to the tensile strength can be 

assumed to be 0.90. This was the ratio used for converting the data plotted in the figure.

The large scatter of the data can be explained by the tensile strength of concrete being much 

influenced by the shape and texture of the aggregates as well as by the environmental 

conditions. Furthermore, since the tensile strength is governed by the propagation of a 

single crack rather than multiple cracks, a large statistical variability is naturally to be 

expected.

Equation 3.14 underestimates the tensile strength of the specimens tested in the present
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investigation by an average of 11%, which in view of the variability of the test data is quite

acceptable.
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3.3 Behaviour of Actively Confined Concrete

This section describes the stress-strain behaviour of concrete under a condition of triaxial 

axisymmetric compression. Published results from triaxial load cell tests were used to 

establish expressions for the effect of confinement on both the compressive strength and 

the peak strain of high strength concrete. Furthermore, the stress-strain model described in 

section 3.1 was generalised so as to include confined concrete.

The advantage of triaxial load cell results is that they represent uniform confinement 

conditions. In contrast, when confinement is provided by means of transverse reinforcement 

bars, the confining pressure is not uniformly distributed, but varies from point to point 

within the specimen. Thus, in order to assess the effect of confinement on the behaviour of 

concrete from tests on passively confined specimens, not only the size but also the 

distribution of the confining pressure needs to be taken into account.

3.3.1 Confined Strength

Since the behaviour of concrete can be approximated with that of an homogeneous and 

isotropic material, its strength under general multiaxial stress conditions can be represented 

by a unique surface in the principal stress space. A much acclaimed failure criterion for 

normal strength concrete under general multiaxial states of stress is the four parameter 

model proposed by Ottosen (1977); see equations 3.15a-b. Ottosen’s failure criterion is 

defined in terms of the following three octahedral stresses: the octahedral normal stress, 

aoc( , the octahedral shear stress, xoct , and the angle of similarity, 0.

2

a —  + X—  + b —  - 1 - 0 (3.15a)f 2 f frc c c
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where:

X =

k, cos

k, cos

1 cos~'(k2cos(30))

n 1 cos~'( - k,cos(30))

for cos(30)>O  

for cos(30)<O

(3.15b)

The octahedral stresses are again defined in terms of the principal stresses by equations 

3.16 - 3.18. In practice, the octahedral stresses are determined directly from the stress tensor 

without the need to solve an eigenvalue problem, see (Chen, 1982).

1 r \
a oc = 3 (° i + a 2 + ° 3) (3.16)

Toct = j / ( ° !  - ° 2 ) 2 + K  - a 3 ) 2 + ( a 2 - a 3 ) 2 (3.17)

0 = —cos-1 
3

/  j— \
V2 ( a i “ aoc,)(a 2 - O K  - O

oct

(3.18)

Furthermore, the principal stresses can be calculated in descending order, a, > o2 > o3 , 

from the octahedral stresses as follows:

°i = xoctcos(0) + ooct (3.19)

G2 = xoctcos(0 + 4 t t / 3) + Goct (3.20)

a 3 = Z 2 xoctcos(0 + 2 7t/3) + aoct (3.21)

It can be seen from equations 3.19-3.21 that an angle 0 = 0  corresponds to the stress state 

Cj > o2 = o3 , and an angle 0 = te/3 to the stress state a, = a , > a 3. The meridian on the 

failure surface corresponding to 0 = 0 is named the tensile meridian and represents the
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minimum octahedral shear stress for all permissible values of the octahedral normal stress. 

Likewise, the meridian corresponding to 9 = t t / 3 is named the compressive meridian and 

represents the maximum octahedral shear stress. The compressive meridian includes all 

combinations of compressive failure under conditions of axisymmetric confinement. From 

solving equation 3.15a with respect to xoct / f  , it follows that the compressive meridian can 

be expressed by equation 3.22. Alternatively, the normalised confined strength, f  / f  , can 

be expressed as a function of the confinement ratio, -O j/f  , by equation 3.23. Equation 

3.23 can be derived by setting cq = o2 and a 3 = - f  in equations 3.16 - 3.18 before 

substitution into equation 3.15a.

( ___________________ \

-  A,, + A ^ - 4 a ( b a °ct -  1)
C )

(3.22)

fIC _ 3 b - 3 I c/ 2  

f. 4 a
_3_ 
4a ^

8a + (b - y f l \ ) 2 - (3.23)

where: Ac denotes the value of the function A for 0 = rc/3.

Ottosen proposed calibrating the failure criterion using the following four combinations of 

failure stress:

•  The uniaxial tensile strength: a, = f( , o1 = o3 = 0

•  The equibiaxial compressive strength: a ( = 0 , c 2 = a 3 = - f ,

•  The uniaxial compressive strength: a, = a 2 = 0 , o3 = - f

•  A point on the compressive meridian: a oct = oocl f , xoc( = x f

Employing the above boundary conditions, and after some algebraic calculations assisted 

by the Maple computer system for advanced mathematics, equations 3.24a-h were derived
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for the calculation of the four model parameters: a ,b , kj and k2.

1 f oct, f 3 xoct,f

& /2
-  1

c = 1 ^  
2 3 f

f, f

T  7v c c /

‘ f  f  ^2c c _

7 ~ 7V c h
- / 2 -

oct,f

1 x

1 / 2  /
oct,f °o c t ,f 1 f:

C

2c

C? f2 c

9 f;a = —

f f
c — + b
2c f ,

2 f  f
2c 1
f f

C C

X

( 2 
2 Toct, f  2

" f 2"  " 3
V c

+ b S^octU + 1

/ 2  -  3 oct, f

2a
1 f  2 f  2

h _ x2c
r-2 «2
*c *C )

+ 3b
/ f  f  )

- 1 + 2  —  
f f\ c c y

3 /2 f 2c 1 1

fc f c J

(3.24a)

(3.24b)

(3.24c)

(3.24d)

(3.24e)

(3.24f)
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\

k0 = cos( 3 ta n '1 ) (3.24g)

k (3.24h)
cos(— -  — cos"1 (k.,)) 

3 3 2

Ottosen’s failure criterion was numerically calibrated using the tensile strength ratio 

ft/ f  = 0.08, the equibiaxial strength ratio f,c/f c = 1.16, and the data point on the 

compressive meridian (a oc(/f c , t oct/ f c) = (-1 .5 4 ,1 .3 2 ). Using these data points the 

model parameters, a = 5.40, b = 12.93, k, = 1.00 and k2 = 17.17, are calculated from 

equations 3.24a-h. When inserting the model parameters into equations 3.22 and 3.23 the 

following expressions are found for estimating the strength of confined concrete:

Since a tensile strength ratio below 0.074 leads to a breakdown in the mathematical 

formulation of Ottosen’s failure criterion, the tensile strength ratio used for the calibration 

was larger than the ratio of about 0.06 determined for the high strength concretes employed 

in the present investigation. However, with respect to the prediction of confined strengths, 

the tensile strength ratio used for the calibration of Ottosen’s failure criterion has virtually 

no effect. The equibiaxial compressive strength ratio of 1.16 was reported by Kupfer (1973) 

from biaxial tests on concretes with compressive strengths up to 57 MPa. No information 

regarding the equibiaxial compressive strength of concrete of higher strength could be

(3.25)

(3.26)
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found in the literature. The arbitrary calibration point on the compressive meridian was

chosen using the comprehensive triaxial strength data for high strength concrete obtained 

by Dahl (1992c). The calibration point represents the average normalised confined strength 

at a confinement ratio of 0.6.

Figures 3.9 and 3.10 show test results on the compressive meridian when expressed in 

terms of octahedral and principal stress variables respectively. Both equation 3.25 and 3.26 

can be seen to provide a good fit to the experimental data obtained from tests on normal 

weight concretes with strengths ranging from 20 MPa to 132 MPa. It can also be noted that 

the effect of employing octahedral stress variables is to reduce the data scatter somewhat.

Except for the data taken after Schickert and Winkler (1977) the experimental data shown 

in the figures were produced by employing a normal stress path. For a normal stress path, 

a predefined hydrostatic pressure is reached by increasing the applied stress so that 

Ac, = Ac., = Ac 3, after which the axial stress is increased under a condition of constant 

lateral pressure, i.e. Ac, = Ac2 = 0. In Schickert and Winkler’s investigation a deviatoric 

stress path was followed. For a deviatoric stress path, the lateral pressure is reduced 

simultaneously with an increase in the axial pressure so as to maintain a constant 

hydrostatic pressure, i.e. Ac, = Ac, = -1 /2  Ac3. However, in most practical situations the 

confining pressure is generated by the lateral dilatation of the concrete core, and the stress 

path is essentially proportional, i.e. Ac, = Ac, = kAo3. Kotsovos and Pavlovic (1995) 

reported that for a hydrostatic pressure less than about 0.8 f  the failure stresses are virtually 

independent of the followed stress path, and they can therefore be represented by a single 

envelope.
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Figure 3.9
Normalised relationship between octahedral shear strength and normal stress, 

test data after (Richart, 1928; Newman, 1973; Kotsovos, 1974; Schickert, 
1977; Dahl, 1992c; Setunge, 1993; Xie, 1995; Sfer, 2002)

Confinement ratio, - G] / fc , ( - )

Figure 3.10
Normalised relationship between compressive strength and confining pressure, 

test data after (Richart, 1928; Newman, 1973; Kotsovos, 1974; Schickert, 
1977; Dahl, 1992c; Setunge, 1993; Xie, 1995; Sfer, 2002)

-3.28-



According to the proposed confinement model, see equation 3.26, the absolute gain in 

compressive strength, fcc -  f, , will, for a fixed value of confining pressure, -Oj , increase 

with increasing uniaxial strength, f  . This aspect of the model is visualised in figure 3.11, 

and is in agreement with the experimental results which, though being scattered, show clear 

signs of being grouped according to the grade of concrete.

In summary, the comparative study showed:

•  The confined strength is increased, albeit at a decreasing rate, with increasing 

confinement.

•  A unique nonlinear relationship can be formulated between the normalised confined 

strength and the confinement ratio.

Confining stress, - a , , ( MPa )

Figure 3.11
Strength enhancement as a function of confining pressure, test data after 

(Richart, 1928; Newman, 1973; Kotsovos, 1974; Schickert, 1977; 
Dahl, 1992c; Setunge, 1993; Xie, 1995; Sfer, 2002)
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3.3.2 Strain at Confined Peak Stress

Figures 3.12 and 3.13 show experimental results for the influence of confinement on the 

peak strain of concrete. The ratio between the peak strain of confined and unconfined 

concrete, e /e„ , is plotted as a function of the normalised confined strength, f  / f  , in 

figure 3.12, and as a function of the confining stress, -a , , in figure 3.13.

From examining the test data, the following characteristics could be identified:

•  The peak strain ratio is increased, and at a continuously higher rate, with an increase 

in the normalised confined strength.

•  Confinement always enhances the peak strain relatively more than the strength, i.e. 

the data points shown in figure 3.12 he above the line of equality.

•  The sensitivity of the peak strain ratio to confinement is much less for high strength 

concrete than for normal strength concrete.

Normalised confined strength, fcc / fc , ( - )

Figure 3.12
Normalised relationship between peak strain and strength of confined concrete, 

test data after (Richart, 1928; Newman, 1973; Kotsovos, 1974; Dahl, 1992b; 
Xie, 1995; Attard, 1996; Sfer, 2002)
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Figure 3.13
Peak strain ratio versus confining pressure, test data after (Richart, 1928; 

Newman,1973; Kotsovos, 1974; Dahl, 1992b; Xie, 1995;
Attard, 1996; Sfer, 2002)

It can be seen from figure 3.13 that the variability in the test data is increased with an 

increase in the confining stress as well as with a lowering of the concrete grade. Such an 

increase in the variability is to be expected since both an increase in the confining stress and 

a lowering of the concrete grade have the effect of flattening the peak of the stress-strain 

curve. The flatter the stress-strain curve the more sensitive the recorded peak strain is to 

small variations in the testing procedure and to statistical variations in the material itself.

A suitable empirical model for the relationship between the peak strain and the strength of 

confined concrete was developed on the basis of the available experimental data. The 

proposed model, equation 3.27, was calibrated by means of the general least square method. 

The model is illustrated in figure 3.12 for four selected concrete grades.

—  = (1.2 -  0.005 fc)
f ( f  Y  N 

- 1
f\  c

+ 1 (3.27)
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When further estimating the confined strength by equation 3.26, the relationship between 

the confining pressure and the peak strain can be expressed as follows:

—  = ( 1 . 2 - 0.005 fc)((o.083 -  Oj/fc +^/0.841 -  10.784 ( o, / f  ))2-  l) + 1 (3.28)
8 c

where: f  is given in MPa

As illustrated in figure 3.13, the model captures the important characteristic of high strength 

concrete requiring substantially more confinement than normal strength concrete in order 

to produce a given increase in the peak strain. Considering that the mean strength of the 

concrete specimens tested in the group labelled f  > 80 MPa was 101 MPa, the peak strain 

predictions are very accurate for high strength concrete. Because of the increased data 

scatter, the predictions are naturally associated with less certainty for reduced concrete 

strengths.

3.3.3 Analytical Expression for Confined Stress-Strain curve

The ascending part of the stress-strain curve can be represented by equation 3.29, which is 

obtained by replacing the material properties f  and ec in equation 3.8 with the similar 

properties for confined concrete, i.e. f  and ecc .

a 3

EC s3 £ 3

E 8 8CCS CC O O

for I e J  < e1 3 1 cc (3.29)

where: E„„c = f  / e is the secant modulus at peak stress for confined concrete.
CCS CC CC A

-3.32-



Equation 3.29 can be seen to satisfy the following boundary conditions:

o3 = 0 for s3 = 0 (3.30a)

d o ,/d s , = E3 3 c for e3 = 0 (3.30b)

a, = - f3 cc for e3 -  -  scc (3.30c)

d a 3/d c 3 = 0 for s3 - -  Ecc (3.30d)

In view of available test results for concrete confined by fluid pressure (Xie, 1995; Attard, 

1996) and by closely spaced steel spirals (Ahmad, 1982; Martinez, 1984; Sudo, 1993; Issa, 

1994) the characteristics of the post-peak behaviour of confined concrete can be 

summarised as follows:

•  The slope of the descending branch of the stress-strain curve is reduced with an 

increase in the confining pressure.

•  For a given level of confining pressure an increase in the grade of concrete is 

associated with a more rapid lowering in the post peak stress.

•  Confined concrete exhibits a non-zero residual strength, which is raised with 

increasing confinement.

The outlined characteristics are all reflected in equation 3.31, which is proposed for 

modelling the descending part of the stress-strain curve of confined concrete. The equation 

is a generalisation of the similar equation proposed for unconfined concrete.

a, (fee -  4 )  + t \ 3
for 18, I > £1 3 1 cc (3.31)

1 + ( f  -  f  )
k  CC C z

- -2 -  -  1 
^ 8 CC ,
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Equation 3.31 can be seen to satisfy the following boundary conditions:

Q II 1
O fo r 8, = - e3 cc (3.32a)

d a 3/ d s 3 = 0 for e ,  = - 83 cc (3.32b)

< V - ( f c c - f c ) for P —► — OO
fc3 (3.32c)

d a 3/ d s 3-  0 fo r s 3- (3.32d)

According to equation 3.31, the residual strength equals the strength enhancement due to 

confinement, i.e. f c -  f  . However, when compared to the experimental results reported 

by Xie et al (1995) and Attard and Setunge (1996), this appears to be a rather conservative 

prediction of the residual strength, see figure 3.14. It was decided against improving this 

aspect of the model as it called for a more complex mathematical formulation in order to 

ensure that the initial and most important part of the descending branch of the stress-strain 

curve continued to compare favourably with the experimental results.

Figure 3.14
Residual strength of confined concrete, test data after (Xie, 1995; Attard, 1996)
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Computed stress-strain curves in figures 3.15 - 3.18 are compared to experimental curves

for a range of concrete qualities tested under various confining pressures. For reasons of 

clarity, the experimental results are graphically represented as discrete data points. The 

uniaxial material properties required for the numerical modelling were, in the case of f  , e 

and Ec , extracted from the experimental stress-strain data, and in the case of (3, estimated 

using equation 3.13. It should be mentioned that the modulus of elasticity due to the applied 

loading conditions strictly speaking did not represent a uniaxial property but rather the bulk 

modulus associated with hydrostatic loading. For a given confining stress, a, , the confined 

strength, f  , and corresponding strain, ecc, were determined from equations 3.26 and 3.28 

respectively. The figures demonstrate that the proposed stress-strain model is in agreement 

with the experimental data for confined concrete of both normal and high strength.

Axial strain, - e3 , ( miu/m )

Figure 3.15
Comparison of proposed confinement model with experimental data reported

by Attard and Setunge, (1996)
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Figure 3.16
Comparison of proposed confinement model with experimental data reported

by Xie e t al, (1995)

Axial strain, - e3 , ( mm/m)

Figure 3.17
Comparison of proposed confinement model with experimental data reported

by Xie e t al, (1995)
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Axial strain, - s3 , ( mni/m )

Figure 3.18
Comparison of proposed confinement model with experimental data reported

by Richart e t al, (1928)
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3.4 Behaviour of Passively Confined Concrete

This section describes the stress-strain behaviour of concrete confined by means of lateral 

steel reinforcement. An existing method for assessing the efficiency of various tie 

arrangements is modified so as to establish a link between the results for transversely 

reinforced concrete columns and the results for plain concrete specimens tested under a 

condition of uniform confinement.

A computational model for automatically generating the nominal stress-strain curve for 

confined concrete was programmed. The computational model accounts for the effects of 

the material properties of the unconfined concrete, and for the configuration, distribution 

and stress-strain behaviour of the transverse reinforcement steel. Existing confinement 

models are discussed, and compared to the proposed model when applied to the concrete 

core of two of the high strength concrete columns tested in the present investigation.

3.4.1 General

When a transversely reinforced concrete column is subjected to axial compression, the 

lateral expansion due to Poisson’s effect cannot take place freely, but must be associated 

with a compatible straining of the reinforcing steel. This in turn will cause the 

reinforcement to exert a confining pressure on the concrete core, which have the effect of 

improving the strength and ductility characteristics of the concrete in a manner similar to 

that described in section 3.3. Concrete is said to be passively confined when the confining 

pressure is a consequence of the dilatation of the concrete itself.

The effect that the transverse reinforcement has on the structural behaviour of a column 

can, as it was done in the research reported in the references (Xie, 1996), (Xie, 1997),
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(Foster, 1998), (Liu, 1998) and (Liu, 2000), be predicted by carrying out a true three- 

dimensional finite element analysis. Throughout the analysis the interaction between the 

reinforcement and the concrete is monitored in order to evaluate the multiaxial stress state 

and instantaneous material behaviour at each of the integration points within the body of 

concrete. Alternatively, the nominal stress-strain characteristics for the confined concrete 

core can be given directly as input in the column analysis. It is the latter approach which 

was adopted in the present investigation by evaluating past experimental work on passive 

confinement in short concrete columns subjected to concentric compression.

The structural response of confined high strength concrete columns is contrary to normal 

strength concrete columns characterised by sudden spalling of the concrete cover. 

Furthermore, spalling is often initiated well before the stress in the cover reaches the level 

corresponding to the strength of the unconfmed concrete. A sa consequence of these fai lure 

characteristics, the load-displacement diagrams recorded for transversely reinforced high 

strength concrete columns (Martinez, 1984; Nishiyama, 1993; Held, 1993; Cusson, 1994; 

Pessiki, 1997; Saatcioglu, 1998), and incidentally also those for high strength concrete 

beams (Hansen, 1993), often display two distinct peaks. The first peak coincides with the 

onset of cover spalling, and the second with the exhaustion of the load carrying capacity of 

the confined concrete core. Whether or not the value of load at the second peak exceeds the 

value at the first depends on the efficiency of the ties in confining the concrete core, the 

level of stress at which cover spalling occurs and the dimensions of the core relative to 

those of the cover. Figure 3.19 schematically illustrates the load-strain behaviour recorded 

in two column tests carried out by Cusson and Paultre (1994). The two columns were 

identical except that they were manufactured from concrete with a 150x300 mm cylinder 

strength of 114 MPa and 56 MPa respectively. Because of the overall less brittle response
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of the concrete cover, the column manufactured from the lower grade concrete exhibited 

a much less pronounced drop in the axial load after the onset of cover failure than the 

column manufactured from the higher grade concrete.

Figure 3.19
Schematic illustration of load-strain behaviour of transversely reinforced 

concrete columns, (Cusson, 1994)

Collins et al (1993) explained the occurrence of premature cover spalling by differential 

drying shrinkage causing extensive micro-cracking along the reinforcement bars. This 

creates a weak plane along which the cover can separate from the core. A three-dimensional 

finite element analysis carried out by Foster et al (1998) produced another explanation for 

the occurrence of premature cover spalling. According to Foster et al, the incompatibility 

between the lateral expansion characteristics of the confined core and the unconfined cover 

leads to the development of small tensile stresses across the interface between the core and 

the cover. The effect of the tensile stresses is to significantly reduce the compressive 

strength in the longitudinal direction. Although the precise circumstances required to trigger 

premature spalling yet are to be fully established, it is likely that an increase in the density
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of the reinforcement cage and in the concrete grade both have an adverse effect on the 

stability of the cover shell (Cusson, 1994; Razvi, 1994; Saatcioglu, 1998). In this context, 

it should be recalled from section 3.2 that the tensile strength of concrete in general 

increases at a deceasing rate with the compressive strength.

Razvi and Saatcioglu (1994) reported that cover spalling in high strength concrete columns 

sometimes occurred at a stress level as low as that corresponding to 70% of the unconfined 

concrete strength. They investigated the structural consequences of premature cover 

spalling by applying equation 3.33, recommended for predicting the concentric load 

capacities of high strength concrete columns in the ACI state-of-the-art report (1984), to 

available test results. The findings from their study are summarised in figure 3.20.

P = 0.85f  , (A. . -  A ) + f  A (3.33)c c,cyl v tot g '  sy g

where:

Pc is the axial load capacity of the column 

f j is the 150x300 mm cylinder strength of concrete 

Ato( is the gross cross-sectional area of column 

Ag is the area of longitudinal steel 

f y is the yield strength of longitudinal steel

The figure shows that, although the strength of the unconfined high strength concrete 

columns safely could be calculated to 0.85 times the 150x300 mm cylinder strength, 

equation 3.33 often overestimated the load carrying capacity of the confined concrete 

columns. Thus, the strength of the confined concrete core was in many of the tested 

columns insufficient to compensate for the early loss of the concrete cover. It can be noted 

that Razvi and Saatcioglu (1994) employed a confinement index which increased with an
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increase in the volumetric ratio of transverse reinforcement, ps , an increase in the yield 

strength of the transverse reinforcement, f  , and a decrease in the cylinder strength of 

concrete, f  ,.’ c,cyl
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Figure 3.20
Concentric load capacities of transversely reinforced concrete columns,

(Razvi, 1994)

Very little experimental information exists regarding the effect that the longitudinal 

reinforcement has on the confinement conditions in transversely reinforced concrete 

columns. However, the available information unequivocally suggests that an increase in the 

volumetric ratio of longitudinal reinforcement has a beneficial, though in general probably 

very limited, influence on the confinement conditions. The test results reported by Bjerkeli 

et al (1993) show that an increase in the size of the longitudinal reinforcement bars 

increased the strength of the concrete core by about 12% in the columns which had a 

volumetric ratio of transverse reinforcement of 1.1%, and by about 2% in the columns 

which had a volumetric ratio of transverse reinforcement of 3.1%. The columns tested by 

Bjerkeli et al had an unconfined concrete strength of 66 MPa, were transversely reinforced
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by means of square hoops and had a volumetric ratio of longitudinal reinforcement of either 

1.4% or 3.6%. In contrast, the results from tests carried out by Cusson and Paultre (1994) 

show that only for very efficient tie configurations will the strength and ductility 

characteristics of the core concrete benefit from an increase in the size of the longitudinal 

reinforcement bars. The stress-strain behaviour determined for the concrete cores which 

were transversely reinforced by either square hoops or square hoops overlayed by diamond 

shaped inner hoops, i.e. the tie configuration typically used for columns with eight 

longitudinal reinforcement bars, was only marginally improved when increasing the 

volumetric ratio of longitudinal reinforcement from 2.2% to 3.6%. However, in the case of 

the columns which were transversely reinforced by square hoops overlayed by either 

octagonal inner hoops or pairs of rectangular inner hoops, i.e. the tie configurations 

typically used for columns with 12 longitudinal reinforcement bars, the use of larger 

longitudinal bars resulted in a 7% increase in the strength of the concrete core. The columns 

tested by Cusson and Paultre had an unconfmed concrete strength of about 81 MPa and a 

volumetric ratio of transverse reinforcement between 2.8% and 4.9%.

Mander et al (1988b) investigated the effect that the number of longitudinal reinforcement 

bars had on the confinement conditions in spirally reinforced normal strength concrete 

columns. They reported that for a given volumetric ratio of longitudinal reinforcement a 

change in the number of bars had virtually no effect.

3.4.2 Effective Confining Stress

In order to assess the effectiveness of various tie arrangements in confining the concrete 

core of a column, it is helpful to introduce the concept of effective confining stress. The 

effective confining stress, o, eff , is in this thesis defined as the confining stress, which
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would be required under triaxial axisymmetric loading conditions in order to obtain the 

exact same concrete strength, f  , as the mean strength of the passively confined concrete 

core.

The effective confining stress can conveniently be expressed in terms of the nominal 

confining stress, o, nom , and two reduction coefficients, an and a s , as follows:

o , ff = a a o ,l,eff n s l,nom (3.34)

The nominal confining stress is defined as the uniform stress over the surface of the 

concrete core which is in equilibrium with the tensile forces in the transverse reinforcement 

bars, and the reduction coefficients quantify the ability of the transverse reinforcement in 

providing such a state of uniform confinement. The first reduction coefficient accounts for 

the efficiency of the tie configuration, and the second for the efficiency of the tie 

distribution.

Expressions for calculating the volumetric ratio of transverse reinforcement and the 

nominal confining stress for some standard tie configurations are given in table 3.1. The 

bracketed superscripts in the expressions for tie configurations C, D and E indicate that the 

perimeter tie and supplementary ties are not necessarily of the same diameter or indeed 

identically stressed.

If it is assumed that all tie legs are equally stressed, the nominal confining stress for the 

standard tie configurations given in table 3.1 can be calculated, albeit only approximately 

in the case of tie configurations D and E, from the following formula:

a 1 .nom (3.35)
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Table 3.1
Nominal confining stress for standard tie configurations

Tie arrangement Volumetric ratio, ps Nominal confining stress, a, nom

4A^

sd
2 A sa , = --------c1 ,nom j  ssd

4 As

sd.

2 A
a . = --------oI,nom „ j  ssd

P s =
4 As + 2 /2 A ( 

sd„

(2)

l.nom
2A[1)a<l>+ V2A?>o®

sd.

Ps =
4A(S°  + 5A(s2) 

sd.
a l.nom

2A<,>a<1> + 2A<2) g <2)s s s s

sd

4A(S]) + 4/3(1 + v^2)A(
Ps =

(2)

sd. '  l.nom
2 A < I> o I<I> + V 2 A ? > a ®

sd

dc : dimension of nominal concrete core as defined by the perimeter tie 
As: cross sectional area of tie bars 
os : tensile stress in ties 
s : pitch of ties

Mander et al (1988a) utilised a concept, similar to the one used by Sheikh and Uzumeri 

(1982), to develop a geometric method for calculating the effective confining stress for 

general tie configurations and distributions. The geometric method is based on the 

assumption that an effectively confined concrete core, where the confining stress has fully 

developed, can be determined from the principle of stress arching, and that the effective 

confining stress is directly proportional to the ratio between the minimum area of the 

effectively confined concrete core, Acc eff, and the area of the nominal concrete core, Acc. 

Thus, according to Mander et a l’s, method the effective confining stress can be calculated 

as follows:

A_ cc.eff
G, cc — ---------- G,1 ,eff 1 ,nom (3.36)
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Because of the arching action, the area of the effectively confined concrete core will always 

be at a minimum midway between adjacent ties. At tie level, a circular tie configuration 

will apply a uniform pressure along its perimeter, whereas a non-circular tie configuration 

will experience stress arching between the points at which the tie is effectively restrained 

against lateral deformations. The mechanism of the arching action is in figure 3.21 

illustrated for tie configurations B and C.

Figure 3.21
Illustration of arching action for two typical tie configurations, taken

after (Cusson, 1994)

Mander etal( 1988a) assumed the arching action in both the longitudinal and the transverse 

direction to occur in the form of a second degree parabola with an initial tangent slope of 

45°. Table 3.2 lists the reduction coefficients determined for the standard tie configurations 

when applying the 45° arching action method. In the case of circular hoops, the arching 

action reduces the diameter of the effectively confined concrete core to d - s / 2  midway 

between these. For quadratic hoops the arching action reduces the area of the effectively 

confined concrete core at tie level to 1/3 dc2 ,2/3 dc2 ,7/9 dc2 and 7/9 dc2 for tie
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configurations B, C, D and E respectively. The area midway between the ties can be 

approximated using the scaling law applicable to circular hoops. For spiral reinforcement 

the cross-section of the effective confined concrete core can be shown to be an ellipse with 

a major axis diameter of dc and a minor axis diameter of d - s / 2 .

Table 3.2
Reduction coefficients according to the 45°arching action method

Tie arrangement Reduction coefficients, a n and a s

According to the 45 ° arching action method, the confining effect of the ties vanishes when 

their pitch exceeds twice the dimension of the nominal concrete core. In the special case 

where the pitch is equal to the dimension of the concrete core, the effective confinement 

is reduced to 50% of the nominal confinement for spiral reinforcement, and to 25% of the 

nominal confinement for the other tie configurations. However, a number of tests have 

demonstrated that the transverse reinforcement has a negligible influence on the concrete
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strength if the pitch of the ties is equal to the dimension of the concrete core (Iyengar, 1970; 

Ahmad, 1982; Martinez, 1984; Yong, 1988; Issa, 1994). These observations indicate that 

the 450 arching action method overestimates the effective confining stress, and as such will 

require a compensation for this by being used in conjunction with constitutive equations 

which in general underestimate the effect of confinement.

The stress-strain models for passively confined concrete recommended by CEB (1990), 

Cusson and Paultre (1995) and Mander et al (1988a) all utilise the 45° arching action 

method to calculate the effective confining pressure. According to the CEB model, the 

strength enhancement associated with the effective confining pressure can be determined 

from the bilinear expression given in equation 3.37. Cusson and Paultre (1995) proposed 

equation 3.38, and Mander et al (1988a) equation 3.39, for calculating the strength 

enhancement. Incidentally equation 3.39 is consistent with William Warnke’s five 

parameter failure criterion (William, 1974).

w .
1.000 -  5.0 a i,eff

fc

for a i,eff _

fc

0.05

fc 1.125 -  2.5 a i,eff

fc

for
f

0.05
(3.37)

fcc
—  = 1.0  + 2.1

-a
\  0.7

l,eff (3.38)

1.254 + 2.254 1 - 7 .9 4 -^ 2  + 2 . 0 - ^ (3.39)

Figure 3.22 illustrates the ability of the proposed equations to predict the strength of 

concrete when tested under triaxial axisymmetric loading conditions. It can be seen from 

the figure that the equations proposed by CEB (1990) and Cusson and Paultre (1995), i.e.

-3.48-



equations 3.37 and 3.38, in general underestimate the strength of the confined concrete. 

Thus, both of these equations, which were derived from regression analysis of test data on 

passively confined concrete columns, do not extend well to situations where the confining 

pressure is uniformly distributed. In contrast, equation 3.39 proposed by Mander et al 

(1988a) was calibrated using the results from the triaxial load cell tests carried out by 

Schickert and Winkler (1977), and is in excellent agreement with the experimental data 

plotted in figure 3.22. However, Mander et al (1988b) validated their model against 

experimental results for concrete columns with closely spaced ties, s /d c < 0.23 , and as 

such, they did not reveal the shortcomings of the 45° arching action method.

1 1 1
a  fc < 40 MPa 
□ fc = [40,80] MPa 
• fc > 80 MPa

Figure 3.22
Strength of uniformly confined concrete, triaxial load cell data after 

(Richart, 1928; Newman, 1973; Kotsovos, 1974; Schickert, 1977; 
Dahl, 1992c; Setunge, 1993; Xie, 1995; Sfer, 2002 )

A stress-strain model for confined concrete, which is equally capable of representing the 

experimental results for concrete specimens tested under triaxial axisymmetric loading 

conditions and the results for transversely reinforced concrete columns tested under
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concentric compression, was established by introducing a new method for calculating the 

reduction coefficients. According to the new method, the effectiveness of the ties in 

confining the concrete core is reduced linearly with the pitch of the ties so as to have no 

effect when the pitch equals the dimension of the concrete core, i.e. a s = 0 for s = dc. 

However, the reduction coefficient an , which accounts for the efficiency of a given tie 

configuration in providing a state of uniform confining pressure along its perimeter, 

continues to be found using the 45° arching action method. Table 3.3 lists the reduction 

coefficients for the standard tie configurations when calculated according to the proposed 

method.

Table 3.3
Reduction coefficients according to the modified arching action method

Tie arrangement Reduction factors, an and a s

Figures 3.23 and 3.24 show experimental data for the normalised strength of passively 

confined concrete as a function of the confinement ratio for a large number of concrete
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columns. Since equation 3.26 approximately defines the running average of the 

experimental data, it can be concluded that the method proposed herein for calculating the 

reduction coefficients leads to a good estimate of the effective confining pressure applied 

to the concrete core by the various tie configurations and distributions. Full details of the 

test parameters and test results for the individual columns are given in Appendix A.

When plotting the experimental data, in accordance with standard practice, it was assumed 

that the confining steel reinforcement was yielding at the time the confined concrete core 

achieved its maximum resistance. However, a few researchers have pointed out that the 

ties, especially in high strength concrete columns, sometimes do not yield before the 

confined concrete core is strained into the post-peak region (Ahmad, 1982; Martinez, 1984; 

Yong, 1988; Cusson, 1995). The reason why a normal strength concrete column in general 

is better suited than a high strength concrete column to develop the full confining potential 

of a particular tie arrangement can be explained by the differences in their dilatation 

characteristics. Furthermore, the yield assumption can naturally be expected to become 

increasingly inaccurate with an increase in the yield strength of the transverse 

reinforcement. In order to avoid overestimating the confinement, it is recommended by 

CEB (1995) that a maximum yield strength of 500 MPa should be used when evaluating 

the effective confining pressure for high strength concrete columns. Alternatively, the 

actual straining of the ties, and hence also the confining pressure, at peak stress of the 

confined concrete core can be predicted by using the computational model described in the 

following. With the assistance of the computational model, the yield assumption was 

judged to have little overall impact on the data plotted in figure 3.23 and 3.24.
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Figure 3.23
Strength of concrete confined by means of circular hoops, test data after 

(Ieyengar, 1970; Ahmad, 1982; Martinez, 1984; Mander, 1988b; 
Bjerkeli, 1993; Sudo, 1993; Hsu, 1994; Issa, 1994; Cusson, 1996; 

Hoshikuma, 1997; Razvi, 1999; Assa, 2001)

Figure 3.24
Strength of concrete confined by means of square hoops, test data after 

(Ieyengar, 1970; Somes, 1970; Scott, 1982; Yong, 1988; Razvi, 1989; 
Bjerkeli, 1993; Nishiyama, 1993; Cusson, 1994; Issa, 1994; 

Hoshikuma, 1997; Razvi, 1998; Razvi, 1999)
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Test results for the peak strain of transversely reinforced concrete columns are plotted in 

figure 3.25. The results resemble those for actively confined concrete. For a given relative 

enhancement in strength, the relative enhancement in peak strain is in general less for high 

strength concrete than for normal strength concrete. It can also be seen from the figure that 

equation 3.27, which expresses the relationship between the strength and the peak strain of 

confined concrete, is much more reliable when applied to high strength concrete than when 

applied to normal strength concrete. In this context, it should be mentioned that for the 

purpose of a structural analysis, the need to accurately predict the peak strain diminishes 

with a decrease in the concrete strength since that also has the effect of increasing the post-

peak ductility of concrete.

Normalised confined strength, fcc / fc , ( - )

Figure 3.25
Effect of passive confinement on peak strain of concrete, test data after 
(leyengar, 1970; Ahmad, 1982; Martinez, 1984; Mander, 1988b; Yong, 

1988; Nishiyama, 1993; Sudo, 1993; Cusson, 1994; Hsu, 1994; 
Issa, 1994; Hoshikuma, 1997; Razvi, 1999; Assa, 2001)
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3.4.3 Computational Model for the Stress-Strain Behaviour

The following describes a computational model for generating the complete stress-strain 

curve for passively confined concrete. The model is based on the assumption that the 

effective confining stress, o, ff , is increased proportionally with the transverse straining 

of the confined concrete core, and that it reaches its maximum when the transverse strains 

are equal to the yield strain of the hoop reinforcement. When the hoop reinforcement is 

strained beyond its yield strain, i.e. s. > e , the confining stress is assumed to remain 

constant. It should be emphasised that the transverse reinforcement does not necessarily 

yield at the time of strength failure of the confined concrete core. In the special case of 

° i  eft' = 0 , the computational model generates the uniaxial stress-strain curve described in 

section 3.2, and in the special case of ssy = 0 the stress-strain curve for actively confined 

concrete described in section 3.3. The algorithm for the computational model is outlined 

as follows:

0) INPUT: Material properties for the unconfined concrete, i.e. the compressive 

strength, f  , the peak strain, ec , the modulus of elasticity, Ec , and the softening 

parameter, p. Yield strain of the transverse reinforcement steel, ssy , and the 

maximum effective confining pressure the transverse reinforcement is capable of 

applying to the concrete core, max a, ff. 1

1) Use the effective confining stress, a, cff , to evaluate the instantaneous material 

properties of the confined concrete.

(3.40)

sCc = ec((l-2  -  0 .0 0 5 f ) ( ( f c/ f c)2 -  1 ) + 1) (3.41)

(3.42)
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2) Use the current longitudinal strain, s3 , to evaluate the corresponding stress, a , .

If ¡s,| < s then:1 3 1 cc

E c 83

a, = f3 cc

E s
CCS cc

(  \ 
8 -

8V CC/

—  -  2 
\  E ccs /

(3.43a)

If I eJ  > s then:i 3 1 cc

G, (fee“ f )  + f.

+ ( t c - f c )

8 cc

( \ 3
8 3  J 83— ----
8 8V cc / CC

(3.43b)

3) Use the longitudinal strain and stress, e3 and o3 , to determine the corresponding 

transverse strain, Sj.

If |e3| < ecc and ( - a 3/ f cc) < 0.6 then:

e, = -0 .1 5 s 3 (3.44a)

If |s31 < 8cc and ( - a 3/ f cc) ^ 0.6 then:

e, = - e 3( 0.50 -  0.35\/ - 1.25 + 7 .5 0 (-a 3/ f cc) -  6 .2 5 (-o 3/ f cc)2 ) (3.44b) 

If Is, I s 8 then:1 3 1 cc

= -0.50s3 (3.44c)

4) Use the transverse strain, 8 , , to update the effective confining stress, o t cfT .

If Is, I < s then:1 1 1 sy

° l , e f f = £ l /8 sy m a X a i,eff ( 3 -4 5 a )
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If Is, I ^ 8 then:1 1 1 sy

a i,eff *  m a x G i,eff (3-45b)

5) Increment the longitudinal strain, s3 = s3 + d s3 , and repeat step 1 to 5 until the strain 

reaches a user specified cut off value.

The expression for the apparent Poisson’s ratio was taken as that given for confined 

concrete in (Dahl, 1992b). The expression, which was reported to be equally applicable to 

normal and high strength concrete, can be obtained by setting vQ = 0.15, vc = 0.50 and 

ap = 0.60 in equation 3.7a-b.

The computational model is, with emphasis on high strength concrete, validated against 

experimental stress-strain curves for passively confined concrete in figures 3.26 - 3.32. In 

the case of the tests carried out by Cusson and Paultre (1994) and Nishiyama et al (1993), 

the stress-strain behaviour of the unconfined concrete specimens was estimated using the 

material properties obtained from tests on 150x300 mm and 100x200 mm cylinders 

respectively. Whereas the modulus of elasticity and the peak strain were assumed to be 

independent of the specimen size, the unconfined compressive concrete strength was 

assumed equal to 85% of the 150x300 mm cylinder strength or to 81% of the 100x200 mm 

cylinder strength. In order to highlight the above assumptions, the computed stress-strain 

curves for unconfmed concrete are in figures 3.28 - 3.33 shown by a fine line type. The 

softening parameter, (3 , was always estimated from the compressive strength using 

equation 3.13.

A comparison of figure 3.26 with figure 3.27 illustrates the reduction in ductility associated 

with an increase in the grade of concrete. The figures 3.28 - 3.30 show the efficiency of the
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various quadratic tie configurations. Clearly the type D configuration is the most efficient 

and the type B configuration the least efficient in enhancing the strength and ductility 

characteristics of the concrete core. It is interesting that the observed strength of the 

concrete core in the column with a volumetric ratio of 1.45% of type B hoops failed to 

exceed 85% of the mean strength of the 150x300 mm control cylinders. The figures 3.31 

to 3.33 illustrate the beneficial effect an increase in the yield strength of the hoop 

reinforcement can have on the stress-strain response of the concrete core.

Axial strain, - s 3 , ( mm/m )

Figure 3.26
Comparison of computed and experimental stress-strain curves for a 70 MPa 

concrete confined by type A ties, test data after (Sudo, 1993)
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Figure 3.27
Comparison of computed and experimental stress-strain curves for a 101 MPa 

concrete confined by type A ties, test data after (Sudo, 1993)
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Figure 3.28
Comparison of computed and experimental stress-strain curves for a 82 MPa

concrete confined by type B ties, test data after (Cusson, 1994)
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125

Figure 3.29
Comparison of computed and experimental stress-strain curves for a 82 MPa 

concrete confined by type C ties, test data after (Cusson, 1994)

Axial strain, - e3 , ( mra/m)

Figure 3.30
Comparison of computed and experimental stress-strain curves for a 82 MPa

concrete confined by type D ties, test data after (Cusson, 1994)
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Figure 3.31
Comparison of computed and experimental stress-strain curves for a 78 MPa 

concrete confined by type D ties, test data after (Cusson, 1994)

Axial strain, - s3 , ( mm/m )

Figure 3.32
Comparison of computed and experimental stress-strain curves for a 92 MPa

concrete confined by type D ties, test data after (Nishiyama, 1993)
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Figure 3.33
Comparison of computed and experimental stress-strain curves for a 88 MPa 

concrete confined by type D ties, test data after (Nishiyama, 1993)

Figure 3.34 illustrates the predicted stress-strain behaviour under concentric loading 

conditions of the concrete core of two of the full scale columns fabricated and tested as part 

of the present investigation. The columns, named SL05U and LH05U, had a 250x250 mm 

cross-section, and were transversely reinforced using type B ties with a pitch of 50 mm. The 

ties for column SL05U were manufactured from R10 bars, and the ties for column LH05U 

from R8 bars. The unconfined strength of concrete was, as discussed in section 3.1.2, 

estimated to be 81% of the mean strength of the 100x200 mm cylinders. The modulus of 

elasticity and the strain at peak stress of the unconfmed concrete were estimated by 

equation 3.3 and 3.5 respectively, and the softening parameter, [3 , by equation 3.13. In the 

case of the column SL05U, the provided confinement was predicted to enhance the strength 

of the concrete core by 13% and the corresponding peak strain by 35%. For column 

LH05U, the enhancements in the same material properties were reduced to 6% and 9% 

respectively.
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Figure 3.34
Predicted stress-strain behaviour of the passively confined concrete in test

columns SL05U and LH05U

3.4.4 Existing Confinement Models

Some of the more recent of the confinement models proposed for predicting the complete 

stress-strain curve for passively confined concrete are described in the following. The 

reviewed models are the ones suggested by CEB (1990/1995), Saatcioglu and Razvi (1992), 

Bjerkeli et al (1993), El-Dash and Ahmad (1994) and Cusson and Paultre (1995). Although 

most of these models facilitate the analysis of columns with a rectangular cross-section, 

they have in the following been rewritten in a format applicable to the analysis of columns 

with a square cross-section.

Each confinement model was used to generate the stress-strain curve for the core concrete 

of the test columns SL05U and LE105U. The findings from the comparative study are 

summarised in table 3.4 and 3.5 by listing the effect that the provided confinement is
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calculated to have on the peak stress, fc , the peak strain, sc , as well as on two selected 

strains on the descending branch of the stress-strain curve, sc85 and sc50. The variables scS5 

and 8c50 represent the post-peak strain where the stress has dropped to 85% and 50% of the 

peak stress respectively.

It can be seen from the tables that the reviewed confinement models are quite similar in 

terms of predicting the strengths and the peak strains, but much less so in terms of 

predicting the post-peak strains. In the case of column SL05U, the average of the core 

strengths predicted by the reviewed models is 11% above the strength of the unconfmed 

concrete. In the case of column LH05U, the similar average is reduced to 5%. Likewise, the 

average peak strain enhancement predicted by the reviewed models is 37% for column 

SL05U and 22% for column LH05U. When excluding the model by Saatcioglu and Razvi, 

which was not calibrated against test results on high strength concrete columns, the mean 

values of the ratios scc85 / £cg5 and ecc50/ £c50 are 1.57 and 2.39 in the case of column 

SL05U, and 1.36 and 1.73 in the case of column LH05U. Thus, it can be concluded that the 

model developed as part of the present investigation predicts very much average results for 

scc85 / sc85 when compared to the existing confinement models.

Table 3.4
Predicted property enhancements for core concrete of column SL05U

Model f  / fcc c £ c c / £ c 8cc85 /  £c85 8cc50 /  £c50

Proposed model 1.13 1.35 1.52 1.78

CEB (1990/1995) 1.06 1.12 1.44 2.31

Saatcioglu and Razvi (1992)* 1.11 1.55 6.31 15.85

Bjerkeli et al (1993) 1.09 1.57 2.08 3.51

El-Dash and Ahmad (1994) 1.16 1.53 1.87 2.19

Cusson and Paultre (1995) 1.13 1.07 0.99 1.53

Unconfmed concrete: f  = 77 MPa , Ec = 41 GPa ,s c = 2.7 mm/m ,
scg5 =3.2 mm/m , sc50 = 3.6 mm/m

* Model not calibrated against test results for high strength concrete.
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Table 3.5
Predicted property enhancements for core concrete of column LH05U

Model f  / fcc c 8  / 8 CC c Scc85 /  Sc85 Scc50 /  Sc50

Proposed model 1.06 1.09 1.20 1.30

CEB (1990; 1995) 1.02 1.05 1.22 1.69

Saatcioglu and Razvi (1992)* 1.06 1.33 4.07 9.03

Bjerkeli et al (1993) 1.04 1.22 1.41 1.94

El-Dash and Ahmad (1994) 1.08 1.49 1.85 2.09

Cusson and Paultre (1995) 1.07 1.03 0.96 1.19

Unconfined concrete: f  = 100 MPa , E = 44 GPa , e =2.9 mm/m ,c ? c 5 c 5
ec85 =3.3 mm/m , sc50 =3.6 mm/m 

* Model not calibrated against test results for high strength concrete.

CEB 90 (1990) with modifications given in (CEB, 1995)

In the CEB model, which was originally described in the CEB Model Code 90 and later 

modified so as to include high strength concrete (CEB, 1995), the effective confining stress 

is evaluated in accordance with the 45° arching action method.

The strength and the peak strain of passively confined concrete is evaluated from equation 

3.46 and 3.47 respectively. According to equation 3.46, high strength concrete gains 

relatively less strength than normal strength concrete for confinement ratios less than 0.25, 

and relatively more strength for confinement ratios larger than 0.25. No evidence 

supporting such behaviour was found during the course of the present investigation.

f c '’•0°l,eff for K e f f l < 0 -0 5 f c > fc <  60 MPa

o II 1.125f c - 2 . 5 a l eff for lG l ,e f f !> 0 '0 5 f c » f <  60 MPa

f c ~~ 3 - 0 a i,eff for f  >  60 MPa

(3.47)
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It is implicitly understood in the above, and indeed in all the following equations, that stress 

is expressed in MPa and strain in mm/m.

The ascending branch of the stress-strain curve for the confined concrete is represented by 

equation 3.48, and the descending branch by equation 3.49. The slope of the linear 

descending branch is governed by equation 3.50, which predicts the post-peak strain sccg5/ 

where the stress in the confined concrete has reduced to 85% of the unconfined concrete 

strength.

E c £ 3

E s
CCS cc

O,

(  \ 2

V ecc/ for I e, I < e1 3 1 cc (3.48)

E
CCS

-  2

f  - 0.85 f
a3 = “ fcc+ —---------- ^ ( - £3 ~ £cc) for I e31 > £cc (3.49)

cc851 £ cc

where:

sc85 " 2 0 0 - ^  for fc < 60 MPa
C

£ cc85 ' ~ " (3.50)

S - 100—̂  for f  > 60 MPa
C o J  ^  C

For test columns SL05U and LH05U, the CEB model predicts strengths and peak strains 

which are somewhat smaller than those predicted by the model proposed in this thesis, see 

figure 3.35. However, since the CEB model in general predicts the confined concrete to 

display a more ductile post-peak behaviour, the stress-strain curves generated by the two 

models intersect at a strain of 5.3 mm/m in the case of column SL05U, and at a strain of

4.1 mm/m in the case of column LH05U.
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Figure 3.35
Stress-strain behaviour of core concrete according to CEB model

Saatcioglu and Razvi (1992)

The expression for the effective confining pressure in Saatcioglu and Razvi’s model, see 

equation 3.51, involves a reduction coefficient which is a function of the dimension of the 

nominal concrete core, dc , the spacing of the ties, s , the spacing of the longitudinal 

reinforcement bars, dg , and the nominal confining stress itself, a, nom. For a given tie 

configuration and distribution, an increase in the size or yield strength of the tie bars will 

according to this model produce less than a proportional increase in the effective confining 

pressure.

a i,eff =  m m

0.26
\

d d I
C C i

s d - a ,g l.nom

a l ,nom '

a l.nom I

(3.51)

The peak stress and the corresponding peak strain of the confined concrete is evaluated 

from the following expressions:
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f c - f + 6 . 7 ( - a u r f r 3

e = 8 ( 1 +  33.5cc c '
( - G  ) 0'83V u  I ,eff '

(3.52)

(3.53)

The complete stress-strain behaviour of the confined concrete core is described by 

equations 3.54a-b and 3.55. A linear descending branch is followed until reaching a residual 

strength equal to 20% of the confined strength. The slope of the linear descending branch 

is governed by equation 3.56, which predicts the strain sccg5 where the stress in the 

confined concrete has reduced to 85% of the confined concrete strength. It should be noted 

that Saatcioglu and Razvi defined the confinement ratio, p j , as the total transverse steel 

area in two orthogonal directions divided by the corresponding concrete area. Thus, for the 

tie configurations illustrated in table 3.1, p* is either equal to or approximately equal to the 

volumetric ratio of transverse reinforcement divided by 2 , i.e. ps 12.

° 3  =  " f e e

/
< \ 2)S 3

- 2 —  -

CO

8 8
\  CC /

\  1/(1 + 2 k)

where:

f
k = —  -

for I s J  < s1 3 I cc (3.54a)

(3.54b)

o3 = min

0.15 f
f  + ---------—  ( - S, -  8 )cc _  '  3 cc 2

cc85 S cc for I 8 J  > 81 3 1 cc

0 .2 f

(3.55)

where:

Jcc85 = 8c85 260 p* efs c (3.56)
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Figure 3.36
Stress-strain behaviour according to Saatcioglu and Razvi’s model

It can be seen from figure 3.36 that the major difference between Saatcioglu and Razvi’s 

model and the model proposed in this thesis is that the former predicts a much more ductile 

post- peak behaviour than the latter. This reflects the fact that Saatcioglu and Razvi 

calibrated their model against test results on columns with a maximum unconfmed concrete 

strength of about 40 MPa. For their model to be valid for confined high strength concrete, 

it will require a modification of equation 3.56 so as to directly incorporate the effect that 

the grade of concrete has on sccg5.

Bjerkeli, Tomaszewics and Jensen (1993)

According to the confinement model by Bjerkeli et al, the effective confining pressure 

should be taken as the least of the values evaluated from equation 3.57. Thus, it is assumed 

that either the tie configuration or the tie distribution, and not a combination of these, 

dictates the effective confining pressure applied to the concrete core.
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( 1
n d 2

------— ) lGi5.5 A „ 1
,nom i

- a .  „ = mmLeft

( 1 " j) l° I ,n o m l 
u c

(3.57)

The strength and the peak strain of the confined concrete are determined from equation 3.58 

and 3.59 respectively. It can be seen that the model predicts concrete with an unconfmed 

strength above 70 MPa to benefit less from confinement than concrete with an unconfmed 

strength below 70 MPa.

fc - 4.0a, eff for

f  -c 3 -0 a i,eff for

for 40 MPa < f. < 70 MPa
(3.58)

£ = s -  50cc c

Ol.eff (3.59)

Equation 3.60 together with equation 3.61 describe the stress-strain curve for the confined 

concrete. In the post-peak region, the stress is assumed to decay linearly with increasing 

strain until it stabilises at a residual strength, the level of which being proportional to the 

nominal confining pressure. The slope of the descending branch is obtained from equation 

3.62, which predicts the post-peak strain corresponding to 85% of the peak stress.

P
\  CCS

g 3 = mm

- Ec S3

N ( \
-  2 i i  + S3

s S) CC V cc y

0.15 f
4-

CC

cc _ v 3 CCJ
6c c85 S c c

-4.87a 1 ,nom

for Is, I < 81 3 1 cc

for I s , I > s1 3 1 cc

(3.60)

(3.61)
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where:

Jcc85 8 c 85 ^ 0

Cl.eff
0 + (-^eff)°-25) (3.62)

125

100

c/T
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25

0.0 2.5 5.0 7.5 10.0
Axial strain, - £3 , ( mm/m )

12.5 15.0

Figure 3.37
Stress-strain behaviour according to Bjerkeli e t a l ’s  model

Figure 3.37 shows that, when compared to the model proposed in this thesis, the 

confinement model by Bjerkeli et al predicts the test columns to have significantly more 

post-peak resistance, this being more so for column SL05U than for column LFI05U.

El-Dash and Ahmad (1994)

The confinement model proposed by El-Dash and Ahmad, contrary to the other models 

reviewed, does not employ an explicit expression for the effective confining pressure.

According to El-Dash and Ahmad’s model, the strength and peak strain of passively 

confined concrete can be evaluated from equations 3.63a-c and 3.64a-c respectively.

f  = f  -  k, a. (3 63a)cc c 1 l,nom W-U Jal
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where:

kj = 0.7
( f  \ 

A m

sy

0.2

111 =

( 2

dgS/

(3.63b)

(3.63c)

8 = 8 -  cc c 2

c 1 ,nom (3.64a)

where:

k2 55-106 (m p * ) 0,2

\ sy /
(3.64b)

(3.64c)

The stress-strain curve for the confined concrete is given by equation 3.65a-b, in which the 

parameter B primarily dictates the shape of the post-peak portion of the curve. An increase 

in the value of B has the effect of flattening the descending branch of the stress-strain 

curve.

a 3

/
( B - l )

l
/ \ / \

EC
-  ?

S3 + B
s 3

ECCS £ cc l £ CC J

(3.65a)

where:

B 130.9 ( Ps*)03 (3.65b)
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Figure 3.38 shows that the model by El-Dash and Ahmad predicts significantly larger peak 

strains for both of the test columns than the new model. It can also be noted that the two 

different models overall predict quite similar rates of reduction in the post-peak stress.

03
Oh

125

100

75

g 50
m
Is

^  25

0.0 2.5 5.0 7.5 10.0
Axial strain, - s3 , ( mm/m )

12.5 15.0

Figure 3.38
Stress-strain behaviour according to El-Dash and Ahmad’s model

Cusson and Paultre (1995)

The model proposed by Cusson and Paultre (1995) employs the 450 arching action method 

for evaluating the effective confining pressure. The stress and peak strain corresponding to 

the effective confining pressure is determined from equation 3.66 and 3.67 respectively.

0.7

f  = f  (1  + 2 .1cc c v

- o l.eff

\ c /

1.7

£ = 8 + 2 1 0cc c

Gl.eff

V c

(3.66)

(3.67)
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Furthermore, the post-peak strain at which the stress has dropped to 50% of the peak stress 

is predicted as follows:

Scc50 sc50 + 150
a l,eff

1.1

(3.68)

The ascending part of the stress strain curve is represented by equation 3.69a-b, and the 

descending part by equations 3.70a-c. The coefficient c, was adjusted so as to force the 

stress-strain curve to pass through the point (scc50 , 0 . 50 f c ). For well-confined concrete Cj 

is large and produces a smooth falling branch, while for lightly confined concrete c, is 

small and produces a steep falling branch. The coefficient c2 controls the curvature of the 

descending branch. For well-confined concrete, c2 is large and produces a convex falling 

branch, while for lightly confined concrete, c2 is small and produces a concave falling 

branch.

for |s31 < scc (3.69a)

where:

k = (3.69b)

a 3 = -  f c c e x P ( c i ( ~ s 3 ~ 8c c ) C2) for |S3 1 :> 8cc (3.70a)

where:

c , =  - ° - 6 9 ( £ c c 5 0 - £ c c ) " C2 (3.70b)

c2 = 0.58 + 16
a

\  1.4
l,eff (3.70c)
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Compared to the model proposed in this thesis the model by Cusson and Paultre predicts 

significantly lower peak strains. Figure 3.38 also shows that the model by Cusson and 

Paultre predicts the descending part of the stress-strain curves to have a much steeper initial 

phase.

Figure 3.38
Stress-strain behaviour according to Cusson and Paultre’s model
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3.5 Behaviour of Concrete in Flexure

Reinforced concrete columns are usually designed for eccentric compression, yet most of 

the experimental research carried out to date has focussed on columns subjected to 

concentric compression. This section comments on the influence of strain gradients on the 

material behaviour of concrete.

Hognestad et al (1955) developed a novel testing method for determining the flexural 

stress-strain relationship of concrete. The method does not require the introduction of any 

assumptions regarding the mathematical formulation of the stress-strain relationship, but 

relies on the axial load being applied so as to maintain zero strain at one face of the test 

specimen while monotonically increasing the strain at the opposite face. They tested plain 

concrete specimens with compressive strengths of up to about 50 MPa, and concluded, 

from comparing the flexural stress-strain curves to those obtained from concentric 

compression tests, that the strain gradient did not influence the behaviour of plain concrete.

Ibrahim and McGregor (1996a, 1996b) extended this investigation to include concrete with 

compressive strength in excess of 100 MPa, and once again the strain gradient was 

observed to have negligible effect on the stress-strain diagram.

However, other researchers have reported strain gradients to enhance the material 

characteristics of plain concrete. The experimental investigation carried out by Karsan and 

Jirsa (1970) showed that strain gradients reduced the steepness of the descending part of 

the stress-strain curve, but had no effect on the strength or the peak strain. In the 

investigations by Sturman et al (1965) and by Sargin (1971), eccentric loading was 

observed to raise the peak strain by 50% and by 30% respectively. Sturman et al also 

reported that the strain gradient resulted in a 20% increase in the peak stress. Sargin 

employed an experimental method similar to the method used earlier by Hognestad et al
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whereas both Karsan and Jirsa and Sturman et al employed methods, which relied on 

particular assumptions regarding the mathematical formulation of the stress-strain 

relationship.

In view of the experimental evidence, it appears that a structural analysis of an unconfined 

reinforced concrete column under eccentric compression, which is based on the stress-strain 

curve obtained from concentric load tests, can be expected to lead to either accurate or 

somewhat conservative results.

Whether or not it is reasonable to extend the above assumption to the analysis of passively 

confined concrete columns has not yet been fully established. In this context, it should be 

remembered that the stress-strain relationship for confined concrete is based on the average 

stress in the nominal concrete core of a concentrically loaded column.

The experimental investigation carried out by Scott et al (1982) showed that using the 

stress-strain curve derived from a concentric load test to calculate the stress resultants for 

a similar column under eccentric loading conditions lead to conservative results. Whereas 

the axial force was predicted reasonably well, the bending moment, especially in the post-

peak region, was significantly underestimated. As a consequence, they proposed that a 

stress-strain curve with a less steep falling branch would be more appropriate for analysing 

eccentrically loaded columns. The columns tested in the investigation by Scott et al had a 

volumetric ratio of transverse reinforcement of 1.8%, and were manufactured from normal 

strength concrete with a cylinder strength of about 25 MPa. At strength failure the depth 

of the neutral axis was approximately equal to the depth of the cross-section.

Ibrahim and McGregor (1996a) employed the technique developed by Hognestad et al 

(1955) to study the response of confined high strength concrete columns. The tested
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columns had cylinder strengths ranging from 60 MPa to 118 MPa, and volumetric ratios 

of transverse reinforcement ranging from 0.0% to 3.9%. As a result of the test programme 

a new confinement model, which was based on the model originally developed by Bjerkeli 

et al (1993) and described in detail in section 3.4.4, was proposed to describe the material 

behaviour of confined high strength concrete (Ibrahim, 1996b). Compared to Bjerkeli et 

a l’s model, the model proposed by Ibrahim and McGregor predicts confinement to have a 

somewhat reduced effect on the peak stress, the peak strain and the post-peak ductility of 

concrete.

The influence of strain gradients is incorporated in the confinement model proposed by 

Sheikh and Yeh (1986). According to this model, the peak strain is at minimum under 

concentric loading conditions, and increases with an increase in the ratio of the section 

depth to the depth of the neutral axis. This model, an extension to an earlier model 

proposed for describing the stress-strain curve under conditions of concentric compression 

(Sheikh, 1982), was shown to accurately reproduce the experimental results published by 

Scott et al (1982). More recently, Sheikh and Yeh (1990) conducted an experimental 

investigation into the behaviour of transversely reinforced normal strength concrete 

columns under increasing lateral loads. The columns were tested at constant axial loads 

corresponding to 0.60 and 0.75 times the squash load of the unreinforced concrete section. 

It was reported that the strength of the confined concrete reduced with the increase in the 

axial load, and a modified stress-strain model, which included both the influence of strain 

gradients on the peak strain and the influence of the level of axial load on the flexural 

strength, was developed to describe the test results (Sheikh, 1992).

Saatcioglu et al (1995) tested a number of confined concrete columns, and found that both 

their pre-peak and post-peak behaviour under eccentric loading could be computed with
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reasonable accuracy by employing a confinement model developed for concentric loading 

conditions. The tested columns had volumetric ratios of transverse reinforcement ranging 

from 1.8% to 2.7%, and cylinder strengths ranging from 26 MPa to 34 MPa. The neutral 

axis was, in contrast to the investigation by Scott et al (1982), located well within the cross- 

section at the time the columns reached their peak load. The confinement model employed 

by Saatcioglu and Razvi (Saatcioglu, 1992) is described in detail in section 3.4.4.

In view of the limited experimental evidence, it appears that the efficiency of confinement 

under flexural loading conditions is comparable to that under concentric loading conditions, 

but attempting to quantify the effect of strain gradients seems to be somewhat futile. In this 

context it should be emphasised that only in the tests by Scott et al (1982) was the stress- 

strain relationship of the confined concrete derived directly from concentric load tests on 

specimens identical to those tested under flexural loading conditions. In the other 

investigations, the strength of unconfmed concrete was determined on the basis of standard 

tests on small scale specimens, and the stress-strain behaviour of the confined concrete core 

under concentric compression was assumed to be accurately described by existing 

confinement models.

Another complication associated with increasing flexure is that the shift of the neutral axis 

towards the compressed face of the column may cause zones within the cross-section to 

undergo strain reversal. The concrete stress in such zones will decrease in accordance with 

the modulus of elasticity, or more accurately in accordance with the unloading portion of 

a hysteresis loop similar to those recorded in cyclic loading tests (Karsan, 1970; Priestley, 

1981, Shah, 1983; Cheong, 1993; Thomsen, 1994; Sheikh, 1994; Legeron, 1997). 

Nevertheless, in the analysis of reinforced concrete columns under monotonic loading 

conditions, it is generally assumed that the relationship between stress and strain at each
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materia] point can be represented by the virgin curve, i.e. non-linear elastic material 

modelling. A numerical study by Bazant et al (1991) of hinged columns subjected to 

eccentric loading convincingly demonstrated the occurrence of strain reversal to have a 

negligible influence on the predicted column behaviour. This was explained by the loading 

unloading reversal occurring at low strain levels for which the stress-strain diagram for 

loading is close to that for unloading.
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3.6 Summary

Various empirical expressions for predicting the modulus of elasticity, the peak strain, the 

tensile strength and the apparent Poisson’s ratio of high strength concrete were examined. 

With the exception of the apparent Poisson’s ratio, which in general was underestimated 

significantly, the material properties predicted by the expressions recommended in the CEB 

publications (CEB, 1990) and (CEB, 1995) were in agreement with the test results for the 

two high strength concrete grades employed in the present investigation.

A new model for computing the complete stress-strain behaviour of concrete under uniaxial 

compression was proposed. Besides the standard parameters of modulus of elasticity, 

compressive strength, and peak strain, the calibration of the stress-strain model requires an 

additional parameter p , which is defined as function of the strain on the descending branch 

at which the stress has reduced to 50% of the compressive strength. Like the other material 

properties, P can be estimated directly from the compressive strength, and an equation for 

such was presented.

It was demonstrated that the strength of confined concrete increases, albeit at a decreasing 

rate, with increasing confinement, and that it is feasible to express the ratio of the confined 

to the unconfined strength as a non-linear function of the confinement ratio. Ottosen’s 

failure criteria, which was originally developed to describe failure combinations for normal 

strength concrete, constituted the mathematical formulation for the proposed relationship 

between the concrete strength and the confining pressure.

The available test results show that the peak strain is enhanced relatively more by 

confinement than the strength, and that this is more so for normal strength than high 

strength concrete. An empirical relationship between the peak strain ratio, the confinement 

ratio and the unconfined strength was derived. Furthermore, increasing confinement has the
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effect of reducing the slope of the descending branch of the stress-strain curve of concrete, 

but for a given level of confinement, the post-peak behaviour of high strength concrete is 

always less ductile than that of normal strength concrete.

In a passively confined concrete column, the confining pressure originates from the 

resistance of the steel reinforcement cage to the expansion of the enclosed concrete, and is 

as such non-uniformly distributed within the interior of the column. The concept of 

effective confining pressure was employed to assess the efficiency of various standard tie 

configurations for columns with circular or square cross-sections. The 45° arching action 

method, recommended in the CEB Model Code 90 for calculating the efficiency of a given 

tie arrangement, was modified so as to obtain a high degree of agreement with the running 

average of the experimental strength results for passively confined concrete columns tested 

under concentric compression.

The uniaxial stress-strain model was generalised to confined concrete by letting the effect 

of confinement on the post-peak behaviour be expressed in terms of the difference between 

the confined and the unconfined concrete strength. The stress-strain model was 

programmed, and then successfully validated against a number of published stress-strain 

curves for both actively and passively confined concrete specimens.

The proposed confinement model was compared with existing models when applied to the 

concrete core of two of the columns fabricated and tested as part of the present 

investigation. In general, the confinement models produced stress-strain curves with 

similar ascending branches, but with vastly different descending branches. In general, the 

proposed model predicted a less ductile post-peak response than most of the existing 

models.
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Chapter 4: Structural Behaviour of Concrete Columns

4.1 General

The investigation, which so far has focussed on the stress-strain characteristics of confined 

high strength concrete, is in this chapter broadened to include the structural behaviour of 

slender reinforced concrete columns. A numerical method for calculating the load- 

deformation response of slender columns under monotonically increasing eccentric 

compression is presented and validated.

4.1.1 Failure of Concrete Columns

When describing the structural behaviour of slender columns, it is helpful to decompose 

the bending moments into primary and secondary moments. The primary moments are 

those originating from lateral loading, applied end-moments, the axial load acting at an 

eccentricity and imperfections in the straightness of the column axis. With the aim of 

safeguarding against unforeseen bending moments, BS 8110 recommends that a column 

always should be capable of withstanding a design moment equal to the maximum axial 

load acting at an eccentricity equal to 0.05 times the column’s overall dimension in the 

plane of bending. However, if the dimension of the cross-section exceeds 400 mm, an 

eccentricity of 20 mm will suffice when determining the minimum design moment 

according to this standard (BS 81 10, 1985).

The secondary bending moments are the additional moments induced by the axial load as 

the column axis deflects laterally. In contrast to the primary bending moments, which can 

be calculated on the basis of the initial geometry, the secondary moments need to be 

calculated on the basis of the displaced equilibrium configuration of the column, and are
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as such also referred to as second order effects. Since a column’s resistance against lateral 

deflections can be quantified by its slenderness or flexural stiffness, the reduction in its 

axial load capacity caused by second order effects can also be related to these measures. A 

column is referred to as being “slender” if the second order effects significantly influence 

its load-carrying characteristics, and as “short” if this is not the case. According to BS 8110, 

a braced column, i.e. a column restrained against side-sway at both ends, having a 

geometric slenderness ratio in excess of 15 should be designed as slender. The geometric 

slenderness ratio is defined as the ratio of the effective column length to the cross-sectional 

dimension in the plane of bending.

While the collapse of a short column coincides with the exhaustion of the material strength 

at its critical cross-section, this is not necessarily the case for a slender column. A column 

can, provided it is sufficiently slender, reach its maximum axial load prior to the exhaustion 

of the material strength. This type of failure is usually referred to as stability failure. 

Cranston (1972) concluded from an extensive numerical research on reinforced concrete 

columns that a geometric slenderness ratio in excess of about 30 was required for stability 

failure to occur. Thus, reinforced concrete columns used in practical structures are seldom 

sufficiently slender for stability failure to occur, though they are often slender enough for 

second order effects to considerably reduce their axial load capacity. In this context it is 

noticeable that the design method given in the BS 8110 is based on the assumption of 

material failure, which in the code is defined in terms of a limiting compressive concrete 

strain of 3.5 mm/m.

When plotting the maximum bending moments that can be sustained for the different axial 

loads one obtains a so-called column interaction diagram. A point inside the diagram 

represents a supportable combination of axial load and bending moment, and a point 

outside the diagram an unsupportable combination. A large number of column interaction 

diagrams are given in BS 8110: Part 3 (1985) for columns having rectangular cross-
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sections. The diagrams are based on simplified design stress-strain curves, and apply to 

columns made from concrete with a 150 mm cube strength less than 50 MPa, and a 

volumetric ratio of longitudinal steel reinforcement less than 8%. In the case of a slender 

column, the bending moment consists of a primary and a secondary moment, and the 

diagram describing the critical combinations of axial load and primary moment is referred 

to as a reduced column interaction diagram (Bazant, 1991). This diagram can be 

constructed directly from the corresponding column interaction diagram provided a closed 

form expression for the secondary moment at failure can be formulated. Indeed, BS 8110: 

Part 1 contains a semi-empirical expression for estimating the secondary moment 

associated with a given axial load, and thus significantly simplifies the design process for 

slender columns. In the recommended expression, the secondary moment is a function of 

the column’s cross-sectional dimensions, its slenderness, the applied axial load and a 

reduction factor, defined as the ratio of the difference between the squash load and the 

applied axial load to the difference between the squash load and the axial load 

corresponding to a balanced condition. A balanced condition exists when the compressive 

concrete strain reaches a maximum of 3.5 mm/m simultaneously with yielding occurring 

in the tensile steel reinforcement.

4.1.2 Methods for Numerical Analysis of Concrete Columns

A minimum requirement for any numerical method for the analysis of concrete columns is 

that it must take appropriate account of both material and geometric non-linearities, so as 

to accurately predict the load-deformation behaviour up to failure. In this context, it should 

be emphasised that the design method recommended in BS 8110, and similar standards, 

does not provide means for assessing the ductility of a particular column design. 

Furthermore, the design method recommended in BS 8110 is not directly applicable to high 

strength concrete columns.
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The simplest of the available numerical methods are those developed for the analysis of 

pin-ended columns under uniaxial bending, in which the deflection curve of the column is 

assumed to be a sine wave (Bazant, 1991; Lloyd, 1996; Chuang, 1995; Chuang, 1998; 

Hong, 2001). Because the displaced configuration is described by a single displacement 

variable, the force and moment equilibriums can only be satisfied exactly at the critical 

section at mid-height of the column. When further introducing the standard assumption of 

plane sections remaining plane, the strain distribution at the critical section is uniquely 

represented by two variables, which conveniently can be chosen as the curvature and the 

height of the neutral axis. Thus, as the curvature again is directly expressed by the 

displacement variable, only two variables need to be iterated in order to find the 

equilibrium configuration of the column. A major advantage of these methods is that they 

are computationally efficient, and easily converted into displacement control so as to obtain 

information about the post-peak behaviour of the column. However, as the load is increased 

beyond the elastic limit the real deflection curve tends to be more pointed at mid-height 

than a sine wave.

A variant of this method is proposed by Diniz and Frangopol ( 1997) where the deflections 

are assumed to be described by a fourth order polynomial. The polynomial coefficients are 

given in terms of the curvatures at the two ends and at mid-height of the column, and the 

calculation of the displaced equilibrium configuration requires two successive iterations. 

In the first iteration the curvatures at the pinned ends of the column are determined, and in 

the second the deflection at mid-height of the column is determined.

In the more accurate methods, the column’s deflection curve is represented by discrete 

displacements at a number of stations along its length, and the relationship between the 

curvatures and the displacements are given by finite difference expressions (Virdi, 1980; 

Metwally, 1990; Wang, 1992). Thus, in order to calculate the displaced equilibrium

- 4 . 4 -



configuration of the column, the generalised strains at all the stations need to be iterated 

simultaneously. As these methods do not restrict the deflection curve to a particular 

functional format, they are flexible in terms of both loading and boundary conditions.

The finite element method, as employed for the analysis of concrete columns by Kim and 

Yang (1995) and Claeson and Gylltoft (1998), is essentially a hybrid of the above 

described methods. In the finite element method, the deformation of each segment is 

restricted to adhere to a predefined functional format, but as the column is represented by 

many such segments, the overall deflected shape of the column is not similarly restricted.

Irrespective of the adopted numerical method, it is necessary to determine the stress- 

resultants by integrating over the cross-section. Typically the numerical integration is 

performed by dividing the cross-section into a number of smaller regions, such as narrow 

strips (Bazant, 1991; Kim, 1995; Diniz, 1997) or quadrilateral regions (Virdi, 1980; 

Metwally, 1990; Wang, 1992; Rodriguez, 1999), and then summing up the contribution 

from each region. In the special case of columns with rectangular cross-sections subjected 

to uniaxial bending, the numerical integration can be further simplified by directly 

integrating the stress-strain (Chuang, 1995; Chuang, 1998; Lloyd, 1996).

Finally, as an alternative to a series of interconnected cross-sections, the column can be 

modelled in a true three-dimensional manner as an assemblage of solid elements. This type 

of finite element modelling, which automatically tracks the interaction between the 

transverse reinforcement and the concrete, has a major disadvantage in requiring a high 

degree of detailing as well as being computationally heavy. Furthermore, to choose and 

calibrate an appropriate triaxial constitutive concrete model is a rather complicated task. 

Nevertheless, Xie et al (1996) demonstrated the ability of solid finite element modelling 

to simulate the behaviour of confined concrete columns under eccentric compression.
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4.2 Numerical Analysis of Concrete Columns

This section describes the theory behind the two computer programs developed in order to 

investigate the influence of passive confinement on the structural behaviour of slender high 

strength concrete columns. The first program generates a column interaction diagram, and 

the second performs a load-deflection analysis.

4.2.1 Model for Generating Interaction Diagrams

The numerical model for generating interaction diagrams is based on the usual assumption 

of a loading history in which the axial load is applied prior to the bending moment. Initially, 

the squash load of the cross-section is calculated, then the applied axial load is reduced in 

equal steps to zero, and the biaxial moment capacity corresponding to each level of axial 

load is determined. The moment is applied in small increments and the section’s load 

carrying capacity is assumed exhausted when static equilibrium can no longer be obtained.

Representation of cross-section

The cross-section is idealised as an assemblage of quadrilateral elements into each of which 

one or more point elements can be embedded (see figure 4.1). Since each quadrilateral 

element, defined by the Cartesian x- and y-coordinates of its four vertices, can be ascribed 

individual stress-strain characteristics, the numerical model does not only facilitate the 

description of complex cross-sectional shapes, but also that of varying material behaviour 

within the section. A condition of varying material behaviour exists within a cross-section 

of a passively confined concrete column. The point elements represent the longitudinal 

reinforcement bars, and cannot, unlike the quadrilateral elements, capture stress variations 

within their interior, i.e. all of the geometric and physical properties of a point element are 

assumed to be lumped at the point.

- 4 . 6 -



Figure 4.1
Numerical representation of cross-section

The integration of a function, f(x ,y ) , over a trapezoidal region, i f  , is facilitated by 

introducing the coordinate transformation given by equation 4.1a-e, and illustrated in 

figure 4.2. It should be noted that the coordinate transformation satisfies the required one- 

to-one correspondence between the Cartesian coordinates, (x ,y )  , and the natural 

coordinates, ( ^ , q ) , and that the region of integration is limited by -1 and 1 in the two 

natural coordinate directions.

where:

Nj = 0.25(1 -  4) (1 -  r|) (4.1b)

N2 = 0.25(1 + ( l - i i )  (4.1c)

N3 =0.25(1 + 5)(1 + t!) (4. Id)

N4 = 0.25(1 - 5 ) ( l  + ri) (4. le)
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Figure 4.2
Transformation of coordinates for a quadrilateral element

The integral of f(x ,y ) is given by equation 4.2a-b, in which the determinant of the 

Jacobian matrix, detJ , reflects that an area element d^dq in the natural coordinate plane 

is mapped into an area element detJd^dp in the Cartesian coordinate plane.

l l i l
f f (x ,y )  dA = f f f(^ ,q )d e tJd ^ d q  -  f f g (5 ,q )d £ d q
n, -l-i -l-i

(4.2a)

where:

detJ = det

dx dy

dx dy 
dr) dq

det

w  dN.> ----Lx.
d i  <5? '

d r  an ■

£
i -1

4

E

dN,

dN,
dq

y,

Yi

(4.2b)

The numerical value of the above integral is calculated using the Gauss-Legendre 

quadrature method given by equation 4.3. According to this method the integral is replaced 

by a weighted summation of the values of the integrand at a number, say ngxng, of a 

priori known sampling points, (^ ,,q .) .

l ir r  ng ng

J j g (^ ,q )  d^ dq * E E g ( ^ i > rlj)W i Wj (4-3)
- i- i  ¡ = i j=i
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Since ng sampling points are sufficient for the exact integration of a polynomial of order 2 ng -  1 

in one variable, a grid of ng x ng sampling points will be sufficient for the exact integration 

of a polynomial of the same order in two variables. The exact integration of a polynomial 

of order 2 n g - l  in two variables can in general be achieved using less than ngxng 

sampling points. However, for integrands which are not polynomials, the accuracy of the 

numerical integration will in general improve with an increased number of sampling points. 

Printed tables of sampling points and weights are readily available for various integration 

orders (Zienkiewicz 1989).

Internal forces

Figure 4.3 illustrates the sign-convention adopted in the numerical model. It can be noted 

that the generalised forces, the axial force, P , and the bending moments, Mx and My , all 

act at the section’s geometric centroid, (xo,yo). The bending moments Mx and My are 

taken about local axes which are parallel with the global x- and y-axis respectively. Since 

only stresses normal to the cross-section are included in the model, the analysis is only 

applicable to situations where shear stresses have negligible or no influence on the cross- 

section’s ultimate load capacity.

Sign convention and action points for forces
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It follows from the assumption of plane sections remaining plane that the strain distribution 

over the cross-section is a function of three variables only. Thus, the strain distribution can 

be represented by equation 4.4, in which so is the strain at the geometric centroid, and k x 

and Ky are the curvatures for bending about the y- and x-axis respectively. The assumption 

of plane sections remaining plane also implies the existence of a perfect bond between the 

concrete and the reinforcement bars.

8 = so + Kx(x _ x0) + Ky(y ~ y0) (4.4)

Since the materials are assumed to have non-linear elastic stress-strain characteristics, i.e. 

the unloading curve coincides with the loading curve, equation 4.4 provides all the 

necessary strain information for calculating the stress distribution, a  ( x , y ) , and hence also 

for calculating the internal forces:

P = / a  dA (4.5)
a

M y ~ f°(x ~ x0) dA (4.6)
a

M x = / ° ( y - y 0) dA (4.7)
a

Furthermore, as the cross-section is idealised as an assemblage of nq quadrilateral 

elements and np point elements, the internal forces can be evaluated by summing up the 

contributions from the individual elements as follows:

P =
nq np

= £  / ° dA + £  A a j A j
i - 1 a  j=i

(4.8)

M
nq np

£  f °  ( x  -  x 0 ) d A  + £  A a j ( x j -  x o )  A j
¡ = i a ,  j=i

(4.9)
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M (4.10)X = É  j o (  y - y 0) d A + È  Aaj (yj - y 0)Aj
nq np

i=l Cl,

The differentials A c t  in the above equations reflect that a point element numerically is 

treated as overlayed rather than embedded. Thus, a point element’s contribution to the 

stress resultants should be modified for the contribution already included by integrating 

over its quadrilateral parent element, £1.

By introducing the previously described coordinate transformation, the expressions for the 

internal forces, equations 4.8 - 4.10, can be rewritten to the following format suitable for 

Gauss-Legendre integration:

Computation procedure

The first step in the computational procedure is the calculation of the cross-section’s squash 

load. This is achieved by incrementing the external axial load, P ext, from zero until the 

axial force equilibrium, as given by equation 4.14, can no longer be established.

At the end of each load increment the uniform strain, so , which minimises the absolute 

value of the force residual, Pext-  P | , is determined by iteration. The advantage of

(4.11)

M y = E  / / a  ( X ~ X0) d e t J  ^  d l1 + E  A a j ( Xj "  Xo) A j

nq 1 1 np

(4.12)

m  = È  f f G(y ~ y 0) detJd^ dîi + E Aaj(y,-- y0) A j

nq np

(4.13)
i=l -1-1 j=l

p res = p ext -  p = (4.14)
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employing an optimisation method, in this case the “Golden Section Search” method 

(Press, 1989), is that it is robust in the sense that a non-existent solution to equation 4.14 

does not result in numerical overflow. If the residual | Pext -  P | converges towards a non-

zero value, the applied load is reduced by an amount equal to half the current load 

increment, and the iteration is restarted from the last known equilibrium state. This process 

of cutting back and reiterating is repeated until the squash load has been determined to 

within a user-defined accuracy.

The biaxial bending moment capacity for axial loads less than the squash load is 

determined by following a load path in which the full axial load is applied prior to, and 

maintained constant during, the application of the moment. The direction of the plane in 

which the biaxial moment is acting is defined by an angle cp. The geometric angle (p relates 

the biaxial moment, M ext , to its two Cartesian components, M “ ' and M™' , through 

equations 4.15 and 4.16.

M yxt = sin((p) M ext (4.15)

M xxt = cos((p)Mcxt (4.16)

The bending moment is applied in increments, and the strain distribution which satisfies 

the axial force equilibrium, i.e. equation 4.14, and the moment equilibrium, i.e. equations 

4.17 and 4.18, is evaluated at the end of each increment.

M;es = M ;xt -  M y = 0 (4.17)

M ”  = M f - M x = 0 (4.18)

The equilibrium equations are solved numerically by employing a mixed iteration 

procedure, in which an outer routine performs an iteration on the curvatures, k x and Ky ,
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so as to establish the moment equilibrium, while an inner routine continuously adjusts the 

centroidal strain, so , so as to maintain the axial force equilibrium. The inner routine is 

based on the “Golden Section Search” method, which is the method recommended by 

Press et al (1989) for calculating the minimum of a general one-dimensional function for 

which the derivatives cannot easily be computed. The outer routine is based on the well- 

known Newton Raphson method. According to the Newton Raphson method, the next 

guess of a solution, ( k x + dK,  ,Ky + dKy ) , is taken as the roots of the first order Taylor series 

developed about the previous guess, ( k x , k  ) , i.e. the roots of equations 4.19 and 4.20.

. . r e s .  , . ,  . . r e s .  ,  dM? . dM™
M y ( Kx+ d K x ’Ky+ d K y) = M y ( Kx ’Ky) + — y— dK + -----y— dK

3k  3k  y
(4.19)

M x ( k  + dK , k  + dK ) ~ M x ( k  , k  ) +x V x  x ’ y y /  x v x ’ y '
dM T  . 3M

res

———dK + -----
3k  x 3k ,

dK (4.20)

Thus, the curvature corrections, ( dKy , dKx) ,  in each iterative step are found by solving the 

following set of linear equations:

M

M

res
y ►
res
x

dMy

dKx

3 ^

dKX

^M y
3Ky

3Mx
(4.21)

The partial derivatives of the bending moments in equation 4.21 are approximated using 

the finite difference expressions given by equations 4.22 - 4.25, in which (8 ky ,5k x) 

represent some suitably small curvature increments.

3M M ( k + 5 k  , k ) - M ( k - 8 k  , k )y _ yv x_____ x ’ y '______ yv x_____ x ’ y '
3k  25 k

X X

(4.22)
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dM
(4.23)

c3k „

M ( k  , k + 8 k ) - M ( k  , k  -  8 k  )_X_ a  Vv x ’ V_____ _________yx X ’ y_____y '

25 k

5M M ( k  + 8k  , k  ) -  M ( k  -  8k  , k  )x _  xv x x 5 y /  xv x x 5 y '

6k 28 k
(4.24)

<3M M ( k  , k  + 8k  ) - M ( k  , k  -  8k  )x _  xv x 5 _y_____ xv x 5 y y ' I_____11
d\c 28k

(4.25)

After updating the curvatures, the axial force equilibrium is reestablished by iterating on 

the centroidal strain. The moment residuals and their derivatives corresponding to the new 

strain distribution are determined, after which a new pair of curvature corrections is 

calculated. This iteration continues until the moment residuals are reduced to a sufficiently 

small value, i.e an equilibrium between the internal and the external forces has been 

established.

The external moment is incremented, and the above described iteration is repeated. When 

an equilibrium state can no longer be established, the increment in the external moment is 

halved, and the iteration is restarted from the last known equilibrium state. The maximum 

sustainable moment corresponding to the given axial load is obtained when the increment 

in the external moment falls within a small user defined tolerance.
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4.2.2 Model for Analysing Slender Columns

The computer program developed for the analysis of slender columns is based on the 

influence coefficient method (Chen, 1977). This method has a long history at City 

University, where it has formed the basis for the analysis of a large number of structural 

problems, such as steel columns with residual stress patterns (Virdi, 1981); concrete 

columns with non-uniform cross-section (Virdi, 1980; Brant, 1984); beam columns with 

semi-rigid end-restraints (Ragupathy, 1994); and latest of concrete and steel beams and 

columns exposed to fire (Jeyarupalingam, 1996).

Although the present investigation is limited to the behaviour of eccentrically loaded pinned 

columns with constant cross-section, a more general approach was adopted in the numerical 

modelling. As a consequence, the ensuing computer program reflects the true versatility of 

the method, and is readily available for future expanded investigations into the behaviour 

of reinforced high strength concrete columns.

Basic approach

The program allows for two types of load-controlled column analysis, namely a calculation 

of the ultimate axial load capacity and a calculation of the ultimate lateral load factor. In 

both types of analysis the structural response is monitored when incrementing the principal 

loading variable from zero up to the occurrence of failure. The external loads which are not 

specified as being principal loading variables are assumed to be applied at the onset of, and 

remain constant throughout, the analysis.

Lateral loads can be specified as a combination of uniformly distributed loads and point 

loads. End-moments and axial load eccentricities can be specified at both ends of the 

column. Imperfections in the straightness of the column axis can be included either by 

assuming them to follow a sinusoidal distribution, or by specifying them at discrete points
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along the length of the column. The restraint conditions at the ends of the column can be 

specified as either pinned, fixed or flexible, and may vary in two orthogonal bending 

planes. The non-linear stress-strain curves for the materials are provided in a discrete 

format compatible with the output from the computational model described in section 3.4.3.

The numerical analysis is subjected to the following assumptions:

•  Plane sections remain plane.

•  Small deformations.

•  Torsional effects are negligible.

•  Shear deformations can be ignored.

•  The member is free to shorten axially.

•  No sway.

•  Time-dependent effects of creep and shrinkage of concrete can be ignored.

Although the time-dependent effects of creep and shrinkage of concrete are not directly 

incorporated in the numerical model, the initial stress distribution caused by these effects 

could in principle be accounted for through the material stress-strain relations.

Figure 4.4 shows the displaced configuration of a pinned slender column when subjected 

to a combination of biaxial end-moments and axial compression. The column is divided 

into n segments of equal length, h , and the deflections in the x- and y-directions at the 

n +1 endpoints of these segments, also referred to as stations, are denoted ir and vi 

respectively. The deflections at the bottom and the top of the column are in accordance with 

the no-sway condition constant zero, i.e. u, = v, = 0 and un)1 = vn + 1 = 0. The cross-section 

of the column is defined at each station using the modelling technique described in section 

4.2.1. Hence the numerical model applies to columns with irregular and/or variable cross- 

section.
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| Z , w

The axial load, or alternatively the lateral load factor, is applied in increments, and the 

equilibrium configuration is determined at the end of each increment. A static equilibrium 

configuration is assumed when the residuals given by the equations 4.26 - 4.28 vanish, i.e. 

when the external forces, P ext, M “ | and M “ j , become equal to the internal forces, Ih , M y 

and M x ; , at all of the n + 1 stations.

P r  = P ext- P ,  = 0 (4-26)

My”  = K }  ~ M y,i = 0  ( 4 - 2 7 )

< 1  = -  M X . = 0 (4.28)

The internal forces are numerically calculated by employing the previously described 

Gauss-Legendre integration method. In this context, it should be mentioned that it follows
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from the assumptions of negligible twist of the longitudinal axis and the displacements 

being small, i.e. du/dz and dv/dz being much smaller than unity, that a cross-section in 

the deformed column configuration is mapped by a pure translation in the xy-plane of the 

same cross-section in the undeformed column configuration.

The load-carrying capacity of the column is assumed to be exhausted as soon as a static 

equilibrium configuration can no longer be established. The numerical analysis terminates 

at this point, and is as such not designed to investigate the column response beyond the 

peak value of the equilibrium load.

External forces

Figure 4.5 shows a pinned column subjected to a combination of lateral loads, end- 

moments and axial load. The lateral loading consists of a uniformly distributed load, px , 

and a number of point loads, Px . , acting at various positions, z. , along the column 

length, L. The applied loads are defined in the global coordinate system, and will not 

follow the column during deformation.

Sign convention and action points for external forces
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The contribution to the external bending moment at station, i , from the lateral loads can 

be calculated from the following expressions:

M ‘ ; = F ,Z.y,i x,A i P x z , y p ( z .- z .)/ X,J v 1 (4.29a)

where:

i m z

Z j = 1 ^
(4.29b)

The contribution to the external bending moment originating from the applied axial load, 

P ext , depends on the lateral deflection, u; , the eccentricities at the ends of the column, 

ex A and ex B , the initial position of the centroidal axis, xo j , and the imperfection, xjmp _. 

When further including the contribution originating from the applied end-moments, M y A 

and M y B , the expression for the external bending moment acting at the deflected centroid 

about an axis parallel with the y-axis, M yx[ , becomes:

MyX| = (M >ext i -1 i - 1
y,i y. A "x,A ) ( 1 - -L_L)+(M y B + Pextex B) ( ^ - i )

- pCXt( X imp,i +  X o,, +  U i ) + M yf i

(4.30)

In a similar manner, the external bending moment acting at the deflected centroid about an 

axis parallel with the x-axis, M xxj , is given by:

M “ ’ = (M a * P “ v ) C  ) + (M x1 n

- P ext(y. +y . + v.) + M 1 •' ' •' imp.i ■'o.i i '  x,i

pexl e
y,B x lz i )n (4.31)

Solution procedure

The calculation of the equilibrium configuration consists of two nested procedures. In the 

first procedure, the axial force equilibrium is established at each of the n + 1 stations along 

the length of the column under a condition of the transverse displacements, ir and v- , and
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hence also the curvatures, k x  j and Ky | , being constant. Since plane sections remain plane, 

the strain distributions, e{ , will under these circumstances only depend on the centroidal 

strains, soi (see equation 4.32). Thus, the centroidal strains producing axial force 

equilibrium are found as the roots of n + 1 uncoupled equations of the form P[es = f(e  .). 

The roots of the non-linear equations are numerically calculated by employing the iterative 

procedure described in section 4.2.1.

k  ( x . - x  .)  + k  . ( y . - y  . )X,1 v ,1 0,1 '  y, l  v ̂  , 1 ■'0,1' (4.32)

In the second procedure, the axial force equilibrium is maintained, while the lateral 

displacements are iterated until the moment equilibrium has been established at all of the n + 1 

stations. The iteration is based on the Newton Raphson method for multidimensional 

problems. Thus, within each iterative step the residual moments, ( M ^ M ^ - )  , and their 

partial derivatives corresponding to the approximate solution, (u^V;) , are calculated, 

whereafter the corrections, (dup dVj) , in the improved solution, (m + du^Vj + d v )  , are 

obtained by solving equation 4.33.

M "
5 M " 3 m ; : s. 5 M - d M " d M Z d M rZ

3 u 0 d u 2 dUn.2 d v 0 d v 2 d y „ d v n, 2

.  . res
M „  , d M " d M ™ d M " d M ( “ d M ( “

3 u 0 d u 2 ^ Un d < V 2 d v 0 d v 2 d y n d y „ ,2

M rcsy,n
3 M r n 3 m ;c: 5 M y“ d M y" n s m ; “ d M " dM ™ : d M ^ n

3 u 0 d u 2 5 u n d “ „ .2 d v 0 d v 2 d y „ d y „ ,2

. ,res 
M y ,„ . |

3 M ” „ , 3 m ;“ . , d M ^ , , d M y .n . l d M - . , d M - +I 3 m ; “ „

3 u 0 3 u 2 5 u n d u „ .2 d v 0 d v 2 d y „ d v n»2

M rcs1V1X, 1
3 M - d K Z 3 M '“ d M ( “ d M ™ d M ” , 3 M ”

5 u 0 3 u 2 dUn d u „ ,2 d v 0 d y 2 d y „ d y „ , 2

> .  res 
M x,2

5 M ^ 2 d M Z d M ^ d M ^ d M ( ra2 d M i “ 3 M 3

du0 3 u 2 d u „ d u „ , 2 d v 0 d v 2 d y „ d v „ , 2

M ”
d K Z 3 M Z d M Z d M xra„ d M xra„ d M “ n d M ( “ « C

du0 du 2 du n d u „ ,2 d v 0 d v 2 d y „ d v n,2

M " . i
3 » C . i s m ™ .. d M ” +1 5 M " * , 3 M ^ , d M ( ran tl 3 M " * ,

3 u 0 3 u 2 d u „ d u „ . 2 d v 0 d v 2 d v n d v n+2 .

du0

du2

d u „ . 2

dvo

dv,

dVn

dvn+2

(4.33)
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It can be noted that the system of linear equations include four auxiliary displacements, 

u0 , vQ , un+2 and vn+2 , outside the length of the column as unknowns. The auxiliary 

displacements were primarily introduced as a matter of computational convenience, and 

are strictly only required when analysing columns with flexible end-supports.

The partial derivatives of the residual moments, also referred to as the influence 

coefficients, can be expressed in terms of the applied axial force and the partial derivatives 

of the internal moments as follows:

ô m ;“  _ duDext i Ô M y,i
d Uj dUj ôUj

ô m ;“  _ Ô M y,

ôv j ÔVj

3M ”  _

ôuj ôuj

9 M Z  _ dv-Dext i 5MXii

ôvj dv, ÔVj

where: i = 1,2 , . . . ,n ,  n + 1 and j = 0 ,2 ,3 , . . . , n - l , n ,n + 2

(4.34)

(4.35)

(4.36)

(4.37)

Since the deformations are assumed to be small the curvatures k  and k  can bex , i  y , i

approximated by - d 2u /d z 2|j and - d ^ / d z 2  ̂ respectively. These derivatives can again 

be related to the discrete displacements through the following finite difference 

approximations:

Kx , i

U-¡-1 + 2u.-u. .i i + i
h 2

for i = 1,2 ,... ,n  + 1 (4.38)
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for i = 1,2 ,... ,n  + 1 (4.39)K ■ =
y.i

d2v

dz2

■v- . +2v.-v- ,i-i i i+i

Since the internal moments can be expressed as compound functions of the type

M
y.i ( k x i(u j_, ,u i;ui + 1) , k  ¡ (v i - p v i J v i + i ) ) , it follows from the chain rule of differentiation

that the influence coefficients can be calculated from the equations 4.40 - 4.43. It should 

be emphasised that the influence coefficients have a value of zero for all combinations of 

the indices i and j not covered by these equations.

1 0 M y,i

h 2 0 Kx,i
-N-» n res 
d M y,i next _ ^

8M .
y.>

a u j '
h 2 8 k  .x,i

1 0 M y,.

h 2 0 Kx,i

for j = i -  

for j = i 

for j = i +

(4.40)

5NÇ
8V;

dM ”
du-

=

1 dMy,
for

h 2 Q
j

2 8M . y.i for
h 2 0Ky.i

1 0My.i for
h 2 0Ky,i

1 0Mx>i
for

h 2 8 k  .X,1

2 8M .X,1 for
h 2 0 K x,i

1 ôM x>i
for

h 2 0 K x,i

(4.41)

(4.42)
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for j = i -  11 3 M Xii

h 2 0 K y , i

3 M ™ 9
_  D ^ X t  _

3 M  .
X,1

A h 2 0 K y , i

1 5M Xii

h 2 0Ky,i

where: i = l , 2 , . . . , n , n  + l and

for j = i 

for j = i + 1

j = 0 ,2 ,3 , . . . ,n  -  1 ,n ,n +2

(4.43)

In the above equations the partial derivatives of the internal moments, 3Myj/3Kx ■ ,

3M ./3 k  . 
y , ‘ y . i

aM ./3 k  . and 3M ./3 k
x , i X,1 x , i  y ,

are approximated using the equations 4.44 -

4.47, where 8xy and Skx  represent some suitably small curvature increments.

0M v,i M y. ( k  .lv X,1+ ÔK , K .) - M (K ■ x ? y,iy y,iv x,i -  8k  ,k  )

3k  .x,i 28k X

0M v.i M y,¡(KX,i ,Ky.i+ 8 Ky)  - M v i( K x i , K 8k  )’ y.i yJ
3k  . y.i 20Ky

3M .X,1 M~ X.,i(KX,i + 8k  ,k  .) - M ( k1 X 5 y,l/ X,lv X,1- 8k  ,k  . )i x ’ y,i'
ÔK ■X,1 28k x

3M .x,i M~ X.,i(KX., , k  + 8k  ) -  M (ki 5 y,i y7 x,iv x,i , K ■ - Sk  )’ v.l Yy
3k  . y.' 28k y

(4.44)

(4.45)

(4.46)

(4.47)

After having updated the displacements, the new curvatures are determined and the axial 

force equilibrium is reestablished by iterating on the centroidal strains. The new residual 

moments and influence coefficients are calculated, after which the next displacement 

corrections can be calculated. This procedure is repeated until the displacements have 

converged to the equilibrium configuration. Convergence is assumed when the maximum 

absolute correction to any displacement variable becomes less than a user defined tolerance.
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When an equilibrium configuration can no longer be established, the analysis is restarted 

at the last known equilibrium state using a reduced load increment. The analysis terminates 

when the absolute value of the load increment is reduced below a user defined tolerance.

Modification for fixed boundaries

If the column has fixed boundaries, it is necessary to impose constraints on the discrete 

displacements so as to ensure that the slopes at the ends remain zero. According to the 

central difference approximation, the zero slope condition can be expressed in terms of the 

equalities: u0 = u7 , un+2 = un , v0 = v9 and vn+2 = vn. Hence the curvatures at the ends of 

the column are given as follows:

KX,1 = - 2 u 2/h2 (4.48)

k  . = -2 u  / h 2x , n +1 n (4.49)

Ky,l  = ~ 2  V27 h  2 (4.50)

Ky,n + 1 = ~ 2 V n / h 2 (4.51)

The reaction moments at the fixed ends are expressed by the equations 4.52 to 4.55. It 

should be noted that the reaction moments are taken about the x- and y-axis, which do not 

necessarily pass through the centroid of the cross-section. As the axial load eccentricities 

do not have a physical meaning for columns with fixed boundary conditions, they are 

included as a matter of computational convenience.

M , =M  , -  P ext(e . -  x , )y,A y, 1 v x,A o, 1' (4.52)

M R = M , -  P ext(e R -  X , )y,B y,n + l v x,B o,n + l ' (4.53)

M . = M . -  P ext (e . - y  , )x,A x,l v y,A • ' o. l ' ' (4.54)

M R = M , -  Pext(e . -  y  , )x,B x,n + l v y,A -'o,n + l ' (4.55)
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The expressions for the moment residuals, equations 4.56 and 4.57, can be obtained by 

substituting the above equations into the expressions for the external moments, i.e. into 

equations 4.30 and 4.31.

M”  = (M ♦ P“ x0 ,)(1 - V i )  * (M * P "  x0
n 1 n

- P ext(x. ■ + x . + U . )  + M vf ; -M  .
v  i m p , i  o , i  \ J  y , i y , i

(4.56)

i-1 i - 1
= (Mx>1 + Pexly0il)(i - — ) - (M x>ntl + Pexty0,ntl)(— )

n (4.57)

Pext( y. . + y . + v.) + M ■ -  MV-Mmp,i •'0,1 1'  x,i x,i

From differentiation, it follows that the influence coefficients for a column with fixed 

boundary conditions can be written as follows:

<3Myes <3M , _2 i-1 du2 dM , -2  i-1 du
0Uj 3k x1 h 2 n duj ôk x|i+1 h 2 n dm

du. 5M ._ p e x t___ i_ ______

du- d u .

(4.58)

dM . - 2  i - i  dv2 ÔM . _2 i-1 dvn 5M
y - 1 _  y>1 ^  z )  ( 1 -     1  + y>n+1 ^  z^  ( _  _ )  n y.»

d V j  d K yil h r ' n ' dvj a K yn+1 ' h 2' '  n ' dVj dw
(4.59)

5 M e 3M„-x.i _ — x,i( -2 i - 1  du2 | aM x nt, 2 i - 1  du„ 6M X|i

ô u j ÔKx,i h 2 n dm ÔKx>n+1 h 2 n dm a Uj
(4.60)

aM xes aM . _ 2  dv, aM . _ 2  j -1 dv

dVj a K y>1 h 2 n dVj a K yjll+| h 2 n dw 

dv. aM ._ p e x t ___ i_ _ x,i

dvj aVj

(4.61)

where: i = 2 , 3 , . . . , n - l , n  and j = 2 , 3 , . . . , n - l , n
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When compared to a pinned column (see equations 4.34 - 4.37), the matrix of influence 

coefficients for a column with fixed boundaries will contain additional terms in the 

columns corresponding to the unknowns du2 , dun , dv2 and dvp. Furthermore, the 

fictitious displacements outside the length of the column are decoupled from the interior 

displacements.

Modification for flexible end-supports

In the case of a column with flexible end-supports the end-moments are decomposed into 

restoring and applied moments. As seen from equations 4.62 - 4.65, the restoring moments 

are assumed to be proportional to the end-rotations, 0 . , 0 , , 0 , and 0 ., which

again are approximated from the discrete displacements.

A 11') Ua a
M . = k ,0  , + M . = k . ——----° + M .y,A y,A x , 1 y,A y,A 2 ^  y,A (4.62)

M R = k H0 . + M R = k r —  U- +-2 + M ry,B y,B x,n + l y,B y,B 2 ^  y,B (4.63)

M„ A -  k A0„ , + M„ * = k Mx,A x,A y, 1 x,A x,A 2h x, A (4.64)

M R = k R0 , + M r  = k r  V|1 V|1+2 + M rx,B x , B y , n  + l x,B x.B x,B (4.65)

The residual moments are given by equations 4.66 and 4.67, which were obtained by 

substituting equations 4.62 - 4.65 into equations 4.30 and 4.31, i.e. by substituting the 

expressions for the end-moments into the expressions for the external moments.
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K i  = ( k y,A

(4.66)

U2 ~ U0
2h

+ M y,A + P extex,A) d —  )

(k
u -  u .n n+2

y.B 2h
+ M y,B + P extex,B)(— )

i - j  
n

i - l  
n

- p a , ( V i  + * o , i  +  u i ) + M y , r M y i i

M x> ( k ï A ^ + M a  + P HtevA)(l  - I
2h y,A>

2h y.B" n

- P ext(y. . + y . + v ) + M f - MV-Mmp,i ^ 0,1 \> x,i x >

The influence coefficients, given by equations 4.68 - 4.71, were 

differentiating the above equations.

dM y,i _  y.A , ,  _ 1i - l  3(u 2- u 0) k i_ j  ô(un- u n+2)
( 1 - — )dUj 2 h n duj 

du. dM ._ p e x t ___ l _ y.i

du. du.
J J

(— )■2h n du-

dM
y. '

dM
y. i

dV; dV;

d K

du-

dM ^

du.

dM x,i x,A 1! - l  d(v2- v 0) kx B i_i d(vn-  vn+2)
( 1 - — )dVj 2 h n dVj 

dv. dM ._ p e x t  i_ _ x,i

dVj dVj

(— )2h n dv.

where: î = 1, 2 , . . . , n , n  + l and j = 0 , 2 , 3 , . . . , n -  l , n ,n+2

(4.67)

simply obtained by

(4.68)

(4.69)

(4.70)

(4.71)
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When compared to a pinned column, the matrix of influence coefficients for a column with 

flexible end-supports will contain additional entries corresponding to the displacements at 

either side of the supports, i.e. duQ , du2 , dun , dun+2 , dv0 , dv7 , dvn and dvn+2. In the 

special case of all spring constants being zero, the ensuing system of equations is identical 

to that for a pinned column. In a similar manner, large spring constants will approximate 

the behaviour of a fixed column, but the solution path will be different as the fictitious 

displacements are not explicitly decoupled from the equations. The use of large spring 

constants to model fully restrained end-conditions is not recommended as it renders the 

system of equations to be ill-conditioned.

Modification for mixed boundary conditions

When establishing the influence coefficients for a column having mixed boundary 

conditions, it is constructive to write out the full differentials of the moment residuals. The 

differentials for bending about the y-axis, dMy“  , are given by equations 4.72 to 4.74, and 

the influence coefficients are readily obtained from these by inserting the expressions for 

the end-moments and end-curvatures associated with the given boundary conditions.

for i = 1

_  3M . 3M. A 3M . 3M . 
dM , = ---- — du() + ----— do, + ---- — dv0 + ---- — dv,

y’ 3u0 0 3u2 2 3v0 0 3v2 2

3M . 3k  . 3M , 3k  .
---- ^ i _ i T dun - ---- ^ d u 7

0Kx,l ô u o 0 Kx,l 0U2

- 2 S i ^ d v
3Ky;, 3v0 0 3Ky>1 3v2 2

(4.72)
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for i = 2 ,3 ,. . . ,n - l  ,n

dM"  =
, duo O U2

5M A 3M A
----- Z ^dv„  + -----^ d v ?

v av0 5v 2

t

(1
n

dM .
pcx'du. -  -----H

' dK ■
X, 1

‘ dK .
y.. +

X,i V

dK .
X,1

dUj.

dK .
■du. , + — — du. +

du, '

dM dM
-----— dv + -----

dv n dv\  n n

\
dK .

— du1 -

—  dv ,n +2
■2 n

dui +i /

d M y,i

3Ky,i dv.1-

UK
-Hdv. , + —^
i - i  5 v f

dK . dK .
-44 dv. + — y— d v .

v i a V i

(4.73)

for i = n + 1

res dM R dM R dM R dM „
dM;:sntl = — ^ d u n + - ^ d u nt2 + — ^ d v n + - ^ d v nt2

du dun +2 dv„ dvn +2

dM . dK , dM . dK .
y,n + l x ,n  1 d u  _  y>n + l x,n + l

dK , du dK . du ,x,n + 1 n x, n +1 n +2

dM , dK , dM , dKy,n +1- y'n+1dv - y,n +1 y,n +1

n +2

a K y,n+ l d V n dK . dv .y,nrl n +2

dvn +2

(4.74)

Summary

This section described a numerical procedure for calculating the complete biaxial load- 

deflection response of braced columns subjected to either monotonic increasing axial or 

lateral load. The method provides full flexibility in terms the column’s cross-sectional 

dimensions and spatial variations in the stress-strain characteristics of the materials. Two 

FORTRAN programs have been developed based on the theoretical approach. The first 

program is used to generate a biaxial interaction diagram, and the second to carry out a 

load-deflection analysis. Listings of the computer programs are given in Appendix B.
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4.3 Validation of Numerical Models

This section validates the developed numerical models in terms of predicting the structural 

response of pin-ended reinforced concrete columns subjected to eccentric compression. For 

this purpose, the results from 122 full-scale column tests, taken from seven different 

experimental research programmes, were reviewed. The validation process also provided 

a basis for a general assessment of the influence of column slenderness, load eccentricity 

and concrete grade on the structural response of reinforced concrete columns. Furthermore, 

the beneficial effect of confinement, as well as the counterbalancing effect of the cover 

concrete, is discussed.

4.3.1 Concrete Columns Failing in Uniaxial Bending

Most of the published experimental data on eccentrically loaded concrete columns are on 

columns failing in uniaxial bending. Details from five of the more recent experimental 

investigations of such columns are given in the references (Saatcioglu, 1995), (Lloyd, 

1996), (Foster, 1997), (Claeson, 1998) and (Kim, 1995). These investigations, reviewed in 

the following, represent a large variation in geometric and physical column properties: 

geometric slenderness ratio, L /d  , between 3.0 and 30.0; load eccentricity to depth ratio, 

ey/d  , between 0.05 and 0.37; volumetric ratio of longitudinal reinforcement, pg , between 

1.47% and 4.02%; tie spacings, s , between 30 mm and 240 mm; volumetric ratio of lateral 

reinforcement, ps , between 0.52% and 3.04%; and compressive cylinder strength, f cy| , 

between 26 MPa and 97 MPa.

The analytical results were all obtained under the assumption that the unconfined concrete 

strength of a full-scale column could be set equal to 81% of the mean value of the 

100x200 mm cylinder strengths, and to 85% of the mean value of the 150x300 mm cylinder

-4.30-



strengths. The other essential material properties, i.e. the modulus of elasticity, the strain 

at peak stress, and the softening parameter were estimated from the unconfined concrete 

strength employing equations 3.3, 3.5 and 3.13 respectively.

The maximum effective confining stress, a, ff , was determined by the modified arching 

action method described in section 3.4.2, and the stress-strain curve for both confined and 

unconfined concrete by the computational model described in section 3.4.3. The stress- 

strain behaviour of the core concrete in 66 out of the 111 test columns was predicted to 

have benefited from passive confinement. When generating the stress-strain curve for 

passively confined concrete, the yield strain of the transverse steel reinforcement bars was 

determined from the yield stress, f  , by assuming a modulus of elasticity of 205 GPa.

The cross-section of each test column was modelled as a composite section consisting of 

a concrete cover, a nominal concrete core and a number of longitudinal steel reinforcement 

bars (see figure 4.6). The cover concrete was assumed to follow the stress-strain curve for 

unconfined concrete, and the core concrete, depending on the tie arrangement, that of 

confined or unconfmed concrete. The longitudinal reinforcement steel was assumed to 

behave as an elastic perfectly plastic material.

Whenever the core concrete was estimated to have benefited from confinement, an 

additional analysis in which the confinement effects were ignored was carried out. The 

additional analysis established a benchmark for assessing the structural effect of the 

provided confinement. Furthermore, in order to ensure that the computed peak loads 

constituted the global maxima of the load-deflection curves, the confined columns were 

also analysed under the assumption that the concrete cover on the most compressed side of 

the columns spalled off at the onset of loading. The assumption of premature cover spalling
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always resulted in a reduction in the load capacity, which for all except two of the test 

columns was reduced below the capacity of the corresponding unconfined column.

As is customary when analysing structural concrete members, the tensile strength of 

concrete was not taken into account. In this context, it should be mentioned that due to the 

higher tensile strength, the risk of high strength concrete members exhibiting brittle failure 

upon the formation of the first tensile crack is increased when compared to normal strength 

concrete members (Collins, 1993). This phenomenon, though not investigated in this thesis, 

raises some interesting questions regarding the code provisions for minimum 

reinforcement.

Unconfined concrete 
Confined concrete 

#  Steel reinforcement

22 _ 23 24
i9i # ............ 20....... .......# |21
ltj 17 Í8

14 Í5
id 1 H >2
7 * 9

41 m _______ 5___ )6
1 2 3

1 d 1

X

Figure 4.6
Modelling of cross-sections of uniaxially bent columns

The accuracy with which the internal forces are calculated will, in general, improve with 

an increase in the number of quadrilateral elements, as well as with the number of 

numerical integration points within these elements. By comparing the interaction diagrams 

calculated for various mesh densities and integration orders, it was concluded that 8
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elements in the direction of bending combined with a 3x3 integration rule produced 

sufficiently accurate results. The accuracy to which the displaced column configuration is 

calculated will further depend on the number of stations along the length of the column. 

The more stations used, the more accurate is the calculated curvature distribution and 

equilibrium configuration. The preliminary study showed that sufficiently accurate results 

could be obtained by dividing the test columns into 16 segments.

Saatcioglu, Salamat and Razvi (1995)

Saatcioglu et al examined the behaviour of confined concrete columns under eccentric 

loading by testing twelve 210x210x1640 mm columns. For half the test columns, the axial 

load was applied at an eccentricity to depth ratio of 0.28, and for the other half at an 

eccentricity to depth ratio of 0.36. For a given eccentricity, both columns with 50 mm and 

100 mm tie spacings were tested for each of the three tie configurations shown in figure 4.7. 

The concrete in the test columns with the closer tie spacings had a compressive cylinder 

strength of 26 MPa, and in those with the larger tie spacings a compressive cylinder 

strength of 35 MPa. The test parameters for the individual columns are given in table 4.1a.

Figure 4.8 shows the calculated stress-strain behaviour of the two concrete grades at the 

confining pressures relevant to the experimental investigation. For the columns made from 

concrete with a cylinder strength of 35 MPa, the confining reinforcement was calculated 

to raise the strength and the peak strain of the core concrete by a maximum of 55% and 

155% respectively. Similarly, for the columns made from concrete with a cylinder strength 

of 26 MPa, the confining reinforcement was calculated to raise the strength and the peak 

strain of the core concrete by a maximum of 25% and 84% respectively. In the case of the 

columns transversely reinforced with the least efficient tie configuration, i.e. configuration
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(1), the strength and the peak strain of the core concrete in the columns made from the

35 MPa concrete was raised by 14% and 84% respectively, and in the columns made from 

the 26 MPa concrete by 4% and 25% respectively. It should be emphasised that the four 

longitudinal reinforcement bars positioned at the mid-point of the tie legs were ignored 

when calculating the effective confining pressure associated with the type (1) tie 

configuration.

Table 4.1b compares the experimental failure load, Pc , and the corresponding mid-height 

deflection, vmax , for the individual test columns to their analytical counterparts. It can be 

noted that the inclusion of confinement effects has a rather limited, though improving, 

influence on the correlation between the analytical and the experimental results. When 

including confinement effects, the average ratio of the test failure load to the calculated 

failure load was 1.16, with a standard deviation of 0.04. The table also shows that the mid-

height deflection at failure was predicted with less accuracy than the failure load itself. Both 

were consistently underestimated by the numerical model.

Figure 4.9 illustrates the analytical load-deflection curves for the six test columns which 

were transversely reinforced with a tie pitch of 50 mm. When comparing these curves to 

the similar curves for unconfined columns, it appears that only the behaviour of the 

columns C3-1 and C6-2 were significantly influenced by confinement, and that the most 

noticeable influence was the development of a nearly flat yield plateau. In this context, it 

should be mentioned that Saatcioglu et al reported that the columns C3-1 and C6-2 

exhibited extremely ductile post-peak behaviour when compared to the other columns 

tested.
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The provided confinement was calculated to raise the axial load capacity of the columns 

by a maximum of 7%, despite the strength of the core concrete being raised by up to 55% 

above the unconfined concrete strength. The modest increase in the axial load capacity can 

be explained by means of the three interaction diagrams shown in figure 4.10. For the first 

diagram, the stress-strain curve for the unconfined concrete was applied to both the core 

and the cover of the cross-section. For the second diagram, the stress-strain curve for the 

confined concrete was applied to the core and the stress-strain curve for the unconfined 

concrete to the cover, and finally for the third diagram, the stress-strain curve for the 

confined concrete was applied to both the core and the cover. By comparing the diagrams, 

it can be concluded that the strength properties of the confined test columns were 

significantly influenced by the unconfined concrete cover. Thus, if the benefits of passive 

confinement in general are to be efficiently explored, it is essential that the thickness of the 

concrete cover is reduced to an absolute minimum. In the columns tested by Saatcioglu et 

al, the concrete cover constituted a considerable 23% of their total volume.

(1) (2) (3)

Figure 4.7
Cross-sections of columns tested by Saatcioglu et a l
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Table 4.1a
Details of columns tested by Saatcioglu et al

Column Slend. Ecccn. Cone. Longitudinal
reinforcement

Transverse
reinforcement

ID Sec. L /d
( - )

e /dy
( - )

f  ,c,cyl
(M P a)

Pg
( % )

fsy
(M P a)

s
( mm

Ps
) (% )

fsy
(M P a)

Cl-1 1 7.8 0.28 35 1.82 517 50 1.40 410

C2-1 2 7.8 0.28 35 1.82 517 50 2.38 410

C3-1 3 7.8 0.28 35 2.73 517 50 2.52 410

C4-2 1 7.8 0.36 35 1.82 517 50 1.40 410

C5-2 2 7.8 0.36 35 1.82 517 50 2.38 410

C6-2 3 7.8 0.36 35 2.73 517 50 2.52 410

C7-1 1 7.8 0.28 26 1.82 517 100 0.70 410

C8-1 2 7.8 0.28 26 1.82 517 100 1.19 410

C9-1 3 7.8 0.28 26 2.73 517 100 1.26 410

Cl 0-2 1 7.8 0.36 26 1.82 517 100 0.70 410

Cl 1-2 2 7.8 0.36 26 1.82 517 100 1.19 410

C12-2 3 7.8 0.36 26 2.73 517 100 1.26 410

c,cyi : compressive strength of 150x300 mm cylinders.

Figure 4.8
Assumed stress-strain behaviour of concretes
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Table 4.1b
Comparison of experimental and analytical results

Column Experimental Analytical 
excl. confinement

Analytical 
incl. confinement

ID Sec. P c,e

(k N )
V max,e

( mm )
P c,a

(k N )
v Pmax, a c

( mm )
:,e/ P c,a

( - )
P c,a

(k N )
v Pmax, a c

( mm )
:,e/ P c,a

( - )

Cl-1 1 959 9.3 756 7.2 1.27 773 7.4 1.24

C2-1 2 938 13.4 756 7.2 1.24 793 7.9 1.18

C3-1 3 1061 15.4 849 7.0 1.25 908 14.6 1.17

C4-2 1 734 17.1 627 8.6 1.17 640

O
O

O
O 1.15

C5-2 2 745 16.5 627 8.6 1.19 655 11.0 1.14

C6-2 3 877 16.9 711 8.2 1.23 760 12.8 1.15

C7-1 1 755 7.8 628 7.1 1.20 635 7.3 1.19

C8-1 2 755 10.6 628 7.1 1.20 648 7.7 1.17

C9-1 3 816 14.0 720 7.1 1.13 746 8.2 1.09

Cl 0-2 1 612 22.9 527 8.4 1.16 533 8.6 1.15

Cl 1-2 2 622 16.3 527 8.4 1.18 543 9.1 1.15

Cl 2-2 3 704 21.6 609 8.2 1.16 634 12.9 1.11

Mean 1.20 1.16

Standard deviation 0.04 0.04

Figure 4.9
Computed influence of confinement on load-deflection diagrams
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3000

Figure 4.10
Computed influence of confinement on interaction diagrams

Lloyd and Rangan (1996)

Figure 4.11 together with table 4.2a give the details of eighteen 175x175x1680 mm 

concrete columns tested by Lloyd and Rangan. The test parameters included the load 

eccentricity, the concrete strength and the number of longitudinal reinforcement bars. The 

columns were tested under an eccentricity to depth ratio of either 0.09, 0.29 or 0.37 had a 

compressive concrete cylinder strength of either 58 MPa, 92 MPa or 97 MPa and were 

longitudinally reinforced by either four or six 12 mm high yield steel bars. Since all of the 

columns contained the same amount of lateral reinforcement, the influence of passive 

confinement was not explicitly addressed in the experimental investigation.

Figure 4.12 shows the estimated effect of the provided transverse reinforcement on the 

stress-strain behaviour of the core concrete, and table 4.2b shows that this had virtually no 

influence on the computed column behaviour. In both cases, the average ratio of test failure 

load to calculated failure load was 1.05, with a standard deviation of 0.07.

The test observations given in table 4.2b show, with two exceptions, that an increase in
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both the grade of concrete and a decrease in the load eccentricity had the effect of 

increasing the axial load capacity. Figure 4.13 shows the relationship between the axial load 

capacity and the eccentricity ratio for the test columns which were manufactured from 

concrete with a cylinder strength of either 58 MPa or 97 MPa. It can be seen from the figure 

that the reduction in the axial load capacity with increasing eccentricity was larger for the 

columns manufactured from the stronger concrete, but also that the difference in the rate 

of reduction decreased with an increasing eccentricity. These trends were accurately 

captured by the analytical model.

Figures 4.14a and 4.14b compare the observed load-deflection curves for the columns 

belonging to test series I and XI to their analytical counterparts. Clearly the numerical 

model is capable of capturing the ascending part of the load-deflection curves 

satisfactorily. It is interesting that the mid-height deflection at failure appeared to be almost 

independent of the grade of concrete.

[mm] ¿4
f  j r  <t>12 r  <t>4

£ = = i

175

15 ¡i]--- C""

4)12

■»---- 1

175

15

Figure 4.11 (2)
Cross-sections of columns tested by Lloyd and Rangan
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Figure 4.12
Assumed stress-strain behaviour of concretes

Table 4.2a
Details of columns tested by Lloyd and Rangan

Column Slend. Eccen. Cone. Longitudinal
reinforcement

Transverse
reinforcement

ID Sec. L /d
( ' )

e /d
y

( - )

f
c,cyl

( MPa )
Pg

( % )
f sy

(M P a)
s

( mm )
Ps

( % ) (M P a)

IA 2 9.6 0.09 58 2.22 430 60 0.59 450

IB 2 9.6 0.29 58 2.22 430 60 0.59 450

IC 2 9.6 0.37 58 2.22 430 60 0.59 450

DIA 1 9.6 0.09 58 1.47 430 60 0.59 450
IIIB 1 9.6 0.29 58 1.47 430 60 0.59 450

m e 1 9.6 0.37 58 1.47 430 60 0.59 450
VA 2 9.6 0.09 92 2.22 430 60 0.59 450

VB 2 9.6 0.29 92 2.22 430 60 0.59 450

VC 2 9.6 0.37 92 2.22 430 60 0.59 450
VIIA 1 9.6 0.09 92 1.47 430 60 0.59 450
VIIB 1 9.6 0.29 92 1.47 430 60 0.59 450
v n e 1 9.6 0.37 92 1.47 430 60 0.59 450

IXA 2 9.6 0.09 97 2.22 430 60 0.59 450
IXB 2 9.6 0.29 97 2.22 430 60 0.59 450
IXC 2 9.6 0.37 97 2.22 430 60 0.59 450
XIA 1 9.6 0.09 97 1.47 430 60 0.59 450
XIB 1 9.6 0.29 97 1.47 430 60 0.59 450

XIC 1 9.6 0.37 97 1.47 430 60 0.59 450

fc,cyi: compressive strength of 100x200 mm cylinders.
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Table 4.2b
Comparison of experimental and analytical results

Column Experimental Analytical 
excl. confinement

Analytical 
incl. confinement

ID Sec. P c,e
( k N )

Vmax,e
( mm )

P c,a
( k N )

v 1max, a
( mm )

P /Pc,e c,a 

( - )
P c,a

( k N )
v 1max, a

( mm )
P /Pc,e c,a 

( - )

IA 2 1476 8.3 1231 4.7 1.20 1237 4.8 1.19

IB 2 830 12.5 710 8.6 1.17 712 8.6 1.17

IC 2 660 13.2 581 10.3 1.14 583 10.4 1.13

IIIA 1 1140 8.8 1161 4.9 0.98 1167 4.9 0.98

IIIB 1 723 12.9 643 9.1 1.12 644 9.0 1.12

m e 1 511 11.7 516 11.2 0.99 515 11.1 0.99

VA 2 1704 6.2 1763 5.1 0.97 1767 5.2 0.96

VB 2 1018 9.7 964 9.5 1.06 965 9.5 1.05

VC 2 795 12.3 770 11.5 1.03 772 11.6 1.03

VIIA 1 1745 7.6 1698 5.2 1.03 1702 5.2 1.03

VIIB 1 908 11.1 888 9.8 1.02 890 9.9 1.02

VIIC 1 663 15.4 661 11.5 1.00 662 11.0 1.00

IXA 2 1975 6.4 1840 5.2 1.07 1844 5.2 1.07

IXB 2 1002 10.9 997 9.5 1.00 998 9.4 1.00

IXC 2 746 14.2 795 11.5 0.94 795 11.5 0.94

XIA 1 1932 5.6 1776 5.3 1.09 1779 5.3 1.09

XIB 1 970 10.7 925 10.0 1.05 921 10.0 1.05

XIC 1 747 13.9 679 11.8 1.10 680 11.8 1.10

Mean 1.05 1.05

Standard deviation 0.07 0.07
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Figure 4.13
bserved effect of eccentricity on ultimate load capacity of columns in 

test series I, III, IX and XI
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Figure 4.14a
Load-deflection curves for columns in test series I

- 4.42 -



z

c.

2
<

0 2 4 6 8 10 12 14 16
Mid-height deflection, vmjd , ( mm )

Figure 4.14b
Load-deflection curves for columns in test series XI

Foster and Attard (1997)

Figure 4.15 together with table 4.3a provide the details of fifty-four 150x150x1500 mm 

concrete columns tested by Foster and Attard. The test columns had a compressive cylinder 

strength of either 42 MPa, 74 MPa or 91 MPa; were longitudinally reinforced by either four 

or eight 12 mm high yield steel bars; were laterally reinforced by square hoops with 

spacings of either 30 mm, 60 mm or 120 mm; and were subjected to an axial load acting 

at an eccentricity to depth ratio of either 0.05, 0.13 or 0.33.

Figure 4.16 shows the confined and unconfined stress-strain curves generated for the three 

different concrete grades employed in the test programme. For the columns transversely 

reinforced with a tie pitch of 30 mm, the strength and peak strain of the core concrete was 

estimated to be raised by 9 - 10 MPa and 0.9 - 1.2 mm/m respectively. By contrast, the 

stress-strain behaviour of the concrete in the columns with a tie pitch of 120 mm was 

estimated not to be influenced by confinement.
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The experimental results (see table 4.3b) show that a reduction in the tie spacings in general 

did not enhance the axial load capacity of the columns. For only one out of the eighteen 

columns manufactured from the strongest concrete, i.e. the H-series, did a reduction in the 

tie spacings from 120 mm to either 60 mm or 30 mm lead to a higher failure load. In the 

L-series four out of the twelve columns, and in the M-series five out of the twelve columns, 

with closer tie spacings than 120 mm, failed prematurely.

An explanation for the premature column failure frequently observed can be given by 

means of figure 4.17. The figure illustrates the estimated effect of the provided confinement 

on the interaction diagrams for the test columns transversely reinforced with tie 

configuration type (1). Since the confinement had an insignificant influence on the 

interaction diagrams, it is likely that the occurrence of premature cover spalling often 

reduced the load capacity of a column with a dense reinforcement cage below the capacity 

of a similar unconfined column. In this context, it can also be noted that the experimental 

results given in table 4.3b, in general, support the hypothesis stated in section 3.4.1, of both 

an increase in the concrete strength and in the density of the reinforcement cage having an 

adverse effect on the stability of the cover shell.

The experiments also show that the mid-height deflections at peak load in general increased 

with increasing load eccentricity, but the deflections did not appear to correlate with either 

the concrete strength or the tie spacings. However, a reduction in the tie spacings was 

reported to have the effect of increasing the post-peak ductility of the columns, and more 

so for the columns manufactured from the lesser grade of concrete.

Although the analytical model does not incorporate stability failure of the cover shell, it 

conforms well with the overall test results. The average ratio of the test failure load to
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Figure 4.16
Assumed stress-strain behaviour of concretes

Table 4.3a
Details of columns tested by Foster and Attard

Column Slend. Ecccn Cone. Longitudinal
reinforcement

Transverse
reinforcement

ID Sec. L /d
( - )

ey/d

( - )

f ,c,cyl
( MP a )

Pg

( % )

fsy
( MP a )

s
( mm )

Ps

( % )

fy
( MP a )

2L8-30 1 10.0 0.05 42 2.01 480 30 3.04 360

2L8-60 1 10.0 0.05 42 2.01 480 60 1.52 360

2L8-120 1 10.0 0.05 42 2.01 480 120 0.76 360

2L20-30 1 10.0 0.13 42 2.01 480 30 3.04 360

2L20-60 1 10.0 0.13 42 2.01 480 60 1.52 360

2L20-120 1 10.0 0.13 42 2.01 480 120 0.76 360

2L50-30 1 10.0 0.33 42 2.01 480 30 3.04 360

2L50-60 1 10.0 0.33 42 2.01 480 60 1.52 360

2L50-120 1 10.0 0.33 42 2.01 480 120 0.76 360

4L8-30 2 10.0 0.05 42 4.02 480 30 3.04 360

4L8-60 2 10.0 0.05 42 4.02 480 60 1.52 360

4L8-120 2 10.0 0.05 42 4.02 480 120 0.76 360

4L20-30 2 10.0 0.13 42 4.02 480 30 3.04 360

4L20-60 2 10.0 0.13 42 4.02 480 60 1.52 360

4L20-120 2 10.0 0.13 42 4.02 480 120 0.76 360

4L50-30 2 10.0 0.33 42 4.02 480 30 3.04 360

4L50-60 2 10.0 0.33 42 4.02 480 60 1.52 360

4L50-120 2 10.0 0.33 42 4.02 480 120 0.76 360
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Column Slend. Eccen Cone. Longitudinal
reinforcement

Transverse
reinforcement

ID Sec. L/d
( - )

e /d
y
( - )

f  .c,cyl
( MP a )

Pg

( % )
f sy

( MPa)
s

( mm
Ps

) ( % )
f sy

( MPa)

2M8-30 1 10.0 0.05 74 2.01 480 30 3.04 360

2M8-60 1 10.0 0.05 74 2.01 480 60 1.52 360

2M8-120 1 10.0 0.05 74 2.01 480 120 0.76 360

2M20-30 1 10.0 0.13 74 2.01 480 30 3.04 360

2M20-60 1 10.0 0.13 74 2.01 480 60 1.52 360

2M20-120 1 10.0 0.13 74 2.01 480 120 0.76 360

2M50-30 1 10.0 0.33 74 2.01 480 30 3.04 360

2M50-60 1 10.0 0.33 74 2.01 480 60 1.52 360

2M50-120 1 10.0 0.33 74 2.01 480 120 0.76 360

4M8-30 2 10.0 0.05 74 4.02 480 30 3.04 360

4M8-60 2 10.0 0.05 74 4.02 480 60 1.52 360

4M8-120 2 10.0 0.05 74 4.02 480 120 0.76 360

4M20-30 2 10.0 0.13 74 4.02 480 30 3.04 360

4M20-60 2 10.0 0.13 74 4.02 480 60 1.52 360

4M20-120 2 10.0 0.13 74 4.02 480 120 0.76 360

4M50-30 2 10.0 0.33 74 4.02 480 30 3.04 360

4M50-60 2 10.0 0.33 74 4.02 480 60 1.52 360

4M50-120 2 10.0 0.33 74 4.02 480 120 0.76 360

2H8-30 1 10.0 0.05 91 2.01 480 30 3.04 360

2H8-60 I 10.0 0.05 91 2.01 480 60 1.52 360

2H8-120 1 10.0 0.05 91 2.01 480 120 0.76 360

2H20-30 1 10.0 0.13 91 2.01 480 30 3.04 360

2H20-60 1 10.0 0.13 91 2.01 480 60 1.52 360

2H20-120 1 10.0 0.13 91 2.01 480 120 0.76 360

2H50-30 1 10.0 0.33 91 2.01 480 30 3.04 360

2H50-60 1 10.0 0.33 91 2.01 480 60 1.52 360

2H50-120 1 10.0 0.33 91 2.01 480 120 0.76 360

4H8-30 2 10.0 0.05 91 4.02 480 30 3.04 360

4H8-60 2 10.0 0.05 91 4.02 480 60 1.52 360

4H8-120 2 10.0 0.05 91 4.02 480 120 0.76 360
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analytical failure load was 1.10, with a standard deviation of 0.11.

Figure 4.18 shows the computed enhancement in ultimate load due to confinement for the 

test columns with 30 mm spaced ties of configuration type (1). It can be seen that the 

difference between the load capacity of a confined and a similar unconfined column is 

reduced with increasing eccentricity, and that the efficiency of the given tie arrangement 

is reduced with increasing concrete strength. However, as illustrated by figure 4.19, the 

latter trend is not a general column feature. If the same columns are analysed under the 

assumption of having no concrete cover whatsoever, the columns manufactured from the 

stronger concrete gain more strength at low levels of eccentricity than the columns 

manufactured from the less strong concrete.

Figure 4.15
Cross-sections of columns tested by Foster and Attard
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Column Slend. Eccen Cone. Longitudinal
reinforcement

Transverse
reinforcement

ID Sec. L /d
( - )

e /d
y

( - )

f  .c,cyl
( MP a )

Pg
( % )

fsy
( MP a )

s
( mm )

Ps

( % )

fsy
( MP a )

4H20-30 2 10.0 0.13 91 4.02 480 30 3.04 360

41420-60 2 10.0 0.13 91 4.02 480 60 1.52 360

4H20-120 2 10.0 0.13 91 4.02 480 120 0.76 360

4H50-30 2 10.0 0.33 91 4.02 480 30 3.04 360

4H50-60 2 10.0 0.33 91 4.02 480 60 1.52 360

4H50-120 2 10.0 0.33 91 4.02 480 120 0.76 360

fC)Cyi : compressive strength of 150x300 mm cylinders.

Table 4.3b
Comparison of experimental and analytical results

Column Experimental Analytical 
excl. confinement

Analytical 
incl. confinement

ID Sec. P c,e
( k N )

V max.e
( mm )

P c,a
( k N )

v Pmax, a <
( mm )

/P:,e c,a 

( - )
P c,a

( k N )
v Pmax, a c

( mm )
, e / P c.a

( - )

2L8-30 1 960 6.5 821 3.6 1.17 850 3.8 1.13

2L8-60 1 857 4.0 821 3.6 1.04 835 3.7 1.03

2L8-120 1 912 6.0 821 3.6 1.11 821 3.6 1.11

2L20-30 1 750 4.8 657 5.3 1.14 676 5.6 1.11

2L20-60 1 700 6.2 657 5.3 1.07 666 5.4 1.05

2L20-120 1 782 5.5 657 5.3 1.19 657 5.3 1.19

2L50-30 1 440 9.0 389 9.2 1.13 398 9.4 1.11

2L50-60 1 472 8.5 389 9.2 1.21 393 9.3 1.20

2L50-120 1 440 9.0 389 9.2 1.13 389 9.2 1.13

4L8-30 2 1100 9.0 963 3.6 1.14 993 3.9 1.11

4L8-60 2 1150 6.0 963 3.6 1.19 977 3.7 1.18

4L8-120 2 975 5.7 963 3.6 1.01 963 3.6 1.01

4L20-30 2 1020 7.0 760 5.4 1.34 781 5.7 1.31

4L20-60 2 968 3.5 760 5.4 1.27 770 5.6 1.26

4L20-120 2 900 4.0 760 5.4 1.18 760 5.4 1.18

4L50-30 2 517 18.5 456 8.9 1.13 466 9.3 1.11

4L50-60 2 550 8.0 456 8.9 1.21 461 9.0 1.19

4L50-120 2 525 8.0 456 8.9 1.15 456 8.9 1.15
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Column Experimental Analytical Analytical
excl. confinement incl. confinement

ID Sec. P V P V P /P P V P /Pc,e max,e c,a max, a c,e c,a c,a max, a c,e c,a
( k N ) ( m m ) ( k N ) ( m m ) ( - ) ( k N ) ( m m ) ( - )

2M8-30 1 1348 5.0 1286 3.6 1.05 1309 3.8 1.03

2M8-60 1 1432 5.0 1286 3.6 1.11 1296 3.7 1.10

2M8-120 1 1239 4.0 1286 3.6 0.96 1286 3.6 0.96

2M20-30 1 1160 6.0 1004 5.4 1.16 1018 5.7 1.14

2M20-60 1 1231 6.0 1004 5.4 1.23 1011 5.6 1.22

2M20-120 1 1067 5.0 1004 5.4 1.06 1004 5.4 1.06

2M50-30 1 630 9.5 553 9.9 1.14 557 10.0 1.13

2M50-60 1 747 11.5 553 9.9 1.35 555 9.9 1.35

2M50-120 1 652 11.5 553 9.9 1.18 553 9.9 1.18

4M8-30 2 1102 3.0 1423 3.6 0.77 1446 3.8 0.76

4M8-60 2 1404 4.0 1423 3.6 0.99 1434 3.7 0.98

4M8-120 2 1404 3.5 1423 3.6 0.99 1423 3.6 0.99

4M20-30 2 1052 4.0 1103 5.5 0.95 1117 5.7 0.94

4M20-60 2 1004 5.0 1103 5.5 0.91 1110 5.6 0.90

4M20-120 2 1226 5.0 1103 5.5 1.11 1103 5.5 1.11

4M50-30 2 656 9.5 625 9.5 1.05 630 9.5 1.04

4M50-60 2 686 9.5 625 9.5 1.10 627 9.5 1.09

4M50-120 2 677 9.5 625 9.5 1.08 625 9.5 1.08

2H8-30 1 1576 3.5 1524 3.7 1.03 1544 3.8 1.02

2H8-60 1 1647 4.5 1524 3.7 1.08 1533 3.8 1.07

2H8-120 1 1806 3.6 1524 3.7 1.19 1524 3.7 1.19

2H20-30 1 1207 6.5 1177 5.6 1.03 1189 5.7 1.02

2H20-60 1 1247 5.3 1177 5.6 1.06 1183 5.7 1.05

2H20-120 1 1473 5.6 1177 5.6 1.25 1177 5.6 1.25

21150-30 1 749 9.7 631 10.3 1.19 635 10.6 1.18

2H50-60 1 685 10.0 631 10.3 1.09 631 10.2 1.09

2H50-120 1 851 8.3 631 10.3 1.35 631 10.3 1.35

4H8-30 2 1601 4.8 1659 3.8 0.97 1679 3.9 0.95

4H8-60 2 1702 5.5 1659 3.8 1.03 1668 3.8 1.02

4H8-120 2 1654 4.2 1659 3.8 1.00 1659 3.8 1.00
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Column Experimental Analytical 
excl. confinement incl

Analytical 
. confinement

ID Sec. P c,e
( k N )

Vmax.e
( mm )

P c,a
( k N )

v 1max, a
( mm )

V P c,a

( - )
P c,a

( k N )
v 1max, a

( mm )
P /Pc,e c,a 

( - )

4H20-30 2 1352 7.0 1274 5.7 1.06 1285 5.8 1.05

4H20-60 2 1358 7.5 1274 5.7 1.07 1279 5.7 1.06

4H20-120 2 1374 7.0 1274 5.7 1.08 1274 5.7 1.08

4H50-30 2 780 10.5 706 9.8 1.10 709 9.8 1.10

4H50-60 2 790 9.5 706 9.8 1.12 707 9.8 1.12

4H50-120 2 818 9.5 706 9.8 1.16 706 9.8 1.16

Mean 1.11 1.10

Standard deviation 0.11 0.11

Figure 4.17
Computed influence of confinement on interaction diagrams
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Figure 4.18
Computed increase in axial load capacity due to confinement
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Figure 4.19
Computed increase in axial load capacity due to confinement when ignoring 

the presence of the concrete cover
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Claeson and Gylltoft (1998)

Claeson and Gylltoft tested four columns of each of the three dimensions 120x 120x2400 

mm, 200x200x3000 mm and 200x200x4000 mm. For each dimension, two of the columns 

were manufactured from concrete with a cylinder strength of about 38 MPa, and two from 

concrete with a cylinder strength of about 90 MPa. The columns with the smaller cross- 

section were transversely reinforced with tie spacings of either 100 mm or 180 mm, and the 

columns with the larger cross-section with tie spacings of either 130 mm or 240 mm. The 

eccentricity of the applied axial load was a constant 20 mm throughout the experimental 

programme. The further details of the test columns are given in figure 4.20 and table 4.4a.

Figure 4.21 shows that only in the case of the test columns 27, 29, 31 and 33 was the 

transverse reinforcement estimated to have an effect on the stress-strain behaviour of the 

core concrete. However, as illustrated by figure 4.22, the provided reinforcement was 

insufficient to significantly affect the ascending part of the load-deflection diagram of the 

columns. In contrast, the descending part of the load-deflection diagrams was in general 

observed to become more ductile with increased confinement, and this being most 

noticeable for the columns manufactured from the lower concrete grade.

As expected, an increase in the column’s geometric slenderness ratio from 15 to 20 reduced 

the failure load, and increased the mid-height deflection at failure. Figure 4.23 shows both 

the experimental and calculated relationships between the slenderness ratio and the axial 

load capacity for the test columns with the larger cross-section. It can be seen that the high 

strength concrete columns always failed at a significantly higher load than the normal 

strength concrete columns, but also that the difference in the failure loads reduced with 

increasing slenderness. The average ratio of the test failure load to the calculated failure 

load was 1.07, with a standard deviation of 0.10.
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Figure 4.20
Cross-sections of columns tested by Claeson and Gylltoft

Figure 4.21
Assumed stress-strain behaviour of concretes

Table 4.4a
Details of columns tested by Claeson and Gylltoft

Column Slend. Eccen. Cone. Longitudinal
reinforcement

Transverse
reinforcement

ID Sec. L/d e /dy f  ,c,cyl Pg
fsy s Ps fsy

( - ) ( - ) ( MP a ) ( % ) ( MP a ) ( mm ) ( % ) ( MP a )

23 1 20.0 0.17 43 3.14 684 100 1.35 512

24 1 20.0 0.17 43 3.14 684 180 0.75 512

25 1 20.0 0.17 86 3.14 684 100 1.35 512

26 1 20.0 0.17 86 3.14 684 180 0.75 512

27 2 15.0 0.10 33 2.01 636 130 0.95 466

28 2 15.0 0.10 33 2.01 636 240 0.52 466
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Column Slend. Eccen. Cone. Longitudinal
reinforcement

Transverse
reinforcement

ID Sec. L /d ey/d f
c,cyl Pg

fsy s Ps fsy

( - ) ( - ) ( MP a ) ( % ) ( MP a ) ( mm ) ( % ) ( MP a )

29 2 15.0 0.10 92 2.01 636 130 0.95 466

30 2 15.0 0.10 92 2.01 636 240 0.52 466

31 2 20.0 0.10 37 2.01 636 130 0.95 466

32 2 20.0 0.10 37 2.01 636 240 0.52 466

33 2 20.0 0.10 93 2.01 636 130 0.95 466

34 2 20.0 0.10 93 2.01 636 240 0.52 466

f c,Cyi : compressive strength of 150x300 mm cylinders.

Figure 4.22
Observed load-deflection curves for columns with type 2 cross-section

Table 4.4b
Comparison of experimental and analytical results

Column Experimental Analytical 
excl. confinement

Analytical 
incl. confinement

ID Sec. P c,e

( k N )
Vmax.e

( mm )
P c,a

( k N )
V ]max, a

( mm )
P /Pc,e c,a 

( - )

Pc,a

( k N )
Vmax, a

( mm )
P /Pc,e c,a 

( - )

23 1 320 26.0 258 19.7 1.24 - - -

24 1 280 24.0 258 19.7 1.09 - - -

25 1 370 36.0 385 21.3 0.96 - - -

26 1 330 47.0 385 21.3 0.86 - - -

27 2 990 22.0 924 17.3 1.07 929 17.7 1.07

28 2 990 21.0 924 17.3 1.07 - - -
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Column Experimental Analytical 
excl. confinement

Analytical 
incl. confinement

ID Sec. P c,e
( k N )

Vmax.e
( mm )

P c,a
( k N )

v Pmax, a c
( mm )

:,e/ P c,a

( - )
P c,a

( k N )
Vmax, a

( mm )
P /Pc,e c,a 

( - )

29 2 2310 23.0 1995 16.9 1.16 1997 16.8 1.16

30 2 2350 20.0 1995 16.9 1.18 - - -

31 2 900 40.0 829 26.7 1.09 830 26.5 1.08

32 2 920 36.0 829 26.7 1.11 - - -

33 2 1530 39.0 1565 29.4 0.98 1565 28.9 0.98

34 2 1560 41.0 1565 29.4 1.00 - - -

Mean 1.07 -

Standard deviation 0.10 -

Figure 4.23
Influence of slenderness on ultimate load
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Kim and Yang (1995)

Kim and Yang investigated the effects of slenderness, concrete strength and longitudinal 

steel ratio on the structural behaviour of reinforced concrete columns. The tested columns 

had a geometric slenderness ratio of either 3.0, 18.0 or 30.0; a concrete cylinder strength 

of either 26 MPa, 64 MPa or 86 MPa; and a longitudinal steel ratio of either 1.98% or 

3.96%. The columns were all subjected to an axial load acting at a constant eccentricity of 

24 mm. The further details of the tested columns are given in figure 4.24 and table 4.5a.

Because of the relatively large tie spacings, none of the tested columns was estimated to 

have benefited from passive confinement. Thus the analytical results listed in table 4.5b 

were all based on the stress-strain curves for unconfmed concrete shown in figure 4.25.

The test results confirm that the axial load capacity of a column is reduced, and its lateral 

deflections increased, with an increase in the geometric slenderness ratio. Furthermore, as 

illustrated by figure 4.26, the reduction in load capacity with increasing slenderness is 

larger for the high strength concrete columns than for the normal strength concrete 

columns, so that for a geometric slenderness ratio of 30, the axial load capacity becomes 

almost independent of the concrete strength. Thus, the structural benefits of high strength 

concrete are significant in the short but not in the very slender columns. The average ratio 

of the test failure load to the calculated failure load was determined to be 1.07 with a 

standard deviation of 0.12.

Figure 4.27 plots the calculated combinations of axial load and bending moment at failure 

for the test columns with four longitudinal reinforcement bars. When compared to the 

interaction diagrams it can be seen that material strength rather than stability governed the 

failure mode of these test columns.
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( 1) (2)
Figure 4.24

Cross-sections of columns tested by Kim and Yang

Figure 4.25
Assumed stress-strain behaviour of concretes

Table 4.5a
Details of columns tested by Kim and Yang

Column Slend. Eccen. Cone. Longitudinal
reinforcement

Transverse
reinforcement

ID Sec. L /d ey/d f
c ,c y l Pg f . y s Ps f

s y

( - ) ( - ) ( MP a ) ( % ) ( MP a ) ( mm ) ( % ) ( MP a )

10L2 1 3.0 0.30 26 1.98 387 60 0.80 250

10L4 2 3.0 0.30 26 3.96 387 60 0.80 250

60L2 1 18.0 0.30 26 1.98 387 60 0.80 250

100L2 1 30.0 0.30 26 1.98 387 60 0.80 250

100L4 2 30.0 0.30 26 3.96 387 60 0.80 250

10M2 1 3.0 0.30 64 1.98 387 60 0.80 250

10M4 2 3.0 0.30 64 3.96 387 60 0.80 250

60M2 1 18.0 0.30 64 1.98 387 60 0.80 250

100M2 1 30.0 0.30 64 1.98 387 60 0.80 250

100M4 2 30.0 0.30 64 3.96 387 60 0.80 250
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Column Slend. Eccen. Cone. Longitudinal
reinforcement

Transverse
reinforcement

ID Sec. L /d ey/d f
c,cyl Pg f w s Ps fsy

( - ) ( - ) ( MP a ) ( % ) ( MP a ) ( mm ) ( % ) ( MP a )

10H2 1 3.0 0.30 86 1.98 387 60 0.80 250

10H4 2 3.0 0.30 86 3.96 387 60 0.80 250

60H2 1 18.0 0.30 86 1.98 387 60 0.80 250

100H2 1 30.0 0.30 86 1.98 387 60 0.80 250

100H4 2 30.0 0.30 86 3.96 387 60 0.80 250

c,cyi : compressive strength of 100x200 mm cylinders.

Table 4.5b
Comparison of experimental and analytical results

Column Experimental Analytical 
excl. confinement

Analytical 
incl. confinement

ID Sec. P c,e
( k N )

Vmax,e
( mm )

P c,a
( k N )

V Pmax, a
( mm )

/Pc,e c,a 

( - )

P c,a Vmax,a P c,e/ P c,a
( k N )  ( m m )  ( - )

10L2 1 83 0.4 85 0.4 0.98 -

10L4 2 109 0.4 102 0.4 1.07 -

60L2 1 65 15.5 60 15.3 1.08 -

100L2 1 37 31.3 35 37.5 1.06 -

100L4 2 48 37.2 44 42.4 1.09 -

10M2 1 181 0.4 158 0.4 1.15 -

10M4 2 206 0.4 175 0.4 1.18 -

60M2 1 108 19.2 95 15.2 1.14 -

100M2 1 46 26.7 47 32.7 0.98 -

100M4 2 60 32.7 74 59.0 0.81 -

10H2 1 238 0.5 200 0.4 1.19 -

10H4 2 257 0.5 215 0.4 1.20 -

60H2 1 123 16.1 108 15.0 1.14 -

100H2 1 55 24.0 51 31.8 1.08 -

100H4 2 66 32.9 80 51.2 0.83 -

Mean 1.07 -

Standard deviation 0.12 -
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Figure 4.26
Influence of slenderness ratio on ultimate load

Moment, Mx , ( k Nm)

Figure 4.27
Computed interaction diagrams and failure combinations
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4.3.2 Concrete Columns Failing in biaxial Bending

Test data on reinforced concrete columns failing in biaxial bending are in general very 

scarce, and none of the data is produced with the objective of systematically exploring the 

structural effect of confining reinforcement.

The ability of the numerical model to simulate the biaxial load-deflection response of 

eccentrically loaded concrete columns was validated against the test results reported by 

Cranston and Sturrock (1971) and Wang and Hsu (1992). Since none of the reviewed test 

columns were estimated to have benefited from passive confinement, the cover concrete 

did not require separate modelling. The cross-section of each test column was represented 

by a 6x6 mesh of equal sized rectangular elements together with a number of embedded 

point elements (see figure 4.28). Numerical convergence in the deflections was obtained 

by dividing each column into 16 segments along its length.

"O

dx

Figure 4.28
Modelling of cross-sections of biaxially bent columns
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Cranston and Sturrock (1971)

Cranston and Sturrock investigated the possible interaction between major and minor axis 

buckling of slender columns having a narrow rectangular cross-section. The details of the 

five test columns are given by figure 4.29 together with table 4.6a. Even though the 

columns were subjected to eccentric loading about the major axis only, they all eventually 

failed by buckling about the minor axis.

Figure 4.30 shows the computed stress-strain curves for the various concrete grades 

employed in the test programme.

It can be seen from table 4.6b that the ensuing analytical results for the columns, though 

always somewhat conservative, correlate reasonably well with the test results. In order to 

numerically trigger buckling about the minor axis, the columns were all assumed to have 

a small mid-height imperfection of 1 mm.

Figure 4.31 compares the calculated and the observed biaxial load-deflection response at 

mid-height of test column 3. The response is characterised by an almost linear increase in 

the major axis deflections, and an accelerating increase in the minor axis deflections. In this 

context, it can be noticed that in the vicinity of failure the minor axis deflections are 

computed to exceed the major axis deflections. Furthermore, the loss of stiffness associated 

with major axis bending caused the column’s failure load to be reduced far below the 

failure loads calculated under the condition of the column being restrained so as to deflect 

in a single direction only.
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Figure 4.29
Cross-section of columns tested by Cranston and Sturrock

Figure 4.30
Assumed stress-strain behaviour of concretes

Table 4.6a
Details of columns tested by Cranston and Sturrock

Column Slend. Eccen. Cone. Longitudinal
reinforcement

Transverse
reinforcement

ID L/d X

( - )

L /d y
( - )

e x / d x

( - )

f
c.cyl

( MP a )
Pg

( % )

fsy
( MP a )

s
( mm

Ps

) ( % )

fsy
( MP a )

3 12.5 50.0 0.39 49 1.27 296 150 0.64 296

4 12.5 50.0 0.25 50 1.27 437 150 0.64 437

5 12.5 50.0 0.30 49 1.27 437 150 0.64 437

6 12.5 50.0 0.39 38 1.27 437 150 0.64 437

7 12.5 50.0 0.34 53 1.27 437 150 0.64 437

fc,cub : compressive strength of 150 mm cubes.
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Table 4.6b
Comparison of experimental and analytical results

Column Experimental Analytical 
excl. confinement

ID P c,e
( k N )

u * v *max,e max,e
( mm ) ( mm )

Pc,a
( k N )  (

u v 1max, a max, a
 ̂m m ) ( m m )

V P c,a

( - )

3 276 9.4 5.0 233 9.6 14.0 1.18

4 456 8.4 4.9 327 6.5 9.6 1.39

5 344 7.8 6.8 281 7.6 11.8 1.22

6 320 12.1 1.9 209 9.3 13.0 1.53

7 376 9.6 4.7 263 8.5 13.2 1.43

Mean 1.35

Standard deviation 0.15

* last recording taken at approximately 90% of the ultimate load

Figure 4.31
Load-deflection curves for test column 3
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Wang and Hsu (1992)

Figure 4.32 and table 4.7a provide the details, taken after (Wang, 1992), of six reinforced 

concrete columns tested under various biaxial loading conditions by Hsu (1974).

When assuming that the stress-strain behaviour of the concrete can be represented by the 

curve given in figure 4.33, the strength data calculated for the columns are in good 

agreement with the experimental results (see table 4.7b).

Figures 4.34a and 4.34b compare the computed and observed biaxial moment-curvature 

relationships for column U-5. For reasons of clarity, the experimental results are plotted as 

discrete points in the figures. It should be emphasised that the numerical model is unable 

to predict post-peak behaviour.

Cross-section of columns tested by Hsu

Figure 4.33
Assumed stress-strain behaviour of concrete
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Table 4.7a
Details of columns tested by Hsu

Column Slend. Eccen. Cone. Longitudinal
reinforcement

Transverse
reinforcement

ID L/d ex/d e / dy f  ,
c ,c y l Pg f

s y s P fr s  s y

( - ) ( - ) ( - ) ( MPa) ( % ) ( MP a ) ( mm ) ( % ) ( MPa )

U-l 10.0 0.63 0.88 27 2.78 503 51 0.57

U-2 10.0 0.75 0.88 27 2.78 503 51 0.57

U-3 10.0 0.88 0.88 27 2.78 503 51 0.57

U-4 10.0 0.50 0.50 27 2.78 503 51 0.57

U-5 10.0 0.13 1.00 27 2.78 503 51 0.57

U-6 10.0 0.13 1.75 27 2.78 503 51 0.57

f c,cyi : compressive strength of 76x150 mm cylinders.

Table 4.7b
Comparison of experimental and analytical results

Column Experimental Analytical 
excl. confinement

ID P c,e

( k N )
U Vmax, e max, e

( m m ) ( m m )
P c,a

( k N )
U V Pmax, a max, a c

( m m ) ( m m )
/P:,e c,a 

( - )

U-l 43 - - 40 5.3 7.0 1.08

U-2 39 - - 37 5.8 6.6 1.05

U-3 36 8.1 8.1 35 6.3 6.3 1.03

U-4 64 8.4 8.4 58 4.9 4.9 1.10

U-5 48 1.8 13.9 47 1.6 9.3 1.02

U-6 28 1.3 16.2 27 1.0 11.6 1.04

Mean 1.05

Standard deviation 0.03
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Figure 4.34a
Biaxial moment curvature relations for column U-5

Figure 4.34b
Biaxial moment curvature relations for column U-5
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4.3.3 Summary

Section 4.3.2. demonstrated the ability of the numerical model to accurately calculate the 

ascending branch of the load-deflection diagram for an eccentrically loaded reinforced 

concrete column. The average of the ratios of test failure load to predicted failure load for 

the seven reviewed tests series was 1.12. This is regarded as a good correlation considering 

the variability of concrete as a material. Like the axial load capacity, also the mid-height 

deflection at peak load was in general underestimated somewhat by the numerical model.

Although the transverse reinforcement was often estimated to have significantly influenced 

the stress-strain characteristics of the core concrete, for none of the reviewed test columns 

did it significantly enhance the strength or pre-peak ductility of the column. The reason for 

this can, at least partly, be ascribed to the presence of an unconfined concrete cover. The 

purpose of a concrete cover is to provide the necessary bond between the reinforcement and 

the concrete, and to protect the reinforcement from corrosion, weathering and fire. Yet, the 

concrete cover often contributes significantly to a column’s load carrying capacity.

In summary, the validation process high-lighted the following characteristics regarding the 

structural response of reinforced concrete columns:

•  The load capacity decreases with increasing load eccentricity, and more so with 

higher concrete strength.

•  The load capacity decreases with increasing slenderness, and more so with higher 

concrete strength.

•  The mid-height deflection at strength failure increases both with increasing load 

eccentricity and increasing column slenderness, but appear to be fairly independent 

of the concrete strength.
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•  The mid-height deflection at strength failure is often largely unaffected by passive 

confinement, despite the post-peak ductility being significantly enhanced.

•  The presence of an unconfined concrete cover counteracts the beneficial effects of 

passive confinement.

•  Due to the increased instability of the cover shell the use of closely spaced ties may 

result in a defacto reduction in a column’s load capacity.
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Chapter 5: Full-Scale Tests of High Strength Concrete
Columns

5.1 Experimental Programme

This section provides a detailed description of the 12 full-scale high strength concrete 

columns manufactured and tested in the laboratories of the Civil Engineering Department 

at City University as a part of the present investigation. The range of test parameters to be 

varied was determined in consultation with the British Cement Association during the 

preliminary phase of the project. The parameters included the column slenderness, the 

eccentricity of the applied axial loading, the concrete strength and the spacing of the lateral 

reinforcement hoops.

5.1.1 Test Columns

Of the 12 test columns six were manufactured to a length of 3250 mm and six to a length 

of 7250 mm. When taking account of the practical arrangement providing the pinned end 

conditions, the corresponding effective lengths of the test columns were 3975 mm and 

7975 mm respectively. Since all the columns had a 250x250 mm cross-section their 

geometrical slenderness ratio was either 15.9 or 31.9, and they were as such classified as 

slender according to BS 8110 (1985).

The columns were to be tested under conditions of either uniaxial or biaxial eccentric 

compression. The nominal load eccentricity for all of the shorter columns was 50 mm with 

respect to bending about the first principal axis. For the shorter columns which were 

designed for biaxial bending, the load eccentricity was 25 mm with respect to bending 

about the second principal axis. For the longer columns the eccentricities were halved for
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both directions. The load eccentricities were built into the columns during the 

manufacturing process by shifting the centre of the tilt caps relative to the centroid of the 

concrete section. Control measurements taken prior to testing showed that the prescribed 

eccentricities could be achieved to within an accuracy of about 3 mm.

Half the test columns were manufactured using the grade C 100 concrete, and the other half 

using the grade C l 20 concrete. The concrete strengths were assessed from testing 

100x200 mm cylinders which had been cured under similar conditions as the columns. At 

the time of testing the columns manufactured from the grade C 100 concrete were associated 

with average cylinder strengths, f  , , ranging from 95 MPa to 110 MPa, and the columns 

manufactured from the grade C l 20 concrete with average cylinder strengths ranging from 

120 MPa to 129 MPa. The utilised concrete materials are described in detail in section 2.1.

The columns were longitudinally reinforced by 4 ribbed steel bars of grade 460 with a 

diameter of either 10 mm or 12 mm. Thus, the test columns had a volumetric ratio of 

longitudinal reinforcement, pg , of either 0.50% or 0.72%. This compares to the minimum 

ratio of 0.40% specified in BS 8110 (1985). The reason for stipulating a minimum 

requirement is to ensure that a concrete column can always resist a small amount of 

bending, as well as prevent brittle failure on the formation of the first tensile crack. 

Furthermore, as the self-equilibrating effects of creep and shrinkage of concrete shed 

compressive load to the reinforcement bars, the minimum reinforcement ratio ensures that 

these effects in themselves do not cause the bars to be severely stressed. Since the 

reinforcement bars were delivered in lengths of 6000 mm, it was necessary to splice the 

bars in the longer test columns. With a provided lap length of 450 mm, according to 

BS 8110 (1985) the splice can be assumed to be of full strength.
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The columns had a constant concrete cover of 20 mm, and were transversely reinforced by 

square perimeter hoops fabricated from either 8 mm or 10 mm plain steel bars of grade 250. 

The tie pitch was either 200 mm, 150 mm, 100 mm or 50 mm. Thus, the test columns had 

a volumetric ratio of transverse reinforcement, p , as determined with respect to the 

nominal concrete core, of between 0.50% and 3.14%. It should be noted that for six of the 

columns the tie pitch exceeded the maximum specified in BS 8110. The code of practice 

specifies a maximum pitch of 12 times the diameter of the compression bar in order to 

warrant against premature stability failure of the compression bars (BS 8110, 1985). The 

reason for choosing a higher pitch was to virtually eliminate any confining effects in these 

columns, although a risk of buckling of longitudinal bars was introduced.

In order to prevent premature failure occurring in the end regions of the columns during 

testing, these were locally strengthened by three closely spaced welded reinforcement grids.

Transport of the columns was facilitated by welding either two or four T16 lifting loops to 

the reinforcement cage. The number and distribution of lifting loops ensured that the 

maximum tensile stress developing in the concrete during the lifting and haulage process 

remained sufficiently low so as not to cause damage to the columns. It was estimated that 

a maximum tensile stress of 0.4 MPa developed during the lifting and haulage process, i.e. 

the stress remained less than 1/10 of the tensile strength of the concrete.

In the case of the test columns SH20U, SL15U, SH10U and SL05U, full strength anchorage 

of the reinforcement hoops was ensured by means of metal-arc welding. In the remaining 

eight columns, full strength anchorage was provided in accordance with BS 8110 (1985) 

by passing the bars round the main reinforcement bars through an angle of 90°, and 

continuing beyond for a length of 90 mm.
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Table 5.1 lists the test parameters for the individual columns, as well as a reference to the

relevant construction drawing.

Table 5.1
Details of columns included in the experimental investigation

Column Length Eccentricity Concrete Longitudinal
reinforcement

Transverse
reinforcement

Label Dwg
ref

L
(mm)

e y
(mm)

e
X

(mm)

f
c,cyl

(MPa)
Pg

(% )
f sy

(MPa)
s

(mm)
Ps

(% )
L

(MPa)

SH20U 5.1 3975 50 0 129 0.50 535 200 0.79 369

SL15U 5.1 3975 50 0 95 0.50 535 150 1.05 369

SHI 0U 5.1 3975 50 0 129 0.50 535 100 1.57 369

SL05U 5.1 3975 50 0 95 0.50 535 50 3.14 369

SH20B 5.2 3975 50 25 128 0.72 539 200 0.50 316

SL15B 5.2 3975 50 25 110 0.72 539 150 0.66 316

LL20U 5.3 7975 25 0 101 0.72 539 200 0.50 316

LH15U 5.3 7975 25 0 129* 0.72 539 150 0.66 316

LL10U 5.3 7975 25 0 102 0.72 539 100 1.00 316

LH05U 5.3 7975 25 0 123 0.72 539 50 1.99 316

LH10B 5.3 7975 25 13 120 0.72 539 100 1 .00 316

LL05B 5.3 7975 25 13 98 0.72 539 50 1.99 316

fc,Cyl : compressive strength of 100x200 mm cylinders.
* cylinder strength estimated from 100 mm cube strength.
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Bar m ark  1 Bar m ark  2 Bar mark  3

All d imensions in mm.
Figure 5.1

Test columns SH20U, SL15U, SH10U and SL05U
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Figure 5.2
Test columns SH20B and SL15B

Bar m ark  3
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0

Column: LL20U, 35 R 8 -2 -2 0 0  Links

R10 S ta rte r bar T1 2 Bar

Bar m ark 1 Bar mark 2 Bar m ark 3 Bar mark  4

All d imensions in mm.
Figure 5.3

Test columns LL20U, LH15U, LL10U, LH05U, LH10B and LL05B
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5.1.2 Testing Rig

In view of the large dimensions of the columns and the explosive failure mode of high 

strength concrete, for safety reasons it was decided to test the columns in a horizontal rather 

than a vertical position. Besides reducing the risk to the operating personnel, the horizontal 

position has the advantage of simplifying the monitoring of the possible development and 

propagation of cracks in the column during testing. Horizontal column testing was also 

employed in an earlier investigation at City University (Brant, 1984), and parts of the 

loading rig was available for the current investigation. Nevertheless, a considerable amount 

of work had to be put into the design and fabrication of a rig for testing the high strength 

concrete columns.

Figure 5.4 illustrates the loading rig as it was assembled for the testing of the 4 m long 

columns. The columns were tested in between two large reaction blocks approximately 

1 m above the floor of the laboratory. The reaction blocks were bolted to the floor, and 

connected by high yield MacAlloy tie bars. The tie bars not only enhanced the capacity of 

the testing rig, but also counteracted the tilt of the reaction blocks during the tests. Before 

testing the 8 m long columns, the loading rig was modified and rearranged so as to 

accommodate the extra length.

The load capacity of the rig configuration for the testing of the shorter and the longer 

columns, following the recommendations given in BS 5910 (1990), was calculated to be 

3500 kN and 3000 kN respectively. The relative little difference between the load capacity 

of the two configurations is explained by changes in the critical design check. Whereas 

web buckling in the front beam constituted the critical design check for the first rig 

configuration, strength failure of the MacAlloy bars constituted the critical design check 

for the second rig configuration. The calculation of the load capacities was based on a
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testing procedure in which the tie bars were tightened when the applied axial load reached 

600 kN. It was estimated, and indeed experimentally confirmed, that after tightening the 

bars 66% of all additional loading was sustained by these. The axial load was applied by 

means of a hydraulic jack with a capacity of 500 tonnes.

A PTFE-coated bridge bearing of the type Glacier GZ450 with a maximum load capacity 

of 4500 kN, was employed to provide the pinned end condition at the end of the column 

where the axial load was applied. The pinned end condition at the opposite end of the 

column was provided by the polished steel cap of a 500 tonnes load cell of the type 

Transducers 02-1810. Both the Glazier GZ450 bearing and the polished steel cap of the 

load cell had spherical tilt capability.

The testing of the columns in a horizontal position necessitated the construction of a new 

suspension rig to counter the self-weight of the test column. Figure 5.5 illustrates the 

suspension rig as assembled for the testing of the 4 m long columns. The columns were 

suspended from a portal frame using a system of carriers so as to be evenly supported at 

four points along their length. A Dartec M l000 servo-hydraulic actuator, with a capacity 

of 250 kN, and a Dartec M9500 controller was employed to automatically counterbalance 

the self-weight of the column during testing.

Figure 5.6 shows a general view of the experimental setup for the testing of the 8 m long 

columns. It can be seen that the testing of the longer columns incorporated the insertion of 

an additional layer of carrier beams in the suspension rig so as to obtain eight bearing points 

along the length of the column.
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Figure 5.4
Loading rig for the testing of the 4 m long columns
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Suspension rig for the testing of the 4 m long columns
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Figure 5.6
Experimental setup for the testing of the 8 m long columns
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5.1.3 Instrumentation and Testing Procedure

The applied axial load was measured by a 500 tonnes load cell, which, like all the other 

electronic instrumentation used in the experiments, was linked up to an Intercole data 

acquisition system.

The deflections of the test columns were measured by LVDTs. It was originally planned to 

be the standard procedure to measure both the horizontal and vertical deflections at seven 

evenly spaced stations along the length of the columns. However, during the testing of the 

first column, SL05U, four of the transducers were damaged, and as a consequence the 

horizontal deflections were only measured at three stations during the testing of the 

remainder of the shorter columns. At the time of testing the longer columns, two additional 

transducers became available. Thus, the horizontal deflections of the longer columns were 

measured at five points along their length. Figure 5.7 together with table 5.2 show the 

position of the displacement transducers. The LVDTs, similar to the load cell, were 

calibrated once and for all prior to commencing the experimental programme.

The concrete strains were recorded by 40 electrical strain gauges of the type PL-60-11, 

which were pasted onto the hardened column a few days before testing. As the PL-60-11 

gauge measures the apparent strain over a gauge length of 60 mm, it is well suited for 

measuring strains in a heterogenous material such as concrete. The surface strains were 

recorded at three sections located within the middle fifth of the column’s effective length, 

i.e. in the expected failure region, and at one section located at about the 1/4 division point 

of the column’s effective length. At each section, five gauges were positioned on either side 

of the column, so as to provide particularly detailed information about the strain 

distribution in the vertical, i.e. primary, bending plane. The five gauges were uniformly 

distributed along the vertical, with the outer gauges positioned 25 mm from the edges. The
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specific details regarding the positioning of the PL-60-11 gauges can be read from 

figure 5.8 in conjunction with table 5.2. It should be noted that the gauges numbered 

45 - 64 were pasted onto what will be referred to as the front face of the column, and the 

gauges numbered 65 - 80 onto what will be referred to as the rear face of the column.

Since spalling of the concrete cover and the development of tensile cracks was anticipated 

to render surface mounted gauges redundant during the later stages of testing, a total of 20 

supplementary strain measurements were made on the longitudinal steel reinforcement bars. 

The strains were recorded in the four reinforcement bars at five sections, of which four 

were located within the middle fifth of the column’s effective length. The gauges mounted 

on the longitudinal reinforcement bars, numbered 25 - 44, were always positioned mid-way 

between adjacent links.

All the test columns had strain gauges pasted onto three of the ties located within the 

middle fifth of the column’s effective length, and onto one tie located near the 1/4 division 

point of the column’s effective length. The strain gauges were always positioned at opposite 

ends of the bar diameters in order to allow for a separation of bending strains and axial 

strains. As described in section 3.4.2, it is the axial strains, and not the bending strains, 

which give rise to confinement. The strain gauges pasted onto the ties, numbered 1 - 24, 

were like the gauges pasted onto the longitudinal reinforcement bars of the type FLA-6-11. 

All internal gauges were covered by a thick layer of epoxy resin in order to protect them 

against environmental and mechanical damage. Figure 5.9 together with table 5.2 provide 

the specific details for the strain gauging of the longitudinal and transverse reinforcement 

bars.

In all tests, a laboratory overhead crane was used to lift the test column into the loading rig, 

where it was temporarily supported by four props. The hangers of the suspension rig were
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assembled, and the actuator operating in a displacement controlled mode was employed for 

the final alignment of the column in the loading rig. After the column was aligned, a small 

nominal axial force of 10 kN was applied in order to ensure that the column remained in 

position. The actuator was switched to a force controlled mode, and the force was adjusted 

so as to be 1 kN less than the self-weight of the test column. The LVDTs were positioned, 

and all the electronic measurement devices were linked up to the data acquisition system 

and initialised. During testing of the columns the drift of the actuator was observed to be 

about ±1 kN.

The test columns were loaded to failure at a rate of about 25 kN/min, which was achieved 

by manually adjusting the hydraulic flow to the 500 tonnes ram. After each load increment 

of approximately 50 kN, a scan of all the data channels was performed. On reaching an 

applied axial load of approximately 600 kN, the testing was temporarily paused in order to 

tighten the MacAlloy bars.
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5.2 Test Observations

This section provides a summary of the results obtained from testing 11 of the 12 full-scale 

high strength concrete columns included in the experimental programme. No test data was 

recorded for test column SL15U, as this column was severely damaged through accidental 

overloading prior to commencing the instrumented test.

5.2.1 Test Loads and Failure Modes

Table 5.3 lists the observed failure loads for the test columns. The failure loads ranged from 

1829 kN to 2796 kN, or when expressing these as percentages of the unconfmed squash 

loads from 28% to 57%. The squash loads were calculated from equation 3.33, in which 

the 150x300 mm cylinder strength was taken as 0.95 times the mean strength of the 

100x200 mm cylinders. The test results indicate that a reduction in the tie spacing enhanced 

the load capacity of the shorter columns, but had no such effect on the load capacity of the 

longer columns.

All the test columns failed explosively upon reaching their ultimate load. The failure 

manifested itselfinadensecloudof finely crushed concrete and a shower of larger concrete 

debris. Except for column SH20B, none of the columns developed tensile cracking or cover 

spalling so as to provide visual warning of imminent failure. In the case of test column 

SH20B, parts of the concrete cover spalled off upon reaching an axial load corresponding 

to about 96% of the column’s load capacity. The spalling occurred at a section located 

approximately 1/3 along the column’s effective length when measured from the rotational 

centre of the bridge bearing. When the applied load reached about 99% of the column’s 

load capacity, parts of the concrete cover at mid-length of the column also spalled off. 

However, the column eventually failed at the end-section where cover failure had initiated.
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Test column SL05U, like test column SH20B, failed at a section located approximately 1/3 

along the column’s effective length. The remaining test columns all failed in accordance 

with the symmetric nature of the test arrangement within the heavily instrumented region 

at mid-length.

Table 5.3
Failure loads for columns tested

Column Failure
load

Concrete Longitudinal
reinforcement

Squash
load

Name Pc,e

(kN)

f
c,cyl

(MPa)
Pg

( % )
f sy

(MPa)
P P /Pc,a c,e c,a

(kN)  ( - )

SH20U 2347 129 0.50 535 6666 0.35

SL15U - 95 0.50 535 4953 -
SHI 0U 2436 129 0.50 535 6666 0.37

SL05U 2796 95 0.50 535 4953 0.57
SH20B 1892 128 0.72 539 6677 0.28
SL15B 1899 110 0.72 539 5772 0.33
LL20U 1834 101 0.72 539 5320 0.35
LH15U 2485 129* 0.72 539 6727 0.40

LL10U 1937 102 0.72 539 5370 0.36
LH05U 1828 123 0.72 539 6426 0.28
LH10B 2125 120 0.72 539 6275 0.32
LL05B 2049 98 0.72 539 5169 0.40

fCjCyi : compressive strength of 100x200 mm cylinders. 
* Estimated from 100 mm cube strength.

From carefully studying the video footage recorded during the tests, a marked difference 

between the failure mode of the shorter and the longer columns could be noted. Whereas 

failure of the shorter columns appeared to be directly triggered by cover spalling on the 

concave side of the bent columns, the failure of the longer columns appeared to take place 

due to the loss of overall stability. With the exception of column SH20B, cover spalling 

always occurred within a second prior to the complete disintegration o f the section, and no
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changes in deflections or loading could be registered after the occurrence of cover spalling. 

When the longer columns reached their ultimate load, they suddenly began to deflect 

continuously until they failed in a clearly bent configuration. In this case the break-up of 

the critical section exhibited no distinct phases, but like the shorter columns no changes in 

deflections or loading could be registered in the short time elapsing between failure 

initiation and the complete break-up of the section.

The overall effect of decreasing the tie spacings was to reduce the volume of crushed core 

concrete, as well as to increase the inclination of the failure plane to the column axis. For 

the test columns with the smallest tie spacings of 50 mm, i.e. column SL05U, LH05U and 

LL05B, only a small amount of core concrete was lost due to crushing, and the failure plane 

was predominantly perpendicular to the column axis. Thus, the failure mechanism for these 

columns consisted primarily of rotations about the pinned ends of the column segments on 

either side of the failed section. These end rotations were sufficiently large to cause the two 

longitudinal reinforcement bars positioned at the top face of the column to snap during 

testing. Except for column SH20B and SL15B, i.e. the shorter columns tested with a biaxial 

load eccentricity, all the columns with tie spacings in excess of 50 mm developed a failure 

plane, or shear crack plane, inclined between 300 and 60° to the column axis. The inclined 

failure plane permitted the two column segments on either side of the failed section to slide 

over one another. Evidence of the sliding motion was apparent in the deformation of the 

two longitudinal reinforcement bars positioned at the convex face of the bent column, as 

well as in the extensive spalling of the concrete cover from this face of the column. In the 

special case of columns SH20B and SL15B, the failure plane was predominantly 

perpendicular to the column axis. However, in contrast to the three columns with tie 

spacings of 50 mm, failure of both of these columns was characterised by extensive 

crushing of core concrete. For all the tested columns the failure plane was noted to pass 

through mortar and coarse aggregates without bias.
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Figure 5.10 shows the failed section of column SH20U. The failure plane developed at an 

angle of approximately 450 to the column axis, and was bridged by a single reinforcement 

link. The longitudinal reinforcement bars had buckled, and much of the concrete cover had 

spalled off on all four faces of the column. Furthermore, a large volume of the column’s 

core concrete had been lost due to crushing.

The failure plane in column SH10U, see figure 5.11, formed at an angle of about 60° to the 

column axis, and was entirely confined to the space between two adjacent reinforcement 

ties. The extensive damage caused to the concrete cover on the top face of the column 

indicated the occurrence of the previously described failure mechanism of two column 

segments sliding over one another. However, the relative sliding had not progressed 

sufficiently to buckle the two longitudinal reinforcement bars positioned at the top face of 

the column. In contrast, both the reinforcement bars at the bottom face of the column, 

where a significant volume of core concrete had been lost due to crushing, had buckled.

The failure zone of column SL05U, see figure 5.12, was located at the instrumented section 

nearest to the bridge bearing, i.e. at z /L  = 0.31. Almost none of the core concrete was lost 

due to crushing, and the failure plane was predominantly perpendicular to the column axis. 

A large area of the concrete cover on the lower half of the column had spalled off, and both 

the longitudinal reinforcement bars exposed had buckled. The reinforcement bars 

positioned at the top face of the column had been pulled over during failure. This, together 

with the absence of cover spalling on the top face of the column, indicates that the 

underlying failure mechanism was of the previously described rotational type.

Like for column SL05U, post-failure inspection of column SH20B, see figure 5.13, showed 

that failure had involved the propagation of a vertical crack at the instrumented section
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nearest the bridge bearing. A large volume of core concrete had been crushed, and both of 

the longitudinal reinforcement bars located within the crushing zone had buckled. On all 

column faces, except the top face, extensive cover spalling was noted.

Column SL15B, see figure 5.14, was similar to column SH20B in nominally being 

subjected to biaxial loading conditions, and in failing along a plane which was 

predominantly perpendicular to the column axis. Failure of both the columns SH20B and 

SL15B involved a substantial loss of core concrete due to crushing. Flowever, in contrast 

to column SH20B, the cover spalling was limited to the rear and bottom face of the column, 

and one of the reinforcement bars had snapped.

The fracture plane of column LL20U, see figure 5.15, was inclined about 30° to the column 

axis, and was bridged by a single transverse reinforcement link. Loss of the concrete cover 

could be observed on all four faces of the column, but was particularly pronounced on the 

top and bottom face of the column. The main reinforcement bars had all buckled as a 

consequence of the sliding motion of the two column wedges.

In the case of column LH15U, see figure 5.16, the angle between the failure plane and the 

column axis was about 30°. The crack was bridged by two transverse reinforcement links, 

one of which had opened up during the failure process. All the longitudinal reinforcement 

bars had buckled, and a substantial amount of the concrete cover on the top and bottom face 

of the column had spalled off.

The shear crack in column LL10U (see figure 5.17) had an inclination of about 45 ° to the 

horizontal, and crossed a single reinforcement tie. The parts of the concrete cover that 

spalled off during the test came almost exclusively from the top and bottom face of the 

column. Both of the longitudinal reinforcement bars located at the bottom face of the
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column had buckled.

The failure zone of column LH05U, see figure 5.18, was characterised by a crack which 

was predominantly perpendicular to the column axis. Spalling of the concrete cover was 

almost exclusively isolated to the bottom face of the column. Both the longitudinal 

reinforcement bars located at the top face of the column had snapped. Of the 11 columns 

tested, LH05U was the only column for which neither of the two longitudinal bars located 

at the bottom face displayed signs of buckling.

The failure plane in column LH10B, see figure 5.19, was inclined at about 45° to the 

horizontal, but did not display the skewness expected from the biaxial loading conditions. 

A large area of concrete cover had spalled from the top and bottom face of the column, and 

all the longitudinal reinforcement bars had buckled. A single reinforcement link within the 

failure zone had been severed.

Column LL05B (see figure 5.20) failed along a plane which was principally perpendicular 

to the column axis. Both of the longitudinal reinforcement bars located at the top face of 

the column had been pulled over during testing. As expected from the biaxial loading 

conditions, the spalling of the concrete cover was primarily isolated to the bottom and front 

face of the column, and the longitudinal bar positioned at this edge had buckled. Similar 

to the other columns with 50 mm tie spacings, but in contrast to the columns with larger tie 

spacings, only a minor volume of the core concrete of column LL05B was lost due to 

crushing.
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Figure 5.10
Failed section of column SH20U

Figure 5.11
Failed section of column SH10U

Figure 5.12
Failed section of column SL05U
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Figure 5.13
Failed section of column SH20B

Figure 5.14
Failed section of column SL15B
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Figure 5.15
Failed section of column LL20U

Figure 5.16
Failed section of column LH15U

Figure 5.17
Failed section of column LL10U

- 5 . 2 8 -



Figure 5.18
Failed section of column LH05U

Figure 5.19
Failed section of column LH10B

Figure 5.20
Failed section of column LL05B
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LH15U, LL10U and LH05U one or more of the strain gauges, despite appearing to have 

functioned perfectly well, recorded compressive strains significantly out of line with the 

strains recorded by the remaining gauges in the set. The compressive strains recorded by 

the gauges 49 and 69 on column SH20B (figure 5.24), and gauge 64 on column LH05U 

(figure 5.29), are smaller than expected. Likewise, the compressive strains recorded by 

gauge 76 on column LH15U (figure 5.27) and gauge 57 on column LL10U (figure 5.28) are 

larger than expected. However, the effect on the calculated strain distributions of including 

these outliers was negligible.

The strain data also show that strain reversal occurred in all but one of the columns, and

that only during the testing of the columns SL05U, SH20B, SL15B, LL10U and LH05U

were tensile strains recorded. It was noted that the tensile strains agreed with a linear strain 

distribution for tensile strains up to about 0.5 mm/m, a value which incidentally is two to 

four times larger than the expected cracking strains. Only for column SL15B (figure 5.25),

and only during the very final phase of testing, did the measured tensile strains clearly

disagree with a linear strain distribution.

A x ia l  s tra in , s 3 , ( m m /m  ) A x ia l  s tra in , s  3 , ( m m /m  )

Figure 5.21
Strain profiles for test column SH20U
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Axial strain, 8 3 , ( mm/m ) Axial strain, 8 3 , ( mm/m )

Figure 5.22
Strain profiles for test column SH10U
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Figure 5.23
Strain profiles for test column SL05U

A x ia l  s tra in , 8 3 , ( m m /m  ) A x ia l  s tr a in ,  s  3 , ( m m /m  )

Figure 5.24
Strain profiles for test column SH20B
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Axial strain, s 3 , ( mm/m ) Axial strain, e 3 , ( mm/m )

Figure 5.25
Strain profiles for test column SL15B
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Figure 5.26
Strain profiles for test column LL20U

Axial strain, e 3 , ( mm/m ) Axial strain, 8 3 , ( mm/m )

Figure 5.27
Strain profiles for test column LH15U
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Axial strain, 8 3 , ( mm/m ) Axial strain, 8 3 , ( mm/m )

Figure 5.28
Strain profiles for test column LL10U

Axial strain, e 3 , ( mm/m ) Axial strain, s 3 , ( mm/m )

Figure 5.29
Strain profiles for test column LH05U
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Figure 5.30
Strain profiles for test column LH10B
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Axial strain, e 3 , ( mm/m ) Axial strain, 8 3 , ( mm/m )

Figure 5.31
Strain profiles for test column LL05B

Extreme fibre strains

Figures 5.32 - 5.42 show the extreme fibre strains near mid-length as a function of the 

applied axial load for each test column. Both load-strain diagrams derived from the data 

recorded by the external concrete strain gauges and from the data recorded by the internal 

steel strain gauges are shown in the figures. The four vertices of the cross-section, i.e. the 

extreme fibres, are identified by the labels BF (Bottom Front), BR (Bottom Rear), TF (Top 

Front) and TR (Top Rear) on the diagrams (see figures 5.6 and 5.9 for further details).

The extreme fibre strains were calculated for each load step by extrapolating the plane, 

given by equation 5.3, best fitting the strain data recorded at the cross-section in question.

e=So + Kx( x - x o) + Ky(y-yo) (5.3)

Thus, the strain parameters, eo , k x and Ky , were found by solving the following linear 

equations:
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In general, the load-strain diagrams derived from the data recorded by the external strain 

gauges agree well with those derived from the data recorded by the internal strain gauges. 

The differences can at least partially be ascribed to the fact that the two sets of strain data 

often did not originate from the exact same column section, though it is likely that the 

extreme fibre strains derived from the strain data recorded by the external gauges, in 

general, are the more accurate. The obvious reason is the larger sample size, combined with 

the fact that the proper working of the external gauges was not impaired by the occurrence 

of tensile cracking or cover spalling.

It is interesting that some of the test columns which were subjected to nominally identical 

loading conditions resulted in rather different load-strain diagrams.

The load-strain curves for column SH20U (figure 5.32) were observed to consist of three 

distinct phases. In the first phase the extreme fibre strains developed almost linearly with 

the applied axial load. This phase terminated upon reaching an axial load corresponding to 

about 77% of the column’s failure load, at which point the column suddenly began to yield. 

Soon after, the column regained a resistance to incremental loading comparable to that of 

the linear phase. During the final phase the strains developed at an increasing rate. The 

load-strain diagrams also show that the front of the column in general was more 

compressed than the rear.
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In the case of column SH10U (figure 5.33) the load-strain response remained nearly linear 

until the occurrence of failure. Throughout the test the column was subjected to an 

increasing amount of flexure in the horizontal plane, and at the time of failure a difference 

of up to about 0.5 mm/m existed between the extreme fibre strains observed on the front 

and rear side of the column.

Like for column SH20U, the load-strain diagrams for column SL05U (figure 5.34) display 

three distinct phases. The transition from nearly linear to yielding behaviour occurred at an 

axial load corresponding to about 58% of the column’s load capacity. At the time of failure 

the maximum compressive strain at the rear of the column exceeded the same strain at the 

front by approximately 0.6 mm/m.

In accordance with the biaxial loading conditions, the rear of column SH20B 

(figure 5.35) was observed to experience more compression than the front. However, with 

a maximum of about 0.5 mm/m, the difference between the strains observed on the two 

sides was comparable to that for the shorter columns expected to deflect in the vertical 

plane only. The load-strain diagrams for column SH20B display temporary yielding at an 

axial load to failure load ratio of approximately 0.85.

The load-strain response for column SL15B (figure 5.36) was, as expected, quite similar 

to that of column SH20B, though the strains associated with bending in the horizontal plane 

are somewhat more pronounced. For both columns, the strain distribution determined on 

the basis of the data recorded by the internal steel gauges has a larger maximum 

compressive strain than the distribution determined on the basis of the data recorded by the 

external concrete gauges.
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Although expected to deflect in the vertical plane only, the front of column LL20U 

(figure 5.37) was found to pick up significantly more compression than the rear. At failure, 

the maximum compressive strain at the front of the column was approximately 0.4 mm/m 

larger than the same strain at the rear. It can also be noted that the load-strain curves 

determined for column LL20U are nearly linear until the occurrence of failure.

The response of column LH15U (figure 5.38) displayed the three distinct phases, with the 

linear phase terminating upon reaching an axial load corresponding to about 93% of the 

column’s failure load. As it was the case for the majority of the longer columns, the 

straining associated with bending in the horizontal plane was relatively insignificant.

In the case of test column LL10U (figure 5.39), the sudden deviation from nearly linear 

load-strain behaviour took place upon reaching an axial load corresponding to about 88% 

of the column’s failure load.

The diagrams for column LH05U (Figure5.40) show that the load-strain response of this 

column softened somewhat upon reaching an axial load corresponding to approximately 

71% the column’s failure load. In contrast to the response of the columns LH15U and 

LL10U, the intermediate phase where the strains grow rapidly under a condition of little or 

no increase in the applied load was absent.

The load-strain response of column LH10B (figure 5.41) was nearly linear up to the 

occurrence of failure. The column was nominally subjected to biaxial eccentric loading, 

but the strain gradient associated with bending in the horizontal plane was observed to be 

significantly smaller than the similar gradient for column LL20U, though the latter column 

was expected to deflect in the vertical plane only.
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When based on the data recorded by the external strain gauges the extreme fibre strains at 

the opposite sides of column LL05B (figure 5.42) differed by up to 0.7 mm/m. In contrast, 

the same calculations based on the data recorded by the internal gauges indicated that the 

bending in the horizontal plane was negligible. Column LL05B, unlike the three other 

columns tested for biaxial compression, had a built-in eccentricity so as to be expected to 

experience more compression at its front than its rear side.

Axial strain, s 3 , ( mm/m ) Axial strain, s 3 , ( mm/m )

Figure 5.32
Extreme fibre strains for column SH20U
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Extreme fibre strains for column SH10U
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Figure 5.34
Extreme fibre strains for column SL05U

Figure 5.35
Extreme fibre strains for column SH20B

Figure 5.36
Extreme fibre strains for column SL15B
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Figure 5.37
Extreme fibre strains for column LL20U
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Extreme fibre strains for column LH15U
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Extreme fibre strains for column LL10U

- 5.41 -



A
xi

al
 lo

ad
, -

 P
 , 

( k
N

 ) 
A

xi
al

 lo
ad

, -
 P

 , 
( k

N
 ) 

A
xi

al
 lo

ad
,

Figure 5.40
Extreme fibre strains for column LH05U

Figure 5.41
Extreme fibre strains for column LH10B
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Extreme fibre strains for column LL05B

- 5.42 -



Table 5.4 lists the maximum and minimum value of strain at peak load for each of the 

tested columns. When determined on the basis of data recorded by the external strain 

gauges, the minimum strain was between -1.5 mm/m and -2.9 mm/m, and the maximum 

strain between -0.2 mm/m and 1.2 mm/m. Thus, for none of the tested high-strength 

concrete columns did the maximum compressive strain reach the limiting value of 

3.5 mm/m adopted in BS8110 (1985). Indeed all columns, except column SL05U, failed 

at a maximum compressive strain which was less than the peak strain, sc , predicted by 

equation 3.5 when assuming the concrete strength, f  , to be equal to 81% of the average 

strength of the 100><200 mm cylinders.

The maximum compressive strain determined on the basis of the data recorded by the strain 

gauges mounted on the longitudinal steel bars was larger for most of the columns than the 

maximum compressive strain determined on the basis of the data recorded by the strain 

gauges mounted on the surface of the column. Nevertheless, only for three of the test 

columns did the maximum compressive strain equal or exceed 3.5 mm/m, and of the 

remaining columns six failed at a maximum compressive strain which was less than the 

peak strain predicted by equation 3.5.

Table 5.4 also shows that the compressive strain at failure in general was less for the longer 

columns than for the shorter columns. According to the calculations based on data recorded 

by the concrete strain gauges, the shorter columns failed at an average maximum 

compressive strain of 2.5 mm/m, and the longer columns at an average maximum 

compressive strain of 1.9 mm/m. For the calculations based on data recorded by the steel 

strain gauges, the similar average strains were 3.2 mm/m and 2.0 mm/m respectively. 

Furthermore, the results indicate that an increase in the density of the steel reinforcement
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cage had the effect of increasing the ductility of the columns. The increased ductility 

manifested itself in a small increase in the absolute values of the maximum and minimum 

strains at column failure.

Table 5.4
Summary of extreme fibre strains at column failure

Column Failure
load

Concrete External strain 
gauges

Internal strain 
gauges

Name Pc
(kN)

f
(MPa)

8 c
( mm/m )

s,3 ,min
( mm/m )

s,3 ,max
( mm/m )

s,3 ,min
( mm/m )

e,3 ,max
( mm/m )

SH20U 2347 104.5 3.0 -2.6 0.1 -3.7 0.5

SL15U - - - - - - -

SH10U 2436 104.5 3.0 -2.1 -0.2 -1.7 -0.2

SL05U 2796 77.0 2.7 -2.9 1.2 -3.7 1.2

SH20B 1892 103.7 3.0 -2.4 0.2 -3.5 0.6

SL15B 1899 89.1 2.8 -2.4 0.7 -3.2 0.0

LL20U 1834 81.8 2.7 -1.5 0.0 -1.5 0.0

LH15U 2485 104.5 3.0 -1.9 0.3 -2.3 0.4

LL10U 1937 82.6 2.8 -2.0 0.3 -1.7 0.1

LH05U 1828 99.6 2.9 -2.0 0.4 -2.1 0.0

LH10B 2125 97.2 2.9 -1.5 0.2 -1.7 0.0

LL05B 2049 79.4 2.7 -2.6 0.5 -2.7 0.6

Longitudinal reinforcement

The strain gauges mounted on the longitudinal reinforcement bars showed that for all of the 

shorter columns, except for column SH1OU, at least one of the bars yielded in compression 

during testing. In the special case of column SH10U, the maximum compressive strain 

observed in the longitudinal reinforcement bars was 2.1 mm/m, which is 0.6 mm/m less 

than the average yield strain measured for the bars. For the longer columns, the maximum 

compressive strain lay between 1.5 mm/m, observed during the testing of column LL10U,
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and 2.5 mm/m, observed during the testing of column LH15U. Thus, the test observations 

indicate that for none of the longer columns had the main reinforcement reached its yield 

strength at the time of column failure.

As mentioned in section 5.1.3, the bar strains in each column were recorded mid-way 

between adjacent links at four evenly spaced sections within the middle fifth of the 

column’s effective length. Thus, the gradual development of buckling failure of a given bar 

would cause one of the strain gauges on the bar to measure strains deviating significantly 

from those measured by the adjacent gauges. Only in the case of column SH20U did the 

recorded bar strains suggest that buckling of the longitudinal reinforcement bars could have 

initiated column failure. Figure 5.43 show the strains recorded by a group of gauges during 

the testing of the columns SH20U and SL05U. On reaching an axial load corresponding to 

about 92% of the column’s failure load, the strains recorded by gauge 40 of column SFI20U 

began to deviate significantly from the strains recorded by the other gauges in the group. 

As illustrated by the diagram for column SL05U, such a deviation from the general trend 

was not observed during the testing of any of the other columns.

Figure 5.43
Straining of main reinforcement bars
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Transverse reinforcement

Figure 5.44 shows the relationship between the tensile strains and the axial load for one of 

the instrumented ties of column SL15B. The tensile strain in a given tie leg was calculated 

as the mean value of the strains recorded by a pair of gauges. The figure confirms that the 

tensile strain is largest in the lower tie leg parallel with the bottom face of the column, and 

that the strain achieves its maximum at the time of failure. The figure is at least 

qualitatively representative for all of the tested columns.
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Tie strain, e s , ( mm/m )

Figure 5.44
Typical straining of transverse reinforcement

For the columns SH20B, SL15B, LL20U, LL10U and SL05U, the maximum tensile strain 

was observed to develop in the instrumented tie located nearest to the bridge bearing. 

Otherwise, the maximum tensile strain was always detected in one of the instrumented ties 

located within the central region of the column. Flowever, a comparison of the tensile
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strains measured at similar points on the three ties located within the central region of a 

column revealed that the straining of neighbouring ties could be quite different. For the 

shorter columns a strain variation up to 1.2 mm/m, and for the longer columns a strain 

variation up to 0.5 mm/m, was observed.

The maximum tensile strain, es max , measured in the transverse reinforcement of each test 

column can be read in table 5.5. It is interesting that for none of the test columns did the 

transverse reinforcement reach its yield strain prior to column failure. The ratio between 

the maximum tensile strain and the yield strain varied from 0.20 to 0.90, with an average 

value of 0.60. A weak tendency of the strain ratio to increase with decreasing column 

length, and with increasing concrete grade, could be noted. In contrast, the tie spacings did 

not appear to affect the ratio between the observed maximum tensile strain and the yield 

strain.

Table 5.5
Maximum tensile strain in links

Column Failure
load

Concrete Transverse
reinforcement

Name P
C

(kN)
f .

c ,c y l

(MPa)
8 8 8

s y  s , m a x  s

( mm/m ) ( mm/m )
/e, m a x  s y  

( - )

SH20U 2347 129 1.8 1.5 0.84
SL15U - 95 1.8 - -
SH10U 2436 129 1.8 1.6 0.90
SL05U 2796 95 1.8 0.7 0.41

SH20B 1892 128 1.5 1.2 0.77
SL15B 1899 110 1.5 1.0 0.69
LL20U 1834 101 1.5 0.3 0.20
LH15U 2485 129* 1.5 1.3 0.85
LL10U 1937 102 1.5 0.4 0.25
LH05U 1828 123 1.5 1.2 0.77
LH10B 2125 120 1.5 0.4 0.29
LL05B 2049 98 1.5 1.0 0.67

fCjCyi : compressive strength of 100x200 mm cylinders. 
* Estimated from 100 mm cube strength.
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5.2.3 Load-Deflection Behaviour

The following summarises the load-deflection behaviour of the 11 full-scale columns tested 

during the experimental investigation.

Mid-height deflections

Figures 5.45 and 5.46 show the graphs for the mid-height deflections recorded for the 

shorter and longer columns respectively. The vertical deflections are assumed to be positive 

in the direction pointing from the bottom towards the top of the column, and the horizontal 

deflections in the direction pointing from the rear towards the front (see figure 5.6 for 

details).

Figure 5.45
Mid-height deflections of shorter columns

Figure 5.46
Mid-height deflections of longer columns
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The curves for the vertical mid-height deflections indicate that, the columns initially 

responded in a stiffening fashion to the applied axial load. Furthermore, with the exception 

of the columns SH10U and LL20U, the response suddenly softened significantly at a point 

within the second half of the loading process. It can be seen that the overall load-deflection 

response of the columns manufactured with biaxial end-eccentricities was much softer than 

the response of the similar columns manufactured with uniaxial end-eccentricities.

In the case of the shorter columns, the vertical mid-height deflection at failure of column 

SH10U was a very modest 6 mm, whereas the remaining of the shorter columns failed at 

deflections between 15 mm and 24 mm. In the case of the longer columns, the mid-height 

deflection at failure of column LL20U was 42 mm, and as such, was significantly less than 

the deflections recorded for the remaining of the longer columns. The vertical mid-height 

deflection at failure of these ranged from 62 mm to 80 mm.

It is suspected that both the experimental setup for the shorter and the longer columns 

promoted a bias towards horizontal deflections in the negative direction. Indeed, the 

horizontal mid-height deflections recorded for two of the three shorter columns nominally 

tested under a condition of uniaxial eccentric compression were larger than those recorded 

for the two columns nominally tested under a condition of biaxial eccentric compression. 

Likewise, the horizontal mid-height deflections registered during the testing of the longer 

columns LL20U and LL10U were larger than those registered during the testing of the 

column LH10B. However, the quantifiable manifestation of the bias appeared to be rather 

erratic. For example, only during the very final stage of loading were the deflections 

recorded for column LL05B larger than those recorded for the columns LL20U and LL10U, 

and this despite the fact that column LL05B inadvertently had been manufactured with
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inverted eccentricities so as to promote horizontal deflections in the negative rather than 

the positive direction.

By comparing the recorded mid-height deflections (figures 5.45 and 5.46) with the extreme 

fibre strains (figures 5.32 to 5.42), or rather with the curvatures associated with the extreme 

fibre strains (figures 5.47 and 5.48), a few apparent conflicts between the test observations 

could be identified. For example, the soft load-deflection response observed for column 

SL15B when compared to the remaining of the shorter columns is not reflected in the 

curvature diagrams. The vertical mid-height deflections of the columns SH20U, SH10U 

and SL05U were for axial loads between 500 kN and 1500 kN almost stationary, yet the 

recorded strains indicate continuing bending in the vertical plane. The horizontal 

deflections recorded for column SL05U, and to a large extent also those recorded for 

column SFI20B, were negative. Nevertheless the measured strains suggest that these 

columns primarily deflected in the positive direction. Finally, the horizontal mid-height 

deflection curves for column LL20U and column LL10U were almost identical, yet the 

measured strains suggest that column LL10U experienced significantly less bending in the 

horizontal plane than column LL20U.

Figure 5.47
Mid-height curvatures of shorter columns
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Figure 5.48
Mid-height curvatures of longer columns

Modified mid-height deflections

Control measurements taken directly on the loading rig during the testing of the longer 

columns showed the rig to undergo significant movements. However, since the 

experimental programme at the time of taking the control measurements was halfway to 

completion, and since it was subjected to a combination of tight financial and time 

constraints, it was decided not to introduce major alteration to the test arrangement or to 

redo any of the tests. Instead, the extensive displacement data collected during the tests 

were to be used in an attempt to filter out rigid body displacements.

As seen from figures 5.49 - 5.59, the deflections measured along the length of the test 

columns indicate that the boundary condition of zero displacements at the normalised 

locations of z /L  = 0 and z /L  = 1 was often violated during testing. It can also be seen 

from the figures that the maximum horizontal deflection was often measured away from 

the mid-point of the column.
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Figure 5.49
Deflected shape of column SH20U
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Deflected shape of column SH10U
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Deflected shape of column SL05U
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Figure 5.52
Deflected shape of column SH20B
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Figure 5.53
Deflected shape of column SL15B
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Figure 5.54
Deflected shape of column LL20U
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Deflected shape of column LH10B
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Figure 5.59
Deflected shape of column LL05B

The least square method was employed to fit equations 5.5 and 5.6 to the recorded 

deflection data. Thus, for each load step, the deformed shape of a test column was 

approximated by a simple sinusoidal function in each of the two bending planes.

z  z  = a, + b, —  + c. s i n ( 7 i — ) 
1 1 L 1 L (5.5)

z  . z  = a, + b, —  + c, s i n  ( 71—  )
2 2 L 2 l

(5.6)

Using this procedure for filtering out rigid body displacements, it was estimated that the 

pinned ends moved upwards by up to 11 mm during testing of column SH20B, and by up
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to 9 mm during testing of column SL15B. For the remainder of the shorter columns, the 

pinned ends were estimated to have moved upwards by less than 4 mm. In the case of the 

longer columns, the pinned ends were estimated to have moved upwards by between 11 

mm and 24 mm, with an average of 18 mm at the end of the bridge bearing and of 21 mm 

at the end of the load cell.

Figures 5.60 and 5.61 illustrate the mid-height deflections of the test columns after 

modifying the results for rigid body displacements. It can be noted that the modified 

deflection diagrams go some way in eradicating the previously described discrepancies 

existing between deflections and strains. Furthermore, the initial stiffening in the load- 

deflection response observed for all of the columns has almost entirely disappeared.

Table 5.6 lists the measured mid-height deflections at failure for each of the test columns, 

and compares these to their modified counterparts. It can be noted that for the shorter 

columns the mid-height deflections modified for rigid body displacements are up to about 

8 mm less, and for the longer columns up to about 23 mm less, than those measured in the 

tests. Despite the modifications, the vertical deflections for the longer columns remained 

significantly larger than those for the shorter columns. Furthermore, the deflection data 

suggest that a reduction in the tie spacing, in general, had the effect of enhancing the pre-

peak ductility of the columns.

Figure 5.60
Modified mid-height deflections of shorter columns

-5.56-



3000- 

'  S p<;no -I LH10B► * ZJUU b 

onnn — X 20t
r / ^ L n  u u  

----- I I OSR
rs ZUUU ”

cu :
1 1cnn—

^  L.H051J
rs 1 JUU'O :cSO—1 1nnn — A .10U

1UUU “ 
aj -

’S i.> <nn _ mg col's - 
L=0.515

<; OUU ™

n —

La
z/

u 1 II 1
- 1 0  0  10 2 0  3 0  4 0  5 0  6 0  7 0  8 0

Vertical deflections, v , ( mm )

Figure 5.61
Modified mid-height deflections of longer columns

Table 5.6

Column Failure
load

Measured
deflections

Modified
deflections

Name Pc

(kN )
Vmid

( mm )
Umid 

( mm )
Vmid

( mm )
Umid 

( mm )

SH20U 2347 15.1 -4.9 15.8 3.5

SL15U - - - - -

SH10U 2436 6.1 -6.3 6.3 -1.1

SL05U 2796 21.9 -0.5 22.4 1.9

SH20B 1892 23.5 3.7 15.5 4.9

SL15B 1899 22.1 5.6 14.4 3.3

LL20U 1834 41.9 -13.4 28.7 -5.8

LH15U 2485 76.3 -5.5 57.3 -2.2

LL10U 1937 62.3 -13.8 45.1 -5.6

LH05U 1828 77.2 -3.2 56.4 -0.9

LH10B 2125 65.2 8.0 42.7 8.4

LL05B 2049 79.6 -17.1 57.7 -15.8

Deflections taken at position z /L  = 0.530 for shorter 
columns, and atz/L  = 0.515 for longer columns.
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5.3 Analysis of Test Results

This section describes the numerical analysis of the full-scale columns. The numerical 

results are compared with the test results, and possible explanations for differences are 

investigated.

5.3.1 Expected Behaviour of Test Columns

The structural behaviour of the test columns was computed using the numerical method 

described in section 4.2.2. The columns were divided into 16 segments along their length, 

and their cross-sections were modelled by an 8x8 mesh of quadrilateral concrete elements, 

into which four point elements representing the longitudinal steel reinforcement bars were 

embedded. Figure 5.62 illustrates the adopted meshing. Three material models were 

employed in defining the cross-sections. The first material model described the stress-strain 

behaviour of the unconfined cover concrete, the second the stress-strain behaviour of the 

confined core concrete, and the third the stress-strain behaviour of the steel reinforcement. 

The essential material properties of the two concrete components of each test column are 

listed in table 5.7.

f i
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Figure 5.62
Modelling of cross-sections
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Table 5.7
Material properties of concrete components

Column Cover concrete Core concrete

Name fc E
C ec P 0 l , e f f

f
CC

f  / f
CC c 8cc s c A

(MPa) (GPa) (mm/m) ( - ) (MPa) (MPa) ( - ) (mm/m) ( - )

SH20U 104.5 44.5 3.0 130.1 0.0 104.5 1.00 3.0 1.00

SL15U 77.0 40.6 2.7 32.9 0.2 77.9 1.01 2.8 1.02

SH10U 104.5 44.5 3.0 130.1 0.5 107.5 1.03 3.1 1.04

SL05U 77.0 40.6 2.7 32.9 1.5 86.9 1.13 3.3 1.22

SH20B 103.7 44.4 3.0 125.0 0.0 103.7 1.00 3.0 1.00

SL15B 89.1 42.4 2.8 60.2 0.1 89.7 1.01 2.8 1.01

LL20U 81.8 41.3 2.7 41.8 0.0 81.8 1.00 2.7 1.00

LH15U 104.5 44.5 3.0 130.1 0.1 105.1 1.01 3.0 1.01

LL10U 82.6 41.4 2.8 43.5 0.3 84.4 1.02 2.9 1.04

LH05U 99.6 43.8 2.9 101.8 0.8 105.3 1.06 3.1 1.08

LH10B 97.2 43.5 2.9 90.3 0.3 99.1 1.02 3.0 1.03

LL05B 79.4 41.0 2.7 37.1 0.8 85.0 1.07 3.0 1.12

The unconfined concrete strength, f  , was taken as 81% of the mean strength of the 

100x200 mm cylinders, and the values for the modulus of elasticity, Ec , the peak strain, 

sc , and the softening parameter, [3 , were determined using equation 3.3, 3.5 and 3.13 

respectively. The maximum effective confining pressure, - o ,  eff , was calculated in 

accordance with the method described in section 3.4.2, and the stress-strain curves were 

generated by the computational model described in section 3.4.3. In the case of column 

SH05U, the compressive strength of the confined core concrete, f  , was estimated to 

exceed the unconfined concrete strength by 13%. For the remaining columns, the effect of 

the provided confinement on the strength and peak strain of the core concrete was estimated 

to be either small or, in the case of the columns SH20U, SH20B and LL20U, non-existent. 

The stress-strain behaviour of the longitudinal reinforcement bars was idealised employing 

an elastic perfectly plastic material model.
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Table 5.8 gives a comparison of the experimental and computed results for failure loads and 

corresponding vertical mid-height deflections. It can be noted that the columns, in general, 

failed at a significantly higher load than expected. The ratio of test failure load to computed 

failure load varied from 1.11 to 2.22, with an average of 1.30 for the shorter columns, and 

an average of 1.96 for the longer columns. These results should be seen in the light of 

section 4.3, in which it was demonstrated that it is reasonable to expect the numerical 

model to predict the failure loads to within an accuracy of 10%. The mid-height deflections 

at failure were significantly overestimated for the shorter columns and, with the exception 

of column LL20U, underestimated for the longer columns.

Table 5.8
Comparison of experimental and computed results - failure loads 

and corresponding vertical mid-height deflections
Column Experimental Analytical 

excl. confinement
Analytical 

incl. confinement

Name Pc,e
(kN)

y *max,e
( mm )

Pc,a
(kN)

Vmax, a
( mm )

Pc,a
(kN)

Vmax, a
( mm )

P /P  Vc,e c,a I 
( - )

/vmax,e max, a 
( - )

SH20U 2347 15.8 1950 31.8 1950 31.8 1.20 0.50

SL15U - - 1617 30.3 1617 30.4 - -

SHI 0U 2436 6.3 1950 31.8 1950 32.8 1.25 0.19

SL05U 2796 22.4 1617 30.3 1617 30.0 1.73 0.75

SH20B 1892 15.5 1710 29.4 1710 29.4 1.11 0.53

SL15B 1899 14.4 1559 27.4 1559 27.3 1.22 0.53

LL20U 1834 28.7 1048 41.4 1048 41.4 1.75 0.69

LH15U 2485 57.3 1151 43.1 1151 43.1 2.16 1.33

LL10U 1937 45.1 1052 41.8 1052 41.6 1.84 1.08

LH05U 1828 56.4 1130 41.8 1131 43.1 1.62 1.31

LH10B 2125 42.7 995 38.2 995 36.3 2.14 1.18

LL05B 2049 57.7 921 36.0 921 36.3 2.22 1.59

Mean 1.66 0.88

Standard deviation 0.41 0.44

* Deflections modified for rigid body displacements.
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Interestingly, the results from the numerical analysis suggest that the benefits of passive 

confinement do not carry through to the structural level. This can partly be explained by the 

structural influence of the unconfined concrete cover outweighing the beneficial effect that 

the confinement has on the stress-strain behaviour of the core concrete.

Figures 5.63 and 5.64 show the relationships between the mid-height deflections and the 

axial load for the shorter and longer columns respectively. It can be noted that the shape of 

the computed deflection curves is quite different from the shape of the curves obtained from 

the tests (figures 5.60 and 5.61). Whereas all the computed deflection curves are of the 

classical concave shape, i.e. the deflections develop at an increasing rate throughout 

loading, the test curves are in general characterised by distinct phases.

Furthermore, the figures show that the deflections in the vertical plane calculated for the 

columns subjected to biaxial eccentric compression, i.e. columns SH20B, SL15B, LH10B 

and LL05B, are not much different from the deflections calculated for the similar columns 

subjected to uniaxial eccentric compression. In this context, it should be recalled that the 

experimental load-deflection curves not modified for rigid body displacements (figures 5.45 

and 5.46), suggest that the biaxial load eccentricity had the effect of significantly reducing 

the initial stiffness of the columns. However, as described in section 5.2.3, this behavioural 

difference was almost eliminated by the adopted procedure for filtering out rigid body 

displacements.
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Figure 5.63
Computed mid-height deflections for shorter columns

Figure 5.64
Computed mid-height deflections for longer columns

Figures 5.65 and 5.66 show the computed relationship between the extreme fibre strains 

and the applied axial load for four of the test columns made from the grade Cl 20 concrete. 

The illustrated load-strain diagrams cover all the column lengths and nominal loading 

conditions employed in the experimental programme. The diagrams for the remaining test 

columns can be approximated by load scaling. In contrast to the load-strain curves 

determined on the basis of the experimental data, see figures 5.32 - 5.42, the computed 

curves are smoothly curved, and contain no sudden or reversed changes in the rate of 

straining.
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Axial strain, s3 , ( mm/m )

Figure 5.65
Computed extreme fibre strains for shorter columns

Figure 5.66
Computed extreme fibre strains for longer columns

The extreme fibre strains at column failure, as determined from the numerical analysis and 

from the test data recorded by the external concrete strain gauges, can be read from 

table 5.9. It can be noted that, for the shorter columns nominally subjected to uniaxial 

eccentric compression the maximum compressive strains predicted by the numerical 

analysis are in good agreement with the test results. However, according to the numerical 

analysis the neutral axis was located near the centre of the cross-section at failure, whereas, 

except for column SL05U, the test results indicate that the neutral axis was located near 

the edge of the cross-section. For the shorter columns customised for biaxial eccentric
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compression testing the computed extreme fibre strains are much larger than those derived 

from the test data. In the case of the longer test columns the numerical analysis consistently 

underestimated the maximum compressive strain, and somewhat overestimated the 

maximum tensile strain. As a consequence, the location of the neutral axis was computed 

to be nearer the centre of the cross-section at failure than indicated by the test results. As 

was the case for the shorter columns, the numerical results for the columns which were 

nominally tested under a condition of biaxial eccentric compression showed least 

agreement with the experimental results for the longer columns as well.

Table 5.9
Comparison of experimental and computed results - extreme fibre strains

at column failure
Column Experimental* Analytical

Name Pc
(kN)

£, .3, min
( mm/rn )

s ,3 ,max 
( mm/m )

Pc
(kN)

s ,3 ,min
( mm/m )

s ,3 ,max
( mm/m )

SH20U 2347 -2.6 0.1 1950 -2.7 2.1

SL15U - - - 1617 -2.6 2.0

SHI OU 2436 -2.1 -0.2 1950 -2.7 2.1

SL05U 2796 -2.9 1.2 1617 -2.6 2.0

SH20B 1892 -2.4 0.2 1710 -3.9 3.8

SL15B 1899 -2.4 0.7 1559 -3.4 3.1

LL20U 1834 -1.5 0.0 1048 -1.1 0.4

LH15U 2485 -1.9 0.3 1151 -1.2 0.5

LL10U 1937 -2.0 0.3 1052 -1.1 0.4

LH05U 1828 -2.0 0.4 1130 -1.1 0.4

LH10B 2125 -1.5 0.2 995 -1.4 0.9

LL05B 2049 -2.6 0.5 921 -1.4 0.8

* Based on data from external strain gauges
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5.3.2 Supplementary Investigation

A number of possible explanations for the rather poor correlation between the computed 

and observed results were considered. The influence on the computed results of ignoring 

the tensile strength of concrete and possible frictional forces developing in the spherical tilt 

joints at the column supports, and of underestimating the compressive strength of concrete 

was insufficient to explain the rather poor correlation. It is believed that the single most 

important reason for the poor correlation was that the eccentricity by which the axial load 

was applied reduced during testing.

Tensile strength of concrete

The influence of a non-zero tensile strength of concrete on the structural response was 

computed for test columns SH20U and LL20U. The direct tensile strengths were, in 

accordance with the CEB Model Code 90 (1990), estimated to 90% of the split cylinder 

strengths. Thus, the grade C l20 concrete was assumed to have a tensile strength of 

6.6 MPa, a corresponding peak strain of 0.15 mm/m, and an ultimate tensile strain of 

0.20 mm/m. The grade C100 concrete was assumed to have a tensile strength of 5.5 MPa. 

Figure 5.67 illustrates the stress-strain curves for concrete employed in the numerical 

analysis.

As seen from table 5.10, the inclusion of the tensile strength of concrete raised the 

computed axial load capacity of columns SH20U and LL20U by a modest 26 kN and 

49 kN respectively. Thus, the potential influence of the tensile concrete strength is far 

from being sufficient to explain the differences of 397 kN and 786 kN existing between the 

test failure loads and computed failure loads. Furthermore, figure 5.68 shows that the 

inclusion of the tensile strength has no effect in improving the resemblance of the computed 

load-strain curves with those obtained from the tests. The test curves represent the average
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strains on the top and bottom faces of the columns at mid-height, and were determined on 

the basis of the readings from the externally mounted strain gauges.

Figure 5.67
Assumed stress-strain behaviour of concretes

Table 5.10
Computed effect of non-zero tensile concrete strength on failure loads

and deflections
Column Experimental Analytical Analytical

excl. tension incl. tension

Name Pc,e y  *
max,e P c,a Vmax, a P c,a v P /P v /vmax, a c,e c,a max,e max, a

(kN) ( mm ) (kN) ( mm ) (kN) (mm)  ( - )  ( - )

SH20U 2347 15.8 1950 31.8 1976 32.1 1.19 0.49

LL20U 1834 28.7 1048 41.4 1197 43.0 1.53 0.67

* Deflections modified for rigid body displacements.
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Figure 5.68
Computed effect of non-zero tensile strength on extreme strains
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Friction forces developing at the pinned ends

The manufacturer’s data sheet states that the GZ450 bridge bearing has a coefficient of 

friction of 0.005. Thus, as the centre of rotation was 412 mm away from the PTFE coated 

contact faces of the bearing, the resisting moment caused by the friction forces can be 

estimated to have an effect equivalent to a 2 mm ( 0.005 -P -412 mm / P ) reduction in the 

load eccentricity. The spherical radius of the tilt components of the load cell had been 

measured to 181 mm, but no data existed regarding the coefficient of friction for the 

polished high strength steel. However, it is reasonable to assume that a 5 mm reduction in 

the load eccentricity would provide an upper limit for the possible effect that the friction 

forces could have played on the structural response of the test columns.

As seen from table 5.11, a 5 mm reduction in the load eccentricity raised the axial load 

capacity of column SH20U by 284 kN, and the axial load capacity of column LL20U by 

149 kN. While these increases are significant, it seems unlikely that friction alone could 

have been responsible for the test loads being much larger than expected. Figure 5.69 

illustrates the effect of the friction forces on the computed load-strain behaviour of the two 

test columns. It is noticeable that while including the friction forces had the effect of 

improving the overall correlation of the computed strains with the test strains, it had little 

effect on the ability of the numerical model to accurately predict the tensile strains.

Table 5.11
Computed effect of friction forces on failure loads and deflections

Column Experimental Analytical 
excl. friction

Analytical 
inch friction

Name P v *c,e max,e P Vc,a max, a Pc,a Vmax,a P c,e/ P c,a v /vmax,e max, a
( kN ) ( mm ) (kN)  (mm) (kN) (mm)  ( - ) ( - )

SH20U 2347 15.8 1950 31.8 2234 30.2 1.05 0.52

LL20U 1834 28.7 1048 41.4 1197 43.0 1.53 0.67

* Deflections modified for rigid body displacements.
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Figure 5.69

Computed effect of friction forces on extreme strains

Underestimated concrete strength

All the numerical work carried out so far has been based on the assumption that the 

unconfined concrete strength of the full-scale columns could be set equal to 0.85 times the 

strength of 150x300 mm cylinders. This conversion coefficient was not experimentally 

verified in the present investigation, and as mentioned in section 3.1.2 it is often larger for 

high strength concrete than for normal strength concrete. In order to further investigate the 

consequences of underestimating the compressive concrete strength on the structural 

behaviour of the columns, the columns SH20U and LL20U were re-analysed employing the 

stress-strain curves given in figure 5.70. These stress-strain curves were generated on the 

basis of the compressive concrete strength being equal to 0.95 times the average of the 

measured 100x200 mm cylinders strengths, and as such they represent a situation where 

environmental factors, such as the concrete compaction, curing conditions and the slower 

rate of loading, have negligible influence on the strength of the full scale columns.

As seen from table 5.12, the increased concrete strength raised the computed axial load 

capacity of the short and the long column by a modest 171 kN and 68 kN respectively. 

Furthermore, the analysis based on the higher concrete strengths failed to improve capturing 

the observed development in the tensile strains, see figure 5.71. Thus, it appears that, the
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large discrepancy between the observed and expected column behaviour could only partly 

be explained by the concrete strength being higher than originally estimated.

Figure 5.70
Assumed stress-strain behaviour of concrete

Table 5.12
Computed effect of underestimated concrete strength on failure loads

and deflections
Column Experimental Analytical Analytical

inch reduction excl. reduction

Name P v *c,e max,e Pc,a Vmax, a Pc,a Vmax, a P /Pc,e c,a v /vmax,e max, a
( kN ) ( mm ) (kN) ( mm ) (kN) ( mm ) ( - ) ( - )

SH20U 2347 15.8 1950 31.8 2121 42.2 l. i i 0.37

LL20U 1834 28.7 1048 41.4 1116 41.8 1.64 0.69

* Deflections modified for rigid body displacements.
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Figure 5.71
Computed effect of underestimated concrete strength on extreme strains
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Reduced end-eccentricities

It is believed that the large difference between the observed and the expected behaviour of 

the test columns was caused primarily by non-stationary boundary conditions, which had 

the effect of reducing the load eccentricity during testing. Whether this was caused by crude 

end details or insufficient stiffness, or anchorage, of the loading rig remains unknown. 

However, a similar testing arrangement was apparently employed successfully in an 

earlier investigation of normal strength concrete columns carried out at City University 

by Brant (1984).

Figure 5.72 illustrates the numerically obtained load-strain behaviour of the columns 

SH20U and LL20U for different load eccentricities. The graphs suggest that the actual load 

eccentricity at failure of column SH20U may have been about 10 mm less than the nominal 

eccentricity, and that the actual load eccentricity at failure of column LL20U may have been 

about 20 mm less than the nominal eccentricity.

Figure 5.72
Computed effect of load eccentricity on extreme strains
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5.4 Summary

This chapter described an experimental investigation, carried out at City University, into 

the structural performance of slender high strength concrete columns subjected to eccentric 

compression. Special attention was given to the effect of the distribution of the hoop 

reinforcement.

The columns were tested in a horizontal position in a rig built for the purpose, and with the 

exception of column SH20B all failed explosively without visible signs of warning. From 

studying the video footage, it was concluded that failure of the 4 m long columns was 

initiated by spalling of the concrete cover, and failure of the 8 m long columns by a sudden 

loss of overall stability.

Post failure inspections revealed that a reduction in the tie spacings had the effect of 

increasing the inclination of the failure plane to the column axis as well as reducing the 

volume of crushed core concrete. The columns with tie spacings of 50 mm failed along a 

plane which was nearly perpendicular to the column axis, and the columns with the larger 

tie spacings of 100 - 200 mm along a plane inclined 300 - 60 ° to the column axis. Thus, the 

failure mechanism for the columns with the larger tie spacings was characterised by the two 

column segments on either side of the failed section sliding over each other, and the failure 

mechanism for the columns with the smallest tie spacings by a rotation about the pinned 

ends of these. The end-rotations were sufficiently large to cause both of the longitudinal 

reinforcement bars located at the convex side of the bent columns to snap.

The test loads ranged from 1829 kN to 2796 kN, and indicate that a reduction in the tie 

spacings had some effect on increasing the load capacity of the shorter columns. This was 

not the case for the longer columns. The ratio between the measured failure load and the
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failure load computed on the basis of the numerical model varied from 1.11 to 2.22, with 

an average 1.30 for the shorter columns and 1.96 for the longer columns.

A total of 60 strain gauges, a combination of 60 mm gauges mounted on the concrete 

surface and 5 mm gauges mounted on the steel reinforcement bars, was employed to 

acquire information about the longitudinal strains at various sections of the columns. The 

strains measured by the two types of gauges were in good agreement with each other, and 

confirmed that the standard assumption of plane sections remaining plane applied to the 

high strength concrete columns.

For most of the columns the relationship between the extreme fibre strains and the applied 

axial load was observed to display three distinct phases. In the first phase the extreme fibre 

strains developed almost linearly with the applied load. The linear phase terminated at a 

point well within the second half of the loading regime, when the strains suddenly began 

to develop under a condition of little, or no, increase in the applied load. However, after a 

short while the column regained a resistance to incremental loading comparable to that of 

the linear phase. In the special case of the columns SH10U, LL20U, LH10B and LL05B the 

load-strain curves displayed no distinct phases, as the extreme fibre strains developed 

almost linearly with the applied axial load until the occurrence of failure.

The maximum compressive strains at mid-height of the columns ranged from 2.1 mm/m 

to 2.9 mm/m, with an average of 2.5 mm/m, in the case of the shorter columns, and from 

1.5 mm/m to 2.6 mm/m, with an average of 1.9 mm/m, in the case of the longer columns. 

These strains, determined on the basis of the strains measured by the external concrete 

gauges, suggest that the maximum compressive strain at failure is less than the 3.5 mm/m 

adopted in BS 8110. Furthermore, an increase in the density of the steel reinforcement cage
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was observed to have some effect in improving the ductility of the columns.

The transverse strains measured during the tests indicate that for none of the columns did 

the tie steel yield prior to failure. The maximum ratio between the tensile strains measured 

in the tie legs and the yield strain varied from 0.20 to 0.90, with an average of 0.60. The tie 

strains did not appear to be correlated to the tie spacings.

Deflections in both the vertical and horizontal directions were measured by LVDT’s 

positioned at regular intervals along the length of the columns. From examining the 

distributed deflection data it was concluded that the pinned ends of the test columns often 

moved substantially during testing. Supporting evidence for this was provided by the 

displacement measurements taken directly on the loading rig during the final stages of the 

experimental programme. A modification of the experimental results for rigid body 

displacements was shown to improve the degree of compatibility between the strain and the 

displacement data. At column failure the vertical mid-height deflections for the shorter 

columns ranged from 6 mm to 24 mm, and for the longer columns from 42 mm to 80 mm.

In general, rather large discrepancies existed between the extreme fibre strains predicted 

by the numerical model and those determined on the basis of the test data. For the shorter 

columns the maximum compressive strain was in average overestimated by 0.6 mm/m and 

the tensile strain by 2.2 mm/m. The maximum compressive strain in the longer columns 

was on average underestimated by 0.7 mm/m, and the tensile strain was on average 

overestimated by 0.3 mm/m. For both column lengths the results for the columns nominally 

subjected to biaxial eccentric compression were the least accurate.

Various possibilities for the rather large differences between the numerical and the 

experimental results were investigated. It was shown, that the likely impact of experimental

- 5 .7 3  -



uncertainties, such as those associated with the development of frictional forces at the 

pinned ends of the columns, the tensile concrete stresses and the actual compressive 

strength of concrete, was insufficient to explain these discrepancies. It appears that the 

principal reason for the somewhat erratic test results is that the testing arrangement failed 

to ensure stationary boundary conditions, allowing a continuous, though unsystematic, 

reduction in the load eccentricity to take place during testing.

According to the numerical analysis the provided confinement was insufficient to have 

more than a negligible effect on the column behaviour, and it did as such not confirm the 

test observations.
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Chapter 6: Parametric Study of the Behaviour of 
Confined Concrete Columns

6.1 Parametric Study

This chapter describes a numerical investigation of reinforced concrete columns subjected 

to uniaxial eccentric compression. In particular, the structural effects of variations in key 

parameters such as the concrete strength, the level of passive confinement, the column 

slenderness, the load eccentricity and the size of the longitudinal reinforcement bars are 

studied. In addition, the structural benefits of confining the columns by means of internal 

ties are compared to the benefits obtained had the confining pressure been applied to the 

surface of the columns.

6.1.1 Influence of Concrete Strength

The numerical investigation was limited to pinned columns having cross-sectional 

dimensions identical to the columns tested in the experimental investigation. Thus, as 

illustrated in figure 6.1, the cross-sections measured 250x250 mm, had a concrete cover 

with a thickness of 20 mm, and was longitudinally reinforced by four bars positioned with 

a centre-to-centre distance of 182 mm.

mm

Figure 6.1
Cross-sections of analysed columns
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The analysed columns had lengths of 2 m, 4 m and 8 m, i.e. geometric slenderness ratios, 

L /d  , of 8, 16 and 32. In this context it should be recalled that the columns included in the 

experimental investigation had lengths of approximately 4 m and 8 m. The longitudinal 

reinforcement bars were assumed to have a diameter of 12 mm, which also was the bar size 

used in 8 of the 12 columns included in the experimental investigation.

Figure 6.2 illustrates the unconfmed stress-strain curves for the three grades of concrete 

included in the parametric study. The modulus of elasticity, Ec , and the peak strain, ec , 

were calculated from the compressive strength, f , using the CEB recommended 

expressions given by equation 3.3 and 3.5 respectively. The softening parameter, p , 

governing the steepness of the descending branch of the stress-strain curve, was determined 

from the compressive strength by equation 3.13 proposed herein. The essential material 

properties for the three grades of concrete are listed in table 6.1.

The stress-strain behaviour of the longitudinal steel reinforcement bars was idealised as 

being linear elastic perfectly plastic. The yield strength, f  , of 539 MPa was chosen so as 

to be similar to the yield strength of the bars employed in the experimental investigation.

Figure 6.2
Stress-strain behaviour of unconfmed concretes
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Table 6.1
Material properties of concretes

Grade fC

(MPa)
Ec

(GPa)
8c

( mm/m)
P

( - )

C20 20.0 27.1 2.20 1.9

C60 60.0 37.7 2.49 14.1

C100 100.0 43.9 2.92 103.9

Figure 6.3 shows the computed relationship between load eccentricity and axial load 

capacity for the unconfined C20 columns having a slenderness ratio of 8, 16 and 32 

respectively. For the column having a slenderness ratio of 8, an increase in the load 

eccentricity to depth ratio, e / d , from 0.004 to 0.8, reduced the column’s failure load from 

1426 kN (corresponding to 97% of the squash load) to 193 kN (13%). For the column 

having a slenderness ratio of 32, the same increase in load eccentricity reduced the failure 

load from 754 kN (51%) to 99 kN (7%). In the special case of a load eccentricity to depth 

ratio of 0.05, i.e. the minimum eccentricity allowed in a design situation according to 

BS 8110, the C20 column having a slenderness ratio of 8 failed at an axial load of 1219 kN 

(83%), and the C20 column having a slenderness ratio of 32 failed at an axial load of 

604 kN (41%).

In figure 6.4, the load capacities calculated for the unconfined columns made from the 

grade C60 and C l00 concrete are plotted relative to the capacities for the columns made 

from the C20 concrete. At an eccentricity to depth ratio of 0.05 the load capacity of the C60 

and C l 00 column having a slenderness ratio of 8 was respectively 2.62 and 4.15 times 

larger than the load capacity of the similar C20 column. When increasing the slenderness 

ratio to 32, the relative load capacity of the C60 and C 100 column was reduced to 2.04 and
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2.62 respectively. As with the increase in the slenderness ratio, an increase in the load

eccentricity diminished the advantage of employing the higher concrete strengths. When 

subjected to an axial load acting at the maximum eccentricity to depth ratio of 0.8, the C60 

and C 100 columns having a slenderness ratio of 8 were determined to fail at a relative axial 

load of 1.16 and 1.21 respectively. For the larger slenderness ratio of 32, these capacities 

were reduced to 1.13 and 1.16 respectively.

In summary, the numerical results for the unconfined concrete columns demonstrated that 

the relative increase in load capacity obtained by employing a higher grade of concrete is 

reduced with both an increase in column length and load eccentricity. Thus, from an 

economical point o f view, the use of high strength concrete was found to be most cost 

effective in short columns subjected to nearly concentric loading.
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Figure 6.3
Eccentric load capacities for unconfined C20 columns
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Figure 6.4
Eccentric load capacities for unconfined C60 and C100 columns

6.1.2 Influence of Confinement

The structural effects of passive confinement were assessed by analysing each column 

under the conditions of the concrete core being subjected to an effective confining pressure 

of either 2 MPa, 5 MPa, 10 MPa or 20 MPa. The effect of confinement on the stress-strain 

curves is shown in figure 6.5. The stress-strain curves were generated using the 

computational model described in section 4.4.3 when subjected to the assumption that the 

full confining pressure was mobilised at a transverse strain of 1.54 mm/m. This value of 

strain is approximately equal to the yield strain determined for the R8 bars employed in the 

experimental investigation.

A confining pressure of 2 MPa was calculated to raise the compressive strength of the C20, 

C60 and C 100 concrete by 59%, 22% and 14% respectively. Likewise, a confining pressure 

of 20 MPa was calculated to raise their compressive strength by 346%, 154% and 103% 

respectively. It should be noted that an effective confining pressure of 20 MPa is
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approximately equal to the maximum achieved in tests on transversely reinforced concrete 

columns (see appendix A for a compilation of test results).
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Figure 6.5
Stress-strain behaviour of confined concretes

Figure 6.6 illustrates the influence of passive confinement on the squash load of the 

columns as determined under displacement controlled conditions. For confining pressures 

of 10 MPa and 20 MPa the load versus axial displacement curves computed for both the 

C60 and the C 100 columns displayed two distinct peaks. Furthermore, as illustrated in the 

figure, with the exception of the curve for the C l00 columns subjected to a confining 

pressure of 10 MPa, the second peak always occurred at a higher axial load than the 

first peak.
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Figure 6.6
Effect of confinement on the squash loads

The effect of confinement on the eccentric load capacity of the C20 columns having a 

slenderness ratio of 8, 16 and 32 are illustrated in figure 6.7a, 6.7b and 6.7c respectively. 

For the column having a slenderness ratio of 8 the confining pressure of 2 MPa produced 

a 118 kN (10%) increase, and the confining pressure of 20 MPa a 647 kN (53%) increase 

in the load capacity at an eccentricity to depth ratio of 0.05. The similar enhancements for 

the column having a slenderness ratio of 16 were reduced to 70 kN (7%) and 203 kN (19%) 

respectively, and for the column having a slenderness ratio of 32 to 2 kN (0.3%) and 

16 kN (3%) respectively.

Figures 6.8a-c show the influence of confinement on the eccentric load capacity of the 

columns made from the grade C60 concrete. For the column having a slenderness ratio of 

8 and subjected to an axial load acting at an eccentricity to depth ratio of 0.05, the confining 

pressure of 2 MPa produced a 89 kN (3%) increase, and the confining pressure of 20 MPa
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a 260 kN (8%) increase, in the load capacity of the column. When increasing the

slenderness ratio to 16 the strength gains produced by these confining pressures were 

reduced to 42 kN (2%) and 78 kN (3%) respectively, and when further increasing the 

slenderness ratio to 32 they became negligible.

The influence of passive confinement on the strength of the C 100 columns can be read from 

figures 6.9a-c. When loaded at an eccentricity to depth ratio of 0.05, the confining pressure 

of 2 MPa produced a 65 kN (1%) increase, and the confining pressure of 20 MPa produced 

a 110 kN (2%) increase, in the load capacity of the column having a slenderness ratio of 8. 

For the C l 00 column having the larger slenderness ratio of 16, the similar capacity gains 

were 24 kN (1%) and 35 kN (1%) respectively. In many of the figures the curves 

corresponding to the different levels of confinement are not discernible.

Besides an increase in slenderness, an increase in the eccentricity also had the effect of 

rapidly reducing the beneficial effects of confinement. Furthermore, for eccentricity to 

depth ratios ranging from 0.004 to 0.8, the difference between the confined and unconfmed 

load capacity was found to reduce with an increase in the strength of concrete. Since the 

utilised confinement model predicts the higher strength concrete to gain more strength than 

the lower strength concrete at a given confining pressure, this behaviour must be a 

consequence of the shape of the stress-strain curves, where, irrespective of the confining 

pressure, the stress-strain curve becomes more pointed with increasing concrete strength. 

Finally, it should be emphasised that the numerical results given in this chapter were all 

obtained under the assumption of the integrity of the columns being maintained throughout 

the loading process, i.e. the effects of possible cover spalling were ignored.
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Figure 6.7a
Effect of confinement on eccentric load capacity of the C20 column 

having a slenderness ratio of 8

Eccentricity ratio, ey/d , ( - )

Figure 6.7b
Effect of confinement on eccentric load capacity of the C20 column

having a slenderness ratio of 16
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Figure 6.7c
Effect of confinement on eccentric load capacity of the C20 column 

having a slenderness ratio of 32

Figure 6.8a
Effect of confinement on eccentric load capacity of the C60 column

having a slenderness ratio of 8
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Figure 6.8b
Effect of confinement on eccentric load capacity of the C60 column 

having a slenderness ratio of 16
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Figure 6.8c
Effect of confinement on eccentric load capacity of the C60 column

having a slenderness ratio of 32

- 6.11 -



A
xi

al
 lo

ad
 c

ap
ac

ity
, 

Pc
 

, (
 K

N
 ) 

A
xi

al
 lo

ad
 c

ap
ac

ity
, 

Pc
 

, (
 K

N
 )

Figure 6.9a
Effect of confinement on eccentric load capacity of the C100 column 

having a slenderness ratio of 8

Eccentricity ratio, ey/d , ( - )

Figure 6.9b
Effect of confinement on eccentric load capacity of the C100 column

having a slenderness ratio of 16
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Figure 6.9c
Effect of confinement on eccentric load capacity of the C100 column 

having a slenderness ratio of 32

In general, the considered levels of confinement were determined to have little or no effect 

on the pre peak ductility of the columns. Only for the shortest of the C20 columns, and only 

for relatively small eccentricities, did even the largest confining pressure of 20 MPa 

significantly increase the column’s mid-height deflection at failure. Figures 6.10a-c and

6.1 la-c show the load-deflection curves determined for some of the columns made from 

the C20 concrete and C l 00 concrete respectively. It should be emphasised that, since the 

columns were isolated and subjected to eccentric monotonie compression, the plotted load- 

deflection diagrams convey no information about the post-critical state. Information 

regarding the load-deflection response beyond the point of strength failure, though outside 

the scope of the present investigation, is of paramount importance when performing a 

thorough analysis of a structural assembly for which load redistribution between its various 

components can take place. Experimental investigations carried out under displacement 

controlled conditions have shown that amounts of transverse reinforcement which have 

little or no effect on the peak load can significantly enhance the ductility after the peak load
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has been reached (Saatcioglu, 1995; Foster, 1997; Claeson, 1998).

Figure 6.10a
Effect of confinement on load-deflection diagrams for the C20 column 

having a slenderness ratio of 8

Mid-height deflection, vmid , ( mm )

Figure 6.10b
Effect of confinement on load-deflection diagrams for the C20 column

having a slenderness ratio of 16
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Figure 6.10c
feet of confinement on load-deflection diagrams for the C20 column 

having a slenderness ratio of 32

Mid-height deflection, vmid , ( m m )

Figure 6.1 la
Effect of confinement on load-deflection diagrams for the C l00 column

having a slenderness ratio of 8
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Figure 6.11b
Effect of confinement on load-deflection diagrams for the C l00 column 

having a slenderness ratio of 16

Mid-height deflection, vmid , ( mm )

Figure 6.11c
Effect of confinement on load-deflection diagrams for the C100 column

having a slenderness ratio of 32
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6.1.3 Influence of Longitudinal Reinforcement

Figures 6 .12a-c and 6 .13a-c show the effect that an increase in the size of the longitudinal 

reinforcement bars has on the load capacity of the unconfined C20 and C l00 columns 

respectively. For an axial load acting at an eccentricity to depth ratio of 0.05 the 

replacement of the T12 bars with T20 bars was determined to enhance the capacity of the 

C20 columns having a slenderness ratio of 8, 16 and 32 by 362 kN (30%), 312 kN (30%) 

and 129 kN (21%) respectively. For the C l00 columns the similar enhancements were 

determined to 323 kN (6%), 301 kN (7%) and 138 kN (9%). In a similar manner a 

replacement of the T12 bars with T32 bars raised the strengths calculated for the three C20 

columns by 1247 kN (102%), 1105 kN (106%) and 479 kN (79%), and the strengths 

calculated for the three C l00 columns by 1097 kN (22%), 1027 kN (25%) and 

480 kN (31%).

When loaded at the maximum eccentricity to depth ratio of 0.8, the replacement of the T 12 

bars with T20 bars increased the axial load capacities determined for the C20 columns by 

245 kN (126%), 196 kN (123%) and 119 kN (120%), and the axial load capacities 

determined for the C l00 columns by 337 kN (145%), 264 kN (140%) and 158 kN (137%). 

Likewise, the replacement of the T12 bars with T32 bars raised the load capacities 

calculated for the C20 columns by 598 kN (310%), 540 kN (340%) and 369 kN (373%), 

and the load capacities calculated for the C l00 columns by 1023 kN (439%), 

807 kN (426%) and 473 kN (411%).

It is interesting that the replacement of the T12 bars with the larger reinforcement bars had 

relatively more effect on the strength of the columns made from the C20 concrete at low 

levels of eccentricity, and relatively more effect on the strength of the columns made from 

the Cl 00 concrete at high levels of eccentricity.
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By comparing the figures it can be seen that from an eccentricity to depth ratio of about 0.2 

for the columns having a slenderness ratio of 8, and from an eccentricity to depth ratio of 

about 0.1 for the columns having a slenderness ratio of either 16 or 32, the replacement of 

the T12 bars with larger bars raised the strength of the C l00 columns more than the 

strength of the C20 columns. The curves for the load capacity gains for the C l00 column 

having a slenderness ratio of 8 (see figure 6.13a) achieved a maximum at an eccentricity 

to depth ratio of approximately 0.5. In the case of the more slender of the C100 columns, 

similar curves shown in figures 6.13b and 6.13c achieved their maximum at an eccentricity 

to depth ratio of approximately 0.3.

The figures also show that only in the case of the C20 column having a slenderness ratio 

of 8, and only when loaded at an eccentricity to depth ratio less than approximately 0.2, did 

the maximum confining pressure of 20 MPa result in an axial load capacity which was 

above the capacity obtained by simply replacing the T 12 bars in an unconfined column with 

T20 bars. According to BS8110 (1985), the links should have a diameter of at least one- 

quarter of the diameter of the largest longitudinal bar, and a maximum link spacing no 

larger than 12 times the diameter of the smallest longitudinal bar. Thus, the minimum 

allowed volumetric ratio of steel in the unconfined columns longitudinally reinforced by 

the T12, T20 and T32 bars is 0.8%, 2.1% and 5.3% respectively. It follows from equation 

3.35 that a 5% volume ratio transverse reinforcement with a yield strength of about 

500 MPa can generate a nominal confining pressure of approximately 13 MPa. Thus, 

raising the load capacity of the columns by means of large amounts of transverse 

reinforcement is not economical when compared to the alternative of increasing the 

volumetric ratio of the longitudinal reinforcement. In this context, it should also be pointed 

out that the fabrication of a dense reinforcement cage is a rather labour intensive affair.
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Figure 6.12a
Effect of increased bar size on eccentric load capacity of the C20 column

having a slenderness ratio of 8

Figure 6.12b
Effect of increased bar size on eccentric load capacity of the C20 column

having a slenderness ratio of 16
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Figure 6.12c
Effect of increased bar size on eccentric load capacity of the C20 column 

having a slenderness ratio of 32

Figure 6.13a
Effect of increased bar size on eccentric load capacity of the C100 column

having a slenderness ratio of 8
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Figure 6.13b
Effect of increased bar size on eccentric load capacity of the C100 column

having a slenderness ratio of 16

Eccentricity to depth ratio, ey/d , ( - )

Figure 6.13c
Effect of increased bar size on eccentric load capacity of the Cl 00 column

having a slenderness ratio of 32
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Figures 6 .14a-c and 6.15a-c show the effect that the size of the longitudinal reinforcement 

bars has on the load-deflection response of the unconfined columns made from the C20 and 

Cl 00 concrete respectively. For the C20 column having a slenderness ratio of 8 an increase 

in the size of the bars resulted in reduced mid-height deflections at strength failure. 

Flowever, when increasing the slenderness ratio to 32 the situation was reversed, as the 

columns reinforced by the larger bars failed at larger mid-height deflections than the 

column reinforced by the T 12 bars. By comparing the load-deflection diagrams for the C20 

columns with the similar diagrams for the C 100 columns it can be seen that the deflections 

at failure predicted by the computer programme were only marginally influenced by the 

strength of concrete.
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Figure 6.14a
Effect of increased bar size on load-deflection diagrams for the C20 column

having a slenderness ratio of 8
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Figure 6.14b
Effect of increased bar size on load-deflection diagrams for the C20 column

having a slenderness ratio of 16

Mid-height deflection, vmid , ( mm )

Figure 6.14c
Effect of increased bar size on load-deflection diagrams for the C20 column

having a slenderness ratio of 32
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Figure 6.15a
Effect of increased bar size on load-deflection diagrams for the C100 column

having a slenderness ratio of 8

Figure 6.15b
Effect of increased bar size on load-deflection diagrams for the C100 column

having a slenderness ratio of 16
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Figure 6.15c
Effect of increased bar size on load-deflection diagrams for the C100 column

having a slenderness ratio of 32

6.1.4 Influence of Concrete Cover

By comparing the results obtained when assuming that both the cover and core concrete are 

confined to those obtained when assuming only the core concrete is confined, it is possible 

to assess to what extent the presence of the unconfined concrete cover influences the 

structural behaviour of the confined columns. Figures 6.16a and 6.16b illustrate the effect 

of the unconfined concrete cover on the load capacity of the C20 columns having a 

slenderness ratio of 8 and 16 respectively, and figures 6.17a-b illustrate the effect of the 

unconfined concrete cover on the load capacity of the Cl 00 columns.

When loaded at a load eccentricity to depth ratio of 0.05 an externally applied confining 

pressure of 2 MPa, 5 MPa, 10 MPa and 20 MPa was found to raise the load-carrying 

capacity of the shortest of the C20 columns by 38% (469 kN), 73% (894 kN), 

111% (1356 kN) and 163% (1987 kN) respectively. This compares to the much more
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modest increases of 10% (118 kN), 15% (186 kN), 30% (362 kN) and 53% (647 kN) 

obtained when only the stress-strain characteristics of the core concrete benefited from 

confinement. For the longer column having a slenderness ratio of 16 the load capacity at 

the same eccentricity was found to be raised by 18% (192 kN), 29% (303 kN), 

40% (416 kN) and 54% (563 kN) when applying the confining pressure externally, and by 

7% (70 kN), 10% (108 kN), 14%(148kN) and 19% (203 kN) when applying the confining 

pressure internally. The figures also show that at large eccentricity to depth ratios neither 

method of confinement had much influence on the load capacity.

Compared to the C20 columns, the C l00 columns benefited relatively less from 

confinement. When loaded at an eccentricity to depth ratio of 0.05 the capacity of the C 100 

column having a slenderness ratio of 8 was raised by 13% (649 kN), 28% (1422 kN), 

48% (2419 kN) and 75% (3795 kN) when subjecting the surface of the column to a 

confining pressure of 2 MPa, 5 MPa, 10 MPa and 20 MPa respectively. The similar 

enhancements in the load capacity of the column for which the confinement only affected 

the stress-strain behaviour of the core concrete were 1 % (65 kN), 2% (95 kN), 2% (110 kN) 

and 2% (110 kN). An increase in the column’s slenderness ratio to 16 reduced the load 

capacity gains of the C100 column to 6% (264 kN), 11% (469 kN), 14% (583 kN) and 

16% (643 kN) assuming that both the core and cover concrete benefited from confinement, 

and to less than 1% (24 kN - 40 kN) assuming that only the core concrete benefited from 

confinement.

Figures 6.18a-b and 6.19a-b show load-deflection diagrams for the C20 and Cl 00 columns 

which were confined by means of an external agent. Compared to the corresponding 

columns having an unconfined concrete cover (see figures 6.10a-b and 6.11 a-b), the
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confinement in general was found to have a significant effect in raising both the strength 

and pre-peak ductility of the columns. Thus it is the presence of the unconfined concrete 

cover which is responsible for the rather disappointing pre-peak performance of the 

columns passively confined by means of tie reinforcement. However, it should be pointed 

out that the enhancing effects of confinement were reduced with an increase in concrete 

strength, slenderness ratio and load eccentricity.

Figure 6.16a
Influence of concrete cover on eccentric load capacity of confined C20 

columns having a slenderness ratio of 8
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Figure 6.16b
Influence of concrete cover on eccentric load capacity of confined C20 

columns having a slenderness ratio of 16

Eccentricity to depth ratio, ey/d , ( - )

Figure 6.17a
Influence of concrete cover on eccentric load capacity of confined C100 

columns having a slenderness ratio of 8
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concrete cover on eccentric load capacity of confined C l00 
columns having a slenderness ratio of 16

Mid-height deflection, vmid , ( mm )

Figure 6.18a
Load-deflection diagrams for externally confined C20 columns having

a slenderness ratio of 8
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Figure 6.18b
Load-deflection diagrams for externally confined C20 columns having

a slenderness ratio of 16

Mid-height deflection, vmid , ( mm )

Figure 6.19a
Load-deflection diagrams for externally confined C100 columns having

a slenderness ratio of 8
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Figure 6.19b
Load-deflection diagrams for externally confined C100 columns having

a slenderness ratio of 16

6.1.5 Summary

In this chapter the effect of passive confinement on the load-deflection characteristics of 

reinforced concrete columns subjected to eccentric compression was numerically 

investigated. The confined columns all had a 250x250 mm cross-section, a 20 mm thick 

concrete cover and were longitudinally reinforced by 4 T12 bars positioned with a centre- 

to-centre distance of 182 mm. The columns were analysed for effective confining pressures 

up to 20 MPa, slenderness ratios ranging from 8 to 32, concrete strengths ranging from 

20 MPa to 100 MPa and eccentricity to depth ratios ranging from 0.004 to 0.8. The 

numerical analysis was based on the assumption that the integrity of the columns was 

maintained throughout the loading process. Since premature cover spalling has often been 

observed to occur in experimental tests on confined concrete columns (see chapter 3), the
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numerical results can be considered to represent upper bound values. Based on the results 

of the numerical investigation it could be concluded that:

•  For the unconfmed columns, the additional load capacity gained by simply increasing 

the strength of the concrete was reduced with both an increase in the slenderness and 

the load eccentricity. In other words, the use of high strength concrete was found to 

be most cost effective in short columns subjected to nearly concentric compression.

•  Passive confinement had in general a limited effect on the load-deflection 

characteristics of the columns, and the effect reduced with an increase in concrete 

strength. Only for the columns having a slenderness ratio of 8 and made from the C20 

concrete did even the largest confining pressure of 20 MPa significantly enhance the 

pre-peak ductility of the column, and this only for load eccentricities less than 

approximately 0.3. The pre-peak ductility, as measured by the mid-height deflection 

at the peak load, appeared in general to be less affected by confinement than the peak 

load itself.

•  As an alternative to passive confinement, the use of T20 bars in place of the T12 bars 

as longitudinal reinforcement was judged to be a more cost efficient method of 

enhancing the strength of the columns. When loaded at an eccentricity to depth ratio 

in excess of about 0.2 the larger bar size enhanced the strength of the high strength 

concrete columns more than the strength of the normal strength concrete columns. In 

general, the use of a larger size of longitudinal reinforcement bars had little bearing 

on the mid-height deflections at failure, but the trend was for the deflections to be 

reduced for the columns having a slenderness ratio of 8 and to be increased for the 

columns having a slenderness ratio of 32. The deflections appeared to be largely 

independent of the concrete strength.
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•  By analysing the columns under the assumption of both the cover and core concrete 

being confined, it could be concluded that it was largely the presence of the 

unconfined concrete cover that was responsible for the disappointing performance of 

the passively confined columns. Had it not been because of the unconfined cover, 

even a confining pressure of 2 MPa was sufficient to significantly improve both the 

strength and the pre-peak ductility of the columns. Furthermore, in sharp contrast to 

the experience drawn from analysing the columns having an unconfined concrete 

cover, the high strength concrete columns having a slenderness ratio of 8 did for small 

load eccentricities gain more strength from being subjected to an external confining 

pressure than the similar columns made from the normal strength concrete.
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Chapter 7: Conclusions and Future Research

7.1 General Comments

The conclusions are divided into two groups. The first relates to the basic material 

characteristics of high strength concrete and the other to the structural performance of 

slender high strength concrete columns. In both cases particular attention has been given 

to the effects of confinement.

The conclusions in section 7.2 relate in part to the material characteristics of the two high 

strength concrete mixes employed in the experimental investigation, and the conclusions 

in section 7.3 relate to the structural response of full-scale concrete columns.

Section 7.4 lists a few suggestions for future research topics.

7.2 Mechanical Behaviour of High Strength Concrete

The average conversion factor between the compressive strengths of 100x200 mm cylinders 

and 100 mm cubes made from the grade C l00 and C l20 concrete was determined to be 

0.87 and 0.92 respectively. These coefficients, which are supported by the findings of 

similar experimental investigations, indicate that the conversion coefficients typically used 

for normal strength concrete are conservative for high strength concrete, and that the use 

of microsilica has the effect of increasing the conversion factor.

The average critical stress to strength ratio determined for the grade C l00 and C l20 

concrete was 0.82 and 0.87 respectively. These ratios are significantly higher than the ratios 

of 0.70 to 0.75 reported for normal strength concrete. These ratios reflect a more linear 

stress-strain response, and a delay in the beginning of the unstable break-up of the internal
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micro-structure, when compared to normal strength concrete.

The empirical expressions recommended in CEB (1995) for predicting the modulus of 

elasticity, the peak strain and the tensile strength as a function of the compressive strength 

were in agreement with the test results for the employed high strength concretes. The CEB 

expressions predicted the modulus of elasticity to within 5%, the peak strain to within 6% 

and the tensile strength to within 11% of the test results. By including experimental data 

from other sources, it was demonstrated that the CEB expressions are often significantly 

less accurate, and that the accuracy by which the modulus of elasticity and the peak strain 

are predicted appears to be independent of the concrete strength.

The lateral expansion observed during testing of the high strength concrete specimens was 

larger than expected. At a stress to strength ratio of 0.8, the apparent Poisson’s ratios 

determined for the C 100 and C 120 concrete were approximately 40% larger than the ratio 

predicted by the expression given in the CEB Model Code 90.

As a basis for the further investigation into the behaviour of confined high strength 

concrete, a new model was proposed to describe the stress-strain behaviour of normal 

weight concrete subjected to short term uniaxial compression. The model, which 

incorporates a distinct material parameter to control the steepness of the descending branch 

of the stress-strain curve, was demonstrated to provide a good fit to experimental data on 

concrete having compressive strengths ranging from 20 MPa to 110 MPa. The proposed 

stress-strain model may be considered to be a generalisation of a similar model 

recommended in the CEB Model Code 90.

The investigation into the effects of confinement showed that the relative increase in 

concrete strength solely depends on the confinement ratio, and that the rate of the strength
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increase is reduced with increasing confining pressure. Furthermore, the experimental data 

showed that, when subjected to the same amount of confinement, a specimen made from 

high strength concrete tends to gain somewhat more strength than a specimen made from 

normal strength concrete. The expression for the compressive meridian in Ottosen’s failure 

criterion was found to accurately describe the effect of confinement on the strength of 

concrete.

Confinement was seen to have the effect of increasing the peak strain, as well as reducing 

the steepness of the descending branch of the stress-strain curve. The effect is reduced with 

an increase in the grade of concrete, and a given confining pressure will always improve 

the peak strain relatively more than the strength.

By introducing a new method for calculating the maximum effective confining pressure 

associated with a given tie configuration and distribution, it was possible to develop an 

incremental stress-strain model which is equally capable of representing test results 

obtained under active and passive confinement conditions. The proposed model was 

validated against experimental data representing all practical concrete qualities and 

confinement levels, i.e. unconfined compressive concrete strengths up to about 120 MPa 

and confining pressures up to about 20 MPa. Under the non-uniform confinement 

conditions existing in concentric compression tests on transversely reinforced stub columns, 

the model describes the relationship between the strain and the average stress in the core 

concrete, and accounts for the stiffness of the restraining reinforcement ties.

The proposed confinement model was compared to existing closed form models when 

applied to the core concrete of two of the high strength concrete columns tested in the 

experimental programme. It was shown that the models produced quite similar stress-strain
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curves in the pre peak region, but vastly different curves in the post peak region. The new 

model predicted a less ductile response than most of the existing confinement models.

7.3 Slender High Strength Concrete Columns

The conclusions in this section are grouped into those relating to the experimental 

investigation and those relating to the numerical investigation.

7.3.1 Experimental Investigation

Failure o f the test columns was explosive and occurred, except in one case, without 

warning. In the shorter of the columns failure appeared to be initiated by cover spalling, and 

in the longer of the columns by a sudden loss of stability. A reduction in the tie spacings 

was observed to increase the inclination of the failure plane, and to reduce the volume of 

crushed core concrete. In the case of the columns with the closest tie spacings of 50 mm the 

failure plane was almost perpendicular to the longitudinal axis, and only a small volume 

of core concrete was lost due to crushing. As a consequence, failure of these columns was 

of a very kinetic nature, and caused two of the longitudinal bars to be pulled over.

When taken as a percentage of the squash load, the observed test loads indicated that a 

reduction in the tie spacings had the effect of increasing the load capacity of the shorter of 

the test columns. For the longer of the test columns, the load capacity appeared to be 

independent of the tie spacings.

The strain measurements taken during the testing of the slender high strength concrete 

columns confirmed that plane sections remained plane. According to the strains measured 

directly on the surface of the columns, the shorter of the test columns failed at an average 

maximum compressive strain of 2.5 mm/m, and the longer at an average maximum
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compressive strain of 1.9 mm/m. Thus, the value of 3.5 mm/m adopted in BS 8110 

significantly overestimates the maximum compressive strain at failure, although it is 

recognised that the stress blocks used in the code are idealised. The test results revealed a 

weak tendency of the failure strain to increase with a reduction in the tie spacings.

The mid-height deflections measured at failure were found to increase significantly with 

an increase in the column length. Likewise, a reduction in the tie pitch appeared to have 

some effect in improving the pre-peak ductility of the columns.

For none of the high strength concrete columns was the transverse reinforcement observed 

to yield at the time of failure. The maximum tensile strain measured in the tie legs varied 

from 20% to 90% of the yield strain, and appeared to be independent of the tie spacings. 

In addition, the large variations observed in the straining of the ties in any given column 

give rise to concern, regarding the detailing required in order to confidently include 

confinement effects in structural design calculations.

During much, or all, of the loading process the experimental curves for the vertical mid-

height deflections and extreme fibre strains displayed less softening than expected. 

Furthermore, two of the test columns failed at a section located outside the middle fifth of 

the column length, and significant horizontal deflections could be noted where none were 

expected. After having investigated a number of possible explanations, it was concluded 

that the principal reason for these discrepancies between the experimental and the analytical 

results, and at times also between the measured strains and measured deflections, was 

caused by unexpected movements of the rig. In effect, the test observations were influenced 

by a combination of rigid body displacements and continuous reductions in the eccentricity 

by which the axial load was applied. Corrections to the observed deformations accounting 

for the movements of the rig improved the apparent load-deflection response.
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7.3.2 Numerical Investigation

A computer program, which incorporates the effect of the transverse reinforcement on the 

longitudinal stress-strain characteristics of the core concrete, was developed for calculating 

the structural response of slender high strength concrete columns. The program was 

validated against 122 column tests representing a large range of geometric and physical 

properties.

Although the material characteristics of the core concrete of many of the eccentrically 

loaded test columns were estimated to have benefited significantly from confinement, their 

load-deflection response appeared only to be marginally affected by confinement. It was 

concluded that the concrete cover played a major role in counteracting the benefits of 

passive confinement, and that instability of the cover shell at times may have been 

responsible for premature column failure.

For the slender high strength concrete columns tested in the experimental investigation the 

average experimental to predicted failure load was 1.30 for the shorter columns. For the 

longer columns the average ratio was 1.96. The latter value is significantly higher than the 

ratios, ranging from 1.15 to 1.35, determined for the seven test programmes from published 

literature. The numerical calculations indicated that, for none of the columns, the provided 

transverse reinforcement was sufficient to influence the overall column behaviour. In all 

numerical calculations the material properties of unconfmed concrete were estimated on 

the basis of the compressive strength, where the compressive strength was taken as 81% 

of the mean strength of tested 100><200 mm cylinders, or alternatively as 85% of the mean 

strength of tested 150x300 mm cylinders.

A number of general conclusions could be drawn on the basis of the parametric study on 

columns having cross-sectional dimensions similar to those of the columns tested in the
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experimental investigation. All conclusions were drawn under the assumption of a stable 

cover shell.

The extra load capacity obtained by replacing normal strength concrete with high strength 

concrete in an unconfmed concrete column is reduced with an increase in both column 

slenderness and load eccentricity. The deflections at strength failure are increased with both 

an increase in column slenderness and load eccentricity, but appear to be largely 

independent of the concrete strength. Thus, the use of high strength concrete is most cost 

effective in short columns subjected to nearly concentric compression.

The enhancing effect of confinement on both strength and ductility of isolated columns 

having practically detailed reinforcement reduces rapidly with an increase in column 

slenderness, load eccentricity and concrete strength. For load eccentricity to depth ratios in 

excess of 0.05, a slender column made from normal strength concrete may benefit 

somewhat from passive confinement, but a high strength concrete column of medium 

slenderness is unlikely to do so.

The presence of an unconfined concrete cover counteracts the benefits of confinement, and 

this being more so for high strength concrete columns than for normal strength concrete 

columns. From analysing eccentrically loaded columns under the assumption of being 

subjected to an externally applied pressure, it appears that even a relatively small effective 

confining pressure of 2 MPa may significantly enhance both the ultimate load capacity and 

the pre-peak ductility of high strength concrete columns. Once again the benefits of 

confinement reduce rapidly with an increase in column slenderness, load eccentricity and 

concrete strength. Nevertheless, at a load eccentricity to depth ratio of 0.05, the benefits of 

confinement on the structural response of a high strength concrete column of medium to 

slender length may well be more pronounced than the benefits on a similar column made 

from normal strength concrete.
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7.2 Suggestions for Future Research

Although the tested columns displayed some ductility towards the end, the level was not 

sufficiently high. It is suggested that the level of ductility may be enhanced by the use of 

fibres in the concrete mix.

Since confinement is most efficient when applied to the entire concrete section, it is 

considered that column wraps in general may be more suited than conventional shear 

reinforcement in enhancing the strength and ductility of high strength concrete columns. 

However, there are aspects related to the use of column wraps, such as fire protection and 

concrete shrinkage, that may negate their usefulness.

The problem of premature cover spalling sometimes associated with high strength concrete 

needs to be quantified through targeted experimental research.

The computer program developed in this work could be modified so as to calculate the 

post-peak descending branch of the load-deflection curve. This is required when performing 

a rigorous analysis of a structural frames for which load redistribution may interact with the 

behaviour of a given column to trigger collapse.

Finally, it is recommended to use the available computational tool to examine the 

applicability of the design rules to columns made from high strength concrete, and 

determine any changes if so required.
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Appendix A: Test Results on Passively Confined
Concrete Columns

This appendix contains a compilation of tables, which summarise the strength properties 

and test parameters for a number of transversely reinforced concrete columns tested under 

concentric compression. For each test column, the effective confining pressure at peak load, 

-o , ff , was calculated under the assumption of the stress in the ties being at yield. 

However, whenever the data permitted it, the effective confining pressures calculated on 

the basis of the actual tie strains are also given in the tables. In both cases the effective 

confining pressure was calculated employing the modified arching action method 

described in section 3.4.

Table A1
Details of circular columns tested by Nagi, taken after (Iyengar, 1970)

Column Concrete core* Transverse reinforcement

Label f c f  / fcc c 8 c £cc/£ c Tie d c S Ps L c l,eff
(MPa) ( - ) (mm/m) ( - ) (mm) (mm) (%) (MPa) (MPa)

1:2:4,120 15.4 1.24 2.1 2.16 A-spi 144 120 0.77 319 0.2

1:2:4,60 15.4 1.60 2.1 2.76 A-spi 144 60 1.54 319 1.4

1:2:4,45 15.4 2.15 2.1 9.61 A-spi 144 45 2.06 319 2.3

1:2:4,30 15.4 2.86 2.1 11.00 A-spi 144 30 3.08 319 3.9

1:1:1.5:3,120 25.3 1.03 2.3 1.15 A-spi 144 120 0.77 319 0.2

1:1:1.5:3,90 25.3 1.18 2.3 1.43 A-spi 144 90 1.03 319 0.6

1:1:1.5:3,60 25.3 1.41 2.3 1.88 A-spi 144 60 1.54 319 1.4

1:1:2:120 33.3 1.02 1.8 1.09 A-spi 144 120 0.77 319 0.2

1:1:2:90 33.3 1.06 1.8 1.41 A-spi 144 90 1.02 319 0.6

1:1:2:60 33.3 1.17 1.8 2.75 A-spi 144 60 1.54 319 1.4

1:1:2:45 33.3 1.44 1.8 4.22 A-spi 144 45 2.06 319 2.3

Specimens tested: 150x300 mm cylinders without longitudinal reinforcement.
* All material properties extracted from the stress-strain curves given in source.
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Table A2
Details of square columns tested by Nagi, taken after (Iyengar, 1970)

Column Concrete core* Transverse reinforcement

Label f c
f  / f

c c  c £ c £ c c / £ c Tie d
C s Ps fsy a l , e f f

(MPa) ( - ) (mm/m) ( - ) (mm) (mm) (%) (MPa) (MPa)

1:2:4,60 26.6 1.04 2.7 1.60 B-spi 95 60 1.38 627 0.5

1:2:4,45 26.6 1.23 2.7 1.82 B-spi 95 45 1.83 627 1.0

1:2:4,30 26.6 1.31 2.7 4.89 B-spi 95 30 2.36 627 1.6

1:1:1.5:3,60 31.6 1.06 2.6 1.47 B-spi 95 60 1.38 627 0.5

1:1:1.5:3,45 31.6 1.15 2.6 1.67 B-spi 95 45 1.83 627 1.0

1:1:1.5:3,30 31.6 1.26 2.6 1.86 B-spi 95 30 2.36 627 1.6

1:1:2:60 36.2 1.05 2.5 1.14 B-spi 95 60 1.38 627 0.5

1:1:2:45 36.2 1.05 2.5 1.43 B-spi 95 45 1.83 627 1.0

1:1:2:30 36.2 1.16 2.5 2.62 B-spi 95 30 2.36 627 1.6

Specimens tested: 100x200 mm prisms without longitudinal reinforcement.
* All material properties extracted from the stress-strain curves given in source.

Table A3
Details of columns tested by Somes (1970)

Column Concrete core Transverse reinforcement*

Label fc
(MPa)

f  / f  8CC c c 
( - ) (mm/m)

£ cc/ £ c

( - )

Tie dC
(mm)

S

(mm)
Ps

(% )

fsy
(MPa) (MPa)

Al-0.75 30.2 2.09 - - B 96 19 8.97 324 3.9

Al-1.00 30.2 1.83 - - B 96 25 6.73 324 2.7

Al-1.25 30.2 1.73 - - B 96 32 5.38 324 1.9

Al-1.50 30.2 1.66 - - B 96 38 4.48 324 1.5

Al-1.75 30.2 1.48 - - B 96 44 3.84 324 1.1

Al-2.00 30.2 1.51 - - B 96 51 3.36 324 0.9

Al-2.25 30.2 1.52 - - B 96 57 2.99 324 0.7

A2-2.50 31.7 1.32 - - B 96 64 2.69 324 0.5

A2-3.00 31.7 1.26 - - B 96 76 2.24 324 0.2

A2-3.50 31.7 1.18 - - B 96 89 1.92 324 0.1

A2-4.00 31.7 1.19 - - B 96 102 1.68 324 0.0

A2-4.50 31.7 1.17 - - B 96 114 1.49 324 0.0

A2-5.50 31.7 1.11 - - B 96 140 1.22 324 0.0

A2-6.00 31.7 1.03 - - B 96 152 1.12 324 0.0
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Column Concrete core Transverse reinforcement*

Label fc f  / fcc c 8 c 8cc/ 8 c Tie dc S Ps fsy °l,e ff
(MPa) ( - ) (mm/m) ( - ) (mm) (mm) (%) (MPa) (MPa)

Bl-0.75 28.5 1.88 - - B 97 19 6.49 324 2.8

B1-1.00 28.5 1.64 - - B 97 25 4.87 324 1.9

Bl-1.25 28.5 1.47 - - B 97 32 3.90 324 1.4

Bl-1.50 28.5 1.40 - - B 97 38 3.25 324 1.1

Bl-1.75 28.5 1.34 - - B 97 44 2.78 324 0.8

Bl-2.00 28.5 1.26 - - B 97 51 2.44 324 0.6

Bl-2.25 28.5 1.28 - - B 97 57 2.16 324 0.5

B2-2.50 30.3 1.30 - - B 97 64 1.95 324 0.4

B2-3.00 30.3 1.24 - - B 97 76 1.62 324 0.2

B2-3.50 30.3 1.18 - - B 97 89 1.39 324 0.1

B2-4.00 30.3 1.13 - - B 97 102 1.22 324 0.0

B2-4.50 30.3 1.11 - - B 97 114 1.08 324 0.0

B2-5.50 30.3 1.04 - - B 97 140 0.89 324 0.0

B2-6.00 30.3 1.00 - - B 97 152 0.81 324 0.0

Cl-0.75 30.9 1.47 - - B 98 19 5.74 324 2.5

Cl-1.00 30.9 1.39 - - B 98 25 4.31 324 1.7

Cl-1.25 30.9 1.31 - - B 98 32 3.45 324 1.3

Cl-1.50 30.9 1.29 - - B 98 38 2.87 324 0.9

C l-1.75 30.9 1.25 - - B 98 44 2.46 324 0.7

C 1-2.00 30.9 1.20 - - B 98 51 2.15 324 0.6

Cl-2.25 30.9 1.17 - - B 98 57 1.91 324 0.4

C2-2.50 32.5 1.15 - - B 98 64 1.72 324 0.3

C2-3.00 32.5 1.14 - - B 98 76 1.44 324 0.2

C2-3.50 32.5 1.24 - - B 98 89 1.23 324 0.1

C2-4.00 32.5 1.08 - - B 98 102 1.08 324 0.0

C2-4.50 32.5 1.09 - - B 98 114 0.96 324 0.0

C2-5.50 32.5 1.06 - - B 98 140 0.78 324 0.0

C2-6.00 32.5 1.04 - - B 98 152 7.18 324 0.0

Specimens tested: 102x305 mm prisms without longitudinal reinforcement.
* Hoops were 6.4 mm slices machined from hot-rolled structural steel tubing.
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Table A4
Details of columns tested by Sheikh and Uzumeri (1980)

C o l. C o n c re te  co re  L o n g itu d in a l T ra n sv e rse

reinforcement reinforcement

Lab. f  **c
(MPa)

f  / fcc c 
( - )

s c
(mm/m)

8 /eCC c 
( - )

Pg
(%)

f sy
(MPa)

Tie dc
(mm)

S
(mm)

Ps
(%)

(J ***
s

(MPa)
a i,eff

(MPa)

1 31.9 1.18 2.2 2.00 1.72 372 C 267 57 0.80 455 0.9

2 31.4 1.26 2.2 2.50 1.72 372 C 267 57 0.80 252 0.5

3 30.9 1.21 2.2 2.05 3.44 372 D ’ 267 51 0.75 489 1.0

4 31.2 1.20 2.2 - 3.44 372 D ’ 267 51 0.75 282 0.6

5 29.7 1.64 2.2 6.82 3.44 372 D’ 267 38 2.25 500 3.4

6 29.2 1.53 2.2 3.64 3.44 372 D ’ 267 38 2.25 255 1.7

7 34.7 1.28 2.2 2.09 3.33 385 C 267 76 1.66 475 1.9

8 34.7 1.36 2.2 2.59 3.33 385 C 267 29 1.59 420 2.0

9 34.4 1.23 2.2 2.27 3.33 385 c 267 76 2.39 345 2.0

10 34.6 1.31 2.2 4.55 3.33 385 c 267 35 2.31 455 3.0

11 34.6 1.27 2.2 2.32 3.44 407 D ’ 267 95 1.60 358 1.3

12 34.7 1.46 2.2 4.09 3.44 407 D ’ 267 25 1.50 469 2.2

13 26.6 1.30 2.2 2.05 3.33 439 C 267 57 0.90 475 1.0

14 26.8 1.38 2.2 3.18 1.72 403 C 267 76 2.39 427 2.4

15 26.9 1.47 2.2 3.64 1.72 403 C 267 35 2.31 413 2.8

16 27.6 1.36 2.2 2.55 2.22 414 C’ 267 51 0.75 589 1.3

17 27.9 1.36 2.2 3.23 2.22 414 D ’ 267 102 2.34 347 1.8

18 28.1 1.70 2.2 11.36 2.22 414 D ’ 267 38 2.25 551 3.7

19 28.4 1.43 2.2 2.77 3.67 392 D 267 102 1.64 400 1.4

20 29.5 1.52 2.2 3.64 3.67 392 D 267 38 1.58 544 2.5

21 30.2 1.54 2.2 6.36 3.67 392 D 267 48 2.24 489 3.1

22 30.2 1.44 2.2 2.50 3.67 392 E 267 83 1.62 386 1.6

23 30.5 1.54 2.2 3.45 3.67 392 E 267 29 1.68 531 2.9

24 30.5 1.63 2.2 3.64 3.67 392 E 267 38 2.25 475 3.4

Specimens tested: 300x2000 mm prisms (tapered).
D ’ is a tie configuration with 16 longitudinal steel bars.
*** Average stress in tie steel at confined strength.
** 0.85 times 150x300 mm cylinder strength.
* Effective confining pressure determined on the basis of measured hoop strains.
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Table A5
Details of columns tested by Ahmad and Shah (1982)

Test Concrete core Transverse reinforcement

Series fc f  / fcc c 8c Sc A Tie ¿ e S Ps fsy ° l , e f r

(MPa) ( - ) (mm/m) ( - ) (mm) (mm) (%) (MPa) (MPa)

1-1 20.7 1.04 2.1 1.05 A-spi 73 95 0.43 413 0.0

1-2 20.7 1.03 2.1 1.00 A-spi 73 102 0.40 413 0.0

1-3 20.7 1.10 2.1 1.10 A-spi 73 76 0.53 413 0.0

II-1 26.2 1.21 2.1 1.52 A-spi 73 25 1.60 413 2.1

II-2 26.2 1.49 2.1 4.86 A-spi 73 13 3.19 413 5.4

III-l 37.9 1.05 2.2 1.14 A-spi 73 38 1.06 413 1.1

III-2 37.9 1.11 2.2 1.41 A-spi 73 25 1.60 413 2.1

III-3 37.9 1.25 2.2 2.27 A-spi 73 13 3.19 413 5.4

IV-1 51.7 1.03 2.5 1.20 A-spi 73 38 1.06 413 1.1

IV-2 51.7 1.07 2.5 1.56 A-spi 73 25 1.60 413 2.1

V-l* 65.5 1.05 3.0 1.17 A-spi 73 25 1.60 413 2.1

V-2* 65.5 1.12 3.0 1.33 A-spi 73 13 3.19 413 5.4

The test results are the average values from testing 4 specimens.
Specimens tested: In general 76x152 mm cylinders without longitudinal reinforcement. 
* 76x304 mm cylinders without longitudinal reinforcement.

Table A6
______________ Details of columns tested by Martinez e t a l (1984)
Column Concrete core Transverse reinforcement

Label. fC
(MPa)

f  / fCC c 

( - )

£ **C
(mm/m)

Sc A

( - )
Tie d c

(mm)
s

(mm)
Ps

(%)

fsy
(MPa) (MPa)

CTl,eff
(MPa)

NC161-1 22.1 1.27 2.4 3.96 A-spi 100 100 1.05 380 1.7 1.8

NC161-2 22.1 1.25 2.4 3.30 A-spi 100 100 1.05 380 1.7 1.8

NC161-3 22.1 1.29 2.4 3.74 A-spi 100 100 1.05 380 1.7 1.8

NCI 62-1 23.5 1.59 2.4 5.99 A-spi 100 100 2.09 380 3.6 3.7

NCI 62-2 23.5 1.57 2.4 6.25 A-spi 100 100 2.09 380 3.6 3.7

NCI 62-3 23.5 1.57 2.4 6.04 A-spi 100 100 2.09 380 3.6 3.7

NC163-1 20.8 2.12 2.4 10.03 A-spi 100 100 3.14 380 5.5 5.7

NCI 63-2 20.8 2.14 2.4 11.69 A-spi 100 100 3.14 380 5.5 5.7

NCI 63-3 20.8 2.16 2.4 11.89 A-spi 100 100 3.14 380 5.5 5.7
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C o lu m n  C o n c re te  co re  T ra n sv e rse  r e in fo rc e m e n t

Label. f
C

(MPa)
f  / fcc c 

( - )

£ * **
C

(mm/m)
£cc/e c

( - )
Tie d

C

(mm)
S

(mm)
Ps

(%)

fsy
(MPa) (MPa)

a i,eff
(MPa)

NCI 64-1 50.2 1.31 2.7 2.62 A-spi 100 100 3.57 380 3.9 4.1

NCI 64-2 50.2 1.26 2.7 2.60 A-spi 100 100 3.57 380 3.9 4.1

NCI 64-3 50.2 1.27 2.7 2.42 A-spi 100 100 3.57 380 3.9 4.1

NC165-1 46.1 4.63 2.7 4.09 A-spi 100 100 4.48 414 8.2 8.9

NC165-2 46.1 1.64 2.7 3.80 A-spi 100 100 4.48 414 8.6 8.9

NC165-3 46.1 1.63 2.7 4.19 A-spi 100 100 4.48 414 8.6 8.9

NC166-1 50.2 1.92 2.7 5.64 A-spi 99 98 7.17 414 14.0 13.9

NCI 66-2 50.2 1.89 2.7 5.95 A-spi 98 98 7.17 414 14.0 13.9

NCI 66-3 50.2 1.88 2.7 5.73 A-spi 98 98 7.17 414 13.9 13.9

NCI 67-1 67.4 1.42 3.0 1.66 A-spi 100 100 3.49 380 6.1 6.4

NCI 67-2 67.4 1.41 3.0 1.72 A-spi 100 100 3.49 380 6.1 6.4

NCI 67-3 67.4 1.31 3.0 1.50 A-spi 100 100 3.49 380 3.6 6.4

NC168-1 68.6 1.66 3.0 2.82 A-spi 98 98 7.29 414 12.1 14.2

NC168-2 68.6 1.76 3.0 2.91 A-spi 98 98 7.29 414 12.9 14.2

NC168-3 68.6 1.74 3.0 2.94 A-spi 98 98 7.29 414 14.3 14.2

NCI 69-1 68.1 2.03 3.0 3.00 A-spi 97 97 11.55 414 16.6 22.0

NCI 69-2 68.1 2.12 3.0 3.17 A-spi 97 97 11.55 414 20.9 22.0

NCI 69-3 68.1 1.93 3.0 2.53 A-spi 97 97 11.55 414 14.2 22.0

Specimens tested: 102x457 mm cylinders without longitudinal reinforcement.
** Estimated from graph given in source.
* Effective confining pressure determined on the basis of measured hoop strains.
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Table A7
Details of columns tested by Mander e t a l (1988b)

Col. Concrete core Longitudinal Transverse
reinforcement reinforcement

Label f
c

f  / fcc c £ c s cc/ 8 c Pg f sy Tie dc S Ps fsy a i,eff
(MPa) ( - ) (inm/m) ( - ) (%) (MPa) (mm) (mm) (%) (MPa) (MPa)

Sl-1 29.0 1.76 1.5 4.87 1.23 295 A-spi 438 41 2.52 340 3.9

S1-2 29.0 1.59 1.5 3.33 1.23 295 A-spi 438 69 1.50 340 2.1

S1-3 29.0 1.38 1.5 2.67 1.23 295 A-spi 438 103 1.00 340 1.3

SI-4 29.0 1.24 1.5 2.20 1.23 295 A-spi 440 119 0.60 320 0.7

SI-5 29.0 1.62 1.5 4.33 1.23 295 A-spi 440 36 1.98 320 2.9

SI-6 29.0 1.59 1.5 3.87 1.23 295 A-spi 434 93 1.99 307 2.4

S2-7 32.0 1.63 1.4 4.07 2.51 296 A-spi 438 52 1.99 340 3.0

S2-8 30.0 1.63 1.4 4.14 2.53 260 A-spi 438 52 1.99 340 3.0

S2-9 32.0 1.63 1.4 3.86 2.56 286 A-spi 438 52 1.99 340 3.0

S2-10 30.0 1.67 1.4 4.57 2.46 295 A-spi 438 52 1.99 340 3.0

S2-11 30.0 1.80 1.4 3.21 3.69 295 A-spi 438 52 1.99 340 3.0

S2-12 32.0 1.63 1.8 4.00 2.46 360 A-spi 438 52 1.99 340 3.0

Specimens tested: 500x1500 mm cylinders.

Table A8
Details of columns tested by Yong e t  a l  (1988)

Test. Concrete core Longitudinal
reinforcement

Transverse
reinforcement

Series f
c

(MPa)
f  / f
CC c 

( - )

e
c

(mm/m)
e /e
CC C 

( - )
Pg

(%)

fsy
(MPa)

Tie dc
(mm)

S

(mm)
Ps

(%)

fsy
(MPa)

a i,eff
(MPa)

A 80.9 1.22 2.4 2.13 1.70 424 C 130 25 2.48 496 3.3

B 84.1 1.21 2.8 1.76 1.70 424 C 130 51 1.24 469 1.2

C 80.5 1.13 2.2 1.56 1.70 424 c 130 76 0.83 496 0.6

D 81.5 1.02 2.3 1.30 1.70 424 c 130 152 0.41 496 0.0

N* 78.6 1.16 2.3 1.84 1.70 424 c 130 51 1.24 496 1.2

L** 86.7 1.03 2.7 1.23 0.85 424 c 130 76 0.83 496 0.6

The test results are the average values from testing 3 specimens. 
Specimens tested: 152x457 mm prisms.
* Column tested without a concrete cover.
** 4 instead of 8 longitudinal steel bars.
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Table A9
Details of columns tested by Razvi and Saatcioglu (1989)

C o l. C o n c re te  co re  L o n g itu d in a l T ra n sv e rse

re in fo rc e m e n t re in fo rc e m e n t

Label f  * *
C

(MPa)
f  / fcc c 

( - )

e s  / s
C CC C

(mm/m) ( - )
Pg

(%)
f .y

(MPa)
Tie d

C

(mm)
S

(mm)
Ps

(%)

f
s y

(MPa)
C l,eff

(MPa)

3 31.9 1.22 - 3.14 470 B 143 35 2.68 470 1.6

4 31.9 1.04 - 3.14 470 B 143 70 1.34 470 0.5

6 39.0 1.32 - 1.57 480 B 138 35 2.77 480 1.7

7 39.0 1.18 - 1.57 480 B 138 70 1.39 480 0.5

15 28.9 1.15 - 3.14 470 B 143 70 1.34 470 0.5

16 28.9 1.31 _ 3.14 470 B 143 35 2.68 470 1.6

Specimens tested: 160x460 mm prisms.
* 150x300 mm cylinder strength.

Table A10
Details of circular columns tested by Bjerkeli and Tomaszewicz (1993)

Col. Concrete core* Transverse reinforcement

Label f f  / f
CC c £  8  / S  

c CC c Tie d
C S Ps fsy a i,eff

(MPa) ( - ) (mm/m) ( - ) (mm) (mm) (%) (MPa) (MPa)

1 48 1.80 - A-spi 144 25 3.1 613 8.0

2 66 0.88 - A-spi 144 70 1.1 613 1.8

3 66 1.51 - A-spi 144 25 3.1 613 8.0

4 66 1.54 - A-spi 144 25 3.1 613 8.0

5 94 1.23 - A-spi 144 25 3.1 613 8.0

Specimens tested: 150x500 mm cylinders without longitudinal reinforcement. 
* All material properties extracted from stress-strain curves given in source.
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Table A ll
Details of columns tested by Nishiyama e t a l (1993)

C o l. C o n c re te  co re *  L o n g itu d in a l T ra n sv e rse

re in fo rc e m e n t re in fo rc e m e n t

Label f  **c
(MPa)

f  / fcc c 
( - )

ec
(mm/m)

£cc/8 c
( - )

Pg
(%)

fsy
(MPa)

Tie dc
(mm)

S
(mm)

Ps

(%)
C

(MPa) (MPa)

H6-31 88.3 1.64 3.2 2.48 2.44 351 D 214 31 3.84 813 9.2

H6-60 88.3 1.39 3.2 1.55 2.44 351 D 214 60 1.98 813 4.0

L6-31 91.5 1.47 3.4 1.79 2.44 351 D 214 31 3.84 462 5.2

L6-60 91.5 1.26 3.4 1.43 2.44 351 D 214 60 1.98 462 2.3

Specimens tested: 250x750 mm longitudinally reinforced prisms.
* Material properties for confined concrete extracted from stress-strain curves given in source.
** 0.81 times 100x200 mm cylinder strength.

Table A12
Details of columns tested by Sudo e t a l (1993)

Col. Concrete core** Transverse reinforcement

Label f
C f  / fCC c

8 £ /  £ 
c  c c  c Tie dc ® Ps ^sy ^ l.e ff* ° l ,e f f

(MPa) ( - ) (mm/m) ( - ) (mm) (mm) (%) (MPa) (MPa) (MPa)

065%-48 37.7 1.42 - 3.50 A-spi 144 48 1.63 571 3.1 3.1

065%-24 37.7 2.15 - - A-spi 144 24 3.26 571 8.0 7.8

065%-12 37.7 3.08 - - A-spi 144 12 6.53 571 17.3 17.1

045%-48 69.6 1.14 3.1 1.63 A-spi 144 48 1.63 571 2.4 3.1

045%-24 69.6 1.29 3.1 2.67 A-spi 144 24 3.26 571 7.6 7.8

045%-12 69.6 2.11 3.1 4.74 A-spi 144 12 6.53 571 17.0 17.1

035%-48 84.1 1.03 - 1.39 A-spi 144 48 1.63 571 2.0 3.1

035%-24 84.1 1.21 - 2.46 A-spi 144 24 3.26 571 7.5 7.8

035%-12 84.1 1.90 - 2.93 A-spi 144 12 6.53 571 14.9 17.1

025%-48 101.4 1.18 3.5 1.15 A-spi 144 48 1.63 571 1.4 3.1

025%-24 101.4 1.54 3.5 1.65 A-spi 144 24 3.26 571 3.4 7.8

025%-12 101.4 1.71 3.5 2.49 A-spi 144 12 6.53 571 14.7 17.1

022%-48 113.0 1.13 - 1.28 A-spi 144 48 1.63 571 1.2 3.1

022%-24 113.0 1.33 - 1.51 A-spi 144 24 3.26 571 5.2 7.8

022%-12 113.0 - - 2.34 A-spi 144 12 6.53 571 - 17.1

T65%-48 43.5 1.33 - 2.89 A-spi 144 48 1.63 571 2.5 3.1

T65%-24 43.5 1.87 - - A-spi 144 24 3.26 571 7.5 7.8

T65%-12 43.5 2.60 - - A-spi 144 12 6.53 571 16.9 17.1
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Col. Concrete core** Transverse reinforcement

Label fc f  / fcc c Sc sc A Tie d
C S Ps fsy a l,eff

(MPa) ( - ) (mm/m) ( - ) (mm) (mm) (%) (MPa) (MPa) (MPa)

T45%-48 68.4 1.14 - 1.91 A-spi 144 48 1.63 571 2.9 3.1

T45%-24 68.4 1.61 - 3.25 A-spi 144 24 3.26 571 7.7 7.8

T45%-12 68.4 2.20 - - A-spi 144 12 6.53 571 17.0 17.1

T35%-48 84.1 1.03 - - A-spi 144 48 1.63 571 2.5 3.1

T35%-24 84.1 1.41 - 1.51 A-spi 144 24 3.26 571 7.2 7.8

T35%-12 84.1 - - 2.38 A-spi 144 12 6.53 571 - 17.1

T25%-48 92.8 1.31 - 1.16 A-spi 144 48 1.63 571 1.2 3.1

T25%-24 92.8 1.51 - 1.68 A-spi 144 24 3.26 571 5.3 7.8

T25%-12 92.8 1.63 - 2.28 A-spi 144 12 6.53 571 12.9 17.1

T22%-48 106.1 0.89 - 1.10 A-spi 144 48 1.63 571 1.5 3.1

T22%-24 106.1 1.17 - 1.74 A-spi 144 24 3.26 571 4.6 7.8

T22%-12 106.1 1.78 - 2.46 A-spi 144 12 6.53 571 14.1 17.1

Specimens tested: 150*300 mm cylinders without longitudinal reinforcement.
** All material properties extracted from graphical information given in source.
* Effective confining pressure determined on the basis of measured hoop strains.

Table A13
Details of square columns tested by Cusson and Paultre (1994)

Col Concrete core Longitudinal
reinforcement

Transverse
reinforcement

f  * *
c

(MPa)
f  / f

CC c 

( - )

£c
(mm/m)

S /s„
CC c 

( - )

Pg
(%)

C
(MPa)

Tie dc
(mm)

S
(mm)

Ps

(%)

fsy
(MPa)

— a  *

(MPa)
a i,eff

(MPa)

1A 81.1 1.23 2.9 1.13 2.28 406 B 195 50 2.91 410 1.5 1.5

2A 81.9 1.12 3.0 1.14 2.28 406 B 195 50 2.01 392 0.8 1.0

3A 83.4 0.98 3.1 1.10 2.28 406 B 195 100 1.45 410 0.3 0.5

4A 79.1 1.22 2.9 1.14 3.56 420 B 195 50 2.91 410 0.6 1.5

5A 84.9 1.17 3.0 1.15 3.56 420 B 195 50 2.91 705 0.7 2.5

IB 81.1 1.3 3.0 1.62 1.85 450 C 195 50 3.43 392 3.3 3.3

2B 81.9 1.12 3.0 1.17 1.85 450 C 195 50 2.25 414 2.3 2.3

3B 83.4 1.03 3.0 1.13 1.85 450 C 195 100 2.48 410 1.4 1.7

4B 79.1 1.30 2.9 1.62 3.56 450 C 195 50 3.43 392 3.3 3.3

5B 84.9 1.23 3.0 1.57 3.56 450 C 195 50 3.43 770 3.4 6..6

6B 98.5 1.24 3.3 2.95 3.56 482 C 195 50 4.96 715 8.5 8.8
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Col Concrete core Longitudinal
reinforcement

Transverse
reinforcement

c
(MPa)

f  / fcc c 
( -)

£c
(mm/m)

8 /S CC c
(-)

Pg
(%)

f sy
(MPa)

Tie dc
(mm)

S
(mm)

Ps
(%)

C
(MPa)

— (T *
u l,eff
(MPa)

° l ,e f f
(MPa)

7B 64.5 1.66 2.7 5.71 3.56 482 C 195 50 4.96 715 8.1 8.8

8B 44.7 2.00 2.3 13.73 3.56 482 C 195 50 4.96 715 9.3 8.8

1C 81.1 1.25 2.9 1.60 1.71 450 c 195 50 3.63 392 3.9 3 .9

2C 81.9 1.21 3.0 1.20 1.71 450 E 195 50 2.38 414 1.6 2.7

3C 83.4 1.08 3.0 1.16 1.71 450 E 195 100 2.62 410 1.5 1.9

4C 79.1 1.34 2.9 1.62 3.41 450 E 195 50 3.63 392 3.0 3.9

5C 84.9 1.30 3.0 2.27 3.41 450 E 195 50 3.63 770 6.6 7.6

ID 85.3 1.32 3.0 1.89 1.71 450 D 195 50 4.52 392 4.6 4.6

IDI 85.3 1.46 3.0 1.99 2.36 450 D 195 50 4.52 392 4.3 4.6

2D 81.9 1.20 2.9 1.36 1.71 450 D 195 50 2.97 414 2.6 3 .2

3D 83.4 1.12 3.0 1.52 1.71 450 D 195 100 3.27 410 2.0 2 .3

4D 79.1 1.41 2.9 2.20 3.41 450 D 195 50 4.52 392 4.6 4.6

5D 84.9 1.51 3.0 3.23 3.41 450 D 195 50 4.52 770 8.1 9.0

6D 96.6 1.31 3.3 2.71 3.41 482 D 195 50 4.52 680 6.9 7.9

7D 57.7 1.74 2.6 5.95 3.41 482 D 195 50 4.52 680 8.0 7.9

8D 47.3 1.92 2.3 12.68 3.41 482 D 195 50 4.52 680 8.5 7.9

Specimens tested: 235x1400 mm tapered prisms.
** 0.85 times 150*300 mm cylinder strength.
* Effective confining pressure determined on the basis of measured hoop strains.

Table A14
Details of circular columns tested by Hsu and Hsu (1994)

Col. Concrete core Transverse reinforcement

Label fc f  / fCC c £ c Scc/ e c Tie d C s Ps f
s y a i , e f f

(MPa) ( - ) (mm/m) ( - ) (mm) (mm) (%) (MPa) (MPa)

S31 80.8 1.03 3.2 1.19 A-cir 74 76 0.40 456 0.0

S32 80.8 1.06 3.2 1.22 A-cir 74 76 0.40 456 0.0

S33 80.8 1.03 3.2 1.21 A-cir 74 76 0.40 456 0.0

S21 80.8 1.11 3.2 1.44 A-cir 74 51 0.60 456 0.4

S22 80.8 1.09 3.2 1.45 A-cir 74 51 0.60 456 0.4

S23 80.8 1.10 3.2 1.45 A-cir 74 51 0.60 456 0.4

S24 80.8 1.14 3.2 1.43 A-cir 74 51 0.60 456 0.4
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Col. Concrete core Transverse reinforcement

Label f
(MPa)

f  / fcc c 
( - )

8c
(mm/m)

Sc A
( - )

Tie d
C

(mm)
S

(mm)
P fr s sy 

(%) (MPa)
a i,eff

(MPa)

SII 80.8 1.20 3.2 1.65 A-cir 74 25 1.20 456 1.8

S12 80.8 1.19 3.2 1.63 A-cir 74 25 1.20 456 1.8

S13 80.8 1.22 3.2 1.68 A-cir 74 25 1.20 456 1.8

S14 80.8 1.21 3.2 1.64 A-cir 74 25 1.20 456 1.8

S15 80.8 1.21 3.2 1.65 A-cir 74 25 1.20 456 1.8

Specimens tested: 76x 152 mm cylinders without longitudinal reinforcement.

Table A15
Details of columns with circular ties tested by Issa (1994)

Col. Concrete core Transverse reinforcement

Label f
C

(MPa)
f  / f

CC c 

( - )
Sc

(mm/m)
Sc A

( - )
Tie dc

(mm)
S

(mm)
Ps

(%)

fsy
(MPa)

° l ,e f f
(MPa)

B-l 68.7 1.50 2.2 2.64 A-spi 104 25 3.81 586 8.4

B-2 68.7 1.29 2.2 2.50 A-spi 104 38 2.54 586 4.7

B-3 68.7 1.23 2.2 1.97 A-spi 104 51 1.91 586 2.9

B-4 68.7 1.17 2.2 1.40 A-spi 104 64 1.52 586 1.7

C-l 49.0 1.98 1.8 2.34 A-spi 104 25 3.68 372 5.2

C-2 49.0 1.65 1.8 1.97 A-spi 104 38 2.45 372 2.9

C-3 49.0 1.52 1.8 1.57 A-spi 104 51 1.84 372 1.7

C-4 49.0 1.48 1.8 1.80 A-spi 104 64 1.47 372 1.1

D-l 53.0 1.82 2.0 2.00 A-spi 104 25 3.68 372 5.2

D-2 53.0 1.81 2.0 2.00 A-spi 104 38 2.45 372 2.9

D-3 53.0 1.59 2.0 1.99 A-spi 104 51 1.84 372 1.7

D-4 53.0 1.37 2.0 1.90 A-spi 104 64 1.47 372 1.1

E-l 35.9 2.13 1.6 2.50 A-spi 104 25 3.68 372 5.2

E-2 35.9 1.86 1.6 1.95 A-spi 104 38 2.45 372 2.9

E-3 35.9 1.48 1.6 1.73 A-spi 104 51 1.84 372 1.7

E-4 35.9 1.44 1.6 1.64 A-spi 104 64 1.47 372 1.1

Specimens tested: 125x400 mm prisms without longitudinal reinforcement.
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Table A16
Details of columns with square ties tested by Issa (1994)

C o l. C o n c re te  c o re  T ra n sv e rse  re in fo rc e m e n t

Label f
C

(MPa)
f  / fcc c 

( - )
e c

(mm/m)
s cc/ £ c

( - )
Tie dC

(mm)
S

(mm)
Ps

(%)

fsy
(MPa)

a i , e f f

(MPa)

A-l 48.3 1.56 2.1 1.57 B-spi 111 25 3.08 290 1.1

A-2 48.3 1.56 2.1 1.86 B-spi 104 38 2.45 372 0.9

A-3 48.3 1.27 2.1 1.24 B-spi 111 51 1.54 290 0.4

A-4 48.3 1.50 2.1 1.57 B-spi 104 64 1.47 372 0.3

Specimens tested: 125x400 mm prisms without longitudinal reinforcement.

Table A17
Details of circular columns tested by Cusson e t a l (1996)

Col. Concrete core Longitudinal
reinforcement

Transverse
reinforcement

Label f
C

(MPa)
f  / f  8

CC c c 

( - ) (mm/m)
8  / 8  
CC c

( - )
Pg

(%)
c

(MPa)
Tie dc

(mm)
S

(mm)
Ps

(%)
fsy

(MPa)
a i,eff

(MPa)

112 66.0 1.42 - - 0.00 - A-spi 144 36 2.18 580 4.7

11A 112.0 1.13 - - 0.00 - A-spi 144 36 2.18 580 4.7

I1B 112.0 1.13 - - 0.00 - A-spi 144 36 2.18 580 4.7

III3 92.0 1.23 - - 0.00 - A-spi 144 36 2.18 580 4.7

III4 92.0 1.22 - - 0.00 - A-spi 145 51 1.06 588 2.0

17* 112.0 1.17 - - 0.00 - A-spi 144 36 2.18 580 4.7

18* 112.0 1.08 - - 0.00 - A-spi 144 36 2.18 580 4.7

110 112.0 1.25 - - 0.00 - A-spi 144 18 4.36 580 11.1

111 112.0 1.13 - - 0.00 - A-spi 145 51 1.06 588 2.0

112 112.0 1.12 - - 2.28 627 A-spi 144 36 2.18 580 4.7

113 112.0 1.13 - - 4.53 534 A-spi 144 36 2.18 580 4.7

Specimens tested: In general 160x500 mm cylinders.
* Column 17 was a 160x320 and column 18 a 160x1000 mm cylinder.
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Table A18
Details of cylinder columns Hoshikuma e t a l (1997)

Col. Concrete core Longitudinal
reinforcement

Transverse
reinforcement

Label f
C

(MPa)
f  / fcc c 

( - )

e c
(mm/m)

Sc A
( - )

Pg
(%)

f sy

(MPa)
Tie d

C

(mm)
S

(mm)
Ps

(%)
f sy

(MPa)
“ a l,eff
(MPa)

SCI 18.5 1.23 2.2 1.59 0.00 - A-cir 194 150 0.39 235 0.1

SC2 18.5 1.32 2.2 2.18 0.00 - A-cir 194 100 0.58 235 0.3

SC3 18.5 1.67 22 2.55 0.00 - A-cir 194 50 1.17 235 1.0

SC4 18.5 2.20 2.2 6.41 0.00 - A-cir 194 25 2.33 235 2.4

SC5 18.5 3.24 2.2 9.91 0.00 - A-cir 194 13 4.66 235 5.1

LC1 28.8 1.12 2.2 1.77 1.01 295 A-cir 490 300 0.21 295 0.1

LC2 28.8 1.29 2.2 1.95 1.01 295 A-cir 490 150 0.43 295 0.4

LC3 28.8 1.41 2.2 2.05 1.01 295 A-cir 490 100 0.64 295 0.8

LC4 28.8 1.55 2.2 2.50 1.01 295 A-cir 490 50 1.28 295 1.7

Specimens tested: Series SC 200x600 mm cylinders without longitudinal reinforcement 
Series LC 500x1500 mm cylinders.

* Material properties for confined concrete extracted from stress-strain curves given in source.

Table A19
Details of square columns Hoshikuma et a l  (1997)

Col. Concrete core Longitudinal
reinforcement

Transverse
reinforcement

Label fc f  / f
CC c

8c e c A Pg
fsy Tie S Ps fsy °l,eff

(MPa) ( - ) (mm/m) ( - ) (%) (MPa) (mm) (mm) (%) (MPa) (MPa)

SSI 23.2 1.06 2.5 1.36 0.00 - B 194 150 0.39 235 0.0

SS2 23.2 1.09 2.5 1.64 0.00 - B 194 100 0.58 235 0.1

SS3 23.2 1.14 2.5 1.92 0.00 - B 194 50 1.17 235 0.3

SS4 23.2 1.33 2.5 2.08 0.00 - B 194 25 2.33 235 0.8

SS5 23.2 1.46 2.5 3.72 0.00 - B 194 13 4.66 235 1.7

LSI 24.3 1.09 2.5 1.92 0.95 295 B 490 60 1.81 295 0.8

LS2 24.3 1.23 2.5 1.80 0.95 295 B 490 75 2.19 295 0.9

LS3 24.3 1.21 2.5 2.00 0.95 295 B 490 40 2.71 295 1.2

LS4 24.3 1.27 2.5 3.64 0.95 295 B 490 40 4.10 295 1.9

Specimens tested: Series SS 200x600 mm prisms without longitudinal reinforcement.
Series LS 500x 1500 mm prisms.

* Material properties for confined concrete extracted from stress-strain curves given in source.
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Table A20
Details of square columns tested by Razvi and Saatcioglu (1998)

C o l. C o n c re te  co re  L o n g itu d in a l T ra n sv e rse

reinforcement reinforcement

Label f  *c
(MPa)

f  / fcc c 
( - )

£c
(mm/m)

8cc/£ c
( - )

Pg
(%)

fsy
(MPa)

Tie dc S 
(mm) (mm)

Ps

(%)

f  (7.sy 1, eff
(MPa) (MPa)

CS-1 105.4 1.15 - - 1.29 470 B 219 55 3.34 400 1.7

CS-2 105.4 1.15 - - 2.57 470 C’ 224 55 1.62 570 2.3

CS-3 105.4 1.22 - - 3.86 470 D 224 55 2.43 570 3.6

CS-4 105.4 1.17 - - 2.57 470 C’ 223 55 2.17 1000 5.4

CS-5 105.4 1.16 - - 3.86 470 D 223 120 1.49 1000 2.4

CS-6 105.4 1.10 - - 2.57 470 C’ 224 85 1.05 400 0.9

CS-7 105.4 1.09 - - 3.86 470 D 224 120 1.11 400 0.7

CS-8 105.4 1.12 - - 2.57 470 C’ 219 85 3.24 400 2.6

CS-9 105.4 1.27 - - 3.86 470 D 219 120 3.44 400 2.1

CS-11 68.9 1.36 - - 1.29 470 B 219 40 4.59 400 2.5

CS-12 68.9 1.19 - - 1.29 470 B 219 55 3.34 400 1.7

CS-13 78.2 1.10 - - 2.57 470 C’ 224 55 1.62 570 2.3

CS-14 78.2 1.21 - - 3.86 470 D 224 55 2.43 570 3.6

CS-15 68.9 1.39 - - 2.57 470 C’ 223 55 2.17 1000 5.4

CS-16 68.9 1.38 - - 3.86 470 D 223 85 2.10 1000 4.5

CS-17 68.9 1.09 - - 2.57 470 C’ 224 85 1.05 400 0.9

CS-18 68.9 1.11 - - 3.86 470 D 224 85 1.57 400 1.3

CS-19 78.2 1.33 - - 2.57 470 C’ 219 85 3.24 400 2.6

CS-20 78.2 1.36 - - 3.86 470 D 219 85 4.86 400 4.1

CS-22 51.0 1.33 - - 2.57 470 C’ 223 85 1.40 1000 2.9

CS-23 51.0 1.40 - - 3.86 470 D 223 120 1.49 1000 2.4

CS-24 51.0 1.42 - - 2.57 470 C’ 219 85 3.24 400 2.6

CS-25 51.0 1.37 - - 3.86 470 D 219 120 3.44 400 2.1

CS-26 51.0 1.50 - - 3.86 470 D 224 55 2.43 570 3.6

Specimens tested: 250x900 mm prisms.
C’ is a 6 legged tie configuration with 8 longitudinal steel bars. 
* 0.85 times 150x300 mm cylinder strength.
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Table A21
Details of circular columns tested by Li, taken after (Razvi, 1999)

Col. Concrete core Transverse
reinforcement

Label fC
(MPa)

f  / f  8cc c c 
( - ) (mm/m)

£c A

(-)
Tie dc

(inm)
S

(mm)
Ps

(%)
fsy

(MPa)
° l , e f f

(MPa)

3A 63.0 1.48 - - A-cir 204 20 2.77 445 5.6

6A 63.0 1.24 - - A-cir 204 35 1.58 445 2.9

9A 63.0 1.19 - - A-cir 204 50 1.11 445 1.9

12A 63.0 1.12 - - A-cir 204 65 0.85 445 1.3

3B 72.3 1.50 - - A-cir 204 20 2.77 445 5.6

6B 72.3 1.28 - - A-cir 204 35 1.58 445 2.9

9B 72.3 1.18 - - A-cir 204 50 1.11 445 1.9

12B 72.3 1.02 - - A-cir 204 65 0.85 445 1.3

2HB 52.0 2.42 - - A-cir 204 20 3.16 1318 18.8

4HB1 52.0 1.68 - - A-cir 204 35 1.71 1318 9.9

6HB 52.0 1.32 - - A-cir 204 50 1.26 1318 6.3

2HC1 82.5 1.78 - - A-cir 204 20 3.16 1318 18.8

4HC 82.5 1.29 - - A-cir 204 35 1.81 1318 9.9

6HC 82.5 1.12 - - A-cir 204 50 1.26 1318 6.3

Table A22
Details of square columns tested by Nagashima e t a l, taken after (Razvi, 1999)

Col. Concrete core Transverse
reinforcement

Lab. fc f  / f
CC c 8  8  /£  c CC c Tie ¿e S Ps fsy a l,eff

(MPa) ( - ) (mm/m) ( - ) (mm) (mm) (%) (MPa) (MPa)

1 92.4 1.57 - D 214 31 3.84 813 9.2

2 92.4 1.48 - D 214 31 3.84 813 9.2

3 92.4 1.57 - D 214 31 3.84 813 9.2

4 92.4 1.32 - D 214 45 2.64 813 5.9

5 92.4 1.30 - D 214 60 1.98 813 4.0

6 92.4 1.19 - D 214 60 1.98 813 4.0

7 92.4 1.30 - D 214 60 1.98 813 4.0

8 92.4 1.30 - D 216 31 1.69 840 4.2
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Col. Concrete core Transverse
reinforcement

Lab. f
C

(MPa)
f  / fc c  c 

( - )

8  8 / 8  
c cc c

(mm/m) ( - )

Tie dc
(mm)

S
(mm)

Ps

(%)
fsy

(MPa) (MPa)

9 96.2 1.39 - D 214 31 3.84 462 5.2

10 96.2 1.38 - D 214 31 3.84 462 5.2

11 96.2 1.22 - D 214 45 2.64 462 3.3

12 96.2 1.25 - D 214 60 1.98 462 2.3

13 96.2 1.20 - D 214 60 1.98 462 2.3

14 96.2 1.20 - D 216 31 1.69 481 2.4

* Effective confining pressure determined on the basis of measured hoop strains.

Table A23
Details of circular columns tested by Razvi and Saatcioglu (1999)

Col. Concrete core Transverse
reinforcement

Label fc
(MPa)

f  / f  8CC c c 
( - ) (mm/m)

8 / 8 CC c
( - )

Tie d
C

(mm)
S

(mm)
Ps

(%)

fsy
(MPa)

c l,eff
(MPa)

CC-1 51.0 1.17 - - A-spi 224 135 0.41 660 0.5

CC-2 51.0 1.22 - - A-spi 219 135 1.36 400 1.0

CC-3 51.0 1.34 - - A-spi 224 70 0.80 660 1.8

CC-4 51.0 1.32 - - A-spi 224 70 0.80 660 1.8

CC-8 105.4 1.17 - - A-spi 224 70 0.80 660 1.8

CC-9 105.4 1.28 - - A-spi 219 135 1.36 400 1.0

CC-10 105.4 1.28 - - A-spi 219 60 3.06 400 4.4

CC-11 105.4 1.18 - - A-spi 224 60 0.93 660 2.2

CC-12 105.4 1.21 - - A-spi 223 60 1.32 1000 4.8

CC-14 78.2 1.31 - - A-spi 223 60 1.32 1000 4.8

CC-15 78.2 1.35 - - A-spi 219 60 3.06 400 4.4

CC-16 78.2 1.22 - - A-spi 223 100 0.79 1000 2.2

CC-19 78.2 1.21 - - A-spi 219 100 1.83 400 2.0

CC-20 78.2 1.13 - - A-spi 224 100 0.56 660 1.0

CC-21 78.2 1.19 - - A-spi 224 70 0.80 660 1.8

CC-22 78.2 1.14 - - A-spi 219 135 1.36 400 1.0
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Table A24
Details of square columns tested by Nagashima e t a l, taken after (Cusson, 1995)

and (Razvi, 1999)
Col. Concrete core Transverse

reinforcement

Label f f  / fcc c 8 **c £cc/ £ c Tie dc S Ps C
— ry *

a i,eff
(MPa) ( - ) (mm/m) ( - ) (mm) (mm) (%) (MPa) (MPa) (MPa)

HH08LA 98.8 1.24 2.9 1.51 D 200 55 1.67 1387 1.4 5.8

HH10LA 98.8 1.24 2.9 1.82 D 200 45 2.04 1387 3.0 7.6

HH13LA 98.8 1.33 2.9 1.89 D 200 35 2.63 1387 3.8 10.4

HH15LA 98.8 1.29 2.9 3.06 D 200 45 3.24 1368 6.4 11.9

HH20LA 100.4 1.47 2.9 5.85 D 200 35 4.17 1368 15.7 16.2

HL06LA 100.4 1.17 2.9 1.47 D 200 45 1.96 807 2.5 4.3

HL08LA 100.4 1.33 2.9 1.78 D 200 35 2.52 807 4.4 5.8

LL05LA 51.3 1.34 2.4 1.52 D 200 55 1.61 807 2.2 3.3

LL08LA 51.3 1.55 2.4 3.20 D 200 35 2.52 807 5.1 5.8

LH08LA 51.3 1.38 2.4 2.40 D 200 55 1.67 1387 3.2 5.8

LH13LA 51.3 1.67 2.4 4.89 D 200 35 2.63 1387 9.5 10.4

HH13MA 100.4 1.31 2.9 1.64 D 200 35 2.63 1387 3.6 10.4

HH13HA 100.4 1.29 2.9 2.12 D 200 35 2.63 1387 4.7 10.4

LL08MA 51.03 1.55 2.4 3.79 D 200 35 2.52 807 5.2 5.8

LL08HA 51.3 1.52 2.4 4.17 D 200 35 2.52 807 5.1 5.8

LH15LA 52.4 1.69 2.4 9.34 D 200 45 3.24 1368 11.9 11.9

HH13LB 100.4 1.31 2.9 2.19 D 200 27 3.41 1387 4.9 14.1

HH13LD 100.4 1.28 2.9 1.75 C’ 200 25 2.45 1387 2.9 9.9

LL08LB 52.4 1.57 2.4 2.93 D 200 27 3.27 807 6.0 7.9

LL08LD 52.4 1.48 2.4 4.06 C’ 200 25 2.36 807 4.7 5.5

HH13MSA 100.4 1.29 2.9 - D 200 35 2.63 1387 - 10.4

HH13HSA 100.4 1.34 2.9 - D 200 35 2.63 1387 - 10.4

LL08MSA 52.4 1.51 2.4 - D 200 35 2.52 807 - 5.8

LL08HSA 52.4 1.54 2.4 - D 200 35 2.52 807 - 5.8

C’ is a 6 legged tie configuration with 8 longitudinal steel bars.
* Effective confining pressure determined on the basis of measured hoop strains. 
** Estimated using equation 3.5.
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Table A25
Details of columns tested by Assa e t a l (Assa, 2001)

C o l. C o n c re te  c o re  T ra n sv e rse

re in fo rc e m e n t

Label fc
(MPa)

f  / fcc c 

( - )
ec

(rnm/m)
Sc A

( - )
Tie dc

(mm)
S

(mm)
Ps

(%)
fsy

(MPa)
a i,eff* *

(MPa)
° l,e ff

(MPa)

20M25 25.0 3.83 3.3 16.52 A-spi 145 28 3.05 1296 16.1 16.0

20M38 25.0 2.31 3.3 10.06 A-spi 145 44 1.92 1296 8.7 8.6

30M19 34.1 3.78 2.4 20.25 A-spi 145 20 4.15 1296 24.3 23.1

30M25 34.1 2.93 2.4 16.69 A-spi 145 28 3.04 1296 15.2 15.9

30M38 34.1 1.84 2.4 8.93 A-spi 145 47 1.80 1296 6.8 7.9

30M50 34.1 1.71 2.4 5.45 A-cir 145 50 1.69 909 5.0 5.0

30M75 34.1 1.24 2.4 2.44 A-cir 145 75 1.13 909 1.6 2.5

40M25 41.4 2.44 2.5 10.08 A-spi 145 28 3.05 1296 16.3 16.0

40M38 41.4 1.85 2.5 5.28 A-spi 145 44 1.92 1296 7.8 8.6

50M25 49.8 2.53 2.2 9.40 A-spi 145 28 3.05 1296 16.2 16.0

50M38 49.8 1.74 2.2 5.64 A-spi 145 44 1.92 1296 7.2 8.6

60M25 64.4 2.09 2.3 7.26 A-spi 145 28 3.02 1296 15.7 15.8

60M25R 64.4 2.03 2.3 5.09 A-spi 145 28 3.05 1296 14.4 16.0

60M38 64.4 1.50 2.3 3.46 A-spi 145 44 1.92 1296 6.8 8.6

70M25 70.1 1.85 2.0 5.95 A-spi 145 28 3.02 1296 13.9 15.8

70M38 70.1 1.30 2.0 2.35 A-spi 145 44 1.92 1296 3.4 8.6

80M19 83.0 1.96 2.3 8.51 A-spi 145 20 4.15 1296 23.4 23.1

80M25 83.0 1.56 2.3 4.30 A-spi 145 28 3.01 1296 13.0 15.7

80M38 85.0 1.24 2.3 2.54 A-spi 145 47 1.82 1296 3.5 8.0

80M50 83.0 1.20 2.3 2.06 A-cir 145 50 1.69 909 2.8 5.0

80M75 83.0 1.00 2.3 1.49 A-cir 145 75 1.13 909 1.2 2.5

90M25 75.0 1.79 2.0 4.60 A-spi 145 28 3.02 1296 12.6 15.8

90M38 75.0 1.40 2.0 2.08 A-spi 145 45 1.88 1296 2.9 8.4

90M25T 74.5 1.97 1.9 5.76 A-spi 145 28 3.05 1296 11.6 16.0

C’ is a 6 legged tie configuration with 8 longitudinal steel bars.
* Effective confining pressure determined on the basis of measured hoop strains.
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Appendix B: Programs for Numerical Analysis of
Concrete Columns

The following provides the source code for the two major computer programs developed 

as part of this investigation into the behaviour of confined high strength concrete columns. 

The first program, MNCALC, calculates all supportable combinations of axial load and 

biaxial bending moments for a given cross-section, and the second program, COLS, 

calculates the load-deflection response for a slender column. The generic input files assist 

in the understanding of the working of the computer programs.

B.l MNCALC - Program for Generating Interaction Diagrams

Input file

* = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

* MN-DIAGRAM : Title: Saatcioglu, config (3)
*  = =  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —

* PROBLEM SIZE
* nmt = Number of material specifications
* maxmd = Maximum data points defining a single stress-strain curve
* nqc = Number of quadrilateral elements in cross-section
* npc = Number of point elements in cross-section
* ngaus = Order of numerical integration

____________ . . . __________________________________________
* nmt maxmd nqc npc ngaus

3 301 24 12 3

* CONTROL PARAMETERS FOR ANALYSIS
* daPzO (KN ), Initial axial load increment
* naPz , Axial load resolution
* eraPz (KN), Accuracy of axial load capacity
* erPres (KN), Convergence criteria for axial load residuals
* daMO (KNm), Initial increment of bending moments
* phi (deg). Biaxial moment relation, dMx= cos(phi)*daM,
* dMy= s i n(ph i)*daM
* eraM (KN), Accuracy of moment capacity
* erMres (KNm), convergence criteria for residual moments

* daPzO naPz eraPz erPres daMO phi eraM erMres

-1.0 30 .1 .001 1. .0 .01 .005

* ELEMENTS DEFINING CROSS-SECTION
* Description of each quadrilateral element within the cross-section in terms
* of material number and nodal coordinates. This followed by a description of
* each point element in terms of material number, coordinate, lumped area, and
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* the material number of the replaced material.

* material coord.nodel coord.node2 coord.node3 coord.node4
* number X Y X Y X Y X Y
* ( - ) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm)
* material coord.node area replaced
* number X Y material
* ( - ) (mm) (mm) (mm‘2) ( - )
DC=========================================================

5 - 1 0 5 ., 0 - 1 0 5 ., 0 - 8 8 .. 8 - 1 0 5  ., 0 - 8 8 .. 8 - 8 8 .. 8 - 1 0 5 ., 0 - 8 8 .. 8
5 - 8 8 ., 8 - 1 0 5 .. 0 8 8 .. 8 - 1 0 5 ., 0 8 8 .. 8 - 8 8 ., 8 - 8 8 ., 8 - 8 8 .. 8
5 8 8 .. 8 - 1 0 5 .. 0 1 0 5  .. 0 - 1 0 5 .. 0 1 0 5 .. 0 - 8 8 .. 8 8 8 .. 8 - 8 8 .. 8
5 - 1 0 5  .. 0 - 8 8 .. 8 - 8 8 .. 8 - 8 8 .. 8 - 8 8 .. 8 - 5 9 .. 2 - 1 0 5  .. 0 - 5 9 .. 2
8 - 8 8 ., 8 - 8 8 ., 8 8 8 .. 8 - 8 8 .. 8 8 8 .. 8 - 5 9 .. 2 - 8 8 ., 8 - 5 9 .. 2
5 8 8 .. 8 - 8 8 .. 8 1 0 5 .. 0 - 8 8 ., 8 1 0 5 .. 0 - 5 9 .. 2 8 8 .. 8 - 5 9 .. 2
5 - 1 0 5 .. 0 - 5 9 .. 2 - 8 8 .. 8 - 5 9 .. 2 - 8 8 .. 8 - 2 9 .. 6 - 1 0 5  ., 0 - 2 9 .. 6
8 - 8 8 .. 8 - 5 9 .. 2 8 8 .. 8 - 5 9 ., 2 8 8 .. 8 - 2 9 .. 6 - 8 8 .. 8 - 2 9 .. 6
5 8 8 .. 8 - 5 9 .. 2 1 0 5 .. 0 - 5 9 .. 2 1 0 5 .. 0 - 2 9 .. 6 8 8 .. 8 - 2 9 .. 6
5 - 1 0 5 .. 0 - 2 9 .. 6 - 8 8 .. 8 - 2 9 .. 6 - 8 8 .. 8 0 .. 0 - 1 0 5 .. 0 0 .. 0
8 - 8 8 .. 8 - 2 9 .. 6 8 8 .. 8 - 2 9 .. 6 8 8 .. 8 0 .. 0 - 8 8 .. 8 0 .. 0
5 8 8 .. 8 - 2 9 .. 6 1 0 5 ,. 0 - 2 9 .. 6 1 05  .. 0 0 .. 0 8 8 .. 8 0 .. 0
5 - 1 0 5 .. 0 0 .. 0 - 8 8 .. 8 0 .. 0 - 8 8 .. 8 2 9 .. 6 - 1 0 5 .. 0 2 9 .. 6
8 - 8 8 .. 8 0 .. 0 8 8 .. 8 0 .. 0 8 8 .. 8 2 9 .. 6 - 8 8 .. 8 2 9 .. 6
5 8 8 .. 8 0 .. 0 1 0 5  .. 0 0 .. 0 1 0 5 .. 0 2 9 .. 6 8 8 .. 8 2 9 .. 6
5 - 1 0 5  .. 0 2 9 .. 6 - 8 8 ,. 8 2 9 .. 6 - 8 8 .. 8 5 9 .. 2 - 1 0 5 .. 0 5 9 ,. 2
8 - 8 8 .. 8 2 9 .. 6 8 8 .. 8 2 9 .. 6 8 8 .. 8 5 9 .. 2 - 8 8 .. 8 5 9 .. 2
5 8 8 .. 8 2 9 .. 6 1 0 5 .. 0 2 9 .. 6 1 0 5 .. 0 5 9 .. 2 8 8 .. 8 5 9 .. 2
5 - 1 0 5 .. 0 5 9 .. 2 - 8 8 ,. 8 5 9 .. 2 - 8 8 .. 8 8 8 .. 8 - 1 0 5  .. 0 8 8 .. 8
8 - 8 8 .. 8 5 9 .. 2 8 8 .. 8 5 9 .. 2 8 8 .. 8 8 8 ,. 8 - 8 8 .. 8 8 8 .. 8
5 8 8 .. 8 5 9 .. 2 1 0 5 ,. 0 5 9 .. 2 1 0 5  .. 0 8 8 .. 8 8 8 .. 8 8 8 ,. 8
5 - 1 0 5 .. 0 8 8 .. 8 - 8 8 ,. 8 8 8 .. 8 - 8 8 .. 8 1 0 5 .. 0 - 1 0 5 .. 0 1 0 5 ,. 0
5 - 8 8 .. 8 8 8 .. 8 8 8 ,. 8 8 8 .. 8 8 8 .. 8 1 0 5 .. 0 - 8 8 .. 8 1 0 5 ,. 0
5 8 8 .. 8 8 8 .. 8 1 0 5  .. 0 8 8 .. 8 1 0 5  .. 0 1 0 5 .. 0 8 8 .. 8 1 0 5 ,. 0
9

OOCO - 8 0 . 0 1 0 0 . 3 8
9 - 2 7 . 0 - 8 0 . 0 1 0 0 . 3 8
9 2 7 . 0 - 8 0 . 0 1 0 0 . 3 8
9 8 0 . 0

OoCO 1 0 0 . 3 8
9 - 8 0 . 0 - 2 7 . 0 1 0 0 . 3 8
9 8 0 . 0 - 2 7 . 0 1 0 0 . 3 8
9 - 8 0 . 0 2 7 . 0 1 0 0 . 3 8
9 8 0 . 0 2 7 . 0 1 0 0 . 3 8
9 - 8 0 . 0 8 0 . 0 1 0 0 . 3 8
9 - 2 7 . 0 8 0 . 0 1 0 0 . 3 8
9 2 7 . 0 8 0 . 0 1 0 0 . 3 8
9 8 0 . 0 8 0 . 0 1 0 0 . 3 8

* MATERIAL PROPERTIES
* Material number, number of data points defining stress-strain curve,
* strain corresponding to initial stress data, strain corresponding to
* final stress data. This followed by the stress values corresponding to
* the equidistant strain values.
* Repeat for the definition of other materials.
* 5 = C35 unconfined
* 8 = C35 confined (3)
* 9 = reinforcement bars

* material number of initial final
* number data points strain strain
* ( - ) ( - ) (mm/m) (mm/m)
* stress ...
* (MPa)
1P = = = = = =

5 3 0 1 0 . 0  - 1 5 . 0
0 . 0 0 - 1 . 5 0 - 2 . 9 6 - 4 . 3 6 - 5 . 7 2 - 7 . 0 4 - 8 . 3 1 - 9 . 5 4 - 1 0 . 7 2

- 1 1 . 8 7 - 1 2 . 9 7 - 1 4 . 0 3 - 1 5 . 0 5 - 1 6 . 0 3 - 1 6 . 9 7 - 1 7 . 8 8 - 1 8 . 7 4 - 1 9 . 5 7
- 2 0 . 3 7 - 2 1 . 1 2 - 2 1 . 8 4 - 2 2 . 5 3 - 2 3 . 1 8 - 2 3 . 8 0 - 2 4 . 3 9 - 2 4 . 9 4 - 2 5 . 4 6
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- 2 5 . 9 5 - 2 6 . 4 0 - 2 6 . 8 3 - 2 7 . 2 3 - 2 7

Oir» - 2 7 . 9 3 - 2 8 . 2 3 - 2 8 . 5 1 - 2 8 . 7 6
- 2 8 . 9 8 - 2 9 . 1 8 - 2 9 . 3 5 - 2 9 . 4 9 - 2 9 . 6 0 - 2 9 . 6 9 - 2 9 . 7 5 - 2 9 . 7 9 - 2 9 . 8 0
- 2 9 . 8 0 - 2 9 . 7 9 - 2 9 . 7 7 - 2 9 . 7 4 - 2 9 . 6 8 - 2 9 . 6 0 - 2 9 . 4 8 - 2 9 . 3 4 - 2 9 . 1 6
- 2 8 . 9 4 - 2 8 . 6 9 - 2 8 . 4 0 - 2 8 . 0 7 - 2 7 . 7 0 - 2 7 . 3 0 - 2 6 . 8 6 - 2 6 . 3 9 - 2 5 . 8 9
- 2 5 . 3 7 - 2 4 . 8 2 - 2 4 . 2 6 - 2 3 . 6 7 - 2 3 . 0 8 - 2 2 . 4 7 - 2 1 . 8 6 - 2 1 . 2 4 - 2 0 . 6 3
- 2 0 . 0 1 - 1 9 . 4 0 - 1 8 . 8 0 - 1 8 . 2 0 - 1 7 . 6 1 - 1 7 . 0 4 - 1 6 . 4 8 - 1 5 . 9 3 - 1 5 . 3 9
- 1 4 . 8 8 - 1 4 . 3 7 - 1 3 . 8 8 - 1 3 . 4 1 - 1 2 . 9 5 - 1 2 . 5 1 - 1 2 . 0 8 - 1 1 . 6 7 - 1 1 . 2 8
- 1 0 . 8 9 - 1 0 . 5 3 - 1 0 . 1 7 - 9 . 8 4 - 9 . 5 1 - 9 . 2 0 - 8 . 9 0 - 8 . 6 1 - 8 . 3 3

- 8 . 0 6 - 7 . 8 1 - 7 . 5 6 - 7 . 3 2 - 7 . 1 0 - 6 . 8 8 - 6 . 6 7 - 6 . 4 7 - 6 . 2 7
- 6 . 0 9 - 5 . 9 1 - 5 . 7 4 - 5 . 5 7 - 5 . 4 1 - 5 . 2 6 - 5 . 11 - 4 . 9 7 - 4 . 8 4
- 4 . 7 0 - 4 . 5 8 - 4 . 4 6 - 4 . 3 4 - 4 . 2 3 - 4 . 12 - 4 . 0 1 - 3 . 9 1 - 3 . 8 1
- 3 . 7 2 - 3 . 6 2 - 3 . 5 4 - 3 . 4 5 - 3 . 3 7 - 3 . 2 9 - 3 . 2 1 - 3 . 1 4 - 3 . 0 6
- 2 . 9 9 - 2 . 9 3 - 2 . 8 6 - 2 . 8 0 - 2 . 7 4 - 2 . 6 8 - 2 . 6 2 - 2 . 5 6 - 2 . 5 1
- 2 . 4 5 - 2 . 4 0 - 2 . 3 5 - 2 . 3 1 - 2 . 2 6 - 2 . 2 1 - 2 . 1 7 - 2 . 1 3 - 2 . 08
- 2 . 0 4 - 2 . 0 1 -1 . 9 7 -1 . 9 3 - 1 . 8 9 - 1 . 8 6 -1 . 8 2 -1 . 7 9 -1 . 7 6
- 1 . 7 3 -1 . 7 0 - 1 . 6 7 -1 . 6 4 - 1 . 6 1 - 1 . 5 8 -1 . 5 5 - 1 . 5 3 -1 . 5 0
- 1 . 4 7 - 1 . 4 5 - 1 . 4 3 -1 . 4 0 -1 . 3 8 - 1 . 3 6 -1 . 3 4 - 1 . 3 1 -1 . 2 9
- 1 . 2 7 - 1 . 2 5 -1 . 2 3 -1 . 2 1 -1 . 2 0 - 1 . 1 8 -1 . 1 6 -1 . 1 4 -1 . 1 3
- 1 . 1 1 - 1 . 0 9 - 1 . 0 8 -1 . 0 6 -1 . 0 5 -1 . 0 3 -1 . 0 2 -1 . 0 0 - 0 . 9 9
- 0 . 9 7 - 0 . 9 6 - 0 . 9 5 - 0 . 9 4 - 0 . 9 2 - 0 . 9 1 - 0 . 9 0 - 0 . 8 9 - 0 . 8 7
- 0 . 8 6 - 0 . 8 5 - 0 . 8 4 - 0 . 8 3 - 0 . 8 2 - 0 . 8 1 - 0 . 8 0 - 0 . 7 9 - 0 . 7 8
- 0 . 7 7 - 0 . 7 6 - 0 . 7 5 - 0 . 7 4 - 0 . 7 3 - 0 . 7 2 - 0 . 7 1 - 0 . 7 1 - 0 . 7 0
- 0 . 6 9 - 0 . 6 8 - 0 . 6 7 - 0 . 6 7 - 0 . 6 6 - 0 . 6 5 - 0 . 6 4 - 0 . 6 4 - 0 . 6 3
- 0 . 6 2 - 0 . 6 1 - 0 . 6 1 - 0 . 6 0 - 0 . 5 9 - 0 . 5 9 - 0 . 5 8 - 0 . 5 8 - 0 . 5 7
- 0 . 5 6 - 0 . 5 6 - 0 . 5 5 - 0 . 5 5 - 0 . 5 4 - 0 . 5 3 - 0 . 5 3 - 0 . 5 2 - 0 . 5 2
- 0 . 5 1 - 0 . 5 1 - 0 . 5 0 - 0 . 5 0 - 0 . 4 9 - 0 . 4 9 - 0 . 4 8 - 0 . 4 8 - 0 . 4 7
- 0 . 4 7 - 0 . 4 6 - 0 . 4 6 - 0 . 4 5 - 0 . 4 5 - 0 . 4 5 - 0 . 4 4 - 0 . 4 4 - 0 . 4 3
- 0 . 4 3 - 0 ,. 4 3 - 0 ,. 4 2 - 0 . 4 2 - 0 . 41 - 0 . 4 1 - 0 . 4 1 - 0 . 4 0 - 0 ,. 4 0
- 0 . 4 0 - 0 ,. 3 9 - 0 ,. 3 9 - 0 ,. 3 8 - 0 . 3 8 - 0 . 3 8 - 0 . 3 7 - 0 . 3 7 - 0 ,. 3 7
- 0 . 3 6 - 0 ,. 3 6 - 0 .. 3 6 - 0 . 3 6 - 0 . 3 5 - 0 . 3 5 - 0 . 3 5 - 0 . 3 4 - 0 ,. 3 4
- 0 . 3 4 - 0 .. 3 4 - 0 .. 3 3 - 0 .. 3 3

8  3 0 1 0 . 0 - 1 5 . 0
0 . 0 0 - 1 .. 5 0 - 2 .. 9 6 - 4 .. 3 6 - 5 ,. 7 2 - 7 . 0 4 - 8 . 3 1 - 9 .. 5 3 - 1 0 .. 7 2

- 1 1 . 8 6 - 1 2 .. 9 6 - 1 4 ,. 0 2 - 1 5 .. 0 3 - 1 6 ,. 01 - 1 6 .. 9 6 - 1 7 . 8 6 - 1 8 . 7 3 - 1 9 .. 5 6
- 2 0 . 3 6 - 2 1  .. 1 3 - 2 1  .. 8 6 - 2 2 .. 5 6 - 2 3 .. 2 3 - 2 3 .. 8 7 - 2 4 . 4 9 - 2 5  .. 0 8 - 2 5  .. 6 5
- 2 6 . 1 9 - 2 6 .. 71 - 2 7 .. 21 - 2 7 .. 7 0 - 2 8 ,. 1 6 - 2 8 ,. 61 - 2 9 . 0 4 - 2 9 .. 4 5 - 2 9 .. 8 6
- 3 0 . 2 5 - 3 0 .. 6 2 - 3 0 .. 9 9 - 3 1  ,. 3 5 - 3 1  ,. 6 9 - 3 2 .. 0 3 - 3 2 . 3 5 - 3 2 .. 6 7 - 3 2 .. 9 8
- 3 3 .. 2 9 - 3 3 .. 5 9 - 3 3 .. 8 8 - 3 4  .. 1 6 - 3 4 .. 4 4 - 3 4 .. 71 - 3 4 . 9 8 - 3 5  ,. 24 - 3 5  .. 5 0
- 3 5  .. 7 6 - 3 6 .. 01 - 3 6 .. 2 5 - 3 6 .. 4 9 - 3 6 .. 7 3 - 3 6 .. 9 7 - 3 7 .. 2 0 - 3 7 .. 4 3 - 3 7 .. 6 6
- 3 7 .. 8 8 - 3 8 ., 1 0 - 3 8 .. 3 2 - 3 8 .. 5 3 - 3 8 .. 7 5 - 3 8 .. 9 6 - 3 9 .. 1 6 - 3 9 .. 3 7 - 3 9 .. 5 8
- 3 9 .. 7 8 - 3 9 .. 9 8 - 4 0 .. 1 8 - 4 0 .. 3 7 - 4 0 .. 5 7 - 4 0 .. 7 6 - 4 0 .. 9 6 - 4 1  .. 1 5 - 4 1  .. 3 4
- 4 1  .. 5 2 - 4 1  .. 71 - 4 1  .. 8 9 - 4 2 .. 0 8 - 4 2 .. 2 6 - 4 2 .. 4 4 - 4 2 .. 6 0 - 4 2 .. 6 2 - 4 2 .. 6 4
- 4 2 .. 6 5 - 4 2 .. 6 6 - 4 2 .. 6 7 - 4 2 .. 6 7 - 4 2 .. 6 7 - 4 2 .. 6 7 - 4 2 .. 6 7 - 4 2 .. 6 7 - 4 2 ., 6 7
- 4 2 .. 6 6 - 4 2 .. 6 6 - 4 2 ., 6 6 - 4 2 ., 6 6 - 4 2 .. 6 6 - 4 2 .. 6 6 - 4 2 .. 6 5 - 4 2 .. 6 5 - 4 2 .. 6 4
- 4 2 .. 6 4 - 4 2 .. 6 3 - 4 2 ., 6 3 - 4 2 ., 6 2 - 4 2 .. 6 2 - 4 2 .. 61 - 4 2 .. 6 0 - 4 2 .. 5 9 - 4 2 .. 5 8
- 4 2 .. 5 7 - 4 2 ., 5 6 - 4 2 .. 5 5 - 4 2 ., 5 3 - 4 2 .. 5 2 - 4 2 .. 5 0 - 4 2 .. 4 9 - 4 2 .. 4 7 - 4 2 .. 4 5
- 4 2 .. 4 4 - 4 2 . 4 2 - 4 2 . 4 0 - 4 2 .. 3 8 - 4 2 .. 35 - 4 2 .. 3 3 - 4 2 .. 31 - 4 2 ., 2 8 - 4 2 ., 2 6
- 4 2 .. 2 3 - 4 2 . 2 0 - 4 2 . 17 - 4 2 . 14 - 4 2 ., 11 - 4 2 ., 0 8 - 4 2 .. 0 5 - 4 2 .. 0 2 - 4 1  . 9 8
- 4 1  .. 9 5 - 4 1  . 91 - 4 1  . 8 7 - 4 1  . 8 3 - 4 1  . 7 9 - 4 1  ., 7 5 - 4 1  .. 71 - 4 1  ., 6 7 - 4 1  . 6 3
- 4 1  ., 5 8 - 4 1  . 54 - 4 1  . 4 9 - 4 1  . 4 4 - 4 1  . 3 9 - 4 1  . 3 4 - 4 1  .. 2 9 - 4 1  . 2 4 - 4 1  . 19
- 4 1  .. 1 4 - 4 1  . 0 8 - 4 1  . 03 - 4 0 . 9 7 - 4 0 . 91 - 4 0 . 8 6 - 4 0  .. 8 0 - 4 0  . 74 - 4 0 . 6 8
- 4 0 . 61 - 4 0 . 55 - 4 0 . 4 9 - 4 0 . 4 3 - 4 0 . 3 6 - 4 0 . 2 9 - 4 0 ., 2 3 - 4 0 . 16 - 4 0 . 0 9
- 4 0 . 02 - 3 9 . 9 5 - 3 9 . 8 8 - 3 9 . 81 - 3 9 . 74 - 3 9 . 6 7 - 3 9 .. 6 0 - 3 9 . 52 - 3 9 . 45
- 3 9 . 3 7 - 3 9 . 3 0 - 3 9 . 22 - 3 9 . 14 - 3 9 . 0 6 - 3 8 . 9 9 - 3 8 ., 91 - 3 8 . 8 3 - 3 8 . 75
- 3 8 . 6 7 - 3 8 . 5 8 - 3 8 . 50 - 3 8 . 4 2 - 3 8 . 3 4 - 3 8 . 25 - 3 8 . 1 7 - 3 8 . 0 9 - 3 8 . 00
- 3 7 . 9 2 - 3 7 . 8 3 - 3 7 . 74 - 3 7 . 6 6 - 3 7 . 5 7 - 3 7 . 4 8 - 3 7 . 4 0 - 3 7 . 31 - 3 7 . 22
- 3 7 . 13 - 3 7 . 04 - 3 6 . 95 - 3 6 . 8 6 - 3 6 . 7 8 - 3 6 . 6 9 - 3 6 . 5 9 - 3 6 . 5 0 - 3 6 . 41
- 3 6 . 32 - 3 6 . 23 - 3 6 . 14 - 3 6 . 05 - 3 5 . 9 6 - 3 5  . 8 7 - 3 5  . 7 7 - 3 5  . 6 8 - 3 5  . 5 9
- 3 5  . 50 - 3 5  . 41 - 3 5  . 31 - 3 5  . 22 - 3 5  . 13 - 3 5  . 04 - 3 4 . 9 4 - 3 4 . 85 - 3 4 . 7 6
- 3 4 . 6 7 - 3 4 . 5 7 - 3 4 . 4 8 - 3 4 . 3 9 - 3 4 . 3 0 - 3 4 . 20 - 3 4 . 1 1 - 3 4 . 02 - 3 3 . 9 3
- 3 3 . 8 3 - 3 3 . 74 - 3 3 . 65 - 3 3 . 5 6 - 3 3 . 4 7 - 3 3 . 3 7 - 3 3 . 2 8 - 3 3 . 19 - 3 3 . 10
- 3 3 . 01 - 3 2 . 9 2 - 3 2 . 8 3 - 3 2 . 73 - 3 2 . 6 4 - 3 2 . 55 - 3 2 . 4 6 - 3 2 . 3 7 - 3 2 . 2 8
- 3 2 . 19 - 3 2 . 10 - 3 2 . 01 - 3 1  . 9 2 - 3 1  . 8 4 - 3 1  . 75 - 3 1  . 6 6 - 3 1  . 5 7 - 3 1  . 4 8
- 3 1  . 3 9 - 3 1  . 31 - 3 1  . 2 2 - 3 1  . 13 - 3 1  . 05 - 3 0 . 9 6 - 3 0 . 8 7 - 3 0 . 7 9 - 3 0 . 70
- 3 0 . 6 2 - 3 0 . 5 3 - 3 0 . 4 5 - 3 0 . 3 6 - 3 0 . 28 - 3 0 . 19 - 3 0 . 11 - 3 0 . 03 - 2 9 . 9 4
- 2 9 . 8 6 - 2 9 . 78 - 2 9 . 7 0 - 2 9 . 61
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9 2 -2.52 2.52
-517. 517.

Program MNCALC

Automatic generation of MN-diagrams 
MNCALC Version 1 .1 

2001

nmt
maxmd
nqc
npc
ngaus

Main Program
Number of material specifications.
Max number of data defining a stress-strain curve. 
Number of quadrilateral elements in cross-section. 
Number of point elements in cross-section.
Order of numerical integration.

*

*

*
*

*

*

program mncalc
integer nmt_, maxmd_,nqc_,npc_,ngaus_ 
parameter ( nmt_ = 25,

+ maxmd_=500,
+ nqc_ =100,
+ npc_ =100,
+ ngaus_= 5)
character*60 datfi l,resfi l 
character key*1 
logical f ext n ,f f ile
integer nmt,maxmd,nqc,npc,ngaus,gpdim,naPz
integer lmatr(nmt_),nmds(nmt_),melq(nqc_),melp(2*npc_),

+ gpm(nqc_*ngaus_**2+2*npc_)
real cenx,ceny,daPzO,eraPz,erPres,daMO,phi,eraM,erMres 
real xelp(npc_),yelp(npc_),aelp(npc_),shape(4*ngaus_**2),

+ dNdxie(4*ngaus_**2),dNdeta(4*ngaus_**2),
+ eweigp(ngaus_**2),posgpl(ngaus_),weigpl(ngaus_) 
real stnmd(2,nmt_),strmd(maxmd_,nmt_),xelq(4,nqc_),

+ yelq(4,nqc_),gpx(nqc_*ngaus_**2+2*npc_),
+ gpy(nqc_*ngaus_**2+2*npc_),gpa(nqc_*ngaus_**2+2*npc_)
integer k ,kk 
w r i t e ( 6, * )

write(6,*)'* * i
write(6,*)'* Automatic generation of MN-diagrams * '
write(6,*)'* *i
write<6,*)'* MNCALC Version 1.1 *'
wri te(6,*) 1 * 2001 *'
write(6,*)'* * 1
write(6,*)'******************************************* 
w r i t e ( 6, * )

5 write(6,*)1 Input name of data file' 
w r i t e ( 6 , * ) 
r e a d ( 6,81 0 ) datfil 
fextn=.false, 
do 10 k=60,4,-1
i f(dat f il(k- 3 :k ).eq.1.dat 1 ) then 
fextn=.t rue. 
goto 20 

end i f
10 conti nue
20 if (.not.fextn) then

write(6,*)'Data file does not contain .dat extension1 
wri t e (6,* ) 
goto 5 

end i f
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'Size of problem:'
'Number of material specifications 
'Max number of material data points 
'Number of q-elems in section 
'Number of p-elems in section 
'Order of numerical integration

inqui re(file = datfil,ex i st = f f i le) 
if (.not.ffile) then 
write(6,*) 'Data file not found' 
write(6,*) 'Try again yes/no' 
read(6,815) key 
i f (key.e q .'y ' ) then 
goto 5 

else
goto 1000 

end i f 
end i f
kk=index(datfi l, ' .dat')-1 
resfil= d a t f i1(1:kk)//'.res'
cal l storeq(datfil,nmt,maxmd,nqc,npc,ngaus) 
w r i t e ( 6, * ) 
w r i t e ( 6, * ) 
w r i t e ( 6, * ) 
wri te(6,820) 
wri t e (6,820 ) 
wri te(6,820) 
wri te(6,820) 
wri te(6,820) 
wri t e (6,*)
if (nmt.gt .nmt_) then 
goto 930

else if (maxmd.gt .maxmd_) then 
goto 930

else if (nqc.gt.nqc_) then 
goto 930

else if (npc.gt.npc_) then 
goto 930

else if (ngaus.gt .ngaus_) then 
goto 930 

end i f
call i nput(datf il,nmt,maxmd,lmatr,stnmd,nmds,strmd,nqc,

+ melq,xelq,yelq,npc,melp,xelp,yelp,aelp,
+ daPzO,naPz,eraPz,erPres,daMO,phi,eraM,
+ erMres)
gpdim=nqc*ngaus**2+2*npc
call nurni nt(nqc,npc,ngaus,shape,dNdxie,dNdeta,eweigp,

+ melq,xelq,yelq,melp,xelp,yelp,aelp,gpdim,
+ gpx,gpy,gpa,gpm,posgpl,wei gpl)
call cenoid(cenx,ceny,nqc,npc,ngaus,gpx,gpy,gpa) 
write(6,*) 'Origin of reference system' 
wri te(6,825) 'cenx=',cenx,'mm','ceny=',ceny,'mm' 
cal l Sect(resf il,nmt,nmds,stnmd,maxmd,strmd,gpdim,gpx,

+ gpy,gpa,gpm,cenx,ceny,daPzO,naPz,eraPz,erPres,
+ daMO,phi,eraM,erMres)

810 format(a60)
815 forma t(a 1)
820 format(2x,a34,a2,i4 )
825 format(2x,a5,f8.1,a2,2x,a5,f8.1,a2)

stop
930 write(6,*)'Problem too large' 

goto 1000
1000 write(6,*)'Program terminated' 

stop 
end

, nmt 
,maxmd 
, nqc 
, npc 
,ngaus

c=====
c
c
c
c=====

Subroutine storeq( )
Reads key parameters governing the computer storage, and checks 
the presence of required field identifiers.

subroutine storeq(datfil,nmt,maxmd,nqc,npc,ngaus)
character*60 datfil
integer nmt,maxmd,nqc,npc,ngaus
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open C1 2,f ile = datfil,status='oldl )
rew ind(12 )
call detecte 1SZ 1 )
read(12,*,err=910) nmt,maxmd,nqc,npc,ngaus
call detect('CP ' )
call detect(1 DC 1 )
call detect( 1 MP 1 )
c l ose(12 )
return

910 write(6,*) 'Format error reading SZ field1 
goto 1000

1000 write(6,*) 'Program terminated' 
stop 
end

c Subrout ine detecte )
c Search for a named data field.

subroutine detecteobj) 
character*2 obj,text 
rew i nde12 )

121 read(12,'ea2)',end = 900 ) text 
if etext.ne.obj) then 

goto 121 
end i f 
return

900 writee6,*) 'Numerical field identifier ',obj,' missing' 
writee6,*) 'Program terminated' 
stop 
end

c Subroutine inpute )
c Reads and checks format of the data file.

subroutine i nput(datf il,nmt,maxmd,lmat r,stnmd,nmds,strmd,nqc, 
+ melq,xelq,yelq,npc,melp,xelp,yelp,aelp,
+ daPzO,naPz,eraPz,erPres,daMO,phi,eraM,
+ erMres)
character*60 datfil 
integer nmt,maxmd,nqc,npc,naPz
integer lmatr(nmt),nmds(nmt),melq(nqc),melp(2*npc) 
real daPz0,eraPz,erPres,daM0,phi,eraM,erMres,pi 
real xelp(npc),yelp(npc),aelp(npc)
real stnmdi 2,nmt),st rmd(maxmd,nmt),xelq(4,nqc),yelq(4,nqc) 
integer matr,nmd 
integer i , j , k
open(12,f ile=datfil,status= ' old' ) 
rew i nd(12) 
do 101 i = 1,nqc 
melq(i ) = 0

101 continue
do 102 i =1,2*npc 
melp(i)=0

102 continue
do 104 j = 1,nmt 
do 103 i = 1,maxmd 
s t rmd(i,j) = 0.

103 continue
104 continue

call detect( ' CP ' )
read(12,*,err=900) daPzO,naPz,eraPz,erPres,daMO,phi,eraM,

+ erMres
daPzO=1000.*daPzO 
eraPz=abs(1000.*eraPz) 
erPres=abs(1000.*erPres) 
daM0 = 1 . E6*daM0
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10

11

12
13

23

24

26

27

900

910

912

920

924

927

1000

c = = = =

pi=acos(-1 . ) 
ph í =ph i *pi/180. 
eraM=abs(1.E6*eraM) 
erMres=abs(1.E6*erMres) 
call detec t('MP ' ) 
do 10 i=1,nmt
read(12 , *,err = 910) matr,nmd 
backspaceC12)
read(12,*,err = 910) lmat r(i),nmds(i),(stnmd(j,i),j = 1,2), 

(st rmd(j,i),j = 1,nmd)
continue 
do 11 j = 1,nmt
stnmd(1,j) = stnmd(1,j)/1 000 . 
s t nmd( 2 , j ) = s t nmd( 2 , j ) /1 000 . 

conti nue 
do 13 i = 1,nmt 
ma t r=lmat r(i ) 
do 12 j = i +1,nmt 
if (matr.eq.lmatr( j)) then 
goto 912 

end i f 
continue 

conti nue
call detect(1 DC 1)
read(12,*,err = 920 ) (melq< j),(xelq(i,j),y e lq(i,j),i = 1,4), 

j=1,nqc)
read(12,*,err=920) (melp(j),xelp(j),yelp(j),aelp(j), 

melp(npc + j),j = 1,npc)
do 24 i = 1,nqc 
mat r = melq(i) 
do 23 k =1,nmt
if (matr.eq.Imatr(k) ) then 
melq(i ) = k 
goto 24 

end i f 
conti nue 
goto 924 

conti nue
do 27 i = 1,2*npc 
matr=melp(i) 
do 26 k=1,nmt
if (matr.eq.Imatr(k)) then 
melp(i)=k 
goto 27 

end i f 
conti nue 
goto 927 

c o n t i n u e  
close(12 ) 
return
write(6,*) 'Format error reading CP field1 
goto 1000
write(6,*) 'Format error reading line ',i,' of MP field' 
goto 1000
write(6,*) 'Material number ',matr,' not unique' 
goto 1000
write(6,*> 'Format error reading DC field' 
goto 1000
write(6,*> 'Material number ',matr,' not defined' 
goto 1000
write(6,*) 'Material number ',matr,' not defined' 
goto 1000
write(6,*) 'program terminated'
stop
end
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c Subroutine numintC ) 
c Evaluates the coordinates of the numerical integration points,
c the associated integration areas and material numbers. Replaced
c material is assigned a negative area.

subroutine numint(nqc,npc,ngaus,shape,dNdxie.dNdeta,eweigp,
+ melq,xelq,yelq,melp,xelp,yelp,aelp,gpdim,
+ gpx,gpy,gpa,gpm,posgpl,wei gpl)
integer nqc,npc,ngaus,gpdim 
integer melq(nqc),melp(2*npc),gpm(gpdim)
real shape(4*ngaus**2),dNdxie(4*ngaus**2),dNdeta(4*ngaus**2),

+ eweigp(ngaus**2),xelp(npc),gpx(gpdim),yelp(npc),
+ gpy(gpdim),aelp(npc),gpa(gpdim),
+ posgpl(ngaus),weigpl(ngaus)
real xelq(4,nqc),yelq(4,nqc) 
integer matr,elem
real xie,eta,mulvec,J11,J12,J21,J22,detJ 
i nteger i, i i, i i1, j , j j ,nn,kk 
call gaussl(ngaus,posgpl,weigpl) 
nn = 0 
kk = 0
do 15 i = 1,ngaus 
do 10 j = 1 , ngaus 
x i e=posgpl(i) 
eta=posgpl(j)
shape(kk+1)= 0.25*(1-xie)*(1-eta) 
shape(kk+2)= 0.25*(1+xie)*(1-eta) 
shape(kk+3)= 0.25*(1+xie)*(1+eta) 
shape(kk+4)= 0.25*(1-xie)*(1+eta) 
dNdxie(kk+1)=-0.25*(1-eta) 
dNdxie(kk+2)= 0.25*(1-eta) 
dNdxie(kk+3)= 0.25*(1+eta) 
dNdxie(kk+4)=-0.25*(1+eta) 
dNdeta(kk+1)=-0.25*(1-xie) 
dNdeta(kk+2)=-0.25*(1+xie) 
dNdeta(kk+3)= 0.25*(1-xie) 
dNdeta(kk+4)= 0.25*(1+xie) 
kk=kk+4
ewei gp(nn+1) = wei gpl(i)*wei gpl(j) 
nn=nn+1 

10 conti nue 
15 continue 

elem=0
do 35 j = 1,nqc 
elem=elem+1 
matr=melq(j) 
jj = ngaus**2*(j-1) 
do 30 i = 1,ngaus**2 
i i=4*(i-1 ) 
i i 1 = i i + 1
gpx(j j + i) = mulvec(shape(i i1),xelq(1,j),4)
9Py(j J + i)=mulvec(shape(i i1),yelq(1,j),4)
J11=mulvec(dNdxi e(i i1),xelq(1,j),4)
J12 = mulvec(dNdxi e(i i1),yelq(1,j),4) 
J21=mulvec(dNdeta(ii1),xelq(1,j),4) 
J22=mulvec(dNdeta(ii1),yelq(1,j),4) 
det J = J11*J22-J12*J21 
if (detJ.le.0.0) goto 910 
gpa(j j + i)=det J*ewe i gp(i ) 
gpm(j j + i)=mat r 

30 continue 
35 conti nue

j j =nqc*ngaus**2 
do 25 j=1,npc 
gpx(j j +j) = xelp(j) 
gpy(j j + j)=yelp(j)
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gpa(j j + j) = aelp(j) 
gpm(j j + j)=melp(j ) 
gpx(j j + npc+j)= xelp(j) 
gpy(j j+npc + j) = yelp(j) 
gpa C jj + npc+j) = - a elp(j) 
gpm(j j + npc+ j)=melp(npc+ j)

25 continue 
return

910 write(6,*) 'Incorrect geometry of quadrilateral e l ement 1 , e l em 
goto 1000

1000 write(6,*) 'program terminated' 
stop 
end

c Subroutine gaussl( )
c Sets numerical integration constants for exact integration of a
c polynomium of degree 2*ngaus-1 over an interval -1 to 1.

subroutine gaussl(ngaus,posgpl,weigpl) 
i nteger ngaus,kk
real posgpl(ngaus),weigpl(ngaus) 
kk = 0
i f (ngaus. eq . 1 ) then 
posgpl(kk+1)=0.0 
wei gplC kk+1) = 2.0 

else if (ngaus.eq.2) then 
posgpl(kk+1>=-0.5773502692 
posgpl(kk+2)=0.5773502692 
wei gpl(kk+1 ) = 1 . 0 
we i gpl(kk+2 ) = 1 . 0 

else if (ngaus.eq.3) then 
posgpl(kk+1>=-0.7745966692 
posgpl(kk + 2 )=0.0 
posgpl(kk+3)=0.7745966692 
wei gpl(kk+1> = 0.5555555556 
wei gpl(kk + 2 > = 0.8888888889 
weigpl(kk+3)=0.5555555556 

else if (ngaus.eq.4) then 
posgpl(kk+1> = -0.861 13631 16 
posgpl(kk + 2) = -0.3399810436 
posgpl(kk+3>=0.3399810436 
posgpl(kk+4)=0.8611363116 
weigpl(kk+1>=0.3478548451 
weigpl(kk+2)=0.6521451549 
weigpl(kk+3)=0.6521451549 
weigpl(kk+4)=0.3478548451 

else if (ngaus.eq.5) then 
posgpl(kk+1>=-0.9061798459 
posgpl(kk+2)=-0.5384693101 
posgpl(kk + 3) = 0 .0 
posgpl(kk+4)=0.5384693101 
posgpl(kk+5)=0.9061798459 
weigpl(kk+1>=0.2369268851 
wei gpl(kk + 2 > = 0.4786286705 
wei gpl(kk + 3 > = 0.5688888889 
weigpl(kk+4)=0.4786286705 
wei gpl(kk + 5 > = 0 .2369268851 

else
goto 900 

end i f 
return

900 write(6,*)'Specified number of gauss points outside range' 
goto 1000

1000 write(6,*)'Program terminated' 
stop 
end
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c
c
c
c

10

c
c
c
c
c

10

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Function mulvecC )
Calculates the dot product of two vectors.

f u n c t i o n  mu l v e c ( v e c 1 , v e c 2 , n d i m)  
i n t e g e r  nd i m 
r e a l  mulvec
r e a l  v e c 1 ( ndi  m) , v e c 2 ( nd i m) 
i n t e g e r  i 
mulvec = 0 .0 
do 10 i = 1 , ndi  m

m u l v e c = m u l v e c + v e c 1 ( i ) * v e c 2 ( i )
c o n t i n u e
end

Subroutine cenoidf )
Evaluates the cartesian coordinate set for the centroid of the 
cross-section as defined by quadrilateral elements.

subroutine cenoid(cenx,ceny,nqc,npc,ngaus,gpx,gpy,gpa) 
integer nqc,npc,ngaus 
real cenx,ceny
real gpx(nqc*ngaus**2+2*npc),gpy(nqc*ngaus**2+2*npc), 

gpa(nqc*ngaus**2+2*npc) 
real a reax,areay,area 
integer i 
a reax = 0 . 
a reay = 0 . 
a rea = 0 .
do 10 i=1,nqc*ngaus**2 
areax=areax+gpx(i)*gpa(i) 
areay=areay+gpy(i)*gpa(i) 
area = area + gpa(i ) 

conti nue 
cenx = a reax/area 
ceny = a reay/a rea 
end

Subroutine Sect( )
Calculates the sections squash load, aPzmax, to within an 
accuracy of eraPz. For gradually reduced applied axial loads, 
the biaxial moment capacity, Mx and My, is calculated. The 
moment capacity is determined to within an error of eraM. 
Within the iterative procedure the axial load is bound by an 
error of erPres, and the biaxial residual moment by erMres. 
Locally defined parameters:
dastn = Initial increment for the evaluation of the axial 

strain at the centroid
dkapx = Fixed curvature increment for evaluation of 

partial derivatives of moments 
dkapy = Fixed curvature increment for evaluation of 

partial derivatives of moments 
tiny = Numeric zero
nimax = Max iterations for detecting strain distribution 

causing force and moment equilibrium

subroutine Sect(resf il,nmt,nmds,stnmd,maxmd,s t rmd,gpd i m,gpx, 
gpy,gpa,gpm,cenx,ceny,daPzO,naPz,eraPz,erPres, 
daM0,phi,eraM,erMres)

character*60 resfil 
integer nmt,maxmd,gpdim,naPz 
integer nmds(nmt),gpm(gpdim)
real cenx,ceny,daPzO,erPres,daMO,phi,eraM,erMres 
real stnmd(2,nmt),strmd(maxmd,nmt),gpx(gpdim), 

gpy(gpdim),gpa(gpdim)
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I o g i c a l f s o l 
ï nteger ni,nimax
real astn,astnO,astnj,dastn,kapx,kapxO,kapxj,dkapx,kapy,

+ kapyO,kapyj,dkapy,daPz,aPz,aPzmax,daM,aMx,aMy,Mx,My,
+ Mxres,Myres,Mres,MxdxB,MydxB,MxdyB,MydyB,MxdxA,MydxA,
+ MxdyA,MydyA,dMydx,dMydy,dMxdx,dMxdy,Det,tiny 
i n t e g e r i
pa rameter (dastn= O 0) LaJ

+ dkapx= 1 . e -1 2 ,
+ dkapy= 1 .e-12.
+ t i ny = 1 .e-50,
+ n i max = 500 )
w r i t e ( 6, * ) 
w r i t e ( 6, * ) 'Evaluation of MN-diagram
write(6,*) 
fsol = .t rue. 
astn=0. 
astn0=0. 
kapx=0. 
kapy=0. 
daPz=daPzO 
aPz=0.0

3 if (eraPz.It.abs(daPz)) then
cali censtnlnmt,nmds,stnmd,maxmd,strmd,gpdim,gpx,gpy, 

+ gpa,gpm,cenx,ceny,aPz,erPres,kapx,kapy,
+ dastn,astn,fsol)

if (.not.fsol) then 
daPz = daPz/2 . 
aPz=aPz-daPz 
astn=astnO 

e l se
astnO=astn
aPzmax=aPz
aPz=aPz+daPz
write(6,820) 'aPzmax=',aPzmax/1.e3,'KN1,

+ ' astn=',a stn*1.e3,'mm/m1
end i f 
goto 3 

end i f
open(12,f ile = resfi l) 
rewindl12)
write(12,871) 'aPzmax=',aPzmax/1.e3,‘K N 1 
write(12,872) lastn=',astn*1.e3,'mm/m' 
w r i t e ( 1 2 , * )
cali Pforce(nmt,nmds,stnmd,maxmd,st rmd,gpdi m,gpx,gpy,

+ gpa,gpm,cenx,ceny,astn,kapx,kapy,Pz)
call Mforce(nmt,nmds,stnmd,maxmd,strmd,gpdim,gpx,gpy,

+ gpa,gpm,cenx,ceny,astn,kapx,kapy,Mx,My)
wri te(12,873) 'astn','kapx', 'kapy', 'aPz','aMx','aMy' 
wri te(12,874) 1mm/m','1/mm','1/mm','KN','KNm','KNm' 
write(12,875) astn*1.e3,kapx,kapy,Pz/1.e3,

+ Mx/1.e6,My/1.e6
do 100 i = 1,naPz-1 
astn=0. 
kapx=0. 
kapy=0.
aPz=aPzmax-real(i)*aPzmax/real(naPz-1) 
if (abs(aPz).It.erPres) then 
aPz=sign(erPres,aPzmax) 

end i f
cali censtn(nmt,nmds,stnmd,maxmd,st rmd,gpdi m ,gpx,gpy, 

+ gpa,gpm,cenx,ceny,aPz,erPres,kapx,kapy,
+ dastn,astn,fsol)

if (.not.fsol) then 
goto 1000 

end i f
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astnO=astn 
kapx0=0. 
kapy0=0. 
daM=daMO
aMx=cos(ph i)*daM 
aMy=s i n (ph i)*daM 
Mxres=aMx 
Myres=aMy 
M res=abs(daM ) 
write(6,*)

5 if (eraM. 11.abs(daM)) then
n i = 0
if (.not.fsol) then 
fsol=.true. 
astn=astnO 
kapx=kapxO 
kapy=kapyO 
daM=daM/2.
aMx=aMx-cos(phi)*daM 
aMy=aMy-s i n(ph i)*daM 
Mxres=cos(phi)*daM 
Myres=sin(phi)*daM 
M res = abs(daM) 

end i f
w r i t e (6, * )

7 if (erMres . 11.Mres) then
n i = n i +1
write(6,830) laPz=l,aPz/l.e3,'KN',

+ 1 aMx=1,aMx/1.e6, 'KNm',
+ ■ aMy=1,aMy/1.e6,1KNm1 ,
+ 1 n i = 1 , n i ,
+ 1 Mres=1,Mres/1.e6,1KNm1

astnj=astn 
kapx j = kapx + dkapx 
kapy j = kapy
call censtnCnmt,nmds,stnmd,maxmd,st rmd,gpd i m,gpx,gpy,

+ gpa,gpm,cenx,ceny,aPz,erPres,kapxj,kapyj,
+ dastn,astnj,fsol)

if ( . not. fsol) then
wr i te(6,* ) 'No equilibrium state for incremented x-curvature1 
goto 5 

endi f
call MforceCnmt,nmds,stnmd,maxmd,st rmd,gpdi m,gpx,gpy,

+ gpa,gpm,cenx,ceny,astnj,kapxj,kapyj,
+ MxdxB,MydxB)

astnj=astn 
kapxj =kapx-dkapx 
kapy j =kapy
call censtnCnmt,nmds,stnmd,maxmd,strmd,gpdim,gpx,gpy,

+ gpa,gpm,cenx,ceny,aPz,erPres,kapxj,kapyj,
+ dastn,astnj,fsol)

if (.not.fsol) then
wr i te(6,*) 'No equilibrium state for decremented x-curvature' 
goto 5 

endi f
call MforceCnmt,nmds,stnmd,maxmd,st rmd,gpd i m,gpx,gpy,

+ gpa,gpm,cenx,ceny,astnj,kapxj,kapyj,
+ MxdxA,MydxA)

astnj=astn 
kapxj =kapx 
kapyj=kapy+dkapy
call censtnCnmt,nmds,stnmd,maxmd,strmd,gpdim,gpx,gpy,

+ gpa,gpm,cenx,ceny,aPz,erPres,kapxj,kapyj,
+ dastn,astnj,fsol)

if (.not.fsol) then
write(6,*) ‘No equilibrium state for incremented y-curvature'
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goto 5 
end i f
call MforceCnmt,nmds,stnmd,maxmd,strmd,gpdim,gpx,gpy, 

gpa,gpm,cenx,ceny,astnj,kapxj,kapyj,
MxdyB,MydyB)

astnj=astn 
kapxj = kapx 
kapyj=kapy-dkapy
call censtnCnmt,nmds,s tnmd,maxmd,st rmd,gpd i m,gpx,gpy, 

gpa,gpm,cenx,ceny,aPz,erPres,kapxj,kapyj, 
dastn,astnj,fsol) 

if (.not.fso l ) then
write(6,*) 'No equilibrium state for decremented y-curvature1 
goto 5 

end i f
call Mforce(nmt,nmds,stnmd,maxmd,st rmd,gpd i m ,gpx,gpy, 

gpa,gpm,cenx,ceny,astnj,kapx j,kapy j,
MxdyA,MydyA)

dMydx=(MydxB-MydxA)/(2.*dkapx)
dMydy=(MydyB-MydyA)/(2.*dkapy)
dMxdx=(MxdxB-MxdxA)/(2.*dkapx)
dMxdy=(MxdyB-MxdyA)/(2.*dkapy)
Det=dMydx*dMxdy-dMydy*dMxdx 
If (abs(Det).gt.tiny) then 
kapx=kapx+( dMxdy*Myres-dMydy*Mxres)/Det 
kapy=kapy+(-dMxdx*Myres+dMydx*Mxres)/Det 

else
fso l = .false.
wr i te(6,*) 'Stiffness matrix singular' 
goto 5 

end i f
if (ni.gt.nimax) then 
fsol=.false.
write(6,*) 'Not converged' 
goto 5 

end i f
call censtnCnmt,nmds,stnmd,maxmd,s t rmd,gpd i m ,gpx,gpy, 

gpa,gpm,cenx,ceny,aPz.erPres,kapx,kapy, 
dastn,astn,fsol) 

if (.not.fsol) then
wr i te(6,*) 'Load capacity exhausted' 
goto 5 

end i f
call Mforce(nmt,nmds,stnmd,maxmd,st rmd,gpdi m ,gpx,gpy, 

gpa,gpm,cenx,ceny,astn,kapx,kapy,Mx,My)
Mxres=aMx-Mx 
Myres=aMy-My
Mres=sqrt(Mxres**2+Myres**2) 
goto 7 

end i f
astnO=astn
kapxO=kapx
kapyO=kapy
aMy=aMy+s i n(ph i)*daM 
aMx=aMx+cos(phi)*daM 
Mxres=cos(phi)*daM 
Myres=sin(phi)*daM 
Mres=abs(daM) 
goto 5 

end i f
astn=astnO
kapx=kapxO
kapy=kapyO
call PforceCnmt,nmds,stnmd,maxmd,st rmd,gpdi m,gpx,gpy, 

gpa,gpm,cenx,ceny,astn,kapx,kapy,Pz) 
call MforceCnmt,nmds,stnmd,maxmd,strmd,gpdim,gpx,gpy,

- 1 0 . 1 3  -



+ gpa,gpm,cenx,ceny,astn,kapx,kapy,Mx,My)
write(12,875) as tn*1,e3,kapx,kapy,Pz/1.e3,

+ Mx/1.e6,My/1,e6
100 conti nue 

close(12 ) 
return

820 format(2x,a7,f8.1,a2,2x,a5,f8.3,a4)
830 format(2x,a4,f8.1,a2,2x,a4,f8.1,a3,2x,a4,f8.1,a3,2x,a3,i4,

+ 2x,a5,f8.3,a3)
871 format(a7,f10.3,1x,a2>
872 format(a7,f10.3,1x ,a4)
873 format(5x,a4,5x,a4,7x,a4,8x,a3,7x,a3,8x,a3)
874 format(5x,a4,5x,a4,7x,a4,9x,a2,7x,a3,8x,a3)
875 format<f10.3,1x,e10.3,1x,e10.3,1x,f10.3,1x,e10.3,1x,e10.3)
1000 wr i te(6,* ) 'Unexpected program termination1

stop
end

c===================================================================
c Subroutine censtn( )
c For a given combination of applied axial load and curvatures,
c aPz, kapx and kapy, the axial strain at the centre, astn, is
c iterated until the internal axial load, Pz, equals aPz to
c within an error of erPres. That is abs(aPz-Pz).It.erPres.
c If the solution is non-existent or in-accurate this is flagged
c by ' f s o l ' being '.false.1,
c
c Locally defined parameters:
c goldm = Golden ratio for calculating mini mum
c maxstn = Search range limit for bracketing
c nimax = Allowed limit for number of iterations
c===================================================================

subroutine censtn(nmt,nmds,stnmd,maxmd,strmd,gpdim,gpx,gpy,
+ gpa,gpm,cenx,ceny,aPz,erPres,kapx,kapy,
+ dastn,astn,fsol)
logical fsol 
integer nmt,maxmd,gpdim 
integer nmds(nmt),gpm(gpdi m)
real kapx,kapy,cenx,ceny,astn,dastn,aPz,erPres,

+ astn_a,astn_b,astn_c
real gpx(gpd i m ),gpy(gpdi m),gpa(gpd i m ) 
real stnmd(2,nmt),strmd(maxmd,nmt) 
integer ni,nimax
real maxstn,astn_u,Pz_a,Pz_b,Pz_c,Pz_u,fa,fb,fc,fu,astn_0,

+ astn_1,astn_2,astn_3,Pz_1,Pz_2,f1,f2,goldm
real dum
parameter ( goldm=0.61803399,

+ maxs t n=1.,
+ nimax= 100)
astn_a=astn 
astn_b=astn+dastn 
f so l = .t rue.
call Pforce(nmt,nmds,stnmd,maxmd,st rmd,gpdi m ,gpx,gpy,

+ gpa,gpm,cenx,ceny,astn_a,kapx,kapy,Pz_a)
fa = abs(aPz-P z_a)
call Pforce(nmt,nmds,stnmd,maxmd,strmd,gpdim,gpx,gpy,

+ gpa,gpm,cenx,ceny,astn_b,kapx,kapy,Pz_b)
fb=abs(aPz-Pz_b) 
if (fb.gt.fa) then 
dum=astn_a 
astn_a=astn_b 
astn_b=dum 
dum=fb 
f b=f a 
fa=dum 
dum=Pz b
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P z_b = P z_a 
Pz_a=dum 

end i f
astn_c=2.*astn_b-astn_a
call Pforce(nmt,nmds,stnmd,maxmd,strmd,gpdim,gpx,gpy,

+ gpa,gpm,cenx,ceny,astn_c,kapx,kapy,Pz_c)
fc = abs(aP z-Pz_c)

111 if (fb.ge.fc) then
astn_u=2.*astn_c-astn_b 
if (abs(astn_u).gt.maxstn) then 
write(6,*) 'Strain bracketing failed1 
fsol=.false, 
return 

endi f
call Pforce(nmt,nmds,stnmd,maxmd,strmd,gpdim,gpx,gpy,

+ gpa,gpm,cenx,ceny,astn_u,kapx,kapy,Pz_u)
fu = abs(aPz-P z_u) 
astn_a=astn_b 
as tn_b = as tn_c 
astn_c=astn_u 
Pz_a=Pz_b 
P z_b = P z_c 
P z_c = P z_u 
f a = f b 
f b = f c 
f c = f u 
goto 111 

endi f
astn_0=astn_a
astn_1=astn_b-(1.- goldm)*(astn_b-astn_a)
astn_2=astn_b
astn_3=astn_c
call Pforce(nmt,nmds,stnmd,maxmd,st rmd,gpd i m ,gpx,gpy,

+ gpa,gpm,cenx,ceny,astn_1,kapx,kapy,Pz_1)
f1=abs(aPz-Pz_1)
call Pforce(nmt,nmds,stnmd,maxmd,st rmd,gpd i m ,gpx,gpy,

+ gpa,gpm,cenx,ceny,astn_2,kapx,kapy,Pz_2)
f2 = abs(aPz-P z_2) 
n i = 0

222 if ((fl.gt.erPres).and.(ni.lt.nimax)) then 
n i = n i +1
if (f2.lt.fi) then 
astn_0=astn_1 
astn_1=astn_2
astn_2=goldm*astn_1+(1.-goldm)*astn_3 
Pz_1=Pz_2 
f 1 =f 2
call Pforce(nmt,nmds,stnmd,maxmd,st rmd,gpd i m,gpx,gpy,

+ gpa,gpm,cenx,ceny,astn_2,kapx,kapy,Pz_2)
f2=abs(aPz-Pz_2) 

else
astn_3=astn_2
astn_2=astn_1
astn_1=goldm*as tn_2 + (1.-goldm)*astn_0 
Pz_2=Pz_1 
f 2 = f 1
call Pforce(nmt,nmds,stnmd,maxmd,st rmd,gpdi m,gpx,gpy,

+ gpa,gpm,cenx,ceny,astn_1,kapx,kapy,Pz_1)
f1=abs(aPz-Pz_1) 

end i f 
goto 222 

endi f
if (ni.eq.nimax) then
write(6,*) ‘Convergence criteria, erPres, not satisfied1
fso l = .false.
return
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end i f
astn=astn_1
end

c Subroutine Pforce( )
c Evaluates the axial force, Pz, corresponding to a strain
c distribution given by astn, kapx and kapy.
c = = === = = = = = = = = = = === = = = = = = === = = = = = === = = = = = = = ======== = = = = = = = = = = = = = = = = =

subroutine PforceCnmt,nmds,stnmd,maxmd,st rmd,gpd i m,gpx,gpy,
+ gpa,gpm,cenx,ceny,astn,kapx,kapy,Pz)
integer nmt,maxmd,gpdim 
integer nmds(nmt),gpm(gpdi m) 
real kapx,kapy,cenx,ceny,astn,Pz 
real gpx(gpdi m ),gpy(gpdi m),gpa(gpdi m) 
real stnmd(2,nmt),strmd(maxmd,nmt) 
real stn,str 
integer nmd,matr 
integer i 
Pz = 0 .

do 100 i = 1 , gpdim 
mat r = gpm(i) 
nmd = nmds(ma t r)
stn=astn+kapx*(gpx(i)-cenx)+kapy*(gpy(i)-ceny) 
call strstn(stn,str,nmd,strmd(1,matr),stnmd(1,mat r)) 
Pz=Pz+str*gpa(i)

100 conti nue 
end

0===================================================================
c Subrout ine Mforcel )
c Evaluates the biaxial moments, Mx and My, corresponding to a
c strain distribution given by astn, kapx and kapy.
c===================================================================

subroutine Mforce(nmt,nmds,stnmd,maxmd,st rmd,gpd i m ,gpx,gpy,
+ gpa,gpm,cenx,ceny,astn,kapx,kapy,Mx,My)
integer nmt,maxmd,gpdim 
integer nmds(nmt),gpm(gpd i m ) 
real cenx,ceny,astn,kapx,kapy.Mx,My 
real gpx(gpdi m ),gpy(gpdi m),gpa(gpdi m ) 
real stnmd(2,nmt),strmd(maxmd,nmt) 
integer matr,nmd 
real stn,str 
integer i 
Mx = 0 .
My = 0 .
do 1 0 0  i = 1 ,gpd i m 
mat r = gpm(i) 
nmd=nmds(mat r)
stn=astn+kapx*(gpx(i)-cenx)+kapy*(gpy(i)-ceny)
call strstn(stn,str,nmd,strmd(1,matr),stnmd(1,matr))
My=My+str*gpa(i)*(gpx(i)-cenx)
Mx=Mx+str*gpa(i)*(gpy(i)-ceny)

100 continue 
end

c Subrout ine strstnl )
c Calculates the stress corresponding to a given value of strain
c using the look-up table for materials stress-strain behaviour.

subroutine strstn(stn,str,nmd,st rmd,stnmd) 
integer nmd 
real stn,str
real strmd(nmd),stnmd(2)
real stnA,stnB,dstn,stn1,str1,str2
integer n1,n2
stnA=stnmd(1)
stnB=stnmd(2)
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if (stnB.gt.stnA) then 
if (stn.le.stnA) then 
str=strmd(1) 
return

else if (stn.ge.stnB) then 
str=strmd(nmd) 
return 

end i f
dstn=(stnB-stnA)/(nmd-1) 
n1=int((stn-stnA)/dstn)+1 
n2=n1+1
st r 1 =strmd(n1) 
str2=strmd(n2) 
stn1=stnA+(n1-1)*dstn 
str=str1+(stn-stn1)*(str2-str1)/dstn 

else
if (stn.ge.stnA) then 
str=strmd(1) 
return

else if (stn.le.stnB) then 
s t r = s t rmd(nmd) 
return 

end i f
dstn=(stnB-stnA)/(nmd-1) 
n1=int((stn-stnA)/dstn)+1 
n2=n1+1
st r1=st rmd(nl ) 
str2=strmd(n2) 
stn1=stnA+(n1-1)*dstn 
str=str1+(stn-stn1)*(str2-str1)/dstn 

end i f 
end
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* stress . ..
* (MPa)
MP====== ========= ======= ======== ======== ======== ======== ======== =======
5 301 0.0 -15 .0

0.00 -1.50 -2.96 -4.36 -5.72 -7.04 -8.31 -9.54 -10.72
-11.87 -12.97 -14.03 -15.05 -16.03 -16.97 -17.88 -18.74 -19.57
-20.37 -21.12 -21.84 -22.53 -23.18 -23.80 -24.39 -24.94 -25.46
-25.95 -26.40 -26.83 -27.23 -27.59 -27.93 -28.23 -28.51 -28.76
-28.98 -29.18 -29.35 -29.49 -29.60 -29.69 -29.75 -29.79 -29.80
-29.80 -29.79 -29.77 -29.74 -29.68 -29.60 -29.48 -29.34 -29.16
-28.94 -28.69 -28.40 -28.07 -27.70 -27.30 -26.86 -26.39 -25.89
-25.37 -24.82 -24.26 -23.67 -23.08 -22.47 -21.86 -21.24 -20.63
-20.01 -19.40 -18.80 -18.20 -17.61 -17.04 -16.48 -15.93 -15.39
-14.88 -14.37 -13.88 -13.41 -12.95 -12.51 -12.08 -11.67 -11.28
-10.89 -10.53 -10.17 -9.84 -9.51 -9.20 -8.90 -8.61 -8.33
-8.06 -7.81 -7.56 -7.32 -7.10 -6.88 -6.67 -6.47 -6.27
-6.09 -5.91 -5.74 -5.57 -5.41 -5.26 -5.11 -4.97 -4.84
-4.70 -4.58 -4.46 -4.34 -4.23 -4.12 -4.01 -3.91 -3.81
-3.72 -3.62 -3.54 -3.45 -3.37 -3.29 -3.21 -3.14 -3.06
-2.99 -2.93 -2.86 -2.80 -2.74 -2.68 -2.62 -2.56 -2.51
-2.45 -2.40 -2.35 -2.31 -2.26 -2.21 -2.17 -2.13 -2.08
-2.04 -2.01 -1.97 -1.93 -1 .89 -1.86 -1.82 -1.79 -1.76
-1.73 -1.70 -1.67 -1.64 -1.61 -1.58 -1.55 -1.53 -1.50
-1.47 -1.45 -1.43 -1 .40 -1.38 -1 .36 -1.34 -1.31 -1.29
-1.27 -1.25 -1.23 -1.21 -1.20 -1.18 -1.16 -1.14 -1.13
-1.11 -1.09 -1.08 -1.06 -1.05 -1.03 -1.02 -1.00 -0.99
-0.97 -0.96 -0.95 -0.94 -0.92 -0.91 -0.90 -0.89 -0.87
-0.86 -0.85 -0.84 -0.83 -0.82 -0.81 -0.80 -0.79 -0.78
-0.77 -0.76 -0.75 -0.74 -0.73 -0.72 -0.71 -0.71 -0.70
-0.69 -0.68 -0.67 -0.67 -0.66 -0.65 -0.64 -0.64 -0.63
-0.62 -0.61 -0.61 -0.60 -0.59 -0.59 -0.58 -0.58 -0.57
-0.56 -0.56 -0.55 -0.55 -0.54 -0.53 -0.53 -0.52 -0.52
-0.51 -0.51 -0.50 -0.50 -0.49 -0.49 -0.48 -0.48 -0.47
-0.47 -0.46 -0.46 -0.45 -0.45 -0.45 -0.44 -0.44 -0.43
-0.43 -0.43 -0.42 -0.42 -0.41 -0.41 -0.41 -0.40 -0.40
-0.40 -0.39 -0.39 -0.38 -0.38 -0.38 -0.37 -0.37 -0.37
-0.36 -0.36 -0.36 -0.36 -0.35 -0.35 -0.35 -0.34 -0.34
-0.34 -0.34 -0.33 -0.33

8 301 0.0 -15 .0
0.00 -1.50 -2.96 -4.36 -5.72 -7.04 -8.31 -9.53 -10.72

-11.86 -12.96 -14.02 -15.03 -16.01 -16.96 -17.86 -18.73 -19.56
-20.36 -21.13 -21.86 -22.56 -23.23 -23.87 -24.49 -25.08 -25.65
-26.19 -26.71 -27.21 -27.70 -28.16 -28.61 -29.04 -29.45 -29.86
-30.25 -30.62 -30.99 -31.35 -31.69 -32.03 -32.35 -32.67 -32.98
-33.29 -33.59 -33.88 -34.16 -34.44 -34.71 -34.98 -35.24 -35.50
-35.76 -36.01 -36.25 -36.49 -36.73 -36.97 -37.20 -37.43 -37.66
-37.88 -38.10 -38.32 -38.53 -38.75 -38.96 -39.16 -39.37 -39.58
-39.78 -39.98 -40.18 -40.37 -40.57 -40.76 -40.96 -41.15 -41.34
-41.52 -41.71 -41.89 -42.08 -42.26 -42.44 -42.60 -42.62 -42.64
-42.65 -42.66 -42.67 -42.67 -42.67 -42.67 -42.67 -42.67 -42.67
-42.66 -42.66 -42.66 -42.66 -42.66 -42.66 -42.65 -42.65 -42.64
-42.64 -42.63 -42.63 -42.62 -42.62 -42.61 -42.60 -42.59 -42.58
-42.57 -42.56 -42.55 -42.53 -42.52 -42.50 -42.49 -42.47 -42.45
-42.44 -42.42 -42.40 -42.38 -42.35 -42.33 -42.31 -42.28 -42.26
-42.23 -42.20 -42.17 -42.14 -42.11 -42.08 -42.05 -42.02 -41.98
-41.95 -41.91 -41.87 -41.83 -41.79 -41.75 -41.71 -41.67 -41.63
-41 .58 -41.54 -41.49 -41.44 -41.39 -41.34 -41.29 -41.24 -41.19
-41.14 -41.08 -41.03 -40.97 -40.91 -40.86 -40.80 -40.74 -40.68
-40.61 -40.55 -40.49 -40.43 -40.36 -40.29 -40.23 -40.16 -40.09
-40.02 -39.95 -39.88 -39.81 -39.74 -39.67 -39.60 -39.52 -39.45
-39.37 -39.30 -39.22 -39.14 -39.06 -38.99 -38.91 -38.83 -38.75
-38.67 -38.58 -38.50 -38.42 -38.34 -38.25 -38.17 -38.09 -38.00
-37.92 -37.83 -37.74 -37.66 -37.57 -37.48 -37.40 -37.31 -37.22
-37.13 -37.04 -36.95 -36.86 -36.78 -36.69 -36.59 -36.50 -36.41
-36.32 -36.23 -36.14 -36.05 -35.96 -35.87 -35.77 -35.68 -35.59
-35.50 -35.41 -35.31 -35.22 -35.13 -35.04 -34.94 -34.85 -34.76
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-34..67 -34..57 -34..48
-33..83 -33..74 -33..65
-33 ..01 -32..92 -32..83
-32..19 -32..10 -32..01
-31 ..39 -31 ..31 -31 ..22
-30..62 -30..53 -30..45
-29..86 -29,.78 -29..70
9 ;> -;2.52 2. 52

-517. 517.
10 2 -1 . 1 . 

- 0 . 0 0  0 . 0 0

-34..39 -34..30 -34..20
-33..56 -33..47 -33..37
-32..73 -32..64 -32,.55
-31 ..92 -31 ..84 -31 .75
-31 ..13 -31 ..05 -30 .96
-30..36 -30,.28 -30 .19
-29..61

-34.. 1 1 -34..02 -33..93
-33..28 -33..19 -33..10
-32..46 -32 ..37 -32..28
-31 ..66 -31 ..57 -31 ..48
-30,.87 -30..79 -30,.70
-30.. 11 -30..03 -29,.94

* ELEMENTS DEFINING CROSS-SECTIONS
* F i r s t  l i n e :
* Cross-section number, number of quadrilateral elements and point elements
* included in cross-section.
* Following li nes:
* Description of each quadrilateral element in terms of material number and
* nodal coordinates. This followed by a description of each point element in
* terms of material number, coordinate, lumped area, and the material number
* of the replaced material.
* Repeat for each cross-section defined.

* cross number of number of
* sec. q-elems p-elems
* ( - ) ( - ) ( - )

* material coord.nodel coord.node2 coord.node3 coord.node4
* number X Y X Y X Y X Y
* ( - ) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm)
* material coord.node area replaced
* number X Y material
* ( - )  (mm) ( m m ) ( m m ‘2 ) ( - )
DC=========================================================

1 24 12
5 -105 .0 -105 ..0 -88..8 -105 ..0 -88..8 -88..8 -105..0 -88..8
5 -88 .8 -105 ..0 88..8 -105 ..0 88..8 -88..8 -88,.8 -88..8
5 88 .8 -105 ..0 105..0 -105 ..0 105..0 -88..8 88..8 -88..8
5 -105 .0 -88..8 -88..8 -88..8 -88..8 -59..2 -105..0 -59..2
8 -88 .8 -88..8 88..8 -88..8 88..8 -59..2 -88,.8 -59.. 2
5 88 .8 -88..8 105..0 -88..8 105..0 -59..2 88,.8 -59..2
5 -105 .0 -59..2 -88..8 -59..2 -88..8 -29..6 -105..0 -29..6
8 -88 .8 -59..2 88..8 -59..2 88..8 -29..6 -88..8 -29..6
5 88 .8 -59..2 105..0 -59..2 105..0 -29..6 88..8 -29..6
5 -105 . 0 -29..6 -88..8 -29..6 -88..8 0..0 -105..0 0..0
8 -88 .8 -29..6 88..8 -29..6 88..8 0..0 -88..8 0,.0
5 88 .8 -29..6 105 ..0 -29..6 105 ..0 0..0 88..8 0..0
5 -105 . 0 0..0 -88..8 0..0 -88..8 29..6 -105..0 29..6
8 -88 .8 0..0 88..8 0..0 88..8 29..6 -88..8 29..6
5 88 .8 0..0 105..0 0..0 105..0 29..6 88..8 29..6
5 -105 .0 29..6 -88,.8 29..6 -88..8 59..2 -105..0 59..2
8 -88 .8 29..6 88..8 29..6 88..8 59..2 -88..8 59..2
5 88 .8 29..6 105 .. 0 29..6 105..0 59..2 88..8 59,.2
5 -105 .0 59..2 -88..8 59..2 -88..8 88..8 -105..0 88,.8
8 -88 .8 59..2 88..8 59..2 88..8 88..8 -88..8 88..8
5 88 .8 59..2 105 ..0 59..2 105 ..0 88..8 88..8 88..8
5 -105 . 0 88..8 -88..8 88..8 -88..8 105 ..0 -105..0 105 ..0
5 -88 .8 88..8 88..8 88..8 88..8 105 ..0 -88..8 105..0
5 88 .8 88..8 105..0 88..8 105..0 105 ..0 88..8 105..0
9 -80. 0 -80.0 100.3 8
9 -27. 0 -80.0 100.3 8
9 27. 0 -80.0 100.3 8
9 80. 0 -80.0 100.3 8
9 -80. 0 -27.0 100.3 8
9 80. 0 -27.0 100.3 8
9 -80. 0 27.0 100.3 8
9 80. 0 27.0 100.3 8
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9

OOCO 80.0 100.3 8
9 -27.0 80.0 100.3 8
9 27.0 80.0 100.3 8
9 80.0 80.0 100.3 8

* VARIATION OF CROSS SECTION GEOMETRY
* Cross section number associated with the discrete stations along the member
* length. If only a single cross-section is defined no data is required in
* this field as all sections are assumed to be equal. Otherwise, the list
* must contain all cross-section numbers corresponding to the nseg+1
* stations, beginning at end1 (Z = 0 mm).
*  _____________ ___ _______________ ___ ____ ______ ___ ___________ ______
* cross-section numbers
* end1 . . . end2
CR============================================================================

— — — — — — — — — — — — ~ — — — — — — — = — — = — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — ~
GEOMETRIC DATA
Length of column, and imperfections at mid-length after the X- and Y-axis 
respectively.

length imperfections
(mm) X-axis Y-axis

(mm) (mm)
GD =

1640. 0. 0.

BOUNDARY CONDITIONS
Restraining conditions at column ends for rotation about the X-axis and 
Y-axis respectively.
code = 1 
code = 2 
code = 3

, free 
, fully 
, semi

to rotate. 
f i xed.

rigid (rotational spring)

end 1 end2
Y-axis X-axis Y-axis X-axis

1 1 1 1

ROTATIONALLY SPRING CONSTANTS
Spring constants at column ends for rotation about the X-axis and Y-axis 
respectively.

* end1 end2
* Y-axis X-axis Y-axis X-axis
* (KNm/rad) (KNm/rad) (KNm/rad) (KNm/rad)

ECCENTRICITY
Eccentricity after the X-axis and Y-axis at column ends.

end1 end2
* ex ey ex ey
*

E C
( mm) (mm) ( mm ) (mm)

* -
0 . -75 . 0 . -75 .

* APPLI ED END-MOMENTS
*
* _

Appii ed moments about the X-axis and Y-axis at column ends.

* end1 end2
* My Mx My Mx
*
r\ M

(KNm) (KNm) (KNm) (KNm)
M  H

O o

OO Oo

O o

* -

* POINT LOADS AFTER X-AXIS
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real Px(nPx_),zPx(nPx_),Py(nPy_),zPy(nPy_),
+ x i(nseg_+1),y i(nseg_+1),fMx(nseg_+1),fMy(nseg_+l),
+ shape(4*ngaus_**2),dNdxie(4*ngaus_**2),
+ dNdeta(4*ngaus_**2),eweigp(ngaus_**2),
+ cenx(nseg_+1),ceny(nseg_+1),
+ u(nseg_+1),v(nseg_+1),uO(nseg_+1),vO(nseg_+1),
+ dw(2*nseg_+2),
+ astn(nseg_+1),astnO(nseg_+1),
+ kapx(nseg_+1),kapy(nseg_+1),
+ Mx(nseg_+1),My(nseg_+1),
+ Mxres(nseg_+1),Myres(nseg_+1),
+ MxdxB(nseg_+1 ),MydxB(nseg_+1),
+ MxdyB(nseg_+1),MydyB(nseg_+1),
+ MxdxA(nseg_+1),MydxA(nseg_+1),
+ MxdyA(nseg_+1),MydyA(nseg_+1),
+ posgpl(ngaus_),weigpl(ngaus_)
real stnmd(2,nmt_),st rmd(maxmd_,nmt_),

+ xelp(maxp_,ncr_),yelp(maxp_,ncr_),aelp(maxp_,ncr_),
+ gpx(maxq_*ngaus_**2+2*maxp_,ncr_),
+ gpy(maxq_*ngaus_**2+2*maxp_,ncr_),
+ gpa(maxq_*ngaus_**2+2*maxp_,ncr_),
+ dMdw(2*nseg_+2,2*nseg_+2)
real xelq(4,maxq_,ncr_),yelq(4,maxq_,ncr_) 
i nteger k,kk 
write(6,*)
wri t e ( 6 , * ) i*********************************************
write(6,*)'* * 
write(6,*)'* Inelastic analysis of columns in biaxial * 
write(6,*)‘* bending * 
write(6,*)'* * 
write(6,*)‘* Cols Version 4.2 * 
wri te(6,*)"* 2001 * 
write(6,*)'* *
write(6, *)'******************************************* 
w r i t e ( 6, * )

5 write(6,* ) 1 Input name of data file1 
w r i t e ( 6, * ) 
read(6,810 ) datf i l 
fextn=.false, 
do 10 k = 60,4 , -1
i fCdatfil(k-3:k).eq.'.dat1 ) then 
fextn=.t rue. 
goto 20 

endi f
10 conti nue
20 if (.not.fextn) then

write(6,*)'Data file does not contain .dat extension1 
wri te(6,*> 
goto 5 

endi f
i nqu i re(f ile = dat f il,ex i st = f f i le) 
if C.not.ffile) then 
write(6,*) 'Data file not found1 
write(6,*) 'Retry Yes/No' 
read(6,815) key 
i f (key.eq.'Y ') then 
goto 5 

else
goto 1000 

endi f 
endi f
kk=index(datfi l,' .dat' )-1 
resfi l = d a t f i 1(1 :k k ) / / 1.res' 
selfil= d a t f i1(1 :kk)//' .sel '
call storeq(datfil,atype,nseg,nmt,maxmd,ncr,maxq,maxp, 

+ nPx,nPy,ngaus)
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w r i t e ( 6, * )
if (atype.eq.1) then 
write(6,*) 'Type of analysis

//' Ultimate axial load capacity' 
else if (atype.eq.2) then 
write(6,*) 'Type of analysis :'

//' Ultimate lateral load factor'
else
write(6,*) 'Type of analysis :'

//' Unknown'

+

+
+
+
+
+

goto 1000 
end i f
w r i t e (6, *)
write(6,*) 'Size of problem:'
write(6,820) 'Number of column segments ',' =',nseg
write(6,820) 'Number of defined materials ',' =',nmt
write(6,820) 'Max number of material data points',' =',maxmd 
write(6,820) 'Number of cross-section geometries',' =',ncr 
write(6,820) 'Max number of q-elems per section ',' =',maxq 
write(6,820) 'Max number of p-elems per section ',' =',maxp 
write(6,820) 'Number of point loads after X-axis',' = ‘,nPx 
write(6,820) 'Number of point loads after Y-axis',' =',nPy 
write(6,820) 'Order of numerical integration ',' = ‘,ngaus
w r i t e ( 6, * )
if (nseg.gt. nseg_) then 
goto 930

else if (nmt.gt.nmt_) then 
goto 930

else if (maxmd.gt.maxmd_) then 
goto 930

else if (ncr.gt.ncr_) then 
goto 930

else if (maxq.gt.maxq_) then 
goto 930

else if (maxp.gt.maxp_) then 
goto 930

else if (nPx.gt.nPx_) then 
goto 930

else if (nPy.gt.nPy_) then 
goto 930

else if (ngaus.gt.ngaus_) then 
goto 930

end i f
call i nput(datf il,atype,aPz,daPzO,eraPz,lf,dlf0,erlf, 

erPz,erdw,nmt,lmatr,nmds,stnmd,maxmd,strmd, 
ncr,lcrse,nqcs,npcs,maxq,melq,xelq,yelq,maxp, 
melp,xelp,yelp,aelp,nseg,crses,lngth,midxi, 
midyi,bcxA,bcyA,bcxB,bcyB,exA,eyA,exB,eyB, 
aMxA,aMyA,aMxB,aMyB,nPx,Px,zPx,nPy,Py,zPy, 
upx,upy,xi,yi,fMx,fMy,kcxA,kcyA,kcxB,kcyB, 
select)

call nurnint(ncr,nqcs,npcs,ngaus,shape,dNdxie,dNdeta,
ewe igp,maxq,melq,xelq,yelq,maxp,melp,xelp, 
yelp,aelp,gpx,gpy,gpa,gpm,posgpl,weigpl)

cal l cenoid(nseg,crses,ncr,nqcs,cenx,ceny,ngaus,maxq,
+ maxp,gpx,gpy,gpa)
call outdat(resf il,a type,aPz,daPzO,eraPz,lf,dlf0,erlf,

+ erPz,erdw,nmt,lmatr,nmds,stnmd,maxmd,
+ strmd,ncr,lcrse,nqcs,npcs,maxq,melq,xelq,
+ yelq,maxp,melp,xelp,yelp,aelp,nseg,crses,
+ lngth,bcxA,bcyA,bcxB,bcyB,exA,eyA,exB,eyB,
+ aMxA,aMyA,aMxB,aMyB,nPx,Px,zPx,nPy,Py,zPy,
+ upx,upy,xi,yi,fMx,fMy,ngaus,cenx,ceny,
+ kcxA,kcyA,kcxB,kcyB,selfil)
call st ruct(resf i l,a type,bcxA,bcxB,bcyA,bcyB,nmt,nmds,

+ stnmd,maxmd,strmd,lngth,aPz,daPzO,eraPz,If,
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+ dlfO,erlf,erPz,erdw,exA,exB,eyA,eyB,aMxA,
+ aMxB,aMyA,aMyB,ncr,nqcs,npcs,nseg,erses,xi,
+ yi,cenx,ceny,fMx,fMy,u,uO,v,vO,dw,astn,
+ astnO,kapx,kapy,Mx,My,Mxres,Myres,MxdxB,
+ MydxB,MxdyB,MydyB,MxdxA,MydxA,MxdyA,MydyA,
+ dMdw,ngaus,maxq,maxp,gpx,gpy,gpa,gpm,kcxA,
+ kcyA,kcxB,kcyB,select,selfil)

810 forma t(a60)
815 formate a 1)
820 format(2x,a34,a2,i4 ) 

stop
930 write(6,*)'Problem too large1 

goto 1000
1000 write(6,*)'Program terminated1 

stop 
end

c====================================================================
c Subroutine storeq( )
c Reads key parameters governing the computer storage, and checks
c the presence of required field identifiers.
C = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

900 

910 

91 1 

1 0 0 0

subroutine storeq(datfil,atype,nseg,nmt,maxmd,ncr,maxq,maxp, 
nPx,nPy,ngaus) 

character*60 datfil
integer atype,nseg,nmt,maxmd,ncr,maxq,maxp,nPx,nPy,ngaus 
open(12,f ile=dat f il,status='old' ) 
rew i nd(12)
call detect( 'AN ' )
read(12,*,err=900)
call detect( ' SZ ' )
read(12,*,er r = 910)
if (nseg.lt. 2) goto
call detect( ' CP ' )
call detect( ' MP ' )
call de t ec t( 'DC ' )
call detect( ' CR ' )
call detect(' GD ' )
call detect(' BC ' )

call detect( ' KC ' )
call detect(' EC ' )
call detect('AM ' )
call detect(' PX ' )
call detect(' PY 1 )
call detect(' PU ' )

atype

nseg,nmt,maxmd,ncr,maxq,maxp,nPx,nPy,ngaus 
91 1

c l ose(12) 
return 
w r i t e ( 6 , * ) 
goto 1000 
w r i t e ( 6, * ) 
goto 1000 
wri t e(6,* ) 
goto 1000 
wri t e (6,* ) 
stop 
end

'Format error reading AN field1 

'Format error reading SZ field'

'Error reading AN field, specified nseg invalid1 

'Program terminated'

c Subrout inedetectl )
c Search for a named data field.

subroutine detect(obj) 
character*2 obj,text 
rewi nd(12)

121 read(12,'(a2)',end = 900) text 
if (text.ne.obj) then 

goto 121 
end i f
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r e tu r n
900 write(6,*) 'Numerical field identifier 1,obj, 1 missing' 

write(6,*) 'Program terminated' 
stop 
end

c Subroutine input( )
c Reads and checks the format of the data file.

subroutine i nput(dat f il,atype,aPz,daPzO,eraPz,lf,dlfO,erlf,
+ erPz,erdw,nmt,lmatr,nmds,stnmd,maxmd,strmd,
+ ncr,lcrse,nqcs,npcs,maxq,melq,xelq,yelq,maxp,
+ melp,xelp,yelp,aelp,nseg,crses,lngth,midxi,
+ midyi,bcxA,bcyA,bcxB,bcyB,exA,eyA,exB,eyB,
+ aMxA,aMyA,aMxB,aMyB,nPx,Px,zPx,nPy,Py,zPy,
+ upx,upy,xi,yi,fMx,fMy,kcxA,kcyA,kcxB,kcyB,
+ select)
character*60 datf il
integer atype,nmt,maxmd,ncr,maxq,maxp,nseg,

+ bcxA,bcyA,bcxB,bcyB,nPx,nPy,select
integer lmatr(nmt),nmds(nmt),lcrse(ncr),

+ nqcs(ncr),npcs(ncr),crses(nseg+1)
integer melq(maxq,ncr),melp(2*maxp,ncr) 
real aPz,daPz0,eraPz,lf,dlfO,erlf,erPz,erdw,Ingth,

+ midxi,midyi,exA,eyA,exB,eyB,aMxA,
+ aMyA,aMxB,aMyB,upx,upy,
+ kcxA,kcyA,kcxB,kcyB
real Px(nPx),zPx(nPx),Py(nPy),zPy(nPy),

+ xi(nseg+1),yi(nseg+1),
+ fMx(nseg+1),fMy(nseg+1)
real stnmd(2,nmt),strmd(maxmd,nmt),

+ xelp(maxp,ncr),yelp(maxp,ncr),aelp(maxp,ncr) 
real xelq(4,maxq,ncr),yelq(4,maxq,ncr) 
integer matr,nmd,crse,nqc,npc 
real pi,FxA,FyA,z 
i nteger i,j,k
open(12,file=datfil,status= 'old') 
rew i nd(12) 
pi=acos(-1 .0) 
do 103 j = 1,ncr 
do 102 i = 1,maxq 
melq(i,j)=0

102 cont i nue
do 101 i=1,2*maxp 
melp(i,j)=0

101 continue
103 continue

do 104 1=1,nseg+1 
crsesli)=1

104 continue
call detect* ' C P ' ) 
i f (atype.eq.1) then
read(12,*,err=905) If,daPzO,eraPz,erPz,erdw,select 
daPz0=1000.*daPz0 
eraPz = 1000 . *eraPz 
eraPz=abs(eraPz) 
erPz=1000.*erPz 
erPz=abs(erPz) 
erdw=abs(erdw) 

else if (atype.eq.2) then 
read(12,*,err=905) aPz,dlfO,erlf,erPz,erdw,select 
aPz=1000.*aPz 
e rlf = abs(erlf) 
erPz=1000.*erPz 
erPz=abs(erPz) 
erdw=abs(erdw)
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end i f
call detect('MP') 
do 10 j = 1,nmt
read(12,*,err = 910 ) matr,nmd 
backspace(12)
read(12,*,err = 910) lmatr(j),nmds(j),(stnmd(i,j),i = 1,2), 

+ (strmd(i,j),i=1,nmd)
10 conti nue

do 11 j = 1,nmt
stnmd(1,j)=stnmd(1,j)/1000. 
stnmd(2,j)=stnmd(2,j)/1000.

1 1 cont i nue
do 13 i =1,nmt 
matr=lmatr(i) 
do 12 j = i +1,nmt 
if (matr.eq.I matr(j)) then 
goto 912 

end i f
12 conti nue
13 continue 

call detect( ' DC 1 ) 
do 20 k=1,ncr
read(12,*,err = 920 ) 
lcrse(k)=crse 
nqcs(k)=nqc 
npcs(k)=npc 
read(12,*,er r = 920 )

+
read(12,*,err = 920 )

+
20 conti nue 

do 22 i = 1,ncr
crse=lcrse(i ) 
do 21 j = i + 1,ncr 
if (crse . e q . I crse(j)) then 
goto 922 

endi f
21 continue
22 continue 

do 29 j=1,ncr
nqc = nqcs(j) 
npc=npcs(j) 
do 24 i =1,nqc 
matr = melq(i , j) 
do 23 k=1,nmt
if (matr.eq.Imatr(k )) then 
melq(i,j) = k 
goto 24

end i f
23 cont i nue

goto 924
24 continue

do 27 i = 1,2*npc 
matr=melp(i,j) 
do 26 k = 1,nmt
if (matr.eq.Imatr(k )) then 
melp(i,j)=k 
goto 27

end i f
26 cont i nue

goto 927
27 continue
29 conti nue

call detect( ' CR 1 ) 
if (ncr.gt.1) then
read(12,*,err = 930) (crses(i),i = 1,nseg+1 )

erse,nqc,npc

( me l q ( j, k ), ( xe l q ( i , j , k ), y e l q ( i , j, k ), i = 1,4 ),
j=1,nqc)

(melp( j, k) ,xelp(j,k),yelp(j,k),aelp( j, k),
melp(npc+j,k),j = 1 , npc)
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do 32 i = 1,nseg +1 
crse=crses(i) 
do 31 j = 1,ncr
if (crse.eq.lcrse(j)) then 
crsesti)=j 
goto 32 

end i f
31 continue 

goto 932
32 continue 

end i f
call detect( 1G D 1)
read(12,*,err=935) lngth,midxi,midyi
xi(1)=0.
yi(1)=o.
xi(nseg+1)=0.
yi(nseg+1)=0.
do 200 i=2,nseg
x i(i)=mi dx i *s i n(pi * real(i-1)/real(nseg)) 
yi ( i)=mi dyi *s i n(pi *real(i-1)/real(ns eg ) )

200 continue
ca l l detect( 1BC1)
read(12,*,err=940) bcyA,bcxA,bcyB,bcxB 
if ((bcyA.ne.1).and.(bcyA.ne.2).and.(bcyA.ne.3)) then 
goto 941 

end i f
if ((bcxA.ne.1).and.(bcxA.ne.2).and.(bcxA.ne.3>) then 
goto 941 

end i f
if C(bcyB.ne.1).and.(bcyB.ne.2).and.(bcyB.ne.3)) then 
goto 941 

end i f
if (CbcxB.ne.1).and.(bcxB.ne.2).and.(bcxB.ne.3)> then 
goto 941 

end i f
call detect( 1K C 1)
if ((bcyA.eq.3).or.(bcxA.eq.3).or.

+ (bcyB.eq.3).or.(bcxB.eq.3)) then
read(12,*,err=942) kcyA,kcxA,kcyB,kcxB 
kcyA=1.e6*kcyA 
kcxA=1.e6*kcxA 
kcyB=1.e6*kcyB 
kcxB=1.e6*kcxB 

end i f
call detect('EC')
read(12,*,err=945) exA,eyA,exB,eyB 
ca l l detect( 1 AM 1 )
read(12,*,err=950) aMyA,aMxA,aMyB,aMxB
aMxA=1.e6*aMxA
aMyA=1.e6*aMyA
aMxB=1,e6*aMxB
aMyB = 1.e6* aMyB
call detec t('PX 1 )
do 55 i =1 , nPx
read(12,*,err=955) Px(i),zPx(i)
Px(i ) = 1000.*Px(i )

55 continue
do 56 i = 1,nPx
if ((zPx(i).lt.0.0).or.(zPx(i).gt.lngth)> then 
goto 956 

end i f
56 conti nue

cal l detect('PY 1 ) 
do 60 i =1,nPy
read(12,*,err=960) Py(i),zPy(i)
Py(i ) = 1 000.*Py(i)
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61

60

2 2 0

221
2 2 2

230

231
232

905

910

912

920

922

924

927

930

932

935

940

941

942

cont i nue 
do 61 i = 1,nPy
if ((zPy(i).lt.0.0).or.(zPy(i).gt.lngth)) then 
goto 961 

end i f 
conti nue
call detect( 1 PU 1 )
read(12,*,err=965) upx,upy
FxA=0.
fMy(1)=0.
fMy(nseg+1 ) =0.
do 220 i = 1,nPx
FxA=FxA+Px(i)*(1.-zPx(i)/lngth) 

conti nue
FxA=FxA+upx*lngth/2. 
do 222 i=2,nseg 
z=lngth*real(i-1)/real(nseg) 
fMy(i ) = FxA*z-0.5*upx*z**2 
do 221 j = 1,nPx 
if (z . gt. zPx(j ) ) then 
fMy(i)=fMy(i)-Px(j)*(z-zPx(j)) 

end i f 
conti nue 

continue 
FyA=0. 
fMx(1)=0. 
fMx(nseg + 1 ) = 0 . 
do 230 i=1,nPy
FyA = FyA + Py(i)*(1 . - zPy(i)/lngth) 

conti nue
FyA = FyA + upy*lngth/2. 
do 232 i=2,nseg 
z=lngth*real(i-l)/real(nseg) 
f M x (i) = FyA*z-0.5*upy*z**2 
do 231 j = 1,nPy 
if (z.gt.zPy(j)) then 
fMx(i)=fMx(i)-Py(j)*(z-zPy(j)) 

endi f 
continue 

conti nue 
return
write(6,*) 'Format error reading AT field1 
goto 1000
write(6,*) 'Format error reading line ',i,' of MP field' 
goto 1000
write(6,*) 'Material number ',matr,' not unique' 
goto 1000
write(6,*) 'Format error reading section ',crse,' of DC field' 
goto 1000
write(6,*) ' Cross-section number ',crse,' not unique' 
goto 1 000
write(6,*) 'Material number ',matr,' not defined' 
goto 1000
write(6,*) 'Material number ' ,matr,' not defined' 
goto 1000
write(6,*) 'Format error reading CR field' 
goto 1000
write(6,*) 'Cross-section number ',crse,' not defined' 
goto 1000
write(6,*) 'Format error reading GD field' 
goto 1000
write(6,*> 'Format error reading BC field' 
goto 1000
write(6,*> 'Boundary condition not recognised' 
goto 1000
write(6,*) 'Format error reading KC field'
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945
goto 1000 
w r i t e ( 6, * ) 'Format error reading EC field'

950
goto 1000 
w r i t e ( 6, * ) 'Format error reading AM field'

955
goto 1000 
write(6,*) ‘Format error reading line ',i,,' of PX field'

956
goto 1000 
w r i t e ( 6, * ) 'Load position exceeds co l umns geomet ri c limits

960
goto 1000 
w r i t e ( 6, * ) ‘Format error reading line ‘ , i,,' of PY field'

961
goto 1000 
write(6,*) 'Load position exceeds columns geomet rie limits

965
goto 1000 
write(6,*) 'Format error reading PU field'

1000
goto 1000 
w r i t e ( 6, * ) 'program terminated'
stop
end

c Subroutine numintC )
c For all the defined cross-sections, evaluates the coordinates
c of the numerical integration points,the associated integration
c areas and material numbers. Replaced material is assigned a
c negative area.

subroutine numint(ncr,nqcs,npcs,ngaus,shape,dNdxie,dNdeta,
+ eweigp,maxq,melq,xelq,yelq,maxp,melp,xelp,
+ yelp,aelp,gpx,gpy.gpa,gpm.posgpl,wei gpl)
integer ncr,ngaus,maxq,maxp 
integer nqcs(ncr),npcs(ncr) 
integer melq(maxq,ncr),melp(2*maxp,ncr),

+ gpm(maxq*ngaus**2+2*maxp,ncr)
real shape(4*ngaus**2),dNdxie(4*ngaus**2),dNdeta(4*ngaus**2),

+ eweigp(ngaus**2),posgpl(ngaus),weigpl(ngaus) 
real xelp(maxp,ncr),gpx(maxq*ngaus**2+2*maxp,ncr),

+ yelp(maxp,ncr),gpy(maxq*ngaus**2+2*maxp,ncr),
+ aelp(maxp,ncr),gpa(maxq*ngaus**2+2*maxp,ncr) 
real xelq(4,maxq,ncr),yelq(4,maxq,ncr) 
integer nqc,npc,matr,elem 
real xie,eta,mulvec,J11,J12,J21,J22,detJ 
integer i ,  i  i ,  i  i 1 , j , j  j , n  n , k , k  k  

call gaussl(ngaus,posgpl,wei gpl) 
nn = 0 
kk = 0
do 15 i = 1,ngaus 
do 10 j = 1,ngaus 
x i e = posgpl(i ) 
eta=posgpl(j)
shape(kk+1)= 0.25*(1-xie)*(1-eta) 
shape(kk+2)= 0.25*(1+xie)*(1-eta) 
shape(kk+3)= 0.25*(1+xie)*(1+eta) 
shape(kk+4)= 0.25*(1-xie)*(1+eta) 
dNdxie(kk+1)=-0.25*(1-eta) 
dNdxie(kk+2)= 0.25*(1-eta) 
dNdxie(kk+3)= 0.25*(1+eta) 
dNdxie(kk+4)=-0.25*(1+eta) 
dNdeta(kk+1)=-0.25*(1-xie) 
dNdeta(kk+2)=-0.25*(1+xie) 
dNdeta(kk+3)= 0.25*(1-xie) 
dNdeta(kk+4)= 0.25*(1+xie) 
kk=kk+4
eweigp(nn+1 ) = wei gpl(i)*weigpl(j) 
nn=nn+1 

10 continue 
15 continue 

elem=0
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do 40 k=1,ncr 
nqc=nqcs(k ) 
npc=npcs(k ) 
do 35 j = 1,nqc 
elem=elem+1 
mat r = melq(j,k ) 
j j = ngaus**2*(j-1) 
do 30 i =1,ngaus**2 
ii =4*(i-1) 
i i 1 = i i +1
gpx<j j + i,k5=mulvec(shape(i i1),xelq(1,j,k),4) 
gpy< j j+ i,k )=mulvec(shape(i i15,yelq(1,j,k), 4)
J11=mulvec(dNdx i e(ii1),xelq(1 , j, k), 4)
J 1 2 = mulvec(dNdxie(ii1),yelq(1,j,k ),4) 
J21=mulvec(dNdeta(ii1),xelq(1,j,k),4)
J22 = mulvec(dNdeta(i i1),yelq(1,j,k),4) 
det J = J1 1 * J 22 -J12* J 21 
if (detJ.Ie.0.0) goto 910 
gpa(j j + i,k)=detJ*eweigp(i) 
gpm(j j + i,k) = matr 

30 conti nue 
35 continue

j j = nqc*ngaus**2 
do 25 j = 1,npc 
gpx( j j + j,k)=xelp(j, k) 
gpy(j j + j,k)=yelp(j,k) 
gpa(j j + j,k) = ae Lp(j,k) 
gpm(j j + j,k)=meIpC j,k) 
gpx( j j+npc + j,k)=xelp(j,k) 
gpy(j j + npc +j,k) = yelp(j,k ) 
gpa(j j+npc +j,k) = -aelp(j,k) 
gpm(j j+npc + j,k) = melp(npc+ j,k)

25 conti nue 
40 continue 

return
910 write(6,*) 'Incorrect geometry of quadrilateral element1,elem 

goto 1000
1000 write(6,*) 'program terminated' 

stop 
end

c Subroutine gaussl( )
c Sets numerical integration constants for exact integration of a
c polynomium of degree 2*ngaus-1 over an interval -1 to 1.

subroutine gaussl(ngaus,posgpl,weigpl) 
integer ngaus.kk
real posgpl(ngaus5,weigpl(ngaus5 
kk = 0
if (ngaus.eq.1) then 
posgpl(kk+1)=0.0 
wei gpl(kk+1) = 2 .0 

else if (ngaus.eq.2) then 
posgpl(kk+1)=-0.5773502692 
posgpl(kk+25=0.5773502692 
wei gpl(kk+1) = 1 .0 
wei gpl(kk + 2 ) = 1.0 

else if (ngaus.eq.3) then 
posgpl(kk+1)=-0.7745966692 
posgpl(kk+2)=0.0 
posgpl(kk+3)=0.7745966692 
weigpl(kk+1)=0.5555555556 
weigpl(kk+25=0.8888888889 
we igpl(kk + 3 5 = 0.5555555556 

else if (ngaus.eq.45 then 
posgpl(kk+15=-0.8611363116
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posgpl(kk+2)=-0.3399810436 
posgpl(kk+35=0.3399810436 
posgpl(kk+4)=0.8611363116 
we i gpl(kk+15 = 0.3478548451 
weigpl(kk+25=0.6521451549 
weigpl(kk+3)=0.6521451549 
weigpl(kk+45=0.3478548451 

else if (ngaus.eq.5) then 
posgpl(kk+15=-0.9061798459 
posgpl(kk+2)=-0.5384693101 
posgpl(kk + 3 5=0.0 
posgpl(kk+45=0.5384693101 
posgpl(kk+55=0.9061798459 
weigpl(kk+15=0.2369268851 
weigpl(kk+25=0.4786286705 
weigpl(kk+35=0.5688888889 
weigpl(kk+45=0.4786286705 
weigpl(kk+55=0.2369268851 

else
goto 900 

end i f 
return

900 write(6,*5'Specified number of gauss points outside range1 
goto 1000

1 000 write(6,*51Program terminated1 
stop 
end

c Function mulvec( 5
c Calculates the dot product of two vectors.

function mulvec(vec1,vec2,ndim5 
integer ndim 
real mulvec
real vec1(ndim5,vec2(ndim5 
integer i 
mulvec = 0 .0 
do 10 i = 1,nd i m
mulvec = mulvec + vec1(i)*vec2(i 5

10 conti nue 
end

c Subroutine cenoid( 5
c Evaluates the cartesian coordinates x and y of the gravitational
c centre at the nseg+1 stations along the member length.

subroutine cenoid(nseg,crses,ncr,nqcs,cenx,ceny,ngaus,maxq,
+ maxp,gpx,gpy,gpa5
integer nseg,ncr,ngaus,maxq,maxp 
integer crses(nseg+1 ),nqcs(ncr) 
real cenx(nseg+15,ceny(nseg+15 
real gpx(maxq*ngaus**2+2*maxp,ncr5,

+ gpy(maxq*ngaus**2+2*maxp,ncr5,
+ gpa(maxq*ngaus**2+2*maxp,ncr5
integer nqc 
real a reax,areay,area 
integer j,i 
do 20 j = 1,ncr 
nqc = nqcs(j 5 
areax = 0 . 
areay=0. 
a rea = 0 .
do 10 i=1,nqc*ngaus**2 
areax = areax + gpx(i,j)*gpa(i,j 5 
areay = areay+gpy(i,j 5*gpa(i,j 5 
area=area+gpa(i,j5
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10 cont i nue
do 15 i=1,nseg+1 
if (j .eq.crses(i)) then 
cenx(i)=areax/area 
ceny(i)=areay/area

end i f
15 cont i nue
20 cont i nue

end

Subroutine outdat( )
Writes the pre-analysis data to the output file.

subroutine outdat(resfil,atype,aPz,daPzO,eraPz,lf,dlfO,erlf,
+ erPz,erdw,nmt,lmatr,nmds,stnmd,maxmd,
+ strmd,ncr,lcrse,nqcs,npcs,maxq,melq,xelq,
+ yelq,maxp,melp,xelp,yelp,aelp,nseg,crses,
+ lngth,bcxA,bcyA,bcxB,bcyB,exA,eyA,exB,eyB,
+ aMxA,aMyA,aMxB,aMyB,nPx,Px,zPx,nPy,Py,zPy,
+ upx,upy,xi,yi,fMx,fMy,ngaus,cenx,ceny,
+ kcxA,kcyA,kcxB,kcyB,selfil)
character*60 resfil,selfil
integer atype,nmt,maxmd,ncr,maxq,maxp,nseg,

+ bcxA,bcyA,bcxB,bcyB,nPx,nPy,ngaus
integer lmatr(nmt),nmds(nmt),lcrse(ncr),nqcs(ncr),npcs(ncr),

+ crses(nseg+1),melq(maxq,ncr),melp(2*maxp,ncr)
real aPz,daPzO,eraPz,lf,dlfO,erlf,erPz,erdw,Ingth,

+ exA,eyA,exB,eyB,aMxA,aMyA,aMxB,aMyB,upx,upy,
+ kcxA,kcyA,kcxB,kcyB
real Px(nPx),zPx(nPx),Py(nPy),zPy(nPy),xi(nseg+1),yi(nseg+1) 

+ fMx(nseg+1),fMy(nseg+1),cenx(nseg+1),ceny(nseg+1) 
real stnmd(2,nmt),strmd(maxmd,nmt),xelp(maxp,ncr),

+ yelp(maxp,ncr),aelp(maxp,ncr) 
real xelq(4,maxq,ncr),yelq(4,maxq,ncr) 
integer matr,nmd,matr1,matr2,crse,nqc,npc 
real z ,stnA,stnB,stn,dstn,str 
integer i,j,k,kk 
open(12,f ile= resf il) 
rew i nd(12) 
w r i t e (1 2, * )
wr i te( 12,805 )'*********************************************** 
write(12,805)'*
write(12,805)'* Inelastic analysis of columns in biaxial 
write( 12,805 ) 1 * bending
write(12,805)'*
write(12,805)'* Cols Version 4.2
wri te( 1 2,805 ) 1 * 2001
write(12,805)'*
write(12,805)'*********************************************** 
w r i t e (1 2 , * ) 
w r i t e (1 2 , * ) 
i f (atype.eq.1) then
write(12,*) 'ANALYSIS OF ULTIMATE AXIAL LOAD CAPACITY' 

else if (atype.eq.2) then
W r i t e (12,* ) 'ANALYSIS OF ULTIMATE LATERAL LOAD FACTOR' 

endi f
write(12,810) 'FILE :',resfil
w r i t e (1 2 , * )
write(12,*)
write(12,*) '= = = = = = = = = = = = = = = = = = 1 
w r i t e( 1 2 , * ) 'CONTROL PARAMETERS' 
wri te(12,*) '=================='
write(12,*)
write(12,815) 'Number of column segments =',

+ nseg
write(12,815) 'Order of numerical integration =',

* I
* I
* I
* I
* I
* I
* I
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+ ngaus
i f (atype.eq . 1 ) then 
wr i t e( 1 2,81 6) 'Lateral load factor 

+ I f , 1 '
write(12,816) 'Largest axial load increment 

+ daPzO/1000.,'K N '
write(12,817) 'Accuracy of axial load capacity 

+ eraPz/1 000.,'KN '
write(12,817) 'Convergence criteria for axial load 

+ erPz/1 000.,'KN '
write(12,817) 'Convergence criteria for deflections 

+ erdw,'m m '
else if (atype.eq.2) then 
write(12,816) 'Applied axial load 

+ aPz/1000 . , ' KN '
write(12,816) 'Largest lateral load factor increment 

+ d l f 0 , ' '
write(12,817) 'Accuaracy for lateral load factor 

+ er l f , ' '
write(12,817) 'Convergence criteria for axial load 

+ erPz/1000 . ,'KN'
write(12,817) 'Convergence criteria for deflections 

+ erdw,'m m '
endi f
w r i t e (1 2 , *) 
w r i t e (1 2 , *)
wri teC12,*) ' = = = = = = = = = = = = = = = = = = =■ 
write(12,*)'MATERIAL PROPERTIES' 
write(12,*)l===================l
do 20 j = 1,nmt 
mat r=lmat r(j ) 
nmd=nmds(j) 
stnA = stnmd(1,j >*1000. 
s tnB = stnmd(2,j)*1 000. 
dstn=(stnB-stnA)/(nmd-1 ) 
w r i t e (1 2, * )
wri te(12,820)'MATERIAL No. = ',matr 
write(12,*)
write(12,821)'STRAIN (mm/m)','ST RESS (MPa)' 
do 22 i = 1,nmd 
stn=stnA+(i-1)*dstn 
str=strmd(i,j) 
write(12,822) stn,str 

22 continue 
20 cont i nue

w r i t e (1 2 , * ) 
w r i t e (1 2 , * )
write(12,*)'==================■
write(12,*)'CROSS SECTION DATA' 
w r i t e (1 2, *)'= = = = = = = = === = = = = = = =' 
w r i t e (1 2, *) 
do 30 k=1,ncr 
crse=lcrse(k) 
nqc=nqcs(k) 
npc=npcs(k)
write(12,830)'CROSS SECTION No.=',crse 
w r i t e (1 2 , * ) 
do 32 j = 1 ,nqc 
kk=melq(j,k) 
matr=lmatr(kk)
write(12,831 )'ELEMENT No. = ',j, ' MATERIAL No. = ',matr 
w r i t e (1 2, *)
write(12,832) ' NODE','X (mm)','Y (mm)'
wri te(12,833) (i,xe lq(i,j,k),yelq(i,j,k),i = 1,4)
w r i t e (1 2, * )

32 conti nue
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30

34

40

if (npc.gt.O) then 
write( 1 2,834)1 POI NT ELEMENTS' 
wri te( 1 2,835 ) 'MATERIAL'
write(12,836)'No.','X (mm)','Y (mm)','AREA (mm‘2)', 

+ 'ANTI ‘
do 34 j = 1,npc 
kk = me L p(j,k ) 
mat r1 = Imat r(kk) 
kk = melp(npc+ j,k ) 
matr2=lmatr(kk)
write(12,837)j,xelp(j,k),yelp(j,k),aelp(j,k),matr1

i- mat r2
conti nue 

end i f
w r i t e (1 2 , * ) 

cont i nue 
write(12,*)
write(12,*)'= = = = = = = = = = = = = = 1 
write(12,*)'GEOMETRIC DATA' 
write(12,*)'=============='
wri te(12,*) 
write(12,840) 
write(12,*) 
wri te(12,841)

'LENGTH OF COLUMN = ' , l ngth, 'm m '

wri te( 12,842)

BOUNDARY CONDITIONS'

' STATION' , 'POSITON 1 
'IMPERFECTIONS'
'Z (mm)1,'SECTION', 

h 'dX (mm)',■dY (mm)1
do 40 i = 1,nseg+1 
z=lngth*real(i-1)/real(nseg) 
kk = crses(i ) 
crse=!crse(kk) 
wr i te(12,843) i 

conti nue 
write(12,*) 
w r i t e ( 1 2 , * ) 
wri te (12,*)'= = = = : 
w r i t e ( 1 2, * ) 
wri te(12,*)'= = = = = = = 
w r i t e ( 1 2 , * ) 
i f (bcyA.eq.1) then 
wr i te(12,* ) 'END 1 

else if (bcyA.eq . 2 ) 
w r i t e (12,* ) 'END 1 

else if (bcyA.eq.3) 
w r i t e (12,* ) 'END 1 
wr i te( 12,847) ' 

end i f
i f (bcxA.eq.1) then 
w r i t e(12,*) 'END 1 

else if (bcxA.eq.2) 
w r i t e (12,* ) 'END 1 

else if (bcxA.eq.3) 
wri te(12,*) 'END 1 
wr i te(12,847) ' 

end i f
i f (bcyB.eq.1) then 
w r i t e(12,* ) 'END 2 

else if (bcyB.eq.2) 
w r i t e(12,* ) 'END 2 

else if (bcyB.eq.3) 
w r i t e (12,* ) 'END 2 
wr i te( 12,847) ' 

end i f
i f (bcxB.eq.1) then 
w r i t e(12,* ) 'END 2 

else if (bcxB.eq.2 )

'CROSS' ' CENTRE '

'X (mm)','Y (mm)

z , erse,cenx(i),ceny(i),x i(i),y i ( i)

: FREE TO ROTATE ABOUT Y-AXIS' 
then
: FIXED AGAINST ROTATION ABOUT Y- 
t h en
: FLEXIBLE AGAINST ROTATION ABOUT 

SPRING CONSTANT =',kcyA/1.e6,

: FREE TO ROTATE ABOUT X-AXIS' 
then
: FIXED AGAINST ROTATION ABOUT X 
then
: FLEXIBLE 

SPRING
AGAINST ROTATION ABOUT 
CONSTANT =',kcxA/1.e6,

: FREE TO ROTATE ABOUT Y-AXIS' 
then
: FIXED AGAINST ROTATION ABOUT Y- 
t h en
: FLEXIBLE AGAINST ROTATION ABOUT 

SPRING CONSTANT =',kcyB/1.e6,

: FREE 
then

TO ROTATE ABOUT X-AXIS'

'PRO ' ,

AXIS'

Y-AXIS'
'KNm/rad

AXIS'

X-AXIS'
'KNm/rad

AXIS'

Y-AXIS'
'KNm/rad
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write(12,*) 'END 2 : FIXED AGAINST ROTATION ABOUT X-AXIS' 
else if (bcxB.eq.3) then
w r i t e ( 1 2 , * ) 'END 2 : FLEXIBLE AGAINST ROTATION ABOUT X-AXIS' 
write(12,847) ' SPRING CONSTANT =',kcxB/1 .e6,'KNm/rad

end i f
w r i t e (I 2 , * ) 
w r i t e (1 2 , *)
wri te<12,*>'= = = = = = = = = = = =' 
wri te(12,*)'LOAD ING DATA' 
write(12,*)'============'
write(12,*)
write(12,850) 'AXIAL LOAD
write(12,850) 'END 1 : ECCENTRICITY AFTER X-AXIS =

+ exA,'mm 1

write(12,850) 'END 1 : ECCENTRICITY AFTER Y-AXIS =
+ eyA,'mm 1

write(12,850) 'END 2 : ECCENTRICITY AFTER X-AXIS =
+ exB,'mm 1

write(12,850) 'END 2 : ECCENTRICITY AFTER Y-AXIS =
+ eyB,'mm 1

w r i t e ( 1 2 , * )
write(12,851) 'END 1 : APPLIED MOMENT ABOUT Y-AXIS =

+ aMyA/1 .e6,'KNm'
write(12,851) 'END 1 : APPLIED MOMENT ABOUT X-AXIS =

+ aMxA/1 .e6, 1KNm'
write(12,851) 'END 2 : APPLIED MOMENT ABOUT Y-AXIS =

+ aMyB/1.e6,'KNm'
write(12,851) 'END 2 : APPLIED MOMENT ABOUT X-AXIS =

+ aMxB/1 .e6,'KNm'
wr i te(12,*)
w r i t e(12,* ) 'LATERAL LOADING AFTER X-AXIS' 
write(12,860) 'UNIFORMLY DISTRIBUTED LOAD

+ upx,'KN/m'
i f (nPx.gt.0 ) then
write(12,861) 'POINT LOADS : ','LOAD (KN)','Z (mm)' 
write(12,862) (Px(i)/1000.,zPx(i),i=1,nPx) 

endi f
write(12,*)
write(12,*) 'LATERAL LOADING AFTER Y-AXIS'
write( 12,860) 'UNIFORMLY DISTRIBUTED LOAD =',

+ upy,'KN/m'
if (nPy.gt.O) then
write(12,861) 'POINT LOADS : ','LOAD (KN)','Z (mm)' 
wri te( 12,862) (Py(i)/1000.,zPy(i),i = 1, nPy) 

end i f
w r i t e (1 2 , * )
wri t e (12,*) ‘FREE BENDING MOMENTS DUE TO LATERAL LOADING' 
wri te(12,863) 'STATION','POSITON', 'CROSS','MOMENTS' 
write( 12,864) 'Z (mm)', 'SECT I O N ', 'MY (KNm)','MX (KNm)' 
do 60 i =1,nseg+1 
z=lngth*real(i-1)/real(nseg) 
kk = crses(i ) 
crse=lcrse(kk)
write(12,865) i,z,crse,fMy(i)/1.e6,fMx(i)/1.e6 

60 continue 
close(12 )
open(13,f ile = self il ) 
rewi nd(13)
wri te(13,901 )

+
'STA ' ,
'astn'

1 aPz', 
,'kapx

' u',' v', 
','kapy'

1 My' ,, 'My res ' , ' Mx ' ,,'Mxres

write(13,901 )
+

1 * 1
1

'mm/m1
' KN ' ,
1 * f

'm m ','m m ',
I I *  1 /

'KNm',,' KNm ', 'KNm',, ' KNm

w r i t e ( 1 3 , * ) 
c l ose(13)

805 format(1 Ox,a48)
810 format(1x ,a6,1x ,a60)
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815 format(1x,a40,1x,i6)
816 format(1x,a40,1x,f10.3,1x,a2)
817 format(1x,a40,1x,e10.3,1x,a2)
820 format(1x,a13,1x,i2)
821 f orma t (2x, a 13,2x , a 1 2 )
822 format(1x ,f10.2,5x,f10.2 )
830 format(1x,a18,1x,i3)
831 format(2x,a12,1x,i3,5x,a13,1x,i3)
832 format(3x,a4,5x,a6,6x,a6)
833 format(4x,i1,2x,f10.3,2x,f10.3)
834 forma t(2x,a 14 )
836 format(3x,a3,6x,a6,6x,a6,2x,a11,3x,a3,2x,a4)
835 format(46x,a8)
837 format(3x,i2,2x,f10.3,2x,f10.3,1x,f10.3,4x,i4,2x,i4)
840 format(1x,a18,1x,f10.0,1x,a2)
841 format(1x,a7,1x,a7,3x,a5,8x,a6,11x,a14)
842 format(10x,a6,2x,a7,2x,a6,5x,a6,4x,a7,4x,a7)
843 format(2x,i 3,1x,f10.0,3x,i 3,lx,f10.3,1x,f10.3,

+ 1x,f10.3,1x,f10.3)
847 format(1x,a25,1x,f10.3(1x,a7)
850 format(1x,a40,1x,f10.3,1x,a2)
851 format(1x,a40,1x,f10.3,1x,a3)
860 format(2x,a39,1x,f10.3,1x,a4)
861 format(2x,a 13,1x,a9,5x,a6)
862 format(14x,f10.3,2x,f10.3)
863 format(2x,a7,3x,a7,3x,a5,9x,a8)
864 format(13x,a6,2x,a7,3x,a8,4x,a8)
865 format(3x,i3,3x,f10.0,3x,i3,3x,f10.3,2x,f10.3)
901 format(1x,a3,6x,a3,10x,a2,10x,a2,8x,a3,9x,a5,

+ 7x,a3,8x,a5,11x,a4,6x,a4,8x,a4)
end

C====================================================================
c Subroutine outres( )
c Streams data during the analysis to the output file.
c====================================================================

subroutine outres(resfil,aPz,lf,ashort,bshort,nseg,u,v,My,Mx,
+ Myres,Mxres,kapx,kapy,astn,select,selfil)
character*60 resfil,selfil 
integer nseg,select 
real aPz,lf,ashort,bshort
real u(nseg+1),v(nseg+1),My(nseg+1),Mx(nseg+1),Myres(nseg+1),

+ Mxres(nseg+1),kapx(nseg+1),kapy(nseg+1),astn(nseg+1) 
integer i
open(12,f ile=resfil,status='append') 
w r i t e (1 2, * )
write(12,*)'================================================='//

+ i ===================i
write(12,*)
wr i te( 1 2,81 0) 1 Axial load','=',aPz/1000.,'KN'
write(12,811)'Load factor",'=',If
write(12,812) 'Axial displacement1,1 = 1,ashort,'mm'
write(12,813)1 Relative displacement of ends',1 = 1,bshort,'m m '
w r i t e (1 2, * )
write(12,815)'STATION','u (mm)1,'My (KNm)','Myres (KNm)',

+ 'astn (mm/m)','kapx (1/mm)'
wri te( 1 2,820) 1,0.,My(1)/1.e6,My res(1)/1.e6,1 000.*astn(1 ),

+ kapx(1 )
write(12,820)(i,u(i),My(i)/1.e6,Myres(i)/1.e6,1000.*astn(i),

+ kapx(i),i =2,nseg )
write(12,820) nseg+1,0.,My(nseg+1)/1.e6,Myres(nseg+1)/1.e6,

+ 1000.*astn(nseg+1),kapx(nseg+1)
write(12,*)
write(12,815)'STATION','v (mm)','Mx (KNm)','Mxres (KNm)',

+ 'astn (mm/m)1,'kapy (1/mm)'
wri te(12,820) 1,0.,Mx(1)/1.e6,Mxres(1)/1.e6,1000.*astn(1),

+ kapy(1)
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810
811
812
813
815
820
901

c
c
c
c
c
c
c
c
c

write(12,820)(i,v(i),Mx(i)/1.e6,Mxres(i)/1.e6,1000.*astn(i),
+ kapy(i),i=2,nseg)
wri te(12,820) nseg+1,0.,Mx(nseg+1)/1.e6,Mxres(nseg+1) / 1 .e6,

+ 1000.*astn(nseg+1),kapy(nseg+1)
close(12)
open(13,f ile = selfil,status='append') 
if ((seLect.gt.1).and.(select.11.(nseg+1 ))) then 
write(13,901) select,aPz/1000.,u(select),v(select),

+ My(select)/1.e6,Myres(select)/1.e6,Mx(select)/1.e6,
+ Mxres(select)/1.e6,1000.*astn(select),
+ kapx(select),kapy(select)
else if ((select.eq.1).or.(select.eq.(nseg+1))) then 
write(13,901) select,aPz/1000.,0.0,0.0,

+ My(select)/1.e6,Myres(select)/1.e6,Mx(select)/1.e6,
+ Mxres(select)/1.e6,1000.*astn(select),
+ kapx(select),kapy(select)
end i f 
close(13)
format(1x,a10,20x,a1,1x ,f10.3,1x,a2)
format(1x,a11,19x,a1,1x,f10.3)
format(1x,a18,12x,a1,1x,f10.3,1x,a2)
format(1x,a29,1x,a1,1x,f10.3,1x,a2)
format(1x,a7,5x,a6,3x,a8,2x,a11,2x,a11,2x,a11)
format(2x,i3,3x,f10.3,2x,e10.3,2x,e10.3,1x,f10.3,5x,e10.3)
format(i3,2x,f10.3,2x,f10.3,2x,f10.3,4x,e10.3,2x,e10.3,2x,

+ e10.3,2x,e10.3,2x,f10.3,2x,e10.3,2x,e10.3)
end

Subroutine struct( )
Controls incrementation of the external load. If an equilibrium 
state corresponding to the current external load cannot be 
established (flagged by 1 fsol" ) the increment is halved and 
the procedure is repeated. The procedure terminates when the 
load increment is reduced to a user specified tolerance 'eraPz' 
or 1e r l f ■, depending on the type of analysis.

+

subroutine struct(resfil,atype,bcxA,bcxB,bcyA,bcyB,nmt,nmds, 
stnmd,maxmd,strmd,lngth,aPz,daPzO,eraPz, If 
dlfO,erlf,erPz,erdw,exA,exB,eyA,eyB,aMxA, 
aMxB,aMyA,aMyB,ncr,nqcs,npcs,nseg,crses,xi 
yi,cenx,ceny,fMx,fMy,u,uO,v,vO,dw,astn, 
astnO,kapx,kapy,Mx,My,Mxres,Myres,MxdxB, 
MydxB,MxdyB,MydyB,MxdxA,MydxA,MxdyA,MydyA, 
dMdw,ngaus,maxq,maxp,gpx,gpy,gpa,gpm,kcxA, 
kcyA,kcxB,kcyB,select,self i l) 

character*60 resfil,selfil
integer atype,bcxA,bcxB,bcyA,bcyB,nmt,maxmd,ncr,ns eg, 

ngaus,maxq,maxp,select
integer nmds(nmt),nqcs(ncr),npcs(ncr),crses(nseg + 1 ) 
integer gpm(maxq*ngaus**2+2*maxp,ncr)
real lngth,aPz,daPzO,eraPz,lf,dlfO,erlf,erPz,erdw,exA,exB, 

eyA,eyB,aMxA,aMxB,aMyA,aMyB,kcxA,kcyA,kcxB,kcyB 
real stnmd(2,nmt),strmd(maxmd,nmt),xi(nseg+1),yi(nseg+1 ), 

cenx(nseg+1),ceny(nseg+1),fMx(nseg+1),fMy(nseg+1), 
u(nseg+1),u0(nseg+1),v(nseg+1),v0(nseg+1),dw(2*nseg+2), 
astn(nseg + 1),astn0(nseg+1),kapx(nseg + 1),kapy(nseg+1 ), 
Mx(nseg+1),My(nseg+1),Mxres(nseg+1),Myres(nseg+1), 
MxdxB(nseg+1),MydxB(nseg+1),
MxdyB(nseg+1),MydyB(nseg + 1 ),
MxdxA(nseg+1),MydxA(nseg+1),
MxdyA(nseg+1),MydyA(nseg+1 ), 
gpx(maxq*ngaus**2+2*maxp,ncr), 
gpy(maxq*ngaus**2+2*maxp,ncr), 
gpa(maxq*ngaus**2+2*maxp,ncr), 
dMdw(2*nseg+2,2*nseg+2) 

logical f s ol
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real daPz,dlf(dz,sqrdz,ashort,bshort
i n t e g e r i
daPz=daPzO

10

3

1 1 0

120

130

140

dlf = dlf 0
do 10 i = 1,nseg+1 
u ( i ) = 0.0 
v ( i ) = 0.0 
astn(i) = 0.0 

cont inue
dz=lngth/real(nseg) 
sqrdz=dz**2 
i f C atype.eq.1) then 
aPz=0.
if (eraPz.It.abs(daPz)) then 
w r i t e (6, * )
write(6,810) laPz=l,aPz/1.e3,,KN' 
fsol = .t rué.
call profi KbcxA,bcxB,bcyA,bcyB,nmt,nmds,stnmd,maxmd,

+ strmd,lngth,aPz,erPz,erdw,exA,exB,eyA,eyB,
+ lf,aMxA,aMxB,aMyA,aMyB,ncr,nqcs,npcs,nseg,
+ crses,xi,yi,cenx,ceny,fMx,fMy,u,v,dw,astn,
+ kapx,kapy,Mx,My,Mxres,Myres,MxdxB,MydxB,
+ MxdyB,MydyB,MxdxA,MydxA,MxdyA,MydyA,dMdw,
+ ngaus,maxq,maxp,gpx,gpy,gpa,gpm,fsol ,
+ kcxA,kcyA,kcxB,kcyB)

i f (.not.fsol) then 
do 110 i = 1,nseg + 1 
u(i)=u0(i ) 
v (i)=v0(i ) 
astn(i)=astn0(i) 

continué 
daPz=daPz/2. 
aPz=aPz-daPz 
goto 3 

endi f
ashort=(astn(1)+astn(nseg+1))/2. 
do 120 i=2,nseg 
ashort=ashort+astn(i) 

cont i nue
ashort=ashort*dz
bshort= sqrt(sqrdz+xi(2)**2+yi(2)**2)

+ -sqrt(sqrdz+(xi(2)+u(2))**2
+ +(yi(2)+v(2))**2)
+ +sqrt(sqrdz+xi(nseg)**2+yi(nseg)**2)
+ -sqrt(sqrdz+(xi(nseg)+u(nseg))**2
+ +(yi(nseg)+v(nseg))**2)

do 130 i =3 , nseg
bshort= bshort+sqrt(sqrdz+(xi(i)-xi(i-1))**2 

+ + (y i (i) - y i (i -1)) * * 2)
+ -sqrt(sqrdz + ((xi(i) + u(i))-(xi(i -1 ) + u(i -1)))**2
+ +((yi(i)+v(i))-(yi(i -1)+v(i -1)))**2)

cont i nue
bshort=bshort+ashort
call outres(resfil,aPz,lf,ashort,bshort,nseg,u,v,

+ My,Mx,Myres,Mxres,kapx,kapy,astn,
+ select,selfil)

do 140 i = 1,nseg+1 
u 0 ( i ) = u ( i ) 
v0(i )=v(i) 
astnOC i) = astn(i) 

continué 
aPz=aPz+daPz 
goto 3 

end i f
else if (atype.eq.2) then 
l f = 0 .
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5

210

220

230

240

810
820

if (erlf.It.abs(dlf)) then 
w r i t e ( 6, * )
write(6,820) ■ l f = 1 , If 
fso l =.t rue.
call profi UbcxA,bcxB,bcyA,bcyB,nmt,nmds,stnmd,maxmd,

+ strmd,lngth,aPz,erPz,erdw,exA,exB,eyA,eyB,
+ lf,aMxA,aMxB,aMyA,aMyB,ncr,nqcs,npcs,nseg,
+ crses,xi,yi,cenx,ceny,fMx,fMy,u,v,dw,astn,
+ kapx,kapy,Mx,My,Mxres,Myres,MxdxB,MydxB,
+ MxdyB,MydyB,MxdxA,MydxA,MxdyA,MydyA,dMdw,
+ ngaus,maxq,maxp,gpx,gpy,gpa,gpm,fsol,
+ kcxA,kcyA,kcxB,kcyB)

if (.not.fso l ) then 
do 210 i = 1,nseg + 1 
u(i) = u0< i ) 
v(i)=v0(i ) 
astn(i) = a s t n 0 ( i ) 

conti nue
dlf=dlf/2. 
lf=lf-dlf 
goto 5 

endi f
ashort=(astn(1)+astn(nseg+1) )/2 . 
do 220 i=2,nseg 
ashort=ashort+astn(i) 

conti nue
ashort=ashort*dz
bshort= sqrt<sqrdz+xi(2)**2+yi(2)**2)

+ -sqrt(sqrdz+(xi(2)+u(2))**2
+ +(yi(2)+v(2))**2)
+ +sqrt(sqrdz+xi(nseg)**2+yi(nseg)**2)
+ -sqrt(sqrdz+(xi(nseg)+u(nseg))**2
+ +(yi(nseg)+v(nseg))**2)

do 230 i = 3 , n s e g
bshort= bshort+sqrt(sqrdz+(xi(i)-xi(i-1))**2 

+ +(yi(i)-yi(i -1)) **2 )
+ -sqrt(sqrdz+((xi(i) + u(i))-(xi(i -1) + u(i -1)))**2
+ + ((y i(i) + v(i))-(yi(i -1) + v(i -1 ) ) )**2)

cont i nue
bshort=bshort+ashort
call outres(resfil,aPz,lf,ashort,bshort,nseg,u,v,

+ My,Mx,Myres,Mxres,kapx,kapy,astn,
+ select,self il)

do 240 i = 1,nseg+1 
u 0 ( i ) = u ( i ) 
v0(i)= v (i ) 
astn0(i)=astn(i) 

cont i nue 
l f= l f+ dlf 
goto 5 

endi f 
end i f
format(a3,1x,f10.3,1x,a2)
format(a3,1x,f10.3)
end

c Subroutine profil()
c For given external load employs the Newton-Raphson (NR) procedure
c to evaluate the discrete deflections, u and v, and centroidal
c strains, astn, such as to establish force and moment equilibrium 
c in the sections. Convergence is assumed when the largest absolute
c increment in any deflection is less than erdw. If the equilibrium
c at any station cannot be established this is flagged by fsol.
c Locally defined Parameters:
c dastn = Initial increment for the centroidal strain iteration,
c dkapx = Incremental curvature after x-axis for calculation of

- 1 0 . 4 0 -



c
c
c
c
c

5

partial derivatives of moments, 
dkapy = Incremental curvature after y-axis for calculation of 

partial derivatives of moments, 
nimax = Maximum allowed number of NR iterations.

subroutine profi KbcxA,bcxB,bcyA,bcyB,nmt,nmds,stnmd,maxmd, 
+ strmd,lngth,aPz,erPz,erdw,exA,exB,eyA,eyB,
+ lf,aMxA,aMxB,aMyA,aMyB,ncr,nqcs,npcs,nseg,
+ crses,xi,yi,cenx,ceny,fMx,fMy,u,v,dw,astn,
+ kapx,kapy,Mx,My,Mxres,Myres,MxdxB,MydxB,
+ MxdyB,MydyB,MxdxA,MydxA,MxdyA,MydyA,dMdw,
+ ngaus(maxq,maxp,gpx,gpy,gpa,gpm,fsol,
+ kcxA,kcyA,kcxB,kcyB)
logical f s ol
integer bcxA,bcxB,bcyA,bcyB,nmt,maxmd,ncr,nseg,ngaus,

+ maxq,maxp
integer nmds(nmt),nqcs(ncr),npcs(ncr),crses(nseg+1 ) 
integer gpm(maxq*ngaus**2+2*maxp,ncr)
real lngth,aPz,erPz,erdw,exA,exB,eyA,eyB,lf,aMxA,aMxB,aMyA, 

+ aMyB,kcxA,kcyA,kcxB,kcyB
real xi(nseg+1),yi(nseg+1),cenx(nseg+1),ceny(nseg+1 ),

+ fMx(nseg+1),fMy(nseg+1),u(nseg+1),v(nseg+1),
+ dw(2*nseg+2),astn(nseg+1),kapx(nseg+1),kapy(nseg+1 ),
+ Mx(nseg + 1),My(nseg+1),Mxres(nseg+1),Myres(nseg + 1 ),
+ MxdxB(nseg+1),MydxB(nseg+1),MxdyB(nseg+1),
+ MydyB(nseg+1),MxdxA(nseg+1),MydxA(nseg+1),
+ MxdyA(nseg+1),MydyA(nseg+1)
real stnmd(2,nmt),strmd(maxmd,nmt),

+ gpx(maxq*ngaus**2+2*maxp,ncr),
+ gpy(maxq*ngaus**2+2*maxp,ncr),
+ gpa(maxq*ngaus**2+2*maxp,ncr),
+ dMdw(2*nseg+2,2*nseg+2)
integer nqc,npc,gpdim,crse
real dastn,dkapx,dkapy,astnj,kapxj,kapyj,maxdw 
integer nimax,ni,i,j 
parameter (dastn=-0.1e -3,

+ dkapx= 1 . e-12,
+ dkapy= 1 . e-12,
+ nimax= 100)
f sol = .t rue. 
n i = 0 
n i = n i +1
call curv(bcxA,bcxB,bcyA,bcyB,lngth,nseg,u,v,kapx,kapy) 
do 110 j=1,nseg+1 
crse = crses(j ) 
nqc=nqcs(crse) 
npc=npcs(crse) 
gpdim=nqc*ngaus**2+2*npc 
if (fsol) then
call censtnfnmt,nmds,stnmd,maxmd,strmd,gpdim,gpx(1,crse), 

+ gpy(1,crse),gpa(1,crse),gpm(1,crse),cenx(j),
+ ceny(j),aPz,erPz,kapx(j),kapy(j),dastn,
+ astn(j),fsol)

call Mforce(nmt,nmds,stnmd,maxmd,st rmd,gpdi m,gpx(1,c rse), 
+ gpy(1,crse),gpa(1,crse),gpm(1,crse),cenx(j),
+ ceny(j),astn(j),kapx(j),kapy(j),Mx(j),My(j))

end i f
110 conti nue

if (.not. fsol) then 
write(6,*) 'Load capacity exhausted1 
return 

end i f
call residu(bcxA,bcxB,bcyA,bcyB,lf,aMxA,aMxB,aMyA,aMyB,

+ aPz,exA,exB,eyA,eyB,nseg,fMx,fMy,cenx,ceny,
+ xi,yi,u,v,Mx,My,Mxres,Myres,lngth,kcxA,kcxB,
+ kcyA,kcyB)
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do 120 j=1,nseg+1 
c rse = c rses(j) 
nqc = nqcs(c rse) 
npc = npcs(c rse) 
gpdim=nqc*ngaus**2+2*npc 
i f (fsol) then 
astnj=astn(j) 
kapxj =kapx(j)+dkapx 
kapyj = kapy(j)
call censtn(nmt,nmds,stnmd,maxmd,st rmd,gpdi m,gpx(1,crse),

+ gpy(1,crse),gpa(1,crse),gpm(1,crse),cenx(j),
+ ceny(j),aPz,erPz,kapxj,kapyj,dastn,
+ astnj,fsol)

call Mforce(nmt,nmds,stnmd,maxmd,st rmd,gpd im,gpx(1,c rse),
+ gpy(1,crse),gpa(1,crse),gpm(1,crse),cenx(j),
+ ceny(j),astnj,kapx j,kapy j,MxdxB(j),MydxB(j))

end i f
120 continue

if (.not.fsol) then
write(6,*) 'No equilibrium state for incremented x-curvature 
return 

end i f
do 125 j = 1,nseg+1 
crse=crses(j) 
nqc=nqcs(crse) 
npc = npcs(c rse) 
gpdim=nqc*ngaus**2+2*npc 
if (fsol) then 
astnj=astn(j) 
kapxj =kapx(j )-dkapx 
kapyj=kapy(j)
call censtn(nmt,nmds,stnmd,maxmd,st rmd,gpdi m,gpx(1 , crse),

+ gpy(1,crse),gpa(1,crse),gpm(1,crse),cenx(j),
+ ceny(j),aPz,erPz,kapxj,kapy j,dastn,
+ astnj,fsol)

call Mforce(nmt,nmds,stnmd,maxmd,strmd,gpdim,gpx(1,crse),
+ g py (1,crse),g pad , c r s e ) , g  pm (1 , crse) ,cenx(j ) ,
+ ceny(j),astnj,kapxj,kapy j,MxdxA(j),MydxA(j))

end i f
125 conti nue

if (.not.fsol) then
write(6,*) 'No equilibrium state for decremented x-curvature 
return 

end i f
do 130 j=1,nseg+1 
crse=crses(j) 
nqc=nqcs(crse) 
npc=npcs(crse) 
gpdim=nqc*ngaus**2+2*npc 
if (fsol) then 
astnj=astn(j) 
kapxj=kapx(j) 
kapyj = kapy(j)+dkapy
call censtn(nmt,nmds,stnmd,maxmd,st rmd,gpdi m,gpx(1,c rse),

+ gpy(1,crse),gpa(1,crse),gpm(1,crse),cenx(j),
+ ceny(j),aPz,erPz,kapxj,kapyj,dastn,
+ astnj,fsol)

call Mforce(nmt,nmds,stnmd,maxmd,strmd,gpdim,gpx(1,crse),
+ g py (1 , crse),g pad , c r se ) , g  pm (1, crse) ,cenx(j ) ,
+ ceny(j),astnj,kapxj,kapy j,MxdyB(j),MydyB(j))

end i f
130 cont i nue

if (.not.fsol ) then
write(6,*) 'No equilibrium state for incremented y-curvature 
return 

end i f
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do 135 j=1,nseg+1 
crse=crses(j) 
nqc=nqcs(crse) 
npc=npcs(crse) 
gpdim=nqc*ngaus**2+2*npc 
if (fsol) then 
astnj=astn(j) 
kapx j =kapx(j ) 
kapyj = kapy(j)-dkapy
call censtn(nmt,nmds,stnmd,maxmd,st rmd,gpd im,gpx(1,c rse),

+ gpy(1,crse),gpa(1,crse),gpm(1,crse),cenx(j),
+ ceny(j),aPz,erPz,kapxj,kapyj,dastn,
+ a s t n j , f s o l )

call Mforce(nmt,nmds,stnmd,maxmd,strmd,gpdim,gpx(1,crse),
+ gpy(1,crse),gpa(1,crse),gpm(1,crse),cenx(j),
+ ceny(j),astnj,kapxj,kapyj,MxdyA(j),MydyA(j ))

end i f
135 cont i nue

if (.not.fsol) then
write(6,*) 'No equilibrium state for decremented y-curvature1 
return 

end i f
call sti ff(bcxA,bcxB,bcyA,bcyB,lngth,aPz,dkapx,dkapy,

+ nseg,Mx,My,MxdxB,MxdyB,MydxB,MydyB,MxdxA,
+ MxdyA,MydxA,MydyA,dMdw,kcxA,kcxB,kcyA,kcyB)
do 140 i=1,nseg+1 
dw(i) = -Myres(i ) 
dw(nseg+1+i) = -Mxres(i )

140 continue
call lusol(dMdw,dw,2*nseg+2,fsol) 
if (.not.fsol) then
wr i te(6,*) 'Instantaneous stiffness matrix singular' 
return 

end i f
do 145 i =1,nseg +1 
u(i)=u(i)+dw(i) 
v(i )=v(i)+dw(nseg+1+i)

145 continue
maxdw = abs(dw(1 )) 
do 150 i=2,2*nseg+2 
if (abs(dw(i)).gt.maxdw) then 
maxdw = abs(dw(i )) 

end i f
150 cont i nue

write(6,'(a4,i3,a8,e9.3 ) ' ) 'n i = ',n i, ' maxdw= ',maxdw 
if (maxdw.gt.erdw) then 
if (ni.11.ni max) then 
goto 5 

else
fsol=.false.
write(6,*) 'Convergence in displacements failed' 
return 

endi f 
end i f 
end

c Subroutine curv( )
c Evaluates the curvature of the deflected column using the
c central difference method. The curvature is calculated in
c the x and y direction respectively. Note the calculation
c at the ends reflects the no sway assumption, and that the
c first and last entry in the deflection arrays are for the
c auxiliary stations outside the length of the column.

subroutine curv(bcxA,bcxB,bcyA,bcyB,lngth,nseg,u,v,kapx,kapy) 
integer bcxA,bcxB,bcyA,bcyB,nseg
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real Ingth
real u(nseg+1),v(nseg+1),kapx(nseg+1),kapy(nseg+1 ) 
real sqrdz 
integer i
sqrdz=(lngth/real(nseg))**2 
i f(bcyA.eq.2) then 
kapx(1)=-2.*u(2)/sqrdz 

else
kapx(1)=(-u(1)-u(2))/sqrdz 

endi f
i f(bcxA.eq.2 ) then 
kapy(1)=-2.*v(2)/sqrdz 

else
kapy(1) = (-v (1 )-v(2))/sqrdz 

endi f
kapx(2)=(2.*u(2)-u(3))/sqrdz 
kapy(2)=(2.*v(2)-v(3))/sqrdz 
do 100 i =3,nseg-1
kapx(i)=(-u(i-1)+2.*u(i)-u(i+1))/sqrdz 
kapy(i)=(-v(i-1)+2.*v(i)-v(i+1))/sqrdz 

100 cont i nue
kapx(nseg)=(-u(nseg-1)+2.*u(nseg))/sqrdz 
kapy(nseg)=(-v(nseg-1)+2.*v(nseg))/sqrdz 
i f(bcyB.eq.2) then 
kapx(nseg+1)=-2.*u(nseg)/sqrdz 

else
kapx(nseg+1)=(-u(nseg)-u(nseg+1) )/sqrdz 

endi f
i f(bcxB.eq.2) then 
kapy(nseg+1)=-2.*v(nseg)/sqrdz 

else
kapy(nseg+1)=(-v(nseg)-v(nseg+1))/sqrdz 

endi f 
end

c Subroutine censtnl )
c For a given combination of applied axial load and curvatures,
c aPz, kapx and kapy, the axial strain at the centre, astn, is
c iterated until the internal axial load, Pz, equals aPz to
c within an error of erPres. That is abs(aPz-Pz).It.erPres.
c If the solution is non-existent or in-accurate this is flagged
c by 'f s o l ' being '.false.1,
c Locally defined parameters:
c goldm = Golden ratio for calculating minimum
c maxstn = Search range limit for bracketing
c nimax = Allowed limit for number of iterations

subroutine censtn(nmt,nmds,stnmd,maxmd,strmd,gpdim,gpx,gpy,
+ gpa,gpm,cenx,ceny,aPz,erPz,kapx,kapy,
+ dastn,astn,fsol)
logical f s ol 
integer nmt,maxmd,gpdim 
integer nmds(nmt),gpm(gpdim)
real kapx,kapy,cenx,ceny,astn,dastn,aPz,erPz,

+ astn_a,astn_b,astn_c
real gpx(gpdi m),gpy(gpdi m ),gpa(gpdi m ) 
real stnmd(2,nmt),strmd(maxmd,nmt) 
integer n i,n i max
real maxstn,astn_u,Pz_a,Pz_b,Pz_c,Pz_u,fa,fb,fc,fu,astn_0,

+ astn_1,astn_2,astn_3,Pz_1,Pz_2,f1,f2,goldm
real dum
parameter ( goldm=0.61803399,

+ maxstn=1.,
+ nimax= 100)
astn_a=astn 
astn b=astn+dastn
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fsol =. t rue.
call Pforce(nmt,nmds,stnmd,maxmd,strmd,gpdim,gpx,gpy,

+ gpa,gpm,cenx,ceny,astn_a,kapx,kapy,Pz_a)
fa = abs(aPz-P z_a)
call Pforce(nmt,nmds,stnmd,maxmd,strmd,gpdim,gpx,gpy,

+ gpa,gpm,cenx,ceny,astn_b,kapx,kapy,Pz_b)
fb=abs(aPz-Pz_b) 
if (fb.gt.fa) then 
dum=astn_a 
astn_a=astn_b 
astn_b=dum 
dum=fb 
f b=f a 
fa=dum 
dum=Pz_b 
P z_b = P z_a 
Pz_a=dum 

end i f
astn_c=2.*astn_b-astn_a
call Pforce(nmt,nmds,stnmd,maxmd,strmd,gpdim,gpx,gpy,

+ gpa,gpm,cenx,ceny,astn_c,kapx,kapy,Pz_c)
fc=abs(aPz-Pz_c)

111 if (fb.ge.fc) then
astn_u=2.*astn_c-astn_b 
if (abs(astn_u).gt.maxstn) then 
write(6,*) 'Strain bracketing failed1 
fso l = .false. 
return 

end i f
call Pforce(nmt,nmds,stnmd,maxmd,strmd,gpdim,gpx,gpy,

+ gpa,gpm,cenx,ceny,astn_u,kapx,kapy,Pz_u)
fu=abs(aPz-Pz_u) 
astn_a=astn_b 
astn_b=astn_c 
astn_c=astn_u 
Pz_a=Pz_b 
P z_b = P z_c 
Pz_c=Pz_u 
f a = f b 
f b=f c 
f c = f u 
goto 111 

endi f
ast n_0 = as tn_a
astn_1=astn_b-(1.-goldm)*(astn_b-astn_a)
astn_2=astn_b
astn_3=astn_c
call Pforce(nmt,nmds,stnmd,maxmd,st rmd,gpd i m ,gpx,gpy,

+ gpa,gpm,cenx,ceny,astn_1,kapx,kapy,Pz_1)
f1=abs(aPz-Pz_1)
call Pforcefnmt,nmds,stnmd,maxmd,st rmd,gpd i m ,gpx,gpy,

+ gpa,gpm,cenx,ceny,astn_2,kapx,kapy,Pz_2)
f2 = abs(aPz-P z_2) 
n i = 0

222 if ((fl.gt.erPz).and.(ni.lt.nimax)) then 
n i = n i +1
if (f2 . 11.f1) then 
astn_0=astn_1 
astn_1=astn_2
astn_2 = goldm*astn_1 + (1.- goldm)*astn_3 
Pz_1=Pz_2 
f 1 = f 2
call PforceCnmt,nmds,stnmd,maxmd,st rmd,gpd i m ,gpx,gpy, 

+ gpa,gpm,cenx,ceny,astn_2,kapx,kapy,Pz_2)
f2=abs(aPz-Pz_2) 

else
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astn_3=astn_2
astn_2=astn_1
astn_1=goldm*astn_2 + (1.- goldm)*astn_0 
Pz_2=Pz_1 
f 2 = f 1
call Pforce(nmt,nmds,stnmd,maxmd,st rmd,gpdi m,gpx,gpy,

+ gpa,gpm,cenx,ceny,astn_1,kapx,kapy,Pz_1)
f1=abs(aPz-Pz_1 ) 

end i f 
goto 222 

end i f
if (n i.eq.n i max) then
write(6,*) 'Convergence criteria, erPz, not satisfied1 
fsol=.false, 
return 

end i f
astn=astn_1
end

0 ==================================================================
c Subroutine Pforcel )
c Evaluates the axial force, Pz, corresponding to a strain
c distribution given by astn, kapx and kapy.
0 ==================================================================

subroutine PforceCnmt,nmds,stnmd,maxmd,strmd,gpdim,gpx,gpy,
+ gpa,gpm,cenx,ceny,astn,kapx,kapy,Pz)
integer nmt,maxmd,gpdim 
integer nmds(nmt),gpm(gpd i m) 
real kapx,kapy,cenx,ceny,astn,Pz 
real gpx(gpdi m),gpy(gpdi m ),gpa(gpdi m ) 
real stnmd(2,nmt),strmd(maxmd,nmt) 
real stn,str 
integer nmd,ma t r 
integer i 
Pz = 0 .
do 100 i =1,gpdim 
ma t r = gpm(i) 
nmd=nmds(matr)
stn=astn+kapx*(gpx(i)-cenx)+kapy*(gpy(i)-ceny) 
call strstn(stn,str,nmd,strmd(1,matr),stnmd(1,mat r))
Pz = Pz + str*gpa(i )

100 continue 
end

c Subrout ine Hforcel )
c Evaluates the biaxial moments, Mx and My, corresponding to a 
c strain distribution given by astn, kapx and kapy. The moments
c are taken about cartesian axes with origin at the sections
c centroid.

subroutine MforceCnmt,nmds,stnmd,maxmd,st rmd,gpdi m ,gpx,gpy,
+ gpa,gpm,cenx,ceny,astn,kapx,kapy,Mx,My)
integer nmt,maxmd,gpdim 
integer nmds(nmt),gpm(gpdim) 
real cenx,ceny,astn,kapx,kapy,Mx,My 
real gpx(gpdi m),gpy(gpd i m ),gpa(gpdi m) 
real stnmd(2,nmt),strmd(maxmd,nmt) 
integer matr,nmd 
real stn,str 
integer i 
Mx = 0 .
My = 0 .
do 100 i = 1,gpdim 
mat r = gpm(i) 
nmd = nmds(ma t r)
stn=astn+kapx*(gpx(i)-cenx)+kapy*(gpy(i)-ceny)
call strstn(stn,str,nmd,strmd(1,matr),stnmd(1,matr))
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My=My+str*gpa(i)*(gpx(i)-cenx)
Mx=Mx+str*gpaii)*(gpy(i)-ceny)

100 continue 
end

c Subroutine strstni )
c Calculates the stress corresponding to a given value of strain
c using the look-up table for materials stress-strain behaviour.
c===================================================================

subroutine strstn(stn,str,nmd,st rmd,stnmd) 
integer nmd 
real stn,str
real strmd{nmd),stnmd(2) 
real stnA,stnB,dstn,stn1,str1,str2 
integer n1,n2 
stnA=stnmd(1) 
stnB=stnmd(2) 
if (stnB.gt.stnA) then 
if (stn.le.stnA) then 
s t r = s t rmd(1) 
return

else if (stn.ge.stnB) then 
st r = st rmd(nmd) 
return 

end i f
dstn=(stnB-stnA)/(nmd-1) 
n1=int((stn-stnA)/dstn)+1 
n2=n1+1
st r1=st rmd(n1 ) 
s t r2 = s t rmd(n2) 
stn1=stnA+(n1-1)*dstn 
str=str1+(stn-stn1)*(str2-str1)/dstn 

else
if (stn.ge.stnA) then 
str=strmd(1) 
return

else if (stn.le.stnB) then 
s t r = s t rmd(nmd) 
return 

end i f
dstn=(stnB-stnA)/{nmd-1 ) 
n1=int((stn-stnA)/dstn)+1 
n2=n1+1
str1=strmd(n1) 
str2=strmd(n2) 
stn1=stnA+(n1-1)*dstn 
str=str1+(stn-stn1)*(str2-str1)/dstn 

end i f 
end

Il 
1 

Il 
1 

Il 
1 

Il 
1

O 
(J 

u 
c

Evaluates
Subroutine residui ) 

the moment residuals at the stati ons .

subroutine residui bexA,bcxB,bcyA,bcyB, lf,aMxA,aMxB,aMyA,aMyB,
+ aPz,exA,exB,eyA,eyB,nseg,fMx,fMy,cenx,ceny,
+ xi,yi,u,v,Mx,My,Mxres,Myres,lngth,kcxA,kcxB,
+ kcyA,kcyB)
integer nseg,bcxA,bcxB,bcyA,bcyB
real lf,aMxA,aMxB,aMyA,aMyB,aPz,exA,exB,eyA,eyB,Ingth,

+ kcxA,kcxB,kcyA,kcyB
real fMx(nseg+1),fMy(nseg+1),cenx(nseg+1),ceny(nseg+1),

+ xi(nseg+1),yi(nseg+1),u<nseg+1),v(nseg+1),Mx(nseg+1),
+ My{nseg+1),Mxres(nseg+1),Myresinseg+1) 
real rMxA,rMxB,rMyA,rMyB,dz 
i nteger i
dz=lngth/real(nseg)
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if (bcyA.eq.1) then 
rMyA=aMyA

elseif (bcyA.eq.2) then 
rMyA=My(1)-aPz*(exA-cenx(1)) 

elseif (bcyA.eq.3) then 
rMyA=kcyA*(u(2)-u(1))/(2.*dz)+aMyA 

end i f
if (bcyB.eq.1) then 
rMyB=aMyB

elseif (bcyB.eq.2) then 
rMyB=My(nseg+1)-aPz*(exB-cenx(nseg+1)) 

elseif (bcyB.eq.3) then 
rMyB=kcyB*(u(nseg)-u(nseg+1))/(2.*dz)+aMyB 

end i f
if (bcxA.eq.1) then 
rMxA=aMxA

elseif (bcxA.eq.2) then 
rMxA=Mx(1)-aPz*(eyA-ceny(1)) 

elseif (bcxA.eq.3) then 
rMxA=kcxA*(v(2)-v(1))/(2.*dz)+aMxA 

end i f
if (bcxB.eq.1) then 
rMxB=aMxB

elseif (bcxB.eq.2) then 
rMxB=Mx(nseg+1)-aPz*(eyB-ceny(nseg+1)) 

elseif (bcxB.eq.3) then 
rMxB=kcxB*(v(nseg)-v(nseg+1))/(2.*dz)+aMxB 

end i f
Myres(1)=rMyA+aPz*exA-aPz*cenx(1)-My(1) 
Mxres(1)=rMxA+aPz*eyA-aPz*ceny(1)-Mx(1) 
do 100 i=2,nseg 
Myres(i)= lf * f M y (i)

+ +< rMyA+aPz*exA)*(1.-real(i-1)/real(nseg))
+ +(rMyB+aPz*exB)*(real(i-1)/real(nseg))-aPz*u(i)
+ -aPz*(xi(i) + cenx(i))-My(i)

Mxres(i)= l f *fMx(i)
+ +(rMxA+aPz*eyA)*(1.-real(i-1)/real(nseg))
+ +(rMxB+aPz*eyB)*(real(i-1)/real(nseg))-aPz*v(i)
+ -aPz*(yi(i)+ceny(i))-Mx(i)

100 continue
Myres(nseg+1)=rMyB+aPz*exB-aPz*cenx(nseg+1)-My(nseg+1) 
Mxres(nseg+1) = rMxB + aPz*eyB-aPz*ceny(nseg + 1)-Mx(nseg+1 ) 
end

c====================================================================
c Subroutine stiff( )
c Constructs the matrix containing the instantaneous partial deri-
c vatives of the residual moments with respect to the deflections,
c The derivatives are calculated at each station after both axes,
c but the first and last deflection in each direction refers to
c the auxiliary points. The deflections of end-points implicit
c given as zero.

subroutine stiff(bcxA,bcxB,bcyA,bcyB,lngth,aPz,dkapx,dkapy,
+ nseg,Mx,My,MxdxB,MxdyB,MydxB,MydyB,MxdxA,
+ MxdyA,MydxA,MydyA,dMdw,kcxA,kcxB,kcyA,kcyB)
integer bcxA,bcxB,bcyA,bcyB,nseg 
real lngth,aPz,dkapx,dkapy,kcxA,kcxB,kcyA,kcyB 
real Mx(nseg+1),My(nseg+1),MxdxB(nseg+1),MxdyB(nseg+1),

+ MydxB(nseg+1),MydyB(nseg+1),MxdxA(nseg+1),MxdyA<nseg+1),
+ MydxA(nseg+1),MydyA(nseg+1),dMdw(2*nseg+2,2*nseg+2)
real dMxdxi,dMxdyi,dMydxi,dMydyi,dz,sqrdz,fract 
integer i,j 
dz=lngth/real(nseg) 
sqrdz=dz**2 
do 20 i =1,2*nseg + 2 
do 10 j = 1 ,2*nseg + 2
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dMdw(i,j)=0.0 
10 continue 
20 continue

do 100 i =2,nseg 
dMdw(i,i ) = -aPz
dMdw(i + nseg+1,i+nseg+1) = - a P z 

100 continue
do 110 i=2,nseg
dMydxi=(MydxB(i)-MydxA(i))/(2.*dkapx)
dMydyi = (MydyB(i)-MydyA(i))/(2.*dkapy)
dMxdyi=(MxdyB(i)-MxdyA(i))/<2.*dkapy)
dMxdxi=(MxdxB(i)-MxdxA(i))/(2.*dkapx)
dMdw(i,i-1)=-dMydxi*(-1./sqrdz)
dMdw(i,i ) =dMdw(i,i)-dMydxi*(2./sqrdz)
dMdw(i,i+1)=-dMydxi*(-1./sqrdz)
dMdw(i,nseg + i) =-dMydyi*(-1./sqrdz)
dMdw(i,nseg+1 + i ) = -dMydyi*(2./sqrdz)
dMdw(i,nseg+2+i)=-dMydyi*(-1./sqrdz)
dMdw(nseg+1+i,i-1)=-dMxdxi*(-1./sqrdz)
dMdw(nseg+1+i,i) =-dMxdxi*(2./sqrdz)
dMdw(nseg + 1 + i,i + 1) = -dMxdxi*(-1./sqrdz)
dMdw(nseg+1+i,nseg+i) =-dMxdyi*(-1./sqrdz)
dMdw(nseg+1 + i,nseg+1 + i)= dMdw(nseg+1 + i,nseg+1 + i )

+ -dMxdyi*(2./sqrdz)
dMdw(nseg+1+i,nseg+2+i)=-dMxdyi*(-1./sqrdz)

110 conti nue
dMdw(2,1)=0.0 
dMdw(2,nseg+2)=0.0 
dMdw(nseg,nseg+1 ) = 0.0 
dMdw(nseg,2*nseg+2)=0.0 
dMdw(nseg + 3,1 ) = 0.0 
dMdw(nseg+3,nseg+2)=0.0 
dMdw(2*nseg+1,nseg+1) = 0.0 
dMdw(2*nseg+1,2*nseg+2)=0.0 
dMydx i = (MydxB(1 ) -MydxA(1))/(2.*dkapx) 
dMydy i = (MydyB(1)-MydyA(1))/(2.*dkapy) 
i f (bcyA.e q .1) then 
dMdw(1,1) = -dMydxi*(-1./sqrdz) 
dMdw(1,2) = -dMydx i *(-1./sqrdz) 
i f (bcxA.eq.1) then 
dMdw(1,nseg+2)=-dMydyi*(-1./sqrdz) 
dMdw(1,nseg+3)=-dMydyi*(-1./sqrdz) 

else if (bcxA.eq.2) then 
dMdw(1,nseg+3)=-dMydyi*(-2./sqrdz) 

elseif (bcxA.eq.3) then 
dMdw(1,nseg+2)=-dMydyi*(-1./sqrdz) 
dMdw(1,nseg+3)=-dMydyi*(-1./sqrdz) 

end i f
elseif (bcyA.eq.2) then 
dMdw(1,1) = 1 .0 
do 120 i=2,nseg
fract=(1.-real(i-1)/real(nseg)) 
dMdw (i,2)=dMdw(i,2)+dMydxi*(-2./sqrdz)*fract 

120 continue
i f (bcxA.eq.1) then 
do 122 i=2,nseg
fract=(1.-real(i-1)/real(nseg))
dMdw(i,nseg+2)=dMdw(i,nseg+2)+dMydyi*(-1./sqrdz)*fract
dMdw(i,nseg+3)=dMdw(i,nseg+3)+dMydyi*(-1,/sqrdz)*fract 

122 conti nue
elseif (bcxA.eq.2) then 
do 124 i=2,nseg
f ract = (1.-real(i-1)/real(nseg))
dMdw(i,nseg+3)=dMdw(i,nseg+3)+dMydyi*(-2./sqrdz)*fract 

124 continue
elseif (bcxA.eq.3) then
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do 126 i=2,nseg
fract=(1.-real(i-1)/real(nseg))
dMdw(i,nseg+2)=dMdw(i,nseg+2)+dMydyi*(-1./sqrdz)*fract 
dMdw (i,nseg+3)=dMdw(i,nseg+3)+dMydyi*(-1./sqrdz)*fract 

126 continue 
end i f

elseif (bcyA.eq.3) then 
dMdw(1,1)=-dMydxi*(-1./sqrdz) 
dMdw(1,2)=-dMydxi*(-1./sqrdz) 
do 130 i = 1,nseg
fract=(1.-real(i-1)/real(nseg)) 
dMdw(i,1)=dMdw(i,1)-kcyA*fract/(2*dz) 
dMdw(i,2)=dMdw(i,2)+kcyA*fract/(2*dz)

130 continue
i f (bcxA.eq.1) then 
dMdw(1,nseg+ 2 ) = -dHydyi *(-1./sqrdz) 
dMdw(1,nseg+3)=-dMydyi*(-1./sqrdz) 

elseif (bcxA.eq.2) then 
dMdw(1,nseg+3)=-dMydyi*(-2./sqrdz) 

elseif (bcxA.eq.3) then 
dMdw(1,nseg+2)=-dMydyi*(-1./sqrdz) 
dMdw(1,nseg+3)=-dMydyi*(-1./sqrdz) 

end i f 
end i f
dMydxi=(MydxB(nseg+1)-MydxA(nseg+1))/(2.*dkapx) 
dMydyi=(MydyB(nseg+1)-MydyA(nseg+1))/(2.*dkapy) 
if (bcyB.eq.1) then 
dMdw(nseg+1,nseg)=-dMydxi*(-1./sqrdz) 
dMdw(nseg+1,nseg+1)=-dMydxi*(-1./sqrdz) 
i f (bcxB.eq.1) then
dMdw(nseg+1,2*nseg+1)=-dMydyi*(-1./sqrdz) 
dMdw(nseg+1,2*nseg+2)=-dMydyi*(-1./sqrdz) 

elseif (bcxB.eq.2) then 
dMdwCnseg+1,2*nseg+1)=-dMydyi*(-2./sqrdz) 

elseif (bcxB.eq.3) then 
dMdw(nseg + 1,2*nseg+1) = -dMydyi *(-1./sqrdz) 
dMdw(nseg+1,2*nseg+2)=-dMydyi*(-1./sqrdz) 

end i f
elseif (bcyB.eq.2) then 
dMdw(nseg+1,nseg+1)=1.0 
do 220 i=2,nseg 
fract=real(i-1)/real(nseg)
dMdw(i,nseg)=dMdw(i,nseg)+dMydxi*(-2./sqrdz)*fract 

220 continue
i f (bcxB.eq.1) then 
do 222 i=2,nseg 
fract=real(i-1)/real(nseg)
dMdw(i,2*nseg+1)=dMdw(i,2*nseg+1)+dMydyi*(-1./sqrdz)*f ract 
dMdw (i,2*nseg+2)=dMdw(i,2*nseg + 2) + dMydyi*(- 1./sqrdz)*fract 

222 continue
elseif (bcxB.eq.2) then 
do 224 i=2,nseg 
fract=real(i-1)/real(nseg)
dMdw(i,2*nseg+1 )=dMdw(i,2*nseg+1) + dMydyi*(-2./sqrdz)*fract 

224 continue
elseif (bcxB.eq.3) then 
do 226 i=2,nseg 
fract=real(i-1)/real(nseg)
dMdw(i,2*nseg+1 )=dMdw(i,2*nseg + 1) + dMydyi*(-1./sqrdz)*fract 
dMdw(i,2*nseg+2)=dMdw(i,2*nseg+2)+dMydyi*(-1./sqrdz)*fract 

226 continue
end i f

elseif (bcyB.eq.3) then 
dMdw(nseg+1,nseg)=-dMydxi*(-1./sqrdz) 
dMdw(nseg+1,nseg+1)=-dMydxi*(-1./sqrdz) 
do 230 i=2,nseg+1
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230

320

322

324

326

330

fract=real(i-1)/real(nseg)
dMdw(i,nseg)=dMdw(i,nseg)+kcyB*fract/(2*dz) 
dMdw(i,nseg+1)=dMdw(i,nseg+1)-kcyB*fract/(2*dz) 

conti nue
i f (bcxB.eq.1) then
dMdw(nseg+1,2*nseg+1) = -dMydyi *(-1./sqrdz) 
dMdw(nseg+1,2*nseg+2)=-dMydyi*(-1./sqrdz) 

else if (bcxB.eq.2) then 
dMdw(nseg + 1,2*nseg+1) = -dMydyi *(- 2./sqrdz) 

else if (bcxB.eq.3) then 
dMdw(nseg+1,2*nseg+1) = -dMydyi *(-1./sqrdz) 
dMdw(nseg+1,2*nseg+2)=-dMydyi*(-1./sqrdz) 

end i f 
end i f
dMxdxi=(MxdxB(1)-MxdxA(1))/(2.*dkapx) 
dMxdyi=(MxdyB(1)-MxdyA(1))/(2.*dkapy) 
if (bcxA.e q .1) then
dMdw(nseg+2,nseg+2)=-dMxdyi*(-1./sqrdz) 
dMdw(nseg+2,nseg+3)=-dMxdyi*(-1./sqrdz) 
if (bcyA.eq. 1 ) then 
dMdw(nseg + 2,1 ) = -dMxdx i *(-1 ./sqrdz) 
dMdw(nseg+2,2)=-dMxdxi*(-1./sqrdz) 

elseif (bcyA.eq.2) then 
dMdw(nseg+2,2)=-dMxdxi*<-2./sqrdz) 

elseif (bcyA.eq.3) then 
dMdw(nseg+2,1) = -dMxdxi*(-1./sqrdz) 
dMdw(nseg + 2 ,2) = -dMxdxi *(-1./sqrdz) 

end i f
elseif (bcxA.eq.2) then 
dMdw(nseg+2,nseg+2)=1 .0 
do 320 i=2,nseg
fract=(1.-real(i-1)/real(nseg)) 
dMdw(nseg+1+i,nseg+3)= dMdw(nseg+1+i,nseg+3)

+dMxdyi*(-2./sqrdz)*fract
continue
i f (bcyA.eq . 1 ) then 
do 322 i=2,nseg
fract=(1.-real(i-1)/real(nseg))
dMdw(nseg+1+i,1)= dMdw(nseg+1+i,1)+dMxdxi*(-1./sqrdz)*fract 
dMdw(nseg+1+i,2)= dMdw(nseg+1+i,2)+dMxdxi*(-1./sqrdz)*fract 

cont i nue
elseif (bcyA.eq.2) then 
do 324 i=2,nseg
fract=(1.-real(i-1)/real(nseg))
dMdw(nseg+1+i,2)=dMdw(nseg+1+i,2)+dMxdxi*(-2./sqrdz)*fract

continue
elseif (bcyA.eq.3) then 
do 326 i=2,nseg
fract=(1.-real(i-1)/real(nseg))
dMdw(nseg+1+i,1)=dMdw(nseg+1+i,1)+dMxdxi*(-1./sqrdz)*fract 
dMdw(nseg+1 + i,2)=dMdw(nseg+1 + i,2)+dMxdxi *(-1./sqrdz)*f ract 

conti nue 
endi f

elseif (bcxA.eq.3) then 
dMdw(nseg+2,nseg+2)=-dMxdyi*(-1./sqrdz) 
dMdw(nseg+2,nseg+3)=-dMxdyi*(-1./sqrdz) 
do 330 i=1,nseg
f ract = (1.-real(i-1)/real(nseg))
dMdw(nseg+1+i,nseg+2)=dMdw(nseg+1+i,nseg+2)-kcxA*fract/(2*dz) 
dMdw(nseg+1+i,nseg+3)=dMdw(nseg+1+i,nseg+3)+kcxA*fract/(2*dz) 

conti nue
i f (bcyA.eq.1) then 
dMdw(nseg+2,1) = -dMxdxi*(-1 ./sqrdz) 
dMdw(nseg+2,2)=-dMxdxi*(-1./sqrdz) 

elseif (bcyA.eq.2) then 
dMdw(nseg+2,2)=-dMxdxi*(-2./sqrdz)
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420

422

424

426

430

else if (bcyA.eq.3) then 
dMdw(nseg+2,1)=-dMxdxi*(-l./sqrdz) 
dMdw(nseg+2,2)=-dMxdxi*(-1./sqrdz) 

end i f 
endi f
dMxdxi=(MxdxB(nseg+1)-MxdxA(nseg+1))/(2.*dkapx) 
dMxdyi=(MxdyB(nseg+1)-MxdyA(nseg+1))/(2.*dkapy) 
i f (bcxB.eq.1) then
dMdw(2*nseg+2,2*nseg+1)=-dMxdyi*(-1./sqrdz) 
dMdw(2*nseg+2,2*nseg+2)=-dMxdyi*(-1./sqrdz) 
if (bcyB.eq.1) then
dMdw(2*nseg+2,nseg)=-dMxdxi*(-1./sqrdz) 
dMdw(2*nseg+2,nseg+1)=-dMxdxi*(-1./sqrdz) 

elseif (bcyB.eq.2) then 
dMdw(2*nseg+2,nseg)=-dMxdxi*<-2./sqrdz) 

elseif (bcyB.eq.3) then 
dMdw(2*nseg+2,nseg)=-dMxdxi*(-1./sqrdz) 
dMdw(2*nseg+2,nseg+1)=-dMxdxi*(-1./sqrdz) 

endi f
elseif (bcxB.eq.2) then 
dMdw(2*nseg+2,2*nseg+2)=1.0 
do 420 i=2,nseg 
fract=real(i-1)/real(nseg)
dMdw(nseg+1+i,2*nseg+1)= dMdw(nseg+1+i,2*nseg+l)

+ +dMxdyi*(-2./sqrdz)*fract
conti nue
i f (bcyB.eq.1) then 
do 422 i=2,nseg 
fract=real(i-1)/real(nseg) 
dMdw(nseg+1+i,nseg)= dMdw(nseg+1+i,nseg)

+ +dMxdxi*(-1./sqrdz)*fract
dMdw(nseg+1+i,nseg+1)= dMdw(nseg+1+i,nseg+1)

+ + dMxdxi*(-1./sqrdz)*fract
cont i nue

elseif (bcyB.eq.2) then 
do 424 i=2,nseg 
fract=real(i-1)/real(nseg) 
dMdw(nseg+1+i,nseg)= dMdw(nseg+1+i,nseg)

+ +dMxdxi*(-2./sqrdz)*fract
conti nue

elseif (bcyB.eq.3) then 
do 426 i=2,nseg 
fract=real(i-1)/real(nseg) 
dMdw(nseg+1+i,nseg)= dMdw(nseg+1+i,nseg)

+ +dMxdxi*(-1./sqrdz)*fract
dMdw(nseg+1+i,nseg+1)= dMdw(nseg+1+i,nseg+1)

+ +dMxdxi*(-1./sqrdz)*fract
cont i nue 

endi f
elseif (bcxB.eq.3) then 
dMdw(2*nseg+2,2*nseg+1)=-dMxdyi*(-1./sqrdz) 
dMdw(2*nseg+2,2*nseg+2)=-dMxdyi*(-1./sqrdz) 
do 430 i=2,nseg+1 
fract = real(i-1)/real(nseg)
dMdw(nseg+1+i,2*nseg+1)= dMdw(nseg+1+i,2*nseg+1)

+ +kcxB*fract/(2*dz)
dMdw(nseg+1+i,2*nseg+2)= dMdw(nseg+1+i,2*nseg+2)

+ -kcxB*fract/(2*dz)
continue
if (bcyB.eq.1) then
dMdw(2*nseg+2,nseg)=-dMxdxi*(-l./sqrdz) 
dMdw(2*nseg + 2,nseg+1) = -dMxdxi *(-1./sqrdz) 

elseif (bcyB.eq.2) then 
dMdw(2*nseg+2,nseg)=-dMxdxi*(-2./sqrdz) 

elseif (bcyB.eq.3) then 
dMdw(2*nseg+2,nseg)=-dMxdxi*(-1./sqrdz)
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dMdw(2*nseg+2,nseg+1) = -dMxdxi*(-1,/sqrdz) 
end i f 

end i f 
end

c===================================================================
c Subroutine lusol( )
c Solves linear algebraic equations using Grout's algorithm,
c The matrix A (Adim,Adim) is overwritten by the results from the
c LU decomposition, and the vector b(Adim) is overwritten by the
c solution.
c 3A 3 fx> = !l i!U !(x> = Cb>
c 3A1 1 A12 A 1 3 3 3 U 1 1 U 1 2 U 1 3 3 3 b1 3 3x1 3
c a A 21 A22 A233 => 3 L21 U22 U33 3 ,, 3 b2 3

(\JXAII

c 3 A3 1 A32 A33 3 3 L3 1 L32 U33 3 3 b3 3 3 x3 3
c Diagonal elements of lower triangular matrix are all unity,
c hence implicit understood.
c================================================================

110

120

subroutine lusol(A,b,Adim,fsol) 
logical fsol 
integer Ad i m 
real b(Adim) 
real A(Adim,Adim) 
integer i,j, k 
real tiny,sum 
parameter (tiny=1.e-20) 
do 150 j = 1,Adim 
do 120 i = 1,j 
sum=0.0
do 110 k = 1,i -1 
sum = sum+A(i,k )*A (k ,j ) 

cont i nue
A (i,j ) = A (i,j)-sum 

conti nue
do 140 i = j +1,Adim 
sum=0.0
do 130 k = 1,j-1 
sum=sum+A(i,k)*A(k,j)

130 continue
if (abs(A(j,j)).It.tiny) then 
fso l = .false. 
return 

end i f
A (i,j) = (A (i,j)- sum)/A (j,j)

140 continue 
150 continue

do 170 i = 1,Ad i m 
sum=0.0
do 160 j = 1 , i -1 
sum=sum+A(i,j)*b(j) 

160 continue
b(i) = b(i)- sum 

170 conti nue
do 190 i =Adim,1 , -1 
sum=0.0
do 180 j = i +1,Ad i m 
sum=sum+A(i,j)*b(j)

180 continue
if (abs(A(i,i)).11.t i ny) then 
fsol=.false, 
return 

end i f
b(i) = (b(i)-sum)/A(i,i )

190 conti nue 
end

c =
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