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Abstract

Risk budgeting is an effective risk management that a decision-maker uses to create a risk

portfolio with a pre-determined risk profile. This paper provides a rich discussion about the

theory and practice on how to construct risk budgeting portfolios in variety of settings. We

revisit the usual portfolio selection setting with and without clustered risk budgeting targets,

and we then provide a novel approach on how to extend the usual setting to situations in which

a non-hedgeable risk is present or fixed sub-portfolios are aimed by the decision-maker. An-

other novel approach of this paper is how to include risk budgeting targets in the process of

risk sharing, which has not been discussed in the literature. Implementation issues are also

discussed, and some bespoke algorithms are provided to identify such risk budgeting portfolios.

Numerical experiments are performed for real-life financial and insurance data, and we explain

the risk mitigation effect of our proposed portfolio. Specifically, financial risk budgeting portfo-

lios with social responsibility targets are constructed, while insurance risk budgeting portfolios

are obtained in an intra-group risk sharing setting.
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1. Introduction

The idea of risk diversification can be traced back to the origins of probability theory,

mainly to Bernoulli’s 1954 paper (Bernoulli, 1954). In modern times, diversification has been

reconsidered in a portfolio selection set-up by Markowitz in 1952 and it has been ever since

the cornerstone of modern finance (Markowitz, 1999). Capital markets and insurance markets

originated and evolved somehow differently, but recently, there is an enhanced commonality

in the approaches taken to manage risk in two markets (Cummins and Weiss, 2016; Hainaut,

2017; Gatzert et al., 2017). The integration was motivated and facilitated by optimisation

techniques applied to the decision making on constructing and managing a portfolio of financial

assets or portfolio of insurance liabilities. The focus has shifted from risk optimisation to

risk budgeting/parity (Roncalli, 2013), since the latter aims to distribute the overall risk in
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pre-defined way across all risks. Risk parity (RP), also known as Equal Risk Contribution1,

is a special case of Risk budgeting (RB) where all risks have the same risk contribution, and

represents the most common RB strategy.

The existing RB literature discusses RB/RP portfolios as a valuable alternative to the well-

known portfolio selection methods that focuses on reducing the overall risk portfolio. Some

important contributions in this area include the seminal work by Maillard et al. (2010) and

some other papers that have provided practical solutions for building RB/RP portfolios when

the risk preferences are ordered by a specific risk measure; specifically, variance and stan-

dard deviation risk preferences are discussed in (Roncalli, 2013; Spinu, 2013; Bai et al., 2016),

Conditional-Value-at-Risk and expectiles risk preferences are investigated in Mausser and Ro-

manko (2018) and Bellini et al. (2021), respectively, while a larger class of risk preferences is

investigated in Asimit et al. (2023). Such papers provide bespoke numerical methods for real-life

implementations of RB/RP portfolios. Besides this strand of research, Roncalli and Weisang

(2016) shows the connection between RB portfolios and risk factors, while Kaucic (2019) and

Anis and Kwon (2022) consider portfolio construction under some cardinality constraints to

achieve lower corresponding portfolio overhead.

Portfolio selection is a risk management exercise that is more specific to financial assets,

and it does not take into account any risk transfer from the (portfolio) risk holder to third

parties; such risk shifting is known as Risk sharing (RS). Conceptually, the RS theory equally

apply to financial and insurance liabilities, though the RS literature tends to focus more on

portfolios of insurance liabilities, since RS is an effective risk management exercise for insurance

carriers to meet the regulatory requirements and shareholders financial expectations. Moreover,

RS can not only improve capital allocation, but also stimulate further financial development

(Pagano, 1993; Barattieri et al., 2020). RS problems have been widely studied in the literature

(Ludkovski and Young, 2009; Asimit and Boonen, 2018; Asimit et al., 2020, 2021), and this

strand of research is much related to intra-group risk transfers, in which an insurance group

instructs its separate legal entities, i.e. risk holders, on sharing their liabilities (Asimit et al.,

2013, 2016; Weber, 2018; Hamm et al., 2020).

Our contributions to the literature can be described as follows. First, we investigate RB

strategies for one risk holder across many assets i) with or without risk contribution constraints

on clusters of risks, and ii) with background (or non-hedgeable) risk. Then, we consider the RS

problem between two risk holders with risk contribution constraints. We provide theoretical

results demonstrating that solutions for such problems exists for a large class of risk preferences,

and we provide bespoke algorithms to identify these RB/RS strategies in a practical context.

The paper is organised as follows. Section 2 provides the necessary background, while

Section 3 contains the main theoretical RB/RS results. Further, Section 4 provides extensive

numerical exemplifications of our new theoretical results, including a data analysis based on a

unique database that helps us construct RB portfolios with Social responsible investment (SRI)

constraints, but also a data analysis that illustrates how to construct RS strategies with RB

targets for a real-life insurance portfolio. Section 5 summarises our main conclusions. All proofs

1This should not be mistaken for Equal Weighted (EW) portfolio that is not a risk-based asset allocation
strategy since each risk has the same weight in the portfolio selection process, irrespective of the historical data.
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are relegated in Appendix A, while more details about the algorithm and data used in Section 4

are provided in Appendix B and Appendix C, respectively.

2. Problem formulation

In this paper, we study two main RB formulations: i) for one risk holder in Section 2.1, and

ii) for two risk holders in Section 2.2. Before providing the mathematical formulation of these

two RB strategies, we give a brief introduction on the risk measures that is a key concept to

our theoretical results.

Throughout this paper, the economy field is represented by (Ω,F ,P), an atomless probability

space, endowed with L0 := L0(Ω,F ,P), the set of all real-valued random variables on this

probability space. Let Lq, q ∈ [0,∞), be the set of random variables with finite qth moment,

and L∞ be the set of bounded random variables. A risk measure ϕ is a function that maps an

element of L0 to a (extended) real number, i.e. ϕ : L0 → <. We recall below some properties

for a generic risk measure and generic random variable Y that represents the future loss of a

financial asset or insurance liability. These properties are well-known in the literature and an

extensive introduction on risk measures could be found in Föllmer and Schied (2011).

Convexity: ϕ(aY1 + (1− a)Y2) ≤ aϕ(Y1) + (1− a)ϕ(Y2) for any Y1, Y2 ∈ L0 and a ∈ [0, 1];

Homogeneous of order τ > 0: ϕ (cY ) = cτϕ(Y ) for any Y ∈ L0 and c ≥ 0;

Shift invariance: ϕ(Y + c) = ϕ(Y ) for any Y ∈ L0 and c ∈ <;

Translation invariance: ϕ (Y + c) = ϕ(Y ) + c for any Y ∈ L0 and c ∈ <.

Four risk measures are often recalled in this paper: standard deviation, variance, Value-at-

Risk (VaR) and Conditional-Value-at-Risk (CVaR). The last two are now formally defined. For

any p ∈ (0, 1), VaR at probability level p is VaRp(Y ) := infx
{
P(Y ≤ x) ≥ p

}
, while CVaR at

probability level p is CVaRp(Y ) := mint
{
t+ 1

1−pE(Y − t)+

}
with (·)+ := max(·, 0) on <.

2.1. RB for one risk holder

We first define the RB problem of one risk holder (investor) that holds a portfolio of d ≥ 2

risks, i.e. X := (X1, X2, . . . , Xd)
T where Xk represents the future loss of the kth risk. The

portfolio allocation vector is α := (α1, α2, . . . , αd)
T , where αk represents of proportion of kth

risk into the entire portfolio with k ∈ {1, 2, . . . , d}. Therefore, the aggregate position of the risk

holder is given as αTX. Let ϕ be the risk measure that orders risk holder’s risk preferences, and

thus, the overall portfolio risk is R (α) := ϕ
(
αTX

)
. We assume that α > 0, i.e. short sellings

are not possible. Further, it is assumed throughout that α ∈ ∆d := {α ∈ <d++ : 1Tα = 1},
where <d++ is the standard polyhedral cone of the positive quadrant of <d.

Consider a risk measure ϕ that is homogeneous of order τ > 0. Then, by Euler’s Homoge-

neous Function Theorem, for any α ∈ ∆d,

R (α) =
d∑

k=1

RCk(α) with RCk(α) :=
1

τ
αk
∂R (α)

∂αk
=

1

τ
αk
∂ϕ
(
αTX

)
∂αk

, (2.1)
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where RCk(α) is the risk contribution of the kth individual risk. For each k ∈ {1, 2, . . . , d},
bk := RCk(α)/ϕ

(
αTX

)
is the proportion of the kth individual risk to the overall portfolio risk,

which depends on a pre-specified portfolio allocation α ∈ ∆d. The RB problem is essentially

an inverse problem of the above, and is formalised as Definition 1.

Definition 1. Let b := (b1, b2, . . . , bd)
T be a given constant vector, such that b ∈ ∆d. An

allocation strategy α ∈ ∆d is said to be RB, if

RCk(α) = bkϕ
(
αTX

)
for all k ∈ {1, 2, . . . , d} , where RCk(α) is given in (2.1). (2.2)

For any b ∈ ∆d, define RB(b) := {α ∈ ∆d : α is RB} as the set of RB portfolios for a given

budgeting allocation vector b and a general risk measure ϕ. The constant bk in (2.2) represents

the pre-specified risk contribution proportion of the kth risk to the overall portfolio risk. In

particular, if bk = 1
d , for all k ∈ {1, 2, . . . , d}, the allocation strategy is called Risk Parity (RP).

Table 1 summarises the closed-form risk contributions for the four previously-mentioned

risk measures. Note that the RB strategies based on risk preferences order via the standard

deviation and variance risk measures are equivalent.

ϕ RCk

Standard deviation
Cov(αkXk,αTX)√

Var(αTX)

Variance Cov
(
αkXk,α

TX
)

Value-at-Risk at level p ∈ (0, 1) E
[
αkXk|αT

j X = VaRp

(
αTX

) ]
Conditional Value-at-Risk at level p ∈ (0, 1) E

[
αkXk|αTX ≥ VaRp

(
αTX

) ]
Table 1: Individual risk contributions for some well-known risk measures.

Various numerical solutions have been found for computing RB portfolios. Spinu (2013)

showed that the RB portfolios could be written as an efficient convex optimisation problem,

which is a much simpler numerical problem than solving the system of non-linear equations in

(2.2), whenever the aggregate risk is measured by the variance (and standard deviance). The

CVaR risk measure setting is discussed in Mausser and Romanko (2018), while Bellini et al.

(2021) illustrates the expectile risk measure case; both papers provide excellent computationally

efficient algorithms that make the RB strategies to be implementable in practice, even for a

relatively large number of assets.

2.2. RB for two risk holders

We now define a RS problem between two risk holders with RB constraints. Without

loss of generality, it is assumed that each of risk holder has a portfolio of m ≥ 1 lines of

business (LoB), which means that there are in total d = 2m risks in this setting. Let Xik ∈ L0

be the pre-transfer random loss for the ith risk holder on its kth LoB, with i ∈ {1, 2} and

k ∈ {1, 2, . . . ,m}. The risk holders aim to share their risks for all LoBs. Let αijk be the

proportion of the loss Xik held by the ith risk holder for its kth LoB transferred to the jth risk

holder; αiik represents the proportion of the risk retained by the ith risk holder from its kth risk.

Therefore, the post-transfer random loss held by the jth risk holder and kth LoB is given by
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α1jkX1k + α2jkX2k. A pictorial representation of the risk sharing for each LoB is illustrated in

Figure 1. If αj := (α1j1, . . . , α1jm, α2j1, . . . , α2jm)T for each j ∈ {1, 2}, then α1 + α2 = 1 and

α1,α2 ∈ [0,1] .

Before Sharing

X1k

After Sharing

α11kX1k

α12kX1k

RH1

RH2

Before Sharing

X2k

After Sharing

α21kX2k

α22kX2k

RH1

RH2

Figure 1: Risk sharing flowchart for the kth LoB, where X1k and X2k are the risk (initially) held by the first
(RH1, see left) and the second (RH2, see right) risk holder.

This RB exercise consists in achieving a balance of the risk between the risk holders. Thus,

the premium could be decided after the RS is agreed, which is then proportionally allocated

amongst the LoBs. Therefore, the aggregate post-transfer risk for the first and the second risk

holder is αT
1 X and αT

2 X, respectively, where X := (X11, . . . , X1m, X21, . . . , X2m)T .

Let ϕj be the risk measure that orders the risk preferences of the jth risk holder, where

j ∈ {1, 2}. Therefore, the post-transfer overall risk position for the first and second risk holder

is R1 (α1) := ϕ1

(
αT

1 X
)

and R2 (α2) := ϕ2

(
αT

2 X
)
, respectively. Assuming further that both

risk measures are homogeneous of order τ > 0, the Euler’s Homogeneous Function Theorem

implies for each j ∈ {1, 2} that

Rj (αj) =
2∑
i=1

m∑
k=1

RCijk(αj) with RCijk (αj) :=
αijk
τ

∂Rj (αj)

∂αijk
=
αijk
τ

∂ϕj

(
αT
j X
)

∂αijk
, (2.3)

where RCijk is the risk contribution of the kth LoB initially held by the ith risk holder corre-

sponding to the jth risk holder. We are providing the equivalent of Definition 1 for two risk

holder setting, which is given as Definition 2.

Definition 2. Let bj := (b1j1, . . . , b1jm, b2j1, . . . , b2jm)T , j ∈ {1, 2}, be a given constant vector

such that b1, b2 ∈ ∆2m. A proportional risk sharing (α1,α2) is said to be RB, if

RCi1k (α1) = bi1kϕ1

(
αT

1 X
)

and RCi2k (α2) = bi2kϕ2

(
αT

2 X
)

(2.4)

for all i ∈ {1, 2} and k ∈ {1, 2, . . . ,m}, where RCijk (αj) is given in (2.3).
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3. Main theoretical results in risk budgeting

This section provides the main results of this paper. The case of one risk holder formulated

in Section 2.1 is studied in Section 3.1, and is extended to a clustered formulation in Section 3.2.

Further, the RB portfolio allocations with background risk or fixed sub-portfolios for one risk

holder are investigated in Section 3.3. Finally, we extend the standard RB with one risk holder

developed in Section 3.1 for the case of two risk holders, in Section 3.4. All proofs of our main

results from this section are included in Appendix A.

3.1. Standard RB for one risk holder

The main result of this section is Theorem 3, which explains how to identify RB portfolios,

i.e. elements of RB(b), for a given budgeting allocation vector b and a general risk measure

ϕ. Our Theorem 3 has a different proof than Theorem 1 of Asimit et al. (2023), and ex-

tends Theorem 4 of Bellini et al. (2021) that is focused on a specific risk measure, namely the

expectiles.

Theorem 3. Let b ∈ ∆d, and ϕ be a risk measure which is convex, homogeneous of order τ ≥ 1,

and

inf
x∈∆d

R(x) > 0. (3.1)

For any given λ > 0, the following instance

min
x∈<d++

1

τ
R(x)− λ

d∑
k=1

bk log xk, (3.2)

admits a unique solution, x∗(λ, b), that is an interior point of <d++. If R(x) is differentiable at

x∗(1, b), then α∗(b) := x∗(λ∗, b) = x∗(1, b)/1Tx∗(1, b) ∈ RB(b), where λ∗ =
(
1Tx∗(1, b)

)−τ
.

While Theorem 3 solves the RB allocation strategy, an approximation of a RB allocation

strategy could be achieved by the Least Squares Estimation (LSE) formulation, which has been

defined in Roncalli (2013) as follows:

min
α∈∆′d

d∑
k=1

(
RCk(α)− bkR(α)

)2
, (3.3)

where ∆′d := {α ∈ <d+ : 1Tα = 1} is the standard unit d-simplex, where <d+ is the standard

polyhedral cone of the non-negative quadrant of <d. Note that, if there exists k0 ∈ {1, 2, . . . . , d}
such that αk0 = 0, RCk0(α) = 0, and in turn bk0 = 0, which contradicts the fact that b ∈ ∆d.

Therefore, (3.3) has the same solutions irrespective of the feasibility set choice, i.e. ∆d or ∆′d,

but ∆′d is preferred in numerical optimisation. Bai et al. (2016) has shown that, when ϕ is taken

as the variance, the problem (3.3) could be efficiently solved for approximating RB allocation

strategies. We show that the same methodology works for Clustered Risk Budgeting, which is

defined in the next section.
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3.2. Clustered RB for one risk holder

The standard RB allocation assumes a pre-specified risk contribution for each individual

risk as explained earlier. A more general formulation is the so-called Clustered Risk Budgeting

(CRB) allocations that require the pre-specified risk contribution proportions to be applied for

clusters of risks, instead of each individual risk. The clustered version of (2.2) requires finding

α ∈ ∆′d such that∑
i∈I(k)

RCi(α) = bkR(α), for all k ∈ {1, 2, . . . , l}, with 2 ≤ l ≤ d and b ∈ ∆l, (3.4)

and
{
I(1), I(2), . . . , I(l)

}
is an l-dimensional partition of Id := {1, 2, . . . , d}, i.e.

l⋃
k=1

I(k) = Id, and I(k1)
⋂
I(k2) = ∅ for all 1 ≤ k1 6= k2 ≤ l.

Clearly, the standard (non-clustered) RB allocation from Section 3.1 is achieved when l = d.

The allocation strategy satisfying (3.4) with bk = 1/l for all k ∈ {1, 2, . . . , l} is known as

Clustered Risk Parity (CRP) allocation strategy. By definition, the set of all CRB strategies

for a given b ∈ ∆l is denoted by CRB(b) := {α ∈ ∆′d : α is CRB}; further, CRB
(

1
l 1
)

is the set

of all CRP strategies for a given l. Note that both sets of all CRB and CRP strategies depend

on the choice for the number of clusters of risks l.

It is expected that CRB(b) has infinitely many portfolios for any given b ∈ ∆l, and each

allocation strategy induces a different aggregate risk position. Denote α∗∗(b) as the CRB

allocation strategy that minimises the portfolio risk, i.e. α∗∗(b) = arg minα∈CRB(b)R(α). We

next provide a simple example to finding α∗∗(b), which is given as Example 4.

Example 4. Assume that X1, X2, X3 are three independent risks (d = 3), each with a unit

variance, and the risk measure ϕ is given by the variance. The risk holder aims to find CRP

strategies with two clusters, namely (X1, X2) and X3; that is, l = 2, I(1) = {1, 2}, I(2) = {3},
b1 = b2 = 1/2. Therefore, by (3.4), a CRP allocation strategy α ∈ ∆′3 satisfies α2

1 + α2
2 = α2

3,

and in turn, the CRP set has a closed-form as follows:

CRB(1/2, 1/2) =

{
α(ξ) : α(ξ) =

(
ξ,

1
2 − ξ
1− ξ

, 1− ξ −
1
2 − ξ
1− ξ

)
, ξ ∈ [0, 1/2]

}
. (3.5)

The minimal portfolio variance within the CRB (1/2, 1/2) set is obtained when ξ∗ = 1−
√

2
2 , i.e.

arg min
ξ∈[0,1/2]

ξ2 +

(
1
2 − ξ
1− ξ

)2

+

(
1− ξ −

1
2 − ξ
1− ξ

)2

= 1−
√

2

2
.

Hence, α∗∗(1/2, 1/2) = α(ξ∗), where the latter is an element of CRB(1/2, 1/2) in (3.5).

Another way of characterising the set of clustered RB strategies is to identify a parametric
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set of RB strategies, namely CRB(b) =
{
α(a) ∈ RB(a) : a ∈ B(b)

}
, where

B(b) :=

{
a ∈ ∆′d :

∑
i∈I(k)

ai = bk for all k = 1, 2, . . . , l

}
.

RB strategies with a ∈ ∆′d\∆d should be understood as standard RB strategies (see Section 3.1)

with a number of individual risks of d′ = d−d0, where the d0 is number of zero-valued elements

of a, i.e. the risk set does not include the individual risks with zero budgeting targets.

As mentioned before, CRB(b) is likely to have infinitely many portfolios for any given b, and

a solution of (3.4) may encounter a large aggregate risk position, which is not desirable. Due

to the Weierstrass’ Theorem, there exists an a∗(b) = arg mina∈B(b)R(α(a)), since B(b) is a

compact set and R is a continuous mapping (as ϕ is homogeneous). Thus, α∗∗(b) = α
(
a∗(b)

)
.

Similar to (3.3), CRB allocations could be approximated by an LSE formulation:

min
α∈∆′d

l∑
k=1

( ∑
i∈I(k)

RCi(α)− bkR(α)

)2

. (3.6)

Appendix B provides a numerical solution to solve (3.6) if the risk preferences are ordered by

the variance or standard deviation risk measure, which is a slight extension of Algorithm 3 in Bai

et al. (2016) that focuses only on CRP allocations. Unfortunately, solving (3.6) for other risk

measures would require general optimisation algorithms, since so far, we do not have bespoke

efficient algorithms for other (than variance or standard deviation) risk measures.

Essentially, finding a CRB portfolio based on (3.6), by either using a bespoke efficient

algorithm such as the one detailed in (B.5) (when ϕ is variance or standard deviation) or global

optimisation algorithm (when ϕ is not variance and standard deviation), consists in finding one

element of CRB(b), i.e. a portfolio α(a0) with a0 ∈ B(b) that is likely to differ from α∗∗(b).

A practical remedy for this issue is further explained and described in Algorithm 1. Before

providing this algorithm, note that Theorem 1 c) of Asimit et al. (2023), shows that

min
x∈∆d

R(x)≤R
(
α∗(b)

)
≤R(b) and R

(
α∗(b)

)
≤R

(
1

d
1

)
for any b ∈ ∆d,

where α∗(b) ∈ RB(b) is found as in Theorem 3. This suggests that one way to find a CRB

portfolio with a low aggregate risk position (instead of directly solving (3.6)) would be to

1) find the budgeting target vector b that minimises R(b) by considering the clustering

constraints, and then

2) find the RB portfolio based on the budgeting targets found in 1).

In Example 4, Step 1) implies solving mina∈B(1/2,1/2) R(a1, a2, 1/2) = a2
1 + a2

2 + (1/2)2, which

is solved by a∗1 = a∗2 = 1/4. Step 2) requires finding the RB with b0 = (1/4, 1/4, 1/2), i.e.

α∗
(
b0

)
; it is not difficult to show that α∗

(
b0

)
= α(ξ∗), and thus, α∗∗(1/2, 1/2) = α∗

(
b0

)
. In a

nutshell, the CRB solution with the lowest aggregate risk portfolio is identified by Algorithm 1

in the setting described in Example 4. This simple illustration – though further examples are in

Section 4.1 – shows that the two-step procedure is a good choice for finding CRB portfolios with
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a low aggregate risk portfolio. For this reason, we propose a worst-case-scenario-like strategy

and we call this risk portfolio as WC-CRB, and its procedure is given as Algorithm 1.

Algorithm 1: CRB algorithm for solving (3.4) with a low aggregate risk portfolio.

Result: Finding the WC-CRB portfolio to approximate α∗∗(b).
Step 1): Find the budgeting target vector, a∗(b), that minimises the risk portfolio
under the worst-case scenario, i.e.

a∗(b) = arg min
a∈B(b)

R(a).

Step 2): Find α∗
(
a∗(b)

)
, i.e. the RB portfolio based on budgeting targets a∗(b) via

(3.2), (3.3) or any other RB computational procedure.

Note that WC-CRB is denoted as WC-CRP whenever b = 1
l 1. One big advantage of

Algorithm 1 is that α∗∗(b) is approximated by a more computationally efficient procedure;

that is, one only needs to solve convex instances as in (3.2) instead of solving non-convex

LSE formulations as in (3.3). Another advantage is that Algorithm 1 does not require solving

clustered variants as in (3.6), which often relies on general optimisation algorithms.

3.3. RB portfolios with background risk or fixed sub-portfolios for one risk holder

This section extends the main result in Section 3.1 in the presence of background risk or

fixed sub-portfolios. We first show that the two settings are mathematically equivalent and

provide the necessary background.

The background risk setting requires allocating the risk portfolio X = (X1, . . . , Xd) for

which a non-hedgeable risk (for a financial risk portfolio) or non-insurable risk (for a insurance

risk portfolio) Z is present. For example, an investment house focuses on structured finance

products covering credit cards, student loans, Small and Medium Enterprise (SME) loans and

so on. Each LoB has specific risk that is internally measured, and the investment house funds

the purchase of these asset loans by borrowing funds from the market. The market funding

risk affects all LoBs and the investment house cannot hedge this risk. Likewise, a maritime

insurance portfolio – e.g. a corporate account that includes a variety of insurance sub-portfolios

such as hull, cargo and protection & indemnity insurance, breakdown risk, business interruption

risk, personal accidents, etc. – such that reputational perils of any kind are not included in

the individual coverages. The losses due to such reputational perils are significantly associated

with individual losses covered by this maritime insurance portfolio, and the reputational peril

represents the (non-insurable) background risk for this bespoke portfolio. The aggregate risk,

R(α) = ϕ
(
Z + αTX

)
, is spread across all LoBs so that α ∈ ∆d satisfies

RCk(α) = bkR(α) for all k ∈ {1, . . . , d}, where RCk(α) :=
αk
τ

∂ϕ
(
Z + αTX

)
∂αk

(3.7)

and budgeting targets b = (b1, . . . , bd) with b > 0 and 1Tb < 1. Note that (3.7) tacitly assumes

ϕ is a homogeneous risk measure of order τ ≥ 1.

Now, the fixed sub-portfolio setting assumes a risk portfolio, (X1, . . . , Xd, Xd+1, . . . , Xd+d1)

with d1 ≥ 1, for which the risk holder has a strategy for which the proportions α̃k are fixed for all

9



d+ 1 ≤ k ≤ d+d1. The RB strategy is to allocate the aggregate risk, R(α) = ϕ
(
α̃T X̃+αTX

)
,

where X = (X1, . . . , Xd) and X̃ = (Xd+1, . . . , Xd+d1). Thus, the aggregate risk is spread across

all LoBs so that (α, α̃) ∈ ∆d+d1 satisfies

RCk(α) = bkR(α) for all k ∈ {1, . . . , d}, where RCk(α) :=
αk
τ

∂ϕ
(
α̃T X̃ + αTX

)
∂αk

(3.8)

and budgeting targets b = (b1, . . . , bd) with b > 0 and 1Tb < 1. Note that α̃ is the fixed

allocation vector for the sub-portfolio X̃, which means that we only need to solve (3.8) in α,

since α̃ is set a priori by the risk holder.

Clearly, solving (3.8) is equivalent to solving (3.7) with background risk Z = α̃T X̃
1−1T α̃ and

standardised weights α
1−1T α̃ . This clarifies why the two settings are mathematically equivalent,

and from now on, we only focus on the RB portfolios with background risk. The main result of

this section explains how to find RB portfolios in the presence of background risk, and is given

as Theorem 5.

Theorem 5. Assume the risk portfolio with background risk defined in (3.7). Further, the

aggregate portfolio risk position is given by R(α) = ϕ
(
Z + αTX

)
, where ϕ is a convex and

homogeneous risk measure of order τ ≥ 1. Let b ∈ <d++ with 1Tb < 1. If infx∈∆d
R(x) > 0,

then for any given λ > 0, the following instance

min
x∈<d++

1

τ
R(x)− λ

d∑
k=1

bk log xk. (3.9)

admits a unique solution, x∗(λ, b), that is an interior point of <d++. If R(α) is differentiable

at x∗(λ, b) for some λ > 0, then x∗(λ, b) solves (3.7), where the constraint 1Tx∗(λ, b) = 1 is

removed.

The main (technical) difference between Theorem 3 and Theorem 5 is the lack of homogeneity

of the aggregate risk R in (3.9), and therefore, λ acts as a tuning parameter in Theorem 5. That

is, we need to find λ > 0 such that 1Tx∗(λ,b) = 1, and this solution is denoted as λ∗(b) if this

solution exists as its existence can not be guaranteed. Now, if λ∗(b) exists, then x∗(λ∗(b),b)

solves (3.7). In a nutshell, RB portfolios satisfying either (3.7) or (3.8) could be found by

iteratively solving (3.9) through the tuning parameter λ.

3.4. RB portfolios for two risk holders

Consider now the setting in Definition 2, where RB portfolios for two risk holders are sought.

Recall that m LoBs are in place with m ≥ 1 where d = 2m such that α1 + α2 = 1 and the

constraints in (2.4) must hold, i.e. 2m and 2(2m−1) identity constraints, respectively. That is,

the RB portfolios in Definition 2 require 2m+ 2(2m− 1) = 3d− 2 identity constraints, though

we have 2d variables since α1,α2 ∈ <d++, which means that the balance condition 3d− 2 ≤ 2d

is achieved if and only if the two risk holders share one LoB, i.e. m = 1. We only consider

the case in which m = 1 in this paper, since the m > 1 case would require changing (2.4) into

cluster-like constraints, which would involve an extensive analysis that is beyond the reach of

this paper. Theorem 6 tells us how to find RB portfolios for two risk holders and general risk

preferences ordered by some general risk measures ϕ1 and ϕ2.
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Theorem 6. Assume that m = 1, and let b1, b2 ∈ ∆2. Further, assume that ϕ1 and ϕ2

be two convex, and homogeneous risk measures of order τ1 and τ2 with τ1, τ2 ≥ 1, such that

infx∈∆2 R1(x) > 0 and infx∈∆2 R2(x) > 0, where

R1(x111, x211) = ϕ1(x111X11 + x211X21) and R2(x121, x221) = ϕ2(x121X11 + x221X21).

Then, for any λ1, λ2 > 0,

min
(x111,x211)∈<2

++

1

τ1
R1(x111, x211)− λ1(b111 log x111 + b211 log x211) (3.10)

and

min
(x121,x221)∈<2

++

1

τ2
R2(x121, x221)− λ2(b121 log x121 + b221 log x221) (3.11)

admit a unique solution, x∗(λ1, b1;ϕ1) and x∗(λ2, b2;ϕ2), respectively, that are interior points

of the feasibility set.

i) If R1 and R2 are differentiable at x∗(1, b1;ϕ1) and x∗(1, b2;ϕ2), respectively, then

(α∗111, α
∗
211) and (α∗121, α

∗
221) solve (2.4), respectively, where α∗ij1 = t∗jx

∗
i (1, bj ;ϕj) for all

i, j ∈ {1, 2} and  t∗1 =
x∗2(1,b2;ϕ2)−x∗1(1,b2;ϕ2)

x∗1(1,b1;ϕ1)x∗2(1,b2;ϕ2)−x∗2(1,b1;ϕ1)x∗1(1,b2;ϕ2)

t∗2 =
x∗1(1,b1;ϕ1)−x∗2(1,b1;ϕ1)

x∗1(1,b1;ϕ1)x∗2(1,b2;ϕ2)−x∗2(1,b1;ϕ1)x∗1(1,b2;ϕ2)

(3.12)

whenever

(
x∗1(1, b1;ϕ1)− x∗2(1, b1;ϕ1)

)(
x∗1(1, b2;ϕ2)− x∗2(1, b2;ϕ2)

)
< 0. (3.13)

ii) Assume that b1 = b2, ϕ1 = ϕ2, and the fact that R1 is differentiable at x∗(1, b1;ϕ1). If

x∗1(1, b1;ϕ1) = x∗2(1, b1;ϕ1), then (α∗111, α
∗
211) = (ξ, ξ) and (α∗121, α

∗
221) = (1− ξ, 1− ξ) are

also solutions of (2.4), respectively, for any ξ ∈ (0, 1).

iii) Let λ∗1, λ
∗
2 > 0 such that (α∗111, α

∗
211) = x∗(λ∗1, b1;ϕ1), (α∗121, α

∗
221) = x∗(λ∗2, b2;ϕ2) and

α∗111 + α∗121 = α∗211 + α∗221 = 1, then

1

τ1λ∗1

(
R1(α∗111, α

∗
211)−R1(x111, x211)

)
+

1

τ2λ∗2

(
R2(α∗121, α

∗
221)−R2(x121, x221)

)
≤0

for any (x111, x121, x211, x221) ∈ <4
++ with x111 + x121 = x211 + x221 = 1.

Theorem 6 i) shows that the risks are fully allocated, i.e. α∗111 +α∗121 = α∗211 +α∗221 = 1, for

any given risk measures and RB under a mild condition stated in (3.13), if the risk profile and

risk targets for the two risk holders are quite different. Condition (3.13) requires that the risk

appetite for the two risks, (X11, X21), are not the same for the two risk holders; in other words,

if α∗111 < α∗211 then α∗121 > α∗221, which means that there are incentives for both risk holders to

initiate the risk sharing.

Contrary to Theorem 6 i) where there is at most one RB allocation, Theorem 6 ii) suggests

that there are infinitely many RB allocation if the risk profile and risk targets for the two risk
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holders are identical, though a technical condition is required, i.e. x∗1(1,b1;ϕ1) = x∗2(1,b1;ϕ1).

This setting implies that risk holder 1 retains the same risk proportion in (X11, X21), and the

second risk holders has the same strategy. Now, x∗1(1,b1;ϕ1) = x∗2(1,b1;ϕ1) implies that the

RB, i.e. b1 = b2, should be chosen such that x∗1(1,b1;ϕ1) = x∗2(1,b1;ϕ1); in other words, one

should numerically find c ∈ ∆2 such that y∗1(c) ≈ y∗2(c), where

(y∗1(c), y∗2(c)) := arg min
(y1,y2)<2

++

1

τ1
R1(y1, y2)− λ1(c1 log y1 + c2 log y2).

Clearly, we can not guarantee that there exists c∗ ∈ ∆2 such that |y∗1(c∗) − y∗2(c∗)| ≤ ε for a

sufficiently small ε > 0, but numerical explorations could answer to this question.

4. Numerical illustrations

This section provides numerical illustrations of how to construct portfolios based on the RB

principle. Our numerical implementations disseminate practical implementations on financial

and insurance risks for two methods, risk diversification (for one risk holder by applying the RB

principle) and RS (for two risk holders by applying the RB principle). Specifically, Section 4.2

focuses on RB portfolios for one risk holder with multiple financial risks where the risk pref-

erences are ordered by the Variance (or Standard Deviation) and CVaR risk measures. Then,

Section 4.3 illustrates how RB portfolios for two risk holders that share one LoB could be build

whenever the risk preferences are ordered by either Variance (or Standard Deviation) and CVaR

risk measures. Before providing these numerical experiments, we provide in Section 4.1 a slight

extension of Example 4.

4.1. CRB vs. WC-CRB

As anticipated, we extend Example 4 in Section 3.2 and assume a CRP setting based on

variance risk preferences for three independent risks with two clusters such that Σ11 = Σ33, i.e.

assets 1 and 3 have the same variance. The CRB portfolio is constructed from the solution

α∗CRB, obtained with the Algorithm 2 in Appendix B. As explained in Section 3.2, the CRB

solution is an element of a parametric set of RB solutions, which is obtained by searching for

α ∈ ∆3 such that Σ11α
2
1 + Σ22α

2
2 = Σ11α

2
3. Denoting σ12 = 1− Σ2

22

Σ2
11

, the solution is described by

α(ξ) :=

(
σ12ξ

2 − 2ξ + 1

2(1− ξ)
, ξ, 1− ξ − σ12ξ

2 − 2ξ + 1

2(1− ξ)

)
,

for all 0 ≤ ξ ≤ 1−
√

1−σ12
σ12

if σ12 ∈ (−∞, 1) \ {0}, and 0 ≤ ξ ≤ 1
2 if σ12 = 0, since σ12 < 1. One

may show that minimal variance amongst the α(ξ) portfolios is achieved when ξ∗ = 1−
√

1−σ12
2−σ12 .

The WC-CRP portfolio (defined in Section 3.2) is an element of α(ξ), and it can be found

via Algorithm 1 in Section 3.2. For Step 1) we need to solve

arg min
a∈B(1/2,1/2)

Σ11a
2
1 + Σ22a

2
2 + Σ33(1/2)2 := (a∗1, a

∗
2) =

(
Σ22

2
(
Σ11 + Σ22

) , Σ11

2
(
Σ11 + Σ22

)) .
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Step 2) requires finding the RB with the budgeting targets α∗(a∗1, a
∗
2, 1/2), which could be

identified via a non-clustered version of Algorithm 2 in Appendix B, though a closed-form

solution is possible since we only need solving in α ∈ ∆′3 the following system of equations

α2
1 = 2a∗1α

2
3, Σ22α

2
2 = 2a∗2Σ11α

2
3 and α1 + α2 + α3 = 1.

The latter is solved by α∗WC−CRB = (c1, c2, c3)/1T c, where

c1 :=

√
Σ22

2Σ11(Σ11 + Σ22)
, c2 :=

√
Σ11

2Σ22(Σ11 + Σ22)
and c3 :=

√
1

2Σ11
.

The following three variance choices are further considered:

a) Σ11 = Σ33 = 1,Σ22 =
√

0.5, i.e. σ12 = 0.5;

b) Σ1 = Σ2 = Σ3 = 1, i.e. σ12 = 0;

c) Σ1 = Σ3 = 1,Σ2 =
√

1.5, i.e. σ12 = −0.5.
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Figure 2: Portfolio variance for the parametric, CRP and WC-CRP portfolios for Case a) (top left), Case b) (top

right) and Case c) (bottom).

Figure 2 compares the risk position of the CRP portfolio (computed via Algorithm 2 in

Appendix B) and WC-CRP portfolio (computed via Algorithm 1 in Section 3.2) with the risk

position of the parametric portfolio with risk allocation α(ξ). The results clearly show the

advantage of using the WC-CRP portfolio, besides its obvious computational advantage that

was explained in Section 3.2, which reiterates the practical use of Algorithm 1.
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4.2. RP for one risk holder

This section provides a data analysis based on our main results in Sections 3.1 and 3.2.

That is, we reconsider the investment portfolio in Hallerbach et al. (2004) that was related to

portfolio allocation satisfying certain socially responsible investing (SRI) characteristics2.

A global survey of institutional investors on their beliefs about climate risk shows that

climate risk is categorised as important, but not as high as financial, legal, and operational

risk (Krueger et al., 2020). There are theoretical models constructed on the idea that investors

may expect a lower expected return on investments SRI companies (Heinkel et al., 2001). From

a theoretical perspective, there are two competing theories trying to explain SRI investment

behaviour, the stakeholder value maximisation and the shareholder expense view. There is

mixed evidence in general supporting both theories. Walley and Whitehead (1994) show that

when firms use their financial resources to improve environmental performance then there is a

fall in shareholder value because of higher product prices that translates into a lower profitability.

At the same time, investors expect significantly higher returns on stocks that are not passing

environmental criteria compared to the stocks of firms not affected by these environmental

concerns and furthermore, lenders may also require higher interest rates on the loans issued

to stocks of firms in the former category (Chava, 2014). There is evidence from mutual funds

industry that socially responsible investors expect to earn lower returns on SRI funds than

on standard funds, so investors may be willing to sacrifice financial performance to achieve

their social preferences (Riedl and Smeets, 2017). Analyzing the U.S. mutual fund market,

Hartzmark and Sussman (2019) discuss evidence that being categorised as low sustainable led

to net outflows of more than $12 billion while being considered high sustainable resulted in net

inflows of more than $24 billion. In addition, SRI investment may be associated with better

financial instruments in the market and may provide insurance against event risk (Lins et al.,

2017).

Hallerbach et al. (2004) develops a framework for constructing an investment portfolio with

the investment opportunities states spanned by a set of attributes that characterises the effects

on society, which is known as SRI portfolio. The SRI scores determine the degree of social

responsibility embedded in a firm and it helps the investor or portfolio manager to construct the

opportunity portfolio (i.e., decide which assets to invest in) by including only those companies

that satisfy certain SRI targets before deciding upon the asset allocation (i.e., decide how much

to invest in each asset). This two-stage approach provides a 360 degrees approach to construct

a SRI portfolio. Our data analysis focuses on the second stage that supports the decision-

making process on portfolio composition that is based on RB and CRB allocations. Given the

new socio-economic environment that investors and fund managers ought to operate in, there

is a growing emphasis on controlling the degree of risk absorbed from different asset classes,

from different geographical economic regions or satisfying different ESG, SDG or SRI features.

Traditional portfolio management techniques were not designed with these social preferences

in mind. In this paper we highlight a new set of techniques that combine risk budgeting with

SRI constraints and we show that the portfolio constructed based on these new ideas are not

2We would like to thank Aloy Soppe for making the original raw dataset available to us. The original dataset
was put together by the Triodos bank, the first European green bank.
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underperforming standard benchmarks.

We work with an universe of 374 companies that are grouped in ten Global Industry Classifi-

cation Standard (GICS) sectors3. The companies data cover different regions, namely EU, UK,

US and REST (firms from countries outside the EU, UK and US). The summary information

is reported in Appendix C, see Table C.3.

Together with the SRI information, we have also collected historical stock prices (daily

returns) for all firms in our sample from January 2010 to December 2020, from various sources:

Datastream, WRDS-CRSP, Compustat, IBES and Yahoo!Finance. The financial performance

of those companies is measured by various measures and the summary is tabulated in Table 2.

Note that the performance is evaluated for two periods of time, namely before and after the

COVID-19 pandemic, but also for the combined period from 2010 until 2020. Table 2 suggests

that the financial performance in 2020 alone is significantly different from the performance

observed before the COVID-19 pandemic, excepting perhaps the EU. Note that the portfolio

performance tabulated in Table 2 assumes that each asset has equal weight in the total portfolio,

which is known as the Equal Weighted (EW) portfolio, and thus, is considered as a benchmark

portfolio that is not easy to outperform in practice, see DeMiguel et al. (2013).

Table 2: Summary of the financial performance per region.

REGION

EU UK US REST Total

No. of companies 188 56 96 34 374

EQUAL WEIGHTED PROTFOLIO (daily returns)

11 years:

2010 - 2020

Annualised average return 0.0888 0.0724 0.1279 0.1038 0.0996

Annualised standard deviation 0.1998 0.2039 0.1759 0.1433 0.1651

Mean 0.0004 0.0004 0.0005 0.0004 0.0004

Standard deviation 0.0126 0.0128 0.0111 0.0090 0.0104

Skewness -0.5116 -0.7272 -0.5146 -0.2725 -0.7435

Kurtosis 7.6460 14.9598 15.8433 3.3927 11.4002

10 years:

2010 - 2019

Annualised average return 0.0833 0.0869 0.1284 0.0864 0.0974

Annualised standard deviation 0.1889 0.1823 0.1478 0.1357 0.1492

Mean 0.0004 0.0004 0.0005 0.0004 0.0004

Standard deviation 0.0119 0.0115 0.0093 0.0085 0.0094

Skewness -0.2089 -0.8002 -0.4618 -0.3067 -0.4145

Kurtosis 4.7198 13.3674 4.1551 2.5442 5.2876

1 year:

2020

Annualised average return 0.0898 -0.1106 0.0780 0.1502 0.0627

Annualised standard deviation 0.2879 0.3446 0.3512 0.2091 0.2761

Mean 0.0005 -0.0002 0.0005 0.0006 0.0004

Standard deviation 0.0181 0.0217 0.0221 0.0132 0.0174

Skewness -1.5274 -0.5124 -0.3906 -0.1649 -1.2751

Kurtosis 10.7350 7.4429 7.2376 5.1527 10.2675

Our data analysis relies on comparing three RB/CRB portfolios, where the risk preferences

are either measured by standard deviation (SD) and/or Conditional-Value-at-Risk (CVaR) risk

measures. The first two portfolios, denoted as SD-RP and CVaR95%-RP, are standard RB

portfolios, as explained in Section 3.1 with ϕ = SD and ϕ = CVaR95%, respectively. The third

3Note that the original investment portfolio in Hallerbach et al. (2004) consists of 590 companies, but 216
firms were delisted or vanished during the 2010-2020 period.
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portfolio, denoted as CVaR95%-SD-CRB, is a portfolio built on compounding risk measures

such that CVaR95%-SD-CRB matches the total portfolio risk as measured by SD to the risk

measured by the CVaR95% equivalent portfolio, i.e. the aggregate level of risk measured via SD

of the CVaR95%-SD-CRB and CVaR95%-RP portfolios are equal. This compound measure has

the advantage that it meets the regulatory requirements to use the CVaR as the market risk

measure, whilst the portfolio allocations are computed via the CRB procedure in Section 3.2

with ϕ = SD. Recall that CRB allocations are efficiently computed when ϕ = SD, and not

when ϕ = CVaR95%.

Figure 3: Risk contributions of each region (EU, UK and US) for 2010-2019 (left) and 2020 (right).

Figure 3 compares the (clustered) risk contributions for the three portfolios over the two

periods, where the risk contributions are consistently computed with ϕ being the annualised SD.

Each of the three portfolios is composed of n = 155 assets by choosing the top 55 SRI ranked

companies in each region, namely EU, UK and US.4 On the left radar chart, when the overall

market risk is lower, the three portfolios lead to similar and equal (regional) risk contributions,

and in turn, CRP across regions is achieved; a slightly different picture emerges during 2020

when the market risk is significantly higher as seen in Table 2. As anticipated, due to the

extremely volatile economic environment of the year 2020, the total SD of SD-RP (see graph on

the right-side) has a larger overall portfolio’s SD than the CVaR95%-RP and CVaR95%-SD-CRB,

which by construction, have the same aggregate level of risk measured via SD. We observe that

the US/UK/EU cluster has a higher/similar/lower SD risk contribution for CVaR95%-SD-CRB

than the SD risk contribution for CVaR95%-RP. One possible explanation for this result is the

degree of homogeneity or heterogeneity in the companies that are selected in each region. The

companies in the EU are subject to more intense regulation and the top companies are expected

to have similar SRI scores. This would lead to lower CVaR95%-SD-CRB. The US firms are more

heterogeneous in behaviour, taking advantage of a more relaxed regulatory regime. This would

4The Rest of the World was dropped out because there are only 34 companies in the sample from this region.
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make a portfolio constructed with them riskier.

Figure 4: Risk contributions of each of the ten GICS sectors for 2010-2019 (left) and 2020 (right).

We now redo the previous computations by including in each of the three portfolios the top

10 SRI ranked companies in each of the ten GICS sectors listed in Table C.3, and thus, the new

three portfolios are composed of n = 100 assets. Recall that the new three portfolios have no

selection parity imposed at the regional level. The new risk allocations are computed as before,

and the results are displayed in Figure 4 that shows a similar pattern to that in Figure 3. The

left radar chart in Figure 4 shows the three portfolios are similar during low market risk, and

in turn, CRP across sectors is now achieved. The right radar chart in Figure 4 indicates that

two sectors, namely Consumer Staples and Materials, have significantly larger risk allocations

for CVaR95%-RP as compared to CVaR95%-SD-CRB, while the individual sectors with high

annualised SD, namely Financial and Energy, have lower risk allocations for CVaR95%-RP as

compared to CVaR95%-SD-CRB. This effect can be attributed to the COVID-19 pandemic that

has engulfed the major economies and the destabilisation of the world-wide supply chain.

Figure 5 replicates the sector comparison displayed in Figure 4, but only for one specific

region, namely the EU. The other two regions (UK and US) are not discussed since the pattern

is similar to the EU region. That is, we redo the computations shown in Figure 4 by creating the

three portfolios when including only the top 35 and 55 SRI ranked EU companies as displayed

on the upper and lower panels, respectively; that is, the upper and the lower panels contain

portfolios composed of n = 35 and n = 55 assets, respectively. For the period 2010-2019,

working with a larger pool of companies helps to reduce the risk contributions to each sector,

possibly, as a side effect of diversification. The exogenous shock of COVID-19 pandemic in 2020

produces more total risk in all sectors. The general shape in the spider plots is very similar for

plots done with the same number of companies, suggesting that the market structure did not

change in 2020 but the overall risk levels increased substantially.
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Figure 5: Risk contributions of each of the ten GICS sectors for 2010-2019 (left) and 2020 (right). The numbers

in each bracket indicate the number of EU companies selected from that particular sector.

4.3. RB for two risk holders

This section provides a data analysis based on our main RB results in Sections 3.4, and

our numerical experiments are based on Theorem 6 i). That is, we assume that two insurers

holding one LoB, namely a motor insurance portfolio of policies, aim to perform a RS so their

resulting risk portfolios are RB balanced. The pre-transfer summary information about monthly

aggregated individual claim amount (in euro) is included in the Table C.6 for risk holder 1 and

Table C.7 for risk holder 2. Note that the (pre-transfer) aggregate risk for the two risk holders

mimics the motor insurance claim experience of two legal entities of an EU well-known insurance

group. That is, we use the real-world data to fit and then generate the claim frequency (denoted

as FN ) and individual claim amount (denoted as FX). Based on the Akaike information criterion

(AIC) information provided in Table C.5, the ‘best’ maximum likelihood estimation (MLE) fitted

distributions of the (pre-transfer) risk distributions are: negative binomial distribution (for

claim frequency) and log-logistic distribution (for claim amount), though the MLE estimated

parameters differ for the two risk holders (for details, see Tables C.6 and C.7). These MLE
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estimates are then used to generate 10,000 replications of the aggregated (pre-transfer) annual

losses for both risk holders, i.e. Si =
∑12

k=1 Si,k, i ∈ {1, 2}, where Si,k is the aggregated monthly

loss of risk holder i for the kth month.

The generated data with size 10, 000 become the (pre-transfer) annual losses for the two risk

holders. We apply Theorem 6 i) for four cases, where the Risk Holder 1 prefers a RP approach

(i.e. b111 = b211 = 1/2) and the target vectors for Risk Holder 2 are varied (i.e., b121 is varied

within (0, 1) such that b111 + b211 = 1 and (3.13) is satisfied). The four cases are as follows: i)

Case 1 with ϕ1 = ϕ2 = SD, ii) Case 2 with ϕ1 = SD and ϕ2 = CVaR95% , iii) Case 3 with

ϕ1 = CVaR95% and ϕ2 = SD, and iv) Case 4 with ϕ1 = ϕ2 = CVaR95%.

Figure 6: The risk allocations are depicted for the four RS processes as a function of b121, i.e. the budgeting

target for the risk transferred from risk holder 1 to risk holder 2. The allocations for the two risk holders are

in red and blue for risk holder 1 and risk holder 2, respectively; further, the risk retained by each risk holder

appears as solid lines, while the part of risk that is transferred to the other party appears as dashed lines. The

orange bars (labelled as ‘Conditions on x’) represent how negative the value in condition (3.13) is.

The comparative results depicted in Figure 6 show a clear RS process in between the two

19



risk holders in the presence of RB targets, and explain whether there are incentives to the risk

holders to adopt this complex RS process. As expected, the conclusions depend on how the

risk holders order their risk preferences. RS is appealing for both risk holders in the first two

cases, and hardly of interest in the last two RS schemes. This could be explained by the fact

that the RP strategy adopted of the first risk holder is quite restrictive for Cases 3 and 4, where

the risk holder 1 orders its preferences via a tail risk measure, namely CVaR95%. Further, the

two (pre-transfer) motor insurance portfolios have shown to be quite tail independent, since no

common extreme climate event was recorded during the period of observation that contributed

to tail insensitive (post-transfer) portfolios.

5. Conclusions

This paper provides an extensive discussion about the theory and practice around construct-

ing RB portfolios in variety of settings. We have started out with revisiting the usual one risk

holder setting with and without clustered RB targets, and we then show how those settings

could be extended to situations in which a non-hedgeable risk is present or fixed sub-portfolios

are aimed by the risk holder. The latter are novel approaches, which widen the application of RB

portfolio construction. Another novel approach of this paper is a combination of the concepts

of RS and RB, which has not been discussed in the wider risk analysis and risk management

literature.

Our theoretical results are accompanied by numerical procedures to identify such RB and

RB-RS portfolios. Numerical experiments are provided for pure RB portfolios, where we show

how to apply our methods to constructing RB and clustered RB by considering SRI factors.

Such SRI factors are becoming now more and more popular given changes in stakeholders’

preferences towards societal benefits.

Numerical experiments are also provided for RB-RS portfolios. We could conclude that

such RS scheme would raise interest to insurance players if the risk holders face pre-transfer

risks that are heavy tailed and tail dependent, and thus, the tail risk preferences govern the

risk holders’ perception of risk. The other scenario where our novel RS scheme would be of

interest is when the the risk holders face pre-transfer risks that are weakly tail dependent and

the non-tail risk preferences govern the risk holders’ perception of risk.
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Appendix A. Proofs

Appendix A.1. Proof of Theorem 3

Note that (3.2) is a strictly convex optimisation problem since −λ
∑d

k=1 bk log xk is a strictly

convex function in x over the convex cone <d++. Let F (x;λ) be the objective function of (3.2).

To show that the solution of (3.2) lies in the interior of <d++, it suffices to show that

lim inf
x→x′

F (x;λ) =∞, for any x′ ∈ ∂<d++ = B1 ∪B2, where (A.1)

B1 :=
⋃

I⊆{1,2,...,d}; |I|≥1

{x : xk =∞ for all k ∈ I, and xk ∈ [0,∞) , for all k ∈ {1, 2, . . . , d} \I} ,

B2 :=
⋃

I⊆{1,2,...,d}; |I|≥1

{x : xk = 0 for all k ∈ I, and xk ∈ (0,∞) , for all k ∈ {1, 2, . . . , d} \I} .

Fix an x′ ∈ B1, and by the homogeneity of ϕ, one may get that

F (x;λ) =
1

τ

(
1Tx

)τ
ϕ

(
xTX

1Tx

)
− λ

d∑
k=1

bk log
( xk

1Tx

)
− λ log

(
1Tx

)
≥ 1

τ

(
1Tx

)τ
inf

y∈∆d

ϕ
(
yTX

)
− λ sup

y∈∆d

d∑
k=1

bk log yk − λ log
(
1Tx

)
(A.2)

=
1

τ

(
1Tx

)τ
inf

y∈∆d

ϕ
(
yTX

)
− λ

d∑
k=1

bk log bk − λ log
(
1Tx

)
,

for any x ∈ <d++. Therefore,

F (x;λ)

1Tx
≥ 1

τ

(
1Tx

)τ−1
inf

y∈∆d

ϕ
(
yTX

)
− λ

1Tx

d∑
k=1

bk log bk − λ
log
(
1Tx

)
1Tx

for any x ∈ <d++.

Clearly,
∑d

k=1 bk log bk < 0 since b ∈ ∆d. Moreover, there exists an M > 0 such that
1
τ

(
1Tx

)τ−1
> M for any x sufficiently close to x′, since τ ≥ 1. Furthermore, for any small

ε > 0, there is a neighbourhood of x′ such that | log
(
1Tx

)
/1Tx| < ε since log y = o (y) as

y →∞ and x′ ∈ B1. Putting all these together with ε ↓ 0 and keeping (3.1) in mind, one may

conclude that

lim inf
x→x′

F (x;λ)

1Tx
> 0, and thus, lim inf

x→x′
F (x;λ) =∞ for any x′ ∈ B1.

Fix an x′ ∈ B2; then, there exists an I ⊆ {1, 2, . . . , d} with |I| ≥ 1 such that x′k = 0 for all

k ∈ I, and x′k ∈ (0,∞) for all k ∈ {1, 2, . . . , d} \I. Similar to (A.2), one may get that

F (x;λ) ≥ 1

τ

(
1Tx

)τ
inf

y∈∆d

ϕ
(
yTX

)
− λ

d∑
k=1

bk log xk
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for any x sufficiently close to x′ . Since λ > 0 and b > 0, the above equation implies that

lim infx→x′ F (x;λ) =∞ for any x′ ∈ B2.

Equation (A.1) implies that there exist an a > 0 and an ε ∈ (0, a] such that

inf
x∈<d++

F (x;λ) = inf
x∈Ba,ε

F (x;λ), where Ba,ε := {x ∈ Ba : min
1≤k≤d

xk ≥ ε}

with Ba := {x ∈ <d++ : ||x|| ≤ a} and || · || being the Euclidean distance. Since Ba,ε is a compact

set, the global minimum of F (·;λ) on <d++, i.e. x∗(λ,b), is an interior point of the feasibility

set for any given λ > 0.

It remains to prove that

x∗(λ∗,b) =
(
1Tx∗(1,b)

)−1
x∗(1,b) ∈ RB(b). (A.3)

Firstly, we show that the unique solution of (3.2), i.e. x∗(λ,b), satisfies

x∗(λ,b) = λ1/τx∗(1,b) for any λ > 0. (A.4)

Assume, on the contrary, that λ1/τx∗(1,b) does not solve (3.2) for a given λ ∈ <++ \ {1}; that

is, there exists x̃ ∈ <d++ such that

1

τ
R
(
x̃
)
− λ

d∑
k=1

bk log x̃k <
1

τ
R
(
λ1/τx∗(1,b)

)
− λ

d∑
k=1

bk log
(
λ1/τx∗k(1,b)

)
.

By this inequality and the homogeneity of ϕ,

λ

τ
R
(
λ−1/τ x̃

)
− λ

d∑
k=1

bk log
(
λ−1/τ x̃k

)
− λ

d∑
k=1

bk
log λ

τ

<
λ

τ
R
(
x∗(1,b)

)
− λ

d∑
k=1

bk log
(
x∗k(1,b)

)
− λ

d∑
k=1

bk
log λ

τ
,

which further implies that

1

τ
R(λ−1/τ x̃)−

d∑
k=1

bk log
(
λ−1/τ x̃k

)
<

1

τ
R
(
x∗(1,b)

)
−

d∑
k=1

bk log
(
x∗k(1,b)

)
.

This contradicts that x∗(1,b) solves (3.2) with λ = 1, as λ−1/τ x̃ ∈ <d++, and concludes (A.4).

Secondly, we show that
(
1Tx∗(1,b)

)−1
x∗(1,b) ∈ ∆d ∩ RB(b). Note that x∗(λ,b) ∈ <d++,

but not guaranteed to be in ∆d, and thus, is not necessarily in RB(b). Since R(x) is differen-

tiable at x∗(1,b) (and thus at x∗(λ,b) for any λ > 0 due to (A.4)) and the fact thatR is a homo-

geneous function, the first-order conditions in (3.2) imply that RCk
(
x∗(λ,b)

)
= bkR

(
x∗(λ,b)

)
for all k ∈ {1, 2, . . . , d}. However, due to the homogeneity of ϕ, RCk is also homogeneous of the

same order as ϕ, and thus

RCk
(
tx∗(λ,b)

)
= bkR

(
tx∗(λ,b)

)
, for all k ∈ {1, 2, . . . , d} and any t > 0.
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In particular, choose t =
(
1Tx∗(1,b)

)−1
to find that

(
1Tx∗(1,b)

)−1
x∗(1,b) ∈ ∆d ∩RB(b).

Thirdly, x∗(λ∗,b) =
(
1Tx∗(1,b)

)−1
x∗(1,b) is true due to (A.4), and in turn x∗(λ∗,b) ∈ ∆d.

The latter justifies (A.3), which concludes our proof.

Appendix A.2. Proof of Theorem 5

Let F (x;λ) be the objective function in (3.9). One could show that the equivalence of (A.1)

holds, and in turn, the global minimum of F (·;λ) on <++, i.e. x∗(λ,b), is an interior point of

the feasibility set. As before, the first order conditions imply that x∗(λ,b) solves (3.7). The

proof is now complete.

Appendix A.3. Proof of Theorem 6

The proof is similar to the proof of Theorem 3, and thus, we only provide the necessary

arguments. We apply the conclusions of (3.2) from Theorem 3 with λ = {λ1, λ2} in (3.10) and

(3.11), and conclude that (3.10) and (3.11) admit unique solutions that are interior points of

the feasibility set.

We now show part i). Due to the homogeneity of ϕ1 and ϕ2, then for any t1, t2 > 0,

t1x
∗(1,b1;ϕ1

)
solves (3.10) with λ1 = t

−1/τ1
1 , and t2x

∗(1,b2;ϕ2

)
solves (3.11) with λ2 = t

−1/τ2
2 .

Thus, we need to find (t1, t2) such that the risks are fully allocated within the LoB, i.e. solving

t1x
∗
1

(
1,b1;ϕ1

)
+ t2x

∗
1

(
1,b2;ϕ2

)
= t1x

∗
2

(
1,b2;ϕ1

)
+ t2x

∗
2

(
1,b2;ϕ2

)
= 1, (A.5)

which is solved by (3.12). Now, (3.12) leads to a feasible risk allocation if and only if t∗1, t
∗
2 > 0,

which is equivalent to (3.13). The proof of part i) is concluded.

Part ii) could be argued in the same way as part i). Since x∗1(1,b1;ϕ1) = x∗2(1,b1;ϕ1), then

(A.5) is guaranteed for any (t1, t2) ∈ <2
++ such that t1 + t2 = 1/x∗1(1,b1;ϕ1), which concludes

this part ii).

We now show part iii). Since (α∗111, α
∗
211) solves (3.10) with λ = λ∗1, then

1

τ1λ∗1

(
R1(α∗111, α

∗
211)−R1(x111, x211)

)
≤ b111 log

α∗111

x111
+ b211 log

α∗211

x211
, (A.6)

for any (x111, x211) ∈ <2
++. Similarly, since (α∗121, α

∗
221) solves (3.11) with λ = λ∗2, then

1

τ2λ∗2

(
R2(α∗121, α

∗
221)−R2(x121, x221)

)
≤b121 log

α∗121

x121
+ b221 log

α∗221

x221
, (A.7)

is true for any (x121, x221) ∈ <2
++. Combining (A.6) and (A.7) imply that

1

τ1λ∗1

(
R1(α∗111, α

∗
211)−R1(x111, x211)

)
+

1

τ2λ∗2

(
R2(α∗121, α

∗
221)−R2(x121, x221)

)
≤ min

(x111,x121)∈∆2

(x211,x221)∈∆2

b111 log
α∗111

x111
+b121 log

α∗121

x121
+b211 log

α∗211

x211
+b221 log

α∗221

x221

= b111 log
α∗111

b111
+ b121 log

α∗121

b121
+ b211 log

α∗211

b211
+ b221 log

α∗221

b221

+(b111 + b121) log(b111 + b121) + (b211 + b221) log(b211 + b221)
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≤ max
(x111,x121)∈∆2

b111 log
x111

b111
+ b121 log

x121

b121
+ max

(x211,x221)∈∆2

b211 log
x211

b211
+ b221 log

x221

b221

+(b111 + b121) log(b111 + b121) + (b211 + b221) log(b211 + b221)

= (b111 + b121) log
1

b111 + +b121
+ (b211 + b221) log

1

b211 + +b221

+(b111 + b121) log(b111 + b121) + (b211 + b221) log(b211 + b221)

= 0,

where the second inequality is due to α∗111 +α∗121 = α∗211 +α∗221 = 1. The proof is now complete.

Appendix B. SD/Variance-based CRB

The SD and variance-based CRB portfolios are the same, and thus, this is true for CRP

counterparts. The mathematical formulation of variance-based CRB portfolio is as follows:

∑
i∈I(k)

d∑
j=1

αiαjΣij = bkα
TΣα for all k ∈ {1, . . . , l}, s.t. 1Tα = 1 and α ≥ 0. (B.1)

Solving (B.1) is quite challenging, and the only efficient solution is to rely on the equivalent

LSE-like formulation in (3.3), which is given as

min
α≥0

l∑
k=1

( ∑
i∈I(k)

d∑
j=1

αiαjΣij − bkαTΣα

)2

s.t. 1Tα = 1. (B.2)

The optimisation problem from (B.2) is non-convex and any off-the-shelf general optimisa-

tion tools may lead to unstable solutions. Alternatively, a relaxation of (B.2) is suggested in

Bai et al. (2016), which could be efficiently solved via the Alternating Linearisation Method

(ALM). An appropriation of the ALM approach is provided, and (B.2) is reformulated as

min
α≥0,θ

l∑
k=1

1

bk

( ∑
i∈I(k)

d∑
j=1

αiαjΣij − bkθ2

)2

s.t. 1Tα = 1. (B.3)

Algorithm 3 from Bai et al. (2016) precisely solves (B.3) when an equal budget problem (i.e.,

CRP is sought), and we now adapt the same algorithm for our non-level CRB setting. For ease

of notation, we denote xT = (αT , θ) ∈ <1×(d+1) and |I(k)| = dk, where d1 + d2 + . . . + dl = d,

since
{
I(1), . . . , I(l)

}
is a partition of Id. Note that

∑
i∈I(k)

d∑
j=1

αiαjΣij − bkθ2 = xTMkx, where Mk :=

[
ΣI(k)ΓI(k) 0

0T −bk

]
,

and ΣI(k) ∈ <d×dk is a submatrix of Σ where the columns of Σ are extracted based only on

the indexes of I(k). Moreover, ΓI(k) ∈ <dk×d is a binary matrix such that
(
ΓI(k)

)
st

= 1t=πk(s),

where 1A is the indicator function that takes the value 1 if A is true, and 0 otherwise. Further,

πk : {1, 2, . . . , dk} → Id maps the columns of ΣI(k) of Σ. Therefore, the system of equations in
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(B.1) is solved by running a much simpler task:

min
x≥0

F (x) :=

l∑
k=1

1

bk

(
xTMkx

)2
s.t. cTx = 1, where cT = (1T , 0) ∈ <1×(d+1). (B.4)

We solve (B.4) by approximating x∗, a local optimum of (B.4). That is, we generate two

sequences {xs : s ≥ 0} and {ys : s ≥ 0} such that xs → x∗ and/or ys → x∗. Similar to

Algorithm 3 in Bai et al. (2016), a two-block variant of (B.4) is required to solve:

min
x,y∈X

G(x,y) :=
l∑

k=1

1

bk

(
xTMky

)2
s.t. x = y, (B.5)

where X := {x ≥ 0 : cTx = 1} is the feasible set. Note that (B.5) is a convex quadratic

programming (QP) instance in x for any given y that could be efficiently solved; the same holds

if x and y are swapped. Further, note that the partial derivatives of G are

G1(x,y) :=
∂G

∂x
= 2

l∑
k=1

xTMky

bk
Mky and G2(x,y) :=

∂G

∂y
= 2

l∑
k=1

xTMky

bk
MT
k x.

Denote

H1(x,y;µ) := G(x,y) + 〈G2(y,y),x− y〉+
1

2µ
‖x− y‖22,

H2(x,y;µ) := G(x,y) + 〈G1(x,x),y− x〉+
1

2µ
‖x− y‖22,

with µ > 0.The algorithm for solving (B.4), and thus (B.5), is described next as Algorithm 2.

Algorithm 2: CRB algorithm for solving (B.5)

Result: (xs∗ ,ys∗) that approximates x∗, a local optimum of (B.4), where s∗ is the termination step
µ1,0 = µ2,0 = µ0 > 0, α ∈ (0, 1), and x0 = y0 ∈ X ;
for s ∈ {0, 1, . . .} do

xs+1 := arg min
x∈X

H1(x,ys;µ1,s);

if F (xs+1) ≤ H1(xs+1, ys;µ1,s) then
choose µ1,s+1 ≥ µ1,s;

else
find the lowest n1,s ≥ 1 such that F (z1,s) ≤ H1(z1,s,ys;µ

∗
1,s), where µ∗1,s = µ1,sα

n1,s and
z1,s := arg min

x∈X
H1(x,ys;µ

∗
1,s);

µ1,s+1 := µ∗1,s/α and xs+1 := z1,s;

end
ys+1 := arg min

y∈X
H2(xs+1,y;µ2,s);

if F (ys+1) ≤ H2(xs+1, ys+1;µ2,s) then
choose µ2,s+1 ≥ µ2,s;

else
find the lowest n2,s ≥ 1 such that F (z2,s) ≤ H2(xs+1, z2,s;µ

∗
2,s), where µ∗2,s = µ2,sα

n2,s and
z2,s := arg min

y∈X
H2(xs+1,y;µ∗2,s);

µ2,s+1 := µ∗2,s/α and ys+1 := z2,s;

end

end
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Appendix C. Empirical Data

Table C.3: Number of firms for each country within each of the ten GICS sectors and four regions. GICS sectors:

Consumer Discretionary (CD), Consumer Staples (CS), Energy (E), Financials (F), Health Care (HC), Industrials

(I), Information Technology (IT), Materials (M), Telecommunication Services (TS), Utilities (U).

GICS SECTOR

REGION COUNTRY C.D. C.S. E. F. H.C. I. I.T. M. T.S. U. Total

EU (188)

Austria 1 1 1 1 1 5

Belgium 1 1 3 1 1 1 8

Denmark 1 1 2

Finland 1 1 2 1 5

France 13 5 1 5 2 7 4 2 1 40

Germany 7 3 5 2 4 2 4 1 2 30

Greece 1 1 2

Ireland 2 1 1 4

Italy 2 1 6 1 1 1 2 14

Netherlands 2 3 1 2 2 1 3 1 15

Norway 1 2 1 1 5

Portugal 1 1 1 3

Spain 2 1 3 1 1 3 11

Sweden 1 4 7 1 2 2 17

Switzerland 3 1 6 4 6 2 4 1 27

UK (56) UK 12 7 1 16 3 8 2 2 5 56

US (96) US 13 12 5 16 13 17 15 1 2 2 96

REST (34)

Australia 2 2 4

Canada 1 1 2 4

China 3 2 1 1 7

Japan 3 1 2 3 1 6 1 17

Korea 1 1

Singapore 1 1

Total 62 34 14 76 29 61 37 22 18 21 374
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Table C.4: Granular financial performance for EW portfolios per GICS sector by including all 374 companies

across all four regions in three periods: 2010 - 2020 (top), 2010-2019 (middle) and 2020 only (bottom).

GICS SECTOR

C.D. C.S. E. F. H.C. I. I.T. M. T.S. U.

No. companies 62 34 14 76 29 61 37 22 18 21

EQUAL WEIGHTED PORTFOLIO (daily returns)

11 years: 2010 - 2020

Annual. Return 0.097 0.086 -0.006 0.062 0.115 0.114 0.166 0.125 0.042 0.062

Annual. Stdev 0.186 0.135 0.237 0.215 0.131 0.195 0.169 0.190 0.161 0.162

Mean 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.000 0.000

Stdev 0.012 0.009 0.015 0.014 0.008 0.012 0.011 0.012 0.010 0.010

Skewness -0.663 -0.602 -0.552 -0.497 -0.575 -0.538 -0.714 -0.308 -0.459 -1.082

Kurtosis 12.967 8.552 16.407 12.326 8.069 9.400 8.825 4.902 7.170 15.943

10 years: 2010-2019

Annual. Return 0.101 0.089 0.019 0.068 0.115 0.107 0.156 0.106 0.049 0.060

Annual. Stdev 0.165 0.123 0.196 0.195 0.116 0.174 0.151 0.185 0.153 0.144

Mean 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000

Stdev 0.010 0.008 0.012 0.012 0.007 0.011 0.010 0.012 0.010 0.009

Skewness -0.547 -0.278 -0.112 -0.349 -0.466 -0.292 -0.454 -0.168 -0.156 -0.303

Kurtosis 5.569 2.913 2.180 7.920 2.175 4.552 3.075 3.367 3.895 3.559

1 year: 2020

Annual. Return 0.043 0.027 -0.207 -0.065 0.104 0.139 0.271 0.237 -0.030 0.074

Annual. Stdev 0.321 0.219 0.475 0.365 0.218 0.326 0.299 0.258 0.251 0.287

Mean 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.000 0.000

Stdev 0.020 0.014 0.030 0.023 0.014 0.021 0.019 0.016 0.016 0.018

Skewness -0.624 -1.144 -0.643 -0.735 -0.727 -0.817 -1.065 -0.931 -1.532 -2.136

Kurtosis 6.312 10.920 7.968 7.932 7.440 6.917 7.935 10.693 11.804 15.615

Table C.5: Fit the ‘best’ MLE for FN (i.e., nbinom*: Negative Binomial distribution) and FX (i.e., llogis*:

Log-logistic distribution) via AIC.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Risk holder 1

FN : AIC

pois 264 312 461 522 572 467 508 435 414 424 318 248

nbinom* 135 138 145 146 149 146 148 145 144 145 139 133

FX : AIC

lnorm 37430 37619 43096 40138 45983 46294 48116 45040 44074 44935 39497 36671

exp 39297 39540 45648 42456 48423 48512 50671 47202 46159 47659 41502 38386

gamma 39262 39538 45650 42457 48424 48500 50673 47192 46161 47631 41500 38335

weibull 39021 39343 45429 42268 48223 48420 50474 47109 45984 47241 41304 38074

llogis* 37428 37442 42937 39924 45647 46092 47831 44832 43867 44715 39387 36627

invweibull 37855 39677 43907 41851 49184 48276 50383 47115 48679 47066 40396 37826

pareto 38276 38536 44424 41337 47180 47588 49421 46301 45123 46070 40490 37338

Risk holder 2

FN : AIC

pois 261 372 435 498 396 474 461 415 411 432 316 197

nbinom* 135 141 145 145 144 147 147 145 144 145 139 129

FX : AIC

lnorm 37363 37613 43289 40346 46220 46447 47976 45474 43493 44761 39560 36492

exp 39248 39487 45673 42388 48426 48771 50283 47717 45587 47133 41349 38232

gamma 39217 39476 45672 42389 48416 48768 50279 47718 45579 47113 41349 38203

weibull 38959 39253 45432 42235 48332 48638 50167 47572 45483 46800 41174 37962

llogis* 37277 37515 43058 40104 45984 46228 47774 45318 43341 44521 39354 36428

invweibull 38346 38644 44703 42805 48296 48125 49706 46704 45047 46669 41991 37619

pareto 38158 38460 44428 41390 47500 47722 49306 46715 44681 45752 40405 37217
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Table C.6: Summary information about the individual claim amount (in euro) for Risk Holder 1. The MLE

estimates for FX and FN are as given in Table C.5.

Empirical data (individual claim amount in euro) MLE estimates (amount & freq)

Mean SD Quantiles FX : log-logistic FN : neg. binomial

q = 50% q = 75% q = 90% shape scale size mu

Jan 1079.13 1894.54 522.91 1068.30 2410.23 1.67 544.76 34.59 528.62

Feb 945.64 1776.45 493.53 930.13 1875.84 1.78 505.24 27.88 553.57

Mar 891.36 1789.33 467.68 885.45 1727.29 1.83 478.88 18.99 650.85

Apr 874.65 1904.59 465.84 855.00 1727.60 1.85 477.30 15.02 608.96

May 845.58 2024.08 454.15 849.35 1668.39 1.85 469.19 15.81 702.13

Jun 859.16 1482.66 477.27 892.81 1728.68 1.84 486.85 19.80 699.85

Jul 893.49 1717.87 478.42 888.14 1750.00 1.84 490.46 17.76 721.95

Aug 872.76 1507.28 475.98 898.01 1791.71 1.84 491.81 20.99 677.55

Sep 938.92 1672.51 495.84 955.62 1873.66 1.78 509.93 20.96 647.64

Oct 986.02 2455.77 490.19 939.29 1974.40 1.78 506.66 20.12 658.68

Nov 955.87 1759.53 494.41 961.48 1949.64 1.76 509.90 27.31 579.09

Dec 1116.23 2062.02 535.59 1128.97 2463.10 1.64 560.96 36.40 511.27

Table C.7: Summary information about the individual claim amount (in euro) for Risk Holder 2. The MLE

estimates for FX and FN are as given in Table C.5.

Empirical data (individual claim amount in euro) MLE estimates (amount & freq)

Mean SD Quantiles FX : log-logistic FN : neg. binomial

q = 50% q = 75% q = 90% shape scale size mu

Jan 1073.97 2038.80 533.77 1059.76 2204.65 1.69 548.85 35.14 528.70

Feb 941.48 1846.69 482.46 953.32 1925.49 1.72 496.01 21.32 553.58

Mar 892.53 1717.38 460.53 871.87 1765.93 1.80 477.89 20.31 650.95

Apr 869.81 1630.98 464.14 873.45 1725.15 1.82 478.86 16.20 609.13

May 845.77 1472.67 466.59 883.71 1699.71 1.85 478.72 25.98 702.10

Jun 873.41 1577.57 477.67 902.74 1702.56 1.84 488.32 19.06 699.93

Jul 871.92 1485.73 473.98 886.88 1792.83 1.83 485.88 20.96 722.00

Aug 903.43 1548.28 478.29 914.71 1862.66 1.80 494.89 21.14 677.53

Sep 901.52 1685.62 500.49 937.22 1801.89 1.83 508.89 20.57 647.70

Oct 950.89 1993.65 479.82 938.70 1880.82 1.75 495.98 19.19 658.79

Nov 943.98 1690.15 492.61 963.82 1950.41 1.76 508.40 28.40 579.18

Dec 1100.38 2076.28 547.08 1118.78 2308.01 1.68 563.51 56.85 511.34
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