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Abstract

Recent linguistic research has shown that gesturing is an important channel of non-
verbal communications that augments meaning to the spoken word. This thesis 
demonstrates that a hand gesture can be modelled in 2DT (two dimensions and time) 
as an aperiodic waveform. Fourier analysis of the waveform generates positive and 
negative sequence harmonic components from which characteristics of the gestures 
can be recognised. Variability in gesture lengths are confronted by re-sampling the 
data to a fixed length, from which harmonic components can be effectively 
compared. Manipulation of the harmonic data gives the gesture data scale and 
translation invariant properties. Gesture characterisation is revealed by harmonic 
‘orientation’ angles and by each harmonic having a unique ‘elliptical-corkscrew’. 
The first three harmonics are generally sufficient to characterise a gesture. Gesture 
recognition is accomplished by using clustering techniques on the low order 
harmonic data to select target gestures for a Probabilistic Neural Network (PNN). 
The PNN requires minimal training and in association with clustering techniques, 
can select target gestures to reveal inter-class and intra-class differences of gestures 
ensembles. The application of Fourier analysis to gesture stimuli shows their 
predominantly oscillatory and idiosyncratic nature. A reliable technique for 
recording hand coordinate data was developed that fused skin-colour and motion 
cues. As a result, objects, which when rank ordered by area, invariably related the 
most significant object to the dominant gesturing hand. An object selection algorithm 
corrected for most tracking mistakes. The technique has been successfully extended 
to track two hands simultaneously. The gesturing of one person was followed when 
there were three people in the scene. Additional observations of the individual and 
personalised nature of hand gesture to gesture stimuli by the gesturer, has revealed 
the potential of a prime alternative method of a vision-based biometric.
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1. Introduction

The importance of human gesture has become more readily understood since the 
publication of books such as ‘The Naked Ape’, ‘Manwatching’ and ‘Gestures’ 
(Morris et al., 1967, 1977, 1979). Morris et al., says that the science of human 
gesture has been greatly underestimated compared to the number of people involved 
in linguistics or in the analysis of language. It has been considered that gestures are a 
trivial, insignificant form of human communication, but it is becoming clear that 
social intercourse depends heavily on the actions, postures, movements and 
expressions of the talking body. Morris et al. (1979) claims that gestural information 
is more important than words when it comes to indicating changing mood or 
emotional state. The analysis of gesturing has lagged behind the science of 
linguistics. This maybe because gesturing is difficult to record and to explain in 
words. The value of gesturing as an important fact of non verbal communications has 
been given inadequate formal recognition or annotation.

People effortlessly read other people’s gestures and emotional states but only a few 
have had the ability to record the information as well. Thomas Hardy (1891) 
recognised the changes to facial colour that he suggests indicate the character’s 
mood.

“Tess cried, and the colour upon her cheeks spread over her face and neck. In a 
moment her eyes grew moist, and her glance dropped to the ground.”

To detect the change in the colour of Tess’s cheek would have been difficult to do by 
machine a few years ago. Sanguine (2000) states that one of the factors that have 
inhibited the development of colour imaging in the past has been limited computer 
memory and processing speed. Another factor has been the high cost of cameras and 
displays. These factors meant that although digital image processing has a history of 
about forty years, it was difficult to experiment with algorithms or have the 
motivation to test new ideas. Today a domestic or Notebook personal computer has 
sufficient space to store large number of images with a sufficient processing speed to 
process images in reasonable speed and even real time.

Jane Austen (1813) described the use of bodily movements to convey meaning: - 

“Elizabeth shook her head over this letter.”

In this example Austen conveys the metaphorical intention as well the literal sense of 
head shaking. Modem authors like Ondaatje (1992), tend to use gesture examples 
more freely: -

“He pats his chest as though looking for his pass,.....”

Kelly et al. (1999) comment that most theories of pragmatics take as the basic unit of 
communications the verbal or written utterances, but have overlooked the fact that 
important information about an utterance’s meaning can be conveyed by non verbal 
communications.
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Over the last twenty years, the scientific community has been interested in the study 
of gestures using the computer. In this country, the British Machine Vision 
Association was formed in 1990. It holds annual conferences which often attract 
papers concerned with human tracking and face recognition. Although there are 
many other international organisations that recognise the work of the gestural 
community, a significant organisation is the International Gesture Workshop that is 
held every two years. The International Gesture Workshops are interdisciplinary 
events for those researching gesture-based communications for those wishing to meet 
and exchange ideas across disciplines. A focus of these events is a shared interest in 
using gesture and sign language in human-computer interaction.

For example, Daugman (1997) observed that people interact with computers as well 
as people. The ability to develop machine interfaces that have characteristics similar 
to the human skills of recognizing facial features, gestures and speech is preferred, 
rather than humans develop and learn machine skills.

This thesis explores the nature and application of the particular human predisposition 
of gesturing. The thesis reviews approaches that have been made to interpret and 
mimic gestures using the power of the computer to then describe a system for 
analysis and recognising hand-gestures for a range of gestures and gesture stimuli.

1.1. The origin of gesture

How does gesturing in humans begin?

Natural gesturing is as evident as babbling in normal babies at two months. This can 
be seen clearly in deaf babies. Deaf babies are seen to babble with their hands at the 
same time (Siple, 1978). The appearance of one-word utterances and then two-word 
strings of hearing children, occur at the same time as do the appearance of single sign 
and two-sign strings in deaf children who are in a signing environment.

Further evidence that the ability to communicate is inborn has come from watching 
the gestures of deaf children. (Goldin-Meado and Mylander, 1998/ Four American 
and four Chinese children aged between three and five months were observed. Sign 
language was unknown to the children, but they managed to convey quite complex 
messages by action and gesture. It was found that the syntax of the children’s gesture 
consisted of sentences rather than just words. The syntax for both the American and 
Chinese children was similar. It was concluded that the sentence construction must 
be ‘hardwired’ at birth rather than learnt. Interestingly, this research showed that the 
gestures of the children were different to their mother’s gestures, indicating that they 
had invented their own repertoire of gestures.

Furthermore, it is argued that language evolved from manual gestures, gradually 
incorporating vocal elements (Corballis, 2003). It is also suggested that the 
emergence of language was from manual to facial gesture and then incorporated 
sound. Although modem sign language does not necessarily resemble gesture 
language used by our ancestors it is observed that with American Sign Language 
facial gesture generally conveys context, whereas manual gestures supply content. 
Corballis observes that the strong predominance of right-handedness appears to be a 
uniquely human characteristic, although the left-cerebral dominance for vocalisation
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appears in many species, including frogs, birds and mammals. Furthermore, right- 
handedness may have arisen because of an association between manual gestures and 
vocalization in the evolution of language. Interestingly, impairment in praxis 
functioning is common after a stroke, most frequently when the left hemisphere is 
affected (Koski et al., 2002). Apraxia is defined as a deficit in the ability to 
understand an action or to perform an action in response to verbal command or in 
imitation e.g. wave goodbye, pantomime use of a hammer.

The importance of gesture accompanying speech has been found to be influential in 
conveying information (Kelly et al., 1999). It has been found that people are more 
likely to interpret an utterance as an indirect request when speech is accompanied by 
a relevant pointing gesture than when speech or gesture was presented alone. The 
combination of gesture with vocal utterance adds to the communication.

1.2. Human-Computer Interface Applications

A useful introduction to computer vision techniques being applied to gesturing is 
made by Daugman (1997). This overview explains how face and gesture recognition 
is an effortless aspect of human behaviour. Although some people have gained 
effective interactive skills with computers, he suggests that it would be better if 
machines developed more human-like skills to recognise faces, gestures and speech, 
rather than humans acquire machine-like skills. The main factors that determine the 
performance of the face or other recognition system are that the inter-class variance 
should be large and the intra-class variance should be small.

The example given is for faces. Different faces should generate face codes that are 
as different as possible from each other, while different images of the same face 
should generate similar codes. The captures of facial images are dependent on pose, 
perspective, angle, illumination, age, cosmetics, adornments and expression. The 
main problem is to determine what characteristics to extract for analysis, recognition 
and classification.

To this end, several researchers have looked into hand gesture recognition (Pavlovic 
et al., 1997). They report on tracking methods where there has been a constraint to 
natural gesture using a uniquely coloured glove, or marks on hands and fingers, or 
the use of an electronic glove as an interface to the computer. They also report on the 
many varied approaches that are being tried out for recognising gesture in natural 
settings.

This research has potential benefit for the deaf and disabled. Helping deaf and 
disabled people to interpret gestures has obvious uses for improved communications 
between signing and non-signing people. Work has been carried out in this area, 
usually using American Sign Language (ASL) (Stamer and Pentland, 1995), 
(Lockton and Fitzgibbon, 2002).

Gesture capture can also be used to control equipment (Howell and Buxton, 1998). 
For example, instead of holding an infrared remote handset, a camera can be placed 
on a television set to monitor the audience. Changing channel and volume can take 
place by the interpretation of gesture. These ideas can be further extended into the 
automatic control of cameras in a teleconferencing situation. Cameras can be
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automatically trained on the people talking or show the gestures applicable to useful 
speech.

There is a further development as a result of research studies in the area. The 
University of Michigan Laboratory for Human Motion Simulation (HUMOSIM) is 
developing mathematical models for human movement prediction. This information 
is being gained from a variety of workplace and consumer environments. Much of 
the impetus of this work is to address workplace related musculoskeletal injuries. 
From the large number of trials so far recorded, research is being carried out into 
characterizing movement patterns and the limitation of a range of group categories, 
for example: age, gender, height, body size and so on. (older, younger, male, female, 
large, small). Howell and Buxton (2003) have used hand trajectory data from the 
HUMOSIM project, ‘Terminal Hand Orientation and Effort Reach Study, 2000’, to 
leam gesture and identity from different individuals.

The field of Human-Computer Interface (HCI) has become an important aspect of 
research, because of the growing importance and popularity of the Graphical User 
Interface (GUI) and Virtual Reality (VR) systems. Gibet et al. (2001) observes that 
the massive development of human-computer interaction has resulted in new systems 
that try to take advantage of the expressive power of gestures. The latest interfaces 
are more natural and give rise to a number of virtual reality applications. This 
improves the ability to capture body movements, recognise and interpret human 
actions so as to animate virtual humans or avatars.

The animation of deaf signing gestures (Kennaway, 2001) is supported by the 
ViSiCAST project. The aim of the project (Elliott et al., 2000) is to provide deaf 
citizens with support in the areas of broadcasting, face-to-face transactions, and the 
World-Wide Webb (WWW) for information and services in the preferred medium of 
sign language. A key feature of this work is of the use of computer-generated virtual 
humans, or avatars. The ViSiCAST project has developed from previous projects 
(Lincoln et al., 2001). A legible deaf-signing virtual human (Pezeshkpour et al., 
1999), used a signing avatar system based on motion capture. Motion capture 
requires the generation of data files of body, arms, hands and face to be recorded for 
a lexicon of signs. The merit of this system is its greater capacity for authenticity. 
The disadvantage of this technique is the substantial work involved in setting up and 
calibrating equipment to record the large number of signs for a lexicon. It is, 
therefore, quite a complex task to modify captured motions.

The construction of an avatar requires the synthesis of human characteristics to 
mimic human characteristics successfully. This work is complementary to the work 
of gesture analysis and the two fields are moving closer together. The recorded 
motions of a human, displayed by an avatar of a different character can be easily 
discerned by people (Kennaway, 2001). This is a form of gait recognition or more 
generally biometrics, where the aim is to identify people notably in the areas of 
security and surveillance. Gait recognition is an attractive technique as it is non- 
invasive and does not require the subjects’ cooperation or permission. A pertinent 
example of a gait recognition technique is described by Mowbray and Nixon (2003). 
This technique models the full movement and deformation of the body, rather than a 
specific body part.
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Disabled children who cannot speak easily are often taught to communicate by 
gesture stimuli. This can be well organised by methods such as the Makaton 
vocabulary (Grove and Walker, 1990), but in some cases it is by a very intensive 
touching and feeling interaction with a skilled tutor. These gesture stimuli are some 
very basic communication techniques that both disabled and ‘normal’ people use and 
understand. The study of how MDVI (Multi-Disabled, Visually Impaired) children 
are taught to communicate is explained by the RNIB (2004) and can be very 
instructive as to the role of gestures in communications. The communications 
programme first develops movement/interaction through individual movement 
sessions. The second part develops children’s own personal gestures. It finally 
provides a language model and an adapted sign system. Natural gesture arises from 
the child using familiar movement patterns, that he is already aware of and which he 
then leams also has a symbolic aspect that adds to its meaning to him. From simple 
natural gesture of clapping hands or banging a table, for example, objects can be 
linked to the gesture to give meaning. For instance a mug would indicate a drink and 
a sponge a bath. Objects are also used to signify particular people and signify place 
and time. Children then go on to leam a rudimentary sign language and some basic 
sounds that are easy to interpret.

Human emotions have been studied, probably since civilisations have existed, but it 
is only recently that the subject has been linked to Human-Computer interaction. 
Pickard (2004) and others’ current research concerns human emotions as part of the 
Affective Computing Research Area at MIT (Massachusetts Institute for 
Technology). The origin of human emotion is not clear. There are conflicting 
theories, a classical ‘chicken and egg’ situation. The ‘James-Lange’ theory 
(Wozniak, 2004) suggests that actions precede emotions and then the brain interprets 
actions as emotions. Whereas, the Cannon-Bard (1927) theory is an opposing view 
stating that emotion is felt first. The actions follow from cognitive processing. The 
general conclusion is that emotion involves a dynamic state that has both physical 
and cognitive events. Some recent research was undertaken, constructing ‘An 
Affective Tutor’, which is an agent that senses the affective states such as, boredom 
or anxiety for example. It has the capability to adjust its response to the user, in 
accord with the user’s state. Another area concerns the ‘Computer Response to user 
Frustration’ in which a human-computer interaction agent was designed to support 
users with consideration for their ability to recover from negative emotional states. 
The Affective Computing group at MIT (2004) are interested in developing 
technologies to assist in the development of human emotional intelligence: -

“Our approach, grounded in findings from cognitive science, psychology, 
neuroscience, medicine, psychophysiology, sociology, and ethics, is to develop 
engineering tools for measuring, modelling, reasoning about, and responding to 
affect. Thus, we develop new sensors, algorithms, systems, and theories that enable 
new forms of machine intelligence as well as new forms of human understanding. 
Many of the challenges we face cannot be solved with existing engineering tools; 
consequently, we also work at the frontiers of research in machine learning, pattern 
recognition, signal processing, computer vision, speech analysis, sensor design, 
human-centred and value-centred design, and more.”

The work in this thesis is grounded in signal processing, computer vision and pattern 
recognition techniques that culminate in identifying some psychological and
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emotional states of the gesturer. The gesturing researched is based on gesture stimuli 
which in evolutionary terms precedes any formalised sign language and is often one- 
handed. This type of gesture has not been explored in much detail because of the 
difficulty of explaining or recording the process. But it is extensively used 
unconsciously by ‘hearing’ people and used more consciously as a rudimentary sign 
language by people with hearing difficulties. Although the main action of the gesture 
is conducted by the dominant hand, the non-dominant hand can act as an indicator of 
the gesturer’s psychological or emotional state. The research shows that gesture 
stimuli can be very individual to the gesture maker. These intra-class variations could 
be classed as a form of gait recognition. Kendon (1986) described gestures as ‘bi- 
phasic’ or ‘tri-phasic’. These definitions are based on the temporal nature of a hand 
gesture that can be divided up into three parts: the preparation phase in which the 
hand moves from a resting position; the stroke phase and the retraction phase when it 
returns to the resting position. A ‘bi-phasic’ or ‘beats’ gesture is an oscillatory 
gesture which is seen in a typical ‘finger-wagging’ type of gesture.

In this investigation of gesturing the gesture trajectory is modelled as an aperiodic 
waveform showing movement in two dimensions and time (2DT). The coordinates of 
the hand are derived from a combination of skin-colour and motion cues. Fourier 
analysis techniques are applied to the trajectory to produce frequency or harmonic 
components to characterise the gesture. Much of the stimulus for this work came 
from Fourier Descriptor techniques (Kuhl and Giardina 1982; Lin and Huang, 1987; 
Lin and Jungthirapanich, 1990) that are used for object recognition in the spatial 
domain. The analysis of gesture trajectories was investigated in the time domain and 
models and experiments were produced that confirmed the equations describing the 
2DT (Two spatial dimensions and a time dimension) motion of the hand. 
Interestingly the Fourier analysis technique showed that in the ‘stroke’ phase of the 
gesture some gestures showed a high oscillatory component not normally seen in 
signing. As a result it is suggested that the definition of a tri-phasic gesture should be 
extended to incorporate this phenomenon.

1.3. Aims

The aim of this research is to devise a novel approach for recognising a set of human 
gestures by analysis of a video recording from a single camera view. The recording 
would be made by a single camera directly in front of the gesturer who would be 
seated or standing.

An objective of the investigation was to confirm that the gesture trajectory could be 
modelled as an aperiodic waveform in 2D space and time. This modelling would 
allow Fourier analysis to be undertaken to show that the waveform could be 
characterised by its harmonic components. The normalisation of the harmonic series 
would allow gesture trajectory space and translation invariance from sequence to 
sequence.

An additional objective was the description of a 2D spatial trajectory using a 
complex representation of the waveform akin to 2D Fourier Descriptors, as a spatial- 
temporal, as opposed to purely spatial, signal.
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It was also desirable to formulate a simple, robust method of detecting hand location 
for generating trajectory coordinates. Observation of a single gesturer in an image 
suggested that there were just three skin-coloured moving regions in an image: the 
face, and the two hands. An objective was formulated to merge skin-coloured cues 
with motion cues to form a combined skin-colour and motion cue that pinpointed the 
region of the hand in motion. An algorithm would then be developed to track the 
hand to provide the gesture trajectory.

Further objectives were set to investigate methods for classifying and recognising 
gesture trajectories from the harmonic components. These techniques were centred 
on types of neural networks and clustering methodologies that would be suitable for 
sparse experimental data.

1.4. Thesis content and organisation

The next chapter continues with an overview of gesture recognition. The definitions 
and classification of gestures, their dichotomies and typologies are considered. 
Reviews of the various approaches that have been taken for gesture recognition are 
made. The complementary work on avatars is discussed as to its usefulness in gesture 
analysis. The need for ground truth data with which to judge and compare the 
performance of recognition systems is discussed.

Chapter three details a reliable method for automatically generating data for the 
Fourier analysis described in chapter 5. This chapter investigates the use of colour 
and motion to capture hand location so that hand trajectory data can be obtained 
automatically. Additionally, methods of motion detection and background updating 
are investigated. The advantages of fusing colour and motion cues together are 
illustrated. Furthermore, the advantages of the unique rank ordering system of the 
skin-coloured and motion objects are explained.

Tracking of the hand position from the generation of skin-coloured, motion objects is 
discussed in chapter four. Environmental conditions and image sequence variables 
are experimented with, to gauge their impact on the quality of the tracking data. A 
description of the algorithm for object selection is explained for its use in correcting 
possible tracking errors in single-person; multi-person and two-handed sequences. 
The preparation of the data for the multi-rate normalisation technique is explained to 
overcome the different gesture lengths or sample rates.

Chapter five is the pivotal chapter of the thesis. It explains how a gesture can be 
considered as an aperiodic waveform in two dimensions of space and one dimension 
of time. The equations derived from object recognition using the Fourier Descriptor 
technique are modelled in the time domain instead of the spatial domain. The 
transformation of the time domain data into frequency domain data by standard 
Fourier analysis techniques derives positive sequence and negative sequence to 
characterise the gesture trajectory. The advantage of using exponential positive and 
negative sequence components is that the modelling (synthesis) of trajectories is in 
the same form as for the analysis of trajectories. The added benefit of working in the 
frequency domain is that through simple manipulation of the frequency data, the 
advantages of position and size invariance are obtained. The consideration of
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individual harmonics gives an insight into the modelling of the trajectory as an 
infinite set of harmonically related ‘elliptical corkscrews’.

This chapter also focuses on the invariance of the orientation angle. It is shown to 
characterise a gesture and its spatial characteristics. The orientation angle is also 
shown to be invariant to truncation errors in the gesture trajectory. Modelling the 
trajectory by just the first three harmonics and their associated elliptical 
characteristics shows a close relationship to the original trajectory data.

The advantages and characteristics of using RBF (Radial Basis Function) as a basic 
building block of PNN (Probabilistic Neural Network) are discussed in the following 
chapter, chapter six. The PNN is ideal for use in recognition activities when data is 
sparse but requires virtually no training. The key aspect of using PNNs is in the 
selection of target gestures. It is shown that clustering techniques can be a help in 
finding target gestures when gestures are indistinct. The hierarchical clustering 
method was used in this investigation because it was more suited to the sparse data 
than other clustering techniques. Various distance metric and linkage methods 
available for the clustering technique are considered. The clustering results are used 
to realise suitable target gestures for the PNN network. The performance of the PNN 
with pointing gestures is also considered.

Chapter seven discusses a further range of experiments that have been undertaken. 
The experiments considered gestures using a repeated gesture by the same gesturer; a 
gesture repeated by several people and a range of gesture stimuli interpreted by 
several people. The investigations show that with appropriate clustering tools and 
procedures with the PNN, inter-class and intra-class variations can be found. The 
results of gesture stimuli experimentation expose the oscillating nature of this type of 
action and a proposed refinement of the tri-phasic gesture definition. Observation of 
the response of gesturers to some of the experiments shows that skin-colour change 
and non-dominant hand movement can be an additional indicator of gestureds 
internal, emotional state.

The final chapter reviews the thesis. It concludes with a review of the original aims 
and objectives, to reflect on the potential direction of future research in this subject.
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2. Review of Hand Gesture Analysis and Gesturing Systems

This chapter clarifies the difference between static and dynamic hand gesture. It also 
reviews some of the definitions used to classify dynamic hand/arm gestures. Of the 
many different definitions in use the terms of ‘bi-phasic’, tri-phasic’ and ‘beats’ need 
explanation as they are used by a number of vision researchers. Much of the impetus 
for gesture research is considered as coming from requirements of the signing 
community and from research into designing naturally performing avatars. The 
challenges of recording and analysing gesture actions are discussed and a review of 
recognition techniques is conducted. Of the many recognition techniques available, 
state-based techniques have been of most interest, notably Hidden Markov Models. 
The importance of verifying any recognition system by comparing recognition 
techniques and sources of ‘ground-truth’ data are also discussed.

2.1. Introduction

Human beings are adept at analysing gestures. Johansson’s (1973) and Bobick’s 
(1997) work in this area clearly demonstrate this. Johansson’s famous experiments 
with just a few lights in motion against a dark background showed how sparse 
information was sufficient for an observer to detect enough to recognise human 
behaviour. Bobick showed a few frames, of extremely low resolution, of a subject 
performing a normally trivial recognisable movement. Although there was a lack of 
recognisable features in the still images, the movement is easily recognised when the 
still images are sequenced to suggest motion. Additionally, Kennaway (2001) reports 
that when the characteristics of one signer were implemented on a different avatar 
body the signer was still easily recognisable. Each of these examples indicates the 
power in the human system to recognise the unique characteristics of a particular 
signer.

Gesture recognition techniques have advanced in the last decade. This chapter 
reviews hand/arm gestures, their classification and analysis. It is found that the term 
‘hand-gesture’ can be misconstrued. Sometimes ‘hand-gesture’ refers to static hand 
poses of just the hand but at other times refers to the dynamics of the hand and arm 
in movement. Freeman and Roth (1995) made the distinction between dynamic and 
static gestures.

“A static gesture is a particular hand configuration and pose represented by a single 
image. A dynamic gesture is a moving image represented by a sequence of images.”

Static hand gesture tends to refer to hand shape and orientation. Whereas a dynamic 
hand gesture tends to be about the movement of the hand through space in which the 
hand shape is not so relevant. Wilson and Bobick (1995) make a similar observation 
that in some cases the spatial configuration of the hand is important, or alternatively 
the gross motion of the hand may be important. Quek (1994) also reported that it was 
rare for both the pose and the position of the hand to simultaneously change in a 
meaningful way during a gesture. Stamer and Pentland (1995) recognise that 
tracking of the hand does not require a fine-grain description of the hand shape; 
studies have shown that such detailed information may not be necessary for humans 
to interpret sign language. Kennaway (2001) makes a comment about the amount of 
precision required in signing: -
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“People learning to sign, learn from example and identify which parts of the action 
are significant and how much precision is required for good signing.”

More recent work in classification of hand/arm gesture has explored in more detail 
the orientation pose and movement of the hand and arm structure. Some of this work 
has been initiated by the surge in interest of virtual humans or avatars, most typically 
work explained by Kennaway (2001). The many experiments in the synthesis of 
avatar design, complements gesture analysis. This is a source of accurate ground 
truth data for the movement of hand and arm during gesturing.

The goal of any machine system is to replicate as closely as possible the human 
system. To design a machine that can have these capabilities it is vital to have a 
better understanding of gesture, and then investigate methods to construct a system to 
detect and recognise human behaviour. But it has been found difficult to compare 
systems because of the lack of publicly available image sequences; different 
environmental conditions; and constraints imposed on the sequences.

2.2. Gestural Analysis and Characteristics

Consideration of what characteristics enable a gesture to be interpreted must be 
considered. The survey of Pavlovic et ah, (1997) considers Gesture Modelling, 
Gesture Analysis, Gesture Recognition and Gesture-Based Systems and 
Applications. The paper extensively reviews the research activities that have 
occurred up to the published date and is biased toward hand gesturing rather than 
facial gesturing. The paper reports that hand movements can range from the simple 
action of using the hand to point and move objects around, to the more complex that 
express feeling, to actions to aid us in the communications of meaning with each 
other. The recognition of gestures require static and dynamic configuration of the 
human hand, arm and body to be measured. Cumbersome interface tools can only be 
justified in specialised application domains such as ‘simulation surgery’. ‘Glove- 
based’ devices are reviewed by Baudel and Baudouin-Lafon (1993) and Sturman and 
Zeltzer (1994). They concur that ‘glove-based’ devices will ultimately deter 
everyday users from using such a system.

Psychological studies have reported useful facts about human gesture. Kenden 
(1986) states that there is ‘autonomous gesture’ and ‘gesticulation’, the former 
gesture acting independent of speech and the latter is in association with speech. He 
shows that the temporal nature of hand gesture can be divided into three parts; 
preparation; nucleus (peak or stroke) and retraction. The preparation phase consists 
of a preparatory phase that sets the hand in motion from a resting position. The 
nucleus phase has a definite form and enhanced dynamic qualities. The hand then 
returns to the resting phase i.e. retraction, ready for the next gesture. The exception 
to this is the characteristic of ‘beats’, an alternative type of gesture that is related to 
the rhythmic structure of speech.

McNeil and Levy (1982) found that as well as ‘beats’, the type of action inferred by a 
gesture could be categorised as iconic, metaphoric and deictic gestures. Iconic 
gestures are air pictures used in the mime game, charades to indicate the categories 
of a ‘book’, or ‘film’, or ‘play’. Metaphoric gestures are used to represent abstract
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concepts, for example the pinching action to indicate precision. Deictic gestures are 
pointing actions to indicate position or placement. ‘Beats’ are like small hand waves 
that simultaneously combine with vocal inclination, to stress or emphasise parts of 
the speech that are significant or important.

H a n d / A r m  M o v e m e n t s

G e s t u r e s
U n in t e n t io n a l  M o v e m e n t s

M a n ip u la t iv e
C o m m u n ic a t i v e

A c t s
X

S y m b o l s

M im e tic
X  '  '-.-v

D e ic t ic  R e f e r e n t ia l  M o d a l iz in g

Figure 2.1 Taxonomy of Hand/Arm Movements (Source Pavlovic et ah, 1997)

A general taxonomy of Hand/Arm movement is presented by Pavlovic et al, (1997), 
attributable to original work by Quek (1994) as shown in Figure 2.1. The movements 
are sub-divided into different classes.

Wilson et al. (1996) characterise the iconic, deictic, metaphoric and beats by their 
temporal signatures. Each gesture is bracketed by ‘rest states’. The simplest gesture, 
‘beats’ consist of small baton-like movements away from the rest state and then back 
again. This type of gesture is termed ‘bi-phasic’ whereas the other gestures are 
termed ‘tri-phasic’ because of the three distinct phases of transitioning from the rest 
state to gesture space, executing the stroke phase and then transitioning back to the 
rest state.

Other significant work on gesture classification was undertaken by Ekman and Friesn 
(1969) and Argyle (1975). Ekman and Friesen divide communicative gesture into 
four characteristics of ‘Emblem’ (acts which can be translated into words); 
‘Illustrators’ (movements that illustrate verbally expressed content; ‘Affect’ displays 
(facial expressions displaying the speaker’s feeling; and ‘Regulators’ (semi-
conscious acts regulating the speech flow rhythm. ‘Adaptive’ gestures are also 
categorised. This refers to non-communicative gestures, and are unintentional but 
they respond to physical need. Likewise Argyle categorises communicative gesture 
into the conventional gesture whose meaning can be interpreted into words and 
speech related gesture in which movements underlay the meaning conveyed by the 
speech flow. Argyle also differentiates non-communicative displays into those that 
have no communications function and the idiosyncratic gestures that reveal the 
gesturer’s personality, mood or behaviour.

Furthermore, Rossini (2003), attempts to define interdisciplinary parameters for 
gesture analysis. This analysis defines four components: gesture size (angle of 
moving part of joint, with respect to the horizontal, during the stroke phase); gesture 
timing (the gesture phase between the pre-stroke phase and retraction); point of 
articulation (main joint in the gesture movement) and locus. The locus defines the 
personal space or gesture space that is used. It is analysed by classical Cartesian 
axes. The ‘x’ axis is divided up into left and right peripheries. With periphery 1 taken
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up by the distance of the elbow from the trunk and periphery 2 taken with the hand 
fully extended. The ‘y’ axis is divided into the overhead, head, upper bust and lower 
bust space. The ‘z’ axis is sub-divided into trunk, middle distance and full distance 
space. The gesture size component was particularly helpful in clarifying mobility 
patterns in deaf signing people.

In comparison, Pavlovic et al. (1997) consider that a gesture is a stochastic process in 
the gesture model parameter space over a suitably defined time interval. The 
importance of this definition is that no two realisations of the same gesture will result 
in exactly the same hand/arm motion or the same set of images. The presence of the 
time interval emphasises the dynamic nature of the gesture. Although gestural 
activity is essentially spatial, the temporal content is of significance. The gesture 
classification technique must be both time instant invariant and time scale invariant. 
The example given is that of clapping. The gesture should be recognised whether it is 
performed slowly or quickly. Automatic speech recognition deals with such 
problems. The recognition of the spoken word is independent of their duration and 
variation in pronunciation. In practice the variations of spatial and temporal 
variations can be challenging in hearing impaired people. Conversation with a 
Makaton specialist explained that there can be a problem of interpreting the signing 
of impaired people. It was clear that impaired people have a large variation in their 
gesture action, which sometimes is difficult even for a trained human observer to 
understand.

Fundamentally there appears to be some difference of perception between the 
definitions and characteristics of gesture relating to natural gesture and signed 
gesture. One observation is that natural gesture is inherently speaker dependent, 
influenced by cultural, educational and situation factors (Wilson et al., 1996). They 
relate to the inter-class variations of gesture. Most of the work on gesture 
interpretation has been focused on the understanding of sign language. However, 
gesturing is a part of ‘normal’ peoples communications experience and adds benefit 
to the communications process. The variability of human behaviour (Wilson and 
Bobick, 1995) of the gesturer must be described without regards to precise geometry 
or precise temporal information. We take visual behaviour to mean the sequence of 
visual events that make a complete action or gesture. Sign language (ASL) has its 
own grammar rather than borrowing grammar from English (Stamer and Pentland
(1995). This grammar allows more flexibility in word placement and sometimes uses 
redundancy for emphasis. A signer may describe a person, place or thing but then 
point to a place in space to temporarily store that object for later reference. In 
addition the position of the eyebrows is used to indicate question, statement or 
directive.

Further work on the characteristics of gesture has been made through the 
development of avatars or manikins. In order to design avatars, greater understanding 
of the structure of hand/arm movements is necessary (Gibet et al., 2001). The study 
of sign languages has highlighted the convergence, not only of the linguistic features 
but also in the formational and functional parameters characterising gesture. It has 
been observed that the French Sign Language (FSL) gestures have five co-occurring 
‘parameters’: -

• The configuration that is the hand shape
• The orientation that gives the directions pointed by the palm and metacarpus
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• The movement which is generally a description of the arm’s endpoint 
kinematics

® The location, which is the area where the sign occurs. A same sign may be 
indeed realised in different parts of space, depending on its meaning

• The facial expression, which has a complimentary role in the sentence by 
giving mode, for example.

The disadvantage of the motion capture technique, for avatar design, as described in 
chapter one, is the large amounts of data that is generated, although the data has great 
accuracy and resolution. The alternative method is to use a simplified biomechanical 
model for the particular application of signing for a real-time animation. The 
HamNoSys (Prillwitz et al., 1989) was developed to transcribe signing gestures. 
Each gesture is broken down into components such as hand position, hand 
orientation, hand shape, motion etc. But the system has been designed to be read by 
people rather than computers.

More recently HamNoSys has been upgraded to version 4 (Kennaway, 2003) to 
include substantial coverage of facial expression because speech-like movements of 
the mouth are frequently used in signing. The symbolic language is transformed by a 
program and conveyed to the avatar. To aid computer animation the syntax of 
HamNoSys is translated to SiGML (Signing Gesture Markup Language). Another 
program then takes the SiGML representation of a gesture to add default location, 
timing durations, and rotation of each joint to produce appropriate animation data. 
However, movement speed descriptors are limited to the categories of merely fast, 
slow or ordinary speeds. Finally, the avatar is rendered to display the avatar on the 
screen at the specified times, in the specified postures (Appendix I).

The avatar is defined by the position of all the joints (Appendix I) when placed in 
some standard pose. Information is also required of each joint and whether it 
operates as a hinge, a ball and socket. Information is also needed whether there are 
any limits of movement. Defining gesture can be a complex task as there are 12 
standard hand shapes with a set of modifications that can be applied to them to bend 
individual fingers or thumb. Kennaway (2003) says that the position can be specified 
in several hundred locations with 26 possible orientations: -

“Movement descriptions can be quite complex. A movement of the hand through 
space can be straight (in any of 26 directions), curved (the plane of the curve being 
orientated in 8 different ways about the axis of movements also quite complex with 
the hand being able to move through space in many directions.”

Lifelike gestures can be enhanced by the addition of 'ambient motion’. Ambient 
motion is the small, random motions of the head, eyes and torso that are prevalent in 
human gesturing, and makes the animation more natural. It is recognised that 
synthesised data can be too good. Howell et al. (2003) note that the hand trajectory 
data was highly accurate, from the magnetic sensors, and applied random data so as 
to simulate less constrained data which might be extracted from visual methods.
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2.3. Gesture Recognition Techniques

Gesture tracking can be considered as a sub set of human movement. Gavrila, (1999) 
made a detailed analysis of human movement, particularly whole body and hand 
movement. Gavrila also overviewed a number of developments in this domain and 
identifying a number promising application. Similarly, Pavlovic et al. (1997), 
reviewed Hand Gesture Modelling, Analysis, and Synthesis. These papers represent a 
very thorough review of the subject area. The tracking of the hand, in a dynamic 
gesture, has to contend with the spatial and temporal variability of the gesturer, the 
position and the image size.

The most successful systems have been centred on state space techniques to 
overcome these variabilities. The state-space techniques mostly use Hidden Markov 
Models (HMMs) although there are exceptions, notably Bobick and Wilson (1995, 
1997). Other techniques that do not use space techniques are Temporal Templates 
(Davis and Bobick, 1996), Motion History Images (Bobick and Davis, 2001), Neural 
Networks (Howell and Buxton, 1998). Darrell and Pentland (1993) use dynamic time 
warping and normalised correlation to match the interpolated responses of several 
learned image templates. Input to the HMM models use a suitable set of features. 
This can be the spatial coordinates of the hand, with perhaps some other attributes of 
the hand shape (Stamer and Pentland, 1998). Pavlovic et al. (1997) report that 
features can range from region based parameters, like colour and motion; wire mesh; 
orientation histograms; or facets of whole images given by eigenvector coefficients, 
PCA or Gabor wavelets.

There are many different ways to analyse gestures. Kohler (2001) compiled a table of 
vision based hand gesture recognition systems. Comparisons are made between the 
task, segmentation, features and classification technique. Interestingly only some 
fifteen systems used colour segmentation out of the forty or so techniques listed. The 
features are very varied, ranging from, fingertip detection; edge detection; centroid 
mass; shape moments; boundary tracking; eigenspace; Fourier descriptors; moments 
of difference images; orientation histograms; 2D/3D point distribution model; 
regions and blobs; silhouette; coarse direction and magnitude values; Gabor filter and 
Zemike moments. The classification techniques range from neural networks (NN); 
Multi Layer Perceptron Neural Network (MLP NN); Hidden Markov Model (HMM); 
continuous HMM; coupled continuous HMM; correlation, local shape property 
learning; hand/non-hand classification; finite state machine, distance from feature 
space; 3D cylindrical finger model; k-means for active shape model (2D smart 
snake); inverse kinematic model; stochastic deformable model; multiple 
classification; 3D hand skeleton model; finite state estimation; convolution, template 
matching.

Originally, the burden of analysis by gesture recognition techniques was lowered by 
the use of passive or active markers or marked gloves (Huang and Pavlovic, 1995). 
Others use restrictive set-ups: uniform background, limited gesture vocabulary or just 
a simple static posture analysis. Very few techniques today use markers, but 
restrictions or constraints are still prevalent, indicating the complexity of the 
recognition task in real environments.
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2.3.1. Spatial Modelling

Pavlovic et al. (1997) explain that Spatial Modelling of gesture can take various 
forms depending on the application, and can be broadly sub-divided into the two 
classes o f ‘appearance-based’ models and 3D models. The ‘appearance-based’ model 
is where gesture is revealed directly from the images observed. The 3D approach is 
where a gesture is inferred from the model of the motion and the position of the 
hand. 3D Hand/Arm models can be broadly classified into either volumetric 
(cylindrical) or skeletal models. The types of modelling of the hand can be very 
varied i.e. 3D textured volumetric model; a 3D wire-frame volumetric model; a 3D 
skeletal model; or a binary silhouette or contour model.

Appearance-based models of the hand and arms model the appearance of the gesture 
to a predefined template of gestures. There is a large variety of models in this group. 
Some use deformable templates of hand, arms and bodies, or trajectories. Gavrilla
(1996) compares the number of techniques used in 2D (with and without explicit 
shape models) and 3D approaches. There were twenty-six different 3D approaches 
catalogued by Gavrilla (1999) in the paper ‘Visual Analysis of Human Movement’. 
There was almost the same number (twenty-three) of techniques on 2D approaches 
without explicit shape models, whereas only thirteen approaches using explicit shape 
models were given.

In addition, sequences are used as gesture templates or temporal templates (Davis 
and Bobick, 1996). A gesture is modelled by a sequence of representative image n- 
tuples. However, Sherrah and Gong (2001) showed that rather than relying on 
spatial-temporal continuity and complex 3D models of the human body, a Bayesian 
Belief Network could be used to deduce the body part positions by fusing colour, 
motion and coarse intensity measurements with contextual semantics.

2.3.2. State-Based Modelling

Hidden Markov Models have been very successfully applied to a range of 
applications especially speech recognition (Rabiner, 1989). The use of Hidden 
Markov Models (Stamer and Pentland, 1995), (Yamato et ah, 1992) and (Chen et al, 
2003), has been transferred into gesture recognition. HMMs consist of a number of 
states which can capture the underlying nature of the gesture from a set of training 
examples. This approach overcomes the problem of variability, uncertainty and 
probabilistic nature of gesture (Sage et al, 2003). HMMs are further described by the 
set of probabilities that a state gives rise to and the probabilistic transitions between 
states. Many of the examples that use HMMs are for the analysis of human dynamics 
that show a continuous or periodic nature. However, Kobayashi and Haruyama
(1997) argue that HMMs are not necessarily appropriate for modelling gesture 
features that are transient. They proposed the partly hidden Markov model that 
showed seventy-three percent improvements in error rate over HMMs for isolated 
sign recognition, although these results were for a restricted set of just six signs.

Alon et al. (2003) proposed a technique for clustering time-series data to discover 
groupings of similar object motions that were observed in a video collection. A finite 
mixture of HMMs is fitted to the motion data using the expectation-maximisation 
framework. The formulation allows each sequence to belong to more than a single
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HMM. The decision about class membership can be deferred until a later time when 
such a decision is required. Promising potential for this technique is claimed on a 
number of experiments including camera mouse experiments and gait experiments. 
In the latter experiment, the input time-series is modelled as sine waves plus noise. A 
periodic structure is defined as consisting of four states corresponding to the sine 
valley, zero crossing up, peak and zero crossing down. The typical model consists of 
as many states as observations in a single period. The classification accuracies of the 
clustering algorithms were very similar to the classification accuracies obtained with 
supervised learning i.e. without the need for class labelling.

Stamer and Pentland (1995) used a feature vector of eight elements taken from the 
blob of each hand representing ‘x’ and ‘y’ position, angle of axis of least inertia, and 
eccentricity of the bounding eclipse. The axis of least inertia is determined by the 
major axis of the bounding ellipse, but this can lead to a 180-degree ambiguity in the 
angle of the ellipse. However, this problem was successfully addressed by allowing 
the angles to only range from -90 to +90 degrees.

The earlier work of Yamato et al. (1992) explores how the HMM technique is 
applied to recognising six different tennis strokes from 200 by 200 pixel image 
sequence. The model parameter approach of the human form is dismissed because it 
is not robust or reliable for real images. Low-level image features such as the area of 
the subject are justified, as they are more robust than model fitting procedures. The 
results gave over a 90% recognition rate when the training data and test data was of 
the same subjects. But when the training data and test data was from different 
subjects the recognition rate fell. The performance depended on the number of 
training patterns used and how well the patterns were representative of the spread of 
category. It was recognised that people had some unique quality in their action. 
Further work is required on refining feature extraction.

Bauer and Kraiss (2001) introduced an HMM-based continuous sign language 
recognition system using subunits. Signs of the vocabulary are made up by the 
concatenation of the sub-units. This aids the enlargement of the vocabulary by 
reducing the training material. The feature extraction was aided by the use of a 
coloured glove. Recognition rates achieved were about 80% with 12 different signs 
and 10 sub-units. Cheng et al. (2003) produced a hand gesture recognition system 
using a real-time tracking method and hidden Markov models. The significance of 
this work is that the input feature to the HMMs were not coloured gloves but were a 
feature based on skin-colour and motion. The system was tested to recognise twenty 
different gestures achieving a recognition rate of 90%. The performance was affected 
by some of the signers imprecision in signing. In addition some of the error was 
because there was insufficient training data to make a good estimate of HMM model 
parameters from the 1200 sequences representing the twenty gestures.

Simple gestures for visually mediated interaction, using motion image moments, 
have been investigated by McKenna and Gong (1998). Four deictic gestures were 
studied for motion of the arm and hand where the shape of the hand is unimportant. 
Trajectories based on a simple set of motion image features were used to estimate 
models for gesture events. The feature trajectories were appropriately time-scaled. 
Recognition was performed using a Gaussian matching function. This function, for 
gesture recognition, used a probabilistic finite state machine similar to a HMM, 
although the transition probability matrix is not used. Results were acceptable
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although there was some confusion between high waves and low waves. It was also 
noticed that the subject was sitting relatively motionless making no major changes 
during the image sequence.

The technique of Bobick and Wilson (1997) defines a gesture to be a sequence of 
states in measurement or configuration space. In this work, a training set of 
trajectories was used to capture both the repeatability and variability of the given 
gesture. A prototype trajectory was generated from an ensemble of trajectories. 
Configuration states were developed from the prototype. Gesture recognition was 
undertaken from an unsegmented, continuous stream of data from two dimensional 
movements of a mouse input device; hand movement from a magnetic spatial 
position and orientation sensor and eigenvector projection coefficients computed 
from an image sequence. The second experiment using a magnetic sensor yielded 
somewhat sparse, higher dimensional data; so as to ensure that there were enough 
points available to compute the prototype curve, each example was up-sampled using 
splines, to give each gesture forty samples and each point gesture seventy samples. 
This technique represents gesture by a time-invariant but order-preserving method 
based on a convenient arc length parametisation of the data points to produce the 
sequence of states. There is similarity in this work with HMMs, namely the existence 
of states. However, the important distinction is the production of a prototype, which 
is easily and readily available. The HMM, in contrast is timely in production because 
of its statistical nature with the adjustment of many free parameters. The paper does 
question the validity of the approach, in that the spatial configuration is the most 
important aspect of the signal to be extracted. It is suggested that the temporal 
properties may be the more important elements of a gesture but to consider the 
temporal structure or gestural phases in natural gesture. The authors also suggest that 
the technique is appropriate for stylised or literal gesture, but inappropriate for a 
natural gesture or the spontaneous gesture generated by a person telling a story for 
instance. The paper concludes that there is little consensus in the literature on a 
useful definition of gesture. The development of the state technique attempted to 
formalise a notation of gesture that was not limited to a particular domain, as 
illustrated by the three very different experiments.

Recent work on real-time hand tracking (Stedfanov et ah, 2005) uses Variable- 
Length Markov Models (VLMM). Automatically acquired VLMMs are used for 
tracking of structured behaviour and are used to represent high-level structure and 
also temporal ordering of gestures. This work demonstrated that the approach 
combines behavioural knowledge with a stochastic simulation to achieve robust 
tracking of hands in a human-computer interaction environment. The task of 
manipulating virtual objects in a natural manner, using hand movements and gestures 
did cause some problems for the users. The authors suggest that gestures must be 
carefully designed so that users can employ them comfortably and straightforwardly 
to signify different actions. The results indicate that what seems natural may not, in 
fact, be the most effective design. This warrants further investigation and 
explanation.

2.3.3, Alternative Modelling Techniques

A different approach to gesture recognition is based on time-delay invariant Radial 
Basis Function (RBF) network (Howell and Buxton, 1998). Gesture motion is
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detected by differencing consecutive frames and a sparse arrangement of Gabor 
filters is used to process the differenced images. This information is applied to a 
TDNN (Time-Delay Neural Network), using one RBF network for each training 
example. Only simple, limited techniques for the temporal segmentation of gestures 
are used but high levels of performance can be obtained. The main disadvantage 
reported was the difficulty in classifying the same behaviour at different speeds using 
a single time window. Another vision-based system, Ng (2002), for interpreting hand 
gestures used a procedure to extract binary blob(s) of the hand. The shape of the blob 
was represented by Fourier descriptors input to a RBF for pose classification. Further 
processing with HMMs and Recurrent Neural Networks (RNN) was used for the 
recognition phase.

Yang et al. (2002) employed TDNNs to classify motion patterns of hand regions as a 
consequence of them being successfully applied to the spatial-temporal patterns in 
phoneme recognition (Waibel et al., 1989). Waibel et al. demonstrated that using the 
TDNN gave lower error rates than that achieved by a simple HMM recogniser. It is 
noted that a TDNN has two important properties. First, it is able to recognise patterns 
from poorly aligned training examples, which is to be expected from the slight 
difference in duration of gestures. Secondly, the total number of weights in the 
network is relatively small since only a small window of the input pattern is fed to 
the TDNN at any instance. Another important feature is the temporal integration at 
the output layer that makes the network shift invariant i.e. insensitive to the exact 
positioning of the gesture. The input feature vector consisted of position coordinates; 
velocity magnitude and angle values. The parameters in the TDNN (number of nodes 
in each layer, number of hidden layers and window size) were selected empirically 
by numerous experiments on a training set.

2.4. Ground Truth Data and Comparisons

Reviews of many papers on gesturing have shown different success rates of the 
varying techniques in use. The paper by Lockton and Fitzgibbon (2002) examines 
gesture recognition for single-handed gestures (static) using a ‘deterministic 
boosting’ algorithm that does not use a temporal Markov model, with a 99.87% 
success rate. However, this was only achieved through a wristband to replace 
accurate lighting control. The lighting was the same for the test and training data. 
Likewise Kohler’s (2001) table of comparing vision-based hand gesture systems also 
comments on the constraints (user dependent/independent, static background, 
background independent or optimal illumination), speed, trained gestures and 
recognition and error rates.

Further work on comparing the claims of different techniques was investigated by 
Morrison and McKenna (2003) by comparing Trajectory-based and History-based 
representation techniques. A direct experimental comparison of these two approaches 
is presented using skin colour as a common visual cue, using recognition methods 
based on HMMs, moment features and normalised template matching. The constraint 
imposed on the recognition system was that it must be capable of learning gesture 
models from only a few examples, as users find the process quite tedious after about 
ten examples per gesture. Importantly, the comparisons were simplified by ignoring 
the temporal segmentation problem and used isolated gestures. The comparison was 
tested on three one-handed and three two-handed gestures. It was interesting to note
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that the gesturers were allowed to specify their own gesture vocabulary so that they 
would be more comfortable performing and remembering the gestures. The history- 
based approach achieved consistently higher recognition accuracy using template 
matching than when moment features were used. The best in terms of computation 
and error rate when the template matching was based on mean absolute difference 
(MAD). The trajectory-based approach using HMMs gave better results than 
moments with Skin History Image (SHI), but did not perform as well on average as 
template matching of SHIs. The differences in recognition rate between these 
techniques was not significantly higher as trajectories with HMMs gave 82.7%, SHIs 
with MAD gave 89.3%, SHIs with mean squared difference (MSD) gave 87% and 
SHIs with correlation coefficient (CC) gave 85.2%. However, the use of central 
moments (CM), scale-normalised moments (S-nom) and HU-moments only gave 
recognition rates of 67.3%, 62% and 41.8% respectively. The analysis of the errors 
made using HMMs and MAD SHIs showed that the two approaches made different 
errors. This would suggest that it might be possible to combine the approaches to 
further reduce error rates.

A method of performance evaluation of trajectory detection is to provide ground- 
truth data with which to compare experimental results. Black et al (2003) report on a 
number of semi-automatic tools that are available for generating ground truth for 
video surveillance tracking systems. Whether automatic or not, a system will provide 
independent and objective data (e.g. classification, location and size) that can be 
related to data from the video sequence. The gathering of manual/visual ground truth 
is usually undertaken by a human operator who ‘points and clicks’ at the frames in a 
sequence, at well defined points of interest. The resulting trajectory of points is then 
compared with the points generated from the tracking performance.

In order that the performance can be evaluated on a ‘level playing field’, image 
sequences are now becoming available for test purposes. In the past each researcher 
needed to generate their own image sequence, resulting in a variety of environmental 
and lighting conditions. This problem has been confronted by PETS-ICVS Datasets 
(2003) and FGnet (2004) database. The PETS-ICVS consists of datasets for a smart 
meeting. The environment consists of three cameras: one mounted on each of two 
opposing walls, and an omni-directional camera positioned at the centre of the room. 
The overall task is to automatically annotate the smart meeting (Appendix VII). 
FGnet has also available many databases for example pointing and command 
gestures under mixed illumination.

Another possible set of ground-truth data is available from the avatar designing 
community. The design of the avatar can be made from two possible sources, as 
mentioned in Chapter 1. The position of every joint is held by three values to specify 
Translation and four values to specify Rotation (Quaternion Notation, Appendix I). 
For example, to find where the wrist is, you need all the translations and rotations at 
the joints up the hierarchy from the wrist to the root need to be combined. The testing 
of gesture recognition routines can be made on the data files that hold the avatar 
animation sequence. At present, some of these sequences are not as complex as real 
sequences and some attempt is made to add ‘ambient motion’ to make a gesture more 
lifelike. It is expected that progress will be made to make the whole image more 
lifelike in the future.
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2.5. Summary

The definition of gesture continues to be refined. Psychologists have a similar 
terminology for describing gesture characteristics, but there is no universal 
agreement. There can be some confusion with using the word ‘hand-gesture’ too 
loosely. In some instances it means the static pose of the hand whereas in other 
situations it means the dynamic trajectory of the hand in gesture-space. The 
taxonomy of hand/arm movements seems to be a helpful approach to categorising the 
movement into its many uses and meaning, as does the terms bi-phasic and tri-phasic 
as an indication of the type of gesture structure and activity. However, more recent 
work on gesture has concentrated on a detailed description of spatial structure. It has 
been found that gestures have to be specified with many parameters. The advent of 
avatar design has shown that virtually all joint movements and positions need to be 
specified to enable typical human gesture characteristics to be observed or modelled.

Gesture analysis originally used glove-based data, but then moved on to using natural 
features with appearance-based models and 3D models using a variety of 
classification techniques. HMMs have shown great promise in the classification 
process because of their time invariant characteristics. However, one of the biggest 
problems is the training required to make the system work with little error and its 
inflexibility at expanding the vocabulary. Chen et al. (2003) attributed some of the 
errors to insufficient training. Correspondingly Morrison and McKenna (2003) note 
that users find giving more than ten examples tedious. Other constraints in systems 
tested relate to non-complex backgrounds; users sitting quite motionless in the 
context of non-variable lighting conditions.

HMMs are not the only unique method of describing and classifying gestures and 
many other techniques have shown promise. Morrison and McKenna compared 
HMMs with SHI techniques with isolated or segmented gestures. This showed that 
the latter technique gave better results although there were not large differences in 
performance when template matching was used with the SHIs. Howell and Buxton 
(1998) report that the use of RBF and TDNN resulted in very good performance 
compared with other techniques like, for example ‘moments’. Chen et al. (2003) 
approaches the use of feature cues in a similar way to this thesis by fusing of motion 
and skin-colour cues. Fourier Descriptors techniques are also used but for hand shape 
recognition. The recognition technique uses HMMs rather than the PNN described 
later in this thesis.

Recent work in the gesture community has focused on using common data sets to 
compare the effectiveness of techniques. In this area the ‘ground-truth’ data is seen 
as another important aspect at verifying experimental work. The comparison and 
effectiveness of techniques has been undertaken by some researchers. Bobick and 
Wilson (1997) undertook some experiments on a state based approach which used 
three different input sources. A significant comparison of techniques has also been 
made by Morrison and McKenna (2003) in which HMMs and SHI where compared 
using the same feature cue. Interestingly, there are few comparisons in the literature 
on comparison of techniques. The advent of common data through organisations 
such as PETS and FGnet should produce more comparison material in the future.

The next chapter discusses a technique of fusing skin-colour and motion cues for 
tracking the hand position in its gesture trajectory. The technique is tested in a range
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of lighting environments. A suitable colour-space model is applied to skin-colour 
detection. The technique is also modified for use in a range of lighting conditions due 
to the environment or due to incorrect white balance. Fundamentally the skin-colour 
cue is linked to a motion detecting cue to produce a reliable moving skin-colour 
object, referred to as a gesture object. The rank ordering by area of the gesture 
objects is shown to be a very effective aid at detecting the gesturing hand and its 
associated trajectory.
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3. Detecting Hand Position by Colour and Motion

The development of how a simple and robust method of detecting hand position of a 
gesturer is explained in this chapter. Firstly, consideration was made of detecting the 
hand by skin-colour. In order for this to occur, suitable colour-space models were 
considered that were invariant to light intensity change. A review of many of the 
colour-space models was made, but the HSV version was found most appropriate for 
this application. Consideration of the ‘H’ (Hue) properties of this model showed that 
there was a discontinuity in the red region that could affect skin-colour detection. 
The solution to the problem is explained. The chapter then proceeds with detecting 
motion in the image sequence and proceeding to merge the skin-colour and motion 
cues. The merging of the cues produce skin-colour and motion objects which when 
rank ordered by size invariably locates the hand by the most significant object. A 
number of experiments and variations to the production of the skin-coloured objects 
is investigated for optimal conditions of segmenting the hand from the image, 
regardless of environmental conditions.

3.1. Introduction

The previous chapter reviewed the various features and classification techniques 
used to recognise gestures. Although gesturing can be viewed as a whole body 
experience of movement, in most cases gestures can be conveyed by the observation 
of the movement of just the hands and head. From this observation an hypothesis can 
be formed that in an image of one gesturer there are typically three areas of motion 
associated with skin colour i.e. the two hands and the face. Furthermore, with a 
single-handed gesture the motion of the dominant hand is the most important skin- 
coloured object to track. The motion of the head and less-dominant hand can often be 
ignored.

Motion in an image can be detected by comparing the difference in intensity in two 
adjacent frames (Jain et al, 1995). This assumes that lighting levels remain constant 
between frames, which is generally the case with gesturing as the duration of the 
gesture is a relatively short time of just a few seconds. Methods for adjusting for 
background variation are possible (Stauffer and Grimson, 1999) using adaptive 
background estimation. Adaptive techniques are generally found to add to the 
computational burden and affect the updating speed. At normal sequence capture 
rates of 25 frames per second the gesture duration is quite short and there are few 
samples that are obtained to capture a reliable history of pixel variability. 
Additionally, variations to pixel levels can be caused by automatic adjustments in the 
camera controls during the recording of an image sequence.

The segmentation of difference pictures, by a suitable threshold value, produces a 
binary mask with many different sizes of objects. The objects can result from various 
sources, not just skin-coloured motion, particularly in complex scenes. Many of the 
resulting objects can be considered as noise. Setting the threshold at an appropriate 
level can be a challenge for all possible image sequences. A new technique is 
introduced of sorting the objects into rank order by area. The largest movements are 
associated with the most significant size of objects and generally relate to the 
movement of the dominant hand. Heuristic approaches to setting the threshold level
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are not required. As a result threshold levels do not need adjustments from sequence 
to sequence and image size to image size.

Rank ordering can be particularly effective when the motion cues and the colour cues 
are combined by the fusion of the segmented binary masks (Cheng et ah, 2003, and 
Harding & Ellis, 2003). This technique significantly reduces the number of objects to 
process. Furthermore, size ordering these objects ensures that, in most cases, the 
most significant object relates to the movement of the dominant hand.

One particular problem associated with the recording of gestures is the clothing worn 
by the gesturer. In most sequences the gesturer wears a long sleeved shirt of some 
kind, of different colour to the hand and so significantly helps in the segmentation of 
the hand region. There are a number of sequences when the subject wears a short- 
sleeved shirt or blouse exposing a much larger area of skin coloured region. This 
results in either the centre of gravity of the skin-coloured region being significantly 
different to the hand region or the production of more than one object due to local 
variations of skin-colour or motion. This problem was investigated by Cheng et al. 
(2003) by detecting the regions of high ‘edgeness’ around the fingers using Kirsch 
template matching techniques (Vernon, 1991 and Davies 1997).

Testing has also been undertaken using publicly available test sequences. One of the 
organisations, PETS (Performance Evaluation of Tracking and Surveillance systems) 
has recently produced ‘Smart Room’ sequences of different scenarios. Another 
organisation to make available sequences for face and gesture recognition is the 
FGNet Network of Excellence in Face & Gesture Recognition. The paper by Holte 
and Storing (2002) documenting the sequences that FGnet publish, explains the 
problems that are encountered at present with the combination of artificial indoor 
light and outdoor illumination (through windows). It is noted that: -

“A cluttered background and such illumination conditions make the low level 
segmentation of computer vision-based gesture interfaces often fail. In particular, 
skin colour like objects and illumination colour changes are difficult to cope with, 
whereas the problem of high intensity ranges will be solved by future camera 
technologies ... that can capture much higher ranges than the human eye.”

The importance of illumination levels and illuminants has been recognised (FGNet, 
2002). An experiment for hand gesture recognition is described as to the 
environmental and cameras set up. The lighting is arranged so that a table (where 
hands are placed) is split in two parts with the same intensity (measured with a 
luxmeter). One side of the table has a colour temperature of 2600K and the other 
4700K. The aperture of the camera is set to 2.2 and white balance has been 
performed with a colour temperature of 3400K and the camera is calibrated to have 
an offset/black current close to zero.

The work described in this chapter was instigated to automatically generate data for 
Fourier analysis This chapter explores a method used to reliably combine skin-colour 
and motion cues to track dynamic hand gestures over a range of lighting conditions.
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3.2. Colour Fundamentals and Models

3.2.1. CIE Definitions

Colours are perceived in an image as a result of the spectral content of the ambient 
light, the spectral response of the sensors in the imaging system, and by the spectral 
reflections of scene surfaces. Although these three factors are complex the use of 
colour is motivated by it being a powerful object descriptor and the experience of the 
human vision system being able to discern thousands of colour shades and intensities 
compared to about two-dozen shades of grey (Gonzalez and Woods, 1992).

All colours are seen as variable combinations. The structure of the human eye has 
required colours to be viewed as variable combinations of the so-called ‘primary 
colours’ red (R), green (G) and blue (B). For the purpose of standardisation the CIE 
(Committee Internationale de l’Eclairage) in 1931, specified the three primary 
colours as blue = 435.8 nm, green = 546.1 nm, and red = 700 nm. It is important to 
note that no single colour can be called red, green or blue. In addition it does not 
mean that these three fixed RGB components acting alone can generate all the 
spectrum colours.

Colours can be distinguished from each other by reference to their brightness, hue 
and saturation. Hue is associated with the dominant wavelength and is the colour 
perceived by the observer. Saturation refers to the purity of the colour and refers to 
the amount of white added to the colour. Hue and saturation taken together are called 
chromaticity and therefore a colour can be characterised by its brightness and 
chromaticity. The amounts of red, green and blue to form any particular colour are 
called the tristimulus values and denoted, X, Y, and Z. A colour is then defined by its 
trichromatic coefficients and defined as: -

X
X ~ X  + Y + Z 

Y
y  = ----------------------------------X  + Y + Z

and z = ----- —-----
X  + Y + Z

Hence, from these equations, jc + y + z = l , o r  z = 1 -  x -  y

The tristimulus values needed to produce a colour corresponding to a particular 
wavelength can be obtained from curves or tables that have been experimentally 
obtained.

An alternative and common approach is the chromaticity diagram which shows the 
colour composition as a function of x (red) and y (green). The value of z can be 
determined from the equation above. The plot of the curve corresponds to 
monochromatic spectra. The shape has been variously described as ‘shark-fin- 
shaped’ (Sharma and Trussed, 1997) to ‘tongue shaped’ (Gonzalez and Woods,
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1992), as seen in Figure 3.1. Pure colours are on the boundary of the locus and are 
completely saturated. Any point not on the boundary represents some mixture of 
spectrum colours. There is a point in the shape where there are equal fractions of the 
primary colour and represents the CIE standard for white light. As a point leaves the 
boundary and approaches the point of equal energy, more white light is added and it 
becomes less saturated.

A straight line drawn between any two points on this diagram defines all the colours 
that can be produced by the combination of the two points. To determine the range of 
colours that can be produced by three primary colours, lines are drawn between each 
point to produce a triangle. This triangle does not enclose the entire region of the 
‘shark-fin shape’ and shows that not all colours can be obtained with three single 
primaries. This technique is often used to compare the relative gamut of RGB 
monitors and different printing inks. Figure 3.1 (Agfa,1994) shows the relative 
gamuts of RGB monitor and Pantone and SWOP-CMYK printing inks.

Figure 3.1 CIE Yxy model comparing Pantone, Monitor and SWOP-CMYK
colour gamuts (source: Agfa)

The non-linear CIE Yxy colour model was mathematically transformed in 1976 to 
the uniform L*a*b* model, in which distances between colours more closely match
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those perceived as shown in Figure 3.2 (Agfa, 1994). All colours of the same 
lightness lie on a circular flat plane, across which are the a* and b* axes. Positive 
values of a* are reddish, negative values of a* are greenish. Whereas, positive values 
of b* are yellowish and negative values of b* are bluish. Lightness varies in the 
vertical direction.

The colour models of XYZ, L*a*b* (CIELAB) and L*u*v* (CIELUV) all arise from 
colorimetry issues of modelling the human vision system and being able to match 
colours in different illuminants. Poynton (1997) explains that a perceptually uniform 
system is one that if a small perturbation to a component value is approximately 
equally perceptible across the range of that value. Both L*u*v* and L*a*b* improve 
the 80:1 or so perceptual nonuniformity of XYZ to about 6:1. However, both demand 
too much computation to accommodate real-time display, although both have been 
successfully applied to image coding for printing. It is noted that a computer vision 
system does not necessarily need to model the human eye to extract colour 
information for object identification.

C1E L 'a 'b* model

W hite
L*

Green
-a*

Figure 3.2 CIE L*a*b* model (Source: Agfa)

3.2.2. Colour Models used for Skin-Colour Detection

Observation of people’s face suggest that skin colour can vary for a variety of reason 
and a range of colour-space models have been used to model chromacity and 
intensity to suit a number of conditions. Gong et al. (2000) note that intuitively large 
variations between people of different ethnic groups might be expected and an 
individual’s facial colour might vary with temperature (e.g. when blushing). 
However, despite our own intuition, skin colour is closely clustered in 2D space such 
as HS (Hue-Saturation) and in fact most of the variation is in the intensity of the 
signal. Angelopoulos (2001) identified that there is uniqueness to the colour of 
human skin and measurements showed that that the overall percentage of light that 
was reflected from human skin increased with wavelength (Appendix II). The
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University of Oulu Physics-Based Face database (2001) has results of skin spectral 
reflectance characteristics also had similar results. The haemoglobin level is the main 
cause of this special characteristic.

Early work on extracting facial images from complex backgrounds used texture 
models with monochromatic images (Dai and Nakano, 1995). When the technique 
was applied to RGB images just the I-component from RGB to YIQ conversion was 
used. Schiele and Waibel (1995) reported on using chromatic ‘rgb’ values so as to 
ignore the intensity component inherent in RGB values. Subsequently, colour was 
based on the two-dimensional representations of (r, g) the chromatic colours. Using 
these pair of chromatic colours a probability density function of the chromatic colour 
of an image was formed. Also the colour-maps of a range of people and skin types 
were obtained. It was observed that the face colours are located in a relatively small 
‘bandwidth’ of the (r, g)-values. A general colour-map was produced that contained 
most face-colours. The pixel in an image with a given probability was compared with 
the general colour-map to give face-colour regions with higher or lower probability 
of being face colour. A binary image of the face area was found after averaging and 
thresholding.

Dai and Nakano (1996) isolated and retained the orange-like regions in the YIQ 
colour space as the skin region and eliminated the remaining regions. They then used 
texture in the grey image to identify faces in skin regions. The ‘Pfinder’ project 
(Wren et al, 1998) uses colour space on a blob, which is a cluster of spatial, and 
colour vectors. The use of YUV and normalised YU*V* components were used to 
remove shadows in a relatively static scene.

Chen and Chaing (1997) designed a face detection system based on skin colour 
classification by a neural network. Normalised values of x and y from the CIE-xyz 
co-ordinate system were used as input to a feed-forward three-layer network. The 
training method was based on a simple back-error-propagation learning method. The 
system was trained with fifty images. A pixel was tested to be skin-colour or not by 
inputting the ‘xy’ values to the input and the output thresholded to determine whether 
it was skin-coloured or not. Holes in the resulting skin-coloured region were caused 
by noise, highlights and other facial features (mouth, eyes etc.). Holes were filled by 
a range of filtering and segmentation steps to produce a ‘candidate face region’. In 
order to detect the lip area more reliably the colour space was changed to L*a*b* 
colour coordinate system because of its uniformity in measuring colour differences. 
Experimental tests were conducted on three different groups of images. Images came 
from a digital camera, a scanner and from video or Internet sites. The first two 
groups gave 96% detection successes, but fell to 76% with the video images. It was 
concluded that the faces that could not be detected correctly usually had too many 
highlights or were too dark.

Cai and Goshtasby (1999) produced a method for detecting human faces in colour 
images using a chroma chart. CIE LAB colour space was used because it is 
perceptually more uniformly spaced than colours in RGB or HSV spaces. The CEE 
LUV colour-space model has the same characteristics and could also be used. Only 
the chroma, ’a’ and ‘b’ components were used to separate skin from non-skin 
regions. Each pixel assigned a weight showing the likelihood of being skin. 
However, a training process is required to set up the system and used samples from
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European, Asian and African people. The colour image is transformed into a grey 
scale image of probabilities of skin-colour.

Kjeldsen and Kender (1996) achieved hand segmentation based on a histogram-like 
structure called a Colour Predicate (CP). The predicate, once trained, was based on 
identifying candidate pixels with values indexed by HSI value. It was found that 
pixels with large or small intensities were discarded as hue and saturation became 
unstable in this range. Lighting effects produced changes in intensity, which 
produced changes in hue and saturation. A solution to this problem was to quantize 
the Hue and Saturation axis of the CP much finer than the intensity axis. Results 
indicated that segmentation worked well on a range of skin-tone but for optimum 
performance it should be trained on the people to be segmented. The technique was 
used on a range of video material, and worked well where there was constant 
unmodified lighting and did quite well on cluttered scenes such as crowd shots 
showing many people.

Chen et al. (1995) prepared a colour chart in HSV colour space that represented 
probable skin colours. Using 3 templates, they located faces in skin regions through a 
fuzzy pattern-matching algorithm. Sobottka and Pitas (1996) detected skin regions 
using Hue and Saturation and then selected regions that were elliptic as face regions.

A system for face recognition in dynamic scenes was described by McKenna et al. 
(1998). They also observed that human skin forms a relatively tight cluster in colour 
space even when different races are considered. Colour distribution in faces was 
shown in hue-saturation (H-S) space and modelled as Gaussian mixtures. Some 
problems were found by the large changes in the spectral composition of the scene 
illumination and it was found necessary to use at least use two colour models, one for 
interior lighting and one for exterior natural daylight.

Perez et al. (2002) made colour models by histogramming techniques in the HSV 
colour space in order to decouple chromatic information from shading effects. 
Colour information was found to be reliable only when both the saturation and value 
were not too small and set the thresholds at 0.1 and 0.2 respectively. Chen (2003) 
used a simple skin detection system of R>G>B, which could limit its use if white 
balance settings are incorrect. However, other colours, not associated with skin- 
colour, detected in this range were constrained by the use of an associated motion 
cue.

Sigal et al. (2004) introduces a novel approach to real-time skin segmentation in 
video sequences, despite wide variations in illumination. The system uses an explicit 
second order Markov model to predict evolution of the skin-colour distribution over 
time. Histograms are dynamically up-dated based on feedback from the current 
segmentation and predictions of the Markov model. The parameters of the discrete-
time dynamic Markov model are estimated using Maximum Likelihood Estimation 
and also evolve over time. The performance of the algorithm for about seventy 
percent of the test sequences was much better than static segmentation. The 
algorithm is depended on the initialisation phase and is more susceptible to skin- 
colour background patches. Interestingly, the paper’s review re-emphasises a number 
of points of previous work on skin-colour detection.
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o Normalised RGB and HSV are the most common colour spaces used and are 
shown to be tolerant of minor variations of illuminant. These colour spaces tend 
to produce the minimum overlap between skin-colour and background- colour 
distributions.

® Parametric statistical approaches to skin-colour distribution, such as a gaussian 
model, have low space complexity and relatively small training sets. The major 
difficulty is order selection and is generally determined heuristically, and in 
constrained environments the model order can be predefined on the known 
environmental conditions.

• Although histograms that are used to represent density in colour space, and 
probability density can be evaluated easily, a major drawback is that a 
considerable amount of training data is required.

3.2.3. Colour Model Comparisons

Poynton (1997) explains that similar set of models, HSB (Hue, Saturation and 
Brightness) and HLS (Hue, Lightness and saturation), should now be abandoned. 
Nowadays when colours can be chosen visually, or related to other media, numerical 
methods like L*u*v* and L*a*b* should be used as they are perceptually based 
systems. Furthermore, Poynton points out that these types of colour space have a 
number of disadvantages i.e.

• The Tightness’ type of term makes no reference to the linearity or non-
linearity of the underlying RGB and makes no reference to the Tightness’ 
perception of human vision.

• If the Tightness’ value is computed as (R+GTB)/3, it conflicts badly with the 
properties of colour vision, as it computes yellow to be about six times more 
intense than blue with the same Tightness’ values.

• These colour models are not useful for image computation because of the hue 
discontinuity at 360°.

• These models involve different computations around 60° segments of the hue 
circle and introduce discontinuities in colour space.

• Although these models appear to be ‘device independent’, the ubiquitous 
formulations are based on RGB components whose chromaticities and white 
point are undefined.

But not all researchers agree with Poynton’s conclusions and there are instances of 
comparisons being made between different colour-space models. A valuable 
comparison of colour-space models was undertaken by Lee et al. (1996) for locating 
the human face. The experiments involved taking an ellipse of a typical face to 
analyse the results by various methods. Firstly a RGB scatter diagram was produced 
and showed that the data vectors are distributed along the diagonal axis and 
constitute one cluster, so the regions of mouth and eyes are indistinguishable. Three 
other colour space models were experimented with, HSI, L*u*v, and the principal 
component coordinates by Karhunen-Loeve transformation. The HSI colour space 
model showed clearly separated regions; the mouth was separated from other regions 
on the Hue axis and the skin, eye and eyebrow regions are clustered in the hue- 
intensity plain. The skin regions were concentrated in the low levels of the hue 
region, whereas the data for the eye and eyebrow regions were scattered in the mid
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range of the hue regions. The CIE-L*u*v* coordinate system surprisingly gave 
clusters in the face region did not have a large colour distance between them. In 
addition using the principal component coordinates (KL space) from the eigenvalues 
and eigenvectors of the covariance matrix of the colour image values did not produce 
the large discrimination power expected. Further techniques for classifying the data 
from RGB, Lu*v* and KL spaces were investigated but still good classification 
results were not produced. The conclusion was that the HSI colour coordinate system 
was the best candidate for colour image segmentation.

Sigel et al. (2004) justify the use of the HSV colour model by citing the work of 
Terrillon and Akamatsu (1998). Terrillon and Akamatsu compared the performance 
of nine different colour spaces that found that the best were HSV and normalised 
RGB. Slightly worse discrimination was observed for other colour spaces. The 
disadvantage to HSV was noted as the costly conversion from standard RGB. 
However, in this work HSV was quantised into (64 x 64 x 64) RGB to HSV lookup 
table. It was noted that the paper referred to the HSV model in the text, but the 
figures referenced the HSI model. Some of Poynton’s objections to the HS colour 
models have been addressed. Hanbury and Sera (2001) noted that the HLS colour 
space is widely used in image analysis, as it is physically intuitive. A new saturation- 
weighted hue order, which takes hue and saturation into account simultaneously, is 
discussed.

The discontinuity of Hue about its origin was addressed by Harding and Ellis 
(2003). Skin-colour in scenes that are properly white-balanced is usually in the red- 
orange region of hue. However, skin colour can appear different to this and often 
with a blue tint due to the illuminant or incorrectly set white-balance adjustments. 
Mathematical averaging does not give the correct result for a region that transverses 
this discontinuity. To alleviate this problem with skin-colour regions, the 
discontinuity was moved to the cyan region, and as a consequence the hue range was 
changed from 0 to 1 (or 0° to 360°) to +0.5 to -0.5 (or +180° to -180°), and discussed 
in the next section.

However, even with these disadvantages the HSV model has been found to out 
perform the apparently linear perceptually based CIELUV and CIELAB models as 
discussed in the previous section (Terrilon, 1999 and Lee, 1996).

3.3. The HSV colour-model

Smith’s (1978) seminal paper considered two colour space models. One model was 
based on the hexacone (HSV) and the other based on a triangle model (HSI). 
Gonzalez and Wood (1992) later refined the latter model. The calculations for the 
HSI model and the algorithm for the HSV model are shown in Appendix II.

The HSV model avoids trigonometrical values and for 8-bit colour depth gives 
identical results of Hue as when the HSI model is used (Appendix II). In this model 
the RGB cube is projected along the grey vector onto a plane perpendicular to the 
vector, a hexagon disk results. The disk for black is just a point, but as the grey level 
changes toward white the hexagonal disk becomes larger. For each value of grey 
level there is an associated sub cube of the colour cube. The length of the side of the
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colour cube in the projection is equal to the length of the side in the solid. V is 
specified to be equal to R, G or B and none is larger so that V = max(R,G,B).

It is instructive to compare hue values at the extreme of each sextant relate to the 
relative proportions of RGB values, as shown in figure 3.3. In the hexacone model, H 
and S specify a point in the disk for a particular value of V. H is taken to be the angle 
and S is taken to be the length of a vector centred at the grey point. The loci of 
constant S are hexacones, so when reference is made to the angle H, a proportional 
length along these loci is inferred. S is a relative length proportional to the longest 
possible radius at a given angle. S varies from 0 to 1, with the 0 value implying it to 
be a grey value and the 1 value implying it is a colour on the bounding hexagon. This 
also means that one of the values of R, G and B must be zero.

Figure 3.3 RGB proportions and related Hue values

The main problems when using the HSV colour model are singularity and 
discontinuity. Special care must be exercised at the singular point of Saturation, S=0 
i.e., where R=G=B, the grey or achromatic axis of the hexacone. Hue is not defined 
along this axis and so cannot be used, as there is no colour and the reason of using 
the Hue is lost. In addition, if saturation is S=1 then one of the primaries must be 
zero. Experiments have found that any HSV processing should always run with some 
nominal default range of saturation so as to avoid these problems. A range of 0.05 to 
0.95 has been found acceptable. At values outside this range, the calculation of hue 
can become unreliable due to the very small differences in the primary RGB 
components.

The discontinuity at the 0 -  1 boundary can give mathematical complications when 
calculating statistical values from samples that cross this region. This can be a 
complicated when the camera (video/web-cam) white balance has not been set 
properly. Automatic white balance mechanisms can be fooled when the background 
is predominately of a yellow/orange hue, like wood or a yellow wall. Resulting 
images have a blue tint and hues will spread from typical 0.05 values into the 0.9 to
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1.0 range. A method of calculating average values of distributions that straddle the 
discontinuity is to move it to a different position. Moving the discontinuity to the 
cyan region, so the Hue range is now +0.5 to -0.5 corrects the difficulty for skin- 
colour detection. Figure 3.4 shows the new range of hue values and the formula to 
calculate colours in each sextant.

Figure 3.4 The hue hexacone using positive and negative numbers

3.4. Colour Space Experiments

Experiments with the HSV model (Harding, 1999) confirmed that the Hue of HSV 
remained very constant for a range of environmental conditions. Varying sizes of 
samples were taken from the back of the hand and also for a range of aperture 
settings of the camera, in fluorescent light. As would be expected as the aperture 
became smaller and less light was transmitted, R, G and B values became smaller. 
Converting the RGB values to HSV values showed that the V values and S values 
also decreased with a smaller aperture. However, the Hue value remained virtually 
constant, until the V value dropped to about 0.15 corresponding to RGB values 
around 40, where the H value increased slightly. In another experiment with tungsten 
light, when the light in some regions was intense at some wide apertures, upper 
values saturated the conversion to HSV values showed that Hue remained constant 
across a range of aperture settings. It was also confirmed that Hue values, under a 
particular illuminant stayed relatively constant when samples were taken from six 
men and six women. It was observed that the S and V values varied considerably 
form one person to another.

The previous experiment showed that Hue remained constant, for a range of light 
levels, but the mean value was different for the two illuminants. The fluorescent light 
gave a value of Hue at about 0.1 and the tungsten light at about 0.06. It should be 
noted that the white balance adjustment remained fixed in these two experiments and
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was not necessarily balanced for the lighting conditions used in the experiment. It is 
observed that there is little in the literature that mentions the importance of white 
balance setting as this can affect the absolute value of hue recorded by the system.

Further experiments have been conducted to show the affect that illuminants have on 
the absolute value of hue. Appendix II shows a scene that is illuminated by four 
different illuminants. The illuminants were tungsten, white fluorescent, D50 and D65 
lighting standards and gave average values of Hue, for a skin-like coloured region of 
the arm of a doll as, 0.0671, 0.1079, 0.1232 and 0.0767, showing the variation of 
Hue with changes in spectral light.

A number of experiments have been conducted of subjects in a range of 
environmental conditions as detailed in Appendix II. One experiment was based on 
the skin regions of an avatar. The result of sampling the ‘skin’ areas (hands and face) 
of the avatar gave values of Hue to be almost identical at 0.03, which is typical of 
that expected of human skin and in the region of R>G>B. However, another image, 
of the author, shows that sampling of the each hand and the forehead can give 
slightly different hue values for the three regions, but typically about 0.06, with the 
head region having the larger variation in hue value. It was found that virtually all 
skin-colour samples were within plus/minus two standard deviations of the mean, for 
a particular sample. This is consistent with a Gaussian model of skin-colour that 95% 
of all samples are within plus/minus two standard deviations of the mean value. If the 
range of Hue values were taken as the minimum of the three samples and the 
maximum of the three samples, then good segmentation of all the skin-coloured 
regions took place. A further refinement in segmentation was possible if the 
maximum and minimum of the Saturation values were included in the mask. The 
saturation variable helped isolate the skin-colour regions from the background but 
the mask area was generally smaller and typically excluded some eye and mouth 
regions.

Other image sequences were experimented with and either had poor white balance or 
were affected by lighting in some way e.g. a magnolia background affected by late 
afternoon sun. In these cases some of the hue values straddled the red discontinuity 
(red equal to 0 or 1 in unmodified HSV colour space model) and gave negative 
values of hue. Finally, a more complex image was obtained from the PETS database, 
in which there are three people. Taking samples from the arms and cheek of the 
person in the middle of the scene gave a range of hue values that allowed 
segmentation of all the skin areas in the image, except the right hand person’s 
forehead. Sampling of the forehead showed that hue values were in the negative 
sextant where R>B>G instead of the more normal situation of R>G>B. Interestingly, 
this person’s forehead appears different to other skin tones in the image. Considering 
the context of this experimental sequence, then the person could be experiencing 
‘stage fright’ and the change of skin colour is often observed. It interestingly links to 
the earlier discussion about the unique spectral characteristic of human skin. If the 
‘fright or flight’ syndrome is pumping more blood around the body it is likely to 
affect the haemoglobin that affects the skin’s spectral response.
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3.5. Fusing of Motion and Skin Colour Cues

Motion can be detected by taking the difference between the foreground or object 
and the background. Many motion detection schemes incorporate some background 
updating approach to avoid errors in segmentation due to variations in lighting or the 
background. Stauffer et al. (1999) overcome this problem by modelling each pixel in 
an image as a Gaussian distribution. The program usually has the ability to model a 
number of distributions, depending on the expected variability in the background 
which can be quite severe in outdoor situations. The Gaussian distributions are 
compared with each other to determine which may correspond to background colours 
based on their persistence and variance. The Gaussian distributions can be modelled 
in RGB, rgb (chromatic) or HSV, space etc. The pixel values that are not matched to 
a distribution are considered part of the foreground. Eventually these pixels will be 
absorbed as a Gaussian distribution if there is sufficient evidence supporting them. It 
is common to have an updating rate or learning rate that can vary the frequency of 
updating the weights in the models. The equation controlling the updating acts like a 
causal low-pass filter with an exponential window on past values.

Vermaak et al. (2003) tackles the importance of incorporating adaptivity to 
observational models to counter, for example, illumination changes that affect 
surface colour. The rate of adaptability, that is applied, is set so as not to be affected 
by transients. Adaptation is only allowed during the conditions of the object being 
present and in motion. This particular method uses combined colour and motion 
observations from a fixed filter bank, with motion used to initialise a Monto Carlo 
proposal distribution. Adaptation is performed using a stochastic EM algorithm 
during the periods detailed above.

KaewTraKulPong and Bowden (2000) address the problem of using appearance and 
motion models in classifying and tracking objects when detailed information of the 
object’s appearance is not available. Objects are associated temporally by using 
motion, shape cues and colour information. It is explained that when the number of 
pixels supporting an object is too few to train a complex shape or colour model, it is 
found unreliable to learn just a colour distribution due to the limited number of 
examples from the scene. In addition if the model becomes too complex, the number 
of training samples increases exponentially and it is unreliable to classify or track 
objects by shape or colour alone. In the example of tracking of walking people with 
low-resolution images the key strength of the technique was in the use of robust 
background modelling and colour mapping obtained from anthropological study to 
model low resolution colour targets. The motion and colour information was 
combined using probabilistic methods and the system was able to track multiple 
people moving independently and was able to recover from lost tracks due to 
occlusion and background clutter.

Sherrah and Gong (2000) demonstrate that robust solutions to computer vision 
problems can be provided by perceptual fusion. This can be achieved through a 
framework for fusing different information sources through estimation of covariance 
from observations and is demonstrated in a face and 3D pose tracking system. Siebel 
and Maybank (2002) explain that tracking can be classified into three main 
categories of increasing complexity i.e. region or blob-based tracking with additional 
classification systems based on colour, texture or other local properties; 2D
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appearance based models and 3D models. In their description of a people tracking 
system, four co-operative modules are used i.e. motion detection, region tracking, 
head detection and an active shape tracker. It was found that by fusing the output of 
each output a high tracking reliability can be obtained than any of the individual 
trackers can achieve on its own.

In the gesture experiments an adaptive background technique similar to Stauffer and 
Grimson (1999) was investigated but found unnecessary for most gesture sequences. 
Firstly gesture sequences were recorded indoors where there was little change in the 
background. Secondly the gestures were quite short, lasting just a few seconds, so 
updating could significantly lag behind the foreground motion and affect the output 
giving inaccurate motion segmentation. In order to have an output that located 
motion, traditional motion detection could be used by detecting the difference in 
intensity in two adjacent frames (Jain et al, 1995) and then forming a binary mask 
image by selecting a suitable threshold. Two possible masks are possible, the DP 
(Difference Picture) or the ADP (Absolute Difference Picture) as defined in the 
following equations: -

DPjk(x,y) = 1 if F(x,y,j)-F(x,y,k) > x 

= 0 otherwise

ADPjk(x,y) = 1 if |F(x,y,j)-F(x,y,k)| > x 

= 0 otherwise

where x is a threshold, and j and k are two images at different times.

Fusing colour and motion together has many advantages as it reduces the variability 
in each of the individual cues. As already discussed, McKenna et al. (1998) found 
that colour models had to be changed when the scene illuminant changed. The 
following technique has a high tolerance to colour change especially when adding 
the motion cue to the colour cue. Additionally, only a limited amount of thresholding 
is used and a novel rank-ordering of skin-colour and motion objects is employed to 
successfully work without adjustment in a range of sequences and illuminations.

The fusing of colour and motion cues is reported by Chen et al. (2003) and Harding 
(2003). They showed that motion objects and the skin-colour objects, as a result of 
hand movement, overlap. The hue (or hue and saturation) mask of skin-coloured 
regions, HS is obtained by: -

HSt(x,y,t) = 1 ,if,ht > Hl,and,ht < H2
HS,(x,y,t) = 0, otherwise

where ‘ht’ is the hue (or hue and saturation) of the current frame and HI and H2 are 
the hue threshold values used for segmentation, as discussed previously. If saturation 
is also incorporated in the segmentation then two other threshold values S1 and S2 
are also required. The application of a logical AND function to the motion object 
mask and the skin colour masks to form the skin colour and motion mask and related 
objects (SCM), henceforth referred to as gesture objects: -
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SCM(x,y,t) = ADPt l_x(x,y,t) & HS,(x,y,t)

The reasoning behind this method is best explained by considering the movement of 
an object and in this context would typically refer to the hand movement. To explain 
the concept, the object is considered non-deformable and the intensity change 
between the object and the background is significantly different. Figure 3.5 shows 
the intensity profile of the moving object in frames one and two, F(x,y,l) and 
F(x,y,2) respectively and shown as binary valued for the sake of simplicity. The 
absolute difference picture is shown as ADPi2 , which is also shown as binary valued 
as a result of appropriate thresholding. The Hue-Saturation mask, HS2 of the object at 
frame 2, is shown in this example to have the same profile as the grey-scale intensity 
profile, which is also shown as a binary profile as a result of thresholding. The 
motion cue and skin colour cues are simultaneously shown to occur by the logical 
AND of the ADPi2 binary profile and the HS2 binary profile and are referred to as 
SCM objects. It is observed that if there is little movement the duration of the gesture 
object is relatively short compared to large movements. However, whatever the 
duration of the gesture object the implication is that the object is a consequence of 
motion of the skin-coloured region.

Logical Values

F,

T7

►
1 1

1-------- 1F2

1— 1 1— 1
A D P 12

HSi 1 1

SCM 1— 1

SCM I 1-------- 1

Distance

Figure 3.5 The cross-sectional profile of a simple moving object is shown at 
frames FI and F2. The thresholded absolute difference picture ‘ADPn’ is 
logically ANDed with the Hue-Saturation mask HS2, obtained from F? to 

produce the skin-colour and motion mask, SCM. The SCMI mask indicates the 
original HS mask region congruent with the SCM mask.
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As the gesture object occurrence is congruent with the skin-colour occurrence, as 
indicated by the HS2 profile, it can be implied that the gesture object is a sub-set of 
the hand region. Hence the output labelled SCMI is a region/object identified by the 
gesture object located by the HS profile of the hand. In this idealised example there 
is just the one HS profile and the HS profile and the SCM profile appear the same. 
However, in a real situation there is the likelihood of there being more than one skin- 
coloured region and it is the gesture object that locates the skin-coloured region that 
is in motion. The performance of this technique is assessed with real images in the 
next section.

Chen et al. (2003) also devised a method of separating the arm region from the hand 
region, which can be a problem if the gesturer is wearing a short-sleeved shirt or 
blouse. In order to track the hand position, rather than some position on the arm, 
Chen et al. (2003) used the properties of a simple edge detector, the Kirsch operator 
to obtain different edge directions and then choose the absolute maximum value of 
each pixel to form an edge image. In general the edges of the arm are less than the 
edges around the fingers. The addition of another cue based on the amount of edge 
information logical was used to combine the skin-colour, motion and edge masks 
together to produce a mask with SCME objects.

3.5.1. Motion Experiments

It is pertinent to note that there are two basic objects formed due to the difference of 
the right hand in frame one and the background, and the difference between the 
background and the hand in frame two. Because the background can vary, the 
differences representing the two objects will be different, and hence after 
thresholding the areas of each object may be different. Furthermore, as the hands are 
deformable objects, differences in hand orientation, between frames, may cause 
differences in object size, after thresholding.

Colouring of the grey-scale images helps show where the maximum differences are 
realised for Difference Pictures and Absolute Difference Pictures, as shown in Figure 
3.6, before thresholding takes place.

For each image sequence the threshold value needs to be set for optimum 
segmentation. Two threshold values of 0.05 and 0.5 are shown being used on the 
absolute difference picture, in Figure 3.7. The former is set at a value just above zero 
and the second is set based on the difference images of Figure 3.6. It is not always 
possible to have a manual system to determine optimum threshold value for a 
particular sequence of images. The next section introduces a novel technique to 
overcome this constraint and does not require the threshold value to adapt to different 
image sequences or conditions and can be left set at a minimum value, just above 
noise levels, for all image sequences.
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Figure 3.6 Difference and absolute difference pictures of frames 1 and 2 before
thresholding

Figure: 3.7 Two different thresholds of absolute different pictures

3.5.2. Rank Ordering of Motion Objects

With a minimal threshold many objects are generated which are not related to the 
main gesture movement and represent small movements or noise. A size filter can
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remove these small objects, but setting the threshold level for the minimum object 
size is an arbitrary or heuristic process.

Sorting the objects, from the thresholded, absolute difference picture, by descending 
area is a less arbitrary process. The largest object is the first object of the sorted data 
and usually relates to the largest motion between the two frames. Instead of having to 
decide upon a threshold value, a decision as to the maximum number of objects to 
process has to be decided. This is a far less critical decision to take and some six 
objects have been found to easily accommodate a range of situations.

A b s o lu te  D ifference  Im a g e  after T h re s h o ld in g  = 0 .0 5  a nd  S iz e  F iltering

M a x o b je c ts  =  6  M in n s iz e  =  2

Figure 3.8 Six largest objects as a result of rank order by area filtering

The example shown in Figure 3.8 shows just the first six most significant objects. 
Coincidently the result is very similar to the thresholding at 0.5, as shown in figure 
3.7. If required small objects can be removed by using a combination of minimum 
area criteria or morphological filtering such as ‘opening’.

Rank ordering preserves the most significant object criteria regardless of image size. 
If the sequence was to be analysed at two different image sizes, the most significant 
object will be the largest object in each image although the actual area will be 
different. Again this method avoids the need to adjust size filter criteria depending on 
image size.

The data produced from the rank order by size filtering operation is shown in Table
3.1. The table shows data sorted in rank order with the original object number given 
to the raw binary data in the labelling routine, the area and the row and column 
coordinates respectively.
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Object
Number

Area Row
Coordinates

Column
Coordinates

5 899 236 144
4 750 210 150
1 71 219 116

12 28 250 170
14 17 234 177
8 15 59 159

Table 3.1 Rank ordered size filtered motion data
The first two large area objects (Object No. 5 and 4) represent the movement of the 
right hand. The sixth number (Object No. 8) represents a small movement of the 
head. The other three objects of relatively small areas are due to motion associated 
with the hand movement. These motions can be excluded by the combination of a 
colour component as will be discussed in the next section.

3.5.3. Production of Skin-Colour and Motion Objects

Gesture objects are produced by the logical AND of the motion mask and the skin- 
colour mask. Figure 3.9 shows the Hue mask used with the motion mask of Figure 
3.8 to produce the right-hand image of Figure 3.9. The number of gesture objects is 
generally much less (6), as shown in Table 3.2, than from the motion mask (at least 
14). Furthermore, sorting the gesture objects by descending rank order of area 
highlights the most significant objects relating to the movement of hand.

Figure 3.9 Hue-Saturation mask (left), gesture objects from SCM mask (right)
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Object
Number

Area Row
Coordinates

Column
Coordinates

2 624 212 153
1 181 227 142
6 17 234 177
3 15 59 159
4 13 243 166
5 2 250 173

Table 3.2 Rank ordered size filtered gesture objects 

3.6. Hue and Motion Segmentation Discussions

When the hand is in its most dynamic state, the distance that it moves between 
frames is considerable (at least a hand width) when images are captured at 25 
frames/sec. In this dynamic state the gesture object is clear to see and is the most 
significant object in the image. However, when the hand is moving more slowly, 
typically at the beginning, end or at the top of its trajectory, other segmentation 
issues occur. Firstly, segmentation of the hand is not so complete and segmentation 
fragments from a single object to multiple, smaller objects. Secondly, when the 
dominant hand is nearly stationary, other movements of skin-coloured regions are 
just as likely to be detected. These skin-coloured are usually the other hand or the 
face. In some cases it can be the result of the exposure of a skin-coloured area in the 
background, that has become visible by movement of say the arm, but are usually of 
a transient nature.

Figure 3.10 The position of the first three most significant objects shown by the 
red, green and blue crosses, respectively on the left image and the assigned or 

SCMI object in the right image (image size 288 x 360).
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Fragmentation of the gesture object can give rise to the issue whether the most 
significant objects centre of gravity is the most important point to track. The most 
significant object is now more likely to be seen near the edges of the hand (fingertips 
and cuff), as this is where the most prominent change of intensity occurs. A 
procedure can be implemented where these objects are tested to see if they are 
located in the hand region given by the Hue mask. If they are, they are assigned to 
that region and produce SCMI objects. This results in fewer objects in the output and 
the ability to track the centre of gravity of the hand outline. Figure 3.10 shows the 
result of this operation.

Smaller images (144 x 180 instead of 280 x 360) do not change the situation, as 
shown in Figure 3.11, except the positions of the first and second gesture objects are 
interchanged, in this case. However, consideration of the size of the first object 
shows that it is some five times larger than the second object and closer to the centre 
of gravity of the assigned SCMI object.

Figure 3.11 The position of the first three most significant objects shown by the 
red, green and blue crosses, respectively on the left image and the assigned or 

SCMI object in the right image (image size 144 x 180).

The main problem with the generation of SCMI objects is that the segmentation, by 
hue (and saturation), of the hand is critical. It is important that the hand is clearly 
segmented from the background, which is not always the case. It has been found that 
the hue range was not critical for hand gesture tracking. In figure 3.9, the hue range 
was set quite arbitrarily wide (-0.2 to +0.8), whereas in figures 3.10 and figures 3.11 
the skin-colour was detected by using hue and saturation values (Hue range 0.053 to 
0.094 and Saturation range 0.225 to 0.375). Although, a method of finding the Hue 
range has been discussed, the inclusion of the motion cue can make the hue range 
less critical.

In general it has been found useful to perform morphological ‘opening’ on the 
motion mask to remove noise or small apparent motions, which have little to do with
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skin-coloured regions. However, it has been found advantageous not to filter the 
gesture objects because the smallest object can be relevant to detecting the smallest 
skin-coloured motion. At this stage, this information is not discarded but left to the 
object selection algorithm (Chapter 4) to decide if the information is important or 
not.

Figure 3.12 The second gesture object (green cross) in the left image detecting 
motion in the face region and shown as an SCMI object in the right image

Figure 3.13 Second and third gesture objects detecting background because
poor segmentation.

of
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The left hand image of Figure 3.12 shows the position of the first three gesture 
objects, although the second and third gesture objects are extremely small in size 
compared with the first object. In some circumstances such small objects could be 
ignored as small motions of the face may not be significant. However, the generation 
of the SCMI objects shows the face region and dominant hand region highlighted as 
shown in the right image of Figure 3.12. This segmentation could be important if 
hand silhouettes are to be used for recognising static hand gestures or signs, but not 
discussed in this thesis.

When the saturation range is relaxed to the default range (0.05 to 0.95), a number 
range of other objects are included in the face mask, as shown in Figure 3.13. Figure 
3.15 shows that the skin-like colour of the wooden door has now been included in the 
segmentation. Interestingly, the assigned or SCMI objects show the left hand being 
also highlighted being due to the fourth very small gesture object, not shown in the 
left-hand image.

The issue to be resolved is whether it is important to track the centre of gravity of the 
overall shape of the hand, or any other part of the hand. This is best left to the next 
chapter when the performance of the detection system is assessed on whole 
sequences. There is evidence at this stage that it may not be important, as in the 
literature there has already been a comment (Howell et ah, 2003) that too precise 
data is not realistic. Furthermore, the actual location on the hand may not be 
important as the change in position on the hand may be considered as a high 
frequency signal which can be ignored if the system is interested in mainly low 
frequency harmonics.

The advantage of fusing skin-colour and motion cues can be seen in Figures 3.14 and 
3.15. The hue image is segmented into a range of ‘narrow-band’ overlapping hues 
ranges, as shown in Figure 3.14. In this particular example, the images were 
segmented in ‘narrowband’ hue range of 0.02, starting at -0.01 (magenta-red) and 
finishing at 0.1 (red-orange), and highlighted red in each image. The range typifies 
the expected skin-colour affected by different illuminants or poor white balance. The 
twelve different images of Figure 3.14 show how different colours in the scene are 
highlighted as the scan moves across the range of hues varying from orange to red to 
magenta. Combining the overlapping, hue ranges with the motion mask, produces the 
results shown in Figure 3.15, with a clear suppression of the reddish regions which 
highlight where a small movement of the hand has occurred.

Harding & Ellis (2003) suggested that an automatic calibration procedure could be 
implemented from this result. The largest region could be obtained from the images 
shown in Figure 3.15 and an updated reading of the colour of this region obtained. 
This attractive technique works well if the sequence is well lit and the only 
appreciable motion is from the dominant hand. However, the colour segmentation of 
twelve images is very time consuming and can only be practically be used in an 
initial calibration period.
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Figure 3.14 Overlapping hue ranges o f ‘width’ of 0.02 and starting at -0.01 (top 
left image) and finishing at +0.1 (bottom right image), incremented by 0.01 and

shown in red.

Figure 3.15 Combining the overlapping hue ranges (Fig 3.16) with the motion 
mask to produce skin-colour and motion mask in red.
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3.6.1. Combination of Colour, Motion and Edge information

Investigations as to the characteristics of the Kirsch templates revealed that an 
alternative set of edge templates were available, attributable to Prewitt. 
Experimentation as to possible threshold values was undertaken on an avatar 
sequence of images so that background effects were minimal and edge effects were 
clearly associated with the hand region. Results of the investigation resulted in a 
preference for the Prewitt templates, as the output was fairly insensitive to a range of 
threshold values. In addition, Kirsch templates required much higher threshold 
values outside the normal 0 to 1 range, and made it less suitable for a heuristic 
approach to segmentation. The logical AND of the skin-colour, motion and edge 
masks produced SCME objects and the SCMEI objects indicated by the SCME 
objects congruent with the skin-colour regions. However, this technique was only 
effective in well-lit image sequences as is discussed in the next chapter.

3.7. Hue and Saturation in other environments

Previous sections have concentrated on the segmentation issues in relatively well lit 
environment and images produced under appropriate white balance control. The 
skin-colour was typically captured by an heuristically set range of -0.02 to 0.08 and 
saturation values set at default range of 0.05 to 0.95. Experiments showed that skin- 
colour could be segmented using a hue range based on based on plus/minus two 
standard deviation from the mean, consistent with a Gaussian distribution.

The skin-colour was segmented in a range of other environmental conditions and is 
recorded in Appendix II. Further work on the sequence discussed in this chapter 
showed that as expected both hands gave similar average hue values of about 0.065, 
but the forehead was noticeably higher at 0.083. It was established that all skin- 
coloured regions could be segmented by taking the highest and lowest of the two 
standard deviations from the mean of the three regions. However, comparison with 
the colouring of the skin regions of an avatar gave interesting results. In this case the 
average hue values were all the same, averaging about 0.03, not that dissimilar to the 
previous results. However, the forehead and hands had exactly the same colour 
rendering. Another sequence, made available by PETS, gave hue values in the 0.01 
to 0.047 range and again very similar to the sequences previously discussed. 
However, one of the three subject’s forehead was not segmented by this method. 
Closer investigation showed a forehead very flushed and obviously redder that the 
other subjects. In this case the forehead skin-colour sample confirmed that the hue 
had moved into the -0.05 to 0.03 range.

Two other sequences were experimented with which generally had poor white- 
balance adjustments and poor lighting conditions of some kind. The sequence of a 
subject, in relatively low light conditions, gave skin colour regions that had shifted to 
redder colours with a range of hues approximately -0.01 to 0.04. Again natural 
wooden doors in the background could only be segmented out of the image by the 
use of saturation values. The other challenging environmental condition was 
illuminated by late afternoon sunset where the hue values of the skin-coloured 
regions shifted further into the negative values and the range of hues was typically - 
0.14 to 0.03.
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3.8. Summary

There are many different colour-space models that can be used for detecting skin- 
colour. Through the auspices of the CIE, models have been developed that are 
similar to human perception. The most favoured model is the L*a*b model, which 
has a linear relationship with colour distances. It has been reported by two authors, 
that some perceptually linear models do not give the expected results for 
segmentation. Although there is some opposition to the HS variety of colour space 
models it seems to functions adequately for many computer vision applications.

Some authors segment the skin by the condition R>G>B, thus highlighting typical 
skin-coloured regions and rejecting five-sixths of all other colours, but does require a 
good white balanced image sequence. The benefits are in the processing speed as the 
conversion from RGB to HSV can be costly. However, the main advantage of the 
HSV model is that in representing a colour by Hue, a single variable that is easy to 
control and adjust. If an ‘HS’ pair or a ‘rg’ pair is used, then two variables have to be 
adjusted. Although it has been shown that an HS pair can segment a skin region from 
other similarly coloured regions, there is evidence that in a sequence of images 
saturation can vary from frame to frame more than with hue and hence cause 
segmentation to fail.

It has been found that the Hue of skin-colour stays very constant for a range of 
lighting intensities and remains very similar for a range of people. It is also shown 
that the Hue varies for a range of different illuminants. The physics of skin 
absorption and reflection shows that it has a unique spectral signature due to how 
haemoglobin absorbs light. In general the hue expected of skin, in a scene, properly 
white balanced, would be expected to be in the region of about 0.01 to 0.05 
equivalent to hues being described as being biased toward the red end of a red- 
orange colour. The saturation range would typically be 0.25 to 0.35 indicating a 
considerable amount of white added to the hue. It was also found that the spread of 
skin-colour was maintained within plus/minus two standard deviations of the average 
value.

In a sequence of images provided by PETS, one of the three people in the image does 
not segment as well as the other two people for a given set of conditions. The 
forehead of this person appears redder than the other two, perhaps through 
embarrassment at acting in the scene. In these cases the hue of the forehead was 
found to shift toward red so the forehead of one person was not segmented without 
adjusting the range. A similar but less pronounced difference between hand colour 
and forehead colour was found from the experimentation of the sequence produced 
by the author. Interestingly, the image sequence of the author, discussed in this 
chapter, showed the forehead actually being more orange than the hand regions.

Investigations of the three skin-coloured regions of an avatar gave similar hue values, 
averaging about 0.03 which is about the expected value found from the two previous 
experiments, with saturation values just a little less than found experimentally. 
However, it was noted that to make the avatar more lifelike then the facial region 
should exhibit some different skin-colouring to that of the hands. The two 
experiments with poor white balancing both showed average skin-coloured hues that 
had shifted into the red-magenta regions and saturation range being substantially of 
the same order as before but perhaps some wider distribution of values.
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In the experiments two important problems with the HSV model are observed. First 
is the discontinuity of the circular model of Hue where red can be dual valued at 0 or 
1. Any mathematical averaging of samples taken in this region can give false values 
of Hue. The author has found that moving the discontinuity to the cyan region, and 
changing the hue range from 0 to 1 to -0.5 to +0.5 overcomes the mathematics 
problem. In addition, the white balance in images is not always perfect and skin 
colour can be detected in the negative sextant when R>B>G as opposed to R>G>B. 
The example cited of the person with a redder forehead has more blue content than 
the other two persons, and the hue range for segmentation has negative values. The 
second problem with the HSV model is singularity. When saturation is zero all 
primary colours are equal value and the result is a grey or achromatic condition. Hue 
is immaterial at this point, but small deviations of the primary colours can result in 
quite bizarre colours being produced. Similarly, when saturation is at one, one of the 
primary colours is zero. These effects can be reduced by using default values of 
saturation that removes the influence of small difference in the primary colours.

Many of the skin colour techniques rely on comparing pixel values with probability 
density functions of typical skin-colour pixels, which have been obtained through 
training from experiments or from the Internet. It is often cited that training time can 
be considerable. This paper explains a system that does not require training, at the 
worst some initial calibration of hue either manually, or a semi-automatic procedure 
can find a suitable hue range for segmentation. However, it has been found that this 
is not critical (rather like the condition of R>G>B) and an educated or experienced 
guess at hue range can work well, as the motion cue greatly reduces the amount of 
possible objects in the sequence that are skin-coloured and moving. Further 
refinements to this technique can be achieved in some sequences by using edge 
templates to help locate the finger region. This type of segmentation does not always 
produce an object that represents the complete hand, but typically multiple small 
objects are produced that would lie in the hand region. An enhancement to tracking 
the hand is to indicate where these SCM objects originate from in the HS mask and 
form SCMI objects. This can reduce the number of gesture objects and allows the 
centre of gravity of the hand to be tracked more accurately if lighting conditions and 
associated skin-colour segmentation is good.

The tracking of the rank ordered skin-coloured, moving objects is considered in the 
next chapter. In chapter four, sequences recorded under different lighting and 
environmental conditions are analysed to show how well the technique works for 
one-handed gesture sequences and how it could be extended to two handed gesture 
sequences. It is shown how some simple object selection algorithms can improve 
the quality of data and prepares it for time domain normalisation prior to obtaining 
the frequency content of the gesture trajectories. The data is also compared with 
ground-truth data to give a good comparison of the technique and indicate its 
accuracy.
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4. Time Domain Tracking and Normalisation

The investigation of the ability to track hand trajectories in a complete gesture 
sequence by gesture objects links this chapter to chapter 3. A number of changes of 
different parameters is experimented with and conclusions formed. It was found that 
environmental lighting conditions affected considerably the production of gesture 
objects. In some conditions the second and third most significant objects needed to 
be considered in the tracking process. In order to differentiate as to which object to 
track from frame to frame an ‘Object Selection Algorithm’ was developed. A 
consequence of this work was that it was found possible to independently track both 
moving hands and also to track a hand moving in scenes in which there were other 
significant movements by other people. The resultant tracking coordinate output of 
the gesture was of variable length due to the variability in gesture and gesturer. To 
enable frequency components to be effectively compared each gesture needed to be 
normalised to a set length. This normalisation was achieved by using multi-rate 
methods of interpolation and decimation.

4.1. Introduction

Following on from the previous chapter, which established the necessity of locating 
the hand from cues generated by colour and motion, this chapter examines how these 
cues perform in a sequence of images that comprise a gesture trajectory. There are 
three possible outputs to appraise.

The first is to judge the effectiveness of the fusion of the skin-colour and motion 
spatial coincidences, to produce gesture objects (skin-colour and motion). The 
gesture objects are produced from a mask that has been generated from the logical 
AND of two other masks. These two masks are a result of applying suitable 
thresholds to difference images to capture motion and Hue-Saturation images to 
capture skin-colour. The second approach is to take gesture objects (SCMI) produced 
when SCM objects are coincident to the objects produced by the segmented skin- 
colour image, which normally would be expected to show objects related to the 
hands and the face regions. Finally, the finger region is detected by an edge template 
mask and combined with the two former masks of skin-colour and motion to produce 
SCME or SCMEI objects.

During these experiments, it was appropriate to examine the role of the Hue and 
Saturation segmentation range for a sequence of images. The Hue range for detecting 
skin-colour, in many environmental conditions, may be non-critical, and a Hue range 
based on experience, can save calibration or training time. Basically, a Hue range 
that reduces the total colour range reduces the number of coloured, moving objects 
that can be encountered. The use of Saturation outside a nominal range can isolate 
particular colours quite successfully, but is prone to change if for instance lighting 
changes or lighting is uneven across an image. This is usually less of an issue for 
short gesture sequences, but can cause segmentation of skin-colour to fail more 
frequently than if just Hue is used.

The set of rank-ordered objects does not always produce the most significant object 
related to the dominant gesturing hand. First, there is the occasion in a gesture 
trajectory when no motion is detected. No motion occurs when the hand is stationary,
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typically at the beginning and end of the trajectory and at the peak of the trajectory or 
gesture. Additionally, the camera/video mechanism may not capture a difference 
between frames, and the movement of the hand toward the camera may appear 
stationary in the appearance-based view. Additionally, as the gesture tends toward a 
static or partially static condition, the gesture objects tend to fragment into a number 
of smaller objects because of less distinct movement. In these conditions the other 
skin-coloured objects (usually the less-dominant hand or face) can produce a gesture 
object that is more significant in the ranking order than the dominant hand. When 
these conditions occur a decision needs to be taken to decide which object to follow 
or assign to the dominant hand. In ideal conditions, with no other movement coming 
from the gesturer and no noise objects being generated, the gesturing hand location 
could be determined by the coordinates of the most significant object, which may 
also be the only object generated.

However, with less than ideal conditions there are several objects generated and the 
most significant object may not always relate to the dominant hand. The Object 
Selection Algorithm (OSA) was developed to determine which object to follow to 
track the trajectory of the dominant hand. The success of the OSA is judged against 
‘ground-truth’ data that was derived from image sequences by visually determining 
the hand position and recording the coordinates of the approximate centre of gravity 
of the hand’s coordinates.

The output of the OSA then needs to be formatted for input to the FFT to generate 
harmonic frequency components. This is explained, in detail, in the next chapter. 
Before this process can take place, the data sequence needs to be normalised which is 
a technique akin to ‘dynamic time warping’. However, the process must not only 
resample the spatial data it must be a linear process to preserve the time element. 
Normalisation is necessary, as harmonic components can only be compared from 
sequences of the same number of samples. As gestures can vary in duration, by the 
gesturer and from gesturer to gesturer and by different frame rates, this normalisation 
is imperative for analysis to take place. Normalisation is achieved by multi-rate 
methods that adjust the number of samples in a sequence by interpolation and 
decimation techniques.

4.2. Previous approaches to tracking

The tracking of objects over a series of frames is relatively easy if detection is robust 
and there is no occlusion. In the case of many entities moving independently, 
tracking requires the use of constraints based on the nature of objects and their 
motion (Jain, 1995). First, it must be assumed that sufficient samples are taken of the 
objects in the time domain so that there is no dramatic change in position or 
associated velocity between frames. The projection of a smooth three-dimensional 
trajectory is also smooth in the two-dimensional plane: and it implies that ‘path 
coherence’ is smooth and will not change abruptly. There are then three assumptions 
to make about the correspondence problem: the location of a given point: the scalar 
velocity: and the direction of motion will be relatively unchanged from one frame to 
the next.

But there have been many different approaches to hand tracking that need 
examination. Gonclaves et al. (1996) use a 3D model of an arm to track it against a
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dark uncluttered background with the help of a recursive estimator. Gavrila and 
Davis (1996) also use a complex 3D model of the whole body and recover the 3D 
pose of the arm at each time step. In both cases the systems ignore the issues of 
clutter in natural environments. Deformable planar contours (snakes), coupled with 
Kalman filtering can be used for tracking non-rigid objects, like hands. Peterfreund 
(1999) improved the technique using optical-flow to detect and reject image 
measurements corresponding to image clutter and other objects. Hand contours were 
tracked in cluttered backgrounds by Isard and Blake‘s (1998) ‘Condensation’ 
technique, a statistical factored technique. But Heap and Hogg (1998) improved the 
technique to overcome discontinuities in contour shapes. The discontinuous shapes 
are described in terms of clusters in a high-dimensional shape space and the 
discontinuities are described in terms of transitions between these clusters using a 
learned Markov model.

Several blob-based methods have been used for tracking because they work when 
there are large changes between frames. Wren et al. (1997) tracked a person using a 
system that segmented the image into blobs using colour information. Prior 
information about skin colour and the topology of a person’s body was used to 
interpret the blobs as a figure. Tracking human motion by grouping pixels with 
coherent motion, colour and temporal support into blobs, using the expectation- 
maximisation (EM) algorithm and Kalman filtering was undertaken by Bregler 
(1997).

Mammen et al, (2001), recognise that the articulated motion of the hand makes it 
very difficult to track while performing a gesture. Simultaneous tracking of both 
hands needs to deal with large inter-frame variations in shape, clutter and mutual 
occlusion. From this a model for tracking both hands in rectangular windows was 
implemented using skin-coloured blobs and the ‘condensation’ algorithm. A major 
problem in simultaneous tracking of both hands is hand-hand occlusion, so if there is 
significant overlap of the search windows, tracking is done jointly. A scheme was 
implemented that estimated when these erroneous observations occurred, based on 
the ones that were not erroneous, and the predicted values of the states. The 
technique was successful as it exploited the fact that, usually, not all measurements 
are occluded simultaneously and so it was successful in dealing with various kinds of 
clutter and occlusion.

Chen et al. (2003) use a very similar method for extracting features of skin-colour 
and motion as described in chapter 3. It is explained that the identified location of the 
hand will not necessarily be at the centre of the hand because the extracted 
information is often located on the boundary of the moving object. A refined centre 
point and hand outline is accomplished by a background subtracting and updating 
method. The motion analysis is used to characterise temporal features to be used as a 
feature vector for a HMM to recognise gesture.

The tracking technique described in this chapter is very similar to that described by 
Chen et al. (2003). Many tracking techniques require a prior model in order to deal 
with challenging local features. This method is capable of capturing non-rigid motion 
based on two powerful cues of colour and motion. Techniques are developed for 
segmentation of the combined colour and motion cue that allow a fair degree of 
latitude when setting segmentation parameters, especially in good lighting 
conditions. Furthermore, complete segmentation of the hand is found to be
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unnecessary in many gesturing sequences and so the tracking approach is found to be 
a simple and robust method for this application.

The great attraction of the HMM is its ability to model temporal structure and 
variability. This technique was first used successfully in speech recognition. It uses a 
probabilistic pattern-matching approach which uses a time-sequence of speech 
patterns as the output of a stochastic or random process. Previously, dynamic time 
warping (DTW) had been used that took some account of time-scale variations 
(Owens, 1993).

But the technique used in this thesis, is a technique which has been used to transform 
data recorded at one sample rate to a different sample rate. One of the most widely 
used applications is to change music that has been recorded at 44.1 kHz, for CD 
(Compact Disc) and transform it to 48 kHz for DAT (Digital Audio Tape) (Ifeachor, 
1993). This requires the number of samples to be increased by a ratio of 1.088. The 
number of samples in a sequence can only be altered by an integer amount. To 
produce an overall change in sample numbers that is not an integer value the number 
of samples must be first increased by interpolation. Then that new value is decreased 
by an integer amount by decimation. Calculations show that to produce the ratio of 
1.088 the integer number for interpolation is 160 and for decimation is 147. This 
chapter describes a similar method used to adjust gesture samples to a normalised 
value of sixty-four.

Ellis (2002) states the importance of performance evaluation for video surveillance 
so as to assess the reliability of systems. These ideas can be transferred to gesture 
sequences so that algorithms or techniques can demonstrate robustness and 
correctness, to assess improvements resulting from incremental algorithm 
development. In addition, the use of widely available sequences provides an 
important opportunity for benchmarking. Alternatively, another method is to assess 
algorithmic performance using synthetic image sequences.

4.3. Data generated from gesture sequences

Poor segmentation of the hand needs to be considered. With reference to the previous 
chapter, a technique for locating the hand position was described using skin-colour 
masks and motion masks to produce gesture objects, in a similar way to Chen et al. 
(2003). The resulting objects are sorted by area into rank order so that the largest 
area has a higher likelihood of being the most significant skin-coloured object in 
motion. There is the case where a large skin-coloured object, like the face, may make 
a small movement and be of comparable size to a relatively smaller area, like the 
hand, moving just a small distance. However, the spatial location of these objects is 
usually so different that an object selection algorithm is able to discriminate between 
the objects as to whether they are hand, face or clutter, unless the hand passes in 
front of the face.

The direction and distance moved by the hand from sample to sample can vary 
widely, so any prediction of the next position can be very unreliable. Even a small 
amount of averaging to remove noise from the data can affect prediction calculations, 
especially at a turning point of the trajectory. At normal sample rates of 25 frames 
per second there is often insufficient data to perform filtering before a change of
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direction takes place. But the impulse response of a Kalman filter takes a significant 
number of samples to form its current estimate (Lynn, 1985) and hence this approach 
is not used.

In an ideal situation there would be just three rank-ordered gesture objects to locate 
and record associated with the hands and the face. However, the fragmentation of 
some skin-coloured and motion regions produce more than three objects and can be 
further exacerbated by the generation of additional noise type of objects. It has been 
found useful to record the first six rank ordered objects even though the first two or 
three are usually all that is required for the tracking process. Figure 4.1 shows a more 
ideal type of result in wdiich there is only movement from the dominant gesturing 
hand. The left hand image shows the centre of gravity of the only gesture object. The 
mask on the right image shows the silhouette of the hand. This object has been 
produced by finding the coincidence of the gesture object with the hand region, 
defined by the Hue mask. Assigning gesture objects to Hue regions is to produce 
assigned or SCMI objects.

Figure 4.1 Gesture object shown by red cross (left) and the assigned or SCMI 
object (right) showing the hand outline.

Figure 4.2 shows the position of the first three most significant gesture objects, in 2D 
and 2DT views over a sequence of fifty-one frames. The first or most significant 
object is labelled red and the second and third objects are labelled green and blue 
respectively. The gesture sequence consists of the right hand moving to the left 
shoulder, tapping it and then returning to the original position (a gesture in the 
Makaton language for indicating that a visit to the toilet is required). The 2D and 
2DT images of Figure 4.2 show the distribution of the three most significant objects. 
It can be seen that the three objects are generally associated in the same space as 
each other, as a result of being generated by different parts of the same hand. There 
are indications that some objects have originated from other, non-human parts of the 
image in the image sequence. The selection of which objects are relevant for tracking
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are determined by an algorithm termed the Object Selection Algorithm as it is 
implemented after the rank ordering of objects. This is discussed later in this chapter.

When the SCMI objects are recorded, in this environmental situation, the number of 
objects is much reduced. This is shown in the 2D and 2DT images for the sequences 
shown in Figure 4.3. The most significant red object is seen to describe most of the 
trajectory. The instances of the green and blue objects making continuous lines, in 
the 3D image, is because the plotting algorithm repeats the last known coordinate 
when no gesture object is generated at a particular frame. This can be due to only the 
first significant object being generated; poor segmentation or no additional 
movements.

Figure 4.2 A sequence of 51 frames (time index) showing 2D (left) and 2DT 
(right) images of the positions of the three most significant rank ordered SCM 

objects (red, green and blue, respectively).

Figure 4.3 clearly shows that the generation of SCMI objects produces a reduction in 
the number of gesture objects. The most significant object (in red), as shown in the 
2DT image, tracks most of the trajectory of the hand. The straight lines of the second 
most significant object (green) and third most significant object (blue) indicate that 
they have not been generated for most of the trajectory and that the most significant 
object is the only object generated for most of the sequence, the exception tending to 
be near the start and end of the sequence. The multiple objects in the previous figure 
are due to fragmentation of the gesture objects in the hand region which have now 
been mainly reduced to one object. The potential advantage of using the SCMI object 
is that for the majority of the sequence only the one object is generated. The object 
relates to the dominant hand position and so tracking is essentially just tracking the 
most significant object.
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Figure 4.3 A sequence of 51 frames (time index) showing 2D (left) and 2DT 
(right) images of the first three most significant rank ordered SCMI objects 

(red, green and blue, respectively).

Figure 4.4 2D (left) and 2DT (right) images of the first three most significant 
rank ordered SCME objects (red, green and blue, respectively).

A more profound result was recorded when incorporating the coincidence of the 
finger region with skin colour and motion regions by the logical AND of the motion, 
skin-colour and edge masks to produced SCME objects. These objects give rise to a 
distribution, as shown in Figure 4.4, of the first three significant ranked objects not
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much dissimilar those shown for SCM objects in Figure 4.2. However, assigning the 
objects to the skin-colour mask to produce SCMEI objects shows a dramatic 
reduction in the generation of objects and the most significant object, as shown in 
Figure 4.5, tracks mainly the hand. This process shows that the first object will 
suffice in characterising the trajectory and that the second and third objects are 
virtually redundant.

Figure 4.5 2D (left) and 2DT (right) images of the first three most significant 
rank ordered SCMEI objects (red, green and blue, respectively.

Figure 4.6 Comparison of the most significant data (red ‘o’) with manually 
obtained data (blue ‘.’) and output position (black *+’).
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The SCMEI data is shown in a different format in Figure 4.6, in which the row and 
column data are shown separately, with red circles indicating the coordinates of the 
most significant object. The blue line in Figure 4.6 indicates the approximate centre 
of gravity of the right hand that was recorded manually/visually, for the whole 
sequence. It can be seen that the coordinates of the SCMEI data closely coincides 
with the visual data for much of the sequence. There are frames when the hand 
position is not shown by the most significant object. For example, at frames 8, 9 and 
10 the most significant object is due to head movement and at frame 19 it is due to 
the left hand movement. At frame 21 and frame 22 there is an example of no 
movement being detected so the coordinate data is zero. The black crosses indicate 
the output trajectory coordinates. When a static condition is encountered the output 
takes the previous coordinate position. However, this simple correction algorithm is 
limited in its use, as inappropriate object coordinates (head) can be recorded as seen 
in the column data of frames 8,9,10, 20 and 34.
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Figure 4.7 The inclusion of the second most significant object (green diamond) 
improves the tracking performance output (black cross).

The inclusion of the second most significant object in the tracking algorithm shows 
an improvement in the resulting trajectory. This is shown by the black crosses of 
Figure 4.7 for frames 8, 9 and 10. More significantly, incorporating criteria for 
detecting a sudden change from the previous hand position, improves the tracking 
performance. For instance the change of coordinate value at frame 19 and frame 20 
was detected. The coordinates at frame 20 were substituted by the previous value 
(frame 18), a more likely value.
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4.4. The complete OSA (Object Selection Algorithm)

The rank ordering of objects whether they are SCM, SCMI, SCME or SCMEI 
objects increases the likelihood that the most significant object will normally 
represent the position of the dominant gesturing hand. However, the previous 
section has shown that this process is not perfect. There are occasions when other 
factors have to be considered. Whilst the gesture is in its dynamic phase the criteria 
that the highest ranked object, by area, locates the position of the moving hand 
successfully. However, when the hand becomes static or ‘partially-static’ because of 
no or little movement, other movements, typically the non-dominant hand or the 
face, can make a more pronounced movement. This movement can mean that the 
dominant hand may become the second or third highest-ranked object. The problem 
then, is to decide which object represents the dominant hand.

Another problem, probably due to the recording process, occurs in the dynamic 
phase of the gesture in which adjacent frames are the same: the same images do not 
produce any motion detection and data is blank for that pair of images. The algorithm 
has been designed to fill in missing data using the same data as the previous data. 
Prediction or interpolation routines have not been found necessary as the movement 
in these situations would be minimal. There is very little error in using the previous 
coordinate values. Furthermore, as will be discussed in the next chapter, when 
considering the frequency content of the gesture trajectories, small variations in 
location of the hand are not important and can be regarded as a high frequency 
signal. This does not affect the characteristics of the gesture.

Figure 4.8 Initial coordinates shown by magenta dotted line and the red dotted 
line showing the upper and lower tolerance to this estimate. Stopping criteria set 

by the updated initial position as shown by the cyan coloured line.
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The Object Selection Algorithm (OSA) was initially developed for single-handed 
gestures, but some opportunities were found to incorporate tracking of both hands. 
Data is first fed to the algorithm giving the likely initial coordinates of the right 
and/or left hand. A window or range of coordinate values is allowed for because of 
the difference in coordinate values from the static hand position to the first detected 
movement. The hand coordinate position is then updated at detection of the first 
movement. This allows stopping criteria to be set and activated to determine when 
the dominant hand returns to the initial position at the end of the gesture. At this 
stage a start flag is set to determine where the gesture starts, which is defined as the 
first movement away from the initial resting position. Figure 4.8 shows a typical 
trajectory with the magenta dotted line showing the initial position estimate, and the 
red dotted line the upper and lower tolerance to this estimate. The dotted cyan line 
shows the value of the initial updated position of the right hand, which is used as 
stopping criteria for recording the gesture. The initialisation routine to set up the 
initial trajectory coordinates is shown in Figure 4.9.

In the first instance, the algorithm will determine if the first or second object is 
closest to the initial condition. If it fails, then the algorithm then passes to the next 
frame and tests the new set of data until the condition is met. It has not been found 
necessary to extend the search to the third most significant data as no overwhelming 
case has been found for its inclusion, as yet. However, it could be included if needed, 
but at the cost of greater complexity in the algorithm.

After initialisation, objects are tracked according to the algorithm detailed in Figure 
4.10. If the dominant (normally right) hand coordinates are known, from the last 
frame, then tests are required to determine the suitability of the current data. The first 
test is to determine if the first (most significant) object is close to the previous object. 
A tolerance value is set that sets the maximum distance that the two instances can be 
apart. If the test is affirmative then the object coordinates are assigned as the next 
position. If it fails, then this can be due to the non-dominant (normally left) hand, 
face or some other object being detected. If two-hand tracking is being undertaken 
and it is in the vicinity of the left hand then it can be assigned to the next position of 
the left hand, otherwise, for single hand tracking, it is discarded. Two hand tracking 
is detailed in Figure 4.11.

If the most significant object has been discarded in the OS A then the second most 
significant object is tested for its suitability of representing the hand position. The 
second object is tested for its closeness to the first object, by a tolerance related to the 
hand’s dimensions, which results when there is fragmentation of the gesture objects 
in the hand region. In this case the second object position is ignored and the first 
object’s position is used. The second object is then tested to see if it represents the 
position of the dominant hand, by using the same distance tolerance as was used for 
the first object. If the test is affirmative the second object’s location is assigned to the 
trajectory location, otherwise the second object is ignored. If the first or second 
objects are rejected as not suitable for the current coordinates then the coordinates 
take the previous coordinate values. This has not found to distort the gesture 
trajectory, as the consideration of objects other than the most significant object 
occurs at times of little movement. Previous values fill the gap in results with 
minimal error in the trajectory shape.
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Figure 4.9 Initialisation of the OSA to set initial trajectory coordinates

98



P .R .G . H ard ing , 2007 , C h ap te r 4

Figure 4.10 OSA using just two gesture objects to follow the dominant hand
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Figure 4.11 OSA using just two gesture objects to follow both hands
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The gesture trajectory end is normally determined when the hand position returns to 
the initial updated starting location. As this position is not always exactly the same, 
some latitude is allowed and a tolerance is included. A full investigation into the 
stopping tolerance and its effect on gesture results is analysed in Chapter 5. Other 
stopping criteria are included if zero data is recorded and excessive constant data is 
recorded, indicating a static mode. The gesture data is then ready for the time 
normalisation process.

4.5. Choice of Sequence Parameters

The performance of the OSA using the SCMI objects showed several deficiencies 
when sequences were recorded in poor lighting conditions, as the hand shape became 
less well segmented. This also affects the results when edge detection was 
incorporated into the mask and resulted in loss of data in the sequence. However, the 
SCM objects produce data that related to the hand position and produced reliable 
results with the OSA.

Figure 4.12 An image from a sequence recorded in low illumination and poor
white balance

A range of tests was conducted in five different environmental conditions as 
described in Appendix II. In some of these tests there was just a single gesturer 
performing a single gesture. In other sequences there were a number of different 
gesturers who performed a range of gestures, one after another. In addition more than 
one person was in the image with one of the people performing the gesture several 
times. An example of one of the images from a poorly lit 250-frame sequence is 
shown in Figure 4.12. This sequence is lit by fluorescent light and natural light 
illuminates the left of the subject. The image could be considered to be dark.

In the previous chapter the choice of using just Hue or Hue and Saturation masks for 
the segmentation of skin-coloured objects was discussed. Experimentation on 
sequences, taken in the environmental conditions described in Appendix II gave the
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impression that as lighting became less uniform, data was not so reliable or missing. 
Furthermore, SCMI or SCME objects were more likely to be unrepresentative of the 
hand region because of poorer skin-colour segmentation and the threshold levels 
associated with edge detection would need constant adjustment and the process was 
likely to fail. Additional parameters were investigated to find out if noise removal or 
filling in holes in final binary mask from which the SCM and SCMI type objects are 
produced might improve reliable object generation. The morphological operations of 
‘opening’ or ’hole filling’ were applied to the sequences. The opening is used to 
remove the borders of frayed regions and for eliminating tiny regions: -

/  ° s = (J&s) © s

where the binary image ‘f  is eroded first by a structuring element ‘s’ and the 
resultant image is then dilated by the structuring element. Whereas, hole filling 
changes the value background pixels surrounded by foreground pixels from 0 to 1.

The details of a typical poorly lit sequence and experiment are shown in Appendix 
III. Data was recorded for the eight conditions using Hue or Hue and Saturation for 
determining skin-colour range and with and without ‘opening’ and hole-filling, and 
four types of data i.e. SCM data ; SCMI data; SCME data; and SCMEI data.

Figure 4.13 The most significant SCM object for the two hand sequence with the 
left hand visually obtained data (cyan) and the most significant object

coordinates (red).

The hand coordinate data in Figure 4.13 shows the distribution of the most 
significant SCM object for both hands waving. The conditions that produced this 
data were for no hole filling and no opening and for the saturation range set at its 
default range of 0.05 to 0.95. The column data shows the distribution of the data 
between the right and left hands. The positions of the row data of the right and left 
hand coordinates are difficult to separate, as they are virtually identical. When the 
experiment was run again but with Saturation changed to a more restricted range, for
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better segmentation of the skin-colour regions from the background, very little 
difference in results were obtained. The row data was virtually identical, whereas 
there was some change to the distribution of the most significant object to the right 
and left hands. In the former case, 25 objects were assigned to the right hand and 18 
to the left hand, and in the latter case it was 29 and 14 respectively. The cyan 
coloured dots show the visually recorded data of the trajectory of the left hand and 
show close agreement with the automatically produced data.

Figure 4.14 The most significant SCMI object for the two hand sequence for the 
optimum Hue and Saturation range with visually/manually obtained data (left 

hand, cyan) and the most significant object coordinates (right hand, red).

The SCMI data was very poor when the saturation was at its default range. This was 
to be expected as segmentation included many background features. Improvements 
to the data quality were made with a more appropriate saturation range, as shown in 
figure 4.14, but there are significant regions where object coordinates do not 
represent the expected trajectory, as shown for example by the cyan coloured 
locations of the visually recorded data. The edge detecting technique also failed to 
work very well in these conditions with little coordinate data being generated.

The effect of using hole-filling or opening was minimal except close to static 
conditions. In the case when the optimum Hue and Saturation ranges were selected 
and hole-filling and opening was applied, no data was recorded at frames 22 and 23. 
This is due to the small overlap between the skin-colour mask and the motion mask 
being removed by opening. In other words the sensitivity to detecting small motion 
has been lost.

The inclusion of the second most significant SCM coordinates into the data stream 
show (Figure 4.15) that two hands trajectories can be obtained by a combination of 
the first two SCM objects. In this figure the visually obtained trajectory of the right 
hand is shown by a series of magenta dots and the left hand by the cyan dots. Green 
diamond shapes show the second most significant data coordinates. It can be seen
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that for a given trajectory tracking follows a sequence of first and second objects. 
The tracking of both hands and the comparison of ground truth data for both hands is 
shown in Appendix III. Tracking of both hands failed when the distance between the 
pair of hands fell below the search threshold, typically when the hands go into a 
crossing trajectory.

Figure 4.15 The first two SCM objects (red circles and green diamonds, 
respectively) coordinate identify the trajectory of the right and left hand, with 

cyan and magenta dotted lines showing the visually obtained left and right hand
ground-truth data respectively.

4.6. Three people in an image

Figure 4.16 Three people in a PETS image
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The original hypothesis for the generation of SCM objects was for the case of one 
person in the image and three moving skin-coloured objects in the image. Subsequent 
experimentation showed that in poorly lit situations, or at near static conditions there 
was fragmentation of the SCM objects. Moreover, the uncovering of a skin-coloured 
background object could appear momentarily as a SCM object. However, tracking 
could still be undertaken successfully and for most situations the first two SCM 
objects were sufficient.

MSO(1,2 &3) Coordinates,datai, Frames= 16381 - 16421

Figure 4.17 Tracking of PETS data with a ‘+’ from first two SCM object 
coordinates (red circles and green diamonds, respectively) and comparison with

visual data (magenta)

The use of publicly available sequences of people gesturing were considered for 
investigation. The PETS (Performance and Evaluation of Tracking Systems) 
database uses three people in the scene, as shown in Figure 4.16. The main gesturer 
was the person on the left of the image. Although the two other subjects were not 
deliberately gesturing and the image could have been cropped to exclude them from 
the analysis. However, it was decided to apply the techniques to the whole image 
even though movement of the non-gesturers could be observed.

In a part of the image sequence the person on the left gestures by raising his right 
hand, the other two people are also seen to move. A full analysis for a 48 frame 
sequence is tabulated in Appendix III, where the first three SCM objects are shown 
to mainly relate to any of the skin-coloured regions of the three people. The two 
people to the right of the main gesturer (person on the left in the image) are not 
stationary and their movements are generated as SCM objects. For instance, at frame 
16967, (Figure A4.3) about the eight from the start of the sequence, motion is 
detected on the face of the left hand person; the right hand person and the centre 
person, in that order as tabulated in Table A3.3. The result is that the data is more 
sparse than would have been expected with just one gesturer in the image, but the
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algorithm was able to successfully track the hand position of the person to the left of 
the image, regardless. The tracking of the right hand of the left-hand person is shown 
in figure 4.17.

4.7. OSA Performance

The difference between the ground truth data i.e. manual location of the hand and the 
position of the hand generated by the Object Selection Algorithm from SCM objects 
give interesting insight to the algorithm’s performance. The following example is 
taken from the two handed tracking experiment as shown in Figure 4.18. Right-hand 
tracking is undertaken with the ground-truth data shown as the magenta line. The 
OSA’s output is indicated by the black ‘+’ symbol, which in this example seems to 
follow the second most significant SCM object more than the most significant SCM 
object as that is favoured by the left-hand more frequently.

Figure 4.18 An example of tracking data to access the OSA’s performance.

Initially, the bar chart in Figure 4.19, shows a large difference (frames 1 and 2), 
caused by the manual data locating the hand coordinates but the OSA data is at zero 
as no motion has occurred. As soon as motion of the hand is detected, SCM objects 
are generated and the OSA determines which of the first two most significant objects 
to track. It is interesting to note that the difference value is quite low and is usually 
much less than the length of the hand (18 pixels from wrist to finger tops) which is 
shown as the distance between the two red lines on Figure 4.19.
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Figure 4.19 Bar charts showing difference between manual and OSA for row 
(upper) and column (lower) coordinates. The hand span is shown between the 

red lines at 18 pixels and the search window set at 30 pixels (green lines).

Figure 4.20 Search distance insufficient for good tracking

In this example there are two occasions when the difference is greater than the span 
of the hand. This occurs at frame 10 and 11. At frame 10 the first two SCM objects 
are both related to the left hand and the third SCM object is related to the right hand, 
but not used in the OSA. When this occurs the OSA substitutes with the last 
coordinate values for the right hand. This normally causes little error in the tracking 
procedure. However, in this case the hand is entering the stroke phase and the 
distance covered between each frame is a maximum. In this situation it is important
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to adjust the search distance, shown by the green lines on the figures, so that the 
larger movements can be accommodated. Figure 4.20 shows the situation when the 
search distance has been reduced from 30 to 25 and the tracking procedure fails from 
frames 9 to 33, and then completes the tracking to the end of the gesture at frame 46. 
During the tracking failure the bar graph of figure 4.18 shows significant differences 
that are greater than the hand length, particularly in the row coordinate figure. It is 
interesting to note that in this particular example the column differences are within 
limits of hand span, but the row differences greatly exceed the threshold, indicating 
much greater vertical than lateral movement

4.8. Time Normalisation

The appearance-based tracking data generates spatial co-ordinate data and time-index 
data relating to the frame number for every frame in the sequence. The spatial (2D) 
view and the spatial-time (2DT) view are shown in Figure 4.21. Instead of equally 
spaced boundary samples of an object, this application uses equally spaced time steps 
of the co-ordinates of the trajectory of the hand, which are the centroids of the SCM 
or SCMI object selected by the OS A.

For object recognition, using the Fourier Descriptor technique, the steps around the 
perimeter form a closed space, returning to the start point. In this application, the 
steps around the perimeter are replaced by time steps of coordinate data that 
represent the hand position trajectory and return to the same or near the initial 
starting coordinates. In sampling the perimeter of an object as, for example, when 
using Fourier Descriptors the starting and stopping coordinates are never exactly the 
same, as this would invalidate the condition of periodicity. In addition, a gesture 
trajectory will exhibit a finite difference between the coordinate values of the static 
starting position and the first detected movement coordinates as well as the starting 
and final stopping coordinates.

2D  3D

Figure 4.21 2D (left) and 2DT (right) representation of a gesture trajectory
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The length of the gesture sequence is normalised using multirate techniques to permit 
comparison of gesture harmonics by the application of the FFT (Fast Fourier 
Transform) to the trajectory data. The multirate process is used to directly re-sample 
the gesture sequence to a fixed number of samples, for all gestures. This technique 
allows for gestures taken at different sample rates to be compared. It also allows for 
compensations to be made for the variations in gesture timing between gesturers. The 
frequency analysis of a single gesture is similar to the spectrum analysis of a finite 
length signal. The application of the DFT (Discrete Fourier Transform) to the 
frequency analysis implicitly implies that the input signal is periodic. In practice the 
DFT is implemented by the FFT as this algorithm is a fast implementation of the 
DFT when the number of samples is a power of two. It is inappropriate to 
meaningfully compare harmonics from different sample lengths. The multirate 
process is used to directly change the sampling rate of the gesture sequence to a fixed 
number of samples for all gestures. This enables the harmonics for each gesture to be 
compared on a like for like basis. The target length of a gesture, N was set at 64, and 
allows a typical gesture of approximately two seconds to be recorded at 25 to 30 
frames per second.

4.8,1. Decimation and Interpolation

The primary multirate processing operations are decimation and interpolation and 
described in detail by Ifeachor and Jervis (1993). Decimation reduces the sampling 
rate by an integer factor ‘M’ or reduces the sampling rate from fs to fs/M. To prevent 
aliasing at the lower rate a digital filter is required to band-limit the input signal to 
less than half of fs/M. Instead of the default (Matlab) eighth-order, low pass, 
Chebyshev type filter, a 30-point FIR (Finite Impulse Response) filter was found to 
be better suited to the application. The filter decimates the input sequence in only one 
direction. It ensures that the new samples coincided with the start position of the 
original samples, and thus do not introduce additional phase shifts to the resulting 
harmonic analysis.

Interpolation increases the sampling rate by an integer factor ‘L’ to Lfs. The signal is 
low-pass filtered to remove image frequencies created by the rate increase. It is 
always advisable to have the interpolation stage before the decimation stage, as 
decimation may remove some of the desired frequency components.

4.8.2. Ratio calculation

Cascading an L rate interpolator with an M rate decimator can make possible non-
integer values of sample rate changes. It is also convenient to reduce the overall 
decimation or interpolation factor into the product of smaller factors. Interpolation 
and decimation values were restricted to a maximum of 13 as there is a possibility of 
instability in the low-pass filters with higher orders (Matlab Signal Processing 
Toolbox). It was found that many ratios could easily be obtained with just one ratio 
value of L/M. A greater coverage with less error was found using two cascaded ratios 
of L/M i.e. L]/Mi and L2/M2.

The target ratio value for the L/M value is obtained by dividing 64 (the normalised 
gesture length) by the number of samples in the gesture. For example, if the sample
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length was 48, the length divided into 64 gives a ratio of 4/3, which means that 
normalisation occurs by an interpolation factor of 4 and a decimation factor of 3. 
However, many gesture lengths when divided into 64 do not give a exact values from 
two integers and so the integer values for ‘L’ and ‘M’ have to be selected from a 
range of values that produce a value within a tolerance of the target ratio value. 
Possible ratios were calculated finding all ratios equal or greater than one with just 
the numbers from 1 to 13. For instance 13 could be divided by 13, 12, 11 etc. and 12 
could be divided by 12, 11, 10 etc. to give a range of values Some values would 
occur more than once and so the smallest integer values would be selected e.g. 6 
divided by 5 would be chosen instead of 12 divided by 10. In all there were some 
forty different values produced from the combination of the thirteen numbers. In 
order to achieve more accurate results the L/M ratios were multiplied by every 
possible combination of themselves to produce a matrix of a larger number of 
possible ratios. This is implemented by cascading the two L/M ratios together to give 
the overall ratio of Li/Mi x L2/M2.

No. Sample
length

L, Mi l 2 m 2. Overshoot

1 28 2 1 8 7 0
2 30 4 3 8 5 0
-> 31 9 8 11 6 1
4 47 7 6 7 6 1
5 53 9 8 13 12 1
6 58 13 12 1 1 -1
7 64 1 1 1 1 0

Table 4.1 Example of Interpo ation (Li, L2) and Decimation (Mi, M2) factors
required to normalize sample lengths to 64.

Figure 4.22 2DT view of the normalization of a 47 sample (blue cross) gesture to 
64 samples (red circle) by the ratios given for No. 4 of Table 4.1
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A selection of ratio values to a tolerance of 0.01% is shown in Table 4.1. However, 
in practise cascading the two interpolator-decimator pair normally results in either 
the number of samples being on the target length of 64 or just one sample over at 65. 
Ratios were calculated from 11 samples to 66 samples. The tolerance could be 
maintained until sample values close to 64 were encountered. If further refinement 
were needed an additional ratio factor could be added. It was thought unnecessary to 
do this for this application as only a few ratios were affected. The result of 
normalization of a 47 sample gesture trajectory is shown in Figure 4.22.

4.8.3. Aliasing considerations as a result of normalisation

Increasing the typical gesture from, for example, thirty samples to sixty-four samples 
will not change the frequency resolution of the gesture. However, with sixty four 
samples it is established that there will be information about the gesture from thirty 
two harmonics. It would seem that there is more harmonic information now available 
than from, for example, a gesture of length of thirty samples that would generate 
fifteen harmonics. It is found that most of the high frequency data is ignored as the 
gesture is mainly characterised by the low frequency content. The overall frequency 
content is governed by the frame rate that is normally twenty-five frames per second. 
This means that the first twelve harmonics are those that can be reliably recorded for 
authentic characterisation of the gesture. The only possible cause of aliasing is when 
considering gesturers that are longer in duration than expected with superimposed 
oscillations (as described in Chapter 7) and sub-sampling is required to accommodate 
the normalisation process based on a length of sixty four. The generation and 
characteristics of harmonics generated from the normalised data is discussed in the 
next chapter.

4.9. Summary

The general hypothesis of that there being just three main skin-coloured moving 
areas in a sequence is confirmed by the experimentation, when there is just one 
gesturer in the scene. In complex environments with good lighting the data 
generation techniques worked well. The techniques with SCMI and SCMIE objects, 
for the majority of the sequence, generate one object that represent the mid-point of a 
silhouette of the hand defined by the skin-colour mask.

When lighting conditions are poor, the techniques incorporating SCMI, SCME and 
SCMIE objects tended to fail. Data is not generated for many of the frames because 
of either poor segmentation or because of threshold value becoming invalid. 
However, the basic process, that generates the SCM objects, continued to function. 
The rank ordering of the data maintains a high expectancy that either the most 
significant object or the second most significant object will locate the position of the 
relevant gesturing motion. The cost of using the ANDing output is the fragmentation 
of the gesture objects, especially in the hand region. Tests carried out in these poor 
conditions showed that using ‘opening’ or ’hole-filling’ did not improve data. It 
became apparent that neither had any major benefit. When there was only small 
amounts of movement, the ‘opening’ removed noise-like objects and so resulted with 
less data. In general the optimal ranges of both Hue and Saturation gave the best set
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of data, but were closely followed by using just the Hue range with the default 
Saturation setting.

In these initial experiments the pose of the gesturer, although not controlled, was 
some what static and most of the movement in the sequence came from the dominant 
hand. In more realistic environments (PETS sequence) there was much more 
movement from the gesturer and the two other people in the same image sequence. It 
became apparent that the original hypothesis of three skin-coloured and motion 
objects in an image could be extended and the OS A was more versatile than 
originally expected. The tracking of SCM objects was tested in this more complex 
scene and the ability to track one person gesturing was maintained, even under long 
sequences when one of the other people’s movements was more pronounced and was 
being indicated as the most significant object. For the majority of the time the OSA 
worked effectively and could substitute for the second object instead of the first 
object where appropriate. At this stage there does not seem to be the need to 
incorporate the third object in the tracking process, as in the case of little movement 
the substitution of the previous sample data is adequate. However, it could be 
incorporated into the algorithm if required. In addition it was found possible to track 
two hands simultaneously, but only if the hands were kept apart. However, as the 
main emphasis of this thesis concerned one-handed gesturing this avenue was not 
explored further at this stage.

The overall aim of tracking technique was to produce a simple, effective hand tracker 
that would generate data sufficiently robust to enable subsequent trajectory shape 
analysis. The use of the OSA enabled a range of hand gestures to be tracked in a 
number of different environments and with different gesturers that was simpler to 
implement than other popular tracking mechanisms.

The technique for normalising the length of a gesture sequence to 64 samples worked 
over a range of sample lengths using a pair of interpolation and decimation ratios. 
There were a number of gesture lengths where it was not possible to change the 
length to exactly 64 and often it was 65. A full analysis of how this overshoot 
affected the data in the frequency domain is discussed in the next chapter. In 
addition, in the next chapter the truncations of the data and issues with the 
segmenting of the gesture trajectories are analysed.
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5. Fourier Analysis of Gesture Trajectory

This chapter focuses on the frequency analysis of a gesture modelled as an aperiodic 
waveform. ID and 2D frequency analysis is explained and then developed for the 
2DT case. In ID analysis the concept of frequency components constructed from 
exponential equations giving rise to positive and negative sequence components is 
made and visualised in the time domain as a helical construct. The matrix equations 
that are used to explain the 2D recognition of objects by equally spaced samples in 
the spatial domain (Fourier Descriptor technique) are modified for equally spaced 
samples in the time domain. Exponential equations are developed to show the 
positive and negative sequence components that represent 2DT motion. The 
subsequent analysis produces elliptical structures in the appearance-based view or 
‘elliptical corkscrew’ in the time domain. In the event that the visualisation of these 
structures is difficult to understand, many examples are shown to explain the process. 
The appropriate normalisation of the frequency coefficients allows for scale and 
translation invariance, allowing for automatic adjustments to take place from 
sequence to sequence. Analysis of the frequency components shows that phase is an 
important parameter that has components from the spatial domain and the time 
domain. Importantly each harmonics is found to have a unique ‘orientation’ angle in 
the spatial domain. The characterisation of many different types of gesture trajectory 
is investigated and explained in terms of the properties of the harmonic components. 
The synthesis of a gesture trajectory made from the first three harmonic components 
is shown to closely match the original trajectory path. Finally the ‘orientation angle’ 
properties are used to explain and to recognise a series of five ‘pointing’ gestures 
made by six different gesturers.

5.1. Fourier Analysis Applications

The application of Fourier analysis to a range of problems is not new. Fourier’s 
seminal work on heat flow problems using trigonometrical series was first published 
in 1807 (Lynn, 1994). Fourier analysis has been applied extensively to ID problem 
such as spectrum analysis, convolution and data communications. The identification 
of 2D shapes, known as the Fourier Descriptor technique (Zahn and R. Z. Roskies, 
1972, Kuhl and Giardina, 1982) uses in complex form, the coordinates of equally 
spaced points around the perimeter as input to the FFT, the input data being in the 
spatial domain. The resulting harmonics are given in complex form that includes 
phase information relating to the rotational position of the sample starting point. 
Simple manipulation of the harmonic data makes it scale and translation invariant by 
scaling all harmonic amplitudes by the first harmonic component and removing the 
d.c. term, respectively. A shape of any size or position can be represented by the 
magnitudes of a number of harmonics. Harmonic profiles of different shapes can be 
compared against standard shapes to classify the shape of the unknown object. The 
Fourier Descriptor is thus a useful tool in the recognition of a shape of a closed 
planar figure.

Fourier Descriptor techniques have also been applied to gait recognition (Mowbray 
and Nixon, 2003). The Fourier descriptors model the boundary of a silhouette, using 
a fixed number of samples for every frame. The gait signature is calculated from the
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spatial-temporal Fourier descriptors for a sequence. The majority of the information 
about the subject’s gait is contained in the low-order descriptors. Masters (1994) 
describes an object recognition system using frequency domain data for input to 
neural network and found that just 12 harmonics from the 256 samples were 
adequate for representing a demanding ‘T’ shape. Chen et al. (2003) use a hand 
tracking system, similar to the work of this thesis. The hand gesture recognition 
system recognises dynamic gesture performed singularly in a complex background 
using the fusing of skin-colour, motion and edge cues. From hand tracking, shape 
information of the hand by Fourier Description techniques and motion features are 
input to a HMM for the recognition process. Wallace and Mitchell (1980) showed 
how a 3D object (aircraft) could be represented by a library of 2D normalized 
projections. An interpolation procedure in the frequency domain gave more accurate 
determination of the angle of the object than by simply taking the orientation of the 
nearest library projection. Tracking of the aircraft trajectory is accomplished by 
identifying the aircraft in each frame, re-identifying the object and its orientation.

However, Lin and Hwang (1987) show that an alternative representation of the 
Fourier series is the elliptic Fourier features that may be expressed in matrix form. 
Lin and Hwang (1987), explain the full mathematical implication of the 
representation of shape from a set of ellipses. The centre of the w+lst ellipse revolves 
around the u h ellipse. The revolving frequency of the u h ellipse is u times the first 
ellipse. The locus of the last ellipse is the contour of the shape. It should be noted 
that the orientation angle of the uth ellipse is the sum of all the preceding orientation 
angles. Lin and Jungthirapanich (1990) take the application of elliptic Fourier series 
a step further and apply it to 3D object recognition. The resulting invariants are 
implicit functions of the major and minor axis as well as the angles defining the 
relative orientations. These invariants can be used as features for object recognition. 
These invariants performed well using simulated and real images. Results also 
showed that the invariants were insensitive to random noise, because the high 
frequency noise is dropped when the Fourier series is truncated.

This chapter describes how 2DT (Two dimensions and Time) Fourier analysis 
technique is applied to gesture trajectories which are aperiodic in nature. The 
analysis of trajectories, normalised to the same length, allows harmonic content to be 
readily compared. The harmonic content is considered in a number of ways, from its 
complex form to the magnitude and phase interpretation. It is found that the 
trajectory or waveform can be described as an infinite series of harmonic 
components at different orientation angles. These harmonics can be visualised as 
two-dimensional ellipses in the x-y plane or as ‘elliptic corkscrews’ in 2DT space. 
The variation of the attributes of the harmonics can synthesis many trajectory shapes. 
Interestingly, the analysis of the properties and characteristics of the ‘elliptic 
corkscrews’ in a range of possible gesture trajectories is similar to the features 
established by Gibet et al. (2001). The studying of some 1359 signs of the FSL 
(French Sign Language) database showed that for 80% of the Signs, the 
configuration is static i.e. the fingers do not move when other parameters vary. In 
addition many of the configurations could be described from a smaller sub-set. 
However, movements were categorized into 5 main primitives as shown in Table 5.1
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Primitive Proportion
(%)

Primitive Description

Line 42.9 The hand’s trajectory in space is a straight line
Arc 26.1 The hand follows an arc in space

Static 17.3 The arm is motionless during the gesture
Circle 10.9 The hand’s trajectory is an ellipse

Complex 2.8 The trajectory is more complex than in the 
other primitives, or is composed of several 
primitives (movements in zigzag, waves, 
spirals, etc)

Table 5.1 Proportion of different movement primitives (Source, Gibet 2001)

The work described in this thesis takes the actual hand location data as input to a 
recognition system in which the time domain data is time-normalised by multi-rate 
methods to a constant number of samples before being transformed into the 
frequency domain. Gesture action is viewed differently to that of the state based 
perspective. It is recognised that gestures are an aperiodic action having near 
identical starting and stopping locations. A view of gesture action is similar to 
tracing around the perimeter of an object once and is hence very similar to Fourier 
Descriptor methods. However, in the 2DT application, sampling takes place of 
coordinates in the time domain and so the trajectory coordinates are not constrained 
to a closed planar surface as required by spatial Fourier Descriptor techniques. In this 
application, the rotation of the ellipses are observed over time and visualized as 
‘elliptic corkscrews’, i.e. the u h ellipse having ‘«’ revolutions uncoiled. A trajectory 
is not necessarily a planar motion and hence ‘elliptical corkscrews’ will be oriented 
at different angles to each other. The properties that determine the constructed 
contour of each ‘elliptical corkscrew’ is the orientation angle given by the major axis 
of the ellipse; the relative values of the major and minor ellipse lengths and the 
starting phase of each ellipse.

5.2. Fourier Analysis Concepts

The transformation of aperiodic time domain data to the frequency domain is well 
established by the Fourier Transform for continuous signals and the DFT (Discrete 
Fourier Transform) for discrete signals. The DFT is invariably implemented by a 
FFT (Fast Fourier Transform) to gain the advantages of a very fast transformation 
into the frequency domain. Time domain signals that are sampled ‘N’ times give 
rise to ‘N’ harmonics, although for real input data only N/2 harmonic are realised 
because of the symmetry of the magnitude of the harmonic components. A useful 
property of the DFT is that the reverse process, the IDFT (Inverse Discrete Fourier 
Transform) can be implemented to retrieve time domain data from the harmonic or 
frequency components. With most waveforms, the magnitude of the harmonics 
diminishes as the harmonics increase and it is found that in the reconstruction 
process, from frequency domain to time domain, only a few harmonics are required 
to give a good representation of the original waveform.
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The use of the DFT to investigate the frequency components of signals and the 
frequency performance of systems is widely described and has had a profound 
influence on many branches of engineering and applied science. Most of these 
examples relate to ID application that has varying amplitude with time. Fourier 
theory was adapted to the 2D problem of shape recognition. In this case the input 
data represents coordinate data of equally spaced samples around the perimeter of a 
closed planar shape or object, but represented in complex format. The analysis of the 
frequency components (Kuhl et al. 1982 and Lin et a l l 990) show that each harmonic 
can be represented by an elliptical structure in the spatial domain. The overall shape 
is based upon the last point of the highest frequency ellipse where each ellipse is at a 
fixed orientation with the centre of the kth+l ellipse revolving around the kth ellipse 
k+1 times. The other most important aspect of Fourier Descriptor analysis is that 
through suitable simple mathematical manipulation the coefficients of the harmonics 
can be adjusted for scale and translation invariance so object size, position and 
orientation is not important when recording data.

This chapter explores gesture trajectories as 2DT (Two Dimensions and Time) 
aperiodic signals. The representative coordinates of the hand are described by 
complex numbers in the spatial domain but sampled at regular intervals in the 
orthogonal time domain. The resulting frequency analysis of 2DT signal can be 
interpreted using knowledge gained by the analysis of frequency components in both 
ID and 2D applications. The analysis and understanding of 2DT signals is gained 
through using the concept of positive and negative frequency sequence components 
as well as through the more traditional trigonometrical matrix equations. The Fourier 
analysis of the 2DT data in its complex number form gives minimal information as to 
the characteristic of the gesture, except that generally as the harmonics increase the 
amplitudes decrease. Interpretation of the harmonic data after suitable magnitude 
normalisation and phase manipulation of the harmonic data gives insight into the 
shape and nature of the gesture trajectory.

Following the analysis of a gesture trajectory a synthesis of the trajectory can be 
constructed by adding a series of ‘elliptical corkscrew’ structures representing each 
harmonic component. Each ‘elliptical corkscrew’ is at a given orientation angle. 
The number of rotations is equivalent to the harmonic value.

For this thesis, interpretation of the harmonic data was investigated in a number of 
ways involving standard signal shapes, simulated trajectories and actual gesture 
trajectories. Simulated gestures formed ideal straight line, arced and oscillatory 
trajectories. One of the interesting results of this investigation was the role of phase 
in characterising a trajectory and the orientation angle that reflected the harmonics 
position in the spatial domain.

The formation of ellipse characteristics is considered using positive and negative 
sequence components. The magnitude of the major and minor axis of the ellipse is 
related to the relative amplitudes of the positive and negative sequence components. 
The relative amplitude of the positive and negative sequence components also signify 
the direction of rotation and the harmonic value determines the number of 
revolutions. In the time domain the rotation of the ellipse can be visualised as an 
‘elliptical corkscrew’.
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An investigation into the phase information shows that it is made of two components; 
one that relates to time domain discontinuities and the other component that relates to 
the ‘orientation’ angle. The lower order harmonic components are found to 
characterise the shape of the gesture trajectory. Virtually all of the signing primitive 
description (Gibet, 2001) can be confirmed by the interpretation of the harmonic 
amplitude and phase components of the ellipses.

The harmonics are also used to assess imperfections in the trajectory. Gesture 
trajectories that do not return to the starting position produce a discontinuity in the 
waveform and cause a truncation error showing up as spectral leakage and phase 
shift in the time domain. Additionally the object selection algorithm can make 
mistakes. This means a limited tracking error can be tolerated as it appears as a high 
frequency signal which can be disregarded in gesture characterisation.

5.3. Fourier Analysis in ID, 2D and 2DT domains.

5.3.1. One-Dimensional (ID) Fourier Analysis

The Discrete Fourier Transform (DFT) and its inverse (IDFT) are stated: -

DFT, X(k) = 2  x(n) e j17nk n = 0,1,... N  -1
n— 0

IDFT, x(n) = — £  X(k) e+iT nk k = 0,1,... A -1
N  k=0

where k is the number of harmonics, n the data points and N the total number of 
samples.

The numbers in table A5.1 of Appendix V illustrate the method of calculation of the 
harmonic values X(k) for the input data x(n) of values [1, 0, 0, 1]. It is worthy to 
note that X(0) represents the sum of the input data values and X(l), X(2) and X(3) 
represent the harmonic values. In this calculation X(2) is equal to zero and X(l) and 
X(3) are equal to 1+j and 1-j respectively. The interesting thing about the first and 
third harmonics are that they form a complex conjugate pair where the amplitudes 
are the same but the phase are equal but of opposite polarity, i.e. X(l) has an 
amplitude of V2 and a phase angle cp(l)=+45° and X(3)) has an amplitude of a/2 and 
a phase angle (p(l)=-45°. The fundamental angular frequency is calculated by 
reference to the sampling interval, T where co = 2n / T .

Euler’s formula shows how the complex formula can be expressed in polar form: -

rejB = r(cos6 + jsmO)

Alternatively the argument 0 can be expressed in terms of angular frequency co and 
time t so 0 = cot: -

reJC01 = r(cos cot + j  sin cot)

117



P .R .G . H ard ing , 2007 , C hap te r 5

Additionally, the negative form is written as: -

re~]0* = r (cos cot- j  sin cot)

It is also useful to consider cosine and sine expressions in their exponential form 
as:-

cos (cot) = ^-exp(y'iy/) + - -̂exp (-jcot)

sin(tyt) = — exp (jcot)----- exp (-jcot)
2 j  2 j

These equations illustrates that a cosine signal of unit amplitude and angular 
frequency co can also be represented by double-sided spectrum of a positive and 
negative frequency component of amplitude of half the single sided representation, 
as shown in Figure 5.1. Phase shift can also be included in the notation so that 
cosine waveforms with phase shift of (j) results in the following equation: -

cos (cot + (j>) = -  exp {jcot) exp (j<j>) + -  exp {-jcot) exp(-y^)

amplitude/V

.•! -

frequency/rad s 1

phase/rad
A0L

frequency/rad s ' 1

(a)

amplitude/V

A

1
A2

1
- c o CO

frequency/rad s_l

phase/rad

— co

-

- < j j

CO

frequency/rad s 1

(b)

Figure 5.1 Single- and double-sided spectra of cos(cot+0). (Source: Bissell and
Chapman, 1995)

The previous equation shows that the harmonic components can be represented in 
exponential form. The value of X(l) with a value of 1+j can be represented by an 
exponential component representing the angular frequency and an additional 
exponential component representing the phase shift of 45° or 7i/4. In the example 
described in Table A5.1 the second harmonic term (1+j) is said to be rotating with 
a positive frequency and the fourth harmonic term (1-j) is said to be rotating with a 
negative frequency. Figure 5.2 shows a complex exponential,/ ( / )  = e~JCX, negative 
frequency, as a phasor diagram and time domain representations (Kraniauskas 
1993, Transforms in Signals and Systems, Addison-Wesley).
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Figure 5.2 Complex exponential,/^) = e  J0X, negative frequency (Source:
Kraniauskas,1993)

An interesting feature of Kraniauskas’s (1993) treatment is the 2DT representation 
of the rotating phasor over time as a helical structure. This structure is very similar 
to the more general ‘elliptical corkscrew’ structure which is developed in later 
sections of this chapter that aids in the analysis of gesture trajectory data.

5.3.2. 2D Fourier Analysis -  Fourier Descriptor

Lin and Hwang (1987) explain that Fourier descriptors are very useful for describing 
the shapes of closed contours. The periodic function which is obtained by tracing the 
closed contour can be expressed in a Fourier series. A curve is represented as a 
function of arc length by the accumulated change in direction of the curve. The 
function is expanded in a Fourier series for recognition. The closed contour is 
represented by the function of the arc length as [A(/),T(/)] and represented by the 
complex periodic function X(l),iY(l) which is expanded in a Fourier series. A 
similar representation called the elliptic Fourier features (Kuhl and Giardina, 1982) 
expands X(l) and Y(l) separately and puts them into matrix form. Consequently a 
shape is interpreted as a specific composition of ellipses. Lin et al.’s mathematical 
treatment is detailed in Appendix V.

5.3.3. Gesture trajectory analysis (2DT)

At first sight the view of a gesture trajectory in 2D is very similar to object 
identification using Fourier Descriptors. However, there are some important 
differences. Perhaps the most obvious point is that Fourier Descriptors approximate 
equisampling of space dimensions (2D), whereas gesture trajectories are time 
sampled. The 2D and 2DT views of a typical gesture trajectory are shown in Figure 
4.21 (Chapter 4). A gesture trajectory, when viewed in appearance-based space can 
appear like the outline or perimeter of an object and hence Fourier Descriptor 
techniques might be applied to the trajectory to analyse its frequency components.

119



P .R .G . H ard ing , 2007 , C hap te r 5

However, there are important differences between an object perimeter outline and a 
gesture trajectory. The perimeter of an object in appearance-based space is for a 
closed planar space and the perimeter does not cross-over any point of the contour as 
seen in the figure. The actual movement of the gesture is in 3D space and whilst the 
camera image captures 2D information there is no constraint as to the movement of 
the hand crossing the path of a previous trajectory track.

The 2DT picture of Figure 4.21 actually shows that the time domain view of the 
gesture trajectory is very similar to an aperiodic pulse waveform The Fourier 
analysis of a simple rectangular pulse is well documented in the literature. A pulse of 
amplitude A and width x in the limits of -x/2 and +x/2, will give a continuous 
spectrum: -

C (/)  = A r ( ^ i )

The Fourier transform G(f) of the pulse g(t) is a unique frequency-domain 
representation of the pulse and in general takes on a complex value for each value of 
frequency. Frequency spectrum of pulses often used in communications applications 
illustrates the spectrum as positive and negative components and because the input 
data is real the positive and negative spectrum components are symmetrical.

In practice the Fourier components are obtained by digital computation rather than 
by analogue processing. The transition from a continuous spectrum to a discrete 
spectrum is explained in most signal processing text books. The resulting DFT 
(Discrete Fourier Transform) can be used to analyse discrete valued pulses as was 
explained in the previous section of this chapter. The significant difference in the 
analysis of gesture trajectories is that the input data is complex. The analysis is 
concerned with interpreting harmonic content in the spatial and time domains. For 
example in Figure 5.3 three points A, B, and C lie on an ellipse as seen in the spatial 
domain but are sampled at regular time intervals tl, t2 and t3 in the time domain. It is 
interesting to note that the points A, B and C in the spatial domain form an elliptical 
shape, but only sinusoidal amplitude changes would be seen in the time domain.

Figure 5.3 Three points A, B and C on an elliptical trajectory in appearance- 
space sampled at ti, t2 and t3 in the time domain
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Further clarification of the concept can be made by the study of the ellipse (blue, top 
left picture of Figure 5.4). It is interesting to note that in the top-right picture shows 
the change of ‘y’ with time as one oscillation of a sine wave; the bottom-left picture 
shows the change of ‘x’ with time as one oscillation of a cosine wave and the bottom 
right shows a 2DT view as one oscillation of an ‘elliptical corkscrew’ structure. 
Further clarification of the concept is shown in Appendix V, Figure A5.5 which 
represents the sampling a waveform produced by the summation of two ellipses at 
two different frequencies. Visualisation of the 2DT picture appears different 
depending on the viewing angle as shown in Figure A5.6 and does not capture a 
consistent shape or interpretation.

Figure 5.4 Pictures of 4 views of an ellipse sampled in the time domain. The top 
left picture shows the spatial domain representation; the top-right shows the 

change of ‘y’ with time (a sine wave); the bottom-left picture shows the change 
of ‘x’ with time (a cosine wave)and the bottom right shows one revolution of the

‘elliptical corkscrew’, i.e. a 2DT view.

The pictures in Figure 5.4 and Figures A5.5 indicate that the complex data generate 
two distinct sets of frequency components, one relating to the time domain and the 
other to the spatial domain. The following mathematical and experimental 
investigations confirm these observations.

5.3.4. Developing exponential equations (positive and negative 
sequence components) to describe gesture trajectories in 2DT space

The mathematical equations describing spatial domain realisation of ellipses are 
stated in Appendix V, where the variable ‘f  was related to the spatial dimensions. 
Consideration is now given to the variable ‘f  being related to time so that instead of 
tracing points around the perimeter of an object in appearance-based space, a point in 
appearance-based space (x + jy) can be traced at equally intervals of time. The
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feature that is tracked is the centroid coordinates of the hand, a single point in 
appearance-based space.

The matrix equation (Appendix V): -

xk (0
_yk( 0 .

cos Gk -  sin 6k 
sin 0k cos 9k

Ak 0 

0 Bk
cos <pk -  sin (pk 
s in ^  cos (pk

cos kt 
sin kt

when expanded and appropriate trigonometrical simplifications have taken place 
give:-

xk (t) = Ak cos 6k cos (kt + (pk)~ Bk sin 6k sin(£r + <pk) 
yk (t) = Ak sin 6k cos (kt + (pk) + Bk cos 0k sin(fe + <pk)

Instead of sampling in the spatial domain at regular intervals the variable i k t ’ may be 
changed so that the variable is taking regular samples in the time domain. Using the 
normal convention for a sinusoidal waveform with variable (¡>k, becomes: -

At (0 = Ak cos ek cos(</>k +0ko ) -  Bk sin ek sin{<f>k + <j)0k) 
y k (t) = Ak sin Gk cos(^ + <pk0) + Bk cos 0 k sin(^: + <pk0)

or, rotating at ‘co’ radians per second the equations become: -

x, (0 = Ak cos 6k cos(o)kt + </>k0) -  Bk sin Gk sm{akt + </>k0) 
y k (0  = Ak sin Gk cos(cokt + </>k0 + Bk cos Gk sin(^y + <pk0)

where for a particular harmonic ‘¡A, the phase variable is <f>k or cokt and the phase 
shift is ^ 0and the orientation angle is#*.

Previously, when considering 1D data it was discovered that the harmonic generated 
by Fourier analysis came as complex conjugate pairs and an alternative 
representation was to model the harmonics as positive and negative sequence 
components. In this case the amplitudes of these harmonics are equal. If we consider 
the case of the amplitudes of the pairs of harmonics being different, then we have the 
case that ellipses are formed. The inclusion of the phase shift, <pk0 and orientation 
angle, Gk to both positive and negative phasor equations give for a particular 
harmonic and gives an alternative equation: -

zk (0 = APk exp j(0)kt + </>k0 +Gk) + Ank exp- j{cokt + <pkQ -  Gk)

At (0 = 9*(4P* exp j(o)kt + Ao +0k) + Ank exp- j(cokt + </>k0 -  Gk))

y k (0 = 5(APk exp j(o)kt + <t>kQ +Gk) + Ank exp- j(cokt + </>k0 -  Gk))

where the ellipse is described by the positive and negative phasors, with

Apk and Ank representing their amplitudes respectively.
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It can be shown that the relationship between the major and minor axis of the ellipse 
formed from the matrix equations and the positive and negative sequence 
components are: -

Apk + Ank = A and Apk -  Ank = B

A comparison of the two methods is shown in figure 5.5, where the major axis of the 
ellipse, A is equal to 1.5 and the minor axis, B has a value of 0.5 as shown by a blue 
‘x \  The phasor representation is shown by a red ‘o’ and is fully coincident with the 
‘x’ values with positive sequence amplitude of 1 and negative sequence amplitude of 
0.5. The orientation angle 0k is at 30° and orients the ellipse away from the
horizontal ‘x’ axis. The phase shift <pk at 60° just indicates the different starting
positions of the positive and sequence components, but does not alter the shape of the 
overall ellipse.

It is interesting to note that a straight line in appearance-based space is a particular 
example of an ellipse with Ai = 1.0 and Bi = 0 or Ap =1 and An =1.0.

Comparison of matrix 'x' and phasor 'o' representations of an ellipse

Figure 5.5 Comparing matrix ‘x’ and exponential ‘o’ equations of an ellipse 
with A = 1.5 and B = 0.5 or Ap = 1 and A„ = 0.5, with Orientation angle of 30°

and phase shift of 60°

The effect of the positive and negative components is shown in more detail in the 
example of figure 5.6. The direction and shape of the ellipse depends upon the 
magnitude of Ap or An. The relative size of Ap and An affects the direction of 
revolution of the ellipses. If Ap is the greater, the ellipse will rotate in an anti-
clockwise direction; if An is greater, the ellipse will rotate in a clockwise direction. It 
is noted that the orientation angle 9k can be found by taking the average of the 
positive and negative sequence phase. So in general: -
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9p = 0 + <J> and cpn = 0 - (j)

where cpp and cpn are the total positive and negative phasor phase shift and 9 is the 
orientation angle and (j) is the phase shift.

Figure 5.6 Rotating positive (red) and negative (black) sequences and the 
resulting (blue) ellipse, with ‘o’ indicating starting point and ‘*’ end point.

This effect of the phase shifts is illustrated in Figure 5.6 where the red circle 
represents the positive sequence and the negative sequence is represented by the 
black circle. A symbol ‘o’ indicates the start of the phasor and the symbol 
represents the end, so the rotational direction can be ascertained. The resultant ellipse 
is coloured blue and shows that the ellipse rotates in a clockwise manner in this 
example where Ap = 1.00 and An = 1.24 and <j> = 11,24°and 0 = -26°.

The advantage of modelling ellipses with positive and negative sequence 
components is that the form of the equation is the same as that given by Fourier 
analysis. Having the same form of equation for analysis and synthesis allows for easy 
comparisons to be made when modelling trajectories with the results of analysis, as 
will be seen in later sections.

5.3.5. Exponential synthesis of waveforms

The power of Fourier synthesis is often shown by taking just a few low order 
harmonics and adding them together to show that a good representation of the 
original waveform can be made. It can be shown that recombining the first three odd 
harmonics, as the even order harmonics are zero, from square wave analysis shows
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how close the synthesis is to the original square waveform. For the purposes of this 
investigation it is useful to visualise the waveform both in the 2D (spatial), ID and 
2DT domains. A full explanation of the stages of this reconstruction is shown in 
Appendix V and in this reconstruction the square waveform only appears in the ‘x’ 
plane and in the ‘y’ plane the output is zero (Figures A5.7, A5.8 and A5.9).

Figure 5.7 Four views of the first, third and fifth harmonics at the same 
orientation. Rotating positive (red) and negative (black) sequences and the 

resulting (blue) ellipse. The starting point-and end-point of the time sequence 
indicated on all pictures as ‘o’ and (blue) respectively.

The result of adding just the first and third harmonic together but with an orientation 
angle other than zero is shown in figure 5.7. The 2DT image particularly shows the 
synthesised trajectory at a slant to the previous figure and also shows a component in 
the ‘y’ direction as showrn by the waveform appearing in the top-right picture and the 
blue line in the top-left picture now being at an orientation to the ‘x’ axis.

The previous examples produced a straight line in appearance-based space (2D), 
which is just a special case of an ellipse. In the matrix equation the component ‘B’ is 
equal to zero or where Ap and An have equal values. For illustrative purposes at this 
stage an example of the positive and negative components being different is shown in 
Figure 5.8. The amplitudes are at 0.042 and 0.103 respectively and the components 
are at an orientation of 38° with phase shift of 27°.

Figure 5.8 shows the formation of an ellipse (blue) in the appearance-based picture 
(top-left). The phase shift is clearly seen in the ‘x’ vs. time and ‘y’ vs. time pictures 
(bottom-left and top-right respectively). The 2DT picture (bottom-right) shows three 
spirals of a helix type structure described as an ‘elliptical corkscrew’ and will be 
referred to later in the analysis of gesture trajectories.
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Figure 5.8 Four views of elliptical structure, for a third harmonic, with Ap at 
0.042 and An at 0.103, orientation angle of 38° and phase shift of 27°.

5.3.6. Cross-over in trajectory contour

Previous discussion had explained that the coordinates of hand gesture trajectories 
were not the same as tracing around the perimeter of an object because in some 
circumstances the contour was seen to cross-over. The following discussion explains 
the nature of the elliptic functions that allows this to occur. The occurrence will be 
modelled both in the matrix form of the equations and the positive and negative 
frequency components using just two harmonics.

An example is taken of the first harmonic ellipse having parameters of A1 = 0.5 and 
B1 = 0.2. The second harmonic ellipse is considered for two conditions A2 = 0.2 and 
B2 = 0.1 or A2 = 0.1 and B2 = 0.2. It can be seen that for the second harmonic the 
orientation of the major axis in the first condition the ‘x’ axis component is greatest 
and in the second condition it the ‘y’ axis component is the greatest. The equivalent 
positive and negative sequence components are as in Table 5.2

Harmonic A B Ap An
1 0.5 0.2 0.35 0.15
2 0.2 0.1 0.15 0.05

1 0.5 0.2 0.35 0.15
2 0.1 0.2 0.15 -0.05

Table 5.2 Comparison of ellipse definition coefficient A and B with Ap and An
The picture of Figure 5.9 shows the condition of A1 = 0.5 and B1 =0.2 and of A2 = 
0.2 and B1 = 0.1 (Api= 0.35, Ani= 0.15; AP2 = 0.15 and An2 at 0.05). The top right 
appearance-based picture shows the overall result of adding the two ellipse structures 
together as shown by the blue contour formed from the red (positive) and black
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(negative) sequence components. The top-left and bottom right pictures show how 
the ‘y’ and ‘x’ components vary with time, respectively. The bottom right picture is a 
2DT view of the overall shape.

Figure 5.9 Four views of the positive and negative sequence components of the 
addition of the first and second harmonics (Apl= 0.35; Ani= 0.15; Api = 0.15; 

and A„2=0.05 being equivalent to Al=0.5; Bl=0.2; A2=0.2 and B2= 0.1).

The individual first and second harmonic components are shown in Figures 5.10 and 
5.11, respectively.

Figure 5.10 Four views of the first harmonic positive and negative sequence 
components Api= 0.35 and Ani= 0.15 being equivalent to A1 at 0.5 and B1 at 0.3
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Figure 5.11 Four views of the second harmonic positive and negative sequence 
components Ap2 at 0.2 and An2 at 0.05 being equivalent to A2 at 0.2 and B2 at

0.1.

It is interesting to note that in both these figures that the ellipse (top-left) lie at the 
same orientation i.e. the maximum dimension of the ellipse is in the ‘x’ direction. In 
addition the ‘y’ vs. time (top- right picture) shows the sinusoidal waveform and the 
‘x’ vs. time (bottom- left picture) the cosine waveform at the amplitudes 
corresponding to the A and B amplitudes for that ellipse. The bottom right picture 
shows the ‘elliptical-corkscrew’, 2DT representation of each harmonic, the number 
of revolutions in line with their harmonic value.

When the second harmonic values change to A2 = 0.1 and B2 = 0.2, (Ap2 = 0.15 and 
An2 at -0.05) a cross-over in the contour is seen as in the appearance-based view 
(top-left picture) of Figure 5.12, but not seen in the time domain. The similar result 
to Figure 5.12 is also obtained using positive and negative sequence components as 
in Figure 5.13. The second harmonic (Figure 5.14) is now clearly different, to that 
shown in the previous figure, Figure 5.11. In this case the orientation of the second 
harmonic is at right-angles to the previous case as the major axis relates to the ‘y’ 
axis. In the ‘y’ vs. time and the ‘x’ vs. time pictures the amplitudes of the sinusoidal 
and cosine components have reversed.

To aid clarity of how the time domain feature are perceived over time the 2DT 
representation is viewed at different angles as in Figure 5.15. All views in Figure 
5.15 have a similar elevation views ranging from 0° to -4° whereas the azimuth start 
at -90° at view 1 and reduce through the views until view 4 the azimuth is at -10°. 
The pictures indicate the cross-over in 2D space but as the viewing angle changes 
toward a time domain view the coordinates show the cross-over as an inflection. The 
interesting characteristic to note is of how ellipses in 2D are seen differently in a time 
domain view.
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Figure 5.12 Four views resulting from the combination of two ellipses having 
parameters of A1 at 0.5 and B1 at 0.2 and A2 at 0.1 and B2 at 0.2.

Figure 5.13 Four views of the positive and negative sequence components with 
Ap)= 0.35 and A„i= 0.15 and Ap2 = 0.15 and An2 at -0.05 being equivalent to A1 

at 0.5 and B1 0.2 and A2 at 0.1 and B2 at 0.2.
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Figure 5.14 Four views of the second harmonic positive and negative sequence 
components Ap2 at 0.15 and An2 at -0.05 being equivalent to A2 at 0.1 and B2 at

0.2.

Figure 5.15 Different azimuth views and similar elevation views of two ellipses 
that produce a cross-over in the contour (Azimuth -View 1 =-90°, View 2 =-69°, 

View 3 =-48°, View 4 =-10°; Elevation (typical) = -2°)
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5.3.7. Translation, Scale and Orientation, 6 k considerations

The previous section showed how gesture trajectories could be constructed from 
elliptical functions using equations based on positive and negative sequences. A 
full investigation of the synthesis and analysis has not be addressed at this stage 
(see section 5.5) as it is worth considering various factors that make the analysis 
easier to implement and compare.

Firstly, the coefficients of Fourier analysis are complex numbers each having 
magnitude and phase. To make the gesture independent of position the d.c. term is 
removed from the analysis. Hence the trajectory is independent of its position in 
the image.

The analysis is made invariant to the size or recorded values of the trajectory by 
scaling all harmonic coefficients with respect to the first harmonic, which is usually 
the largest harmonic. When harmonics generate shallow ellipses it is convenient to 
select the positive sequence amplitude for the normalisation parameter. In many 
cases the negative sequence amplitude is very similar in value. However, when the 
first harmonic shows sign of a pronounced ellipse the largest value of the positive 
or negative component should be selected for normalisation. The choice of 
normalisation parameter is discussed further in chapter 7 when other criteria are 
discovered with more unusual gesture trajectories.

The starting point of a gesture is always at the same point with reference to the 
resting condition for the stationary hand. This is in contrast to object recognition 
methods where the starting point can be at any point on the perimeter of the object 
and so some kind of phase normalisation process is required if phase information is 
required for analysis. For example, Masters (1994) explains that this can be a 
difficult and somewhat arbitrary process. The two conditions of starting point phase 
and rotational phase normalisation have to be simultaneously met. Wallace and 
Wintz (1980) also discuss an overview of phase normalisation. Phase normalisation 
has not been found necessary in this research because of the invariance of the starting 
position.

However, the phase can give important information especially with regard to the 
orientation of the gesture. 0k, in gesture recognition application is referred to as the
orientation angle as this is the angle that the harmonic makes in the spatial, 
appearance-based domain. It is usual to have the first harmonic dominate the 
magnitude of the other harmonics and hence the first orientation angle dominates. 
The second harmonic is then at an orientation angle relative to the first harmonic. 
This is shown as a pseudo phasor diagram in figure 5.16. It should be noted that the 
rotating vectors cannot be added together to obtain an overall resultant vector as the 
second harmonic is rotating twice as fast as the first harmonic. It is also important to 
take into consideration that the rotating vector is not necessarily a straight line but of 
an elliptical shape.
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Figure 5.16 Diagram showing the ‘addition’ of two elliptical phasors rotating at 
(Di and co2 radians/sec and at orientations of 0i and 02

5.4. Interpretation of harmonic content with simulated gestures

Tests were carried out on a series of pseudo-trajectories. Some of the shapes were 
similar to those observed by Gibet (2001) and consist of straight line, curves 
(concave and convex), ellipses and other forms. These tests (Appendix V) enable the 
structure of the gesture to be interpreted from the harmonic content.

5.4.1. Planar triangular trajectory

A set of values were generated to form a ‘triangular’ trajectory in the time domain to 
mimic a simple gesture trajectory, starting from one coordinate increasing to another 
coordinate and then returning to the starting position, as shown in the 2D and 2DT 
view as shown in Figure 5.17. The coordinates were chosen to produce a straight line 
in 2D space that has an orientation to the ‘x’ axis. With 31 points defining the 
trajectory, Fourier analysis gave the results of Table 5.3. The results compare very 
favourably with that given by theory for the amplitude of the odd harmonics being 
proportional to 1/n2, for a triangular waveform. The theoretical amplitudes of the 3rd, 
5th and 7th harmonics are 0.111, 0.04 and 0.0204 respectively, showing less than 1% 
error in all cases. It is observed that there are no even harmonics generated, no phase 
shifts, and each harmonic starts in phase at the initial point. The only difference that 
these results show to the normal ID signal analysis is that the plane or orientation of 
this waveform is at an angle of 23.43° where with real data it would be wholly in the 
x or y axis. The orientation angle is the same as that subtended in the spatial domain.
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Figure 5.17 2D and 2DT profile of a ‘Triangular’ gesture trajectory'

Harmonic Positive
Magnitude.

Ap

Positive
phase

<Pp

Negative
Magnitude

An

Negative
phase

<Pn
1 1 23.4 1 23.4
2 0 23.4 0 23.4
"» 0.11 23.4 0.11 23.4
4 0 23.4 0 23.4
5 0.04 23.4 0.04 23.4
6 0 23.4 0 23.4
7 0.02 23.4 0.02 23.4

Table 5.3 Triangular trajectory magnitude and phase information for the first 7

harmonics, based on 31 points

Harmonic Positive Positive Negative Negative Relative
Magnitude, phase Magnitude, phase Orientation

Ap 4 An 4> 0
1 1 0 1 0 23.4
2 0 0 0 0 0
-3 0.11 0 0.11 0 0
4 0 0 0 0 0
5 0.04 0 0.04 0 0
6 0 0 0 0 0
7 0.02 0 0.02 0 0

Table 5.4 Triangular trajectory magnitude and phase information based on 31
points
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Refinements were made to the triangular waveform data to make it similar in 
amplitude to an actual gesture but following a ‘triangular’ time domain trajectory. 
This was undertaken to be the first step to simulate a gesture and obtain an 
appreciation of the type of harmonics that might be expected. The image of Figure 
5.18 shows two images superimposed on each other, showing the hand at the start 
and at the height of a possible straight line trajectory. However, it is noted that the 
sudden change in direction of the trajectory, at the apex of the waveform, is 
unrealistic in the real situation but it does give an indication of the performance of 
the system.

In addition this trajectory shape was used to test the performance of the system to 
the time normalisation process to ascertain what effect it had on the harmonic 
analysis. Harmonic results were obtained which compared triangular trajectories 
based on a different number of original samples and then at different orientations. 
Changing the number samples tested the time normalisation process and the 
calculation of the Li/Mi and L2/M2 ratios and their interaction. Mean square errors of 
the harmonic magnitudes and phases did not show significant change in values 
between tests and so were a poor indicator of differences in performance. Close 
inspection of the overall system results showed some deviations in performance that 
was detectable mainly with phase differences. One of the worst cases of difference 
was with the waveform defined by 49 points. The results of harmonic analysis of this 
waveform are presented in Figure 5.19 and Table 5.5.

Highlighted Test Trajectory

Row & column co-ordinates. lowers 245, 133 & top= 125 ,185

Figure 5.18 Formation of a triangular trajectory

All harmonics are in the same plane, as before, and with an orientation angle of 135 
degree expected due to the x-y values. All positive and negative magnitudes are 
equal, so a straight-line trajectory results. The implementation of the Lj/Mi and 
L2/M2 ratios gave a normalisation of 65 points instead of 64, even though the 
theoretical calculations showed negligible error. To compensate for this, the last 
point was truncated, and hence gave a small discontinuity in the periodic input 
waveform. The result of this is an expected phase shift of one 64th in 360° i.e. 5.63° 
which is very similar to the result of 5.7° recorded. Some low level even harmonics, 
typically 4 to 5% on the 2nd and 4th harmonics, occur this time. Furthermore, there is
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a 5% change on the 3rd harmonic and 2% change on the 5th harmonic. Inspection of 
the waveform resulting from the normalisation process showed that at some ratios a 
slight distortion to the triangular shape occurs, and as a result small amounts of 
distortion creep into the harmonic analysis. It is observed that the acute angle of the 
triangular waveform is much more exacting than would be expected in any gesturing 
situation where changes in direction generally take place less abruptly. Most gestures 
do not make an abrupt change of direction at the height of the gesture, but pause for a 
while before changing direction and so the slight degradation would not normally be 
noticeable. Experimentation into changing the orientation angle of the trajectory 
showed that the system could resolve about 4 degrees, or about one percent of 
angular movement. A worst case phase error would appear to be about 1.5%, or 
approximately 6° for the system.

3D 2D

Figure 5.19 First three harmonics o f ‘triangular’ gesture trajectory showing 
2DT (left) and 2D (right) views all at an orientation equal to the spatial 

orientation angle (1st harmonic=red, 2nd harmonic=green, 3rd harmonic = blue)

Harmonic Positive
Magnitude,

Ap

Positive
phase

Negative
Magnitude,

An

Negative
phase

<t>

Relative
Orientation

9
1 1

______
-5.7 1 5.7 135

2 0.043 -6.6 0.043 6.6 -180
3 0.16 -11.4 0.16 11.4 180
4 0.49 -26.5 0.49 26.5 -180
5 0.06 -34.2 0.06 34.2 180
6 0.012 9.3 0.012 -9.3 -180
7 0.034 -24.0 0.035 24.0 180

Table 5.5 Triangular trajectory magnitude and phase information based on
original 49 points
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5.4.2. Curved and Oscillatory Trajectories

A set of different possible trajectory paths was investigated, as detailed in Appendix 
V. These experiments were undertaken to gain insight into how the attributes of the 
harmonics changed with changes of shape in the trajectory. An example is shown in 
Figure 5.20 of an arc or shallow ‘concave’ trajectory, a trajectory that deviates from 
a straight line but where the rising and falling elements follow the same path in 
appearance space. The first four harmonics are shown as red, green, blue and cyan 
respectively. The corresponding harmonic values are shown in Table 5.6. The odd 
harmonic values are very similar to those of the ‘triangular’ gesture; the magnitudes 
decrease as the harmonics increase. However, the even harmonics now start to 
increase. The second harmonic is seen to be more prominent and at a different 
orientation angle to the plane of the odd harmonics.

3D 2D

Figure 5.20 2DT and 2D views of the harmonics of a shallow concave trajectory 
showing 1st (red) and 3rd (blue) harmonics at the same orientation, but the 2nd 

(green) harmonic at a significantly different orientation

Another example of a deeper ‘concave’ trajectory shows the effect of the even 
harmonics to be more prominent. Changing the trajectory to a ‘convex’ shape gave 
similar magnitude values except that the phase of the orientation angle had changed 
by about 180°. It is interesting to note that the orientation angle for the ‘triangular’ 
and three curved trajectories, did not generate any ellipses as the ‘rising’ and ‘falling’ 
of the trajectories followed the same path. In addition, the orientation of the first 
harmonic remained relatively constant, ranging from -135° to -126° for data having 
similar sets of low and high trajectory coordinates.
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Harmonic Positive
Magnitude,

Ap

Positive
phase

4>

Negative
Magnitude,

An

Negative
phase

4>

Relative
Orientation

0
1 1 -7.2 1.0 7.2 -131.8
2 0.093 -13.8 0.092 13.8 72.7
3 0.111 -20.7 0.113 20.7 -66.3
4 0.038 -24.7 0.038 24.7 23.4
5 0.037 -30.8 0.039 30.8 -14.2
6 0.023 -34.3 0.016 34.3 62.6
7 0.025 -41.5 0.031 41.5 -79.6

Table 5.6 Harmonic values of a shallow concave trajectory
Further experimental results are to be found in Appendix V. An elliptically shaped 
trajectory generated ellipses at most harmonics whilst staying mainly at the same 
orientation as the first harmonic. Deviations of harmonics from the first harmonic 
orientation were to compensate for the irregularities in the original trajectory shape. 
The ‘figure of eight’ trajectory has embedded into it two oscillations as can be seen 
by the second harmonic magnitude being significant with the orientation angle 
changing by about 90°. Another similar trajectory, but with six oscillations 
embedded in the trajectory, showed the expected prominence of the sixth harmonic.

5.5. Analysis and synthesis comparison

Validation of the positive and negative sequence modelling of the gesture trajectory 
can be accomplished by taking the harmonic components from the analysis and 
synthesising the waveform. It has already been noted that the first few low-order 
harmonics are generally sufficient to reconstruct the waveform to an acceptable level 
of similarity with the original waveform. For this exercise the ‘figure of eight’ 
trajectory has been chosen as the rising and falling trajectories cross emphasising the 
difference between this 2DT Fourier analysis and the Fourier Descriptor technique. 
In this case just the first, second and third harmonic components have been used. The 
first three harmonic coefficients, shown in table 5.7 are extracted from the full set 
shown in Appendix V. The coefficients that describe the harmonic being the positive 
and negative sequence amplitudes, the orientation angle 0 and the phase angle (j).

Harmonic Positive Positive Negative Negative Relative
Magnitude, phase Magnitude, phase Orientation

Ap * An ♦ 0
1 1 1.98 1.156 -1.98 -129.3
2 0.299 90 0.291 -90 89.3
3 0.146 4.8 0.073 -4.8 -75.2

Table 5.7 The first three harmonic coefficients used to synthesis the original
waveform

The appearance-based picture (top-left) of Figure 5.21 shows the ‘figure of eight’ 
contour and also in the 2DT picture (bottom-left) although the starting and finishing 
locations can be more readily seen (starting location ‘o’ and finish location ‘*’ in
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blue). The second harmonic orientation angle at near 90° confirms the original 
experimentation that it is mainly responsible for the cross-over characteristic of the 
trajectory.

Figure 5.21 Four views of the synthesis of the ‘figure of eight’ trajectory from 
the coefficients of the first three harmonics given in Table 5.7

Figure 5.22 A 2DT comparison of original trajectory black, transposed and 
scaled, with the synthesised trajectory (green).
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To be absolutely sure that the synthesised trajectory was similar to the original 
trajectory, scaling and transposition was undertaken. The offset of the original 
trajectory was adjusted so that it coincided with the offset (zero) of the simulated 
trajectory. The scale of the original trajectory was scaled so the maximum and 
minimum values were the same as the simulated trajectory. The results are shown in 
Figure 5.22 where the original trajectory (black) is compared with the synthesised 
trajectory (green) at a slightly different angle to the previous figure to show the 
trajectory changes over time more easily. It is apparent that the synthesised trajectory 
is a close match to the original trajectory albeit it is smoother, as just three harmonics 
are used.

5.6. Analysis of harmonic components from some gestures

A gesture trajectory showing arc type characteristics was evaluated (Appendix V). It 
is noticeable that the first harmonic generates an ellipse as the ‘rising’ and ‘falling’ 
paths are different. However, the second harmonic produces virtually a straight line 
in appearance-space with a significant deviation of the orientation angle from the 
first harmonic orientation angle. The third and fourth harmonics generate ellipses and 
the third harmonic ellipse is seen in Figure 5.23 as an ‘elliptic corkscrew’.

An example of the harmonics generated for the data shown in Figure 5.28 of a hand 
raising gesture, from the PETS database, is given in Table 5.8. The gesture 
coordinates are shown as cyan coloured symbols ‘o’, in Figure 5.24. The harmonic 
content of this trajectory was found, and then just the first 6 harmonics used as input 
to the EFFT to reconstruct it. It is interesting to note how well the trajectory is 
represented by just six harmonics.

Figure 5.23 2DT views of an arc ty pe gesture trajectory (black on right image) 
that has an arc or non-planar trajectory characteristic. The third harmonic 

demonstrates an ‘elliptic corkscrew’ (blue) as shown on the left-hand picture. 
The first (red) and second (green) harmonics are shown in the right image.
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Harmonic Positive
Real

Magnitude

Positive
Imaginary
Magnitude

Negative
Real

Magnitude

Negative
Imaginary
Magnitude

1 0.981 +0.195i 0.934 - 0.81 Oi
2 0.402 -0.236Ì 0.223 - 0.292Ì
3 0.208 - 0.206Ì 0.156 - 0.074Ì
4 0.042 - 0.069Ì 0.049 - 0.083Ì

Table 5.8 Table of complex data representing the first 4 harmonics of a gesture
trajectory
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Figure 5.24 Original data (cyan circles) and data produced by the IFFT from 
the first 6 harmonics (black crosses)

The harmonic data produced by the FFT is in complex form, and a typical set of 
results for the first 4 harmonics are shown in Table 5.8. Very little meaningful data 
can be gained from this presentation apart from the magnitudes decreases as the 
harmonics increase. Further insight can be gained by converting the data into 
magnitude and phase format, as shown in Table 5.9. The results of Table 5.9 can 
alternatively be presented as a graph as shown in Figure 5.25. This graph compares 
the positive and negative magnitudes and phases about the central d.c. frequency. 
The positive sequence harmonics values increase from the centre to the right, 
whereas the negative sequence values increase from the centre to the left. This 
presentation of harmonic content allows a visual comparison and interpretation of 
magnitudes and phases of the positive and negative sequences.

The average phase of the positive and negative sequences gives the absolute 
orientation angle and is used in the next stage of presenting the data in a meaningful 
way. As discussed earlier, a more useful interpretation of the phase angle is by 
equating the positive and negative phase shifts to the orientation angle and the phase 
shift, where: -

cpp  = 0  + <j) and (p n  = 0  -  <j>
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Figure 5.25 Positive and Negative sequences Magnitude and Phase for 12
harmonics

Harmonic Positive
Magnitude,

Ap

Positive
angle

<PP

Negative
Magnitude,

An

Negative
angle

9n

Average
Phase

(Absolute
Orientation)

0
1 1 11.2 1.237 -40.9 -14.9
2 0.466 -30.4 0.368 -52.6 -41.5
3 0.293 -44.8 0.172 -25.4 -35.1
4 0.081 -58.6 0.096 -59.7 -59.2

Table 5.9 Table of magnitude and phase representing the first 4 harmonics of a
gesture trajectory

An alternative presentation of the data is to arrange the phase in the form of phase 
angle and orientation angle, as shown in Table 5.10, where the phase shift of the 
positive and negative sequences is separated from the orientation angle. The 
orientation angle is affected by the previous orientation angle, as discussed in a 
previous section, so it is more convenient to express the orientation angles as to their 
relative orientation. In general it is observed that the orientation of the nth harmonic 
ellipse is: -

0 n = & A l  + & A 2 .........6  An

The phase and absolute orientation angles of Table 5.9 are adjusted to show phase 
shift and relative orientation angles of each harmonic in Table 5.10.
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Harmonic Positive
Magnitude,

Ap

Positive
phase

*

Negative
Magnitude,

An

Negative
phase

<t>

Relative
Orientation

0
1 1 26.1 1.237 -26.1 -14.9
2 0.466 11.1 0.368 -11.1 -26.6
3 0.293 -9.7 0.172 9.7 6.4
4 0.081 0.6 0.096 -0.6 -24.1

Table 5.10 Table of magnitude and orientation angle separated from phase for 
the first 4 harmonics of a gesture trajectory

Alternatively the phase information can be shown on an Argand diagram of Figure 
5.26. The position of the rotating positive and negative sequence phasors are shown 
by the red *+’ and black ‘o’. When the phase shift <j> is near zero (0.55°) as with the 
fourth harmonic the two symbols virtually overlap, and the resultant orientation 
angle, 0 is the angle between this position and the origin. When the phase shift is 
greater than zero the positive and negative positions move further apart as can be 
clearly seen for the first harmonic.

1st harmonic

0.5 

0

-0.5

-1 -0.5 0 0.5 1

2nd harmonic

o +

3rd harmonic 4th harmonic

:
- 0.2 - 0.1 0 0.1 0.2

Figure 5.26 Positions of the first 4 harmonics on an Argand diagram for positive 
(red cross) and negative (black circle) sequence.

5.7. Performance Assessment

5.7.1. Gesture Truncation

It is noticeable that in real situations that the dominant gesturing hand does not 
necessarily return to the exact starting position. Investigations were carried on data of 
hand gesture waving from the PETS database. The approach taken is illustrated in 
Figure 5.27. The red dotted lines represent the search area for locating the first
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motion of a gesture sequence. The cyan dotted line represents the updated start 
position and the magenta dotted line represents the stop condition.

Figure 5.27 The Stopping Tolerance set to within 5 pixels of the Start
Coordinates

The tests were carried out with stopping distances set at 2, 5, 10 and 15 on the row 
coordinates from the starting position. Inspection of the phase shift, <j> of the first 
harmonic shows the phase shift changing by about 7° for every step that the sequence 
shortens. For example, when the gesture sequence reduces from 36 to 32 in length, 
the phase shift changes by 28° i.e. 7° per step. This change in phase is shown in 
Figure 5.28 and shows how the phase shift adjusts for the discontinuity in the 
waveform as the gesture becomes shorter. It can be seen that the coordinates for the 
four tests for each test form an arc centred at the origin, showing the phase shift that 
occurs.

However, more significantly, the orientation angle of the first harmonic remains 
virtually unchanged, varying only 4.4° between the four conditions. This is shown in 
the Figure 5.29 for the first 6 harmonics. It is noticeable how closely clustered all 
harmonics are for the four test conditions. Overall the phase shift approximates to 
ktp + 6 , where ‘k’ is the harmonic, ‘<j>’ the time domain phase-shift and ‘0’ the 
orientation angle. There is some indication that at the greater stopping thresholds, 
some of the higher order harmonics start to increase due to ‘spectral leakage’ caused 
by the discontinuity. The seventh harmonic makes a steady increase from 0.042 to 
0.15 as the stopping thresholds change from 2 to 15 pixels.
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Pos + Neg Magnitude vs Phase Shift

Figure 5.28 Argand Diagram representation of magnitude and phase shift for 
the first 6 harmonics, when the Stop Tolerance is 2, 5,10,15 ( first to sixth 

harmonic, red, green, blue, cyan, magenta and yellow respectively).

Pos + Neg Magnitude vs Orientation angle

Figure 5.29 Argand Diagram representations of Magnitude and Orientation 
Angle (first to sixth harmonic, red, green, blue, cyan, magenta and yellow,

respectively).
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5.7.2. OSA Performance Based on Harmonic Analysis

The performance of the OSA can be assessed in a number of ways. The resulting 
trajectory can be compared, numerically or visually with the coordinates obtained 
manually/visually, as described in chapter 4. But the source of data to the OSA can 
vary because the input data can originate from SCM objects, SCMI objects, SOME 
objects or SCMEI objects. It has already been established that the latter objects do 
not perform very well in poor lighting conditions. However, in good lighting 
conditions all four methods perform well. There are less SCMI and SCMEI objects 
produced with the most significant object being appropriate for tracking the 
trajectory the majority of the time.

The OSA performance is dependent on the search threshold. If the search threshold is 
too small then the next frame’s gesture objects will not be located. A valuable 
comparison can be made for an example based on SCM, SCMI and visual/manual 
tracked data. The SCM data was obtained, as shown in Figure 5.30 and compared 
with that visually recorded as shown in Figure 5.31. It can be seen that the overall 
shape is the same, but during the mid-phase, static part of the SCM trajectory is 
inherently noisy due to the object capturing process. However, the visually obtained 
data is smooth because of the inherent low pass filtering action in the data acquisition 
process.

Figure 5.30 Gesture coordinates based on SCM object data
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Figure 5.31 Gesture coordinates based on manually/visually recorded data

The OSA performance with the SCMI data between frames 8 to 12, as shown in 
Figure 5.32 did not follow the most significant object as it moved a distance outside 
the search zone. As a consequence the next four outputs use the previous output 
value and a plateau region can be observed in both the row and column coordinate 
values. The error in the OSA output occurred during the dynamic part of the 
trajectory, when the most significant object usually dominates other objects, in this 
particular case the velocity of the hand was larger than normal and exceeded the 
search threshold.

Figure 5.32 Gesture coordinates based on SCMI data
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Application of the IFFT to the original input data (cyan coloured circles) to the OSA 
shows that using six harmonics is required to reconstruct the waveform to an 
acceptable shape (black crosses) as seen in Figure 5.33. The plateau region has now 
disappeared and for the remaining frames of the trajectory the input and 
reconstructed output data appear very similar. In addition the reconstructed data 
waveforms are compatible to that recorded using SCM objects or visually/manually 
recorded data. Using the low order harmonics introduces some smoothing to the 
waveform that allows degradation of the OSA’s performance to be tolerated. It also 
removes the high frequency noise associated with error due to temporary tracking 
problems or the variability of the SCM objects position associated with the gesturing 
hand.
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Figure 5.33 IFFT of SCMI trajectory data using 6 harmonics (black, ‘+’) and
original data (cyan, ‘o’)

All OSA tracking methods show close agreement of the magnitudes and orientation 
angles of the first 4 harmonics by used as detailed in Appendix V.

5.8. Pointing Gesture Experiments and Initial Interpretation

The pointing gesture experiments were devised to be similar to those conducted by 
Howell and Buxton (1998) in which four gestures were used; pointing the right hand 
to the left; pointing the right hand to the right; wave the right hand above the head 
(urgently) and wave the right hand below the head (not urgently). In this experiment 
(Harding and Ellis, 2004) used six subjects (A,B...F) who all undertook the same 
sequence of gestures. The subjects were seated on a chair with a web-cam used to 
record the five gestures that made up a gesture sequence, as detailed in Table 5.11.
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Gesture Action of right hand

1 To left shoulder and return
2 To the left and return

3 Straight up and down

4 To the right of subject and return

5 Straight ahead, ‘halt’ and return

Table 5.11 Gesture Number and Action
The trajectory that one person made doing five pointing gestures is shown in Figure 
5.34. Each gesture was segmented and the harmonic data relating to that gesture 
produced using the Fourier analysis as previously described in this chapter.

Figure 5.34 2DT view of the trajectory of five pointing gestures.

The four most significant harmonics of gesture A1 are recorded in Table 5.12. A 
comparison of the orientation angles produced by each gesturer for gesture 1, gave 
the values in table 5.13.

Harmonic Positive
Magnitude,

Ap

Positive
phase

4»

Negative
Magnitude,

An

Negative
phase

<l>

Relative
Orientation

0
1 1 3° 1.1 3° -123°
2 0.317 6° 0.327 6° 26°
3 0.042 21° 0.103 I T 135°
4 0.027 68° 0.0513 68° 44°

Table 5.12 Orientation Angle, 0 and Positive and Negative Sequence Magnitude 
and Phase, <j> representation for gesture A1
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H arm on ic G estu rer G estu rer G estu rer G estu rer G estu rer G estu rer
A B C D E F

1 -123° -134° -141° -132° -147° -134°
2 26° 17° 25° 19° 23° 13°

Table 5.13 Comparison of all gesturers orientation angle for the first two
harmonics of gesture 1

The first harmonic orientation angles for each gesturer show very similar values, 
averaging at -135° and deviates a maximum of plus/minus 12°. The second 
harmonics are also of similar values. The average value for the other gestures give 
first orientation angles that are distinctive of the gesture i.e. gesture 2, -170° and 
gesture 4, -21°. What this reveals is that the first orientation angle is related to the 
spatial coordinates of the gesturer. Although the physical dimensions of the gesturer 
may vary, and the interpretation of the gesture may vary, the orientation angle of 
each gesture is very closely clustered together.

Figure 5.35 shows the orientation angles and raw phase for four harmonics of the six 
gesturers for a particular gesture. In the majority of cases there is little difference 
between the raw phase shift calculated from the positive and negative sequence 
components and the orientation angle, because the phase shift, <j> is very small as 
shown in table 5.12. This can be seen from the figure where the represents the raw 
phase shift, and there is only one case where there is no overlap with the orientation 
angle. It is also evident that the second harmonic is even more tightly clustered, 
indicating the same curvature of trajectory from all gesturers. The average and 
standard deviation values for the first and second harmonics are 135° (std. = 8°) and 
114° (std. = 9°), respectively.

Pos + Neg magnitude with Orientation angle, 'o'

Figure 5.35 Orientation angle ‘o’, raw phase , and average for six 
gesturers performing the same gesture (red=lst, green=2nd, blue=3rd,

cyan=fourth harmonic)
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In the case of the first and second harmonics the data was closely clustered and 
average and standard deviation values were easily calculated. The values of 
orientation angles given for the third harmonic highlight some of the problems with 
the use of angles and the discontinuity at the 0°/360° or ±180° boundary. The 
orientation angles for the third harmonic are -45°, -83°, 32°, -59°, 38°and -116° 
giving an average of -39° and a standard deviation of 63°. The standard deviation 
measure cannot be relied on to give a useable answer when -45° could equally be 
represented as 315° and when not using negative numbers gives an average of 201° 
and standard deviation of 131°. Most realistically the problem with calculated values 
is likely to occur with clusters that straddle the ±180° boundary.
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Figure 5.36 The first harmonic orientation angle for the five pointing gestures
from one gesturer.
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Most of the first orientation angles for the five pointing angles are clearly spaced, as 
shown in figure 5.36. The angles are -161°, -134°, -34°, -89° and -91°. The latter 
two are virtually the same as they represent the two gestures of ‘Straight up and 
down’ and ‘Straight Ahead, halt and return’. In this case the contribution of the other 
harmonics is necessary to distinguish between the gestures. In this case the second 
harmonics are very similar at -78° and -95° but the third harmonics are quite 
different at 50° and -97°. A technique for distinguishing gestures by their harmonic 
content will be discussed in the next chapter.

5.9. Summary

The harmonic data, resulting from applying the FFT to the OSA data or manually 
obtained data, is in complex form. This form of data is not very meaningful, except 
the fact that as the harmonics increased the magnitudes generally decrease. 
Representing the data as positive and negative sequence components with
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normalisation of magnitude and some manipulation of the phase data gives rise to 
phase information that can be used to characterise gesture trajectories.

Manipulation of the data into magnitude and phase information gave information 
about the structure of each harmonic, especially the phase. The phase information 
has two components. One component represented the phase shift of the harmonics in 
the time domain and the other phase component represented the orientation of the 
harmonic in the x-y plane or appearance domain. The orientation of any harmonic 
was found to be the sum of the orientation angles for all the preceding harmonics. In 
addition, the magnitude of the positive and negative sequence components indicated, 
if not equal, that an ellipse had be formed in the x-y plane and the direction of 
rotation depended on their relative magnitude. Rotation of the ellipse was anti-
clockwise when the positive sequence magnitude was greatest and clockwise when 
the negative sequence magnitude was greatest. Viewing the harmonics in 2DT 
showed the ellipse could be pictured in time as an ‘elliptical corkscrew’.

The first harmonic would revolve just once whereas the second harmonic revolves 
twice etc. The nature of each harmonic component gives valuable insight into the 
characteristic of the gesture. The first harmonic orientation angle gives an overall 
indication of the gesture direction. If the remaining harmonics have zero orientation 
angle then the gesture trajectory represents a straight line, in that the rising and 
falling parts of the trajectory take the same path. The second harmonic, and to lesser 
extent the other even order harmonics, is mainly responsible for determining the 
amount of curvature in the trajectory because the orientation angle is in a different 
plane to the first harmonic. When the magnitude of the positive and negative 
sequence components is different, an ellipse structure is indicated as the rising and 
falling paths of the trajectory are different.

Generally, the higher the order of the magnitude of the harmonic the smaller is the 
amplitude. This rule is broken if significant oscillation is detected or the even order 
harmonics are indicating significant curvature in the trajectory.

A number of simulated trajectories showed some other characteristics. If the rising 
and falling parts of the trajectory were the same, whether straight line or curved, then 
no ellipses were formed. However, with curved trajectories the even order 
harmonics, especially the dominant second order harmonic, moved out of the 
orientation plane of the first harmonics. If the rising and falling trajectories took a 
different path, then ellipses are formed as can be detected by the difference in 
magnitude between the positive and negative sequence magnitudes. Oscillation in a 
trajectory could also be detected. It could be envisaged that a second harmonic could 
result in either a curved trajectory or an oscillation in the trajectory.

Various simulated trajectories were devised to test the performance and 
characteristics of the system. A perfect triangular waveform showed that there were 
no time domain phase shifts and that the orientation angle was as expected by the 
data in the x-y plane. The magnitudes of each harmonic were as expected by theory. 
The length of the ’triangular’ gesture was varied so as to ascertain the performance 
of the time-normalisation system (chapter 4). In some instances the interpolation and 
decimation process could not deliver the target length of 64 samples. Hence, the last 
value of the 65 length data was truncated. This truncation caused a small 
discontinuity in the waveform and resulted in a phase shift of one sixty-fourth of
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360° affecting the first harmonic and higher harmonics at integer values of this phase 
shift. In addition, a small amount of distortion in the data was seen when the data 
was reconstructed with the IFFT. However, this distortion was considered to have 
minimal effect on real gesture trajectory data, as a hand movement was very unlikely 
to make the fast transition in direction as modelled by the triangular wave shape.

In this application there is a slight uncertainty as to where a gesture begins and ends. 
The beginning of a trajectory is dependent on detecting movement, which can be 
variable in speed, and hence the time elapsed for detection, albeit relatively small. 
The variability of speed will result in small changes of phase from trajectory to 
trajectory. In addition, there is the case of finding when the gesture stops. 
Observations had shown that the gesturing hand does not always return to the starting 
position. Investigations of allowing the stop criteria to range a number of distances 
from the starting coordinates gave rise to truncation errors, which showed up as time 
domain phase-shifts. In general these phase shifts due to truncation error only 
produced an error of about 1-2% error. But even with these changes of phase-shift 
the orientation angle remains tightly clustered for all low order harmonics and appear 
to be an invariant property of this analysis.

Assessing the performance of the OS A to different data sources showed that 
sometimes its performance was not ideal. Data produced visually/manually and from 
SCM and SCMI objects showed subtle differences. In one particular case, using 
SCMI data there appeared to be a distortion in the tracking process. However, 
reconstruction of the waveform with just six harmonics showed that the anomaly had 
been smoothed out. The frequency analysis showed that the orientation angles stayed 
virtually invariant to changes or errors in the capture or tracking process prior to 
transformation into the frequency domain and so important information about the 
characteristic of the gesture is not lost.

It was found that the positive and negative sequence equations gave the same result 
as the more traditional matrix form of equations for describing elliptical structures. 
This was particularly useful as the equations were then in the same form as the 
results given by Fourier analysis. Syntheses of gesture trajectories were able to be 
obtained using just three harmonics. The analysis has shown that gesture trajectories 
can be characterised by the magnitudes of the positive and negative sequence 
components; the phase shift and the orientation angle of each harmonic. The next 
two chapters are concerned with the recognition performance of Probabilistic Neural 
Networks (PNN) using the data and properties of the harmonic components in 
association with clustering techniques to select target gestures.
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6. Gesture Recognition using Probabilistic Neural Networks 
and Hierarchical Cluster Techniques

This chapter investigates techniques to classify gestures. In the previous chapter it 
was established that the orientation angle of the first harmonic played a major role in 
classifying the pointing gesture. It has also been shown that just a few low order 
harmonics adequately characterise a gesture. The classification technique uses a 
vector based on the magnitude of the sum of the positive and negative sequence 
components (the length of the major axis of the ellipse) and the orientation angle of a 
few harmonics. The coordinates of the vector are used in cluster analysis to find a 
target gesture for a particular gesture. The target gestures are then used with a 
Probabilistic Neural Network (PNN) to identify or analyse unknown gestures

6.1. Introduction

The technique introduced in this chapter is similar but different to the object 
recognition technique based on Fourier Descriptors (Kuhl et al. 1982, Lin et al. 1987 
& 1990,) using spatial sampling. With this method the magnitudes of harmonic 
components are used to identify shape. Comparing the harmonics of an object with a 
number of reference shapes in a database allows object recognition to be achieved. A 
two-dimensional array of coefficients, one row for each object, is stored in the 
memory and used for later comparison. The nearest neighbour distance between the 
object and each reference in the database is used to decide whether the unknown 
shape is similar to the database shape or not. Typically a calculation, as shown 
below, is implemented: -

k

D  =  ^  ( a ( i ) r e f  ~  OBJECT )
i=l

The square difference between the magnitudes of the harmonics, a(i), are calculated 
and the sum ‘D’ of all the harmonics, ‘k’ are found. If the value ‘D’ is smaller than a 
predefined threshold for an entry in the database, then the actual shape is regarded as 
recognised.

Establishing a target gesture in 2DT space is more complex than the case for 
identifying non-deformable objects. But the least squares formula only considers the 
magnitude of the harmonics and does not include phase information which is an 
important parameter in characterising a gesture. The phase information, in the form 
of complex data representation can be used with a PNN.

In addition, the PNN is an appropriate tool for gesture recognition as it is structured 
to take the harmonic, multidimensional inputs. It is also superior to least squares 
methods where outliers can cause errors that produce false results (Bishop, 1995). 
For example, an unknown gesture is input to a PNN and compared with a number of 
Target gestures to establish which one it is closest to. The Target gestures are 
established by clustering techniques. Because the amount of data for these 
experiments is generally sparse, hierarchical clustering techniques were investigated 
rather than the more common k-means. PNN are generally constructed from Radial 
Basis Functions. They are seen as ideal for practical pixel-based vision applications
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(Howell & Buxton, 1995) as they are particularly efficient at processing sparse, high-
dimensional data (which is common in images) and because they use approximation, 
which is better than interpolation for handling ‘noisy’, real-life data. They also 
provide a guaranteed, globally optimal solution via simple linear optimisation.

In this chapter the PNN networks are applied to the classification of five pointing 
type gestures. The performance is evaluated for different target gestures and the 
number of harmonics used. The influence of the first harmonic is investigated and 
applied in another commonly used classification technique using a clustering 
algorithm. Hierarchical clustering techniques are also investigated using tools in the 
Matlab Statistics Toolbox. In this investigation different distance metrics and linkage 
methods are assessed. Furthermore, a comparison is made of the PNN and clustering 
techniques and ideas are presented for using the two techniques together for more 
complicated gestures to analyse in the following chapter.

6.2. Probabilistic Neural Network

There are many papers and reports covering all aspects of Artificial Neural Networks 
(ANNs) and gesture recognition systems, but very few on the employment of the 
Radial Basis Function to this type of application. But there is a very well 
documented area of research being undertaken for the RBF used for phoneme 
recognition (Berthold, 1994) and for face classification techniques (Howell & 
Buxton, 1995).

Figure 6.1 Schematic diagram of the RBF neural network, with the input layer 
to the left, RBF hidden layer in the middle and linearly combined with weights 

to give output f(x) to the right. (Source: Orr, 1996)

The Radial Basis Function was first used in neural networks by Broomhead & Lowe
(1988) . Other contributions to the theory include Moody & Darken (1989), Renais
(1989) and Poggio & Girso (1990). The radial basis function (RBF) is a multi-layer, 
feed-forward network consisting of three layers.
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Layer one is the input layer, layer two a hidden layer, which contains the basis 
function and layer three, the output which is linear. The architecture for the RBF 
network can be seen in figure 6.1. The neurons in the RBF have localised receptive 
fields because they only respond to inputs, which are close to their centres. This is in 
contrast to normal multi-layer perceptrons which have a global response to inputs 
due to the normal use of a sigmoid transfer function. (Hagan et al., 1996).

Layer one contains the inputs to the network, pi to px. In layer two the neurons in the 
second layer contain the RBF; a statistical transformation is based on (but not limited 
to), the Gaussian distribution.

ZM )  = exp(— ..
2(7j

where, c r and are the standard deviation and the mean of the j lh unit receptive
field. The output from layer one is the distance between the input to the network and 
the centre of the basis function, with the position and width of the function being 
learnt from training data. This is the characteristic feature of the radial function - 
response to an input will decrease or increase monotonically with distance from a 
central point, i.e. as the input moves away from this centre point, the neuron output 
will rapidly drop towards zero. A different centre point is calculated for each input 
into the network. The radial basis function is of the form that the output is a 
maximum of one when the difference between the input and the weights is zero. The 
output decreases to 0.5 when the difference measure increases to ±0.833.

The Matlab Neural Network Toolbox shows that the sensitivity of the radial basis 
neuron can be adjusted by the bias, b that is part of the layer two. If the bias is 
changed from 1 to 0.1 the spread of the input vector changes from 0.833 to 8.33 for 
an output of 0.5. In Matlab a critical mathematical scalar value is that of ‘spread’. 
This value is set at design time and is concerned with the second layer, the RBF layer 
of the network. If a neuron’s weight vector is a distance of ‘spread’ from the input 
vector, its weighted input will be spread, its net input will be (-log(0.5) = 0.833), 
making its output 0.5. Each bias in layer two is set to 0.8326/spread, which gives a 
radial basis function which cross at 0.5 at weighted inputs of tspread. This is the 
width of an area in the input space to which each neuron will respond. For example, 
if ‘spread’ is set to 4, then each neuron in the RBF layer will respond with 0.5 or 
more to any input vectors within a vector distance of 4 from the weight vector. The 
value of ‘spread’ should ideally be large enough that neurons respond strongly to 
overlapping regions of the input space.

There are several sub-classes of the RBF network, one of which is of particular value 
to this project. It is the Probabilistic Neural Network (PNN). The PNN is a three- 
layer network used for pattern classification type problems. Layer one, as always, is 
the input layer. Layer two contains the RBF layer whilst layer three contains a 
competitive layer. This type of network requires the prototype input pattern to be 
known and incorporated into the network as rows of a weight matrix. The 
competitive layer is so named because each single neuron in the layer ‘excites’ itself 
and inhibits all other neurons. The second layer sums the contributions from the first 
layer. Each class of input produces as its net output a vector of probabilities. The
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final layer picks the maximum of these probabilities to produces one for that class 
and a zero for other classes.

The approach taken in this thesis is to use frequency domain data as input to the 
neural network rather than time domain data. Masters (1994) found that complex- 
domain neural networks are especially superior to real-domain networks when the 
information relevant to the solution is primarily embodied in phase relationships. He 
found that there were two neural network models to be particularly effective for 
supervised training, the Multi-Layer Feed-forward Network (MLFN) and the 
Probabilistic Neural Network (PNN). Masters used frequency data as input to these 
neural networks reporting that the main disadvantage to the MFLN is that 
excruciating long training periods are often required. Furthermore, Masters states 
that the execution time of a PNN is very slow and requires a relatively large amount 
of memory. However processing speed of computers has increased significantly 
since Masters made this comment. The PNN has been found to have faster execution 
times, and as such is an appropriate classifier for gesture recognition application.

The advantage of the PNN network using the Gaussian RBF is that scaling is not 
required. The length of the input vector to the PNN is proportional to the number of 
dimensions and is suitably scaled. In this gesture recognition technique the number 
of dimensions is equal to the number of harmonics. Typically, the higher the 
harmonic the lower will be its amplitude. By definition the unknown vector will be 
of similar amplitude to the target value. The neuron for a particular harmonic will be 
a calculation of the distance of the unknown input from the target value. PNN 
networks also avoid the problem of least squares systems (Bishop, 1995) in which 
one of the difficulties of the standard sum-of-squares error is that it receives the 
largest contribution from points that have the largest error. Outliers with PNN 
networks have errors that tend to zero and so do not dominate the error term. The 
role of outliers is again a concern with clustering techniques when they are used to 
identify target gestures for use with the PNN

6.3. Clustering

Clustering is used in many fields relating to pattern recognition. Clustering uses a 
range of techniques to classify similar objects into different groups or to partition 
objects into clusters or subsets so that they ideally share some common 
characteristics. Jain et al. (1999) have reviewed pattern clustering methods from a 
statistical pattern recognition perspective and present taxonomy of clustering 
techniques showing that clustering techniques are principally divided into either 
hierarchical or partitional clustering methods.

6.3.1. Distance Metrics

Cluster analysis is a way to segment a set of objects into clusters of objects that are 
very similar although the profiles of objects in different clusters are quite different. 
The basic procedure of cluster analysis is to find the distance between every pair of 
objects in the dataset. There are a number of different distance measures that can be 
used. The City Block technique avoids the mathematical intensity of the popular 
Euclidean measure and the Minkowski metric generalises these first two metrics
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(Moon and Stirling, 2000), whereas the Mahalanobis metric is a measure that may be 
more appropriate where probability contours are elliptical. The axes of the ellipse are 
parallel to the x and y axes. This model assumes that the feature values are still 
independent but the standard deviations; ‘o ’ is now different. The distance metric is 
defined as: -

Euclidean distance metrics works well when the data set has ‘compact’ or ‘isolated’ 
clusters (Mao and Jain, 1996) but the drawback to the use of Minkowski metrics is 
the tendency of large-scaled features to dominate others. Bishop (1995) explains that 
one of the difficulties of the standard sum-of-squares error is that it receives the 
largest contribution from points that have the largest error. Long tails to a 
distribution can cause a solution to be dominated by a very small number of 
‘outliers’, which have a large error. Similarly, incorrectly labelled data can produce a 
large error. The Minkowski-R error with values of R less than 2 reduces the 
sensitivity to ‘outliers’. When R=l, the minimum error solution computes the 
conditional median of the data rather than the conditional mean. Yam et al (2002) 
compare the recognition rates for walking and running after clustering of the PWM 
(Phase-Weight Magnitude) feature and compares Euclidean and Mahalanobis 
distances.

Duda (2006) explains that the use of the Mahalanobis metric removes several of the 
limitations of the Euclidean metric:

1. It automatically accounts for the scaling of the coordinates
2. It corrects for correlation between the different features
3. It can provide curved as well as linear decision boundaries

However, there is a consequence to these advantages. The covariance matrix can be 
difficult to determine accurately. The memory and time requirements grow 
quadratically rather than linearly with the number of features. These problems may 
be insignificant when only minimal features are needed, but can become significant 
when the number of features increase.

Duda further suggests that if a simple minimum-distance classifier is satisfactory, 
there is no reason to use anything more complicated. However, if the classifier makes 
too many errors the possible reasons are that:-

1. The features may be inadequate to distinguish between different classes
2. The features may be highly correlated
3. The decision boundary may have to be curved
4. There may be distinct sub-classes in the data
5. The feature space may be simply too complex
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6.3.2. Partitioning methods

There are many different partitioning methods (Jain, 1999) including graph theoretic, 
mixture resolving, mode seeking and square error of which the latter is a form of the 
popular k-means technique attributable to McQueen (1967). Moon and Stirling 
(2000), state that the k-means technique has been extensively used for clustering 
applications. A relevant reference within the context of signal processing is Linde et 
al. (1980). k-means clustering partitions objects into k mutually exclusive clusters so 
that each object within a cluster is as close to each other as possible, and as far away 
as possible from other clusters. Each cluster is characterised by its centroid or centre 
point. The number of clusters that is expected is set in advance although the training 
is unsupervised. This technique has been found to be appropriate for large data sets. 
Its main advantage has been its simplicity and speed. The disadvantage of this 
technique is that the results may not be consistent because of the initial random 
assignments of centres for several runs of the algorithm.

Hierarchical clustering investigates groupings in data over a variety of scales of 
distance, by creating a cluster tree. The tree is not a single set of clusters but rather a 
multi-level hierarchy. Clusters at one level are joined as clusters at the next higher 
level. This allows a decision to be made about the scale or level of clustering that is 
most appropriate for the application. Hierarchical clustering use a variety of linking 
techniques. Many of the linking techniques are variants of the single-link (nearest 
neighbour) technique (Sneath and Sokal, 1973). Other techniques are commonly 
used, for example, complete-link (largest distance) (King, 1967) and minimum- 
variance (Ward, 1963; Mutagh, 1984). The mechanism of the linking process is 
explained in Appendix VI. Jain et al. discuss some of the characteristics of the 
different linking schemes. The complete-link algorithm produces tightly bound or 
compact clusters (Baeza-Yates, 1992). The single-link algorithm suffers from a 
chaining effect (Nagy, 1968) and has a tendency to produce clusters that are straggly 
or elongated. However, the single-link algorithm can be more versatile and was 
shown to extract concentric clusters whereas the complete-link cannot.

6.3.3. Cluster validation

Jain et al. (1999) make the important point that all clustering algorithms will, when 
presented with data, produce clusters regardless of whether the data contains clusters 
or not. A further point is made about cluster validity and assessing the clustering 
procedure’s output. The analysis often uses a specific criterion of optimality although 
the criteria are arrived at subjectively and there is little in the way of ‘gold standards’ 
in clustering except in well-prescribed domains. There are three types of validation 
studies possible: an external assessment of validity compares the recovered structure 
to an a priori structure; an internal examination of validity tries to determine if the 
structure is intrinsically appropriate for the data; and a relative test that measures two 
structures and measures their relative merit.

However an extensive range of options for clustering is to be found in the Matlab 
Statistics Toolbox (Appendix VI). This toolbox has extensive range of distance 
measures and linkage methods. When the distance measures have been calculated, 
the objects are linked together on a basis of closest proximity to form a binary,
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hierarchical cluster tree. As the objects are paired together, the newly formed clusters 
are grouped together into larger clusters until a hierarchical tree is formed. This 
information can be conveniently illustrated by a dendrogram that plots the 
hierarchical information as a graph. The hierarchical information can be used as a 
visual aid to create clusters by either detecting natural groupings or by cutting off the 
hierarchical tree at arbitrary points.

Furthermore, to validate the cluster information a correlation between the original 
distance measures and the linkage can be made. If the clustering is valid there should 
be a high correlation, which can also be used to assess the different distance 
measures used. Linkage can be undertaken by a range of methods, i.e. ‘single’, 
‘complete’, ‘average’, centroid’ and ‘ward’ (Appendix VI). In order to determine 
natural cluster divisions in a dataset, the length of each link in a cluster tree can be 
compared with neighbouring links below it in the tree. If the link is approximately 
the same length as a neighbouring link there are similarities between the objects 
joined at this level and are said to exhibit a high degree of consistency. When there is 
a difference between the links at the same level there are dissimilarities and the link 
is said to be inconsistent with the links around it.

The inconsistent links can indicate the border of a natural division in a dataset. The 
‘inconsistency coefficient’ is a measure of quantifying the relative consistency of 
each link in the hierarchical cluster tree. The coefficient is produced by comparing 
the length of a link in a cluster hierarchy with the average length of neighbouring 
links. A low consistency coefficient indicates that the object is consistent with 
neighbouring objects whereas a high coefficient indicates the object is inconsistent 
with those around it. The use of the coefficient and visual methods helps to resolve 
which distance metric and which linkage method is appropriate for the application.

Most explanations of clustering are based on two-dimensional feature vectors that 
represent a pair of coordinates and hence are easy to demonstrate graphically. 
However, clustering can be achieved for higher-dimensional data, but the issue of 
scaling or normalisation must be addressed. If scaling is not addressed one of the 
dimensions may have an undue influence on the clustering results. Cluster analysis 
can be a tool to help find similarities, but appropriate scaling is needed to condition 
the data for valid results.

6.4. Recognition of Pointing Gestures

The following experimentation investigated how the PNN and the clustering 
techniques were able to recognise gestures based on harmonic data.

6.4.1. Normalisation of frequency data

First and foremost both PNN and clustering data should be normalised to avoid 
scaling variations. Data for the PNN application normalised data on the basis of the 
value of Ap or the greater value of Ap or An of the first harmonic. Clustering 
normalisation is similarly undertaken but based on the coordinates of a vector 
representing the orientation angles of the harmonics. In chapter 5, it was explained 
that a signal of unit amplitude and angular frequency co, can also be represented by
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the double-sided spectrum of a positive and negative frequency component of 
amplitude of half the single sided representation. For ease of experimental analysis it 
is convenient to designate both the positive and negative sequence components to 
unity, for real data, and hence making the single-sided magnitude equal to 2.

When the magnitude of the positive and negative sequence components have a 
magnitude of unity, a straight-line of value 2 is obtained in appearance-based space. 
This is a special case of an ellipse with major-axis, A equal to 2 and minor-axis, B 
equal to 0. This is because Apk + Ank = A and Apk -  Ank = B . For other cases 
where Apk and Ank are not equal an ellipse is formed but the major axis is less than 
2 .

In the pointing experiments, data obtained from the first harmonic, is often in the 
form indicating a shallow ellipse, and so positive and negative sequence components 
have very similar magnitudes of around unity. As a first approximation to 
normalising all gestures for scale it was decided to arbitrarily normalise all harmonic 
components by Apk for the first harmonic as the major axis of the ellipse will be 
close to 2 in most cases. However, in cases when the first harmonic is noticeably 
elliptical errors will creep into the analysis of first and subsequent harmonics. To 
remedy this situation it is convenient to normalise harmonics to the greater 
magnitude of Apk or Ank. This then also conveniently indicates if the direction of
revolution of the ellipse is anti-clockwise or clockwise, respectively. It is appropriate 
to normalise all gestures to the length of the major axis of the first harmonic which 
has a maximum value of two. So for example when Apk is 1 and Ank is 0.8 , the 
major-axis length is 1.8, so the normalising ratio for all harmonics from a particular 
gesture are multiplied by the ratio of 2/1.8.

A vector is generated from the normalised major-axis magnitude and the orientation 
angle for each harmonic, and corresponds to visual observation of 2D views of 
harmonics shown in chapter 5. The coordinates of the vector are then used for cluster 
analysis.

6.4.2. Recognition using the PNN

The harmonic data, from the experiments (Appendix VII) with the pointing gestures 
as discussed in Chapter 5 were arranged in a form suitable for the PNN. The data was 
used in its complex data form, rather than magnitude and phase form to avoid 
discontinuity problems with the phase information (Chapter 5). The harmonic data 
consist of contributions from the positive and negative sequences, and each has real 
and imaginary values. Data from each harmonic is offered to the PNN as 4-tuples 
(the real and imaginary number of the positive and negative sequence harmonic). In 
this set of experiments the raw harmonic data was applied to the PNN network. The 
orientation angle was very similar to the raw phase angle (Table 5.7) as the phase 
angle, <j) is very small. It was considered unnecessary to adjust the complex data for 
the phase component as the raw phase and orientation values were virtually the same 
for the low order harmonics.
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The main concern with the PNN technique is to select representative target gestures. 
In this ‘pointing’ experiment it is a relative easy task to recognize gestures as the first 
harmonic orientation clearly indicates the gesture and therefore sophisticated 
techniques are not necessary. To prove that the PNN could recognize gestures, one of 
the gesturer’s responses (Gesturer B) was arbitrarily taken as the target gesture, using 
a 12 harmonics vector for all gestures. The results gave a misclassification of 6 
gestures from a total of 25 i.e. a. 24% error. These misclassifications occurred with 
the two gestures that were very similar.

It was recognized that gesturer’s B target gestures may not have been the most 
appropriate target gesture. To calculate a more representative target gesture, with this 
sparse data, the average of all six gestures was calculated. The results are shown in 
Tables 6.1 and 6.2 which also show the result of having just 1 or 12 harmonics with 
this data. The ‘spread’ variable was set at 1 and changes to this value had no effect 
on the network’s performance.

G esture G estu rer
A

G estu rer
B

G estu rer
C

G estu rer
D

G estu rer
E

G estu rer
F

1 1 1 1 1 1 1
2 2 2 2 2 2 2
3 5/3 3 3 5/3 3 3
4 4 4 4 4 4 4
5 3/5 3 5 5 3/5 3/5

Table 6.1 Target gestures made from the average of all 6 gestures, 
misclassification shown bold, near miss shown after 7 \  Harmonic pair = 1.
G estu re G estu rer

A
G estu rer

B
G estu rer

C
G estu rer

D
G estu rer

E
G estu rer

F

1 1 1 1 1 1 1

2 2 2 2 2 2 2

3 3 3 3 3 o 3
4 4 4 4 4 4 4
5 3/5 3/5 5 5 3/5 3/5

Table 6.2 Target gestures made from the average of all 6 gestures, 
misclassification shown bold, near miss shown after 7 ’. Harmonic pair = 12.

Recognition was improved and misclassification was recorded at 17% (6 
misclassified from 30) when using just one harmonic. But further investigation 
showed that all errors occurred between Gestures 3 and 5, the two gestures that are 
similar as shown in Figure 5.23. In order to gain a measure of the closeness of these 
two gestures, the mean squared error difference between the input and target vectors 
for all gestures of gesturer E was calculated. The errors calculated were 0.08 and 
0.07 for gestures 3 and 5 respectively, showing the closeness of the error and the 
resolving difficulty of the network. Consideration of the first orientation angle for 
gestures 3 and 5 show angles of 93° and 95° respectively that confirms the similarity 
of the first harmonic orientation angle and hence complex data values. Increasing the 
number of harmonics to 12 improved the classification of the network, as shown in 
Table 6.2, to just 13% (4 misclassified from 30) errors.

The results conclude, as expected, that the better the representative target gesture, the 
better discrimination between gestures can take place. In addition more harmonics
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help the discrimination especially when the first harmonic orientation angles are very 
similar. The choice of target gesture is discussed in more detail in the next chapter 
using clustering techniques. However, classification and recognition of the pointing 
gesture experiment is first conducted with clustering techniques to ascertain a 
rationale for the selection of distance metric and linkage method from results that are 
well understood.

6.5. Recognition using Clustering Techniques

The hierarchical clustering technique was used because it enables the exploration of 
possible clustering sets on relatively sparse amounts of data. The hierarchical 
technique allows for a variety of distance metrics and linkage methods to be used to 
explore clustering of the gesture data. Three distance metric were investigated, i.e. 
Euclidean, City Block and Mahalanobis; and up to five linkage methods, were 
applicable for the distance metric, i.e. single, complete, average, centroid and ward. 
Before applying these techniques to the data consideration of normalisation of the 
data is necessary.

6.5.1. Testing clustering techniques

The investigation of clustering techniques using a variety of distance metrics and 
linkage methods was undertaken under the different normalisation regimes. In 
addition the validation of the methods described by Jain et al. (1999) were 
investigated, namely an internal examination of validity using the ‘Cophenetic 
Coefficient’ and an external assessment of validity compares the recovered structure 
with the prior classification of the gestures. For these tests the pointing gesture 
experiments were used.

Pos + Neg magnitude with Orientation angle, 'o'

Figure 6.2 First four harmonics (red, green blue and cyan) of five gestures from
six gesturers.
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The distribution of the first four harmonics for the five gestures of six gesturers is 
shown in Figure 6.2. The data for Figure 6.2 was obtained from arbitrarily 
normalising data to the first positive sequence harmonic magnitude.

Figure 6.3 First four harmonic (red, green blue and cyan) of five gestures from 
six gesturers -  normalised to magnitude of two for first harmonic

Harmonic Positive
Magnitude,

Ap

Negative
Magnitude,

An

Relative
Orientation

0
1 0.8952 1.0000 -133.5720
2 0.4637 0.4583 -116.3818
3 0.0668 0.0935 -44.8433
4 0.0450 0.0928 25.3509

Table 6.3 Ap, An and Orientation angle for the first 4 harmonics normalised by
An, for the gesture Al.

Harmonic Real
Magnitude

Imaginary

1 -1.3785 - 1.4490Ì
2 -0.4323 - 0.8716Ì
3 0.1199 0.1193Ì
4 0.1314 + 0.0623Ì

Table 6.4 Values of Table 6.3 normalised to the first harmonic magnitude of 2 
showing real and imaginary coordinates.

Applying the normalisation technique previously discussed gives the results shown 
in Tables 6.3 and 6.4. These results are for gesture Al and show that the first 
negative sequence harmonic is larger than the positive sequence component. The 
latter table gives an example of the coordinate values when normalisation to 2
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occurs. This new normalisation of the data shown in figure 6.2 results in figure 6.3. 
The first harmonics (red circles) are clearly shown to be at a radius of 2 in the figure.

Visual interpretation by orientation angle has been discussed in Chapter 5 and the 
first harmonic orientation angles shows three distinctive conditions and two 
overlapping conditions as already established by the PNN classification technique. 
However, experiments were performed to establish how well clustering techniques 
were able to group the data using the Matlab Statistics Toolbox as detailed in 
Appendix VI. The ‘cophenetic correlation coefficient’ was used to determine the best 
combination of distance measure and linkage method, with the coefficient closest to 
one being the best solution. The experiments were conducted for the three distance 
measures of ‘City Block’, ‘Euclid’ and ‘Mahalanobis’, and all five possible linkage 
methods of ‘single’, ‘complete’, ‘average’, ‘centroid’, and ‘ward’ were appropriate 
as the Mahalanobis is only meaningful using single, complete and average linkage 
techniques.

The results of the investigation, when using the coordinate values representing the 
magnitude and orientation of the first harmonic orientation angle are shown in Table 
6.6. The ‘ward’ linkage and the ‘Euclidean and City Block distance measure have the 
highest and most similar cophenetic correlation coefficient. The commonly used 
Euclidean and Mahalanobis distance measures with the ‘single’ (nearest neighbour) 
method do not perform that well in comparison.

Linkage/
Distance

‘single’ ‘complete’ ‘average’ ‘centroid’ ‘ward’

City Block 0.458 0.631 0.607 0.600 0.639
Euclidean 0.528 0.630 0.619 0.615 0.647

Mahalanobis 0.413 0.546 0.536 NA NA

Table 6.5 Cophenetic correlation coefficient values when comparing of distance 
metrics and linkage methods for the first harmonic vector, for normalisation

arbitrarily chosen as Ap=l

Linkage/Dist
ance

‘single’ ‘complete’ ‘average’ ‘centroid’ ‘ward’

City Block 0.782 0.880 0.889 0.887 0.835
Euclidean 0.814 0.872 0.874 0.876 0.784

Mahalanobis 0.719 0.886 0.867 NA NA

Table 6.6 Cophenetic correlation coefficient values when comparing of distance 
metrics and linkage methods for the first harmonic vector, for normalisation

when Ap or An is the greatest

Linkage/
Distance

‘single’ ‘complete’ ‘average’ ‘centroid’ ‘ward’

City Block 0.782 0.877 0.889 0.886 0.838
Euclidean 0.810 0.871 0.873 0.873 0.788

Mahalanobis 0.739 0.885 0.876 NA NA

Table 6.7 Cophenetic correlation coefficient values when comparing of distance 
metrics and linkage methods for the first harmonic vector, for normalisation of

the first harmonic to value 2.
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The output value, c, is the cophenetic correlation coefficient. The magnitude of this 
value should be very close to 1 for a high-quality solution. This measure can be used 
to compare alternative cluster solutions obtained using different algorithms.

Data of vector coordinates from the 6 gestures and 5 gestures (30 coordinates) were 
subjected to clustering using different distance metrics and linkage methods. The 
results in Tables 6.5, 6.6 and 6.7 show the value of the cophenetic correlation 
coefficient using the three possible normalisation techniques. Table 6.5, gives the 
value of the cophenetic correlation coefficient when normalisation is arbitrarily 
calculated with the value of Ap. The next two tables show significantly higher values 
as they are a result of normalisation occurring due to the highest value of Ap or An.

The cophenetic correlation coefficient is just one method of validating a clustering 
technique and it shows that arbitrary normalisation does produce overall lower 
values. It also shows that there is not a great deal of difference between distance 
metric and linkage method in Table 6.6 or 6.7. The greatest difference in value is 
shown with the single linkage method and the Mahalanobis and Euclidean distance 
metric, which differ by just 7%.

Dendrogram, Harmonic. Distance metric= euclid, ccc= 0.64679, Linkage=ward

Figure 6.4 Dendrogram of 30 gestures using Euclidean distance metric and 
‘ward’ linkage method for the first harmonic vector.

Another way to validate clustering is by comparing the dendrogram of all the 
experiments produced in the previous experiments. A range of dendrograms for 
various distance metrics and linkage methods are to be found in Appendix VI. They 
establish the clustering forms described by Jain et al.( 1999), in that the single-link 
algorithm suffers from a chaining effect and has a tendency to produce clusters that 
are straggly or elongated. The dendrogram of the Euclidean solution using the ‘ward’ 
linkage is shown in Figure 6.4, and shows particularly clear groupings. These 
groupings appear to be very similar to those that a human observer would choose and
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also give results based on the objective prior knowledge of the data. The shorter links 
show consistency but the longer links show inconsistency where natural clustering 
occurs in the data. The numbers on the ‘x’ axis of the dendrogram relate to the total 
number of gesture instances, there being thirty in total. For example, the numbers 1 
to 6 relate to the results of six gesturers (A, B, C, D, E & F) to the first gesture, and 
so on. Gesturer A’s response to the five gestures is shown as gestures 1, 7, 13, 19 and 
25.

G estu re G estu rer
A

G estu rer
B

G estu rer
C

G estu rer
D

G estu rer
E

G estu rer
F

1 3 3 3 3 3 3
2 4 4 4 4 3 4
3 1 1 1 1 2 1

4 5 5 5 5 5 5
5 1 1 1 1 2 2

Table 6.8 Classification of gestures for each gesturer using ‘euclid’ distance 
metric and ‘ward’ linkage method (bold shows miss-classification).

Gesture Gesturer
A

Gesturer
B

Gesturer
C

Gesturer
D

Gesturer
E

Gesturer
F

1 3 3 3 3 3 3
2 3 3 3 4 3 3
OJ> 1 1 1 1 1 1
4 5 5 5 5 5 5
5 1 1 1 2 1 1

Table 6.9 Classification of gestures for each gesturer using ‘euclid’ distance 
metric and ‘single’ linkage method (bold shows miss-classification).

The classification experiment was repeated, but instead of using the PNN as before, 
the coordinate values from the vector that represents the magnitude and phase of the 
first orientation angle was used. The classification results using the Euclidean 
distance measure with ‘ward’ and ‘single’ linkage are shown in Tables 6.8 and 6.9 
respectively. The Euclidean distance metric performs well but is influenced by the 
linkage method as the misclassification drops from six to ten when the ‘single’ 
method is used instead of the ‘ward’ method. As a result the Mahalanobis metric did 
not improve results but gave poorer clustering when required to cluster data into five 
groups.

The clustering results were compared with those obtained with the PNN network. 
Table 6.10 shows the different allocation of gesture number that occurred for the 
PNN and Clustering methods. The gesture numbers of the clustering technique were 
aligned to the numbers used in the PNN experiments, as shown in Table 6.10. A 
comparison of the clustering using the PNN method and the Clustering method is 
shown in Table 6.10. There are similar results from both methods. The PNN method 
has 5 from 30 wrong classifications. The cluster method has 5 or 8 misclassifications 
as there is no way of knowing what gesture is correctly labelled for gestures 3 and 5 
and which is the correct allocation, whereas the PNN definitely misclassified.
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Action of right hand Gesture
PNN

Gesture
Cluster

To left shoulder and return 1 3
To the left and return 2 4
Straight up and down 3 1
To the right of subject and return 4 5
Straight ahead, ‘half and return 5 2

Table 6.10 Gesture Number and Action Alignment

Gesture G estu rer
A

G estu rer
B

G estu rer
C

G estu rer
D

G estu rer
E

G estu rer
F

P C P C P C P C P C P C
1 1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2 3 2 4
3 5/3 3 3 3 3 3 5/3 3 3 2 3 3
4 4 4 4 4 4 4 4 4 4 4 4 4
5 3/5 3 3 3 5 3 5 3 3/5 5 3/5 5

Table 6.11 Comparison of PNN method (P) and Clustering method (C) for 
classification using one harmonic, (bold shows miss-classification).

6.5.2. Alternative clustering input data

The previous work using the PNN method clarified that using more harmonics 
improved the classification rate, albeit slightly. However, a vector based on the first 
orientation angle appeared to be an important contributor to gesture classification. 
An alternative approach for data input is to use just orientation angles instead of the 
coordinate values. The input must have a minimum dimension of two so the first and 
second orientation angle was input for one experiment and the first three orientation 
angle was in put for another experiment.

Using just orientation angles gave generally worse results than using coordinate data 
of the first harmonic vector. When using two orientation angles, only one gesture 
was classified correctly; the misclassification was 20% (6 from 30). When three 
orientation angles were used the classification slightly improved to 30% (9 from 30). 
The poor performance is attributable to several factors. Firstly, there could be a lack 
of scaling of the second and third harmonic components that could have an undue 
influence on the result. The problem to establish is what scaling should be used on 
the orientation angles, as the angle does not have any amplitude component as with a 
vestor. Secondly, the clustering technique may be differentiating between gestures by 
taking into account the second and/or third orientation angle that characterise a 
gesture.

It becomes apparent that the PNN technique is better than the clustering technique 
because of the automatic scaling that is inherent in the PNN network. However, the 
main challenge with the PNN technique is to find appropriate target gestures to 
represent a gesture from a group of people. The first harmonic vector does 
characterise the overall gesture but the second and third harmonic seem to generate
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characteristic of an individual gesturer or a group of gesturers. The possibility of 
using the clustering technique to select the target vectors using the second and third 
harmonic information is considered in the next chapter.

6.6. Summary

The recognition of gestures from trajectory data is a case of temporal pattern 
recognition. In this chapter the use of the PNN and the use of hierarchical clustering 
is explained. The PNN, based on the RBF, may require more neurons than standard 
feed-forward back-propagation networks, but can be designed and trained in a 
fraction of the time it takes to train standard feed-forward networks. The PNN 
requires no training and is very easy to apply. The key factor in using PNN is to 
obtain appropriate target gestures.

It has already been established that the harmonic orientation angles from the 
trajectory data characterise the gesture. It is shown that the first orientation angle is 
adequate to classify a range of pointing gestures from different people. When the 
harmonic data obtained from one of the gestures is used as the target gesture in a 
PNN network the other gestures are readily classified. Improvements can be made to 
recognition rates by introducing more harmonics to the analysis; however the 
improvements were small in the pointing gestures. The cause of misclassification 
was mainly due to the very similar characteristics of the two gestures.

An alternative technique for classifying data is to use a clustering technique. 
Hierarchical clustering techniques were favoured over the k-means technique 
because it was ideal for small amounts of data. It also readily allowed 
experimentation with distance metrics and linkage methods to ascertain optimum 
clusters based on a number of validity tests. From these tests two important results 
were obtained. One result clarified the type of normalisation that should be applied to 
the data. It was discovered that normalisation of the frequency data by the greatest of 
the positive and negative sequence component was relevant and showed a higher 
correlation with cophenetic distances. It also solved some problems with some 
experimental results in the next chapter.

The data fed into the clustering function represented the real and imaginary 
coordinates of a vector representing the magnitude (Ap+An) and orientation of the 
first orientation angle. Adjustments to the distance metric and the linkage method 
showed that for this data the Euclidean or City Block metric and the ‘ward’ 
(incremental sum of squares) linkage method gave results comparable to those of the 
PNN. But with this data set the Mahalanobis distance metric did not perform better 
than the other distance metrics.

The difference between the classification techniques i.e. just using the clustering tool 
or using the PNN, showed some subtle differences. For example, with the two 
overlapping different gestures, using the clustering technique, it was not possible to 
determine if the class was the correct. However, with the PNN network it was clear if 
the classification was correct or not. A further complication results if the dimensions 
of the clustering data are extended from their minimum of two (typically coordinate 
data). The second harmonic would be typically at lower amplitude than the first 
harmonic. This difference in scale can affect the proximity calculation and produce

168



P .R .G . H ard ing , 2007 , C h ap te r 6

an erroneous result. Although scaling could be applied there is a problem of 
adjusting it for an optimum performance. The PNN does not suffer from the scaling 
problem, as the comparison of the input with the target gesture is automatically 
performed in the radial basis layer.

The main concern with the PNN technique for classification is determining the 
optimum target gesture for classification. The clustering technique can be used as a 
tool to extract the optimum target vector. It appears that the first harmonic 
orientation angle can be an automatic clustered value due to spatial constraints of the 
gesture, and with the next few harmonics (second and third) can be a vehicle to 
characterise a gesture.

The next chapter will investigate the use of harmonics in both the classification and 
recognition of gestures to establish how they can be used to detect intra-class and 
inter-class differences in a gesture.
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7. Gesture Experiments
The aim of this chapter is to assess the performance of Fourier analysis, clustering 
and PNNs techniques on different types of single-handed gesture. Experiments were 
performed on a hand-raising gesture that was repeated ten times to assess the intra-
class performance. Another single-handed gesture experiment was performed with 
twenty-one people to assess the inter-class performance. This gesture was called the 
‘Take-Mug’ experiment as the gesturers mimicked taking an imaginary cup and 
drinking from it. The route of the trajectory from these experiments was much more 
complicated than any used before.

The Fourier analysis of these trajectories required the full explanation of the 
properties of the significant harmonics. Observation of the individual gesturer’s 
actions suggested that within the gesture there were subtle variations that could be 
additionally grouped or clustered together. Clustering methods were employed to 
resolve target gestures that could be used with a PNN. The clustering inputs were 
based on vectors made from the amplitudes of the positive and negative sequence 
components and the orientation angles of the first three harmonics. The results from 
the application of clustering and PNNs were compared with visual observations. A 
further set of single handed gestures were performed with a number of people to 
investigate further mime like type of gestures often found in communication 
interactions of normal and handicapped people. These gestures gave some interesting 
results of which the Fourier analysis technique was an ideal tool to reveal the 
oscillatory nature of many of these gestures. These gestures also revealed limitations 
of the tracking and analysis technique.

7.1. Introduction

Previous gesture experiments tracked hand movement by the combination of motion 
and skin-colour cues to form gesture objects, which are sorted into rank order by 
area. The basis of this hypothesis is that in a situation with a single person in front of 
a camera, and no other people moving in the background, there were likely to be only 
three skin-coloured objects possible in a gesturing image sequence (the head, and 
two hands). The study of single-handed gestures showed that the trajectory of the 
hand could be recorded in the spatial domain and transformed into the frequency 
domain by the FFT. The recognition of gestures could take place using the harmonic 
components in a manner similar to the way in which Fourier Descriptor technique is 
used to recognise objects.

However, unlike the Fourier Descriptor technique that is based on relative magnitude 
of harmonics, it was found that the phase components associated with each harmonic 
held additional important information about the characteristic of the gesture. The 
highly dimensional harmonic data (real and imaginary component of the positive and 
negative component) lent it self to be easily used with a PNN. The use of clustering 
techniques to identify target gestures for the PNN allowed classification and 
recognition of gestures to take place.

Additionally, it was found that only the first few harmonics were sufficient to 
characterise the trajectory. This approach was substantiated by taking the IFFT of a
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few low order harmonics that showed that the resultant time domain wavefonn 
closely matched the original waveform or trajectory.

The frequency components showed that there was a particular structure to the 
gesture. The structure uncovered by this technique complements the structure and 
characterisation discussed by Rossini (2003) and Gibet et al. (2001), relating to 
position of gesturing and shape of gesture. Further experiments were devised to test 
the system for it characterisation, categorisation and recognition. The first set of 
experiments was directed at deictic or pointing gestures (Chapter 6) similar to the 
work of Howell et al. (1998). Experiments were conducted into the publicly available 
PETS sequences of the same gesture (arm being raised several times) and were the 
foundation for an investigation into intra-class variations.

A more complicated gesture was inspired by an avatar (obtained from Kennaway, 
2004) with twenty-one people imitating the gesture. This gesture was to pick up and 
drink from an imaginary mug. The avatar was a convenient form of a repeatable, 
non-varying gesture for the people to be acquainted with. Although each gesture was 
unique and the key gesture action was observable, inter-class variations could also be 
extracted. Finally, a series of gestures were obtained from a group of people as a 
result of showing them a number of stimuli. In order that they were not influenced by 
observations of others or the experimenter, each person was separately shown a 
drawing of an object and asked ‘What would you do with this?’ A drawing of an 
object, like a hairbrush, saw or toothbrush was shown. Woll (2004) suggested these 
types of gesture stimuli as it is often used in the treatment of disabled people with 
communications difficulties. The communication with a basic gesture is often a 
precursor to any possible sign language learning that the disabled people might be 
able to undertake at some later stage in their training. Of course non verbal 
communication is also undertaken by ‘normal people’ (Chapter 1), but often 
overlooked in communications because of the difficulty of recording the actions 
along with spoken or written word. It was already known that even the most 
experienced therapist sometimes had difficulty recognising some disabled people’s 
gesturing (RNIB, 2004). It was considered useful therefore to see how normal people 
reacted to these gesture stimuli.

This chapter reviews the findings of these sets of experiments. The sequence of 
experiments, apart from those publicly available was recorded with either a Logitech 
web cam or with a Panasonic (NV-DS60B) digital video camera. These recorders 
were used with both automatic light level control and white balance control which 
were inconsistent. This gave some challenging image sequences to work with.

The experiments gave some unexpected results that challenged the basis of the 
experiments. This instigated reflection on the nature of gesture and the categorisation 
that had been mentioned by other researchers. The tri-phasic gesture categorises the 
gesture into the transition from rest; the stroke in gesture space and then the 
transition to the rest state again but is only relevant to the simplest gesture. The 
‘Take Mug’ gesture showed that the stroke phase can have multiple components and 
varies from person to person. In addition, depending on the gesture, the instructions 
and the people involved, different interpretation and reactions to the stimuli were 
observed. The experiments with the gesture stimuli were anticipated to be simple and 
easily recognisable. However, the gestures were found to be far more complicated 
and perhaps even more complicated than sign language, which although appearing
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complex to a non-signer has been formalised and learnt systematically so that it is 
very repeatable with variations at a minimum between signers.

7.2. Repeated gesture (Intra class variations)

A gesturing sequence was selected to investigate intra-class variations. The gesture 
selected was a repeated hand raising gesture (Appendix II and VII) from the PETS 
sequence of data discussed in Chapter 4. The sequence comprised of ten gestures of 
raising the right hand. The row and column coordinates of the gestures are shown in 
Figure 7.1 Recording at 25 frames per second gave gesture lengths varying between 
32 and 42 frames with an average of 37.

Figure 7.1 The row and column coordinates for the ten repeated hand raising
gestures.

The harmonic analysis is shown in the Appendix VII and shows the tight clustering 
of the first orientation angle. Figures 7.2 and 7.3 shows the tight clustering of the 
first harmonic whether normalised by Ap or normalised to the vector magnitude of 2, 
respectively as explained in the previous chapter.

It was shown in Chapter 5 that the first orientation angle related to the spatial angle 
subtended between the start of the gesture and the high point of the gesture for the 
pseudo triangular gesture. Data was recorded both manually/visually and by the 
automatic method and gave very similar average values of -14° and -9° respectively 
for the orientation angle, showing that the hand start/stop location and high point 
remained very consistent for all ten gestures. The standard deviation was recorded at 
5° and 6° respectively, virtually the same and consistent with experimental error. It is 
noticed that the second harmonic also remains quite tightly clustered, averaging at - 
14° with a standard deviation starting to increase at 9°.
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Figure 7.2 The first four harmonic orientation angles for ten repeated hand-
raising gestures. Harmonics 1-4 are red, green, blue and cyan, shown as ‘o’ 

respectively, and average value shown as Vector magnitude normalised by
Ap

Figure 7.3 The first four harmonic orientation angles for ten repeated hand-
raising gestures. Harmonics 1-4 are red, green, blue and cyan, shown as ‘o’ 

respectively, and average value shown as ‘* \ Vector magnitude normalised to 2.
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The main differences in harmonic content occur with the third harmonic were the 
average values are similar at -22° and -12° respectively, but the standard deviation 
values are quite large at 54° and 19°, although the magnitudes have reduced to about 
a fifth of the first harmonic. However, as explained in the previous chapter the 
standard deviation and mean calculation can be unreliable as angles become more 
scattered because of the discontinuity problem in angle measurements. It is 
noticeable that the magnitude of the third harmonic had a considerable variation in 
magnitude between gestures.

The similarity of the first orientation angle shows that the ten gestures are all the 
same. However, individual idiosyncrasies are revealed by the other harmonics, 
mainly by the second and third harmonics because they usually have much larger 
amplitudes than higher order harmonics. There is a difference between the shortest 
(gesture 5) and longest (gesture 6) gesture. Observation of the image sequence seems 
to suggest that the hand in the longest sequence remains at the top of the trajectory, 
statically and longer than the shorter gesture. The frequency response data shows the 
difference between the two gestures relates to the difference in amplitudes of the 
second harmonic orientation angles, although the orientation angles are similar. This 
would suggest that there is more curvature in the longer trajectory. The effect of the 
second and third harmonics is considered in more detail in the following section 
regarding the ‘take-mug’ experiments.

Figure 7.4 A JPEG image showing the right hand (blue *+’, 3rd SCM object) 
about to disappear at the end of the sequence. The left hand (red ‘+% 1st SCM 
object) rising for 10 frames. The head is also detected moving (green cross, 2nd

SCM object)

Before considering the role of the low order harmonics there is one additional 
observation to be made regarding the repeated hand gestures. At the beginning of one 
of the sequences the gesturer was laughing and at the end of the sequence the left 
hand appears to be raised involuntarily for ten frames. The movement of the left hand 
could not be classified as any substantial trajectory but more like a computer ‘flag’ 
being initiated. It is also worth noting that the head made a significant movement at 
the end of the right-hand trajectory. Movement of both hands and head are detected, 
as shown in Figure 7.4. The sudden movement of the left hand is indicated by the
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first SCM object (red), followed by the right hand be assigned to the second SCM 
object (green) and finally the lesser movement of the head is shown by the third 
SCM object (blue) location as detected by the first three SCM objects

The main conclusion from this experiment is that the first harmonic vector, 
comprising of the normalised amplitude and orientation angle of the first harmonic, 
were closely clustered together. This was a similar result to those gained with the 
‘pointing gestures’ in chapter 6. However, the variations in the gesture profile in 
shape and duration was reflected in mainly the properties of second and third 
harmonic components. As a consequence of these observations a more complicated 
gesture trajectory was investigated that showed larger variations in the second and 
third harmonic properties. These experiments are described in the ‘Take-Mug’ 
experiment of the next section.

7.3. The ‘Take Mug’ Gesture (Inter class variations)

The ‘Take-Mug’ experiment was devised to show that the recognition method could 
discriminate between subtly different versions of the same gesture. The experiment 
consisted of recording image sequences of twenty-one people mimicking the action 
of taking a mug to drink; lifting it; drinking and then putting the mug down as 
inspired by the avatar animation (Appendix I). A typical gesturer is shown in 
Figure7.5, and from each sequence coordinate data was manually produced for 
subsequent analysis. An example of the image sequence of the gesture shown in 
Figure 7.5 is shown in Appendix VII.

Figure 7.5 An image from a ‘Take Mug’ sequence

Data from this type of gesture was found to last longer than the pointing type of 
gesture. It was also found that this type of gesture generated a wider range of 
harmonic characteristics than with previous pointing gestures. This resulted in more 
careful consideration of the normalisation procedure both in terms of the time 
normalisation procedure and the vector normalisation. In addition, the gestures of the 
twenty-one gesturers were seen to fall into distinctive sub-classes of the basic ‘Take 
Mug’ gesture and were confirmed by clustering techniques using just the second and 
third harmonics.
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7.3.1. Sampling Rate Adjustments

Figure 7.6 Ensemble o f ‘Take Mug’ trajectories of pixel value verses gesture 
length for row and column coordinate data.

The length of the twenty-one ‘Take Mug’ gestures ranged from 57 to 103 frames. 
The row and column coordinates are shown in Figure 7.6. In previous chapters it had 
been discussed that gesture length would be normalised to 64 samples, which clearly 
could not be realised for sequences over 64. To compensate for these longer 
sequences several strategies were considered. The normalisation length could be 
changed to say 128, or the LUT could incorporate a compression factor for gesture 
length greater than 64. The technique implemented was to skip every other sample, 
so as reduce the sequence length by half. The frequency response of a sequence 
originally of 63 samples is shown in Table 7.1. The new response, when the gesture 
length is reduced to 32 is shown in Table 7.2.

Harmonic Positive
Magnitude

Positive
<i>

Negative
Magnitude

Negative
4>

Orientation
0

1 1 38 1.08 -38 23
2 0.31 26 0.25 -26 -17
3 0.35 -5 0.27 5 10
4 0.16 18 0.13 -18 -18
5 0.08 -25 0.02 25 2
6 0.05 -64 0.01 64 15
7 0.04 -100 0.01 100 26

Table 7.1 Frequency Response of Sequence A of ‘Take Mug’ suite of 
Experiments, original length of 63.
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Harmonic Positive
Magnitude

Positive
<i>

Negative
Magnitude

Negative
4>

Orientation
0

1 1 33 1.08 -33 22
2 0.33 14 0.25 -14 -16
3 0.36 -17 0.28 17 10
4 0.15 -1 0.12 1 -18
5 0.09 -58 0.03 58 15
6 0.05 -93 0.01 93 11
7 0.05 -113 0.03 113 6

Table 7.2 Frequency Response of Sequence A o f ‘Take Mug’ suite of 
Experiments, reduced to 32 from original length of 63.

Comparison of the results shows minimal difference between the two sets of data. 
The first harmonic shows very close similarities in magnitude and phase values. The 
orientation angles for all harmonics show remarkably similar values. The most 
significant variation is with the fifth harmonic showing a variation of 2° and 15°. 
However, the magnitudes of the positive and negative sequence components are very 
small and so some inaccuracies would be expected. The results show that half 
sampling rate is sufficient for this set of experiments.

7.3.2. Analysis of the ‘Take Mug’ Gesture Suite

The analysis of the frequency response shows some interesting results. The first 
orientation angle for twenty of the twenty-one subject’s has a standard deviation of 
2° with a mean of 22°, a very tight cluster. In the previous chapter normalisation 
processes were discussed, it was found that for simple trajectory paths normalisation 
by the positive sequence component Ap was a quick and easy method of 
normalisation for scale invariance of the gesture. However, as trajectory paths 
became complex this technique became unsatisfactory and normalisation to a vector 
of magnitude of 2 was critical for clustering and comparison techniques to take 
place. Figure 7.7 and Figure 7.8 show the results of the two normalisation methods 
on the first six harmonics.

The orientation angle on its own gives a good indication of the clustering 
characteristics. However, both the PNN and clustering techniques require inputs in 
the form of coordinates. These coordinates are formed from a vector represented by 
the amplitude of each harmonic component and the orientation angle. Adding the 
magnitude of the positive and negative sequence components together forms the 
amplitude of the harmonic. Formerly, the positive sequence component had been 
arbitrarily set to unity and all other harmonics scaled accordingly. The orientation 
does not change whether the positive or negative sequence component is the greatest. 
However, the magnitude of the vector can vary considerably if the negative sequence 
component is prominent and this can cause error in the cluster and PNN analysis. 
This situation is rectified by determining whether the positive or the negative
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component is the larger and scaling by the larger component. In so doing an anti-
clockwise path or clockwise path is determined.

Figure 7.7 First six harmonics vectors (red, green, blue, cyan, magenta and 
yellow respectively) of twenty-one gesturers performing the ‘Take-Mug’ 

gesture, normalised to Ap equal to 1 for the 1st harmonic.

Figure 7.8 First three harmonics vectors (red, green and blue respectively) of 
twenty-one gesturers performing the ‘Take-Mug’ gesture. Normalised to Ap

plus An of 1st harmonic equal to 2
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7.3.3. Variations of the ‘Take Mug’ Gesture Suite

Although the miming of the ‘Take Mug’ gesture was fundamentally the same the 
interpretation produced considerable variability in the 21 sequences, as listed in 
Appendix VII, but can potentially be divided into different categories. For instance, 
some gesturers take the imaginary mug just to their right side, move it up to their lips 
and then return the hand to their starting position. This is similar to the avatar motion 
but probably less jerky and slower. Variations on this theme are to return the jug, 
after drinking, to the imaginary table where it was taken and this can sometimes be a 
different spatial position to where it was picked up from. The taking of the mug can 
also be in front of the person. It can also be picked up in a position very wide of the 
individual to the right hand side. Some individuals, take the imaginary mug and do 
not continue raising the mug, but let the hand fall for a while before raising the hand 
to the mouth. Finally at the end of the trajectory the hand does not always return to 
the starting position by a direct route, but the hand takes a curved arc to the right 
before coming in quite quickly to the starting position.

Although it was clear that every one of the twenty-one individuals was miming a 
typical drinking activity, it was also apparent that every action was unique. However, 
it was clear that the activity could be classified into a series of characteristics that 
some individuals exhibited and could be recognised in general by the second and 
third harmonic orientation angles. Of the twenty-one gestures, observations seemed 
to show that there were four distinct characteristics, which are represented by the 
gestures a, p, y and 8. Gesture a appeared to be close to the original definition and 
similar to the avatar, but with a smoother motion. Gesture P appeared to make a 
deliberate placement of the mug, whereas gesture y appeared to use different 
positions for taking the mug and replacing the mug. Finally the gesture 8 was very 
wide with the hand taking the mug a considerable distance from the body.

For the purpose of categorisation of the gestures by a PNN, the target gestures were 
taken as gestures A, G, K and M for gesture types a, p, y and 8 respectively. The 
classifications are shown in Table 7.3 along with the first three orientation angles for 
each gesture. The classification for example gesture B was target type ‘a ’, by the 
PNN as shown by a ‘ 1 ’ in the table. An indication of how close the other targets 
gestures were in the classifying the unknown gesture was achieved by calculating the 
least squares difference between the input gesture and each of the target gesture. In 
the example, the next closest target was target ‘y’ and labelled 2 in the table, and so 
on. The ranking of target classification was used later to give an indication of the 
appropriateness of the classification accuracy with an automatic classification 
technique.

Examination of the clustering of the gesture sub-groupings show a grouping of 
similar second and third hamionic orientation angles for a particular gesture type. For 
instance, those gestures categorised as having an ‘a ’ type gesture are seen to have 
second harmonic orientation angle of about -16° and a third harmonic orientation 
angle of about 10°. Similarities can also be seen between the other gestures, but those 
of type ‘y’ seem to be less well defined. This maybe because there is no natural 
grouping that can be sensibly shown, because of the unique nature of each gesturer’s 
action. Or the observer just found the classification task overwhelming.
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1st
Harmonic
Orientation

Angle
e,

2nd
Harmonic

Orientation
Angle

e*

3rd
Harmonic

Orientation
Angle

0.1
A 1 3 2 4 2 2 -16 9
B 1 3 2 4 18 -5 -6
S 1 3 2 4 21 -41 26

G 2 1 3 4 21 21 -99
D 2 1 3 4 24 6 -30
F 3 1 2 4 21 19 -39

K 2 4 1 3 15 -51 40
C 2 3 1 4 21 -69 71
E 2 3 1 4 15 -30 45
H 3 2 1 4 16 123 -115
L 3 2 1 4 12 88 55
O 3 4 1 2 21 -150 55
P 3 2 1 4 25 -26 -63
T 3 2 1 4 23 35 -24
0 2 3 1 4 15 -9 0.2
J 3 4 1 2 21 -137 -12
N 3 4 1 2 21 -155 67

M oJ 4 2 1 28 -122 3
U 3 4 2 1 24 -145 6
V ;> 4 2 1 40 -162 37
R 3 4 2 1 9 -149 157

Table 7.3 Classification of the gestures into the four sub-classes, a, p, y and 5 of 
the ‘Take Mug’ gesture using a PNN and least squares calculations ranks the 

result to the nearness of the other targets. The first three orientation angles are
compared to the classification.

7.3.4. Clustering of ‘Take Mug’ Harmonics

7.3.4.I. First harmonic orientation angle cluster

In section 7.2 when intra-class variation was discussed it seemed reasonable to 
expect the first orientation angle to be similar because it was the same person 
repeating the same gesture. In this experiment there are twenty-one people repeating 
the ‘Take-Mug’ gesture and the first harmonic angle remains for the majority of the 
gestures, surprisingly tightly clustered considering the variability of human physical 
features. The first harmonic orientation angle, for the twenty-one gesturers are shown 
in Table 7.3 and shows that the majority of angles is in the region of 20° and there is 
just one outlier at an orientation angle of 40°. Calculations give the average 
orientation angle at 21.3° and a standard deviation of 6.5° a variation of 2% in 360°. 
In addition, the average of all twenty-one first harmonic vectors gives an average 
magnitude of 1.366 and standard deviation of 0.061 a variation of about 5%. These 
values are all within experimental error and quite surprising considering the 
difference in each gesturer’s physical size.
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However, applying the clustering technique to the first harmonic data gave some 
varied results. The results had shown that gesturer’s first orientation angle appeared 
significantly different to all the other results. However, when the clustering technique 
was applied for two clusters, using the Euclidean distance metric and ‘ward’ linkage 
method gave a the result as shown in Figure 7.9, with the data being almost evenly 
divided into two clusters. The ‘outlier’ gesture was isolated by the clustering 
algorithm when the ‘single’ linkage method, as shown in Figure 7.10, which is what 
is expected from a visual interpretation of the data.

Figure 7.9 Two clusters of the first harmonic using the Euclidean metric and
ward linkage method

Figure 7.10 Two clusters of the first harmonic using the ‘Euclid’ distance metric 
and the ‘single’ linkage method that isolate the outlier vector.
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The use of clustering techniques on data with small deviations in magnitude and 
angle would appear to be inadvisable. Where the deviation is compatible to 
experimental error and system resolution, clustering techniques are unreliable. In 
chapter 5 the resolution of the system was estimated to be about 4°, which is similar 
in order to the standard deviation of 5° for the first orientation angle. It would appear 
that the ‘single’ or nearest neighbour linkage method is more suited to detecting 
outlier data when the remaining samples are compact. Interestingly, the distance 
metric and linkage method clearly affect the clustering output. It should be 
remembered however that as stated by Jain et al. (1999) in chapter 6 clustering 
algorithms will, when presented with data, produce clusters regardless of whether the 
data contains clusters or not. The coordinates of the average value of the first 
harmonic vector were calculated to be 1.2701 and 0.5029 or as a vector, of 
magnitude 1.366 at an angle of 21.6degrees. These values were used in subsequent 
experiments with the PNN.

7.3.4.2. Second and third harmonic clusters

Clustering techniques were applied to the second and third harmonics generated by 
the 21 gesturers of the ‘Take Mug’ gestures, as visual interpretation of the data in 
Table 7.3 suggests that these harmonics control the sub-group characteristics. A 
careful check of the distance metric and linkage method showed some surprising 
differences when the vector data had been normalised by the criteria of determining 
the largest component of the positive or negative sequence component. In chapter 6, 
Table 6.6 showed clearly the advantage of using the ‘ward’ linkage method as the 
‘cophenetic correlation coefficient’ was higher than using any other linking method. 
When the same experiment was conducted with data from the revised first harmonic 
normalisation technique there was a major change in the coefficient values obtained 
with the ‘ward’ linkage method. This experiment was undertaken for each of the first 
three harmonic components and showed the same decrease in the coefficient values 
as shown in Tables 7.4, 7.5 and 7.6, respectively.

Linkage/
Distance

‘single’ ‘complete’ ‘average’ ‘centroid’ ‘ward’

City Block 0.671 0.577 0.678 0.683 0.3524
Euclidean 0.622 0.602 0.659 0.660 0.364
Mahalanobis 0.544 0.379 0.555 N/A N/A

Table 7.4 Comparison of distance metrics and linkage methods by the 
cophenetic correlation coefficient with the revised normalisation method for the 

first harmonic. The largest coefficient is shown in bold.

Linkage/
Distance

‘single’ ‘complete’ ‘average’ ‘centroid’ ‘ward’

City Block 0.574 0.524 0.511 0.586 0.461
Euclidean 0.629 0.475 0.584 0.583 0.477
Mahalanobis 0.627 0.649 0.706 N/A N/A

Table 7.5 Comparison of distance metrics and linkage methods by the 
cophenetic correlation coefficient with the revised normalisation method for the 

second harmonic. The largest coefficient is shown in bold.
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Linkage/
Distance

‘single’ ‘complete’ ‘average’ ‘centroid’ ‘ward’

City Block 0.535 0.466 0.539 0.546 0.415
Euclidean 0.558 0.465 0.563 0.561 0.418
Mahalanobis 0.549 0.480 0.557 N/A N/A

Table 7.6 Comparison of distance metrics and linkage methods by the 
cophenetic correlation coefficient with the revised normalisation method for the 

third harmonic. The largest coefficient is shown in bold.
Figure 7.11 shows the dendrogram obtained from second harmonic data using the 
‘Euclid’ metric and ‘single’ linkage method. It shows no clear distinction between 
the links and so clusters are hard to visualise. Figure 7.12 is a graph showing how the 
vectors are clustered into 4 groups. The majority are grouped into cluster 1 (red), two 
are in the second cluster (green) and there are two single points that are allocated as 
cluster 3 and cluster 4, respectively. However, studying the dendrograms for links of 
inconsistency and consistency show the clustering is more clearly revealed with the 
‘ward’ linkage method.

When the clustering uses the ‘Euclid’ metric and the ‘ward’ linkage method the data 
is divided into more distinct groups. The dendrogram and the distribution of clusters 
are shown in Figure 7.13 and Figure 7.14 respectively. The latter figure shows four 
clusters, the first and third cluster constitute the largest clusters and clusters 2 and 4 
represent the pairs of outlier vectors.

Dendrogram, 2nd Harmonic, Distance metric= euclid, ccc= 0.62927, Linkage=single

Figure 7.11 Dendrogram of the second harmonic using the Euclid metric and
single linkage.
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Figure 7.12 Graph showing the classification of vectors (red/circle, 
blue/diamond, green/square and cyan/star) using the Euclid metric and single 

linkage method for the second harmonic

Dendrogram. 2nd Harmonic, Distance metric= euclid. ccc= 0.47697. Linkage=ward

Figure7.13 Dendrogram of clusters for the second harmonic using the ‘euclid’
metric and ‘ward’ linkage method.
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Four Clusters of Second Harmonic, Distance metric= euclid, Linkage=ward

Figure7.14 Graph showing the classification of vectors (red/circle, 
blue/diamond, green/square and cyan/star) using the Euclid metric and ward 

linkage method for the second harmonic

It is interesting to note that the City Block and Euclidean metrics give virtually 
identical results for the various linkage methods with some unusual linking of some 
of the single outlier vectors (Appendix VIII).

Four Clusters of Third Harmonic, Distance metric= euclid, Linkage=ward

Figure 7.15 Graph showing the classification of vectors (red/circle, 
blue/diamond, green/square and cyan/star) for the Euclid distance metric and 

ward linkage for the third harmonic and showing average values of each cluster
(black/star).
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The distribution of clusters for the third harmonic resulted in groupings using the 
Euclid distance metric and ward linkage is shown in Figure 7.15. In this diagram the 
average of the coordinate position is shown by the star symbol.

In the first analysis of the ‘Take Mug’ sequences four characteristics were manually 
identified from the suite of twenty-one gesturers. These differences seemed to be 
identified by mainly the second and third harmonics. An initial approach to 
determining how the harmonics related to the number of characteristic in the suite of 
gestures was to assume that there were two distinct groupings in the each of the 
second and third harmonics which results in four permutations of second and third 
harmonic clusters. However, the results of clustering single harmonics indicated that 
the data did not neatly fall into two clusters because of the preponderance of outlier 
type of data, so there were typically four clusters per harmonic. Consequently, 
analysis was undertaken using four clusters from each of the two harmonics, 
indicating that there are sixteen possible Target Classes. The second and third 
harmonic cluster numbers are decoded to become one of 16 possible numbers. For 
example in table 7.7, gesture B has assigned to it cluster 3, of the second harmonic, 
and cluster 1 of the third harmonic which decodes to Target Class 9.

Gesturer Gesturer
No.

/̂ nd
Harmonic

Cluster
Number

3^
Harmonic

Cluster
Number

TC
(Target
Classes)

T (Target)

A 1 3 1 9 1
B 2 3 1 9 1
C 3 3 2 10 2
D 4 4 3 13 5
E 5 3 2 10 2
F 6 3 3 11 3
G 7 4 3 13 5
H 8 3 3 11 3
J 9 1 3 3 US
K 10 3 2 10 2
F 11 3 2 10 2
M 12 2 1 5 US
N 13 1 2 2 4
0 14 1 2 2 4
P 15 3 'jJ> 11 3
0 16 3 1 9 1
R 17 2 4 8 US
s 18 3 1 9 1
T 19 oJ 3 11 3
U 20 1 1 1 US
V 21 1 2 2 4

Table 7.7 Target Classes generated for the second and third harmonics clusters 
using the ‘euclid’ distance metric and ‘ward’ linkage method, resulting in Five 

Target Classes (US=Unspecified as is a single entity)
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Table 7.7 represents the clustering due to the ‘Euclid’ metric and ‘ward’ linkage 
method. The target classes are then analysed and the number of occurrences of each 
Target Class recorded. Analysis of the target classes showed only 9 of the possible 
16 Target Classes used. The occurrence of these Target Classes were found to have 
grouped together as 5 distinct classes as shown in Table 7.8. The five groupings of 
Target Classes are reassigned so that for example the four gesturers 1,2,16 and 18 are 
classified as having similar second and third harmonic properties which were 
decoded as Target Class 9 and now assigned as Target Number 1 for convenience. 
Gestures that were unique, i.e. showed no similarity of harmonic content with other 
gestures, were ignored in the analysis and shown as US (Unspecified in the table).

Target
Number

Target
Class

Number

Gesturer
Number

Second 
harmonic 

Cluster No.

Third 
Harmonic 

Cluster No.
1 9 1,2,16,18 3 1
2 10 3,5,10,11 3 2
3 11 6,8,15,19 3 3
4 2 13,14,21 1 2
5 13 4,7 4 o

Table 7.8 Target and Target Classes and associated cluster of the Second and 
Third harmonic using the Euclidean distance metric.

The next step is to use the Targets in a PNN network to compare classification 
results. In order to use the Target information for the PNN the average position for 
each cluster is determined for each harmonic. For example a ‘star’ marks the average 
value for each cluster for the third harmonic data in Figure 7.15. The coordinates and 
equivalent modulus and angle for Euclidean distance metrics, used to realise Targets, 
are shown for the second and third harmonic are shown in Table 7.9.

Coordinates
-real

Coordinates
-imaginary

modulus angle

Second
harmonic
Target 1 -0.3862 -0.2051 0.44 -152
Target 2 -0.716 -0.624 0.950 -139
Target 3 0.228 -0.0752 0.24 -18
Target 4 0.7296 0.1747 0.75 13

Third
harmonic
Target 1 0.4273 0.0549 0.43 7
Target 2 0.1387 0.1686 0.22 -51
Target 3 0.1238 -0.1566 0.20 -52
Target 4 -0.6378 0.259 0.689 158

Table 7.9 Target coordinate data -  Euclidean distance metric (Italic data not
used)

Comparison of the different classification techniques are shown in Table 7.10. 
Classification of gestures using the PNN (with targets of gestures A, G, K and M) 
gave very similar results in nineteen of the twenty-one gestures, as to visual methods. 
Gestures L (ll) and P(15) were classified differently, but the next nearest target in
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either case would have made the classification for the two columns the same. This 
was somewhat surprising as there were distinct differences in the clustering of the 
second harmonic data for the two distance metrics.

G
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Visual
classification

Classification
using

A, G, K, M as Targets

Target
Classification

(Euclid
metric)

A 1 a 1 1
B 2 a 1 1
C 3 y 3 2
D 4 3 2 3
E 5 y 3 2
F 6 3 2 4
G 7 3 2 3
H 8 y 3 4
J 9 y 3 5
K 10 y 3 2
L 11 y 3 2/4
M 12 8 4 5
N 13 y 3 5
0 14 y 3 5
P 15 y 3 4/3
Q 16 y

oJ 1
R 17 8 4 5
S 18 a 1 1
T 19 y 3 4
U 20 8 4 5
V 21 8 4 5

Table 7.10 Classification of twenty-one ’Take Mug’ gestures using the PNN/ 
clustering technique) using Euclidean distance metric and ‘ward’ linkage 

method and compared to the visual classification (bold shows the difference in 
the metric methods and / show the next nearest target).

There is also much similarity between the visually clustered grouping and those 
obtained using the clustering method. The main difference being that the visual 
technique gave 4 sub-groupings, whereas the clustering technique gave 5 sub-
groupings. This is more clearly shown in Table 7.11, where the individual gestures 
are grouped together according to the classification technique.

Characteristic ‘a ’ was virtually the same by the cluster method and the visual 
inspection method. The hand took the imaginary mug and then went directly down to 
the resting place, in a manner similar to the avatar example, without returning the 
mug from the imaginary table. Gesture Q (16) is now included in this sub-grouping, 
and was perhaps overlooked in the original visual classification.

Characteristic ‘[3’ was characterised by the deliberate way the imaginary mug was 
picked up, and gestures D(4) and G(7) are common to all three classification 
methods. It is worth noting that the characteristic ‘8’ that was described as a ‘wide’
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characteristic. It is common to all three classification methods, but the 
PNN/clustering technique has added three more gestures (9, 13, 14) to the sub-group, 
which visually had previously been allocated to the ’y’ characteristic. This final 
grouping has been split into two distinct grouping by the clustering technique.

Characteristic PNN
A, G, K, M targets

PNN
Clustering derived 

targets
a 1,2, 18 1,2, 18,16
3 4, 7,6 4,7
8 12, 17, 20,21 12, 17, 20,21,9,13,14

yl 3 ,5 ,10,11, 
9 ,13,14,, 16, 8, 

15,19

3 ,5 ,10,11

y2 6, 8,15,19

Table 7.11 Comparison of classification techniques for 21 ‘Take Mug’ gestures 
(bold shows difference between the two classifications techniques)

In general the PNN/clustering method has shown the same divisions as the visual 
method. The main difference has been that the characteristic ‘y’ has been further sub-
divided with some gestures being classified as being closer to characteristic ‘5’ in 
nature and then splitting the remaining gestures into two groups, ‘y l’ and ‘y2\ It is 
highly likely that the PNN/clustering technique has recognised characteristics of the 
‘Take Mug’ gesture better than recognition made by the human observation. The 
grouping of characteristic ‘y’ was rather large (over half the gestures) indicating that 
it was difficult to visually distinguish between characteristics.

7.4. Gesture Stimuli Experiments

The ‘Take-Mug’ gesture was an arbitrarily chosen gesture action that showed how 
the properties of the first three harmonics could be used to characterise and 
distinguish between several people undertaking the same gesture. The Gesture 
Stimuli experiments were selected in consultation with Woll (2004). These gestures 
are often used in ‘normal’ communication and also by disabled people to help 
communication, but have often been disregarded because of the difficulty of 
describing them by objective means. As explained in Chapter One, relevant non-
verbal communication, such as gestures, associated with verbal communication can 
have a greater impact on the recipient than just verbal communications. There is also 
evidence that this type of gesturing was a precursor to spoken language. But the 
resulting gestures are more complicated in trajectory path and frequency content than 
simple pointing gestures.

7.4.1. The Gesture Stimuli Experiments

The gesture stimuli experiment involved recording fifteen people, mostly students 
aged under twenty-five, but there were representatives from their forties, fifties, 
seventies and eighties age group. About two-thirds of the people were Caucasian and 
the remainder were of Asian decent. Consultation with Woll (2004) suggested a 
range of stimuli that had been used with disabled people. Nine different gesture
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stimuli were recorded for each person. Picture outlines of objects were prepared on a 
set of stimulus cards. The cards had outline drawings of a toothbrush, a knife, key, 
screwdriver, hairbrush, hammer, whisk, hand-saw and bottle-opener. An example of 
what was expected for one stimulus was given before the experiment commenced. 
Each person was asked to interpret into a gesture action what he or she was shown on 
the card’s ‘picture’. The question, ‘What would you do with?’ was asked as they 
were shown the card before they performed the action associated with the stimuli. It 
was expected that all gestures would be single-handed and predominantly right- 
handed.

Two different environments were used for the recording, an office (Figure 7.19) and 
a room in a home (Figure 7.22). From a recording point of view the lighting 
conditions in each were not optimal. In the office situation sunlight was restricted 
from entering the office by Venetian blinds, but its strength propagated through to 
make magnolia coloured walls look pink, although some of this effect may have been 
caused by the automatic white balance compensation mechanism of the camera. This 
resulted in the skin-coloured regions being difficult to segment from the wall region. 
The Hue range being recorded at -0.19 to 0.095 (or -0.05), indicates that white 
balance is not correct as the Hue has moved into the magenta range. The saturation 
range improved the segmentation and was restricted to the 0.1 to 0.34 range.

Figure 7.16 A challenging environment for skin-coloured segmentation with 
inappropriate SCM objects recorded by the green and blue crosses.

The image sequence was affected by noise and as previously discussed in Chapter 4, 
the red, green and blue crosses seen in Figure 7.16 and 7.19 show the positions of the 
rank-ordered three most significant skin-coloured moving objects. The most 
significant object (red) correctly relates to the position of the hand. The green and 
blue crosses relate to stationary objects. These occurrences were more prevalent in 
some sequences than others and may have been caused by light changes or 
compensation changes taking place whilst recording, or due to the recording process. 
Experience with the home environment, although not well lit, did not provide so 
many spurious gesture objects and so tracking performed better.

Figure 7.17 shows a typical image sequence and a relatively large number of second 
most significant gesture objects (green ‘o’) because of the noisy conditions. The 
output of the ‘OSA’ is shown by the black crosses. This output is then prepared for 
frequency analysis by finding the starting and stopping places of the gesture, as 
shown in Figure 7.18. Because of the poor lighting conditions and sporadic false
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objects some sequences had to be edited to improve the output ready for frequency 
analysis. The position when the tracking algorithm took the wrong course was noted 
and was steered into the correct path. This occurred typically about once every other 
gesture.
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Figure 7.17 The OSA output, ‘+% chosen from the two most significant SCM 
objects (red and green respectively)

Search Threshold = 15

Figure 7.18 Segmented gesture ready for frequency analysis, showing right 
hand row and column coordinates with initial search region (red dots), start 

coordinates (cyan dots) and stop condition (magenta dots).
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In preparation of the data for frequency analysis the search threshold also had to be 
adjusted. In most cases when the hand is gesturing the velocity of the hand does not 
change unduly. Tracking can take place with a simple threshold and can follow the 
most significant object with little error. With the poorer lighting conditions, the 
number of possible other objects to follow increases and wrong tracks can be more 
easily followed. One situation where errors can easily be made is when the hand goes 
in or out of the ‘strike’ phase. The velocity of the hand rising or falling can be quite 
extreme. The standard frame rate is almost insufficient to capture the hand’s 
trajectory with sufficient samples. The outcome is that the distance moved in this 
mode can exceed the threshold, so no suitable tracking object is found or an 
erroneous object is selected and an incorrect track is followed.

Poor segmentation also caused problems in distinguishing the hand position when 
close to the face or close to the other hand. Some problems were noted with the hand 
not returning to the correct position or falsely triggering the stop condition by 
passing through the stopping coordinate window, although the gesture had not 
finished. It was also noted that the gesturer was anticipating the initial hand 
movement of some gestures as they became familiar with the experiment. This meant 
that the dominant hand did not return to the starting point (typically on the leg), but 
was held higher at chest level in anticipation of the next action. The coordinates of 
this position would then be outside the initial search area and cause a truncation 
problem at the beginning of the gesture rather than at the end of the gesture.

The more simple gestures as in the previous example (Figure 7.17) were 45 samples 
long, others as in Figure 7.19 and Figure 7.22 were 83 to 112 samples long, 
respectively. For those samples exceeding 60 samples in length frequency analysis 
was conducted on alternate samples. Many of the actions were similar from gesturer 
to gesturer, but there were many idiosyncrasies in the interpretation too. For instance, 
some of the teeth cleaning gesturing were undertaken as if in the real situation and 
the gesture length approached 180 samples.

The experiment was quite ambitious in its size and scope and some of the gesture 
sequences were not considered reliable, without ground truth data to verify the 
sequences. There were a number of reasons for this, including tracking errors, 
although some sequences and results could be validated. These are described in the 
next section. The new limitations, to the methods used before with the ‘Take-Mug’ 
sequences, are also explained here.

7.4.2. Frequency Analysis of Gesture Stimuli

Figure 7.19 shows the environmental conditions with a gesturer performing the 
‘whisk' action. An interesting consequence of the analysis of the gesture stimuli is 
oscillatory components captured in the gesture, as can be seen in the tracking data of 
Figure 7.20.

The automatic method of generating gesture objects for hand tracking was used. 
Ground truth data was not generated for these experiments but the action in the 
image sequence could be seen to coincide with the captured row or column 
oscillations. The complete sequence of images (83 frames) is shown in Appendix VII 
and relates to the row and column coordinates in Figure 7.20. In this figure the high
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oscillatory action is apparent in the column data, but does not appear in the row data 
as the data is relatively constant.

Figure 7.19 Image from the ‘whisk’ sequence showing gesturer and 
environmental conditions

These observations are shown much clearer in the change of scale in figure 7.21 that 
show the data prepared for frequency analysis. There are seven distinct oscillations in 
the gesture period. This observation is confirmed by the frequency response results 
shown in the Table 7.12, where the amplitude of the positive and negative sequence 
of the seventh harmonic are both very similar at about 0.68 compared to the 
normalised amplitude of unity for the first harmonic positive sequence component. 
This amplitude is much larger than usual as the amplitudes usually decrease as 
harmonics increase

194



P .R .G . H ard ing , 2007 , C h ap te r 7

Right Hand Coordinates,10-gesF, Frames= 451 - 534

Figure 7.21 ‘Whisk’ gesture coordinates prepared for frequency analysis

Harmonic Positive
Magnitude

Positive
<t>

Negative
Magnitude

Negative
<t>

Orientation
0

1 1.000 39 0.449 -39 20
2 0.363 11 0.343 -11 35
3 0.283 -2 0.444 2 -18
4 0.149 -17 0.151 17 -19
5 0.166 3 0.169 -3 -18
6 0.178 17 0.073 -17 -65
7 0.678 -5 0.689 5 152
8 0.015 59 0.092 -59 7
9 0.099 12 0.063 -12 -119
10 0.009 22 0.112 -22 -50
11 0.039 0 0.062 0 6
12 0.079 119 0.085 -119 66

Table 7.12 ‘Whisk’ frequency content, showing the prominence of the seventh
harmonic (bold).

Another oscillatory result is shown in Figures 7.22 and shows different 
environmental conditions and gesturer than before used to capture a ‘saw-action' 
gesture. The complete sequence of images (112 frames) is shown in Appendix VII. 
Figure 7.23 and Table 7.13 show the four very deliberate ‘saw-action’ harmonics. It 
is interesting to see that in the 2D image of Figure 7.24 the relatively large amplitude
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of the 4lh component most strikingly at an orientation angle different to the other first 
three harmonics, which are almost in line with each other.

Figure 7.22 Image from the ‘saw-action’ sequence showing gesturer and
environmental conditions

Figure 7.23 ‘Saw-action’ gesture coordinates prepared for frequency analysis

There were several observations to be made from the results of the frequency 
analysis of the gesture stimuli experiments. Firstly, it was noted that some gestures 
were much longer than previously observed and enacted most vigorously by the 
gesturer. One gesture was recorded at making in excess of twelve oscillations in one 
gesture. This would require the default setting of twelve harmonics to be 
reconsidered for such activities.
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First 4 harmonics

Figure 7.24 2D and 2DT views of the frequency components of the ‘Saw-action’. 
The ‘cyan4 4th harmonic component is shown as much greater than the other

components.

.Harmonic Positive
Magnitude

Positive
4»

Negative
Magnitude

Negative
4>

Orientation
0

1 0.4099 -105 1.000 105 16
2 0.8017 16 0.983 -16 6
3 1.5261 86 0.841 -86 -18
4 9.7202 -117 9.722 117 -12
5 0.4626 -50 0.886 50 -7
6 0.7929 -26 0.966 26 -4
7 0.5316 166 0.507 -166 21
8 2.9921 -30 2.852 30 -9
9 0.2736 18 0.456 -18 112
10 0.4851 -13 0.904 13 -65
11 0.9979 -20 0.896 20 -46
12 0.7474 168 0.626 -168 2

Table 7.13 ‘Saw-action’ frequency content, showing the prominence of the
fourth harmonic (bold)

It is evident that for many gestures the normal association of harmonic amplitude 
decreasing as frequency value increased held good. However, with the advent of an 
oscillatory activity the oscillatory amplitude component could be greater than the 
normally observed value as in the two examples of the ‘whisk’ and the ‘saw-action’. 
Without the whisk action the 7th harmonic amplitude would have been expected to 
have amplitude of about 0.16 instead of the 0.68 recorded. Whereas with the ‘saw-
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gestures when significant higher harmonic amplitude is captured. It is concluded that 
as oscillatory amplitude becomes less in a gesture and gesture object realisation 
becomes less reliable (objects generated at various parts of the hand, so introduces 
competing higher oscillatory components into the data) the tracking and analysis 
becomes tenuous.

First 4 harmonics

Figure 7.26 2D and 2DT views of the first four frequency components of a 
gesture with low amplitude oscillation.

Harmonic Positive
Magnitude

Positive
<f>

Negative
Magnitude

Negative
<l>

Orientation
0

1 1.00 -72.5 1.58 72.5 -42.99
2 1.00 -38.9 0.55 38.9 1.99
3 0.13 22.2 0.25 -22.2 -72.8
4 0.25 50.9 0.14 -50.9 169.9
5 0.23 -34.4 0.35 34.4 79.2
6 0.46 -19.3 0.44 19.3 -15.1
7 0.46 -18 0.34 18 -17.6
8 0.30 -40,6 0.31 40.6 7.7
9 0.32 -46.6 0.36 46.6 -9.8
10 0.26 -48.3 0.38 48.3 26.7
11 0.29 42.0 0.15 -42.0 -194
12 0.29 39.0 0.28 -39.9 -9.35

Table 7.14 Frequency content of a low amplitude oscillation gesture.

The interpretation of these gestures tended to be more freely interpreted and so the 
first harmonic orientation angle took on many different values for the same gesture 
by different gesturers. Although many sequences of gesture were recorded it became 
apparent that each gesture was unique because of the lack of any physical guide or 
constraints as with the ‘PETS’, ‘Take Mug’ or ‘Pointing’ experiments. The results of 
the analysis of the gesture stimuli showed that each gesturer’s response was so varied
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that any comparison between gesturers was not worthwhile. In fact a series of results 
of individual’s actions with gesture stimuli would probably give a unique signature 
of the individual.

7.4.3. Additional Observations

It is worth recording a number of additional observations that were made with the 
gesture stimuli experiments. These observations are included as they are perhaps 
worthy of note to pursue in an alternative endeavour. They are not followed through 
scientifically, but may need to be considered as necessary when reviewing the nature, 
behaviour and interpretation of gesture activity.

Visual inspection of the image sequences resulted in some interesting and 
unexpected findings. The right hand was the dominant hand for thirteen of the fifteen 
people. One person was left-handed and one was ambidextrous. Interestingly, the 
ambidextrous gesturer found it difficult to do the task without explaining what was 
being undertaken.

Most gestures used single arm movement of the dominant hand. However, some 
showed the less-dominant hand moving in synchronism with the dominant hand for a 
short while. For instance most people, when asked to saw, held an imaginary piece of 
wood with the less-dominant hand, whilst showing sawing action with the dominant 
hand. Similarly the bottle opener action often showed the less-dominant hand being 
used to hold the imaginary bottle.

Observations of the responses showed that these mimetic gestures lacked the 
precision of other types of gesture that are well defined. Pointing to the right or the 
left is well understood by the majority of people so the variations between people are 
kept to a minimum. The individual gesture stimuli show some similarities between 
people but overall each gesture has a distinct ‘signature’. It had been expected that 
the gestures would have been quite short. For instance, when showing hair brushing 
just a couple of generic strokes would have been recorded. However, what was 
recorded was the duration and the much personalised ritual that the gesturer 
undertook as if the tasks were actual.

The misinterpretation of two of the tasks, by two of the older people, brings into 
question the role of personal background and experience of the gesturer. This affects 
their anticipation of what is expected in the gesture by the observer. 
Misinterpretation could also be due to a poor drawing, and maybe photographic 
pictures should be used instead to reduce this possibility of error. It was also noticed 
that some gesture stimuli left the gesturer quite perplexed and unsure as to how to 
act. For example, the bottle opener required many to hesitate and think of the use and 
context of the action before deciding on whether to use one or two hands.

This series of experiments showed that ‘normal’ people have problems interpreting 
gesture stimuli. The actions appear to rely on past experience as to the interpretation 
of how to use the object. Maybe more significantly the stylised response was 
completely unexpected, which may have a variety of psychological explanations that 
made the output so variable. The key conclusion is that the mimetic gesture lacked 
precise definition, so comparisons are likely to be difficult. These actions may be a
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unique extension of the gesturer so each gesture is a unique quality of every 
individual.

7.5. Summary

This chapter shows how Fourier analysis, combined with PNN and cluster 
techniques, is a powerful technique for gesture recognition. Both the ‘PETS’ hand 
raising gesture and the ‘Take Mug’ gesture show that the first harmonic orientation 
angle to be closely clustered regardless of one person repeating a gesture or many 
people repeating a gesture. This is because the start/end of the trajectory and the 
height (approximately mid-point) of the trajectory are related to relative spatial 
dimensions. These two groups of experiments also demonstrate how intra-class and 
inter-class differences can be recognised.

The gesture stimuli experiments showed that the interpretation of the gesture stimuli 
were not constrained by human body attributes and so the first orientation angle was 
not tightly clustered. However, the harmonics do capture the unique characteristic of 
a particular gesture by a gesturer and could be used in a recognition system that has a 
large database of possible gestures and gesturers.

In the case of a gesture that has the first harmonic tightly clustered, the other 
harmonics can vary widely. It was shown that just the second and third harmonics 
could describe a range of differences in a repeating gesture. An experiment was 
conducted with the ‘Take Mug’ gesture that showed that PNNs with target gestures 
obtained from clustering technique could distinguish a range of differences in the 
same gesture as well as, and if not better than, visual classification. This resulted in 
five main groupings being classified whereas four had been classified visually.

Further revelations were made about the distance metrics and linkage methods that 
are used in the clustering techniques. In chapter six it had become clear that deciding 
on what distance metric or linkage method to use was not clear cut. However, when 
the frequency data was normalised on the basis of the largest of the positive and 
negative frequency components the cophenetic correlation coefficient did not give a 
reasonable indicator of which to use. However, study of the dendrograms and the 
inconsistent coefficient still indicated for this type of data that the ‘ward’ linkage 
appeared to group the data in the most sensible manner. The City Block and 
Euclidean distance metrics were quite similar in their action. It was interesting to 
note that the ‘single’ or ‘nearest neighbour’ linkage technique located the outlier 
gesture better than the ‘ward’ technique, when a representative first harmonic vector 
was required, albeit that the vectors were closely clustered within experimental error.

The duration of the gesture stimuli gestures was much longer than expected so sub-
sampling by a factor of two was introduced for samples greater than sixty. When 
gestures were relatively uncomplicated in their trajectory sub-sampling was used 
with out any detrimental effect on results. Results showed that there was virtually no 
difference in harmonic components as a result of this action. The most interesting 
observation with the gesture stimuli experiments was the number of gesturers that 
showed repeated hand movement and hence oscillations in the data. This data was 
quite conspicuous, as the amplitude of the harmonic did not fit the normal decreasing 
amplitude with frequency profile. Oscillations also tended to be whole cycles due to

201



P.R .G . H ard ing , 2007 , C hap te r 7

natural tendency for arms to rise and then fall due to gravity and there was no 
spectral leakage. It was noted that some gesturers had a relatively high number of 
oscillations in their gesture. In previous experiments an arbitrarily twelve harmonics 
had been used for frequency analysis as it was found that only the first few lower 
order harmonics were required to characterise a gesture.

In these experiments where higher oscillatory components were possible it is 
advisable to increase the number of harmonics above the present default level. The 
observation of low amplitude gesture oscillatory activity and some uncertainty as to 
the gesture objects position on the hand region introduced high frequency 
components into the harmonic components. It also made the tracking more 
problematic and so limited the reliability of the tracking data and subsequent 
frequency analysis, except when oscillatory activity was at significant amplitude.

The observation of the oscillatory nature of gesture stimuli suggests that the previous 
definition of gesturing needs to be modified. The action of ‘beats’ is said to be bi- 
phasic and a normal gesture to be tri-phasic. It would seem that the third component 
has two sub-divisions that of the intentional ‘strike’ part of the gesture and then the 
added beats or oscillatory motion. This characteristic is hardly observed in sign 
language gesturing. Gibet (2001) stated in Chapter 5 that apart from line, arc, static, 
and circle primitives only 2.8% of primitive actions can be counted as complex and 
described as zigzag, waves and spirals. The gesture stimuli response has shown a 
predisposition of gesture stimuli to have a strong oscillatory nature.

This area of gesture stimuli appears to be a much larger area of research than had 
been originally expected. Gesture stimuli seem to involve various degrees of 
symbolic, metaphoric gesturing plus the ritual and idiosyncratic actions of the 
gesturer. Furthermore, in some states the gesture appears to include the non-
dominant hand and head in some involuntary associative action. The possibility of 
gesture stimuli being a diagnostic tool for certain medical conditions or as a non- 
invasive gait recognition tool is viable and full of potential.
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8. Conclusions and Future work

8.1. Summary

The original aim of the research had been to design and test a gesture recognition 
system with a number of different gestures and gesturers. Implicit in the aim was the 
selection of cues for tracking, establishing a tracking mechanism. From this data was 
developed an analysis technique that could then be used for the recognition of 
gestures.

Various techniques have been used for the analysis of gesture. The attraction of the 
use of HMMs has mainly been due to its ability to deal with the variability, 
uncertainty and probabilistic nature of gesture. Although HMMs can be used in 
continuous sign language recognition systems, they need considerable training and 
exhibit some lack of adaptability. Some authors have suggested that a particular 
recognition technique is more appropriate for certain types of gesture. Similarly, 
others compared recognition techniques but have ignored the temporal segmentation 
problem which relates to the kind of gesture being studied. Recognition techniques 
have, however, experimented with a number of different gesturing situations 
including sign language, pointing gestures, mouse movements and a number of 
different physical activities.

The recognition technique based on Fourier analysis arose from the assimilation of 
several ideas. The use of frequency components was inspired by the work of Masters 
(1994) who used frequency components as input to a neural network for solving a 
number of pattern recognition problems. The advantages of using the PNN based on 
a RBF network came from the work of Howell and Buxton (1997): It avoided the 
need for extensive training. The ‘glue’ that linked these ideas together came from 
the multi-rate methods to change the sampling rate of the gesture trajectory. The 
gesture samples were normalised to the same number so that the frequency 
component could be effectively compared. This method enabled the variability in 
duration of a gesture to be normalised so the gesture became time-invariant.

From the observation of people gesturing, an hypothesis was made about gesturing. 
The hypothesis considered that in a scene with a single gesturer there were just three 
areas of skin-colour in motion: the two hands and the face. With single-handed 
gestures the dominant hand would produce the most significant movement in the 
image with just occasional, less significant movement being generated by the non-
dominant hand and head. The cues of skin-colour and motion were investigated and 
fused together to form gesture or skin-coloured and motion (SCM) objects.

The work on skin colour detection centred on the use of the HSV colour space 
model. It was observed that Hue was affected by the illuminant and the white balance 
settings. The automatic white balance compensation techniques used in the video 
recording devices were not reliable and skin-colour could vary widely. As a 
consequence, before analysing an image sequence for skin-colour, a sample of the 
colour of the hands and forehead were taken. It was observed that hand colours may 
be similar, but the forehead was often different, especially if the gesturer was 
flushed. Skin-colour changes often resulted in the normal reddish-orange colour 
shifting toward the magenta colour region. Taking averages of colours that straddled
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the 0-1 or 0°-360° discontinuity resulted in false values being recorded. In order to 
compensate for this error the RGB to HSV conversion algorithm was modified to 
move the discontinuity to the cyan region so that hue was measured on a plus 0.5 to 
minus 0.5 or a plus 180° to minus 180° range.

Motion detection was achieved by image differencing. Adaptive background 
techniques were found to be unnecessary as illumination changes did not affect short 
gesture sequences. The fusing of the skin-colour and motion cues was achieved by 
taking the binary masks of the skin-colour regions and difference images, using 
suitable threshold values, with a logical AND operation. This operation formed 
another mask with objects of variable size. The sorting of the objects by area 
invariably ranked the object associated with the dominant hand as the most 
significant object, followed by objects associated with the non-dominant hand, head 
and noise. This method also avoided the use of heuristic methods for setting the 
threshold levels for motion capture. These instances when the most significant object 
was not linked to the dominant hand the motion were small, typically at the 
beginning and end of the gesture or at the height of the trajectory. In this case other 
skin coloured motions or noise could be ranked higher than the object associated 
with the dominant hand. In addition, in instances when hand movement was small or 
in poor lighting conditions, the object related to the dominant hand was likely to 
disintegrate to a number of smaller objects. The issue of lighting quality in judging 
the effectiveness of a gesture recognition routine is yet to be addressed. There is a 
move to record colour temperature with publicly available gesturing sequences, but 
no measure is made of the quality of lighting which in this thesis has shown to affect 
segmentation and tracking performance.

Tracking the dominant hand was made through an object selection algorithm (OSA), 
that decided which object was the mostly likely to represent a region of the dominant 
hand, when there was more than one object to choose from. The tracking of the hand 
through the stroke phase of the gesture was invariably correct due to the likelihood of 
the most significant object being related to the dominant hand. The tracking 
algorithm continued to work even in some image sequences that were not well lit and 
complete segmentation of the hand was not possible.

The object selection algorithm was used on two different situations not included in 
the original skin-colour motion hypothesis. Firstly, the algorithm was used in an 
image sequence with three people moving in the same scene and was found to still 
allow the tracking of the dominant hand of one of the gesturers. Secondly, the 
algorithm was modified so that there were two outputs: one for the right hand and 
one for the left hand. Tracking of two hands was performed, with the hands moving 
both separately and moving together. This is limited in its present state because it is 
not able to distinguish between the two hands if they are in close proximity to one 
another or touching each other.

The realisation that the trajectory of a single-handed gesture could be modelled as an 
aperiodic waveform instigated an investigation into how the harmonics of the Fourier 
analysis of the trajectory data could characterise the trajectory. The transformation of 
data from the time-domain to the frequency-domain had further advantages. 
Appropriate normalisation and removal of the d.c. component, of the frequency data 
enabled the harmonic description of the gesture to be position and scale independent. 
In addition the gesture duration was made time invariant by the application of multi-
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rate methods to the time-domain data. The multi-rate technique changed the number 
of samples in the gesture to a constant number, thus allowing the same number of 
harmonics to be generated for all gestures. This allowed comparisons to be made 
based on the normalised period or frequency. The original objective of normalising 
to a length of sixty-four was based on the fact that most simple gestures lasted for 
less than two seconds. At twenty-five or thirty frames per second the multi-rate look-
up table could work with most gesture lengths. This assumption was indeed true for 
many gestures, but with some gestures the duration of the gesture was two to three 
times longer than anticipated. It was shown that sub-sampling could be employed 
with negligible error in the frequency analysis, because the most important frequency 
content about a gesture was contained in just the first few low order harmonics.

Further analysis of the frequency data showed that all characteristics of the gesture’s 
trajectory could be explained. Analysis of actual and pseudo trajectories showed that 
the phase of each harmonic was made from two components. These two components 
consisted of phase changes in the time domain and an angular or orientation 
component in the spatial domain. The time domain data typically resulted from a 
truncation of the waveform (start and finish coordinates do not coincide) and so 
phase changes compensate for the abrupt change in the waveform. The second 
component is the phase due to the orientation of the harmonic in the spatial or 
appearance-based domain. The first harmonic orientation angle is normally directly 
related to the coincident start/finish spatial coordinates and the top of the trajectory. 
The orientation angle was observed to be invariant to truncation errors, giving 
valuable insight into the characteristic of the gesture. For instance, the second 
harmonic orientation angle showed the amount of curvature there was in the 
appearance-based spatial view of the gesture, whereas the third harmonic orientation 
angle gave insight into the time-domain characteristics of the gesture. Further 
understanding of the structure of the gesture was to be found by studying the positive 
and negative sequence components of each harmonic. If each positive and negative 
sequence magnitude component were equal then the appearance-based view of the 
trajectory was a single line: the action and retraction path of the gesture was the 
same. However, when the positive and negative sequence magnitudes are different, 
the action and retraction paths are different. In the time-domain, each harmonic can 
be visualised as an ‘elliptical corkscrew’, with an ellipse being traced in the spatial 
domain with the spiral nature being seen in the time-domain. The number of 
rotations of the ‘elliptical corkscrew’ is in proportion to the number of harmonics. 
The direction of rotation of the ‘elliptical corkscrew’ is either anti-clockwise or 
clockwise depending if the magnitude of the positive sequence or negative sequence 
component is the larger. A gesture trajectory can thus be modelled as an infinite 
series of harmonics, each harmonic taking the form of an ‘elliptical-corkscrew’.

The study of the frequency components can describe the characteristic of a gesture in 
detail, but it is useful to have a recognition system that can easily categorise a 
gesture. The advantage of using the PNN based on a RBF network, rather than some 
other method is because it avoids the need for extensive training, especially when 
calculating with sparse data. The PNN system is based on choosing ‘target’ or 
representative gestures followed by categorising the unknown gesture by its 
closeness to one of the targets. The PNN technique is similar to the ‘least squares’ 
techniques, but differs in the way it compares components of the input vector 
individually rather than globally, as in the least squares technique. The PNN is also
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far less sensitive to outliers than the ‘least squares’ technique. The input to the PNN 
consisted of a vector that represented the harmonics of the magnitude and angle of 
the orientation harmonics that characterise a gesture. Each harmonic component was 
represented as the two parts of a complex number so as to avoid the discontinuity 
problem when using phase components straddle the 0°/360° boundary. For gestures 
which are very distinctive, as in pointing gestures, the first orientation angle indicates 
clear differences in direction of the gesture. As a result target gestures were relatively 
easy to estimate. In this case a typical gesture can be used as a target gesture. Due to 
the relatively large difference in orientation angle the system is quite insensitive to 
differences in gesturer because the orientation angle is so distinct. However, in other 
gesture situations a more reliable technique is required to derive target gestures.

The attractiveness of the PNN is that it can take multidimensional inputs and each 
dimension has its own scale factor automatically incorporated into the network, 
which avoids any scaling or any undue bias by unusual data values. Perhaps the main 
disadvantage is that all inputs are categorised by the nearness to the target gestures. 
There is no output that indicates that the target is not recognised. A possible solution 
to this would be to extend the number targets to then class them as main target 
misses.

Target gestures can be found by using clustering techniques. It had been found that 
using just a few low frequency harmonics the gesture trajectory could be 
reconstructed with minimal error. Hence, for clustering technique it was decided to 
use just the first three harmonics. The clustering technique showed that there are two 
important parameters to consider in clustering data. One is the distance metric and 
the other, is the linkage method. Dendrogram diagrams were useful for showing how 
the data was clustered. The ‘ward’ linkage method closely matched manual/visual 
methods. A technique was devised to investigate possible clustering based on 
clusters of the second and third harmonics data. This data was used to form target 
gestures with a PNN to which unknown gestures were categorised.

The combination of clustering technique with PNN was used to investigate inter-
class and inter-class variations. These results compared very favourably with 
classification seen visually. The most significant find was that visual observations 
had identified that there were four subgroups to the particular gesture, albeit the 
fourth was rather large. It was very difficult to identify any common trait in the 
group. The cluster method effectively divided the gestures into five subgroups with 
much similarity to the visual technique.

Further insight into gestures came from the use of gesture stimuli. In this work the 
individuality of each person’s gesturing became apparent. The results of this work 
showed the strong detection of beats in the gesture in addition to the unexpected 
duration of the gesture compared with pointing gestures.

8.2. Conclusions

The pivotal realisation of this thesis is that single-handed gestures can be modelled as 
an aperiodic waveform. Associated with developing this modelling is the realisation 
that the frequency analysis reveals important characteristics about the nature of the 
trajectory. The Fourier analysis of ID waveforms can be analysed as an infinite
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series of harmonics, usually of diminishing amplitude with frequency. In the analysis 
of gesture trajectories the movement of the hand is considered as a point moving in 
2D space and sampled in the time domain. Exponential equations explain the 
characteristic of each harmonic in terms of positive and negative sequence 
components. The relative amplitudes of the positive and negative components 
describe ellipse structures in the spatial domain or appearance-based view. In the 
2DT domain the ellipses are visualised as ‘elliptical’ corkscrews. The major axis of 
each ellipse (appearance-based view of each harmonic) also specified a unique 
orientation angle of each harmonic which allows for characterisation of the trajectory 
to be made. An additional benefit of using Fourier analysis techniques is that through 
normalisation techniques frequency data is made invariant to scale and translation 
effects of gesturing from sequence to sequence.

Experiments with ‘pointing’ gestures showed that there was close approximation 
between spatial position of the hand and the orientation angle of the first harmonic. 
The first orientation angle is basically formed from the spatial position at the start of 
the trajectory with the spatial position at the top of the trajectory. This correlation 
was shown for twenty of the twenty-one people repeating the same gesture because 
of the clearly defined start/stop and intermediate locations of the trajectory on the 
human body. It was also shown that for this latter type of gesture, the gesture 
trajectory could be synthesised to a good approximation from the first three harmonic 
components. The interpretation of the harmonic components confirmed the different 
movement primitives that had been observed by Gibet (2001) in sign language

By contrast the experiments with ‘gesture stimuli’ recorded oscillatory components 
in the trajectories that the Fourier analysis technique was ably equipped to capture. 
The oscillatory nature formed from gesturing tends to be constrained to whole cycles 
with very little spectral leakage as the hand is forced to return to near the starting 
coordinates of the gesture by gravity. The oscillatory nature of gestures may be 
considered as occurring during the stroke phase or after the stroke phase of a gesture. 
This suggests that the definition of a ‘tri-phasic’ gesture should be extended. The 
experimentation with gesture stimuli also showed that the occurrence of beats in 
gesture stimuli is more prevalent than in sign language.

In order to analyse gestures techniques, methods were developed to capture gesture 
trajectories and to normalise gesture lengths because of the variability in time of 
gesturer and gestures. Fusing of skin-colour cues with motion cues produced skin- 
coloured and motion objects. Rank ordering of these objects by size worked 
effectively at locating the dominant hand by the most significant object. It also 
avoided the need to adjust threshold values from sequence to sequence. However, in 
some sequences, colour or motion segmentation was difficult due to small amounts 
of motion or insufficient lighting. Furthermore, the first significant object was not 
suitable for tracking the dominant hand. The development of an object selection 
algorithm allowed for better tracking of the hand to occur. This led to extending the 
technique to the tracking of both hands and the tracking of a hand where there was 
movement from more than one person in an image sequence. The cascading of two 
interpolation and decimation functions allowed a range of gesture lengths to be 
normalised to the target length of sixty-four, with minimal error. These minor errors 
were seen as small phase shifts in the time domain which did not affect the 
characterisation (orientation angle) of the harmonics.
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For the non-oscillatory trajectories the frequency analysis was not dependent on 
tracking the centroid of the hand shape. The skin-coloured and motion objects, 
especially in poor segmenting conditions could fragment occurring at various 
positions in the hand region. It was also found that only low-order frequency 
components were necessary to simulate the gesture trajectory as the variability of 
hand coordinates can be considered as high frequency noise.

However, gesture stimuli trajectories tested the system in a number of ways. Firstly, 
the trajectory length was generally double and in one case three times the length of 
pointing gestures it exceeded the sixty-four sample length target. This resulted in 
sub-sampling of the data reducing the highest frequencies recordable. Secondly, 
some of the oscillatory movements of the gesturer were of low amplitude that 
approached the amplitude range due to the variability of the coordinates of the 
gesture object on the hand region. In these cases the reliability of the tracked data or 
subsequent frequency analysis could not be relied upon as seen by the amplitudes of 
the higher order harmonics not ‘tailing-off, as is the usual case with the harmonics 
of a Fourier series.

For those gesturing actions that have clearly defined spatial coordinates it was shown 
that intra-class and inter-class variations could be extracted from the data. The use of 
just the three lowest order harmonics, with the clustering technique and the PNN, 
could identify variations and sub-groupings in the gesturing activity. The gesture 
stimuli also showed the widely differing and idiosyncratic response of each gesturer, 
because of the lack of defined or imposed spatial coordinates on the gesture. This 
revealed that gesturers performed their own stylised response due to habit or their 
preconception of what was expected of them. This gave a unique characteristic to 
their individual gesture giving a potential feature for use in non invasive person 
recognition.

A by-product of the gesture recognition research is an area that another discipline 
may wish to research regarding human reactions. In the PET’s sequences one of the 
gesturers had a ‘red face’ which was a different colour to his hands or the other 
gesturers’ head and hands colour. This reaction is generally accepted as a 
consequence to some case of stressful or emotional situation. The other observation 
was the apparent involuntary rising of the non-dominant hand which accompanied 
the gesturer laughing. It was also noted that in the gesture stimuli set of experiments 
that many of the single handed gestures could not be undertaken without a movement 
of the non-dominant hand. These latter observations relate to the work that is now 
being undertaken on ‘Affective Computing’ concerning the emotional state of the 
gesturer.

8.3. Future research areas

The inspiration for one of the gesture experiments came from the work undertaken in 
avatar design. The use of ‘avatars’ illustrates how the analysis of human movement 
can be used to make animations very' life-like. The avatar is defined from the position 
of all the joints when placed in some standard pose. Information is also required of 
each joint, whether it operates as a hinge or a ball and socket, or whether there are 
any limits of movement. The possibility of using reverse kinematics to feed hand 
coordinate information back from the analysis of actual hand movements from the
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IFFT of harmonics data is a possibility that might reduce design times as well as 
giving more life-like gesturing.

The interesting feature of the control of avatars is in its use of quaternion 
mathematics. Quaternion mathematics are used for robot control because the problem 
of singularity or ‘gimbal lock’ is not encountered; they are more compact than 
conventional rotational matrix transformations and point to point interpolation is 
smoother. The 0°/360° discontinuity problem has occurred twice in this 
investigation; once in modelling Hue; secondly using phase information for the PNN 
network. Quaternion mathematics could be investigated for the modelling of Hue and 
other discontinuity situations. It is worth noting that Sanguine (2000) has used hyper-
complex numbers or quaternions in the design of vector filters for colour images.

The generation of skin-colour and motion objects proved to be a robust method of 
detecting the hand position in a range of complex environments and even with poor 
lighting conditions. Recent work on the quality of an image has been undertaken by 
Luo (2005) into objective image measurements. These measurements could be useful 
in determining the ability of various techniques to work in poor conditions especially 
as it has been recognised that colour segmentation can fail or is difficult in some 
image sequences. Ranking the gesture objects into order, particularly based on area, 
increases the likelihood of the most significant object being related to the dominant 
hand. This reduced the complexity of hand tracking. The algorithm that determined 
what object to track could contend with various amounts of noise, but its 
performance deteriorated with poor lighting conditions. As a result it was not always 
able to track completely without a small amount of intervention. Further work is 
required to make the system work unattended with some method or system to 
segment the gestures automatically. Some additional criteria should be applied to the 
tracking criteria to improve performance, for example, gradient direction and 
inflection. Extending the tracking algorithm to track more than the first two most 
significant objects widens the scope: to track more accurately: to track both hands: to 
track more than one person simultaneously. Additional criteria would be needed for 
the algorithm track hand crossing or during occlusions.

The properties of skin colour could be investigated further for the detection of skin 
diseases. The work of Angelopoulou (2001), for example, showed that skin colour 
had a unique characteristic due to haemoglobin absorption at certain wavelengths. 
This property could be the focus for the development of a theory and method to 
consider whether haemoglobin absorption changed with the skin complaint. This 
could also assess if it could be detected in special lighting conditions or with a 
special colour model.

Research by other disciplines may be interested in how gesturing is affected by 
emotions. It has already been observed how skin-colour can change and the 
involuntary way the non-dominant hand and head are used in gesturing. The gesture 
stimuli experiments should be repeated but in a better lighting environment to aid 
segmentation and the tracking of relatively small hand movements. Working in a 
similar area, Ong and Ranganath (2005) have suggested future directions for gesture 
research beyond lexical meaning of automatic sign language. In particular they have 
proposed moving toward a true test of sign recognition systems that deal with natural 
signing by native signers.
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There is the potential for further experimentation with a range of different 
applications of movements or activities associated with or similar to gesturing. The 
use of the PNN lends itself to having more than one input, so the input of two 
cameras could easily be used with this system. It appears that this technique might 
have a possible application in diagnosing medical conditions relating to the dexterity 
of the limbs; with any repetitive behaviour; or any manipulative activity. Some types 
of gesture or gesture stimuli might be ideal for the basis of a recognition system for a 
non-invasive security application.

From hypothesis to conclusion it has become clear that the gesture trajectory can be 
modelled as an aperiodic waveform in 2DT space. The analysis using positive and 
negative sequence components shows that the complete detail and characteristics of 
the trajectory can be realised by the properties of an infinite series of harmonic 
components. The investigation of gesture trajectories revealed the ‘elliptical 
corkscrew’ structure of each harmonic at different relative orientation angle to each 
other. However, this experimentation assumed that the camera for recording the 
image sequences was at right angles to the spatial domain. Further research should 
investigate the affect of camera view/projection on the phase of the harmonics, 
particularly the orientation angles. Additionally, depth movement of a point in the 
spatial domain is not recorded by this technique and so further research could be 
instigated to develop equations explaining the motion of a point in three dimensions 
and time (3DT).

This thesis has initiated the representation of gesture as an aperiodic waveform. This 
waveform representation has been analysed, characterised and classified, by the 
harmonic content using Fourier analysis technique. This is a new perspective on 
gesture analysis. The insight gained by this revelation, from hypothesis through 
experimentation and analysis to conclusions, must be considered as a fundamental 
foundation and catalyst for further research that could capitalise on the potential 
development of, and application of, a well grounded theory.
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Appendix I -  Avatars

Avatar Design

Information about avatars is available from: - 
http://viscastsvs.uea.ac.uk/Public pictures.html

Measurement of the position of body parts are shown in figure A 1.1 from the avatar 
sequence ‘motion_capature.avi’.

Figure A l.l Measurement of Body Positions for Avatar Design

The stages of avatar realisation are shown in the avatar sequence ‘tessa.avi’. A 
skeletal model is show in the first frame and an outline shape is shown in frame 295 
of figure A1.2.

Figure A1.2 Skeletal (frame 1) and Outline Figure (frame 295) of avatar Tessa
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The final clothed avatar is shown in frame 660 of figure A 1.3.

Figure Al .3 Tessa the avatar (frame 660)

Figure A 1.4 shows an image from the ‘Take Mug’ sequence that inspired a range of 
experiments (Chapter 7).

Figure Al .4 A frame from the ‘Take Mug’ sequence
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Avatar Specification (Kennaway - 2001)

The synthesis of deaf signing animations is accomplished from a high-level 
description of signs in terms of the HamNoSys transcription system. The HamNoSys 
system defines many contact points on the body, such as positions at, above, below, 
left, or right of each facial element (eyes, nose, checks, etc.) and several positions on 
each finger and along the arms and torso. The total number of positions nameable in 
HamNoSys comes to some hundreds.

“Given a definition of the numerical coordinates of all the hand positions described 
by HamNoSys, we must determine angles of the arm joints which will place the hand 
in the desired position and orientation. This is the problem in ‘inverse kinematics’ 
(forward kinematics being the opposite and easier problem, of computing hand 
position and orientation from the arm joint angles).”

Quaternion rotational transformations are used for interpolation from one point to 
another. Quaternions offer several advantages over traditional transformations.

• Problem of singularity is not encountered.
Singularity is also known as ‘Gimbal Lock’.

• More compact than conventional transformations.
Conventional rotational matrix is made up of 9 numbers.

• Quaternion rotation is made up of 4 numbers.

• Point to point interpolation is smoother

When a quaternion is used to represent rotations, the first three components are a 
vector parallel to the axis of rotation, and the length of that vector is the sine of half 
the rotation angle. The fourth component is the cosine of half the rotation angle. 
(Some authors put the fourth component first.) To calculate the composition of two 
rotations in quaternion form, the rotation of a vector by a quaternion, or the 
conversion between quaternion and rotation matrices, see mathematical sources for 
information.

To find where the wrist is, you need to combine all the translations and rotations at 
the joints up the hierarchy from the wrist to the root. You can either do that using 
quaternion directly, or convert them all to rotation matrices first and work with those.
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Avatar ‘Take-Mug’ sequence

Figure A1.5 Frames 1 to 9 from the avatar ‘Take Mug’ sequence

Figure A1.6 Frames 10 to 18 from the avatar ‘Take Mug’ sequence
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Figure A1.7 Frames 19 to 27 from the avatar ‘Take Mug’ sequence

Figure A1.8 Frames 28 to 36 from the avatar ‘Take Mug’ sequence
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Appendix II -  Skin-Colour Variations due to Different 
Illuminants and White Balance Corrections

A Skin Colour Uniqueness

Angelopoulos (2001) identified that there is uniqueness to the colour of human skin. 
The reflectance of the back of the hand and the palm were measured from a diverse 
group of people from Caucasian, Asian and African descent. Measurements showed 
that that the overall percentage of light that was reflected from human skin increased 
with wavelength. Around the 575nm wavelength there was a specific shape that 
looks like the letter W (two dips with a bump in the middle) as shown in Figure 3.3. 
The uniqueness of this characteristic was confirmed by comparing the reflected light 
to that of a mannequin. The mannequin had been designed to be as life-like as 
possible but gave a distinctly different spectral characteristic. A biological 
explanation for this characteristic was forthcoming by observing the absorption 
spectrum of oxygenated haemoglobin. The absorption spectrum of haemoglobin 
exhibits the inverse W pattern (i.e. an M pattern) at almost identical wavelengths (i.e. 
542nm, 560nm and 576nm respectively, as shown in Figures 3.4. The University of 
Oulu Physics-Based Face database (2001) has results of skin spectral reflectance 
characteristics. The reflectance of the cheek and forehead were measured and 
showed a similar dip in the spectral response between 520nm and 590nm, albeit the 
W form was not so clearly identifiable.

N orm alized Skin R eflectance

Figure 1. Plots of the reflectance spectra of the back of the hand of 
various subjects.

Figure A2.1 Plots of the reflectance spectra of the back of the hand of various 
subjects (Source: Angelopoulos, 2001)
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Figure A2.2 The reflectance spectrum of human skin compared with the 
absorption spectrum of oxygenated haemoglobin (Source: Angelopoulos, 2001)

B HSI and HSV Colour Models

HSI formulae:

The HSI space components are given as (Gonzalez and Woods, 1992): -

r, (2 R - G - B )H  = cos —  .degrees
2 yj (R-G)2 +( R - B ) ( G - B )  

then,H = H  /360

5 = 1---------------- min(/?, G, B)
(R + G + B)

I  = ^(R  + G + B)
3

HSV algorithm:

Given R, G, and B, each on domain [0,1]. Desired: The equivalent H. S, and 
V, each on range [0, 1],

1 V: = max(R, G, B);

2 Let X: = min(R, G, B);

3 S: = (V-X)/V; if S=0 return;
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4 let r: = (V-R)/(V-X);

g: = (V-G)/(V-X);

b := (V-B)/(V-X);

5 If R = V then H: =(G=X then 5+b else 1-g);

If G = V then H: =(B=X then 1+r else 3-b); 

else H: = (if R=X then 3+g else 5-r);

6 H: = H/6;

Remarks: H=0 is taken to be Red (G=B and R>B) by convention.

The Hue derivation (HSI model) is very intense on mathematical functions and can 
be a restricting factor when speed is a premium. A calculations comparison of the 
two methods shows interesting results. An orange colour with R=200, G=180 and 
B=160 gives a hue of 0.0833 (30°) by both methods. However, the Saturation values 
are completely different at 0.25 and 0.11, and similarly the Value and Intensity 
values are 0.784 (200/255) and 0.701 (180/255), because of the different definitions.

When hue is calculated close to the sextant boundary the values still remain similar, 
especially using 8-bit colour depth. For example R=200, G=195, B=160, Hue = 
0.146 (HSV) and 0.148 (HSI) i.e. 2 parts in a thousand difference compared with the 
4 parts in a thousand difference for 8-bit colour depth.
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C Variation of Hue of the same subject with different lighting

Four images (768x512), of the same scene, under different lighting conditions, 
(Jackson et al, 1994).

Tungsten Lighting White Fluorescent Lighting

Graphics Art D5Q Lighting Textile Dye D65 Lighting

Figure A2.3 The same scene illuminated by four different illuminants 
(Tungsten, White Fluorescent, D50 and D65).

Spot readings were taken, of window size 7x7, of the girl doll’s left arm shown in 
Figure A2.4 as red. The site was chosen, as it was most likely to be a close 
representation to human skin-colour.

Tables were produced detailing the results of the RGB mean and standard deviation 
values and HSV mean and standard deviation values for the 49 pixels of the 7x7 
window.

Figure A2.4 Position of the 7x7 sample on the doll’s arm shown in red.
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Mean Standard Deviation
R 201 18.2
G 85 4.8
B 7 2.8

H 0.067 0.004
S 0.964 0.016
V 0.789 0.071

Table A2.1 RGB and HSV values in Tungsten Light

Mean Standard Deviation
R 134 26.8
G 25 24.5
B 6.1

H 0.168 0.005
S 0.752 0.032
V 0.530 0.100

Table A2.2 RGB and HSV7 values in White Fluorescent Light

Mean Standard Deviation
R 123 19.0
G 104 13.4
B 53 9.2

H 0.123 0.008
S 0.566 0.054
V 0.483 0.074

Table A2.3 RGB and HSV7 values in Graphics Art D50 Light

Mean Standard Deviation
R 146 19.2
G 100 11.0
B 61 8.1

H 0.077 0.006
S 0.584 0.016
V 0.572 0.075

Table A2.4 RGB and HSV7 values in Textile Dye D65 Light
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D Variations in the Hue of Skin-Colour

Samples of skin colour are taken for the right hand, left hand and forehead for five 
different sequences recorded in a range of environmental conditions.

1 Avatar -  a Synthesised Image Sequence

Image sequence, ‘Take Mug’ supplied by Kennaway, R. of UEA.

The red spots in the top left image of figure A2.5 shows were the samples were 
taken. Very little difference between the three samples was seen, as would be 
expected by the rendering technique. The Hue averages at 0.0320, 0.0328 and 
0.0341; only a slight variation between the three values. The Hue range of 
plus/minus two standard deviation from the mean gave good segmentation of the 
skin-coloured object as seen in figure A2.6. For the optimum range for segmentation 
the lowest value and the highest value of Hue from the three samples were chosen. 
Figure A2.6 show the masks resulting from the two segmentation conditions of Hue 
(left image) and Hue and Saturation (right image).

Window Size = 7

Left hand. Hue mask

#
€

Hue range, 0.021571, to 0.043937

Forehead, Hue mask

Hue range, 0.021028, to 0.047189

Figure A2.5 Skin-Colour sample positions for the right and left hand and the 
forehead, with segmentation images of the Hue for a frame in the ‘Take Mug’ 
sequence for a plus/minus two standard deviation from the mean, based on the

three samples.
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Hue min-max range H &. S min-max range

# m
c $

Hue range, 0.019113, to 0.047189 Saturation range, 0.18744, to 0.2527

Figure A2.6 Hue Segmentation (left) and Hue-Saturation Segmentation (right) 
of an image in the ‘Take Mug’ sequence.
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2 Complex Scene with Even Illumination

Window Size = 7 Right hand, Hue mask

Left hand, Hue mask

Hue range, 0.060698, to 0.067403 

Forehead, Hue mask

Hue range, 0.051359, to 0.081333 Hue range, 0.076553, to 0.089281

Figure A2.7 Skin-Colour sample positions for the right and left hand and the 
forehead, with segmentation images of the Hue for a frame in a complex scene 
with even illumination for a plus/minus two standard deviation from the mean,

based on the three samples.

In this real scene, the variation of the Hue range for the three objects become more 
apparent, as shown in figure A2.7. The Hues are just a little higher than that of the 
avatar, and average at 0.0640, 0.0663 and 0.0829. Note that the forehead has a 
noticeably higher Hue value than the hands. It is noticeable that the wooden door has 
a very similar Hue range to that of skin and show up in the Hue mask. The Hue & 
Saturation mask eliminates the door silhouette due to its saturation level being 
different to skin, as shown in figure A2.8.
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Figure A2.8 Hue Segmentation (left) and Hue-Saturation Segmentation (right) 
of an image in the Complex Scene with Even Illumination.
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3 Scene with Low Illumination and Poor White Balance

Window Size = 7

Left hand, Hue mask

Hue range, -0.0092303, to 0.035664

Right hand, Hue mask

Hue range, 0.0034393, to 0.041631 

Forehead, Hue mask

Hue range, -Q.000449B, to 0.031033

Figure A2.9 Skin-Colour sample positions for the right and left hand and the 
forehead, with segmentation images of the Hue for a frame in a Scene with Low 
Illumination and Poor White Balance for a plus/minus two standard deviation 

from the mean based on the three samples.

There is much more variability in the hue range in the scene shown in figure A2.9. 
The right hand has a Hue range very similar to the two previous examples. However, 
the left hand and forehead have negative Hue values. The negative value is a result of 
a larger blue component than green in the image due to the white balance mechanism 
not being adjusted appropriately prior to recording. Some of the white rectangular 
blocks in the masks are due to the RGB to HSV conversion algorithm response to 
‘black’ and the quantisation due to ‘jpg’ file format.

238



P .R .G . H ard ing , 2007 , A ppend ix  II

Figure A2.10 Hue Segmentation (left) and Hue-Saturation Segmentation (right) 
of an image in the Scene with Low Illumination and Poor White Balance.

It is noticeable that the wooden door framing is picked up again in the Hue mask and 
to a lesser extent in the Hue and Saturation mask, as shown in figure A2.10.
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4 Challenging Environment and Poor White Balance

Window Size = 7 Right hand, Hue mask

Hue range, -0.13858, to -0.064563

Left hand. Hue mask Forehead, Hue mask

Hue range, -0.06069, to -0.013852 Hue range, -0.059433, to 0.032183

Figure A2.ll Skin-Colour sample positions for the right and left hand and the 
forehead, with segmentation images of the Hue for a frame in a Challenging 

Environment and Poor White Balance for a plus/minus two standard deviation 
from the mean based on the three samples.

The late afternoon light on the mainly magnolia coloured walls has resulted in the 
image becoming very pink, as shown in figure A2.11. The majority of the Hue values 
of the skin samples are now negative, with mean values of -0.1016, -0.0373 and - 
0.0136. It is noticeable that for the last example that the skin regions of the head and 
the walls merge together. The Hue-Saturation mask helps segment the head from the 
wall as shown in figure A2.12.
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Figure A2.12 Hue Segmentation (left) and Hue-Saturation Segmentation (right) 
of an image in the Scene with a Challenging Environment and Poor White

Balance.
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5 Publicly available PETS Images

Publicly available sequences, f t p : / / p e t s . r d q . a c . u k / P E T S - I C V S

Figure A2.13 is an image taken from: - ‘\data\ScenarioAl\Caml\imagel6511 -jpg'

Figure A2.13 Image ‘\data\ScenarioAl\Caml\imagel6511.jpg' from the PETS
database.

Window Size =  7

Figure A2.14 Skin-Colour sample positions for the right and left hand and the 
forehead, with segmentation images of the Hue for a frame in the PETS 

sequence for a plus/minus two standard deviation from the mean based on the
three samples.
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Figure A2.15 Hue Segmentation (left) and Hue-Saturation Segmentation (right)
of an image in the PETS sequence.

Note that taking 3 sample positions (7x7 window) on the middle person of figure 
A2.14 segments the skin-coloured regions in the Hue range of 0.006 to 0.048. 
However, the forehead of the person on the right is not segmented as can be clearly 
seen in figure A2.15. This is because the hue range extends into the negative region 
where R>B>G.

In order to segment all skin-coloured regions from the three people the Hue range is 
extended from -0.048 to 0.033. In this particular example, inclusion of the Saturation 
range is particularly effective at producing a mask of the skin-coloured regions of 
just the three people as can be seen in Figure A2.16.
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Figure A2.16 Hue Segmentation (left) and Hue-Saturation Segmentation (right) 
of an image in the PETS sequence to include all skin-coloured regions.
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Appendix III -  Sequence Parameters

A The Sequence Parameters

Determination of SCM objects can be affected by the skin-colour mask being 
obtained from a range of values from Hue or Hue-Saturation and whether holes in 
the masks are morphologically ‘filled’, or noise objects removed by morphological 
‘opening’. The eight possible combinations of these parameters are shown in Table 
A3.1.

Experiment H or HS Hole Fill Opening

El H No No

E2 H Yes No

E3 H No Yes

E4 H Yes Yes

E5 HS No No

E6 HS Yes No

E7 HS No Yes

E8 HS Yes Yes

Table A3.1 Experimental Combinations of H (Hue), HS (Hue-Saturation), Hole
‘Fill’ and ‘Opening’

1 Experiment with Sequence with Low Illumination and Poor White 
Balance

The sequence consists of some 250 frames and the subject’s movements are: -

• Right hand high and then descends to right knee
• Left hand up and down
9 Both hands up and down
• Both hands up and across and back
• Pick up remote control of video camera at end.
®

The Hue range was set at -0.005 to 0.043 and the default saturation range was set at 
0.01 to 0.95. When combining Hue and Saturation masks the saturation range was set 
at 0.28 to 0.5. When Prewitt edge templates where used the threshold was set at 0.34. 
Typical results of the location of the first three SCM objects (red, green and blue 
crosses) are shown in figure A3.1 and figure 3.2, frames 3 to 19 of the right hand 
descending.
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Figure A3.1 Images 3 to 11 of the Low Illumination and Poor White Balance 
sequence showing the position of the first three SCM objects (red=lst, green=2nd,

blue=3rd)

Figure A3.2 Images 12 to 19 of the Low Illumination and Poor White Balance 
Sequence show ing the position of the first three SCM objects (red=lst,

green=2nd, blue=3rd)
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The difference when using the Hue mask or the Hue-Saturation mask is shown in 
Figures A3.3 and A3.4. The top right image in each figure shows a red region that 
shows the skin-colour region defined by Hue or Hue-Saturation. A cyan region is due 
to motion and the small black regions are due to the logical ANDing of the skin- 
colour mask and the motion mask. These regions are shown again on the bottom left 
hand images as ‘AND Obj’ (SCM). The most noticeable difference between the two 
figures is the ‘Link Obj’ (SCMI) regions. Using the Hue-Saturation mask has 
reduced the size to a more sensible region of the face because of the better 
segmentation.

The location of the three most significant objects for the SCM and SCMI objects are 
shown in 2D and 3D space in Figures A3.5 and A3.6, when using the Hue mask, 
hole-filling and morphological opening conditions specified in Experiment 1 of 
Table A3.1, respectively for the whole sequence. The following two figures, Figures 
A3.7 and A3.8 show the result of including the template mask wdth the SCM and 
SCMI objects respectively.

In all four figures the gesture space is shown by the location of the objects. Because 
of the relatively poor lighting conditions and poor skin-colour segmentation the 
number of objects becomes progressively sparse. A more useful comparison of the 
performance of the various conditions follows by comparing the allocation of the 
most significant object to tracking the right and left hand during frames 75 to 120.

Figure A3.3 Frame 250 show ing the centre of gravity of the three SCM objects 
(red, green and blue crosses) on the head using just the Hue for skin-colour

segmentation.
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SC&M, No. =250,144 x 180 HS & M Obj

AND Obj Link Obj

Figure A3.4 Frame 250 showing the centre of gravity of the three SCM objects 
(red, green and blue crosses) on the head using Hue-Saturation for skin-colour

segmentation.

blue, respectively), for experiment El.
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3D Data

prhsort2, (=1, g=2, b=3 obj

100 

50 

O'
0 50 100 150

columns

Figure A3.6 2D and 3D views of the first three SCMI objects (red, green and 
blue respectively), for experiment El.

3D Data

prhsort3, r=1, g=2, b=3 obj

Figure A3.7 2D and 3D views of the first three SCME objects (red, green and 
blue, respectively), for experiment El.
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3D Data

prhsort4, i=1, g=2, b=3 obj

Figure A3.8 2D and 3D views of the first three SCMEI objects from Hue mask 
(red, green and blue, respectively), for experiment El.

MS0(1,2 &3) Coordinates,datai, Frames= 75 - 120

Figure A3.9 Experimental conditions El for SCM data where the most 
significant object is labelled by a red ‘o’ and the tracking output signified by a 

*+’ (the cyan dots represent the visually obtained left hand position)
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MSO(1,2 &3) Coordinates,datai, Frames= 75 -120

Figure A3.10 Experimental conditions E4 for SCM data where the most 
significant object is labelled by a red ‘o’ and the tracking output signified by a 

‘+’ (the cyan dots represent the visually obtained left hand position)

MSO(1,2 &3) Coordinates,datai, Frames= 75 -120

Figure A3.11 Experimental conditions E5 for SCM data where the most 
significant object is labelled by a red ‘o’ and the tracking output signified by a 

‘+’ (the cyan dots represent the visually obtained left hand position)
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MSO(1,2 83) Coordinates.datal, Frames= 75 - 120

Figure A3.12 Experimental conditions E8 for SCM data where the most 
significant object is labelled by a red ‘o’ and the tracking output signified by a 

‘+’ (the cyan dots represent the visually obtained left hand

There was very little difference in the row coordinates values for the above four sets 
of experimental results so only column values are used in Table A3.2

Most significant ‘scm’ El- E4- E5- E8-

object column column column column

Allocated to Right Hand 25 23 29 20

Allocated to Left Hand 18 17 14 20

Previous values 0 3 0 3

Table A3.2 Comparison of the performance of experiments 1, 4, 5 and 8 for 
positioning of the 1st ‘SCM’ object

The distribution of the most significant object is roughly evenly distributed between 
the right and left hand for all experiments, although there seems a stronger bias for 
the right hand for experiment E5. Possibly the most significant result from this 
comparison is that for conditions E4 and E8 when morphological techniques are 
applied to ‘clean’ the image, that objects are not generated when the hands are near 
stationary (frame 4, frame 22 and frame 23).

As a result of poor segmentation of the skin-coloured region the coordinate data for 
the SCMI objects under experimental conditions El (Table A3.1) do not follow the
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visually recorded positions of the hands as previously indicated for the SCM most 
significant object, as shown in Figure A3.13.

In the poor lighting conditions the use of the edge templates with the SCM and SCMI 
objects produce worse results and there are many instances of objects not being 
generated for a number of frames. The situation could possibly be improved by 
constant adjustment of edge template thresholds. However, the overwhelming 
conclusion of this set of experiments is that the ANDing process is most reliable and 
performs in poor lighting conditions and it is advisable not to use any morphological 
processes as important location information can be missed at near stationary 
conditions. There is only a marginal improvement in object location using the Hue- 
Saturation mask instead of just the Hue mask on its own. Figure A3.14 shows how 
the right and left hand can be tracked simultaneously using conditions E5 and the 
first and second most significant SCM objects, as the visually obtained cyan and 
magenta tracks show the separate paths of the two hands. The tracking of both hand 
is signified by the black ‘+’ for the right hand and the blue ‘x’ for the left hand.

Figure A3.13 Experimental conditions El for SCMI data where the most 
significant object is labelled by a red ‘o’ and the tracking output signified by a 

‘+’ (the cyan dots represent the visually obtained left hand position)
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Figure A3,14 Experimental conditions E5 showing 1st (red circle) and 2nd (green 
diamond) SCM object coordinates. The tracking output is signifies the right 

hand by the black *+’ and the left hand by the blue ‘x \  The cyan and magenta 
dots represent the visually obtained left and right hand coordinate positions,

respectively.

2 PETS Sequence

Analysis of a particular sequence -  sequence H , frames 16960-17013, with camera 
recording subjects 6, 5 and 4 as shown in the layout below.

[Cam2]

[6] [5] [4]

[Cam3]

[3] [2] [1]

< - -  SEATS

< —  TABLE

< - -  SEATS

[Carni]

f t p : / / p e t s . r d q . a c . u k / P E T S - I C V S rA c c e s s e d  October 2002]
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X:\images\petsicvs\data\ScenarioA 1 \Cam 1

A montage of images showing the positions of the first three most significant ‘scm’ 
objects (red, green and blue crosses) are shown in Figures A3.14 to A3.19.

Figure A3.15 The positioning of the first three most significant SCM objects 
(red, green and blue, respectively) on frames 16960 to 16968.

Figure A3.16 The positioning of the first three most significant SCM objects
(red, green and blue, respectively) on frames 16969 to 16977.
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Figure A3.17 The positioning of the first three most significant SCM objects 
(red, green and blue, respectively) on frames 16978 to 16986.

Figure A3.18 The positioning of the first three most significant SCM objects
(red, green and blue, respectively) on frames 16987 to 16995.
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Figure A3.19 The positioning of the first three most significant SCM objects 
(red, green and blue, respectively) on frames 16996 to 17004.

17005 17006 17007

17008 17009 17010

17011 17012 17013

Figure A3.20 The positioning of the first three most significant SCM objects
(red, green and blue, respectively) on frames 17005 to 17013.
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Table A3.3 classifies the three most significant SCM objects to the positions on the 
bodies of the three people, labelled 6, 5 and 4 (left to right). The gesturer is number 6 
and the position of the object on the right hand, left hand or face is signified by ‘rh\ 
Th’ or T .

Fram e No I s1 obj = 2nd obj= 3rd obj =

RE D  *+’ G R E E N  •+ ' B L U E  *+’

on im age on im age on  im age

16960 5 5 6rh

16961 6rh 5 5

16962 5 6rh 6 f

16963 6rh 5 6 f

16964 6 f 5 5

16965 6 f 4 6r

16966 6 f 4 5

16967 6 f 5 4

16968 6rh 4 5

16969 6rh 5 5

16970 6rh 5 5

16971 5 6rh 5

16972 6rh 5 5

16973 5 6rh 5

16974 6rh 5 5

16975 5 6rh 6rh

16976 6rh 5 6rh

16977 5 5 5

16978 5 5 5

16979 5 5 6rh

16980 5 5 6rh

16981 5 6rh 5

16982 5 5 5

16983 5 5 5

16984 5 6rh 5

16985 5 5 5

16986 5 6rh 5

16987 5 6rh 5

16988 5 5 5

16989 5 5 5

16990 5 5 6rh

16991 5 5 6rh

16992 5 5 5

16993 5 5 5

16994 5 5 5

16995 5 5 5

16996 5 5 5
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16997 5 6rh 5

16998 6rh 5 5

16999 6rh 5 5

17000 6rh 5 5

17001 5 6rh 5

17002 5 5 6rh

17003 6rh 5 5

17004 6rh 5 5

17005 61h 6 f 6rh

17006 6 f 61h 5

17007 6 f 6 f 6 f

17008 6 f 6 f 5

Table A3.3 Allocation of the first three SCM objects to subjects 6, 5 and 4 (left 
to right) and place on body (rh = right hand, lh = left hand and f = face) of the

gesturer 6.
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Appendix IV - Multirate Ratios

Sample Normalisation Calculation

The selection of the multirate ratios was restricted by the warnings about filter length 
in the Matlab software. The maximum interpolation value for L was 13 and a similar 
value, M for decimation. It was found that many ratios could easily be obtained with 
just one ratio value of L/M. However, better overall results were obtained by the 
cascading of two ratios i.e. Li / Mi and L2/ M2.

Table A4.1 show the ratio values and the resulting error for an optimal length of 64 
samples. For example, for a gesture length of 23 the ratio 64/23 = 2.7826. The ratio 
is calculated from the table as 9/7 x 13/6 = 2.7857, a difference of 0.0031 (0.11%).

N um ber o f  
sam ples

L, M , 1-2 m 2. erro r overshoo t

10 8 5 4 1 0 0

11 5 1 7 6 0.015 1

12 4 3 4 1 0 0

13 9 5 11 4 0.027 1

14 8 7 4 1 0 0

15 8 5 8 3 0 0

16 4 1 1 1 0 0

17 3 2 5 2 -0.015 1

18 4 3 8 3 0 0

19 13 9 11 4 0 .0019 1

20 8 5 2 1 0 0

21 8 7 8 3 0 0

22 7 6 5 2 0 .0076 1

23 9 7 13 6 0.0031 1

24 8 3 1 1 0 0

25 8 5 8 5 0 0

26 8 7 13 6 0 .0147 1

27 9 7 11 6 -0 .0132 1

28 2 1 8 7 0 0

29 11 5 1 1 -0 .0069 1

30 4 3 8 5 0 0

31 9 8 11 6 -0 .002 1

32 2 1 1 1 0 0

33 7 6 5 3 0.0051 1

34 9 8 5 3 -0 .0074 1

35 8 7 8 5 0 0

36 4 3 4 3 0 0

37 13 12 8 5 0 /0036 1

38 13 9 7 6 0.001 1

39 13 9 8 7 0 .0098 1
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40 8 5 1 1 0 0

41 13 12 13 9 0.0038 1

42 8 7 4 3 0 0

43 11 9 11 9 0.0055 1

44 9 8 9 7 -0.0081 1

45 7 6 11 9 0.0037 1

46 13 12 9 7 0 .0016 1

47 7 6 7 6 -0.0005 1

48 4 3 1 1 0 0

49 8 7 8 7 0 0

50 9 7 1 1 0.0057 1

51 13 12 7 6 0.009 1

52 13 12 8 7 0.0073 1

53 13 12 9 8 0.0112 1

54 13 12 13 12 -0 .0116 0

55 13 12 13 12 0/01 0

56 8 7 1 1 0 0

57 9 8 1 1 0.0022 1

58 13 12 1 1 -0.0201 -1
59 13 12 1 1 -0 .0014 0

60 13 12 1 1 0.0167 1

61 13 12 1 1 0.0342 3

62 1 1 1 1 -0.0323 _2

63 1 1 1 1 -0 .0159 - i

64 1 1 1 1 0 0

65 1 1 1 1 0.0154 1
66 1 1 1 1 0.0303 2

67 12 13 1 1 -0.034 _2

68 12 13 1 1 -0.02 - i

Table A4.1 Calculation of ratios for normalisation of gesture length to 64.
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Appendix V- Interpretation of Harmonic Data

1 DFT Calculation

Calculating the harmonic output from the sequence 1, 0, 0, 1.

Harmonic, k n =  0 n =  1 D II l-J n =  3 £

1 0 0 1 Harmonic value

k =  0, X(0) j  e - j(2 it/4 ).0 .0 _ 1 0 0 |  e -j(2 n /4 ) .3 .0 _ j 2

k =  1, X(l) ] e - jW 4 ) .0 .1 = 1 0 0 L  e -J(2*/4)-3 -l= + j 1+ j

k =  2, X(2) j e -j(2x/4).0.2= 1 0 0 j  e -j(2x/4).3.2=  j 0

k =  3, X(3) 1 e -j(27t/4).0.3= 1 0 0 l e -j ( 2x/4).3.3= j 1 -j

Table A5.1 Calculation of harmonic components for data 1, 0, 0,1

2 Fourier Descriptor Theory (Source: Lin et al., 1990)

A closed 2-D contour with perimeter77 is illustrated in Figure A5.1. A point p  starts 
from some arbitrary location on the perimeter and moves along the contour a 
distance / to s. The coordinates of p  can be obtained by defining a parameter t as 
Irdlrj,  these two periodic functions can be expressed by Fourier expansions in 
matrix form as: -

x(t) ’«0" 00

+ y akbu cos kt

_xt)_ do.
Z—*
k = \ , c k  d k _

sin A?

Figure A5.1 (a) A 2-D closed contour, (b, c) Periodic functions X(l) and T(/)for
the contour of (a) (Source: Lin et al.)

Objects can be placed at different locations with arbitrary orientations will be 
changed as shown in the example in Figure A5.2.
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Figure A5.2 Different starting points due to different orientations (Source: Lin
et al.)

In equation (1), a0,d 0 are the mean values of the coordinates X (l) andT(/), 
respectively, which indicate the geometric centre of the contour.

The above term for the k ,h ellipse is: -

Xk (t) ak0 cos kt

_yk (0 . o sin kt

This equation of the k ,h ellipse can be decomposed and related to the orientation and 
the phase shift of the ellipse. Lin (1990) shows that the ellipses as in Figure A6.3 can 
be described by the equation: -

x k (0
_ yk (0.

cos 9k -  sin 9k 
sin#* cos9k

AO
Lo Bk

cos q>k -  sin (pk cos kt
smq>k cos cpk sin At

where Ak and Bk represent the major and minor axis of the ellipse, the starting phase 
of the ellipses is 0k and the phase is defined as (pk = 2n5 / perimeter , being the 
phase from the major axis to the position corresponding to t=0.

An alternative interpretation of the Fourier Descriptors is a set of oriented ellipses as 
shown in Figure A5.4. A shape can be viewed geometrically as the locus generated 
by the case of three ellipses. Each ellipse has a fixed orientation, with the centre of 
the k ,h +1 ellipse, Ck, revolving around the k ,h ellipse. The revolving frequency of 
Ck is k times that ofCj. The locus of the last point C3 forms the contour. It is often 
found that only a few of the low order harmonics are necessary to synthesise the 
object and the higher harmonics usually being very high frequencies and low 
amplitudes do not have a significant contribution to the overall shape of the object.
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Figure A5.3 The rotation and starting phase of an ellipse. Source (Lin et al.)

Figure A5.4 Three harmonic elliptic descriptions. Source (Lin et al.)

265



P .R .G . H ard ing , 2007 , A p pend ix  V

3 Visualisation of exponential equations in ID, 2D and 2DT

Two ellipses are added together and result shown in Figure A5.5. The characteristics 
of the ellipses are defined according to Lin’s (1990) work, with the major axis, 
labelled A and the minor axis labelled B. In this example the first and second 
harmonics have major and minor axis of Ai=0.5, B|=0.3; A2=0.2 , B2=0.1 
respectively, with an offset of 1.0 for the second harmonic ellipse. The top left 
picture shows the spatial domain representation of the two ellipses. The top-right 
shows the change of ‘y’ with time, clearly showing the offset bias. The bottom-left 
picture shows the change o f ‘x’ with time and the bottom right shows a 2DT view.

Figure A5.5 Pictures of 4 views of the summation of two ellipses of different 
frequencies with an offset. The top left picture shows the spatial domain 

representation; the top-right shows the change of ‘y’ with time, clearly showing 
the offset bias; the bottom-left picture shows the change of ‘x’ with time and the

bottom right shows a 2DT view.

The following figure, Figure A5.6 shows that the 2DT image changes with viewing 
angle and does not capture a constant 2D shape or interpretation.
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Figure A5.6 Different azimuth but the same elevation of two ellipses with offset 
(Azimuth -View 1 =30°, View 2 =20°, View 3 =10°, View 4 =0°; Elevation = 30°)

Synthesis of waveforms

The power of Fourier synthesis is often shown by taking just a few low order 
harmonics and adding them together to show that a good representation of the 
original waveform can be made. It can be shown that recombining the first three odd 
harmonics, as the even order harmonics are zero, from square wave analysis shows 
how close the synthesis is to the original square waveform. For the purposes of this 
investigation it is useful to visualise the waveform both in the 2D (spatial), ID and 
2DT domains. A sine wave is generated in the ‘x’ domain by adding a phase shift of 
minus 90° to the cosine wave of the real part of the exponential, as given previously 
by Euler’s equation. The sine wave is shown in the ‘x’ vs. time plot (bottom-left 
picture) of Figure 5.7. There is no component on the ‘y’ axis (top-right picture of 
Figure 5.7) and a 2DT view is shown in the bottom-right picture. The top-right 
picture shows the equal amplitudes of the positive (red) and negative (black) 
sequence component and the overall appearance based result (blue) which is just a 
straight line because of the zero ‘y’ component. The third harmonic, at appropriately 
lower amplitude is shown in Figure 5.8. The result of adding the first three odd 
harmonics is shown in Figure 5.9.
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Figure A5.7 Four views (top-left spatial domain, x-y; top-right, ‘y’ vs. time; 
bottom-left, ‘x’ vs. time; bottom-right, 2DT domain) of the first harmonic. The 
starting point-and end-point of the time sequence indicated as ‘o’ and **’ (blue)

respectively.

Figure A5.8 Four views (top-left spatial domain, x-y; top-right, ‘y’ vs. time; 
bottom-left, ‘x’ vs. time; bottom-right, 2DT domain) of the third harmonic. 

Rotating positive sequence (red) and negative (black) sequences and the
resulting (blue) ellipse.
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Figure A5.9 Four views of combining the first, third and fifth harmonics. 
Rotating positive (red) and negative (black) sequences and the resulting (blue) 
ellipse. The starting point-and end-point of the time sequence indicated on all 

pictures as ‘o’ and (blue) respectively.
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4 Simulated gesture trajectories

Different possible gesture paths were simulated. Shallow and deep arcs were plotted 
and called ‘concave’. Another trajectory with the arc in the opposite ‘sense’ to 
concave was termed a ‘convex’ trajectory. Additionally, ‘figure of eight’ trajectory 
and a trajectory with many oscillations were generated. The coordinates used for 
these simulated trajectories are shown below.

Data Sets for Trajectories

A Shallow arc or concave trajectory

x=10 23 33 46 58 69 82 96 118 130 144 160 157 150 143 135 125 115 105 92 77 62 
45 30

y=200 158 137 118 102 86 72 57 42 30 19 10 30 50 63 78 95 105 122 138 153 166 
180 188

B Deeper arc or concave trajectory

x— 32 50 72 87 102 120 135 145 155 160 165 166 166 166 166 165 160 155 145 
135 120 102 87 72 50 32

y = 192 184 173 164 152 140 125 110 90 75 52 35 12 12 35 52 75 90 110 125 140 
152 164 173 184 192

C Convex trajectory

x= 10 23 33 46 58 69 82 96 118 130 144 160 160 144 130 118 96 82 69 58 46 33 23 
10

y = 200 158 137 118 102 86 72 57 42 30 19 10 10 19 30 42 57 72 86 102 118 137 
158 200

D Figure of eight trajectory

x= 10 27 45 60 71 80 90 93 96 100 108 123 135 160 162 153 140 128 115 72 53 40 
30 20 13 10

y = 200 197 188 176 162 146 130 95 78 61 43 27 15 10 38 58 74 82 88 95 102 113 
130 142 162 181

E An Oscillating -Three figures of eight trajectory

x = 10 30 38 42 50 66 82 88 98 102 135 140 160 146 125 110 112 98 77 62 62 52 32 
26

y = 200 187 176 154 139 133 119 96 79 70 52 22 10 35 42 62 81 100 105 122 140 
159 168 181
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Simulated trajectories and Harmonic content

Shallow arc or concave trajectory

3D 2D

Figure A5.10 2DT and 2D views of the harmonics of a shallow arc or concave
Trajectory

Harmonic Positive
Magnitude,

Ap

Positive
phase

4>

Negative
Magnitude,

An

Negative
phase

<t>

Relative
Orientation

0
1 1 -7.2 1.0 7.2 -131.8

2 0.093 -13.8 0.092 13.8 72.7

0 .111 -20.7 0.113 20.7 -66.3

4 0.038 -24.7 0.038 24.7 23.4

5 0.037 -30.8 0.039 30.8 -14.2

6 0.023 -34.3 0.016 34.3 62.6

7 0.025 -41.5 0.031 41.5 -79.6

Table A5.2 Harmonic Values of a Shallow Concave Trajectory
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B A deeper arc or concave trajectory

3D 2D

Figure A5.ll 2DT and 2D views of the harmonics of a deep arc or concave
trajectory.

Harmonic Positive
Magnitude,

Ap

Positive
phase

4>

Negative
Magnitude,

An

Negative
phase

4>

Relative
Orientation

0
1 1 -3.8 1.0 3.8 -128.3

2 0.219 -7.4 0.218 7.4 92.2

3 0.066 - 11.0 0.067 11 -99.2

4 0.033 -14.2 0.031 14.2 117.8

5 0.041 -18.2 0.043 18.2 -128.4

6 0.021 -19.1 0.020 19.1 95.6

7 0.019 -23.6 0.022 23.6 -81.9

Table A5.3 Harmonic values of a deep arc or concave trajectory
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C A Convex Trajectory

3D 2D

Figure A5.12 2DT and 2D views of the harmonics of a convex trajectory

Harmonic Positive
Magnitude,

Ap

Positive
phase

*

Negative
Magnitude,

An

Negative
phase

Relative
Orientation

0
1 1 -4.5 1.00

______
4.5 -126.3

2 0.198 -9.0 0.198 -9.0 274.8

3 0.097 -13.7 0.097 13.7 -267.1

4 0.039 -18.4 0.038 18.4 273.4

5 0.043 -23.3 0.043 23.3 -280.9

6 0.029 151.9 0.028 -151.9 113.5

7 0.025 -33.7 0.026 33.7 -126.7

Table A5.4 Harmonic values of a deep convex trajectory
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D An Elliptical Trajectory

3D 2D

Figure A5.13 2DT and 2D views of an elliptical trajectory

Harmonic Positive
Magnitude,

Ap

Positive
phase

*

Negative
Magnitude,

An

Negative
phase

Relative
Orientation

0
1 1 -1 1 .1 0.555 1 1 .1 -128.4
2 0.073 34.1 0.021 -34.1 -14.7

3 0.120 -41.3 0.074 41.3 22.9

4 0.029 14.3 0.018 -14.3 -14.9

5 0.046 -47.7 0.022 47.7 26.1

6 0.023 -51.7 0.001 51.7 56.8

7 0.032 110.0 0.020 47.7 26.1

Table A5.5 Harmonic values of an elliptic trajectory
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E A ‘Figure of Eight’ Trajectory

Figure A5.14 2DT and 2D views of a ‘figure of eight’ trajectory

Harmonic Positive
Magnitude,

Ap

Positive
phase

<t>

Negative
Magnitude,

An

Negative
phase

Relative
Orientation

0
1 1 1.98 1.156 -1.98 -129.3

2 0.299 90.0 0.291 -90 89.3

3 0.146 4.8 0.073 -4.8 -75.2

4 0.02 -26.1 0.02 26.1 221.0

5 0.057 1.0 0.0835 -1.0 -235.2

6 0.041 84.3 0.037 -84.3 97.3

7 0.035 -34 0.001 34 -1.8

Table A5.6 Harmonic values of ‘figure of eight’ trajectory

275



P.R .G . H ard ing , 2007 , A p pend ix  V

F An Oscillating Trajectory

3D 2D

Figure A5.15 2DT and 2D views of the harmonics of an oscillatory trajectory

Harmonic Positive
Magnitude,

Ap

Positive
phase

4>

Negative
Magnitude,

An

Negative
phase

Relative
Orientation

0
1 1 2.5 0.992 -2.5 -127.6

2 0.059 3.5 0.038 -3.5 182.4

3 0.129 -0.8 0.135 0.8 -185.3

4 0.023 -7.6 0.029 7.6 165.1

5 0.047 151.0 0.109 -151 -19.8

6 0.077 105.4 0.061 -105.4 -66.7

7 0.021 -45.8 0.020 45.8 -28.8

Table A5.7 Harmonic values of an oscillatory trajectory
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A Real Gesture Trajectory

3D 2D

Figure A5.16 2DT and 2D Views of the harmonics of a real gesture trajectory

Harmonic Positive
Magnitude,

Ap

Positive
phase

4)

Negative
Magnitude,

An

Negative
phase

4)_____

Relative
Orientation

0
1 1 3 1.1 -3 -123

2 0.317 6 0.327 -6 26

3 0.042 27 0.103 -27 135

4 0.027 68 0.0513 -68 44

Table A5.8 Harmonic values of a real gesture trajectory
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2 Examples of ‘elliptic-corkscrews’

The third and fourth ‘elliptic corkscrews’ are shown in Figures A6.8 and Figures 
A6.9 respectively.

Third elliptic Four Elliptics and Overall Trajectory

100

Figure A5.17 A third harmonic, single ‘elliptic-corkscrew’

Figure A5.18 A fourth harmonic, single ‘elliptic-corkscrew’
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3 Truncation Performance

The stopping Tolerance set to 2, 5, 10 and 15, gave the following harmonic profiles 
respectively.

Harmonic Positive
Magnitude,

Ap

Positive
phase

4»

Negative
Magnitude,

An

Negative
phase

<t>

Relative
Orientation

0
1 1 16.7 1.229 -16.7 -16.9

2 0.456 2.5 0.361 -2.5 -27.9

3 0.321 -32.6 0.186 32.6 13.8

4 0.096 -17.8 0.039 17.8 -98.8

5 0.118 75.8 0.07 -75.8 132.4

6 0.117 -69.1 0.118 69.1 -31.5

7 0.042 -162.4 0.030 162.4 31.8

Table A5.9 Harmonics with stopping Tolerance 2; Gesture Length 37

Harmonic Positive
Magnitude,

Ap

Positive
phase

4»

Negative
Magnitude,

An

Negative
phase

Relative
Orientation

0
1 1 22.7 1.23 -22.7 -15.4

2 0.450 14.3 0.374 -14.3 -28.1

3 0.348 -16.1 0.203 16.1 13.4

4 0.108 3.73 0.038 -3.73 -84.6

5 0.130 103.2 0.089 -103.2 111.7

6 0.107 -37.2 0.116 37.2 -27.8

7 0.061 -122.2 0.030 122.2 34.3

Table A5.10 Harmonics with stopping Tolerance 5; Gesture Length 36
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Harmonic Positive
Magnitude,

Ap

Positive
phase

<i>

Negative
Magnitude,

An

Negative
phase

Relative
Orientation

0
1 1 35.0 1 .2 11 -35.0 -12.5

2 0.435 39.7 0.383 -39.7 -27.9

3 0.391 18.6 0.223 -18.6 12.9

4 0.147 47.6 0.036 -47.6 -62.3

5 0.139 150.9 0.130 -150.9 75.0

6 0.106 40.9 0 .112 -40.9 -15.9

7 0.097 -49.5 0.019 40.5 51.6

Table A5.ll Harmonics with stopping Tolerance 10; Gesture Length 34

Harmonic Positive
Magnitude,

Ap

Positive
phase

<i>

Negative
Magnitude,

An

Negative
phase

<t>

Relative
Orientation

0
1 1 49.8 1.331 -49.8 -12.6

2 0.444 63.5 0.505 -63.5 -25.0

3 0.467 58.0 0.401 -58.0 10.5

4 0.307 50.6 0.185 -50.6 -8.0

5 0.837 22.0 0.025 -22.0 -85.1

6 0.072 90.7 0.177 -90.7 88.2

7 0.155 68.3 0.170 -68.3 12.9

Table A5.12 Harmonics with stopping Tolerance 15; Gesture Length 32
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4 OS A (Object Selection Algorithm) Performance

Data source -SCM objects

140
S-Peter 1

I I I 1 1 1 I 1 I

120
100

60
40 1 i i i i i i 1 i

5 10 15 20 25 30 
Row cordinates

35 40 45 50

100 —I— I I 1 1 1 1 1 1

90

60C
! ! ! i i i i i i
5 10 15 20 25 30 

Column cordinates
35 40 45 50

Figure A5.19 Row and column coordinates of a trajectory generated using SCM
objects.

Harmonic Positive
Magnitude,

Ap

Positive
phase

<!>

Negative
Magnitude,

An

Negative
phase

4>

Relative
Orientation

0
1 1 -2.5 0.888 2.5 26.6

2 0.618 -7.2 0.489 7.2 -8.5

3 0.245 7.7 0.209 -7.7 -7.0

4 0.050 77.6 0.096 -77.6 16.8

5 0.055 -68.3 0.040 68.3 4.8

6 0.058 -95.5 0.075 95.5 -24.7

7 0.020 4.7 0.040 -4.7 -108.1

Table A5.13 Harmonics generated using SCM objects.
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Data source -  SCMI objects

S-Peter 2

Figure A5.20 Row and column coordinates of a trajectory generated using
SCMI objects.

Harmonic Positive
Magnitude,

Ap

Positive
phase
_A _

Negative
Magnitude,

An

Negative
phase

Relative
Orientation

0
1 1 12.7 0.9 -12.7 23.3

2 0.549 23.0 0.451 -23.0 -5.0

3 0.175 8.2 0.125 -8.2 0.8

4 0.139 -41.3 0.095 41.3 0.4

5 0.056 26.1 0.058 -26.1 -7.7

6 0.057 115.3 0.073 -115.3 17.7

7 0.069 -2.4 0.045 2.4 -185.8

Table A5.14 Harmonics generated using SCMI objects.
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Data source -  Visually/Manually Recorded

S-Peter, Visually Recorded Data

Figure A5.21 Row and column coordinates of a trajectory recorded visually.

Harmonic Positive
Magnitude,

Ap

Positive
phase
_J>_____

Negative
Magnitude,

An

Negative
phase
_A_____

Relative
Orientation

0
1 1 -3.0 0.906 3.0 26.3

2 0.682 -9.4 0.546 9.4 -6.6

3 0.337 -3.2 0.263 3.2 -5.3

4 0.115 6 0.117 -6 0.4

5 0.025 -8.8 0.042 8.8 29.0

6 0.022 -67.2 0.036 67.2 -41.0

7 0.036 -64.2 0.019 64.2 4.2

Table A5.15 Harmonics generated from visually recorded coordinates
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Appendix VI -  Cluster Analysis - Matlab Toolbox (2006)

A Overview of K-Means Clustering

K-means clustering can best be described as a partitioning method. That is, the 
function krneans partitions the observations in your data into K mutually exclusive 
clusters, and returns a vector of indices indicating to which of the k clusters it has 
assigned each observation. Unlike the hierarchical clustering methods used in linkage 
(see Hierarchical Clustering), kmeans does not create a tree structure to describe the 
groupings in your data, but rather creates a single level of clusters. Another 
difference is that K-means clustering uses the actual observations of objects or 
individuals in your data, and not just their proximities. These differences often mean 
that kmeans is more suitable for clustering large amounts of data.

kmeans treats each observation in your data as an object having a location in space. It 
finds a partition in which objects within each cluster are as close to each other as 
possible, and as far from objects in other clusters as possible. You can choose from 
five different distance measures, depending on the kind of data you are clustering.

Each cluster in the partition is defined by its member objects and by its centroid, or 
centre. The centroid for each cluster is the point to which the sum of distances from 
all objects in that cluster is minimized, kmeans computes cluster centroids differently 
for each distance measure, to minimize the sum with respect to the measure that you 
specify.

kmeans uses an iterative algorithm that minimizes the sum of distances from each 
object to its cluster centroid, over all clusters. This algorithm moves objects between 
clusters until the sum cannot be decreased further. The result is a set of clusters that 
are as compact and well-separated as possible. You can control the details of the 
minimization using several optional input parameters to kmeans, including ones for 
the initial values of the cluster centroids, and for the maximum number of iterations.

B Hierarchical Clustering

Hierarchical clustering is a way to investigate grouping in your data, simultaneously 
over a variety of scales, by creating a cluster tree. The tree is not a single set of 
clusters, but rather a multilevel hierarchy, where clusters at one level are joined as 
clusters at the next higher level. This allows you to decide what level or scale of 
clustering is most appropriate in your application.

To perform hierarchical cluster analysis on a data set using the Statistics Toolbox 
functions, follow this procedure:

1 Find the similarity' or dissimilarity' between every pair of objects in the 
data set. In this step, you calculate the distance between objects using the pdist 
function. The pdist function supports many different ways to compute this 
measurement. See Finding the Similarities Between Objects for more information.
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2 Group the objects into a binary, hierarchical cluster tree. In this step, you 
link pairs of objects that are in close proximity using the linkage function. The 
linkage function uses the distance information generated in step 1 to determine the 
proximity of objects to each other. As objects are paired into binary clusters, the 
newly formed clusters are grouped into larger clusters until a hierarchical tree is 
formed. See Defining the Links Between Objects for more information.

3 Determine where to cut the hierarchical tree into clusters. In this step, 
you use the cluster function to prune branches off the bottom of the hierarchical tree, 
and assign all the objects below each cut to a single cluster. This creates a partition of 
the data. The cluster function can create these clusters by detecting natural groupings 
in the hierarchical tree or by cutting off the hierarchical tree at an arbitrary point

4 Finding the Similarities Between Objects

You use the pdist function to calculate the distance between every pair of objects in a 
data set. For a data set made up of m objects, there are pairs in the data set. The result 
of this computation is commonly known as a distance or dissimilarity matrix.

There are many ways to calculate this distance information. By default, the pdist 
function calculates the Euclidean distance between objects; however, you can specify 
one of several other options. See pdist for more information.

For example, consider a data set, X, made up of five objects where each object is a 
set of x, y coordinates.

Object 1:1,2

Object 2: 2.5, 4.5

Object 3: 2, 2

Object 4: 4, 1.5

Object 5: 4, 2.5

You can define this data set as a matrix 

X = [l 2; 2.5 4.5; 2 2;4 1.5; 4 2.5]

and pass it to pdist. The pdist function calculates the distance between object 1 and 
object 2, object 1 and object 3, and so on until the distances between all the pairs 
have been calculated. The following figure plots these objects in a graph. The 
Euclidean distance between object 2 and object 3 is shown to illustrate one 
interpretation of distance.
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Returning Distance Information. The pdist function returns this distance 
information in a vector, Y, where each element contains the distance between a pair 
of objects.

Y =pdist(X)

Y =

Columns 1 through 7

2.9155 1.0000 3.0414 3.0414 2.5495 3.3541 2.5000

Columns 8 through 10 

2.0616 2.0616 1.0000

To make it easier to see the relationship between the distance information generated 
by pdist and the objects in the original data set, you can reformat the distance vector 
into a matrix using the squareform function. In this matrix, element i j  corresponds to 
the distance between object i and object j in the original data set. In the following 
example, element 1,1 represents the distance between object 1 and itself (which is 
zero). Element 1,2 represents the distance between object 1 and object 2, and so on.

Squareform (Y)

ans =

o :2.9155 1.0000 3.0414 3.0414

2.9155 0 2.5495 3.3541 2.5000

1.0000 2.5495 0 2.0616 2.0616

3.0414 3.3541 2.0616 0 1.0000

3.0414 2.5000 2.0616 1.000CI 0

Defining the Links Between Objects

Once the proximity between objects in the data set has been computed, you can 
determine how objects in the data set should be grouped into clusters, using the 
linkage function. The linkage function takes the distance information generated by 
pdist and links pairs of objects that are close together into binary clusters (clusters 
made up of two objects). The linkage function then links these newly formed clusters 
to each other and to other objects to create bigger clusters until all the objects in the 
original data set are linked together in a hierarchical tree.
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For example, given the distance vector Y generated by pdist from the sample data set 
of x- and y-coordinates, the linkage function generates a hierarchical cluster tree, 
returning the linkage information in a matrix, Z.

1

1 2 3 4

Z = linkage^ Y)

Z =

4.0000 5.0000 1.0000

1.0000 3.0000 1.0000

6.0000 7.0000 2.0616

2.0000 8.0000 2.5000

In this output, each row identifies a link between objects or clusters. The first two 
columns identify the objects that have been linked, that is, object 1 , object 2 , and so 
on. The third column contains the distance between these objects. For the sample 
data set of x- and y-coordinates, the linkage function begins by grouping objects 1 
and 3, which have the closest proximity (distance value = 1.0000). The linkage 
function continues by grouping objects 4 and 5, which also have a distance value of 
1.0000.

The third row indicates that the linkage function grouped objects 6 and 7. If the 
original sample data set contained only five objects, what are objects 6 and 7? Object 
6 is the newly formed binary cluster created by the grouping of objects 1 and 3 . 
When the linkage function groups two objects into a new cluster, it must assign the 
cluster a unique index value, starting with the value m+1 , where m is the number of 
objects in the original data set. (Values 1 through m are already used by the original 
data set.) Similarly, object 7 is the cluster formed by grouping objects 4 and 5.

linkage uses distances to determine the order in which it clusters objects. The 
distance vector Y contains the distances between the original objects 1 through 5.
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But linkage must also be able to determine distances involving clusters that it creates, 
such as objects 6 and 7. By default, linkage uses a method known as single linkage. 
However, there are a number of different methods available. See the linkage 
reference page for more information.

As the final cluster, the linkage function grouped object 8, the newly formed cluster 
made up of objects 6 and 7, with object 2 from the original data set. The following 
figure graphically illustrates the way linkage groups the objects into a hierarchy of 
clusters.

Plotting the Cluster Tree

The hierarchical, binary cluster tree created by the linkage function is most easily 
understood when viewed graphically. The Statistics Toolbox includes the 
dendrogram function that plots this hierarchical tree information as a graph, as in the 
following example.

dendrogram (Z)

2 5  r

2

15 j

1
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In the figure, the numbers along the horizontal axis represent the indices of the 
objects in the original data set. The links between objects are represented as upside- 
down U-shaped lines. The height of the U indicates the distance between the objects. 
For example, the link representing the cluster containing objects 1 and 3 has a height 
of 1. The link representing the cluster that groups object 2 together with objects 1, 3, 
4, and 5, (which are already clustered as object 8) has a height of 2.5. The height 
represents the distance linkage computes between objects 2 and 8. For more 
information about creating a dendrogram diagram, see the dendrogram reference 
page.

Evaluating Cluster Formation

After linking the objects in a data set into a hierarchical cluster tree, you might want 
to verify that the distances (that is, heights) in the tree reflect the original distances 
accurately. In addition, you might want to investigate natural divisions that exist 
among links between objects. The Statistics Toolbox provides functions to perform 
both these tasks, as described in the following sections:

Verifying the Cluster Tree

Getting More Information About Cluster Links

Verifying the Cluster Tree. In a hierarchical cluster tree, any two objects in the 
original data set are eventually linked together at some level. The height of the link 
represents the distance between the two clusters that contain those two objects. This 
height is known as the cophenetic distance between the two objects. One way to 
measure how well the cluster tree generated by the linkage function reflects your data 
is to compare the cophenetic distances with the original distance data generated by 
the pdist function. If the clustering is valid, the linking of objects in the cluster tree 
should have a strong correlation with the distances between objects in the distance 
vector. The cophenet function compares these two sets of values and computes their 
correlation, returning a value called the cophenetic correlation coefficient. The closer 
the value of the cophenetic correlation coefficient is to 1 , the more accurately the 
clustering solution reflects your data.

You can use the cophenetic correlation coefficient to compare the results of 
clustering the same data set using different distance calculation methods or clustering 
algorithms. For example, you can use the cophenet function to evaluate the clusters 
created for the sample data set

c = cophenet(Z, Y)

c =

0.8615
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where Z is the matrix output by the linkage function and Y is the distance vector 
output by the pdist function.

Execute pdist again on the same data set, this time specifying the city block metric. 
After running the linkage function on this new pdist output using the average linkage 
method, call cophenet to evaluate the clustering solution.

Y =/?i//st(X,'cityblock');

Z = linkage^ Y,'average');

c = cophenet{Z, Y)

c =

0.9044

The cophenetic correlation coefficient shows that using a different distance and 
linkage method creates a tree that represents the original distances slightly better.

Getting More Information About Cluster Links. One way to determine the 
natural cluster divisions in a data set is to compare the height of each link in a cluster 
tree with the heights of neighbouring links below it in the tree.

A link that is approximately the same height as the links below it indicates that there 
are no distinct divisions between the objects joined at this level of the hierarchy. 
These links are said to exhibit a high level of consistency, because the distance 
between the objects being joined is approximately the same as the distances between 
the objects they contain.

On the other hand, a link whose height differs noticeably from the height of the links 
below it indicates that the objects joined at this level in the cluster tree are much 
farther apart from each other than their components were when they were joined. 
This link is said to be inconsistent with the links below it.

In cluster analysis, inconsistent links can indicate the border of a natural division in a 
data set. The cluster function uses a quantitative measure of inconsistency to 
determine where to partition your data set into clusters.

The following dendrogram, created using a data set of random numbers, illustrates 
inconsistent links. Note how the objects in the dendrogram fall into three groups that 
are connected by links at a much higher level in the tree. These links are inconsistent 
when compared with the links below them in the hierarchy.
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These litks show inconsBlency when «mpored to links below ihen

The relative consistency of each link in a hierarchical cluster tree can be quantified 
and expressed as the inconsistency coefficient. This value compares the height of a 
link in a cluster hierarchy with the average height of links below it. Links that join 
distinct clusters have a low inconsistency coefficient; links that join indistinct 
clusters have a high inconsistency coefficient.

To generate a listing of the inconsistency coefficient for each link in the cluster tree, 
use the inconsistent function. By default, the inconsistent function compares each 
link in the cluster hierarchy with adjacent links that are less than two levels below it 
in the cluster hierarchy. This is called the depth of the comparison. You can also 
specify other depths. The objects at the bottom of the cluster tree, called leaf nodes, 
that have no further objects below them, have an inconsistency coefficient of zero. 
Clusters that join two leaves also have a zero inconsistency coefficient.

For example, you can use the inconsistent function to calculate the inconsistency 
values for the links created by the linkage function in Defining the Links Between 
Objects.

I = inconsistent(Z)

1 =

1.0000 0 1.0000 0

1.0000 0 1.0000 0

1.3539 0.6129 3.0000 1.1547

2.2808 0.3100 2.0000 0.7071
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The inconsistent function returns data about the links in an (m-l)-by-4 matrix, whose 
columns are described in the following table.

Column Description

1 Mean of the heights o f all the links included in the 
ca lcu la tion

2 Standard deviation o f all the  links  included in the 
ca lcu la tion

3
Num ber o f links included in the ca lcu la tion

4 Incons is tency coeffic ient

In the sample output, the first row represents the link between objects 4 and 5. This 
cluster is assigned the index 6 by the linkage function. Because both 4 and 5 are leaf 
nodes, the inconsistency coefficient for the cluster is zero. The second row represents 
the link between objects 1 and 3, both of which are also leaf nodes. This cluster is 
assigned the index 7 by the linkage function.

The third row evaluates the link that connects these two clusters, objects 6 and 7. 
(This new cluster is assigned index 8 in the linkage output). Column 3 indicates that 
three links are considered in the calculation: the link itself and the two links directly 
below it in the hierarchy. Column 1 represents the mean of the heights of these links. 
The inconsistent function uses the height information output by the linkage function 
to calculate the mean. Column 2 represents the standard deviation between the links. 
The last column contains the inconsistency value for these links, 1.1547. It is the 
difference between the current link height and the mean, normalized by the standard 
deviation:

» (2 .0 6 1 6 - 1.3539)7.6129

ans =

1.1547

The following figure illustrates the links and heights included in this calculation.
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Note In the preceding figure, the lower limit on the y-axis is set to 0 to show the 
heights of the links. To set the lower limit to 0, select Axes Properties from the Edit 
menu, click the Y Axis tab, and enter 0 in the field immediately to the right of Y 
Limits.

Row 4 in the output matrix describes the link between object 8 and object 2. Column 
3 indicates that two links are included in this calculation: the link itself and the link 
directly below it in the hierarchy. The inconsistency coefficient for this link is 
0.7071.

The following figure illustrates the links and heights included in this calculation.

Creating Clusters

After you create the hierarchical tree of binary clusters, you can prune the tree to 
partition your data into clusters using the cluster function. The cluster function lets 
you create clusters in two ways, as discussed in the following sections:
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Finding Natural Divisions in Data 

Specifying Arbitrary Clusters

Finding Natural Divisions in Data. The hierarchical cluster tree may naturally 
divide the data into distinct, well-separated clusters. This can be particularly evident 
in a dendrogram diagram created from data where groups of objects are densely 
packed in certain areas and not in others. The inconsistency coefficient of the links in 
the cluster tree can identify these divisions where the similarities between objects 
change abruptly. (See Evaluating Cluster Formation for more information about the 
inconsistency coefficient.) You can use this value to determine where the cluster 
function creates cluster boundaries.

For example, if you use the cluster function to group the sample data set into clusters, 
specifying an inconsistency coefficient threshold of 1.2 as the value of the cutoff 
argument, the cluster function groups all the objects in the sample data set into one 
cluster. In this case, none of the links in the cluster hierarchy had an inconsistency 
coefficient greater than 1 .2 .

T = cluster(Z,'cutoff, 1.2)

T =

1

1

1

1

1

The cluster function outputs a vector, T, that is the same size as the original data set. 
Each element in this vector contains the number of the cluster into which the 
corresponding object from the original data set was placed.

If you lower the inconsistency coefficient threshold to 0.8, the cluster function 
divides the sample data set into three separate clusters.

T = cluster(Z,'cutoff, 0.8)

T =

1

1

2

2
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This output indicates that objects 1 and 3 were placed in cluster 1, objects 4 and 5 
were placed in cluster 2, and object 2 was placed in cluster 3.

When clusters are formed in this way, the cutoff value is applied to the inconsistency 
coefficient. These clusters may, but do not necessarily, correspond to a horizontal 
slice across the dendrogram at a certain height. If you want clusters corresponding to 
a horizontal slice of the dendrogram, you can either use the criterion option to 
specify that the cutoff should be based on distance rather than inconsistency, or you 
can specify the number of clusters directly as described in the following section.

Specifying Arbitrary Clusters. Instead of letting the cluster function create 
clusters determined by the natural divisions in the data set, you can specify the 
number of clusters you want created.

For example, you can specify that you want the cluster function to partition the 
sample data set into two clusters. In this case, the cluster function creates one cluster 
containing objects 1, 3, 4, and 5 and another cluster containing object 2.

T = cluster (Z,'maxclusf, 2)

T =

2

1

2

2

2

To help you visualize how the cluster function determines these clusters, the 
following figure shows the dendrogram of the hierarchical cluster tree. The 
horizontal dashed line intersects two lines of the dendrogram, corresponding to 
setting 'maxclust' to 2. These two lines partition the objects into two clusters: the 
objects below the left-hand line, namely 1, 3, 4, and 5, belong to one cluster, while 
the object below the right-hand line, namely 2 , belongs to the other cluster.
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On the other hand, if you set 'maxclust to 3, the cluster function groups objects 4 and 
5 in one cluster, objects 1 and 3 in a second cluster, and object 2 in a third cluster. 
The following command illustrates this.

T = cluster(Z,'maxclusf,3)

T =

1

3

1

2

2

This time, the cluster function cuts off the hierarchy at a lower point, corresponding 
to the horizontal line that intersects three lines of the dendrogram in the following 
figure.

© 1994-2006 The Math Works, Inc.

3 Distance Metrics

Y = pdist(X,distance) computes the distance between objects in the data matrix, X, 
using the method specified by distance, where distance can be any of the following 
character strings that identify ways to compute the distance.

'euclidean' Euclidean distance (default)

'seuclidean' Standardized Euclidean distance. Each coordinate in the sum of squares 
is inverse weighted by the sample variance of that coordinate.

'mahalanobis' Mahalanobis distance

'cityblock' City Block metric
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• Minkowski metric:

1 / p

J =  1

N o t ic e  t h a t  w h e n  P =  1, i t  is  th e  C i t y  B lo c k  c a s e ,  a n d  w h e n  P =  2  ¡t 

is  th e  E u c l id e a n  c a s e .

N o te :  n o t  a ll  d e f in i t io n s  a r e  g iv e n  h e r e .

4 Linkage Methods

Z = linkage(Y) creates a hierarchical cluster tree, using the Single Linkage algorithm. 
The input matrix, Y, is the distance vector output by the pdist function, a vector of 
length (m  -  1 ) • l ? where m is the number of objects in the original dataset.

Z = linkage(Y,WrW) computes a hierarchical cluster tree using the algorithm 
specified by 'method, method can be any of the following character strings that 
identify ways to create the cluster hierarchy.

String Meaning

’single' Shortest distance (default)

‘complete’ Largest distance

'average' Average distance

'centroid' Centroid distance

'ward' Incremental sum of squares

Note not all linkage methods are given here.

The output, Z, is an m-1 by 3 matrix containing cluster tree information. The leaf 
nodes in the cluster hierarchy are the objects in the original dataset, numbered from 1 
to m. They are the singleton clusters from which all higher clusters are built. Each 
newly formed cluster, corresponding to row i in Z, is assigned the index m+i, where 
m is the total number of initial leaves.
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Columns 1 and 2, Z(i,1:2), contain the indices of the objects that were linked in pairs 
to form a new cluster. This new cluster is assigned the index value m+i. There are m- 
1 higher clusters that correspond to the interior nodes of the hierarchical cluster tree.

Column 3, Z(i,3), contains the corresponding linkage distances between the objects 
paired in the clusters at each row i.

For example, consider a case with 30 initial nodes. If the tenth cluster formed by the 
linkage function combines object 5 and object 7 and their distance is 1.5, then row 10 
of Z will contain the values (5,7,1.5). This newly formed cluster will have the index 
10+30=40. If cluster 40 shows up in a later row, that means this newly formed 
cluster is being combined again into some bigger cluster.

Mathematical Definitions. The ' m e t h o d  argument is a character string that 
specifies the algorithm used to generate the hierarchical cluster tree information. 
These linkage algorithms are based on various measurements of proximity between 
two groups of objects. If nT is the number of objects in cluster r and ns is the number 
of objects in cluster s, and is the z'th object in cluster r, the definitions of these 
various measurements are as follows:

• Single linkage, also called nearest neighbor, uses the smallest distance 
between objects in the two groups.

d ( r ys )  = m i n ( d i s t ( x ri>x sj ) ) , i i =  ( i r . . , n r ) j t  ( l y . . . yn s )
• Complete linkage, also called furthest neighbor, uses the largest distance 

between objects in the two groups.

d ( r ys )  = m a x i d i s t i x ^ x ^ y i s  ( l y . . . t n r ) J e  ( l y . . .yn s )
• Average linkage uses the average distance between all pairs of objects in 

cluster r and cluster 5.

Tit t  Tit £

d(r>S)= r i T  Z  X  dist(Xri>Xsj)
r  S i  =  1 J  =  1

• Centroid linkage uses the distance between the centroids of the two 
groups

d ( r y&) = d ( x ryx s )

w h e r e :

and *sis defined similarly.
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« Ward linkage uses the incremental sum of squares; that is, the increase in the 
total within-group sum of squares as a result of joining groups r and 5 . It is 
given by

d ( r y &) =  n r n s d ^ s / ( n r  +  n s )

.2
where a rsis the distance between cluster r and cluster s defined in the Centroid 
linkage. The within-group sum of squares of a cluster is defined as the sum of the 
squares of the distance between all objects in the cluster and the centroid of the clus

5 Linkage Examples

Reference: Matlab Statistics toolbox 

Linking and distance metrics

A data set X is made up of five objects where each object is a set of x, y coordinates:

Object No ‘x’ coordinate ‘y’ coordinate
1 1 2
2 1.5 4.5
•*> 2 2
4 4 1.5
5 4 2.5

Table A6.1 Object number and coordinate value

The function ‘pdist’ returns distance (Euclid) information as a vector or matrix, Y.

0 2.9155 1 3.01414 3.01414
2.9155 0 2.5495 3.3541 2.5

1 2.5495 0 2.0616 2.0616
3.01414 3.3541 2.0616 0 1
3.01414 2.5 2.0616 1 0

Table A6.2 Euclidean distance matrix derived from the five objects
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2 (1.5, 4.5)
\

' 0

/
7 5 (4, 2.5)

* r
i

y  (<*y

i_____ 4(4 ,15)

/ U
1 (1 . 2) 3 (2, 2)

Figure A6.1 Diagram showing object number and coordinates for the five 
objects used in the clustering examples to show the differences between distance

metrics and linkage methods.
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Euclidean distance metric

‘Single’ linking

The linkage function takes the distance information and links together pairs of 
objects that are close to each other into binary clusters. The ‘linkage’ cluster then 
links together these newly formed clusters to each other to form bigger clusters.

Object No. Object No Distance apart
4 5 1
1 3 1
6 7 2.0616
2 2.5

Table A6.3 Distances of objects using ‘single’ linking and Euclidean distance
metric

Figure A6.2 Distances between objects for ‘single’ linking and Euclidean
distance metric

Euclidean distance measure and ‘single’ or ‘nearest neighbour’ linkage

The above diagram shows the distance generated in the linkage matrix. This gives 
rise to the dendrogram as shown below: -

303



P.R.G.Harding, 2007, Appendix VI

Figure A6.3 Dendrogram for ‘single’ linking and Euclidean distance metric
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Complete linking

The ‘complete or furthest distance linking gives: -

Object No. Object No Distance apart
1 1
4 5 1
6 2 2.9155
8 7 3.3541

Table A6.4 Distances of objects using ‘complete’ linking and Euclidean distance
metric

Figure A6.4 Distances between objects for ‘complete’ linking and Euclidean
distance metric
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Figure A6.5 Dendrogram for ‘complete’ linking and Euclidean distance metric
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Average Linkage

The ‘average’ linking gives: -

Object No. Object No Distance apart
1 3 1
4 5 1
6 2 2.5515
8 7 2.8298

Table A6.5 Distances of objects using ‘average’ linking

Figure A6.6 Distances between objects for ‘average’ linking and Euclidean
distance metric

Average distance between objects 1 and 4 and 3 and 4 gives 2.5515and the average 
distance between object 2 and 1, 3, 4 and 5 is 2.8298.
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Figure A6.7 Distances between objects for ‘average’ linking and Euclidean
distance metric
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Centroid linking

The ‘centroid’ linking gives: -

Object No. Object No Distance apart
1 3 1
4 5 1
6 7 2.5
8 2 2.5125

Table A6.6 Distances of objects using ‘centroid’ linking and Euclidean distance
metric

Figure A6.8 Distances between objects for ‘centroid’ linking and Euclidean
distance metric

Centroid linkage and Euclidean distance:

The centroid of objects 1 and 3 is (1.5, 2) and the centroid between objects 4 and 
(4, 2). The centroid between the new object formed from objects 1, 3, 4 and 
(2.75, 2) and the distance from object 2 is 2.5125.
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Figure A6.9 Dendrogram for ‘centroid’ linking and Euclidean distance metric
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Ward or inner squared distance linking

The ‘ward’ linking gives: -

Object No. Object No Distance apart
1 3 0.707
4 5 0.707
6 2 2.1985
8 7 2.543

Table A6.7 Distances of objects using ‘centroid’ linking and Euclidean distance
metric

Figure A6.10 Distances between objects for ‘ward’ linking and Euclidean
distance metric

Ward linkage and Euclidean distance:

The formula for ‘ward’ linkage is, d j  = n'n*- (distance2) which is the distance
nr +ns

between cluster ‘r’ and cluster ‘s’.

Distance between 1 and 3 is V (l.l(l2)/2) = 0.707

Distance between the centroid of 1 and 3 and object 2 is V( 1.2(7.25)73) = 2.192
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Distance between the centroid of 1, 2 and 3 and centroid of objects 4 and 5 is 
V(3x2(5.389)/5) = 2.192

Figure A 6.ll Dendrogram for ‘ward’ linking and Euclidean distance metric
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Mahalanobis distance

This distance measure is only meaningful using single, complete or average linkage 
techniques.

The function ‘pdist’ returns distance information as a vector or matrix, Y.

0 2.5124 0.7695 2.3133 2.3821
2.5124 0 2.2042 2.7272 1.9845
0.7695 2.2042 0 1.5634 1.6308
2.3133 2.7272 1.5634 0 0.8557
2.3821 1.9845 1.6308 0.8557 0

Table A6.8 Mahalanobis distance matrix derived from the five objects

Single linkage

Object No. Object No Distance apart
1 3 0.7695
4 5 0.8557
6 7 1.5634
8 2 1.9845

Table A6.9 Distances of objects using ‘single’ linking with Mahalanobis distance
metric

Figure A6.12 Dendrogram using ‘single’ linking with Mahalanobis distance
metric
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Complete linkage

Object No. Object No Distance apart
1 3 0.7695
4 5 0.8557
6 7 2.3821
8 2 2.7272

Table A6.10 Distances of objects using ‘complete’ linking and with Mahalanobis
distance metric

Figure A6.13 Dendrogram using ‘complete’ linking with Mahalanobis distance
metric

314



P.R.G.Harding, 2007, Appendix VI

Average linkage

Object No. Object No Distance apart
1 3 0.7695
4 5 0.8557
6 7 1.9724
8 2 2.3571

Table A6.ll Distances of objects using ‘average’ linking with Mahalanobis
distance metric

Figure A6.14 Dendrogram for ‘average’ linking with Mahalanobis distance
metric
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B Dendrogram changes due to linkage method and distance 
metric.

Table 6.6 ‘Comparison of distance metrics and linkage methods’ in Chapter 6 was 
prepared from the following investigations. The linkage methods were changed for 
the three distance metrics o f ‘City Block’, ‘Euclidean’ and ‘Mahalanobis’.

1 City Block distance metric

Dendrogram, Harmonic, Distance metric= G tyBlock, ccc= 0.45785

Figure A6.15 ‘City Block’ distance metric, ‘single’ linkage method

Figure A6.16 ‘City Block’ distance metric, ‘complete’ linkage method
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Dendrogram, Harmonic. Qstance metric= CityBlock, ccc= 0.60659, Linkage=average

Figure A6.17 ‘City Block’ distance metric, ‘average’ linkage method

Dendrogram, Harmonic, Distance metric= O tyBlock, ccc= 0.60039, Linkage=centroid

Figure A6.18 ‘City Block’ distance metric, ‘centroid’ linkage method
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Dendrogram, Harmonic, Distance metric= CityBlock, ccc= 0.63871, Unkage=ward

Figure A6.19 ‘City Block’ distance metric, ‘ward’ linkage method

2 Euclidean distance metric

Dendrogram, Harmonic, Distance metnc= euclid, c c c -  0.52811

Figure A6.20 ‘Euclidean’ distance metric, ‘single’ linkage method
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Dendrogram, Harmonic, Distance metric= euclid, ccc= 0.62988, Linkage=complete

Figure A6.21 ‘Euclidean’ distance metric, ‘complete’ linkage method

Dendrogram, Harmonic, Distance metric = euclid, ccc= 0.61924, Linkage=average

1— ----- _____
—n  _ i

.......1 .
r  , 1..,__,

r—i f r1“! r*-> 1 f

_|--- 1---  _ _ 1

• n  rV I r f l  1___t i  1 (
16 30 28 13 14 25 17 26 29 18 15 27 1 3 6 5  2 4  11 7 10 12 8 9 19 24 20 22 23 21

Figure A6.22 ‘Euclidean’ distance metric, ‘average’ linkage method
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Dendrogram, Harmonic, Distance metric= euclid, ccc= 0.61463, Unkage=centro<d

Figure A6.23 ‘Euclidean’ distance metric, ‘centroid’ linkage method

Dendrogram, Harmonic, Distance metric= euclid, ccc= 0.64679, Unkage=ward

Figure A6.24 ‘Euclidean’ distance metric, ‘ward’ linkage method
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3 Mahalanobis distance metric

Figure A6.25 ‘Mahalanobis’ distance metric, ‘single’ linkage method

Figure A6.26 ‘Mahalanobis’ distance metric, ‘complete’ linkage method
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Figure A6.27 ‘Mahalanobis’ distance metric, ‘average’ linkage method
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Appendix VII -  Four Gesture Experiments

1 Pointing Gesture Experiments

This experiment (Harding and Ellis, 2004) used 5 subjects who all undertook the 
same sequence of gestures. The subjects were seated on a chair and a web-cam used 
to record the five gestures that made up a gesture sequence, as shown in Figure A7.1.

Straight up and da/vn To the right and return Straight ahead 'halt'

To left shoulder and return

122

To the left and return

152

Stationary

Figure A7.1 Illustration of a gesturer stationary (frame 2) and in the process of 
enacting the five gestures (frames 32, 62, 92, 122 and 152)

Two of the subjects produced a sequence of gestures in about 160 frames. These 
gestures were labelled A and B. Gesturer B was also recorded at a different time, and 
at a different rate, with three other gesturers and labelled as the gestures C, D, E and 
F respectively. The sequence of the six gestures for each gesturer was typically 360 
frames. The complete gesture sequences were segmented into the individual gestures 
1, 2, 3, 4 and 5 for each gesturer A, B, C, D, E and F.

The row and column coordinates are shown in figure A7.2.
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Figure A7.2 The row and column coordinates of the continuous trajectory of 
five pointing gestures for one gesturer.

A complete sequence of images for one of the gestures is shown in Figures A7.3 to 
Figure A7.7.

Figure A7.3 Frames 15 to 23 of gesture type 1

324



P .R .G .H ard ing , 2007 , A p pend ix  V II

Figure A7.4 Frames 24 to 32 of gesture type 1

Figure A7.5 Frames 33 to 41 of gesture type 1
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2 Ten repeated hand raising gesture experiments

The ten repeated hand-raising gestures were obtained from: -

ftp://pets.rdg.ac.uk/PETS-ICVS [Accessed October 2002]

X:\images\petsicvs\data\ScenarioAl\Caml for frames 16381 to 17240

The description of the various scenarios is as follows. However, the scenario A does 
not appear to relate to the actual image sequence that has been used. It would appear 
that scenario B would give a better description of what was in the images.

Scenario A: "Performing distinct Facial Expressions"

Actions: Sitting down, getting up, smile, angry, neutral, looking at other 
participants

Each person (1 to 6) enters in the room one after each other, go to his place, 

presents himself to the frontal camera, and sit down.

Then each person looks at each person in front of him with a different facial 

expression:

Scenario B: "Performing face & hand gestures"

Actions: Sitting down, getting up, raising hand, shaking head, nodding head, 
yawning, laughing

Estimated duration: 540 seconds, 1.9 Gb (AVI), 700 Mb (JPEG)

Real duration/size: 333 seconds, 1.0 Gb (JPEG)

Each person (1 to 6) enters in the room one after each other, go to his place, 

presents himself to the frontal camera, and sit down.

For each person (1 2 3 4 5 6)

Sperson is raising left hand 

Sperson is raising right hand 

Sperson is shaking head 

Sperson is nodding head 

Sperson is yawning 

Sperson is laughing
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Frequency components

Typical frequency components for the fifth hand raising gesture are shown in Figure 
A7.6.

First 4 harmonics

Figure A7.6 2D and 3D representation of the first three harmonic components 
of the fifth PETS hand raising gesture.

The first six orientation angles and associated magnitude of these components are 
shown in Table A7.1 and Table A7.2, for data that was obtained visually. The 
associated data that was obtained by automatic means using ‘SCM’ objects is shown 
in Tables A7.3 and A7.4.
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Gesture 01 02 03 04 05 06
1 -21 -22 8 -48 24 21
2 -17 -12 -77 253 -58 -24
3 -19 -10 32 156 -200 -5
4 -15 -4 -12 -24 13 66
5 -20 -30 -118 294 -101 -33
6 -11 -9 -46 77 -38 -66
7 -6 -11 -21 -69 -33 123
8 -15 -4 -12 -24 13 66
9 -6 -11 -51 -70 -18 25
10 -11 -24 73 -63 -69 50

Average -14 -14 -22 48 -46 22
Std 5 9 54 139 66 56

Table A7.2 Orientation angles (0) for 6 harmonics and 10 gestures, data
obtained visually.

Gesture M1 M2 M3 M4 M5 M6
1 1.57 0.60 0.28 0.09 0.06 0.05
2 1.30 0.49 0.06 0.06 0.04 0.03
3 1.31 0.38 0.09 0.02 0.02 0.04
4 1.33 0.88 0.38 0.14 0.05 0.06
5 1.36 0.33 0.15 0.06 0.03 0.01
6 1.42 0.67 0.15 0.11 0.05 0.03
7 1.40 0.71 0.23 0.05 0.01 0.02
8 1.33 0.88 0.38 0.14 0.05 0.06
9 1.35 0.65 0.18 0.08 0.05 0.03
10 1.34 0.43 0.18 0.07 0.05 0.03

Average 1.37 0.60 0.21 0.08 0.04 0.04
Std 0.08 0.20 0.11 0.04 0.01 0.02

Table A7.3 Magnitude, (M = positive + negative sequence value) for 6 
harmonics for 10 gestures, data obtained visually. Normalised by Ap =1.
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Gesture 01 02 03 04 05 06
1 -15 -27 6 -24 90 -63
2 -15 -10 9 -53 42 65
3 -15 -24 26 6 8 -33
4 -16 -5 -20 -62 88 -2
5 -15 -24 -8 -5 -114 147
6 -6 2 -29 -40 72 38
7 -5 -12 -20 -42 68 -30
8 -7 -9 -31 59 -35 -12
9 0 -12 -29 -10 10 21
10 -1 -11 -29 86 -54 5

Average -9 -13 -12 -9 17 14
Std 6 9 19 48 68 | 59

Table A7.4 Orientation angles (0) for 6 harmonics for 10 gestures, data obtained
automatically.

Gesture M1 M2 M3 M4 M5 M6
1 1.59 0.59 0.34 0.13 0.05 0.13
2 1.34 0.42 0.13 0.08 0.12 0.07
3 1.39 0.36 0.19 0.10 0.08 0.09
4 1.34 0.79 0.35 0.12 0.14 0.09
5 1.39 0.46 0.27 0.12 0.10 0.15
6 1.37 0.72 0.24 0.10 0.10 0.09
7 1.39 0.52 0.12 0.04 0.07 0.08
8 1.49 0.68 0.28 0.14 0.13 0.11
9 1.37 0.63 0.18 0.12 0.05 0.08
10 1.29 0.57 0.21 0.07 0.15 0.15

Average 1.39 0.57 0.23 0.10 0.10 0.11
Std 0.09 0.14 0.08 0.03 0.04 0.03

Table A7.5 Magnitude (M = positive + negative sequence value) for 6 harmonics 
for 10 gestures, data obtained automatically. Normalised by Ap =1
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The distribution of first, second and third harmonic vectors for the automatically 
generated harmonic components are shown in Figure A7.7
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Argand Diagram of 4 Harmonics for each Gesture

Figure A7.7 Distribution of the first three harmonic vectors for the ten hand
raising gestures.

Magnitude Values (Positive + Negative Sequence Values) vs Harmonics

Harmonics
Gesture Number

Figure A7.8 Distribution of the vector magnitudes for the ten hand raising
gestures.
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3 ‘Take Mug’ Sequence Experiments

A montage of images from Figures A7.9 to A7.14 showing the ‘Take Mug’ gesture.

Figure A7.9 Alternate frames 2882 to 2898 from a ‘Take-Mug’ gesturer

Figure A7.10 Alternate frames 2900 to 2916 from a ‘Take-Mug’ gesturer
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Figure A7.ll Alternate frames 2918 to 2934 from a ‘Take-Mug’ gesturer

2936 2938 2940

2948 2950 2952

Figure A7.12 Alternate frames 2936 to 2952 from a ‘Take-Mug’ gesturer
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2954 2956 2958

2960

J
Pit

2962 2964

2966 2968 2970

Figure A7.13 Alternate frames 2954 to 2970 from a ‘Take-Mug’ gesturer

Figure A7.14 Alternate frames 2972 to 2988 from a ‘Take,-Mug’ gesturer
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Visually Observed Characteristics o f ‘Take Mug’ Suite of Experiments

Person Comment and characteristics
A Take Mug steady up and down

B Similar to 1, but curved at end

C Take Mug, steady but wobble up and down
D Inflection going up; replaced Mug going 

down

E Take Mug, curved at end

F Inflection going up and fast. Similar going 
down but did not stop.

G Deliberate Take Mug up and replaced 
going down

H Deliberate take and replace. Action in front.

J Deliberate take and replace (longer).

K Kink at beginning. Take and replace, 
different spatial positions.

L Quick beginning. Short stay at top, 
different spatial positions.

M Very wide, up and down very similar.

N Truncated at beginning, but regular.
0 Kink at beginning, Take and replace.

P Fast at beginning, different spatial 
positions, outward kink at end

Q Take, very slow to top, straight down (no 
replacement)

R Very wide, after replacement long stop.

S Kink to take, no replacement straight down

T Take, head back, replace

U Wide, take, head back, replace.

V Wide, take; head back, replacement short 
hesitation.

Table A7.6 Description of the characteristics and differences of each individual
‘Take Mug’ gesturer.

Statistics of the orientation angles and associated magnitudes are shown in Table 
A7.6, supported by the distribution of the vectors in figure A7.6
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Harmonic Magnitude
Average

Magnitude
Std.

Orientation
Angle,
average

Orientation 
Angle, std

1 1.4184 0.093 21.3152 6.4396
2 0.3408 0.2058 -46.6099 84.0808
o
J 0.2439 0.1161 8.8246 61.466
4 0.1747 0.0722 15.4327 74.5303
5 0.0968 0.0621 -22.5211 49.4247
6 0.0628 0.0284 -6.9011 64.7081
7 0.0425 0.0249 19.0562 45.9572
8 0.0297 0.0163 10.2157 63.9804
9 0.023 0.0101 -26.1395 90.9237
10 0.021 0.0086 12.0513 88.0041
11 0.0193 0.0079 -24.3931 50.6091
12 0.016 0.0069 4.0513 46.6973

Table A7.7 Average and Standard Deviation (std.) of twelve harmonics from the
twenty one ‘Take Mug’ gestures.

RMS Magnitude with Orientation angle

Figure A7.15 Distribution of the first six harmonics of the twenty-one ‘Take 
Mug’ gestures. Normalised by Ap =1
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Visually determined sub-groupings of ‘Take Mug’ suite.

RMS Magnitude with Orientation angle
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-0.5 0 0.5 1 1.5 2
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Figure A7.16 Visual grouping of gestures similar to gesture A.

Harmonic Magnitude
Average

Magnitude
Std.

Orientation
Angle,
average

Orientation 
Angle, std

1 1.504 0.1278 20.5603 1.8154
2 0.4188 0.104 -21.0827 18.7238

0.3938 0.0692 9.7461 16.3295
4 0.1769 0.0851 -16.2121 9.2357
5 0.0796 0.0398 6.7083 11.3459
6 0.0525 0.0183 -7.5994 44.2406
7 0.0406 0.014 31.2426 52.6719
8 0.0296 0.006 -5.603 29.9713
9 0.0228 0.0087 -36.6593 112.9821
10 0.0242 0.0093 30.1205 140.6033
11 0.0261 0.0029 -2.1379 60.2201
12 0.0137 0.0042 -5.7272 34.6703

Table A7.8 Magnitude and Orientation Angles (average and standard deviation) 
of visual grouping of gestures like gesture A. Normalised by Ap =1
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RMS Magnitude with Orientation angle
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Figure A7.17 Visual grouping of gestures similar to gesture G.

Harmonic Magnitude
Average

Magnitude
Std.

Orientation
Angle,
average

Orientation 
Angle, std

1 1.4457 0.0791 22.5429 1.6088
2 0.4697 0.2311 15.6479 8.0386

0.2199 0.0145 -56.5325 37.1052
4 0.1896 0.0846 27.7645 27.5107
5 0.135 0.0731 -12.0346 10.3064
6 0.0612 0.0473 -36.711 34.1207
7 0.0424 0.018 -0.1576 60.8885
8 0.0312 0.0144 26.1245 87.787
9 0.0285 0.0031 -9.7557 150.7826
10 0.02 0.0094 -36.1973 75.3214
11 0.0194 0.0078 17.1326 35.8536
12 0.0199 0.0078 -6.8551 32.8446

Table A7.9 Magnitude and Orientation Angles (average and standard deviation) 
of visual grouping of gestures like gesture G. Normalised by Ap =1
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RMS Magnitude with Orientation angle

Figure A7.18 Visual grouping of gestures similar to gesture M.

Harmonic Magnitude
Average

Magnitude
Std.

Orientation
Angle,
average

Orientation 
Angle, std

1 1.4234 0.1121 26.819 12.5799
2 0.5674 0.226 -145.259 16.7065
3 0.3484 0.1517 51.1561 72.8602
4 0.2296 0.0542 56.3197 67.6259
5 0.1579 0.0911 -14.9375 65.7921
6 0.0944 0.0246 15.7657 33.4328
7 0.0796 0.0263 8.6288 39.4531
8 0.0474 0.0249 -28.0281 10.4593
9 0.0293 0.0115 31.2626 50.7381
10 0.0208 0.0048 -20.4761 54.1268
11 0.0163 0.0031 -35.5368 62.6274
12 0.0165 0.0026 -3.9694 50.8193

Table A7.10 Magnitude and Orientation Angles (average and standard 
deviation) of visual grouping of gestures like gesture M. Normalised by Ap =1
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RMS Magnitude with Orientation angle

Figure A7.19 Visual grouping of gestures similar to gesture K.

Harmonic Magnitude
Average

Magnitude
Std.

Orientation
Angle,
average

Orientation 
Angle, std

1 1.3859 0.0737 19.1848 4.0684
2 0.202 0.0893 -34.6788 92.5464

0.1715 0.0448 11.0048 60.2589
4 0.1502 0.0688 5.8319 91.9403
5 0.0688 0.0308 -36.1104 54.9963
6 0.0546 0.0203 -6.8232 83.3211
7 0.0295 0.014 24.7645 47.1823
8 0.0229 0.011 24.0979 74.062
9 0.0193 0.0103 -48.6122 81.6982
10 0.0206 0.0101 32.1101 88.6559
11 0.0186 0.0095 -37.7355 45.3002
12 0.0155 0.0084 12.6092 54.4028

Table A7.ll Magnitude and Orientation Angles (average and standard 
deviation) of visual grouping of gestures like gesture K. Normalised by Ap =1
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4 Gesture Stimuli Sequence Experiments

A montage of images showing the positions of the first three most significant ‘scm’ 
objects (red, green and blue crosses) are shown in Figures A3.14 to A3.19.

The ‘whisk’ sequence gesture

Figure A7.20 Alternate frames 451 to 457 of a ‘whisk’ gesturer

Figure A7.21 Alternate frames 469 to 485 of a ‘whisk’ gesturer
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Figure A7.22 Alternate frames 451 to 457 of a ‘whisk’ gesturer

513 515

517 519

505 507 509

Figure A7.23 Alternate frames 451 to 457 of a ‘whisk’ gesturer
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Figure A7.24 Alternate frames 451 to 457 of a ‘whisk’ gesturer
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The ‘saw-action’ gesture sequence

Figure A7.25 Alternate frames 936 to 952 of a ‘saw-action’ gesturer
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Figure X I . 21  Alternate frames 972 to 988 of a ‘saw-action’ gesturer

Figure A7.28 Alternate frames 990 to 1006 of a ‘saw-action’ gesturer
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Figure A7.29 Alternate frames 1008 to 1024 of a ‘saw-action’ gesturer

Figure A7.30 Alternate frames 1026 to 1042 of a 'saw-action' gesturer
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1044 1046 1 046

1050 1052 1054

1056 1058 1060

Figure A7.31 Alternate frames 1044 to 1060 of a ‘saw-action’ gesturer

Typical visual observations of a gesturer’s response to the gesture stimuli.

The number in the column indicates the number of repetitive actions observed.

Stimuli Dominant hand 
Right

Non-Dominant Hand 
Left

1 Toothbrush Right to left 1 2 times on each 
side

2 Knife 4 actions Comes up and in sympathy 
with right hand

3 Key 2 actions
4 Screwdriver 10 wrist actions
5 Hair Brush 4 actions
6 Hammer 5 hammer actions
7 Whisk 25 actions
8 Saw 4 actions
9 Bottle opener 3 actions Left hand comes 

upholding virtual bottle

Table A7.12 A gesturer’s response to gesture stimuli
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