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Abstract

Indirect discrimination and fairness are major concerns in algorithmic models. This is partic-

ularly true in insurance, where protected policyholder attributes are not allowed to be used

for insurance pricing. Simply disregarding protected policyholder attributes is not an appro-

priate solution, as this still allows for the possibility of inferring protected attributes from

non-protected covariates. Such inference leads to so-called proxy or indirect discrimination.

Though proxy discrimination is qualitatively different from the group fairness concepts in the

machine learning literature, group fairness criteria have been proposed to control the impact

of protected attributes on the calculation of insurance prices. The purpose of this paper is

to discuss the differences between, on the one hand, direct and indirect discrimination in

insurance and, on the other, the most popular group fairness axioms. In particular, we show

that one does not imply the other, as these concepts are materially different. Furthermore,

we discuss input data pre-processing and model post-processing methods that achieve both

discrimination-free insurance prices and group fairness by demographic parity. The main

tool in these methods is the theory of optimal transport.

Keywords. Discrimination, indirect discrimination, proxy discrimination, fairness, pro-

tected attributes, discrimination-free, unawareness, group fairness, demographic parity, sta-

tistical parity, independence axiom, equalized odds, separation axiom, predictive parity, suf-

ficiency axiom, input pre-processing, output post-processing, optimal transport, Wasserstein

distance.

1 Introduction

For legal and societal reasons, there are several policyholder attributes that are not allowed to

be used in insurance pricing [3, 9, 14, 15, 27], e.g., European law does not allow for the use of

gender information in insurance pricing, or ethnicity is a critical attribute that may be declared

as a protected characteristics; we also refer to a recent report of the European Insurance and
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Occupational Pension Authority (EIOPA) [13], which discusses governance principles towards

an ethical and trustworthy use of artificial intelligence in the insurance sector.

Frees–Huang [17] and Xin–Huang [37] give extensive overviews on protected information in

insurance and implications for pricing, while Avraham et al. [3], Prince–Schwarcz [27] and

Maliszewska-Nienartowicz [23] provide legal viewpoints on this topic. The critical issue is that

just ignoring (being unaware of) protected information does not solve the problem, as protected

information can be inferred from non-protected characteristics if the corresponding variables

are associated. This is especially true in high-dimensional algorithmic models. Such inference

implies proxy or indirect discrimination, and is often implicitly performed during the fitting

procedure of complex models.

There are several attempts to prevent this inference: from the perspective of causal statistics a

counterfactual approach is suggested, see Kusner et al. [20], Charpentier [7], and Araiza Iturria

et al. [2]; a probabilistic approach called discrimination-free insurance pricing is put forward

by Lindholm et al. [21]; group fairness concepts are built into the training of machine learning

models, see, e.g., Grari et al. [18].

The purpose of this paper is to discuss the three most popular group fairness axioms in the

light of insurance pricing, through concrete examples that demonstrate potential trade-offs and

incompatibilities. Specifically, we present a statistical model producing insurance prices that

are free of discrimination, but do not satisfy any of the most popular group fairness axioms

of the machine learning literature. Conversely, we provide an example where insurance prices

satisfy a group fairness axiom, but directly discriminate. This shows that discrimination con-

siderations, in the context of insurance pricing, and fairness criteria motivated by the machine

learning literature are materially different concepts, and the latter do not provide a quick fix for

the former. We do not aim to draw sharp distinctions between the two fields and acknowledge

that fairness criteria are potentially relevant for insurance pricing, while the idea of proxy dis-

crimination can be important in machine learning applications. Rather, our goal is to examine

how we can transfer fairness concepts to insurance, in light of the particular characteristics of

insurance markets and current regulatory frameworks.

The theory of optimal transport has recently been promoted as input pre-processing and model

post-processing methods to make statistical models fair, see Barrio et al. [5] and Chiappa et

al. [8], and an early application of these ideas in an insurance context w.r.t. creating gender neu-

tral policies in life insurance using mean-field approximations can be found in Example 5.1 of

Djehiche–Löfdahl [12]. In the second part of this paper we study these pre- and post-processing

methods, and conclude that input pre-processing may be a very helpful tool in achieving fair-

ness objectives in insurance pricing. The extent to which the resulting prices can be considered

discrimination-free is however a matter of interpretation. Model post-processing, which is more

frequently used in machine learning, is simpler to apply and allows for optimal modeling choices

from the perspective of predictive accuracy. However, model post-processing can lead to re-

sults that are not explainable to insurance customers and policymakers. Therefore, there are

substantial challenges to its practical adoption in insurance pricing.

Organization. In Section 2, we discuss discrimination-free insurance pricing and group fairness

notions, and show that these do not imply each other. In Section 3, we present optimal transport

and its application to data pre-processing and model post-processing. Moreover, we show the

usefulness of these methods to achieve fairness and to obtain discrimination-free insurance prices.
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In Section 4, we conclude and discuss further aspects. The mathematical results are proved in

Appendix A.

2 Discrimination and fairness in insurance pricing

2.1 Discrimination-free insurance pricing

To set the ground, we fix a probability space (Ω,F ,P) with P describing the real world probability

measure. On this probability space we consider the random triplet (Y,X,D). The response

variable Y describes the insurance claim that we try to predict (and price). The vector X

describes the non-protected covariates (non-discriminatory characteristics), and D describes the

protected attributes (discriminatory characteristics). We assume that the partition into non-

protected covariates and protected attributes is given exogenously, e.g., by law or by societal

norms and preferences. We use the distribution P(X,D) to describe the insurance portfolio,

i.e., the random selection of a policyholder from the insurance portfolio. Different insurance

companies may have different insurance portfolio distributions P(X,D), and this insurance

portfolio distribution typically differs from the overall population distribution in a given society

because the insurance penetration is not uniform across the entire population. For simplicity,

in this paper, we assume that the protected attributes D are discrete and finite, only taking

values in the finite set D.

Best-estimate price. For insurance pricing, one aims at designing a regression model that

describes the conditional distribution of Y , given the explanatory variables (X,D).

Definition 2.1 The best-estimate price of Y , given full information (X,D), is given by

µ(X,D) := E [Y |X,D] . (2.1)

This price is called ’best-estimate’ because it has minimal prediction variance, i.e., it is the most

accurate predictor for Y , given (X,D), in the L2(P)-sense; for simplicity, we assume that all

considered random variables are square-integrable w.r.t. P.

In general, the best-estimate price directly discriminates because it uses the protected attributes

D as an input, see (2.1).

Fairness through unawareness. The most simple fairness concept in machine learning is

the fairness through unawareness concept that drops the protected attributes D from the pricing

functional.

Definition 2.2 The unawareness price of Y , given X, is defined by

µ(X) := E [Y |X] . (2.2)

The unawareness price does not directly discriminate because it does not use protected attributes

D as an input, i.e., it is blind w.r.t. the protected attributes D. However, it may indirectly

discriminate because the knowledge of X allows inference of D through the tower property

µ(X) =
∑
d∈D

µ(X,d)P(D = d|X). (2.3)

3



This formula shows that if there is statistical dependence (association) between X and D

w.r.t. P, we may implicitly use this dependence for inference of D from X; in Example 2.6,

below, we illustrate this inference on an explicit example which is based solely on statistical

dependence between D and X, and not on any causal relationship.

Remark 2.3 Formula (2.3) highlights that there are two necessary conditions to obtain indirect

discrimination in µ(X), for a given X. First, we need to have a conditional probability

P(D = d|X) 6= P(D = d) for some d ∈ D, (2.4)

i.e., we need to have dependence between X and D that allows us to (partly) infer the protected

attributes D from the non-protected covariates X. Property (2.4) is the reason for referring

indirect discrimination also to proxy discrimination, because X is used to proxy D. Second,

the functional d 7→ µ(X,d) needs to have a sensitivity in d, otherwise, if

µ(X,d) ≡ µ(X) for all d ∈ D, (2.5)

the inference potential from X to D is not useful in (2.3), and we do not have indirect discrimi-

nation. In fact, under property (2.5) we may choose any portfolio distribution P(X,D) and we

receive equal unawareness and best-estimate prices. In that case, there cannot be any (indirect)

discrimination because X is sufficient to compute the best-estimate price (2.1). As an example,

we imagine that (non-protected) telematics data X makes gender information D superfluous to

predict claims Y . This would imply a (causal) graph D → X → Y , which means that D does

not carry any additional information to predict claims Y , given X. Therefore, (2.5) holds in

this telematics data example.

We conclude, in general, fairness through unawareness indirectly discriminates, and it does not

solve the problem of non-discriminatory insurance pricing.

Discrimination-free insurance price. Lindholm et al. [21] proposed to break the inference

potential in (2.3) and (2.4), respectively, to arrive at a discrimination-free insurance price.

Definition 2.4 A discrimination-free insurance price of Y , given X, is defined by

µ∗(X) :=
∑
d∈D

µ(X,d)P∗(D = d), (2.6)

where the pricing measure P∗(D) is dominated by the marginal distribution of the protected

attributes D.1

Replacing the conditional distribution P(D = d|X) in (2.3) by a (marginal) pricing distribution

P∗(D = d) breaks the link for proxy discrimination and, therefore, we call the resulting price

µ∗(X) ‘discrimination-free’.

Remarks 2.5

1To make the discrimination-free insurance price (2.6) well-defined we need to assume that µ(X,D) exists for

all (X,D), a.s.
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• Under (2.5), i.e., if d 7→ µ(X,d) does not have any sensitivity in d, the best-estimate

price µ(X,D), the unawareness price µ(X) and the discrimination-free insurance price

µ∗(X) all coincide, and such a model is generally free of proxy discrimination under best-

estimate pricing, because X is sufficient to compute the best-estimate price and the specific

dependence structure between X and D becomes irrelevant.

• Under additional assumptions on causal graphs, the discrimination-free insurance price

(2.6) coincides with the causal impact of X on Y , see Lindholm et al. [21] and Araiza

Iturria et al. [2]. However, causal considerations are often too restrictive in insurance

pricing as, generally, they require that there are no unmeasured confounders or that these

unmeasured confounders satisfy additional restrictive causal assumptions, otherwise one

cannot adjust for the protected attributes D; see Pearl [25]. In an insurance pricing context

there are always policyholder attributes that cannot be observed and act as unmeasured

confounders for which it is difficult/impossible to verify the necessary causal assumptions;

e.g., in car driving the current health and mental states may matter to explain propensity

to claims. Henceforth, though tempting, causal arguments are not a feasible way in practice

of solving non-discriminatory insurance pricing.

To illustrate the ideas of this section, and set the scene for concepts discussed in later sections,

we introduce two examples. First, we consider a situation where we have a response variable

Y whose conditional expectation is fully described by the non-protected covariates X, and

the protected attributes D do not carry any additional information about the mean of the

response Y . Therefore, in this example, the best-estimate price provides the discrimination-free

insurance price, see first item of Remarks 2.5. Moreover, this model is simple enough to be able

to calculate all quantities of interest, and, even if it is unrealistic in practice, it allows us to

gain intuition about the relationship between indirect discrimination in insurance pricing and

the group fairness concepts found in the machine learning literature, which will be introduced

in the sequel.

Example 2.6 (No discrimination despite dependence of (X,D).)

Assume we have two-dimensional covariates (X,D) = (X,D) having a mixture Gaussian port-

folio density

(X,D) ∼ f(x, d) =
1

2

1√
2πτ2

exp

{
− 1

2τ2
(x− xd)2

}
, (2.7)

with d ∈ D = {0, 1}, x ∈ R, τ2 > 0, x0 > 0, ρ > 0, and where we set

xd = x0 + ρd.

Thus, D is a Bernoulli random variable taking the values 0 and 1 with probability 1/2, and X is

conditional Gaussian, given D = d, with mean xd and variance τ2 > 0. Below, we make explicit

choices for x0 and x1 which are kept throughout all examples.

For the response Y we assume conditionally, given (X,D),

Y |(X,D) ∼ N (X, 1 +D). (2.8)

That is, the mean of the response does not depend on the protected attributes D, but only on

the non-protected covariates X. This means that X is sufficient to describe the mean of Y .
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The best-estimate and the unawareness prices coincide in this example, see (2.5), and they are

given by

µ(X,D) = µ(X) = X. (2.9)

Therefore, in this example, we do not have (indirect) discrimination and the best-estimate price

is discrimination-free, see first item of Remarks 2.5.
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Figure 1: (lhs) Conditional Gaussian densities f(x|d) for d ∈ D = {0, 1}; (middle) conditional

probability P(D = 0|X = x) as a function of x ∈ R; (rhs) densities of response Y for age X = 40

and genders D = 0, 1.

In Figure 1 (lhs) we give an explicit example for model (2.7). This plot shows the conditional

Gaussian densities ofX, givenD = d ∈ {0, 1}; we select x0 = 35, ρ = 10 (providing x1 = 45), and

τ = 10. Here, the non-protected covariate X can be interpreted as the age of the policyholder,

and D as the gender of the policyholder with D = 0 for women and D = 1 for men. We can

easily calculate the conditional probability of D = 0 (being woman), given X,

P (D = 0|X) =
exp

{
− 1

2τ2
(X − x0)2

}
∑

d∈D exp
{
− 1

2τ2
(X − xd)2

} ∈ (0, 1). (2.10)

Figure 1 (middle) shows these conditional probabilities as a function of the age variable X = x.

For small X we have likely a woman, D = 0, and for large X a man, D = 1. Figure 1 (rhs)

shows the Gaussian densities of the claims Y at the given age X = 40 and for both genders

D = 0, 1. The vertical dotted line shows the resulting means (2.9). These means coincide for

both genders D = 0, 1, and the protected attribute D only influences the width of the Gaussian

densities, see (2.8). �

We give some general remarks on Example 2.6.

Remarks 2.7

• In Example 2.6, there is no causality involved between X and D, but we interpret the

dependence between X and D as a purely associational one stemming from the particu-

lar choice of the insurance portfolio distribution P(X,D). While one may alternatively

interpret (X,D) as being risk factors of Y , in the causal sense of Definition 3.1 of Araiza

Iturria et al. [2], this is not a necessary assumption in our setting.
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• A crucial feature of Example 2.6 is that the non-protected covariates X are sufficient to

describe the mean of the response Y , and the protected attributes D only impact higher

moments of Y . Therefore, there is no indirect discrimination in this example because

(2.9) holds. From a practical point of view we may question such a model, but it has

the advantage for the subsequent discussions that we do not need to rely on any type

of proxy discrimination debiasing for stating the crucial points about group fairness and

discrimination. We could modify (2.8) to include D also in the first moment of Y and

derive similar conclusions, but then we would first need to convince the reader that the

discrimination-free insurance price µ∗(X) is indeed the right way to correct for proxy

discrimination.

• A situation where protected attributes D only impact higher moments may arise in the case

of a lack of historical data of a demographic group. This may lead to higher uncertainty,

reflected in higher moments, but not the means. From an insurance pricing point of view,

this manifests in higher risk loadings, which may then be subject to discrimination; however

risk loadings are not discussed further in this paper. The situation where predictions

for different demographic groups are subject to higher uncertainty finds parallels in the

machine learning literature, where there is concern about poor performance of predictive

models for populations that are under-represented in training samples, e.g., in the context

of facial recognition see Buolamwini–Gebru [6]. The crucial point is whether such increased

uncertainty has adverse impacts on these demographic groups, such as a higher likelihood

of misidentification leading to systematic penalties, see, e.g., Vallance [33].

We now present a variation of the previous example, where the dependence of (X,D) leads to

proxy discrimination, which requires correction in the sense of equation (2.6).

Example 2.8 (Proxy discrimination and correction by µ∗(X))

We again assume two-dimensional covariates (X,D) = (X,D) having the same mixture Gaus-

sian distribution as in (2.7). For the response variable Y we now assume that conditionally,

given (X,D),

Y |(X,D) ∼ N
(
X + 20(1−D)1X∈[20,40] − 10D, 100

)
. (2.11)

The interpretation of this model is that female policyholders (D = 0) between ages 20 and 40

generate higher costs due to a potential pregnancy,2 and male policyholders generally have lower

costs.

The resulting best-estimate prices, illustrated in Figure 2 by the red and blue dotted lines, are

given by

µ(X,D) = E [Y |X,D] = X + 20(1−D)1X∈[20,40] − 10D.

The crucial difference of these best-estimate prices to the ones in Example 2.6 is that we do not

have monotonicity in x 7→ µ(X = x,D = 0) for women. This will make the current example

more interesting.

Next we calculate the unawareness price

µ(X) = X +
20 exp

{
− 1

2τ2
(X − x0)2

}
∑

d∈D exp
{
− 1

2τ2
(X − xd)2

} 1X∈[20,40] −
10 exp

{
− 1

2τ2
(X − x1)2

}
∑

d∈D exp
{
− 1

2τ2
(X − xd)2

} ,
2For simplicity of this exposition, we conflate biological sex and gender such that by “woman”/“female” we

identify policyholders who can potentially be pregnant.
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Figure 2: Best-estimate, unawareness and discrimination-free insurance prices in Example 2.8.

where we have used (2.10). This unawareness price is illustrated in orange color in Figure 2.

Not surprisingly, it closely follows the best-estimate prices for woman policyholders for small

ages and men for large ages, because we can infer the gender D from the age X quite well,

see Figure 1 (middle). Thus, except in the age range from 20 to 60, we almost charge the

best-estimate price to the corresponding genders, except to a few ‘mis-allocated’ men at small

ages and women at high ages. This is precisely indirect/proxy discrimination as, e.g., described

in paragraph 5 of Section 2 of Maliszewska-Nienartowicz [23], and it can be interpreted as

generating a disproportionate impact on (woman) policyholders.

Finally, the discrimination-free insurance price for the choice p∗ = P∗(D = 0) = 1/2 is shown in

green color in Figure 2 and reads as

µ∗(X) = X + 10 · 1X∈[20,40] − 5.

This discrimination-free insurance price exactly interpolates between the two best-estimate

prices for women and men. As a result we have a cost reallocation between different ages

which leads to a loss of predictive power and to cross-financing of claim costs within the port-

folio. Here and in the sequel we measure predictive performance of a predictor µ̂ for Y by the

mean squared error (MSE)

L(µ̂, Y ) := E
[
(Y − µ̂)2

]
,

and study a potential bias by providing the average prediction E[µ̂] of the predictor µ̂ for Y ,

averaged over the portfolio distribution P(X,D).

We calculate the resulting mean squared errors using Monte Carlo simulation with a pseudo-

random sample of size 1 million. The results in Table 1 show the negative impact of deviating

from the optimal predictors, based on (X,D) and X, respectively. This is the price we pay

for being discrimination-free w.r.t. the protected attributes D. Our pricing measure choice

p∗ = P∗(D = 0) = P(D = 0) = 1/2 provides a bias which can still be removed by choosing

a different pricing measure P∗(D). By setting p∗ = P∗(D = 0) = 0.58, the discrimination-free

insurance price is unbiased on a portfolio level, and we receive a smaller mean squared error,

see last line of Table 1. �
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MSE bias

L(µ̂, Y ) E[µ̂]

best-estimate price µ(X,D) 100.00 41.25

unawareness price µ(X) 197.20 41.25

discrimination-free insurance price µ∗(X) with p∗ = 0.50 217.66 39.63

discrimination-free insurance price µ∗(X) with p∗ = 0.58 210.15 41.25

Table 1: Mean squared errors and average prediction of the different prices in Example 2.8.

2.2 Group fairness axioms

In this section, we introduce the three most popular group fairness axioms from machine learning.

These are demographic parity, equalized odds and predictive parity; we refer to Barocas et al. [4],

Xin–Huang [37] and Grari et al. [18]. In the next section, we show that the discrimination-free

insurance price of Example 2.6, given in (2.9), violates all three of these group fairness axioms.

Of course, this casts doubt on whether these group fairness axioms are suitable concepts for

dealing with (indirect) discrimination in insurance pricing as, e.g., stated in European regulation

[14, 15].

We denote by µ̂ any predictor of Y , which can be the unawareness price (2.2) or any other

pricing functional. In insurance pricing, these predictors µ̂ = µ̂(X,D) will typically depend on

X and/or on D, but this is not crucial in the following group fairness definitions.

(i) Independence axiom / demographic parity / statistical parity. Following Definition

1 of Agarwal et al. [1], we have demographic parity/statistical parity if

µ̂ and D are independent under P.

This independence implies for the distribution of the insurance prices µ̂, a.s.,

P ( µ̂ ≤ m|D) = P (µ̂ ≤ m) for all m ∈ R. (2.12)

(ii) Separation axiom / equalized odds. Equalized odds is sometimes also called disparate

mistreatment. It has been introduced by Hardt et al. [19], and it is defined as follows: We have

equalized odds if

µ̂ and D are conditionally independent under P, given the response Y .

This conditional independence implies for the distribution of the prices µ̂, a.s.,

P ( µ̂ ≤ m|Y,D) = P ( µ̂ ≤ m|Y ) for all m ∈ R. (2.13)

In general, independence between X and D is not sufficient to receive equalized odds for a

σ(X)-measurable predictor µ̂ = µ̂(X).

(iii) Sufficiency axiom / predictive parity. For predictive parity we exchange the role of

the response Y and the predictor µ̂ compared to equalized odds. We have predictive parity if

Y and D are conditionally independent under P, given the prediction µ̂.

9



This conditional independence implies for the distribution of the response Y , a.s.,

P (Y ≤ y| µ̂,D) = P (Y ≤ y| µ̂) for all y ∈ R. (2.14)

The notion of predictive parity is inspired by the definition of a sufficient statistic in statistical

estimation theory. We can interpret P = {Pd(Y ∈ · ) := P(Y ∈ · |D = d); d ∈ D} as a family

of distributions of Y being parametrized by d ∈ D. In statistics we call a σ(X)-measurable

predictor µ̂ = µ̂(X) sufficient for P if (2.14) holds. Basically, this means that µ̂(X) carries all

the necessary information to predict Y , and the explicit knowledge of D = d is not necessary.

Remark 2.9 From an actuarial point of view, demographic parity seems to be the most natural

group fairness axiom. A sufficient (but not necessary) condition to have demographic parity

fairness of a σ(X)-measurable predictor µ̂(X) is that X and D are independent. This means

that the insurance portfolio is composed such that the conditional distribution of the non-

protected covariates X, given D, is the same for all demographic groups D = d ∈ D. If

D describes gender, there may be general insurance products where this is feasible (property

insurance). However, e.g., in commercial accident insurance this may not be possible, because

the genders are represented with different frequencies in different job profiles, which may make

it impossible to compose a portfolio such that the selected jobs have the same distribution for

both genders.

Equalized odds fairness is more difficult to achieve, especially if the protected attributes D

have different risk factors in different subsets of the non-protected covariates X. Similar to the

pregnancy costs in Example 2.8, this may make it impossible to achieve equalized odds, except for

a trivial covariate-independent predictor. Note that the portfolio composition P(X,D) is in the

hands of the insurers, whereas risk factor design is not always possible through insurance cover

design, we again think of pregnancy costs that cannot simply be excluded in health insurance

contracts.

Predictive parity seems not suitable for insurance pricing because there is hardly any example

in which claims can fully be described by a (single) mean parameter µ̂, i.e., we do not think that

there is a realistic situation where a σ(X)-measurable parameter µ̂(X) is sufficient to describe

the full distribution of the claim Y .

2.3 Discrimination-free vs. fair prices

The following two propositions show that discrimination-free prices are generally not fair, and

vice versa. The following proposition is proved in Appendix A.

Proposition 2.10 The discrimination-free insurance price µ(X) = X of Example 2.6 satisfies

none of demographic parity, equalized odds or predictive parity.

The crucial property of Example 2.6 is that the non-protected covariates X are sufficient for

describing the conditional expectation of the response Y , but they are not sufficient to describe

the full conditional distribution of Y , given (X,D).

Proposition 2.11 Assume that µ̂ is demographic parity fair for the protected attributes D. In

general, this does not imply that µ̂ is discrimination-free.
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Similar statements hold for equalized odds and predictive parity fairness. Thus, in view of

Propositions 2.10 and 2.11 we cannot conclude that one concept is generally stronger than the

other.

To prove Proposition 2.11 it suffices to give a counterexample. In Example 2.12, we provide a

situation where an unawareness price that indirectly discriminates is, at the same time, demo-

graphic parity fair. Furthermore, in Example 2.13, we offer a slight modification, under which

demographically fair prices produce even direct discrimination.

Example 2.12 (Indirectly discriminatory demographically fair prices)

We choose three-dimensional Gaussian covariates

(X,D) = (X1, X2, D) ∼ N


0

0

0

 ,

2 1 1

1 2 1

1 1 2


 . (2.15)

For the response variable we assume

Y |(X,D) ∼ N (2X1 − 3D, 1) .

This gives us the best-estimate price

µ(X,D) = 2X1 − 3D. (2.16)

A standard result on multivariate Gaussian random variables tells us, see, e.g., Corollary 4.4 in

[34],

D|X ∼ N
(
X1 +X2

3
,

4

3

)
.

This allows us to calculate the unawareness price by

µ(X) = E [µ(X,D)|X] = 2X1 − E [3D|X] = X1 −X2. (2.17)

Since the best-estimate price has a sensitivity in D and because there is dependence between X

and D, this unawareness price indirectly discriminates.

The random vector (X1 − X2, D) is two-dimensional Gaussian with independent components

because

Cov (X1 −X2, D) = Cov(X1, D)− Cov(X2, D) = 0.

This implies that the unawareness price µ(X) = X1 − X2 is independent of D, hence, it is

demographic parity fair. Thus, we have constructed an example where the unawareness price

indirectly discriminates and, at the same time, it is demographic parity fair. This also proves

Proposition 2.11. �

Example 2.13 (Directly discriminatory demographically fair prices)

Consider now a modification of Example 2.12, with the covariate model still given by (2.15),

but the response now modeled by

Y |(X,D) ∼ N (X1 −D, 1).

11



This gives a best-estimate price of the form

µ(X,D) = X1 −D.

This best-estimate price is demographic parity fair because it is independent of D under model

(2.15). But at the same time, it explicitly depends on D and, thus, directly discriminates. �

We now give some additional remarks on Propositions 2.10 and 2.11.

Remarks 2.14

• At first sight, it seems surprising that an example that is perfectly fine from a proxy dis-

crimination viewpoint does not satisfy any of the three classical group fairness axioms of

machine learning; see Proposition 2.10. Likewise, an insurance price that is demographic

parity fair, does not tell us anything about proxy discrimination; see Proposition 2.11.

This indicates that non-discriminatory insurance pricing and group fairness are rather

different concepts, and, in general, one does not imply the other. For this reason, satisfy-

ing simultaneously both (discrimination-free and group fairness) is much more restrictive

than just complying with one of them – and sometimes even impossible if one wants to

have a non-trivial predictor. Currently, many regulators focus on proxy discrimination,

though corresponding legislation leaves room for interpretation. Therefore, constraining

pricing models with group fairness criteria does not seem to solve this particular regulatory

problem.

• Indirect discrimination is caused by two factors that need to hold simultaneously, namely,

(1) there needs to be a dependence between the non-protected covariates X and the pro-

tected attributes D, and (2) there needs to be a sensitivity of the best-estimate price

µ(X,D) in D, see first item of Remarks 2.5. This does not tell us anything about the

dependence structure between a discrimination-free insurance price µ∗(X) and D. In gen-

eral, µ∗(X) and D are correlated, namely, observe that the dependence structure between

X and D is completely irrelevant in the discrimination-free insurance price calculation

(2.6). Therefore, we can always find a portfolio distribution P(X,D) under which the

discrimination-free insurance price µ∗(X) and the protected attributes D are dependent,

unless µ∗(X) does not depend on X.

• Focusing on the example of demographic parity fairness, this notion solely relates to the

independence of the resulting prices µ̂(X) and protected attributes D. Hence, if the

predictor µ̂(X) is demographic parity fair, then X 7→ µ̂(X) can be interpreted as a

projection that only extracts the information from X that is orthogonal to/independent

of D; this is similar to the linear adversarial concept erasure of Ravfogel et al. [28, 29];

see also Example 2.12. That µ̂(X) becomes independent of D is a specific property of

the pricing functional X 7→ µ̂(X) in relation to D, but this does not account for the full

dependence structure in P(X,D) nor for the properties in the best-estimate price µ(X,D).

Therefore, in general, demographic parity does not constitute evidence regarding proxy

discrimination.

If we wanted all participants in an insurance market to comply with demographic parity, we

would need to choose projections X 7→ µ̂(X) that vary from company to company because

12



they all have different portfolio distributions P(X,D). As a result, every company would

consider non-protected covariates in a different way. This would be difficult to explain

to customers and may be impossible to regulate. Therefore, stronger assumptions are

typically explored, like aiming at full independence between X and D, see Section 3.2,

below.

• A crucial feature of Example 2.12 is that independence between X and D is a sufficient

condition to have demographic parity fairness, but not a necessary one. This is used in

an essential way, namely, X and D are dependent, but the projection X 7→ µ(X) only

extracts a part of information from X that is independent of D. We can even go one

step further by designing a model that has a demographic parity fair price that is directly

discriminatory. Example 2.13 goes even further, by demonstrating a situation where a

demographic parity fair price directly discriminates.

3 Input pre-processing and model post-processing

Example 2.6 provides an instance where the discrimination-free insurance price does not satisfy

any of the three group fairness axioms. Recently, it has been proposed to either perform input

(data) pre-processing or model post-processing (output post-processing) to comply with (some

of) the fairness axioms; see Barrio et al. [5] and Chiappa et al. [8]. We discuss these procedures

in the light of insurance pricing. Note that generally the group fairness axioms cannot hold

simultaneously; see Barocas et al. [4]. Therefore, one needs to make a choice and we typically

consider demographic parity fairness.

In Sections 3.2 and 3.3, below, we will use the theory of optimal transport (OT) for input

pre-processing and model post-processing. In both cases, independence of predictions from dis-

criminatory features is achieved by a D-dependent transformation of features X. An important

difference between input pre-processing and model post-processing is that the former transforms

the inputs X 7→ X+, and retains the dimension of the original non-protected covariates X. In

fact, up to technical conditions (continuity), the OT input transformation X 7→ X+ is one-to-

one (for given D) which allows us to reconstruct the original features X from the pre-processed

ones X+. Model post-processing, using an OT map, transforms the (one-dimensional) regres-

sion output µ(X,D) 7→ µ+, by making µ+ independent of the protected attributes D. We have

already seen in Example 2.13 a situation where the best estimate price µ(X,D) = X1 − D is

independent of D, hence demographic parity fair. In that example the best estimate price can

be identified with µ+ and the OT output map is the identity map.

3.1 Discrimination-free insurance pricing, revisited

The discrimination-free insurance price (2.6) can be understood as a model post-processing

method as we take the (discriminatory) best-estimate price µ(X,D) and we transform it to a

discrimination-free insurance price, that is,

µ∗(X) =
∑
d∈D

µ(X,d)P∗(D = d).

This is a way of model post-processing. Under the specific pricing measure choice P∗(D =

d) = P(D = d), we can also directly obtain a discrimination-free insurance price by solving an
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appropriately reweighed optimization problem.

Proposition 3.1 The discrimination-free insurance price is given by, a.s.,

µ∗(X) = arg min
µ̂(X)

E
[

P∗(D)

P (D|X)
(Y − µ̂(X))2

∣∣∣∣X] ,
where the minimization runs over all σ(X)-measurable predictors µ̂(X), and supposed we have

square integrability w.r.t. P in the above minimization.

The beauty of this result is that we can estimate the discrimination-free insurance price directly

from an i.i.d. sample (yi,xi,di)
n
i=1 of (Y,X,D), without going via the best-estimate price.

Select pricing measure P∗(D = d) = P(D = d), and assume we have access to (estimated)

population probabilities P̂(D) and P̂(D|X). Then, we can directly find an estimate for the

discrimination-free insurance price by solving the weighted square loss problem

µ̂∗(X) = arg min
µ̂(X)

1

n

n∑
i=1

P̂(D = di)

P̂ (D = di|X = xi)
(yi − µ̂(xi))

2 .

Thus, from the unweighted loss minimization problem we get an unawareness price estimate

for (2.2), and from its appropriately weighted counterpart a discrimination-free insurance price

estimate. In this interpretation, model post-processing takes place during the model fitting.

3.2 Input (data) pre-processing

A sufficient way to make an insurance price demographic parity fair (and in a certain sense

discrimination-free) is to pre-process the non-protected covariates X 7→X+ such that its trans-

formed version X+ becomes independent of the protected attributes D under P. First, we

emphasize that this pre-processing is only performed on the input data X (and using D), but

it does not consider the response Y . Second, independence between X+ and D is a sufficient

condition for demographic parity fairness w.r.t. (X+,D), but not a necessary one, see Example

2.12.

One method of input pre-processing is to apply an OT map to obtain a covariate distribution

that is independent of the protected attributes; for references see Barrio et al. [5] and Chiappa

et al. [8]. More specifically, for given d ∈ D, we change the conditional distribution Fd

Xd := X|{D=d} ∼ Fd(x) := F (x|D = d) , (3.1)

to an unconditional distribution F+ for the non-protected covariates

X+|D ∼ F+ (x) , (3.2)

meaning that the transformed covariates X+ ∼ F+ are independent of D. Intuitively, to mini-

mally change the predictive power by this transformation from (3.1) to (3.2), the unconditional

distribution F+ should be as similar as possible to the conditional ones Fd, for all d ∈ D.3 In

this approach, the covariates X and X+ preserve their meanings because they live on the same
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Figure 3: Example 2.8, revisited: conditional densities fd(x) = f(x|D = d), for d ∈ {0, 1}, and

two different choices for f+(x), x ∈ R; for a formal definition we refer to (3.8)-(3.9).

covariate space, but the OT map locally perturbs the original covariate values Xd 7→X, based

on D = d.

We revisit Examples 2.6 and 2.8 illustrated in Figure 1, and give two different proposals for F+

in Figure 3. The plot on the left hand side shows the average density f+ of the two Gaussian

densities fd(x) := f(x|D = d), given D = d ∈ {0, 1}, i.e., we have a Gaussian mixture for f+ on

the left hand side of Figure 3. The plot on the right hand side shows the Gaussian density for

f+, that averages the means x0 and x1; we also refer to (3.8)-(3.9), below. For the moment, it

is unclear which of the two choices for F+ gives a better predictive model for Y .

Assume we have selected an unconditional distribution F+ to approximate Fd, d ∈ D, and we

would like to optimally transform the random variable Xd to its unconditional counterpart X+.

This is precisely where OT comes into play. Choose a distance function % on the covariate space.

The (2-)Wasserstein distance between Fd and F+ is defined by

W2 (Fd, F+) :=

(
inf

πd∈Πd

∫
%(x,x+)2 dπd(x,x+)

)1/2

. (3.3)

where Πd is the set of all joint probability measures having marginals Fd and F+, respectively.

The Wasserstein distance (3.3) measures the difference between the two probability distributions

Fd and F+ by optimally coupling them. Colloquially speaking, this optimal coupling means that

we try to find the (optimal) transformation Td : Xd 7→X+ such that we can perform this change

of distribution at a minimal effort;4 this optimal transformation Td is called an OT map or a

push forward. Under additional technical assumptions, determining the OT map Td : Xd 7→X+

is equivalent to finding the optimal coupling πd ∈ Πd.

3This intuition is motivated by the fact that we have maximal information (X,D) and we try to retain as

much as possible of this information. However, there is no general result that verifies this intuition because the

numerical results on sample data will also depend on the chosen class of regression functions. This is in contrast

to output post-processing, see Proposition 3.8, below.
4The common explanation relates a probability distribution to a pile of soil: a minimal effort can then be

understood by transforming this pile of soil of a certain shape into a pile of soil of a given different shape.
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Remarks 3.2

• The input OT approach can also be thought of in relation to context-sensitive covariates.

For example, the European Commission [14], footnote 1 to Article 2.2(14) – life and health

underwriting – mentions the waist-to-hip ratio as a non-protected (useful) context-sensitive

covariate for health prediction. Note that the waist-to-hip ratio is gender-, age- and race-

dependent. Furthermore the impact of the waist-to-hip ratio on predictions of health out-

comes depends specifically on factors like gender, age, and race, that is, the same value

should be interpreted differently depending on the demographic group the policyholder

belongs to. This means that a D-dependent transformation of waist-to-hip ratio is desir-

able to achieve consistency.

Applying an OT map will modify the waist-to-hip ratio such that it has the same distri-

bution for both genders, which can then be treated coherently as an input to a predictive

model. However, this does not mean that the transformed variable will reflect health im-

pacts in a demographic-group-appropriate way, if the OT map produces a transformation

specifically with the aim of removing dependence between X and D and, therefore, de-

pends on the rather arbitrary dependence of those features in a particular portfolio. This

also means that care should be taken more generally when considering OT-transformed

covariates X+, since their interpretation may not be straightforward. Still, if a transport

map is derived from a population distribution of (X,D) (e.g., of policyholders across a

market), then demographic parity is expected to hold across the market (rather than in-

dividual portfolios), and the transformed variables X+ can be interpreted as D-agnostic

versions of features X.

• In many situations the OT map Td : Xd 7→X+, d ∈ D, can explicitly be calculated, e.g.,

in the discrete covariate case it requires to solve a linear program (LP); see Cuturi–Doucet

[11]. The only difficulty in this discrete case is a computational one. Furthermore, the OT

map is deterministic for continuous distributions, while in the case of discrete distributions

we generally have a random OT map, see also (3.6) below.

• The Wasserstein distance (3.3) can also be defined for categorical covariates. The main

difficulty in that case is that one needs to have a suitable distance function % that captures

the distance betweeen categorical levels in a meaningful way.

• In general, this OT map should be understood as a local transformation of the covariate

space, so that the main structure remains preserved, but the local assignments are per-

turbed differently for different realizations of D. In that, the non-protected covariates

Xd and X+ keep their original interpretation, e.g., age of policyholder, but through a

local perturbation some policyholders receive a slightly smaller or bigger age to make their

distributions identical for all D = d, d ∈ D; note that these perturbations do not use the

response Y , i.e., it is a pure input data transformation.

• Assume we have a (one-dimensional) real-valued non-protected covariate x = x ∈ R and

we choose the Euclidean distance for %. The dual formulation of the Wasserstein distance
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(3.3) gives in this special case the simpler formula

W2 (Fd, F+) =

(∫ 1

0

(
F−1
d (q)− F−1

+ (q)
)2
dq

)1/2

(3.4)

= E
[(
F−1
d (U)− F−1

+ (U)
)2
]1/2

,

where U has a uniform distribution on the unit interval (0, 1). The OT map Td, d ∈ D, is

then in the one-dimensional continuous covariate case given by

X 7→ X+ = Td(X) = F−1
+ ◦ Fd(X). (3.5)

This justifies the statement in the previous bullet point that the OT map is a local trans-

formation, since the topology is preserved by (3.5). In case Fd is not continuous, the OT

map needs randomization. In the one-dimensional case we replace the last term in (3.5)

by

V := Fd(X−) + U (Fd(X−)− Fd(X)) , (3.6)

where U is independent of everything else and uniform on (0, 1), and where we set for the

left limit Fd(X−) = limx↑X Fd(x) in X. As a result, V is uniform on (0, 1), and we set

X+ = F−1
+ (V ).

We emphasize that (3.5) and (3.6) reflects the OT map only in the one-dimensional case,

and for the multidimensional (empirical) case we have to solve a linear program, as indi-

cated in the second bullet point of these remarks.

Next, we state that the OT input pre-processed version of the non-protected covariates is de-

mographic parity fair and discrimination-free with respect to the transformed inputs X+. Also,

interestingly, these notions do not touch the response Y , but it is sufficient to know the best-

estimate price µ(X,D). The proof of the next lemma is straightforward.

Lemma 3.3 (OT input pre-processing) Consider the triplet (Y,X,D) and choose the OT

maps Td : Xd 7→ X+, d ∈ D, with X+ being independent of D (under P). The unawareness

price

µ (X+) = E [Y |X+ ] =
∑
d∈D

E [Y |X+ ,D = d]P (D = d)

=
∑
d∈D

E [µ(X,D) |X+ ,D = d]P (D = d)

is discrimination-free w.r.t. (X+,D) and satisfies demographic parity fairness.

We emphasize that Lemma 3.3 makes a statement about the transformed input (X+,D) and

not about the original covariates (X,D). Hence, whether we can consider the price µ(X+) to

be truly discrimination-free depends on the interpretation we attach to the transformed inputs

X+, see the first bullet in Remarks 3.2. Moreover, Lemma 3.3 applies to any transformation Td :

Xd 7→X+, d ∈ D that makes X+ independent of D, and which does not add more information

to (X,D) w.r.t. the prediction of Y ; this is what we use in the last equality statement.
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Now, we consider one-dimensional OT in the context of our Example 2.8. The method is similar

to the (one-dimensional) proposals in Section 4.3 of Xin–Huang [37], called there ‘debiasing

variables’. However, the OT approach works in any dimension, and also takes care of the

dependence structure within X, given D. Nevertheless, we consider a one-dimensional example

for illustrative purposes.

Example 3.4 (Application of input OT)

We apply the OT input pre-processing to the situation of Example 2.8, which considered age-

and gender-dependent costs, including excess costs for women between 20 and 40. Our aim is

to obtain an insurance price that is both demographic parity fair and discrimination-free (with

respect to the transformed inputs). In this set-up we have a real-valued non-protected covariate

X = X, and we can directly apply the one-dimensional OT formulations (3.4) and (3.5). For

the conditional distributions we have for d = 0, 1 and for given xd and τ > 0, see (2.7),

Xd = X|{D=d} ∼ Fd(x) = Φ

(
x− xd
τ

)
, (3.7)

where Φ denotes the standard Gaussian distribution. For the transformed distribution F+ we

select the two examples of Figure 3; the first one is given by

F+(x) =
1

2
Φ

(
x− x0

τ

)
+

1

2
Φ

(
x− x1

τ

)
, (3.8)

and the second one by

F+(x) =
1

2
Φ

(
x− (x0 + x1)/2

τ

)
. (3.9)

Selections (3.8) and (3.9) are two possible choices by the modeler, but any other choice for F+

which does not depend on D is also possible. The first choice is the average of the two conditional

distributions (3.7), the second one is their Wasserstein barycenter; we refer to Proposition 3.8

and Remarks 3.9, below.

We start by calculating the Wasserstein distances (3.4) using Monte Carlo simulation and a

discretized approximation to F−1
+ in the case of the Gaussian mixture distribution (3.8). The

results are presented in Table 2. We observe that the second option (3.9) is closer to the

conditional distributions Fd, d = 0, 1, in Wasserstein distance; in fact, in this second option we

have |F−1
d (u)− F−1

+ (u)| = (x1 − x0)/2 for all u ∈ (0, 1), and there is no randomness involved in

the calculation of the expectation in (3.4).

D = 0 D = 1

input OT example (3.8) for F+ 5.14 5.14

input OT example (3.9) for F+ 5.00 5.00

Table 2: Wasserstein distances W2(Fd, F+) for the two examples (3.8)-(3.9) for F+.

Figure 4 shows the OT maps (3.5) for the two choices of F+ given by (3.8)-(3.9). We observe

that in the second option we generally make women older by (x1 − x0)/2 = 5 years, and we

generally make men younger by (x1 − x0)/2 = 5 years, so that the distributions F+ of the OT
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Figure 4: OT maps Td for examples (3.8)-(3.9) of F+; the black dotted lines is the 45o diagonal.

transformed ages X+ = Td(X) coincide for both genders d = 0, 1. The first option (3.8) leads

to an age dependent transformation. If we focus on the y-axis in Figure 4, we can identify the

ages of women and men that are assigned to the same age cohort. For instance, following the

horizontal gray dotted line at level X+ = 40, we find for the second option (3.9) that women of

age 35 and men of age 45 will be in the same age cohort (and hence same price cohort). This

seems a comparably large age shift which may be difficult to explain to customers. However,

in real insurance portfolios we expect more similarity between women and men so that we

need smaller age shifts; for mortality related products such an age shift may even be sensible.

Additionally, this picture will be superimposed by more non-protected covariates which will

require the multidimensional OT map framework.

Based on this OT input transformed data, we construct a regression model X+ 7→ µ̂(X+).

In this (simple) one-dimensional problem X+ = X+ we simply fit a cubic spline to the data

(Y,X+) using the locfit package in R; see [22]. The resulting model is discrimination-free and

demographic parity fair w.r.t. (X+,D), see Lemma 3.3.

MSE bias

L(µ̂, Y ) E[µ̂]

best-estimate price µ(X,D) 100.00 41.25

unawareness price µ(X) 197.20 41.25

input OT map of (3.8) for µ̂(X+) 162.77 41.25

input OT map of (3.9) for µ̂(X+) 162.72 41.25

input OT map of (3.9) for best-estimate µ̂(X+,D) 100.60 41.24

Table 3: Mean squared errors and average prediction of the different prices in Example 2.8.

Table 3 presents the prediction accuracy of the OT input transformed models. At first sight

surprising, the OT input transformed model µ̂(X+) has a better predictive performance than

the unawareness price model µ(X). However, by understanding the true model, this is not that

surprising. Women have generally higher costs than men under model assumption (2.11). The

OT maps (3.8) and (3.9) make women older and men younger, and as a result their risk profiles
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w.r.t. the transformed inputs X+ = Td(X) become more similar in this example. This precisely

leads, in this case, to a smaller mean squared error of µ̂(X+) over µ(X). This statement can

be verified by switching the age profiles by setting x0 = 45 and x1 = 35, and keeping everything

else unchanged, as seen by the results in Table 4.

MSE bias

L(µ̂, Y ) E[µ̂]

best-estimate price µ(X,D) 100.00 38.01

unawareness price µ(X) 197.12 38.01

input OT map of (3.8) for µ̂(X+) 290.68 38.01

input OT map of (3.9) for µ̂(X+) 290.64 38.01

Table 4: Changed role of ages of women and men, setting x0 = 45 and x1 = 35.

We emphasize that the OT map Td is selected solely based on the inputs (X,D) and not

considering the response Y . As a result, we can receive a predictive model that is either better

or worse than the unawareness price model. It is important to mention that the selection of the

OT map is not allowed to consider the response Y , otherwise it may (and will) imply a sort of

indirect model selection discrimination.
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Figure 5: OT input transformed model µ̂(X+) for examples (3.8)-(3.9) of F+.

Figure 5 illustrates the OT input transformed model prices µ̂(X+) for choices (3.8)-(3.9) for

F+. For Figure 5 we map these prices back to the original features X, separated by gender D.

This back-transformation can be done because the OT maps Td are one-to-one under continuous

non-protected covariates X, and for given D = d, see Remarks 3.2. Figure 5 then evaluates

the prices µ̂(X+), where we consider X+ = X+(x;d) = Td(x) as a function of age x for fixed

gender D = d. The right hand side shows choice (3.9) for F+, which leads to parallel shifts for

the transformed age assignments X+, see Figure 4 (rhs). As a consequence, the excess pregnancy

costs of women with ages in [20, 40] are shared with men having ages in [30, 50] in our example,

see orange and cyan lines in Figure 5 (rhs). This should be contrasted to the discrimination-free

insurance price µ∗(X) (green line in Figure 2) which shares the excess pregnancy costs within

the age class [20, 40] for both genders. The transformation for choice (3.8) for F+ leads to a
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distortion along the age cohorts as we do not have parallel shifts, see Figure 4 (lhs) and Figure

5 (lhs).

The prices depicted in Figure 5 are demographic parity fair and discrimination-free with respect

to the covariates (X+,D), see Lemma 3.3. As discussed in Remarks 3.2, whether one considers

these prices desirable in relation to direct and indirect discrimination depends on whether the

transformed age X+ can be interpreted/justified as a valid covariate in its own right. If it is seen

as just an artifice of the dependence structure of (X,D), stakeholders may be more interested

in discrimination with respect to the original covariates (X,D). From such a perspective it is

clear that the prices of Figure 5 are subject to even direct discrimination, given the different

dashed lines for women and for men on the original scale.

An important difference between the discrimination-free insurance price µ∗(X) and the OT map

transformed prices µ̂(X+) is that the latter always provides a (statistically) unbiased model.

In fact, the latter does not only satisfy the balance property, but even the more restrictive

auto-calibration property; see Wüthrich–Ziegel [36].

Finally, we build a best-estimate model µ̂(X+,D) on the transformed information (X+,D).

We do this by separately fitting two cubic splines to the women data (Y,X+, D = 0) and the

men data (Y,X+, D = 1), respectively. The results are presented on the last line of Table 3.

Up to estimation error, we rediscover the true model, but on the transformed input data, as the

mean squared error only contains the noise part (irreducible risk) of the response Y . Thus, as

expected, this one-to-one OT map (in the continuous case), for given gender, does not involve a

loss of information, and the predictive performance in the parametrizations (X,D) and (X+,D)

coincides (up to estimation error). �

3.3 Model post-processing

Model post-processing to achieve fairness works on the outputs, and not on the inputs like data

pre-processing. From a purely technical viewpoint, both methods work in a similar manner. A

main difference is that input pre-processing usually is multidimensional and (regression) model

post-processing is one-dimensional. Assume, in a first step, we have fitted a best-estimate

price model (X,D) 7→ µ(X,D). Model post-processing applies transformations to these best-

estimate prices µ(X,D) 7→ µ+ such that the transformed price µ+ fulfills a fairness axiom. If

we focus on demographic parity, the transformed price µ+ should be independent of D. Note

that any of the following steps could equivalently be applied to any other pricing functional,

such as the unawareness price µ(X).

If we apply an OT output transformation, we modify (3.1) and (3.2) as follows. For d ∈ D, we

change the conditional distributions Gd on R

µd(X) := µ(X,D)|{D=d} ∼ Gd(m) := P (µ(X,D) ≤ m|D = d) for m ∈ R, (3.10)

to an unconditional distribution G+ for the prices

µ+|D ∼ G+ (m) . (3.11)

In particular, this means that the real-valued random variable µ+ ∼ G+ is independent of D.

Based on these choices we look for OT maps Td : µd(X) 7→ µ+, given d ∈ D, providing the

corresponding distribution. Since everything is one-dimensional here, we can directly work with
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the versions (3.5) and (3.6), respectively, depending whether our price functionals µd(X) have

continuous marginals Gd or not. Thus, in the continuous case we have OT maps

µd(X) 7→ µ+ = Td(µd(X)) = G−1
+ ◦Gd (µd(X)) , (3.12)

for d ∈ D. The resulting Wasserstein distance is given by (3.4) with (Fd, F+) replaced by

(Gd, G+). With this procedure, since the distribution G+ does not depend on D, the OT

transformed price µ+ fulfills demographic parity. The remaining question is how to choose G+.

Remark 3.5 µd(X) ∼ Gd is a real-valued random variable, and one should not get confused

by the multidimensional covariate X in this expression; also the OT transformed price µ+ ∼ G+

is a real-valued random variable, independent of D. Often, one wants to relate this price µ+ to

the original covariates (X,D). In the continuous case we can do this using the OT maps (3.12),

namely, we have a measurable map

(x,d) 7→ µ+ = µ+(x;d) = G−1
+ ◦Gd (µ(x,d)) ∈ R. (3.13)

Formula (3.13) gives the OT transformed price µ+ of a given insurance policy with covariates

(X,D) = (x,d), and (3.12) describes the distribution of this price, if we randomly select an

insurance policy from our portfolio X|{D=d} ∼ Fd, for given protected attributes D = d.

Example 3.6 (Application of output OT)

We revisit Examples 2.8, 3.4, but now, instead of input pre-processing, we apply model post-

processing to the best-estimate µ(X,D). These best-estimates are illustrated in red and blue

color in Figure 2. As density g+ we simply choose the average of the two conditional densities

g+(m) =
1

2
(g0(m) + g1(m)) for m ∈ R. (3.14)

Note that the distributions of µ(X,D)|{D=d} are absolutely continuous, therefore their densities

gd exist. Figure 6 illustrates the density g+ and the resulting distribution G+, respectively.

MSE bias

L(µ̂, Y ) E[µ̂]

best-estimate price µ(X,D) 100.00 41.25

unawareness price µ(X) 197.20 41.25

output OT map of (3.14) for µ+ 152.97 41.25

Table 5: Mean squared errors and average prediction of the different prices in Example 2.8.

Table 5 presents the results of the OT output post-processed best-estimate prices using density

(3.14) for g+. The resulting mean squared error is smaller than the corresponding value of the

input OT version, see Table 3. This is generally expected for suitable choices of g+ because the

fairness debiasing only takes place in the last step of the (estimation) procedure, and all previous

steps deriving the best-estimate price uses full information (X,D). Input OT already performs

the debiasing procedure in the first step and, therefore, all subsequent steps are generally non-

optimal in terms of full information (X,D).
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Figure 6: OT output post-processing density g+ and distribution G+.

OT output post-processing directly acts on the best-estimate prices µ(X,D). These best-

estimate prices can be understood as price cohorts, and for OT output post-processing the

specific (multidimensional) value of the non-protected covariates, say X ∈ {x,x′}, does not

matter as long as µ(X = x,D = d) = µ(X = x′,D = d). In case of non-monotone best-

estimate prices, this can lead to price distortions that are not explainable to customers and

policymakers. In Figure 7 (top) we express the output post-processed prices µ+ = µ+(x;d) as a

function of the original age variable X = x, separated by gender D = d ∈ {0, 1}, we also refer

to (3.13). We observe that for women D = 0, the best-estimate prices µ(X = 30,D = 0) =

µ(X = 50,D = 0) = 50 coincide (red dots in Figure 7, top), but the underlying risk factors

for these high costs are completely different ones. Women at age 30 have high costs because of

pregnancy, and women at age 50 have high costs because of aging (women at age 50 are assumed

to not be able to get pregnant). Using OT output post-processing, these two age classes (being

in the same price cohort) are treated completely equally and obtain the same fairness debiasing

discount (orange dot in Figure 7, top). But this discount for women at age 50 cannot be justified

if we believe that fairness (or anti-discrimination) should compensate for the excess pregnancy

costs which only applies to women but not to men between ages 20 and 40. In fact, this is

precisely how the excess pregnancy costs are treated in the discrimination-free insurance price

µ∗(X), see green line in Figure 7 (bottom-rhs), and in the OT input pre-processing price µ(X+),

see Figure 7 (bottom-lhs). (The plots at the bottom of Figure 7 are repeated from Examples

2.8 and 3.4) for ease of comparison). �

Remark 3.7 From Example 3.6, we conclude that output post-processing should only be used

with great care. The price functional x 7→ µ(X = x,d) ∈ R typically leads to a large loss of

information (this can be interpreted as a projection), and insurance policies with completely

different risk factors may be assigned to the same price cohort by this projection. Therefore, it

is questionable if model post-processing should treat different cohorts X = x with equal best-

estimate prices equally (which precisely happens in OT output post-processing) or whether we

should look for another way of correcting. Of course, one may similarly object to the case of input
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Figure 7: (Top) OT output post-processed prices µ+ = µ+(x;d) expressed in their original

features x and separated by gender d, see (3.13); (bottom-lhs) OT input pre-processing taken

from Figure 5; (bottom-rhs) unawareness and discrimination-free insurance prices taken from

Figure 2.

OT, particularly that excess pregnancy costs of women at age 20-40 are shared specifically with

men of age 30-50. Nonetheless, note that, at least, the results of input OT, Figure 7 (bottom-

lhs), are easier to interpret compared to Figure 7 (top). Note though that when policyholder

features X are highly granular, it becomes difficult to assign policies into homogeneous groups.

In such circumstances we may find that the new rating classes induced by input OT are also

hard to interpret.

If, despite the last criticism, we would like to hold on to OT model post-processing, we may

ask the question about the optimal OT transform in (3.12) and (3.11), respectively, to receive
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maximal predictive power of µ̂ for Y . Of course, the same question applies to OT input pre-

processing (3.2), but this latter question cannot be generally answered because, in OT input

pre-processing, the OT transformed non-protected covariates X+ then run through a general,

typically non-linear, regression function X+ 7→ µ(X+). This makes it impossible to give criteria

for optimal pre-processing of the inputs.

For optimal model post-processing with OT we can rely on analytical results in one-dimensional

OT. In particular, Theorem 2.3 of Chzhen et al. [10] states the following.

Proposition 3.8 Assume µd(X) ∼ Gd are absolutely continuous for all d ∈ D. Consider

µ+(x;d) =

∑
d′∈D

P
(
D = d′

)
G−1

d′

 ◦Gd (µ(x,d)) . (3.15)

Then, µ+ = µ+(X,D) is the σ(X,D)-measurable and demographic parity fair predictor of Y

that has minimal mean squared error.

Remarks 3.9

• The big round brackets in (3.15) give the inverse of the optimal distribution for G+, see also

(3.12). In fact, this specific choice of G+ corresponds to the barycenter of the conditional

distributions (Gd)d∈D w.r.t. the Wasserstein distance (3.4). From this we conclude that if

we choose this barycenter, we receive the L2-optimal D-independent (demographic parity

fair) σ(X,D)-measurable predictor for Y . Since choice (3.14) is not the barycenter in that

example, predictive performance could still be improved in our OT model post-processing

example. On the other hand, we have used the barycenter in (3.9), see also Table 2, but

for input pre-processing this is not a crucial choice and other choices may perform better

(depending on the specific regression model class being used).

• In (3.15) we have a measurable function of type (3.13). We can relate this back to condi-

tional expectations similar to Lemma 3.3. Consider the random variable

µ†(X;d′) := G−1
d′
◦Gd (µd(X)) ∼ Gd′ ,

i.e., this random variable µ†(X;d′) has the same conditional distribution as µd′(X). We

can then rewrite (3.15) as follows

µ+(X;d) =

∑
d′∈D

P
(
D = d′

)
G−1

d′

 ◦Gd (µd(X)) =
∑
d′∈D

µ†(X;d′)P
(
D = d′

)
.

That is, similar to the discrimination-free insurance price and the OT input pre-processed

price of Lemma 3.3, we take an unconditional expectation in protected attributes D over

µ†(X;d′). Moreover, we can relate the latter to best-estimate prices, i.e., to any realization

of Xd = x we can assign a covariate value x†
d′

such that

µ†(x;d′) = E
[
Y
∣∣∣X = x†

d′
,D = d′

]
= µ(x†

d′
,d′).

This implies,

µ+(x;d) =
∑
d′∈D

µ(x†
d′
,d′)P

(
D = d′

)
.
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Thus, formally we can write the OT post-processed price as a discrimination-free insurance

price. However, this line of argument suffers the same deficiency as Figure 7 (top), namely,

the assignment x†
d′

is non-unique, and we may select different non-protected covariate

values for this assignment that have completely different risk factors.

4 Conclusions and discussion

We have shown that discrimination and (group) fairness are materially different concepts. We

can have discrimination-free insurance prices that do not satisfy any of the group fairness axioms

in machine learning, and, vice versa, we can have, e.g., demographic parity fair prices that are

not discrimination-free. In particular, in Example 2.13 we gave an example of a demographic

parity fair price that directly discriminates from an insurance regulation view. This clearly

questions the direct application of group fairness axioms to insurance pricing, as they do not

provide a quick fix for (and may even conflict with) mitigating discrimination.

In a next step, we presented OT input pre-processing and OT output post-processing. These

methods can be used to make distributions of non-protected characteristics independent of pro-

tected attributes. Input pre-processing locally perturbs the non-protected covariates X|D such

that the resulting conditional distributions become independent of the protected attributes D.

If we only work with these transformed covariates, we receive demographic parity fairness and

non-discriminatory insurance prices; however note that there will generally be direct discrimi-

nation with respect to the original covariates, as depicted in Figure 7. Output post-processing

is different as it acts on the real-valued best-estimates µ(X,D), which should be seen as a sum-

mary statistic for pricing that already suffers from a loss of information, i.e., we can no longer

fully distinguish the underlying risk factors that lead to these best-estimate prices. This may

make output post-processing problematic because we may receive fairness debiasing that cannot

be explained to customers and policymakers.

The following table compares the crucial differences between discrimination-free insurance pric-

ing and group fairness through OT input pre-processing.

Addressing indirect discrimination Addressing fairness

Model post-processing of prices µ(X,D) Input pre-processing of features X

Change of probability from P to P∗ Deformation of X to X+

Independence of X and D under P∗ Independence of X+ and D under P
Dependence of X and D under P ... Dependence of X and D under P ...

... does not matter for price adjustments ... matters for price adjustments

We list further points that require careful considerations in any attempt to regulate insurance

prices with reference to non-discrimination and group fairness concepts:

• One difficulty in this field is that there are many different terms that do not have precise

(mathematical) definitions or, even worse, their definitions contradict. Therefore, it would

be beneficial to have a unified framework and consistent definitions, e.g., for terms such as

disparate effect, disparate impact, disproportionate impact, etc.; see, e.g., Chibanda [9].

Some of these terms are already occupied in a legal context.
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• Adverse selection and unwanted economic consequences of non-discriminatory pricing

should be explored, see e.g. Shimao–Huang [30]. Discrimination-free insurance prices

typically fail to fulfill the auto-calibration property which is crucial for having homoge-

neous risk classes. However, the OT input pre-processed data allows for auto-calibrated

regression models, for auto-calibration see Wüthrich–Merz [35].

• All considerations above have been based on the assumption that we know the true model.

Clearly, in statistical modeling, there is model uncertainty which may impact different

protected classes differently because, e.g., they are represented differently in historical data

(statistical and historical biases). There are several examples of this type in the machine

learning literature; see, e.g., Barocas et al. [4], Mehrabi et al. [24] and Pessach–Shmueli

[26].

• Our considerations so far presented a black-and-white picture of direct/indirect discrimi-

nation or group unfairness either taking place or not. Nonetheless, especially in the context

of a possible regulatory intervention, it is important to quantify the materiality of those

potential problems within a given insurance portfolio. Such an approach requires the use

of discrimination and unfairness metrics, pointing more towards formalizing notions like

disproportional and disparate impact.

• We have been speaking about (non-)discrimination of insurance prices. These insurance

prices are actuarial or statistical prices (technical premium), i.e., they directly result as

an output from a statistical procedure. These prices are then modified to commercial

prices, e.g., administrative costs are added, etc. An interesting issue is raised in Thomas

[31, 32], namely, by converting actuarial prices into commercial prices one often distorts

these prices with elasticity considerations, i.e., insurance companies charge higher prices to

customers who are (implicitly) willing to pay more. This happens, e.g., with new business

and contract renewals that are often priced differently, though the corresponding customers

may have exactly the same risk profile – a situation that can also be understood as unfair,

see FCA [16]. In the light of discrimination and fairness one should clearly question such

practice of elasticity pricing as this leads to discrimination that cannot be explained by

risk profiles (no matter whether we consider protected or non-protected information).

Often, an actuarial pricing system X 7→ π(X) is called actuarially fair if any price differ-

ence π(X1) 6= π(X2) can be explained by differences in the distributions of (propensity

to) claims Y |Xi , i = 1, 2. Price elasticity considerations are not actuarially fair.

• Given all the above arguments, in general we maintain that demographic fairness is not a

reasonable requirement for insurance portfolios. Nonetheless a word of caution is needed.

Consider the use of individualized data (e.g., wearables, telematics) for accurate quantifi-

cation of the risk of insurance policies. Using such data may diminish the contribution

of protected attributes to predictions, effectively leading to a lack of sensitivity of best-

estimate prices in D, see (2.5). Quite aside of concerns around surveillance and privacy,

such individualized data may capture policyholder attributes (e.g., night-time driving) that

are not just associated with, e.g., race, but are a constituent part of racialized experience

within a particular society, not least because of historical constraints in employment or

housing opportunities. In such situations, the non-protected covariates X become uncom-
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fortably entangled with the protected attributes D. For that reason, it still makes sense to

monitor demographic unfairness within an insurance portfolio and to try to understand its

sources. If the extent and source of group unfairness is considered problematic, OT input

pre-processing becomes a valuable option for removing demographic disparities while, in

a certain sense, still addressing indirect discrimination.
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A Appendix: mathematical proofs

We prove the mathematical results in this appendix.

Proof of Proposition 2.10. We start with demographic parity (the independence axiom). Since the conditional

distribution of µ(X) = X, given D = D, explicitly depends on the realization of the protected attribute D = d

(we have a mixture Gaussian distribution for X), the independence axiom fails to hold, see also (2.10).

Sufficiency (2.14) of µ(X) implies that

Var (Y |µ(X),D) = Var (Y |µ(X)) . (A.1)

We calculate the right hand side of (A.1)

Var (Y |µ(X)) = Var (Y |X)

= Var (E [Y |X,D]|X) + E [Var (Y |X,D)|X]

= Var (X|X) + E [1 +D|X]

= 1 +
exp

{
− 1

2τ2
(X − x1)2

}∑
d∈D exp

{
− 1

2τ2
(X − xd)2

} ∈ (1, 2), a.s.,

where we have used (2.10). Next, we calculate the left hand side of (A.1)

Var (Y |µ(X),D) = Var (Y |X,D) = 1 +D ∈ {1, 2}, a.s.

Thus, these two conditional variances have a disjoint range, a.s., and we cannot have sufficiency of µ(X).

Finally, there remains to prove the failure of the separation axiom. We aim at proving

E [X|Y = xd, D = d] 6= E [X|Y = xd] , (A.2)

for µ(X) = X. We start by analyzing the left hand side of (A.2). We have

X|D=d ∼ N
(
xd, τ

2) .
The joint density of (Y,X)|D=d ∼ f (d)

Y,X is given by

f
(d)
Y,X(y, x) =

1√
2π(1 + d)

exp

{
−1

2

(y − x)2

1 + d

}
1√

2πτ2
exp

{
− 1

2τ2
(x− xd)2

}
.

This gives for the conditional density of X, given (Y,D = d),

f
(d)

X|Y (x|Y ) ∝ exp

{
−1

2

(Y − x)2

1 + d

}
exp

{
−1

2

(x− xd)2

τ2

}
∝ exp

{
−1

2

(
x2 − 2xY

1 + d
+
x2 − 2xxd

τ2

)}
∝ exp

{
−1

2

(
x2(τ2 + 1 + d)− 2x

(
Y τ2 + xd(1 + d)

)
(1 + d)τ2

)}
.

This is a Gaussian density, and we have

X|(Y,D=d) ∼ N
(
Y τ2 + xd(1 + d)

τ2 + 1 + d
,

(1 + d)τ2

τ2 + 1 + d

)
.

This implies for Y = xd, for simplicity we set d = 0 but the same arguments hold for d = 1,

E [X|Y = x0, D = 0] = x0.

On the other hand,

E [X|Y = x0] =
∑
d=0,1

E [X |Y = x0, D = d ]P (D = d|Y = x0)

= x0 P (D = 0|Y = x0) +
x0τ

2 + 2x1
τ2 + 2

P (D = 1|Y = x0)

= x0

(
1− P (D = 1|Y = x0) +

τ2 + 2x1
x0

τ2 + 2
P (D = 1|Y = x0)

)
> x0.
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The latter inequality holds because by assumption 0 < x0 < x1 and P(D = 1|Y = x) ∈ (0, 1) for all x ∈ R. This

proves (A.2) and that the separation axiom does not hold. 2

Proof of Proposition 3.1. We can rewrite the discrimination-free insurance price as follows

µ∗(X) =
∑
d∈D

µ(X,d)P∗(D = d) =
∑
d∈D

∫
y

y dP (y|X,d)P∗(D = d)

=

∫
y

y dP† (y|X) = E† [Y |X] ,

where we have defined the distribution (this breaks the dependence between X and D)

P†(Y,X,D) := P (Y |X,D) P(X)P∗(D).

Classical square loss minimization then provides us with

µ∗(X) = arg min
µ̂(X)

E†
[
(Y − µ̂(X))2

∣∣X]
= arg min

µ̂(X)

E
[

P∗(D)

P (D|X)
(Y − µ̂(X))2

∣∣∣∣X] .
This completes the proof. 2
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