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ABSTRACT As the primary cause of software defects, human error is the key to understanding, and perhaps
to forecasting and avoiding defects. Little research has been done to forecast defects on the basis of the
cognitive errors that cause them. The existing ‘‘defect prediction’’ models are applied to code once it has
been produced: therefore, their ‘‘predictions’’ have little implications for preventing the defects. This paper
proposes an approach, ‘‘Human-Error-based Defect Forecast’’ (HEDF), to forecasting the exact defects at
early stages of software development, before the code is produced, through knowledge about the cognitive
mechanisms that cause developers’ errors. This approach is based on a model of human error mechanisms
underlying software defects: a defect is caused by an error-prone scenario triggering human error modes,
which psychologists have observed to recur across diverse activities. Software defects can then be forecast
by identifying such error-prone scenarios the in requirements and/or design documents. We assessed this
approach empirically, with 55 programmers in a programming competition and four representative analysts
serving as the users of the approach. Impressively, the approach was able to forecast, at the requirement
phase, 75.7% of the defects later committed by all of the programmers. When considering just the defect
forms, which may manifest as distinct defects even in the same program, the proposed method predicted
31.8% of them. This approach substantially improved the defect forecasting performances for analysts of
various expertise, with a minimum of 100% improvement, compared to forecasts without the approach.
If the forecast had been used to prevent the defects, it could have saved an estimated 46.2% of the debugging
effort and increased the fraction of programmers delivering an acceptable program by 32.6%. The observed
excellent performance of HEDF in forecasting (early at requirement stage) the exact forms and locations of
defects that may be later introduced by developers into code makes it a promising candidate for preventing
the defects, worthy of further study.

INDEX TERMS Defect forecast, defect prevention, human error, programming cognition, software quality
assurance.

I. INTRODUCTION
Software defects (‘‘incorrect or missing steps, processes,
or data definitions in a computer program’’ [1]) are a primary
threat to the reliability and safety of computer systems in
many safety-critical domains, such as aerospace systems [2],
[3], energy systems [4], and medical devices [5]. Finding
and fixing defects were estimated to cost trillions of dollars,
worldwide, in 2018 [6], and yet the residual defects are
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still causing accidents and threatening human lives. In many
safety-critical domains, preventing defects from occurring is
especially desirable, because once defects are created in the
code, it is hard to guarantee all of them will be found by tests
and removed.

As a primary cause of software defects, human error is a
key to forecasting and preventing software defects. Program-
ming is a special type of writing, performed by program-
mers [7]; a computer program is a pure cognitive product
that describes its designers’ thoughts [8], [9], [10]. Soft-
ware defects are the manifestations of cognitive errors by
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individual software practitioners and/or of miscommunica-
tion between them [8], [9]. However, there is a lack of theory
on how software defects are produced by cognitive error
mechanisms, on which methods can be based to prevent
software defects.

This paper proposes to forecast software defects early,
before the code is produced, aiming to provide action-
able inputs for defect prevention activities. The approach
is based on understanding of the primary cause of soft-
ware defects: the human error mechanisms affecting software
developers. ‘‘Human-Error-basedDefect Forecast’’ (HEDF)
is an approach for forecasting software defects that may
arise when programmers translate requirements specifica-
tion and/or design documents into code, through identifying,
in these documents, conditions that tend to trigger human
errors, and the forms that the errors tend to take.While coding
errors are only one cause of defects, they are an important
cause, attracting much effort for preventing or finding them.

The proposed objective and method are superficially
related to, but fundamentally different from, the existing
models in the area of ‘‘defect prediction’’ [11], [12], [13],
[14]. Predictions in the ‘‘defect prediction’’ area are per-
formed on code. The predictors can be categorized into three
groups [11]: program metrics such as program size and com-
plexity, testing metrics, and software development process
metrics. These predictors are then related to defect density
by various methods, which have been evolving from simple
correlation functions [15] to multivariate approaches such
as regression analysis [16], data mining [17] and machine
learning algorithms [18]. Graphic methods such as Bayesian
Belief Networks (BBNs) [11], [12] and dependency graphs
[19] have been used to analyze the dependencies between
various metrics. The outputs of the models in the ‘‘defect pre-
diction’’ area usually take two forms: 1) classifying a program
module into defective or defect-free, 2) providing a rank list
of modules that likely contain defects. These methods help to
allocate testing resources more effectively.

What we propose here is fundamentally different from the
existingmodels in the ‘‘defect prediction’’ (DP) area, in terms
of: 1) forecast phase — HEDF is performed before code
is produced, while DP is performed after code is produced.
2) Inputs—HEDF is performed based on requirements and
the knowledge about human cognitions, while DP uses code-
based and/or project-based metrics). 3) Outputs—HEDF pro-
vides the locations and forms of defects that developers may
introduce, while DPs classify or rank code modules’ likeli-
hood of containing defects. 4) Purpose—HEDF is devoted
to providing an actionable checklist for defect prevention,
while DPs help allocate testing resources. For these reasons,
we deliberately use the word ‘‘forecast’’ instead of ‘‘pre-
diction’’, to avoid any confusion or involving the readers in
unnecessary comparisons.

The rest of this paper is organized as follows: Section II
reviews the literature; Section III presents the proposed
approach; Section IV presents the research design, including
research questions, metrics, the task and the overview of

the process; Section V presents the real programming data
produced by 55 programmers for a given specification, while
Section VI presents the case study of representative users per-
forming defect forecast usingHEDF; Section VII presents the
results analysis by comparing the real programming data and
the forecasting results; Section VIII provides discussions;
Section IX concludes the paper.

II. LITERATURE REVIEW
We have found no literature on approaches similar to that
studied here, that is, aiming at pinpointing which defects
are likely in a program before the program is written, using
human error theories. We briefly outline the huge literature
in the defect prediction area, which has a similar name but
is only marginally relevant to our method. We also review a
much more relevant area, studies of human errors in software
engineering.

A. ‘‘DEFECT PREDICTION’’ METHODS
The defect prediction area has been continuously developing
since the early 1970s, when Akiyama first built a correlation
model between lines of code (LOC) and number of defects in
programmodules. More complex metrics such as Cyclomatic
complexity [20] and Halstead complexity [21] were then
proposed to represent the complexity of a software system or
module for such correlation models. Since then, both the pre-
dictors and the methods used to model the relation between
predictors and software defects have evolved.

Various metrics have been used as predictors for defect
prediction, such as process metrics [22], testing metrics,
design metrics [23], organizational structure metrics [24],
code change metrics [25], [26], dependency metrics [19] and
social network measures [27]. With so many metrics, the
problem arises of how to choose the most effective ones.
A series of studies try to rank or simplify the metrics using
statistical analysis [28], while others try to integrate various
metrics [29], or summarize and compare various metrics
through literature review [30], [31]. A variety of modeling
methods have also been proposed to relate the predictors and
software defects, such as Bayesian Network [11], [32], and
various machine learning algorithms [18], [33], [34], [35].

Researchers proposed to predict software defects in various
phases of software development [12], [36], [37]. These meth-
ods generally use Bayesian networks [38] and other graphical
models [37] to integrate different kinds of metric data. The
most difficult problem in current software defect prediction
studies is that the current methods do not work well on novel
projects or projects for which historical data for comparable
projects are lacking [39]. To explore these issues, various
cross-project defect prediction models are proposed [39],
[40], [41]; these studies basically propose to consider more
contextual factors (such as whether the products are from the
same domain and from the same company) to characterize
software projects.

More recently, the importance of software developers’
contribution to software defects has been recognized [42],
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[43], metrics such as the number of low-expertise develop-
ers [44] and developer-module networks [45] are proposed
to enhance defect prediction models. There is still debate
whether the metrics used for human factors are too simplistic
[43], [45], [46].

Despite the significant progress made, the current predic-
tion models are generally applied after code is available, and
their purposes are prioritizing test case [47], [48], [49] and
planning maintenance [50]. Researchers have reported some
limitations such as very few uses in industrial projects [49],
[51], [52], and lack of ‘‘actionable’’ advice for developers
[49], [52].

The method explored in this paper is radically differ-
ent from existing methods in the ‘‘defect prediction’’ area.
We explore whether defects are forecastable in the early
phases before software implementation, and how such fore-
cast can be achieved through understanding of how develop-
ers commit errors.

B. HUMAN ERROR CAUSE OF SOFTWARE DEFECTS
To the best of our knowledge, globally there are four research
teams that have studied the human error causes of software
defects from a psychological perspective.

Ko andMyers [53] first introduced J. Reason’s human error
theory [54] to study software errors of a programming envi-
ronment. Ko and Myers’ research [53] was from a human-
computer interaction perspective: the ‘‘software errors’’ are
the defects in a programming environment, programmers
are the users of the programming environments, and human
errors are the errors of the programmers in using these tools.

Huang (one of the present authors) and Liu [55] first
proposed the interdisciplinary area ‘‘Software Fault Defense
based on Human Errors’’ [55], [56], which aims to system-
atically reduce software defects based on an understanding
of the cognitive errors of software practitioners. After that,
Huang et al. have conducted a series of in-depth studies on
various topics: defect prevention based on human errors [9],
[57], which includes a comprehensive human error taxonomy
for root cause analysis [9], and an approach for promoting
software developers’ knowledge, awareness and abilities to
prevent defects through cognitive training [57]; fault toler-
ance based on human errors [58], which identified several
dimensions of cognitive styles and performance levels that
can be used to seek fault diversity; the new controlled exper-
imental method for studying the cause-effect relationships
between the cognitive error mechanisms of software engi-
neers and software defects [59]; human error modeling tool,
which is used to represent the interactions between human
errors and various context factors [60]; code review based on
human errors [61], in which code reviewers’ performance
in finding defects in code is improved through ‘‘cognitive
training’’.

Anu, Hu, Carver, Walia, and Bradshaw [62] focused on
using a human error taxonomy to improve quality of require-
ments. Their research also found that students who received

training on human error taxonomy wrote requirements with
fewer defects [63]

Nagaria and Hall [64] recently interviewed developers
about the situations of the skill-based errors and how they
mitigate such errors.

Despite the progress made, this emerging area still lacks
a causal mechanism model explaining how cognitive errors
interact with context factors to trigger the production by soft-
ware developers of software (design and/or coding) defects in
code. No method has been published for forecasting software
defects early (before code is produced) for focused preventa-
tive action.

III. THE PROPOSED APPROACH
Though human errors appear to be diverse across different
activities, a proportion of human errors are predictable, in the
sense that human errors take a limited number of recognizable
patterns [59]. The proposed approach HEDF, is therefore
based on analyzing a programming task for patterns that
match the conditions known to trigger erroneous human
behaviors; patterns that psychologists have observed to recur
across diverse activities [59], [60]. We call this Error-Prone
Scenario Analysis (EPSA).

In this chapter, Section A defines the concepts used in
HEDF; Section B extracts a set of human error patterns and
the general conditions that tend to trigger these error patterns;
Section C presents EPSA, which is the core process of the
HEDF approach; Section D presents a detailed demonstration
on how to use EPSA on a specific requirement, and/or design
if the design document is available.

A. TERMINOLOGY
The concepts used in HEDF are defined as follows:

Defect:an incorrect or missing step, process, or data defi-
nition in a computer program (adopted from ‘‘fault’’ in [1]).
Note that ’’defects’’ in this paper are manifested in the com-
puter program, but are not limited to those caused by errors
in coding; they may originate as defects in a design, and
may originate even further upstream, during the process of
understanding requirements. A defect can be described by the
difference between the incorrect and correct program at the
specific defect location. A defect has two properties:

Defect Form, referring to a category of defects caused by
the same human error mechanisms, that is, the way how a
snippet of step, process, or data definition in a computer pro-
gram is incorrect (where ‘‘being absent’’ is a form of ’’being
incorrect’’). Note that the Defect Form here is not the same
as the ‘‘Defect Type’’ concept commonly used in software
engineering, e.g. in ‘‘Orthogonal defect classification’’ [65].
Defect Form describes ‘‘what’’ a defect is, in more detail than
‘‘Defect Type’’. Still, one defect form can manifest itself as
diverse unique defects. For instance, the defect form ‘‘the
size of a variable is assigned without considering its usage
requirement’’ may manifest itself as the defective code ‘‘char
map [100], [100]’’ in one program but as ‘‘char a [50], [50]’’
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in another program, where both two arrays (‘‘map’’ and ‘‘a’’)
should be larger than 512∗512.
Defect Location is a logic place in the program that real-

izes a specific function. That is to say, the Defect Location
here is defined through functionality rather than common
ways such as ‘‘lines 22-25 in file x.c’’; a defect can be limited
to a line of code, but it can also be a set of related code
fragments in different modules or even several sub-systems.
Defining a defect location from a functional viewpoint makes
it possible to connect ‘‘what a snippet of program does’’
to ‘‘how a programmer thinks’’; by contrast, conventional
location identifiers such as lines of code can hardly fulfill
this purpose. For instance, the same number for a line of
code (e.g. Line #22) in a program version developed by
programmer A could do completely different things from that
of another version developed by programmer B, even when
the two versions have the same total number of lines of code
and implement the same requirement. Examples of defect
locations are demonstrated in tables from Table 5 to Table 11.

Defect early forecasting: the activity of a person to fore-
cast, at requirement and/or design stage, defects that may be
later introduced by programmers into code.

Error: an erroneous human behavior that leads to a soft-
ware defect. Errors are classified at a finer-grained level in
psychology as mistakes, slips or lapses [54]. Mistakes affect
the analysis of a problem or conscious choice of action to per-
form; slips and lapses are involuntary deviations or omissions
in performing the intended action.

Human Error Mode (HEM):a particular pattern of erro-
neous behavior that recurs across different activities, due to
a cognitive weakness shared by all humans, e.g. applying
‘‘strong-but-now-wrong’’ rules (see Table 1) [54].

Error-Prone Scenario (EPS): A set of conditions under
which a HEM tends to occur. An EPS encompasses not
only the exterior conditions surrounding an individual
(e.g. the most important factor–task), but also the interior
cognitive conditions relevant to an individual’s performance,
e.g. his/her knowledge relevant to the task.

Error-Prone Scenario Analysis (EPSA): the process of
an analyst identifying Error-Prone Scenarios. HEDF fore-
casts software defects by identifying EPSA, that is, HEDF
is an EPSA-based approach.

ErrorMechanism: how an error is formed; the way causal
factors (e.g. the scenario and the error mode) interact to
form an error. The mechanism underlying a software defect
is that the Error-Prone Scenarios have triggered one or more
Human Error Modes. Some defects can be caused by one
single error mode, while others may be introduced by a
combination of several error modes.

In summary, ‘‘Error Mode’’ concerns ‘‘why’’ a defect
is introduced; ‘‘Error-Prone Scenario’’ concerns ‘‘when’’
(under what circumstances) a defect is introduced; ‘‘Error
Mechanism’’ integrates all the aspects concerning ‘‘how’’ a
defect is introduced.

Several psychological concepts will also be used in the
paper:

Rasmussen’s performance level [66]: A classification
of cognitive activities into three ’’levels’’: Skill-based (SB)
level, Rule-based (RB) and Knowledge-based (KB) level.
We recall the three definitions below. Different performance
levels have different cognitive characteristics, thus have dif-
ferent error modes [54].

Skill-based performance follows from the forming of an
intention and ‘‘rolls along’’ automatically without conscious
control. Skill-based activities in programming include typing
a text string, compiling a program by pressing a button in the
programming environment.

Rule-based performance is applicable for tackling famil-
iar problems. It is typically controlled by stored rules or pro-
cedures that have been derived from a person’s experiences.
The mind matches patterns in the situation at hand to the
preconditions for such stored rules, allowing quick selection
of actions. In programming, there aremany rule-based perfor-
mances, such as programming the printing of a string line, and
defining a variable in one’s familiar programming language.

Knowledge-based performance comes into play when
one faces novel situations, and no rules are available from
previous experiences. At this level, actions must be planned
using an analytical process. Errors at this level arise from
resource limitations and from incomplete or incorrect knowl-
edge. In programming, cognitive performances such as con-
structing the mental model of the system so as to understand a
specific programming task, and trying to figure out a solution
for a novel problem are knowledge-based performance.

Schema: ‘‘A schema is a modifiable information structure
that represents generic concepts stored in memory. Schemata
represent knowledge that we experience–interrelationships
between objects, situations, events, and sequences of events
that normally occur. In this sense, schemata are prototypes in
memory of frequently experienced situations that individuals
use to interpret instances of related knowledge.’’ [67]

B. HUMAN ERROR MECHANISMS
We propose a model of the Human Error Mechanism (shown
in Figure 1) for describing the process of how a software
defect is caused by human errors. This model includes the
main causal factors that determine a human error [54]: the
nature of a task (including both its content and the form in
which it is represented), the nature of the programmer (mainly
including their current available knowledge base [10]), and
human error modes, which are the general mechanisms gov-
erning humans’ erroneous cognitive performance.

A software defect is caused when the conditions of the
programming task and/or programmer trigger one or more
human error modes. To predict an error, the task and indi-
vidual should be analyzed together because these two factors
interact. For instance, the same task could be very easy for
one person while difficult for another person. We call this
combination between the features of a task and of a human
individual a ‘‘scenario’’.

Based on the human error mechanism model in Figure 1,
software defects can then be predicted through identifying in
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TABLE 1. A pool of human error mechanisms.

some part of the current programming contexts (e.g., a pro-
gram specification) conditions that are likely to trigger human
error modes. To conduct such prediction, the first step is to
build a pool of human error mechanisms that contains the
error modes and their associated general scenarios.

We developed a pool of human error mechanisms (shown
in Table 1) based on the error patterns that have been
widely accepted in the psychological community, such as
the error patterns summarized by Reason [54] and Byrne

and Bovair [68]’s theory on ‘‘post-completion errors’’. These
error modes are included because they are reported to reoccur
across diverse activities. Three strategies are used to build the
pool of human error mechanisms:

1) ERROR MODES ARE ONLY INCLUDED IF THEY ARE
SUITABLE FOR EPSA
Some of the error modes identified in psychology are not.
For example, when an individual’s working memory is
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FIGURE 1. A model of human error mechanisms underlying software defects.

overloaded, he/she is likely to commit an error; this is called
‘‘Workspace Limitations’’ byReason [54]. However, working
memory load is closely related to one’s working memory
capacity, one’s expertise on the problem (intrinsic load), the
format of the problem representation materials (extraneous
load) and one’s schema construction processes (germane
load) [69]. Working memory overload is a real-time cognitive
state that is thus hard to forecast. Therefore, we do not include
it in our initial pool of human error mechanisms; adding it
may become possible with further study of cognitive load in
programming tasks.

2) THE ERROR MODE TAXONOMY IS ADAPTED IN ORDER
TO RETAIN A SYSTEMATIC RELATION BETWEEN THE
ERROR MODES INCLUDED
For example ‘‘Countersigns and non-signs’’,
‘‘Rule strength’’, and ‘‘General rules’’, and ‘‘Redundancy’’
are four sub-modes under the mode ‘‘misapplication of good
rules’’ in.Reason [54]’s work. These modes describe different
situations in which people are prone to apply ‘‘strong-but-
now-wrong’’ rules, but they pertain to the same mechanism.
Therefore, we consider them not as error modes but as
scenarios in which the error mode of ‘‘applying ‘strong-but-
now-wrong’ rule’’ is prone to occur.

3) THE ERROR MODES ARE EXTRACTED AND REPRESENTED
BY PSEUDO CODES, SHOWN IN THE THIRD COLUMN
OF TABLE 1
The fundamental psychological theories tend to be some-
what vague and thus difficult to apply for practical purposes.
We specified the preconditions (using ‘‘IF’’), the situations
under which an error tends to occur (using ‘‘WHEN’’), and
the final manifestation of the error (using ‘‘THEN’’). Nota-
tions such as ‘‘AND’’ and ‘‘OR’’ are used to combinemultiple
situations. The definitions of the specific notations other than
natural language are provided in Table 2.

Table 1 is not meant to exhaustively enumerate all the
human error modes described in cognitive psychology. This
pool is used for the practical purpose of exploring whether
and how software defects can be predicted based on human
error mechanisms; therefore, it only includes a selected set
of human error modes that the authors consider systematic,

TABLE 2. A sample of notations used to represent Human Error Scenarios.

valid, typical and suitable for performing EPSA, based on
the current understanding of human error theories. The pool
can be extended with the progress of research in cognitive
psychology and with extensions of this study in the future.
For instance, while above we listed a human error mode ‘‘dif-
ficulties with exponential developments’’, because this has
been documented by psychology researchers, we would not
be surprised if experience showed this to belong to a broader
category of mathematical functions and series that program-
mers find it difficult to extract from informal specifications.

C. ERROR-PRONE SCENARIO ANALYSIS
This is the process to match the specific contexts of the task to
the general features that tend to trigger a human error mode.
For instance, for the post-completion error, an analyst can
review the requirement and/or design document (if available),
and see if there is a snippet of items forming a task, and then
check whether these items form the EPSA of post-completion
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FIGURE 2. The Error-Prone Scenario Analysis process.

error (the last row of Table 1): there is a main item and several
non-main items, and a non-main item is not a necessary for
completing the main item, but logically at the last step of
the whole task. For the human error mode ‘‘difficulties with
exponential developments’’, an analyst can simply check if
there are places in the requirement involving quantitative rela-
tionships between variables, it is an error-prone scenario if a
quantitative relationship is exponential. Considering the error
mode ‘‘applying ‘strong-but-now-wrong’ rule’’, the analyst
needs to check if there are some new or exceptional features
contained in the documents; relevant domain and program-
ming knowledge is expected to help in identifying EPSAs of
this HEM.

EPSA is performed in an iterative manner, shown in
Figure 2. The scenario analysis itself is an analyst’s cognitive
process, just like any other types of software reviews, such
as requirement review and code review. The contribution of
HEDF is to tell an analyst ‘‘what to look at’’ (HEM) and
‘‘how to look at’’ (EPSA). Furthermore, we designed a set
of graphic symbols to guide the scenario analysis and record
the results, shown in Figure 3. We expect such graphical
representations to help. Symbols could remind one of the
essential elements that constitute an error-prone scenario,
so as to promote the thinking process as well as represent the
mental model produced during the analysis [10].

D. DEMONSTRATION OF ERROR-PRONE
SCENARIO ANALYSIS
The first author (Huang) performed an error-prone scenario
analysis on the ‘‘jiong’’ requirement task specification. The
EPSA was performed in a forecasting manner, that is, solely

based on the requirement specification, before she had access
to any information about the programs developed to satisfy
those requirements; the EPSAwas recorded as an exploratory
study and was formally reviewed by multiple independent
academic committee members [56]. The defects that were
forecast were indeed found to be introduced by some pro-
grammers in a programming contest. These are indicated by
grey background in the first column of Table 13. However,
to avoid possible researcher bias, in this paper Huang’s EPSA
is used for demonstration purpose only, rather than for vali-
dating HEDF. The forecast processes and data in this paper
remain the same as that presented in Huang’s PhD disserta-
tion [56], while the EPSA diagrams are updated with the new
notation for the Human Error Analysis [60]. The purpose here
is to show how to perform EPSA in a specific programming
task, so interested readers can better apply HEDF in their own
contexts.

1) THE REQUIREMENT
The programming task used in this study is called the ‘‘jiong’’
problem. ‘‘Jiong’’ is a simplified Chinese character shown in
Table 3. The requirement specification of the task is shown
in Table 3. The line numbers in the left column was added by
the authors to facilitate the analysis in this paper.

For a given programming problem, we expect that the
programs written by different programmers may differ in
detail; but the problem to be solved poses a set of identical
demands to all, so that some similar or common parts exist
between different programs. For instance, Table 4 shows the
two typical solutions of the ‘‘jiong’’ problem and the elements
likely to be shared by programs implementing either solution.
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FIGURE 3. Symbols used to aid Error-Prone Scenario Analysis.

TABLE 3. The requirement specification of the ‘‘jiong’’ task.

Table 4 is comparable to design documents in organizational
software development contexts.

2) ERROR-PRONE SCENARIO ANALYSIS EXAMPLES
In total, seven error-prone scenarios were identified, with
seven scenario forms produced, shown from Table 5 to

TABLE 4. Two typical solutions of the ‘‘jiong’’ problem.

Table 11. Each form described the location of the scenario
within the task, the error modes that were likely to be
triggered, the defect forms that were likely to occur, and
how this scenario was identified–scenario analysis. Each sce-
nario analysis process produced an error mechanism model,
describing possible interaction mechanisms between the task,
individuals and error modes.

IV. RESEARCH DESIGN
Since HEDF focuses on forecasting the code locations where
defects tend to be created due to common cognitive error
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TABLE 5. Error-prone scenario analysis (1).

mechanisms that are shared by all humans, we validate the
approach through testing whether the forecasted defects are
really introduced by programmers, in a study of multiple
programmers, each independently developing software based
on the same requirement.

We designed a case study in which independent analysts
performed defect forecasting using HEDF. The forecast was
performed solely based on a requirement specification. After-
wards, the forecasting results were compared to the real
programming defects found in the multiple programs.

A. RESEARCH QUESTIONS
The study aims to explore the following four research ques-
tions (RQ):

RQ1: Can HEDF forecast the forms and locations of
software defects, before code is produced?

RQ2: How effective is HEDF in forecasting software
defects? This is evaluated by the data collected in the Case
Study using a set of new metrics for defect early forecasting
(defined in Section IV.B.2).

RQ3: To what extent can HEDF improve users’ per-
formances in defect early forecasting?Because there is
no existing method for the same purpose of HEDF (that
is, forecasting from requirement specifications the defects
that may be later introduced by developers in code), it is
inappropriate and impossible to compare HEDF with those
predictions performed on code. Alternatively, a conjecture is
that people could perform such early forecasting adequately
using just their own educational and professional experience,
even without HEDF. This also concerns the internal validity
of HEDF: the proportion of defects forecast due to an ana-
lyst’s own experience versus that of HEDF. Based on these
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TABLE 6. Error-prone scenario analysis (2).

considerations, we recruited four analysts as the represen-
tative users of HEDF at different expertise levels: Expert,
High, Intermediate and Entry expertise level. The analysts
performed two rounds of defect forecasting. In the initial
round, they forecast defects based on their own experience,
without having been introduced to theHEDF techniques, with
unlimited time. Then, a training of HEDF was performed
by the first author. After that, the analysts used HEDF to
forecast defects. The performance difference between these
two rounds of forecasting were calculated.

RQ4: What are the potential benefits of HEDF for
debugging and defect prevention? Since our forecasting is

performed before the code is produced, its outputs could be
used to prevent defects, thus saving programmers’ efforts in
finding and fixing these defects. We explore this question
using the metrics a set of new metrics for defect early fore-
casting (defined in Section IV.B.3).

B. METRICS
Because HEDF is performed before code is produced, the
metrics for evaluating HEDF are naturally different from
that for conventional predictions performed on code. For
instance, code-based defect prediction methods usually clas-
sify code units (e.g. modules) into two categories: defective
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TABLE 7. Error-prone scenario analysis (3).

or defect-free. The performance of such predictions are com-
monly evaluated by a confusionmatrix, which consists of four
cells: true positives (TP), false positives (FP), true negatives
(TN), and false negatives (FN), and derived metrics based
on these four cells, such as Precision (TP/ (TP+FP)) and
Matthews correlation coefficient (MCC) [71].

For HEDF, the individual event predicted concerns one
possible defect form, rather than one module. All the usual
measures, above, are meaningful. However, some extra notes
are required about assessing them through experiment. HEDF
focuses only on positives (what errors developers may com-
mit), because HEDF is performed before code is produced.
HEDF does not forecast ‘‘what error a programmer won’t
commit’’, because such a forecast has little practical impli-
cations for defect prevention. Instead, we developed metrics
to estimate how much development effort could be saved if
HEDF results were exploited for defect prevention.

1) METRICS FOR DEFECTS
The following metrics are proposed to measure how com-
mon a software defect is among a set of programs indepen-
dently developed by separate programmers1 for a given set of
requirements or specifications.

Occurrences (OC) of a defect: the number of program-
mers in a study who introduced that defect in at least one
version of their respective submissions.

The Prevalence of Occurrence (POC) of a defect: the per-
centage of programmers who introduced the corresponding
defect, defined as:

POC =
OC
P
× 100% (1)

1Or programming teams. In the study we report, each programmer worked
alone, so there were as many programs as programmers.
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TABLE 8. Error-prone scenario analysis (4).

where P is the total number of programmers who submitted
code for the task. POC describes how common a defect is, that
is, how likely it is to be introduced by different programmers.
POC in an experiment is an estimator for the probability of
the defect being inserted by a randomly chosen programmer
from the population sampled for the experiment.
Coincident Defect: a defect whose Occurrence is two or

more, i.e. that was introduced by at least two programmers.

2) METRICS FOR DEFECT EARLY FORECASTING
a: SENSITIVITY TO DEFECT FORMS (SDF)
Sensitivity to Defect Forms (DF) refers to the proportion of
defect forms that are correctly forecast, out of all the defect
forms found in the programs, given a specific piece of soft-
ware requirement and a group of programmers. As defined
before, a defect form is the manifestation of a human error.
Essentially, SDF describes effectiveness in predicting human
errors. SDF is calculated as:

SDF =
Numberof correctlyforecasted DF

Number of all DF
× 100% (2)

b: TRUE POSITIVES (TP)
are those defect forms that are forecast and really introduced
by at least one programmer. We call their number TP.

c: FALSE POSITIVES (FP)
are those defect forms that are forecast but not introduced
by any programmer. We call their number FP. FP is also
important, since these predictions would encourage effort to
be spent in preventing errors that did not occur.2

d: PRECISION
is the proportion of forecast defect forms that actually occur:

Precision =
TP

TP+ FP
× 100% (3)

2We note that the ’’false positive predictions’’ observed in an experiment
are not necessarily defect forms that would never occur; and predictions
of defects that are rare enough not to occur in a specific study, but fre-
quent, and severe enough when present, to entail serious expected loss, may
well be valuable. Estimates of specificity (true negative rate) and, for that
matter, of sensitivity(recall, hit rate, or true positive rate) in an experiment
are inevitably limited by which defects do occur in the experiment. This
limitation is not specific to HEDF or to the study we report.
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TABLE 9. Error-prone scenario analysis (5).

e: SENSITIVITY TO DEFECT OCCURRENCE (SDOC)
SDOC refers to the proportion of the occurrences for the
forecast defects out of the occurrences for all the defects.
This measure is an estimate of the expected fraction of defects
that this method can forecast in the development of a single
program. SDOC is calculated as:

SDOC =
Sum(OCTP)
Sum(OCi)

× 100% (4)

where OCTP is the number of Occurrences for a correctly
forecast defect, Sum(OCTP) is the sum of correctly forecast
defects; OCi is the number of occurrences for a defect i, while
Sum(OCi) is the sum of occurrences of all the defects.

3) METRICS FOR POTENTIAL BENEFITS FOR DEFECT
PREVENTION
The value of defect early prediction is greater if it is effective
on against defects that are likely, and/or that are difficult to
eliminate, once accidentally created. We propose a metric to
reflect these dimensions of the benefit.

a: AVERAGE PERSISTENCE OF FORECAST DEFECTS (APFD)
APFD represents how likely the defects that were forecast are
to persist through successive versions of a program, once they

have occurred. APFD is proposed to estimate how difficult
the forecast defects are for programmers to debug, once the
defects are introduced into programs. APFD is calculated as:

APFD =

∑I
i=1DPi
I

(5)

where DPi is the Degree of Persistence (DP) of the defect i,
and I is the total number of defects forecast by HEDF. DPi is
in turn estimated by (6).

DPi =
Ni∑
n=1

VRn,i
Vn,i

/Ni (6)

where Vn,i is the total number of versions submitted by pro-
grammer nwho introduced the defect i; VRn,i is the number of
these versions in which the defect i is still present; Ni is the
total number of programmers who introduced defect i. The
fraction VRn,i

Vn,i
describes the extent to which the defect i tended

to remain in the versions generated by programmer n, named
the Persistence of defect i for programmer n (Pn,i).

b: AVERAGE SAVING OF DEBUGGING EFFORT (ASDE)
ASDE is proposed for estimating how much debugging
effort HEDF can save for one programmer. ASDE is

3638 VOLUME 11, 2023



F. Huang, L. Strigini: HEDF: A Method for Early Forecasting Software Defects Based on Human Error Mechanisms

TABLE 10. Error-prone scenario analysis (6).

calculated as:

ASDE =
∑

n
SDEn/N (7)

where SDEn is the Saving of Debugging Effort for pro-
grammer n, and N is the total number of programmers who
introduced one or more defects. SDEn is in turn estimated by
Formula (8):

SDEn =
V ′n
Vn
× 100%

=

∑
k V
′
n,k

Vn
× 100% (8)

where Vn is the total number of successive versions submit-
ted by programmer n; V ′n is the number of versions that
would not have been needed (the effort saved) if the HEDF
forecasting results had been provided and used to avoid the
defect. V ′n,k is the number of iterations that directly precede
the fixing of a predicted defect k . We counted V ′n in a
conservative manner: when one or more predicted defects are
fixed concurrently with an unpredicted defect in a version,
all those iterations that directly precede this version are not
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TABLE 11. Error-prone scenario analysis (7).

counted in the estimate of saving, V ′n. In the special case
where a programmer submitted only 1 version with defects,
we assume the programmer’s debugging effort are all con-
tained in that version: 1) if the defects in this version are all
predicted, we assume the Saving of Debugging Effort is 1; 2)
if this version contains any unpredicted defect, we assume the
saving is 0.

For instance, a programmer submitted 6 versions in total,
and his final version is correct. Our code inspector found that
3 defects (F2, F6, and F15) were present and were removed
across these 6 versions. The programmer’s debugging history
was recorded as the sequence ‘‘N F15 F2 N N F6’’ shown

in Figure 4, where N denotes a version in which no defect
(present in the previous version) is fixed, while a defect ID
(e.g. F15 in Figure 4) indicates this defect is fixed in the
corresponding version (e.g. F15 is fixed in the 2nd version).
F2 and F6 were predicted defects while F15 was unpredicted,
therefore, only the 4th and 5thversion which directly preceded
F6 were counted as saved debugging effort–V ′n.

c: IMPROVEMENT ON ACCEPTANCE RATE (IAR)
Acceptance Rate (AR)is defined as the percentage of
programmers who got their submissions accepted in the
programming contest (meaning that their programs were
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FIGURE 4. An example programmer’s debugging history.

TABLE 12. Statistics for the Complexity metrics of the ‘‘jiong’’ programs.

judged correct, as described in Section 5) among the total
number of programmers (P) who submitted code on the task.

Improvement on Acceptance Rate concerns how many
more programmerswould produce correct programs if action-
able preventions were derivable from the defects forecast via
HEDF. IAR in this study is estimated in (9):

IAR=
AC ′

P
× 100% (9)

where AC ′ is the number of programmers who failed to
get their submissions accepted in the programming contest
(that is, their programs were incorrect), but would have their
programs accepted if HEDF forecasts guided effective pre-
vention actions. A program is counted towards the total AC’
only if all of the defects introduced by a programmer are
covered by the set of HEDF forecast defects AND all of
the corresponding forecasts have actionable meanings for
defect prevention. For instance, suppose that a programmer
introduced two defects and failed to get his submissions
accepted, and one of his defects is in the set of HEDF forecast
defects; then, this programmer does not count towards AC ′.
For another example, suppose that a programmer had one
defect in his/her submissions and failed to get the submissions
accepted; this defect is in the set of HEDF forecast defects;
but the forecast does not imply actionable strategies (e.g. due
to lack of knowledge for F17 in Table 12), and thus does not
lead to preventing the defect; this programmer does not count
towards AC ′ either.
TheImprovement Ratio for Acceptance Rate (IRAR) is

calculated in (10):

IRAR=
IAR
AR
× 100% (10)

V. THE PROGRAMMING DATA
A. THE TASK AND ITS SUITABILITY
As the first fundamental step to establish and test a new theory
that involves SE and psychology, it is important to select a
suitable task that is representative for programming perfor-
mances and at a controllable scale. Because our research aims
to test a new causal theory, we believe it is more suitable to
test it in a controlled-experiment fashion, rather than field
observations in industrial settings that have many confound-
ing factors threatening to the internal validity.

We selected the ‘‘jiong’’ problem to conduct the case study,
due to two reasons. The first reason is that the first author had
done an exploratory study on this task, and it was intriguing
for us to see what performance in forecasting other users of
HEDF would achieve. The second reason is that the program-
ming data of the ‘‘jiong’’ problem were already made public
in another experiment examining the correlations between
personality traits, cognitive styles and the number of defects
a programmer introduced [58]. The defects were collected by
an independent code inspector Reusing these data wouldmin-
imize the researchers’ bias, and allow any interested readers
to do replicated trials and compare their forecasting results
with the results presented in this paper.

We consider the ‘‘jiong’’ task comparable to a piece of
requirement for a module or a story in agile development.
According to Rasmussen’s classification of ‘‘performance
levels’’ (skill-based, rule-based and knowledge-based level)
[66], which is widely accepted in human error studies [54],
the ‘‘jiong’’ task contains sub-tasks at all the three perfor-
mance levels: skill-based, rule-based and knowledge-based
levels.

Therefore, before the case study, we did a rough estimation
by offering the ‘‘jiong’’ task to a group of 15 professional
software engineers. Six of them (40%) submitted within
2 hours a program that was complete enough to run, while
9 of them did not finish it. Overall, these professional engi-
neers performed no better than the programming contestants
did on the ‘‘Jiong’’ task. Among the 55 contestants in our
study, 44 submitted a correct version, with an acceptance rate
72.7%. This is just a rough estimation, nevertheless, the esti-
mation corroborates for this special case the well-established
theory in programming cognition: an ‘‘expert’’ perform no
better than ‘‘novice’’ if a task is completely new to the expert
and he has no pre-existing knowledge and skills to migrate
to this task [58], [72]. To complete the ‘‘jiong’’ task, one
needs to ‘‘observe the structure features of ‘‘jiong’’ words
and extract the mathematical model that describes the rela-
tionships between width, height and nesting level’’. This is
a new feature of the task that requires ‘‘knowledge-based’’
performances with considerable mental effort for anyone
who had never been exposed to the ‘‘jiong’’ task, no matter
whether he/she has 10 years’ industrial experience or is an
undergraduate student.

In summary, for studying human error mechanisms in
controlled experiments, the criteria for selecting a suitable
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programming task are not simply ‘‘large’’ vs ‘‘small’’, nor
‘‘experts’’ vs ‘‘novices’’. Instead, we consider whether the
task contains functional features that cover all of Rasmussen’s
performance levels for the participants, because different
levels of performance determine the different mechanisms
of human errors [54]. The ‘‘jiong’’ task met these criteria,
making it suitable to the research purposes of the case study.

B. THE PARTICIPANTS
The participants were 55 undergraduate students in Computer
Sciencewho submitted programs for the ‘‘jiong’’ requirement
in a context of a programming contest.

C. THE DATA COLLECTION PROCESS
The programming data was collected through a programming
contest that was similar to the ACM International Collegiate
Programming Contest (ACM-ICPC). The contest was held
in the form of on-site testing in a computer room. Each
contestant was assigned one computer.

There were strict precautions against cheating: 1) each
room was monitored by two supervisors to prevent the con-
testants from copying others’ code; 2) the programming envi-
ronment was cut off from the external internet to prevent the
contestants from learning or copying code from the internet.
With such precautions, and in a competitive contest where
the contestants were highly motivated to win, we believe that
the contestants worked independently; any similarity between
errors by different contestants is unlikely to be due to copying
or collaborating.

The contest scores were announced in real time by the
Online Judge System, which was similar to the system used
in the ACM-ICPC. Each contestant can first compile and
run the program in his/her local environment, then submit it
to the Online Judge System on a server. For each problem,
contestants can submit to the Online Judge System as many
versions of programs as they wish, until the system ‘‘accepts’’
one version or the contestant quits. After each submission, the
Online Judge System fed back to the contestants these types
of results:

Accepted (AC). The output of the program matches what
the Online Judge expects.

Wrong Answer (WA). The output of the program does not
match what the Online Judge expects.

Presentation Error (PE). The program produces correct
output matching the Online Judge’s secret data, but does not
produce it in the correct format.

Runtime Error (RE). This error indicates that the pro-
gram performs an illegal operation when running on the
Online Judge’s input. Some illegal operations include invalid
memory references such as access outside an array boundary.
There are also a number of commonmathematical errors such
as ‘‘divide by zero’’ error or ‘‘overflow’’.

Time Limit Exceeded (TL). The Online Judge has a
specified time limit for every problem. When the program

does not terminate within that time limit, this error will be
generated.

Compile Error (CE). The program does not compile with
the specified language’s compiler.

The programming contest encouraged the contestants
to compile, debug and fix the defects on their comput-
ers before submitting to the Online Judging System by a
rule on penalty time: each unaccepted submission produced
20 minutes’ penalty time. The penalty time affects the rank
list: if two contestants solved the same number of prob-
lems, the one with less penalty time ranks higher on the
list.

A software engineer independent of this paper performed
code inspection to identify the defects introduced by the
contestants on the ‘‘jiong’’ task. As the contestants were
allowed to debug and re-submit their programs, each person
can submit more than one version. For each contestant, the
code inspector was asked to review all the versions he/she
submitted, and record all of the defects they contained. This is
because we were concerned with the error-proneness of pro-
gramming activities; hence, we were interested in all of the
errors a contestant made during the entire process of solving
the ‘‘jiong’’ problem. However, for each contestant, each
defect was counted only once in the statistics that follow, even
if it appeared in several versions.

D. THE ACTUAL PROGRAMMING DATA
A total of 55 programmers submitted a total of 192 programs
for the ‘‘jiong’’ problem, because some programmers sub-
mitted more than one version due to defects. The complexity
metrics of the programs are shown in Table 12.

The defects found in the code inspection are summarized
in the first four columns of Table 13. The code inspector
found that 22 defect forms (described in the second column
in Table 13) constituted the set of all defects forms in the
case studies. Among the 22 defect forms, 9 were Coincident
Defects.

The Occurrences (OC) of a defect (shown in the third
column of Table 13) is the number of programmers who
introduced that defect in at least one version of their respec-
tive submissions. The sum of the Occurrences for the set
of all defects (sum of the third column of Table 13) is
70. The sum of the Occurrences for coincident defects
is 57.
The Prevalence of Occurrence (POC) of a defect (in

the fourth column of Table 13 is the percentage of partici-
pants who introduced the corresponding defect. For instance,
defect F2 ‘‘the blank line after the ‘jiong’ is missing’’ was
introduced by 23 programmers, that is, 42.1% of the total
55 contestants.

VI. THE CASE STUDY
The study aimed to explore whether people at various exper-
tise levels in software quality assurance and CS could forecast
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TABLE 13. The actual defects (1st - 4th COLUMN) and defect forecasting data (5th-14th COLUMN).
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TABLE 14. The background and experience of the independent analysts.

the defects without using HEDF, and how many they could
forecast without HEDF.

Four participants (Analysts #1, #2, #3, #4) independent of
this paper served as the users of HEDF. Since using HEDF
mainly involves Error-prone Scenario analysis, we call the
users of HEDF ‘‘analysts’’ in the remaining of paper. The first
author served as the trainer of HEDF.

A. THE ANALYSTS
The information on the backgrounds of the analysts were
collected at the beginning of the study, using a survey shown
in Part I of Appendix A. The backgrounds and experience of
the analysts are shown in Table 14.

We consider analysts 1, 2, 3 and 4 are representative at
different expertise levels: expert, high, mediate and entry-
level, respectively. The analysts are independent of this study
and had never been exposed to the ‘‘jiong’’ problem nor
knowledge of human errors in psychology.

B. THE PROCESS
The study was conducted in the following process:

Step 1. The ‘‘jiong’’ requirement was provided to the
analysts. The analysts were asked to forecast, based on their
personal experience, the possible defect forms in the pro-
grams written by first-grade undergraduates who just com-
pleted their C language course. Step 1 was fulfilled by filling
Survey 1 in Appendix A. There was no time limit, but the
analysts were asked to try their best to predict as many defects
as possible.

Step 2.The first author of this paper provided the ana-
lysts with a training session through Zoom Cloud Meetings.
The training session lasted for 75 minutes. The training was
given by presentation, focusing on Human ErrorMechanisms
described in Section III.B and the defect forecasting process
described in Section III.C. No example of defect nor human
error concerning the ‘‘Jiong’’ problem was given.

Step 3.The analysts were asked to forecast defects using
HEDF. The time limit for the prediction is 45 minutes.
The analysts were asked to only record the unique defects
newly forecast by HEDF. They were encouraged not to

FIGURE 5. An example HEM and EPS for HEDF forecast.

FIGURE 6. An example results (Analyst #1) of defect forecasting based on
personal experience.

repeat those defects which had already been predicted in Step
1 using personal experience, unless one achieved substantial
improvement in forecasting accuracy with respect to defect
forms and/or locations. Seven sheets printed with the seven
diagrams were distributed to the analysts, with an example
shown in Figure 5. Each sheet contained aHuman ErrorMode
and EPS in Table 1, represented by the notations described in
Table 2. These sheets were provided to the analysts because
the descriptions on HEM and EPS can be stored in a database,
and notations for EPSA can also be implemented as a tool
in the near future, serving like a special ‘‘dictionary’’. The
analysts would not need to remember every detail of these
diagrams in a limited time, they can check and review the
‘‘dictionary’’ anytime they needed. However, we encouraged
the analysts to use the sheets to forecast and record defects.
In any case when they did not want to draw diagrams, they
were asked to refer to the Human Error Modes and EPS
during the forecasting session, and describe how they forecast
the defects.

C. THE DATA OF DEFECT FORECASTING
Each analyst produced two sets of results of defect forecast-
ing: the defects forecast based on Personal Experience (PE),
and the defects forecast using HEDF.
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FIGURE 7. An example result (Analyst #3) of defect forecasting using
HEDF.

TABLE 15. The defect forms forecast by all the analysts using HEDF.

Among all the analysts, Analyst #1 provided the best fore-
casting results; the original outputs and a translated version
(by the first author) are shown in Figure 6. Analyst #1 is a pro-
fessor and an expert consultant with 20 years of experience
in industrial software quality assurance and has reviewed over
8000 real defects introduced by other people according to his
responses to the survey. An example of HEDF forecasting
results is shown in Figure 7.

The defects that were forecast in the first round (with-
out HEDF) and really occurred (NPE&OC) are detailed
in the 5th, 7th, 9th, and 11th columns, labeled ‘‘PE’’,
of Table 13 The defects forecast byHEDF and really occurred
in one or more programmers’ submission (s) (NHEDF&OC)
for the Case Study are shown in the 6th, 8th, 10th and
12th columns, labeled ‘‘HEDF’’, of Table 13. The types
of defects and the human error modes contributed to both

TABLE 16. The summary of defect early forecasting data.

rounds of forecasting by all the analysts are summarized in
Table 15.

The summary of the defect early forecasting data is
shown in Table 16. The results of the defect forecast-
ing metrics of the Application Case Study are shown in
Table 17.

VII. RESULT ANALYSIS
This section answers the research questions based on an
integrated analysis of the results obtained in the case study.
RQ1: CAN HEDF FORECAST THE FORMS AND LOCA-

TIONS OF SOFTWARE DEFECTS, BEFORE CODE IS
PRODUCED?

Yes. By using HEDF, all the analysts involved in Case
Study successfully forecasted the exact locations and forms
of defects solely based on requirement, without access to any
code. In comparison, without the guidance of HEDF, only
the professor who had 20 years of experience in industrial
consulting on software quality assurance forecasted a small
proportion of true positives; all the other analysts at high,
intermediate and entry expertise levels did not forecast any
true positives. This suggests that at requirement stage fore-
casting the exact forms of defects developers may introduce
to code is extremely challenging (yet significantly beneficial,
when such forecasts allow defect prevention), it could hardly
be achieved solely based on one’s experience without special-
ized knowledge and guidance provided in HEDF.

HEDF seems very beneficial for analysts at various levels
of experience in computer science (high, intermediate and
entry levels). Analyst #2 (PhD in CS), 3 (Master in CS) and 4
(Bachelor in CS) have considerable experience in software
development (4 years) but little experience in software quality
assurance. They all made more than 5 forecasts based on
their previous experiences; however, none of these defects
were really introduced by programmers (Precision 0). Using
HEDF, they were able to forecast 3-4 true positives, and
reached very high precision (66.7%-100% of their forecasts
were defects that did occur). On average, HEDF enabled
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them to forecast 41.7% ((4+3+3)/8) coincident defects, and
captured an average of 36.2% defect occurrences. These are
noticeable improvements compared to 0 true positive based
on personal experience.

HEDF also seems very helpful for experts in software
quality assurance in improving their accuracy and precision
of defect forecasting. Analyst #1, despite vast experience
(as a professor in a research university with over 20 years’
consulting experience in software quality assurance), had
3 true positives in the first-round forecasting based on his
experience, with a precision of 33.3%. In the round using
HEDF, he forecast 3 new true positives, and detailed the
forms for the 3 true positives forecast in the first round.
For instance, based on experience, he successfully pointed
out that someone may forget the blank line, but he found it
difficult to explain how he reached this forecast. Later using
HEDF, he drew a perfect diagram (almost the same to the one
in Table 5 ) detailed how the contexts of ‘‘jiong’’ requirement
matches to the ‘‘post-completion error’’ error-prone scenario,
and (in his own description) ‘‘reached the ‘aha’ moment that
transformed his intuitive judgment into a structural reasoning
on why and how he reached this forecast’’. Excluding those
forecasts with improved accuracy, only counting new true
positives, HEDF has improved analyst 1’s performances by
100% in True Positives, Precision, and Sensitivity to Defect
forms. With the help of HEDF, he was able to forecast 75%
(6/8) coincident defects, and 65.7% occurrences of all the
defects.
RQ2: HOW EFFECTIVE IS HEDF IN FORECASTING

SOFTWARE DEFECTS?
Among the 22 total defect forms present in the code

delivered, 7 (31.8%) were forecast by HEDF. We found
it impressive that by using information about human error
mechanisms the analysts were able to predict the accu-
rate forms of these seven defects just on the basis of the
requirement specification and design analysis. This seems
a much more valuable result than can be achieved by other
approaches such as program metric-based models.

An interesting finding is that HEDF was especially effec-
tive in forecasting the high-probability defects. The 31.8%
forecast defect forms accounted for 75.7% of the total defect
occurrences introduced by all the programmers. The Occur-
rence suggests how common the predicted defects are, that
is, by implication, how useful it is to take measures to pre-
vent them, both for standard software development and for
multiple-version development, as used for some critical appli-
cations [73], where avoiding common defects is the main
concern.

Another interesting finding is that these 31.8% defect
forms constitute 93.0% of the Occurrences of Coincident
defects. This suggests that HEDF has significantly captured
human error mechanisms widely shared among the partici-
pant programmers.

In summary (Table 18), HEDF has reached an average Pre-
cision 79.2% (Max 100%,Min 66.7%, SD 14.4%), an average
Sensitivity to Defect Forms 18.2% (Max 27.3%, Min 13.6%,

TABLE 17. The results of the defect forecasting metrics.

TABLE 18. The Statistics for the metrics of defect early forecasting
performances.

SD 6.4%), average Sensitivity to Defect Occurrence 43.6%
(Max 65.7%, Min 10%, SD 24.3%). These are impressive
achievements, in comparison to those predictions without the
knowledge and application of HEDF, further detailed in RQ3.
RQ3: TOWHAT EXTENT CANHEDF IMPROVEUSERS’

PERFORMANCES IN DEFECT EARLY FORECASTING?
We are interested in how many extra new defects can

be forecast by HEDF, in addition to one’s own experience.
For this study, HEDF performances are compared to defect
forecasting based on Personal Experience in Table 14.

With HEDF all four analysts, at various expertise levels,
significantly and consistently improved their performance,
adding on average 4 newTrue Positives per analyst, compared
to an average of 0.8 True positives per analyst without HEDF.

If this study were indicative of general performance,
it would seem that only an analyst with an extremely high
level of expertise in software quality assurance could fore-
cast, at the requirement stage, a portion of specific program
defects that is comparable to what HEDF is capable of. In our
case, Analyst 1 is a Ph.D. and professor in software qual-
ity assurance, and with over 20 years’ industrial consulting
experience. He was able to forecast 3 true positives, while
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TABLE 19. HEDF performances compared to Defect forecast based on
Personal Experience.

TABLE 20. Descriptive statistics for the Persistence of all the defects.

people with little experience in software quality assurance
(Analyst 2, 3 and 4) had zero true positives, even though
they had considerable experience in software development
(≥4 years). By using HEDF, Analyst 2, 3 and 4 were able
to forecast 3 or 4 true positives, which reached or exceeded
what Analyst 1 achieved using personal experience, that is,
20 years’ experience in software quality assurance, having
reviewed over 8000 defects introduced by other people in
over 80 diverse projects. Even for the most experienced ana-
lyst, HEDF advanced his performance by 100%.
RQ4: WHAT ARE THE POTENTIAL BENEFITS OF

HEDF FOR DEBUGGING AND DEFECT PREVENTION?
To answer this question, we first evaluate how difficult the

forecast defects are for the programmers to debug, once the
defects are introduced into programs.

1) Average Persistence of Forecast Defects (APFD)
The descriptive statistics Persistence for all the defects are

summarized in Table 20.

FIGURE 8. The persistence of HEDF forecast defects compared to that of
non-forecast defects.

The results for the Average Persistence of HEDF forecast
defects is shown in Figure 8. Among the forecast defect
forms, F1 is the easiest for debugging (DP=0.50) and yet
persists through a half of programmers’ debugging process,
while F17 is the most difficult for debugging and remains
until the final versions (DP=1.00). Overall, theAverage Per-
sistence of Forecast Defectsis 0.79, which means these fore-
cast defects were highly persistent through the debugging
process, contrasting to the average persistence 0.45 for the
non-forecast defects. This suggests that our forecast defects
tended to be more difficult for the programmers themselves
to debug than other defects, as shown in Figure 8.

2) Average Saving of Debugging Effort (ASDE)
The result led to an estimate that HEDF would have saved

a programmer 46.2% debugging effort on average (Min-
imum = 0%, Maximum = 100%, Standard Deviation =
31.4%).

3) Improvement on Acceptance Rate (IAR)
Results show that HEDF could also significantly increase a

programmer’s chance of submitting a correct version. Among
the total of 55 programmers, 40 programmers got their final
versions accepted by the Online Judging System, with an
Acceptance Rate of 72.7% (40/55). Among the 15 pro-
grammers who failed in submitting any correct versions,
13 programmers’ defects could have been prevented if the
HEDF forecast defects were provided, because all of their
defects belonged to the set of HEDF forecast defects. There
were 2 programmers having a defect that were forecast by
HEDF but could not be prevented because of ‘‘lack of knowl-
edge’’. This Acceptance Rate could be increased by 23.7%
(IAR), up to 96.4% (53/55), if the HEDF were used to avoid
or remove predicted defects. The Improvement Ratio for
Acceptance Rate (IRAR) is 32.6%.

VIII. DISCUSSION
A. CONTRIBUTIONS
This paper proposed an approach to forecast the locations
and forms of software defects on the basis of human error
mechanisms, before code is produced. In this study, we were
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able to predict the locations and forms of 75.7% of defect
occurrences, and 31.8% of the total defect types, in the
‘‘jiong’’ example. 75% of the defects actually present in
the 55 programs were predicted. Furthermore, these pre-
dicted defects were highly persistent through the debugging
process: the predicted defects persist through 79% of the
debugging process, contrasting to 45% for the non-predicted
defects. Most importantly, the prediction was achieved at the
requirement phase, using only the information of software
requirement specification and the programmers’ background
knowledge. HEDF could save 46.2% of the debugging effort,
using our indicative measure.

The proposed approach demonstrated impressive value
in forecasting the locations and forms of software defects.
We point at two examples. According to standard defect
prediction approaches such as program-metric based models,
or one’s intuitive judgment, ‘‘printing a blank line after each
‘jiong’ word’’ should be the location where the defects are
least likely to be introduced, since it is the simplest and small-
est piece of requirements. The fact is, however, that 41.2%
participants introduced the same defect at this place, which
HEDF predicted to be a high-risk location: an instance of a
scenario liable to trigger ‘‘post-completion error’’ (Table 5 ).
Another example: based on complexity metrics or intuitive
judgment, one may anticipate that the location in a program
where the relation between the height of a ‘‘jiong’’ word and
its nesting level is dealt with (i.e. Step 4 of Solution A in
Table 4 ) is error-prone, as this is a relatively difficult task
point involvingmathematical modeling. However, one cannot
explain why and how the error takes the form of h=8n (while
the correct expression would be h=2n+2) rather than any
other forms, and how multiple programmers could make the
exact same error at this place. Using the Error-Prone Scenario
Analysis shown in Table 11, one can clearly forecast why and
how this location would trigger a defect in this specific form.

B. RELATED WORK
As discussed at the beginning of the paper, the proposed
approach, HEDF, is fundamentally different from ‘‘defect
prediction’’ performed after code has been produced. HEDF
is used in requirement phase (and/or design phase), which is
two-three steps earlier than ‘‘defect prediction’’ models.

There are two series of studies relevant to the proposed
approach of this paper. The first is Anu, Hu, Carver, Walia,
and Bradshaw’s research, which proposes a human error
taxonomy for requirement review [62] and training people
to write requirements specifications [63]. The ‘‘faults (or
defects)’’ in their studies are the ‘‘manifestation of an error
recorded in a document (e.g. requirements specification or
use case)’’ [63]. Though the authors did not explicitly clarify,
a ‘‘fault in a requirement document’’ commonly refers to an
inappropriate specification according to requirements qual-
ity criteria such as incorrectness, inconsistency, incomplete-
ness or ambiguousness in Requirement Engineering [74],
[75], [76]. HEDF is distinguished from the studies in [62]
and [63]:

• The ‘‘defects’’ in HEDF are the ‘‘incorrect or miss-
ing steps, processes, or data definitions in a computer
program; whereas ‘‘faults’’ in [62] and [63] are the
inappropriate specifications in a requirements document
according to existing requirements quality criteria.

• The ‘‘human errors’’ of concern in HEDF are the errors
committed by software developers in implementing a
design or specification; whereas the ‘‘human errors’
in [62] and [63] are the errors of people who write a
requirements document.

• HEDF focuses on forecasting the locations and forms of
defects developers may later introduce to code, on con-
dition that the requirements are already appropriately
specified according to traditional requirements quality
criteria.

The second set of relevant works are Huang (one of the
present authors) et al.’s previous studies on software defects
prevention [9], [57]. The former study [9] proposes a human
error taxonomy to identify the root causes of software defects.
Note that Root Cause Analysis (a key process activity in
Capability Maturity Model Integration (CMMI) Level 5) is a
retrospective process, that is, investigating what factors may
had caused a defect, after a defect has already been introduced
and found. In contrast to this, HEDF forecasts defects that
may be introduced by developers in future. The work [57]
presents a method, ‘‘defect prevention based on human error
theories’’(DPeHE), for improving software developers’ cog-
nitive ability to prevent software defects based on the knowl-
edge of human errors. The users of the DPeHE reflected that
the method has promoted their knowledge and awareness
in defect prevention, while difficulties exist in relating the
psychological theories to their specific contexts of software
development [57]. That is the challenge being addressed in
HEDF by the new concept ‘‘Error-prone Scenario’’ and cor-
responding process of ‘‘Error-Prone Scenario Analysis’’. In a
world, DPeHE [57] is a cognitive trainingmethod for promot-
ing software engineers’ general awareness and knowledge of
human errors, while HEDF forecasts the specific defects that
may be introduced for a specific piece of requirements of a
project.

In summary, HEDF is a unique innovative method that
forecasts the exact locations and forms of defects may be
introduced by developers, before code is produced, based on
the new ‘‘Error-Prone Scenario Analysis’’ process built on the
psychological theories on cognitive errors.

C. COST-EFFECTIVENESS
An undoubted cost of HEDF, just like any other software
review methods, is that it requires the analysts to receive
training on the method. In our case study, the training session
was 75 minutes, which seemed to have achieved adequate
effects. Note that in the case study we only observed the
effects on one forecasting session lasting for 45 minutes,
which does not mean the training only benefits a performance
of 45 minutes. Training is a one-off cost. Once an analyst
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masters the method after the training, he/she can reapply the
method in many projects in one’s career life time.

The overall cost-effectiveness of the approach is deter-
mined by the sum of the costs of analysis (which would
be determined by the size and complexity of the software
specification to be examined) and the cost of the preventa-
tive measures adopted, while the effectiveness is measured
by the cost reductions achieved by the approach. The cost
reductions involve 1) the cost of finding and removing those
defects that are present in the code, but the proactivemeasures
would instead avoid altogether; or, 2) for defects that are not
avoided, the cost of finding the defects without the benefit
of the prediction that helps to focus inspection and testing;
or 3) the cost of the defects remaining in the software in
operation. This latter cost (of residual defects in the deployed
software) involves, the cost of in-operation removal of the
defects, plus client aggravation, for much commercial soft-
ware, and the harm, potentially much greater, caused by
failures in operation.

HEDF does not promise to forecast all potential defects,
but is targeted at forecasting the common defects caused
by human cognitive error mechanisms, at early stages of
software development, with sufficient accuracy to allow
actionable suggestions for prevention. Preventing defects is
especially significant for safety-critical software, as once a
defect has been introduced into a program, it is hard to guar-
antee the defect would be found and fixed, while a residual
defect could lead to a catastrophic accident.

D. LIMITATIONS AND FUTURE STUDIES
The experimental study of this paper is limited to a small-
sized programming task, comparable to a component in a
larger development project. The focus here is developing the
fundamental theories and the approach for the first human-
error-based defect early forecast method, and validate it at
the laboratory testing stage. The requirements used in the
study covered skill-based, rule-based and knowledge-based
activities, and involved requirement understanding, program
design and coding. Trials in industrial development settings
could both assess the value of HEDF in those specific envi-
ronments and enrich the pool of human error modes.

The other future work is to develop a tool, including a
database of Human Error Modes, Error-prone Scenarios, and
Error-Prone Scenario Analysis notations, for aid analysts in
performing defect early forecasting using HEDF.

E. IMPLICATIONS FOR DEFECT PREVENTION
Software defect early forecast based on human error mecha-
nisms appears a very promising technique: once the location
and form of a software defect can be forecast before the
program is produced, the defect can be avoided or prevented
in a real sense.

Once the error-prone locations are simply flagged to devel-
opers (architects, programmers, code reviewers, testers) in
advance, they can allocate more attention resources to these
locations, thus adjusting the cognitive process to prevent or

detect the errors. For instance, with the information provided
by our Error-Prone Scenario Analysis ES6, one can simply
add one notice in a Defect Prevention Strategy like ‘‘Correct:
printing a ‘‘jiong’’ word once a user enters the nesting level
of the word. Wrong: the ‘‘jiong’’s are printed together only
after all of the inputs have been entered.’’ Such a message
is highly actionable and would instantly prevent developers
from committing this error.

HEDF produces not only information on the error-prone
locations in the program but also possible error forms, thus
it is helpful for test engineers to conduct focused checks and
design test cases. For instance, with the information provided
by our error-prone scenario analysis ES7, a code inspector
can pay special attention to check whether the mathematical
relation between the height of a ‘‘jiong’’ word (h) and its
nesting level (n) is correctly implemented as h=2n+2. That
is, the analysis would highlight that this is a requirement
for ‘‘exponential’’ programming and thus subject to specific
difficulties.

Another strategy is to prevent defects by improving the
representation of the specifications. For instance, at a place
where post-completion error is likely to happen, software
requirements/specifications can be revised to avoid putting
the sub-goal in the last step, or highlighting the sub-goal in
the last step to capture developers’ attention. For instance, the
requirement writer could highlight (e.g. using bright colors
and/or bold font) the places of post-completion tasks in the
requirement documents (‘‘printing a blank line after each
word’’ in the ‘‘jiong’’ case), since visual cues are an effective
way to reduce post-completion errors [77]. The contribution
here is to tell the writer exactly what should be highlighted to
counteract the readers’ error-proneness.

IX. CONCLUSION
Accuracy in forecasting an event often depends on the extent
to which the causal mechanisms underlying the event are
understood. This paper proposes an approach, HEDF, to fore-
cast software defects early by considering the human error
mechanisms that cause them. Compared to established pre-
diction models relying on the code that has already been
produced, the proposed HEDF approach emphasizes iden-
tifying, at requirement and/or design stage, scenarios that
tend to trigger human error modes which psychologists have
observed to recur across various activities. HEDF emphasizes
detailed forecasting of specific forms of defect at specific
locations in a program, before the code is produced, aimed
to proactively prevent software defects.

Our case study, which involved 55 programmers and four
representative analysts, suggested that defect early forecast-
ing is very challenging without specialized training: only
an extremely experienced expert forecast a small proportion
of the defects with a high false positive rate while none
of the analysts at high, intermediate and entry levels fore-
cast any true positive. HEDF has significantly and consis-
tently improved the performance of defect forecasting for
all users at various expertise levels (a minimum of 100%
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ratio of improvement on precision and Sensitivity to defect
forms). The results suggest that HEDF is highly effective in
forecasting software defects at the early phases of software
development.

The forecast results of HEDF can be directly used to pre-
vent defects from occurring, because the exact locations and
forms have been pinpointed before programming. A rough
estimate suggests 46% average savings in debugging or test-
ing effort on the example program in this study. This study is
limited to a small-sized programming task in a non-industrial
setting.

In the future, we plan to explore how to extend the appli-
cation of the approach to large-scale industrial projects, and
develop a tool set to support the forecasting process.
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APPENDIX A
Survey #1 Defect Prediction based on Personal
Experience

This survey aims to explore how software engineers predict
software defects based on personal experience. Your defect
prediction results will be used as data of this research. Your
personal information will remain confidential and anony-
mous. Would you volunteer to participate?

( ) Yes ( ) No Name______ Date ______

Part I. Background

1. Occupation____________ (you can choose multiple
answers; please put your current primary occupation in
the first place)
A. Professor B. Expert in industry C. Young Researcher
D. Professional engineer in industry E. Manager in
industry F. Graduate Student G. Undergraduate Student
H. other (please specify)______

2. Major(s) of degrees________________(e.g. Bachelor
in Computer Science)

3. Years of experience in software development______
4. Please estimate the number of software development

projects that you have participated so far_____
A. 0-10 B. 10-30 C. 30-50 D. 50-80 E. > 80

5. Please estimate the number of defects you have intro-
duced since your first time of programming_____
A. 0-1000 B. 1000-3000 C.3000-5000 D. 5,000-8,000
E. >8,000

6. Years of experience in software verification, val-
idation, and other software quality assurance
activities_________

7. Please estimate the number of projects in soft-
ware quality assurance that you have participated so
far_____
A. 0-10 B. 10-30 C. 30-50 D. 50-80 E. > 80

8. Please estimate the number of other people’s defects
you have reviewed during the course of all the projects
on software quality assurance

A. 0-100 B. 100-1000 C.1000-5000 D. 5,000-8,000 E.
>8,000

9. Years of experience in teaching and mentoring stu-
dents________

10. Years of experience in providing consulting services to
software industry________

11. Years of full-time working in software indus-
try__________

12. Knowledge of Human Errors in Psychology_________

A. None or Scarce B. Basic C. Abundant/expert
Part II. Defect Prediction based onPersonal Experience
The Requirement Specification of the ‘‘Jiong’’ Program-

ming Task is provided here.
Predicted Defects:

â Please predict the defects that undergraduates (1st grader
in Computer Science who have completed C-language)
may introduce, based on the requirement specification
on Page 2 and your experience. Please specify your
predicted defects below:

(A blank page remains here.)
Part II. Reflection on your prediction
Please reflect what sources have led to your prediction

results. Please first label your predicted defects (#1, #2, etc.)
on page 3, and answer the following questions by choosing
multiple answers from the A,B,C, D, or specify in details.

A. I have introduced similar defects in my previous
development experience

B. I have seen such defects in my previous quality
assurance activities, such as software testing, verification,
validation, managing software V&V projects, or reviewing
other people’s projects

C. Intuition: I know it came from my previous experi-
ence, but could not tell where it came from

D. Unknown
Source(s) for Predicted Defect #1 (if applicable):______

Other (please specify)______.
Source(s) for Predicted Defect #2 (if applicable):______

Other (please specify)______.
Source(s) for Predicted Defect #3 (if applicable):______

Other (please specify)______.
Source(s) for Predicted Defect #4 (if applicable):______

Other (please specify)______.
∗∗∗∗You are free to add more below if applicable∗∗∗∗
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