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Moment Risk Premia and Stock Return Predictability

Abstract

We study the predictive power of option-implied moment risk premia embedded in the

conventional variance risk premium. We find that while the second moment risk premium

predicts market returns in short horizons with positive coefficients, the third (fourth)

moment risk premium predicts market returns in medium horizons with negative (positive)

coefficients. Combining the higher moment risk premia with the second moment risk

premium improves the stock return predictability over multiple horizons, both in-sample

and out-of-sample. The finding is economically significant in an asset allocation exercise,

and survives a series of robustness checks.

JEL Classification: G12, G13, C22

Keywords: Moment risk premia; Variance risk premium; Option-implied moments; Stock

return predictability; Predictive regression.
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I. Introduction

The issue of whether the stock market returns are predictable has been one of the

most discussed topics in financial economics. Until a few decades ago, the widespread view

was that market returns are unpredictable if the market is efficient. It has now been

generally accepted that expected returns are time-varying and partially predictable even in

an efficient market (See, for example, Campbell and Shiller (1988), Fama and French

(1989), Kothari and Shanken (1997), and Cochrane (2008)). Ample empirical evidence

have shown that variables including financial ratios and macroeconomic variables can

predict variation of stock returns over business cycle and multi-year horizons. More recent

studies uncover that predictors extracted from options data forecast market returns at

horizons as short as a few months. This paper contributes to the time series predictability

of the stock market returns over short horizons by exploiting new predictive information in

equity index options.

A typical example of a short-term predictor extracted from the option market is the

variance risk premium (see, e.g., Bollerslev, Tauchen, and Zhou (2009)), which has been

shown to strongly predict the market return over horizons up to 6-month. In fact, the

conventional variance risk premium, defined as the difference between the squared VIX and

the realized return variance, is a quasi variance risk premium (henceforth QVRP), since it

not only has a second order component, the pure variance risk premium (henthforth

2

Electronic copy available at: https://ssrn.com/abstract=3120260



PVRP), but also contains higher moment premium components. In this paper, we seek to

investigate the predictability of moment risk premia embedded in QVRP over different

forecasting horizons.

Following Bakshi and Madan (2000) and Bakshi, Kapadia, and Madan (2003), we

compute the risk neutral moments of returns using portfolios of out-of-the-money

European call and put options. Matching the risk-neutral moments with their realized

counterparts, we calculate the pure variance risk premium (PVRP), risk premium on the

third moment of returns (M3RP), and risk premium on the fourth moment of returns

(M4RP), in a model-free fashion.

Using S&P 500 index and its option data from 1990 to 2019, we investigate the

predictability of the market return afforded by the option-implied moment risk premia over

different horizons using predictive regressions. We find that higher moment risk premia,

M3RP and M4RP, are similar to each other but have different statistical features from the

second moment risk premium, PVRP. In particular, PVRP and M3RP are only moderately

correlated and their means have different signs. By contrast, M3RP and M4RP contain

overlapping information and are highly correlated. These evidence suggest that much

information in the higher moment risk premia is unspanned by PVRP and aggregating

them may lead to substantial information losses. As a consequence, there is room for

potential improvement in predicting the market equity return using options by considering

these moment risk premia separately.
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We evaluate the predictability of each moment risk premium using predictive

regressions for 1- to 24-month excess returns on the S&P 500 index both in-sample and

out-of-sample. We have three main findings. First, we find that the predictive performance

of PVRP dominates that of QVRP at all horizons with higher t-statistics and larger

in-sample and out-of-sample R2’s. This confirms that PVRP, a cleaner measure of the

variance risk premium after removing the higher moment risk premia from QVRP, is a

better predictor than the conventional variance risk premium.

Second, we find that while PVRP predicts market returns at short-term, M3RP and

M4RP predict market returns at medium-term. At 6- to 24-month horizons, M3RP

(M4RP) predicts market returns with highly significant coefficients and higher in-sample

and out-of-sample R2’s than PVRP. We show that M3RP remains statistically significant

after controlling for stock return predictors in Welch and Goyal (2008) and short-term

predictors, such as aggregate short interest in Rapach, Ringgenberg, and Zhou (2016),

average skewness in Jondeau, Zhang, and Zhu (2019), and left jump probability in

Andersen, Fusari, and Todorov (2015).

Finally, combining moment risk premia improves both in-sample and out-of-sample

predictability of QVRP over multiple horizons. In particular, the adjusted R2’s of the joint

regressions with PVRP and M3RP are 9.7%, 6.1%, and 4.5% at 6-, 9-, and 12-month

horizons, in contrast to 3.7%, 0.9%, and 0.3% of the univariate regressions with QVRP.

The out-of-sample R2’s of the forecast combination with PVRP and M3RP are 10.9%,
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6.9%, and 4.5% at 6-, 9-, and 12-month horizons, compared with 2.0%, -2.4%, and -7.9% in

the univariate regressions with QVRP. Our main findings survive various robustness checks.

We further examine the economic value of the predictability offered by the moment

risk premia via an asset allocation experiment. The different predictability contained in

moment risk premia can be exploited by forming strategic portfolios. Consistent with our

findings on the predictive regressions, the portfolios formed on PVRP result in higher

certainty equivalent in shorter terms and those formed on M3RP or M4RP result in higher

certainty equivalent in longer terms. In addition, portfolios that combine the predictability

from PVRP and M3RP (M4RP) generate higher out-of-sample utility gains in medium

horizons than those based on QVRP alone.

Our paper is related to the literature that study option-implied moments and

different measures of risk-neutral variance. Martin (2017) proposes an option-implied

variance of simple returns and relates it to the lower bound of the expected market return.

Kozhan, Neuberger, and Schneider (2013) construct a measure of skewness risk premium,

which can be interpreted as the profit to a dynamic trading strategy. In a similar spirit,

Bondarenko (2014) defines an alternative variance risk premium, which is robust to

sampling frequencies and price discontinuities. Another related paper is Ait-Sahalia,

Karaman, and Mancini (2018), who identify a large and time-varying jump component by

comparing the variance swaps rates and the VIX index and postulate a parametric model

that generates the empirical patterns of these price jumps.
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Our paper contributes to the literature on return predictability from the variance

risk premium and components of the variance risk premium. Since the seminal work by

Bollerslev et al. (2009), who show that the variance risk premium predicts market returns

for up to a few months horizon, many papers investigate how different components of

variance risk premium contribute to the return prediction. For instance, Bollerslev,

Todorov, and Xu (2015) decompose the total variance into its continuous and jump

variance components and find that much of the predictability in variance risk premium

may be attributed to the jump tail component. Feunou, Jahan-Parvar, and Okou (2018)

study the predictability of the downside variance risk premium. Kilic and Shaliastovich

(2019) show that the good and bad variance risk premiums can jointly predict stock and

bond returns. Buss, Schönleber, and Vilkov (2019) identify a correlation risk premium in

the variance risk premium and find considerable predictability in the correlation risk

premium. While these papers analyze components within the variance risk premium, we

focus on the higher moment risk premia, which, although embedded in the quasi variance

risk premium, is beyond the second moment risk premium. We show that higher moment

risk premia contain complementary predictive power to the second moment risk premium.

Our paper also contributes to the literature on the predictability of higher moments

of returns. Many papers have shown that skewness is related to future stock returns (see,

e.g., Chang, Christoffersen, and Jacobs (2013), Conrad, Dittmar, and Ghysels (2013),

Amaya, Christoffersen, Jacobs, and Vasquez (2015), and Stilger, Kostakis, and Poon
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(2017)). Most of these studies focus on the individual stock level. An exception is Jondeau,

Zhang, and Zhu (2019), who use a weighted average of realized skewness of individual

stocks to predict market returns. While Jondeau et al. (2019) use realized skewness to

predict returns in the next month, we use the option-implied higher moment risk premia,

which has a natural forward-looking component, to predict the market return over one- to

24-month horizons.

The rest of the paper is organized as follows. Section II defines the QVRP and

moment risk premia. Section III explains the data used in the empirical analysis. Section

IV reports the predictive regression results for the market return on the moment risk

premia, along with a series of robustness checks. Section V studies the out-of-sample

predictability of moment risk premia in terms of out-of-sample R2’s and asset allocation

implications. Section VI concludes.

II. Separating the Moment Risk Premia

The conventional variance risk premium is defined based on the Chicago Board of

Options Exchange (CBOE) VIX index, such as in Bollerslev et al. (2009) and Bekaert and

Hoerova (2014). The CBOE VIX index is a popular measure of investors’ fear, which is

constructed from a portfolio of out-of-the-money S&P 500 index call and put options. If

7
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the call and put options have a continuum of strike prices from 0 to ∞, VIX2
t is defined as,

VIX2
t ≡

2

T − t

∫ ∞
0

Θt(K,T )

K2
dK,(1)

where Θt(K,T ) denotes the time-t value of an out-of-the-money option with strike price

K > 0 and maturity T . Puts are used for low strikes (K ≤ Ft(T )) and calls are used for

high strikes (K ≥ Ft(T )), since out-of-the-money options are more liquid than in-the-money

options. Here, Ft(T ) is the forward price of the underlying asset at time t with maturity T .

As noted by Carr and Wu (2009), when used as the option-implied expectation of

stock volatility, the VIX given by Equation (1) has an approximation error induced by

return discontinuities. As a matter of fact, Kozhan et al. (2013) show that VIX2
t is the

risk-neutral expectation of g(r(t, T )),

VIX2
t =

1

T − t
EQt
[
g(r(t, T ))],(2)

with g(r) ≡ 2(er − 1− r). Here, r(t, T ) denotes the log return on the forward prices from t

to T : r(t, T ) = logFT (T )− logFt(T ). Note that we define r(t, T ) using forward prices

rather than the spot prices to avoid complications with interest rates and dividends, similar

to Bondarenko (2014).1

Let {t, t+ ∆, . . . , t+N∆} be a partition of [t, T ], and denote r(t+ i∆, t+ (i+ 1)∆)

1Returns thus defined are excess returns. In other words, the expectation under which Equation (2) is
evaluated is the forward Q-measure.
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as ri for simplicity. To obtain a coherent realized counterpart for VIX2, we consider the

following expression

QRVT ≡
1

T − t

N∑
i=1

g(ri) =
1

T − t

N∑
i=1

2(eri − 1− ri).(3)

We denote the quantity defined in (3) the “Quasi Realized Variance” (QRV), since the

function g(r) differs from r2 only in higher-order terms. To see this, we apply Taylor

expansion to g(r) and get

g(r) = r2 +
1

3
r3 +

1

12
r4 + o(r4).(4)

Taking the difference between the squared VIX and QRV gives the “Quasi Variance Risk

Premium” (QVRP):

QVRPt ≡ VIX2
t − Et[QRVT ].(5)

We use the word “quasi” to distinguish our definition of the variance risk premium from

those in the prevailing literature. Many papers use different formulations of realized

variance other than QRV as the realized counterpart of VIX2. For instance, Carr and Wu

(2009) use the realized squared simple returns ( 1
T−t

∑N
i=1(eri)2), and Bollerslev et al. (2009)

use the realized squared log returns ( 1
T−t

∑N
i=1 r

2
i ).

9

Electronic copy available at: https://ssrn.com/abstract=3120260



The higher-order terms in Equation (4) are nontrivial when returns can jump.

Empirical literature has presented strong evidence of jumps in the S&P 500 index return,

for example, Bakshi, Cao, and Chen (1997), Andersen, Benzoni, and Lund (2002), Pan

(2002), Eraker, Johannes, and Polson (2003), and Christoffersen, Jacobs, and Ornthanalai

(2012), among others. If the higher-order terms on the right hand side of Equation (4) are

non-negligible, QRV serves as the only consistent realized counterpart of VIX2, regardless

of the presence of jumps. This internal consistency between the option-implied moments

and their realized counterparts in QVRP facilitates the identification of the higher-order

risk premiums within QVRP as follows,

QVRPt ≡VIX2
t − Et[QRVT ]

=
1

T − t

(
EQt [r(t, T )2]− Et

[ N∑
i=1

r2
i ]
)

︸ ︷︷ ︸
PVRPt

+
1

3

1

T − t

(
EQt [r(t, T )3]− Et

[ N∑
j=1

r3
i

])
︸ ︷︷ ︸

M3RPt

+
1

12

1

T − t

(
EQt [r(t, T )4]− Et

[ N∑
j=1

r4
i

])
︸ ︷︷ ︸

M4RPt

+
1

T − t

∞∑
i=5

2

i!

(
EQt [r(t, T )i]− Et

[ N∑
j=1

rji

])

≈PVRPt +
1

3
M3RPt +

1

12
M4RPt.

PVRP, M3RP, and M4RP represent risk premiums associated with the second, third, and

fourth moments of returns, respectively. In the online appendix, we derive the moments of

returns in a jump-diffusion model as an example to illustrate the potential sources of
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higher moments.

The risk neutral components in the moment risk premia can be constructed by

using the quadratic, cubic, and quartic contracts introduced by Bakshi et al. (2003). We

denote them as the implied variance (IV), the implied third moment (IM3), and the

implied fourth moment (IM4):

IVt =
1

T − t
EQt [r(t, T )2] =

2

T − t

∫ ∞
0

1 + log(Ft/K)

K2
Θt(K,T )dK,(6)

IM3t =
1

T − t
EQt [r(t, T )3] =

1

T − t

∫ ∞
0

6 log(K/Ft)− 3(log(K/Ft))
2

K2
Θt(K,T )dK,(7)

IM4t =
1

T − t
EQt [r(t, T )4] =

1

T − t

∫ ∞
0

12(log(Ft/K))2 − 4(log(K/Ft))
3

K2
Θt(K,T )dK.(8)

The realized variance (RV), realized third moment (RM3), and realized fourth moment

(RM4), corresponding to IV, IM3, and IM4, are, respectively,

RVt ≡
1

T − t

N∑
j=1

r2
i , RM3t ≡

1

T − t

N∑
j=1

r3
i , RM4t ≡

1

T − t

N∑
j=1

r4
i .(9)

The pure variance risk premium (PVRP), the third moment risk premium (M3RP), and

the fourth moment risk premium (M4RP) are defined as the differences between the
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risk-neutral and physical expectation of realized moments of log returns:

PVRPt = IVt − Et[RVT ],(10)

M3RPt = IM3t − Et[RM3T ],

M4RPt = IM4t − Et[RM4T ].

Here, we use the term “risk premium” to indicate that the variables in Equation

(10) are differences between Q- and P-expectations.2 In the next section, we show how to

construct QVRP, PVRP, M3RP, and M4RP empirically using option prices and stock

returns.

III. Data Source and Risk Premiums

A. Data Source and Variable Construction

We use the S&P 500 index option data from the CBOE, starting from January 1990

and ending in July 2019. Our data sample includes the highest closing bid and the lowest

closing ask prices of all call and put options, strike prices, and expiration dates. We obtain

monthly one-month risk free rates from the CRSP. These rates are based on the treasury

bill that has a minimum of 30 days to maturity, and is the closest to 30 days to maturity.

2Strictly speaking, these moment risk premia are not profits from a trading strategy hence do not qualify
as risk premiums in the economics sense, as pointed out by Kozhan et al. (2013).
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We obtain monthly dividends rates of S&P 500 index from Compustat, which are the

anticipated annual dividend rate.

We apply standard filters to select the option sample. First, we delete all options

with zero open interest, zero bid prices, and missing implied volatility. Second, following

the literature on model-free implied volatility, such as Jiang and Tian (2005) and Carr and

Wu (2009), we only keep out-of-the-money and at-the-money options. A put (call) option

is regarded out-of-the-money if the strike price is lower (higher) than the forward price.

The one-month forward price at time t is defined as Ft = Ste
(rf,t−qt)τ . Here, St is the S&P

500 index spot price, τ = 1/12 denotes the time-to-maturity of one-month, rf,t is the risk

free rate, and qt is the dividend rate at time t. Third, we only keep options with less than

365 days of expiry. After applying the filters, we have 5,503,043 option-day data points.

Similar to the construction of VIX index provided by CBOE, we work with the best bid

and ask closing quotes. The option price is the average of the highest closing bid and the

lowest closing ask prices.

At the end of each month, we construct the annualized VIX2, IV, IM3 and IM4

13
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using the discretized version of Equation (1), (6), (7), and (8). That is,

VIX2
t ≈

1

T − t

mt,τ∑
i=2

[f(t, T,Ki) + f(t, T,Ki−1)]∆Ki,(11)

IVt ≈
1

T − t

mt,τ∑
i=2

[fv(t, T,Ki) + fv(t, T,Ki−1)]∆Ki,

IM3t ≈
1

T − t

mt,τ∑
i=2

[f3(t, T,Ki) + f3(t, T,Ki−1)]∆Ki,

IM4t ≈
1

T − t

mt,τ∑
i=2

[f4(t, T,Ki) + f4(t, T,Ki−1)]∆Ki,

where ∆Ki = Ki −Ki−1. Here, mt,τ is the number of available out-of-the-money options on

day t with maturity τ = T − t after we filter the options data. Therefore, mt,τ varies by

date t and maturity τ . f , fv, f3 and f4 are defined as,

f(t, T,Ki) =
Θt(Ki, T )

K2
i

,

fv(t, T,Ki) =
1 + log(Ft/Ki)

K2
i

Θt(Ki, T ),

f3(t, T,Ki) =
6 log(Ki/Ft)− 3(log(Ki/Ft))

2

2K2
i

Θt(Ki, T ),

f4(t, T,Ki) =
12(log(Ft/Ki))

2 − 4(log(Ki/Ft))
3

2K2
i

Θt(Ki, T ),

where Ft denotes the forward price and Θt(K,T ) denotes the time-t value of an

out-of-the-money option with strike price K and maturity T ≥ t. Following the

construction of VIX provided by CBOE, we select two maturities of options—the shortest
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maturity with more than 30 days of expiry and the longest maturity with less than 30 days

and more than 7 days of expiry. The annualized VIX2 in Equation (11) is then calculated

for these two maturities. Next, we interpolate the 30-day VIX2 using VIX2 of the two

maturities with linear interpolation. The same procedure applies to the calculation of IV,

IM3, and IM4 with 30 days of expiration.

Following the recent literature (e.g. Bollerslev et al. (2009) and Buss et al. (2019)

among others), to approximate the expectations under the physical measure, we use daily

S&P 500 index prices to calculate quasi realized variance (QRV), realized variance (RV),

realized third moment (RM3), and realized fourth moment (RM4) for each calendar month.

In accordance with the risk neutral moments that are constructed based on the forward

prices, the realized moments are also computed using forward prices. Specifically, we

assume that the risk free rate and dividend rate are constant within a month. Given month

t, we denote the forward price on the nth day of the month as F n
t . Here, the subscript t

denotes month and superscript n denotes day-of-the-month. F n
t is calculated as

F n
t = Snt exp

(
(rf,t − qt)(Nt − n)/(12Nt)

)
,

where Snt is the spot price on day n of month t, rf,t and qt are the annualized risk-free rate

and dividend rate of month t, and Nt is number of trading days in month t. We calculate

15
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daily excess log returns as

rn+1
t = log(F n+1

t )− log(F n
t ).

Realized moments are then computed as

QRV =
N∑
i=1

2(eri − 1− ri), RVt =
N∑
i=1

(rit)
2,

RM3t =
N∑
i=1

(rit)
3, RM4t =

N∑
i=1

(rit)
4.

Notice that the implied moments (VIX, IV, IM3, and IM4) are calculated using

OTM options at the last trading day of the month, but the realized moments (QRV, RV,

RM3, and RM4) are calculated with daily returns within the month t. In other words, we

use the realized moments of t− 1 as an estimator for expected realized moments of t. This

formulation has the advantage that the risk premiums are ex ante and model-free. Since

both implied and realized moments are available at time t without relying on any specific

model, this facilitates the return forecasting exercise in Section IV.

B. Summary Statistics of Moment Risk Premia

Table 1 reports the summary statistics of risk neutral moments, realized moments,

and moment risk premia. Summary statistics of the risk neutral moments, VIX2, IV, IM3,

IM4, and those of the realized moments, QRV, RV, RM3, and RM4, are reported in Panel

16
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A. Comparing risk neutral and realized moments, we observe that the sample mean of risk

neutral moments are larger in magnitude than their realized counterparts. The risk neutral

and realized third moments are both negative. IM3 is larger in magnitude, has larger

standard deviation, and is more left skewed than RM3. IM4 and RM4 follow a similar

pattern with an opposite sign. The mean of VIX2 is slightly lower than that of IV because

VIX2 is a linear combination of IV, IM3, and IM4.

[Insert Table 1 here.]

Panel B reports summary statistics of the moment risk premia. Consistent with the

existing literature, QVRP is on average positive with a mean of 0.95%. M3RP is on

average negative, which explains why PVRP has a slightly larger mean than QVRP. All

risk premiums are significantly different from zero at 1% level. Compared with QVRP and

PVRP, M3RP and M4RP have relatively lower standard deviation and higher

autocorrelation.

Panel C reports the correlation matrix among the risk premiums. The correlation

between QVRP and PVRP is as high as 0.99, implying that PVRP is the major component

of QVRP. There is also substantial comovement between PVRP and higher moment risk

premia, with a correlation coefficient of 0.47 for M3RP and -0.55 for M4RP. M3RP and

M4RP almost always move in opposite directions with a correlation coefficient of -0.98.

Figure 1 plots the time series of QVRP and PVRP. The dynamics of QVRP and

PVRP are almost indistinguishable. Both QVRP and PVRP fluctuate between positive
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and negative values and display moderate variations as well as occasional spikes. Despite

the fact that both QVRP and PVRP are on average positive, as shown by the summary

statistics, there are a couple of extreme negative values in late 2002, 2008, and 2011. These

negative spikes may be attributed to the downward volatility jumps as proposed by

Amengual and Xiu (2018) or heightened uncertainty as proposed by Hu, Pan, Wang, and

Zhu (2019), associated with resolutions of policy uncertainties. Figure 2 plots the time

series of M3RP and M4RP. Compared with QVRP or PVRP, M3RP and M4RP have less

fluctuations but sharper spikes. Spikes in M3RP and M4RP coincide with volatile periods

in PVRP.

[Insert Figure 1 here.]

[Insert Figure 2 here.]

IV. Predictive Regression Analysis

In this section, we analyze the predictability of stock market returns using the

moment risk premia embedded in QVRP. We run predictive regressions of the market

return of different horizons on each moment risk premium separately and on multiple

moment risk premia jointly. Section IV.A reports the baseline predictive results. Section

IV.B reports the prediction results for weighted least squares. In Section IV.C and IV.D,

we control for the established long-term and short-term predictors, respectively.
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A. Predicting the Market Return

As shown by Bollerslev et al. (2009), Drechsler and Yaron (2011), and Bekaert and

Hoerova (2014), variance risk premium has significant predictive power for future market

returns at quarterly horizon. In this section, we show that while QVRP predicts short-term

market returns up to 6 months, higher moment risk premia, M3RP and M4RP, predict

medium-term market returns up to 24 months. We also show that at any horizon from 1-

to 24-month, separating M3RP and M4RP from PVRP yields better predictive results.

Let Xt be a vector of predictive variables, containing end-of-month values. We use

the following specification for predictive regressions,

Rt,t+h = αh + β′hXt + εt,t+h,(12)

where Rt,t+h is the market excess return from the first day of next month t+ 1 to the last

day of month t+ h. We use simple excess return on the S&P 500 index as a proxy of

market excess return.3

As shown in the summary statistics in Table 1, M3RP and M4RP are correlated

with PVRP. To investigate the predictive information in higher moment risk premia

orthogonal to PVRP, we first regress M3RP and M4RP on PVRP and a constant to obtain

3Here, we use the S&P 500 returns instead of aggregate stock market returns because moment risk premia
are only available for the former. An important difference from the traditional aggregate market return is
that the S&P 500 is a price index, so that returns do not include dividends.
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a time series of M3RP and M4RP residuals, denoted as M3RP⊥ and M4RP⊥. We then use

the residuals M3RP⊥ and M4RP⊥ as predictors. In the univariate regressions,

Xt = QVRPt, PVRPt, M3RP⊥t , or M4RP⊥t , respectively. In the joint regressions, we

consider Xt = (PVRPt,M3RP⊥t )′ and (PVRPt,M4RP⊥t )′. We use Newey-West standard

errors to correct for the autocorrelation and heteroskedasticity in error terms.

The predictive regression results are reported in Table 2, including univariate

regressions using QVRP, PVRP, M3RP⊥, and M4RP⊥, respectively, and multivariate

regressions using PVRP and M3RP⊥, and PVRP and M4RP⊥ jointly. Consistent with the

literature, in the univariate regressions of QVRP (first column of each horizon), the

coefficients on QVRP are positive and highly significant for horizons of up to 6-month.

QVRP achieves a maximum adjusted R2 of over 9% at the 3-month horizon. The

predictive power of QVRP tapers off as the prediction horizon gets longer. As a cleaner

measure of variance risk premium, PVRP has better predictive performance than QVRP in

all horizons, with larger t-statistics and R2’s.

[Insert Table 2 here.]

The predictive power of the higher moment risk premia (the third and fourth

columns of each horizon) has a different pattern. The coefficients on M3RP⊥ are negative

across all horizons. At the short end (1- and 3-month), the predictive regressions on

M3RP⊥ feature small t-statistics and low R2’s. At medium horizons (6- to 24-month), by

contrast, M3RP⊥ is significantly negative. R2’s of M3RP⊥ from 6- to 24-month range from
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3.55% to 5.95%. Univariate regressions of M4RP⊥ exhibit a similar pattern, except that

the coefficients on M4RP⊥ are positive. M3RP⊥ and M4RP⊥ share similar levels of

predictive coefficients, t-statistics, and R2’s. This is not surprising because M3RP and

M4RP are highly correlated with a linear correlation coefficient of -0.98.

The multivariate predictive regressions reveal interesting findings on the higher

moment risk premia. First, the coefficients on PVRP and M4RP⊥ are always positive, and

those on M3RP⊥ are always negative. Since PVRP and M3RP⊥ predict future returns

with opposite signs, the predictive power of QVRP is substantially hindered as a result of

the negative prediction by M3RP canceling out the positive prediction by PVRP. This

could explain why QVRP is not as a strong predictor as PVRP at short horizons and has

less predictive power at medium horizons than M3RP.

Second, different from the univariate regressions, where the higher moment risk

premia are only significant at longer horizons, M3RP⊥ and M4RP⊥ coefficients are

statistically significant at all horizons in the joint regressions. At short horizons, M3RP⊥

and M4RP⊥ coefficients turn highly statistically significant in the multivariate regressions

despite their insignificance in the univariate regressions. The t-statistics of M3RP⊥ is -2.7

in the joint regression for the 1-month horizon, and -3.5 for the 3-month horizon. Across all

horizons, most of the t-statistics of M3RP⊥ and M4RP⊥ coefficients in the joint regressions

are larger in magnitude than those in the univariate regressions.

Finally, combining higher moment risk premia and PVRP leads to improvements in
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R2’s. The R2’s of joint regressions are always higher than those of the univariate

regressions across all horizons. For example, at the 6-month horizon, the R2 of the joint

regression with PVRP and M3RP⊥ is as high as 9.7%, while the univariate regression of

QVRP only has an R2’s of 3.7%. A more impressive example is the 9-month predictive

results, in which case the joint regression of PVRP and M3RP⊥ produces an R2 of 5.5%,

more than five times of QVRP (0.9%).

To compare the predictive power of different moment risk premia over different

horizons, we plot the graph of adjusted R2’s as a function of forecasting horizons in Figure

3. Panel (a) shows R2’s of the univariate regressions of moment risk premia. Panel (b)

shows R2’s of QVRP and the joint regression of PVRP and M3RP⊥. Panel (a) shows that

PVRP is a strong predictor at short end. After reaching its peak at 3-month horizon, the

R2 tapers off and remains low after 6-month. We see a less bumpy curve in the higher

moment risk premia. R2’s of M3RP⊥ and M4RP⊥ are at similar magnitude. Both of them

reach their highest at 6- to 10-month horizons and remain at moderate levels until

24-month. In terms of R2’s, PVRP outperforms the higher moment risk premia at horizons

shorter than 6-month and underperforms them ever after.

Panel (b) illustrates the improvement in prediction power across different horizons

when we combine the predictability of moment risk premia. We observe that R2’s of the

joint regression stay above those of QVRP across all horizons. The improvement is more

pronounced over longer horizons. The evidence illustrates that the higher moment risk
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premia contain complementary predictive power to PVRP. As a result, separating the

moment risk premia in QVRP and including them in a joint regression effectively combine

the short-term predictability of PVRP and the medium-term predictability of the higher

moment risk premia.

[Insert Figure 3 here.]

Note that we use the lagged realized moments as proxies for the physical moments

in the next month in this section. The advantage of this specification is that both the

risk-neutral moments and the lagged realized moments are available ex ante without

specifying any forecasting model. However, by using the lagged realized moments, we

implicitly assume that the realized moments are random walks. In the online appendix, we

discuss two additional robustness checks, in which we use predicted realized moments and

intraday moments to construct moment risk premia. The moment risk premia are then

used to predict aggregate stock returns.

It is worth noting that the high-frequency second moment and the high-frequency

higher moments have different properties. Under reasonable assumptions, utilizing intraday

return data provides a more consistent and efficient estimator for the return variance than

using daily returns, but this is generally not the case for realized higher moments. As

shown in Neuberger (2012), skewness estimates of long-horizon log returns can be very

different from those of the high-frequency log returns due to the leverage effect. For simple

returns, skewness estimates of long-horizon returns shall be different from those of
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short-horizon returns due to compounding even in the absence of the leverage effect (see

Bessembinder (2018)). In the online appendix, we also derive the sources of higher

moments of long-horizon log returns in an illustrative example. As shown in the online

appendix, our results remain qualitatively similar when using moment risk premia

constructed by intraday or predicted moments.

B. Predicting the Market Returns with Weighted Least Squares

Time-varying market return volatility might create heteroskedasticity in time-series

of the error term in the return predictability regressions. Indeed, Johnson (2019) finds that

the return predictability afforded by the conventional variance risk premium is not robust

and is driven by several extreme observations with high variance. To deal with potential

heteroskedasticity, we consider the weighted least squares (WLS) in addition to ordinary

least squares (OLS) in this section.

We estimate the regression coefficients in Equation (12) using WLS in two steps. In

the first step, we estimate σ̂2
t,t+h|t, the conditional variance of the market return from t to

t+ h. Following Johnson (2019), we estimate σ̂t,t+h|t using realized variance in the past

month and in the past year:

σ̂2
t,t+h|t = â+ b̂σ2

t−1,t + ĉσ2
t−11,t,
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where σ2
t−1,t is the sum of squared daily market returns in the past month and σ2

t−11,t is the

sum of squared daily market returns in the past year. â, b̂, and ĉ are the estimated

coefficients in a regression of σ2
t,t+h on a constant, σ2

t−1,t, and σ2
t−11,t.

In the second step, we estimate the following predictive regression for predictor Xt

using the following regression,

Rt,t+h/σ̂t,t+h|t = αh/σ̂t,t+h|t + β′hXt/σ̂t,t+h|t + εt,t+h.(13)

[Insert Table 3 here.]

Table 3 reports the WLS predictive regression results. We confirm with Johnson

(2019) that the t-statistics of WLS estimators are smaller in absolute value across different

horizons. Nevertheless, the predictive coefficients, significance, and R2’s are qualitatively

similar to those reported in Table 2.

C. Control for Stock Return Predictors in Welch and Goyal (2008)

To relate our findings to the voluminous literature on market return predictability,

we consider a set of predictors documented in the previous literature as control variables.

Specifically, we consider 11 variables used in Welch and Goyal (2008): dividend price ratio

(DP), dividend yield (DY), log earnings-price ratio (EP), book-to-market ratio (BM),

interest rate on a three-month Treasury bill (TBL), difference between Moody’s BAA- and
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AAA-rated corporate bond yields (DFY), long-term government bond yield (LTY), net

equity expansion (NTIS), inflation calculated from the CPI for all urban consumers

(INFL), long-term government bond return (LTR), and difference between the long-term

corporate bond return and the long-term government bond return (DFR).

Since the higher moment risk premia, M3RP and M4RP, are very similar in terms of

predictability, as shown in the baseline results of Table 2, we only report results for the

joint regressions of PVRP and M3RP in this section to save space. We report the results of

return regressions on PVRP and M3RP for 1-month (Panel A) and 12-month horizons

(Panel B) in Table 4 with each of the 11 predictors as control variable in each column.4

Table 4 shows that the coefficients on PVRP and M3RP are both statistically significant in

all regressions. In Panel A, only DP has significant coefficients among the 11 control

variables. The adjusted R2’s of 1-month prediction range from 5% to 6.5%, similar to the

baseline results.

[Insert Table 4 here.]

In Panel B, DP is the only significant predictor at 12-month horizon. The R2 of the

regression with DP as the control variable increases from 5% in the baseline results to

16.5%. Despite insignificance coefficients, BM and NTIS also substantially increase the

12-month adjusted R2’s of the baseline results to 13% and 8%, respectively. This is

4The results for 3-, 6-, 9-, 24-month as well as for the joint regression of PVRP and M4RP are qualitatively
similar. The results are available upon request.
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consistent with Welch and Goyal (2008), who find that these predictors perform better at

yearly horizons.

D. Control for Short-term Predictors

Control predictors considered in Section IV.C are known to contain predictability

over multi-year horizons. Since we focus on the short-horizon predictability of moment risk

premia, we control for a set of established short–term predictors in this section. We

consider short interest (SI) from Rapach et al. (2016) and the cross-sectional

book-to-market factor (BMKP) from Kelly and Pruitt (2013), which are shown to contain

short-term predictability for market returns. In addition, since M3RP is closely related to

jumps and skewness, we consider several jump- or skewness-related predictors: realized

signed jumps (RSJ) from Guo et al. (2019), value-weigthed average skewness (SKEWVW)

and equal-weighted average skewness (SKEWEW) from Jondeau et al. (2019), and left jump

probability (LJP), which is the probability of a 10% weekly down move from Andersen

et al. (2015).5

Table 5 reports the correlation matrix of M3RP and the aforementioned predictors.

While M3RP is related to jumps and skewness, the correlations between M3RP and RSJ,

5The book-to-market predictors are calculated with the data and codes from Seth Pruitt’s website. Since
these factors are data-driven, we use different BM factors for different predictive horizons, as implemented
by Kelly and Pruitt (2013). Specifically, for each predictive horizon, we first extract BM factors using the
Kelly and Pruitt (2013) data that date back to 1930. Then we use the BM factors from 1990 onwards in the
controlled regressions. The LJP series is downloaded from https://tailindex.com/index.html Numbers
of observations vary in each regression depending on the availability of the control variables.
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SKEWVW, and SKEWEW are as small as -0.08. The largest absolute correlation (-0.61) is

between M3RP and LJP, as both are related to option-implied jumps.

[Insert Table 5 here.]

Table 6 reports the predictive regression results with these control variables. Similar

to Section IV.C, we add one control variable at a time and report the regression results in

each column. We report the regression results for 1- (Panel A) and 12-month (Panel B)

horizons. The table shows that the predictive coefficients on M3RP remain significantly

negative after we include these control variables.

[Insert Table 6 here.]

Among these control variables, SI, RSJ, and BMKP have significant coefficients in

both 1- and 12-month horizons, implying that M3RP and these predictors contain

orthogonal information for future market returns. The highest R2 for both horizons is

achieved in the joint regression of M3RP, PVRP and BMKP. Predictive coefficients on

average skewness and LJP are not significant in the joint regression with PVRP and

M3RP. Therefore, while the economic intuition of M3RP may partially overlap with the

existing jump or skewness-related variables, the coefficient of M3RP remains significant

after controlling for these variables.
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V. Out-of-sample Performance

While many variables can significantly predict stock market returns in sample, most

of them perform poorly in the out-of-sample (OOS) tests. Several studies, such as

Drechsler (2013), Kilic and Shaliastovich (2019), and Buss et al. (2019), have shown that

the predictability of the traditional variance premium survives out-of-sample tests. In this

section we investigate the out-of-sample predictability of moment risk premia. In Section

V.A, we report OOS R2’s of the baseline regressions as well as various regressions in Section

IV. We conduct asset allocation analysis in Section V.B and show that the predictability of

moment risk premia can be exploited by investors to improve portfolio performance.

A. Out-of-sample R2

For each univariate predictive regression, we calculate the return forecast at time t,

using only the data available up to time t:

R̂t,t+h = α̂t,h + β̂t,hXt, t ≥ T0,

where α̂t,h and β̂t,h are OLS estimates from regression (12). We use observations in the first

half sample as the initial sample and construct the first return forecast. Then we construct

the remaining return forecasts using an expanding window until the end of the sample.
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As pointed out by Rapach, Strauss, and Zhou (2010), combining forecasts from

individual predictors can yield less volatile and more reliable forecasts. It is particular

useful in our case to reduce noisy signals from higher moment risk premia at short horizons

and those from PVRP at longer horizons. We construct our forecast combination of PVRP

and M3RP⊥ (M4RP⊥) as

R̂PVRP+M3RP⊥

t,t+h = wPVRP
h,t R̂PVRP

t,t+h + wM3RP⊥

h,t R̂M3RP⊥

t,t+h ,

where wxh,t is the ex ante combining weights on predictor x formed at time t for forecast

horizon h,

wxh,t =
(CSEx

h,t)
−1

(CSEPVRP
h,t )

−1
+ (CSEM3RP⊥

h,t )
−1 , t ≥ T0 + 1.

CSEx
h,t is the cumulative squared forecast error of the univariate predictive regression with

predictor x,

CSEx
h,t =

t∑
l=T0

(Rl,l+h − R̂x
l,l+h)

2, x = PVRP, M3RP⊥.(14)

At time T0 when the first forecast is made, there is no history of prediction errors to

differentiate the two models. Hence, we set the initial weights wxT0,h to 1/2. The forecast

combination of PVRP and M4RP⊥ follows a similar procedure.

Following Welch and Goyal (2008), we define OOS R2 for horizon h and prediction
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x as

(OOS R2)xh = 1−
CSEx

h,T

CSEbm
h,T

,

where CSEbm
h,T is the cumulative squared forecast error of a benchmark prediction, which

uses the average excess return from the beginning of the sample through month t as the

return forecast for the next period. The OOS R2 measures the forecast accuracy relative to

the historical average return. A positive OOS R2 implies that the predictor outperforms

the naive forecast using the historical mean, and a negative OOS R2 implies

under-performance.

The results of out-of-the-sample forecasts are reported in Table 7, including

univariate regressions using QVRP, PVRP, M3RP⊥, and M4RP⊥, respectively, and forecast

combinations using PVRP and M3RP⊥, and PVRP and M4RP⊥. In the baseline regression

(Panel A), QVRP and PVRP provide positive OOS R2’s at horizons up to 6-month in the

univariate regressions, with the latter slightly higher. The higher moment risk premia,

M3RP⊥ and M4RP⊥, give positive OOS R2’s from 6- to 24-month. The out-of-sample

predictive performance of higher moment risk premia reaches a peak at 9-month horizon,

with an OOS R2 of 7.07%. The forecast combinations of PVRP and M3RP⊥ (M4RP⊥)

deliver positive OOS R2’s at all horizons, with a maximum of over 10% at 3-month

horizon. In most cases, the OOS R2’s forecast combinations fall between those of the two
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univariate regressions, with the exception of 24-month forecasts. Overall, in terms of

out-of-sample performance, QVRP and PVRP perform well up to 6-month horizon, while

higher moment risk premia perform well in longer horizons. Forecast combination

incorporates the advantages of the two and provides positive OOS R2 across all horizons.

[Insert Table 7 here.]

Panel B reports the OOS R2’s of the WLS regressions in Section IV.B. For every t,

we re-estimate σ̂2
t,t+h using information only up to time t. Then we run WLS regression of

returns from month h+ 1 to month t scaled by σ̂2
t,t+h|t on candidate predictors from the

beginning of the sample to month t− h scaled by σ̂2
t,t+h|t to obtain WLS coefficients. The

return forecasts are constructed the same way as in an OLS regression, except that the

predictive coefficients are WLS estimators. Compared with Panel A, we find that the OOS

R2 for every prediction and every horizon increases when applying WLS. This confirms the

finding of Johnson (2019) that predictors perform better out-of-sample using the WLS

estimator.

[Insert Figure 4 here.]

Figure 4 compares the out-of-sample R2’s of predictions over different horizons of

the baseline results. Similar to Figure 3, we present OOS R2’s of moment risk premia in

Panel (a), and OOS R2’s of QVRP and the forecast combination of PVRP and M3RP⊥ in

Panel (b). Panel (a) shows that the patterns of OOS R2’s of moment risk premia are

32

Electronic copy available at: https://ssrn.com/abstract=3120260



similar to those of the in-sample ones. OOS R2 of PVRP is the highest at 3-month horizon

and drops to negative values as the forecasting horizon increases. M3RP⊥ and M4RP⊥, to

the contrary, have negative OOS R2’s at the short end and positive ones at medium

horizons. Panel (b) shows that the forecast combination of PVRP and M3RP⊥

substantially improves OOS R2’s at medium horizons. Comparing with PVRP in Panel

(a), the positive OOS R2’s of the forecast combination at 6-month and beyond mostly

come from the higher moment risk premia.

B. Asset Allocation

In this section, we evaluate the economic gain of moment risk premia from the asset

allocation perspective. Similar to Campbell and Thompson (2007), Rapach et al. (2010),

and Rapach et al. (2016), we consider a mean-variance investor who allocates her wealth

between a stock and a risk-free asset. At the end of month t, she invests wt of her wealth in

the market portfolio and the rest in risk-free assets and hold the portfolio for h months.

The optimal weight of the stock is determined by wt = R̂t+h
γσ̂2
t+h

, where γ is the investor’s

relative risk aversion. R̂t+h and σ̂2
t+h are the forecast of excess return and return variance

h-month ahead. VIX2 is used as the forecast of return variance, because it reflects

investors’ expectation of the return variation in the future. We calculate certainty

equivalent return (CER) for this investor: CER = Rp − 0.5γσ2
p, where Rp and σ2

p are the

mean and variance of the portfolio return over the forecasting evaluation period.
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We consider the scenario that the portfolio weights are larger than zero and smaller

than 1, i.e., no short sales or leverage.6 We annualize the CER so that it can be interpreted

as the annual portfolio management fee that the investor would be willing to pay to have

access to the predictive regression forecast.

[Insert Table 8 here.]

The results of the out-of-sample CER are reported in Table 8. We also compute the

CER for the buy-and-hold strategy as a benchmark. Similar to the calculation of OOS R2,

we employ an expanding window to estimate the predictive regression parameters. The

first half of the sample is used to estimate the first set of regression parameters. In the

table, we report CER of the investment strategy based on QVRP, PVRP, M3RP⊥, and

M4RP⊥ in the univariate predictive regression and forecast combination for PVRP &

M3RP⊥ and PVRP & M4RP⊥.

We consider three levels of the risk aversion parameter: γ = 3, 5, 7. We observe that

in most cases PVRP outperforms QVRP in terms of higher CERs, suggesting that a cleaner

PVRP has more economic value for a risk-averse investor than QVRP. QVRP and PVRP

perform well up to 6-month horizon, while M3RP⊥ and M4RP⊥ perform well in longer

horizons. When γ = 3, the forecast combinations yield higher CERs than QVRP from

3-month to 12-month horizons. All predictors and forecast combinations provide higher

CERs than that the buy-and-hold strategy. The results are similar for γ = 5 and γ = 7.

6The case that allows short sales (wt ∈ [−1, 1]) gives similar results.
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Overall, the results in this section suggest that different moment risk premia show

advantages in terms of CERs across different horizons. Combining predictability in

different moment risk premia has substantial economic value for a risk-averse investor.

VI. Conclusion

This paper investigates how to use option-implied information to improve market

return predictability over short to medium horizons. The conventional variance risk

premium has been shown to be a strong predictor for market returns in the recent

literature. Since the conventional variance risk premium contains higher moment premia

besides the second moment risk premium, we exploit the predictive power of each moment

risk premium separately and jointly.

Using the S&P 500 index and options data, we run predictive regressions of 1- to

24-month excess returns of the market equity index on moment risk premia. We find that,

(1) PVRP, the pure variance risk premium, is a better predcitor than QVRP, which is

contaminated by higher moment risk premia; (2) PVRP contains short-term predictive

power for market returns with statistically significant positive coefficients, whereas M3RP

(M4RP) contain medium-term predictive power for market returns with statistically

significant negative (positive) coefficients. (3) When M3RP and M4RP are separated from

QVRP, PVRP and M3RP (M4RP) jointly deliver higher in-sample and out-of-sample R2’s

than QVRP, across all horizons from 1- to 24-month. The predictability afforded by M3RP
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(M4RP) survives a series of robustness checks.
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Figure 1: Time Series of VRP and PVRP

This figure shows time series of quasi variance risk premium (QVRP) and pure variance risk
premium (PVRP) from January 1990 to July 2019.
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Figure 2: Time Series of M3RP and M4RP

This figure shows time series of the third moment risk premium (M3RP) and the fourth moment
risk premium (M4RP) from January 1990 to July 2019.
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Figure 3: In-sample R2 of Predictive Regressions

The top panel plots the in-sample R2 (in percentage) of the predictive regressions for the S&P
500 return afforded by moment risk premia in the univariate regressions, as a function of
forecasting horizon (in months). We consider the pure variance risk premium (PVRP), the
residual of the third moment risk premium after regressing on PVRP (M3RP⊥), and the residual
of the fourth moment risk premium after regressing on PVRP (M4RP⊥). The bottom panel plots
the in-sample R2 (in percentage) of the predictive regressions for the market equity return
afforded by the quasi variance risk premium (QVRP) in the univariate regression and by PVRP
and M3RP⊥ in the joint regression, as a function of forecasting horizon (in months).
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Figure 4: Out-of-sample R2 of Predictive Regressions

The top panel plots the out-of-sample (OOS) R2 (in percentage) of the predictive regressions for
the S&P 500 return afforded by moment risk premia in the univariate regressions, as a function of
forecasting horizon (in months). We consider the pure variance risk premium (PVRP), the
residual of the third moment risk premium after regressing on PVRP (M3RP⊥), and the residual
of the fourth moment risk premium after regressing on PVRP (M4RP⊥). The bottom panel plots
the OOS R2 (in percentage) of the quasi variance risk premium (QVRP) in the univariate
regression and the forecast combination of PVRP and M3RP⊥.
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Table 1: Summary Statistics of Moment Risk Premia

Panel A reports mean, standard deviation (Std. Dev.), median, 5 percent quantile (5th Pctl),
and 95 percent quantile (95th Pctl) of risk neutral and realized moments. Risk neutral moments
include VIX2, IV (implied variance), IM3 (implied third moment), and IM4 (implied fourth mo-
ment). Realized moments include QRV (quasi realized variance), RV (realized variance), RM3
(realized third moment), and RM4 (realized fourth moment). Panel B reports mean, standard
deviation (Std. Dev.), median, 5 percent quantile (5th Pctl), and 95 percent quantile (95th
Pctl), and autocorrelation coefficient (AR(1)) of the moment risk premia: QVRP (quasi vari-
ance risk premium), PVRP (pure variance risk premium), M3RP (third moment risk prmeium),
and M4RP (fourth moment risk premium). Moment risk premia are differences between the risk
neutral and realized moments. Panel C reports correlation matrix among moment risk premia.
All variables are denoted in percentage per annum. The sample period extends from January
1990 to July 2019.

Panel A: Risk neutral and realized moments

VIX2 IV IM3 IM4

Mean 3.86 4.02 -0.51 0.23
Std. Dev. 3.77 4.06 1.14 0.93
Median 2.75 2.79 -0.24 0.06
5th Pctl 1.05 1.08 -1.80 0.01
95th Pctl 9.64 10.08 -0.04 0.79

QRV RV RM3 RM4

Mean 2.91 2.91 -7.15×10−3 4.10×10−3

Std. Dev. 5.07 5.07 0.09 0.03
Median 1.54 1.54 9.02×10−4 3.23×10−4

5th Pctl 0.41 0.41 -0.07 2.13×10−5

95th Pctl 8.93 8.97 0.04 9.28×10−3

Panel B: Moment risk premia

QVRP PVRP M3RP M4RP

Mean 0.95 1.10 -0.51 0.23
(t-stats) 7.05 8.61 -8.33 4.78
Median 0.90 1.00 -0.23 0.06
5th Pctl -1.45 -1.23 -1.72 0.01
95th Pctl 3.96 4.25 -0.04 0.79
AR(1) 0.38 0.34 0.55 0.46

Panel C: Correlation matrix

QVRP PVRP M3RP M4RP

QVRP 1.00 0.99 0.47 -0.55
PVRP 0.99 1.00 0.36 -0.45
M3RP 0.47 0.36 1.00 -0.98
M4RP -0.55 -0.45 -0.98 1.00
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Table 2: Market Return Predictive Regressions at Different Horizons

The table reports estimated regression coefficients and R2 of the predictability regressions for one to 24-month excess returns on the S&P 500 index.
Heteroskedasticity- and autocorrelation-robust t-statistics are reported in the parenthesis. For each horizon, we report predictive regression results of
the univariate regressions on the quasi variance risk premium (QVRP), the pure variance risk premium (PVRP), the residual of the third moment risk
premium after regressing on PVRP (M3RP⊥), the residual of the fourth moment risk premium after regressing on PVRP (M4RP⊥), bivariate regression
on PVRP and M3RP⊥ jointly, and bivariate regression for PVRP and M4RP⊥ jointly. Returns are observed monthly with the sample period ranging
from January 1990 to July 2019.

1-month 3-month

QVRP 0.31 0.85
(3.76) (6.26)

PVRP 0.35 0.35 0.35 0.95 0.95 0.95
(3.86) (3.41) (3.50) (5.30) (3.31) (3.46)

M3RP⊥ -0.41 -0.41 -0.96 -0.96
(-1.38) (-2.69) (-1.37) (-3.49)

M4RP⊥ 0.46 0.46 1.08 1.08
(1.10) (2.35) (1.22) (3.03)

R2 3.69 4.28 1.18 0.84 5.45 5.12 9.11 10.34 2.09 1.50 12.43 11.84
Adj. R2 3.42 4.01 0.90 0.56 4.92 4.58 8.85 10.08 1.81 1.22 11.93 11.34

6-month 9-month

QVRP 0.82 0.57
(5.50) (2.24)

PVRP 0.99 0.99 0.99 0.75 0.75 0.75
(5.66) (2.79) (2.94) (2.91) (2.43) (2.45)

M3RP⊥ -2.21 -2.21 -2.69 -2.70
(-2.71) (-3.96) (-3.39) (-3.55)

M4RP⊥ 2.57 2.57 3.31 3.32
(2.40) (4.04) (3.28) (4.06)

R2 3.93 5.15 5.09 3.95 10.24 9.10 1.19 1.86 4.81 4.15 6.68 6.03
Adj. R2 3.65 4.88 4.82 3.68 9.73 8.58 0.91 1.58 4.53 3.87 6.14 5.49

12-month 24-month

QVRP 0.47 0.46
(1.42) (1.11)

PVRP 0.65 0.66 0.66 0.72 0.73 0.74
(1.98) (2.22) (2.21) (1.59) (1.45) (1.47)

M3RP⊥ -2.96 -2.96 -4.27 -4.28
(-3.39) (-3.37) (-2.48) (-2.42)

M4RP⊥ 3.66 3.66 5.31 5.32
(3.40) (3.90) (2.76) (2.85)

R2 0.56 0.99 4.06 3.55 5.07 4.57 0.20 0.44 3.06 2.70 3.50 3.15
Adj. R2 0.27 0.71 3.78 3.27 4.51 4.01 -0.10 0.14 2.76 2.40 2.92 2.56
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Table 3: Market Return Predictive Regressions at Different Horizons (WLS)

The table reports estimated regression coefficients and R2 of the predictability regressions using weighted least squares (WLS) for one to 24-month
excess return on the S&P 500 index. Heteroskedasticity- and autocorrelation-robust t-statistics are reported in the parenthesis. For each horizon, we
report predictive regression results of the univariate regressions on the quasi variance risk premium (QVRP), the pure variance risk premium (PVRP),
the residual of the third moment risk premium after regressing on PVRP (M3RP⊥), the residual of the fourth moment risk premium after regressing
on PVRP (M4RP⊥), bivariate regression on PVRP and M3RP⊥ jointly, and bivariate regression for PVRP and M4RP⊥ jointly. Returns are observed
monthly with the sample period ranging from January 1990 to July 2019.

1-month 3-month

QVRP 0.33 0.83
(3.19) (4.31)

PVRP 0.35 0.30 0.30 0.89 0.77 0.78
(3.13) (2.83) (2.83) (3.90) (2.52) (2.65)

M3RP⊥ -0.57 -0.30 -1.43 -0.85
(-1.92) (-1.73) (-2.51) (-2.36)

M4RP⊥ 0.78 0.40 1.90 1.05
(1.71) (1.71) (2.36) (2.63)

R2 4.01 4.66 1.16 0.51 5.75 5.45 9.50 10.72 1.43 0.48 12.43 11.92
Adj. R2 3.73 4.38 0.87 0.22 5.47 4.90 9.24 10.46 1.14 0.19 12.17 11.40

6-month 9-month

QVRP 0.90 0.72
(4.72) (2.65)

PVRP 1.01 0.78 0.79 0.85 0.60 0.59
(4.30) (2.37) (2.31) (2.95) (2.18) (1.89)

M3RP⊥ -2.36 -1.85 -2.53 -2.16
(-2.96) (-2.59) (-2.55) (-2.14)

M4RP⊥ 3.16 2.43 3.56 3.07
(3.07) (3.11) (3.18) (2.96)

R2 3.96 5.21 4.85 3.63 9.85 8.93 1.13 1.86 4.74 4.13 6.42 5.97
Adj. R2 3.68 4.93 4.57 3.35 9.59 8.39 0.83 1.56 4.45 3.85 6.14 5.41

12-month 24-month

QVRP 0.66 0.69
(1.92) (1.36)

PVRP 0.80 0.53 0.52 0.91 0.56 0.56
(2.29) (1.82) (1.60) (1.61) (1.11) (1.00)

M3RP⊥ -2.73 -2.43 -4.16 -3.90
(-2.38) (-2.05) (-1.80) (-1.73)

M4RP⊥ 3.84 3.43 5.64 5.28
(3.03) (2.85) (2.28) (2.28)

R2 0.41 0.87 3.93 3.47 4.75 4.39 0.16 0.42 3.02 2.67 3.42 3.11
Adj. R2 0.11 0.58 3.64 3.18 4.46 3.81 -0.15 0.11 2.71 2.36 3.12 2.50
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Table 4: Predictive Regressions Controlling for Predictors in Welch and Goyal (2008)

This table reports regression results of the pure variance risk premium (PVRP), the third moment risk premium
(M3RP), and control variables at 1-month and 12-month horizons in Panel A and B. In each column of the table, we
add one control variable to the regression of PVRP and M3RP. The “Control” variable is specified in the column head
of the table. The control variables are defined in Section IV.C. Variables are obtained from Amit Goyal’s website.
The Newey-West t-statistics are reported in the parenthesis. We report R2 and adjusted R2 in the last two rows. The
sample period is from January 1990 to December 2018.

DP DY EP BM TBL DFY LTY NTIS INFL LTR DFR
Panel A: 1-month horizon

Constant 0.07 -0.01 0.03 -0.02 0.00 0.00 0.00 0.00 0.00 -0.01 0.00
(2.07) (-1.64) (1.00) (-1.99) (-0.65) (0.27) (0.26) (-1.40) (-0.86) (-1.48) (-1.42)

M3RP -0.38 -0.41 -0.55 -0.41 -0.40 -0.56 -0.40 -0.44 -0.36 -0.41 -0.41
(-2.51) (-2.72) (-3.64) (-2.79) (-2.61) (-3.61) (-2.65) (-2.81) (-2.36) (-2.72) (-2.71)

PVRP 0.44 0.43 0.46 0.43 0.42 0.43 0.42 0.42 0.44 0.45 0.44
(3.89) (3.75) (4.16) (3.77) (3.60) (3.51) (3.62) (3.60) (3.50) (3.17) (3.52)

Control 0.02 0.00 0.01 0.04 -0.06 -0.69 -0.11 0.06 -0.72 0.17 -0.08
(2.23) (1.14) (1.15) (1.66) (-0.67) (-1.18) (-1.06) (0.53) (-1.56) (1.49) (-0.68)

R2 7.27 5.89 6.75 6.47 5.76 5.94 5.89 5.75 5.96 7.05 5.75
Adj. R2 6.46 5.07 5.93 5.66 4.94 5.12 5.07 4.93 5.14 6.24 4.93

Panel B: 12-month horizon

Constant 0.83 0.02 0.31 -0.13 0.06 0.03 0.06 0.02 0.05 0.03 0.03
(2.27) (0.35) (1.12) (-1.12) (1.90) (0.42) (0.93) (0.55) (1.52) (0.91) (1.01)

M3RP -2.54 -2.94 -3.95 -2.88 -2.68 -2.86 -2.88 -3.65 -2.50 -2.96 -2.98
(-3.09) (-3.36) (-5.15) (-3.42) (-3.17) (-2.86) (-3.31) (-3.11) (-2.80) (-3.25) (-3.43)

PVRP 1.33 1.20 1.41 1.25 1.16 1.17 1.17 1.01 1.30 1.21 1.13
(3.54) (3.07) (3.93) (3.01) (2.86) (2.99) (2.89) (2.61) (2.52) (2.76) (2.96)

Control 0.20 0.00 0.09 0.57 -0.81 0.51 -0.45 1.74 -6.21 0.28 0.34
(2.18) (0.44) (1.03) (1.62) (-0.77) (0.09) (-0.39) (1.10) (-1.46) (1.12) (0.57)

R2 17.27 5.43 8.87 14.07 6.38 5.11 5.37 9.74 6.56 5.35 5.21
Adj. R2 16.53 4.58 8.05 13.30 5.54 4.26 4.51 8.93 5.71 4.50 4.36
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Table 5: Correlation Matrix of Short-term Predictors

This table reports the correlation matrix among the third moment risk premium (M3RP) and
other short-term predictors. We consider short interest (SI) from Rapach et al. (2016), realized
signed jump (RSJ) in Guo et al. (2019), value-weighted average skewness (SKEWVW) and equal-
weighted average skewness (SKEWEW) from Jondeau et al. (2019), left jump probability (LJP)
from Andersen et al. (2015). BMKP-1m and BMKP-12m are the cross-section book-to-market
factors, extracted using the three-pass-regression filter following Kelly and Pruitt (2013).

M3RP SI RSJ SKEWVW SKEWEW LJP BM1m
KP BM12m

KP

M3RP 1.00 -0.08 -0.07 -0.07 -0.10 -0.61 0.11 0.00
SI -0.08 1.00 -0.07 -0.01 -0.04 0.04 -0.11 0.09
RSJ -0.07 -0.07 1.00 -0.03 -0.05 0.09 0.02 0.01
SKEWVW -0.07 -0.01 -0.03 1.00 0.80 0.02 -0.10 -0.09
SKEWEW -0.10 -0.04 -0.05 0.80 1.00 0.09 -0.27 -0.31
LJP -0.61 0.04 0.09 0.02 0.09 1.00 -0.01 -0.04
BM1m

KP 0.11 -0.11 0.02 -0.10 -0.27 -0.01 1.00 0.69
BM12m

KP 0.00 0.09 0.01 -0.09 -0.31 -0.04 0.69 1.00
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Table 6: Predictive Regressions with Short-term Control Variables

This table reports regression results of the third moment risk premium (M3RP), pure variance
risk premium (PVRP), and control variables at 1-month and 12-month horizons in Panel A
and B. In each column of the table, we add one control variable to the regression of M3RP
and PVRP. The “Control” variable is specified in the first row of the table. The Newey-West
t-statistics are reported in the parenthesis. We report R2 and adjusted R2 in the last two rows
in each panel.

SI RSJ SKEWVW SKEWEW LJP BMKP

Panel A: 1-month horizon

Constant 0.00 0.00 0.00 0.00 -0.01 0.02
(-1.56) (-1.12) (-0.83) (-0.52) (-1.27) (2.07)

M3RP -0.43 -0.35 -0.44 -0.44 -0.45 -0.31
(-2.67) (-2.29) (-2.84) (-2.94) (-2.70) (-2.03)

PVRP 0.42 0.38 0.43 0.44 0.44 0.37
(3.64) (3.54) (3.14) (3.44) (3.46) (2.88)

Control -0.02 0.39 -0.03 -0.03 0.00 0.02
(-2.21) (3.14) (-0.40) (-0.29) (0.17) (2.56)

R2 7.83 9.81 6.55 6.50 7.34 5.16
Adj. R2 6.89 8.93 5.67 5.62 6.34 4.01

Panel B: 12-month horizon

Constant 0.03 0.03 0.03 0.06 0.03 0.65
(0.90) (0.80) (0.85) (1.17) (0.81) (5.22)

M3RP -3.36 -2.90 -3.11 -3.15 -3.82 -3.04
(-3.83) (-3.15) (-3.43) (-3.48) (-2.52) (-3.00)

PVRP 1.02 1.10 1.15 1.09 1.32 1.41
(2.66) (2.81) (2.65) (2.30) (2.90) (3.09)

Control -0.28 0.79 -0.17 -0.58 -0.02 0.81
(-1.96) (2.77) (-0.61) (-0.81) (-0.35) (4.95)

R2 20.40 6.50 5.87 6.55 9.82 26.46
Adj. R2 19.57 5.55 4.95 5.64 8.80 25.53
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Table 7: Out-of-sample R2 of the Moment Risk Premia

The table reports out-of-sample R2 of the predictability regressions using baseline regression
(Panel A) and weighted least squares (WLS) regression (Panel B). For each horizon, we report
OOS R2’s of the univariate regressions for the quasi variance risk premium (QVRP), pure
variance risk premium (PVRP), the residual of the third moment risk premium after regressing
on PVRP ( M3RP⊥), the residual of the fourth moment risk premium after regressing on
PVRP (M4RP⊥), forecast combination for PVRP and M3RP⊥ (PVRP & M3RP⊥), and forecast
combination for PVRP and M4RP⊥ (PVRP & M4RP⊥). The sample period is from January
1990 to July 2019.

QVRP PVRP M3RP⊥ M4RP⊥
PVRP

& M3RP⊥
PVRP

& M4RP⊥

Panel A: Baseline Regression

1-month 2.83 4.24 -5.16 -8.95 1.97 0.84
3-month 14.53 16.32 -14.19 -19.21 10.95 9.76
6-month 1.97 5.29 5.88 1.53 10.89 9.65
9-month -2.36 0.74 7.07 6.02 6.92 7.12
12-month -7.86 -3.90 6.06 5.22 4.47 4.69
24-month -0.48 1.16 -0.20 1.69 1.03 2.05

Panel B: WLS Regression

1-month 5.81 6.91 -1.47 -4.31 4.43 3.47
3-month 16.32 17.69 -7.03 -12.10 12.71 11.40
6-month 5.56 8.10 8.71 5.56 11.77 11.01
9-month -1.16 2.39 10.04 8.52 9.54 9.63
12-month -5.06 -1.09 9.24 7.90 7.41 7.45
24-month 1.32 2.59 0.29 2.30 1.89 2.91
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Table 8: Out-of-sample CER Gains

The table reports the annualized certainty equivalent return (CER) in percent for a mean-
variance investor who allocates between S&P 500 index and risk-free assets using a predictive
regression based on the predictive variable in the first column. We report results for relative
risk aversion coefficient γ of 3, 5 and 7. The portfolio weights are constrained to be from 0
and 1. “Buy-and-hold” corresponds to the investor passively holding the market portfolio. We
consider horizons from 1-month to 24-month. We use non-overlapping returns such that the
forecast horizon and rebalancing frequency coincide.

1-month 3-month 6-month 9-month 12-month 24-month

γ=3 QVRP 4.06 5.87 6.50 5.96 5.17 4.33
PVRP 4.25 5.90 6.37 5.97 5.24 4.34
M3RP⊥ 0.94 5.86 5.89 6.00 5.72 4.27
M4RP⊥ 0.68 5.89 6.16 6.04 5.84 5.31
PVRP & M3RP⊥ 3.20 6.60 7.05 6.05 5.42 4.01
PVRP & M4RP⊥ 3.22 6.54 7.03 6.13 5.61 4.47
Buy-and-hold 1.72 2.97 3.48 3.04 3.59 2.45

γ=5 QVRP 2.43 5.17 4.81 4.13 3.46 2.77
PVRP 2.52 5.14 4.76 4.17 3.48 2.79
M3RP⊥ 0.57 4.00 4.49 4.33 4.33 2.81
M4RP⊥ 0.32 4.01 4.43 4.38 4.28 3.47
PVRP & M3RP⊥ 1.84 5.34 5.20 4.28 3.70 2.62
PVRP & M4RP⊥ 1.80 5.32 5.10 4.30 3.77 2.91
Buy-and-hold -0.33 1.35 1.58 1.07 1.51 -0.38

γ=7 QVRP 1.71 4.36 3.70 3.00 2.48 1.98
PVRP 1.86 4.31 3.74 3.04 2.49 1.99
M3RP⊥ 0.40 2.93 3.51 3.13 3.18 2.01
M4RP⊥ 0.23 2.72 3.40 3.16 3.19 2.48
PVRP & M3RP⊥ 1.31 4.28 4.02 3.10 2.66 1.87
PVRP & M4RP⊥ 1.28 4.27 3.92 3.12 2.70 2.08
Buy-and-hold -2.37 -0.28 -0.31 -0.90 -0.57 -3.20
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