

City, University of London Institutional Repository

Citation: Jirapanthong, W. (2006). A rule-based approach to software traceability to

product family systems. (Unpublished Doctoral thesis, City, University of London)

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/30637/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

City Research Online

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

A Rule-based Approach for Software
Traceability on Product Family Systems

Waraporn Jirapanthong

Submitted for the degree of Doctor of Philosophy

City University
Department of Computing

October 2006

<u <y

tm umvm imz m B um im n N fiO ülm iw tw ijy
■y

Contents

ACKNOWLEDGEMENT.. XV

DECLARATION..XVII

ABSTRACT...XIX

CHAPTER 1

INTRODUCTION..1

1.1. Hy po t h e s i s ..6
1.2. Pr o bl e m De f in it io n a n d Ob j e c t i v e s .. 7
1.3. Co n t r i bu t io n of t h e Th e s i s .. 8
1.4. Thes is Ou t l i n e .. 9

PART I: LITERATURE REVIEW..11

CHAPTER 2

SOFTWARE TRACEABILITY..13

2.1. Defi n i t io n o f T r a c e a b i l i t y .. 13
2.2. Be n e f it s w it h So f t w a r e Tr a c e a b i l i t y ...15
2.2.1. Ec o n o mi c As pe c t s ..15
2.2.2. D if fe r e n t Use of So ft w a r e Tr a c e a b i l i t y ... 17
2.3. Pr o bl e ms w it h So ft w a re Tr a c e a b i l i t y ... 25
2.4. Re f e r e n c e Mo del s a n d Cl a ss if ic a t i o n fo r T r a c e a b il it y

Re l a t i o n s ...27
2.4.1. Re f e r e n c e Mo d e l s ... 27
2.4.2. Cl a ss if ic a ti o n of T r a c e a b il it y Re l a t i o n s ..32
2.5. App r o a c h e s fo r Est a b l is h in g T r a c e a b il it y Re l a t i o n s 45
2.5.1. Ma n u a l Es t a b l is h me n t of Tr a c e a b il it y Re l a t i o n s45
2.5.2. Se mi -Au t o ma t i c Es t a b l is h me n t o f Tr a c e a b il it y Re l a t i o n s 48
2.5.3. Fu l ly Au t o ma t i c Est a b l is h me n t of T r a c e a b il it y Re l a t io n s 51
2.6. Re pr e s e n t a t io n , Re c o r d in g , an d Ma i n t e n a n c e of Tr a c e a b il it y

Re l a t i o n s .. 54
2.6.1. Id e n t if i e r Te c h n i q u e ..54
2.6.2. Ta g g in g Te c h n i q u e ... 55
2.6.3. In d e x in g Te c h n i q u e ... 55
2.6.4. Ta b l e Te c h n i q u e ...56
2.6.5. Ma ppi n g Graph Te c h n i q u e ...57
2.6.6. Ma r k -up Te c h n i q u e ... 57
2.6.7. Hy pe r l i n k Te c h n i q u e ... 58
2.7. Tr a c e a b i l i t y Co mme r c i a l To o l s .. 60
2.7.1. Ge n e r a l -Pu r po s e To o l s ...60
2.7.2. Spe c i f i c -Pu r po s e To ols of Re q u ir e me n t s Ma n a g e me n t 61
2.8. Su m m a r y ...63

CHAPTER 3

PRODUCT FAMILY SYSTEMS.. 65

3.1. In tr o d u c ti o n to Pr o d u c t Fa m i l y ...65
3.1.1. Te r mi n o l o g ie s i n Pr o d u c t Fa m i l y ..66
3.2. Pr o bl em s o f t h e Es t a b l is h me n t a n d Ma i n t e n a n c e o f Pr o du c t

Fam ily Sy s t e m s ..68
3.3. Ac ti v it ie s in t h e Pr o c e ss of Pr o d u c t Fa mil y Sy st e m

De v e l o pme n t ..71
3.3.1. Domai n En g i n e e r i n g ..73
3.3.2. Appl ic a t i o n En g i n e e r i n g .. 78
3.4. Me t h o d o l o g i e s fo r t h e De v e l o pme n t of Pr o d u c t Fa mil y

Sy s t e m s ...80
3.4.1. Ob j e c t -Or ie n t e d Me t h o d o l o g i e s ..80
3.4.2. Fe a t u r e -Or ie n t e d Me t h o d o l o g i e s .. 89
3.5. Te c h n iq u e s fo r th e De v e l o pme n t o f Pr o d u c t Fa mi l y Sy s t e ms93
3.5.1. Use Ca s e s ... 93
3.5.2. UML Mo d e l i n g ...94
3.5.3. Fe a t u r e Mo d e l i n g ... 95
3.5.4. Ar c h it e c t u r e Des c ri pt io n and Co mpo n e n t -ba s e d La n g u a g e s 97
3.6. Su pp o r ti n g To ols for Pr o d u c t Fa mi l y Sy s t e ms 99
3.7. Tr a c e a b il it y of Pro du c t Fa mi l y Sy s t e m s ..105
3.7.1. Ex ist in g App ro a c h e s for T r a c e ab il it y Ge n e r at io n in Pr o d u c t

Fa mi l y Sy s t e m s ..105
3.7.2. Iss ue s of T ra ce a bi li ty 7 Ac ti v it ie s in Pr o d u c t Fa mi l y ' Sy s t e ms 108
3.8. Su m m a r y .. 108

PART II: THE APPROACH... 109

CHAPTER 4

TRACEABILITY REFERENCE MODEL...I ll

4.1. In t r o d u c t i o n ..I l l
4.2. Pr o d u c t Fa mil y So ft w a re Ar t e f a c t s ... 112
4.3. Tr a c e a b il it y Re l a t i o n s ..133
4.4. Su m m a r y .. 148

CHAPTER 5

TRACEABILITY FRAMEWORK...149

5.1. Ov e r v ie w o f Th e Tr a c e a b il it y Ge n e ra ti o n Pr o c e s s149
5.2. Tr a c e a b il it y Rules an d Re l a t i o n s ...155
5.3. Ex t e n d e d Fu n c t i o n s ..174
5.3.1. Fu n c t i o n s in XQu e r y ..174
5.3.2. Fu n c t io n s In J a v a ... 182
5.4. Su m m a r y .. 186

vi

CHAPTER 6

XTRAQUE TOOL... 187

6.1. Ov e r v i e w ...187
6.2. Us e r In t e r f a c e s ..192
6.2.1. Spe c i f y in g t h e Sc o pe o f Tr a c e a b il it y Ge n e r a t i o n 193
6.2.2. Spe c i f y in g Ty pe s of Do c u me n t s and Re l a t i o n s h i ps 194
6.2.3. Spe c i f y in g Pa rt ic ul ar Do c u me n t s and Re l a t io n s h i p Ty pe s ... 199
6.2.4. Edit in g a n d Te st in g XQu e r y St a t e me n t s 202
6.3. Su m m a r y ... 204

CHAPTER 7

MOBILE PHONE SYSTEMS - CASE STUDY... 205

7.1. Ov e r v ie w o f t h e Ca s e St u d y ..205
7.2. Do c u me n t s in t h e Mo b il e -Ph o n e Sy s t e m s ..213
7.2.1. Fe a t u r e Mo de l of Mo b il e -Ph o n e Sy s t e m s 213
7.2.2. Su b s y s t e m Mo de l of Mo b il e -Ph o n e Sy s t e m s 213
7.2.3. Pr o ce ss Mo de ls o f Mo b il e -Ph o n e Sy s t e ms215
7.2.4. Mo d u l e Mo d e l s o f Mo b i l e -Ph o n e Sy s t e m s 217
7.2.5. Use Ca s e s , C l as s , St a t e c h a r t , a n d Se q u e n c e D ia g r a ms o f

Mo b i l e -Ph o n e Me m b e r s ...223
7.3. Su m m a r y .. 223

PART III: EVALUATION AND CONCLUSION.. 225

CHAPTER 8

EVALUATION AND ANALYSIS... 227

8.1. Ev a l u a t i o n Ov e r v i e w ...227
8.1.1. Sc e n a r i o 1: The c r e a ti o n o f a n e w pr o d u c t me mbe r fr om

e x i s t in g pr o d u c t f a m i l y ..230
8. l .2. Sc e n a r i o 2: Th e c r e a ti o n o f pr o d u c t f a mil y fr om a l r e a d y

EXISTING PRODUCTS... 233
8.1.3. Sc e n a r i o 3: Ch an g e s to a pr o d u c t me mb e r i n a pr o d u c t f a mil y

236
8.1.4. Sc e n a r io 4: Cha n ge s to t h e c o r e a s s e t s o f a pr o d u c t f a mil y 237
8.1.5. Sc e n a r i o 5: Impa c t o f c h a n g e s to t h e c o r e a s s e t s o f a pr o d u c t

■ FAMILY AND PRODUCT MEMBERS.. 239
8.2. Ev a l u a t i o n Re su lt s a n d An a l y s i s ...240
8.3. Su m m a r y .. 249

CHAPTER 9

CONCLUSIONS AND FUTURE WORK.. 251

9.1. Ov e r a l l Co n c l u s i o n s ..251
9.2. Th e Fi n d i n g s ...253
9.3. Fu t u r e Wo r k ...256
9.4. Fin a l Re ma r k s ...257

vii

APPENDICES................................

APPENDIX A - XML SCHEMAS

259

.261

A .l. XML Sc h e ma fo r d ir e c t t r a c e a b il i t y r u l e s262
A.2. XML Sc h em a fo r ind ir e ct traceability ' r u l e s 264
A.3. XML Sc h e ma fo r Fe a tu r e m o d e l ..266
A.4. XML Sc h em a fo r use c a s e .. 271
A.5. XML Sc h em a fo r su bs y s t e m mo d e i ..274
A.6. XML Sc h em a fo r pr o ce ss mo d e l ...276
A. 7. XML Sc h e ma fo r mo d u l e m o d e l ...279

APPENDIX B - TRACEABILITY R U LE S...281

B. l. Dir e c t Traceab ility ' Ru l e s .. 281
B. 2. In d i r e c t Tr a c e a b il it y Ru l e s .. 316

APPENDIX C - EXTENDED XQUERY FUNCTIO N S.................................322

C. l. g et Tra n si ti o n in St a t e ...322
C.2. g e t Stat ei n St a t e .. 322
C.3. g e t Me s s a g e i n Se q .. 322
C.4. g e t Ob j e c t i n Se q ... 323
C.5. g e t Cl a ss ID.. 323
C.6. g e t Cl a s sOb j e c t i n Se q ...323
C.l. ge t Pa r e n t Fe a t u r e ... 323
C.8. g e t Cfiildre n Fe a t u r e ...324
C.9. g e t Fe a t u r e o f Su b s y s t e m ...324
CIO. g e t Ope r a t io n i n Se q .. 324
C.l 1. g e t Ope r a t io n i n Mo d e l ...324
C .l2. g e t St a t e o f Ope r a t io n i n St a t e ..325
C.13. g e t Classin Cl a s s ..325
C .l4. g e t Pa r e n t o f Va r i a n t Cl a s s e s ... 326
C. 15. GETP AREN TO F VARI AN T FE ATU RES...327
C. 16. g e t Pa r e n t Cl a s s ... 328

APPENDIX D - EXAMPLE DOCUMENTS IN MOBILE-PHONE
SYSTEM S.. 329

D. l. Use Ca s e -P M 1 ...330
D.2. Cla ss Dia g r a m - PM 1.. 341
D.3. Se q u e n c e D ia g r a m - PM 1.. 342
D.4. St a t e c h a r t Dia g r a m - PM 1... 346

BIBLIOGRAPHY..347

viii

List of Figures

Fig u re 2-1: Re pr e s e n t in g t r a c e a b il i t y by us in g i d e n t i f i e r s 55
Fig u re 2- 2: Re pr e s e n t in g t r a c e a b il i t y by t a g g in g a t t r i b u t e s 55
Fig u re 2- 3: Re pr e s e n t in g t r a c e a b il i t y by in d e x i n g .. 56
Fig u re 2- 4: Re pr e se n t in g t r a c e a b il i t y by t a b l e ..56
Fig u re 3-1: Ac t iv it ie s in s o f t w a r e pr o d u c t l in e e n g in e e r in g (No r th r o p

2002).. 73
Fig u re 3- 2: d if f e r e n t n o t a t io n s fo r d if f e r e n t t y pe s o f a f e a t u r e : (a)

(Ka n g e t a l . 1990); (b) (Gr iss e t a l . 1998, Kan g e t a l . 1998); an d
(c) (Sv a h n b e r g e t a l . 2001)... 96

Fig u re 4-1: Th e f e a t u r e mo d e l of t h e mo b i l e p h o n e 116
Fig u re 4- 2: Fe a t u r e s in t e x t u a l s pe c if ic a t i o n l a n g u a g e (Ka n g e t a l .

1998)... 117
Fig u r e 4- 3: Fe a t u r e mo d e l fo r mo b i l e ph o n e s y s t e ms 118
Fig u re 4- 4: Use c a s e Se n d in g a Me s s a g e ... 120
Fig u r e 4- 5: Su bsy st e m mo d e l o f mo b i l e ph o n e s y s t e m s122
Fig u r e 4- 6: Ex a mpl e of Su bs y st e m Mo d e l .. 123
Fig u re 4- 7: SMS pr o c e ss mo d e l fo r m e s s a g in g s u b s y s t e m125
Fig u re 4- 8: SMS pr o c e ss mo d e l fo r m e s s a g i n g s u b s y s t e m127
Fig u re 4- 9: The mo d u l e mo d el fo r s h o r t m e s s a g i n g s e r v i c e (SMS)

CONTROL PROCESS...129
Fig u re 4-10: Mo d u l e mo d e l fo r s h o r t m e s s a g in g s e r v i c e SMS c o n t r o l

PROCESS..130
Fig u re 4-11: An e x t r a c t of a c l a ss d ia g r a m fo r pr o d u c t me mb e r PM 1 ... 131
Fig u re 4-12: A s t a t e c h a r t d ia g r a m f o r a dig ita l _ c a m e r a c l a s s132
Fig u re 4-13: An e x t r a c t of a se q u e n c e d ia g r a m o f t a ki ng a p h o t o 132
Fig u r e 4-14: Ex a mpl e s o f s a t is f i a b i l i t y , d e p e n d e n c y , r e f i n e m e n t ,

CONTAINMENT, AND SIMILAR TRACEABILITY RELATIONS.................................... 144
Fig u re 4-15: Ex a mpl e s o f im p l e m e n t s , o v e r im p s , e v o l u t i o n , a n d d i f f e r e n t

TRACEABILITY RELATIONS...145
Fig u re 5-1: Ov e r v ie w of t r a c e a b i l i t y g en er a ti o n pr o c e s s 151
Fig u r e 5- 2: Tr ac e /IBIIj t y g e n e r a t o r ...152
Fig u re 5- 3: T r a c e a b il t i y r u l e t e mpl a t e .. 156
Fig u re 5- 4: Ex a mpl e o f c o n t a i n m e n t t r a c e abi lit y r u l e 160
Figu re 5- 5: Ex a mpl e o f s i m i i a r t r a c e a b i l i t y r u l e ...160
Fig u re 5- 6: Re s u l t o f c o n t a i n m e n t t r a c e a b i l i t y r e l a t i o n s161
Fig u re 5- 7: Ex a mpl e of u se c a se UC 2 Tr a n s m i t t i n g Me s s a g e162
Fig u re 5- 8: Re s u l t o f si mi l a r t r a c e a b i l i t y r e l a t i o n162Fig u r e 5- 9:

Ex a mpl e s of t r a c e a b il i t y r e l a t io n s (r e pe t i t iv e to Fig u r e 4-
14) ..164

Fig u r e 5-10: Ex a mpl e s of t r a c e a b il i t y r e l a t io n s (r e pe t i t iv e to Fig u r e 4-
15) ... 165

Fig u re 5-11: Ex a mpl e of d e p e n d e n c y t r a c e a b i l i t y r u l e 166
Fig u r e 5-12: Ex a mpl e of r e f i n e m e n t t r a c e a b il i t y r u l e 167

IX

Figur e 5-
Fig u re 5-
Figur e 5-
Figur e 5-
Fig u re 5-
Fig u re 5-
Fig u r e 5-
Fig u re 5-
Fig u re 5-
FÌGURE 5-
Fig u re 5-
Fig u r e 5-
Figur e 5-
Fig u re 5-
Fig u re 5-
Fig u re 5-
Fig u re 5-
Fig u re 5-
Fig u re 5-
Fig u re 5-
Fig u re 5-
FÌGURE 5-
Fig u re 5-
Fig u re 5-
FlGURE 5-
Fig u re 5-
Fig u re 5-

Fig u re 5-
Fig u re 6-
Figur e 6-

Figur e 6-

Figur e 6-

Figur e 6-

Fig u re 6-

Fig u re 6-

13: Ex a mpl e of s a t i s f i a b i l j t):'t r a c e a b il i t y r u l e 168
14: Ex a mpl e o f im p l e m e n t s t r a c e a b i u t y r u l e169
15: Ex a mpl e o f d i f f e r n t t r a c e a b il i t y r u l e ..170
16: Ex a mpl e o f o v e r l a l m t r a c e a b il i t y r u l e172
17: Ex a mpl e o f o v e r i a p s t r a c e a b i u t y r u l e173
18: A STRUCTURE OF AN USER-DEFINED FUNCTION................................. 175
19: GETTRANSITIONINSTATE FUNCTION.. 175
20: Ex t r a c t o f a st a t e c h a r t d i a g r a m ..176
21: g e t St a t e i n Sta t e f u n c t i o n ... 176
22: GETTRANS1TIONIN STATE FUNCTION.. 176
23: Ex t r a c t o f a s e q u e n c e d i a g r a m ...177
24: GETOBJECTINSEQ FUNCTION... 177
25: CtETCLASSOBJECTINSEQ FUNCTION.. 177
26: GETCLASSINCLASS FUNCTION... 178
27: EXTRACT OF A CLASS DIAGRAM.. 178
28: GETPARENTFEATURE FUNCTION... 178
29: Ex t r a c t o f f e a t u r e mo d e l .. 179
30: g e t Ch il d r e n Fea tu re f u n c t i o n ..179
31: g e t Fe a t u r e o f Su bs y s t e m f u n c t i o n ... 179
32: GETOPERATIONINSEQ FUNCTION... 180
33: GETOPERATIONINCLASS FUNCTION.. 180
34: g e t St a t e o f Ope r a t io n i n St a t e FUNCTION......................................180
35: GETPARENTOFVARIANTFEATURES FUNCTION................................... 181
36: GETPARENTOFVARIANTCLASSES FUNCTION...................................... 181
37: GETPARENTCLASS FUNCTION.. 182
38: GETCl ASSID FUNCTION...182
39: THE DECLARATION OF A NAMESPACE REFERRING TO EXTRA

f u n c t i o n s in J a va pa c k a g e .. 183
40: Cal l in g an e x t e n d e d f u nc ti on im pl e me n t e d in J a v a183
1: The Ar c h it e c t u r e o f XTr a Que To o l ... 189
2: An XTr a Qu e in t e r f a c e fo r s pe c if y i n g a sc o pe o f t r a c e a b il i t y

GENERATION... 193
3: Ex a mpl e in t e r f a c e d e mo n st r a t in g sp e c if yi n g t h e s c o pe of

TRACEABILITY GENERATION BETWEEN DOCUMENTS AT THE LEVELS
OF PRODUCT LINE AND TWO PRODUCT MEMBERS, MODEL PM 1 AND
MODEL PM2... 194

4: An XTr a Qu e in t e r f a c e fo r s pe c if y i n g t y pe s of d o c u me n t
ARTIFACTS AND RELATIONSHIPS ACCORDING TO TRACING BETWEEN
THE PRODUCT-LINE AND TWO PRODUCT MEMBERS............................ 196

5: An XTr a Que in t e r f a c e f o r s pe c if y i n g t y pe s o f d o c u me n t
ARTIFACTS AND RELATIONSHIPS ACCORDING TO TRACING BETWEEN
TWO PRODUCT MEMBERS, MODEL. PM1 AND MODEL, PM2................. 198

6: Ex a mpl e in t e r f a c e d e mo n s t r a t in g s pe c if y i n g of t y pe s of
DOCUMENT ARTIFACTS AND RELATIONSHIPS.. 199

7: An XTr a Qu e in t e r f a c e fo r s pe c if y i n g pa r t i c u l a r d o c u me n ts
AND RELATIONSHIPS ACCORDING TO THE SPECIFIED CRITERIA FROM
THE PREVIOUS INTERFACE (FIGURE 6-4)...200

X

Fig u re 6- 8: An XTr a Qu e in t e r f a c e fo r s pe c if y i n g pa r t i c u l a r d o c u me n t s
AND RELATIONSHIPS ACCORDING TO THE SPECIFIED CRITERIA FROM
THE PREVIOUS INTERFACE (FIGURE 6-5)... 201

Fig u re 6- 9: Ex a mpl e in t e r f a c e d e mo n s t r a t i n g : d is pl a y in g t h e c o n t e x t
OF AN XML-BASED DOCUMENT; AND SELECTION OF DOCUMENTS
TYPES AND RELATIONSHIP TYPES TO BE TRACED.................................. 202

Fig u re 6-10: An XTr a Que in t e r f a c e fo r c r e a t in g a n d v e r if y in g th e
TRACEABILITY RULES.. 203

Fig u re 6-11: Ex a mpl e in t e r f a c e fo r c r e a t in g a n d ve ri fy in g t r a c e a b il i t y
RULES...204

Fig u re 7-1: In t e r n e t a p p i j c a t i o n pr o c e ss mo d e l ...217
Fi g u r e 7- 2: Mo d u l e mo d e l fo r In t e r n e t a p p j j c a t i o n pr o c e ss m o d e l 222
Fig u r e 8-1: Sc e n a r i o 1 ...231
Fi g u r e 8- 2: Sc e n a r io 2 .. 233
Figu re 8- 3: Sc e n a r i o 3 .. 236
Fig u r e 8- 4: Sc e n a r io 4 .. 238
Fig u r e 8- 5: Sc e n a r io 5 .. 239
Fig u r e 8- 6: T r a c e a b il it y r e l a t io n s d e t e c t e d by t h e t r a c e a b i l i t y u se r

a n d XTr a Que (A), by t r a c e a b i l i t y us e r (B), an d by XTr a Qu e
(C) IN FIVE EXPERIMENTS..245

Fig u r e 8- 7: (a) Pr e c i si o n an d r e c a l l f ig u r es of each s c e n a r i o ; (b)
Co mpa r i so n o f pr e ci si o n a n d r e c a l l f ig u r e s fr o m five
s c e n a r i o s ... 247

Fig u r e D -1: Us e c a se s e n d in g a m e s s a g e ..332
Fig u r e D- 3: Use c a s e t a ki ng a pi c t u r e : ... 337
Figu re D- 6: A s e q u e n c e di a g r a m Ma kin g a c a l l .. 342
Fig u r e D- 7: A s e q u e n c e d ia g r a m Se n d in g d a t a ... 343
Fig u r e D- 8: A s e q u e n c e d ia g r a m Ta kin g a p h o t o ... 344
Figu re D- 9: A s e q u e n c e d ia g r a m Tr a n s f e r i n g d a t a ..345
Fig u r e D -10: A s t a t e c h a r t d ia g r a m of pr o d u c t me mb e r PM 1.................... 346

X I

List of Tables

Ta b l e 2-1 : Di f f e r e n t t r a c e a b i l i t y r e l a t io n s h i ps be tw ee n d if f e r e n t
ARTEFACTS...41

Ta b l e 2- 2: Co mpa r is o n of t e c h n iq u e s for tr ac ea bil it y ' r e pr e s e n t a t i o n ..59
Ta b l e 3-1 pr e se n t s t h e c l a ss i f ic a t i o n o f r e l a t io n s h i ps be tw e e n f e a t u r e s :

...97
Ta b l e 3- 2: Co mpa r i so n a ppr o a c h e s fo r pr o d u c t f a mil y sy st e m

d e v e l o pme n t ..101
Tab l e 4-1: Do c u me n t s used in o ur a ppr o a c h .. 114
Ta b l e 4- 2: Su mma r y o f t r a c e a b il i t y r e la t io n g r o u ps 134
Tab l e 4- 3: Tr a c e a b il it y Re f e r e n c e Mo d e l .. 147
Tab l e 5-1: Va r ia ti o n o f c o n t a in s In Di s t a n c e f u n c ti o n w it h d if f e r e n t
pa r a me t e r s ..184
Ta b l e 5- 2: A l a y o u t o f f i n d S y n o n y m fun ci tio n .. 185
Ta b l e 5- 3: A l a y o u t o f s t r i n g n o s p a c e f u n c t i o n .. 185
Ta b l e 5- 4: A l a y o u t o f s e t o f f u n c t i o n ...186
Ta b l e 5- 5: A l a y o u t o f ch ec kD i s t a n c e Co n t r o l f u n c t i o n 186
Ta b l e 6-1: Ico n s in pa n e l (a) ...197
Ta b l e 7-1: Fu nc ti o n al it ie s o f Mo b il e Ph one Me m b e r s 208
Ta b l e 7- 2: Spe c i f ic a t io n s o f Mo b il e Ph o n e Me m b e r s209
Ta b l e 7- 3: Mo d u l e s fo r s h o r t me s s a g in g s e r v ic e (SMS) c o n t r o l pr o c e ss

MODEL..218
Ta b l e 7- 4: Mo d u l e s fo r In t e r n e t a ppl ic a t io n pr o c e s s m o d e l 220
Ta b l e 8-1: Do c u me n t s a n d t r a c e a b il i t y r e l a t io n s fo r sc e n a r io 1232
Ta b l e 8- 2: Do c u me n t s an d t r a c e a b il i t y r e l a t io n s fo r sc e n a r io 2235
Ta b l e 8- 3: Do c u me n t s an d t r a c e a b i l i t y r e l a t io n s fo r sc e n a r io 3237
Ta b l e 8- 4: Do c u me n t s an d t r a c e a b il i t y r e l a t io n s fo r sc e n a r io 4238
Tab l e 8- 5: Do c u me n t s a n d t r a c e a b il i t y r e l a t io n s fo r sc e n a r io 5240
Tab l e 8- 6: Su mma r y o f d o c u me n t s , f il e s , t r a c e a b il i t y r u l e t e mpl a t e s , a n d

INSTANTIATED TRACEABILITY RULES USED IN THE EXPERIMENTS... 241
Ta b l e 8- 7: Su mma r y o f t r a c e a b il i t y r e l a t io n s d e t e c t e d in s c e n a r io 1.. 242
Table 8- 8: Su mma r y o f t r a c e a b i l i t y r e l a t io n s d e t e c t e d in sc e n a r io 2.. 242
Ta b l e 8- 9: Su mma r y o f t r a c e a b il i t y r e l a t io n s d e t e c t e d i n sc e n a r io 3.. 243
Ta b l e 8-10: Su mma r y o f t r a c e a b il i t y r e l a t io n s d e t e c t e d in s c e n a r io 4 243
Tab l e 8-11: Su mma r y o f t r a c e a b il i t y r e l a t io n s d e t e c t e d in sc e n a r io 5 243
Tab l e 8-12: Su mma r y o f t r a c e a b il i t y r e l a t io n s d e t e c t e d in th e

e x pe r i me n t s ...244
Ta b l e 8-13: Pr e c i si o n an d Re c a l l Ra t e s (%)...245
Tab l e 8-14: Su mma r y o f r e c a l l a n d pr e ci si o n r a t e s a c h i e v e d by s e v e r a l

248e x i st in g t r a c e a b i l i t y a ppr o a c h e s ,

Acknowledgement
I would like to express my sincere gratitude to my supervisor Dr. Andrea Zisman

for her insight and support throughout all stages of thesis. I would also like to thank

my reviewers, Dr. Bill Karakostas and Prof. Dr. Mike Mannion for their

constructive comments. I am very grateful to Dhurakijpundij University, Thailand,

for the financial support they provided during the course of this study.

I am grateful to Neek Fenwick and Dr. Kelly Androutsopoulos to read drafts of the

thesis and providing valuable comments. I would also like to thank Dr. Penny Noy

and Dr. Edward Parkinson for their general advice, and Dr. Thanwadee Sunetnanta

for her constructive advice and feedback.

I would like to thank people at City U., especially Gilberto Cysneiros for his

invaluable friendship and encouragement, Cristina Arciniegas for her lovely support,

and Khaled Mahbub for his helpful feedback. Many thanks are due to Annie

Benavidis for his loving support. Thanks also go to Mark Firman, Tshiamo

Motshegwa, and Greek family for providing an appealing environment for working.

Finally, I would like to thank my parents for their untiring love, support, and

understanding through the years, my sister for encouraging me with her belief in

me, my brothers for their wonderful backup. Special thanks are given to Rathpol

Bumrungkittikul for a wonderful support through the toughest of times and for

always believing in me.

xv

Declaration

Some of the material in this thesis has been previously published in the following

papers:

• Jirapanthong, W. 2004. Towards a Traceability Approach for Product Family
Systems. International Software Product Lines Young Researchers Workshop in
International Software Product Line Conference, Boston, MA.

• jirapanthong, W., and A. Zisman. 2004. Traceability for Product Family
Systems: An XQuery Approach. International Workshop on Requirements Reuse in
System Family Engineering in International Conference on Software Reuse, Madrid, Spain.

• Jirapanthong, W., and A. Zisman. 2005. Supporting Product Line Development
through Traceability. 12th Asia-Padfic Software Engineering Conference (APSEC
2005), Taipei, Taiwan.

• Jirapanthong, W., and A. Zisman. 2006. XTraQue: Traceability for Product
Line Systems. Software and Systems Modeling (under review).

I grant powers of discretion to the University librarian to allow this thesis to be

copied in whole or in part without further reference to me. This permission covers

only single copies made for study purposes, subject to normal conditions of

acknowledgement.

XVII

Abstract

Software traceability has been recognized as an important activity in software

system development. Traceability relations can improve the quality of a system

being developed, as well as reduce the time and cost associated with the

development. In particular, traceability relations can facilitate the development

process, reuse of parts of the systems by comparing artefacts, validation that a

system meets its requirements, understanding the rationale for certain design and

implementation decisions, and analysis of the implications of changes in the system.

However, support for traceability in software engineering environments and tools

are not always adequate. In addition, automatic generation and maintenance of

traceability relations are not easy tasks.

In contrast, product family systems, in which software systems share a common

set of features and new product members can be built around a set of reusable

artefacts, is considered an important paradigm for software system engineering.

Despite its importance and advances in the area, the support for common and

variable aspects among applications and the engineering of reusable and adaptable

components are difficult tasks. This is mainly due to the large number and

heterogeneity' of documents generated during the development of product family

systems.

The underlying principle of this thesis is to use of traceability to support the

difficulties associated with product family systems. More specifically, traceability can

assist with the identification of common and variable functionalities of the product

members, reduction of inconsistencies between product members, reuse of available

core assets, and establishment of relationships between product members and

product family architectures.

xix

The thesis presents a traceability reference model with nine different types of

traceability relations for eight different types of documents generated in feature-

based object-oriented methodologies, and a ride-based approach to allow automatic

generation of traceability relations in documents produced during the development

of software product family systems. The documents are represented in XML and

the different types of traceability relations are identified by using traceability rules

expressed in an extension of XQuery. The textual sentences of the XML documents

are annotated with part-of-speech assignments indicating the grammatical roles of

the various words in the sentence. The traceability rules are based on (i) the

semantic of the documents being compared, (ii) the various types of traceability

relations in the product family domain, (iii) the grammatical roles of the words in

the textual parts of the documents, and (iv) synonyms and distance of words being

compared in a text.

A prototype tool called XTraQue has been developed to demonstrate and

evaluate automatic generation of traceability relations. We use a case study from

mobile phone domain to illustrate the feasibility and applicability of the approach

and to evaluate the work in terms of recall and precision measures.

xx

Chapter 1

Introduction

In recent years we have been experiencing the proliferation of a large number of

software systems that share a common set of features and have also their own

distinct characteristics. Examples of such systems are found in the

telecommunication domain in which products including personal digital assistants

(PDAs), mobile phones, and pagers have many common characteristics. Other

examples are found in the automotive, electronics, medical imaging, and elevator

control domains. These systems are known in the literature as product family systems

(Ardis and Weiss 1997, Bass et al. 2003, CAFE 2003, Clements and Northrop 2002,

Clements and Northrop 2004, Staudenmayer and Perry 1996, Weiss and Lai 1999)

and are characterized as being software systems that share a common set of features

and are developed based on the reuse of core assets and addition of new

functionalities.

Various methodologies and approaches have been proposed to support the

development of software systems based on product family system development.

Examples of these methodologies and approaches are FODA (Kang et al. 1990),

FeatuRSEB (Griss et al. 1998), CAFÉ (CAFE 2003), FAST (Weiss 1995), FORM

(Kang et al. 1998), PuLSE (Bayer et al. 1999), and KobrA (Atkinson et al. 2000).

The above methodologies and approaches are also known as domain-engineering

approaches and emphasise a group of related applications in a domain, instead of

single applications (Northrop 2002). Their main focus is the identification and

analysis of commonality and variability principles among applications in a domain in

order to engineer reusable and adaptable components and, therefore, support

CHAPTER 1. INTRODUCTION

product family system development. However, despite its importance and advances

in the area, the support for common and variable aspects among applications and

the engineering of reusable and adaptable components are not easy tasks. This is

mainly due to the large number and heterogeneity of documents generated during

the development of product family systems. Other difficulties are concerned with

the (a) necessity of having a basic understanding of the variability consequences

during the different development phases of software products by all involved

parties (Sinnema 2004, Svahnberg and Bosch 2000, Thiel and Hein 2002), (b)

necessity of establishing relationships between product members and product family

artefacts, and relationships between product members artefacts (Bayer and Widen

2002, Mohan and Ramesh 2002), (c) poor support for capturing, designing, and

representing requirements for the whole product family and for specific product

members (Fantechi et al. 2004, Mannion et al. 2000), (d) poor support for handling

complex relations among product members (Bayer and Widen 2002, Mohan and

Ramesh 2002), and (e) poor support for maintaining information about the

development process (Meyer 1998).

In this thesis, we advocate the use of software traceability to support the difficulties

associated with product family system development. Software traceability has been

recognized as an important activity in software system development in which

traceability relations are generated between software artefacts and between

stakeholders and software artefacts (Gotel and Finkelstein 1995). Software

traceability7 can improve the quality? of the product being developed and reduce cost

and time of development (Gotel and Finkelstein 1994, Pohl 1996a, Ramesh and

Jarke 2001). It supports software developers in many activities such as verifying

requirements, ensuring completeness and supporting evolution of software systems,

enhancing maintainability, and maintaining consistency of software systems,

understanding the rationale for certain design and implementation decisions, and

analysis of the implications of changes in the system.

The need for traceability7 is due to the large amount and heterogeneity7 of software

artefacts that are generated during the development of software systems and the

a

CHAPTER 1. INTRODUCTION

lack of formalism when developing software systems. As affirmed by (Finkelstein

1991), if formal methodologies are used during the development of software system

and systems are generated from formal specifications without requiring changes to

the code, then there is no need for traceability.

Traceability can support the difficulties associated with product family systems since

traceability relations can assist with the (i) identification of common and variable

functionalities in the product members, (ii) reduction of inconsistencies between

product members, (iii) reuse of core assets that are available in the product family

system, (iv) maintenance of historical information of the development process, and

(v) establishment of relationships between core assets of product family systems

and product members specification documents.

Although many approaches for software traceability have been proposed, support

for traceability in software engineering environments and tools are not always

adequate (Ramesh 2001). For example, (Bayer 2001; RTM; DOORS) assume that

traceability relations should be established manually which are error-prone, difficult,

time consuming, expensive, complex, and limited in expressiveness. Attempts have

been made to alleviate the issues associated with manual techniques and, more

recently, other approaches have been proposed to support semi-automatic or fully

automatic generation of traceability relations (Antoniol et al. 2002, Cleland-Huang et

al. 2002b, Egyed and Grunbacher 2002, Marcus and Meletic 2003, Pinheiro 2000,

Pohl 1996a, Ramesh and Dhar 1992, Sherba et al. 2003b, Spanoudakis et al. 2004).

However, in the majority of those approaches, the generated traceability relations do

not have enough semantic meanings to support the full benefits that are provided

by software traceability. Exceptions are found in the approaches proposed by

(Alexander 2003, Gotel and Finkelstein 1994, Knethen et al. 2002, Pohl 1996b,

Ramesh and Jarke 2001, Sherba et al. 2003a, Spanoudakis et al. 2004) that present

different types of traceability relations. However, these approaches do not cover

product family systems and do not tackle the similar and different perspectives

between software artefacts. Moreover, traceability practice becomes more difficult

3

CHAPTER 1. INTRODUCTION

and ambiguous in product family systems due to their rigidness and complexity

(Bayer and Widen 2002, CAFE 2003, Lago et al. 2004). Although the use of

traceability relations to support product family system development has been

advocated in (Atkinson et al. 2002, Bayer and Widen 2002, Berg and Bishop 2005,

CAFE 2003, Coriat et al. 2000, Dick 1999, ESAPS, Jazayeri et al. 2000, Kim et al.

2005, Lago et al. 2004, Mohan and Ramesh 2002, Plankl and Bockle 2001, PLP,

Riebisch and Philippow 2001), the majority of these approaches focus on

traceability meta models and do not provide ways of generating traceability relations

automatically.

In this thesis, we present a rule-based approach to allow automatic generation of

traceability relations between documents created during the development of product

family systems. Our work largely extends the work from (Spanoudakis et al. 2004,

Zisman et al. 2002a). This previous work proposes a rule-based approach to allow

an automatic generation of traceability' relations between different types of

requirements documents such as customer requirements specifications, use case

specification, and analysis object models. In this work, three different types of

traceability relations have been proposed, namely overlaps, requires, and realises

relations.

In contrast, the work in this thesis (a) describes a traceability' reference model with

nine different types of traceability' relations for eight different types of feature-based

object-oriented documents, and (b) supports automatic generation of all these nine

traceability relations between software artefacts of product family’s core assets (i.e.

requirements and software architecture) and software artefacts of product members.

The documents used in our approach are based on feature-based object-oriented

methodologies. A feature-based approach supports domain analysis and design,

while an object-oriented approach assists with the development of various product

members. Our approach applies the feature oriented reuse method (FORM) (Kang et al.

1998) and the unified modeling language (UML) (UML). The use of FORM is due

to several reasons, namely (a) practicality' — FORM has been applied to several

4

CHAPTER 1. INTRODUCTION

industrial product family systems such as elevator control systems, electronic

bulletin board systems, yard automation systems, and PBX; (b) maturity' - FORM is

an extension of feature-oriented approach to domain analysis (FODA) (Kang et al. 1990)

and includes domain design and implementation phases; (c) extensibility - FORM is

extensible and can be extended to accommodate the object-oriented techniques for

reusable components in the architecture of product family; (d) simplicity - FORA1 is

based on a feature modeling which becomes a common technique in software

engineering process and has provided a tool called ADASAL (ASADAL) to assist

developers during domain analysis and design.

On the other hand, UML has been chosen as the object-oriented methodology due

to its (a) maturity - many approaches and methodologies have been applied with

UML over the years; (b) compliance - UML is the de facto modeling language for

software analysis and design in object-oriented systems; and (c) practicality - many

commercial software tools support UML modeling.

The documents used in our approach include feature, subsystem, process, and module

models to specify the information of core assets, and use cases, class, statechart, and

sequence diagrams to specify the information of product members. In our approach,

the documents are represented in XML and the different types of traceability

relations are identified by using traceability rules expressed in an extension of

XQuery (XQuery). The textual sentences of the XML documents are annotated

with part-of-speech assignments indicating the grammatical roles of the various

words in the sentence. These grammatical roles are used to assist with the matching

of textual terms in the documents. The traceability rules are classified as direct rules,

i.e. rules that support the creation of traceability relations that do not depend on the

existence of other relations; and indirect rules, i.e. rules that require the existence of

previously generated relations. In both types of rules, when a matching expected by

a rule is found, a traceability relation of the type specified in the rule is created

between parts of the documents being compared by the rule.

5

CHAPTER 1. INTRODUCTION

A prototype tool called XTraQue has been implemented in order to illustrate and

evaluate the work. The evaluation of the work has been performed in a mobile

phone case study. The results of this evaluation are encouraging and better than

other approaches that support automatic generation of traceability relations.

The remainder of this chapter describes the hypothesis, problem definition and

objectives, contribution, and thesis outline.

1.1. Hypothesis

The hypothesis of the work presented in this thesis is that:

It is possible to automatically generate traceability relations for

product family systems.

We advocate the fact that traceability' relations should be generated automatically,

since manual traceability generation is error-prone, time consuming, and costly,

leading to the situation in which traceability is rarely established (Bayer and Widen

2002, CAFE 2003, Lago et al. 2004). This is also the case for product family systems

in which large numbers of different artefacts are created during the development

process. We expect to reduce the effort of activity domain and application

engineering that require traceability' practice during the development of product

family systems by enabling automatic support for traceability generation process.

Examples of the activities in domain and application engineering which requires

using traceability' relations are such as (i) verifying requirements; (ii) understanding

common and variable aspects between product members; (iii) understanding the

rationale for certain requirement and design decisions, and analysis of the

implications of changes in product family systems; (iv) ensuring completeness and

supporting evolution of product family systems; and (v) maintaining consistency of

product members in a family.

6

1.2 Problem Definition and Objectives

1.2. Problem Definition and Objectives

More specifically, the work presented in this thesis is aimed to tackle two main

problems in the areas of software traceability and product family systems as

discussed below:

I. The Lack of Automatic Support for Traceability between

Artefacts of Product Family Systems

As discussed, there is poor support or mechanisms to establish traceability7 in

product family systems (Fantecbi et al. 2004, Lago et al. 2004). Although there are

many approaches to support establishment of traceability7 in single product software

systems, these approaches cannot be used to support traceability7 of product family

systems (Antoniol et al. 2002, Clements and Northrop 2002, Egyed and Grunbacher

2002, Gotel and Finkelstein 1994, Marcus and Meletic 2003, Pohl 1996b, Ramesh

and Jarke 2001, Sherba et al. 2003a). On the other hand, although some recent

approaches have been proposed to support the development of product family

systems and tackle the traceability7 issue, they do not provide automatic generation

of traceability7 relations (Bay7er et al. 1999, CAFE 2003, Coriat et al. 2000, ESAPS,

Hull et al. 2002, Kim et al. 2005, Plankl and Bockle 2001, Riebisch and Philippow

2001).

Our work is focused on establishing traceability relations automatically for artefacts

generated during domain analysis and design of product family systems.

II. The Difficulty of Identifying the Semantics of Traceability

Relations in the Domain of Product Family Systems

Due to a large size, diversity, and complexity of the artefacts in product family

systems, it is difficult to identify the semantics of traceability relations in these

artefacts (Bayer and Widen 2002, Mohan and Ramesh 2002). This is particularly true

in the case of common and variable relations between product family artefacts that

are required to be considered during the development of product family systems

7

CHAPTER I. INTRODUCTION

(Bayer and Widen 2002, Coriat et ai. 2000, Kang et al. 1998, Mohan and Ramesh

2002, Riebisch and Philippow 2001).

Our work is aimed to generate traceability relations that provide semantics to the

relationships. Some of traceability relations are concerned with common and

variable aspects between artefacts in product family systems, while other relations

are concerned with satisfaction, containment, dependency, evolution, overlap,

implementation, and refinement aspects.

1.3. Contribution of the Thesis

The main contributions of our work are:

I. Traceability Reference Model for Product Family Systems

We have investigated which artefacts are playing the main roles in the process of

product family system development and classified relationships which exist between

those artefacts. The concepts and motivation of the classification of traceability

relations in the domain of product family systems have been initially proposed in

(Jirapanthong 2004, Jirapanthong and Zisman 2004). The traceability reference

model has been initially described in (Jirapanthong and Zisman 2005) and also

appeared in (Jirapanthong and Zisman 2006).

II. Rule-Based Approach for Generating Traceability Relations

We apply a rule-based approach for automatically establishing traceability relations

according to the traceability reference model. The concept of the rule-based

approach for traceability generation has been initially presented in (Jirapanthong

2004, Jirapanthong and Zisman 2004) and also appeared in (Jirapanthong and

Zisman 2005, jirapanthong and Zisman 2006). The rule-based approach takes into

consideration:

(a) the semantics of document types;

(b) the types of traceability relations;

(c) the part-of-speech of the words in textual sentences in the documents; and

1.3 Contribution of the Thesis

(d) the synonym and distance of words in textual sentences in the documents.

III. Evaluation of the Rule-based Traceability Approach for

Product Family Systems

We have demonstrated the rule-based approach for generating the traceability'

relations in the domain of product family systems through five different scenarios.

Each scenario presents the experiment of generating the traceability relations that

occurs during the process of product family system development. The experiments

of the approach are applied with the XTraQite tool. The results of the generation of

traceability relations in each scenario are evaluated in order to justify the research in

this thesis. We have also illustrated the demonstration and evaluation of our work in

(Jirapanthong and Zisman 2006).

1.4. Thesis Outline

The remainder of this thesis is organized in three parts composed of eight chapters

and four appendices as described below:

Part I: Literature Review

Chapter 2 provides a survey on software traceability, including existing problems

and current approaches to support software traceability'.

Chapter 3 presents a survey on product family, including the current methods and

techniques for product family system development, as well as review of existing

approaches for traceability to product family systems.

Part II: The Approach

Chapter 4 presents the traceability' reference model, describes the different types of

documents used in our work, and introduces the classification of traceability'

relationship types for product family systems.

9

CHAPTER 1. INTRODUCTION

Chapter 5 addresses our traceability platform for product family systems. The

chapter elaborates the proposed approach including traceability rules, traceability

relations, and extra functions.

Chapter 6 discusses XTraQue, a prototype tool to allow automatic generation of

traceability relations.

Chapter 7 describes a case study of mobile phone systems used to illustrate and

evaluate our work. We present the family of mobile-phone products and its

members according to the documents of our concern.

Part III: Evaluation and Conclusion

Chapter 8 contains a description of the experiments that we have developed to

demonstrate the work and evaluates the experimental results of our work.

Chapter 9 discusses the conclusions of the thesis and directions for future work.

Appendices:

Appendix A describes XML schemas for traceability rules (direct and indirect

traceability rules) and XML schemas for some documents of our concern i.e. feature

model, use case, subsystem model, process model, and module model.

Appendix B presents the traceability' rules used in our work.

Appendix C presents the extra functions that we have implemented in XQuery

language.

Appendix D presents examples of documents created for the case study.

10

Part I: Literature Review

Chapter 2

Software Traceability

This chapter describes a literature of software traceability including current

problems, existing approaches, techniques and tools for traceability activities i.e.

traceability generation, representation, recording and maintenance, as well as use of

software traceability during software development life-cycle. The definition of,

benefits with, and current problems of software traceability' are given in Section 2.1,

Section 2.2, and Section 2.3, respectively. In Section 2.4, we describe types of

traceability' relations in relation to the types of software artefacts identified for

traceability' relations. Section 2.5 illustrates existing approaches for traceability

generation. In Section 2.6, we summarise techniques for representing, recording,

and maintenance of traceability relations. Section 2.7 describes existing tools which

are used to support traceability' activities.

2.1. Definition of Traceability

The term traceability has been initially used as requirements traceability and is concerned

with the ability to relate requirements with all the other software artefacts generated

during the development of software system (Gotel and Finkelstein 1994). More

recently, we have been experiencing the use of the term software traceability, defined

by (Antoniol et al. 2000, Gotel and Finkelstein 1995, Lindvall and Sandahl. 1996,

Pohl 1996b, Ramesh and Jarke 2001, Zisman et al. 2002b) as the ability' to relate

software artefacts created during the life-cycle of software system development such

as retrieval documents, requirement specifications, analysis and design models,

source codes, and test cases.

CHAPTER 2. SOFTWARE TRACEABILITY

Gotel and Finkelstein (Gotel and Finkelstein 1994) proposed traceability relations to

be bidirectional relations in which requirements can be associated with other

software artefacts in both forward and backward directions. They classified the

categories associated with traceability', namely (a) pre-requirements specification (pre-RS)

traceability, in which traceability' relations associate requirements with source of

requirements, and (b) pos-reqnirements specification (pos-RS) traceability, in which

traceability relations associate requirements with other different artefacts generated

in different phases of development life-cycle.

Similar to (Gotel and Finkelstein 1994), Jarke (Jarke 1998) affirmed that the ability

to perform traceability can be accomplished by four different types of relations in

forward and backward directions. These relations are (a) forward from the requirements,

which relate a particular requirement forward to design artefacts, (b) backward to the

requirements, which relate a particular design artefact backward to requirements, (c)

forward to the requirements, which relate customer’s needs or source of requirements

forward to requirements, and (d) backward from the requirements, which relate

requirements backward to customer’s needs of source of requirements.

Lawrence and Bohner (Lawrence-Pfleeger and Bohner 1990) have proposed the

concepts of horizontal and vertical traceability'. By vertical traceability, they mean the

association between different types of artefacts in different phases of software

development life-cycle. By horizontal traceability, they mean the association

between same types of artefacts in different granularity levels of software

development life-cycle. The concepts are applied by (ESAPS) that use a standard V-

model to represent different artefacts from different phases in software

development and traceability between those types of artefacts such as: (a) vertical

traceability between system requirements and system test, between subsystem

requirements and subsystem test, and component requirements and component test;

(b) horizontal traceability between system requirements and subsystem

requirements, and subsystem requirements and component requirements.

14

2.2 Benefits with Software Traceability

2.2. Benefits with Software Traceability

We describe below some of the benefits associated with software traceability. We

divide these benefits into two groups. The first group is concerned with economic

aspects of software traceability while the second group is concerned with the

different ways of using software traceability7 in the various activities of the software

development life-cycle.

2.2.1. Economic Aspects

Software traceability7 has been well-known as an important activity in software

development life-cycle. The desirability7 of software traceability7 is worth considering

in terms of its expected benefits relative to its cost. The fact is that the cost spent

for establishing traceability relations is considered an extra cost during the

development of software systems. However, the risk of not performing software

traceability7 during software system development is significant. The costs for

establishing software traceability are mainly concerned with two factors: (i) time and

(ii) manpower. According to (Leishman and Cook 2002), possible risks of not

performing software traceability are: (a) a software system is not valid for delivery;

(b) a software system needs to be fully reworked after changes; and (c) the reuse of

existing software artefacts is invalid.

Currently, software traceability is mandated by many standards (IEC 1999,

UK_Ministry_of_Defence 1997) for software system development. According to

the current literature, many approaches focus on putting software traceability into

practice. A few works have been found investigating the costs and potential benefits

of providing software traceability to the software development lifecycle. Examples

of those works are (Murray et al. 2002, Ramesh et al. 1995b). The work in (Murray

et al. 2002) has shown that software traceability appeals a low cost for reasonable

benefit. The authors created a case study of three software systems and experienced

the identification of relevant artefacts and generation of traceability7 relations

between those artefacts. According to their experiments, it took 30 hours and two

engineers for establishing traceability7 relations between 19 documents. The

15

CHAPTER 2. SOFTWARE TRACEABILITY

traceability relations expressed information about a software system e.g. traceability

relations indicated whether or not all requirements have been implemented, all

design artefacts have been documented, and source codes have been implemented

accurately. The authors concluded the cost of establishing traceability is affordable

and the use of traceability relations is benefitial although they did not provide

quantitative evidences of traceability benifits. Similarly, Ramesh et al. (Ramesh et al.

1995b) created a case study of traceability implementation. The authors discussed

the cost and benefits of providing traceability in a software system. Traceability

relations were used to decrease time and effort in the development lifecycle.

According to their case study, software traceability was established with 60 work-

months but dramatically decreased the budget of software system development. The

authors discussed that establishment of software traceability increases workload and

documentation. This leaded an initial budget of the software development higher;

however, total lifecycle costs due to the development were significantly reduced.

Nonetheless, the authors did not provide any quantitative study how much the cost

was reduced.

Additionally, the use of software traceability tends to improve the software

development process. Many researches in the current literature focus on

investigating how to apply traceability relations effectively and practically. According

to (Lindvail and Sandahl 1998), traceability" relations are used for change-predicting

and conducting details to support impact analysis. The details are used to increase

the accuracy of cost estimation, and decrease time-consuming of analysis. In

addition to (Boehm 2000, Boehm et al. 2004), the reuse of software artefacts to

develop a new software system can cost around 15% of creating new artefacts.

Traceability relations assist the reuse of software artefacts by conducting details of

existing artefacts that are associated to new requirements. This concept has been

raised in (Alexander 2003, CAFE 2003, Dick 1999, ESAPS, Knethen et al. 2002,

Lindvall and K. 1996). The authors agreed applying of traceability relations increases

the proportion of reuse and decreases the cost of developing a new system. We

describe the following section the different use of traceability" relations to support

the activities in the software development process.

16

2.2 Benefits with Software Traceability

2.2.2. Different Use of Software Traceability

Software traceability can be used to assist with various activities in the development

of software systems. Examples of these activities are (a) domain impact analysis, (b)

validation, verification, and testing, (c) reuse of software artefacts, and (d)

understanding software artefacts. In this section we describe some of the

approaches that have been proposed to support those activities.

I. Domain Impact Analysis

The aim of domain impact analysis is to predict possible consequences of changes

in the software artefacts (Lindvall and Sandahl 1998, Lock et al. 1999). Software

traceability is a technique applied to support the activity of impact analysis. In

particular, traceability relations can be used to identify artefacts that have been

changed since traceability relations can associate relevant artefacts to a particular

artefact being changed. Traceability relations are realised as bi-directional links that

represent associations between two artefacts in both directions. In (Lindvall and

Sandahl 1998), domain impact analysis is defined as analyzing which artefacts of a

system are affected, and how the artefacts are affected, by a proposed change. When

a requirement is proposed to be changed, all other artefacts associated to the

requirement have to be changed to fulfill the new requirement. The authors

suggested that traceability relations assist the estimation of the cost of a proposed

change by considering which and how artefacts are affected. The authors also

suggested that the use of traceability relations is required in different situations to

support impact analysis of a proposed change. Examples of these situations are (i)

straightforward tracing between a changed requirement to other artefacts i.e.

requirements, design models, source code; (ii) tracing between textual references of

a changed requirement to external documents; and (iii) tracing common names

between artefacts regarding a changed requirement. In (Lock et al. 1999), the

authors proposed to apply traceability techniques to support domain impact

analysis. Their approach involves two activities namely: (i) traceability extraction, which

generates traceability relations between artefacts for export to a database storage

system; and (ii) traceability analysis, which analyses and represents possible impact of a

17

CHAPTER 2. SOFTWARE TRACEABILITY

change using the database. However, in this work, the authors do not provide how

to generate the traceability relations.

In (Richardson and Green 2003, Richardson and Green 2004), the authors

proposed to use traceability relations to generate the effects of changes on source

codes. The traceability relations, called surface traceability, are created between a

program specification and the corresponding synthesized code. In these work, the

synthesized codes are generated by applications namely, AUTOFILTER and GNU

C Compiler (GCC). However, the authors only described that the technique used for

the traceability generation is a lightweight technique. The small changes, called

perturbations, are created on the specifications and the effects on the synthesized

program are observed by using the traceability relations.

In (Cleland-Huang et al. 2005a), the authors proposed the Goal Centric Traceabiliy

(GCT) to support developers impact analysis on non-functional requirements. GCT

is implemented through the four phases of: (a) goa l modeling, which is an activity of

modeling non-functional requirements with softgoal interdependency graphs (SIG); (b)

impact detection, which traceability relations between functional model of a system and

possible effects of a change are generated; (c) goa l analysis, which the effect on whole

system is developed according to the traceability relations created in previous phase;

and (d) decision making, which stakeholders determine the impact results and take a

decision regarding the change. In GCT, the generation of traceability relations is

implemented by using a probabilistic network model proposed in (Wong and Yao

1991, Wong and Yao 1995).

Some approaches (Cleland-Huang et al. 2002b, Dhar and Jarke 1988, Knethen

2002b, Pinheiro and Goguen 1996, Ramesh and Dhar 1992) have claimed that their

traceability techniques support domain impact analysis. In (Dhar and Jarke 1988),

the authors described a knowledge based dependency learning and prediction

mechanism regarding software artefacts in a system. In other words, traceability

relations representing the dependencies illustrate an impact between software

artefacts. The work is extended in (Ramesh and Dhar 1992). Ramesh and Dhar

18

2.2 Benefits with Software Traceability

defined an entity, namely changeproposals that appear in two sub-models of the

traceability7 reference model for high-end traceability users requirements management

and design allocation sub-models. The changeproposals entity is related to system_objectives

and requirements entities with traceability relations called generate and modify in the

requirements management sub-model while the entity is also related to design entity with

traceability relations called modify in the design allocation sub-model. These types of

traceability relations are used to maintain the history of updated artefacts in a

system. Additionally, they defined an entity, namely system_subsystems_components, with

traceability relations depend_on and part_of used to support impact analysis. The

authors suggested that the depend_on traceability relations can assist the maintenance

of dependency information. The part_of traceability relations are used to discover

dependencies within a particular artefact. In other words, the traceability relations

are used to justify which artefacts may affect a particular changed artefact. When an

artefact is created or modified, the traceability relations are used to assist in deciding

the impact on the whole system.

In (Pinheiro and Goguen 1996), domain impact analysis is achieved by two different

types of traceability relations: replace and abandoned relations. The replace relations are

used to identify which artefacts are substituted by a new or updated requirement,

while the abandoned relations are used to determine which artefacts become unused

in a system due to a changed requirement. Cleland-Huang et al (Cleland-Huang et al.

2002b) proposed a traceability approach to support the process of analyzing the

impact of a change with a concern on performance of the system by exercising

existing traceability relations to determine possible effects. The approach also

illustrates a comparison of the possible results to the original system. In (Knethen

2002a, Knethen 2002b), they described such an analysis. Egyed et al. (Egyed and

Grunbacher 2002) described that their traceability technique can also help in

analyzing the impact of a proposed change. When a proposed change is created,

new scenario is created and executed with a running system. The approach creates a

footprint reflecting the proposed change.

19

CHAPTER 2. SOFTWARE TRACEABILITY

II. Validation, Verification, and Testing

The quality of software systems relies on how the systems satisfy users’ needs.

Traceability relations are used to identify associations between artefacts created

during the development life-cycle. Finkelstein (Finkelstein 1991) pointed out a

system whose requirements have not been represented using formal methods, an aid

is required to achieve validation, verifying and testing of the requirements.

According to (IEEE-830 1998), system development requires software traceability

to assist validation, verification and testing the systems. In (Haumer et al. 2000), the

authors proposed an approach of applying traceability relations to support the

system development. The usage of a system is recorded and called Rea! World Scenes

(RWS). RWS and other observational materials recorded by using video are

structured as Real World Example (RWE). RWE reflect software artefacts i.e.

requirements, design, program specifications in the system. The approach generates

traceability relations between fragments of RWE, called Real World Example Fragment,

and the software artefacts. It uses these traceability relations for validation the

software artefacts in the current system against RWE. Murphy et al. (Murphy et al.

1995) presented an idea of formal specification language that supported system

validation. They described using traceability relations to support consistency

checking between requirements, designs and source codes. However, this work does

not describe different types of traceability relations existing between artefacts.

Experiments in (Ramesh and Edwards 1993) described that stakeholders earn

benefits from traceability relations in validation and verifying a system. For example,

project managers specify artefacts e.g. project plans, constraints, rules, and policies

and then assure that the specifications have been followed appropriately. Gotel et al

(Gotel and Finkelstein 1995) initially proposed that pre-traceability activities in the

system development, to assist activities of validation, verification and testing both

formal and informal requirements recorded in different ways i.e. wish list, audio of

meeting, meeting transcript, initial requirements specification, email message, revised

requirements specification, and query. They suggested the generation of traceability7

relations that associate stakeholders and requirements and usage of these traceability

20

2.2 Benefits with Software Traceability

relations from requirements backward stakeholders. These assist traceability users to

assure validation, verifying and testing the requirements. In (Spanoudakis et al.

1999), they are concerned with overlaps traceability relations. The work presents how

the overlap traceability' relations are used to detect inconsistency between

requirements represented in a formal specification. Fiutem at el. (Fiutem and

Antoniol 1998) suggested that traceability relations can ensure consistency between

software artefact created during software development process. The authors present

an approach for checking the fulfillment of object-oriented design with source code

(implemented in C++). Checking is performed by applying traceability relations.

The traceability relations called as is are generated between design artefacts and

source code. These relations assist traceability users to deal with inconsistency

between design and code. The work in (NASA) proposed the software development

life-cycle and applied an activity called traceability analysis during development

activities i.e. requirements analysis, design analysis, and implementation analysis. The

work uses traceability relations to validate and verify the satisfaction of

requirements, design and implementation.

In addition to, many traceability approaches (Letelier 2002, Pohl 1996b, Ramesh and

Jarke 2001) are aimed to support the activity of validation, verification and testing a

system. Pohl (Pohl 1996b) proposed the process-centered requirements engineering that

enable traceability activity in the system development and support validation,

verifying and testing the system. In (Ramesh and Jarke 2001), the authors proposed

the traceability meta model containing traceability reference model to support the

work in (Ramesh and Edwards 1993). In (Pinheiro 2000, Pinheiro and Goguen

1996), the authors claimed that their approach assisted the activities of validation,

verification and testing a system such as: (i) derive, refine, extract, and part o f traceability

relations are used to describe the associations of requirements to other different

artefacts i.e. design models and source code; (ii) replace and abandon traceability

relations are used to identify unnecessary software artefacts existing during the

development; and (iii) test traceability relations are used to associate requirements

and test cases. Egyed (Egyed 2002) described two basic properties of traceability

relations: (i) bi-directionality that means a traceability relation associates two software

21

CHAPTER 2. SOFTWARE TRACEABILITY

artefacts in both two directions; and (ii) transitivity that two traceability relations

relating three software artefacts can conclude another traceability relation between

two of those software artefacts. They described tracing between software artefacts in

a system by using those two properties in order to support validation and

verification the system.

III. Reuse of Software Artefacts

There have been many approaches (Alexander 2003, Antoniol et al. 2002, CAFE

2003, Dick 1999, ESAPS, Knethen et al. 2002, Lindvall and K. 1996) to using

traceability relations to assist with software system reuse. In (Knethen et al. 2002),

the approach is proposed for recycling requirements in a system. The authors

claimed that direct support for recycling requirements requires horizontal

traceability relations. In this work, use case specifications and UML diagrams are

used to represent requirements. The requirements are separately viewed as (a) logical-

entity, which is a textual part of requirements and (b) documentation entity, which is a

software artefact i.e. functional requirement and design class. There are two types of

models: (i) conceptual system model' (CSM), which describes types of logical entities and

their traceability relations between requirements; and (ii) conceptual documentation model

(CDM), which describes types of documentation entities and their traceability

relations between requirements. The CSM of new requirements and CDM of an

existing system are developed. Traceability relations between logical and

documentation entities are used to identify possible reused parts of existing

artefacts.

The works in (Alexander 2003) illustrate the deployment of traceability* relations in

industrials. New requirements are compared with an existing system by using

traceability relations between new and existing requirements. The traceability

relations help with diagnosis of reuse existing artefacts. Antoniol et al. (Antoniol et

al. 2002) proposed the generation of traceability* relations from existing source code

to new requirements represented in textual language. The authors suggested that the

activity helps locating possible reused source code for satisfying the new

22

2.2 Benefits with Software Traceability

requirements. In (Lindvall and K. 1996), the authors suggested that traceability

activity' helps discovering existing software artefacts i.e. design and components that

might be possible to reuse. Traceability relations are used for identification of such a

design or component relating to a new requirement.

Recently, in the domain of product family systems, there have been some

approaches that employed traceability activities in order to assist reuse. Dick (Dick

1999) suggested a rich traceability to enable supplemental artefacts for complying new

requirements to existing requirements. The idea of work is to support the reuse of

existing requirements for a new product member’s requirements by adding extra

requirements and removing unused requirements. The technique in this work is

extended in (Hull et al. 2002). The authors proposed an artefact namely satisfaction

arguments that are represented by using goal-structures charting AND/OR

decompositions. The satisfaction argument contains domain knowledge, decision

and issues artefacts in the domain of product family' systems. The aim of the

approach is to apply the rich traceability' to support the reuse of the requirements

for the product family system development.

Some projects (CAFE 2003, ESAPS) suggested traceability' activities in the product

family system development to support developers reuse of existing software

artefacts i.e. requirements, design, software components, and source code to

develop new product member. Traceability relations between new requirements of

new product members and existing artefacts in product family systems are used to

identify relevant existing software artefacts to the newr product. The relevant

software artefacts (i.e. design models and reusable software components) are then

reused and integrated as a new product member in a product family.

IV. Understanding Software Artefacts

The works in (Ramesh and Edwards 1993, Ramesh et al. 1995) illustrated the

observation of issues in the software development life-cycle. The authors concluded

that stakeholders are required to understand software artefacts created during the

23

CHAPTER 2. SOFTWARE TRACEABILITY

software development process and suggested that traceability reladons can be used

by different stakeholders to understand an artefact in different specifications. For

example, software engineers need to understand requirements which are specified

by different stakeholders e.g. project managers and requirements engineers, in order

to implement the system.

In (Antoniol et al. 2002), they proposed to use traceability reladons to comprehend

existing source code. The traceability relations between source code and documents

(i.e. handbook, design documents, and manual documents) support both top-down

and bottom-up comprehension. In top-down comprehension, it provides a guideline

on where to look for details of a particular artefact, while, in bottom-up

comprehension, it provides the abstraction of artefacts. In (Maletic et al., Marcus

and Meletic 2003), the authors proposed an approach for generating traceability

relations between source codes artefacts with an emphasis on recognizing

similarities between them.

The works in (Fairley and Thayer 1997, Haumer et al. 1998, Weidenhaupt et al.

1998) illustrated that traceability relations are required to support planning and

controlling of projects. Traceability information is used to estimate and follow the

plans. In (Flaumer et al. 2000), traceability relations between existing artefacts are

used to understand the satisfaction of requirements. In addition to (Domges and

Pohl 1998, Haumer et al. 1999), the authors suggested rationale traceability relations

associated between software artefacts e.g. design decisions, alternatives, and

assumptions in a system to support system comprehension. Gotel and Finkelstein

(Gotel and Finkelstein 1994) suggested contribution traceability relations between

stakeholders and requirements. The supplement attributes e.g. stakeholders’ roles,

system’s policies, and constraints can be captured. These attributes in traceability

relations are used by stakeholders to comprehend the requirements.

Software traceability can be used during the system development process in

different activities. Many existing approaches for traceability generation have been

proposed to achieve these activities. However, the deployment of traceability

24

2.2 Benefits with Software Traceability

relations can be achieved and be more advantageous, if the traceability relations are

generated accurately, effectively and efficiently.

2.3. Problems with Software Traceability

Despite the importance of software traceability, establishing traceability relations is

not an easy task and there are many associated problems. We describe below these

problems.

I. The Difficulty to Manage Traceability in Large and Complex

Systems due to Numerous Software Artefacts

Software artefacts generated during the software development life-cycle are

numerous and diverse. Traceability activities, i.e. traceability generation, traceability

visualization, and traceability usage, require dealing with those software artefacts.

The traceability activities become more difficult when dealing with a large number

of heterogeneous software artefacts.

II. The Lack of Automadc Support for Traceability

Manual traceability establishment is error-prone, difficult, time-consuming,

expensive, complex, and limited on expressiveness. However, fully automatic

support for traceability in software engineering environments and tools are not

always adequate (Ramesh and Jarke 2001, Sherba et al. 2003b).

III. The Lack of Presenting of the Semantics of Traceability

Relations for Specific-Domain Systems

In general, traceability relations have different meanings and relate to different types

of artefacts. Many approaches (Alexander 2003, Dick 1999, Gotel and Finkelstein

1994, Knethen 2002a, Letelier 2002, Lindvall and Sandahl. 1996, Marcus and

Meletic 2003, Pohl 1996b, Ramesh and Jarke 2001, Zisman et al. 2002b) proposed

to classify different types of traceability relations based on different semantics

aspect. However, the majority of these approaches do not focus on the classification

25

CHAPTER 2. SOFTWARE TRACEABILITY

of traceability relations regarding some specific domains such as product family

systems (We describe the literature of product family systems and traceability for

these systems in Chapter 3).

IV. The Disjointed Process between Main Development Process

and Traceability Activities

Some existing approaches (Antoniol et al. 2000, Gotel and Finkelstein 1995,

Pinheiro and Goguen 1996, Pohl 1996b, Ramesh and Jarke 2001) proposed to

establish traceability during the creation of software artefacts. However, the

processes of software development and traceability are distinct. Stakeholders can be

confused about the best time to do traceability activity. Therefore, it is necessary to

support traceability activities after the artefacts have been created.

V. The Different Stakeholders’ Needs

Different stakeholders require different traceability information with different

perspectives and purposes of use. Software engineers need to justify if new

requirements affect an existing system and require traceability relations to support

impact analysis. Moreover, requirements engineers want to assure that all

requirements have been achieved, and to support validation and verification of the

system. Therefore, different traceability relations are needed to support different

activities for different stakeholders.

VI. The Difficulty to Trace on Distributed Artefacts from Diverse

Tools

There is a large number and heterogeneity of software artefacts in a system. The

software artefacts can be created from different tools. It becomes difficulty to

interoperate documents generated by different tools.

VII. The Fragility of Traceability Relations

Traceability relations are only beneficial to the development of software systems it

they have been established properly and correctly. Plowever, it is easy to break

26

2.3 Problems with Software Traceability

traceability in a system. More specifically, if there is a change to a system that

requires a change on some existing software artefacts, the existing traceability

relations will need to be updated. Unfortunately, it is not easy to maintain update of

traceability relations due to system’s change.

2.4. Reference Models and Classification for Traceability
Relations

Various reference models (Bayer and Widen 2002, CAFE, 2003, ESAPS, Kim et al.

2005, Lago et al. 2004, Letelier 2002, Pohl 1996b, Ramesh and Jarke 2001, Toranzo

and Castro 1999) and classification for traceability relations (Alexander 2003,

Antoniol et al. 2002, Bayer and Widen 2002, CAFE 2003, Cleland-Huang et al.

2002a, Cleland-Fluang et al. 2002b, Dick 1999, Egyed 2003, Egyed and Grunbacher

2002, Gotel and Finkelstein 1995, Hayes et al. 2003, Kim et al. 2005, Knethen

2002a, Lago et al. 2004, Lindvall and K. 1996, Malefic and Marcus 2001, Marcus and

Meletic 2003, Pinheiro and Goguen 1996, Pohl 1996b, Ramesh and Jarke 2001,

Sherba et al. 2003a, Spanoudakis et al. 2004, Zisman et al. 2002b) have been

proposed in the literature. We describe below some of these approaches.

2.4.1. Reference Models

Pohl (Pohl 1994, Pohl 1996b) proposed a traceability meta model and four

traceability reference models, namely specification model, representation model, agreement

model, and dependency model. The specification model represents information i.e. the

content of the specification independent of its representation according to some

guidelines, standards, or domain models. The representation model represents

information i.e. the various representation formats used during the software

development process (e.g. natural language, graphical notations like ER diagrams or

DFDs, formal notations like O-Telos). The agreement model represents

information i.e. the different viewpoints of the stakeholders, arguments, alternative

solutions, and decisions created during the software development process. The first

three models represent traceability information while the dependency model defines

types of traceability relations to be used to relate various software artefacts

27

CHAPTER 2. SOFTWARE TRACEABILITY

according to the three models. The dependent<y model represents types of traceability

relations in five different groups called: (a) condition link; (b) content link; (c)

documentation link; (d) evolutionary link, and (e) abstraction link group. These five groups

include 18 concrete types of traceability relations that are captured between software

artefacts defined in the specification, representation, and agreement models. The condition

links are traceability relations that relate restrictions to software artefacts. The

content links are traceability relations that are concerned with the content of

software artefacts. The document links are traceability relations that relate software

artefacts to the source of the software artefacts. The evolutionary links are

traceability relations that associate between different types of software artefacts

created in different phases of software development. The abstraction links are

traceability relations that represent the abstractions and concretion of software

artefacts.

Based on experiences with the deployment of REMAP (Ramesh and Dhar 1992),

Ramesh and Jarke (Ramesh and Jarke 2001) developed two traceability reference

models for two groups of traceability' users: (a) low-end traceability users, concerned

with those users that have few years of experience in traceability and see the

importance of traceability' as a way of complying to standard; and (b) high-end

traceability users, concerned with those users that have many years of experience in

the area of traceability and see traceability as a way of guaranteeing customer

satisfaction and knowledge creation through the system development life cycle.

These two reference models, which one resembles the other, describe 50 types of

traceability relations and 31 types of entities. The reference model for low-end

traceability users contains seven types of traceability relations: derive, developedfor,

petformed_on, depend_on, inteiface_with, allocated_to, and satisfy. The reference model for

high-end traceability users contains four sub-models: (i) requirements management', (ii)

rationale', (iii) design allocation', and (iv) compliance verification sub-models, and contains 43

types of traceability relations. All together, the 50 types of traceability relations

proposed in both high-end and low-end reference models are organized in four

groups namely: (a) satisfaction link, which is used to ensure that a requirement is

satisfied by a system; (b) evolution link, which is used to record the history' ot

28

2.4 Reference Models and Classification for Traceability Relations

documents (e.g. new, modified, and existing); (c) rationale link, which is used to

represent the rationale behind the creation of a document; and (d) dependency link,

which is used to represent dependencies between documents.

Additionally, Mohan and Ramesh (Mohan and Ramesh 2002) adapted the reference

models from (Ramesh and Jarke 2001) for identifying common and variable

requirements in the domain of product family systems. The adapted reference

model includes primitives such as architectural decisions and design decisions that

reflect the common and variable requirements in the product family system domain.

Toranzo and Castro (Toranzo and Castro 1999) described a reference model for

different views of traceability users (i.e. requirements engineer, software engineers,

and project engineers). However, the reference model presents types of traceability

relations without any explicit semantics.

Letelier (Letelier 2002) proposed a reference model focusing on requirement

specifications, namely TraceableSpecification. The specific types of

TraceableSpecification are: (a) IXationaleSpecification, which describes a rationale

behind a TraceableSpecification, (b) RequirementsSpecification, which is a requirement

or group of requirements, (c) TestSpecification, which define a test for a requirement,

and (d) OtherUMI,__Specijication, which is other type of UML models to elaborate the

specification of a requirement. The reference model includes two main groups of

traceability' relations: The first group presents associations between two

TraceableSpecifications by means of aggregation and contains relations called part of.

The second group is composed of seven types of traceability relations: (a) traceTo,

which represents a traceability relation between two TraceableSpecifications; (b)

rationaleOf which represents a traceability relation between a RationaleSpecification

and TraceableSpecification; (c) validatedBj, which relates a

RequirementsSpecification and TestSpecification; (d) verifiedBy, which represents that

a TestSpecification verifies OthetUML_Specifi cation; (e) assignedTo, which

represents that OtherUML_Specification relates to RequirementsSpecification; (f)

modifies, which represents the a stakeholder or group of stakeholders that modify a

29

CHAPTER 2. SOFTWARE TRACEABILITY

TraceableSpecification; and (g) responsibleOfi which represents the stakeholder or

group of stakeholders that are responsible for the definition and maintenance of a

TraceableSpecification.

Bayer (Bayer and Widen 2001) defined a traceability reference model that consists of

artefacts and relationships between these artefacts. The artefacts are created during

three activities of product family system development, namely scoping, architecture

design, and implementation. During the scoping activity, feature entity representing the

requirements of whole product family and product entity representing product

members of the family are created. The activity of architecture design is concerned

with three views: component view consisting of component entity, class view consisting of

class and interface entities, and data structure view consisting of data entity. During the

activity of implementation, code module, property, and property f i le are created. The

models contains relationships that can be categorized as three groups: (i) relations

between different types of artefacts created in different activities, namely realises and

implements-, (ii) relations between different types of artefacts created in the same

activity, namely has, accesses, implements, contains, and configures-, and (iii) relations

between the same type of artefacts, namely uses, excludes, depends on, aggregates,

implements, and specialises.

In (Kim et al. 2005), the authors defined a conceptual model, called traceability map.

The model consists of artefacts created during the product family system

development process and traceability relations. In this work, the artefacts are

concerned with the creation during two sub-processes: domain engineering and

application engineering. During the domain engineering sub-process, (a) the

requirements artefacts are created and defined as product line scope representing the

boundary of a product family, and C<&V model, representing common and variable

aspects in the family, and (b) the design and implementation artefacts are created

and defined as core asset. During the application engineering sub-process, (a) the

requirements artefacts are created and defined as application analysis model

representing a conceptual analysis of a product member, and application specification

analysis model representing a specification of a product member, (b) the design

30

2.4 Reference Models and Classification for Traceability Relations

artefacts are created and defined as application specification design model representing a

design model of a product member, and decision resolution mode! representing design

decision artefacts, and (c) the implementation artefacts are created and defined as

instantiated core asset representing specific reused assets for a product member,

integrated application design, representing the integration of a product member, and

application implementation, representing implementation artefacts of a product

member. The traceability relationships in the model can be grouped as: (a) selected

and refined that associate between different requirements artefacts; (b) realised, derived,

and cluster that associate between requirements and design artefacts; and (c) resolved

that associates between design and implementation artefacts.

In (Lago et al. 2004), the authors defined a model, called simplified representation model

that consists of artefacts and relationships in the domain of product family systems.

The artefacts are grouped as: (a) product family level, composed of product family feature

mode! and product family feature; a product family feature model represents a feature

model for a family while a product family feature represents a single feature in a

family; (la) product level, composed of product feature model, product feature, product

component map, and design decision-, these artefacts represent the requirements and

design of a product member; and (c) implementation level, composed of implementation

assets representing the implementation artefacts of a product family. The model

illustrates two types of traceability relations: (a) between artefacts in different levels

such as supports and implements-, and (b) between artefacts in the same level such as

realises, composeOf requires and excludes. In (Plankl and Bockle 2001), the authors also

suggested the traceability reference model which focus the requirement artefacts in

the domain of product family systems. The model consists of derived, which

associates between the requirements of a product family and the requirements of a

product member; caused, which associates between different requirements; and is in

version, which associates the evolution of a requirement.

Additionally, in the projects (CAFE 2003, ESAPS), the meta model is suggested to

represent two types of traceability relations. First the vertical traceability relations

between different types of artefacts created in different phases of the development,

31

CHAPTER 2. SOFTWARE TRACEABILITY

and second the horizontal traceability relations between (a) between the requirements of

product family and the requirements of product members; and (b) between different

versions of requirements. They defined the traceability meta-model to capture the

relationships in the product family. However, the approach in (Coriat et al. 2000),

applied during the activity of domain analysis in the projects includes the traceability

activity. The authors suggested traceability relations to be grouped as (i) is realized by,

excluded, and included between different requirements; and (ii) is applied on, between

requirements and constraints.

2.4.2. Classification of Traceability Relations

In order to discuss the various types of traceability relations that have been

proposed in the literature, we follow the classification given in (Spanoudakis and

Zisman 2005). We describe below these traceability relations types and the types of

software artefacts to which the traceability relations exist.

Dependency

Dependency traceability7 relations are relations that can be used to represent the

reliance between artefacts in a system. A dependency relation may hold between

(a) requirements and requirements specifications — dependency traceability relations

between different requirements have been proposed in (Alexander 2003,

Knethen 2002a, Knethen et al. 2002, Malefic et al., Pohl 1996a, Ramesh and

Jarke 2001, Spanoudakis et al. 2004, Zisman et al. 2002b). In (Knethen et al.

2002, Malefic et al.), the dependency traceability' relations, are called casual

conformance. In (Spanoudakis et al. 2004, Zisman et al. 2002b), dependency

traceability relations are called requires. In (Bayer and Widen 2002), depends_on

traceability relations associated between requirements called features,.

(b) requirements and design specifications - dependency traceability relations between

requirements and design have been suggested in (Gotel and Finkelstein 1995,

Mohan and Ramesh 2002, Ramesh and Jarke 2001). In (Ramesh and jarke

2001), dependency traceability7 relations are used to assist decision making and

32

2.4 Reference Models and Classification for Traceability Relations

system management. In (Mohan and Ramesh 2002), dependency traceability

relations have been used to support activities of commonality and variability

analysis in the domain of product family system. In (Gotel and Finkelstein

1995), dependency traceability relations are called development relations. These

dependency relations are also used to represent relations between requirements

and other types of software artefacts generated during the software

development process.

(c) requirements and scenarios, and implementation specifications — Egyed (Egyed 2003)

proposed dependency relations between requirements and scenarios and

between requirements and source code to record the history of requirements

generation and development of requirements.

Refinement

Refinement traceability relations associate two artefacts when an artefact describes

more details of another artefact. Refinement relations are proposed in (Gotel and

Finkelstein 1995, Knethen 2002a, Knethen et al. 2002, Mohan and Ramesh 2002,

Pinheiro and Goguen 1996, Pohl 1996b, Ramesh and Dhar 1992, Sherba et al.

2003b). The refinement relations are called generalises/ specialises relations in (Mohan

and Ramesh 2002, Ramesh and Dhar 1992). They suggested a refinement relation to

elaborate complexity of an artefact into the other artefact or a group of artefacts. In

other words, an artefact specifies more details about the other artefact.

(a) requirements and requirements specifications — In (Gotel and Finkelstein 1995, Pohl

1996b), a refinement relation is referred as a traceability relation which holds

between requirements and requirements. In (Pohl 1996b), they classified this

type of traceability relations as refines, which is used to define that a requirements

is elaborated in more details by the other requirement, and generalises, which is

used to represent a generalization of a requirements or a group of requirements.

In (Gotel and Finkelstein 1995), they called refinement traceability relations as

containment relations and relate a requirement and a combination of refined

requirements. In addition to (Bayer and Widen 2002), the authors defined

refinement traceability relations, called has, between two types of requirements

artefacts namely feature and product. Kim et al. (Kim et al. 2005) defined two

33

CHAPTER 2. SOFTWARE TRACEABILITY

types of refinement relations between requirements artefacts in the domain of

product family systems, called selected and refined. In (Lago et al. 2004), the

authors suggested two tyrpes of refinement traceability relations called supports

and composedOf. Supports relations represent the requirements of a product family

fractioning to the requirements of product members while composedOf relations

represent the mixture of the requirements of a product member. In (Plank! and

Bockle 2001), the refinement relations between requirements are called caused.

(b) requirements and design specifications - In addition to (Kim et al. 2005), the authors

defined refinement relations, namely resolved., associating between requirements

and design artefacts in the domain of product family systems.

(c) requirements and implementation specifications — Bayrer at el. (Bayer and Widen 2001)

defined refinement traceability relations between requirements called feature and

implementation artefacts called property.

(d) design and design specifications — Examples of approaches including refinement

relations between design artefacts are (Jacobson 1992, Knethen 2002a, Mohan

and Ramesh 2002, Pinheiro and Goguen 1996, Ramesh and Jarke 2001). In

addition to (Bayer and Widen 2002), the authors suggested two types of

refinement traceability relations, called specializes and aggregates, relating between

same types of design artefacts i.e. components, class, interface, and data entities.

(e) implementation and implementation specifications — Bayer at el. (Bayer and Widen 2002)

also defined two types of refinement traceability relations between different

implementation artefacts as contains and configures.

Evolution

Evolution traceability relations are relations that denote software artefacts that have

been changed, or an artefact that has been replaced by an other artefact during the

development, maintenance, or evolution of the system. This type of relation has

been suggested in (Gotel and Finkelstein 1995, Malefic et al. 2003, Pinheiro and

Goguen 1996, Pohl 1996b, Ramesh and Dhar 1992, Ramesh and Jarke 2001). An

evolution relation may hold between

(a) requirement and requirement specifications — In (Pohl 1996b), they defined five ty'pes

of evolution relations. Three of the evolution relations represent association

34

2.4 Reference Models and Classification for Traceability Relations

between different requirements and are called: (i) formalizes, when a requirement

is defined in a more formal way than another requirement specification; (ii)

satisfies, when a requirement specification satisfies another requirement; and (iii)

replaces, when a requirement has been substituted by another requirement

specification. In (Pinheiro and Goguen 1996), they classified two types of

evolution relations: (i) replace, when a requirements has been substituted by

another requirement; and (ii) abandon when a requirements is not necessary

anymore. In (Malefic et al.), they called this type of relations as non-causal

conformance. In (Plankl and Bockle 2001), the authors defined evolution relations,

namely is in version, which relate between the old and new versions of

requirements.

(b) requirement specifications and other types o f artefacts generated in later phases o f software

development — In (Gotel and Finkelstein 1995), evolution relations are called

temporal relations and represent the history of requirements in different phases of

development. In (Pohl 1996b), evolution relations are called elaborates relations

and associate an artefact from later phases in the software development process

to the particular requirement. In (Sherba et al. 2003b), evolution relations are

named: (i) allocated_by relations that associate a requirements to analysis or

design models; and (ii) elaborated_by relations that associate requirements to

source code.

(c) requirements and constraints specifications — In (Pohl 1996b), one type of evolution

relations has been proposed between requirements and constraints. This

relation is called based_on and represents an association between a requirement

and constraints that have influenced the generation of the requirement.

Conflict

Conflict traceability' relations are relations that denote conflicting aspects between

software artefacts in a system. This type of traceability relations has been proposed

in (Alexander 2003, Pohl 1996b, Ramesh and Jarke 2001). It represents that an

artefact has a context that may be opposed to another artefact. A conflict relation

may hold between

35

(

CHAPTER 2. SOFTWARE TRACEABILITY

(a) requirement and requirement specifications — In (Pohl 1996b), they defined two types

of conflict traceability relations namely: (i) conflicts relations represent that a

requirement, has negative influence on another requirement; and (ii) contradicts

relations represent an inconsistency between two requirements.

(b) requirement specifications and other types o f artefacts generated in later phases o f software

development — In (Ramesh and Jarke 2001), they defined types of traceability

relations and entities concerning the confliction. The entities are named:

decisions, which describe decision information concerning the generation of

requirements; rationale, which represents the rationale of requirements;

assumptions, which describe conclusions assumed to be true; and issues conflicts,

which represent the confliction between requirements. Conflict relations are

named: (i) resolve relations, which associate between decision and issues conflicts

entities; (ii) affect relations, which relate between requirements and decisions; (iii)

generates relations, which associate between requirements and issues conflicts;

and (iv) based on relations, which relate between requirements and rational

entities, between assumptions and rationale entities, and between rationale and

decisions entities.

Overlap

Overlap traceability relations are relations that associate two artefacts referring to

common aspects of a system. An overlap relation may hold between

(a) requirements and requirements specifications — Many approaches proposed overlap

relations between different requirements such as (Antoniol et al. 2002, Egyed

2002, Gotel and Finkelstein 1995, Hayes et al. 2003, Jarke 1998, Knethen

2002b, Knethen et al. 2002, Pohl 1996b, Ramesh and Jarke 2001, Sherba et al.

2003a, Spanoudakis and Finkelstein 1997, Spanoudakis et al. 1999, Spanoudakis

et al. 2004, Zisman et al. 2002b). In (Egyed 2002), they defined traceability

relations called commonality that associate two artefacts with a common aspect.

In (Gotel and Finkelstein 1995), they proposed overlap relations called adopts

relations between different requirements. In (Knethen 2002a, Knethen et al.

2002), they defined overlap relations as representation relations and show an

association between two artefacts with the same aspect of requirements.

36

2.4 Reference Models and Classification for Traceability Relations

(b) requirements specifications and source o f requirements that influence the generation o f

requirements — In (Pohl 1996b), they defined two types of overlap relations

namely: (i) example_for relation that relates between requirements and scenarios;

(ii) purpose relation that relates between a requirement and purpose of the

requirement; (iii) background relation that relates between a requirement and

background of the requirement; and (iv) comment relation that relates between a

requirement and comment regarding to the requirement.

(c) requirements specifications and other types o f artefacts in later phases o f software development —

In (Spanoudakis et al. 2004, Zisman et al. 2002b), overlap relations are defined

between requirements and object models. In (Pohl 1996b), they defined overlap

reladons called TestjZase_for relations that relate a requirement and test case. In

(Antoniol et al. 2002, Marcus and Meletic 2003), they proposed overlap

traceability relations between requirements and source code. In (Egyed and

Grunbacher 2002), they suggested that overlap relations represent commonality

between source code and design models.

(d) scenarios and design specifications — In (Egyed 2003, Egyed and Grunbacher 2002),

they defined overlap relations between scenarios and design models i.e. class

diagrams, use case diagrams, and data flows.

(e) design and design specifications — Overlap relations between different design artefacts

are proposed in (Bayer and Widen 2002, Knethen 2002a, Knethen 2002b). More

specifically, in (Bayer and Widen 2001), the authors suggested overlap

traceability relations associating between component and class entities created

during architecture design.

Satisfiability

Satisfiability traceability' relations are relations that show how a system satisfies the

requirements. A satisfiability' relation may hold between

(a) requirements and design specifications — Satisfiability relations between requirements

and design artefacts are proposed in (CORE, Ramesh and Jarke 2001, Zisman et

al. 2002b); In (Zisman et al. 2002b), satisfiability relations are called realise

relations. In (Bayer and Widen 2001), the authors defined satisfiability

traceability relations, called realises, relate the feature entities of the requirement

37

CHAPTER 2. SOFTWARE TRACEABILITY

artefacts and the component entities of architecture artefacts. Kim et al. (Kim et

al. 2005) defined two types of satisfiability relations between requirements and

design artefacts in the domain of product family systems, called realised and

derived. In (I.ago et al. 2004), the authors also defined satisfiability' traceability

relations, called realises, which associate between requirements of a product

member and design decision artefacts.

(b) requirements and implementation specifications — In (Sherba et al. 2003b), satisfiability

traceability relations between a requirement and source code are named

implemented_by.

(c) requirements and constraints specifications — Satisfiability relations between a

requirement and constraints are proposed in (Gotel and Finkelstein 1995, Pohl

1996b, Ramesh andjarke 2001).

(d) requirements and requirements specifications — Satisfiability relations between different

requirements are proposed in (Alexander 2003, Coriat et al. 2000, Dick 1999,

Pinheiro and Goguen 1996, Plankl and Bockle 2001). In (Pinheiro and Goguen

1996), satisfiability relations are called derive relations and illustrate that a

requirement is derived from another requirement. In other words, when a

requirement is satisfied, its derived requirements should also be satisfied. This

does not necessarily mean true in vice versa. In (Dick 1999), satisfiability

traceability relations are named: establishes and contributes relations. In (Coriat et al.

2000) , the satisfiability relations called as is realised by associate between non

functional requirements and functional requirements. In (Plankl and Bockle

2001) , the authors defined satisfiability relations, namely derived, which relate

between the requirements of product family and the requirements of product

members.

(e) design and implementation specifications — In (Sherba et al. 2003b), satisfiability

traceability relations are called implemented_by and are used to relate between

design artefacts and source code. In addition to (Bayer and Widen), satisfiability

traceability relations, called implements, relate between class and interface entities

of architecture artefacts and code module entities of implementation artefacts.

Kim et al. (Kim et al. 2005) also defined satisfiability relations, namely resolved,

between design and implementation artefacts in the domain of product family

38

2.4 Reference Models and Classification for Traceability Relations

systems. According to (Lago et al. 2004), the authors defined satisfiability

traceability relations, called implements, which associate between design decision

artefacts and implementation asset artefact.

(f) design and design specifications — In (Bayer and Widen 2001), three types of

satisfiability traceability relations: (i) uses, which associates between different

component entities; (ii) accesses, which associates between component entities

and data entities; and (iii) implements, which associates between class entities and

data entities.

Rationale

Rationale traceability relations are relations that are used to connect software

artefacts concerned with decisions and arguments. Rationale traceability relations

can be found between: (i) different types of artefacts created during software

development and the rationale specifications; and (ii) same types of artefacts. For

the latter case, the rationale artefacts are included in the artefacts that are concerned

with the rationale. Thus, a rationale relation may hold between:

(a) rationale artefacts and other types o f artefacts — In (Ramesh and Jarke 2001), one sub

model of traceability reference model for high-end traceability users is called a

rationale sub-model. The rationale sub-model has entities namely object that can

be software components, requirements and designs, rationale, decisions, issues_or_conflicts,

alternatives, decisions, assumptions, arguments, and critical success factors (CSF). The types

of traceability relations in the sub-model are grouped as rationale relations and

named: based_on, affect, generate, address, influence, and depend_on. In (Letelier 2002),

rationale relations are called rationelOf relations and associate between

RationaleSpecification and RequirementSpecification, TestSpecification, and

OtherUMf_Specijications. Additionally, In (Pohl 1996b), rationale relations are

defined in a group called condition link which consists of two types of relations

namely: (i) precondition that is used to relate a condition to a requirement which

must be fulfilled to enable an implementation of the requirement; and (ii)

constraint that is used to relate a constraint to a particular software artefact

created in later phases of software development. In (Coriat et al. 2000), rationale

39

CHAPTER 2. SOFTWARE TRACEABILITY

relations, called is applied on, associate between requirements and constraints

specifications.

(b) requirements and requirements specifications - In (Bayer and Widen 2001), the authors

defined rationale relations, called excludes, that relate between different features.

Lago et al. (Lago et al. 2004) defined two types of rationale relations, called

requires and excludes, which associate between the requirements of a product

family. In (Coriat et al. 2000), two types of rationale relations, namely excludes

and includes by are related between different requirements to represent the

prohibitions and constitution between two requirements, respectively.

Contribution

Contribution traceability relations are relations that denote a stakeholder or group of

stakeholders who have contributed to the generation of a software artefact. Gotel

and Finkelstein (Gotel and Finkelstein 1995) initially proposed this type of

traceability relations and called the relations as pre-traceability. In (Sherba et al.

2003b), two types of contribution relations are named: (i) discnssed_by relations that

associate between a requirements and a stakeholder or group of stakeholders who

has contributed to the generation of the requirement; and (ii) e/aborated_by relations

that associate a stakeholder or group of stakeholders who are contributed to source

code.

Table 2-1 shows a summary of different types of traceability relations that are

proposed by different approaches. We present the types of traceability relations by

classifying the generation of traceability relations based upon different types of

software artefacts i.e. requirements, design, source code, source of requirements,

constraints, test cases, and rationale.

40

2.4 Reference Models and Classification for Traceability Relations

Table 2-1: Different traceability relationships between different artefacts

Software artefacts Traceability relations

Between dependency (Alexander 2003, Bayer and Widen 2002,

requirements specifications

and

Egyed and Grunbacher 2002, Gotel and Finkelstein 1995,

Knethen 2002a, Knethen et al. 2002, Maletic et al., Pohl

requirements specifications 1996a, Ramesh and Jarke 2001, Spanoudakis et al. 2004,

Zisman et al. 2002b)

refinement (Bayer and Widen 2002, Gotel and Finkelstein

1995, Kim et al. 2005, Knethen 2002a, Knethen et al.

2002, Lago et al. 2004, Mohan and Ramesh 2002, Pinheiro

and Goguen 1996, Plankl and Bockle 2001, Pohl 1996a,

Ramesh and Dhar 1992, Ramesh and Jarke 2001, Zisman

et al. 2002a)

evolution (Gotel and Finkelstein 1995, Maletic et al.,

Pinheiro and Goguen 1996, Plankl and Bockle 2001, Pohl

1996a, Ramesh and Dhar 1992, Ramesh and Jarke 2001)

conflict (Pohl 1996a, Ramesh and Jarke 2001).

overlap (Antoniol et al. 2002, Egyed 2002, Egyed and

Grunbacher 2002, Gotel and Finkelstein 1995, Hayes et al.

2003, Jarke 1998, Knethen 2002b, Knethen et al. 2002,

Pohl 1996b, Ramesh and Jarke 2001, Sherba et al. 2003a,

Spanoudakis and Finkelstein 1997, Spanoudakis et al.

1999, Spanoudakis et al. 2004, Zisman et al. 2002b)

satisfiability (Alexander 2003, Coriat et al. 2000, Dick

1999, Pinheiro and Goguen 1996, Plankl and Bockle 2001)

Between dependency (Gotel and Finkelstein 1995, Mohan and

requirements specifications
and.

Ramesh 2002, Ramesh and Jarke 2001).

satisfiability (Bayer and Widen 2002, CORE, Kim et al.

design specifications 2005, Lago et al. 2004, Ramesh and Jarke 2001,

Spanoudakis et al. 2004, Zisman et al. 2002b).

conflict (Ramesh and Jarke 2001).

overlap (Knethen 2002a, Knethen 2002b, Spanoudakis et

al. 2004, Zisman et al. 2002a, Zisman et al. 2002b)

refinement (Jacobson 1992, Kim et al. 2005, Mohan and

41

CHAPTER 2. SOFTWARE TRACEABILITY

R a m e s h 2 0 0 2 , P in h e iro a n d G o g u e n 1 9 9 6 , R a m e s h a n d

J a r k e 2 0 0 1)

evolution (G o te l a n d F in k e ls te in 1 9 9 5 , P o h l 1 9 9 6 b ,

S h e r b a e t a l. 2 0 0 3 a)

B e tw e e n

design specifications

a n d .

design specifications

dependency (J a c o b s o n 1 9 9 2 , K n e th e n 2 0 0 2 a , R a m e s h

a n d J a r k e 2 0 0 1)

refinement (B a y e r a n d W id e n 2 0 0 2 , J a c o b s o n 1 9 9 2 ,

K n e th e n 2 0 0 2 a , M o h a n a n d R a m e s h 2 0 0 2 , P in h e ir o a n d

G o g u e n 1 9 9 6 , R a m e s h a n d J a r k e 2 0 0 1)

overlap (B a y e r a n d W id e n 2 0 0 2 , K n e th e n 2 0 0 2 a , K n e th e n

2 0 0 2 b)

satisfiability (B a y e r a n d W id e n 2 0 0 2)

B e tw e e n

design specifications

a n d

implementation

specifications

satisfiability (B a y e r a n d W id e n 2 0 0 2 , Kim e t a l. 2 0 0 5 ,

L a g o e t a l. 2 0 0 4 , S h e r b a e t a l. 2 0 0 3 b)

overlap (E g y e d a n d G r u n b a c h e r 2 0 0 2)

B e tw e e n

implementation

specifications

a n d

implementation

specifications

refinement (B a y e r a n d W id e n 2 0 0 2)

B e tw e e n

design specifications a n d

scenario specifications

overlap (E g y e d 2 0 0 3 , E g y e d a n d G r u n b a c h e r 2 0 0 2)

B e tw e e n

requirements specifications

a n d

implementation

specifications

dependency (E g y e d 2 0 0 2 , E g y e d a n d G r u n b a c h e r 2 0 0 3)

overlap (A n to n io l e t a l. 2 0 0 2 , M a rc u s a n d M e le t ic 2 0 0 3)

satisfiability (S h e rb a e t a l. 2 0 0 3 a)

refinement (B a y e r a n d W id e n 2 0 0 2)

B e tw e e n

requirements specifications

a n d

dependency (E g y e d 2 0 0 3)

42

2.4 Reference Models and Classification for Traceability Relations

scenarios specifications

Between overlap (Pohl 1996b)

requirements specifications contribution (Gotel and Finkelstein 1995, Sherba et al.

and

source of requirements

2003a)

Between

requirements specifications

and

constraints specifications

evolution (Pohl 1996b)

satisfiability (Gotel and Finkelstein 1995, Pohl 1996b,

Ramesh and Jarke 2001)

Between

requirements specifications

and

test case specifications

overlap (Pohl 1996b)

Between

implementation

specifications

and

source of requirements

contribution (Sherba et al. 2003b)

Between

rationale specifications

and

requirements specifications

rationale (Letelier 2002, Pohl 1996b, Ramesh and Jarke
2001)

Between

rationale specifications

and

design specifications

rationale (Letelier 2002, Pohl 1996b, Ramesh and Jarke
2001)

Between

rationale specifications

and

implementation

specifications

rationale (Ramesh and Jarke 2001)

Between

rationale specifications

and

rationale (Letelier 2002)

43

CHAPTER 2. SOFTWARE TRACEABILITY

test case specifications

B e tw e e n

rationale in requirements

specifications

a n d

rationale in requirements

specifications

rationale (B a y e r a n d W id e n 2 0 0 2 , C o r ia t e t a l. 2 0 0 0 , L a g o
e t a l. 2 0 0 4)

44

2.5 Approaches for Establishing Traceability Relations

2.5. Approaches for Establishing Traceability Relations

In this section we describe existing approaches to support generation of traceability

relations. These approaches can be classified into three groups depending on their

level of automation namely (a) manual approaches, when the traceability relations

are generated manually by the users with or without the support of traceability tools;

(b) semi-automatic approaches, when the traceability relations are generated based

on the existence of previously manually defined relations; and (c) automatic

approaches, when the traceability relations are generated without human interaction.

We describe below these approaches.

2.5.1. Manual Establishment of Traceability Relations

As mentioned earlier, some existing approaches (Dorfman and Flynn 1984, Han

2001, Kaindl 1992, Watkins and Neal 1994) and commercial tools (CaliberRM,

DOORS, RDT, RequisitePro, RTM, TestDirector) assume the establishment of

traceability relations to be manual in which the users are supposed to specify the

elements in the documents to be traced and even the types of traceability' relations

associated with these elements.

Although some of these approaches offer tool support to assist with the activity of

traceability' generation. This support is mainly concerned with the display of the

various documents and elements to be traced, the selection of the elements to be

traced, the selection of the different types of traceability relations, and the

visualisation of the traceability' relations. In (Kaindl 1992), the author developed a

tool that allows traceability users to create and visualise traceability' relations

between software artefacts. The work is intended to support software artefacts

which are specified in natural language and uses hypertext technique for

representing and visualising traceability relations between software artefacts.

However, the identification of traceability relations is a manual effort. In (Dorfman

and Flynn 1984), they developed a tool, called ARTS for supporting traceability

generation and visualisation. The tool allows traceability users to define the

45

CHAPTER 2. SOFTWARE TRACEABILITY

templates of software artefacts, specify the software artefacts according to the

templates, manually create traceability relations between the software artefacts, and

visualise the traceability relations by means of reports and queries. In (Watkins and

Neal 1994), they provided a tool, called ATS. The tool allows users to manually

identify traceability relations between data in a database and visualise traceability

relations by mean of pre-defined reports. In (Han 2001), the author proposed a

traceability reference model and developed a tool, called TRAM for traceability

generation. He also defined a set of templates for specifying two types of software

artefacts i.e. requirements and software architecture in a system. The tool allows

traceability users to manually create traceability relations between requirements and

software architecture according to the traceability reference model.

Moreover, some existing commercial requirement management (RM) tools have

been proposed to support traceability activities, particularly traceability generation,

such as CaliberRM (CaliberRM), DOORS (DOORS), RDT (RDT), RTM (RTM),

RequisitePro (RequisitePro), and TestDirector (TestDirector). DOORS (DOORS)

is a requirements management tool developed by Telelogic that provides a

Microsoft Explorer-like and spreadsheet-like interfaces for navigating and displaying

documents. DOORS provides functionalities for capturing, tracing, and managing

software artefacts in a system. One of the major features of DOORS is its ability to

create relations between software artefacts generated by the tool. The idea is that the

tool allows users to establish traceability relations between software artefacts after

the artefacts are created. However, the tool only supports the creation of traceability

relations for the software artefacts that have been created by the tool.

Other approaches (Alexander 2003, Dick 1999) have extended DOORS (DOORS)

for capturing and recording traceability' relations. The approach in (Dick 1999) use

rich traceability technique which define traceability' relations between requirements,

and other different artefacts called satisfaction arguments. Satisfaction arguments

include domain knowledge, and decision and issues of a particular requirements, and

are represented by goal-structures charting, and AND/OR decompositions in

DOORS. In this work the traceability relations are manually established by using

46

2.5 Approaches for Establishing Traceability Relations

DOOR. In (Alexander 2003), the author proposed an approach that apply the Volere

template (Volere) for generating software artefacts, DOORS for capturing

traceability information, and hypertext techniques for representing traceability

information.

In (Ramesh and Jarke 2001), the authors defined a traceability meta model in which

traceability reference models are described. They applied experiences from applying

a conceptual model called REMAP (Ramesh and Dhar 1992). The traceability meta

model is used as a language for defining different artefacts i.e. issues, arguments,

assumptions, decisions, constraints requirements, and design. This work is applied

with the Rationale Capture part of Andersen Consulting^’ Knowledge Based Software

Assistant (KBSA) ADM tool. The tool provides functionalities: (a) creation of

artefacts according to the traceability reference models; (b) generation of traceability

relations between artefacts created by the tool; and (c) visualization the traceability

relations. However, those activities are performed by stakeholders.

Some approaches (Gotel and Finkelstein 1995, Haumer et al. 2000, Jarke 1998,

Kotonya and Sommerville 1998, Letelier 2002, Sutcliffe and Maiden 1998) proposed

the frameworks, techniques, and approaches of traceability in system development.

In (Gotel and Finkelstein 1995), the approach describes traceability establishment

between different requirements and between stakeholders and requirements;

however, it does not state a support for automatic generation of those traceability

relations. It is assumed that the activity should be concerned and done manually.

Some approaches are proposed for traceability activities in the domain of product

family systems. Examples of these approaches are (Bayer and Widen 2002, Berg and

Bishop 2005, CAFE1 2003, Coriat et al. 2000, ESAPS, Istim et al. 2005, Lago et al.

2004, Mohan and Ramesh 2002, Plankl and Bockle 2001, Riebisch and Philippow

2001). However, the activities are assumed to be done manually. The authors do not

explicitly define how to achieve in an automatic way or provide tool support for the

1 T he co m p an y has been cu rren tly ca lled accenture.

Al

CHAPTER 2. SOFTWARE TRACEABILITY

traceability generation activity. An exception is found in (Kim et al. 2005), where the

authors suggested to use rules for traceability generation. However, they do not

define how to apply the rules in an automatic way.

2.5.2. Semi-Automatic Establishment of Traceability Relations

Some existing approaches (Cleland-Huang et al. 2002b, Egyed and Grunbacher

2002, Pinheiro and Goguen 1996, Pohl 1996b) are aimed to support an automatic

traceability generation. However, the approaches are considered as semi-automatic

since they require some manual efforts from traceability users such as specification

of artefacts to be traced or identification of the types of traceability relations. We

classify those approaches into four types depending on the techniques used. The

four types include, (a) process-centered techniques, (b) event-based techniques, (c)

scenario-based techniques, and (c) axiom-based techniques as described below.

Process-centered technique:

Pohl (Pohl 1996b) proposed an approach, called PRO-ART, to support generation

and visualization of pre-traceability under a process-centered engineering

environment. The approach depends on Requirements Engineering Environment (REE)

in which requirements are represented as hypertext models (Pohl 1996a), extended

entity-relationship models (Pohl and Haumer 1995), structured analysis models

(Pohl 1996b), object models and behavior models (OMT), and O-Telos (Pohl

1996b). The approach provides integrated tools to support various activities in the

environment. Examples of these activities are (i) execution of the software

development process; (ii) capturing of traceability relations between different

artefacts and between artefacts and stakeholders during the software development

process; and (iii) visualization of traceability relations. Pohl also proposed a process

repository to record the executed processes and traceability' relations. The

traceability relations can be generated manually and automatically according to the

concrete traceability reference model for a specific system. Plowever, the concrete

traceability reference model must be manually defined. In other words, stakeholders

48

2.5 Approaches for Establishing Traceability Relations

need to specify the structure of traceability' relationships between artefacts being

created during the development process.

Event-based technique:

In (Cleland-Huang et al. 2002b), they defined an event-based traceability framework

to support tracing different requirements. The approach particularly supports

impact analysis on both functional and non-functional requirements which are

represented in natural language. A change on requirements (i.e. new, updated,

deleted and abandon requirement) drives an action of traceability generation

between requirements. The traceability' relations are specified at the level of

document entities. In this work, a prototype tool was developed to support

generation of traceability' relations. An automatic control namely event manager can

automatically respond to an event of a change and enable activities of traceability'

generation i.e. generate new traceability relations and update existing traceability'

relations. However, some events such as updating existing traceability relations

require traceability' users to manually create the events.

Scenario-based technique:

Egy'ed and Grunbacher (Egy'ed and Grunbacher 2002) proposed a scenario-based

approach for traceability generation which is extended from (Egy'ed 2001). In

(Egyed 2003, Egyed and Grunbacher 2002), they described a prototype tool which

is claimed to automatically generate traceability' relations between model elements

(i.e. use case diagrams, class diagrams and data flow diagrams), source codes, and

scenarios (i.e. test case scenarios, usage scenarios). However, the approach requires

an initial manual process for creating pre-defined traceability relations, called

hypothesised traces. These hypothesized traces are identified between model elements

and scenarios and are used in a second step to automatically create new traceability'

relations based on traceability rules and transitivity of the hypothesized traces. The

approach uses scenarios to discover associations while a system is running. An

association between a scenario and a particular artefact is called a footprint. A set of

footprints and hypothesized traces are then recognised as a footprint graph. The

49

CHAPTER 2. SOFTWARE TRACEABILITY

footprint graph is represented for traceability relations between an artefact and

scenario.

Axiom-based techniques:

Pinbeiro and Goguen (Pinheiro 2000, Pinheiro and Goguen 1996) proposed an

approach for traceability generation that uses axiom techniques. In (Pinheiro and

Goguen 1996), Traceability o f Object-Oriented Requirements (TOOR) is created to

provide: (i) project sperification functionality, which allows traceability users to specify

templates of artefacts (i.e. requirements, design, and source code) and define a

structure of traceability relations; (ii) a functionality for instantiating artefacts; (iii) a

functionality for creating traceability relations between different artefacts and

between artefacts and stakeholders; and (iv) a functionality for visualising

traceability relations. The specification of templates is applied with Functional and

Object-Oriented Programming Systems (POOPS) (Socorro 1993). Traceability' relations

are generated based on axiom techniques. Artefacts are recognized as operands and

applied with logical operators in axioms. Traceability' relations are identified when

the tool analyse the implications of axioms. The visualisation of traceability relations

is provided in three ways namely: selective, which allows traceability' users to visualise

traceability' relations according to a specific query; interactive, which allows traceability"

users to query related artefacts according to a particular artefact; and nonguided,

which allows traceability users to visualize all traceability' relations. However,

specifying the templates of artefacts, defining the structure of traceability relations,

and instantiating the artefacts must be done by traceability' users.

Those approaches have attempted to enable automatic support for establishing

traceability' relations. However, some of activities during the traceability' generation

process such as defining types of traceability relations to be created or identifying

types of software artefacts to be traced are still performed by manual.

50

2.5 Approaches for Establishing Traceability Relations

2.5.3. Fully Automatic Establishment of Traceability Relations

We classify the different types of approaches that support the generation of

traceability relations in a fully automatic way into three types depending on the

techniques used to assist with this task. These three types include, (a) information

retrieval techniques, (b) rule-based techniques, and (c) hypermedia and information

integration techniques as described below.

Information Retrieval (1R) techniques:

Antoniol et al. (Antoniol et al. 2002) applied IR techniques to generate traceability

relations between source code documents represented in C++ and Java and

requirements specified in natural language. Their approach uses both a probabilistic

method and vector space model. It consists of using comments and identifier names

within the source code to find similarities in the documents. The documents are

ranked by relevance. Then the traceability relations are created based on the

relevance of the documents. The work has been experimented with two case studies

namely LED A and Albergate. The experimental results have demonstrated high

percent of recall measurements; however, fairly low percent of precision

measurements. The authors described that both two models achieve almost the

same recall measurements. However, the vector space model returns regular recall

measurements with different numbers of documents in the experiments.

In (Maletic et al., Marcus and Meletic 2003), the authors proposed to use la ten t

Semantic Indexing (LSI) for establishing traceability relations between source code and

other different types of documents such as requirements, designs, and test cases.

The authors argued that their approach achieved better results than (Antoniol et al.

2002) in terms of recall and precision measurements. This approach requires full

parsed source code and analysis of documents. It takes into consideration synonyms

of context in documents. Marcus et al. argue that their approach also requires less

processing of the source code and documentation and is language, programming

language, and paradigm independent.

51

CHAPTER 2. SOFTWARE TRACEABILITY

Hayes et al. (Hayes et al. 2003) proposed to use IR techniques to improve

traceability generation. In particular, the approach applied three vector space IR

techniques: (i) vanilla vector retrieval, which is a classical vector IR model for

information retrieval; (ii) retrieval with key-phrases, which is an extension of the

classical vector IR model that associates a list of key-phrases with documents and

develops possible relevant phrases to match between documents; and (iii) thesaurus

retrieval, which is an extension of the classical vector IR model that constructs a

thesaurus and then associates the thesaurus with vocabulary in documents. In

(Hayes et al. 2003), the approach (i) parses requirements as tokens, (ii) ignores

unnecessary words which are not considered for matching (e.g. shall, the, for, etc.),

(iii) constructs a list of tokens and thesaurus; and (iv) develops associations of

documents. According to their experiments, the approach achieves better recall

measurements but low'er precision measurements when compared to classical IR

techniques. This work has been later supported by a tool, called RETRO (Hayes et

al. 2004). The authors have demonstrated in the latter work that the tool can

facilitate the automatic traceability generation with reasonable recall and precision

measurements.

However, the generation of traceability' relations with the IR techniques does not

take into consideration the semantic of artefacts being compared.

Raile-based approaches:

In (Spanoudakis et al. 2004), a rule-based approach to support generation of

traceability relations has been proposed. The approach generates traceability’

relations between different types of requirement documents i.e. customer requirements

specification (CRS), functional requirements specification (FRS), and object model. In the

approach, traceability rules take into consideration the grammatical roles of the

terms used to specify requirements in CRS and FRS. The approach is based on

XML in which both documents and traceability' rules are represented in XML-

format. Initial experiments have demonstrated 52-94 percent of precision and 46-95

percent of recall measurements.

52

2.5 Approaches for Establishing Traceability Relations

The generation of traceability relations by using rule-based approaches enables the

consideration of the semantics of documents being compared and the traceability

relation.

Hypermedia and information integrators:

Sherba et al. (Sherba et al. 2003b) proposed an approach that applies hypermedia

and information integration techniques for supporting traceability activities such as

traceability generation and visualisation. This work uses techniques of information

integrators, called Infinite proposed in (Anderson et al. 2002), and open hypermedia.

The approach applies Infinite integrators for creating explicit relations and anchors

in documents. An anchor is an interested element in a document. Then, the

approach discovers implicit traceability relations between documents by using

created anchors and explicit relations. The authors described that the creation of the

anchors depends on the algorithms used by the integrators. The algorithms used by

the integrators can be IR techniques or runtime analysis. Thus, the algorithms can

be as simple as a keyword search or as complex as a LSI technique. The tool called

TraceM has been developed and provides the following functionalities: (i) registration,

which allows users to register artefacts generated by heterogeneous tools, types of

traceability relations, and new translators and integrators for supporting new types

of artefacts; (ii) scheduling, which is used to schedule the execution of translators and

integrators; (iii) relationship mapping, which allows users to generate traceability

relations between documents; (iv) evolution, which allows users to update traceability

relations; (v) query, which allows users to set an inquiry about information based

upon existing documents and traceability relations; and (vi) export, which allows

users to visualise a summary of traceability relations according to a particular

artefact in HTML format. Since the tool is aimed to support various tools, the

approach does not depend on particular specification and programming languages.

However, the approach depends on the integrators and their applied algorithms and

do not provide the evaluation by means of precision and recall measurements.

The majority of existing approaches do not support generation of traceability

relations in a fully automatic way, although some of these approaches have

53

CHAPTER 2. SOFTWARE TRACEABILITY

attempted to achieve a fully automatic generation of traceability relations. Moreover,

some of semi- and fully- automatic approaches do not demonstrate reasonably

experimental results and none of them are provided to support domain-specific

systems such as product family systems.

2.6. Representation, Recording, and Maintenance of Traceability
Relations

Since the majority of existing approaches for traceability generation do not support

a fully automatic generation, basic techniques i.e. identifier; tagging, indexing, and table

are used to assist representation of traceability information. These representation

techniques can be done by manual or automatic. Some advanced techniques i.e.

mark-up, mapping graph, and hyperlink are also used to represent traceability relations.

Additionally, techniques i.e. database and special repositories are used for recording

traceability relations. We describe below techniques which support activities in

representing, recording, and maintenance of traceability relations.

2.6.1. Identifier Technique

Identifier technique uses a unique number to identify an artefact in a system and runs

the number to other relevant artefacts (Sawyer et al. 1993, Sommerville 2001). In

other words, identifier technique requires identifier numbers (ID no.) being created

for each artefact. Traceability relations can be captured between identifiers. An

identifier can be composed of a unique name and supplement information i.e. the

name of a system and a type of an artefact. Figure 2-1 shows an example of

identifier technique. The identifier is constructed from three dash-separated parts:

(i) abbreviation of a system which a requirement belongs to e.g. mobile-phone (MP);

(ii) abbreviation of an artefact type e.g. user interface (UI), design model (DM),

source code (SC); and (iii) ordering number of a requirement e.g. 1, 1.1. As shown

in Figure 2-1, a requirement MP-UI-1.1 is refined a requirement MP-UI-1.

54

2.6 Representation, Recording, and Maintenance of Traceability Relations

MP-UI-1 T h e u se r in te r fa c e sh a ll h a v e g ra p h ic a l m en u .
MP-UI-1.1 T h e sc ree n sh a ll p ro v id e a l is t o f g ra p h ic a l ic o n s w h o se re p re se n ts a m en u
an d a b ac k g ro u n d .

Figure 2- 1: Representing traceability by using identifiers

This technique supports both manual and automatic approaches for generating

traceability relations and is best suited for capturing one-to-one or one-to-many

vertical traceability relations e.g. between two requirements specifications. However,

it is difficult to apply the technique to represent many-to-many and the technique

represents traceability relations without their semantics. Using identifier technique is

found in existing traceability approaches and tools such as (Alexander 2003, Dick

1999, DOORS, RequisitePro, RTM). Identifier technique has been extended by

other techniques to represent additional traceability information. We describe below

the extension of the technique.

2.6.2. Tagging Technique

Tagging technique uses added information to represent the semantic of traceability

relations in artefact specification (Sawyer et al. 1993, Sommerville 2001). As shown

in Figure 2-2, a requirement MP-UI-1 has an attribute namely Source representing

who created the requirement. The technique is suited for capturing one-to-one, one-

to-many, or many-to-many relations and supports representing traceability relations

with their semantics. Flowever, the use of this technique may make the artefact

specifications harder to read.

MP-UI-1 T h e u se r in te r fa c e sh a ll h a v e g ra p h ic a l m en u .
Source: p ro d u ct m a n a g e r A

MP-UI-1.1 T h e sc reen sh a ll p ro v id e a l is t o f g r a p h ic a l ic o n s w h o se
re p re se n ts a m en u an d a b ac k g ro u n d .

Figure 2- 2: Representing traceability by tagging attributes

2.6.3. Indexing Technique

Indexing technique arranges artefact specifications into a group (Kotonya and

Sommerville 1998, Sommerville and Sawyer 1997). The artefacts are identified by

55

CHAPTER 2. SOFTWARE TRACEABILITY

using identifiers. As shown in Figure 2-3, requirements user interface o f screen display are

specified with identifiers MP-UI-1 to MP-UI-9. The technique is suited for

representing one-to-one and one-to-many traceability relations and traceability

relations are only readable in one direction. However, the technique represents

traceability relations without their semantics and it is hard to read in another

direction and not practical with many-to-many relations.

No. Requirements
M P -U I-1 - M P -U I-9 U se r in te r fa c e o f sc reen d is p la y
M P - U I - 1 0 - M P -U I -1 5 U se r in te r fa c e o f e m b ed d ed a p p lic a t io n i .e . g a m e s , c lo c k , c a le n d a r .
M P -U I-1 6 , M P -U I-2 7 U se r in te r fa c e o f n e tw o rk co n n ec tio n

Figure 2- 3: Representing traceability by indexing

2.6.4. Table Technique

Table technique represents traceability relations in two dimensions and can represent

types of traceability' relations. Some work such as (Egyed 2001, Kim et al. 2005,

Kotonya and Sommerville 1998, Lindvall and K. 1996, Lindvall and Sandahl 1998,

Sommerville and Sawyer 1997) represent traceability relations by applying table

technique. The technique is suited for representing one-to-one, one-to-many, and

many-to-many relations. Table technique can support representing traceability

relations with their semantics.

MP-UI-1.1 MP-UI-1.2 MP-UI-2 MP-UI-3.1 MP-UI-3.2
MP-UI-1.1 R R
MP-UI-1.2
MP-UI-2 C
MP-UI-3.1

Figure 2- 4: Representing traceability by table

Figure 2-4 shows a requirement MP-UI-1.1 requires the requirements MP-UI-2 and

MP-UI-3.1 and a requirement MP-UI-2 has constraints to the requirement MP-U1-

56

2.6 Representation, Recording, and Maintenance of Traceability Relations

3.1. However, it is difficult to maintain with a large number of traceability relations

and possible to misread directions of traceability relations.

2.6.5. Mapping Graph Technique

Mapping graph technique represents traceability relations with a graph. A graph shows

a scenario which and how software artefacts associate with each other. Mapping

graph technique is used to represent with semantics and extra information of

traceability relations. It can represent relationships between particular elements in a

particular document in a particular file and supports representing of one-to-one,

one-to-many and many-to-many relationships. This technique requires to be applied

in an automatic way. Examples of traceability approaches using this technique are

(Letelier 2002, Malefic et al., Pinheiro and Goguen 1996, Ramesh and Jarke 2001).

In (Letelier 2002), a graph is composed of elements of software artefacts, types of

traceability relations, and directions of traceability relations. In (Malefic et al.), the

authors defined a cluster as a set of documents, while the cluster can be

documented in different files. A graph is used to illustrate traceability' relations

between source code in different clusters and files. Ramesh and Jarke applied

KBSA-ADM tool that provides the representation of traceability relations in a graph

representing associated artefacts and types of traceability relations.

2.6.6. Mark-up Technique

Mark-up technique represents traceability relations in mark-up languages.

Representation of traceability relations with the mark-up technique can be done

manually or automatically. The technique supports representing of one-to-one, one-

to-many, and many-to-many relationships as well as their semantic. In (Gotel and

Finkelstein 1995), they defined a descriptive markup language for recording

traceability relations. The descriptive markup language is extended from HTML.

The traceability' information captured in the markup language includes type of

traceability' relation, and related software artefacts or stakeholders. The work in

57

CHAPTER 2. SOFTWARE TRACEABILITY

(Spanoudakis et al. 2004, Zisman et al. 2002b) is based on XML technologies.

Traceability relations and rules are recorded in XML.

2.6.7. Hyperlink Technique

Hyperlink technique represents traceability relations as cross-links between software

artefacts. Hyperlink technique supports representing of extra information and

semantics. The technique can represent one-to-one, one-to-many, and many-to-

many relationships. The technique allows multiple data-views, complex-interface

and interrelated scenarios. The growth of Internet technologies e.g. HTML, XML

support the deployment of hyperlink technique. Recent years, the concept of

representing traceability relations with the hyperlink technique has been increasingly

implemented. Examples are the work in (Knethen 2002a, Ramesh and Jarke 2001,

Sherba et al. 2003a, SLATE).

Table 2-2 shows the comparison between different techniques for representing

traceability" relations.

58

2.6 Representation, Recording, and Maintenance of Traceability Relations

Table 2- 2: Comparison of techniques for traceability representation

I d e n t if ie r T a g g in g I n d e x in g T a b le M a p p in g

,.g r a P h

M a r k

u p

H y p e r l in k

S u p p o r t

r e p r e s e n t a t io n o f

t r a c e a b i l i t y

r e la t io n s m a n u a l ly

X X X X X

S u p p o r t
r e p r e s e n t a t io n o f

t r a c e a b i l i t y

r e la t io n s
a u to m a t ic a l ly

X X X X X X X

S u p p o r t

r e p r e s e n t in g o f

o n e - to -o n e

r e la t io n s h ip

X X X X X X X

S u p p o r t
r e p r e s e n t in g o f

o n e - to - m a n y

r e la t io n s h ip

X X X X X X X

S u p p o r t
r e p r e s e n t in g o f

m a n y - to - m a n y

r e la t io n s h ip

X X X X X

S u p p o r t

r e p r e s e n t in g o f

s e m a n t ic s

X X X X X

Existing techniques applied for recording traceability relations are database and

special repositories. Some tools (DOORS, Pinheiro and Goguen 1996, Ramesh and

Jarke 2001, RTM) represent and record traceability relations by using database. In

addition to (Pohl 1996b, Sherba et al. 2003a), the approaches defined system

development environments to particularly support traceability activities. The authors

defined special repositories for the activities. In (Pohl 1996b), they provided the

process repository for recording software artefacts and traceability relations according

to four types of reference models (as described in Section 2.4). The process

repository consists of three levels: (i) definition schema level.' which the languages for

defining processes and traceability reference models are defined; (ii) definition level,

which the process models and traceability reference models are defined; and (iii)

IRD level, which process execution, software artefacts and traceability relations are

recorded. In (Sherba et al. 2003a), the authors applied information integration

59

CHAPTER 2. SOFTWARE TRACEABILITY

environment (Anderson et al. 2002) in traceability activities. Heterogeneous software

artefacts which are translated and integrated into the environment and traceability

relations are recorded under the repository in the environment. In (Cleland-Huang

et al. 2002a, Cleland-Huang et al. 2002b), traceability relations are recorded in an

event-based traceability server.

2.7. Traceability Commercial Tools

In this section we summarise the features of commercial tools that support

traceability activities. We categorise the tools as: general-purpose tools, which are

initially developed for supporting other purposes but can be used to support

traceability activities; and specific-purpose tools, which are developed for supporting

requirement management and provide some functionalities for supporting

traceability activities.

2.7.1. General-Purpose Tools

Some general-purpose tools are used to support traceability activities. It is simple

and practical for small-scale and short-term projects. General-purpose tools, for

example, include spreadsheet programs such as Lotus 1-2-3 1M (Lotus Development

Corporation), MS Excel ™ (Microsoft Corporation), and Quattro Pro 1M (Corel

Corporation), word processors and hypertext editors such as MS Word 1M

(Microsoft Corporation), WordPerfect 1M (Corel Corporation), and Frame Maker 1M

(Adobe Systems Inc.). Word processors provide ways to document traceability by

using techniques as lists and tables, Hypertext editors can be used to create links

between artefacts. Spreadsheet programs help keeping track of different levels of

requirements and their attributes.

However, there are three main limitations in using general-purpose tools to capture

traceability relations. These limitations are concerned with the facts that (i)

configuring of tools is time consuming, (ii) tools can not integrate with other tools

nor support many simultaneous users, and (iii) tools do not provide a common and

60

2.7 Traceability Commercial Tools

consistent framework for traceability but promote immediate and ad hoc solutions.

Therefore, general-purpose tools are not appropriate for supporting extensive

requirements traceability.

2.7.2. Specific-Purpose Tools of Requirements Management

Special-purpose tools provide features such as: (a) creating documents and

recording extra information as attributes of documents e.g. date, time, name of

creator, version; (b) filtering and sorting to view documents; (c) importing and

exporting documents between different projects; (d) maintaining of document

versions; and (e) creating reports and summaries. Additionally, some other features

may be provided by the tools: (a) graphical user interface; (b) compatibility with

other tools; and (c) support for simultaneous users. Examples of some requirements

management tools that support traceability include RequisitePro ™ (Rational

Software Corporation), Caliber-RM ™ (Technology Builders, Inc.), DOORS ™

(Telelogic AB), RTM Workshop ™ (Integrated Chipware, Inc), and CRADLE ™

(Structured Software Systems Limited) (3SL, CaliberRM, DOORS, RequisitePro,

RTM).

DOORS

DOORS (DOORS) is part of a commercial suite of requirements management tools

that are produced by Telelogic. It is designed to manage large sets of requirements

and handle hundreds of users. DOORS also supports concurrent and remote access

by many users at once. The main features of DOORS are to specify software

artefacts as well as create and maintain traceability relations between the software

artefacts. DOORS claimed that the tool can support tracing and impact analysis of

software artefacts by using impact analysis and traceability analysis relations. The

traceability relations are updated when a user has confirmed a proposed change.

There is also a function of keeping history logs to record transactions occurred to

software artefacts. However, as mentioned before, the generation of traceability

relation relies on traceability users and DOORS requires software artefacts to be

created by the tool.

61

CHAPTER 2. SOFTWARE TRACEABILITY

RequisitePro

RequisitePro (RequisitePro) is a requirement management tool that is produced by

IBM. The tool is designed to improve the communication between different

projects and enhance collaborative development. It is integrated with Microsoft

word and database to support requirements specification. The tool has

functionalities for manually generating traceability relations between requirements

created by the tool. The traceability relations supported by the tool are categorized

as evolution relations and represent the history of changes on the requirements.

CaliberRM

CaliberRM (CaliberRM) is a requirements management tool that is produced by

Borland. It is designed to facilitate collaboration, impact analysis, and

communication in system development environment. The tool is also aimed to

assist the definition and management of a proposed change. However, users are

required to identify traceability relations between requirements created by the tool.

As mentioned before, there are limitations in using general-purpose tools for

supporting traceability activities and specific-purpose tools such as DOORS,

RequisitePro, Caliber-RM, RTM are applied for traceability7 activities i.e. generation,

representation, and usage. However, manual effort is still required to perform the

activities. There have been efforts to develop specific tools for supporting

requirements engineering and software traceability- as described in (Finkelstein 1991,

Finkelstein and Fuks 1989, Gotel and Finkelstein 1994, Jones et al. 1995, McMullen

1996-1997). According to the literature, a number of research tools such as

(Antoniol et al. 2002, Cleland-Huang et al. 2004, Marcus and Meletic 2003, Pinheiro

and Goguen 1996, Pohl 1996a, Sherba et al. 2003a, Zisman et al. 2002b) for

software traceability7 have been developed and integrated into software development

environments. However, the following are still considered: (a) some of these tools

maintain software traceability7 for a small project. When the project grows in size,

the maintenance of the traceability relations can grow exponentially. This leads the

management of software artefacts much more difficult, time-consuming, and error-

prone; (b) those tools do not provide for supporting specific-domains of systems

62

2.7 Traceability Commercial Tools

such as product family systems; and (c) some of those tools require manual efforts

and have constraints e.g. documents must be specified in pre-defined formats by the

tools, or documents must be recorded in special repositories or defined-

development-environment.

2.8. Summary

This chapter have provided background information for software traceability. It

described the definition, current problems, existing approaches, existing techniques

and tools regarding software traceability. In next chapter we provide the review of

product family systems.

63

Chapter 3

Product Family Systems

This chapter describes a literature of product family systems including current

problems, and existing approaches, techniques and tools in the domain of product

family systems. It also presents the existing approaches and problems of traceability

activities in product family systems as well. The motivation and related

terminologies are given in Section 3.1. In Section 3.2, we describe current problems

in the domain of product family systems. Section 3.3 presents the activities during

product family system development. Section 3.4 and Section 3.5 illustrate existing

methodologies, approaches, and techniques for product family system development.

In Section 3.6, we describe existing tools which are used to support product family

system development. Section 3.7 describes the review of traceability of product

family systems.

3.1. Introduction to Product Family

Software reuse is the process of software development by using existing software

artefacts (Department__of_Defense 1996). Over the last years, approaches and

techniques for software reuse have been developed and extended. According to

(Clements and Northrop 2002, ESAPS, Weiss and Lai 1999), software reuse at the

largest level of granularity is supported by product family. This is to serve the reuse

practice in an organization having a large number of products, which drives issues

such as highly expensive, complex, and tedious tasks. The different exact definition

of product family will be given in Section 3.1.1.

The idea of product family was motivated by the need to systematize a number of

products more effectively and the fact that these products have a certain set of

common and special functionalities. For example, a mobile-phone company has

CHAPTER 3. PRODUCT FAMILY SYSTEMS

created a mobile-phone family that contains a set of mobile-phones. Some lower-

end mobile-phones have similar basic functionalities but different hardware

capacities to offer competitive price. Mobile-phone network communications in

some countries provide different standards of transmission and signaling and

depend on regional diversity; thereby, a company provides different support for

different regions.

3.1.1. Terminologies in Product Family

We describe below terminologies used in the domain of product family system

development.

Product Family

Initially, Parnas (P a r n a s 1976) defined program family as a set of software programs

constituted as a family whereby a program is developed by applying common

properties of prior programs and adding extra properties to the program.

In (Bass et al. 2003, CAFE 2003, Clements and Northrop 2004, Staudenmayer and

Pern 1996, Weiss and Lai \999), product family is defined as a set of products sharing

some common aspects and having some different aspects. The product family is

aimed at gaining the market share under the same business domain and marketing

factors. They also suggested product members that are products which are built-up by

applying shared assets i.e. requirements, architecture, models, and source code in a

product family. Product line and business unit are other terms found in the literature

that have the same meaning as that of product family (Ardis and Weiss 1997, Bass et

al. 2003, Clements and Northrop 2004).

According to (Bass et al. 2003, CAFE 2003, Clements and Northrop 2002,

Staudenmayer and Petty 1996), product family takes into account both hardware

and software systems. In (Clements and Northrop 2002), they suggested that a

software product line is a set of software-intensive systems sharing a common, managed

set of features that satisfy the specific needs of a particular market segment or

66

3.1 Introduction to Product Family

mission and is developed from a common set of core assets in a prescribed way. In

this thesis, we focus on and call the software systems that are developed for product

family as product family systems.

Features

The term feature has been initially used in (Kang et al. 1990). The authors defined a

feature as a prominent and distinctive aspect or characteristic of a system that is

visible to various stakeholders (e.g. end-users, domain experts, developers). In

(Bosch 2000, Gibson et al. 1997, Griss 2000, Svahnberg et al. 2001), a feature is

concerned with a logical behavior of a system that is specified as a requirement or

set of requirements (i.e. functional and non-functional requirements). In (Bailin

1990), the author suggested a different definition whereby a feature refers to any

distinctive or unusual aspect of a system that requires a decision for system

engineering. In this thesis, we use the term feature as a user-visible aspect or as a

characteristic of product family systems. A feature is related to other features and

represented in a tree structure of And/Or nodes to express common and variable

aspects within product family systems

Core Assets

Core assets (Clements and Northrop 2004) are those assets that form the basis for a

product family. Core assets include requirements, architecture, and reusable

software components, domain models, documentation and specifications, schedules,

test cases, and work plans. In (Riebisch et al. 2002), the authors also suggested that

core assets i.e. requirements, architectures, analysis models, design models, test

cases, and source codes are reused between different product members in a product

family. A variant term of core asset is platform that is defined in the domain of

Model-Driven Architecture (MDA).

Commonality Vs. Variability

According to (Bosch 1998, Clements and Northrop 2004, Weiss and Tai 1999),

commonality is concerned with a set of similar functionalities or aspects between

67

CHAPTER 3. PRODUCT FAMILY SYSTEMS

product members of a product family and variability is defined as different

functionalities or aspects between product members of a product family.

3.2. Problems of the Establishment and Maintenance of Product
Family Systems

Many approaches have been proposed to support the development of product

family systems. However, there are many associated problems which we describe in

this section

I. The Difficulty to Get Support from Organisations

Due to timing constraints, an organisation usually considers available methodologies

rather than establishing product family. Additionally, an organisation has defined

and used the current development process for a certain period of time. The

organization prefers adopting familiar and practical techniques to support the

development process rather than unfamiliar techniques.

II. The Uncontrolled Growth of Variety

Ideally, the establishment of product family needs to have a stable and clear vision

of domain; however, it needs to be flexible enough to evolve new requirements.

Practically, an organization is uncertain about requirements of product members

and develops extra options to anticipate all possible requirements (Bosch 2001,

Sinnema 2004, Svahnberg and Bosch 2000, Thiel and Hein 2002).

III. The Difficulty in Communication

Product family system development is a collaborative process where people from

various disciplines need to communicate each other. In other words,

communication is required to facilitate and improve the software system

development. For example, Meyer (Meyer 1998) suggested that the interaction

between stakeholders e.g. between the development team and manufacturing team

should be concerned. In addition to (Finkelstein and Guertin 1998), the authors

proposed that good communication provides the right requirements at the right

68

3.2 Problems of the Establishment and Maintenance o f Product Family Systems

time and the right place. Precise requirements must be known in order to facilitate

actual implementation.

However, it is not easy to support communication between various groups of

stakeholders in an organisation. Successful communication between stakeholders

depends on various factors such as: (i) sufficient resources e.g. staff or tool to

facilitate the communication; (ii) differences in organisational cultures; (iii) distinct

organisational structures; and (iv) stakeholders’ attitudes and aspirations.

Unsuccessful communication in an organization leads to misunderstanding and

lacks of some concepts during the development of software systems.

IV. The Difficulty of Defining Commonality and Variability

Defining commonality" and variability of product family is to thoroughly discover

the product family descriptions including all common and possible variable aspects.

However, there are two issues which cause the difficulty of the practice (Halmans

and Pohl 2003, Svahnberg and Bosch 2000, Webber and Gomaa 2002, Weiss 1998).

These issues are:

Different Perspectives

It is difficult to share views between different products and represent opinions

between different tools. For example, sales engineers can offer a new combination

of requirements, which seem perfectly reasonable from a customer viewpoint, but

appear to be unproved in the technology domain. This difficulty to describe

different perspectives of an artefact causes the difficulty' of defining commonality'

and variability.

Lack of Knowledge

Defining commonality and variability of a product family needs stakeholders who

have enough experience, knowledge, responsibility and authority. However, it is not

easy to find stakeholders who are qualified and also available to take this task in

charge (Bosch 1998).

6 9

CHAPTER 3. PRODUCT FAMILY SYSTEMS

V. The Difficulty of Documenting Management

Data in product family systems rapidly grow as the number of product members in

a product family increases. Bosch (Bosch 1998) described that stakeholders need to

interpret documents and discover relevant documents; therefore, it is important to

specify the documents clearly and validly. However, there is a large number and

heterogeneity of artefacts and relationships between those artefacts in the domain of

product family systems. It is difficult to document the semantics between

documents. The difficulty of documenting management leads the following issues:

(i) missing semantics — documents miss to express the semantics of the context; (ii)

failure o f interpreting the semantics — stakeholders fail to interpret the semantics of

documents; (iii) missing o f relevant documents — stakeholders miss discovering all related

documents of interest to them; and (iv) failure o f searching documents — it is difficult to

locate the documents efficiently and promptly.

VI. The Confliction and Dependency between Artefacts in

Product Family Systems

Ideally, a feature is an atomic unit and a set of features can be put together to fit

with a product member’s requirements. However, features are not actually

independent. Adding or removing a feature to or from a product family has an

impact on other features. Additionally, a feature is also related to other types of

artefacts in a product family. Therefore, adding or removing an artefact has also an

impact on other different artefacts. It leads a difficulty to development and

maintenance of product family systems.

VII. The Difficulty to Specialise Variability

Variability can be specialized in different phases i.e. design, implementation,

compile, linking, or run-time. However, there are some difficulties in specialization

for variability such as: (i) feature interaction - specialization of a feature can lead other

features in a product family to have unexpected results (Bosch 2000).; and (ii)

separation o f concern — some variability' are separated into different artefacts; however,

7 0

3.2 Problems of the Establishment and Maintenance o f Product Family Systems

this can lead to the difficulty of specialization (Gomaa and Shin 2004, Svahnberg et

al. 2001).

VIII. Issues of Evolution of Product Family Systems

There are some situations that require the evolution of product family systems such

as: (i) there is a change on existing product family; and (ii) the core assets of a

product family have missed some functionalities. These situations occur when the

maturity level of product family systems in an organization has grown. The

organisation requires a software process which implements new requirements and

maintains the consistency of existing systems. However, the issues of evolution are

found and defined in (Bosch 2000).

3.3. Activities in the Process of Product Family System
Development

According to the maturity level of an organization, the approaches for the

development of product family can be categorised, namely proactive, reactive, and

extractive. We describe below three types of approaches for the product family

system development.

Proactive

The proactive approach (Krueger 2001) is an approach of the product family system

development when an organization decides to analyse, design, and implement a line

of products prior to the creation of individual product members. The product

family is built-up and the core assets representing the commonality and variability

are created. All product members are then created under the scope of the product

family. The approach is viewed as a top-down developing strategy which requires

the setting of broad goals and the goals are refined in later phases of the

development.

Reactive

The reactive approach (Krueger 2001) is an approach of the product family system

development when an organization enlarges the product family systems in an

71

CHAPTER 3. PRODUCT FAMILY SYSTEMS

incremental way based on the demand for new product members or new

requirements for existing products. The core assets need to be extended and

evolved in such a way as to correspond to new requirements or new systems. This is

caused by the fact that the customer requirements considerably influence the

architecture and the design of products. On the other hand, a company that sticks

strictly to the principles of made-to-order manufacturing will not allow an

uncontrolled proliferation of variety due to the demands of individual customers.

However, in reality, many companies have a production control concept based on

customer requirements. So the problem occurs when the architecture and design of

product family systems should be maintained. This level of development takes

shorter time than the previous one since system developers only extend and adapt

the available products.

Extractive

The extractive approach (Krueger 2001) is an approach of the product family system

development when an organisation creates product family systems based on existing

product members by identifying and using common and variable aspects of these

products. The stakeholders i.e. domain experts and system developers analyse and

define the product family by taking into consideration individual products’

requirements. The approach is viewed as a bottom-up developing strategy that

begins with existing artefacts e.g. requirements specification, design and source

code, then creates the higher granularity level of each artefact as the core assets.

In the following section, we describe the activities occurred during the product

family system development process. In addition to (Bosch 2000, Clements and

Northrop 2002, Jazayeri et al. 2000, Thiel and Hein 2002), software product line

engineering is a methodology for developing product family systems that focuses on

activities of analysis, design, and implementation of a product family as well as the

use of the core assets inclusive common and variable artefacts potentially and

effectively for product members.

72

3.3 Activities in the Process of Product Family System Development

Figure 3-1 illustrates the main activities of software product line engineering i.e.

domain engineering and application engineering.

Feedback

i
t

u

S o ftw a re P ro d u c t

L in e A rc h ite c tu re

(C 3

R efe ren c e

^ J R e q u l r e m e n t s ^

U ----------------------------------N
M---------------------------------- V

U ---------------- -----------N
N--------------------------- 12

R e u s a b l e S o ftw a re

s ___C o itip o n e n ts^ ^ ,

Product M em bers’ \ \ \
Requirements Requirements I n i t r a t io n and

W Engineering ww Testing

\ HP \

A pp I ica don En ginee ri ng

Product Members

Figure 3-1: Activities in software product line engineering adopted from (Clements
and Northrop 2004)

3.3.1. Domain Engineering

Domain engineering is a systematic process for the creation of the core assets

(Clements and Northrop 2004). There are three steps for domain engineering:

Domain Analysis

Domain Analysis is the process of identifying, collecting, organizing and

representing the relevant information in a domain, based upon the

study of existing systems and their developing histories, knowledge

captured from domain experts, underlying theory, and emerging

technolog}' within a domain (Kang et al. 1990).

73

CHAPTER 3. PRODUCT FAMILY SYSTEMS

As shown in Figure 3-1, software artefacts that are produced during the activity of

domain analysis are called reference requirements. The reference requirements define the

products and their requirements in a family. The reference requirements contain

commonality and variability of the product family. The following sub-activities

occur during the domain analysis:

I. Scoping

According to (Arango and Prieto-Diaz 1991, Ardis and Weiss 1997), domain

analysis for a product family basically starts from scoping. Scoping is to identify the

context of product members in a product family e.g. functionalities and

performances. The activity is concerned with domain knowledge obtained from

domain experts and other sources such as books, user manuals, and design

documents (Nuseibeh and Easterbrook 2000). The domain experts analyse and

define the boundary of the product family and the standard terminologies in the

family. The product members are therefore defined.

II. Commonality and Variability

The activity of defining commonality and variability is to thoroughly discover and

define commonality and variability in a product family (Ardis and Weiss 1997, Weiss

1995). Many existing approaches are proposed to support the activity. Examples of

such approaches are (Ardis and Weiss 1997, Bosch 2000, Clements and Northrop

2002, Svahnberg and Bosch 2000, Weiss 1995). The determination of whether a

characteristic is a commonality or variability mostly depends on a strategic decision

of organisations.

In particular, defining commonality is the determination of whether a requirement is

served as the commonality of a product family. Defining variability is the

determination of whether a requirement is served as the variability of a product

family. Variability is represented as a set of variation points. Each variation point is a

situation that product members can be specialized differently and dependent on a

number of variants. Variants are possible variables for each variation point. A

74

3.3 Activities in the Process of Product Family System Development

variation point is classified as: (i) optional — an aspect may exist in a product; (ii)

alternative — an aspect can be specialized as one of the variants; and (iii) optional

alternative - an aspect can be specialized as one of the variants or does not exist

(Svahnberg et al. 2001). Variation points can appear at different phases of product

family system development i.e. analysis, design, and implementation. At the state of

domain analysis, a variability point is concerned with the highest abstraction level of

an artefact.

III. Planning for Product Members and Features

According to (Arango and Prieto-Diaz 1991), one of the activities in domain

analysis is to identify features of product members in a product family. The features

of a product family are planned for possible product members. In other words, the

relevant requirements of product members are associated to the features of a

product family. The common and variable aspects of a product family are

accommodated and planned for product members.

Domain Design

Domain design is the process of developing a design model from the

products of domain analysis and the knowledge gained from the study

of software requirements or design reuse and generic architectures

(Garlan and Shaw 1993).

Software artefacts that are produced during the activity of domain design are called

software product line architecture (see Figure 3-1). In (Bass et al. 2003, Jazayeri et al.

2000), software architecture forms the backbone of integrating software systems and

consists of a set of decisions and interfaces which connect software components

together. Software product line architecture differs from an architecture of single

systems that it must represent the common design for all product members and

variable design for specific product members (Linden et al. 2004). The following

sub-activities occur during the domain design:

75

CHAPTER 3. PRODUCT FAMILY SYSTEMS

I. Software Product Line Architecture Definition

The activity of software product line architecture definition is to design the software

architecture that describes commonality and variability of product members. The

software product line architecture is composed of a set of architectural decisions, a

set of reusable design artefacts, and a set of optional design artefacts.

The variability in software product line architecture is called designed variability points

(Svahnberg et al. 2001). The software product line architecture can be elaborated

into different levels of granularity. At higher levels, the software product line

architecture does not entail shared artefacts between product members while at the

low levels, the software product line architecture make a distinction between

specific designs of product members.

II. Software Product Line Architecture Evaluation

The activity of software product line architecture evaluation is to evaluate the

software architecture that describes commonality and variability' of product

members. The evaluation of software product line architecture is to assure that the

architecture has the right properties and characteristics of a product family.

For the evaluation of software product line architecture, the following must be

considered: (i) the context for software product line architecture must be scoped

and planned during domain analysis; (ii) the commonality of a product family must

be elaborated in several levels of the architecture; and (iii) the variability' of a

product family must be identified and provided with a set of variants for each

designed variability' point in the software product line architecture.

However, Bosch (Bosch 2000) suggested that the maturity of software product line

architecture can be viewed as three levels: (i) an under-specified architecture that

defines common aspects but does not specify differences between product

members; (ii) a specified architecture that defines both common and variable aspects

for product members; however, does not define possible variables for variable

76

3.3 Activities in the Process of Product Family System Development

aspects; and (iii) an enforced architecture that defines both common and variable

aspects covering possible variables for all product members.

Many approaches and techniques are proposed to support domain design for a

product family. Relevant existing methodologies e.g. model-based software engineering

(MBSE 1993), organisational domain modeling (ODM) (Simos 1995), synthesis (Campbell

et al. 1990), domain-specific software architecture (DSSA) program (Tracz et al. 1993),

evolutionary domain life-cycle (EDL.C) (Gomaa et al. 1989) are applied for the

development of software product line architecture. Some general-purpose

techniques such as data flow diagrams, structured analysis and design techniques,

entity7 relationship modeling (ERM), object models (e.g. UML (UML)), view point-

oriented models (Finkelstein et al. 1990) can be also applied for the activity.

Recently a number of methodologies such as (Atkinson et al. 2000, Batory et al.

2000, Bayer et al. 1999, Griss et al. 1998, Kang et al. 1998, QADA, Simos 1995,

Weiss 1995, Weiss and Lai 1999) are proposed to particularly support the activity of

domain design in the domain of product family.

Domain Implementation

Domain implementation is the process of identifying reusable

components based on the domain model and generic architecture

(Clements and Northrop 2004).

Software artefacts that are produced during the activity of domain implementation

are called reusable software components (see Figure 3-1). The activity7 is focused on the

creation of reusable software components e.g. source codes and linking libraries that

are later assembled for product members. In (Szyperski 1997), a reusable software

component is a unit of composition with interfaces and independent context. The

reusable software component is created and then integrated with other reusable

software components for a particular product member. The set of reusable

components are defined independently and provide the connectors for integration

77

CHAPTER 3. PRODUCT FAMILY SYSTEMS

with other components to fit into a specific functionality. The components are

viewed as black boxes whose data and implementation details are completely hidden

and only interfaces are allowed. The development of components can be applied

with relevant existing methods such as object-oriented methods e.g. (Bosch 2000,

Szyperski 1997).

At the end of the domain engineering process, an organization is ready for

developing product members. In the following section, we describe the activities for

developing the product members in the software product line engineering.

3.3.2. Application Engineering

As shown in Figure 3-1, application engineering is another major activity of

software product line engineering. According to (Northrop 2002), application engineering

is a systematic process for the creation of a product member from the core assets

created during the domain engineering. Domain engineering assures that the

activities of analysis, design and implementation of a product family are thoroughly

performed for all product members, while application engineering assures the reuse

of the core assets of the product family for the creation of product members.

The application engineering process for a product family is comparably considered

with the process for a single system (Clements and Northrop 2004). There are

activities such as: (i) requirements engineering, which is a process that consists of

requirements elicitation, analysis, specification, verification, and management

(Fairley and Thayer 1997, Sommerville and Sawyer 1997, Sutcliffe and Maiden

1998); (ii) design analysis, which is a process that is concerned with how the system

functionality is to be provided by the different components of the system

(Sommerville 2000); and (iii) integration and testing which is a process of taking

reusable components then putting them together to build a complete system, and of

testing if the system is working appropriately.

78

3.3 Activities in the Process of Product Family System Development

Requirements Engineering

The activity of requirements engineering focuses on identifying, colleting,

organizing and representing requirements of a product member. The major

difference between requirements engineering of an individual product and a product

member is that stakeholders not only focus on the specific product but also on the

scope of product family. Technically, the requirements of product members are

defined and scoped under the domain of the product family’s requirements. A

variability point of a requirement is bound with a variant for a particular product

member during requirements engineering.

Design Analysis

Design analysis in application engineering must be consistent with the concept of

design analysis in domain engineering. This activity is to analyse and design the

architecture for a product member. Software product line architecture is refined and

specialized for a particular product member. The software architecture of the

product family is configured to fit for a product member based on the specific

product’s requirements. The configuration includes the addition and removal of

designed variability points of the product family.

In (Bosch 2000), architecture pruning is an activity that the common aspects of

software product line architecture is collected and the variable aspects for a specific

product member are specified. The composition of common and variable aspects

acquires the software architecture for a specific product member. Nonetheless, it is

possible that a software product line architecture does not fulfill the complete

design of a specific product. This needs an activity called architecture extension (Bosch

2000). The activity' extends some aspects that are not included in the software

product line architecture.

Integration and Testing

The usage of the core assets of product family and development of product

members involve the following three steps: (i) discovering a set of reusable

79

CHAPTER 3. PRODUCT FAMILY SYSTEMS

components for a specific product member; (ii) instantiating the variability points of

the reusable components for a specific product member; and (iii) integrating and

testing the reusable components for the product member.

3.4. Methodologies for the Development of Product Family
Systems

In this section, we describe existing methodologies to support product family

system development. These methodologies can be classified into two groups as (a)

object-oriented and (b) feature-oriented methodologies. We describe below these

approaches.

3.4.1. Object-Oriented Methodologies

Object-oriented methodologies have been common and popular in the development

of software systems. Many existing object-oriented methods are aimed at supporting

the development of single software systems. Recently, some object-oriented

methods have been extended and proposed for the development of product family

systems. We describe below the methods and approaches for product family system

development in the object-oriented paradigm.

COPA

Component-Oriented Platform Method (COPA) (America et al. 2000) is proposed for

product families of software-intensive electronic products i.e. telecommunication,

medical imaging, and consumer electronics. COPA defined architectural and process

frameworks. The architectural framework consists of five views:

(i) Customer view - the view shows customer business models represented in

customers language or textual language.

(ii) Application view — the view shows application models represented in UML

diagrams

(iii) Functional view — the view shows functionalities and performances of systems

represented in use cases

80

3.4 Methodologies for the Development o f Product Family Systems

(iv) Conceptual view — the view presents platform and product-specific components

created for a product family and product member, respectively. In COPA,

construction components are applied with some component-based techniques

such as COTS, Microsoft’s COM component model, Sun’s JavaBeans, and

OMG’s CORBA.

(v) Realisation view — the view illustrates specific techniques e.g. hardware

infrastructure, hardware platform, operating systems. These are specified in a

textual language.

The process framework consists of three main activities:

(i) Product family engineering — this activity is driven by policy and plans of an

organisation. There are sub-activities during product family engineering such as

domain modeling, requirements formulation, and commercial and technical

design. These activities construct customer, application, and functional views.

The architecture of product family is created during product family engineering.

For example, COPA applied Koala for representing the product family

architecture. According to Figure 3-1, this activity can be comparable with the

domain analysis and domain design during domain engineering.

(ii) Platform engineering — this activity is concerned with technology and people

management. Sub-activities can occur during platform engineering such as

standard development, cooperating between stakeholders in product family

engineering and product engineering to comprehend requirements of product

family and product members, integrating and testing for product members, and

maintenance of existing reusable components and platforms. This activity has

sub-activities that are comparable with domain engineering including domain

analysis, domain design, and domain implementation as shown in Figure 3-1.

(iii) Product engineering — this activity is concerned with the customer-oriented

process. There are sub-activities during product engineering such as standard

development, cooperating with customers to understand specific requirements,

constructions of product members, and maintenance and support for product

members. According to Figure 3-1, this activity can compare with application

CHAPTER 3. PRODUCT FAMILY SYSTEMS

engineering including requirements engineering, design analysis, and integration

and testing.

In the COPA method, the authors suggested the activities in software product line

engineering and artefacts created during three activities. The artefacts are

represented in UML diagrams, use cases, textual language, Koala language

(Ommering et al. 2000), and component-based representation languages.

QAIDA

Quality-driven Development o f Software Family Architectures QADA (QADA) is a quality-

driven architecture-centric method for product family system development. The

QADA method described the development of software product line architecture.

The method includes five activities:

(i) .'Requirements engineering - this activity is aimed to capture and analyse

requirements and context model. The requirements i.e. functional and non

functional requirements and context model i.e. hardware and software interfaces

of a system, a set of constraints, rules, and standards are represented in textual

language.

(ii) Conceptual architecture design — this activity is aimed to identify a conceptual

architecture which is represented with three views namely, structural view, behavior

view, and deployment view. The structural view is concerned with conceptual

components and their relationships. The structural view is composed of three

types of artefacts: (a) list of functional responsibilities represented in textual

language; (b) table of non-functional requirements represented in text and table;

and (c) decomposition model. The behavior view is concerned with dynamic

actions and kinds of actions to which a system produces. The behavior is

represented in a collaboration model. The deployment view is concerned with

allocation of the conceptual components into hardware components. The

behavior is composed of two types of artefacts: (a) table of deployment units

represented in text and table; and (b) allocation model. Another type of artefact

82

3.4 Methodologies for the Development o f Product Family Systems

generated during conceptual architecture design is design rationale which

represents design principles and rules.

(iii) Conceptual architecture analysis - this activity focuses on qualities, commonality,

and variability of a system. Three types of artefacts are created namely: (a)

product line scope, which represents a boundary of product family; (b) taxonomy o f

requirements, which describe syntactic architectural notations and are represented

in domain models, relevant architectural views; architectural styles;

environmental assumptions and constraints; and trade-off rationale; and (c)

knowledge base, which allows the evaluation of collections of architectural styles

and patterns in terms of both quality factors and concerns. The knowledge base

in QADA contains materials, quality attributes, questions that describe the

evaluation of artefacts.

(iv) Concrete architecture design — this activity focuses on providing a set of concrete

software components and definition of interfaces between components. The

activity" is concerned with three views in the activity of concrete architecture

design (structural view, behavior view, and deployment view). Firstly, the list of

functional, non-functional requirements, and decomposition model from the

conceptual architecture is designed and refined as structural diagrams that

represent concrete components, interfaces and relationship. Secondly, the

collaborative model from the conceptual architecture is defined and refined as

state diagrams and message sequence charts. Thirdly, the table of deployment units

and allocation model from the conceptual architecture are designed and refined

as deployment model.

(v) Concrete architecture analysis — this activity is aimed to assess and evaluate the

software product line architecture regarding expected changes. The analysis

method consists of five sub-activities: (a) deriving of changes from the product

line scope; (b) defining product-line architecture description; (c) defining

scenario identification; (d) evaluating the effect of scenarios; and (e) identifying

scenario interaction.

In the QADA method, the activities of domain engineering are defined. More

specifically, the activity of requirements engineering is comparable with domain

83

CHAPTER 3. PRODUCT FAMILY SYSTEMS

analysis in Figure 3-1, and the activities of conceptual architecture design,

conceptual architecture analysis, concrete architecture design, and concrete

architecture analysis are comparable with domain design in Figure 3-1. However,

the QADA method does not cover an activity of application engineering in Figure

3-1. In addition, artefacts created during theses activities are represented by using

textual language and UML diagrams.

KobrA

KobrA (Atkinson et al. 2000) is a component-based method for software product

line engineering that is developed by Fraunhofer IESE. In the KobrA method, the

authors proposed a Komponent as a set of reusable components that satisfy a

requirement or group of requirements. The Kobra method is divided in two main

activities: (i) framework engineering, which defines a set of ¡Components; and (ii)

application engineering, which applies existing Komponents and constructs a product

member.

Framework engineering consists of four activities, namely:

(i) Context realisation — the aim of this activity is to define properties and scope

of a product family. The business process models, which describe the requirements

and constrains of a product family, and decision models, which describe common

and variable requirements of a product family, are created.

(ii) Komponent specification — the aim of the activity is to describe properties of a

Komponent. The structural model, which is represented in UML class diagrams,

behavioural model, which is represented in UML statechart diagrams, functional

model, which is represented in Operation schemas, and decision model, which is

represented in a textual language, are created.

(iii) Komponent realisation — the aim of the activity' is to define the design of a

Komponent. The interaction model, which is represented in UML collaboration

diagrams, structural model, which is represented in UML class diagrams, activity

model, which is represented in UML activity diagrams, and decision model, which is

represented in a textual language, are created.

84

3.4 Methodologies for the Development of Product Family Systems

(iv) Component reuse — this activity focuses on applying existing components to

develop new Komponent.

Application engineering consists of two activities:

(i) Context realisation instantiation — the activity is aimed to identify relevant

Komponents to be reused for a product member.

(ii) Framework instantiation — the activity? is used to create a framework of a set of

Komponents and relationships between those Komponents for a product

member.

The Kobra method is defined to complete the activities in the development of

product family systems. More specifically, the activities of context realization,

Komponent specification, Komponent realization, and component reuse are

comparable with the activities of domain analysis, domain design, and domain

implementation as shown in Figure 3-1, respectively. Moreover, the activities of

context realization instantiation, and framework instantiation cover the activities of

application engineering including requirements engineering, design analysis, and

integration and testing in Figure 3-1. Additionally, the method is systematic, scalable

and practical for the development of product family systems. The artefacts created

in the method are based on UML diagrams and textual language that are customised

to fulfil the activities in the domain of product family systems.

PuLSE

Product Fine Software engineering (PuLSE) (Bayer et al. 1999) is a customizable

software product line engineering approach. The PuLSE method consists of four

main activities:

(i) Initialisation — the activity? is aimed to analyse and evaluate a situation of an

organisation.

(ii) Infrastructure construction — the aim of this activity is to define a scope and

processes of a product family. A scope model and definitions of a product

family are created.

85

CHAPTER 3. PRODUCT FAMILY SYSTEMS

(iii) Infrastructure usage — the aim of activity is to define and create product

members.

(iv) Evolution and management — the aim of activity is to evolve the product family.

The PuI.SK method consists of six technical components and three support

components. The technical components are: (i) PuLSE-BC, which is used to

support the analysis and evaluation of an organisation in the initialisation activity; (ii)

PuLSE-Eco, which is used to support an economic analysis of a product family; (iii)

PuLSE-CDA, which is used to support a domain analysis of a product family; (iv)

PuLSE-DSSA, which is used to support a domain design of a product family; (v)

PuLSE-I, which is used to support the development of product member; and (vi)

PuLSE-EM, which is used to support the evolution and management of product

family.

The support components are: (i) project entry points, which are used to support analysis

of an organisation’ situation; (ii) maturity scale, which are used to support evaluation

the adoption of product family; and (iii) organisation issues, which are used to support

maintenance of product family.

PuLSE defined the framework of components conducted by different activities. The

activity of initialization is comparable with domain analysis in Figure 3-1. The

activity of infrastructure construction has sub-activities in common with domain

analysis, domain design, and domain implementation. Moreover, the activity of

infrastructure usage is comparable with application engineering including

requirements engineering, design analysis, and integration and testing as shown in

Figure 3-1. In addition, software product line architecture and other artefacts in a

product family are represented as a set of prescribed components.

FAST

Family-oriented Abstraction, Specification and Translation (FAST) (Weiss 1995) is a

software product line method that initially described two main activities in software

86

3.4 Methodologies for the Development o f Product Family Systems

product line engineering. The activities, which resemble the main activities depicted

in Figure 3-1, are:

(i) Domain engineering, which defines a product family and the core assets of the

product family; and

(ii) Application engineering, which develops product members by using the core

assets of the product family.

FAST describes a domain specific language AML (Application Modeling Language)

for specifying the requirements of a product family. The requirements of a product

family represented in the language are then specialized for product members.

Flowever, the definition and specification of requirements are restricted.

RSEB

Reuse-Driven Software Engineering Business (RSEB) (Jacobson et al. 1997) is

proposed to focus on achievement of business goals and improvement of business

performance. In (Jacobson et al. 1997), they proposed to apply use cases to describe

reference requirements of a product family and UML diagrams to describe the

software product line architecture. They also defined activities in the development

of product family systems:

(i) Requirements engineering, where variability is specified as use cases;

(ii) Architectural family engineering, where the software product line architecture is

created in UML diagrams;

(iii) Component system engineering, where reusable components are developed; and

(iv) Application system engineering, in which product members are developed.

The activities defined in RSEB are comparable with ones shown in Figure 3-1. More

specifically, the activity of requirements engineering in RSEB is concerned about

domain analysis and requirement engineering defined in (Clements and Northrop

2004). The activities of architectural family engineering, and component system

engineering have likewise sub-activities in domain design and domain

implementation, respectively. Moreover, the activity' of application engineering in

87

CHAPTER 3. PRODUCT FAMILY SYSTEMS

RSEB covers the activities of design analysis, and integration and testing as shown

in Figure 3-1.

SPLIT

Software Product-IJne Integrated Technology (SPLIT) (Coriat et al. 2000) is a systemic

approach for the development of product family systems. SPLIT suggested a life-

cycle of the development process which consists of two activities. The activities,

which resemble the main activities depicted in Figure 3-1, are:

(i) Domain engineering, which reference requirements, software product line

architecture, and reusable components are created; and

(ii) Application engineering, which product members are developed.

There are four approaches applied in SPLIT:

(i) The approach called SPLIT/Cloud is applied to develop the reference

requirements of product family systems. In this activity there are artefacts

created: business process, capability, functional area, force, functional

requirement, and non-functional requirement. In SPLIT, they described two

situations of requirements engineering: the first one is the development based

on existing products; and the second one is the development from scratch. The

product family system development based on existing products consists of

activities: (i) define reference requirements i.e. functional and non-functional; (ii)

identify and organize the requirements of each product member; (iii) define

artefacts that represent high-level views of functional requirements of each

product member; (iv) define artefacts that represent high-level views of non

functional requirements of each product member; (v) map high-level views of

functional and non-functional requirements to the reference requirements

The product family system development from scratch consists of activities: (i)

define the domain of a product family; (ii) scope the domain; (iii) identify the

requirements of the product family; (iv) determine COTS used in the product

family domain by applying with COTS model; (v) define reference requirements

88

3.4 Methodologies for the Development o f Product Family Systems

i.e. functional and non-functional; (vi) define a business process; (vii) define

capabilities related to each business process; and (viii) define forces related to

each non-functional aspect.

(ii) The approach called Daisy is applied for developing software product line

architecture. In Daisy, a software system product line architecture (SSPLA)

description is based on three architectural views: (a) business view; (b)

subsystem view; and (c) technolog}’ view. The business view represents subject

area and analysis pattern. The subsystem view represents subsystem,

architectural pattern, process, architectural guidelines, architectural constraints

and information. The technology view represents component model, computing

infrastructure and deployment. The views are represented in UML diagrams.

(iii) The approach la d d er is applied for developing reusable components. In

Ladder, they suggested the transformations, composition, splitting up,

abstraction, refinement, development branch for reusable components

development as well as COTS adaptation.

(iv) The approach Wheels is applied for supporting sub-processes during domain

engineering and application engineering in SPLIT.

The SPLIT method is applied in l IS A PS (ESAPS) and CAFÉ (CAFE 2003)

projects. The method itself is composed of other methods to support each activity

in software product line engineering. Otherwise, artefacts produced by using these

methods are represented in i.e. UML diagrams, use cases, component-based

representation languages.

3.4.2. Feature-Oriented Methodologies

The concept of feature-orientation is not completely new in software engineering

and there have been efforts to apply the concept of features to express aspects of a

software system. Examples of feature-oriented methods are FODA (Kang et al.

89

CHAPTER 3. PRODUCT FAMILY SYSTEMS

1990), FORM (Kang et al. 1998), and FeatuRSEB (Griss et al. 1998), which are

increasingly important to software product line engineering due to several reasons:

(i) The fact is when developing the product family, stakeholders communicate

with each other in terms of product features. It becomes an effective media erf

communication between customers and system developers.

(ii) Due to a large size and diversion of requirements for product family

systems, specifying and representing the requirements becomes primary tasks in

domain analysis as these activities are supported by the feature-oriented

methodologies.

(iii) Features can be used as the basis for analyzing and representing

commonalities and variabilities of product members under the same product

family. Additionally, the feature-oriented methodologies offer a way to classify

various requirements.

FODA

Feature-Oriented Domain Analysis (FODA) (Kang et al. 1990) is proposed to support

the activity of domain analysis. In FODA, the activities are described and cover the

activity of domain analysis depicted in Figure 3-1. Three activities are:

(i) Domain analysis, which focuses on scoping of a product family and

identifying product members;

(ii) Feature analysis, which develops a list of common and variable aspects erf a

product family; and

(iii) Feature modelling, which models the common and variable aspects as a feature

model.

FODA is an initial method that defines a feature model for representing common

and variable aspects of a product family. Identification of features requires domain

knowledge obtained from the domain experts and other sources such as books, user

manuals, design documents, etc. In FODA, the authors described that domain

experts and system analysts can use standard terminologies to communicate with

each other in mature and stable domains. Therefore, analyzing the domain

90

3.4 Methodologies for the Development o f Product Family Systems

terminology is an effective and efficient way to identify the features of a given

domain. However, in prior to feature identification, standard terminologies and

domain scope should be done since they are not available in immature or emergent

domains. Feature models are used as a mechanism to facilitate different perceptions

of domain concepts and scope which cause confusion between stakeholders.

The authors defined three types of features: (i) mandatory features, which represent

the commonality of a product family; (ii) alternative features, which are specialized

for product members; and (iii) optional features, which may or may not exist in

product members. The feature model consists of elements such as: (a) a tree-structured

diagram which represents characteristics of product family; (b) a definition for each

feature; and (c) composition rules which are defined rationally between features. There

are two types of rules: (i) one feature requires another feature: and (ii) one feature is

included in another feature.

FORM

Feature-Oriented Reuse Method (FORM) is an extension of FODA that provides the

activities of domain analysis and the development of core assets. Three activities are

concerned:

(i) Feature modelling — that is a process for defining features of product family

systems. The authors proposed to apply the extension of the feature model

from FODA for representing features. They proposed the classification of with

respect features to their purpose as: (a) a set of capability features that express the

characteristics of distinct sendees, operations, functions, or performances, (b) a

set of operating environment features that represent attributes of the environment

in which an application is used and operated, (c) a set of domain technology

features that represent the domain of realization (e.g., navigation methods in the

aviation domain), and (d) a set o f implementation technique features that represent

implementation details at lower and more technical levels e.g. abstract data types

and sorting algorithms. Kang et al. pointed out that a domain technology

feature is more specific to a given domain and may not be usable in other

91

CHAPTER 3. PRODUCT FAMILY SYSTEMS

domains while an implementation technique feature is more generic and may be

used in other domains.

(ii) Architecture modelling — that is a process for defining software product line

architectures. Artefacts created during this process are viewed a hierarchy and

consists subsystem model, process model and module model. These models are

represented the commonality and variability of the product family.

(iii) Component engineering — that is a process for defining reusable components. In

(Lee et al. 2000), the authors described the technique used in the activity of

component engineering in the FORM method. The authors described principles

for the creation of reusable components by mapping features created during the

activity of feature modeling. The principles are (a) capability features can be

modeled as an object or group of objects that provide a similar set of

operations. The object or group of objects is specified with a parameter for a

particular product member; (b) operating environment features can be modeled

as an object or group of objects that provide a set of operations for different

requirements of product members; (c) domain technology' features are modeled

to be specific for the domain of product family; and (d) implementation

technique features should be used to implement domain-specific objects. For

example, a communication method feature (e.g. synchronized or asynchronized

communication) depends on the implementation languages or platforms.

However, the mapping of the feature model and product member is not

described.

In the FORM method, the activities of domain engineering are defined. More

specifically, the activities of feature modeling, architecture modeling, and

component engineering have likewise sub-activities in domain analysis, domain

design, and domain implementation defined in (Clements and Northrop 2004).

However, the FORM method does not cover an activity of application engineering.

92

3.4 Methodologies for the Development o f Product Family Systems

FeatuRSEB

Featuring K iEB (FeatuRSEB) (Griss et al. 1998) is a combination of RSEB method

(Campbell et al. 1990) and FODA (Kang et al. 1990). The FeatuRSEB method

includes the activities defined in RSEB which are requirements engineering,

architectural family engineering, component system engineering, and application

engineering. The method adapted using a feature model by adding UML-based

relationships i.e. dependency and refinement. The feature model is used to represent

common and variable RSEB models. In other words, the feature model is used to

represent an association between RSEB models in a product family.

3.5. Techniques for the Development of Product Family Systems

In this section, we describe existing techniques to support product family system

development. These are (a) use cases, (b) UML modeling, (c) feature modeling, and

(d) architecture description and component-based languages.

3.5.1. Use Cases

In general, a use case (Cockburn 1997) is a textual specification language that is used

for specifying requirements. Examples of the approaches proposed to apply use

cases in the activities of product family system development are (America et al.

2000, Griss et al. 1998, Jacobson et al. 1997). In (Fantechi et al. 2004), the authors

proposed to express the requirements of product members in a product family by

extending the use case definition given by Cockburn (Cockburn 2000). The

variability is expressed in use cases by using special tags. The tags indicate the

variable requirements of a product family that need to be specialized for a product

member. They proposed three types of tags: (i) alternative tag, which represents

variable requirements with a predefined set of requirement variants; (ii) parametric tag,

which represents variable requirements that requires the instantiation of specific

parameters for a product member, and (iii) optional tag, which represents variable

requirements which may or may not be instantiated for a product member.

93

CHAPTER 3. PRODUCT FAMILY SYSTEMS

John at el. (John and Muthig 2002) extended use case specifications for representing

variable requirements. Use cases express variation points and variants for product

members. In addition, the authors applied the decision model to express the

relationships and dependencies between the variable requirements.

3.5.2. UML Modeling

According to the literature (America et al. 2000, Atkinson et al. 2000, Coriat et al.

2000, Griss et al. 1998, Jacobson et al. 1997, QADA), object modeling technique is

used in software product line engineering. Some approaches such as (Clauss 2001,

Gomaa 2004, Keepence and Mannion 1999) are proposed to adapt UML diagrams

for modeling software product family systems. Gomaa (Gomaa 2004) proposed

product line UML-based sojtivare engineering (PLUS) by using UML modeling for the

development of product family systems. PLUS applied UML diagrams to represent

the commonality and variability of product family systems.

in (Clauss 2001), they use a UML class diagram to represent software product line

architecture. They define three types of classes for expressing variability in a product

family: (i) variation?oint, which represents a variation point of a product family; (ii)

variant, which represents an alternative of a particular variation point; and (iii)

optional, which represents an optional class . They applied two types of relationships

to assist representation of variability: (i) generalisation/specialisation, which associates

between classes typed of variationPoint and variant; and (ii) association with cardinality

0... 1, which associates between any class and a class typed of optional.

In (Keepence and Mannion 1999), the authors proposed the combination of

patterns and discriminants to support representing of commonality and variability in

software product line architecture. A pattern is represented by class and object

diagrams. According to (Keepence and Mannion 1999), a discriminant is a feature that

differentiates a system from another in a product family. They defined three types

of discriminants: (i) single discriminants, which represent a set of mutually exclusive

features; (ii) multiple discriminants, which represent a set of features which are not

94

3.5 Techniques for the Development o f Product Family Systems

mutually exclusive; and (iii) optional discriminants, which are features that may or may

not be used.

The single discriminant represents an inheritance hierarchy that consists of a generic

class called base class and a set of subclasses called realm. A realm is used to represent

variants of a variation point in a product family. For the single discriminant, a

subclass in a realm can be chosen for a product member. The multiple discriminant

also represents an inheritance hierarchy that consists of a base class and realm. One

or more subclasses in a realm can be chosen for a product member. The optional

discriminant is represented by two classes with a 0..1 association.

3.5.3. Feature Modeling

This technique was initially proposed in FODA to assist the activity of domain

analysis. As described in Section 3.4., many approaches apply and extend the

definition of a feature model to support the development of product family systems.

Thus, we describe below different aspects of the feature modeling technique that

are applied in existing approaches.

I. Types of Features in a Feature Model

(i) mandatory features (Bosch 1998, Clements and Northrop 2002, Griss et al.

1998, Kang et al. 1990, Kang et al. 1998, PuLSE, Weiss 1995) are compulsory

for product members in a family.

(ii) optionalfeatures (Bosch 1998, Clements and Northrop 2002, Griss et al. 1998,

Kang et al. 1990, Kang et al. 1998, PuLSE, Svahnberg et al. 2001, Weiss 1995)

may exist in a specific product member or not.

(iii) alternative features (Bosch 1998, Clements and Northrop 2002, Kang et al.

1990, Kang et al. 1998, PuLSE, Weiss 1995) or variant features (Griss et al. 1998),

are a set of possible features that can be selected for a specific product member.

Moreover, (Svahnberg et al. 2001) define a feature type external features that is a

feature unavailable in a system but needs to be satisfied by an external system.

95

CHAPTER 3. PRODUCT FAMILY SYSTEMS

II. Notations of Features in a Feature Model

As shown in Figure 3-2, a feature may be depicted as a round or a rectangle with its

name inside. Many approaches applied the feature notation defined in (Kang et al.

1990). However, some approaches applied a UML class diagram for expressing

features, for example (Griss et al. 1998). Moreover, different types of a feature i.e.

mandator}', optional, and alternative are represented in different notations.

F e a t u r e F e a t u r e

M a n d a t o r y O p t i o n a l

F e a t u r e F e a t u r e

A l t e r n a t i v e

(b)

F e a t u r e

M a n d a t o r y

I
; F e a t u r e i

E x t e r n a l

(C)

Figure 3- 2: different notations for different types of a feature: (a) (Kang et al.
1990); (b) (Griss et al. 1998, Kang et al. 1998); and (c) (Svahnberg et al. 2001)

III. Relationships between Features in a Feature Model

Ideally, features are atomic units that can be put together in a product without

difficulty. However, features are generally not independent and several types of

relations can exist between them. According to (Gibson et al. 1997), feature

interaction is defined as a characteristic of a system whose complete behavior does

not satisfy the separate specifications of all its features.

The types of relationships express the rules of feature interaction. These

relationships are considered when features are selected for product members. They

represent which features must be selected together and winch features must not.

Table 3-1 shows different types of relationships between features.

96

3.5 Techniques for the Development o f Product Family Systems

Table 3-1 presents the classification of relationships between features:

Relationship type Description

depends-on (Griss et al. 1998) Indicating that a feature relies on an existence

of another feature

mutually exclusive (Griss et al. 1998) Indicating that two features must exist at the

same time

conflicting (Griss et al. 1998) Illustrating that related features have

conflicting requirements.

composed-of (Kang et al. 1998),

composition (Svahnberg et al. 2001)

Indicating that a feature is composed of other

features

generalisation/specialisation (Kang et

al. 1998), OR specialisation

(Svahnberg et al. 2001)

Indicating that a child feature is specialized

from a parent feature

implemented-by (Kang et al. 1998) Indicating that a feature is implemented by

another feature

XOR specialisation (Svahnberg et

al. 2001)

Indicating that children features are mutually

exclusive

3.5.4. Architecture Description and Component-based
Languages

According to (America et al. 2000), the authors defined a component-based

technique supports the design and implementation of software development. The

technique includes the architecture description language, called Koala (Ommering et

al. 2000). Koala is used to define a large diversity of product family systems. The

Koala component model is created to represent architecture of product family. In

Koala, a component consists of: (i) interfaces, which are communication ports

between different components; (ii) connectors, which connect between different

interfaces; and (iii) subcomponents, which are components in a particular

component. They define two types of interfaces: (i) provides interface, which allows

external components to use functionality implemented in a component; and (ii)

requires interface, which allows a component to use functionality implemented in an

97

CHAPTER 3. PRODUCT FAMILY SYSTEMS

external component. They also define three types of connectors: (i) direct connector.;

which directly connect two interfaces; (ii) switch, which is a control for changing the

direction of connection between components; and (iii) module, which is a process

existing between two interfaces.

In the Koala component model, variation points are represented by using switch

connectors. They describe that variation points are specialized during an activity7 of

integration and testing in the application engineering. The Koala technique is

applied in the COPA method that defines a framework of product family system

development which is developed and used by Philips (Philips). All components in

the Koala component model are implemented as source code components and

connectors are provided for interconnection with other components.

Additionally, xADL2.0 is a software architecture description language (ADL) that is

developed by (xADL2.0). xADL is an extension of xArch (xArch) by applying with

XML schemas. The language is compatible with XML technologies and XML tools.

xADL is defined to provide the representation of variability in the domain of

product family systems such as: (i) optional elements, which are parts of architecture

such as components, connector, and interfaces; and (ii) variants, which provide a set

of variable aspects of the architecture. Examples of approaches applied xADL 2.0

for product family system development are (Bastarrica et al. 2006, Westhuizen and

Hoek 2002).

As described in Section 3.4, existing component-based techniques e.g. commercial Off-

The-Shelf (COTS) (Dean 2002), Microsoft’s COM (COM), Sun’s JavaBeans

(JavaBeans), COBRA (COBRA) are used in the activities during domain

implementation. According to the literature (America et al. 2000, Atkinson et al.

2000, Bayer and Widen 2002, Coriat et al. 2000), the authors proposed to use

existing component-based techniques for the development of reusable components

in an activity of domain implementation. In addition to (Redondo et al. 2004), the

authors defined a component-based approach for supporting an activity7 of domain

analysis in software product line engineering. The approach applied the formal and

98

3.5 Techniques for the Development o f Product Family Systems

incremental method to represent requirements in the domain of product family

systems. The requirements are grouped as components and specified a set of

variants.

3.6. Supporting Tools for Product Family Systems

At this stage, tools for software product family system development rarely exist.

Although some existing approaches for product family system development have

provided tool support, most of the tools do not support the whole process of

product family system development. Examples of these tools are such as Koala

compiler (America et al. 2000), KoalaMaker (America et al. 2000), PuLSE-BEAT

(Schmid and Schank 2000), DIVERSITY/CDA (Bayer et a] 1999), PASTA process

modeling tool (Weiss 1995), and ASADAL (ASADAL). Additionally, some tools

have been developed by projects and companies. Examples of these tools are such

as V-Manage (ESAPS), MetaEdit+ (Metacase), and Product Line Platform

(GEARS). Some commercial requirements engineering and general tools are applied

and adopted in some existing approaches and projects. One example is that CAFA

applied commercial tools such as DOORS (DOORS), RequistePro (RequisitePro),

Rational Rose (RationalRose), Visio (Visio 2003), and XMI Toolkit (XMLToolKit)

for software product line engineering. In (Gomaa and Shin 2004), they applied the

commercial case tools i.e. Rational Rose and Rose RT (RationalRose) as well as

integrate with their customised tool KBRET to support the design and generation

of the proposed architecture for product family systems. In (Lago et al. 2004), they

extended the commercial tool Together® ControlCenter™ (Borland) to develop

and maintain design artefacts of a product family. However those tools in current

literature still have limitations in terms of technique- and are platform-dependent.

The tools for product family systems are required to support the whole life cycle of

product family system development. As mentioned before, existing tools are only

focused on particular activities such as commonality and variability analysis and

development of core assets. Other activities such as the production of product

members from core assets, traceability between different artefacts, and evolution

and maintenance are also required supporting tools.

99

CHAPTER 3. PRODUCT FAMILY SYSTEMS

Table 3-2 presents the comparison between existing approaches for product family

system development by concerning with activities in domain engineering, activities

in application engineering, artefacts created during these activities, techniques used,

tool support provided, maturity of the approaches, and domain of the approaches.

100

T a b l e 3 - 2 : C o m p a r i s o n a p p r o a c h e s f o r p r o d u c t f a m i l y s y s t e m d e v e l o p m e n t

Approaches

and Methods

Activities: Domain

engineering

Activities:

Application

engineering

Generated artefacts Techniques Tool support Maturity Domains

COPA Product family

engineering; Platform

engineering

Product

engineering

Business models, design

models, requirements,

platform and product-

specific components,

Product line architecture

UML modeling, Use

case specification,

COTS, Microsoft’s

COM, Sun’s

JavaBeans, OMG’s

COBRA, Koala ADL

Koala compiler,

KoalaMaker,

Code editor +

plugs-in, Visio

Have been applied

by successful

industries (Phillips)

T elecommunicatio

n, Medical

imaging,

Consumer

electronics

QAJDA Requirements

engineering;

Conceptual

architecture design;

Conceptual

architecture analysis;

Concrete architecture

design;

Concrete architecture

analysis

N/A Requirements, context

model, decomposition

model, allocation model,

collaboration model,

design rationale,

knowledge base,

structural diagrams, state

diagrams, message

sequence charts,

deployment model,

scenarios

UML modeling Commercial

UML, Visio,

Word processing

Result from the

research project

PLANA (2001)

Information

systems,

Middleware,

Wireless services

Approaches

and Methods

Activities: Domain

engineering
Activities:

Application

engineering

Generated artefacts Techniques Tool support Maturity Domains

KobrA C o n te x t r e a liz a t io n ;

K o m p o n e n t

s p e c if ic a t io n ;

K o m p o n e n t

r e a liz a t io n ;

C o m p o n e n t r e u s e

C o n te x t

r e a l iz a t io n

in s t a n t ia t io n ;

F r a m e w o r k

in s ta n t ia t io n

K o m p o n e n t s , o b je c t

m o d e ls

U M L m o d e l in g ,

c o m p o n e n t -b a s e d

t e c h n iq u e s

C o m m e r c ia l

U M L , W o r d

p r o c e s s in g ,

C o n f ig u r a t io n

m a n a g e m e n t

I n s ta n c e o f P u L S E I n f o r m a t io n

s y s te m s

PuLSE I n it ia l is a t io n ;

I n f r a s t r u c tu r e

c o n s t r u c t io n ;

E v o lu t io n a n d

m a n a g e m e n t

I n f r a s t r u c tu r e

u s a g e

P u L S E -B C , P u L S E -E c o ,

P u L S E -C D A , P u L S E -

D S S A , P u L S E -I ,

s u p p o r t in g c o m p o n e n t s ,

p r o d u c t l in e a r c h ite c tu r e

C o m p o n e n t -b a s e d

t e c h n iq u e s

P u L S E -B E A T ,

D I V E R S I T Y / C

D A

H a v e b e e n a p p lie d

b y in d u s t r ia ls

M e r c h a n d is e

in f o r m a t io n

s y s te m s , S to c k

m a r k e t d a ta

e v a lu a t io n , C A D

s y s te m s , H u m a n

c o m fo r t

s im u la t io n s a n d

la y o u t s y s te m s

Approaches

and Methods

Activities: Domain

engineering

Activities:

Application

engineering

Generated artefacts Techniques Tool support Maturity Domains

SPLIT

D o m a in e n g in e e r in g A p p l ic a t io n

e n g in e e r in g

R e q u ir e m e n ts , s o f tw a re

s y s te m p r o d u c t l in e

a r c h it e c tu r e (S S P L A) ,

p a t t e r n s , g u id e l in e s ,

c o n s t r a in t s , c o m p o n e n t

m o d e ls

U M L m o d e l in g ,

C O T S , c o m p o n e n t -

b a s e d t e c h n iq u e s

C o m m e r c ia l

to o ls

R e s u lt f ro m

r e s e a r c h p ro je c t s

(E S A P S a n d C A F É)

T e le c o m m u n ic a t io

n

FAST

D o m a in e n g in e e r in g A p p l ic a t io n s

e n g in e e r in g

R e q u ir e m e n ts D o m a in s p e c if ic

la n g u a g e A M L

P A S T A p ro c e s s

m o d e l in g to o l

R e a l- t im e s y s te m s

RSEB R e q u ir e m e n ts

E n g in e e r in g ;

A r c h it e c tu r a l f a m ily

e n g in e e r in g ;

C o m p o n e n t s y s te m

e n g in e e r in g

A p p l ic a t io n

s y s te m

e n g in e e r in g

R e q u ir e m e n t s , p r o d u c t

l in e a r c h it e c tu r e

U s e c a s e

s p e c if ic a t io n , U M L

m o d e l in g

N / A N / A N / A

Approaches

and Methods

Activities: Domain

engineering
Activities:

Application

engineering

Generated artefacts Techniques Tool support Maturity Domains

FODA

D o m a in a n a ly s is ;

F e a tu r e a n a ly s is ;

F e a tu r e m o d e l in g

N/A R e q u ir e m e n ts , c o n te x t

m o d e l , f e a tu r e m o d e l

F e a tu r e m o d e l in g N / A H a v e b e e n a p p lie d

a n d e x te n d e d b y

r e s e a r c h e s a n d

in d u s t r ia ls s in c e y e a r

1 9 9 0

N / A

FORM

F e a tu r e m o d e l in g ;

A r c h it e c tu r e m o d e lin g ;

C o m p o n e n t

e n g in e e r in g

N / A R e q u ir e m e n ts , f e a tu re

m o d e l, s u b s y s t e m m o d e l,

p ro c e s s m o d e l , m o d u le

m o d e l

F e a tu r e m o d e l in g A S A D A L E x te n s io n o f

F O D A a n d h a v e

b e e n a p p lie d by-

in d u s t r ie s

E le c t r o n ic b u l le t in

b o a rd , P r iv a te

B ra n c h E x c h a n g e ,

E le v a to r C o n t r o l

S y s te m s

FeatuRSEB

R e q u ir e m e n ts

F ln g in e e r in g ;

A r c h it e c tu r a l f a m ily

e n g in e e r in g ;

C o m p o n e n t s y s te m

e n g in e e r in g

A p p lic a t io n

s y s te m

e n g in e e r in g

R e q u ir e m e n ts , p ro d u c t

l in e a r c h it e c tu r e

U s e c a s e

s p e c if ic a t io n , U M L

m o d e l in g , f e a tu re

m o d e l in g

N / A P lx te n s io n o f R S E B N / A

3.7 Traceability of Product Family Systems

3.7. Traceability of Product Family Systems

As suggested in (Boehm et al. 2004, Streitferdt 2001), traceability of product family

systems is important due to some reasons:

(a) Traceability throughout artefacts is a necessary precondition for preserving the

consistency of a product family during development and for software

development in general;

(b) Traceability activity assists the reuse of artefacts across the product family.

The benefits of product family approach depend on how effective an

organisation can reuse the core assets of a family. When the percent of reuse

is high, the cost of product member development is relatively low; and

(c) Traceability relations assist stakeholders to valid and verify software artefacts

in product family.

Generally, traceability relations are used in different proposed: (a) impact analysis of

a system; (b) validation and verifying software artefacts; (c) reuse of existing

software artefacts; and (d) understanding software artefacts (as described in Section

2.5). According to the literature, establishing traceability relations in product family

systems is expected to solve some of existing problems described in Section 3.2.

Particularly, the use of traceability reladons can (a) improve the communication

between stakeholders; (b) assist defining commonality and variability due to

different perspectives and lack of knowledge by using traceability information; (c)

assist the documentation by applying with traceability information; and (d) decrease

the confliction between artefacts by applying with traceability relations.

3.7.1. Existing Approaches for Traceability Generation in
Product Family Systems

Software traceability can be established between the core assets created during

product family development. According to Figure 3-1, traceability relations can be

generated between reference requirements, software product line architecture, and

reusable components. In addition, many traceability approaches (as described in

105

CHAPTER 3. PRODUCT FAMILY SYSTEMS

Chapter 2) are applied for the software system development. A few of them have

been extended to satisfy the traceability" activities in the domain of product family.

In (Mohan and Ramesh 2002), the authors adopted the traceability" reference model

developed by (Ramesh and Jarke 2001) and applied the model with the e-services

family systems.

Additionally", Bayer at el. (Bayer and Widen 2002) suggested the traceability" activity"

into the PuLSE method. As described in Chapter 2, the authors defined the

traceability" reference model which consists of artefact types and relationship types

in the domain of product family systems. More specifically, the model is focused on

the artefacts created during domain engineering process. However, the authors do

not explicitly" define how to achieve the traceability" activities or what tool supports

is provided.

In (Berg and Bishop 2005), the authors defined the conceptual model for variability

in product family systems. The model contains three ty"pes of artefacts: (i)

requirements, represented in use cases and feature model; architecture/ design,

represented in UML class diagrams; and (iii) source code, implemented in C+ +

programming language. The authors suggested traceability" between variability' in

different types of artefacts. However, they do not define the classification of

traceability relations and do not discuss of how to establish the relations.

Additionally, the work in (Riebisch and Pbilippow 2001) has been proposed to use

traceability relations for supporting the activities of product family system

development. In other words, the traceability' relations are used to identify possible

reused artefacts of existing systems for new product members. The authors

suggested the generation of traceability relations (a) between requirements and

feature implementation, (b) between design and decision, and (c) between

requirements, design decisions, and features. However, the reference model and

classification of traceability relations are not explicitly defined. The authors also

suggested the technique in (Dick 1999) for traceability" activities; however, do not

define any tool support for the activities. In this work, the traceability relations are

106

3.7 Traceability of Product Family Systems

defined in the coarse-grained level and not cover all types of artefacts in the product

family systems.

According to (Lago et al. 2004), the authors defined the model, called simplified

representation model\ which includes of artefacts and traceability7 relationships in the

domain of product family systems; though the traceability’ relations are defined in

the coarse-grained level. However, they do not explicitly define which techniques

are used for traceability7 activities and do not provide tool support for the activities.

Additionally, the projects (CAFE 2003, ESAPS) have been concerned with the

traceability activities. The traceability7 meta-model is defined; however, it does not

represent particular types of traceability relations and do not provide any tool

support for the activities. Although, the SPLIT/Cloud (Coriat et al. 2000) which is

applied during the activity of domain analysis in the projects includes the generation

of traceability relations. The method defined types of traceability relations created

between functional and non-functional requirements and between requirements and

constraints. There are no special tool support for traceability7 activities, even though

the projects proposed to apply DOORS (DOORS) for supporting requirement

engineering activities.

As described in Chapter 2, in (Kim et al. 2005), the authors defined a traceability

reference model for the domain of product family systems. The model consists of

artefacts types and traceability7 relationship types. However, the authors do not

describe how to achieve the generation of traceability relations in an automatic way

or explicitly define the tool support for the traceability activities.

In (Plankl and Bockle 2001), the authors suggested an approach for domain analysis

in the software product line engineering and defined the requirements model

including traceability7 relationships between requirements artefacts. However, they

do not define how to achieve the activities.

107

CHAPTER 3. PRODUCT FAMILY SYSTEMS

3.7.2. Issues of Traceability Activities in Product Family Systems

There are two main issues that need to be tackled:

Difficulty to Establish Traceability across the Large Size and Diversity of

Software Artefacts in Product Family Systems

It is difficult to establish traceability relations in the domain of product family

systems due to the large size and diversity of software artefacts. Additionally, it is

difficult to capture the semantics of traceability relations between those artefacts.

This issue is also concerned in some approaches for traceability generation. The

examples of these approaches are such as (Alexander 2003, Knethen et al. 2002).

The authors have discussed that their approaches do not support the generation of

traceability relations in the domain of product family systems.

Inadequate Tool Support

Although traceability is recognized as an important activity in the software

development, the support of the traceability generation in the product family

systems is still rare. Some approaches (Bayer and Widen 2002, Coriat et al. 2000,

Lago et al. 2004) proposed a traceability reference model in the domain of product

family systems; however, they do not provide automatic support for generating

traceability relations. In addition, although some approaches proposed to tackle the

traceability issue in the domain of product family systems, they do not provide

automatic support (Bayer et al. 1999, CAFE 2003, Coriat et al. 2000, ESAPS, FIull et

al. 2002, Kim et al. 2005, Plankl and Bockle 2001, Riebisch and Philippow 2001).

3.8. Summary

This chapter has provided background information for product family systems. It

has presented the terminologies, existing problems, current approaches, current

techniques and current tools in the domain of product family. It also illustrated the

existing approaches and problems of traceability practice in the domain of product

family systems. In the next chapter, we present a traceability reference model for

product family systems.

108

Part II: The Approach

Chapter 4

Traceability Reference Model

This chapter describes'a traceability reference model for product family systems.

The reference model includes two main essentials. Firstly, the types of documents

represented software artefacts of product family systems are described in Section

4.2. Secondly, the classification of relationships between those documents is defined

in Section 4.3. The examples of traceability relations between software artefacts of

product family systems and the summary of traceability reference model are also

given in Section 4.3. Section 4.4 summarises of the chapter.

4.1. Introduction

As discussed in Chapter 1, we believe that a feature-based object-oriented

engineering approach is required when developing product family systems. A

feature-based approach is important to support domain analysis and domain design,

enhance communication between customers and developers in terms of product

features, and assist with the development of software product line architecture. On

the other hand, an object-oriented approach is necessary to assist with the

development of the various product members. We propose to use an extension of

the FORM (Feature-Oriented Reuse Method) methodology (Kang et al. 1998) due

to its maturity, practicality, and extensibility characteristics.

Our work concentrates on documents generated by FORM methodology such as

feature, subsystem, process, and module models, for the core assets; and object-

oriented documents such as use case specifications, class diagrams, statechart

diagrams, and sequence diagrams, for the product members.

CHAPTER 4. TRACEABILITY REFERENCE MODEL

Furthermore, our approach combines feature-oriented and object-oriented

documents and, therefore, requires a common representation of these document

types. In our approach, the documents are represented in XML. We have chosen

XML as a basis for our approach due to several reasons: (a) XML has become the

de facto language to support data interchange among heterogeneous tools and

applications, (b) the existence of large number of applications that use XML to

represent information internally or as a standard export format (e.g. Unisys XML

exporter for Rational Rose (RationalRose), Borland Together (Borland), ArgoUML

(ArgoUML)), and (c) to allow the use of XQuery (XQuery) as a standard way of

expressing traceability rules. Moreover, the OMG promotes the use of the XML

Metadata Interchange (XMI) (XMI) to enable interchange of metadata between

modeling tools that are based on OMG-UML and metadata repositories. XMI

integrates OMG-UML modeling standards with Meta Object Facilities (MOF) and

XML-W3C standard.

For each document type used in our approach we have created XML Schemas as

shown in Appendix A. The textual sentences in the XML documents are annotated

with part-of-speech assignment by using a general purpose grammatical tagger called

CLAWS (CLAWS). This grammatical tagger assumes the British National Corpus

(Leech et al. 1994) and tags the text in a four-stage process. In the first stage, the

text to be tagged is divided into words and sentences. In the second stage, initial

POS-tags are assigned to the words based on a lexicon and tagging rules. In the

third stage, the initial tags are revised to take into consideration the context of the

words based on other rules. In the fourth stage, tags are disambiguated using

Markov Model (Poritz 1998). CLAWS has an error-rate of 1.5%. A more detailed

explanation of CLAWS can be found in (CLAWS).

4.2. Product Family Software Artefacts

The software artefacts generated during the development of product family systems

are classified in two levels, namely product line level and product member level Product

line level is concerned with the software artefacts created during activities in domain

112

4.2 Product Family Software Artefacts

engineering, while product member level is concerned with software artefacts

created during activities in application engineering to be composed as product

members in product family systems.

In the product line level, the software artefacts are divided into three types based on

the various phases in domain engineering of the product family system

development. According to the literature (see Chapter 3), the first type, known as

reference requirements is concerned with artefacts created during the domain analysis

phase. The second type, known as software product line architecture is concerned with

artefacts created during the design phase. The third type, known as reusable software

components is concerned with artefacts created during the domain implementation

phase.

In the product member level, the software artefacts are also divided into three types

based on the various phases in application engineering of the product family system

development. The artefacts in the product member level are as concerned as the

artefacts in single software systems (Nuseibeh and Easterbrook 2000). The first type

is concerned with artefacts known as requirements specification. The second type is

concerned with artefacts such as design models. The third type is concerned with

artefacts such as source code. According to the literature (Bayer and Widen 2002,

Bosch and Hogstrom 2000, Clements and Northrop 2002, Nuseibeh and

Easterbrook 2000, Weiss and Lai 1999), the composition and integration of those

artefacts develop into product members.

The work presented in this thesis is concerned with software artefacts created

during the domain analysis and design phases of product family system

development according to Figure 3-1. More specifically, we classify the software

artefacts of our concern into two dimensions. The first dimension includes the

product line and product member levels, while the second dimension includes the

two phases of the software development process. Table 4-1 presents the set of

software artefacts used in our approach for each dimension.

113

CHAPTER 4. TRACEABILITY REFERENCE MODEL

The artefacts in Table 4-1 are comparable to the artefacts proposed for product

level and product member level in the literature. For example, reference

requirements created during the domain analysis phase is comparable to feature modeI

(Kang et al. 1998) in Table 4-1; software product line architecture is comparable to

subsystem, process, and module models (Kang et al. 1998) in Table 4-1; requirements

specification in product member level is comparable to use case (Cockburn 1997) in

Table 4-1; and design models in product member level is comparable to class,

statechart, and sequence diagrams (UML).

Table 4- 1: Documents used in our approach

A n a ly s is D e s ig n

P r o d u c t -L in e L e v e l F e a tu r e m o d e l S u b s y s t e m m o d e l

P ro c e s s m o d e l

M o d u le m o d e l

P ro d u c t M e m b e r L e v e l U se C a se C la s s d ia g r a m

S t a t e c h a r t d ia g r a m

S e q u e n c e d ia g r a m

In the following, we described each type of artefacts and present examples of these

artefacts.

Feature Model

A feature model is a software artefact that describes the abstraction of domain

knowledge obtained from domain experts such as system users, analysts, and system

developers, as well as other sources such as books, user manuals, design documents,

and source programs. It describes the common and variable aspects (features) of a

family in a domain (Griss et al. 1998, Kang et al. 1998, Svahnberg et al. 2001).

The feature model proposed in FORM (Kang et al. 1998) is based on the feature

model from FODA (Kang et al. 1990) enhanced with a textual specification for

each feature. Therefore, a feature model has two main components: a graphical

hierarchy of features and textual specification. Figure 4-1 presents an example of a

114

4.2 Product Family Software Artefacts

graphical hierarchy of feature for a mobile phone product family, while Figure 4-2

presents an example of a textual specification for feature Text Messages in Figure 4-1.

As shown in Figure 4-1, a feature is represented by a name and can be (i) mandatory,

when it must exist in the applications in the domain; (ii) optional\ when it is not

necessary to be present in the applications in the domain; or (iii) alternative, when it

can be selected for an application from a set of features that are related to the same

parent feature in the hierarchy.

The features can be classified into four groups namely (i) application capabilities,

signifying features that represent functional aspects of the applications (e.g. calling,

connectivity, personal preference, and tool features); (ii) operating environments,

signifying features that represent attributes of the environment in which product

members are used and operated (e.g. network, input and output methods, and

operating system features); (iii) domain technologies, signifying features that represent

specific implementation and technological aspects of the applications in the domain

(e.g. WAP and XHTML^ browser types; specific Java application support like

mobile media and wireless messaging application programming interface; SMTP,

POP3, and IMAP4^ network protocol features); and (iv) implementation techniques,

signifying features that represent more general implementation and technological

aspects of the applications, but not necessary specific for the domain (e.g. PGP and

DES encryption methods; AMR, MIDI, and MP3 sound formats; and 3GPP and

M P E G ^ v id e o f o r m a t f e a t u r e s) .

Feature can also be related by different types of relationships. Examples of these

relationships are (i) composed_of, (ii) generalisation/specialisation, and (iii) implemented_by

relationship types.

9
~ W A P : W i r e l e s s A p p l i c a t i o n P r o t o c o l ; X H T M L : E x t e n s i b l e H y p e r T e x t M a r k u p L a n g u a g e .

^ S M T P : S i m p l e M a i l T r a n s f e r p r o t o c o l ; P O P 3 : P o s t O f f i c e P r o t o c o l ; 1 M A P 4 : I n t e r n e t M e s s a g e A c c e s s P r o t o c o l .

^ A M R : A d a p t i v e M u l t i - R a t e ; M I D I : M u s i c a l I n s t r u m e n t D i g i t a l I n t e r f a c e ; M P 3 : M P E G A u d i o L a y e r I I I ; 3 G P P : 3 r d

G e n e r a t i o n P a r t n e r s h i p P r o j e c t ; a n d M P E G : M o v i n g P i c t u r e E x p e r t s G r o u p .

1 1 5

CHAPTER 4. TRACEABILITY REFERENCE MODEL

Figure 4-1: The feature model of the mobile phone

As shown in Figure 4-2, the textual specification represents (i) a name, (ii) a

description, (iii) issues and decisions representing trade-offs, rationale, or justifications for

including the feature in an application, (iv) a type such as application capabilities,

operating environments, domain technologies, and implementation technologies, (v)

commonality indicating if a feature is mandator)7, optional, and alternative, (vi)

relationship with other features such as composed-of, implemented-by,

generalisation/specialization, (vii) composition rule representing mutual dependency

and mutual exclusion relationships to indicate consistency and completeness of a

feature, if any, and (viii) allocated-to-subsystem indicating the name of a subsystem that

contains the feature, if any

116

4.2 Product Family Software Artefacts

Feature-name: T e x t M e s s a g e s
Description: T h e p h o n e c a n e d it , s e n d , a n d r e c e iv e a s h o r t t e x t m e s s a g e
Issues and decision: T e x t m e s s a g e o v e r m o b ile p h o n e is a w a y o f c o m m u n ic a t io n

Type: A p p lic a t io n c a p a b i l i t y
Commonality: M a n d a to r y
Composed-of: S e n d in g T e x t M e s s a g e s , R e c e iv in g T e x t M e s s a g e s , E d it in g

T e x t M e s s a g e s
Composition-rule: -
Allocated-to-
subsystem:

M e s s a g in g

Figure 4- 2: Features in textual specification language (Kang et al. 1998).

We have developed an XML representation of the feature model based on the

textual specification. In this representation, a feature model is composed of many

features as shown in the extract of Figure 4. Each feature has a name

(<Feature_name>), a description of the feature in natural language sentences

(<Description>), a description of possible issues and decisions that may have been

raised during the feature analysis process (<Issue_and_decision>), a type (<Type>),

an element <Existential> denoting if the system is mandatory, optional, or

alternative, relationships with other features (element <Relationship> with attribute

type and the associated features represented in element <Rel_feature>), and the

subsystem name that may contain the feature (<Allocated_to_subsystem>), if any.

The contents of Feature_name, Description, hsne_and_decision, Re!Jeature, and

A/located_to_subsystem elements are marked-up with part-of-speech XML tags (XML

POS-tags) indicating their grammatical role in the sentence. For instance, the word

“Text” is maked-up with element <NN1>, denoting that “Text” is a singular

common noun; the word “Messages” is marked-up as <NN2>, denoting a plural

common noun, the word “edit” is marked-up as <VVI> denoting an infinite verb.

117

CHAPTER 4. TRACEABILITY REFERENCE MODEL

<Feature_ModeI>
<Feature>
<Feature_name> <N N 1> T e x t </N N l> <N N 2> M e s s a g e s </NN2> </Feature_name>
<Description>

<ATO> T h e </ATO> <N N 1> phone </N N l> < V M 0> can </VM 0> < V V I> e d it </VVI>
< SC>,< /SC> < V V I> sen d </VVI> <SC>,< /SC> < C JC > and </CJC> < V V I> r e c e iv e </VVI>
< A T 0> a </AT0> < A J0> sh o rt </AJ0> <N N 1> tex t </N N l> <N N 1> m e s s a g e </N N l>
<sc>.</sc>
</Description>
<Issue_and_decision>

<N N 1> T e x t </N N l> <N N 1> m e s s a g e </N N l> <II> o v e r </II> < JJ> m o b ile </JJ>
<NN1> p h o n e </N N l> < V B Z > is </VBZ> < A T 1> a < /A T l> <N N 1> w a y </NNI>
<IO> o f </IO> <N N 1> co m m u n ica t io n </N N l>

</Issueanddecision>
< T yp e> A p p lic a tio n c ap ab ility< / T yp e>

<Existential>Mandatory</Existential>
<Relationship T yp e= "co m p o sed _ o f">
<Rel_feature> < V V G > S e n d in g </VVG> <NN1> T ex t </N N l> <N N 2> M e s s a g e s </NN2>
</Rel_feature>
<Rel_feature> < V V G > R e c e iv in g <J\NG> <NN1> T ex t </N N l> <N N 2> M e s s a g e s </NN2>
</Rel_feature>

<Rel_feature> < V V G > E d it in g </VVG> <NN1> T ex t </N N l> <N N 2> M e s s a g e s </NN2>
</Rel_feature>

</Relationship>
<Allocated_to_subsystem> <NN 1 > M e s s a g in g </NN 1 > </Allocated _to_subsystem>

</Feature>
<Feature>

<Feature_name> < V V G > E d it in g < / V V G x N N 1 > T ex t < / N N lx N N 2 > M e s s a g e s </NN2>
</Feature_ name>

<Description>
< A T0> T h e </AT0> <NN I > p h o n e </NN 1 > < V V Z > p ro v id e s </VVZ> < A T 1 >an</AT 1 >
<NN1> e d ito r </N N l> <TO> to </TO> < V V I> c re a te </VV l> < A T 1> a </ATI>
<JJ> n e w </JJ> <N N 1> tex t </N N l> < N N I> m e s s a g e </N N l> <SC>.< /SC>
< V V G > E d it in g </VVG> <AT> the </AT> <N N 1> text< /N N l> <N N 1> m e s s a g e </N N l>
< V M > can </VM > < V B I> be </VBI> <VD N > d o ne </VDN> <1I> in </II>
<JJ> d if fe re n t </JJ> <N N 2> w a y s </NN2> <II> su ch </II> <II> as </II>
<NN1> a lp h a </N N l> <NN1> m o d e </N N l> <CC> and </CC> < JJ> p re d ic t iv e </JJ>
<NN 1 > m o d e </NN 1 >

</Description>
< T y p e > A p p lic a tio n c ap ab ility< / T yp e>
<Existential>Mandatory</Existential>
<Allocated_to_subsystem> <NN 1 > M e s s a g in g </NN 1 > </Allocated_to_subsystem>

<Com positionrule>
< V V Z > re q u ire s </VVZ> <AT> the </AT> <NN1> tex t </N N l> <NN1> lib ra r y </N N l>
<NN 1 > fe a tu re </NN 1 >
</Composition_rule>

</Feature>

</F eature_Model>

Figure 4- 3: Feature model for mobile phone systems

118

4.2 Produci Family Software Artefacts

Use Cases

Use case is a textual specification language that captures a contract between the

stakeholders of a system about its behavior (Cockburn 1997). In our work, we

represent the functional requirements of product members as use-cases based on

the template proposed in (Cockburn 1997).

In our template, a use case is represented by element (<Use_Case>) with a unique

identifier (UseCaselD), information about the product line domain (System) and

product member identifier (Prodnct_Member). A use case has also a title (<Title>); a

brief textual description (<Description>); the level of functionality that it describes

within a system (<Level>); pre- and post-conditions that must be satisfied before

and after its execution respectively (<Preconditions> and <Postconditions>);

primary and secondary' actors describing the users of the use case (<Primary_actor>

and <Secondary_actors>); flow of events denoting the events that trigger the use

case and the specification of the normal events that occur within it

(<Flow_of_events>); exceptional events describing the events that not always occur

when the use case is executed (<Flxceptional_events>); and Superordinate and

subordinate use cases (<Superordinate_use_case> and <Subordinate_use_case>).

As in the case of feature model, the words in the textual parts of the use case are

annotated with XML POS-tags denoting their grammatical roles.

Figure 4-4 illustrates an example of a use case Sending a Message from a mobile phone

for product member PM1 of the mobile phone case study. The use case

(<Use_Case>) is identified with UseCaselD (“UC1”), System (“MobilePhone”), and

Vroduct_Member (“PM1 ”) It contains elements i.e. <Title>, <Description>, <Level>,

<Preconditions>, <Postconditions>, <Primary_actor>, <Secondary?_actors>,

<Flow_of_events>, <Event>, <Exceptional_events>, <Superordinate_use_case>,

and <Subordinate_use_case> that describe the context of the use case. Likewise,

the elements that are composed of textual descriptions are marked-up with part-of-

speech indicating their grammatical role in the sentence as XML tags.

119

CHAPTER 4. TRACEABILITY REFERENCE MODEL

<Use_Case U seC ase ID = ”U C l ” S y s te m = ”M o b ile P h o n e ” P ro d u c t_ M em b er= v P M l ” >
<Title> Sending a Message </Title>
<Description> <ATO> T h e </ATO> <NN1> p ho n e </N N l> < V B Z > is </VBZ>

< A J0> a b le </AJ0> <TOO> to </TOO> < V V I> sen d </VVI> < A T 0> a </AT0>
<N N 1> tex t </N N l> <N N 1> m e s s a g e </N N l> < SC > . </SC> <AT> T h e </AT>
<NN 1 > u se r </NN 1 > < V M > can </VM > <V V I> sp e c if y </V V l> < A T 1 > an </AT 1 >
<N N 1> a d d re ss </N N l> <IO> o f </IO> < A T 1> a < /A T l> <N N 1> r e c e iv e r </N N l>
<II> b y </II> < V V G > s e le c t in g </VVG> <II> from </II> <AT1 > a < /A T l>
<NN 1 > l is t < /N N l> <IO> o f </IO> <N N 2> co n tac ts </NN2> < SC > . </SC>

</Description>
<Level> U se r G o al </Level>
<Preconditions> <AT> T h e </AT> <NN 1 > u se r </N N l> <VH Z> h as </VHZ>

<VH Z> a lr e a d y </NHZ> < V V N > se le c te d </VVN> <N N 1> fu n c tio n </N N l>
<IO> o f </IO> < V V G > se n d in g </VVG> < A T 1> a </AT 1 > <NN 1 > tex t </N N l>
<N N 1> m e s s a g e </N N l> <II> fro m </II> <AT> the </AT> < JJ> m ain </JJ>
<N N 1> m en u <2NN1> < SC > . </SC>

</Preconditions>
<Postconditions> <AT> T he </AT> <NN1> p ho n e </N N l> <VH Z> h as </VHZ>

< V V N > sen t </VVN> <AT> the </AT> <N N 1> m e s s a g e </N N l> < SC > . </SC>
</Postconditions>
<Primary_actor> T h e u se r </Primary_actor>
<Secondary_actors/>
< FI o w o f e ve nts>

<Event> <AT> T h e </AT> <NN 1 > s y s te m </NN 1 > < V V Z > sh o w s </VVZ>
< A T 1> an < /A T l> <N N 1> ed ito r </N N l> <IF> fo r </IF> < V V G > w r it in g </VVG>
< A T 1 > a </AT 1 > <NN 1 > m e s s a g e </NN 1 > < SC > . </SC> </Event>

<Event> <AT> T h e </AT> <NN 1 > u se r </NN 1 > < V V I> typ e </VVI> < A T 1 > a </AT 1 >
<NN 1 > p ho n e </NN 1 > <NN 1 > n u m b er </NN 1 > <IO> o f </IO> < A T 1 > a </AT 1 >
<N N 1> r e c e iv e r </NN I > < SC> . </SC> <AT>The< /AT> <N N 1> u se r </N N l>
<VV 1> se le c t </VVI> < A T 1> a < /A T l> <NN1> p ho n e </N N l> <N N 1> n u m b er </N N l>
<IO> o f </10> < A T 1 > a </AT 1 > <NN 1 > r e c e iv e r </NN 1 > <II> b y </II>
< V V G > se le c t in g </VVG> <II> from </II> < A T 1> a < /A T l> <NN1> lis t </N N l>
<IO> o f </IO> <NN2> co n tac ts </NN2> < SC > . </SC> < A T> T h e </AT>
<NN 1 > u se r </NN 1 > < V V I> sen d </VVI> <AT> th e </AT> <NN 1 > tex t </NN 1 >
<N N 1> m e s s a g e </N N l> <II> to </II> < JJ> m u lt ip le </JJ> <N N 2> r e c e iv e r s </NN2>
<II> b y </II> < V V G > in se r t in g </VVG> < JJ> m u lt ip le </JJ> < JJ> m o b ile </JJ>
<N N 1> phone </N N l> <NN2> n u m b ers </NN2> <SC>.< /SC> </Event>

<Event> <AT> T h e </AT> <NN1> sy s te m </N N l> < V V D > d is p la y e d </VVD>
<AT> th e </AT> <N N 1> p ho n e </N N l> <N N 1> n u m b er </N N l> < SC > . </SC>

</Event>
<Event> <AT> T h e </AT> <NN1 > u se r </NN 1 > <VV1> e n te r </VVI> < A T> the </AT>

<NN 1 > m e s s a g e </NN 1 > < SC > . </SC> . . . </Event>

</Flow_of_events>
<Exceptional_events/>
<Superordinate_use_case/>
<Subordinate_use_case/>

</Use_Case>

Figure 4- 4: Use case Sending a Message

1 2 0

4.2 Product Family Software Artefacts

Subsystem Model

In FORM, the subsystem model is a graphical diagram that represents high-level

abstraction of the software product line architecture. Figure 4-5 shows an example

of subsystem model for the mobile-phone product family case study. It illustrates

functional groups of software, named as subsystem!;.s) and their interactions. A

subsystem can be internal\ when it exists in the product family system or external

when it does not belong to the product family system, but interacts with the internal

subsystems of the family.

An interaction represents how the subsystems communicate with each other. There

are two types of interactions i) data flow, representing a flow of data between

subsystems and ii) controlflow, representing a flow of control between subsystems. As

shown in Figure 4-5, a subsystem model of the mobile phone product family

consists of five subsystems, namely operating, messaging, mobile Internet, network, and

calling and house-in applications subsystems.

We propose an XML representation for a subsystem model, as shown in Figure 4-6.

In our template, a subsystem model for a domain is composed of various

subsystems. Each subsystem has a name (<Subsystem_name>J, has a brief textual

description (<Description>), and can be of type internal or external (<Type>). The

data and control flows between the subsystems are represented by element <Flow>

with attributes denoting the unique identifier flow_id), the type flow_type), and the

subsystems sending and receiving the flow (sender and receiver, respectively). The

complete XML representation of the subsystem model with annotated XML POS-

tags can be found in Appendix A.

121

CHAPTER 4. TRACEABILITY REFERENCE MODEL

If v
Operating
— r r

■ Messaging

Mobile
Internet

Network -*

- I !

f

Calling and
house-in

applications

Legend --------------
r Subsystem —

1 External

----- 1 Internal

F low
- Data

-----*■ C on tro l

Figure 4- 5: Subsystem model of mobile phone systems

Figure 4-6 shows an extract of the subsystem model from a mobile phone product

family. The extract of the subsystem model (<Subsystem_Model>) includes two

subsystems (<Subsystem>), namely Operating and Messaging. The description

(<Description>) of a subsystem specified in natural language sentences are

represented with annotated XML POS-tags. Both two subsystems are typed of

internal. Moreover, the extract of the subsystem model includes two flows

(<Flow>), identified with c1 and d2. Flow c1 is typed of control_jlow and sent from

Operating subsystem to Messaging subsystem, while flow d2 is typed of data_flow and

sent from Messaging subsystem to Mobile Internet subsystem.

122

4.2 Product Family Software Artefacts

<Subsystem_Model>
<Subsystem>
<Subsysteni_nanie> Operating </Subsystem__name>

<Description> <DD1> T h e </D D l> <N N 1> su b sy s te m </N N l> < V V Z > p ro v id e s </VVZ>
<N N 2> f a c i l i t ie s </NN2> <IF> fo r </IF> < V V G > p e rfo rm in g </VVG>
< JJ> b a s ic </JJ> <NN2> ta sk s </NN2> <II> su ch </II> <II> as </II>
<N N 1> co n tro l </N N l> <IO> i f </IO> < A T> the </AT> <N N 1> in te ra c t io n </NN 1>
< IW > w ith </IW> <D B> a ll </DB> <N N 1> co n tro l </N N l> <IO> o f </IO>
< A T> the </AT> <N N 1> in te ra c tio n </N N l> < IW > w ith </IW> <D B> a l l </DB>
<N N 2> d e v ic e s </NN2> < SC > , </SC> <NN 1 > so f tw a re </N N l> < SC > , </SC>
< CC> an d </CC> <N N 0> d a ta </NN0> < SC > ; </SC> <N N 1> su p p o rt </N N l>
<IO> o f </IO> < A T> the </AT> <NN 1 > in te ra c tio n </NN 1 > <II> b e tw e e n </II>
< JJ> in te rn a l </JJ> <N N 2> a p p lic a t io n s </NN2> < SC > (</SC> < R E X > e .g . </REX>
<N N 2> g a m e s </NN2> < SC > , </SC> <N N 0> m u lt im e d ia </NN0> < SC > , </SC>
< C C > an d </CC> <NN 1 > P C </NN 1 > <NN 1 > c o n n e c tiv e </NN 1 > < SC >) </SC>
< SC > , </SC> <N N 1> re co g n it io n </N N l> <IO> o f </IO> < JJ> in te rn a l </JJ>
<NN 1 > h a rd w a re </NN 1 > < SC > (</SC> < R E X > e .g . </REX> <NN 1 > sc ree n </NN 1 >
< SC > , </SC> <N N 1> k e y p a d </N N l> < SC > , </SC> < C C > and </CC>
<N P1> B lu e to o th < /N Pl> < SC >) </SC> < CC> an d <JCC> ...

</Description>
<Type> in te rn a l </Type>
</Subsystem>
<Subsystem>
<Subsystem_name> Messaging </Subsystem_name>
<Description> <D D 1> T h e </D D l> <N N 1> su b sy s te m </N N l> < V V Z > m a n a g e s </VVZ>

< A T> the </AT> <N N 1> e x c h a n g e </N N l> <CC> an d </CC>
<N N 1> m a n ip u la t io n </N N l> <IO> o f </IO> <N N 2> m e s s a g e s </NN2> < SC > . </SC>
< PPH 1> It </PPH 1 > < V V Z > sup p o rts </VVZ> < M C > tw o </MC>
<N N 2> se rv ic e s < / N N 2 x S C > : </SC> < JJ> sh o rt </JJ> <N N 1> m e s s a g e </N N l>
<N N 1> se rv ic e </N N l> < SC> (</SC> <N P1> S M S < /N Pl> < SC >) </SC>
<IF> fo r </IF> < JJ> tex tu a l </JJ> <N N 2> m e s s a g e s </NN2> < SC > , </SC>
< C C > an d </CC> <NN> m u lt im e d ia </NN> <NN 1 > m e s s a g e </NN 1 >
<N N 1> s e rv ic e </N N l> < SC > (</SC> <N N U 2> M M S </NNU2> < SC >) </SC>
<IF> fo r </IF> <NN> m u lt im e d ia </NN> <N N 2> m e s s a g e s </NN2> < SC > . </SC>
< A T> T h e </AT> <N N 2> s e rv ic e s </NN2> < V B R > a re </VBR> < V V N > b a se d </VVN>
<II> on </II> < A T 1> a < /A T l> <N N 1> sto re </N N l> < C C > an d </CC>
< JJ> fo rw a rd </JJ> <N N 1> p ro toco l </N N l> < SC > . </SC> < A T> T h e </AT>
<N N 1> su b sy s te m </N N l> < V V Z > in te ra c ts </VVZ> <IW > w ith </IW>
< JJ> short </JJ> <N N 1> m e s s a g e </N N l> <N N 1> se rv ic e </N N l>
<N N 2> c e n te rs </NN2> < SC > (</SC> <N P1> S M S C < /N Pl> < SC >) </SC>
< C C > o r </CC> . . .

</Description>
<Type> in te rn a l </Type>

</Subsystem>

<Flow f l o w j d = “ c l ” f lo w _ ty p e = “ c o n tro l_ f lo w ” se n d e r = “ O p e ra t in g ”
r e c e iv e r = “M e s s a g in g ”/>

<Flow f lo w _ id = " d 2 ” f lo w _ ty p e = “d a ta _ f lo w ” sen d er = “M e s s a g in g ”
r e c e iv e r = “M o b ile In te rn e t”/>

</Subsystem_Model>

Figure 4- 6: Example of Subsystem Model

123

CHAPTER 4. TRACEABILITY REFERENCE MODEL

Process Model

FORM proposes each subsystem in the subsystem model to be refined by one or

many process modelip). The process model is a graphical diagram that represents the

middle-level of the software product line architecture as shown in Figure 4-7. The

process model is composed of many processes that refine the behavior of a

particular subsystem, many messages that represent the communication between

processes, and shared data that may be used by the processes.

Each process can be categorized as resident or transient depending if the process

belongs to the subsystem (Kang et al. 1998). The resident process is allocated in the

subsystem and the transient process exists outside the subsystem, but appears having

messages exchanging to a resident process in the model. Additionally, a process can

also be classified as multiple or single, depending on the necessary number of

instances of a process to perform a task. The process model also represents the

messages exchanged between the various processes and the data shared by a

process. The messages can be (i) closely-coupled, which supports synchronized

communication (implemented by a protocol of message/reply), and (ii) loosely-coupled,

which supports an asynchronized communication (implemented by message queue)

(Gomaa 1993). Shared data includes database, reports, and files.

As shown in Figure 4-7, short messaging service (SMS) process model represents the

processes that exist in a Messaging subsystem (as shown in Figure 4-5). The SMS

process model includes resident processes (i.e. edit process, control process, check

signal process, notification process, and short messaging service (SMS) control process) and

multiple processes (i.e. update remotely process and short messaging sendee center (SMSC)

process).

124

4.2 Product Family Software Artefacts

Figure 4- 7: SMS process model for messaging subsystem

We propose an XML representation for process models, as shown in Figure 4-8.

The XML specification for process model used in our approach for Messaging

subsystem is shown in Figure 4-7. A process model (<Process_Model>) has a unique

identifier (ProcessModeilD) and the name of the respective subsystem

(.Subsystem_name). Each process (<Process>) in the model may have an optional

attribute referencing the shared data storage (shared_data). A process is specified by a

name (<Process_name>), has a textual description (<Description>), can be

concerned with multiple or single activities (<Activity>), and can be of type resident

or transient (<Type>). The messages exchanged between the various processes

(<Message>) are represented by a unique identifier [message_id); a type [mesage_type)

that can be closely_coupled, when it supports synchronize communication, or

loosely_coupled, when it supports asynchronous communication; and the processes

receiving and sending the message [sender and receiver). The shared data storage

125

CHAPTER 4. TRACEABILITY REFERENCE MODEL

(<Shared_data>) has identifier and type attributes (data_id and type). Examples of

process models in XML with XML POS tags are found in Appendix A.

126

4.2 Product Family Software Artefacts

<Process_Model P ro c e s sM o d e llD = “P I -’ S u b sy s te m _ n a m e = “ M e s s a g in g ”>
<Process>

<Process_name> Short Messaging Service (SMS) Control </Process„name>
<Description> < A T> T h e </AT> <N N 1> p ro c e s s </N N l> <W Z> p e rfo im s <AVZ>

<AT> the </AT> <NN> d e l iv e r y </NN> < C C > an d </CC> <N N 1> re c e iv in g </N N l>
<IO> o f </IO> < A T 1> a < /A T l> < JJ> sh o rt </JJ> <N N 1> m e s s a g e </N N l> <II> to
< A T 1> a < /A T l> < JJ> sh o rt </JJ> <N N 1> m e s s a g e </N N l> <NN 1> s e r v ic e </N N l>
<N N 1> c e n te r </N N l> < SC > (</SC)> < N P1> S M S C < /N Pl> < SC >) </SC>
< SC > . </SC> <AT> T h e </AT> <N P1> S M S C < /N Pl> < V B Z > is </VBZ>
< V V N > c o n n e c te d </VVN> <II> to </II> <AT> th e </AT>
<NN1> te le c o m m u n ic a t io n </N N l> <N N 1> netw ork< /N N 1 >
< SC > (</SC> < R EX > e .g . </REX> <N N U> G S M </NNU> < SC > , </SC>
<N P1> H S C S D < /N Pl> < SC > , </SC> <CC> an d </CC> <N N 1> E D G E </N N l>
< SC >) </SC> <II> th ro u gh </II> <AT> the </AT> < JJ> short </))>
<NN 1 > m e s s a g e </NN I > <NN 1 > s e rv ic e </NN 1 > <NN 1 > g a te w a y </NN 1 >
< JJ> m o b ile </JJ> < JJ> sw itc h in g </JJ> <N N 1> c e n te r </N N l> < SC > (</SC>
<N P1> S M S < /N Pl> <N P1> G M S C < /N Pl> < SC >) </SC> < SC > . </SC>
< A T> T h e </AT> <N N 1> p ro ce ss </N N l> < R R > a lso </RR> < V V Z > a tta c h e s </VVZ>
< JJ> e x tr a </JJ> <N N 1> in fo n n a tio n </N N l> <II> ab o u t </Il> <N P1> S M S C < /N Pl>
<II> in </II> < A T 1> a < /A T l> < JJ> short </JJ> <N N 1> m e s s a g e < /N N l> < SC > . </SC>

</Description>
<Activity>multiple</Activity>
<Ty p e> res i dent</T y pe>

</Process> ...
<Process sh a red _ d a ta = “d l ”>

<Process__name> Edit </Process_name>
<Description> <D D 1> T h is </D D l> <N N 1> p ro ce ss < /N N l> < V V Z > p e rfo rm s </VVZ>

< A T> the </AT> <N N 1> co m p o s it io n </NN 1> < 10> o f </10> < A T 1> a < /A T l>
< JJ> sh o rt </JJ> <N N 1> m e s s a g e </N N l> < SC > . </SC> < A T> T h e </AT>
< JJ> short </JJ> <NN 1> m e s s a g e </N N l> < V V Z > c o n ta in s </VVZ> < A T 1> a < /A T l>
<N N 2> r e c e iv e r s </NN2> <N N 1> ad d re s s </N N l> < C C > an d </CC>
<N N 1> co n te x t </N N l> < SC > . </SC> < A T > T h e </AT> <N N 1> p ro c e s s </N N l>
< V V Z > p ro v id e s </VVZ> < A T 1> a < /A T l> <N N 1> lis t </N N l> <IO> o f </IO>
<N N 2> co n ta c ts </NN2> < C C > an d </CC> < A T 1> a < /A T l> <N N 1> se t </N N l>
<IO> o f </10> <NN 1 > tem p la te </N N l> < JJ> short </JJ> <N N 2> m e s s a g e s </NN2>
< SC > . </SC> < A T> T h e </AT> <NN 1 > p ro c e ss </NN 1 > < V V Z > su p p o rts < fW Z>
< M C > tw o </M C> <NN 1> e d it in g </N N l> <N N 2> m o d es </NN2> < R E X > i.e . </REX>
<NN 1 > a lp h a </NN 1 > <NN 1 > m o d e <NN 1 > <CC> an d </CC> < JJ> p re d ic t iv e </JJ>
<NN 1 > m o d e <NN 1 > < SC > . </SC> < A T> T h e </AT> <NN 1 > a lp h a </NN 1 >
<N N 1> m o d e <NN1> < V V Z > ac c ep ts </VVZ> < JJ> a lp h a n u m e r ic </JJ> < SC > . </SC>
<AT> T h e </AT> < JJ> p re d ic t iv e </JJ> <N N 1> m o d e </N N l> < V V Z > p re d ic ts </VVZ>
< A T 1 > a </AT 1 > <NN 1 > w o rd </NN 1 > <II> from </II> <AT1 > an </AT 1 >
<NN 1 > in p u t </NN 1> <N N 1> k e y s tro k e </NN 1 > < SC > . </SC> </Description>

<Activity>single</Activity>
< T yp e> res id en t< / T yp e>
</Process> ...
<Message m e ssa g e _ id = " m 7 _ tr ig g e r" m e s s a g e _ ty p e = " c lo s e ly -c o u p le d "

sen d er= "S h o rt M e s s a g in g S e r v ic e (S M S) C o n tro l" rece iv er= "N o tif ica tio n "/ >
<Message m e ssag e _ id = "m 8 _ re sp o n se" m e ss a g e _ ty p e = " c lo s e ly -c o u p le d "

sen d er= "N o tif ica t io n " re ce iv e r= "S h o rt M e s s a g in g S e r v ic e (S M S) C ontrol"/> . . .
<Shared_data d a ta_ jd = "d 1" typ e= "datab ase"/> . . .

W P rn rp « « lVTnrlpl^

Figure 4- 8: SMS process model for messaging subsystem

127

CHAPTER 4. TRACEABILITY REFERENCE MODEL

Module Model

In FORM, each process in the process model is further refined in a module model. A

module model is represented as a graphical diagram that represents the low-level of

the software product line architecture. Figure 4-9 represents the module model for

Short Messaging Service SMS Control process of Messaging subsystem.

A module model represents a hierarchical structure of the various modules

composing a process and their interactions. The modules are classified into four

groups related to the different groups of features (see earlier described) namely (i)

service modules, which support the functionality of the systems and correspond to

application capability features; (ii) environment hiding modules, which represent the

running environment of the system and correspond to the operating environment

features; (iii) technique hiding modules, which represent the technology domain aspects

of the system and correspond to the domain technologies features; and (iv) utility

modules, which represent general purpose aspects of the system and correspond to

implementation techniques features.

We propose an XML representation for module models as shown in Figure 4-10.

The XML specification for module model used in our approach for process Short

Messaging Service (SMS) Control is shown in Figure 4-9. A module model

(<Module_Model>) has a unique identifier (ModuleMode/lD), the corresponding

process (Process_name), and is composed of various modules (<Modules>) and links

(<Link>). Each module has a name (<Module_name>), a description

(<Description>), and a type (<Type>). The type of a module is concerned with the

detail of its code implementation ranging from skeleton (code outline), template (more

detailed code without parameter specifications), to precoded (complete code). The

links have a type (uses or inherits) and the source and destination modules. Examples of

module models in XML with POS tags used in our approach are found in Appendix

A.

128

4.2 Product Family Software Artefacts

Two modules can be associated by links. The methodology suggests two types of

links: (i) uses, signifying that a module uses another module; and (ii) inherits,

signifying that a module inherits another module.

Figure 4- 9: The module model for short messaging service (SMS) control process

of messaging subsystem

1 2 9

CHAPTER 4. TRACEABILITY REFERENCE MODEL

<Module_Model M o d u le M o d e llD = “M M 1 ” P ro ce ss_ n am e = “Sh o rt M e s s a g in g S e rv ic e S M S
C o n tro l”>

<Module>
<Module_name> Short Messaging </Module_name>
<Description> <AT> T h e </AT> < JJ> m a x im u m </JJ> <N N 1> le n g th </N N l> <IO> o f </IO>

< A T 1> a < /A T l> <N N 1> tex t </NN 1 > <NN 1 > m e s s a g e </N N l>
< V B Z > is </VBZ> < M C > 160 </MC> <NN2> c h a ra c te rs </NN2>
< SC > , </SC> <N N 2> n u m b ers </NN2> < SC> , </SC> <CC> o r </CC>
<DD> a n y </DD> < JJ> a lp h a n u m er ic </JJ> <N N 1> co m b in a tio n </N N l>
< SC > . </SC> <D D 1> T h is </D D l> <N N 1> m o d u le </N N l>
< R R > a lso </RR> < V V Z > sup p o rts </VVZ> <IF> fo r </IF>
<NN1> n o n -tex t </N N l> < V V N > b ased </VVN> < JJ> short </JJ>
<N N 2> m e s s a g e s </NN2> <1121 > su ch </lI21> <II22> as </II22>
< JJ> b in a r y </JJ> <N N 1> fo n n a t </N N l> <DDQ> w h ic h </DDQ>
< SC > , </SC> < V B Z > is </VBZ> < V V N > u sed </VVN> <IF> fo r </IF>
<NN1> r in g </N N l> <NN2> ton e </NN2> < C C > and </CC>
<NN2> lo g o </NN2> <NN2> se rv ic e s </NN2> < SC > . </SC>

</Description>
<Type> p reco d ed </Type>

</Module>

<Link typ e = Min h e r it '' so u rce= ”S h o rt M e s s a g in g " d e s t in a t io n = " M e ssa g in g Edit"/>

</Module_Model>

Figure 4-10: Module model for short messaging service SM S control process

Class, Statechart, and Sequence Diagrams

The design of product members are described in UML class, statechart, and

sequence diagrams. In our approach, these diagrams are represented in XMI format

(XMI). We present here extracts of a class diagram (Figure 4-11), statechart diagram

(Figure 4-12), and sequence diagram (Figure 4-13) used in our case study.

130

4.2 Product Family Software Artefacts

nat

ImageFormat

-formatSize:byte
-formatName:String

SystemControl

-lastActiorrString
-time:float
-power:float

*-selectSendMethod:void
»sendData:void
*-operateToolApplication:void

d i s p I ayD ata : vo i d
<-dialCall:void
*setData:void
<-setFunction:void
<-operateNetwork:void
<-acknowledge:void
►disconnectYoid

PCConnect

♦connectvold
«■disconnectvoid
*transferData:void
»searchAPair:void

A fi

SignalControl

*-sendData:void
*acknowledge:void

Infrared

+disconnect:void
+searchAPair:void
+corinect:void
+transferData:void

Call

-perlodC alldoub le
-dialNoJnt

ueceiveCall:void
«■endCalNvoid
r-establishCall:void
<-divertCall:void

NetworkControl

-networkType:String
-status:String

+establishConnection:void
■*-disconnectConnection:void
■►resto reConnectiorvvoid

Interface

+setUp:void
+synchronise:void
►disconnectvoid

DisplayScreen

-sizeY:double
-sizeX:double

►displaySetting:void
►displayFunctionMenu:void
►showSendMethod:void
►displayTimeStamp:void
►displayAcknowledge:void
*-dlsplay:vold
►operation! :void

X

Bluetooth

►transferData:void
► searchAPair:void
►connectvold
►disconnectvoid

X

GraphicColourScreen TextScreen

+displayFunctionMenu:void
+graphicSetting:vold

+displayFunctionMenu:void

Figure 4- 11: An extract of a class diagram for product member PM 1

131

CHAPTER 4. TRACEABILITY REFERENCE MODEL

Figure 4-12: A statechart diagram for a digital camera class

Figure 4-13: An extract of a sequence diagram of taking a photo

132

4.3 Traceability Relations

4.3. Traceability Relations

Based on our study and analysis of the mobile phone domain, our study and

experience with software traceability, the types of traceability relations proposed in

the literature (Bayer and Widen 2002, Mohan and Ramesh 2002, Pohl 1996b,

Ramesh and Jarke 2001), and the semantics of the documents of our concern, we

have identified nine different types of traceability relations between the various

documents used in our approach. As shown in Table 4-2, the traceability relations

are classified in six different groups.

Group 1: Relations between documents in the product line level and documents in

the product member level (e.g. feature model vs. use case of PM1).

Group 2: Relations between documents of the same type for different product

members (e.g. class diagram of PM1 vs. class diagram of PM2).

Group 3: Relations between documents of different types for the same product

member (e.g. use case of PM1 vs. class diagram of PM1).

Group 4: Relations between documents of different types for different product

members (e.g. use case of PM1 vs. class diagram of PM2).

Group 5: Relations between documents of the same type for the same product

member (e.g. use case UC1 of PM1 vs. use case UC2 of PM1).

Group 6: Relations between different documents in the product line level (e.g.

feature model vs. subsystem model).

133

T a b l e 4 - 2 : S u m m a r y o f t r a c e a b i l i t y r e l a t i o n g r o u p s

Feature

Model

Subsyste

m Model

Process

Model

Module

Model

Use

Case_
1

Class

Diagram .̂

1

Sequence

Diagram_l

Statechart

Diagram 1

Use

Case_2

Class

Diagram
_2

Sequence

Diagram

_2

Statechart

Diagram_2

Feature

Model

G6 G6 G6 G1 Gl G1 G1 G1 Gl Gl Gl

Subsyste

m Model

G6 G6 G6 G1 G1 G1 G1 Gl Gl Gl Gl

Process

Model

G6 G6 G6 G1 G1 G1 G1 G1 Gl Gl Gl

Module

Model

G6 G6 G6 Gl G1 G1 G1 Gl Gl Gl Gl

Use

Casel
G1 G1 G1 G1 G 5 G 3 G3 G3 G2 G4 G4 G4

Class

Diagram_

1

G1 G1 G1 G1 G3 G5 G3 G3 G4 G2 G4 G4

Sequence

Diagram_

1

G1 G1 G1 G1 G3 G3 G5 G 3 G4 G4 G2 G4

Feature

Model

Subsyste

m Model
Process

Model

Module

Model

Use

Case_

1

Class

Diagram_

1

Sequence

Diagraml

Statechart

Diagram 1

Use

Case_2

Class

Diagram

_2

Sequence

Diagram

J2

Statechart

Diagram 2

Statechart

Diagram_

1

G1 G1 G1 G1 G3 G3 G3 G5 G4 G I C ¡1 G2

Use
Case_2

G1 G1 G1 G1 G2 G4 G4 G4 G5 G3 G3 G3

Class

Diagram
_2

G1 G1 G1 G1 G4 G2 G4 G4 G3 G5 G3 G3

Sequence

Diagram_
2

G1 G1 G1 G1 G4 G4 G2 G4 G3 G3 G5 G3

Statechart

Diagram_

2

G1 G1 G1 G1 G4 G4 G4 G2 G3 G3 G3 G5

CHAPTER 4. TRACEABILITY REFERENCE MODEL

Each of these groups can assist software development from different perspectives.

For instance, relations in group 1 assist with the identification of reusable

components; relations in group 2 and group 4 support comparisons between

various product members in a product family; relations in group 3 and group 6

assist with better understanding of each product member and the core assets of

product family, respectively; and relations in group 5 allow for the identification of

evolution aspects in a product member and, therefore, supports the decision of

when a new product member should be created. According to those groups, we

have identified nine different types of traceability relations between the various

documents described in the previous section. The nine types of traceability' relations

are not mutually exclusive. One or many types of traceability' relations can exist

between two particular artefacts. An example of each relation is given in figures 4-

14 and 4-15. A description of each relation is given below.

Satisfiability. In this type of relation an element e l satisfies an element e2, if el

meets the expectation and needs of e2. A satisfiability relation may be arranged into

group 1, group 3, group 4, or group 6, and hold between

(a) the description of a subsystem, process, or module model and the description of

a feature in a feature model (group 6);

(b) the description of a subsystem, process, or module model and a feature in a

feature model (group 6);

(c) an operation or attribute of a class in a class diagram and the description of a

use case or the description of a feature in a feature model (group 1, group 3, or

group 4);

(d) a transition in a statechart diagram and the description of a use case or the

description of a feature in a feature model (group 1, group 3, or group 4);

(e) a sequence of events in a sequence diagram and the description of a use case or

the description of a feature in a feature model (group 1, group 3, or group 4).

Dependency: In this type of relation an element e l depends on an element e2, if the

existence of e l relies on the existence of e2, or if changes in e2 have to be reflected in

136

4.3 Traceability Relations

e l. A dependency relation may be arranged into group 1, group 3, group 4, or group 6,

and hold between

(a) the description of a use case and the description of a feature in a feature model

(group 1);

(b) an operation or attribute of a class in a class diagram and the description of a

use case or a feature in a feature model (group 1, group 3, or group 4);

(c) a sequence of events in a sequence diagram and the description of a use case or

a feature in a feature model (group 1, group 3, or group 4);

(d) a message in a sequence diagram and an operation of a class in a class diagram

(group 3 or group 4);

(e) a transition in a statechart diagram and the description of a use case or a feature

in a feature model (group 1, group 3, or group 4);

(f) a transition in a statechart diagram and a class in a class diagram (group 3 or

group 4);

(g) a subsystem in a subsystem model, a process in a process model, or a module in

a module model and a feature in a feature model (group 6);

(h) a class in a class diagram and a subsystem in a subsystem model, a process in a

process model, or a module in a module model (group 1);

(i) a message in a sequence diagram and a transition in a statechart diagram, a

message in a process model, or a message in a module model (group 1).

Overlap: In this type of relation an element e l overlaps with an element e2, if el and

e2 refer to common aspects of a system or its domain. This is a bi-directional

relation. An overlap relation may be arranged into group 1, group 3, or group 4, and

exists between

(a) the description of a feature in a feature model and a class in a class diagram, a

state in a statechart diagram, or an object or message in a sequence diagram

(group 1);

(b) the description of a use case and a class in a class diagram, a state in a statechart

diagram, or an object or message in a sequence diagram (group 3 or group 4);

137

CHAPTER 4. TRACEABILITY REFERENCE MODEL

(c) a class in a class diagram and a state in a statechart diagram or an object in a

sequence diagram (group 3 or group 4);

(d) an operation or attribute of a class in a class diagram and an operation or

attribute of an object in a sequence diagram (group 3 or group 4);

(e) a state in a statechart diagram and a message in a sequence diagram (group 3 or

. group 4);

(f) a feature in a feature model and a use case (group 1);

(g) a feature in a feature model and a subsystem in a subsystem model, a process in

a process model, or a module in a module model (group 1);

(h) the description of a process in a process model or the description of a

subsystem in a subsystem model and a transition in a statechart diagram or a

message in a sequence diagram (group 1);

(i) the description of a subsystem in a subsystem model, the description of a

process in a process model, or the description of a module in a module model

and a class in a class diagram (group 1).

Evolution-. In this type of relation an element el evolves to an element e2, if el has

been replaced by e2 during the development, maintenance, or evolution of the

system. An evolution relation occurs between document models of the same type for

the product member(s) in a family (group 5). This relation may hold between

elements in

(a) use cases;

(b) class diagrams;

(c) statechart diagrams;

(d) sequence diagrams.

Implements-. In this type of relation an element e l implements an element e2, if el

executes or allows for the achievement of e2. An implements relation may be arranged

into group 1, group 3, or group 4, and hold between

(a) a class or an operation of a class in a class diagram and a feature in a feature

model, flow of events in a use case, or the description of a use case (group 1,

group 3, or group 4);

138

4.3 Traceability Relations

(b) a sequence of events in a sequence diagram and a feature in a feature model,

flow of events in a use case, or the description of a use case (group 1, group 3, or

group 4);

(c) a transition in a statechart diagram and a feature in a feature model, flow of

events in a use case, or the description of a use case (group 1, group 3, or group

4).

Refinement: This type of relation associates elements in different levels of

abstractions. A refinement relation identifies how complex elements can be broken

down into components and subsystems, and how elements can be specified in more

details by other elements. Thus, an element e l refines an element e2, when el

specifies more details about e2. A refinement relation may be arranged into group 1,

group 2, group 3, group 4, group 5, or group 6, and hold between

(a) the description of a subsystem in a subsystem model, the description of a

process in a process model, or the description of a module in a module model

and a feature in a feature model (group 6);

(b) a process model and a subsystem in a subsystem model (group 6);

(c) a module model and a process in a process model (group 6);

(d) a class in a class diagram, a sequence of events in a sequence diagram, or part of

a statechart diagram and an event in a use case (group 2, group 3, group 4, or

group 5);

(e) an object in a sequence diagram and a class in a class diagram (group 2, group 3,

group 4, or group 5);

(f) a message in a sequence diagram and an operation of a class in a class diagram

(group 2, group 3, group 4, or group5);

(g) a transaction and its corresponding source and target states in a statechart

diagram and a message in a sequence diagram (group 2, group 3, group 4, or

group 5);

(h) a class in a class diagram and a subsystem in a subsystem model (group 1);

(i) a sequence of events in a sequence diagram and a process in a process model or

a module in a module model (group 1);

1 3 9

CHAPTER 4. TRACEABILITY REFERENCE MODEL

(j) a set of transitions in a statechart diagram and a process in a process model or a

module in a module model (group 1);

(k) elements in different class diagrams, statechart diagrams, sequence diagrams,

and use cases (group 3 or group 4).

Containment: In this type of relation an element e l contains an element e2, when el

is a document, or an element in a document, that uses an element e2, or a set of

elements from a different document. This relation may be arranged into group 1,

group 2, or group 5, and hold between

(a) a use case and a feature in a feature model (group 1);

(b) a subsystem in a subsystem model, a process in a process model, or a module in

a module model and classes in a class diagram, when these elements contain the

classes (group 1);

(c) a process model and a sequence of events in a sequence diagram or transitions

in a statechart diagram (group 1);

(d) sequence or statechart diagrams and classes in a class diagram (group 2 or group

5).

Similar: This type of relation occurs between documents of the same type for

different product members (group 2). This relation assists with the identification of

common aspects between various product members. A similar relation is a bi

directional relation that may hold between elements in

(a) use cases;

(b) class diagrams;

(c) statechart diagrams;

(d) sequence diagrams.

A similar relation between elements el and e2 depends on the existence of a relation

between el and another element e3 and a relation between e2 and element e3. For

example, a use case ucl is similar to a use case uc2, if both ucl and uc2 hold a

containment relation with a feature f l .

140

4.3 Traceability Relations

Similar relations between two elements can be derived from other relations based

on the following inference rules:

(i) Overlap relations-, if an element e l overlaps an element e3, and an element e2

overlaps element e3, then element el is similar to element e2;

(ii) Containment relationsz if an element e l contains an element e3 and an element e2

contains element e3, then element el is similar to element e2;

(iii) Satisfiability relations-, if an element el satisfies an element e3 and an element e2

satisfies element e3, then element el is similar to element e2;

(iv) Refinement relations-, if an element el refines an element e3 and an element e2

refines element e3, then element e l is similar to element e2;

(v) Dependency relations-, if an element e l depends on an element e3 and an element e2

depends on element e3, then element el is similar to element e2;

(vi) Implements relations-, if an element el implements an element e3 and an element

e2 implements element e3, then element e l is similar to element e2.

Different: This type of relation also occurs between documents of the same type

for different product members (group 2). This relation assists with the identification

of variable aspects between various product members. More specifically, a different

traceability relation expresses the different specialization of a particular variation

point between two product members. A different relation is a bi-directional relation

that may hold between elements in

(a) use cases;

(b) class diagrams;

(c) statechart diagrams;

(d) sequence diagrams.

A different relation between an element el and e2 depends on the existence of a

relation between el and another element e3, and a relation between e2 and another

element e4, where e3 and e4 are variants of the same variability' point (e.g.

subclasses of the same superclass, sibling features of the same parent feature). For

example, a use case ucl is different from a use case uc2, when there are two

141

CHAPTER 4. TRACEABILITY REFERENCE MODEL

subclasses c l and c2 of the same parent class c, where cl implements ucl and c2

ifnplements uc2. Consider the two use cases related to the display o f text message (ucl)

and display o f graphical message (uc2) on mobile phones. Suppose a class diagram with

class Display_Screen (c) with subclasses Text_Screen (cl) and Graphic_Colonr_Screen

(c2). The Display_Screen class has an operation display, which is inherited by classes cl

and c2. In this case, el implements ucl, e2 implements uc2, and ucl and uc2 are

different, although they have the same general purpose (display o f message).

Different relations between two elements can be derived from other relations based

on the following inference rules:

(i) Overlap relations: if an element e l overlaps an element e3, an element e2

overlaps an element e4, and element e3 is a variant of element e4, then elements

el and e2 are different;

(ii) Containment relation: if an element e l contains an element e3, an element e2

contains an element e4, and element e3 is a variant of element e4, then elements

el and e2 are different;

(iii) Satisfiability relations: if an element el satisfies an element e3, an element e2

satisfies an element e4, and element e3 is a variant of element e4, then elements

el and e2 are different;

(iv) Implements relations: if an element e l implements an element e3 and an

element e2 implements an element e4, and element e3 is a variant of element e4,

then elements e l and e2 are different.

Figure 4-14 and Figure 4-15 show examples of each traceability relation being

created between the examples of documents described in Section 4.2. Due to

simplification, we only present the extract of each document. As shown in Figure 4-

14, a dependency traceability relation holds between a subsystem Messaging in a

subsystem model and a feature Text Messages in a feature model; a satisfiability

traceability relation holds between the description of a module Short Messaging in a

module model and a feature Text Messages in a feature model; a refinement traceability

relation holds between a process model PI and a subsystem Messaging in a subsystem

model; two containment traceability' relations hold between use cases (UC1 and UC2)

142

4.3 Traceability Relations

and a feature Text Messages in a feature model; and a similar traceability relation holds

between two use cases UC1 and UC2 and based on containment traceability relations

existing between use cases UC1 and UC2 and a feature Text Messages in a feature

model.

As shown in Figure 4-15, an overlap traceability relation holds between an operation

takingPhoto of a class Camera in a class diagram and an operation takingPhoto of an

object Camera in a sequence diagram; an evolution traceability' relation holds between

two statechart diagrams (SD1 and SD2)\ two implement traceability relations hold (i)

between an operation takingPhoto of a class Camera and the description of a use case

UC3, and (ii) between an operation takingPhoto of a class CameraZoom2x in a class

diagram and the description of a use case UCA; and a different relation holds between

two use cases UC3 and UC4. Examples of traceability rules to identify these

traceability relations in Figure 4-14 and Figure 4-15 will be described in Chapter 5.

143

CHAPTER 4. TRACEABILITY REFERENCE MODEL

7 G
FeatureModel»

yFeature* 04- SatisfmhUù
<Feamip_narr«?> Text Messages
</Feature_narne>
-Description» The phone can edit, send, and

receive a short text message.

•Description;»

< Alloc a ted to s ttb sy s tern» Massaging
</Allocated_to_siibsys t«n> .,.

•Feature ...
Feature Model *

Dependency

< Subsys tem_Model>
«Subsystem» 04—

Refinement

>0 < Subsystemjiame > Messaging
< /Subsystem_name>
«Description» The subsystem manages the

exchange and manipulation of
messages. It supports two
services ...

< Description

«/Subsystem» ...
- 'Subsystem Model»

<Module_Mo tlel>.,.
®<Module>

<Mo dule_name>Short Messaging
«/Modulename >
«Description» The maximum length of a

textrm:ssage is 160
characters, numbers, or any
alphanumeric
combination. This module
also supports for non
text bas ed short messages (...)

«/Description»
- Module

«/Module Model»

<Process_Model ProcessModellD ="P1”
-►O Subsystem_name =

“Messaging’>
«Process»

<Pnocess_naine> Short Messaging Service
(SMS) Control

</Process_naine >
«/Process»

«/Process Model-

Containment Containment

«Use_Ca.se UseCaseID=”UC’l ”
System=”MobilePhone”
Pro duct_Memb er̂=” PM1 ”>

«Title» Sending a Message «/Title»
«Description» The phone is able to send a

text message. The user can
specify an address of a
receiver of the message ...

Description» ...
« Use Case»

Sin dor
t<Use Case UseCaseID=”UCI”

System=”MobilePhone”
Product_Member=”PM2” >

«Title» Transmitting Messages «/Title»
«Description» The phone is able to tmnsmit

a short text message. The
short text message can be sent
to one or many receivers ..

•Description» ...
«/Use Case»-

Figure 4-14: Examples of satisfiability, dependency, refinement, containment, and
sim ilar traceability relations

144

4.3 Traceability Relations

E Different

<Use__Case UseCaseID=”U C 3” •--------- n
^ System=”M obilePhone” ^

Product_Member=”P M l”>
<Titie> Taking Photo </Title>
<Description> The phone has an integrated

VGA cam era.. The phone can
take a p h o to using a VGA
c a m e r a

</Description>

c/Use Case>

<Use_Case UseCaseID="UC4"
> q System=”M obilePhone”

Product_Member=”P M 2”>
:Title> Taking Photo </Title>
:Description> The phone has an integrated digital

cam era. The phone can take a
p h o to using VGA cam eraZ oom lx

c/Description> ...
<Use Case>

Implements
r~

Implen ents

Cam era Application

-*o MakePhoto:void
*displayArea:void
+savePhoto:void
+displayPhoto:void

CH-i

Cam eraZo om 2:

+takePhoto:void|
♦ displayArea.void
+ savePhoto:void
+ displayPhoto:void

Overlaps

1.1.1.1 : d isplay/Vea()lvoid

1.1.12: d isp layO Aoidj

¿ t í 1.1 : takePhotoQ: ¿ id

Figure 4-15: Examples of implements, overlaps, evolution, and different traceability
relations

145

CHAPTER 4. TRACEABILITY REFERENCE MODEL

Table 4-3 presents a summary of our traceability reference model. In the table, each

cell contains the different types of traceability relations that may exist between the

artefacts described in the row and column of that cell. In the table we do not

represent the exact elements that are related in the different artefacts, but represent

the types of the artefacts. The direction of the relation is represented from a row [i]

to a column ¡j]. Thus, a relation type nl_type in a cell [i][j] signifies that “[i] is related

to [j] though r e ljyp e” (e.g. “subsystem model satisfies feature model”). The traceability

relations that are bi-directional appear in the two correspondent cells for that

relation.

146

T a b l e 4 - 3 : T r a c e a b i l i t y R e f e r e n c e M o d e l

Feature
Model

Subsyste
m Model

Process
Model

Module
Model

Use Case Class
Diagram

Statechart
Diagram

Sequence
Diagram

Feature
Model

Overlap Overlap Overlap Overlaps Overlaps Overlaps

Subsyste
m Model

Satisfies
Depends_on
Refines
Overlap

Contains

Process
Model

Satisfies
Depends_on
Refines
Overlap

Refines Contains Contains Contains

Module
Model

Satisfies
Depends_on
Refines
Overlap

Refines Contains

Use Case Contains
Depends_on

Similar
Different
Evolves

Overlaps Overlaps Overlaps

Class
Diagram

Satisfies
Depends_on
Overlaps
Implements

Refines
Depends_on

Refines
Depends_on

Refines
Depends_on

Satisfies
Depends_on
Overlaps
Implements
Refines

Similar
Different
Evolves

Overlaps Overlaps

Statechart
Diagram

Satisfies
Depends_on
Overlaps
Implements

Refines
Depends_on

Refines
Depends_on

Satifies
Depends_on
Overlaps
Implements
Refines

Depetids_on
Overlaps
Contains

Similar
Different
Evolves

Overlaps
Refines

Sequence
Diagram

Satisfies
Depends_on
Overlaps
Implements

Refines
Depends_on

Refines
Depends_on

Satisfies
Depends_on
Overlaps
Implements
Refines

Depends_on
Overlaps
Refines
Contains

Overlaps Similar
Different
Evolves

1 4 7

4.4. Summary

This chapter described a traceability reference model for product family systems. It

has presented the software artefacts used in our approach and the different types of

traceability relations that exist between these artefacts. In the next chapter, we

describe our approach to allow automatic generation of those traceability relations

148

Chapter 5

Traceability Framework

This chapter elaborates the approach on how to establish the traceability relations

on the domain of product family systems. We present the framework of traceability

to the software product family systems according to the traceability reference model

described in previous chapter. This chapter illustrates the main process,

methodology and techniques of our approach. Section 5.1 gives an overview of the

traceability generation process. Section 5.2 describes traceability rules, traceability

relations, and examples of direct and indirect traceability rules. Section 5.3 describes

the extended functions implemented in XQuery and Java. Section 5.4 summarises

the chapter.

5.1. Overview of The Traceability Generation Process

Our approach is based on the extensible markup language (XML) technolog)' since

there are several reasons:

(a) XML has become the de facto language to support data interchange among

heterogeneous tools and applications;

(b) the existence of large number of applications that use XML to represent

information internally or as a standard export format (e.g. Unisys XML exporter for

Rational Rose (IBM), Borland Together (Borland), ArgoUML (ArgoUML) , and

(c) XML allows the use of XQuery (W3C) as a standard way of expressing

traceability' rules.

CHAPTER 5. TRACEABILITY FRAMEWORK

The XML documents used in our approach are based on XML schemas. We have

created XML schemas for the feature models, subsystem models, process models,

module models, and use cases. These XML schemas are described in Appendix A.

Our work also adopts XQuery (W3C) as a rule representation language due to

several reasons:

(a) XQuery is powerful for retrieving data in XML documents;

(b) XQuery is compatible with XML and Java environment; and

(c) XQuery is extensible and flexible and, therefore, it enables extensions of the

language, when necessary'.

Apart from the embedded functions offered by XQuery, it is possible to add new

functions and commands. We have extended XQuery to support the representation

of consequence part of the rules, i.e. the actions to be taken when the conditions are

satisfied, and to support extra functions to cover some of the traceability relations.

More specifically, these functions have been implemented in XQuery and java and

are concerned with the identification of specific elements in the documents and

words that are synonyms, or textual comparison. These functions are explained in

more details in Section 5.3. Our traceability framework focuses on the generation of

traceability' between the software artefacts in the domain of product family systems.

Figure 5-1 presents an overview of the traceability' generation process, which is

composed of three main stages, namely':

(a) Annotation of textual sentences in the documents with part-of-speech (POS)

assignments (Grammatical Tagging), using CLAW7S C7 (CLAWS). The documents

that mainly contain textual sentences (i.e. use cases, feature model, subsystem

model, process model, and module model) are annotated with POS tags. The

POS tags generated by CLAWS are converted into XML tags are shown in the

examples in Figures 4-3, 4-4, 4-6, 4-8, and 4-10. Our approach can also support

tagging of diagram elements (e.g. subsystem, process, and module model

names).

150

5.1 Overview of The Traceability Generation Process

(b) Creation of documents in XML format (XML Creation), based on the XML

schemas and the POS tags generated by CLAWS, or based on an XMI format

(XMI), as described in Chapter4.

(c) Generation of direct and indirect traceability relations (Traceability Generation),

based on traceability rules and extra functions.

Grammatical
lagging

T r a c e a b i l i t y

G e n e r a t io n

Figure 5- 1: Overview of traceability generation process

The traceability generation process is illustrated in Figure 5-2. More specifically,

traceability relations are generated by a Traceability Generator component that we have

developed with is formed by two sub-components.

151

CHAPTER 5. TRACEABILITY FRAMEWORK

(a) Rail,'e inference sub-component is responsible for:

• identifying the traceability rules that are related to different types of documents

to be traced and different types of traceability relations to be generated, and

• instantiating the placeholders for the document types in the identified rules with

the names of the documents to be traced (see Section 5.2). The information

about the traceability documents to be traced and traceability relations to be

generated are given by the user (see Chapter 6).

(b) The rule parser sub-component is responsible for executing the identified and

instantiated rules. It uses the XML-formatted documents, extra functions, and

WordNet 2.0 (WordNet) to assist with the identification of synonyms. The direct

and indirect traceability relations resulting from the execution of the rules are

represented in XML documents (Direct_Trace_Rel.xml and

Indirect_Trace_Rel.xml, respectively). The document with direct traceability

relations is used as input to the rule parser to generate indirect traceability relations.

Figure 5- 2: Traceability generator

152

5.1 Overview of The Traceability Generation Process

The traceability generation process can fit with some existing methods for product

family system development according to the current literature. Examples of those

methods are such as FODA, FORM, and FeatuRSEB.

Additionally, the traceability rules used by traceability generator have been created

based on:

(i) semantic of the documents being compared;

(ii) the various types of traceability relations in the product family domain;

(iii) the grammatical roles of the words in the textual parts of the documents; and

(iv) synonyms and distance of words being compared in a text.

Case (i): As an example of case (i), a rule for comparing feature and use case

models take into consideration the fact that a feature model specifies requirements

at the product line level, while use cases describe requirements for product members

which may be more specific. Therefore, it may be necessary to traverse the hierarchy

of a feature and investigate if one or more children of a feature appear in the use

case. Similarly, a sequence diagram describes the order in which messages are

exchanged between various class objects and, therefore, rules for comparing

operations in classes and sequence of messages in a sequence diagram should be

used.

Case (ii): Regarding case (ii), the types of traceability relations also play an

important role in the various traceability rules. It is not necessary to create

traceability rules for identifying evolution relations between elements in feature

models and class diagram, feature models and sequence diagram, or feature models

and statechart diagrams since such relations do not exist between the above

documents (evolution relations exist between documents of the same type for the

same product member).

Case (iii): Considering case (iii), it is a common approach that names given by

software engineers for the main elements in class, sequence, and statechart diagrams

do not contain certain types of words such as articles, coordinating and

153

CHAPTER 5. TRACEABILITY FRAMEWORK

subordinating conjunctions, singular and plural determiner, comparative and

superlative adjectives, etc. Therefore, when comparing e.g. descriptions of use cases

and feature names, or flow of events in use cases with elements in the above

diagrams (e.g. classes, messages, operations, and transitions), the above types of

words do not need to be considered.

More specifically, words are not concerned when they are annotated with POS tags

such as articles (e.g. the, no, a, an, ever}7), conjunctions (e.g. and, or, but, because),

determiners (e.g. whose, these, which, this, that, any, some, all, half, little, much,

few, several, many, such), adjectives (e.g. old, able to, willing to), pronouns (e.g. he,

his, him), adverbs (e.g. more, less, however, about, when, where, now, tomorrow),

and interjections (e.g. oh, yes, um). In the other words, the words annotated with

POS tags and categorized as verb or noun in texts are considered. Examples of POS

tags categorized as noun are NN1, which is a singular common noun (e.g. book,

girl), NN2, which is a plural common noun (e.g. books, girls), and examples of POS

tags categorized as verb are WO, which is a base form of lexical verb (e.g. give,

work), W D , which is past tense of lexical verb (e.g. gave, worked), W G , which is

verb-ing participle of lexical verb (e.g. giving, working), W I , which is infinitive (e.g.

to give, to work), W N , which is past participle of lexical verb (e.g. given, worked),

and W Z , which is -s form of lexical verb (e.g. gives, works).

Case (iv): With respect to case (iv), the multiplicity of stakeholders participating in

the development of the system, the different phases of software product line

engineering (domain analysis vs. domain design), and the different level of

specialization of the system (product line vs. product members) may lead to the use

of different words to represent the same thing. More specifically, our approach

supports the use of equivalent words to specify documents. As described, our work

has applied WordNet 2.0 as the database of synonyms and Java API, Java WordNet

Ubrary (JWNL), to access the WordNet database.

Furthermore, the existence of two or more words in a paragraph description does

not imply that the paragraph is related to these words, in particular when the words

154

5.1 Overview of The Traceability Generation Process

appear in different sentences in the paragraph or in different phrases in the same

sentence. As an example consider part of a paragraph describing some

functionalities of a mobile phone in a use case as shown below, and the operation

receive_callQ in class Phone. In this case, although the paragraph contains the words

“receive” and “call”, the text in the paragraph is not concerned with the “receive of

calls”, but with “receive of textual messages” and the time allowed for international

calls. If the distances of the words in the paragraph were not taken into

consideration, the operation would have been incorrectly related to the description

of the use case.

<D escription> T h e p h o n e s h o u ld b e a b le to s e n d a n d rece ive t e x t u a l m e s s a g e s . (. . .)

A n in t e r n a t io n a l p h o n e ca ll s h o u ld n o t l a s t m o r e th a n 10 m in u t e s .

(. . .)

<\Description>

We describe below traceability rules being used and traceability relations being

created by traceability generator.

5.2. Traceability Rules and Relations

In our approach, the generation of traceability relations is based on the use of

traceability rules due to some reasons:

(a) it enables automatic traceability;

(b) it allows for a standard way of representing criteria for identifying traceability

relations i.e. equivalent words from different text, appropriate distance of words

in a text, grammatical roles of words in a text, and various types of traceability

relations;

(c) it supports the processing of large-sized documents and the creation of a large

number of traceability relations; and

(d) it supports consideration into the semantics of documents which express the

interdependencies between a product family.

155

CHAPTER 5. TRACEABILITY FRAMEWORK

As below, we describe the template of traceability rules being used in our approach.

Traceability Rules

We use two different types of traceability rules, namely (a) direct traceability rules and

(b) indirect traceability rules. Type (a) is concerned with traceability rules for direct

relations between two independent elements such as satisfiability, dependency,

overlaps, evolution, implements, refinement, and containment relations; while type

(b) is concerned with traceability rules for relations that depend on the existence of

other relations such as similar and different relations.

TRACEJRULE R u le lD = R J D
R u le T y p e = R u le _ T y p e
D o c T y p e l = D o cT yp eN am e
D o c T y p e2 = D o cT yp eN am e

QUERY
[D E C L A R E N am e sp ac e]
[D E C L A R E F u n c tio n s]
[D E C L A R E V a r ia b le s]
fo r $ v a r ia b le _ n a m e 1 in d o c (D o cT yp e lP la c eh o ld e r)/ / X P a th E x p re ss io n

$ v a r ia b le _ n a m e 2 in d o c (D o cT yp e lP la c eh o ld e r)/ / X P a th E x p re ss io n
w h ere

f i (f i+ l . . . (f i+ j (*)) . . .)
QUERY_END
ACTION

R E L A T IO N R u le lD = R J D
T y p e = R e la t io n _ T yp e
D o c T y p e l = D o cT yp eN am e
D o cT yp e2 = D o cT yp eN am e

E L E M E N T D o cu m en t = D o cN am e [E le m e n tT y p e l] $ v a r ia b le _ n a m e l
[/ X p ath E xp ress io n]
[E lem e n tT y p e2]

E L E M E N T D o cum en t = D o cN am e [E le m e n tT y p e l] $ v a r ia b le _ n a m e 2
[/ X path E xp ress io n]
[E lem e n tT y p e2]

[R e la t io n T y p e { X p a th E x p re ss io n) { X p a th E x p ress io n }]
[R e la t io n T y p e { X p a th E x p re ss io n) {X p ath E x p ress io n }]

ACTION_END
TRACE_RULE_END

Figure 5- 3: Traceability rule template

Figure 5-3 shows a general template for direct and indirect traceability rules. In the

template, elements between square brackets (“[“ ,“]”) are optional, and

fi(fi+ l. . .(fi+j(•))..•) are embedded XQuery functions or the extra functions that

156

5.2 Traceability Rules and Relations

we have developed. The XML Schema for our traceability rules can be found in

Appendix A. Both types of traceability rules are composed of three main parts, as

described below. An example of a traceability rule for a containment traceability

relation between use cases and feature models is shown in Figure 5-4 and an

example for similar relation is shown in Figure 5-5. We explain below the different

parts in a traceability rule.

Part 1: It consists of the rule identification and contains a unique Rulel'D,

description of the type of the rule (RuleType), and descriptions of the types of

documents associated with the rule (DocTypel, DocType2). The rule type is based on

the type of traceability relation generated by the rule. In the case of direct

traceability rules, attributes DocTypel and DocType2 contain the names of the

different types of documents used in our approach (Figure 12); while for indirect

traceability rules, attributes DocTypel and DocType2 refer to the

XML_Base_Relationship document that contains the results of previously identified

relations (Figure 5-5).

Part 2: It is represented by element <Query> and consists of XQuery statements.

This part is composed of three other subparts.

The first subpart (declare) is optional and contains declaration of namespaces,

variables, or extra functions used in the rule. In our approach, the extra functions

that we have developed are either implemented as XQuery statements (viz.

XQuery_functions) or as Java classes (viz. Java_functions). The XQuery_functions

are declared as function. The Java_functions are represented as java packages and

declared as namespace. Figure 5-4 shows an example of these declarations for Java

functions. The example in Figure 5-5 does not make use of any declaration.

The second subpart (for) identifies elements of the documents (.DocTypel and

DocTypeZ) to be compared and bind these elements to variables $item1 and $item2,

respectively ('$variable_name1 and $variable_name2 in Figure 5-3). Initially, the

elements to be compared are described in XPath (XPath) expressions associated

157

CHAPTER 5. TRACEABILITY FRAMEWORK

with placeholders that represent the types of documents to be traced. The

placeholders for the documents to be traced are automatically substituted by specific

document names (file names) after the user has indicated these documents by using

the traceability tool (see Chapter 6). The examples in Figure 5-4 and Figure 5-5

show the values for $item1 and $item2 already instantiated with the document names

(UseCase_UCl.xml and Feature_MP.xml in Figure 5-4 with the XPath expressions

for the respective elements, and Direct_Trace_Rel.xml in Figure 5-5 with XPath

expressions for relations of type containment). In the case of indirect traceability rules

fiteml and $item2 always refer to Direct_Trace_Rel.xml. Flowever, the type of the

relation given by the XPath expression (\\Relation[@type=” “]) differ depending

on the rule type.

The third subpart {where), describes the condition part of the rule that should be

satisfied in order to create a traceability relation. The condition part can use a

secjuence, conjunction, or disjunction of XQuery in-built functions (e.g. some,

contains, satisfies) or the extra XQuery or Java functions that we have implemented.

Depending on the rule, the condition part also takes into consideration the XML

POS-tags in the textual parts of the documents.

In the example of Figure 5-4, the rule verifies if the words (or their set of synonyms)

in element Title of UseCase_UCl appear in the Description of a feature in

Feature_MP.xml, at an appropriate distance (Java class checkDistanceControl). The rule

checks for synonyms, by using WordNet (WordNet), of any possible form of the

main verb (W I, W B , VVG, WO) and of any possible form of the noun (NNO,

NN1, NN2, NPO) of the verb-phrase in the title of the use case. In Figure 5-5, the

rule verifies if there are two relations of type containment in Direct_Trace_Rel.xml

document between a use case and a feature model such that the feature names are

the same (Element[2J) and the use cases are different (ElementJlJ).

Part 3: It is represented by element (<Action>) and describes the consequence part of

the rule. It specifies the action(s) to be taken if the conditions in Part 2 are satisfied.

The consequence part describes the type of traceability' relation to be created

158

5.2 Traceability Rules and Relations

(attribute Type) and the elements that should be related through it in the documents

described in the f o r part of the rule (element <Element>). For the case of direct

traceability rules, an extra element associated with each element (ElementType2 in

Figure 5-3) may be used to indicate the exact type of elements in the respective

documents that were satisfied by the rule, when necessary. The extra element

represented by ElementTypel in Figure 5-3 is used when the content of

$vanable_name1 or $variable_name2 is of type string and it is necessary to represent the

XML element that this content represents (see rules R4 and R6 in Figure 5-12 and

Figure 5-14 for examples). For the case of indirect traceability rules, a special

element is used to represent how the elements being compared are similar or

different (RelationType in Figure 11). The content of element <Action> is used to

compose the return part of XQuery. The implementation of an action consists of

writing the information in the <Action> part, in the XML relation document

(Direct_Trace_Rel.xml and Indirect_Trace_Rel.xml). As in Part 2, the placeholders

of the specific document models to be associated are instantiated based on the

user’s input

cTraceRule R u leID -" R \ " R u leT y p e="co m a in m en t"
D o cT y p e l= 'U s e C a s e ” Doc 7 yp e 2 = ”F e a tu re M o d e l” >

<Query>
declare n a m e sp a c e s = " ja v a :s y n o n y m .s " ;
declare n a m e sp a c e d = " ja v a :d is ta n c e C o n tro l.d " ;

for $ i t e m l in d o c (" file :///c :/U seC ase_U C l ,x m l")/ A Jse_ C ase ,
$ ite m 2 in d o c (" file :///c :/F eatu re_M P .xm l")//F eatu re_M odel/F eatu re

where
d :ch e ck D is ta n c e C o n tro l($ item 2 / D e sc r ip t io n ,
s :s e to f (s :f in d S y n o n y m ($ ite m l/ T it le / V V I) ,s :f in d S y n o n y m ($ ite m 1/title/V V B),

s :f in d S y n o n y m ($ ite m l/ T it le P / V O), s :f in d S y n o n y m ($ ite m l/ T it le / V V G)) ,
s :se to f(s :f in d S y n o n y m ($ ite m l/ T it le / N N O), s :f in d S y n o n y m ($ ite m l/ T it le / N N l) ,

s :f in d S y n o n y m ($ ite m l/ T it le / N P 0) ,s :f in d S y n o n y m ($ ite m l/ T it le / N N 2)))
</Query>
<Action>

<Relation R u l e lD - “R l ” 7 yp e = ” c o n ta in m en t”
D o c T y p e l - ’U s e C a s e ” Doc7'_ype2=” F ea tu re M o d e l” >

<Elem entD o c u m e n t -“file :/ / / c :/ U seC ase_ U C l.x m l”> { $ ite m l/ T it le) </Element>
<Element D o cum en t= “file :///c :/F eatu re_M P .xm l”> {$ ite m 2 / F e a tu re _ n a m e } < D escription/>
</Element>
</Relation>

</Action>
</TraceRule>

159

file:///c:/UseCase_UCl
file:///c:/Feature_MP.xml")//Feature_Model/Feature
file:///c:/UseCase_UCl.xml%E2%80%9D
file:///c:/Feature_MP.xml%E2%80%9D

CHAPTER 5. TRACEABILITY FRAMEWORK

Figure 5- 4: Example of containment traceability rule

In Figure 5-4 a relation of type containment is created between the title of use case

UseCase_UCl (first <Element>) and the feature name in Feature_MP.xml

document that satisfies the condition part of the rule (second <Element>)

represented by XPath expressions. An element <Description> is used to indicate

that the relation is between the title of the use case and the description of the

feature. In Figure 5-5, a relation of type similar is created between the titles of the

two use cases (both elements <Element>) together with an extra element

representing how the two use cases are similar, i.e. through a containment relation

with the feature (element <Containment>).

<TraceRule RulID ="R2" R u leT yp e= " similar"
D o c 7 y p e / = ”X M L - B a s e d - R e r Z)o c7yp e2= ’'X M L -B a s e d -R e l”>

<Query>
f o r $ i t e m l in d o c (" f ile :/ / / c :/ D irect_ T raceR el.x rn l")/ / R ela tio n [@ T yp e= ’'c o n ta in m e n t”],

$ ite m 2 in d o c (" f ile :/ / / c :/ D irec t_ T raceR e l.xm l")/ / R e la tion [@ T yp e= ”c o n ta in m e n f ']
w h e r e

$ ite m l/ @ D o c T y p e l= ” U se C a s e ” and $ item l/ @ D o c T y p e 2 = ”F ea tu re M o d e l” and
$ item 2 / @ D o c T y p e l= ”U s e C a s e ” an d $ item 2 / @ D o cT yp e2 = ”F ea tu re M o d e l” and
s t r in g ($ ite m l/ E le m e n t[2]) = s tr in g ($ ite m 2 / E le m e n t[2]) and

1 $ item l/ E le m e n t[1]/@ D ocum ent != $ item 2/ E lem en t[l]/ @ D o cu m en t

</Query>
<Action>

<Relation R uleID = ”R 2 ” T yp e = " s im ila r" T erm = "u se c a s e co n ta in s fe a tu re m o d e l”>
<Element>{ $ item 1 /E lem en t! 1]/ @ D o cu m en t} {$ item 1 /E lem en t! 1 ¡/ T itle} </Element>
<Element>! $ item 2 / E lem en t[1]/ @ D o cu m en t} (S item 2/ E lem en t[1]/ T itle } </Element>
<Containment> (S item 1 / E lem en t[2]/@ D o cu m en t} {S item 1 / E lem en t[2] / F eatu re_ n am e |
</Containment>

</Relation>
</Action>

</TraceRule>

Figure 5- 5: Example of sim ilar traceability rule

Traceability Relations

An example of rule R1 in Figure 5-5 exists between use case UC1 of product

member PM_1 entitled Sending a Message (Figure 4-4) and feature named Text

Messages (Figure 4-3). A containment relation is created since a synonym (send) of

verb <VVG> Sending </VVG> and noun <NN1> Message </NNl> appear in

160

file:///c:/Direct_TraceRel.xrnl")//Relation[@Type=%E2%80%99'containment%E2%80%9D
file:///c:/Direct_TraceRel.xml")//Relation[@Type=%E2%80%9Dcontainmenf'

5.2 Traceability Rules and Relations

the description of the feature at an appropriate distance; i.e., a sequence of a

conjunction of verbs (<VVI> send </VVI> <SC>,</SC>, <CJC>and</CJC>,

< W I> receive</WI>), followed by a qualifier of the noun message (<AT0>

a</AT0> <AJ0>short</AJ0> <NN1> text </NNl>), separate the words send

and message. The result of rule R1 for use case UC1 and feature Text Messages are

shown in Figure 5-6.

<Relation_Document>
<R elationR u le lD = “R\" 7 yp e = ”c o n ta in m en t”

D o cT y p e l= ”U se C a s e " D ocT yp e2= 'T : eM uK M o d e l">
<Element D o cum en t= ”file :/ / / c :/ U seC ase_ U C l.x m l”>

< T itle> < V V G > S e n d in g </VVG> < A T 0> a </AT0> <N N 1> M e s s a g e </N N l>
</Title>

</Element>
<Element D o cu m en t= ’'file :///c :/F eatu re_M P .xm l">

< F ea tu re„n am e> <N N 1> T ex t </N N l> <N N 2> M e s s a g e s </NN2>
< D escrip tion> < /D escrip tion>

< /F eatu re_nam e>
</Element>

</Relation>
<Relation R uleID = “R 1 ” 7 yp e = ” c o n ta in m en t”

D o cT y p e l= '\ J s e C a s e ” D o c 7 y / te 2 - ’F ea tu re M o d e l”>
<Element D o cum en t= ”file :/ / / c :/ U seC ase_ U C 2 .xm l”>

< T itle> < V V G > T ra n sm itt in g </VVG> <N N 2> M e s s a g e s </NN2> </Title>
</Element>
<Element D o cu m en t= ”file :///c :/F eatu re_M P .xm l”>

< F eatu re_ n am e> <N N 1> T e x t </N N l> <N N 2> M e s s a g e s </NN2>
< D escrip tion> < /D escrip tion>

< /F eatu re_nam e>
</Element>

</Relation>

</Relation_Document>

Figure 5- 6: Result of containment traceability relations

Another example of rule R1 also exists between use case UC2 of product member

PM_2 entitled Transmitting Messages in Figure 5-7 and feature Text Messages in Figure

4-3. In this case, a containment relation is also created, as shown in Figure 5-6.

161

file:///c:/UseCase_UCl.xml%E2%80%9D
file:///c:/Feature_MP.xml
file:///c:/UseCase_UC2.xml%E2%80%9D
file:///c:/Feature_MP.xml%E2%80%9D

CHAPTER 5. TRACEABILITY FRAMEWORK

<Use_case U seC ase ID = ’T JC 2 ” S y s te m = ” M o b ile P h o n e ’ ' P ra d u c t_ M em b er= ’'P M 2 ’ '>
<Title> < V V G > Transmitting </VVG> <N N 1> Message </N N l> </Title>
<Description>

...< N N l> p h o n e< / N N l> <VMO > can </V M O x V V I>send</V V I>...
</Description>

</Use case>

Figure 5- 7: Example of use case UC 2 Transmitting Message

As shown in Figure 5-6, the use cases UC1 Sending a Message and UC2 Transmitting

Messages have containment traceability relations with the same feature Text Messages

(Figure 4-3). In this case, a similar relation is created by the deployment of the rule

R2 (Figure 5-5) as shown in Figure 5-8.

<Relation R u I e lD = "R 2" T yp e = "s im ila r" T erm = "use c a s e e n co m p ass fe a tu re m odel">
<Element D o cum en t= "file :///c :/U seC ase_U C l .xm l">

<Title> <VVG> S e n d in g </VVG> <AT0> a </AT0> <NN1> M e s s a g e </NNl>
</Title>

</Element>
<Element D o cum en t= "file :/ / / c :/ U seC ase_ U C 2 .xm l">

<Title> <VVG> T ra n sm itt in g </VVG> <NN2> M e s s a g e s </NN2> </Title>
</Element>

<Containment D o cum en t= "file :///c :/F eatu re_M P .xm l">
<Feature_name> < N N l> T ext< /N N l> < N N 2> M essages< /N N 2>
</Feature_name>

</Containment>
</Relation>

Figure 5- 8: Result of similar traceability relation

Our approach use XML for representing traceability relations due to some reasons:

(a) It guarantees the representation of large number of relations that are

automatically created by traceability generator;

(b) It allows the maintenance and visualization of traceability" relations by using

common commercial XML-based applications e.g. XML-spv, TurboXML, or

general-purposed applications e.g. web browsers, text editors; and

(c) It allows the retrieval of traceability" relations by using XQuery statements.

162

file:///c:/UseCase_UCl
file:///c:/UseCase_UC2.xml
file:///c:/Feature_MP.xml

5.2 Traceability Rules and Relations

More specifically, all traceability" relations are represented in XML documents. The

direct relations and indirect relations are separately recorded in

“Direct_TraceRel.xml” and “Indirect_TraceRel.xml”, respectively. Additionally, the

logs of the traceability activity are recorded in XML documents

(“Instantiated_Direct_TraceRule.xml” and “Instantdated_Jndirect_TraceRule.xml”

for direct and indirect relations respectively).

Examples of Direct and Indirect Traceability Rules

Apart from the examples of traceability" rules for containment and similar relations

shown in Figures 5-4 and 5-5, in this subsection we present examples of traceability

rules for each of the other traceability relation types used in our work. These

traceability rules follow from the examples shown in Figure 4-14 and Figure 4-15.

We repeat these figures below as Figure 5-9 and Figure 5-10, respectively, to

facilitate understanding.

163

CHAPTER 5. TRACEABILITY FRAMEWORK

Containment Containment

<Use Case UseCaseID=”UCl”
L i

^Use C'ase UseCaseID=”UC2”
System=”MobilePhone” Sin iinr —r System=”MobilePhone”
Product Member=”PML”> Pro duct_Memb er=” PMI ”>

<Title> Sending a Message </Title> <Title> Transmitting Messages </Title>
<Description> The phone is able to tend a <Description> The phone is able to transmit

text message. The user can a short text message. The
specify an address of a short text message can be sent
receiver of the message ... to one or many receivers .

« ■Description'- ... «Description ...
</Use_Case> </Use_C ase>

Figure 5- 9: Examples of traceability relations (repetitive to Figure 4-14)

164

5.2 Traceability Rules and Relations

E Different —

I<Use_Case UseCaseID=”UC3”1
System=”MobilePhone”
Product_Member=”PMl”>

<Titlc> Taking Photo </Title>
<Description> The phone has an integrated

VGA camera.. The phone can
take a photo using a VGA
camera. ...

</Description>

c/Use_Case>

Implements
Implen ents

Cam era Application

-*o HakePhoto:void I
+displayArea:void
+savePhoto:void
+displayPhoto:void

ÇX-

Cam eraZo om 2: :

+takePhoto:void|
+ displayArea:void
+ savePhoto:void
+ displayPhoto:void

<Use_Case UseCaseID=”UC4”
-►q System=”MobilePhone”

k Product_Member=”PM2”>
cTit!e> Taking Photo </Title>
cDescription> The phone has an integrated digital

camera. The phone can take it
photo using VGA cameraZoomlx

</Description> ...
<Use Case>

1.1.1.1 : d isplay/VeaOfvoid

1.1.1.2: display():voidj

- t r 1 : takePhoto():|j.'ia
- g -.1'.1.-M :d is p lay().wJB-

— Overlaps

Figure 5- 10: Examples of traceability relations (repetitive to Figure 4-15)

Rule R3: Dependency

As shown in Figure 5-11, this rule can establish a dependency relation between a

subsystem in a subsystem model and a feature in a feature model when the name of

the subsystem is the same as the content of element <Allocated_to_Subsystem> in

a feature model. In this case, the feature has been allocated to the subsystem and

165

C H A P T E R 5. T R A C E A B IL IT Y F R A M E W O R K

any change in the feature has to be reflected in the subsystem. In this rule an

XQuery function (normalige-spaceQ) is used to remove any XML sub-elements and

white spaces composing the content of elements <Subsystem_name> and

<Allocated_to_Subsystem>. According to Figure 5-9, a dependenty relation exists

between subsystem Messaging and feature Text Messages, since this feature is allocated

to subsystem Messaging. The relation is created between the name of subsystem in

SubsystemModelxml (first <Element>) and the feature name in Feature_MP.xml

(second <Element>).

<TraceRule R uleID = "R 3 " R u leT yp e= " d e p e n d e n c y "
D o c T y p e l= "S u b sy s tem M o d e l" D ocT ype2= "¥ za\m z M o d e l">

<Query>

for $ it e m l in d o c (“ f ile :/ / c :/ S u b sy stem M o d e l.x m l”)/ / S u b system / S u b system _ n am e .
$ item 2 in d o c (“f ile :/ / c :/ / F eatu re„M P .xm r)/ / F eatu re_ M o d el/ F eatu re

/ A llo ca ted _ to _ S u b sy s tem

where
n o r m a l iz e - s p a c e ($ ite m l) = n o rm a liz e -sp a c e (S ite m 2)

</Query>
<Action>

<Relation R uleID = "R 3" 7y/ je= "d ep en d en cy"
i> o c7y/ je7 = "S u b system M o d e l" D ocT yp e2 = "F ea lu v e M o d e l">

<Element D o c u m e n t - ‘f i le :/ / c :/ S u b sy s te m M o d e l.x m r> {S item 1} </Element>
<Element D o cum en t= “file ://c ://F eatu re_M P .xm l”> {$ item 2/ ../F eatu re_nam e}

</EIement>
</Relation>

</Action>
</TraceRule>

Figure 5-11: Example of dependency traceability rule

Rule R4: Refinement

As shown in Figure 5-12, this rule can establish a refinement relation between a

process model and a subsystem when the content of the attribute Subsyslem_name of

the process is the same as the name of the subsystem. This rule uses the Java

function stringnospacef) to compare the names of the elements without white spaces.

An example of a refinement traceability relation from this rule exists between

subsystem Messaging and process model P1 as shown in Figure 5-9. The relation is

created between the identifier of the process model ProcessModelxm/ represented in

<ProcessModelID> (in the first <Element>) and the name of subsystem in

SubsystemModelxml (second <Element>).

166

file://c:/SubsystemModel.xml%E2%80%9D)//Subsystem/Subsystem_name
file://c://Feature%E2%80%9EMP.xmr)//Feature_Model/Feature
file://c:/SubsystemModel.xmr
file://c://Feature_MP.xml%E2%80%9D

5 .2 T ra cea b ility R u le s a n d R e la tio n s

cTraceRule R uleID = "R 4 " /? m Zc ry/>e=" refi n ement"
Z)0c7y/?i>7="Process M o d e l" D o cT yp e 2 =" S ub s y s te m M o d e l">

<Query>
declare n a m e sp a c e d = " ja v a :d is ta n ce C o n tro l.d " ;

for $ it e m l in d o c (“f ile :/ / c :/ P ro cessM o d e l.x m r’)//P rocess_M odel
S ite m 2 in d o c (“f ile :/ / c :/ S u b sy s tem M o d e l.x m r)/ / S u b sy s te m _ M o d e l/ S u b sy s tem

/ S u b sy s tem _ n am e

where
d :s t r in g n o sp a c e ($ ite m l/ @ S u b sy s te m _ n a m e) = d :s t r in g n o sp a c e ($ ite m 2)

</Query>
<Action>

<Relation R uleID = "RA" T y p e—'xe.finem en t"
D o c T y p e l - 'P r o c e s s M o d e l" ZJoc 7y> pe2= "Subsystem M o d e l">

<Element D o cum en t= “f ile :/ / c :/ P ro cessM o d e l.x m l”>
< P ro ce ssM o d e llD > { $ ite m l/ @ P ro c e s sM o d e lID) < /P rocessM odelID >

</Element>
<Element D o cu m en t= “f ile :/ / c :/ S u b sy s te m M o d e l.x m r> { $ ite m 2 } </Element>

</Relation>
</Action>

</TraceRule>

Figure 5- 12: Example of refinem ent traceability rule

Rule R5: Satisfiability

As shown in Figure 5-13, this rule can establish a satisfiability relation between the

description of a module model and a feature when the name of a feature appears in

the description of a module model at an appropriate distance. This rule uses

constainsInDistanceQ extra function to verify if the name of the feature, or any of its

synonyms, is in the description of the module. A variation of this rule takes into

consideration the name of a feature and the name of its parent feature when such

parent exists. An example of a satisfiability traceability relation from this rule is

shown in Figure 5-9 between feature Text Messages and the description of module

named Short Messaging. The relation is created between the name of module in

ModuleModelxml (first <Element>) and the feature name in Feature_MP.xml (second

<Element>).

1 6 7

file://c:/ProcessModel.xmr%E2%80%99)//Process_Model
file://c:/SubsystemModel.xmr)//Subsystem_Model/Subsystem
file://c:/ProcessModel.xml%E2%80%9D
file://c:/SubsystemModel.xmr>{$item2

C H A P T E R 5. T R A C E A B IL IT Y F R A M E W O R K

<TraceRuleR u l e lD - 'R 5 " / ?H / e7ype= "sa tisf iab ility"
D ocT yp e l= " M od u \ e M o d e l" D o c 7y/?e2= "F eatu re M o d e l">

<Query>
declare n a m e sp a c e d = " ja v a :d is ta n ce C o n tro l.d " ;

for S it e m l in d o c (“ file :/ / c :/ M o d u leM o d e l.xm l”)// M o d u le_ M od el/ M o d u le/ D escrip tio n ,
$ item 2 in d o c (“f ile :/ / c :/ F ea tu re_ M P .x m r’)//Feature_M odel/Feature

/ F eatu re_ n am e
where d :c o n ta in s In D is ta n c e ($ ite m l ,$ ite m 2)

</Query>
<Action>

<Relation R uleID = "R 5" 7 y p e = " sa t is f ia b ility "
D ocT yp e l= " M od u \ e M o d e l" D o cT y p e2 = "F eatu re M o d e l">

<Element D o cum en t= “f ile :/ / c :/ M o d u le M o d e l.x m r>
{$ ite m 1 /. ./ M o d u le_ n am e} </Element>

<Element D o cum en t= “fiIe ://c :/F eatu re_M P .xm l”>{ $ item 2 } </Element>
</Relation>

</Action>
</TraceRule>

Figure 5-13: Example of satisfiability traceability rule

Rule R6: Implements

As shown in Figure 5-14, this rule can establish an implements relation between an

operation of a class in a class diagram and a use case when the description of the use

case contains the name of the operation and the name of the class of this operation.

According to Figure 5-10, examples of implements traceability relations from this rule

exist (i) between use case UC3 and operation takel?hoto:void of class Camera and (ii)

between use case UC4 and operation takeVhoto:void of class CameraZoom2Pi. A

relation of type implements is created between the names of the class (<Class>) and

the name of the operation of the class (<Operation>) in UML1 _PM1 .xml (first

<Element>) and the title of use case UseCase_UC3.xml (second <Element>). An

element <Description> is used to indicate that the relation holds between the

operation of the class and the description of the use case.

168

file://c:/ModuleModel.xml%E2%80%9D)//Module_Model/Module/Description
file://c:/Feature_MP.xmr%E2%80%99)//Feature_Model/Feature
file://c:/ModuleModel.xmr

5.2 T ra cea b ility R u le s a n d R e la tio n s

cTraceRule R uleID = "R6" /?H /c7y/?e= "im plem ents"
D ocT yp el= "C \ a ss D iag ram " D ocT yp e2 = "\ Jse C ase">

<Query>
declare n a m e sp a c e U M L = " o rg .o m g .x m i.n a m e sp a c e .U M L " ;
declare n a m e sp a c e d = " ja v a :d is ta n c e C o n tro l.d " ;

for $ it e m l in d o c (“f ile :/ / c :/ U M L l_ P M l.x m l”)/ / U M L :C la ss if ie r .fe a tu re
/ U M L :O p era tio n / @ n am e,

$ ite m 2 in d o c (“f ile :/ / c :/ U seC ase_ U C 3 .x m l”)//U se_C ase
le t $ t l := $ item l/ ../ ../ ../@ n am e

where
d :co n ta in sIn D is tan c e ($ ite m 2 / D e sc r ip t io n , S t l) and
d :c o n ta in s ln D is ta n c e ($ ite m 2 / D e sc r ip t io n ,S ite m l)

</Query>
<Action>

<RelationR u l e l D - 'R 6 " ry/> e= "im p lem ents"
D o cT yp e l= " C la s s D iag ram " D o cT y p e2 = "U se C ase">

<Element D o cum en t= “f ile :/ / c :/ U M L l_ P M l.x m l’’> < C lass> {$ t l } </Class>
< O peration> { $ i t e m l} </O peration> </Element>

<Element D o cum en t= “f ile :/ / c :/ U seC ase_ U C 3 .x m l”> {$ item 2/T itle} < D escription/>
</Element>

</Relation>
</Action>

</TraceRule>

Figure 5-14: Example of implements traceability rule

Rule7: Different

This example is one of the rules for identifying a different traceability relation which

represents the interdependency of a variation point between two product members.

As shown in Figure 5-15, this rule can establish a different relation between two use

cases when there are two mplements relations between two different use cases and

two different classes, and these classes are subclasses of the same superclass. In

order to support this case, the rule uses getParentofCariantClasses() and getC/assIDQ

extra functions. As shown in Figure 5-10, an example of a different traceability

relation from this rule exists between use cases UC3 and UC4 that have implements

relations with the operation takePhotoivoid of the class Camera and the operation

takePhoto:void of the class CameraZoom2x, respectively. Whereas the classes Camera

and CameraZoom2x are subclasses of the class Camera/lpplication.

169

file://c:/UMLl_PMl.xml%E2%80%9D)//UML:Classifier.feature
file://c:/UseCase_UC3.xml%E2%80%9D)//Use_Case
file://c:/UMLl_PMl.xml%E2%80%99%E2%80%99
file://c:/UseCase_UC3.xml%E2%80%9D

C H A P T E R 5. T R A C E A B IL IT Y F R A M E W O R K

<TraceRule R uleID = "R 7 " R uleT ype= "A \iitx tnC
£ > 0c7y/ ?e7= "X M L -B ased -R el" Z)oc r y p e 2 = " X M L -B a se d -R e l" >

<Query>
declare n a m e sp a c e U M L = " o rg .o m g .x m i.n a m e sp a c e .U M L " ;
declare fu n c tio n lo c a l:g e tP a r e n tC la s s (S c h ild a s x s :s t r in g) a s ite m ()
{ for S item A in d o c (“f ile :/ / c :/ U M L l_ P M l .x m l”)/ / U M L :G en era liza tio n

/ U M L _ G en e ra I iz a t io n .ch ild
where $ item A / U M L :C la s s/ @ x m i.id re f = $ c h ild
return S item A / ../ U M L :G en era liz a tio n .p a ren t/ U M L :C la ss

};
declare fu n c tio n lo c a l:g e tP a r e n to fV a r ia n tC la s s e s (S o n e a s x s :s t r in g , $ tw o as

x s :s t r in g)a s ite m ()
{ for S ite rn l in d o c (“f ile :/ / c :/ U M L l_ P M l.x m l”)/ A JM L :G en e ra liz a t io n

/ U M L :G e n e ra liz a t io n .ch ild ,
$ item 2 in d o c (“f ile :/ / c :/ U M L l_ P M l .x m l”)/ / U M L :G en era liza tio n

/ U M L :G e n e ra liz a t io n .ch ild
where

($ ite m l/ U M L :C la s s/ @ x m i.id re f = $o n e and
$ item 2 / U M L :C la s s/ @ x m i.id re f = $ tw o and
lo c a l :g e tP a r e n tC la s s (S ite m l/ U M L :C la s s / @ x m i.id r e f) =
lo c a l:g e tP a re n tC la s s ($ ite m 2 / U M L :C la s s/ @ x m i.id re f) and
lo c a l:g e tP a re n tC la s s ($ ite m l/ U M L :C la s s/ @ x m i.id re f) != "" and
$ ite m l/ U M L :C la s s/ @ x m i.id re f != $ item 2 / U M L :C la s s/ @ x m i.id re f)

return lo c a l:g e tP a re n tC la s s ($ ite m l/ U M L :C la s s/ @ x m i.id re f)

};
declare fu n c tio n lo c a l:g e tC la s s ID ($ n a m e a s x s :s t r in g)a s x s :s t r in g
{ for S item B in d o c (“f ile :/ / c :A J M L l_ P M l.x m l”)//U M L :C lass/@ nam e

where S item B = S n am e
return $ item B / ../ @ xm i.id

};
for S item 1 in d o c (" file :/ / / c :/ D irec t_ T raceR e l.xm l")/ / R e la tio n [@ T yp e= "im p lem en ts"],

$ item 2 in d o c (" file :/ / / c :/ D irec t_ T raceR e l.xm l")/ / R e la tio n [@ T yp e= "im p lem en ts”]
where

$ ite m l/ @ D o c T y p e l = "C la ss D iag ram " and S item l/ @ D o cT yp e2 = "U se C a se " and
$ item 2 / @ D o c T y p e l= " C la s s D iag ram " an d $ item 2 / @ D o cT yp e2 = "U se C a se " and
(s tr in g ($ ite m l/ E le m e n t[2]/ @ D o c u m en t) !=
s tr in g (S item 2 / E lem en t[2]/ @ D o cu m en t)) and

($ ite m l/ E le m e n t[l]/ @ D o c u m e n t = $ item 2 / E lem en t[l]/ @ D o cu m en t) and
($ ite m 1 / E le m e n t!1 J/C lass != $ ite m 2 / E lem en t[l]/ C la s s) and

lo c a l: g e tP a re n to fV a r ia n tC la s s e s f
lo c a l:g e tC la s s ID (s tr in g ($ ite m l/ E le m e n t[1]/C lass/@ n am e)),
lo c a l:g e tC la s s ID (s tr in g ($ ite m 2 / E le m e n t[l]/ C la s s/ @ n a m e))) != ""

</Query>
<Action>

<Relation R uIeII)= "R7" 7 yp e= "d iffe ren t" Term=" c l a s s im p lem en ts u se ca se">
<Element> {S item 1 /E lem ent! 2 J/@ D ocum en t}

{S item 1/E lem en t[2]/T itle }</Element>
<Element> {$ item 2/E lem en t[2]/@ D ocum en t}

{$ item 2 / E lem en t[2]/ T itle }</Element>
< Im p le m e n ts> j s t r in g (S ite m 1 / E lem en t! 1]/ C la s s)} < / Im p lem en ts>
< Im p le m e n ts> { s tr in g ($ ite m 2 / E le m e n t[l]/ C lass) }< /Im p lem en ts>
<VariantOf> {lo c a l :g e tP a r e n tC la s s (lo c a I :g e tC la s s lD

(S ite m 1/E lem ent[1]/ C la ss/ @ n am e))} </V ariantOf>
</Relatlon> </Action> </TraceRule>

Figure 5-15: Example of different traceability rule

170

file://c:/UMLl_PMl
file://c:/UMLl_PMl.xml%E2%80%9D)/AJML:Generalization
file://c:/UMLl_PMl
file://c:AJMLl_PMl.xml%E2%80%9D)//UML:Class/@name
file:///c:/Direct_TraceRel.xml")//Relation[@Type="implements
file:///c:/Direct_TraceRel.xml")//Relation[@Type="implements%E2%80%9D

5 .2 T ra cea b ility R u le s a n d R e la tio n s

Rule R8: Overlaps

This rule can establish an overlaps relation between a sequence and class diagram

when there is an operation in the sequence diagram with the same name as an

operation of a class in a class diagram and the class of the object of the operation in

the sequence diagram is the same as the class of the operation in the class diagram.

Due to simplication, Figure 5-14 does not show the full declaration of extra

functions implemented in X Query (getOperationinSeqQ, getOb/ectinSeq(),

getCJassObjectinSeqO, getClassinClassQ, and getOperationinClassQ). The explanation and

complete declaration of the functions can be found in Section 5.3 and Appendix C,

respectively. This rule also uses an XQuery function stnng() to remove whitespace

occurred at the beginning and end of the name of an operation. According to Figure

5-10, an example of an overlaps traceability relation from this rule exists between

operation takePhototvoid of class Camera and operation takePhoto:void in the sequence

diagram. The relation is created between the object (<Object>) and the operation

(<Operation>) in the sequence diagram represented in UML1 _Pm 1.xml (first

<Element>). And the class (<Class>) and the operation (<Operation>) in the class

diagram represented in UML1 _Pm 1.xml (second <Element>).

171

C H A P T E R 5. T R A C E A B IL IT Y F R A M E W O R K

<TraceRule R uleID = "R 8 " R u leT yp e= " o v e r lap s"
D o cT y p e l= " s e q u e n c e d ia g ra m " D ocT yp e2 = " c la s s d iag ram ">

<Query>

le t $ x l := lo c a l:g e tO p e ra t io n in S e q ()
fo r $ x 2 in S x 1

fo r $ x 3 in lo c a l:g e tO b je c t in S e q (S x 2)
fo r S x 4 in lo c a l:g e tC la s s O b je c t in S e q ($ x 3)

fo r $ x 5 in lo c a l :g e tC la s s in C la s s ($ x 4 , “C D _ p h o n e”)
le t $ x 6 := $ x 5 / U M L :C la ss if ie r .fe a tu re / U M L :O p e ra tio n

w h e re $x2/ .. / . . / . . / . ./@ n am e = “S D _ p h o n e” and
(s tr in g ($ x 6 / @ n a m e)) = (s tr in g ($ x 2 / @ n a m e))

</Query>
<Action>

<Relation R uleID = "R 8" 7 'yp e= "o verlap s"
D o cT y p e l= " se q u e n c e d ia g ra m " D ocT yp e2 = "c\ a ss d ia g ra m " >

<Element D ocum ent= “file :/ / c :/ U M L l_ P M l ,x m l” >
< O bject> Sx2/../../../../../../@ name </Object>

< O peration> Sx2/@ nam e </O peration> </Element>
<Element D ocum ent= “file :/ / c :/ U M L l_ P M l .x m l” >

< C lass> {$x5/@ nam e} </Class>
< O peration> j$ x 6 / @ n a m e) </O peration> </Element>

</Relation>
</Action>

</TraceRule>

Figure 5-16: Example of overlaps traceability rule

Rule 9: Evolution

This rule can establish an evolution relation between two state diagrams when the

parameters of the same signals are different in the two state diagrams. As shown in

Figure 5-17, rule R9 checks (a) if the names of the diagrams being compared are the

same, (b) if the names of the transitions are the same, (c) if the names of the actions

are the same, (d) if the signal events are the same, (e) if the signals are the same, and

(f) if the parameters of the signals are different. An example of an evolition

traceability relation from this rule is shown in Figure 5-10 between the two extracts

of the sequence diagrams. The relation is created between the name of a transition

(<Transition>) together with the parameter of the transition (<Parameter>) in

UML1JPM1 .xml (first <Element>) and the name of a transition (<Transition>)

together with the parameter of the transition (<Parameter>) in UML2_PM/.xml

(second <Element>).

1 7 2

file://c:/UMLl_PMl
file://c:/UMLl_PMl

5 .2 T ra cea b ility R u le s a n d R e la tio n s

cTraceRule R uleID = "R 9" RM /e7y/?e= "evo]ution"
D o cT y p e l= " S ta t e c h m D iag ram " D o cT y p e2 = 'S ta te c h a r t D iag ram ">

<Query>
for $ it e m l in d o c (“f ile :/ / c :/ U M L l_ P M l.x m l”)/ / U M L :T ran s it io n ,

$ item 2 in d oc(" ‘f ile :/ / c :/ U M L 2_ P M l ,x m l”)/ A JM L :T ran s it io n

where
$x l/ ../ U M L :D iag ram / @ n am e = S x 2 /../ U M L :D iag ram / @ n am e an d
$ x l/ @ n a m e = $x2/ @ n am e and
$ x l/ U M L :T ra n s it io n .e ffe c t/ U M L :A c t io n S e q u e n c e / U M L :A c tio n S e q u e n c e .a c t io n

/ U M L :U n in te rp re ted A ctio n / @ n am e =
$ x 2 / U M L :T ra n s it io n .e f fe c t/ U M L :A c tio n S e q u en c e / U M L :A c t io n S e q u e n ce .a c t io n

/ U M L : U n in te ip re ted A ctio n / @ n am e and
$ x l/ U M L :T ra n s it io n .tr ig g e r/ B e h a v io ra]_ E le m e n ts .S ta te _ M a c h in e s . E ven t

/ @ x m i.id re f = $ x l/ ../ U M L :S ig n a lE v en t/ @ x m i.id an d
$ x 2 / U M L :T ra n s it io n .tr ig g e r/ B e h a v io ra l_ E le m e n ts .S ta te „ M a c h in e s .E v e n t

/ @ x m i.id re f = $ x 2 / ../ U M L :S ign a lE v en t/ @ x m i.id an d
$ x l/ ../ U M L :S ig n a lE v en t/ @ n am e = $ x 2 / ../ U M L :S ign a lE ven t/ @ n am e and
$ x l/ ../ U M L :S ig n a lE v e n t/ U M L :S ig n a lE v e n t .s i g n a l/ B eh av io ra l_ E lem en ts .C o m m o n
_ B e h a v io r .S ig n a l/ @ x m i.id r e f = $ x l/ ../ U M L :S ig n a l/ @ x m i.id and

$ x 2 / ../ U M L :S ig n a lE v e n t/ U M L :S ig n a lE v en t .s ig n a l/ B e h a v io ra l_ E le m e n ts .C o m m o n
_ B e h a v io r .S ig n a l/ @ x m i.id r e f = $ x 2 / ../ U M L :S ig n a l/ @ x m i.id and
$ x l/ ../ U M L :S ig n a l/ @ n a m e = $x2/ ../ U M L :S ign a l/ @ n am e and
S x l/ ../ U M L :S ig n a l/ @ x m i.id / U M L :D a taT yp e/ @ x m i.id =
$ x 1 /. ./ U M L : E ven t .P a ram ete r/ U M L : P aram ete r/ U M L : P a ram ete r , typ e

/ F o u n d a t io n .C o re .C la ss if ie r/ @ x m i.id re f and
$x2/. ./U M L : S ig n a l/ @ x m i. id / U M L :D ataT ype/@ xm i .id =
$ x 2 / ../ U M L :E v en t.P a ram e te r/ U M L :P a ram e te r/ U M L :P a ram e te r .typ e

/ F o u n d a tio n .C o re .C la ss if ie r/ @ x m i.id re fa n d
$x l/ ../ U M L :E v en t.P a ram e te r/ U M L :P a ram e te r/ @ n am e !=
$x2/ ../ U M L :E v en t.P a ram ete r/ U M L :P aram ete r/ @ n am e

</Query>
<Action>

<Relation R uleID = "R 9" 7 yp e= "ev o lu tio n "
D o cT y p e l= " S fd t e ch m t D iag ram " D o c 7 y p e 2 = " S ta te c h a rt D iag ram ">

<Element D o cum en t= “file ://c:/U M L I __PM 1 .x m l” >
< T ran sit io n > {S x 1 /@ n a m e } < /T ransition>
< P aram eter> { $ x I/ ../ U M L :E v en t.P a ram ete r/ U M L :P aram ete r/ @ n am e }

< /Param eter>
</Element>
<Element D o cum en t= “file ://c :/U M L 2_P M 1 .x m l” >

< T ransition > {Sx2/@ nam e) < /Transition>
< P aram eter> {$x 2 / ../ U M L :E v en t.P a ram e te r/ U M L :P aram e te r/ @ n am e}

< /Param eter>
</Element>

</Relation>
</Action>

</TraceRule>

Figure 5-17: Example of overlaps traceability rule

1 7 3

file://c:/UMLl_PMl.xml%E2%80%9D)//UML:Transition
file://c:/UML2_PMl
file://c:/UML
file://c:/UML2_PM

C H A P T E R 5. T R A C E A B IL IT Y F R A M E W O R K

Additionally, we have developed 63 traceability' rule templates from which 51 are for

direct traceability' relations and 12 are for indirect traceability relations (see in

Appendix B). We have used all those 63 traceability' rule templates in our

experiments (see in Chapter 8). The following subsection describes the extended

functions that we have implemented to support the traceability rules.

5.3. Extended Functions

The satisfaction of all possible conditions for the traceability relations such as

considering grammatical structures of the sentences in the documents and

synonyms requires a need for extra functions to allow the traceability' generator to

identify the relations. The extended functions can be classified in two main groups.

One group is concerned with functions that have been implemented in XQuery'

(viz. XQuery and the other group with functions implemented in java (viz. java

functions). Additionally, XQuery language allows us to add new functions and

commands in its own and other languages. Extra functions implemented in XQuery'

are concerned with the retrieval of specific elements in the documents, whereas the

functions implemented in java are concerned with the manipulation with textual

aspects in the documents. We present below the extended functions that are

implemented in two languages i.e. in XQuery and in Java.

5.3.1. Functions in XQuery

As mentioned, the extended functions represented in XQuery are concerned with

functions that identify specific elements in the documents used in our approach

such as state in a statechart diagram, classes in a class diagram, messages and objects

in a sequence diagram, and features in a feature model. Generally, an XQuery'

function declaration is composed of two parts as shown in Figure 5-18.

Part I: It is concerned with the name and signature of the function. It contains:

(i) declare junction keywords to start the declaration of the function;

(ii) local: keyword which defines the scope of a function;

174

5 .3 E x te n d e d F u n c tio n s

(iii) the name of the function; and

(iv) the input and output parameters of the function when applicable.

Part II: It is concerned with the definition of the function {Junction body) , which

consists of XQuery statements. The function body can include built-in XQuery

functions or other extended functions implemented in XQuery or Java.

declare function local:function-name(^variable-name as input)
as output

1

1;
function-body

Figure 5- 18: A structure of a user-defined function

In the following, we present each of the extra XQuery functions. A complete

declaration of these functions with their respective body is shown in Appendix C.

I. getTransitioninState

declare function local :getTransitioninState() as item()*

Figure 5-19: getTransitioninState function

The gefTramitioninState function identifies the set of transitions in a statechart

diagram (Figure 5-19). The function does not take any input parameters and returns

a sequence of one or more transitions (that appear in XM P document as

UML:Transition elements) in a statechart diagram. The result of this function

appears as item() in XQuery. For instance, according to the extract of a statechart

diagram (shown in Figure 5-20), the getTransitioninState function returns a set of

transitions - {transition a, transition b, transition c}. 5

5 S e e deta ils in X M I sp ec ifica tion O M G . X M I .

1 7 5

C H A P T E R 5. T R A C E A B IL IT Y F R A M E W O R K

Figure 5- 20: Extract of a statechart diagram

II. getStateinState

declare function local :getStateinState($transition as node())
as item()

Figure 5- 21: getStateinState function

The getStateinState function identifies the state of a transition in a statechart diagram

(Figure 5-21). The function takes a transition as an input (appearing in an XMI

document as an UML:Transition element) and returns the state (appearing as an

UML:SimpleState element) of the transition. The result of this function appears as

itemQ in XQuery. According to the previous example (Figure 5-20), the

getStateinState function for transitions a or b returns state X.

III. getMessageinSeq

declare function local :getMessageinSeq() as item()*

Figure 5- 22: getTransitioninState function

The getMessageinSeq function identifies the set of messages in a sequence diagram

(Figure 5-22). The function takes no input parameter and returns a sequence of one

or more messages (appearing in an XMI document as an UML:Link element) in a

sequence diagram. The result of this function appears as itemQ* in XQuery.

According to an example of a sequence diagram in Figure 5-23, the

getMessageinSeq function returns a set of messages — (message a, message b,

message r}.

176

5 .3 E x te n d e d F u n c tio n s

IV. getObjectinSeq

declare function local:getObjectinSeq($link as node()) as
item()

Figure 5- 24: getObjectinSeq function

The getObjectinSeq function identifies the object that receives a message in a sequence

diagram (Figure 5-24). In general a message in a sequence diagram represents the

communication between two objects. The function takes a message as an input

parameter (appearing in an XMI document as an UML:Link element) and returns

the object (appearing in the XMI document as an UMLrObject element) that

receives the message. The result of this function appears as item() in XQuery.

According to the example in Figure 5-23, the getObjectinSeq function returns

object Y (as the UML:Object element) for message b as input parameter.

V. getClassObjectinSeq

declare function local:getClassObjectinSeq($object as node())
as item()

Figure 5- 25: getClassObjectinSeq function

The getClassObjectinSeq function identifies the class of an object in a sequence

diagram (Figure 5-25). The function takes an object as the input parameter and

returns its class (as appearing as itemQ in XQuery). According to the example in

Figure 5-23, the getClassObjectinSeq function takes object Y as input parameter and

returns class Y ’ (as the UML:Class element) whereby the object is instantiated.

1 7 7

C H A P T E R 5. T R A C E A B IL IT Y F R A M E W O R K

VI. getClassinClass

declare function local:getClassinClass($diagram as xs:string)
as item()*

Figure 5- 26: getClassinClass function

The getClassinClass function identifies classes in a class diagram (Figure 5-26). The

function takes as input parameter the name of the class diagram, and returns the

classes in the diagram (appearing as UML:Class elements). The result of this

function appears as itemQ* in XQuery. For instance, according to the extract of a

class diagram (shown in Figure 5-27), the getClassinClass function returns a set of

classes - {class CO, class C1, class C2j .

VII. getParentFeature

declare function local:getParentFeature($child as xs:string) as
item()

Figure 5- 28: getParentFeature function

The getParentFeature function identifies the parent feature of a feature in a feature

model (Figure 5-28). The function takes as input a feature name and returns the

name of its parent feature, if available. The output of the function is a sequence of

words with part-of-speech tags as itemQ in XQuery. For example, Figure 5-29

shows an extract of a feature model. In the figure, feature n has a parent feature m

and children features h and i. Moreover, feature m has another child feature / which

1 7 8

5 .3 E x te n d e d F u n c tio n s

has children features/ and k. When the function has feature n as its input parameter,

it returns feature name rn as the parent feature of feature n.

VIII. getChildrenFeature

declare function local:getChildrenFeature($parent as xs:string)
as item()*

Figure 5- 30: getChildrenFeature function

The getChildrenFeature function identifies the set of children features of a feature in a

feature model (Figure 5-30). The function takes a feature name as its input

parameter and returns the sequence of children-feature names as itemQ* in XQuery,

if available. The output of the feature is a sequence of words with part-of-speech

tags. According to the previous example, when function getChildrenFeature has

feature name n as its input parameter, it returns the sequence of children-feature h

and i.

IX. getFeatureofSubsystem

declare function local:getFeatureofSubsystem($subsystem as
xs:string) as item()*

Figure 5- 31: getFeatureofSubsystem function

The getFeatureofSubsystem function identifies the set of features used by a subsystem

in a subsystem model (Figure 5-31). The function takes as input parameter the name

of a subsystem and returns a sequence of one or more feature names as itemQ* in

179

C H A P T E R 5. T R A C E A B IL IT Y F R A M E W O R K

XQuery, if available. An example of the use of this function is illustrated by

considering Figure 5-9. When function getFeatureofSubsystem has subsystem name

Messaging, it returns feature Text Messages.

X. getOperationinSeq

declare function local:getOperationinSeq() as item()*

Figure 5- 32: getOperationinSeq function

The getOperationinSeq function identifies the set of operations in a sequence diagram

(Figure 5-32). The function does not take any input parameter and returns the

operations (appearing in XMI document as UML:Operation elements) in the

diagram. The result of this function appears as itemQ* in XQuery. An example of

the use of this function is illustrated by considering Figure 5-23. The function

getOperationinSeq returns operations aaaf), bbb(), and cccQ.

XI. getOperationinClass

declare function local:getOperationinClass ($class as node!))
as item()*

Figure 5- 33: getOperationinClass function

The getOperationinClass function identifies the set of operations of a class in a class

diagram (Figure 5-33). The function takes a class as its input parameter and returns

a set of operations of the class as itemQ* in XQuery. An example of the use of this

function is illustrated by considering Figure 5-27. The function getOperationinClass

has class C1 and returns operation Op1 ().

XII. getStateofOperationinState

declare function local¡getStateofOperationinState($operation as
node()) as item()

Figure 5- 34: getStateofOperationinState function

180

5 .3 E x te n d e d F u n c tio n s

The getStateofOperationinState function identifies the state in a statechart diagram that

receives an event when the event represents an operation (Figure 5-34). The

function takes an operation (appearing in XMI document as an UML:Operation

element) and returns a sequence of one or more states (appearing as

UML:SimpleState elements) in statechart diagram of which name are given as the

particular operation name. The result of this function appears as itemQ in XQuery.

XIII. getParentofVariantFeatures

declare function local:getParentofVariantFeatures($one as
node(), $two as node()) as item()

Figure 5- 35: getParentofVariantFeatures function

The getParentofl^arianlFeatures function identifies the parent feature of two features

that are either alternative or optional feature in a feature model (Figure 5-35). The

function takes as input parameters the names of two features and returns a node

representing the parent feature in a feature model as itemQ in XQuery, when these

features are alternative or optional features and they have the same parent feature.

According to the example in Figure 5-29, when function getParentojVariantFeature has

alternative features j and k as its input parameters, it returns the parent feature /.

XIV. getParentofVariantClasses

declare function local:getParentofVariantClasses ($one as
xs: string, $two as xs:string) as
item()

Figure 5- 36: getParentofVariantClasses function

The getVarentof\'rariantClasses function identifies the generalized class (superclass) of

two classes that are specialized (subclass) (Figure 5-36). The function takes as input

parameters the names of two classes and returns a node representing the generalized

class in a class diagram as itemQ in XQuery, if available. As shown in Figure 5-27,

181

CHAPTERS. TRACEABILITY FRAMEWORK

the function getParentofVariantClasses has the names of classes C1 and C2 and

returns class CO.

XV. getParentClass

declare function local:getParentClass($child as xs:string) as
item()

Figure 5- 37: getParentClass function

The getParentClass function identifies the generalized class of a class in a class

diagram (Figure 5-37). The function takes as input parameter the name of a class

and returns a node representing the generalized class in a class diagram as itemQ in

XQuery, if available. According to the example in Figure 5-27, the function

getParentClass has the name of class C1 and returns class CO.

XVI. getClassID

declare function local:getClassID($name as xs:string) as
xs:string

Figure 5- 38: getClassID function

The getClassID function identifies the identifier of a class in a class diagram (Figure

5-38). The function takes as input parameter the name if a class and returns a string

representing the identifier (ID) of the class.

5.3.2. Functions In Java

As mentioned, the extended functions implemented in java are concerned with

functions that manipulate with textual aspects in the documents. More specifically,

these functions tackle specific string manipulation issues such as synonyms, distance

between words in a sentence or paragraph, and concatenation of string.

Generally, a java function is specified as part of a package. In our work, we have

implemented two packages, namely package synonym that contains function

182

5 .3 E x te n d e d F u n c tio n s

findSynonym, and package distanceControl that contains functions containsInDistance,

stringNoSpace, setoff, and checkDistanceControl The declaration of a java function is

shown in Figure 5.39. As shown in the figure, the java function is declared as

namespace and attributed to a variable namespace.

declare namespace variable-namespace = "java:package.class";

Figure 5- 39: the declaration of a namespace referring to extra functions in Java
package

Calling a function can be appeared in the second and third subparts of Part 2 of the

traceability rules (as shown in Figure 5-3). It contains the variable-namespace which

is used as a prefix for extra functions, followed by a colon a name of function,

and a parameter(s) (if required). The template of calling an extended function

implemented in java is shown in below figure.

variable-namespace: function-name{^variable-name as input)
as output

Figure 5- 40: Calling an extended function implemented in Java

Currently we have developed five java functions as presented below. In the

following, the description of the java functions present how these functions are

called in XQuery statements and the signature of these functions in java. The

complete codes of these functions are described in Appendix Y.

I. containsInDistance ()

The containsInDistance function is a Boolean function that determines if a text

contains certain words, or their synonyms, at an appropriate distance and considers

their part-of-speech. The text may be paragraph, a sentence, or words annotated

with POS-XML tags. An appropriate distance means the existence of words

appearing in the same sentence. As shown in Table 5-1, there are variation of this

183

CHAPTER 5. TRACEABILITY FRAMEWORK

function with different types and numbers (two or three) of parameters. In java, the

parameters can be of type string (a word or many words in a text that is recognized

in XQuery language as xsrstring), arraylist 6(a textual paragraph with POS-XML tags

which appears as a sequence of XML dements in a XML-formatted document and

recognized in XQuery language as xstelement"7), and objecfi (a textual paragraph with

POS-XML tags which appears as a sequence of XML nodes in a XML-formatted

document and is recognized in Xquery language as xs:node^).

Table 5- 1: Variation of containsInDistance function with different parameters

Xquery statement Java signature

a) r: containsInDistance(
$ words 1 as nodeQ,
%mrds2 as xs:string,
%words3 as xsistring)
as as:Boolean

public static boolean
containsInDistance

(Object words 1,
String words2,
String words3)

b) ,r: containsInDistance (
%mrds1 as nodeQ,
%u>ords2 as xs:string)
as xs:boolean

public static boolean
containsInDistance

{Object words 1,
String words2)

c) r: containsInDistance(
Swordsl as elementQ*,
$jvords2 as xs:string)
as xs:boolean

public static boolean
containsInDistance

(.Arraj'l Jst words 1,
String words2)

d) containsInDistance (
%ivords1 as nodeQ,
|n>ords2 as nodeQ,
$words3 as elementQ*)
as xsrBoolean

public static boolean
containsOInDistance

{Object words 1,
Object words2,
Array!Jst words3)

e) s: containsInDistance(
%mrds1 as nodeQ,
%mrds2 as nodeQ)
as xs:boolean

public static boolean
containsOInDistance

{Object words 1,
Object words2)

6 Ja v a array List is app lied to represen t a sequence o f an X M L node o r an X M L elem ent
7 see deta ils in W 3 C . X Q u ery .
8 Ja v a Object is ap p lied to represen t an X M L node o r an X M L elem ent
9 see details in W 3 C . X Q u ery .

184

5 .3 E x te n d e d F u n c tio n s

II. fmdSynonymQ

The findSynonym function identifies a set of synonyms for a word. As shown in Table

5-2, this function taka word as an input parameter of type string in Java and returns

a set of synonyms represented as arrayList in Java, or null if the word has no

synonyms. The synonyms are identified based on WordNet (WordNet).

Table 5- 2: A layout of findSynonym function

XQuery statement Java signature

s: fi n d S y n o n y m ($ word as
xs:string)as elementQ*

public static A.rrayIJst
findSynonym (.String strlnput)

III. stringnospaceQ

The stringnospace function returns a string without white spaces. As shown in Table

5-3, the function takes a sequence of words as its input parameter and returns a

string with the concatenation of these words without whitespaces.

Table 5- 3: A layout of stringnospace function

XQuery statement lava signature

r: s t r i n g n o s p a c e (S « 'W.r as
xs:string)as xs:string

public static String
stringnospace (String str)

IV. setof()

The setof function returns a set of words composed by the input parameters. As

shown in Table 5-4, the function takes four parameters of array lists and returns a

composed array list.

1 8 5

CHAPTER 5. TRACEABILITY FRAMEWORK

Table 5- 4: A layout of setof function

XQuery statement Java signature

,c setof(Sr/ as element!)*,
§.r2 as element!)*,
Sri as elementQ*,
§s4 as element!)*)

as itemQ*

public static ArrayIJst
setof{Array! js t s 1,

Array! js t s2,
Array! j s t s3,
Array! js t s4)

V. checkDistanceControl()

The checkDistanceControl function is a Boolean function that identifies if the set of

synonyms of two words are associated in a textual paragraph. More specifically, the

paragraph contains two words, or ones of their synonyms and the existence of these

words must appear in the same sentence in the paragraph. The function takes as

input parameters a text and two sets of synonyms and returns true if the text

contains some of the words in the two sets of synonyms at an appropriate distance.

As shown in Table 5-5, the function takes three input parameters: first is typed of

string in Java and also recognized as xs:string in XQuery language; second and third

are arrayList in Java and xml elements in XQuery.

Table 5- 5: A layout of checkDistanceControl function

XQuery statement Java signature

s-. checkDistanceControl
(Slongstring as xsrstring,
si as element!)*,
s2 as element!)*) as xs:boolean

public static boolean
checkDistanceControl(

String Description,
Array!Jst s i , Array! js t s2)

5.4. Summary

This chapter has presented the traceability framework to support traceability

generation in product family systems. It also described and gave examples of

different types of traceability rules. In addition, it presented the various types of

extra functions that we have implemented.

186

Chapter 6

XTraQue Tool

This chapter presents the prototype tool called TTTraOue that we have implemented

to demonstrate and evaluate our work. It aims to illustrate how the XTraQue tool

can facilitate the traceability activity by generating traceability relations according to

the traceability reference model in Chapter 4. Section 6.1 describes the overview and

functionalities of the XTraQue tool. Section 6.2 presents the interfaces of the tool.

Section 6.3 summarises the chapter.

6.1. Overview

In order to evaluate and demonstrate our approach, we have implemented a

prototype tool called XTraQue. We envisage the use of our tool as a general

platform for automatic generation of traceability relations and support for product

family system development. The tool has been implemented in java and uses Saxon

to evaluate XQuery statements. The extra functions not supported by XQuery, as

described in Section 5.3., have also been implemented in Java.

Figure 6-1 illustrates the architecture of XTraQue tool. The tool is composed of

seven components, namely:

(a) XTraQue Interface — This component provides the user interfaces for a user to

interact with the tool ranging from the types of documents to be traced, to

the types of relations, and family of products.

(b) Document Identifier —This component identifies a set of relevant documents to

be traced based on the input from the XTraQue Inteface component.

CHAPTER 6. XTraQue TOOL

(c) Rule Template Identifier — This component identifies a set of traceability rule

templates that are related to the documents and relations to be traced based

on inputs to the XTraQue Interface component.

(d) Traceability Rule Editor - This component verifies XQuery statements in

traceability rule templates and displays the results of the XQuery statements.

(e) Ru/e Instantiator — This component creates a set of instantiated traceability

rules by replacing the placeholders of the document types in the identified

traceability rule templates with the names of the documents to be traced.

The identified traceability rule templates and the names of the documents

are derived from the Rule Template Identifier and Document Identifier,

respectively.

(f) Traceability Relation Generator — This component generates traceability relations

by executing the traceability rules created by the Rule Instantiator.

(g) Traceability Relation Presenter — This component records and presents the

traceability relations generated by the Traceability Relation Generator.

According to Figure 6-1, the XTraQue Interface component is responsible for

communication with a user for: (a) specifying the criteria for traceability generation;

and (b) entering a new traceability rule to be verified. Consider in Case (a), the

Document Identifier component identifies a set of documents and the Rule Template

Identifier identifies a set of traceability rule templates corresponding the criteria

derived from the XTraQue Interface component. The Rule Instantiator component is

responsible for creating a set of instantiated rules by instantiating the placeholders

for the documents identified by the Document Identifier component in the rule

templates identified by the Rule Template Identifier component. The Traceability Relation

Generator component is responsible for (i) executing the instantiated rules created by

the Rule Instantiator component and extra functions used in the rules; and (ii)

generating traceability relations between the identified documents. The Traceability

Relation Presenter component is responsible for recording and representing the

relations created by the Traceability Relation Generator component in XML documents.

However, consider Case (b), the Traceability Rule Editor component is responsible for

1 8 8

6.1 Overview

(i) verifying XQuery statements in traceability rule templates derived from the

XTraQue Interface component and (ii) displaying its results.

Figure 6- 1: The Architecture of XTraQue Tool

The various components of the XTraQue tools support various functionalities.

These functionalities include:

(i) Traceability Selection, which is concerned with the specification of the documents

to be traced and the types of relations to be created;

189

CHAPTER 6. XTraQue TOOL

(ii) Traceability Creation, which is concerned with the generation of direct and

indirect traceability relations based on the input given in (i);

(iii) Traceability Presenter, which is concerned with the recording and representation

of the traceability relations generated in (ii); and

(iv) Trace Rule Editor, which is concerned with the visualization and testing of new

traceability rules.

In the following, we explain these functionalities in more details.

I. Traceability Selection

In order to support this functionality, the tool provides sophisticated user interfaces

in which a user can select to establish traceability relations between different levels

of documents. According to the traceability reference model (in Chapter 4), two

levels of documents are namely product line level and product member level. More

specifically, this functionality allows the user to create the relations between:

(a) documents of two specific product members,

(b) documents at the level of product line and one specific product member,

and

(c) documents at the level of product line and two specific product members.

Case (a) supports the generation of traceability relations in groups 2, 3, 4, and 5, as

described in Chapter 4. Case (b) supports the generation of traceability relations in

groups 1, 3, 5, and 6. Case (c) supports the generation of traceability relations in all

groups.

For any of cases (a) to (c) above, the user can select to trace all the documents

related to the levels of product line and product members, or to specify which

documents to be traced based on:

• type of documents (e.g. all use cases, class, statechart, and sequence

diagrams of the product member level, or all feature, subsystem, process,

and module models of the product line level);

190

6.1 Overview

• particular document names; or

• types of traceability relations.

In this latest case, the types of documents to be traced are selected depending on

the documents that can be associated with a specific relation type. For example, an

implements relation may exist between class diagram and feature models or use cases,

sequence diagrams and feature models or use cases, and statechart diagram and

feature models or use cases. Therefore, documents created during domain design at

the product line level (i.e. subsystem, process, and module models) will not be

selected to be traced in this case. Moreover, the tool will not attempt to establish

implement relations between documents that have been selected but do not hold the

relation type (e.g. feature model and use case).

In the case that the user selects to trace all documents or documents based on first

two cases above (type of documents and particular document names), the tool also

allows the user to specify the types of relations to be traced. The user can select to

trace the documents for all traceability relations for any of those two cases. In

Section 6.2, we show user interfaces for this functionality and an example of using

the interfaces in which the traceability user has selected the types of artefacts to be

traced and the types of traceability relations.

II. Traceability Creation

The generation of direct and indirect traceability relations is executed by the

components in XTraQue tool i.e. Document Identifier, Rule Template Identifier, Rule

Instantiator, and Traceability Relation Generator. This functionality reflects Traceability

Generator process described in Section 5.1. For each pair of documents, the tool

identifies traceability rule templates associated with the documents, instantiates the

placeholders for the document types in the rule templates, generates direct relations

in XML format and indirect relations based on the direct ones also in XML format.

191

CHAPTER 6. XTraQue TOOL

The tool also applies the extra functions implemented in XQuery and Java

languages, if applicable.

Since the XTraQue tool allows a user to select to trace all documents of product

family systems or specific documents, the tool can generate traceability relations in

different levels of granularity, namely:

• at the level of two product members;

• at the level of product line and product member(s);

• at the level of particular documents in the product line; and

• at the level of particular documents in product member(s).

III. Traceability Presenter

The generated traceability relations are recorded and represented in XML

documents. Moreover, the XTraQue tool also keeps track of the traceability activity

by specific log files represented as XML documents.

IV. Traceability Rule Editor

The XTraQue tool allows for the creation of new traceability rules and the

execution of these rules in order to verify their correctness before including these

rules in the set of traceability rule templates to be used by the tool. After the

traceability user is satisfied with a new rule, this rule can be inserted in the

document containing all the traceability" rule templates. In Section 6.2, we show a

user interface for this functionality and an example of using the interface for the

case in which the user has created a new rule and verified its correctness.

6.2. User Interfaces

This section illustrates the user interfaces of the XTraQue tool and describes how a

user can execute the various activities supported by the tool. We illustrate the use of

the tool by giving examples based on the mobile-phone systems (see Chapter 7).

1 9 2

6.2 User Interfaces

6.2.1. Specifying the Scope of Traceability Generation

As shown in Figure 6-2, this interface supports the functionality of Traceability

Selection. The interface consists of three main parts:

(a) a panel representing a product family with its various product members (in

this case, a mobile-phone family with three product members i.e. PM1,

PM2, and PM3);

(b) a panel consisting of three menus of options for specifying the scope of

traceability activity; and

(c) a command button (“Go”) for moving to the next interface.

The panel b is for specifying the scope of traceability generation. According to the

traceability reference model, the product family systems consist of two levels:

product line and product member.

• The first menu of options in the panel is for specifying traceability between

product members or between product line and product member(s) (see Figure 6-3).

• The other two menus of options are for specifying the names of product

members to be traced (see Figure 6-3).

193

CHAPTER 6. XTraQue TOOL

The various options in panel b allows a traceability user to specify the scope of

traceability (i) between one product line and one product member, (ii) between one

product line and two product members, or (iii) between two product members.

As shown in Figure 6-3, the user firstly considers the situation in which wants to

generate traceability relations between documents at the levels of product line and

two product members. Secondly, the user specifies two product members, namely

model PM1 and model PM2. Then the user selects to move to the next interface.

Figure 6- 3: Example interface demonstrating specifying the scope of traceability
generation between documents at the levels of product line and two product

members, model PM 1 and model PM 2

6.2.2. Specifying Types of Documents and Relationships

As shown in Figure 6-4, this interface also supports the functionality of Traceability

Selection. The interface follows from the interface in Figure 6-2. It allows a user to

specify the types of documents and relationships to be traced and consists of four

main parts:

194

6.2 User Interfaces

(a) a panel that is composed of three sub-panels, namely requirement, design, and

architecture. Each sub-panel contains different icons representing the various

types of documents of each development phase. The requirement sub-panel

contains use case and feature model icons representing documents produced

during the analysis phase. The design sub-panel contains class diagram, statechart

diagram and sequence diagram icons representing documents produced during

the design phase of the product-members. The architecture sub-panel contains

subsystem model, process model and module model icons representing documents

produced during the design phase of the product-line. Table 6-1 shows all

the icons representing the various documents.

(b) a list that shows nine types of traceability relations supported by the

approach. This allows the traceability user to select one or many relations

types to be generated.

(c) a panel that shows the selected documents to be traced.

(d) a panel with two buttons “Go” and “Trace All”, which either presents the

next interface or executes the traceability generation for the selected

documents and relations, respectively.

1 9 5

CHAPTER 6. XTraQue TOOL

Figure 6- 4: An XTraQue interface for specifying types of document artifacts and
relationships according to tracing between the product-line and two product

members

The information shown in panel a depends on the scope of traceability generation

that the user has specified in the previous interface (Figure 6-2). According to the

example in Figure 6-3, the scope of traceability generation is specified between a

product line and two product members, model PM 1 and model PM2. Thus, in this

case, panel a (Figure 6-4) shows documents in all three sub-panels i.e. requirements,

design, and architecture.

As shown in Figure 6-4, there are three icons {use case PM1, use case PM2 and feature

model) in sub-panel requirements, six icons (class diagram PM1, class diagram PM2,

statechart diagram PM l, statechart diagram PM2, sequence diagram PM1, and sequence

diagram PM2) in sub-panel design, and three icons (subsystem model, process model, and

module model) in sub-panel architecture.

1 9 6

6.2 User Interfaces

Table 6- 1: Icons in panel (a)

Sub-panel Icon Documents

Requirements C P Use case

U seC æ e

Requirements

1

Feature model

sciure Md cN

Design S 11 Class diagram

Oujiirn

Design Sequence diagram& 0
ouguerue
Diagram

Design Statechart diagramv£>
State Chart

Architecture
UCT

Ì

i
Module model

vIocUeModE

Architecture

1
%

i
Process model

^tocsss Mori

Architecture
Ç) cip

n

Subsystem model
S u b a y s ter

MuuM

Consider the situation in which the scope of traceability generation is between two

product members, model PM 1 and model PM2. In this case, panel a shows only two

sub-panels requirements and design (as shown in Figure 6-5), with icons use case PM1,

use case PM2, class diagram PM1, class diagram PM2, statechart diagram PA11, statechart

diagram PM2, sequence diagram PM1, and sequence diagram PM2.

1 9 7

CHAPTER 6. XTraQue TOOL

m
File Options

REQUIREMETNS

U se Case Use Case

diàlisi

SELECTED ARTIFACTS Relation Type

satisfiability
refinement
implements
dependency
evoluation
containment
overlap
similar
different * •

Figure 6- 5: An XTraQue interface for specifying types of document artifacts and
relationships according to tracing between two product members, model PM 1 and

model PM 2

Figure 6-6 illustrates how to work with the interface.

• Firstly, the user selects a type of document by clicking on its respective icon

in panel a, which is then displayed in panel c.

• Secondly, the user selects one or many relationship type(s) from the list in

panel b.

• Next, the user either selects the “Go” button to move to next interface or

the “Trace All” button to execute the generation of traceability relations for

all selected documents according to the specified criteria (i.e. systems,

document types, and relationship types)

198

6 .2 U ser In te r fa ce s

W ÊÊÊÊÊÊÊÊÊ
File Options

REQUREMETNS

$3
Use Case

1
J Use Ccbb

JP.i xj

DESIGN

Class Diaron

Diagram

State Chart

S tate Chart

Oass Diacrem

%
Sdùûc iüe
Diagram

ARCHITECTUFtE

O u =
S u b sys te m

M u l U Process Model

Figure 6- 6: Example interface demonstrating specifying of types of document
artifacts and relationships

6.2.3. Specifying Particular Documents and Relationship Types

As shown in Figure 6-7, this interface also supports the functionality Traceability

Selection. It follows from the interface in Figure 6-4 and allows a user to specify and

visualize specific documents of the types selected in the previous interface. This

interface consists of:

(a) a panel that lists the types of documents following from the selected

documents from the previous interface (Figure 6-6). The lists of documents

are categorized as product line and product member levels. The example in Figure

6-7 shows three lists of documents, namely product line, PM1, and PM2. The

product line list has two types of documents, feature model and subsystem

model. The PM1 list has two types of documents, use case and class

diagram. The PM2 list has one type of documents, use case; since these have

been the documents selected in the previous interface (see Figure 6-6).

1 9 9

C H A P T E R 6. X T ra Q u e T O O L

(b) a panel that displays lists of document names of the document types shown

in panel a to be selected by the user. The selected documents from panel b

are then listed in a panel e.

(c) a panel that displays the content of a selected document.

(d) a list that shows nine types of relationships. This, again, allows a user to

specify the types of relationships to be generated.

(e) a panel that shows selected documents to be traced.

(f) a panel with three buttons, namely “Trace”, “Reset”, and “Save Trace”,

which are related to actions for generating traceability relations, resetting the

selection, and saving the selecdon, respectively.

Figure 6- 7: An XTraQue interface for specifying particular documents and
relationships according to the specified criteria from the previous interface (Figure

6-4)

The example shown in Figure 6-7 follows from the documents selected in the

example in Figure 6-6. This shows the case in which the user has selected

documents use case and class diagram for product member PM1, use case for product

member PM2, feature model and subsystem model from the previous interface.

200

6 .2 U ser In te r fa ce s

File Options

Types of software artefacts

clais diagram
Istatechart diagram
sequence diagram

Lookup for: PM1

None

iure caie
class diagram
statechart diagram
sequence diagram

Lookup for: PM2

None

t —rtrcrrarm--------------------------
C3 localtexmf

o- C3 MSOCache
C3 My Research

o- C3 N-Gage
o- C3PM1
■»* C3 PM2
«- C3 PM3
•- C3PM4
^ .d lP ro q ra m .file s
« < »i latnaron------------------------
*• C3 localtexmf —j
®- C3 MSOCache
O" | I3 My Research
o -Q N -G age
&-C3PMI
0- C3 PM2
■^C3PM3
o- [3 PM4
.<£. i~“l.Rroarani.files.... ▼
<• < •

Figure 6- 8: An XTraQue interface for specifying particular documents and
relationships according to the specified criteria from the previous interface (Figure

6-5)

However, Figure 6-8 shows the case in which the user has selected documents use

case, class diagram, sequence diagram and statechart diagram of product member PM1 and

use case, class diagram, sequence diagram and statechart diagram for product member PM2

from the previous interface (see Figure 6-5 and Figure 6-6).

Figure 6-9 shows how to work with the interface.

• Firstly, the user selects a type of document from the list in panel a. The tool

displays a list of documents according to the specific type in panel b.

• Secondly, if the user selects a particular document in the list in panel b, the

content of the document is then shown in panel c and the document is

listed in panel e (see Figure 6-9).

• Thirdly, the user specifies the types of traceability relations from the list in

panel d.

201

C H A P T E R 6. X T ra Q u e T O O L

• Optionally, the traceability user selects the “Trace All” button to generate

the traceability relations (according to the information in panels d and e),

the “Reset” button to start the selection again, or the “Save Trace” button

to save the selection.

""“I Cflfii™iy_artefacts/featur&imocÎ
T 'i Feature_MP.xml \

[D Feature_MP_backup.xml 1
V j Feature_MP_reflned.xml /
¡j^mall_Feature_MP.xmly' 1

«Feature.ModeixrplflerfSi^i^yi'Mvw.wS.org^OOl/XMLSchDrnainstance''*
v^Feature»

f «Feature_name»*NN1 >Bluetooth«/NNl >«/Feature_name> \
V «Description»)
N . «NN1 >Bluetooth</NN1 »

«WZ»enables«JWZ*

3

3 c ^ M l/u s e _ c a s J k
□ PM l_UClxm lV
Q PM1_UC2xml \
Q PM1_UC3xml \

«functionalreqspec xmlnsxst=”http jAvwww3.org/20G1/XMLScherrpfcietarice'1 xsmoNamespaceSche
tion="C:'XTraOue_TEST\8Use_Case_Descripticns\Use_Case xscfA

<Use..Case UseCaselD=’7650_UCr Bvstem="Mob\e Phone” Family..Member=765

«WG»Making «/WG» \
«AT0»a«/AT0» jg % -

Z3 c;/PM2/use_case
D PM2.UC1 xml
Q PM2_.UC2.xml
Q PM2_UC3xml

«functionalreqspec xmlnsxsi-'http;iAwww.w3.org/20G1/XMLSchema-instance"xsi:noNamespaceSche
tion='C:\XTraQue_TES‘nuse_case\Use_Case.xscT»

«Use_Case UseCaselD-“B600_UC2“ System="Mobile Phone" Family_Memberr'660
«Title»

«WO»Taklng«/WG»
<ATQ>a«/AT0>

*

< I ►

Figure 6- 9: Example interface demonstrating: displaying the context of an XML-
based document; and selection of documents types and relationship types to be

traced

6.2.4. Editing and Testing XQuery Statements

As shown in Figure 6-10, this interface supports the functionality Traceability Rule

Editor. This interface consists of:

(a) a panel for editing XQuery statements.

(b) a panel that has six buttons:

• “New” button for resetting the content in panel a\

• “Load” button for loading an existing XQuery statement recorded in a file,;

• “Save” button for recording an XQuery statement in panel a in a file;

202

http://www.w3.org/20G1/XMLSchema-instance%22xsi:noNamespaceSche

6 .2 U ser In te r fa ce s

• “Run!” button for execution the XQuery statement in panel a and the

results are then displayed in panel r,

• “Reset” button for resetting the content in panel r, and

• “SaveResult” button for recording the results in panel c in a file.

(c) a panel for displaying the results of executing the XQuery statement in panel

(a). •

Figure 6-11 illustrates an example where a user works with the interface.

• Firstly, the user edits XQuery statements in panel a.

• Secondly, the user selects an action by clicking a button.

• Finally, the user selects “Run!” button to execute the XQuery statement.

The results are shown in the panel c.

2 0 3

C H A P T E R 6. X T ra Q u e T O O L

Figure 6- 11: Example interface for creating and verifying traceability rules

6.3. Summary

This chapter has presented the XTraQue tool including its functionalities and user

interfaces. The chapter has illustrated the use of the tool to support the automatic

generation of traceability relations.

2 0 4

Chapter 7

Mobile Phone Systems — Case Study
This chapter presents the case study of mobile-phone systems. Section 7.1 describes

the overview of the case study. Section 7.2 illustrates the documents in the systems.

Section 7.3 summarises the chapter.

7.1. Overview of the Case Study

The objectives of the creation of the case study are:

(i) to study the activities during the development of product family systems i.e.

domain analysis and domain design for product family, and requirements

engineering and design for product members; and

(ii) to demonstrate and evaluate our approach.

The case study has been developed based on study, analysis, and discussions of

mobile-phone domain, and ideas in (Nokia) (OMA). Mobile-phone systems are

created based on marketing demands which requires a variety of products. In this

way, a number of documents are created by stakeholders ranging from market

researchers, to requirements engineers, product-line engineers, software analysts,

and software developers. Our case study is composed of a family of mobile-phone

with three mobile-phone members, namely PM1, PM2, and PM3 that we have

created. Each member has shared and specialized functionalities with the family.

The product members are aimed to satisfy different targets of customers e.g. trendy,

luxurious, budget, and high-technology customers.

C H A P T E R 7. M O B IL E P H O N E S Y S T E M S - C A S E S T U D Y

The list of functionalities and specifications of the mobile-phone members in our

case study are shown in Table 7-1 and Table 7-2, respectively. We describe below

the details of each mobile-phone product member.

PM1

The product member PM1 is expected to be a trendy phone and targeted for young

people. As shown in Table 7-1 and Table 7-2, the product member PM1 has some

basic functionalities such as make and receive calls using GSM 900 and 1800 and send and

receive text messages. It has also advanced functionalities such as (a) send and receive

multimedia messages which supports a user to store, download and send pictures and

voice with a message, (b) access Internet which allows a user to browse and download

data based on WAP 1.2.1 technology, (c) email system which supports the email

protocol e.g. SMTP, POP3, and IMAP4, and (d) support Java technologies e.g. CLDC

and MIPD. Furthermore, the phone model has advanced features such as (i) take

photos using VGA camera, (ii) hand-free speaker, (iii) connect via Bluetooth, and (iv) infrared.

PM2

The product member PM2 offers an elegant design and is targeted for users who

use a mobile phone for assisting business. As shown in Table 7-1 and Table 7-2, the

product member PM2 has basic functionalities such as make and receive calls using

GSM 900, 1800 and 1900 and send and receive text messages. It also has functionalities

such as (a) send and receive multimedia messages which supports a user to store,

download and send pictures and voice with a message, (b) access Internet which allows

a user to browse and download data based on WAP 2.0 and XHTML technologies,

(c) email system which supports the email protocol e.g. SMTP, POP3, and IMAP4,

and (d) support Java technologies e.g. CLDC, MIPD, Wireless messaging API, and

Mobile media API. Moreover, PM2 has extra features such as (i) take photos using

VGA camera with 2x digital spom, and (ii) play RealOne tunes and videos.

PM3

The target customers of the product member PM3 are users who enjoy extensive

games and music. PM3 introduces a new category of phone games. It has extra

206

7.1 O verv iew o f th e C ase S tu d y

devices like mobile game deck, hand-speaker, Bluetooth and USB, and extra plug-in

applications like MP3 player, and stereo FM radio. PM 3 offers advanced

functionalities such as (a) send and receive multimedia messages which supports a user to

store, download and send pictures and voice with a message, (b) access Internet which

allows a user to browse and download data by supporting WAP 1.2.1 and XHTML

technologies, (c) email system which supports the email protocol e.g. SMTP, POP3,

and IMAP4, and (d) supporting]ava technologies e.g. CLDC, MIPD, Wireless messaging

API, and Mobile media API.

2 0 7

CHAPTER 7. MOBILE PHONE SYSTEMS - CASE STUDY

Table 7- 1: Functionalities of Mobile Phone Members

Functionality PM1 PM2 PM3
FI: Make and receive calls using GSM 900 X X X
F2: Make and receive calls using GSM 1800 X X X
F3: Make and receive calls using GSM 1900 X X
F4: Hold and swap a call X X X
F5: Receive and update voice mail X X X
F6: Display and update time and date X X X
F7: Set alarm and time X X X
F8: Record, display, and manipulate call logs X X X
F9: Play games X X X
F10: Update calendar X X X
FI 1: Add, delete, and update preferences X X X
FI2: Add, delete, and update contacts X X X
F13: Include calculator X X X
F14: Take photos using VGA camera X
FT 5: Take photos using VGA camera with 2x digital zoom X
FI 6: FM radio X
FI7: Email system using SMTP, POP3, or IMPA4 X X X
FT 8: Hand-free speaker X X
FI9: Send and receive text messages X X X
F20: Send and receive multimedia message X X X
F21: Play RealOne format tunes and video X
F22: Play and record MP3 format tunes X
F23: Record and update video (clips) X
F24: Play 3GPP video format X X
F25: Play Real Video format X
F26: Access Internet using WAP 1.2.1 X X
F27: Access Internet using WAP 2.0 X
F28: Access Internet using WAP XHTML X X
F29: Connect via Bluetooth transfer data X X X
F30: Connect via Infrared transfer data X . X
F31: Connect via USB X
F32: Play MIDI formatted tunes X X X
F33: Play AMR formatted tunes X X
F34: Play AAC formatted tunes X
F35: Play MP3 formatted tunes X
F36: Play WAV formatted tunes X
F37: Play True Tones formatted tunes X
F38: Compose and play MIDI formatted ring tones X X
F39: Record and update voice messages X X X
F40: Transfer data via SyncML and TCP/IP X X X
F41: Support CLDC Java technology X X X
F42: Support MIPD Java technology X X X
F43: Support Wireless messaging API Java technology X X
F44: Support Mobile media API Java technology X X

208

T a b l e 7 - 2 : S p e c i f i c a t i o n s o f M o b i l e P h o n e M e m b e r s

Specifications PM1 PM2 PM3
Size • Weight: 154g

• Dimensions: 114 x 56 x 26 mm, 138
cc

• Weight: 122 g (with BL-5C battery)
• Dimensions: 108.6 x 58.2 x 23.7mm, 113cc

• Weight: 137 g
• Dimensions: 134 x 70 x 20 mm

Display and User
Interface

• Illuminated high-contrast, full-
graphics colour display

• Graphical user interface
• Joystick with five-way navigation

• Bright active matrix TFT colour display
• 65,536 colours
• 176 x 208 pixels
• Graphical user interface with selectable

themes
• 5-way joystick navigation

• TFT, 4096 colors
• Screen size: 176 x 208 pixels
• Five-way directional controller

Integrated VGA
digital camera

• Image capture at 640 x 480
resolution

• 640 x 480 pixel resolution; standard,
portrait, and night modes; 2x digital zoom;
self-timer

N/A

Video Recorder N/A • Video Recorder: Select picture size QCIF
(176x144) or subQCIF (128x96); audio
on/off; 2x digital zoom

N/A

Specifications PM1 PM2 PM3

RealOne Player N/A • RealOne Player: Playback and stream
RealMedia and 3GPP-compliant content

N/A

Memory Functions • Phonebook: Up to 500 names
• SMS: Up to 100 messages of text
• MMS: Up to 50 messages of

multimedia
• Calendar notes: 100-250 notes

(depending on the length of the
notes

• To do list: Up to 30 notes
• 3.6 MB internal shared memory

• Phonebook: Up to 500 names
• SMS: Up to 100 messages of text
• MMS: Up to 50 messages of multimedia
• Calendar notes: 100-250 notes
• To do list: Up to 30 notes
• 6 MB internal shared memory
• Memory card slot for additional user

memory.

• Phonebook: Up to 800 names
• SMS
• MMS: Up to 65 messages of

multimedia
• Calendar notes: 100
• To-do list:
• 3.4 MB internal shared memory
• Memory card slot for additional user

memory

Messaging • Text/Multimedia messaging:
combine picture, text, voice clip

• Email protocols: SMTP, POP3, and
IMAP4

• Text/Multimedia messaging: combine
image, video, text and voice clip

• Email over GSM data, HSCSD, and
GPRS

• Email protocols: SMTP, POP3, and
IMAP4

• Text/Multimedia messaging: Combine
image, video, text and voice clip

• Email over GSM data, HSCSD, and
GPRS

• Email protocols: SMTP, POP3, and
IMAP4

Wireless Connectivity • Infrared
• Bluetooth

• Bluetooth
• Infrared
• USB

• Bluetooth

Specifications PM1 PM2 PM3
Browsing • Browser supporting WAP 1.2.1 over

GSM, HSCSD, and GPRS.
• Browser supporting WAP 2.0 over GSM,

HSCSD, and GPRS
• Advanced XHTML browser

• Browser supporting WAP 2.0 over
GSM, HSCSD, and GPRS

• Advanced XHTML browser

Data Transfer • Up to 43.2 kilobits per second in
high-speed circuit switched data
networks

• Up to 40.2 kilobits per second in
GPRS networks

• Up to 40.2Kbps in GPRS networks
• Up to 43.2Kbps in HSCSD networks

• Lip to 43.2Kbps in GPRS networks
• Lip to 43.2Kbps in HSCSD networks

Call Management • Contacts: Advanced contacts database
with support for multiple phone and
email details per entry, also supports
thumbnail picture and groups

• Speed dialling
• Logs: Keeps lists of your dialled,

received, and missed calls
• Automatic redial
• Automatic answer (works with

compatible headset or car kit only)
• Supports Fixed Dialling Number,

which allows calls only to predefined
numbers

• Conference call

• Contacts: Advanced contacts database
with support for multiple phone and email
details per entry, also supports thumbnail
picture and groups

• Speed dialling
• Logs: Keeps lists of your dialled, received,

and missed calls
• Automatic redial
• Automatic answer (works with compatible

headset or car kit only)
• Supports Fixed Dialling Number, which

allows calls only to predefined numbers
• Conference call

• Contacts: Advanced contacts database
with support for multiple phone and
email details per entry, also supports
thumbnail picture and groups

• Speed dialling
• Logs: Keeps lists of your dialled,

received, and missed calls
• Automatic redial
• Automatic answer (works with

compatible headset or car kit only)
• Supports Fixed Dialling Number, which

allows calls only to predefined numbers
• Conference call

Java™ Applications • Supporting Java™ MIDP 2.0
applications

• Supporting Java™ MIDP 2.0
applications

• Supporting Java™ MIDP 2.0
applications

Specifications PM1 PM2 PM3

Voice Features • Voice recorder
• Integrated handsfree speaker

• Voice recorder • Voice recorder
• Integrated handsfree speaker

Operation • GSM 900, GSM 1800 • GSM 900, GSM 1800, GSM1900
networks

• GSM 900, GSM 1800, GSM1900
networks

Operation System • Symbian OS • Symbian OS • Symbian OS

Power Management • Battety Cell BLB-2 830 mAh Li-Ion • Standard battery (BL-5C) 850 mAh,Li-
Ion

• Standard, Li-Ion 850 mAh (BL-5C)

7.2 Documents in the Mobile-Phone Systems

7.2. Documents in the Mobile-Phone Systems

The following sections discuss the documents created in the case study, according

to the traceability reference model in Section 4.2. There is a single instance of the

feature and subsystem models, but there exist various instances of the process and

module models, as well as there exist many instances of use cases, class, statechart,

and sequence diagrams. Some examples of these documents in XML format are

shown in Appendix D. The complete set of the documents for the mobile-phone

family and its three product members can be found at (XTraQue).

7.2.1. Feature Model of Mobile-Phone Systems

As illustrated in Figure 4-1, the feature model in the case study of mobile-phone

system has 129 features which are mandatory, representing common features,

alternative and optional', representing different features between product members.

For example, all product members must provide making a call, receiving a call, screen

server, wallpaper, and game, calendar, and clock features. However, the product members

can support different network feature such as CSD, GPRS, GSM, PISCSD, and

EDGE. Furthermore, the associations between features are analyzed and captured

in the feature model e.g. the product member which provides a browser feature has

also WAP or XFITML features.

7.2.2. Subsystem Model of Mobile-Phone Systems

We designed five subsystems for mobile-phone systems as shown in Figure 4-5. The

brief descriptions of each subsystem are listed as follows:

I. Operating Subsystem

This subsystem provides facilities for performing basic tasks in the mobile-phone

systems. Examples of these tasks are: (a) controlling the interaction with all devices,

software, and data; (b) performing the interaction between internal applications (e.g.

213

C H A P T E R 7. M O B IL E P H O N E S Y S T E M S - C A S E S T U D Y

games, multimedia, and PC connective); (c) responding to internal hardware (e.g.

screen, keypad, and Bluetooth), different types of input data (e.g. air signal,

keystroke, screen touch, voice) and different types of output data (e.g. air signal,

screen-display, voice).

II. Messaging Subsystem

This subsystem manages the exchange and manipulation of messages. It supports

two services: short message sendee (SMS) for textual messages, and multimedia

message sendee (MMS) for multimedia messages. The services are based on a store

and forward protocol. The subsystem interacts with short message sendee centers

(SMSC) or multimedia message service centers (MMSC) to receive an incoming

message and to fonvard an outgoing message.

III. Mobile Internet Subsystem

This subsystem manages the interaction between wireless networks and tools such

as plug-in applications (e.g. for online games and for mobile browser) and extra

hardware (e.g. mobile game desk and 3G PCMCIA data card) for supporting mobile

internet applications. The subsystem supports some special functionalities e.g.

editing and browsing mobile web pages by using WML and XHTML techniques.

The subsystem is also able to activate 24-hour connectivity7 and support mobile

functions e.g. playing online games, managing personal online data, entertaining

(playing online radio and video), and servicing online banking.

IV. Network Subsystem

This subsystem supports the communication between different network protocols

and maintenance of the network coverage of the mobile-phone devices. It manages

a network protocol for passing data over a mobile phone network e.g. GSM, GPRS,

HSCSD, CSD and EDGE. Moreover, the subsystem supports different network

protocol architectures, for examples, TCP, IPv4, IPv6, MSCHAP v2, IPSec,

TCP/IP plug-in framework, WAP stack, and Multiple PDP context.

214

7.2 Documents in the Mobile-Phone Systems

V. Calling and Applications Subsystem

This subsystem provides the telephony management (e.g. creating and responding

phone calls), supports fundamental functions (e.g. a multimode API), and enables

the interworking of house-in applications (e.g. electronic games, clock and radio). In

particular, the subsystem provides the multimode telephony to enable integrating

the rest of the applications interworking and the creation of advanced data services

based on global network standards including GSM (Phase 2), GPRS (r4, Class B),

CDMA2000 (lx), EDGE (ECSD, EGPRS), and WCDMA (r4).

7.2.3. Process Models of Mobile-Phone Systems

We created two process models i.e. short messaging service (SMS) process model

(as shown in Figure 4-7), and Internet application process model (as shown in

Figure 7-1). We describe below these process models.

I. Short Messaging Service (SMS) Process model

Short messaging service (SMS) process model is a refinement of the messaging

subsystem. The process model illustrates the activities of sending a short text

message. The system verifies the network signal, and then interacts with the short

messaging service (SMS) center. When a phone user has created a short text message,

the system sends off the message and waits for a notification. The process model

has (a) four resident processes, namely control\ check signal, edit, and notification-, (b) one

multiple process, namely short messaging service (SMS) control, and (c) two transient

processes, namely short messaging service center (SMSC), and update remotely. We describe

below each of the above processes: •

• Control - This process initiates an action of sending a short message when a

mobile-phone user has created a short text message and displays an

acknowledgement to the user. The process keeps the sent message in the

mobile-phone memory.

• Check signal - This process performs checking if a signal has been established

and is ready for messaging.

215

C H A P T E R 7. M O B IL E P H O N E S Y S T E M S - C A S E S T U D Y

• Update remotely — This process is to allow update of remote data.

• E dit— This process performs the composition of a short message. The short

message contains a receiver’s address and context. The process provides a

list of contacts and a set of template short messages. The process supports

two editing modes i.e. alpha mode and predictive mode. The alpha mode

accepts alphanumeric. The predictive mode predicts a word from an input

keystroke.

• Short Messaping Sendee (SMS) Control - This process performs deliver)7 and

receives of a short message to a short message sendee center (SMSC) that

connects the telecommunication network (e.g. GSM, HSCSD, and EDGE)

through the short message sendee gateway mobile switching center (SMS

GMSC). This process also attaches extra information about SMSC in a short

text message.

• Short messaging sendee center (SMSC) - This process is instantiated by messaging

sendee centre (MSC) and responds a message from the SMS control process.

The MSC broadcasts the message to the base station systems (BSS) and the base

transceiver stations (BTSs) page the destination MSC.

• Notification — This process is to notify incoming messages and acknowledge

of sending a short text message.

II. Internet Application Process Model

Internet application (L4) process model is refined for the mobile Internet subsystem.

The process model illustrates the activities of accessing the Internet from a mobile-

phone set. Initially, the system maintains the reception in order to access the

Internet. When the system has received a message from an external process, it

enables taking an action i.e. downloading software, restoring data, or launching

applications. The process model has five resident processes, namely trigger, download

software, launch application, restore data, and maintain receptions, and one transient process,

namely control. We describe each of the processes: •

• Trigger— This process is to notify incoming data to a mobile-phone system.

216

7.2 Documents in the Mobile-Phone Systems

• Control — This process initiates an action of accessing the Internet. The

process then interacts with other processes in order to perform

downloading software, launching an application, or restoring data. The

process keeps the log of transactions in mobile-phone memory.

• Maintain reception - This process performs the maintenance of reception

between a mobile-phone handset and telecommunication network.

• Download software - This process performs downloading software in order to

support launching an application on a mobile-phone handset.

• haunch application - This process performs launching an application that

interacts the Internet.

• Restore data — This process performs restoring data in mobile-phone

memory.

/---------------'
* /

Tnggcr /

Legend ---------- ~~~—
— P ro cess --------

/N am o / Resident
/gam? 7 Trlulskot

4 T l '.w >T Muli.pk-

— Message
~ ±i Message queue

Message/ Reply

Shared <

Figure 7-1: Internet application process model

7.2.4. Module Models of Mobile-Phone Systems

We created two module models i.e. the module model (as shown in Figure 4-9) for

the process model short messaging service (SMS) control., and the module model (as

shown in Figure 7-2) for the process model Internet application.

217

CHAPTER 7. MOBILE PHONE SYSTEMS - CASE STUDY

I. Module Model for Short Messaging Service (SMS) Control Process Model

This module model illustrates a set of modules and their associations to perform

messaging. It contains 18 modules which include (a) 3 service modules, (b) 1

environment handling module, (c) 10 technique biding modules, and (d) 4 utility modules.

Table 7-3 presents the description and type of each module.

Table 7- 3: Modules for short messaging service (SMS) control process model

Module Type Description

Messaging controller Precoded Controlling the messaging.

Connecting Precoded Establishing a network

communication.

Data controller Precoded Controlling internal data of mobile-

phone handset.

Multi-network Precoded Responding multi-networks.

Signaling controller Template Providing algorithms for

maintenance the mobile-phone

reception and supporting different

mobile-phone networks.

10 Interface controller Precoded Providing software interfaces for

input and output devices of a mobile-

phone handset.

ISdit controller Precoded Managing an editor

Output Interface Skeleton Managing output devices of a mobile-

phone handset.

Input/ Output Interface Skeleton Managing input and output devices

of a mobile-phone handset.

Input Interface Skeleton Managing input devices of a mobile-

phone handset.

Display Precoded Displaying data to output devices of a

mobile-phone handset.

Touch screen Precoded Managing a touch screen of a mobile-

218

7.2 Documents in the Mobile-Phone Systems

phone handset.

Keypad Precoded Managing a keypad of a mobile-

phone handset.

joystick Precoded Managing a joystick of a mobile-

phone handset.

Textual display Precoded Managing a textual display of a

mobile-phone handset to support

displaying text.

Web display Precoded Managing a graphical display of a

mobile-phone handset to support

displaying web pages

Timer Precoded Setting and displaying time

Data encryption Precoded Encrypting and decrypting data.

II. Module Model for Internet Application Process Model

The module model illustrates a set of modules and their associations to perform

activities in the Internet application process model. The model contains 22 modules

which include (a) 4 service modules, (b) 2 environment handling modules, (c) 13 technique

hiding modules, and (d) 3 utility modules. Table 7-4 presents the description and type

of each module.

219

CHAPTER 7. MOBILE PHONE SYSTEMS - CASE STUDY

Table 7- 4: Modules for Internet application process model

Module Type Description

Application controller Precoded Controlling a running (local)

application.

Connecting Precoded Establishing a network

communication.

Data controller Precoded Controlling internal data of mobile-

phone handset.

Mobile-phone Internet

application controller

Precoded Controlling a running Internet

application.

Multi-network. Precoded Responding multi-networks.

Multi-platform Precoded Responding multi-platform

applications

Signaling controller Template Providing algorithms for

maintenance the mobile-phone

reception and supporting different

mobile-phone networks.

10 Interface controller Precoded Providing software interfaces for

input and output devices of a mobile-

phone handset.

WAP controller Precoded Controlling WAP browsing

PS mailing Template Providing algorithms for composing

an emails and supporting different

emailing protocols.

JavaTM support technique Template Managing Java-based plug-ins.

Device Interface Skeleton Managing interfaces for extra devices

of a mobile-phone handset e.g. game

desk, PDA, computers.

Output Interface Skeleton Managing output devices of a mobile-

phone handset.

Input/ Output Interface Skeleton Managing input and output devices

220

7.2 Documents in the Mobile-Phone Systems

of a mobile-phone handset.

Input Interface Skeleton Managing input devices of a mobile-

phone handset.

Display Precoded Displaying data to output devices of a

mobile-phone handset.

Touch screen Precoded Managing a touch screen of a mobile-

phone handset.

Keypad Precoded Managing a keypad of a mobile-

phone handset.

Joystick Precoded Managing a joystick of a mobile-

phone handset.

Web display Precoded Managing a graphical display of a

mobile-phone handset to support

displaying web pages

Timer Precoded Setting and displaying time

Data encryption Precoded Encrypting and decrypting data.

221

P hone sy stem

Connecting Applications controller Data controller

Environment Hiding

Technique Hiding

<N©twork>
Signalling
controller

Output Interface

Mobile Internet // /applica bon
controller ------- —

— ■ — ----_ _ /

Multi network

IO
Interface
controller

Device Interface

Input/ Output Interface Input Intefaoe

Display- Touch screen Keypad Joystick

V
___--------- _________ê t___ M

Data encryption
W eb display " __ Timer

____—

Figure 7- 2: Module model for Internet application process model

7.2 Documents in the Mobile-Phone Systems

7.2.5. Use Cases, Class, Statechart, and Sequence Diagrams of
Mobile-Phone Members

The use cases are used to elaborate the satisfaction of the functionalities for each

product member. We have created four use cases for product member PM1, and

four use cases for product member PM2. The four use cases for product member

PM1 are: (i) sending a message, (ii) making a call, (iii) taking a picture, and (iv) sending

emails. The four use cases for product member PM2 are: (i) making a call, (ii) taking a

photo, (iii) sending emails, and (iv) transmitting messages.

Moreover, we have created:

(a) a class diagram for each product member PM1, PM2, and PM3. Figure 4-11

shows an extract of the class diagram of product member PM3;

(b) a statechart diagram for each product member PM1 and PM2. Figure 4-12

shows a sample statechart diagram of product member PM2; and

(c) four sequence diagrams for product member PM1, and four sequence diagrams

for product member PM2. Figure 4-13 shows an extract of a sequence diagram of

product member PM2.

7.3. Summary

This chapter has illustrated an overview of the mobile-phone system case study and

details of mobile-phone family and its members. The documents are created

according to the traceability reference model presented in Section 4.2. and used for

demonstration and evaluation our approach that will be presented in Chapter 8.

223

Part III: Evaluation and Conclusion

Chapter 8

Evaluation and Analysis

In this section, we evaluate and analyze our work. Section 8.1 describes an overview

of our evaluation, the different scenarios used to evaluate our work, and an outline

of how the evaluation was conducted. Section 8.2 presents the results of the

evaluation and analyze these results. Section 8.3 summarises the chapter.

8.1. Evaluation Overview

Our work has been evaluated in order to demonstrate the hypothesis described in

Chapter 1 that the work can support

Automatic generation o f traceability relations for

product family systems

In this evaluation, we have conducted five sets of experiments related to five

different scenarios of product family system development. The objectives of these

experiments were to evaluate:

(a) how effective XTraQue tool is able to identify relevant documents and files,

apply the various traceability rule templates, and create instantiated traceability

rules from the templates; and

(b) how effective XTraQue tool is able to generate the traceability relations

automatically.

CHAPTER 8. EVALUATION AND ANALYSIS

For objective (a), the evaluation was conducted by comparing the number of

expected and applied documents, numbers of expected and applied files, numbers

of expected and applied traceability rule templates, and numbers of expected and

applied instantiated rules. For the case of objective (b), we have measured the

precision and recall of the relevant traceability relations generated by XTraQue.

We have used the following standard definition of recall and precision given in

(Faloutsos and Oard. 1995). The authors described that precision measure

represents the proportion of retrieved documents which are relevant and recall

measure represents the proportion of relevant documents retrieved. More

specifically, we applied the precision measure to represent the proportion of

generated traceability relations which are valid and recall measure to represent the

proportion of valid traceability relations which are generated. The use of precision

and recall measurements in traceability literature is also found in (Antoniol et al.

2002; Marcus and Meletic 2003; Flayes et al. 2004; Spanoudakis et al. 2004; Cleland-

Fluang et al. 2005b). As the following, the precision and recall are calculated by:

Precision = | ST n UT | / | ST |

Recall = | ST n UT | / | UT |

where

• ST is the set of traceability7 relations detected by XTraQue;

• UT is the set of traceability relations which are identified by the traceability

user, and

• j X | denotes the cardinality of the set X.

The use of recall and precision measures to evaluate traceability approaches have

been advocated in (Antoniol et al. 2002, Cleland-Fluang et al. 2005b, Hayes et al.

2004, Spanoudakis et al. 2004). Moreover, recall and precision measures are

considered common measures for quality results of traceability relation generation.

228

8.1 Evaluation Overview

The scenarios used in our evaluation were based on two main factors. The first

factor was concerned with the different ways in which organizations can develop

product family systems. As proposed in (Krueger 2001) and described in Section

3.3, organisations can develop product family systems in three different ways:

(a) when an organisation decides to analyze, design, and implement a line of

products prior to the creation of individual product members [proactive approach)-,

(b) when an organisation enlarges the product family systems in an incremental

way based on the demand for new product members or new requirements for

existing products (reactive approach!)-, and

(c) when an organisation creates a product family based on existing product

members by identifying and using common and variable aspects of these

products (extractive approach).

These approaches are not mutually exclusive and can be used in combination. For

instance, it is possible to have product family systems initially created in an

extractive way to be incrementally enlarged over time by using a reactive approach.

The second factor was concerned with the stakeholders involved in the product

family system development process. Various stakeholders may be involved in this

process ranging from market researchers, to product managers, requirement

engineers, product-line engineers, software analysts, and software developers. These

stakeholders contribute in different ways to the product family system development

process, have distinct perspectives of the system, and have distinct interests in

different aspects of the product family systems. For example, a market researcher

may be interested in the requirements and features of a new product member to be

developed, while a software developer may be interested in the design and

implementation aspects of this new product member. Therefore, the stakeholders

would be interested in different types of documents and traceability relations

associated with these documents that may assist them in their various tasks during

system development.

229

C H A P T E R 8. E V A L U A T IO N A N D A N A L Y S IS

In order to take into consideration the various ways of developing product family

systems, the heterogeneity of stakeholders, documents, and traceability relation

types. The five scenarios used in our experiments include:

(a) the creation of a new product member from existing product family;

(b) the creation of product family from already existing products;

(c) changes to a product member in a product family;

(d) changes to the core assets of a product family; and

(e) impact of changes to the core assets of a product family to a product

member.

For each of these scenarios we have identified the stakeholders involved in the

process and the types of documents and traceability' relations according to the

traceability' reference model (see Chapter 4) that are related to the scenarios. We

describe these five scenarios in the following subsections.

8.1.1. Scenario 1: The creation of a new product member from
existing product family

This situation occurs when an organisation wants to enlarge its system and creates a

new product member. In this case, traceability relations can be used to support the

evolution of software systems and reuse of existing parts of the system. As shown in

Figure 8-1, the stakeholders involved in this scenario are:

(a) market researchers that are responsible to identify the feasibility of

producing a new product and the features that this new product should

include from a commercial point-of-view;

(b) requirements engineers and product managers that specify the requirements

of the new product;

(c) product line engineers, product managers, and software analysts that

identify which aspects in the core assets of a product family are related to

the new product;

230

8.1 Evaluation Overview

(d) software analysts and software developers that analyse existing product

members and identify the commonality' and differences between existing

product members and the new product; and

(e) software developers that design the new product by reusing parts of existing

product members and specifying new aspects of the product being

developed.

For this scenario, supposed the situation in which the product family systems

contain product member PM2 and the new product member to be developed is

PM1 from our case study (see Chapter 7). As shown in Chapter 7, consider that the

requirements of PM1 have been specified in four different use cases. In order to be

able to identify the similarities and differences between PM1 and PM2, the parts of

231

C H A P T E R 8. E V A L U A T IO N A N D A N A L Y S IS

PM1 that can be reused from PM2, and the parts of PM1 that need to be developed,

it is necessary to compare various documents including feature model of a product

family, use cases of PM1 and PM2, and class, sequence, and statechart diagrams of

PM2.

The types of documents to be compared and the relevant traceability relations

associated with these documents for this scenario are shown in Table 8-1. As

presented in the table, the direction of a relation is represented from a row [i] to a

column [j] and bi-directional relations appear in two correspondent cells for that

relation^ T The set of use cases of PM1 and PM2 need to be compared with the

feature model of a product family in order to support the identification of

similarities and differences between use cases of PM1 and PM2. In addition, all

class, sequence, and statechart diagrams of PM2 are compared with the use cases of

PM1 to assist with the identification of which elements of PM2 design models can

be reused. It is also necessary to compare all class, sequence, and statechart

diagrams of PM2 with the use cases of PM2 to assist with the identification of

similarities and differences between use cases of PM1 and PM2. Moreover, the

class, sequence, and statechart diagrams of PM2 need to be compared in order to

support the identification of the elements that can be reused when designing PM1.

Table 8-1: Documents and traceability relations for scenario 1

Feature
Model

Use Case
(PM1)

Use Case
(PM2)

Class
Diagram

(PM2)

Sequence
Diagram

(PM2)
Use Case
(PM1)

Contains Similar
Different

Use Case
(PM2)

Contains Similar
Different

Class
Diagram
(PM2)

Satisfies
Implements
Refines

Satisfies
Implements
Refines

Sequence
Diagram
(PM2)

Satisfies
Implements
Refines

Satisfies
Implements
Refines

Refines
Contains

Statechart
Diagram
(PM2)

Satisfies
Implements
Refines

Satisfies
Implements
Refines

Contains Refines

10 T his w ill a lso be the case fo r tab les 8 -2 , 8 -3 , 8 -4 , and 8 -5 .

232

8.1 Evaluation Overview

8.1.2. Scenario 2: The creation of product family from already
existing products

In this case, traceability relations can be used to support the identification of

variable and common aspects of existing products in order to create a product

family. As shown in Figure 8-2, the stakeholders involved in this scenario are:

(a) product managers that identify which aspects of the product members

should be part of the product line;

(b) product line engineers, software analysts, and software developers that

design the documents at the product line level; and

(c) software analysts and software developers that develop the documents at the

product line level.

For this scenario, supposed the situation in which the organization has product

members PM1 and PM2 from our case study (see Chapter 7) and would like to

create a product family that composes these two members. In this case, all the

domain analysis and design models of product members PM1 and PM2 need to be

233

C H A P T E R 8. E V A L U A T IO N A N D A N A L Y S IS

compared in order to assist with identification of the information that are

represented the core assets of the product family. More specifically, similarities and

differences between PM1 and PM2 are identified in order to assist the creation of

the documents at the product line level (according the traceability reference model

in Chapter 4). It is necessary to compare various documents including use cases of

PM1 and PM2, and class, sequence, and statechart diagrams of PM1 and PM2.

The types of documents to be compared and the relevant traceability relations

associated with these documents for this scenario are shown in Table 8-2. All class,

sequence, and statechart diagrams of PM1 and PM2 need to be compared with the

user cases of PM1 to assist with the identification of which elements of design

models can be deployed for product member PM1. It is also necessary to compare

all class, sequence, and statechart diagrams of PM1 and PM2 with the use cases of

PM2 to assist with the identification of which elements of design models can be

deployed for product member PM2. Moreover, the use cases of PM 1 and PM2 need

to be compared, and the class, sequence, and statechart diagrams of PM1 and PM2

need to be compared in order to support the identification of which elements are

similar and different.

234

T a b l e 8 - 2 : D o c u m e n t s a n d t r a c e a b i l i t y r e l a t i o n s f o r s c e n a r i o 2

Use Case
(PM1)

Use Case
(PM2)

Class
Diagram
(PM1)

Sequence
Diagram
(PM1)

Statechart
Diagram
(PM1)

Class
Diagram
(PM2)

Sequence
Diagram
(PM2)

Statechart
Diagram
(PM2)

Use Case
(PM1)

Similar
Different

Use Case
(PM2)

Similar
Different

Class
Diagram
(PM1)

Satisfies
Implements
Refines

Satisfies
Implements
Refines

Similar
Different

Sequence
Diagram
(PM1)

Satisfies
Implements
Refines

Satisfies
Implements
Refines

Refines
Contains

Refines
Contains

Similar
Different

Statechart
Diagram
(PM1)

Satisfies
Implements
Refines

Satisfies
Implements
Refines

Contains Refines Contains Refines Similar
Different

Class
Diagram
(PM2)

Satisfies
Implements
Refines

Satisfies
Implements
Refines

Similar
Different

Sequence
Diagram
(PM2)

Satisfies
Implements
Refines

Satifies
Implements
Refines

Refines
Contains

Similar
Different

Refines
Contains

Statechart
Diagram
(PM2)

Satisfies
Implements
Refines

Satisfies
Implements
Refines

Contains Refines Similar
Different

Contains Refines

8.1 Evaluation Overview

8.1.3. Scenario 3: Changes to a product member in a product
family

In this scenario traceability relations can be used to support the analysis of the

implications of changes in the system. As shown in Figure 8-3, the stakeholders

involved in this scenario are:

(a) software analysts that specify changes to be done in a design part of a

product member; and

(b) software analysts and software developers that identify the effects of these

changes in the other related design software artefacts.

For this scenario, supposed the situation in which the organisation has developed

the core assets of mobile-phone systems with product members PM1 and PM2

from our case study, and that changes are done to product member PM1.

Therefore, it is necessary to evaluate how these changes will affect the other design

models of PM1 and if these changes also affect the other product members in the

product family that may be related to the changes (PM2 in this scenario). The types

of documents to be compared and the relevant traceability relations associated with

these documents for this scenario are shown in Table 8-3.

236

8.1 Evaluation Overview

Table 8- 3: Documents and traceability relations for scenario 3

Class
Diagram
(PM1)

Sequence
Diagram
(PM1)

Statechart
Diagram
(PM1)

Class
Diagram
(PM2)

Sequence
Diagram
(PM2)

Statechart
Diagram
(PM2)

Class
Diagram
(PM1)

Overlaps Overlaps Similar Overlaps Overlaps

Sequence
Diagram
(PM1)

Depends_on
Overlaps
Refines
Contains

Overlaps Depends_on
Overlaps
Refines
Contains

Similar Overlaps

Statechart
Diagram
(PM1)

Depends_on
Overlaps
Contains

Overlaps
Refines

Depends_on
Overlaps
Contains

Overlaps
Refines

Similar

Class
Diagram
(PM2)

Similar Overlaps Overlaps Overlaps Overlaps

Sequence
Diagram
(PM2)

Depends_on
Overlaps
Refines
Contains

Similar Overlaps Depends_on
Overlaps
Refines
Contains

Overlaps

Statechart
Diagram
(PM2)

Depends_on
Overlaps
Contains

Overlaps
Refines

Similar Depends_on
Overlaps
Contains

Overlaps
Refines

8.1.4. Scenario 4: Changes to the core assets of a product family

In this case, we are interested in investigating how traceability relations can be used

to support the evolution and analysis of the impact of the changes to the core assets

of a product family. More specifically, this scenario is concerned with changes on

the documents at the product line level (according to the traceability reference

model in Chapter 4) due to the addition of new features to the product family. As

shown in Figure 8-4, the stakeholders involved in this scenario are:

(a) market researchers that identify new features of the system; and

(b) product-line engineers that identify which aspects in the core assets of the

product family are related to the new features and the effect of these new

features to the other documents at the product line level.

237

C H A P T E R 8. E V A L U A T IO N A N D A N A L Y S IS

Figure 8- 4: Scenario 4

For this scenario, supposed the situation in which the organisation has developed

product family systems from our case study, and that changes are done to the

documents at the product line level. Therefore, it is necessary to evaluate how these

changes will affect the other documents in the product family. The types of

documents to be compared and the relevant traceability relations associated with

these documents for this scenario are shown in Table 8-4. In this case, all the

documents at the product line level are compared in order to assist with the

identification of information that may be affected by change at this level.

Table 8- 4: Documents and traceability relations for scenario 4

Feature
model

Subsystem
model

Process
model

Module
model

Subsyste
m model

Satisfies
Depends_on
Refines

Process
model

Satisfies
Depends_on
Refines

Refines

Module
model

Satisfies
Depends_on
Refines

Refines

2 3 8

8.1 Evaluation Overview

8.1.5. Scenario 5: Impact of changes to the core assets of a
product family and product members

In this case, we are interested in investigating how traceability relations can be used

to support the impact of changes made at the core assets of a product family to

product members. This is a small scenario and is concerned with changes at the

subsystem of a product family and the impact of these changes in a class diagram.

As shown in Figure 8-5, the stakeholders involved in this scenario are:

(a) product line engineers that identify the changes to be done at the subsystem;

and

(b) software analysts and developers that identify the effect of these changes at

the product member design documents.

Figure 8- 5: Scenario 5

For this scenario, consider the situation in which we want to analyze the impact of

changes at the subsystem model to the class diagram of product member PM3 from

our case study. Although changes at the subsystem model can also have impact at

other documents at the product member design level (sequence and statechart

diagrams), in this experiment we only analyze the relations between subsystem

models and class diagram. The types of documents to be compared and the relevant

traceability relations for this scenario are shown in Table 8-5.

239

C H A P T E R 8. E V A L U A T IO N A N D A N A L Y S IS

Table 8- 5: Documents and traceability relations for scenario 5

Class Diagram

Subsystem
Model

C on ta in s

8.2. Evaluation Results and Analysis

In this section, we present the results of our evaluation for objectives (a) and (b)

described in Section 8.1 and analyze these results.

In the experiments we deployed a total of 63 traceability rule templates that have

been instantiated depending on the documents used in each experiment and the

traceability relations to be identified. Table 8-6 shows, for each experiment, a

summary of the number of documents, number of files, number of (direct and

indirect) traceability rule templates, and number of (direct and indirect) instantiated

rules that were expected to be used and that have been actually used by the tool. In

the table, we consider the number of documents to be different to the number of

files since class, sequence, and statechart diagrams of the same product member are

represented in the same XMI file due to the nature of XMI.

As seen in Table 8-6, the number of documents, files, traceability rule templates,

and instantiated rules expected and the number actually used are the same. In other

words, the performance of the XTraQue tool is consistent. The results are

consistent across all five scenarios, involving different types of documents,

traceability relations, and different sizes of documents and files.

More specifically, in scenarios 1, 2, and 3, the high numbers of instantiated rules

were expected to be created; whereas, in scenarios 4 and 5, the low numbers of

instantiated rules were expected to be created. This is due to the different types of

documents, number of files, and number of traceability relation types used in these

scenarios. These results indicate that the performance of identifying documents,

files, traceability rule templates and creating instantiated traceability rules by the tool

240

8.2 Evaluation Results and Analysis

is consistent across small or large sets of documents and files, and different types of

traceability’ relationships.

Table 8- 6: Summary of documents, files, traceability rule templates, and
instantiated traceability rules used in the experiments

Scenario Scenario Scenario Scenario Scenario
1 2 3 4 5

No. of expected documents 15 20 12 6 2
No. of applied documents 15 20 12 6 2
No. of expected files 10 10 2 6 2
No. of applied files 10 10 2 6 2
No. of expected direct traceability
rule templates

17 15 11 7 2

No. of applied direct traceability rule
templates

17 15 11 7 2

No. of expected indirect traceability
rule templates

8 h 5 0 0

No. of applied indirect traceability
rule templates

8 h 5 0 0

Total no. of expected traceability rule
templates

25 26 16 7 2

Total no. of applied traceability rule
templates

25 26 16 7 2

No. of expected instantiated direct
traceability rules

100 192 80 11 a T -

No. of actually instantiated direct
traceability rules

100 192 80 11 2

No. of expected instantiated indirect
traceability rules

8 11 5 0 0

No. of actually instantiated indirect
traceability rales

8 11 5 0 0

Total no. of expected instantiated
traceability rales

108 203 85 11 2

Total no. of actually instantiated
traceability rales

108 203 85 11 2

Tables 8-7 to 8-11 show a summary of the number of traceability relations, for each

respective relationship type, manually detected by the user (UT) and automatically

detected by XTraQue (ST) in each scenario. As shown in Table 8-7 to 8-11, in each

scenario, the numbers of various traceability relations are different. For example, in

scenario 1, the tool generated 19 containment traceability' relations but 172 implements

traceability relations (see Table 8-7). This indicates that the numbers of traceability"

241

C H A P T E R 8. E V A L U A T IO N A N D A N A L Y S IS

relations being created for each relationship type are not necessarily similar,

although they are generated across the same set of documents and files.

Additionally, the numbers of traceability relations for the same type of traceability

relationships are not necessarily similar when they are generated in different

scenarios involved different documents and files. For example, the tool generated

322 satisfiability traceability relations in scenario 2 (see Table 8-8) but 15 satisfiability

relations in scenario 4 (see Table 8-10).

Moreover, the number of traceability relations being generated depends on the

number of relevant documents and files, and traceability relationship types. In

scenario 1, 2, and 3, the number of traceability relations are high due to the number

of relevant documents and files (see Table 8-6), and many types of traceability

relationships (see Sections 8.1.1, 8.1.2, and 8.1.3); while in scenarios 4 and 5, the

number of relations are fairly low due to the smaller number of relevant documents

and files (see Table 8-6), and less types of traceability relationships (see Section 8.1.4

and 8.1.5). Particularly, in scenario 5 (see Table 8-11), the number of traceability

relations being created is very small due to the small number of relevant documents

and files, and only one type of traceability relationship being used.

Table 8- 7: Summary of traceability relations detected in scenario 1

Types of traceability relations UT ST
N o . o f implements t r a c e a b i l i t y r e la t io n s id e n t if ie d 1 6 6 172

N o . o f satisfiability t r a c e a b i l i t y r e la t io n s id e n t if ie d 154 1 54

N o . o f containment t r a c e a b i l i t y r e la t io n s id e n t if ie d 23 19

N o . o f refinement t r a c e a b i l i t y r e la t io n s id e n t if ie d 1 76 1 80

N o . o f similar t r a c e a b i l i t y r e la t io n s id e n t if ie d 3 3 3 3 3 3

N o . o f different t r a c e a b i l i t y r e la t io n s id e n t if ie d 3 2 9 341

Table 8- 8: Summary of traceability relations detected in scenario 2

Types of traceability relations UT ST
N o . o f implements t r a c e a b i l i t y r e la t io n s id e n t if ie d 3 8 8 4 1 0

N o . o f satisfiability t r a c e a b i l i t y r e la t io n s id e n t if ie d 3 2 4 3 2 2

N o . o f containment t r a c e a b i l i t y r e la t io n s id e n t if ie d 16 16

N o . o f refnement t r a c e a b i l i t y r e la t io n s id e n t if ie d 3 4 8 3 4 2

N o . o f similar t r a c e a b i l i t y r e la t io n s id e n t if ie d 1 4 0 4 1 4 0 2

N o . o f different t r a c e a b i l i t y r e la t io n s id e n t if ie d 8 16

242

8.2 Evaluation Results and Analysis

Table 8- 9: Summary of traceability relations detected in scenario 3

Types of traceability relations UT ST
No. of dependency traceability relations identified 28 28
No. of overlaps traceability relations identified 28 28
No. of containment traceability relations identified 20 20
No. of refinement traceability relations identified 52 60
No. of similar traceability relations identified 126 130

Table 8-10: Summary of traceability relations detected in scenario 4

Types of traceability relations UT ST
No. of satisfiability traceability relations identified 20 15
No. of dependency traceability relations identified 2 2
No. of refinement traceability relations identified 4 4

Table 8- 11: Summary of traceability relations detected in scenario 5

Types of traceability relations UT ST
No. of containment traceability relations identified 6 6

Additionally, Table 8-12 shows, for each scenario, a summary of the number of

traceability relations detected and grouped as direct, indirect, and total traceability

relations and the number of traceability relations in the intersection of the relations

generated by XTraQue tool and manually identified by the user. In the table, STtotal

is the set of traceability relations detected by XTraQue; STdirect is the set of direct

traceability relations detected by XTraQue; STindirect is the set of indirect traceability

relations detected by XTraQue. UTtotal is the set of traceability relations identified by

traceability user; UTdirec, is the set of direct traceability relations identified by

traceability user; and UTindirect is the set of indirect traceability relations identified by

traceability user.

243

CHAPTER 8. EVALUATION AND ANALYSIS

Table 8- 12: Summary of traceability relations detected in the experiments

Scenario Scenario Scenario Scenario Scenario
1 2 3 4 5

UTdh-ect 5 1 9 1 0 7 6 1 2 8 2 6 6

S T direct 5 2 5 1 0 9 0 1 3 6 2 1 6

| S T direct C l U T d irec t | 5 0 2 1 0 4 6 1 1 2 1 7 5

U T indirect 3 3 3 1 4 1 2 1 2 6 0 0

STindirect 3 4 1 1 4 1 8 1 3 0 0 0

| STindirect ^ U T indirect | 2 8 2 1 2 0 8 1 0 5 0 0

U T total 8 5 2 2 4 8 8 2 5 4 2 6 6

ST tota l 8 6 6 2 5 0 8 2 6 6 2 1 6

| ST to ta l ^ U T to ta l | 7 8 4 2 2 5 4 2 1 7 1 7 5

As shown in Table 8-12, for scenarios 4 and 5, the cells corresponding to the

number of indirect traceability relations (UTindirect and STindirect) contains value zero

(0) since these scenarios do not involve indirect traceability relations, and not

because the tool cannot generate these relations or the use cannot identify these

relations manually. Moreover, the high number of traceability relations detected in

scenarios 1 and 2 is due to the number of document types and traceability7 relation

types used in these scenarios, as well as the specific documents that are related

through the various relation types. For instance, in scenario 1, there are (a) four use

case documents for PM1 and four use case documents for PM2 that are related in

terms of three different types of traceability7 relations (satisfies, implements, and

refines) with one class diagram, four sequence diagrams, and one statechart diagram;

(b) four use case documents for PM1 and four use case documents for PM2 that are

related in terms of contains relations with feature model; (c) four use case

documents of PM2 that are related to four use case documents of PM1 in terms of

similar and different relations; (d) four sequence diagrams of PM2 that are related in

terms of refines and contains relation types with one class diagrams and in terms of

refines relation with one statechart diagram; and (e) one class diagram that is related

in terms of contains relations with one statechart diagram. A similar and more

complex situation occurs in scenario 2.

Figure 8-6 shows charts comparing the numbers of traceability7 relations generated

by the user and XTraQue tool in each scenario (as shown in Table 8-12). Each chart

244

8.2 Evaluation Results and Analysis

has three columns, namely A. representing a number of traceability relations

generated by both user and XTraQue tool (| S T totai n UTto,ai|); B number of

traceability relations detected by the user (UT,otai); and C number of traceability

relations generated by XTraQue tool (S T totai).

Figure 8- 6: Traceability relations detected by the traceability user and XTraQue
(A), by traceability user (B), and by XTraQue (C) in five experiments

Table 8-13: Precision and Recall Rates (%)

Scenario
1

Scenario
2

Scenario
3

Scenario
4

Scenario
5

Average

Precision of generating
direct relations

95.6 95.9 82.3 81.0 83.4 87.6

Precision of generating
indirect relations

82.7 85.2 80.7 - - 82.8

Precision of generating
all relations

90.5 89.8 81.6 81.0 83.4 85.3

Recall of generating
direct relations

96.7 97.2 87.5 65.4 83.4 86.0

Recall of generating
indirect relations

84.7 85.5 83.4 - 84.5

Recall of generating all
relations

92.0 90.6 85.4 65.4 83.4 83.3

Table 8-13 shows the results of our experiments for each scenario in terms of recall

and precision rates including the number of direct and indirect traceability relations

identified by the users and by the tool. The traceability relations generated by the

tool in each different scenario were compared against traceability relations manually

identified by users with substantial experience and training in software engineering

and product family systems. Additionally, for scenarios 4 and 5, the cells

corresponding to the precision and recall rates of generating indirect relations do

245

CHAPTER 8. EVALUATION AND ANALYSIS

not show any values since these scenarios do not involve the generation of indirect

relations as mentioned earlier (see Table 8-12).

The results shown in Table 8-13 provide positive evidence about our approach to

automatic generate traceability relations at a high level of recall and precision. The

results show that direct traceability relations have higher precision and recall values

when compared to indirect traceability relations (scenarios 1, 2, and 3). This is due

to the fact that indirect traceability relations are generated based on direct

traceability relations and in the cases of incorrect direct traceability relations

generated by the tool, or missing direct traceability relations by the tool, these will

interfere with the precision and recall of the indirect traceability relation. More

specifically, the incorrect and missing direct traceability relations will cause a lower

precision, while the missing direct traceability relations will contribute to a lower

recall. Moreover, scenario 4 has the lowest recall when compared with the other

scenarios. We attribute this to the fact that this scenario has the lowest number of

direct rule templates with respect to the different types of traceability rules used in

the scenario when compared to scenarios 1, 2, and 3 (scenario 5 is cjuite a small

scenario to be considered in this case). For example, scenario 1 has 17 direct rule

templates for four different types of direct relations, scenario 2 has 15 rule

templates for four different types of direct relations, and scenario 3 has 11 rule

templates for four different types of direct relations, while scenario 4 has only seven

rule templates for three different types of relations. Therefore, the number of direct

traceability relations generated by XTraQue for scenario 4 is smaller than the

number of traceability relations identified by the user. In the other scenarios we

observe an inversion of this situation (i.e., number of direct traceability relations

generated by the tool is higher than the ones generated by the users). The addition

of new traceability' rules for satisfiability, dependency, and refinement relations for

documents at the product line level cause an increase in the recall.

We applied the bar chart to compare the precision and recall in the experiments.

Figure 8-7 (a) and Figure 8-7 (b) show that the precision figures in all the scenarios

and the recall figures in all the scenarios are not so significant. On average, the

246

8.2 Evaluation Results and Analysis

performance of our approach in terms of precision and recall measurements in five

scenarios seems to be consistent (see Figure 8-7 (a)). Particularly high are the

precision values in all five scenarios (ranging from 81.0% to 95%) and the recall

values in scenario 1, 2, 3, and 5 (ranging from 83.4% to 92.0%). Although the recall

value in scenario 4 is slightly lower than the others in different scenarios, the value

for 65.4% of recall is still comparable to the average recall value achieved in

(Spanoudakis et al. 2004) and higher than the average recall value achieved in

(Antoniol et al. 2002).

The charts in Figure 8-7 (b) show that the precision values from five scenarios are

ranging from 81.0% to 90.5% and the recall values are ranging from 65.4% to

92.0%. These rates indicate that the precision values and recall values achieved bv

our approach are fairly consistent, although the generation of traceability relations

were performed between various numbers of documents, files, and different types

of traceability relationships.

Figure 8- 7: (a) Precision and recall figures of each scenario; (b) Comparison of
precision and recall figures from five scenarios

Overall, the average precision measured, 85.3%, and average recall measured 83.3%,

in our experiments are encouraging results. According to Table 8-14, it shows the

summary of recall and precision measurements achieved by several existing

traceability approaches. In the table, our precision results are better than, and our

recall results are comparable to, the results achieved in the approach (Antoniol et al.

2002) that support automatic generation of traceability relations between

requirements specifications and source code based on probabilistic and vector space

247

CHAPTER 8. EVALUATION AND ANALYSIS

information retrieval approaches. In their work, they have managed to achieve 61%

of recall and 56.5% of precision. The results achieved in this work are also better

than the results of the work for automatic generation of traceability7 relations

between textual documents representing requirements, use cases, and analysis

models of software systems (Spanoudakis et al. 2004). In this case, the authors have

achieved 69.6% of recall and 77.2% of precision. Similarly, the results achieved in

our work are also better than the results achieved in (Hayes et al. 2004). The authors

applied three vector space IR techniques to enhance the generation of traceability7

relations and have achieved 39.2% of precision and 80.9% of recall. Although the

results achieved in the work (Cleland-Huang et al. 2005b) have achieved 90.2% of

recall, they have achieved fairly low 20.6% of precision.

Table 8-14: Summary of recall and precision rates achieved by several existing
traceability approaches

A p p ro a c h A v e r a g e R e c a l l (%) A v e r a g e P r e c is io n (%)

(A n to n io l e t a l. 2 0 0 2) 6 1 .0 5 6 .5

(C le la n d - H u a n g e t a l. 2 0 0 5 b) 9 0 .2 2 0 .6
(S p a n o u d a k is e t a l. 2 0 0 4) 6 9 .6 7 7 .2

(H a y e s e t a l. 2 0 0 4) 8 0 .9 3 9 .2

O u r a p p ro a c h 8 3 .3 8 5 .3

The results of our experiments have demonstrated our initial hypotheses and that

XTraQue can be effectively used to automatically generate traceability relations for

product family systems. Of course, 100% of recall and precision are the ultimate

goal of any tool. However, to the best of our knowledge, none of the existing

approaches managed to achieve this goal.

Additionally7, the time spent during the generation of the traceability7 relations in the

five scenarios used in our evaluation varies depending on the size of the documents

and the number of various relationship types. For example, scenarios 1 and 2 took

longer to be executed than scenarios 4 and 5 that are significantly smaller.

Moreover, the textual characteristics of some of the documents and the number of

rules that may exist for a certain relationship type also contributes to an increase of

the processing time. However, our XTraQue tool allows a user to select specific

248

8.2 Evaluation Results and Analysis

documents and traceability relationship types to be processed in an interaction. This

feature of the tool can be used to assist and control the amount of time during

traceability generation.

8.3. Summary

This chapter have illustrated the experiments and their results. We have observed

the effectiveness of the tool as well as evaluated the results of traceability generation

by applying with the precision and recall measurements. In addition to, the

explanations of results have been given. The evaluation and analysis leads to the

conclusion of this thesis that will be presented in next chapter.

249

Chapter 9

Conclusions and Future work

We provide in this chapter the conclusions, findings, and future work of this thesis.

Section 9.1 presents the overall conclusions. The findings of this thesis and the

future work are described in Section 9.2 and Section 9.3, respectively. The final

remarks are listed in Section 9.4.

9.1. Overall Conclusions

The research in this thesis has contributed to enable traceability of product family

systems in an automatic way. We summarize below the contributions in this thesis.

A traceability reference model for product family systems — In this thesis, we

proposed a traceability reference model for product family systems in Chapter 4.

The concepts and motivation are derived from the background in Chapters 2 and 3.

The model is composed of two main components. Firstly, it includes a set of

documents created during the development of product family systems. Our

approach applied the feature oriented reuse method (FORM) and the unified modeling

language (UML). Eight types of documents are concerned with these methods,

namely: (a) feature model used to represent reference requirements of product family

systems; (b) subsystem model, (c) process model, and (d) module model used to represent a

software product line architecture; (e) use case used to represent requirements of

product members; and (1) class diagram, (g) sequence diagram, and (h) statechart diagram

used to represent design models of product members.

Secondly, the model includes the classification of traceability relationships between

these documents. Two groups of traceability relationships are defined, namely: (i)

CHAPTER 9. CONCLUSIONS AND FUTURE WORK

direct, which are traceability relations being identified straightforwardly between

documents; and (ii) indirect, which are traceability7 relations being identified based on

the existing direct traceability7 relations. The direct traceability relations are classified

in seven types, namely: (a) implements relations holding between two documents that

an artefact in a document executes or allows for the achievement of an artefact in

another document; (b) containment relations holding between two documents that an

artefact in a document uses another artefact in another document; (c) refinement

relations holding between two documents that a document specifies more details

about another document; (d) satisfiability relations holding between two documents

that an artefact in a document meets the expectation and needs of another artefact

in another document; (e) overlap relations holding between two documents that refer

to common aspects of a system; (f) dependency relations holding between two

documents that an artefact in a document relies on the existence of another artefact

in a document; and (g) evolution relations holding between two documents that are

evolved during the product family system development. Additionally, the indirect

traceability7 relations are classified in two types, namely: (a) similar relations holding

between two documents of the same type and assisting with the identification of

common aspects between various product members; and (b) different relations

holding between two documents of the same type for different product members

and assisting with the identification of variable aspects between various product

members.

The rule-based approach for generating the traceability relations - In this

thesis, we proposed a rule-based approach for enabling traceability activities in the

domain of product family systems in Chapter 5. A set of traceability rules is

developed and used to justify the identification of traceability7 relations

automatically. Two groups of traceability7 rules, namely direct and indirect, support for

the creation of direct and indirect traceability7 relations, respectively. The rules are

expressed in an extension of XQuery that includes extra functions implemented in

XQuery and Java languages. The identification of traceability relations is based upon

four criteria as follows: (a) semantics of document types, (b) types of traceability7

relations, (c) part-of-speech of words in textual sentences, and (d) synonyms and

252

9. / Overall Conclusions

distance of words being compared in a text. When the conditions in a rule are

verified, traceability relations are generated and represented in XML documents.

The demonstration and evaluation of the approach - The prototype tool in

Chapter 6, called XTraQite, is implemented in Java to facilitate the demonstration

and evaluation of the approach in Chapter 8. The tool also encompasses Saxon as

an XQuery processor. The main functionalities of the tool are namely: (a) Traceability

Selection, specifying documents to be traced and the types of traceability relationships

to be created; (b) Traceability Creation, identifying traceability relations according to

the criteria from Traceability' Selection; (c) Traceability Presenter, recording and

representing the traceability' relations identified by Traceability' Creation; and (d)

Traceability Title Editor, testing and displaying results of a traceability' rule.

Additionally, a case study of mobile-phone systems in Chapter 7 is used for

demonstration and evaluation the approach. Five scenarios are created to

demonstrate different situations of traceability activities in the product family

system development, involving (a) establishing traceability relations between

different types of documents; (b) identifying different types of traceability' relations;

and (c) supporting different stakeholders. The experiments of traceability' generation

have been evaluated by considering two criteria: (i) identifying relevant documents,

identifying traceability rule templates, and creating instantiated traceability rules; and

(ii) generating traceability' relations. For the latter criteria, the precise and recall

measurements are used.

9.2. The Findings

This thesis has shown that some degree of laborious process in generating

traceability relations for a large number of heterogeneous documents can be

reduced with the tool support implemented. Traceability activities i.e. generation,

recording, and representation of traceability relations are done in an automatic way.

The generation of traceability relations captures the semantics that are represented

through the traceability' relationship types. The relations are identified between, at

253

CHAPTER 9. CONCLUSIONS AND FUTURE WORK

least, two documents. Some traceability relations such as indirect relations are

created based upon two direct relations. An indirect relation therefore draws

associations between three documents. More specifically, similar and different

traceability relations are identified between two documents of the same type

whereas the documents have a same relationship type to another document of

another type. As shown in this thesis, the results of generation are measured by

using precision and recall rates. The average precision measured as 85.3% and average

recall measured as 83.3%. The results achieved by the research in this thesis are

better than the results achieved in existing traceability approaches.

Additionally, this thesis has demonstrated different aspects to other existing

approaches. We describe below the aspects:

• Enables traceability o f product family systems: Although some existing

approaches (Alexander 2003, Antoniol et al. 2002, Bayer and Widen

2002, Cleland-Huang et al. 2002b, Dick 1999, Egyed 2003, Gotel and

Finkelstein 1995, Hayes et al. 2003, Kim et al. 2005, Knethen 2002a,

Lago et al. 2004, Letelier 2002, Lindvall and K. 1996, Malefic and

Marcus 2001, Marcus and Meletic 2003, Pinheiro and Goguen 1996,

Polil 1996b, Ramesh and Jarke 2001, Sherba et al. 2003a, Toranzo and

Castro 1999) suggested traceability activities in the software system

development, they do not support traceability of product family systems.

Neither the traceability reference models nor classification of traceability

relations are proposed for identifying common and variable aspects in

the domain of product family systems. In this thesis, we defined the

traceability reference model and classification of traceability relations in

the domain of product family systems.

• Enables the automatic generation o f traceability relations fo r the domain o f product

family systems: Although some existing approaches (Bayer and Widen

2002, CAFE 2003, Dick 1999, ESAPS, Kim et al. 2005, Riebisch and

Philippow 2001, Toranzo and Castro 1999) proposed the traceability

254

9.2 The Findings

activities in the domain of product family systems, they do not provide

tool support or define the process for achieving the activities. In this

thesis, we have provided the XTraQue tool for enabling traceability

generation, recording and representation in an automatic way. The tool

has sophisticated and user-friendly interfaces to facilitate the activities.

• Generates traceability relations in different levels o f granularity: In this thesis,

different relationships are generated between documents created from

different activities of the development life cycle for product family

systems. Two views of the relationships can be categorized: (a) coarse

grained associations such as traceability relations between different

product members, and between core assets and product members; and

(b) fine-grained associations such as traceability relations between

elements in documents. However, some existing approaches (Kim et al.

2005, Lago et al. 2004, Leite and Breitman, Riebisch and Philippow

2001, Toranzo and Castro 1999) defined the traceability relations in

product family systems either for fine-grained or course-grained

associations, but not for both.

The research in this thesis has demonstrated the possible situations of the use of

traceability' relations during the development of product family systems. We

describe below the use for its different purposes: •

• Reuse: The research in this thesis has found that the degree of reusing

core assets of product family systems affects the cost of the

development of the systems. The cost of the product family system

development depends on the proportion of reuse of the core assets for

the development of product members. However, the poor reuse would

have caused higher cost to the product family system development.

Traceability relations are used to assist the development by reducing the

cost i.e. effort and time. Since it is a common situation that stakeholders

such as software engineers need to relate the existing software artifacts

255

CHAPTER 9. CONCLUSIONS AND FUTURE WORK

to new requirements in order to assist the development of the new

requirements. The research in this thesis has demonstrated that

traceability relations can be used to facilitate such activities in the

situation.

• Understanding: The research in this thesis has shown that different

stakeholders, who have different experiences in the product family

system development process, have different perspectives regarding to

software artefacts. Traceability relations enable stakeholders to

comprehend the associations between the artefacts in an easier way.

Coarse-grained associations such as common and variable aspects

between product members and fine-grained associations such as ones

between elements in different artefacts are illustrated though traceability

relations and can facilitate the understanding of the generated

documents.

9.3. Future Work

A number of possible directions for further investigations have been identified. We

provide in this section future work of the research in this thesis, what needs to be

done to improve the approach and to increase the benefits of the approach: •

• Visualisation: As shown in this thesis, a large number of traceability

relations can be generated across product family system documents. It is

therefore believed that the approach could be extended and enhanced to

support a better way of visualizing the relations in various perspective

views. In addition, sophisticated techniques for visualization could

support the use of traceability relations more efficiently.

• Domain Implementation: The research in this thesis has focused on

two main activities of product family system development i.e. analysis

and design. The approach could be expanded to cover the activity of

256

9.3 Future Work

implementation in order to complete the whole life-cycle of the

development of product family systems.

• Document specification: As shown in this thesis, the activities of

traceability start after the creation of the various artefacts. It is therefore

believed that the approach could benefit by providing tool support for

the specification of documents.

• Tracing between different product families: As shown in this thesis,

the approach can enable traceability practice in a single product family.

However, it is believed that the approach could equally benefit from

support traceability between different product families.

• Reduction of traceability generation time: As shown in this thesis,

the traceability generation can take a long time to be processed

depending on the size, number, and types of documents and

relationships. More work needs to be done to optimize the processing

time.

9.4. Final Remarks

This thesis has presented the rule-based approach for software traceability on

product family systems. The research in this thesis has been contributed to:

provide the background of traceability to software systems (Chapter 2);

provide the background of product family systems (Chapter 3);

present the traceability reference model (Chapter 4);

present the framework of automatic traceability generation process in product

family systems (Chapter 5);

illustrate the XTraQue tool (Chapter 6);

provide a case study in the domain of mobile-phone systems (Chapter 7); and

demonstrate and evaluate the approach (Chapter 8).

257

Appendices

Appendix A - XML Schemas

APPENDIX A - XML SCHEMAS

A.l.XML Schema for direct traceability rules

♦ Rules gj.....Q ♦ TraceRule J
____ ”

• RulelDJ • RuleType«
string_____ j string____

* DocTypel™drhg-: v ” j • DocType2@
[string J i

♦ Query g
string . .]

♦ RulelDg
string............ ;

I * Typeg
(s t r i n g ■ „

;; j • DocTypel m f,\ • DocType2 m
■'Mstring j j " " H string..................

J * Documentg
1. s t r i n g

♦ Description g

♦ Class.
__

♦ Object m
string

^ ♦ Child J
Lstring_____J

Link g

;; ♦ IncomingTransitiong
J / S t r i n g . '

-y ♦ Operation.
string

► System.

A ♦ ProcessModellDg
i f tring____________ _
>1 ♦ ModuleModeilD m
1 string____________

Æj ♦ Preconditions |
sî ____ :_

'ìi ♦
jstr

Parameter e

262

A.l XML Schema for direct traceability rules

< ?xm l version= "1.0" encoding= "U T F-8"?>
< xs:schem a elem entF orm D efau lt= "qualified" a ttributeF onnD efau lt= "unqualifïed"

xm lns:xs= "http :/A vw w .w 3.org/2001/X M L Schem a">
< xs:e lem en t nam e= ”Rules">

< xs:com p lexT yp e>
< xs:sequence>

< xs:e lem en t nanie= "T raceR ule" m axO ccurs= "unbounded">
< xs:com p lexT yp e>

< xs:sequence>
< xs:e lem en t nam e="Q uery" type="xs:string"/>
< xs:e lem en t nam e="A ction ">

< xs:com p lexT yp e>
< xs:sequence>

< xs:e lem en t nam e="R elation">
< xs:com p lexT yp e>

< xs:sequence>
< xs:e lem en t nam e= ”Elem ent" m in 0ccu rs= " 2" m ax0ccu rs= " 2" >

< xs:com p lexT yp e m ixed="true">
< xs:sequence>

< xs:e len ien t nam e="D escription" type= "xs:string
" m inO ccurs="0" m axO ccurs="unbounded"/>

< xs:e lem en t nam e="Class" type= "xs:string" m in O ccu rs= " 07>
< xs:e lem en t nam e="O bject" type= "xs:string" minOccurs="0"/>
< xs:e lem en t nam e="Child" type= "xs:string" minOccurs="0"/>
< xs:e lem en t nam e="Link" type= "xs:string" m inOccurs="0"/>
< xs:e lem en t nam e= "State” type= "xs:string" minOccurs="0"/>
< xs:e lem en t nam e="Incom ingT ransition" type= "xs:string"

m inO ccurs= ”0"/>
< xs:e lem en t nam e=''O peration" type= "xs:string" m in0ccurs= "()'7>
< xs:e lem en t nam e="System " type= "xs:string" minOccurs="0"/>
< xs:e lem en t nam e= "ProcessM odelID " type= "xs:string"

minOccurs="0"/>
< xs:e lem en t nam e= "M oduleM odel[D " type= " xs:strin g ”

m inOccurs="0"/>
< xs:e lem en t nam e="Preconditions" type= "xs:string"

m inOccurs="0"/>
< xs:e lem en t nam e="Event" type= "xs:string" minOccurs="0"/>
< xs:e lem en t nam e="T ransition" type= "xs:string" minOccurs=''0"/>
< xs:e lem en t nam e= "Param eter" type= "xs:string" minOccurs="0"/>

</xs:sequence>
< xs:attrib u te nam e="D ocum enl" type= "xs:string" use="optional"/>

< /xs:com plexT ype>
</xs:elem ent>

</xs:sequence>
< xs:attribu te nam e="RuieID " type= "xs:string" use="required"/>
< xs:attribu te nam e="Type" type= "xs:string" use="required"/>
< xs:attribu te nam e= "D ocT ypel" type= "xs:string" use="optional"/>
< xs:attribu te nam e="D ocT ype2" type= "xs:string" use="optional"/>

< /xs:com plexT ype>
</xs:elem ent>

</xs:sequence>
< /xs:com plexT ype> </xs:elem ent> </xs:sequence>

< xs:attrib u te nam e="RuleID" type= "xs:string" use="required"/>
< xs:attrib u te nam e= ”R uleT ype" type= "xs:string" use="required"/>
< xs:attrib u te nam e= "D ocT ypel " type= "xs:string" use="required"/>
< xs:a ttrib u te nam e="D ocT ype2" type= "xs:string" use="required"/>

< /xs:co inp lexT ype> </xs:elem ent> </xs:sequence> < / x s :c o m p le x T y p e x / x s :e le m en t> </xs:schem a>

263

APPENDIX A - XML SCHEMAS

A.2. XML Schema for indirect traceability rules

♦ Rules g ♦ TraceRuleg
:: h :

• Rule I De, • RuleTypeg
string string

* DocTypels
sWDS____________ '

* DocType2|
âdds_____

♦ Query
string

♦ Action«! ♦ Relation g t t y & ♦ Implements E
. _.3 y \ v string

* RulelDg * Typeg • Term«
[string string string

> ♦ Elementi
H string

♦ Dependency g? s t r i n g __ ™
K ♦ Containment I

string

(•"'j ♦ Evolution^
~ j string_________

\ i
\x

♦ Overlap J
string_______

♦ Satisfiability.
String_______________

Refinement J
“-'string

♦ VariantOf.
string *

264

A.2 XML Schema for indirect traceability rules

<?xml version=" 1.0" encoding="UTF-8"?>
<xs:schema elementFormDefault="qualified" attributeFormDefault="unqualified"

xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element name="Rules">

<xs:complexType>
<xs:sequence>

<xs:element name="TraceRule" maxOccurs="unbounded">
<xs:complexType>

<xs:sequence>
<xs:element name="Query" type=''xs:string'7>
<xs:element name="Action">

<xs:complexType>
<xs:sequence>

<xs:element name="Relation">
<xs:complexType>

<xs:sequence>
<xs:element name="Element" type="xs:string" minOecurs="2"

maxOccurs="2'7>
<xs:choice maxOccurs="2">

<xs:element name="Dependency" type=''xs:string" minOccurs="0"
maxOccurs="2"/>

<xs:element name="Containment" type="xs:string" minOccurs="0"
maxOecurs="2'7>

<xs:element name="Evolution" type=i'xs:string" rninOccurs="0"
maxOccurs="2'7>

<xs:element name="Implements" type="xs:string" minOccurs="0"
maxOccurs="2'7>

<xs:element name="Ovei'lap" type="xs:string" minOccurs="0"
maxOccurs="2'7>

<xs:element name="Satisfiability" type="xs:string" minOccurs="0"
maxOccurs="2'7>

<xs:element name= 'Refmement" type="xs:string" minOccurs="0"
maxOccurs=''2'7>

</xs:choice>
<xs:element name="VariantOf' type="xs:string" minOccurs="0'7>

</xs:sequence>
<xs:attribule name=,,RuleID” type="xs:string" use="required'7>
<xs:attribute name="Type" type="xs:string" use="required"/>
<xs:attribute name="Term" type="xs:string" use="required'7>

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:sequence>
<xs:attribute name="RuleID" type="xs:string" use=''required'7>
<xs:attribute name="RuleType" type=”xs:string" use="required'7>
<xs:attribute name="DocTypel" type="xs:string" use="required'7>
<xs:attribute name="DocType2" type="xs:string" use="required"/>

</xs:complexType>
</xs:element>

</xs:sequencex/xs:complexType> </xs:elementx/xs:schema>

265

http://www.w3.org/2001/XMLSchema

APPENDIX A - XML SCHEMAS

A.3. XML Schema for Feature model

♦ Feature Modeln
< ±)

♦ Feature E

♦ Feature nameE

♦ Description ^

f f ♦ Issue_and_decisionE

♦ Typeg
string

♦ Existential I
string_________

* type g
strina

♦ Relationship E ♦ Rei feature E

♦ Allocated_to_subsystemg

♦ Composition_rule E

266

A 3 XML SCHEMA FOR FEATURE MODEL

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F - 8 ' ' ? >

< ! - - e d i t e d w i t h X M L S P Y v 2 0 0 4 r e i . 4 U (h t t p : / / w w w . x m l s p y . c o m) b y W a r a p o r n (J i r a p a n t h o n g) —>

< x s : s c h e m a e l e m e n l F o r m D e f a u l t = " q u a l i f i e d " a t t r i b u t e F o r m D e f a u l t = " u n q u a l i r i e d "

x m l n s : x s = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a " >

< x s : e l e m e n t n a m e = ” F e a t u r e „ M o d e l " >

< x s : c o m p l e x T y p e >

< x s : s e q u e n c e >

< x s : e l e m e n t n a m e = " F e a t u r e " m a x O c c u r s = ' ' u n b o u n d e d " >

< x s : c o m p l e x T y p e >

< x s : s e q u e n c e >

< x s : e l e m e n t n a m e = " F e a t u r e _ n a m e " >

< x s : c o m p l e x T y p e >

< x s : c h o i c e r n a x O c c u r s = ' ' u n b o u n d e d " >

< x s : e l e m e n t n a m e = ” P R P " t y p e = " x s : s t r i n g " m i n O c c u r s = " 0 " / >

< x s : e l e m e n t n a i n e = ' ' J J " t y p e = " x s : s t r i n g " m i n O c c u r s = " 0 ' 7 >

< x s : e l e m e n t n a m e = " C C ' ' t y p e = " x s : s l r i n g ' ' m i n O c c u r s = " 0 " / >

< x s : e l e m e n t n a m e = " D D l " t y p e = ” x s : s t r i n g " m i n O c c u r s = ” 0 " / >

< x s : e l e m e n t n a m e = " V B Z " t y p e = " x . s : s t r i n g ' ' m i n O c c u r s = " 0 ' 7 >

< x s : e l e m e n t n a m e = " T O " t y p e = " x s : s t r i n g " m i n O c c u r s = " 0 ' 7 >

< x s : e l e m e n t n a m e = " V V I " t y p e = " x s : s t r i n g " m i n O c c u r s = ” 0 ’7 >

< x s : e l e m e n t n a m e = " V V Z " t y p e = " x s : s t r i n g " m i n O c c u r s = " 0 ' 7 >

< x s : e l e m e n t i i a m e = ’'R G ' ' t y p e = " x s : s t r i n g " m i n O c c u r s = " 0 ' 7 >

< x s : e l e m e n t n a m e = ' ' D B ” t y p e = " x s : s t r i n g " m i n O c c u r s = " 0 ' 7 >

< x s : e l e m e n t n a m e = " H " t y p e = " x s : s t r i n g " m i n O c c u r s = " 0 ' 7 >

< x s : e l e m e n t n a m e = " I I 2 " t y p e = " x s : s t r i n g " m i n O c c u r s = " 0 ' 7 >

< x s : e l e m e n t n a m e = ,,A T ' ' t y p e = " x s : s t r i n g " m i n O c c u r s = " 0 ' 7 >

< x s : e l e m e n t n a m e = " A T 0 " t y p e = " x s : s t r i n g ' ' m i n O c c u r s = " 0 ’7 >

< x s : e l e m e n t n a m e = ' ' N N l " t y p e = " x s : s t r i n g ” m i n O c c u r s = " 0 7 >

< x s : e l e m e n t n a m e = ” N N 2 ' ' t y p e = " x s : s t r i n g " m i n O c c u r s = " 0 ' 7 >

< x s : e l e m e n t n a m e = ’" V M 0 ' ' t y p e = " x s : s t r i n g " m i n O c c u r s = ” 0 '7 >

< x s : e l e m e n t n a m e = " V V I ” t y p e = " x s : s t r i n g " m i n O c c u r s = " 0 ' 7 >

< x s : e l e m e n t n a m e = " C J S " t y p e = " x s : s t r i n g " m i n O c c u r s = ' ' 0 ' 7 >

< x s : e l e m e n t n a m e = " C J C " t y p e = " x s : s t r i n g ” m i n O c c u r s = " 0 ' 7 >

< x s : e l e m e n t n a m e = ' 'V B B " t y p e = ' ' x s : s t r i n g " m i n O c c u r s = ” 0 ' 7 >

< x s : e l e m e n t n a m e = " V V B " t y p e = " x s : s t r i n g ' ' m i n O c c u r s = " 0 ' 7 >

< x s : e l e m e n t n a m e = " A J 0 " t y p e = " x s : s t r i n g " m i n O c c u r s = " 0 " / >

< x s : e l e n i e n t n a m e = ' ' S C " t y p e = " x s : s t r i n g " m i n O c c u r s = " 0 ' 7 >

< x s : e l e m e n t n a m e = ’'1 0 " t y p e = " x s : s t r i n g " m i n O c c u r s = ' ' 0 ' 7 >

< x s : e l e m e n t n a m e = " A J 0 " t y p e = " x s : s t r i n g " m i n O c c u r s = " 0 ' 7 >

< x s : e l e m e n t n a m e = ’'A . I C " t y p e = " x s : s t r i n g " m i n O c c u r s = " 0 ' 7 >

< x s : e l e m e n t n a m e = ' 'A . I S " t y p e = " x s : s t r i n g " m i n O c c u r s = " 0 ' 7 >

< x . s : e l e m e n t n a m e = " A T 0 " t y p e = " x s : s t r i n g " m i n O c c u r s = " 0 " / >

< x s : e l e m e n t n a m e = " A T l " t y p e = " x s : s t r i i i g ” m i n O c c u r s = ' ' 0 ' 7 >

< x s : e l e m e n t n a m e = " A / P " t y p e = " x s : s t r i n g " m i n O c c u r s = " 0 ' 7 >

< x s : e l e m e n t n a m e = ' ' A V Q " t y p e = " x s : s t r i n g ' ' m i n O c c u r s = " 0 ' 7 >

< x , s : e l e m e n t n a m e = " C J C t y p e = " x s : s t r i n g " m i n O c c u r s = " 0 ' 7 >

< x s : e l e m e n t n a m e = " C J S " t y p e = " x s : s t r i n g " m i n O c c u r s = " 0 ' 7 >

< x s : e l e m e n t n a m e = " C J T " t y p e = ’'x s : s t r i n g " m i n O c c u r s = ' ' 0 ' 7 >

< x s : e l e m e n t n a m e = " C R D " t y p e = " x s : s t r i n g " m i n O c c u r s = " 0 ' 7 >

< x s : e l e m e n t n a m e = ' ' D P S " t y p e = l' x s : s t r i n g 1' m i n O c c u r s = " 0 '7 >

< x s : e l e m e n t n a m e = " D T 0 " t y p e = " x s : s t r i n g ” m i n O c c u r s = " 0 ' 7 >

< x s : e l e m e n t n a m e = " D T Q " t y p e = " x s : s t r i n g ’' m i n O c c u r s = ” 0 '7 >

< x s : e l e m e n t n a m e = " E X 0 " t y p e = ” x s : s t r i n g " m i n O c c u r s = " 0 ' 7 >

2 6 7

http://www.xmlspy.com
http://www.w3.org/2001/XMLSchema

APPENDIX A - XML SCHEMAS

< x s : e l e m e n t n a m e = " I T J ' ' t y p e = ” x s : s t r i n g " m i n O c c u r s = " 0 " / >

< x s : e l e m e n t n a m e = " V V B " t y p e = " x s : s t r i n g " m i n O c c u r s = " 0 " / >

< x s : e l e m e n t n a m e = ' 'N N O " t y p e = " x s : s t r i n g " m i n O c c u r s = ' lO " / >

< x s : e l e m e n t n a m e = " N N r ' t y p e = ' ' x s : s t r i n g " m i n O c c u r s = " 0 '7 >

< x s : e l e m e n t n a m e = ” N N 2 ' ' t y p e = " x s : s t r i n g " m i n O c c u r . s = ' ' 0 " / >

< x s : e l e m e n t n a m e = " N P O " t y p e = " x s : s t r i n g " m i n O c c u r s = " 0 '7 >

< x s : e l e m e n t n a m e = ' ' N U L L " t y p e = " x s : s t r i n g " m i n O c c u r s = " 0 " / >

< x s : e l e m e n t n a m e = " O R D " t y p e = " x s : s t r i n g " m i n O c c u r s = " 0 '7 >

< x s : e l e m e n t n a m e = " P N l " t y p e = " x s : s t r i n g " m i n O c c u r s = " 0 " / >

< x s : e l e m e n t n a r a e = " P N P " t y p e = " x s : s l r i n g " m i n O c c u r s = ' ' 0 ' 7 >

< x s : e l e m e n t n a m e = " P N X ” t y p e = " x s : s t r i n g " m i n O c c u r s = " 0 ’7 >

< x s : e l e m e n t n a m e = " P N Q ' ' t y p e = " x s : . s t r i n g " m i n O c c u r s = ' ' 0 " / >

< x s : e l e m e n t n a m e = " P O S " t y p e = " x s : s t r i n g ” m i n O c c u r s = " 0 '7 >

< x s : e l e m e n t n a m e = ” P R F " t y p e = " x s : s t r i n g " m i n O c c u r s = " 0 ’7 >

< x s : e l e m e n t n a m e = " P U L " t y p e = " x s : s t r i n g " m i n O c c u r s = " 0 '7 >

< x s : e l e m e n t n a m e = " P U N ” t y p e = ' ' x s : s t r i n g " m i n O e c u r s = " 0 ' 7 >

< x s : e l e m e n t n a m e = " P U Q " t y p e = ' ' x s : s t r i n g " m i n O e c u r s = " 0 ' 7 >

< x s : e l e m e n t n a m e = " P U R " l y p e = " x s : s t r i n g " m i n O c c u r s = ' ' 0 ' 7 >

< x s : e l e m e n t n a m e = ' 'T O O " t y p e = " x s : s t r i n g ” n i i n O c c u r s = " 0 '7 >

< x . s : e l e m e n t n a m e = " U N C ' ' t y p e = ' 'x . s : s t r i n g " m i n O c c u r s = " () ' 7 >

< x s : e l e m e n t n a m e = " V B B " t y p e = " x s : s t r i n g " m i n O c c u r s = " 0 '7 >

< x s : e l e m e n t n a m e = " V B D ’' t y p e = " x s : s t r i n g " m i n O c c u r s = " 0 '7 >

< x s : e l e m e n l n a m e = " V B G " t y p e = " x s : s t r i n g ” m i n O c c u r s = " 0 '7 >

< x s : e l e m e n t n a m e = ,' V B I 1' t y p e = " x s : s t r i n g " m i n O c c u r s = " 0 '7 >

< x s : e l e m e n t n a m e = ’'V B Z ' ' t y p e = ' ' x s : s t r i n g " m i n O c c u r s = " 0 '7 >

< x s : e l e m e n t n a m e = " V D B " t y p e = " x s : s t r i n g " m i n O c c u r s = " 0 ' 7 >

< x s : e l e m e n t n a m e = " V D D " t y p e = " x . s : s t r i n g " m i n O c c u r s = ' ' 0 ' 7 >

< x s : e l e m e n t n a m e = " V D G ” t y p e = " x s : s t r i n g " m i n O c c u r s = " 0 '7 >

< x s : e l e m e n t n a m e = " V D I " l y p e = ’' x s : s t r i n g ' ' m i n O c c u r s = " 0 '7 >

< x s : e l e m e n t n a m e = " V D N ' ' t y p e = " x s : s t r i n g ” m i n O c c u r s = " 0 '7 >

< x s : e l e m e n t n a m e = ' ' V D Z ' ' t y p e = ' ' x s : s t r i n g " m i n O c c u r s = " 0 '7 >

< x s : e l e m e n t n a m e = " V H B " t y p e = " x s : s t r i n g " m i n O c c u r s = " 0 '7 >

< x s : e l e m e n t n a m e = ' ' V H D " t y p e = ' 'x s : , s t r i n g 1' m i n O c c u r s = " 0 " / >

< x s : e l e m e n t n a m e = ' 'V H G " t y p e = " x s : s t r i n g ' ' m i n O c c u r s = " 0 " / >

< x s : e l e m e n t n a m e = " V H I ' ' t y p e = " x s : s t r i n g " m i n O c c u r s = l' 0 ' 7 >

< x s : e l e m e n t n a m e = ” V H N " t y p e = " x s : s t r i n g " m i n O c c u r s = " 0 " / >

< x s : e l e r a e n t n a m e = ” V H Z " t y p e = " x s : s t r i n g " m i n O c c u r s = " 0 " / >

< x s : e l e m e n t n a m e = ' 'V M O ' ' t y p e = ' ' x s : s t r i n g ' ' m i n O c c u r s = " 0 " / >

< x s : e l e m e n t n a m e = " V V O " t y p e = " x s : s t r i n g " m i n O c c u r s = " 0 " / >

< x s : e l e m e n t n a m e = " V V B ' t y p e = " x s : s t i i n g " m i n O c c u r s = " 0 " / >

< x s : e l e m e n t n a m e = ' ' V V D " t y p e = ' ' x . s : s t r i n g ” m i n O c c u r s = " 0 '7 >

< x s : e l e m e n t n a m e = " V V G " t y p e = " x s : s t r i n g " m i n O c c u r s = " 0 '7 >

< x s : e l e m e n t n a m e = " V V I ' ' t y p e = ' ' x s : s t r i n g " m i n O c c u r s = " 0 '7 >

< x s : e l e m e n t n a m e = ' ' V V N " t y p e = " x s : s t r i n g " m i n O c c u r s = " 0 " / >

< x s : e l e m e n t n a m e = " V V Z ' ' t y p e = " x s : s t r i n g " m i n O c c u r . s = ' ' 0 " / >

< x s : e l e m e n t n a m e = " X X O ' ' t y p e = " x s : s t r i n g " m i n O c c u r s = " 0 " / >

< x s : e l e m e n t n a m e = " Z Z O " t y p e = ' ' x s : s t r i n g " m i n O c c u r s = ' ' () " / >

< x s : e l e m e n t n a m e = ” I F " t y p e = ' ' x s : s t r i n g " m i n O e c u r s = " 0 '7 >

< x s : e l e m e n t n a m e = ' ' I W " t y p e = " x s : s t r i n g " m i n O c c u r s = " 0 '7 >

< x s : e l e m e n t n a m e = " R E X " t y p e = " x s : s t r i n g ' ' m i n O c c u r s = " 0 '7 >

< x s : e l e m e n t n a m e = ' ' N P l " t y p e = ' ' x s : s t r i n g ” m i n O c c u r s = " 0 " / >

< x s : e l e m e n t n a m e = ' ' P P H l " t y p e = ' ' x s : s t r i n g " m i n O e c u r s = ” 0 '7 >

< x s : e l e m e n t n a m e = " M C " t y p e = ” x s : s t r i n g " m i n O c c u r s = " 0 " / >

< x s : e l e m e n t n a m e = ' 'N N " t y p e = " x s : s t r i n g ” m i n O c c u r s = " 0 " / >

< x s : e l e m e n t n a m e = " N N U 2 " t y p e = " x s : s t r i n g " m i n O c c u r s = ' ' 0 " / >

268

A. 3 XML SCHEMA FOR FEATURE MODEL

< x s : e l e m e n t n a m e = " V B R ’' t y p e = " x s : s t r i n g " m i n O c c u r s = " 0 '7 >

< x s : e l e m e n t n a m e = " R L " t y p e = " x s : s t r i n g ’' m i n O c c u r s = " 0 ' 7 >

< x s : e l e m e n t n a m e = " R P K ” t y p e = " x s : s t r i n g " m i n O c c u r s = " 0 " / >

< x s : e l e m e n t n a m e = " R R " t y p e = " x s : s t r i n g " m i n O c c u r s = " 0 " / >

< x s : e l e m e n t n a m e = " A V O " t y p e = ' ' x s : s t r i n g " m i n O c c u r s = " 0 ' 7 >

< x s : e l e m e n t n a m e = " V B N " t y p e = " x s : s t r i n g " m i n O c e u r s = ” 0 " / >

< x s : e l e m e n t n a m e = " C S " t y p e = " x s : s t r i n g " m i n O c c u r s = " 0 ' 7 >

< x s : e l e m e n t n a m e = " V M " t y p e = " x s : s t r i n g " m i n O c c u r s = " 0 ' 7 >

< x s : e l e m e n t n a m e = " C S T " t y p e = " x s : s t r i n g " m i n O c c u r s = " 0 ' 7 >

< x s : e l e m e n t n a m e = " X X ' ' t y p e = " x s : s t r i n g " m i n O c c u r s = " 0 ' 7 >

< x s : e l e m e n t n a m e = " A P P G E " t y p e = " x s : s t r i n g " m i n O c c u r s = " 0 " / >

< x s : e l e m e n t n a m e = ' ' M D ” t y p e = " x . s : s t r i n g " m i n O c c u r s = " 0 ' 7 >

< x s : e l e m e n t n a m e = " J K ” t y p e = " x s : s t r i n g " m i n O c c u r s = " 0 ' 7 >

< x s : e l e m e n t n a m e = ” R P " t y p e = " x s : s t r i n g " m i n O c c u r s = ” 0 '7 >

< x s : e l e m e n t n a m e = " F U " t y p e = " x s : s t r i n g " m i n O c c u r s = " 0 ’7 >

< x s : e l e m e n t n a m e = " D D ' ' t y p e = ” x s : s t r i n g ' ' m i n O c c u r s = ” 0 '7 >

< x . s : e l e m e n t n a m e = " D D l " t y p e = " x s : s t r i n g ' ' m i n O c c u r s = " 0 ' 7 >

< x s : e l e m e n t n a m e = " D D 2 " t y p e = ” x s : . s t r i n g " m i n O c c u r s = " () ' 7 >

< x s : e l e m e n t n a m e = " N N U " t y p e = " x s : s t r i n g " t n i n O c c u r s = " 0 ' 7 >

< x s : e l e m e n t n a m e = " R T ” t y p e = " x s : s t r i n g " m i n O c c u r s = " 0 ’7 >

< x s : e l e m e n t n a m e = " R R R ” t y p e = l' x s : s l r i n g ' ' m i n O c c u r s = " 0 ' 7 >

< x s : e l e m e n t n a m e = ” B C L " t y p e = " x s : s t r i n g " m i n O c c u r s = " 0 " / >

< x s : e l e m e n t n a m e = " N N T l " t y p e = " x s : s t r i n g " m i n O c c u r s = " () ' 7 >

< x s : e l e m e n t n a m e = " N N T 2 " t y p e = ' ' x s : s t r i n g " m i n O c c u r s = " 0 ' 7 >

< x s : e l e m e n t n a m e = " M C l " t y p e = ' ' x s : s t r i n g " m i n O c c u r s = " 0 ' 7 >

< x s : e l e m e n t n a m e = " M C 2 " t y p e = ' ' x s : s t r i n g " m i n O c c u r s = " 0 '7 >

< / x s : c h o i c e >

< / x s : c o m p l e x T y p e >

< / x s : e l e m e n t >

< x s : e l e m e n t n a m e = " D e s c r i p t i o n ' ' >

< x s : c o m p l e x T y p e >

< x s : c h o i c e m a x O c c u r s = " u n b o u n d e d " >*
< 7 x s : c h o i c e >

< / x s : c o m p l e x T y p e >

< / x s : e l e m e n t >

< x s : e l e m e n t n a m e = ” I s s u e _ a n d _ d e c i s i o n " i n i n O c c u r s = " 0 " >

< x s : c o m p l e x T y p e >

< x s : c h o i c e m a x O c c u r s = " u n b o u n d e d " >*
< / x s : c h o i c e >

< / x s : c o m p l e x T y p e >

< / x s : e l e m e n t >

< x s : e l e m e n t n a m e = ' ' T y p e " t y p e = " x s : s t r i n g ' 7 >

< x s : e l e m e n t n a r a e = ' ' E x i s t e n t i a l " t y p e = " x s : s t r i n g ' 7 >

< x s : e l e m e n t n a m e = " R e l a t i o n s h i p " m i n O c c u r s = " 0 " >

< x s : c o m p I e x T y p e >

< x s : s e q u e n e e >

< x s : e l e m e n t n a m e = " R e l _ f e a t u r e " m i n O c c u r s = " 0 ' ' m a x O c c u r s = " u n b o u n d e d " >

< x s : c o m p l e x T y p e >

< x s : c h o i c e m a x O c c u r . s = " u n b o u n d e d " >*
< / x s : c h o i c e >

< / x s : c o m p l e x T y p e >

< / x s : e l e m e n t >

< / x s : s e q u e n c e >

< x s : a t t r i b u t e n a m e = " t y p e " t y p e = ' ' x s : s t r i n g " u s e = ' ' r e q u i r e d ' 7 >

< / x s : c o m p l e x T y p e >

< / x s : e l e m e n t >

269

APPENDIX A - XML SCHEMAS

< x s : e l e m e n t n a m e — " A l l o c a t e d _ t o _ s y s t e m " m i n O c c u r s = " () " >

< x s : c o m p l e x T y p e >

< x s : c h o i c e m a x O c c u r s = " u n b o u n d e d ” >
*

< / x s : c h o i c e >

< / x s : c o m p l e x T y p e >

< / x s : e ! e m e n t >

< x s : e l e m e n t n a m e = " C o m p o s i t i o n _ r u l e " m i n O c c u r s = " 0 " >

< x s : c o m p l e x T y p e >

< x s : c h o i c e m a x O c c u r s = " u n b o u n d e d " >

< / x s : c h o i c e >

< / x s : c o m p l e x T y p e >

< / x s : e l e m e n t >

< / x s : s e q u e n c e >

< / x s : c o m p I e x T y p e >

< / x s : e l e m e n t >

< / x s : s e q u e n c e >

< / x s : c o m p l e x T y p e >

< / x s : e l e m e n t >

< / x s : s c h e m a >

Note: <xs: choice> has sub elements e.g. PRP, JJ, CC, DD1, etc. as shown earlier.

270

A. 4 XML Schema for use case

A.4. XML Schema for use case

♦ Use Case m

♦ UseCaselDg ♦ System g ♦ Product Member g
.string string string

♦ Title E

Description g

♦ Level I
string

(?

W

♦ Preconditions E)

♦ Postconditions E

♦ Primary_actorg
string________________

y ♦ Secondary_actorS|
- ’ [string____________________

♦ Flow of events r

[<t)\

Trigger E

♦ Event E

y ♦ Exceptional_events E

(?; '♦ Superordinate_use_caser

L-® ♦ Subordinate use case E

271

APPENDIX A - XML SCHEMAS

< ?xm l version= " 1.0" encoding= "U T F-8"?>
< xs:schem a elem entF orm D efau lt= "qualified" attributeF orm D efau lt= "unqualified"

xm lns:xs= " h ttp :// w w w .w 3.o rg/ 20()l/X M L Sch em a">
< xs:e lem en t nam e="U se_Case">

< xs:com p lexT ype>
< xs:sequence>

< xs:e lem en t narae="Title">
< xs:com p lexT yp e>

< xs:ch o ice m axO ccurs= "unbounded">
*

</xs:choice>
< /xs:com plexT ype>

</xs:elem ent>
< xs:e lem en t nam e="D escription">

< xs:com p lexT yp e>
< xs:cho ice m axO ccurs="unbounded">

*
</xs:choice>

< /xs:com plexT ype>
</xs:elcm ent>
< xs:e lem en t nam e="L evel" type= "xs:string" minOecurs="0"/>
< xs:e lem en t nam e= ”Preconditions" m inO ccurs="0">

< xs:com p lexT yp e>
< xs:cho ice m axO ccurs= "unbounded">

*

</xs:choice>
< /xs:com plexT ype>

</xs:elem ent>
< xs:e lem en t nam e="Postconditions" m inO ccurs="0">

< xs:com p lexT yp e>
< xs:ch o ice m axO ccu rs= ”unbounded">

*

</xs:choice>
< /xs:com plexT ype>

</xs:elem ent>
< xs:e lem en t nanie= "Prim ary_actor">

< xs:com p lexT yp e>
< xs:cho ice m axO ccurs="unbounded''>

*
</xs:choice>

< /xs:corap lexT ype>
</xs:elem ent>
< xs:e lem en t nam e= "Secondary_actors" m inO ccurs=''0">

< xs:com p lexT yp e>
< xs:cho ice m axO ccurs="unbounded">

*
</xs:choice>

< /xs:com piexT ype>
</xs:elem ent>

272

http://www.w3.org/20()l/XMLSchema

A. 4 XML Schema for use case

<xs:element name="Flow_of_events”>
<xs:complexType>

<xs:sequence>
<xs:element name= "Trigger" minOccurs="0">

<xs:complexType>
<xs:choice maxOccurs="unbounded">

*
</xs:choice>

</xs:complexT ype>
</xs:element>
<xs:elenrent name="Event” maxOccurs="unbounded">

<xs:cornplexType>
<xs:choice maxOccurs="unbounded">*
</xs:choice>

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="Exceptional_events" minOccurs="0">

<xs:complexType>
<xs:choice maxOccurs="unbounded">

*
</xs:choice>

</xs xomplexT ype>
</xs:element>
<xs:element name="Superordinate_use_case" minOccurs="0">

<xs:complexType>
<xs:choice maxOccurs="unbounded">

*
</xs:choice>

</x s : compì e xType>
</xs:eIement>
<xs:element name="Subordinate_use_case" minOccurs="0">

<xs:complexType>
<xs:choice maxOccurs="unbounded">

*
</xs:choice>

</xs:complexType>
</xs:element>

</xs:sequence>
<xs:attribute name="UseCaseID" type="xs:string" use="required"/>
<xs:attribute name="System" type="xs:string" use="required"/>
<xs:attribute name="Family_Member" type="xs:string" use="required"/>

</xs:complexT ype>
</xs:element>

</xs:schema>

Note: <xs: choice> has sub elements e.g. PRP, JJ, CC, DD1, etc. as shown earlier.

273

APPENDIX A - XML SCHEMAS

A.5. XML Schema for subsystem model

< ?xm l version= " 1.0" encoding= "U T F-8"?>
< xs:schem a e lem entF onnD efau lt= "qualified" attrib u teF orm D efau lt= ''u n qu alified ”

xm lns:xs= "http :// w w w .w 3.o rg / 2001/ X M L Sch em a">
< xs:e le raen t nam e= "Subsystem _M odel">

< xs;com p lexT yp e>
< xs:sequence>

< xs:e lem en t nam e="Subsystem " m axO ccurs="unbounded">
< xs:com p lexT yp e>

< xs:sequence>
< xs:e lem en t n am e= " Su b system _nam e”>

< xs:com p lexT yp e>
< xs:cho ice m axO ccurs="unbounded">

*

</xs:choice>
< /xs:com plexT ype>

</xs:elem ent>
< xs:e lem en t nam e="D escription">

< xs:com p lexT yp e>
< xs:ch o ice m axO ccurs="unbounded">

*
</xs:choice>

< /xs:com plexT ype>
</xs:elem ent>
< xs:e lem en t nam e="Type" type="xs:string"/>

</xs:sequence>
< /xs:com plexT ype>

</xs:elem ent>
< xs:e lem en t nam e="Flow " m axO ccurs="unbounded">

< xs:com p lexT yp e>
< xs:attribu te nam e= "flow _id" type= "xs:string" use="required'7>
< xs:attribu te nam e= "now _type" type="xs:string" use=''required"/>
< xs:attribu te nam e="sender" type= "xs:string" u se= "req u ired 7>
< xs:attribu te nam e="receiver" type= "xs:string" use="required"/>

< /xs:com plexT ype>
</xs:elem ent>

</xs:sequence>
< /xs:com plexT ype>

</xs:elem ent>
</xs:schem a>

274

http://www.w3.org/2001/XMLSchema

A.5 XML Schema for subsystem model

Note: <xs: choice> has sub dements e.g. PRP, JJ, CC, DD1, etc. as shown earlier.

275

APPENDIX A - XML SCHEMAS

A.6. XML Schema for process model

276

A.6 XML Schema for process model

< ?xm l vers io n = " l .0" encoding= "U T F-8"?>
< x s:schem a elem entF orm D efau lt= "qualified" attributeF orm D efau lt= "unqualified"

xm lns:xs= " http :// w w w .w 3.o rg / 2001/ X M L Sch em a">
< xs:e lem en t nam e= "P rocess_M odd">

< xs:com p lexT yp e>
< xs:sequence>

< xs:e lem en t naine="Process" m axO ccurs= "unbounded">
< xs:com p lexT yp e>

< xs:sequence>
< xs:e le raen t nam e="Process_nam e">

< x s:com p lexT ype>
< xs:cho ice m axO ccurs= "unbounded">

sie

</xs:choice>
< /xs:com plexT ype>

</xs:elem ent>
< xs:e lem en t nam e="D escription">

< xs:com p lexT yp e>
< xs:ch o ice m axO ccurs= "unbounded">

*
</xs:choice>

< /xs:com plexT ype>
</xs:elem ent>
< xs:e lem en t nam e= "A ctivity" type="xs:string"/>
< xs:e lem en t nam e="Type" type="xs:string"/>

</xs:sequence>
< xs:attrib u te nam e= ”sh ared _data” type= "xs:string" use="optional"/>

< /xs:com plexT ype>
</xs:elem ent>
< xs:e lem en t nam e="M essage" m axO ccurs="unbounded">

< xs:com p lexT yp e>
< xs:a ttrib u te nam e="m essage_id" type= "xs:string" use="required"/>
< xs:a ttrib u te nam e= "m essage_type" type= "xs:string" use="required"/>
< xs:a ttrib u te nam e="sender" type= "xs:string" use="required"/>
< xs:a tlrib u te nam e= "receiver" type= "xs:string" use="required"/>

< /xs:com plexT ype>
</xs:elem ent>
< xs:e lem en t nam e="Shared_data" m inO ccurs="0" m axO ccurs= "unbounded">

< xs:com p lexT yp e>
< xs:a ltribu te nam e="data_id" type= ”xs:string" use="required"/>
< xs:attrib u te nam e="data_type" type= "xs:string" use="required"/>

< /xs:com plexT ype>
</xs:elem ent>

</xs:sequence>
< xs:attrib u te nam e="ProcessM odelID " type= "xs:string" use="required"/>
< xs;attrib u te nam e= "Subsystem _naine" type= "xs:string" use="required"/>

< /xs:com plexT ype>
</xs:elem ent>

</xs:schem a>

Note: <xs: choice> has sub elements e.g. PRP, JJ, CC, DD1, etc. as shown earlier.

277

http://www.w3.org/2001/XMLSchema

APPENDIX A - XML SCHEMAS

A.7. XML Schema for module model

* ModuleModellDg • Process_name g
.string string

♦ Module_Model g _

M S ♦ Linkr » ty p e f
string

* source J
.string______J

* destination I
string_______ _

278

A. 7 XML Schema for module model

<?xml version="l .0" encoding="UTF-8"?>
<xs: schema elementFormDefault="qualified" attributeFormDefault="unqualified"
xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="Module_Model">
<xs:complexType>

<xs:sequence>
<xs:element name=”Module" maxOccurs="unbounded">

<xs:complexType>
<xs:sequence>

<xs:element name=”Module_name">
<xs:complexT ype>

<xs:choice maxOccurs=”unbounded">
*

</xs:choice>
</xs:complexT ype>

</xs:element>
<xs:element name="Description">

<xs:complexType>
<xs:choice maxOccurs="unbounded”>

*
</xs:choice>

</xs:complexType>
</xs:element>
<xs:element name="Type" type=”xs:string"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="Link" maxOccurs="unbounded">

<xs:complexT ype>
<xs:attribute name=”type" type="xs:string" use=llrequired"/>
<xs:altribute name="source" type="xs:string" use="required"/>
<xs:attribute name="destination" type="xs:string" use="required"/>

</xs:complexType>
</xs:element>

</xs:sequence>
<xs:attribute name="ModuleModelID" type="xs:string" use="required'7>
<xs:attribute name="Process_name" type="xs:string" use="required"/>

</xs:complexType>
</xs:element>

</xs:schema>

Note: <xs: choice> has sub elements e.g. PRP,)|, CC, DD1, etc. as shown earlier.

279

http://www.w3.org/2001/XMLSchema

Appendix B — Traceability Rules

B.l.Direct Traceability Rules

< T race R u le R u le ID = "R 1 0 " R u le T y p e = " sa t is f ia b il ity " D o c T y p e l= " S u b s y s te m M o d e l"
D o cT yp e2 = " F ea tu re M o d e l">

< Q uery>

d e c la re n a m e sp a c e s=“ja v a :d is ta n c e C o n tr o l .d ” ;

d e c la re fu n c tio n lo c a l:g e tP a r e n tF e a tu r e ($ c h ild a s x s :s t r in g) a s i te m ()

1
fo r S ite m A in d o c (A £ 2A £)/ / R ela tio n sh ip / R e l_ fea tu re
w h e re n o rm a liz e -sp a c e ($ ite m A)= n o rm a liz e -s p a c e (S c h ild)
re tu rn $ item A / ../ ../ F eatu re_ n am e

};

f o r S i t e m l in d o c (A £ lA £)/ / S u b system / D esc r ip tio n ,
$ ite m 2 in d o c (A £ 2A £)/ / F eatu re_ M o d el/ F eatu re/ F eatu re_ n an ie

w h e re lo c a l:g e tP a r e n tF e a tu r e (s t r in g ($ ite m 2)) != ""
an d s :c o n ta in s In D is ta n c e ($ ite m l ,S ite m 2 , lo c a l:g e tP a r e n tF e a tu r e (s t r in g ($ ite m 2)))

</Q uery>
< A ction>

< R e la t io n R u le ID = "R 1 0" T y p e = " sa t is f ia b il ity " D o cT yp e 1 ^ " S u b s y s te m M o d e l"
D o cT yp e2 = " F ea tu re M o d e l">

< E lem en t D ocum ent= ""> { $ ite m l/ ../ S u b sy s te m _ n a m e) </E lem ent>
< E lem en t D ocum ent= ""> {S item 2} </Elem ent>

< /R elation>
</Action>

</T ra c eR u le >
< T race R u le R u le ID = " R l 1" R u le T y p e = " im p le m e n ts" D o c T y p e l= " C la s s D iag ram "
D o cT yp e2 = " F ea tu re M o d e l">

< Q uery>

d e c la re n a m e sp a c e U M L = " o rg .o m g .x m i.n a m e sp a c e .U M L " ;
d e c la re n a m e sp a c e s= “ja v a :d is ta n c e C o n tr o l .d ” ;

d e c la re fu n c tio n lo c a l:g e tC la s s in C la s s ($ d ia g r a m as x s :s t r in g) a s ite m ()*

fo r S item E in
d o c (A £ l A £)/ / U M L :D iag ram / U M L :G rap h E lem en t.co n ta in ed / U M L :G rap h N o d e/ U M L :G rap h E lem
e n t .s e m a n t ic M o d e l/ U M L :U m llS e m a n t ic M o d e lB r id g e / U M L :U m llS e m a n t ic M o d e lB r id g e .e le m e n
t/ U M L :C la ss
w h ere
Sitem E/../. n am e = S d ia g ra m
re tu rn S item E

};

le t $ c l := lo c a l :g e tC la s s in C la s s (* l*)

APPENDIX B - TRACEABILITY RULES

fo r SitemO in $ c l

fo r $ i t e m l in

d o c (A £ l A £)/ A JM L :N am esp ace .o w n ed E lem en t/ U M L :C la ss/ U M L :C la ss if ie r .fe a tu re/ U M L :O p era t
ion
fo r $ item 2 in do c(A £ 2A £)/ / F eatu re_ M o d el/ F eatu re/ D escrip tion
le t $ t l := $ item l/ ../ ../ @ n am e

w h e re S item l/ ../ ../ @ xm i.id = $ item O / @ xm i.id re f
and s :c o n ta in s In D is ta n c e ($ ite m 2 , S ite m l/ @ n a m e , $ t l)

</Query>
< A ction>

< R ela t io n R u le lD = " R l 1" T yp e= " im p lem en ts" D o c T y p e l= " C la s s D iag ram "
D o cT yp e2 = "F ea tu re M o d e l”>

< E Iem ent D o cu m en t= "”> < C lass> { $ tl }</Class>
< O peration> {$ item 1 /@ n a m e } </O peration> </Elem ent>

< E lem en t D ocum ent= ""> ($ item 2 / ../ F ea tu re_ n am e) </Elem ent>
< /R elation>

</Action>
< /T raceR ule>
< T raceR u le R u le ID = "R 1 2" R u le T y p e = "d e p e n d en c y " D o c T y p e l= " U se C ase"
D o cT yp e2 = "F ea tu re M o d e l”>

< Q uery>

d e c la re n a m e sp a c e s= “ja v a :d is ta n c e C o n tr o l .d ” ;

d e c la re fu n c tio n lo c a l:g e tC h ild re n F e a tu re (S p a re n t a s x s :s t r in g) a s ite m ()*

{
fo r $ ite m A in do c (A £ 2A £)/ / F eatu re/ R e la tion sh ip / R e l_ fea tu re
w h e re n o rm a liz e -sp ace ($ item A / ../ ../ F ea tu re_ n am e)= n o rm a liz e -sp a c e (S p a re n t)
re tu rn S item A

};

fo r S it e m l in d o c (A £ l A £)//U se_C ase/P recond ition s,
$ item 2 in d o c (A £ 2A £ ")/ / F eatu re_ M o d el/ F eatu re/ F eatu re_ n am e

w h e re lo c a l:g e tC h ild re n F e a tu r e (s t r in g ($ ite m 2)) != ""
and s :c o n ta in s In D is ta n c e ($ ite m l ,$ ite m 2 , lo c a l:g e tC h ild re n F e a tu r e (s t r in g ($ ite m 2)))

</Query>
< A ction>

< R ela t io n R u le ID = "R 1 2" T yp e= "d ep en d en cy" D o c T y p e l= " U se C ase "
D o cT yp e2 = ”F e a tu re M o d e l">

< E lem en t D ocum ent= ""> {S item 1 /. .AT itle} < Preconditions/>
</Elem ent>
< E lem en t D ocum ent= ""> {S item 2}

< C h ild > { lo c a l:g e tC h ild re n F ea tu re (s tr in g ($ item 2))} < / C h ild >
</Elem ent>

< /R elation>
</Action>

< /T raceR u le>
< T raceR u le R u le ID = "R 1 3" R u le T y p e - 'd e p e n d e n c y ” D o c T y p e l- 'P r o c e s s M o d e l"
D o cT yp e2 = "F ea tu re M o d e l”>

282

B.l Direct Traceability Rules

< Q uery>

d e c la re n a m e sp a c e w = " ja v a :s y n o n y m .s " ;

d e c la re fu n c tio n lo c a l:g e tF e a tu r e o fS u b s y s te m (S s u b s y s te m as x s :s t r in g) a s item /)*

{
fo r S ite m A in d o c (A £ 2A £)/ / F ea tu re_ M o d e l/ F ea tu re/ A llo ca ted _ to _ S u b system
w h e re n o rm a liz e -sp a c e ($ ite m A)= n o rm a liz e -sp a c e ($ su b sy s te m)
re tu rn $ item A / S item A / ../ F eatu re_ n am e

};

fo r S item 1 in d o c (A f I A £)//P rocess_M odel

le t $ t2 := lo c a l:g e tF e a tu r e o fS u b s y s te m (s tr in g ($ ite m l/ @ S u b s y s te m _ n a m e))

</Q uery>
< A ction>

< R e la t io n R u le ID = "R 1 3" T yp e= "d ep en d en cy" D o c T y p e l= " P ro c e s s M o d e l"
D o cT yp e2 = " F ea tu re M o d e l">

< E lem en t D o cum ent= '" '>
< P ro cessM o d e lID > {S item 1 /@ P ro c e s s M o d e llD } < /P rocessM odelID > </Elem ent>

< E lem en t D ocum ent= ""> {S t 2 } </Elem ent>
< /R elation>

</Action>
< /T raceR u le>
c T r a c e R u le R u le ID = "R 1 4 " R u le T y p e = ''co n ta in m e n t" D o c T y p e l= " U se C ase "
D o cT yp e2 = " F ea tu re M o d e l ">

< Q uery>

d e c la re n a m e sp a c e s=“ja v a :d is ta n c e C o n tro l .d ” ;

d e c la re fu n c tio n lo c a l:g e tP a r e n tF e a tu r e ($ c h ild a s x s :s t r in g) a s i te m ()

{
fo r S ite m A in d o c (A £ 2A £)/ / R ela tio n sh ip / R e l_ fea tu re
w h e re n o rm a liz e -sp a c e ($ ite m A)= n o rm a liz e -s p a c e (S c h ild)
re tu rn S item A / ../ ../F eatu re_n am e

};

f o r S i t e m l in d o c (A £ lA £)/ / U se_ C ase/ D escr ip tio n ,
$ item 2 in do c(A £ 2A £)/ / F eatu re_ M o d el/ F eatu re/ F eatu re_ n am e

w h e re s :c o n ta in s I n D is ta n c e ($ ite m l,$ ite m 2 , lo c a l:g e tP a r e n tF e a tu r e (s t r in g ($ ite m 2)))

</Q uery>
< A ction>

< R e la t io n R u le ID = "R 1 4" T yp e= "co n ta in m en t" D o c T y p e l= " U se C ase"
D o cT yp e2 = " F ea tu re M o d e l">

< E lem en t D ocum ent= ""> {S item 1/../T itle} < D escription/>
</Elem ent>
< E Iem ent D ocum ent= ""> {S item 2} </Elem ent>

< /R elation>
</Action>

< /T raceR u le>
< T race R u le R u le ID = "R 1 5 " R u le T y p e = " c o n ta in m e n t” D o c T y p e l= " P ro c e s s M o d e l"

D o c T y p e2 = " C la ss D iag ram ">
< Q uery>

d e c la re n a m e sp a c e U M L = " o rg .o m g .x m i.n a m e sp a c e .U M L " ;

283

APPENDIX B -T R A CEABILITY RULES

d e c la re n a m e sp a c e s=“ja v a :d is ta n c e C o n tro l .d ” ;

fo r S it e m l in d o c (À £ 2À £)/ / U M L :C la ss if ie r .fe a tu re/ U M L :O p era tio n / @ n am e
fo r $ item 2 in d o c (À £ lÀ £)/ / P ro cess/ D escrip tio n
le t St 1 := $ item l/ ../ ../ ../@ nam e

w h e re s :c o n ta in s I n D is ta n c e ($ ite m 2 ,$ ite m l, $ t l)
</Query>

< A ction>
< R ela t io n R u le ID = "R 1 5" T yp e= "co n ta in m en t" D o c T y p e l= " P ro c e s s M o d e l"

D o c T y p e2 = " C la ss D iag ram ">
< E lem en t D ocum ent= ""> {$ item 2/ ../P rocess_nam e} < D escription/>
</Element>
< E lem en t D ocum ent= ""> < C lass> { St 1 }</Class> < O peration> { S ite m l} </O peration>
</Elem ent>

< /R elation>
</Action>

< /T raceR ule>
< T raceR u le R u le ID = "R 1 6" R u le T y p e = "re f in em e n t" D o c T y p e l= " M o d u le M o d e l"
D o cT yp e2 = "P ro cess M o d e l”>

< Q uery>

d e c la re n a m e sp a c e w = " ja v a :s y n o n y m .s " ;

fo r S ite m l in d o c(A £ 2A £)/ / P rocess_ M od el/ P rocess
le t $ ite m 2 := d o c (A £ lA £)/ / M o d u le_ M o d e l
w h e re w :s tr in g n o sp a c e (s t r in g ($ ite m l/ P ro c e s s_ n a m e))=
w :s tr in g n o sp a c e ($ item 2 / @ P ro c e s s_ n a m e)

</Query>
< A ction>

< R ela tio n R u le ID = "R 1 6" T yp e= "re f in em en t" D o c T y p e l= " M o d u le M o d e l"
D o cT yp e2 = "P ro ce ss M o d e l">

< E lem en t D ocum ent= " "> < M o d u leM o d e lID > {$item 2/@ M o d u le M o d e llD }
< /M odu leM odel ID x / E le m e n t>

< E lem en t D ocum ent= ""> { $ item l/ P ro ce ss_ n am e} </Elem ent>
< /R elation>

</Action>
< /T raceR ule>
< T raceR u le R u le ID = "R 1 7" R u le T y p e = " o v e r la p s" D o c T y p e l= " S ta te c h a r t D iag ram "
D o cT yp e2 = "U se C ase">

< Q uery>

d e c la re n a m e sp a c e U M L = ”o rg .o m g .x m i.n a m e sp a c e .U M L " ;
d e c la re n a m e sp a c e s=“ja v a :d is ta n c e C o n tro l .d ” ;

d e c la re fu n c tio n lo c a l:g e tT ra n s it io n in S ta te () a s i te m ()*

I
fo r S item F in
d o c (A £ lA £)/ / U M L :G ra p h E le m e n t.s e m a n t ic M o d e l/ U M L :U m llS e m a n tic M o d e lB r id g e / U M L :U m l
lS e m a n t ic M o d e lB r id g e .e le m e n t/ U M L :T ra n s it io n
re tu rn S item F

};

d e c la re fu n c tio n lo c a l:g e tS ta te in S ta te ($ t r a n s it io n a s n o d e ()) a s i te m ()

284

B. I Direct Traceability Rules

i
fo r S ite rn G in d o c (Â £ IÂ £)/ / U M L :S im p leS ta te
w h e re $ iten iG / U M L :S ta te V e r te x .in c o m in g / U M L :T ra n s it io n / @ x m i.id re f =
$tran sition/@ x m i .id r e f
re tu rn $ item G

);

le t S it e m l := lo c a l:g e tT ra n s it io n in S ta te ()
fo r $ t l in $ i t e m l
fo r $ ite m 2 in lo c a l :g e tS t a t e in S ta t e ($ t l)
fo r $ item 3 in doc(A £ 2A £)//U se_C ase/F low _of_even ts/E ven t
w h e re s :c o n ta in s In D is ta n c e ($ ite m 3 , S item 2/ @ n am e)

</Query>
< A ction>

< R e la t io n R u le ID = "R 1 7" T yp e= "o v er lap s" D o c T y p e l= " S ta te c h a r t D iag ram "
D o cT yp e2 = "U se C ase">

< E lem en t D ocum ent= ""> < S tate> {$ item 2/ @ n am e} </State>
< In co m in gT ran s it io n > { $ tl/ @ x m i.id re f} < / In co m in gT ran s it io n > </Elem ent>

< E lem en t D ocum ent= ""> {Sitem 3/../ ../T itle} <Event/>
</Elem ent>

< /R elation>
</Action>

< /T raceR u le>
< T ra ce R u le R u le lD = "R 9 " R u le T y p e = "e v o lu tio n " D o c T y p e l= " S ta te c h a r t D iag ram "
D o c T y p e2 = " S ta te c h a rt D iag ram ">

< Q uery>
fo r S it e m l in d o c (A £ lA £)/ / U M L :T ra n s it io n ,

S ite m 2 in d o c (A £ 2 A £)/ A JM L :T ran s it io n

w h e re
$x l/ ../ U M L :D iag ram / @ n am e = $ x 2 /../ U M L :D iag ram / @ n am e an d $ x l/ @ n a m e = $x2/ @ nam e
an d
$ x l/ U M L :T ra n s it io n .e ffe c t/ U M L :A c t io n S e q u e n c e / U M L :A c tio n S e q u e n c e .a c t io n / U M L :U n in te ip r
e ted A ctio n / @ n am e =
$ x 2 / U M L :T ra n s it io n .e f fe c t/ U M L :A c tio n S e q u en c e / U M L :A c t io n S e q u e n ce .a c t io n / U M L :U n in te rp r
e ted A ctio n / @ n am e an d
$ x l/ U M L :T ra n s it io n .tr ig g e r/ B e h a v io ra l_ E le m e n ts .S ta te _ M a c h in e s .E v e n t/ @ x m i. id r e f =
$ x l/ ../ U M L :S ig n a lE v en t/ @ x m i.id an d
$ x 2 / U M L :T ra n s it io n .tr ig g e r/ B e h a v io ra l_ E le m e n ts .S ta te _ M a c h in e s .E v e n t/ @ x m i. id r e f =
S x 2 / ../ U M L :S ig n a lE v en t/ @ xm i.id an d
S x l/ ../ U M L :S ig n a lE v en t/ @ n a m e = $x2/ ../ U M L :S ign a lE ven t/ @ n am e an d
S x l/ ../ U M L :S ig n a lE v e n t/ U M L :S ig n a lE v e n t.s ig n a l/ B e h a v io ra l_ E le m e n ts .C o m m o n _ B e h a v io r .S ig
n a l/ @ x m i.id re f = $ x l/ ../ U M L :S ig n a l/ @ x m i.id and
$ x 2 / ../ U M L :S ig n a lE v e n t/ U M L :S ig n a lE v e n t .s ig n a l/ B e h a v io ra l_ E le m e n ts .C o m m o n _ B e h a v io r .S ig
n a l/ @ x m i.id re f = $ x 2 / ../ U M L :S ig n a l/ @ x m i.id and
$ x l/ ../ U M L :S ig n a l/ @ n a m e = $x 2 / ..A JM L :S ig n a l/ @ n am e and
S x l/ ../ U M L :S ig n a l/ @ x m i.id / U M L :D a taT yp e/ @ x m i.id =
S x l/ ../ U M L :E v en t.P a ram e te r/ U M L :P a ram ete r/ U M L :P a ra m ete r .typ e/ F o u n d a tio n . C o re . C la ss if ie r/
@ x m i.id re f and $x 2 / ../ U M L :S ign a l/ @ x m i.id / U M L :D a taT yp e/ @ x m i.id =
S x 2 / ../ U M L :E v en t.P a ram e te r/ U M L :P a ram e te r/ U M L :P a ram e te r .typ e/ F o u n d a tio n .C o re .C la ss if ie r/
@ x m i.id re fa n d $ x l/ ../ U M L :E v en t.P a ram e te r/ U M L :P a ram e te r/ @ n am e !=
$x2/ ../ U M L :E v en t.P a ram ete r/ U M L :P aram ete r/ @ n am e

</Query>

285

APPENDIX B - TRACEABILITY RULES

< A ction>
< R ela tio n R u leID = "R 9" T yp e= "ev o lu tio n " D o c T y p e l= " S ta te c h a r t D iag ram "

D o cT yp e2 = " S ta te ch a rt D iag ram ">
< E lem en t D ocum ent= "">

< T ransition > {$x1/ @ nam e} < /Transition>
< Param eten> { $ x l/ ../ U M L :E v en t.P a ram ete r/ U M L :P aram ete r/ @ n am e) < /Param eter>

</Elem ent>
< E lem en t D ocum ent= "">

< T ran sit io n > {Sx2/@ nam e } < /Transition>
< P aram ete i> { $x2/ ../ U M L :E ven t.P aram eter/ U M L :P aram eter/ @ n am e} < /Param eter>

</Elem ent>
< /R elation>

</Action>
< /T raceR ule>
c T r a c e R u le R u le ID = "R 1 8" R u le T y p e = " im p le m e n ts" D o c T y p e l= " S e q u e n c e D iag ram "
D o cT yp e2 = " U se C ase">

< Q uery>
d e c la re n a m e sp a c e U M L = ”o rg .o m g .x m i.n a m e sp a c e .U M L " ;

d e c la re n a m e sp a c e s=“ja v a :d is ta n c e C o n tr o l .d ” ;

d e c la re fu n c tio n lo c a l:g e tM e s s a g e in S e q () a s i te m ()*

{
fo r $ item A in
d o c (A £ l A £)/ / U M L :G rap h E lem en t.sem an ticM o d e l/ U M L :U m l lS e m a n t ic M o d e lB r id g e / U M L :U m l
lS e m a n t ic M o d e lB r id g e .e le m e n t/ U M L :L in k
re tu rn $ item A

d e c la re fu n c tio n lo c a l:g e tO b je c t in S e q (S l in k a s n o d e ()) as item O

{
fo r $ item B in d o c (A £ l A £)//U M L :L ink
w h e re $ item B / @ x m i.id = $ lin k / @ x m i.id re f
re tu rn $ item B / U M L :L in k .co n n ec tio n / U M L :L in k E n d / U M L :L in k E n d .in s tan ce/ U M L :O b jec t
};

d e c la re fu n c tio n lo c a l:g e tO b je c t in M o d e l($ o b je c t a s n o d e ()) a s ite m ()*

{

fo r $ item C in d o c (A £ l A £)//U M L :O bject
w h e re $ item C / @ x m i.id = $ o b jec t/ @ x m i.id re f
re tu rn $ ite m C / U M L :In s ta n c e .c la s s if ie r/ U M L :C la s s

};

d e c la re fu n c tio n lo c a l:g e tC la s s O b je c t in S e q ($ c la s s a s n o d e ()) a s ite m ()

{
fo r S item D in d o c (A £ l A £)/ / U M L :C lass
w h e re $ item D / @ xm i.id = $ c la s s/ @ x m i.id re f

re tu rn S item D

d e c la re fu n c tio n lo c a l :g e tC la s s in C la s s ($ c la s s a s nodeQ , S d ia g ra m a s x s :s t r in g)a s ite m ()*

2 8 6

B. I Direct Traceability Rules

{
fo r S item E in
d o c (Â £ lÂ £)/ / U M L :D iag ram / U M L :G rap h E lem en t.co n ta in ed / U M L :G rap h N o d e/ U M L :G rap h E lem
e n t .s e m a n t ic M o d e l/ U M L :U m l]S e m a n t ic M o d e]B r id g e / U M L :U m llS e m a n t ic M o d e lB r id g e .e le m e n
t/ U M L :C la ss
w h e re $item E /../ ../ ../ ../ ../parent::node()/@ nam e = $ d ia g r a m
re tu rn S item E

};

le t S i t e m l := lo c a l:g e tM e s s a g e in S e q ()
fo r S t 1 in S ite m l
f o r $ it e m 2 in lo c a l:g e tO b je c t in S e q ($ t l)
fo r S item 3 in lo c a l:g e tO b je c t in M o d e l($ ite m 2)
fo r $ ite m 4 in lo c a l:g e tC la s s O b je c t in S e q ($ ite m 3)

fo r S ite m 6 in d o c(A £ 2A £)/ / U se_ C ase/ D escrip tio n

w h e re s :c o n ta in s In D is ta n c e ($ ite m 6 , S item 4/ @ n am e)

</Q uery>
< A ction>

< R e la t io n R u le ID = "R 1 8" T yp e = ”im p lem en ts" D o c T y p e l= " S e q u e n c e D ia g ra m "
D o cT yp e2 = "U se C a se " >

< E lem en t D ocum ent= ""> < C lass> {$item 4/@ n am e}< /C Iass> < L in k > {St 1 }</Link>
</Elem ent>

< E lem en t D ocum ent= " "> {Sitem 6/ . ./ T itle) < D escription/> < /E lem ent>
< /R elation>

</Action>
< /T raceR u le>
< T ra ce R u le R u le ID = "R 1 9 " R u le T yp e= "re fm em en t" D o c T y p e l= ”S e q u e n c e D iag ram "
D o cT yp e2 = " U se C ase">

< Q uery>
d e c la re n a m e sp a c e U M L = " o rg .o m g .x m i.n a m e sp a c e .U M L " ;

d e c la re n a m e sp a c e s=“ja v a :d is ta n c e C o n tr o l .d ’ ';

d e c la re fu n c tio n lo c a l:g e tM e s s a g e in S e q () a s i te m ()*

{
fo r S ite m A in
d o c (A £ lA £)/ / U M L :G ra p h E le m e n t.s e m a n t ic M o d e l/ U M L :U m llS e m a n tic M o d e lB r id g e / U M L :U m l
I S e m a n t ic M o d e lB r id g e .e le m e n t/ U M L :L in k
re tu rn S item A

};

d e c la re fu n c tio n lo c a l:g e tO b je c t in S e q (S l in k a s n o d e ()) a s i te m ()

{
fo r S item B in d o c (A £ l A £)//U M L :L in k
w h e re S item B / @ x m i.id = $ lin k / @ x m i.id re f
re tu rn S ite m B / U M L :L in k .co n n ec tio n / U M L :L in k E n d / U M L :L in k E n d .in s tan ce/ U M L :O b jec t

);

d e c la re fu n c tio n lo c a l:g e tO b je c t in M o d e l($ o b je c t a s n o d e ()) a s ite m ()*

{

287

APPENDIX B - TRACEABILITY RULES

fo r $ ite m C in d o c (A £ l A £)//U M L :O bject
w h e re $ item C / @ x m i.id = $ o b jec t/ @ x m i.id re f
re tu rn $ item C / U M L :In s ta n c e .c la s s if ie r/ U M L :C Ia s s
};

d e c la re fu n c tio n lo c a l:g e tC la s s O b je c t in S e q ($ c la s s a s n o d e ()) a s ite m ()

{
fo r S item D in d o c (A £ l A £)/ / U M L :C lass
w h e re $ item D / @ x m i.id = $ c la s s/ @ x m i.id re f

re tu rn $ item D

d e c la re fu n c tio n lo c a l :g e tC la s s in C la s s ($ c la s s a s n o d e () , S d ia c ra m as x s :s t r in g)a s ite m ()*

{
fo r $ item E in

d o c (A £ l A £)/ / U M L :D iag ram / U M L :G rap h E lem en t.co n ta in ed / U M L :G rap h N o d e/ U M L :G rap h E lem
en t.se m an t ic M o d e l/ U M L :U m l 1 S e m a n t ic M o d e lB r id g e / U M L :U m l 1 S e m a n t ic M o d e lB r id g e .e le m e n
t/ U M L :C la ss
w h e re $item E /../ ../ ../ ../ ../parent::node()/@ nam e = S d ia g ra m
retu rn S item E

I ;

le t $ i t e m l := lo c a l:g e tM e s s a g e in S e q ()
fo r $ t l in $ i t e m l
fo r $ ite m 2 in lo c a l:g e tO b je c t in S e q ($ t l)
fo r $ item 3 in lo c a l:g e tO b je c t in M o d e l($ ite m 2)
fo r $ ite m 4 in lo c a l:g e tC la s s O b je c t in S e q ($ ite m 3)

fo r $ item 6 in doc(A £ 2A £)/ / U se_ C ase/ D escrip tio n

w h e re s :c o n ta in s In D is ta n c e ($ ite m 6 , $ item 4 / @ n am e)

</Query>
< A ction>

< R ela tio n R u le ID = "R 1 9" T yp e= "re f in em en t" D o c T y p e l= " S e q u e n c e D ia g r a m ”
D o cT yp e2 = " U se C ase">

< E lem en t D o c u m e n t= ""> < C la ss> { $ ite m 4 / @ n am e} < / C la ssx L in k > { $ tl }</Link>
</Elem ent>

< E lem en t D o cu m en t= "">{S item 6/ ../ T itle) < D escription/> </Element>
< /R elation>

</Action>
< /T raceR u le>
< T raceR u le R u le ID = "R 2 0" R u le T y p e = " sa t is f ia b il ity " D o c T y p e l= " S e q u e n c e D iag ram "
D o cT yp e2 = ”U se C ase">

< Q uery>
d e c la re n a m e sp a c e U M L = " o rg .o m g .x m i.n a m e sp a c e .U M L " ;

d e c la re n a m e sp a c e s= “ja v a :d is ta n c e C o n tro l .d ” ;

d e c la re fu n c tio n lo c a l:g e tM e s s a g e in S e q () a s i te m ()*

{

288

B. I Direct Traceability Rules

fo r S ite m A in
d o c (Â £ lÂ £)/ / U M L :G ra p h E le m e n t.s e m a n t ic M o d e l/ U M L :U m llS e m a n tic M o d e lB r id g e / U M L :U iT il
lS e m a n t ic M o d e lB r id g e .e le m e n t/ U M L iL in k
re tu rn $ ite n iA

d e c la re fu n c tio n lo c a l:g e tO b je c t in S e q (S l in k a s n o d e ()) a s ite m ()

{
fo r S ite m B in d o c (A £ l A £)//U M L :L ink
w h e re $ item B / @ x m i.id = $ lin k / @ x m i.id re f
re tu rn $ item B / U M L :L in k .co n n ec tio n / U M L :L in k E n d / U M L :L in k E n d .in s tan ce/ U M L :O b jec t

};

d e c la re fu n c tio n lo c a l:g e tO b je c t in M o d e l($ o b je c t a s n o d e ()) a s ite m ()*

{

fo r S ite n iC in d o c (Â £ lÂ £)/ / U M L :O b jec t
w h e re $ item C / @ x m i.id = $o b jec t/ @ x m i.id re f
re tu rn $ ite m C / U M L :In s ta n c e .c la s s if ie r/ U M L :C la s s

1:

d e c la re fu n c tio n lo c a l:g e tC la s s O b je c t in S e q ($ c la s s a s n o d e ()) a s i te m ()

{
fo r S item D in d o c (A £ l A £)/ / U M L :C lass
w h e re $ item D / @ x m i.id = $ c la s s/ @ x m i.id re f

re tu rn $ item D

d e c la re fu n c tio n lo c a l :g e tC la s s in C la s s ($ c la s s a s n o d e () , $ d ia g r a m as x s :s t r in g)a s ite m ()*

I
fo r S item E in
d o c (A £ l A £)/ / U M L :D iag ram / U M L :G rap h E lem en t.co n ta in ed / U M L :G rap h N o d e/ U M L :G rap h E lem
e n t.s e m a n t ic M o d e l/ U M L :U m l 1 S e rn a n t ic M o d e lB r id g e / U M L :U m l 1 S e m a n t ic M o d e lB r id g e .e le m e n
t/ U M L :C la ss
w h e re $item E /../ ../ ../ ../ ../parent::node()/@ nam e = S d ia g ra m
re tu rn $ item E

};

le t S it e m l := lo c a l:g e tM e s s a g e in S e q ()
fo r S t l in S it e m l
fo r S ite m 2 in lo c a k g e tO b je c t in S e q (S t l)
fo r S item 3 in lo c a l:g e tO b je c t in M o d e l($ ite m 2)
fo r S ite m 4 in lo c a l:g e tC la s s O b je c t in S e q (S ite m 3)

fo r S ite m 6 in d o c (A £ 2A £)/ / U se_ C ase/ D escrip tio n

w h e re s :c o n ta in s In D is ta n c e ($ ite m 6 , $ item 4 / @ n am e)

</Q uery>
< A ction>

< R e la t io n R u le ID = "R 2 0" T y p e = " sa t is f ia b il ity " D o c T y p e l= " S e q u e n c e D iag ram "
D o cT yp e2 = " U se C ase">

289

APPENDIX B - TRACEABILITY RULES

< E lem en t D ocum ent= ""> < C lass> { $ item 4/ @ n am e)< / C lass> < L in k > { $ tl }</Link>
</Elem ent>
< E lem en t D ocum ent= " "> {$item 6/ . ./ T itle} < D escription/>
</Element>

< /R elation>
</Action>

< /T raceR ule>
< T raceR u le R u le I D = " R 2 r R u le T y p e = " im p le m e n ts" D o c T y p e l= " C la s s D iag ram "
D o cT yp e2 = ”U se C ase">

< Q uery>
d e c la re n a m e sp a c e U M L = " o rg .o m g .x m i.n a m e sp a c e .U M L " ;

d e c la re n a m e sp a c e s= “ja v a :d is ta n c e C o n tr o l .d ” ;

fo r S ite m A in d o c (A £ l A £)/ / U M L :C lass

fo r S it e m l in d o c (A £ lA £)/ / U M L :C la ss if ie r .fe a tu re/ U M L :O p era tio n / @ n am e
fo r $ item 2 in d o c(A £ 2A £)/ / U se_ C ase

le t St 1 := S i t e m l n a m e

w h ere
s :c o n ta in sIn D is tan c e ($ ite m 2 / T itle , $ t l)
and
s :c o n ta in sIn D is tan c e (S ite m 2 / D e sc r ip tio n ,$ item 1)

</Query>
< A ction>

< R ela tio n R u le ID = "R 2 1" T y p e = " im p le m e n ts” D o c T y p e l= " C la s s D iag ram "
D o cT yp e2 = "U se C ase">

< E lem en t D ocum ent= ""> < C la ss> { S tl } < / C la s sx O p e ra t io n > { S ite m l }</O peration>
</Elem ent>
< E lem en t D o cu m en t= ""> {$ item 2/ T itle)< D escrip tion / >
</Elem ent>

< /R elation>
</Action>

< /T raceR ule>
< T raceR u !e R u le ID = "R 2 2" R u leT yp e= "co n ta in m en t" D o c T y p e l= " U se C ase "
D o cT yp e2 = "F ea tu re M o d e l">

< Q uery>

d e c la re n a m e sp a c e s=“ja v a :d is ta n c e C o n tr o l .d ” ;

fo r
S ite m l in d o c (A £ l A £)//U se_C ase ,
S item 2 in d o c (A £ 2A £)/ / F eatu re_ M o d el/ F eatu re

w h ere
s :c o n ta in s In D is ta n c e (S ite m 1 / D escrip tion , S item 2/ F ea tu re_ n am e)

</Query>
< A ction>

< R e la t io n R u le ID = "R 2 2" T yp e= "co n ta in m en t" D o c T y p e l= " U se C ase"
D o cT yp e2 = "F ea tu re M o d e l">

< E lem en t D ocum ent= ""> { S ite m l/ T it le) </Elem ent>

290

B. I Direct Traceability Rules

< E lem en t D ocum ent= ""> { S item 2 / F ea tu re_ n am e) </E lem ent>
< /R elation>

</Action>
< /T raceR u le>
< T ra ce R u le R u le ID = "R 2 3" R u le T y p e = " re f in em e n t" D o c T y p e l= " S ta te c h a r t D iag ram "
D o c T y p e2 = " S e q u e n c e D iag ram ">

< Q uery>

d e c la re n a m e sp a c e U M L = " o rg .o m g .x m i.n a m e sp a c e .U M L " ;

d e c la re fu n c tio n lo c a l:g e tO p e ra t io n in S e q () a s ite m ()*

(
fo r S ite m A in
d o c (A £ 2 A £)/ / U M L :G ra p h E le m e n t .s e m a n tic M o d e l/ U M L :U m llS em a n t ic M o d e lB r id g e / U M L :U m l
lS e m a n t ic M o d e l B r id g e . e lem en t/ U M L :O p era tio n
re tu rn $ ite m A

d e c la re fu n c tio n lo c a l:g e tO p e ra t io n in M o d e l($ o p e ra t io n a s n o d e ()) a s i te m ()*

{

fo r S ite m C in d o c (Â £ 2 Â £)/ / U M L :C la ss if ie r .fe a tu re/ U M L :O p era t io n
w h e re $ item C / @ x m i.id = $ o p era t io n / @ x m i.id re f

re tu rn S item C

d e c la re fu n c tio n lo c a l:g e tS ta te o fO p e ra t io n in S ta te ($ o p e ra t io n a s n o d e ()) a s i te m ()

{
fo r S item D in d o c (A £ lA £)/ / U M L :S im p le S ta te
w h e re $ item D / @ n am e = $o p eration / @ n am e
re tu rn S item D

f o r S i t e m l in lo c a l:g e tO p e ra t io n in S e q ()
fo r S ite m 2 in lo c a h g e tO p e ra t io n in M o d e l(S ite m l)
fo r $ it e m 3 in lo c a l:g e tS ta te o fO p e ra t io n in S ta te ($ ite m 2)

</Q uery>
< A ction>

< R e la t io n R u le lD = " R 2 3 " T yp e = " re f in e m e n t” D o c T y p e l= " S ta te c h a it D iag ram "
D o c T y p e2 = " S e q u e n c e D iag ram ">

< E lem en t D ocum ent= ""> < State> { $ item 3 / @ n am e } {S item 3 / @ x m i.id }</State>
</Elem ent>
< E len ren t D ocum ent= ""> < O bject> {$item 2/../ ../@ nam e|< /O bject>

< O peration> {$item 2/@ nam e}< /O peration> </E lem ent>
< /R elation>

</Action>
< / T raceR u le>
< T ra ce R u le R u le ID = "R 2 4 " R u le T y p e = " im p le m e n t" D o c T y p e l= " C la s s D ia g ra m "
D o c T y p e 2 -" U s e C ase">

291

APPENDIX B - TRACEABILITY RULES

< Q uery>
d e c la re n am e sp ac e U M L = " o rg .o m g .x m i.n a m e sp a c e .U M L " ;

d e c la re n a m e sp a c e s=“ja v a :d is ta n c e C o n tro l .d ” ;

fo r S item 1 in d o c (A £ l A £)//U M L :C lass/@ nam e

fo r S item 2 in d o c(A £ 2A £)/ / U se_ C ase/ D escrip tio n

w h e re
s :c o n ta in s In D is ta n c e ($ ite m 2 ,S ite m I)

</Query>
< A ction>

< R ela t io n R u le ID = "R 2 4" T yp e= " im p lem en t" D o c T y p e l= " C la s s D iag ram "
D o cT yp e2 = " U se C a s e ”>

< E lem en t D ocum ent= ""> < C la s s> (S item 1 }</Class> </Elem ent>
< E lem en t D o c u m e n t - '”>{S item 2/ ../ T itle}</Elem ent>

< /R elation>
</Action>

< /T raceR ule>
< T raceR u le R u le ID = "R 2 5" R u leT yp e= "co n ta in m en t" D o c T y p e l= " S ta te c h a r t D ia g ra m ”
D o c T y p e2 = " C la ss D iag ram ">

< Q uery>

d e c la re n a m e sp a c e s=“ja v a :d is ta n c e C o n tr o l .d ” ;
d e c la re n a m e sp a c e U M L = ”o rg .o m g .x m i.n a m e sp a c e .U M L " ;

fo r S ite m A in d o c (A £ l A £)/ / U M L :C o m p o s iteS ta te .su b v ertex / U M L :S im p leS ta te
fo r S item C in d o c (A £ 2 A £)/ / U M L :C la ss if ie r .fe a tu re/ U M L :O p era t io n

w h e re s :c o n ta in s !n D is ta n c e ($ ite m C / @ n a m e , $ item A / @ n am e)

</Query>
< A ction>

< R ela t io n R u le ID = "R 2 5" T yp e= "co n ta in m en t" D o cT yp e l= "S ta te c h a r t D iag ram "
D o c T y p e2 = " C la ss D iag ram ">

< E lem en t D ocum ent= ""> < S tate> {$ item A / @ n am e} </State></Elem ent>
< E lem en t D ocum ent= ""> < C lass> {Sitem C /../ ../@ nam e}< /C lass>

< O peration> {Sitem C /@ n a m e } </O peration> </Elem ent>
</R elation>

</Action>
< /T raceR u le>
< T raceR u le R u le ID = "R 2 6" R u le T y p e = " o v e r la p " D o cT yp e l= " C la s s D iag ram "
D o cT yp e2 = " S ta te ch a rt D iag ram ">

< Q uery>

d e c la re n a m e sp a c e w = " ja v a :s y n o n y m .s " ;
d e c la re n am e sp ac e U M L = " o rg .o m g .x m i.n a m e sp a c e .U M L " ;

fo r S item 1 in d o c (A £ l A £)/ / U M L :C la ss if ie r .fe a tu re/ U M L :O p era t io n ,
S item 2 in d o c (A £ 2 A £)/ / U M L :C o m p o s iteS ta te .su b v e rtex / U M L :S im p leS ta te

292

B. I Direct Traceability Rules

w h ere
$ i tern l/@ n a m e = $ item 2/ @ n am e

</Q uery>
< A ction>

< R e la t io n R u le ID = "R 2 6" T y p e - ’o v e r lap " D o c T y p e l= ”C la s s D iag ram "
D o c T y p e2 = " S ta te c h a rt D iag ram ">

< E lem en t D ocum ent= ""> < C lass> {$ item l/ ../ ../ @ n am e}< / C lass>
< O p era tio n > { $ item l/ @ n am e} < /O peradon> </Elem ent>

< E lem en t D o c u m e n t= " " x S ta te > { $ item 2 / @ n am e) </State>
</Elem ent>

< /R elation>
</Action>

< /T raceR u le>
< T ra ce R u le R u le ID = "R 2 7 " R u le T y p e = "o v e r lap " D o c T y p e l= " S e q u e n c e D iag ram "
D o c T y p e2 = " C la ss D iag ram ">

< Q uery>

d e c la re n a m e sp a c e w = " ja v a :s y n o n y m .s " ;
d e c la re n a m e sp a c e U M L = " o rg .o m g .x m i.n a m e sp a c e .U M L " ;

fo r S it e m l in d o c (A £ l A £)//U M L :O bject,
S ite m 2 in d o c (A £ 2A £)/ / U M L :C lass

w h e re
$ item l/ @ n a m e = $ item 2/ @ n am e

</Q uery>
< A ction>

< R e la t io n R u le ID = "R 2 7" T yp e= "o v er lap " D o c T y p e l= " S e q u e n c e D iag ram "
D o c T y p e2 = " C la s s D iag ram ">

< E Iem ent D ocum ent= ""> < O b je c t> ($ ite m l/ @ x m i.id } { $ item l/ @ n am e} </O bject>
<7E lem ent>
< E lem en t D ocum ent= ""> < C lass> { $ item 2/ @ x m i.id } { S item 2/ @ n am e} </Class>
</Elem ent>

< /R elation>
</Action>

< /T raceR u le>
< T ra ce R u le R u le ID = "R 2 8 " R u le T y p e = "re f in em e n t" D o c T y p e l - 'M o d u le M o d e l"
D o cT yp e2 = " P ro ce ss M o d e l">

< Q uery>
d e c la re n a m e sp a c e w = ”ja v a :s y n o n y m .s " ;

fo r S it e m l in d o c (A £ 2A £)/ / P rocess_ M od e l/ P rocess
le t $ ite m 2 := d o c (A £ 1 A £)//M odu le_M odel

w h e re
w :s tr in g n o sp a c e (s t r in g ($ ite m l/ P ro c e s s_ n a m e))= w :s tr in g n o sp a c e ($ item 2 / @ P ro c e s s_ n a m e)
</Query>
< A ction>

< R e la t io n R u le ID = "R 2 8 " T yp e= "re f in em en t" D o c T y p e l= " M o d u le M o d e l"
D o cT yp e2 = " P ro ce ss M o d e l">

< E lem en t D ocum ent= ""> < M oduleM odeIID > { S item 2/ @ M o d u leM o d e lID }

293

APPENDIX B - TRACEABILITY RULES

{ S item 2/ @ P ro cess_ n am e} < / M od u leM o d elID > </Elem ent>
< E lem en t D ocum ent= ""> { $ item l/ P ro c e s s_ n a m e } </Elem ent>

< /R elation>
</Action>

< /T raceR ule>
< T raceR u le R u le ID = "R 2 9" R u leT y p e = "d e p e n d en c y " D o c T y p e l= " S ta te c h a r t D iag ram "
D o cT yp e2 = "F ea tu re M o d e l ">

< Q uery>

d e c la re n a m e sp a c e U M L = " o rg .o m g .x m i.n a m e sp a c e .U M L " ;

d e c la re n a m e sp a c e s=“ja v a :d is ta n c e C o n tr o l .d ” ;

d e c la re fu n c tio n lo c a l:g e tT ra n s it io n in S ta te () a s ite m ()*

{
fo r S item F in
d o c (A £ l A £)/ / U M L :G rap h E lem en t.sem an ticM o d e l/ U M L :U m l 1 S e m a n t icM o d e lB r id g e / U M L :U m l
lS e m a n t ic M o d e lB r id g e .e le m e n t/ U M L :T ra n s it io n
re tu rn $ item F

d e c la re fu n c tio n lo c a l:g e tT ra n s it io n in S ta te ($ tr a n s it io n a s n o d e ()) a s item O *

I
fo r $ item G in d o c (A £ l A £)/ / U M L :S im p leS ta te
w h e re $ ite m G A JM L :S ta te V e r te x .in c o m in g A JM L :T ra n s it io n / @ x m i.id re f =
S tran s it io n / @ x m i.id re f
re tu rn $ item G

le t S it e m l := lo c a l:g e tT ra n s it io n in S ta te ()
fo r $ t l in S ite m l
fo r $ ite m 2 in lo c a l:g e tT ra n s it io n in S ta te (S t l)
fo r $ item 3 in d oc(A £ 2A £)//F eatu re/D escrip tion
w h ere
s :c o n ta in s !n D is ta n c e ($ ite m 3 , $ item 2 / @ n am e)

</Query>
< A ction>

< R ela t io n R u le ID = "R 2 9" T yp e= "d ep en d en cy" D o c T y p e l= " S ta te c h a r t D iag ram "
D o cT yp e2 = " F ea tu re M o d e l">

< E lem en t D ocum ent= ""> < S tate> | $ item 2/ @ n am e} </State>
< In co m in gT ran s itio n > j S t 1 / @ x m i.id re f} < /In co m in gT ran sitio n > </Elem ent>

< E lem en t D ocum ent= ""> {$ item 3/ ../F eatu re_nam e} </Elem ent>
< /R elation>

</Action>
< /T raceR u le>
c T r a c e R u le R u le ID = "R 3 0" R u le T y p e = "d e p e n d en c y " D o c T y p e l= " S e q u e n c e D iag ram "
D o cT yp e2 = "F ea tu re M o d e l">

< Q uery>
d e c la re n am e sp ac e U M L = " o rg .o m g .x m i.n a m e sp a c e .U M L " ;

d e c la re n a m e sp a c e s=“ja v a :d is ta n c e C o n tr o l .d ” ;

294

B. 1 Direct Traceability Rules

declare function locakgetMessageinSeqQ as item()*

for SitemA in
doc(Â£lÂ£)//UML:GraphElement.sernanticModel/UML:UmllSemanticMode]Bridge/UML:Uml
lSemanticModelBridge.element/UML:Link
return SitemA

declare function local:getObjectinSeq($link as node()) as item()
{
forSitemB in doc(Â£l Â£)//UML:Link
where $iteniB/@xmi.id = $link/@xmi.idref
return $itemB/UML:Link.connection/UML:LinkEnd/UML:LinkEnd.instance/UML:Object
};

declare function local:getObjectinModel($object as node()) as item()*
{

for SitemC in doc(Â£lÂ£)//UML:Object
where $itemC/@xmi.id = $object/@xmi.idref
return SitemC/UML: Instance.classifier/UML:Class

declare function local:getClassObjectinSeq($class as node()) as item()
i
for SitemD in doc(Â£l Â£)//UML:Class
where $itemD/@xmi.id = $class/@xmi.idref

return SitemD

declare function local:getClassinClass(Sclass as node(), Sdiagram as xs:string)as item()*
{
for SitemE in
doc(Â£lÂ£)//UML:Diagram/UML:GraphElement.contained/UML:GraphNode/UML:GraphElem
ent.semanticModel/UML:UmllSemanticModelBridge/UML:UmllSemanticModelBridge.elemen
t/UML:Class
where $itemE/../../../../../parent::node()/@name = Sdiagram
return SitemE
};

let Siteml := local:getMessageinSeq()
for St 1 in Siteml
for Sitem2 in local:getObjectinSeq(Stl)
for $item3 in local:getObjectinModel($item2)
for Sitem4 in local:getClassObjectinSeq($item3)

for Sitemó in doc(A£2A£)//Feature/Description

where s:containsInDistance($item6, Sitem4/@name)

</Query>
<Action>

295

APPENDIX B - TRACEABILITY RULES

< R ela tio n R u le ID = "R 3 0" T yp e = ”d e p en d e n cy " D o c T y p e l= " S e q u e n c e D iag ram "
D o cT yp e2 = "F ea tu re M o d e l ">

< E lem en t D ocum ent= ""> < C lass> { $ item 4/ @ n am e)< / C la ss> < L in k > { $ tl }</Link>
</Elem ent>
< E lem en t D ocum ent= ""> {$item 6/ ../F eatu re_nam e}< D escrip tion />
</Elem ent>

< /R elation>
</Action>

< /T raceR ule>
< T raceR u le R u le lD = " R 3 1 " R u1eT yp e= "co n ta in m en t" D o c T y p e l = "S u b sy s tem M o d e l"
D o cT yp e2 = " C la ss D iag ram ">

< Q uery>
d e c la re n a m e sp a c e U M L = " o rg .o m g .x m i.n a m e sp a c e .U M L " ;

d e c la re n a m e sp a c e s=“ja v a :d is ta n c e C o n tro l .d ” ;

d e c la re fu n c tio n lo c a l:g e tC la s s in C la s s ($ d ia g r a m a s x s :s t r in g) a s ite m ()*

{
fo r S item E in
d o c(A £ 2A £)/ / U M L :D iag ram / U M L :G rap h E lem en t.co n ta in ed / U M L :G rap h N o d e/ U M L :G rap h E lem
en t.se m a n t ic M o d e l/ U M L :U m l lS e m a n t ic M o d e lB r id g e / U M L :U m llS e m a n t ic M o d e lB r id g e .e le m e n
t/ U M L :C la ss
w h ere
Sitem E/. . A . / . . n a m e = S d ia g ra m
re tu rn S item E

};

let $ c l := lo c a l:g e tC la s s in C la s s (" C D _ p h o n e ")

fo r Sitem O in $ c l

f o r S i t e m l in
d o c (A £ 2A £)/ / U M L :N am esp ace .o w n ed E lem en t/ U M L :C la ss/ U M L :C Ia ss if ie r .fe a tu re/ U M L :O p era t
ion
fo r $ item 2 in d o c (A £ l A £)//Subsystem /D escrip tion
le t S t l := $ item l/ ../ ../ @ n am e

w h e re
S item l/ ../ ../ @ xm i.id = S item ()/ @ x m i.id re f
and
s :c o n ta in s In D is ta n c e ($ ite m 2 , $ item l/ @ n a m e)

</Query>
< A ction>

< R ela tio n R u le lD = "R 3 1 " T yp e= "co n ta in m en t" D o c T y p e l- 'S u b s y s t e m M o d e l"
D o c T y p e2 = " C la ss D iag ram ">

< E lem en t D o cum en t= ""> {$ item 2/ ../ Sub system _ n am e}< / E lem en t>
< E lem en t D ocum ent= ""> < C la ss> { S tl } < / C la s s x O p e r a t io n > { $ ite m l} </O peration>
</Elem ent>

< /R elation>
</Action>

< /T raceR u le>
< T raceR u le R u le ID = "R 3 2" R u leT yp e= "co n ta in m en t" D o c T y p e l = "P ro cess M o d e l"
D o c T y p e2 = " S e q u e n c e D iag ram ">

< Q uery>

2 9 6

B.l Direct Traceability Rules

d e c la re n a m e sp a c e U M L = " o rg .o m g .x m i.n a m e sp a c e .U M L " ;

d e c la re n a m e sp a c e s= “ja v a :d is ta n c e C o n tr o l .d ” ;

d e c la re fu n c tio n lo c a l:g e tM e s s a g e in S e q () a s i te m ()*

(
fo r S ite m A in
d o c (A £ 2 A £)/ / U M L :G ra p h E le rn e n t.s e m a n t icM o d e l/ U M L :U m llS e m a n tic M o d e lB r id g e / U M L :U m l
lS e m a n t ic M o d e lB r id g e .e le m e n t/ U M L :L in k
re tu rn $ ite m A

d e c la re fu n c tio n lo c a l:g e tO b je c t in S e q (S l in k a s n o d e ()) a s i te m ()

{
fo r S item B in d o c (A £ 2A £)/ / U M L :L in k
w h e re $ item B / @ x m i.id = $ lin k / @ x m i.id re f
re tu rn $ item B / U M L :L in k .co n n ec tio n / U M L :L in k E n d / U M L :L in k E n d .in s tan ce/ U M L :O b jec t

};

d e c la re fu n c tio n lo c a l:g e tO b je c t in M o d e l($ o b je c t a s n o d e ()) a s ite m ()*

(

fo r S ite m C in d o c(Â £ 2Â £)/ / U M L :O b jec t
w h e re $ item C / @ x m i.id = $o b jec t/ @ x m i.id re f
re tu rn $ ite m C / U M L :In s ta n c e .c la s s if ie r/ U M L :C la s s

};

d e c la re fu n c tio n lo c a l:g e tC la s s O b je c t in S e q ($ c la s s a s n o d e ()) a s i te m ()

{
fo r S item D in d o c (A £ 2A £)/ / U M L :C lass
w h e re $ item D / @ x m i.id = $ c la s s/ @ x m i.id re f

re tu rn $ item D

d e c la r e fu n c tio n lo c a l :g e tC la s s in C la s s ($ c la s s a s n o d e () , S d ia g ra tn a s x s :s t r in g) a s ite m ()*

{
fo r S item E in
d o c (A £ 2A £)/ / U M L :D iag ram / U M L :G rap h E lem en t.co n ta in ed / U M L :G rap h N o d e/ U M L :G rap h E lem
en t.s e m a n t ic M o d e]/ U M L :U m l 1 S e m a n t ic M o d e lB r id g e / U M L :U m l 1 S e m a n t ic M o d e lB r id g e .e le m e n
t/ U M L :C la ss
w h e re $item E /../ ../ ../ ../ ../parent::node()/@ nam e = S d ia g ra m
re tu rn $ item E

};

le t S i t e m l := lo c a l:g e tM e s s a g e in S e q ()
fo r St 1 in S item 1
fo r S ite m 2 in lo c a k g e tO b je c t in S e q (S t l)
fo r S ite m 3 in lo c a l:g e tO b je c t in M o d e l($ ite m 2)
fo r S ite m 4 in lo c a l:g e tC la s s O b je c t in S e q ($ ite m 3)

fo r S ite m 6 in d o c(Â £ lÂ £)/ / P ro cess_ M o d eI/ P ro cess/ D escrip tio n

297

APPENDIX B - TRACEABILITY RULES

w h e re s :c o n ta in s In D is ta n c e ($ ite m 6 , S item 4/ @ n am e)

</Query>
< A ction>

< R ela t io n R u le ID = "R 3 2" T yp e= "co n ta in m en t" D o c T y p e l= " P ro c e s s M o d e l"
D o c T y p e2 = " S e q u e n c e D iag ram ">

< E lem en t D ocum ent= ""> {$item 6/ ../P rocess_nam e}< D escrip tion/>
</Elem ent>
< E lem en t D o c u m e n t - ' "> < C lass> {S item 4/ @ n a m e } < / C la s s x L in k > {S t 1} </Link>
</Elem ent>

< /R elation>
</Action>

< /T raceR ule>
< T race R u le R u le ID = "R 3 3" R u leT yp e= "co n ta in m en t" D o c T y p e l= " P ro c e s s M o d e l"
D o cT yp e2 = " S ta te ch a rt D iag ram ">

< Q uery>

d e c la re n a m e sp a c e U M L = " o rg .o m g .x m i.n a m e sp a c e .U M L " ;

d e c la re n a m e sp a c e s=“ja v a :d is ta n c e C o n tr o l .d ” ;

d e c la re fu n c tio n lo c a l:g e tT ra n s it io n in S ta te () a s ite m ()*

{
fo r S item F in
d o c (A £ 2A £)/ / U M L :G rap h E lem en t.sem an ticM o d e l/ U M L :U m l 1 S e m a n t icM o d e lB r id g e / U M L :U m l
lS e m a n t ic M o d e lB r id g e .e le m e n t/ U M L :T ra n s it io n
retu rn S item F

};

d e c la re fu n c tio n lo c a l:g e tS ta te in S ta te ($ t r a n s it io n a s n o d e ()) a s i te m ()

{
fo r S item G in d o c (A £ 2A £)/ / U M L :S im p leS ta te
w h e re $ item G / U M L :S ta te V e rte x .in c o m in g / U M L :T ran s it io n / @ x m i.id re f =
S tran s i tion/@ x m i. i d re f
re tu rn S item G

le t S it e m l := I o c a l:g e tT ra n s it io n in S ta te ()
fo r St 1 in S item 1
fo r S item 2 in lo c a l :g e tS ta t e in S ta t e (S t l)
fo r S item 3 in d o c (A £ l A £)//Process/D escrip tion
w h e re
s :c o n ta in s In D is ta n c e ($ ite m 3 , S item 2/ @ n am e)

</Query>
< A ction>

< R ela tio n R u le ID = "R 3 3" T yp e= "co n ta in m en t" D o c T y p e l= " P ro c e s s M o d e l"
D o cT yp e2 = " S ta te ch a rt D iag ram ">

< E lem en t D ocum ent= ""> {$ item 3/ ../P rocess_nam e} </Elem ent>
< E lem en t D o cum en t= ”"> <State>{ S item 2/ @ n am e) </State>

< In co m in gT ran s it io n > j S t 1 /@ xm i . id r e f } < /Incom ingT ran sit io n >

298

B. 1 Direct Traceability Rules

</Elem ent>
< /R elation>

</Action>
< /T raceR u le>
< T race R u le R u le ID = "R 3 4 " R u le T y p e = " s a t is f ia b il ity " D o c T y p e l= " S ta te c h a r t D iag ram "
D o cT yp e2 = " U se C ase">

< Q uery>
d e c la re n a m e sp a c e U M L = " o rg .o m g .x m i.n a m e sp a c e .U M L " ;

d e c la re n a m e sp a c e s=“ja v a :d is ta n c e C o n tr o l .d ” ;

d e c la re fu n c tio n lo c a l:g e tT ra n s it io n in S ta te () a s ite m ()*

{
fo r S ite m F in
d o c (A £ l A £)/ / U M L :G ra p h E lem e n t .s e m a n t ic M o d e l/ U M L :U m llS e m a n t icM o d e lB r id g e / U M L :U m l
lS e m a n t ic M o d e lB r id g e .e le m e n t/ U M L iT ra n s it io n
re tu rn $ item F

d e c la r e fu n c tio n lo c a l:g e tS ta te in S ta te ($ t r a n s it io n a s n o d e ()) a s i te m ()

I
fo r S item G in d o c (A £ l A £)/ / U M L :S im p leS ta te
w h e re $ item G / U M L :S ta te V e rte x .in c o m in g / U M L :T ra n s it io n / @ x m i.id re f =
$ tra n s it io n / @ x m i.id re f
re tu rn S item G

le t S it e m l := lo c a l:g e tT ra n s it io n in S ta te ()
fo r St 1 in S ite m i
f o r S it e m 2 in lo c a l :g e tS t a t e in S ta t e ($ t l)
fo r S ite m 3 in d o c (A £ 2A £)/ / U se_ C ase/ D escrip tio n
w h e re
s :c o n ta in s In D is ta n c e ($ ite m 3 , $ item 2 / @ n am e)

</Q uery>
< A ction>

< R e la t io n R uIeID = "R 34" T y p e = " sa t is f ia b il ity " D o c T y p e l- 'S t a t e c h a r t D iag ram "
D o cT yp e2 = " U se C ase">

< E lem en t D ocum ent= ""> < State> {$ item 2/@ nam e}< /State>
< In c o m in g T ra n s it io n > { $ t l/ @ x m i.id re f }< /Incom ingT ransition> </Elem ent>

< E lem en t D ocum ent= " "> {Sitem 3/ . ./ T itle} </Elem ent>
< /R elation>

</Action>
< / T raceR u le>
< T ra ce R u le R u le ID = "R 3 5 " R u le T y p e = ”re fin em en t" D o cT yp e 1 = "S ta te ch a rt D iag ram "
D o cT yp e2 = " U se C ase">

< Q uery>

d e c la re n a m e sp a c e U M L = " o rg .o m g .x m i.n a m e sp a c e .U M L " ;

d e c la r e n a m e sp a c e s=“ja v a :d is ta n c e C o n tro l .d ” ;

d e c la re fu n c tio n lo c a l:g e tT ra n s it io n in S ta te () a s ite m ()*

{

299

APPENDIX B - TRACEABILITY RULES

fo r S item F in

d o c (A £ l A £)/ / U M L :G ra p h E lem e n t .se m a n t ic M o d e l/ U M L :U m llS e m a n t icM o d e lB r id g e / U M L :U m l
lS e m a n t ic M o d e lB r id g e .e le m e n t/ U M L :T ra n s it io n
retu rn S item F

d e c la re fu n c tio n Io c a l:g e tS ta te in S ta te ($ tr a n s it io n a s n o d e ()) a s ite m ()

{
fo r S item G in d o c (A £ lA £)/ / U M L :S im p le S ta te
w h e re $ item G / U M L :S ta te V e rte x .in c o m in g / U M L :T ran s it io n / @ x m i.id re f =
$ transition/@ x m i. id re f
re tu rn S item G

le t S it e m l := lo c a l:g e tT ra n s it io n in S ta te ()
fo r S t l in S it e m l
fo r S ite m 2 in lo c a l :g e tS ta t e in S ta t e ($ t l)
fo r S item 3 in doc(A £ 2A £)/ / U se_ C ase/ F lo w _ o f_ even ts/ E ven t
w h e re
s :c o n ta in s In D is ta n c e ($ ite m 3 , $ item 2/ @ n am e)

</Query>
< A ction>

< R ela t io n R u le ID = "R 3 5" T yp e= "re f in em en t" D o c T y p e l= " S ta te c h a r t D iag ram "
D o cT yp e2 = "U se C ase">

<Element Document=""> <State>{$item2/@name) </State>
< In co m in gT ran sitio n > { $ t l/ @ x m i.id r e f }< /Incom ingT ransition> </Elem ent>

< E lem en t D ocum ent= ""> {Sitem 3/../ ../T itle} <Event/></Element>
< /R elation>

</Action>
< /T raceR u le>
< T raceR u le R u le ID = "R 3 6" R u le T y p e = " im p le m e n ts" D o c T y p e l= " S ta te c h a r t D iag ram "
D o cT yp e2 = "U se C ase">

< Q uery>

d e c la re n a m e sp a c e U M L = " o rg .o m g .x m i.n a m e sp a c e .U M L " ;

d e c la re n a m e sp a c e s=“ja v a :d is ta n c e C o n tr o l .d ” ;

d e c la re fu n c tio n lo c a l:g e tT ra n s it io n in S ta te () a s i te m ()*

{
fo r S item F in
d o c (A £ l A £)/ / U M L :G rap h E lem en t.sem an ticM o d e l/ U M L :U m l 1 S e m a n t icM o d e lB r id g e / U M L :U m l
lS e m a n t ic M o d e lB r id g e .e le m e n t/ U M L :T ra n s it io n
re tu rn S item F

d e c la re fu n c tio n lo c a l:g e tS ta te in S ta te ($ t r a n s it io n a s n o d e ()) a s ite m ()

{
fo r S item G in d o c (A £ l A £)/ / U M L :S im p leS ta te
w h e re $ item G / U M L :S ta te V e rte x .in c o m in g / U M L :T ran s it io n / @ x m i.id re f =
Stransition/@ x m i. i d re f

300

B. 1 Direct Traceability Rules

re tu rn $ item G

le t $ i t e m l := lo c a l:g e tT ra n s it io n in S ta te ()
fo r $ t l in S it e m l
fo r $ ite m 2 in lo c a l :g e tS t a t e in S ta t e ($ t l)
fo r S ite m 3 in d o c(A £ 2A £)/ / U se_ C ase/ F lo w _ o f_ even ts/ E ven t
w h e re
s :c o n ta in s !n D is ta n c e ($ ite m 3 , $ item 2 / @ n am e)

</Query>
< A ction>

< R e la t io n R u le ID = "R 3 6" T yp e= " im p lem en ts" D o c T y p e l= " S ta te c h a r t D iag ram "
D o cT yp e2 = " U se C ase">

< E lem en t D o cum en t= '" '> < S tate> {$ item 2/ @ n am e} </State>
< In co m in gT ran s it io n > { $ tl/ @ x m i.id re f} < / In co m in gT ran s it io n > </E lem ent>

< E lem en t D ocum ent= ""> {$item 3/ ../ ../T itle}< /E lem ent>
< /R elation>

</Action>
< /T raceR u le>
< T ra ce R u le R u le lD = " R 7 3 " R u le T y p e = " sa t is f ia b il ity " D o c T y p e l= " C la s s D iag ram "
D o cT yp e2 = "U se C ase">

< Q uery>

d e c la re n a m e sp a c e U M L = " o rg .o m g .x m i.n a m e sp a c e .U M L " ;

d e c la re n a m e sp a c e s=“ja v a :d is ta n c e C o n tr o l .d ” ;

fo r S it e m l in d o c (A £ 1 A £)/ / U M L :C la ss if ie r .fe a tu re/ U M L :O p era tio n / @ n am e
fo r S ite m 2 in d o c(A £ 2A £)/ / U se_ C ase/ D escrip tio n

le t $ t I := $ item l/ ../ ../ ../@ nam e

w h e re

s :c o n ta in s ln D is ta n c e ($ ite m 2 ,$ ite m 1, $ t l)
</Q uery>
< A ction>

< R e la t io n R u le ID = "R 7 3" T y p e - 's a t i s f ia b i l i t y " D o c T y p e l= " C Ia s s D iag ram "
D o cT yp e2 = " U se C ase">

< E lem en t D ocum ent= ""> < C lass> {S t 1 }</Class> < O p era tio n > {S item l }</O peration>
</Elem ent>
< E lem en t D o cum ent= ""> {S item 2/ ../T itle}< D escrip tion/>
</Elem ent>

< /R elation>
</Action>

< /T raceR u le>
< T ra ce R u le R u le ID = "R 3 7 " R u le T y p e = " im p le m e n ts" D o c T y p e l= " C la s s D iag ram "
D o cT yp e2 = " F ea tu re M o d e l”>

< Q uery>

d e c la re n a m e sp a c e U M L = " o rg .o m g .x m i.n a m e sp a c e .U M L " ;

d e c la re n a m e sp a c e s= “ja v a :d is ta n c e C o n tr o l .d ” ;

3 0 1

APPENDIX B - TRACEABILITY RULES

d e c la re fu n c tio n lo c a l:g e tC la s s in C la s s ($ d ia g r a m as x s :s t r in g) a s ite m ()*

f
fo r $ item E in
d o c (A £ l A £)/ / U M L :D iag ram / U M L :G rap h E lem en t.co n ta in ed / U M L :G rap h N o d e/ U M L :G rap h E lem
en t.se m a n t ic M o d e l/ U M L :U m l 1 S e m a n t ic M o d e lB r id g e / U M L :U m l 1 S e m a n t ic M o d e lB r id g e .e le m e n
t/ U M L :C la ss
w h e re
$itemE/../../../../../../@ name = S d ia g ra m
re tu rn S item E

) ;

le t $ c l := lo c a l :g e tC la s s in C la s s (* l*)

fo r $item O in Scl

fo r S it e m l in

d o c (A £ l A £)/ / U M L :N am esp ace .o w n ed E lem en t/ U M L :C Iass/ U M L :C la ss if ie r .fe a tu re/ U M L :O p era t
ion
fo r $ item 2 in do c (A £ 2A £)/ / F eatu re„M o d e l/ F eatu re
le t $ t l := S item l/ ../ ../ @ n am e

w h e re
S item l/ ../ ../ @ xm i.id = $ item O / @ xm i.id re f
and
s :c o n ta in sA In D is ta n c e ($ ite m 2 / F e a tu re_ n a m e , $ t 1)
and
s :c o n ta in sIn D is tan c e ($ ite m 2 / D e sc r ip t io n , $ item l/ @ n a m e)

</Query>
< A ction>

< R ela t io n R u le ID = "R 3 7" T yp e = ''im p le m e n ts" D o c T y p e l= " C la s s D iag ram "
D o cT yp e2 = " F ea tu re M o d e l">

< E lem en t D ocum ent= ""> < C la ss> { S tl }</Class>
< O peration> {$ item 1 /@ n a m e } </O peration> </Elem ent>

< E lem en t D ocum ent= ""> {S item 2/F eatu re_nam e}< /E lem en t>
< /R elation>

</Action>
< /T raceR ule>
< T race R u le R u le ID = "R 3 8" R u le T y p e = " d e p e n d en c y " D o c T y p e l= " U se C ase "
D o cT yp e2 = "F ea tu re M o d e l">

< Q uery>
d e c la re n a m e sp a c e s=“ja v a :d is ta n c e C o n tro l .d ” ;

d e c la re fu n c tio n lo c a l:g e tC h ild re n F e a tu re ($ p a re n t a s x s :s t r in g) a s ite m ()*

{
fo r S item A in do c (A £ 2A £)/ / F eatu re/ R e la tion sh ip / R e l_ fea tu re

w h ere
n o rm a liz e -sp ace (S item A / ../ ../ F ea tu re_ n am e)= n o rm a liz e -sp a c e ($ p a re n t)

re tu rn
S item A

};

302

B. 1 Direct Traceability Rules

fo r
S ite m l in d o c (A £ l A £)//U se_C ase/D escrip tion ,
$ item 2 in do c(A £ 2A £ ")/ / F eatu re_ M o d el/ F eatu re/ F eatu re_ n am e

w h e re
lo c a l:g e tC h ild re n F e a tu r e (s t r in g (S ite m 2)) != ""
and
s :c o n ta in s I n D is ta n c e ($ ite m l,$ ite n i2 , lo c a l:g e tC h i]d r e n F e a tu r e (s t r in g ($ ite m 2)))

</Query>
< A ction>

< R e la t io n R u le ID = "R 3 8" T yp e= "d ep en d en cy" D o c T y p e l= " U se C ase "
D o cT yp e2 = " F ea tu re M od el">

< E Iem ent D ocum ent= ""> {S item 1 / ../T itle} </E lem ent>
< E lem en t D o cu m en t= ""> { S item 2)

< C hild> { lo c a l:g e tC h ild re n F ea tu re (s tr in g ($ item 2))} < / C h ild >
</Elem ent>

< /R elation>
</Action>

< /T raceR u le>
< T ra ce R u le R u le ID = "R 3 9 " R u le T y p e = " d e p e n d en c y " D o c T y p e l= " U se C ase "
D o cT yp e2 = " F ea tu re M o d e l">

< Q uery>
d e c la re n a m e sp a c e s=“ja v a :d is ta n c e C o n tr o l .d ” ;

d e c la re fu n c tio n lo c a l:g e tP a r e n tF e a tu r e ($ c h ild a s x s :s t r in g) a s i te m ()

I
fo r S ite m A in d o c (A £ 2A £)/ / R ela tio n sh ip / R e l_ fea tu re

w h e re
n o rm a liz e -sp a c e ($ ite m A)= n o rm a liz e -s p a c e ($ c h ild)
re tu rn

S item A / ../. ./ F eatu re_ n am e

};
fo r
S it e m l in d o c (A £ lA £)/ / U se_ C ase/ D escr ip tio n ,
$ ite m 2 in do c(A £ 2A £ ")/ / F eatu re_ M o d el/ F eatu re/ F eatu re_ n am e

w h e re
lo c a l:g e tP a r e n tF e a tu r e (s t r in g ($ ite m 2)) != ""
and
s :c o n ta in s In D is ta n c e ($ ite m 1 ,S ite m 2 , lo c a l:g e tP a r e n tF e a tu r e (s t r in g (S ite m 2)))

</Q uery>
< A ction>

< R e la t io n R u le ID = "R 3 9 " T yp e= "d ep en d en cy" D o c T y p e l= " U se C ase "
D o cT yp e2 = ”F ea tu re M o d e l">

< E lem en t D ocum ent= ""> {S item l/ ../ T itle} </Elem ent>
< E lem en t D o cum en t= ""> {S item 2}

< C hild> { lo c a l:g e tC h ild re n F ea tu re (s tr in g ($ item 2))} < / C h ild >
</E lem ent>

< /R elation>

303

APPENDIX B - TRACEABILITY RULES

</Action>
< /T raceR ule>
< T race R u le R u le ID = "R 4 0" R u le T y p e = " sa t is f ia b il ity " D o c T y p e l= " P ro c e s s M o d e l"
D o cT yp e2 = "F ea tu re M o d e l ">

< Q uery>
d e c la re n a m e sp a c e s=“ja v a :d is ta n c e C o n tro l .d ” ;

d e c la re fu n c tio n lo c a l:g e tP a r e n tF e a tu r e ($ c h ild a s x s :s t r in g) a s i te m ()

!
fo r $ item A in d o c (A £ 2A £)/ / R ela tio n sh ip / R e l_ fea tu re

w h e re
n o rm a liz e -sp a c e ($ ite m A)= n o r m a liz e -s p a c e ($ c h ild)
re tu rn

S item A / ../. ./F eatu re_n am e

);

fo r
S item 1 in d o c (A £ 1 A £)//P rocess_M odel/P rocess/D escrip tion ,
$ ite m 2 in d o c (A £ 2A £)/ / F eatu re_ M o d el/ F eatu re/ F eatu re_ n am e

w h e re
lo c a l:g e tP a r e n tF e a tu r e (s t r in g ($ ite m 2)) != " "
and
s :c o n ta in s In D is ta n c e ($ ite m l ,S ite m 2 , lo c a l:g e tP a r e n tF e a tu r e (s t r in g (S ite m 2)))

</Query>
< A ction>

< R ela tio n R u le ID = "R 4 0" T y p e = " sa t is f ia b il ity " D o c T y p e l= " P ro c e s s M o d e l"
D o cT yp e2 = "F ea tu re M o d e l ">

< E Iem ent D ocum ent= ""> {S item l/ ../ P ro cess_ n am e} </Elem ent>
< E lem en t D o cum en t= ""> {$ item 2} </Elem ent>

< /R elation>
</Action>

< /T raceR u le>
< T raceR u le R u le ID = "R 4 1" R u le T y p e = " sa t is f ia b il ity " D o c T y p e l- 'P r o c e s s M o d e l"
D o cT yp e2 = "F ea tu re M o d e l ">

< Q uery>
d e c la re n a m e sp a c e s=“ja v a :d is ta n c e C o n tro l .d ” ;

d e c la re fu n c tio n lo c a l:g e tC h ild re n F e a tu re ($ p a re n t a s x s :s t r in g) a s i te m ()*

{
fo r S item A in d o c (A £ 2A £)/ / F eatu re/ R e la tio n sh ip / R eL fea tu re

w h e re
n o rm a liz e -sp ace ($ item A / ../ ../ F ea tu re_ n am e)= n o n n a liz e -sp a c e (S p a re n t)

re tu rn
S item A

};

fo r
S item 1 in d o c (A £ l A £)//P rocess_M odel/P rocess/D escrip tion ,
S item 2 in d o c (A £ 2A £)/ / F eatu re_ M o d el/ F eatu re/ F eatu re_ n am e

304

B. 1 Direct Traceability Rules

w h e re
lo c a] :g e tC b ild r e n F e a tu r e (s t r in g ($ ite m 2)) != ""
an d
s :c o n ta in s I n D is ta n c e ($ ite m l,$ ite m 2 , lo c a l:g e tC h ild re n F e a tu r e (s t r in g ($ ite m 2)))

</Q uery>
< A ction>

< R e la t io n R u le ID = "R 4 1" T y p e = " sa t is f ia b il ity " D o c T y p e l= " P ro c e s s M o d e l"
D o cT yp e2 = "F ea tu re M o d e l">

< E lem en t D ocum ent= ""> {$ item l/ ../ P ro cess_ n am e} </EIement>
< E lem en t D o cum en t= "”> { $ ite m 2) </Elem ent>

< /R elation>
</Action>

< /T raceR u le>
< T ra ce R u le R u le ID = "R 4 2 " R u le T y p e = " s a t is f ia b il ity " D o c T y p e l= " M o d u le M o d e l"
D o cT yp e2 = " F ea tu re M o d e l">

< Q uery>
d e c la re n a m e sp a c e s= “ja v a :d is ta n c e C o n tr o l .d ” ;

d e c la re fu n c tio n lo c a l:g e tP a r e n tF e a tu r e ($ c h ild a s x s :s t r in g) a s i te m ()

<
fo r S ite m A in d o c (A £ 2A £)/ / R ela tio n sh ip / R e l_ fea tu re

w h e re
n o rm a liz e -sp a c e ($ ite m A)= n o rm a liz e -s p a c e ($ c h ild)
re tu rn

S item A / . ./ ../Feature_nam e

for
S it e m l in d o c (A £ l A £)/ / M od u le_ M o d el/ M o d u le/ D escrip tion ,
S ite m 2 in d o c (A £ 2A £)/ / F eatu re_ M o d el/ F eatu re/ F eatu re_ n am e

w h e re
lo c a l:g e tP a r e n tF e a tu r e (s t r in g ($ ite m 2)) != ""
and
s :c o n ta in s I n D is ta n c e ($ ite m l,$ ite m 2 , lo c a l:g e tP a r e n tF e a tu r e (s t r in g ($ ite m 2)))

</Query>
< A ction>

< R e la t io n R u le ID = ”R 4 2 " T y p e = " sa t is f ia b il ity " D o c T y p e l= " M o d u le M o d e l"
D o cT yp e2 = " F ea tu re M o d e l ">

< E lem en t D ocum ent= ""> { $ item l/ ../ M o d u le_ n am e} </Elem ent>
< E lem en t D o cum en t= ""> {$ item 2} </Elem ent>

< /R elation>
</Action>

< /T raceR u le>
< T ra ce R u le R u le ID = "R 4 3 " R u leT yp e= "co n ta in m en t" D o c T y p e l= " M o d u le M o d e l"
D o c T y p e2 = " C la ss D iag ram ">

< Q uery>
d e c la r e n a m e sp a c e U M L = " o rg .o m g .x m i.n a m e sp a c e .U M L " ;

d e c la r e n a m e sp a c e s=“ja v a :d is ta n c e C o n tr o l .d ” ;

fo r S i t e m l in d o c (A £ 2A £)/ / U M L :C la ss if ie r .fe a tu re/ U M L :O p era t io n / @ n am e
fo r S ite m 2 in d o c (A £ lA £ ")/ / M o d u le/ D escrip tio n

305

APPENDIX B - TRACEABILITY RULES

le t St 1 := S i t e m l / . / @ n a m e

w h ere

s :c o n ta in s I n D is ta n c e ($ ite m 2 ,$ ite m l, $ t l)

</Query>
< A ction>

< R ela t io n R u le ID = "R 4 3" T yp e= "co n ta in m en t" D o c T y p e l= " M o d u le M o d e l"
D o cT yp e2 = " C la ss D iag ram ">

< E lem en t D o cum en t= ""> {$ item 2/ ../ M o d u le_ n am e} < D escription/>
</Elem ent>
< E lem en t D o c u m e n t= " " x C la s s > { $ t l }</Class> < O peration> { S ite m l }</O peration>
</Elem ent>

< /R elation>
</Action>

< /T raceR ule>
< T race R u le R u le ID = " R 8 6 a ” R u le T y p e = " sa t is f ia b il ity " D o c T y p e l= " S u b sy s te m M o d e l"
D o cT yp e2 = "F ea tu re M o d e l">

< Q uery>

d e c la re n a m e sp a c e s=“ja v a :d is ta n c e C o n tro l .d ” ;

d e c la re fu n c tio n lo c a l:g e tP a r e n tF e a tu r e ($ c h ild a s x s :s t r in g) a s ite m ()

{
fo r S ite m A in d o c (A £ 2A £)/ / R ela tio n sh ip / R e l_ fea tu re

w h e re
n o rm a liz e -sp a c e (S ite m A)= n o rm a liz e -sp a c e (S c h ild)
re tu rn

S item A / ../. ,/ F eatu re„n am e

};

fo r
S it e m l in d o c (A £ l A £)//Subsystem /D escrip tion ,
S item 2 in d o c (A £ 2A £)/ / F eatu re_ M o d el/ F eatu re/ F eatu re_ n am e

w h e re
n o n n a liz e -s p a c e (lo c a l :g e tP a r e n tF e a tu r e (s t r in g ($ ite m 2))) = ""
and
s :c o n ta in s In D is ta n c e ($ ite m 1 ,$ ite m 2)

</Query>
< A ction>

< R ela t io n R u le lD = "R 4 4 " T y p e = " sa t is f ia b il ity " D o c T y p e l= " S u b sy s te m M o d e l
D o cT yp e2 = "F ea tu re M o d e l">

< E lem en t D ocum ent= ""> { $ item l/ ../ S u b system _ n am e} </Elem ent>
< E lem en t D o cum en t= ""> {S item 2} </Elem ent>

< /R elation>
</Action>

< /T raceR ule>

306

B. I Direct Traceability Rules

< T ra ce R u le R uIeID = "R 45" R u le T y p e = " s a t is f ia b il ity " D o c T y p e l= " P ro c e s s M o d e l"
D o cT yp e2 = " F ea tu re M o d e l">

< Q uery>

d e c la re n a m e sp a c e s=“ja v a :d is ta n c e C o n tr o l .d ” ;

d e c la re fu n c tio n lo c a l:g e tP a r e n tF e a tu r e ($ c h ild a s x s :s t r in g) a s ite m ()

{
fo r S ite m A in d o c (A £ 2A £)/ / R ela tio n sh ip / R e l_ fea tu re

w h e re
n o rm a liz e -sp a c e (S ite m A)= n o r m a liz e -s p a c e ($ c h ild)
re tu rn

S i tem A / ../. ./ F eatu re_ n am e

};

fo r
S it e m l in d o c (A £ l A £)//P rocess_M odel/P rocess/D escrip tion ,
$ iten r2 in do c (A £ 2A £)/ / F eatu re_ M o d el/ F eatu re/ F eatu re_ n am e

w h e re

n o rm a liz e -s p a c e (lo c a l :g e tP a re n tF e a tu re (s t r in g ($ ite m 2))) = " "
and
s :c o n ta in s In D is ta n c e ($ ite m 1 ,S ite m 2)

</Query>
< A ction>

< R e la t io n R u le ID = ”R 4 5 " T y p e = " sa t is f ia b il ity " D o c T y p e l= " P ro c e s s M o d e l"
D o cT yp e2 = " F ea tu re M o d e l ">

< E lem en t D ocum ent= ""> {$ item l/ ../ P ro cess_ n am e} </E lem ent>
< E lem en t D o cu m en t= ""> { S item 2 j </Elem ent>

< /R elation>
</Action>

< /T raceR u le>
< T ra ce R u le R u le ID = "R 4 6 " R u le T y p e = " sa t is f ia b il ity " D o c T y p e l= " M o d u le M o d e l"
D o cT yp e2 = " F ea tu re M o d e l">

< Q uery>
d e c la r e n a m e sp a c e s=“ja v a :d is ta n c e C o n tro l .d ” ;

d e c la r e fu n c tio n lo c a l:g e tP a r e n tF e a tu r e ($ c h ild a s x s :s t r in g) a s i te m ()

{
fo r S ite m A in d o c (A £ 2A £)/ / R ela tio n sh ip / R e l_ fea tu re

w h e re
n o rm a liz e -sp a c e ($ ite m A)= n o rm a liz e -s p a c e (S c h ild)
re tu rn

S item A / ../. ./ F eatu re_ n am e

};

fo r
S ite m l in d o c (Â £ lÂ £)/ / M o d u le_ M o d e l/ M o d u le/ D escr ip tio n ,

307

APPENDIX B - TRACEABILITY RULES

$ ite m 2 in d o c (A £ 2A £)/ / F eatu re_ M o d el/ F eatu re/ F eatu re_ n am e
w h e re

n o r m a liz e -s p a c e (lo c a l:g e tP a re n tF e a tu re (s tr in g ($ ite m 2))) = ""
and
s :c o n ta in s ln D is ta n c e ($ ite m l,$ ite m 2)

</Query>
< A ction>

< R ela tio n R u le ID = "R 4 6" T y p e = " sa t is f ia b il ity " D o c T y p e l= " M o d u le M o d e l"
D o cT yp e2 = " F ea tu re M o d e l ">

< E lem en t D ocum ent= ""> {$ item l/ ../ M o d u le_ n am e} </Elem ent>
< E lem en t D o cum en t= ""> {$ item 2} </Elem ent>

< /R elation>
</Action>

< /T raceR ule>
< T race R u le R u le ID = "R 4 7" R u le T y p e = " d e p e n d en c y " D o c T y p e l= " C la s s D iag ram "
D o cT yp e2 = ”F ea tu re M o d e l">

< Q uery>

d e c la re n a m e sp a c e U M L = " o rg .o m g .x m i.n a m e sp a c e .U M L ”;

d e c la re n a m e sp a c e s=“ja v a :d is ta n c e C o n tr o l .d ” ;

d e c la re fu n c tio n lo c a l :g e tC la s s in C la s s ($ d ia g r a m a s x s :s t r in g) a s ite m ()*

{
fo r $ item E in
d o c (A £ l A £)/ / U M L :D iag ram / U M L :G rap h E Iem en t.co n ta in ed / U M L :G rap h N o d e/ U M L :G rap h E lem
e n t .s e m a n t ic M o d e l/ U M L :U m llS e m a n t ic M o d e lB r id g e / U M L :U m llS e m a n t ic M o d e l B r id g e .e le m e n
t/ U M L :C la ss
w h e re
SitemE/../../../../../../@ name = S d ia g ra m
re tu rn $ item E

};

d e c la re fu n c tio n lo c a l:g e tP a r e n tF e a tu r e ($ c h ild a s x s :s t r in g) a s ite m ()

{
fo r $ ite m A in d o c (A £ 2A £)/ / R ela tio n sh ip / R e l_ fea tu re

w h ere
n o rm a liz e -sp a c e ($ ite m A)= n o rm a liz e -s p a c e ($ c h ild)
re tu rn

$ ite m A/../. ./ F eatu re_ n am e

};

le t S c l := I o c a l :g e tC la s s in C la s s (* l *)

fo r $ item () in S c l

fo r S it e m l in
d o c (A £ l A £)/ / U M L :N am esp ace .o w n ed E lem en t/ U M L :C la ss/ U M L :C la ss if ie r .fe a tu re/ U M L :O p era t
ion
fo r $ ite m 2 in doc(A £ 2A £)/ / F eatu re_ M o d el/ F eatu re/ D escrip tion

308

B. I Direct Traceability Rules

le t $ t l := S item l/ ../ ../ @ n am e

w h e re
$ item l/ ../ ../ @ x m i.id = $ item ()/ @ x m i.id re f
and
s :c o n ta in s In D is ta n c e ($ ite m 2 , $ ite m l/ @ n a m e , $ t l)
and
n o rm a liz e -sp a c e (lo c a l:g e tP a re n tF e a tu re (s tr in g ($ ite m 2 / ../ F e a tu re _ n a m e))) !=

</Q uery>
< A ction>

< R eIatio n R u le ID = "R 4 7" T yp e= "d ep en d en cy" D o c T y p e l= " C la s s D iag ram "
D o cT yp e2 = " F ea tu re M o d e l ">

< E lem en t D ocum ent= ""> < C la ss> { S tl }</Class>
< O peration> {$ ite m 1 /@ n a m e } < /O peration> </Elem ent>

< E lem en t D o cum en t= "”>
{ lo ca l:g e tP aren tF ea tu re (s tr in g ($ item 2 / ../ F ea tu re_ n am e))} < / E lem en t>

< /R elation>
</Action>

< /T raceR u le>
< T race R u le R u le lD = " R 4 8 " R u le T y p e = " d e p e n d en c y " D o c T y p e l= " S e q u e n c e D iag ram "
D o c T y p e2 = " C la ss D iag ram ">

< Q uery>
d e c la re n a m e sp a c e U M L = " o rg .o m g .x m i.n a m e sp a c e .U M L " ;

d e c la re fu n c tio n lo c a l:g e tM e s s a g e in S e q () a s item Q *

{
fo r S ite m A in
d o c (A £ l A £)/ / U M L :G rap h E lem en t.sem an ticM o d e l/ U M L :U m l lS e m a n t ic M o d e]B r id g e / U M L :U m l
1 S e m a n t ic M o d e lB r id g e .e le m e n t/ U M L :L in k
re tu rn $ item A

d e c la re fu n c tio n lo c a l:g e tO b je c t in S e q (S l in k a s n o d e ()) a s ite m ()

{
fo r S ite m B in d o c (A £ l A £)/ / U M L :L in k
w h e re $ item B / @ x m i.id = $ lin k / @ x m i.id re f

re tu rn $ item B / U M L :L in k .co n n ec tio n / U M L :L in k E n d / U M L :L in k E n d .in s tan c e / U M L :O b je c t

};

d e c la re fu n c tio n lo c a l:g e tO b je c t in M o d e l($ o b je c t a s n o d e ()) a s ite m ()*

{

fo r S ite m C in d o c (Â £ lÂ £)/ / U M L :O b jec t
w h e re $ item C / @ x m i.id = $o b jec t/ @ x m i.id re f

re tu rn $ ite m C / U M L :ln s ta n c e .c la s s if ie r/ U M L :C la s s

d e c la re fu n c tio n lo c a l:g e tC la s s O b je c t in S e q ($ c la s s a s n o d e ()) a s ite m ()

{

309

APPENDIX B -T R A CE ABILITY R ULES

fo r $ item D in d o c (Á £ lÁ £)/ / U M L :C la ss
w h e re $ item D / @ x m i.id = $ c la s s/ @ x m i.id re f

re tu rn S item D

};

d e c la re fu n c tio n lo c a l:g e tC la s s n a m e 2 ($ c la s s a s n o d e ()) a s ite m ()*

{
fo r S item D 2 in d o c (A £ 2A £)/ / U M L :C lass
w h e re $ item D 2/ @ n am e = $c la ss/ @ n am e

re tu rn $ item D 2

d e c la re fu n c tio n lo c a l:g e tC la s s in C la s s ($ c I a s s a s n o d e () , S d ia g ra m a s x s :s t r in g) a s i te m ()*

{
fo r $ item E in
d o c(Á £ 2Á £)/ / U M L :D iag ram / U M L :G rap h E lem en t.co n ta in ed / U M L :G rap h N o d e/ U M L :G rap h E lem
e n t .s e m a n t ic M o d e l/ U M L :U m llS e m a n t ic M o d e lB r id g e / U M L :U m llS e m a n t ic M o d e lB r id g e .e le m e n
t/ U M L :C la ss
w h e re S item E / @ x m i.id re f = $ c la ss/ @ x m i.id
and $itemE/../../../../../../@ name = S d ia g ra m
re tu rn S item E

};

le t S it e m l := lo c a l:g e tM e s s a g e in S e q ()
fo r $ t l in S ite m l
fo r $ item 2 in lo c a l:g e tO b je c t in S e q (S t l)
fo r S item 3 in lo c a l:g e tO b je c t in M o d e l($ ite m 2)
fo r $ ite m 4 in lo c a l:g e tC la s s O b je c t in S e q ($ ite m 3)
fo r $ it e m 4 _ l in lo c a l:g e tC la s s n a m e 2 ($ ite m 4)
fo r $ item 5 in lo c a l :g e tC la s s in C la s s ($ i t e m 4 _ l,* 2 *)
w h e re
Stl/../../../../../../@ nam e = *1 *
and
lo c a I :g e tP a re n tC la s s ($ ite m 4 _ l/ @ n a m e) != ""

</Query>
< A ction>

< R ela tio n R u le ID = "R 4 8" T yp e= "d ep en d en cy" D o c T y p e l= " S e q u e n c e D iag ram "
D o cT yp e2 = " C la ss D iag ram ">

< E lem en t D o cu m en t= ”">{$tl/../../../../../../@ xm i.id} {$tl/../../../../../../@ name| {S t l }
{ $ ite m 2 ¡ {S item 3}< /E lem ent>

< E lem en t D ocum ent= " "> {lo c a l :g e tP a re n tC la s s ($ ite m 4 _ 1 /@ n a m e)} </Elem ent>
< /R elation>

</Action>
< /T raceR ule>
< T raceR u le R u le lD = "R 4 9 " R u le T y p e = " e v o lu a t io n " D o c T y p e l= " U se C a se " D o cT yp e2 = "U se
C ase">

< Q uery>
d e c la re n a m e sp a c e s=“ja v a :d is ta n c e C o n tr o l .d ” ;

fo r S it e m l in d o c (Á £ lÁ £)/ / U se_ C ase/ T itle ,

310

B. 1 Direct Traceability Rules

$ ite m 2 in do c(A £ 2A £)/ / U se_ C ase/ T itle

w h e re
$ item l/ ../ @ U seC ase ID != $ item 2/ ../ @ U seC aseID and
$ item l/ ../ @ S y s te m = $ item l/ ../ @ S y ste m and
$ item l/ ../ @ P ro d u c t_ M em b er = $ item 2 / ../ @ P ro d u ct_ M em h er and
s :c o n ta in s I n D is ta n c e ($ ite m l, $ ite m 2)

</Q uery>
< A ction>

< R ela t io n R u le ID = "R 4 9" T yp e = ”ev o lu a t io n " D o c T y p e I= " U se C ase "
D o cT yp e2 = " U se C ase">

< E lem en t D ocum ent= ""> { $ item l/ ../ @ U seC ase ID ({S item 1}
< S ystem > {$ ite m 1 /. J@ S y s t e m } {S item 1 /. ,/ @ P ro d u c t_ M em b er} < /System >

</Elem ent>
< E lem en t D ocum ent= ""> {$ item 2/ ../@ U seC aseID } { S ite m 2)

< S ystem > { $ item 2/ ../ @ S ystem } {$ item 2/ ../ @ P ro d uct_ M em b er} < /System >
</Elem ent>

< /R elation>
</Action>

< /T raceR u le>
< T ra ce R u le R u le ID = "R 5 0 " R u le T y p e = " e v o lu a t io n ” D o c T y p e l= " C la s s D iag ram "
D o c T y p e2 = " C la s s D iag ram ">

< Q u eiy>

d e c la re n a m e sp a c e U M L = " o rg .o m g .x m i.n a m e sp a c e .U M L " ;

d e c la re n a m e sp a c e s=“ja v a :d is ta n c e C o n tr o l .d ” ;

d e c la r e fu n c tio n lo c a l:g e tC la s s in C la s s ($ d ia g r a m as x s :s t r in g) a s i te m ()*

{
fo r S item E in

d o c (A £ l A £)/ / U M L :D iag ram / U M L :G rap h E lem en t.co n ta in ed / U M L :G rap h N o d e/ U M L :G rap h E lem
e n t .s e m a n t ic M o d e l/ U M L :U m llS e m a n t ic M o d e lB r id g e / U M L :U m llS e m a n t ic M o d e lB r id g e .e le m e n
t/ U M L :C la ss

w h e re
$item E/../../../../../../@ nam e = S d ia g ra m

re tu rn S item E

};

le t $ c l := lo c a l :g e tC la s s in C la s s (* l*)
le t $ c l2 := lo c a l :g e tC la s s in C la s s (* 2 *)

fo r Sitem O in S c l
fo r SitemOO in $ c l2

fo r S it e m l in d o c (Â £ lÂ £)/ / U M L :C la ss
fo r S ite m 2 in d o c (Â £ 2Â £)/ / U M L :C lass

w h e re
(S ite m l/ @ x m i.id = $ item O / @ xm i.id re f

and
S item 2 / @ x m i.id = Sitem O O /@ xm i.idref

and

311

APPENDIX B - TRACEABILITY RULES

s :c o n ta in sIn D is tan ce ($ item 2 / @ n am e , $ ite m l/ @ n a m e))
</Query>
< A ction>

< R ela t io n R u le ID = "R 5 0" T y p e = " e v o lu a t io n ” D o c T y p e l= " C la s s D iag ram "
D o cT yp e2 = " C la ss D ia g ra m ”>

< E lem en t D o cu m en t= ""> { $ item l }</Element>
< E lem en t D o cum en t= ""> j S ite m 2 j< /E lem ent>

< /R elation>
</Action>

< /T raceR ule>
< T race R u le R u le ID = " R 5 1" R u le T y p e = "d e p e n d en c y " D o c T y p e I= " C la s s D iag ram "
D o cT yp e2 = "U se C a s e ”>

< Q uery>

d e c la re n a m e sp a c e U M L = " o rg .o m g .x m i.n a m e sp a c e .U M L " ;

d e c la re n a m e sp a c e s=“ja v a :d is ta n c e C o n tr o l .d ” ;

fo r $ ite m A in
d o c (Á £ lÁ £)/ / U M L :D iag ram / U M L :G rap h E lem en t.co n ta in ed / U M L :G rap h N o d e/ U M L :G rap h E len i
e n t .s e m a n t ic M o d e l/ U M L :U m llS e m a n t ic M o d e lB r id g e / U M L :U m llS e m a n t ic M o d e lB r id g e .e le m e n
t/ U M L :C la ss

f o r $ i t e m l in
d o c (Á £ lÁ £)/ / U M L :P a c k a g e/ U M L :N a m e sp a c e .o w n ed E le m e n t/ U M L :C la s s/ U M L :C la s s if ie r .fe a tu
re/ U M L :O p eratio n/ @ n am e

fo r $ item 2 in doc(Á £ 2Á £)/ / U se_ C ase

le t St 1 := $ item l/ ../ ../ ../@ nam e

w h ere
Sitem A /../ ../ ../ ../ ../parent::node()/@ nam e = * 1 *

and
$ item l/ ../ ../ ../ @ xm i.id = $ item A / @ x m i.id re f

and
s :c o n ta in sIn D is tan c e ($ ite m 2 / T itle , $ t 1)

and
s :c o n ta in sIn D is tan c e ($ ite m 2 / D e sc r ip t io n , $ i t e m l)

</Query>
< A ction>

< R ela t io n R u le ID = "R 5 1" T yp e= "d ep en d en cy" D o c T y p e l= " C la s s D iag ram "
D o cT yp e2 = "U se C ase">

< E lem en t D o c u m e n t= " " x C la s s s > { $ t l)</CIass> </Elem ent>
< E lem en t D ocum ent= " "> {S ite m 2 / T it le } </Element>

< /R eladon>
</Action>

< /T raceR u le>
< T raceR u Ie R u le ID = "R 5 2" R u le T y p e = " d e p e n d en c y " D o c T y p e I= " S ta te c h a r t D iag ram "
D o cT yp e2 = "U se C ase">

< Q uery>

d e c la re n a m e sp a c e U M L = " o rg .o m g .x m i.n a m e sp a c e .U M L " ;

d e c la re n a m e sp a c e s=“ja v a :d is ta n c e C o n tr o l .d ” ;

3 1 2

B. I Direct Traceability Rules

d e c la re fu n c tio n lo c a l:g e tT ra n s it io n in S ta te () a s i te m ()*

{
fo r S ite m F in

d o c (Â £ lÂ £)/ / U M L :G rap h E lem en t.sem an ticM o d e l/ U M L :U m l 1 S e m a n t ic M o d e lB r id g e / U M L :U m l
lS e m a n t ic M o d e lB r id g e .e le m e n t/ U M L :T ra n s it io n

re tu rn S item F

d e c la re fu n c tio n lo c a l:g e tS ta te in S ta te ($ t r a n s it io n a s n o d e ()) a s ite m ()

{
fo r S item G in d o c (A £ l A £)/ / U M L :S iin p leS ta te
w h e re $ item G / U M L :S ta te V e rte x .in c o m in g / @ x m i.id re f = $ tran s it io n / @ x m i.id

re tu rn S item G

};

le t S it e m l := lo c a l:g e tT ra n s it io n in S ta te ()
fo r S t l in S it e m l
fo r S ite m 2 in lo c a l :g e tS t a t e in S ta t e ($ t l)

fo r S item 3 in doc(A £ 2A £)/ / U se_ C ase/ D escrip tio n

fo r S item E in
d o c (A £ l A £)/ / U M L :D iag ram / U M L :G rap h E lem en t.co n ta in ed / U M L :G rap h N o d e/ U M L :G rap h E lem
e n t.s e m a n t ic M o d e !/ U M L :U m l 1 S e m a n t ic M o d e lB r id g e / U M L :U m l 1 S e m a n t ic M o d e lB r id g e .e le m e n
t/ U M L :C la ss

w h e re $ item E / @ n am e = $ item 2/ ../ p aren t::n od e()/ @ n am e
an d Sitem E /../ ../ ../ ../ ../parent::node()/@ nam e = * 1 *
an d s :c o n ta in s In D is ta n c e ($ ite m 3 , S item 2/ @ n am e)

</Q uery>
< A ction>

< R e la t io n R u le ID = "R 5 2 " T yp e= "d ep en d en cy" D o c T y p e l= " S ta te c h a r t D iag ram "
D o cT yp e2 = " U se C ase">

< E lem en t D ocum ent= ""> {S item 2} </Elem ent>
< E lem en t D ocum ent= ""> {Sitem 3/../T itle} </E lem ent>

< /R elation>
</Action>

< /T raceR u le>
< T ra ce R u le R u le ID = "R 5 3 " R u le T y p e = " d e p e n d en c y " D o c T y p e l= " S e q u e n c e D ia g ra m "
D o cT yp e2 = "U se C ase">

< Q uery>

d e c la r e n a m e sp a c e U M L = " o rg .o m g .x m i.n a m e sp a c e .U M L " ;

d e c la re n a m e sp a c e s=“ja v a :d is ta n c e C o n tr o l .d ” ;

d e c la r e fu n c tio n lo c a l:g e tM e s s a g e in S e q () a s i te m ()*

{

313

APPENDIX B - TRACEABILITY RULES

fo r S ite rn A in
d o c (A £ l A £)/ / U M L :G rap h E lem en t.sem an ticM o d e l/ U M L :U m l 1 S e m a n t icM o d e lB r id g e / U M L :U m l
1 S e m a n t ic M o d e l B r id g e .e lem en t/ U M L : L i nk

re tu rn S item A

d e c la re fu n c tio n lo c a l:g e tO b je c t in S e q ($ l in k a s n o d e ()) as i te m ()

{
fo r S item B in d o c (A £ l A £)//U M L :L ink

w h e re $ item B / @ x m i.id = $ lin k / @ x m i.id re f

re tu rn $ item B / U M L :L in k .co n n ec tio n / U M L :L in k E n d / U M L :L in k E n d .in s tan ce/ U M L :O b jec t

};

d e c la re fu n c tio n lo c a l:g e tO b je c t in M o d e l(S o b je c t a s n o d e ()) a s ite m ()*

{

fo r S ite rn C in d o c (A £ lA £)/ / U M L :O b jec t
w h e re $ item C / @ x m i.id = S o b je c t/ @ x m i.id re f

re tu rn $ item C / U M L :In s ta n c e .c la s s if ie r/ U M L :C la s s

d e c la re fu n c tio n lo c a l:g e tC la s s O b je c t in S e q ($ c la s s a s nodeO) a s ite m ()

{
fo r S item D in d o c (A £ l A £)/ / U M L :C lass

w h e re $ item D / @ x m i.id = $ c la s s/ @ x m i.id re f

re tu rn $ item D

d e c la re fu n c tio n lo c a l:g e tC la s s in C la s s ($ c la s s a s n o d e (), S d ia s r a m as x s :s t r in g)a s ite m ()*

{
fo r S item E in

d o c (A £ lA £)/ / U M L :D iag ram / U M L :G rap h E lem en t.co n ta in ed / U M L :G rap h N o d e/ U M L :G rap h E lem
e n t .s e m a n t ic M o d e l/ U M L :U m llS e m a n t ic M o d e lB r id g e / U M L :U m llS e m a n t ic M o d e lB r id g e .e le m e n
t/ U M L :C la ss

w h e re $ item E / @ n am e = $c lass/ @ n am e
an d S item E /../ ../ ../ ../ ../parent::node()/@ nam e = S d ia g ra m
retu rn S item E

};

le t S it e m l := lo c a l:g e tM e s s a g e in S e q ()
fo r St 1 in S ite m l
fo r S item 2 in lo c a l:g e tO b je c t in S e q (S t l)
fo r S item 3 in lo c a l:g e tO b je c t in M o d e l($ ite m 2)
fo r $ item 4 in lo c a l:g e tC la s s O b je c t in S e q ($ ite m 3)
fo r S item 5 in lo c a l:g e tC la s s in C la s s ($ it e m 4 , * 1 *)

fo r S item 6 in doc(A £ 2A £)/ / U se_ C ase/ D escrip tio n

314

B. 1 Direct Traceability Rules

w h e re s :c o n ta in s In D is ta n c e ($ ite m 6 , $ item 5)

</Q uery>
< A ction>

< R e la t io n R u le ID = "R 5 3 " T yp e= "d ep en d en cy" D o c T y p e l= " S e q u e n c e D iag ram "
D o cT yp e2 = "U se C ase">

< E lem en t D ocum ent= ""> (S ite m 5 } </Elem ent>
< E lem en t D ocum ent= ""> {$item 6/../T itle} </Elem ent>

< /R elation>
</Action>

< /T raceR u le>

3 1 5

APPENDIX B - TRACEABILITY RULES

B.2. Indirect Traceability Rules

< T raceR u le R u le ID = "R 5 4" R u le T y p e = " s im ila r " D o c T y p e l= " X M L -B a se d -R e l"
D o c T y p e2 = " X M L -B a se d -R e l" >

< Q uery>

fo r $ i t e m l in d o c ("f i]e :/ / / c :/ D irec t_ T raceR e l.xm l")/ / R e la tio n [@ T yp e= "im p lem en ts"],
S item 2 in d o c (" file :/ / / c :/ D irec t_ T raceR e l.x m l")/ / R e la tio n [@ T yp e= "im p lem en ts"]

w h e re $ ite m l/ @ D o c T y p e l= " U se C a s e ” an d S ite m l/ @ D o c T yp e 2 = ”S e q u e n c e D iag ram "
and $ item 2 / @ D o cT yp e l= "U se C a se " and S item 2/ @ D o cT yp e2= "S eq u en ce D iag ram "
and (s tr in g ($ ite m]/ E le m e n t[2]/ L in k) = s tr in g ($ item 2 / E lem en t[2]/ L in k))
and ($ ite m l/ E le m e n t[l]/ @ D o c u m e n t != S item 2/ E lem en tf 1]/@ D ocum ent)
and ($ item l/ E lem en t[2]/ @ D o cu m en t = S item 2/ E lem en t[2]/ @ D o cu m en t)

</Query>
< A ction>

< R ela tio n R u le ID = "R 5 4" T yp e = " s im ila r" T en n = "se q u e n c e d ia g r a m im p lem en ts u se ca se">
< E lem ent> { S item 1/E lem en t11]/@ D ocum ent| {$ item 1 /E lem entf 1 (/T itle }</Element>
< E lem ent> { $ item 2 / E lem en t[l]/@ D ocum ent} {$ item 2/ E lem en t[1]/T itle }</Element>
< Im plen ren ts> {S ite m 1 /El em ent[2]/@ D o c u m e n t} {S item 1 /E lem ent [2]/ L in k }

< /Im plem ents>
< /R elation>

</Action>
< /T raceR u le>
•cT raceR u le R u le ID = "R 5 5" R u le T y p e = " d iffe ren t" D o c T y p e l= " X M L -B a se d -R e l"
D o c T y p e2 = " X M L -B ase d -R e l">

< Q uery>

d e c la re fu n c tio n lo c a l:g e tP a r e n tF e a tu r e ($ c h ild a s x s :s t r in g) a s ite m ()

{
fo r S item A in
d o c(A £ 2A £)/ / R ela tio n sh ip / R e l_ fea tu re
w h e re n o rm a liz e -sp a c e (S ite m A)= n o rm a liz e -sp a c e (S c h ild)
re tu rn S item A /../. ./F eatu re_n am e

};

d e c la re fu n c tio n lo c a l:g e tP a re n to fV a r ia n tF e a tu re s ($ o n e a s n o d e (), S tw o a s n o d e ())a s ite m ()

{
fo r S item 1 in doc(A £ 2A £)//F eatu re ,
S ite m 2 in doc(A £ 2A £)//F eatu re
w h e re (n o rm a liz e -sp a c e (S ite m l/ F e a tu re _ n a m e) = n o rm a liz e -sp a c e (S o n e)
and n o rm a liz e -sp a ce ($ ite m 2 / F ea tu re _ n a m e) = n o rm a liz e -sp a c e (S tw o)
an d lo c a l:g e tP a re n tF e a tu re (S ite m l/ F e a tu re _ n a m e) =
lo c a l:g e tP a ren tF e a tu re (S ite m 2 / F e a tu re _ n a m e)
an d lo c a l:g e tP a re n tF e a tu re (S ite m l/ F e a tu re _ n a m e) != ""
an d n o rm a liz e -sp a c e ($ ite m l/ F e a tu re _ n a m e) != n o rm a liz e -sp a ce (S item 2 / F e a tu re _ n am e)
an d S ite m l/ E x is te n t ia l = S item 2/ E x is ten tia l
and (S ite m l/ E x is te n t ia l = "O p tio n a l" o r S ite m l/ E x is te n t ia l = " A lte rn a t iv e "))
re tu rn tru e ()

};

fo r S it e m l in d o c (" f ile :/ / / c :/ D irec t_ T raceR e l.xm l")/ / R e la tio n [@ T yp e= "co n ta in m en t"],
S item 2 in d o c (" file :/ / / c :/ D irec t_ T raceR e l.xm r’)/ / R e la tio n [@ T yp e= ”c o n ta in m en t"]

316

file:///c:/Direct_TraceRel.xml")//Relation[@Type="implements
file:///c:/Direct_TraceRel.xml")//Relation[@Type="containment
file:///c:/Direct_TraceRel.xmr%E2%80%99)//Relation[@Type=%E2%80%9Dcontainment

B.2 Indirect Traceability Rules

w h e re $ it e m l/ @ D o c T y p e l =”U se C a se " an d $ item l/ @ D o c T y p e 2 = " F e a tu re M o d e l"
an d $ item 2 / @ D o c T y p e l= " U se C a se " an d S item 2/ @ D o cT yp e2= "F ea tu re M o d e l"
an d (s tr in g ($ ite m l/ E le m e n t [l]/ @ D o c u m e n t) != s tr in g ($ ite m 2 / E le m e n t[l]/ @ D o c u m e n t))
an d ($ item l/ E lem en t[2]/ @ D o cu m en t = $ item 2 / E lem en t[2]/ @ D o cu m en t)
an d ($ ite m l/ E le m e n t)2]/ F e a tu re _ n a m e != $ item 2 / E lem en t[2]/ F ea tu re_ n am e) and
lo c a l:g e tP a ren to fV a r ia n tF e a tu re s (S ite m l/ E le m e n t[2]/ F e a tu re _ n a m e ,$ ite m 2 / E le m e n t[2]/ F ea tu re _ n
am e)

</Query>
< A ction>

< R e la t io n R u le ID = "R 5 5" T yp e= "d iffe ren t" T erm = "u se c a s e c o n ta in s fe a tu re m o d e l">
< E lem ent> { $ ite m 1/E lem en t) 1]/ @ D o cu m en t} {$ ite m 1 /E lem en t) 1 J/ T itle} </Elem ent>
< E lem ent> { $ ite m 1/E lem ent[1]/ @ D o cu m en t) {$ item 2 / E lem en t[1]/ T itle) </Elem ent>
< C o n ta in m en t> { $ item l/ E lem en t[2]/ F ea tu re_ n am e} < / C o n ta in m en t>
< C o n ta in m en t> {$ item 2/ E lem en t[2]/ F eatu re_ n am e}< / C o n ta in m en t>
< V arian tO f> { lo ca l :g e tP a re n tF e a tu re ($ ite m 1/E lem en t[2]/F eatu re n a m e) 1

< /V ariantO f>
< /R elation>

</Action>
< /T raceR u le>
< T race R u le R u le ID = "R 5 6 " R u le T y p e = " s im ila r " D o c T y p e l= " X M L -B a s e d -R e l"
D ocT y p e 2 = " X M L -B a se d -R e l" >

< Q uery>
d e c la re n a m e sp a c e U M L = " o rg .o m g .x m i.n a m e sp a c e .U M L " ;

fo r S i t e m l in d o c (" f ile :/ / / c :/ D ire c t_ T raceR e l.x m l")/ / R e la t io n [@ T yp e= "sa t is f iab ility "],
$ ite m 2 in d o c (" f ile :/ / / c :/ D ire c t_ T raceR e l.x m l")/ / R e la t io n [@ T yp e= "sa t is f iab ility "]
w h e re
$ ite m l/ @ D o c T y p e l - 'C l a s s D iag ram " an d $ item l/ @ D o c T y p e 2 = " U se C a se " and
$ ite m 2 / @ D o c T y p e l= " C la s s D iag ram " an d S item 2/ @ D o cT yp e2= "U se C ase "
and
(s tr in g ($ ite m l/ E le m e n t [1]/ C lass) = s tr in g ($ ite m 2 / E le m e n t) l]/ C la s s))
an d ($ ite m l/ E le m e n t[l]/ @ D o c u m e n t = $ item 2 / E lem en t[l]/ @ D o cu m en t)
an d ($ item l/ E lem en t| 2]/ @ D o cu m en t != S item 2/ E lem en t[2]/ @ D o cu m en t)

</Q uery>
< A ction>

< R e la t io n R u le ID = "R 5 6 " T yp e = " s im ila r" T erm = "c la ss d ia g r a m s a t is f ie s u se ca se">
< E lem en t> { $ item l/ E lem en t[2]/ @ D o cu m en t} j$ item l/ E lem en t[2]/ T it le} < / E lem en t>
< E lem en t> { $ item 2/ E lem en t[2]/ @ D o cu m en t} {$ item 2/E lem en t[2]/T itle}< /E lem ent>
< S a t is f ia b i l i ty > {$ ite m 1/E lem en t) 1]/ @ D o cu m en t} {$ ite m 1 /E lem en t) 1]/ C la s s}

< / S a tis f iab ility>
< /R elation>

</Action>
< /T raceR u le>
< T ra ce R u le R u le ID = "R 5 7 " R u le T y p e = " s im ila r " D o c T y p e l= " X M L -B a s e d -R e l"
D o c T y p e2 = " X M L -B a se d -R e l" >

< Q uery>
d e c la re n a m e sp a c e U M L = " o rg .o m g .x m i.n a m e sp a c e .U M L " ;

fo r S i t e m l in d o c (" file :/ / / c :/ D irec t_ T raceR e l.x m l")/ / R e la tio n [@ T yp e= " im p lem en ts"],
S ite m 2 in d o c (" file :/ / / c :/ D irec t_ T raceR e l.x m l")/ / R e la tio n [@ T yp e= " im p lem en ts"]
w h e re

3 1 7

file:///c:/Direct_TraceRel.xml")//Relation[@Type="satisfiability
file:///c:/Direct_TraceRel.xml")//Relation[@Type="satisfiability
file:///c:/Direct_TraceRel.xml")//Relation[@Type="implements
file:///c:/Direct_TraceRel.xml")//Relation[@Type="implements

APPENDIX B - TRACEABILITY RULES

S ite m l/ @ D o c T y p e l = "C lass D iag ram " an d $ item l/ @ D o cT yp e2 = "U se C a se " and
$ item 2 / @ D o cT yp e1 = ”C la s s D iag ram " an d $ item 2 / @ D o cT yp e2 = "U se C ase "
and
(s tr in g ($ ite m l/ E le m e n t [l]/ C la s s) = s tr in g ($ ite m 2 / E le m e n t[l]/ C la s s))
and (S item l/ E lem en t} l]/@ D ocum ent = $ item 2/ E lem en t[1]/@ D ocum ent)
and (S ite m l/ E lem en t[2]/ @ D o cu m en t != S item 2/ E lem en t[2]/ @ D o cum en t)

</Query>
< A ction>

< R ela t io n R u le ID = "R 5 7" T y p e = " s im ila r" T eiT n= "class d ia g ra m im p lem en ts u se ca se">
<EIem ent>{ $ item 1 / E lem en t[2]/ @ D o cu m en t) {$ item 1 / E lem en t[2]/ T itle}</Elem ent>
< E lem en t> j$ item 2 / E lem en t[2]/ @ D o cu m en t} {$ item 2/E lem en t[2]/T itle}< /E lem ent>
< Im plem ents> | S item 1/E lem ent[1]/ @ D o cu m en t} {S ite m 1/E lem entf 1]/ C la s s}

< /Im plem ents>
< /R elation>

</Action>
< /T raceR u le>
< T race R u le R u le ID = "R 5 8" R u le T y p e = " s im ila r " D o c T y p e l= " X M L -B a se d -R e l"
D o c T y p e2 = " X M L -B a se d -R e l" >

< Q uery>

d e c la re n a m e sp a c e U M L = " o rg .o m g .x m i.n a m e sp a c e .U M L " ;

fo r $ i t e m l in d o c (" f ile :/ / / c :/ D irec t_ T raceR e l.x m l")/ / R e la t io n [@ T yp e= "sa t is f iab ility "],
S ite m 2 in d o c (" f ile :/ / / c :/ D irec t_ T raceR e l.x m l")/ / R e la t io n [@ T yp e= "sa t is f iab ility "]
w h e re
S ite m l/ @ D o c T y p e l = "C la ss D iag ram " an d S item l/ @ D o cT yp e2 = "U se C a s e ” and
S ite m 2 / @ D o c T y p e l= " C la s s D iag ram " an d S item 2/ @ D o cT yp e2= "U se C ase "
and
(s tr in g f S it e m l /E lem ent} 1]/C lass) = s tr in g ($ ite m 2 / E le m e n t[l]/ C la s s))
and (S ite m 1 / E lem en t} l]/ @ D o cu m en t = $ item 2/ E lem en t[1]/@ D ocum ent)
and (s tr in g ($ ite m l/ E le m e n t[2]/ @ D o c u m en t) != s tr in g (S item 2 / E lem en t[2]/ @ D o cu m en t))
and (s tr in g ($ ite m l/ E le m e n t[2]/ T it le) != "")
and (s tr in g ($ item 2 / E lem en t[2]/ T it le) != "")

</Query>
< A ction>

< R ela t io n R u le ID = "R 5 8" T yp e = " s im ila r" T erm = "c la ss d ia g ra m s a t is f ie s u se c a s e ”>
< E lem ent> {S item 1 / E lem en t[2]/ @ D o cu m en t} {S item 1 / E lem en t[2]/ T itle} </Elem ent>
< E lem en t> {S item 2/ E lem en t}2]/ @ D o cum en t} (S item 2 / E lem en t[2]/ T it le}</Elem ent>
< S a tis f ia b ility > { S item 1/Elem ent} l]/ @ D o cu m en t} {S item l/ E lem en t} l|/C Iass)

< / S a tis f iab ility>
< /R elation>

</Action>
< /T raceR u le>
< T race R u le R u le ID = "R 5 9" R u le T y p e = " s im ila r ” D o c T y p e l= " X M L -B a se d -R e l"
D o c T y p e2 = " X M L -B ase d -R e l">

< Q uery>

d e c la re n a m e sp a c e U M L = " o rg .o m g .x m i.n a m e sp a c e .U M L " ;

fo r S item 1 in d o c (" file :/ / / c :/ D irec t_ T raceR e l.x m l")/ / R e la tio n [@ T yp e= "d ep en d en cy"],
S item 2 in d o c (" file :/ / / c :/ D irec t_ T raceR e l.x m l")/ / R e la tio n [@ T yp e= "d ep en d en cy"]

318

file:///c:/Direct_TraceRel.xml")//Relation[@Type="satisfiability
file:///c:/Direct_TraceRel.xml")//Relation[@Type="satisfiability
file:///c:/Direct_TraceRel.xml")//Relation[@Type="dependency
file:///c:/Direct_TraceRel.xml")//Relation[@Type="dependency

B.2 Indirect Traceability Rules

w h ere
$ ite m l/ @ D o c T y p e l = "S e q u e n ce D iag ram " an d S ite m l/ @ D o c T yp e 2 = " U se C a se " and
$ ite m 2 / @ D o c T y p e l= " S e q u e n c e D iag ram " and S item 2/ @ D o cT yp e2= "U se C a se "
an d
(s tr in g ($ ite m 1/E lem en t! 2]/ L in k) = s tr in g ($ item 2 / E lem en t[2]/ L in k))
an d (S item l/ E lem en t[2]/ @ D o cu m en t = $ item 2/ E lem en t[2]/ @ D o cu m en t)
an d (S ite m l/ E le m e n t !. l]/ @ D o cu m en t != S item 2 / E]em en t[l]/ @ D o cu m en t)
and (s tr in g ($ ite m l/ E le m e n t ! 1]/T itle) != "")
an d (s tr in g ($ ite m 2 / E le m e n t [l]/ T it le) != " ")
an d $ item l/ e / U M L :L in k / @ x m i.id re f = $ item 2 / e/ U M L :L in k / @ x m i.id re f

</Query>
< A ction>

< R e la t io n R u le ID = "R 5 9" T y p e = " s im ila r" T erm = ”se q u e n c e d ia g r a m d e p en d s on u se ca se">
< E lem en t> {$ ite m 1 / E lem en t! 1]/ @ D o cu m en t} {S item 1 / E lem en t! 1 ¡/ T it le }</E lem ent>
< E lem en t> {$ item 2 / E lem en t[1 ¡/ (© D ocum ent j {$ item 2 / E lem en t[1 ¡/T itle)< /E lem ent>
< Im p lem en ts> { $ item l/ E lem en t[2]/ @ D o cu m en t) {S item l/ E lem en t[2]/ L in k }

< /Im plem ents>
< /R elation>

</Action>
< / T raceR u le>
< T race R u le R u le lD = " R 6 0 " R u le T y p e = " s im ila r " D o c T y p e l= " X M L -B a s e d -R e l"
D o c T y p e2 = " X M L -B a se d -R e l" >

< Q uery>

d e c la re n a m e sp a c e U M L = " o rg .o m g .x m i.n a m e sp a c e .U M L " ;

fo r S item 1 in d o c (" file :/ / / c :/ D irec t„T raceR eI.xm I")/ / R e la tio n [@ T yp e= "refin em en t"],
S ite m 2 in d o c (" f ile :/ / / c :/ D irec t_ T raceR e l.x m r')/ / R e la t io n [@ T yp e= "re f in em en t”]
w h e re
S ite m l/ @ D o c T y p e l = "S ta te c h a rt D ia g ra m " an d S ite m !/ @ D o cT y p e 2 = " S e q u e n ce D ia g ra m " and
S ite m 2 / @ D o c T y p e l= " S ta te c h a r t D iag ram " an d S item 2 / @ D o cT yp e2 = "S eq u en ce D iag ram "
an d
(s tr in g ($ ite m l/ E le m e n t ! 1 ¡/O b ject) = s tr in g ($ item 2 / E lem en t[1 ¡/ O b jec t))
an d (s tr in g ($ ite m 1/ E lem en t! 1 ¡/ O p eratio n) = s tr in g ($ ite m 2 / E le m e n t[l ¡/ O p era tio n))
an d ($ ite m l/ E le m e n t[l]/ @ D o c u m e n t = S item 2/ E lem en t[l¡/ (© D o cu m en t)
an d (S item l/E lem ent[2]/< © D o cu m en t != $ item 2 / E lem en t[2]/ @ D o cu m en t)

</Query>
< A ction>

< R e la t io n R u le lD - 'R 6 0 " T y p e - 's im i l a r ” T erm = "sta tech a rt d ia g r a m re f in e s se q u e n c e
d iag ram ">

< E lem en t> {S item 1/ E lem en t[2]/ @ D o cu m en t}
{ S ite m l/ E lem en t[l]/ O b je c t} { S ite m l/ O p e ra t io n) </Elem ent>

< E lem en t> {$ item 2 / E lem en t[2 ¡/ (© D o cum en t}
{ $ ite m 2 / E le m e n t[l¡/ O b je c t) {S item 2 / O p era tio n } </Elem ent>

< Im p lem en ts> {S ite m 1 /E lem ent! I ¡/ (© D ocum ent)
{S item 1/E lem ent[1 ¡/ S ta te } < /Im plem ents>

< /R elation>
</Action>

< / T raceR u le>
< T ra ce R u le R u le ID = " R 6 1 " R u le T y p e = " s im ila r " D o c T y p e l= " X M L -B a s e d -R e l"
D o c T y p e2 = " X M L -B a se d -R e l" >

< Q uery>

319

file:///c:/Direct%E2%80%9ETraceReI.xmI")//Relation[@Type="refinement
file:///c:/Direct_TraceRel.xmr')//Relation[@Type="refinement%E2%80%9D

APPENDIX B - TRACEABILITY RULES

d e c la re n a m e sp a c e U M L = " o rg .o m g .x m i.n a m e sp a c e .U M L " ;

fo r $ i t e m l in d o c (" f ile :/ / / c :/ D irec t_ T raceR e l.xm l")/ / R e la tio n [@ T yp e= "ref in em en t"],
S item 2 in d o c (''f ile :/ / / c :/ D irec t„T raceR e l.x m l")/ / R e la tio n [@ T yp e= "re f in em en t"]
w h e re
$ ite m l/ @ D o c T y p e l = "S eq u en ce D iag ram " and S ite m l/ @ D o c T yp e 2 = " C la s s D iag ram " and
$ item 2 / @ D o c T y p e l= " S e q u en c e D iag ram " an d $ item 2 / @ D o cT yp e2 = "C lass D iag ram "
and
(s tr in g ($ ite m l/ E le m e n t [l]/ O b je c t) = s t r in g ($ ite m 2 / E le m e n t[l]/ 0 b je c t))
and (S item 1/E lem en t! 1]/@ D ocum ent = $ item 2 / E lem en t[1]/@ D ocum ent)
an d ($ item l/ E lem en t[2]/ @ D o cu m en t != $ item 2/ E lem en t[2]/ @ D o cu m en t)

</Query>
< A ction>

< R e la t io n R u le ID = "R 6 1" T yp e = " s im ila r" T erm = "seq u en ce d ia g ra m r e f in e s c la s s d iag ram ">
< E lem en t> { $ item l/ E lem en t[2]/ @ D o cu m en t} { S item l/ E lem en t!2]/ C la ss}< / E lem en t>
< E lem en t> { $ item 2/ E lem en t[2]/ @ D o cu m en t} { $ item 2/ E lem en t[2]/ C lass)< / E lem en t>
< R ef in em en t> { S item l/ E lem en t[l]/ @ D o cu m en t} { S item l/ E lem en t[l]/ O b je c t}

< /R efinem ent>
< /R elation>

</Action>
< /T raceR u le>
< T raceR u le R u le ID = "R 6 2" R u le T y p e = " s im ila r " D o c T y p e l= " X M L -B a se d -R e l"
D o c T y p e2 = " X M L -B ase d -R e l">

< Q uery>

d e c la re n a m e sp a c e U M L = " o rg .o m g .x m i.n a m e sp a c e .U M L " ;

fo r $ i t e m l in d o c (" file :/ / / c :/ D irec t_ T raceR e l.xm r’)/ / R e la tio n [@ T yp e= "d ep en d en cy"],
S item 2 in d o c (" file :/ / / c :/ D irec t_ T raceR e l.x m l")/ / R e la tio n [@ T yp e= "d ep en d en cy"]
w h e re
S ite m l/ @ D o c T y p e l = "C lass D iag ram " an d $ item l/ @ D o cT yp e2 = "U se C a se " and
S ite m 2 / @ D o c T y p e l= " C la s s D iag ram " an d $ item 2 / @ D o cT yp e2 = "U se C ase "
and
(s tr in g ($ ite m 1 / E lem en t! 1 J/C lass) = s tr in g ($ ite m 2 / E le m e n t[l]/ C la s s))
an d ($ item l/ E lem en t[2]/ @ D o cu m en t != S item 2/ E lem en t[2]/ @ D o cu m en t)
and ($ ite m l/ E le m e n t[l]/ @ D o c u m e n t = $ item 2 / E lem en t[l]/ @ D o cu m en t)

</Query>
< A ction>

< R ela tio n R u le ID = "R 6 2" T yp e = " s im ila r" T erm = "c la ss d ia g ra m im p lem en ts u se case">
< E lem ent> {$ ite m 1 /E lem ent!2]/@ D o c u m e n t} {$ ite m 1 / E lem en t[2]/ T itle} </Elem ent>
< E lem en t> { $ item 2/ E lem en t[2]/ @ D o cu m en t} {$ item 2/ E lem en t[2]/ T itle)< / E lem en t>
< Im p lem en ts> (S item 1 /E lem en t! 1]/ @ D o cu m en t} {S item 1 / E lem en t! 1]/ C la s s}

< /Im plem ents>
< /R elation>

</Action>
< /T raceR ule>
< T raceR u le R u le ID = "R 6 3" R u leT yp e= "d iffe ren t" D o c T y p e l= " X M L -B a se d -R e l"
D o c T y p e2 = " X M L -B a se d -R e l" >

< Q uery>

320

file:///c:/Direct_TraceRel.xml")//Relation[@Type="refinement
file:///c:/Direct%E2%80%9ETraceRel.xml")//Relation[@Type="refinement
file:///c:/Direct_TraceRel.xmr%E2%80%99)//Relation[@Type="dependency
file:///c:/Direct_TraceRel.xml")//Relation[@Type="dependency

B.2 Indirect Traceability Rules

d e c la re n a m e sp a c e U M L = " o rg .o m g .x m i.n a m e sp a c e .U M L " ;
d e c la re fu n c tio n lo c a l:g e tP a r e n tC la s s ($ c h ild a s x s ts tr in g) a s i te m ()

{
fo r S ite m A in d o c (A £ l A £)/ / U M L :G en e ra liz a t io n / U M L _ G en era liz a tio n .ch ild

w h e re
$ item A / U M L :C la s s/ @ x m i.id re f = S c h ild
re tu rn

S item A / ../ U M L :G en era liz a tio n .p a ren t/ U M L :C la ss

};

d e c la r e fu n c tio n lo c a l:g e tP a r e n to fV a r ia n tC la s s e s ($ o n e a s x s :s t r in g , S tw o a s x s :s t r in g)a s ite m ()
{ fo r $ i t e m l in d o c (A £ 2 A £)/ / U M L :G en era liz a tio n / U M L :G en e ra liz a t io n .ch ild ,

$ ite m 2 in d o c (A £ 2 A £)/ / U M L :G en era liz a tio n / U M L :G en e ra liz a t io n .ch ild
w h ere
($ ite m l/ U M L :C la s s/ @ x m i.id re f = $o n e and

$ item 2 / U M L :C la s s/ @ x m i.id re f = $ tw o and
lo c a l:g e tP a r e n tC la s s ($ it e m l/ U M L :C la s s / @ x m i.id r e f) =
lo c a l:g e tP a re n tC la s s ($ ite m 2 / U M L :C la s s/ @ x m i.id re f) and
lo c a l:g e tP a r e n tC la s s ($ ite m l/ U M L :C la s s / @ x m i.id r e f) != "" and
S ite m l/ U M L :C la s s/ @ x m i.id re f != $ ite m 2 / U M L :C la s s/ @ x m i.id re f)

re tu rn lo c a l:g e tP a r e n tC la s s ($ ite m l/ U M L :C la s s / @ x m i.id r e f)

};
d e c la re fu n c tio n lo c a l:g e tC la s s ID ($ n a m e a s x s :s t r in g)a s x s :s t r in g
| fo r $ item B in d o c(A £ 2A £)/ / U M L :C lass/ @ n am e
w h e re $ item B = S n am e
re tu rn $ item B / ../ @ xm i.id

};
fo r S it e in l in d o c (" f ile :/ / / c :/ D ire c t_ T raceR e l.x m r)/ / R e la tio n [@ T yp e= " im p lem en ts"],
$ ite m 2 in d o c (" file :/ / / c :/ D irec t_ T raceR e l.x m l")/ / R e la tio n [@ T yp e= " im p lem en ts"]
w h e re
$ ite m l/ @ D o c T y p e l = "C la ss D iag ram " and $ item l/ @ D o c T y p e 2 = " F e a tu re M o d e l" and
$ ite m 2 / @ D o c T y p e l= " C la s s D ia g ra m " and $ item 2 / @ D o cT yp e2 = "F ea tu re M o d e l"
and
(s tr in g ($ ite m 1/ E lem en t[2]/ F eatu re_ n am e) = s tr in g ($ item 2 / E lem en t[2]/ @ F ea tu re))
an d ($ ite m l/ E le m e n t ! l]/ @ D o cu m en t = $ item 2 / E lem en t[l]/ @ D o cu m en t)
an d (S ite m l/ E le m e n t ! 1]/C lass != S item 2/ E lem en t[1]/ C lass)
and
lo c a l:g e tP a r e n to fV a r ia n tC la s s e s (lo c a l :g e tC la s s I D ($ ite m l/ E le m e n t [l]/ C la s s / @ n a m e) ,lo c a l :g e tC la
ssID ($ ite m 2 / E le m e n t[l]/ C la ss/ @ n am e))

</Q uery>
< A ction>

< R e la t io n R u le ID = "R 6 3" T yp e= "d iffe ren t" T erm = "c la ss im p lem en ts fea tu re">
< E lem ent> { $ item 1/ E lem en t[2]/F eature_nam e}< /E lem en t>
< E lem en t> { $ item 2 / E]em en t[2]/ F ea tu re_ n am e) </Elem ent>
< Im p le m e n ts> { $ item l/ E le m e n t[l]/ C la ss)< / lm p le m e n ts>
< Im p lem en ts> {S item 2/ E lem en t! 1]/C lass }< /Im plem ents>
< V arian tO f> {lo ca l :g e tP a r e n tC la s s (lo c a l:g e tC la s s ID ($ ite m l/ E le m e n t ! 1]/C lass/@ nam e))}

</V arian tO f>
< /R elation>

</Action>
< /T raceR u le>

321

file:///c:/Direct_TraceRel.xmr)//Relation[@Type="implements
file:///c:/Direct_TraceRel.xml")//Relation[@Type="implements

Appendix C — Extended XQUERY Functions

C.l.getTransitioninState

declare function local:getTransitioninState() as item()*
{
for $itemF in
doc(£££)//UML:GraphElement.semanticModel/UML:UmllSemanticModelBri
dge/UML:UmllSemanticModelBridge.element/UML:Transition
return $itemF
} ;

C.2. getStateinState

declare function local:getStateinState($transition as node()) as
item()
{
for $itemG in doc(£££)//UML:SimpleState
where
$itemG/UML:StateVertex.incoming/UML:Transition/@xmi.idref =
$transition/@xmi.idref
return $itemG
} ;

C.3. getMessageinSeq

declare function local:getMessageinSeq() as item()*
{
for $itemA in
doc(£££)//UML:GraphElement.semanticModel/UML:UmllSemanticModelBri
dge/UML:UmllSemanticModelBridge.element/UML:Link
return $itemA
};

C.4 getObjectinSeq

C.4. getObjectinSeq

declare function local:getObjectinSeq($link as node()) as item()
{
for $itemB in doc(£££)//UML:Link
where $itemB/@xmi.id = $link/@xmi.idref
return
$itemB/UML:Link.connection/UML:LinkEnd/UML:LinkEnd.instance/UML:0
b ject
};

C.5. getClassID

declare function local:getClassname($name as xs:string) as
xs:string
{
for $itemB in doc (£ £ £) / / U M L :Class/0name
where $itemB = $name
return $itemB/../0xmi.id
};

C.6. getClassObjectinSeq

declare function local:getClassObjectinSeq($diagram as xs:string)
as item()
{
for $itemE in
doc(£££)//UML:Diagram/UML:GraphElement.contained/UML:GraphNode/UM
L:GraphElement.semanticModel/UML:UmllSemanticModelBridge/UML:Umll
SemanticModelBridge.element/UML:Class
where $ i t e m E / / § n a m e = $diagram
return $itemE
};

C.7. getParentFeature

declare function local:getParentFeature($child as xs:string) as
item()
{
for $itemA in doc(£££)//Relationship/Rel_feature

where
normalize-space($itemA)= normalize-space($child)
return

$itemA/../../Feature_name

};

323

APPENDIX C - EXTENDED XQUERYFUNCTIONS

C.8. getChildrenFeature

declare function local:getChildrenFeature($parent as xs:string)
as item()*
{
for $itemA in doc(£££)//Feature/Relationship/Rel_feature
where
normalize-space($itemA/../../Feature__name)= normalize-
space ($parent)
return
$itemA
};

C.9. getFeatureofSubsystem

declare function local:getFeatureofSubsystem($subsystem as
xs:string) as item()*
{
for $itemA in
doc(£££)//Feature_Model/Feature/Allocated_to_Subsystem
where
normalize-space($itemA)= normalize-space($subsystem)
return $itemA/$itemA/../Feature_name
} ;

C.10. getOperationinSeq

declare function local:getOperationinSeq() as item()*
{
for $itemA in
doc(£££)//UML:GraphElement.semanticModel/UML:UmllSemanticModelBri
dge/UML:UmllSemanticModelBridge.element/UML:Operation
return $itemA
} ;

C.ll. getOperationinModel

declare function local:getOperationinModel($operation as node())
as item()*
{
for $itemC in doc(£££)//UML:Classifier.feature/UML:Operation

where $itemC/@xmi.id = $operation/0xmi.idref
return $itemC
} ;

324

C. 12 getStateofOperationinState

C.12. getStateofOperationinState

declare function localrgetStateofOperationinState($operation as
node()) as item()
{
for $itemD in doc(£££)/ / U M L :SimpleState
where $itemD/@name = $operation/0name
return $itemD
} ;

C.13. getClassinClass

declare function local:getClassinClass($diagram as xs:string) as
item()*
{
for $itemE in
doc(A£1A£)//UML:Diagram/UML:GraphElement.contained/UML:GraphNode/
UML:GraphElement.semanticModel/UML:UmllSemanticModelBridge/UML:Urn
USemanticModelBridge.element/UML:Class
where
$ i t e m E / § n a m e = $diagram
return $itemE
} ;

C.14. getParentofVariantClasses

declare function local:getParentofVariantClasses($one as node(),
$two as node())as item()
{
for $iteml in
doc(A£2A£)//UML:Generalization/UML_Generalization.child,

$item2 in
doc(A£2A£)//UML:Generalization/UML_Generalization.child
where

where
($iteml/UML:Class/0xmi.idref = $one
and
$iteml/UML:Class/@xmi.idref = $two
and local:getParentClass($iteml/UML:Class/0xmi.idref) =
local:getParentClass($item2/UML:Class/0xmi.idref)
and local:getParentClass($iteml/UML:Class/0xmi.idref) != "" and
$iteml/UML:Class/0xmi.idref != $item2/UML:Class/0xmi.idref)
return local:getParentClass($iteml/UML:Class/0xmi.idref)

};

325

APPENDIX C - EXTENDED XQUERYFUNCTIONS

C.15. getParentofVariantFeatures

declare function local:getParentofVariantFeatures($one as node(),
$two as node())as item()
{
for $iteml in doc(A£2A£)//Feature,

Sitem2 in doc(A£2A£)//Feature
where (normalize-space($iteml/Feature_name) = normalize-
space($one)
and normalize-space($item2/Feature_name) = normalize-space($two)
and local:getParentFeature($iteml/Feature_name) =
local:getParentFeature($item2/Feature_name)
and local:getParentFeature($iteml/Feature_name) != ""
and normalize-space($iteml/Feature_name) != normalize-
space ($item2/Feature_name)
and $iteml/Existential = $item2/Existential
and ($iteml/Existential = "Optional" or $iteml/Existential =
"Alternative"))
return local:getParentFeature($iteml/Feature_name)
} ;

C.16. getParentClass

declare function local:getParentClass($child as xs:string) as
item()
{
for $itemA in
doc(A£1A£)//UML:Generalization/UML_Generalization.child

where
$itemA/UML:Class/0xmi.idref = $child
return

$itemA/../UML:Generalization.parent/UML:Class
} ;

326

Appendix D — Example Documents in

Mobile-Phone Systems

APPENDIX D - EXAMPLE DOCUMENTS IN MOBILE-PHONE SYSTEMS

D.l. Use Case — PM1

< ?xm l version= " l .0" encoding= "U T F-8"?>
< U se_C ase U seC aseID = " U C l" S ystem = " M o b ileP h o n e” P roduct_M em ber= "P M l"
xm lns:xsi= " http://w w w .w 3.o rg / 2001/ X M L Sch em a -in s tan ce"
xsi:noN am espaceSchem aL ocation= "Z :\w eb\X T raQ ue\U se_case.xsd">

<Title>
< V V G > S end in g < /V V G >
< A T 0> a< /A T 0>
<NN 1 >M essage</N N 1 >

</Title>
< D escrip tion>

< A T O > T he< /A T O xN N l> phone< /N N lxV B Z > is< /V B Z > < A JO > ab le< /A JO >
< T O O > to < / T O O xV V I> sen d < / V V IxA T O > a< / A T O xN N 1 >text</NN 1 >
<NN 1 >message</NN 1 > < S C > .< / S C x A T > T h e < / A T x N N 1 >user</NN 1 >
< V M > c a n < / V M x V V I> s p e c ify < / V V I x A T 1 > a n < / A T lx N N l> a d d re s s < / N N l>
< IO > o f< / IO x A T 1 >a</AT 1 x N N 1 >receiver</N N 1 x II> b y < / I I>
< V V G > s e le c t in g < / V V G x I I> fro m < / IIx A T 1 >a</AT 1 x N N 1 >list</N N 1 >
< IO > of< / IO xN N 2> co n tacts< / N N 2xS C > .< / SC >

</D escription>
< L eve l> P rim ary task</Level>
< P reconditions>

< A T > T h e< / A T x N N 1 >user</NN 1 > < V H Z > has< /V H Z xV H Z > already< /V H Z >
< V V N > se le c te d < / V V N x N N l> fu n ctio n < / N N lx IO > o f< / IO >
< V V G > sending< /V V G x A T 1 >a</AT 1 x N N 1 > lexl</N N l >
< N N l> m e ssa g e < / N N lx n > fro m < / Ilx A T > th e < / A T x JJ> m a in < / JJ>
<NN 1 >menu</NN 1 x S C > .< / S C >

</Preconditions>
< P ostconditions>

< A T > T h e< / A T x N N 1 >phone</NN 1 x V H Z > h a s < / V H Z x V V N > s e n t< / V VN >
< A T > th e < / A T x N N 1 >message</NN 1 x S C > .< / S C >

</Postconditions>
< P rim ary_acto r> The user </Prim ary_actor>
< Secondary_actors/>
< F lo w _ o f_ even ts>

<E vent>
< A T > T h e < / A T x N N l> sy s te m < / N N lx V V Z > sh o w s< / V V Z >
< A T 1 >an</AT 1 x N N 1 >editor</NN 1 > <IF>for</IF>
< V V G > w rit in g < / V V G x A T l>a</AT 1 x N N l >message</NN 1 >
<sc>.</sc>

</Event>
<E vent>

< A T > T h e< / A T x N N 1 >user</NN 1 x N N 1 >key-in</NN 1 >
< A T 1 >a</ATl x N N 1 >phone</NN 1 x N N 1 >number</NN 1 >
<IO>oi'</I O x A T 1 >a</AT 1 x N N 1 > recei ver</NN 1 >
< S C > .< / S C x R R > M o re o v e r< / R R x S C > ,< / S C x A T > th e < / A T >
<NN 1 >user</NN 1 > <V V I>select</V V I x A T 1 >a</AT 1 >
<NN l>phone</N N 1 x N N 1 >number</NN 1 ><IO>of</IO>
< A T 1 >a</ATl x N N 1 > recei ver</NN 1 ><II>by</II>
< V V G > selecting< /V V G x II> fro m < / II> < A T 1 >a</AT 1 >
<N N l>list</N N 1 > <IO >of< /IO xN N 2> contacts< /N N 2>

328

http://w

D. 1 Use Case - PM1

< SC > .< /SC > < V V O > N ote< /V V O > < A T > the< /A T xN N l> user< /N N l>
< V V I> s e n d < / V V I x A T > th e < / A T x N N 1 >text</NN 1 >
<NN 1 >message</NN 1 x II > to < / I Ix JJ> m u ltip le < / JJ>
< N N 2> receivers< /N N 2xII> b y< / II> < V V G > in sertin g< /V V G >
< JJ> m u ltip le < / JJx JJ> m o b ile < / JJx N N 1 >phone</NN 1 >
< N N 2> nu m b ers< / N N 2xSC > .< /SC >

</Event>
<E vent>

< A T > T h c < / A T x N N l> sy s te m < / N N lx V V D > d isp la y e d < / V V D >
< AT >the</AT x N N 1 >phone</NN 1 ><NN 1 >number</NN 1 >
<sc>.</sc>

</Event>
<E vent>

< A T >The</AT x N N 1 >user</NN 1 x V V I> enter</V VI>
< A T > th e < / A T x N N 1 >message</NN 1 ><SC>.</SC>
< R R > O th e rw ise < / R R x D D 1 >This</DD 1 x V BZ>is</VBZ>
< V V N > lirm ted < / V V N x II> u n d er< / lIx A T > th e< / A T >
< JJ> m a x im u m < / JJx N N l> size< / N N lxIO > of< / IO >
< V V G > s e n d in g < / V V G x A T > th e < / A T x N N 1 >text</NN 1 >
<NN I >message</NN I x S C > .< / S C >

</Event>
< E vent>

< A T > T h e < / A T x N N l> sy s te m < / N N lx V V D > d isp la y e d < / V V D >
< A T > th e < / A T x N N 1 >message</NN 1 ><SC>.</SC>
< V VO>Note</V V O x C S T > th a t < / C S T x A T > th e < / A T >
< N N 2 > e ve n ts< / N N 2 x V B R > a re < / V B R x X X > n o t< / X X >
< JJ> seq u en tia l< / JJx N N 2> p ro cesses< / N N 2x S C > .< / S C >

</Event>
<E vent>

< A T > T h e < / A T x N N 1 >user</NN 1 x V V Z > confirm s< /V V Z >
< V V G > se n d in g < / V V G x A T > th e < / A T x N N l> m e ssa g e< / N N l>
<sc>.</sc>

</Event>
<E vent>

< A T > T h e < / A T x N N 1 >system</NN 1 > < V V Z > estab lishes< /V V Z>
< A T > th e < / A T x N N l> co n n ectio n < / N N lx IF > fo r< / IF >
< V V G > se n d in g < / V V G x S C > .< / S C >

</Event>
<E vent>

< C S > If < / C S x A T > th e < / A T x N N 1 >connection</N N 1 >
< V B Z > is< / V B Z x R R > p ro p e rly < / R R x V V N > se t< / V V N >
< S C > ,< / S C x A T >the</AT x N N 1 > sy stem</NN 1 >
< V VZ > sends< /V V Z x A T >the</AT x N N 1 >message</NN 1 >
< S C > .< / S C x R R > O th e rw ise < / R R x S C > ,< / S C >
< C S > if< / C S x A T > th e < / A T x N N 1 > sy stem</NNl >
< V V Z > d is p la y s < / V V Z x A T 1 >an</AT l > < JJ> alert< /JJxII> to< /II>
< A T > th e < / A T x N N l> u se r< / N N lx IF > fo r< / IF >
< A P P G E > its< / A P P G E x N N 2> circu m sta n ces< / N N 2x S C > .< / S C >

</Event>

329

APPENDIX D - EXAMPLE DOCUMENTS IN MOBILE-PHONE SYSTEMS

<Event>

< C S > A fter< / C S> < V V N > co m ple ted < / V V N xA T > th e< / A T >
<NN 1 >sending</NN 1 > < S C > ,< / S C x A T >the</AT>
<NN 1 >system</NN 1 x V V Z > d isco n n ec ts< / V V Z x A T > th e< / A T >
<NN 1 >connection</N N 1 ><SC>.</SC>

</Evcnt>
<E vent>

< A T > T h e < / A T x N N 1 >phone</NN 1 > < V V Z > disp lays< /V V Z>
< A T > the< / A T xN N l> statu s< /N N 1 x IO > o f< / IO >
< V V G > se n d in g < / V V G x C C > a n d < / C C x V V Z > k e e p s< / V V Z >
< A T 1 >a</AT 1 x N N 1 >log</NN 1 ><IO>of</IO>
< V V G > se n d in g < / V V G x S C > .< / S C >

</Event>
< /F low _of_events>
< E xceptional_events/>
< Superordinate_use_case/>
< Subord inate_use_case/>

</Use_Case>

Figure D -1: Use case sending a message

330

D.l Use C ase-PM 1

< U se_C ase U seC aseID = "U C 2" System = " M ob ile Phone" P rod u ct_M em b er= " P M l "
xm lns:xsi= " http://www. w 3.o rg /2001/ X M L Sch em a-instan ce"
xsi:noN am espaceSchem aL ocation= "Z :\w eb\X T raQ ue\U se_case.xsd ’’>

<T itle>
< V V G > M aking< /V V G >
< A T 0> a< /A T 0>
<NN 1 >call</NN 1 >

</Title>
< D escrip tion>

< A T 0 > T h e < / A T 0 x N N 1 >phone</NN 1 > <V B Z >is< /V B Z >

<AJO >able</AJOxTO O >to</TO O > < V V I> m ake< /V V I>
< A T 0 > a < / A T 0 x N N 1 >call</NN 1 > < S C > .< / S C x A T 0> T h e< / A T 0>
<NN 1 >user</NN 1 > < V M 0 > c a n < / V M 0 x V V l>select< /V VI>
< A T 0 > a < / A T 0 x A J0 > c a llin g < / A J0 x N N 1 >phone</NN 1 >
<NN 1 >number</NN 1 > < P R P>from < /PR PxA T O > a< /A T O >
<NN 1 >list</NN 1 > < P R F > o f< / P R F x N N 1 >phone</NN 1 >
< N N 2> n u m b ers< / N N 2xD T Q > w h ich < / D T Q xV B B > are< / V B B >
< V V N > restored < / V V N xP R P > in < / P R P xA T O > the< / A T O >
< N N 0> data< / N N 0xN N 1 >collection</N N 1 ><C JC >or</C JC >
< V V B > en te r< / V V B x A T O > th e< / A T O x N N l> n u m b er< / N N l>
< P R P > via< / P R P x N N 1 >keypad</NN 1 x S C > .< / S C x C J S > A fter< /C JS>
< A T 0 > th e < / A T 0 x N N l>user</N N l x V V Z > confirm s< /V V Z >
< A T 0 > a < / A T 0 x N N 1 > calling< /N N lxA T O > the< /A T O >
<NN 1 >phone</NN 1 x V V Z> estab lishes< /V V Z x A T 0 > th e < / A T 0 >
<NN 1 >line</NN 1 x N N 1 >connection</N N 1 ><TOO>to</TOO>
< V V l> c re a te < / V V Ix A T O > a < / A T O x N N 1 >call</NN 1 >
< S C > .< / S C x C JS > I f< / C JS x R R > p ro p e rly < / R R x V D N > d o n e < / V D N >

< A T 0 > th e < / A T 0 x N N 1 >phone</NN 1 x V V Z > d ia ls < / V V Z >
< P R P > fo r< / P R P x A T O > a< / A T O x N N 1 >response</NN 1 >
< P R P > fro m < / P R P xA T O > th e< / A T O xN N 1 > recei ver</NN 1 >
< S C > .< / SC xA V O > O th erw ise< / A V O xA T O > the< / A T O >
<NN 1 >phone</NN 1 > < V V Z > in form s< /V V Z x A T 0 > th e < / A T 0 >
<NN 1 >user</NN 1 x A T 0 > a < / A T 0 x N N 1 >problem </NN 1 >
< P R P > o n< / P R P xA T O > th e< /A T O xN N 1 >connection</N N 1 >
<PRF>of</PRF> < V V G >dialling< /V V G x S C > .< / S C >
<PRP>In</PRP> < A T 0 > th e < / A T 0 x N N 1 >case</NN 1 >
< C JT > th at< / C JT xA T O > th e< /A T O xN N l> d estin atio n < / N N l>
<NN 1 >phone</NN 1 > < V B Z > is < / V B Z x V V N > engaged< /V VN >
< C JC > o r< / C JC x X X 0 > n o t< / X X 0 x A J0 > a b le < / A J0 >
<TOO>to</TOO> < V V I> re a c h < / V V Ix A T 0 > th e < / A T 0 >
<NN 1 >signal</NN 1 > < A T 0 > th e < / A T 0 x N N 1 >phone</NN 1 >
< N N 2 > re sp o n se s< / N N 2 x A T 0 > a < / A T 0 x N N 1 >voice</N N 1 >
<NN 1 >message</NN 1 ><PRP>to</PRP>< A T 0>the</A T 0>
<NN 1 >user</NN 1 > < P R P > for< / P R P xD P S> its< /D P S>
< N N 2> circu m stan ces< /N N 2xSC > .< / SC >

</D escription>
< L eve l> P rim ary task</Level>
< Preconditions>

< A T > T h e < / A T x N N 1 >user</NN 1 ><VH Z>has</VH Z>
< V V N > se le c te d < / V V N x N N l> fu n c tio n < / N N lx lO > o f< / IO >
< V V G >m aking</V V G x A T 1 >a</AT 1 x N N 1 >call</NN 1 >
< II> fro m < / IIx A T > th e< / A T x JJ> m ain < / J J x N N 1 >menu</NN 1 >

< SC > .< / S C x / P recon d ition s> .. .
< Postconditions>

< A T > T h e < / A T x N N l> p h o n e < / N N lx V B Z > is< / V B Z x JJ> re a d y < / JJ>
< IF > fo r< / IF x M D > n ex t< / M D x N N 2> a ctio n s< / N N 2x S C > .< / S C >

</Postconditions>
< P rim ary_acto r> T he user< /P rim ary_actor> .. .

3 3 1

http://www

APPENDIX D - EXAMPLE DOCUMENTS IN MOBILE-PHONE SYSTEMS

^ S e c o n d a ry _actors> -< /Secondary_actors>
< F lo w _ o f_ ev en ts>

<Trigger/>
<E vent> <AT>The</AT> <NN 1 >phone</NN 1 ><VB Z >is< /V B Z >

< JJ> ready< /JJ> < T O > to< /T O xV V I> m ake< /V V I>
< A T 1 >a</AT 1 ><N N l>call</N N 1 ><SC>.</SC>

</Event>
<Event>

< AT >T he</AT ><NN 1 >user</NN 1 x V V Z> selects< /V V Z>
< A T 1 >a</AT 1 x N N 1 >phone</NN 1 x N N 1 >number</NN 1 >
< II> fro m < / IIx A T 1 >a</AT 1 x N N 1 >list</NN 1 >

< IO > of< / IO xN N 2> con tacts< / N N 2xC C > or< / C C >
< V V Z> enters</V V Z x A T 1 >a</AT 1 x N N I >phone</NN 1>
<NN 1 >number</NN 1 x l l> v ia < / IIx N N 1 >keypad</NN 1 >
<sc>.</sc>

</Event>
<Event>

< A T >The</ AT > <NN 1 >user</NN 1 > < V V Z > confirm s< /V V Z >
< V V G > m aki ng</V V G x A T 1 >a</AT 1 ><NN 1 >call</NN 1 >
<sc>.</sc>

</Event>
<Event>

< A T > T h e< / A T x N N 1 >system</NN 1 x V V Z > e s ta b lis h e s < / V V Z >
< A T > th e< / A T x N N 1 >line</NN 1 x N N 1 >connection</N N 1>
<sc>.</sc>

</Event>
< E venl>

< C S > If'< / C S x A T > th e< / A T x N N l> co n n ec tio n < / N N l>
< V B Z > is< / V B Z x R R > p ro p e rly < / R R x V V N > se t< / V V N >
< S C > ,< / S C x A T > th e < / A T x N N 1 >phone</NN 1 >
< V V Z > d ia ls < / V V Z x A T >the</AT x N N 1 >number</NN 1 >
< II> to < / IIx A T > th e < / A T x N N l>destination</N N 1 >
< S C > .< / S C x R R > O th e rw ise < / R R x A T > th e < / A T >
< N N l> p h o n e < / N N lx V V Z > in fo rm s< / V V Z x A T > th e < / A T >
<NN 1 >user</NN 1 xIF > for< /IF > < A T > the< /A T >
< JJ> ex istin g < / JJx N N 2> p ro b lem s< / N N 2x S C > .< / S C >

</Event>
<Event>

< C S > If< / C S x A T > th e < / A T x N N 1 >destination</N N 1 >
<NN 1 >phone</NN 1 x V B Z > is < / V B Z x JJ> e n g a g in g < / JJ>
< C C > o r< / C C x X X > n o t< / X X x JK > a b le < / JK >
< T O > to < / T O x V V I> re a c h < / V V Ix S C > ,< / S C >
< A T > th e < / A T x N N 1 >phone</NNl x V V Z > in fo rm s < / V V Z>
< AT >the</AT x N N 2>users</NN 2><IF>for</I F>

< A P P G E > its< / A P P G E x N N 2> circu n istan ces< / N N 2x S C > .< / S C >
</Event>
<Event>

< A T > T h e < / A T x N N l> u se r< / N N lx V V Z > c o n firm s< / V V Z >
< V V G > h a n g in g < / V V G x R P > u p < / R P x A T > th e< / A T >
<NN 1 >call</NN 1 x S C > .< / S C >

</Event>
<Event>

< A T > T h e< / A T xN N l> p h on e< / N N l> < V V Z > disconnects< /V V Z >
< A T > th e < / A T x N N 1 >connection</N N 1 x S C > .< / S C >

</Event>

332

DA Use C ase-PM l

<E vent>
<AT>The</AT><N N 1 >phone</NN 1 > < V V Z > show s< /V V Z >
<NN 1 >usage</NN 1 x I O > o f < / I O x V V G > m akm g< /V V G >
< A T 1 >a</AT 1 x N N 1 >call</N N l ><II>to</II>
< A T > th e < / A T x N N 1 >user</NN 1 ><SC>.</SC>

</Event>
<E vent>

< A T > T h e < / A T x N N 1 >phone</NN 1 > < V V Z > keeps< /V V Z >
< A T 1 >a</AT l x N N l >log</NN l x N N l > fi le</NN 1 >
< lO > o f< / I O x V V G > m a k in g < / V V G x A T l >a</ATl >
<NN 1 >call</NN 1 > < II> a t< / IIx A T >the</AT>
<NN 1 >moment</NN 1 > < II> in< /IIxA T > the< /A T >
< N N > data< /N N xN N 1 >storage</NN 1 ><SC>.</SC>

</Event>
< /F low _of_events>
< E xceptional_events/>
< Superordinate_use_case/>
<S ubordi n ate_u se_case/>

</U se_Case>

Figure D- 2: Use case making a cali

333

A P P E N D IX D - E X A M P L E D O C U M E N T S IN M O B IL E -P H O N E S Y S T E M S

< U se_C ase U seC aseID = "U C 3" System = " M ob ile Phone" P roduct_M em ber= "P M l "
xm lns:xsi= " http://www. w 3.o rg /2001/ X M L Sch em a-instan ce"
xsi:noN am espaceSchem aL ocation= "Z :\w eb\X T raQ ue\U se_case.xsd">

<Title>
< V V G > T aking < / V V G >
< A T 0> a< /A T 0>
<NN 1 >picture</NN 1 >

</Title>
< D escrip tion>

< A T 0 > T h e < / A T 0 x N N 1 >phone</NN 1 >< VB Z> is</V B Z>
< V V N > in teg ra ted < /V V N xP R P > w ith < / P R P xA T O > a< /A T O >
< A JO > dig ita l< / A JO xN N 1 >camera</NN 1 ><SC>.</SC>
< P N P > lt< / P N P xV V Z > en ab les< / V V Z xA T O > a< / A T O >
<NN 1 >user</NN 1 > <V V G > ta k in g < / V V G x C JC > a n d < / C JC >
< V V G > resto rin g < / V V G x A T O > a< / A T O x N N l> p ic tu re< / N N l>
< P R P > in < / P R P xA T O > th e< / A T O xN N 1 >phone</NN 1 >
< S C > .< / S C x A T 0 > T h e < / A T 0 x N N 1 >photo</NN 1 >
<NN 1 >file</NN 1 > <V B Z >is< /V B Z xN PO > JPG < /N PO >
<NN1 > form at</N N l > <SC >.< /SC xA T O >T he< /A T O >
<N N l>photo</N N 1 ><VBZ>is</V BZ> < A V 0> p o ssib ly< / A V 0>
< V V N > ta k en < / V V N x C JS > a s< / C JS > <CRD >one</CRD >
< P R F > of< /P R F xC R D > th ree< / C R D xA JO > op tiona l< / A JO >
< N N 2 > ty p e s< / N N 2 x A V 0 > i.e .< / A V 0 x N N 1 >general</NN 1 >
<NN 1 >night</NN 1 > < C JC > an d < / C JC x N N 1 >portrait</NN 1 >
< D T Q > w h ich < / D T Q x V B B > are< / V B B x A JO > d iffe ren t< / A JO >
< A J0 > s iz e d < / A J0 x S C > .< / S C x A V 0 > A ls o < / A V 0 > < A T 0 > th e < / A T 0 >
< N N 2> p h o tos< / N N 2x C JT > th a t< / C JT x V B B > a re< / V B B >
< V V N > k e p t< / V V N x P R P > i n < / P R P xA T O > th e< / A T ()xN N 1 >phone</NN 1 >
< V M O > can < / V M O x V B I> b e< / V B Ix V V N > view ed < / V V N >
< C JC > a n d < / C JC x V V N > d e le ted < / V V N x A V O > a fte rw a rd s< / A V O >
<SC>.</SC>

</D escription>
< L eve l> P rim ary task</Level>
< Preconditions> <AT>The</AT>

<NN 1 >user</NN 1 x V H Z > h a s < / V H Z x V V N > se le c te d < / V V N >
<NN 1 >function</NN 1 > < IO > o f< / IO x V V G > tak i ng</VVG >
< A T 1 >a</AT 1 x N N 1 >photo</NN 1 > < II> from < /IIxA T > the< /A T >
< JJ> m ain < / JJxN N l> m enu < / N N l x S C > .< / S C x / P re c o n d ilio n s >

< P ostconditions>
< A T > T h e < / A T x N N 1 >phone</NN 1 x V V D > t o o k < / V V D x A T 1 >a</AT 1 >
<NN 1 >photo</NN 1 > < C C > a n d < / C C x V V D > k e p t< / V V D x P P H 1 >it</PPH ! >
<il>as</II><AT 1 >a</AT 1 > <JJ>JPG -form atted< /JJ> <NN 1 >fiie</NN 1 >
< II> in < / IIx A P P G E > its< / A P P G E x JJ> te m p o ra ry < / JJx N N l> m e m o ry < / N N l>
<NN 1 >storage</NN 1 > < B C L > in < / B C L x B C L > o rd er< / B C L x T O > to < / T O >
< V B I> b e < / V B Ix V V N > resto red < / V V N x A T > th e< / A T x N N > d a ta < / N N >

< N N l> c o lle c tio n < / N N lx R R R > la te r< / R R R x R P > o n < / R P x S C > .< / S C >
< RT >Then</RT>< A T > T h e< / A T x N N 1 >phone</NN 1 x V BZ>is</VBZ>
< JJ> re a d y < / JJx IF > fo r< / IF x V V G > c a p tu rin g < / V V G x M D > n e x t< / M D >

< N N 2> sh ots< / N N 2x S C > .< / S C x / P o stcon d ition s>
< P rim ary_acto r> T he user</Prim ary_actor>
< S econd ary_acto rs> -< / Secon dary_aclo rs>
< F lo w _ o f_ ev en ts>

<Trigger/>
< E v e n tx A T > T h e < / A T x N N 1 > syste m < / N N lx V V Z > sh o w s< / V V Z >
< A T 1 >a</AT 1 x N N 1 >list</NNl > < IO > of< /IO xJJ> optionaI< /JJ>
< N N 2> typ es< / N N 2x S C > .< / S C x N N 2> T yp es< / N N 2x IF > fo r< / IF > .. .

334

http://www

D .l U se C a s e - P M 1

< V V G > tak i ng</V V G > < A T 1 >a</AT 1 x N N 1 >photo</NN 1 > <R E X > i ,e.</REX>
<NN 1 >general</NN 1 ><NNT I >night</NNT 1 ><CC>and</CC>
<NN 1 >portrait</NN 1 > < S C > .< / SC x/ E ven t>

<E vent>
< A T > T h e < / A T x N N 1 >user</NN 1 > < V V Z > selects< /V V Z >
< M C l> o n e < / M C lx IO > o r< / IO x JJ> o p tio n a l< / JJx N N 2 > ty p e s< / N N 2 >
< S C > .< / S C x N N 2 > T y p c s< / N N 2 x IO > o f< / [O x V V G > ta k in g < / V V G >
< A T 1 >a</AT 1 x N N 1 >photo</NN 1 ><SC>.</SC>

</Event>
<E vent>

< A T >The</AT x N N 1 >system </N N l x V V Z > s h o w s < / V V Z x A T > th e < / A T >
< N N l> s c e n a rio < / N N lx lI> o n < / I[x A T > th e < / A T x N N l> sc re e n < / N N l>
<sc>.</sc>

</Event>
< E venl>

< A T >The</AT x N N 1 >user</NN 1 > < N N 2> clicks< / N N 2xA T > th e< / A T >
<NN 1 >button</NN 1 > < II> o n < / IIx A T > th e < / A T x N N 1 >phone</NN 1 >
< T O > to < / T O x V V I> c a p tu re < / V V Ix A T l >a</A Tl x N N 1 >shot</N N l >
<SC>.</SC>

</Event>
<E vent>

< A T > T h e < / A T x N N 1 > sy stem</NN 1 > < V V Z > d isp lay s</V V Z>
< A T > th e < / A T x N N 1 >shot</N N 1 x V VN >done</V V N x I I>at</II>
< A T > th e < / A T x N N 1 >moment</NN 1 x S C > .< / S C x / E v e n t>

<E vent>
< A T > T h e < / A T x N N 1 > sy stem</NN 1 x V V Z > p o p s < / V V Z >
< R P > u p < / R P x A T 1 >a</AT 1 x N N 1 >request</NN 1 ><IO>of</IO>
< V V G > re s to r in g < / V V G x A T > tlie < / A T x N N 1 >shot</NN 1 x II> as< / II>
< A T 1 >a</AT 1 x N N 1 >photo</NN 1 > < II> in< /IIxA T > lhe< /A T >
<NN 1 >phone</NN 1 ><SC>.</SC>

</Evcnt>
<E vent>

< C S > If< / C S x A T > th e < / A T x N N 1 > u s e r< / N N lx V V Z > w a n ts< / V V Z >
<T 0>to</T O >< V V I>keep</V VI>< A T >the</AT x N N 1 >shot</NN 1>
< S C > .< / S C x A T > th e < / A T x N N 1 >system</NN 1 > < V V Z > restores< /V V Z >
<AT >the</AT x N N 1 >photo</NN 1 > < II> as< / IIx A T 1 >a</AT 1 >
<NN 1 >file</NN 1 x II> in < / IIx A T > th e < / A T x N N > d a ta < / N N >
<NN 1 >collection</N N 1 ><SC>.</SC>

</Event>
<E vent>

< A T > T h e < / A T x N N l> sy s te m < / N N lx V V Z > sh o w s< / V V Z x A T > lh e < / A T >

<NN 1 >scenario</N N 1 > < II> o n < / IIx A T > th e < / A T x N N 1 >screen</NN 1 >
< T O > to < / T O x V B I> b e < / V B Ix JJ> re a d y < / JJx IF > fo r< / IF x M D > n e x t< / M D >

< N N 2> snapshots< /N N 2xSC > .< /SC >
</Event>
< /F low _of_events>
< E xceptional_events/>
< S u p e ro rd in a te _ u se_ c a se x / S u p e ro rd in a te_ u se _ c a se >
< S u b ord in a te _ u se _ c a se x / S u b o rd in a te _ u se _ c a se >

</U se_Case>

Figure D- 3: Use case taking a picture

335

A P P E N D IX D - E X A M P L E D O C U M E N T S IN M O B IL E -P H O N E S Y S T E M S

< U se_C ase U seC aseID = "U C 4" System = " M ob ile Phone" Product_M em ber= "P M I "
xm lns:xsi= " http://www. w 3 .o rg /2001/ X M L Sch em a-instan ce"
xsi:noN am espaceSchem aL ocation= "Z :\w eb\X T raQ ue\U se_case.xsd">

<Title>
<NN 1 >Sending</NN 1 >
< V V Z > em ails< /V V Z >

</Title>
< D escrip tion>

< A T 0> T he< /A T 0> <NN 1 >user</NN I > < V B Z > is< / V B Z x A J0 > a b le < / A J0 >
<TO O >to</T O O > < VV l>send< /VV IxN N 2>em ails</N N 2>
< P R P > w ith < / P R P xN N 1 >attachment</NN 1 ><PRP>via</PRP>
< N N l> n e tw o rk < / N N lx N N 2 > p ro to c o ls< / N N 2 x A V 0 > e .g .< / A V 0 >
< N P O > SM T P < /N P O xU N C > P O P 3< /U N C xU N C > IM A P 4< /U N C >
< SC > .< / SC xA T O > T h e< / A T O xN N l> user< / N N 1 xV M O > can< / V M O >
< V V I> sp e c ify < / V V Ix A T O > th e< / A T O x N N 1 >address(s)</NN 1 >
< P R F > of< /P R F xN N 2> rec ip ien t(s)< / N N 2xP R P > b y< / P R P >
< V V G > se lec tin g < / V V G x P R P > fro m < / P R P x A T O > a< / A T O >
<NN 1 >list</NN 1 x P R F > o f< / P R F x N N 2> co n ta cts< / N N 2>
< D T Q > w h ic h < / D T Q x V B B > a re < / V B B x V V N > re sto re d < / V V N >
< PR P > in< /P R P xA T O > the< /A T O xN N Û > data< /N N O xN N 1 >collection</N N 1 >
< P R F > o f< / P R F xA T O > th e< / A T O xN N 1 >phone</NN 1 ><CJC>or</CJC>
< V V B > e n te r< / V V B x P R P > via</PRP><NN 1 >keypad</NN 1 >
< S C > .< / S C x A T O > T h e< / A T O x N N l> u ser< / N N lx V M O > can < / V M O >
< V V I> sen d < / V V lx N N 2> em ails< / N N 2x P R P > to < / P R P > < A J0> m u ltip le< / A J0>
< N N 2> rece ivers< / N N 2xP R P > in < / P R P xC R D > o n e< / C R D >
< N N l> tim e < / N N lx S C > .< / S C x V V G > S e n d in g < / V V G x V B Z > is < / V B Z >
< V V N > lim ited < / V V N xP R P > u nd er< /P R P xA T O > the< / A T O >
< A J0 > m a x im u m < / A J0 x N N 1 >size</NN 1 > < S C > .< / S C x A T 0> T h e< / A T 0>
<NN 1 >user</N N l x V M 0 > c a n < / V M 0 x V V I> atta ch < / V V lx D T 0> som e< / D T 0>
< N N 2> files< / N N 2xP R F > o f< / P R F xN N 2> n o tes< / N N 2xN N 0> tx t< / N N 0>
< N N 2> p h o tos< / N N 2xN N 0> jp g < / N N 0xC JC > a n d < / C JC xN N 2> im ag es< / N N 2>
< N N 0> jp g < / N N 0x P R P > in < / P R P x V V G > sen d in g < / V V G x N N 2> em ails< / N N 2>
< S C > .< / S C x A T 0 > T h e < / A T 0 x N N 1 >phone</NN 1 x V V Z > keeps< /V V Z >
< A T 0 > a < / A T 0 x N N 1 >log</NN 1 ><NN 1 >file</NN 1 ><PRF>of</PRF>
< V V G > se n d in g < / V V G x A T 0 > a n < / A T 0 x N N l> e m a il< / N N l>
< P R P > in < / P R P xA T O > th e< / A T O xN N l> sto rag e< / N N lxA T O > th e< / A T O >
<NN 1 >user</NN 1 > < V M 0 > c a n < / V M 0 x V V l> v ie w</V V 1>
< C JC > a n d < / C JC x V V I> d e le te < / V V I x A T 0 > th e < / A T 0 x N N 1 >log</NN 1 >

< N N 2 > file s< / N N 2 x A V 0 > la te r< / A V 0 x A V P > o n < / A V P > < S C > .< / S C >
</D escription>
< L eve l> P rim ary task</Level>
< P recondilions>

< A T > th e < / A T x N N l> u se r< / N N lx V H Z > h a s< / V H Z x R R > a lre a d y < / R R >
< V V N > s e le c te d < / V V N x A T l>a</AT l x N N 1 >function</NN 1 >
< I O > o f< / I O x V V G > s e n d in g < / V V G x A T 1 > a n < / A T lx N N 1 >email</NN 1 >
< II> fro m < / IIx A T > th e < / A T x JJ> n ia i n < / JJx N N 1 >menu</NN 1 >

</Preconditions>
< Postconditions>

< A T > th e < / A T x V H Z > p h o n e < / V H Z x V H Z > h a s< / V H Z x V V N > se n t< / V V N >
< N N l> em a il< / N N lx II> to < / IIx A T > th e< / A T x N N 2> rece ive r(s)< / N N 2>
< C C > a n d < / C C x V B N > b e en < / V B N x V V G > sh o w in g < / V V G >
< A T >the</AT x N N 1 >response</NN 1 x l [>to< AT >the</AT >
<NN 1 >user</NN 1 >

</Postconditions>
< P rim ary_acto r> T he user</Prim ary_actor>
< Second ary_acto rs> -< / Secon dary_acto rs>
< F lo w _ o f_ ev en ts>

<Trigger/>
<E vent> < A T > th e < / A T x N N l> sy s te m < / N N lx V V Z > sh o w s< / V V Z >

< A T 1 >an</AT 1 x N N 1 >editor</NN 1 > <V V N > com posed</V VN >
<IO>of</IO>< A T 1 >a</AT 1 ><NN 1 >text</NN 1 ><NN 1 >box</NN 1 >
< IF > fo r< / IF x V V G > sp e c ify in g < / V V G x A T > th e< / A T >
<NN1 >em ail</N N l x N N 1 >address(s)</NN 1 > ...

336

http://www

DA Use Case-PM I

< IO > of< / IO x N N 2> rece ive r(s)< / N N 2x C C > a n d < / C C >
< A T 1 >a</AT 1X JJ>blank</J J x N N 1 >note</NN 1 >
< I F > fo r< / I F x V V G > w rit in g < / V V G x A T l > a</A Tl >
<NN 1 >message</NN 1 >

</Event>
<E vent>

< A T >The</AT x N N 1 >user</NN 1 x V V Z > in s e r ts < / V V Z >
< A T 1 >an</AT 1 x N N l >email</NN 1 x N N 1 > address(s)</N N 1 >
< IO > of< / IO xN N 2> rece iver(s)< /N N 2xII> b y< /II>
< V V G > s e le c t in g < / V V G x II > fro m < / I Ix A T 1 >a</AT 1 >
<NN 1 >list</NN 1 x IO > o f< / IO x N N 2 > c o n ta c ts< / N N 2 >
< V V G > re sto r in g < / V V G x II> in < / IIx A T > th e< / A T >
< N N > data< /N N xN N 1 >collection</N N 1 X lO > o f< / IO >
< A T > th e < / A T x N N 1 >phone</NN 1 ><CC>or</CC>
< V V G > e n te rin g < / V V G x II > v ia < / n x N N l> k e y p a d < / N N l>
< V V 0>N ote</V V O x C S T > th a t< / C S T x A T >the</AT >
<NN1 >user</NN 1 > < V M > ca n < / V M x V V I> sen d < / V V I>
< A T > th e< / A T x N N l> em a il< / N N lx II> to < / II>
< JJ> m u ltip le< / JJx N N 2> rece ive rs< / N N 2x II> b y< / II>
< V V G > se p a ra tin g < / V V G x A T > th e < / A T x N N l> e m a il< / N N l>
< N N 2 > a d d re sse s< / N N 2 x lW > w ith < / lW x F U > * < / F U x S C > .< / S C >

</Event>
<E vent>

< A T > T h e< / A T x N N 1 >user</NN 1 > <V M > can</V M >
< VV I> enter< /V V I x A T > th e < / A T x N N l >message</NN 1 >

</Event>
<E vent>

< A T > T h e < / A T x N N 1 >user</NN 1 > <V M > m ay< /V M >
< V V I> a tta c h < / V V I x A T > th e < / A T x N N 1 >em ail</N N l>
< IW > w ith < / IW x D D > an y< / D D x N N 2> file s< / N N 2>
< IO > of< /IO xN N 2> notes< /N N 2xN N U > txt< /N N U >
< N N 2> ph otos< / N N 2xN N U > jp g< /N N U xC C > and < / C C >
< N N 2> im ag es< / N N 2xN N U > jp g < / N N U xC ST > th at< / C ST >
< V B R > a re < / V B R x JJ> a v a ila b le < / JJx II> in < / lI>
<AT>the</AT x N N 1 >phone</N N 1 ><R R >O theiw ise< /R R >
<D D 1 >this</DD 1 > < V B Z > is< / V B Z x V V N > lim ited < / V V N >
< II> u n d er< / IIx A T > th e< / A T x JJ> m a x im u m < / JJ>
<NN 1 >size</NN 1 x IO > o f< / I O x V V G > s e n d in g < / V V G >
< N N 2> em a ils< / N N 2x V V 0>N ote</V V O x C S T > th a t< / C S T >
< AT >the</AT x N N 1 >event</NN 1 x l 0> of</IO >
< M C > 2 < / M C x M C > 3 < / M C x C C > a n d < / C C x M C > 4 < / M C >
< V B R > a re < / V B R x X X > n o t< / X X x JJ> se q u e n tia l< / JJ>
< N N 2> processes< /N N 2x/E vent>

<E vent>
< A T > T h e < / A T x N N 1 >user</NN 1 x V V Z > con firm s< /VV Z >
< V V G > s e n d in g < / V V G x A T > th e < / A T x N N l >email</NN 1 >

</Event>
<E vent>

< A T > T h e < / A T x N N 1 >phone</NN 1 > < V V Z > estab]ishes< /V V Z >
< A T >the</AT x N N 1 >connection</N N 1 ><IF>for</IF>
<NN 1 >email</NN 1 x V V G > sendi ng.</VV G >

</Event>
<E vent>

< C S > if< / C S x A T > th e < / A T x N N 1 > connection< /N N l>
< V B Z > is< / V B Z x R R > p ro p erly< / R R > <VV N >Set< /VV N >
<AT>the</AT x N N 1 >phone</NN 1 x V V Z > sends< /V V Z >
< A T > th e < / A T x N N 1 >email</N N 1 x I I > v ia < / 0 >
< A T > th e< / A T xN N l> n etw o rk < / N N 1 ><N N 2>protocols</N N 2>
< R R > O th e rw ise < / R R x C S > If< / C S x A T > th e < / A T >
<NN 1 >phone</NN 1 x V V Z > in form s</V V Z x A T >the</AT>
< N N 2> u sers< / N N 2xIF > fo r< / IF xA P P G E > its< / A P P G E >
<-NN?.'>rirriimstanrp.s<'/NN2>

337

APPENDIX D - EXAMPLE DOCUMENTS IN MOBILE-PHONE SYSTEMS

</Event>
<Event>

< C S> A fter< / C SxV V N > com p Ieted < /V V N > < A T > the< / A T >
< V V G > s e n d in g < / V V G x A T > th e < / A T x N N 1 >email</NN 1 >
< A T > th e < / A T x N N 1 >phone</NN 1 x V V Z > d isc o n n e c ts< / V V Z >
< A T > th e < / A T x N N 1 >connection</N N 1 >

</Event>
<Event>

< A T > T h e < / A T x N N 1 >phone</NN 1 >< V V Z > sho ws</V V Z>
< A T > th e< / A T x N N l> sta tu s< / N N lx IO > o f< / IO >
< V V G > sending< /V V G>< A T > th e < / A T x N N 1 >email</NN 1 >
<RT>then</RT x V V Z > k e e p s < / V V Z x A T 1 >a</AT 1 >
<NN 1 >log</N N 1 x N N 1 >fi le</NN 1 ><IO>of</IO>

< V V G > se n d in g < / V V G x A T > th e < / A T x N N]> em a il< / N N l>
< n > a t< / I Ix A T > th e < / A T x N N 1 >moment</NN 1 xII> in < / II>
< A T > th e< / A T x N N > d a ta< / N N x N N 1 >storage</NN 1 >

</Event>
< /F low _of_events>
< E xceptional_events/>
< S u p e ro rd in a te _ u se_ c a se x / S u p e ro rd in a te_ u se _ c a se >
< S u b ord in a te _ u se _ c a se x / S u b o rd in a te _ u se _ c a se >

</U se_Case>

Figure D- 4: Use case sending emails

338

D.2. Class Diagram - PMI

Data

-itemTypelD:int
-itemlndex int
-numStoredint
-itemType:Strmg

♦displayOataltem:void
•deleteDataltem void
♦edltDataltemvoid
♦getDataltemvoid
♦ newDataltemvoid
• saveDalaltemvoid

K

Com act Profile

-maximumProfileltem:int

•edito alaltem:void
•dlsplayOataltem void

-voice SoundFormat

♦edltDataltemvoid
♦sendDataltem void
♦displayDataltemvoid

-emailMessage.mt
-emailVoiceSoundFormat
-emailPictureint

♦edltDataltemvoid
♦sendDataltemvoid
♦displayDataltemvoid

-textMessage:byte

•sendDataltemvoid
•displayDataltemvoid
•edltDataltemvoid

Image knageFoimat

-imageTyperlmageFormat -formats ize byte

♦sendDataltemvoid
-formatName String

♦editDataltemvoid
♦displayDataltemvoid

OataCoSection

♦getOataltemvoid
♦ showListData:void
♦newOatattem void

-lastAction String
-time float
-powerfloat

♦selectSendMethodvoid
•sendDatavoid
•operateToolApplicatlonvoid
♦dispiayData void
•dialCall void
♦setOatavoid
♦setFunctionvoid
♦operateNetwo devoid
♦acknowledge void
♦disconnectvoid

-formats ize.byte
-formatNameString ♦connectvoid

•disconnectvoid
♦transie rData void
♦searchAPairvoid

•sendDatavoid
♦ acknowledgevoid ♦receiveCall:void

•endCalIvoid
♦ establishCalIvoid
♦ divertCall:void

♦disconnectvoid
•searchAPairvoid
♦connectvoid
♦transfert)ata void

♦transferData void
♦searchAPairvoid
♦connectvoid
♦disconnectvoid

Keypadlnterface Keypad

*keyin:void ♦ selectOptionvoid
♦showListSendMethodvoid
♦showListOpbonvoid
♦selectSendvoid
♦ selectSendMethodvoid
♦ setDatavoid

Interface

♦setüpvold
♦synchronise void
♦disconnectvoid

♦takePhoto void
♦displayAreavoid
♦savePhoto.void
♦displayPhotovoid

Figure D- 5: A class diagram of product member PM1

APPENDIX D - EXAMPLE DOCUMENTS IN MOBILE-PHONE SYSTEMS

D.3. Sequence Diagram - PMI

Figure D- 6: A sequence diagram Making a call

340

D.3 Sequence Diagram - PM 1

Figure D- 7: A sequence diagram Sending data

341

APPENDIX D - EXAMPLE DOCUMENTS IN MOBILE-PHONE SYSTEMS

Figure D- 8: A sequence diagram Taking a photo

342

D.3 Sequence Diagram - PM1

Figure D- 9: A sequence diagram Transfering data

343

D.4. Statechart Diagram — PM1

Figure D- 10: A statechart diagram of product member PM1

BIBLIOGRAPHY

3SL. CRADLE, from http://3sl.co.uk

Alexander, 1. 2003. SemiAutomatic Tracing of Requirement Versions to Use Cases
- Experience and Challenges, the 2nd International Workshop on Traceability in
Emerging Forms o f Software Engineering (TEFSE 2003), Montreal, Canada.

America, P., H. Obbink., J. Muller, and R. Van Ommering. 2000. COPA: A
Component-Oriented Platform Architecting Method for Families of
Software Intensive Electronic Products. Tutorial in: The First Conference on
Software Product Une Engineering (SPEC1), Denver, Colorado.

Anderson, K. M., S. A. Sherba, and W. V. Lepthien. 2002. Towards Large-Scale
Information Integration. Pages 524-535. the 24th International Conference on
Software Engineering, Orlando, FL, USA.

Antoniol, G., G. Canfora, G. Casazza, and A. De Lucia. 2000. Information Retrieval
Models for Recovering Traceability Pages 40-51. IEEE International
Conference on Software Maintenance (ICSM'00), San Jose, CA.

Antoniol, G., G. Canfora, G. Casazza, A. D. Lucia, and E. Merlo. 2002. Recovering
Traceability Links between Code and Documentation. IEEE Transactions on
Software Engineering 28: 970-983.

Arango, G., and R. Prieto-Diaz. 1991. Domain Analysis Concepts and Reseach
Directions. Domain Analysis and Software Systems Modelings-. 9-31.

Ardis, M. A., and D. M. Weiss. 1997. Defining Families: The Commonality Analysis.
Pages 649-650. the 19th International Conference on Software Engineering. ACM
Press New York, NY, USA, Boston, Massachusetts, United States.

ArgoUML. from http://argouml.tigris.org/project.html.

ASAD AL. from selab.postech.ac.kr/form/.

Atkinson, C , J. Bayer, C. Bunse, E. Kamsties, O. I.aitenberger, R. Laqua, D.
Muthig, B. Paech, J. Wust, and J. Zettel. 2002. Component-based Product Une
Engineering with UME. Addison-Wesley.

Atkinson, C., J. Bayer, and D. Muthig. 2000. Component-based product line
development: The KobrA approach. Pages 289-310. the 1 st Software Product
Une Conference, SPEC. Kluwer, Denver, Colorado, USA.

http://3sl.co.uk
http://argouml.tigris.org/project.html

BIBLIOGRAPHY

Bailin, S., et al. 1990. KAPTUR: Knowledge Acquisition for Preservation of
Tradeoffs and Underlying Rationale. Pages 95-104. Proceedings o f the 5th
Annual Knowledge-Based Software Assistant Conference, Liverpool, NY,Rome, NY:
Rome Air Development Center.

Bass, L., P. Clements, and R. Kazman. 2003. Software Architecture in Practice. Addison-
Wesley Professional.

Bastarrica, M. C., N. Hitschfeld-Kahler, and P. Rossel. 2006. Product Line
Architecture for a Family of Meshing Tools. Pages 403 - 406. 9th International
Conference on Software Reuse (ICSRJ, Turin, Italia.

Batory, D., R. Cardone, and Y. Smaragdakis. 2000. Object-Oriented Frameworks
and Product-Lines. Pages 227-247. the 1st Software Product-Line Conference
Denver, Colorado, United States.

Bayer, J., O. Flege, P. Knauber, R. Laqua, D. Muthig, K. Schmid, T. Widen, and].-
M. DeBaud. 1999. PuLSE: A methodology to develop software product
lines. Pages 122-131. the Fifth ACM SIGSOFT Symposium on Software
Reusability (SSR'99), Los Angeles, CA, USA.

Bayer, J., and T. Widen. 2001. Introducing Traceability to Product Lines. Pages 409-
416. the 4th International Workshop on Software Product-Family Engineering (PFE
2001). Springer-Verlag, Bilbao, Spain.

—. 2002. Introducing Traceability to Product Lines, Software Product-Family
Engineering. Pages 409-416. the 4th International Workshop, PFE 2001.
Springer Verlag, Bilbao, Spain.

Berg, K., and J. Bishop. 2005. Tracing Software Product Line Variability - From
Problem to Solution Space. Pages 111-120. SAICSIT 2005.

Boehm, B. 2000. Software Cost Estimation with Cocomo II. Upper Saddle River, NJ:
Prentice Hall.

Boehm, B., A. W. Brown, R. Madachy, and Y. Yang. 2004. A Software Product Line
Life Cycle Cost Estimation Model. Pages 156-164. Proceedings o f the 2004
International Symposium on Empirical Software Engineering. Los Alamitos, CA:
IEEE Computer Society7, Redondo Beach, CA.

Borland. Borland Together Control Center 6.2.

Bosch, J. 1998. Product-Line Architectures in Industry: A Case Study. Pages 544 -
554. the 21st International Conference on Software Engineering. IEEE Computer
Society7 Press, Los Angeles, California, United States.

346

BIBLIOGRAPHY

—. 2000. Design and Use o f Software Architectures: Adopting and Evolving a Product-line
Approach. Addison Wesley.

•—. 2001. Software Product Lines: Organizational Alternatives, the 23rd International
Conference on Software Engineering.

Bosch, J., and M. Hogstrom. 2000. Product Instantiation in Software Product Lines:
A Case Study. Pages 147-162. the Second International Symposium on Generative
and Component-Based Software Engineering (GCSE 2000). Springer-Verlag
London, UK.

CAFE. 2003. from http://www.esi.es/en/projects/cafe/cafe.html.

CaliberRM. from http://www.starbase.com.

Campbell, G. H., Jr., S. R. Faulk, and D. M. Weiss. 1990. Introduction To Synthesis,
INTRO_SYNTHESIS_PROCESS-90019-N. Software Productivity Consortium,
Herndon, VA, USA.

Clauss, M. 2001. Modeling variability with UML. GCSE 2001 - Young Researchers
Workshop.

CLAWS, from https://www.comp.lancs.ac.uk/ucrel/claws.

Cleland-Huang, J., C. K. Chang, and Y. Ge. 2002a. Supporting Event Based
Traceability through Pligh-Level Recognition of Change Events, the 26th
Annual International Computer Softivare and Applications Conference
(COMPSAC'02), Oxford, England.

Cleland-Huang, J., C. K. Chang, G. Sethi, K. jaw a ji, H. Hu, and J. Xia. 2002b.
Automating Speculative Queries through Event-based Requirements
Traceability. International Requirements Engineering Conference, Fissen, Germany.

Cleland-Huang, J., R. Settimi, O. BenKhadra, E. Berezhanskaya, and S. Christina.
2005a. Goal-centric traceability for managing non-functional requirements.
Pages 362 - 371 the 27th international conference on Software engineering. ACM
Press New York, NY, USA, St. Louis, MO, USA.

Cleland-PIuang, J., R. Settimi, C. Duan, and X. Zou. 2005b. Utilizing Supporting
Evidence to Improve Dynamic Requirements Traceability. 13th IEEE
International Conference on Requirements Engineering (RE'OS).

Cleland-Huang, J., G. Zemont, and W. Lukasik. 2004. A Heterogeneous Solution
for Improving the Return on Investment of Requirements Traceability 12th
IEEE International Requirements Engineering Conference (RE'04).

347

http://www.esi.es/en/projects/cafe/cafe.html
http://www.starbase.com
https://www.comp.lancs.ac.uk/ucrel/claws

BIBLIOGRAPHY

Clements, P., and L. Northrop. 2002. Software Product Lines: Practices and Patterns.
Addison-Wesley, Boston, MA.

—. 2004. A Framework for Software Product Lines Practice.
http://www.sei. cmu.edu/productlines/framework.html

COBRA, from http://www.omg.org/.

Cockburn, A. 1997. Structuring Use-Cases With Goals, journal o f Object-Oriented
Programming Sep/Oct: 35-40.

—. 2000. \Vriting Effective Use Cases. Addison-Wesley, Boston

COM. from http://www.microsoft.com/com/default.mspx.

CORE, from www.vtcorp.com.

Coriat, M., J. Jourdan, and F. Boisbourdin. 2000. The SPLIT Method. Pages 147-
166. the First Software Product U nes Conference (SPLC1), Denver, Colorado,
USA.

Dean, J. G., A. (Eds.) 2002. COTS-Based Software Systems. First International
Conference, ICCBSS. Springer-Verlag, Orlando, FL, USA.

Department_of_Defense. 1996. Software Reuse Executive Primer. Falls Church,
VA.

Dhar, V., and M. Jarke. 1988. Dependency Directed Reasoning and Learning in
Systems Maintenance Support. IEEE Transactions in Software Engineering 14:
211-227.

Dick,J. 1999. Rich Traceability.
http://www. telelogic.com/industries/telecoms/papers.cfm

Dömges, R., and K. Pohl. 1998. Adapting Traceability Environments to Project
Specific Needs. Communications o f the ACM 41: 54-62.

DOORS, from www.telelogic.com/products/doors.

Dorfman, M., and R. F. Flynn. 1984. Arts - An Automated Requirements
Traceability' System. The journal o f Systems and Software 4: 63-74.

Egyed, A. 2001. A Scenario-Driven Approach to Traceability', the 23rd International
Conference on Software Engineering (ICSE 2001), Toronto, Canada.

3 4 8

http://www.sei
http://www.omg.org/
http://www.microsoft.com/com/default.mspx
http://www.vtcorp.com
http://www
http://www.telelogic.com/products/doors

BIBLIOGRAPHY

—. 2002. Reasoning about Trace Dependencies in a Multi-Dimensional Space, the
1st International Workshop on Traceability, co-located with ASE 2002, Edinburgh,
Scotland, UK.

—. 2003. A Scenario-Driven Approach to Trace Dependency Analysis. IEEE
Transactions on Software Engineering 9.

Egyed, A., and P. Grunbacher. 2002. Automatic Requirements Traceability: Beyond
the Record and Replay paradigm, the 17th IEEE International Conference on
Automated Software Engineering (ASE), Edinburgh, UK.

Egyed, A., and P. Grunbacher. 2003. Towards Understanding Implications of Trace
Dependencies among Quality Requirements, the 2"' International Workshop on
Traceability in Emerging Form Software Engineering fTEFSE'03).

ESAPS. from http://www.esi.es/en/Projects/esaps/esaps.html.

Fairley, R. E., and R. H. Thayer. 1997. The Concept of Operations: The Bridge
from Oper-ational Requirements to Technical Specifications in M. Dorfman
and T. R. J, eds. Software Engineering. IEEEComp. Press, Los Alamitos, CA.

Faloutsos, C., and D. W. Oard. 1995. A Survey of Information Retrieval and
Filtering Methods. Dept, of Computer Science, Univ. of Maryland.

Fantechi, A., S. Gnesi, G. Lami, and E. Nesd. 2004. A Methodology for the
Derivation and Verification of Use Casees for Product Lines. Pages 255-
264. the 3rd International Conference, SPEC 2004. Springer Verlag, Boston, MA,
USA.

Finkelstein, A. 1991. Tracing Back from Requirements. IEE Colloquium on Tools <&
Techniques f o r Maintaining Traceability During Design.

Finkelstein, A., and H. Fuks. 1989. Multi-Party Specification Pages 185-199. 5th
International Workshop on Software Specification <& Design.

Finkelstein, A., J. Kramer, and M. Goedicke. 1990. ViewPoint Oriented Software
Development. Pages 337-351. 3rd International Workshop Software Engineering
<& its Applications. Cigref EC2 V I .

Finkelstein, W., and J. A. R. Guertin. 1998. Integrated Logistics Support. The Design
Engineering Link, IFS Publications. Springer Verlag.

Fiutem, R., and G. Antoniol. 1998. Identifying Design-Code Inconsistencies in
Object-Oriented Software: a Case Study. Pages 94 the International Conference
on Software Maintenance table o f contents (ICSM).

GEARS, from http://www.biglever.com/

349

http://www.esi.es/en/Projects/esaps/esaps.html
http://www.biglever.com/

BIBLIOGRAPHY

Gibson, P., B. Mermet, and D. Méry. 1997. Feature Interactions: A Mixed Semantic
Model Approach in O'Regan and Flynn, eds. 1st Irish Workshop on Formal
Methods (IWFM97), Dublin.

Gomaa, FI. 1993. Software Design Methods f o r Conclurent and Real-Time Systems. Addison
Wesley.

—. 2004. Designing Software Product U nes with UMU From Use Cases to Pattern-based
Software Architectures. Addison Wesley Professional.

Gomaa, H., R. Fairley, and L. Kerschberg. 1989. Towards an evolutionär}' domain
life cycle model. In Workshop on Domain Modeling fo r Software Engineering.

Gomaa, H., and AI. E. Shin. 2004. A Multiple-View Meta-modeling Approach for
Variability' Management in Software Product Lines. Pages 274-285 in J.
Bosch and C. Krueger, eds. 8th International Conference (ICSR 2004). Springer
Verlag, Madrid, Spain.

Gotel, O., and A. Finkelstein. 1994. An Analysis of the Requirements Traceability
Problem. Pages 94 -101. the First International Conference on Requirements,
England.

—. 1995. Contribution Structure. Pages 100-107. the Second IEEE International
Symposium on Requirements Engineering (RE'95). IEEE Computer Society Press,
York.

Griss, M. L. 2000. Implementaring Product-Line Features with Component Reuse.
the 6th International Conference on Software Reuse. Springer-Verlag, Austria.

Griss, M. L., J. Favaro, and M. d. Alessandro. 1998. Integrating feature modeling
with the RSEB. Pages 76-85 in P. Devanbu and j. Poulin, eds. the 5th
International Conference on Software Reuse. IEEE Computer Society' Press.

Halmans, G., and K. Pohl. 2003. Communicating the Variability of a Software-
Product Family to Customers, journal o f Software and Systems Modeling.
Springer.

Han, J. 2001. TRAM: A Tool for Requirements and Architecture Management.
Pages 60-68. the Australasian Computer Science Conference. IEEE Computer
Society', Gold Coast, Queensland, Australia.

Haumer, P., P. Heymans, M. jarke, and K. Pohl. 1999. Bridging the Gap Between
Past and Future in RE: A Scenario-Based Approach, the Fourth IEEE
International Symposium on Requirements Engineering (RE'99), University of
Limerick, Ireland.

350

BIBLIOGRAPHY

Haumer, P., M. Jarke, K. Pohl, and K. Weidenhaupt. 2000. Improving reviews of
conceptual models by extended traceability to captured system usage.
Interacting with Computers Journal 13: 77-95.

Haumer, P., K. Pohl, and K. Weidenhaupt. 1998. Requirements Elicitation and
Validation with Real World Scenes. IEEE Transactions on Software Engineering
(TSE), Special Issue on Scenano Management 24: 1036-1054.

Hayes, J. H., A. Dekhtyar, and J. Osborne. 2003. Improving requirements tracing
via information retrieval. Pages 138-147. 11th IEEE International Conference on
Requirements Engineering. IEEE Computer Society, Washington, DC, USA.

Hayes, J. H., A. Dekhtyar, S. K. Sundaram, and S. Howard. 2004. Helping Analysts
Trace Requirements: An Objective Look 12th IEEE International Conference on
Requirements E ngineering.

Hull, E., K. Jackson, and J. Dick. 2002. Requirements Engineering. Springer-Verlag,
London.

IEC. 1999. Functional Safety7: Safety-Related Systems. International Standard IEC
(International Electrical Commission) 61508.

IEEE-830. 1998. IEEE Recommended Practice for Software Requirements
Specifications. IEEE Standard 830-1998.

Jacobson, I. 1992. Object-Oriented Software Engineering: A Use Case Driven Approach.
Addison-Wesley Professional.

Jacobson, L, M. Griss, and P. Jonsson. 1997. Software Reuse: Architecture, Process and
Organisation fo r Business Success. Addison-Wesley Professional.

Jarke, M. 1998. Requirement Tracing, Association for Computing Machinery.
Association fo r Computing Machinery. Communications o f the ACM 41.

JavaBeans. from http://java.sun.com/products/javabeans/

Jazayeri, M., A. Ran, and F. V. D. Linden. 2000. Software Architecture fo r Product
Families: Principles and Practice. Addison-Wesley Pub (Sd).

Jirapanthong, W. 2004. Towards a Traceability Approach for Product Family
Systems. International Software Product Lines Young Researchers Workshop in
International Software Product Line Conference, Boston, MA.

Jirapanthong, W., and A. Zisman. 2004. Traceability for Product Family Systems:
An XQuery Approach. International Workshop on Requirements Reuse in System
Family Engineering in International Conference on Software Reuse, Madrid, Spain.

351

http://java.sun.com/products/javabeans/

BIBLIOGRAPHY

—. 2005. Supporting Product Line Development through Traceability. 12th Asia-
Pacific Software Engineering Conference (APSEC 2005), Taipei, Taiwan.

—. 2006. XTraQue: Traceability for Product Line Systems. Software and Systems
Modeling (under review).

John, I., and D. Muthig. 2002. Tailoring Use Cases for Product Line Modeling.
REPE'02, Essen, Germany.

Jones, D. A., J. F. Nallon, D. M. York, and J. Simpson. 1995. Factors Influencing
Requirement Management Toolset Selection, the 5th Annual International
Symposium o f the INCOSE. INCOSE, St. Louis, USA.

Kaindl, FI. 1992. The Missing Link in Requirements Engineering. Software Engineering
Notes June: 498-510.

Kang, K., S. Cohen, J. Hess, W. Novak, and A. Peterson. 1990. Feature-Oriented
Domain Analysis (FODA) Feasibility Study. Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, PA.

Kang, I<. C., S. Kim, J. Lee, K. Kim, E. Shin, and M. Huh. 1998. FORM: a feature-
oriented reuse method with domain-specific architectures. Annals o f Software
Engineering 5: 143-168.

Keepence, B., and M. Mannion. 1999. Using Patterns to Model Variability in
Product Families. IEEE Software 16: 102-108.

Kim, S. D., S. H. Chang, and H. J. La. 2005. Traceability Map: Foundations to
Automate for Product Line Engineering. IEEE. Pages 274-281. 3rd ACIS
International Conference on Software Engineering Research, Management <&
Applications (SE RAO5).

Knethen, A. v. 2002a. Automatic Change Support Based on a Trace Model, the 1 st
International Workshop on Traceability in Emerging Forms o f Software Engineering
(TEFSE ’ 02), Edinburgh.

—. 2002b. Change-Oriented Requirements Traceability. Support for Evolution of
Embedded Systems, the International Conference on Software Maintenance (ICSAT
02).

Knethen, A. v., B. Paech, F. Kieclaisch, and F. Houdek. 2002. Systematic Recycling
through Abstraction and Traceability'. Pages 273-282. IEEE Joint bit.
Requirements Engineering Conference. IEEE Computer Society', Essen, Germany.

Kotonya, G., and I. Sommerville. 1998. Requirements Engineering, Process and Techniques.
John Wiley & Sons.

352

BIBLIOGRAPHY

Krueger, C. W. 2001. Software Mass Customization,
http://www.biglever.com/papers/BigLeverMassCustomization.pdf.

Lago, P., E. Niemela, and H. V. Vliet. 2004. Tool Support for Traceable Product
Evolution. Pages 261-269. the Eight European Conference on Software Maintenance
and Reengineering (CSMR), Tampere, Finland.

Lawrence-Pfleeger, S., and S. Bohner. 1990. A Framework for Software
Maintenance Metrics. IEEE Conference on Software Maintenance.

Lee, K., K. C. Kang, W. Chae, and B.W. Choi. 2000. Feature-based Approach to
Object-Oriented Engineering of Applications for Reuse. Software-Practice and
Experience 30: 1025-1046.

Leech, G., R. Garside, and M. Bryant. 1994. CLAWS4: The Tagging of the British
National Corpus. Pages 622-628. the 15th International Conference on
Computational Unguistics (COEING 94), Kyoto, Japan.

Leishman, T. R., and D. A. Cook. 2002. Requirements Risks Can Drown Software
Projects. STSC CrossTalk April.

Leite, J. C. S. d. P., and K. K. Breitman. 2003. Experience Using Scenarios to
Enhance Traceability, the 2nd International Workshop on Traceability in Emerging
Forms o f Software Engineering (TEFSE'03). Montreal, Canada.

Letelier, P. 2002. A Framework for Requirements Traceability in UML-based
Projects, proceedings o f the 1st International Workshop on Traceability f o r Emerging
Forms o f Software Engineering (TEFSE' 02), Edinburgh, UK.

Linden, F. v. d., J. Bosch, E. Kamsties, K. K"ans"al"a, and H. Obbink. 2004.
Software Product Family Evaluation. Pages 110-129. the Third International
Software Product Une Conference, SPEC 2004. Springer Boston, MA, USA.

Lindvall, M., and K. Sandahl. 1996. Practical Implications of Traceability. Software
Practice and Experience 26: 1161-1180.

Lindvall, M., and K. Sandahl. 1998. Traceability Aspects of Impact Analysis in
Object-Oriented Systems. Software Maintenance Research and Practice 10: 37-57.

Lock, S., A. Rashid, P. Sawyer, and G. Kotonya. 1999. Systematic Change Impact
Determination in Complex Object Database Schemata. Pages 31-40.
ECOOP.

Maletic, J. L, and A. Marcus. 2001. Supporting Program Comprehension Using
Semantic and Structural Information. ICSE.

353

http://www.biglever.com/papers/BigLeverMassCustomization.pdf

BIBLIOGRAPHY

Maletic, J. L, E. V. Munson, A. Marcus, and T. N. Nguyen. 2003. Using a Hypertext
Model for Traceability Link Conformance Analysis. Pages 47-54. the 2nd
International Workshop on Traceability in Emerging F omis o f Software Engineering
fTEFSE'03). Montreal, Canada.

Mannion, M., O. Lewis, H. Kaindl, G. Montroni, and J. Wheadon. 2000.
Representing Requirements on Generic Software in an Application Family
Model. Pages 153-169. ICSK

Marcus, A., and J. I. Meletic. 2003. Recovering Documentation-to-Source-Code
Traceability Links using Latent Semantic Indexing. Pages 125-137. the 25th
IEEE/ACM International Conference on Software Engineering (ICSE'03),
Portland, OR, USA.

MBSE. 1993. Model-Based Software Engineering.
http://www.sei. emu. edu/technology/mbse/is.html.

McMullen, L. W. 1996-1997. Requirements Management Technolog)' Overview.
Report o f INCOSE Tools Database Working Group 1996-1997.

MDA. from http://www.omg.org/mda/.

Metacase, from http://vavw.metacase.com/papers/.

Meyer, B. 1998. Object Oriented Software Construction. Prentice-Hall.

Mohan, K., and B. Ramesh. 2002. Managing variability with Traceability in product
and Service Families. In proceedings o f the 35th Hawaii International Conference on
System Sciences. IEEE.

Murphy, G. C., D. Notkin, and K. Sullivan. 1995. Software Reflexion Models:
Bridging the Gap Between Source and Pligh-Level Models. Third ACM
SIGSOF'T Symp. Foundations o f Software Eng. Oct: 18-28.

Murray, L., A. Griffifths, P. Lindsay, and P. Strooper. 2002. Requirements
Traceability for Embedded Software - an Industry Experience Report. Pages
63-69. In proceedings o f the 6th LASTED Software Engineering and Applications
conference (SEA 2002). ACTA Press

NASA. Preferred Reliability Practices: Independent Verification and Validation of
Embedded Software. Pages Practice No. PD-ED-1228. Marshal Space
Flight Centre.

Nokia, from http://www.forum.nokia.com/main.html.

Northrop, L. M. 2002. SEI's Software Product Line Tenets. IEEE Software 19: 32-
40.

354

http://www.sei
http://www.omg.org/mda/
http://vavw.metacase.com/papers/
http://www.forum.nokia.com/main.html

BIBLIOGRAPHY

Nuseibeh, B., and S. Easterbrook. 2000. Requirements Engineering: A Roadmap,
In: The Future of Software Engineering. ACM-IEEE: 37-46.

OMA. from www.openmobilealliance.org/.

Ommering, R. v., F. v. d. Linden, and J. Kramer. 2000. The Koala component
model for consumer electronics software. IEEE Computer 33: 78-85.

O MT. from http://www.omg.org/.

Parnas, D. 1976. The Design and Development of Program Families. IEEE
Transactions on software engineering SE-2.

Philips, from http://www.philips.com.

Pinheiro, F. 2000. Formai and Informai Aspects of Requirements Tracing. Position
paper in proceedings o f 3rd Workshop on Requirements Engineering (III WER), Rio
de Janeiro, Brazil.

Pinheiro, F. A. C., and J. A. Goguen. 1996. An Object-Oriented Tool for Tracing
Requirements. IEEE Software 13: 52-64.

Plankl, j., and G. Bockle. 2001. Modeling Concepts for Product Families.
Requirements Modeling and Traceability. ESAPS report.

Pohl, K. 1994. The Three Dimensions of Requirements Engineering: A Framework
and Its Applications. Information systems 19: 243-258.

—. 1996a. PRO-ART: Enabling Requirements Pre-Traceability. Pages 76. the 2nd
International Conference on Requirements Engineering (ICRE ’96), Colorado, USA.

— . 1996b. Process-Centered Requirements Engineering. John Wiley & Sons.

Pohl, K., and P. Haumer. 1995. HYDRA: A Hypertext Model for Structurig
Informal Requirements Representations, the 2nd workshop on Requirements
Engineering: Foundation o f Softamre Quality (REFSQ' 95). Augustinus, Aachen,
Germany, Jyvaskyla, Finland.

Poritz, A. B. 1998. Hidden Markov Models: A Guide Tour. Pages 7-13. International
Conference on Acoustics, Speech and Signal Processing. IEEE., New York.

PuLSE. from http://mw.iese.fhg.de/PuLSE/.

QADA. from http://www.vtt.fi/ele/research/soh/projects/families/qada.htm.

355

http://www.openmobilealliance.org/
http://www.omg.org/
http://www.philips.com
http://mw.iese.fhg.de/PuLSE/
http://www.vtt.fi/ele/research/soh/projects/families/qada.htm

BIBLIOGRAPHY

Ramesh, B., and V. Dhar. 1992. Supporting Systems Development Using
Knowledge Captured During Requirements Engineering. IEEE Transactions
in Software Engineering June 1992: 498-510.

Ramesh, B., and M. Edwards. 1993. Issues in the Development of a Requirements
Traceability Model. Pages 256-259. International Symposium on Requirements
Engineering.

Ramesh, B., and M. Jarke. 2001. Towards Reference Models for Requirements
Traceability. IEEE Transactions on Software Engineering 27: 58-93.

Ramesh, B., T. Powers, C. Stubbs, and M. Edwards. 1995a. Implementing
Requirements Traceability: A Case Study. Pages 89-95. the Second IEEE
International Symposium on Requirements Engineering, York, United Kingdom.

Ramesh, B., C. Stubbs, T. Powers, and M. Edwards. 1995b. Lessons Learned from
Implementating Requirements Traceability. STSC CrossTalk April.

RationalRose. from
http://www.vtt.fi/ele/research/soh/projects/families/qada.htm.

RDT. from http://www.vtt.fi/ele/research/soh/projects/families/qada.htm.

Redondo, R. P. D., M. L. Nores, J. J. P. Aris, A. F. Vilas, J. G. Duque, A. G. Solla,
B. B. Martinez, and M. R. Cabrer. 2004. Supporting Software Variability by
Reusing Generic Incomplete Models at the Requirements Specification
Stage. Pages 1-10. 8th International Conference, ICSR 2004, Madrid, Spain.

RequisitePro. from http://www.rational.com.

Richardson, J., and J. Green. 2003. Traceability through Automatic Program
Generation. 2nd International Workshop on Traceability in Emerging Eonns o f
Software Engineering, Montreal, Canada.

—. 2004. Automating Traceability for Generated Software Artifacts. Pages 20-24
Sept. 2004 19th International Conference on Automated Software Engineering, Linz,
Austria.

Riebisch, M., K. Bollert, D. Streitferdt, and I. Philippow. 2002. Extending Feature
Diagrams with UML Multiplicities, the 6th world conference on Integrated Design
and Process Technology (IDPT 2002), Pasadena, CA.

Riebisch, M., and I. Philippow. 2001. Evolution of Product Lines Using
Traceability. Workshop on Engineering Complex Object-Oriented Systems fo r
Evolution in OOPSLA 2001, Tampa Bay, Florida, USA.

RTM. from www.chipware.com.

356

http://www.vtt.fi/ele/research/soh/projects/families/qada.htm
http://www.vtt.fi/ele/research/soh/projects/families/qada.htm
http://www.rational.com
http://www.chipware.com

BIBLIOGRAPHY

Sawyer, P., A. Colebourne, and Sommerville. 1993. The MOG user interface
builder: a mechanism for integrating application and user interface. Interacting
with Computers 5: 315-332.

Schmid, K., and M. Schank. 2000. PuLSE-BEAT — A Decision Support Tool for
Scoping Product Lines. Pages 65-75. the International Workshop on Software
Architectures fo r Product Families. Springer-Verlag

Sherba, S. A., K. M. Anderson, and M. Faisal. 2003a. A Framework for Mapping
Traceability Relationships, the 2nd International Workshop on Traceability in
Emerging Forms o f Software Engineering flEFSE 2003), Canada.

—. 2003b. A Framework for Mapping Traceability Relationships, the Second
International Workshop on Traceability in Emerging Forms o f Software Engineering
(TEFSE'03), In conjunction with the 18th IEEE International Conference on
Automated Software Engineering, Montreal, Quebec, Canada.

Simos, M. 1995. Organization Domain Modelling (ODM).

Sinnema, M., et al. 2004. COYAMOF: A Framework for Modeling Variability in
Software Product Families, the third international conferences, SPEC.

SLATE, from http:// tdtech.com.

Socorro, A. 1993. Design, Implementation and Evaluation of a Declarative Object-
Oriented Programming Language. Computing Eaboratoiy. Oxford University,
Oxford.

Sommerville, I. 2000. Software Engineering. Addison Wesley.

Sommerville, L, and P. Sawyer. 1997. Requirements Engineering —A Good Practice Guide.
John Wiley & Sons, New York.

Spanoudakis, G., and A. Finkelstein. 1997. Overlaps among Requirement
Specifications. Workshop on Living with Inconsistency in ICSE 97 Boston, USA.

Spanoudakis, G., A. Finkelstein, and D. Till. 1999. Overlaps in Requirements
Engineering. Automated Software Engineering 6: 171-198.

Spanoudakis, G., and A. Zisman. 2005. Software Traceability: A Roadmap. Advances
in Software Engineering and Knowdledge Engineering 3, Recent Advances,: 273-7.

Spanoudakis, G., A. Zisman, E. Pérez-Miñana, and P. Krause. 2004. Rule-based
Generation of Requirements Traceability Relations, journal o f Systems and
Software 72: 105-127.

357

BIBLIOGRAPHY

Staudenmayer, N. S., and D. E. Perry. 1996. Session 5: Key Techniques and Process
Aspects for Product Line Development, the 10th International Software Process
Workshop.

Streitferdt, D. 2001. Traceability for System Families. Pages 803-804. ICSE 2001.

Sutcliffe, A. G., and N. A. M. Maiden. 1998. The Domain Theory for Requirements
Engineering. IEEE Trans 24: 174-196.

Svahnberg, M., and J. Bosch. 2000. Issues Concerning Variability' in Software
Product Lines, the Third International Workshop on Softivare Architectures fo r
Product Families. Springer Verlag, Berlin Germany.

Svahnberg, M., J. Gurp, and J. Bosch. 2001. On the Notion of Variability in
Software Product Lines. Pages 45-55. the Working IEEE/IFIP Conference on
Software A rchitecture (WICSA 2001).

Szyperski, C. 1997. Component Software: Beyond Object-Oriented Programming. Addison-
Wesley Professional

TestDirector. from http://www.mercuryinteractive.com/products/testdirector.

Thiel, S., and A. Hein. 2002. Systematic Integration of Variability7 into Product Line
Architecture Design. Pages 130 - 153 the Second International Conference on
Software Product Eines (SPEC2). Springer-Verlag.

Toranzo, M., and J. Castro. 1999. A comprehensive traceability model to support
the design of interactive systems. Pages 283-284. ECOOP Workshops.

Tracz, W., L. Coglianese, and P. Young. 1993. A domain-specific software
architecture engineering process outline. SIGSOFT Software Engineering Notes
18:40-49.

UML. from http://www.uml.org.

UK_Ministry_of_Defence. 1997. Def Stan 00-55: Requirements for Safety7 Related
Software in Defence Equipment.

Visio. 2003. http://www.microsoft.com/office/visio/prodinfo/overview.mspx.

Volere. from www.volere.co.uk.

Watkins, R., and M. Neal. 1994. Why and How of Requirements Tracing. IEEE
Software 11: 104 -106.

358

http://www.mercuryinteractive.com/products/testdirector
http://www.uml.org
http://www.microsoft.com/office/visio/prodinfo/overview.mspx
http://www.volere.co.uk

BIBLIOGRAPHY

Webber, D., and H. Gomaa. 2002. Modeling variability with the variation point
model. Pages 109-122. International Conference on Software Reuse. Springer
Verlag.

Weidenhaupt, K., K. Pohl, M. Jarke, and P. Haumer. 1998. Scenario Usage in
System Development. IEEE Softivare 15: 34 - 45

Weiss, D. 1995. Software Synthesis: The FAST Process, the International Conference on
Computing in High Energy Physics (CHEF'), Rio de Janeiro, Brazil.

—. 1998. Commonality Analysis: A Systematic Process for Defining Families. Second
International Workshop on Development and Evolution o f Softivare Architectures fo r
Product Families.

Weiss, D., and C. T. R. Lai. 1999. Software Product-Line Engineering: A Family-Rased
Software Development Process. Addison Wesley, Reading, MA.

Westhuizen, C. v. d., and A. v. d. Ploek. 2002. Understanding and Propagating
Architecutural Changes. Pages 95-109. WICSA.

Wong, S. K. M., and Y. Y. Yao. 1991. A probabilistic inference model for
information retrieval. Information y stems 16: 301-321.

—. 1995. On Modeling Information Retrieval with Probabilistic Inference. ACM
Transactions on Information Systems 13: 38-68.

WordNet. from http://wordnet.princeton.edu/.

xADL2.0. from http://www.isr.uci.edu/projects/xarchuci/.

xArch. from http://www.isr.uci.edu/projects/xarch/.

XMI. from http://www.omg.org/technology/document/xmi.html.

XMLToolKit. from http://www.alphaworks.ibm.com/tech/xmitoolkit.

XPath. from http://www.w3.org/TR/xpath.

XQuery. from http://www.w3.org/TR/xquery/.

XTraQue. XTraQue. http://www.soi.city.ac.uk/~aj406/XTraQue/

Zisman, A., G. Spanoudakis, E. Perez-Minana, and P. Krause. 2002a. Towards a
Traceability Approach for Product Families Requirements, the 3rd ICSE
Workshop on Softivare Product Lines: Economics, Architectures, and Implications,
Orlando, USA.

359

http://wordnet.princeton.edu/
http://www.isr.uci.edu/projects/xarchuci/
http://www.isr.uci.edu/projects/xarch/
http://www.omg.org/technology/document/xmi.html
http://www.alphaworks.ibm.com/tech/xmitoolkit
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xquery/
http://www.soi.city.ac.uk/~aj406/XTraQue/

BIBLIOGRAPHY

—. 2002b. Tracing Software Requirements Artefacts. The 2003 International Conference
on Software Engineering Research and Practice (SERF' 03), Las Vegas, Nevada,
USA.

360

