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Abstract
It is well known that one of the major problems of integrated optical systems is the 
efficient coupling of photonic devices such as semiconductor lasers, amplifiers, 
modulators, or switches to a single mode fiber (SMF) in such a way that little or no 
power loss occurs. A well confined beam is needed in order to optimize the 
performance of a wide range of these photonic devices, because up to 90% of the 
optical power can be lost due to a large mismatch between their small non-circular 
spot-size and a SMF with a larger and circular spot-size when they are butt-coupled. 
Over the last 10 years several attempts have been made to close the gap and reduce 
such a high loss when coupling a photonic integrated circuit (PIC) to SMF. Among 
these is the use of a microlens or lensed fiber to enhance the coupling efficiency. 
However, the disadvantage of this approach is that associated sub-micron alignment 
tolerances lead to very high packaging costs. For a small business network, such a 
large cost is preventing the rapid extension of fiber-to-the-home (FTTH).

This makes the problem of optical coupling a big challenge to optoelectronics 
researchers worldwide as huge efforts were made to expand the narrow spot-size 
within a PIC, such that efficient coupling to a SMF with a large spot-size can be 
made. Monolithically integrated spot-size converters (SSCs) have been reported 
recently as being used to enhance optical coupling without deteriorating alignment 
tolerances and majority of the expanded SSCs do incorporate tapered structures, 
operating very close to the modal cut-off, to expand their spot-size.

In this thesis, some compact SSC designs have been carried out using the twin rib 
(TR), multimode interference (MMI) and silicon-on-insulator (SOI) waveguides to 
improve the coupling efficiency. The TR and SOI do require a tapered section in their 
mode of operation to expand the spot-size whereas the MMI does not need a tapered 
section.

Some numerical techniques have been employed in this thesis as tools in the design, 
analysis and optimization of the above guided-wave photonics devices. The robust, 
versatile and accurate full-vector finite element method (FVFEM) is the backbone of 
all the numerical techniques, as it has been used to obtain the modal solutions of the 
waveguide sections of the photonic devices throughout this thesis.

The FVFEM has been used in conjunction with the Least squares boundary residual 
(LSBR) method in the novel compact design, analysis and optimisation of 3-Core 
multimode waveguide as a device for improving power coupling efficiency. The 
transmission and reflection coefficients of the guided-waves are obtained as well. In a 
similar manner, the FVFEM is also used in conjunction with the finite element-based 
full-vector beam propagation method (FVBPM) to study the propagation of the 
guided-waves along the longitudinal z-direction of tapered devices for the TR and 
SOI waveguides. In the analysis, the propagating power, the radiation loss and the 
spot-size are obtained for these PICs. Tapered spot-size converters, with various high- 
index SOI waveguides, which consists of secondary polymeric cover, are investigated 
in this work. Mode beating phenomenon was observed and explained. Also the An
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Abstract

characterisation SOI was carried in this work because of the high-index contrast of the 
SOI materials which is a vital information for any design Engineer since the 
operations depend heavily on the materials as well as the geometry of the device.

The robust PML boundary conditions have been used to stem down unwanted 
radiations during propagation and the Pade approximation has been employed to take 
care of the waves propagating at wide angles to the z-axis. The incorporated popular 
overlap integral (OI) has been used in the determination of the coupling efficiency of 
the devices, which in the case of TR is 95%, and SOI is 99.25%.
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Chapter

Introduction
1.1 Brief History Of Light
The history of light dates back to the beginning of biblical creation in which God said, 

“Let there be light, and there was light” about 6000 years BC (Dake Bible, 2006). 

Ever since then scientists have been investigating the existence of light technology. 

Notable dates in the developments of light technology relevant to this thesis are 

discussed in brief in this section. Starting with the John Tyndal in 1870, when he 

demonstrated the passage of light through a pipe using a phenomenon as ‘total 

internal reflection’. In 1873, James Clerk Maxwell discovered that magnetism and 

electricity were related and he introduced the concept of single unified theory of 

electromagnetism. In 1880, the scientist Charles Tainter converted the sunlight 

directly into electrical energy after developing the first selenium cells. They were later 

referred to as Photocells or Photoelectric cells and are useful in making light meters 

and other optical devices for measurements for a wide range of applications.

In 1916, Albert Einstein made one of his most important contributions to light when 

he explained the concept of the spontaneous and stimulated emissions which are
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basically processes for interaction between photons and electrons in a solid which 

result in LEDs and the laser. In the mid 1920s, Henry Round of Marconi Labs and 

Russian Oleg Vladimirovich Losev independently created the first light emitting 

diode (LED) when they discovered that a semiconductor junction would produce 

light. In 1928, German physicist Rudolf Walther Ladenburg first observed stimulated 

emission, although at the time it seemed to have no practical use.

In 1955, the invention of modem fibre optics is credited simultaneously to both 

Narinder Kapany (British) (Kapany, 1967) and Brian O'Brien Sr. at the American 

Optical Company in America. Also in 1955, Rubin Braunstein of the Radio 

Corporation of America reported on infrared emission from gallium arsenide (GaAs) 

and other semiconductor alloys. In 1958, Physicists Charles Townes and Arthur 

Schawlow were the first to publish their ideas for an “optical maser” in a seminal 

paper in the December 15, 1958, issue of Physical Review and applied for patent on 

Laser devices.

In 1960, the laser was perfected by research scientist Theodore Maiman at the Hughes 

Laboratory in Malibu California (Maiman, 1960). The term ‘LASER’ stands for Light 

Amplification by Stimulated Emission of Radiation. Laser light differs from ordinary 

light in four ways. Briefly it is much more intense, directional, monochromatic and 

coherent than conventional sources. More advance development was made in 1962 

with the semiconductor laser which is considered more superior to other types of 

lasers already invented (Hall et al, Nathan et al, Quist et al, 1962). In this technology, 

direct conversion of electrical energy into coherent light is achievable.

1.2 Optical Communications Developments

The innovations of both the laser and fibre optics as mentioned in the last section had 

renewed the interest of scientists in optical communications in the 1960s. Production 

of low loss optical fibre has offered solution to the problem of suitable transmission 

media for modem optoelectronic systems. Present day optical fibres have 

transmission rates of optical transmission and data processing experiments at bit rates
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of up to 160 Gb/s and performance figures are improving year by year 

(http://www.orc.soton.ac.uk/oc.html). Along with the development of low loss optical 

fibre came the development of the compact single mode semiconductor laser (Hall et 

al., 1962; Nathan et al., 1962; Quist et al., 1962). By the early 1970s semiconductor 

lasers were providing continuous wave coherent sources of laser light (Alferov et al., 

1970; Hayashi et al., 1970). Improvements from the 1980’s made them reliable 

sources for use in optical communications systems and so they have been widest used 

in this field since.

Optical signals transmitted using optical fibres will ultimately have to be converted 

into electronic form for processing. The speed of operation of electronic components 

is a major determining factor in the bandwidth of a communications system. This 

limitation has led to major research into a field now known as optoelectronics, 

replacing electronic devices with optical devices, switches, modulators, filters, 

transmitters, connectors and receivers. The potential of this new field is enormous. 

Will the development of an optical switch eventually lead to an optical computer? 

That is the hope and aspiration of many workers in this field. Advances in recent 

times in optoelectronics have led to the development of a wide range of optical 

components and devices such as directional couplers, Y-branches, waveguide 

crossings, optical filters, modulators, optical amplifiers and many others (Tamir, 

1979). These advances in optical technology have resulted in the availability of 

consumer goods based on optical technology, such as laser copiers, laser printers, 

barcode readers, CD and DVD players and many others.

The emerging fields of research in optoelectronics can be classified into the following 

major categories:

> Optical communications systems

> Optical storage technology

> Waveguide devices and optoelectronic packaging technology

> Photonic devices and materials

> Optical sensor technology, including speciality fibres

Chapter 1 Introduction
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The use of the laser for the free space optical communication occurs over a limited 

range: however the invention of the laser has enabled a significant research effort to 

be developed in the study of optical components needed to achieve reliable 

information transfer using light as a carrier. In 1966 Kao and Hockham (Kao and 

Hockham, 1966) proposed an optical communication system using dielectric 

waveguides or optical fibres fabricated from glass. Later, in the same year 1966, 

Werts has considered ways to avoid the degradation of the optical signal. Initially the 

optical fibres that were available exhibited very high attenuation (i.e. 1000 dB km"1) 

and this were not comparable in performance with the coaxial cables (i.e. showing 5- 

10 dB km"1 loss). Nevertheless, within ten years optical fibre losses were reduced 

below 5 dB km"1 and suitable loss jointing techniques were perfected. Coming, UK 

achieved a reduction to 20 dB/km recently.

The development of the fibre waveguides has played a significant role in the 

development of other optical components which would constitute an optical fibre 

communication system. Based on the optical operating frequency, this new 

technology of optical component has used extremely small wavelengths typically 1.3 

and 1.55 pm. Thus semiconductor optical sources (i.e. injection lasers and light 

emitting diodes), as well as matched detectors (i.e. photodiodes and transistors) 

compatible in size with optical fibres were designed and fabricated to enable 

successful implementation of the optical fibre communication systems proposed. 

They were originally fabricated in 1977 from alloys of gallium arsenide (AlxGai_xAs) 

which emitted in the near infrared between 0.8 and 0.9 pm. More recently, suitable 

semiconductor laser sources such as these in InxGai.xAsyPi.y and Ge detectors for the 

1.3 pm wavelength have been developed. In 1980 Bell Labs published a commitment 

to using single mode 1.3 pm technology and for the first time a transatlantic fibre- 

optic cable, TAT-8 began service in December 1988. This technology has spread into 

wider telecommunication applications, and remains the standard for the most fibre 

communications systems. Since 1988 up to date, the optical fibre has been used solely 

in the major networks where the bandwidth demands are enormous, and it is 

becoming easier to have the possibility of transmitting high bandwidth to consumers 

thereby achieving the ‘Fibre to the Home’ (FTTH) which has been reported being 

deployed now most notably in the far-East to date
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(http://www.orc.soton.ac.uk/oc.html). This development has yielded and opened up a 

host of high technological service opportunities including video-on-demand, HDTV 

and internet gaming amongst others at our door steps with more still to come.

1.3 Integrated Optics Developments

In 1969 S. E. Miller (Bell Laboratory) introduced the concept of integrated optics 

when he put together different optical components (Miller et al, 1969). Integrated 

Optics in its simple form is a combination of a waveguide, a detector, and a source of 

light in which each of the devices is made of different materials to form a single 

optical device which is hybrid in nature (Tamir, 1979). The major problem facing 

scientists in the hybrid approach is the assembly of these different components in such 

a way that their performance doesn’t suffer seriously if the assembly is not 

meticulously handled. Accurate alignment of the components is required at the 

interfaces and any mismatch produces a loss mechanism which is difficult to avoid 

and usually results in poor performance. This great problem leads to a new technology 

known as Monolithic integration of all the components whereby all the components 

are fabricated on a single substrate in which any post production assembly of 

components and also alignment problems can be avoided (Moerman et al, 1997). 

Early researchers in this field needed a material substrate that will fulfil the criteria for 

monolithic integration. The most common and suitable semiconductor device material 

for optoelectronic application which is also susceptible to mass productions of 

monolithic optical integrated circuits (OEICs) is Silicon. Despite the favourable 

properties of silicon especially in the acceptable wavelength range of 1.3 -1.55 /xm 

(Richard et al, 1991, Soref, 1993), it is considered to be unsuitable for active 

applications because of its indirect band gap. The traditional and direct band gap 

materials commonly used instead of silicon are the group III -  V compounds such as 

Gallium Arsenide (GaAs) and Indium Phosphide (InP). Recent researches have 

created a renewed interest in Silicon as a viable alternative to group III -  V materials 

because of its active nature when combined with Germanium to form SiGe compound 

(SchUppert et al, 1996, Naval et al, 1996, Li et al, 1998).
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Optical systems in communications provide the inherent advantage of large 

bandwidth, parallelism, and reconfigurable configuration. However, such systems do 

not provide input-output isolation, as electronic devices do and it can be very difficult 

to focus multiple beams in a parallel system. Therefore it is logical to couple 

electronic and photonic devices, resulting in optoelectronic integration.

The aim of integrated optics is to do signal processing as much as possible directly on 

the optical chip itself. The basic concept of the integration was proposed by Anderson 

in 1965 (Anderson, 1965) and considerable progress has been made, although not a 

great deal of integration has been achieved.

An attractive form of well defined integration is the interconnection of the optical 

devices which can take a form of free space, integrated optical waveguides, or optical 

fibre. An illustration via a simple schematic block diagram of an optoelectronic phase 

integration array antenna system is illustrated in the Fig. 1.1. With optical 

interconnects and transmission, immunity to manual interference and crosstalk and 

freedom from capacitive loading effects. The large bandwidth of the optical device 

contributes to system size reduction, reduced system power, and increased fan-out 

capabilities of the device.

Chapter 1 Introduction

Fig. 1.1 Block diagram of an optoelectronic integrated circuit (OEIC) phase array antenna system.
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Optoelectronic integrated circuits (OEIC) involve the integration of electronic and 

optic components and optical interconnects. The monolithic integration of electronic 

and optical devices on the same chip will contribute to high-speed, high-sensitivity, 

compactness, reliability, and low cost. In order to achieve an integration of these 

devices, first the optical devices, which may have different layer structures must be 

very high quality and secondly there is a major issue of capability and impedance 

matching between the devices and, last but not the least, the cost in designing and 

realisation of OEIC is a relevant factor.

There are two major ways of integration in OEICs, hybrid integration and monolithic. 

Hybrid integration involves the connection of discrete devices, blocks or chips using 

electronic (leads) or optic (fibre) interconnects. Alternatively monolithic integration 

involves the building of all the active and passive components on the same chip, 

which makes this type of integration a real challenge, because of heterostructures 

(some components are made of different materials, layers).

Practical integrated optics also can be classified as active and passive. Passive 

components are used for transmission, splitting, beam splitting, polarization 

converters, polarization controllers, switches, and wavelength division multiplexer. 

Active components are usually (electronically controlled) and have both optical and 

electrical properties, such as lasers, detectors, modulators (LiNb03), transceivers, and 

amplifiers. Modulators can be also directly integrated with the laser, like GaAs or as 

an external modulator, like in LiNb03.

The two most common semiconductor materials used in optoelectronics are based on 

the ternary alloy aluminium gallium arsenide (AlxGai_xAs) and the quaternary alloy 

indium gallium arsenide phosphate InxGai.xAsyPi_y. The variation of the alloy content 

between the layers then yields the refractive index difference necessary for a 

waveguide. Although several types of devices of the kind that will undoubtedly be 

needed have been successfully demonstrated, they require a wide range of different 

substrates. These follow some discussion of possible structures for these devices.

Chapter 1 Introduction
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1.3.1 Integrated Photonics Elements

The word ‘integrated’ simply means assembly of some basic components, which are 

common to the integrated optical devices. These components operate in the same way 

as their traditional counterparts i.e. conventional optical components, but their 

operating principles may differ. As a result, their designs and fabrications are also 

different especially with miniature size.

Fig. 1.2 shows some basic integrated photonic devices that have been proposed, 

modelled, and fabricated. In the optoelectronic industry, many more devices are still 

being designed and fabricated, but the basic components remain the same. The usual 

practice is to have a basic components block on which the complex integrated optical 

devices can be built. The major difference in design of integrated photonic devices 

and the conventional devices is due to the fact that the operational principle of the 

conventional devices has its foundation on the properties of light considered as plane 

waves or rays of light whereas the operational principle of the integrated photonic 

devices based the modelling and performances on the idea of Maxwell’s equations of 

the electromagnetic waves. This has to do with the fact that the size of the devices are 

of the order of nanometers (10 9) whereas that for the conventional devices are of the 

order of millimeters (10 3).

The building blocks from which the optical components are assembled into systems 

can be broadly classified into three. These are

1. The Straight waveguide blocks

2. The bend waveguide blocks

3. The Power splitter blocks

These blocks offer the assembly of several basic components, which can easily 

perform the same optical functions as the conventional devices. The ability to perform 

a wide range of functions makes the concept of integrated photonic devices elements 

fantastic.

Chapter 1 Introduction
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Fig. 1.2 Basic integrated photonics elements (Linfante, 2003)
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Fig. 1.2 Basic integrated photonics elements continued. (Linfante, 2003)
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the effect of increasing the capacity of the fibre to carry information. DWDM 

system data speeds have risen to 160 Gb/s and beyond. Such a system uses 

Erbium doped fibre amplifiers (EDFAs) as well as Thulium Erbium doped 

fibre amplifiers (TDFAs). In such a DWDM optical system, each fibre 

amplifier provides the gain for more than a hundred signal carriers separated 

by a frequency difference of 100 GHz or 50 GHz.

♦  Optical Frequency Division Multiplex (OFDM): Also in this system the 

overall data is divided into sets each having different wavelength. Signals are 

multiplexed by optical power combiner or filter. Signals are detected by a 

laser oscillator.

♦  Single-Channel Transmission: Single-channel transmission at 40 Gb/s over 

long terrestrial links, including the wavelengths conversion of a signal has 

been reported (Matera F. et al, 2002).

Communication networks also provide three types of services:

> Distributive services. This is used in broadcasting of information to all persons 

involved. Examples are TV, radio services.

> Mailing services. This involves unidirectional transmission of information 

from one person on a system to another. Examples are e-mail, ftp and fax 

services.

> Interactive services: This involves bidirectional transmission between two or 

more persons. Examples are telephony, video conferences services

Other applications include

♦ Optical interconnections e.g. 1.3 / 1.55 multimode waveguide or fibres.

♦ Sensors and Sensor systems e.g. temperature sensing, vapour sensing etc.

♦ Consumer photonics e.g. CD players, laser pointers.

♦ Consumer peripherals e.g. flat panel displays, laser printers, CD-ROMs, DVD 

discs.

♦ Industrial environment e.g. sensors, high-power lasers.

♦ Medical environment e.g. sensors, lasers.
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♦ Military environment e.g. sensors, filters, control and communication systems 

to avoid wire tapping.

1.4 Motivations for this work
One of the major problems confronting the researchers in optical communications is 

the efficient coupling of a waveguide to single mode optical fibre because of the mode 

mismatch of the connecting devices. This leads to the principle of spot-size 

conversion and optimisation of the device technologies to get the best coupling 

efficiency and alignment tolerances. Recent advances in optoelectronics have 

witnessed new technologies, device fabrications and modelling of novel devices. 

Computer simulation of optical devices has gone a long way to give good insight to 

modem researcher the ability to visualise solutions to the real problems. The 

simulations have assisted scientists in optoelectronics research breakthrough and their 

usefulness cannot be over-emphasised. The use of simulations in modelling of optical 

devices has helped to shorten the length of designed cycle for existing and emerging 

optical technologies. It accelerated new developments that may have taken many 

years to achieve due to high costs.

There are various methods used for the simulations of optical devices but the most 

important thing is that they must be able to determine the stability of any designs 

within the range of fabrication and operational tolerances. It is therefore valuable to 

perform simulations for a range of device parameters to achieve optimum design. 

There are two major methods used in device modelling which are (1) Analytical 

approximation methods and (2) Numerical methods. Analytical approximation 

methods can only handle simple cases in which there are no complexities with regards 

to the arbitrary device geometry and composite refractive index. It is limited in wide 

range of parameters of optical devices that can be modelled and cannot accommodate 

iterative methods which are not only fast but accurate. Numerical methods are more 

versatile and accurate with the ability to handle the complex device geometry 

including 3-D. Iterative methods are there to take care of arbitrary refractive index
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distributions and give the researcher genuine knowledge of the operation of the 

device. Many numerical methods have been explored in literature such as Finite 

Difference Method (FDM) (Davies, 1989), Effective Index Method (EIM) (Knox and 

Toulios, 1970), Spectral Index Method (SIM) (Kendall et al., 1989; Stem et al., 

1990), Variational Method (VM) (Rahman and Davies, 1984a) to name a few, but the 

one used in this thesis is the versatile Finite Element Method (FEM) (Rahman and 

Davies, 1984a; Koshiba and Inoue, 1992) together with the famous and robust Beam 

Propagation Method (BPM) (Feit and Fleck, 1978). They are readily applied to 

complex device cross-sections with passive or active materials and full 3-D 

investigation of complex integrated circuits. The philosophy of vectorial finite 

element method (VFEM) and FVBPM have been applied throughout this thesis to the 

investigation of coupling some optical devices such as Rib and taper waveguides, 

submicron SOI waveguides to a SMF, SSC and calculation of associated transmission 

loss due to mode mismatch and coupling efficiency of the whole system. A lot of 

work was done to investigate the high index profile of the submicron SOI waveguides 

and how mode-beating phenomenon can be avoided using polymer material as 

secondary and connecting waveguide. The VFEM and least squares boundary residual 

(LSBR) have successfully been applied to MMI couplers, to determine the 

transmission and reflection coefficients as well as the coupling efficiency of the 

assembly. Successful designs of suitable SOI waveguides and tapers coupled to a 

SMF in this thesis will go a long way to assist researchers in manufacturing OEICs 

devices which will fulfil the desired need for an efficient, reliable and low cost 

coupling technique. The ultimate mass production of these OEICs will provide 

increased bit-rates to a single subscriber through the FTTH package.

As a sequel to the aforementioned, the technological achievements in the field of 

communication in recent years and the role of integrated optics within the broad field 

of communication in facilitating an efficient dissemination of information form the 

basis for the work carried out in this thesis. The primary aims and objectives of this 

research can be summarised as follows:
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(1) To review different fabrication technologies and suitable materials in the 

production of optical waveguides especially the complementary metal oxide 

semiconductor (CMOS) process for silicon integrated circuits.

(2) To investigate different approaches to the solution of optical waveguide 

problems and to provide a basis for the effective employment of the finite 

element method.

(3) To develop and implement the rigorous, accurate and efficient finite element 

method based on vector H-field variational formulation for the analysis of 

optical waveguides with arbitrary cross sectional shapes.

(4) To implement the LSBR in conjunction with the accurate modal solutions 

obtained from the finite element method in order to develop accurate coupling 

properties of MMI coupler waveguides.

(5) To apply full-vectorial finite elements techniques developed and implemented 

in (3) in the study of designing a spot-size to solve mode-matching problems 

in optoelectronics.

(6 ) To develop and implement an efficient and robust beam propagation method 

which combines the finite element discretization in the transverse domain with 

the stable z-stepping Crank-Nicholson scheme in the longitudinal direction.

(7) To apply the developed and implemented beam propagation method in the 

design and optimisation of a novel semiconductor based (AlGaAs-GaAs) spot- 

size converters by using full vectorial numerical methods implemented in (3) 

to the characterisation of GaAs and vector H-field variational formulation of 

tapers.

(8 ) To apply the full vectorial numerical techniques implemented in (3) and (6 ) in 

the study of designing and characterising various optical waveguides involved 

in SOI spot-size converter issues in optoelectronics.

The above research is aimed at providing the optical designer an intuitive grasp of the

design and operation of optoelectronic integrated circuit devices and therefore to

supply a useful tool to the systems developer to be used in the novel design of optical

devices.
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1.5 Structure Of The Thesis
The work presented in this thesis is based on the research carried out by the author in 

the use of the vector H-field variational formulation based modal analysis method in 

the study of various types of taper waveguides together with the versatile and robust 

full vectorial beam propagation method. Both direct and indirect semiconductors, 

AlGaAs-GaAs and silicon-wire taper waveguides were investigated Other work was 

also carried out with LSBR on MMI couplers program on spot-size converters and the 

following discussion gives the summary of the chapters in this thesis starting with this 

introduction as the first chapter. The first chapter gives a brief history of light relevant 

to this thesis, from the beginning to the present day highlighting eminent scholars who 

have contributed to the development of light technology over the years. This is 

followed by a brief account of the development of light as a means of communication. 

The advent of communication systems such as laser copiers, laser printers, barcode 

readers, CD players to name a few find their way to consumers. The development of 

fibre optics as a means of transporting light was given. Other problems such as 

attenuation, storage, device compatibility, packaging etc, which confronted 

researchers in the world of optical communication technology, are mentioned. The 

development of integrated optical technology leads to the optoelectronic integrated 

circuits, the science of combining electronics and optical devices on a chip for 

optimum performance. A brief account of evolution of photonic devices such as 

waveguides, lasers, modulators, switches, photodetectors, oscillators, antenna etc. is 

given.

Chapter 2 treated the background theory which covers the light as an electromagnetic 

spectrum and discuss the fundamental laws of optics as well as the Clerk Maxwell’s 

equations of electromagnetics on which foundation this theory is based. This section 

also provides a brief description of some representative and important numerical 

techniques useful for waveguide and millimetre-wave structures such as analytical 

and numerical solution techniques for optical waveguides, to achieve. In particular, 

Chapter 2 presents a discussion of the fabrication methods which involve various 

epitaxial growth techniques, photolithographic processes, and etching techniques. The 

CMOS processes for silicon integrated circuits are also discussed.

Chapter 1 Introduction
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In chapter 3 the theoretical formulation of the finite element method as a powerful 

numerical tool in analysing optical waveguides is presented. This is followed by a 

brief history of the finite element method is presented with its importance in analysing 

any type of waveguide. The fundamental mathematical relations derived from 

Maxwell’s equations for the application of this approach in the solution of optical 

waveguides is derived. Also a comparison of several variational formulations is 

presented with an emphasis on the vector H-field finite element formulation. The 

utilisation of triangular elements, the shape functions, and the infinite elements is 

undertaken in order to obtain the propagation constants and the field profiles of 

different modes propagating through a uniform optical waveguide. The problem of 

spurious modes is investigated and the penalty function method is introduced to avoid 

the appearance of the spurious modes.

Chapter 4 deals with the theoretical formulation of the versatile beam propagation 

algorithms based on finite element discretization in the transverse cross-section and 

finite difference discretization in the z-domain. The robust perfectly matched layer 

(PML), the Pade wide angle approximation, Crank Nicholson and their applications to 

the tapers propagation along the longitudinal direction are all taking into 

considerations and they present an excellent model. The propagating power, the spot- 

size and transmission loss in direction of propagation (including evanescent radiation 

loss) can be calculated arbitrarily. Finally the overlap integral (OI) is incorporated 

into the algorithm to calculate the coupling efficiency between a PIC and a SMF for 

different Gaussian radii consecutively.

In chapter 5 results of the application of the VFEM and LSBR to design and optimise 

a novel semiconductor based (AlGaAs-GaAs) 3-core multimode interference (MMI) 

couplers. The LSBR is utilised in the calculation of the transmission, reflectance and 

coupling efficiency of the butt-coupled MMI and SMF.

Chapter 6  is devoted to the applications of the VFEM and FVBPM in a rigorous study 

of a novel semiconductor based (AlGaAs-GaAs) spot-size converters respectively and 

their results are compared. Lateral, vertical and combined lateral and vertical tapers
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were investigated and their coupling efficiency between a PIC and a SMF, the 

propagating power, the spot-size and transmission loss in direction of propagation 

were calculated and results presented.

Chapter 7 deals with a painstaking study of the applications of VFEM and FVBPM in 

the design and optimisation of a simple and realistic monolithically integrated silicon- 

on-insulator based waveguide spot-size converters for efficient and diverse butt-joint 

coupling to single mode optical fibre. The fabrications of these SOI-based waveguides 

are easy and can be obtained by mass production through the CMOS. The 01 and 

Gaussian algorithm are used to determine the coupling efficiency. Tapered spot-size 

converters with various high-index SOI and a connecting secondary polymeric 

guiding are investigated in this work.

Chapter 8  consists of summary of the major achievements of the work that has been 

reported in this thesis. Conclusions are drawn on all these aspects. Some ideas and 

suggestions for future works are made. These suggestions will help in the 

advancement of the optoelectronics technology in foreseeable future.

The thesis ends with sections devoted to following:-

1. References’ list cited throughout the thesis.

2. List of publications relevant to this work by the author.

Chapter 1 Introduction
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Chapter 2 Background Theory & Techniques

Chapter

Background Theory & 
Techniques
2.1 Background Theory
Much has been said about light propagation in optical fibre and other optical 

waveguide devices to the extent that one need to examine the underlying principles 

guiding the transmission of light in these devices. The field of integrated optics can 

broadly be classified into optical fibre waveguides and the optical integrated circuits 

(Hunsperger, 1984). The optical integrated circuit (OIC) can be regarded as the 

optical equivalent of the conventional electrical circuit, where the fundamental 

material that interconnects the various devices of an OIC is the optical waveguide. 

Unlike electrical circuits where the signal is carried by a current, the signal in an 

optical waveguide travels in distinct optical modes. A mode can be regarded as the 

spatial distribution of optical energy in one or more dimensions. The mode can also be 

regarded as a packet of electromagnetic modes with energy quantized to discrete
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levels separated by the energy of a photon. The energy of a photon in a mode of 

frequency v is

E = hv = hco 2.1

Where h = 6.63 x 10" ’4 J-s is Planck’s constant and h = h/2n. Energy may be added 

to or taken from this mode in units of hv (Saleh and Teich, 1991). Therefore light is 

made up of particles generally called photons which has zero rest mass and carries 

electromagnetic energy and momentum.

In this section, Maxwell’s equations for the propagation of waves in optical 

waveguides have been presented, and different types of waveguides are then 

reviewed.

The simplest and the most basic type of optical waveguide is known as the three layer 

dielectric waveguide or an asymmetric slab waveguide which is shown in Fig. 2.1.
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ns

Fig. 2.1. Schematic three-layer dielectric waveguide.

Here ng, ns and n, represent the refractive indices of the guide, substrate and the upper
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cladding, respectively. By loading a thin film with a higher refractive index than 

either the substrate or the upper cladding on the substrate surface, the light can be 

trapped inside this film, which is often called the guide. So the relationship among the 

refractive indices is nc < ns < ng and t is the guide thickness. However, in most cases, 

the upper cladding is air, giving nc = 1. When ns = nc, the waveguide is called a 

symmetric slab waveguide.

A three-layer dielectric optical waveguide is shown in Fig. 2.1, and it may be assumed 

that z is the direction of propagation and the waveguide structure is homogeneous in 

the z-direction. It can be noted from the Fig. 2.2 that a small amount of light is 

reflected back into the dielectric (internal reflection) and some light is transmitted. In 

the case when the refraction angle 62 is 90°, the angle of incidence is known as the 

critical angle 0C and total internal reflection (TIR) occurs.
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Fig. 2.2 Ray diagram showing refraction and reflection in a slab waveguide.

Consider a coherent light wave incident at an angle 0j between the wave normal and 

the normal to the substrate-guide interface, as shown in Fig. 2.2. By using Snell’s law 

the refraction can be expressed as (Kogelnik, 1990),
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n ^ = sm £  2 2

n g sin 6 X

where is the exit angle of the refracted wave AB.

Similarly, for the guide-cladding interface, the Snell’s law gives,

nc sin6  2  3

ng sin 6 2

where O2 is the angle of the refracted ray BC, with the normal to the guide-cladding 

interface.

The so-called critical angles 0S and Qc at the guide-substrate and at the guide-cladding 

interfaces, respectively, are determined by (Koshiba, 1992),

sin0s =—  2.4
n s

sin9c =—£- 2.5
n*

Here, 0C < 6 ,[, based on the assumption that nc < ns < ng. If the angles of incidence to 

these two interfaces exceed the critical angles, then the total internal reflection 

phenomenon occurs and the light can be guided inside the material.

Since ng > nc, the incident ray is refracted into the guide region, following the path AB 

and when 9 < 0C, total reflection conditions are not met at the guide-cladding 

interface, and thereby the ray is refracted to the cladding side. There is essentially no 

confinement of light and the electromagnetic mode corresponding to this is called a 

“radiation mode evanescent waves”.
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When the incident angle <9 is greater than the critical angle, 0C, then the total internal 

reflection occurs and the light ray will follow the path BD. At the guide-substrate 

interface, if the incident angle 6  < 9S, then the light ray may refract back in to the 

substrate through which the light escapes from the structure. These are called 

“substrate radiation modes”.

Finally when (9 is large enough, i.e. both 6S; 9C <9, total internal reflection occurs at 

both interfaces. Then the light, once it is inside, is trapped and confined in the guide 

and propagates in a zig-zag path along the +z direction. These modes are called the 

‘guided’ or ‘bound’ modes as shown in Fig. 2.3.

cladding nc

Fig. 2.3. Wave normals of the zig-zag waves corresponding to a guided mode in a slab waveguide.

These modes can be classified as either Transverse Electric (TE) or Transverse 

Magnetic (TM) modes. In the TE mode, the longitudinal electric field Ez = 0 and in 

TM mode the longitudinal magnetic field Hz = 0. These waves travel with a wave 

vector kng in the direction of the wave normal where the absolute value of k is,

2.6
A c

k is called the wavenumber and (o; A and c are the angular frequency, free-space
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2.10

for the TM waves.

From the above eigenvalue equation (2.8), the propagation constant /? of a guided 

mode at a given angular frequency a) can be calculated. Since the angle of incidence, 

60s discrete, only a limited number of discrete values are allowed for ¡3. Therefore the 

guided mode is sometimes called the discrete mode or discrete spectrum. On the other 

hand in the radiation mode, the angle of incidence 6  and the propagation constant /? 

are continuous quantities. For this reason it is called the continuous mode or the 

continuous spectrum.

For guided modes, ¡3 is bounded by the plane wave propagation constants of substrate 

and guide (Kogelnik, 1990).

From (2.11) it is convenient to define an “effective refractive index’' (Koshiba, 1992);

kns < (3 < kn 2.11

2.12

which is bounded by,

2.13

For TE-modes Ey = Ez = Hx = 0

Acos(/tf -  (y>t )
E x = - Acos(yy-0) ( 0 < y < t )

Acos(/tf+ 0)c6’ (y <0)
2.14

For TM-modes /: v = I f  = / /  =()
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H ,
Acos(/tf -  (y > t)
Acos(/ty-^) ( 0<y <r )

A co s (k? + (¡>)ê  (y < O)
2.15

The electromagnetic field components are continuous at the boundaries of core-

cladding interface (y = t), where the wavenumbers in core (ng) and cladding (nc and 

ns) region are given as:

K = ^ k 2n] -  J32

< a  = yl/32 - k 2n2c 2.16 

Z = 2 ~ k 2n;2

k = a>^£ M 2.17

After eliminating the constant A, the eigenvalue equation for the TEm mode is 

obtained:

tan(w + (/))- — 
u

2.18

tan(w -  (p) 2.19

where

u = kcl

• w = d;a 2 . 2 0

q - a a

The eigenvalue equation can be obtained as:

mn 1------1- — tan
2 2

l [ i— + —tan
V« ) 2 [ u j

u = ( m  = 0 ,1,2,3, . . . . ) 2.21
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ÌH71 ---- + 1 _j— tan (w ) 1----tan r i )
2 2 l  u ) 2 U  J

2 2 2 V =w +u )

r
■n]

2.22

2.23

2.24

When the wavelength of the light signal and the geometrical parameters are 

determined, in other words, the normalized frequency v and the asymmetric parameter 

y, then the propagation constant can be easily determined from the above equations. In 

order for the transverse wave number to be real for the core region, the following 

condition should be satisfied:

Fig. 2.4. Refractive index profile of the slab waveguide (a) and Field distribution for TEm modes, 

where m  = 0, 1,2... (First and higher order modes) (b).

ns ^  Y  -  n* 2.25

where /? /  k is the refractive index itself for the plane wave

The effective index may be expressed as:
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P 2.12
k

When ne < ns the electromagnetic field in the cladding region is oscillatory along the 

transverse direction, this dissipation of the field is called the radiation mode or 

evanescent waves (non-guided mode). The evanescent waves dissipation in the 

cladding or substrate region is another loss mechanism in waveguides and fibre optics. 

This critical condition where the field is cut off and becomes a radiation mode or 

evanescent waves is called the “cutoff condition” and is expressed by:

where, b is termed the normalized propagation constant and it can be expressed as:

The eigenvalue equation can be rewritten by using the normalized frequency and the 

normalized propagation constant as:

ft = kns and b = 0 2.26

The condition for the guided mode is

Q < b< \ 2.27

2.29
q = v jb  + y

When the waveguide is symmetric with nc = ns, y = 0 and the dispersion equations 

(2 .2 1 ) and (2 .2 2 ) will be reduced to:
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inn + tan 2.31u =
2

2.32

or in general form:

1 - b
b 2.33

Since the parameters k  and y  are all functions of the propagation constant /?, the 

eigenvalue equation is obviously a function of /? as well. However, it is a 

transcendental equation (which means the solution cannot be written in closed form), 

so the /3-values must be found numerically.

Optoelectronics materials are semiconductors which can be broadly classified into 2 

types, direct and indirect bandgap materials. Optical emission and absorption are 

fundamental processes which are responsible for the conversion of electrical energy 

into optical energy and vice versa. Therefore optoelectronics is based on the energy 

conversion processes, for example Light-emitting diodes (LEDs) and Laser diodes 

convert electrical energy into optical energy. Photodetectors convert optical energy 

into electrical energy. The bandgap of the semiconductor materials determine their 

electrical properties as well as their optical properties such as the absorption of 

photons and the probability of radiative transitions of electrons from the conduction 

band to the valence band. For the electron transitions to occur between the conduction 

and valence band and vice versa, two conditions have to be met viz:

> The energy has to be conserved.

> The momentum has to be conserved.

2.2 Optoelectronics Materials
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We will consider semiconductor materials generally but emphasis will be placed on 

the materials used throughout this thesis.

2.2.1Direct Bandgap Materials

Every time an electron recombines with a hole one photon is emitted. This means that 

the amount of optical energy (power) produced is equal to the number of electrons 

that recombine multiplied by the energy of the bandgap. Transitions can take place 

from any energy state in either band to any state in the other band. In this case, the 

energy and the momentum are easily conserved. The minimum of the conduction 

band (CB) is directly above the maximum of the valence band (VB) as shown in Fig. 

2.5a. When an electron makes a transition from CB to VB, recombination takes place 

with a hole and a photon with bandgap energy is emitted, i.e. E = Eg as shown in Fig. 

2.5a. No phonon is needed for this transition to take place momentum is conserved. 

Phonons are quantized lattice vibrations present in crystals like semiconductors at 

room temperature. Typical examples of direct bandgap materials are GaAs, InP, AlAs, 

Gai_xInxP, AlxGai_xAs, InxGai_xAs and InxGai_xAsyPi_y.

2.2.2 Indirect Bandgap Materials

In indirect bandgap material, energy of the electron is also conserved when transition 

takes place between the CB and VB as explained in the last section, but the 

conservation of momentum is a problem. In this case the maximum of the VB is not 

directly under the minimum of the CB as shown in the Fig. 2.5b below, additional 

energy is needed for transition to take place and momentum conserved. The 

magnitude of momentums or the wave vectors ‘k’ of photons are a lot smaller than 

that of electrons in the semiconductors. To bridge this large difference between the 

magnitude of a momentum and electron when transition takes place, a phonon has to 

be emitted or absorbed in order to conserve the momentum. In Fig. 2.5b, Eg is 

bandgap energy and Ep is the phonon energy. Typical examples of indirect band gap 

materials are Si, Ge, SiGe and GaP

Chapter 2 Background Theory & Techniques
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the optical waves in a well defined region and guide their propagation. The 

waveguides structures can be made from crystalline or non-crystalline in nature. The 

optical waveguides can be grouped into three major categories viz: (1) Planar 

waveguides, (2) Channel waveguides and (3) Optical fibres as shown in Fig. 2.6 

below.

(a) (b) tc)

Fig. 2.6. Optical waveguides: (a) slab; (b) channel; (c) fibre.

2.3.1 Planar Waveguides
Planar waveguides are the structures that confine optical beam laterally in a single 

dimension. These can further be grouped into two categories viz: (1) Step-index and 

(2) Graded-index.

The step-index planar waveguide is the simplest form for light confinement and it is 

usually composed of a uniform planar core with a constant refractive index 

(homogeneous planar, ng = constant), sandwiched in between two dielectric media of 

lower refractive indices. The homogeneous upper medium or cladding has a refractive 

index nc, and the lower medium with refractive index ns is known as the substrate. If it 

is assumed that ns = nc then the structure is known as symmetric planar waveguide 

and if ns ^ nc then the structure is asymmetric planar waveguide.

The graded-index planar waveguide is one in which the high index core is not 

homogeneous and the refractive index depends on the depth of the structure. The 

refractive index is maximum at the top surface and decreases with depth until it 

reaches the value corresponding to the refractive index of the substrate.
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2.3.3 Optical Fibre Waveguides
This type of waveguide is completely different in many aspects such as the geometry, 

material, fabrication methods and applications as well. Optical fibres have cylindrical 

geometry, and consist of a cylindrical core of radius r, refractive index ng, surrounded 

by a cladding with refractive index nc. Optical fibres can also be grouped into step- 

index fibres with the homogeneous core in which ns is constant throughout and 

graded-index fibres in which the refractive index of the core ng varies as a function of 

the radial distance i.e. ng = ng(r). This is very useful when high transmission 

bandwidth is required for long-distance optical communications. Fig. 2.8 show that 

the light is confined in two dimensions due to the total internal reflection occurring at 

the core-cover interface.
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Fig. 2.8. Optical path followed by a ray of light inside an optical fibre. (Linfante, 2003)

2.4 Fabrication Technologies
This section deals with most common fabrication methods and technology normally 

used in OEICs and device components. These are numerous depending on the 

substrate material on which the optical device is to be fabricated. Deposition is used 

mainly for insulation and passivation of discrete devices and integrated circuits. 

Deposition processes involve the substrate temperature, the deposition rate, film 

uniformity, the morphology, the electrical and mechanical properties, and the 

chemical composition of dielectric films. Diffusion and ion implantation are two 

major processes used to introduce controlled amounts of dopants into semiconductors. 

They are used to dope selectively the semiconductor substrate to produce either an n- 

or p- type region. Both processes have the advantages of precise control of the total
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amount of dopants, improved reproducibility of impurity profiles, and lower- 

temperature processing. They can also be used for fabricating discrete devices and 

integrated circuits. Diffusion is used to form a deep junction like the N-well in CMOS 

process while ion implantation is used to form a shallow junctionm like a source/drain 

junction of a MOSFET (Sze, 1985). Deposition techniques are widely used for silica, 

GaAs, and InP substrate while diffusion techniques are commonly used for lithium 

niobate. In the case of optical circuits where the lateral dimensions are only a few 

microns, the fabrication technology needs photolithographic processes. In diffusion 

techniques, photolithographic masks are used to open the channels through which the 

diffuse material enters the substrate. One can also deposit a previously mapped out 

material to be diffused directly onto the substrate. Generally for waveguides 

fabrication, the material is initially deposited on the substrate surface and geometrical 

dimensions are defined using etching. The laws governing the diffusion processes are 

the Fick’s laws of diffusion in which the 1st law states that in steady state, the 

concentration within the diffusion volume does not change with respect to time i.e.

Optical integration for optical communication devices can be achieved in two ways, 

(1) serial integration and (2) parallel integration. Serial integration can be described as 

one in which different elements are interconnected on optical chip for example laser 

and driver, modulator and driver electronics, detector and receiver electronics to name 

a few. Parallel integration is one in which the chip is built by bars of amplifiers, bars 

of detectors and wavelength multiplexors or demultiplexors. On the other hand optical 

integration can be broadly classified into two groups namely (1 ) monolithic 

integration which is the assembly of all the optical elements including sources, 

electronics, light controls and detectors on a single substrate and (2 ) hybrid integration

J = - D  V0 2.34

The Fick’s 2nd law relates to non-steady state when the concentration within the 

diffusion volume changes with respect to time and can be written as

2.35
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in which there are different modules such as the optical chip, lasers, modulators or 

detectors, built separately different substrates are directly connected to integrated 

photonic device by optical fibres. Monolithic integration is widely used in 

semiconductor materials especially Silicon-on-insulator (SOI), GaAs, and InP 

(Lifante, 2003).
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2.4.1 Epitaxial Growth Techniques
This section deals with various methods of growth techniques (Moerman, 1997), 

which are discussed below.

2.4.1.1 Liquid Phase Epitaxy (LPE)

In the LPE method, the appropriate compositions of each material are melted into a 

saturated solution of Ga, Al, and As for AlxGai„xAs, and Ga, In, As, and P for InxGai_ 

xAsyPi.y. Dopants whether n or p types normally used for concentration are added to 

the molten solutions as required. The solutions are allowed to cool and crystallized or 

supercooling takes place at the substrate interface and the growth is allowed to take 

place under isothermal conditions. In general the composition of epitaxial layer 

depends on the composition of the molten solutions, the growth temperature, and 

substrate orientation. For the growth of GalnAsP on InP substrate, the composition 

must be well chosen so that the epitaxial layer is lattice-matched to the InP and the 

energy gap Eg is also matched. This is not a problem with AlGaAs because its system 

is fairly well lattice-matched over its entire range. The thickness of the epitaxial layer 

depends on the size of the molten composition, cooling rate, growth time, and degree 

of supercooling if it takes place. In the absence of supercooling, the thickness depends 

mostly on total temperature change during growth if the cooling rate is very slow.

LPE is extremely useful for laser diode fabrication. It has the advantages of being 

cheap to set up and can handle Aluminium growth. The disadvantages are that the 

thickness of epitaxial layers can be difficult to control, especially when growing thick 

layers in the millimetre range. It has poor uniformity over large areas and can only
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handle small, thin layers effectively. The optical loss is very high in this method 

compare to other most common methods like VPE, MBE and MOVCD. Roughness at 

the interface may be responsible for this loss.
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2.4.1.2 Vapour Phase Epitaxy (VPE)

Vapour phase epitaxy (VPE) is very useful in the growth of high-purity GaAs and InP 

epitaxy layers. It uses chloride transport in a hot-wall reactor and this is not good for 

A1 compounds because of their low melting point. It is therefore good for the growth 

of GaAs on GaAs and GalnAsP on InP. VPE uses either trichloride or hydride 

methods to generate the vapours used in the growth process. High-purity H2 is passed 

into a reactor chamber which is temperature controlled. There is chemical reaction 

between ASCI3 , Ga, and H2 . The result is a mixture of arsenic vapour and Gallium 

chloride which is then moved straight into deposition zone where epitaxial growth 

takes place on the substrate. The trichloride offers the advantage of higher purity 

while the arsenic hydride offers the advantage of a simpler system for growing the 

entire range of lattice-matched InP layers.

The advantages of the VPE are that it gives a good epilayer thickness control, good 

uniformity over large wafers, and good surface interaction. Selective growth can be 

achieved over submicron dimensions. Low loss can be achieved but not as good as 

MBE or MOCVD.

2.4.1.3 Metal-organic Chemical Vapour Deposition 

(MOCVD)
Metal-organic chemical vapour deposition (MOCVD) (Yamazaki et al., 1997; 

Kasukawa, 1997), is also known as metal-organic vapour phase epitaxial (MOVPE) 

layer technology (Aoki et al., 1996), but it uses cold-wall reactor and is therefore 

suitable for Aluminium compounds growth technology. It is good for growing 

AlGaAs on GaAs. The technology is usually carried out by putting required amounts 

of constituent elements in the form of metal alkyds into the cold-wall quartz reactor.
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The chamber can be operated at room temperature or at low pressure. Dopants can be 

introduced either in the form of metal-organics like Zn(C2H5 ) 3 or in the form of 

hydrides like SiH4 or H2 S. The substrate is placed on a heated carbon crucible.

The metal-organics decompose on the hot substrate and growth takes place primarily 

on this hot surface after some chemical reaction. For example, GaAs grown from 

trimethyl Gallium and arsine vapour, the chemical reaction at the substrate is

Ga(CH3 ) 3 + AsH3 -----► GaAs + 3CH4

The MOCVD has got so many advantages over previous techniques. It gives a good 

epilayer thickness control. It exhibits good uniformity, good surface interaction and 

good control of heterojunction interfaces. Selective growth can be achieved utilizing 

MOCVD and it has lowest losses for GaAs/AlGaAs waveguides.

2.4.1.4 Molecular Beam Epitaxy (MBE)
The Molecular Beam Epitaxy (MBE) (Colas et al., 1990; Bossi et al., 1991), is an 

ultra-high-vacuum technique in which all the constituent elements initially heated to 

vapour are evaporated onto a heated substrate where they become molten enough to 

form epitaxy layer when condensation takes place. The composition of the epitaxial 

layer is controlled by controlling the temperature of each oven separately. The growth 

rate of MBE is very slow, which makes the precise control of layer thickness possible. 

Therefore long time is needed to grow thick layers. The epitaxial layers are very 

uniform and have very smooth surfaces.

MBE technology is very good for growth of waveguides and components for quantum 

wells and superlattices. Losses exhibited by MBE waveguides i.e. waveguides grown 

by MBE are low and are comparable to those grown by MOCVD. During the growth 

processing it is possible to use masking above the substrate to limit growth to selected 

areas of the wafer and method can also be used to produce tapers. This is useful in 

obtaining direct fabrication of geometrical dimensions for the integrated circuits 

especially the submicron dimensions

Chapter 2 Background Theory & Techniques
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2.4.1.5 Selective Area Growth (SAG)
In this process the substrate is covered by a dielectric mask on which no deposition 

takes place. The smaller the window of the dielectric mask, i.e. the larger the mask 

itself, the larger the growth rate because the reactor pressure becomes higher (Brenner 

and Melchior, 1993), and this can be used to produce a vertical taper by butt-joint 

coupling. A butt joint is a joinery technique in which two waveguides are simply 

joined end to end together. Initially the device layers are grown, then the substrate is 

partially covered by a dielectric mask only leaving the taper region unmasked. The 

device layers are then removed in the unmasked or taper region. Finally a selective 

regrowth is performed to form the taper. This technique needs at least one regrowth. 

A second regrowth can be done for the cladding layers. The main advantage of the 

butt-joint is its flexibility to separately design the device layers and the taper layers.

2.4.1.6 Shadow Masked Growth (SMG)
This process can be used for a monocrystalline (Moerman et al., 1994; 1995), or 

silicon (Aoki et al., 1996; 1997), mask that is fixed on a spacer above the substrate. 

The growth rate during the epitaxial growth through the mask window is influenced 

by the reactor pressure and the lateral dimensions of the shadow mask. Thickness 

changes are fully controlled by the lateral dimensions of the shadow mask and the 

reactor pressure. The disadvantage of this technique is that additional growth of the 

shadow mask and an additional processing step to remove the shadow mask. This 

disadvantage can be overcome by using a mechanical mask instead of a 

monocrystalline mask, e.g. a silicon mask.

2.4.2 CMOS Process -  For Silicon Technology
This section deals with the Complementary metal-oxide-semiconductor (CMOS) 

process which is considered by scientists as economically most important technology 

for the fabrication of microelectronic circuits especially silicon integrated circuits. 

Initial technology of CMOS process is a One-well process. Later developments give 

rise to new process known as Twin-well process shown in Fig. 2.9 (Zimmermann, 

2000).
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2.4.2.1 One-well Processes

The one-well process makes use of epitaxial silicon wafers in which the substrate is P- 

type with a required amount of dopant concentration of about 2x10  cm’ . A silicon 

wafer of a certain thickness about 12 /xm is used as epitaxial P-layer with a different 

amount of dopant concentration 2 x 1015 cm"3 is deposited on the substrate. The N 

channel MOSFET obtains only low power implant instead of a deep P well and the 

performance of the well is affected. As a result only N well is formed. The twin-well 

process was developed to improve the poor performance of the one-well and to 

optimize the N- and P-channel transistors independently for CMOS circuits.

2.4.2.2 Twin-well Processes

A typical submicrometer CMOS process can be divided into seven major steps:

(1) A P-type silicon substrate with N epitaxial layer doped to about 1013 cm' 3 are 

initially needed to start the well formations. Twin-well formations are obtained by 

N- and P-type diffusions and there is independent monitoring of the doping 

profiles in each well.

Fig. 2.9. Schematic cross-section of a CMOS chip. A typical CMOS process 
can be divided broadly into seven major steps. (Zimmermann, 2000)



(2) The next step is the LOCOS, (LOCal Oxidation of Silicon) field isolation in which 

the channel-stopper regions are formed which isolate the wells from each other 

electrically. A photoresist mask is used to implant boron selectively through the 

oxide or nitride layer into the silicon, where the channel-stopper is desired. The P- 

type channel-stopper is needed to increase the impurity density under the field 

isolation in P-well regions. Without the channel stopper, there may be diffusion 

between two neighbouring N-channel metal oxide semiconductor field effect 

transistor (MOSFET) due to a large amount of positive fixed charge by more 

LOCOS oxidation.

(3) The ion implantation for the N- and P-MOSFETs are then formed in order to 

adjust the threshold voltages. The threshold implantation for the N-MOSFET is 

done in two steps. Firstly a thin oxide is grown prior to the implantation to prevent 

ion channelling and the doping of the surface channel for the N-MOSFET is done 

by boron or BF2 implantation. In the second step, the boron implantation is done 

to create a buried-channel P-MOSFET simultaneously. The second threshold 

implantation is done without a mask into all active regions. The resist and all the 

thin oxides are then removed to obtain a cross-sectional view before gate 

oxidation is carried out.

(4) The next stage is the gate definition in which the gate oxide is grown thermally in 

order to obtain a high oxide quality. Then polysilicon which acts as the gate 

electrode is deposited. The intrinsic polysilicon is then heavily doped to 1018 cm' 3 

with phosphorus in a gas of POCI3 at a temperature between 850 and 950 °C. In a 

polycide gate process, a silicide layer is then deposited on top of the polysilicon. 

The N type doped polysilicon layer is defined by lithograph and dry etching. The 

resist is removed and the gate electrode is exposed to the gate reoxidation or side 

wall oxidation to prevent gate-oxide integrity near the gate edges from 

degradation.

(5) Once the gate has been defined, the phosphorus (or lately the arsenic) is implanted 

as the N type lightly doped drain (LDD) dopant. Once the resist has been 

removed, oxide is deposited everywhere on the wafer and they are etched to form
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sidewall spacers. Arsenic is implanted for N source/drain formation of the N- 

MOSFET. A resist mask protects the P-MOSFETs from being implanted. This 

implant is used for the cathode formation of the PIN photodiode. Then boron is 

implanted selectively into the P-MOSFET source/drain regions using another 

resist mask.

(6) Two oxide layers are then deposited on the wafer. The first is undoped oxide and 

the second is boron and/or phosphorus doped which gives a phosphorus-doped 

silicon dioxide (otherwise known as P-glass) for improving the glass flow 

property needed for planarization or metallization. This is because P-glass when 

deposited at low temperatures becomes soft and flows upon heating and 

subsequently provides a smooth surface which is often used to insulate adjacent 

metal layers. The process is known as P-glass flow. Contact holes are then defined 

by lithography and opened by dry etching.

(7) In the semifinal process, the first aluminium layer for contact and interconnect 

formation is deposited and defined by lithography and dry etching. Other metal 

alloys dielectric layers and further metal depositions may follow. Finally, 

passivation takes place i.e. coating (a semiconductor) with inert or passive material to 

protect it from contamination. In industry, passivating oxide, nitride, or oxynitride 

layers are deposited by plasma-assisted deposition to protect the chip from 

impurities and humidity coming from the surroundings. The bonding-pad areas 

have to be defined and opened.
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2.4.3 Photolithograph and Etching Techniques
2.4.3.1 Photolithograph
Photolithography involves a mask usually made from glass which is produced with a 

pattern. The pattern is then transferred from the mask to the substrate (Syms, 1992). 

Light-sensitive organic materials popularly known as photoresists are always used in 

this process. They are grouped into two types, negative and positive optical resists 

depending on their reactions to radiation. The negative resists are polymerised with a
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(RAM) (Qiao and Wang, 1992) and the Wentzel, Kramers and Brillouin (WKB) 

method (Srivastava et al., 1987) are typically known analytical approximation 

solution techniques for such optical waveguides which is the most familiar example of 

a semiclassical calculation in quantum mechanics in which the wavefunction is recast 

as an exponential function, semiclassically expanded, and then either the amplitude or 

the phase is taken to be slowly changing. This method is named after physicists 

Wentzel, Kramers, and Brillouin, who all developed the method in 1926. In 1923, 

mathematician Harold Jeffreys had developed a general method of approximating 

linear, second-order differential equations, which includes the Schrodinger equation. 

But since the Schrodinger equation was developed two years later, and Wentzel, 

Kramers, and Brillouin were apparently unaware of this earlier work, Jeffreys is often 

neglected credit. Early texts in quantum mechanics contain any number of 

combinations of their initials, including WBK. The first group includes such 

approaches as circular harmonic point matching (Goell, 1969), the effective index 

method (Hocker and Bums, 1977), the spectral index method (Burke, 1990) and the 

Marcatili method (Marcatili, 1969). Some of the approximate methods provide very 

good results for the analysis of waveguides far from cutoff but many of these methods 

are not very suitable for the analysis of a wide range of important practical 

waveguides. In the case of 3-D optical waveguides for optical integrated circuits, 

hybrid mode analysis is required in order to satisfy the boundary conditions. 

However, the analytical approximation solutions developed for these guides do not 

treat them as hybrid mode and therefore, they are not suitable for accurately analysing 

the practically used 3-D optical waveguides. Marcatili’s method (MM), and the 

effective index method (EIM) can be treated as the typical analytical approximation 

solutions for 3-D optical waveguides.

Numerical solutions are the alternative to analytical approximate solutions can be 

classified into two groups, (1) the domain solution and (2) the boundary solution. The 

domain solution includes the whole domain of the optical waveguide structure as the 

operational area, where as the boundary solution includes only the boundaries as the 

operational area. The former is also called a differential solution, and the latter, an 

integral solution. Some of the examples of the domain solutions include the finite 

element method (FEM), finite difference method (FDM), variational method (VM),
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and multilayer approximation method (MAM). The boundary solutions include the 

boundary element method (BEM), point-matching method (PMM) and mode-

matching method (MMM).

2.5.1 Analytical Approximate Methods

2.5.1.1 Marcatili’s Method

The Marcatili’s method (Marcatili, 1969), is very useful for determination of modal 

fields and propagation constants of channel waveguides. It enables us to model 

waveguides geometry by using analytic approximate solutions to Maxwell’s equations 

derived by Marcatili in his paper since such a waveguide is difficult to analyse 

exactly. Such a structure shown in Fig. 2.10, will consist of a guide region 

surrounded on all sides by a confining medium of lesser refractive index. Knowledge 

of fields in the two slab waveguides, obtained by extending to infinity the width and 

height of the guide core, are used to approximate the field in the rectangular core.

y

Fig. 2.10. Cross-sectional representation of channel waveguide.

It is assumed that the modes are well guided i.e. far from the cut-off region. Only a 

small fraction of the mode energy radiates out to the other regions n?, iij, ¡14, n$.



Within the guide core, the field is assumed to vary sinusoidally and to decay 

exponentially within the substrate region. With these assumptions, the problem has 

been greatly simplified and by matching the boundary conditions along the walls of 

the core region only, the transcendental equations are derived for each transverse 

direction (Tamir, 1990).

The propagation constant is obtained from the simultaneous solution of the 

transcendental equations with the assumption that most of the power is within the 

guide region. This approach, even though valid for well-confined modes, gives poor 

results near to cut-off (Chiang, 1994). An exact scalar formulation has been reported 

by Kumar et al. (1983) for a similar rectangular structure used by Marcatili. By using 

perturbation techniques, more accurate propagation characteristics of practical 

integrated optical waveguides were obtained.

2.5.1.2 Effective Index Method

This is another analytic approximate solution for determining the propagation 

constants and modal field of the channel waveguides. The effective index (El) method 

was first proposed by Knox and Toulios in 1970 (Knox and Toulios, 1970) with a 

view of extending Marcatili’s method for the fundamental mode of a simple channel 

waveguide. Soon after, this method became one of the most popular methods for the 

analysis of optical waveguides. In this approach, the channel waveguide is treated as 

the superimposition of the two 1-D waveguides such that region 1 confines light in the 

y-direction while region 2 confines light in the x-direction as shown in Fig. 2.11. The 

propagating modes that evolved from the x-direction gives rise to the TM modes and 

the modes that evolved from region 1 in the y-direction gives rise to TE modes. The 

first step solves the transcendental equation for a vertical slab waveguide by applying 

the appropriate boundary conditions. The effective index obtained from the solution is 

used as the refractive index of the horizontal slab waveguide, and by solving the 

eigenvalue equation gives a good approximation to the effective index of the original 

waveguide structure. As only the solutions for slab waveguides are required, this 

method is significantly more efficient than those methods that solve the rectangular
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structure directly.

The advantage of the El method is that it can be applied to a wide variety of 

structures, including channel waveguides, strip waveguides and arrays of such 

waveguides (Chiang et al., 1996) and also for various types of optical fibres and fibre 

devices (Chiang, 1986a; Van de Velde et al., 1988). The weakness of the method is 

that it does not give good results when the structure operates near cut-off region. The 

simplicity and speed of the method have encouraged many engineers to search for 

different approaches that will improve the accuracy of the El method. Consequently, 

many different variants of the El method have been developed such as the El method 

based on linear combinations of solutions (Chiang, 1986b\ Van Der Tol and Baken, 

1988), or the El method with perturbation correction (Chiang et al., 1996).
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Fig. 2.11. A model for the effective index method



2.5.2 Numerical Methods
The rapid growth in the millimetre-wave, optical fibre, and integrated optics fields has 

included the use of arbitrarily shaped dielectric waveguides, which in many cases also 

happened to be arbitrarily inhomogeneous and/or arbitrarily anisotropic. Most of such 

cases of waveguide arbitrariness do not lend themselves to analytical solutions. 

Therefore many scientists have given their attention to construct numerical methods to 

solve such waveguides. Numerical methods may be used to solve Maxwell’s 

equations exactly and the results they provide are accurate enough for the 

characterisation of most of the devices.

Since the advent of computers with large memories, considerable attention has been 

paid to methods of obtaining numerical solutions of the boundary and initial value 

problems. Methods are usually evaluated in terms of their generality, accuracy, 

efficiency and complexity. It is evident from the review methods (Chiang, 1994; 

Vassalo, 1997) that every method represents some sort of compromise between these 

aspects. No method is superior to the other in all aspects. The optimal method should 

be the one that can solve the problem with acceptable accuracy but requires the 

minimum effort to implement and run in terms of man-power and computer capacity. 

The continuing improvement in computer power will make computational efficiency 

less of an issue in the future.

Some factors with regard to the selection of methods for analysing optical waveguide 

problems, based on reviews (Davies, 1972; Ng, 1974; Saad, 1985) are given, as 

follows:

( 1 ) the shape of the cross section of the structure, whether it is curved or 

polygonal or whether it is convex or non-convex.

(2 ) whether a method that can be realised as a computer program suitable for 

the automatic solution of a wide range of structures is needed.

(3) whether a computer program requiring human intervention or some 

exploratory work with the computer is needed.
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(4) the method should be programmable and it has to be written specially for 

each region of the structure separately.

(5) whether the dominant mode only, or a number of the higher order modes 

are required.

(6 ) whether the field distribution, or the cut-off frequency is needed, or the 

both are needed.

(7) the requirement of accuracy needed for eigenvalues and perhaps eigen 

functions.

(8 ) the accuracy of the method in modelling the dielectric boundaries and 

regions.

(9) the accuracy of the method in specific frequency ranges as an example, 

near the cut-off frequency.

(1 0 ) whether the method has a mechanism of generating spurious numerical 

solutions and if so whether the method can identify and/or eliminate them.

(1 1 ) the computational efficiency of the method, including its computer storage 

requirements.

In this section, a short overview of these commonly used numerical solution 

techniques is given.

2.5.2.1 The Boundary Element Method
The boundary element method (BEM) is interpreted as a combination technique of the 

conventional boundary integral equation method and a discretisation technique, such 

as the finite element method (Kagami and Fukai, 1984). The BEM is a boundary 

solution method and therefore the fields are needed only for the nodes which are on 

the boundaries of the region. The derivation of the integral equations with respect to 

the unknown fields at boundaries is obtained by using the method of weighted 

residuals or Green’s formula. These integral equations are then discretised to a set of 

linear equations to be solved for the numerical solutions.

The BEM can be used for the analysis of arbitrarily shaped discontinuities as FEM, 

but the BEM can be performed using far fewer nodes than by the FEM. Koshiba and



Suzuki have reported (Koshiba and Suzuki, 1986a) a numerical approach based on the 

BEM for analysis of discontinuity problems of TE and TM modes in a dielectric slab 

waveguide. Moreover, the BEM can handle unbounded field problems easily and 

therefore has the possibility of modelling domains extending to infinity without an 

infinite element analysis which is often performed in FEM. However, the BEM can 

only be applied to homogeneous structures (Hirayama and Koshiba, 1989), and also it 

has been known that the matrices involved are dense matrices unlike those in FEM 

which are sparse. Therefore the FE method can be treated as more numerically 

efficient.

2.5.2.2 The Point Matching Method
The point matching method (PMM) is one of the oldest and simplest ‘boundary 

solution’ techniques for the analysis of isotropic homogeneous dielectric waveguides. 

Its application was first shown by Goell (Goell, 1969) to investigate the propagation 

characteristics in rectangular cross section dielectric waveguides. Goell’s numerical 

analysis is based on expressing the internal and external fields in terms of circular 

harmonics. The fields inside the dielectric and outside the dielectric are expressed by 

a sum of Bessel functions and modified Bessel functions multiplied by trigonometric 

functions, respectively, and their derivatives. By matching the tangential fields at 

optimally selected points around the boundary called ‘matching points’, a system of 

linear equations is obtained. By applying the condition of nontrivial solution, a 

characteristic equation including the propagation constant is obtained and solved for 

the appropriate eigenvalues. The original matrix equation is then solved for each 

mode eigenfunction by standard matrix techniques.

The PMM is capable of use for analysing dielectric waveguides with arbitrary cross 

sections and composite structures, and also computing coupling coefficients between 

two rectangular rods. Improved results for the PMM were reported (Cullen et al., 

1971), by rotating the grid of equiangularly spaced matching points in order to place a 

matching point at the comer of a rectangular dielectric waveguide. However, the 

PMM is not suitable for the analysis of 3- dimensional waveguide structures with
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inhomogeneous index distribution, such as graded index fibres.

2.5.2.3 The Mode Matching Method
The mode matching method (MMM), which is also known as the equivalent network 

method (ENM), is an approximate solution method for the analysis of open dielectric 

waveguides (Peng and Oliner, 1981). In this approach the structure is artificially 

bounded, and the waveguide cross section is viewed in terms of constituent parts or 

building blocks, which are usually portions of uniform dielectric layered structures 

interfaced by the dielectric step discontinuities. Then each constituent is analysed 

separately and all the parts are put together to comprise the final structure of interest. 

A transverse equivalent network for the structure is obtained by representing the 

uniform dielectric regions as uniform transmission lines and by characterising the step 

discontinuities as transformers. From this, the dispersion relation can be derived to 

obtain the waveguide propagation characteristics.

In the earlier analysis of the MMM, due to the artificial bounding of the structure, the 

continuous spectrum (Peng and Oliner, 1981) and TE to TM coupling at the sides of 

the waveguide are neglected. Dagli and Fonstad (Dagli and Fonstad, 1986) reported a 

modified approach, which takes into account the continuous spectra. Rather than 

artificially bounding the structure to discretise the continuous modal spectrum, here, 

they are discretised by converting integrals into summations using suitable basis 

function expansions. Koshiba and Suzuki (Koshiba and Suzuki, 1985; 1986b) 

reported a vectorial wave analysis of rectangular optical waveguides using the ENM, 

by taking the TE-TM coupling and the discrete-continuous spectrum coupling into 

account.

2.5.2.4 The Spectral Index
The spectral index (SI) method may be used to find quickly and easily the guided 

modes and propagation constants of semiconductor rib waveguides (Kendall et al., 

1989; Stem et al., 1990). Here the true open structure is replaced by slightly larger, 

partially closed one, which is simpler to analyse, in order to model the penetration of
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the optical field into the cladding. The spectral index method can be expressed as the 

following combination.

(a) In the region below the rib, the Fourier transform is applied in order to 

reduce the dimensionality of the problem to a one-dimensional structure, 

and the field is expressed in spectral space using Fourier transform.

(b) In the rib region, the wave equation is exactly expressed using Fourier 

series in terms of cosine and sine functions.

(c) The two solutions are linked by employing a transfer relationship and 

consequently, giving a transcendental equation which can be solved for the 

propagation constant of the original rib structure.

The presence of the strong discontinuities at the dielectric interfaces is dealt with by 

using an effective rib width and an effective outer slab depth.

The SI method has been extended to include rib coupler problems (Burke, 1989; 

1990), cases with loss and gain (Burke, 1994) and also it has been used to analyse 

multiple rib waveguides (Pola et al., 1996).

2.5.2.5 The Finite Difference Method
The finite difference method (FDM) is the oldest and probably the best known 

numerical method for the solution of boundary value problems. The importance of the 

FDM lies with the ease with which many logically complicated operations and 

functions may be discretised. In this method, the optical waveguide is enclosed in a 

rectangular box whose cross-section is divided into sub-regions. Operations are then 

performed not on continuous functions, but rather on values at discrete point sets on 

the grid. The major advantage of this method is that operations such as differentiation 

and integration are reduced to simple arithmetic operations, which lend themselves 

easily to algorithmic solutions. The walls of the rectangular box may either be electric 

or magnetic. The field at the boundaries of the walls is assumed to be negligible, 

allowing infinite elements with an associated decay factor to be introduced. A grid 

with all the dielectric boundaries on it is then used to represent the cross-section. The 

nodal field of an arbitrary node can be expressed in terms of the neighbouring nodes 

in the two transverse directions using a five-point formula, (Davies, 1989) of finite
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differences. The differentiation of the wave equation at the nodes is thus replaced with 

differences of the fields evaluated at the nodes. This approach leads to a large non- 

symmetric matrix, which puts constraints on the storage requirements. An iterative 

procedure using lower order modes is employed to avoid the storage of large matrices 

by solving directly the matrix eigenvalue equation (Chiang, 1994).

The FDM can also be formulated using the variational principle. The variational 

expression obtained is arranged into a set of coupled wave equations for each of the 

transverse directions, Hx and Hy. An eigenvalue matrix equation of the form 

Ax -A x = 0 can be formed which can be solve using sparse matrix techniques.

The accuracy of this method is determined by the size of the computational window. 

If the computational window is too large, convergence will be slow. A small 

computational window would, on the other hand, invalidate the assumption of zero 

field at the boundaries. As the distance between points is made sufficiently small, the 

method becomes increasingly accurate.

2.5.2.6 The Finite Element Method
The finite element method (FEM) is a well established numerical method for the 

solution of a wide range of guided wave problems. It can be very easily applied not 

only to optical waveguides of any shape, but also to optical waveguides with any 

arbitrary refractive index distributions. This method is based upon dividing the 

problem region into non-overlapping patchwork of polygons, usually triangular 

elements. The field over each element is then expressed in terms of polynomials 

weighted by the field values at the nodes of each element. The total field is found by 

the linear summation of the fields over each element. By applying the variational 

principle to the system functional, and thereby differentiating the variational 

functional with respect to each nodal value, the problem reduces to a standard 

eigenvalue matrix equation. This is solved using iterative techniques to obtain the 

propagation constants and the field profiles (Rahman and Davies, 1984a; Koshiba and 

Inoue, 1992).
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The accuracy of the FEM can be increased by using finer mesh. Number of 

formulations have been proposed, however, the full vectorial H-field formulation is 

the most commonly used and versatile method in modelling optical waveguides due to 

much easier treatment of boundary conditions. This method can accurately solve the 

open type waveguide problems near the cut-off region and much better results were 

obtained by introducing infinite elements to extend the region of explicit field 

representation to infinity (Rahman and Davies, 1984b). One drawback associated with 

this powerful vector formulation is the appearance of spurious or non-physical 

solutions. Suppression of these spurious solutions can be achieved by introducing a 

penalty term into the variational expression (Rahman and Davies, 1984c). In order to 

eliminate the spurious solutions completely, another approach is employed using the 

edge elements (Bossavit and Mayergoyz, 1989; Koshiba and Inoue, 1992).

In modelling more complex structures, the FE method is considered to be more 

flexible than the ED method, due to the ability of employing irregular mesh. A more 

detailed study of the FE method is presented in the next chapter.

2 .5 .2 J  The Beam Propagation Method
The methods considered thus far have been used to obtain the modal properties of an 

optical waveguide through the solution of a two-dimensional wave equation. Such 

modal properties of a waveguide can also be obtained through the solution of a three- 

dimensional wave propagation equation. This method was first proposed for the 

solution of non-uniform waveguide problems in anisotropic media by Feit and Fleck 

(Feit and Fleck, 1978).

The beam propagation method is based on different numerical techniques like the Fast 

Fourier Transform (FFT), the FDM and FEM. In this work, the FEM based BPM have 

been employed in which the perfectly matched layer (PML) boundary conditions, has 

been incorporated in order to effectively absorb the unwanted radiations. Also the 

Pade wide-angle approximation is used to account for accurate guided-wave 

propagating off-axis in the longitudinal direction. For the analysis of non-uniform
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waveguides, the beam propagation method is now widely accepted as the most 

powerful method available. However, for the analysis of uniform structures, this 

method is not as efficient as those designed specifically for two-dimensional wave 

equations, because it is required to discretise the structure in both the transverse and 

the longitudinal planes. To overcome these difficulties, a two-dimensional method 

such as the FDM or FEM is best employed.

2.6 Summary

In this section, the basic underlying principles such as Snell’s law, Fresnel formulas 

and total internal reflection are used to analyse the propagation of a ray of light in an 

homogeneous media. The classification of the guidedwave into TE and TM modes 

with appropriate boundary conditions was discussed. The fabrication technologies are 

also discussed. Most of the design materials reported in this thesis can be fabricated 

by using the epitaxial or deposition techniques. The following materials; silica, GaAs, 

InP substrates fall under the group which undergoes photolithographic processes and 

etching techniques after deposition because their lateral dimensions are just few 

microns. These materials are commonly used in practical situations and their material 

indices are used throughout this thesis. The epitaxial growth techniques are the 

popular deposition methods for materials like GaAs and InP, while complementary 

metal- oxide semiconductor (CMOS) is emphasised as the most important technology 

for the fabrication of microelectronic circuits especially silicon integrated circuits. 

The technology for Twin-well CMOS process and its usefulness is described. This 

section also deals with the computational techniques in which various analytical and 

numerical methods are described briefly. The advantages of numerical method over 

analytical method is emphasised and the FEM is highlighted as the main tool to be 

used throughout this thesis.
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Chapter 3

The Finite Element Method
3.1 Introduction
In the last six decades the finite element has gain recognition as one of the most 

versatile, popular and very useful numerical methods and has cut across various 

research fields of science and engineering such as aeronautics, soil mechanics, fluid 

mechanics, thermodynamics, electromagnetism, biomedical engineering, etc. Many 

systems of interest can be either physical or mathematical. The governing equations 

can be given in differential form or be expressed in terms of integral equations. The 

method was first introduced in 1943 by Courant (Courant, 1943), who used an 

assemblage of triangular elements as a way to get approximate numerical solutions for 

structural problems. A decade later, use of computer made it easy for numerical 

calculations to be done and their applications were embraced by the industry. It was 

not until 1956 that Turner, Clough, Martin, and Topp (Turner et al, 1956) introduced 

the finite element concept at the Boeing Aircraft Company and used this method as a 

useful tool to calculate the stress-strain relations for complex aircraft structures. The 

finite element method was not applied to electromagnetic problems until 1968
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(Ahmed and Daly, 1969; Silvester, 1969).The derivation of these governing equations 

may not be difficult but their solution by exact analytical methods is very tedious and 

sometimes impossible (Reddy, 1993). As a result approximate solutions are sought 

through the use of numerical methods. A numerical method in simple terms, is a 

technique which converts the infinite degrees of freedom of an unknown analytical 

solution to a finite set of unknowns which can then be solved computationally. The 

finite element method (FEM) is one such numerical technique for solving, with a high 

degree of accuracy, complicated boundary value problems.

The basic idea of the finite element method is to divide the region of interest into a 

large number of finite elements or sub-regions. These elements may be one, two or 

three-dimensional. The idea of representing a given domain as a collection of discrete 

elements is not new, it was reported that ancient mathematicians estimated the value 

of n  by representing the circle as a polygon with a large number of sides. The FEM 

has been developed on the variational methods such as the Rayleigh-Ritz 

(Zienkiewicz, 1977) and Galerkin methods or the weighted residual techniques 

(Zienkiewicz, 1977; Desai, 1979; Silvester and Ferrari, 1990). Both methods have 

their own disadvantage when it comes to solving problems numerically. Generally the 

solution starts with the governing differential equation and the assumption of an 

approximate solution which is substituted into the differential equation. The resulting 

approximate solution is in turn fed back into the equation and the process is repeated; 

this is known as iteration. The main disadvantage of these methods is that there is no 

specific way of choosing the trial functions used in the approximation and, it is 

difficult to construct the approximate functions for problems with arbitrary domains 

with changes in material properties. The variational method has some other difficulty 

since the approximation is applied over the whole domain. As a result, very high 

degree polynomials have to be used in order to describe the unknown function 

accurately. This creates a more complicated problem if the domain consists of 

interfaces which have abrupt material changes. Also for irregular shaped boundaries, 

it can be really difficult to impose the boundary conditions on the complicated trial 

functions. The FEM has advantage over the two methods in dealing with the problems 

mentioned above. The method is endowed with two basic features which account for 

its superiority over other competing methods. First, a geometrically complex domain
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of the problem is represented as a collection of geometrically simple sub-domains, 

called finite elements, avoiding the difficulties associated with the ‘whole domain’ 

techniques. Second, over each finite element the approximation functions are derived 

using the basic idea that any continuous function can be represented by a linear 

combination of algebraic polynomials.

In the past, the FEM has been used to solve complex engineering problems including 

structural analysis in the aircraft industry, heat transfer, fluid flow, and mass transport. 

In recent years it has found application in electromagnetic field problems. Most 

waveguide problems can be described through the use of integral or differential 

equations. These equations can then be solved using numerical techniques. The finite 

element method has established itself as one of the most powerful and accurate 

method for solving problems associated with the sophisticated integrated optical 

waveguides and microwave devices been developed today. The versatility of the 

method allows elements of various shapes to be used to represent an arbitrary cross- 

section. Each element could also be of a different material type, enabling a wide range 

of practical waveguides to be analysed. The type of waveguide problems considered 

in this thesis belongs to the class of eigenvalue problems and the emphasis will be on 

the vector H field formulation and the scalar formulation.

Chapter 3 The Finite Element Method

3.2 Application of finite element to optical waveguides
The following are the basic principles of finite element method.

• The discretisation of the system or region of interest into elements.

• The interpolating polynomials to describe the variation of the field within each 

of the elements.

Hence, instead of differential equations for the system under investigation, variational 

expressions are derived and the piecewise continuous function approximated by a 

piecewise continuous polynomial within each element. From the equivalent 

discretised model contribution from each element, an overall system is assembled. 

This can be regarded as a modified form of the Ritz-Galerkin method in which the
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trial functions are replaced with polynomial functions. In the classical analytical 

procedure where the region is not subdivided into regions, only the simplest structures 

with basic material properties can be considered. The finite difference method is the 

simplest of all the discretisation procedures and in the traditional version uses a 

rectangular grid as shown in Fig. 3.1 with nodes at the intersections of the orthogonal 

straight lines.

Chapter 3 The Finite Element Method

Such an approach is not particularly suited to irregular geometries with curved 

boundaries and interfaces since the intersections with the gridlines could be at points 

other than at the nodes. It is also not well suited to the analysis of problems in which 

there are steep variations of the field. The finite element method, on the other hand, 

allows the domain to be subdivided into elements or sub-regions. These elements can 

be of various shapes such as triangles and rectangles thus enabling the use of irregular 

grid for a complex waveguide structure as shown in Fig 3.2.

The method can therefore be easily used to analyse problems with steep variations of 

the field and can be adapted quite readily to anisotropic and inhomogeneous 

problems. The accuracy of the method could be systematically increased by 

increasing the number of elements. The method does not rely on the variational 

method for its establishment; it could be established by the use of the Galerkin 

method, which is a weighted-residual method. The importance of this last point is that
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the method could be applied in cases where no variational formulation exists or 

cannot be found.

Chapter 3 The Finite Element Method

Fig 3.2 Example of an arbitrary shape optical guide with several regions of different material types.

The steps involved in the finite element analysis can be summarised as follows:

• discretize the domain under investigation into sub-domains or elements. The 

accuracy of the method depends on the level of discretisation. It is 

recommended to use more elements in areas where the field is thought to have 

steep variations. It is also not advisable to use elements across physical 

boundaries or interfaces. For symmetrical domains, the mesh should follow 

the same type of symmetry.

• the functionals for which the variational principle should be applied for the 

elements are then derived. In deciding on the interpolation function, certain 

continuity conditions must be satisfied by the interpolation function across 

inter-element boundaries. These requirements are normally obvious from 

physical consideration of the problem. It is however also necessary that the 

function have to be an admissible member of the Ritz and Galerkin methods. It 

follows that the polynomial function has to remain unchanged under a linear 

transformation from one co-ordinate system to the other.
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• assemble all the element contributions to form a global matrix.

• solve the system of equations that is obtained, in this case a matrix equation.

Fig 3.3 shows how the discretisation procedure can be applied to a waveguide with 

different regions, e.g. a cladding, core and substrate. The elements used in this case 

are triangular since it is much easier to represent an arbitrary cross-section with 

triangles rather than with rectangles. In 2-D waveguide analysis the triangles can be of 

any order but the most commonly used triangle orders are the first and second. In Fig. 

3.3, the waveguide has been divided into three regions with refractive indices nc, ng, 

and ns for cladding, core and substrate respectively. Each region is sub-divided into 

triangular meshes numbered 1, 2, 3, 4, 5, 6  ... and so on. This discretisation procedure 

will be dealt more in detail in subsequent sections in this chapter.
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Cladding

Core
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Fig 3.3 Discretisation of an optical waveguide.
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3.3 Maxwell’s equations
Light is an electromagnetic wave phenomenon. Its field is represented by four 

electromagnetic field vectors and they can be expressed by Maxwell’s equations. The 

equations can be written in both differential and integral forms. However, in this 

thesis they are presented only in differential form, as they lead to differential 

equations to be used by the finite element method.

For general time-varying electromagnetic fields, the differential form of Maxwell’s 

equations:

— d H
V x E = ------ (Faraday’s law) 3.1

dt

V x //  = ^ -  + J  (Ampere’s law) 3.2
dt

S7 ■ D = p (Gauss’s law) 3.3

V • B = 0 (Gauss’s law for magnetics) 3.4

E  = electric field intensity (volts/metre)

H  = magnetic field intensity (amperes/metre)

D = electric flux density (coulombs/metre2)

B = magnetic flux density (webers/metre2)

J  -  electric current density (amperes/metre“)

p  = electric charge density (coulombs/metre )

The following current continuity equation (or the conservation of charge equation) 

holds for /  and the charge density, pr.

V i -B p
dt

3.5
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The associated constitutive relations for the medium can be written as:

D= sE 3.6

B = juH 3.7

where e is the permittivity and //is the permeability of the medium.

Let the time dependence be assumed to be expijax) for convenience, where j  is the 

imaginary unit, (O is the radian (angular) frequency, and t is the time. Then with this 

assumption, all the time derivatives may be replaced by jco and the factor exp (jot) will 

not be included as this factor always occurs as a common factor in all terms. Hence 

the differential form of Maxwell’s equations becomes:

V x £  = -jcoB 3.8

V x H  = jcüD + J 3.9

W D -  p 3.10

V B = 0 3.11

and the continuity equation becomes:

V • /  = -j(op  3.12

3.4 Boundary Conditions
Boundary conditions are conditions that must be met at the boundary surface where 

two different media come into contact. It is necessary to subject the Maxwell’s 

equations to boundary conditions at surfaces where abrupt changes of the material 

constants occur. Fig. 3.4 shows a sketch of such a boundary between two media 

distinguished by the indices 1 and 2 , with the unit normal vector n directed from 

medium 1 to medium 2 .
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i

n
i

¿'2, ¡¿2, E 2, H 2 m ed iu m  2

£1, Hi, E i ,  H i m ed iu m  1

Fig. 3.4 Boundary between two media.

In the absence of surface charges (/? = 0) and surface currents (J  = 0), the boundary 

conditions are given as below.

1) The tangential components of the electric field must be continuous.

nx (E j  -  E2) = 0 3.13

= Et 2

2) The tangential components of the magnetic field must be continuous.

n x ( H , -  H 2) = 0 3.14

••• H n = H i2

3) The normal components of the electric flux density must be continuous.

n ■ (Dj —D2) = 0 3.15a

• ■ Dnl = Dn2

= £2^n2 ^n\ ^ En2 3.15Z?

6 6



4) The normal components of the magnetic flux density must be continuous.

n ■ (Bx = B2) = 0 3.16a

B , = B ,n\ n 2

M l ^ n l  =  B l H  „2

since, for most of the optical waveguides, jur\ = Bri -  1 , where fir 1 and ¡ur 2 are the 

relative permeabilities in medium 1 and 2 , respectively.

■■Hnl= H n2 3.16 b

which implies equality of the magnetic field vectors at the boundary.

There is another boundary condition, which is often used in the idealised case of a 

perfect electric conductor. This can be considered as an ‘electric wall’ boundary 

condition:

n x E - 0  or n - H =  0 3.17

This boundary condition requires that the magnetic field vector, H, must vanish, and 

ensures the continuity of the electric field vector, E, at the boundary.

When one of the two media becomes a perfect magnetic conductor, a ‘magnetic wall’ 

condition is imposed as:

n x H  -  0 or n - E - 0  3.18

This condition will ensure the continuity of the magnetic field component, H, at the 

boundary and it vanishes the electric field vector, E.

3.5 The Elemental Equations
In order to obtain the element equations it is necessary to perform a co-ordinate 

transformation. This is because the interpolation function is defined using the local 

co-ordinates and hence it is necessary to find a means of linking the global derivatives 

in terms of the local derivatives. Secondly the element volume over which the
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integration has to be carried out needs to be expressed in terms of local co-ordinates 

with change of limits as may be appropriate.

Assuming the local co-ordinates ^ , <f2 and have as a corresponding set, the 

following global co-ordinates x, y  and z  as follows:

* = •*(£..&.&) 3 . 1 9

y = y(£„f2,£1) 3.20

¿ = 3.21

Chapter 3 The Finite Element Method

Using the rules of partial differentiation, the transformation relation for differentiation 

can be written as

' a ' ' a "
d x

a
= [ J ]

a
d y

a a
_dz _

where the matrix [/] is a Jacobian matrix defined as

d x d y d z

3<?i K K
d x d y d z

2 d<f2 d £ 2
d x d y d z

3 £ 3 £ d £ 3

3.23

The global matrix of the derivatives can then be obtained through an inversion of the 

Jacobian matrix to give

6 8
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' a ' ' a '
dx K
a

= u r
a

dy a ^ 2

a a
_dz_

The following transformation relation for the integration is obtained

z)dxdydz = jjj/fö> &. &P ( £ i ¿ 2 ^ 3 ]  dÇidÇ2dÇ, 3.25

3.5.1 Line Elements
As noted, line elements (one-dimensional) are the most fundamental of all the 

elements used. These elements can be of

a) first order

b) second order or

c) higher order

y
A

y
A

1 2 1
3 2

z
->

X

--------------------------------------- >
z

Fig 3.5 Examples of line elements a) Linear element, b) Quadratic element.
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Examples of some line elements are shown in Fig 3.5. These are normally used when 

solving one-dimensional problems. It is necessary to introduce the line co-ordinates 

Li and L2 .

The relation between the line co-ordinates and the Cartesian co-ordinates is given by

Ll 1 x 2 - f T

A . T - x , 1 X

where x, and x2 are the Cartesian co-ordinates of the edge of the line and the length 

of the element is le is given by

le -  x2 -  xx. 3.27

If the local co-ordinate is now defined as then

3.28a

L2 = l - L , = l - £ 3.28b

The transformation relation for differentiation is then given as

d _ i d
dx le d^x

3.29

For integration, the transformation relation is given by the following

3.30
0

Using equations (3.29) and (3.30) both the differentiation and integration formulae 

could be written as
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df_ = i
dx l

d f  +  d f

e V 3Lj ÒL
3.31

2  y

*!/!
(* + Z + l)!

3.32

The shape function vector for the linear element and its derivative are given as

M =
L 1

u
3.33

and

d{Ai}_ 1 

dx l 1
3.34

respectively. The nodal co-ordinates (LpLj) of the linear element are given as 

follows:

node 1 : ( 1 ,0 ) node 2 : (0 ,1 ).

For the quadratic element, the shape function and its derivatives are defined as

M =
■L,(2 L , - 1 )‘
L2 (2Z.,-1)

4L[L2

3.35

and
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i_

l

1 -  4L, 
4L2-1  

4 (A - l 2)
3.36

respectively. The nodal co-ordinates for nodes 1, 2 and 3 are given as (1,0), (0,1) and 

(l/2 , 1/ 2 ) respectively.

3.5.2 Triangular Elements
Most practical electromagnetic problems are of the two dimensional type. This makes 

the use of triangular elements a common practice. These elements can be of either

a) First order

b) Second order or

c) Higher order

Examples of triangular elements of the first and second order are shown in Fig 3.6.

Fig 3.6 Triangular elements a) First order b) second order.

In applying the first order elements it can be seen that nodes occur at the vertices of 

the triangles while nodes are also defined at the middle of the edges for second order 

elements. In this work only first order triangular elements are used since the second 

order elements are costly in terms of the computational time. Since adjacent elements
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will have common nodes, it is important to adopt a numbering system that will assign 

to this common nodes the same numbers.

Triangular elements shown in Fig 3.6 are used in two-dimensional problems. For such 

an element, the area co-ordinates Lj, L2 and L3 are introduced. The equation relating 

the Cartesian co-ordinates to the area co-ordinates is defined as

f " 1 1 1 ' Li
X = *1 x 2 x 3 L2

y . yi y 2 y3_

or

Li ' 1 1 1 ' - 1 T

l 2 =
* 1 x 2 x 3 X

L3 _ y3_ _y_

3.38

where Ae is the area of the triangle, (xi,yO, (x2 ,y2) and (x3 ,y3) are the Cartesian co-

ordinates of the vertex k(k= 1,2 and 3) of the triangle. The coefficients a*, bt and c* 

are defined as

ak = xi y , n- xn,yi 3.39a

bk = y i ~  y,n 3.39b

3.39c

The subscripts k, l, m are cyclical around the three vertices of the triangle. The area Ae 

of the element is given as
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1 1 1
x 1 x 3

y i y  2 y  3
3.40

If the local co-ordinates £ , 7 7  are defined as

w 3.41a

3.41b

Lj 1 L[ L2 1 £ V 3.41c

then the transformation relation for differentiation will be given by the following

'  a  '
\ d  1

a<?
a

a /7
=  l J ]

d x
a

d y _

3.42

where

[J]
*1 -  *3 y\ -  y 3

* 2  -  * 3  >’2 -  ^ 3

3.43

or

r  a  1 ‘  a  "
d x
a =  U ]“1 a

_ a y _ dr j

with
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[/]“'=  —
2 A„

b,
c.

3.45

The relation for integration is given as

1 i-f
Jj' f (x,y)dxdy = 2Ae J ^f(^,rj)d^drj

0 0

3.46

Using equations (3.32) through to (3.37), the formulae for both differentiation and 

integration can be written as

dx 2A
3/ , ,  5/

e V dL
■ + b 3 L

dL3 y
3.47

V =J _ ( r  + r + , JLÌ
dy 2A(, v 1 3L, " dL2 3 dL3 y

3.48

^L\l!X¡dxdy  = 2Ae j£*
0

\ril{ \-Ç -r])m dr] d t

2A k\l\m\
[k +1 + m + 2 )l

3.49.

3.5.3 Other Elements

Other type of elements in use include (see Fig. 3.7)

a) rectangular elements -  two dimensional elements
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b) tetrahedral elements -  three dimensional elements

c) ring elements -  axisymmetric two dimensional elements

d) triangular ring elements -  axisymmetric three dimensional elements

e) special elements -  Edge, Isoparametric or boundary elements

All of the above could either be of linear, second or higher order.

Three-node Four-node
Triangle Rectangle

Four-node 
Quadrilatera

Four-node
Tetrahedron

Six-node
Triangle

Eight-node
Hexahedron

Fig. 3.7 The typical elements for two-, and three-dimensional problems.

3.6 The Finite Element Formulations
For the purpose of numerical analysis and characterisation, optical waveguide 

problems can be classified as either one-dimensional (planar) or two-dimensional. The 

particular method of analysis used will depend on the waveguide property being



investigated. The finite element method is based on either the variational or the 

weighted residual approach. However the weighted residual approach is more 

straightforward but however, the variational approach is more advantageous and this 

is employed to solve most of the electromagnetic field problems. As a result we focus 

on variational methods which yield a standard eigenvalue problem (Rahman and 

Davies 1984a). There are mainly two types of variational formulations, which can be 

utilised in finite element method, namely, scalar (Koshiba et al., 1982) and vector 

formulations (Morishita and Kumagai, 1977; Rahman and Davies, 1984&; Koshiba et 

al., 1985).

Chapter 3 The Finite Element Method

3.6.1 The Scalar field formulation
This method is suitable for one dimensional problems for situations where the electric 

or magnetic field can be expressed approximately in terms of the predominant field 

component TE and TM modes. It has been applied to the analysis of wave 

propagation in homogeneous isotropic media (Daly, 1984), open boundary problems 

(Wu and Chen, 1986) and for the analysis of anisotropic waveguides (Koshiba et al., 

1984). For quasi-TE modes in the domain Q , where the dominant field component is 

Ex, the formulation can be expressed as (Mabaya et al., 1981):

■k0n2E 2x +j32El dQ. 3.50

where ¡5 is the propagation constant and n is the refractive index ko is the free-space 

wavenumber. A finite element program based on the above mentioned functional 

yields /? as the eigenvalue of the matrix equation for a given ko.

For quasi-TM modes, with Hx being the dominant field component, the formulation 

may be given as follows:

L = 11
a//
dx

\ 2
+ -

a//
. dy

v
- K H ] + \ p H 2x 3.51
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where /?, n, and ko have their usual meanings defined above. This formulation is not 

particularly suitable for media where the guided modes are inherently hybrid i.e. 

highly polarised. A finite element program based on this functional yields ko as the 

eigenvalue of the matrix equation for a given propagation constant, /3.

In finite element formulations, the physical system or region of interest is divided into 

mesh elements (commonly known as discretisation) usually triangular in nature 

(because they are easily adapted to complex shapes) are connected to each other at 

nodal points on the boundaries of the elements. The unknown field functions at a 

nodal point are defined by a set of algebraic polynomials over each element, and the 

field over the guide will be determined by those nodal field values and shape 

functions. The resulting field components can be continuous over the whole domain 

by expressing the fields in terms of nodal values.

To obtain the nodal field values, the usual Rayleigh-Ritz procedure is employed for 

the stationary solution of the functions with respect to each of the nodal variables. 

This can be written in a matrix eigenvalue equation (Rahman and Davies, 1984a):

[A]{x}-/t[B]{x} = 0 3.52

where [A] and [B] are real symmetric matrices, and [B] is also positive definite 

matrix. The eigenvalue A may be ko2 or f¡? depending on the variational formulation 

and {x} is the eigenvectors representing the unknown nodal field values. It is most 

desirable for the resulting matrix equation to be of this canonical form, to allow for an 

efficient and robust solution. This equation (3.52) can be solved by one of various 

standard subroutines to obtain different eigenvectors and eigenvalues.

One of the most serious problems in using the finite element method for dielectric 

waveguides is the appearance of the spurious or non physical modes. That means the 

eigenvectors and eigenvalues of the matrix eigenvalue problem do not represent 

physical modes or solution of the waveguide but are spurious results introduced by the 

numerical technique. The reason for the appearance of spurious modes is probably the
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fact that the functional is not positive definite (Csendes and Silvester, 1970). The 

appearance of these spurious modes does not affect the calculation of the lowest 

propagating mode, since the lowest order mode usually corresponds to the first 

positive eigenvalue of the matrix equation. However, to compute higher order modes, 

it becomes more difficult and very cumbersome to distinguish between the spurious 

and the physical modes of the guide.

On the other hand, the scalar approximation does not suffer from this difficulty, since 

the two scalar functionals are positive definite and therefore all the eigenvalues are 

positive, each one corresponding to a physical mode of the guide. Consequently, the 

higher order modes of the guide can be easily computed without any difficulty. 

Another advantage is that with this method the number of matrix elements to be 

solved is reduced compared to vector finite element method and therefore a reduction 

of the computer time can be achieved. The boundary condition, which is 

automatically satisfied with this variational procedure is another advantage. It is 

known as the ‘natural boundary condition’ (nbc). In variational formulations these can 

be automatically satisfied, if left free. The scalar functional defined in equation (3.50)

has the continuity of as the nbc, and the functional (3.51) has the continuity
dn

as the nbc, where n is the outward normal unit vector. However, if the

physical boundary conditions are not the same as nbc, then physical boundary 

conditions need to be imposed when solving the equations.

f  1
f  \

dì//
2 A\n  y 1\ d n  J

3.6.2 The Vector field formulation
For the accurate characterisation of general waveguides especially for 2-D or 3-D 

guided modes, a vector formulation with at least two field components is required. 

They provide better solution convergence for some modal types as compared to 

corresponding scalar formulations. There are two main types of the full vector 

formulations namely, the E-field and H-field. The vector E-field approach was first 

applied by English and Young (English and Young, 1971). This formulation is



suitable for generally anisotropic and loss-less problems. The natural boundary 

condition corresponds to a magnetic wall and as such it is essential to enforce the 

electric wall as the boundary condition (nxE=0). Such a condition is quite difficult to 

impose for an irregular structure. It also requires an additional integral to ensure the 

continuity of the fields at the dielectric interfaces. The H-field formulation, on the 

other hand, has as its nbc the electric wall and the magnetic field is continuous 

everywhere. As such it is suitable for dielectric waveguide problems as no boundary 

conditions need to be imposed.

The followings are various types of finite element methods for vector guided mode 

analysis:

• Finite element method using longitudinal (axial) electromagnetic (E and H) 

field components, (Ez + Hz),

• Finite element method using transverse electromagnetic field components,

(Et+Ht),

• Finite element method using transverse electric field components, (.Et),

• Finite element method using transverse magnetic field components, (Ht),

• Finite element method using the three electric field components, (E),

• Finite element method using the three magnetic field components, (H),

• Finite element method using the six electromagnetic field components, (E+H). 

Of all the above vector formulations the one of interest, is formulated in terms of all 

three components of H and has the advantage over all other formulations. This vector 

H-field formulation (Rahman and Davies, 1984¿>; Rahman and Davies, 1984c; 

Koshiba et ai, 1985) is valid for general anisotropic problems with a non-diagonal 

permittivity tensor. The natural boundary condition is that of an electric wall (n x E = 

0, n ■ H = 0), so for the arbitrary conducting guide walls it can be left free. In 

dielectric waveguides, the permeability is always assumed to be that of free space. 

Therefore, each component of H is continuous in the whole region and thus the 

variation of the refractive index over the waveguide cross section does not need to 

impose interface boundary conditions. The total vector E+H formulation (Svedin, 

1989) does not have much advantage over the vector H field formulation since all the
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six components are needed for the formulation giving rise to a complicated problem. 

The full vector H-field formulation is given as (Rahman and Davies, 1984b):

J(VxH)* - r 1 -(VxH)dS2

Jh * •JU~1 H dQ,
3.53

A  A

where £ and // are the general anisotropic permittivity and permeability of the loss- 

free medium, respectively, and the integration is carried out over the waveguide cross 

section, The above formulation leads to non-physical or spurious solutions since 

the divergence condition V • H = 0 is not satisfied. Various methods exist for 

detecting these spurious modes. A simple way is to examine the field profiles, since 

these modes are characterised by inconsistency and a random variation of the field 

they are easy to identify. The mathematical idea underpinning the physical solution is 

that the condition V H  = 0 is obeyed by the eigenvector. By calculating V H for 

each eigenvector, it is possible to identify the true solutions from the spurious ones. 

The objective, however, is not simply to detect these modes, but to eliminate them or 

at least suppress them. The penalty-function method (Rahman and Davies, 1984c) is 

one the best established methods for eliminating these spurious solutions. The method 

includes an additional term a ,  the penalty term, a dimensionless number in the 

variational formulation, which now is written as:

J(VxH )*  - r 1 - ( V x H ) d Q  + - i f i v - H O v - H t o

Jh - / / - ' -
3.54

The vector H-field formulation described above, has the natural boundary condition 

of an electric wall, i.e. n ■ H = 0. Therefore there is no need to force any boundary 

condition on conducting guide walls. At times these natural boundary conditions are 

not those that are required, as simply they do not correspond to the physical problem 

under consideration. In some cases if necessary the boundary conditions may be 

enforced in order to reduce the matrix size, but even in these situations they are
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automatically satisfied if left free. Sometimes it may be necessary to change 

unsuitable natural boundary condition by introducing additional surface integral 

around the desired boundary. In the case where the symmetry of the waveguide exists, 

then we can easily impose the waveguide symmetry. However, it may be necessary to 

analyse the structure with complementary symmetry conditions to obtain all the 

modes, although the exploitation of the symmetry greatly reduces the computational 

cost.

3 .7  T h e  M a t r i x  E q u a t i o n

It has been stated that the vector formulation leads to 

of the form (Rahman and Davies, 1984a)

a standard eigenvalue problem

Ax -  ABx = 0 3.55

In the above x represents the eigenvector, which holds the nodal field values. If in 

equation (3.53) the numerator is written as

x T -Ax = J(VxH)* ■£-' - (VxH)dQ 3.56

and the denominator as

x T ■ Bx = j*H* -ju-Yld£l 3.57

then the functional

J  = J(VxH)* -e~l - ( V x U ) d Q -k 20 jH* • ju ■ HdQ 3.58

can be written as

J = xT ■ A- x -  /i- xT ■ B ■ x 3.59
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To find a stationary solution, it is required that

dx

Applying this minimisation procedure to equation (3.49), the following eigenvalue 

equation (3.55) is obtained

A x - A B x - 0  3.61

which can be solved using any standard matrix routine to obtain the field values at the 

nodes.

3.7.1 Shape Functions
The shape functions are a set of interpolation functions, defined in terms of complete 

polynomials and which are normalised over each element. If a typical element, as 

shown in Fig 3.6 is considered, then the shape function is chosen so that it uniquely 

defines the field within the element under consideration. The unknown field, H, 

within each element is approximated by means of a suitable choice of the set of 

polynomials. These functions are called “shape functions” due to the fact that 

polynomials are relatively easy to manipulate. The choice of the functions should 

have continuity within each element and across the element boundaries. The actual 

field over the entire domain should be approximated by trial sets of algebraic 

functions which can be uniquely defined, differentiated and integrated.

In the simplest case the elements are triangular and first degree polynomials are used. 

The total number of the terms involved in the polynomial is equal to the number of 

nodal degrees of freedom of the element. If the highest order term is xN and yN, it must 

also contain all possible terms xmyn, where 0 < m + n < N, excluding other terms. The 

polynomial will be M=(N+1 )(N+2)/2 terms or as we can see through the Pascal 

triangle in given in Fig. 3.8. The continuous field (f){x,y) of the domain may be

replaced by a set of discreet values ( (j)i, i = 1, 2, 3...m) where m is the total number of 

nodes.
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Element with nodes

1 > (Constant)

x y --------►(linear- 1 terms)

x.4

.2 2
xy y -----►(quadratic- 2 terms)

xy y —► (cubic- 3 terms) 

x2y2 xy3 y4 -+(quartic-4 terms)

Fig. 3.8 Pattern of nodes on a single element compared with Pascal’s triangle.

Our assumption of a linear variation of nodal values, <j)i within the triangular elements 

is the same as assuming that the (¡)e(x,y) is uniform within the element. This 

continuity can be achieved by introducing the interpolation function, or so called 

“shape function” Nrfx, y). The field inside the element </\(x,y)  can be written as:

At the nodal points, they take on values equal to the nodal values (j)x, q>2 and 03. It is

important therefore that the functions are expressed in terms of their nodal values. 

Within the triangle, the field value can be adequately modelled by the expression

3.62

and in matrix form can be written as follows:

|>i'
bk* ?) = [w, »2 n 3]-Ui[ =

A

3.63

<p = a + bx + cy 3.64

where a, b and c are constants. These constants can be represented in terms of the co-

ordinates of the nodes. The nodal values of (f> can then be expressed as
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0i = a + bxj + cy1

<f>2 =a + bx2 + cy2

03 = a + bx3 + cy3

Fig. 3.9 Coordinates and node numbers of a typical first-order triangular elements.

The above system of equations can be solved to determine a, b and c as

a -x,y3)+<t>Ây2 - * 2)0
2 A.,

3.65a

3.65b

3.65c

3.66a
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h  _ ~ y i )  

2Ae
3.66b

(j)x(x3 — x2) + </)2{xx -  x3) + (j)3(x2 -  xx) 

2Ae
3.66c

Where in the above Ae is the area of the triangle, 

equation (3.51) will yield

A substitution of these values into

(p{x, y) = N,0, + N2̂ 2 + N3̂ 3 3.67

or

^(x,y) = [N]W 3.68

where

N i = — [ ( ^ 3 3.69a

n 2 = 3 ^ K ^ 3>;i -^ 1^ 3 )+ (y3 - y i ) x  +  ixi - * 3 )y] 3.69b

N 3 = ~ [ U > ,2 - x 2yl)+(yl - y 2)x + (x2 - x l)y] 3.69c

The above can be rewritten as

N, = a{ +  b,x + Cjy 3.70a

N2 = a2 + b2x + c2y 3.70b

8 6
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3.70c

An important property of shape function is that 

N i+N2+N3=1.

The H-field components Hx, Hy and Hz can be written as

h 1 (.y, }.) = n 1h „i + n 2 h , , + n jh ,j

H ,(x , j ) = N iH „ + N , H j2 + N j HjJ 

HI(x, y ) = N 1HI, + N 2 Hz2 +N,H„

In matrix form, the above equations can be expressed as

X ' X 0 0 n 2 0 0 ^ 3 0 0  1
H = H y = 0 0 0 N 2 0 0 ^ 3 0

X . 0 0 0 0 * 2 0 0

H
H

H

H

H

H

H

H

H

xl

yi
zl

x2

y i

z2  

x3 
y3 
z3 _

3.71

3.72a

3.72b

3.72c

3.73

In a simplified form this is equivalent to H = [n ]{H}, where [N] is the 3x9 matrix 

shown above and {H } is the 9x1 column vector which represents the components of 

the field.

Similarly, the expression for V xH  could be written as
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V x H = [q ] • H

where

The Finite Element Method

3.74

0
dN, dN,

0
dN 2 dN 2

0
dN, dN,

dz dy dz dy dz dy
dN, 0 dN, dN2

0
dN2 dN,

0
dN,

dz dx dz dx dz dx
dN, dN,

0
dN2 dN2

0
dN3 dN,

0
dy dx dy dx dy dx

3.75

The Q matrix, after evaluation i.e. finding the derivative of the shape, with j/3z being 

the z-variation, becomes

0 jßN 1 a, 0 jßN2 a6 0 jßN, a9

\Q ] = - jß N , 0 - a 2 ~ jß N  2 0 - a 5 jßN, 0 - ag 3.76
-  a, a2 0 - a 6 a5 0 - Clg Cl, 0

The B matrix can also be calculated in a similar fashion from equation (3.57). Since 

// is a scalar quantity, it can be taken outside the integral to give

xr B x  = ju \W  RdQ. 3.77

since H=[N] {H }

£ e = J W  -[JVjdQ 3.78
A

The solution of the above expressions yields a 9x9 matrix. The integration is carried 

out using equation (3.40) and the resulting Be matrix is as follows:

8 8
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3.79

In the above Ae is the area of each element or triangle. The coefficients of the Ae 

matrix could also be calculated using equation (3.56). Making the following 

substitutions H=[N]{H} and V xH  = [q ]-{h }, the equation below is obtained:

• At • x = J{h }* • [Q]£~l ■ [ß]{H}d£2 3.80

A simplification of the above will yield an Ae matrix of the form

Ae = \[QY£~l -[Q]dQ 3.81

For isotropic media, £ is a scalar quantity and hence can be factored out of the 

integral sign. For anisotopic media, £ is a tensor defined by a 3x3 matrix

£ u C  3

£ z\ £ 22 ^ 2 3

p31 £ i2 £ 3 3

Finding the inverse of £ , [P], equation 3.81 can be written as
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\  = \[Q Ì [p \ \Q \à a 3.83

Carrying out the necessary algebraic manipulations a 9x9 matrix is obtained. Using 

the integration formula of equation (3.49) the integrals can be evaluated as

¡N?dQ = — 
J 1 6

¡N,dQ = ~  
J 3

\ d n  = A

As an example the Aeu matrix will be given as follows

A A A
A n  ~ P22P  ~7 P a a 3 A

o 3 3

3.84a

3.84b

3.84c

3.85

The other 80 elements of the Ae matrix can be found in a similar fashion.

3.7.2 Element/Global Matrices Assembly
The next stage in the finite element method is the assembly of the element matrices 

[Ad and [Bd into global matrices [A] and [B] respectively. An appropriate matrix 

solver is then used to obtain the eigenvalues and eigenvectors of the equation. The 

assembly of the global matrix is done with respect to the nodes of the domain. Where 

two or more nodes are common to more than one element then it is advisable to add 

the contribution of each adjacent element to the global matrix when the calculation for 

the common node is carried.
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Fig 3.10 Example of domain discretisation using triangular elements.

Fig 3.10 shows a simple diagram of a domain, which has been discretised using 6  first 

order triangular elements. The node numbers 1-6 are the global node numbers for the 

domain and are used in the global matrices. The nodal points inside each triangular 

element are numbered 1-3. For the above structure, the global matrix G, is formed by 

the addition of the element matrices A, B, C, D, E and F.

As previously noted, for every element in the discretised variational formulation, there 

is an expression of the form

x  • ■ n 19' X "

M # r = { 8 i - n , i

N n  ■ • A V H 9 _
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Each term in the matrix Ny relates to two nodal field values where the indices, i and j, 

correspond to the nodal field values of the vectors {H} and {H}r according to the 

local numbering of an element. If a scalar formulation is considered, then only one 

field component need be taken into account Hx for example and the expression can be 

written as

~Nn N l2 * 13' ~*i~
{«„ U,1 H j*21 U22 ^23 h 2

*31 K 32 ^33. * 3 .

This section explains the derivation of the element and global matrices based on the 

full vectorial H-field variational expression eq. (3.53). Within each triangular 

element, the three unknown H-field components, Hx, Hy and Hz of the magnetic field 

can be expressed as;

Hx(x,y) = [Nl N 2 W3]
Hx
H x2

[Hx3j

H ( x , y )  = [Ni N 2 N 3]
H
H
H

y 1

>-2

y3

H z(x,y) = [Nl N 2 yV3] H z2

1H z3J

3.88 a

3.88 b

3.88c

where, Hxi, Hyi and Hzi ; i = 1,2,3, represents the x, y and z components of the nodal 

magnetic fields. Hence, the element magnetic field vector [H\e can be expressed by 

combining equations (3.88a)-(3.88c);
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H x(x,y) > 1 ^3 0 0 0 0 0 0  '
H y(x, y) = 0 0 0 Ny 0 0 0

H z(x,y) 0 0 0 0 0 0 * 1 n 2 N 3_

H
H
H
H
H
H

H z
H
H

x\

x2

x3

yi
y2
y3

z 2

z3

3.89

Equation (3.89) can also be written as;

[if], =[N]{tf}, 3.90

where {H}e is the column vector representing the three components of the nodal field 

values in the element and [N] is the shape function matrix.

Also by substituting (3.90), the (V x H)e factor within the element can be written as;

(V x fl),= V x [N ]{ « ),

0
- d a
dz dy

a
0

- a
dz dx
- d a

0
dy dx

[N]{H},=[ß]{ff}, 3.91

where the matrix [Q\ can be written as;

[ß]

" [0]
-3[Af]

d?
a r i l ] [0] jß[N]

a[A] ]

d[N]
[0] -fffv] _ ~jß\N] [0]

- a r i ]

- f r i
dy

d[N}
dx

dx

[0]
-a[A ]

dy

d[N]
dx

dx

[0]

3.92
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where [o] = [O 0  O] 3.93

[N]=[NX N 2 N3] 3.94

and the following arises by using the differentiations of equation (3.70),

dx
[bi b2 b3] 3.95

= [c, c2 c3] 3.96

The values of the constants bi, bz, cj, C2 and c? were given in equations (3.39c) and 

(3.39c).

By substituting the terms in equations (3.90) and (3.91) into the equation (3.53), the 

vector H-field formulation functional for an element can be obtained as;

J, = I{h YAQ]‘ £ , [el!H },dQ -® ! |{H }nNr/'[NR//},rfQ  3.97
A A

A represents the integration over the triangular element domain. T and * denote the 

transpose and the complex conjugate transpose, respectively.

If the material is isotropic, then the 8  is a scalar value. Here it is assumed that the e is 

a scalar quantity. If 8  is a tensor, then it should be represented by a 3 x 3 matrix and 

the inverse of the matrix should be implemented.

The total function, 7, associated with the whole cross section of the waveguide can be 

obtained by summing Je of all the individual elements,
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J  = J V e 3.98
e=l

where n is the number of elements.

The minimisation of the functional given in equation (3.98) is achieved by 

differentiating with respect to the field nodal values and equating it to zero as below;

= 0 e= l ,2 , ........,n 3.99

This minimisation leads to the following eigenvalue equation;

= 0 3.100

where [A] = ¿ [ a ], = £  ¡£~'\q Y\Q] d£l 3.101
e=l e=l a

[B] = £  [b ], = £  J 4 N F  [n ] 3.102
e=l e=\ a

Matrix {H} contains all the H-field nodal values over the whole cross section of the 

waveguide considered. [A]e and [B]e represent the element matrices. The assemblage 

of all the element matrices [A]e and [B]e over the whole cross section result in the so 

called global matrices of the eigenvalue equation, given by [A] and [B], respectively.

For the structure shown in Fig 3.10, the global matrix Gpq may be defined as

dJ
W Y ,

o„ 18

G = 3.103
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If P is the total number of nodal points of the structure, the order of the global matrix 

is PxP, which defines the size of the matrix when only one unknown field component 

is considered for each node. In our case which is a vector formulation, we have three 

unknowns per node and size of G matrix for 8  nodes is G = 24 x 24. The terms of the 

global matrix, Gpq, are the field contributions of two nodes, p and q according to the 

global numbering system. Each term of the global matrix Gpq consists of a local 

contribution from only one element, unless the nodes lie on a shared boundary. The 

terms of the global matrix, Gn, for the first node with respect to itself will be defined 

as

Gn = N{\ 3.104

where N([ is the term for the element matrix for the element A. The terms of the 

global matrix for other nodes which do not lie on a shared boundary can be found in a 

similar manner: G12 = N tA3, GM = N32 etc. When the nodes are on a shared boundary, 

then the contributions of each element are added to the node e.g.

G22= N a +N3b3 3.105

3.8 Infinite Elements

In electromagnetic terms, the dielectric waveguide is an unbound structure. The 

electromagnetic field can therefore, in principle, extend over the whole of open space, 

the area of which is infinite. This may cause problems for waveguides in which the 

solution exits near the cut-off region. In the finite element method, the discretisation 

of the waveguide cross-section cannot extend to infinity. Several techniques have 

therefore been developed for modelling the infinite open space with a finite number of 

elements.
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The most commonly adopted approach is to enclose the core of the waveguide in an 

artificial conducting boundary, chosen to be sufficiently distant from the core of the 

waveguide. The finite element method can then be applied to the core region. 

Although this approach is simple, it is an inefficient method of dealing with the 

problem as a large number of elements are required in order to give good results. It is 

still difficult to model cut-off situations accurately with this method.

The use of boundary elements was proposed by Yeh et al., (1979) to model a wide 

range of optical waveguide structures. In the method, the field in the exterior region 

was assumed to decay with an exponential factor, an effect incorporated into the finite 

element matrix. The major disadvantage of the approach is that the decay factor has to 

be determined heuristically and hence iteratively. In this particular approach, the two 

co-ordinate systems did not conform and hence the fields used were not continuous.

A method of ‘infinite elements’ has been proposed and was used by Rahman and 

Davies (1984¿>) to include explicit field representation in all of the necessary 

transverse directions by incorporating rectangular strips as shown in Fig 3.10. An 

infinite element is a finite element that does indeed extend to infinity, extending the 

domain of the explicit field representation to infinity without increasing the matrix 

order.

The shape function for such an element should be chosen realistically and must be 

square integrable over an infinite element area. For such an infinite element extending 

to infinity in the x-direction, an exponential decay x may be assumed and the shape 

function can be written as

N(x, y)= /(y)exp(-x/L) 3.106

where L is the decay length and fly) is the conventional shape function in the in-

direction. Exponential decay functions can be assumed in a similar manner for decay 

in both the x and y directions.
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y

Fig 3.11 Showing the use of infinite elements at the guide boundary.

3.9 Spurious Solutions
The most serious and difficult problem in finite element analysis is the appearance of 

spurious, or non-physical solutions interspaced with real solutions. Analysis of the 

optical waveguide is also associated with spurious modes. Many reasons could lie 

behind the spurious modes, such as the enforcement of the boundary conditions, or 

due to the nonzero divergence of the trial fields (Rahman and Davies, 1984a and 

1984b). The spurious solution appears also in the finite element analysis using the full 

vector H  field. Maxwell’s equations (3.8) and (3.9) do not satisfy the condition where 

V ■ B ± 0 which could be a one of the causes of spurious modes. In order to eliminate 

these spurious modes Rahman and Davies, (1984c) have utilized the penalty function 

which defines the solution if it is a real or spurious solution, and this can be achieved 

when the eigenvector of the physical mode satisfies the zero divergence condition V 

.H = 0. After each solution is obtained from the divergence condition, V.H has to be 

calculated over the waveguide cross section. The value of V .H has to be examined
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for different solutions, and only solution with a low value of V.H will be considered 

as a real mode. The value of V .H may be calculated from the discrete nodal field 

obtained after the solution of the eigenvalue equation, (3.52). Rahman and Davies 

(1984c), have used the penalty function approach, where an integral is added to the 

functional equation (3.53) in order to satisfy the zero divergence condition, V.H = 0. 

Thus the functional penalty term can be written as in section 3.6.2:

J(V x x H) d&+ —  | [ ( V - / / ) * - ( V - / / ) d £ 2

or - \ £o.
\H* /i l H dQ

3.54

where a is the dimensionless penalty coefficient which can be estimated around 

( l /f  ), where e is the relative permittivity of the waveguide core. It has been

confirmed that the higher value of the penalty coefficient leads to a reduction of the 

spurious modes, but it is possible that propagation constant of the real mode can 

deteriorate slightly.

Various approaches have been proposed by different research groups in order to 

reduce the spurious solutions. Mabaya et al., 1981 proposed an scalar finite element 

formulation, but spurious modes does not appear at all with a scalar formulation. One 

of the formulations, in terms of the transverse //-field, has been advanced by Hayata 

et al. 1986, and completely eliminates the spurious solution, and the penalty 

coefficient is not included. The component fields Hx and Hy are represented in the 

way that the shape functions have been eliminated, but the Hz component involves a 

stage involving differentials and is more an approximation representation. Davies, 

1993, has established a successful new scheme for avoiding the spurious modes. The 

first method involves a new formulation of the transverse magnetic field with no 

special new finite elements, while the second method uses equation (3.53) but with a 

new vector finite element application.

3.10 Matrix solution techniques in finite element method
The choice of the algorithm in solving the eigenvalue matrix equations is very 

important in computer power and time consumption in the use of the FEM. The global



matrices [A] and [5] given in (3.101) and (3.102) are highly sparse. Both matrices can 

be complex and asymmetric and this can cause difficulty in solving the problem due 

to the lack of efficient computer library routines. There is a large number of different 

methods available to solve the matrix eigenvalue problems involving sparse matrices. 

In this work the spare matrix eigenvalue problem has been solved by an iteration 

process applied simultaneously to a subspace of eigenvectors, using the so-called 

method of subspace iterations (Rahman and Davies, 1984a) and (Bathe and Wilson, 

1976)

3.11 Summary
In this chapter the finite element method and its application has been presented. The 

varational principles in the modal solutions for microwave and optical waveguides 

have been studied. Various aspects of the finite element method have been examined, 

including, different scalar and vector formulations, boundary conditions, natural 

boundary conditions, shape functions, global matrices and infinite elements. Finally 

the use of the penalty term approach to reduce the non-physical solutions or spurious 

mode has been discussed. This chapter, in conjunction with the least squares 

boundary residual method presented in Chapter 5, section 5.2 and full-vector beam 

propagation method in Chapters 6  and 7, represents a solid mathematical basis for the 

work involved in the analysis of optical waveguide and microwave problems in the 

subsequent chapters of this thesis.
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Chapter 4

The Beam Propagation Method
4.1 Introduction
The previous chapter gives a general analysis of the finite element method as having 

the capability to design and characterise numerous varieties of optoelectronic devices 

in their stationary 2-D state or in a situation in which the device is considered to be 

invariant in the longitudinal direction. In integrated optics, there has been enormous 

progress in the research and development of OEICs to the extent that it is important to 

have a design tool that would be able to explore these devices beyond the realms of 

the 2-D state. Chapter 3 has shown the formulation for the vector H-field finite 

element method as a versatile and powerful tool in the solving the optical waveguide 

problems. However, there are numerous occasions when it is required to study the 

propagation of electromagnetic waves in z-variant structures. The vector H-field finite 

element formulation for the modal solutions is not capable of simulating the 

propagation and interaction of light with media in the longitudinally non-uniform 

devices such as guided-wave structures like bends, tapers, and junctions. 

Optoelectronic researchers have developed numerous methods to tackle this problem 

and one of these is the versatile, robust and efficient Beam Propagation Method
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(BPM). This chapter is dedicated to the general analysis of BPM and its usefulness in 

waveguides. The applications of the BPM as a waveguide explorer is used in chapters 

6  and 7 to analyse taper structures. The BPM analysis involves a source of light, 

usually single moded, launched on one side of a taper as the input and the entire 

length of the device which is divided into small steps and the output plane which is 

butt-coupled to a single mode fibre. This work is focused mainly on waveguide taper 

structures, and the electromagnetic field inside the taper at each step can be calculated 

if the input field is known and the boundary conditions are well defined. The single 

moded input field usually obtained from the modal solution of the finite element 

method is launched into the taper and the evolutionary field calculated at every step to 

the end of the taper which forms the output.

Feit and Fleck, in 1978, first introduced BPM to study the mode properties of optical 

fibres. Since then other notable researchers such as Soref, et al. (1991), Tsuji, et al. 

(1997) on rib waveguides, Montanari, et al. (1998), Lu, et al. (1998) on Y-junctions, 

Anwar, et al. (2002), on MZI modulators, Rahman, et al. (2005) on semiconductors 

amplifiers, Obayya, et al. (2000), on directional couplers, Park, et al. (2001) on mode 

adapters, to name a few who have thrown more light on the applications and 

usefulness of the efficient and robust beam propagation method both in the academic 

circle and industry alike.

4.2 Beam Propagation Algorithms

In order to find solutions to the propagation and interaction of light with 

inhomogeneous media in the longitudinal direction of optoelectronic devices, 

researchers embarked on many numerical methods for the analysis and simulations of 

guided-wave propagation in these devices. The BPM can be based on numerical 

methods, which can be broadly classified into three types which are:-

> Fast Fourier Transform-based method

> Finite Difference-based method

> Finite Element-based method
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4.2.1 Fast Fourier Transform Beam Propagation Method
In this method, the starting point is the Helmholtz equation in which the paraxial form 

is also known as the Fresnel equation (see section 4.3). This equation is valid for the 

paraxial propagation in slowly varying optical structures. The solution of this equation 

normally characterised by the refractive index n, is assumed to be a set of plane 

waves, which can be represented by a superposition of such plane waves. The 

algorithm for calculating the field at an arbitrary plane perpendicular to the z axis is 

given by

E(x,y,z) = F'{F[E(x,y,0)]exp(-jkzz)}

where F i s  the inverse Fourier Transform and F is the Fourier Transform operator. 

The effect of the index variation n(x,y,z) when the wave travels a distance Az is a 

small perturbation of the phase of the distribution of the phase front. The BPM 

algorithm for the propagation along an arbitrary distance z is achieved through several 

discrete steps of distance Az. The implementation of Fast Fourier transformation 

enables the calculation to be reduced to N2 log2N from N3 where N is the number of 

discrete grid mesh points. The advantages are:

(1) It can be applied to structures with arbitrary cross-section.

(2) The guided and radiation waves are taken into consideration in the 

analysis.

The disadvantages of this method are:

(1) That the input optical field does not correspond exactly to the guided mode 

profile.

(2) It cannot be applied to structures with large refractive index discontinuities 

because of the assumption that the refractive index difference is very small 

so that the phase error term can be expressed by the first term in the 

Taylor’s series.

(3) This method is numerically not very stable.

(4) Noise is produced in the field profile.

(5) The paraxial approximation has been made under the assumption that the 

beam propagates in the longitudinal direction with a small angle to the axis 

therefore, wide angle propagation is not valid for this model.
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The above problems with FFT-BPM have led researchers to develop more superior 

methods which will be discussed in the following sections.

4.2.2 Finite Difference Beam Propagation Method
Following the faults attributed to the FFT-BPM, the finite difference schemes have 

been developed for the beam propagation method. The Finite Difference algorithm are 

easy to derive and implement starting as usual with the paraxial helmholtz equation. 

There are three types of finite difference schemes viz:

(1) The Forward-difference scheme which is also known as “explicit scheme”.

(2) The Backward-difference scheme also known as “implicit scheme”.

(3) The Central-difference scheme popularly known as Crank-Nicolson 

Scheme.

4.2.2.1 The Forward Difference Scheme
The Forward-difference scheme is a scheme which allows the calculation of the 

optical field Oj(z + Az) after a propagation step Az from a knowledge of the complete 

field Oj(z) at the position z. This method based on the direct solution, is accurate to 

the first order and conditionally stable. The stability condition (Lifante, 2003) is given 

by:

Az < Ax 2/2£ = Ax2miA, 4.1

But Az will have a small value in order to give assurance of stability and large value 

of Az cannot be accommodated from practical point of view. In other words there is 

lack of stability as step size is increased. There are numerical losses experienced 

during propagation whenever this scheme is employed.

4.2.2.2 The Backward Difference Scheme
The Backward-difference scheme is a scheme developed to overcome the large Az 

unstable problem. It is similar to the forward-difference scheme both in 

implementation and method of solution but it has the advantage of being 

unconditionally stable.
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4.2.23 The Crank-Nicolson Scheme
The Crank-Nicolson Scheme is also known as the Central-difference scheme. It is a 

linear combination of the forward and backward schemes but this algorithm matches 

the solution of the entire differential equation at z + Az/2. It can be written as:

[2 K + iAzaH]®(z + Az) = [2 K -  iAz,(l -  a)H]&(z) 4.2

where a is a weighting factor and K is the propagation wavevector defined as:

K = n0co/c, 4.3

and the operator H is defined as:

O - 2 0 + 0 ,... , , ,
H<f> = ------— + in) -  n\ )k;O  4.4

Ax'

where rij is the refractive index in the domain of interest for grid point j = 1,2,3,....N, 

no is refractive index for the substrate, co is the angular frequency, k0 is the 

wavenumber. The disadvantage of this scheme is that a system of N linear equations 

has to be solved to obtain the solution of 0(z + Az) of the paraxial Helmholtz 

equation when compared to the Forward-difference algorithm. The computational 

time increases as N increases although this is better than the FFT-BPM where N 

increases as Nlog2N waveguides. However it has the following advantages:

(1) It is unconditionally stable for any propagation step size especially for 0 > 

0.5, where 0 is the angle of propagation of the light with respect to the z- 

axis.

(2) It provides better approximations to the exact solutions of the problem 

with a second-order approximation in the propagation step 0(Az + Ax ).

(3) It does not produce numerical losses during propagation.

(4) It is able to manage structures with large discontinuities in the refractive 

index adequately.

(5) It can make use of PML layer for unwanted radiations.

(6 ) It can also accommodate the wide-angle propagation and full vector 

algorithms.
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4.2.3 The Finite Element Beam Propagation Method
The finite element (FE) algorithm uses the paraxial Helmholtz equation as the Euler- 

Lagrange equation of a z-transient variational principle and treats the variational 

principle by a finite element procedure. This is the algorithm used in this thesis where 

the beam propagation method is employed. There is a window of operation in the xy- 

plane of the transverse coordinates. The Euler-Lagrange equation can be used to 

obtain the scalar formulation for the paraxial helmholtz equation for the TE and TM 

polarisations initially. The FE procedure is applied to the domain of interest and the 

area is discretized into triangular meshes and planar solutions are obtained inside each 

mesh. The Garlerkin procedure (Zienkiewicz, 1977; Desai, 1979; Silvester and 

Ferrari, 1990) is executed with the FE expansion and the optical fields at the nodes 

depends on the propagation coordinate z. The Crank-Nicolson method is employed to 

solve the system of differential equations which describe the evolution of the optical 

field at the nodes in the longitudinal direction. Most of the scalar wave formulations 

are inadequate when it comes to analysis of polarisation and coupling properties of 

strongly guiding optical devices based on semiconductor materials. The vectorial FE 

algorithm used in this work can solve for the three magnetic field components and it 

incorporates the Pade approximation (Hadley, 1992) for wide angle which replaces 

the inaccurate paraxial approximation. It can accounts for the light beam propagating 

off the propagation axis. It also makes use of PML layer for unwanted radiations. The 

vectorial FE algorithm can do all the FD-BPM algorithm can do and also has the 

following advantages over the FD approach:

> The FE discretisation of the devices domain is superior to that of the FD 

scheme when it comes to non-uniform discretisation.

> It enables very good approximation of complex geometrical boundaries.

> It has got flexibility in imposing boundary conditions.

4.3 Paraxial Approximation
The propagation of light in waveguides generally is based on the paraxial form of the 

Helmholtz equation otherwise known as the Fresnel equation. In cases where the 

direction of propagation is well defined, then a simple approximation is appropriate
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and Helmholtz equation could be written as follows for a steady state or time 

harmonic case
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a2o a2o
dy2 dz2

+ co2<uo&Z> = 0 4.5

where <f> is for the electromagnetic field, in the case of TE polarisation this will be Ex 

mode and a) is the angular frequency. From above

(02jUo£® = k 2n2(x,y,zyJ> 4.6

where n2{x, y,z) is the refractive index profile in the guide. The electromagnetic field 

can be written as follows

®(x,y,z) = ®(x,y,z)e~J*  4 . 7

where (3 is the phase constant or the reference value of the wavenumber. If the 

following two assumptions are now made

1 That the field inside the guide structure can be represented by a field with 

narrow angular spectrum

2 That the waveguide structure has a definitely marked longitudinal direction (z) 

and the propagation occurs mainly that direction

then the paraxial or slowly varying amplitude approximation can be made. If the value 

of ft is now chosen such that it forms a central estimate of the value in the spectrum, 

then the variation of the fields with z will be dictated primarily by the exponential 

factor in equation (4.7). The term <p(x,y,z), will only vary slowly with the axial co-

ordinate z. Substituting for the field in the governing differential equation (4.5) and 

omitting the exponent (as it is a common factor), the following equation is obtained
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3 2 <t> 320
--- ^  + --- T- + --- T-
dx2 dy2 dz2

-  j2/3—— -  /920  + k> 2 0  = 0 4.8
dz

since y,z) varies slowly in the axial direction, the second order z derivative can 

be ignored to give the following paraxial equation with j32 = k 20n20

It will be shown in section 4.6 that waves that propagate with narrow angular 

spectrum to the propagating axis can have a better approximation by using the Pade 

approach (Hadley, 1992), which is generally known as Pade wide angle 

approximation.

It is well known that the computational domain in BPM is finite therefore the 

boundary condition for the optical field needs to be specified. This makes the 

application of the boundary conditions one of the most important features of all the 

BPM algorithms. This section introduces the absorption and transparent boundary 

conditions and then give details of the perfectly matched layer which is the BPM 

boundary condition algorithm used in this work.

The boundary condition should be well chosen in such a way that their effects will not 

have adverse effects on the optical field. These adverse effects can be that the 

radiation tends to reflect on the limits of the computational window and bounce back 

to region of interest to cause unnecessary interference when the propagation is done 

by FD-BPM.

For FFT-BPM the propagation field disappear through a boundary and a new prop- 

field appear from the opposite boundary of the window. This can be prevented by 

making the window very wide that when the field gets to the window limits, it is

4.9

4.4 BPM Boundary Conditions

4.4.1 Absorption Boundary Condition (ABC)
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negligible. Boundary reflection can be prevented when using FFT by introducing 

artificial absorption regions adjacent to the boundaries in question (Feit and Fleck, 

1978 and 1980; Lagasse and Baets; 1987). For the method to work well, the 

dimension of the waveguide, the shape functions and the absorption coefficient must 

be carefully chosen. This makes the absorption boundary condition geometry 

dependent which has to be fulfilled for each new problem if the device itself is 

extended which is a major disadvantage.

When using FD-BPM, the optical field at the end points j=0 and j=N+l are not 

defined. To have a complete and correct optical field, two extra equations are needed 

to determine these points. The Newman and Dirichlet boundary conditions can be 

supplied to solve the problem but none of the boundary conditions give adequate 

results since their application causes optical field ‘reflections’ at the window limits 

because the condition of zero field at the boundaries is not realistic when the 

propagation sets to the limits of the computational window. The idea of transparent 

boundary condition (TBC) is to approximate the wave near the boundary of the 

computational domain as a plane wave.

The algorithm of the transparent boundary condition is introduced to solve the 

problem of absorption boundary condition (Hadley, 1991 and 1992). In this scheme, 

the wave is approximated as a plane wave near the boundary of the computational 

domain which satisfies

where d> is the field near the boundary, k is the wavevector (computed from field 

values inside the domain or set as a positive value), and x is the distance in the 

direction normal to the boundary, i.e. a realistic boundary condition allows the light 

wave to leave the domain region when it gets to the windows limits and is prevented 

from bouncing back to the domain. In other words, there is implementation of a 

virtual boundary from physical point of views where unwanted radiation escapes out 

of the region and no reflection is experienced. The transparent boundary condition 

does not depend on the waveguide parameter and therefore problem independent and

4.4.2 Transparent Boundary Condition (TBC)

4 . 1 0
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can be directly applied to arbitrary waveguide structure. Moreover it can be adapted 

into Crank Nicholson Scheme for both 2- and 3- dimensions. The transparent 

boundary condition is more accurate and efficient than the absorption boundary 

condition. The draw back on this scheme is that the plane wave approximation of the 

outgoing wave near the boundary is not adequate to suppress large radiations, 

moreover many field values inside the computational domain should be involved in 

estimating k, otherwise some numerical instabilities can be observed (Vassallo and 

Van de Keur, 1997; Vassallo and Collino, 1996).
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4.4.3 The Perfectly Matched Layer (PML)
It was in 1994 that Berenger introduced the concept of the Perfectly Matched Layer 

(PML) (to replace the absorbing or transparent boundary conditions) with the aim to 

synthesise an artificial absorbing layer for the Finite Difference Time Domain 

(FDTD) method. The PML concept has been successfully applied in one-dimensional 

FD-BPM (Huang et al., 1996) and it has been shown to be more robust than the 

transparent boundary condition since the latter cannot account for waves propagating 

with wide angle. But Berenger’s original form of PML needs the splitting of the field 

components into two subcomponents which leads to non-Maxwell’s equations which 

is not the desired form for the application of finite elements. Since then there has been 

some other BPM algorithms based on finite difference method which are either scalar, 

semi-vectorial or full-vectorial, but they are not sufficient for simulating nonuniform 

optical waveguides because it is inefficient in the discretisation of nonuniform mesh 

of waveguide cross-section and for curved boundaries, they present very crude 

approximation. There are some BPM algorithms with PML which keeps the form of 

Maxwell’s equations that are based on finite element method (Obayya, 2000; Pekel 

and Mittra, 1995a and 1995b), can simulate complex and nonuniform structures but 

are formulated on the less accurate scalar wave equation and therefore cannot handle 

the 3-D optical waveguides with hybrid fields. The perfectly matched layer boundary 

condition which is incorporated into the full-vectorial FE-BPM formulations will be 

used in throughout this thesis.

The implementation of the PML in this work, can be demonstrated by the waveguide 

cross-section shown in Fig. 4.1, where x and y are the transverse directions, z is the
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longitudinal direction of propagation, regions fii and Q2 are the PML regions 

normally faced with x and y directions, respectively, regions 0 3  corresponds to the 

four comers of the PML, Q corresponds to the computational domain region, W is 

the width (or height) of the PML, and LA and Ly are the width and height of the 

computational domain in the x and the y directions, respectively.
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Fig. 4.1 PML sections with the optical waveguide cross-sections

The starting point of the of PML formulations, is the Maxwell’s curl equations which 
can take the form

4.11V1 x H  = j(O£0n2E 

V1 x E  = -jcojU0H
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where E  and H  are the electric and magnetic field vectors, n 2 is the square of the 

refractive index, and V( is the modified differential operator defined as
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V1 = x a x —  + y a —  + z
dx dy dz

where

4.13

a t (t = x,y) = -
1 ~ j-

<y„
<D£0n ' 1 -7 -

<T

m  0

4.14

with a e and o m are the electric and magnetic conductivities of the PML, respectively. 

Relation (4.10) shows that the PML satisfies the impedance matching condition with

an index n and wave impedance. Mo
£0n

The values of the parameters a x and a y 

follows:

are defined in the different regions as

(1) Inside the computational domain, both a x and a y are set to unity.

(2) The regions in the transverse x-direction, a x -  a t and a y = 1.

(3) The regions in the transverse y-direction, a x = 1 and a y = a t .

(4) For regions in the four comers, both a x and a y are set to a t .

In the PML regions, the electric conductivity is given by

cr,(/?) = crma> VWy
4.15

where p  is the distance inside the PML, measured from the interface of the 

computational domain and the PML, crmax is the maximum value of the electric

conductivity, and m is the power of the conductivity profile and in this work, it will be 

taken as 2. For this conductivity profile, the theoretical reflection coefficient, R, at the 

interface between the PML and the computational domain is (Berenger, 1994),
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R = exp
(72 max J

cn£n 0

( p ^ '
o " \W )

dp 4.16

where c is the velocity of light in free space. Performing the integration involved in 

(4.16), <7max can be expressed as

a max
3cne0

2d

i  1 A
in

\ R j
4.17

Once the value of the theoretical coefficient is chosen, R (set to very small value), the 

maximum electric conductiv ity^^, is calculated using relation (4.17). Hence the

electric conductivity profile cr(p) and the PML parameters a x and a y will be

determined for the different PML regions. With these arrangements of the PML in 

different regions, and nonphysical radiation wave will freely lave the computational 

domain whatever the angle and/or the strength it hits the boundary of the 

computational domain.

4.5 Vectorial Wave Equations
The starting point of deriving the vectorial wave equations are the Maxwell’s curl 

equations (4.11) and (4.12). Taking the curl of equation (4.11) and using equation 

(4.12) gives

V1 x (n~2 V* x H ) -  k^H -  0

where k0 is the free space wavenumber and is given by 

k0 — cô j p 0 £0 —

with A is the free space wavelength.

4.18

4.19
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Equation (4.18) is the full vectorial wave equation, i.e., it contains the three 

components of the magnetic field vector, H. This wave equation can reduce to only 

the two transverse components, IIx and H y, via the use of the zero divergence

condition,
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dHx
dx +a>'

dHy dHx
-----  +  -

dy dz
=  0 4.20

Substituting (4.20) into (4.18) results in the following two coupled wave equations

a / Oa  ( _2 a / 0  an ~— -  +a„
dz V dz ) dy

n 2a„
v dy

+ n ~a2 a  ( dH '
dx

a.
v UAdx

+ k-H x +

+ n 2a r —-
dx

f  d H '  
a  — -

v ^ y
■or,.

dy
-2 dHy '  

n a
dx

=  0 4.21a

d 3 (+ a  —
dz l dz J

-2 yn a
dH,A „ 9  ( dH '
dx

+ n~2a  —  
■ dy v dy

+ k0Hy +

+ n a„ a  f  dH,
a .

dy v dx
- a . d_

dx
n 2 a.

V
M r
dy

= 0 4.21b

In deriving the wave equations (4.21) the assumption that the refractive index is

slowly varying in the direction of propagation, d̂n / d j ~  has ^een made- Solving

equations (4.21) is easier than eqn.(4.18), not only because it has a less number of 

unknown components, but also because the zero divergence condition is automatically 

satisfied through the derivation, and hence, there is no possibility for spurious 

solutions to propagate.

By assuming the wave travels along the +z direction, the fields can be separated as 

slowly-varying envelopes and a fast-oscillating phase term as
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4.22

where n0 is a reference index of refraction, and ^ xand l//y are the slowly-varying 

envelopes of the H x and H y components, respectively. The reference index of the 

refraction, n0, should be chosen such that the envelope varies very slowly in the +z 

direction. For this purpose, n0 should be chosen very close for the effective index of 

the guided mode(s) of the concerned structure. For monomode waveguides, n0 can be

set equal to the effective index of the fundamental mode. But, for multimode 

waveguides the situation will be complicated as the effective indices of all guided 

modes have to be determined in order to set n0 to the proper value. In this case, a 

better approximate is to set n0 as the average of the guide and substrate refractive 

indices.

Substituting from eqn. (4.22) into eqns. (4.21) results in the following two coupled 

unidirectional wave equations

- ' dlV - - 2 J n oKn ' dV
dz:

+ cr
dz dy

n 2a, 'dyx
dy

+ n 2 a.
dx

a. d ¥ x
dx

+

+ kg ( 1  -  n 2ri2)y/x +n La x
dx

(

V

dy
-a„

dy
n -ax

v

dVy
dx

0 4.23a

-, ^
dz2 2i nokon~2- ^ - + a ,

d_
dx

-2n a ,
dx

+ n ‘'a.,
dy

oc„ d W y

dy
+
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4.23b

Equations (4.19) will be solved for the slowly-varying envelope by the application of 

the finite element method in the following section.

In this section, finite element algorithm is formulated for the BPM with the 

incorporation of the Pade wide-angle approximation, using the PML boundary 

conditions discussed in the section 4.4.3. Fig. 4.1 shows an arbitrary waveguide cross- 

section which is assumed discretised into a patchwork of first order triangular 

elements. Application of the standard Galerkin’s procedure into equations (4.23), lead 

to

4.6 Finite Elements Formulations For BPM

+  J a]n 2 N ¡ds  +  \  k l  (l
« O X  e

d y  ^  d x
4.24a

4.24b
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where N t are the shape functions with ¿=1,2,3,_over the first order triangular

of these first order shape functions, N t , have been studied in details in the last 

chapter. In writing eqns. (4.24), it has been assumed that refractive index, n, and the 

PML parameters, a x and a y are fixed to constant values within each element. Hence,

for the step index waveguides, the discontinuity of the refractive index and the 

associated interface boundary conditions will not be accounted for. But, using Green’s 

theorem for integration by parts will result in line integrations, around each element, 

which can be utilized to satisfy the following interface boundary conditions

interfaces between two different media.

The application of Green’s theorem for integration by parts to equations (4.24) and 

taking the above interface boundary conditions into consideration leads to

element, e, and j (.) ds stands for the integration over the element area. The properties

J d y /  dy/ ^
1) Continuity of Ez, and Et <*= n ---- 1-------- -

dx dy y

2) Discontinuity of n ---- ;
dx

4.25a
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4.25b

where nx and n are the direction cosines between the normal to the element 

boundary Fe and the x and y directions, respectively, and q(.)dTe denotes line

integration around the element boundary, Tc. The line integrals involved in eqns 

(4.25), which are introduced to account for the interface boundary conditions, are so 

responsible for the polarization dependence and coupling. Hence, the inclusion of 

these integrals into the formulation is mandatory in order to get a true vectorial 

formulation. Over each element, e, and in terms of the shape functions, AC, the

transverse magnetic field envelopes can be expressed as

components of the magnetic field, respectively, at any propagation distance. 

Subsituting from eqns. (4.26) into eqns. (4.25) and collecting the contributions from 

all elements results in

K  {x ,y ,z )= Z  hxj (z)Nj (x , y )
7=1

4.26a

4.26b

where hxy(z) and hyj(z) represent the element nodal values of the x- and y-

[ M ] T h i  _  2 / i a „ [ M l ^ h l  + ( [ K ] -„ X  [M ])[/(,} = ¡0} 4.27

where { 0 } is a column vector with all zero entries, and
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with hx(z) and h (z)represent the nodal values of the x- and y- components of the

magnetic field over the whole domain. The global matrices [M] and [K] can be 

expressed as a summation of the corresponding elements matrices as

[m ] = £ [ m ] = 2
[m J  0

[0 ] [m „ 1

[k ] = S [ k L = £
k j  k j  
k J  k j

4.29

4.30

where [0] is a 3x3 zero value matrix, and Z stands for the contributions of all
e

elements matrices ¡M^ and [k ]̂  into the global ones. The matrices [Mcv] and [m ] 

have the same form as

1 N~ds
e

\ N 2N xds
e

\ N 3N xds
e

j N lN 2ds
e

1 N 22ds
e

i N 3N2ds

¡N.N.ds
e

j N 2N3ds
e

I Nlds
e

The matrices [ A', and [A'  ̂J can be arranged in the form

kJ=k«]+kJ,

kj=k„]+kjr
' e

4.31

4.32

4.33

119



Chapter 4  The Beam Propagation Method

where

i N?ds ¡N,N2ds \ N xN 3ds [ N l d s 1 NlyN 2yds j.NlyN3yds

[««]=*«
e

\ N 2N xds
a

i Nlds ! N2N 3ds -2  2 - n  a y [ N 2yNXyds e f N 22yds JN 2yN 3yds

1 N3N xds
_ e

\ n 3n 2
e

J N 23ds
e

e\ N 3yNXyds
_ e

\ N 3yN 2yds e \ N ; yds
e e

-  n

IN?,ds 

[N,,N„ds 

\ N „ N lxds

{N„Nu ds 

' i.v;,rfv
e

I N>,N2,ds

[Nu N,xds

i N 2,N„ds

'  I  N l d s

4.34

where N lx and Niy denotes the x and y derivatives of the shape function Ni , 

respectively. The matrices and [k yy j. are related to the line integrals

h » lr .

jN ,N un,dT, j N . N ^ d r ,
r( rp

2 2 
'«x j N 2N lxnxdTe j N 2N2xn2dT, j N i N , j ’, d r,

r. r.
j N 3N lxnxdTe I'V jA 'j.n.dP,

Je r. r;

jN ,N „ n ydT, j N ]N 3ynyd re
re r,. re
j N 2N ly„ ydT, f v 2 A V ,< C j N 2N ,rn,dT,
1; r. K
cfA^A^n/T j N 3N 2ynydTe { N ,N 2yn,dT ,

j ; K 1;

4.35

4.36

The matrices [k ^ J  and [Kyx J can also be expressed as

kJ=k,hkJ+k,,Jr, 4.37
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k J = W - W + k „ l r , 4.38

where

[A-, ] = iC 'a .a

I N„Nu ds 

[NlyN udS 

l N „ N uds
e

I N„N,,ds  J N„N„ds 

¡N2,N 2,ds

'¡NJ,N 1j l s  ‘i N , N lxds
e e

4 . 3 9

[K2]= a ' -ara r

l N uN„ds

[N2,N„ds

'lN„N„ds
e

l N i x N 2 y d s  [Nu N 3yds 

\ N 2xN 2yds [ N 2xN 3yds 

)N,xN2yds ] N3xN3yds
e e

4.40

fc jxy Jr„ = n 2a xa y

= n 2a a xA y

§NlN XynxdTe j N , N 2yn,dTy ■\NtN 2ynxdr
r„ 1;
j N 2N,ynxdT, j N 2N2ynxdT, $N2N iydT,
1; r„
j N 2N lynxdTe j N 3N 2ynxdTe j N ,N „ n xdT
K re r.

$N,NlxnydT, $NyN 2xnydT, fv .A ^n .V r,
r. r. Tr
j N 2NlxnydTe j N 2N 2xn,dT, { N2Nu nydT,
K re
jN 2N,xnydr, j N 3N2xnydTe j N 2N ,xnydT
r. re

4.41

4.42

The shape function integrals included in the calculation of the element matrices [m ]c 

and [k ]c can be evaluated using the following formulae

\ N [N lN k2ds i\.j\k\2\
(i + j  + k + 2 )!

4.43

\N[NidTe >!•;!
0  + 7 + 1 )!

/12 4.44
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where Ae is the element area and related (as studied in the last chapter) to the nodal 

coordinates of the element, and T12 and ll2 are the part and length of the element 

boundary connecting the nodes 1 and 2, respectively. Similar expressions can also be 

written for integrations around other element boundaries.

From the above formulation of the element matrices, it can be noted that the element 

matrix [k ], is responsible for the polarization dependence and coupling. The 

inclusion of the line integrals in the matrices [Kxr] and [k  J  make them unequal, the 

hence, the polarization dependence is accounted for. Also, since the matrices [k  vv J 
and [K J  are not zeros, the coupling between the polarization states is taken into

account. So, the above formulation is a true vectorial one albeit it considers only the 

two transverse components of the magnetic field. Another point of prime concern is 

that the resulting global matrices [m ] and [k ] are sparse, hence, only nonzero 

elements have to be stored, and also computationally-efficient matrix solver based on 

LU-decomposition can be used. This is a major advantage of the current vector 

formulation, where other vector formulations based on the transverse field 

components can lead to dense matrices. In some optical devices, the hybrid nature of 

the field is not so clear, so, the polarization coupling is very weak. In these cases, the 

matrices [k  ] and |_K ] can be neglected so that the formulation reduces to two

decoupled wave equations for H x and H . In this case, the formulation reduces to a

semi-vectorial one. Moreover, for some weakly-guiding optical devices, even the 

polarization dependence may be neglected. Hence, the matrices [K xt ] and [K J  will

be reduced to one matrix [K„] so that the formulation reduces to only one wave 

equation for H x or H and the formulation reduces to a scalar one.

Equation (4.27) represents the exact non-paraxial vectorial wave equation to be solved 

in a step by step procedure in the z direction. The neglection of the z-second 

derivation term reduces to the approximate paraxial equation which is valid only for 

waves propagating very near to the axis of propagation, z. A better approximation to



the situation can be obtained via the application of Pade approach (Hadley, 1992). 

Equation (4.27) can be re-written in the form

4 . 4 5

” dzM , ____ 1____ 1
2 dz,
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w ith---- = 0  .
dz0

Utilising the first Pade approximation (Pade(l,0)) by putting i=0 in the recurrence 

Pade relation (4.45), the following equation results in

-  2jn0k0 [M d{h,}
dz

+ ([K]-«X[M])[/i,}={0} 4.46

where

m ]=[m ] + - 4 — ([K]-no2 *„3 [M]) 4.47
4n0k-

The paraxial equation is easily obtained from eqn.(4.46) by replacing the matrix [m ] 

by [m ] . Now, equation (4.46) can trace waves propagating off the propagation axis, z, 

more accurately than the paraxial equation, hence, it is called wide-angle equation. To 

solve eqn. (4.46) in a finite range of the z-domain, we divide it into sections each of a 

widthAz in which k = 1,2,3,... N where N is the total number of successive 

propagation steps. Over the k th section (shown in Fig. 4.2), the finite element method 

can also be used to approximate the field as (Zienkiewicz, 1977).

M r)} =  k ( c M ( t ) } + 4.48
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where C, is the local coordinate of the Mi section, {ht(Ck)} and {ht (Ck+\)} are the 

column vectors containing the field nodal values over the whole cross section at kXh 

and (k+l)th propagation steps, respectively, and Lk{£) and Lk+l(£) are shape 

functions defined as
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k ( C )  =  i - C  4 .4 9

L,„(C)=C 4.50

Substituting from eqns. (4.48), (4.49) and (4.50) into eqn. (4.46) and applying 

Galerkin’s procedure, with weighting functions Wm, results in

[A], {h,L , = [B],{/>,}, 4.51

where

[a ], = -2 jn0k0[M]k +«Az([K], 4.52

[B], = -2 y V :o[M],+(0-l)Az([KL ],) 4 . 5 3

with

fw' . W
e = 4--------- 4.54

o

where Az is the propagation step size, 6 is the scheme parameter, and the subscripts k 

and (k+1 ) denote the quantities related to the kxh and (Ci-l)th propagation steps, 

respectively. It can be seen from Fig. 4.2a that the lines Lk and Lk+] show the region 

where the C, is most suitable for numerical stability i.e. the point of intersection. Once 

the initial field is specified, equation (4.52) can be solved to get the field at the 

successive propagation steps.
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The value of the scheme parameter, 9, depends on the choice of the weighting 

functions Wm as shown in Fig. 4.2. The scheme parameter, 6, decides the stability and 

the numerical losses of the propagation algorithm. At 0 = 0 as shown in Fig. 4.2b, W,„ 

indicates a shift to the far left which gives poor numerical solution. For 6 > 0.5, the 

algorithm will be unconditionally stable (Zienkiewicz, 1977). For 9 = 0.5, as shown 

in Fig. 4.2c which corresponds to the finite difference Crank-Nicolson algorithm, the 

algorithm will be stable and conserving the propagating beam power as well. But, for 

Crank-Nicolson algorithm, some high frequency oscillations may appear in the field 

distribution. In other to overcome this problem, higher values of the scheme 

parameter, 9, can be used (up to 9 = 1 as shown in Fig. 4.2d where Wm indicates a 

shift to the far right), but at the expense of some nonphysical numerical losses. On the 

other hand, the use of the rigorous PML boundary conditions can eliminate these high 

frequency oscillations appearing with the field whenever Crank-Nicolson algorithm is 

used. Hence propagation algorithm proposed in this section is unconditionally stable 

(9 -  0.5) and power conserving as well.
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1

k+1

•+ Az *•

(a)

0=0, Wm =

(b)
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i i

0=0.5, Wm = 1

f

(c)

0=1, Wm =

(d)

Fig. 4.2. Shape functions and different cases of weighting functions 

for discretisation along the longitudinal z-axis.

4.7 Wave Properties Formulations
In this section, the important parameters for characterising many photonic devices are 

formulated. The determinations of the propagating power, the spot-size, and power 

transfer efficiency are crucial for the characterization of the spot-size converters and 

tapers. The minimization of the propagation losses and subsequent optimisation of the 

power coupling efficiency are the essence of this study and worldwide research. The 

overlap integral (01) is also incorporated into the BPM algorithm to calculate the 

coupling efficiency of the optical waveguide to a fibre for a single mode operation.

4.7.1 Propagating beam power
From Poynting’s theorem, the power associated with a beam propagating in the +z 

direction is

Power, P = — Ref jE x H * .zd o ) = -R e f jf^ / /*  - EyH*x)dQ
2 v J 2

4.55
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Where Re stands for the real part, z is the unit vector in the z direction, and the 

integration is carried over the surface of the computational domain. The transverse 

electric field components can be expressed in terms of the corresponding magnetic 

field components as

E■ *0 *0 .n-2 „  4.56
CO£0

E ^ o K n-2Hx 4.57
(O£ 0

In deriving Ex and E expressions, the second order derivatives with respect to the

transverse coordinates, x and y, have been neglected. Substituting from eqns. (4.56) 

and (4.57) into eqn. (4.55) results in

P \ n-2\Hx\2 +\Hy\2\lQ 4.58

where Zo is the free space wave impedance (Zo = 120k  ohms). Substituting from 

equations (4.22) and (4.26) results in

P = {ht}T[M]{ht} 4.59
2

where {ht} denotes the nodal values of the propagating field, T denotes complex 

conjugate transpose, and [M] is the global matrix defined in eqns. (4.29) and (4.31). 

From equation (4.58) integration of the H ] over the surface of the computational 

domain can be expressed as

ne

H y2(x,y) = ^ i / / / ( x ,y ) 9 Q
n = 1

4.60
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and from finite element formulations in chapter 3, (4.60) can be expressed as

H;{x,y)  = \{H }T[.V| |\ '|{ //. ]0£2 4.61

H >1 A/ 6 A/12 A/12

H >2 - A/12 A/ 6 A/12 « H y2
Hyl A/12 A/12 A/ 6 H >3

{h „h ,2h „
A/ 6 A/12 A/12
A/12 A/ 6 A/12 <H y2
A/12 A/12 A/ 6

4.63

Vl H y2 H
y  3

A/ 6  //„, A/12 //„., A/12//
] A/ 12//yl A/6H y2 A/12//

A /12 //yl A/12//

y3
>3

y2 A /6 / / y3

4.64

A/ 6  H yl2 A/12 H ylH y2 A/12 H ylH
A/12 H y2H yl A/ 6  H y22 A/12 H v2H
A/12 H ylH y3 A / l2 H ylH yi A /6 / / v 3 2

4.65

The implementation of the above matrix determines the propagating power in the 

waveguide device at each step in the longitudinal z-direction.

4.7.2 Spot-size Calculation
It is well known that a well-confined optical beam is required to optimize the 

performance of a wide range of photonic devices, such as semiconductor lasers, 

amplifiers, modulators or switches. When such a photonic integrated circuit (PIC) 

with a small and non-circular spot-size is directly butt-coupled to a single-mode fibre 

(SMF) with a large and circular spot-size, nearly 80-90% of the optical power can be 

lost due to a large mismatch between their spot-sizes. Majority of SSC designs
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reported recently do incorporate tapered structures, operating very close to the modal 

cut-off, to expand their spot-size. This will be discussed in details in Chapter 6  where 

some taper designs will be presented.

The spot-size ( a )  of the fundamental quasi-TE modes have also been calculated by 

evaluating the corresponding Poynting vector, ExH as in the previous section 4.7.1.

; ) d n ]Power, P = -^Rei jExH*.zd£2j = -^Re[j(.I E M y- E yH x 4.55

In this work the spot-size is defined as the area where field intensity falls to l/eth of 

its maximum value (or its power intensity is 1 /e ).

4.7.3 Propagation Loss Calculation
Many losses are associated with optical waveguide devices when the optical beam is 

moving through the devices or from one device to another. These will be discussed 

in chapter 5 however, but it will be mentioned here briefly that the exponential 

attenuation coefficient is generally used to describe quantitatively the magnitude of 

the propagation loss, L, is given by,

L(dB) = 10 log f P. '
10 p\ ro J

4.72

where, Po is the power at the beginning of propagation and Pt is the propagating power 

at any point along the length of the waveguide.

4.7.4 Power Coupling Efficiency
This section deals with the ultimate test of any design in the field of engineering 

generally. In this work the waveguide designs are subjected to reliability and 

efficiency test in order to optimise the performance of these designs. In the 

simulation, it is assumed that the optical waveguide is butt coupled to a single mode 

fibre. In this approach, a Gaussian profile with an arbitrary beam waist (Q0) can be 

used as a fibre source which is coupled to the optical waveguide under test.

The Gaussian field is given by 0(x,y) = A exp- (^ -x 0)2 + ( y - y 0)2
Sir

4.73
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Where xo and yo are the coordinates of the Gaussian beam, Qo is the Gaussian beam 

waist or radius, x and y are coordinates of the output field obtained from the 

waveguide. The incorporated overlap integral is used to determine the coupling 

efficiency. The overlap integral is given by (Damask, 2005)

where, Pl2 = J«I>1<E>2 ì/S2 is the total propagating power,

Pu = is the power due to the waveguide, and

P22 = is the power due to the fibre (Gaussian beam).

4.74

4.75

4.8 Summary
In this section a powerful, and versatile vectorial BPM algorithm which is based on 

the finite element method have been presented. It is based on real vector of the six 

transverse magnetic field components which satisfies the appropriate interface 

boundary conditions and also automatically satisfies the zero divergence condition, 

which prevents the spurious solutions from affecting the propagation. This algorithm 

takes into account the effects of reflection and radiation waves during the propagation 

by using the rigorous PML boundary condition. Also taken into account is the realistic 

wide angle range approximation by using the Pade recurrence relation which can 

accurately determine the path of the waves propagating off the longitudinal z-axis. 

The global matrices generated are sparsed unlike other vector formulations which 

result in dense matrices, therefore, only nonzero entries are stored and efficient LU 

decomposition matrix solver is used. The vectorial BPM algorithm is extended to 

calculating some wave properties like propagating power, the spot size and the 

propagation loss. Also the overlap integral has been incorporated into the algorithm 

for the assessment of the coupling efficiency.
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Chapter

Spot-size Converters
5.1 Introduction
In this section, the vectorial finite element method is used to design various types of 

monolithically integrated spot-size converters for efficient coupling of an active 

device to a standard optical fibre. Spot-size converters (SSC) with MMI and Twin-rib 

structures are investigated in this chapter. It is well known that a well confined optical 

beam is required to optimize the performance of a wide range of important photonic 

devices, such as semiconductor lasers, amplifiers, modulators or switches. When such 

a photonic integrated circuit (PIC) with a small and non-circular spot-size is directly 

butt-coupled to a single-mode fibre (SMF) with a larger and circular spot-size (as 

shown in Fig. 5.1), nearly 80-90% of the optical power can be lost due to a large 

mismatch between their spot-sizes. To overcome such a high loss, at present, when 

coupling a SMF to PIC, a microlens or lensed fibre is used to enhance the coupling 

efficiency: however, this approach also introduces the need for sub-micron alignment 

tolerances. This reduction of coupling loss, which is possible at the expense of the
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stringent alignment tolerance, results in a very large packaging cost. For a low-density 

subscriber network, such a large cost is inhibiting the rapid extension of (FTTH)

Waveguides are generally used for production of single mode operations to be used in 

optoelectronic integrated circuits (OEICs). But there have been cases where 

waveguides are needed to produce a wider multimoded waveguide which can be used 

in the design of some specific photonic devices. These waveguides are generally 

known as Multimoded interferometric (MMI) devices. They have got their own good 

qualities and usefulness such as:

1. They can be used as optical power splitters

2. They are more tolerant at the fabrication processes

3. They are polarization sensitive

4. They can be used as spot-size converters to improve coupling efficiency

Tapers are generally used either laterally or vertically to achieve the required spot-size 

for some photonic devices, but their fabrication often requires complicated 

techniques. Tapered waveguides are also known to cause performance degradation in 

many active devices from sudden reflections when sharply terminated. Therefore 

these disadvantages have led to the concept of using MMI as a SSC to expand the 

spot-size. Fig. 5.1 below shows the general principle of spot-size conversion. MMI- 

based design has been considered in this section to evaluate their properties to 

improve the coupling efficiency by using the finite element and the LSBR methods.

The spot-size converter waveguide structures described in this section are made from 

GaAlAs/GaAs semiconductor materials. This is a composition of IIFV semiconductor 

system with a direct band gap. The binary, ternary and quaternary compositions GaAs 

or InP are transparent at X = 1.3 or 1.55 pm, the wavelength important for optical 

communications and the study carried out in this section makes use of these 

wavelengths. Waveguides can be fabricated by epitaxially grown layers with different 

refractive indices. Horizontal guiding in accomplished group II or VI elements, so that 

electronic devices can also be produced.

Chapter 5 Spot-size Converters
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Figure 5.1: Spot-size conversion principle

Fig 5.1 illustrated the principle of spot-size conversion and power transfer from 

waveguide to a fibre. The spot-size is defined as the area where the power intensity 

falls to 1/e2 of its maximum value. The variation of the refractive index profiles is also 

shown in Fig. 5.1. As it can be observed the output of the semiconductor laser is sent 

to a strong guiding primary core with high refractive index. Due to the strong 

confinement and reduction of the width of primary core, the mode field is nearly 

limited to the width of this primary core, which is surrounded by a secondary core 

with lower refractive index. The primary core is tapered, i.e. its width is gradually 

decreased in the steps along the longitudinal direction of the waveguide. When the 

mode approaches the cut-off in the primary core, and the taper width is decreased 

further, the spot-size is pushed into the secondary core, as the primary core can no 

longer confine the growing mode and subsequently more power is transferred to the 

secondary core. When the primary core is tapered to a certain critical width, the mode 

is completely transferred to the large-spot region, where secondary core takes on the 

task of guiding. With proper designs this mode may match the mode field of a single 

mode fibre. The phenomenon of mode expansion near cut-off is employed in
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achieving the monolithically integrated spot-size converters in most cases. However 

there is still problem of field mismatch since both the size and shape of the beam need 

to be converted and stringent alignment tolerances is also needed by spot-size 

converters which causes increase in the packaging cost and make the production very 

unlikely. The idea of the micro machined alignment mirror was floated, in which the 

alignment of the fibre and waveguide is carried out with a movable micro-mirror. But 

the drawback in this case is that many additional fabrication steps will be required for 

SSCs and this will make mass production cumbersome. As a result the idea of 

producing efficient integrated SSCs has been a top priority to eminent optical 

scientists worldwide. This is because of the reduction in the cost of components, 

packaging and assembly which in turn leads to low cost components with 

compactness and reliability.

5.2 The Least Squares Boundary Residual Method
There has been a considerable interest in the analysis and design of integrated optical 

devices in which waveguide parameters vary along the axial direction. They play an 

important role in designing practical devices, such as, an isolated step discontinuity as 

in the simple butt-joining of two waveguides of different widths, or as finite cascades 

of discontinuities as in the bending of an optical waveguide in an integrated optical 

directional coupler circuit, the tapering of a channel waveguide for efficient coupling 

to an optical fibre, gratings on dielectric waveguides in certain components like bragg 

reflectors, or Y- junctions. Various methods for the analysis of the discontinuity 

problems in a dielectric waveguide have been developed by a number of authors 

(Clarricoats and Sharpe, 1972; Hockham and Sharpe, 1972; Mahmoud and Beal, 

1975; Morishita et al., 1979; Shigesawa and Tsuji, 1986). However, most of the 

theoretical analyses reported earlier have restricted limitations of practical application, 

since the radiated and reflected waves have been ignored and also used under the 

assumption of slight discontinuity.

The problem considered here is an abrupt discontinuity in the transverse plane, z = 0, 

between two arbitrarily shaped uniform waveguides. Each waveguide can have scalar

134



Chapter 5 Spot-size Converters

or tensor permittivity that varies arbitrarily with the two transverse directions. The 

incoming wave incident upon the discontinuity plane is presumes of one mode. In this 

thesis, the discontinuities in dielectric waveguides are accurately analysed using the 

least squares boundary residual (LSBR) method (Rahman and Davies, 1988). 

Consequently, the LSBR method has been used along with the versatile vector finite 

element method (Rahman and Davies, 1984a) in order to calculate the power transfer 

from a waveguide section to another.

The least squares boundary residual method was introduced as an alternative to the 

point matching and Galerkin (Zienkiewicz, 1977; Desai, 1979; Silvester and Ferrari, 

1990) methods, of solving problems numerically. The LSBR method satisfies the 

boundary conditions in the useful least-squares sense over the discontinuity interface. 

In contrast to point matching, the LSBR method is a rigorously convergent procedure, 

free from the phenomenon of relative convergence. The LSBR method has the 

flexibility of introducing an electric/magnetic weighting factor and, unlike the point 

matching, the errors being minimised are global rather than sampled just at discrete 

points. The method has been widely used to study discontinuity parameters in 

microwave and optical waveguides (Davies, 1973; Brooke and Kharadly, 1976; 

Matsumoto et al., 1986; Cullen and Yeo, 1987; Fernandez and Davies, 1988). The 

LSBR method matches the continuity of the tangential electric and magnetic fields in 

the least squares sense considering many modes at the discontinuity plane to provide 

the generalised scattering matrix. In this study, it has been shown that the LSBR 

method is an accurate and versatile numerical tool to obtain the power transfer 

between coupled waveguides.

A brief explanation of the theory of the least squares boundary residual method is 

given in the next section, followed by a discussion of the use of FEM in the numerical 

analysis of the discontinuity problem.

5.2.1 LSBR Formulation
Consider the abrupt junction of two dielectric waveguides as illustrated in Fig. 5.2. It 

is assumed that the discontinuity junction is excited by an incident wave of one mode
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from side I. This incoming wave is partly reflected, partly transmitted, and radiated at 

the junction interface. Let Etm and H,m be the transverse components of the electric 

and magnetic fields of the incident wave, respectively. Some of the incident wave is 

reflected back into the side I. On the other hand, many modes will be generated at the 

discontinuity plane to satisfy the boundary conditions. These can be guided or 

radiated modes on both sides of the discontinuity. The total transverse electric and 

magnetic fields E,1 and El,1 in side I and E,11 and Htn in side II at the discontinuity plane 

(z = 0), can be expressed in terms of the eigenmodes in side I and side II, respectively, 

as follows:

5.1
i—1

5.2

5.3
;=i

11
ti 5.4

i=l

X
Side I Side II

>bi
Incident

mode

(a) Discontinuity plane
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(b)

Fig. 5.2 Discontinuity junction of two dielectric waveguides (a) Vertical section of the 

discontinuity between side I and II. (b) Transverse cross section of the discontinuity at the 

junction of two sides.

The modes, which are incident at the discontinuity plane, may be propagating, 

radiating, or evanescent. Therefore Et!  and Ht!  represent the transverse field 

components of the zth mode reflected from the junction in side I and, a, are the 

corresponding modal amplitudes of these reflected modes. Similarly, Etin and I I are 

the transverse field components of the ith mode transmitted in side II and, ¿>, are the 

modal amplitudes of those transmitted modes. These scattering coefficients, a, and 

have to be determined.

Considering the fields in either side of the discontinuity, the mean-squares error to the 

boundary condition in that plane can be defined as the functional:

j  = J]e ; —Ef|2 + s.z02\n't - h ,"|2̂  5.5

where S is a convenient, positive and dimensionless weighting factor, and the integral 

is calculated over the discontinuity plane. Zo is the free-space wave impedance.
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In the LSBR method, the aim is to look for a stationary solution to satisfy the 

continuity conditions of the tangential fields in a least square sense by minimising the 

functional (5.5). To obtain the approximate numerical solution to the problem, the 

infinite series expansions of (5.1) to (5.4) are truncated, including all relevant 

propagating modes plus as many radiating and/or evanescent modes as convenient. 

An evanescent wave is a nearfield standing wave exhibiting exponential decay with 

distance. Evanescent waves (means "tends to vanish") are always associated with 

matter, and are most intense within one-third wavelength from any acoustic, optical, 

or electromagnetic transducer. Optical evanescent waves are commonly found during 

total internal reflection. In optics, evanescent waves are formed when sinusoidal 

waves are (internally) reflected off an interface at an angle greater than the critical 

angle so that total internal reflection occurs. The physical explanation for their 

existence is that the electric and magnetic fields cannot be discontinuous at a 

boundary, as would be the case if there were no evanescent field. For an optical fiber 

or waveguide, a radiation mode or unbound mode is a mode which is not confined by 

the fiber core. Such a mode has fields that are transversely oscillatory everywhere 

external to the waveguide, and exists even at the limit of zero wavelength.

In this analysis, all the reflection, transmission and radiation fields are determined in 

such a way that J  becomes a minimum. The electromagnetic fields thus obtained are 

the best approximate fields in the sense of least square error. The condition for eq. 

(5.5) being minimised is:

OO 5.6

which results in a set of linear equations:

C x  = v 5.7

The solution of this equation gives in {x}, the required approximate modal 

coefficients of a, and bj. These constitute one column of the scattering matrix, 

corresponding to the chosen incident mode. C is a square matrix generated from the



eigen vectors and v is an array due to the incident mode. The elements of C and v are 

given by:
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C# = (£„ .£ , ) + a.Z1(Hu,H„) 5.8a

vl = ( E ; ,E , l)  +  a .Z 1(H ;\H ll)  5.8b

where i, j  = 1,.......N, and N is the total number of modes in side I and II and the

vectors E, and H, are made up of all the corresponding modal fields in both sides.

The inner products involved in the above expressions are defined as:

= j-Xj • x*2 ds 5.9

where xj and jt2 are two field vectors, JC2 * is the complex conjugate of * 2  and 

integration is carried out over the waveguide cross section.

The above gives a brief outline of the least squares boundary residual technique which 

will be applied in the next sections to analyse MMI waveguide problems concerning 

power transfer between waveguide and fibre.

5.2.2 Application of LSBR in Waveguide problems

The vector H-field finite element has become a powerful tool for the solution of 

microwave and optical waveguides as described in the previous chapter. One of the 

main advantages of H-field formulation is that the continuity of H-field components 

is automatically satisfied even with permittivity discontinuities. In this thesis, to 

analyse the characteristics of coupled waveguides, the rigorously convergent LSBR 

method is used conjunction with H-field FE program. The elimination of spurious 

solutions by using the penalty method, particularly improves the eigen vector quality, 

which is a very important fact for the analysis of discontinuity problems.
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By employing the FE program, the nodal values of the complete H-field for each 

mode are obtained for both the waveguides (side I and side II). The E-field over each 

element are calculated using these nodal H-field values by using the Maxwell’s 

equations. Modal eigenvalues and eigenvectors of all the modes in both sides of the 

discontinuity are used as the input data to the LSBR method. All these eigenvalues 

and eigenvectors are easily generated by employing the vector FEM program. The 

LSBR program reads all the input data and calculates the integral J, and minimises the 

error criterion of eq. (5.5), with respect to each value of and bi for any given 

incidence, by solving a homogeneous linear equation (5.7). There is no need to 

generate the nodal E-fields as the nodal H-fields can be directly used to calculate the 

electric field part of the functional, J. The solution of the eq. (5.7) gives the unknown 

vector {*} consisting of the reflected and transmitted coefficients of all the modes 

considered in the analysis. The singular value decomposition algorithm has been used 

to solve the linear equation (5.7). For numerical efficiency, the FE nodal points of side 

I are matched with the nodal points of side II across the transverse plane at the 

discontinuity.

The LSBR method can be applied to a wide range of discontinuity problems, 

involving abrupt changes at the transverse plane between arbitrary guiding structures 

of uniform cross section. These include vertical shifts, horizontal misalignments, 

sudden changes of width or height, change in guide dimensions or materials, or 

combinations of all these varieties. The method can also be used to guiding structures, 

such as optical fibres or channel waveguides with anisotropic or electro optic 

refractive indices. On the other hand, the LBSR method can be used to find the 

optimum matching of the two waveguides by controlling the geometries and material 

properties of the guides. In addition, by choosing the optimum guide parameters the 

radiation losses resulting from random fluctuations in waveguide geometry and 

refractive index can also be minimised. The resulting reflection matrix and the 

transmission matrix give a complete understanding of the discontinuity problem 

which facilitates better designs of optical and microwave devices.
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5.2.3 Losses in optical waveguides
The source of losses in waveguide devices can be broadly classified as coupling loss 

and propagation loss. The coupling loss consists of;

(1) The Fresnel loss which is caused by back reflection at the interfaces between 

the waveguide and single mode fibre. This can easily be estimated by this 

relation, assuming normal incidence:

f

v

\2n, —n 
nx + n

0

0 y
5.10

where RF is the fractional amount of incident light reflected back at each fibre 

end, no is the refractive index of the medium between the fibres and nj is that 

of the fibre.

(2) The end alignment losses are the misalignment losses which are difficult to 

calculate because the power distribution across the fibres must be known.

The propagation loss is generally attributable to three different mechanisms: 

scattering, absorption and radiation.

(1) The scattering loss: in homogeneous media, there can be structural disorder in

material’s structure or composition. This is usually predominate in glass or 

dielectric waveguides

(2) Absorption loss is most important in semiconductors and other crystalline 

materials. It arises mostly from the presence of impurities especially in 

transition metals.

(3) Radiation losses become significant when waveguides are bent through a

curve.

Photons can be either scattered, absorbed or radiated as the optical beam progresses 

through the waveguide, thus reducing the total power transmitted. To describe 

quantitatively the magnitude of the scattering loss, the exponential attenuation 

coefficient is generally used, and the intensity (power per unit area) at any point along 

the length of the waveguide is given by,

I(z) = I0e t* 5.11
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where Iq is the initial intensity at z = 0  and cris the power attenuation coefficient.

Propagation loss is the loss taken into account throughout this thesis. For most 

coupling applications described in this thesis, the light is coupled in and out of one 

optical waveguide to another through a butt joint. The LSBR method analyses the 

waveguide junction efficiently in order to calculate the power transfer from the input 

guide to the other. When a guided TE or TM mode is incident on the discontinuity 

plane between two waveguides, some of the incident light energy is lost, called the 

insertion loss. The method can also be used to calculate this power loss suffered by 

the TE or TM mode, by utilising the scattering coefficients. If an incident mode of 

unit power is assumed then the insertion loss in decibels is given by:

L(dB) = lOlog
i  N \

2
10

V 1 = 1

5.12

where, ¿>, are the normalised transmission coefficients of the ith mode and N is the total 

number of modes considered.

5.3 Multimode Interference (MMI) Waveguides

This section involves the concept, design and analysis of the principle of the 

multimode interference (MMI) waveguides. In the design of guided wave photonic 

devices, one of the most important numerical techniques is to obtain the modal 

solutions of the waveguide sections. For an MMI-based design, all the guided modes 

of the multimoded waveguide section should be obtained. There are many numerical 

approaches available, which may be used to find the modal solutions of optical 

waveguides, such as the effective index method (Hocker and Bum, 1977), the finite 

difference method (Stem, 1988), and beam propagation method (Feit and Fleck, 

1980). The effective index method is simple but often inadequate and for a 

semiconductor optical waveguide with a large contrast ratio and two-dimensional 

modal confinement, where a more rigorous approach is necessary. The main
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advantage of the finite element method (FEM) over the finite difference method is its 

more accurate representation of the waveguide cross-section using triangles of 

irregular shapes and sizes. This particular advantage is more significant when 

waveguides have curved or slanted side walls, or have arbitrary shapes or index 

distributions. In the FEM approach, the vector H-field based formulation (Rahman 

and Davies, 1984a) has been established as one of the most accurate and efficient 

techniques, since unlike the alternative E-field formulation, all three components of 

the vector H-field are naturally continuous across the dielectric interfaces. This H- 

field based FEM is used in this work to obtain the modes and supermodes of the 

various types of SSC structures reported here.

It is also necessary to analyze the butt coupling between the SCC’s and the SMF and 

also to obtain the scattering parameters inside the SSC section, such as a butt coupling 

of the modal solutions input/output waveguides and the MMI section. Often the 

overlap integral method is used to find the transmission coefficients and even a 

simpler impedance-based approach is used to find the reflection coefficients at the 

junction interfaces. However, it has been shown that the least squares boundary 

residual (LSBR) method (Rahman and Davies, 1988), is rigorously convergent, and 

can be used to obtain both the transmission and the reflection coefficients by 

considering all the guided and discretized radiation modes of the structures. This 

LSBR method has been used to find the power coupling efficiency between the SSC 

and the SMF and also the modal coefficients of the modes or higher order modes in 

the MMI sections.

Chapter 5 Spot-size Converters

5.4 Design of a MMI-based Spot-size converter

In this section a novel design approach using a multimode waveguide is presented 

(Ladele, et al, 2001). The principle of multimode interference (MMI) has been widely 

used in the design of optical power splitters (Rajarajan et al., 1996), in which case it is 

important to design an MMI-section which produces the required number of images. 

In previous publications (Rajarajan et al., 1996), it had been observed that at a
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particular location, the resulting image could be more suitable for a coupling to a 

SMF. Fig. 5.3 shows the schematic of an MMI-based SSC.

In this design, it is assumed that the height and width of the primary guide on the left- 

hand side are 0.5 and 1.0 /xm, respectively. The core and substrate refractive indices 

are taken as 3.3989 and 3.1645 at the operating wavelength 1.55 /xm. The height and 

width of the MMI-based SSC section are taken as 0.5 and 8.0 /xm. The wider lateral 

dimension is selected to match the diameter of a typical SMF.

In this case, 10,000 first order triangular elements are used to represent the SSC cross- 

section. The dominant H field profile of the quasi-TE (h ^ ) mode in the PIC section

is shown in Fig. 5.4. The dominant H v field profile of the quasi-TE (h ) mode of a

typical SMF is also shown in Fig. 5.5, as a comparison. In this case, the core and 

cladding refractive indices of the fibre are taken as 1.50 and 1.49, respectively. If the 

PIC and the SMF are directly butt coupled the maximum transmission coefficient is 

0.26, which represents only 7% optical power is coupled into the fibre.

Chapter 5 Spot-size Converters

Fig. 5.3 Schematic of an MMI-based spot-size converter.
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Fig. 5.5 Hy field profile of the fundamental quasi-TE mode in the fibre.
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Fig. 5.6 Field profile at the start of the spot-size converter.

The FEM is used again to find the modal field profiles of the guided modes supported 

by the MMI waveguide. Subsequently, the LSBR method is used to find the 

coefficients of the modes in the MMI sections. From these modal coefficients and 

their modal field profiles, the overall field profile at the start of the MMI section is 

calculated, the result of which is shown in Fig. 5.6. This field profile is very similar to 

the field profile of the primary waveguide, as shown in Fig. 5.5, which illustrates that 

the continuity of the field components has been obeyed.

The optical field profiles along the MMI section would differ, as each mode in this 

section will propagate with its own propagation constants, causing relative phase shift 

between the modes. The composite field profiles were calculated and the LSBR 

method was employed to obtain the coupling efficiency to a SMF at each lateral 

position, as if the MMI section is terminated there. The variation of the optical power 

coupling efficiency with MMI length is shown in Fig. 5.7.
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Fig. 5.7 Variation of optical power coupled to the SMF with the axial distance, z.

It can be observed from Fig. 5.7 that maximum coupling efficiency is obtained when 

the MMI length is only 16 /rm. This demonstrates that a very compact SSC can be 

designed which can enhance the coupling efficiency from only 7% (x=0.26) to a 

reasonably larger value of 18% (x=0.42). The composite field profile at this position is 

shown in Fig. 5.8, which shows a significant enlargement of the overall field profile.
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However, it can also be noted that MMI section allows the field to expand in the 

horizontal, but not in the vertical direction, which limits the maximum power 

coupling that can be achieved. To facilitate field expansion also in the vertical 

direction, two additional MMI sections are introduced at the upper and lower side of 

the original SSC structure. The schematic of this three-core MMI based SSC is shown 

in Fig. 5.9 (Ladele et ai, 2001). Initially it is assumed that two additional MMI guides 

have also the same thickness as the middle MMI guide, which was set at 0.5 ¡xm. 

However, it was observed that the higher order modes were not extended appreciably 

into the two outer waveguides because the dimensions of the structure in which W »  

t where W stands for width and t, thickness. The mode confinement is more in the 

lateral direction than vertical direction. To enhance the field coupling to the outer 

MMI guides, the thickness of these two guides was increased to 0.57 /rm in each case. 

As a result, this complex structure supports as many as 30 guided modes. The 

dominant Hj) filed profile for the H^ mode is shown in Fig. 5.10 which clearly

shows 5 local maxima. The dominant H* field profile for the H^ with three vertical 

maxima is shown in Fig. 5.11.

Subsequently, the LSBR method has been applied to calculate the modal coefficient 

of all the 15 guided modes of this structure and from these coefficients and their 

modal field profiles the evolutions of optical field is determined. The composite field 

profile at the start of the three-core MMI section is shown in Fig. 5.12. This field 

again resembles very closely to the modal field of the primary guide, as shown in 

Fig.5.4.

Chapter 5 Spot-size Converters

Fig. 5.9 Schematic of the three-core coupled MMI used as a spot-size 
converter.
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The LSBR method is applied successively to obtain the power coupling efficiency to a 

SMF as the length of the SSC section is varied. The variation of the power coupling 

efficiency with the device length is shown in Fig. 5.13. It can be observed that the 

maximum power coupling efficiency can now reach 36% (x=0.6), compared to the 

single-section MMI structure, as shown in Fig. 5.7. This represents 7.2 dB 

improvement over the direct PIC-SMF coupling.

The composite field profile at z= 17.5 pm is shown in Fig. 5.14, which has expanded 

more significantly in both the horizontal and the vertical directions. This demonstrates 

that a reasonably coupling efficiency can be achieved in a very short SSC using a 

MMI section, and it is believed that further improvement can be achieved by adjusting 

the SSC section parameters.

Fig. 5.10 H y field profile of the H jj mode in the 3-core MMI 

section.
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Fig. 5.11 H y field profile of the Hjv3 mode in the 3-core MMI 
section.
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Fig. 5.12 Hy field profile at the start of the MMI-section.
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Fig. 5.13 Variation of the coupled power, Po, with the axial 
distance, z.

Z=17.5 (/¿m) 
H1=H3=0.57 (/xm)
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Fig. 5.14 Hy field profile at z = 17.5 um.
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5.5 Design of a Twin rib waveguide Spot-size 
converter

Among the design of various types of monolithically integrated spot-size converters 

for efficient coupling to a standard optical fibre. There has been tremendous interest 

in improving the designs (IEEE J. Selected Topics in QE., 1997) of spot-size 

converter of which rib waveguides has been recognised as one of the best geometry 

for achieving effective coupling. In this work the idea of a twin rib waveguide will be 

implemented to further improve the coupling efficiency reported for the single rib 

waveguides (Sewell et al., 1999). The versatile FEM is employed as the numerical 

technique tool to obtain the modal solutions of the waveguide cross-section using 

triangles of irregular shapes and sizes with arbitrary index distributions. In the FEM 

approach, the vector H-field based formulation is used because of its accurate and 

efficient techniques and all the three components are continuous across the dielectric 

interfaces. The choice of dimensions to be used in the design of the rib waveguide is 

of utmost importance as they need to be realistic and conform to the industry 

standards.

Fig. 5.15 shows the cross-section of a spot-size converter employing a twin rib 

waveguide (Rahman et al, 2001). The twin rib waveguide structure being studied 

here had the following parameters: W2= 10 pm, H x-  1 pm, H 2 = 5 pm, t -  5 pm, nx = 

3.4092, nx = 3.3592, nx= 3.3088, and the operating wavelength is 1.319 pm. At the 

beginning of the excitation, the upper rib waveguide (w j is wide enough, and most 

of the optical power is confined in the upper rib region. However, as this width is 

adiabatically reduced, below a certain width the upper guide cannot support a guided 

mode and the optical power is pushed downward and guided by the lower rib 

waveguide. The upper rib waveguide width, Wx, is varied to control the spot-size. The 

lower rib waveguide has a larger core area, comparable to that of a single mode fibre, 

but also has a lower core index, used to restrict the number of guided modes.

Chapter 5 Spot-size Converters

152



Be
ta

 b

Chapter 5 Spot-size Converters

W 1
◄---------►

n3

Fig.5.15 Cross-section of a spot-size converter employing a tapered upper 
rib waveguide.

Fig. 5.16 Variation of the normalized propagation constant, b, with the upper 
rib width, W|.
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The vector H-field based FEM discussed in Chapter 3 is employed here to obtain the 

modal solutions. In this design, 20,000 first order irregular triangles have been used to 

represent half of the waveguide. Fig. 5.16 shows the variation of the normalized 

propagation constant, b, for the fundamental quasi-TE (h  yu ) and quasi-TM (h *) 

modes with the upper rib width, W1. Following general practice, the normalized 

parameter, b given as:

b = n] -  n
2nl -  n

2
3_
2
3

5.12

is presented here, which is a more sensitive parameter than the propagation constant, 

j3 , or the effective indices, ne = {/3/k0), where k0 is the wavenumber. It can be

observed for both the modes as the upper waveguide,^ reduces the normalized 

propagation constant, b, and asymptotically reaches its cutoff value. However, it can 

be observed that for the all values of the rib width, normalized propagation constant 

values for the Hf, mode are higher than that of the Hjv, mode. The results for the 

mode agree well with that of previously published work (Sewell et a l, 1999).

Fig. 5.17 Variation of the spot-size with the upper rib width, Wj.
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The resulting spot-size (a) of the fundamental quasi-TE and TM modes have also 

been calculated by evaluating the corresponding Poynting vector, ExH. In this work 

the spot-size is defined as the area where field intensity falls to l/elh of its maximum 

value (or its power intensity is 1/e2). The variation of the spot-size with the upper rib 

width, Wi, is shown in Fig. 5.17. It can be observed that the spot-size increases 

abruptly when Wp is reduced from 1.6 pm to 1.55 pm for the quasi-TE mode spot- 

size increases from 1.0 pm2 to 51 pm2. Similar changes for the quasi-TM mode takes 

place when rib width is reduced from 1.65 to 1.60 pm. Although, Fig. 5.16 shows 

only a smaller change of the b value in the corresponding region, however, it can be 

clearly observed from this figure that quasi-TM mode approaches its cutoff slightly 

before that of the quasi-TE mode.

The total power fraction in each of the waveguide regions has also been calculated. 

The variations of the power fraction in the upper rib P2, the lower rib P3 , and the 

substrate regions P5 are shown in Fig. 5.18. It can be noted that as the upper rib width 

is reduced, power P2 carried by the upper rib area is also reduced. It can be further 

noted that as rib width is reduced, the power fraction P3 in the lower waveguide core 

is significantly increased.

H 11

Fig. 5.18 Variation of the power fractions with the 
upper rib width, W).
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For the quasi-TM modes, the Hx field is the dominant component of the fully hybrid 

optical modes, the contour for the FIX field for the fundamental quasi-TM mode (h ) 

mode is shown in Fig. 5.19, when W] = 1.85 pm. This figure clearly shows the optical 

field is mostly confined in the upper rib region.

Fig. 5.19 Hx field contour for the fundamental quasi TM mode when W[= 1.85 pm.

The field contour for the dominant Hx component is shown in Fig. 5.20 for the 

structure in which the upper rib width is 1.65 pm. It can be observed that in this case, 

that confinement of the optical power is shared between the upper rib and the lower 

waveguide region. The optical power is
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0.0 2.5 5.0 7.5 10.0 12.5

Width (/¿m)

Fig. 5.20 Hx field contour for the fundamental quasi-TM 
mode when W] = 1.65 pm.

Fig. 5.21 shows the structure when the upper rib width is further reduced to 1.60 pm 

and it can be seen that most of the optical power is confined in the lower waveguide 

core region. It can be noted that an abrupt change of the overall field profile occurred 

when the upper rib waveguide width is changed only slightly from 1.65 pm, as shown 

in Fig. 5.20, to 1.60 pm, as is shown in Fig. 5.21.

0.0  2.5  5.0  7.5  10.0 12.5

Width Cam)

Fig. 5.21 Hx field contour for the fundamental quasi- 
TM mode when W, = 1.60 pm.



It can be seen that for a lower rib waveguide width the field expands considerably and 

if the PIC is now butt-coupled to a SMF, the coupling efficiency would be 

considerably higher although in this case, we did not calculate the coupling efficiency 

as this would be calculated in Chapter 6  where a tapered SSC is designed. However, it 

can also be noted that a field profile is not completely symmetrical, which would 

restrict any further improvement in the coupling efficiency. The lower waveguide 

cross-section may be adjusted to improve the symmetry of the field profile: however, 

using such a non-circular lower waveguide core, it would rather be difficult to obtain 

a circular spot-size.

Chapter 5 Spot-size Converters

5.6 Summary
The principle of spot-size conversion of the beam evolution in a waveguide and the 

need to have integrated spot-size converters has been presented in this chapter. The 

numerical analysis of the waveguide discontinuity problems is also addressed by 

using least squares boundary residual method. In this method, an abrupt discontinuity 

in the transverse plane, z -  0 , between two arbitrarily shaped uniform waveguides is 

considered. A functional has to be minimised by obtaining a stationary solution which 

satisfies the continuity conditions of the tangential fields in a least square sense. The 

versatile vectorial FEM together with LSBR method is applied to the novel design of 

the multimode mode waveguide as a spot-size converter to improve the coupling 

efficiency to a single mode fibre from 18% to 36%. The phenomenon of spot-size 

conversion is also demonstrated in the design of a twin rib SSC to improve the 

coupling efficiency to a SMF. In this section, the VFEM has been used as a stand-

alone in this work to examine the prospect of achieving bigger spot-size for efficient 

coupling. The spot-size conversion occurred when the upper rib waveguide is 1.6 pm 

with the quasi-TE mode spot-size increases from 1.0 pm to 51 pm". However both 

SSC designs may need further improvement to achieve a more circular spot-size in 

future.
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Chapter 6

Tapers
6.1 Introduction
In this chapter, an optimized design of a Tapered Spot-size Converter (SSC) using the 

versatile Finite Element Method (FEM) and Beam Propagation Method (BPM) is 

presented. The numerical precision and efficiency of the BPM is demonstrated by 

comparisons with the H-field Vector Finite Element Method (VFEM) used alone in 

Chapter 5 to design SSC. In particular, the focus is on varying different SSC structural 

parameters to optimize the design issues such as the SSC length, radiation losses, and 

the coupling efficiency.

A well-confined optical beam is required to optimize the performance of a wide range 

of photonic devices, such as semiconductor lasers, amplifiers, modulators or switches. 

It is well known that for such a photonic integrated circuit (PIC) with a small and non-

circular spot-size, if directly butt-coupled to a single-mode fibre (SMF) with a large 

and circular spot-size, nearly 80-90% of the optical power can be lost due to a large 

mismatch between their spot-sizes. In the past, to overcome such a high loss, when
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coupling a SMF to PIC, a micro lens (Liau et al., 1995) or lensed fibre (Yamada et al., 

1980; Edwards et al., 1993) has been used to enhance the coupling efficiency. 

However, there is still problem of field mismatch since both the size and shape of the 

beam needs to be converted and stringent alignment tolerances are also required for 

the photonic devices, which causes an increase in the packaging cost and makes the 

production more difficult, as was mentioned in the last chapter. For a low-density 

subscriber network, such a large cost would inhibit the rapid extension of fibre-to-the- 

home (FTTH).

Chapter 6 Tapers

Fig 6.1 Laser to fibre coupling using tapered waveguide.

In this section, a combination of both VFEM and FVBPM are employed to investigate 

the propagation of a well-confined beam travelling along the longitudinal z-direction 

of the taper. A taper is a waveguide in which the width of its primary core is gradually 

decreased in steps along the longitudinal direction of the waveguide. In carrying out 

the optimisation, a lateral taper design which has minimum loss and maximum 

coupling efficiency will be presented. Fig. 6.1 shows the optical arrangement by 

which a tapered waveguide can be used to enhance the coupling between devices such 

as laser and a single mode optical fibre. The arrangement of the laser, tapered 

waveguide, and optical fibre, as can be seen from Fig. 6.1, shows that alignment
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tolerances will be a very important issue when the optical devices are butt-joint 

coupled for maximum power transfer to occur.

6.2 Types of Tapers

Lateral Vertical Both lateral and vertical

Fig. 6.2 Different types of tapers waveguides

The majority of SSC designs reported recently do incorporate tapered structures, 

operating very close to the modal cut-off, to expand their spot-size. These designs 

have been shown to yield an improved coupling efficiency and at the same time show 

more relaxed alignment tolerances. Various types of tapers such as lateral tapers 

(Kasaya et al., 1993; Mersali et al., 1995) which are easy to fabricate, vertical tapers 

(Tohmori et al, 1993; Brenner et al., 1992), more difficult to fabricate, or 

combinations of both lateral and vertical tapers (Fan and Hooker, 1999) all require the 

use of more complicated fabrication techniques.

Fig. 6.2 shows the three types of taper waveguides normally used for the controlled 

reduction of the width which leads to spot-size expansion. In the lateral taper only the 

width of the primary core is reduced and to minimise loss, the width reduction must 

be adiabatic. An adiabatic taper is one in which all of the energy remains constant in 

the initially excited mode throughout the propagation, and the taper is said to be loss-

less. It is well known that if a taper is made long enough and has a less steep gradual 

taper slope, the taper can have loss-less adiabatic propagation (Wu et al., 1997). In the 

vertical taper only the thickness of the primary core is reduced while in the combined 

taper, both the width and thickness of the primary core undergoes reduction 

simultaneously. The investigations carried out throughout this thesis focused on the 

lateral tapers since they are relatively easy to fabricate. The fact that they do not 

require any additional growth steps apart from those initially makes them the



favourite choice of most optical design engineers. The initial growth is then followed 

by photolithography and finally the dry or wet etching takes place as discussed in the 

next chapter. For vertical tapers, additional growth steps are normally required during 

fabrication which cannot be carried out using standard processing techniques.
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Fibre Wavxfgultlæ

Fibre Waveguide
Acl.tve device

Active device

Fig. 6.3 Waveguides used for spot-size conversion

Fig. 6.4 Tapered twin rib structure with contours of optical mode at the input and output 
(Vawter e t a i ,  1997)
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Among the lateral tapers available, the rib waveguide design shown in the middle of 

Fig. 6.3 is the most popular and well studied taper structure. When the width of the 

upper rib, the primary core is reduced to the extent that the optical mode reaches the 

modal cut-off in the region, the power is transferred to the lower rib, the secondary 

core. The evolution of the mode transformation goes from the strongly confining 

upper rib to the weakly confining lower rib. Fig. 6.4 shows the twin rib structure and 

the contours of the expanded optical mode transmission which is the output (Vawter 

et al, 1997). The optical mode at the region of strong confinement which is the input 

is shown in the inset of Fig. 6.4.

6.3 Modal Cut-off for Spot-size profiles

This section is devoted to the determination of the cut-off region for various material 

configurations. In this work, the modal cut-off region for spot-size profiles is defined 

as the width at which the effective index, nejf, of the quasi-TE mode field becomes less 

than the refractive index of the core material. For example if the effective index neff is

less than the refractive index of the cladding materials,n3 i.e. neff <n3, the taper

width at which it occurs is known as cut-off region of the width. In the first example, 

the dependence of the cut-off region on the discretisation structure of the waveguide. 

The waveguide under consideration is identical to the one shown in the inset of Fig. 

6.5. The taper structure is descretised in first order irregular mesh with number of 

nodes np =121x121 = 14,641 and the number of elements used is ne =28,800 to

represent half of the waveguide and similar mesh is used for all the designs in this 

section. It should be mentioned that most of the modal solutions depend on mesh 

divisions. When sufficient mesh divisions are used, the result converges. As a result it 

is important that tests are carried out on stability/convergence criteria in order to 

ensure very good results near the modal cut-off regions. The waveguide has the 

following material parameters; refractive index ni = 3.48 for silicon, n2 = 3.0 for 

polyethyleneoxide, n3 = 2.98 polymethylphenyl siloxane (more examples of materials 

with the refractive index used in this work are discussed in Chapter 7). The simulation 

was carried out in two phases; (1 ) for full-structure of the waveguide; (2 ) for a half-

structure of the waveguide. The height H for the primary core is H = 0.5 pm and H2 =

Chapter 6  Tapers
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3.0 pm, as secondary core. This means that the initial expansion of the beam takes 

place from the primary core to the secondary core and later into the cladding or 

substrate which both are of the same material in this work and therefore ns- 

As a result, the modal cut-off will occur under two conditions

1 . if n3 < neif < n2

2 . if neff < /i3 < n2

The structure under consideration is shown in the inset of Fig. 6.5 where silicon has 

refractive index nj = 3.48, doped polymer has refractive index 112 which is taken as 

either 3.0 or 1.47 and refractive index ns = 2.98 or 1.45. The work in this section is 

only concerned with the main or primary core modal cut-off which takes place when 

the effective index neJf is less than the doped polymer index which is taken as either

« 2  = 3.0 or 1.47.

Chapter 6 Tapers
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Fig. 6.5 Variation of spot-size profile along the width of the 
waveguide to determine the width for the modal cut-off 
region for the structure with indices 3.48/3.0/2.98.

Fig. 6.5 shows the variation of spot-size profile along the width of the waveguide to 

determine the width for the modal cut-off region. The material indices used are 

3.48/3.0/2.98. At the beginning the buried waveguide width Wx is wide enough and 

most of the optical power is confined in the primary core region. However as the
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width is adiabatically reduced, below a certain width the buried guide cannot support 

the guided mode and the optical power is pushed into the polymer/ doped polymer 

region for the mode-giving to continue. The primary core width Wl is varied to 

control the spot-size. Since the buried waveguide has a higher core index of 3.48, the 

fundamental mode is confined in this area when its width is sufficiently large. The 

polymer waveguide has a larger core area comparable to that of a single mode fibre 

but also has a lower core index used to restrict the number of the guided modes. As 

the width Wx is reduced, the value of neff and the spot-size (<j) are also reduced until

the reduction reaches a threshold known as spot-size minimum (crniin) and subsequent 

reduction brings a change in a  and it starts to expand as the width Wx reduction 

continues. The value of neff also exhibits further reduction as the width is reduced. 

Initially the graph is linear until it reaches close proximity to a ^ n where it shows an 

exponential relationship. Further reduction shows an increase in the value a  and the 

graph return to its linear state until the calculated value of the neff index is lower than

the polymer index and the width Wl where the last guided mode occurs is known as 

modal cut-off region width.

It can be seen that for the full structure (FS) the value of amjn is 0.3097 pm2 at Wi 

=0.45 pm while that for the half structure (HS) is 0.3196 pm2 at W] = 0.38 pm. For 

the FS, the cut-off region occurs when the width reduced to 0.25 pm with the spot- 

size area of 0.5068 pm2 while that for the HS is 0.25 pm with the spot-size area of 

0.4471 pm . This shows that the there is no significant improvement in spot-size 

predictions by using the HS for the simulations although the HS result is slightly 

better. For half structure simulations it is advantageous to use symmetry for modal 

solutions as it gives results with higher accuracy (within a given level of computer 

resources) than is achieved for the full-structure, especially in this case where 28,800 

triangular elements are used.

In the next study, the effect of the height H of the primary core is simulated using the 

half structure of the waveguide. The waveguide has the following parameters; 

refractive index nj = 3.48 for silicon, r\2 -  3.0 for polyethyleneoxide, n3 = 1.45 for
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silica. The results for the three values of H = 1.0 pm, 0.5 pm and 0.3 pm are presented 

in Fig. 6 .6 . For FI = 1.0 pm, the spot-size min (amin) is 0.4647 pm2 at Wi = 0.35 pm 

and the cut-off width W = 0.11 pm with the spot-size of 1.294 pm . For H = 0.5 pm, 

the ami„ is 0.31957 pm2 at W = 0.38 pm and the cut-off width W = 0.22 pm with the 

spot-size of 0.5678 pm2. For FI = 0.3 pm, Omin is 0.3530 pm2 at W] = 0.6 pm while the 

cut-off width W = 0.41 pm with spot-size of 0.4611 pm2. The design with H = 0.3 pm 

has the highest cut-off width, while that with H = 1.0 pm has the lowest. Therefore the 

probability of achieving a single mode output field with H = 0.3 is highest since 

number of modes it can produce is greatly restricted while that with H = 1.0 will give 

a highly multimoded design.

Fig. 6.6 Variation of spot-size profile along the width of the 
waveguide to determine the modal cut-off region for the 
structure with indices 3.48/3.0/1.45.

Fig. 6.7 shows the variation of spot-size profile for the typical arrangement for a 

silicon-on-insulator waveguide which is identical to the one shown in the inset of Fig. 

6.5 and has the following parameters; refractive index ni = 3.48, r\2 = 1.47, n3 = 1.45. 

The height H for the primary core is H = 0.5 pm.

The full structure is simulated in this case and it can be seen that the value of amjn is 

0.0988 pm2 at width Wi = 0.34 pm and the cut-off width is 0.16 pm with a spot-size 

area of 0.8041 pm2. From the value of the spot-size area for the cut-off width, 0.34
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pm and the height of the primary core, it will be difficult to predict that the emerging 

spot-size will be single moded.
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Fig. 6.7 Spot-size profile for the silicon-on-insulator with 
3.48/1.47/1.45 in which the modal cut-off is 0.34 pm and 
the spot-size area is 0.1 pm2.

The next study involves a comparison between two designs that have a marked 

difference in the material indices composition already shown in Figs. 6.5 and 6.7 for 

H = 0.5 pm. Fig. 6 . 8  shows the comparison between the two designs. The first case is 

where 3.48/1.47/1.45 in which the omin is 0.0988 pm2 at width W] = 0.34 pm and the 

cut-off width is 0.16 pm with the spot-size area of 0.80413 pm2. The second case is 

for 3.48/3.0/2.98 in which the omin is 0.3097 pm2 at Wi =0.45 pm and the cut-off 

width is 0.25 pm with the spot-size area of 0.5068 pm . The larger the value of the 

cut-off width, the better can the number of modes that can be restricted and thus there 

is an improved possibility of achieving a single moded output beam for coupling to a 

single mode fibre.

It is important to observe how small changes in material properties of a photonic 

device can have a major effect on its operation. It further shows the dependence of 

waveguide device operations on geometric dimensions of its structure. The study 

carried out in this section gives valuable information to the experimental optical
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scientist on parameters that can assist in the compact fabrication of spot-size 

converters with more systematic design approach, avoiding the simple and inaccurate 

trial and error method.

Fig. 6.8 Comparison of the spot-size profiles for the silicon-on-insulator with 
3.48/1.47/1.45 and 3.48/3.0/2.98 materials.

6.4 Design of a Twin Rib Lateral Taper

6.4.1 Computational Techniques

In this work, the most important numerical techniques have been used to obtain modal 

solutions of the uniform waveguide sections. In other to understand the expansion of 

the mode shape in the tapered section, it is useful to obtain the modal field profile at 

each segment of the tapered structure. The main advantage of the finite element 

method (FEM) over other numerical methods is that its vector solution is more 

accurate and its use of the infinite element more useful as the mode expands near cut-

off. All these attributes make the FEM the preferred choice for this work. The Finite 

element method, as stated in Chapter 3, is more accurate in its representation of the 

waveguide cross-section using triangles of irregular shapes and sizes. This particular 

advantage is more significant when the waveguides have curved or slanted side walls, 

or have arbitrary shapes or index distributions. In the FEM approach, the vector H-
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field based formulation (Rahman and Davies, 1984a) has been established as one of 

the most accurate and efficient techniques, since unlike the alternative E-field 

formulation, all three components of the vector H-field are naturally continuous 

across the dielectric interfaces. This vector H-field based VFEM is used in this work 

to obtain the modes of the various types of SSC structures reported here. Also used in 

this work is the full-vector beam propagation method (FVBPM) (Obayya et al., 2000), 

which is field evolutionary in its approach and computationally more costly than the 

FEM or FDM based modal solution approaches, but an essential approach for a 

guidedwave structure with a continuously changing waveguide cross-section. The 

BPM is widely used for the analysis of light propagation in longitudinally varying 

waveguides. In this case, the FEM-based BPM (Obayya et al., 2000), is 

computationally more efficient than the FDM or FFT-based BPM. To show the 

validity and usefulness of this approach, numerical results are shown for Gaussian- 

beam excitation of straight and tapered rib waveguide and guided-mode propagation 

in a rib waveguide, and are compared with the other VFEM results.

It is also necessary to analyze the butt coupling between the SSCs and the SMF and 

also to obtain the coupling parameters inside the SSC section. In this work the overlap 

integral has been used to find the power coupling efficiency between the SSC and the 

SMF.
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6.4.2 Design Parameters and Spot-size evolution

A SSC structure, composed of twin rib waveguides shown in Fig. 6.9 is similar to that 

discussed in the last chapter and is the same as shown in Fig. 6.4. Sewell et al., (1999) 

reported a design similar to this structure; however, to produce a more symmetrical 

spot-size in this design, it is assumed that the lower rib is etched completely until the 

lower cladding is reached. The particular structure being studied (see Fig. 6.9) here 

has the following parameters: W2 = 10 pm, H] = 1 pm, H2 = 4 pm, t = 4 pm, nj - 

3.4092, n2 = 3.3592, n3 = 3.3552, n4 = 3.3292, and the operating wavelength is 1.319 

pm (Rahman et al., 2002).
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Fig. 6.9 Schematic diagram of a twin rib waveguide spot-size converter structure.

The upper rib waveguide width, W] is varied to control the spot-size. When the upper 

rib waveguide width (Wi) is sufficiently wide, most of the optical power is confined 

to the upper rib region. However, as this width is gradually reduced, below a certain 

width the upper guide cannot support a guided mode and the optical power is pushed 

downward and guided by the lower rib waveguide. The upper rib waveguide has a 

larger core index and hence the fundamental mode is confined in this area when its 

width is sufficiently large. The lower waveguide has a larger core area, comparable to 

that of a single mode fibre, and there is a substrate with a lower core index, used to 

restrict the number of guided modes.

The H-field based FEM is employed here to obtain the modal solutions. In this 

example, 11,312 first order irregular triangles have been used to represent half of the 

waveguide. Fig 6.9 shows the resulting spot-size (a) of the fundamental quasi-TE

and TM Hf, modes have also been calculated by evaluating the corresponding 

Poynting vector, ExH. In this work the spot-size is defined as the area where field 

intensity falls to l/eth of its maximum value (or its power intensity is 1 /e2).
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Fig. 6.10 Variation of the spot-size with the width of the taper for the HX11 
and Hyl 1. Please note that the insets are not drawn on the same scale.

The variation of the spot-sizes with the upper rib width, Wj, is shown and it can be 

observed that spot-size increases abruptly when Wi is reduced. This sudden change 

happens when Wi is reduced from 1.65 pm to 1.6 pm for the quasi-TE mode spot-size 

increases from 0.6 pm2 to about 20 pm2. The insets show the modal field profile at 

Wi = 3 pm before expansion and Wi = 1.2 pm after expansion has occurred.

In this work, the BPM has been used to study the evolution of spot-size 

transformation along the tapered optical structure. To test the stability of the BPM 

developed, initially the evolution of the modes in a uniform optical structure is carried 

out. In the BPM, either a mode profile (obtained by any modal solution approach, 

such as the FEM) or a Gaussian profile with arbitrary beam waist (f20) can be used as 

the initial field. Fig. 6.10 shows the variation of normalized propagating power, Pt, 

with the propagating distance, Z, of the waveguide for various incident beam waist 

Q0, of the Gaussian input.

The Gaussian field used here as the input excitation is given by
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The parameters xg and yo are the coordinates of the Gaussian beam, Q0 is the Gaussian 

beam waist or radius, x and y are coordinates of the output field obtained from the 

waveguide. The xo can be determined by dividing into two the sum of divisions in the 

x -direction e.g. there are 8  divisions, xl, x2, x3, x4, x5, x6 , x7 and x8 . Then as a 

result
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0(x,y) = A exp-

xq = (xl + x2 + x3 + x4 + x5 + x6  + x7 + x8)/2 6.2

and

yo = (yl + y2 + y3 + y4 + y5 + y6  + (y7/2) 6.3

With reference to Fig. 6.9, there are 9 divisions in the y -direction for yl, y2, y3, y4, 

y5, y6 , yl, y8  and y9. In equation 6.3, yo is defined in relation to the centre of the 

Gaussian beam in the vertical direction which falls in the middle of the 7th division; 

therefore the 7th division has to be divided into two to give the y0 coordinate.

Fig. 6.11 shows the variation of the spot-size with propagating distance for uniform 

Gaussian radii 0.5 pm, 1.0 pm, 1.5 pm, 3.0 pm and an input modal solution. The top 

horizontal line is for the case when the modal solution of upper waveguide for Wj =

3.0 pm, is used as the input, which shows that little or no power loss occurs through 

radiation modes. The negligible power loss arises because the fundamental mode from 

the modal solution matches very well with that of the BPM solution and no higher 

order mode is generated; hence no appreciable power loss occurs from the mode 

coupling. On the other hand, when a Gaussian-shaped beam is used, it excites higher 

order modes besides the fundamental mode and these higher order modes would 

radiate out. Power carried by the excited higher order modes depends on the mismatch 

between the mode guided by the structure and its initial excitation used by the BPM 

simulations. It can be seen from this figure that input Gaussian radius Q0 -  1-0 pm is
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the optimum for this case. For the Gaussian input Q0 = 1.0 pm is the optimum beam, 

when 90% normalized optical power couples, but for either when Q0< 1.0 pm or G0 >

1.0 pm overall loss is increased. It can be seen from this figure that when G0 = 0.5 

pm, the power is about 58% and for ¿}0-  1.5 pm, the power is about 78%.

It can also be seen that in all cases, the propagating power stabilizes in the region of 

600 pm and above for all the curves as Q0 is reduced from 3.0 pm to 1.0 pm because 

the radiation modes responsible for the field mismatch at the beginning of the 

propagation radiate out quickly.
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Fig. 6.11 Variation of normalized power along the propagating distance for various 
Gaussian radii.

Fig. 6.12 shows variation of the spot size of the evolving beam with the propagating 

distance, Z, for two different Gaussian radii G0 = 1.0 pm and 3.0 pm as input beams 

into the uniform guide with Wj = 3.0 pm. The result shows that the final spot-sizes 

with Q0 -  1.0 pm and 3.0 pm are almost identical, because the Gaussian beam 

launched has eventually settled to the guided modes of the uniform structure. 

However, the Gaussian beam also excites higher order modes, which causes mode 

beating and the resulting oscillation in its spot-size is clearly observed. As higher 

order modes radiate out, the spot-size (a) stabilizes when Z > 450 pm to about a = 0.9 

pm2 which further demonstrates the accuracy and stability of the BPM, even when
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arbitrary Gaussian input fields were used. The oscillating peak deviates more from 

stablity a for Q0 = 3.0 pm (see (A) in Fig. 6.12). The visible twin peak (see (B) in Fig. 

6 .1 2 ) indicates mode beating between the fundamental and two higher order modes, 

but as 3rd mode radiates out more quickly than the 2nd mode, the Gaussian beam 

settles as propagation proceeds.
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Fig. 6.12 Variation of the spot-size with propagating distance for 
uniform Gaussian radii 1.0 and 3.0 pm.

6.4.3 Comparison of FEM and BPM SSCs

The resulting output field profile for a BPM Gaussian output for W) = 3.0 pm when 

G0 = 3.0 pm is shown in Fig. 6.13. It can be observed that it is almost identical to the 

modal solution for W) = 3.0 pm as shown as an inset in Fig. 6.10, which indicates a 

close agreement between the predictions of the BPM and FEM.

Comparison between the BPM and FEM for calculating the spot-size for different 

widths of the uniform waveguides was carried out by using BPM. The results
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obtained for the BPM were then compared with those of the FEM, as shown in Fig 

6.14. The Gaussian-beam excitation was used with Q0 -  3.0 pm for a propagating 

distance Z = 1000 pm. The location of the expansion for the BPM is Wj = 1.5 pm. 

When the modal solution simulation is carried out for a width reduction from Wj =

3.0 pm, the location of the expansion for the FEM is Wi = 1.7 pm.
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Fig. 6.13 The output field profile for a BPM Gaussian output for W, = 3.0 pm

The reason for this difference in the expansion point can be attributed to the use of the 

PML layer which cut out the interference of the unwanted radiations with the 

evolution of the spot-size transformation and this reduces the size of the primary core 

which leads to earlier expansion in BPM. For this comparison to be effective, the 

same parameters are used for both FEM and BPM simulations, such as uniform guide,
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material indices and same mesh. There is no PML layer in the FEM formulations. It 

can be seen that there is very close agreement between the two results.

Fig. 6.14 Comparison between the BPM and FEM for calculating spot-size 
for different width of uniform waveguides

6.4.4 Observed Mode Beating Analysis

Subsequently the BPM was used for calculating the spot-size for an actual tapered rib 

waveguide. The variation of the spot-size with the propagating distance, Z = 4000 pm 

where the initial width, W; = 2 pm and the final width, Wf = 0.3 pm is shown in Fig 

6.15. The result shows the initial spot-size expansion at Z = 1300 pm: however peaks 

occur at periodic intervals for the spot-size. The periodicity observed in the spot-size 

result is due to the mode-beating phenomenon. The spot-size oscillation occurs 

between 66.5 pm2 and 27.7 pm2 from Z = 1300 pm to 4000 pm.
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Fig. 6.15 Variation of the spot-size for the lateral taper rib waveguide 
exhibiting mode beating phenomenon

To identify the mode beating, beam profiles are plotted in selected positions. Fig. 

6.16a shows the field profile at Z = 1775 pm where a showed a minimum value and it 

can be seen that the corresponding field has not expanded and it is small compared to 

the field profile shown in Fig. 6.16b, where a shows a peak at Z = 1923 pm in which 

the field profile is large and has expanded well into the lower rib and slab regions. 

The a points are shown in Fig. 6.15 as A and B respectively. The two field profiles 

shown are possible combinations of two or more higher order modes. These fields 

occurred as a result of the mode-beating phenomenon, which is due to the 

combination of two or more higher order modes. The oscillations produced by the 

mode-beating have an adverse effect on the spot-size imaging of the waveguide under 

consideration and this also makes the system unstable.
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Fig. 6.16 The field profiles at propagating distance (a) Z = 1775 pm and (b)
Z = 1923 pm

It can be seen that for a lower rib waveguide width the field expands considerably and 

if the PIC is now butt-coupled to a SMF, the coupling efficiency will be considerably 

higher. The power coupling efficiency for the taper SSC was then calculated by 

incorporating the Overlap Integral method (OI).

Fig. 6.17 Variation of Power coupling efficiency along the propagating length 
with the mode-beating oscillations
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6.4.5 Optimisation for the Lateral Taper
The analysis described above is for a taper with a length L = 4000 pm, Wj = 2.0 pm 

and Wf = 0.3 pm. It can be observed from Fig. 6.15 and Fig. 6.17 that it would be 

more desirable to have a taper design with a shorter length. However, the very narrow 

final taper width, Wf = 0.3 pm used causes excessive mode beating, so using a slightly 

wider final taper width but of short length is investigated in light of the need for the 

rapid extension of fibre-to-the-home (FTTH) in to be achieved with this design. As a 

result some simulations with wider taper widths were carried out for Wf = 1.2, 1.3,

1.4, 1.5 pm while Wj = 2.0 pm is fixed for a distance L = 1200 pm. The resulting Fig. 

6.18 shows the power coupling against length for various widths. It can be seen that 

all the curves peak, except for Wf =1.5 pm where the spot-sizes have not completed 

their full expansion within the length L = 1200 pm.
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Length (pm)

Fig. 6.18 Variation of the Power coupling along the propagation 
length for various taper widths

Similarly, the variation of the spot-size against various widths for L = 1200 pm is 

shown in Fig. 6.14. The curves showed some similarity to those in Fig. 6.9 but it is 

more pronounced in the case of Wf = 1.2 pm but less so for Wf = 1.4 pm.
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The results obtained in Figs. 6.18 and 6.19 are a pointer to the need for more work to 

determine the optimum width, Wopt and optimum length, Lopt, to be able to obtain the 

optimum taper design that would be suitable for a fibre-to-the-home package. Fig. 

6.20 shows a curve of Wopt versus Lopt for simulations carried out for lengths between 

L = 100 pm and 1200 pm. Wopt and Lopt are defined as the points where the maximum 

coupling efficiency occurred for various lengths. It can be observed that the longer the 

value of Lopt, the wider is Wopt- As L becomes longer, the values of Wopt converge. 

The longer value of L allows the local width, W to better ‘settle’ the beam, but the 

shorter L allows for less opportunity for this to occur so a smaller value of W is 

needed to expand the spot-size.

The device losses at the optimum length are shown in Fig. 6.21. The losses are quite 

stable at Lopt = 2 0 0  pm and above and are in the range - 0 . 1  and - 0 . 2  which is 

remarkable as an acceptable value range in this type of taper design, in which losses 

are at the bare minimum.
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Fig. 6.19 Variation of the Spot-size with the Width of the taper for 
various final widths Wf
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Fig. 6.20 Variation of the optimum taper Widths W 0pt  against the 
optimum taper length L qp t

Loft  ( j m )

Fig. 6.21 Variation of taper Losses against the optimum taper 
length L 0pt
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6.5 Summary

The work presented in this Chapter has illustrated various design options for spot-size 

converters using the BPM incorporating the overlap integral approach, designed to 

improve the coupling between a PIC and a SMF. Determination of the cut-off regions 

for various materials and the geometry of the waveguides and their corresponding 

spot-size profiles were presented initially. A compact lateral taper SSC design has 

been produced, which has minimum length, minimum radiation losses, and maximum 

coupling efficiency of 90%. It has been compared with other conventional SSC 

designs using the VFEM, and the accuracy of the BPM with the overlap integral has 

been shown to be excellent. The mode-beating can be experienced when designing 

taper structures but, as has been shown, this can be avoided by the correct choice of 

length and width parameters.
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Chapter 7

Silicon-On-Insulator
Optoelectronics
7.1 Introduction
For optical communications, the primary aim of making Silicon photonics attractive 

and interesting is the ability to combine optics and electronics on the same substrate. 

The emerging optoelectronic integrated circuits (OEICs) will perform better than 

optical or electronics circuits operating independently. In other words, a strong 

motivation to study silicon-on-insulator (SOI) structures has risen from the desire to 

monolithically integrate SOI based optical components and control electronics. In 

recent years, there has been a significant interest in development of optical devices 

using SOI waveguides. Two main reasons are (1) material and the processing are 

relatively low cost. (2) The high index contrast between silicon and silica makes it 

possible for high density integration and this gives rise to size reduction of integrated 

optical structures. The vertical optical confinement of the buried oxide, offer the 

ability to integrate optical devices at very high density. Furthermore the silicon-on-
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insulator is becoming a very promising alternative to doped-glass waveguides for 

integrated optoelectronics devices because of the availability of the inexpensive SOI 

substrates, the maturity of silicon processing techniques, and the potential for 

integration with microelectronic devices.

The fabrication process of silicon wires limits its application in optical 

communication such as high cost electron-beam lithography, high optical loss of the 

wires and high coupling loss with other devices like fibres or laser. The high index 

contrast of SOI wafer offers us the possibility to reduce the sizes of optical devices; 

but the great obstacle is the designing of the geometry configuration to realise it, 

which still makes the large cross-section single mode condition preferable.

Another important attribute of the SOI waveguides is their weak polarization 

dependence. A TE-TM polarisation shift has been reported (Trinh et al., 1997) for a 

rib waveguide of a phased array grating. The polarisation sensitivity in OEICs occurs 

basically from two major sources: (1 ) intrinsic material birefringence and the stress in 

the waveguiding layer and (2) the cross-sectional geometry of the waveguide. SOI 

waveguides do not have intrinsic stress unlike their silica (glass) counterparts (Jalali et 

al., 1998). Therefore the main source of polarisation dependence in SOI waveguides 

is due to the asymmetry of the device geometry. The TE-TM shift dependence was 

nearly eliminated with a deep waveguide etching. Care should be taken as a very deep 

etching can result in multimode waveguiding and concomitant distortion of the 

spectrum (Jalali et al., 1998).

In networking, due to heavy traffic in passing information from one place to another, 

there is a need for cost effective, fast and high-capacity optical communications 

systems to assist in manipulation of large data across various networks in the world in 

form of data downloads on the internet for example. It is therefore of interest to 

consumers that optical device manufacturers should pay much attention to optical 

production device and packaging cycle known as FTTH. It is necessary to be able to 

couple light from one device to another and make the device as small as possible, and 

have complex packaging with low tolerances. The heterogeneous nature of the OEICs
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does not help the mass production which can bring reduction in the cost of these 

devices.

The main advantage of using silica-based for photonic waveguides is the good optical 

confinement quality, cheap price and availability with well known characteristics. The 

silica waveguide fabrication usually starts by deposition of a silicon dioxide layer a 

few microns thick or alternatively by direct oxidation of the silicon at high 

temperature. The silica layer is able to (1) provide low index region for allowing 

optical confinement of light and (2 ) prevent the formation of highly absorbing silicon 

substrate. Silica is able to reduce or prevent formation of silicon by consuming silicon 

in a chemical reaction with oxidants to form silicon oxide in an oxidation process. 

This is why it is called a buffer layer. A buffer layer is a term that typically refers to a 

layer sandwiched between two layers of materials to accommodate difference in their 

physical or chemical properties. The waveguide core is formed by chemical vapour 

deposition (CVD) method or the flame hydrolysis deposition (FHD) method 

(Kawachi, 1990) of high index materials such as oxynitride, polymers or silicon. 

Polymer materials are very special and are able to show some very useful physical 

properties for example electrooptic, piezoelectric and non-linear effects. Polymer has 

got thermal coefficient which is ten times more than the corresponding coefficients 

for silica. Polymer layers are easily formed by deposition of the molten polymeric 

material and their easy processing offer great flexibility when choosing a substrate 

such as glasses, silicon dioxide (silica), silicon, indium phosphide, and gallium 

arsenide. The main advantage of polymer-based integrated optical devices is their 

high promising ability for use in the field of chemical and biological sensors since the 

organic groups in the polymeric compounds can react against a specific medium. 

Some high speed and low voltage switches and modulators have been manufactured 

using their large electrooptic coefficient properties, for the telecommunication market, 

offering high performance at low cost.

Silicon wire waveguides based on SOI structure has a lot of potential for high-density 

integration of OEICs. Fabrication technology and substrate for silicon semiconductors 

is popular and easy to achieve and will be useful for mass productions. A very good
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device of submicron silicon devices for OEICs will go a long way to help solve the 

problem of FTTH.
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7.2 Applications of SOI Waveguides
Since 1960s silicon research has steadily advance with the production of solar cells, 

photodiodes, light emitters from a p-n junction, field-effect modulators, silicon 

photodetectors and mid-infrared photoelastic modulators etc. In the 1970s there were 

developments of charge-coupled-device (CCD) images, optical-absorption 

modulators, high-loss optical waveguides, Schottky-barrier infrared detectors, visible 

light waveguides, silicon-on-sapphire etc. In the 1980s there are developments of 

infrared-guided photonics, silicon-on-silicon waveguides with doped epilayers, the 

first set of SiGe/Si photodetectors were made and these led to more research and other 

developments of silicon-on-insulator, silicon-on-silicon, and SiGe/Si waveguides. 

Since 1990s to date research has progressed into silicon-based waveguides and guided 

photodetectors, laser diodes, optical amplifier and efficient LEDs (Soref, 1993).

There has been steady progress in the development of photonic devices in Group IV 

materials such as silicon, germanium, carbon and tin. The Group IV photonic 

components can be classified into the following categories: Low-loss optical 

waveguides; In Photodetectors, SOI waveguides are ideal for integration with active 

devices. Using etch and regrowth, an integrated device based on GeSi-SOI 

Photodetector butt coupled to a passive SOI waveguide has been demonstrated (Jalali 

et al., 1994; 1998). Light emitters; Long-wave infrared detectors; Optical micro-

modulator based on thermooptic effect (Cocorullo et al., 1995); Photoelastic; 

Acoustooptic; Electromechanical; Micromechanical; SOI-based ring resonators are 

suitable for polarization independence filters, optical switches, electrooptic 

modulators, and optical sensors (Xu et al., 2006). The study of ultra-small silicon wire 

waveguides as a low-loss optical waveguides, offer a large potential for high-density 

OEICs. There are so many applications of silicon which include fibre-optic 

transmitters and receivers, wireless transceivers, optical controllers for phased-array 

microwave antenna, information display panels, printing elements for xerograph,
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spatial light modulators for optical signal processing, etc. There has been use of SOI 

strip waveguide to realise compact waveguide arrays, tight bends, waveguide mirrors, 

short MMI couplers (Aalto et al., 2003); directional couplers on SOI (Trinh et al., 

1995; Powell, 2002; Cao et al., 2005a and 2005/?). Passive submicron structures such 

as ultra-low-loss strip waveguides (Lee et al., 2001), efficient couplers (Barrios et al., 

2003a), microring resonators (Little et al., 1998), and nanocavities (Foresi et al., 

1997) on SOI have been demonstrated. Active waveguide devices such as electrooptic 

modulators (Barrios et al., 2003a; 2003b) and optical switches (Zhao et al., 1997) 

have been fabricated on micrometer-size silicon-on-insulator waveguides. Bragg 

grating filters based on silicon-on-insulator (Murphy et al., 2001). Asymmetric Mach- 

Zehnder interferometers (Zhao et al., 1995) wavelength filters have been reported. 

Wet chemical etching of the Si0 2  has been used to realise movable SOI waveguides 

with potential applications in switching and sensors (Eng et al., 1995). Also 

asymmetrically coupled SOI and polymer waveguides have been used to demonstrate 

wavelength selective photodetection has been reported (Pezeshki, 1996). Compact 

optical resonators built on SOI waveguides have been reported (Kiyat et al., 2005).
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7.3 Fabrication Technologies
Complementary metal-oxide-semiconductor (CMOS) technology is the most useful 

because it offers great potential for mass production of SOI devices (Bogaerts et al., 

2005; Roelkens et al., 2005b). Other techniques of growth for SOI structures consist 

of the following:-

1. Separation by implantation of oxygen (SIMOX) technology (Guerra, 1990; 

Rickman et al., 1994) uses implantation of oxygen at high concentration (~1018 cm'3) 

followed by a high temperature anneal to form a buried SiÛ2 layer in a silicon wafer. 

A strong dependence of the mode loss on interface roughness and mode confinement 

has been reported experimentally (Rickman et al., 1994).

2. The bond-and-etchback SOI (BESOI) (Meszera et al., 1998) is a process in which 

a silicon wafer is first oxidised using wet or dry oxidation techniques followed by 

hydrophilic bonding to a bare silicon wafer, and a subsequent heat treatment. The first
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wafer is then thinned and polished by mechanical and chemical processes to the 

desired thickness.

3. Separation by implantation of nitride (SIMNI), zone melting of an amorphous Si 

film to recrystalline that layer (ZMR) (Fen et ah, 1981).

4. Two-step dry etch process with a relaxed mask alignment tolerance and no need 

for epitaxy (Aalto et ah, 2006). This is simple to fabricate and it is insensitive to small 

misalignments between the masks. Also reflections and mode mismatch losses can be 

minimised with antireflection coatings and the input and output waveguide cross- 

sections can be optimised.

5. The smart-cut process (Bruel, 1995) is one of the latest SOI technology. In this 

process, a silicon wafer is oxidised followed by implantation of hydrogen at doses in 

the range of 1 0 I6- 1 0 17 cm"3 followed by hydrophilic bonding to a bare wafer and 

subsequent heat treatment. The heat treatment causes the implanted wafer to split into 

two parts leaving a thin layer of Si0 2  and Si bonded to the second wafer. The heat 

treatment also causes the roughness of the wafer surfaces due to microcavities 

formation. The rough surfaces are then polished. The main advantage of this method 

is that the Si0 2  layer can be as thick as in the BESOI, but the silicon over-layer has 

better uniformity and can be thicker due to the larger implantation range of hydrogen 

compared to that of oxygen. There is economic advantage in that the second wafer can 

be reused.

6 . Silicon-on-saphire (SOS). Silicon devices are known to have problems which are 

basic to dependent circuit components due to junction capacitances (Sze, 1985). They 

cannot take advantage of their semi-insulating substrates to minimize these 

capacitances. One of the ways of avoiding this problem is to grow silicon devices on 

an insulating substrate. This gives rise to silicon-on-sapphire (SOS) in which silicon is 

grown epitaxially on a substrate called sapphire. Recent advances in optoelectronics 

explore and use the process of silicon-on-insulator (SOI) instead, where sapphire has 

been replaced with insulator.
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7. Solid source Molecular Beam Epitaxy (MBE) has been used to grow layers SiGe- 

Si on top of an SOI waveguide. The waveguide was made using reactive ion etching 

(RIE) of Si and SiGe layers.

8 . Chemical Vapour Deposition (CVD) reactor epitaxy i.e. growing layers on 

substrates of Si and Ge.

Some SOI waveguides have been fabricated using wet silicon etching process (Fischer 

et al., 1996). Production of OEICs using wet etching is difficulty due to the modest 

critical dimension control. Fabrications using dry etching gives the required 

anisotropic etch profile and is therefore preferred in practical applications 

(Solehmainen et al., 2005). The dry etch technology with low pressure chemical 

vapour deposition (LPCVD) have been optimised with the elimination of reflection 

losses at the interface between the SOI waveguide and an optical fibre. The tantalum 

pentoxide Ta2 0 5  antireflections coatings (ARCs) were deposited on waveguide-end 

facets with atomic layer deposition (ALD). The Ta2 0 s was used because it is 

transparent at the X = 1.55 /xm and it’s refractive index is very suitable for the Si/Si0 2  

interface.

There are many technologies for fabricating silicon optoelectronic materials like 

molecular beam epitaxy (MBE), chemical vapour decomposition (CVD) reactor 

epitaxy and silicon-on-insulator (SOI) is now widely used in optics. It is very 

important to efficiently couple waveguides to single mode fibres (SMF) especially 

when the ultra-small wire WG is made up of silicon-on-insulator (SOI) device. It is 

well known that the development of silicon components which are compatible to the 

standard silicon technology will be very useful in order to take advantage of the day- 

to-day productions of the OEICs.

Chapter 7 Silicon-On-Insulator Optoelectronics

7.4 Design Concept
It has been reported in some previous works that the standard complementary metal- 

oxide-semiconductor (CMOS) technology can be used for mass production of SOI 

devices (Bogaerts et al., 2005; Roelkens et al., 2005b) but this alone will not solve the
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problem of integrated optical components unless there is the capability to provide 

them with low-loss interfaces on mass production scale to an optical fibre. To 

overcome the problems of mode mismatch and loss mechanism due to the bending 

radius (i.e. radiation into the substrate) when coupling light from an SOI waveguide 

into an optical fibre, several approaches have been proposed in the literature to tackle 

this problem. Grating couplers are one of the best devices because they do not need 

cleaved facets. However they intrinsically suffer from a compromise between 

efficiency and optical bandwidth, therefore cannot be used in some applications 

(Taillert et al., 2002). As a result, we are making use of an approach presented in the 

literature to use a spot-size converter to transform the SOI waveguide mode to a 

polymer waveguide mode which matches a lensed fibre mode (Shoji et al., 2002). The 

optical bandwidth is very large, more than lOOnm, and efficiencies are high (Roelkens 

et al., 2005b).

In our work, material loss has been neglected and the mode mismatch between the 

SOI and polymer waveguide interface is also assumed negligible. Numerical 

simulation is performed for transverse-electric (TE) polarised light. The geometry and 

the high index contrast nature of the SOI waveguide make it polarisation-dependent.

Polymer optical waveguide devices play a key role in several rapidly developing areas 

of broadband communications, such as optical networking, metropolitan/access 

communications, and computing systems due to their easier processibility and 

integration over inorganic counterparts. The combined advantages also makes them an 

ideal integration platform where foreign material systems such as YIG (yttrium iron 

garnet) and lithium niobate, and semiconductor devices such as lasers, detectors, 

amplifiers, and logic circuits can be inserted into an etched groove in a planar 

lightwave circuit to enable full amplifier modules or optical add/drop multiplexers on 

a single substrate (Ma et al., 2002). Moreover, the combination of flexibility and 

toughness in optical polymers makes it suitable for vertical integration to realize 3D 

and even all-polymer integrated optics. As a result of the above attributes, the polymer 

optical waveguide is being used in this thesis as a connecting device (such as optical 

interconnects) because of its low-loss and low reflectivity to develop the SOI 

waveguide. It is critical to ensure that digital and optical signals transferred between
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components suffer minimal loss of vital information. A simple structure design for 

this work is an adiabatic inverse taper that is easier to fabricate has been applied as a 

mode size converter between the silicon core and the silica-based waveguide. The 

inverse taper was located inside a W2 x H2 pm polymer waveguide which has a higher 

refractive index than the silica-based waveguide. In this case the cross-section 0.5 x 

0.5 pm of the silicon core has been used to achieve a single-mode condition (Shoji et 

al., 2 0 0 2 ) as these dimensions, after some simulations, give satisfactory result 

considering difficulties in fabrication technologies.

There are two methods of realising the single-mode SOI waveguide; (a) The narrow 

silicon wire (Yamada et al., 2005; Dumon et al., 2004), and (b) Large cross-section 

rib waveguide (Schmidtchen et al., 11991; Soref et al., 1991). The sub-micron size 

silicon wire can provide compact system but often it is associated with high 

propagation and coupling loss with either fibre or laser devices. Recently low 

waveguide propagation losses were obtained for SOI high index contrast 

nanophotonic waveguide structure (Dumon et al., 2004; Lee et al., 2001). This work 

focused on butt-joint coupling between optoelectronic devices and passive 

nanophotonic tapered polymer waveguides (Roelkens et al., 2005a). In butt-joint 

coupling, the device layers can be grown first, then the substrate is partially covered 

by a dielectric mask leaving only the taper region unmasked. Then selective re-growth 

can be carried out to form the taper. The main advantage of the butt-joint is its 

flexibility to separately design the device layers and the taper layers (Moerman et al., 

1997).

An adiabatic taper is a one in which all of the energy remains constant in the initially 

excited mode through out the propagation, and the taper is said to be loss-less. The 

lateral taper used here is fairly long. Numerical simulations were considered for 

various taper lengths from 1000 -  2500 jam, the taper of 2000 jam length gives 

satisfactory result in order to have a very low loss adiabatic propagation and a good 

TE mode output. It is well known that if a taper is made long enough and has a less 

steep gradual taper slope, the taper can have loss-less adiabatic propagation (Agrawal, 

1992; Lee et al., 1993; Sakai and Marcatili, 1991; Weder, 1998). The fibre mode was 

simulated using the normal Gaussian approximation of the mode (Fan et al., 1997).
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The modem practical waveguide fabrication techniques cannot overcome the precise 

control of taper’s shape and index profile which the completely adiabatic structures 

will need. In other words, a loss-less, strictly adiabatic taper cannot be fabricated. We 

therefore focus on a design that is aimed at getting (1 ) an improved coupling 

efficiency, (2) low coupling loss and (3) avoiding higher order modes. There are 

several different methods that can be used to analyze taper structures such as intrinsic 

mode calculations (Marcatili, 1985; Arnold et al., 1985), the step transition method 

(Lu, 1991; Kim et al., 1993; Mitomi et al., 1994), the coupled mode calculations 

(Marcuse, 1980; Song and Tomlinson, 1992; Yumin et al, 1994), and beam 

propagation methods (Milton and Bums, 1977; Vassallo, 1994; Haxha et al., 2006). 

From these methods of analyzing taper structures, it is generally believed that an 

infinite length taper would be strictly adiabatic. It has been shown that taper lengths 

which are several order of hundreds of microns can achieve low loss (Soref, 1993; 

Haxha et al., 2006).

7.5 Computational Techniques

The design considerations will not be complete without the mention of the numerical 

methods used for the calculations of the device parameters. The computational 

techniques are similar to those used in previous published works (Haxha et al., 2006; 

Rahman et al., 2003; 2005). The H-field Vector Finite Element Method (VFEM) 

(Rahman and Davies, 19847?) and Full-Vectorial Beam Propagation Method 

(FVBPM) (Obayya et al., 2000) has been employed in order to achieve an optimum 

coupling efficiency to a standard SMF and the single mode behaviour of silicon wire 

waveguide must be obtained. This is where the H-field full-vectorial finite element 

method (FVFEM) has advantage over other numerical techniques and has been 

established as one of the most rigorous full-vectorial approaches for the 

characterization of the wide range of optical waveguides (Rahman et al., 2005; 

Rahman and Davies, 1984c). The waveguide cross-section is represented by a large 

number of triangles, which can be of irregular shapes and different sizes. The H-field 

formulation being full-vectorial is used in this study, which is particularly useful for 

the high refractive index contrast of the SOI materials.
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The H-field Vector Finite Element Method (VFEM) and Full Vectorial Beam 

Propagation Method (FVBPM) has been employed in order to achieve an optimum 

coupling efficiency to a standard SMF and the single mode behaviour of silicon wire 

waveguide must be obtained. Over the past two decades, several techniques have been 

employed to analyze optical waveguide structures. There are many numerical 

approaches available that may be used to account for the modal solution of the optical 

waveguides. These include the effective index method (Hocker and Bum, 1977), the 

finite difference method (Stem, 1988), to mention few. Unfortunately many of these 

techniques would not be able to accurately handle waveguides operating near their 

cut-off conditions. This is where the H-field full vectorial finite element method 

(FVFEM) (Rahman and Davies, 1984c) has advantage over other numerical 

techniques and has been established as one of the most rigorous full vectorial 

approaches for the characterization of the wide range of optical waveguides (Rahman 

and Davies, 1984a; Rahman et al., 2005; Obayya et al., 2003). The waveguide cross- 

section is represented by a large number of triangles, which can be of irregular shapes 

and different sizes. The full vectorial H-field formulation is used in this study, which 

enables each element to have different properties. This technique has been used to 

obtain modal solutions of linear, non-linear, diffused, anisotropic, passive, and active 

waveguides, including the SSCs (Rahman et al., 2003; Wongcharoen et al., 2001).

The versatile full vectorial finite-element based beam propagation method (FVBPM) 

(Obayya et al., 2000) has been employed to study the optical-mode evolution and 

transformation of the spot-size along the tapered waveguide. The three-dimensional 

algorithm incorporates a non-paraxial wide-angle approach and the perfectly matched 

layer (PML) boundary conditions (Berenger, 1994; Huang et al., 1996) around the 

computational window are considered. Finally, the overlap integral method 

(Kobayashi et al., 1997; Haxha et al., 2006) is incorporated into the FVBPM to 

account for the coupling efficiency between the SSCs and the SMF.

7.6 Results and Discussions
The H-field VFEM has been used to obtain modal solution for a simple SOI structure 

shown in schematic diagram in Fig. 7.1. The geometry of the SOI waveguide is a
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primary core region, square shaped silicon wire core 0.5 x 0.5 pun, and refractive 

index n = 3.48 buried under a high-index square shaped polymer secondary core W2 x 

H2 jiim. In this arrangement, refractive index for Silicon = ni Polymer = n2 and Silica = 

n3 . The high-index polymer core is covered by the silica Si0 2 over-cladding. The 

whole arrangement is fabricated on top of a substrate which is the low-index silica 

under-cladding and has also silica as over-cladding. The taper had to be fairly long if 

adiabatic mode of spot-size conversion is to be used. In this work, the design is 

optimised at a wavelength of 1.55 pun. The cross-section of the silicon wire is 0.25 

pun2 which is suitable for a single mode condition. The normal diameter of a SMF is 

usually about 6 - 1 0  pun and this large difference leads to a large coupling loss 

between the waveguides and the electronic circuits. A spot-size converter (SSC) 

design is considered that consists of a silicon taper and a connecting device with low- 

loss, low reflectivity, low refractive-index contrast waveguide made of polymer to 

enable the functionality of the Si wire waveguide in the OEICs technology. In this 

study we report the design of a Si wire SSC taper and its characteristics. In this study 

we report the design of a SSC taper in silicon wire and its characteristics.

Fig. 7.1 Schematic diagram of the Silicon-on-insulator (SOI).
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The modal solution obtained from the FVFEM is used as an input field to the FVBPM 

code to study the application of polymer as a connecting device between the silicon 

and the silica due to their high refractive index difference and coupling to the SMF in 

the SOI arrangement. The mode is more tightly confined by the lower cladding where 

the index step is greater i.e. Ani2  is between 0.48 -  2.01, and is less tightly confined 

above the guiding region where the index difference is lower i.e. A1I2 3  is between 0 . 0 2  

-  1.55. The propagating length of the taper is chosen equal to L = 2000 /rm because of 

the adiabacity of the conversion i.e. the need to minimise loss as much as possible. 

The propagating power, spot-size, propagation loss and coupling efficiency were 

determined when the structure was tapered laterally from initial width W,, to a final 

Wf . The Si wire was butt coupled to a SMF and the overlap integral was used to 

calculate the coupling efficiency.

Refractive Index of Polymers

The refractive index of typical organic polymers is usually between 1.3 and 1.7 

depending on the wavelength of the materials (Branrup and Immergut, 1989). The 

refractive index of polymers can be enhanced by the addition of colloidal particles 

with high refractive index (Weibel, et al., 1991). Example of such colloidal particle is 

Lead sulphide (PbS) that exhibits a refractive index on the order of 4 in a wide range 

of wavelengths (Palik, 1985). The combination of lead sulphide and 

polyethyleneoxide exhibit refractive index of up to 2.9 at 632.8 nm and up to 3.0 -  3.4 

in the whole range of 1000 -  2500 nm (Zimmermann, et al., 1993). Polymer materials 

with controlled layer thickness and refractive index can be fabricated by adding a 

hydrogen sulphide solution to a solution containing the polymer and lead ions. Other 

examples of materials with refractive index 3.0 are Polycarbonate,

Polymethylmethacrylate (Dow Coming, 2005) and synthetic polymers. Examples of 

materials with refractive index 2.98 are Polymethylphenyl siloxane (Dow Coming, 

2005), polyethyleneoxide, and synthetic polymers. Polymerized cements, Synthetic 

fused silica, (Optica Acta, 1967), Polypropylene (Mitchell, 2004), are typical 

examples of materials with refractive index 1.47. Examples of the type of materials 

that can give the refractive indices used in this study are summarised in Table 1 

below.
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R efractive  Index M ateria ls

3.48 Silicon.

3.0 Polyethyleneoxide; Polymethylmethacrylate; Polycarbonate;

Synthetic polymers.

2.98 Polymetylphenyl siloxane; Synthetic polymers.

1.47 Synthetic fused silica; Polypropylene; Polymerized cements.

1.45 Silica.

Table 7.1. Table of refractive index and optically associated 
materials.

The results and discussions are divided into the following sections;

(1) The Silicon SOI taper arrangement when ni = 3.48, n2 = 3.0, n3 =1.45, and the 

Synthetic polymer cross-section is 3x3 /mi.

(2) The Silicon SOI taper arrangement when ni = 3.48, n2 = 1.47, n3 = 1.45, and 

the Synthetic fused silica cross-section is 3x3 /mi.

(3) The Silicon SOI taper arrangement when ni = 3.48, n2 = 3.0, n3 = 2.98, and 

the Synthetic polymer cross-section is 3x3 /rm.

(4) The Silicon SOI taper arrangement when ni = 3.48, n2 = 3.0, n3 = 1.45, and 

the Synthetic polymer cross-section is 6 x6  /¿m.

(5) The Silicon SOI taper arrangement when ni = 3.48, n2 =1.47, n3 = 1.45, and 

the Synthetic fused silica cross-section is 6 x6  /mi.

(6 ) The Silicon SOI taper arrangement when ni = 3.48, n2 = 3.0, n3 = 2.98, and 

the Synthetic polymer cross-section is 6 x6  /mi.
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Case 1, When rij =  3.48, n2 =  3.0, n3 = 1.45. The Synthetic polymer cross-section is 

3x3 pm.

In the first example, Case 1, the index difference is high at An^ = 0.48 between 

silicon and polymer. The index difference is also very high at An2 3  = 1.55 between 

polymer and silica, and this study investigates the effects the index difference has on 

the SOI characteristics. Figs. 7.2 and 7.3 shows the output of the full-vectorial H-field 

of the finite element method which also serves as the input for the full-vectorial beam 

propagation methods and output TE mode field profiles for the laterally tapered SSC 

before and after the mode conversion respectively. Initially the fundamental TE mode 

was confined in the core width Wj = 0.5 pm. As the core width is reduced to the final 

width Wf = 0.1 pm, the optical-field mode had undergone some transformation from 

the inner core and has expanded into the secondary guide with width W2 = H2 = 

3.0pm of the polymer core with refractive index n 2 = 3.0. It should be noted that the 

propagating length, L = 2000 pm and wavelength, X = 1.55 pm is the same for all the 

cases considered in this work. Initially the Gaussian radius, Q0 = 2.5 pm is used for 

the calculation of the overlap integral when butt coupled to a fibre. The waveguide 

exhibited low modal loss 0.74 dB (shown in Fig. 5), however, existence of the local 

maxima in the field profile clearly demonstrates existence of higher order modes.
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Fig 7.2. The TE mode field profile from FVFEM Fig. 7.3. Case 1. The output TE field profile
at the start of the laterally tapered SSC. from the FVBPM at the end of the laterally

tapered SSC.
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Fig. 7.4. Case 1. Variation of the Power 
along the length of the device.

Fig. 7.5. Case 1. Variation of the 
Propagation loss along the length of the 
device.

Fig. 7.4 shows the power of the propagating optical beam in this device. It was able to 

retain its power between 5.07 and 4.28 au., for about a length of 1300 jttm of the 2000 

/tm total length. This is a desirable attribute for all OEICs. Fig. 7.5 shows the 

variation of propagation loss along the length of the device. This shows a very low 

propagation loss which is steady until the propagation reaches the half of the device 

and finally reaches 0.74 dB which is an acceptable value. To understand the beam 

transformation, Fig. 7.6 shows the expansion of the spot-size along the length of the 

taper. The spot-size area is defined in this work as the area where the field intensity is 

greater than 1/e of its maximum strength (i.e. the power intensity is 1/e ). It can be 

seen that the spot-size increases from 0.3 to 4.8 /xm2 along the taper. The coupling 

efficiency can reach a high value of 79% (shown in Fig. 7.7) but this can be further 

improved. However, due to the large difference in the refractive index between the 

polymer and the silica cladding, the polymer secondary waveguide is multimoded. 

The sidewall roughness can affects the optical beam as it expands into the 3x3 /xm 

polymer where higher modes are also supported. The spot-size expansion is not very 

large, and the spot-size oscillations phenomenon, generally known as mode-beating, is 

visible in Fig. 7.3, and is not desirable. Mode beating also modulates the spot-size 

which is clearly visible in Fig. 7.6. Further investigation is needed to avoid these 

oscillations during the TE optical-mode transformation and improve the spot-size
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expansion. This design can be improved by reducing the overcladding index from 3.0 

to 1.47 in the next simulation.
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Fig. 7.6. Case 1. Mode conversion of the 
laterally tapered spot-size converter along the 
length of the waveguide.

Fig. 7.7. Case 1. The coupling efficiency of 
the TE mode of the waveguide coupled to the 
single mode fibre.

Case 2, When tij =  3.48, 112 = 1.47, n3 =  1.45. The Synthetic Fused Silica cross- 
section is 3x3 nm.

In order to improve the previous design, a low-index secondary core is considered as 

Case 2, with ni = 3.48, r\2 = 1.47, n3 = 1.45 (Materials are shown in Table 1). In this 

case, the index difference extremely high at An 12 = 2.01 between silicon and the 

secondary guide core, but index difference An23 = 0 . 0 2  is not as high between 

polymer and silica, described in Case 1. In this arrangement similar structural 

dimension, Wi = W; = 0.5 jam, and Hj = 0.5 jitm and W2 = H2 = 3.0/xm are taken.

Fig. 7.8 shows a forced expansion to low quality output (i.e. sagged output field 

lines). This may be due to the large index difference, Ani2 = 2.01 of the tapered 

primary core, which may affect the quality of the image of the SSC produced when 

compared to the output obtained as shown in Fig. 7.3 for Case 1. Fig. 7.9 shows the 

variation of the power along the length of the device. There is a reduction of about
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40% in the value of the power compared to the design in Case 1. Fig. 10 shows the 

variation of the propagation loss along the length of the taper which has relatively 

high value of 10.81 dB, which is not suitable. The explanation of this is not far 

fetched because the secondary guide is single moded as An23 is small and An^ is 

higher which increases the lattice mismatch and the roughness at the walls, so the 

power loss along the tapered structure is also higher. This also explain why the taper’s 

width is reduced from Wj = 0.5 /xm to Wf = 0.007/xm for the mode to undergo 

conversion to spot-size but full conversion could not be reached. The spot-size 

expanded to 8.44 /xm2 the SOI arrangement greatly improves the spot-size evolution 

and transformation along the longitudinal direction of the waveguide which can be 

seen in Fig. 7.11. Unlike the first example, the spot-size oscillations are suppressed in 

this design. Fig. 7.12 shows that the design exhibits good coupling efficiency of 98%. 

The main advantage of this device is that a single mode operation can be expected 

because the taper’s width for mode cut-off region in this case is shorter than the 

previous case since the polymeric index is now lower. Therefore support for higher 

order modes is minimum for this design.
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Fig. 7.8. Case 2 The output TE mode field Fig. 7.9. Case 2. Variation of the Power
profile from the FVBPM at the end of the mode along the length of the taper,
conversion in the laterally tapered SSC.
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Fig. 7.10. Case 2. Variation of the Propagation 
loss along the Length of the device.

Fig. 7.11. Case 2 shows the variation of the 
laterally tapered spot-size along the length of 
the waveguide.

Fig. 7.12. Case 2. Variation of the Coupling 
efficiency to the Length of the device.

Case 3, When tij =  3.48, 112 =  3.0, 113 =  2.98. The Synthetic polymer cross-section is 
3x3 pm.

It is required to improve this design which may be possible, by adjusting the doping 

of both the synthetic polymeric index values to 3.0 and 2.98 respectively by assuming 

heavy doping of the materials (Materials are shown in Table 1). In the next example, 

Case 3, a moderate index difference of Ani2 = 0.48, between silicon and polymer and
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a low index difference of An2 3 = 0 . 0 2  between polymer and doped polymer is 

considered. As in previous cases, Wj = Wj = 0.5 pm, and Hi = 0.5 pm and W2 = H2 = 

3.0pm. The silicon wire waveguide was tapered from Wj = 0.5 to Wf = 0.02 pm and 

taper’s width for mode cut-off is wider (about 3.4 pm) and low Ani2 and An2 3 for this 

SOI device. Fig. 7.13 shows the output TE mode field profile from the beam 

propagation method for this arrangement. Fig. 7.14 shows the propagating power is 

high compare to previous models which is 5.4 au. Variation of the spot-size mode 

conversion along the propagating distance of the device is shown in Fig. 7.16. Fig. 

7.15 shows the variation of the propagation loss along the length of the taper and this 

has been reduced to 2.04 dB, which could be satisfactory for this SOI device. In this 

case, it can be seen from Fig. 7.16 that spot-size expansion starts to take place at about 

z = 1500 pm and full expansion occurs close to the end of the propagation at z = 2 0 0 0  

pm where the value of the spot-size is 9.78 pm2 which makes it better than the Case 2 

design. It can also be seen from the diagram that there is complete absence of the 

mode-beating phenomenon in this model. The model exhibits coupling efficiency of 

97% between the Si waveguide and the SMF for a Gaussian radius of 2.5 pm and this 

can be seen clearly in Fig. 7.17.
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Fig. 7.13. Case 3. The output TE mode field profile from the 
FVBPM at the end of the mode conversion in the laterally tapered 
SSC.
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Fig. 7.14. Case 3. Variation of the 
Propagating Power against the length of the 
taper.

Fig. 7.15. Case3. Variation of the Propagation 
loss to the Length of the device.

Fig. 7.16. Case 3. Mode conversion of the 
laterally tapered spot-size along the length 
of the waveguide.

Fig. 7.17. Case3. The coupling efficiency of 
the TE mode of the waveguide coupled to the 
single mode fibre.

The third case, with the final tapering width of 0.02 jitm gives a high propagating 

power, low loss, good quality output TE mode field profile, good and very smooth 

spot-size expansion with no oscillations observed and a very high butt coupling 

efficiency to a single mode fibre. These are excellent characteristics, which makes the 

model better than the previously reported work. This particular model is in good
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agreement with the work of Fan and Hooker (1999) on polymer tapers. However, 

since the secondary guide is only 3pm x 3pm, the mode expansion is also limited. 

This particular design could be suitable for coupling to fibre with smaller dimension, 

such as EDFA.

The next 3 models have similar SOI characteristics as the first three but the secondary 

core has been replaced by a large polymer cross-section of 6 x6  pm which doubles the 

dimension, but 4 times the polymer cross-section area of Cases 1 - 3 .  This is expected 

to expand the spot-size further to improve the good characteristics of the previous 

designs.

Case 4, When Hi =  3.48, 112 =  3.0, 113 =  1.45. The Synthetic polymer cross-section is 
6x6 pm.

In this Case 4, the index difference is high at An^ = 0.48 between silicon and 

polymer. The index difference is also extremely high at A1I2 3  = 1.55 between polymer 

and silica as in Case 1. Therefore Case 4 is simply an extension of Case 1 in polymer 

section. The output TE mode (shown in Fig. 7.18) in this case is larger than the output 

TE mode in Fig. 7.2, Case 1 and this is expected because the polymer cross-section is 

larger. The tapering is done from 0.5 to 0.14/xm and a single mode operation can be 

expected with this final width. The quality of the mode field lines is consistent with 

the A1 1 1 2 = 0.48 for the SOI waveguide in previous models but shows a little bit of 

mode-beating, which is visible in Fig. 7.18. Fig. 7.20 shows an extremely low 

propagation loss of 0.52 dB better than that of Case 1. However Fig. 7.19 shows 

reduction in the propagation power of 2.58 au. This is about half of the observed value 

of power in Case 1. It seems the lager polymer section has an inverse effect on the 

propagating power in this case to the large A1I2 3  = 1.55 in the SOI -  waveguide and 

this also manifests in the formation of the output TE mode profile in Fig. 7.18. Fig. 

7.21 shows an improvement in the spot-size curve to the one observed in Fig 6 , 

Casel. In this case the oscillations observed for the mode-beating in Fig. 7.6, Case 1 

has reduced drastically with an increase from 4.3 to 17.78 pm2 courtesy of the large 

polymer section. It should be noted that the mode conversion in this case although 

improve over that of Case 1, is almost complete but not fully completed.
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Fig. 7.18. Case 4. The output TE mode field 
profile from the FVBPM at the end of the 
mode conversion in the laterally tapered 
SSC. Wf=0.14/tm.

Fig. 7.20. Case 4. . Variation of the Propagation 
loss to the Length of the device

Fig. 7.19. Case 4. Variation of the 
Propagating Power against the length of the 
taper.

Fig. 7.21. Case 4. Spot-size expansion of the 
lateral taper. Wf = 0.14 /xm.

The variation of the coupling efficiency of the SOI waveguide to the single mode 

fibre along the propagating length is shown in Fig. 7.22. The overlap integral gives 

the final efficiency to be 97% which shows a very good butt coupling between the two 

OEIC devices and this is better than the efficiency seen in Fig. 7.7, Case 1 where the 

efficiency curve is marred by oscillations as a result of mode-beating. It can be 

concluded that the increase in the polymer cross-sectional area has marked 

improvement on this SOI model.
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Fig. 7.22. Case 4. Coupling efficiency of the 
taper waveguide butt coupled to a SMF.

Case 5, When nj = 3.48, n2 =  1.47, 113 =  1.45. The Synthetic fused silica cross- 
section is 6x 6 ¡xm.

In this Case 5, the index difference is extremely high at Ani2 = 2.01 between silicon 

and polymer. But the index difference An2 3  = 0.02 remain the same between polymer 

and silica. Case 5 is also an extension of Case 2 in which the polymer section is 

doubled to 6  x 6  /tm. This is to expand the spot-size further to improve the good 

characteristics of the previous designs.

Fig. 7.23. Case5. The output TE mode field profile from the 
FVBPM at the end of the mode conversion in the laterally tapered 
SSC. Wf= 0.007 /im.
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Fig. 7.24. Case5. Variation of the 
Propagating Power against the length of the 
taper.

Fig. 7.25. Case5. Variation of the 
Propagation loss to the Length of the device

Fig. 7.23 shows the output TE mode field profile for a final width of 0.007 /tm. The 

size of the output field did not increase with the increase in polymer section as 

expected (instead slight decrease) although the field lines are consistent with the Ani2 

= 2.01 for Fig. 7.8, Case 2. The failure to expand fully into the polymer core can be 

seen as saturation of the mode transformation such that even at Wf = 0.007 /xm no 

further increase can be obtained. Therefore the increase in polymer core has no effects 

on the output field. Fig. 7.24 shows the variation of the propagating power along the 

direction of propagation. The power in this case is 1.6 au and this is about half of the 

power seen in Case 2 which is consistent with the observed reduction between Cases 

1 and 4. Again this can be explained as the lager polymer section has an adverse effect 

on the propagating power to the large Ani2  = 2.01 in the SOI -  waveguide and this 

also manifests in the formation of the output TE mode profile in Fig. 7.23. Fig. 7.25 

shows variation of the propagation loss along the direction of propagation. The 

propagation loss is 10.48 dB which is relatively high and the same as seen in Case 2. 

Fig. 7.26 shows that the spot-size field profile has not expanded fully into the polymer 

core. Although the taper’s width is reduced from W; = 0.5 /xm to Wf = 0.007/xm for 

the mode to undergo conversion but due to the extraordinary An 1 2 of the SOI 

waveguide, full conversion could not be reached. Since the output field profile in this 

case is slightly less than the output field in Case 2, consequently the expanded spot-



size is also slightly less than the spot-size in Case 2. This further proves that the 

increase in polymer core has little or no effects on this SOI model. Fig. 7.27 shows the 

variation of the coupling efficiency along the direction of propagation. The coupling 

efficiency is 98.9% in this case which is very remarkable for this design. It can be 

concluded that the increase in the polymer core has little or no effects on the 

characteristics of this SOI model except for the slight improvement in the coupling 

efficiency.

Chapter 7 Silicon-On-Insulator Optoelectronics

Fig. 7.26. Case 5. Spot-size expansion of Fig. 7.27. Case 5. Coupling efficiency of the
the lateral taper. Wf = 0.007 jam. taper waveguide butt coupled to a SMF.

Case 6, When ni = 3.48, 112 = 3.0, 113 = 2.98. The Synthetic polymer cross-section is 
6x 6  pm.

The next simulation, Case 6 , is carried out with secondary core 6 pm x 6 pm to expand 

the spot-size further to improve the good characteristics of the previous design in Case 

3. In this case, the index difference remains moderate at Ann = 0.48 between silicon 

and polymer and a low value at A1I2 3 = 0 . 0 2  remain the same between polymer and 

doped polymer. This is an extension of previous design in which only the polymer 

section is doubled to 6 x 6 jum, but Wi - W [ -  0.5 /¿m, and Hj = 0.5 pm. In this case, 

the output TE mode field profile of the Si waveguide is tapered from W; = 0.5 to Wf = 

0.02 /cm. It can be seen in Fig. 7.28, that the output mode field is fully expanded and 

fills the secondary polymer core. The mode field size is twice the output mode field in 

Case 3. Fig. 7.29 shows the variation of the power along the z-direction where the
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power is 5.66 au which is slightly better than the power seen in Case 3. Fig. 7.30 

shows that the value of the low propagation loss to be 1.39 dB for the SOI waveguide 

which is considered good such device. Fig. 7.31 shows the variation of the spot-size 

along the z-direction where expansion start to occur at about z = 1700 /xm to a value 

of 28.94 /xm2. However, this spot-size curve has two peaks and a trough, which forms 

a kind of oscillation when the spot-size has fully expanded into the secondary polymer 

core. The first peak occurs at z = 1842 /xm identified as ‘A’ and the trough occurs at z 

= 1911 /xm identified as ‘B’. Since the observed oscillations occur in the polymer 

secondary core, it can be anticipated that the expanded polymer cross-section is now 

able to support multimode operation hence given rise to mode-beating right inside the 

polymer secondary core. The coupling efficiency is 99%, the maximum recorded for 

all the designs is shown in Fig. 7.32. It can be concluded that the increase in the 

polymer cross-section improves the mode-field of the SOI waveguide generally. 

However, increase in the waveguide cross-section by keeping the same index contrast, 

A1I23, allowed the higher order mode to be generated and guided.

Further analysis is carried out to investigate the mode field profile inside the polymer 

core and the fields at point ‘A’ and ‘B’. The mode field profile at position ‘A’ 

identified in Fig. 7.31, is shown in Fig. 7.33. This mode-field clearly shows two peaks 

whereas the field at point ‘B’, shown in Fig. 7.34 looks much reduced in the vertical 

direction. Further analysis is made to investigate the mode field profile inside the 

polymer core and the fields at point A and B are shown in Figs. 7.33 and 7.34 

respectively. It can be seen that the mode field at point A is bigger that at point B. 

Point A mode-field looks like two modes combined in one whereas the point B mode- 

field looks like half of a mode. Figs. 7.35 and 7.36 give the field lines for the two 

points A and B respectively where the mode-fields are maximum in the x-direction. 

Fig. 7.37 shows the absolute resultant effect of subtracting the field-lines at point ‘B’ 

from ‘A’ magnitude is very small and it shows no effect of mode-beating in the 

region.

Similarly Figs. 7.38 and 7.39 give the field lines for the two points A and B 

respectively where the mode-fields are field variation along the y-direction. Further 

analysis is carried out to determine the field profile along the vertical direction for the
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two points ‘A’ and ‘B’. Fig. 7.40 shows the absolute resultant effect of subtracting the 

field-lines at point B from A and the second peak shows the presence of a second 

mode which proves the effect of mode-beating in the region in the tapered SSC. No 

existence of higher order mode was observed in the lateral direction.

Fig. 7.28. Case 6. The output TE mode field 
profile from the FVBPM at the end of the 
mode conversion in the laterally tapered 
SSC. Wf = 0.02 /xm.

Fig. 7.30. Case 6. Variation of the 
propagation loss to the Length of the device.

Fig. 7.29. Case 6. Variation of the 
Propagating Power against the length of the 
taper.

Fig. 7.31. Case 6. Spot-size expansion of the 
lateral taper. Wf = 0.02 f im.
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Fig. 7.32. Case 6. The coupling efficiency of 
the TE mode of the waveguide coupled to the 
single mode fibre.

Fig. 7.33. Case 6. TE mode profile at point A 
= 1842 /tm in fig 31 for the spot-size 
expansion of the tapered SSC.

Fig. 7.34. Case 6. TE mode profile at point B 
= 1949 /im in fig 31 for the spot-size 
expansion of the tapered SSC.

Fig. 7.35. The field line in the x-direction for 
point A = 1848 ¡xm where the spot-size first 
peak occurred.
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Fig. 7.36. Case 6. The field variation along 
the x-direction at point B = 1949 /¿m, where 
the spot-size first trough occurred.

Fig. 7.37. Case 6. Field difference in the x- 
direction between point A and point B of Fig. 31 
for the spot-size expansion.

Fig. 7.38. Case 6. The field variation along 
the y-direction at point A = 1848 ftm, where 
the spot-size first peak occurred.

Fig. 7.39. Case 6. The field variation along 
the y-direction at point B = 1949 ftm, where 
the spot-size first trough occurred.
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Fig. 7.40. Case 6. . Field difference along the y-direction 
between the points A and B of Fig. 31.

Further simulations were carried out to show that the observed mode beating can be 

reduced or eliminated by either reducing the polymer cross-section to 6x5 pm or by 

reducing the high-index difference, An2 3  to 0.015 or 0.01. The first suggestion is more 

preferable to the second because from fabrication point of view, it is far easier to 

reduce polymer cross-section from 6 x6  pm to 6x5 pm because of the vertical 

confinement than reduce the index difference from 0.02 to 0.015 or 0.01.

Improved case 6x5, When nj = 3.48, 112 = 3.0, n3 = 2.98. The Synthetic polymer 
cross-section is 6x5 pm.

Finally, the SSC structure considered here is symmetrical along the x-axis, but not 

along the y-axis. In this case, Case 6x5, the index difference remains moderate at An]2  

= 0.48 between silicon and polymer and low at An2 3 = 0.02 remain the same between 

polymer and doped polymer but the polymeric cross-section is now 6.0 pm x 5.0 jum. 

The vertical confinement is asymmetrical and slightly stronger than that in the 

horizontal direction. Hence, in order to reduce the dimension of the secondary guide, 

only its height is reduced. Therefore, the height of polymer section is reduced by 1 

pm in order to stem down the multimoded effect produced by the excitation of the
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propagating field in the vertical direction. All other parameters such as material index 

and dimensions remain the same as in the previous design, Case 6 .

Fig. 7.41. Case 6x5. The output TE field Fig. 7.42. Case 6x5. Variation of the
profile from the FVBPM at the end of the Propagating Power against the length of
laterally tapered SSC, with Wf = 0.02 ¡im. the taper.

Fig. 7.41 shows the output TE mode field for Case 6x5. There is slight reduction in 

the output TE mode field profile for the same parameters for Case 6x5 than in the 

Case 6  which is expected. The propagating power in Fig. 7.42 shows very slight 

improvement for Case 6x5 than in Case 6 . The propagation loss remains almost the 

same as shown on Fig. 7.43 for the two cases under consideration as the difference in 

the propagation loss is negligible. The field mode reduction has very slight effect on 

the propagating power and loss which is a good attribute of this design. Variation of 

the coupling efficiency along the propagation distance is shown in Fig. 7.44. There is 

slight improvement with regards to the coupling efficiency for Case 6x5 than in Case 

6 . It can be observed that the butt coupling efficiency of the waveguide to a 2.5 /xm 

single mode fibre (SMF) is excellent, almost 100%. This is the highest observed for 

all the designs considered in this work. The variation of the spot-size along the 

propagation distance is shown in Fig. 7.45 similar to the spot-size on Fig. 7.31 for 

Case 6  but there is a reduction observed in the size from 29 jam2 to 25 jxm2. Also 

observed is the significant reduction in the amplitude of the mode beating oscillation
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compared to that of Case 6 . Figs. 46 -  60 show detail analysis of the high and low 

points of the plots which will be discussed later.

Fig. 7.43. Case 6x5. Variation of the 
propagation loss to the Length of the device.

Fig. 7.44. Case 6x5. The coupling efficiency 
of the TE mode of the waveguide coupled to 
the single mode fibre.

Fig. 7.45. Case 6x5. Spot-size expansion of Fig. 7.46. Case 6x5. TE mode profile at point A 
the lateral taper. Wf = 0.02 ¡um. = 1840 fim in fig 45 for the spot-size expansion

of the tapered SSC.
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Fig. 7.47. Case 6x5. TE field profile at point Fig. 7.48. Case 6x5. TE profile at point C =
B = 1882 /im (in Fig. 45) for the tapered 1932 fim (in fig 45) for the tapered SSC.
SSC.

The TE field profile at the three points ‘A’, ‘B’ and ‘C’ (shown in Fig. 7.45) are 

shown on Figs. 7.46, 7.47 and 7.48 respectively. Points ‘A’ and ‘C’ are the highs and 

‘B’ is the low. The Figs. 7.46 and 7.48 show the high field profiles which are not 

symmetrical, but a little bit distorted, while the Fig. 7.47 shows a low field profile 

which is also a little bit distorted. As discussed before, an oscillation has been seen 

when the spot-size has fully expanded into the secondary polymer core which 

supports multimode propagations hence given rise to mode-beating right inside the 

polymer core. The first peak occurs at a point ‘A’ = 1840 /xm and the trough occurs at 

a point ‘B’ = 1882 /im and the second peak at a point ‘C’ = 1932 jum, further analysis 

is made to investigate the field profile inside the polymer core and the fields at point 

‘A’, ‘B’ and ‘C’. It can be seen that the field at point ‘A’ is much bigger that at point 

‘B’. Point ‘A’ field looks like two modes combined in one whereas the point ‘B’ 

mode-field looks a lot smaller than that at point ‘A’. The field at point ‘C’ is very 

similar to the field at ‘A’. Fig. 7.49 shows the variation of the field along y-direction 

at the end of the propagation. It can be seen that the mode beating has been greatly 

reduced to the bearest minimum.

Taking the two points ‘A’ and ‘B’ (in Fig. 7.45) and finding Hy TE field variation 

along the field in the vertical y-direction (Hy versus ‘y’), are shown in Figs. 7.50 and 

7.51 respectively. It can be seen from Fig. 7.52 that the resultant effect of subtracting
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the field lines at point ‘B’ from ‘A’ gives a curve with two peaks. The big peak is the 

fundamental mode while the small peak shows the presence of the second mode 

which indicate mode-beating in the vertical y-direction. Again this result is consistent 

with the earlier result obtained with the polymer 6 x6  pm. As observed in Case 6 , the 

absolute resultant effect of subtracting the field-profile at point ‘B’ from ‘A’ in the x- 

direction shows no sign of mode beating. The Figures are similar to the ones shown in 

Figs. 7.35 - 7.37, and are therefore not repeated in this section.

The analysis moves a step further to compare the two sets of results obtained for the 

6x5 pm and 6 x6  pm waveguides. The first comparison is shown on Fig. 7.53 where 

the two curves of spot-size for 6x5 pm and 6 x6  pm are plotted together. It is clearly 

evident that there is significant reduction in the mode-beating oscillations curve seen 

in 6x5 pm compared to that of 6 x6  pm. Smaller variation of amax, Gmin means that 

amplitude of 2nd mode was smaller. For comparison, spot-size variation for Case 6  is 

also shown by a solid line. The spot-size is also similar to the spot-size in Fig. 7.31 

but there is a reduction observed in the size from 29 pm2 to 25 pm2 because the 

waveguide dimension has also been reduced. It is also observed that the significant 

reduction in the amplitude of the mode beating oscillation compared to that of Case 6 . 

Fig. 7.53 shows the first comparison of the Case 6  and the corrective Case 6x5, which 

shows that there is significant reduction in the mode-beating oscillations curve. There 

is oscillation between the 23.2 and 24.6 pm for Case 6x5 waveguide whereas it is 

between 24.2 and 29.5 pm 2 for Case 6  design. The amplitude of oscillation for Case 

6x5 is calculated to be 0.7 pm2 and that for Case 6  is 2.7 pm2, which shows marked 

difference in the reduction of the mode-beating and proves amplitude of 2 nd mode is 

much smaller..

The second comparison is shown on Fig. 7.54 in which the variation of the field 

profile along the vertical lines for the two cases, Case 6  and the improved Case 6x5, 

are plotted together. It can be seen that the spread along the y-direction is smaller for 

Case 6x5 since the height has been reduced. The two peaks for Case 6  measure 0.126 

and 0.038 and those for the improved Case 6x5 measure only 0.044 and 0.012, which 

demonstrates a significant reduction in their amplitude. This again shows that for the 

reduction in the height of the SOI waveguide can be seen as a balance or trade-off to
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the value of spot-size needed for the design to reduce or eliminate the mode-beating 

completely.
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Fig. 7.49. Case 6x5. Variation of the field line 
along the y-direction for the output TE mode at 
the end of propagation i.e. z = 2000 pm.

Fig. 7.50. Case 6x5. The spot-size (y) in the y- 
direction for point A = 1840 pm where the 
spot-size first peak occurred.

Fig. 7.51. Case 6x5. The field line in the y- Fig. 7.52. Case 6x5. The field line difference along 
direction for point B = 1882 pm where the the y-direction between point A and point B of Fig. 
spot-size first trough occurred. 44 for the spot-size expansion.
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Fig. 7.53. Comparison of spot-size figs for 
two cases 6 and 6x5 to show reduction in the 
oscillations between the two cases.

Fig. 7.54. Comparison of figs 40 and 56 for the 
field line difference along the vertical direction.

7.7 Tapered SOI waveguide and Chip -  Fibre 
Coupling

Further works were carried out to investigate the butt coupling efficiency of these SOI 

waveguide designs with single mode fibres (SMF) with different spot-size in order to 

determine the optimum coupling efficiency Q0- This would enable us to know the 

kind of coupling efficiency to expect when sub-micron waveguide structures are being 

coupled to various waveguides with radial spot-size between 0.5 to 5.0 pm. 

Simulations were carried out for the Case 3, for example, in which each SMF radius, 

obtained from Gaussian algorithm were butt-coupled in turn to the submicron 

waveguide structures. The results obtained are shown on Fig. 7.55, which shows the 

comparison between the coupling efficiency curves for the Case 3, with 3pm x 3pm 

secondary core and the improved Case 6x5, with 6 pm x 5pm secondary core 

waveguides. The G0 for Case 3 for 0.5 pm is 54%, for 1.0 pm, it is 62%, and as G0 

increases it gets to Gopt = 98% at 2.0 pm when Q0 starts to decrease. The optimum 

coupling fibre radius for the 3x3 waveguide is for Q0 = 2.0 pm and the efficiency 

range is from 52% to 82% for Q0 values from 0.5 to 5.0 pm respectively. Whereas in 

the Case 6x5, 0.5 pm is 38%, for 1.0 pm, it is 44%, and as G0 increases it gets to Gopt
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= 99% at 2.5 pm when Q0 starts to decrease. The optimum beam radius is Qopt = 2.5 

pm and the efficiency spectrum from 38% to 8 8 % for 0.5 to 5.0 pm respectively. It 

can be seen that the Case 6x5 waveguide has a wider efficiency spectrum than Case 3 

waveguide. This can be explained from the point of view that the connecting polymer 

layer of Case 6x5 waveguide has a larger spot-size area which matched the Gaussian 

radius, Qopt = 2.5 pm better than that of when Case 3 waveguide is matched to Oopt =

2.0 pm. These curves give us good idea of the range of coupling efficiency to expect 

when coupling SOI waveguides to various SMF radii.

Further investigation was done to obtain the curve of coupling efficiency against the 

propagation length for various coupling fibres with Gaussian radii, G0= 1.0, 2.0, 2.5,

5.0 pm of case 5 waveguide. It can be seen from Fig. 7.56 that the curve of Gaussian 

radius O0 = 2.5 pm gives the optimum coupling efficiency which is 99.3%. On the 

other hand, it shows the maximum efficiency for a smaller Q0 = 2.0 pm is 96.8%, Q.0 

= 1.0 pm has maximum at 67.1%. As the Q0 increases to 5.0 pm, the maximum 

efficiency is 86.5%, which is also lower than that of 2.5 pm which agrees well with 

Fig. 7.55, shows maximum efficiency can be obtained when G0 = 2.5 pm. This study 

also shows that the design is considerably robust with axial distance tolerances. This 

study will go a long way to let optoelectronic designers know what to expect when 

dealing with such waveguides.
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Fig. 7.55. Comparison between the coupling 
efficiency curves for the 3x3 channel and 6x5 
channel waveguides for various Gaussian radii.

Fig. 7.56. The coupling efficiency against the 
propagation length for various Gaussian radii, 
Q0 = 1.0, 2.0, 2.5, 5.0 /xm of 6x5 channel 
waveguide.
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T able 7.2: D ata  for SO I w aveguide properties

M O D E L S
n!/n2/n3 

W2 x H2 (/xin)

F IN A L
W ID T H

O m)

P R O P
P O W E R

(au)

P R O P  L O SS
(dB)

S P O T
S IZ E
Oum2)

C O U P L IN G
E F F IC IE N C Y

(%)

3.48/3.0/1.45
3 x 3 0.1 5.07 -0.74 4.30 79.5

3.48/1.47/1.45
3 x 3 0.007 3.08 -10.81 8.44 97.7

3.48/3.0/2.98
3 x 3 0.02 5.40 -2.04 9.78 97.2

3.48/3.0/1.45
6 x 6 0.14 2.58 -0.52 17.78 97.5

3.48/1.47/1.45
6 x 6 0.007 1.59 -10.48 8.86 99.0

3.48/3.0/2.98
6 x 6 0.02 5.66 -1.39 28.94 99.0

3.48/3.0/2.98
6 x 5 0.02 5.69 -1.40 21.46 99.3
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7.8 Summary

In this work, we have analyzed and optimised the design parameters of a spot-size 

converter in silicon-on-insulator waveguides (SOI). The designs have been symmetric 

laterally tapered and asymmetric vertically and we have demonstrated light is more 

tightly confined in the SOI waveguides than in many other layered semiconductor 

guides. In Case 1, SSC had a low-loss which is good, but the coupling efficiency was 

also low. The transmission power is good, but a poor spot-size conversion which is 

marred by mode-beatings. For Case 2, the loss value was high which is not desirable, 

but the coupling efficiency was higher. The transmission power is low but the spot- 

size is good with little or no mode-beatings. Case 3, shows an excellent design 

optimisation with low-loss, good coupling efficiency, good power, and fully expanded 

spot-size with no mode-beating oscillations. This is in good agreement with 

previously published experimental works of Fan and Hooker, 1999; Roelkens, et ah, 

2005; and Shoji et al., 2002. Of all the three cases considered initially in which the 

polymer channels are 3 x 3 pm, Case 3 have been found to transmit low-order modes 

and filter out higher order modes.

Case 4 suggests the lowest transmission loss of 0.52 dB, supported by a mode 

conversion which is mode-beating free. Although the coupling efficiency is high, the 

model suffers a higher power loss. As an extension to Case 1, the polymer cross- 

sectional area has marked improvement on this SOI model. Case 5 is similar to Case 2 

in that it has a high loss value. Low power, spot-size conversion improvement from 

4.3 to 8 . 8 6  jitm2 with very low oscillations. As an extension to Case 2, the polymer 

channel has little or no effect on the characteristics of this SOI model except for the 

slight improvement in the coupling efficiency. There are improvements in all the 

observed characteristics of Case 3 model when polymer channel is extended in Case 

6 . However the extension is large enough to support higher order modes in which 

some mode-beating oscillations were observed. Further efforts were made to correct 

this phenomenon and this gives rise to case 6x5 pm design. This model is similar to 

the Case 6  model in its power and loss characteristics. It has higher coupling 

efficiency but the mode-beating oscillations have been drastically reduced. With this 

result, it can be concluded that a further reduction in the height of the polymer
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channel of the SOI will eliminate completely the observed mode-beating. A trade-off 

has to be made between the vertical height of the polymer connecting channel and the 

level of spot-size mode conversion required. The combination of SOI rib waveguides 

loss, modal characteristics, fibre optical compatibility, and the ability to modulate the 

refractive index of these waveguides efficiently in the MHz range makes SOI 

technology a potential candidate for high-accuracy interferometric sensor applications 

(Rickman et al., 1994).

Rigorous and accurate numerical simulations has been used to examine and design 

SOI polymer waveguide tapers which can perform beam transformation for improved 

coupling between output waveguiding structures with different mode shapes and 

sizes. In other words the monolithically integrated SOI waveguide can be used to 

couple light between arbitrary optoelectronics devices like modulators, directional 

couplers, amplifiers, switches etc. with different mode sizes. The hallmark of this 

work is the presentation of very simple design geometries and materials that are easy 

to fabricate with the popular and versatile CMOS technology on the basis of mass 

production of SOI devices to achieve the effective FTTH package.
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Chapter 8 General Conclusions

General Conclusions
8.1 General Conclusions
Modelling and Optimisation of compact spot-size converters in Photonics Integrated 

circuits (PICs) has been the primary objective of the work carried out in this thesis. In 

this work, numerical simulations based on the versatile and accurate vector finite 

element method (VFEM) has been the foundation which other numerical methods 

namely, full-vector beam propagation method and least squares boundary residual 

method have been developed and used in the design, optimization and characterisation 

of various types of 3-dimensional compact spot-size converters. Geometrical and 

material parameters used in modelling the SSCs are similar to the ones used in 

fabricating the real photonic devices and their charaterisations on operational 

parameters such as propagation power, propagation loss, spot-size, maximum 

coupling efficiency and minimum length of the device have been calculated. A novel 

design for multimode interference (MMI) spot-size converter was designed. Twin rib 

spot size and silicon-on-insulator (SOI) spot-size converters are also designed and 

optimised. In this thesis, the emphasis has been placed on developing the finite
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element-based techniques for further use in the modelling and analysis of these 

practical spot-size converters and more advances of photonics integrated circuits can 

be achieved.

The consistency and validity of the numerical simulation techniques developed in this 

thesis has been demonstrated and the objectives set out in the first chapter have been 

competed successfully with detailed analysis of the results obtained. The results 

obtained in this thesis have been compared with other previously published 

experimental results and are in close agreement which confirms the validation of the 

techniques developed.

In summary, the aims and objectives set out in Section 1.5 were achieved as follows:

(1) To investigate different fabrication technologies and suitable materials in the 

production of optical waveguides especially the CMOS process which is 

employed for mass production of silicon integrated circuits.

This is illustrated in Section 2.2 -  2.4, where it is stated that most of the design 

materials reported in this thesis can be fabricated by using the epitaxial or deposition 

techniques. The following materials; silica, GaAs, InP substrates fall under the group 

which undergoes photolithographic processes and ething techniques after deposition 

because their lateral dimensions are just few microns. These materials are commonly 

used in practical situations and their material indices are used throughout this thesis. 

The epitaxial growth techniques are the popular deposition methods for materials like 

GaAs and InP, while complimentary metal- oxide semiconductor (CMOS) is 

emphasised as the most important technology for the fabrication of microelectronic 

circuits especially silicon integrated circuits. The technology for Twin-well CMOS 

process and its usefulness is described.

(2) To investigate different approaches to the solution of optical waveguide 

problems and to provide a basis for the effective employment of the finite 

element method.

This is illustrated in Section 2.5, where the computational techniques in which various 

analytical and numerical methods are described briefly. The advantages of numerical
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method over analytical method is emphasised and the justification for the use of 

Finite element method is highlighted as the main tool to be used throughout this 

thesis.

(3) To develop and implement the rigorous, accurate and efficient finite element 

method based on vector H-field variational formulation for the analysis of 

optical waveguides with arbitrary cross sectional shapes.

The whole of Chapter 3 is devoted to the vector finite element method which is 

presented in detail as one of the most powerful numerical methods that has become 

very popular among research scientists because it offers a high degree of versatility 

and accuracy. Among the other formulations reported so far, the vector H-field 

formulation has been used especially because of its boundary conditions attributes 

since it is naturally continuous across dielectric interfaces and this is presented in 

Section 3.6.2. The associated natural boundary conditions are that of an electric wall 

and this is easier to implement in most practical waveguide cases. The H-field 

formulation normally starts with the triangular discretisation of the system or region 

of interest. The variational principle, shape functions and vector formulation were 

explained in details. The non-physical or spurious solutions were eliminated by 

implementing the V-H = 0  condition and additional penalty term in the variational 

formulation. This formulation has stand a test of time in problems involving complex 

and arbitrary cross-section, index profile, and so on, determining the model field 

profiles and the propagation characteristics of the guidewave practical photonic 

integrated devices.

(4) To implement the least squares boundary residual (LSBR) in conjunction with 

the accurate modal solutions obtained from the finite element method in order 

to develop accurate coupling properties of multimode interference (MMI) 

coupler waveguides.

This is illustrated in Section 5.2 -  5.4 where the principle of spot-size conversion of 

the beam evolution in a waveguide and the need to have integrated spot-size 

converters has been presented. The robustness and usefulness of least squares 

boundary residual method (LSBR) is also presented. The versatile vectorial FEM 

together with the LSBR method is applied to the novel design of the multimode
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General ConclusionsChapter 8

interference (MMI) waveguide as a spot-size converter to improve the coupling 

efficiency to a single mode fiber from 18% to 36%. This is a novel idea and more can 

still be done to improve the coupling efficiency recorded in this work due to time 

constraint.

(5) To apply full-vectorial finite elements techniques developed and implemented 

in (3) in the study of designing a spot-size to solve mode-matching problems 

in optoelectronics.

This is illustrated in Section 5.5. The phenomenon of spot-size conversion in 2-D is 

also demonstrated in the design of a twin rib spot-size converter to improve the 

coupling efficiency to a SMF. In this section, the VFEM has been used as a stand-

alone in this work to examine the prospect of achieving bigger spot-size for efficient 

coupling. The spot-size conversion occurred when the upper rib waveguide is 1.6 pm 

and the quasi-TE mode spot-size increases from 1.0 pm to 51 pm . This is a 

remarkable spot-size expansion which shows the versatility of the VFEM as a very 

good design tool in optoelectronics.

(6 ) To develop and implement an efficient and robust beam propagation method 

which combines the finite element discretisation in the transverse domain with 

the stable z-stepping Crank-Nicholson scheme in the longitudinal direction.

This is achieved in Chapter 4 which reports on the study of the propagation of guided 

waves in the longitudinally z-variant structures. While the powerful vector H-field 

finite element has been described as having the capability to design and characterise 

variety of photonic integrated devices in their stationery 2-D stated or an invariant 

situation in the longitudinal direction. But vector H-field finite element formulation is 

not capable of simulating the propagation and interaction of light with media in the 

longitudinally non-uniform devices such as bends, junctions and tapers. The solution 

to this problem gives rise to versatile, robust and efficient finite element-based Beam 

Propagation Method (BPM). The VFEM is always employed to provide the modal 

solutions quasi TE or TM mode field profiles. It is based on real vector of the six 

transverse magnetic field components which satisfies the appropriate interface 

boundary conditions and also automatically satisfies the zero divergence condition, 

which prevents the spurious solutions from affecting the propagation. This algorithm
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takes into account the effects of reflection and radiation waves during the propagation 

by using the rigorous PML boundary condition. Also taken into account is the realistic 

wide angle range approximation by using the Pade recurrence relation which can 

accurately determine the path of the waves propagating off the longitudinal z-axis. 

The global matrices generated are sparsed unlike other vector formulations which 

result in dense matrices, therefore, only nonzero entries are stored and efficient LU 

decomposition matrix solver is used. The vectorial BPM algorithm is extended to 

calculating some wave properties like propagating power, the spot size and the 

propagation loss. Also the overlap integral has been incorporated into the algorithm 

for the assessment of the coupling efficiency.

(7) To apply the developed and implemented beam propagation method in the 

design and optimisation of a novel semiconductor based (AlGaAs-GaAs) spot- 

size converters by using full vectorial numerical methods implemented in (3) 

to the characterisation of GaAs and vector H-field variational formulation 

tapers.

This is illustrated in Section 6.4. The quest to have compact spot-size converters in 3- 

D now moves to the situation whereby the propagation and interaction of light in the 

longitudinal z-variant structures such as tapers need to be examined. In Chapter 6 , the 

VFEM is used in conjunction with the FVBPM to optimize design of tapered Spot- 

size Converter (SSC) in the longitudinal z-direction. The work presented here 

illustrates various design options for spot-size converters using the BPM 

incorporating the overlap integral, to improve the coupling between a PIC and a SMF. 

A compact lateral twin-rib taper SSC design has been produced, which has minimum 

length, minimum radiation losses, and maximum coupling efficiency of 90%. It has 

been compared with other conventional SSC design using VFEM, and the accuracy of 

the BPM with the overlap integral has been shown to be excellent. The mode-beating 

can be experienced when designing taper structures but can be avoided by correct 

choice of length and width parameters.
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(8 ) To apply the full vectorial numerical techniques implemented in (3) and (6 ) in 

the study of designing and characterising various optical waveguides involved 

in silicon-on-insulator (SOI) spot-size converter issues in optoelectronics.

This is fully illustrated in the whole of Chapter 7 where the principles and operations 

of silicon-on-insulator (SOI) are presented. There has been significant interest in 

development of optical devices using SOI waveguides because the material and the 

processing are relatively low cost and also the high index contrast between silicon and 

silica makes it possible for high density integration and this gives rise to size 

reduction of integrated optical structures. The properties, applications and fabrications 

of SOI waveguides were discussed and simple but realistic seven models are 

presented in this work with emphasis on the An characterisations. The computational 

techniques involve the use of VFEM and FVBPM to carryout these designs.

The highest coupling efficiency achieved is 99.25% and low-loss of 0.52dB is 

recorded. Painstaking and accurate numerical simulations has been used to examine 

and design SOI polymer waveguide tapers which can perform mode transformation 

for improved coupling between waveguiding structures with different mode shapes 

and sizes. In other words the monolithically integrated SOI waveguide can be used to 

couple light between arbitrary optoelectronics devices like modulators, fibres, 

directional couplers, amplifiers, switches etc. with different mode sizes. The hallmark 

of this work is the presentation of very simple design geometries and materials that 

are easy to fabricate with the popular and versatile complimentary metal-oxide- 

semiconductor (CMOS) technology on the basis of mass production of SOI devices to 

achieve the effective ‘fibre-to-the-home’ (FTTH) package.

8.2 Suggestions For Future Work
Design, analysis and optimisation of compact spot-size converters have been carried 

out in this thesis. It has been shown that a photonic integrated circuit (PIC) with a 

small and non-circular spot-size (typically of about 1 pm) can be directly butt-coupled 

to a single-mode fiber (SMF) with a larger and circular spot-size (typically of about 

10 pm). However, most SSC designs reported so far do not have exactly circular spot- 

size shape that will match the type of circular spot-size normally seen in a single-
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mode fiber. More works still need to be done for further improvement to achieve a 

more circular spot-size in future. Such an achievement will mark another milestone in 

the work of optical research workers as adiabatic tapers will be easier to fabricate.

The combinations of the VFEM and FVBPM have been employed to calculate some 

parameters like the spot-size, propagation losses, propagating power and the overlap 

integral has been incorporated to calculate the coupling efficiency of guidedwave 

devices. Another important consideration for future work would be the incorporation 

of the least squares boundary residual method into the beam propagation method to 

calculate propagating parameters like the power transfer from a waveguide section to 

another, to obtain both the transmission and the reflection coefficients, which overlap 

integral cannot handle excellently. The development of such a numerical model will 

provide researchers with a powerful tool for the study and analysis of various 

waveguides.

Chapter 8 General Conclusions
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