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ABSTRACT

This thesis is concerned with the development of concepts and results to facilitate 
study in two areas of control methodology. The two notions investigated are 
measures of controllability and observability and eigenstructure assignment. The 
link between these two areas is exposed, and it is demonstrated how the 
eigenvectors of a system play an important role in determining the degree of 
controllability and observability. The main concerns are issues dealing with the 
complexity of the instrumentation, and in particular the development of techniques 
that may assist in the development of methodology for sensor and actuator 
placement. The research involves the development of notions that help to structure 
a system on which control design is based. There are two areas of investigation. 
The first is the development of concepts and tools that aid in the selection and 
placement of sensors and actuators based on properties related to degrees of 
controllability and observability. The second is the investigation of the 
eigenstructure of a system and its properties, which enable the development of 
design procedures based on eigenstructure properties.

A study of existing measures of controllability and observability leads to new 
techniques which take into consideration the problem of coordinate 
transformations, which is often overlooked. It is shown that the degree of 
controllability is influenced by changes in the structure of the state feedback 
matrix, as well as how controllability properties can be determined from Pliicker 
matrices of transfer function matrices. It is also shown that the energy required to 
move a system from one state to another is linked to the singular values of the 
output controllability grammian.

A review of the problem of eigenstructure assignment paves the way for the 
development of a new technique of assigning the closed loop eigenstructure. This 
is based on matrix fraction description algorithms, and stems from an algebraic 
description of the total system behaviour, leading to a systematic study of closed 
loop eigenvectors by using a parametric approach. A new algebraic 
characterisation of the family of closed loop eigenvectors and related input and 
output directions is shown. Closed loop system robustness to parameter variations 
is also considered, where it is shown that there is a link with the orthogonality of 
the matrix of eigenvectors. As a result, the notion of strong stability is introduced, 
where it is shown that the shape of the eigenframe plays a role in the system 
response by way of overshoots. The work develops concepts and results which are 
important steps in the development of an integrated methodology for input, output 
structure selection.
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GLOSSARY

Almost zero A local minimum of /?(s)| , where s = <j ± jco p(s) is 
a set of polynomials [Kar., et al, 2],

Eigenframe The matrix or set of eigenvectors.

Eigenstructure Geometric properties of the eigenframe, e.g. 
skewness, orthogonality, etc.

Input decoupling zero An uncontrollable mode [Ros., 1],

Measure o f controllability An algorithm that gauges the strength of presence of 
controllability. It is an attempt at measuring the 
distance of a given pair (A, B) from the family of 
uncontrollable pairs ( A ',B '). [Tar., 2]

Measure o f observability An algorithm that gauges the strength of presence of 
observability. It is an attempt at measuring the 
distance of a given pair (A, C) from the family of 
unobservable pairs ( A',C '). [Tar., 2]

Output decoupling zero An unobservable mode [Ros., 1].

Projective measures Special measures of controllability and observability 
based on distance from singularity of the Pliicker 
matrix of a given system [Kar., & Gia., 1],

Restricted input state pencil (sN -  NA) Feedback free description of the 
controllability pencil [Kar., 3],

Restricted output state pencil (sM -  AM) Output injection free description of the

System mode

observability pencil [Kar., 3].

The triple of eigenvalue, right and left eigenvectors.

Weakly controllable A system is referred to as weakly controllable if 
some appropriate distance function from the family 
of uncontrollable systems has a small value.

Weakly observable A system is referred to as weakly observable if some 
appropriate distance function from the family of 
unobservable systems has a small value.
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1 INTRODUCTION DANIEL NANKOO

INTRODUCTION

1
Control systems engineers are concerned with understanding and controlling 

segments of the environment, called systems, to provide useful solutions to a 

variety of problems in engineering and society in general. A system can be defined 

as a collection of objects, or subsystems, which are related by interactions that 

produce various outputs in response to different inputs. Examples of such systems 

are chemical plants, aircraft, spacecraft, national economies, etc. The control 

problems associated with these systems may be the efficient production of a 

chemical product, automatic landing of an aircraft, a rendezvous with an artificial 

satellite in space, regulation of important economic variables, etc.

The ability to control a system is dependent on a valid mathematical model. 

However practical systems are inherently complicated and highly nonlinear. 

Therefore simplifications are made, such as the linearisation of the system. Error 

analysis can then be employed to provide information on how valid the linear 

mathematical model is as an approximation to the real system. Traditional control 

is based on the idea of a fixed model (if one is available) subject to certain 

interconnections of subsystems and selected input-output structures. However in 

many applications there is scope for using the selection of the input-output 

structure in terms of the components used for control purposes, namely sensors and 

actuators, to assign desirable properties, or to avoid the formulation of undesirable 

ones. This part of the design process is usually referred to as systems 

instrumentation and their placement. This also involves the study of the interaction 

between subprocesses and the overall system instrumentation.

The selection of locations of sensors and actuators on a system effectively shapes 

the system model by assigning the rules which couple the control variables 

(actuator variables) and measurement variables (command variables) to the internal
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variables of the system. Classical instrumentation deals with the development of 

techniques for acting upon certain variables and measuring, sensing, them. 

However it is not concerned with the crucial problem of their physical, geometric 

and spatial distribution. It is this distribution which shapes structurally the input 

and output coupling maps and in turn affects the resulting properties of the final 

model. Developing methodology for influencing the selection of the input and 

output maps is the subject of global or systems instrumentation [Kar., 1] and it is 

one of the main issues considered in this thesis. The distinct feature of the activities 

here is the study of the effects of input-output selection on the state space 

performance indicators which are linked to the degree of presence of certain 

system properties such as controllability, observability, input/output controllability, 

minimality, etc. This type of work is complementary to a framework that is based 

on assignment of desirable values of system invariants [Kar., & Gia., 1 ].

It is desirable that systems react in the way that they are designed to do, and that 

their behaviour can be in some way described by the properties exhibited by their 

mathematical models. To achieve this, information describing the system and the 

way it changes is needed. This is provided by a feedback control system, which 

calculates the difference between the measured variables and the desired output 

responses which in turn results in changes to the system to compensate for the 

subsequent error. Ideally, it is desirable to measure all of the variables, or states of 

a system to design a feedback scheme. If this is the case, then state feedback is 

being employed. Yet in practice, not all of the system states are available, and so 

the feedback has to be designed using the outputs of the system, called output 

feedback. The application of feedback affects the way the system behaves. It also 

affects the way in which a system can be controlled (controllability) and its states 

measured (observability). The mathematical model of the system also changes 

under feedback, and thus so do certain system behaviour indicators, such as 

eigenvalues and eigenvectors (collectively known as the eigenstructure).

State or output feedback affects the spectrum and the eigenframe of the closed loop 

state matrix. Techniques which have been primarily concerned with influencing the 

eigenframe of the resulting closed loop system are referred to as eigenstructure 

assignment methodologies. Although a lot of activity has taken place in this area

2
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most of it has relied on techniques aiming to achieve eigenvalue assignment and 

improve orthogonality of the set of eigenvectors. Orthogonality of the eigenframe 

is linked to robustness as far as parameter uncertainty. The role of eigenvectors in 

design is important for systems described by physical state variables where 

coordinate transformations are not allowed. This role is not well understood with 

the exception of the robustness concerns. Also the selection of the spectrum and 

the eigenframe are problems which are interlinked, but have not been treated as 

such. This thesis aims to contribute in developing the understanding of the 

eigenstructure by emphasising the role of skewed frames as causes for 

overshooting behaviour in overdamped systems, and by introducing new 

parameterisations which may provide additional tools for handling the 

simultaneous spectrum and eigenframe selection.

This thesis is primarily concerned with issues which relate in the development of 

the systems dimension of the instrumentation and in particular the elaboration of 

criteria which may assist in development of philosophy for sensor and actuator 

location. Thus the research carried out here deals with the development of 

methodology for structuring the system on which control design is eventually 

performed. The main areas under investigation are

1) Development of tools of methodology that will allow selection of locations 

of sensors and actuators based on properties such as degrees of 

controllability and observability.

2) Investigation of some new aspects in the area of the eigenstructure of a 

system and its properties

An important assumption underlying the first section of the work deals with 

systems which have physical variables. For such systems the study of problems of 

degrees of controllability and observability is justified. These problems do not 

make sense when dealing with general variables or when allowing arbitrary 

coordinate transformations. Although a number of tests for measuring relative 

degrees of controllability and observability have been already established, as such 

there is no unifying framework. The thesis contributes in the development of such 

a framework by
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• Reviewing existing results and developing software

• Developing new criteria in areas such as

a) Input-output controllability based on energy

b) Degree of minimality based on properties of Hankel matrices

c) Investigating the effect of feedback on the degrees of controllability 

and observability and introducing these notions in the open and 

closed loop sense as well as developing criteria for them.

Throughout this work emphasis is placed on the relationship between these 

properties and the state space parameters and this is important since through these 

problems the links between selection of sensors and actuators and their effect on 

system properties is established. These are prerequisites for the study of structure 

assignment problems, which however are not considered here.

The second cluster of problems deals with the significance of the eigenstructure of 

a system in control design, as well as the corresponding shaping of system 

properties. In fact the new view of the eigenstructure presented here establishes 

links with properties of degrees of controllability and observability considered 

before. Most of the studies carried out on the eigenstructure thus far have dealt 

with the development of algorithms for optimising the degree of orthogonality of 

the resulting frame. The approach taken here has been much more fundamental, 

and the following issues have been addressed:

• Development of two new forms of parameterisation of closed loop 

eigenvectors. The first is of an algebraic nature and is based on the 

properties of minimal bases of matrix pencils. The second is of parametric 

nature and provides a measure of pole mobility from the open loop to the 

closed loop.

• Study of the significance of degree of orthogonality for none overshooting 

free responses.

• Some interesting characteristic of the eigenstructure in relation to poles and 

zeros.

4
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• Two variant eigenvector algorithms for eigenvector based assignment

The eigenstructure problem has been considered from a much more fundamental 

viewpoint and questions such as the effect of a selected spectrum on possible 

properties of resulting eigenframes have been considered but many important 

questions remain open.

Chapter 2 forms the mathematical foundations that are necessary for the coherent 

understanding of the problems and subproblems looked at in this thesis. The 

fundamentals of eigenvalue and eigenvector analysis are explained, as is the 

solution to time invariant autonomous and forced systems. Linear algebra is used 

extensively throughout the research, and a section detailing some of the essential 

notions connected to the results obtained in these studies is presented. Towards the 

end of this chapter, there is a section dealing with transfer functions, which is 

needed for the development of a new method of eigenstructure assignment 

presented at the end of the thesis.

Chapter 3 paves the way for the consideration of the first problem of the thesis and 

is primarily concerned with measurement and control problems for large scale 

systems, that starts off with a look at how control problems evolve from their 

conception through to the design stages. The definition of key terms such as 

controllability, observability, sensors, actuators and flexible structures lays down 

the basics that are to be developed in the following chapters. As an example of a 

large scale system, flexible structures are analysed where it is shown how state 

space models can be derived from a set of differential equations. State space 

models are highly relevant to the thesis, and are used for most of the new results 

obtained.

In Chapter 4, measures of controllability and observability are studied. This 

chapter examines the notions of measuring the degree of controllability and 

observability with a view to sensor and actuator placement. There is a section that 

comprises of a review of existing measures and a study of some new ones, which is 

proceeded by a comparison of some of the techniques in this field. A new measure 

based on Markov parameters is also considered, followed by a section dealing with

5
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open and closed loop degrees of controllability. A study of how exterior algebra 

and characteristics of Plticker matrices can be used to develop measures is also 

presented. This is conveniently followed by an account of a new method of input 

selection based on minimising the condition number of the controllability matrix, 

which concludes the chapter.

The link between the singular values of the output controllability matrix and the 

energy required to move a system from one state to another is the problem 

considered in Chapter 5. The output controllability grammian forms the crux of the 

investigations carried out here and is mathematically analysed. This is followed by 

a practical study concerning the importance of energy use in large scale systems, 

and ends with a few examples demonstrating the algorithms developed by using 

software written in MATLAB.

Chapters 3, 4 and 5 all deal with the first problem of measuring controllability and 

observability. The next three chapters all look at the second problem to be 

considered, eigenstructure assignment. Chapter 6 is an account of the basic 

concepts and background results in this widely covered area. The physical 

relevance of eigenvalues and eigenvectors are explained here in relation to 

rectilinear motions. The role of the eigenstructure on system performance is also 

covered here.

Sensitivity issues are dealt with in Chapter 7. A prime concern to control system 

designers is that of the closed-loop system robustness to parameter variations, 

external disturbances and system modelling errors. A major cause for concern is 

eigenvalue sensitivity to such perturbations, and it is part of the design process to 

minimise its detrimental effect. Therefore it is important that the eigenstructure to 

be assigned is formed with a view that the resulting system is as robust as possible. 

Thus the link between the frame of eigenvectors and system robustness is 

examined here. A short literature review is given that details some of the work 

done in measuring robustness. This is followed by a section examining the link 

between the orthogonality of the eigenframe and system robustness, with 

corresponding software demonstrating how the system response is affected by the 

nature of the eigenvector matrix. The notion of strong stability is also examined in

6



1 INTRODUCTION DANIEL NANKOO

relation to eigenstructure properties, and the chapter ends with a demonstration of 

some of the methods to measure the orthogonality of a matrix.

The final chapter of this thesis presents an algebraic description of the total system 

behaviour which in turn allows the study of closed loop eigenvectors in a 

systematic way by providing parameterisations. An algebraic characterisation of 

the total input, state and output behaviour in an implicit formulation is given based 

on properties of matrix fraction descriptions. The analysis provides a new algebraic 

characterisation of the family of closed loop eigenvectors and related input and 

output characteristics. This enables the derivation of a new method of 

eigenstructure assignment via state feedback, using minimal basis theory, and is 

demonstrated via an example. Also presented is a way to optimise the eigenframe, 

which contains the closed loop eigenvalues in order to guarantee maximum system 

robustness by making it as close to orthogonality as possible.

The thesis ends with conclusions and open issues encountered throughout the 

work.

The thesis makes novel contributions in the following areas:

• It provides a framework for the selection of sensors and actuators based on 

the effect of such selections on the degree of presence of a number of 

system properties in the resultant model.

• It develops energy criteria based on input, output controllability for 

evaluating the effect of input, output selection on such properties.

• It develops new tests for the selection of input and output structure based 

on tests characterising closeness to minimality and new algebraic 

characterisations of degrees of controllability and observability using the 

notions of almost zeros.

• It establishes new properties on the significance of the structure of 

eigenframes by examining their role in state overshoots and closed loop 

robustness.

• It provides two new parameterisations for closed loop eigenframes. One is 

based on the algebraic properties of minimal bases and the other on a

7
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parameterisation characterising mobility from an open loop to a closed loop 

location.

The results enhance the range of techniques which may be used for the 

development of systematic procedures for selection of distribution of sensors and 

actuators, and for control design based on the eigenstructure assignment.

8
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M ATHEM ATICAL ANALYSIS OF 
CONTROL SYSTEMS ENGINEERING

2.1 In t r o d u c t io n  t o  c o n t r o l  sy st e ms
ENGINEERING

Engineering is concerned with understanding and controlling the materials and 

forces of nature in order to benefit mankind. Control systems engineers are 

concerned with understanding and controlling segments of the environment, called 

systems, to provide useful solutions that enhance the products of society. The 

effective control of systems requires that systems be understood and modelled. 

Furthermore control engineering must often consider the control of poorly 

understood systems such as chemical processes. Control engineering is based on 

the foundations of feedback theory and linear systems analysis, and is not limited to 

any engineering discipline. It is equally applicable to aeronautical, chemical, 

mechanical, environmental, civil and electrical engineering, or indeed a 

combination of these. This chapter will concentrate on the mathematical aspects of 

control systems engineering that are used throughout this thesis. The areas covered 

are eigenvalue-eigenvector analysis, the solution of linear time invariant systems, 

the geometrical and computational issues in the solution of linear systems and 

transfer function matrices.

2.2 Ei g e n v a l u e -e ig e n v e c t o r  a n a l y s i s ___________

2.2.1 CHARACTERISATION OF EIGENVALUES AND EIGENVECTORS

From a set of physical variables, differential equations can be developed and 

linearised which lead to the well known state space equations of the form

9
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x = Ax + Bu state equation
(2 . 1)

y = Cx + Du output equation

where A is the (nxn) state matrix and describes the internal (homogenous) motion. 

B is the (nxm) input matrix and describes how m inputs affect the n states. C, the 

(pxn) output matrix, describes how n states contribute to p  outputs. The (pxm) D 

direct transmission matrix describes how m inputs are fed through to p  outputs. 

These matrices possess certain characteristics that can be studied in order to 

determine how the system will behave. Such indicators of system behaviour are the 

eigenvalues and eigenvectors. Eigenvalues and eigenvectors play a prominent role 

in the way systems behave. They are important property indicators that can be 

derived from the systems matrices of equation (2.1). The significance of 

eigenvalues and eigenvectors in the way systems behave will be discussed later. 

This section will deal with the mathematical aspects. An eigenvalue is a root of the 

characteristic polynomial

(p{X) = \XI„ -A \ = 0 (2.2)

An eigenvector u, that corresponds to an eigenvalue T, is a nontrivial solution of

[AIn -A]u  = 0 (2.3)

where /„ is the identity matrix. The algebraic multiplicity of an eigenvalue is the 

multiplicity of the eigenvalue in (p{X). The columns of the eigenvector matrix U

which consist of u, have to be linearly independent. The inverse of U is V, and is 

the matrix of left or dual eigenvectors.

The characteristic decomposition is defined for the case of simple structure 

matrices as

10
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A, ... 0 V,
A -  UAV = [«, ... un] \

[o  ••• K  vl
(2.4)

where U is the eigenvector matrix, A is the spectral matrix which has as its 

diagonal the distinct eigenvalues, and V is the matrix of dual eigenvectors.

2.2.2 THE STRUCTURE OF EIGENVECTORS OF A MATRIX

Let the matrix A e , where the characteristic polynomial is defined as

<p(Â  = | AIn — Aj = A + A +.. ,+CT|/i. + (Zq

where rj is the algebraic multiplicity of the A, eigenvalue. The number of 

eigenvectors d, for each Ai is defined as the geometric multiplicity of the Aj 

eigenvalue, and is computed using

p  is the rank of a matrix. A matrix A where for every eigenvalue Ai the algebraic 

and geometric multiplicities are equal is called simple. If for at least one eigenvalue 

A j dj < t  j , it is called nonsimple. All simple nxn matrices have n eigenvectors,

and all nonsimple square matrices have less than n eigenvectors.

Companion matrices, with the corresponding characteristic polynomial of (2.5), 

always have just one eigenvector for each eigenvalue, regardless of its algebraic 

multiplicity. The coefficients of the last row of the A matrix also correspond to the 

coefficients of the characteristic polynomial. Let A15 ..., Ak be the distinct 

eigenvalues of the companion matrix. Then the corresponding eigenvectors are 

linearly independent, i.e. U has full rank

(2.5)

d, - n - p { A iIn -  A}, d¡<Tí (2.6)



2 MATHEMATICAL ANALYSIS OF CONTROL SYSTEMS ENGINEERING DANIEL NANKOO

U =

1 1
X\ . .. Xk

X"-2 . nn-2
• *

X"~] . 0/7-1.. Ak

for X¡ * X l (2.7)

For A matrices with eigenvalues that are both real and complex, the characteristic 

decomposition takes on a form which consists of a complex spectral part and a real 

spectrum part.

2.2.3 GENERALISED EIGENVECTORS______________________________

[Ske., 1] Section 2.2.2 dealt with constructing eigenvector matrices for cases where 

the A matrix was simple and had distinct eigenvalues. But there are cases when A 

has a set of repeated eigenvalues. This is where the concept of generalised 

eigenvectors [Wil., 1] [Ske., 1] comes into effect. m* is called the generalised 

eigenvector of rank k if

{ A -M )kuk =Q and (A -X l)k~'ut * 0 (2.8)

From this a list of generalised eigenvector chains can be formed

Auk = Xuk + uk_l 

Ay.k-i= Ay.k-i 2

(2.9)
Au3 = Xu2 + u 2 
Au2 = X u2 +u]
A ij_x = Xux

Due to the nature of the repeated eigenvalues, the spectral matrix is defined by the 

Jordan canonical form, J, where J  = U~' AU , and is a matrix of block diagonals. 

The upper block consists of the repeated eigenvalues, and its size is determined by 

the index o f annihilation, q. If A e li"'" is nonsimple then

1 2



2 MATHEMATICAL ANALYSIS OF CONTROL SYSTEMS ENGINEERING DANIEL NANKOO

<p(A) = \AI -  A\ = (A -  A, )r' ... [A -  Ap) n

T l + . . . + T p =  n

For the eigenvalue A , define

(AI -  A)'

p (A I- A)' = p:, i = 0, 1,... , n 

which has the following property

P\ >P2 >•••> P„-\ > Pc, = Pq+\ = Pi,+\ =• •

from which the index o f annihilation of A at A is

q = min j  for which p j = p j+]

2.3 So l u t io n  of  l in e a r  tim e  in v a r ia n t  s y st e m s

2.3.1 SOLUTION OF THE AUTONOMOUS SYSTEM___________________

[Ant., & Mic., 1] Let an autonomous system be described by

S(A): x = Ax(t), x(0) = x0 : initial state (2.14)

The solution is given by

x(t) = eA,x0 (2.15)

Because the system is time invariant, the initial time is entirely arbitrary, and if 

t0 * 0, then t can be replaced by t-to-

(2 . 10)

(2 .11)

(2 .12)

(2.13)

13
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x(t) = eA{'~'(,) x 0, x(t0) = x0 (2.16)

x(t) is defined as the state trajectory and is called the state transition matrix.

This may be split up into a function of eigenvalues and eigenvectors by 

implementing the dyadic decomposition, thus

A = UAV
(2.1 T

=> x(t) = eAlx 0 = UeA'Vx0

As can be seen from (2.17), eigenvalues and eigenvectors can influence the way in 

which the state of a system responds.

2.3.2 SOLUTION TO FORCED SYSTEMS_____________________________

[Ant., & Mic., 1] Forced systems are systems that are excited by an external force, 

in the form of an input or a disturbance. These are described by

S(A,B,C,D):
í i  = Ax + Bij_ 
[T = Cx + Du

x(0) = x0 (2.18)

The corresponding solutions for the state and output trajectories are

x(t) = eAl x0 + j^eA(-' r)Bu(r)dz

y(t) = CeAlx 0 + [ CeA('~T)Bu(r)dT + Du(t)
— •'O

(2.19)

The solutions defined above for the state and output trajectories each consist of two 

parts. The integral parts of (2.19) define the forced response, which are contributed 

from inputs and disturbances. The remaining part of the solutions are the free 

response contributions.

Taking Laplace transforms of the time domain solutions of (2.19), the following 

frequency domain representations are obtained

14
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x(s) = (sI-A ) 'x 0+ (s /-A ) ' Bu(s)

y(s) = C (sl-A )  'x 0 + {c(sl-  A)~' B + D^u(s)

From this the transfer function matrix is defined as

G(s) = C(sl-A)~' B+ D (2 .21)

2.3.3 MODAL FORM OF THE SOLUTION_____________________________

Using the dyadic expansion, the spectral form of the state trajectory x(t) for a zero 

input response can be written as

x(t) =  eAl x(0) = e*'1 u]v[x0+. • .+ex"‘ u„v‘nx 0
n

^ x 0(t) = Y jeÀ‘t{v:,x 0)ul
(2 .22)

where (•,•) denotes the inner product. The spectral form of the state trajectory when 

x(0) = 0 (initial condition) and for a nonzero input is

x(/) = eAil T)Bu(r)dT

= \ X ^ [(,~T)v--B^ dr/=!

(2.23)

The total output response is

AO = Z  l/'' ( u  • To ) + X  y_,eXi< * \ß, ’ AOi=i /=i
(2.24)

where * denotes convolution and

15
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CU = C[m,

' £
VB = B =

£ .

(2.25)

The above equations once again show that the eigenvalues and eigenvectors 

(eigenstructure) are important factors that shape the way a system reacts when 

excited. One of the problems looked at later in the thesis deals with ways in which 

the eigenstructure of a system can be altered in order to guarantee a desired 

response and certain performance characteristics.

2.4 Ge o m e t r ic  and  c o m pu t a t io n a l  i s s u e s  in  th e
SOLUTION OF LINEAR SYSTEMS

2.4.1 PROBLEM DEFINITION

The problem can be formulated as follows

Problem 2.1: Find x e I)." such that

Ax = b, A e \ '" xn, b e  IT

□

The problem is solvable if and only if

b e 31(A) = colsp{/4} (2.26)

and the solution is uniquely defined if and only if

^ W  = { 0} (2.27)

1 6
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where 31(A) is the range space or column span of A and N r(A) is the right null

space of A. However numerical issues do arise for this kind of problem. Finite 

precision arithmetic and inexact data give rise to problems such as [Horn, & Joh., 

1]:

(i) If A and b are perturbed by a small amount, how is x affected?

(ii) How does rank deficiency of A affect the solution?

(iii) If b <£ 31(A), then how can x be determined so that Ax is close to b?

2.4.2 VECTOR NORMS_____________________________________________

[Horn, & Joh., 1 ] A vector norm on If" is a function / :I1" —» R. such that

(i) f ( x )  > 0 V xeR." and/(x) = 0 if and only if x = 0

(ii) f ( x  + y ) ^ f ( x )  + f (y) ,  V x ,y e \ "

(iii) f(cxx) = \a\f(x), V a  eR„ x e l{"

Now if fix) is denoted by ||x||, different types of norms can be distinguished by 

using subscripts. The Holder, orp-norms of x = [x,, x2, ..., xn] are

D - n o r m : H P = ( x , \p+...+\xn\r) 'P, 1

1 - n o r m : H ,  = x , + . . . +  x„

2 - n o r m :
(\ |2 I a x 1/2 /  , \

JX

II Mx, 1 + . . . +  x n j =  l x  x l

o o - n o r m : \\x\l =: m a x |x , |

There are certain properties that are applicable to such norms. The Cauchy- 

Schwartz property is defined by

x y < X y (2.28)

17
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The invariance property under orthogonal transformations is defined by

Q- Q'Q = I : \\Qx\ =  X X =  X (2.29)

The following norm relations are also applicable

(2.30)

|x||œ < ||x|| < n\\x\

2.4.3 MATRIX NORMS_____________________________________________

[Horn, & Joh., 1] A matrix norm assesses the size of matrices and it is a function 

defined on R/"x" that satisfies the following

(i) f ( A ) > 0 V A e  and /(H ) = 0, if and only if A = 0

(ii) AA + B) <f ( A)  + f ( B ), V A ,B e h " ,xn

(iii) f{ccA) = \a[f (A) ,  V cr A eR,'"x"

There are different types of matrix norms. The Frobenius norm is defined as

m n
A f  = I I (2.31)

P-norms are defined as

X
(2.32)

p

Subordinate norms are characterised by
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„ ¡M l
\\A\\a = sup h h -  sup ||̂ 4x||

jc*0 X
II— llor U =1

(2.33)

There are several properties of matrix norms that should be considered. The first of 

these is concerned with mutually consistent norms. / | , /2 and j_\ norms defined on

FL'"*'7, FI"'*", are mutually consistent if for all A eF("'x'', B e^,nxq

/i(A B )< f2(A )f1(B)

The following inequality properties also apply

^H />  'M r  
lUxii < y ¡  • |x|
Il — II ß  II Nor,/? II— llor

(2.34)

(2.35)

For orthogonal matrices O and Z, the following invariance property applies

M , -  = I 4  

\QAZl  = 1 4

For matrices of the type

A = [at] G \ mx"

A = [a], ..., an]
Ia

(2.36)

(2.37)

the following computations can be applied

l l 4 = m a x E K I  =  m a x { l k i L  •••’ t i l l }  ( 2 - 3 8 )
7 /=! 7

n
4 = maxE k h m,ax{lfeli’ •••’ I til i}  (2-39)

19



2 MATHEMATICAL ANALYSIS OF CONTROL SYSTEMS ENGINEERING DANIEL NANKOO

There are also a number of relationships that can be considered. These are as 

follows

\\A12 < \\A f  < V«| -<4|, (2.40)

max|a;y| < \\A 9 < 4mn maxla,j I (2.41)

I I4 ^ V II4 -M L (2.42)

—¡=U | < \\a  I < V/ñLt 
yfñ 1100 11 112 11 lu

(2.43)

r-  Mil < ML < 4n\\A 
Am

(2.44)

For square matrices of the type A elf""" where /.,(/!) represent the eigenvalues of 

A. the spectral radius is defined as

y/{A) = max|T,(^()| (2.45)

ip(A) is not a matrix norm, but for any ||*|, ip(A) < |H |.

2.4.4 SINGULAR VALUE DECOMPOSITION (SVD)___________________

[Horn, & Joh., 1] For matrices of the type A e ¡V"x" there exist orthogonal matrices 

U and V ( i f  U = Im, VtV= Im), where

SI
L- 

1

IIb

V = [v„ ..
(2.46)

such that

U‘AV = Z o  A = CÆV' (2.47)

where
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Z = - -  i fm>n 
0

Z = [z* ! o] ifm<n

(2.48)

and

Z* = diagjcr,, cr p]

p  = min {m,n\
cr, > cr2 > ...>  <jp > 0

(2.49)

cr is the z-th largest singular value of A. crmm(A) and crmin(/i] are the largest

and smallest singular values of A respectively. The ratio of the largest singular 

value to the smallest is called the condition number, w, and y, represent the z-th left 

and right singular vectors of A respectively. The columns of U, W/, are the unit 

eigenvectors of AA1. The columns of V, y„ are the unit eigenvectors of A1 A. The 

singular values can also be computed using eigenvalues using

2.4.5 RANK, NULL SPACES AND SVD

[Horn, & Joh., 1] The rank of A, p (A ), is the number of nonzero singular values of

A e h."'x" , where

(2.50)

(2.51)

If

2 1
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_ 4
Up+1

A[h —p ! v -p+ i <■] =

b1__ 1
0

!

1
1 1 O

 '
1__O

(2.52)
£(/«-/•) X (n - r )

and by using the following definitions

= e r :  y A  = o} 

J fr(/l)s{ x 6 ll" : Jx  = 0}
(2.53)

where cN";(yl) and N r(A) are the left and right null spaces of A respectively, then

At  =
!iP+1

ä'n,

A,1A = 0

v „ ] e r H , AA^=  0

(2.54)

where A,1 and A^ are the left and right annihilators of A respectively. The rows of 

A,1 define a basis matrix for N ,(A ), dimTT^yl) = m — r . Likewise the columns of 

Arx define a basis matrix for N r(A), dimcN' r(A) = n - r  .

2.4.6 ALMOST RANK_______________________________________________

In dealing with engineering system models with on the one hand the uncertainty 

about the true value of the parameters, and on the other hand round off 

computational errors, it may seem that trying to compute nongeneric values of 

invariants is an impossible task [Mit., et al, 1]. Given that any set of engineering 

data has a given numerical accuracy, it is clear that there is no point to try to 

compute with greater accuracy the indicators that help to determine the operation of

22
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the system than that of the original data. Thus an approximate solution has to be 

sought at some stage, before the procedure converges to some meaningless generic 

value.

Let A = {a,, a2, ..., am} be a set of m given vectors a,, eh,", i = 1,2, ..., m. 

This set can be expressed in terms of a matrix A = [a,, a2, ..., am̂  eh,'"x".

Dependence or independence of the set A is tested in terms of the rank of the 

associated matrix, l i  > cr2 >...> a  r, r = min (m, ri) are the singular values of A, 

then for a given tolerance e, the following may be defined [Mit., 1]:

Definition 2.1: The set A is e-independent if cr,. >e, i = 1, 2, ..., r, i.e. all the 

singular values are greater that e.

□

Definition 2.2: The set is numerically e-dependent if cr, >e, and crj <e, for some 

i ,j  i.e. some singular values are greater than e and others are smaller than e.

□

Definition 2.3: The set A is strongly e-dependent if cr, >e, cr, <e, i = 2, 3, ..., r 

i.e. the maximal singular value is greater than e and all the others are less than e.

□

Definition 2.4: The set A is fuzzy e-dependent if cr, <e, i = 1,2, ..., r i.e. all the 

singular values are less than e.

□

Since scaling affects the singular values of a matrix, the above definitions are more 

suitable when applied to a normalised set of vectors. When the vectors are 

normalised, strange situations of fuzzy e-dependence may be avoided, which is 

mostly encountered when dealing with extremely low data values. If the 

normalisation process is numerically stable [Wil., 2], then the set A may always be 

assumed to be normalised. The definitions cited above are strongly linked to the 

notions of numerical e-rank (p e(A)) of a matrix [Gol., & V Lo., 1],
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Definition 2.5: The numerical 6-rank (pe{A)) of a matrix A eh,'"*" is defined with 

respect to ||«||2 by

p e(A) = ^ { m \ \ A - B \ \ 2<z} (2.55)

□

A more simplified condition for the determination of the numerical e-rank is given 

below.

Theorem 2.1: For a matrix A e and a specified tolerance e:

(i) Pe(A) = {number of singular values of A that are > e}

(ii) ns(d) = {number of singular values of A that are < e}

(in) P M )  = n - ne(A)

□

The above theorem suggests one method for computing the numerical e-rank via 

the singular value decomposition. This leads to the following remarks.

(i) The set A is e-independent if and only if p e(A) = r

(ii) The set is numerically e-dependent if and only if p e(A) < r

(iii) The set ,4 is strongly e-dependent if and only if p e(A) = 1

The above definitions clearly provide a framework for defining the strength of 

presence of a system property in terms of the notion of the e-numerical rank. The 

tests for evaluating the e-rank may become substantial if the columns (rows) of the 

matrix under consideration are normalised [Mit., & Kar., 1],

2.5 Tr a n s f e r  f u n c t io n  m a t r ic e s

2.5.1 TRANSFER FUNCTION MATRICES OF SYSTEMS

The following equation is used to derive transfer functions from the state space 

matrices A, B, C and D.
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G(s ) = C(sI -A )~ 'b  + D (2.56)

When the system is SISO (single input -  single output), i.e. when the input matrix 

B has one column, and the output matrix C has one row, then G(s) is simply a 

single transfer function in the form of a rational function which is a ratio of 

polynomials.

When the system is MIMO (multiple input -  multiple output), i.e. when B and C 

have more than one column and row respectively, then G(s) is a matrix where the 

elements are rational functions and are denoted by G(s) e l).'"x/(^). Such matrices

are often expressed in terms of polynomial matrices, i.e. G(s) = N(s)D~](s), where 

N(s) eh,'"x/[5] and D(s) e h,/w[5] are numerator and denominator polynomial 

matrices respectively, and it is assumed that (N(s), D(s)) are usually coprime [Kai.,

13-

In this section, theory dealing with such matrices will be covered.

2.5.2 MATRIX PENCILS____________________________________________

For a system described by the state space model

S(A,B,C, D):
ix = Ax + Bu 
i y  = Cx + Du

<=>
Í(si -  A)x(s) = Bu(s) + x0 
I ^(s) = Cx(s) + Du(s)

(2.57)

where x(0) = xq, there are a family of matrices that can be obtained that describe the 

various coupling states of the system. Such matrices are called pencils [Ros., 1] 

[Kar., 3]. The system matrix pencil is derived using [Kar., & Lev., 1]

' s i - A  -B~ x(s)
-C  -D ß ( s)_

(2.58)

where
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^M  =
si -  A 

-C
-B
-D

(2.59)

is the system matrix pencil. The input-state pencil, which describes the coupling 

between the input and the state, is denoted by C(.v) and is derived using

[ s i-A , Á s )
u(s) = ïo

C(s) = [ s l-A ,  - B]
(2.60)

R(s) is the state-output pencil for the case when u(t) = 0. It describes the state- 

output coupling and is obtained by

si -  A 
-C

R(s)
s i - A  

-C

(2.61)

Finally the state pencil, 7'(.s'), describes the internal mechanism of the system and is 

denoted by

(si -  A)x(s) = x0 

T(s ) = (sI - A )
(2.62)

A matrix pencil is a special case of polynomial matrix where all the elements are 

polynomials of maximal degree 1. Generally if F,G  e h / xr then a matrix pencil is 

described by

sF -G (2.63)
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2.5.3 MATRIX FRACTION DESCRIPTIONS (MFDS)___________________

[Kai., 1] Let P(s) eTL/x"'[y] and its rank be denoted by = m . A matrix

R(s) eli",x"'[y| such that

P(s) = P'(s)R(s) (2.64)

is called a right matrix divisor (RMD) [Kai., 1] of P(s). If R[s) is any other RMD 

and

R(s) = W(s)R(s) (2.65)

then R(s) is called a right greatest matrix divisor (RGMD) of P(s). If fr(P(s)j = l ,

the notions of left matrix divisors (LMD) and greatest left matrix divisors (LGMD) 

are defined similarly [Kai., 1],

Let P(s) = p x(s), ..., Pm(s) and p(P(s)'J -  m . Then the set of degrees

f ,=  ji,.: 8, = 5(£.(j )), i = w} (2.66)

is defined as the set o f column degrees and

Hi
(2.67)

i=\

as the column complexity of P(.s). Row degrees and row complexity are defined in a 

similar manner [Kai., 1], If p.(s) = p ,hss‘ +.. ,+p , then

P(,) = P » ' P—m,h diagli }+ p (.í) (2 .68)
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where the columns of P(s) have degrees less than Sl . The matrix

£ .y  l m,h : = [ p ( 4  c a '”' (2.69)

is referred to as the high column coefficient matrix of P(s). If p( Ph ) = m , then P(s)

is called column reduced. The high row coefficient matrix and row reducedness 

notions are defined similarly [Kai., 1],

A matrix P[s) e R,/x”'[^] with p(P(s)) -  m is called right irreducible, or least 

degree, if all RMDs are fi^-unimodular, i.e. \P(s)\ = c c * 0. A left 

irreducible matrix is defined in a similar manner. P[s) e h /xm[.v] with = m

(or /) is called a minimal basis [For., 1] if it is

1. Right (left) irreducible

2. Column reduced

If P,:={/>(i)eHl - [ 4  ¡€ v ) is a set of matrices then the matrix

T'(s): (2.70)

is called a matrix representative of Pr, where / = E i  ■ n  p h ; w )  = m , then Pr is
i=i

right regular. If Pr is right regular and Tf (,v) is right irreducible, then the set Pr is 

called right coprime. Left coprimeness is defined in a similar way [Kai., 1],

Suppose that G(s) etf„/x'"(s) and = min{l,m\. It is well established that

G(s) can always be factorised in a nonunique way as

G(s) = D~'(s)N(s) = N(s)D-'(s) (2.71)
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D 1 (,v)Ar(.v) and N(s)D '(5) are left and right matrix fraction descriptions 

respectively. If [ZT1̂ ), # ( 5)] and [Â (î ),D_1(î )] are left and right coprime 

respectively, the corresponding MFDs are referred to as coprime [Kai., 1],

2.5.4 THE PLÜCKER MATRIX

Let a polynomial matrix be described by ,4(5) = [a, (5), a2 (5)] e ̂ [5], where

= a 2(i)] =

1 s 1
5+1 -1 2

0 5 + 2 3
s 1 4

>row numbers

The exterior product is defined by a 1(5)Au2(^), which are the minors of A(s) in 

lexicographical order, i.e.

ai(s)Aa2(s) =

1 Co N
J 1 Co 1 __
1

1,2
5 + 2 1,3

-52 +1 1,4
5” + 35 + 2 2,3

25+1 2,4
—s~ -2 s 3,4

This can then be split into a coefficient matrix and a parameter matrix, as follows

P =

-1 -1 -1
2 1 0
1 0 1
2 3 2
1 2 0
0 -2 -1

1
s

where P is called the Pliicker matrix [Kar., & Gia., 2\.
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2.6 Su m m a r y ___________________________________

The mathematical contents of this chapter are necessary in order to provide 

cohesion to the concepts investigated throughout this thesis. The eigenvalue- 

eigenvector analysis of Section 2.2 lays the foundation for the eigenstructure 

assignment to be covered in Chapters 6, 7 and 8. The solution of linear time 

invariant systems study is particularly relevant to the output controllability of 

Chapter 5. The study of geometric and computational issues in the solution of 

linear systems is especially essential for the measures of controllability and 

observability studied in Chapters 3 and 4. The study of matrix fraction descriptions 

covered in Section 2.5 provides the necessary background for a new method of 

eigenstructure assignment developed in Chapter 8.
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MEASUREMENT AND CONTROL 
PROBLEMS FOR LARGE SCALE 
SYSTEMS

3.1 In t r o d u c t io n ______________________________

Large scale systems always pose stern challenges throughout the design process. 

For such systems the selection of suitable sets of inputs and outputs is a problem 

that is not automatically resolved by the specifications and nature of the problem, 

but imposes new design issues. The control and measurement of the numerous 

variables on such systems are the principal concerns of control engineers, and a 

formulation of such problems has to be addressed. The role of the control engineer 

is essential throughout the evolution of the design of the system. Control aspects 

can be facilitated by using the notion of controllability, and similarly measurement 

issues can be aided by observability. Flexible structures are a type of system that is 

contained within the family of large scale systems, and as a paradigm will be used 

because for such systems the issues (such as controllability and observability) 

covered in this thesis are highly applicable to them. This chapter will first take a 

look at the formulation of control problems and the design process. Following 

pertinent definitions, a mathematical analysis of flexible structures will be carried 

out, and will end with a look at related controllability and observability issues.

3.2 De v e l o pm e n t  of  c o n t r o l  pr o b l e m s _________

3.2.1 FORMULATION OF CONTROL PROBLEMS_____________________

There are essentially two bodies of knowledge which can be attributed to the way 

engineering systems operate and react. Systems analysis provides a reasoning to the 

behavioural characteristics of system responses. Control theory is aimed at
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providing mechanisms as to how a system can be physically altered in order to 

change the response in a desired manner [Ske., 1], These two tasks are no doubt 

related, especially where modification to the dynamics of a system is concerned. 

This can be done in two ways, either to modify the system parameters, or to change 

the forcing functions (more commonly termed as inputs) using differential 

equations.

A typical control problem involves the computation of an adequate forcing function 

so that the responses behave in an acceptable way [Ske., 1], If this forcing function 

is specified as a function of time, then it is adequate enough for an open loop 

control law to be employed. Yet if it is a function of the system responses, then a 

closed loop policy is used. A controller is the device used to calculate the desired 

forcing function with respect to the system responses. As a precursor to solving 

control problems, it is necessary to study physical sciences (i.e. electricity, 

mechanics, aerodynamics, chemistry, etc.). This paves the way for control 

engineers to use the application of known physical laws in order to develop 

mathematical models of engineering systems. This in turn raises two questions. The 

first is how to develop the mathematical model of a physical system. The second is 

what to do with the model once it has been derived. This thesis concentrates on the 

latter, specifically with state space models, yet it is evident that these two questions 

are not unrelated. This is because it is impossible to know what level of detail is 

needed in the model prior to knowing the accuracy that needs to be achieved of the 

controlled performance, and the nature of the control inputs required to attain this 

performance. Thus the control problem can be restated, where an appropriate 

forcing function must be found using a given or developed model. Consequences 

may arise from the type of control policy chosen, since in feedback control, 

regulating the forcing function is dependent on the type of model chosen to 

describe the physical system [Ske., 1 ].

The efficiency of the controller designed to implement a particular control law is 

highly dependent on the model of the system developed. Thus the accuracy of the 

model characterises the ability of the developed controller to achieve the control
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objectives. Inaccurate system models will consequently hamper the attempts of the 

control engineer to produce an efficient controller.

For the purposes of the research to be carried out here, traditional control 

techniques are not the main area of interest. Instead focus will be placed on 

problems which affect the final model used for control, from which the control 

potential can be determined. Large scale systems are an area where such problems 

are realistic.

3.2.2 THE SYSTEM AND ITS EVOLUTION IN DESIGN_________________

Controller design is not the only aspect dependent on a mathematical system 

model. The design process does indeed begin with a model, but from there 

decisions are taken that will contribute to the gradual shaping of the final structural 

characteristics. Yet structural properties and thus performance, operability, etc. 

characteristics evolve in a complex manner, as operational targets may change 

throughout the duration of the project [Kar., 2], The crux of the design procedure is 

thus to evolve the model along paths that avoid undesirable structural 

characteristics, and to specify where it is possible to assign desirable ones. The 

principal structure assigning activity areas are those of Process Synthesis and 

Global Process Instrumentation. The first of these activities deals with the 

structuring of the “internal mechanism” of the system and the second with the 

building of bridges between the internal mechanism and the “system environment.” 

An overall system, such as a flexible structure, may be represented in simple terms 

by the diagram in Figure 3.1 [Kar., 2]. The internal mechanism of the process is the 

set of all the independent internal variables, signals and attributes referred to as the 

internal space, X, irrespective of whether they can be measured (or acted upon) 

and the relationships between them. These relationships express the physical laws 

describing the phenomena associated with the interconnection of subsystems and 

manifest themselves in the internal map /  of the system. The process system 

environment refers to the three set spaces of the signals U. y  and ID which are 

referred to as the input space, output space and disturbance space respectively.
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21 is the space of all the external, arbitrarily assignable signals which may be

Figure 3.1 Representation o f  overall system
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and fD is the space of all disturbances that may affect the system. As a result of 

instrumentation, two maps (or functions) can be constructed [Kar., 2], The first 

map is denoted by g and expresses the coupling of the input space to the internal 

variable spaces and it is called the input or actuator map, since it is the result of 

selecting actuators. The second map. It, expresses the coupling of the internal 

variables to the environment and is called the output or sensor map since it is the 

result of selecting sensors. The coupling of disturbances to the internal mechanism 

is expressed by the map d. These disturbances may be measurable or unmeasurable 

and are referred to as the disturbance map [Kar., 2],

The instrumentation of a system basically involves the selection of measurement 

variables (outputs) and actuation variables (inputs). It consists of two aspects [Kar., 

1], the first of which deals with the problem of measurement, or implementation of 

an action upon given variables. The second aspect stems from designing an 

instrumentation scheme for a given process (classification and selection of input 

and output variables), and expresses the attempt of the “observer” (designer) to 

build bridges with the internal mechanism of the process in order to observe it 

and/or act upon it. What is considered as the final system, on which control 

systems design is to be performed, is the product of the interaction of the internal 

mechanism with the specification of the overall instrumentation scheme. It is vital 

that the designer deals with the issues arising in the selection of actuation systems 

and measurement variables which should aid in the fabrication of a system and 

control laws to create a framework for global instrumentation. This is ultimately 

linked to the problem of the selection of input and output schemes [Kar., 1 ].

In order to satisfy a set of control laws, a control engineer must decide whether a 

suitable controller can be implemented, or whether some of the system parameters 

have to be altered. Parameter changes could handicap other areas of the physical 

system, such as weight gain or loss of speed. Therefore a balance is needed 

between modifying the structural design of a system and increasing the 

sophistication of the controller. As control requirements become more demanding 

in modern applications it may be necessary to add more control variables since the 

aspects that need to be controlled may be uncontrollable from a single device. This
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in turn consolidates the need for instruments to measure the action and responses 

on certain parts of the physical system. These additional components add weight 

and increase the cost of a project, so ways have to be found to optimise the number 

of devices to meet the control criteria, which has to be achieved using a 

mathematical model.

One of the first questions that a designer of a control scheme for a large scale 

system, such as flexible space structures, faces is how many components - 

actuators and sensors -  are needed for the mission objectives to be met, and where 

to place them on the structure (spatial distribution), as well as analysing their 

dynamical behaviour. Such issues affect the controllability and observability 

properties. In order to assist the designer in making such choices, the proceeding 

chapters will discuss and present certain methodologies. Existing and new 

measures of controllability, which are defined as quantitative indications of how 

well the system can be controlled with a given set of actuators, will be presented. 

Similarly, measures of observability will also be looked at, and are defined as 

quantitative indications of how well a system can be observed given a set of 

sensors. This work is stimulated by the fact that in the thoroughness of control 

theory there is little provision for a quantitative measure of controllability or 

observability. Controllability (observability) is merely a binary concept, either a 

system is controllable (observable), or it is not. What is required, and what will be 

investigated later in the thesis, is a quantitative indication of how well a system can 

be controlled by a given set of actuators, i.e. a fundamental measure which does not 

depend on the design of the system. Likewise, a quantitative measure of how well a 

system can be observed by a given set of sensors will also examined. The spatial 

distribution of sensors and actuators affects the input, output model properties and 

thus the potential for control design and it is a fundamental issue in integrated 

instrumentation and control.

As a background for the following chapters, certain control and measurement 

problems, specifically controllability and observability will be addressed here. 

Chapter 4 will examine existing methods of measuring a degree of controllability 

(observability) and present new methodologies. As a paradigm, a physical system
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known as a flexible structure, will be used because for such systems the control 

structure selection problem is fundamental to them due to the high number of states 

involved. This family includes large space structures, rotating machinery, 

vibrational systems, wind turbines, dynamics of aircraft wings, dynamics of bridges 

and buildings, power systems etc.

3.3 De f in i t io n s

3.3.1 CONTROLLABILITY__________________________________________

If a particular part of a system needs to be controlled, it must be determined 

whether a desired objective can be achieved by manipulating the chosen control 

variables. The general property of being able to transfer a system from any given 

state to another via a suitable choice of control functions can be defined as 

controllability. Given a linear, system described by

x(t) = Ax(t) + Bu(t) 
y(t) = Cx(t)

(3.1)

where A e  If"*", 5  ell"*'" and C e R/x" , the following definitions of

controllability can be made.

Definition 3.1: A linear system is state controllable at t0 if it is possible to find an 

input function u(t), defined over the time of interest, that will transfer the initial 

state x(to) to the origin in finite time.

□

Definition 3.2: A system is said to be completely controllable if, for any initial 

time to, any initial state x(to) = xo and any given final state xy there exists a finite 

time tf> to and a control u(t), t0 <t <t f , such that x(tf) = xy

□

Equivalent mathematical conditions for a system to be completely controllable are 

given in the following theorem.
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Theorem 3.1: [Bar. & Cam., 1] [Kai., 1] [Ros., 1] A system is said to be 

completely controllable if and only if one of the following equivalent conditions 

holds.

(i) rank\j3, AB, ..., A"~'B^ = n

(ii) rank[AItl- A ,  -B ] -n ,  VA eC

(iii) y'(A,/n -  A) = 0 and v '5 ^ 0  V A, eC

where y' is the left eigenvector corresponding to the mode A,.

□

The controllability property plays an important role in many control problems, such 

as stabilisation of an unstable system by feedback, or optimal control. Although 

controllability is a binary property, the degree of controllability is a measure worth 

investigating since it affects the solution/behaviour of a variety of 

problems/systems. However the degree of controllability is a problem, where 

system dynamics could hamper the control effort needed.

3.3.2 OBSERVABILITY_____________________________________________

Closely related to the concept of controllability is that of observability. This is 

defined as the possibility of determining the state of a system by measuring only 

the outputs. For the system described by the differential equations given in (3.1), 

the following definition of observability can be made.

Definition 3.3: [Bar. & Cam., 1] [Kai., 1] A system is said to be completely 

observable if, for any initial time to, and any initial state x(to) = xo, there exists a 

finite time tf> to such that knowledge of u(t) and y(t) for t0 < t < t f is sufficient to

determine xo uniquely. There is no loss of generality in assuming u(t) = 0 

throughout the interval.

□

A characterisation of the observability property is given in the following theorem.

Theorem 3.2: [Ros., 1] A system is said to be completely observable if and only if 

one of the following equivalent conditions holds.
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c
CA

(i) rank = n

CA"-'

(Ü )

(iii) (A,./„ -  A)u¡ = 0 and C«, ^0, VA, eC

where w, is the right eigenvector corresponding to the mode A,..

□

As with controllability, observability is also a property of a binary nature and the 

system dynamics plays a part in determining the degree to which the outputs can be 

measured, and this needs further investigation.

3.3.3 CONTROLLABILTY AND OBSERVABILITY ISSUES_____________

While analysis of system behaviour in the frequency domain may convey many 

insights into the way processes react in a simple graphical manner, there are a 

variety of characteristics which cannot be determined in using such approaches. 

Controllability and observability fall into this category. The concepts of 

controllability and observability deal with the ability of a control system to measure 

and control the states of a given system.

Frequency domain analysis techniques involve the assumption that the response of 

the system can be completely determined by its transfer function for zero initial 

conditions, or in other words, that the system is both controllable and observable. 

However it has been shown [Kal., 1] from early development of state space 

analysis that this assumption cannot be strongly validated. In fact, generally, a 

system can be viewed as comprising of four sub-systems: one which is both 

controllable and observable, one which is controllable but not observable, one 

which is observable but not controllable, and one which is neither controllable nor 

observable. It is possible that the transfer function of a single input, single output 

system is of a lower degree than the corresponding state space dimension which

39



3 MEASUREMENT AND CONTROL PROBLEMS FOR LARGE SCALE SYSTEMS DANIEL NANKOO

indicates that the system contains uncontrollable or unobservable states. This leads 

to the conclusion that the transfer function of a system does not enable the state 

response to be determined as a whole.

The simple fact that a system has uncontrollable and/or unobservable states does 

not necessarily present a problem. If all the eigenvalues of A are in the left half 

plane, then any initial conditions in the uncontrollable and unobservable states will 

decay to zero over time and the system will be stable. The poles of the 

uncontrollable and/or unobservable states can however be in the right half plane, 

thus making these states unstable. A system whose uncontrollable states with are 

stable is referred to as stabilisable [Kal., 1], A system which has stable, 

unobservable states is called detectable. Uncontrollable and/or unobservable states 

can arise from a variety of situations. The most common problems arise due to poor 

actuator and sensor placement.

3.3.4 FLEXIBLE STRUCTURES______________________________________

A significant paradigm, where the problem of selecting inputs and outputs becomes 

highly essential is that of flexible structures. Large flexible space structures are 

characterised by very light damping, a very low frequency range and a large 

number of elastic modes, which is a consequence of their large size and weight 

[Jos., 1]. Gawronski [Gaw., 1], describes a flexible structure as a linear system with 

oscillatory properties that is characterised by a strong amplification of a harmonic 

signal for certain frequencies (resonant frequencies), and whose transfer function 

poles are complex conjugate, typically with small real parts. An aircraft wing is a 

classical example of a flexible structure. The wings of an aircraft tend to bend 

upwards, centred at the edge where it joins onto the fuselage, whilst in flight. 

Whilst in the air, the wing also flaps about slightly. These oscillations are 

determined by the nature of the complex poles attributed to the structure. The small 

real parts define the envelope of the oscillations. Although this description of a 

flexible structure is widely accepted, there seems to be some dispute about what 

properties are possessed by such a structure, whether it is linear, or whether the

40



3 MEASUREMENT AND CONTROL PROBLEMS FOR LARGE SCALE SYSTEMS DANIEL NANKOO

poles have to have small real parts (i.e. a small damping property), or whether all 

its poles must be complex conjugate.

Control problems regarding flexible space structures stem from disturbances (from 

on board operations, positioning manoeuvres, mico-meteorite impacts, etc.) [Ton., 

& Mel., 1], which excite the flexible modes of these structures. Therefore there is 

need to develop a control scheme to enhance the damping of the structure and to 

provide active vibration suppression of these unwanted motions. For such systems 

the location of sensors and actuators is crucial for the development of control 

schemes. The study of the dynamics and control of flexible structures has been an 

area of interest for many years. The majority of studies conducted on flexible space 

structures address the problem of precision of attitude control and the introduction 

of active damping elements to control the vibrations and shape distortions which 

result from the inherent flexibility of such a structure. An area that requires further 

research is the problem of sensor and actuator placement on a large flexible space 

structure. Because of weight, cost and control performance considerations, there is 

the need to determine an optimal number of sensors and actuators and where to 

strategically place them. The problem of choosing actuator (sensor) locations for 

the control of large flexible space structures is an important area of research [Kim 

& Jun., 1],

In the study undertaken here, a flexible structure provides the motivation for some 

of the issues that are addressed and will be defined as a finite-dimensional, 

controllable, and observable linear system with complex poles and with small 

damping characteristics. A linear system that fits this definition may be represented 

by the second order matrix differential equation

M'q + Dq + Kq = Bu 
y = Cqq + Cvq

(3.2)

where q is the displacement vector, u the input vector, y  the output vector, M  the 

mass matrix, D the damping matrix, K the stiffness matrix, B the input matrix, Cq 

the output displacement matrix and C„ is the output velocity matrix. Typically, the
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mass matrix is positive definite, which means that all its eigenvalues are positive, 

and that all its principal minors have positive determinants [Ske., 1]. The stiffness 

and damping matrices are typically positive semidefinite, as all their eigenvalues 

are either positive or zero and all the principal minors of such matrices have either 

positive or zero determinants [Ske., 1], Such a description can always be 

transformed to a state space one by an appropriate realisation, from which 

controllability and observability properties can be established.

3.3.5 ACTUATORS AND SENSORS___________________________________

The physical elements used for observability and controllability are sensors and 

actuators respectively. A sensor is placed at a particular point of a system in order 

for a measurement to be taken that signals whether it is operating within acceptable 

parameters. An actuator implements the control action that is required to bring the 

system to a certain desired state. The optimal positioning of actuators and sensors 

is an important aspect in the active control of certain engineering systems like 

satellites and other aerospace applications. It is therefore vital to consider the 

positioning of sensors and actuators in order to maximise their effectiveness. 

Proper positioning of the sensors will improve the ability of the observer to observe 

the states of the system. Carefully situated actuators will increase their control 

effect on the response modes of the structure. Work could be carried out in order to 

examine the effect that the placement of sensors and actuators has on the dynamics 

of a system, and their effect on the system controllability and observability. There 

is also a danger in overcrowding a system with sensors and actuators, as this would 

add to a more complicated system, both mathematically and financially. With the 

application of flexible structures, overburdening a spacecraft for example with too 

many components, may have a detrimental effect on its weight distribution. It is 

therefore vital to minimise the number of sensors and actuators used, and to 

investigate a way in which this can be achieved. This type of investigation can be 

hindered by the fact that the freedom of choice of locations may be limited, making 

it essential for the accurate and minimal placement of sensors and actuators.
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3.4 Re pr e s e n t a t io n  and  pr o pe r t ie s  of  fl e x ib l e
STRUCTURES_______________________________________

3.4.1 INTRODUCTION______________________________________________

So far a number of definitions have been given which pave the way for a deeper 

analysis to be conducted into the controllability and observability properties of 

flexible structures. It is clear that the degree to which a system can be controlled is 

vital in the early design stages, and thus a measurement index is needed in order to 

limit the number of actuators needed to perform a specific control function. 

Likewise a measurement of observability is needed to optimise the number of 

sensors required. The remainder of this chapter will delve deeper into the 

mathematical analysis of flexible structures, controllability and observability.

3.4.2 STATE SPACE REPRESENTATIONS_____________________________

Following on from the definition of a flexible structure [Gaw., 1] from Section 

3.2.3, in order to proceed with the analysis, equation (3.2) has to be rewritten in the 

state space form

X = Ax + Bu 
y = Cx

(3.3)

The matrices A , B and C form the state-space representation of the system, and x is 

the state vector. Both the state representation and state vector are not unique, which 

means that the same input-output relationship can be obtained for different states. 

In order to obtain a state space representation of equation (3.2), it is rewritten into 

the form below, assuming that Mis non-singular, and thus invertible

q + M 'D q  + M “' Kq = M~' B„u

y  = c qq +Cvq
(3.4)
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The state vector is defined as x ' -  [V q j . where the first component is the system

displacement, and the second is the system velocity. By manipulating equation 

(3.4), the following minimal state space representation is obtained

A =

B =

0 I
-M ~'K  -M ~XD 

0
M~'B c  = c,]

(3.5)

where the dimension of the state model n is twice the number of its degree of 

freedom, n2, i.e., n = 2ri2 [Gaw., 1],

Due to the unacceptably high order, n, of such engineering systems that could be 

described by equation (3.5), this type of representation is hardly used. 

Alternatively, equation (3.2) is represented in a modal form, by using a modal 

matrix ® (n2 x p ), p<n2, which consists of p  eigenvectors (mode shapes) of a 

structure <j>i,i=\,...,p

°  = [^i ^2 ••• K ] ’ P ~ n2 (3.6)

The modes of equation (3.6) diagonalise the mass and stiffness matrices M  and K 

to give

Mm = d>7 f/® 

Km = ®7A®
(3.7a)

where Mm and Km are the corresponding diagonalised matrices, assuming they are 

diagonalisable, and are of dimension pxp. The number of modes, p, is usually 

much smaller than the number of degrees of freedom, n2, so a substantial reduction 

in matrix dimension is achieved. Similarly, if the damping matrix is diagonalisable, 

a proportional damping matrix is obtained
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Dm = 0 TD 0  (3.7b)

Continuing with deriving the modal form for equation (3.2), a new variable qm 

(px 1) is introduced

q = ®q„ (3.8)

Then, if (3.2) is left-multiplied by O , equation (3.4) can be rewritten in the form

OrMOqm + OrDOqm + OrKOqm =  0 1 B0u

y  = c q®q,n + c vo q m
(3.9a)

or equivalently by substituting the equations of (3.7)

Mn,q,n + Dmqm + Kmqm = O ' B0u 
y = C'Oqm + COqm

(3.9b)

and then by multiplying by Mm

qm + K 'D J ,,, + M~]Kmqm = m ;:® t b ou 
y = CqOqm + CvOqm

(3.9c)

To obtain the final form of the modal model, it is necessary to make an analogy

with the standard second order transfer function of the form . This
s2 + 2Çco ns + co2

is achieved by denoting M~'Km = ÎŸm, where Qra = diag(co¡), which is a square 

diagonal matrix of dimension p  that consists of natural frequencies a>j (rad/sec). 

Also, by setting M~'Dm= 2ZQ, where Z = diag(t,¡) is the modal damping 

coefficient matrix which consists of £,,■ (damping coefficient of the z'th mode), the 

final version of the modal model is derived from (3.9c)
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Qm +2ZQ,Â, + tfmqm = K„'®rB0u
y  = C^ ci,n + CvOqm

Before (3.10) can be written as a set of first order equations, the state variable 

x J = [x[ x[ ] = \q‘m ql] is defined, giving [Gaw., 1]

x2 = -Qjj.x, - 2ZQ„,x 2 + M~'Q>Bnu (3.11)

y  = C9OX| + C,.Ox2

These equations can also be represented in the matrix form of (3.3), where [Gaw.,

1]

0 /
-2 z q „ ;

C = [C,4> C,o]

B =
0

(3.12)

The matrices of equation (3.12) form the state space representation in modal co-

ordinates of the initial set of differential equations, and is a realisation stemming 

from the original differential model of (3.4). Here, x\ is the vector of modal 

displacements, and xj is the vector of modal velocities. Its dimension is 2p  (where 

p  is the number of the structure’s eigenvectors), compared to the state space 

representation of equation (3.5), whose dimension is 2ri2, 2p «  2ri2. Controllability 

and observability properties can be established from the state space matrices 

represented by (3.12). Although the state space matrices of (3.12) represent a 

possible realisation of a flexible structure, controllability and observability 

properties are equally applicable to any state space system.

3.4.3 STATE SPACE MODAL REPRESENTATIONS____________________

The state space representation derived in Section 3.3.1 was obtained in the modal 

coordinate form, qm. However, they are not modal state equations. Such a
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representation contains the three matrices A, B, and C in a special, unique form, 

characterised by the block diagonal matrix A

A = diag(Aj), B =

5, 
B,

B,n 2.

c  = [c, c2 C , a ]

(3.13)

where i = 1,2, ..., «2. The diagonal yij blocks are in four different forms [Gaw., 1], 

assuming distinct, complex eigenvalues:

Modal Form 1

0 CO,
-co, - 2 t >

Modal Form 2

Modal Form 3

A,= a,
-co, -Çicoj

A, =
-co;

1

-24>,

Modal Form 4

(3.14a)

(3.14b)

(3.14c)

A, =
+ j  co iôi 0

0 -Ç.co, -jco,ô,
(3.14d)
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where j  = Vm  and Si = . The z'th state component, x,k, corresponding to

the z'th block of the Mi modal form is as follows [Gaw., 1]

qm,

Smilzi.

qm

X/2 =

*/4 =

9  mi 

G moi _ 

Qmi ~~ moi 

Qmi +  M m o l

(3-15)

where qmj and qmj are the zth modal displacement and velocity respectively, with

Qmo, = C lqml+ q mi/G>,-

Modal forms 1, 2 and 3 all consist of real numbers, whereas modal form 4 is a 

complex representation and creates unnecessary numerical difficulties. Modal form 

3 is very similar to the modal coordinate A matrix in equation (3.12). In fact it is 

obtained by simply rearranging the columns of A and C and the rows of A and B. 

As a result of this rearrangement, the state vector x l = ¿/I], which contains

the modal displacements and the modal velocities, is transformed to the new state 

x!, = k„i qmi qm2 q,„2 qm„ q,,,,,} - where the modal displacement for

each component stays next to its velocity. The transformation is carried out using 

the matrix R [Gaw., 1]

0 ei
el 0

0 e2
e2 0

• 
o

en2
e»2 0

(3.16)

where e, is an no row vector, where all its elements are zero, except the zth which is 

equal to one.

48



3 MEASUREMENT AND CONTROL PROBLEMS FOR LARGE SCALE SYSTEMS DANIEL NANKOO

If Ak denotes the state matrix A in the modal form k, where k = 1, 2, 3, or 4, then 

the transformation matrix, Rk\, that transforms the state variable x* into x\, X\ = Rk\Xk, 

k, 1= 1,2, 3, or 4 is

K  = diag(i„„) (3.17)

If small damping is assumed, i.e. « 1 ,  / = l,---,n2, the following state 

transformations are obtained

1 0 "

,  =
' 1  0 "

r .a . =
1 -  JC, - j

C  1 .
? 13/

0  o)i ’ 14/
. 1 +JCi j_

1 0  ' '1  - / 1 - j C i

R 2 V  ~ ’ 2̂ 24/ —
.1 j  _

F

II
} + J C i  i ! a ,  _

(3.18)

The remaining transformations can be derived from those above by simply using

Rkpi -  Rpki (3.19)

or by noting that

Rkpi = W k n  (3-20)

where /, k,p=  1, 2, 3 or 4.

3.4.4 EXAMPLE OF A FLEXIBLE STRUCTURE_______________________

An example of a simple flexible structure is a three-mass system [Gaw., 1], as 

shown below in Figure 3.2. Its simplicity enables easy analysis and straightforward 

interpretation. The system has three masses m\, m2 and »73, stiffnesses k\, kj, h  and 

k\. It also has a damping matrix which is a linear combination of the stiffness and 

mass matrices, D = aK  + pM, where a  > 0, P> 0 are constants
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f , q \ t fi-, <72 ß ,  <73

k\ k2 h
M /V W m\ - W v -

— T]—

m2 - N A -

— I]------

mi

k\

d\ d2 dì di

Figure 3.2 Simple flexible structure

3.5 Co n t r o l l a b i l i t y  and  o bs e r v a b i l i t y
GRAMMIANS_________________________________

3.5.1 INTRODUCTION______________________________________________

Controller design is heavily dependent on the controllability and observability 

properties of a plant. Controllability is a property of the plant’s input that excites 

the total system dynamics. Basically, it is the ability of the input actuators to excite 

all the states of a system. Observability is a property of the plant’s output, and it is 

the ability of the output to sense all the states. However, controllability and 

observability cannot provide sufficient information for controller design by 

themselves. For example, parts of a system may be weakly controllable (weakly 

influenced by the plant input), making it impossible to decide which controller to 

use, yet these same states could be strongly observable at the output. Similarly, 

weakly observable states could be strongly controllable by the input actuators. 

However, if the system states are both weakly controllable and weakly observable, 

they can be ignored in the controller design. The joint controllability and 

observability properties of a system can be characterised by the Hankel singular 

values, and has been developed by Moore [Moore, 1],

One way of determining the level of participation of a state variable to a system has 

been developed by Skelton [Ske., 1], Instead of using controllability and 

observability properties, Skelton associated each state variable’s participation with 

a cost. If the participation is strong, the cost is high. If it is weak, then the cost is
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low. There are disadvantages to this method. Firstly, the cost evaluation of a 

particular mode is made at the output of the system, whilst the input is not taken 

into consideration. Also, if two states are strongly coupled, their individual costs 

are not reflected in their participation to the output of the system. A more 

convenient way of analysing state variable participation to a system is by using 

observability and controllability grammians.

Before analysing the controllability and observability grammians. there follows a 

short mathematical examination of one of the most useful tools that has widespread 

applications in several areas of matrix theory, i.e. grammians.

Definition 3.3: [Gant., 1] Let (x,, x2, ..., x„)elV' be a set of vectors. The 

matrix

(x,.x,) (x,.x2) ...

G= (*2 -Ti ) U2A2) •••

_(*„,■ *1) (t ,„A2) •••

is called the gram matrix of the vectors (x,, x2, ..., xn) and the determinant

\G\ is called the grammian of the vectors (x,, x2, ..., x„). The grammian of

linearly independent vectors is always positive, and that of linearly dependent 

vectors is zero. Negative grammians do not exist.

□

The grammian has an important ability in the sense that it can provide an indication 

about the degree of linear dependence of vectors.

Theorem 3.3: [Gant., 1] The vectors (xl5 x2, ..., x„) are linear independent if

and only if their grammian is not equal to zero. This is known as gram’s criterion. 

If any principal minor of the grammian is zero, then the grammian is zero.

□

(x2-xm) (3.21)
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Gram matrices are related with positive definite matrices.

Theorem 3.4: [Horn & Jon., 1] Let G e Ckxk be a given matrix of the vectors 

{w,, w2, ..., w J c C "  with respect to a given inner product and let

(a) G is positive definite

(b) G is non-singular if and only if the vectors w¡, w2, ..., wk are 

independent

(c) There exists a positive definite matrix A eC"XM such that G = W*AW

The remainder of this section will concentrate on controllability and observability 

grammians and their different types. Each of the considered grammians take into 

account the theorems and definitions that have been discussed above.

3.5.2 PRINCIPAL GRAMMIANS_____________________________________

Controllability and observability grammians are a convenient form of 

characterising the properties of a system’s observability and controllability. They 

can be defined by taking into consideration a stable linear, observable and 

controllable system with state space matrices A, B and C. Al is the z'th eigenvalue of 

A, and the condition At + Âk ^  0 is applied for every i, k = 1,..., n. Therefore the 

controllability and observability grammians are defined respectively [Kai., 1] as 

follows

W = [ eC"xk. Then

(d) p(G) = p(lV) is the maximum number of independent vectors in the set 

{w,, w2, ..., wn)

□

(3.22)

They can also be determined by using the following differential equations
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W = AWC + WCA +BB
(3.23)

w  = ATW + w  a + c ' c

The stationary solutions of the above equations are derived in the limiting case for 

t —> co . Thus, for a stable system, one obtains Wc = WH = 0, and the grammians are 

determined from the following Lyapunov equations

AWC + WCA T + BB1 = 0 
A t Wo +WoA + CtC = 0

(3.24)

If A is stable, then the solutions of equation (3.24) are positive definite. The system 

defined by (3.1) is completely controllable and completely observable if and only if 

the respective grammians of (3.22) are positive definite from time t = 0 up to the 

final time t.

Grammians are dependent on the system coordinates and when a state is linearly 

transformed, x = Rx , the resulting grammian transformation is

Wc = R~xWcR~l 

wn = R TwoR
(3.25)

The eigenvalues of the grammian product do not change when linear 

transformation takes place, as

M W )  =  Ip-'W^R'W'R) - Z,(R-'W,W„R) = M ’KK) (3-26)

Although the rank of Wc and W0 is not affected by the transformation matrix R, 

their respective norms are.
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3.5.3 TIME LIMITED GRAMMIANS__________________________________

The Lyapunov equations of (3.24) define the stationary grammians, but those 

defined over the finite time interval [0, t] can also be determined. Assuming that 

the response to an excited system is measured within the time interval T= \t\, /?], °° 
> t j>  t\ >0, then on rearranging the equations of (3.22), the grammians over the 

time interval T are defined as follows

Again, for a stable A matrix, these grammians are positive definite, which means 

that WC(T) > 0, W0(T) > 0 if (2 > t\. They can be derived from the stationary 

grammians Wc and W0 in the following way [Gaw. & Jua., 1], [Gaw., 1]

(3.27)
Wn(t)= P  exp(yt7 r)C7 Cexp(/ár)¿/r

K(T)  = K ( t , h K ( t 1)
(3.28)

where

K(>) = s(t)W'ST(t) 

!¥„{!) = S T(l)Wl,S(t)
(3.29)

where

iS'(t) = -  exp [At) (3.30)

where Wc and W0 are the unlimited time grammians, and are the solutions of 

equation (3.24).
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3.5.4 USE OF GRAMMIANS_________________________________________

The control of large scale systems, such as flexible space structures, is often 

studied in a centralised framework [Will., & Xu, 1], where the outputs of all 

sensors on the structure are fed back to all of the actuators. Yet for practical 

implementations, a decentralised arrangement is much more feasible. Such systems 

have only a specified number of sensors that are connected to each particular 

actuator, which result in a set of independent local controllers. But this in turn 

creates a drawback when it comes to the ability to shift closed loop poles (Chapters 

6, 7 and 8), as this may be more feasible via a centralised feedback scheme [Will., 

& Xu, 1], The ability to shift closed loop poles using a decentralised control 

configuration for a given control effort has been studied [Leven., et al, 1], [Will., & 

Xu, 1], From this research stems the ability to determine the degree o f 

controllability of each mode of a system, and is essentially a centralised control 

problem. Results have been obtained in this area of research with flexible structure 

applications [Greg., 1], [Skel., et al, 2] where the natural frequencies are widely 

spaced. For flexible structures where the natural frequencies are very close to each 

other, the problem of determining the degree of controllability is more complicated 

[Josh., 1], For such cases the degrees of controllability for each mode are obtained 

by analysing the singular values of the controllability grammian. Yet for flexible 

space structures, the nature of their decentralised control schemes makes use of the 

controllability grammian redundant as it is purely an open loop property. In order to 

allow the analysis to proceed, a closed loop controllability grammian has been 

studied [Will., & Xu, 1], defined for a flexible space structure with a constant 

output feedback configuration, for changes in the gain matrix and expressions for 

the degree of controllability are established. This study motivates further 

investigations into the area of degrees of controllability (Chapter 4), singular values 

of the output controllability grammian (Chapter 5), and pole placement/eigenvalues 

assignment (Chapter 6).

Other types of grammians also exist. These are band limited grammians [Gaw., 1] 

and are applicable to systems that operate in the frequency domain. These
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grammians will not be considered here, as this thesis is concerned with systems of 

a linear, time invariant nature.

3.5.5 GRAMMIAN ASSIGNMENT____________________________________

It has already been established that for a stable system to be controllable or 

observable, then its respective controllability or observability grammians have to 

be positive definite. The grammians of (3.22) and (3.23) contain the system 

matrices A, B (for controllability) and C (for observability). This leads to the issue 

of appropriately selecting the system matrices so as to ensure that the grammians 

are positive definite.

For control system purposes it is useful to have a tool for modifying or shaping 

system controllability and observability properties. This can be done in two ways. 

The first, and most common, is by introducing a feedback loop [Wic. & Dec., 1] in 

order to modify the system properties. The second method is to determine sensor 

and actuator locations which contribute to the best observability/controllability 

properties. The latter method is addressed as the grammian assignment problem 

[Gaw., 1],

The problem is stated as follows

Problem 3.1: Let a system be described by a stable state matrix A, but with 

unknown actuator/sensor locations (i.e. B and C are unknown). For a positive 

definite matrix W, find a state space representation of a system such that its 

grammians are equal to W.

□

A possible solution to this problem [Gaw., 1] is to find matrices B\ and C\ and a 

non-singular transformation R, such that the grammians of (A\, B\, C\) are equal to 

W, and A\ = RaAR. Depending on what is to be determined (sensors, actuators, or 

both), Problem 3.1 can be divided into three separate problems [Gaw., 1],
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Problem 3.2: Given A, B, find C\ and the transformation R such that Wc\ = W0\ = 

W for the representation {A\,B\, Ci), where A\ = R'lAR and B\ = R']B.

□

Problem 3.3: Given A, C, find B\ and the transformation R such that Wc\ = WQ\ = 

W for the representation (Ai, B\, Cj), where A\ = RaAR and Ci = CR.

□

Problem 3.4: Given A. find B\ and C\ and the transformation R such that Wc\ = W0\ 

= iWfor the representation {A\,B\, Ci), where A\ = RaAR.

□

Note that the matrices B\ and C\ include not only the actuator and sensor locations, 

but also the gain at each location. For the location only problem, the entries of B\ 

and Ci would be either 1 or 0.

The solution to the problems posed may or may not exist, since not every positive 

definite grammian can be obtained through the sensor or actuator placement. Yet 

they are worth further investigation, and there has been scant consideration of such 

problems in the literature.

3.6 Su m m a r y

The concepts of controllability and observability were reviewed in this chapter, 

where definitions of these quantitative system properties were given. Systems to 

which they can be applied to are of a large scale nature, i.e. flexible structures, 

which have also been defined, along with the system components that are linked to 

the act of carrying out a control action and measuring the result of a control action 

(actuators and sensors). A mathematical study of flexible structures was presented 

in Section 3.3, where it was shown how a mathematical model in both the state 

space and modal coordinates can be derived from the differential equations of 

(3.4). The mathematical means of examining controllability and observability 

through grammians in the time domain was examined in Section (3.4). The chapter 

concluded with a mathematical analysis of how grammians and system models can 

be used to link controllability and observability properties to flexible structures.
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Systems are said to be balanced when their controllability and observability 

grammians are equal [Moore., 1]. It is vital that for the purpose of flexible structure 

testing and control that investigations into possible sensor and actuator locations 

are carried out. The locations of these components have an impact on the dynamic 

behaviour and closed loop performance, and this has to be evaluated. Yet in 

practical situations there is a lack of the freedom of choice for the locations which 

creates a design problem. Such a problem is the determination of the locations of 

the sensors/actuators of an open loop system in order to meet the specified 

controllability and observability requirements. This problem has been addressed as 

the grammian assignment problem [Gaw., 1], Another problem which arises is 

called the placement problem [Gaw., 1] and it is defined as attempting to find a 

subset which has controllability/observability properties close to the original 

requirements for a given set of sensors and actuators. It should be noted however 

that not every controllability and observability property can be obtained with a 

given set of actuator and sensor locations.

For control system purposes it is advantageous to have a tool for modifying or 

shaping the controllability and observability properties of a system. This can be 

achieved in two ways. One way is to determine proper sensor and/or actuator 

configurations. The other way is by modifying the system properties (such as 

introducing a feedback loop) and it is this that will be considered in the remainder 

of the thesis.

This chapter forms a basis for a wider study of controllability and observability, 

which will follow in the next two chapters. Chapter 4 will look at existing and 

newly developed measures of controllability and observability. In Chapter 5 there 

will be a study of how energy and the singular values of the output controllability 

grammian can be linked. Chapters 6, 7 and 8 will cover the area of how feedback 

can be used to modify the system properties.
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MEASURES OF 
CONTROLLABILITY AND 
OBSERVABILITY

4.1 In t r o d u c t io n ______________________________

The basic concepts of controllability and observability were reviewed in Chapter 3. 

The definitions in Section 3.2 provide merely a binary concept of 

controllability/observability. Either something is controllable/observable or not. 

But any uncontrollable system is in a certain sense arbitrarily close to some 

controllable system, and on the other hand a controllable system may or may not be 

close to an uncontrollable one [Pai., 1], It may be possible to alter the structural 

properties of an uncontrollable system (e.g. selection of inputs) in order to make it 

controllable. But just how uncontrollable or controllable is a system? Merely to 

know whether something is controllable or not is not enough, and therefore a 

measure of controllability would be hugely advantageous in control design. The 

degree to which a system can be controlled/observed (degrees of 

controllability/observability) is a useful and sensible tool in analysing systems of 

physical variables, and are invariant as functions of coordinate transformations. 

Thus a measure of controllability/observability is vital to the satisfactory placement 

of sensors and actuators on a structure. This chapter will examine the notions of 

measuring controllability and observability with a view to sensor and actuator 

placement. The next section will comprise of a review of existing measures and a 

study of some new ones, which will be proceeded by a comparison of some of the 

techniques in this field. A new measure based on Markov parameters is also 

considered, followed by a section dealing with open and closed loop degrees of 

controllability. A study of how exterior algebra and characteristics of Pliicker 

matrices can be used to develop measures is also presented. This leads 

conveniently to a documentation of a new method of input selection based on
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minimising the condition number of the controllability matrix, which concludes the 

chapter.

In this chapter the measure of strength of the presence of properties is explored for 

use as tools which enable the selection of sensors and actuators. System properties 

are characterised by values of property indicators which very frequently are 

expressed in terms of the rank of system matrices. In fact if the rank is full, it is 

deemed that the property is present, and if the rank is less than full then the system 

lacks that property. This exact characterisation is not often satisfactory. In fact a 

matrix can be nearly singular (i.e. due to small singular values) which indicates an 

“almost” lack of a particular property.

Given that there is some form of continuity in the presence or absence of properties 

in a system, it is important to introduce measures of strength of such properties (i.e. 

of controllability and observability). The selection of the input-output structure and 

more so the coordinate frame for state space models, strongly affects the measure 

of strength of such properties.

In this thesis, properties such as state controllability, observability, input and output 

controllability, and minimality are studied. Defining the strength of such properties 

in a formal way involves measuring the distance of the given system (having a 

fixed set of actuators and sensors, i.e. a specific input-output structure) from the 

family of systems which lack these types of properties. Most of the research done 

so far implies this but tackles it in an indirect way by considering norm properties 

of the appropriate property indicator.

4.2 Re v ie w  of  c o n t r o l l a b i l i t y  m e a s u r e s _______

4.2.1 MEASURES BASED ON GENERAL DISTANCE FUNCTIONS_______

There are several mathematically equivalent approaches to determining 

controllability or observability of a linear time invariant system of the form
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X  = A X  + B U
nx.li nxm

y  = C x
pxn

(4.1)

where A has eigenvalues A,, ..., Xn . Yet these different approaches lead to 

computational methods that give significantly differing results which may stem 

from rounding errors. Although determining the binary aspect of controllability of 

(4.1) is a simple enough problem mathematically using the conditions of Theorem 

3.1, computing the degree of controllability is by no means a trivial task.

It has been shown that the traditional methods of computing controllability are not 

satisfactory in the sense that they may lead to inaccurate conclusions, i.e. a system 

deemed to be controllable may in some way be very close to an uncontrollable one. 

An initial attempt to finding the distance of the closest uncontrollable system from 

the given one is made [Pai., 1]. The approach taken is derived from an analysis of 

the numerical rank of a matrix, perturbation analysis and sensitivity issues of 

eigenvalues. The measure is taken as

ju(A,B) = min||<54, <5S||2 (4.2)

where the system described by

(A + SA, B + SB) (4.3)

is uncontrollable. It is argued [Pai., 1] that the measure of (4.2) is invariant under 

orthogonal transformations, yet may be altered under nonunitary transformations 

and scaling. The measure ju(A,B) is obtained by allowing for all possible 

perturbations, yet due to the modelling uncertainties in the system matrices A and 

B, the control engineer may lack confidence in using such a measure due to the 

issues discussed in Section 2.4.6 which highlighted the problems of computing 

nongeneric values of poorly modelled systems. It is for this reason that scaling is 

required [Don., et al, 1] so that the uncertainties of the elements in A and B are all 

of the same magnitude. The crux of the investigation by Paige [Pai., 1] is to draw
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attention to the importance of finding a reliable and efficient numerical algorithm 

for determining the distance of the closest uncontrollable system from the given 

one. However, the problem posed is an open computational one, yet it has 

stimulated further work.

The concept of a controllable subspace has been explored [Moore, 1] with the 

application to principal component analysis. Moore classifies the controllable and 

unobservable subspaces as two important subspaces of the state space, If” . The 

controllable subspace is defined as the smallest subspace which contains the state 

response (when the initial conditions are zero, i.e. x(0) = 0) to every piecewise 

continuous vector signal injected into the model input terminals («(/)). Similarly 

the unobservable subspace is characterised as the largest subspace in which 

arbitrary piecewise signals can be injected with no output response. Moore presents 

an analysis by which these subspaces are computed approximately but is not 

extended to measuring the distance between them and the

uncontrollable/unobservable subspaces. Yet the realisation of computing this 

distance has been explored by Eising [Eis., 1], This is defined as the distance 

between a system (A, B) and the set of all uncontrollable systems, denoted by 

UNCO„.m, and it is argued that the minimum of the smallest singular value, <xmin, of

[A/ -  A, B] with respect to A, is a measure of this distance, i.e.

d({A,B),UNCO„) = min o ^ [ U - A ,  B) (4.4)

crmin\A I-A , B] is the smallest singular value of [AI -  A, B~\, and is a 

continuous function of A. It is explained that the measure requires the 

determination of the singular value of a polynomial matrix and minimising a 

function of a complex variable. Although the algorithm is computationally 

strenuous, the result has been extended to define a decentralised eigenvalue 

assignability measure [Vaz, & Dav., 1],

It has been the goal by certain authors merely to explore some of the properties of a 

controllable system which is near to an uncontrollable pair [Boh, & Lu, 1], Here

62



4 MEASURES OF CONTROLLABILITY AND OBSERVABILITY DANIEL NANKOO

once more the distance between a controllable system and the nearest 

uncontrollable pair is considered. The method developed by Eising [Eis., 1] is 

extended to give a characterisation of when a system is “hard to control” in the 

presence of perturbations in the system matrices for either the complex or real case. 

It is argued that for physical systems, it is not necessary to take into consideration 

complex perturbations, hence making the measure of (4.4) [Eis., 1] conservative. It 

is suggested that it is sufficient to restrict the analysis to real perturbations. Due to 

the high level of computations involved, certain bounds are proposed in an attempt 

to reduce the complexities. The definitions of the distances given are significant for 

certain situations, especially when the data defining the coefficient matrices are not 

known to a great level of accuracy, or when computer simulations involving round 

off errors are carried out. The author also obtains a relation between the developed 

distance and the feedback gain required to shift a pole of the system. But this 

relationship is limited in the sense that it holds only for significantly small 

feedback gains, but the scope is there for further analysis. It is shown also that for 

small distances, there are correspondences to certain properties of the singular 

values of the controllability matrix and the energy considerations of the 

controllability grammian. The results presented provide a solid foundation on 

which to interpret the distance measures and provide grounds for an extension into 

investigating the connection between the controllability grammian and energy 

consumption.

4.2.2 MEASURES BASED ON ANGLES_______________________________

Taking a different route to computing such indices using the distance criterion, 

Hamdan and Nayfeh [Ham., & Nay., 1] proposed measures of modal 

controllability/observability by considering angles between vectors. The angles 

between the left eigenvectors of A and the columns of the matrix B are used to 

propose modal controllability measures. Likewise the angles between the rows of 

the C matrix and the right eigenvectors of A are employed to put forward modal 

observability measures. The measures are an extension of the modal controllability
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and observability tests examined by Kailath [Kai., 1], The controllability test is 

stated as the zth mode is not controllable from the /th input if and only if

where q, corresponds to the set of left eigenvectors, bj is the /th column of B and 0 

is a zero column. Similarly the /th mode is not observable at the kth output if and 

only if

where pi are the respective right eigenvectors and cy is the Ath row of C. Whilst it 

has been suggested that the magnitudes of q\bj and c[p: can be used as measures

of modal controllability and observability respectively, due to the inappropriateness 

of the scaling of the eigenvectors involved, the authors propose new algorithms. 

The magnitude of q 'b , can be rewritten as

where the angle 0{j is taken to be of an acute nature. Thus it is proposed that a

measure of controllability of the zth mode from the /th input of a system model 

described by (4.1) is co sff , where 0{j is the angle between bj and q,. Thus if the

two subspaces are orthogonal (cos 90° = 0) then it is argued that the zth mode is 

uncontrollable from the /th input. Similarly, the magnitude of c[ p: can be defined

as

(4.5)

(4.6)

V ' b \ = I k  I I k  \\c o s 0 i ¡
(4.7)

t í  Pi HMIWIcosí¿ki (4.8)
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and so it is proposed that a measure of observability of the zth mode at the Æth 

output is cos (j)kn where (f)kj is the angle between Ck and Pi. Again if the two 

subspaces concerned in (4.8) are orthogonal, it is said that the zth mode will not be 

observable at the £th output. The measure of controllability outlined here is 

inversely proportional to the angle between the subspaces spanned by bj and qt. 

When they are orthogonal, the distance is a maximum and the degree of 

controllability is zero. A parallel argument can be given for the measure of 

observability algorithm derived from (4.8). yet despite the genuineness of the 

approach, the authors stop short of extending their measures to the generalised 

eigenvector case.

The above notions have been extended to form a relationship with the residues of 

the transfer function [Lind., et al, 1] of system (4.1) described by

T(5) = G(s)u(s) R,
(5-T ,)

(4.9)

where the poles of G(s) are distinct and the / x m residue matrix R is given by

R, = CP¡qJ B (4.10)

It is shown that the magnitude of the residues can be bounded by the product of the 

measures of controllability and observability of (4.7) and (4.8) respectively. It is 

implied that when the residue is exactly zero then the corresponding mode is either 

uncontrollable or unobservable (but not necessarily both). But a state space 

transformation can change the measure of observability or controllability of a 

particular mode. However the residue of the mode concerned is invariant to state 

space transformations and so the norm of the residue provides a lower bound on the 

product of the observability and controllability measures. The authors [Lind., et al, 

1] point out that as a mode becomes less observable (through a state space 

transformation) it becomes more controllable. This leads to the assumption that the 

interaction of the controllability and observability measures works to preserve the
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input-output properties of such a system described by (4.1) under state 

transformations.

4.2.3 MEASURES BASED ON NORMS________________________________

The measures proposed above [Lind., et al, 1], [Ham., & Nay., 1] are only 

applicable to systems with distinct eigenvalues and poles. To solve this problem, 

Tarokh [Tar., 1] proposed simple controllability and observability measures for 

systems with distinct or repeated eigenvalues. It is shown that the proposed 

measures are directly related to important time and frequency domain 

characteristics of a system. For the system described by (4.1), the input-output 

transfer function is described by

t (l ) = C(sl -  A )'1 Bu{s) = ^ j u ( s ) (4.11)

where O(.v) = Cadj(,s7 -  A)B is the numerator transfer function matrix and 

A(s) = \sl -  A\ is the characteristic polynomial. In addition to 0 (5), two more 

numerator matrices are defined

Or (i) = Cadj(.$7 -  A)
(4.12)

It is proposed [Tar., 1] that if the system of (4.1) has distinct eigenvalues, then the 

mode is uncontrollable if and only if = 0 . Similarly it is unobservable if

and only if ®r (2() = 0. This is verified by the fact that in a system with distinct 

eigenvalues, common pole-zero cancellations in the transfer function matrix (4.11) 

result in uncontrollability or unobservability of the system [Tar., 2], However, this 

only provides an addition to the already established binary tests for controllability 

and observability. So as an extension the following measures for the mode 2. are 

introduced for controllability, mci, and observability moi
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ma = p«0M 
m»i= K ( ^ ) |

(4.13a)

where ||•||/. is the Frobenius norm. The controllability and observability measures 

for the system (A, B, C) are defined respectively as

m. = minjm
'. r , (4.13b)

m„ = mm {moi\

The proposed measures are extended to systems with repeated eigenvalues, and the 

derivation of an algorithm becomes more complicated because consideration has to 

be made of the zero polynomials of the square subsystems within the system 

described by (4.1). The numerator transfer functions of (4.12) are in fact zero 

polynomials of single-input single-output systems and are not adequate for 

developing a measure for systems with repeated eigenvalues. So the concept of 

transmission zeros [Mac., & Kar., 1] is employed to define measures of such 

systems. The measure of controllability is thus defined by

m„, =

-|l/2

r = \  a = l

(4.14)

T, is the mode whose controllability is to be measured, m is the number of rows of 

B, r is the size of the square subsystem and

y /(s) = det
sln -  A

c ;
(4.15)

where Brp, /?=1, 2, ..., ijr , are the set of nxr submatrices formed from r 

columns of the matrix B. Cry , y = 1, 2, ..., p r , are the set of rxn submatrices 

formed from r rows of the matrix C. The number of nxr submatrices of B is

67



4 MEASURES OF CONTROLLABILITY AND OBSERVABILITY DANIEL NANKOO

where / is the number of rows of C. Thus the number of r-dimensional subsystems 

is defined as o r = rirp r and a  = {l, 2, <rr}. Similarly the observability

measure of the mode Ai is

The measures defined by (4.15) and (4.16) are equal to the sum of distances of the 

eigenvalue T,. to the transmission zeros of all square subsystems of (A, B, /„) for 

controllability and (A, /„, Q  for observability. When all square subsystems have a 

transmission zero at T, all the distances are zero and the system becomes 

uncontrollable (or unobservable) [Tar., 1], The thoroughness of these algorithms 

provides a useful and in depth study into the development of measures of 

controllability and observability. The author has taken into consideration the often 

neglected problem of repeated eigenvalues, yet the question of whether such 

measures are invariant under coordinate transformations remains debateable.

4.2.4 USE OF MEASURES OF CONTROLLABILITY, OBSERVABILITY 
IN THE SENSOR/ACTUATOR SELECTION PROBLEM: DYNAMIC 
CONSIDERATIONS____________________________________________

So far the measures reviewed up to this point have been based on a purely 

mathematical level, without the authors stressing any applications to practical 

problems. This section of the review concentrates on procedures which indicate 

ways of selecting inputs/outputs in order to maximise their relative degrees of 

controllability and observability. The importance of a definition of an effective 

input-output structure has been highlighted [Kar., et al, 1] in order to guarantee 

basic structural properties such as controllability and observability. Assuming that 

a system model exists, various values of performance can be addressed, such as the 

degrees of controllability and observability at this design stage. The problem here is 

thus to retain the achieved structural features of the system, and to implement some 

additional properties for the input/output structure using tuning parameters. A

(4.16)
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variety of performance tests and criteria such as energy requirements for control 

and observation [Lev., et al, 1] as well as properties as maximising the degree of 

controllability and observability can be used to help reach the design goals.

An initial study into the area of sensor/actuator selection was made by Wu, Rice 

and Juang [Wu., et al, 1], They considered the controllability and observability of a 

reduced order system of a flexible structure in order to determine the minimum 

number of actuators and sensors required. But the results presented are only tests 

and not measures. They are based on the rank tests of the controllability and 

observability matrices which have been tailored for a flexible structure system. The 

concept of the degree of controllability of a control system has been developed 

starting from physical considerations [Vis., et al, 1], A link is made with the 

presented measure and the question of how to choose the number and locations of 

the control system actuators. The results obtained allow the control system designer 

to rank the effectiveness of alternative actuator distributions, and hence to choose 

the locations based on a rational selection process. The degree of controllability is 

shown to take a simple form when the dynamic equations of a particular system 

(the example given in the literature is of a satellite) are in second order modal form. 

It is argued that the degree of controllability concept has fundamental uses in that it 

allows the system structural relations between the various inputs and outputs of a 

linear system to be studied. The analysis starts from a set of actuator locations 

which produce an uncontrollable system, but for which the number of actuators is 

sufficient to produce controllability. It is suggested that by moving one of the 

actuators by a distance s  > 0, a controllable system can be produced, regardless of 

the size of e. But for small e, even though the system may technically be 

controllable, in some sense it will not be “very controllable”. From this, the authors 

set out five conditions that their measure of controllability must meet [Vis., et al, 

11:

> The degree of controllability is zero when the system is uncontrollable

> The system stability properties must somehow be represented

> It must be dependent on the total time T

> It must standardise or restrict the control effort in some way
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> The control objective must be reflected in the definition

These conditions provide a sensible platform for any potential development of a 

measure of degree of controllability. The control objective is to return the state 

variable x to zero after a disturbance [Vis., et al, 1] as this is the most common 

attitude and shape control objective for flexible structures. Controllability requires 

the existence of a control function which can transfer any initial state to any final 

state in finite time. In an uncontrollable system there will be at least one direction 

in the state space for which initial conditions in this direction cannot be returned to 

the origin. For a controllable system whose parameters are such that it is almost 

uncontrollable, then only initial conditions very close to x = 0 along the 

aforementioned direction could be returned to the origin in time T. Thus a 

definition of the degree controllability is generated based on the minimum distance 

from the origin to a normalised state that cannot be brought to the origin in time T 

[Vis., et al, 1], So the degree of controllability in time T for the case when x = 0 

(initial condition) of a normalised version of the system described by (4.1) is

p  = inf ||jc(0)|| (4.17)

where [[•| is the Euclidean norm.

The degree of controllability defined in (4.17) is a scalar measure which exists 

within a region where all of the initial conditions (or disturbed states) that can be 

returned to the origin in time T can be identified. This is called the recovery region 

[Vis., et al, 1], This measure may be applicable to flexible structure systems, but 

fails to take into consideration the case when the system exhibits repeated 

eigenvalues. Although the measure is independent of using eigenvalues in the 

calculation, they do play an important role in the system response.

Various definitions of the degree of controllability and observability have been 

used in guiding the search for optimal actuator and sensor locations. Among these, 

the degree of controllability defined by scalar measures has been addressed [Vis., et
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al, 1], [Vis., et al, 2], [Long., et al, 1], A second approach uses the projection 

magnitudes of eigenvectors into the input and output matrices to define gross 

measures of controllability and observability [Ham., & Nay., 1], The problem of 

defining and obtaining the optimal actuator and sensor locations has been 

addressed by Lim, [Lim, 1], The method is based on the controllability and 

observability of an actuator/sensor pair. The selection is based on the effectiveness 

(controllability and observability of a particular mode) and versatility 

(controllability and observability of all modes) of pairs of actuators and sensors. 

The method introduced has the advantage of not requiring a specification of the 

number of actuators and sensors and it is centred around the orthogonal projection 

of structural modes into the intersection subspace of the controllable and 

observable subspaces corresponding to an actuator/sensor pair. The controllability 

and observability grammians are then used to weight the projections to reflect the 

degrees of controllability and observability. This method produces a three- 

dimensional design space within which sets of optimal actuators and sensors may 

be selected based on the criteria set out by the designer without the need for 

elaborate nonlinear programming strategies. The method also allows for the 

comparison of many actuator and sensor candidate locations since the 

computational effort depends only on the product of the number of actuator and 

sensor location candidates rather than laborious computational search methods. The 

main drawback of such a method is the time consumed to test for all the possible 

sensor and actuator locations, thus potentially turning the algorithm into one based 

on a trial and error methodology.

Keeping to the theme of actuator placement, yet another measure has been 

developed [Kim, & Jun., 1] in order to aid this delicate design problem. This 

measure is computed as follows

a  = ÿ \ - Lp ii (4.18)

where a  is the measure of controllability, V, the zth mode component cost in the 

cost function V, and p, is the gross measure of modal controllability from all inputs
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of the z'th mode, pi has already been proposed [Ham., and Nay., 1] and V is 

computed from

where Qv is a weighting matrix, Cj is the output matrix, X  is the controllability 

grammian that satisfies the Lyapunov equation

where (A, B) are the system matrices. Qualitatively this index represents a measure 

of output controllability (Chapter 5) that measures both modal controllability and 

modal participation of all modes in the physically important cost function. 

However, despite its ease of use, this measure fails to incorporate an optimal 

solution for the placement of actuators, and the authors merely make use of a trail 

and error basis to arrive at an index that improves their placement.

4.2.5 MEASURES BASED ON ENERGY CONSIDERATIONS____________

A measure based on energy consumption has been considered [V Vel., & Car., 1] 

to give a quantitative indication of how well a system can be controlled with a 

given set of actuators (a measure of controllability). Similarly, a measure of 

observability is defined which is a quantitative indication of how well a system can 

be observed with a given set of sensors. The measure of controllability formulated 

results from a four step procedure. The first step is to find the minimum control 

energy strategy for driving the system from a given initial state to the origin in a 

prescribed time using

where R is a positive definite weighting matrix and n is a control input. The second 

step is to establish the region of initial states which can be driven to the origin with

(4.19)

XAr + AX + BB1 = 0 (4.20)

(4.21)
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constrained control energy and time using an optimal control technique. This 

region is bounded by an ellipsoidal surface in the state space. The third step is to 

equalise the priority of each unit displacement in every direction within this region 

so that they are all equally important to control. Finally the degree of controllability 

is taken as

DC = vs + ^ ( y „ - v s)
i/«

(4.22)

where VE is the «-dimensional volume of the ellipsoid in what is described as an 

“equicontrol” space, set out by the third step in this procedure and is defined as

v, ,= n  v f  <4-23>
i=i

where v, are the eigenvalues of D VqD, where D is the matrix that transforms the 

state vector to an equicontrol space z = Dx and Vo is an initial condition of the 

weighted volume of the ellipsoid. Vs is the spherical volume within the ellipsoid 

and is also the shortest distance to the surface, and is given by

Vs = (4.24)
/  max

where A, are the eigenvalues of (DVqD)a . The method presented [V Vel., & Car., 

1], whilst radical and complex in approach, has a few loose ends that need to be 

tied up. For example, no mention is made of the type of eigenvalues (i.e. distinct, 

real) that can be used in the algorithm, however the authors do go on to extend the 

measure for optimal actuator placement.

The problem of deriving a measure of controllability has been a strongly disputed 

issue in the control engineering community. But a novel concept is proposed which 

uses a systematic approach to select optimal candidate sets for actuator placement 

[Roll, & Par., 1], The method proposed relies on a new quantitative measure of
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controllability and is related to the minimum control energy input needed to 

regulate the system from initial modal disturbances. The modal degree of 

controllability presented offers the control system designer a tool with which the 

ranking of the effectiveness of a specific distribution of actuators leading to a 

rational based choice for their locations. The proposed method represents the 

relative performance of a specific set of a predetermined number of actuators 

compared to the performance achievable with a full set of actuators. The 

performance metric used in the definition is the control energy required to regulate 

the system from a disturbance of a specific structural mode. The cost function, 

which is the weighted sum of the modal degrees of controllability (MDOCs [Roh, 

& Par., 1]) corresponding to the modes of interest, and is used to find optimal 

actuator locations. It is argued that by placing a predetermined number of actuators 

at the set which optimises the cost function, the control energy required to regulate 

the system from disturbances can be minimised. The control objective is defined as 

regulating a system from a set of initial disturbances xo to zero within a given time 

interval of t\-to , with the minimum control energy T(/0./‘l;x0) defined by

£'(/0,t];x0) = min [ 1|«(r)|2<ir (4.25)" Jl„ 11 11

subject to x(70) = x0, x(/j) = 0, and [ t 0 , / j ]  fixed. If a linear time invariant flexible

structure described in Section 3.3 is controllable, the optimal solution to (4.25) is 

[Roh, & Par., 1]

E(t0,tl;x0) = x T0W~x (7,, t0 )x0 (4.26)

where Wc{tv t0) is the controllability grammian matrix described by equation

(3.22). i?(/0,/,;x0) can provide a quantitative measure of controllability, but it is

dependent on the initial condition xo. If £'(70,/j;x0) of system Si is smaller than

that of system Sz, then system Si is said to be more controllable than Si [Roh, & 

Par., 1J. The derivation of the modal degree of controllability using this energy 

minimisation concept, involves the selection of and initial condition which disturbs
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the system with unit energy, ¿7. This is then used in the following definition for an 

MDOC of a particular mode i

MDOC, =
; cf,-)

’ ly ¡ )

(4.27)

E(t0,tl;£i') represents the maximum of the set of minimum input energies when 

the actuators are located at all of the possible locations on the flexible structure. 

E(t0,t];£.) is defined as the maximum of the set of minimum control energies

required to regulate the system from its modal displacement with unit initial 

energy. This is indicative of the relative ratio of the minimum energies required to 

regulate a system from a modal disturbance when a chosen specific set and a full 

set of actuators are used respectively. The bound on the MDOC is given as

0 < MDOC, < 1 (4.28)

It is argued that if the MDOC for a specific number of actuators is small, it implies 

that an increase in the number of actuators can improve the controllability of the 

mode. This method adds another condition to developing measures of 

controllability. Not only are measures vital to input and output instrumentation 

selection, but it is shown here how gauging controllability can be used to 

accommodate energy utilisation concerns. This will be extensively dealt with in 

Chapter 5.

4.2.6 REVIEW SUMMARY__________________________________________

The review of the measures of controllability and observability has demonstrated 

the various criteria used to formulate methodologies. The principal motivation for 

such research is the optimal placement of actuators and sensors on large scale 

systems like flexible space structures. It has been shown that the majority of 

methods devised are based on eigenvector/eigenvalue solutions. However, little 

consideration is paid to the case of repeated eigenvalues. Several authors have 

adopted the use of norms to solve this problem, but such methodologies remain
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incomplete. What is provided, however, are certain objectives that potential 

measures should be based upon. Most of the existing methods handle the measure 

of controllability and observability by considering the relaxation of the exact 

conditions which lead to the absence of the corresponding property. The relaxation 

of exact mathematical conditions is important, but it is difficult to relate it to the 

physical implications of the weak presence of such properties. The energy study of 

Chapter 5 is an attempt to reintroduce the physical dimension to this degree of 

presence of properties. The methods reviewed in this section form a foundation for 

which to carry the study forwards. In the next section, a comparison will be made 

of newly developed measures and existing ones which have been slightly modified.

4.3 Co m pa r i s o n  of  ex is ti n g  mea su r es ___________

4.3.1 MEASURES TO BE INVESTIGATED____________________________

Here, four measures of controllability and observability will be presented and 

compared. Three measures are based on finding the minimum singular value of 

certain matrices that are linked to determining controllability. A fourth measure is 

based on the calculation of the norm of a transfer function matrix. Singular values 

and norms have been extensively used in the literature in determining measures of 

controllability and observability. For the measures to be studied in this section, it 

must be pointed out that the comparison will only be carried out on a mathematical 

basis, and not with a view for the placement of actuators and sensors, which would 

require an extension to the current research by way of optimisation techniques.

The four measures of controllability (MoC) and observability (MoO) are presented 

as follows, where A, B and C are the state, input and output matrices of equation 

(4.1)

MoCl

The minimum singular value o f the controllability matrix AB ... A"~' /?].
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MoOl

The minimum singular value o f the observability matrix

C
CA

CA"-'

MoC2

The minimum singular value o f the matrix pencil [A f  - A ,  B\ V Ai . 

Mo02

The minimum singular value o f the matrix pencil
À J - A

C
V À;

MoC3

The frobenius norm o f the numerator transfer function matrix adj(,s7 — A )B . 

Mo03

The frobenius norm o f the numerator transfer function matrix Cadj(.s7 -  A ).

MoC4

The minimum singular value of the toeplitz matrix [Ant., & Mic., 1] of 

[B AB ... a "-'b \.

Mo04

The minimum singular value o f the toeplitz matrix [Ant., & Mic., 1] of

C
CA

CA"-1

A  study of the progression of development of these measures can be found in 

Section 4.6. Measures MoC4 and Mo04 are purely speculative, and require further 

elaboration. Toeplitz matrices [Ant., & Mie., 1] have dynamical implications, and
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the analysis of links with measuring the degrees of controllability and observability 

is an avenue for further investigations.

4.3.2 COMPARISON

The comparison of these four measures is carried out using MATLAB. The 

corresponding code can be found in the Appendix. The following system model of 

a flexible rocket [Med., et al, 1] will be used for the analysis

'-0.2105 -0.1056 -0.0007 0 -0.0706 0 ' -7.211 "
1 -0.0354 -0.0001 0 -0.0004 0 -0.0523
0 0 0 1 0 0 0

A = 0 0 -605.1 4.92 0 0 , B =
794.7

0 0 0 0 0 1 0
0 0 0 0 -3906.3 -12.5 -448.5 _

"1 0 0.0003 0 -0.0077 O'
C =

0 1 0 0 0 0

The system is stable in the sense that all eigenvalues are distinct and have negative 

real parts. The system is also controllable and observable, according to the full rank 

tests of the controllability and observability matrices respectively of Theorems 3.1 

and 3.2. A second uncontrollable and unobservable, yet stable system with matrices

"-7 -2 6 ' "1 1 "
A = 2 -3 -2 , B = 1 -1

—2 -2 1 _ 1 0
'-1 -1 2 '

C =
1 1 -1

is also used to compare measures. The table below summarises the measures for 

both the rocket and uncontrollable systems.
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Flexible Rocket Uncontrollable System
MoCl 6.4961 0
MoC2 0.4720 8.8xl0'16
MoC3

A\ 1.79xl07 11.3137
Ä2 1.79xl07 1.38xl0"4
a 3 3.89x10'° 6.92

3.89x10'° n/a
3.60x10" n/a
3.60x10" n/a

MoC4 4.29x10° 4.02

Table 4.1 C o m p a riso n  o f  c o n tro lla b il i ty  m e a su re s

Flexible Rocket Unobservable System
MoOl 0.1572 0
Mo02 1.23x10'5 1.87x1o"5
Mo03

T, 2.61xl06 3.01x1o"4
A2 2.61 xlO6 19.59
A, 1.49xl04 6.92

1.49xl04 n/a
a 5 6.16xl06 n/a
¿6 6.16xl06 n/a

Mo04 1.73xl06 10.0948

Table 4.2 C o m p a riso n  o f  o b se rv a b ili ty  m e a su re s

Table 4.1 compares the measures of controllability between a controllable model of 

a rocket and an uncontrollable system. As can be seen, the higher values in the 

Rocket column indicate that it is more controllable for all the measures used than 

the uncontrollable system, for which there are lower values. The implication here is 

that the pair of matrices (A, B) describing the flexible rocket contain a higher 

proportion of controllable modes than the matrix pair describing the uncontrollable 

system.

Table 4.2 compares the observability measures of the rocket model to those of an 

unobservable one. Once again, the higher values of the measures for the rocket 

model satisfy the implication that it is more observable than the second system. 

Once again, the matrix pair (A, C) of the flexible rocket has a lower proportion of
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unobservable modes in comparison with the system described in the adjacent 

column of Table 4.2.

4.4 De g r e e  of  m in im a l i t y  of  st at e  spa ce
DESCRIPTIONS______________________________________

4.4.1 PROBLEM DEFINITION________________________________________

For a given state space description there exist many measures for evaluating 

distance from uncontrollability, unobservability or alternatively measuring the 

strength of such properties. It is worth pointing out that these measures are 

functions of coordinate transformations. These functions may change as the 

coordinate transformations are varied. In this section a new measure is introduced 

that estimates the aggregate distance from minimality of the description 

(controllability and observability) without differentiating between the two 

important constituent properties. Furthermore this new measure is based on 

Markov [Ant., & Mic., 1] parameters and thus it is invariant under state coordinate 

transformations.

4.4.2 DEGREE OF MINIMALITY_____________________________________

Consider in the following that S(A, B, C, D) is a state space model and that the 

transfer function H(s) is used for evaluating the McMillan degree, which here is 

done based on the standard Hankel matrix characterisation of this property [Ants. 

& Mich., 1], [Kai., 1],

Firstly

Lemma 4.1: Let H(s) be a transfer function and S(A, B, C, D) be a realisation of 

I((s). S(A, B, C, D) is a minimal realisation of H(s) if the McMillan degree of ll(s) 

is S M{H) = d^sI-A \} .

□
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The above result seems to be of an algebraic nature, but it may take a numerical 

form allowing the introduction of some notion of distance from minimality by 

using the state space characterisation of the McMillan degree which is established 

as shown below. Consider the Laurent series expression of H(s) [Ants. & Mic., 1], 

i.e.

H(s) = H0 + H(s) = H0 + + H2s ~2 + HyC] +... (4.29)

where H(s) is the strictly proper part and the q x r real matrices Ho, Hi,... are the 

Markov parameters where [Ant., & Mic., 1]

Hq = D
Hl = CA1' B, i = \, 2,...

(4.30)

The Hankel matrix Myfj, j ) corresponding to the Markov parameter sequence Ho, 

H\,... is defined as the iq x jr  matrix given by [Ant., & Mic., 1]

m h {U )

Hi h 2 • .. Hj

H H j  •

• 
•

+
’

H, h m  ■• •  Hi+J-

(4.31)

Lemma 4.2: [Ants. & Mich., 1] The McMillan degree of the transfer function H(s) 

is the rank of M ^y, v), where v is the degree of the least common denominator of 

the entries of H(s).

□

By computing the least common multiple (1cm) of the entries of H(s), i.e. d^s), 

then v = 3{r/w(i)j. Using the Markov parameters (CB, CAB, ...) the matrix 

referred to as the principal Markov matrix may be defined as
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M h {v , v ) = M ' h

CB CAB ... CA"-'B
CAB CA2B ... CA"B

(4.32)

CA'-'B CA"B ... CA2"~xB

Evaluating the rank of M'H provides the means to estimate the degree of 

minimality of the model and this follows from the lemmas above and is 

summarised below.

Proposition 4.1: [Ant., & Mic., 1] Let S(A. B, C, D) be a state space description 

with dimension n, H(s) the corresponding transfer function matrix and M'H the 

principal Markov matrix. Then, the system is minimal if and only if

The above characterisation allows the translation of the McMillan degree result in a 

sense that accepts measuring uncertainty and provides a measure of the aggregate 

distance from minimality. For the matrix M'H which has dimensions mv x pv the 

ordered set of singular values in descending order is denoted as

Remark 4.1: Since there is a state space model with state dimension n, the rank of 

M'h  is at most n and thus all singular values y j for i = n + 1, n + 2, ... are zero.

The following definition may now be given

Definition 4.1: Let S(A, B, C, D) be a state space model with n states, H(s) be the 

corresponding transfer function and M'H be the principal Hankel matrix. If e is 

some tolerance, e>0, then the following can be defined:

(4.33)

□

y x>y 2 >--->yn = (4.34)

□
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1. If y n >e, then the system is e -strongly minimal and \yn-  e| provides a 

measure of distance from loss of minimality.

2. If y x >■ ■ ■> y k >e> y k+\ >••■> y„ > 0, then the system is called e- weakly 

minimal and |e - ^ n| also provides a measure of distance from e-strongly 

minimality.

□

A better measure of distance from loss of minimality which is independent of 

scaling is provided by the condition number

a H = rJ r„  (4.35)

which is referred to as the Hankel condition number. Clearly the following 

properties hold true.

Remark 4.2: The condition number /uH < oo if the system is minimal. This number 

provides a measure of distance from loss of minimality, which occurs when

f-hi -> 20 •

□

The property of non-minimality, or loss of minimality does not differentiate 

between loss of controllability and/or loss of observability, but expresses an 

aggregation of the two. The importance of // /7 as the measure of distance from loss 

of minimality is due to its independence from state space coordinate 

transformations, since it is based on Markov parameters.

4.5 O p e n  a n d  c l o s e d  l o o p  d e g r e e s  o f
CONTROLLABILITY_________________________________

4.5.1 PROBLEM DEFINITION_______________________________________

It has been documented that controllability is invariant under state feedback. 

However what will be investigated here is how the degree of controllability varies
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(if it does vary) with state feedback. Also, the effect of the structure of the state 

feedback matrix on the degree of controllability will be examined, particularly its 

rank and orthogonality. It will be demonstrated through examples that although the 

property is invariant under feedback its degree varies according to the structure of 

feedback matrix used. The degree of controllability used for this task is closely 

related to that developed by Hamdan and Nayfeh [Ham., & Nay., 1],

4.5.2 THEORY_____________________________________________________

As has been investigated already in Section 4.2, the measure of controllability 

devised by Hamdan and Nayfeh [Ham., & Nay., 1] is based on the test

q[{AiI - A \  bj} = 0T (4.29)

The condition

q,B  = 0 (4.30)

is used here to investigate if the structure of the state feedback affects the measure 

of controllability. Each column of the left eigenvector matrix q ‘ is multiplied by 

the corresponding row of the input matrix B, i.e.

(4.31)

The measure of controllability, <j>, is taken as

minjUfJ, i en} = </> (4.32)

Small values of (j) indicate uncontrollable modes. When state feedback is applied, 

the test of controllability becomes
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q f{ A ,I -A  -B L  : b¡} = 0T (4.33)

and thus

(4.34)

The corresponding measure of controllability, when state feedback is applied, is 

now

4.5.3 SOFTWARE AND TESTS_______________________________________

A MATLAB routine was written and compiled in order to carry out the measure of 

controllability described above, and to compare the two indices for the open loop 

and state feedback (closed loop) cases. The code can be found in the Appendix, and 

is named moc5.m. The program has been written as a function, and thus by simply 

typing [ p h i ,  p h i _ f  ] =moc5 ( a , b ,  l )  where a, b, and l are the predefined state, input 

and feedback matrices, the controllability measures for the open loop and feedback 

cases, phi and phi J  respectively, are returned. Small values of phi and phi J  

indicate less controllable states.

The first test to be earned out examined whether the implementation of feedback 

has any affect on the degree of controllability. This was done using the matrices 

[Bod., &Gro., 1]

min{||i(|, i en} = 0 (4.35)
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-0.7685 1.0137 -0.0185 0.0019 0.0018
-4.3448 -1.9816 0.4991 0.0598 0.0788

A = 0.2155 -0.1958 -0.0636 0.0585 -0.9273
-1.8760 -0.4775 -20.3609 -1.3178 1.9133
-0.0432 0.0018 4.9747 -0.0017 -0.4948

0.0096 -0.0193 -0.0457"
-6.8978 -0.3138 -0.0961

B = -0.2652 -0.1649 -0.0714
-0.0131 18.7269 -2.0886
0.0556 1.4760 -2.6271

"1 0 1 1 1
L = 0 0 1 1 1

1 1 0 1 1

The pair (A, B) is both stable and controllable both in the open loop and closed 

loop. It was found that for the above state feedback matrix, L, that the degree of 

closed loop controllability varied from the open loop case. For the same system, 

different feedback matrices were also tested, and each time the degree of 

controllability differed from that of the open loop system.

The second test was to investigate how the rank of the state feedback matrix L 

affected the degree of controllability. The same matrices [Bod., & Grò., 1] were 

used for the investigation, with the exception of the L state feedback matrix, whose 

rank was altered to three, two and one. When this was done, there was a noticeable 

change in the degree of controllability for different ranks of L.

The third and final test investigated the effect of skewness of the feedback matrix L 

on the degree of controllability. The standard test for orthogonality, later to be 

detailed in Section 7.3.1, using grammians was used as part of this procedure. The 

same set of matrices as those in task one, were used in conjunction with different 

types of state feedback matrices (Z) exhibiting differing degrees of skewness. It 

was deduced that skewness/orthogonality of L does have a bearing on the measure 

of controllability.
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From the three tests conducted and described above, there is evidence to point to 

the assertion that the structure of the state feedback matrix does affect the closed 

loop degree of controllability. The first test provided evidence that the open loop 

degree of controllability is variant once feedback is applied. The implication of the 

second test is that the rank of the state feedback matrix, L, affects the degree of 

controllability. Finally the third test showed that the degree of controllability was 

dependent on the skewness or orthogonality of L. It is evident that state feedback 

affects the degree of controllability and thus there is need to define such measures 

of properties in a way that is independent of feedback. An effort to produce such 

tests is made in the following section.

4.6 Ex t e r i o r  a l g e br a  ba se d  c r i t e r ia  f o r
CONTROLLABILITY AND OBSERVABILITY AND THE 
NOTION OF ALMOST DECOUPLING ZEROS___________

4.6.1 INTRODUCTION______________________________________________

This section comprises of a brief review of the notions of controllability and 

observability that have been developed within the exterior algebra framework. 

Tests for controllability and observability which are based on the Pliicker matrices 

are also presented here. These results allow the characterisation of input-output 

decoupling zeros (uncontrollable/unobservable modes) [Ant., & Mic., 1] in an 

“almost” sense and provide new ways for measuring the distance from 

uncontrollability/ unobservability based on the singular value analysis of the 

controllability and observability Pliicker matrices [Kar. & Gia., 1,2]. The “almost 

decoupling zeros” characterisation is based on the “almost” zero characterisation of 

a set of polynomials [Kar., et al, 2] and for this there is a computational framework 

that is based on optimisation techniques. The use of the controllability, 

observability and restricted controllability/observability pencils for the 

characterisation of distance from the loss of the corresponding properties has the 

advantage of permitting the definition of a distance from

uncontrollability/unobservability in a way that is independent from the effects of 

state feedback (output injection). The latter provides the means to characterise
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distance from uncontrollability/unobservability based on the properties of the 

Pliicker matrices of the restricted controllability and observability pencils [Kar., 3],

Throughout this section the standard notation for the exterior algebra framework 

[Mar., & Min., 1] is used. Thus the range space of a map H  is denoted by 31(H) and 

its right, left null spaces by JVr(H), JV\(H) respectively. If 'll is a vector space, then a 

vector is denoted by y, V a basis and V a basis matrix of V. Qk,„ denotes the set of 

lexicographically ordered, strictly increasing sequences of k integers from 1,2, ..., 

n. If |x (|, ..., x, } is a set of vectors of U, &> = (/,, ..., ik)&Qkn, then

XjA ...A x,( -  xaA denotes their exterior product and by ArV the r-th exterior 

power of V is denoted. If H e3"’x" and r < , then by Cr(H) the r-th

compound matrix of H  is denoted. Finally if a property is said to be true for i en  , 

this means that it is true for all !< /< « .

4.6.2 THE DETERMINANTAL ASSIGNMENT PROBLEM FOR STATE 
SPACE MODELS [Kar., et al, 2]

Consider the linear system described by

S(A,B,C,D ):
X = Ax + Bu, A eft"*", 
y  = Cx + Du, C e h / X",

B
D e r ”

(4.36)

The classical state space design problems of pole assignment by state feedback and 

design of observers may be formulated in the following way.

1. Pole Assignment by State Feedback: Consider L e ft"x'", where I  is a state 

feedback applied to the system of (4.36). The closed loop characteristic polynomial 

is given by

p, {s) = detjs/ -  A -  BL} = det|5(^)Z j (4.37)
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where B(s) = [s i-A , -B] and L = , Z/ ] .

2. Design of an «-state Observer: Consider the problem of designing an «-state 

observer for the system of (4.36). The characteristic polynomial of the observer is 

then defined by

where T e \V'yp is a feedback matrix, T =[ln,T] and C(s) = [ s i-A 1,

The common formulation of these problems clearly suggest that they are special 

cases of a more general problem, which is defined below [Kar., & Gia., 1]:

The Determinantal Assignment Problem: Tet M(s) r < q , where

rank1̂ sj|A/(j')} = r and let / /  = [H:H etf,rXil, rank{H} = r} . Finding H e H  such 

that the polynomial

has assigned zeros is defined as the determinantal assignment problem (DAP). If 

h], m,(s), i er  denote the rows of H and columns of M(s) respectively, then

where (•,•) denotes the inner product, a  = (/,, ..., ir)e Q  , and hm, ma(s) are 

the coordinates of hA, m(sY respectively. Note that ha is the r x r minor of H

(4.38)

/ M(s,H) = det{HM(s)} (4.39)

M s ,  H) = Cr(H)Cr(M(j)) = (h \m (s)-) = ^ m ^ s )  (4.40)
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which corresponds to the co set of columns of H and thus ha is a multilinear 

alternating function of the entries h,j of H. The multilinear, skew symmetric nature 

of DAP suggests that the natural framework for its study is that of exterior algebra 

[Mar., 1], The study of the zero structure of the multilinear function f M(s, H) may 

thus be reduced to a linear subproblem and a standard multilinear algebra problem 

as shown below.

1. Linear Subproblem of DAP: Set m(s)A= p(s) e R,[,v]. Determine whether there 

exists a k e B,0’, k ^  0, such that

2, Multilinear Subproblem of DAP: Assume that K is the family of solution vectors 

k of (4.41). Determine whether there exists H' = \hx, hr] , where H' eB/*'",

such that

Polynomials defined by equation (4.41) are called polynomial combinants [Kar., et 

al, 2] and the zero assignability of them provides necessary conditions for the 

solution of the DAP. The solution of the exterior equation (4.42) is a standard 

problem of exterior algebra and it is known as decomposability of multivectors 

[Mar., 1], Note that notions and tools from exterior algebra also play an important 

role in the linear subproblem, since f M{s,k) is generated by the decomposable

multivector m(s)A. This introduces some new system invariants (independent from 

the standard ones defined by the Kronecker theory) and they are considered next.

= k'p{s) = YJk,P,(s) = f ( s) 
i e a , f ( s )  ell[j]

(4.41)

hxA ... hrA = hA=k, k e K (4.42)
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4.6.3 GRASSMAN VECTORS AND PLUCKER MATRICES [Kar., & Gia.,
1]_____________________________________________________________

Let r ( i ) e r r(^), T(s) = [t_l(s), ..., £r(j)], q > r, r a n k ^ jr^ )}  = r and let

X, = ^ w(r(j)). If T(s)= M(s)D(sy' is a RCMFD of T(s), then M(s) is a 

polynomial basis for Xt . If Q(s) is a greatest right divisor of M(s) [Kai., 1] then 

T(s) = M(s)Q(s)D(s) 1, where M(s) is a least degree polynomial basis for Xt 

[For., 1]. A Grassman representative (GR) for Xt is defined by

t(.v)A = (| (.y)A ...A t_r{s) = mx(s)A  A ™ÂS)-Z,(S)I PXs) (4.43)

where z,(5) = det{0(y)j, pt(s) -  det{f)(i,)j are the zero, pole polynomials of T(s)

and ml(s)A = ™\{SY mr(s) cr =
Í p \

\ r J
is also a GR of X  . Since

M(s) is a least degree polynomial basis of Xt , the polynomials of m{s)A are 

coprime and m(s)A will be referred to as a reduced polynomial GR (R -  Rfs] -  GR) 

of Xt . If 5 = deg(w(^)A), then S is the Forney dynamical order [For., 1] of X ,. 

m(s)A may always be expressed as

m(s)A = p(s) = p Q+ sp^ +.. ,+ssp s = Pses

Ps z R
<tx(£+1) (4.44)

where Ps is a basis matrix for m(s)A and e5(j,) = [l, s, ..., ssT. It can be 

readily shown that all R -  ̂ [j] -  GRs of X, differ by only a nonzero scalar factor

a eR. By choosing an m(s)A for which p
t -S

1, a monic R -  H,[.v] -  GR is defined.

Such a GR of Xt is defined as the canonical polynomial Grassman representative 

(C -]f[s]-G i?) of Xt [Kar., & Gia., 1] and shall be denoted by g(Xt). The basis 

matrix Ps of g(Xt) is defined as the Plucker matrix of X( [Kar., & Gia., 1], The

significance of these new types of invariants is emphasised by the following result 

[Kar., & Gia., 1],
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Theorem 4.1: [Kar., & Gia., 1] g(3Ct), or the associated Pliicker matrix Pg is a 

complete (basis free) invariant of Xt .

□

If M(s) q > r, ranka(v){M(.s-)} = r , then M(s) = M(s)Q(s), where M(s) is

a least degree basis and Q(s) is a greatest right divisor of the rows of M(s) and thus

m(5)A= w(5)A-det{ö(i-)} = p(s)-zm(s) 

= Psts{s)-zm{s)
(4.45)

The linear part of the DAP is thus reduced to

f M(s,k) = k'p(s)zm(s) = k ‘Pse(s)zm(s) (4.46)

Proposition 4.2: The zeros of M(s) are fixed zeros of all combinants of m(s)A.

□

The zeros of f M(s,k) which may be freely assigned are those of the combinant 

f^ (s ,k )  = k‘ m(s)A where m(s)A is reduced. Given that the zeros of f^  (s,k) are not 

affected by scaling with constraints, it is assumed that m(s)A= Pses{s).

For the control problems discussed earlier the matrix M(s) has a special structure. 

Thus the matrix coefficient of m(s)A has important properties which stem from the 

properties of the corresponding control problem. A number of Pliicker type 

matrices associated with a linear system are defined below.

(i) For the pair (A, B), b(s)'A denotes the exterior product of the rows of B(s) =

6 n + mP
[s7 -  A, -5] and P(A, B) is the (n +1) 

be called the controllability Pliicker matrix.

V n J
basis matrix of b(s)'A. P(A, B) will

92



4 MEASURES OF CONTROLLABILITY AND OBSERVABILITY DANIEL NANKOO

(ii) For the pair (A, Q , c(s)A denotes the exterior product of the columns of

C(s) = \ s I -A ‘, -C'J' and P(A, Q  is the
in +

V n J
: (n + 1) basis matrix of c(s)A. P(A,

C) will be called the observability Pliicker matrix.

(iii) For the pair (A, B), the restricted input state pencil 

R(s) = s N -  NA eh/"~^x"[,s] may be introduced. If r(s)'* denotes the exterior

product of the rows of R(s), and P r (A, B) is the [n-m  +1) :
f n h
\Jl -  m y

basis matrix

of r(s)'A. then Pr (A, B) may be called the restricted controllability Pliicker matrix.

(iv) For the pair (A, C) the introduction of the restricted state-output pencil 

Q(s) = sM  -  AM  may be made. If q(s)A denotes the exterior product

of the columns of Q(s) and Pq(A, C) is the
f n h

■P)
:(n -p  + \) basis matrix of

i/(.v)A. P q (A, C) will be called the restricted observability Plucker matrix.

The restricted pencils sN -  NA and sM -  AM  provide alternative means for testing 

controllability and observability respectively which has the advantage of being 

independent from state feedback and output injection correspondingly [Kar., 3, 4], 

The general properties of the Plucker matrices for linear systems have been 

addressed [Kar., & Gia., 2], Specifically the link of P(A, B) and P(A, C) 

characterise the pairs (A, B) and (A, C) respectively and it is expected to be linked 

to controllability and observability. This is established in the following result.

Theorem 4.2: [Kar., & Lev., 1] Let P(A, B) and P(A, Q  be the Plucker matrices 

associated with the pairs (A, B) and (A, C) respectively.

(i) (A, B) is controllable if and only if rank{T(^, B)} = n +1

(ii) (A, C) is observable if and only if rank{P(y4, Q} = n + 1

□

The proof of the above result is based on the Kronecker structure of the pencils 

B(s) and C(s) [Kar., & Gia., 2], This allows the development of a corresponding
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result based on the restricted pencils R(s) = sN — NA and Q(s) = sM -  AM  which is 

stated below.

Corollary 4.1: [Kar., & Gia., 2] Let Pr (A, B) and Pq(A, C) be the restricted 

controllability, observability Pliicker matrices respectively of the linear system 

S(A,B,C). The following properties hold true:

(i) Pr (A, B) is invariant under state feedback. Furthermore the pair (A, B) is 

controllable if and only if

rank{P/;(ri,P)} = n -m  + 1 (4.47)

(ii) Pq(A, C) is invariant under output injection. Furthermore the pair (A, C) 

is observable if and only if

rankjPy (yi, C)j = + 1 (4.48)

(iii) The gcd of r(s) 'A defines the polynomial of input-decoupling zeros of 

(A, B).

(iv) The gcd of q(s)A defines the polynomial of output-decoupling zeros of

(A Q .

□

The above result readily follows from the results describing the link between 

Kronecker invariants and Grassman invariants [Kar., & Lev., 1] and the properties 

of the restricted pencils [Kar., 3].

4.6.4 PROJECTIVE MEASURES FOR DISTANCE FROM
UNCONTROLLABILITY/UNOBSERV ABILITY___________________

The previous subsection provides the motivation for the introduction of some new 

measures for evaluating the distance from uncontrollability and unobservability 

which are invariant under compensation and are defined below.
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Definition 4.2: [Kar., & Gia., 2] For the linear system S(A,B,C), consider the 

Plticker matrices P(A, B) and P(A, C) and the restricted versions Pr{A, B) and 

Pq (A, C). The smallest of the singular values of the corresponding matrices are 

denoted by a(A,B), a(A,C), a R(A,B) and a 0(A,C). The respective condition

numbers are denoted by /u(A,B), /.i(A,C), jiiR(A,B) and /uQ{A,C). Then the 

following definitions can be made

(i) a(A,B ), ju(A,B) are projective open-loop measures for controllability.

(ii) cr(A,C), ju(A,C) are projective open-loop measures for observability.

(iii) a R(A,B), jur (A,B) are projective measures for controllability.

(iv) ci c)(A,C), iu q ( A , C ) are projective measures for observability.

□

In the above definition the term projective is used because the measures are defined 

by projective invariants, i.e. the Plücker matrices [Kar., & Già., 1]. The properties 

of these new measures stem from their definition (Plücker matrices corresponding 

to matrix pencils [Kar., & Lev., 1]) and they are summarised below.

Corollary 4.2: For the projective measures the following properties hold true:

(i) a(A,B ) ,/i(/L B) are dependent on state-coordinate and state feedback 

transformations and cr(A,C), /u(A,C) are dependent on state-coordinate and 

output injection.

(ii) crR(A,B), /ur (A,B) are dependent on state-coordinate transformations, 

but are invariant under state feedback.

(iii) a Q(A,C), jUq (A,C) are dependent on state-coordinate transformations, 

but are invariant under output injection.

Proof

The result is readily established for controllability pencils and the analysis carries 

over to observability. Thus under the input, state coordinate transformations and 

state feedback

Q ~'[sl-A -B ] Q
L

0"
R Q-'B(s)T = B'(s) (4.49)
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Using the Binet-Cauchy Theorem [Mar. & Min., 1]

G„(S'W) = G„(0-| )G„(ü(S))G„(r) 

= lô"11' G„ ( B(s))Gn (T)

and thus

e„(s)lP(A',B') = e_n(S)l -\Q-'\P(A,B)G„(T)

or equivalently, if c = \Q 1 , then

P(A’,B') = c-P(A,B)G„(T) (4.50)

The above condition implies that P(A’,B'), P(A, B) are left equivalent under state- 

coordinates and state feedback, and in general it implies variability of singular 

values and the condition numbers.

If state coordinate transformations and any state feedback are taken into 

consideration, then the restriction pencils for (A, B) and (A + EL. B) are the same 

and the effect of state coordinate transformation is expressed by

R'(s) = (sN-NA)Q = R(s)Q (4.51)

and from the Binet-Cauchy theorem

G „(Ä 'W ) = G „(rfV -A M )G „(ß )

from which

B') = ¿ ,J s ) P jA .  B)G„_m(Q)
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or

Pb(A \B ')=  P,(A,B)G„_m(Q) (4.52)

The invariance of <j r (A,B), / i r (A,B) under state feedback and their variability 

under state coordinate transformations is obvious.

□

The above new indicators provide some estimates of distance from 

uncontrollability, unobservability and indicate in a non ambiguous way that some 

measures are affected by feedback (a(A,B ), p{A,B), a(A,C), //(A, C)). but there 

are measures which are feedback invariant such as &R{A,B), p R{A,B), cr()(A,C), 

p a(A,C). These measures are linked with the notions of “almost decoupling zeros”

which have already been introduced [Kar., & Gia., 1] and will be developed further 

next.

4.6.5 THE NOTION OF “ALMOST ZERO” OF A SET OF POLYNOMIALS

Let p,(s) elf[.y], i em, di = deg (y)j be a set of polynomials and let

d = max jii,., i e mj . A polynomial vector jz(s), p(s) e .̂'”[5], may always be 

associated with S', where

PÁS) Po p\ P\

p{s) = PÁS) = Po Pi

_P,ÂS)_ Po Pi" ■■■ p "L
= l o ’ • • 5 Zd. *ÀS) = Pd<iÀ;

0 ... 0 1

(4.43)

where P, and ed(s) eh//+1[i’]. The polynomial v e c to r^ )  is defined as a

vector representative of S' and d = deg pis) will be referred to as the degree of S'.
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The matrix Pj characterises the properties of S  and it is defined as a basis matrix of 

lT. The set S  will be called reduced if the polynomials p,(s) are coprime; otherwise

it will be called nonreduced. Finally S' will be called rnonic if p  =1 (Euclidean

norm).

The coprimeness of a set of polynomials S  may be investigated by using one of the 

standard resultant tests [Bar., 1], The notion of an “almost zero” or an “almost 

common divisor” of S' is discussed next. When s eC , the vector representative^) 

of S' defines a vector analytic function with domain C and codomain C'". The 

norm of p(s) (or the norm of S) is defined as

||p(i )|| = P(s) = pdpdtd{s) (4.44)

where s* is the complex conjugate of s (5  = u ±  jco). Note that if q(s) = s + a  is a 

divisor of S’, then p (-a ) = 0 and thus ||p(-or)| = 0. This observation leads to the 

following definition.

Definition 4.3: [Kar., & Gia., 1] Let S  be a reduced set of polynomials. If s = z, 

s eC , is a local minimum of |/?(,y)|, then z will be called an almost zero (AZ) of S'

and the value of ||/>(z)|| = s will be referred to as the order of the AZ. If s = z is the

global minimum of |/?(.y)|, then z will be called the prime almost zero (PAZ) of 

the set S.

□

Clearly if S  is not reduced, then the set of AZs, which have order s = 0, defines 

the zeros of S. Thus the above definition unifies the notions of exact and 

“approximate” zeros, since both emerge as minima of a norm function of S. The 

order e of an AZ indicates how well z may be considered as an “approximate” 

zero of S. It should be noted however that scaling of the polynomials of S  by a 

cel),, c ^  0, affects the size of the error and thus a better, standardised definition 

of the almost zero may be given by assuming all polynomials in the set are monic.
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Whenever this convention is used, the almost zero takes a unique form and will be 

referred to as the monic almost zero. The computation of AZs is made by using 

numerical optimisation procedures and an algorithm has been given [Kar., et al, 2],

Example 4.1: Let 3* be defined by

s + 1.1
S 2 + 5

1.1 1
0 1

n 1
0

P2e2(s)

A plot of </>(<t ,co) surfaces in the region of the prime AZ is shown in Figure 4.1 and

the corresponding MATLAB code, paz.m can be found in the appendix. The 

numerical search reveals that the PAZ is at z = -1.046 and that its order is s  =

0.005.

Figure 4.1 P lo t o f  th e  su rfa c e \p{4 in  th e  p r im e  re g io n

□
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The properties of the set of AZs of O' are summarised next [Kar., et al, 2], It will be 

shown next that the similarities between exact and almost zeros extend beyond 

their common definition.

Let p(s) = PdeJ/) be a vector representative of the set of polynomials 

0'^pi[s): pf(s) i where Pd e ^"lx(rf+1) and iet k <= R/". The polynomial

function of the parameter vector k defined by [Kar., & Gia., 1]

f{ s ,9 ,k )  = k'Pde¿(s) = Y j kfPiis) (4-45)
/=1

is called a k-polynomial combinant of O' and shall be denoted in short by/(a  k). For 

a set of polynomials O' represented by a basis matrix Pd, the zero assignment 

problem for polynomial combinants can be defined by finding a fee IV" such that 

/(.v, k) = PPjeJs) = a(s), where a(s) e R.[.v] is arbitrary. It is clear that the maximum 

degree of a(s) has to be equal to the degree d of O', and if 

a(s) = a0 + axs+.. .+ads‘' = [a0, a ,, ..., ad ] • ed (5) = a ed (s), then the problem 

is reduced to the solution of the equation

Pdk = a, Pd = Pj 6 a e h,(i/+/) (4.46)

A set O' for which equation (4.45) has a solution for all a e will be called 

completely assignable (CA). Otherwise O' will be referred to as nonassignable 

(NA). An important family of nonassignable sets are those for which there is no 

k eIf"' such that /(.v, k) = c, c eh, • Such sets will be called strongly nonassignable 

(SNA) and they have the additional property that there is no combinant with all its 

zeros at s =  00.
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Proposition 4.3: Let Pd =[pQ, Px, ■■■, Pd = P0,Pj eH ' x(d+l) with 71

= ran !<{/[,} and n  = ran !<{/[,} , where P,j is a basis matrix of a set S  [Kar., & Gia.,

1. S  is completely assignable if and only if n  = d + l.

2. S  is strongly nonassignable if and only if n = m.

□

The significance of almost zeros in the distribution of zeros of polynomial 

combinants is described by the following result [Kar., et al, 2],

Corollary 4.3: Let S  be a strongly nonassignable set and z be the prime AZ of S'. 

For all k <= If" there is always a disk centred at z with a radius R, D[z, A] such that 

it contains at least a zero off(s, K).

□

The above result demonstrates that as far as distribution of zeros of f{s, k), the 

prime AZ acts in a similar way to that of the exact zero. In fact an exact zero 

implies a fixed zero for/fo k), whereas an AZ implies an extension of a fixed point 

to that of a disk. Results for computing the radii of these disks have been given 

[Kar., et al, 2], The above property is demonstrated by the following example.

Example 4.2: For the polynomial set of Example 4.1 the set of combinants is 

defined by

f ( s ,k )  = [k >]
5+1.1
r  +s

k(5 + l.l) + (V + 5) (4.47)

For this special case, the zero assignment is a standard root locus problem. The root 

locus for equation (4.47) is shown in Figure 4.2. The polynomial set has an AZ at z 

= -1.046, and from Figure 4.2, the radius of the minimal disk, which is centred at z 

= -1.046, is found to be Rm(z) = 0.43. The predicted radius has a value Rprea = 0.79 

[Kar., et al, 2],
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4.6.6 ALMOST DECOUPLING ZEROS AND INVARIANT ALMOST
DECOUPLING ZEROS [Kar., & Gia., 1]___________________________

The general results on polynomial vectors will now be used to define notions of 

almost decoupling zeros. For the system S(A, B, C, D) the following polynomial 

vectors are defined

b(s)‘A = G„([i/ -  .4 -5]) = e'„(s)P(A,B) = g ( t (s)' (4.48)

SWA=G„
VL

s i - A
-C

= P(A, C)en (s) = g , c (s) (4.49)

r_{s)‘-=  Gn_m([sN-NA]) = ¿_m(s)PR(A,B) = ¿  (s j  (4.50)

q{Sy = G n_p(sM -A M )  = PQ{A,C)en_p(s) = g> (j) (4.51)

where gA ;j(.v), gA ;;(.v) are referred to as the controllability Grassman

representative (C-GR) and the restricted controllability Grassman representative 

(RC-GR). g (,v), gq (5) are called the observability Grassman representative (O-
— —A,C
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GR) and the restricted observability Grassman representative (RO-GR). The 

polynomial vectors defined above have the following properties.

Proposition 4.4: For the linear system S(A, B, C) the following properties hold true 

[Kar., & Gia., 1]:

(i) The polynomial vectors g ̂  (s), gr (s) have the same gcd, the roots of 

which define the system input decoupling zeros.

(ii) The polynomial vectors g 4C,(S)> § \ c(s) have the same gcd, the roots of 

which define the system output decoupling zeros.

Proof:
tIf (N, B ) is a pair of a left annihilator and a left inverse of B then [Kar., 3]

N_
Rt

[si -  A, -B \ = Q [sI-A ,

0 * o=>

sN -N A  0 
(sB '-B 'A )

N
Bf

[ s i-A , -B] (sBf -  BfA)
sN -N A  0 

0

(4.52)

Condition (4.52) implies that [57-^4, -B] and sN -  NA have the same set of 

nontrivial invariant polynomials and thus the same gcd. The proof for part (ii) 

follows along similar lines.

□

Definition 4.4: [Kar., & Gia., 2] For the linear system S(A, B, C) the following can 

be defined:

(i) The almost zeros of gAB(s), grA (s) are the system almost input

decoupling zeros (SA-IDZ) and invariant almost input decoupling zeros 

(IA-IDZ) correspondingly.

(ii) The almost zeros of g |(,(^), g® (.y) are the system almost output

decoupling zeros (SA-ODZ), and invariant almost output decoupling zeros 

(IA-ODZ) correspondingly.

103



4 MEASURES OF CONTROLLABILITY AND OBSERVABILITY DANIEL NANKOO

□

The location of the almost zeros depends on the properties of the corresponding 

Pliicker matrices. The term invariant above refers to the property of invariance 

under state feedback, grA/j(s), and invariance under output injection, (,(s),

respectively. The above definition clarifies the important notion that although 

decoupling zeros are invariant under feedback, their almost versions are not always 

invariant and invariant almost zeros may be introduced through the restricted 

Grassman representatives g ' s(s) and g'  ̂ (s).

4.7 Se l e c t io n  of  c o n t r o l  in pu t  d ir e c t io n _______

4.7.1 PROBLEM DEFINITION_______________________________________

Some state feedback design techniques are based on dyadic feedback which is 

equivalent to making the system controllable from one input. This problem may be 

seen within the overall framework considered here. In fact it is desired to make the 

system controllable from one input, and the aim is to select such an input which 

also produces the best degree of controllability. The approach considered here is 

based on an input selection that leads to the well conditioning of the controllability 

matrix, and is independent of the system eigenvalues and initial conditions, yet 

dependent on the singular values. The required selection of appropriate input 

directions leads to the minimisation of the condition number of the controllability 

matrix.

Given the system

x = Ax + Bu
y = Cx (4.53)

where the eigenvalues of A are distinct, the mode (T, , uj, v') (eigenvalue, right 

eigenvector and left eigenvector respectively) is uncontrollable if and only if
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/?'= v'ß = 0 

v'í(Á I-A ) = 0
(4.54)

or in matrix form

v;[A ,I-A , -B] = 0 (4.55)

where [ / l , / -  A, -5 ]  is the input-state pencil. If the system described by (4.53) is 

subjected to the transformation

x = Ux (4.56)

where U = V x is the matrix of right eigenvectors and V the matrix of left 

eigenvectors, then the system can be redefined as

X = Ax + ßii 
B = VB

(4.57)

and the system modes are controllable if and only if J31 ^ 0 . The equivalent modal 

controllability matrix is thus defined as

e = B , A B ,  ... A " - 'b ]

i 1
.. j

= í  ! ^  i -  i

i i  1 !

(4.58)

0  is non-singular if and only if for all i /?' * 0 (controllable). Hence, in order for 

the system modes to be controllable, the controllability matrix Q has to be non-
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singular (full rank for multi input case). The controllability matrix of the system 

described by the untransformed set of (4.58) is defined as

Q V-'= Q  = [B, AB, ..., Att~lB] (4.59)

and is a function of Q . For non-singular matrices, the condition number is finite 

(small) and so for matrices that are nearly non-singular, their condition numbers are 

fairly small. For matrices that are nearly singular, their condition numbers tend to 

infinity. The implication made here is that if the controllability matrix is non-

singular (i.e. its condition number is a small finite number), then all the modes are 

controllable. Finally if Q is almost singular (i.e. it has a very high condition 

number), then the modes are uncontrollable. Flence, if a set of inputs can be chosen 

to minimise the condition number of the controllability matrix, and hence influence 

the overall controllability of the modes, the following problem can be formulated.

Problem 4.1: Given the controllability matrix Q(A,B) = [B, A B ,...,A n~'B^, find a 

set of control input directions u such that the condition number of

[Bu,ABu,..., A B u ]  = [bu, Ab„ ,...,A"-'b„] (4.60)

is minimised.

The condition number of a matrix is given by

□

conci (G) =
o p )

^ (G)
(4.61)

where cr(G) and cr(G) are the maximum and minimum singular values of a matrix

respectively. The maximum singular value of a matrix is also the same as the ¡2 

norm, i.e.

<*G) = MIL (4.62)
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In order to facilitate the analysis, the reciprocal of the condition number will be 

used. This changes the optimisation problem from a minimisation approach to a 

maximisation approach. So now the reciprocal of the condition number ranges 

from one (for well conditioned, non-singular matrices) to zero (for badly 

conditioned, singular matrices).

4.7.2 INVESTIGATION OF THE TWO INPUT CASE____________________

Let

Q=[b ,a b ,a 2b ,...,a "~1b ]

B = \b_x b2] A eIVu -
(4.63)

where O is the controllability matrix, A and B are the system matrices and u 

represents two control input directions. Multiplying Q by the input vector u gives

Qu = [Bu, ABu, 1 =

[(b,«, +b2u2),[Ab]ul + Ab2u2),...,(A"~'b\ 

[bx,A b ,, . . . ,A n-xb_x]ux+[b2,Ab2, . . . ,Ä '-x

u, + A" 'b2u2̂j

b2]u2 =

[Q\u\ ^Q i ui \

This problem is first solved for two input directions, u\ and w2 only. This is because 

the condition number has to be optimised. Since this is being done graphically, 

using MATLAB, the condition number cannot be plotted with more than two other 

axes, and in this case, the axes will be the inputs u\ and U2- Hence the condition 

number of the equation below is to be plotted against two input directions,

Q(A,Bu) = u]Qx(A,b]) + u1Q2(A,b2) (4.64)
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So the task is to investigate how the condition number of Q varies for different 

values of the control inputs U\ and u2.

4.7.3 SIMULATION_________________________________________________

The condition number is to be plotted against the two gains of the general input 

directions, U\ and «2 by making use of equation (4.64) above. The task is to 

investigate how the condition number of Q varies for different values of the control 

inputs u\ and U2 - MATLAB code was used to perform this operation which can be 

found in the Appendix. The system matrices (A, B) of a C5A transport aircraft were 

used to demonstrate the task. Conveniently, the B matrix consists of two columns, 

and hence two input directions.

A =

-0.1192 0.58060 4.75800 -1.4640 2.0600 1.6400
-0.4412 -0.04412 -0.10140 1.3430 -0.4941 -0.5637
-5.3660 0.50390 -0.93810 -2.1740 4.6320 3.2380
0.7003 -0.88560 0.14910 -1.2320 4.4520 5.5330

-0.9315 -0.39540 -0.15980 -  0.4563 -6.5790 -2.5920
0.0298 -  0.26970 0.02673 -  0.4245 -0.4385 -7.3640

5  =  10 '

-25.77000 18.64999 -2.4910 -1.8750 -1.1390 -0.3218' 
29.85001 23.45000 -8.58700 -2.8170 -1.8510 -0.2683

The above model is a two-input, sixth-order system [Enns, 1], with stable left hand 

plane eigenvalues. The resulting plot is shown below in Figure 4.3.

Figure 4.3 3D Plot of the reciprocal condition number v the inputs
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The maximum ridge of the plot indicates the input directions at which the 

reciprocal of the condition number of the Q(A,Bu) = u]Q]{A,b]) + u2Q2{A,b2) 

matrix is at its maximum, i.e. when it is well conditioned.

This procedure could be extended to the case where there are more than two inputs 

to deal with, but this would extend the computational method to that of optimising 

several unknowns. The case presented here is for a system with two inputs, and this 

is fairly trivial to solve using the graphical approach.

4.8 Su m m a r y

The review of measures of controllability and observability have shown how 

important this area of control design is, especially when developing control laws 

for large scale systems like flexible space structures. Most of the measures 

reviewed were derived especially for this purpose. The latter part of the chapter 

concentrated on comparing measures of controllability/observability and examining 

how different indicative properties can be used. This was followed by a section 

examining how the structure of the state feedback matrix affects the degree of 

controllability. It was found that not only does the application of state feedback 

affect the degree of controllability, but the rank and skewness of the feedback 

matrix is also a factor in the measure. This was proceeded by a section detailing 

how controllability and observability properties can be determined from Pliicker 

matrices of transfer function matrices. This was linked to the notion of “almost” 

zeros. Finally, a new method of measuring controllability was introduced. This was 

based on selecting inputs in order to improve the conditioning of the controllability 

matrix. However, the method was limited to systems with two inputs, and an 

extension of this work is required to extend the algorithm to a multi-input case. In 

the next chapter, a link will be made between energy consumed and the singular 

values of the output controllability grammians.
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IN PUT-O UTPUT
CONTROLLABILITY AND ENERGY

5.1 In t r o d u c t i o n

Energy conservation (or energy usage minimisation) linking measures of 

controllability has already been considered [Roh, & Par., 1], [Bob, & Lu, 1], [V 

Vel., & Car., 1], Together with the energy of the control signals, the quantitative 

side of the system properties can be studied. Such an area is the output 

controllability, which is the principal topic of this chapter. Quantitative 

controllability can be characterised in terms of the singular values of the 

controllability grammian in relation to the minimal energy needed in control. The 

singular values of the controllability grammian are the indicators of quantitative 

controllability. This concept will be demonstrated later in this chapter. The next 

section deals with the mathematical analysis of output controllability, particularly 

the output controllability grammian, and the link between its singular values and 

the energy required to transfer the output from one position to another. This is 

followed by a practical analysis concerning the importance of energy use in large 

scale systems, and ends with a few examples demonstrating the algorithms 

developed.

5.2 In p u t -o u t p u t  c o n t r o l l a b i l i t y

5.2.1 DEFINING CONDITION FOR INPUT-OUTPUT 
CONTROLLABILITY

The observability, controllability and output disturbability of a system are known 

as qualitative properties. In real life applications, a system is usually disturbed by
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certain unavoidable sources of noise. For such cases it is desirable to eliminate the 

effect that this unwanted noise has on the output. These disturbances are denoted as 

&>(/) in equation (5.1) below. Output disturbability defines the degree to which the

response to a disturbance can be eliminated either totally or partially. Qualitative 

properties are important in the sense that they reveal the capabilities and limitations 

of the system. For example, if a system is state controllable, then there will exist a 

certain input signal which will enable any given initial state of a system to be 

brought to zero in a finite time interval. On the other hand, if a system is not state 

controllable, then it will not be possible for the system initial conditions to be 

brought to zero with any control signal in a finite time.

The following set of equations describe a state space model S(A, B, C, D, H, J)\

x(t) = Ax(t) + Bu{t) + Hco(t) 

y(t) = Cx(t) + Du(t) + Jco(t)
(5.1)

where B elf"*', C e C ' ,  D e \ mxl, H e ^ nxp, J  e \ " ,xp, v e il" ,

w eb /, y  el).'" and m e h / .  (o_(t) describes the disturbances corresponding to the 

state (H) and output (./).

If such a system is output controllable, then there will always exist an input u(t) 

such that an arbitrarily specified final output state t (q ) can be reached from an

arbitrary starting position y(t0) . The study conducted in this chapter is aimed at

finding among all the possible inputs that enables such a transition to be made, a 

particular input that utilises the least amount of energy and subsequently 

investigate the relationship between the minimum energy and the output of the 

controllability grammian, which has already been discussed in Chapter 3. The 

following definition for output controllability applies.
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Definition 5.1: A  system is said to be completely output-controllable over the time 

interval [/o, tj\ if for a given to and tf, any final output can be achieved from 

arbitrary initial conditions of the system at t = to.

□

The concept of output-function controllability has been established by Rosenbrock 

[Ros., 1]. In many industrial processes, control laws are implemented in order to 

make the output vector y  of a plant take a certain form as a function of time. Let a 

system have the (r + m) * (r + m) polynomial system matrix [Ros., 1 ]

P(s)
T(s) U(s) 

-V(s)
(5.2)

so that the m x m transfer function matrix is defined by [Ros., 1]

G(s) = V(s)r'(s)U(s) + W(s) (5.3)

The system is called functionally controllable if it satisfies the following condition. 

Let the McMillan degree 6{G) of G(s) be p. Then given any y  which is initially at 

zero for t < 0, has its /?th derivative Dpy e DR (DR is a set of physical variables that

are continuous [Ros., 1]), and satisfies the boundary condition |ji)/7_y(/)|| < Me" for

some M, a, and all t, there exists a control input u such that with x(0) = 0, u 

generates y.

Theorem 5.1: [Ros., 1] The system described by (5.2) is functionally controllable if 

and only if one of the following holds

(i) |G(i)|*0

(ii) \P(s)\ * 0

□

Theorem 5.1 implies that when G(s) and P(s) have full rank, the system that they 

describe is functionally controllable [Ros., 1],
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5.2.2 CONSIDERATION OF STRICTLY PROPER TIME INVARIANT
LINEAR SYSTEMS____________________________________________

For linear time variant systems, such as those described by (5.1), the system output 

is defined as [Ske., 1]

+  ( { / /  ) tt[l , j {lj ) I j  )

where the output controllability grammian is [Ske., 1]

Goc(t0,tf ) =  J '  C(tf (o - )O r [tf  , o ) C ‘ [tf )dcr

(5.4)

(5.5)

where 5 is the Dirac delta function, and the following theorem is of relevance.

Theorem 5.2: [Ske., 1] The system described by (5.1) is output controllable at t0 if 

equation (5.4) has the property Y^t0, t/ ) > 0 for some tf >t0.

□

However, for strictly proper linear time invariant systems, which are only 

considered in this thesis, the matrices are constants and the output controllability 

grammian of the system becomes [Ske., 1]

Goc(t0,tf ) = c \  P  eA(lí~£)BBeAT{'f ~e)d el C1 = c \  Í eAaBBreA °da C

(5.6)

and the control w(cr) is given as [Ske., 1]
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r i i -1
u(cr) = B 'O ' (tf ,cr^C7 y  <D7 [tf ,o^jCrd<7 y[t f)

= B ‘e C eAaBBTeA ada  C y_{tj) (5-7)

= G ‘\(j)G-oc{tf ,t0) i { t t)

The minimum energy of the control signal which drives the system from y(t0) at 

t = t0 to y(t f ) at t = tf is given by the following [Ske., 1]

E  = i ' u (<j)u(<j)dcr

= £  j z 7 (lf  )  G(¿)GT(e)d e G(a)GT(ct )  £  G(e)Gr(e)d e y(tf  ) j da  

=  Z (*/̂ o c ^ r  ’G)z(̂ /)

(5.8)

Because the system is output controllable, the output controllability grammian, 

G0c{tf,t0), is a symmetric positive definite real matrix. For such a matrix, the 

following theorem states:

Theorem 5.3: [Gan.,1] Given a real, symmetric and positive definite matrix G, 

there always exists a set of orthonormal eigenvectors u\, ui, ■■■, un with 

corresponding eigenvalues T, >A2 > 0 . Setting Q = \ul, u2, ..., un\,

then

Q'GQ = diag(Al, T2,..., X„) or G = Qdiag(lx, A,,..., Xn )Q‘ (5.9)

where the transformation matrix Q satisfies the following
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QQT = i  

Q■' = Qr 
|e |= ± i

□

Furthermore, the quadratic form defined by the matrix A has the following 

property:

Theorem 5.4: [Gan.,1] If a matrix A is a real symmetric and positive definite, then 

the quadratic defined by the matrix satisfies

x T Ax < x (5.10)

where X\ is the largest of the eigenvalues.

□

Assuming that the output controllability grammian of the system has as a set of 

singular values cr, > cr2 >...>crti, then there exists an orthonormal transformation 

U such that

Goc^f’ t0) = U*diag{av a 2, ..., crn}UT (5.11)

and the inverse of which is

Goc{‘f ’ ô) = i/ *diag{f7(1, cr'1, ..., cr;'}UT (5.12)

so equation (5.8) satisfies

E = j ' 'u ‘ (o)u(o)d<T < {M a n)y [tf)y_(lf ) (5.13)

So it can be concluded that the singular values of the output controllability 

grammian of a system are very important measures. When the smallest singular 

value is large, then the energy consumed in transferring the outputs from y(t0) to
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y{lj) will be small. It is shown that the shorter the time available for control 

action, then the greater the energy required to steer the output from y(t0) to y[t f j ,

[Sei.,1], This can also be demonstrated by looking at the singular values of the 

finite time output controllability grammian. Indeed, it will be shown later in the 

MATLAB examples that the shorter the time available (i.e. for a small lj), the 

smaller the singular values of the output controllability grammian. Summarising, 

the following proposition can be made.

Remark 5.1: The singular values of the output controllability Grammian of a linear 

time invariant system are important indicators for the energy needed to transform 

one output to another. In particular, the minimum energy required to transfer from 

one output to the other is reciprocal to the minimal singular value.

5.2.3 CALCULATION OF THE OUTPUT CONTROLLABILITY MATRIX 
IN THE TIME INVARIANT CASE_______________________________

The calculation of the output controllability grammian involves at least mxm 

integrations, and as defined it is the integral of an mxm matrix. This may 

computationally be very expensive when the system is of large dimensions. 

However in the time invariant case, the grammian

can be found in closed form in terms of the solution to a single Lyapunov equation. 

In fact if Z is of the form

□

(5.14)

Z = CYC1 

Y = X - e AlXeA'' 
AX + XA'1' = -B B ‘

(5.15)
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then

dt
= eA'( -A X -X A T)eAT' 

= eAlBBTeAr'

(5.16)

therefore

Y(t) = ^ e A'BBTeAT'dt (5.17)

which proves that the Z matrix defined above is the same as the output 

controllability grammian Gac(0,t). This suggests the following computation

scheme, which only involves the solution of a Lyapunov equation and of a matrix 

exponential:

a) Solve the Lyapunov equation: AX + XA1 = - BB'

b) Substitute X into Goc(0,t) = c{^X -  eAlXeA'' j c 7

Furthermore, the above closed form solution has the following implications: 

a) If A is stable, then limG (0,t) = CYC7
/-»co

Therefore the trajectories of the graphs produced in the next section of the singular 

values of Goc(0,t) as t varies are determined by two factors. The first of these is the

singular values of CBB'C‘ and the second is the singular values of CXC1. Rough 

estimates of the graphs of the singular values cr;(t) of the grammian are given by
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G/(0 = */
(  b. \

— —/

l - e (5.18)

[Ske., 1] where x„ h, are the /-th singular values of CXC‘ and CBB1 C‘ 

respectively.

5.2.4 COMPUTATIONAL PROCEDURE______________________________

Therefore to summarise the computations of the previous section:

1. The output controllability grammian Gac(t0Jt f 'j is the operator involved in the

relationship between the input u(t) and the necessity of it to transfer y(/0) to 

and y(tf). This is described by the following equality

u(a) = GT(o-)GOc(t0,tf ) Xy(tf ) (5.19)

2. The relation between the energy of u(t) and yUj) can be described by

bHI[o,v] = ¿ t f ) '  Goc{t0’t f) Xy{tf) (5-20)

This suggests that the singular values of the grammian are important indicators 

for the energy needed to transfer the output from one state to another.

3. The energy of the input u(t) that transfers y(70) to t (^ ) is bounded according 

to the following inequality

where <Jn is the smallest singular value of Goc[t(]J f \ .

(5.21)

4. The output controllability grammian Goc(0,t) can be calculated as follows
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a) Solve the Lyapunov equation: AX + XA1 -  -B B '

b) Substitute X into Goc(0,t) = c (X  -  eA'XeA'' j c 7

The above steps form a basis from which a suitable structure of MATLAB code 

can be created in order to convert this theory onto a practical arena. This will be 

dealt with in the following section. The Lyapunov approach allows a relaxation in 

the computational burden, and this will clearly be demonstrated once the problem 

of creating the code is tackled.

5.3 M a t l a b  e x a m p l e s ________________________________

5.3.1 COMPUTATIONAL DESCRIPTION_____________________________

As discussed in Section 5.2, the singular values of the output controllability 

grammian can be used as indicators of the energy used to transfer the output of a 

system from one state at time to to another state at time tf. Section 5.2.5 explains 

the link between the solution to a single Lyapunov equation and the computation of 

the grammian (from conditions (5.14) to (5.17)). The code written to undertake the 

computation of the singular values of the output controllability grammian thus 

approaches the problem from a Lyapunov viewpoint. Addressing the issue using 

calculus techniques would involve additional programming and increase 

computational time. The Lyapunov method is a computationally quick and simple 

way of achieving the objective.

The file outcon.m was written to calculate the output controllability grammian of a 

system, and can be seen in the Appendix. The program first asks the user to define 

the system matrices A, B. and C and for the sample time to be specified. The lyap 

command is then used to calculate the Lyapunov solution for the equation 

AX + XA1 = - BB1 . The first for loop creates two arrays. The first consists of the 

singular values of the output controllability grammian in the form of

Goc(0,t) = C ^ X -e A,XeA ' ) c r over the interval from 0 to a specified time I. The
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second array is of the corresponding set of condition numbers (the ratio of the 

largest singular value to the smallest). The remainder of the routine enables the 

singular values and condition numbers to be plotted with respect to time t on two 

separate plots.

If a routine were to be written in order to solve and plot the same problem 

described above using a straight integration approach, it would have to be rather 

lengthy in order to accommodate the integration steps. This would also increase the 

computation time and greater manipulation of the system matrices would be 

required. This is why it was decided to go with the Lyapunov method. There now 

follows some examples to demonstrate the outcon.m code.

5.3.2 EXAMPLES___________________________________________________

The following linear time invariant system is described by the state-space model as:

' - 1 0 - l "1 0 "

X  = 0 - 1 0 X  + 1 0

0 0 - 2 0 1

1 0 1

Singular Values of Output Controllability Grammian

Figure 5.1 Corresponding singular value plot
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2the system is output controllable, because the rank of the matrix [CB CAB CA B] is 

two, which is the same as the number of inputs, i.e. the system has full rank. The 

singular values of the output controllability grammian are plotted against t in 

Figure (5.1) above. The singular values are functions of the final time tf. When tf is 

small, the smallest singular value is also small. So by using equation (5.13), the 

energy needed to transfer the output from one state to another is large.

The corresponding condition number plot is shown in Figure 5.2.

Condition Number of Output Controllability Grammian

Figure 5.2 Corresponding condition number plot

Now consider the same system but with a slightly different input matrix, B, to the 

previous example.

' - 1 0 - f 1 0  '

X  = 0 - 1 0 x  + 1 0

0 0 - 2 0 0. 5

"1 0 f
y = X

0  1 0
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The singular values of the output controllability of the above system are shown in 

Figure 5.3. This system is also output controllable. Flowever, the control will not 

be as easy as in the previous system because more energy is required to transfer the 

same initial state. This is deduced by examining the smallest singular value of the 

output controllability Grammian. It is smaller compared with that of the first 

system.

Singular Values of Output Controllability Grammian

Figure 5.3 Singular value plot with new B matrix

Condition Number of Output Controllability Grammian

Figure 5.4 Condition number plot with new B matrix

122



5 INPUT-OUTPUT CONTROLLABILITY AND ENERGY DANIEL NANKOO

Figures 5.2 and 5.4 are plots of the corresponding condition numbers of the two 

systems. It has already been demonstrated that because the second system has the 

smallest minimum singular value, then the energy expended to transfer the state 

from one point to the other greater than for the first system. The condition number 

can also provide a useful indication. For the first system, the plot of Figure 5.2 

shows a final condition number of about 14.3. Yet for the second system, the final 

condition number is about 50. This shows that the output controllability grammian 

of the first system is better conditioned than that of the second.

5.4 Se l e c t io n  of  c o n t r o l l e r  pl a c e m e n t  ba se d
ON ENERGY CONSIDERATIONS

Consider a large scale linear time invariant system x = Ax , where x e If" is a state 

vector and A is a matrix of large dimension. In order to improve the dynamical 

behaviour of this system, it will be necessary to apply some form of linear state 

feedback control scheme. But this will in turn raise some important issues, such as 

[Chi., et al, 1]

> How many controllers are needed

> Where to place these controllers

> How to design these controllers

Such criteria may be subject to certain desired objective functions and constraints 

that need to be minimised. One of the problems considered in this thesis is how to 

find a feedback gain matrix K such that the closed loop system has a desired 

eigenstructure, and will be dealt with in the following chapters.

The criteria sited above are part of the controller placement problem. Since the 

choices of controller locations for a large scale system are enormous, this problem 

is by no means a trivial one. In recognition of the difficulty in attempting to solve 

this problem analytically, a couple of methodologies will be cited. From Chang and 

Soong [Cha., & Soo., 1], the optimal locations are chosen combinatorially such that
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an energy function is minimised for modal control. This scheme is numerically 

impractical for a system with large number of controller locations to choose from. 

In an approach from Chiang et ah, [Chi., et al., 1], the controller placement 

problem is formulated as an optimisation problem with a single objective function. 

However, in the design of control systems, a designer is usually confronted with 

multiple design objectives and these design objectives are, in general, in conflict 

with each other. There is no existing design method which is optimal with respect 

to all the specified design objectives. Several researchers [Khar., & Rot., 1], [Kri., 

& Stei., 1], [Kyr, & Buch., 1] have formulated the design of control systems as a 

multi-objective optimisation problem, yet they are computationally demanding.

Later, it will be shown that through the application of linear feedback (either state 

or output), the dynamical behaviour of a system will change. So the ensuing 

problem is how to find an appropriate feedback gain matrix such that the resulting 

closed loop system has the desired eigenstructure, subject to the following 

objective functions

> Minimisation of (or a bound on) control effort

r  Minimisation of sensitivity relative to system perturbation caused by the 

closed loop eigenframe

The problem of eigenstructure assignment will be considered and reviewed in 

subsequent chapters, for both the state feedback and output feedback cases. 

Eigenstructure assignment in a linear multivariable system is of vital importance in 

control theory and applications. The specified effect of the controller is achieved by 

assigning a certain set of eigenvalues and an associated set of eigenvectors to the 

closed loop system. In general terms the speed of the response is determined by the 

eigenvalues, whereas the shape of the response is defined by the assigned 

eigenvectors.

Having a computable measure of how well a large scale system can be controlled 

(observed) with any given set of actuators (sensors), with the expected effect of 

component degradation or failures during its operational lifespan reflected in the
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measure, it becomes possible to optimise the choice of component locations so as 

to maximise the performance measure (or minimise detrimental effects). This task 

may be computationally burdensome, yet conceptually it is quite straightforward. A 

constraint that applies in most applications is that component placement will be 

restricted to a discrete set of permissible locations. Structural considerations may 

require that certain components may not be placed in sensitive, unshielded areas, 

which in turn increases the limitations of the placement algorithm. Having the 

optimum set of component locations and the corresponding maximum degree of 

controllability (observability) for a given number of components, it is possible to 

compute the maximum performance measure for several choices of component 

numbers. The choice of how many actuators and sensors to use in the system 

cannot be resolved as an optimisation problem unless additional factors are 

incorporated in the criterion. The degree of controllability or observability will 

always improve with additional components if the best locations are used in each 

case. However, it would be beneficial to observe the trend of the performance 

measure with the number of components. Some locations are more advantageous 

than others. With a realistic restriction that only one component can be placed at 

any one of the allowable locations, it is expected to see diminishing returns in 

performance with increasing number as the more favourable locations are 

occupied. This information should be helpful to the designer in making the trade-

off between improved performance and increased cost, power required, energy 

consumption, etc.

5.5 Su m m a r y ___________________________________

This chapter concludes the part of the thesis that deals with controllability and 

observability issues. In this chapter, the theory of grammians was developed and 

extended in order to provide a link between the singular values of the output 

controllability grammians and the energy consumed in changing the output of a 

system from one position to another. This is essentially a measure of the energy 

needed for control action, thus output controllability is a quantitative measure. The 

quantitative measure can be further developed to be an interaction measure
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between the inputs and outputs, but that would take this research down a different 

path. The solution to a Lyapunov equation was used to solve the output 

controllability grammian at regular time intervals. The resulting singular values and 

condition numbers could then be plotted and systems with different input 

parameters could be compared in order to aid in the selection of input signals 

where the minimum expendable energy is a criteria of the control problem. The 

method described in this chapter has potential for use in applications where the 

conservation of energy is of paramount importance. Such applications are space 

stations where the rationing of energy is always a prioritised concern.

The following chapters of this thesis will concentrate on the role that eigenvalues 

and eigenvectors play in shaping system responses and as indicators of system 

performance.
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EIGENSTRUCTURE ASSIGNMENT: 
BASIC CONCEPTS AND 
BACKGROUND RESULTS

6.1 In t r o d u c t io n

There has been a substantial amount of work performed in the field of control 

theory over the past three decades that examines the control of systems through the 

restructuring of the eigenvalues and eigenvectors, namely eigenstructure 

assignment. More recently, these techniques have been successfully applied to the 

control of flexible structures, especially in the area of enhancing modern flight 

control systems where existing systems are often hampered by the limitations 

exhibited by the classical control methods. The eigenstructure assignment problem 

therefore has a very important role to play in order to guarantee successful 

controller design in the sense of stability and robustness. It must be stated however, 

that eigenstructure assignment can only be carried out if the system is described by 

state space equations, which are made up from physical variables. In this case, it 

makes sense to impose conditions on the eigenframe which is linked to variables 

with a physical significance.

Firstly, the countenance of this thesis exhibits issues concerning controllability and 

observability, so the link between these two qualitative properties and eigenvectors 

has to be established. If the left eigenvector y' is in the left null space of the input 

matrix B, i.e. if y'f? = 0, then the corresponding mode is deemed to be 

uncontrollable. Likewise, if the right eigenvector ut is contained in the right null

space of C, Cw' = 0, then the mode T, that it is associated with is said to be 

unobservable. Therefore, if it is desired to reassign open loop eigenvalues, in order 

to ensure controllability and observability of the respective modes, the designer has 

to take into consideration the above criteria, in the sense of how assignment affects
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the “degrees” of controllability/observability which thus have to be defined in an 

appropriate way.

Another issue of importance is that of robustness. A desired effect of a closed loop 

system is that its response is impervious to modelling errors and external 

disturbances. Close attention has to be paid to sensitivity minimisation and control 

system robustness. Therefore it is necessary to devise an algorithm that reduces the 

sensitivity of the closed loop eigenvalues to such undesired features.

In view of the problems of stability, robustness, controllability and observability 

that arise in an open loop configuration, it may be necessary to reassign, or shift, 

certain modes and reshape the eigenframe of a system by implementing some kind 

of feedback, so as to improve the dynamical response and properties of the system. 

This chapter will start off by examining the background on eigenvalues and 

eigenvectors, especially the relationship with rectilinear motions. The theoretical 

analysis will then go on to examine the notion of transmission subspaces, and the 

association of closed loop eigenvalues with feedback. Finally there will be a 

review of the results in the literature concerned with methods of assigning the 

eigenstructure of a system.

6.2 Ba c k g r o u n d  on  e ig e n v a l u e s  an d
EIGENVECTORS______________________________

6.2.1 RECTILINEAR MOTIONS______________________________________

To begin with, it will be necessary to examine the theory related to rectilinear 

motions in the state space for free motions, which is primarily concerned with the 

internal workings of a linear system. Subspaces of the state space that are of a one 

dimensional nature which have the property of retaining any free motion for every 

t>  0 are in fact the eigenvectors of the dynamic map A. The corresponding 

motions are of the exponential type eMx(0), where X is the eigenvalue related to

the corresponding eigenvector. Such motions are called rectilinear. The ensuing 

problem is thus to restrict the free motion in a one-dimensional subspace with a
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view to finding the pairs of a vector and a frequency satisfying the eigenvalue- 

eigenvector relationship already described in Chapter 2.

The problem of keeping the state trajectory of a linear system within a given 

subspace of the state space is of great importance in a number of control problems. 

This section will concentrate on the restriction of the free motion in a given 

subspace, and will begin with by stating the following theorem.

Theorem 6.1: [Won., 1], [Kar. & Kou., 1] Let S(A, B, C, D) be a linear system

and Y an r-dimensional subspace of the state space X . A necessary and sufficient 

condition for the free motion part of the state trajectory x{t) to be kept within V 

Vr > 0 whenever the state is released from any initial condition x(0) e V is

(i) For every trajectory x(t) sV  there exists another trajectory Y(V) e Y such 

that

Ax(t) = :B_(t) V /> 0 (6.1a)

(ii) A Y e  Y (6.1b)

The subspace Y satisfying the above conditions is called an ̂ -invariant subspace.

□

The above theorem provides links with the fundamental notion of rectilinear 

motions [Kar., 5]. In fact, any point x, eV  may be considered as lying on some 

x ( t ) e Y  for some t = t0. Therefore condition (6.1) implies that Vx, e V  there 

exists Y , e V such that

Ax i = Y , ,  Vx, eV, Y ,  eV

or that

A Y  a  Y (6 .2)
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For one-dimensional subspaces V , the Laplace Transform of the state trajectory 

can be expressed by x(x) = ^(x)x0. If this is substituted into (6.1a), then

S (f ) (s )xn =  ^ ( x ) ^ 4 x 0 +  x 0

which can be rewritten as

-1 + x^(x)
---------------------------------- - — —  X

<*(,) -
= Ax, (6.3)

It is desired for the left hand side of (6.3) to be independent of x, therefore the 

following representation is necessary

- l  + X(Z)(x)
---------------- -—— —  V

m  1

1
s - s 0

(6.4)

Condition (6.3) implies that

Ax0=s0x o (6.5)

where x0 is an eigenvector of A and x0 is the eigenvalue corresponding to x0. The 

free motion of the system starting from x0 is thus

x(7) = l(/)x0e'v,|/ (6.6)

which is referred to as a simple rectilinear motion, or a motion along an 

eigenvector. From the above, the following result can be deduced:

Remark 6.1: One-dimensional ^-invariant subspaces of X  are simply the 

eigenspaces of the state matrix A. Each eigenspace is characterised by a unique 

frequency x0 which is the corresponding eigenvalue.

□
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For the case where the subspaces are of higher dimensions, the above results have 

to be slightly modified. Let V be an r-dimensional ^-invariant subspace and {y,}, 

i = 1, r be a basis for Y. It is possible using condition (6.1b) to find certain 

vectors w, € V , {y,}, / = 1, ..., r such that

Av, =w¡, i = 1, ..., r 
=$ AV = W

(6.7)

whereF = [y,: ... :yr] , W = [wp ... :wr] . Because {y,} is a basis for Y , it is 

possible to say that W = VA , or

AV = VA (6.8)

where A is a restriction matrix of the r x r matrix A having QAQ~] as a 

characteristic decomposition. If a new basis is defined by the transformation 

U = VQ, then

AU = UA (6.9)

The matrix A may have a simple or nonsimple structure including Jordan blocks. 

Therefore, if {w,.} is defined as the characteristic basis of V , then the following 

conditions hold

Au¡ = ÄjUj i = 1, ..., r (6. 10)

or if A has one Jordan block

A u j  = Ä j U j  7 = 1, ..., ¡ a

AUj = A m,- i = ju + \ , . . . , r
(6 . 11)
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The basis {«,.} is unique (unless there are repeated eigenvalues ), and is

spanned by eigenvectors and generalised eigenvectors of the matrix A. The 

subspaces corresponding to the Jordan blocks are called Jordan eigenspaces. The 

above may be summarised by the following result:

Remark 6.2: [Kar., 5] If V is an r-dimensional ^-invariant subspace, there exists a 

uniquely defined decomposition of Y into a direct sum of Jordan eigenspaces, and 

to each of the eigenspaces there corresponds a uniquely defined frequency.

□

The set of frequencies {T,}, taking into account their multiplicity, as this is 

expressed by the dimensions of the Jordan blocks, is called the spectrum of V . If 

the characteristic basis of Y is denoted by {x^, ..., x^j, and if it is assumed

that A is of a simple structure, then the transform of the state trajectory x(.sj e V 

can be expressed as

/=!

For an initial condition

X0 = Z a<*0 
/•=1

condition (6.1b) yields

X{-T + ̂ /(f)}*'o
/=! i=1

(6.12)

(6.13)

(6.14)

It is clear that the concept of rectilinear motions is strongly related to the notion of 

^-invariance, ^-invariance is strongly linked to the study of the problem of 

restricting the free motion of a system inside a subspace Y for any initial
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condition x0 e V . It has been shown that that the concept of a simple rectilinear 

motion is connected with the motion along a simple eigenvector.

So it can be concluded that T-invariant subspaces are associated with the free 

motion behaviour of the system. Such subspaces are also linked to the zero input 

problem whilst the state and output trajectories are rectilinear. This can be 

illustrated in the following diagram

= u

u(t) = 0

x[t) = x[0)eXt 
T

Figure 6.1 Zero input problem

Both x{t) and x(0) exist within the subspace Y . But what happens to the

frequencies and their associated rectilinear motions when u{t) ^ 0 ? This is where

^-invariance is extended to (A, 5)-invariance, and will be dealt with later in this 

chapter.

The above notions have shown that the free motion of a system starting from an 

initial condition is called rectilinear, which is in fact a motion along an 

eigenvector. The frequency corresponding to this motion is called an eigenvalue. 

/1-invariance is a condition for the free motion part of the trajectory to be kept 

within the boundaries of a certain subspace when released from an initial point. 

The definition of A -invariance is given by equation (6.1).
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6.2.2 SUMMARY OF SPECTRAL CHARACTERISATION______________

As a recollection from earlier, an eigenvector ut that corresponds to an eigenvalue 

Xj is a nontrivial solution of

[ v .  -  - A = o (6.18)

The spectral decomposition of A in the case of distinct eigenvalues is of the form

A = UAV 
VA = AV

(6.19)

where U is the matrix of eigenvectors and V = U 1 is the matrix of dual 

eigenvectors and A = diag(Ai). If 9i and 3i' represent the eigenbasis and dual

eigenbasis described by {«,, «,,} and {v,, y„} respectively, then

VU = [ t i l ,  —  , U n ] = I „
I

z ,
(6 .20)

y ' “ j  =  ô >j

Consider an n x n linear multivariable system, described by the following state 

space model

x = Ax + Bu 
y = Cx

The system transfer function matrix is given by

(6 .21)

G(s) = C(sI„-A)-'B (6 .22)
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If U and V satisfy condition (6.19), and A is of simple structure and A = diag(Ai) , 

the transfer function matrix can be expressed in the dyadic form below

As can be seen from equation (6.23), eigenvalues, eigenvectors and dual 

eigenvectors have an important role to play in the formulation of the system 

transfer function.

6.2.3 CONTROLLABILITY AND OBSERVABILITY ISSUES_____________

[Gil., 1] The countenance of this thesis exhibits issues concerning controllability 

and observability, so a link between these two qualitative properties and the 

eigenstructure of a system has to be established. Take the system described by 

equation (6.21), where A has distinct eigenvalues, and the modes of interest are A ,,

u, and v '. The complete mode (T,., w;., y ') is uncontrollable if

(6.23)

0. =v'B = 0 

V;(A,I„-A)= 0
(6.24)

The mode (/I y' ) is unobservable if

V = ClL = 0—i

(V „-A )w , = ()
(6.25)

A mode (/l,., «., y 'j is said to be:

♦ Controllable and observable if /?' ^ 0 and y ^ 0

♦ Controllable and unobservable if 0  ^ 0 and y = 0
—i —i

♦ Uncontrollable and observable if 0 = 0  and y ^  0
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♦ Uncontrollable and unobservable if 0  = 0 and y = 0
—i —i

The conditions 0  = y '5  = 0 and y = Cw, =0 provide the basis for a geometric

characterisation of uncontrollability and unobservability. In fact condition (6.24) 

implies that the left eigenvector y, satisfies the geometric condition

y ,e X ^ B )  = JV (6.26)

Likewise, equation (6.25) implies that the right eigenvector satisfies the geometric 

condition

U jS X r(C) = M  (6.27)

The above geometric conditions are expressed as conditions on spaces and thus 

they may be used to provide measures of the “degree” on controllability and of 

observability by measuring the proximity of the left eigenvector to the J\i space 

and the proximity of the right eigenvector to the M  space. Although 

controllability is invariant under state feedback and observability invariant under 

output injection [Won., 1], [Kai., 1], [Kar., 5], their respective degrees are not. 

Thus in shaping the closed loop eigenframe by feedback, the degree of 

controllability and observability due to positioning of the resulting closed loop 

eigenframes is an important indicator that can be considered as a design parameter.

6.3 F o r c e d  r e c t i l i n e a r  m o t i o n s  a n d  c l o s e d  l o o p
EIGENSTRUCTURE__________________________________

6.3.1 PHYSICAL PROBLEM_________________________________________

In Subsection 6.2.1, the problem of rectilinear motions for zero input conditions 

was examined. An extension of this problem can be stated as follows:
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Problem 6.1: [Kar., 5] Given the system S(A,B,C,D) and a subspace of X ,  V , 

find under what conditions, for any x0 eV  there exists a control input which 

restricts the state trajectory in V , Vt > 0.
□

Here, the case when u(t) * 0 will be looked at. So the question that must be posed 

is if the rectilinear motion problem can be extended to forced systems, i.e. when 

u(t) * 0. In order to examine this, it is necessary to make use of the input-state 

pencil [Kar., 5]

K  -  A, (6.28)

From equation (6.28), the input-state pencil is given by C(s) = [sln -  A, - B], and 

is used to help describe the coupling between the input and the state. Taking into 

consideration the initial condition x(0) = x0, and the system description of

equation (6.21), the problem of forced rectilinear motions can be formulated as 

follows

Problem 6.2: [Kar., 5] Is it possible to find a specific x0 and u(t) such that 

x(t) = eA,t x0, V/ > 0, for some T, e C ?

□

In order to tackle this problem, it is necessary to look back at Section 6.2, where 

the study of d-invariant subspaces and rectilinear motions within them was 

introduced. For the case of forced systems a more general situation arises. Apart 

from the internal mechanism characterised by the A matrix, and the way it is 

coupled to the environment via the output map C, the way in which the outside is 

coupled to the system via the input map B is taken into consideration. Thus the 

initial concept of d-invariance is now extended to (A, /J)-invariance. This can best 

be explained by considering the system S(A.B) and the r-dimensional subspace of 

X , Y , then a necessary and sufficient condition for the trajectory x(t) to remain in 

V for all time t > 0, for an appropriate input vector u(t), when released from a 

general initial condition x(0) = x0 is
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(i) the vector Y_(t) is defined by

xj(t) = Ax(t) + Bu(t) Vt > 0 (6.29)

remains in Y , or equivalently

(ii) AY a  Y  + 3$ (6.30)

where 9i is the range space of the matrix B.

For a 1-dimensional subspace {x0}, the following theorem can be stated:

Theorem 6.2: [Kar., 5] Given the system S(A,B) and the subspace jx 0} of X ,

then for a release condition x0 e{x0}, the trajectory x(t) remains in {x0} for some

appropriate control vector u{t) if and only if xq is an (A, S)-invariant direction 

given by

Ax0 = s0x0 -  Bu0 (6.31)

and the control input u(t) is of the rectilinear type defined by the pair (,s0, w0) as

u(t) = 1(7) exp(5,0t)w0 (6.32)

The ensuing motion in X  will be rectilinear according to the frequency so

x(t) = l(/‘)exp(50/)x0 (6.33)

□

The above theorem implies an arbitrary .Vo when the subspace {x0} has an 

intersection with Oi, i.e. {x0} n  Si * {0}. For the case when {x0} n  Si = {0}, the 1 - 

dimensional (A , 5)-invariant subspaces have a uniquely defined frequency, so. The 

implication of this is that given a specific {x0}, a pair (s0, w0) can be found. This is
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also conversely true. Therefore, unlike the case of ^-invariant subspaces, (A, B)- 

invariant subspaces may not be described in terms of a frequency only, and this is 

associated with a generalised eigenvalue-eigenvector problem.

6.3.2 CHARACTERISATION OF TRANSMISSION SUBSPACE__________

The difference between the frequency and vector correspondence for the two cases 

of A and (A, 5)-invariance can be summarised in the following way. The spectrum 

can uniquely characterise a 1-dimensional /1-invariant subspace {x0} .

Each spectral frequency so has a unique characteristic vector w[.s'0] = x0. For (A, 

5)-invariant cases, each subspace {x0} (for {x0} n $ ^ { 0 } )  is uniquely

characterised by a generalised spectral frequency so, but unlike /1-invariance, there 

is no unique corresponding characteristic vector x0. Any vector xo satisfying

N (s l-A )x 0= 0 
NB = 0

(6.34)

where N  is a basis matrix for Tf,(/?), is (A, /i)-invariant and is uniquely

characterised by so. Flowever, equation (6.34) has more than one solution for xo- In 

order to be able to distinguish between the correspondence of frequencies and 

characteristic subspaces for the two cases of A and (A, /I j-in variance it is necessary 

to introduce concepts relating to the frequency transmission through forced 

systems.

The first concept is the transmission subspace of so, T(.s0) [Kar. & Kou., 1], to be

the subspace spanned by the totality of the solutions to equation (6.31) in xo for the 

same frequency so- The second concept is that the frequency .vq corresponding to 

¿T(s0) is called the frequency content of the frequency subspace.

The concept of J(s0) is quite an important one. In order for the successful 

transmission of a particular frequency so, the initial condition xo and the associated 

trajectory x(/) must remain within J(sfl) . Furthermore, because the transmission
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subspace is uniquely characterised by a frequency, rectilinear motions sustained in 

any subspace of 5’(^0) will enable the transmission of the frequency s'o only. It

must be noted that these statements only hold true for (A, /i)-invariant subspaces 

that do not intersect S i.

Remark 6.3: [Kar. & Kou., 1] An (A, 5)-invariant subspace that intersects with Si 

has part of its spectrum arbitrarily assignable and contains a controllability 

subspace.

□

Proposition 6.1: [Kar. & Kou., 1] All transmission subspaces of a system S(A, B), 

where A and B are of sizes nxn and nxl respectively, for which / > w/2 have an 

intersection with Si . Otherwise, when / < n/2 , then such an intersection generally 

does not exist.

□

Before looking at a way to compute the transmission subspace, it is necessary to 

look at its physical significance with respect to frequency propagation. The 

transmission of the frequency so only takes place in subspaces of the transmission 

subspace S(s0) . Conversely, every subspace of £T(.S'0) only allows the

transmission of the frequency so- This focuses attention solely on the behaviour of 

the state vector without taking into consideration the type of input vector required 

to initialise a frequency transmission. This can be justified by looking at equation

(6.31), where the existence of a solution for xo immediately implies a solution for 

«o, which is indicated by

u0 = B+(s0I -  A)x0 (6.35)

where (B+B - 1 An interesting exercise would be to identify the particular

subspace in the input space U from which S(sn) in X  may be reached. The 

subspace in U is defined as the input transmission subspace, and is denoted by 

Su (,s'0). With this in mind, the following proposition can be made
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Proposition 6.2: [Kar., & Kou., 1] £T((,v0) coincides with the whole input space U

for all frequencies if Si does not intersect with any S(.sn) . If there is an

intersection, then the same applies to all frequencies .Vo again, except for those that 

belong to the controllable part of the spectrum of A.

□

The proof of this once again lies with equation (6.31), from which all vectors in 

S(sQ) for any frequency .Vo which is not an eigenvalue of A are given as

x0 =(s0I  -  A) 1 Bu0 (6.36)

From the above condition, any vector uq leads to a vector x0 e J (s0). But if 

s0 = Aj , /L, e <x(ft) > equation (6.31) becomes

Ax0 = Alx0-B u 0 (6.37)

when this is projected onto the eigenframe of A, the following condition arises

v'Bu 0=0 (6.38)

where v) is the left eigenvector of A corresponding to the eigenvalue Ai . Thus it is 

still possible to use any vector as so long as y '5  = 0, that is ^ (T ,) = U if Aj is an 

uncontrollable mode. If then u0 may not assume values for which

Bu0 € {w, } , where wt is the eigenvector of A that corresponds to T ,.

Equation (6.36) gives the totality of vector solutions for x0, where x0 e5'(j,0) for 

any frequency .Vo such that sq is not in the spectrum of A, i.e. ,v0 £ ct( A ) . Therefore 

5"(s,0) can be expressed as

J(5'o) = range{(^/-ftr1ß} (6.39)
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Remark 6.4: [Kar. & Kou., 1] For the general case, s0 e C, where s0 e a( A), the 

transmission subspace is defined as the x0 vector solutions of (s0N  -  NA)x0 = 0.

□

6.3.3 FEEDBACK AND CLOSED LOOP EIGENVALUES________________

The transmission of the frequency .Vo is generally affected from any input wo in the 

input space U . However it may only be propagated along a direction belonging to 

a given subspace of the output space y . . It is required that such transmissions are

only possible if the state vector is restricted to the transmission subspace J(s(l), 

and that the ensuing trajectories in the input, state and output spaces are all of the 

rectilinear type. The rectilinear motions in U, X , and *?/ all share the same 

frequency xo. The need for an external excitation in the form of a controlled input 

u(t) could be eliminated by deploying suitable feedback connections from either 

the states or the outputs back to the inputs. Therefore applying an appropriate state 

feedback operator Ks, or output feedback operator Ka such that

Ksx o = w0 (6.40)

or

Ko l0=u 0 (6.41)

it is possible to generate the control input u(t) needed to sustain the rectilinear 

motions by closing the loops around the system S in the manner indicated in 

Figure 6.2.

The top right of the diagram shows a state feedback configuration, and the bottom 

part shows an output feedback one. The actual physical interpretations of these 

diagrams do not need an external input, and can be considered as free responding 

systems. The associated problem can be linked to restricting the state vector (and 

output vector) of an autonomous system. So now the vector xq which originally
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was seen as a member of a transmission subspace becomes a member of a closed- 

loop eigenspace. If equations (6.40) and (6.41) are substituted into (6.31), then

(s0I - A - B K x)x0 = 0 (6.42)

(Sq - A - B K oC)x 0 = 0 (6.43)

are obtained. (A + BKS) and (A + BKaC) are the closed-loop state matrices under

state and output feedback respectively. These play a huge part in the problem of 

the placement of closed-loop poles and eigenvectors.

Figure 6.2 Feedback systems
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6.3.4 THE PROBLEM OF EIGENSPACE ASSIGNMENT________________

An adequate way of summarising the above subsection would be to say that 

frequency transmissions along (A, /ij-invariant directions could be self generated 

by the utilisation of an appropriate family of feedback operators connecting the 

states (or outputs) back to the inputs. Therefore rectilinear motions of the type 

exp(50t)x0 stimulated by an input exp(s0t)u0 could be made to be self perpetuating

if the input signal were generated by a combination of the state (or output) 

variables and the action of a feedback operator. To keep things simple, only state 

feedback will be considered, such that Ksx0 = u0.

It has been documented that any motion in a general r-dimensional (A, /^-invariant 

subspace may be broken into a number of simple and higher order rectilinear 

motions, each linked to a specific spectral frequency s0 that take place along the

X  ̂• 5 1̂0: . Such motionsgeneralised eigenspace defined by the vectors

are sustained by inputs that consist of rectilinear type components, of which each 

are associated with one particular frequency s0 . These frequencies take place

■ 5 ÍÍ0, Thereforealong the input characteristic vectors, defined by

the state feedback law of (6.40) may be restated in order to satisfy the conditions of 

r-dimensional (A, /i)-iovariant subspaces as follows

KxxJ0 = uJ0 (6.44)

and in matrix form

K / 0 = U0 (6.45)

The action of the matrix Ks as a feedback operator has already been illustrated in 

Figure 6.2. The diagram shows how the restriction of the state trajectory x(t) e V 

can be achieved by a closed-loop system without the necessity of a control input 

u(t). Thus the concept of (A, 5)-invariance can be extended to (A + BKS)- 

invariance, which leads onto the problem of eigenspace assignment. The
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equivalence between the two can be investigated by first considering a derivation 

of equation (6.31)

A K = K J i< ~ BUo (6-46)

where JR is the Jordan block diagonal canonical form of A R = diagjs0 }. If f/0 

from (6.45) is substituted into (6.46), then

(A + BKX)V0 = V0J R (6.47)

which in turn can be expressed in vector space notation by

(A + BKs)V  c  Y (6.48)

The following theorem states under what circumstances the assignment of an 

eigenspace can be considered:

Theorem 6.3: [Kar., 5] The sufficient and necessary condition for the assignability 

of a given vector as a closed-loop eigenvector is that it belongs to a transmission 

subspace, of which the frequency content designates the corresponding closed loop 

eigenvalue.

□

With this in mind, the general form of the eigenstructure assignment problem can 

be formulated as follows:

Problem 6.3: Given the system S(A,B), find a set of independent vectors 

associated with the frequencies {!,}, i -  1, ..., r, find an appropriate feedback

operator (either Ks for state feedback or K0 for output feedback) that makes the 

frequencies T, closed-loop eigenvalues, and the corresponding closed loop 

eigenvectors while at the same time the resulting eigenframe satisfies some given 

properties.

□
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Basically the point of eigenstructure assignment is to shift certain undesirable 

characteristic frequencies to new locations and to exercise some control over the 

resulting eigenvectors. The latter, in tandem with the input and output maps B and 

C respectively, are vital for the problem of well conditioning controllability and 

observability properties. It is well known that the controllability and observability 

properties have certain invariance properties under feedback/output injection as 

stated below.

Theorem 6.4: [Kai., 1] [Kar., 5] Given the system S(A, B, C, D) , the following 

hold true:

(i) The controllability properties are invariant under state feedback.

(ii) The observability properties are invariant under output injection.

□

The above suggests that state feedback cannot make a controllable system 

uncontrollable, but it can affect the degrees of controllability as demonstrated in 

Chapter 4, when these are suitably defined. However, state feedback can make the 

system unobservable, if the system has zeros and a suitable feedback is selected 

[Kar., 5] [Sha., & Kar., 1], Similar arguments can be made for the output injection. 

Thus the general eigenstructure assignment involves a simultaneous selection of a 

suitable closed loop set of frequencies and a suitable eigenframe that can guarantee 

some additional properties.

In the next section, a review of some of the literature dealing with some of the 

methods formulated to tackle the problem of eigenstructure assignment is made.

6.4 Re v i e w  of  r e s u l t s  on  e ig e n s t r u c t u r e
ASSIGNMENT________________________________________

6.4.1 EARLY RESULTS_____________________________________________

The progression of work done in formulating methods that attempt to solve the 

eigenstructure assignment problem will now be reviewed. The response of a 

control system is largely dependent on its eigenvalues and eigenvectors, namely its
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eigenstructure. The eigenvalue assignment problem was first addressed by 

Wonham [Won., 2] in 1967. The author proved that a system was controllable if 

and only if state feedback could be applied and calculated so as to make the newly 

formed closed loop system have an arbitrary set of self-conjugate scalars as its 

poles. Since this paper, there have been hundreds of publications dedicated to the 

subject of pole placement and its applications, which go on to discuss the 

assignment of eigenvectors as well. A handful have been selected in order to give 

an insight into some of the methodologies that have been developed for both output 

and state feedback cases.

The problem of using eigenvectors and assigning them was first considered by 

Karcanias [Kar., 6], and was used by Shaked and Karcanias [Sha. & Kar., 1] as 

part of the wider issues of model reduction of linear systems. The aim of their work 

was to find a state feedback matrix such that the closed loop system had the 

maximum number of eigenvectors possible in the kernel of the output matrix C. An 

algorithm was developed whereby the maximum number of newly assigned 

eigenvectors, which corresponded to stable modes, lay in the kernel of C. This 

meant that the maximum possible number of stable modes became unobservable. 

This took advantage of the fact that the observability properties of a system are not 

invariant under state feedback. At around the same time, Moore [Moore, 1] 

established the fact that state feedback could be used to assign the closed loop 

system and desired self conjugate set of eigenvalues, if and only if the open loop 

system was controllable. The purpose of his paper was to identify the freedom 

(other than the choice of eigenvalues to be assigned) offered by state feedback. It 

was shown that the freedom available was a choice of one particular set from the 

class of “allowable” sets of closed loop eigenvectors. Porter and D’Azzo [Por. & 

D’Az., 1] presented a set of results for closed loop eigenstructure assignment by 

state feedback in multivariable linear systems which took advantage of the freedom 

available due to the pole placement method by Moore [Moore, 1], The results 

provided a method for the direct computation of the state feedback matrix which 

can be used to assign prescribed Jordan canonical forms, eigenvectors and 

generalised eigenvectors to the plant matrices of closed loop systems. Also it is 

pointed out that even in the case of systems for which the pair (A, B) is 

uncontrollable, certain prescribed eigenvectors of the feedback system (A + BKS)
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can be assigned by state feedback. In the case of systems with asymptotically 

stable but uncontrollable modes, they state that it is often possible to achieve 

significant improvements in the dynamical behaviour of such systems by the 

introduction of appropriate state feedback controllers. The results from this paper 

led to a further development by Porter and D’Azzo [Por. & D’Az., 2], The 

algorithm presented is based along solving

[A + B K '- W y ,  =0 (6.49)

for Ks by arbitrarily assigning a vector col to find the set of eigenvectors u, which 

satisfy the relationship Ks u: = oji . The nature of the computations is simple due to 

the case of the elementary column operations involved.

The early results of eigenstructure assignment described here pioneered further 

investigations into this novel control problem. These early studies opened a new 

channel in control design that steered away from standard classical techniques 

(second order PID controllers) to allow more complex feedback controllers to be 

designed and implemented.

6.4.2 STATE FEEDBACK RESULTS__________________________________

The poles of a system are also the roots of the characteristic equation that gives rise 

to the eigenvalues of a system. Therefore the term “pole-shifting” means the same 

as relocating the eigenvalues of a system to obtain improved behavioural patterns. 

In view of this, Retallack and MacFarlane [Ret. & MacF., 1] derived a 

straightforward state feedback pole-shifting algorithm, which relates the open and 

closed loop characteristic frequencies of multivariable feedback systems to the 

Bode return difference of the system. The useful algorithm developed provided an 

interesting link between state-space and transfer function matrix representations in 

the treatment of pole shifting. Although many algorithms exist for the solution of 

the pole placement problem using state feedback, it can generally be concluded 

that most of them are numerically unstable, yet the paper by Minimis and Paige 

[Min. & Pai., 1] attempted to prove that their algorithm was numerically stable. 

They suggested a direct algorithm for the computation of the linear state feedback
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matrix for multi-input systems such that the resultant closed-loop system matrix 

has specified eigenvalues. This method has the added advantage of an extra degree 

of freedom which can be used in different ways, for example to decrease some 

norm of the feedback matrix and hence the control effort or to improve the 

condition of some eigenvalues of the closed loop matrix. The algorithm devised 

uses unitary transformations for numerical reliability, and its stability results from 

the use of explicit shifting for the allocation of each eigenvalue. Another 

numerically stable and efficient computational algorithm for pole assignment of 

linear multi-input systems was proposed by Petkov et al [Pet. et ah, 1], The 

preliminary stage of the algorithm involves the reduction of the state matrices into 

an orthogonal transformation of the closed loop system matrix into an upper quasi- 

triangular form whose diagonal blocks correspond to the desired poles. The 

computed gain matrix, due to its numerical stability, is also exact for a system with 

slightly perturbed matrices. It works equally well with real and complex, distinct 

and multiple poles and is also applicable to ill-conditioned and high order 

problems.

The problem with using state feedback is that the states of a system are not always 

readily available. This creates the problem of the inability of the designer to shift 

all the states of a system. This is where output feedback has an advantage, where 

the states can be fed back as functions of the output.

6.4.3 OUTPUT FEEDBACK RESULTS________________________________

In 1978, Porter and Bradshaw [Por. & Brad., 1] derived a method for entire 

eigenstructure assignment which was applicable to the design of multivariable 

continuous-time tracking systems incorporating error-actuated dynamic controllers. 

The method was illustrated by designing an error-actuated dynamic controller 

which caused the output of a second order continuous time plant to track a constant 

command input in the presence of an unmeasurable constant disturbance input. The 

feedback matrix Ka is solved using the eigenvalue-eigenvector relationship

[yl + M (C - V h - =  0 (6.50)
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where A, B and C are the state, input and output matrices respectively. X, 

represents the eigenvalues to be assigned, and u, is the corresponding eigenvector 

set of the new system. A new approach was developed by Alexandridis and 

Parakevopoulos [Ale. & Par., 1], which identifies the eigenspaces for the desired 

set of all the closed loop eigenvalues. In order for the desired set of eigenvalues to 

be successfully assigned, necessary and sufficient conditions are established and 

met. The proposed approach is based on the idea of breaking down the problem of 

the output feedback pole assignment in the following two steps. In the first step, an 

expression for K0 is derived which relates the output feedback gain matrix to the 

eigenstructure assignment for the set Ai of the closed loop eigenvectors. In the 

second step, the remaining closed loop eigenvectors are assigned to be in the set A2 

without affecting the assignment of the first set of Ai eigenvalues. The problem of 

determining the free parameters in K0 either to a bilinear system of real algebraic 

equations in the general case or to a linear system is achieved by algebraic 

manipulations. Sobel et al [Sob. et al., 1] also presented a comprehensive use of 

eigenstructure assignment design methodology using output feedback. The 

implementation of their technique is applicable to the design of advanced flight 

control systems. Their method enables the designer to satisfy damping, settling 

time and mode decoupling specifications by directly choosing the eigenvalues and 

eigenvectors. They also tackle the problem of eigenvalue sensitivity, which arises 

due to the incremental change in the eigenvalues as a result of incremental changes 

in the stability of the aircraft and control derivatives. Duan [Duan, 1] proposed a 

simple and effective algorithm for robust pole assignment in multivariable linear 

systems via output feedback. The presented method gives a robust solution in the 

sense that the closed loop eigenvalues are as insensitive as possible to perturbations 

in the system coefficient matrices. The solution to the problem involves three steps, 

the first of which is aimed at trying to find a proper eigenvalue sensitivity index. 

The second step involves stating the freedom of the control system and in the final 

step, the freedom of the system is optimised by minimising the proposed 

eigenvalue sensitivity index. The eigenvalue sensitivity index can be described 

appropriately by the condition number of the eigenvector matrix of the closed loop 

system. The algorithm conveniently includes closed loop eigenvalues as optimising 

parameters and it also possesses stable numerical properties, as well as being fairly
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simple to implement. Kabamba and Longman [Kab. & Long., 1] produced a note 

addressing the problem of the assignability of the eigenvalues of the matrix A + 

BK0C by the choice of the feedback matrix Ka. This mathematical problem 

corresponds to pole assignment in the direct output feedback problem, and by 

proper changes of variables it also represents the pole assignment problem with 

dynamic feedback controllers. The key to the solution presented by the authors is 

the introduction of the concept of local assignability which in loose terms is the 

arbitrary perturbability of the eigenvalues of A + BK0C by the perturbations of K0. 

If n is the order of the system, they show that if A + BK0C has distinct eigenvalues, 

a necessary and sufficient condition for local complete assignability at K0 is that

the matrices C[A + BK0Cj ' be linearly independent for 1 < i < n . In special cases,

this condition can be reduced to known criteria for controllability and 

observability. Although such properties are necessary conditions for assignability, 

the paper also addresses the question of assignability of uncontrollable and 

unobservable systems, both by direct output feedback and dynamic compensation. 

Fletcher et al [Flet. et al., 1] presented a set of necessary and sufficient conditions 

for closed loop eigenvector assignment by output feedback in time invariant linear 

multivariable control systems. The basis of the paper is a simple condition on a 

square matrix, which is necessary and sufficiently adequate for it to be the closed 

loop plant matrix of a given system. It is employed to obtain a condition 

concerning the assignment of an eigenstructure consisting of the eigenvalues with a 

mixture of left and right eigenvectors. Thus their arguments suggest that the 

analysis of the closed loop eigenstructure should be carried out in terms of a 

mixture of left and right eigenvectors.

The disadvantage of the output feedback approach is that it is limited by a lack of 

degree of freedom. The output feedback matrix is restricted by the size of the 

output matrix, C, whereas state feedback is not. The nature of the control problem 

dictates whether state or output feedback is used.

6.4.4 COMBINED STATE AND OUTPUT FEEDBACK APPROACH______

An interesting result was produced by Lovass-Nagy et al [Lov.-N. et al., 1] where 

the output feedback matrix can be calculated from knowledge of the state feedback
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matrix. A method using matrix generalised inverses is developed for the 

computation of the matrix Ks (state feedback) such that the matrix A + BKS has 

prescribed eigenvalues which need satisfy only the condition that a certain number 

of them are distinct and real. A feedback law of the form u - v  + Ksx is used to 

achieve the desired eigenvalue placement. The method does not require the 

solution of sets of non-linear equations or manipulation of polynomial matrices, 

and no knowledge of the eigenvalues and/or the eigenvectors of A is necessary. If 

the computed matrix Ks and the given matrix C satisfy a consistency condition, 

then the output feedback matrix K0 can be found from the relationship KJC -  Ks, 

and the desired eigenvalue placement can be realised by the output feedback law 

u = Y + K0y .

This interesting result allows direct information of the state space to be used to 

calculate an output feedback controller. It is worth further investigation in order to 

check system responses that indicate just how valid the approach is.

6.4.5 APPROACH THAT REDUCES CONTROLLER COMPLEXITY

A note dealing with the use of feedback to approximate the closed loop 

eigenstructure of a system to a prescribed set of values was proposed by Calvo- 

Ramon [Cal.-R., 1] in order to reduce the controller complexity based on 

eigenvalue sensitivity concepts. Output feedback is used to approximate the closed 

loop eigenstructure of the system to a desired set of values. The method is quite 

systematic and the design of a constrained output feedback system from a 

prescribed eigenstructure is well established. Residue analysis (based on left and 

right eigenvectors) is used to estimate the effect on the eigenvalues of constraints 

in the feedback gains. The numerical results show that some eigenvectors can be 

approximately preserved, although eigenvector sensitivities have not been 

considered. The main drawback of this method is that the eigenvector sensitivities 

are estimated, which may lead to inaccurate controller designs as stronger poles 

may be mistakenly overlooked.
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6.4.6 RESULTS OBTAINED FROM A SUBSPACE THEME_______________

The problem with Wonham’s [Won., 2] fundamental state feedback result is that in 

most practical situations the state is not available directly. Kwon and Youn [Kwon 

& Youn, 1] attempted to find a condition under which the system is eigenvalue 

assignable despite the system having incomplete state observation. They presented 

a generalisation of an entire eigenstructure assignment method for linear time- 

invariant multivariable systems, without using assumptions and with the 

eigenvalues of the closed-loop system being distinct or different from any of the 

eigenvalues of the open-loop system. The presented method has sufficient 

conditions that show that the closed loop eigenstructure assignment by output 

feedback is constrained by the requirement that the generalised right and left 

eigenvectors lie in certain subspaces. Following on from the subspace theme, 

Sogaard, Trostmann and Conrad [S-And., et al., 1] presented a method whereby all 

the residuals assignable by state feedback must be characterised geometrically in 

terms of subspaces. These subspaces are defined by the freely selectable closed 

loop eigenvalues. Any desired residual may be selected from these subspaces. The 

applicability of this result is complimented by the fact that basic control design 

objectives like I/O response and robustness can be expressed in terms of the 

residuals.

The approach here stimulates further analysis into the assignable spectra of 

controllability subspaces, and will be studied in greater detail in Chapter 8.

6.4.7 PARAMETRIC STATE FEEDBACK RESULTS____________________

Roppenecker [Rop., 1] derived an explicit parametric expression for the controller 

gain matrix of a linear state-variable feedback system. It is based on a modal 

analysis of the input control vector u(t) under linear state-variable feedback 

conditions. The parameterisation of the class of all state feedback controllers that 

assign a prescribed set of distinct eigenvalues was found in terms of certain 

parameter vectors which are functions of the gain matrix and the new eigenvectors 

to be derived. The same algorithm, provided the prescribed eigenvalues are distinct 

and that the system is completely controllable, can always calculate the controller 

gain matrix. The method for deriving the controller parameters is also applicable to
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the case where all the open-loop eigenvalues are required to be shifted by an 

appropriate control action. Fahmy and O’Reilly [Fah. & O’Re., 1] devised another 

parametric solution for closed-loop eigenstructure assignment via state feedback in 

a linear multivariable system with n states and r control inputs. This was achieved 

by introducing a lemma on the differentiation of the determinant of the matrix

Ir -  Ks{ l lIn -  A) ' B , the class of assignable eigenvectors and generalised

eigenvectors associated with the assigned eigenvalues can be explicitly described 

by a set of free parameter vectors. Fahmy and O’Reilly followed this up in another 

paper [Fah. & O’Re., 2], where a general eigenstructure assignment (EA) problem 

for linear multivariable systems was formulated and solved within the framework 

of the parametric eigenstructure assignment methodology derived earlier [Fah. & 

O’Re., 1]. It was shown that EA control is achievable by means of a family of 

classes of state feedback controllers. The number of classes is equal to the number 

of admissible Jordan forms of the closed loop system. Each class is characterised 

by a specific minimum number of free parameters (degrees of freedom) in the 

parametric form of the feedback gain matrix. The class of EA controllers with the 

greatest value of free parameters is used for the assignment of the eigenstructure. A 

significant advantage of this method occurs when not all of the eigenvalues need to 

be shifted, thus releasing extra free parameters for other design purposes.

6.4.8 PARAMETRIC OUTPUT FEEDBACK RESULTS__________________

There have also been methodologies for the output feedback case that follow the 

parametric approaches devised under state feedback conditions. Fahmy and 

O’Reilly [Fah. & O’Re., 3] proposed the development of an effective multistage 

parametric approach for eigenstructure assignment in linear multivariable systems 

by output feedback control. The sets of closed loop eigenvalues and associated 

eigenvectors are suitably divided into subsets and the entire eigenstructure is 

constructed by parts in two (or more) consecutive stages. The eigenvalue-vector 

subset assigned in a certain stage is intermediately protected, i.e. made invariant 

under output feedback, so that another subset can be assigned in a subsequent stage 

without disturbing the former subset. This allows the subsets of right and left 

eigenvectors to be assigned in separate stages, which relaxes the computational 

algorithm from the orthogonality conditions. The number of effective free
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parameters beyond the eigenvalue assignment is also determined, and the notion of 

redistributing these parameters among the assignable right and left eigenvectors is 

introduced. The approach as a whole is remarkably simple and systematic, and it 

provides much insight into the mechanism of eigenstructure assignment by output 

feedback control. Duan [Duan, 2] introduced another complete parametric 

approach for eigenstructure assignment by decentralised output feedback. By using 

a complete parametric solution of a generalised Sylvester matrix equation, 

parametric representations of both the left and right closed loop eigenvectors and 

generalised eigenvectors and two series of partially free parameter vectors are 

established. The whole problem is therefore divided into two subproblems. The 

first is concerned with the solution of two generalised Sylvester matrix equations, 

and solved by using a complete parametric solution to the generalised Sylvester 

matrix equation. The second subproblem is concerned with the solution of a series 

of real matrices satisfying two sets of linear matrix equations. The obtained 

algorithm does not require any conditions on the closed loop eigenvalues, and 

provides a high number of degrees of design freedom for the eigenstructure 

assignment problem.

From the studies of parametric methods for both state and output feedback cases, it 

is evident that such approaches allow greater flexibility in the eventual controller 

design. Such an advantage reduces computational complexity and is indeed used in 

the new methods devised in Chapter 8.

6.4.9 OTHER APPROACHES________________________________________

To conclude the review, a couple of unconventional assignment methods will be 

looked at. Datta [Dat., 1] proposed a conceptually simple algorithm to assign 

eigenvalues in a Hessenberg matrix. The method is based on the evaluation of a

simple recursive relation. A matrix H = (hjj) is an upper Hessenberg matrix if

hv = 0 whenever i > j  +1. Such a matrix is unreduced if hi * 0 . Datta

considered the problem of replacing the first row of a given unreduced upper 

Hessenberg matrix such that the resulting matrix has the desired spectrum of 

eigenvalues. Murdoch and Shriba considered the same problem [Mur. & Shr., 1], 

however one disadvantage of their method is that the case of the assignment of
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repeated eigenvalues cannot be considered without considerable alterations to the 

algorithm. Yet it does have a couple of advantages, the first of those being that the 

required first row elements are yielded by the solution of a set of linear equations 

for which reliable algorithms exist in program libraries. The second advantage is 

that the effect of each assigned eigenvalue on the solution is easily identified, as 

each is associated with one row of respective equations. Olbrot [Olb., 1] 

considered arbitrary robust eigenvalue placement by static state feedback. The 

author demonstrated that robust eigenvalue placement in the disk of an arbitrary 

radius r centred at -2r, can be achieved by a static state feedback controller for 

systems with so called matched perturbations of uncertain parameters in the state 

coefficient matrix A (i.e. with perturbations of A in the range of the input matrix B). 

This implies that such systems can be robustly stabilised with an arbitrarily fixed 

degree of exponential decay.

The next chapter of will deal with the significance of eigenvectors with a view to 

robust eigenvector assignment. It is well known that due to the presence of 

uncertainty or the variation of parameters, and that a mathematical model of a 

control system is at best an approximation of its corresponding physical problem. 

The analysis of stability robustness or performance robustness has been very 

important for control systems under perturbations. From a practical point of view, 

the analysis of robustness is one of the most important problems that attempts to 

obtain a quantitative measure of the perturbations under which the systems still 

maintain the desired performance. A condition for robustness is the orthogonality 

of the eigenframe, which was examined primarily by Wilkinson [Wil., 1] in 1965. 

Since then, several papers have been dedicated to the issue of assigning the 

eigenstructure to satisfy robustness criteria. Juang, Hong and Wang [Jua., et al., 1] 

based their robust pole assignment method upon the Lyapunov approach [Lan. & 

Tis., 1], where the upper bounds of the perturbations are obtained to retain the 

system eigenvalues located within an arbitrarily chosen region in the complex 

plane. The bounds derived by the proposed method provide useful quantitative 

measures in consideration of both the stability robustness and performance 

robustness of uncertain systems. However Wang and Lin [Wang & Lin, 1] argued 

that the robustness bounds for eigenvalue assignment could be obtained without 

the need to solve the Lyapunov equation. The analysis of the problem of
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eigenvalue assignment is based on some essential properties of the induced norms 

and certain matrix measures, which eliminate the heavy computational burden of 

the Lyapunov approach. However the Lyapunov approach was taken a step further 

by Wilson, Cloutier and Yedavalli [Wil., et al., 1]. They presented a generalised 

eigenstructure assignment procedure for designing a controller which has the best 

eigenstructure achievable while simultaneously maintaining stability robustness to 

time varying parametric variations. The problem was approached by constraining 

the minimisation of the difference between the actual and desired eigenstructure. 

This minimisation is made subject to the constraints of the eigenstructure equation 

and the closed loop Lyapunov equation. A more detailed examination of system 

robustness will be made in Chapter 7.

6.4.10 SUMMARY OF REVIEW______________________________________

Eigenstructure assignment has attracted a lot of attention but it has focussed on a 

standard parameterisation of possible eigenstructures and has addressed mainly the 

robustness of performance using as a test the orthogonality of the eigenframe. 

Other features and implications of the eigenstructure have not been considered 

with the exception of the effect of the eigenstructure on the degrees of 

controllability and observability. In this thesis the above robustness criteria are 

extended by introducing a new property that demonstrates the effect of the 

eigenstructure on the state overshoots of corresponding systems.

Most of the techniques on eigenstructure assignment deal with ways to maximise 

the orthogonality of the eigenframe, which is one particular problem and is indeed 

only one issue within the eigenstructure design problem family. Issues such as the 

best selection of closed loop spectrum that guarantees the most orthogonal solution 

are not sufficiently addressed. In this thesis, this problem is touched on through 

examples (Chapter 7), but overall it remains open.

Eigenstructure assignment algorithms which can handle a multitude of 

performance criteria require more flexible parameterisations. Specifically, what is 

required, are parameterisations tuned to the needs of the specific criteria. The new 

algebraic criterion to be introduced in Chapter 8 seems to be the most flexible since
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it provides an explicit description of the structure of the eigenframe based on the 

properties of the closed loop spectrum. This new form has the potential to study 

problems such as specification of closed loop spectra that can guarantee the most 

orthogonal closed loop eigenstructure as well as selection of eigenstructures with 

the best degrees of controllability and observability. The alternative test based on 

open loop and closed loop spectra is also important since it permits the linking of 

state feedback design to pole mobility using energy considerations or norm of the 

feedback matrix used.

6.5 S u m m a r y  a n d  o p e n  i s s u e s

In light of the literature review that examined numerous methodologies for the 

application of procedures that assign the eigenframe of a system to a new 

predetermined state so as to enhance its performance, it is evident that such 

techniques can be split into the following categories.

*- Effect of the eigenstructure on system performance 

■*- Eigenstructure assigmnent using a state feedback approach 

Eigenstructure assignment using an output feedback approach 

Eigenstructure assignment by parameterising the eigenvectors

Before examining the way the eigenstructure can be changed by certain forms of 

compensation, it is important to examine the role of the eigenstructure on different 

aspects of system performance. The issues that are fundamental to this are:

(i) Eigenstructure and system properties such as controllability, observability,

robustness, stability, etc.

(ii) Measuring the degree of orthogonality of the eigenframe and its effects on

system properties.

(iii) The selection of desirable spectra and its effect on resulting orthogonality.

(iv) Alternative forms for parameterising eigenframes.
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Such properties are very important and have not been paid the appropriate attention 

in the study of eigenstructure assignment problems.

The state feedback approach is centred on the solutions for u, and Ks of equation 

(6.49). Pivotal to the method that uses output feedback is equation (6.50), which is 

used to find solutions for w, and K0. The third procedure is the parametric approach, 

whereby either of the relationships for state or output feedback are used to 

formulate methods that make use of parametric equations to determine solutions 

for the respective feedback matrices and corresponding eigenvectors. Generally, 

feedback has an effect on the closed-loop characteristic polynomial of a system, 

and thus affects stability and system performance. The advantage of state feedback 

is that it presents the designer with extra freedom with which multivariable control 

systems can be successfully applied. However, there are systems in which the 

states are not measurable, and so the use of full state feedback is impractical. 

Therefore eigenstructure assignment by output feedback is used.

It is essential that the solutions obtained are such that the sensitivity of the assigned 

eigenvalues to system modelling discrepancies and external disturbances is 

minimised. In the next chapter it will be shown that a degree of closed loop system 

robustness can be achieved by ensuring that the eigenvector matrix is as orthogonal 

as possible. This presents another hurdle with respect to measuring the 

orthogonality of a matrix, or a frame. The problem of overshoots in the free 

response of a system also appears to have been neglected by those addressing the 

eigenstructure assignment problem. The question of the existence of overshoots 

despite system stability will be dealt with in the next chapter, where a link to the 

nature of the structure of the eigenvector matrix will be proposed.

Another criterion central to the theme of the work carried out in this thesis is the 

requirement to accommodate system controllability and observability. It is desired 

to maintain these two properties when assigning the eigenstructure of a system. As 

discussed earlier, this is achieved by ensuring that the eigenvectors are in the left 

null space of the input matrix B and the right null space of the output matrix C for 

controllability and observability respectively. Therefore the fundamental problem 

to be considered is that given the system matrices A and B and a set

159



6 EIGENSTRUCTURE ASSIGNMENT: BASIC CONCEPTS AND BACKGROUND RESULTS DANIEL NANKOO

A = diag{/Lp A2, AnJ of stable, controllable eigenvalues, find an

appropriate feedback matrix F, and an eigenvector matrix U such that a measure of 

the conditioning, or robustness, is minimised. With regards to feedback, because 

open and closed loop systems have the same restricted input-state pencil (sN-NA), 

the controllability properties of a system are invariant under state feedback, yet the 

observability properties change. Note that when considering the effect of 

eigenframe properties on controllability and observability, the pivotal issue is not 

the exact notion of controllability and observability, but instead it is their 

"degrees," which can be measured in an appropriate way. In the next chapter, 

issues regarding the desired properties of the eigenframes are considered such as 

robustness, orthogonality, skewness of eigenframes and free response overshoots 

will be looked at. To conclude the thesis, a new method for eigenstructure 

assignment involving the parameterisation of minimal bases will be considered, 

developed and tested in Chapter 8.
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SIGNIFICANCE OF 
EIGENVECTORS

7.1 E i g e n v e c t o r s  a n d  r o b u s t n e s s

7.1.1 INTRODUCTION

It has been well documented, as was seen in the review of Section 6.4, that 

eigenstructure assignment (i.e. the reallocation of eigenvalues and eigenvectors) is 

a powerful tool that can be used to shape the dynamic response of a linear time- 

invariant system as desired. The application of either state or output feedback is a 

popular technique for altering the shape of the system response. Such design 

algorithms are usually used to assign the eigenstructure of a closed-loop system to 

a different frame under the assumption of complete controllability. However, the 

eigenstructure should only be assigned by taking into consideration certain 

performance criteria.

One of the most crucial performance measures is that of the closed-loop system 

robustness to parameter variations, external disturbances and system modelling 

errors. A major cause for concern is eigenvalue sensitivity to such perturbations, 

and it is part of the design process to minimise its detrimental effect. Closed-loop 

system robustness is a big concern of control designers, because knowledge of 

system parameters is often limited and rarely match those that occur during normal 

operations. Component ageing is a primary cause of variations in the system, 

which could lead to performance deterioration and possibly even stability 

concerns. Therefore it is important that the eigenstructure to be assigned is formed 

with a view that the resulting system is as robust as possible. Thus it is necessary to 

examine whether there is a link between the frame of eigenvectors and system 

robustness. As mentioned earlier, eigenvectors are not strictly vectors, but are 

directions represented by vectors. The directions form a set, which is referred to as

161



7 THE SIGNIFICANCE OF EIGENVECTORS DANIEL NANKOO

a frame (called an eigenframe). Followed by a short literature review on some of 

the papers that have dealt with robustness and measuring it, the objectives of this 

chapter will be to firstly examine the link between the orthogonality of the 

eigenframe and system robustness. Next comes an analysis and demonstration 

using MATLAB of the presence of overshoots in the state response for 

asymptotically stable systems, and how the response is affected by changes in the 

nature of the eigenvector matrix. The presence of overshoots leads to the new 

notion of strong stability, and this will also be examined in Section 7.2. To 

conclude the chapter, ways to efficiently measure the orthogonality of matrices will 

be looked at.

7.1.2. BACKGROUND RESULTS

One of the earliest attempts at examining the significance of orthogonality of the 

eigenframe for robustness was made by Wilkinson [Wil.,1] in 1965. Wilkinson 

examined certain properties of Hermitian matrices. A matrix A is defined as 

Hermitian if

A t  = A (7.1)

where A 1 denotes the complex conjugate transpose of A. A 1 is frequently 

denoted by AH. Similarly a column vector x is denoted by xH after performing the 

Hermitian operation. The following standard result provides the basis of the 

analysis:

Result 7.1: [Horn & Jon., 1] If a Hermitian matrix has distinct eigenvalues, then its 

eigenvectors satisfy the relationship

x? xj= 0 , i * j  (7.2)

If Xj is normalised so that x"xi = 1, then the matrix X  formed by the columns of 

eigenvectors satisfies
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X HX  = I 

X "  = x ~ l
(7.3)

□

A matrix that meets the above conditions is called a unitary matrix. A real unitary 

matrix is called an orthogonal matrix. Wilkinson goes on to say that there is a link 

between the condition number of the eigenvector matrix and the eigenvalue 

sensitivity problem with a view to maintaining a high degree of robustness. The 

condition number is equal to the inverse of the sensitivity of the perturbations of 

the eigenvalues, which is defined by

where si is the associated sensitivity of the l j eigenvalue and (yt, xi) are the 

corresponding left and right eigenvectors. This leads to the following result.

Result 7.2: [Wil., 1] The sensitivity of the eigenvalue Xi to perturbations in the 

components of the state matrix A, is largely dependent on the magnitude of the 

condition number c, given by

where s, is the sensitivity which is the cosine of the angle between the right and left 

eigenvectors (x, and yl) corresponding to Xj . This is subject to the bound on the 

sensitivities given by

where X  = [x,, x2, ..., xn ] is the matrix of eigenvectors. The aim is to 

compute X such that it is well conditioned, i.e. cond(X) = 1.

(7.4)

(7.5)

maxc,. < cond(A) = ||x||2| x  1 (7.6)

□

Kautsky, Nichols and Van Dooren [Kau., et al, 1] used the above result to 

formulate the robust pole assignment problem as follows
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Problem 7.1: Given (A, B) and A = {/!,, X2, ..., T,,}, find a real feedback 

matrix, F, and a non-singular matrix X  of eigenvectors satisfying

(A + BF)X = XA (7.7)

where A = diagj/l,, A2, ..., T,,}, and such that some measure v of robustness 

of the eigenproblem is optimised.

□

The authors remark that the measure v could be chosen to be v, = IWI , where 

c1 = [c,, c2, ..., c„] is the vector of condition numbers corresponding to the 

selected matrix X  of eigenvectors. Alternatively, the measure v2 could be taken to 

be the overall condition number of the matrix X, described by (7.6). The third 

measure introduced was defined by v3 as w-l/2|Ar-1| , where ¡•||/r denotes the

Frobenius norm, and n is the size of the state matrix A. The final measure reaffirms 

the link between orthogonality of the eigenvector matrix and robustness. The 

conditioning, v2, of the eigenproblem is said to be optimal if and only if the matrix 

X  of normalised eigenvectors x, is unitary. Therefore the aim is to select 

eigenvectors such that ||xj =1 and that the vectors x, are as orthogonal as

possible to each other. v4 involves the angle between a unitary eigenvector x, and 

the selected eigenvector x,, and is denoted by 6i . Thus v4 is given by

(  y /2 /
£  sin’ 0, t/2 So the four measures can be summarised in the following

V J

result:

Definition 7.1: [Kau., Nic., & Van D., 1] The following four measures of 

robustness may be defined as
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(7.8)

v4 = X sin26>-
(

V J

1/2

□

Ibbini and Alawneh [Ibb. & Ala., 1] split the robustness issue into two problems. 

The first was the type of robustness associated with parameter variations (i.e. 

modelling errors, ageing components). They stated that one of the following two 

conditions had to be satisfied in order for the system to be minimally impervious to 

such variations. The first was that the condition number of the closed loop 

eigenvectors matrix has to be minimised. The other condition stated was that the 

closed loop eigenvectors are as close as possible to being individually orthogonal. 

When the eigenvectors are orthonormal, a condition number of one is obtained, 

which indicates that one can either minimise the overall system condition number 

or adjust the closed loop eigenvectors to become as close as possible to being 

individually orthogonal. The second type of robustness problem stated was that 

linked to external disturbances, where a norm constraint has to be satisfied in order 

for this case to be successfully dealt with. Mudge and Patton, [Mud. & Pat., 1], 

through their technique of robust eigenstructure assignment, also point to the fact 

that in order to maximise robustness, it is necessary to have an eigenvector matrix 

whose condition number is small, and with a high degree of orthogonality.

In the next section another aspect of the eigenframe is considered. This is the case 

of linking skewness of the eigenvectors to overshoots in the state trajectory. This 

problem will be examined and demonstrated using MATLAB.
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7.2 Ei g e n v e c t o r s  a n d  o v e r s h o o t s : the  n o t io n  of
STRONG STABILITY___________________________

7.2.1 INTRODUCTION______________________________________________

In this section, the link between overshoots in the free response of the state vector 

and the orthogonality of the eigenvector matrix is to be examined for systems that 

are asymptotically stable. It will be demonstrated using MATLAB that skewed 

frames produce undesired overshoots in the trajectory of the state vectors for some 

initial conditions. This leads to the need for achieving orthogonality of the frames, 

since orthogonal frames do not exhibit overshoots for any initial conditions. The 

latter will also be demonstrated by some examples.

7.2.2 STRONG STABILTY: OVERSHOOTS IN THE FREE RESPONSE

Firstly the problem will be explained in greater detail. The question that arises is 

that assuming the system is stable and overdamped, is it possible to have 

overshoots in the free response of the state trajectory, even for one initial 

condition? If so, then is it possible to characterise the type of state matrices A for 

which such a property holds true?

The free response of a system is given by

x(t) = eA'x(0) (7.9)

With this in mind, the characterisation of state space overshoots can be given by 

the following definition:

Definition 7.2: The autonomous system S(A) defined by x = Ax, A e If"*", 

exhibits state space overshoots if, for at least one initial condition from the sphere 

Sp(0,r) (centred at the origin with radius r), the resulting trajectory x{t) satisfies

> r (7.10)
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for a specific time interval of [to, fi]. It can be said that the system will exhibit no 

overshoots if for all x0 eSp(0,r)and all t, > 0, |x(/)| <r .

□

A system that exhibits no overshoots for all initial conditions and for all spheres 

Sp(0,r) will be called strongly stable. It will be shown later on the property of

strong stability, if it holds, is independent of the radius r. For the sake of 

simplicity, initial conditions within the unit sphere can be considered.

Note that

^  |x(7)|| — 1 < 0 for Vt > 0, indicates that the free response is contained within the 

unit sphere for all t > 0

> ||x(t)||-1 < 0 for Vt > 0, indicates that the free response may touch the 

circumference of the unit sphere for some time

> ||x(7)||-l>0 for some t > te indicates that the free response exceeds the

boundaries of the unit sphere after some time te and thus the system exhibits 

overshoots. This may imply instability, or stability with overshoots.

The following remarks can be made:

Remark 7.1: A system that exhibits no overshoots in the sense of the above 

definition is also stable. Instability clearly implies the existence of overshoots.
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□

Remark 7.2: For linear systems, the radius of the sphere S (0,r) does not affect 

the overshooting property, and it can always be assumed that r = 1.

□

7.2.3 OVERSHOOTS AND SIGN DEFINITENESS______________________

For the system 5(^4), the following properties hold true which characterise the 

absence of overshoots,

Theorem 7.1: The system S(A) has no overshoot for initial conditions originating 

within S (0,1), if and only if the quadratic x1 Ax is negative definite. The system

exhibits overshoots for initial conditions in S (0,1) if x 1 Ax is positive, or sign 

indefinite.

□

Proof 7.1: Consider an initial condition x(0) and the resulting trajectory x(t) , 

which behaves with respect to the surface function F(x) = x,2+...+x„ - r 2 in the 

following way

(i) If the trajectory starts on the surface defined by F(x), then it remains

beneath the surface for all time, or moves beneath the surface of V(x), if 

and only if

cos(x, gradF(x))<0 (7.11)

(ii) If the trajectory starts on the surface defined by F(x), it transgresses the

surface when

cos(x, gradF(x))>0 (7.12)

Note that gradF(x) =
SV(x) SV(x)

dx, Sx..
thus
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(7.13)
2 x' Ax

|x||||grad V(x)\

The sign of cos(x, gradF(x)) is clearly defined by the sign of the quadratic x' Ax , 

which establishes the proof of the result.

□

The above result provides the necessary and sufficient conditions for testing the 

problem of state trajectory overshoots. Before proceeding, the following lemma 

needs to be stated, that clarifies the nature of the associated quadratic.

Lemma 7.1: [Gant., 1] The quadratic x'Ax  is generated by the symmetric part of 

A, where

1 (7.14)

and thus

Q(x, A) = x1 Ax = x Ax (7.15)

□

The above is readily established since if

A = ±(A  + A'), a A - ( a - A ')

where A is symmetric, and A is antisymmetric, then

and
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Q(x, A) = x Ax -  x Ax + x Ax

However,

x ,A x  = —x ,Ax -  — x 'A' x  = —x 'Ax - —x 'Ax  = 0 
-  -  2~ ~ 2~ ~ 2~ ~ 2~ ~

which establishes the result.

Lemma 7.2: [Horn & Jon., 1] The quadratic Q(x,A) = x'Ax  is negative definite if 

and only if A = ~^{A + H') satisfies either of the following conditions:

1. A is negative definite.

2. A has eigenvalues which are all negative.

□

The above result is standard, and no proof is required. However, what must be 

addressed is the characterisation of the properties of A. Such properties may 

guarantee the negative definiteness of A , or equivalently may lead to conditions 

where the negative definiteness is violated. Hence, the following proposition:

Proposition 7.1: If A is unstable, then A is either sign indefinite or positive 

definite.

□

This can be verified by saying that if A is unstable, then there exists initial 

conditions for which the state trajectory x(t) = eAt x(0) leaves the sphere defined

by Sp(0,r). This means that the cosine of the angle of (x, gradF(x)^) is positive

for some x(0) on the sphere. Therefore the quadratic Q(x,A) = x Ax is positive in 

some regions at least, which proves the result.

The following proposition can be made in view of the above:
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Proposition 7.2: A necessary condition for A to be negative definite is that A has 

to be stable.

□

The above follows directly from Proposition 7.1. The next problem to be taken into 

consideration is the characterisation of the special conditions on stable matrices, 

which either guarantee the negative definiteness of A , or violate this condition. 

Firstly it has to be noted that not every stable matrix A eh,"x" has a symmetric part 

that is negative definite. To prove this, it is necessary to demonstrate this property 

with an example.

Example 7.1: Consider the stable matrix

A =
-1
0

4
-3

with eigenvalues at -1 and -3. The symmetric part of A is

II + ÍK II ‘- I  4 ~
+

-1 o i l
2 V 7 2 [ 1-- 0 1 OJ [4  -3 jj

-1 2
2 -3

whose eigenvalues are 0.2 and -4.2. Therefore A is sign indefinite.

□

The above example shows that special conditions are needed to classify the set of 

stable matrices that have a negative definite symmetric part, and those not 

possessing such a property. The following two problems can be formulated from 

the ones presented in this subsection.

Problem 7.2: Determine the conditions which A must satisfy in order that the 

symmetric part A is negative definite.

□
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Problem 7.3: Determine the degree of the skewness of the eigenframe of A that 

lead to violations of the negative definiteness if A , for asymptotically stable state 

matrices, A.

□

The conditions for A that enable it to be defined as a negative definite quadratic 

may be derived by using Sylvester's Theorem for sign definiteness and this can be 

illustrated using the following example.

Example 7.2: Consider a general 2x2 case where

A =
Cl-y j Cli 2

a 2\ a 22

->A'
dj j Cl 21

Cl i2 ¿?22

and the symmetric part is

A =
a, 2  ( ö 12 + 0 2 l )

-(a12+ a21) a.22

ocn a n

a 22

For the above matrix, the Sylvester Theorem conditions [Gant., 1] imply that

ocn <0, a \\ a \2
OC 2 j OC 22

>o

are conditions for negative definiteness i.e.

a,, < 0 and 
1

^ 1 1 ^ 2 2  ^  ( a i2 + 0 2 l )  >  0

or that
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(7.16)

which are nonlinear inequalities.

□

Clearly, these types of conditions can be generalised for the case where n is 

anything.

7.2.4 STRONG STABILITY: QUADRATIC INEQUALITIES_____________

A matrix A e \\n/n that has a symmetric part A which is negative definite will be 

called strongly stable. The notion of strong stability can therefore be related to the 

lack of overshoots in the free response by way of Definition 7.1. Examples 7.1 and

7.2 show that a natural way to parameterise the family of strongly stable matrices 

is to use the Sylvester conditions on A . But this becomes a computational burden 

for dimensions higher than two. The following examples lead to some important 

points.

Example 7.3: Consider the case of a symmetric 3 x 3  matrix

In order for A to be negative definite, the Sylvester conditions [Gant., 1] are

The conditions of (7.17) are clearly quadratic inequalities. These may be generated 

in an algorithmic way from the parameter vector a  , where

a 23

(7.17)

a 1 = \an \ a n a 22 ¡ a l3 a23 c r 33] (7.18)
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□

The first column of a  is based on the [a,,] vector and leads to

a u < 0 (7.19)

Columns two and three are based on [or,, | a n a 22] and corresponds to

a na 22- a 2n >0 (7.20)

The last three columns are based on the overall vector, and is linked to

a ua 22a 33 +2a12a l3a 23 - a na 23 - a 22a f3 - a 33a f2 <0 (7.21)

From the above, it can be seen that there is a clear rule emerging. The question that

arises is whether a rule can be defined that generates these inequalities.

There are a number of problems that need to be tackled in this area. The first of 

which is as follows

Problem 7.4: Is it possible to derive a systematic algorithmic procedure based on 

operations on the parameter vector a  , such that the complete set of quadratic 

inequalities may be generated?

□

Take the example below

Example7.4: Consider a matrix A in the companion form

" 0 i 0 "
A = 0 0 1 eIf3x3 and u0, a ,, a2 > 0

r a o -a, - a 2_

The symmetric part A is
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0 1 a0
1 0 1 -a ,

-a 0 1 -a , -2  a2

Clearly A, = 0, A2 = -1 and A3 = 2a2 - 2 a0. Since A, = 0, A2 < 0 and A3 > 0 if ci2 > 

a0, therefore x Ax is sign indefinite.

□

The above example demonstrates that for certain types of matrices, strong stability 

is not possible. In fact, it can be stated that

Proposition 7.3: If A e R,"x" and is in companion form, then it cannot be negative 

definite for any of the values of the nonunity coefficients.

□

This leads to the conclusion that for certain families of matrices, strong stability is 

not possible. Special types of matrices (i.e. Upper Triangular, Circulant, Toeplitz, 

Hankel, Hessenberg and Tridiagonal) are linked with the selection of special co-

ordinate systems. In certain cases, such matrices may arise naturally. With respect 

to the problem of overshoots considered here, it can only be considered when the 

state variables are natural. Therefore it makes sense to impose constraints on their 

behaviour in order to ensure that the modelled elements of the state matrix do not 

violate certain mathematical conditions that will lead to overshoots, and thus will 

not guarantee strong stability. Carrying out arbitrary co-ordinate transformations 

for the sake of studying strong stability makes little sense, since it is evident that 

strong stability is a property of the original co-ordinate frame and thus the specific, 

natural description of A.

7.2.5 INVESTIGATIONS USING MATLAB____________________________

Problem 7.2 can best be tackled by studying the effect that a skewed eigenvector 

matrix has on the trajectory of the free state response. It has already been suggested 

above that closed-loop robustness is directly related to the orthogonality of the 

eigenframe. To conclude this section, a MATLAB routine will be implemented 

that plots the response of the state trajectory over a finite time length, for a given
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eigenframe. Laios [Lai., 1] has already investigated the significance of the 

eigenframe in relation to the appearance of overshoots, but no explanation for the 

causes of such phenomenon was given. It was stated that if the eigenvector matrix 

was normal (i.e. AAT = A TA) or almost normal, then overshoots are avoided. This 

will be further investigated using MATLAB and in order to begin, it is necessary to 

take a look at the equation that dictates the shape of the free response of the state 

vector

x(t) = eAtx(0) = ^ u leA‘,v‘x(0) (7.22)
i=i

where x(0) represents the initial conditions and for this case are assumed to be on 

a sphere of unity radius, u and y are the right and left eigenvectors, and A is the 

state matrix, with Aj representing the eigenvalues. It also has to be assumed that 

the eigenvectors are of unit length and that the eigenvalues are stable and real. The 

following assertion was made, based on the above assumptions:

Assertion 7.1: I f  the eigenframe is orthogonal or almost orthogonal, and the 

closed-loop eigenvalues are in the left half plane (i.e. stable), then the norm ofxft) 

should be less than unity, i.e. ||x(t)|| <1, V7 . And if  the frame is skewed, then the

norm exceeds unity, i.e. ||x(7)||>l, V/ for some appropriate initial conditions.

□

A proper study of this assertion is undertaken later on. But first it will 

demonstrated through some examples. The MATLAB routine newframe.m was 

used to test whether the free response of the state vector in equation (7.22) x(t) 

crossed the circumference of a circle with unit radius. The three conditions to look 
out for are

> ||x(7)||-1 < 0 for all t > 0 which would indicate that the free response was 

contained within the unit circle

> |x(7)[[ -1  = 0 for all t > 0 which would indicate that the free response lay on the 

circumference of the unit circle
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> pc(i)I -1  > 0 for some t > te which would indicate that the free response 

exceeded the boundaries of the unit circle and thus the presence of overshoots

Example 7.5: In this first example the eigenframe, represented by U for the 

orthogonal set of eigenvectors and A for the eigenvalues, was tested for various 

initial conditions, x(0).

0
-0.1 

-0.2 

-0.3 

-0.4 

£ -0 .5  

-0.6 

-0.7 

-0.8 

-0.9 

-1
0 2 4 6 8 10

Time (seconds)

I1
1\
\
\

\
V

\
\ \

U =
-0.2691
0.9620

-0.0463

-0.6798 0.6822 
-0.1557 0.2243 
0.7167 0.6959

A = [-1 -2 -3] x(0) = [0 1 0]

U is orthogonal

Time (seconds)

U =
-0.2691
0.9620

-0.0463

-0.6798 0.6822 
-0.1557 0.2243 
0.7167 0.6959

A = [-1 -2 -3] x(0) = [0 0 1]

U is orthogonal

1
A1
4
. i
■ \
. A  . .

\
" À

\.X
---------1--- -------------- ■...... .. -■---------

0 2 4 6 8 10
Time (seconds)

-0.2691 -0.6798 0.6822
U = 0.9620 -0.1557 0.2243

-0.0463 0.7167 0.6959

A = '-1 -2 -3]
x(0) = [Vd5 VÖ5 O’

U is orthogonal
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o
-0.1 

-0.2 

-0.3 

-0.4 

e -o .5  

-0.6 

-0.7 

-0.8 

-0.9 

-1
0 2 4 6 8 10

Time (seconds)

1

1

i

i
i

i
J

1

■ \

. \
\\

-0.2691 -0.6798
¡7 = 0.9620 -0.1557

-0.0463 0.7167

A - -2 -3]

x(0) = [VO5 0 4Ö.Ï

0.6822
0.2243
0.6959

U is orthogonal

U =
-0.2691
0.9620

-0.0463

-0.6798
-0.1557
0.7167

0.6822
0.2243
0.6959

A = [-1 -2 -3] 

x(0) = [o VÖ5 405

U is orthogonal

0.2 

0

-0.2 

e -o .4  

-0.6 

-0.8 

-1
0 2 4 6 8 10

Time (seconds)

—0.2691 -0.6798
u  = 0.9620 -0.1557

-0.0463 0.7167

A = -1 -2 -3]

0.6822
0.2243
0.6959

U is orthogonal

Using a standard grammian test for orthogonality, "[/*"£/', which will be

discussed in Section 7.3, it was deduced that the eigenvector matrix was orthogonal 

as the aforementioned index was equal to 1. The condition number of u was also 

equal to 1.
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As can be seen from the response above, the norm of the state vector for all of the 

initial conditions does not transgress 0, i.e. it remains within the unit circle. 

Therefore the response in the time domain of a system with this type of orthogonal 

eigenframe does not contain overshoots. To explore this further, an eigenvector 

matrix that is skewed is considered.

□

Example 7.6: These responses were obtained for an eigenframe with a skewed set 

of eigenvectors

Time (seconds)

U =
-0.2691
0.9620

4

-0.6798 0.6822 
-0.1557 0.2243 
0.7167 0.6959

A = [-1 -2 -3]x(0) = [0 1 0] 

U is skewed

0
-0.1 

-0.2 

-0.3 

-0.4 

Ü-0.5 

-0.6 

-0.7 

-0.8 

-0.9 

-1
0 2 4 6 8 10

Time (seconds)

1
i
1  ........  i .\\X\

-0.2691 -0.6798 0.6822"
u  = 0.9620 -0.1557 0.2243

4 0.7167 0.6959

A = -1 -2 I u>
§

"o
' II [1 0

U is skewed

Time (seconds)

-0.2691 -0.6798 0.6822"
u = 0.9620 -0.1557 0.2243

4 0.7167 0.6959

A = -1 -2 i | u
>i II o o

U is skewed
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-0.2691 -0.6798 0.6822
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-1 -2 -3]
= [V05 VÖ5 O'x (0 )

U is skewed
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-0.2 
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U =
-0.2691
0.9620

4

-0.6798 0.6822 
-0.1557 0.2243 
0.7167 0.6959

A = [-1 -2 -3] 

x(0) = [V05 0 VÖ5

U is skewed

A

1 \
\\\\\\

\...\.
\
\

0 2 4 6 8 10
Time (seconds)

-0.2691 -0.6798 0.6822
0.9620 -0.1557 0.2243

4 0.7167 0.6959

-1 -2 -3]
x(0) = [O VÖ5 VÖ5 

U is skewed

0.2 

0

-0.2 

£ -0 .4  

-0.6 

-0.8 

-1
0 2 4 6 8 10

Time (seconds)

\
V. \..\\\\\\

\

U =
0.2691 -0.6798 0.6822

0.9620 -0.1557 0.2243
4 0.7167 0.6959

- 1 -2 -3]

1/ 1/ 1
y v 3 A /3  / (ß _

U is skewed
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From Proposition 7.1, the resulting A matrix is sign indefinite. In this case U is 

skewed, which was indicated by the fact that was close to 0, and that the

condition number of u was 22. As can be seen from the above responses, the state 

trajectory does contain overshoots for some of the initial conditions. For the initial 

conditions that do not have overshoots, the settling time for the responses are 

longer than those of Example 7.3.

□

Example 7.7: Now take a practical example [Mud. & Pat., 1], The state matrix of a 

model of a remotely piloted aircraft flying at a constant airspeed of 33 ms'1 is

-0.277 0 32.9 9.81 0
-0.1033 -8.525 3.75 0 0
0.3649 0 -6.639 0 0

0 1 0 0 0
0 0 1 0 0

where the state vector is

V Sideslip

P Roll rate
r = Yaw rate

<t> Bank angle

V_ Yaw angle

Sideslip is the angle between the plane of symmetry and the direction of motion of 

the craft. The roll rate is the rate at which the aircraft rotates around its longitudinal 

axis. The yaw rate and angle are concerned with rotational or oscillatory movement 

of the aircraft about a vertical axis. The bank angle is the angle about the 

longitudinal axis for the purpose of turning. The corresponding matrix of 

eigenvectors is
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0 0.7957 -0.3486 0.4708 0.9983
0 0.0099 -0.9294 -0.8637 0.0070
0 0.0442 0.0588 -0.1412 0.0459
0 -0.1320 0.1056 0.1099 0.0055
1 -0.5894 -0.0067 0.0180 0.0356

The above eigenvector matrix is highly skewed, indeed the index of orthogonality, 

is 8.541xl0‘4. The condition number is 16.43, and thus the matrix is ill-

conditioned. The following trajectories was obtained with the closed-loop 

eigenvalues given as A = [-4, -1.5, -0.5, -1.75, -l]

1

0.8 

0.6 

0.4 

0.2 

e  o 

-0.2 

-0.4 

-0,6 

-0.8 

-1
0 2 4 6 8 10

Time (seconds)

. iV -
I \■ \ 
1 \
f  \
; \ 

\

\\
—

\
s \

—

'0 0.7957 -0.3486 0.4708 0.9983
0 0.0099 -0.9294 -0.8637 0.0070

U = 0 0.0442 0.0588 -0.1412 0.0459
0 -0.1320 0.1056 0.1099 0.0055
1 -0.5894 -0.0067 0.0180 0.0356

A = '-4 -1.5 - 0.5 -1.75 -1]
x(0) = [o 0 0 1 0]

U is highly skewed

"0 0.7957 -0.3486 0.4708 0.9983
0 0.0099 -0.9294 -0.8637 0.0070

U = 0 0.0442 0.0588 -0.1412 0.0459
0 -0.1320 0.1056 0.1099 0.0055
1 -0.5894 -0.0067 0.0180 0.0356

1II<

-1.5 - 0.5 -1.75 -1]

x(0) = X/s Xß X/5 Xfs X/s
U is highly skewed

As can be seen, due to the highly skewed nature of the eigenvectors, the 

trajectories for both initial conditions exhibit overshoots. In an attempt to eliminate 

these undesired overshoots, it will be necessary for the designer to implement a 

feedback controller in order to reassign the eigenvector matrix to a more
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orthogonal state. If the resulting feedback system were to have as its eigenvector 

frame

1 0 0 0 0
0 1 -0.9294 -0.8637 0.0070
0 0.0442 1 -0.1412 0.0459
0 -0.1320 0.1056 1 0.0055
1 -0.5894 -0.0067 0.0180 1

where the orthogonality index, "£/*"£/' is 0.0997 and the condition number is 

4.48, the following trajectories for the same initial conditions used above

i.1
1.11i. i\1. 1\\

\

\
■ __

0 2 4 6 8 10
Time (seconds)

"1 0 0 0 0
0 1 -0.9294 -0.8637 0.0070

u  = 0 0.0442 1 -0.1412 0.0459
0 -0.1320 0.1056 1 0.0055
1 -0.5894 -0.0067 0.0180 1

A = -4, -1.5, -0.5, -1.75, -1]
x(0) = [0 0 0 1 0]

U is less skewed

1
■

\
\

\  I
..... . ............ .........................

---- —

0 2 4 6 8 10
Time (seconds)

4 0 0 0 0
0 1 -0.9294 -0.8637 0.0070
0 0.0442 1 -0.1412 0.0459
0 -0.1320 0.1056 1 0.0055
1 -0.5894 -0.0067 0.0180 1

A = [-4, -1.5, -0.5, -1.75, - l]

U is less skewed

Clearly, the higher index of orthogonality has reduced the overshoot problem at the 

initial part of both of the responses.

□
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From all of the examples above, it can be deduced that the orthogonality of the 

eigenvector matrix is crucial to the free response of a system. In fact, the above 

examples demonstrate that there is a strong link between skewness of the 

eigenframes and the presence of overshoots in the state vector of overdamped 

systems. If the aim of the designer is to eliminate overshoots in the state vector, 

then a criteria for this to be achieved is clearly that the eigenframe has to be 

orthogonal, or as close to orthogonality as possible. Therefore it is highly necessary 

for there to be tests for orthogonality, not simply as a binary concept (i.e. 

orthogonal or not), but as a measure of the distance of a frame from being 

orthogonal. Such tests will be examined in the next section.
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7.3 O r t h o g o n a l i t y  o f  e i g e n f r a m e s ________________

7.3.1 STANDARD MEASURES_______________________________________

If the inner product of two vectors is 0, then they are orthogonal. For real matrices, 

the standard binary test for orthogonality is the condition UUT = I. So if the product 

of a matrix and its transpose is an identity matrix, then it is said to be orthogonal. 

Another indication of whether a matrix is orthogonal or not is the condition 

number, which is the ratio of the largest to the smallest of the singular values. If the 

matrix is well conditioned (i.e. the condition number is 1), then the matrix is also 

said to be orthogonal. However, despite these measures, simply saying whether a 

frame is orthogonal or not, is not enough. Therefore what is needed is a measure or 

an index that indicates how far a frame is from being orthogonal.

A standard way of achieving this is to use the grammian approach. To recap from 

earlier in the thesis, let [x,, x2, ..., xn ] e h,"x" be a set of vectors. The matrix

(Ti A i) (* ,-x 2) . • ( ï r ï» )
U 2 A 2) • e r r x" (7.23)

(Xm-X2) ■• (*»•*»)_
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is called the gram matrix [Gant., 1] of the vectors [x,, x2, ..., i„] and the

determinant |G| = G(x,, x 2, ..., x„) is called the grammian of the vector

matrix. Grammians have several characteristic properties. The grammian of 

linearly independent vectors is positive, and that of linearly dependent vectors is 

zero. Negative grammians do not exist, so for arbitrary vectors

[xi, x2, ..., x„]

G >0 (7.24)

If the vectors [x,, x2, ..., x„] are of unit length, the following inequality 

always holds true

|G| < 1 (7.25)

Grammians also provide a useful way of indicating the distance between complete 

orthogonality and any degree of skewness. The simple steps that make up this 

procedure are as follows

> Define the matrix, X

> Normalise the columns of the matrix

> Multiply the resultant matrix by its transpose

> Find the determinant

> As the determinant tends to one, then the original matrix X  becomes more 

orthogonal

> As the determinant approaches zero, then A becomes more skewed.

The MATLAB routine that executes this measure is called orthgtst.m, and will be 

symbolised by . Later in this section, the measures mentioned above will

be compared, not only with each other, but to a new method for identifying the 

distance from orthogonality, which follows.

185



7 THE SIGNIFICANCE OF EIGENVECTORS DANIEL NANKOO

7.3.2 NEW ORTHOGONALITY INDEX BASED ON DISTANCE_________

In this section, a new measure for determining the distance that a matrix is from 

orthogonality will be developed. This is closely related to the distances of matrices 

from being symmetric and normal. So in tandem with finding the distance from 

orthogonality, distances from the set of symmetric and normal matrices will also be 

found.

Given a matrix X  e l f w i t h  normalised columns, i.e. if X  = [x,, x2, ..., x„] 

and ||x, 11 = 1, the aim is to investigate a fundamental distance problem which plays 

a key role in this study.

Problem 7.5: Find the distance of X  from the set of n x  n orthogonal matrices.

□

A eh,"x" is symmetric if A = A ' , orthogonal if A A' = A'A = In, and normal if

AAl = A*A . The above problems will be considered here with the objective to 

developing computational tests for such distances, where it will be necessary to use 

the Euclidean norm for a matrix A e II"*", defined by

11/2
E h  |2 ={trace( ^ ') } ' /2 (7-26)i,i=\ I

Consider first Problem 7.5. If U is any orthogonal matrix, i.e. UU' = /„ , then 

finding the distance of X  from the set of U orthogonal matrices implies solving a 

minimisation problem of the form

min|X-C/|| = min [tr(XT ~ U T)(X - U ) f 2 (7.27)

or equivalently minimising
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X - V f r = t r { { X ' - U ' \ X - U ) )

= tr{X,X  + U,U-2trX'U}
(7.28)

Given that UU' = /„ and the columns of X  are of unit length, then 

tr{X' X ) = tr(U'U) = n . So equation (7.28) leads to

\ \X -UfF =[tr(XTX) + ,r(UTU )-2 ,r (XUT)) ^

= 2n-2tr[XU i )

The function ||X-T/|| is minimised when the function tr(X'U') is maximised, 

subject to UU' = /„. If

x =U p x2, ..., x„

u =U p u2, ■. . ,  U,K
(7.30)

then

tr^X'U^ = tr{U' X̂ j = uxx x +u 2X2+...+«'i„ (7.31)

subject to the following conditions [Horn & Jon., 1]

¡¿¡Ui = 1, u,Uj= 0, i ^ j (7.32)

From the above, it is clear that the following optimisation problem has to be 

solved:

Problem 7.6: Maximise the function

f x {U) = uxx x+u2 X  +• • •+«!, (7.33)
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subject to the constraints of (7.32).

□

Firstly the Lagrangian operator has to be defined

gx (U,X) = uxx  i +w'x2+...+w',x„

+ ¿11 («| Ul -  !) + ¿22 (—2 M2 - 1)+- • • + ( « 1  U„ - 1) (7-34)

In light of the fact that u, u j = 0 also implies that uj ut = 0, it can be deduced that

Aj = A ji, because corresponding Lagrangian coefficients satisfy a symmetry

condition. The conditions that must be satisfied in order for an extremal to exist are 

derived from

c&
V 7  = 0, i = l, 2, . . . ,n
ou¡

—  = 0-»«;«,- =1, z = l, 2, ..., n (7.35)

^ s- = 0->u‘iu i = 0, Vz> j  dXi} - ‘- J ’

These conditions are a precursor to the following set

— x i + 2X]i ui + 2, h  — 0

i (7.36)

~T" = *« + 2¿m, —n + X ¿«7 —7 = 0
j*i

The assembly of conditions (7.35) and (7.36) leads to

188



7 THE SIGNIFICANCE OF EIGENVECTORS DANIEL NANKOO

2ÂU Â\2 K
Â2I 2Ä22 ^2 n U = 0 (7.37)

Kx Ani 2

and so it can be stated that:

Proposition 7.4: The extremals of the function f x (U) = tr(X'U), where 

UU‘ = /„, are defined by those U corresponding to the factorisation of Aas

X  = -A U (7.38)

where A is a symmetric matrix and U is an orthogonal matrix.

□

The fact that the extremals correspond to a maximum can be defended by the 

following arguments. Let the singular value decomposition of Abe

X  = VZW', s  = diag{cr,, cr2, ..., cr„} (7.39)

Then

tr(X,U) = tr^VI.W,) u }  (7.40)

or

tr(X'U) = tr{WZV'U} = tr fcVUW]  (7.41)

The matrix Q=V'UW is orthogonal since each of the matrices V. U and W are 

also orthogonal. Thus each of the main diagonal entries of these matrices has a 

modulus of 1, say qn =rn  \rt\ = 1, t = 1, 2,..., n . \ î k  = rank(A), then

tr(Eg) = a xrx + <j2r2 +.. .+akrk (7.42)
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The largest value of tr{lLQ) is a, + a 2+...+ak = tr(Z ). So U can be chosen such 

that

Q = VIUW=I„ 
U = VW'

(7.43)

The above analysis leads to

Proposition 7.5: The function f x (U) = tr(X'U), where UU' = /„ , always has a

maximum. If X  = VZW' is the singular value decomposition of X, then the 

maximum is obtained for U = VW'.

□

It is now possible to return to (7.37), which in fact is the polar decomposition of 

the given matrix X. In fact,

Lemma 7.3: [Horn & Jon., 1] Let A eC'"x", m < n , thenH may be factorised as

A = PU (7.44)

where P Gc'"x'" ¡s positive semidefinite, rank P = rank A, and U e(7"x" has 

orthonormal rows (i.e. UU* = I).  P is always uniquely defined as

P = (AA*),/2 (7.45)

and U is uniquely determined when A has rank m. For the case when m = n, and A 

is nonsingular, then U can be determined by

U = P~lA (7.46)

□

using the above result, the polar decomposition of X  e If"*'1 can be expressed as
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x  = ( x x ' ) ' l2( x x iy '12 X  

= -A  U
(7.47)

where

A = - (X X ‘)'/2, U = (XX'y ' /2X  (7.48)

and it can be readily verified that

(i) A is symmetric

(ii) U is orthogonal

Using the above expressions, the distance may be computed as follows

min||A -  Uf2 =2 n -  2 tr{XU'}

= 2 n -2 tr{xX '(X X 'y '12} (7.49)

- 2 n -  2 /r |(X f ' )'/2 j

Given that if <x, are the singular values of X, then

tr{(XX')} = cr2l +(j22+...+o-l=n (7.50)

the following theorem can be stated.

Theorem 7.2: Let X  eh."x" be a unit normalised matrix (i.e. ||x,|| = 1, i — 1, 2, ..., 

n) and let U eh,”x" be an arbitrary orthogonal matrix (U'U = /„). If the singular 

decomposition of Xis as in (7.39)

X  = VZtV',Z = d iagfo, cr2, ..., a,,}

then
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m in |X - t/ |,  = 2n-2(a,  +cr,+...+cr ) (7.51)
uu'=r 112 v 2

and the orthogonal matrix which is closest to X  is defined by

U = VW' = ( X X 'Y /2 X  (7.52)

□

Note that the matrix X  = [xl9 ..., x„] is assumed to have columns with unit 

length i.e. x |x(. = 1, i = 1, ..., n. Thus

Clearly

X ' X

X¡X, X, x2 ... X|XH
X2Xj x 'x 2 ... x2x„

1 t IXX, X X, ... X X—n — 1 —77 —2 • * *  —n —n

tr[X' X̂ j = x,x, + x)x2+.. .+x;,x„ = n

However, it has also been shown that

tr(X' X̂ j = cr] +cr2+. ,.+cr

and thus

cr] +cr22+...+crl =n

(7.53)

(7.54)

(7.55)

(7.56)

It is also known from the Hadamard inequality that for the normalised (column) 

matrix X

<d<\X' X\ = G(X)<\ (7.57)
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where G(X) is the grammian of X. Given that [Gant., 1]

\x'x\ = G(X) = a 2r a 22-...-a2n (7.58)

then the following corollary can be validated:

Corollary 7.1: [Gant., 1] If X  = \xx, xn] eh,"*" is column normalised, i.e.

||x,|| = 1, / = 1,2, ..., n, then its singular values satisfy the conditions

0<cr]oy..o-„ <1
o \  + c r 22 + .  , . + c r  =77

(7.59)

□

The analysis presented here for the case of unit normalised matrices may be 

extended to the general case where normalisation is not used. In this case the result 

may be expressed in the following form

Theorem 7.3: Let X  eh,"x" and assume that its singular value decomposition is

X  = VZW\ X = diagjcr,, ..., a,,}

If U  eh,"*" is an arbitrary orthogonal matrix, U 'U  = then the minimum

distance problem min \\X -  U | L  has a solution for the matrix
uu'=i„ 2

u  = vw ' = ( x x ') ~ '!l X (7.60)

and the minimal distance d is
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n n
2 > ,2+ „ - 22 > , (7.61)

n

□

The above result reduces to the previous condition of Theorem 7.2 when unit 

normalisation is introduced.

To conclude, these results have been presented for the case of real matrices, X. 

However, they can be generalised to the case when X  = C"x" along similar lines. 

For such complex cases, the distance from unitary matrices is considered. So by 

assuming that U is unitary and with X  complex, Theorem 7.3 is also valid, but with 

the necessary changes, i.e. orthogonal to unitary.

7.3.3 SOFTWARE AND CALCULATION OF DEGREES_________________

The MATLAB routine to compute the standard grammian test of the distance from 

orthogonality from a matrix is called orthgtst.m and is denoted by and

can be seen in the Appendix. The first line of the routine signifies that it can be 

implemented as a function, i.e. to run the program, it is sufficient to simply type 

orthgtst (u) where u is the matrix under test. The for loop normalises the 

matrix, and the last two lines compute the eventual index of orthogonality.

The second, new index based on the singular values of the matrix is computed by 

the MATLAB routine orthtest.m and is symbolised by the notation min ¡ A -C/ll

and can also be seen in the Appendix. Once again, the program is set to be a 

function. The first part normalises the stated matrix. The remaining section 

computes the singular values, which are then summed. The last line computes the 
index.

uu'=i
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To finish, these two methods will be tested and compared for eigenvector matrices, 

along with the condition numbers. Firstly, take the eigenvector matrix of Example 

7.3.

-0.2691
0.9620

-0.0463

-0.6798 0.6822 
-0.1557 0.2243 
0.7167 0.6959

On execution of the standard grammian test routine, orthgtst.m, "w*'V , the

orthogonality index was computed to be 1. On execution of the new test,

orthtest.m, the distance minl|vf-t/|| was found to be 0. The condition number ofuuT~i 11

U\ was also 1. Hence, it can be concluded that U\ is orthogonal.

Taking the eigenvector matrix of Example 7.4

u 2 =

-0.2691
0.9620

4

-0.6798 0.6822 
-0.1557 0.2243 
0.7167 0.6959

the indices |"w*"w'| and min||JSf — C/|| were 0.0389 and 0.9053 respectively. The

condition number was 22.0775. Thus, U2 is said to exhibit a high degree of 

skewness.

Moving onto a practical example, consider the aerospace application of Example 

7.5

0 0.7957 -0.3486 0.4708 0.9983
0 0.0099 -0.9294 -0.8637 0.0070
0 0.0442 0.0588 -0.1412 0.0459
0 -0.1320 0.1056 0.1099 0.0055
1 -0.5894 -0.0067 0.0180 0.0356
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The standard grammian measure | was 8.5426x10-4, and the new measure

minllX-L/’l was 1.847. The condition number was found to be 16.4166. If theuuT=r 11

less skewed matrix of the same example is considered, i.e.

1 0 0 0 0
0 1 -0.9294 -0.8637 0.0070
0 0.0442 1 -0.1412 0.0459
0 -0.1320 0.1056 1 0.0055
1 -0.5894 -0.0067 0.0180 1

\"U*"U'\ and min \\X -U\\ are 0.0997 and 0.9887, whereas the condition numberI I uuT=r 11

was 4.48, hence implying that U* is closer to orthogonality than 6/3.

7.4 Su m m a r y

Having earlier discussed the theoretical purpose of the eigenframe, and the concept 

of eigenstructure assignment, this chapter took a more practical route in the 

analysis of eigenvectors. Firstly, some of the methods examining the significance 

of the orthogonality of the eigenframe to closed loop system robustness were 

examined. It was shown that robustness was linked mainly to the nature of the 

eigenvector matrix. The degree of robustness could be identified from the 

condition number and the norm of the eigenframe. Another way to quantify the 

robustness of a system was to examine the shape of the eigenvector matrix, i.e. 

whether it is skewed or orthogonal. It was shown using MATLAB that the 

response of the state vector of asymptotically stable systems contained overshoots 

for certain initial conditions when the eigenvectors were not orthogonal to each 

other. This stimulated research into the notion of strong stability, which is related 

to the lack of overshoots in the free response. It was shown that the natural way to 

parameterise the family of strongly stable matrices was by way of Sylvester’s 

Theorem. In order to help combat state overshoots, i.e. to make the system more 

robust, a new measure for the distance of a matrix from orthogonality was
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proposed and demonstrated, based on the singular values. This new measure was 

compared to existing techniques and proved to be just as reliable for matrices with 

real elements. So it was proposed that there is a link between overshoots in the free 

response of the state vector and the orthogonality of the eigenvector matrix. 

Software developed using MATLAB showed that this proposition was well 

founded.

In the next chapter, a new robust method for assigning the eigenstructure of a 

system will be proposed and developed.
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MINIMAL BASES: BEHAVIOURS, 
ZEROS AND EIGENSTRUCTURE 
ASSIGNMENT

8.1 In t r o d u c t io n

In this chapter the problem of eigenvector frame parameterisation using two 

distinct methods and the characterisation of system properties using algebraic 

means are both considered. An algebraic description of the total system behaviour 

is presented which in turn allows the study of closed loop eigenvectors in a 

systematic way by providing parameterisations. An algebraic characterisation of 

the total input, state and output behaviour in an implicit formulation is given based 

on properties of MFD descriptions. This allows a novel unifying characterisation of 

poles and zeros based on input and output zeroing problems [MacF. & Kar., 1], 

The analysis also provides explicit algebraic means for characterising the zero 

structure and providing a new algebraic characterisation of the family of closed 

loop eigenvectors and related input and output directions. This enables the 

derivation of a new method of eigenstructure assignment via state feedback, using 

minimal basis theory, and is demonstrated via an example. Also presented is a way 

to optimise the eigenframe, which contains the closed loop eigenvalues in order to 

guarantee maximum system robustness by making it as close to orthogonality as 

possible. To begin with, a parametric expression is derived for the total behaviour 

vector of the system. This analysis is based on the computation of the input-state

generator pair (a (s ), and it is followed by a study of closed loop

eigenvectors, frequency transmission and eigenvalue/eigenvector assignment by 

output feedback. The duality of the pair ( jV(s ), D(,v)j to the zero pencil and zero

polynomial case is then discussed. Finally, using the mathematical theory of 

minimal bases, a new method of eigenstructure parameterisation and assignment is 

presented, that has the potential for improved robust solutions based on the new 

parameterisation.
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8.2 As s ig n a b i l i t y  o f  the  sp e c t r u m  of  a
CONTROLLABILITY SUBSPACE______________________

8.2.1 PROBLEM STATEMENT_______________________________________

The family of controllability subspaces (c.s.) [Won., 1] are special types of (A, B)- 

invariant subspaces that intersect with the range space Si. In fact controllability 

subspaces are (A, 5)-invariant subspaces with the property that any two points may 

be connected by some appropriate trajectory generated by a control input with the 

property that the trajectory always remains in the given space [Won.,1], Their 

spectra are not fixed, and so the question arises as to whether or not such subspaces 

may assume any given spectrum. An alternative to the solution already established 

[Won., & Mor., 1] based on an eigenvector approach is proposed here and involves 

the construction of characteristic bases having as a spectrum the set of assignable 

frequencies. This section provides an alternative parameterisation of eigenframes 

based on the property that such frames are arbitrarily assignable spectra that are 

characteristic bases of controllability subspaces [Kar., 6], The results in this section 

provide an eigenvalue assignment algorithm that conveniently follows the 

approach mentioned above.

8.2.2 ASSIGNING THE SPECTRUM OF A CONTROLLABILITY
SUBSPACE____________________________________________________

An alternative establishment of the classical result of the geometric theory is 

considered here [Won., & Mor., 1], Consider first the following lemma [Kar., 6],

Lemma 8.1: Let St be a c.s. of the pair (A , B) and {u] a characteristic basis for St. 

A vector control input u e S t n S i  can always be found such that

u = A  cij uj = Bm
7=1

a¡ * 0 V j ,  j  = \,...,r, r = <X\mSt
( 8 . 1)

Proof: [Kar., 6] With respect to the basis {u),  the vector u may be written as
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a.

Ui ! u2 ! Ur] = BGr = Br ( 8 .2)

a„

where G (/xr) (l<r) is the input transformation gain matrix such that the space St is 

generated by vectors in the range of B , Si , i.e. SI = j (A + BL)/Si^. For some state

feedback matrix L the vectors of the basis {uj),j = 1, r become a subset of the 

eigenvectors of the matrix (A + BL) defined by the columns of the matrix U. If V 

defines the dual eigenvector frame to U and if St is the controllable subspace of the

pair (A + BL, then the matrix VB has no row that contain all zero elements.

Multiplying (8.2) on the left by V gives

a, = v,' Br (8.3)

where v' denotes the rows of V. Since none of the VtB rows are zero, r can always 

be chosen such that ai ^  0. Then m = Gr.

□

Having established this lemma the main results of this section will now be stated, 

which is the assignment to St of a characteristic basis having any given spectrum.

Theorem 8.1: [Kar., 6] Let St be a c.s. of the pair (A, B) and {uj},j = 1, ..., r a 

characteristic basis of St, r = dim St. A new characteristic basis j ufi j  of St can

always be found such that the spectrum associated with jw/( j is any given {//,}, i 

= 1

Proof: For the sake of simplicity it is assumed that {w;} is a characteristic basis of 

St and has a simple structure that corresponds to eigenvalues with a diagonalisable 

Jordan form. Then

Au¡ = T, u¡ + Bk¡ (8.4)

200



8 NEW METHOD FOR EIGENSTRUCTURE ASSIGNMENT DANIEL NANKOO

Making the further assumption that the assignable spectrum {//,}, i = 1, r 

consists of distinct frequencies, then [Kar., 6]

(i) Assume that {//i} n | l /J = C V i,j, i , j = l , . . . , r ,  where C is the zero

r
space. Making use of Lemma 8.1, a vector H = ^ jajuj = Bm with 

a, 0 and vectors , k u can be found such that

ÁuMi = M,H„ + BK ‘, (8.5)

where

1
Mi ~

1

Mi ~ ^2

i
M,~^r_ 

(8.6)

The set of r vectors defined this way can be written in a matrix form as 

follows

uM. = [ux \u 2 \ ... I ur]

i {Mi) 
ÁM¡)

Xm¡)

= [ui \ Hl I ■•• ! Hr]diag{ö,}

Ufj = UDaMflX (8.7)

where Ufl designates the matrix having as columns the vectors uM , U

is the matrix having as columns the vectors u„ Da the diagonal matrix 

of the a, elements, and finally by M x the matrix with its entries

defined by 5j i[ju,X) = \ j i ^ j u Because the elements of Da are

nonzero, it always has full rank. Furthermore the matrices M  x always

have full rank whenever the sets {//, }, {/l,-} have no common element
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between them. Thus the matrix U has full column rank and the 

vectors |w/; J form a basis for St with the desirable spectrum.

(ii) Now assume that the {//,}, {/L(} sets have some common elements. In 

that case a new distinct spectrum, {¿7}, may be defined such that 

{ £ } n |'AjJ = 0 and { £ } n { //J  = 0 V i , j ,  k . To the spectrum {£.},

there will correspond a new basis {u£ j which according to condition 

(8.7) can be derived from

Uz -  UDaMt A (8.8)

The vector u e S l n S i  is now expressed with respect to the new basis 

lu.f j  as

H‘ Ue -  Ui M ~i\D;'a= (8.9)
1=1

with

a =[av a2, ar]

c '= [ l, 1, ..., 1] (8.10)

—f =

By Lemma (8.1) it is evident that n(, ^ 0 V i . The new basis j« , j 

with the desired spectrum {//J can be easily determined using (8.7) 

with the assumption that } n  {//.} = C.

□

The above theorem implies that, given the characteristic basis {w,} for a c.s., St, all 

that is needed to generate a new characteristic basis |u /; J which will have as its
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spectrum the prescribed set of frequencies {//,} is a vector u = Bm - ^ a iu j . It
7=i

thus appears appropriate to refer to the vector u as the “generator” of the c.s. St. It 

is worth noting that due to the minimal property of a c.s. St, that the generator u 

can be chosen to be any vector u e S tr \S l .  The characterisation of the basis j ufl j 

in terms of its spectrum is given in matrix form by the following condition,

AU^ = UflA fl + BK^ (8.11)

where for generality the matrix A is assumed to have a Jordan block structure. 

Since U has full column rank, a state feedback matrix L can always be found 

such that

LUm =- -K„ ( 8 . 12)

Then (8.11) and (8.12) yield

(A + B L p ^ U ^  (8.13)

These results may be summarised in the following corollary.

Corollary 8.1: [Kar., 6] Given a c.s. St and a set of frequencies {//,}, i = 1, . . . , r ,r  

= dim^, there always exists a state feedback matrix L such that the restriction 

(A + BL)/St has the set {//,} as its spectrum.

□

If the pair (A, B) is controllable, then the whole state space X  is a c.s. since 

X n S i  = St and X = {A /X nSl]  = {A/Si). Thus the theorem for the assignability 

of the poles by state feedback stated [Won., & Mor., 1] follows immediately if 

Corollary (8.1) is used. This theorem is stated as follows.
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Theorem 8.2: Let (A, B) be a controllable pair and let {//,}, i = 1, be a set of 

complex numbers symmetrically distributed along the real axis. There always 

exists a state feedback matrix L which assigns the frequencies //, ’s as closed loop 

eigenvalues of the dynamic map Ac = A -  BL.

□

The above theorem provides a closed loop eigenvector based alternative proof to 

the assignability of the spectrum of a c.s. Unlike the original approach [Won., & 

Mor., 1] which was based on the definition of characteristic polynomials of cyclic 

subspaces, the treatment given in this section constitutes an eigenvector approach 

in as far as it is based on the construction of characteristic bases. Next, a pole 

assignment algorithm is proposed which is based on the concepts outlined.

8.2.3 EIGENVALUE PLACEMENT ALGORITHM BASED ON MOBILITY 
OF OPEN TO CLOSED LOOP SPECTRA_________________________

The above eigenvector approach to the fundamental theorem of assignability of the 

closed loop eigenvalues yields an algorithm for eigenvalue placement that involves 

the following fundamental steps [Kar., 6],

(i) Given A, the set of eigenvalues and the corresponding eigenvectors 

{«,, A,} are first found. The vectors u, form a basis for the c.s. 31 = % 

with the corresponding input directions A, = 0 V i =

(ii) If { //J  is the assignable spectrum it is safe to always assume that 

{/rJnjA ,.} = C . This is admissible since if {/r,}n{A,} * C then it may 

necessary to resort to the technique suggested by equations (8.8) and 

(8.9) and thus define a new basis with spectrum {£,.} for which 

{£,}n {//,} = C . Alternatively it is possible to initially apply an

arbitrary state feedback which without changing the controllability 

properties of the pair (A, B) that scatters the closed loop poles to a new 

spectrum {A'} such that {A'} n  {//,} = C.

n
(iii) A generator u of the c.s. is in the form u = u; = Bm . If v' denotes 

the eigenvectors dual to then the set a, is given by
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ai =v‘iBm i = 1 (8.14)

Since the pair (A, B) is controllable, none of the VtB vectors are zero 

and the vector m may be chosen such that each a, is non zero.

(iv) Given the sets of the frequencies {//,}, {/l, } such that {/L,.} = C

and having found the coefficients of at the basis |w/; j  may be defined 

by using the following conditions

U„ = UDaMM

(8-15)
7=1

k p M  = -m + ' Z a {/ ’)(ttl)kJ
7= 1

where the coefficients are defined by the following

expressions

a\P) = Ÿuaiô j A ^ à  O’
7=1

a2P) = T Jajôj-iP{B A l),...
7 = 2

a\'i = 2,„(/M l),
7 = v - l

alp) = “v# i,p°(b  M i)

/ = v + l,...,r

where the functions S T >1, ) are given by

(8.16)

S T,p{B’Äi)
J r ( ! )  St(2) | + 7 _ 1 W - l _ i I M _

c ^ M r  (^ -A #r  ( ^ r
(8.17)
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(V )

where sr(v), r, v = 1,... denote the elements of the sequence 

\ { v + l) - \ ( v) = V i(v + 1)

The input directions corresponding to the vectors j uft J are then

(8.18)

= -  m + Y j  aj (M, %  =~m (8-19)
7=1

Since every kj = 0 V j  = 1, n every A-invariant subspace is also (A, 

¿^-invariant with zero input directions.

(vi) The state feedback matrix is now defined to be

L[uMi | I ... | uMn] = -[m ! m | ... ! m] (8.20)

Because ufl is linearly independent the matrix V = U~] exists and

L = -[m | m \ ... | m]Vfl (8.21)

(vii) The closed loop dynamic map Ac is then given by

Ac = A - B L  = Ufl diagfojK, (8.22)

and thus can be computed without needing to work out the state 

feedback matrix L.

It is worth noting that the eigenvalue assignment algorithm presented here yields a 

unity rank state feedback matrix L. This is due to the fact that the matrix of the 

input directions corresponding to the closed loop eigenvectors is of unity rank. An 

alternative approach leading to a full rank state feedback matrix can be formulated 

as follows.
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Given A, an arbitrarily state feedback with a matrix Lc, having full rank may be 

applied. For the new matrix Aq = A -  BLq, the previously described algorithm may 

be applied, yielding a unity rank state feedback matrix Lu assigning the poles of A() 

at the desirable locations. The controller L = Lq + Lu is in general in full rank and 

assigns the eigenvalues of A at the desired locations.

The essence of the proposed modification is that instead of using the eigenframe of 

A as a characteristic basis of X  with an associated set of input directions zero, any 

other characteristic basis of X  may be used with a full rank set of corresponding 

input directions. Such a basis may be defined as the eigenframe Uq of some closed 

loop matrix A -  BLq, where Lo is a state feedback matrix having full rank. The 

input directions corresponding to this new eigenframe are given by L0uia and the

resulting matrix formed, K() is of full rank. The successive application of the steps 

detailed above yield a full rank state feedback matrix L in general. The eigenvalue 

assignment algorithm is illustrated using the following examples.

8.2.4 EXAMPLES OF EIGENVALUE PLACEMENT ALGORITHM 

Example 8.1: Let A and B be given by

■ 0 1 0" '0 O'
-2 3 0 B = 1 3

_ 5 1 3 0 1

The sets of eigenvalues of A and their corresponding eigenvectors are Ax-  \ ,

A2 = 2 , /L3 = 3 and

'-1 ' T "0"

-1 u2 = 2 u2 = 0
3 7 1

The system is controllable and therefore pole assignable.
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1. Assume the desired closed loop frequencies to be M \~ ~ 1, //2 = -2 ,

//3 = -3 . Then {/t, } = C and hence no modification to the A matrix is

needed.

2. Choosing a u vector as generator

"0“ '0 o'
1 1

T T
u = = 3 m =

0 0
0 0 1 L_

and it is seen that

"0" 3 " - 1" " 1 ' 'O'
1 II M JK II -1 + 0 ) 2 + (4) 0
0 /'=! 3 -7 1

which gives a\ = 1, a2 = 1, «3 = 4.

3. From the conditions of (8.15)

1

A, -1

-1
-1
3

+ -
M,~ 2

r 1 " r°i
4

2 + — 0

- 7
Mi -3

1

4. Thus the vectors u are

1
" 10 ' 
-10 1, u „ = —

1
1 1—* O __

__
1

1, u „ = —

1____

60
-10

60
- 3

60
-1

5. The input directions then are given as
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6. The state feedback matrix L can be derived from

■ 10 5 3 "-1
"-1 -1 - f "21 12 15"II o

0 0 0
-10 -10 -9 =

0 0 0 ̂ -J -10 -3 -1

7. Finally the closed loop matrix Ac =--A- BL is

'  0 1 0
Ac ~ A -  B L - -23 -9 -15

5 1 3

which have //, = — 1, n 2 = - 2, //3= - 3 as eigenvalues and the u ’s as 

eigenvectors.

□

Example 8.2: Let /I and 5 be

5 =
0 0 
1 1 
1 0

'-3 1 0" "1 -1 ! l " "-1 ! i ! o ""-1 1
A = 0 -3 1 = 2 - i  ¡ - i 0 -1 ! 0 -6 -3

-4 0 0 4 0 i L'o' t o i -4 4 -4
= U = A

_2
3

and let the assignable spectrum be Ju] = /u2 = //3 = -5 . The above pair is 

controllable and {//, }n{A,.} = 0.

1. Choosing the generator vector w as

"0" "0 0" n T - r ' 1 "
u = 9 = 1 1

U

9 = 0) 2 + (-3) - i + (-4) - 1

0_ 1 0 4 0 1
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m‘ = [0 9] and a\ = 1, ai = -3, aj = -4.

2. The closed loop eigenvectors are given by

(2)
-n
w(3)

= a ^ u ] + a2̂ u2 + a^u3
(2) , (2 ) , (2)= a\ ’ux + a2 'u2 + a3 'u2

( 3) , ( 3 )  , (3 )= a\ 'w, + a2 u2 +a\ U3

where

JO = a i ■ q2 f
1 (//-A ,)2 16’

J O  -  a2 _  1 2  J 0 _  a3 . 6 4

2 (//-A ,) 16’ 3 ( / / - A3) 16

1 > 1 ] 1 /-Y 1 2 -19
1 ^ - A, ( / /-A , ) 2

* 6/2
( //-A ,)2 (/¿-A ,)3 " 32

1 1 30 _(2 ) 1 1
/¿ -A ,  ( / / - A , ) 2

• Lt -1 ' t í  1
32 3 / ¿ - A 3 ( / ¿ - T , ) 2

a

a

a

i = « r yU-A, ( //-A , ) 2 ( / /-A , ) 3
+

1 2 3Uj
( / /-A , ) 2 (// — A, ) 3 (// — A, 'n

(3) -  « 1 1 , 1 1
2 “ 21 yW-A, (/r-A , ) 2 ( / /-A , ) 3

O) _ Q . 1 1 | 1 L3 a3 /2-A 3 (a - A3)2 ( / / - a 3)3r

_ -165 
~ 256

252
256

3072
256

256
~32~

and
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1
16

" 45 "
( 2 )  1 

5 Un = ---

' 207 -
(3 ) 1, u\, ’ = ----

' 2655 “
-90 -324 -3654

~ß 32 256
[ 36 J 180 ^ 2412

3. The input directions corresponding to the vectors d'j are

4. The state feedback matrix is given by

" 720 1656 2655 "-1

' 0 0 0 " '0 0 0
L = 256 -1440 -2592 -3654 —

1 1 3
0 1 3
0 39 9 -30.25

576 1440 2412

5. For the matrix L the closed loop matrix Ac = A -  BL becomes

-3 1 0
-39 -12 31.25
-4 0 0

The eigenvalues of Ac are at = ju2 = = -5 while wjy is an eigenvector and

and are pseudo-eigenvectors if Ac.

□

The final example given here is intended to illustrate the modified algorithm which 

yields a full rank matrix L.

Example 8.3: Let A and B be

" 0 1 0" '0 O'
-2 3 0 B = 1 3
5 1 3 _0 1
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By applying an arbitrary state feedback by the matrix Lq

¿ 0  =
-2
0

0 0
-1 0

a closed loop matrix Ac = A -  BLq is obtained having the following set of 

eigenvalues and eigenvectors

'O' " 3 " ' 3 '
0 5 >̂2 3̂  W 2 0 2 65 18
1 -5 17

The input directions corresponding to the w, set are defined by k, = L̂ Uj or

k - =
“0 “

, k , =
~-6"

’ — 3 —

' - 6 '
— 1

0
" — Z

0 -18

The sets u, and k, define the new characteristic basis of the controllable state space 

of X. Choosing the generator as = Bm with m‘ =[ 18 0] yields

0 0 r 1 oi 0 0 3 3

W =—m 1 3
10

0
= 18

cÑT(NII 0 + (-i) 0 +00 18
0 1 0 1 5 17

such that a\ = -22, <22 = -1, <33 = 1. If the desired closed loop spectrum is //, = -1 , 

f i2 = - 2 , Hi = then a new characteristic basis of X  having the set //, as a 

spectrum is defined by using the equations of (8.15) as follows

36 45
-36 , k. =

"-324"1
, zr = -90’ —mi 36 ’ -ft

-27 -9

6
810"

, u„ = -18 , k .. =
'-174

90 ’ —f t 5 —̂3 18
1
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The state feedback matrix L assigning the set of frequencies {/q} as eigenvalues of 

the closed loop matrix Ac = A -  BL is

36 45 6
-324 -810 -174"

-36 -90 -18
36 90 18

-27 -9 1

which has full rank.

□

8.2.5 SUMMARY___________________________________________________

The results in this section provide a new parameterisation of closed loop 

eigenvectors based on the properties of the existence of characteristic bases of 

controllability subspaces with arbitrarily assignable spectra. The derived 

expressions are parameterised by appropriate input directions and the differences 

between open and closed loop eigenvalues and they provide an alternative 

approach to the existing parameterisations and related feedbacks.

8.3 Pa r a m e t r i c  e x pr e s s io n  o f  t o t a l  b e h a v i o u r ,
CLOSED-LOOP EIGENVECTORS AND FEEDBACK

8.3.1 INTRODUCTION______________________________________________

An alternative algebraic approach that can provide a characterisation of the closed 

loop eigenvectors will be considered here, as well as introducing a new way of 

characterising the system properties based on an algebraic characterisation of the 

behaviour for linear systems.

8.3.2 IMPLICIT SYSTEM DESCRIPTIONS AND BEHAVIOUR___________

For the system S(A,B,C,E), which will be assumed to be minimal, i.e.

controllable and observable, the total behaviour solution of system equations under 

zero initial conditions is expressed by [Ros., 1]
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¡>3 1 1 *(s) 0
-C  - E u(s) _-y(s)_

(8.23a)

or equivalently [Kar. & Hay., 1]

si -  A - B  0"

1-----

i
-----1IteliU1

J
Co

 
Co

 

i

|(.v) = [x(.v)', y(s)‘
1

will be referred to as

= 0 (8.23b)

the system. Also it should be noted that if s = A and x(A), u(A), y(A) denote

corresponding constant vectors, then (8.23a) or (8.23b) denote vector solutions of 

the rectilinear motion problem discussed in Chapter 6 for the given A.

The initial problem is to define the solution of (8.23) in parametric form using the 

system model structure. The system equations are

(si -  H )x (.s ')  = Bu(s) 

_y(,y) = Cx(i) + Eu(s)
(8.24)

Consider the relationship

x(s) = (si -  A) ' Bu(s) (8.25a)

and let

(si -  A)~' B = N(s)D(s)~' (8.26)

be a right coprirne MFD of the input state transfer function. Then

x(.v) = (si -  A)~l Bu(s) = A(ì )Z)(5)_1 m(j ) (8.25b)
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By defining

h[s) = D(s) ' «(s) or «(.S') = D(s)h(s)

the output relationship may be expressed as

y(s) = Cx(s) + Eu{s)

= [C(sl -  A)~'B + e }u (s )

= { c Ñ ( s ) D ( Sy '  +  e } u (s )

= {CW(j ) + £D (s )}d (s )_1 u (s )

Proposition 8.1: If the system S(A,B,C,E) is controllable and observable and the 

state input factorisation in (8.26) is coprime, then a right MFD is defined by

G(s) = C(sl -  A)~' B+E = N(s)D(Sy '  (8.28a)

where

(8.27a)

(8.27b)

N(s) = CN(s) + ED(s), D(s) = £»(5) (8.28b)

and is a right coprime MFD.

Proof: If the system is minimal, then n = deg D[s) . From equation (8.27b), it is 

obvious that |C7V(^) + if Z)(i'), D(,y)} defines an MFD since deg D(.y)| = n = 

^ a,/ (G(î )) , the factorisation is minimal.

□

Substituting (8.27a) into (8.27b)

y(s) = {CN{s)+ED(s)}h{s) (8.27c)
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and assembling (8.27a), (8.27b) and (8.27c), the following result is obtained.

Proposition 8.2: The total behaviour vector of the system is defined in parametric 

form as

1 _1
u(s) h

1---
---

--

M*)
D(s)_

CN(s) + ED(s)
h(s) = Qr(s)h(s) (8.29)

where (jV(.s), D(.sjj is a coprime right MFD pair of the input state transfer function 

and h[s) e R,[,v] is an arbitrary vector parameter for the rational behaviour.

□

The matrix Qr{s) r+",+p̂ p js referrecj to as the behavioural representation, 

and contains as a submatrix the input-output behavioural representation Tr(s) which 

is defined below as

M 4
~N{s)D(s) = D(s)

CN(s) + ED(s) N(s)
(8.30a)

The rational vector space

Cl = colspa(v){(9(.(.v)} (8.30b)

characterises the total behaviour and has as a complete invariant a corresponding 

Pliicker matrix, or the Grassman Representative of d  [Kar. & Gia., 1], as defined 

in Chapter 4.

Remark 8.1: The expression of the total behaviour as in (8.29) suggests that the 

whole theory of transformations and invariants may be expressed in terms of
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properties of the Qr(s) matrix. Furthermore, for minimal S(A,B,C,E) systems all 

aspects of behavioural structures are generated by the input-state factorisation, i.e.

7  ! ! r i* ) N(s)
= 7 0 • D(s) = D(s)

CN(s) + ED(s) \ E C N(s) N(s)
(8.31a)

which clearly denotes how MFDs are generated from the input-state transfer 

function, which has implications for their computation.

□

Remark 8.2: Given that the Smith structure of N(s) defines the zeros, the zero 

structure formation may be considered as a model projection problem [Kar., 7] 

defined in polynomial terms by

N(s) = [E, ED(s) + CN(s) (8.31b)

The “squaring down” [Kar. & Gia., 1] is thus a special case of the above problem 

of selecting (E, Q  to assign the structure of N(s). The important issue here is the 

problem of transformation of the controllability indices (Forney indices of

D{s)', N(s)‘ to those of N(s). Note that “squaring down” corresponds to the

boundary case where all Forney indices of N(s) are zero.

□

The framework already developed on zero assignment [Kar. & Gia., 1] may be 

extended to model projection using the above formulation. This, however, is now a 

more complex problem since now controllability indices are transformed to Forney 

dynamical orders and possible zeros. This is a topic for future research.

The MFD pair (77(5), N{s)^ emerges as a crucial element for the overall analysis

and shall be referred to as an input-state generator pair. Such pairs will always be 

assumed to be coprime.
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8.3.3 DUALITY ISSUES AND BEHAVIOURS

Consider the solutions of

á s)> v'fa)
s i - A  

-C
= 0 (8.32a)

which in a sense are dual to those of (8.25a). From (8.32a)

z(s)' = v' (s)C(sI -  A) (8.32b)

If the coprime factorisation of C(sl-A)~l is considered i.e.

C(s l -  A)~' =D(Sy'Ñ(s) (8.33a)

then

z(s)' = v(5,)i D[s) 1 N(s) (8.32c)

and by defining f (s) '  = D(s) 1, this leads to

W = / ( W )

á s)‘ = ñ (s )
(8.33b)

or

(^y, v(jy]=/(j)'[jv(j), d (s )] (8.33c)

From the above, the left coprime MFDs of the transfer function can be obtained as 

shown below
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G(s) = C(sl -  A)~' B + E = D(s)~' N(s)B + E 

= D(Sy '  {#( j)5  + D(s)£} = N'(s)
(8.34a)

Proposition 8.3: If the system is minimal and D[s), N(s) are left coprime MFDs 

of C(sl -  A) ', then D\s), 1Y(s) where

D'(j ) = ¿5(j ), N'(s) = N(s)B + D(s)E (8.34b)

are left coprirne MFDs of G(s).

□

(S(i), a 'M ) is the state-output generator pair, and the generation of the left 

coprirne MFDs is described by

[N{s), D ( s ),

7 ! o 1 o"
0Î Ï Î Ê
0 Í0¡ B_

[M 4  D H (8.35)

The above is the dual of the relationship of (8.31), and it should be noted that

G(s) = N ’(s) = N(s)D(Sy'  (8.36a)

and thus some interesting relationships between the input-state and state-output 

generator pairs are derived below. In fact (8.36a) implies that

N'(s)D(s)-D'(s)N(s) = 0 (8.36b)

and by substituting from (8.28) and (8.34)

{ # ( * ) £  + D ( s ) e } d (s ) -  D(F){CA^) + £D(s)} = 0 (8.37a)

or
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N(s)BD(s)~ D(s)CN(s) = 0 (8.37b)

which leads to the following result:

Proposition 8.4: If D(.v)j is an input-state and (Ar(.s-), 7)(.sj) a state-output

generator pair, then the following relationship holds true

[ m  Aw]
B
0

0
-c

D(s)
N(s)

=  0 (8.37c)

□

It should be noted that (vV(s), D(s)) contain information on observability indices

and ('D(s), N(s)) on controllability indices. Condition (8.37c) expresses 

constraints on their values.

The computation of state output generator pairs is based on the fact that (8.33) 

implies

s i - A  
-C

=  0 (8.38a)

and if M  and C~ are right annihilators and inverses of the full rank output matrix C, 

then by multiplying on the right by the full rank matrix [ M  ! C+ j , the following 

result is obtained

[a ^ )  d m ]
s I - A

-C
M C+] = 0

or
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[#W  BM]
s M - A M  sC+ -  AC+ 

0
= 0

and thus

Proposition 8.5: A'(.v) is constructed as a minimal basis on the left kernel of s M — 

AM\.q .

N(s)(sM-AM) = 0 (8.38b)

and

D(s) = N(s)(sC+ -  A C )  (8.38c)

□

The above expressions together with (8.37c) may be used to work out more 

detailed relationships between the controllability and observability indices of the 

system. Starting from (8.37c) and using (8.38c) and (8.33b), it is readily shown 

that:

Remark 8.3: The numerators N[s) and N(s) of the output-state and input-state 

generator pairs are related as

A(s){s(i?5+ -  C C ) -  (.BB+A -  ,4C+C)}^(s) = 0 (8.39)

where N(s) is a minimal basis of Ji , {sM  -  AM] and N(s) is a minimal basis of 

TTr{ ^ -A 7 f} .

□

8.3.4 COMPUTATION OF INPUT-STATE GENERATOR PAIRS

By defmiton
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( s i  -  f t ) " 1 B = N ( s )d (s )~x

and this implies that

B = (s I - A ) N ( s ) D ( s ) '  

BD(s) = ( s I - A ) Ñ ( s ) o  

'Ñ(s)
[ s i -A ,  - B]

D(s)
=  0

(8.26)

(8.40)

Remark 8.4: The computation of a pair (f)(5), N(sf^ is equivalent to computing a 

minimal basis for the right kernel of [si -  A, -B~\.

□

Reduced complexity computations may be achieved by using the pair (N, B+) for 

the B matrix where /V is a left annihilator and B+ a left inverse, i.e.

p(B) = p, NB = 0, B e^}"~p)xn, p(N) = n - p ,  B+B = I

Using (N, B ), (8.40) is equivalent [Kar., 7] to

(5#-7V^)7V(5) = 0 

D(5) = R+(5/-^)Ät(5)
(8.41)

Remark 8.5: The results developed later in this chapter on minimal bases of matrix 

pencils are used for computing N[s). Then D(s) is defined by (8.41) and the 

denominator of the MFD of G(s) by

N(s) = CN(s) + ED(s), D(s) = D(s) (8.42)

□

The above may form the basis for a numerical method for computing MFDs that 

are different to those already existing. The approach is algebraic in nature and it 

provides links with fundamental aspects of the underlying system structure.
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8.3.5 CLOSED LOOP EIGENVECTORS AND FREQUENCY
TRANSMISSION_______________________________________________

The algebraic analysis given before is now used to characterise the structure of 

closed loop eigenvectors and to produce a new characterisation of them. The 

solution to the frequency transmission problem [Kar. & Kou., 1] is defined by

~A„I-A - B  0 
-C  - E  - /

y,

= o (8.43a)

and thus from Proposition 8.2 and condition (8.29), it can be shown that:

Proposition 8.6: The solution of the input, state and output rectilinear motion 

problem is given by

T, d Ài) N(Ä,)

äi = w(A,.) = ß(A )

1 . A Ä,)_ ED[Xl) + CN(Âj)
hi = QMi)hi (8.43b)

□

The above generates all solutions of the frequency transmission problem in 

parametric form. In fact, Qr(A,) is a basis for the total composite transmission

space [Kar. & Kou., This framework will be subsequently used to derive an 

eigenstructure assignment method.

Remark 8.6: [Kar. & Kou., 1] The solutions of the frequency transmission problem 

are given by the fact that the generation of any general frequency requires that the 

state x(t) be restricted in an (A, 5)-invariant subspace. This condition may be 

ensured by selecting an appropriate release condition xo that lies in this particular 

subspace and some appropriate rectilinear input trajectory with the same 

frequency. The resulting output trajectory will then be the sum of the rectilinear 

motions whose frequency components are defined by the same exponential.

□
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8.3.6 POLE ASSIGNMENT BY OUTPUT FEEDBACK AND CLOSED
LOOP EIGENVECTORS________________________________________

Subsection 8.3.8 will examine the role that state feedback plays in the design of 

controllers that assign the eigenstructure of a system. First, an examination of 

output feedback is considered. For the sake of simplicity the strictly proper case is 

first considered, i.e. when E = 0. If K() is the output feedback matrix, then the 

closed loop eigenvectors and eigenvalues are defined by

(A ¡1 - A -  BK0C)xt = 0 (8.44a)

where {Ai eC} is a complex conjugate set and the set of corresponding 

eigenvectors {x,., i en} is linearly independent. For this case, (8.43b) takes the 

form

h m )
Hi = D(Ñ)

A CN(A,)
(8.44b)

and

y. = Cxn u¡ = K0y., Vi en (8.44c)

From (8.44b)

Ui=ä(^i)=D{^,)k
y ^ y ^ ^ C Ñ ^ h ,

and thus (8.44c) leads to

D{At ) -  K0CN(á ¡ ) h,= 0 (8.45)
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Remark 8.7: DK(s) = D(s)~ KaCN(s) is the denominator of the closed loop 

transfer function under output feedback and thus h, are the vectors associated with 

the loss of rank of the DK(s) denominator (closed loop poles). The selection of h, 

has to be such that the eigenvectors of (8.44a) defined by

x, = x(/L,.) = N(X,)/?,, Vz en  (8.44d)

have to be linearly independent. If hi are treated as free parameters then a design 

problem may be posed as that aiming at maximising the orthogonality of the

[N(A\)hi> •••, N(Xn)hn) frame.

□

Remark 8.8: Given that (si -  A)N(s) -  BD(s), then for an eigenvalue X ecr(^), 

D(X) is rank deficient and 3 hx(X) , then

D ( X ) h x = 0
—A. = N(X)hx

where x x is the A,-closed loop eigenvector since (XI -  A)N(X)hx = 0.

□

The selection of parameter h, is dependent on the input vector u, and the 

denominator of the input-state transfer function D(s) defined by equation (8.26). It

is also dependent on the eigenvectors determined by (8.44a) and the corresponding 

condition (8.44d). The resulting selection problem is thus a crucial one because 

issues such as linear independence and orthogonality are involved. This approach 

is independent of the feedback used and can be employed for procedures that lead 

to eigenstructure assignment.

8.3.7 POLES AND ZEROS___________________________________________

The simplest case of an autonomous system is one that has no physical inputs, i.e. 

u(t) = 0. This reduces the state space description to merely x = Ax and y  = Cx .
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Because of the absence of inputs, the term frequency transmission discussed in 

Chapter 6 needs to be interpreted differently. As a recap, for a forced system (i.e. a 

system with physical inputs) a frequency so is said to be transmitted through the 

system when the application of a signal with this same frequency is applied to the 

inputs. The system then yields an output response of the same frequency. However, 

when u{t) = 0, a frequency cannot be transmitted in this fashion. This does not 

imply that the system itself, which is free responding under zero input conditions, 

is not capable of exciting a response of an exponential type. The notion of the zeros 

of a system is strongly related to the physical situation whereby the system has an 

identically zero output whilst the states and inputs are not themselves identically 

zero. It has been shown [Mac., & Kar., 1] that given a transfer function matrix G(s) 

there are certain specific values of the complex frequency s associated with certain 

specific non-zero input transform vectors u(s) in the input space that transform the 

output vector yfv) to zero. The matrix G(s) corresponds to an external description 

of the system behaviour in terms of how sets of exponential signals are propagated 

through it. The internal structural aspects for the case in which a system can have a 

zero output for non-zero inputs or states have already been examined [Mac., & 

Kar., 1],

In the following part of the analysis, the case of selecting the parameter hi for both 

cases of input and output zeroing will be examined. The behaviour form provides 

an ideal characterisation of the poles and zeros and corresponding directions, 

because from equation (8.29)

---
-1 >! __
_1 1

u(s)
=

N(s)
D(s)_

CN(s) + ED(s)
h{s) = Qr{s)h(s) (8.29)

the following results can be readily deduced from the above description:

C orollary 8.2: Characterisation of Poles Consider the zero input problem with 

u(t) = 0. Then V/L:|Z)(A)| = 0 3 hp such that
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D[X)hp = 0 and up = 0 (8.46a)

then Xj is a pole of the system and

ip  N (À)hr

y„ = < ™ (-%

are the corresponding eigenvectors and output pole directions.

(8.46b)

□

Corollary 8.3: Characterisation of Zeros Consider the output zeroing problem 

i.e. y(t) = 0. Then Vz:cN”r|CiV(z) + ££)(z)J * {0} 3 h, such that

CN(z) + ED(z) h, = 0 = y (8.47a)

then z is a zero and

X ,  = N(z)hz 

u, = D(z)hz
(8.47b)

are the corresponding state and input zero directions of the system.

□

From the behaviour viewpoint, poles and zeros are distinct frequency solutions of 

zero input and zero output problems. Although u(s) cannot by definition become 

identically zero in a well defined system (although this may happen in implicit 

autoregressive descriptions), y{s) may become identically zero. Thus

y (5) -  0 »  3hz(s): [c w (j ) + ED(s)]hz = 0 (8.47a)

The polynomial solution }%{s) then defines the vectors
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x , ( s )  =  N(s)hz(s) 

u,(s) = D(s)h.[s)
(8.47b)

which in turn defines the output nulling controllability spaces for the system 

[Won., 1].

Remark 8.9: The zeros are those frequencies associated with the further expansion

of the kernel of CN[s) + ED(s)^ and the corresponding x  ̂ are independent from

those of colsp.{x;}.

□

8.3.8 DESIGN OF STATE FEEDBACK CONTROLLERS USING
EIGENVECTOR PARAMETERISATION_________________________

The general analysis on the solution of the system equations in an algebraic- 

behavioural sense leads to a parameterisation of closed loop eigenvectors and an 

explicit design of state feedback that assigns the eigenstructure, and is presented 

here. The problem of state feedback is stated as follows:

Problem 8.1: Given a complex symmetric set A = {T,., i en],  find an independent 

set of closed loop eigenvectors {x(T/) = x ,,/e n }  with corresponding input 

directions {«(!,.) = i en j such that

Ksxj = Uj, Vz en (8.49a)

or equivalently

K s [ x , , X_ 2 , ..., xn] — [«], M2» •••» Un ] 
=> KSX (A) = U(A)

(8.49b)

□

The above problem can be solved if the frame A(A) has full rank. Furthermore, it is 

necessary for the frame X(A) to be as close to orthogonality as possible, [Wil., 1],
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since this is related to robustness. Clearly, if for the given A a frame A[A) which 

has full rank may be found, the solution of (8.49b) is not unique and for the 

selected frame A(A) it is shown that

The two important issues that emerge here are:

(i) Selection of an independent set of eigenvectors for any given A.

(ii) Selection of the most orthogonal frame, if a procedure for selection of 

independent vectors is found.

Considering the first of the interrelated problems, condition (8.43b) is used to 

characterise the solution of the rectilinear motion problem, i.e.

Ks = £/(A)X(A) ' (8.50)

N(A,)
D(Ái) h¡, i = 1, 2, ..., n
N { X )

(8.51)

Assume that in the factorisation

( s i -  A)~lB = N(s )D(s )~' (8.52a)

N(s) is an ordered minimal basis and is expressed as

(8.52b)

where S n¡(5) = s:, i e p  and s x < s2 <...<sp , and

(8.52c)
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where Ni and from the properties of minimal bases of matrix pencils

which have already been characterised from the mathematical background detailed

in Chapter 2, rank^N ¡\ = s j +1 [Mit., & Kar., 1], The above properties suggest a

simple procedure for selection of an independent eigenframe, and this will be 

demonstrated in the next section. The selection of independent closed loop 

eigenvectors is considered next.

8.3.9 SELECTION OF AN INDEPENDENT EIGENFRAME AND
RESULTING STATE FEEDBACK________________________________

The selection of an eigenframe that corresponds to a given closed loop spectrum is 

based on the following steps.

STEP (11: For every A = {T,., i en] symmetric, it is possible to partition it into 

the following subsets A ti = A^,}, ..., ={a ^,A£/1 , ..., A*'+1} .

It is assumed that each of the A e subsets with +1 = cr,. eigenvalues is also

symmetric. The partitioning corresponds to the dimensions of the controllability 

subspaces defined by the s j +1 indices. Clearly

A = {A„ i zn} = A u A£¡u ...u A£ (8.53)

Definition 8.1: For a given set of A and a system with controllability indices 

{cr, =£j+1, iT /)}, the ability to split A into symmetric subsets AE such that

(8.53) holds true characterises a property referred to as compatibility of the A, with 

respect to the {cr,., i e p] sets.

□

In the following, compatibility of the A, {cr, , i e p \ sets will be assumed.

Remark 8.10: Compatibility of the A, {cr, , i e p } sets implies that the minimal

decomposition of the state space implied by the minimal basis can lead to a real 

state feedback matrix. If compatibility is not valid, nonminimal decompositions
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will have to be dealt with, i.e. controllability subspaces of higher dimensions. This 

may be readily overcome but requires additional work going through the results 

characterising the possible dimensions of controllability subspaces [War., & Ech., 

1], [Kar.,4],

□

STEP (2): Having assumed compatibility, the free parameters in the selection of 

eigenvectors are defined as

=—= K l = P’ °’ •••’ ° i = î

K , +l = - - - = h al+(r2 =[0> I  0, ..., 0 ] = e 2

1 =...= /?„ = [0, ..., 0, l]'=e.

STEP (3): For every the <ji = £, +1 vectors are defined based on the common

h = [ 0, ..., 0, 1, 0, ..., 0]' and the selected spectrum A/; as

Xj' =  N e
X,

r ;

7 = 1, •••, e, + 1 (8.54a)

and thus a set of vectors

~ i •• i "

xe: ] = n £i A = n „v (a ,i) (8.54b)

-

can be derived, where N Ei e , and , and since it is assumed

that the eigenvalues are distinct (for the sake of simplicity), the Vandermonde 

matrix has full rank. For the case of repeated eigenvalues, corresponding Jordan
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vectors can be defined by using derivatives of the eE (s) = [l, 5, ..., s£‘ j vector 

evaluated at /L; .

Proposition 8.7: For any given symmetric set A , the set of vectors

X ( \ , :) = N , y ( \ , )  = N,y(8.55a)

is linearly independent. Furthermore, if the original set is a compatibly partitioning 

set as in (8.53), then the set of vectors

F

N e¡ , N e¡ , . . . ,  N e
V\ (8.55b)

F

is symmetric (pairwise complex conjugate) within each of the crj subsets and it is 

linearly independent.

STEP (4): For every A e set and with h = e: vector, it may be possible to define 

the input vectors u j ,  j  = 1, ..., s x+ 1 as follows. Firstly, it is necessary to express 

D(s) as

D(s) -  [t/,(.v), d 2(s), ..., ^ (x )]

where <̂ [̂ ,.(5)] = ej +1 = cr(., i e p .  Then

Uej =dj(X j ) , j  =  1» 2, ..., (j,

and for the set A , a new set is defined

(8.56a)

(8.56b)
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u(  a „ ) = [» r , (8.56c)

□

STEP (5); The state feedback matrix that assigns A as closed loop eigenvalues 

with A(A) as the corresponding closed loop eigenvectors is then defined by

= U(A)X(A)-'

A vjlk K )- *K )F (8.57)

Remark 8.11: The construction of the frame X(X) is based on the properties of 

minimal bases of matrix pencils and thus this theory is instrumental in defining all 

such families of eigenframes. The advantage of this construction is that it leads to 

maximal rank feedback and provides constructive means for shaping the properties 

of the eigenframe X(A). Furthermore the selection of the h, vectors for each of the 

subspaces of the decomposition is arbitrary and this expresses the p  degrees of 

freedom in the eigenstructure assignment, which may be further explored to 

achieve additional properties of the eigenframe beyond the linear independence.

□

8.4 Ex a m pl e s

8.4.1 EXAMPLE 1

The equations of motion of a satellite of mass m in earth orbit are given by

x = f{x ,  u) =

r6cos2 (f) + r(¡)2 - k / r 2 + urm 
6

-2 r Ojr + 26(j) sin ̂ /cos <j> + u0 jmr cos 0

<t>
-O2 cos^sin^ — 2r (j>¡r + u^/mr

(8.58)
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where the state vector x = [r, r, 9, 9, <j), if)j represents the position and 

velocity polar co-ordinates. The control vector u = [ur, ug, j represents the

forces which may be applied by small rocket thrusters to position and control the 

satellite. The linearised sixth order set of equations defined in (8.58) can be split 

into two uncoupled subsets, one involving only the state variables [r, r, 9, if)

and control variables (ur, ug) which describe the motion in the equatorial {r, 9}

plane. The second subset describes the azimuthal variables (</>, if) and control u^.

If the radius of the orbit, r0=m = 1, and the angular velocity a>0 is constant, then 

the linearised equations describing the motion on the circular equatorial orbit are 

given by

r ~ 0 1 0 0 " r "0 o'
r 3®o 0 0 2o)0 r

+
1 0

9 0 0 0 1 9 0 0
9 0 -2®0 0 0 9 0 1

The system matrices are

" 0 1 0 0 ' "0 o'
3 col 0 0 2(0 r. 1 0

A = u u , B =
0 0 0 1 0 0
0 -2co0 0 0 0 1

(8.59)

and the desired closed loop eigenvalues A = [/L,, A2, A3, A4], The first stage 

is to compute A and B' in order to satisfy equation (8.41).

1 0  0 0

0 0 1 0 ’
=

0 1 0  0 

0 0 0 1

From these, sN -N A  and B^(sl -  A) can be derived
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sN -  NA =
s
0

-1
0

0 0
s -1

B]( s l - A ) -3®o s 0 -2 a
0 2 a 0 0 s

The computation of the pair (N(s), D(sfj is the same as computing a minimal 

basis for the right kernel of [si -  A, -  B] . Thus from (8.41)

*W!

i o 
s 0 
0 1 
0 ^

D ( s )  =
_3 co Q + s 

2 a>0s
-2a Qs

So from (8.40)

[ s i -A , = 0 =>

1 0
s -1 0 0 0 0" s 0

3 a] s 0 -2 a 0 -1 0 0 1
0 0 s -1 0 0 0 s
0 2 a 0 0 s 0 -1 -3 a] + s2 

2 a 0s
-2  a 0s

s2

N{s) can be split into two columns, i.e. « 2(*s')]’ which have degrees of

s x= s2 = \ respectively. This leads to the formation of the T"(A) matrix, which is 

formed from N(s). The individual column degrees of N(s) contribute £t +1 

columns in Tf(A), where  ̂ is substituted by the closed loop eigenvalues. For this 

example
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X(A) =

■ 1 1 0 0

K A2 0 0
0 0 1 1
0 0

A, ^ A2 a 3* A4

Similarly, U{A) is derived from D[s) = <72(,y)]. The degree of each

column of £)(,?) is <jj = £, +1 respectively. Thus, for each column in D[s), cri 

columns are inputted into U(A). In this case, the degrees of each of the columns of 

D(s) are both 2, thus

U(A)
-3 co] + A] ~3û)q H- À,2 i -2û)0A3 2CÜ o>̂4

2a>0A¡ ô 2 i A]

---1

Finally, from equation (8.57), the state feedback matrix Ks is

t/(A)X(A)-'

'  1 1 ! o 0 "
3û)20 + A] -3a>2 +A] !—2 co0A3 2C0 q̂ 4 T, o 0
2(v0At 2 co0A2 ! A] i 0 0 i 1

0 0 |T3

---1Tj-

where the specified closed loop eigenvalues are A = {!,, A2, A3, A4} . As 

discussed earlier in this thesis, it is desirable that the matrix of eigenvectors, 

2f(A), is as close to being orthogonal as possible. Therefore an optimisation

routine had to be created in order to achieve this. Firstly one of the orthogonality 

indices described in Chapter 7 had to be chosen. For simplicity and ease of 

computation, the grammian method from Section 7.3.1 was used. For a matrix to 

be orthogonal, its grammian must be equal to 1, provided the original matrix has 

been normalised. If the grammian is 0, then the matrix is dependent and cannot be 

an eigenframe. This leads to the following problem definition
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Problem 8.2: From the grammian, G, of the given matrix of eigenvectors, 2f(A) as

computed from equation (8.55), determine the closed loop eigenvalues so as to 

maximise G.

□

The MATLAB routine eigopti .m was created to calculate the grammian of A(a ) 

for the above example. This was found to be

G = (A \ -2/1,1, + A])*(A\ - 2A3A4 + A])/(A\ +1)/(T23 +1)/(l + A]) / (l + 122)

There are no commands in MATLAB that maximise functions, so in order to carry 

out the optimisation, it was necessary to find the minimum of 1/G, which is 

equivalent to finding the maximum of G. This meant that for the function to be 

orthogonal, 1/G still had to tend to one, but now skewness was portrayed by values 

approaching infinity. The functions d a m . m and funone. m were created to carry 

out the optimisation, using the fmincon. m command. On execution, the optimum 

closed loop eigenvalues were found to be -20.027, -0.1, -30.0116 and -0.1. The 

corresponding value of 1/G was 1.0410.

The explicit formulation of the eigenframe used here allows the study of the 

optimal location of eigenvalues (in the stable region) which permits achievement 

of maximal orthogonality of the eigenframe.

8.4.2 EXAMPLE 2__________________________________________________

For the second example, consider the pair

0 1 ! o 0 0
-1 3 1 i 0 1
0 0 0 1 0
0 0 ! ol 0 1

-1 1 ! 2 -1 1
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B =

0 0 
1 0 
0 0 
0 0 
0 1

which yield

s -1 ! o o 0
sN -  NA = 0 0 \S 0

0 0 0 5 -1
'1 O'
s 0
0 1
0 s
0 s2

where s x = 1 and £2 = 2, the matrix of eigenvectors is

Jf(A)

' 1 1 ! o 0 0"
A À2 0 0 0
0 0 i 1 1
0 0 \ A A
0 0 ! A A A .

On execution of the altered MATLAB functions, the minimum value of 1/G was 

found to be 3.8052 for the closed loop eigenvalues -0.1, -65.8873, -192.6109, - 

1.0756 and -0.1000.

It is worth noting that both the examples above indicate how an optimal spectrum 

to achieve maximisation of orthogonality may be achieved for a given selection of 

minimal basis. The reverse problem where a spectrum is given, and it is desired to 

find the basis that guarantees the maximal orthogonality, is an open one.
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8.5 S u m m a r y

This chapter introduced a framework for discussing frequency transmission and 

blocking problems, as well two new methods for assigning desired closed loop 

eigenvalues to a system, given the state matrix A and the input matrix B. The 

second method described makes use of minimal bases theory and matrix pencils in 

order to compute a state feedback matrix Ks. The methodology starts off by 

deriving the total behaviour under zero initial conditions of a minimal system. This 

is followed by the derivation of the right coprime matrix fraction description of the

input-state transfer function. The computation of the ( n ( s ), D(.v)j pair is the

same as computing a minimal basis for the right kernel of the input-state pencil 

\sl -  A, - B]. This equivalence eases the computational burden. From this MFD 

pair, the column degrees determine the number of allowable columns for the 

frames X(A) and U(A), from which the feedback matrix Ks is derived. The 

problem of optimal distribution of eigenvalues to guarantee stability and maximal 

orthogonality of the eigenframe has also been addressed using Grammian based 

criteria. The first method is based on the properties of characteristic bases of 

controllability subspaces and has the advantage that expresses the desirable closed 

loop eigenframe in terms of differences of the open and closed loop spectra. This 

permits the linking of robustness criteria (orthogonality of the frame) to pole 

mobility.

The general behaviour framework introduced here provides the means to also 

examine problems of the creation of Forney dynamical indices from controllability 

indices, or observability indices, in terms of problems of general model projection 

involving selection of the matrix B, or C, respectively. Such problems are 

generalisations of the squaring down problem.
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CONCLUSIONS AND OPEN 
ISSUES

In this thesis, two problems have been addressed. Specifically, the problems of 

measuring the degree of controllability and observability with a view to use them 

eventually in optimising the placement of sensors and actuators on a system and 

that of eigenstructure assignment to guarantee robustness and a desired response 

were examined.

In Chapter 2, general theory related to control systems was introduced, together 

with their governing equations and their characteristics. The section dealing with 

the fundamentals of eigenvalues and eigenvectors paved the way for the thorough 

study of the eigenstructure assignment problem in Chapters 6, 7 and 8. The 

material covered in Chapter 5 is based on the solution to linear time invariant 

systems which was described in Section 2.3. There are several measures of 

controllability and observability studied in Chapter 4, and are all related to the 

necessary geometric and computational issues in the solution of linear systems of 

Section 2.4. Section 2.5 prepared the foundation for the new method of 

eigenstructure assignment presented in Chapter 8 by dealing with the relevant 

mathematical material.

Chapters 3, 4, and 5 dealt with the concept of controllability and observability, and 

determining ways to measure these important behavioural properties. Chapter 3 

started off with a description of how control problems are formulated and 

considered the implications of how components (sensors and actuators) play a 

pivotal role in the evolution of the system from its design stage to its eventual 

construction. The notions of controllability and observability are applicable to all 

kinds of systems, but only large scale systems (particularly flexible structures) 

were considered in this thesis to keep within an engineering perspective. Thus the 

representation and properties of flexible structures were described in Section 3.4.
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Here it was shown how state space representations of such systems could be 

derived from a set of differential equations describing a simple flexible structure. It 

was then shown how different state space modal descriptions could be obtained. It 

is from such descriptions that controllability (observability) and more significantly 

the degree of controllability (observability) can be determined. As an initial study 

into this, the mathematical means of examining controllability and observability 

using grammians was discussed in Section 3.5. This study showed how the 

participation of a state variable in a system can be gauged. The controllability and 

observability grammians presented however merely allow a binary determination 

of these properties, i.e. something is either controllable (observable) or not. Indeed 

if the solutions of equation (3.24) are positive definite, then a typical system 

described by (3.1) is both completely controllable and observable. But the question 

posed is just how close to uncontrollability and unobservability is the system, and 

it is a problem that grammians cannot address.

A great deal of emphasis is put on developing criteria and tools for possible sensor 

and actuator locations when testing and analysing the control behaviour of large 

scale systems. The locations of such components affect the dynamic response and 

closed loop behaviour. From this stems the problems of grammian assignment and 

the placement problem. The first involves finding the locations of the 

sensors/actuators of an open loop system in order to meet the specified 

observability/controllability requirements using the respective grammians. The 

second problem addresses the attempt to find a subset which has certain 

controllability and observability properties close to the original requirements of a 

given set of actuators and sensors. However, the drawback of such problems is that 

not every controllability and observability property can be obtained with a given 

set of actuator and sensor locations.

For control system purposes it is advantageous to have a tool for modifying or 

shaping the controllability and observability properties of a system. This can be 

achieved in two ways. One way is to determine proper sensor and/or actuator 

configurations. The other way is by modifying the system properties (such as 

introducing a feedback loop) which has been tackled in this thesis.
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The study of existing measures of controllability in Chapter 4 showed the 

importance of this area of control design, especially in the development of control 

laws of large scale systems. Any uncontrollable system is in a way arbitrarily close 

to some controllable system, and conversely a controllable system may or may not 

be close to an uncontrollable one. It is possible to change the structural properties 

of an uncontrollable system (i.e. input-output structure selection) in order to make 

it controllable. But the question that has to be asked that despite impending 

changes to the system, just how far is it from being controllable or uncontrollable, 

and thus a measure of this “distance” is the crux of the investigations of Chapter 4. 

Section 4.3 consisted of a mathematical comparison between a selection of existing 

measures. It was demonstrated how the results of such measures differed for the 

two systems compared, one of which was controllable and the other uncontrollable.

In Section 4.4 a new measure was introduced that estimates the aggregate distance 

from minimality of a given state space description. The reason for this measure 

was to counter the fact that existing measures of controllability are functions of 

coordinate transformations, and may change as these are varied. Thus the new 

measure, based on Markov parameters, was shown to be invariant under state 

coordinate transformations. It was also shown how the degree of controllability 

varies with state feedback in Section 4.5, despite it being documented that 

controllability properties are invariant on undergoing the same control 

configuration. Also examined was how the structure of the state feedback matrix 

affected the degree of controllability. It was shown that with changes in rank and 

orthogonality, although controllability is maintained, the degree of controllability 

did vary according to the structure of the state feedback matrix used. Section 4.6 

dealt with how controllability and observability properties can be determined from 

Pliicker matrices of transfer function matrices. A new method of measuring 

controllability was presented at the end of Chapter 4 and was based on selecting an 

input structure in order to improve the conditioning of the controllability matrix. 

However, the method was limited to systems with two inputs, and an extension of 

this work is required to develop the algorithm for use on multi-input cases.

Chapter 5 looked at the link between input-output controllability and energy. This 

was investigated by studying the link between the singular values of the output
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controllability grammian and the energy required to transfer the output of a system 

from one position to another. The quantitative measure developed was for the 

energy needed for control action. It could have been developed further into an 

interaction measure between the inputs and the outputs, but that would have taken 

this research down a different route. The solution to a Lyapunov equation was used 

to solve the output controllability grammian at regular time intervals. The resulting 

singular values and condition numbers were then plotted and systems with 

different input parameters were compared in order to aid in the selection of input 

signals where the minimum expendable energy was a criteria of the control 

problem. The method described in Chapter 5 has the potential for use in 

applications where the conservation of energy is amongst the primary control 

objectives. Such applications are space stations where the rationing of energy is 

always a prioritised concern.

Chapters 6, 7 and 8 examined the area of eigenstructure assignment, which can 

only be carried out if the system is described by state space equations stemming 

from a set of physical variables. The link between controllability (observability) 

and the eigenstructure of a system was established in Section 6.2. Another issue 

connected with eigenstructure assignment is that of robustness to modelling errors 

and external disturbances and is a necessary property of a closed loop system. In 

view of the problems of stability, robustness, controllability and observability that 

arise in an open loop configuration, the studies carried out in the second half of the 

thesis examined the necessity to reassign, or shift, certain modes resulting in the 

reshaping of the eigenframe of a system under the implementation of some kind of 

feedback, leading to an improvement in the dynamical response and properties of 

the system.

As a result of the literature review into several methods of eigenstructure 

assignment in Section 6.4, it was evident that this area of control design could be 

split into four categories. Some papers made little or no attempt in actually 

assigning the eigenstructure, and merely studied the affect that closed loop 

eigenvalues and eigenvectors have on system performance. There has been a 

substantial effort by several authors in designing feedback schemes (both output 

and state feedback architectures) that assign a given set of open loop eigenvalues to
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a new set of closed loop modes. There have also been attempts in tackling this area 

of control design by parameterising a set of eigenvectors. There have been several 

issues that have however been neglected in the literature. The way in which the 

eigenstructure affects system properties such as controllability, observability, 

robustness and stability has not been sufficiently addressed. Also, the effect on 

system properties by the orthogonality (or skewness) of the matrix of eigenvectors, 

and how this can be measured has not been properly addressed.

The state feedback approach is based on the solutions of equation (6.49). Central to 

the method that uses output feedback is equation (6.50). The third procedure is the 

parametric approach, whereby either of the relationships for state or output 

feedback are used to formulate methods that make use of parametric equations to 

determine solutions for the respective feedback matrices and corresponding 

eigenvectors. In general, feedback affects the closed-loop characteristic polynomial 

of a system, and thus influences stability and system performance. The advantage 

of state feedback is that is presents the designer with extra freedom with which 

multivariable control system designs can be successfully applied. Yet, there are 

systems in where the states are not all measurable, and so the use of full state 

feedback is impractical. Therefore eigenstructure assignment via an output 

feedback scheme is preferred.

Fundamental to this research are the properties of controllability and observability. 

It is desirable to maintain these two properties when assigning the eigenstructure of 

a system. As discussed earlier, this is achieved by ensuring that the eigenvectors 

are in the left null space of the input matrix B and the right null space of the output 

matrix C for controllability and observability respectively. Therefore the 

elementary problem considered was that given the system matrices A and B and a 

set A = diag{T1, X2, ..., T,,} of stable, controllable eigenvalues, find an

appropriate feedback matrix F, and an eigenvector matrix u such that a measure of 

the conditioning, or robustness, is minimised.

A prime design concern of eigenstructure assignment is that the solutions obtained 

take into account the minimisation of the sensitivity of the assigned eigenvalues to
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system modelling discrepancies and external disturbances. An additional problem 

of overshoots in the free response of a system also appears to have been 

overlooked by those addressing the eigenstructure assignment issue. The results of 

Chapter 7 showed that a degree of closed loop system robustness can be achieved 

by setting the eigenvector matrix to be as close to orthogonality as possible. Thus, 

an effective method of measuring orthogonality had to be used. The chapter took a 

more practical approach in the analysis of eigenvectors, departing from the 

theoretical background of Chapter 6. Methods examining the significance of the 

orthogonality of the eigenframe to closed loop system robustness were examined. 

It was shown that robustness was linked mainly to the nature of the eigenvector 

matrix. It was found that the degree of robustness could be obtained from the 

condition number and the norm of the eigenframe. Another way to quantify the 

robustness of a system was to examine the shape of the skewness or orthogonality 

of the eigenvector matrix. Through MATLAB demonstrations it was shown that 

the response of the state vector of asymptotically stable systems contained 

overshoots for certain initial conditions when the eigenvectors were not orthogonal 

to each other. This prompted research into the notion of strong stability, which is 

related to the lack of overshoots in the free response. It was shown that the natural 

way to parameterise the family of strongly stable matrices was by way of 

Sylvester’s Theorem. In order to help combat state overshoots, i.e. to increase the 

level of robustness, a new measure for the distance of a matrix from orthogonality 

was proposed and demonstrated, based on singular values. This new measure was 

compared to existing techniques and proved to be just as reliable for matrices with 

real elements. So it was proposed that there is a link between overshoots in the free 

response of the state vector and the orthogonality of the eigenvector matrix. 

Software developed using MATLAB showed that this proposition was well 

founded.

In Chapter 8 an algebraic description of the total system behaviour was formulated 

which in turn led to the study of closed loop eigenvectors in a systematic way by 

using a parametric approach. An algebraic characterisation of the total input, state 

and output behaviour in an implicit formulation was stated based on properties of 

matrix fraction descriptions (MFDs), which led to a novel unification of the 

characterisation of poles and zeros based on input and output zeroing problems.
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Explicit algebraic means for characterising the zero structure were provided as well 

as a new algebraic characterisation of the family of closed loop eigenvectors and 

related input and output directions. The derivation of a new method of 

eigenstructure assignment, given the state and input matrices, via state feedback 

ensued, using minimal basis theory, and was demonstrated via an example. The 

method described made use of minimal base theory and matrix pencils in order to 

compute a state feedback matrix. The derivation of the total behaviour under zero 

initial conditions of a minimal system was central to the methodology formulated, 

followed by expressing the right coprime matrix fraction description of the input- 

state transfer function. From this MFD expression, the column degrees were used 

to determine the number of allowable columns for the frames A"(A) and £/(A),

from which the feedback matrix was derived. The problem of optimal distribution 

of eigenvalues to guarantee stability and maximal orthogonality of the eigenframe 

was also addressed using Grammian based criteria.

The two problems considered in this thesis, measures of controllability and 

observability and eigenstructure assignment, are invariably linked. These problems 

created subproblems, which were also addressed. Although not a measure of 

controllability, the input structure selection problem for a system with two inputs 

considered in Chapter 4, could be used to choose actuator locations to guarantee a 

certain level of controllability. As an extension to this subproblem, there is scope 

for developing the methodology for a multiple input system. The problem of 

energy utilisation discussed in Chapter 5 showed how such a performance criteria 

can be linked to output controllability. This could be developed further into an 

algorithm where the maximisation of controllability can be derived through the 

minimisation of energy utilisation. Controllability and observability properties are 

inherent in the eigenvector matrix of system state space equations. In addition to 

these properties, the question of closed loop robustness was also tackled.

As an extension to the work carried in this thesis, the problems and subproblems 

could all be linked in one unifying methodology. It may be possible to assign a set 

of open loop eigenvalues, which guarantee a set of eigenvectors that meet specific 

degrees of controllability, observability and robustness for a desired positioning of
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a prescribed number of actuators and sensors with a view to minimising the energy 

utilisation of the system. It is hoped that the methodologies covered in this thesis 

can be combined to develop one single algorithm that helps to meet a number of 

control performance criteria. What would be needed first is an optimisation 

methodology that can explore measures of controllability and observability, 

eigenstructure properties and for large scale problems, the structure of the 

underlying graph. Such a methodology has to use in an explicit form optimisation 

which has to be multiobjective. In the area of eigenstructure assignment the 

selection of the best stable spectrum as far as the maximisation of the conditioning 

of the eigenframe orthogonality remains open. The classical result that 

orthogonality of the eigenframe implies improvement in robustness has been 

established under the assumption of real eigenvalues. Developing state feedback 

algorithms for eigenvector assignment using criteria which are not only based on 

the orthogonality of the eigenframe, but also on the balancing of the degrees of 

controllability and observability is a new problem which is also left for further 

work. The new test for the degree of controllability and observability based on 

optimisation and the notion of almost zeros needs further expansion and linking 

with other measures (distances).
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APPENDIX

Programs from Section 4.3.2

function mcl = degconl(a,b)
\ n.-.GCGM Calculates the minimum singular value 
% of the matrix IB AB AA2B ...]
%
% Copyright (c) 1997 by CEC.

t = ctrb(a,b); 
p = svd(t); 
mcl = min(p);

function mc2 = degcon2(a,b)
1DEGC0N2 Calulates the minimum singular value 

of the matrix [(lamda)I - A, B] for all 
% lamda.
%
% Copyright (c) 1997 by CEC.

1 = eig(a);
[m,n] = size(1);
q= [ ] ;
for i=l:m

p=svd([1(i)*eye(m)-a,b]);
q=[q,p];

end
t=min(q); 
mc2=min(t);

function mc3 = degcon3(a,b)
% DEGC0N3 This measure of controllability is
% according to Tarokh.
&
% Copyright (c) 1997 by CEC.

modes=eig(a)
[m, n]=size(a);
l=input('Which mode do you want to control:'); 
t=l*eye(m); 
r=adj oint(t); 
phi=r*b;
mc3=norm(phi, 'fro'); 

function mc4 = degcon4(a,b)
% DEGC01S14 Calculates the minimum singular value of
% the matrix toeplitz([B AB AA2B ...3)
%
% Copyright (c) 1997 by CEC.

cbm=ctrb(a,b); 
toe=toeplitz(cbm); 
s=svd(toe); 
mc4=min(s);

function mol = degobsl(a,c)
%DEGOBS1 Calculates the minimum, singular value 
% of the matrix [G; CA; CAA2 .. . ]
%
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u = o b s v ( a , c ) ; 
q = s v d (u ) ;  
mol  = m i n ( q ) ;

f u n c t i o n  mo2 = d e g o b s 2 ( a , c )
% DEGOBS 2 c ai u iates the m inimum singular value
% of the: ma trio: [ {1 arnda)I - A; C] for all
%
£■

lamda.

% Copyright (c) 1997 by CEC.

1 = e i g ( a ) ;
[m, n] = s i z e  (1) ;
q= [ ] ;
f o r  i = l : m

p = s v d ( [ 1 ( i ) * e y e ( m ) - a ;  c ] ) ;
q = [ q , p ] ;

e nd
t = m i n ( q ) ; 
m o 2 = m i n ( t ) ;

f u n c t i o n  mo3 = d e g o b s 3 ( a , c )
% DEG0BS3 This measure of observability is
% according' to T'arokh.
%

% Copyright (c) 1997 by CEC.

m o d e s = e i g (a )
[ m , n ] = s i z e  ( a ) ;
l = i n p u t ( ’Which mode do you want t o  c o n t r o l : ' ) ;  
t = l * e y e ( m ) ; 
r = a d j  o i n t ( t ) ; 
p h i = c * r ;
m o 3 = n o r m ( p h i , ' f r o ' ) ;

f u n c t i o n  mo4 = d e g o b s 4 ( a , c )
% DBG0BS4 Calculates the minimum singular value of
% the matrix toeplitz([C; CA; ÇAA2 ...])
1
% Copyright (c) 1997 by CEC.

o b m = o b s v ( a , c ) ; 
t o e = t o e p l i t z ( o b m ) ; 
t = s v d ( t o e ) ; 
mo 4 =mi n (t ) ;

Program from Section 4.5.3

% function lphi,phi_f]=moc5(a,b,15;
% phi returns the minimum of the norms of the rows 
% of the V*B matrix, where V is the inverse eigenvetor 
% matrix and B is the input matrix.
% phi. f returns the minimum of the norms of the rows 
h of the VF*B matrix, where V_F is the inverse eigenvector 
I matrix of the state feedback system [A-BL] and L is the state 
% f e e db a c k m a t r i x.

function [phi,phi_f]=moc5(a,b,1)

249



% a is the state matrix (rxn)
% b is the input matrix (ruoti)
% 1 is the stai' fc u t v>- rat x (mxn)
[ u , d ] = e i g ( a ) ; 

v = i n v ( u ) ; 
b e t a = v * b ;
[ m , n ] = s i z e  (b) ;

q= [ ] ;
f o r  i = l : m ;

t = n o r m { b e t a (i , : ) ) ;  
q = [ q ; t ] ;

e nd

f = [ a - ( b * l ) ] ;
[ u _ f , d _ f ] = e i g ( f ) ;  
v _ f = i n v (u _ f ) ;  
b e t a _ f = v _ f * b ;

q _ f = [ ]  ;
f o r  i = l : m ;

t _ f = n o r m ( b e t a _ f ( i , : ) ) ;
q _ f = [ q _ f ; t _ f ] ;

e nd

p h i = m i n (q) ; 
p h i _ f = m i n {q _ f ) ;

Program for Section 4.6.5

c l e a r  a l l ;  
c l o s e  a l l ;

r a n g e = - l : 0 . 0 5  :1 ;
[ r e , i m ] = m e s h g r i d ( r a n g e ) ;

[m, n ] = s i z e ( r e ) ;
Z = z e r o s ( n ) ;

for sig=range 
1=1;
for ome=range

%p= [ sig + orae* i + 1.1 ; s ig* ( s igl i )
ome* ( (2'*sig) -1) *i] ; 

s = s i g + o m e * i ; 
p = [ s + 1 . 1 ;  s A2 + s ] ;  
q = c o n j ( p ) ; 
q t = t r a n s p o s e ( q ) ; 
p h i  = s q r t ( q t * p ) ;
Z (1,k)=phi;
1=1+1 ;

end 
k=k+l;

end
map=[0 0 0 ]; 
figure
mesh(im,re,Z) 
colormap(map);



figure
w a t e r f a l l ( i m ' , r e ' , Z ' ) 
c o l o r m a p ( m a p ) ;

Program from Section 4.7.3

clear 
load c5a; 
bl=b(:,1); 
b2=b(:,2) ;

range=0.1:0.25:5.0;

ql=ctrb(a,bl); 
q2=ctrb(a,b2);

[ul, u2]=meshgrid(range);
[m,n]=size (ul) ;
Q=zeros(n);

i=l;
for ii=range

j=i;
for k=range

y=l/cond((ii*ql)+(k*q2));
Q (j,i) =y;
j = j + i ;

end
i=i+l;

end

for i=l:n
for j =1:n

if Q (i,j)==inf %| Q (i,j|>1000 
Q(i,j)=NaN;

end
end

end

mesh(ul,u2,Q) 
grid
ylabel('ul') 
xlabel('u2')
z1abe1('Cond i t i o n N umbe r')

Program from Section 5.3.1

% Outcon.m calculates the output controllability Grarmnian of a 
system.
% The singular values of the output controllability Grammian of 
the
% system are indicators of the output assignability of the system.
%

steml=0; 
stem2=0;
sou=input('Will the data be entered via the keyboard or from an m- 
file, ' 'kT ' or ' 'm' '?1, 's'); 
if sou=='k'

A=input('The system matrix A is:')
B=input('The input matrix B is:')

251



C = i n p u t ('The output matrix C is:') 
t f f = i n p u t ('The final time tff is:') 

else
disp('please specify the m-file which contains the data') 
inn=input('','s'); 
inn=['load ',inn]; 
eval(inn)
A
B
C
t f f

end

X= lyap(A, B*B') 
sing=[];

for t = 0 :( t f f / 1 0 0 ) : t f f
sing=[sing,svd(C*X*C'-C*expm(t*A)*X*expm(t*A')*C')]; 
end

t=0: (tff/100) :t f f; 

ran=[0,0,1]; 

while (ran(3)>0.5)

ran=input('Input range of singular values: ');
for i=ran(1):ran(2)
plot(t,l+sing(i,:))
hold on
end
title('singular values of output controllability Grammian') 
xlabel('Singular Values v Time') 
hold off

end

Program for Section 7.2.2

u=input('Please enter eigenvector matrix:') 
v=inv(u) ;
l=input(’Please enter eigenvalues in column matrix form:') 
l=diag(1);
L=sym(1);
t=input('Specify time interval:')

x0=input('Please enter initial conditions:')
[n,m]=size(u); %symbollic size of A

E=zeros(n,n); 
for i=l:n

E=sym(E,i,i, 'exp(eval(sym(L,j,j))) ' )
end
El=zeros(n,n) 
for j=l:n

El(j,j)=eval(sym(E,j,j))
end



nxt=[];
for t=0:0.2:10;

xt=u*(ElAt)*v*xO; 
q=(norm(xt, 'fro'))-l; 
nxt=[nxt,q];

end

t=input( ' R e s p c i f y  t i m e  i n t e r v a l : ' )  
plot(t,nxt)
xlabel('Time (seconds)') 
ylabel( ' | | X ( t ) | | - 1 ' )

Programs for Section 7.4.3

function x = orthgtst(u)

[m, n] =size (u) ;

q= [ ] ;
f o r  i = 1 :n;

v=norm(u(:,i)); 
q= [q,  v] ;

end

[s, t]=size (q) ;

k =  [ ] ;
for j=l:t;

l=u(:,j)/ q(j); 
k = [ k , 1 ] ;

end

z=k*transpose(k); 
x=det(z);

function x = orthtest(u)

[m,n]=size (u) ;

q= [ ] ;
for i = l:n;

v=norm(u(:,i));
q = [ q , v ] ;

end
[s, t]=size (q) ; 

k= [ ] ;
for j=l:t;

l=u(:,j )/ q(j) ; 
k=[k,1] ;

end

s=svd(k);
x=(2*n)-2*(sum(s))
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Program for Section 8.4.1

clear all;
%X=$ym { 1 [ 0,0, c, d; 1, 1, 0,0 ; a, b, 0,0 ; 0,0, -1 , -1 ] ' 
X=s ym ( ’ [l,l,0,0;a,b,0,0;0,0,l,l;0,0,c,d] 1 )
%

c l = X ( : , 1 )
dpcl=transpose(cl)*cl 
sqdpcl=sqrt(dpcl) 
ncl=cl/sqdpcl
o

c2=X(:,2)
dpc2=transpose(c2)*c2 
sqdpc2=sqrt(dpc2) 
nc2=c2/sqdpc2
"6

c3=X(:,3)
dpc3=transpose(c3)*c3 
sqdpc3=sqrt(dpc3) 
nc3=c3/sqdpc3
o

c 4 =X(:,4)
dpc4=transpose(c4)*c4 
sqdpc4=sqrt(dpc4) 
nc4=c4/sqdpc4

NX=[ncl,nc2,nc3,nc4]
TNX=transpose(NX)
GX=NX*TNX 
G=det(GX)
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