
              

City, University of London Institutional Repository

Citation: Muganda, B., Kyriakou, I. & Shibwabo Kasamani, B. (2023). Modelling 

asymmetric dependence in stochastic volatility and option pricing: A conditional copula 
approach. Scientific African, 21, e01765. doi: 10.1016/j.sciaf.2023.e01765 

This is the published version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/30728/

Link to published version: https://doi.org/10.1016/j.sciaf.2023.e01765

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


Scientific African 21 (2023) e01765 

Contents lists available at ScienceDirect 

Scientific African 

journal homepage: www.elsevier.com/locate/sciaf 

Modelling Asymmetric Dependence in Stochastic Volatility 

and Option Pricing: A Conditional Copula Approach 

Brian Wesley Muganda 

a , ∗, Ioannis Kyriakou 

b , Bernard Shibwabo Kasamani c 

a Institute of Mathematical Sciences, Strathmore University, Ole Sangale Rd., Nairobi, Kenya 
b Bayes Business School, City, University of London, 106 Bunhill Row, London EC1Y 8TZ, UK 
c School of Computing and Engineering Sciences, Strathmore University, Ole Sangale Rd., Nairobi, Kenya 

a r t i c l e i n f o 

Article history: 

Received 25 February 2023 

Revised 2 June 2023 

Accepted 14 June 2023 

Editor: DR B Gyampoh 

Keywords: 

Stochastic volatility 

Asymmetric dependence 

Copula h-function 

Dynamic conditional copula 

Option pricing 

a b s t r a c t 

In this paper, stochastic volatility models with asymmetric dependence were presented 

and applied to pricing options. A dynamic conditional copula approach was proposed to 

capture this dependence asymmetry. This approach offered sim plicity and flexibility, and 

yielded closed-form solutions for option pricing under different model constructions for 

the stochastic volatility based on a mean-reverting Gaussian, a square-root and a lognor- 

mal process. Empirical experimentation based on S&P 500 options showed that the devel- 

oped dynamic option pricing models under asymmetric stochastic volatility significantly 

and consistently outperformed the basic Heston model across option maturities, strike 

prices and various copula function specifications. The square-root model combined with a 

Joe copula was the best ranked, having achieved 32.33% overall performance improvement. 

This superior empirical performance in option pricing, the unique flexibility to various de- 

pendence asymmetry considerations, and the analytical tractability added to the benefits 

of the proposed models framework. 

© 2023 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

 

Introduction 

The Black and Scholes [1] model in its assumptions results in a flat implied volatility surface profile. However, it is em-

pirically shown that implied volatilities exhibit a dependence on maturity time and strike price in a given cross-section and 

time-series. This empirical implied volatility surface has been noted to exhibit stylized ‘smile’, ‘skew’ or ‘smirk’ features 

which change over time as a result of option market dynamics. Empirical studies on the behavior of implied volatilities 

have pointed out some commonality across markets, particularly on the smile patterns, the term structure and the time- 

series patterns which exhibit high autocorrelation and mean-reversion. Furthermore, the asset market returns present non- 

constant volatility corroborated by volatility clustering, conditional heavy tails, and correlation asymmetry under stressed 

market conditions, such as leverage effects of negative correlation between asset returns and volatility, and a gain-loss 

asymmetry where down-size movements are disproportionately larger than upward movements, in addition to jumps in re- 

turns and volatility. Consequently, the assumption of asset returns’ normality is invalidated in practice given these features 

affecting the tails and skewness of their distribution ( [2–10] ). 
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In practice however, even though the Black–Scholes model assumes explicitly a constant volatility and interest rates, it 

is implemented as if volatility and interest rates are time-varying and are extracted by model inversion from daily option 

prices and the yield curve (2) . This treatment further demonstrates the weakness of its static assumptions, since this treat-

ment inherently implies that the randomness of volatility and interest rates exists. Several approaches have been proposed 

that attempt to explicitly define and capture these characteristics in option pricing. Models that capture the instantaneous 

implied volatility profile have been proposed, such as local volatility models, non-linear diffusions, jump diffusions, GARCH 

models, and stochastic volatility models ( 2,3 ). 

The literature is rich with traditional models of stochastic volatility, such as, for example, Hull and White [11] , Johnson

and Shanno [12] , Scott [13] , Wiggins [14] , Stein and Stein [15] , Heston [16] , Ball and Roma [17] , Bates [18] , Bates [9] , Scott

[19] , Bakshi et al. [20] , Sabanis [21] , Lee [22] and Cao et al. [2] . These models generally address the option pricing problem

using Fourier inversion techniques resulting in semi-analytical formulae for option pricing (e.g., see 23,22 ). Hull and White 

[11] instead derive an expected Black–Scholes-style price representation conditional on the integrated squared volatility and 

solve the problem approximately by making use of its moments and a Taylor series expansion. Fourier transform techniques, 

although in principle are considered very accurate, their computational efficiency can suffer in practical applications, such 

as when calibrating to observed market prices, due to the effect of the estimation iterations on the parameter values and,

consequently, on the behaviour of the associated characteristic function. Similarly, accuracy concerns arise when applied to 

hedging strategies combined with scenario generation. Nevertheless, they remain the method of choice so far, being also 

generally more easily adaptable to different model dynamics than, for example, numerical schemes for partial differential 

equations ( [24–26] ). 

Despite the various earlier contributions, a model that is sufficiently flexible and analytically tractable to capture the 

stochastic volatility dynamics, the associated heavy tails and skewness in the distribution of the underlying asset returns still 

needs further consideration. In the aforementioned traditional model approaches, the dependence between the return and 

volatility shocks is modelled directly by their linear correlation. However, the use of linear correlations is an unsatisfactory 

measure of dependence (27) . Therefore, traditional return distribution modelling needs to be refocused to accommodate 

these non-Gaussian features and a potentially nonlinear return-volatility dependence structure, in addition to time variation 

and persistence in dependence that has been identified from empirical data ( 28,29 ). Asymmetric and dynamic dependence 

structures exist between returns and volatility shocks and need to be incorporated into the modelling. For example, Veraart 

and Veraart [30] and Lu et al. [31] considered a stochastic correlation parameter; Huang and Huang [29] examined via Monte

Carlo simulation a static and a dynamic copula with autoregressive persistence in the dependence structure between returns 

and volatility shocks. They found, in their numerical simulation of a discretized generalized stochastic volatility model, that 

option prices are mainly affected by different nonlinear dependence structures and they showed that a dynamic copula 

yielded the highest option prices. 

In this paper, stochastic volatility models with asymmetric dependence are presented and applied to option pricing. A 

dynamic conditional copula h-function is proposed to capture the existing nonlinear dependence structures between the 

stock price and stochastic volatility processes. This h-function also captures the conditional probability distribution of the 

underlying stock price process. To highlight the simplicity and flexibility of the proposed conditional copula approach, we 

construct different volatility models based on a mean-reverting Gaussian process; a square-root diffusion; and a lognormal 

process. Closed-form price formulae for European options under these different model specifications are presented. The 

particular pricing approach is termed dynamic, since it allows several alternative dependence structures between the driving 

processes to be captured by a malleable conditional copula h-function whose formulation is flexible to varying configurations 

of the stochastic volatility process. This approach represents an important development over the techniques currently used 

in the relevant literature as it exhibits much more accurate option price modelling performance, a closed-form solution, in 

addition to being unique in its flexibility, extensibility, and analytical tractability for various stochastic volatility models. 

Each stochastic volatility configuration developed in this paper is implemented and evaluated in terms of its performance 

in the pricing of in-the-money S&P 500 Index European call options across time to maturity and strike price levels, and

then compared to the basic Heston model. Aggregate performance improvements over the Heston model of 30 . 64% , 27 . 79%

and 11 . 60% are respectively recorded for the Gaussian mean-reverting, square-root and lognormal models. Copula-specific 

performance variation is observed across all three models. The square-root model under the Joe copula is found to achieve 

the highest performance improvement of 32 . 33% . 

The remainder of this paper is structured as follows. In Section 2, we present the development of the proposed stochastic

volatility model framework with asymmetric dependence and its application in option pricing. In Section 3, we investigate 

and empirically evaluate our dynamic pricing models. Section 4 concludes the paper. 

Option price modelling with asymmetric stochastic volatility 

In this section, a general stochastic volatility model with asymmetric dependence is presented and extended to option 

pricing by employing a dynamic conditional copula. The asymmetric stochastic volatility model allows a nonlinear depen- 

dence relationship to be modelled between the asset price and the variance processes, which has traditionally been mod- 

elled by a linear correlation. When applied to option pricing in the subsequent section, a conditional copula h-function is 

used to capture this nonlinear dependence relationship. A dynamic option pricing model that can accommodate a variety of 

dependence structures and volatility processes specifications is thereby developed. 
2 
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Stochastic volatility models with asymmetric dependence 

Let ( �, F , Q, { F t } ) be a filtered probability space where the filtration satisfies the usual conditions with F 0 trivial. This 

filtered probability space supports all processes that follow and Q denotes the risk neutral probability measure. 

We consider a stochastic model ( S t , v t ) t≥0 where S t and v t denote, respectively, the price of a non-dividend paying stock 

and the instantaneous variance process. The model is generally given by { 

d S t = rS t d t + 

√ 

v t S t 
(
ρd W 2 ,t + 

√ 

1 − ρ2 d W 1 ,t 

)
d v t = ηt d t + δt d W 2 ,t 

, (1) 

where W 1 and W 2 are independent standard Brownian motions on the filtered probability space, r is the continuously com- 

pounded risk-free interest rate and ρ ∈ [ −1 , 1] is the instantaneous correlation between the two processes. 

The variance dynamics v t can take several different forms. For the purposes of this study, we consider three cases where:

( ηt , δt ) = 

{ 

( k ( θ − v t ) , σ ) , Gaussian process 

( α( β − v t ) , γ
√ 

v t ) , Square-root diffusion 

( μv t , ωv t ) , Lognormal process 

under the measure Q . In the first case, the parameter θ denotes the long-run mean, k the speed of mean-reversion, and σ
controls the volatility of the variance process. The role is similar for parameters β , α and γ in the second case. Nevertheless,

while the Gaussian mean-reverting process may, in principle, take negative values, in the case of the square-root diffusion, if 

the so-called Feller condition, 2 αβ ≥ γ 2 , is satisfied, then the zero boundary is unattainable; otherwise, this is attracting and 

attainable. At the zero boundary though, the process is immediately reflected into the positive domain. Even for the Gaussian 

mean-reverting process, it is possible with actual volatility data to fit it so that it is restricted in the positive domain (see

15 ). In the last case, the variance is assumed to evolve according to a geometric Brownian motion with parameters μ, ω ≥ 0 .

Therefore, by solving (1) under the risk-neutral measure Q , we have that 

ln 

S t 

S u 
= r ( t − u ) − 1 

2 

V u,t ( t − u ) + Y u,t + 

∫ t 

u 

√ (
1 − ρ2 

)
v s dW 1 ,s , 

where 

Y u,t = 

∫ t 

u 

ρ
√ 

v s dW 2 ,s and V u,t = 

1 

t − u 

∫ t 

u 

v s ds . 

Further, we note at this point that the process v s is independent of W 1 ,s under the measure Q , and that conditionally on

 u,t , then ln 

S t 

S u e 
Y u,t 

follows a conditional normal distribution (see 32 ) as (
ln 

S t 

S u e Y u,t 

∣∣∣ V u,t 

)
∼ N 

(
m u,t ( V u,t ) , s 2 u,t ( V u,t ) 

)
, 

where 

m u,t ( V u,t ) = r ( t − u ) − 1 

2 

V u,t ( t − u ) , 

s 2 u,t ( V u,t ) = 

(
1 − ρ2 

)
V u,t ( t − u ) . 

By Girsanov’s theorem, the process 

˜ W 1 ,t = W 1 ,t −
∫ t 

0 

√ 

v s ds and 

˜ W 2 ,t = W 2 ,t −
∫ t 

0 

λ( v s ) ds (2) 

is a two-dimensional Brownian motion under the equivalent probability measure ˜ Q resulting in ˜ ηt = ηt + δt λ( v t ) 

whereby for the respective stochastic volatility processes under ˜ Q we have that 

λ( v t ) = 

{ 

σ, Gaussian process 
γ

√ 

v t , Square-root diffusion √ 

ω , Lognormal process 

and 

˜ ηt = 

⎧ ⎨ ⎩ 

k 
(

˜ θ − v t 
)
, ˜ θ = θ + σ 2 /k 

˜ α
(

˜ β − v t 
)
, ˜ α = α − γ 2 , ˜ β = αβ/ 

(
α − γ 2 

)
˜ μv t , ˜ μ = μ + ω 

2 

. 
3 
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Thus, the model dynamics under measure ˜ Q are given by 

ln 

S t 

S u e 
˜ Y u,t 

= r ( t − u ) + 

1 

2 

V u,t ( t − u ) + 

∫ t 

u 

√ 

(1 − ρ2 ) v s d ˜ W 1 ,s , 

d v t = ˜ ηt dt + δt d ˜ W 2 ,t . 

Under measure ˜ Q and conditionally on V u,t , ln 

S t 

S u e 
˜ Y u,t 

similarly follows a conditional normal distribution: (
ln 

S t 

S u e 
˜ Y u,t 

∣∣∣∣ V u,t 

)
∼ N 

(
˜ m u,t ( V u,t ) , s 2 u,t ( V u,t ) 

)
, 

where 

˜ m u,t ( V u,t ) = r ( t − u ) + 

1 

2 

V u,t ( t − u ) , 

s 2 u,t ( V u,t ) = 

(
1 − ρ2 

)
V u,t ( t − u ) . 

Option pricing by conditional copula 

Conditional on the information of the volatility path generated up until expiry time T , the price of a European plain

vanilla call option f ( S, u ) with strike price K by risk-neutral valuation is given by 

f ( S, u ) = E 

Q [ e −r ( T −u ) (S T − K) · 1 { S T >K } |F 

v 
T ] 

= E 

Q [ S T e 
−r ( T −u ) |F 

v 
T ] E ̃

 Q [ 1 { S T >K } |F 

v 
T ] − Ke −r ( T −u ) 

E 

Q [ 1 { S T >K } |F 

v 
T ] 

= E 

Q [ S T e 
−r ( T −u ) |F 

v 
T ] P ̃

 Q (S T > K|F 

v 
T ) − Ke −r ( T −u ) P Q (S T > K|F 

v 
T ) . (3) 

In order to obtain the option’s payoff probabilities P ̃
 Q ,Q (S T > K|F 

v 
T ) of expiring in the money under the measures ˜ Q and

Q , we make use of the conditional copula h-function probability defined next. 

Definition 1 (Conditional copula (see Patton [33] ) . Consider the random vector (X, Y, Z) . Let F ·| Z ( ·| z ) denote the marginal

conditional cumulative distribution function given Z = z. Then, based on Sklar’s theorem, the conditional joint cumulative 

distribution function of (X, Y | Z) is 

F X,Y | Z ( x, y | z ) = C(F X| Z ( x | z ) , F Y | Z ( y | z ) | z) , 
where C(·, ·| z) is the conditional copula function for all z. 

Proposition 1 (Conditional copula h-function) . Given the continuous marginals φ = F X| Z= z ( ·| z ) and ψ = F Y | Z= z ( ·| z ) , there exists 

a unique conditional copula h-function h ( φ, ψ | z ) with the dependence parameter ϕ that is obtained as the partial derivative of 

the conditional copula distribution C(φ, ψ | z) with respect to ψ such that 

P ( { X ≤ x | Y = y } | Z = z ) = 

∂C ( φ, ψ | z ) 
∂ψ 

= h ( φ, ψ | z ) . 

Proof. We have that 

h ( φ, ψ | z ) = lim 

�y → 0 
P({ X ≤ x | X ≤ xy ≤ Y ≤ y + �y y ≤ Y ≤ y + �y }| Z = z) 

= lim 

�y → 0 

F X,Y | Z ( x, y + �y | z ) − F X,Y | Z ( x, y | z ) 
F Y | Z ( y + �y | z ) − F Y | Z ( y | z ) 

= lim 

�y → 0 

C ( F X| Z ( x | z ) , F Y | Z ( y + �y | z ) | z ) − C ( F X| Z ( x | z ) , F Y | Z ( y | z ) | z ) 
F Y | Z ( y + �y | z ) − F Y | Z ( y | z ) 

= 

∂ C 
(
F X| Z ( x | z ) , F Y | Z ( y | z ) | z 

)
/∂ y 

∂ F Y | Z ( y | z ) /∂ y = 

∂C ( φ, ψ | z ) 
∂ψ 

. 

Therefore, the option’s conditional payoff probability P ̃
 Q ,Q (S T > K|F 

v 
T 
) of expiring in the money at maturity time T is 

conditionally dependent on the integrated variance to maturity V u,T such that by application of the conditional copula for- 

mulation (see Proposition 1 ), this payoff probability is obtained under both measures ˜ Q and Q as 

P 
˜ Q ,Q 

(
S T > K | F 

v 
T 

)
= P 

˜ Q ,Q ( { S T > K | V u,T } | v u ) 
4 
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= 

∂C 
˜ Q ,Q 

(
F S 
(
S T > K| { V u,T = 

ˆ v 
∣∣v u } ) , F V (V u,T ≤ ˆ v 

∣∣v u ) | v u ) 
∂F V 

(
V u,T ≤ ˆ v 

∣∣v u ) = 

∂C 
˜ Q ,Q ( φS , ψ V | v u ) 

∂ψ V 

= h 

˜ Q ,Q ( φS , ψ V ) , 

where C ̃
 Q ,Q denotes the copula function that captures the asymmetric dependence between the stock price process and 

the integrated variance process, and h ̃
 Q ,Q (φS , ψ V ) is the conditional copula h-function with respect to ψ V . The continu-

ous marginals φS and ψ V represent the conditional probability F S of the stock price process which follows a conditional 

lognormal distribution and the conditional probability F V of the integrated variance process respectively. 

The price of a European plain vanilla call option f ( S, u ) under asymmetric stochastic volatility by the conditional copula 

approach is therefore obtained as 

f ( S, u ) = S u �u,T 

(
0 , ̂  v 

)
h 

(
�

(
d 1 

(
0 , ̂  v 

))
, ψ 

1 
V 

(
ˆ v 
))

− Ke −r ( T −u ) h 

(
�

(
d 2 

(
0 , ̂  v 

))
, ψ 

2 
V 

(
ˆ v 
))

, (4) 

where 

and d 2 (Y u,T , V u,T ) = 

ln 
S u 
K 

+ Y u,T + m u,T (V u,T ) √ 

s 2 
u,T 

(V u,T ) 
, 

�u,T ( Y u,T , V u,T ) = e m u,T ( V u,T ) + 1 2 s 
2 
u,T ( V u,T ) −r ( T −u ) 

E 

Q 
(
e Y u,T 

)
, 

S u is the current stock price, r is the risk-free interest rate, K is the strike price, ˆ v is the estimate of the aggregate variance 

from time u until expiry of the option at time T , h is the conditional copula h-function with respect to the second argu-

ment with dependence parameter ϕ and � is the standard normal cumulative distribution function. ψ 

1 , 2 
V 

are the cumulative 

distribution functions under the respective measures ˜ Q and Q of the integrated variance. Under the three stochastic volatil- 

ity models specifications – Gaussian, square-root and lognormal – these functions are estimated by a Gaussian, Gamma 

(see Prayoga and Privault [34] ) and lognormal distribution (see Levy [35] , Turnbull and Wakeman [36] ) respectively. More

specifically, the cumulative distribution functions under the three specifications are as follows: 

a. Under the Gaussian mean-reverting stochastic volatility, ψ 

1 , 2 
V 

are obtained by the standard normal cumulative distribu- 

tion function as �
(
g v 

1 

)
and �

(
g v 

2 

)
respectively, where g v 

1 
= 

ˆ v − ˜ m g √ 

s 2 g 

and g v 
2 

= 

ˆ v −m g √ 

s 2 g 

with 

m g = θ + 

( v u − θ ) 
(
1 − e −k ( T −u ) 

)
k ( T − u ) 

, 

˜ m g = 

˜ θ + 

(
v u − ˜ θ

)(
1 − e −k ( T −u ) 

)
k ( T − u ) 

with 

˜ θ = θ + 

σ 2 

k 
, 

s 2 g = 

σ 2 

k 2 ( T − u ) 
2 

( 

( T − u ) −
2 

(
1 − e −k ( T −u ) 

)
k 

+ 

1 

2 k 
− e −2 k ( T −u ) 

2 k 

) 

. 

b. Under the square-root mean-reverting stochastic volatility, ψ 

1 , 2 
V 

are obtained by the cumulative gamma distribution 

functions F 1 
(

ˆ v ; a 1 , b 1 
)

and F 2 
(

ˆ v ; a 2 , b 2 
)

respectively where the shape and scale parameters are a 1 = 

˜ m f 

b 1 
and b 1 = 

s 2 
f 

˜ m f 
, 

a 2 = 

m f 

b 2 
and b 2 = 

s 2 
f 

m f 
with 

m f = v u 

[
1 − e −α( T −u ) 

α( T − u ) 

]
+ β

[
e −α( T −u ) + α( T − u ) − 1 

α( T − u ) 

]
, 

˜ m f = v u 

[
1 − e − ˜ α( T −u ) 

˜ α( T − u ) 

]
+ 

˜ β

[
e − ˜ α( T −u ) + ˜ α( T − u ) − 1 

˜ α( T − u ) 

]
with ˜ α = α − γ 2 and ˜ β = 

αβ

α − γ 2 
, 

s 2 f = γ 2 v u 

[
1 − 2 α( T − u ) e −α( T −u ) − e −2 α( T −u ) 

α3 ( T − u ) 
2 

]
+ γ 2 β

[
e −2 α( T −u ) + 2 α( T − u ) + 4 ( α( T − u ) + 1 ) e −α( T −u ) − 5 

2 α3 ( T − u ) 
2 

]
. 

c. Under the lognormal stochastic volatility model, ψ 

1 , 2 
V 

are obtained by the standard normal cumulative distribution func- 

tions �
(
l v 
1 

)
and �

(
l v 
2 

)
respectively where l v 

1 
= 

ln ̂ v − ˜ m l √ 

˜ s 2 
l 

and l v 
2 

= 

ln ̂ v −m l √ 

s 2 
l 

such that 

m l = ln v u 
[ 

e μ(T−u ) −1 
μ(T −u ) 

] 
− 0 . 5 ε 2 and where ˜ μ = μ + ω 

2 , 
5 
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and ˜ s 2 
l 

= ln 

˜ ε 2 

v 2 u [ 
(e ̃ μ(T−u ) −1) 

2 

˜ μ2 (T−u ) 2 
] 

, 

ε 2 = 2 v 2 u 

[ 

μe ( ω 
2 +2 μ) ( T −u ) − ( ω 

2 +2 μ) e μ( T −u ) + 

(
ω 

2 + μ
)(

ω 

2 + μ
)(

ω 

2 + 2 μ
)
μ( T − u ) 

2 

] 

, 

˜ ε 2 = 2 v 2 u 

⎡ ⎣ 

˜ μe ( ω 
2 +2 ̃ μ) ( T −u ) − ( ω 

2 + 2 ̃  μ
)

e ˜ μ( T −u ) + 

(
ω 

2 + ˜ μ
)(

ω 

2 + ˜ μ
)(

ω 

2 + 2 ̃  μ
)

˜ μ( T − u ) 
2 

⎤ ⎦ . 

�

Empirical evaluation 

This section examines the relative empirical performance of the dynamic option pricing models under asymmetric 

stochastic volatility that were introduced in the previous section. The data, obtained from Eikon, include daily prices for 

3-year in-the-money S&P 500 Index call options expiring on 18 December 2019 and 25 strike price levels ranging from 1800

to 30 0 0 USD. The underlying prices of the S&P 500 Index are obtained for the 5-year period from 19 August 2015 to 19 Au-

gust 2020. In the performance analysis of the models, the following copula h-functions are fitted: the empirically estimated 

Joe copula, Gaussian, Student t , Clayton, Gumbel and Frank copulae. 

Table 1 reports the summary statistics of the data used in the analysis, while in Table 2 we present summaries of the es-

timated parameters of the Gaussian mean-reverting, square-root, and lognormal stochastic volatility models. Table 3 reports 

the dependence parameter estimates of the fitted copula h-functions. Figs. 1 and 2 exhibit plots of S&P 500 Index daily

prices and S&P 500 Index stochastic volatility from 19 August 2015 to 19 August 2020. The empirical copula dependence 

plot is given in Fig. 3 . 

In Table 4 , the summaries of the pricing errors by root mean square error (RMSE) are presented. The RMSE is computed

from the estimated daily option prices under the Gaussian mean-reverting, the square-root and the lognormal models and 

compared with the actual daily option prices for the various strike prices. The RMSEs obtained are then aggregated and the

means, standard deviations, minimums and maximums are presented for the different models. The performance evaluation 

is presented for the various copula h-functions specifications under the different models. The findings reveal that the aggre- 
Table 1 

Summary Statistics of S&P 500 Index prices, log-returns, stochastic variance and integrated variance from 

19-August-2015 to 19-August-2020. 

Min Median Mean Max Std. Dev Skewness Kurtosis 

S&P 500 prices 1829 2636 2575 3390 388.63 -0.0044 2.0040 

S&P 500 log-returns -0.1277 0.0004 0.0004 0.0897 0.0121 -1.0909 25.1340 

Stochastic variance 0.0000 0.0155 0.0236 0.1092 0.0234 1.1193 3.4949 

Integrated variance 0.0036 0.0066 0.0089 0.0228 0.0055 1.0622 2.9067 

Table 2 

Estimation outcome of the different stochastic volatility processes. 

Gaussian mean-rev. Square-root diffusion Lognormal process 

k 2.3799 α 1.2089 μ 0.0595 

θ 0.0245 β 0.0347 ω 0.3446 

σ 0.0538 γ 0.4013 

Table 3 

Estimated empirical Joe copula parameter ϕ as well as 

other fitted copula parameters with standard errors in 

parentheses. 

Estimated empirical copula parameter 

Joe 4.8851 (0.17) 

Other estimated copula parameters 

Gaussian 0.6546 (0.02) 

Student t 0.7850 (0.02), 2.1011 (0.19) 

Clayton 0.5813 (0.06) 

Gumbel 2.5570 (0.08) 

Frank 6.9302 (0.32) 
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Fig. 1. Plot of S&P Index daily prices from 19 August 2015 to 19 August 2020. 

Fig. 2. S&P Index stochastic volatility plot from 19 August 2015 to 19 August 2020. 

Fig. 3. Empirical Copula Dependence Plot of Stochastic Volatility and Underlying Stock Prices. 
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Table 4 

Pricing evaluation by RMSE of dynamic option pricing models under asymmetric stochastic volatil- 

ity for various copula configurations for in-the-money S&P 500 Index European call options in com- 

parison with the Heston model. A 3-year evaluation with 700 daily option prices estimates across 

25 strike price levels are used. The daily RMSEs are then aggregated across the different strikes and 

the mean, minimum, maximum and standard deviation are reported. 

Option pricing performance evaluation under Gaussian mean-reverting process 

RMSE Heston Joe Gaussian Student t Clayton Gumbel Frank 

Mean 64.1333 44.2738 45.1845 43.5226 46.4559 43.6266 43.8352 

Std. dev. 17.3127 13.7439 13.3196 14.6077 11.7463 14.4757 14.3233 

Min 35.9580 25.3154 25.4379 23.5761 30.3753 24.1904 23.7262 

Max 88.8123 65.3999 65.3999 65.3999 65.3999 65.3999 65.3999 

Option pricing performance evaluation under square-root diffusion 

RMSE Heston Joe Gaussian Student t Clayton Gumbel Frank 

Mean 64.133 43.399 48.542 45.311 47.149 45.254 48.206 

Std. dev. 17.313 14.024 13.872 15.109 9.823 15.627 15.477 

Min. 35.958 24.993 30.202 24.365 33.392 23.611 29.154 

Max. 88.812 83.958 91.906 95.612 65.634 98.509 104.889 

Option pricing performance evaluation under lognormal process 

RMSE Heston Joe Gaussian Student t Clayton Gumbel Frank 

Mean 64.133 56.883 56.907 56.462 56.907 56.542 56.448 

Std. dev. 17.313 18.798 18.818 19.440 18.800 19.316 19.472 

Min 35.958 28.013 26.212 25.227 27.339 25.830 24.610 

Max 88.812 82.260 82.260 82.260 82.260 82.260 82.260 

Table 5 

Relative percentage performance improvement in RMSE of dynamic option pricing models under various copula configu- 

rations against the Heston model across time to maturity and 55 strike price levels. The relative percentage performance 

improvements are obtained from comparing the RMSE values for the different models in Table 4 . 

Model Joe Gaussian Student t Clayton Gumbel Frank Aggregate Std. Dev 

Gaussian mean-rev. 30.97% 29.55% 32.14% 27.56% 31.98% 31.65% 30.64% 1.62% 

Square-root diffusion 32.33% 24.31% 29.35% 26.48% 29.44% 24.83% 27.79% 2.84% 

Lognormal process 11.31% 11.27% 11.96% 11.27% 11.84% 11.98% 11.60% 0.33% 

 

 

 

 

gate pricing errors are lower for all the dynamic option pricing models as compared to the Heston model as summarized in

Table 4 . The Heston model is computed using the same parameters as those obtained for the square-root diffusion model. 

The standard deviation of the RMSE captures the performance variation across the various strike prices. The Heston 

model has the highest RMSE with the highest deviation of 17.31 which is higher than the aggregate deviations of the Gaus-

sian mean-reverting and square-root diffusion models, respectively 13.98 and 13.70, across the copulae h-function specifica- 

tions. The lognormal dynamic pricing model has a higher RMSE deviation across strike price levels at an aggregate of 19.11.

The lowest variation in performance was recorded by the square-root model under the Clayton copula at 9.82. Taking into 

account the asymmetric dependence in stochastic volatility, a significant improvement in performance is witnessed across 

copula specifications in the three different models. The Heston model resulted in an aggregate RMSE across strike price 

levels of 64.13, whereas the lognormal, square-root and Gaussian models yielded aggregate RMSEs across strike levels and 

copula specifications of 56.69, 46.31 and 44.48, respectively. The relative performance improvements are compared to the 

Heston model and are summarized in Table 5 . 

Table 5 presents the relative percentage performance improvements in RMSE by comparing the dynamic option pricing 

models under the various copula configurations to the Heston model. A positive performance improvement indicates that 

the dynamic option pricing models had lower RMSE than the Heston model. The dynamic option pricing model under 

asymmetric Gaussian mean-reversion improves the performance in pricing of S&P 500 in-the-money European call options 

by an aggregate of 30.64% across copulae compared to the Heston model. Under the asymmetric square-root model, the 

pricing performance improvement is at an aggregate level of 27.79%, while for the asymmetric lognormal model this stands 

at 11.60%. The square-root model under the Joe copula achieved the highest improvement of 32.33%, whereas the lowest of 

11.27% was given by the lognormal model under the Gaussian and Clayton copulae specifications. 

Furthermore, copula-specific performance variation was witnessed for the three models. More specifically, the lognormal 

model yielded the lowest variation in performance across copulae. The square-root model had the highest performance vari- 

ation from a low of 24.31% for the Gaussian copula to a high of 32.33% by the Joe copula. The square-root model, across

the copula h-function specifications, was observed to have the highest performance variation at 2.84% performance vari- 

ation. The pricing errors were uniform and lowest under the lognormal model across copula specifications and, as such, 

the lowest performance variation was observed at 0.33% across copula h-function specifications. The performance variation 

for the Gaussian mean-reverting model across copula specifications was recorded at 1.62%. With our dynamic conditional 
8
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copula approach to pricing options under asymmetric stochastic volatility, we find that, compared to the Heston model, the 

performance of the square-root model under the Gaussian copula specification exhibits a significant performance improve- 

ment of 24.31%. Here similar parameters for the Heston and the square-root diffusion model were used. This demonstrates 

the superior tractability and performance accuracy of the proposed dynamic conditional copula approach to pricing options 

under asymmetric stochastic volatility over previous approaches. 

Conclusion 

The aim of this paper is to develop stochastic volatility models with asymmetric dependence and apply them to option 

pricing. Closed-form solutions for European options are presented based on the application of a dynamic conditional copula 

approach to capture asymmetric dependence. Evaluation of the empirical performance for a mean-reverting, square-root, 

and lognormal models is performed under various copula specifications. 

The derived pricing RMSEs for 3-year S&P 500 Index European call options based on our constructed models suggest that 

these perform significantly better and consistently across maturity levels, strike price levels, and different specifications of 

the copula h-functions than the basic Heston model. Overall performance improvements of 30.64%, 27.79% and 11.60% were 

achieved across all copulae under the mean-reverting Gaussian, square-root and lognormal models, respectively. The square- 

root model under the Joe copula specification was found to be the best with a performance improvement of 32.33%. Across

maturity and strike price levels, the square-root stochastic volatility model under the Clayton copula specification yielded 

the lowest variation of 9.82 compared to that of the Heston model of 17.31. The performance of the lognormal stochastic

volatility model was found to be rigid to the choice of the copula function, whereas the square-root stochastic volatility and

Gaussian stochastic volatility models were quite affected by the choice of the copula function. 

The selection herein of the copula h-function, the stochastic volatility process and its cumulative distribution function 

were seen to impact the general performance of the dynamic option pricing models. The dynamism of this conditional 

copula approach for pricing options under asymmetric stochastic volatility allows freedom in the construction of the driving 

stochastic volatility model. It also allows flexibility in the choice of a copula h-function without imposing any restrictive 

modelling assumption on the nature of dependence between the asset price and stochastic volatility processes, thus offering 

a wealth of model specifications of this kind. This dynamism is a modelling panacea for option pricing under stochastic 

volatility since it allows liberty for a variety of stochastic volatility models and various copula specifications and is practically 

extensible to allow jumps in the stock price and volatility processes and also allow stochastic interest rates. 

The proposed closed-form dynamic option pricing approach is practical, fully analytical, simple, and accurate, hence 

represents a suitable alternative to classical models. It provides a suitable alternative for option pricing under stochastic 

volatility and a substantive framework for application of the dynamic copula approach for other option classes under varied 

stochastic dynamics. 
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